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Objectives 

Students will be able to  

• cite some properties of real numbers.  

• discuss the sequence of real numbers.  

• explain the concept of convergence of a sequence.  

• validate the bounded and monotonic sequences 

 

Introduction 

You have the idea about the number system since you began your journey of learning mathematics. 
In this unit we will learn about some more properties of real numbers, the concept of sequence of real 
numbers and their properties of being bounded and of convergence.  

 

1.1 Real numbers 

All around us, the one thing which is constant is the change. The study of change is called 
CALCULUS. It has applications in almost all the fields of science and social science. For 
understanding the change, one needs to have the concept of measurement. We need to measure the 
time, distance, heat, force, intelligence etc. in order to adjudge the change happening in them.  

One way to judge the change in any situation is by finding the average rate of change over a range. 
If the change is to be judged at a point, then instantaneous rate of change is required. To understand 
the instantaneous rate of change, one needs to understand the concept of limit first. Moreover, to 
understand anything and everything one needs to understand the number system first. 

The advent of Calculus is accredited to two mathematicians. One is British mathematician Sir Issac 
Newton and other is German Mathematician Gottfried Leibnitz. 
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1.2 Number System 

We know that since ancient times, the pebbles were used by the shepherds etc. to count their sheep 
and this amounts to the counting numbers, which are now known as natural numbers.  

With the invention of zero, natural numbers {1, 2, 3,…} along with {0} are known as whole numbers. 
Then the idea of negative numbers got evolved and the set {…, -2, -1, 0, 1, 2,…} was named as the set 
of integers.  

Then the idea of rational numbers came up where a rational number takes the form p/q where q is 
non-zero number and p and q are integers. The numbers which are not rational were called irrational 
numbers. 

The rational and irrational numbers taken together are called real numbers. Therefore all the 
terminating, nonterminating-repeating, nonterminating-nonrepeating decimals are the real 
numbers. 

All the real numbers can be plotted on the real line. 

 

 

 

Closed and Open interval 

Let 𝑎 and 𝑏 be two given numbers such that 𝑎 < 𝑏. Then, the set {𝑥: 𝑎 ≤ 𝑥 ≤ 𝑏} is called a closed 
interval and is denoted by [𝑎, 𝑏]; the set {𝑥: 𝑎 < 𝑥 < 𝑏} is called a closed interval and is denoted by 
(𝑎, 𝑏) and the set {𝑥: 𝑎 ≤ 𝑥 < 𝑏} or {𝑥: 𝑎 < 𝑥 ≤ 𝑏} is called a closed interval and is denoted by [𝑎, 𝑏) or 
(𝑎, 𝑏] respectively. 

 

Absolute function 

Let 𝑥 be a real number then there exist three possibilities, then it can be more than, less than or equal 
to zero. The modulus value or absolute value of 𝑥 is defined as 

    

                          |𝑥| = {  
    𝑥  𝑖𝑓 𝑥 ≥ 0
−𝑥  𝑖𝑓 𝑥 < 0

    ∀ 𝑥 ∈ ℝ 

              Moreover, we can write |𝑥| = max {𝑥, −𝑥}. 

 

Also  |𝑥 − 𝑎| > 𝑙 ⇒ x − a > l or  x − a < −l   and 

 |𝑥 − 𝑎| < 𝑙 ⇒  −l < x − a < l  

 

1.3 Sequence of real number 
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Sequence is a kind of ordered list of numbers where a pattern can be seen. For example, 3, 6, 9, . . . is 

a list in which the first term is 3, second is 6 and so on. We can easily tell that the fourth term will be 

12 and so on. This example here is of an infinite sequence. 

 

Technically, a function whose domain is a set of natural numbers and range is a subset of real 
numbers, is called a real sequence (and just sequence in this course). Since the domain of all sequences 
is the set of natural numbers, therefore a sequence is completely determined if  

         𝑓(𝑛) ∀ 𝑛 𝜖 𝑵  is known. The sequence 𝑓  is denoted as < 𝑓𝑛 > 𝑜𝑟 {𝑓𝑛} mostly. 

 

 
{

1

𝑛
} , {(−1)𝑛} etc. 

Range of sequence is the set of all distinct terms of a sequence. It can be infinite or finite. The first 
sequence in the example is an infinite one and the second one is finite. 

 

1.4  Bounded and unbounded sequence 

   A sequence is said to be bounded if and only if its range is bounded. 

  

   A sequence   {𝑓𝑛}  is bounded above if there exists a real number K such that 

 

        𝑓𝑛 ≤ 𝐾       ∀   𝑛 𝜖 𝑵   

  

A sequence   {𝑓𝑛}   is bounded below if there exists a real number k such that 

 

         𝑓𝑛 ≥ 𝑘       ∀   𝑛 𝜖 𝑵   

  

A sequence is said to be bounded if it is bounded above as well as below. Hence a sequence  

 {𝑓𝑛 } is said to be bounded if there exist two real numbers 𝑘 and 𝐾 such that 

  

              𝑘 ≤ 𝑓𝑛 ≤ 𝐾   ∀   𝑛 𝜖 𝑵 

 

       We call the sequence to be unbounded if it is not bounded. 

 Prove that the sequence {n} is not convergent and is not bounded. 

Let 𝑝 be a real number. Then, the neighbourhood (𝑝 −
1

4
, 𝑝 +

1

4
) will contain at most one term of the 

sequence {𝑛}. Therefore, in this neighbourhood, we cannot find infinitely many terms of the sequence. 
Hence the sequence is not convergent. 

On the other hand, we can see that all the elements of the sequence are more than 1 but we cannot 
find any upper bound i.e. any number so that all the elements of the sequence are below that number. 
Therefore, the sequence is just bounded below and not bounded above or simply the sequence is not 
bounded. 
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1.5  Limit of a sequence 

This concept of approach is of utmost importance to understand the calculus. A number a  is called  

the limit of an infinite sequence  {𝑓𝑛 } if for any positive number 𝜖 we can find a positive number 𝑵 

depending on 𝜖 such that 

 

|𝑓𝑛 − 𝑎| < 𝜖 ∀ integers 𝑛 > 𝑵 

 

That is in any neighbourhood of 𝑎 , 𝑓𝑛 belongs to the same neighbourhood for infinite values of 𝑛. 

Consider the sequence {𝑛}. If you consider any neighbourhood of any number 𝑎, it will not  

contain an infinite number of elements of the sequence. On the other hand any neighbourhood of  

any number a , for the sequence {
1

𝑛
} will contain infinitely many elements of the sequence. 

 

1.6 Convergence of sequences 

A sequence is said to be convergent if its limit exists and is unique. In other words, a sequence {𝑓𝑛} 

has a limit 𝑎 if the successive terms get closer and closer to 𝑎.  

 

 

 

 

Theorems on limits of sequence 

 

If   𝑓𝑛𝑛→∞
𝑙𝑖𝑚 = 𝐴   and    𝑔𝑛𝑛→∞

𝑙𝑖𝑚 = 𝐵, then 

 

(i)   ( 𝑓𝑛 + 𝑔𝑛)𝑛→∞
𝑙𝑖𝑚 = 𝐴 + 𝐵 

 

(ii)   ( 𝑓𝑛 − 𝑔𝑛)𝑛→∞
𝑙𝑖𝑚 = 𝐴 − 𝐵 

 

(iii)   𝑓𝑛. 𝑔𝑛𝑛→∞
𝑙𝑖𝑚 = 𝐴. 𝐵 
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(iv)   (
 𝑓𝑛

𝑔𝑛
)𝑛→∞

𝑙𝑖𝑚 =
𝐴

𝐵
   provided 𝐵 ≠ 0 

 
If B=0, A≠0 then the limit does not exist and if B=0, A=0 then the limit may or may not exist. 

 

(v)    𝑓𝑛
𝑝

𝑛→∞
𝑙𝑖𝑚 = 𝐴𝑝 , 𝑝𝜖𝑹 

 

(vi)    𝑝 
𝑓𝑛

𝑛→∞
𝑙𝑖𝑚 = 𝑝𝐴 , 𝑝𝜖𝑹 

 

1.7 Infinite series 

Let 𝑓1, 𝑓2, 𝑓3,   .  .  .  be a sequence. Create a new sequence by taking the sum of the terms taken one, 
two, three… at a time. Let 𝑆1, 𝑆2, 𝑆3, . .. be such that 

 

𝑆1 = 𝑓1 

𝑆2 = 𝑓1 + 𝑓2 

𝑆3 = 𝑓1 + 𝑓2 + 𝑓3 

       . 

      . 

      . 

𝑆𝑛 = 𝑓1 + 𝑓2 + 𝑓3 + ⋯ + 𝑓𝑛 

Here 𝑆𝑛 is called the 𝑛𝑡ℎ partial sum. The sequence 𝑆1, 𝑆2, 𝑆3, . ..  is symbolized by 

𝑓1 + 𝑓2 + 𝑓3 + ⋯ =  


=1n

nf   

which is called an infinite series. If   𝑆𝑛𝑛→∞
𝑙𝑖𝑚 = 𝑆 exists, the series is called convergent and 𝑆  is called 

its sum, otherwise the series is called divergent.  

For instance, the geometric progression (G. P.) 𝑎 + 𝑎𝑟 + 𝑎𝑟2 + ⋯ . +𝑎𝑟𝑛−1 + ⋯  is a series which 

converges to sum 
𝑎

(1−𝑟)
 provided |𝑟| < 1 and diverges if |𝑟| ≥ 1. 

 

1.8 Monotonic sequences 

A sequence {𝑓𝑛} is said to be monotonically increasing if 𝑓𝑛+1 ≥ 𝑓𝑛 ∀ 𝑛 ∈ 𝑵  and monotonically   
decreasing if  𝑓𝑛+1 ≤  𝑓𝑛  ∀ 𝑛 ∈ 𝑵. For example, the sequence {𝑛} monotonically increasing and the 

sequence {
1

𝑛
} is monotonically decreasing. The sequence which is either monotonically increasing or 

decreasing is called the monotonic sequence. 

 
Can you recognize what kind of sequence is being depicted by the following graphs? 
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Prove that the sequence {
2𝑛−7

3𝑛+2
}  is (i) monotonically increasing (ii) is bounded and (iii) 

tends to limit {
2

3
}. 

 Let 𝑓𝑛 =
2𝑛−7

3𝑛+2
 

 

then  𝑓𝑛+1 =
2𝑛−5

3𝑛+5
 

 

And  𝑓𝑛+1 − 𝑓𝑛 =
2𝑛−5

3𝑛+5
−

2𝑛−7

3𝑛+2
=

25

(3𝑛+5)(3𝑛+2)
> 0 ∀ 𝑛 ∈ 𝑵 

 

This shows that the given sequence is monotonically increasing. Now if we write few terms of the  

sequence {𝑓𝑛 } , we can observe that all the terms are more than or equal to −1. 

 

i.e. 𝑓𝑛 ≥  −1 ∀ 𝑛 ∈ 𝑵 

 

Moreover  1 − 𝑓𝑛 =
𝑛+9

3𝑛+2
> 0  ∀ 𝑛 ∈ 𝑵   

 

This implies 𝑓𝑛 < 1  ∀ 𝑛 ∈ 𝑵 

 

And  −1 ≤ 𝑓𝑛 < 1  ∀ 𝑛 ∈ 𝑵 , therefore the sequence is bounded. 

Now the limit can be found as follows, 

 

  𝑓𝑛𝑛→∞
𝑙𝑖𝑚 =   

2𝑛−7

3𝑛+2
=  

2−
7

𝑛

3+
2

𝑛

𝑛→∞
𝑙𝑖𝑚  𝑛→∞

𝑙𝑖𝑚 =
2

3
  

 

Summary  

In this chapter we have seen the concept of the sequence, its convergence, boundedness, and 
monotonicity.  

 

Key words 

Real Numbers, Sequence, Series, Convergence, Bounded function, Monotonic function 

 

Self Assessment 

1. The interval [3,99) is a 

(a) closed interval 

(b) open interval 

(c) semi closed or semi open interval 
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(d) semi open interval 

2. |𝑥| can be written as 

(a) 𝑥 

(b) −𝑥 

(c) min{−𝑥, 𝑥} 

(d) max {−𝑥, 𝑥} 

3. The solution of |𝑥 − 5| < 3 can be written as 

(a) [2,8] 

(b) (2,8) 

(c) (2,8] 

(d) (-2,8) 

4. The solution of |𝑥 − 5| ≥ 3 can be written as 

(a) (−∞, 2]𝑈[8, ∞) 

(b) [2,8] 

(c) (−∞, 2)𝑈(8, ∞) 

(d) None of these 

5. Which of the following is an infinite sequence? 

(a) The prime numbers between 2 to 2000 

(b) The set of even numbers 

(c) The set of odd numbers between 3 to 30 

(d) First ten multiples of seven 

6. Function f is bounded if its range f(A) is a __________ subset. 

7. The supremum of a set is its least upper bound. 

True 

False 

8. The infimum of a set is its greatest upper bound. 

True 

False 

9. The sequence {𝑛} is 

(a) not convergent 

(b) not bounded 
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(c) convergent and bounded 

(d) neither convergent nor bounded 

10. A sequence is said to be convergent  

(a) if its limit exists  

(b) if it is unique 

(c) if its limit exists and is unique 

(d) None of these 

11. If   𝑓𝑛𝑛→∞
𝑙𝑖𝑚 = 𝐴   and    𝑔𝑛𝑛→∞

𝑙𝑖𝑚 = 𝐵, then 

(a)   ( 𝑓𝑛 + 𝑔𝑛)𝑛→∞
𝑙𝑖𝑚 = 𝐴 + 𝐵 

(b)   ( 𝑓𝑛 − 𝑔𝑛)𝑛→∞
𝑙𝑖𝑚 = −𝐴 − 𝐵 

(c)   𝑓𝑛. 𝑔𝑛𝑛→∞
𝑙𝑖𝑚 = 𝐴 + 𝐵 

(d)   𝑓𝑛. 𝑔𝑛𝑛→∞
𝑙𝑖𝑚 = 𝐴/𝐵 

12. The sequence {
2𝑛−7

3𝑛+2
}  converges to 

(a) 2/3 

(b) -1 

(c) 1 

(d) none of these 

13.  A sequence {𝑓𝑛} is said to be monotonically increasing if  

(a) 𝑓𝑛+1 ≤ 𝑓𝑛  ∀ 𝑛 ∈ 𝑁   

(b) 𝑓𝑛+1 < 𝑓𝑛  ∀ 𝑛 ∈ 𝑁   

(c) 𝑓𝑛+1 > 𝑓𝑛  ∀ 𝑛 ∈ 𝑁   

(d) 𝑓𝑛+1 ≥ 𝑓𝑛  ∀ 𝑛 ∈ 𝑁   

 

14.  A sequence {𝑓𝑛} is said to be strictly monotonically increasing if  

(a) 𝑓𝑛+1 ≤ 𝑓𝑛  ∀ 𝑛 ∈ 𝑁   

(b) 𝑓𝑛+1 < 𝑓𝑛  ∀ 𝑛 ∈ 𝑁   

(c) 𝑓𝑛+1 > 𝑓𝑛  ∀ 𝑛 ∈ 𝑁   

(d) 𝑓𝑛+1 ≥ 𝑓𝑛  ∀ 𝑛 ∈ 𝑁   

15. The sequence {𝑛} is 

(a) convergent 

(b) monotonic 

(c) convergent and monotonic 

(d) neither convergent nor monotonic 
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Answers: 

1 c 6 bounded 11 a 

2 d 7 True 12 a 

3 b 8 True 13 d 

4 a 9 d 14 c 

5 b 10 c 15 B 

 

Review Questions 

1. What is the solution of  |𝑥 − 1| < 5 ? 

2. Check whether the sequence {(−𝑛)𝑛} is bounded or not? 

3. What is the solution of  |𝑥 − 2| < 6 ? 

4. What is the solution of  |𝑥 − 1| > 5 ? 

5. Prove that |𝑎𝑏| = |𝑎||𝑏|. 

6. State true or false: {𝑥: |𝑥 − 3| < 4} = {𝑥: −1 < 𝑥 < 7} 

7. Evaluate    log5
𝑛

log9(𝑛) 𝑛→∞
𝑙𝑖𝑚  

8. Check if the sequence {(−2)𝑛}  is bounded or not? 

9. Check if the sequence {
2

𝑛
} is bounded or not? 

10. Check if the sequence {𝑛2} is bounded or not? 

11. Write a short note on boundedness of a sequence. 

12. Check the monotonicity of the sequence {
2

𝑛
}. 

13. Check the monotonicity of the sequence {
2𝑛

𝑛+1
}. 

14. Write a short note on the monotonicity of a sequence. 

15. Write a short note on the convergence of a sequence. 

 Further/Suggested Readings 

1. George B. Thomas Jr., Joel Hass, Christopher Heil & Maurice D. Weir (2018). Thomas’ 

Calculus  (14th edition). Pearson Education. 

2. Howard Anton, I. Bivens & Stephan Davis (2016). Calculus (10th edition). Wiley India. 

3. http://mathonline.wikidot.com/calculus 
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Objectives 

Students will -  

• learn the concept of integral as a limit of sum. 

• learn about the hyperbolic functions 

• be able to integrate irrational algebraic functions. 

• be able to integrate the transcendental functions 

Introduction 

You have learnt the rules of differentiation and integration at the senior secondary level. The definite 
integral of a function gives you the area under the curve of that function between the specified limits. 
In this unit we will look into the detail as to what is the integral as a limit of sum.  We will evaluate 
some definite integrals with this ab initio method. The functions can be classified as algebraic and 
transcendental functions. The polynomial functions, rational functions are the algebraic functions 
and exponential, logarithmic, trigonometric, inverse trigonometric functions, hyperbolic functions, 
inverse hyperbolic functions are the examples of the transcendental functions. We will solve some 
problems on integration of irrational as well as transcendental functions in this unit. 

2.1 Integral as a limit of sum 

Consider a continuous function defined on a closed interval [a, b], where all the values of the function 
are non-negative. The area bound between the curve, the point 𝑥 = 𝑎  and 𝑥 = 𝑏 and the x-axis is the 

definite integral ∫ 𝑓(𝑥)𝑑𝑥 
𝑏

𝑎
of any such continuous function 𝑓.  
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First idea is to divide the interval [𝑎, 𝑏] onto 𝑛 equal sub-intervals as: 

𝑎 = 𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑛−2, 𝑥𝑛−1, 𝑥𝑛 = 𝑏 . Now we can see that the length of each sub interval must be 
𝑏−𝑎

𝑛
 

and let it be denoted by ℎ. Therefore we can write the points of the partition as follows: 

𝑥0 = 𝑎, 

𝑥1 = 𝑎 + ℎ 

𝑥2 = 𝑎 + 2ℎ 

. 

. 

.  

𝑥𝑛 = 𝑎 + 𝑛ℎ = 𝑏  

Clearly as → ∞ , ℎ → 0. In the above figure The region PRSQP is the sum of all the 𝑛 sub-regions, 
where each sub-region is defined on sub-interval [𝑥𝑟−1 , 𝑥𝑟], 𝑟 = 1, 2, 3, … 𝑛. Observe region ABDM. 
Area of the rectangle (ABLC) < Area of the region (ABDCA) < Area of the rectangle (ABDM). 

As ℎ → 0 all these areas become almost equal to each other.  Hence, we have  

𝑠𝑛 = ℎ[𝑓(𝑥0) + 𝑓(𝑥1) + ⋯ + 𝑓(𝑥𝑛−1)]  = ℎ ∑  

𝑛−1

𝑟=0

𝑓(𝑥𝑟) 

                                                                       

and 

𝑆𝑛 = ℎ[𝑓(𝑥1) + 𝑓(𝑥2) + ⋯ + 𝑓(𝑥𝑛)] = ℎ ∑  

𝑛

𝑟=1

𝑓(𝑥𝑟)

 

 

 

Here 𝑠𝑛 and 𝑆𝑛 denote the sum of areas of all lower rectangles and upper rectangles raised over 
subintervals [𝑥𝑟−1 , 𝑥𝑟], 𝑟 = 1, 2, 3, … 𝑛 respectively. 

Therefore we can write  

𝑠𝑛 < area of the region < 𝑆𝑛 

As 𝑛 → ∞, these strips become narrower. Further it is assumed that the limiting value of 𝑠𝑛 and 𝑆𝑛 
are the same in both cases and the common limiting value is the required area under the curve.  

Symbolically we can write  

𝑙𝑖𝑚
𝑛→∞

𝑠𝑛 = 𝑙𝑖𝑚
𝑛→∞

𝑆𝑛 =area (PRSQP) =∫  
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 

This area is also the limiting value of any area which is between that of the rectangles below the curve 
and that of the rectangles above the curve. For convenience, we shall take the rectangles having 
height equal to that of the curve at the left-hand-edge of each sub- interval. Hence, we can write 

∫  
𝑏

𝑎

𝑓(𝑥)𝑑𝑥 = 𝑙𝑖𝑚
𝑛→∞

ℎ[𝑓(𝑎) + 𝑓(𝑎 + ℎ) + ⋯ + 𝑓(𝑎 + (𝑛 − 1)ℎ)]

 
 

∫  
𝑏

𝑎

𝑓(𝑥)𝑑𝑥 =
(𝑏 − 𝑎) 𝑙𝑖𝑚

𝑛→∞
[𝑓(𝑎) + 𝑓(𝑎 + ℎ) + ⋯ + 𝑓(𝑎 + (𝑛 − 1)ℎ)]

𝑛
 

 

where ℎ =
𝑏−𝑎

𝑛
→ 0 𝑎𝑠 𝑛 → ∞. This equation is the definition of definite integral as the limit of a sum. 

  
Evaluate   ∫  

5

2
𝑥2 𝑑𝑥    as a limit of sum. 

Here 𝑓(𝑥) = 𝑥2 

𝑎 = 2, 𝑏 = 5, ℎ =
𝑏 − 𝑎

𝑛
=

3

𝑛
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Notes 
∫  

𝑏

𝑎

𝑓(𝑥)𝑑𝑥 = 𝑙𝑖𝑚
𝑛→∞

ℎ[𝑓(𝑎 + ℎ) + 𝑓(𝑎 + 2ℎ) + ⋯ + 𝑓(𝑎 + 𝑛ℎ)] 

∫  
5

2

𝑥2𝑑𝑥 = 𝑙𝑖𝑚
𝑛→∞

3

𝑛
[(2 + ℎ)2 + (2 + 2ℎ)2 + ⋯ + (2 + 𝑛ℎ)2] 

= 𝑙𝑖𝑚
𝑛→∞

3

𝑛
[𝑛 ⋅ 22 + ℎ2(12 + 22 + ⋯ + 𝑛2) + 4ℎ(1 + 2 + ⋯ 𝑛)] 

= 𝑙𝑖𝑚
𝑛→∞

3

𝑛
[𝑛 ⋅ 22 + ℎ2 (

𝑛(𝑛 + 1)(2𝑛 + 1)

6
) + 4ℎ (

𝑛(𝑛 + 1)

2
)] 

= 𝑙𝑖𝑚
𝑛→∞

3

𝑛
[𝑛 ⋅ 22 + (

3

𝑛
)

2

(
𝑛(𝑛 + 1)(2𝑛 + 1)

6
) + 4 (

3

𝑛
) (

𝑛(𝑛 + 1)

2
)] 

= 𝑙𝑖𝑚
𝑛→∞

3

𝑛
[𝑛 ⋅ 22 + (

3

𝑛
)

2

(
𝑛3 (1 +

1
𝑛

) (2 +
1
𝑛

)

6
) + 4 (

3

𝑛
) (

𝑛2 (1 +
1
𝑛

)

2
)] 

= 𝑙𝑖𝑚
𝑛→∞

[3. 22 + 3(3)2 (
(1 +

1
𝑛

) (2 +
1
𝑛

)

6
) + 3(4)(3) (

(1 +
1
𝑛

)

2
)] 

= 12 + 9 + 18 = 39 

Thus the limit of the sum or in other words the area under the curve 𝑥2 between lines 𝑥 = 2 and 𝑥 =
5 and above the 𝑥-axis is 39 square units. 

  
Evaluate ∫ cos 𝑥 𝑑𝑥

𝑏

𝑎
 as the limit of a sum. 

Here 𝑓(𝑥) = cos 𝑥 

By definition of integral as a limit of sum we can write 

∫ cos 𝑥 𝑑𝑥
𝑏

𝑎
=  𝑙𝑖𝑚

𝑛→∞
ℎ[cos(𝑎 + ℎ) + cos(𝑎 + 2ℎ) + cos(𝑎 + 3ℎ) + ⋯ + cos(𝑎 + 𝑛ℎ)] 

Let 𝑆 = cos(𝑎 + ℎ) + cos(𝑎 + 2ℎ) + cos(𝑎 + 3ℎ) + ⋯ + cos(𝑎 + 𝑛ℎ)  

To calculate this sum, we must multiply both sides 2 sin (
ℎ

2
). We get,  

2 sin (
ℎ

2
)  𝑆 = 2 sin (

ℎ

2
) ( cos(𝑎 + ℎ) + cos(𝑎 + 2ℎ) + cos(𝑎 + 3ℎ) + ⋯ + cos(𝑎 + 𝑛ℎ) 

                     = sin (𝑎 +
3

2
ℎ) − sin (𝑎 +

1

2
ℎ) + sin (𝑎 +

5

2
ℎ) − sin (𝑎 +

3

2
ℎ) + … + sin (𝑎 +

2𝑛+1

2
ℎ) −

                           sin (𝑎 +
2𝑛−1

2
ℎ)   

     = sin (𝑎 +
2𝑛+1

2
ℎ) − sin (𝑎 +

1

2
ℎ)  

   = sin (𝑏 +
1

2
ℎ) − sin (𝑎 +

1

2
ℎ)   as 𝑛ℎ = 𝑏 − 𝑎 

Thus ∫ cos 𝑥 𝑑𝑥 =
𝑏

𝑎
𝑙𝑖𝑚
𝑛→∞

ℎ
sin(𝑏+

1

2
ℎ)−sin(𝑎+

1

2
ℎ)

2 sin(
ℎ

2
)

   

  = sin 𝑏 − sin 𝑎 

In the senior secondary level, you have learnt how to integrate the algebraic rational functions and 
the trigonometric functions. In the next section we will see some cases of the integration of irrational 
algebraic function.  

 

 
Evaluate ∫

1

√𝑥

𝑏

𝑎
𝑑𝑥 as limit of sum. 
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Notes 
2.2 Integration of irrational algebraic functions 

Certain types of integrals containing irrational expressions can be reduced to integrals of rational 
functions by making appropriate substitutions. These substitutions are done with an intention to 
convert the irrational function into a rational one.  

  

To integrate a function that contains only one irrational expression of the form  𝑥
𝑚

𝑛    we 

make the substitution for 𝑥
1

𝑛. 

An expression of the form  (
𝑎𝑥+𝑏

𝑐𝑥+𝑑
)

1

𝑛
  can be integrated  by using the substitution for  (

𝑎𝑥+𝑏

𝑐𝑥+𝑑
)

1

𝑛
  , where 

𝑎, 𝑏, 𝑐, 𝑑 are  real numbers. These substitutions reduce the integrals rational functions in the 
transformed variable. 

The integrals containing radicals of the form √𝑎2 − 𝑥2, √𝑎2 + 𝑥2 and √𝑥2 − 𝑎2 can be evaluated with 
the help of trigonometric and hyperbolic substitutions. 

 
Consider the integral of ∫

𝑥

(𝑎+𝑏𝑥)
1
3

𝑑𝑥   

The denominator is having an irrational function and if we substitute 𝑎 + 𝑏𝑥 = 𝑦3 then the given 
integrand can be written as a rational function in 𝑦. Let us see the steps. 

If we substitute 𝑎 + 𝑏𝑥 = 𝑦3  

Then 𝑏 𝑑𝑥 = 3𝑦2𝑑𝑦 

And ∫
𝑥

(𝑎+𝑏𝑥)
1
3

𝑑𝑥 = ∫ (
𝑦3−𝑎

𝑏
) (

3𝑦2

𝑦𝑏
) 𝑑𝑦 

=
1

𝑏2 ∫ (𝑦4 − 𝑎𝑦)𝑑𝑦 

=
3

𝑏2
[

𝑦5

5
−

𝑎𝑦2

2
]+C 

=
3

10𝑏2 𝑦2(2𝑦3 − 5𝑎) + 𝐶    

where 𝐶 is the constant of integration. 

  
Evaluate ∫ (

√𝑥+9

𝑥
)  𝑑𝑥 

Put √𝑥 + 9 = 𝑢 

𝑑𝑥 = 2 𝑢 𝑑𝑢 

Then 

∫ (
√𝑥+9

𝑥
) 𝑑𝑥= ∫ (

𝑢

𝑢2−9
) 2𝑢𝑑𝑢 = 2 ∫

𝑢2

𝑢2−9
𝑑𝑢 

= 2∫
𝑢2−9+9

𝑢2−9
 𝑑𝑢-  

= 2 ∫ 𝑑𝑢 + 2∫
9

𝑢2 − 9
𝑑𝑢 

= 2 𝑢 + 2. 9.
1

6
ln |

𝑢 − 3

𝑢 + 3
| + 𝐶 

= 2 √𝑥 + 9 + 3 ln |(√𝑥 + 9 − 3)/(√𝑥 + 9 + 3) + 𝐶 

where 𝐶 is the constant of integration. 

   
Evaluate ∫ (5𝑥 − 1)

1

3𝑑𝑥 

To solve this integral, substitute (5𝑥 − 1)
1

3 = 𝑢 
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Notes 
(5𝑥 − 1) = 𝑢3

5 𝑑𝑥 = 3 𝑢2𝑑𝑢

 

  

Then 

∫ (5𝑥 − 1)
1
3𝑑𝑥 = ∫ 𝑢

3𝑢2

5
𝑑𝑢 

=
3

20
𝑢4 + 𝐶  

=
3

20
(5𝑥 − 1)

4
3 + 𝐶 

2.3  Integration of transcendental functions 

A number that is not the root of any integer polynomial is termed as a transcendental number. And 
on the same lines a function that cannot be written using roots and the arithmetic found in 
polynomials is known as a transcendental function. 

e.g. Exponential function 

       Logarithmic function 

Trigonometric function 

Inverse trigonometric function 

Hyperbolic function 

Inverse hyperbolic functions etc. 

  

You are familiar with all the above mentioned functions except the hyperbolic 
function. So here is a short introduction to this family of transcendental functions. 

Hyperbolic functions are the functions defined in terms of the exponential functions as follows. 

 

Just like with trigonometric functions, there are identities related to the hyperbolic functions. 

 

Rules of differentiation and integration are as follows. Here the prime symbol is for denoting the first 
derivative. 
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Notes 

The graphs of the hyperbolic functions are shown below and it can be seen that with appropriate 
range restrictions, they all have inverses (same as the case with the inverse trigonometric functions). 
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Notes 

 

  

The range in case of sec ℎ−1 𝑥 is [0, ∞) and for coth−1 𝑥 is (−∞, 0)𝑈(0, ∞). The derivative of the 
inverse hyperbolic functions are as follows: 

 

The integral as an anti-derivative can be written easily from the above rules of differentiation. 
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Notes 
Thus you got a brief idea about the calculus of hyperbolic functions and inverse hyperbolic functions. 
For more information you can check the following link. 

 

 

https://math.libretexts.org/Courses/Monroe_Community_College/MTH_21
1_Calculus_II/Chapter_6%3A_Applications_of_Integration/6.9%3A_Calculus
_of_the_Hyperbolic_Functions 

 

Now with the knowledge of the transcendental functions, we can look into the examples related to 
the integration of the transcendental functions. 

  
Evaluate ∫

𝑥𝑒𝑥

(𝑥+1)2
𝑑𝑥 

∫
𝑥𝑒𝑥

(𝑥 + 1)2 𝑑𝑥 = ∫
(𝑥 + 1 − 1)𝑒𝑥

(𝑥 + 1)2 𝑑𝑥 

                        = ∫ (
1

𝑥+1
−

1

(𝑥+1)2
) 𝑒𝑥𝑑𝑥  

                           =
𝑒𝑥

𝑥+1
+ 𝐶              (Using integration by parts on the first term) 

  
Evaluate ∫ sin (log 𝑥) 𝑑𝑥 

Put log 𝑥 = 𝑡 

i.e. 
1

𝑥
𝑑𝑥 = 𝑑𝑡 

𝑑𝑥 = 𝑒𝑡𝑑𝑡 

Therefore ∫ sin (log 𝑥) 𝑑𝑥 = ∫ 𝑒𝑡sin𝑡 𝑑𝑡 

= −𝑒−𝑡 cos 𝑡 + 𝑒𝑡 sin 𝑡 − ∫ 𝑒𝑡sin𝑡  𝑑𝑡 

Clubbing the integral term, we get 

2∫ 𝑒𝑡 sin 𝑡 𝑑𝑡 = 𝑒𝑡(sin 𝑡 − cos 𝑡) + 𝐶 

∫ 𝑒𝑡 sin 𝑡 𝑑𝑡 =
𝑒𝑡

2
(sin 𝑡 − cos 𝑡) +

𝐶

2
 

∫ sin (log 𝑥) 𝑑𝑥 =
1

2
𝑥(sin (log 𝑥) − cos (𝑙𝑜𝑔𝑥)) + 𝑪 

  
Calculate 𝐼 = ∫ 𝑒𝑎𝑥cos (𝑏𝑥 + 𝑐)𝑑𝑥 

𝐼 =
𝑒𝑎𝑥

𝑎
cos (𝑏𝑥 + 𝑐) + ∫ (

𝑏

𝑎
) sin  (𝑏𝑥 + 𝑐) 𝑒𝑎𝑥𝑑𝑥

 
 

𝐼 =
𝑒𝑎𝑥

𝑎
cos (𝑏𝑥 + 𝑐) + (

𝑏

𝑎2
) sin  (𝑏𝑥 + 𝑐) 𝑒𝑎𝑥 −

𝑏2

𝑎2 ∫ 𝑐𝑜𝑠(𝑏𝑥 + 𝑐) 𝑒𝑎𝑥𝑑𝑥
 

   (integrating by parts) 

(1 +
𝑏2

𝑎2) 𝐼 =
𝑒𝑎𝑥

𝑎2 (𝑎 cos(𝑏𝑥 + 𝑐) + 𝑏 sin (𝑏𝑥 + 𝑐)) 

𝐼 =
𝑒𝑎𝑥

𝑎2 + 𝑏2
( 𝑎 cos(𝑏𝑥 + 𝑐) + 𝑏 sin(𝑏𝑥 + 𝑐))  

  
Integrate tan−1 √

1−𝑥

1+𝑥
  with respect to 𝑥. 

Let 𝐼 = tan−1 √
1−𝑥

1+𝑥
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Put 𝑥 = cos 𝜃 

𝑑𝑥 =  − sin 𝜃 𝑑𝜃 

Therefore 𝐼 = tan−1 √[(1 − cos 𝜃)/(1 + cos 𝜃)]   

= tan−1 tan (
𝜃

2
) 

=
𝜃

2
 

Now ∫ tan−1 √
1−𝑥

1+𝑥
 𝑑𝑥 = ∫

𝜃

2
(− sin 𝜃)𝑑𝜃 

= −
1

2
(−𝜃 cos 𝜃 + 𝑠𝑖𝑛𝜃) 

= −
1

2
(−𝑥 cos−1 𝑥 + √1 − 𝑥2) + 𝐶 

  
Evaluate  ∫

𝑠𝑖𝑛ℎ𝑥

1+𝑐𝑜𝑠ℎ𝑥
𝑑𝑥 

For this kind of integral we can go for a suitable substitution. 

Let 1 + 𝑐𝑜𝑠ℎ𝑥 = 𝑢 

It gives 𝑠𝑖𝑛ℎ𝑥 𝑑𝑥 = 𝑑𝑢 

∫
𝑠𝑖𝑛ℎ𝑥

1 + 𝑐𝑜𝑠ℎ𝑥
𝑑𝑥 = ∫

𝑑𝑢

𝑢
= ln|𝑢| + 𝐶 = ln |1 + cosh 𝑥| + 𝐶 

  
Evaluate 𝐼 = ∫ cos 𝑥/√(1 + sin2 𝑥) 𝑑𝑥 

Put sin 𝑥 = 𝑢 

cos 𝑥  𝑑𝑥 = 𝑑𝑢 

𝐼 = ∫
1

√1+𝑢2
𝑑𝑢 (Refer to the rules of differentiation (integration) of the inverse hyperbolic functions) 

= sinh−1 𝑢 + 𝐶    

= sinh−1 sin 𝑥 + 𝐶 

  
Evaluate the integral ∫

1

√4𝑥2−1
𝑑𝑥 

Let us substitute 2𝑥 = 𝑢 

2𝑑𝑥 = 𝑑𝑢 and this results in 

∫
1

√4𝑥2 − 1
𝑑𝑥 = ∫

1

2√𝑢2 − 1
𝑑𝑢 

=
1

2
cosh−1 𝑢 + 𝐶 

=
1

2
cosh−1(2𝑥) + 𝐶 

Summary  

In this chapter we have seen how a definite integral can be calculated as a limit of sum. This is the ab 
initio way to calculate the area under a curve 𝑦 = 𝑓(𝑥) bounded by the two vertical lines 𝑥 = 𝑎, 𝑥 =
𝑏 and the x-axis.  

Key words 

Real Numbers, Sequence, Series, Convergence, Bounded function, Monotonic function 
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Notes 
Review Questions 

Evaluate the following: 

1. ∫ sinh3 𝑥 cosh 𝑥 𝑑𝑥 

2. ∫ sech2 3𝑥 𝑑𝑥 

3. 
𝑑

𝑑𝑥
(cosh−1 3𝑥)  

4. ∫
1

√1−𝑒2𝑥
𝑑𝑥  

5. ∫ √𝑒𝑥 + 1𝑑𝑥 

6. ∫
𝑥2−2

𝑥+1
 𝑑𝑥 

7. ∫
1−𝑥

1+𝑥

𝑑𝑥

𝑥
 

8.  ∫ √𝑠𝑒𝑐𝑥 − 1 𝑑𝑥 

9. ∫
𝑑𝑥

5+4𝑐𝑜𝑠𝑥
 

10. ∫ 𝑐𝑜𝑠𝑒𝑐5𝑥 𝑑𝑥 

11. ∫ sinh3 𝑥  𝑑𝑥 

12. ∫ 𝑥 sinh 𝑥 𝑑𝑥 

13. Evaluate the definite integral ∫ 𝑥3𝑑𝑥
3

2
 as limit of sum. 

14. Evaluate the definite integral ∫ sinh  𝑥 𝑑𝑥
𝑏

𝑎
 as limit of sum. 

15. Evaluate the definite integral ∫ cos  𝑥 𝑑𝑥
𝜋/2

0
 as limit of sum. 

Further/Suggested Readings 

 

George B. Thomas Jr., Joel Hass, Christopher Heil & Maurice D. Weir (2018). Thomas’ Calculus 

(14th edition). Pearson Education. 

Howard Anton, I. Bivens & Stephan Davis (2016). Calculus (10th edition). Wiley India. 

Shanti Narayan & Dr. P. K. Mittal (2018). Integral Calculus (11th edition). S. Chand 

. 
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Unit 03: Integration by using reduction formula 

CONTENTS 

Objectives 

Introduction 

3.1 Reduction formula 

3.2 Properties of definite integral 

Summary 

Key words 

Self Assessment 

Review Questions 

Further/Suggested Readings 

 

Objectives 

Students will 

• learn about an alternate method to solve the integrals. 

• be able to solve the problems employing reduction formula. 

• prove various properties of definite integrals. 

• be able to solve definite integrals by using its properties. 

 

Introduction 

By now, you are well aware of the methods of substitution, method of integration by parts and the 
method in which we decompose the given integrand in the sum of integrands with known integrals. 
There is one more technique and that is called integration by successive reduction or integration 
using reduction formula. 

3.1 Reduction formula 

Any formula which expresses an integral in terms of another integral of the same type but of lesser 
degree or order is called a reduction formula. The successive application of the reduction formula 
enables us to express the integral of the general member of the class of functions in terms of that of 
the simplest member of the class. Mostly we obtain the reduction formula by using integration by 
parts. We can understand the method by the following examples. 

  
Establish a reduction formula for ∫ 𝑥𝑛𝑒𝑎𝑥𝑑𝑥. 

Here the integrand is 𝑥𝑛𝑒𝑎𝑥 . This is a general form of the function. In the reduction formula we seek 
a relation of the given integral with another integral having the same form but involving 𝑛 − 1 or 𝑛 −
2 etc. And that can be accomplished by integrating the given integral by parts.  

Let 𝐼𝑛 = ∫ 𝑥𝑛𝑒𝑎𝑥𝑑𝑥 

Integrating by parts, we get 

𝐼𝑛 =
𝑥𝑛𝑒𝑎𝑥

𝑎
− ∫ 𝑛

𝑥𝑛−1𝑒𝑎𝑥

𝑎
𝑑𝑥 
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𝐼𝑛 =  
𝑥𝑛𝑒𝑎𝑥

𝑎
−

𝑛

𝑎
𝐼𝑛−1 

Here you can see that 𝐼𝑛−1 is having the same type as that of given integral except that the ′𝑛′ has 
reduced to ′𝑛 − 1′. Hence you can see the justification for the name ‘reduction formula’ also. 

Now if we need to calculate ∫ 𝑥3𝑒𝑎𝑥𝑑𝑥,  we know what to do! 

In the reduction formula  𝐼𝑛 =  
𝑥𝑛𝑒𝑎𝑥

𝑎
−

𝑛

𝑎
𝐼𝑛−1 we will get 𝐼3 in terms of 𝐼2, 𝐼2 in terms of 𝐼1 and 𝐼1in 

terms of 𝐼0. The last integral in the recursion 𝐼0 is so easy to calculate. Then backward substitution 
leads to the required integral. 

Let’s see how it goes. 

𝐼3 =
𝑥3𝑒𝑎𝑥

𝑎
−

3

𝑎
𝐼2 -----(1) 

𝐼2 =
𝑥2𝑒𝑎𝑥

𝑎
−

2

𝑎
𝐼1 -----(2) 

𝐼1 =
𝑥1𝑒𝑎𝑥

𝑎
−

1

𝑎
𝐼0 -----(3) 

Solving the right side of (3). 

𝐼1 =
𝑥1𝑒𝑎𝑥

𝑎
−

1

𝑎

𝑒𝑎𝑥

𝑎
  

𝐼2 =
𝑥2𝑒𝑎𝑥

𝑎
−

2

𝑎
(

𝑥1𝑒𝑎𝑥

𝑎
−

1

𝑎

𝑒𝑎𝑥

𝑎
)  

𝐼3 =
𝑥3𝑒𝑎𝑥

𝑎
−

3

𝑎
(

𝑥2𝑒𝑎𝑥

𝑎
−

2

𝑎
(

𝑥1𝑒𝑎𝑥

𝑎
−

1

𝑎

𝑒𝑎𝑥

𝑎
)) 

     =
𝑥3𝑒𝑎𝑥

𝑎
−

3𝑥2𝑒𝑎𝑥

𝑎2
+

6𝑥𝑒𝑎𝑥

𝑎3
− 6

𝑒𝑎𝑥

𝑎4
 

which is the required solution. 

  
Establish a reduction formula for ∫ 𝑥𝑚sin𝑛𝑥 𝑑𝑥. 

In this integral, there are two parameters 𝑚 and 𝑛. In order to have a reduction formula, let us 
integrate by parts taking 𝑥𝑚 as the first function and sin 𝑛𝑥 as the second function.  

∫ 𝑥𝑚sin𝑛𝑥 𝑑𝑥 =  −
𝑥𝑚𝑐𝑜𝑠𝑛𝑥

𝑛
+

𝑚

𝑛
∫ 𝑥𝑚−1 cos 𝑛𝑥𝑑𝑥 

Again integrating by parts, 

∫ 𝑥𝑚sin𝑛𝑥 𝑑𝑥 =  −
𝑥𝑚𝑐𝑜𝑠𝑛𝑥

𝑛
+

𝑚𝑥𝑚−1𝑠𝑖𝑛𝑛𝑥

𝑛2
−

𝑚(𝑚 − 1)

𝑛2
∫ 𝑥𝑚−2 sin 𝑛𝑥𝑑𝑥 

Therefore here we got the relation in two integrals of the same type but the one on the right side is of 
lower degree. The left side integral can be written as 𝐼𝑚,𝑛 and the right-side integral which is reduced 

version can be written as 𝐼𝑚−2,𝑛. 

  

Establish a reduction formula for ∫ 𝑥𝑛𝑒−𝑥𝑑𝑥 and deduce that ∫ 𝑥𝑛𝑒−𝑥𝑑𝑥 = 𝑛!
∞

0
 where 𝑛 is 

any natural number. 

∫ 𝑥𝑛𝑒−𝑥𝑑𝑥 = −𝑥𝑛𝑒−𝑥 + 𝑛∫ 𝑥𝑛−1𝑒−𝑥𝑑𝑥 

Or 

𝐼𝑛 =  −𝑥𝑛𝑒−𝑥 + 𝑛𝐼𝑛−1  is the required reduction formula. Now for the deduction, consider the 
integral, 

∫ 𝑥𝑛𝑒−𝑥𝑑𝑥 = |−𝑥𝑛𝑒−𝑥|0
𝑡 + 𝑛 ∫ 𝑥𝑛−1𝑒−𝑥𝑑𝑥

𝑡

0

𝑡

0

 

                        = −𝑡𝑛𝑒−𝑡 + 𝑛 ∫ 𝑥𝑛−1𝑒−𝑥𝑑𝑥
𝑡

0
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The first term on the right-hand side tends to zero as 𝑡 → ∞. 

Therefore, ∫ 𝑥𝑛𝑒−𝑥𝑑𝑥 = ∫ 𝑥𝑛−1𝑒−𝑥𝑑𝑥
∞

0

∞

0
 

Or 𝐼𝑛 = 𝑛𝐼𝑛−1 

𝐼𝑛−1 = (𝑛 − 1)𝐼𝑛−2 

𝐼𝑛−2 = (𝑛 − 2)𝐼𝑛−3 

𝐼𝑛−3 = (𝑛 − 3)𝐼𝑛−4 

. 

. 

. 

𝐼1 = 1. 𝐼0 = 1     (The integral 𝐼0 can easily be calculated to be 1.) 

By back substitution we get 

𝐼𝑛 = 𝑛(𝑛 − 1)(𝑛 − 2) … 3.2.1 = 𝑛! 

  
Establish the reduction formula for ∫

𝑥𝑛

(𝑙𝑜𝑔𝑥)𝑚 𝑑𝑥 

In this integral, there are two parameters, and the idea is to get a relation of the given integral with 
another integral of same type but reduced parameter(s) any one or both. 

To integrate the given function, let us write the integrand in the following way: 

𝐼𝑚,𝑛 = ∫ 𝑥𝑛+1 [
1

(𝑙𝑜𝑔𝑥)𝑚
.
1

𝑥
] 𝑑𝑥  

Now the integration by parts can be applied taking the term in bracket as the second function. 
Therefore,  

𝐼𝑚,𝑛 = 𝑥𝑛+1  
(log 𝑥)−𝑚+1

−𝑚 + 1
− ∫ (𝑛 + 1)𝑥𝑛  

(log 𝑥)−𝑚+1

−𝑚 + 1
𝑑𝑥  

𝐼𝑚,𝑛 = 𝑥𝑛+1  
(log 𝑥)−𝑚+1

−𝑚 + 1
+

𝑛 + 1

𝑚 − 1
∫  

𝑥𝑛

(log 𝑥)𝑚−1 𝑑𝑥  

Or     𝐼𝑚,𝑛 = 𝑥𝑛+1  
(log 𝑥)−𝑚+1

−𝑚+1
+

𝑛+1

𝑚−1
𝐼𝑚−1,𝑛 is the required reduction formula. 

  
Evaluate ∫ sin𝑛 𝑥 𝑑𝑥

𝜋

2
0

 where 𝑛 is a positive integer. 

The reduction formula for the integral is given as, 

𝐼𝑛 =
𝑛 − 1

𝑛
𝐼𝑛−2 

𝐼𝑛−2 =
𝑛 − 3

𝑛 − 2
𝐼𝑛−4 

𝐼𝑛−4 =
𝑛 − 5

𝑛 − 4
𝐼𝑛−6 

. 

. 

. 

𝐼3 =
2

3
𝐼1 if 𝑛 is odd 

𝐼2 =
1

2
𝐼0 if 𝑛 is even 

Therefore it can be compiled as 
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𝐼𝑛 = { 

𝑛 − 1

𝑛
.
𝑛 − 3

𝑛 − 2
.
𝑛 − 5

𝑛 − 4
…

2

3
𝐼1   if 𝑛 is odd

 
𝑛 − 1

𝑛
.
𝑛 − 3

𝑛 − 2
.
𝑛 − 5

𝑛 − 4
…

1

2
𝐼0    if 𝑛 is even

   

Now 𝐼1 = ∫ 𝑠𝑖𝑛𝑥 𝑑𝑥 = 1
𝜋

2
0

 and  

𝐼0 = ∫ 1 𝑑𝑥 =
𝜋

2

𝜋
2

0

 

Thus the above integral can finally be written as 

𝐼𝑛 = { 

𝑛 − 1

𝑛
.
𝑛 − 3

𝑛 − 2
.
𝑛 − 5

𝑛 − 4
…

2

3
   if 𝑛 is odd

 
𝑛 − 1

𝑛
.
𝑛 − 3

𝑛 − 2
.
𝑛 − 5

𝑛 − 4
…

1

2
.
𝜋

2
  if 𝑛 is even

 

  
Obtain a reduction formula for ∫ sin𝑝 𝑥 cos𝑞 𝑥 𝑑𝑥. 

∫ sin𝑝 𝑥 cos𝑞 𝑥 𝑑𝑥 = ∫ sin𝑝−1 𝑥(sin 𝑥 cos𝑞 𝑥)𝑑𝑥 

= sin𝑝−1 𝑥 (−  
cos𝑞+1𝑥

𝑞 + 1
  ) − ∫ (𝑝 − 1) sin𝑝−2 𝑥. (−  

cos𝑞+1𝑥

𝑞 + 1
  ) cos 𝑥 𝑑𝑥 

=  (−  
sin𝑝−1x cos𝑞+1𝑥

𝑞 + 1
  ) +

𝑝 − 1

𝑞 + 1
∫ sin𝑝−2 𝑥. cos𝑞𝑥 cos2 𝑥 𝑑𝑥 

Now here we can use the trigonometric identity 𝑐𝑜𝑠2𝑥 = 1 − sin2 𝑥 in the last term. 

(1 +
𝑝 − 1

𝑞 + 1
) ∫ sin𝑝 𝑥 cos𝑞 𝑥 𝑑𝑥 = −(sin𝑝−1 𝑥𝑐𝑜𝑠𝑞+1𝑥)/(𝑞 + 1) +

𝑝 − 1

𝑝 + 𝑞
∫ sin𝑝−2 𝑥 cos𝑞 𝑥 𝑑𝑥   

∫ sin𝑝 𝑥 cos𝑞 𝑥 𝑑𝑥 = (− sin𝑝−1 𝑥 cos𝑞+1 𝑥)/(𝑝 + 𝑞)  +
𝑝 − 1

𝑝 + 𝑞
∫ sin𝑝−2 𝑥 cos𝑞 𝑥 𝑑𝑥  

is the required reduction formula. 

  
Construct the reduction formula for ∫

𝑥𝑛

√𝑎𝑥2+𝑏𝑥+𝑐
𝑑𝑥 where 𝑛 ∈ 𝑵 

Here the integrand is an irrational function and it can be re written by involving the derivative of the 
term in the denominator as follows: 

𝑥𝑛 =
2𝑎𝑥 + 𝑏 − 𝑏

2𝑎
𝑥𝑛−1 

𝐼𝑛 =
1

2𝑎
∫

(2𝑎𝑥 + 𝑏)𝑥𝑛−1

√𝑎𝑥2 + 𝑏𝑥 + 𝑐
𝑑𝑥 −

𝑏

2𝑎
∫

𝑥𝑛−1

√𝑎𝑥2 + 𝑏𝑥 + 𝑐
𝑑𝑥 

𝐼𝑛 =
1

𝑎
𝑥𝑛−1√𝑎𝑥2 + 𝑏𝑥 + 𝑐 − (𝑛 − 1) 𝐼𝑛 −

𝑏(𝑛 − 1)

𝑎
𝐼𝑛−1 −

𝑐(𝑛 − 1)

𝑎
𝐼𝑛−2 −

𝑏

2𝑎
𝐼𝑛−1 

𝐼𝑛 =
1

𝑛𝑎
𝑥𝑛−1√𝑎𝑥2 + 𝑏𝑥 + 𝑐 −

𝑏(2𝑛−1)

2𝑛𝑎
𝐼𝑛−1 −

𝑐(𝑛−1)

𝑛𝑎
𝐼𝑛−2  is the required reduction formula. 

Let us evaluate ∫
𝑥3

√𝑥2−2𝑥+2
𝑑𝑥. You can see that this integral is a particular case of the integral whose 

reduction formula is 

∫
𝑥𝑛

√𝑎𝑥2+𝑏𝑥+𝑐
𝑑𝑥 =

1

𝑛𝑎
𝑥𝑛−1√𝑎𝑥2 + 𝑏𝑥 + 𝑐 −

𝑏(2𝑛−1)

2𝑛𝑎
∫

𝑥𝑛−1

√𝑎𝑥2+𝑏𝑥+𝑐
𝑑𝑥 −

𝑐(𝑛−1)

𝑛𝑎
∫

𝑥𝑛−2

√𝑎𝑥2+𝑏𝑥+𝑐
𝑑𝑥  

The above reduction formula can be written as: 

∫
𝑥3

√𝑥2−2𝑥+2
𝑑𝑥 =

1

3
𝑥2√𝑥2 − 2𝑥 + 2 +

5

3
∫

𝑥2

√𝑥2−2𝑥+2
𝑑𝑥 −

4

3
∫

𝑥1

√𝑥2−2𝑥+2
𝑑𝑥 -----(1) 

Also ∫
𝑥2

√𝑥2−2𝑥+2
𝑑𝑥 =

1

2
√𝑥2 − 2𝑥 + 2 +

3

2
∫

𝑥1

√𝑥2−2𝑥+2
𝑑𝑥 − ∫

1

√𝑥2−2𝑥+2
𝑑𝑥 -----(2) 

Let us work on the two integrals on the right hand side of the equation (2). 
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 ∫
𝑥

√𝑥2−2𝑥+2
𝑑𝑥 =

1

2
∫

2𝑥  −2

√𝑥2−2𝑥+2
𝑑𝑥 +

1

2
∫

2

√(𝑥−1)2+1
𝑑𝑥 = (𝑥2 − 2𝑥 + 2)1/2 + sinh−1(𝑥 − 1) -----(3) 

∫
1

√𝑥2−2𝑥+2
𝑑𝑥 = sinh−1(𝑥 − 1) -----(4) 

Substituting (3) and (4) in (2), we get 

∫
𝑥2

√𝑥2 − 2𝑥 + 2
𝑑𝑥 =

1

2
√𝑥2 − 2𝑥 + 2 +

3

2
(𝑥2 − 2𝑥 + 2)

1
2 +

1

2
sinh−1(𝑥 − 1)  

And the back substitution in equation (1) will give 

∫
𝑥3

√𝑥2 − 2𝑥 + 2
𝑑𝑥 

=
1

3
𝑥2√𝑥2 − 2𝑥 + 2 +

5

3
(
1

2
√𝑥2 − 2𝑥 + 2 +

3

2
(𝑥2 − 2𝑥 + 2)

1
2 +

1

2
sinh−1(𝑥 − 1) )

−
4

3
((𝑥2 − 2𝑥 + 2)1/2 + sinh−1(𝑥 − 1)) 

=
(2𝑥2 + 12)

6
−

1

2
sinh−1(𝑥 − 1) 

  
Form a reduction formula for ∫

𝑠𝑖𝑛𝑛𝑥

𝑠𝑖𝑛𝑥
𝑑𝑥 

The parameter 𝑛 can be seen in the numerator of the integrand. Here integration by parts may  not 
help in getting a reduced form of the same type of integral. So we can use trigonometric identity 

(sin 𝐶 − sin 𝐷 = 2 cos
𝐶+𝐷

2
sin

𝐶−𝐷

2
 ) as follows: 

sin 𝑛𝑥 − sin(𝑛 − 2) 𝑥 = 2 cos(𝑛 − 1) 𝑥 sin 𝑥 

sin 𝑛𝑥 = sin(𝑛 − 2) 𝑥 + 2 cos(𝑛 − 1) 𝑥 sin 𝑥 

Now we can rewrite the given integral as 

∫
𝑠𝑖𝑛𝑛𝑥

𝑠𝑖𝑛𝑥
𝑑𝑥 = ∫

sin(𝑛 − 2) 𝑥 + 2 cos(𝑛 − 1) 𝑥 sin 𝑥

𝑠𝑖𝑛𝑥
𝑑𝑥 

∫
𝑠𝑖𝑛𝑛𝑥

𝑠𝑖𝑛𝑥
𝑑𝑥 = ∫

sin(𝑛 − 2) 𝑥

𝑠𝑖𝑛𝑥
𝑑𝑥 + ∫ 2 cos(𝑛 − 1) 𝑥 𝑑𝑥 

∫
𝑠𝑖𝑛𝑛𝑥

𝑠𝑖𝑛𝑥
𝑑𝑥 = ∫

sin(𝑛 − 2) 𝑥

𝑠𝑖𝑛𝑥
𝑑𝑥 +

2 sin(𝑛 − 1) 𝑥

𝑛 − 1
 

which is the required reduction formula connecting the given integral with its reduced version. 

3.2 Properties of definite integral 

Before studying the properties of definite integral, let us recapitulate some basics about them. 

Definite Integral 

The definite integral is an integral of the form ∫ 𝑓(𝑥)
𝑏

𝑎
 𝑑𝑥. This integral is read as the integral from a 

to b of 𝑓(𝑥) 𝑑𝑥. The numbers a and b are said to be the limits of integration. For our problems, a is less 
than b. Definite Integrals are evaluated using the Fundamental Theorem of Calculus. 

Fundamental Theorem of Calculus 

Let 𝑓(𝑥) be a continuous function for 𝑎 ≤ 𝑥 ≤ 𝑏 and 𝐹(𝑥) be an anti-derivative of 𝑓(𝑥). Then 

∫ 𝑓(𝑥)
𝑏

𝑎
 𝑑𝑥 = [𝐹(𝑥)]|𝑎

𝑏 = 𝐹(𝑏) − 𝐹(𝑎). 

If 𝑓(𝑥) ≥ 0 for 𝑎 ≤ 𝑥 ≤ 𝑏. Then 

Definite Integral: ∫ 𝑓(𝑥)
𝑏

𝑎
 𝑑𝑥 =

Area Between 𝑓(𝑥)  and the 

𝑥 axis for 𝑎 ≤ 𝑥 ≤ 𝑏
 

The Second Fundamental Theorem of Calculus 

If f is continuous on an open interval, I containing a, then for every x in the interval 

𝑑

𝑑𝑥
[∫ 𝑓(𝑡) 𝑑𝑡

𝑥

𝑎

] = 𝑓(𝑥) 
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Chain Rule of Differentiation 

𝑑

𝑑𝑥
(𝑓(𝑔(𝑥)) = 𝑓′(𝑔(𝑥))𝑔′(𝑥) 

Suppose we let  𝐹 = 𝑓(𝑔(𝑥)) and let 𝑢 = 𝑔(𝑥). Then  𝐹 = 𝑓(𝑢) and hence 

𝑑𝐹

𝑑𝑢
= 𝑓 ′(𝑢) and 

𝑑𝑢

𝑑𝑥
= 𝑔′(𝑥) 

For 𝐹 = 𝑓(𝑔(𝑥)) and 𝑢 = 𝑔(𝑥) we can use these ideas to rewrite the chain rule as follows: 

𝐹′(𝑥) =
𝑑𝐹

𝑑𝑥
=

𝑑

𝑑𝑥
(𝑓(𝑔(𝑥)) = 𝑓 ′(𝑔(𝑥))𝑔′(𝑥) = 𝑓 ′(𝑢)

𝑑𝑢

𝑑𝑥
=

𝑑𝐹

𝑑𝑢

𝑑𝑢

𝑑𝑥
 

This gives another way to write the chain rule, which is as follows: 

Chain Rule: Alternative Form 

If we want to differentiate the composition𝐹(𝑥) = 𝑓(𝑔(𝑥)), we set 𝑢 = 𝑔(𝑥) and compute the 

following: 𝐹′(𝑥) =
𝑑𝐹

𝑑𝑥
=

𝑑𝐹

𝑑𝑢
⋅

𝑑𝑢

𝑑𝑥
  

For example, suppose we want to differentiate𝐹(𝑥) = (𝑥2 + 7)10  

Then by taking, 𝑢 = 𝑥2 + 7, we have 𝐹 = 𝑢10 

Hence, 
𝑑𝐹

𝑑𝑢
= 10𝑢9 and  

𝑑𝑢

𝑑𝑥
= 2𝑥. 

Therefore, for 𝐹(𝑥) = (𝑥2 + 7)10 

𝐹′(𝑥) =
𝑑𝐹

𝑑𝑥
=

𝑑𝐹

𝑑𝑢
⋅

𝑑𝑢

𝑑𝑥
= 10𝑢9(2𝑥) = 10(𝑥2 + 7)9(2) = 20𝑥(𝑥2 + 7)9. 

This way of expressing the chain rule can be useful when using the Second Fundamental Theorem of 

Calculus. Suppose 𝐹(𝑥) = ∫ 𝑓(𝑡) 𝑑𝑡
𝑔(𝑥)

𝑎
 , then taking 𝑢 = 𝑔(𝑥) gives 𝐹 = ∫ 𝑓(𝑡) 𝑑𝑡

𝑢

𝑎
 

Then 𝐹′(𝑥) =
𝑑𝐹

𝑑𝑢
⋅

𝑑𝑢

𝑑𝑥
=

𝑑

𝑑𝑢
(∫ 𝑓(𝑡) 𝑑𝑡

𝑢

𝑎
) ⋅

𝑑𝑢

𝑑𝑥
= 𝑓(𝑢) ⋅

𝑑𝑢

𝑑𝑥
= 𝑓(𝑔(𝑥)) ⋅ 𝑔′(𝑥) 

Properties 

1. ∫ 𝜙(𝑥)𝑑𝑥 = ∫ 𝜙(𝑡)𝑑𝑡
𝑏

𝑎

𝑏

𝑎
 

Let ∫ 𝜙(𝑥)𝑑𝑥 = 𝐹(𝑥) + 𝑐1 

and ∫ 𝜙(𝑡)𝑑𝑡 = 𝐹(𝑡) + 𝑐2 

Therefore, ∫ 𝜙(𝑥)𝑑𝑥 = [𝐹(𝑥) + 𝑐1]𝑎
𝑏 = 𝐹(𝑏) − 𝐹(𝑎)

𝑏

𝑎
 

Similarly, ∫ 𝜙(𝑡)𝑑𝑡
𝑏

𝑎
= 𝐹(𝑏) − 𝐹(𝑎) 

This property explains the dummy nature of the variable of integration in a definite integral. 

2. ∫ 𝜙(𝑥)𝑑𝑥 = ∫ 𝜙(𝑥)𝑑𝑥 + ∫ 𝜙(𝑥)
𝑏

𝑐

𝑐

𝑎

𝑏

𝑎
 

Let ∫ 𝜙(𝑥)𝑑𝑥 = 𝐹(𝑥) + 𝑐1 

Then the RHS= [𝐹(𝑥) + 𝑐1]𝑎
𝑐 + [𝐹(𝑥) + 𝑐1]𝑐

𝑏  

= 𝐹(𝑐) − 𝐹(𝑎) + 𝐹(𝑏) − 𝐹(𝑐) 

= 𝐹(𝑏) − 𝐹(𝑎) 

= ∫ 𝜙(𝑥)𝑑𝑥 = 𝐿𝐻𝑆
𝑏

𝑎

 

3. ∫ 𝜙(𝑥)𝑑𝑥 = − ∫ 𝜙(𝑥)𝑑𝑥
𝑎

𝑏

𝑏

𝑎
 

Let ∫ 𝜙(𝑥)𝑑𝑥 = 𝐹(𝑥) + 𝑐1 

Consider the RHS = − ∫ 𝜙(𝑥)𝑑𝑥
𝑎

𝑏
 

= −[𝐹(𝑥) + 𝑐1]𝑏
𝑎 

= [𝐹(𝑎) + 𝑐1 − 𝐹(𝑏) − 𝑐1 
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= 𝐹(𝑏) − 𝐹(𝑎) = ∫ 𝜙(𝑥)𝑑𝑥
𝑏

𝑎

= 𝐿𝐻𝑆 

4. ∫ 𝜙(𝑥)𝑑𝑥 = ∫ 𝜙(𝑎 − 𝑥)𝑑𝑥
𝑎

0

𝑎

0
 

Letting 𝑎 − 𝑥 = 𝑡 

or 𝑥 = 𝑎 − 𝑡 

or 𝑑𝑥 = −𝑑𝑡 

Now the RHS= ∫ 𝜙(𝑎 − 𝑥)𝑑𝑥 = − ∫ 𝜙(𝑡)𝑑𝑡 = ∫ 𝜙(𝑡)𝑑𝑡 = ∫ 𝜙(𝑥)𝑑𝑥
𝑎

0
 

𝑎

0

0

𝑎

𝑎

0
  

5. ∫ 𝜙(𝑥)𝑑𝑥 = {
2 ∫ 𝜙(𝑥)𝑑𝑥       if 𝜙(2𝑎 − 𝑥) = 𝜙(𝑥)

𝑎

0

     0                        if 𝜙(2𝑎 − 𝑥) = −𝜙(𝑥)

2𝑎

0
 

Consider ∫ 𝜙(𝑥)𝑑𝑥
2𝑎

𝑎
 

Put 2𝑎 − 𝑥 = 𝑡 This implies −𝑑𝑥 = 𝑑𝑡. Therefore, 

∫ 𝜙(𝑥)𝑑𝑥
2𝑎

𝑎

= − ∫ 𝜙(2𝑎 − 𝑡)𝑑𝑡
0

𝑎

 

= ∫ 𝜙(2𝑎 − 𝑡)𝑑𝑡
𝑎

0

 

= ∫ 𝜙(2𝑎 − 𝑥)𝑑𝑥
𝑎

0

 

Now ∫ 𝜙(𝑥)𝑑𝑥 =  ∫ 𝜙(𝑥)𝑑𝑥 + ∫ 𝜙(𝑥)𝑑𝑥
2𝑎

𝑎

𝑎

0

2𝑎

0
 

=  ∫ 𝜙(𝑥)𝑑𝑥 + ∫  
𝑎

0

𝑎

0

𝜙(2𝑎 − 𝑥)𝑑𝑥 

The second integrand on the RHS can be 𝜙(𝑥) or −𝜙(𝑥) and then accordingly it will yield 2 ∫ 𝜙(𝑥)𝑑𝑥
𝑎

0
 

or a zero. Hence the property. 

6. ∫ 𝜙(𝑥)𝑑𝑥 = {
        0                   if 𝜙(−𝑥) = −𝜙(𝑥)

2 ∫ 𝜙(𝑥)𝑑𝑥     if 𝜙(−𝑥) = 𝜙(𝑥)
𝑎

0

𝑎

−𝑎
 

Consider ∫ 𝜙(𝑥)𝑑𝑥
0

−𝑎
 

Put 𝑥 = −𝑡, 𝑑𝑥 = −𝑑𝑡 

Then ∫ 𝜙(𝑥)𝑑𝑥 = − ∫ 𝜙(−𝑡)𝑑𝑡 = ∫ 𝜙(−𝑥)𝑑𝑥
𝑎

0

0

𝑎

0

−𝑎
 

Therefore, ∫ 𝜙(𝑥)𝑑𝑥 = ∫ 𝜙(𝑥)𝑑𝑥 + ∫ 𝜙(𝑥)𝑑𝑥
𝑎

0

0

−𝑎

𝑎

−𝑎
 

                                            = {

        0                   if 𝜙(−𝑥) = −𝜙(𝑥)

2 ∫ 𝜙(𝑥)𝑑𝑥     if 𝜙(−𝑥) = 𝜙(𝑥)
𝑎

0

 

Now let us evaluate a few integrals using the properties.  

 Evaluate ∫ log(1 + 𝑡𝑎𝑛𝜃) 𝑑𝜃
𝜋/2

0
  

Let 𝐼 = ∫ log(1 + 𝑡𝑎𝑛𝜃) 𝑑𝜃
𝜋

4
0

 

= ∫ log (1 + tan ( 
𝜋

4
− 𝜃)) 𝑑𝜃

𝜋

4
0

    

= ∫ log (1 +
1 − 𝑡𝑎𝑛𝜃

1 + 𝑡𝑎𝑛𝜃
) 𝑑𝜃

𝜋
4

0

 

= ∫ log (
2

1 + 𝑡𝑎𝑛𝜃
) 𝑑𝜃

𝜋
4

0
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=
𝜋

4
log 2 − ∫ log(1 + 𝑡𝑎𝑛𝜃) 𝑑𝜃

𝜋
4

0

 

Or 𝐼 =
𝜋

8
log 2 

  
Evaluate ∫ 𝑥 sin6 𝑥 cos4 𝑥 𝑑𝑥

𝜋

0
 

Let 𝐼 =  ∫ 𝑥 sin6 𝑥 cos4 𝑥 𝑑𝑥
𝜋

0
 

=  ∫ (𝜋 − 𝑥) sin6(𝜋 − 𝑥) cos4(𝜋 − 𝑥)𝑑𝑥
𝜋

0

 

= ∫ (𝜋) sin6(𝑥) cos4(𝑥)𝑑𝑥
𝜋

0

− ∫ (𝑥) sin6(𝑥) cos4(𝑥)𝑑𝑥
𝜋

0

 

2𝐼 =  2𝜋 ∫ sin6 𝑥 cos4 𝑥 𝑑𝑥
𝜋/2

0

 

𝐼 =
2𝜋

2

5.3.1.3.1

10.8.6.4.2

𝜋

2
 

𝐼 =
3𝜋2

512
 

 

Summary  

In this chapter we have seen one more technique of solving the integral by writing a recursion 
formula. Many general integrals can be solved by this method including their particular cases. We 
have also seen the proofs of the properties of the definite integral. 

 

Key words 

Definite integral, reduction formula, properties of definite integral 

 

Self-Assessment 

1. ∫ 𝑥3𝑑𝑥
3

2
 is equal to 

(a) 65    (b)  65/4   (c) ¼   (d) 63/4 

 

2. If 𝑚 ≠ 𝑛, then ∫ cos 𝑚𝑥 cos 𝑛𝑥 𝑑𝑥
𝜋

0
 is 

(a) 0      (b) 
𝜋

2
          (c) 𝜋     (d) 2𝜋 

 

3. ∫ sin5 𝑥 𝑑𝑥
𝜋

2
0

 is 

(a) 5/15   (b)  6/15   (c) 7/15   (d) 8/15 

4. ∫ sin6 𝑥 𝑑𝑥
𝜋

2
0

 is 

(a) 5/32   (b) 5𝜋/32  (c) 5/16  (d) 5𝜋/16 

 

5. ∫ cos7 𝑥 𝑑𝑥
𝜋

2
0

 is 

(a) 16/35   (b)  6/15   (c) 17/15   (d) 8/35 

 

6. ∫ cos8 𝑥 𝑑𝑥
𝜋

2
0

 is 

(a) 5/32   (b) 35𝜋/256  (c) 35/256  (d) 5𝜋/16 
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7. ∫ cos62𝑥  𝑑𝑥
𝜋

4
0

 is 

(a) 5/64   (b) 5𝜋/64  (c) 35/256  (d) 𝜋/16 

 

8. ∫ 𝑥2(1 − 𝑥2)
3

2𝑑𝑥
1

0
 is 

(a) 
𝜋

32
      (b) 

𝜋

16
       (c) 

𝜋

8
      (d) 

𝜋

4
 

 

9. ∫
√𝑠𝑖𝑛𝑥

√𝑠𝑖𝑛𝑥+√𝑐𝑜𝑠𝑥
𝑑𝑥

𝜋/2

0
 is 

(a) 
𝜋

2
      (b) 

𝜋

4
     (c) 

𝜋

8
     (d) None of these 

 

10. ∫ 𝑥𝑠𝑖𝑛6𝑥𝑐𝑜𝑠4𝑥 𝑑𝑥
𝜋

0
 is 

(a) 3𝜋2     (b) 
3𝜋2

51
       (c) 

3𝜋2

512
       (d) 

𝜋2

512
 

 

11. ∫ log sin 𝑥 𝑑𝑥
𝜋

2
0

 is 

(a) −
𝜋

2
log 2    (b) 

𝜋

2
log 2     (c) −

3𝜋

2
log 2     (d) −

𝜋

2
 

 

12. ∫ log (1 + cos 𝑥)𝑑𝑥
𝜋

0
 is 

(a) −𝜋 log 2    (b) 𝜋 log  1/2    (c) Both (a) and (b)   (d) None of these 

 

13. ∫ sin5 𝑥 cos6 𝑥 𝑑𝑥
𝜋/2

0
 is 

(a) 8/693        (b) 8/69       (c)  8/6       (d) None of these 

 

14. ∫ sin6 𝑥 cos8 𝑥 𝑑𝑥
𝜋/2

0
 is 

(a) 
5

4096
       (b) 

5𝜋

4096
        (c) 

𝜋

4096
       (d) None of these 

 

15. ∫ cos 2𝑥 cos3 𝑥 𝑑𝑥
𝜋/2

0
 is 

(a) 
8

15
     (b) 

2

15
     (c) 

2

5
     (d) 

5

2
 

 

Answers:  

1 b 2 a 3 d 4 b 5 a 

6 b 7 b 8 a 9 b 10 c 

11 a 12 c 13 a 14 b 15 c 

 

Review Questions 

1. Construct the reduction formula for ∫ sin𝑝 𝑥 cos𝑞 𝑥 𝑑𝑥 where 𝑝, 𝑞 are positive integers. 

2. Evaluate the definite integral ∫  
𝜋/2

0
 sin𝑝 𝑥 cos𝑞 𝑥 𝑑𝑥 where 𝑝, 𝑞 are positive integers. 

3. Using the properties prove that ∫ (𝑥 sin 𝑥)/(1 + cos2 𝑥) 𝑑𝑥 = 𝜋2/4
𝜋

0
. 

4. Using the properties prove that ∫ sin2 𝑥/(sin 𝑥 + 𝑐𝑜𝑠 𝑥)  𝑑𝑥 =
1

√2
log(√2 + 1)

𝜋/2

0
 

5. Evaluate ∫ 𝑥 cot 𝑥 𝑑𝑥
𝜋/2

0
 using the properties of definite integral. 
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Unit 04: Limit of a Real Valued Function 

CONTENTS 

Objectives 

Introduction 

4.1 Real valued function 

4.2 Epsilon delta definition of the limit 

4.3 Some results on limits 

4.4 Limit at infinity and infinite limits 

Summary 

Key words 

Review Questions 

Further/Suggested Readings 

Objectives 

Students will 

• learn about the definition of real valued function 

• learn about the limit of the function 

• understand the epsilon delta definition of limit 

• learn about infinite limit and limit at infinity 

Introduction 

In this unit we will understand one of the most crucial and fundamental concept of calculus. But 
before that let us have an idea about the function. You can consider a function as a kind of rule 
where you give in some input and get a specific output. The input is decided as everything that 
keeps the function well defined. The technical name for such input is the domain. Let us see what a 
function is! First of all there must be two non-empty sets 𝐴 and 𝐵, then a function 𝑓 from 𝐴 to 𝐵 is 
denoted as 𝑓: 𝐴 → 𝐵 and is defined as a function if for all the values in set 𝐴, there corresponds a 
unique value in set B. Set A is called the domain, B is called the codomain and 𝑓(𝐴) is called the 
range. 

 

4.1 Real valued function 

The function can be expressed as a set, a formula, a table or as a graph. If the range of the  function 
is a set of real numbers, then it is called a real valued function.   

For example: {(2,4), (3,9), (4,16), (5,25)} is a function where domain is the set {2,3,4,5} and range is 
the set {4,9,16,25}. Clearly, the domain and range are discrete in this case and are subsets of real 
numbers. In other form 𝑦 = 𝑥2 is a function. The input can be any real  number as any real 
number will keep the function well defined and with any real input,  the output is always going 
to be a non-negative real number. Therefore the range is set of  non-negative real number. The 
same function can be represented in the form of the following graph: 
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We can show the first representation of function in the form of a table also, which is as follows: 

 

x y 

2 4 

3 9 

4 16 

5 25 

 

Of course here the domain and range are discrete and finite subsets of real numbers. 

Now let us consider a function 𝑓(𝑥) =
𝑥2−9

𝑥−3
. It is quite clear that the function is not well defined at 

𝑥 = 3, and is good for all other real numbers. Therefore the domain is set of all real numbers except 
3. If you input these values of the domain, the function can give any real number as the output, 
except 6. 

Now we know what happens at 𝑥 = 3, can we just observe the behaviour of the function as 𝑥 goes 
closer to 3 from all possible directions? See the following table and see the pattern of 𝑓(𝑥) as 𝑥 goes 
close to 3 from left as well as from the right direction. 

x f(x) 

2.9 5.9 

2.99 5.99 

2.999 5.999 

3.01 6.01 

3.001 6.001 

3.0001 6.0001 

 

So, you can observe that as 𝑥 is approaching to 3, the 𝑓(𝑥) is approaching to 6. Then we say that the 
limit of the function exists at 𝑥 = 3.  
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If the function does not approach to the same value from both directions, then we say that the limit 
of the function does not exist.  

Here it must be mentioned that the word ‘close’ that has been used to define the concept of limit is 
not a crisp word. It can mean something to me and entirely different thing to you. This closeness 
has to be quantized in order to have a crisp definition of limit and that has been achieved through 
the epsilon delta definition. 

4.2 Epsilon delta definition of the limit 

A function is said to tend to limit 𝑙 as 𝑥 tends to 𝑐, if ∀𝜖 > 0 however small, ∃ 𝛿 > 0, such that  

|𝑓(𝑥) − 𝑙| < 𝜖 whenever 0 < |𝑥 − 𝑐| < 𝛿 

or 

𝑓(𝑥) ∈ (𝑙 − 𝜖, 𝑙 + 𝜖) ∀ 𝑥 ∈ (𝑐 − 𝛿, 𝑐) 𝑈 (𝑐, 𝑐 + 𝛿) 

The quantity 𝜖 is how close you would like 𝑓(𝑥) to be to its limit 𝑙; the quantity 𝛿 

is how close you have to choose 𝑥 to 𝑐 to achieve this.  

 

  
1. Prove that  4𝑥 + 1𝑥→−1

𝑙𝑖𝑚 = −3    

To prove that 𝑓(𝑥)𝑥→𝑐
𝑙𝑖𝑚 = 𝑙 you can assume that someone has given you some small positive value of  

𝜖 and you need to find a positive value of 𝛿 for which |𝑓(𝑥) − 𝑙| < 𝜖 whenever 0 < |𝑥 − 𝑐| < 𝛿 
holds. This 𝛿 surely depends on 𝜖. 

Here we want to find the 𝛿 such that whenever |𝑥 + 1| < 𝛿, |4𝑥 + 1 + 3| < 𝜖 for a predefined 𝜖. 

If we work out on the epsilon inequality, we can see |4(𝑥 + 1)| < 𝜖 . That is |𝑥 + 1| < 𝜖/4. Now we can do 

a smart work here. If we consider 𝜖/4 as 𝛿, we are done.  Thus for a given 𝜖 and  𝛿 =
𝜖

4
, we have |4𝑥 + 1 +

3| < 𝜖 whenever |𝑥 + 1| < 𝜖/4. 

 

   
2. Prove that    𝑥𝑠𝑖𝑛 (

1

𝑥
) 𝑥→0

𝑙𝑖𝑚 = 0 

Let 𝜖 > 0 be given. Then we would like to find a 𝛿 > 0, such that  

|𝑓(𝑥) − 0| < 𝜖    whenever    |𝑥 − 0| < 𝛿  

Now 

|𝑓(𝑥) − 0| = |𝑥𝑠𝑖𝑛 (
1

𝑥
)| 

= |𝑥| |sin (
1

𝑥
)| 

≤ |𝑥| 

Now choosing 𝛿 = 𝜖 we can see that  

|𝑓(𝑥) − 0| < 𝜖 whenever |𝑥| < 𝜖 

∴    𝑥 sin (
1

𝑥
)𝑥→0

𝑙𝑖𝑚  = 0 

4.3 Some results on limits 

The precise definition of the limit is not so easy to use, and we won't use it very often in this course. 
Instead, there are a number of properties that limits have, which allow you to compute them 
without having to use the epsilon delta definition. Let us see some of the properties of limit in the 
form of following results. 

Let 𝑓 and 𝑔  are two functions such that  𝑓(𝑥) 𝑥→𝑎
𝑙𝑖𝑚 = 𝑙 and   𝑔(𝑥)𝑥→𝑎

𝑙𝑖𝑚 = 𝑚. Then, 

 (𝑓 + 𝑔)(𝑥) 𝑥→𝑎
𝑙𝑖𝑚 =  (𝑓(𝑥) + 𝑔(𝑥)) = 𝑙 + 𝑚 𝑥→𝑎

𝑙𝑖𝑚  
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Here you can see that the limit of sum of two functions is the sum of their limits. In simple words, you can see 

that as 𝑓(𝑥) is getting close to 𝑙 and 𝑔(𝑥) is getting close to 𝑚 as 𝑥 → 𝑎, then 𝑓(𝑥) + 𝑔(𝑥) will go close to 

𝑙 + 𝑚 only. Though it can be proved by definition, but here we will resort to common sense only. Similarly 

we can see some more properties: 

 (𝑓 − 𝑔)(𝑥) 𝑥→𝑎
𝑙𝑖𝑚 =  (𝑓(𝑥) − 𝑔(𝑥)) = 𝑙 − 𝑚 𝑥→𝑎

𝑙𝑖𝑚  

The limit of difference of two functions is the difference in the respective limit of the individual functions. 

 (𝑓𝑔)(𝑥) 𝑥→𝑎
𝑙𝑖𝑚 =   𝑓(𝑥)𝑔(𝑥) = 𝑙 𝑚 𝑥→𝑎

𝑙𝑖𝑚  

The limit of the product of two functions is the product of the respective limits of the individual functions. 

 (𝑓/𝑔)(𝑥)  𝑥→𝑎
𝑙𝑖𝑚 =   𝑓(𝑥)/𝑔(𝑥) = 𝑙 /𝑚 𝑥→𝑎

𝑙𝑖𝑚      (𝑚 ≠ 0) 

The limit of the quotient of two functions is the quotient of the limits of respective functions. 

  
3. Evaluate     

   1−cos 𝑥

𝑥2  𝑥→0
lim  

   
   1 − cos 𝑥

𝑥2  𝑥→0
lim =     

  2 sin2 𝑥
2

𝑥2 =    
1

2
(   

 sin
𝑥
2

𝑥
2

)

2

=
1

2
 𝑥→0

lim  𝑥→0
lim  

 

   
4. Evaluate      

   𝑒𝑡𝑎𝑛𝑥−𝑒𝑥

tan 𝑥−𝑥
 𝑥→0

lim  

             
   𝑒𝑡𝑎𝑛𝑥−𝑒𝑥

tan 𝑥−𝑥
 𝑥→0

lim =     
   𝑒𝑥(𝑒𝑡𝑎𝑛𝑥−𝑥−1)

tan 𝑥−𝑥
= 𝑒0. 1 = 1𝑥→0

lim  

 

   
5. Evaluate  (

1𝑥+2𝑥+⋯+𝑛𝑥

𝑛
)

𝑎/𝑥

𝑥→0
𝑙𝑖𝑚  

Note that     (1 + 𝑓(𝑥))
𝑥

= 𝑒  𝑓(𝑥).𝑥   𝑥→0
lim

 𝑥→0
lim  

Now we can modify the given function, so that it takes the form of the left hand side of the above result. 

Then,  (
1𝑥+2𝑥+⋯+𝑛𝑥

𝑛
)

𝑎/𝑥

𝑥→0
𝑙𝑖𝑚 =  (1 +

1𝑥+2𝑥+⋯+𝑛𝑥

𝑛
− 1)

𝑎/𝑥

𝑥→0
𝑙𝑖𝑚  

  =   (1 +
1𝑥+2𝑥+⋯+𝑛𝑥−𝑛

𝑛
)

𝑎/𝑥

𝑥→0
𝑙𝑖𝑚  

                                                     = 𝑒
 (

1𝑥−1+2𝑥−1+⋯+𝑛𝑥−1
𝑛

)
𝑎/𝑥

      𝑥→0
𝑙𝑖𝑚

 

                                                    = 𝑒
 (

𝑥𝑙𝑜𝑔1+𝑥𝑙𝑜𝑔2+⋯+𝑥𝑙𝑜𝑔𝑛
𝑛

)

𝑎
𝑥

     𝑥→0
𝑙𝑖𝑚

 

                                                    = 𝑒
 (

𝑥𝑙𝑜𝑔 𝑛!
𝑛

)

𝑎
𝑥

     𝑥→0
𝑙𝑖𝑚

 

                                                    = 𝑒  
𝑎𝑥𝑙𝑜𝑔 𝑛!

𝑥𝑛
  𝑥→0

𝑙𝑖𝑚

 

                                                    = 𝑛! 
𝑎
𝑛 

4.4 Limit at infinity and infinite limits 

Here we will learn when do we say that a function is approaching to infinity as 𝑥 is approaching to 
any number, as 𝑥 → ∞ , when a function has a finite limit and what is the behaviour of the function 
as 𝑥 approaches to positive/negative infinity. 

 

  𝑓(𝑥) = ∞𝑥→𝑐
𝑙𝑖𝑚  

A function 𝑓 is said to tend to ∞ as 𝑥 tends to 𝑐, if for any 𝐺 > 0, however large, there corresponds a 𝛿 > 0 

such that 
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∀ 𝑥 ∈ (𝑐 − 𝛿)𝑈(𝑐, 𝑐 + 𝛿) , 𝑓(𝑥) > 𝐺 

 

 

  𝑓(𝑥) = −∞𝑥→𝑐
𝑙𝑖𝑚  

A function 𝑓 is said to tend to −∞ as 𝑥 tends to 𝑐, if for any 𝐺 > 0, however large, there corresponds a 𝛿 > 0 

such that 

∀ 𝑥 ∈ (𝑐 − 𝛿)𝑈(𝑐, 𝑐 + 𝛿) , 𝑓(𝑥) < −𝐺 

 

 

  𝑓(𝑥) = 𝑙𝑥→∞
𝑙𝑖𝑚  

A function 𝑓 is said to tend to 𝑙 as 𝑥 tends to ∞, if for any given  𝜖 > 0, there corresponds a 𝐺 > 0 such that  

|𝑓(𝑥) − 𝑙| < 𝜖 , ∀ 𝑥 > 𝐺  

  𝑓(𝑥) = 𝑙𝑥→−∞
𝑙𝑖𝑚  

A function 𝑓 is said to tend to 𝑙 as 𝑥 tends to −∞, if for any given  𝜖 > 0, there corresponds a 𝐺 > 0 such that  

|𝑓(𝑥) − 𝑙| < 𝜖 , ∀ 𝑥 < −𝐺  

 

  𝑓(𝑥) = ∞𝑥→∞
𝑙𝑖𝑚  

A function 𝑓 is said to tend to ∞ as 𝑥 tends to ∞, if for any given  𝜖 > 0, there corresponds a 𝐺 > 0 such that  

𝑓(𝑥) > 𝜖 , ∀ 𝑥 > 𝐺  

 

  𝑓(𝑥) = ∞𝑥→−∞
𝑙𝑖𝑚  

A function 𝑓 is said to tend to ∞ as 𝑥 tends to −∞, if for any given  𝜖 > 0, there corresponds a 𝐺 > 0 such 

that  

𝑓(𝑥) > 𝜖 , ∀ 𝑥 < −𝐺  

 

  𝑓(𝑥) = −∞𝑥→∞
𝑙𝑖𝑚  

A function 𝑓 is said to tend to −∞ as 𝑥 tends to ∞, if for any given  𝜖 > 0, there corresponds a 𝐺 > 0 such 

that  

𝑓(𝑥) < 𝜖 , ∀ 𝑥 > 𝐺  

 

  𝑓(𝑥) = −∞𝑥→−∞
𝑙𝑖𝑚  

A function 𝑓 is said to tend to −∞ as 𝑥 tends to −∞, if for any given  𝜖 > 0, there corresponds a 𝐺 > 0 such 

that  

𝑓(𝑥) < 𝜖 , ∀ 𝑥 < −𝐺  

 

Let us see some problems now! 

 
1. Prove that    

1

𝑥
= ∞𝑥→0+

𝑙𝑖𝑚  ,    
1

𝑥
= −∞𝑥→0−

𝑙𝑖𝑚  and   
1

𝑥𝑥→0
𝑙𝑖𝑚   does not exist. 

Let 
1

𝑥
= 𝑦 

Consider the case when 𝑥 > 0. This implies that 𝑦 > 0.  

Let 𝐺 > 0 be any number, then 

1

𝑥
> 𝐺  if 0 < 𝑥 <

1

𝐺
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This implies that    

1

𝑥
= ∞𝑥→0+

𝑙𝑖𝑚  

Now consider the case when 𝑥 < 0. This implies that 𝑦 < 0.  

Let 𝐺 > 0 be any number, then  

1

𝑥
< −𝐺 if −

1

𝐺
< 𝑥 < 0 

This implies   
1

𝑥
= −∞𝑥→0−

𝑙𝑖𝑚  

Therefore the left hand limit is different from the right hand limit as 𝑥 is approaching to zero and   
1

𝑥𝑥→0
𝑙𝑖𝑚  does 

not exist. 

 

 
2. For 𝑓(𝑥) =

2𝑥+1

𝑥−3
  show that 𝑓(𝑥) = 2 and 𝑓(𝑥) = 2  𝑥→−∞

𝑙𝑖𝑚  𝑥→∞
𝑙𝑖𝑚  

Let 𝜖 > 0 be given 

Now |
2𝑥+1

𝑥−3
− 2| =

7

|𝑥−3|
< 𝜖 for 𝑥 >

7

𝜖
+ 3 

∴ 𝑓(𝑥) = 2  𝑥→∞
𝑙𝑖𝑚   

Again |
2𝑥+1

𝑥−3
− 2| =

7

|𝑥−3|
< 𝜖 for 𝑥 < −

7

𝜖
+ 3 

∴ 𝑓(𝑥) = 2  𝑥→−∞
𝑙𝑖𝑚  

 

If you look at the definitions of limits at infinity, you can find a positive number 𝐺, in both cases, which 

fulfills the required criterion. 

  
3. Evaluate (√𝑥2 + 𝑥 + 1 − √𝑥2 + 1 )  𝑥→∞

𝑙𝑖𝑚  

 (√𝑥2 + 𝑥 + 1 − √𝑥2 + 1 )  𝑥→∞
𝑙𝑖𝑚  

=   
𝑥

√𝑥2 + 𝑥 + 1 + √𝑥2 + 1 
  𝑥→∞

𝑙𝑖𝑚  

=  
1

√ 1
𝑥2 +

1
𝑥

+ 1 + √ 1
𝑥2 + 1 

  𝑥→∞
𝑙𝑖𝑚 =

1

2
 

 
Prove by epsilon delta definition that  𝑙𝑖𝑚

𝑥→2
(3𝑥 − 4) = 2. 

  
L’Hopital Rule 

We have got a pretty good idea that for a quotient of two functions, such that the individual limit of 
numerator is non-zero and of denominator is zero, then the overall limit of the quotient function 
does not exist. In case the individual limit of numerator is zero and that of the denominator is non-
zero, then the overall limit of the quotient function is zero. The third case needs a special attention. 
If the individual limit of both numerator as well as the denominator is zero, then this is called one 
of the indeterminate forms and there are chances to get its value by using L’Hopital‘s rule. 

Consider 𝑙𝑖𝑚
𝑥→0

sin 𝑥

𝑥
. Here the individual limit of the numerator is zero and of the denominator is also 

zero. This is 
0

0
 form. To evaluate this, we will have the following rule (for derivation you can see the 

link 4 in the last section of the chapter). 

Suppose 𝑓 and 𝑔 are differentiable functions over an open interval containing 𝑎, except possibly at 
𝑎.  
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If   𝑓(𝑥) = 0𝑥→a

𝑙𝑖𝑚  and    𝑔(𝑥) = 0𝑥→a
𝑙𝑖𝑚  then    𝑓(𝑥)/g(x) =𝑥→a

𝑙𝑖𝑚   𝑓′(𝑥)/g′(x)𝑥→a
𝑙𝑖𝑚  assuming the limit on the 

right exists or is ∞  or −∞. This result also holds if we are considering one-sided limits, or if 𝑎 = ∞ 

or 𝑎 = −∞. 

Therefore using the above result for 𝑙𝑖𝑚
𝑥→0

sin 𝑥

𝑥
 as it is a 

0

0
 form. We can write the given limit as  

𝑙𝑖𝑚
𝑥→0

cos 𝑥

1
. And the limit can be evaluated to be one. 

There are mainly seven indeterminate forms and we try to convert them in 
0

0
 or in 

∞

∞
 form first if 

they are not so. And the by the above mentioned formula the limit can be evaluated. Let us see one 
more question for better clarity. 

  

Let us evaluate 𝑙𝑖𝑚
𝑥→0

(𝑥log 𝑥) . Clearly it is 0 ⋅ ∞ form. So first of all we will rewrite the given 

function in the desirable (0/0 or  ∞/∞)  form. 

𝑙𝑖𝑚
𝑥→0

(𝑥log 𝑥). = 𝑙𝑖𝑚
𝑥→0

log 𝑥

1/𝑥

                          = 𝑙𝑖𝑚
𝑥→0

1
𝑥

−
1

𝑥2

                         = 𝑙𝑖𝑚
𝑥→0

(−𝑥)
 

             = 0

 

  

Now let us find the 𝑙𝑖𝑚
𝑥→0

(cot 𝑥)1/log 𝑥. Clearly this is an indeterminate form of type ∞0. First 

of all we will rewrite the given function into the required form. Here you can see the 
function as a power of another function. So logarithm can simplify the system. 

log 𝑦 =
1

log 𝑥
log(cot 𝑥) 

⇒ 𝑙𝑖𝑚
𝑥→0

log 𝑦 = 𝑙𝑖𝑚
𝑥→0

log cot 𝑥

log 𝑥
             

                                       = 𝑙𝑖𝑚
𝑥→0

−cosec2𝑥/ cot 𝑥 

1
𝑥

                            = 𝑙𝑖𝑚
𝑥→0

−𝑥

sin 𝑥
⋅

1

cos 𝑥
 

      = −1
 

⇒ log 𝑙𝑖𝑚
𝑥→0

𝑦 = −1

⇒ 𝑙𝑖𝑚
𝑥→0

𝑦 = 𝑒
1

=
1

𝑒
 

 

Summary  

We learnt about the concept of going close to a number from all possible directions. Here we are 
dealing with real numbers only so there are only two directions i.e. left and right. The limit of a 
function was defined more rigorously using the epsilon delta definition. Since the epsilon delta 
definition is tedious to apply, so some properties that can be proved by basic definition come 
handy to evaluate the limits of various composite functions. Moreover we learnt the concept of the 
limit at infinity and of infinite limits in eight different cases.  

Key words 

limit, epsilon-delta definition of limit, limit at infinity, infinite limits 

Review Questions 

1. When do you say that a function 𝑓(𝑥) is approaching to infinity as 𝑥 → ∞? 

2. The L’Hopital rule is given as 
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(a) 
𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
= 𝑙𝑖𝑚

𝑥→𝑎

𝑓′(𝑥)

𝑔′(𝑥)
 
 

 

(b) 𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
=

𝑓(𝑎)

𝑔(𝑎)
 

 

(c) 𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
=

𝑓′(𝑎)

𝑔′(𝑎)
 

 

(d) 𝑙𝑖𝑚
𝑥→𝑎

𝑓(𝑥)

𝑔(𝑥)
= 𝑙𝑖𝑚

𝑥→𝑎
[

𝑓(𝑥)

𝑔(𝑥)
] 

 

3. Evaluate 𝑙𝑖𝑚
𝑥→

𝜋

2

tan 5𝑥

tan 𝑥
 

4. 𝑙𝑖𝑚
𝑥→0

sin 𝑥

𝑥
 is  

(a) 0     (b)  1     (c)  -1    (d) undefined 

5. 𝑙𝑖𝑚
𝑛→∞

(1 +
1

𝑛
)𝑛 is given as 

(a) 1     (b)  2    (c)  3   (d)  e 

6. Show that 𝑙𝑖𝑚
𝑥→0

1

𝑥2
= ∞ 

 

Further/Suggested Readings 

 

George B. Thomas Jr., Joel Hass, Christopher Heil & Maurice D. Weir (2018). Thomas’ Calculus 
(14th edition). Pearson Education. 

Howard Anton, I. Bivens & Stephan Davis (2016). Calculus (10th edition). Wiley India. 

 

https://www.mathsisfun.com/calculus/index.html 

https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_ 
Transcendentals_(Stewart)/04%3A_Applications_of_Differentiation/4.04%3A_Indeterminate_ 
Forms_and_l%27Hospital%27s_Rule 
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Unit 05: Continuity of a real valued function 
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5.1 Concept of continuity 

5.2 Properties of continuous functions 

5.3 Intermediate value theorem 
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5.5 Types of discontinuity 

5.6 Uniform continuity 

Summary 
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Self Assessment 

Answers for Self Assessment 

Review Questions 

Further Readings 

Objectives 

After studying this unit Students will 

 learn about the concept of continuity and its geometric interpretation. 

 explore some properties of the continuous functions 

 learn various types of discontinuity 

 be able to differentiate in continuity and uniform continuity 

Introduction 

With the word ‘continuity’, the first thing that comes to our mind is the ability to draw a graph 
without lifting the pen.In this unit we will learn when can we tag a function as a continuous 
function and if a function is continuous then what more can we know about the function. You will 
learn about the various types of discontinuities and the concept of uniform continuity also. 

5.1 Concept of continuity 

Consider a function 𝑓 𝑥 .As the independent variable 𝑥 will change, somehow 𝑓 𝑥  will also 
change. The idea of continuity is that if a small change is happening in 𝑥 then a small change must 
happen in 𝑓 𝑥  i.e. the change in 𝑓(𝑥) should not be sudden for a small change occurring in 𝑥. Now 
here the word ‘small’ is not defined in a complete sense. My idea of small can differ from your idea 
of small. Thus a more precise epsilon delta definition is there to address this issue. 

Continuity of a function at a point in an interval 

A function 𝑓 is said to be continuous at a point 𝑐, if to any 𝜖 > 0 , there corresponds a number 𝛿 > 0 
such that 

 𝑓 𝑐 +  − 𝑓 𝑐  < 𝜖 

for all values of , such that   < 𝛿. 

In a different manner, a function 𝑓(𝑥) is said to be continuous at 𝑐, if ∃ an interval  𝑐 − 𝛿, 𝑐 +
𝛿 around 𝑐, such that for all 𝑥 ∈ (𝑐 − 𝛿, 𝑐 + 𝛿), we have  

𝑓 𝑐 − 𝜖 < 𝑓 𝑥 < 𝑓 𝑐 + 𝜖 
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A function 𝑓 𝑥  is continuous at an interior point 𝑐 if and only if limx→c f x = 𝑓(𝑐)  

 Show that 𝑓 𝑥 = 3𝑥 + 1 is continuous at 𝑥 = 1. 

Here 𝑓 1 = 4 

𝑓 𝑥 − 𝑓 1 = 3𝑥 − 3 = 3 𝑥 − 1  

Let 𝜖 > 0 be given, we will show that  𝑓 𝑥 − 𝑓 1  < 𝜖 for some 𝛿 > 0 such that  𝑥 − 1 < 𝛿. 

Let 𝑥 > 1 

It implies 3 𝑥 − 1 > 0 

Now  𝑓 𝑥 − 𝑓 1  = 3 𝑥 − 1 < 𝜖 

i.e. if 𝑥 − 1 <
𝜖

3
 

i.e. if 𝑥 < 1 +
𝜖

3
 ------ (1) 

Now let 𝑥 < 1 

It implies 3 𝑥 − 1 < 0 

Now  𝑓 𝑥 − 𝑓 1  = 3 𝑥 − 1 < 𝜖 

i.e. if 1 − 𝑥 <
𝜖

3
 

i.e. if 𝑥 > 1 −
𝜖

3
 -----(2) 

From (1) and (2) we can say that 

 𝑓 𝑥 − 𝑓 1  < 𝜖if1 −
𝜖

3
< 𝑥 < 1 +

𝜖

3
 

i.e. if –
𝜖

3
< 𝑥 − 1 <

𝜖

3
 

In other words we have found a 𝛿 such that −𝛿 < 𝑥 − 1 < 𝛿 or  𝑥 − 1 < 𝛿 

Therefore 𝑓 is continuous at 1. 

 Prove that 𝑓 𝑥 = 𝑠𝑖𝑛𝑥 is continuous at any point 𝑐 in the domain. 

Let 𝜖 > 0 be any number. Consider 

 𝑓 𝑥 − 𝑓 𝑐  = | sin 𝑥 − sin 𝑐| 

= |2 𝑐𝑜𝑠
𝑥 + 𝑐

2
  𝑠𝑖𝑛

𝑥 − 𝑐

2
| 

= 2  cos
𝑥+𝑐

2
  𝑠𝑖𝑛

x−c

2
 ----- (1) 

Now  sin
𝑥−𝑐

2
 ≤  

𝑥−𝑐

2
  and | cos

𝑥+𝑐

2
| ≤ 1 ∀ 𝑥and 𝑐. 

Now (1) can be written as 

| sin 𝑥 − sin 𝑐| ≤ 2  
𝑥 − 𝑐

2
 =  𝑥 − 𝑐  

Therefore | sin 𝑥 − sin 𝑐| < 𝜖 when  𝑥 − 𝑐 < 𝜖 = 𝛿 

Thus there exists an interval around 𝑐, such that ∀ 𝑥 ∈  𝑐 − 𝛿, 𝑐 + 𝛿 ,  

| sin 𝑥 − sin 𝑐| < 𝜖 

Therefore 𝑓 𝑥 = sin 𝑥 is continuous at 𝑐. 

 Examine lim𝑥→1  
𝑥2−1

𝑥−1
  

When 𝑥 ≠ 1 the given function can be written as 𝑦 = 𝑥 + 1. 

Let 𝜖 > 0 be any number, however small. 

Let 𝑥 > 1 then 𝑦 > 2 
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 𝑦 − 2 = 𝑦 − 2 = 𝑥 + 1 − 2 = 𝑥 − 1 < 𝜖if𝑥 < 1 + 𝜖 

Therefore there exists an interval (1, 1 + 𝜖) such that  𝑦 − 2 < 𝜖 

∴ lim 𝑦 = 2as𝑥 tends to 1+. 

Let 𝑥 < 1 then 𝑦 < 2 

 𝑦 − 2 = 2 − 𝑦 = 2 − 𝑥 − 1 = 1 − 𝑥 < 𝜖if𝑥 > 1 − 𝜖 

Therefore there exists an interval (1 − 𝜖, 1) such that  𝑦 − 2 < 𝜖 

∴ lim 𝑦 = 2as𝑥 tends to 1−. 

Thus from both directions  𝑦 − 2 < 𝜖 whenever  𝑥 − 1 < 𝜖 

∴ lim 𝑦 = 2 as 𝑥 → 1. 

5.2 Properties of continuous functions 

A function is said to be continuous if it is continuous at every point of its domain. Check the 
domain of the function and apply the definition of continuity at the suspicious point. 

Let us check the function 𝑓 𝑥 = sin2 𝑥 for continuity. 

Cleary the set of real numbers is the domain of the function and to check if the function is 
continuous or not, we need to check that the function should be continuous on each point of its 
domain. Let us consider an arbitrary real number 𝑐 and any 𝜖 > 0. Then 

 𝑓 𝑥 − 𝑓 𝑐  = | sin2 𝑥 − sin2 𝑐| = |sin(𝑥 + 𝑐)||sin(𝑥 − 𝑐)| 

≤ |sin(𝑥 − 𝑐)| ≤ |𝑥 − 𝑐| 

If  𝑥 − 𝑐 < 𝜖 = 𝛿 then  𝑓 𝑥 − 𝑓 𝑐  < 𝜖 

Therefore by definition sin2 𝑥 is continuous for 𝑥 = 𝑐∀ 𝑥 as 𝑐 is any number. 

Let us now see a piecewise function for its continuity. Let the function be 

𝑓 𝑥 =

 
 
 

 
 𝑥         when 0 ≤ 𝑥 <

1

2

1                  when 𝑥 =
1

2

1 − 𝑥     when
1

2
< 𝑥 < 1

  

Here the function is a polynomial function or a constant function in the piecewise domains. 

The problem of discontinuity can occur at 
1

2
. So let us work out on the left hand limit, the right hand 

limit and the value of the function at 
1

2
. 

The left hand limit is lim
𝑥→

1

2

− 𝑥 =
1

2
 

The right hand limit is lim
𝑥→

1

2

+ 𝑥 =
1

2
 

The value of the function at  
1

2
, 𝑓  

1

2
 = 1 

The limit of the function is existing but is not equal to the value of the function, so the function is 

not continuous at 𝑥 =
1

2
. The point 𝑥 =

1

2
 is very much in the domain of the function, so we can say 

that the function is not continuous. 

Theorems on continuous functions 

Suppose 𝑓and 𝑔are two functions defined in a neighbourhood of the point 𝑎. Then, if lim
𝑥→𝑎

𝑓(𝑥)and 

lim
𝑥→𝑎

𝑔(𝑥)are well-defined, we have the following: 

(1)  lim(
𝑥→𝑎

𝑓 𝑥 + 𝑔(𝑥))is defined, and equals the sum of the values  lim
𝑥→𝑎

𝑓 𝑥 and  lim
𝑥→𝑎

𝑔(𝑥). 

(2) lim
𝑥→𝑎

(𝑓 𝑥 − 𝑔 𝑥 )is defined, and equals  lim
𝑥→𝑎

𝑓(𝑥)− lim
𝑥→𝑎

𝑔 𝑥 . 

(3) lim
𝑥→𝑎

𝑓(𝑥)𝑔(𝑥) is defined, and equals the product  lim
𝑥→𝑎

𝑓 𝑥 lim
𝑥→𝑎

𝑔(𝑥). 
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The scalar multiples result basically states that if  lim

𝑥→𝑎
𝑓 𝑥 exists, and for any real number 𝛼 

lim
𝑥→𝑎

𝛼𝑓 𝑥 = 𝛼 lim
𝑥→𝑎

𝑓(𝑥) 

(4) lim
𝑥→𝑎

𝑓 𝑥 andlim
𝑥→𝑎

𝑔(𝑥) exist and if lim
𝑥→𝑎

𝑔 𝑥 ≠ 0, then 

lim
𝑥→𝑎

𝑓 𝑥 

𝑔 𝑥 
=

lim
𝑥→𝑎

𝑓 𝑥 

lim
𝑥→𝑎

𝑔 𝑥 
 

 

The notions of sum, difference, product and quotient of functions can be rewritten as: 

lim(
𝑥→𝑎

𝑓 + 𝑔) 𝑥 = lim
𝑥→𝑎

𝑓 𝑥 + lim
𝑥→𝑎

𝑔 𝑥  

lim(
𝑥→𝑎

𝑓 − 𝑔) 𝑥 = lim
𝑥→𝑎

𝑓 𝑥 − lim
𝑥→𝑎

𝑔 𝑥  

lim(
𝑥→𝑎

𝑓. 𝑔) 𝑥 = lim
𝑥→𝑎

𝑓 𝑥 . lim
𝑥→𝑎

𝑔 𝑥  

lim (
𝑥→𝑎

𝑓/ 𝑔  ) 𝑥 = lim
𝑥→𝑎

𝑓 𝑥 /lim
𝑥→𝑎

𝑔 𝑥 provided𝑔 𝑎 ≠ 0 

You are much familiar with some elementary functions such as the constant function, identity 
function, rational function, trigonometric functions, inverse trigonometric functions , exponential 
functions and the logarithmic functions. 

 The domain of continuity of a function is same as the domain of the definition of function. 

All the above mentioned elementary functions are continuous in their domain. 

For the composed functions, we need to check the continuity every time. Some properties of 
continuous functions can be stated as follows. 

1. If 𝑓 𝑥  is continuous at 𝑐 and 𝑓 𝑐 ≠ 0 the there exists an open interval  𝑐 − 𝛿, 𝑐 + 𝛿  

around 𝑐 such that 𝑓 𝑥 has the sign of 𝑓 𝑐  for every 𝑥 in this interval. 

2. If 𝑓 is continuous in a closed interval [𝑎, 𝑏] and 𝑓 𝑎 , 𝑓(𝑏) are of opposite signs, then 𝑓(𝑥) 

is zero for atleast one 𝑥 ∈  𝑎, 𝑏 . 

3. If 𝑓 is continuous in [𝑎, 𝑏], then there exist points 𝑐 and 𝑑 in the interval [𝑎, 𝑏] where 𝑓 

assumes its greatest and least values 𝑀 and 𝑚 that is, 

𝑓 𝑐 = 𝑀and𝑓 𝑑 = 𝑚. 

5.3 Intermediate value theorem 

This theorem applies to the continuous functions. Using this theorem you can prove the solvability 
of the algebraic and transcendental equations. 

For example, sin 𝑥 + 𝑥5 = 0 is a transcendental equation and we can use the intermediate theorem 
to know whether it is solvable or not. 

INTERMEDIATE VALUE THEOREM: Let 𝑓 be a continuous function on the closed interval 
[𝑎, 𝑏]. Assume that 𝑚 is a number (y-value) between 𝑓 𝑎 and𝑓(𝑏). Then there is at least one number 
𝑐(x- value) in the interval  𝑎, 𝑏 which satisfies 𝑓 𝑐 = 𝑚. 

Assume that a function 𝑓 is a continuous and𝑚 = 0. Then the conditions 𝑓 𝑎 < 0 and𝑓 𝑏 > 0   
would lead to the conclusionthat the equation 𝑓 𝑥 = 0 is solvable for 𝑥, i.e., 𝑓 𝑐 = 0. 

Intermediate Value Theorem guarantees the existence of a solution, but not what the solution is.  

Steps to solve a problem: 

     1. Define a function 𝑦 = 𝑓 𝑥 . 

     2. Establish that 𝑓 is continuous.  

     3. Choose an interval  𝑎, 𝑏 .      

     4. Define a number (y-value) 𝑚. 

    5. Establish that there exists a value 𝑐, in  𝑎, 𝑏   such that  𝑓 𝑐 = 𝑚. 
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Now let us use the intermediate value theorem to prove that the equation is solvable on the given 
interval in the following examples. 

3𝑥5 − 4𝑥2 = 3 on[0,2] 

Let 𝑓 𝑥 = 3𝑥5 − 4𝑥2 − 3 

𝑓(𝑥)is continuous for every 𝑥 as it is a polynomial function. 

Now here 𝑓 0 = −3, 𝑓 2 = 77 

Let 𝑚 = 3 as 𝑓 0 < 𝑚 < 𝑓(2) 

By intermediate value theorem, we can conclude that there exists 𝑐 ∈ [0,2] such that 𝑓 𝑐 = 𝑚 

i.e.3𝑐5 − 4𝑐2 + 3 = 3  

or𝑐2 3𝑐3 − 4 = 0 

or𝑐 = 0,0,  
4

3
 

1/3
 

Here all the values of 𝑐 are lying in the given interval. In fact if only one value lies in the interval, 
that itself is sufficient to say that the equation is solvable. If we draw the function on 𝑥𝑦 −plane, the 
results are quite obvious. 

 

𝑥2 − 4𝑥3 + 1 = 𝑥 − 7 

Let 𝑓 𝑥 = 𝑥2 − 4𝑥3 + 1 − 𝑥 + 7 = −4𝑥3 + 𝑥2 − 𝑥 + 8 

Here 𝑓 𝑥  is continuous for all 𝑥. 

Now in this problem the interval is not given as in the previous example. Therefore by hit and trial 
we can look for two values 𝑥 such that the value of the function at those values are of opposite 
signs. 
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𝑓 0 = 8 

𝑓 2 = −22  

Let 𝑚 = 0  (any number between -22 and 8 can be chosen as 𝑚) 

Clearly all the assumptions of intermediate value theorem are met. Therefor there exists a 𝑐 ∈  0,2  
such that 𝑓 𝑐 = 𝑚 

i.e. −4𝑐3 + 𝑐2 − 𝑐 + 8 = 0 and this equation is solvable. 

If we check it by actually drawing the graph, we can easily see that the intermediate value theorem 
is getting satisfied in the said interval. 

 

𝑥3 + 2 = 𝑠𝑖𝑛𝑥 

Now this equation is a transcendental one. and no interval is given.  

Let 𝑓 𝑥 = 𝑥3 + 2 − sin 𝑥 

The function 𝑓 𝑥  is the sum of continuous functions so it is a continuous function for all 𝑥. 

𝑓 0 = 2 

𝑓 −𝜋 =  −29 

Choosing 𝑚 such that −29 < 𝑚 < 2. 

Let 𝑚 = 0 

∴  ∃ 𝑐 ∈  −𝜋, 0  such that 𝑓 𝑐 = 𝑚 

i.e.𝑐3 + 2 − sin 𝑐 = 0 

Therefore the equation is solvable. And we can verify this by actually plotting the graph which is as 
follows: 
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5.4 Geometric interpretation of continuity 

Continuity at a point𝑐  can be defined for a function𝑓 on an open interval containing𝑐. We may say 
that 𝑓is continuous at 𝑐  if 𝑓 𝑥  tends to 𝑓 𝑐 as 𝑥 tends to 𝑐. Or in plane words, the function 𝑓 is 
continuous if the difference in 𝑥 and 𝑐 is small, the difference in 𝑓 𝑥  and 𝑓(𝑐) will also be small. 
That cannot be abrupt. 

In simple words,  

(i) Function 𝑓will be continuous at 𝑥 = 𝑐if there is no break in the graph of the function at the point 
(𝑐, 𝑓(𝑐)). 

(ii) In an interval, function is said to be continuous if there is no break in the graph of the function 
in the entire interval. 

 

5.5 Types of discontinuity 

Discontinuity of a function 

A function is said to be discontinuous at a point of its  domain if it is not continuous at that point.  
Moreover, that point is called the point of discontinuity of the function. 

Two possibilities:  

1. The limit of the functions exists as x tends to c but is different from the value of the 

function at c. 

2. The limit of the function does not exist at c. 

On this basis, we can classify the discontinuities as follows: 

1. Removable discontinuity 

2. Jump discontinuity (Discontinuity of the first kind) 

3. Discontinuity of the first kind from the left 

4. Discontinuity of the first kind from the right 

5. Discontinuity of the second kind ( Non removable or  essential discontinuity) 

6. Discontinuity of the second kind from the left 
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7. Discontinuity of the second kind from the right 

Removable discontinuity 

If lim𝑥→𝑐 𝑓 𝑥  exists but is not equal to 𝑓(𝑐) (which may or may not exist), then that discontinuity is 
called removable because we can redefine the function so that the function becomes continuous at 
point 𝑐. 

i.e.lim𝑥→𝑐− 𝑓 𝑥 = lim𝑥→𝑐+ 𝑓 𝑥 ≠ 𝑓(𝑐) 

For instance consider the function 𝑓 𝑥 =  
sin 𝑥

𝑥
if 𝑥 ≠ 0

0     if  𝑥 = 0

  

Clearly the limit of the function exists and is 1. But the value of the function at 𝑥 = 0 is not 1. 

Thus the function has a removable discontinuity at 𝑥 = 0. 

It means that we can redefine the function to remove this discontinuity by writing 

𝑓 𝑥 =  
sin 𝑥

𝑥
if 𝑥 ≠ 0

1     if  𝑥 = 0

  

Jump discontinuity 

This discontinuity is also called discontinuity of first kind. If lim𝑥→𝑐− 𝑓 𝑥 and lim𝑥→𝑐+ 𝑓 𝑥  both 
exist but are not equal, then we get a jump discontinuity. 

i.e.lim𝑥→𝑐− 𝑓 𝑥 ≠ lim𝑥→𝑐+ 𝑓 𝑥  

For instance 𝑓 𝑥 =  
1    if 𝑥 > 0

−1    if  𝑥 < 0
  

Clearly the left hand limit is -1 and right hand limit is +1 and you can see a jump right there near 
zero, hence the name ‘jump discontinuity’. 

Discontinuity of the first kind from the left 

If lim𝑥→𝑐− 𝑓 𝑥 ≠ 𝑓 𝑐 =  lim
𝑥→𝑐+

𝑓 𝑥  

Discontinuity of the first kind from the right 

If lim𝑥→𝑐− 𝑓 𝑥 = 𝑓 𝑐 ≠ lim
𝑥→𝑐+

𝑓 𝑥  

Discontinuity of the second kind (Non removable or essential discontinuity) 

If neither  lim𝑥→𝑐− 𝑓 𝑥  nor lim𝑥→𝑐+ 𝑓 𝑥  exists. 

Discontinuity of the second kind from the left 

If  lim𝑥→𝑐− 𝑓 𝑥  does not exist. 

Discontinuity of the second kind from the right 

If lim𝑥→𝑐+ 𝑓 𝑥  does not exist. 

 Consider a function 𝑓 𝑥 = 5
𝑥

1−𝑥2  

Clearly the function is not defined at 1 and -1. But we can see how the function will behave as 𝑥 
approaches to 1 from both possible directions.  

The left hand limit = lim𝑥→1− 5
𝑥

1−𝑥2 

Put 𝑥 = 1 − .  → 0as𝑥 → 1− 

So the function can now be written as 

lim
𝑥→1−

5
𝑥

1−𝑥2 = lim
→0

5
1−

1−(1−)2  

 

= lim
→0

5
1−

(2−)                       (Here 
1−h

2−h
 tends to 

1

2
 as  tends to zero.) 

= lim
→0

5
1

2  
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= ∞ 

The right hand limit is lim𝑥→1+ 5
𝑥

1−𝑥2  and 

lim
𝑥→1+

5
𝑥

1−𝑥2 = lim
→0

5
1+

1−(1+)2  

= lim
→0

5
1+

−2−2  

= lim
→0

5− 
1

2 = 0 

Similarly at the point 𝑥 = −1, the left hand limit is 

lim
𝑥→−1−

5
𝑥

1−𝑥2 = lim
→0

5
−1−

1−(−1−)2 = ∞ 

And the right hand limit is 

lim
𝑥→ −1+

5
𝑥

1−𝑥2 = lim
→0

5
−1+

1− −1+ 2 = 0 

Therefore in this example the point -1 is a discontinuity of the second kind from the left and 1 is 
also a discontinuity of the second kind from the left. 

5.6 Uniform continuity 

To understand uniform continuity let us recapitulate that a function 𝑓is said to be continuous on 
𝑹if for every 𝑐 ∈ 𝑹and for every 𝜖 > 0, there exists a 𝛿 > 0 such that for every 𝑥 ∈ 𝑹with  𝑥 − 𝑐 < 𝛿  

we have  𝑓 𝑥 − 𝑓 𝑐  < 𝜖. Here 𝛿 can depend upon 𝜖  and 𝑐. 

On the other hand a function 𝑓 is said to be uniformly continuous on 𝑹if for every 𝜖 > 0, there 
exists a 𝛿 > 0 such that for every 𝑥, 𝑦 ∈ 𝑹with  𝑥 − 𝑦 < 𝛿 we have  𝑓 𝑥 − 𝑓 𝑦  < 𝜖. Here 𝛿 can 
depend upon 𝜖. 

The uniform continuity is a global concept. Here you have one single rectangle for the whole 
domain whereas the continuity of a function at a point is a local concept and the size of the 
rectangle will highly depend on the value of 𝑐. 

We will see two theorems without proof to have a better idea of uniform continuity. 

Theorem 1:  Every uniformly continuous function on an interval is continuous on that interval but 
the converse is not true. 

Theorem 2: If a function is continuous on a closed interval, then it is uniformly continuous on that 
closed interval. 

 Is the function 𝑓 𝑥 =
𝑥

𝑥+1
 uniformly continuous for 𝑥 ∈ [0,2]? 

Let 𝑥, 𝑦 be two arbitrary points in  0,2 .Then𝑥 ≥ 0, 𝑦 ≥ 0 

or𝑥 + 1 ≥ 1, 𝑦 + 1 ≥ 1 

or 𝑥 + 1  𝑦 + 1 ≥ 1 

or
1

 𝑥+1  𝑦+1 
≤ 1 

Now   𝑓 𝑥 − 𝑓 𝑦  =  
𝑥

𝑥+1
−

𝑦

𝑦+1
 =

 𝑥−𝑦 

 𝑥+1  𝑦+1 
≤ |𝑥 − 𝑦| 

Let 𝜖 > 0 be given. Choosing 𝛿 = 𝜖 we get 

 𝑓 𝑥 − 𝑓 𝑦  < 𝜖when ever 𝑥 − 𝑦 < 𝛿 for every 𝑥, 𝑦 ∈ [0,2] 

The same problem can be solved by using the second theorem also. The only problem point for the 
function is {−1} and that is not in the domain.  So all conditions are getting fulfilled of Theorem 2 
and that implies that the given function is uniformly continuous in  0,2 . 

 Show that the function 𝑓 𝑥 =
1

𝑥2 is uniformly continuous on [𝑎, ∞) where 𝑎 > 0, but not 

uniformly continuous on  0, ∞ . 

Let 𝑥, 𝑦 ≥ 𝑎 > 0 be two arbitrary numbers in  0, ∞ . 
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 𝑓 𝑥 − 𝑓 𝑦  =  
1

𝑥2 −
1

𝑦2  

=  
1

𝑥
−

1

𝑦
  

1

𝑥
+

1

𝑦
  

≤
2

𝑎
 
𝑦 − 𝑥

𝑥𝑦
  

≤
2

𝑎3
 𝑥 − 𝑦  

Let 𝜖 > 0 be given. Choose 𝛿 =
𝜖𝑎3

2
. Then,  

 𝑓 𝑥 − 𝑓 𝑦  < 𝜖when 𝑥 − 𝑦 < 𝛿 for all 𝑥, 𝑦 ≥ 𝑎. 

Therefore 𝑓 is uniformly continuous on  𝑎, ∞ . 

To show that 𝑓 is not uniformly continuous on [0, ∞) let us take two numbers in the interval [0, ∞) 
as follows: 

𝑥1 =
1

 𝑛
and𝑥2 =

1

 𝑛+1
 be two numbers. 

Now  𝑓 𝑥1 − 𝑓 𝑥2  =  
1

𝑥1
2 −

1

𝑥2
2  

=  𝑛 −  𝑛 + 1  = 1 

And  𝑥1 − 𝑥2 =  
1

 𝑛
−

1

 𝑛+1
  

=
1

 𝑛 𝑛 + 1  𝑛 + 1 +  𝑛 
 

<
1

 𝑛 .2 𝑛
=

1

2𝑛
= 𝛿 (say) 

Let 𝜖 =
1

2
 and 𝛿 be any positive number such that 𝑛 >

1

2𝛿
or 

1

2𝑛
< 𝛿. 

Therefore  𝑓 𝑥1 − 𝑓 𝑥2  > 𝜖 when  𝑥1 − 𝑥2 < 𝛿 

∴ 𝑓is not uniformly continuous on  0, ∞ . 

Summary 

In this unit we have learnt about the technical definition of a continuous function and its various 
properties. 

 A function 𝑓(𝑥) is said to be continuous at 𝑐, if ∃ an interval  𝑐 − 𝛿, 𝑐 + 𝛿  around 𝑐, such 

that for all 𝑥 ∈ (𝑐 − 𝛿, 𝑐 + 𝛿), we have  

𝑓 𝑐 − 𝜖 < 𝑓 𝑥 < 𝑓 𝑐 + 𝜖 

 For two continuous functions, the following properties hold. 

lim(
𝑥→𝑎

𝑓 + 𝑔) 𝑥 = lim
𝑥→𝑎

𝑓 𝑥 + lim
𝑥→𝑎

𝑔 𝑥  

lim(
𝑥→𝑎

𝑓 − 𝑔) 𝑥 = lim
𝑥→𝑎

𝑓 𝑥 − lim
𝑥→𝑎

𝑔 𝑥  

lim(
𝑥→𝑎

𝑓. 𝑔) 𝑥 = lim
𝑥→𝑎

𝑓 𝑥 . lim
𝑥→𝑎

𝑔 𝑥  

lim (
𝑥→𝑎

𝑓/ 𝑔  ) 𝑥 = lim
𝑥→𝑎

𝑓 𝑥 /lim
𝑥→𝑎

𝑔 𝑥 provided𝑔 𝑎 ≠ 0 

 A function is said to be discontinuous at a point of its  domain if it is not continuous at that 

point.  Moreover, that point is called the point of discontinuity of the function. 

 We can classify the discontinuities  mainly as: 

1. Removable discontinuity 

2. Jump discontinuity  

3.  Non removable or  essential discontinuity 
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 The intermediate value theorem states that if a continuous function attains two values, it 

must also attain all values in between these two values. 

 A function 𝑓 is said to be uniformly continuous on 𝑹if for every 𝜖 > 0, there exists a 𝛿 > 0 

such that for every 𝑥, 𝑦 ∈ 𝑹with  𝑥 − 𝑦 < 𝛿 we have  𝑓 𝑥 − 𝑓 𝑦  < 𝜖. Here 𝛿 can depend 

upon 𝜖. 

 Every uniformly continuous function on an interval is continuous on that interval but the 

converse is not true. 

 If a function is continuous on a closed interval, then it is uniformly continuous on that 

closed interval. 

Key Words 

continuity, discontinuity, intermediate value theorem, uniform continuity 

Self Assessment 

1. Which of the following is  a continuous function? 

(a) Constant function 

(b) Polynomial function 

(c) Sine function 

(d) All of the above 

2. To verify that any equation is solvable or not, which theorem must be used? 

(a) Mean value theorem 

(b) Rolle’s theorem 

(c) Intermediate value theorem 

(d) None of these 

3. If a function is continuous, it is definitely uniformly continuous.(True/False) 

4. If you can redefine a function so that it becomes continuous, what kind of discontinuity 

are you tackling? 

(a) Jump 

(b) Removable 

(c) Discontinuity of first kind 

(d) Discontinuity of second kind 

5. lim𝑥→2
𝑥−2

𝑥2−4
 is 

(a) 1 

(b) 4 

(c) 
1

4
 

(d) None of these 

6. Which of these functions is not uniformly continuous on (0,1)? 

(a) 𝑥2 

(b) 
𝟏

𝒙𝟐 

(c) sin 𝑥 

(d) 
𝑠𝑖𝑛𝑥

𝑥
 

7. Find lim𝑥→𝑎
 𝑥− 𝑎

𝑥−𝑎
 for 𝑏 > 0. 

(a) 0 

(b) ∞ 

(c) 𝑎 

(d) 
1

2 𝑎
 

8. Which of the following is not a continuous function? 

(a) [𝒙] 
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(b) |𝑥| 

(c) 𝑥2 

(d) 
1

𝑥
 , 𝑥 ≠ 0 

9. If a function 𝑓 is continuous for all real numbers and if 𝑓 𝑥 =
𝑥2−4

𝑥+2
when 𝑥 ≠ −2, then 

𝑓(−2) is equal to 

(a) -4 

(b) -2 

(c) -1 

(d) 0 

10. Which of the following functions are continuous at 𝑥 = 1 

I. ln 𝑥 

II. 𝑒𝑥  

III. ln 𝑒𝑥 − 1  

(a) I only 

(b) I and II only 

(c) II and III only 

(d) I, II and III 

11. The function 𝑓 𝑥 =
𝑒

1
𝑥 +𝑒−

1
𝑥

𝑒
1
𝑥−𝑒−

1
𝑥

,   𝑥 ≠ 0, 𝑓 0 = 1 has 𝑥 = 0 as a 

(a) removable discontinuity 

(b) jump discontinuity 

(c) discontinuity of second kind from left 

(d) discontinuity of second kind from right 

12. Discontinuity of second kind happens when 

(a) the left hand limit does not exist 

(b) the right hand limit does not exist 

(c) both the left hand and right hand limits do not exist 

(d) neither the left hand nor right hand limits exist 

13. Discontinuity of the second kind is also known as  

(a) removable discontinuity 

(b) essential discontinuity 

(c) jump discontinuity 

(d) non-essential discontinuity 

14. Jump discontinuity is a 

(a) discontinuity of the first kind 

(b) discontinuity of the first kind from left 

(c) discontinuity of the first kind from right 

(d) discontinuity of the second kind 

15. Which of the following is/are true? 

I. Every uniformly continuous function on an interval is continuous on that interval 

and conversely. 

II. If a function is continuous on an open interval, then it is uniformly continuous on 

that closed interval. 

(a) Only I is true 

(b) Only II is true 

(c) Both I and II are true 

(d) None is true 

 

Answers for Self Assessment 

1. D 2. C 3. False 4. B 5. C 
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6. B 7. D 8. A 9. A 10. D 

11. B 12. D 13. B 14. A 15. D 

 

Review Questions 

1. Prove that a constant function is a continuous function. 

2. State the intermediate value theorem with an example. 

3. Show that the function 𝑓 𝑥 = 6𝑥 − 5 is continuous at 𝑥 = 0. 

4. Discuss the continuity of the following function: 

𝑓 𝑥 =  
3𝑥 − 5,   if 𝑥 ≠ 1
     2,        if 𝑥 = 1

  

5. Determine the values of 𝐴 and 𝐵 so that the following function is continuous for all values 

of x. 

𝑓 𝑥 =  
    𝐴𝑥 − 𝐵,  if 𝑥 ≤ −1

     2𝑥2 + 3𝐴𝑥 + 𝐵,        if -1< 𝑥 ≤ 1
  

and𝑓 𝑥 = 4, if 𝑥 > 1 

6. Verify if the equation 𝑥3 = cos 𝑥 − 2 is solvable or not? 

7. Examine the continuity of 𝑓 𝑥 =  
 𝑥−5 

𝑥−5
,   if 𝑥 ≠ 5

1,      if 𝑥 = 5

  and discuss in case of any discontinuity. 

8. Check if the function 
𝑥

𝑥+2
 is uniformly continuous on  0,2 . 

9. Examine the continuity of 𝑓 𝑥 =  
 𝑥−5 

𝑥−5
,   if 𝑥 > 5

     1,      if 𝑥 ≤ 5

  

10. Discuss the kind ofdiscontinuity for the following function: 

𝑓 𝑥 =  
3𝑥 − 5,   if 𝑥 ≠ 1
     2,        if 𝑥 = 1

  

 

 

 
Further Readings 

George B. Thomas Jr., Joel Hass, Christopher Heil& Maurice D. Weir (2018). Thomas’ 
Calculus  (14th edition). Pearson Education. 

Howard Anton, I. Bivens& Stephan Davis (2016).Calculus (10th edition).Wiley India. 

 

 

Web Links 

https://math.libretexts.org/Bookshelves/Calculus/Book%3A_Active_Calculus_(Boelkins
_et_al)/1%3A_Understanding_the_Derivative/1.7%3A_Limits_Continuity_and_Differenti
ability 
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Unit 06: Differentiability of a Real Valued Function 

CONTENTS 

Objectives 

Introduction 

6.1 Derivability and derivative 

6.2 Geometrical interpretation of differentiability 

6.3 Relation between differentiability and continuity 

6.4 Differentiability and monotonicity 

Summary 

Key Words 

Self Assessment 

Answers for Self Assessment 

Review Questions 

Further Readings 

Objectives 

Students will 

• learn about the concept of differentiability 

• explore the geometric interpretation of differentiability 

• understand the relation in differentiability and continuity 

• analyze the connection of differentiability and monotonicity 

Introduction 

After understanding the concept of limit, we can move on to know what is meant by 
differentiability of a real valued function. As we know, calculus is all about the study of the change. 
The general idea that comes to mind is the average rate of change. We want to say how fast we are, 
and to know that, we go for finding the average speed, so if you want to compare two persons, you 
just see their average speed or average velocity. Similarly, if you want to see where the bend is 
sharper, you would like to see the curvature. To explain the phenomena in more detail, we would 
like to know the velocity ‘at a particular point’ or the curvature ‘at a particular point’. Here we are 
basically interested in the local change or the instantaneous rate of change. The average rate of 
change is kind of global phenomenon, we are telling something for the whole period of time or for 
the whole domain in general.  In the first case, we need to understand something called 
differentiability which is an instantaneous phenomenon or alocal phenomenon. 

6.1 Derivability and derivative 

Consider a function 𝑓: 𝐴 → 𝐵. Let 𝑐 ∈ 𝐴 be any point in the domain 𝐴 and 𝐵 is a set of real numbers. 
For ℎ > 0, 𝑐 + ℎ and 𝑐 − ℎ lie on the right and left of 𝑐 respectively. The value of the function at  𝑐 
and 𝑐 + ℎ are respectively 𝑓(𝑐)and 𝑓(𝑐 + ℎ). Thus we can say that change in 𝑥 is ℎ and change in 
𝑓(𝑥) is 𝑓(𝑐 + ℎ) − 𝑓(𝑐). 

The average rate of change of the function w.r.t. the independent variable 𝑥 is  
𝑓(𝑐+ℎ)−𝑓(𝑐)

ℎ
 . As the 

value of ℎ approaches to zero, the expression 
𝑓(𝑐+ℎ)−𝑓(𝑐)

ℎ
  may tend to a limit. The limit if exists, is 

called the derivative of the function 𝑓 at point 𝑐,  and is denoted by 𝑓′(𝑐)and 

𝑓′(𝑐) = lim
ℎ→0

𝑓(𝑐 + ℎ) − 𝑓(𝑐)

ℎ
 

If the derivative of the function takes a finite value, the function is called finitely derivable at 𝑐. 
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The left hand derivative is given as 

𝑓′(𝑐−) = lim
ℎ→0−

𝑓(𝑐 + ℎ) − 𝑓(𝑐)

ℎ
 

and the right hand derivative can be written as 

𝑓′(c+) = lim
ℎ→0+

𝑓(𝑐 + ℎ) − 𝑓(𝑐)

ℎ
 

The function 𝑓 is derivable if both the left and right hand derivatives exist and are equal. 

 

  Prove that the function 𝑓(𝑥) = 𝑥2 is derivable at 𝑥 = 1. 

Here the point of interest is 𝑐 = 1, so we check the functional value at 1 and 1 + ℎ. 

𝑓(1) = 1 

𝑓(1 + ℎ) = 1 + 2ℎ + ℎ2 

To check the derivability, we need to check if the limit lim
ℎ→0

𝑓(𝑐+ℎ)−𝑓(𝑐)

ℎ
 exists or not! 

Now lim
ℎ→0

𝑓(1+ℎ)−𝑓(1)

ℎ
= lim

ℎ→0

2ℎ+ℎ2

ℎ
= lim

ℎ→0
 2 + ℎ = 2 

Thus the limit exists and hence the function is derivable at 𝑥 = 1. 

 Check the differentiability of the modulus function at the zero. 

Let the function be 𝑓(𝑥) = |𝑥|. 

The domain of the function is the set of all real numbers. Here the point of interest is 𝑐 = 0. So we 
will check if the limit 

lim
ℎ→0

𝑓(0+ℎ)−𝑓(0)

ℎ
exists or not. 

lim
ℎ→0

𝑓(0 + ℎ) − 𝑓(0)

ℎ
= lim

ℎ→0

|ℎ|

ℎ
 

Since the modulus function is appearing in the function, whose limit is to be calculated, we need to 
apply the definition of modulus function which is as follows: 

|ℎ| = {
ℎ,          ℎ > 0

−ℎ, ℎ < 0
 

The left hand derivative is given as 

𝑓′(0−) = lim
ℎ→0−

𝑓(0 + ℎ) − 𝑓(0)

ℎ
= lim

ℎ→0

|ℎ|

ℎ
= −1 

And the right hand derivative is given as 

𝑓′(0+) = lim
ℎ→0+

𝑓(0 + ℎ) − 𝑓(0)

ℎ
= lim

ℎ→0

|ℎ|

ℎ
= +1 

Clearly the limit does not exist at 𝑥 = 0. Therefor 𝑓′(0) does not exist or we can say that the 
modulus function is not differentiable at 𝑥 = 0. 

 Find the derivative of 𝑓(𝑥) = √𝑥. 

The domain of the function is the set of all non-negative real numbers. So we need to check the 
differentiability of the function for all 𝑥 > 0 and at 𝑥 = 0. 

Let 𝑥 > 0.  We can write 

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
=

√𝑥 + ℎ − √𝑥

ℎ
 

=

√𝑥+ℎ−√𝑥

ℎ
(√𝑥 + ℎ + √𝑥)

√𝑥 + ℎ + √𝑥
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=
1

√𝑥 + ℎ + √𝑥
 

Therefore   lim
ℎ→0

𝑓(𝑥+ℎ)−𝑓(𝑥)

ℎ
=

1

2√𝑥
provided 𝑥 > 0 . 

To check the differentiability at 𝑥 = 0, we can examine that 

lim
ℎ→0

𝑓(0 + ℎ) − 𝑓(0)

ℎ
= lim

ℎ→0

√ℎ

ℎ
= lim

ℎ→0

1

√ℎ
 

Clearly, lim
ℎ→0+

1

√ℎ
→ ∞ and lim

ℎ→0−

1

√ℎ
 is not defined.  

So we can say that 𝑓′(𝑥) =
1

2√𝑥
   ∀ 𝑥 ∈ (0, ∞) 

 Check if the function 𝑓(𝑥) = 𝑥|𝑥| is derivable at the origin. 

Since there is modulus function involved in the definition of the function, we can simplify it first. 

It can be written as 𝑓(𝑥) = {
𝑥2,          𝑥 ≥ 0

−𝑥2,      𝑥 < 0
 

The point of interest is the origin. So let’s find the left hand and right hand derivatives at origin. 

𝑓′(0−) = lim
𝑥→0−

𝑓(𝑥) − 𝑓(0)

𝑥 − 0
= lim

ℎ→0−

−𝑥2

𝑥
=  lim

ℎ→0−
− 𝑥 = 0 

 

𝑓′(0+) = lim
𝑥→0+

𝑓(𝑥) − 𝑓(0)

𝑥 − 0
= lim

ℎ→0+

𝑥2

𝑥
=  lim

ℎ→0+
𝑥 = 0 

Therefore 𝑓′(0−) = 𝑓′(0+) and it implies that 𝑓 is derivable at the origin. 

 

6.2 Geometrical interpretation of differentiability 

Recall that if  𝑦 = 𝑓(𝑥), then, for any real number Δ𝑥, 

Δ𝑦

Δ𝑥
=

𝑓(𝑥 + Δ𝑥) − 𝑓(𝑥)

Δ𝑥
 

is the average rate of change of 𝑦 with respect to 𝑥 over the interval [𝑥, 𝑥 + Δ𝑥]. Now if the graph of 

𝑦 is a straight line, that is, if 𝑦 = 𝑚𝑥 + 𝑏  for some real numbers 𝑚and 𝑏, then 
Δ𝑦

Δ𝑥
= 𝑚, the slope of 

the line. In fact, a straight line is characterized by the fact 
Δ𝑦

Δ𝑥
is the same for any values of 𝑥and Δ𝑥. 

Moreover, 
Δ𝑦

Δ𝑥
remains the same when Δ𝑥 is infinitesimal; that is, the derivative of 𝑦 with respect to 𝑥 

is the slope of the line. For other differentiable functions 𝑓, the value of 
Δ𝑦

Δ𝑥
 depends upon both 𝑥and 

Δ𝑥. However, for infinitesimal values of Δ𝑥, the shadow of 
Δ𝑦

Δ𝑥
, that is, the derivative 

d𝑦

d𝑥
, depends on 

𝑥 alone. Hence it is reasonable to think of 
d𝑦

d𝑥
 as the slope of the curve 𝑦 = 𝑓(𝑥)at a point𝑥. Whereas 

the slope of a straight line is constant from point to point, for other differentiable functions the 

value of the slope of the curve will vary from point to point. If 𝑓 is differentiable at a point 𝑎, we 

call the line with slope 𝑓′(𝑎)passing through (𝑎, 𝑓(𝑎))the tangent line to the graph of  𝑓at (𝑎, 𝑓(𝑎)). 
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That is, the tangent line to the graph of 𝑦 = 𝑓(𝑥) at 𝑥 = 𝑎 is the line with equation  

𝑦 = 𝑓′(𝑎) (𝑥 − 𝑎) + 𝑓(𝑎)          

Hence a tangent line to the graph of a function 𝑓 is a line through a point on the graph of 𝑓whose 
slope is equal to the slope of the graph at that point. 

Kinematic interpretation of differentiability 

The motion of a particle along a straight line can be written as 𝑠 = 𝑓(𝑡),  where 𝑠 is the distance of 
the particle at point 𝑃 from a fixed point of reference on the line,at time 𝑡. Let after some time Δ𝑡, 

the body covers a distance 𝑠 + Δ𝑠 and is at point 𝑄 now. Clearly 
Δ𝑠

Δ𝑡 
 represents the average velocity 

for this interval of time and it approximates the actual velocity at 𝑃. Clearly as this interval of time 
gets smaller and smaller, the approximate value of the velocity gets better and better to the actual 
value. 

i.e. lim
Δ𝑡→0

𝑓(𝑡+Δ𝑡)−𝑓(𝑡)

Δ𝑡
= lim

Δ𝑡→0
(

Δ𝑠

Δ𝑡
) =

𝑑𝑠

𝑑𝑡
= velocity (v) at time 𝑡 

Similarly the instantaneous rate of change of velocity is interpreted as acceleration.  

lim
Δ𝑡→0

𝑣(𝑡+Δ𝑡)−𝑣(𝑡)

Δ𝑡
= lim

Δ𝑡→0
(

Δ𝑣

Δ𝑡
) =

𝑑𝑣

𝑑𝑡
= acceleration (a) at time 𝑡 

The third and fourth derivatives of distance w.r.t. time are called jerk and jounce. 

lim
Δ𝑡→0

𝑎(𝑡+Δ𝑡)−𝑎(𝑡)

Δ𝑡
= lim

Δ𝑡→0
(

Δ𝑎

Δ𝑡
) =

𝑑𝑎

𝑑𝑡
= jerk (j) at time 𝑡 

lim
Δ𝑡→0

𝑗(𝑡+Δ𝑡)−𝑗(𝑡)

Δ𝑡
= lim

Δ𝑡→0
(

Δ𝑗

Δ𝑡
) =

𝑑𝑗

𝑑𝑡
= jounce (J) at time 𝑡 

You can see and feel all these changes physically in the real world. But that will not be the case with 
all the functions other than the distance function. 

The derivative of various functions have been developed through the ab-initio definition. Two 
examples are given.  

Derivative of the function 𝒇(𝒙) = 𝒌 where 𝒌 is a given number: 

𝑦 = 𝑘 

𝑦 + Δ𝑦 = 𝑘 

Δ𝑦

Δ𝑥
=

0

Δ𝑥
= 0  

d𝑦

d𝑥
= lim

Δ𝑥→0

Δ𝑦

Δ𝑥
= 0for every 𝑥 ∈ Set of real numbers 

Derivative of the function 𝒇(𝒙) = 𝒙𝒏 where 𝒏 is a natural number: 

𝑦 = 𝑥𝑛 

𝑦 + Δ𝑦 = (𝑥 + Δ𝑥)𝑛 

= 𝑥𝑛 + 𝑛𝑥𝑛−1Δ𝑥 +
𝑛(𝑛 − 1)

2
𝑥𝑛−2(Δ𝑥)2 + ⋯ + (Δ𝑥)𝑛 
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Δ𝑦

Δ𝑥
= 𝑛𝑥𝑛−1 +

𝑛(𝑛 − 1)

2
𝑥𝑛−2Δ𝑥 + ⋯ + (Δ𝑥)𝑛−1 

d𝑦

d𝑥
= lim

Δ𝑥→0

Δ𝑦

Δ𝑥
= 𝑛𝑥𝑛−1 

Once the basic understanding is there, we can use the formulae of differentiation directly. You have 
studied and used them already still the lists of various formulae are presented below for your 
revision. 
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6.3 Relation between differentiability and continuity 

In a layman language, if you want to check the differentiability of a function at a point, just by 
looking at its graph, you must zoom the figure at that point (in your mind, if not possible 
otherwise!) If you see a straight line at that point, the function is differentiable and otherwise it is 
non-differentiable. So corners or pointy edges in a graph imply non differentiable nature of the 
function while smooth curve suggests a differentiable function. 

Similarly the concept of continuity in a domain relates to the graph without any kink or cut or 
break in that domain. 

Theorem: If f is finitely derivable at c, then f is also continuous at c. 
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Let 𝑓 be a finitely derivable function at 𝑐, so that the expression 
𝑓 (𝑐+h)−𝑓(𝑐)

ℎ
→ a finite limit asℎ →

0. 

We can write   

𝑓(𝑐 + h) − 𝑓(𝑐) =
𝑓(𝑐 + h) − 𝑓(𝑐)

ℎ
ℎ 

lim
ℎ→0

𝑓(𝑐 + h) − 𝑓(𝑐) = lim
ℎ→0

𝑓(𝑐 + h) − 𝑓(𝑐)

ℎ
lim
ℎ→0

ℎ 

= 𝑓′(𝑐) ∗ 0 = 0 

∴ lim
ℎ→0

𝑓(𝑐 + h) − 𝑓(𝑐) = 0 

lim
ℎ→0

𝑓(𝑐 + h) = 𝑓(𝑐) 

Alternatively, 
lim
𝑥→𝑐

𝑓(𝑥) = 𝑓(𝑐) 

It implies that 𝑓 is continuous at 𝑥 = 𝑐. 

The converse of this theorem is not necessarily true. One stark example is the absolute function. The 
function 𝑓(𝑥) = |𝑥| is continuous on its domain but is not differentiable at the point 0 which is a 
part of the domain. 

 Examine 𝑓(𝑥) = {
𝑥(𝑒− 

1
𝑥−𝑒

1
𝑥)

𝑒− 
1
𝑥+𝑒

1
𝑥

         𝑥 ≠ 0

          0               𝑥 = 0

  for the continuity and differentiability at origin. 

The right hand limit is lim
𝑥→0+

𝑥(𝑒− 
1
𝑥−𝑒

1
𝑥)

𝑒− 
1
𝑥+𝑒

1
𝑥

 

= lim
𝑥→0+

𝑥 (𝑒− 
2

𝑥 − 1)

𝑒− 
2

𝑥 + 1
= 0 

The left hand limit is lim
𝑥→0−

𝑥(𝑒− 
1
𝑥−𝑒

1
𝑥)

𝑒− 
1
𝑥+𝑒

1
𝑥

 

= lim
𝑥→0−

𝑥 (1 − 𝑒
2

𝑥)

1 + 𝑒
2

𝑥

= 0 

The value of the function at 0 is also zero. 

Therefore the given function is continuous at origin. 

The right hand derivative is 𝑓′(0+) = lim
𝑥→0+

𝑓(𝑥)−𝑓(0)

𝑥−0
=  lim

𝑥→0+

𝑒− 
1
𝑥−𝑒

1
𝑥

𝑒− 
1
𝑥+𝑒

1
𝑥

 

= lim
𝑥→0+

𝑒− 
2

𝑥 − 1

𝑒− 
2

𝑥 + 1
= −1 

The left hand derivative is 𝑓′(0−) = lim
𝑥→0−

𝑓(𝑥)−𝑓(0)

𝑥−0
=  lim

𝑥→0−

𝑒− 
1
𝑥−𝑒

1
𝑥

𝑒− 
1
𝑥+𝑒

1
𝑥

 

= lim
𝑥→0−

1 − 𝑒
2

𝑥

1 + 𝑒
2

𝑥

= 1 

Therefore the function is not derivable at the origin. 

6.4 Differentiability and monotonicity 

Monotonicity gives an idea about the behaviour of the function. A function is said to be monotonic 
function if it is either increasing or decreasing in its entire domain. For example, 

𝑓(𝑥) = 2𝑥 + 3has the set of all real numbers as its domain and the function is monotonically 
increasing on the entire domain. 
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𝑔(𝑥) = −𝑥3also has the set of all real numbers as its domain and the function is monotonically 
decreasing on the entire domain. 

We can recall that for an increasing function 𝑥1 < 𝑥2 ⇒  𝑓(𝑥1) < 𝑓(𝑥2) and for a decreasing function 

𝑥1 < 𝑥2 ⇒  𝑓(𝑥1) > 𝑓(𝑥2). The functions which are increasing as well as decreasing in their domain 
are known as non-monotonic functions. For example the absolute function, the sine function etc. 

Monotonicity of a function at a point in its domain 

A function is monotonically increasing at 𝑥 = 𝑎 if 𝑓(𝑎 + ℎ) > 𝑓(𝑎)and 𝑓(𝑎 − ℎ) < 𝑓(𝑎) for small ℎ >
0. From the first expression, we can write 

𝑓(𝑎 + ℎ) − 𝑓(𝑎)

ℎ
>

0

ℎ
 

𝑓(𝑎 + ℎ) − 𝑓(𝑎)

ℎ
> 0 

lim
ℎ→0

𝑓(𝑎 + ℎ) − 𝑓(𝑎)

ℎ
> 0 

𝑓′(𝑎) > 0 

A function is monotonically decreasing at 𝑥 = 𝑎 if 𝑓(𝑎 + ℎ) < 𝑓(𝑎) and  𝑓(𝑎 − ℎ) > 𝑓(𝑎) for small 
ℎ > 0. From the first expression, we can write 

𝑓(𝑎 + ℎ) − 𝑓(𝑎)

ℎ
<

0

ℎ
 

𝑓(𝑎 + ℎ) − 𝑓(𝑎)

ℎ
< 0 

lim
ℎ→0

𝑓(𝑎 + ℎ) − 𝑓(𝑎)

ℎ
< 0 

𝑓′(𝑎) < 0 

Thus we can see a relation in differentiability and monotonicity. If a function is monotonically 
increasing at 𝑥 = 𝑎, its first derivative at 𝑥 = 𝑎 has to be positive and if a function is monotonically 
decreasing at 𝑥 = 𝑎, its first derivative at 𝑥 = 𝑎 has to be negative. 

Monotonicity in an interval 

For an increasing function in some interval if Δ𝑥 > 0 ⇔ Δ𝑦 > 0or Δ𝑥 < 0 ⇔ Δ𝑦 < 0, then the 

function is said to be strictly monotonically increasing in that interval. 

i.e. if 
𝑑𝑦

𝑑𝑥
> 0 in some interval then 𝑦 is said to be a strictly increasing function in that interval. 

Similarly, if 
𝑑𝑦

𝑑𝑥
< 0 in some interval then 𝑦 is said to be a strictly decreasing function in that interval. 

if
𝑑𝑦

𝑑𝑥
≥ 0 in some interval then 𝑦 is said to be a increasing function in that interval. Similarly, if 

𝑑𝑦

𝑑𝑥
≤

0 in some interval then 𝑦 is said to be a decreasing function in that interval. 

 Prove that 𝑓(𝑥) = 𝑥 − sin 𝑥 is an increasing function. 

Let us see how the function looks like! 
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𝑓(𝑥) = 𝑥 − sin 𝑥 

𝑓′(𝑥) = 1 − cos 𝑥 

𝑓′′(𝑥) ≥ 0   ∀ 𝑥 ∈ 𝑹 

 Therefore 𝑓(𝑥) is monotonically increasing ∀ 𝑥 ∈ 𝑹 

Greatest and least value of a function 

We can discuss the greatest and least value of a function with specific conditions under the 
following three cases: 

CaseI.𝑦 = 𝑓(𝑥) is strictly increasing in[𝑎, 𝑏], then 𝑓(𝑎) is the least value and 𝑓(𝑏) is the greatest 
value of the function. 

Case II.𝑦 = 𝑓(𝑥)is strictly decreasing in [𝑎, 𝑏], then 𝑓(𝑏) is the least value and 𝑓(𝑎) is the greatest 
value of the function. 

Case III.𝑦 = 𝑓(𝑥)is non-monotonic in [𝑎, 𝑏] and is continuous, then the greatest and least value of  
 𝑓(𝑥) in [𝑎, 𝑏]  are those values where 𝑓′(𝑥) = 0  or it does not exist or at the extreme values. 

 Find the interval in which the function 𝑓(𝑥) = 2𝑥2 − ln |𝑥| is (i) decreasing (ii) increasing. 

𝑓(𝑥) = 2𝑥2 − ln|𝑥| 

𝑓′(𝑥) = 4𝑥 −
1

x
=

4𝑥2 − 1

𝑥
 

Domain of the function is(0, ∞). Therefore the denominator of 𝑓′(𝑥) is always positive and 
numerator has all the power to decide. 

For 𝑓(𝑥) to be decreasing 

𝑓′(𝑥) ≤ 0 

4𝑥2 − 1 ≤ 0 

𝑥2 ≤
1

4
 

|𝑥| ≤
1

2
 

−
1

2
≤ 𝑥 ≤

1

2
 

𝑥 ∈ (0,
1

2
] 

For 𝑓(𝑥) to be increasing 
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𝑓′(𝑥) ≥ 0 

4𝑥2 − 1 ≥ 0 

𝑥2 ≥
1

4
 

|𝑥| ≥
1

2
 

𝑥 ≥
1

2
 𝑜𝑟 𝑥 ≤ −

1

2
 

𝑥 ∈ [
1

2
, ∞) 

We can verify this by drawing the graph of the function and can observe the following: 

 

• From 
1

2
 onwards the function is increasing  

• In (0,
1

2
] the function is decreasing.  

• At 
1

2
 the function is having a minimum value. 

Summary 

In this unit we have learnt the basic definition of differentiability and its geometric and kinematic 
interpretations. We have learnt some results related to differentiability with continuity and 
monotonicity. The following are the main point: 

• To check the derivability, we need to check if the limit lim
ℎ→0

𝑓(𝑐+ℎ)−𝑓(𝑐)

ℎ
 exists or not. 

• If f is finitely derivable at c, then f is also continuous at c. 

• If a function is monotonically increasing at 𝑥 = 𝑎, its first derivative at 𝑥 = 𝑎 has to be 

positive and if a function is monotonically decreasing at 𝑥 = 𝑎, its first derivative at 𝑥 = 𝑎 

has to be negative. 

Key Words 

• Differentiability 

• Derivability 

• Differentiability and continuity  

• Differentiability and monotonicity 

 

Self Assessment 

1. Which of the following does not lead to the idea of differentiability? 

A. instantaneous rate of change 
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B. average rate of change 

C. slope of the function 

D. local rate of change 

 

2. A function 𝑓 is said to be derivable in [𝑎, 𝑏] if 

A. 𝑓 is finitely derivable at every point of [𝑎, 𝑏] 

B. 𝑓  is infinitely derivable at every point of [𝑎, 𝑏] 

C. 𝑓  is finitely derivable at some points of [𝑎, 𝑏] 

D. 𝑓  is infinitely derivable at some points of [𝑎, 𝑏 

 

3. The derivative of the function √𝑥 + 2 is 

A. 
1

𝑥+2
 

B. 
1

2(𝑥+2)
 

C. 
1

2√𝑥+2
 

D. 
1

2√𝑥
 

 

4. A function 𝑓 is said to be derivable at point 𝑐 if 

A. lim
ℎ→0−

𝑓(𝑐+ℎ)−𝑓(𝑐)

ℎ
  exists 

B. lim
ℎ→0+

𝑓(𝑐+ℎ)−𝑓(𝑐)

ℎ
  exists 

C. lim
ℎ→0

𝑓(𝑐+ℎ)+𝑓(𝑐)

ℎ
  exists 

D. lim
ℎ→0

𝑓(𝑐+ℎ)−𝑓(𝑐)

ℎ
  exists 

 

5. The derivative of 𝑐𝑜𝑠𝑒𝑐 𝑥 w.r.t. 𝑥 is 

A. 𝑐𝑜𝑠𝑒𝑐𝑥 cot 𝑥 

B. −𝑐𝑜𝑠𝑒𝑐𝑥 cot 𝑥 

C. −𝑐𝑜𝑠𝑒𝑐2𝑥 cot 𝑥 

D. −𝑐𝑜𝑠𝑒𝑐𝑥 cot2 𝑥 

 

6. The derivative of 𝑙𝑜𝑔𝑎𝑥 w.r.t. 𝑥 is 

A. 
1

𝑥
 

B. 
1

𝑥𝑙𝑜𝑔𝑎𝑥
 

C. 
1

𝑥𝑙𝑜𝑔𝑒𝑎
 

D. none of these 

 

7. The derivative of 𝑠𝑖𝑛−1𝑥 w.r.t. 𝑥 is 

A. 
1

1−𝑥2 

B. 
1

√1−𝑥2
 

C. 
1

1+𝑥2 

D. 
1

√1+𝑥2
 

 

8. The derivative of 𝑐𝑜𝑡−1𝑥 w.r.t. 𝑥 is 

A. 
1

1−𝑥2 

B. 
1

√1−𝑥2
 

C. 
1

1+𝑥2 
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D. none of these 

 

9. The derivative of 𝑡𝑎𝑛ℎ−1𝑥 w.r.t. 𝑥 is 

A. 
1

1−𝑥2
 

B. 
1

√1−𝑥2
 

C. 
1

1+𝑥2 

D. none of these 

 

10. The derivative of 𝑐𝑜𝑠ℎ 𝑥 w.r.t. 𝑥 is 

A. sinh 𝑥 

B. − sinh 𝑥 

C. − sinh2 𝑥 

D. sinh2 𝑥 

 

11. Which of the following function is continuous and not differentiable in its domain? 

A. 𝑥2 

B. √𝑥 

C. |𝑥|  

D. 
1

𝑥
 

 

12. The function 𝑥|𝑥| is 

A. derivable at origin 

B. continuous at origin 

C. both derivable and continuous at origin 

D. none of these 

 

13. If f is continuous at c, then f is also finitely derivable at c. 

A. True 

B. False 

 

14. A function is said to be monotonic function if 

A. it is increasing in its entire domain 

B. it is decreasing in its entire domain 

C. it is either increasing or decreasing in its entire domain 

D. none of these 

 

15. Which of the following suggests that the function is strictly decreasing? 

A. 𝑥1 < 𝑥2implies 𝑓(𝑥1) < 𝑓(𝑥2) 

B. 𝑥1 < 𝑥2implies 𝑓(𝑥1) > 𝑓(𝑥2) 

C. 𝑥1 < 𝑥2implies 𝑓(𝑥1) ≤ 𝑓(𝑥2) 

D. 𝑥1 < 𝑥2implies 𝑓(𝑥1) ≥ 𝑓(𝑥2) 

 

16. Which of the following suggests that the function is decreasing? 

A. 𝑥1 < 𝑥2implies 𝑓(𝑥1) < 𝑓(𝑥2) 

B. 𝑥1 < 𝑥2implies 𝑓(𝑥1) > 𝑓(𝑥2) 

C. 𝑥1 < 𝑥2implies 𝑓(𝑥1) ≤ 𝑓(𝑥2) 

D. 𝑥1 < 𝑥2implies 𝑓(𝑥1) ≥ 𝑓(𝑥2) 
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17. The functions which are increasing as well as decreasing in their domain are known as 

A. increasing functions 

B. decreasing functions 

C. monotonic functions 

D. non monotonic functions 

 

18. The function 2𝑥2 − 𝑙𝑜𝑔 𝑥 is decreasing in the interval 

A. [−
1

2
,

1

2
] 

B. [0,
1

2
] 

C. (0,
1

2
) 

D. (0,
1

2
] 

 

Answers for Self Assessment 

1. B 2. A 3. C 4. B 5. D 

6. C 7. B 8. D 9. A 10. A 

11. C 12. C 13. B 14. C 15. B 

16. D 17. D 18. D     

 

Review Questions 

1. Find the derivative of 𝑓(𝑥) = 2𝑎𝑥 + 𝑏 using first principle. 

2. Find the derivative of 𝑓(𝑥) =
1

𝑥2+3
 using first principle. 

3. Discuss the differentiability of the function (𝑥) = |𝑥 − 2| + |𝑥| + |𝑥 + 2| . 

4. Find the slope of the tangents to the parabola 𝑦 = 𝑥2 at points (2, 4) and (-1, 1). 

5. Find the interval in which the function 𝑓(𝑥) = 3𝑥2 − ln |𝑥| is (i) decreasing (ii) increasing. 

6. Find the interval in which the function 𝑓(𝑥) = log 𝑥 + 𝑥 is (i) decreasing (ii) increasing. 

7. Examine  𝑓(𝑥) = {
𝑥(𝑒− 

1
𝑥−𝑒

1
𝑥)

𝑒− 
1
𝑥+𝑒

1
𝑥

         𝑥 ≠ 0

1               𝑥 = 0

  for the continuity and differentiability at origin. 

8. Find the interval in which the function 𝑓(𝑥) = 𝑥 − cos 𝑥 is (i) decreasing (ii) increasing. 

9. Find the derivative of hyperbolic sine function using ab initio method. 

10. Design a function which is increasing on some part of the domain and decreasing on 

other. Then discuss the differentiability and continuity of that function. 
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Unit 7: Differentiability of a Real Valued Function 

CONTENTS 

Objectives 

Introduction 

7.1 Chain Rule of Differentiation 

7.2 Extreme Value Theorem 

7.3 Darboux's Theorem 

7.4 Rolle’s Theorem 

Summary 

Key Words 

Self Assessment 

Answer for Self Assessment 

Review Questions 

Further Reading 

Objectives 

Students will 

• learn about the derivative of the function of function 

• explore the property of a differentiable function called Darboux’s theorem 

• learn to apply the Rolle’s theorem 

 

Introduction 

If the function is made up of functions called composed functions or a composite function, then 
what to do in case, if we are interested in the derivative of a composed function! This question will 
be answered in this unit. The derivative of function of function is popularly known as the chain rule 
of differentiation. 

Let 𝑓 and 𝜙 be two derivable functions such that 𝑦 = 𝑓(𝑢)and 𝑢 = 𝜙(𝑥). Clearly you can see that 𝑦 
is a function of 𝑢  and 𝑢 is a function of 𝑥 and ultimately 𝑦 is a function of 𝑥. 

 

 

 

 

 

 

 

 

 

 

The range of 𝜙 must be a subset of the domain of 𝑓, then only we would be able to write 𝑦 =
𝑓(𝜙(𝑥)) which is also called the composite function. Moreover we know that 

(𝑓𝑜𝜙)(𝑥) = 𝑓(𝜙(𝑥)) 

𝑦 𝑢 

 

𝑥 
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7.1 Chain Rule of Differentiation 

The chain rule is a rule for differentiating compositions of functions. 

𝑑

𝑑𝑥
(𝑓(𝜙(𝑥)) =

𝑑

𝑑(𝜙(𝑥))
𝑓(𝜙(𝑥)).

𝑑

𝑑𝑥
𝜙(𝑥) 

Or it can be put simply as 

𝑑

𝑑𝑥
(𝑓(𝜙(𝑥)) = 𝑓′(𝜙(𝑥))𝜙′(𝑥) 

However, we rarely use this formal approach when applying the chain rule to specific problems. 
Instead, we take an intuitive approach. For example, it is sometimes easier to think of the functions 
𝑓 and 𝜙 as ``layers'' of a problem. Function 𝑓 is the ``outer layer'' and function 𝜙 is the ``inner 
layer.'' Thus, the chain rule tells us to first differentiate the outer layer, leaving the inner layer 

unchanged (the term 𝑓′(𝜙(𝑥)) , then differentiate the inner layer (the term 𝜙′(𝑥) ) .  

The chain rule provides us a technique for finding the derivative of composite functions, with the 
number of functions that make up the composition determining how many differentiation steps are 
necessary. For example, if a composite function 𝑓(𝑥) is defined as 

𝑓(𝑥) = (𝑔𝑜ℎ)(𝑥) = 𝑔(ℎ(𝑥)) 

Then 𝑓′(𝑥) = 𝑔′(ℎ(𝑥). ℎ′(𝑥) 

If the function is defined as 𝑓(𝑥) = (𝑔𝑜ℎ𝑜𝑘)(𝑥) = 𝑔(ℎ(𝑘(𝑥))) 

Then 𝑓′(𝑥) = 𝑔′(ℎ(𝑘(𝑥)). ℎ′(𝑘(𝑥)). 𝑘′(𝑥) 

Let us consider 𝑓 and 𝜙 be two derivable functions such that 𝑦 = 𝑓(𝑢)and  𝑢 = 𝜙(𝑥). Let 

Δ𝑥be the change in 𝑥 

Δ𝑢be the change in 𝑢 

Δ𝑦be the change in 𝑦. 

Then we can write 

Δ𝑦

Δ𝑥
=

Δ𝑦

Δ𝑢
.
Δ𝑢

Δ𝑥
 

lim
Δ𝑥→0

Δ𝑦

Δ𝑥
= lim

Δ𝑥→0
(

Δ𝑦

Δ𝑢
.
Δ𝑢

Δ𝑥
) 

lim
Δ𝑥→0

Δ𝑦

Δ𝑥
= lim

Δ𝑥→0

Δ𝑦

Δ𝑢
. lim

Δ𝑥→0

Δ𝑢

Δ𝑥
 

𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑢
.
𝑑𝑢

𝑑𝑥
 

Let us understand the rule better with the following examples: 

 Find the derivative of the function √1 + 𝑥2. 

You can see that the function is a composition of the polynomial function and the square root 
function. So we can write this as 

𝑢 = 1 + 𝑥2, 𝑦 = √𝑢; then𝑦 = √1 + 𝑥2 

Now 
𝑑𝑢

𝑑𝑥
= 2𝑥 

𝑑𝑦

𝑑𝑢
=

1

2
𝑢−

1

2 =
1

2
(1 + 𝑥2)−

1

2 

Therefore, 
𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑢
.

𝑑𝑢

𝑑𝑥
=

𝑥

√1+𝑥2
. 

We can look at the same problem by layers’ point of view. The square root is the outer layer , it has 
to be dealt with first and then the polynomial as the inner layer will be considered. We can write it 
as 
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𝑑

𝑑𝑥
(√1 + 𝑥2) =

𝑑√1 + 𝑥2

𝑑(1 + 𝑥2)
.
𝑑(1 + 𝑥2)

𝑑𝑥
 

=
1

2
(1 + 𝑥2)−

1

2. 2𝑥 

=
𝑥

√1 + 𝑥2
 

 Find the derivative of the function √
1+𝑥

1−𝑥
. 

Let 
1+𝑥

1−𝑥
= 𝑢, then 𝑦 = √𝑢 = 𝑢

1

2 

𝑑𝑦

𝑑𝑢
=

1

2
𝑢−

1

2 =
1

2
. (

1 + 𝑥

1 − 𝑥
)

−
1

2

 

𝑑𝑢

𝑑𝑥
=

2

(1 − 𝑥)2 

𝑑𝑦

𝑑𝑥
=

1

2
(

1 + 𝑥

1 − 𝑥
)

−
1

2

.
2

(1 − 𝑥)2 =
(1 + 𝑥)−

1

2

(1 − 𝑥)
3

2

 

 Find the derivative of the function log(cosh 𝑥). 

𝑑𝑦

𝑑𝑥
=

𝑑 log(cosh 𝑥)

𝑑(𝑐𝑜𝑠ℎ𝑥)
.
𝑑(𝑐𝑜𝑠ℎ𝑥)

𝑑𝑥
 

=
1

𝑐𝑜𝑠ℎ𝑥
. 𝑠𝑖𝑛ℎ𝑥 = tanh 𝑥 

 Find the derivative of the function sinh−1 𝑥. 

Let 𝑦 = sinh−1 𝑥 

⇒  𝑥 = sinh 𝑦 

𝑑𝑥

𝑑𝑦
= cosh 𝑦 

⇒
𝑑𝑦

𝑑𝑥
=

1

cosh 𝑦
 

= ±
1

√(1 + sinh2 𝑦)  
 

= ±
1

√1 + 𝑥2
 

The sign of the radical must be same as that of cosh 𝑦. 

Therefore, 
𝑑𝑦

𝑑𝑥
=

1

√1+𝑥2
 

 Find the derivative of the function 𝑒𝑠𝑖𝑛ℎ−1𝑥 .  

Let 𝑦 = sinh−1 𝑥 

𝑑𝑦

𝑑𝑥
=

𝑑(𝑒𝑠𝑖𝑛ℎ−1𝑥)

𝑑(sinh−1 𝑥)  
.
𝑑(sinh−1 𝑥)

𝑑𝑥
 

= 𝑒sinh−1 𝑥  .
1

√1 + 𝑥2
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7.2 Extreme Value Theorem 

An major application of critical points or saddle points is in determining possible maximum and 
minimum values of a function on certain intervals. The Extreme Value Theorem guarantees both a 
maximum and minimum value for a function under certain conditions. It states the following:  

If a function f(x) is continuous on a closed interval [a, b], then f(x) has both a maximum and 
minimum value on [a, b]. 

The steps for applying the extreme value theorem are as follows:  

1. Establish that the function is continuous on the closed interval. 
2. Determine all critical points in the given interval. 
3. Evaluate the function at these critical points and at the endpoints of the interval.  
4. Look for the largest and the smallest values of the function. 

The largest function value from the previous step is the maximum value, and the smallest function 
value is the minimum value of the function on the given interval. 

 Find the maximum and minimum values of 𝑓(𝑥) = sin 𝑥 + cos 𝑥 on [0, 2𝜋]. 

The function is continuous on [0, 2𝜋]. 

𝑓′(𝑥) = cos 𝑥 − sin 𝑥 

The critical points are (
𝜋

4
, √2)and (

5𝜋

4
, −√2). The function values at the end pointsof the given 

interval are 𝑓(0) = 1and 𝑓(2𝜋) = 1.  

Thus, we can see that the maximum value of the function is √2 

and the minimum value is −√2. 

 Find the maximum and minimum values of 𝑓(𝑥) = 𝑥4 −

3𝑥3 − 1 on [−2, 2]. 

The function is a polynomial, therefore is continuous on [−2, 2]. 

Its derivative is given as 𝑓′(𝑥) = 4𝑥3 − 9𝑥2 

For critical points, put 𝑓′(𝑥) = 0 

or4𝑥3 − 9𝑥2 = 0 

⇒ 𝑥 = 0,
9

4
. 

Clearly 𝑥 =
9

4
 does not belong to the interval [−2, 2]. The only 

critical point occurs at 𝑥 = 0. which is (0, −1).  

The function values at the endpoints of the interval are f(2)=−9 and f(−2)=39; therefore, the 
maximum function value is 39 at x = −2, and the minimum function value is −9 at x = 2.  

Note the importance of the closed interval in determining the values to consider for critical points. 

 

7.3 Darboux's Theorem 

If f is differentiable on the closed interval [a, b] and r is any number between f ’(a) and f’ (b),  then 
there exists a number c in the open interval (a, b) such that f ‘ (c) = r.  

Proof 

Consider the function 

ℎ(𝑥) = 𝑓(𝑥) − (𝑓(𝑏) + 𝑟(𝑥 − 𝑏)) 

Because 𝑓(𝑥) is differentiable, it is definitely continuous. 

𝑓(𝑏) + 𝑟(𝑥 − 𝑏) is also continuous and differentiable. 

∴ ℎ(𝑥)is continuous and differentiable on [𝑎, 𝑏]. 
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By the extreme value theorem, there exists 𝑐 ∈ (𝑎, 𝑏) where ℎ(𝑥) has an extreme value . At this point  
ℎ′(𝑐) = 0 

We have ℎ′(𝑥) = 𝑓′(𝑥) − 𝑟 

So 𝑓′(𝑐) − 𝑟 = 0  

⇒ 𝑓′(𝑐) = 𝑟 

Thus if f is differentiable on the closed interval [a, b] and r is any number between f ’(a) and f ’ (b),  
then there exists a number c in the open interval (a, b) such that f ‘ (c) = r. 

 Jean Gaston Darboux was a French mathematician who lived from 1842 to 1917. Of his 
several important theorems the one we just studied says that the derivative of a function has the 
Intermediate Value Theorem property – that is, the derivative takes on all the values between the 
values of the derivative at the endpoints of the interval under consideration. 

Another interesting aspect of Darboux’s Theorem is that there is no requirement that the derivative 
f ‘(x) be continuous! 

The common example of such a function is𝑓(𝑥) = 𝑥2 sin
1

𝑥
when  𝑥 ≠ 0 and 𝑓(𝑥) = 0  when 𝑥 = 0 

With𝑓′(𝑥) = 2𝑥 sin
1

𝑥
− cos

1

𝑥
, 𝑥 ≠ 0 

This function is differentiable and hence continuous. There is an oscillating discontinuity at the 
origin. The derivative is not continuous at the origin.  Yet, every interval containing the origin as an 
interior point meets the conditions of Darboux’s Theorem, so the derivative while not being 
continuous has the intermediate value property. 

 

7.4 Rolle’s Theorem 

If f(x) is continuous an [a,b] and differentiable on (a,b) 
and if f(a) = f(b) then there is some c in the interval (a,b) 
such that f '(c) = 0. 

Proof 
 

In the statement of Rolle's theorem, f(x) is a continuous function on the closed interval [a,b]. Hence 
by the Intermediate Value Theorem it achieves a maximum and a minimum on [a,b]. Either one of 
these occurs at a point c with a < c < b,  

Since f(x) is differentiable on (a,b) and c is an extremum we then conclude that f '(c) = 0.  

or both the maximum and minimum occur at endpoints. 

Since f(a) = f(b), this means that the function is never larger or smaller than f(a). In other words, the 
function f(x) is constant on the interval [a,b] and its derivative is therefore 0 at every point in (a,b). 

Hence proved 

Geometric interpretation 

There is a point c on the interval (a,b)where the tangent to the graph of the function is parallel to 

the x-axis. 

This property was known in the 12th century in ancient India. The outstanding Indian 
astronomer and mathematician Bhaskara II mentioned it in his writings. 

For instance, consider𝑓(𝑥) = |𝑥| (where |𝑥|is the absolute value of 𝑥 on the closed interval [-1,1]. 
This function does not have derivative at= 0. Though f(x) is continuous on the closed interval [-1,1] 
there is no point inside the interval (−1,1)at which the derivative is equal to zero. The Rolle’s 
Theorem fails here because𝑓(𝑥) is not differentiable over the whole interval(−1,1). 
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Physical interpretation 

Rolle’s Theorem has a clear physical meaning. Suppose that a body moves along a straight line, and 
after a certain period of time returns to the starting point. Then, in this period of time there is a 
moment, in which the instantaneous velocity of the body is equal to zero. 

 Verify the Rolle’s Theorem for 𝑓(𝑥) = 𝑥2 in [−1,1] 

The function is a polynomial, therefore it is continuous in [−1,1]. 

The function is differentiable in (−1,1). (You can verify it by ab initio definition or but just checking 
that its derivative by the usual rules of differential calculus, exists in (−1,1). 

And thirdly 𝑓(1) = 𝑓(−1) 

All conditions are getting fulfilled therefore in the interval(−1,1), there must exist at least a point 
such that the derivative of the function at that point is zero. 

i.e.𝑓′(𝑐) = 0 

⇒  2𝑐 = 0 

⇒  𝑐 = 0 

And 0 ∈ (−1,1) 

Thus the Rolle’s Theorem gets verified. 

 Verify Rolle’s theorem for 𝑓(𝑥) = 𝑥(𝑥 + 3)𝑒−
𝑥

2in [−3,0]. 

The function is a product of continuous functions, therefore it is continuous in [−3,0]. 

The function is differentiable in (−3,0). (solve for the derivative of the function and check if it exists 
in (−3,0), It will be!) 

𝑓(−3) = 𝑓(0) 

Therefore there will exist a point 𝑐 , such that𝑓′(𝑐) = 0. 

Or 𝑐2 − 𝑐 − 6 = 0 

Or 𝑐 = −2, 3 

Thus we got at least a point −2 ∈ (−3,0). 

Thus Rolle’s theorem gets verified for the given function in the given interval. 

Summary 

This unit is an extension of the differentiability to a function of a function. We have understood and 
learnt the formulae of the derivatives of elementary functions already.  

• In order to differentiate a composite function, of course those formulae will not be 
applicable directly. We need to use the chain rule.  

• 
𝑑

𝑑𝑥
(𝑓(𝜙(𝑥)) = 𝑓′(𝜙(𝑥))𝜙′(𝑥) 

• A significant result for a differentiable function on a closed interval, given as, 
If f is differentiable on the closed interval [a, b] and r is any number between f ’(a) and 
f ’ (b),  then there exists a number c in the open interval (a, b) such that f ‘ (c) = r.  

• Rolle’s theorem states that ‘If f(x) is continuous an [a,b] and differentiable on (a,b) and if 
f(a) = f(b) then there is some c in the interval (a,b) such that f '(c) = 0.’ 

Key Words 

chain rule, derivative of a function of function, extreme value theorem, Darboux’s theorem, Rolle’s 
theorem 

Self Assessment 

1. The derivative of the function √2 + 𝑥2 is 

A. 
𝑥

2√2+𝑥2
 

B. 
𝑥

√2+2𝑥2
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C. 
2𝑥

√2+𝑥2
 

D. 
𝑥

√2+𝑥2
 

 

2. 
𝑑

𝑑𝑥
(𝑠𝑖𝑛(𝑐𝑜𝑠𝑥)) = 

A. sin 𝑥 cos (cos 𝑥) 
B. cos (sin 𝑥) 
C. −sin 𝑥 cos (cos 𝑥) 
D. sin 𝑥 cos (sin 𝑥) 

 
3. If f is differentiable on the closed interval [a, b] and r is any number between f ’ (a) and  

f ’(b),  then there exists a number c in the open  interval (a, b) such that f ’(c) = r. This 
statement is of 

A. intermediate value theorem 
B. mean value theorem 
C. Rolle’s theorem 
D. Darboux’s theorem 

 

4. 
𝑒𝑠𝑖𝑛ℎ−1𝑥

√1+𝑥2
 is the derivative of the function 

A. x
𝑒𝑠𝑖𝑛ℎ−1𝑥

√1+𝑥2
 

B. 
𝑒𝑠𝑖𝑛ℎ−1𝑥

√1+𝑥2
 

C. 𝑒𝑠𝑖𝑛ℎ−1𝑥   ans 

D. 𝑒𝑐𝑜𝑠ℎ−1𝑥 
 

5. The derivative of 𝑙𝑜𝑔(𝑐𝑜𝑠ℎ 𝑥) w.r.t. 𝑥 is 
A. log (sin 𝑥)  
B. log (sinh 𝑥)  
C. 𝑐𝑜𝑠𝑒𝑐ℎ 𝑥 
D. tanh 𝑥 

 

6. 
𝑑

𝑑𝑥
𝑒𝑠𝑖𝑛𝑥 = 

A. 𝑒𝑠𝑖𝑛𝑥 cos 𝑥 
B. cos (sin 𝑥) 
C. − 𝑒𝑠𝑖𝑛𝑥 cos 𝑥 
D. sin 𝑥 cos (sin 𝑥) 

 

7. If a function 𝑓 is 
I. continuous on [𝑎, 𝑏] 
II. derivable on (𝑎, 𝑏) 
III. 𝑓(𝑎) = 𝑓(𝑏) 
IV. then there exists one value 𝑐 ∈ (𝑎, 𝑏) such that 𝑓′(𝑐) = 0 

Which of the following are correct for 𝑓  to satisfy the Rolle’s Theorem? 

A. I, II and III 
B. I, II and IV 
C. II, III and IV 
D. III and IV 

 
8. The function 𝑓(𝑥) = 𝑥2 in [−1, 2] satisfies the Rolles’s theorem. 
A. True 
B. False 

 

9. The function 𝑓(𝑥) = 𝑥(𝑥 + 3)𝑒−
𝑥

2 in [−1, 1] satisfies the Rolle’s Theorem. 
A. True 
B. False 

 

10. For all the second degree polynomials 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑘, it is seen that the Rolles’ point is 
at 𝑐 = 0. Also the value of 𝑘 is zero. Then what is the value of 𝑏? 
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A. 0 
B. 1 
C. -1 
D. 56 

 

11. If 𝑓 is continuous function on the closed interval [𝑎, 𝑏], and 𝑁 is a number between 𝑓(𝑎) 

and 𝑓(𝑏), then there is 𝑐 ∈ [𝑎, 𝑏]such that 𝑓(𝑐) = 𝑁 is: 

A. The Intermediate Value Theorem 
B. The Mean Value Theorem 
C. Rolle's Theorem 
D. The Extreme Value Theorem 

 
12. According to Rolle's theorem, for a differentiable function f(x), if the start point f(a) and 

the end point f(b) equal 0 then: 
A. Rolle's Theorem does not apply. 
B. Somewhere between f(a) and f(b) the instantaneous rate of change must be 0. 
C. Somewhere between f(a) and f(b) the function must equal 0. 
D. The function is flat. 

Answer for Self Assessment 

1. D 2. C 3. D 4. C 5. D 

6. A 7. A 8. B 9. B 10. A 

11. A 12. B       

Review Questions 

1. Find the derivative of the function 𝑓(𝑥) = sin(√𝑥2 − 5) 

2. Find the derivative of the function 𝑓(𝑥) =
√1−𝑥

1+𝑥
 

3. Find the derivative of the function 𝑓(𝑥) = sin ℎ(√𝑥2 + 5) 

4. Find the derivative of the function 𝑓(𝑥) = log (cosh 𝑒𝑥) 

5. Find the derivative of the function 𝑓(𝑥) = 2(cosh 𝑒𝑥) 
6. Find the derivative of the function 𝑓(𝑥) = tan−1 𝑥 
7. Design a function which satisfies the Darboux’s theorem in certain interval. 
8. State and prove the Rolle’s theorem. 
9. Learn more about Michel Rolle! 
10. Compare the Rolles’ theorem with the Darboux’s theorem. 
11. Discuss the applicability of Rolle’s theorem to the function 

𝑓(𝑥) = {
𝑥2 + 1,   0 ≤ 𝑥 ≤ 1
3 − 𝑥,   1 < 𝑥 ≤ 2

 

Further Reading 

 
George B. Thomas Jr., Joel Hass, Christopher Heil & Maurice D. Weir (2018). Thomas’ 
Calculus (14th edition). Pearson Education. 

Howard Anton, I. Bivens& Stephan Davis (2016).Calculus (10th edition).Wiley India. 

 
https://www.math.ucdavis.edu/~kouba/CalcOneDIRECTORY/chainruledirectory/Chain
Rule.html 

https://www.cliffsnotes.com/study-guides/calculus/calculus/the-derivative/chain-rule 

https://www.cliffsnotes.com/study-guides/calculus/calculus/applications-of-the-
derivative/extreme-value-theorem 

https://www.math24.net/rolles-theorem 
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8.5 Alternate form of Lagrange’s Mean Value Theorem 
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Objectives 

Students will 

• learn about the properties of a differentiable function 

• understand the basics of Lagrange’s mean value theorem 

• be able to use Cauchy’s mean value theorem 

• be able to interpret the mean value theorems geometrically 

Introduction 

If a function is appropriately differentiable and continuous then it can lead to much more 
information about the nature and behavior of the function. In this chapter we will learn the more 
general form of the Rolle’s Theorem and then the general form of the Lagrange mean value 
theorem with their physical interpretations. 

 

8.1 Lagrange’s Mean Value Theorem 

This theorem is also called the First Mean Value Theorem and allows to express the increment of a 
function on an interval through the value of the derivative at an intermediate point of the segment. 
Lagrange’s mean value theorem (MVT) states that if a function𝑓(𝑥) is continuous on a closed 

interval[𝑎, 𝑏]and differentiable on the open interval(𝑎, 𝑏), then there is at least one point𝑥 = 𝑐 on 

this interval, such that
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
= 𝑓′(𝑐). 

Proof 

Define a new function 

𝜙(𝑥) = 𝑓(𝑥) + 𝐴𝑥, 𝑥 ∈ [𝑎, 𝑏] 

We choose a number 𝐴 such that the condition 𝜙(𝑎) = 𝜙(𝑏) is satisfied. Then 

𝑓(𝑎) + 𝐴𝑎 = 𝑓(𝑏) + 𝐴𝑏 

𝐴 = −
𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
 

As a result, we have 
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𝜙(𝑥) = 𝑓(𝑥) + (−
𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
) 𝑥 

The function 𝜙(𝑥) is continuous on the closed interval[𝑎, 𝑏], differentiable on the open interval 
(𝑎, 𝑏) and takes equal values at the endpoints of the interval. Therefore, it satisfies all the conditions 
of the Rolle’s Theorem. Then there is at least a point 𝑐 in the interval (𝑎, 𝑏) such that 

𝜙′(𝑐) = 0 

It follows that 

𝑓′(𝑐) + 𝐴 = 0 

or 

𝑓′(𝑐) = −𝐴 

or 

𝑓′(𝑐) =
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
 

 

Joseph Louis Lagrange, the greatest mathematician of 
the eighteenth century, was born at Turin on January 25, 
1736, and died at Paris on April 10, 1813. His father, who 
had charge of the Sardinian military chest, was of good 
social position and wealthy, but before his son grew up he 
had lost most of his property in speculations, and young 
Lagrange had to rely for his position on his own abilities. 
He was educated at the college of Turin, but it was not 
until he was seventeen that he showed any taste for 
mathematics - his interest in the subject being first excited 
by a memoir by Halley across which he came by accident. 
Alone and unaided he threw himself into mathematical 
studies; at the end of a year's incessant toil he was already an accomplished mathematician, and 
was made a lecturer in the artillery school. 

 

8.2 Alternate form of Lagrange’s Mean Value Theorem 

If a function 𝑓(𝑥) is continuous on a closed interval [𝑎, 𝑎 + ℎ]and differentiable on the open interval 

(𝑎, 𝑎 + ℎ), then there is at least one  𝜃 ∈ (0,1) such that  
𝑓(𝑎+ℎ)−𝑓(𝑎)

ℎ
= 𝑓′(𝑎 + 𝜃ℎ). 

Let 𝑏 − 𝑎 = ℎ = length of the interval [𝑎, 𝑏] 

Therefore [𝑎, 𝑏] can be written as [𝑎, 𝑎 + ℎ] 

Also 𝑎 < 𝑐 < 𝑎 + ℎ 

Therefore 𝑐 can be written as 𝑎 + 𝜃ℎ where  𝜃 ∈ (0,1). 

So, the expression  

𝑓′(𝑐) = −
𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
 

becomes 

𝑓(𝑎 + ℎ) − 𝑓(𝑎) = ℎ 𝑓′(𝑎 + 𝜃ℎ) 

 

or 

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + ℎ 𝑓′(𝑎 + 𝜃ℎ),      𝜃 ∈ (0,1) 
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8.3 Geometric and Physical Interpretation of Lagrange’s Mean Value 
Theorem 

Geometric interpretation 

Lagrange’s mean value theorem has a simple geometrical meaning. The chord passing through the 
points of the graph corresponding to the ends of the segment 𝑎 and 𝑏 has the slope equal to 

𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
 

Then there is a point 𝑥 = 𝑐inside the interval[𝑎, 𝑏]  where the tangent to the graph is parallel to the 
chord. 

Physical interpretation 

The mean value theorem has also a clear physical interpretation. If we assume that𝑓(𝑡) represents 

the position of a body moving along a line, depending on the time𝑡, then the ratio  
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
is the average velocity of the body in the period of time𝑏 − 𝑎. Since𝑓′(𝑡)is the instantaneous 

velocity, this theorem means that there exists a moment of time 𝑐 at which the instantaneous 
velocity is equal to the average velocity. 

Lagrange’s mean value theorem has many applications in mathematical analysis, computational 
mathematics and other fields. Let us further note two remarkable corollaries. 

Corollary I 

In a particular case when the values of the function𝑓(𝑥) at the endpoints of the segment[𝑎, 𝑏]are 
equal, i.e.𝑓(𝑎) = 𝑓(𝑏)the mean value theorem implies that there is a point𝑐 ∈ (𝑎, 𝑏) such that 

𝑓′(𝑐) =  
𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
= 0 

and that is the Rolle’s theorem, which can hence be considered as a special case of Lagrange’s mean 
value theorem. 

Corollary II 

If the derivative 𝑓′(𝑥) is zero at all points of the interval[𝑎, 𝑏] then the function𝑓(𝑥) is constant on 
this interval.  

For any two points𝑥1 and 𝑥2 in the interval[𝑎, 𝑏], there exists a point 𝑐 ∈ (𝑎, 𝑏)such that 

𝑓(𝑥2) − 𝑓(𝑥1) = 𝑓′(𝑐)(𝑥2 − 𝑥1) = 0 

And this results in 

𝑓(𝑥1) = 𝑓(𝑥2) 

 If 𝑓(𝑥) = (𝑥 − 1)(𝑥 − 2)(𝑥 − 3), 𝑥 ∈ [0,4], find 𝑐 such that the average rate of change of 𝑓(𝑥) 
is equal to the derivative of f(x) at 𝑐.  

Here, 

𝑓(0) = −6 

𝑓(4) = 6 

So,   
𝑓(4)−𝑓(0)

4−0
= 3 

Also 𝑓′(𝑥) = 3𝑥2 − 12 𝑥 + 11 

According to the statement, 

𝑓(4) − 𝑓(0)

4 − 0
= 𝑓′(𝑐) 

3𝑐2 − 12𝑐 + 11 − 3 = 0 

⇒  𝑐 =
6 ± 2√3

8
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 Verify the mean value theorem for 𝑓(𝑥) = 𝑥3in [𝑎, 𝑏] 

The function is a polynomial, therefore continuous in [𝑎, 𝑏] 

𝑓′(𝑥) = 3𝑥2exists in (a,b), therefore the function is differentiable in (a,b). 

Since the function is satisfying the requirements of Lagrange’s mean value theorem, there must 
exist a 𝑐 ∈ (𝑎, 𝑏) such that  

𝑓′(𝑐) =  
𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
 

3𝑐2 =
𝑏3 − 𝑎3

𝑏 − 𝑎
 

𝑏2 + 𝑎𝑏 + 𝑎2 = 3𝑐2 

𝑐2 =  
𝑏2 + 𝑎𝑏 + 𝑎2

3
 

𝑐 = ±√
𝑏2 + 𝑎𝑏 + 𝑎2

3
 

 Prove that for any quadratic function 𝑝𝑥2 + 𝑞𝑥 + 𝑟, the value of 𝜃 in Lagrange’s theorem is 

always 
1

2
, for any 𝑝, 𝑞, 𝑟, 𝑎, ℎ. 

Let 𝑓(𝑥) =  𝑝𝑥2 + 𝑞𝑥 + 𝑟, 𝑥 ∈ [𝑎, 𝑎 + ℎ]  

Clearly, the given function is continuous in [𝑎, 𝑎 + ℎ] 

and derivable in (𝑎, 𝑎 + ℎ) 

Therefore, there exists a 𝜃 in (0,1) such that 

𝑓(𝑎 + ℎ) − 𝑓(𝑎) = ℎ𝑓′(𝑎 + 𝜃ℎ) 

Substituting and simplifying, 

𝑝ℎ2 = 2𝑝𝜃ℎ2 

⇒  𝜃 =
1

2
∈ (0,1) 

Hence proved 

 

8.4 Cauchy’s Mean Value Theorem 

If two functions 𝑓(𝑥) and 𝐹(𝑥) are continuous on an interval [𝑎, 𝑏], differentiable on (𝑎, 𝑏) and F’(x) 
is non zero for all 𝑥 ∈ (𝑎, 𝑏), then there exists a point 𝑐 ∈ (𝑎, 𝑏) such that 

𝑓(𝑏) − 𝑓(𝑎)

𝐹(𝑏) − 𝐹(𝑎)
=

𝑓′(𝑐)

𝐹′(𝑐)
 

This theorem is also known as generalized Lagrange’s mean value theorem as it can be seen as a 
special case for 𝐹(𝑥) = 𝑥. 

Proof 

Here 𝐹(𝑏) − 𝐹(𝑎) ≠ 0 

Define a new function 

𝜙(𝑥) = 𝑓(𝑥) + 𝐴 𝐹(𝑥), 𝑥 ∈ [𝑎, 𝑏] 

We choose a number 𝐴 such that the condition 𝜙(𝑎) = 𝜙(𝑏) is satisfied. Then 

𝑓(𝑎) + 𝐴𝐹(𝑎) = 𝑓(𝑏) + 𝐴𝐹(𝑏) 

𝐴 = −
𝑓(𝑏) − 𝑓(𝑎)

𝐹(𝑏) − 𝐹(𝑎)
 

As a result, we have 
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𝜙(𝑥) = 𝑓(𝑥) + (−
𝑓(𝑏) − 𝑓(𝑎)

𝐹(𝑏) − 𝐹(𝑎)
) 𝐹(𝑥) 

The function 𝜙(𝑥) is continuous on the closed interval[𝑎, 𝑏], differentiable on the open interval 
(𝑎, 𝑏) and takes equal values at the endpoints of the interval. Therefore, it satisfies all the conditions 
of the Rolle’s Theorem. Then there is at least a point 𝑐 in the interval (𝑎, 𝑏) such that 

𝜙′(𝑐) = 0 

It follows that 

𝑓′(𝑐) + 𝐴𝐹′(𝑐) = 0 

or 

𝑓′(𝑐) = −𝐴𝐹′(𝑐) 

or 

𝑓′(𝑐)

𝐹′(𝑐)
=

𝑓(𝑏) − 𝑓(𝑎)

𝐹(𝑏) − 𝐹(𝑎)
, 𝐹′(𝑐) ≠ 0 

Hence the result. 

 

Augustin-Louis Cauchy was one of the greatest mathematicians 
during the nineteenth century. In fact, there are sixteen concepts and 
theorems named after him, more than any other mathematician. His life 
began in Paris, France on August 21, 1789, and ended at Sceaux, France on 
May 22, 1857. His father, Luois-Francois, and his mother, Marie-
Madeleine Desestre, provided him and his siblings a comfortable life. 

Cauchy was exposed to famous scientists as a child. The Cauchy family 
once had Laplace and Berthollet as neighbors, and his father even knew 
Lagrange. In fact, Lagrange had foreseen Augustin's scientific greatness 
when he was a child by warning his father to not show him any 
mathematical text before he was seventeen years old. 

 

8.5 Alternate form of Lagrange’s Mean Value Theorem 

We will see the following result without proof. 

If two functions 𝑓(𝑥) and 𝐹(𝑥)are continuous on a closed interval [𝑎, 𝑎 + ℎ]and differentiable on the 

open interval (𝑎, 𝑎 + ℎ), then there is at least one  𝜃 ∈ (0,1) such that  
𝑓(𝑎+ℎ)−𝑓(𝑎)

𝐹(𝑎+ℎ)−𝐹(𝑎)
=

𝑓′(𝑎+𝜃ℎ)

𝐹′(𝑎+𝜃ℎ)
. 

 If in the Cauchy’s mean value theorem 𝑓(𝑥) = 𝑒𝑥 and  𝐹(𝑥) = 𝑒−𝑥 , show that 𝑐 is the 
arithmetic mean between 𝑎 and 𝑏. 

Here 𝑓′(𝑥) = 𝑒𝑥 

𝐹′(𝑥) =  −𝑒−𝑥 

By Cauchy’s mean value theorem, 

𝑓′(𝑐)

𝐹′(𝑐)
=

𝑓(𝑏) − 𝑓(𝑎)

𝐹(𝑏) − 𝐹(𝑎)
 

 

𝑒𝑐

−𝑒−𝑐 =
𝑒𝑏 − 𝑒𝑎

𝑒−𝑏 − 𝑒−𝑎
 

−𝑒2𝑐 = −𝑒𝑎+𝑏 

This implies 

𝑐 =
𝑎 + 𝑏

2
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 Show that 
𝑠𝑖𝑛𝛼−𝑠𝑖𝑛𝛽

𝑐𝑜𝑠𝛽−𝑐𝑜𝑠𝛼
= cot 𝜃,      0 < 𝛼 < 𝜃 < 𝛽 <

𝜋

2
 

Looking at the result to be proved, you can see that the left hand side is a ratio of difference of two 
functions and Cauchy’s theorem can be used to derive this, provided these two functions satisfy the 
requirements of Cauchy’s mean value theorem. 

Let 𝑓(𝑥) = sin 𝑥 

𝐹(𝑥) = cos 𝑥 𝑥 ∈ [𝛼, 𝛽] 

𝑓′(𝑥) = cos 𝑥 

𝐹′(𝑥) = −sin 𝑥 

By Cauchy’s mean value theorem we can write, 

𝑓(𝛽) − 𝑓(𝛼)

𝐹(𝛽) − 𝐹(𝛼)
=

𝑓′(𝜃)

𝐹′(𝜃)
 

𝑠𝑖𝑛𝛽 − 𝑠𝑖𝑛𝛼

cos 𝛽 − cos 𝛼
=

cos 𝜃

−𝑠𝑖𝑛𝜃
 

𝑠𝑖𝑛𝛽 − 𝑠𝑖𝑛𝛼

cos 𝛽 − cos 𝛼
= − cot 𝜃 

or 

𝑠𝑖𝑛𝛼 − 𝑠𝑖𝑛𝛽

cos 𝛽 − cos 𝛼
= cot 𝜃 

Hence the result 

 Check the validity of Cauchy’s mean value theorem for the functions 𝑓(𝑥) = 𝑥4 and 𝑔(𝑥) =

𝑥2on the interval[1,2]. 

Here 

𝑓(𝑥) = 𝑥4 

𝑓′(𝑥) = 4𝑥3 

𝑔(𝑥) = 𝑥2 

𝑔′(𝑥) = 2𝑥 

Both functions are satisfying all the criteria of continuity and differentiability, therefore we can 
write 

𝑓′(𝑐)

𝑔′(𝑐)
=

𝑓(𝑏) − 𝑓(𝑎)

𝑔(𝑏) − 𝑔(𝑎)
 

4𝑐3

2𝑐
=

𝑏4 − 𝑎4

𝑏2 − 𝑎2 

2𝑐2 = 𝑎2 + 𝑏2 

Here 𝑎 = 1, 𝑏 = 2 

Therefore, 𝑐 = ±√2.5 and √2.5 ∈ (1,2) 

Therefore having found at least a value in (1,2) such that  
𝑓′(𝑐)

𝑔′(𝑐)
=

𝑓(𝑏)−𝑓(𝑎)

𝑔(𝑏)−𝑔(𝑎)
 , we can say that the Cauchy’ theorem is valid for the given functions. 

 

Summary 

This unit is an extension of the Rolle’s Theorem. Its generalized form can be seen as Lagrange’s 
mean value theorem, which further can be generalized as the Cauchy’s mean value theorem. 

• Lagrange’s mean value theorem (MVT) states that if a function 𝑓(𝑥) is continuous on a 

closed interval [𝑎, 𝑏]and differentiable on the open interval (𝑎, 𝑏), then there is at least one 

point 𝑥 = 𝑐 on this interval, such that  
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
= 𝑓′(𝑐). 
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• If two functions 𝑓(𝑥) and 𝐹(𝑥) are continuous on an interval [𝑎, 𝑏], differentiable on (𝑎, 𝑏) 
and F’(x) is non zero for all 𝑥 ∈ (𝑎, 𝑏), then there exists a point 𝑐 ∈ (𝑎, 𝑏) such that 

𝑓(𝑏) − 𝑓(𝑎)

𝐹(𝑏) − 𝐹(𝑎)
=

𝑓′(𝑐)

𝐹′(𝑐)
 

Key Words 

Lagrange’s mean value theorem, Cauchy’s mean value theorem 

 

Self Assessment 

1. The Lagrange’s mean value theorem is valid for the function 𝑓(𝑥) =
𝑥−1

𝑥−3
 on the interval[4, 5]. 

A. True 

B. False 

 

2. All points c satisfying the conditions of the MVT for the function 𝑓(𝑥) = 𝑥3 − 𝑥in the interval 

[−2, 1] are 

A. -1 

B. 1, -1 

C. 0 

D. 1 

3. For any quadratic function𝑝𝑥2 + 𝑞𝑥 + 𝑟, the value of 𝜃 in Lagrange’s theorem, for any 
𝑝, 𝑞, 𝑟, 𝑎, ℎ is  

A. less than ½ 

B. greater than ½ 

C. always ½  

D. can take any value 

 

4. For any quadratic function3𝑥2 + 2𝑥 + 1, the value of 𝜃 in Lagrange’s theorem is 

A. 0 

B. 1 

C. 0.5  

D. 1.5 

 

5. Cauchy’s Mean Value Theorem can be reduced to Lagrange’s Mean Value theorem. 

A. True 

B. False 

 

6. Which of the following is not a necessary condition for Cauchy’s Mean Value Theorem? 

A. The functions, f(x) and g(x) be continuous in [a, b]  

B. The derivative of g'(x) be equal to 0 

C. The functions f(x) and g(x) be derivable in (a, b) 

D. There exists a value c ∈ (a, b) such that, (f(b)−f(a)) / (g(b)−g(a)) =f ’ (c) / g ′ (c) 

 

7. Cauchy’s Mean Value Theorem is also known as ‘Extended Mean Value Theorem’. 

A. True 
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B. False 

 

8. The Mean Value Theorem was stated and proved by _______ 

A. Leonhard Euler 

B. Govindasvami 

C. Michel Rolle 

D. Augustin Louis Cauchy 

 

9. The value of c which satisfies the Mean Value Theorem for the function 𝑓(𝑥) = 𝑥2 + 2𝑥 + 1 on 
[1,2] is 

A. -5/2 

B. -5/2 

C. 7/2 

D. -7/2 

 

10. What is the value of c which lies in [1, 2] for the function f(x)= 4x and g(x)= 3x2? 

A.  1 

B. 1.5 

C. 2 

D. 2.5 

Answer for Self Assessment 

1. A 2. A 3. C 4. C 5. A 

6. B 7. A 8. D 9. D 10. B 

Review Questions 

1. State and prove the Lagrange’s mean value theorem. 
2. State and prove the Cauchy’s mean value theorem. 
3. Check the validity of Cauchy’s MVT for the functions f(x)= 4x and g(x)= 3x2 
4. Check the validity of Lagrange’s MVT for the function 𝑓(𝑥) = 𝑥2 + 2𝑥 + 1 on [1,2]. 
5. Check the validity of Lagrange’s MVT for the function 𝑓(𝑥) = 𝑥2 + 2𝑥 + 1 on [-1,2]. 
6. Explain how the Lagrange’s MVT is a special case of Cauchy’s MVT. 
7. Discuss the Lagrange’s MVT in the interval [𝑎, 𝑎 + ℎ]. 
8. Discuss the Cauchy’s MVT in the interval [𝑎, 𝑎 + ℎ]. 

Further Reading 

 

George B. Thomas Jr., Joel Hass, Christopher Heil& Maurice D. Weir (2018). Thomas’ 
Calculus  (14th edition). Pearson Education. 

Howard Anton, I. Bivens& Stephan Davis (2016).Calculus (10th edition).Wiley India. 

 

https://www.math24.net/cauchys-mean-value-theorem 

https://www.geeksforgeeks.org/lagranges-mean-value-theorem 

https://tutorial.math.lamar.edu/classes/calci/MeanValueTheorem.aspx 
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Unit 09: Higher Order Derivatives 

CONTENTS 

Objectives 

Introduction 

9.1 Successive derivatives 

9.2 The 𝒏𝒕𝒉derivative for 𝒚 = 𝒆𝒂𝒙 

9.3 The𝒏𝒕𝒉derivative for 𝒚 = 𝒂𝒙 + 𝒃𝒎 Where 𝒎 is a Positive Integer More than 𝒏 

9.4 The 𝒏𝒕𝒉derivative for 𝒚 = 𝒍𝒐𝒈(𝒂𝒙 + 𝒃) 

9.5 The 𝒏𝒕𝒉derivative for 𝒚 = 𝒔𝒊𝒏(𝒂𝒙 + 𝒃) 

9.6 The 𝒏𝒕𝒉derivative for 𝒚 = 𝒄𝒐𝒔(𝒂𝒙 + 𝒃) 

9.7 The 𝒏𝒕𝒉derivative for 𝒚 = 𝒆𝒂𝒙𝒔𝒊𝒏(𝒃𝒙 + 𝒄) 

9.8 The 𝒏𝒕𝒉derivative for 𝒚 = 𝒆𝒂𝒙𝒄𝒐𝒔(𝒃𝒙 + 𝒄) 

9.9 Determination of 𝒏𝒕𝒉 Derivative of the Rational Functions 

9.10 Leibnitz Theorem 

Summary 

Keywords 

Self Assessment 

Answer for Self Assessment 

Review Questions 

Further Reading 

 

Objectives 

Students will 

• be able to find the 𝑛𝑡ℎ derivative of elementary functions 

• be able to find the 𝑛𝑡ℎ derivative of the derived functions 

• be able to calculate the 𝑛𝑡ℎ derivative of the product of two functions using the Leibnitz 

theorem 

Introduction 

By now, we have a good idea about what is differentiation, we 
know the technique how to differentiate a function, we have 
derived quite a few rules of the derivatives for some functions 
also. Continuing the stride, we now look into how the higher 
derivatives can be found out in a general manner. We will 
discuss how to find the nth derivative for some specific 
functions in this chapter. We will see the process of 
differentiating a given function successively n times, which is 
known as successive differentiation and the results that you get 
are called successive derivatives. 
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The adjacent image gives an idea of the higher derivatives. At first there are coffee beans, then some 
changes happen and you see the change in the beans with respect to time (x say), it is the coffee 
powder and then some more changes happening to this and you are getting the coffee.  

So, we can say that 𝑓′(𝑥) is the first derivative and 𝑓′′(𝑥) is the second derivative. So this second 
derivative has come up by differentiating the first derivative. So, this is the successive 
differentiation, you can further differentiate to get the third derivative and so, on. This successive 
differentiation is very much important for scientific and engineering applications. 

 

9.1 Successive derivatives 

The process of differentiating a given function successively n times are called successive 
differentiation and the results of such differentiation are called successive derivatives. 

Let the function be 𝑦 = 𝑓(𝑥). 

Differentiating it once we get 
𝑑𝑦

𝑑𝑥
= 𝑓′(𝑥) 

Differentiating it twice we get 
𝑑(

𝑑𝑦

𝑑𝑥
)

𝑑𝑥
=

𝑑2𝑦

𝑑𝑥2
= 𝑓′′(𝑥) 

Differentiating it thrice we get 
𝑑(

𝑑2𝑦

𝑑𝑥2)

𝑑𝑥
=

𝑑3𝑦

𝑑𝑥3
= 𝑓′′′(𝑥) 

 

and so on 

For instance, 𝑓(𝑥) = 𝑥5 + sin 𝑥 + 𝑒2𝑥  

𝑓′(𝑥) = 5𝑥4 + cos 𝑥 + 2𝑒2𝑥 

𝑓′′(𝑥) = 20𝑥3 − sin 𝑥 + 4𝑒2𝑥 

𝑓′′′(𝑥) = 60𝑥2 − cos 𝑥 + 8 𝑒2𝑥 

and so on. 

9.2 The 𝒏𝒕𝒉derivative for 𝒚 = 𝒆𝒂𝒙 

We will calculate the 𝑛𝑡ℎ derivative by generalizing first few derivatives. 

𝑦1 = 𝑎 𝑒𝑎𝑥 

𝑦2 = 𝑎2𝑒𝑎𝑥 

𝑦3 = 𝑎3𝑒𝑎𝑥 

⋮ 

𝑦𝑛 = 𝑎𝑛𝑒𝑎𝑥 

 

9.3 The𝒏𝒕𝒉derivative for 𝒚 = (𝒂𝒙 + 𝒃)𝒎 Where 𝒎 is a Positive Integer 
More than 𝒏 

We will calculate the 𝑛𝑡ℎ derivative by generalizing first few derivatives. 

𝑦1 = 𝑚𝑎(𝑎𝑥 + 𝑏)𝑚−1 

𝑦2 = 𝑚(𝑚 − 1)(𝑎𝑥 + 𝑏)𝑚−2𝑎2 

𝑦3 = 𝑚(𝑚 − 1)(𝑚 − 2)(𝑎𝑥 + 𝑏)𝑚−3𝑎3 

⋮ 

𝑦𝑛 = 𝑚(𝑚 − 1)(𝑚 − 2) … (𝑚 − 𝑛 + 1)(𝑎𝑥 + 𝑏)𝑚−𝑛𝑎𝑛 

The 𝑛𝑡ℎ derivative can further be written as 

𝑦𝑛 =
𝑚!

(𝑚 − 𝑛)!
(𝑎𝑥 + 𝑏)𝑚−𝑛𝑎𝑛 
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9.4 The 𝒏𝒕𝒉derivative for 𝒚 = 𝒍𝒐𝒈(𝒂𝒙 + 𝒃) 

We will calculate the 𝑛𝑡ℎ derivative by generalizing first few derivatives.  

𝑦1 = 𝑎(𝑎𝑥 + 𝑏)−1 

𝑦2 =  −𝑎2(𝑎𝑥 + 𝑏)−2 

𝑦3 = 2! 𝑎3(𝑎𝑥 + 𝑏)−3 

𝑦4 =  −3! 𝑎4(𝑎𝑥 + 𝑏)−4 

⋮ 

𝑦𝑛 = (−1)𝑛−1𝑎𝑛(𝑎𝑥 + 𝑏)−𝑛 

 

9.5 The 𝒏𝒕𝒉derivative for 𝒚 = 𝒔𝒊𝒏(𝒂𝒙 + 𝒃) 

We will calculate the 𝑛𝑡ℎ derivative by generalizing first few derivatives.  

𝑦1 = 𝑎 cos(𝑎𝑥 + 𝑏) = 𝑎 sin (𝑎𝑥 + 𝑏 +
𝜋

2
) 

𝑦2 = 𝑎2 cos (𝑎𝑥 + 𝑏 +
𝜋

2
)  = 𝑎2 sin (𝑎𝑥 + 𝑏 +

2𝜋

2
) 

Similarly 

𝑦3 = 𝑎3 sin (𝑎𝑥 + 𝑏 +
3𝜋

2
) 

⋮ 

𝑦𝑛 = 𝑎𝑛 sin (𝑎𝑥 + 𝑏 +
𝑛𝜋

2
) 

 

9.6 The 𝒏𝒕𝒉derivative for 𝒚 = 𝒄𝒐𝒔(𝒂𝒙 + 𝒃) 

We will calculate the 𝑛𝑡ℎ derivative by generalizing first few derivatives.  

𝑦1 = −𝑎 sin(𝑎𝑥 + 𝑏) = 𝑎 cos (𝑎𝑥 + 𝑏 +
𝜋

2
) 

𝑦2 = −𝑎2 sin (𝑎𝑥 + 𝑏 +
𝜋

2
)  = 𝑎2 cos (𝑎𝑥 + 𝑏 +

2𝜋

2
) 

Similarly 

𝑦3 = 𝑎3 cos (𝑎𝑥 + 𝑏 +
3𝜋

2
) 

⋮ 

𝑦𝑛 = 𝑎𝑛 cos (𝑎𝑥 + 𝑏 +
𝑛𝜋

2
) 

 

9.7 The 𝒏𝒕𝒉derivative for 𝒚 = 𝒆𝒂𝒙𝒔𝒊𝒏(𝒃𝒙 + 𝒄) 

𝑦1 = 𝑎 𝑒𝑎𝑥 sin(𝑏𝑥 + 𝑐) + 𝑏 𝑒𝑎𝑥 cos(𝑏𝑥 + 𝑐) 

= 𝑒𝑎𝑥(𝑎 sin(𝑏𝑥 + 𝑐) + 𝑏 cos(𝑏𝑥 + 𝑐)) 

Here substituting 𝑎 = 𝑟 cos 𝜃, 𝑏 = 𝑟 sin 𝜃 in the above expression. 

𝑦1 = 𝑒𝑎𝑥𝑟 (cos 𝜃 sin(𝑏𝑥 + 𝑐) + sin 𝜃 cos(𝑏𝑥 + 𝑐)) 

= 𝑟 𝑒𝑎𝑥 sin(𝑏𝑥 + 𝑐 + 𝜃) 

Similarly  

𝑦2 = 𝑟2𝑒𝑎𝑥sin (𝑏𝑥 + 𝑐 + 2𝜃) 

⋮ 

𝑦𝑛 = 𝑟𝑛𝑒𝑎𝑥 sin(𝑏𝑥 + 𝑐 + 𝑛𝜃) 
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where𝑟 = √𝑎2 + 𝑏2 and tan 𝜃 =
𝑏

𝑎
 

Therefore, 𝑦𝑛 = (𝑎2 + 𝑏2)
𝑛

2eax sin (𝑏𝑥 + 𝑐 + 𝑛𝑡𝑎𝑛−1 (
𝑏

𝑎
)) 

 

9.8 The 𝒏𝒕𝒉derivative for 𝒚 = 𝒆𝒂𝒙𝒄𝒐𝒔(𝒃𝒙 + 𝒄) 

𝑦1 = −𝑏 𝑒𝑎𝑥 sin(𝑏𝑥 + 𝑐) + 𝑎 𝑒𝑎𝑥 cos(𝑏𝑥 + 𝑐) 

= 𝑒𝑎𝑥(−𝑏 sin(𝑏𝑥 + 𝑐) + 𝑎 cos(𝑏𝑥 + 𝑐)) 

Here substituting 𝑎 = 𝑟 cos 𝜃, 𝑏 = 𝑟 sin 𝜃 in the above expression. 

𝑦1 = 𝑒𝑎𝑥𝑟 (−sin 𝜃 sin(𝑏𝑥 + 𝑐) + cos 𝜃 cos(𝑏𝑥 + 𝑐)) 

= 𝑟 𝑒𝑎𝑥 cos(𝑏𝑥 + 𝑐 + 𝜃) 

Similarly  

𝑦2 = 𝑟2𝑒𝑎𝑥cos (𝑏𝑥 + 𝑐 + 2𝜃) 

⋮ 

𝑦𝑛 = 𝑟𝑛𝑒𝑎𝑥 cos(𝑏𝑥 + 𝑐 + 𝑛𝜃) 

where𝑟 = √𝑎2 + 𝑏2 and tan 𝜃 =
𝑏

𝑎
 

Therefore, 𝑦𝑛 = (𝑎2 + 𝑏2)
𝑛

2eax cos (𝑏𝑥 + 𝑐 + 𝑛𝑡𝑎𝑛−1 (
𝑏

𝑎
)) 

 

9.9 Determination of 𝒏𝒕𝒉 Derivative of the Rational Functions 

To calculate the 𝑛𝑡ℎ derivative of a rational function, we can decompose it into partial fractions. We 
may use the De Moivre’s theorem also if the situation demands. 

 Find the 𝑛𝑡ℎ derivative of 
1

1−5𝑥+6𝑥2. 

Now here the given function is a composite function. We can work out on the function to write it as 

an elementary function whose 𝑛𝑡ℎ derivative is known.  

Let 𝑦 =  
1

1−5𝑥+6𝑥2
 

=
1

(1 − 3𝑥)(1 − 2𝑥)
 

=
3

1 − 3𝑥
−

2

1 − 2𝑥
 

Now these two expressions are of the form  
1

𝑎𝑥+𝑏
. Working out on the 𝑛𝑡ℎ derivative of this function 

we get 
(−1)𝑛𝑛!𝑎𝑛

(𝑎𝑥+𝑏)𝑛+1 

Using this general formula, we can write 

𝑦𝑛 = 𝑛! [(
3

1 − 3𝑥
)

𝑛+1

− (
2

1 − 2𝑥
)

𝑛+1

] 

 Find the 𝑛𝑡ℎ derivative of sin 6𝑥 cos 4𝑥  

Using the trigonometric identities the given function can be written as y =  sin 6𝑥 cos 4𝑥 =
1

2
(sin 10𝑥 + cos 2𝑥)  

Applying the direct result of the sine and cosine functions, we get 

𝑦𝑛 =
1

2
(10𝑛 sin (10𝑥 +

𝑛𝜋

2
) + 2𝑛 cos (2𝑥 +

𝑛𝜋

2
)) 

 If 𝑦 = 𝑥 + tan 𝑥, show that cos2 𝑥
𝑑2𝑦

𝑑𝑥2 − 2𝑦 + 2𝑥 = 0 
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We can find the first and second derivatives of 𝑦 and on substituting them in the left hand side, you 
can easily get the result.  

 

9.10 Leibnitz Theorem 

If u and v are functions of x such that their 𝑛𝑡ℎ derivativesexist, then the 𝑛𝑡ℎ derivative of their 
product is given by 

(𝑢𝑣)𝑛 = 𝑢𝑛𝑣 + 𝐶 𝑢𝑛−1𝑣1 +1
𝑛 𝐶 𝑢𝑛−2𝑣2 + ⋯ + 𝐶 𝑢𝑛−𝑟𝑣𝑟 + ⋯ + 𝑢𝑣𝑛𝑟

𝑛
2
𝑛  

where𝑢𝑟 and 𝑣𝑟 represent the 𝑟𝑡ℎ derivatives of 𝑢 and 𝑣 respectively. 

𝑑

𝑑𝑥
(𝑢𝑣) = 𝑢

𝑑𝑣

𝑑𝑥
+ 𝑣

𝑑𝑢

𝑑𝑥
 

𝑑2

𝑑𝑥2
(𝑢𝑣) =

𝑑

𝑑𝑥
(𝑢𝑣1 + 𝑣𝑢1) = 𝑢2𝑣 + 2𝑢1𝑣1 + 𝑢𝑣2 

and continuing in the same manner,  the 𝑛𝑡ℎ derivative can be obtained as 

𝑑𝑛

𝑑𝑥𝑛
(𝑢𝑣) = (𝑢𝑣)𝑛 = 𝑢𝑛𝑣 + 𝐶 𝑢𝑛−1𝑣1 +1

𝑛 𝐶 𝑢𝑛−2𝑣2 + ⋯ + 𝐶 𝑢𝑛−𝑟𝑣𝑟 + ⋯ + 𝑢𝑣𝑛𝑟
𝑛

2
𝑛  

Let us see some examples to understand the theorem better! 

 Find the 𝑛𝑡ℎ derivative of 𝑥 log 𝑥. 

Here we can see the given function as a product of two functions and Leibnitz theorem can be 
applied. 

Let 𝑢 = log 𝑥 

Then 𝑢1 =
1

𝑥
 

𝑢2 = −
1

𝑥2 

𝑢3 =
2

𝑥3 

𝑢4 =  −
2.3

𝑥4  

⋮ 

𝑢𝑛 =
(−1)𝑛−1(𝑛 − 1)!

𝑥𝑛  

Let 𝑣 = 𝑥 

𝑣1 = 1 

𝑣2 = 0 

𝑣3 = 0  

⋮  

𝑣𝑛 = 0  

By Leibnitz theorem, 

(𝑢𝑣)𝑛 = 𝑢𝑛𝑣 + 𝐶 𝑢𝑛−1𝑣1 +1
𝑛 𝐶 𝑢𝑛−2𝑣2 + ⋯ + 𝐶 𝑢𝑛−𝑟𝑣𝑟 + ⋯ + 𝑢𝑣𝑛𝑟

𝑛
2
𝑛  

(𝑥𝑙𝑜𝑔𝑥)𝑛 =
(−1)𝑛−1(𝑛 − 1)!

𝑥𝑛−1 +
𝑛(−1)𝑛−2(𝑛 − 2)!

𝑥𝑛−1  

=
(−1)𝑛−2(𝑛 − 2)!

𝑥𝑛−1  

 Find the 𝑛𝑡ℎ derivative of 𝑥2𝑒3𝑥𝑠𝑖𝑛4𝑥  

Let 𝑢 = 𝑒3𝑥𝑠𝑖𝑛4𝑥 and 𝑣 = 𝑥2 

By Leibnitz theorem, 
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(𝑢𝑣)𝑛 = 𝑢𝑛𝑣 + 𝐶 𝑢𝑛−1𝑣1 +1
𝑛 𝐶 𝑢𝑛−2𝑣2 + ⋯ + 𝐶 𝑢𝑛−𝑟𝑣𝑟 + ⋯ + 𝑢𝑣𝑛𝑟

𝑛
2
𝑛  

(𝑥2𝑒3𝑥𝑠𝑖𝑛4𝑥)𝑛 = 𝑒3𝑥5𝑛 sin (4𝑥 + 𝑛𝑡𝑎𝑛−1 (
4

3
)) 𝑥2 + 𝑛 𝑒3𝑥5𝑛−1sin (4𝑥

+ (𝑛 − 1) tan−1
4

3
) (2𝑥) +

𝑛(𝑛 − 1)

2
𝑒3𝑥5𝑛−2sin (4𝑥 + (𝑛 − 2) tan−1

4

3
) (2) 

The right hand side expression can be simplified for a concise form. 

If 𝑦 = tan−1 𝑥, show that (1 + 𝑥2)𝑦𝑛+2 + 2(𝑛 + 1)𝑥𝑦𝑛+1 + 𝑛(𝑛 + 1)𝑦𝑛 = 0. Also find 𝑦𝑛(0). 

Here  𝑦 = tan−1 𝑥 

𝑦1 =
1

1 + 𝑥2 

 

⇒ (1 + 𝑥2)𝑦1 = 1 

Differentiating both sides w.r.t. x, we get 

(1 + 𝑥2)𝑦2 + 2𝑥𝑦1 = 0 

Differentiating ‘n’ times w.r.t. x, we get 

(1 + 𝑥2)𝑦𝑛+2 + 2𝑥 𝑛 𝑦𝑛+1 + 𝑛(𝑛 − 1)𝑦𝑛 + 2(𝑥 𝑦𝑛+1 + 𝑛 𝑦𝑛) = 0 

(1 + 𝑥2)𝑦𝑛+2 + 2𝑥(𝑛 + 1)𝑦𝑛+1 + 𝑛(𝑛 + 1)𝑦𝑛 = 0 

which is the required expression to be proved. Now in order to deduce the second part, let us put 
𝑥 = 0 in the expressions of 𝑦, 𝑦1, 𝑦2 and 𝑦𝑛+2,  we get 

𝑦(0) = 0 

𝑦1(0) = 1 

𝑦2(0) = 0 

𝑦𝑛+2(0) = −𝑛(𝑛 + 1)𝑦𝑛(0) 

From this recursion formula, higher derivatives can be obtained. 

𝑦3(0) = −1.2. 𝑦1(0) = −2.1 = −2! 

𝑦4(0) = −2.3. 𝑦2(0) = 0 

𝑦5(0) = −3.4. 𝑦3(0) = −3.4. (−2) = 4! 

𝑦6(0) = −4.5. 𝑦4(0) = 0 

𝑦7(0) = −5.6. 𝑦5(0) = −5.6.4! = −6! 

⋮ 

𝑦2𝑛+1(0) = (−1)𝑛(2𝑛)!   and 𝑦2𝑛(0) = 0 

This expression shows that all the even derivatives of the given function are zero at 𝑥 = 0  and the 
odd derivatives are given by 𝑦2𝑛+1(0) = (−1)𝑛(2𝑛)! 

 

Summary 

This chapter is about the higher derivative of a function. We also learnt about how to find the nth 
derivative of the product of two functions. 

• The process of differentiating a given function successively n times are called successive 

differentiation and the results of such differentiation are called successive derivatives. 

• If u and v are functions of x such that their 𝑛𝑡ℎ derivatives exist, then the 𝑛𝑡ℎ derivative of 

their product is given by 

(𝑢𝑣)𝑛 = 𝑢𝑛𝑣 + 𝐶 𝑢𝑛−1𝑣1 +1
𝑛 𝐶 𝑢𝑛−2𝑣2 + ⋯ + 𝐶 𝑢𝑛−𝑟𝑣𝑟 + ⋯ + 𝑢𝑣𝑛𝑟

𝑛
2
𝑛  

where𝑢𝑟 and 𝑣𝑟 represent the 𝑟𝑡ℎ derivatives of 𝑢 and 𝑣 respectively. 
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Self Assessment 

1. The derivative of the function √2 + 𝑥2 is 

A. 
𝑥

2√2+𝑥2
 

B. 
𝑥

√2+2𝑥2
 

C. 
2𝑥

√2+𝑥2
 

D. 
𝑥

√2+𝑥2
 

 

2. 
𝑑

𝑑𝑥
(𝑠𝑖𝑛(𝑐𝑜𝑠𝑥)) = 

A. sin 𝑥 cos (cos 𝑥) 

B. cos (sin 𝑥) 

C. −sin 𝑥 cos (cos 𝑥) 

D. sin 𝑥 cos (sin 𝑥) 

 

3. If f is differentiable on the closed interval [a, b] and r is any number between f ’ (a) and  

f ’ (b),  then there exists a number c in the open  interval (a, b) such that f ’(c) = r. This 

statement is of 

A. intermediate value theorem 

B. mean value theorem 

C. Rolle’s theorem 

D. Darboux’s theorem 

 

4. 
𝑒𝑠𝑖𝑛ℎ−1𝑥

√1+𝑥2
 is the derivative of the function 

A. x
𝑒𝑠𝑖𝑛ℎ−1𝑥

√1+𝑥2
 

B. 
𝑒𝑠𝑖𝑛ℎ−1𝑥

√1+𝑥2
 

C. 𝑒𝑠𝑖𝑛ℎ−1𝑥   ans 

D. 𝑒𝑐𝑜𝑠ℎ−1𝑥 

 

5. The derivative of 𝑙𝑜𝑔(𝑐𝑜𝑠ℎ 𝑥) w.r.t. 𝑥 is 

A. log (sin 𝑥)  

B. log (sinh 𝑥)  

C. 𝑐𝑜𝑠𝑒𝑐ℎ 𝑥 

D. tanh 𝑥 

 

6. 
𝑑

𝑑𝑥
𝑒𝑠𝑖𝑛𝑥 = 

A. 𝑒𝑠𝑖𝑛𝑥 cos 𝑥 

B. cos (sin 𝑥) 

C. − 𝑒𝑠𝑖𝑛𝑥 cos 𝑥 

D. sin 𝑥 cos (sin 𝑥) 

 

7. The Leibnitz theorem is about  

A. the 𝑛𝑡ℎ derivative of the sum of two functions 

B. the 𝑛𝑡ℎ derivative of the difference of two functions 

C. the 𝑛𝑡ℎ derivative of the quotient of two functions 

D. the 𝑛𝑡ℎ derivative of the product of two functions 
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8. Which of the following is correct? 

A. (𝑢𝑣)𝑛 = 𝑢𝑛𝑣 + 𝐶𝑢𝑛−1𝑣1 +1
𝑛 𝐶𝑢𝑛−2𝑣2 +2

𝑛 𝐶𝑢𝑛−3𝑣3 +3
𝑛 … + 𝐶𝑢𝑛−𝑟𝑣𝑟 +𝑟

𝑛 … + 𝑢 𝑣𝑛 

B. (𝑢𝑣)𝑛 = 𝑢 𝑣 + 𝐶𝑢𝑛−1𝑣1 +1
𝑛 𝐶𝑢𝑛−2𝑣2 +2

𝑛 𝐶𝑢𝑛−3𝑣3 +3
𝑛 … + 𝐶𝑢𝑛−𝑟𝑣𝑟 +𝑟

𝑛 … + 𝑢 𝑣𝑛 

C. (𝑢𝑣)𝑛 = 𝑢𝑛𝑣 + 𝐶𝑢𝑛−1𝑣1 +1
𝑛 𝐶𝑢𝑛−2𝑣2 +2

𝑛 𝐶𝑢𝑛−3𝑣3 +3
𝑛 … + 𝐶𝑢𝑛−𝑟𝑣𝑟 +𝑟

𝑛 … + 𝑢 𝑣  

D. (𝑢𝑣)𝑛 = 𝑢 𝑣 + 𝐶𝑢𝑛−1𝑣1 +1
𝑛 𝐶𝑢𝑛−2𝑣2 +2

𝑛 𝐶𝑢𝑛−3𝑣3 +3
𝑛 … + 𝐶𝑢𝑛−𝑟𝑣𝑟 +𝑟

𝑛 … + 𝑣 𝑢  

 

9. Let 𝒇(𝒙) =
𝒔𝒊𝒏𝒙

𝟏+𝒙𝟐
. The first derivative of 𝒇(𝒙) at 𝒙 = 𝟎 is given by 

A. 1 

B. 0 

C. -1 

D. 2 

 

10. The number of terms in the 𝑛𝑡ℎ derivative of 𝑥2𝑒3𝑥𝑠𝑖𝑛 4𝑥 are 

A. 1 

B. 2 

C. 3 

D. 4 

 

11. For 𝑦 = 𝑡𝑎𝑛−1𝑥, (1 + 𝑥2)𝑦𝑛+2 + 2(𝑛 + 1)𝑥𝑦𝑛+1 + 𝑛(𝑛 + 1)𝑦𝑛 = 0, Then 𝑦3(0) is 

A. 0 

B. 1 

C. 2 

D. -2 

 

12. 
𝑑

𝑑𝑥
𝑒−𝑠𝑖𝑛𝑥 = 

A. −𝑒−𝑠𝑖𝑛𝑥 cos 𝑥 

B. cos (sin 𝑥) 

C. − 𝑒𝑠𝑖𝑛𝑥 cos 𝑥 

D. sin 𝑥 cos (sin 𝑥) 

 

Answer for Self Assessment 

1. D 2. C 3. D 4. C 5. D 

6. A 7. D 8. A 9. A 10. C 

11. D 12. A       

 

Review Questions 

1. Find the first three derivatives of the following expressions w.r.t. x 

(i) 
𝑥2+𝑎

𝑥+𝑎
 

(ii) 8𝑥4 + 3.8𝑥3 −
2

3
𝑥2 + 𝑥 − 7 

2. If a body move according to the law 

𝑠 = 12 − 4.5𝑡 + 6.2𝑡2 

 find its velocity and acceleration when t=4 seconds, 𝑠 being in feet.  Is the acceleration the 
 same for all values of 𝑡? 
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3. Find the 𝒏𝒕𝒉derivative for 𝒚 = 𝒆𝒂𝒙cos(𝒃𝒙 + 𝒄) 

4. Find the 𝒏𝒕𝒉derivative for 𝒚 = 𝒆𝒂𝒙sin(𝒃𝒙 − 𝒄) 

5. Find the 𝒏𝒕𝒉derivative for 𝒚 = tan−1 1+𝑥

1−𝑥
 

6. Find the 𝒏𝒕𝒉derivative for 𝒚 =
1

a2−𝑥2
 

7. State and prove Leibnitz theorem. 

8. If 𝐼𝑛 =
𝑑𝑛

𝑑𝑥𝑛
(𝑥𝑛 log 𝑥) , prove that 𝐼𝑛 = 𝑛𝐼𝑛−1 + (𝑛 − 1) 

9. Find the value of 𝒏𝒕𝒉derivative for 𝒚 = emsin−1𝑥for 𝑥 = 0. 

10. If  𝒚 = easin−1𝑥 prove that  

(1 − 𝑥2)𝑦𝑛+2 − (2𝑛 + 1)𝑥𝑦𝑛+1 − (𝑛2 + 𝑎2)𝑦𝑛 = 0 

Further Reading 

 

George B. Thomas Jr., Joel Hass, Christopher Heil& Maurice D. Weir (2018). Thomas’ 
Calculus (14th edition). Pearson Education. 

Howard Anton, I. Bivens& Stephan Davis (2016).Calculus (10th edition).Wiley India. 

 

http://www.calculusmadeeasy.org/7.html 

https://www.math24.net/leibniz-formula 
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Objectives 

Students will be able to 

 expand the functions using Maclaurin’s theorem 
 expand the functions using Taylor’s theorem 
 apply the Taylor’s theorem in finite form with Lagrange form of remainder 
 apply the Taylor’s theorem in finite form with Cauchy form of remainder 

 

Introduction 

In calculus, Taylor's theorem gives us a polynomial which approximates the function in terms of 
the derivatives of the function. Since the derivatives are usually easy to compute, these polynomials 
are also easy to compute. 

A simple example of Taylor's theorem is the approximation of the exponential function 𝑒  near 
𝑥 = 0. In other words, the exponential function can be approximated by an infinite polynomial 
given as follows 

𝑒 = 1 + 𝑥 +
𝑥

2!
+

𝑥

3!
+ ⋯ +

x

𝑛!
+ ⋯ 

For a derivable function𝑓, we can say that 𝑓′ exists in certain neighborhood of point 𝑐 and this 
further implies that 𝑓 is defined and is continuous in a neighborhood of 𝑐. 

Similarly, if 𝑓′ has derivative at 𝑐 has the same meaning as 𝑓 has a second derivative at 𝑐. And this 
further implies that 𝑓′ is continuous at 𝑐. 

In general if 𝑓 (𝑥) exists in the neighborhood of 𝑐, then the derivative of 𝑓 (𝑥) at 𝑐, if exists, is 
called the 𝑛  derivative of 𝑓 at 𝑐  and is written as 𝑓( )(𝑐). 

 

10.1 Generalized Mean Value Theorem- Taylor’s Theorem 

If 𝑛 ≥ 0 is an integer and 𝑓 is a function which is 𝑛 times continuously differentiable on the closed 
interval[𝑎, 𝑥] and  𝑛 + 1 times differentiable on the open interval(𝑎, 𝑥), then 
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𝑓(𝑥) = 𝑓(𝑎) +
𝑓 (𝑎)

1!
(𝑥 − 𝑎) +

𝑓 (𝑎)

2!
(𝑥 − 𝑎) + ⋯ +

𝑓 (𝑎)

𝑛!
(𝑥 − 𝑎) + 𝑅 (𝑥) 

Here, 𝑛! denotes the factorial of  , and 𝑅 (𝑥) is a remainder term, denoting the difference between 
the Taylor polynomial of degree 𝑛 and the original function. The remainder term 𝑅 (𝑥)depends on 
𝑥and is small if 𝑥is close enough to 𝑎. There are several expressions available for it. 

We can state the theorem in the following form also. 

If a function 𝑓 is such that 

(i) the (𝑛 − 1)   derivative 𝑓  is continuous in [𝑎, 𝑎 + ℎ], 
(ii) the 𝑛  derivative 𝑓  exists in (𝑎, 𝑎 + ℎ) and 
(iii) 𝑝 is a given positive integer 

Then there exists at least one 𝜃 ∈ (0,1) such that 

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + ℎ
( )

!
+ ℎ

( )

!
+ ⋯ + ℎ

( )

!
+

( )

( )!
𝑓 (𝑎 + 𝜃ℎ)                 ---- (1) 

Condition (i) assures that 𝑓, 𝑓 , 𝑓 , … , 𝑓  are continuous in [𝑎, 𝑎 + ℎ]. 

Let a function 𝜙(𝑥) be defined by 

𝜙(𝑥) = 𝑓(𝑥) + (𝑎 + ℎ − 𝑥)𝑓 (𝑥) +
(𝑎 + ℎ − 𝑥)

2!
𝑓 (𝑥) + ⋯ +

(𝑎 + ℎ − 𝑥)

(𝑛 − 1)!
𝑓 (𝑥) + 𝐴(𝑎 + ℎ − 𝑥)  

          ---- (2) 

where𝐴 is to be determined such that 

𝜙(𝑎) = 𝜙(𝑎 + ℎ) 

Therefore, 

𝜙(𝑥)is a continuous in [𝑎, 𝑎 + ℎ], derivable in (𝑎, 𝑎 + ℎ) and 𝜙(𝑎) = 𝜙(𝑎 + ℎ). So, Rolle’s theorem 
suggests that there must exist at least a 𝜃 ∈ (0,1) such that  

𝜙 (𝑎 + 𝜃ℎ) = 0 

Now 𝜙 (𝑥) = 𝑓 (𝑥) + (𝑎 + ℎ − 𝑥)𝑓 (𝑥) − 𝑓 (𝑥) +
( )

!
𝑓 (𝑥) − (𝑎 + ℎ − 𝑥)𝑓 (𝑥) + ⋯ +

( )

( )!
𝑓 (𝑥) −

( )( )

( )!
𝑓 (𝑥) − 𝑝𝐴(𝑎 + ℎ − 𝑥)  

𝜙 (𝑥) = 0 ⇒
(𝑎 + ℎ − 𝑥)

(𝑛 − 1)!
𝑓 (𝑥) = 𝑝𝐴(𝑎 + ℎ − 𝑥)  

𝜙 (𝑎 + 𝜃ℎ) = 0 ⇒
(𝑎 + ℎ − 𝑎 − 𝜃ℎ)

(𝑛 − 1)!
𝑓 (𝑎 + 𝜃ℎ) = 𝑝𝐴(𝑎 + ℎ − 𝑎 − 𝜃ℎ)  

⇒
(ℎ − 𝜃ℎ)

(𝑛 − 1)!
𝑓 (𝑎 + 𝜃ℎ) = 𝑝𝐴(ℎ − 𝜃ℎ)  

⇒    𝐴 =
ℎ (1 − 𝜃)

(𝑛 − 1)! 𝑝
𝑓 (𝑎 + 𝜃ℎ),   1 − 𝜃 ≠ 0, ℎ ≠ 0 

Substituting 𝐴 in the expression (2), we get the required result. 

Corollary 

Let 𝑥 be a point of the interval [𝑎, 𝑎 + ℎ]. Let 𝑓 satisfies the conditions of Taylor’s theorem in 
[𝑎, 𝑎 + ℎ], thus it satisfies the condition for [𝑎, 𝑥] also. 

Writing 𝑎 + ℎ as 𝑥 or ℎ as 𝑥 − 𝑎 in the expression (1), we get 

𝑓(𝑥) = 𝑓(𝑎) + (𝑥 − 𝑎)
𝑓 (𝑎)

1!
+ (𝑥 − 𝑎)

𝑓 (𝑎)

2!
+ ⋯ + (𝑥 − 𝑎)

𝑓 (𝑎)

𝑛!
+

(𝑥 − 𝑎) (1 − 𝜃)

(𝑛 − 1)! 𝑝
𝑓 (𝑎 + 𝜃(𝑥

− 𝑎)) 

         ---- (3) 

where0 < 𝜃 < 1 and the expression (3) holds for all 𝑥 ∈ [𝑎, 𝑎 + ℎ]. 

 

10.2 Maclaurin’s Theorem 

Substituting 𝑎 = 0 in (3) i.e. for all 𝑥 ∈ [0, ℎ] 

91



𝑓(𝑥) = 𝑓(0) + (𝑥)
( )

!
+ (𝑥)

( )

!
+ ⋯ + (𝑥)

which holds when 

(i) 𝑓  is continuous in [0, ℎ] 
(ii) 𝑓  exists in (0, ℎ) and  
(iii) 𝑝is a given positive integer. 

 Show that   

𝑒 = 1 + 𝑥 +
𝑥

2!
+

Here𝑓(𝑥) = 𝑒  

𝑓 (𝑥)is continuous in [0, ℎ] 

𝑓 (𝑥)exists in (0, ℎ) 

Let 𝑝 = 𝑛 in (4). Then, 

𝑓 (𝑥

𝑓 (𝑥

𝑓 (𝑥

𝑓 (𝑥

𝑓 (𝑥)

Therefore, fromthe expression (4), we get 

𝑒 = 1 + 𝑥 +
𝑥

2!
+

Hence the proof. 

 

10.3 Taylor’s Theorem in F
Remainder 

From the previous section we know, Taylor’s theorem states that, i

(i) the (𝑛 − 1)   derivative 𝑓  is continuous in 
(ii) the 𝑛  derivative 𝑓  exists in (
(iii) 𝑝 is a given positive integer 

Then there exists at least one 𝜃

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + ℎ
𝑓 (𝑎)

1!
+ ℎ

𝑓 (

2

The term 
( )

( )!
𝑓 (𝑎 + 𝜃ℎ) is known as th

remainder 𝑅  after 𝑛 terms due to Schlomilch and Roche. In this expression if we substitute 

𝑅 =
!

𝑓  (𝑎 + 𝜃ℎ)is the remainder after 𝑛 terms due to Lagrange. 

Therefore the Taylor’s theorem with Lagrange’s form of remainder is given as,

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + ℎ
𝑓 (𝑎)

1!
+ ℎ

or 

𝑓(𝑥) = 𝑓(𝑎) + (𝑥 − 𝑎)
( )

!
+ (𝑥 − 𝑎)

( )

!
+

     

The expression of 𝑓(𝑥) in (5) will fail for those values of 

(i) 𝑓(𝑥)or any of its differential coefficient becomes infinite.
(ii) 𝑓(𝑥) or any of its differential coefficients is discontinuous and

Unit 10: Maclaurin’s and Taylor’s Theorems  

( )
( )

( )!
+

( ) ( )

( )!
𝑓 (𝜃𝑥) ---- (4) 

]

+
𝑥

3!
+ ⋯ +

x

(𝑛 − 1)!
+

𝑥

𝑛!
𝑒  

(𝑥) = 𝑒 𝑓 (0) = 1 

(𝑥) = 𝑒 𝑓 ′(0) = 1 

(𝑥) = 𝑒 𝑓 (0) = 1 

(𝑥) = 𝑒 𝑓 (0) = 1 

( ) = 𝑒 𝑓 (𝜃𝑥) = 𝜃𝑥 

+
𝑥

3!
+ ⋯ +

x

(𝑛 − 1)!
+

𝑥

𝑛!
𝑒  

Taylor’s Theorem in Finite form with Lagrange form of 

From the previous section we know, Taylor’s theorem states that, if a function 𝑓 is such that 

is continuous in [𝑎, 𝑎 + ℎ], 
(𝑎, 𝑎 + ℎ) and 

𝜃 ∈ (0,1) such that 

(𝑎)

2!
+ ⋯ + ℎ

𝑓 (𝑎)

𝑛!
+

ℎ (1 − 𝜃)

(𝑛 − 1)! 𝑝
𝑓 (𝑎 + 𝜃ℎ) 

is known as the remainder after n terms, better known as Taylor’s 

due to Schlomilch and Roche. In this expression if we substitute 𝑝 = 𝑛 

terms due to Lagrange.  

m with Lagrange’s form of remainder is given as, 

𝑓 (𝑎)

2!
+ ⋯ + ℎ

𝑓 (𝑎)

(𝑛 − 1)!
+

ℎ

𝑛!
𝑓 (𝑎 + 𝜃ℎ) 

)
+ ⋯ + (𝑥 − 𝑎)

( )

( )!
+

( )

!
𝑓 (𝑎 + 𝜃(𝑥 − 𝑎)) 

      ----- (5) 

in (5) will fail for those values of 𝑥 for which 

or any of its differential coefficient becomes infinite. 
or any of its differential coefficients is discontinuous and 
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(iii) lim → 𝑅

Similarly the expansion of 

(i) 𝑓(0) or any of 
(ii) 𝑓(𝑥) or any of its derivatives is discontinuous as 

(iii) lim → 𝑅

 

10.4 Maclaurin's Power Series for a Given F

Let a function 𝑓 possesses continuous derivatives of all orders in the interval 

where𝑅  is the Lagrange form of remainder.

Therefore 𝑓(𝑥) = 𝑓(0)

is valid for all values of 
series for the expansion

Consider the function 

The Lagrange’s form of remainder after 

Now consider the case if 

And if 𝑥 < 0 

Then – 𝑥 > 0  

Therefore 𝜃 > 0 

Assuming that for all 

lim

Therefore 𝑅 → 0 as 𝑛

∴ 𝑒 = 1 + 𝑥 +
!

+ ⋯

Consider the function 

Lagrange’s form of remainder

and𝑅 →

Thus 

𝑅 ≠ 0 i.e. lim
→ !

𝑓 (𝑎 + 𝜃ℎ) ≠ 0  

Similarly the expansion of 𝑓(𝑥) by Maclaurin’s theorem is not valid for the values of 

or any of 𝑓 (0), 𝑓 (0), …  is not finite 
or any of its derivatives is discontinuous as 𝑥 passes through zero and

𝑅 ≠ 0 i.e. lim
→ !

𝑓 (𝜃𝑥) ≠ 0  

Maclaurin's Power Series for a Given Function 

possesses continuous derivatives of all orders in the interval [0

𝑓(𝑥) = 𝑓(0) + 𝑥𝑓 (0) + ⋯ +
𝑥

(𝑛 − 1)!
𝑓 (0) + 𝑅  

is the Lagrange form of remainder. 

( ) + 𝑥𝑓 (0) + ⋯ +
!

𝑓 (0) + ⋯     

is valid for all values of 𝑛 for which lim → 𝑅 = 0. The expression (6) is called Maclaurin’s infinite 
series for the expansion of 𝑓(𝑥) as power series. 

Consider the function 𝑓(𝑥) = 𝑒  

𝑓 (𝑥) = 𝑒  ∀ 𝑥 ∈ 𝑹 

The Lagrange’s form of remainder after 𝑛 terms is  

𝑅 =
𝑥

𝑛!
𝑓 (𝜃𝑥) =

𝑥

𝑛!
𝑒 where  0 < 𝜃 < 1 

Now consider the case if 𝑥 > 0 

𝜃𝑥 < 𝑥 ⇒ 𝑒 < 𝑒  

⇒ −𝜃𝑥 > 0 

⇒ 𝑒 > 𝑒  

⇒ 𝑒 < 1 

that for all 𝑥 

lim → !
= 0     (The proof is given after the next example)

𝑛 → ∞  ∀ 𝑥 ∈ 𝑹 

⋯ +
!

+ ⋯is valid for all 𝑥 ∈ 𝑹 

Consider the function 𝑓(𝑥) = sin 𝑥 

𝑓 (𝑥) = sin 𝑥 +
𝑛𝜋

2
  ∀ 𝑥 ∈ 𝑹 

Lagrange’s form of remainder 

𝑅 =
𝑥

𝑛!
𝑓 (𝜃𝑥) =

𝑥

𝑛!
sin 𝜃𝑥 +

𝑛𝜋

2
 

|𝑅 | =
𝑥

𝑛!
sin 𝜃𝑥 +

𝑛𝜋

2
≤

𝑥

𝑛!
 

→ 0  as 𝑛 → ∞ ∀  𝑥 ∈ 𝑹 

by Maclaurin’s theorem is not valid for the values of 𝑥 for which 

passes through zero and 

0, 𝑥], so that we have  

  ---- (6) 

. The expression (6) is called Maclaurin’s infinite 

(The proof is given after the next example) 
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𝑠𝑖𝑛𝑥 =

 

We can prove lim → !
= 0 ∀  𝑥 ∈ 𝑹as follows:

Let 𝑎 =
!

∀  𝑥 ∈ 𝑹 𝑎𝑛𝑑 𝑛 ∈ 𝑵 

If 𝑥 = 0    lim → 𝑎 = 0 

If 𝑥 > 0 then for ∈ 𝑵 , 𝑎 > 0 

For sufficiently large 𝑛 (say 𝑛 ≥ 𝑥) 

𝑎 =
𝑥

(𝑛

This implies that after certain 𝑛, 𝑎 < 𝑎  

Since a bounded monotonically decreasing sequence of real numbers must have a limit, 

𝑎 = lim
→

= lim

If 𝑥 < 0, we introduce 𝑎(−1)  factor 

i.e. 
!

=
( )

!
  where (−1)  is bounded and 

 {𝑏 }is bounded and 𝑎 → 0, then lim →

Therefore lim → !
= 0 ∀  𝑥 ∈ 𝑹 

Hence proved 

 

10.5 Taylor’s Theorem in F
Remainder 

The Taylor’s theorem states that, if a function 

(i) the (𝑛 − 1)   derivative 𝑓  is continuous in 
(ii) the 𝑛  derivative 𝑓  exists in (
(iii) 𝑝 is a given positive integer 

Then there exists at least one 𝜃

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + ℎ
𝑓 (𝑎)

1!
+ ℎ

𝑓 (

2

The term 
( )

( )!
𝑓 (𝑎 + 𝜃ℎ) is known as the remainder after n terms, better known as 

remainder 𝑅  after 𝑛 terms due to Schlomilch and Roche. In this expression if we substitute 

𝑅 =
( )

( )!!
𝑓  (𝑎 + 𝜃ℎ)is the remainder after 

Therefore the Taylor’s theorem with Cauchy

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + ℎ
𝑓 (𝑎)

1!
+ ℎ

𝑓 (𝑎)

2!

or 

𝑓(𝑥) = 𝑓(𝑎) + (𝑥 − 𝑎)
( )

!
+ (𝑥 − 𝑎)

( )

!
+

𝑎))     

Unit 10: Maclaurin’s and Taylor’s Theorems  
∀  𝑥 ∈ 𝑹 

= 𝑥 −
𝑥

3!
+

𝑥

5!
− ⋯ 

as follows: 

𝑥

( + 1)!
=

𝑥

𝑛 + 1
𝑎 < 𝑎  

Since a bounded monotonically decreasing sequence of real numbers must have a limit,  

lim
→

𝑎 =  lim
→

𝑎  

lim
→

𝑥

𝑛 + 1
lim
→

𝑎  

⇒  𝑎 = 0 

is bounded and 
!

tends to zero.  

→ 𝑎 𝑏 = 0 

Taylor’s Theorem in Finite form with Cauchy forms of 

The Taylor’s theorem states that, if a function 𝑓 is such that 

is continuous in [𝑎, 𝑎 + ℎ], 
(𝑎, 𝑎 + ℎ) and 

𝜃 ∈ (0,1) such that 

(𝑎)

2!
+ ⋯ + ℎ

𝑓 (𝑎)

𝑛!
+

ℎ (1 − 𝜃)

(𝑛 − 1)! 𝑝
𝑓 (𝑎 + 𝜃ℎ) 

is known as the remainder after n terms, better known as Taylor’s 

terms due to Schlomilch and Roche. In this expression if we substitute 𝑝 = 1 

is the remainder after 𝑛 terms due to Cauchy.  

he Taylor’s theorem with Cauchy’s form of remainder is given as,  

( )
+ ⋯ + ℎ

𝑓 (𝑎)

(𝑛 − 1)!
+

ℎ (1 − 𝜃)

(𝑛 − 1)!!
𝑓  (𝑎 + 𝜃ℎ) 

)
+ ⋯ + (𝑥 − 𝑎)

( )

( )!
+

( ) ( )

( )!!
𝑓  (𝑎 + 𝜃(𝑥 −

      ----- (6) 
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Expansion of (𝟏 + 𝒙)𝒎, 𝒎 ∈ 𝑹 

(1 + 𝑥) possesses continuous derivatives of every order when 1 + 𝑥 > 0  i.e. 𝑥 > −1. Also  

𝑓 (𝑥) = 𝑚(𝑚 − 1)(𝑚 − 2) … (𝑚 − 𝑛 + 1)(1 + 𝑥)  

𝑅 =
𝑥

(𝑛 − 1)!
(1 − 𝜃) 𝑓 (𝜃𝑥) 

=
𝑥

(𝑛 − 1)!
(1 − 𝜃)  𝑚(𝑚 − 1) … (𝑚 − 𝑛 + 1)(1 + 𝜃𝑥)  

= 𝑥
𝑚(𝑚 − 1) … (𝑚 − 𝑛 + 1)

(𝑛 − 1)!

1 − 𝜃

1 + 𝜃𝑥
(1 + 𝜃𝑥)  

Let |𝑥| < 1 

⇒ − 1 < 𝑥 < 1 

Now −1 < 𝑥 

⇒ −𝜃 < 𝜃𝑥 

⇒ 1 − 𝜃 < 1 + 𝜃𝑥 

⇒
1 − 𝜃

1 + 𝜃𝑥 
< 1 

⇒ 0 <
1 − 𝜃

1 + 𝜃𝑥 
< 1 

Let 𝑚 − 1 > 0, we have 

0 < 𝜃 < 1  

⇒ 𝜃𝑥 < 𝑥 

⇒ 𝜃𝑥 + 1 < 𝑥 + 1 

Moreover 𝑥 > −1 ⇒  𝑥 < 1 

⇒ 𝜃𝑥 + 1 < 2  

Therefore 

0 < 𝜃𝑥 + 1 < 2 

⇒  0 < (𝜃𝑥 + 1) < 2 < 2  

Let 𝑚 − 1 < 0, we have 

𝜃𝑥 > −|𝑥| 

⇒ 𝜃𝑥 + 1 > 1 − |𝑥| 

⇒ (𝜃𝑥 + 1) ≤ (1 − |𝑥|)
 

We know, lim →
( )…( )

( )!
= 0 

∴ 𝑅 → 0 as 𝑛 → ∞ if|𝑥| < 1 

∴ (1 + 𝑥) = 1 + 𝑚𝑥 +
( )

!
𝑥 + ⋯when−1 < 𝑥 < 1 

 

Expansion of 𝒍𝒐𝒈(𝟏 + 𝒙) 

(1 + 𝑥) possesses continuous derivatives of every order when 1 + 𝑥 > 0  i.e. 𝑥 > −1. Also  

𝑓 (𝑥) =
(−1) (𝑛 − 1)!

(1 + 𝑥)
 

Taking Cauchy’s form of remainder 
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𝑅 =
𝑥

(𝑛 − 1)!
(1 − 𝜃) 𝑓 (𝜃𝑥) 

=
𝑥

(𝑛 − 1)!
(1 − 𝜃)

(−1) (𝑛 − 1)!

(1 + 𝜃𝑥)
 

= (−1)  𝑥
1

1 + 𝜃𝑥

1 − 𝜃

1 + 𝜃𝑥
 

Let |𝑥| < 1 

⇒ − 1 < 𝑥 < 1 

⇒ − θ < 𝜃 𝑥 < 𝜃 

⇒ 1 − θ < 1 + 𝜃 𝑥 < 1 + 𝜃 

⇒ 0 <
1 − θ

1 + θx
< 1 

⇒
1 − θ

1 + θx
< 1 

Also we have  

𝜃𝑥 > −|𝑥| 

⇒ 1 + 𝜃𝑥 > 1 − |𝑥| 

⇒
1

1 + 𝜃𝑥
<

1

1 − |𝑥|
 

Therefore, for all 𝑛 

|𝑅 | < |𝑥|
1

1 − |𝑥|
→ 0 as 𝑛 → ∞ 

Therefore, when |𝑥| < 1, 

log(1 + 𝑥) = 𝑥 −
𝑥

2
+

𝑥

3
− ⋯ +

(−1) 𝑥

𝑛 − 1
+ ⋯ 

By taking the Lagrange’s form of remainder we may show that the infinite series expansion is valid 
for 𝑥 = 1 also. 

For the formal expansion of a function, we will follow the following steps: 

 

 

 

 

 

 

 

 

Calculate the 𝑛  derivative of the function 
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If 𝑓(𝑥) can be expressed as an infinite Maclaurin’s series, then

 Can 𝑓(𝑥) = 𝑒
0  

In this problem we need to
differentiability on its domain.

At the point 𝑥 = 0, we can observe the limit of the function as

As the limit of the given functi
established, so the given function can not be expanded by Maclaurin’s theorem

 Can 𝑓(𝑥) = √𝑥  

Clearly the function is a continuous one on its domain

We have 

Clearly 𝑓 (0), 𝑓 (0), …

 Use Maclaurin’s theorem to expand 

Differentiating both sides w.r.t.

𝑒 𝑦 = 𝑒  ---- 

Differentiating again both sides w.r.t.

can be expressed as an infinite Maclaurin’s series, then 

𝑓(𝑥) = 𝑓(0) + 𝑥𝑓 (0) +
𝑥

2!
𝑓 (0) + ⋯ 

       𝑥 ≠ 0
       𝑥 = 0

   be expanded by Maclaurin’s theorem? 

In this problem we need to check all the conditions first regarding the function’s continuity anf 
differentiability on its domain. 

we can observe the limit of the function as 

lim
→

𝑓(𝑥) = lim
→

𝑒 = lim
→

(1 +
1

𝑥
+

1

2𝑥
+

1

6𝑥
+ ⋯ ) = ∞ 

As the limit of the given function is not defined at 𝑥 = 0, the continuity of the function can not be 
established, so the given function can not be expanded by Maclaurin’s theorem

  be expanded by Maclaurin’s theorem? 

Clearly the function is a continuous one on its domain. Let us check the differentiability also. 

𝑓 (𝑥) =
1

2
𝑥 =

1

2√𝑥
 

𝑓 (𝑥) = −
1

4
𝑥 = −

1

4𝑥√𝑥
 

⋮ 

( ) … do not exist. 

Use Maclaurin’s theorem to expand 𝑦 = log(1 + 𝑒 )      ------ (1) 

⇒ 𝑒 = 1 + 𝑒
 

Differentiating both sides w.r.t.𝑥 

 (2) 

Differentiating again both sides w.r.t.𝑥 

Check the lim → 𝑅  

If lim → 𝑅 vanishes, then the function can be 
expressed as a power series 

check all the conditions first regarding the function’s continuity anf 

, the continuity of the function can not be 
established, so the given function can not be expanded by Maclaurin’s theorem 

. Let us check the differentiability also.  

vanishes, then the function can be 
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𝑒 𝑦 + 𝑒 𝑦 = 𝑒   ---- (3) 

Differentiating again both sides w.r.t.𝑥 

𝑒 𝑦 + 3𝑦 𝑦 𝑒 + 𝑒 𝑦 = 𝑒  ---- (4)  

Differentiating again both sides w.r.t.𝑥 

𝑒 𝑦 + 𝑦 𝑒 𝑦 + 3 𝑦 𝑦 𝑒 𝑦 + 𝑒 (𝑦 𝑦 + 𝑦 )

Put 𝑥 = 0 in (1), (2), (3), (4) and (5) 

(1) ⇒ (𝑦) = log 2 

(2) ⇒ (𝑦 ) = =  

(3) ⇒ 𝑒 𝑦 + 𝑒 = 1 

(4) ⇒ 2𝑦 + 3 2 + 2 = 1 

(5) ⇒ (𝑦 ) = −  

∴  By Maclaurin

𝑦 = (𝑦) +

log(1 + 𝑒 ) = 𝑙𝑜𝑔

 Can 𝑓(𝑥) = 𝑒        𝑥 ≠ 0
0        𝑥 = 0

  be expanded by Maclaurin’s theorem?

Let 𝑓(𝑥) = 𝑒 , 𝑥 ≠ 0 

Let us look into the differentiability of the function at 

lim
→

𝑓 (0)

Substituting = 𝜃, we can write 

lim
→

𝑓

=

 

lim
→

𝑓 (0)

=

Also, 𝑓 (𝑥) = 𝑒 , 𝑥 ≠ 0 

lim

Substituting = 𝑡 
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) + 𝑒 3𝑦 𝑦 + 𝑦 𝑒 𝑦 = 𝑒  ---- (5) 

(𝑦 ) =
1

4
 

2𝑦 +
3

4
+

1

4
= 1  

(𝑦 ) = 0 

By Maclaurin's theorem 

+ 𝑥 (𝑦 ) +
𝑥

2!
(𝑦 ) + ⋯ 

𝑙𝑜𝑔2 +
1

2
𝑥 +

1

8
𝑥 −

1

192
𝑥 + ⋯ 

be expanded by Maclaurin’s theorem? 

Let us look into the differentiability of the function at 𝑥 = 0 

( ) = lim
→

𝑓(0 + ℎ) − 𝑓(0)

ℎ
 

= lim
→

𝑒

ℎ
 

𝑓 (0) = lim
→

𝑒

1/𝜃
 

= lim
→

𝜃

𝑒
 

lim
→

1

2𝜃𝑒
= 0 

( ) = lim
→

𝑓(0 − ℎ) − 𝑓(0)

−ℎ
 

= lim
→

𝑒

−ℎ
= 0 

∴ 𝑓 (0) = 0 

lim
→

𝑓 (𝑥) = lim
→

2

𝑥
𝑒  

 
Notes 
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lim
→

𝑓 (𝑥) = lim
→

2𝑡

𝑒
= 0 = 𝑓′(0) 

Therefore the function is continuous at 𝑥 = 0. 

If we find the higher derivative of 𝑓(𝑥)for 𝑥 ≠ 0, we will get 𝑒  multiplied by a 
polynomial in . 
Therefore, higher derivatives of 𝑓(𝑥)will be zero at 𝑥 = 0. 
So, the function possesses continuous derivatives for every value of 𝑥. 
By Maclaurin’s theorem 

𝑓(𝑥) = 𝑓(0) + 𝑥𝑓 (0) +
𝑥

2!
𝑓 (0) + ⋯ +

𝑥

(𝑛 − 1)!
𝑓 (0) + 𝑅  

and so𝑒 = 0 + 𝑥. 0 +
𝑥

2!
. 0 + ⋯

𝑥

(𝑛 − 1)!
. 0 + 𝑅  

i.e.𝑅 = 𝑒  
𝑅 does not approach to zero as 𝑛 approaches to infinity. 
Therefore, 𝑓(𝑥) can not be expanded by Maclaurin’s theorem 

 

Summary 

In this unit, we learnt about the finite form of Taylor’s and Maclaurin’s theorem. 

 The Taylor’s theorem states that, if a function 𝑓 is such that 
(i) the (𝑛 − 1)   derivative 𝑓  is continuous in [𝑎, 𝑎 + ℎ], 
(ii) the 𝑛  derivative 𝑓  exists in (𝑎, 𝑎 + ℎ) and 
(iii) 𝑝 is a given positive integer 

Then there exists at least one 𝜃 ∈ (0,1) such that 

𝑓(𝑥) = 𝑓(𝑎) + (𝑥 − 𝑎)
𝑓 (𝑎)

1!
+ (𝑥 − 𝑎)

𝑓 (𝑎)

2!
+ ⋯ + (𝑥 − 𝑎)

𝑓 (𝑎)

𝑛!

+
(𝑥 − 𝑎) (1 − 𝜃)

(𝑛 − 1)! 𝑝
𝑓 (𝑎 + 𝜃(𝑥 − 𝑎)) 

 The Taylor’s theorem with Lagrange’s form of remainder is given as,  

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + ℎ
𝑓 (𝑎)

1!
+ ℎ

𝑓 (𝑎)

2!
+ ⋯ + ℎ

𝑓 (𝑎)

(𝑛 − 1)!
+

ℎ

𝑛!
𝑓 (𝑎 + 𝜃ℎ) 

 The Taylor’s theorem with Cauchy’s form of remainder is given as,  

𝑓(𝑎 + ℎ) = 𝑓(𝑎) + ℎ
𝑓 (𝑎)

1!
+ ℎ

𝑓 (𝑎)

2!
+ ⋯ + ℎ

𝑓 (𝑎)

(𝑛 − 1)!
+

ℎ (1 − 𝜃)

(𝑛 − 1)!!
𝑓  (𝑎 + 𝜃ℎ) 

 For the Maclaurin’s theorem with Lagrange and Cauchy’s form of remainder, 
substitute𝑎 = 0 and ℎ = 𝑥 in the above expressions.  

 

Keywords 

Taylor’s theorem, Maclaurin’s theorem, Lagrange’s form of remainder, Cauchy’s form of 
remainder, Taylor’s series, Maclaurin’s series 

 

Self Assessment 

1. If a function 𝑓 is derivable then which of the following is true? 
A. 𝑓 is defined 
B. 𝑓 is defined and is continuous in a neighborhood of a point 𝑐 
C. 𝑓 is defined and is uniformly continuous in a neighborhood of a point 𝑐 
D. none of these 

 
2. Expansion of function f(x) is? 

A. 𝑓(0) +
!
𝑓 (0) +

!
𝑓 (0) + ⋯ +

!
𝑓 (0) 

B. 1 +
!
𝑓 (0) +

!
𝑓 (0) + ⋯ +

!
𝑓 (0) 

C. 𝑓(0) −
!
𝑓 (0) +

!
𝑓 (0) − ⋯ +

!
𝑓 (0) 

D. 𝑓(1) +
!
𝑓 (1) +

!
𝑓 (1) + ⋯ +

!
𝑓 (1) 

 

99



Unit 10: Maclaurin’s and Taylor’s Theorems  

 LOVELY PROFESSIONAL UNIVERSITY  

Notes 

3. The necessary condition for the Maclaurin expansion to be true for function f(x) is that 
A. f(x) should be continuous 
B. f(x) should be differentiable 
C. f(x) should exist at every point 
D. f(x) should be continuous and differentiable 

 
4. The expansion of f(a+h) is 

A. 𝑓(𝑎) −
!
𝑓 (a) +

!
𝑓 (a) − ⋯ +

( )

!
𝑓 (a) 

B. ℎ𝑓(𝑎) +
!
𝑓 (a) +

!
𝑓 (a) + ⋯ +

!
𝑓 (a) 

C. 𝑓(ℎ) +
!
𝑓 (h) +

!
𝑓 (ℎ) + ⋯ +

!
𝑓 (h) 

D. 𝑓(𝑎) +
!
𝑓 (a) +

!
𝑓 (a) + ⋯ +

!
𝑓 (a) 

 
5. The expansion of 𝑒  is 

A. 1 + + + + ⋯ 

B. 1 − + + + ⋯ 

C. 1 + − + + ⋯ 

D. 1 + + − + ⋯ 

 

6. The (𝑛 + 1)  term in the generalized mean value theorem or the Taylor theorem for the 
function 𝑓(𝑎 + ℎ) is 

A. 
( )

( )!
𝑓 (𝑎 + 𝜃ℎ) 

B. 
( )

( )!
𝑓 (𝑎 + 𝜃ℎ) 

C. 
( )

( )!
𝑓 (𝑎 + 𝜃ℎ) 

D. 
( )

( )!
𝑓 (𝑎 − 𝜃ℎ) 

 

7. In the expression 
( )

( )!
𝑓 (𝑎 + 𝜃ℎ) which of the following is true for the 𝜃 value? 

A. 𝜃 ∈ [0,1] 
B. 𝜃 ∈ (0,1) 
C. 𝜃 can take any value 
D. 𝜃 > 0 

 

8. The expression 
( )

( )!
𝑓 (𝑎 + 𝜃ℎ) is known as 

A. Remainder term 
B. Remainder after n terms 
C. Remainder after n+1 terms 
D. Remainder after n-1 terms 

 

9. 
( )

( )!
𝑓 (𝑎 + 𝜃ℎ) is due to 

A. Schlomilch 
B. Lagrange 
C. Schlomilch and Roche 
D. Cauchy 

 
10. 

 ! 
𝑓 (𝑎 + 𝜃ℎ) is the remainder after n terms due to 

A. Schlomilch 
B. Lagrange 
C. Schlomilch and Roche 
D. Cauchy 

 
11. The Taylor’s theorem with Lagrange’s form of remainder for a function 𝑓(𝑥) will fail for 

those values of 𝑥  for which 
I. 𝑓(𝑥) or any of its differential coefficients becomes infinite 
II. 𝑓(𝑥) or any of its differential coefficients becomes discontinuous 
III. The remainder term is non-zero as 𝑛 → ∞ 
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A. Only I  is true 
B. Only II is true 
C. II and III are true 
D. I, II and III are true  

 

12. The expression 
( )

( )!
𝑓 (𝑎 + 𝜃ℎ) is known as 

A. Remainder term 
B. Remainder after n terms 
C. Remainder after n+1 terms  
D. Remainder after n-1 terms 

 

13. 
( )

( )!
𝑓 (𝑎 + 𝜃ℎ) is due to 

A. Schlomilch 
B. Lagrange 
C. Schlomilch and Roche 
D. Cauchy 

 

14. The function 𝑓(𝑥) = 𝑒 ,   𝑥 ≠ 0
0,    𝑥 = 0

    can be expanded by Maclaurin’s theorem. 

A. True 
B. False 

 

15. The function 𝑓(𝑥) = √𝑥   can be expanded by Maclaurin’s theorem. 
A. True 
B. False 

 

Answer for Self Assessment 

1.  B 2. A 3. D 4. D 5. D 

6. C 7. B 8. B 9. C 10. B 

11. D 12. B 13. D 14. B 15. B 

 

 
Review Questions 

1. Expand cos 𝑥 by Maclaurin’s series. 
2. Expand log(1 + 𝑥) by Maclaurin’s theorem. 
3. Expand log(𝑥 + 𝑎)in the powers of 𝑥 by Taylor’s theorem. 
4. Expand log sin 𝑥 in powers of (𝑥 − 2). 
5. Expand sin (𝑥 + ℎ) in powers of 𝑥 till the power of 𝑥 . 
6. Expand tan 𝑥 in the powers of 𝑥 − . 
7. Differentiate in the Taylor’s theorem with the Lagrange’s and Cauchy’s form of remainder. 
8. Differentiate in the Maclaurin’s theorem with the Lagrange’s and Cauchy’s form of 

remainder. 

9. By Maclaurin’s theorem, find first three non vanishing terms in the expansion of . 
10. Expand 𝑒 cos 𝑥 in the form of a power series. 
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Objectives 

Students will be able to 

• derive necessary and sufficient condition for extreme values 

• apply the first derivative test to find maxima and minima 

• apply the second derivative test to calculate the maximum and minimum value of a 

function 

 

Introduction 

In this unit, we will see one very interesting application of calculus, and it is called the maxima and 
minima of a function. When one says, Mount Everest or Mariana Trench, what comes to your 
mind? You think of a high point on the surface of Earth, and a low point on the surface of Earth. So 
if you can draw the Earth's topography, the highest point will refer to a place which is a mountain, 
and that gives you the idea of the maximum height for any object on the earth. Similarly, the 
minimum height or you can say the maximum depth is at the Mariana Trench, so these ideas of 
maximum and minimum are inherently there in our daily lives. We can see one more example to 
understand the topic better.  

The adjacent graph is about a cricket match between Australia and India. The blue one is 
representing the run rate of India and the green one is representing the run rate of Australia, with 
respect to the overs. By mathematical 
modeling, we can write the run rate in 
terms of overs, i.e. a function can be 
framed or we can define some formula 
in such a way that run rate, say ‘y’, 
can be written in terms of ‘x’ where x 
is the overs. 

Here the graph is available, on the 
basis of the data of the actual match. 
In the first over the run rate for the 
Australian team was two only. And in 
the first over the run rate for Indian 
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team was seven. In the very first over, India's run rate was maximum and then it fell down, and 
then it rose up at a particular over (which one?), and then it rose then fell down then even more 
down then it was constant for some time, and you can see the minimum run rate was at 11th over. 
Just by looking at the graph it is quite clear, that for Australia, the minimum run rate was at the 
second over, and the maximum was around at 10th over. So this is how, if we have a function we 
can draw it and then from there, by just looking at the graph, we can tell about the maximum and 
the minimum value of the function. But there should be a mathematical technique to deal with it, 
without plotting the graphs! In this unit, we will look into how one can find the maximum and 
minimum value of a function of one variable. 

A high point is called a maximum (plural maxima).A low point is called a minimum (plural 
minima).The general word for maximum or minimum is extremum (plural extreme).We say local 
maximum (or minimum) when there may be higher (or lower) points elsewhere but not nearby. 

Local maximum and minimum points are quite distinctive on the graph of a function, and are 
therefore useful in understanding the shape of the graph. In many applied problems we want to 
find the largest or smallest value that a function achieves (for example, we might want to find the 
minimum cost at which some task can be performed) and so identifying maximum and minimum 
points will be useful for applied problems as well. 

 

11.1 Absolute and Local Maximum / Minimum 

A function f has an absolute maximum (also called global maximum) at c if f (c) ≥ f (x) for all x in its 
domain, D.  The value f (c) is called the maximum value of f.  A function f has an absolute minimum 
(or global minimum) at c if f (c) ≤ f (x) for all x in its domain.  Such a value f (c) is called the 
minimum value of f.  The maximum and minimum values of f are called the extreme values of f.  

Whereas a function f has a local maximum (or relative maximum) at c if f (c) ≥ f (x) when x near c.  
That is, f (c) ≥ f (x) for all x on some open interval containing c.  Similarly, f has a local minimum (or 
relative minimum) at c if f (c) ≤ f (x) when x near c.   

Before proceeding, let’s note two important issues regarding this definition. First, the term absolute 
here does not refer to absolute value. An absolute extremum may be positive, negative, or zero. 
Second, if a function  𝑓has an absolute extremum over an interval 𝐼 at 𝑐the absolute extremum 
is𝑓(𝑐) . The real number 𝑐is a point in the domain at which the absolute extremum occurs. 

A function may have both an absolute maximum and an absolute minimum, just one extremum, or 
neither. However, the following theorem, called the Extreme Value Theorem, guarantees that a 
continuous function 𝑓(𝑥)over a closed, bounded interval [𝑎, 𝑏]has both an absolute maximum and 
an absolute minimum. 

The Extreme Value Theorem:  If f  is continuous on a closed interval [a, b] , then there exist (at least) 
a point c where f  attains its maximum value, f (c), on the interval, and (at least) a point d where f  
attains its minimum value, f (d), on the interval.  

This means that if both of the following conditions: (1)  the interval is closed, and (2)f  is continuous 
on it, are met, then f  is guaranteed to have (at least) one absolute maximum and one absolute 
minimum points on the interval.  If either condition fails, then the existence of max / min points is 
not guaranteed. 

 

11.2 A necessary Condition for Extreme Values 

A necessary condition for 𝑓(𝑐) to be an extreme value of 𝑓 is that 𝑓′(𝑐) = 0. 

Let 𝑓(𝑐) be a maximum value of 𝑓. Then there exists an open interval (𝑐 − 𝛿, 𝑐 + 𝛿)around 𝑐, such 
that if 𝑐 + ℎ is a number other than 𝑐 in (𝑐 − 𝛿, 𝑐 + 𝛿) , we have  

𝑓(𝑐 + ℎ) < 𝑓(𝑐) 

Here ℎ may be positive or negative. Thus 

ℎ > 0 ⇒
𝑓(𝑐 + ℎ) − 𝑓(𝑐)

ℎ
< 0 

 

ℎ < 0 ⇒
𝑓(𝑐 + ℎ) − 𝑓(𝑐)

ℎ
> 0 
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which implies that 

lim
ℎ→0+

𝑓(𝑐 + ℎ) − 𝑓(𝑐)

ℎ
≤ 0 and lim

ℎ→0−

𝑓(𝑐 + ℎ) − 𝑓(𝑐)

ℎ
≥ 0  

which will be true simultaneously if and only if 𝑓′(𝑐) = 0. 

Similarly the result holds if 𝑓(𝑐)a minimum value of is 𝑓. 

Note that, 𝑓′(𝑐) = 0  is not the sufficient condition for 
𝑓(𝑐) to be an extreme value it can be explained with an 
example. 

Consider 𝑓(𝑥) = 𝑥3 for 𝑥 = 0. 

𝑓′(𝑥) = 3𝑥2 

𝑓′(0) = 0 

Now 𝑥 > 0 ⇒  𝑓(𝑥) > 0 = 𝑓(0) 

𝑥 < 0 ⇒  𝑓(𝑥) < 0 = 𝑓(0) 

Therefore it can be seen that 𝑓(0) is not an extreme 
value even though 𝑓′(0) = 0. 

Prove that the function 𝑓 defined by 𝑓(𝑥) = 3|𝑥| +
4|𝑥 − 1|       ∀ 𝑥 ∈ 𝑅 has a minimum value 3 at 𝑥 = 1. 

We can rewrite the function by using the definition of modulus function as follows: 

𝑓(𝑥) =

{
 
 

 
 
4 − 7𝑥, 𝑥 < 0
4, 𝑥 = 0

4 − 𝑥, 0 < 𝑥 < 1
3, 𝑥 = 1

7𝑥 − 4, 𝑥 > 1

 

Clearly it can be seen that at 𝑥 = 1, the function has a maximum value equal to 3. 

A function is said to be stationary for 𝑐 and 𝑓(𝑐) a stationary value of 𝑓if 𝑓′(𝑐) = 0. The rate of 
change of a function is zero at the stationary point. 

 

Find the greatest and least value of the function 𝑓(𝑥) = 3𝑥4 − 2𝑥3 − 6𝑥2 + 6𝑥 + 1 in [0,2]. 

𝑓′(𝑥) = 12𝑥3 − 6𝑥2 − 12𝑥 + 6 

= 6(𝑥 − 1)(𝑥 + 1)(2𝑥 − 1) 

Now by the necessary condition for an extreme value, 𝑓′(𝑥) must be zero. And this gives 𝑥 =

1,−1,
1

2
. Since -1 is not in the domain of the function, this value can be ignored. The other two 

numbers are the candidates to be the point of maximum or minimum value of the function. 

𝑓(1) = 2 

𝑓 (
1

2
) =

39

16
= 2.43 

Moreover we must check the value of the function at the end points of the domain also. 

𝑓(0) = 1 

𝑓(2) = 21 

Thus the function has its maximum value at 𝑥 = 2 and minimum value at 𝑥 = 0. 

 

11.3 Sufficient Condition for Extreme Value 

𝑓(𝑐)is an extreme value of 𝑓 if and only if 𝑓′(𝑥) changes sign as 𝑥 passes through 𝑐. 
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Fermat’s Theorem (test for local extreme values):  If f has a local maximum or minimum at c, and if 
f ′(c) exists, then f ′(c) = 0. 

Note:  Therefore, it follows that a local extreme point can only occur at places where either f ′(x) = 0 
or f ′(x) is undefined (i.e., either at a point where the tangent line is horizontal, or at a non-
differentiable point).  Examples: f (x) = (x − 2)2, at x = 2; g(x) =│x│, at x = 0. 

Note:  The converse is not always true: the fact that f ′(c) = 0, or that f ′(c) does not exist, does NOT 
guarantee that c is a local extreme point of f.  Example: f (x) = x3, at x = 0.  

A critical point or critical number of a function f  is a point  x = c in the domain of f  such that either 
f ′(c) = 0 or f ′(c) does not exist. 

Note: The critical points are all the candidate points for local maximum / minimum of f .  That is, 
every local extreme point is a critical point, but not every critical point is a local extreme point.  
Naturally, the maximum/ minimum points of f have to be in the domain of f , i.e. they are points on 
the graph of f.  Therefore, for example, if f is undefined at an infinite discontinuity then the point of 
discontinuity is not a critical point even though f ′ does not exist there. 

Steps to find the absolute maximum and minimum values of a continuous function f  
on a closed interval: 

1.  Find all critical points of f  in the given interval. 

2.  Evaluate f  at the critical point(s) found in step 1, as well as at the two endpoints of the interval. 

3.  The point(s) of the largest value of f  is the absolute maximum(s), the point(s) of the smallest 
value is the absolute minimum(s). 

Let us understand this by an example.  

Examine the polynomial 𝑓(𝑥) = 10𝑥6 − 24𝑥5 + 15𝑥4 − 40𝑥3 + 108 for maximum and 
minimum value 

Here 𝑓′(𝑥) = 60𝑥2(𝑥2 + 1)(𝑥 − 2) 

For maximum and minimum value 𝑓′(𝑥) = 0  implies that 𝑥 = 0, 2 are the only real values. 

Now 𝑥 < 0 ⇒ 𝑓′(𝑥) < 0 

0 < 𝑥 < 2 ⇒ 𝑓′(𝑥) < 0and 

𝑥 > 2 ⇒ 𝑓′(𝑥) > 0 

Therefore 𝑓′(𝑥) does not change sign as 𝑥 passes through 0, so that 𝑓(0) is neither a maximum nor a 
minimum value and 𝑓′(𝑥) changes the sign from negative to positive as 𝑥 passes through 2. 

∴ 𝑓(2) = −100is the minimum value. 

∴ 𝑓(𝑥)has only one extreme value i.e. at 2. 

Find all local maximum and minimum points for the function 

𝑓(𝑥) = 𝑥3 − 𝑥 

 The derivative is𝑓′(𝑥) = 3𝑥2 − 1.  

This is defined everywhere and is zero at 𝑥 = ±
1

√3
.  

Looking first at 𝑥 =
1

√3
.  we see that 𝑓 (

1

√3
) = −

2√3

9
.  

Now we test two points on either side of 𝑥 =
1

√3
, making sure that neither is farther away than the 

nearest critical value; since √3 < 3,
1

√3
< 1 and we can use 𝑥 = 0 and 𝑥 = 1 .  

Since 𝑓(0) = 0 > −
2√3

9
and𝑓(1) = 0 > −

2√3

9
, there must be a local minimum at𝑥 =

1

√3
.   

For𝑥 = −
1

√3
., we see that(−

1

√3
) =

2√3

9
. 

This time we can use 𝑥 = 0and 𝑥 = −1. 
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We find that(−1) = 𝑓(0) = 0 <
2√3

9
, so there must be a local maximum at 𝑥 = −

1

√3
.   

This example is made very simple by our choice of points to test, for other choice of points the 
calculations would have been comparatively lengthy. 

11.4 Second Order Derivative Test 

Theorem: 𝑓(𝑐) is a minimum value of the function 𝑓 if 𝑓′(𝑐) = 0 and𝑓′′(𝑐) > 0. 

Proof:𝑓′′(𝑐) > 0 ⇒ ∃ an open interval(𝑐 − 𝛿, 𝑐 + 𝛿) around 𝑐 for every point 𝑥 of which, the second 

derivative is positive. 

⇒𝑓′(𝑥)is strictly increasing in (𝑐 − 𝛿, 𝑐 + 𝛿). 

Also, 𝑓′(𝑐) = 0 

∴ 𝑓′(𝑥) < 0 ∀ 𝑥 ∈ [𝑐 − 𝛿, 𝑐) (strictly decreasing function) 

and 𝑓′(𝑥) > 0 ∀ 𝑥 ∈ [𝑐, 𝑐 + 𝛿)  (strictly  increasing function)  

⇒𝑓 (𝑐)is a minimum value of 𝑓(𝑥). 

Theorem: 𝑓(𝑐) is a maximum value of the function 𝑓 if 𝑓′(𝑐) = 0 and𝑓′′(𝑐) < 0. 

Proof: 𝑓′′(𝑐) < 0 ⇒ ∃ an open interval(𝑐 − 𝛿, 𝑐 + 𝛿) around 𝑐 for every point 𝑥 of which, the second 

derivative is negative. 

⇒𝑓′(𝑥)is strictly decreasing in (𝑐 − 𝛿, 𝑐 + 𝛿). 

Also, 𝑓′(𝑐) = 0 

∴ 𝑓′(𝑥) > 0 ∀ 𝑥 ∈ [𝑐 − 𝛿, 𝑐)(strictlyincreasing function) 

and 𝑓′(𝑥) < 0 ∀ 𝑥 ∈ [𝑐, 𝑐 + 𝛿) (strictly decreasing function) 

⇒𝑓 (𝑐)is a maximum value of 𝑓(𝑥). 

So, from now onwards we can follow the following steps to find the maximum / minimum of a 
function: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Find the first derivative of the 
function   

Equate the first derivative to zero 
and find all the critical points 

Calculate the second order derivative 
of the function 

For each critical value, find the value of the 
value of the second order derivative and 

decide for maximum/minimum 
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Show that the maximum value of (
1

𝑥
)
𝑥
 is 𝑒

1

𝑒 . 

Let 𝑦 = (
1

𝑥
)
𝑥
 

log 𝑦 = −𝑥 𝑙𝑜𝑔𝑥 

Differentiating both sides w.r.t.𝑥. 

𝑑𝑦

𝑑𝑥
= −(1 + log 𝑥) (

1

𝑥
)
𝑥

 

Applying the necessary condition for extreme values, we get 

log 𝑥 = −1 

𝑥 = 𝑒−1 

Now by the sufficient condition, we can check if the point 𝑥 = 𝑒−1 is the point of maximum or a 
point of minimum or neither of them. 

At = 𝑒−1 ,
𝑑2𝑦

𝑑𝑥2
= −𝑒. 𝑒

1

𝑒 < 0 

Therefore 𝑦 has a maximum for 𝑥 = 𝑒−1 and the maximum value is  𝑒
1

𝑒. 

Find the maximum and minimum value of the function𝑓(𝑥) = 8𝑥5 − 15𝑥4 + 10𝑥2. 

The given function is 𝑓(𝑥) = 8𝑥5 − 15𝑥4 + 10𝑥2 

𝑓′(𝑥) = 40𝑥4 − 60𝑥3 + 20𝑥 

= 20𝑥(2𝑥3 − 3𝑥2 + 1) 

= 20𝑥(𝑥 − 1)2(2𝑥 + 1) 

Putting 𝑓′(𝑥) = 0 for the critical points, we get 

𝑥 = 0, 1,−
1

2
 

Now these three points are the candidates to be the point of maximum or minimum or neither of 
them. Let’s check with the help of the second derivative test. 

We have 

𝑓′′(𝑥) = 160𝑥3 − 180𝑥2 + 20 

𝑓′′(𝑥)(𝑎𝑡 𝑥 = 0) = 20 > 0 ⇒  𝑥 = 0 is a point of minimum 

𝑓′′(𝑥)(𝑎𝑡 𝑥 = 1) = 0 ⇒  𝑥 = 1 is neither a point of minimum nor of maximumbecause𝑓′(𝑥) does not 

change sign as 𝑥 passes through 1. 

𝑓′′(𝑥) (𝑎𝑡 𝑥 = −
1

2
) = −45 <  0 ⇒  𝑥 = −

1

2
is a point of maximum. 

 

 Find the absolute maximum and minimum points of f (x) = 4 − x2 on each of the intervals (i) 
[−3, 1] and (ii) [2, 5]. 

If the second derivative comes out to 
be zero, then use the first derivative 

test 
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f ′(x) = −2x 

f ′ = 0 at x = 0 which is the only critical point because f  is a polynomial, therefore, it has no non 
differentiable points. 

(i)  Evaluate f  at the critical point 0 and the endpoints −3 and 1: 

f (−3) = −5,      f (0) = 4,       f (1) = 3 

Therefore, the absolute maximum point is (0, 4), and the absolute minimum point is (−3, −5). 

(ii)  The critical point x = 0 is not in this interval, therefore, just evaluate f  at the endpoints 2 and 5: 

f (2) = 0,      f (5) = −21 

Therefore, the absolute maximum point is (2, 0), and the absolute minimum point is (5, −21). 

 

Summary 

In this unit we have seen how to calculate the maximum and minimum of a function if they exist.  

• A function f  has an absolute maximum (also called global maximum) at c if f (c) ≥ f (x) for 

all x in its domain. 

• A function f  has an absolute minimum (or global minimum) at c if f (c) ≤ f (x) for all x in its 

domain.   

• The maximum and minimum values of f  are called the extreme values of f.  

• If f  is continuous on a closed interval [a, b] , then there exist (at least) a point c where f  

attains its maximum value, f (c), on the interval, and (at least) a point d where f  attains its 

minimum value, f (d), on the interval.  

• 𝑓(𝑐) is an extreme value of 𝑓 if and only if 𝑓′(𝑥) changes sign as 𝑥 passes through 𝑐. 

• 𝑓(𝑐)is a minimum value of the function 𝑓 if 𝑓′(𝑐) = 0 and𝑓′′(𝑐) > 0. 

• 𝑓(𝑐)is a maximum value of the function 𝑓 if 𝑓′(𝑐) = 0 and𝑓′′(𝑐) < 0. 

 

Key Words 

Maxima, Minima, maximum of a function, minimum of a function, First derivative test, critical 
points, stationary points, second derivative test, Extreme value theorem, Fermat’s theorem 

 

Self Assessment 

1. What is the saddle point? 

A. Point where function has maximum value 

B.  Point where function has minimum value 

C. Point where function has zero value 

D. Point where function neither has maximum value nor minimum value 

 

2. Which of the following is correct? 

A. f(a) is an extreme value of f(x) if f '(a)=0 

B. If f(a) is an extreme value of f(x), then f '(a) = 0 

C. If f '(a) = 0, then f (a) is an extreme value of f(x) 

D. All of these 
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3. The maxima and minima of the function 𝑓(𝑥) = 2𝑥3 − 15 𝑥2 + 36𝑥 + 10  occur 

respectively at 

A. x= 3 and x = 2 

B. x= 3 and x = 2 

C. x = 2 and x = 3 

D. x = 3 and x = 4 

 

4. Find the maximum and minimum of 𝑓(𝑥) = 𝑥3 − 6𝑥2 + 9𝑥 + 1  on the interval [0, 5]. 

A. maximum of f is 21 and the minimum is 1 

B. maximum of f is 1 and the minimum is -21 

C. maximum of f is 20 and the minimum is 1 

D. maximum of f is 2 and the minimum is -11 

 

5. A necessary condition for 𝑓(𝑐) to be an extreme value of 𝑓 is that 

A. 𝑓′(𝑐) ≠ 0 

B. 𝑓(𝑐) = 0 

C. 𝑓′(𝑐) = 0 

D. 𝑓′′(𝑐) = 0 

 

6. The maximum value of 𝑠𝑖𝑛𝑥 + cos 𝑥 is  

A. 2 

B. √2 

C. 1 

D. 1 + √2 

 

7. The maximum value of 𝑓(𝑥) =
1

3
𝑥3 − 2𝑥2 + 3𝑥 + 1 is 

A. 3/7  

B. 7/3 

C. 1 

D. 7 

 

8. 𝑓(𝑐)is a minimum value of the function if  

A. 𝑓′(𝑐) = 0 𝑎𝑛𝑑𝑓′′(𝑐) > 0 

B. 𝑓′(𝑐) = 0 𝑎𝑛𝑑𝑓′′(𝑐) < 0 

C. 𝑓′(𝑐) = 0 𝑎𝑛𝑑𝑓′′(𝑐) = 0 

D. 𝑓′′(𝑐) > 0 

 

9. 𝑓(𝑐)is a maximum value of the function if  

A. 𝑓′(𝑐) = 0 𝑎𝑛𝑑𝑓′′(𝑐) > 0 

B. 𝑓′(𝑐) = 0 𝑎𝑛𝑑𝑓′′(𝑐) < 0 

C. 𝑓′(𝑐) = 0 𝑎𝑛𝑑𝑓′′(𝑐) = 0 

D. 𝑓′′(𝑐) < 0 

10. The maximum value of (
1

𝑥
)
𝑥
 is 
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A. 𝑒 

B. 𝑒
1

𝑒 

C. (
1

𝑒
)
𝑒
 

D. none of these 

11.  The saddle points for the function 10𝑥6 − 24𝑥5 + 15𝑥4 − 40𝑥3 + 108 are 

A. 0, 1, 2 

B. -1, 0, 2 

C. 1, 2 

D. 0, 2 

 

12.  The saddle points of the function 8𝑥5 − 15 𝑥4 + 10 𝑥2 are given as 

A. -1/2, 0 

B. 0, 1, ½  

C. -1/2, 0, 1 

D. none of these 

 

13.  For the function 8𝑥5 − 15 𝑥4 + 10 𝑥2, 𝑥 = 0 is 

A. a point of minimum 

B. a point of maximum 

C. point of inflexion 

D. none of these 

 

14. For the function8𝑥5 − 15 𝑥4 + 10 𝑥2, 𝑥 = −
1

2
  is 

A. a point of minimum 

B. a point of maximum 

C. point of inflexion 

D. none of these 

 

15. For the function8𝑥5 − 15 𝑥4 + 10 𝑥2, 𝑥 = 1  is 

A. a point of minimum 

B. a point of maximum 

C. point of inflexion 

D. neither a point of maximum nor a point of minimum 

 

Answer for Self Assessment 

1 D 2. D 3. C 4. A 5. C 

6. B 7. B 8. A 9. B 10. B 

11. D 12. C 13. C 14. B 15. D 
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Review Questions 

1. Find the absolute maximum and minimum values of f (x) = x3 − 27x + 8 on the interval [0, 

4]. 

2. Find the absolute maximum and minimum values of g(t) = t3/5 on the interval [−32, 1]. 

3. Find the maximum and minimum values of f (x) = x3 − 27x + 8. 

4. Find the maximum and minimum values of g(t) = t3/5 

5. Find the greatest and least value of the function 𝑥4 − 4𝑥3 − 2𝑥2 + 12𝑥 + 1 in the 

interval[−2, 5]. 

6. Find the greatest and least values of the function 2𝑥3 − 15𝑥2 + 36𝑥 + 1  in the interval 

[2, 3] as well as in the interval[0, 4]. 

7. Show that the function 𝑓(𝑥) = (𝑥 + 2)(𝑥 − 1)2(2𝑥 − 1)(𝑥 − 3) changes sign from positive 

to negative as 𝑥 passes through 
1

2
 and from negative to positive as 𝑥  passes through -2 or 

3. Also show that it does not change sign as 𝑥 passes through 1. 

8. Show that 𝑥5 − 5𝑥4 + 5𝑥2 − 1 has a maximum value when 𝑥 = 1,  a minimum value when 

𝑥 = 3 and neither when 𝑥 = 0. 

9. Show that the function𝑓 defined by  

𝑓(𝑥) = 𝑥𝑝(1 − 𝑥)𝑞  ∀ 𝑥 ∈ 𝑹 

where𝑝, 𝑞 are positive integers, has a maximum value for  

𝑥 =
𝑝

𝑝 + 𝑞
 ∀ 𝑝, 𝑞 

10. Find the extreme value of the expression: 

𝑥3

(𝑥4 + 1)
 

11. Determine the value of 𝑥 for which  
𝑥

1 + 𝑥𝑡𝑎𝑛𝑥
 

has a maximum value. 

12. Find the maximum and minimum value of𝑠𝑖𝑛𝑥 𝑐𝑜𝑠2𝑥. 

13. Show that a cubic polynomial can have at most two critical points. Give examples to show 

that a cubic polynomial can have zero, one, or two critical points. 

14. What can be said for a quadratic polynomial with respect to the critical points? 
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Objectives 

Students will be able to 

• calculate the curvature for different types of curves 

• distinguish between various kinds of asymptotes 

• find the asymptotes of a general algebraic curve 

• find the parallel and oblique asymptotes 

 

Introduction 

This unit is about two important 
applications of derivatives namely 
curvature and the asymptotes. Consider 
that you are having a road trip in a hilly 
region. Imagine the roads. You have the 
technique to measure the distance 
between any two points on a straight line. 
But how to measure the bend happening 
at a particular point needs some 
elaboration on curvature! Similarly 
another crucial feature of differential 
calculus is the concept of asymptotes. 
Basically it provides a frame for any curve 
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(if asymptotes exist). Both these concepts are very helpful to trace the curves. 

 

12.1 Curvature 

Curvature is the numerical measure of bending of a curve. At a particular point on the curve, a 
tangent can be drawn. Let this line makes an angle 𝜓 with positive x- axis. Then curvature is 
defined as the magnitude of rate of change of 𝜓with respect to the arc length 𝑠. 

 

The total bending or total curvature is Arc𝑃𝑄 or Angle Δ𝜓 

The average curvature is 
Δ𝜓

Δ𝑠
 

The curvature of the curve at P is lim
𝑄→𝑃

Δ𝜓

Δ𝑠
=  

d𝜓

d𝑠
 

It is quite intuitive that the smaller circle bends more sharply than larger circle and thus smaller 
circle has a larger curvature and larger the circle, smaller will be its curvature. 

Let us consider a circle with center 𝑂 and radius 𝑟. Let the arc𝑃𝑄 = Δ𝑠 

 

Angle 𝑃𝑂𝑄 =
Arc 𝑃𝑄

𝑂𝑃
 

Δ𝜓

Δ𝑠
=

1

𝑟
 

lim
𝑄→𝑃

Δ𝜓

Δ𝑠
=

𝑑𝜓

𝑑𝑠
=

1

𝑟
 

Therefore, curvature at any point of a circle is the reciprocalof the radius, and hence is a constant. 

 

12.2 Radius of Curvature 

The reciprocal of the curvature of a curve at any point in case it is non zero, is called its radius of 
curvature at that point. It is denoted generally by Greek alphabet𝜌(rho). 

𝜌 =
𝑑𝑠

𝑑𝜓
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Note that the radius refers to the distance between the center of a circle and any other point on the 
circumference of the circle. While the radius of curvature is the radius of the circle that touches the 
curve at a given point. Also, it has the same tangent and curvature at that point. 

The radius is of a real figure or shape whereas the radius of curvature is of an imaginary circle at a 
point on a given curve. 

 

Find the radius of curvature at any point for the curve  𝑠 = 𝑐 tan 𝜓 

We have 

𝜌 =
𝑑𝑠

𝑑𝜓
 

∴ 𝜌 = 𝑐 sec2 𝜓 

 

Find the radius of curvature at any point for the curve  𝑠 = 𝑐 log sec 𝜓 

We have 

𝜌 =
𝑑𝑠

𝑑𝜓
 

∴ 𝜌 = 𝑐 𝑡𝑎𝑛 𝜓 

 

12.3 Length of arc as a Function 

Let 𝑦 = 𝑓(𝑥) be the equation of the curve. 𝑃(𝑥, 𝑦)is any point on the curve such 
that the arc length 𝐴𝑃 = 𝑠. The point 𝑄(𝑥 + Δ𝑥, 𝑦 + Δ𝑦) is a point near point P on 
the curve. 

Then arc 𝐴𝑄 = 𝑠 + Δ𝑠 

So arc 𝑃𝑄 = Δ 𝑠 

In triangle 𝑃𝑄𝑁, 𝑃𝑄2 = (Δ𝑥)2 + (Δ𝑦)2 

(
𝑃𝑄

Δ𝑥
)

2

= 1 + (
Δ𝑦

Δ𝑥
)

2

 

On the left side introducing the arc 𝑃𝑄 in numerator and the denominator, we 
get 

(
chord𝑃𝑄

𝑎rc𝑃𝑄
)

2

(
Δ𝑠

Δ𝑥
)

2

= 1 + (
Δ𝑦

Δ𝑥
)

2

 

As 𝑄 → 𝑃, the chord 𝑃𝑄 and arc 𝑃𝑄 become almost same making the above expression as 

(
d𝑠

d𝑥
)

2

= 1 + (
d𝑦

d𝑥
)

2

 

d𝑠

d𝑥
= √1 + (

d𝑦

d𝑥
)

2
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Corollary: 1.  
𝑑𝑥

𝑑𝑠
= cos 𝜓,

𝑑𝑦

𝑑𝑠
= 𝑠𝑖𝑛𝜓 

2. For parametric equations with parameter 𝑡, 𝑥 = 𝑥(𝑡), 𝑦 = 𝑦(𝑡) 

(
d𝑠

d𝑡
)

2

= (
d𝑥

d𝑡
)

2

+ (
d𝑦

d𝑡
)

2

 

12.4 Radius of Curvature- Cartesian Equations 

Consider a curve 𝑦 = 𝑓(𝑥) 

We have tan 𝜓 =
𝑑𝑦

𝑑𝑥
 

Differentiating w.r.t. 𝑠 on both sides 

sec2  𝜓 
𝑑𝜓

𝑑𝑠
=

𝑑2𝑦

𝑑𝑥2

𝑑𝑥

𝑑𝑠
 

𝑑𝑠

𝑑𝜓
= 𝜌 =

(1 + 𝑦1
2)

3

2

𝑦2
 

If 𝑦2 > 0, 𝜌 > 0 at a point, then the curve will be concave upward at that point. 

If 𝑦2 < 0, 𝜌 < 0 at a point, then the curve will be concave downward at that point. 

∵ 𝜌is independent of the choice of x-axis and y-axis ∴ 𝜌 can also be given as 

𝜌 =
[1 + (

𝑑𝑥

𝑑𝑦
)

2
]

3

2

𝑑2𝑥

𝑑𝑦2

 

 Show that the curvature of the point (
3𝑎

2
,

3𝑎

2
) on the Folium 𝑥3 + 𝑦3 = 3𝑎𝑥𝑦is −

8√2

3𝑎
. 

Differentiation the equation of folium w.r.t. 𝑥, we get 

𝑑𝑦

𝑑𝑥
=

𝑎𝑦 − 𝑥2

𝑦2 − 𝑎𝑥
 

(
𝑑𝑦

𝑑𝑥
)

3𝑎

2
,
3𝑎

2

= −1 

And  

(
𝑑2𝑦

𝑑𝑥2)
3𝑎

2
,
3𝑎

2

= −
32

3𝑎
 

Therefore the curvature at the point (
3𝑎

2
,

3𝑎

2
) is 

1

𝜌
=

[1 + (
𝑑𝑥

𝑑𝑦
)

2
]

3

2

𝑑2𝑥

𝑑𝑦2

 

=  −
8√2

3𝑎
 

 

12.5 Radius of Curvature- Parametric Equations 

For a curve given by 𝑥 = 𝑓(𝑡), 𝑦 = 𝑔(𝑡), For 𝑓′(𝑡) ≠ 0 

𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑡
𝑑𝑥

𝑑𝑡

=
𝑔′(𝑡)

𝑓′(𝑡)
 

𝑑2𝑦

𝑑𝑥2
=

1

𝑓′(𝑡)
(

𝑓′(𝑡)𝑔′′(𝑡) − 𝑔′(𝑡)𝑓′′(𝑡)

𝑓′(𝑡)2 ) 
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∴ 𝜌 =
(𝑓′2(𝑡) + 𝑔′2(𝑡))

3

2

𝑓′(𝑡)𝑔′′(𝑡) − 𝑔′(𝑡)𝑓′′(𝑡)
 

 For the cycloid 𝑥 = 𝑎(𝑡 + 𝑠𝑖𝑛𝑡), 𝑦 = 𝑎(1 − cos 𝑡), prove that 𝜌 = 4 a cos
𝑡

2
. 

𝑑𝑥

𝑑𝑡
= 𝑎(1 + cos 𝑡) 

𝑑𝑦

𝑑𝑡
= 𝑎 sin 𝑡 

𝑑𝑦

𝑑𝑥
= tan

𝑡

2
 

𝑑2𝑦

𝑑𝑥2 =
1

2
sec2

𝑡

2

𝑑𝑡

𝑑𝑥
 

=
1

4𝑎

1

cos4 𝑡

2

 

The radius of curvature 𝜌 =  
[1+(

𝑑𝑥

𝑑𝑦
)

2
]

3
2

𝑑2𝑥

𝑑𝑦2

= 4𝑎 cos
𝑡

2
. 

 

12.6 Radius of Curvature- Polar Equations 

Let 𝑟 = 𝑓(𝜃) be the given curve. 

Let 𝑥 = 𝑟𝑐𝑜𝑠𝜃, 𝑦 = 𝑟𝑠𝑖𝑛𝜃 be the transformations. 

𝑑𝑥

𝑑𝜃
= 𝑟1𝑐𝑜𝑠𝜃 − 𝑟 sin 𝜃, 

𝑑𝑦

𝑑𝜃
= 𝑟1 sin 𝜃 + 𝑟 cos 𝜃 

∴ 𝑦1 =
𝑑𝑦

𝑑𝑥
=

𝑟1 sin 𝜃 + 𝑟 cos 𝜃

𝑟1𝑐𝑜𝑠𝜃 − 𝑟 sin 𝜃
 

𝑦2 =
𝑑2𝑦

𝑑𝑥2
=

(𝑟2 + 𝑟1
2)

3

2

(𝑟1𝑐𝑜𝑠𝜃 − 𝑟𝑠𝑖𝑛𝜃)3
 

where𝑟1 = 𝑓′(𝜃), 𝑟2 = 𝑓′′(𝜃) 

Thus the radius of curvature can be written as 

𝜌 =  
(𝑟2 + 𝑟1

2)
3

2

𝑟2 + 2𝑟1
2 − 𝑟 𝑟2

 

For the curve 𝑟𝑚 = 𝑎𝑚 cos 𝑚𝜃, prove that 𝜌 =
𝑎𝑚

(𝑚+1)𝑟𝑚−1. 

Taking logarithm on both sides of the given equation and then differentiating w.r.t. 𝜃, we get 

𝑚

𝑟

𝑑𝑟

𝑑𝜃
= −𝑚

𝑠𝑖𝑛 𝑚𝜃

𝑐𝑜𝑠𝑚𝜃
 

𝑟1 = −𝑟 tan 𝑚𝜃 

𝑟2 =
𝑑2𝑟

𝑑𝜃2 = −𝑟𝑚 𝑠𝑒𝑐2𝑚𝜃 + 𝑟 tan2 𝑚𝜃 

 

Using  

𝜌 =  
(𝑟2 + 𝑟1

2)
3

2

𝑟2 + 2𝑟1
2 − 𝑟 𝑟2

 

We get 

𝜌 = (𝑟3 sec3 𝑚𝜃) /(𝑟2 sec2 𝑚𝜃 + 𝑚𝑟2 sec2 𝑚𝜃)  

𝜌 =
1

𝑚 + 1

𝑎𝑚

𝑟𝑚−1 
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Hence the result! 

 In 1643, French mathematician Rene Descartes developed a 

formula relating the curvatures of four circles that all touch, or are 

tangent, to each other.   

Descartes’ Circle Equation Theorem: 

Given four mutually tangent circles with curvatures a, b, c, and 

d, then 

(a2 + b2 + c2 + d2) = (1/2) (a + b + c + d)2 

 

12.7 Asymptotes of a General Algebraic Curve 

The name ‘asymptote’ originated from Greek word asymptotes which means ‘not meeting’.An 
asymptote of a curve is a straight line such that the distance between the curve and the line 
approaches to zero as one or both of the x or y coordinates tend to infinity. Simply put,an 
asymptote is a line that a graph approaches without touching. 

In some case a curve may have a branch or branches extending beyond the finite region. In this case 
let P be a point on such a branch of the curve, having its coordinates (x,y) and if P moves along the 
curve, so that at least one of x and y tend to + ∞ or to -∞, then P is said to tend to infinity. 

A straight line is said to be an asymptote of a curve y = f (x), if the perpendicular distance of the 
point P (x,y) on the curve from the line tends to 0 when x or y or both tend to infinity.  

An asymptote parallel to y-axis may be referred as a vertical asymptote and parallel to x-axis as a 
horizontal asymptote. An asymptote which is not parallel to either axis may be described as an 
oblique asymptote and isgiven by y = mx + c. Only open curves which have some infinite branch 
can have an asymptote. No closed curve can have an asymptote.The curve and its asymptote get 
infinitely close, but they never meet.  

Their major applications involve their usage in big O notation, they are simple approximations to 
complex equations, and they are useful for graphing rational equations. In most cases, the 
asymptote(s) of a curve can be found by taking the limit of a value where the function is not 
defined.  

For example, a cissoids given by the equation 𝑦2(2 − 𝑥) = 𝑥3, can be drawn as given below. It is 
clear that the infinite branches of the curve seem to meet the straight line 𝑥 = 2. 

 

 

12.8 Determination of Asymptotes 

The general equation of a straight line is  

a

d

c

b
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𝑦 = 𝑚𝑥 + 𝑐 

Consider a point 𝑃 on the curve and let 𝑀 be the foot of the 
perpendicular from point 𝑃 on the straight line that can be an 
asymptote. As P(x, y) → ∞, x → ∞ 

The equation 𝑦 = 𝑚𝑥 + 𝑐 can be an asymptote of given curve if 
𝑝 = 𝑃𝑀 and 𝑃𝑀 ⊥ 𝑁𝑀. Then 

𝑝 =
|𝑦 − 𝑚𝑥 − 𝑐|

√1 + 𝑚2
 

Now 𝑝 → 0 as 𝑥 → ∞ 

∴  lim
𝑥→∞

𝑦 − 𝑚𝑥 − 𝑐 = 0 

𝐥𝐢𝐦
𝒙→∞

𝒚 − 𝒎𝒙 = 𝒄 

Also 
𝑦

𝑥
− 𝑚 = (𝑦 − 𝑚𝑥)

1

𝑥
 

lim
𝑥→∞

(
𝑦

𝑥
− 𝑚) = lim

𝑥→∞
(𝑦 − 𝑚𝑥). lim

𝑥→∞

1

𝑥
= 0 

This implies  

𝐥𝐢𝐦
𝒙→∞

𝒚

𝒙
= 𝒎 

Thus knowing 𝑚 and 𝑐, we can write 𝑦 = 𝑚𝑥 + 𝑐  as the equation of asymptote . 

 Examine the folium for asymptotes. 

The folium is given by the equation 𝑥3 + 𝑦3 − 3𝑎𝑥𝑦 = 0  ---- (1) 

or1 + (
𝑦

𝑥
)

3
− 3𝑎

𝑦

𝑥

1

𝑥
= 0      

 ---- (2) 

We will calculate the slope and the intercept in the general 
equation of a straight line under the definition of asymptote as 
derived in the section above.  

Let 𝑥 → ∞ then 𝐥𝐢𝐦
𝒙→∞

𝒚

𝒙
= 𝒎 

From equation (2) we can write 1 + 𝑚3 = 0  

𝑚 = −1 is the only real root. For this value of 𝑚, we can find the 
associated 𝑐. 

𝑐 = lim
𝑥→∞

(𝑦 + 𝑥) 

Put 𝑦 + 𝑥 = 𝑝 

As 𝑥 → ∞, 𝑝 → 𝑐 

Put 𝑦 = 𝑝 − 𝑥 in (1) 

𝑥3 + (𝑝 − 𝑥)3 − 3𝑎𝑥(𝑝 − 𝑥) = 0 

3(𝑝 + 𝑎) − 3𝑝(𝑝 + 𝑎)
1

𝑥
+

𝑝3

𝑥2 = 0 

As 𝑥 → ∞, 𝑝 → 𝑐 

3(𝑐 + 𝑎) = 0  

𝑐 = −𝑎 

∴ The equation of the asymptote is 𝑦 = −𝑥 − 𝑎. 

 

12.9 Asymptotes Parallel to the Coordinate Axis 

For asymptote parallel to the y axis:  
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Let 𝑥 = 𝑘     ----- (1) 

be the asymptote of the curve. As 𝑃(𝑥, 𝑦) → ∞ along the curve 𝑦 → ∞ and 𝑃𝑀 = 𝑥 − 𝑘 

lim
𝑦→∞

𝑥 − 𝑘 = 0 

lim
𝑦→∞

𝑥 = 𝑘which gives 𝑘. 

For a general formula we arrange the given curve in descending powers of 𝑦 i.e.  

𝑦𝑚𝜙(𝑥) + 𝑦𝑚−1𝜙1(𝑥) + 𝑦𝑚−2𝜙2(𝑥) + ⋯ = 0  ---- (2) 

where𝜙(𝑥),  𝜙1(𝑥), 𝜙2(𝑥) … are the polynomials in 𝑥. 

Dividing (2) by 𝑦𝑚, we get 

𝜙(𝑥) +
1

𝑦
𝜙1(𝑥) +

1

𝑦2
𝜙2(𝑥) + ⋯ = 0   ---- (3) 

Let 𝑦 → ∞ 

then lim
𝑦→∞

𝑥 = 𝑘 

𝜙(𝑘) = 0 

Therefore 𝑘 is the root of equation 𝜙(𝑥) = 0. Let 𝑘1, 𝑘2 etc. be the roots of 𝜙(𝑥) = 0, then the 
asymptote parallel to y-axis are 𝑥 = 𝑘1, 𝑥 = 𝑘2 etc. 

⇒ (𝑥 − 𝑘1)(𝑥 − 𝑘2)etc. are the factors of 𝜙(𝑥) which is the coefficient of highest power 𝑦𝑚 of y in the 

given equation. 

Similarly the derivation can be done for the asymptotes parallel to the x axis and can be 
summarized as the following rules: 

Rule 1: The asymptotes parallel to Y axis are obtained by equating to zero, the real linear factors in 
the coefficient of highest power of y, in the equation of the curve. 

Rule 2: The asymptotes parallel to X axis are obtained by equating to zero, the real linear factors in 
the coefficient of highest power of x, in the equation of the curve. 

Find the asymptote parallel to the coordinate axes of the curve 

(𝑥2 + 𝑦2)𝑥 − 𝑎𝑦2 = 0 

The equation can be re written as 

𝑥3 + 𝑦2(𝑥 − 𝑎) = 0 

Coefficient of highest power of 𝑥 is 1 and that cannot be equated to zero.  Therefore the asymptote 
parallel to the x-axis does not exist. 

 Coefficient of highest power of 𝑦 is 𝑥 − 𝑎 and equating it to zero gives 𝑥 − 𝑎 = 0.Therefore the 
asymptote parallel to the y-axis is 𝑥 = 𝑎. 

 

12.10 Oblique Asymptotes 

Asymptotes of the general rational algebraic equation 

Consider the equation 

𝑈𝑛 + 𝑈𝑛−1 + 𝑈𝑛−2 + ⋯ + 𝑈2 + 𝑈1 + 𝑈0 = 0   ---- (1)  

where𝑈𝑟  is a homogeneous expression of degree 𝑟 in 𝑥, 𝑦  and 𝑈𝑟 = 𝑥𝑟𝜙𝑟 (
𝑦

𝑥
) where 𝜙𝑟 (

𝑦

𝑥
) is a 

polynomial in 
𝑦

𝑥
 of degree 𝑟, at the most. 

Therefore (1) can be written as  

𝑥𝑛𝜙𝑛 (
𝑦

𝑥
) + 𝑥𝑛−1𝜙𝑛−1 (

𝑦

𝑥
) + ⋯ + 𝑥𝜙1 (

𝑦

𝑥
) + 𝜙0 (

𝑦

𝑥
) = 0   ---- (2)  

Dividing by 𝑥𝑛 

𝜙𝑛 (
𝑦

𝑥
) +

1

𝑥
𝜙𝑛−1 (

𝑦

𝑥
) + ⋯ +

1

𝑥𝑛−1
𝜙1 (

𝑦

𝑥
) +

1

𝑥𝑛
 𝜙0 (

𝑦

𝑥
) = 0  

and taking the limit 𝑥 → ∞, we get 
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𝜙𝑛(𝑚) = 0      ---- (3) 

which determines the slope of the asymptote. 

Let 𝑚1 be one of the roots of this equation so that 𝜙𝑛(𝑚1) = 0 

We can write 𝑦 − 𝑚1𝑥 = 𝑝1 

i.e.
𝑦

𝑥
= 𝑚1 +

𝑝1

𝑥
 

Substituting this in (2), we get 

𝑥𝑛𝜙𝑛 (𝑚1 +
𝑝1

𝑥
) + 𝑥𝑛−1𝜙𝑛−1 (𝑚1 +

𝑝1

𝑥
) + ⋯ + 𝑥𝜙1 (𝑚1 +

𝑝1

𝑥
) + 𝜙0 (𝑚1 +

𝑝1

𝑥
) = 0   

Expanding each term by Taylor’s theorem and re arranging the terms, we get 

𝑥𝑛𝜙𝑛(𝑚1) + 𝑥𝑛−1(𝑝1𝜙𝑛
′ (𝑚1) + 𝜙𝑛−1(𝑚1)) + 𝑥𝑛−2 (

𝑝1
2

2
𝜙𝑛

′′(𝑚1) + 𝑝1𝜙𝑛−1
′ (𝑚1) + 𝜙𝑛−2(𝑚1)) + ⋯ = 0  

Putting 𝜙𝑛(𝑚1) = 0 and dividing by 𝑥𝑛−1, we get  

(𝑝1𝜙𝑛
′ (𝑚1) + 𝜙𝑛−1(𝑚1)) +

1

𝑥
(

𝑝1
2

2
𝜙𝑛

′′(𝑚1) + 𝑝1𝜙𝑛−1
′ (𝑚1) + 𝜙𝑛−2(𝑚1)) + ⋯ = 0 

Let 𝑥 → ∞, we write lim 𝑝1 = 𝑐1 

∴ 𝑐1𝜙𝑛
′ (𝑚1) + 𝜙𝑛−1(𝑚1) = 0 

or𝑐1 = −
𝜙𝑛−1(𝑚1)

𝜙𝑛
′ (𝑚1)

,      provided 𝜙𝑛
′ (𝑚1)≠0  

Therefore 𝑦 = 𝑚1𝑥 −
𝜙𝑛−1(𝑚1)

𝜙𝑛
′ (𝑚1)

 is the asymptote corresponding to slope𝑚1. 

Similarly, 𝑦 = 𝑚2𝑥 −
𝜙𝑛−1(𝑚2)

𝜙𝑛
′ (𝑚2)

, 𝑦 = 𝑚3𝑥 −
𝜙𝑛−1(𝑚3)

𝜙𝑛
′ (𝑚3)

 etc. are the asymptotes corresponding to 𝑚2, 𝑚3 

etc. which are the roots of 𝜙𝑛(𝑚) = 0, such that the denominator of the fractions is non zero. 

When 𝜙𝑛
′ (𝑚1) = 0  and 𝜙𝑛−1(𝑚1) ≠ 0 

There does not exist any value of 𝑐1. So there is no asymptote corresponding to the slope 𝑚1. 

Now suppose that 𝜙𝑛
′ (𝑚1) = 0 =  𝜙𝑛−1(𝑚1), then we can write 

𝑝1
2

2
𝜙𝑛

′′(𝑚1) + 𝑝1𝜙𝑛−1
′ (𝑚1) + 𝜙𝑛−2(𝑚1) + (… )

1

𝑥
+ ⋯ = 0   

Taking the limit as 𝑥 → ∞, we get 𝑐1 is a root of the equation, 

𝑐1
2

2
𝜙𝑛

′′(𝑚1) + 𝑐1𝜙𝑛−1
′ (𝑚1) + 𝜙𝑛−2(𝑚1) = 0 

which determines two values of 𝑐1 say 𝑐1
′ and 𝑐1

′′, provided that 𝜙𝑛
′′(𝑚1) ≠ 0. 

Therefore 𝑦 = 𝑚1𝑥 + 𝑐1
′  

and𝑦 = 𝑚1𝑥 + 𝑐1
′′ are the two asymptotes corresponding to the slope 𝑚1 and this is also known as 

the case of parallel asymptotes. 

Steps to find oblique asymptotes: 

1. Put 𝑥 = 1, 𝑦 = 𝑚 in the highest degree term to get 𝜙𝑛(𝑚) . 

2. Similarly find 𝜙𝑛−1(𝑚), 𝜙𝑛−2(𝑚) etc. 

3. Equate 𝜙𝑛(𝑚) = 0 , solve for the real values of 𝑚. 

4. Find the corresponding value of intercept say, 𝑐1for the slope 𝑚1 using 𝑐1 = −
𝜙𝑛−1(𝑚1)

𝜙𝑛
′ (𝑚1)

 

5. Then 𝑦 = 𝑚𝑥 + 𝑐 is the required asymptote. 

6. For the case of 𝜙𝑛
′ (𝑚1) = 0 =  𝜙𝑛−1(𝑚1), find 𝑐1 by the relation  

𝑐1
2

2
𝜙𝑛

′′(𝑚1) + 𝑐1𝜙𝑛−1
′ (𝑚1) + 𝜙𝑛−2(𝑚1) = 0 

 Find the oblique asymptotes of the curve  
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2𝑥3 − 𝑥2𝑦 − 2𝑥𝑦2 + 𝑦3 − 4𝑥2 + 8𝑥𝑦 − 4𝑥 + 1 = 0 

Attempting the first and second step; put 𝑥 = 1, 𝑦 = 𝑚 in the highest degree term to get 𝜙𝑛(𝑚) , we 
get, 

𝜙3(𝑚) = 2 − 𝑚 − 2𝑚2 + 𝑚3 

𝜙2(𝑚) = −4 + 8𝑚 

𝜙1(𝑚) = −4 

Equate 𝜙3(𝑚) = 0 , solve for the real values of 𝑚. 

𝑚 = −1, 1, 2 

When 𝑚 = 2, 𝑐 = −
𝜙𝑛−1(𝑚 )

𝜙𝑛
′ (𝑚 )

=  −
𝜙2(𝑚)

𝜙3
′ (𝑚)

=  −4 

The asymptote is 𝑦 = 2𝑥 − 4 

When 𝑚 = 1, 𝑐 = −
𝜙𝑛−1(𝑚 )

𝜙𝑛
′ (𝑚 )

=  −
𝜙2(𝑚)

𝜙3
′ (𝑚)

=  2 

The asymptote is 𝑦 = 𝑥 + 2 

 Find the asymptotes of 𝑥3 − 𝑥2𝑦 − 𝑥𝑦2 + 𝑦3 + 2𝑥2 − 4𝑦2 + 2𝑥𝑦 + 𝑥 + 𝑦 + 1 = 0 

𝜙3(𝑚) = 1 − 𝑚 − 𝑚2 + 𝑚3 

𝜙3
′ (𝑚) = −1 − 2𝑚 + 3𝑚2 

𝜙3
′′(𝑚) = −2 + 6𝑚 

𝜙2(𝑚) = 2 − 4𝑚2 + 2𝑚 

𝜙2
′ (𝑚) = −8𝑚 + 2  

𝜙3(𝑚) = 1 + 𝑚 

⇒ 𝑚3 − 𝑚2 − 𝑚 + 1 = 0 

(𝑚2 − 1)(𝑚 − 1) = 0 

𝑚 = 1, 1, −1 

When 𝑚 = 1, 𝑐 = −
𝜙2(𝑚)

𝜙3
′ (𝑚)

 

𝜙2(1) = 0,  𝜙3
′ (1) = 0 

𝑐2

2
𝜙3

′′(𝑚) + 𝑐𝜙2
′ (𝑚) + 𝜙1(𝑚) = 0 

𝑐 =
3 ± √5

2
 

The asymptotes corresponding to 𝑚 = 1 are 𝑦 = 𝑥 +
3+√5

2
 and 𝑦 = 𝑥 +

3−√5

2
 

 

Summary 

• The total bending or total curvature is Arc𝑃𝑄 or Angle Δ𝜓 

• The average curvature is 
Δ𝜓

Δ𝑠
 

• The curvature of the curve at P is lim
𝑄→𝑃

Δ𝜓

Δ𝑠
=  

d𝜓

d𝑠
 

• Radius of curvature for a Cartesian curve 𝜌 =
[1+(

𝑑𝑥

𝑑𝑦
)

2
]

3
2

𝑑2𝑥

𝑑𝑦2

 

• Radius of curvature for a parametric curve 𝜌 =
(𝑓′2(𝑡)+𝑔′2(𝑡))

3
2

𝑓′(𝑡)𝑔′′(𝑡)−𝑔′(𝑡)𝑓′′(𝑡)
 

• Radius of curvature for a polar curve 𝜌 =  
(𝑟2+𝑟1

2)
3
2

𝑟2+2𝑟1
2−𝑟 𝑟2

 

• The asymptotes parallel to Y axis are obtained by equating to zero, the real linear factors in 

the coefficient of highest power of y, in the equation of the curve. 
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• The asymptotes parallel to X axis are obtained by equating to zero, the real linear factors in 

the coefficient of highest power of x, in the equation of the curve. 

• Steps to find oblique asymptotes: 

1. Put 𝑥 = 1, 𝑦 = 𝑚 in the highest degree term to get 𝜙𝑛(𝑚) . 

2. Similarly find 𝜙𝑛−1(𝑚), 𝜙𝑛−2(𝑚) etc. 

3. Equate  𝜙𝑛(𝑚) = 0 , solve for the real values of 𝑚. 

4. Find the corresponding value of intercept say, 𝑐1for the slope 𝑚1 using 𝑐1 = −
𝜙𝑛−1(𝑚1)

𝜙𝑛
′ (𝑚1)

 

5. Then 𝑦 = 𝑚𝑥 + 𝑐 is the required asymptote. 

6. For the case of 𝜙𝑛
′ (𝑚1) = 0 =  𝜙𝑛−1(𝑚1), find 𝑐1 by the relation  

𝑐1
2

2
𝜙𝑛

′′(𝑚1) + 𝑐1𝜙𝑛−1
′ (𝑚1) + 𝜙𝑛−2(𝑚1) = 0 

Key Words 

Curvature, radius of curvature, vertical asymptote, horizontal asymptote, oblique asymptotes 

 

Self Assessment 

1. The angle through which the tangent turns as a point moves along the curve from a point 

P to Q, will be large or small as compared to arc length, depends upon 

A. slope of tangent 
B. sharpness of bend 
C. velocity  
D. acceleration 

2. Which of the following is true? 

I. The curvature of a circle is the same at every point. 

II. Larger the circle, smaller will be its curvature. 

A. Only I  
B. Only II 
C. Both I and II 
D. None is true 

3. The reciprocal of the curvature of a curve at any point in case it is non- zero, is called 

A. curvature 
B. radius of curvature 
C. bend 
D. total bending 

4. The radius of curvature at any point for the curve 𝑠 = 𝑐 𝑡𝑎𝑛𝜓 is 

A. 𝑐 sec2 𝜓 

B. 𝑐 sec 𝜓 
C. 𝑐 sec3 𝜓 
D. 𝑐 cot2 𝜓 

 

5. For a curve if the radius of curvature is negative, it means that 

A. the curve is concave upwards 
B. the curve is concave downwards 
C. the curve has no bend 
D. none of these 

 

6. For the cycloid 𝑥 = 𝑎(𝑡 + 𝑠𝑖𝑛 𝑡), 𝑦 = 𝑎(1 − 𝑐𝑜𝑠 𝑡), the radius of curvature is given as 

A. 4𝑎 cos 𝑡 

B. 4 cos
𝑡

2
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C. 4 cos 𝑡 

D. 4𝑎 cos
𝑡

2
 

 
7. Which of the following is true about asymptotes? 

I. An asymptote of a curve is a line to which the curve converges. 

II. The curve and its asymptote get infinitely close, but they never meet.  

A. Only I is true 
B. Only II is true 
C. Both I and II are true 
D. None is true 

8. For the curve 𝑦2(2 − 𝑥) = 𝑥3 

A. there is no asymptote 
B. there exists one asymptote only 
C. there are two asymptotes 
D. there are three asymptotes 

9. The curve 𝑥3 + 𝑦3 − 3𝑥𝑦 = 0 has 

A. one oblique asymptote 
B. two oblique asymptotes 
C. no asymptote 
D. no oblique asymptotes 

10. For the curve 𝑦2(2 − 𝑥) = 𝑥3 

A. there is one asymptote parallel to x-axis 
B. there are two asymptotes parallel to y-axis 
C. there are no asymptotes 
D. there exists one asymptote parallel to y-axis 

 

11. The curve 𝑥3 + 𝑦3 − 3𝑥𝑦 = 0 has 

A. one parallel asymptote 
B. two parallel asymptotes 
C. no asymptote 
D. no parallel asymptotes 

12. For the curve 𝑥2𝑦 − 3𝑥2 − 5𝑥𝑦 + 6𝑦 + 2 = 0, there are 

A. one horizontal and two vertical asymptotes 
B. two horizontal and two vertical asymptotes 
C. two horizontal and one vertical asymptotes 
D. one horizontal and one vertical asymptotes 

13. A closed curve has 

A. no asymptote 
B. one asymptote 
C. infinitely many asymptotes 
D. n asymptotes where n is the degree of the curve 

14. The asymptotes of the curve 𝑥𝑦 − 2𝑦 − 3𝑥 = 0 are given by 

A. 𝑥 − 2 = 0, 𝑦 + 3 = 0 
B. 𝑥 + 2 = 0, 𝑦 + 3 = 0 
C. 𝑥 − 2 = 0, 𝑦 − 3 = 0 
D. 𝑥 − 2 = 0, 𝑦 = 0 

15. The asymptotes of the curve 𝑥2𝑦2 − 𝑎2(𝑥2 + 𝑦2) = 0 form a 

A. circle 
B. square 
C. pentagon 
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D. triangle 
 
16. Which of the following is true about asymptotes? 

I. An asymptote of a curve is a line to which the curve converges. 

II. The curve and its asymptote get infinitely close, but they never meet. 

A. Only I is true 
B. Only II is true 
C. Both I and II are true 
D. None is true 

17. For the curve 𝑦2(2 − 𝑥) = 𝑥3 

A. there is no asymptote 
B. there exists one asymptote only 
C. there are two asymptotes 
D. there are three asymptotes 

18. The curve 𝑥3 + 𝑦3 − 3𝑥𝑦 = 0 has 

A. one oblique asymptote 
B. two oblique asymptotes 
C. no asymptote 
D. no oblique asymptotes 

19. For the curve 𝑦2(2 − 𝑥) = 𝑥3 

A. there is one asymptote parallel to x-axis 
B. there are two asymptotes parallel to y-axis 
C. there are no asymptotes 
D. there exists one asymptote parallel to y-axis 

20. The curve 𝑥3 + 𝑦3 − 3𝑥𝑦 = 0 has 

A. one parallel asymptote 
B. two parallel asymptotes 
C. no asymptote 
D. no parallel asymptotes 

21. For the curve 𝑥2𝑦 − 3𝑥2 − 5𝑥𝑦 + 6𝑦 + 2 = 0, there are 

A. one horizontal and two vertical asymptotes 
B. two horizontal and two vertical asymptotes 
C. two horizontal and one vertical asymptotes 
D. one horizontal and one vertical asymptotes 

22. A closed curve has 

A. no asymptote 
B. one asymptote 
C. infinitely many asymptotes 
D. n asymptotes where n is the degree of the curve 

23. The asymptotes of the curve 𝑥𝑦 − 2𝑦 − 3𝑥 = 0 are given by 

A. 𝑥 − 2 = 0, 𝑦 + 3 = 0 
B. 𝑥 + 2 = 0, 𝑦 + 3 = 0 
C. 𝑥 − 2 = 0, 𝑦 − 3 = 0 
D. 𝑥 − 2 = 0, 𝑦 = 0 

24. The asymptotes of the curve 𝑥2𝑦2 − 𝑎2(𝑥2 + 𝑦2) = 0 form a 

A. circle 
B. square 
C. pentagon 
D. triangle 
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Answer for Self Assessment 

1. B 2. C 3. B 4. A 5. B 

6. D 7. C 8. B 9. A 10. D 

11. D 12. A 13. A 14. C 15. B 

16. C 17. B 18. A 19. D 20. D 

21. A 22. A 23. C 24. B   

 

Review Questions 

1. If the radius of circle A is 1/6, then its curvature is ____________. 

 
2. If the radius of circle B is 1/2, then its curvature is ____________. 

 
3. If the radius of circle C is 1/5, then its curvature is ____________. 

  

4.  If the radius of circle D is 1/3, then its curvature is ____________.  

5.  If you have a small circle and a large circle, which one will have the larger curvature?  

6. Find the parallel asymptotes for the curve 2𝑥3 − 𝑥2𝑦 + 2𝑥𝑦2 + 𝑦3 − 4𝑥2 + 8𝑥𝑦 − 4𝑥 + 1 = 0. 

7. Find the rectangular asymptotes for the curve 2𝑥3 − 𝑥2𝑦 + 2𝑥𝑦2 + 𝑦3 − 4𝑥2 + 8𝑥𝑦 = 0. 

8.Find the rectangular asymptotes for the curve 𝑥2𝑦 − 3𝑥2 − 5𝑥𝑦 + 6𝑦 + 2 = 0. 

9. Find the parallel asymptotes for the curve 𝑥2𝑦 + 𝑥𝑦2 + 𝑥𝑦 + 𝑦2 + 3𝑥 = 0. 

10. Find the oblique asymptotes for the curve 2𝑥3 − 𝑥2𝑦 + 2𝑥𝑦2 + 𝑦3 − 4𝑥2 + 8𝑥𝑦 − 4𝑥 + 1 = 0. 

11. Find the oblique asymptotes for the curve 2𝑥3 − 𝑥2𝑦 + 2𝑥𝑦2 + 𝑦3 − 4𝑥2 + 8𝑥𝑦 = 0. 

12. Find the oblique asymptotes for the curve 𝑥2𝑦 − 3𝑥2 − 5𝑥𝑦 + 6𝑦 + 2 = 0. 

13. Find the oblique asymptotes for the curve 𝑥2𝑦 + 𝑥𝑦2 + 𝑥𝑦 + 𝑦2 + 3𝑥 = 0. 

14. Find all the asymptotes for the curve 𝑥3 − 𝑥2𝑦 − 𝑥𝑦2 + 𝑦3 + 2𝑥2 − 4𝑦2 + 2𝑥𝑦 + 𝑥 + 𝑦 + 1 = 0. 

15. Find all the asymptotes for the curve 𝑥3 − 𝑥2𝑦 − 𝑥𝑦2 + 𝑦3 + 2𝑥2 − 4𝑦2 + 2𝑥𝑦 = 0. 

Further Reading 
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Objectives 

Students will be able to 

• detect the lines of symmetry in a curve 

• classify a point as a point of concavity, convexity or inflection 

• find the tangents at origin 

• understand various multiple points 

• find the position and nature of the double points 

 

Introduction 

In this unit, we will mainly learn about various important aspects involved in the tracing of a curve. 
We will begin with the symmetry and its various aspects in relation to different shapes. From the 
differentiability we have the idea of smoothness or pointedness of the curve at a point. This idea 
can be extended to concavity of a function, with a special focus on the points of inflection. There 
will be further a discussion on the types of double points, their nature and their position. 

 

13.1 Symmetry 

The images which can be divided into identical halves are called symmetrical. The images that 
cannot be divided into identical halves are asymmetrical. 
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Any line splitting a shape into two parts such that the two parts are the same is called a line of 
symmetry. These parts are also said to be symmetrical to each other. 

For a square there are four lines of symmetry. for a hexagon, there will be six lines of symmetry. 
Can you think of the lines of symmetry for a triangle and a pentagon? 

You can take a piece of paper, draw the required shape on it, using the scale and pencil, cut out 
them and fold it in various ways to find out the lines of symmetry. 

Consider the folium of Descartes and the cardioid; you can observe that there is only one line of 
symmetry. 

 

 

 

 

13.2  Various Kinds of Symmetry 

We can see that there are various lines of symmetry in various kinds 
of functions 𝑓(𝑥, 𝑦) = 0. We can classify those lines as follows: 

Symmetry about the x-axis: 

In the function 𝑓(𝑥, 𝑦) = 0, replace 𝑦 with – 𝑦. If (𝑥, −𝑦) = 𝑓(𝑥, 𝑦) , 
then the graph will be symmetric about the  x-axis. 

e.g. 𝑦2(2𝑎 − 𝑥) = 𝑥3 is symmetric about the x-axis. 

Symmetry about the y-axis: 

In the function 𝑓(𝑥, 𝑦) = 0, replace 𝑥 with – 𝑥. If (−𝑥, 𝑦) = 𝑓(𝑥, 𝑦) , then the graph will be symmetric 
about the  y-axis. 

e.g. (𝑥2 + 𝑦2)2 = 𝑎2(𝑥2 − 𝑦2)is symmetric about the y-axis.  
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Symmetry about the origin: 

In the function 𝑓(𝑥, 𝑦) = 0, replace 𝑥, 𝑦 with – 𝑥, −𝑦. If (−𝑥, −𝑦) = 𝑓(𝑥, 𝑦) , then the graph will be 
symmetric about the origin. 

e.g. (𝑥2 + 𝑦2)2 = 𝑎2(𝑥2 − 𝑦2)is symmetric about the origin 

Symmetry about the line,𝒚 = 𝒙: 

In the function 𝑓(𝑥, 𝑦) = 0, replace 𝑥 with 𝑦 and 𝑦 with 𝑥.If (𝑥, 𝑦) = 𝑓(𝑦, 𝑥) , then the graph will be 
symmetric about the line 𝑦 = 𝑥. 

e.g. (𝑥2 + 𝑦2)2 = 𝑎2(𝑥2 − 𝑦2)is not symmetric about the line 𝑦 = 𝑥. 

Symmetry about the line, 𝒚 = −𝒙: 

In the function 𝑓(𝑥, 𝑦) = 0, replace 𝑥 with −𝑦 and 𝑦 with −𝑥. If (𝑥, 𝑦) = 𝑓(−𝑦, −𝑥) , then the graph 
will be symmetric about the line 𝑦 = −𝑥. 

e.g. (𝑥2 + 𝑦2)2 = 𝑎2(𝑥2 − 𝑦2)is not symmetric about the line 𝑦 = −𝑥. 

Symmetry in the opposite quadrants: 

In the function 𝑓(𝑥, 𝑦) = 0, replace 𝑥, 𝑦 with – 𝑥, −𝑦. If (−𝑥, −𝑦) = 𝑓(𝑥, 𝑦) , then the graph will be 
symmetric in the opposite quadrants. 

e.g. 𝑥𝑦 = 1 is symmetric in first and third quadrants. 

Discuss all possible lines of symmetry for the following curves: 

(i) 𝑦2(2𝑎 − 𝑥) = 𝑥3 

(ii) (𝑥2 + 𝑦2)2 = 𝑎2(𝑥2 − 𝑦2) 

(iii) (𝑥 − 𝑏)2(𝑥2 + 𝑦2) − 𝑎2𝑥2 = 0 

(iv) 𝑥3 + 𝑦3 = 3𝑎𝑥𝑦 

(v) (𝑥2 + 𝑦2 − 𝑎𝑥𝑦)2 = 4𝑎2(𝑥2 + 𝑦2) 

(vi) 𝑥2 + 𝑦2 = 16 

(vii) 𝑦2 = 2𝑥 

(viii) 𝑥2 + 𝑦 = 2𝑥 + 4 

 

13.3 Concavity and Convexity 

Although the first derivative test determines if a function is increasing or decreasing, we would 
also like to know if the shape of the graph is curving upward or downward. This notion of 
curvature of a graph upward or downward is known as concavity.  

If the secant line passing through the points (x1, f(x1)) and (x2, f(x2)) is above the curve f(x)=y 
between these two points, then f(x) is concave up. 

If the secant line passing through the points (x1, f(x1))  and (x2, f(x2)) is below the curve f(x)=y 
between these two points, then f(x) is concave below or concave down. 
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When the slope continually increases, the function is concave upward.  

When the slope continually decreases, the function is concave downward.  

  

 
Theorem: 

Consider a function f(x) that is twice continuously differentiable on an interval I. The 

Function f(x) is 

• concave upwards if f''(x) > 0  for all x in I 

• concave downwards if f''(x) < 0 for all x in I 

 You need to be careful while using the following terms: 

• Concave Downward is also called Concave or Convex Upward 

• Concave Upward is also called Convex or Convex Downward 

Discuss the curve 𝑦 = 𝑥2 for its concavity. 

𝑦′(𝑥) = 2𝑥 

Clearly the first derivative is positive whenever 𝑥 is positive and is negative, whenever 𝑥 is 
negative. So by first derivative test, we can see that the slope is decreasing for negative values and 
is increasing for positive values of 𝑥. Therefore the curve is concave up for all 𝑥. 

Alternatively, we can find the second derivative 

𝑦′′(𝑥) = 2 

Clearly, it is positive for all the values of the domain, thus the curve 𝑦 = 𝑥2 is concave upwards  
∀  𝑥 ∈ 𝑹. 

 Discuss the curve 𝑓(𝑥) = 5𝑥3 + 2𝑥2 − 3𝑥 for its concavity. 

𝑓′(𝑥) = 15𝑥2 + 4𝑥 − 3 

𝑓′′(𝑥) = 30𝑥 + 4 

𝑓′′(𝑥) = 0 happens at 𝑥 = −
2

15
 

Clearly 𝑓′′(𝑥) < 0 in (−∞, −
2

15
) ⇒  𝑓(𝑥) is concave downward in this interval and 

𝑓′′(𝑥) > 0 in (−
2

15
, ∞) ⇒  𝑓(𝑥) is concave upward in this interval. 

 Discuss the curve 𝑓(𝑥) = ln(1 + 𝑥2) for its concavity. 

131



Unit 13: Concavity and Multiple Points  

 LOVELY PROFESSIONAL UNIVERSITY  

Notes 

We have 

𝑓′(𝑥) =
2𝑥

1 + 𝑥2 

𝑓′′(𝑥) =
2 − 2𝑥2

(1 + 𝑥2)2
 

We can look for the values of 𝑥 for which the 𝑓′′(𝑥) will be negative. That is 

2 − 2𝑥2 < 0 

2(1 − 𝑥)(1 + 𝑥) < 0 

From this inequality, it is clear that,𝑓(𝑥) is concave downward in (−∞, −1)𝑈(1, ∞) and concave 
upward in (−1,1). Let us also look at how the function looks like! 

 

 

13.4 Points of Inflection 

A point where a curve changes from Concave upward to Concave downward (or vice versa), is 
called the inflexion point. 

A point (c, f(c)) is said to be an inflection point for a point c in (a, b) and for a continuous function 
f(x) in (a, b) if the graph of y=f(x) changes concavity at (c, f(c)).  

This also implies that the first derivative changes from increasing to decreasing or decreasing to 
increasing at(c, f(c)). 

 

 Find the point of inflection for the curve 𝑓(𝑥) = 𝑥 𝑒−2𝑥 

Finding the derivatives, we get 

𝑓′(𝑥) = 𝑒−2𝑥(−2𝑥 + 1) 

𝑓′′(𝑥) = 𝑒−2𝑥(4𝑥 − 4) 

The curve changes from concave upward to concave downward when 

𝑓′′(𝑥) = 0 

And so we get 𝑥 = 1 

132



Calculus  

 LOVELY PROFESSIONAL UNIVERSITY  

Notes 

∴ the point of inflection is (1, 𝑒−2) 

 Find the point of inflection for the curve 𝑓(𝑥) = (𝑥 − 1)3(𝑥 − 5) 

Finding the derivatives, we get 

𝑓′(𝑥) = 4(𝑥 − 1)2(𝑥 − 4) 

𝑓′′(𝑥) = 12(𝑥 − 1)(𝑥 − 3) 

The curve changes from concave upward to concave downward when 

𝑓′′(𝑥) = 0 

⇒ 𝑥 = 1, 3 

Thus, the points of inflection are (1, 0) and (3, -16) 

 Find the point of inflection for the curve 𝑓(𝑥) = 𝑥 + 𝑥
5

3 

Finding the derivatives, we get 

𝑓′(𝑥) = 1 +
5

3
𝑥

2

3 

𝑓′′(𝑥) =
10

9𝑥
1

3

 

Here the 𝑓′′(𝑥) = 0 won’t make sense, so using the first derivative test, we can observe that 

when𝑥 < 0, 𝑓′′(𝑥) < 0 and when 𝑥 > 0, 𝑓′′(𝑥) > 0.  

So we can see the curve changes from concave downward to concave upward at (0, 0), So (0, 0) is 
the point of inflection of the given curve. 

 Find the point of inflection for the curve 𝑓(𝑥) = 𝑥4 − 6𝑥2 

Finding the derivatives, we get 

𝑓′(𝑥) = 4𝑥3 − 12𝑥 

𝑓′′(𝑥) = 12𝑥2 − 12 

The curve changes from concave upward to concave downward when 

𝑓′′(𝑥) = 0 

⇒ 𝑥 = ±1 

The points of inflection are (1, -5) and (-1, -5). 

 

13.5 Tangents at Origin  

The general equation of rational algebraic curve of the 𝑛𝑡ℎ degree which passes through the origin 
O, when arranged according to ascending powers of 𝑥 and 𝑦 is of the form 

(𝑏1𝑥 + 𝑏2𝑦) + (𝑐1𝑥2 + 𝑐2𝑥𝑦 + 𝑐3𝑦2) + (𝑑1𝑥3 + 𝑑2𝑥2𝑦 + 𝑑3𝑥𝑦2 + 𝑑4𝑦3) + ⋯ = 0 ---- (1) 

Let 𝑃(𝑥, 𝑦) be any point on the curve. The slope of the chord OP is  
𝑦

𝑥
. 

lim
𝑃→𝑂

𝑐ℎ𝑜𝑟𝑑 𝑂𝑃 =  Tangent at 𝑂 

Then when 𝑥 → 0, 𝑦 → 0 

lim
𝑦

𝑥
= 𝑚is the slope of the tangent.  

So (1) implies  

(𝑏1 + 𝑏2

𝑦

𝑥
) + (𝑐1𝑥 + 𝑐2

𝑦

𝑥
+ 𝑐3𝑦

𝑦

𝑥
) + ⋯ = 0 

𝑏1 + 𝑏2𝑚 = 0 
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𝑚 = −
𝑏1

𝑏2
 

𝑦

𝑥
= −

𝑏1

𝑏2
 

∴ 𝑏1𝑥 + 𝑏2𝑦 = 0 is the tangent at the origin, which can be written by equating the lowest degree 
term to zero in equation (1). 

If 𝑏2 = 0 but 𝑏1 ≠ 0, then considering the slope of OP with reference to y-axis, it can be shown that 
the tangent retains the same form. 

Let 𝑏1 = 𝑏2 = 0, then the equation takes the form 

𝑐1𝑥2 + 𝑐2𝑥𝑦 + 𝑐3𝑦2 + 𝑑1𝑥3 + ⋯ = 0 

𝑐1 + 𝑐2

𝑥𝑦

𝑥2
+ 𝑐3

 𝑦2

𝑥2
+ 𝑑1𝑥 + ⋯ = 0 

As 𝑥 → 0  

𝑐1 + 𝑐2𝑚 + 𝑐3𝑚2 = 0       ---- (2)  

gives two values of 𝑚 say 𝑚1and 𝑚2. 

The equation of either tangent at the origin is 𝑦 = 𝑚1𝑥   ---- (3) 

Eliminating 𝑚1 from (2) and (3), we get  

𝑐1𝑥2 + 𝑐2𝑥𝑦 + 𝑐3𝑦2 = 0       ----(4)  

whichis the joint equation of two tangents at the origin, and it can also be written by equating the 
lowest degree term to zero in the equation of the curve. 

If 𝑐1 = 𝑐2 = 𝑐3 = 0, then (4) becomes an identity and equations of tangents can still be written by 
equating to zero, the terms of lowest degree, which is third, in this case. 

Therefore the rule to find the tangents at origin can be summarized as: 

The equation of the tangent or tangents at the origin is obtained by equating to zero 
the terms of the lowest degree in the equation of the curve. 

 Find the tangents at origin for the curve 𝑥3 + 𝑦3 − 3𝑎𝑥𝑦 = 0 

Clearly the origin lies on the curve. To find the tangents at origin, let us seek the lowest degree term 
in the curve and equate that to zero. 

−3𝑎𝑥𝑦 = 0 

⇒  𝑥 = 0, 𝑦 = 0 

are the required equations of the tangents at the origin. 

 Find the equation of the tangent(s) at (-1,-2) to the curve  𝑥3 + 2𝑥2 + 2𝑥𝑦 − 𝑦2 + 5𝑥 − 2𝑦 = 0. 

We can shift the origin to the point (-1, -2) by the following transformations: 

𝑥 = 𝑋 − 1 

𝑦 = 𝑌 − 2 

Using these, we get the transformed equation as: 

𝑋3 − 𝑋2 + 2𝑋𝑌 − 𝑌2 = 0 

Clearly the origin lies on the curve and we can find the tangents at origin easily by equating to zero 

the terms of the lowest degree in the equation of the curve. 

i.e.– 𝑋2 + 2𝑋𝑌 − 𝑌2 = 0 

i.e.(𝑋 − 𝑌)2 = 0  

i.e.𝑋 − 𝑌 = 0 

i.e.𝑥 + 1 − (𝑦 + 2) = 0 

134



Calculus  

 LOVELY PROFESSIONAL UNIVERSITY  

Notes 

i.e. 𝑥 − 𝑦 = 1 is the tangent at (-1, -2) for the given curve. 

Therefore, we can find the tangent at any given point on a curve. 

 

13.6 Multiple Points 

If RS is an arc of a curve, and if at the point P on RS there exists one and only one tangent, AB, to 
the curve, then point P is known as an ordinary point of the curve. 

If at a point P on a curve there exist two and only two distinct tangents, then that point is called a 
node. 

If the two tangents at a given point are not distinct, but coincide, we have what is called a cusp.  

 

 

There are several kinds of cusps:  

(1) If the curve in the neighbourhood of a cusp lies partly on one side of the tangent and partly on 
the other side, the point is known as a cusp of the first kind;  

(2) If the curve lies entirely on one side of the common tangent (in the region of tangency), the point 
is known as a cusp of the second kind;  

(3) If there are two distinct cusps at the same point, it is known as a point of osculation. 

All points having two and only two tangents, whether real or imaginary, distinct or coincident, are 
called double points of the curve. 

Thus nodes and cusps of all kinds are double points. 

Triple points are such points on a curve for which there are three tangents; similarly there are four 
for quadruple points etc.  

An isolated point on a curve is also called a conjugate point. 

All points that are not ordinary points are known as singular points. 

 

13.7 Condition for any Point (x, y) to be a Multiple Point of  the Curve 
f(x, y)=0 

For a curve 𝑓(𝑥, 𝑦) = 0      ---- (1) 

We can write 
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𝜕𝑓

𝜕𝑥

𝑑𝑥

𝑑𝑥
+

𝜕𝑓

𝜕𝑦

𝑑𝑦

𝑑𝑥
= 0 

     𝑓𝑥 + 𝑓𝑦
𝑑𝑦

𝑑𝑥
= 0 

At a multiple point of a curve, the curve has at least two tangents and 
𝑑𝑦

𝑑𝑥
 must have at least two 

values at multiple points. 

More than one value of 
𝑑𝑦

𝑑𝑥
 can satisfy 𝑓𝑥 + 𝑓𝑦

𝑑𝑦

𝑑𝑥
= 0iff 𝑓𝑥 = 0, 𝑓𝑦 = 0. 

Therefore, to find the multiple points, we have to find the values of (𝑥, 𝑦) which simultaneously 
satisfy the three equations: 

𝑓𝑥(𝑥, 𝑦) = 0 

𝑓𝑦(𝑥, 𝑦) = 0 

𝑓(𝑥, 𝑦) = 0 

Differentiate 𝑓𝑥 + 𝑓𝑦
𝑑𝑦

𝑑𝑥
= 0 w.r.t. 𝑥, we get 

𝑓𝑥𝑥 + 2𝑓𝑥𝑦

𝑑𝑦

𝑑𝑥
+ 𝑓𝑦

𝑑2𝑦

𝑑𝑥2 + 𝑓𝑦𝑦 (
𝑑𝑦

𝑑𝑥
)

2

= 0 

At the multiple points where 𝑓𝑦 = 0,  𝑓𝑥 = 0; the value of 
𝑑𝑦

𝑑𝑥
 are the roots of the quadratic equation, 

𝑓𝑥𝑥 + 2𝑓𝑥𝑦

𝑑𝑦

𝑑𝑥
+ 𝑓𝑦𝑦 (

𝑑𝑦

𝑑𝑥
)

2

= 0 

In case 𝑓𝑥𝑥 ,  𝑓𝑥𝑦 ,   𝑓𝑦𝑦 are not all zero and 𝑓𝑥 = 0 = 𝑓𝑦, the point (𝑥, 𝑦) will be a double point and will 

be a  

node if 𝒇𝒙𝒚
𝟐 − 𝒇𝒙𝒙𝒇𝒚𝒚 > 0 

cusp if 𝒇𝒙𝒚
𝟐 − 𝒇𝒙𝒙𝒇𝒚𝒚 = 𝟎 and 

conjugate point if 𝒇𝒙𝒚
𝟐 − 𝒇𝒙𝒙𝒇𝒚𝒚 < 0 

If 𝑓𝑥𝑥 = 𝑓𝑥𝑦 = 𝑓𝑦𝑦 = 0, the point (𝑥, 𝑦) will be a multiple point of the order higher than two, 

those are not in the scope of this course. 

 Find the multiple points on the curve 

𝑥4 − 2𝑎𝑦3 − 3𝑎2𝑦2 − 2𝑎2𝑥2 + 𝑎4 = 0 

Let 𝑓(𝑥) = 𝑥4 − 2𝑎𝑦3 − 3𝑎2𝑦2 − 2𝑎2𝑥2 + 𝑎4 

𝑓𝑥 = 4𝑥3 − 4𝑎2𝑥  

𝑓𝑦 = −6𝑎𝑦2 − 6𝑎2𝑦 

𝑓𝑥 = 0, 𝑓𝑦 = 0 ⇒  𝑥 = 0, 𝑎, −𝑎 ; 𝑦 = 0, −𝑎. 

∴ 𝑓𝑥and𝑓𝑦 vanish at (0,0), (0, −𝑎), (𝑎, 0), (𝑎, −𝑎), (−𝑎, 0), (−𝑎, −𝑎). 

Out of these, only (𝑎, 0), (−𝑎, 0)& (0, −𝑎) lie on the given curve. 

Now 𝑓𝑥𝑥 = 12𝑥2 − 4𝑎2 

𝑓𝑦𝑦 = −12𝑎𝑦 − 6𝑎2 

𝑓𝑥𝑦 = 0 

We know,  

𝑓𝑥𝑥 + 2𝑓𝑥𝑦

𝑑𝑦

𝑑𝑥
+ 𝑓𝑦𝑦 (

𝑑𝑦

𝑑𝑥
)

2

= 0 

At (𝑎, 0) 

−6𝑎2 (
𝑑𝑦

𝑑𝑥
)

2

+ 4(2𝑎2) = 0 
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𝑑𝑦

𝑑𝑥
= ±

2

√3
 

Since there are two real values, the point (𝑎, 0) is a node and the tangents at (𝑎, 0) are 

𝑦 = ±
2

√3
(𝑥 − 𝑎) 

Similarly tangents at (−𝑎, 0): 𝑦 = ±
2

√3
(𝑥 + 𝑎) 

and at (0, −𝑎):  𝑦 + 𝑎 = ±
√2

√3
𝑥 

Alternatively, 

We can find tangents at (𝑎, 0), by shifting the origin to (𝑎, 0) by following transformations, 

𝑥 = 𝑋 + 𝑎, 𝑦 = 𝑌 

⇒ 𝑋4 + 4𝑋3𝑎 − 2𝑎𝑌3 + 4𝑎2𝑋2 − 3𝑎2𝑌2 = 0 

Tangents at origin are given by, 

4𝑎2𝑋2 − 3𝑎2𝑌2 = 0 

𝑋2 =
3

4
𝑌2 

𝑋 = ±
3

√2
𝑌 

Similarly the tangents can be found at the other points too. 

 

13.8 Position and Nature of Double Points 

For the curve 𝑓(𝑥, 𝑦) = 0, (𝑥, 𝑦) is a double point if it satisfies  

𝑓𝑥(𝑥, 𝑦) = 0 

𝑓𝑦(𝑥, 𝑦) = 0 

𝑓(𝑥, 𝑦) = 0 

Simultaneously. 

The point (𝑥, 𝑦) is a node, if 𝑓𝑥𝑦
2 − 𝑓𝑥𝑥𝑓𝑦𝑦 > 0  

The point (𝑥, 𝑦) is a cusp, if 𝑓𝑥𝑦
2 − 𝑓𝑥𝑥𝑓𝑦𝑦 = 0  

The point (𝑥, 𝑦) is isolated, if 𝑓𝑥𝑦
2 − 𝑓𝑥𝑥𝑓𝑦𝑦 < 0  

Types of cusps in terms of their position: 

Single cusp of first kind:  Two branches on the same side of common normal and on opposite 

sides of tangent. 

Single cusp of second kind: Two branches lie on the same side of the normal as well as the 

tangent. 

Double cusp of second kind: Two branches lie on the different sides of normal and on the same 

side of the tangent. 

Point of oscu inflection: Two branches lie on different sides of normal but on one side they lie on 

the same and on the other on opposite sides of the common tangent. 

Let us learn about the position and nature of double points by an example. 

 Locate the double points of the curve 𝑦(𝑦 − 6) = 𝑥2(𝑥 − 2)3 − 9 and mention their nature. 

Here 𝑓(𝑥, 𝑦) = 𝑥2(𝑥 − 2)3 − 9 − 𝑦(𝑦 − 6) = 0 

𝑓𝑥 = 𝑥(𝑥 − 2)2(5𝑥 − 4) 

𝑓𝑦 = 6 − 2𝑦 
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𝑓𝑥𝑥 = (𝑥 − 2)2(5𝑥 − 4) + 2𝑥(𝑥 − 2)(5𝑥 − 4) + 5𝑥(𝑥 − 2)2 

𝑓𝑦𝑦 = −2 

𝑓𝑥𝑦 = 0 

Now 𝑓𝑥 = 0, 𝑓𝑦 = 0 imply 𝑥 = 0, 2,
4

5
 and 𝑦 = 3 

Therefore possible double points are 

(0,3), (2, 3)and (
4

5
, 3) 

The point (
4

5
, 3) does not satisfy the given curve. So there are only two double points. 

At (0, 3) 

𝑓𝑥𝑦
2 − 𝑓𝑥𝑥𝑓𝑦𝑦 < 0 

So, (0, 3) is a conjugate point. 

At (2, 3) 

𝑓𝑥𝑦
2 − 𝑓𝑥𝑥𝑓𝑦𝑦 = 0 

So, (2, 3) is a cusp. 

To know the nature of the cusp, let us shift the origin to the point (2, 3) by using  

𝑥 = 𝑋 + 2 

𝑦 = 𝑌 + 3 

The transformed equation is 𝑌2 = 𝑋3(𝑋 + 2)2 

The tangents at origin are 𝑌2 = 0 i.e. the x-axis. 

Moreover, 𝑌 = ±(𝑋 + 2)√𝑋3 

When 𝑋 < 0, 𝑌 is imaginary 

When 𝑋 > 0, 𝑌has two values, positive and negative. Therefore near the origin, the curve lies on 
both sides of X-axis (tangent) and only on one side of the Y-axis (normal). The graph is given below 
for better clarity. 

138



Calculus  

 LOVELY PROFESSIONAL UNIVERSITY  

Notes 

 

 

Therefore, the new origin (2,3) is a single cusp of first kind. 

 

Summary 

This chapter had variety of topics, which can be summarized as follows: 

• Symmetry about the x-axis: In the function 𝑓(𝑥, 𝑦) = 0, replace 𝑦 with – 𝑦. If (𝑥, −𝑦) =

𝑓(𝑥, 𝑦) , then the graph will be symmetric about the  x-axis. 

• Symmetry about the y-axis: In the function 𝑓(𝑥, 𝑦) = 0, replace 𝑥 with – 𝑥. If (−𝑥, 𝑦) =

𝑓(𝑥, 𝑦) , then the graph will be symmetric about the  y-axis. 

• Symmetry about the origin: In the function 𝑓(𝑥, 𝑦) = 0, replace 𝑥, 𝑦 with – 𝑥, −𝑦. If 

(−𝑥, −𝑦) = 𝑓(𝑥, 𝑦) , then the graph will be symmetric about the origin. 

• Symmetry about the line, 𝑦 = 𝑥:In the function 𝑓(𝑥, 𝑦) = 0, replace 𝑥 with 𝑦 and 𝑦 with 𝑥. 

If (𝑥, 𝑦) = 𝑓(𝑦, 𝑥) , then the graph will be symmetric about the line 𝑦 = 𝑥. 

• Symmetry about the line, 𝑦 = −𝑥:In the function 𝑓(𝑥, 𝑦) = 0, replace 𝑥 with −𝑦 and 𝑦 with 

−𝑥. If (𝑥, 𝑦) = 𝑓(−𝑦, −𝑥) , then the graph will be symmetric about the line 𝑦 = −𝑥. 

• Symmetry in the opposite quadrants: In the function 𝑓(𝑥, 𝑦) = 0, replace 𝑥, 𝑦 with – 𝑥, −𝑦. 

If (−𝑥, −𝑦) = 𝑓(𝑥, 𝑦) , then the graph will be symmetric in the opposite quadrants. 

• Consider a function f(x) that is twice continuously differentiable on an interval I. The 

function f(x) is concave upwards if f''(x) > 0  for all x in I and concave downwards if f''(x) < 

0 for all x in I 

• A point where a curve changes from concave upward to concave downward (or vice 

versa), is called the inflexion point. 
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• The equation of the tangent or tangents at the origin is obtained by equating to zero the 

terms of the lowest degree in the equation of the curve. 

• The point (𝑥, 𝑦) will be a double point and will be a node if 𝑓𝑥𝑦
2 − 𝑓𝑥𝑥𝑓𝑦𝑦 > 0, cusp if 𝑓𝑥𝑦

2 −

𝑓𝑥𝑥𝑓𝑦𝑦 = 0 and conjugate point if 𝑓𝑥𝑦
2 − 𝑓𝑥𝑥𝑓𝑦𝑦 < 0 

Keywords 

Symmetry, lines of symmetry, concave up, concave down, convex, concave, point of inflection, 
tangent at origin, multiple point, double point, node, cusp, isolated point 

Self Assessment 

1. How many lines of symmetry are there for a pentagon? 

A. 2 

B. 3 

C. 4 

D. 5 

 

2. For a lemniscate of Bernoulii, how many lines of symmetry are there? 

A. 2 

B. 3 

C. 4 

D. 5 

 

3. The curve 2𝑥2 + 2𝑦2 = 11 is  

A. symmetric about the x-axis 

B. symmetric about the y-axis 

C. symmetric about the line y=x 

D. all of the above 

4. The notion of curvature of a graph upward or downward is known as 

A. symmetry 

B. asymptotes 

C. concavity 

D. multiple points 

 

5. When the slope continually increases, the function  

A. is concave upwards 

B. is concave downwards 

C. can not be deciphered 

D. is decreasing 

 

6. The function 𝑓(𝑥) = 2𝑥2 + 3𝑥 + 4 is 

A. concave upwards on the set of real numbers 

B. concave upwards on a specific interval 

C. concave downwards on the set of real numbers 

D. concave downwards on a specific interval 

 

7. The point where a curve changes from concave upward to concave downward is called a 

A. saddle point 
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B. stationary point 

C. critical point 

D. inflexion point 

 

8. Which of the following is true for the point of inflexion ( c, f(c) )? 

A. the first derivative changes from increasing to decreasing or decreasing to increasing at (c, 

f(c)) 

B. the first derivative changes from increasing to decreasing at (c, f(c)) 

C. the first derivative changes from decreasing to increasing at (c, f(c)) 

D. none of these  

 

9. For 𝑓(𝑥) = 𝑥𝑒−2𝑥 the point of inflexion is 

A. (1,1) 

B. (1,e) 

C. (1, 𝑒−2) 

D. (1, 𝑒2) 

 

10. The equation of the tangent or tangents at the origin is obtained by  

A. equating to zero the terms of the lowest degree in the equation of the curve. 

B. equating to zero the terms of the highest degree in the equation of the curve. 

C. equating to one the terms of the lowest degree in the equation of the curve. 

D. equating to one the terms of the highest degree in the equation of the curve. 

 

11. For the curve 𝑥3 + 𝑦3 − 3𝑥𝑦 = 0, there exist ____ tangent(s) at the origin. 

A. one 

B. two 

C. three 

D. four 

 

12. For the curve 𝑥2(𝑥2 + 𝑦2) = 5(𝑥 − 𝑦), the equation of the tangent at origin is 

A. 𝑥 = 5𝑦 

B. 𝑥 = −5𝑦 

C. 𝑥 = −𝑦 

D. 𝑥 = 𝑦 

 

13. If the two tangents at a given point are not distinct, but  coincide, we get 

A. a node 

B. a cusp 

C. a conjugate point 

D. none of these 

 

14. If the curve lies entirely on one side of the common  tangent (in the region of tangency), 

the point is known as a 

A. cusp of first kind 

B. cusp of second kind 
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C. node 

D. point of osculation 

 

15. At a multiple point of a curve 𝑓(𝑥) = 0, the curve has 

A. one tangent 

B. two tangents 

C. at least one tangent 

D. at least two tangents 

 

16. If at a point on a curve there exist two and only two distinct tangents, then that point is 

called a 

A. cusp of first kind 

B. cusp of second kind 

C. node 

D. point of osculation 

 

17. At a double point (𝑥, 𝑦) of a curve 𝑓(𝑥, 𝑦) = 0, if 𝑓𝑥𝑦
2 − 𝑓𝑥𝑥𝑓𝑦𝑦 = 0, then the double point is a  

A. node 

B. cusp 

C. isolated point 

D. none of these 

 

18. At a double point (𝑥, 𝑦) of a curve 𝑓(𝑥, 𝑦) = 0, if 𝑓𝑥𝑦
2 − 𝑓𝑥𝑥𝑓𝑦𝑦 > 0, then the double point is a  

A. node 

B. cusp 

C. isolated point 

D. none of these 

 

19. At a double point (𝑥, 𝑦) of a curve 𝑓(𝑥, 𝑦) = 0, if 𝑓𝑥𝑦
2 − 𝑓𝑥𝑥𝑓𝑦𝑦 < 0, then the double point is a  

A. node 

B. cusp 

C. isolated point 

D. none of these 

Answer for Self Assessment 

1. D 2. A 3. D 4. C 5. A 

6. A 7. D 8. A 9. C 10. A 

11. B 12. D 13. B 14. B 15. D 

16. C 17. B 18. A 19. C   
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Review Questions 

1. Draw any random closed figure with 8 straight lines and discuss its lines of symmetry. 

2. In the nature around, spot five things, having symmetry. 

3. Discuss all the lines of symmetry for the curve (𝑥2 + 𝑦2)𝑥 − 2𝑎𝑦2 = 0 

4. Discuss about the concavity of the curve 𝑥3 + 𝑦3 = 3𝑎𝑥𝑦 

5. Discuss about the points of inflection of the curve 𝑥3 + 𝑦3 = 3𝑎𝑥𝑦 

6. Find the tangents at origin for the curve (𝑥2 + 𝑦2)𝑥 − 2𝑎𝑦2 = 0 

7. Find the tangents at origin for the curve (𝑥2 + 𝑦2)2 = 𝑎2𝑥2 + 𝑏2𝑦2 

8. Find the tangents at origin for the curve 2𝑦5 + 5𝑥5 − 3𝑥(𝑥2 − 𝑦2) = 0 

9. Find the tangents at origin for the curve (𝑥2 + 𝑦2)𝑥2 = 𝑎(𝑥 − 𝑦) 

10. Find the double points of the curve  𝑥3 + 𝑦3 = 3𝑎𝑥𝑦 

11. Find the double points of the curve  (𝑥2 + 𝑦2)𝑥 − 2𝑎𝑦2 = 0 

12. Find the position and nature of the double point of the curve 𝑥2𝑦2 = (𝑎 + 𝑦)2(𝑏2 − 𝑦2) for 

𝑎 < 𝑏and𝑎 > 𝑏. 
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Objectives 

Students will be able to 

• list the properties which can be used to trace a curve 

• trace the Cartesian curves 

• trace the parametric curves 

• trace the polar curves 

 

Introduction 

Can you recognize which of the following options depicts the curve  x2y2(x+ y) = 1? 

 
In order to answer the above question, we need to analyze the given Cartesian equation 
thoroughly. An image is worth a thousand words. A curve which is the visual synonym of a 
functionalrelation gives us the whole idea of information about the relation. Of course, we can also 
obtain this information by analysing the equation which defines the functional relation. But 
studying the associated curve is often easier and quicker. In addition to this, a curve which 
represents a relation between two quantities also helps us to easily find the value of one quantity 
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corresponding to a specific value of the other. In this unit we shall be using many results from the 
previous units and will try to understand what is meant by the graph of a relation like f(x, y) = 0, 
and how one can draw it.  

Recall that, that the set of points {(x, y): f(x, y) = 0) is known as the graph of the functional relation 
f(x, y) = 0. Graphing a function or a functional relation means showing the points of the 
corresponding set in a plane, thus, essentially curve tracing means plotting the points which satisfy 
a given relation. However, there are some difficulties involved in this. Let's see what these are and 
how to overcome them. 

It is often not possible to plot all the points on a curve. The standard technique is to plot some 
suitable points and to get a general idea of the shape of the curve by considering tangents, 
asymptotes, singular points, extreme points, inflection points, concavity, monotonicity, periodicity 
etc. Then we draw a free hand curve as nearly satisfying the various properties as is possible. 

The curves or graphs that we draw have a limitation. If the range of values of either (or both) 
variable is not finite, then it is not possible to draw the complete graph. In such cases the graph is 
not only approximate, but is also incomplete. For example, consider the simplest curve, a straight 
line. Suppose we want to draw the graph of 𝑓: 𝑅 → 𝑅such that𝑓(𝑥) = 𝑐. We know that this is in line 
parallel to the x-axis. But it is not possible to draw a complete graph as the line extends infinitely on 
both sides. 

Suppose the equation of a curve is f(x, y) = 0.We shall now list some steps which, when taken, will 
simplify our job of tracing this curve. 

 

14.1 Procedure for Tracing Curves Given in Cartesian Equations 

Steps for curve sketching (preferably in the same order) are summarized below: 

1. Domain 

The first step is to determine the extentof the curve. In other words we try to find a region or 
regions of the plane which cannot have any point of the curve. For example, no point on the curve 
𝑥 = 𝑦2, lies in the second or the third quadrant, as the x-coordinate of any point on the curve has to 
be non-negative. This means that our curve lies entirely in the first and the fourth quadrants. 

Note thatit is easier to determine the extent of a curve if its equation can be written explicitly as y = 

f(x) or x =f(y). 

2. Intercepts 

The next step is to determine the points where the curve intersects the axes. If we put y = 0 in f(x, y) 
= 0, and solve the resulting equation for x, we get the points of intersection with the x-axis. 
Similarly, putting x = 0 and solving the resulting equation for y, we can find the points of 
intersection with the y-axis. 

3. Symmetry 

We find out if the curve is symmetrical about any line, or about the origin. We have already 
discussed symmetry of curves in the previous unit. This step reduces our workload. If the curve is 
symmetric about the x-axis, we can focus upon the region above x-axis only and then can replicate 
that for the complete curve. 

4. Asymptotes 

The next step is to find the asymptotes, if there are any. They indicate the trend of the branches of 
the curve extending to infinity. Asymptotes, if they exist, provide a frame for the curve. 

5. Intervals of increase and decrease 

Calculate dy/dx. This will help you in locating the portions where the curve is rising (dy/dx >0) or 

falling (dy/dx <0) or the points where it has a corner (dy/dx does not exist). 

6. Local maximum and minimum 

Calculate𝑑2𝑦/𝑑𝑥2. This will help you in locating maxima (dy/dx = 0,
𝑑2𝑦

𝑑𝑥2 < 0) and minima (dy/dx = 

0,
𝑑2𝑦

𝑑𝑥2 >0).  
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7. Concavity/Convexity/Points of inflection/Multiple points 

Calculate𝑑2𝑦/𝑑𝑥2. This will help you in locating maxima (dy/dx = 0, 
𝑑2𝑦

𝑑𝑥2
< 0) and minima (dy/dx = 

0, 
𝑑2𝑦

𝑑𝑥2
>0) along with concave up or concave down nature of the curve. You will also be able to 

determine the points of inflection (
𝑑2𝑦

𝑑𝑥2
= 0 ). These will give you a good idea about the shape of the 

curve. 

Another important step is to determine the singular points. The shape of the curve at these points 
is, generally, more complex, as more than one branch of the curve passes through them. Find out 
whether the origin lies on the curve. If it does, then find the equations of the tangents at the origin 
by equating to zero the lowest degree terms and we can look out for cusps and nodes. 

8. Graph of the Function 

All the information obtained from above steps, finally has to be put on the x-y plane. Plot as many 
points as you can, around the points already plotted. Also try to draw tangents to the curve at some 
of these plotted points. For this you will have to calculate the derivative as these points. Now join 

the plotted points by a smooth curve (except at points of discontinuity). The tangents will guide 

you in this, as they give you the direction of the curve and the graph has to be traced then. 

Warm up by tracing the simple popular curves like modulus function, exponential function, 
parabola etc. using the above mentioned steps. Now let us trace the curve   x2y2(x+ y) = 1 which 
was asked in the introductory section. 

Since the function is not an explicit function of x or y, we can skip the domain part. 

When x=0, we cannot find y and when y=0, we cannot find x. It means that the curve does not 
make any intercepts on the axes. 

The curve is symmetric about the line y=x only. 

There are no horizontal and vertical asymptotes, but an oblique asymptote y=-x. 

And by these many steps only, the correct answer out of four options can be inferred. 

If not we would have undertaken next steps too. 

 Trace 𝑦 = 𝑥3 − 12𝑥 − 16 

Let us trace the curve step by step. For your ease the steps are mentioned below: 

1. Domain 

The function can take all real values of 𝑥 as its domain. 

2. Intercepts 

When 𝑥 = 0, 𝑦 = −16 

When 𝑦 = 0, 𝑥 = −2, 4 

Therefore the given curve meets the axes at (0, −16), (−2,0), (4,0). 

3. Symmetry 

No particular line of symmetry exists. 

4. Asymptotes 

No asymptote exists 

5. Intervals of increase and decrease 

𝑦′ = 3𝑥2 − 12 

𝑦′ = 0 ⇒  𝑥 = ±2 

∴ 𝑦 is increasing in (−∞, −2) 

𝑦 is decreasing in (−2, 2) 

𝑦 is increasing in (2, ∞) 

6. Local maximum and minimum 

𝑦′′ = 6𝑥 

At 𝑥 = −2, 𝑦′′ < 0 ⇒ (−2, 0)is a point of maximum. 
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At 𝑥 = 2, 𝑦′′ > 0 ⇒ (2, −32)is a point of minimum. 

7. Concavity/Convexity/Points of Inflection/Multiple points 

𝑦′′ < 0 when 𝑥 < 0 ⇒ Concave downward 

𝑦′′ > 0 when 𝑥 > 0 ⇒ Concave upward 

8. Graph of the Function 

 

14.2 Tracing of Polar Curves 

A polar equation is any equation that describes a relation between r and θ, where r represents the 
distance from the pole to a point on a curve, and θ represents the anti-clockwise angle made by a 
point on a curve, the pole, and the initial line. 

 

 

One advantage of using polar equations is that certain relations that are not functions in Cartesian 
form can be expressed as functions in polar form.  

Another advantage is that certain relations are much simpler to express in polar form rather than 
Cartesian form. 

Steps to trace a polar curve: 

1. Symmetry 

Consider a curve generated by the function r=f(θ) in polar coordinates. 

• The curve is symmetric about the polar axis if for every point (r, θ) on the graph, the point 

(r,−θ) is also on the graph. Similarly, the equation r=f(θ) is unchanged by replacing θ with 

−θ 

• The curve is symmetric about the pole if for every point (r, θ) on the graph, the point 

(r,π+θ) is also on the graph. Similarly, the 

equation r=f(θ) is unchanged when 

replacing r with −r, or θ with π+θ. 

• The curve is symmetric about the vertical 

line θ=π/2 if for every point (r, θ) on the 

graph, the point (r,π−θ) is also on the 

graph. Similarly, the equation r=f(θ) is 

unchanged when θ is replaced by π−θ. 

2. Extent  
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(i) Find the limits within which r must lie for the permissible values of 𝜃. If r < a (r >a) for some a > 
0, then the curve lies entirely within (outside) the circle r = a. (ii) If 𝑟2 is negative for some values of 
𝜃, then the curve has no portion in the corresponding region. 

3. Pole 

The curve passes through the pole, if for r = 0, there corresponds a real value of θ 

4. Asymptote 

If O is the pole and 𝑃(𝑟, 𝜃) is any point in the polar system PY is the line which is the asymptote, 
and 𝑂𝑌 ⊥ 𝑃𝑌 .The polar equation of any line is 𝑝 = 𝑟 cos(𝜃 − 𝛼)  where 𝑝 is the length of 
perpendicular from the pole to the line and 𝛼 is the angle which this perpendicular makes with the 
initial line. 

𝑂𝑌 = 𝑝 

∠𝑋𝑂𝑌 = 𝛼 

If 𝑃(𝑟, 𝜃) be any point on the line then ∠𝑃𝑂𝑌 = 𝜃 − 𝛼 

and
𝑝

𝑟
= cos(𝜃 − 𝛼) 

∴ 𝑝 = 𝑟 cos(𝜃 − 𝛼)is the required equation of the line which is the prospective asymptote. 

5. Region 

Find the region in which the curve does not exist, or find the greatest and least numerical value of r 
etc. 

6. Specific points 

Trace the variation of r as θ varies. 

 Trace 𝑟 = 𝑎(1 + 𝑐𝑜𝑠 𝜃) 

1. If we replace 𝜃to– 𝜃, the equation remains unchanged. So the given curve is symmetric 

about the initial line. 

2. The extent can be seen from the fact that maximum value of cos 𝜃is 1 and minimum value 

is -1. Thus 𝑟 can take values from 0 to 2𝑎. 

3. For 𝑟 = 0, we can see that𝜃 = 𝜋. This means that the curve passes through the pole. 

4. Since it’s a polar curve we can find the value of 𝑟 at various 𝜃 values and then plot the 

curve on a polar plane. 

θ 0 𝜋

6
 

𝜋

4
 

𝜋

3
 

𝜋

2
 

2𝜋

3
 

𝜋 

𝑟 
2𝑎 (√3 + 2)

2
𝑎 

(√2 + 1)

√2
𝑎 

3

2
𝑎 

𝑎 𝑎

2
 0 

From all the above points, the following curve can be traced: 
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14.3 Tracing of Parametric Curves 

When the path of a particle moving in the plane is not the graph of a function, we cannot describe it 
using a formula that expresses y directly in terms of x, or x directly in terms of y. Instead, we need 
to use a third variable t, called a parameter and write x = f(t) y = g(t). 

The set of points (x, y) = (f(t), g(t)) described by these equations when t varies in an interval I form a 
curve, called a parametric curve, and x = f(t), y = g(t) are called the parametric equations of the 
curve.  

 Trace the curve with parametric equations: 

𝑥 = 𝑎 cos3 𝜃 

𝑦 = 𝑏 sin3 𝜃 

First of all we can make a table of variation of 𝑥 and 𝑦with 𝜃. 

𝜃 0 𝜋

2
 𝜋 3𝜋

2
 

2𝜋 

𝑥 𝑎 0 − 𝑎 0 𝑎 

𝑦 0 𝑏 0 − 𝑏 0 

 

Now the (𝑥, 𝑦)points can be plotted on the 𝑥𝑦 −plane. 

For the parametric equations 

𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝜃
𝑑𝑥

𝑑𝜃

 ,        
𝑑𝑥

𝑑𝜃
≠ 0 

Therefore 
𝑑𝑦

𝑑𝑥
=  −

𝑏

𝑎
tan 𝜃 provided that 

𝑑𝑥

𝑑𝜃
≠ 0 

Moreover 
𝑑𝑥

𝑑𝜃
= 0 for 𝜃 = 0,

𝜋

2
, 𝜋,

3𝜋

2
, 2𝜋 

When 𝜃 = 0,
𝑑𝑦

𝑑𝑥
= 0  

At (𝑎, 0), the tangent is given as, 

𝑦 − 0 = (
𝑑𝑦

𝑑𝑥
)

𝜃=0
(𝑥 − 𝑎) 

⇒  𝑦 = 0 

When 𝜃 =
𝜋

2
,

𝑑𝑦

𝑑𝑥
= ∞  

At (0, 𝑏), the tangent is given as, 

𝑦 − 𝑏 = (
𝑑𝑦

𝑑𝑥
)

𝜃=
𝜋

2

(𝑥 − 0) 

⇒  𝑥 = 0 

When 𝜃 = 𝜋,
𝑑𝑦

𝑑𝑥
= 0  

At (−𝑎, 0), the tangent is given as, 

𝑦 − 0 = (
𝑑𝑦

𝑑𝑥
)

𝜃=𝜋
(𝑥 + 𝑎) 

⇒  𝑦 = 0 

When 𝜃 =
3𝜋

2
,

𝑑𝑦

𝑑𝑥
= ∞  

At (0, −𝑏), the tangent is given as, 
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𝑦 + 𝑏 = (
𝑑𝑦

𝑑𝑥
)

𝜃=
3𝜋

2

(𝑥 − 0) 

⇒  𝑥 = 0 

Thus, the tangent at points (𝑎, 0)and (−𝑎, 0) is the x-axis and at the points (0, 𝑏)and (0, −𝑏) is the y-
axis.  

And from this information we can draw the following: 

 

 

 Trace the curve with parametric equations: 

𝑥 = 𝑎(𝜃 + 𝑠𝑖𝑛𝜃) 

𝑦 = 𝑎(1 + 𝑐𝑜𝑠𝜃) 

First of all we can make a table of variation of 𝑥 and 𝑦with𝜃. 

𝜃 0 𝜋 −𝜋 3𝜋 −3𝜋 

𝑥 0 𝑎𝜋 − 𝑎𝜋 3𝜋𝑎 −3𝜋𝑎 

𝑦 2𝑎 0 0 0 0 

𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝜃
𝑑𝑥

𝑑𝜃

 ,        
𝑑𝑥

𝑑𝜃
≠ 0 

Here 
𝑑𝑥

𝑑𝜃
= 𝑎(1 + 𝑐𝑜𝑠𝜃) 

𝑑𝑦

𝑑𝜃
=  −𝑎 𝑠𝑖𝑛𝜃 

𝑑𝑦

𝑑𝑥
=  − tan

𝜃

2
provided1 + 𝑐𝑜𝑠𝜃 ≠ 0 or 𝜃 ≠ ±𝜋 

When 𝜃 = 𝜋 

The equation of the tangent is 𝑥 = 𝑎𝜋.  

When 𝜃 = 0 

The equation of the tangent is 𝑦 = 2𝑎.  

Similarly the tangents at the other points can be checked and with the above information we can 
trace the following: 
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Summary 

• Steps for curve sketching of a Cartesian curve: 

➢ Domain  

➢ Intercepts  

➢ Symmetry  

➢ Asymptotes  

➢ Intervals of Increase and Decrease  

➢ Local Maximum and Minimum 

➢ Concavity/Convexity and Points of Inflection 

➢ Graph of the Function 

➢ Steps for curve sketching of a polar curve: 

➢ Symmetry 

➢ Pole 

➢ Asymptote 

➢ Region 

➢ Specific points 

 

Keywords 

Curve tracing, Cartesian curve, polar curve, parametric curve 

 

Self Assessment 

1. For the curve  𝑥2𝑦2(𝑥 + 𝑦) = 10 , which of the following is true? 

A. The curve has an intercept on x-axis 

B. The curve has an intercept on y-axis 

C. The curve has an intercept on x-axis and y-axis 

D. The curve has no intercept on x-axis and y-axis 

 

2. For the curve  𝑥2𝑦2(𝑥 + 𝑦) = 10 , which of the following is true? 

A. The curve is symmetric about x-axis only  

B. The curve is symmetric about y-axis only 

C. The curve is symmetric about the line 𝑦 = 𝑥 

D. The curve is symmetric about x-axis, y-axis and the line 𝑦 = 𝑥 

 

3. For the curve  𝑥2𝑦2(𝑥 + 𝑦) = 10 

A. there is one asymptote only 

B. there are two asymptotes 

C. there are three asymptotes 

D. there are no asymptotes 

 

4. For the curve 𝑦 = 𝑡𝑎𝑛𝑥 which of the following is false? 

A. The origin is a cusp 

B. 𝑥 = 2𝑎 is an asymptote 

C. Curve exists for all non-negative values of 𝑥 
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D. The curve is symmetrical about the 𝑥 − 𝑎𝑥𝑖𝑠 

 

5. The folium of Descartes is given by 

A. 𝑥3 + 𝑦3 = 3𝑎𝑥2𝑦2 

B. 𝑥3 + 𝑦3 = 3𝑎𝑥𝑦 

C. 𝑥2 + 𝑦2 = 3𝑎𝑥𝑦 

D. 𝑥4 + 𝑦4 = 3𝑎𝑥𝑦 

 

6. The curve is symmetric about the polar axis if for every point (r, θ) on the graph, the point 

(r, −θ) is also on the graph. 

A. True 

B. False 

 

7. The curve is symmetric about the polar axis if for some point (r, θ) on the graph, the point 

(r, −θ) is also on the graph. 

A. True 

B. False 

 

8. The curve passes through the pole, if for r = 0, there corresponds a real value of θ. 

A. True 

B. False 

 

9. The equation 𝑟 = 𝑎(1 + 𝑐𝑜𝑠 𝜃) represents 

A. a circle 

B. a lemniscate 

C. a cardioid 

D. a cycloid 

 

10. The equation 𝑝 = 𝑟 𝑐𝑜𝑠(𝜃 − 𝛼) with usual notations, represents a 

A. line 

B. circle 

C. cardioid 

D. lemniscate 

 

11. The equations of type x = f(t), y = g(t) are called  

A. simultaneous equations 

B. ordinary equations 

C. parametric equations 

D. none of these 

 

12. In the equations of type x = f(t), y = g(t), t is called the parameter. 

A. True 

B. False 
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13. The curve having parametric equations 𝑥 = 5 𝑐𝑜𝑠3𝜃, 𝑦 = 7 𝑠𝑖𝑛3𝜃 is  

A. a circle 

B. an ellipse 

C. a cycloid 

D. an asteroid 

 

14. The curve 𝑟 = 𝑎 + 𝑏𝑐𝑜𝑠 𝜃 is symmetrical about 

A. initial line 

B. y-axis 

C. line perpendicular to the initial line  

D. line 𝜃 =
𝜋

4
 

 

15. Number of loops in the curve 𝑟 = 𝑎 𝑐𝑜𝑠 2𝜃 is  

A. 2 

B. 3 

C. 4 

D. 6 

 

Answers for Self Assessment 

1. D 2. C 3. A 4. D 5. B 

6. A 7. B 8. A 9. C 10. A 

11. C 12. A 13. D 14. A 15. C 

 

Review Questions 

Trace the following curves 

1. 𝑦2 = 8𝑥 

2. 𝑥2 + 𝑦2 = 9 

3. 𝑥2𝑦2(𝑥 + 𝑦) = 10 

4. 𝑥3 + 𝑦3 = 3𝑎𝑥𝑦 

5. 𝑦2𝑥2 = 𝑥2 − 𝑎2 

6. 𝑟 = 𝑎(1 + 𝑐𝑜𝑠 𝜃) 

7. 𝑟 = 𝑎(1 − 𝑐𝑜𝑠 𝜃) 

8. 𝑥 = 5 𝑐𝑜𝑠3𝜃, 𝑦 = 7 𝑠𝑖𝑛3𝜃 

9. 𝑟 = 𝑎 cos 2𝜃, 𝑎 > 0 

10. 𝑟 = 𝑎 + 𝑏𝑐𝑜𝑠 𝜃 

11. 𝑥 = 0.5 sec 𝑡, 𝑦 = 1 + cot 𝑡 

12. 𝑥 = cos 𝑡, 𝑦 = cot 𝑡 

13. 𝑟 log 𝜃 = 𝑎 

14. 𝑟 = 𝑎(𝜃 − sin 𝜃) 

15. 𝑟 = 𝑎 + 𝑎 sin 𝜃, 𝑎 > 0 
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