
Data Structures

Edited by
Balraj Singh

DECAP267

Edited By:
Balraj Singh

user
Typewritten text
Data Structures

CONTENT

Unit 10:

Basic Concepts

Complexity of AlgorithmsUnit 2: 15

Introduction to PointersUnit 3: 32

ArraysUnit 4: 53

Operations on ArraysUnit 5: 57

Linked ListsUnit 6: 79

Doubly Linked ListsUnit 7: 95

 Introduction to StacksUnit 8: 126

Introduction to QueuesUnit 9: 140

Introduction to Queues 156

TreesUnit 11: 175

GraphsUnit 12: 199

SearchingUnit 13: 219

 SortingUnit 14: 229

Unit 1: 1

Dr. Prikshat Kumar Angra, Lovely Professional University

Dr. Prikshat Kumar Angra, Lovely Professional University

Dr. Prikshat Kumar Angra, Lovely Professional University

Dr. Prikshat Kumar Angra, Lovely Professional University

Dr. Prikshat Kumar Angra, Lovely Professional University

Dr. Prikshat Kumar Angra, Lovely Professional University

Dr. Prikshat Kumar Angra, Lovely Professional University

Dr. Prikshat Kumar Angra, Lovely Professional University

Dr. Prikshat Kumar Angra, Lovely Professional University

Dr. Prikshat Kumar Angra, Lovely Professional University

Dr. Prikshat Kumar Angra, Lovely Professional University

Dr. Prikshat Kumar Angra, Lovely Professional University

Dr. Prikshat Kumar Angra, Lovely Professional University

Dr. Prikshat Kumar Angra, Lovely Professional University

Unit 01: Basic Concepts

Notes

Unit 01: Basic Concepts

CONTENTS

Objectives

Introduction

1.1 Data Structures

1.2 Types of Data Structures

1.3 Difference between Linear and Nonlinear Data Structures

1.4 Basic Concepts and Notations of Data Structures

1.5 Data Structures and Algorithms

1.6 The Concept of Data Type

1.7 Need for Data Structures

1.8 Goals of Data Structure

1.9 Correctness

1.10 Efficiency

1.11 Advantages of Data Structure

1.12 Qualities of Good Algorithms

1.13 Data Structure Operations

1.14 Operations on Primitive Data Structure

1.15 Operations on Non-primitive Data Structure

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to:

● Discuss the need for data structures
● Explain the classification of data structures
● Understand algorithms
● Explain data structure operations

Introduction
Data is any numerical or other information that is represented in a way that can be processed by a
computer. The way elements are placed or put together to make a whole is referred to as structure.
A data structure is the combination of data and all possible operations that must be performed on
that piece of data. Bits, characters, and integers are the most basic data types. Data structures are
used to manipulate and assemble information. However, the data available is usually in the
amorphous form. When different types of such amorphous data are related to each other, we refer
to it as a data structure.

Lovely Professional University 1

Dr. Prikshat Kumar Angra, Lovely Professional University

Data Structures

Notes

Example: Linked List, Queues, Stacks, Trees etc.

A data structure can be described as a set of domains d, a set of functions F and a set of rules A.

D = {d, F, A}

Where,

D refers to Data structure

d refers to Domain variable

F refers to a set of functions or procedures operating on domain variables.

A is a set of rules governing the operations of these functions on the domain variable.

The instructions of a computer program use data to perform certain tasks. Some programs generate
data without using any inputs. Some programs generate data using a set of inputs, while some
programs use a data set to manipulate the given data. Thus, the data is processed efficiently only by
organizing them in a particular structure.

The study of data structures helps to understand the basic concepts involved in organizing and
storing data as well as the relationship among the data sets. This in turn helps to determine the way
information is stored, retrieved and modified in a computer’s memory. The study of data structures
is not limited to the study of data sets. It further extends to the study of representation of data
elements. This means that it explains how different types of data are placed in the computer's
memory using the binary number system, which forms the storage structure or memory
representation. Data structure is implemented in computer programs to manage data. The data is
managed using certain logical or mathematical models or concepts. A complex data structure can
also be built using simple data structures.

1.1 Data Structures
Data structure is a storage that is used to store and organize data. It is a way of arranging data on a
computer so that it can be accessed and updated efficiently.

Depending on your requirement and project, it is important to choose the right data structure for
your project. For example, if you want to store data sequentially in the memory, then you can go for
the Array data structure.

The data structure is not any programming language like C, C++, java, etc. It is a set of algorithms
that we can use in any programming language to structure the data in the memory. To structure the
data in memory, 'n' number of algorithms were proposed, and all these algorithms are known as
Abstract data types. These abstract data types are the set of rules.

1.2 Types of Data Structures
There are two types of data structures:

● Linear data structure
● Non-linear data structure

Data Structures

Notes

Example: Linked List, Queues, Stacks, Trees etc.

A data structure can be described as a set of domains d, a set of functions F and a set of rules A.

D = {d, F, A}

Where,

D refers to Data structure

d refers to Domain variable

F refers to a set of functions or procedures operating on domain variables.

A is a set of rules governing the operations of these functions on the domain variable.

The instructions of a computer program use data to perform certain tasks. Some programs generate
data without using any inputs. Some programs generate data using a set of inputs, while some
programs use a data set to manipulate the given data. Thus, the data is processed efficiently only by
organizing them in a particular structure.

The study of data structures helps to understand the basic concepts involved in organizing and
storing data as well as the relationship among the data sets. This in turn helps to determine the way
information is stored, retrieved and modified in a computer’s memory. The study of data structures
is not limited to the study of data sets. It further extends to the study of representation of data
elements. This means that it explains how different types of data are placed in the computer's
memory using the binary number system, which forms the storage structure or memory
representation. Data structure is implemented in computer programs to manage data. The data is
managed using certain logical or mathematical models or concepts. A complex data structure can
also be built using simple data structures.

1.1 Data Structures
Data structure is a storage that is used to store and organize data. It is a way of arranging data on a
computer so that it can be accessed and updated efficiently.

Depending on your requirement and project, it is important to choose the right data structure for
your project. For example, if you want to store data sequentially in the memory, then you can go for
the Array data structure.

The data structure is not any programming language like C, C++, java, etc. It is a set of algorithms
that we can use in any programming language to structure the data in the memory. To structure the
data in memory, 'n' number of algorithms were proposed, and all these algorithms are known as
Abstract data types. These abstract data types are the set of rules.

1.2 Types of Data Structures
There are two types of data structures:

● Linear data structure
● Non-linear data structure

Data Structures

Notes

Example: Linked List, Queues, Stacks, Trees etc.

A data structure can be described as a set of domains d, a set of functions F and a set of rules A.

D = {d, F, A}

Where,

D refers to Data structure

d refers to Domain variable

F refers to a set of functions or procedures operating on domain variables.

A is a set of rules governing the operations of these functions on the domain variable.

The instructions of a computer program use data to perform certain tasks. Some programs generate
data without using any inputs. Some programs generate data using a set of inputs, while some
programs use a data set to manipulate the given data. Thus, the data is processed efficiently only by
organizing them in a particular structure.

The study of data structures helps to understand the basic concepts involved in organizing and
storing data as well as the relationship among the data sets. This in turn helps to determine the way
information is stored, retrieved and modified in a computer’s memory. The study of data structures
is not limited to the study of data sets. It further extends to the study of representation of data
elements. This means that it explains how different types of data are placed in the computer's
memory using the binary number system, which forms the storage structure or memory
representation. Data structure is implemented in computer programs to manage data. The data is
managed using certain logical or mathematical models or concepts. A complex data structure can
also be built using simple data structures.

1.1 Data Structures
Data structure is a storage that is used to store and organize data. It is a way of arranging data on a
computer so that it can be accessed and updated efficiently.

Depending on your requirement and project, it is important to choose the right data structure for
your project. For example, if you want to store data sequentially in the memory, then you can go for
the Array data structure.

The data structure is not any programming language like C, C++, java, etc. It is a set of algorithms
that we can use in any programming language to structure the data in the memory. To structure the
data in memory, 'n' number of algorithms were proposed, and all these algorithms are known as
Abstract data types. These abstract data types are the set of rules.

1.2 Types of Data Structures
There are two types of data structures:

● Linear data structure
● Non-linear data structure

Lovely Professional University2

Unit 01: Basic Concepts

Notes

 Linear data structures
In linear data structures, the elements are arranged in sequence one after the other. Since elements
are arranged in particular order, they are easy to implement.

However, when the complexity of the program increases, the linear data structures might not be the
best choice because of operational complexities.

Following are the popular linear data structures:

1. Array Data Structure
In an array, elements in memory are arranged in continuous memory. All the elements of
an array are of the same type. And, the type of elements that can be stored in the form of
arrays is determined by the programming language.

12 2 3 4 85

0 1 2 3 4 (Index)

Note: An array with each element represented by an index

2. Stack Data Structure
The LIFO technique is used to store elements in a stack data structure. To put it another
way, the final element in a stack will be eliminated first.
It works just like a pile of plates where the last plate kept on the pile will be removed first.

3. Queue Data Structure
Queue is a data structure that is similar to Stacks in that it is an abstract data structure. A
queue, unlike stacks, is open on both ends. The one end is always used to input data
enqueue), while the other is always used to delete data (dequeue) (dequeue). The Initially-
In-First-Out (FIFO) approach is used in Queue, which means that the data item that was
stored first would be accessed first. Queue is a data structure that is similar to Stacks in
that it is an abstract data structure. A queue, unlike stacks, is open on both ends. The one
end is always used to input data (enqueue), while the other is always used to delete data
(dequeue) (dequeue). The Initially-In-First-Out (FIFO) approach is used in Queue, which
means that the data item that was stored first would be accessed first.

Unit 01: Basic Concepts

Notes

 Linear data structures
In linear data structures, the elements are arranged in sequence one after the other. Since elements
are arranged in particular order, they are easy to implement.

However, when the complexity of the program increases, the linear data structures might not be the
best choice because of operational complexities.

Following are the popular linear data structures:

1. Array Data Structure
In an array, elements in memory are arranged in continuous memory. All the elements of
an array are of the same type. And, the type of elements that can be stored in the form of
arrays is determined by the programming language.

12 2 3 4 85

0 1 2 3 4 (Index)

Note: An array with each element represented by an index

2. Stack Data Structure
The LIFO technique is used to store elements in a stack data structure. To put it another
way, the final element in a stack will be eliminated first.
It works just like a pile of plates where the last plate kept on the pile will be removed first.

3. Queue Data Structure
Queue is a data structure that is similar to Stacks in that it is an abstract data structure. A
queue, unlike stacks, is open on both ends. The one end is always used to input data
enqueue), while the other is always used to delete data (dequeue) (dequeue). The Initially-
In-First-Out (FIFO) approach is used in Queue, which means that the data item that was
stored first would be accessed first. Queue is a data structure that is similar to Stacks in
that it is an abstract data structure. A queue, unlike stacks, is open on both ends. The one
end is always used to input data (enqueue), while the other is always used to delete data
(dequeue) (dequeue). The Initially-In-First-Out (FIFO) approach is used in Queue, which
means that the data item that was stored first would be accessed first.

Unit 01: Basic Concepts

Notes

 Linear data structures
In linear data structures, the elements are arranged in sequence one after the other. Since elements
are arranged in particular order, they are easy to implement.

However, when the complexity of the program increases, the linear data structures might not be the
best choice because of operational complexities.

Following are the popular linear data structures:

1. Array Data Structure
In an array, elements in memory are arranged in continuous memory. All the elements of
an array are of the same type. And, the type of elements that can be stored in the form of
arrays is determined by the programming language.

12 2 3 4 85

0 1 2 3 4 (Index)

Note: An array with each element represented by an index

2. Stack Data Structure
The LIFO technique is used to store elements in a stack data structure. To put it another
way, the final element in a stack will be eliminated first.
It works just like a pile of plates where the last plate kept on the pile will be removed first.

3. Queue Data Structure
Queue is a data structure that is similar to Stacks in that it is an abstract data structure. A
queue, unlike stacks, is open on both ends. The one end is always used to input data
enqueue), while the other is always used to delete data (dequeue) (dequeue). The Initially-
In-First-Out (FIFO) approach is used in Queue, which means that the data item that was
stored first would be accessed first. Queue is a data structure that is similar to Stacks in
that it is an abstract data structure. A queue, unlike stacks, is open on both ends. The one
end is always used to input data (enqueue), while the other is always used to delete data
(dequeue) (dequeue). The Initially-In-First-Out (FIFO) approach is used in Queue, which
means that the data item that was stored first would be accessed first.

Lovely Professional University 3

Data Structures

Notes

Let us see a real world example of queue data structure

4. Linked List Data Structure

In linked list data structure, data elements are connected through a series of nodes. And,
each node contains the data items and address to the next node.

 Non linear data structures
Unlike linear data structures, elements in non-linear data structures are not in any sequence.
Instead they are arranged in a hierarchical manner where one element will be connected to one or
more elements.

Non-linear data structures are further divided into graph and tree based data structures.

1. Graph Data Structure
In graph data structure, each node is called vertex and each vertex is connected to other
vertices through edges.

2. Trees Data Structure
Similar to a graph, a tree is also a collection of vertices and edges. However, in tree data
structure, there can only be one edge between two vertices.

Data Structures

Notes

Let us see a real world example of queue data structure

4. Linked List Data Structure

In linked list data structure, data elements are connected through a series of nodes. And,
each node contains the data items and address to the next node.

 Non linear data structures
Unlike linear data structures, elements in non-linear data structures are not in any sequence.
Instead they are arranged in a hierarchical manner where one element will be connected to one or
more elements.

Non-linear data structures are further divided into graph and tree based data structures.

1. Graph Data Structure
In graph data structure, each node is called vertex and each vertex is connected to other
vertices through edges.

2. Trees Data Structure
Similar to a graph, a tree is also a collection of vertices and edges. However, in tree data
structure, there can only be one edge between two vertices.

Data Structures

Notes

Let us see a real world example of queue data structure

4. Linked List Data Structure

In linked list data structure, data elements are connected through a series of nodes. And,
each node contains the data items and address to the next node.

 Non linear data structures
Unlike linear data structures, elements in non-linear data structures are not in any sequence.
Instead they are arranged in a hierarchical manner where one element will be connected to one or
more elements.

Non-linear data structures are further divided into graph and tree based data structures.

1. Graph Data Structure
In graph data structure, each node is called vertex and each vertex is connected to other
vertices through edges.

2. Trees Data Structure
Similar to a graph, a tree is also a collection of vertices and edges. However, in tree data
structure, there can only be one edge between two vertices.

Lovely Professional University4

Unit 01: Basic Concepts

Notes

1.3 Difference between Linear and Nonlinear Data Structures
Main difference between linear and nonlinear data structures lie in the way they organize data
elements. In linear data structures, data elements are organized sequentially and therefore they are
easy to implement in the computer’s memory. In nonlinear data structures, a data element can be
attached to several other data elements to represent specific relationships that exist among them.
Non-Linear data structure is that if one element can be connected to more than two adjacent
element then it is known as non-linear data structure.

Following diagram shows classification of data structure

1.4 Basic Concepts and Notations of Data Structures
Data structure is a branch of computer science. The study of data structure helps you to understand
how data is organized and how data flow is managed to increase efficiency of any process or
program. Data structure is the structural representation of logical relationship between data
elements. This means that a data structure organizes data items based on the relationship between
the data elements.

Example: A house can be identified by the house name, location, number of floors and so on.
These structured set of variables depend on each other to identify the exact house. Similarly, data
structure is a structured set of variables that are linked to each other, which forms the basic
component of a system.

1.5 Data Structures and Algorithms
A data structure is basically an arrangement of data within a computer's memory in computer
understandable language. In other words, data is stored in 0 and 1 format and is retrieved in ASCII
(American Standard Code for Information Interchange) codes, which is human-understandable
format.

The structural and functional aspects of the program depend on the design of the data structure.
Thus, a data structure forms the basic building block of a program. Different data structures are
used in applications for efficient operation of these applications. The programmers must select the

Unit 01: Basic Concepts

Notes

1.3 Difference between Linear and Nonlinear Data Structures
Main difference between linear and nonlinear data structures lie in the way they organize data
elements. In linear data structures, data elements are organized sequentially and therefore they are
easy to implement in the computer’s memory. In nonlinear data structures, a data element can be
attached to several other data elements to represent specific relationships that exist among them.
Non-Linear data structure is that if one element can be connected to more than two adjacent
element then it is known as non-linear data structure.

Following diagram shows classification of data structure

1.4 Basic Concepts and Notations of Data Structures
Data structure is a branch of computer science. The study of data structure helps you to understand
how data is organized and how data flow is managed to increase efficiency of any process or
program. Data structure is the structural representation of logical relationship between data
elements. This means that a data structure organizes data items based on the relationship between
the data elements.

Example: A house can be identified by the house name, location, number of floors and so on.
These structured set of variables depend on each other to identify the exact house. Similarly, data
structure is a structured set of variables that are linked to each other, which forms the basic
component of a system.

1.5 Data Structures and Algorithms
A data structure is basically an arrangement of data within a computer's memory in computer
understandable language. In other words, data is stored in 0 and 1 format and is retrieved in ASCII
(American Standard Code for Information Interchange) codes, which is human-understandable
format.

The structural and functional aspects of the program depend on the design of the data structure.
Thus, a data structure forms the basic building block of a program. Different data structures are
used in applications for efficient operation of these applications. The programmers must select the

Unit 01: Basic Concepts

Notes

1.3 Difference between Linear and Nonlinear Data Structures
Main difference between linear and nonlinear data structures lie in the way they organize data
elements. In linear data structures, data elements are organized sequentially and therefore they are
easy to implement in the computer’s memory. In nonlinear data structures, a data element can be
attached to several other data elements to represent specific relationships that exist among them.
Non-Linear data structure is that if one element can be connected to more than two adjacent
element then it is known as non-linear data structure.

Following diagram shows classification of data structure

1.4 Basic Concepts and Notations of Data Structures
Data structure is a branch of computer science. The study of data structure helps you to understand
how data is organized and how data flow is managed to increase efficiency of any process or
program. Data structure is the structural representation of logical relationship between data
elements. This means that a data structure organizes data items based on the relationship between
the data elements.

Example: A house can be identified by the house name, location, number of floors and so on.
These structured set of variables depend on each other to identify the exact house. Similarly, data
structure is a structured set of variables that are linked to each other, which forms the basic
component of a system.

1.5 Data Structures and Algorithms
A data structure is basically an arrangement of data within a computer's memory in computer
understandable language. In other words, data is stored in 0 and 1 format and is retrieved in ASCII
(American Standard Code for Information Interchange) codes, which is human-understandable
format.

The structural and functional aspects of the program depend on the design of the data structure.
Thus, a data structure forms the basic building block of a program. Different data structures are
used in applications for efficient operation of these applications. The programmers must select the

Lovely Professional University 5

Data Structures

Notes

correct data structure to write more efficient programs. This helps to solve the complexity of the
problems at a rapid rate.

In computer science, an algorithm is defined as a finite list of distinct instructions for calculating a
function. Algorithms are used for data processing, calculation and automated reasoning. An
algorithm can also be defined as a set of rules that accurately defines a series of operations.

Example: Instructions for assembling a puzzle can be an example of an algorithm. If you are
given a preliminary set of marked pieces, you can follow the instructions given to complete the
puzzle.

According to Levitin, algorithms can be defined as, “A sequence of unambiguous instructions for
solving a problem, i.e., for obtaining a required output for any legitimate input in a finite amount of
time.”

Most computer programs involve an algorithm and one or more data structures. An appropriate
data structure needs to be selected for an algorithm as the efficiency of the algorithm depends on
the data structure chosen. By increasing the data storage space, you may not be able to reduce the
time needed for processing the data and vice versa.

Example: When we want to print a mailing list alphabetically we need to use a data structure
and an algorithm. We first arrange all the names in a data structure (array) and then sort the names
alphabetically using an algorithm (sorting).

1.6 The Concept of Data Type
A data type comprises a set of data with values and consists of predefined set of characteristics. To
be specific, data is usually stored in a variable, where the value of the variable changes according to
the program being executed. The four commonly used data types in C language include int
(integer), float (real number), char (character) and pointer. The keywords int, float, char and so on
always take lowercase letters. Generally, a data type includes constants and variables. A constant is
considered as an entity that does not change in any given program. A variable is an entity that may
change from one program to another. It is necessary to specify the variables that will be used in a
program. Therefore, type declaration is made by giving the data type and then the variable names.
The syntax for declaring the data type and the variable name is as given below:

Syntax:

DATA_TYPE Variable Name

Example:

Int x

Float y

Where x and y are variable name and int and float are data types

Integer Data Type

An integer data type includes only whole numbers. It does not contain any fractional data. It is
denoted by the keyword int. It occupies 2 bytes of memory space. Integer data type can either be
signed or unsigned. The signed type integer takes both positive and negative values. The range of
integer constant is from -32768 to +32767 (-2^15 to +2^15 - 1) for a 16-bit compiler and -128 to 127 (-
2^7 to +2^7 - 1) for an 8-bit complier. A 16-bit compiler uses one bit for storing sign and the
remaining 15-bits for storing numbers. An 8-bit complier uses one bit for storing sign and the
remaining 7-bits for storing numbers. The unsigned integer ranges from 0 to 65535. The signed and
unsigned integers are specified as follows:

Syntax:

Unsigned int value;

Signed int value;

Data Structures

Notes

correct data structure to write more efficient programs. This helps to solve the complexity of the
problems at a rapid rate.

In computer science, an algorithm is defined as a finite list of distinct instructions for calculating a
function. Algorithms are used for data processing, calculation and automated reasoning. An
algorithm can also be defined as a set of rules that accurately defines a series of operations.

Example: Instructions for assembling a puzzle can be an example of an algorithm. If you are
given a preliminary set of marked pieces, you can follow the instructions given to complete the
puzzle.

According to Levitin, algorithms can be defined as, “A sequence of unambiguous instructions for
solving a problem, i.e., for obtaining a required output for any legitimate input in a finite amount of
time.”

Most computer programs involve an algorithm and one or more data structures. An appropriate
data structure needs to be selected for an algorithm as the efficiency of the algorithm depends on
the data structure chosen. By increasing the data storage space, you may not be able to reduce the
time needed for processing the data and vice versa.

Example: When we want to print a mailing list alphabetically we need to use a data structure
and an algorithm. We first arrange all the names in a data structure (array) and then sort the names
alphabetically using an algorithm (sorting).

1.6 The Concept of Data Type
A data type comprises a set of data with values and consists of predefined set of characteristics. To
be specific, data is usually stored in a variable, where the value of the variable changes according to
the program being executed. The four commonly used data types in C language include int
(integer), float (real number), char (character) and pointer. The keywords int, float, char and so on
always take lowercase letters. Generally, a data type includes constants and variables. A constant is
considered as an entity that does not change in any given program. A variable is an entity that may
change from one program to another. It is necessary to specify the variables that will be used in a
program. Therefore, type declaration is made by giving the data type and then the variable names.
The syntax for declaring the data type and the variable name is as given below:

Syntax:

DATA_TYPE Variable Name

Example:

Int x

Float y

Where x and y are variable name and int and float are data types

Integer Data Type

An integer data type includes only whole numbers. It does not contain any fractional data. It is
denoted by the keyword int. It occupies 2 bytes of memory space. Integer data type can either be
signed or unsigned. The signed type integer takes both positive and negative values. The range of
integer constant is from -32768 to +32767 (-2^15 to +2^15 - 1) for a 16-bit compiler and -128 to 127 (-
2^7 to +2^7 - 1) for an 8-bit complier. A 16-bit compiler uses one bit for storing sign and the
remaining 15-bits for storing numbers. An 8-bit complier uses one bit for storing sign and the
remaining 7-bits for storing numbers. The unsigned integer ranges from 0 to 65535. The signed and
unsigned integers are specified as follows:

Syntax:

Unsigned int value;

Signed int value;

Data Structures

Notes

correct data structure to write more efficient programs. This helps to solve the complexity of the
problems at a rapid rate.

In computer science, an algorithm is defined as a finite list of distinct instructions for calculating a
function. Algorithms are used for data processing, calculation and automated reasoning. An
algorithm can also be defined as a set of rules that accurately defines a series of operations.

Example: Instructions for assembling a puzzle can be an example of an algorithm. If you are
given a preliminary set of marked pieces, you can follow the instructions given to complete the
puzzle.

According to Levitin, algorithms can be defined as, “A sequence of unambiguous instructions for
solving a problem, i.e., for obtaining a required output for any legitimate input in a finite amount of
time.”

Most computer programs involve an algorithm and one or more data structures. An appropriate
data structure needs to be selected for an algorithm as the efficiency of the algorithm depends on
the data structure chosen. By increasing the data storage space, you may not be able to reduce the
time needed for processing the data and vice versa.

Example: When we want to print a mailing list alphabetically we need to use a data structure
and an algorithm. We first arrange all the names in a data structure (array) and then sort the names
alphabetically using an algorithm (sorting).

1.6 The Concept of Data Type
A data type comprises a set of data with values and consists of predefined set of characteristics. To
be specific, data is usually stored in a variable, where the value of the variable changes according to
the program being executed. The four commonly used data types in C language include int
(integer), float (real number), char (character) and pointer. The keywords int, float, char and so on
always take lowercase letters. Generally, a data type includes constants and variables. A constant is
considered as an entity that does not change in any given program. A variable is an entity that may
change from one program to another. It is necessary to specify the variables that will be used in a
program. Therefore, type declaration is made by giving the data type and then the variable names.
The syntax for declaring the data type and the variable name is as given below:

Syntax:

DATA_TYPE Variable Name

Example:

Int x

Float y

Where x and y are variable name and int and float are data types

Integer Data Type

An integer data type includes only whole numbers. It does not contain any fractional data. It is
denoted by the keyword int. It occupies 2 bytes of memory space. Integer data type can either be
signed or unsigned. The signed type integer takes both positive and negative values. The range of
integer constant is from -32768 to +32767 (-2^15 to +2^15 - 1) for a 16-bit compiler and -128 to 127 (-
2^7 to +2^7 - 1) for an 8-bit complier. A 16-bit compiler uses one bit for storing sign and the
remaining 15-bits for storing numbers. An 8-bit complier uses one bit for storing sign and the
remaining 7-bits for storing numbers. The unsigned integer ranges from 0 to 65535. The signed and
unsigned integers are specified as follows:

Syntax:

Unsigned int value;

Signed int value;

Lovely Professional University6

Unit 01: Basic Concepts

Notes

The integer data type is denoted by placeholder format string % d, which indicates that the data
being used is of integer values.

Example: -

Int x;

Scanf(“%d”,&x);

Printf(“%d”,x);

Where scanf() function is used for input data and printf() is used for print output on console screen.

Generally, there are three classes of integers namely, short int, int and long int. As shown in table,
short integers occupy only 1 byte, int occupies 2 bytes and the long integers occupy 4 bytes of
memory. Long integers can store longer range of values when compared to integer and short
integer.

Floating Point Data Type

The floating point data type contains fractional numbers/real numbers and stores a maximum of
six digits after decimal point. The keyword used to denote floating point number is 'float'. It
occupies 4 bytes of memory space. The floating point data type is denoted by the placeholder %f,
which indicates that the data being used is of floating point values. The three classes of floating
point data type are float, double and long double.

Example: -

float x;

Scanf(“%f”,&x);

Printf(“%f”,x);

Where scanf() function is used for input data and printf() is used for print output on console screen.

As shown in table, float occupies 4 bytes of memory space. Double has longer precision than float
and occupies 8 bytes of memory space. The long double further extends the precision and occupies
10 bytes of memory space.

Character Data Type

Character data type consists of a single character. It can store a single special symbol or alphabet
placed within single inverted commas. It is denoted by the keyword char. It occupies only 1 byte of
memory space. The character data type is denoted by placeholder %c, which indicates that the data
being used is of character values.

Example: -

char x;

Scanf(“%c”,&x);

Printf(“%c”,x);

Where scanf() function is used for input data and printf() is used for print output on console screen.

Following table gives the syntax and examples of the different data types.

Unit 01: Basic Concepts

Notes

The integer data type is denoted by placeholder format string % d, which indicates that the data
being used is of integer values.

Example: -

Int x;

Scanf(“%d”,&x);

Printf(“%d”,x);

Where scanf() function is used for input data and printf() is used for print output on console screen.

Generally, there are three classes of integers namely, short int, int and long int. As shown in table,
short integers occupy only 1 byte, int occupies 2 bytes and the long integers occupy 4 bytes of
memory. Long integers can store longer range of values when compared to integer and short
integer.

Floating Point Data Type

The floating point data type contains fractional numbers/real numbers and stores a maximum of
six digits after decimal point. The keyword used to denote floating point number is 'float'. It
occupies 4 bytes of memory space. The floating point data type is denoted by the placeholder %f,
which indicates that the data being used is of floating point values. The three classes of floating
point data type are float, double and long double.

Example: -

float x;

Scanf(“%f”,&x);

Printf(“%f”,x);

Where scanf() function is used for input data and printf() is used for print output on console screen.

As shown in table, float occupies 4 bytes of memory space. Double has longer precision than float
and occupies 8 bytes of memory space. The long double further extends the precision and occupies
10 bytes of memory space.

Character Data Type

Character data type consists of a single character. It can store a single special symbol or alphabet
placed within single inverted commas. It is denoted by the keyword char. It occupies only 1 byte of
memory space. The character data type is denoted by placeholder %c, which indicates that the data
being used is of character values.

Example: -

char x;

Scanf(“%c”,&x);

Printf(“%c”,x);

Where scanf() function is used for input data and printf() is used for print output on console screen.

Following table gives the syntax and examples of the different data types.

Unit 01: Basic Concepts

Notes

The integer data type is denoted by placeholder format string % d, which indicates that the data
being used is of integer values.

Example: -

Int x;

Scanf(“%d”,&x);

Printf(“%d”,x);

Where scanf() function is used for input data and printf() is used for print output on console screen.

Generally, there are three classes of integers namely, short int, int and long int. As shown in table,
short integers occupy only 1 byte, int occupies 2 bytes and the long integers occupy 4 bytes of
memory. Long integers can store longer range of values when compared to integer and short
integer.

Floating Point Data Type

The floating point data type contains fractional numbers/real numbers and stores a maximum of
six digits after decimal point. The keyword used to denote floating point number is 'float'. It
occupies 4 bytes of memory space. The floating point data type is denoted by the placeholder %f,
which indicates that the data being used is of floating point values. The three classes of floating
point data type are float, double and long double.

Example: -

float x;

Scanf(“%f”,&x);

Printf(“%f”,x);

Where scanf() function is used for input data and printf() is used for print output on console screen.

As shown in table, float occupies 4 bytes of memory space. Double has longer precision than float
and occupies 8 bytes of memory space. The long double further extends the precision and occupies
10 bytes of memory space.

Character Data Type

Character data type consists of a single character. It can store a single special symbol or alphabet
placed within single inverted commas. It is denoted by the keyword char. It occupies only 1 byte of
memory space. The character data type is denoted by placeholder %c, which indicates that the data
being used is of character values.

Example: -

char x;

Scanf(“%c”,&x);

Printf(“%c”,x);

Where scanf() function is used for input data and printf() is used for print output on console screen.

Following table gives the syntax and examples of the different data types.

Lovely Professional University 7

Data Structures

Notes

Pointers

A pointer is a reference data structure. A pointer is actually a variable that stores the address of
another variable or structure in a program. The pointer variable holds only the memory location
and not the actual content. The pointer normally uses the address operator represented by ‘&’ and
the indirection operator represented by ‘*’. The address operator provides the address of the
variable and the indirection operator provides the value of the variable which is being pointed by
the pointer variable.

1.7 Need for Data Structures
The study of data structure helps programmers to store and manipulate data efficiently. Data
structures help to understand the relationship of a data element with other data elements. They also
provide various methods to organize and represent the data within the computer’s memory.

Data structure is imperative since it governs the types of operations we perform on the data, and
the competency of the operations carried out. It also governs how dynamic we can be in dealing
with our data.

Note

There are different ways to organize data, for which there is a need for different kinds of data
structure.

1.8 Goals of Data Structure
Data structure basically implements two complementary goals. The first goal of data structure is to
develop mathematical entities and operations, which can be used to solve particular classes of
problems. The second goal is to find out representations for these entities and then implement the
operations on those representations. This goal considers implementing the high level data type to
solve the problems, which in turn uses existing data types.

The fundamental goal of data structure is to produce solutions that are correct and efficient. This in
turn helps to produce quality software. Generally, the production of quality data structure to have
quality software implementation involves the following additional goals:

1.9 Correctness
Data structure is designed such that it operates correctly for all kinds of input, which is based on
the domain of interest. In other words, correctness forms the primary goal of data structure, which
always depends on the specific problems that the data structure is intended to solve.

Data Structures

Notes

Pointers

A pointer is a reference data structure. A pointer is actually a variable that stores the address of
another variable or structure in a program. The pointer variable holds only the memory location
and not the actual content. The pointer normally uses the address operator represented by ‘&’ and
the indirection operator represented by ‘*’. The address operator provides the address of the
variable and the indirection operator provides the value of the variable which is being pointed by
the pointer variable.

1.7 Need for Data Structures
The study of data structure helps programmers to store and manipulate data efficiently. Data
structures help to understand the relationship of a data element with other data elements. They also
provide various methods to organize and represent the data within the computer’s memory.

Data structure is imperative since it governs the types of operations we perform on the data, and
the competency of the operations carried out. It also governs how dynamic we can be in dealing
with our data.

Note

There are different ways to organize data, for which there is a need for different kinds of data
structure.

1.8 Goals of Data Structure
Data structure basically implements two complementary goals. The first goal of data structure is to
develop mathematical entities and operations, which can be used to solve particular classes of
problems. The second goal is to find out representations for these entities and then implement the
operations on those representations. This goal considers implementing the high level data type to
solve the problems, which in turn uses existing data types.

The fundamental goal of data structure is to produce solutions that are correct and efficient. This in
turn helps to produce quality software. Generally, the production of quality data structure to have
quality software implementation involves the following additional goals:

1.9 Correctness
Data structure is designed such that it operates correctly for all kinds of input, which is based on
the domain of interest. In other words, correctness forms the primary goal of data structure, which
always depends on the specific problems that the data structure is intended to solve.

Data Structures

Notes

Pointers

A pointer is a reference data structure. A pointer is actually a variable that stores the address of
another variable or structure in a program. The pointer variable holds only the memory location
and not the actual content. The pointer normally uses the address operator represented by ‘&’ and
the indirection operator represented by ‘*’. The address operator provides the address of the
variable and the indirection operator provides the value of the variable which is being pointed by
the pointer variable.

1.7 Need for Data Structures
The study of data structure helps programmers to store and manipulate data efficiently. Data
structures help to understand the relationship of a data element with other data elements. They also
provide various methods to organize and represent the data within the computer’s memory.

Data structure is imperative since it governs the types of operations we perform on the data, and
the competency of the operations carried out. It also governs how dynamic we can be in dealing
with our data.

Note

There are different ways to organize data, for which there is a need for different kinds of data
structure.

1.8 Goals of Data Structure
Data structure basically implements two complementary goals. The first goal of data structure is to
develop mathematical entities and operations, which can be used to solve particular classes of
problems. The second goal is to find out representations for these entities and then implement the
operations on those representations. This goal considers implementing the high level data type to
solve the problems, which in turn uses existing data types.

The fundamental goal of data structure is to produce solutions that are correct and efficient. This in
turn helps to produce quality software. Generally, the production of quality data structure to have
quality software implementation involves the following additional goals:

1.9 Correctness
Data structure is designed such that it operates correctly for all kinds of input, which is based on
the domain of interest. In other words, correctness forms the primary goal of data structure, which
always depends on the specific problems that the data structure is intended to solve.

Lovely Professional University8

Unit 01: Basic Concepts

Notes

Example: A data structure designed to store a collection of numbers, in a specific order, must
make sure that the numbers are not stored in a haphazard way.

1.10 Efficiency
Data structure also needs to be efficient. It should process the data at high speed without utilizing
much of the computer resources such as memory space. In a real time state, the efficiency of a data
structure is an important factor that determines the success and failure of the process.

Example: NASA space shuttle requires a high level data structure design, so that it reacts
quickly to any changing conditions during a lift-off.

1.11 Advantages of Data Structure
Advantages of Data Structure are:

1. Efficiency
2. Reusability
3. Abstraction

Efficiency: Efficiency of a program depends upon the choice of data structures. For example:
suppose, we have some data and we need to perform the search for a particular record. In that case,
if we organize our data in an array, we will have to search sequentially element by element. Hence,
using array may not be very efficient here. There are better data structures which can make the
search process efficient like ordered array, binary search tree or hash tables.

Reusability: Data structures are reusable, i.e. once we have implemented a particular data
structure, we can use it at any other place. Implementation of data structures can be compiled into
libraries which can be used by different clients.

Abstraction: Data structure is specified by the ADT which provides a level of abstraction. The client
program uses the data structure through interface only, without getting into the implementation
details.

Algorithms
Informally, an algorithm is any well-defined computational procedure that takes some value, or set
of values, as input and produces some value, or set of values, as output. An algorithm is thus a
sequence of computational steps that transform the input into the output.

We can also view an algorithm as a tool for solving a well-specified computational problem. The
statement of the problem specifies in general terms the desired input/output relationship. The
algorithm describes a specific computational procedure for achieving that input/output
relationship.

For example, we might need to sort a sequence of numbers into non decreasing order. This problem
arises frequently in practice and provides fertile ground for introducing many standard design
techniques and analysis tools. Here is how we formally define the sorting problem:

Input: A sequence of n numbers (a1; a2; ……; an),

Output: A permutation (reordering) (a’1, a’2,….,a’n) of the input sequence such that a’1<a’2 <…. <a’n

Example: Given the input sequence h31; 41; 59; 26; 41; 58i, a sorting algorithm returns as
output the sequence h26; 31; 41; 41; 58; 59i. Such an input sequence is called an instance of the
sorting problem. In general, an instance of a problem consists of the input (satisfying whatever
constraints are imposed in the problem statement) needed to compute a solution to the problem.

Because many programs use it as an intermediate step, sorting is a fundamental operation in
computer science. As a result, we have a large number of good sorting algorithms at our disposal.
Which algorithm is best for a given application depends on—among other factors—the number of
items to be sorted, the extent to which the items are already somewhat sorted, possible restrictions

Unit 01: Basic Concepts

Notes

Example: A data structure designed to store a collection of numbers, in a specific order, must
make sure that the numbers are not stored in a haphazard way.

1.10 Efficiency
Data structure also needs to be efficient. It should process the data at high speed without utilizing
much of the computer resources such as memory space. In a real time state, the efficiency of a data
structure is an important factor that determines the success and failure of the process.

Example: NASA space shuttle requires a high level data structure design, so that it reacts
quickly to any changing conditions during a lift-off.

1.11 Advantages of Data Structure
Advantages of Data Structure are:

1. Efficiency
2. Reusability
3. Abstraction

Efficiency: Efficiency of a program depends upon the choice of data structures. For example:
suppose, we have some data and we need to perform the search for a particular record. In that case,
if we organize our data in an array, we will have to search sequentially element by element. Hence,
using array may not be very efficient here. There are better data structures which can make the
search process efficient like ordered array, binary search tree or hash tables.

Reusability: Data structures are reusable, i.e. once we have implemented a particular data
structure, we can use it at any other place. Implementation of data structures can be compiled into
libraries which can be used by different clients.

Abstraction: Data structure is specified by the ADT which provides a level of abstraction. The client
program uses the data structure through interface only, without getting into the implementation
details.

Algorithms
Informally, an algorithm is any well-defined computational procedure that takes some value, or set
of values, as input and produces some value, or set of values, as output. An algorithm is thus a
sequence of computational steps that transform the input into the output.

We can also view an algorithm as a tool for solving a well-specified computational problem. The
statement of the problem specifies in general terms the desired input/output relationship. The
algorithm describes a specific computational procedure for achieving that input/output
relationship.

For example, we might need to sort a sequence of numbers into non decreasing order. This problem
arises frequently in practice and provides fertile ground for introducing many standard design
techniques and analysis tools. Here is how we formally define the sorting problem:

Input: A sequence of n numbers (a1; a2; ……; an),

Output: A permutation (reordering) (a’1, a’2,….,a’n) of the input sequence such that a’1<a’2 <…. <a’n

Example: Given the input sequence h31; 41; 59; 26; 41; 58i, a sorting algorithm returns as
output the sequence h26; 31; 41; 41; 58; 59i. Such an input sequence is called an instance of the
sorting problem. In general, an instance of a problem consists of the input (satisfying whatever
constraints are imposed in the problem statement) needed to compute a solution to the problem.

Because many programs use it as an intermediate step, sorting is a fundamental operation in
computer science. As a result, we have a large number of good sorting algorithms at our disposal.
Which algorithm is best for a given application depends on—among other factors—the number of
items to be sorted, the extent to which the items are already somewhat sorted, possible restrictions

Unit 01: Basic Concepts

Notes

Example: A data structure designed to store a collection of numbers, in a specific order, must
make sure that the numbers are not stored in a haphazard way.

1.10 Efficiency
Data structure also needs to be efficient. It should process the data at high speed without utilizing
much of the computer resources such as memory space. In a real time state, the efficiency of a data
structure is an important factor that determines the success and failure of the process.

Example: NASA space shuttle requires a high level data structure design, so that it reacts
quickly to any changing conditions during a lift-off.

1.11 Advantages of Data Structure
Advantages of Data Structure are:

1. Efficiency
2. Reusability
3. Abstraction

Efficiency: Efficiency of a program depends upon the choice of data structures. For example:
suppose, we have some data and we need to perform the search for a particular record. In that case,
if we organize our data in an array, we will have to search sequentially element by element. Hence,
using array may not be very efficient here. There are better data structures which can make the
search process efficient like ordered array, binary search tree or hash tables.

Reusability: Data structures are reusable, i.e. once we have implemented a particular data
structure, we can use it at any other place. Implementation of data structures can be compiled into
libraries which can be used by different clients.

Abstraction: Data structure is specified by the ADT which provides a level of abstraction. The client
program uses the data structure through interface only, without getting into the implementation
details.

Algorithms
Informally, an algorithm is any well-defined computational procedure that takes some value, or set
of values, as input and produces some value, or set of values, as output. An algorithm is thus a
sequence of computational steps that transform the input into the output.

We can also view an algorithm as a tool for solving a well-specified computational problem. The
statement of the problem specifies in general terms the desired input/output relationship. The
algorithm describes a specific computational procedure for achieving that input/output
relationship.

For example, we might need to sort a sequence of numbers into non decreasing order. This problem
arises frequently in practice and provides fertile ground for introducing many standard design
techniques and analysis tools. Here is how we formally define the sorting problem:

Input: A sequence of n numbers (a1; a2; ……; an),

Output: A permutation (reordering) (a’1, a’2,….,a’n) of the input sequence such that a’1<a’2 <…. <a’n

Example: Given the input sequence h31; 41; 59; 26; 41; 58i, a sorting algorithm returns as
output the sequence h26; 31; 41; 41; 58; 59i. Such an input sequence is called an instance of the
sorting problem. In general, an instance of a problem consists of the input (satisfying whatever
constraints are imposed in the problem statement) needed to compute a solution to the problem.

Because many programs use it as an intermediate step, sorting is a fundamental operation in
computer science. As a result, we have a large number of good sorting algorithms at our disposal.
Which algorithm is best for a given application depends on—among other factors—the number of
items to be sorted, the extent to which the items are already somewhat sorted, possible restrictions

Lovely Professional University 9

Data Structures

Notes

on the item values, the architecture of the computer, and the kind of storage devices to be used:
main memory, disks, or even tapes.

An algorithm can be specified in English, as a computer program, or even as a hardware design.
The only requirement is that the specification must provide a precise description of the
computational procedure to be followed.

1.12 Qualities of Good Algorithms

 Input and output should be defined precisely.
 Each step in the algorithm should be clear and unambiguous.
 Algorithms should be most effective among many different ways to solve a problem.
 An algorithm shouldn't include computer code. Instead, the algorithm should be written in

such a way that it can be used in different programming languages.

Example: Add two numbers entered by the user

Step 1: Start

Step 2: Declare variables num1, num2 and sum.

Step 3: Read values num1 and num2.

Step 4: Add num1 and num2 and assign the result to sum.

sum←num1+num2

Step 5: Display sum

Step 6: Stop

Task: Write an Algorithm to find the largest among three numbers.

1.13 Data Structure Operations
Data which appears in the data structures are processed with the help of certain operations.
Sometimes two or more of the operations may be used in a given situation.

Example: When you want to delete a record with a given key, you first need to use the search
operation to find the location of the record and then use the delete operation.

1.14 Operations on Primitive Data Structure
Various operations can be performed on primitive data structures. Some of these operations are:

1. Creation Operation: The creation operation creates a data structure.

Example: Consider an example of integer type data structure.

int a;

Here, declaration of int creates 2 bytes of memory space for variable ‘a’. This variable is used to
store only integer value.

2. Destroy Operation: The destroy operation destroys the data structure. In C language, a function
called ‘free()’ is used to destroy the data structure. This helps in efficient use of memory.

Data Structures

Notes

on the item values, the architecture of the computer, and the kind of storage devices to be used:
main memory, disks, or even tapes.

An algorithm can be specified in English, as a computer program, or even as a hardware design.
The only requirement is that the specification must provide a precise description of the
computational procedure to be followed.

1.12 Qualities of Good Algorithms

 Input and output should be defined precisely.
 Each step in the algorithm should be clear and unambiguous.
 Algorithms should be most effective among many different ways to solve a problem.
 An algorithm shouldn't include computer code. Instead, the algorithm should be written in

such a way that it can be used in different programming languages.

Example: Add two numbers entered by the user

Step 1: Start

Step 2: Declare variables num1, num2 and sum.

Step 3: Read values num1 and num2.

Step 4: Add num1 and num2 and assign the result to sum.

sum←num1+num2

Step 5: Display sum

Step 6: Stop

Task: Write an Algorithm to find the largest among three numbers.

1.13 Data Structure Operations
Data which appears in the data structures are processed with the help of certain operations.
Sometimes two or more of the operations may be used in a given situation.

Example: When you want to delete a record with a given key, you first need to use the search
operation to find the location of the record and then use the delete operation.

1.14 Operations on Primitive Data Structure
Various operations can be performed on primitive data structures. Some of these operations are:

1. Creation Operation: The creation operation creates a data structure.

Example: Consider an example of integer type data structure.

int a;

Here, declaration of int creates 2 bytes of memory space for variable ‘a’. This variable is used to
store only integer value.

2. Destroy Operation: The destroy operation destroys the data structure. In C language, a function
called ‘free()’ is used to destroy the data structure. This helps in efficient use of memory.

Data Structures

Notes

on the item values, the architecture of the computer, and the kind of storage devices to be used:
main memory, disks, or even tapes.

An algorithm can be specified in English, as a computer program, or even as a hardware design.
The only requirement is that the specification must provide a precise description of the
computational procedure to be followed.

1.12 Qualities of Good Algorithms

 Input and output should be defined precisely.
 Each step in the algorithm should be clear and unambiguous.
 Algorithms should be most effective among many different ways to solve a problem.
 An algorithm shouldn't include computer code. Instead, the algorithm should be written in

such a way that it can be used in different programming languages.

Example: Add two numbers entered by the user

Step 1: Start

Step 2: Declare variables num1, num2 and sum.

Step 3: Read values num1 and num2.

Step 4: Add num1 and num2 and assign the result to sum.

sum←num1+num2

Step 5: Display sum

Step 6: Stop

Task: Write an Algorithm to find the largest among three numbers.

1.13 Data Structure Operations
Data which appears in the data structures are processed with the help of certain operations.
Sometimes two or more of the operations may be used in a given situation.

Example: When you want to delete a record with a given key, you first need to use the search
operation to find the location of the record and then use the delete operation.

1.14 Operations on Primitive Data Structure
Various operations can be performed on primitive data structures. Some of these operations are:

1. Creation Operation: The creation operation creates a data structure.

Example: Consider an example of integer type data structure.

int a;

Here, declaration of int creates 2 bytes of memory space for variable ‘a’. This variable is used to
store only integer value.

2. Destroy Operation: The destroy operation destroys the data structure. In C language, a function
called ‘free()’ is used to destroy the data structure. This helps in efficient use of memory.

Lovely Professional University10

Unit 01: Basic Concepts

Notes

3. Selection Operation: The selection operation is used to access data within a data structure. The
significance of selection operation is provided in file data structure. Files provide the option of
sequential and random access, which totally depend on the nature of files.

4. Update Operation: The update operation is used to modify data in data structure.

1.15 Operations on Non-primitive Data Structure
The operations on non-primitive data structure depend on the logical organization of data and their
storage structure. Non-primitive data focuses on formation of a set of data elements that are either
homogeneous (same data type) or heterogeneous (different data type). Therefore, non-primitive
data cannot be operated or manipulated directly by the machine level instructions. Some of the
operations on non-primitive data structure are:

1. Traversing: Traversing is the method of processing each element exactly once. Traversing is
generally done to check the availability of data elements in an array. After carrying out an insertion
or deletion operation, you would want to check whether the operation has been successful or not.
We use traversing to check if the element is successfully inserted or deleted.

2. Sorting: Sorting is the technique of arranging the data elements in some logical order, either
ascending or descending order. Some algorithms make use of sorted lists. Therefore, efficient
sorting is essential for optimizing these algorithms to ensure that they work correctly.

3. Merging: Merging is the method of combining the elements in two different sorted lists into a
single sorted list. It is based on the divide-and-conquer algorithm. Merge sort can be considered as
the best choice for sorting a linked list as it is easy to implement.

4. Searching: Searching is the method of finding the location of an element with a given key value,
or finding the location of an element which satisfies a given condition. Searching a data structure
allows the efficient retrieval of unambiguous items from a set of items, such as a particular record
from a database.

5. Insertion: Insertion is the method of adding a new element to the data structure. The insertion
process may add a new element in the ith position of the data structure. If sorting also needs to be
performed, first we need to assign an item to the given elements and compare it with the previous
elements. If the assigned element is smaller than the previous element, we need to swap the
positions of both these items. This process is repeated until the correct position of the item is
identified.

6. Deletion: Deletion refers to removing an item from the structure. When a node is not required in
the data structure, it can be removed using the delete operation.

Summary
● Algorithms are used for data processing, calculations, and automated reasoning. An

algorithm can be defined as a set of rules that accurately define a series of operations.
● Algorithms are used for data processing, calculations, and automated reasoning. An

algorithm can be defined as a set of rules that accurately define a series of operations.
● Two fundamental goals of data structure are correctness and efficiency. Some of the

important features of data structures are robustness, adaptability and reusability.
● Data structure can be classified into two categories: primitive data structure and non-

primitive data structure.
● Basic data types such as integer, real, character, and Boolean are categorized under

primitive data structures. These data types are also known as simple data types because
they consist of characters that cannot be divided.

● Non-primitive data structures are further divided into linear and non-linear data structure
based on the structure and arrangement of data.

Lovely Professional University 11

Data Structures

Notes

● An Abstract Data Type (ADT) is a technique that is used to specify the logical properties of
a data type. It can be considered as a basic mathematical concept used to define the data
types.

Keywords
Amorphous: Not having a definite form; shapeless.

Efficiency: Efficiency of a program depends upon the choice of data structures

Creation Operation: The creation operation creates a data structure.

Deletion: Deletion refers to removing an item from the structure.

Self Assessment

1. Which of the following is linear data structure?
A. Trees
B. Graphs
C. Arrays
D. None of these

2. Which of the following is non-linear data structure?
A. Array
B. Linked lists
C. Stacks
D. None of these

3. User defined data type is also called?
A. Primitive
B. Non-primitive
C. Identifier
D. None of these

4. Stack is based on which principle
A. FIFO
B. Push
C. LIFO
D. None of these

5. Describes the running time of an algorithm
A. Asymptotic Notation
B. Time complexity
C. Performance Analysis
D. None of these

6. A procedure for solving a problem in terms of action and their order is called as
A. Process
B. Program instruction
C. Algorithm
D. Template

Lovely Professional University12

Unit 01: Basic Concepts

Notes

7. Algorithm can be represented as
A. Pseudocode
B. Flowchart
C. None of the above
D. both Pseudocode and Flowchart

8. Algorithm should have finite number of steps
A. True
B. False

9. Which of the following is not a Characteristics of a Data Structure?
A. Completeness
B. Correctness
C. Time Complexity
D. Space Complexity

10. Which of the following is not a data structure operation
A. Deletion
B. Traverse
C. Code
D. Sorting

11. An algorithm should have _________ well-defined outputs.
A. 0
B. 1
C. 0 or more
D. 1 or more

12. LIFO stands for
A. Last In First Out
B. Late In First Out
C. Light In Figure Out
D. None of the Above

13. Implementation of non – linear data structure is easy
A. True
B. False

14. ____ can be defined as process of combining elements of two data structure
A. Insertion
B. Deletion
C. Sorting
D. Merging

15. _________ can be defined as process of arranging elements of data structure
A. Insertion
B. Deletion
C. Sorting
D. Merging

Lovely Professional University 13

Data Structures

Notes

Answers for Self Assessment

1. C 2. D 3. B 4. C 5. A

6. C 7. C 8. A 9. A 10. C

11. D 12. A 13. B 14. D 15. C

Review Questions

1. Describe the types of Data Structures?

2. What do you mean by linear data structure?
3. How nonlinear data structure are different from linear data structure. Explain your

answer with suitable example.
4. What is an algorithm? Write an algorithm to check entered number is even or odd.
5. Explain data structure operations with suitable example.
6. What are the advantages of data structures?
7. Write good qualities of algorithm.
8. What is importance of an algorithm?
9. How linked list is different from array.
10. Give any real life example of data structure.

Further Readings
Lipschutz. Seymour. Data Structures with C. Delhi: Tata McGraw Hill

Reddy.A.M Padma (2006). Data Structures Using C. Bangalore: Sri Nandi Publications

Web Links
https://tutorialsinhand.com/tutorials/data-structure-tutorial/data-structure-
basics/introduction-to-data-structure.aspx

http://www.cplusplus.com/doc/tutorial/variables/

https://aofa.cs.princeton.edu/home/

Data Structures

Notes

Answers for Self Assessment

1. C 2. D 3. B 4. C 5. A

6. C 7. C 8. A 9. A 10. C

11. D 12. A 13. B 14. D 15. C

Review Questions

1. Describe the types of Data Structures?

2. What do you mean by linear data structure?
3. How nonlinear data structure are different from linear data structure. Explain your

answer with suitable example.
4. What is an algorithm? Write an algorithm to check entered number is even or odd.
5. Explain data structure operations with suitable example.
6. What are the advantages of data structures?
7. Write good qualities of algorithm.
8. What is importance of an algorithm?
9. How linked list is different from array.
10. Give any real life example of data structure.

Further Readings
Lipschutz. Seymour. Data Structures with C. Delhi: Tata McGraw Hill

Reddy.A.M Padma (2006). Data Structures Using C. Bangalore: Sri Nandi Publications

Web Links
https://tutorialsinhand.com/tutorials/data-structure-tutorial/data-structure-
basics/introduction-to-data-structure.aspx

http://www.cplusplus.com/doc/tutorial/variables/

https://aofa.cs.princeton.edu/home/

Data Structures

Notes

Answers for Self Assessment

1. C 2. D 3. B 4. C 5. A

6. C 7. C 8. A 9. A 10. C

11. D 12. A 13. B 14. D 15. C

Review Questions

1. Describe the types of Data Structures?

2. What do you mean by linear data structure?
3. How nonlinear data structure are different from linear data structure. Explain your

answer with suitable example.
4. What is an algorithm? Write an algorithm to check entered number is even or odd.
5. Explain data structure operations with suitable example.
6. What are the advantages of data structures?
7. Write good qualities of algorithm.
8. What is importance of an algorithm?
9. How linked list is different from array.
10. Give any real life example of data structure.

Further Readings
Lipschutz. Seymour. Data Structures with C. Delhi: Tata McGraw Hill

Reddy.A.M Padma (2006). Data Structures Using C. Bangalore: Sri Nandi Publications

Web Links
https://tutorialsinhand.com/tutorials/data-structure-tutorial/data-structure-
basics/introduction-to-data-structure.aspx

http://www.cplusplus.com/doc/tutorial/variables/

https://aofa.cs.princeton.edu/home/

Lovely Professional University14

Unit 02: Complexity of Algorithms

Notes

Unit 02: Complexity of Algorithms

Contents

Objectives

Introduction

2.1 Mathematical Notation and Functions

2.2 Common Asymptotic Notations

2.3 Mathematical Functions

2.4 Algorithmic Complexity and Time Space Tradeoff

2.5 Algorithmic Analysis

2.6 Types of Analysis

2.7 Control Structures

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to:

 Understand the basic concepts and notations of data structures
 Explain mathematical notation and functions
 Analyze the algorithmic complexity and time space tradeoff
 Discuss algorithmic analysis

Introduction
Each computer program is a series of instructions that are arranged in a specific order to perform a
specific task. A computer program is written to instruct a computer to perform a specific task in
order to obtain the desired result. Irrespective of the language used to develop a program, there are
some generic steps that can be followed to solve a problem. These generic steps are called
algorithms. According to H. Cormen, "Before there were computers, there were algorithms." An
algorithm is a set of instructions that performs a particular task. It is considered as a tool that helps
to solve a specific computational problem.

Mathematical notation is a system of symbolic representations of mathematical objects and ideas.
Mathematical functions appear quite often in the analysis of algorithm along with their notation.
Some of the mathematical functions are floor and ceiling functions, summation symbol, factorial,
Fibonacci numbers, and so on.

The complexity of an algorithm is a function that describes the efficiency of an algorithm in terms of
the amount of data the algorithm must process.

The two main complexity measures of efficiency of an algorithm are:

Lovely Professional University 15

Dr. Prikshat Kumar Angra, Lovely Professional University

Data Structures

Notes

1. Time Complexity: It is a function that describes the time taken by an algorithm to solve a
problem.

Example: Big-O notation is used to express the time complexity of an algorithm.

2. Space Complexity: It is a function that describes the amount of memory or space required
by an algorithm to run. A good algorithm has minimum number of space complexity.

Algorithm analysis is an important part of computational complexity theory. It provides theoretical
estimates for the resources that are needed for any algorithm to solve a given problem. These
estimates provide an insight into the measures that determine algorithm efficiency. It is necessary
to check the efficiency of each of the algorithms in order to select the best algorithm. We can easily
measure the efficiency of algorithms by calculating their time complexity. The shorthand way to
represent time complexity is asymptotic notation. It is a function that describes the amount of
memory or space required by an algorithm to run. A good algorithm has minimum number of
space complexity.

Example: Consider the algorithm for sorting a deck of cards. This algorithm continues
repeatedly searching through the deck for the lowest card. The square of the number of cards in the
deck is the asymptotic complexity of this algorithm.

2.1 Mathematical Notation and Functions
Algorithms are widely used in various areas of study. We can solve different problems using the
same algorithm. Therefore, all algorithms must follow a standard. The mathematical notations use
symbols or symbolic expressions, which have a precise semantic meaning.

According to Lancelot Hogben, "Every meaningful mathematical statement can also be expressed in
plain language. Many plain language statements of mathematical expressions would fill several
pages, while to express them in mathematical notation might take as little as one line. One of the
ways to achieve this remarkable compression is to use symbols to stand for statements, instructions,
and so on.

Asymptotic Notations
Asymptotic analysis of an algorithm refers to defining the mathematical boundation/framing of its
run-time performance. Using asymptotic analysis, we can very well conclude the best case, average
case, and worst case scenario of an algorithm.

A problem may have various algorithmic solutions. In order to choose the best algorithm for a
particular process, you must be able to judge the time taken to run a particular solution. More
accurately, you must be able to judge the time taken to run two solutions, and choose the better
among the two.

To select the best algorithm, it is necessary to check the efficiency of each algorithm. The efficiency
of each algorithm can be checked by computing its time complexity. The asymptotic notations help
to represent the time complexity in a shorthand way. It can generally be represented as the fastest
possible, slowest possible or average possible.

Asymptotic analysis is input bound i.e., if there's no input to the algorithm, it is concluded to work
in a constant time. Other than the "input" all other factors are considered constant.

Asymptotic analysis refers to computing the running time of any operation in mathematical units
of computation. For example, the running time of one operation is computed as f(n) and may be for
another operation it is computed as g(n2). This means the first operation running time will increase
linearly with the increase in n and the running time of the second operation will increase
exponentially when n increases. Similarly, the running time of both operations will be nearly the
same if n is significantly small.

Usually, the time required by an algorithm falls under three types −

Data Structures

Notes

1. Time Complexity: It is a function that describes the time taken by an algorithm to solve a
problem.

Example: Big-O notation is used to express the time complexity of an algorithm.

2. Space Complexity: It is a function that describes the amount of memory or space required
by an algorithm to run. A good algorithm has minimum number of space complexity.

Algorithm analysis is an important part of computational complexity theory. It provides theoretical
estimates for the resources that are needed for any algorithm to solve a given problem. These
estimates provide an insight into the measures that determine algorithm efficiency. It is necessary
to check the efficiency of each of the algorithms in order to select the best algorithm. We can easily
measure the efficiency of algorithms by calculating their time complexity. The shorthand way to
represent time complexity is asymptotic notation. It is a function that describes the amount of
memory or space required by an algorithm to run. A good algorithm has minimum number of
space complexity.

Example: Consider the algorithm for sorting a deck of cards. This algorithm continues
repeatedly searching through the deck for the lowest card. The square of the number of cards in the
deck is the asymptotic complexity of this algorithm.

2.1 Mathematical Notation and Functions
Algorithms are widely used in various areas of study. We can solve different problems using the
same algorithm. Therefore, all algorithms must follow a standard. The mathematical notations use
symbols or symbolic expressions, which have a precise semantic meaning.

According to Lancelot Hogben, "Every meaningful mathematical statement can also be expressed in
plain language. Many plain language statements of mathematical expressions would fill several
pages, while to express them in mathematical notation might take as little as one line. One of the
ways to achieve this remarkable compression is to use symbols to stand for statements, instructions,
and so on.

Asymptotic Notations
Asymptotic analysis of an algorithm refers to defining the mathematical boundation/framing of its
run-time performance. Using asymptotic analysis, we can very well conclude the best case, average
case, and worst case scenario of an algorithm.

A problem may have various algorithmic solutions. In order to choose the best algorithm for a
particular process, you must be able to judge the time taken to run a particular solution. More
accurately, you must be able to judge the time taken to run two solutions, and choose the better
among the two.

To select the best algorithm, it is necessary to check the efficiency of each algorithm. The efficiency
of each algorithm can be checked by computing its time complexity. The asymptotic notations help
to represent the time complexity in a shorthand way. It can generally be represented as the fastest
possible, slowest possible or average possible.

Asymptotic analysis is input bound i.e., if there's no input to the algorithm, it is concluded to work
in a constant time. Other than the "input" all other factors are considered constant.

Asymptotic analysis refers to computing the running time of any operation in mathematical units
of computation. For example, the running time of one operation is computed as f(n) and may be for
another operation it is computed as g(n2). This means the first operation running time will increase
linearly with the increase in n and the running time of the second operation will increase
exponentially when n increases. Similarly, the running time of both operations will be nearly the
same if n is significantly small.

Usually, the time required by an algorithm falls under three types −

Data Structures

Notes

1. Time Complexity: It is a function that describes the time taken by an algorithm to solve a
problem.

Example: Big-O notation is used to express the time complexity of an algorithm.

2. Space Complexity: It is a function that describes the amount of memory or space required
by an algorithm to run. A good algorithm has minimum number of space complexity.

Algorithm analysis is an important part of computational complexity theory. It provides theoretical
estimates for the resources that are needed for any algorithm to solve a given problem. These
estimates provide an insight into the measures that determine algorithm efficiency. It is necessary
to check the efficiency of each of the algorithms in order to select the best algorithm. We can easily
measure the efficiency of algorithms by calculating their time complexity. The shorthand way to
represent time complexity is asymptotic notation. It is a function that describes the amount of
memory or space required by an algorithm to run. A good algorithm has minimum number of
space complexity.

Example: Consider the algorithm for sorting a deck of cards. This algorithm continues
repeatedly searching through the deck for the lowest card. The square of the number of cards in the
deck is the asymptotic complexity of this algorithm.

2.1 Mathematical Notation and Functions
Algorithms are widely used in various areas of study. We can solve different problems using the
same algorithm. Therefore, all algorithms must follow a standard. The mathematical notations use
symbols or symbolic expressions, which have a precise semantic meaning.

According to Lancelot Hogben, "Every meaningful mathematical statement can also be expressed in
plain language. Many plain language statements of mathematical expressions would fill several
pages, while to express them in mathematical notation might take as little as one line. One of the
ways to achieve this remarkable compression is to use symbols to stand for statements, instructions,
and so on.

Asymptotic Notations
Asymptotic analysis of an algorithm refers to defining the mathematical boundation/framing of its
run-time performance. Using asymptotic analysis, we can very well conclude the best case, average
case, and worst case scenario of an algorithm.

A problem may have various algorithmic solutions. In order to choose the best algorithm for a
particular process, you must be able to judge the time taken to run a particular solution. More
accurately, you must be able to judge the time taken to run two solutions, and choose the better
among the two.

To select the best algorithm, it is necessary to check the efficiency of each algorithm. The efficiency
of each algorithm can be checked by computing its time complexity. The asymptotic notations help
to represent the time complexity in a shorthand way. It can generally be represented as the fastest
possible, slowest possible or average possible.

Asymptotic analysis is input bound i.e., if there's no input to the algorithm, it is concluded to work
in a constant time. Other than the "input" all other factors are considered constant.

Asymptotic analysis refers to computing the running time of any operation in mathematical units
of computation. For example, the running time of one operation is computed as f(n) and may be for
another operation it is computed as g(n2). This means the first operation running time will increase
linearly with the increase in n and the running time of the second operation will increase
exponentially when n increases. Similarly, the running time of both operations will be nearly the
same if n is significantly small.

Usually, the time required by an algorithm falls under three types −

Lovely Professional University16

Unit 02: Complexity of Algorithms

Notes

 Best Case − Minimum time required for program execution.
 Average Case − Average time required for program execution.
 Worst Case − Maximum time required for program execution.

Following are the commonly used asymptotic notations to calculate the running time complexity of
an algorithm.

 Ο Notation
 Ω Notation
 θ Notation

Big-O Notation
‘O’ is the representation for Big-O notation. Big-O is the method used to express the upper bound of
the running time of an algorithm. It is used to describe the performance or time complexity of the
algorithm. Big-O specifically describes the worst-case scenario and can be used to describe the
execution time required or the space used by the algorithm.

Table gives some names and examples of the common orders used to describe functions. These
orders are ranked from top to bottom.

Big-O notation is generally used to express an ordering property among the functions. This
notation helps in calculating the maximum amount of time taken by an algorithm to compute a
problem. Big-is defined as:

f(n) ≤ c∗g(n)

where, n can be any number of inputs or outputs and f(n) as well as g(n) are two non-negativefunctions. These
functions are true only if there is a constant c and a non-negative integer n0≥such that,n n0.

The notation Ο(n) is the formal way to express the upper bound of an algorithm's running time. It measures
the worst case time complexity or the longest amount of time an algorithm can possibly take to complete.

Unit 02: Complexity of Algorithms

Notes

 Best Case − Minimum time required for program execution.
 Average Case − Average time required for program execution.
 Worst Case − Maximum time required for program execution.

Following are the commonly used asymptotic notations to calculate the running time complexity of
an algorithm.

 Ο Notation
 Ω Notation
 θ Notation

Big-O Notation
‘O’ is the representation for Big-O notation. Big-O is the method used to express the upper bound of
the running time of an algorithm. It is used to describe the performance or time complexity of the
algorithm. Big-O specifically describes the worst-case scenario and can be used to describe the
execution time required or the space used by the algorithm.

Table gives some names and examples of the common orders used to describe functions. These
orders are ranked from top to bottom.

Big-O notation is generally used to express an ordering property among the functions. This
notation helps in calculating the maximum amount of time taken by an algorithm to compute a
problem. Big-is defined as:

f(n) ≤ c∗g(n)

where, n can be any number of inputs or outputs and f(n) as well as g(n) are two non-negativefunctions. These
functions are true only if there is a constant c and a non-negative integer n0≥such that,n n0.

The notation Ο(n) is the formal way to express the upper bound of an algorithm's running time. It measures
the worst case time complexity or the longest amount of time an algorithm can possibly take to complete.

Unit 02: Complexity of Algorithms

Notes

 Best Case − Minimum time required for program execution.
 Average Case − Average time required for program execution.
 Worst Case − Maximum time required for program execution.

Following are the commonly used asymptotic notations to calculate the running time complexity of
an algorithm.

 Ο Notation
 Ω Notation
 θ Notation

Big-O Notation
‘O’ is the representation for Big-O notation. Big-O is the method used to express the upper bound of
the running time of an algorithm. It is used to describe the performance or time complexity of the
algorithm. Big-O specifically describes the worst-case scenario and can be used to describe the
execution time required or the space used by the algorithm.

Table gives some names and examples of the common orders used to describe functions. These
orders are ranked from top to bottom.

Big-O notation is generally used to express an ordering property among the functions. This
notation helps in calculating the maximum amount of time taken by an algorithm to compute a
problem. Big-is defined as:

f(n) ≤ c∗g(n)

where, n can be any number of inputs or outputs and f(n) as well as g(n) are two non-negativefunctions. These
functions are true only if there is a constant c and a non-negative integer n0≥such that,n n0.

The notation Ο(n) is the formal way to express the upper bound of an algorithm's running time. It measures
the worst case time complexity or the longest amount of time an algorithm can possibly take to complete.

Lovely Professional University 17

Data Structures

Notes

Example for a function f(n)

Ο(f(n)) = { g(n) : there exists c > 0 and n0 such that f(n) ≤ c.g(n) for all n > n0. }

Omega Notation, Ω
The notation Ω(n) is the formal way to express the lower bound of an algorithm's running time. It
measures the best case time complexity or the best amount of time an algorithm can possibly take
to complete.

Example for a function f(n)

Ω(f(n)) ≥ { g(n) : there exists c > 0 and n0 such that g(n) ≤ c.f(n) for all n > n0. }

Omega Notation, Ω
The notation Ω(n) is the formal way to express the lower bound of an algorithm's running time. It
measures the best case time complexity or the best amount of time an algorithm can possibly take
to complete.

Data Structures

Notes

Example for a function f(n)

Ο(f(n)) = { g(n) : there exists c > 0 and n0 such that f(n) ≤ c.g(n) for all n > n0. }

Omega Notation, Ω
The notation Ω(n) is the formal way to express the lower bound of an algorithm's running time. It
measures the best case time complexity or the best amount of time an algorithm can possibly take
to complete.

Example for a function f(n)

Ω(f(n)) ≥ { g(n) : there exists c > 0 and n0 such that g(n) ≤ c.f(n) for all n > n0. }

Omega Notation, Ω
The notation Ω(n) is the formal way to express the lower bound of an algorithm's running time. It
measures the best case time complexity or the best amount of time an algorithm can possibly take
to complete.

Data Structures

Notes

Example for a function f(n)

Ο(f(n)) = { g(n) : there exists c > 0 and n0 such that f(n) ≤ c.g(n) for all n > n0. }

Omega Notation, Ω
The notation Ω(n) is the formal way to express the lower bound of an algorithm's running time. It
measures the best case time complexity or the best amount of time an algorithm can possibly take
to complete.

Example for a function f(n)

Ω(f(n)) ≥ { g(n) : there exists c > 0 and n0 such that g(n) ≤ c.f(n) for all n > n0. }

Omega Notation, Ω
The notation Ω(n) is the formal way to express the lower bound of an algorithm's running time. It
measures the best case time complexity or the best amount of time an algorithm can possibly take
to complete.

Lovely Professional University18

Unit 02: Complexity of Algorithms

Notes

Example for a function f(n)

Ω(f(n)) ≥ { g(n) : there exists c > 0 and n0 such that g(n) ≤ c.f(n) for all n > n0. }

Theta Notation, θ
The notation θ(n) is the formal way to express both the lower bound and the upper bound of an
algorithm's running time. It is represented as follows –

Example for a function f(n)

θ(f(n)) = { g(n) if and only if g(n) = Ο(f(n)) and g(n) = Ω(f(n)) for all n > n0. }

2.2 Common Asymptotic Notations
Following is a list of some common asymptotic notations –

constant -> Ο(1)

logarithmic -> Ο(log n)

linear -> Ο(n)

n log n -> Ο(n log n)

quadratic -> Ο(n2)

Unit 02: Complexity of Algorithms

Notes

Example for a function f(n)

Ω(f(n)) ≥ { g(n) : there exists c > 0 and n0 such that g(n) ≤ c.f(n) for all n > n0. }

Theta Notation, θ
The notation θ(n) is the formal way to express both the lower bound and the upper bound of an
algorithm's running time. It is represented as follows –

Example for a function f(n)

θ(f(n)) = { g(n) if and only if g(n) = Ο(f(n)) and g(n) = Ω(f(n)) for all n > n0. }

2.2 Common Asymptotic Notations
Following is a list of some common asymptotic notations –

constant -> Ο(1)

logarithmic -> Ο(log n)

linear -> Ο(n)

n log n -> Ο(n log n)

quadratic -> Ο(n2)

Unit 02: Complexity of Algorithms

Notes

Example for a function f(n)

Ω(f(n)) ≥ { g(n) : there exists c > 0 and n0 such that g(n) ≤ c.f(n) for all n > n0. }

Theta Notation, θ
The notation θ(n) is the formal way to express both the lower bound and the upper bound of an
algorithm's running time. It is represented as follows –

Example for a function f(n)

θ(f(n)) = { g(n) if and only if g(n) = Ο(f(n)) and g(n) = Ω(f(n)) for all n > n0. }

2.2 Common Asymptotic Notations
Following is a list of some common asymptotic notations –

constant -> Ο(1)

logarithmic -> Ο(log n)

linear -> Ο(n)

n log n -> Ο(n log n)

quadratic -> Ο(n2)

Lovely Professional University 19

Data Structures

Notes

cubic -> Ο(n3)

polynomial -> nΟ(1)

exponential -> 2Ο(n)

2.3 Mathematical Functions
Mathematical functions express the idea that an input completely determines an output. A function
provides exactly one value to each input of a specified type. The value can be real numbers or can
be elements from any given sets: the domain and the codomain of the function.

Example

Function f(x)=2x

In this case, the function is assigned to every real number, the real number with twice its value.

Assume x=5, then we can write f(5) = 10

Some of the mathematical functions are described below:

Floor and Ceiling Functions
Floor function is represented as floor(x). Floor function which is also called greatest integer function
gives the largest integer less than or equal to x. The range of floor(x) is the set of all integers, but the
domain of floor(x) is the set of all real numbers.

Let us take an example to understand the floor function more clearly.

Example
floor(1.01)=1
floor(0)=0
floor(2.9)=2
floor(-3)=-3
floor(-1.1)=-2
Find out floor(x) for various values of x

Ceiling function is represented as ceiling(x). It gives the smallest integer value greater than or equal
to x. The domain of ceiling(x) is the set of all real numbers. The range of ceiling(x) is the set of all
integers.

Let us consider the following example.

Example

ceiling (1.5)=2

ceiling(0)=0

ceiling(2)=2

ceiling(-3)=-3

ceiling(-1.1)=-1

Find out ceiling(x) for various values of x.

Did you know?

The name and symbol for the floor function and ceiling function was invented by K. E. Iverson
(Graham et. al. 1994).

Data Structures

Notes

cubic -> Ο(n3)

polynomial -> nΟ(1)

exponential -> 2Ο(n)

2.3 Mathematical Functions
Mathematical functions express the idea that an input completely determines an output. A function
provides exactly one value to each input of a specified type. The value can be real numbers or can
be elements from any given sets: the domain and the codomain of the function.

Example

Function f(x)=2x

In this case, the function is assigned to every real number, the real number with twice its value.

Assume x=5, then we can write f(5) = 10

Some of the mathematical functions are described below:

Floor and Ceiling Functions
Floor function is represented as floor(x). Floor function which is also called greatest integer function
gives the largest integer less than or equal to x. The range of floor(x) is the set of all integers, but the
domain of floor(x) is the set of all real numbers.

Let us take an example to understand the floor function more clearly.

Example
floor(1.01)=1
floor(0)=0
floor(2.9)=2
floor(-3)=-3
floor(-1.1)=-2
Find out floor(x) for various values of x

Ceiling function is represented as ceiling(x). It gives the smallest integer value greater than or equal
to x. The domain of ceiling(x) is the set of all real numbers. The range of ceiling(x) is the set of all
integers.

Let us consider the following example.

Example

ceiling (1.5)=2

ceiling(0)=0

ceiling(2)=2

ceiling(-3)=-3

ceiling(-1.1)=-1

Find out ceiling(x) for various values of x.

Did you know?

The name and symbol for the floor function and ceiling function was invented by K. E. Iverson
(Graham et. al. 1994).

Data Structures

Notes

cubic -> Ο(n3)

polynomial -> nΟ(1)

exponential -> 2Ο(n)

2.3 Mathematical Functions
Mathematical functions express the idea that an input completely determines an output. A function
provides exactly one value to each input of a specified type. The value can be real numbers or can
be elements from any given sets: the domain and the codomain of the function.

Example

Function f(x)=2x

In this case, the function is assigned to every real number, the real number with twice its value.

Assume x=5, then we can write f(5) = 10

Some of the mathematical functions are described below:

Floor and Ceiling Functions
Floor function is represented as floor(x). Floor function which is also called greatest integer function
gives the largest integer less than or equal to x. The range of floor(x) is the set of all integers, but the
domain of floor(x) is the set of all real numbers.

Let us take an example to understand the floor function more clearly.

Example
floor(1.01)=1
floor(0)=0
floor(2.9)=2
floor(-3)=-3
floor(-1.1)=-2
Find out floor(x) for various values of x

Ceiling function is represented as ceiling(x). It gives the smallest integer value greater than or equal
to x. The domain of ceiling(x) is the set of all real numbers. The range of ceiling(x) is the set of all
integers.

Let us consider the following example.

Example

ceiling (1.5)=2

ceiling(0)=0

ceiling(2)=2

ceiling(-3)=-3

ceiling(-1.1)=-1

Find out ceiling(x) for various values of x.

Did you know?

The name and symbol for the floor function and ceiling function was invented by K. E. Iverson
(Graham et. al. 1994).

Lovely Professional University20

Unit 02: Complexity of Algorithms

Notes

Summation Symbol
Summation symbol is Σ. Summation is the operation of combining a sequence of numbers using
addition. The result is the sum or total of all the numbers. Apart from numbers, other types of values
such as, vectors, matrices, polynomials, and elements of any additive group can also be added using
summation symbol.

Example: Consider a sequence x1, x2, x3……x10. The simple addition of this sequence
isx1+x2+x3+x4+x5+x6+x7+x8+x9+x10. Using mathematical notation we canshorten the addition. It can be
done by using a symbol to denote “all the way upto” or “all the way down to”.

Then, the expression will be x1+x2+x3+…..+x10. We can also represent theexpression using Greek letter Σ
as shown below:

Here, a is the first index and b is the last index. The variables are the numbers that appear
constantly in all terms. In the expression,

x1+x2+x3+x4+x5+x6+x7+x8+x9+x10

1 is the first index, 10 is the last index, and x is the variable. If we use i as the index variable then the
expression will be

Exponent and Logarithm

Exponential function has the form f(x) =ax+B where, a is the base, x is the exponent, and B is any
expression.

If a is positive, the function continuously increases in value. As x increases, the slope of the function also
increases.

Example: Consider a function. f(x)=2x

Here, we have an exponential function with base 2. Some typical values for this function are:

The graph for y=2x is shown in figure. In the graph as x increases, y also increases, and as x
increases the slope of the graph also increases.

Unit 02: Complexity of Algorithms

Notes

Summation Symbol
Summation symbol is Σ. Summation is the operation of combining a sequence of numbers using
addition. The result is the sum or total of all the numbers. Apart from numbers, other types of values
such as, vectors, matrices, polynomials, and elements of any additive group can also be added using
summation symbol.

Example: Consider a sequence x1, x2, x3……x10. The simple addition of this sequence
isx1+x2+x3+x4+x5+x6+x7+x8+x9+x10. Using mathematical notation we canshorten the addition. It can be
done by using a symbol to denote “all the way upto” or “all the way down to”.

Then, the expression will be x1+x2+x3+…..+x10. We can also represent theexpression using Greek letter Σ
as shown below:

Here, a is the first index and b is the last index. The variables are the numbers that appear
constantly in all terms. In the expression,

x1+x2+x3+x4+x5+x6+x7+x8+x9+x10

1 is the first index, 10 is the last index, and x is the variable. If we use i as the index variable then the
expression will be

Exponent and Logarithm

Exponential function has the form f(x) =ax+B where, a is the base, x is the exponent, and B is any
expression.

If a is positive, the function continuously increases in value. As x increases, the slope of the function also
increases.

Example: Consider a function. f(x)=2x

Here, we have an exponential function with base 2. Some typical values for this function are:

The graph for y=2x is shown in figure. In the graph as x increases, y also increases, and as x
increases the slope of the graph also increases.

Unit 02: Complexity of Algorithms

Notes

Summation Symbol
Summation symbol is Σ. Summation is the operation of combining a sequence of numbers using
addition. The result is the sum or total of all the numbers. Apart from numbers, other types of values
such as, vectors, matrices, polynomials, and elements of any additive group can also be added using
summation symbol.

Example: Consider a sequence x1, x2, x3……x10. The simple addition of this sequence
isx1+x2+x3+x4+x5+x6+x7+x8+x9+x10. Using mathematical notation we canshorten the addition. It can be
done by using a symbol to denote “all the way upto” or “all the way down to”.

Then, the expression will be x1+x2+x3+…..+x10. We can also represent theexpression using Greek letter Σ
as shown below:

Here, a is the first index and b is the last index. The variables are the numbers that appear
constantly in all terms. In the expression,

x1+x2+x3+x4+x5+x6+x7+x8+x9+x10

1 is the first index, 10 is the last index, and x is the variable. If we use i as the index variable then the
expression will be

Exponent and Logarithm

Exponential function has the form f(x) =ax+B where, a is the base, x is the exponent, and B is any
expression.

If a is positive, the function continuously increases in value. As x increases, the slope of the function also
increases.

Example: Consider a function. f(x)=2x

Here, we have an exponential function with base 2. Some typical values for this function are:

The graph for y=2x is shown in figure. In the graph as x increases, y also increases, and as x
increases the slope of the graph also increases.

Lovely Professional University 21

Data Structures

Notes

A logarithm is an exponent. The logarithmic function is defined as f(x)= logb x. Here, the base of
the algorithm is b. The two most common bases which we use are base 10 and base e

Example: Consider the exponential equation 52=25 where 5 is base and 2 is exponent.

The logarithmic form of this equation is:

Log525=2

Here, we can say that the logarithm of 25 to the base 5 is 2.

Factorial
The symbol of the factorial function is ‘!’. The factorial function multiplies a series of natural
numbers that are in descending order. The factorial of a positive integer n which is denoted by n!
represents the product of all the positive integers is less than or equal to n.

n!=n*(n-1)*(n-2)……2*1

Example

5!=5*4*63*2*1=120

Fibonacci Numbers
In the Fibonacci sequence, after the first two numbers i.e. 0 and 1 in the sequence, each subsequent
number in the series is equal to the sum of the previous two numbers. The sequence is named after
Leonardo of Pisa, also known as Fibonacci.

Fibonacci numbers are the elements of Fibonacci sequence:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765…….

Sometimes this sequence is given as 0, 1, 1, 2, 3, 5….. There are also other Fibonacci sequences
which start with the numbers:

3, 10, 13, 23, 36, 59…….

Fibonacci numbers are the example of patterns that have intrigued mathematicians through the
ages. In mathematical terms, the sequence Fn of Fibonacci numbers is defined as:

Fn= Fn-1+ Fn-2

Example: Beginning with a single pair of rabbits, if every month each productive pair
bears a new pair, who become productive when they are 1 month old, how many rabbits will there
be after n months?

Assume that there are xn pairs of rabbits after n months. The number of pairs in n+1 month is xn+1.
Each pair produces a new pair every month but no rabbit dies within that period. New pairs are
only born to pairs which are at least 1 month old, so there is an xn-1 new pair.

Xn+1 = xn + xn-1

Data Structures

Notes

A logarithm is an exponent. The logarithmic function is defined as f(x)= logb x. Here, the base of
the algorithm is b. The two most common bases which we use are base 10 and base e

Example: Consider the exponential equation 52=25 where 5 is base and 2 is exponent.

The logarithmic form of this equation is:

Log525=2

Here, we can say that the logarithm of 25 to the base 5 is 2.

Factorial
The symbol of the factorial function is ‘!’. The factorial function multiplies a series of natural
numbers that are in descending order. The factorial of a positive integer n which is denoted by n!
represents the product of all the positive integers is less than or equal to n.

n!=n*(n-1)*(n-2)……2*1

Example

5!=5*4*63*2*1=120

Fibonacci Numbers
In the Fibonacci sequence, after the first two numbers i.e. 0 and 1 in the sequence, each subsequent
number in the series is equal to the sum of the previous two numbers. The sequence is named after
Leonardo of Pisa, also known as Fibonacci.

Fibonacci numbers are the elements of Fibonacci sequence:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765…….

Sometimes this sequence is given as 0, 1, 1, 2, 3, 5….. There are also other Fibonacci sequences
which start with the numbers:

3, 10, 13, 23, 36, 59…….

Fibonacci numbers are the example of patterns that have intrigued mathematicians through the
ages. In mathematical terms, the sequence Fn of Fibonacci numbers is defined as:

Fn= Fn-1+ Fn-2

Example: Beginning with a single pair of rabbits, if every month each productive pair
bears a new pair, who become productive when they are 1 month old, how many rabbits will there
be after n months?

Assume that there are xn pairs of rabbits after n months. The number of pairs in n+1 month is xn+1.
Each pair produces a new pair every month but no rabbit dies within that period. New pairs are
only born to pairs which are at least 1 month old, so there is an xn-1 new pair.

Xn+1 = xn + xn-1

Data Structures

Notes

A logarithm is an exponent. The logarithmic function is defined as f(x)= logb x. Here, the base of
the algorithm is b. The two most common bases which we use are base 10 and base e

Example: Consider the exponential equation 52=25 where 5 is base and 2 is exponent.

The logarithmic form of this equation is:

Log525=2

Here, we can say that the logarithm of 25 to the base 5 is 2.

Factorial
The symbol of the factorial function is ‘!’. The factorial function multiplies a series of natural
numbers that are in descending order. The factorial of a positive integer n which is denoted by n!
represents the product of all the positive integers is less than or equal to n.

n!=n*(n-1)*(n-2)……2*1

Example

5!=5*4*63*2*1=120

Fibonacci Numbers
In the Fibonacci sequence, after the first two numbers i.e. 0 and 1 in the sequence, each subsequent
number in the series is equal to the sum of the previous two numbers. The sequence is named after
Leonardo of Pisa, also known as Fibonacci.

Fibonacci numbers are the elements of Fibonacci sequence:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765…….

Sometimes this sequence is given as 0, 1, 1, 2, 3, 5….. There are also other Fibonacci sequences
which start with the numbers:

3, 10, 13, 23, 36, 59…….

Fibonacci numbers are the example of patterns that have intrigued mathematicians through the
ages. In mathematical terms, the sequence Fn of Fibonacci numbers is defined as:

Fn= Fn-1+ Fn-2

Example: Beginning with a single pair of rabbits, if every month each productive pair
bears a new pair, who become productive when they are 1 month old, how many rabbits will there
be after n months?

Assume that there are xn pairs of rabbits after n months. The number of pairs in n+1 month is xn+1.
Each pair produces a new pair every month but no rabbit dies within that period. New pairs are
only born to pairs which are at least 1 month old, so there is an xn-1 new pair.

Xn+1 = xn + xn-1

Lovely Professional University22

Unit 02: Complexity of Algorithms

Notes

This equation shows the rules for generating the Fibonacci numbers.

Did you Know?

Fibonacci was the greatest mathematician of his age. He eliminated the use of complex Roman
numerals and made mathematics more accessible to the public by bringing the Hindu-Arabic
system (including zero) to Western Europe.

2.4 Algorithmic Complexity and Time Space Tradeoff
Complexity is a measure of performance of an algorithm. The complexity of computation is a
characterization of time and space requirements, which helps to solve a problem using a specific
algorithm. Computational complexity is mostly concerned with the lower bound.

Algorithmic Complexity
We can determine the efficiency of an algorithm by calculating its performance. Following are the
two factors that help us to determine the efficiency of an algorithm:

1. Total time required by an algorithm to execute.
2. Total space required by an algorithm to execute.

Thus, the two main considerations required to analyze the program are:

1. Time Complexity
2. Space Complexity

The amount of computer time required to solve a problem is the time complexity of an
algorithm and the amount of memory required to compute the problem is the space
complexity of an algorithm.

Time Complexity
Time complexity of an algorithm is the amount of time required by an algorithm to execute. It is
always measured using the frequency count of all important statements or the basic instructions.
This is because the clock limitation and multiprogramming environment makes it difficult to obtain
a reliable timing figure.

The time taken by an algorithm is the sum of compile time and run time. The compile time does not
depend on the instance characteristics, as a program once compiled can be run many times without
recompiling. Thus, only the run-time of the program matters while calculating time complexity. Let
us take an example to get a clear idea of how time complexity of an algorithm is computed.

Table shows analysis of time complexity

Unit 02: Complexity of Algorithms

Notes

This equation shows the rules for generating the Fibonacci numbers.

Did you Know?

Fibonacci was the greatest mathematician of his age. He eliminated the use of complex Roman
numerals and made mathematics more accessible to the public by bringing the Hindu-Arabic
system (including zero) to Western Europe.

2.4 Algorithmic Complexity and Time Space Tradeoff
Complexity is a measure of performance of an algorithm. The complexity of computation is a
characterization of time and space requirements, which helps to solve a problem using a specific
algorithm. Computational complexity is mostly concerned with the lower bound.

Algorithmic Complexity
We can determine the efficiency of an algorithm by calculating its performance. Following are the
two factors that help us to determine the efficiency of an algorithm:

1. Total time required by an algorithm to execute.
2. Total space required by an algorithm to execute.

Thus, the two main considerations required to analyze the program are:

1. Time Complexity
2. Space Complexity

The amount of computer time required to solve a problem is the time complexity of an
algorithm and the amount of memory required to compute the problem is the space
complexity of an algorithm.

Time Complexity
Time complexity of an algorithm is the amount of time required by an algorithm to execute. It is
always measured using the frequency count of all important statements or the basic instructions.
This is because the clock limitation and multiprogramming environment makes it difficult to obtain
a reliable timing figure.

The time taken by an algorithm is the sum of compile time and run time. The compile time does not
depend on the instance characteristics, as a program once compiled can be run many times without
recompiling. Thus, only the run-time of the program matters while calculating time complexity. Let
us take an example to get a clear idea of how time complexity of an algorithm is computed.

Table shows analysis of time complexity

Unit 02: Complexity of Algorithms

Notes

This equation shows the rules for generating the Fibonacci numbers.

Did you Know?

Fibonacci was the greatest mathematician of his age. He eliminated the use of complex Roman
numerals and made mathematics more accessible to the public by bringing the Hindu-Arabic
system (including zero) to Western Europe.

2.4 Algorithmic Complexity and Time Space Tradeoff
Complexity is a measure of performance of an algorithm. The complexity of computation is a
characterization of time and space requirements, which helps to solve a problem using a specific
algorithm. Computational complexity is mostly concerned with the lower bound.

Algorithmic Complexity
We can determine the efficiency of an algorithm by calculating its performance. Following are the
two factors that help us to determine the efficiency of an algorithm:

1. Total time required by an algorithm to execute.
2. Total space required by an algorithm to execute.

Thus, the two main considerations required to analyze the program are:

1. Time Complexity
2. Space Complexity

The amount of computer time required to solve a problem is the time complexity of an
algorithm and the amount of memory required to compute the problem is the space
complexity of an algorithm.

Time Complexity
Time complexity of an algorithm is the amount of time required by an algorithm to execute. It is
always measured using the frequency count of all important statements or the basic instructions.
This is because the clock limitation and multiprogramming environment makes it difficult to obtain
a reliable timing figure.

The time taken by an algorithm is the sum of compile time and run time. The compile time does not
depend on the instance characteristics, as a program once compiled can be run many times without
recompiling. Thus, only the run-time of the program matters while calculating time complexity. Let
us take an example to get a clear idea of how time complexity of an algorithm is computed.

Table shows analysis of time complexity

Lovely Professional University 23

Data Structures

Notes

1. In step A, there is one independent statement ‘x= x+1’ and it is not within any loop.
Hence, this statement will be executed only once. Thus, the frequency count of step A of
the algorithm is 1.

2. In step B, there are three statements out of which ‘x = x+1’ is an important statement. As
the statement ‘x = x+1’ is contained within the loop, the statement will be executed n
number of times.
Thus, the frequency count of algorithm is n.

3. In step C, the inner and outer loop runs n number of times. Thus, the frequency count is
n2.

During the analysis of algorithm, the focus is on determining those statements that provide the
greatest frequency count. The formulas used to calculate the steps executed by an algorithm
are:

1 + 2 +……+ n = n(n+1)/2

12+22+…..+ n2 = n(n+1)(2n+1)/6

If an algorithm has input of size n and performs f(n) basic functions, then the time taken to
execute those functions will be cf(n), where c is a constant that depends upon the algorithm
design.

The time complexity of an algorithm can be further analyzed as best case, worst case and
average case time complexity.

1. In best case time complexity, an algorithm will take minimum amount of time to solve a
particular problem. In other words, the algorithm runs for a short time.

Example Bubble sort has a best case time complexity of n.

2. In worst case time complexity, an algorithm will take maximum amount of time to solve a
particular problem. In other words, algorithm runs for a long time.

Example Quicksort has a worst case time complexity of n2.

3. In average case time complexity, only certain sets of inputs to the algorithm get the timecomplexity.

It specifies the behavior of an algorithm on a particular input.

Example Quicksort has an average case time complexity of n * log(n)

In general, time complexity helps to estimate the number of functions required to solve a problem
of size n.

Space Complexity
Space complexity is the amount of memory an algorithm requires to run. The space complexity of
an algorithm can be determined by relating the size of a problem (n) to the amount of memory (s)
needed to solve that problem. Thus, the space complexity can be computed by using the below two
components:

1. Fixed Space Requirement: It is the amount of space acquired by fixed sized structure,
variables, and constants.

2. Variable Space Requirement: It is the amount of space required by the structured
variables, whose size depends on particular problem instance.

Data Structures

Notes

1. In step A, there is one independent statement ‘x= x+1’ and it is not within any loop.
Hence, this statement will be executed only once. Thus, the frequency count of step A of
the algorithm is 1.

2. In step B, there are three statements out of which ‘x = x+1’ is an important statement. As
the statement ‘x = x+1’ is contained within the loop, the statement will be executed n
number of times.
Thus, the frequency count of algorithm is n.

3. In step C, the inner and outer loop runs n number of times. Thus, the frequency count is
n2.

During the analysis of algorithm, the focus is on determining those statements that provide the
greatest frequency count. The formulas used to calculate the steps executed by an algorithm
are:

1 + 2 +……+ n = n(n+1)/2

12+22+…..+ n2 = n(n+1)(2n+1)/6

If an algorithm has input of size n and performs f(n) basic functions, then the time taken to
execute those functions will be cf(n), where c is a constant that depends upon the algorithm
design.

The time complexity of an algorithm can be further analyzed as best case, worst case and
average case time complexity.

1. In best case time complexity, an algorithm will take minimum amount of time to solve a
particular problem. In other words, the algorithm runs for a short time.

Example Bubble sort has a best case time complexity of n.

2. In worst case time complexity, an algorithm will take maximum amount of time to solve a
particular problem. In other words, algorithm runs for a long time.

Example Quicksort has a worst case time complexity of n2.

3. In average case time complexity, only certain sets of inputs to the algorithm get the timecomplexity.

It specifies the behavior of an algorithm on a particular input.

Example Quicksort has an average case time complexity of n * log(n)

In general, time complexity helps to estimate the number of functions required to solve a problem
of size n.

Space Complexity
Space complexity is the amount of memory an algorithm requires to run. The space complexity of
an algorithm can be determined by relating the size of a problem (n) to the amount of memory (s)
needed to solve that problem. Thus, the space complexity can be computed by using the below two
components:

1. Fixed Space Requirement: It is the amount of space acquired by fixed sized structure,
variables, and constants.

2. Variable Space Requirement: It is the amount of space required by the structured
variables, whose size depends on particular problem instance.

Data Structures

Notes

1. In step A, there is one independent statement ‘x= x+1’ and it is not within any loop.
Hence, this statement will be executed only once. Thus, the frequency count of step A of
the algorithm is 1.

2. In step B, there are three statements out of which ‘x = x+1’ is an important statement. As
the statement ‘x = x+1’ is contained within the loop, the statement will be executed n
number of times.
Thus, the frequency count of algorithm is n.

3. In step C, the inner and outer loop runs n number of times. Thus, the frequency count is
n2.

During the analysis of algorithm, the focus is on determining those statements that provide the
greatest frequency count. The formulas used to calculate the steps executed by an algorithm
are:

1 + 2 +……+ n = n(n+1)/2

12+22+…..+ n2 = n(n+1)(2n+1)/6

If an algorithm has input of size n and performs f(n) basic functions, then the time taken to
execute those functions will be cf(n), where c is a constant that depends upon the algorithm
design.

The time complexity of an algorithm can be further analyzed as best case, worst case and
average case time complexity.

1. In best case time complexity, an algorithm will take minimum amount of time to solve a
particular problem. In other words, the algorithm runs for a short time.

Example Bubble sort has a best case time complexity of n.

2. In worst case time complexity, an algorithm will take maximum amount of time to solve a
particular problem. In other words, algorithm runs for a long time.

Example Quicksort has a worst case time complexity of n2.

3. In average case time complexity, only certain sets of inputs to the algorithm get the timecomplexity.

It specifies the behavior of an algorithm on a particular input.

Example Quicksort has an average case time complexity of n * log(n)

In general, time complexity helps to estimate the number of functions required to solve a problem
of size n.

Space Complexity
Space complexity is the amount of memory an algorithm requires to run. The space complexity of
an algorithm can be determined by relating the size of a problem (n) to the amount of memory (s)
needed to solve that problem. Thus, the space complexity can be computed by using the below two
components:

1. Fixed Space Requirement: It is the amount of space acquired by fixed sized structure,
variables, and constants.

2. Variable Space Requirement: It is the amount of space required by the structured
variables, whose size depends on particular problem instance.

Lovely Professional University24

Unit 02: Complexity of Algorithms

Notes

Therefore, to calculate the space complexity of an algorithm we have to consider the following two
factors:

1. Constant characteristics

2. Instant characteristics

Thus, the space requirement S(p) is given as:

S(p) = C + Sp

Here, C is the constant (required fixed space) and Sp is the space that depends on a particular
instance of variables.

Let us take an example to determine the space complexity of the variables used in a program.

Example

Algorithm: To compute the sum of three elements

//Input: x, y, and z are of integer type

Input x, y, z

//Output: The sum of three integers is returned

return x+y+z

Thus, if each of the input elements occupies 2 bytes of memory space,

then the inputs x, y, z will require a total memory size of 6 bytes.

In general, space complexity helps to define the amount of memory required to solve a particular
problem.

Time Space Tradeoff
Most of the algorithms are constructed to work with inputs of arbitrary length. Usually, the
efficiency of an algorithm is stated as a function relating to time complexity or space complexity.

Time space tradeoff in context with algorithms relates to the execution of an algorithm. The
execution of an algorithm can be done in a short time by using more memory, because execution
time increases with less memory. Therefore, proper selection of one alternative over the other is the
tradeoff.

Problems like sorting or matrix-multiplication have many choices of algorithms. Some of the
choices are extremely space-efficient and some are extremely time-efficient. Research in time-space
tradeoff lower bounds seeks to prove that for certain problems, no algorithms exist that achieve
lesser time complexity and space complexity simultaneously.

2.5 Algorithmic Analysis
Analysis of an algorithm is required to determine the amount of resources such as time and storage
necessary to execute the algorithm. Usually, the efficiency or running time of an algorithm is stated
as a function which relates the input length to the time complexity or space complexity.

Algorithm analysis framework involves finding out the time taken and the memory space required
by a program to execute the program. It also determines how the input size of a program influences
the running time of the program.

In theoretical analysis of algorithms, it is common to estimate their complexity in the asymptotic
sense, i.e., to estimate the complexity function for arbitrarily large input. Big-O notation, Omega
notation, and Theta notation are used to estimate the complexity function for large arbitrary input.

2.6 Types of Analysis
The efficiency of some algorithms may vary for inputs of the same size. For such algorithms, we
need to differentiate between the worst case, average case and best case efficiencies.

Unit 02: Complexity of Algorithms

Notes

Therefore, to calculate the space complexity of an algorithm we have to consider the following two
factors:

1. Constant characteristics

2. Instant characteristics

Thus, the space requirement S(p) is given as:

S(p) = C + Sp

Here, C is the constant (required fixed space) and Sp is the space that depends on a particular
instance of variables.

Let us take an example to determine the space complexity of the variables used in a program.

Example

Algorithm: To compute the sum of three elements

//Input: x, y, and z are of integer type

Input x, y, z

//Output: The sum of three integers is returned

return x+y+z

Thus, if each of the input elements occupies 2 bytes of memory space,

then the inputs x, y, z will require a total memory size of 6 bytes.

In general, space complexity helps to define the amount of memory required to solve a particular
problem.

Time Space Tradeoff
Most of the algorithms are constructed to work with inputs of arbitrary length. Usually, the
efficiency of an algorithm is stated as a function relating to time complexity or space complexity.

Time space tradeoff in context with algorithms relates to the execution of an algorithm. The
execution of an algorithm can be done in a short time by using more memory, because execution
time increases with less memory. Therefore, proper selection of one alternative over the other is the
tradeoff.

Problems like sorting or matrix-multiplication have many choices of algorithms. Some of the
choices are extremely space-efficient and some are extremely time-efficient. Research in time-space
tradeoff lower bounds seeks to prove that for certain problems, no algorithms exist that achieve
lesser time complexity and space complexity simultaneously.

2.5 Algorithmic Analysis
Analysis of an algorithm is required to determine the amount of resources such as time and storage
necessary to execute the algorithm. Usually, the efficiency or running time of an algorithm is stated
as a function which relates the input length to the time complexity or space complexity.

Algorithm analysis framework involves finding out the time taken and the memory space required
by a program to execute the program. It also determines how the input size of a program influences
the running time of the program.

In theoretical analysis of algorithms, it is common to estimate their complexity in the asymptotic
sense, i.e., to estimate the complexity function for arbitrarily large input. Big-O notation, Omega
notation, and Theta notation are used to estimate the complexity function for large arbitrary input.

2.6 Types of Analysis
The efficiency of some algorithms may vary for inputs of the same size. For such algorithms, we
need to differentiate between the worst case, average case and best case efficiencies.

Unit 02: Complexity of Algorithms

Notes

Therefore, to calculate the space complexity of an algorithm we have to consider the following two
factors:

1. Constant characteristics

2. Instant characteristics

Thus, the space requirement S(p) is given as:

S(p) = C + Sp

Here, C is the constant (required fixed space) and Sp is the space that depends on a particular
instance of variables.

Let us take an example to determine the space complexity of the variables used in a program.

Example

Algorithm: To compute the sum of three elements

//Input: x, y, and z are of integer type

Input x, y, z

//Output: The sum of three integers is returned

return x+y+z

Thus, if each of the input elements occupies 2 bytes of memory space,

then the inputs x, y, z will require a total memory size of 6 bytes.

In general, space complexity helps to define the amount of memory required to solve a particular
problem.

Time Space Tradeoff
Most of the algorithms are constructed to work with inputs of arbitrary length. Usually, the
efficiency of an algorithm is stated as a function relating to time complexity or space complexity.

Time space tradeoff in context with algorithms relates to the execution of an algorithm. The
execution of an algorithm can be done in a short time by using more memory, because execution
time increases with less memory. Therefore, proper selection of one alternative over the other is the
tradeoff.

Problems like sorting or matrix-multiplication have many choices of algorithms. Some of the
choices are extremely space-efficient and some are extremely time-efficient. Research in time-space
tradeoff lower bounds seeks to prove that for certain problems, no algorithms exist that achieve
lesser time complexity and space complexity simultaneously.

2.5 Algorithmic Analysis
Analysis of an algorithm is required to determine the amount of resources such as time and storage
necessary to execute the algorithm. Usually, the efficiency or running time of an algorithm is stated
as a function which relates the input length to the time complexity or space complexity.

Algorithm analysis framework involves finding out the time taken and the memory space required
by a program to execute the program. It also determines how the input size of a program influences
the running time of the program.

In theoretical analysis of algorithms, it is common to estimate their complexity in the asymptotic
sense, i.e., to estimate the complexity function for arbitrarily large input. Big-O notation, Omega
notation, and Theta notation are used to estimate the complexity function for large arbitrary input.

2.6 Types of Analysis
The efficiency of some algorithms may vary for inputs of the same size. For such algorithms, we
need to differentiate between the worst case, average case and best case efficiencies.

Lovely Professional University 25

Data Structures

Notes

Best Case Analysis
If an algorithm takes the least amount of time to execute a specific set of input, then it is called the
best case time complexity. The best case efficiency of an algorithm is the efficiency for the best case
input of size n. Because of this input, the algorithm runs the fastest among all the possible inputs of
the same size.

To analyze the best case efficiency, we have to first determine the kind of inputs for which the
count C(n) will be the smallest among all possible inputs of size n. Then, we ascertain the value of
C(n) on the most convenient inputs.

Example: In case of sequential search, the best case for lists of size n is when their first
elements are equal to the search key. Then,

Cbest (n) = 1

Average Case Analysis
If the time complexity of an algorithm for certain sets of inputs are on an average, then such a time
complexity is called average case time complexity.

Average case analysis provides necessary information about an algorithm’s behavior on a typical or
random input. You must make some assumption about the possible inputs of size n to analyze the
average case efficiency of algorithm.

Example: Assume that in case of sequential search, the probability of successful search is
equal to t i.e. 0 ≤ t ≤ 1, and the probability of the first match occurring in the ith position of

the list is the same for all values of i. From these assumptions we can easily find out the average
number of key comparisons Cavg (n).

In case of successful search, the probability of the first match occurring in the ith position of the list
is t/n for all values of i and the comparison made by the algorithm is also i.

In case of unsuccessful search, the number of comparison is n with the probability of (1 - t) .
Therefore, we can write:

For t=1, the average number of key comparisons made by sequential search is (n + 1) / 2 which
means the algorithm inspects on an average about half of the list’s elements. For t=0, the average
number of key comparisons is n which means the algorithm inspects all n element on all such
inputs.

Worst Case Analysis
If an algorithm takes maximum amount of time to execute for a specific set of input, then it is called
the worst case time complexity. The worst case efficiency of an algorithm is the efficiency for the
worst case input of size n. The algorithm runs the longest among all the possible inputs of the
similar size because of this input of size n.

Data Structures

Notes

Best Case Analysis
If an algorithm takes the least amount of time to execute a specific set of input, then it is called the
best case time complexity. The best case efficiency of an algorithm is the efficiency for the best case
input of size n. Because of this input, the algorithm runs the fastest among all the possible inputs of
the same size.

To analyze the best case efficiency, we have to first determine the kind of inputs for which the
count C(n) will be the smallest among all possible inputs of size n. Then, we ascertain the value of
C(n) on the most convenient inputs.

Example: In case of sequential search, the best case for lists of size n is when their first
elements are equal to the search key. Then,

Cbest (n) = 1

Average Case Analysis
If the time complexity of an algorithm for certain sets of inputs are on an average, then such a time
complexity is called average case time complexity.

Average case analysis provides necessary information about an algorithm’s behavior on a typical or
random input. You must make some assumption about the possible inputs of size n to analyze the
average case efficiency of algorithm.

Example: Assume that in case of sequential search, the probability of successful search is
equal to t i.e. 0 ≤ t ≤ 1, and the probability of the first match occurring in the ith position of

the list is the same for all values of i. From these assumptions we can easily find out the average
number of key comparisons Cavg (n).

In case of successful search, the probability of the first match occurring in the ith position of the list
is t/n for all values of i and the comparison made by the algorithm is also i.

In case of unsuccessful search, the number of comparison is n with the probability of (1 - t) .
Therefore, we can write:

For t=1, the average number of key comparisons made by sequential search is (n + 1) / 2 which
means the algorithm inspects on an average about half of the list’s elements. For t=0, the average
number of key comparisons is n which means the algorithm inspects all n element on all such
inputs.

Worst Case Analysis
If an algorithm takes maximum amount of time to execute for a specific set of input, then it is called
the worst case time complexity. The worst case efficiency of an algorithm is the efficiency for the
worst case input of size n. The algorithm runs the longest among all the possible inputs of the
similar size because of this input of size n.

Data Structures

Notes

Best Case Analysis
If an algorithm takes the least amount of time to execute a specific set of input, then it is called the
best case time complexity. The best case efficiency of an algorithm is the efficiency for the best case
input of size n. Because of this input, the algorithm runs the fastest among all the possible inputs of
the same size.

To analyze the best case efficiency, we have to first determine the kind of inputs for which the
count C(n) will be the smallest among all possible inputs of size n. Then, we ascertain the value of
C(n) on the most convenient inputs.

Example: In case of sequential search, the best case for lists of size n is when their first
elements are equal to the search key. Then,

Cbest (n) = 1

Average Case Analysis
If the time complexity of an algorithm for certain sets of inputs are on an average, then such a time
complexity is called average case time complexity.

Average case analysis provides necessary information about an algorithm’s behavior on a typical or
random input. You must make some assumption about the possible inputs of size n to analyze the
average case efficiency of algorithm.

Example: Assume that in case of sequential search, the probability of successful search is
equal to t i.e. 0 ≤ t ≤ 1, and the probability of the first match occurring in the ith position of

the list is the same for all values of i. From these assumptions we can easily find out the average
number of key comparisons Cavg (n).

In case of successful search, the probability of the first match occurring in the ith position of the list
is t/n for all values of i and the comparison made by the algorithm is also i.

In case of unsuccessful search, the number of comparison is n with the probability of (1 - t) .
Therefore, we can write:

For t=1, the average number of key comparisons made by sequential search is (n + 1) / 2 which
means the algorithm inspects on an average about half of the list’s elements. For t=0, the average
number of key comparisons is n which means the algorithm inspects all n element on all such
inputs.

Worst Case Analysis
If an algorithm takes maximum amount of time to execute for a specific set of input, then it is called
the worst case time complexity. The worst case efficiency of an algorithm is the efficiency for the
worst case input of size n. The algorithm runs the longest among all the possible inputs of the
similar size because of this input of size n.

Lovely Professional University26

Unit 02: Complexity of Algorithms

Notes

To determine the worst case efficiency of an algorithm, we have to analyze the algorithm to identify
the kind of input suitable for the largest value of the basic operation’s count C(n) among all possible
inputs of size n. Then, we can compute the worst case value Cworst(n)

Example: In case of sequential search, if the search element key is present at the nth position
of the list, then the basic operations and time required to execute the algorithm is more. Thus, it
gives the worst case time complexity. Worst case time complexity is represented as:

Cworst(n)=n

2.7 Control Structures
To analyse a programming code or algorithm, we must notice that each instruction affects the
overall performance of the algorithm and, therefore, each instruction must be analysed separately
to analyse overall performance.

Some algorithm control structures are

1. Sequencing: - Suppose our algorithm is divided into two parts, A and B. A takes time tA

and B takes time tB for computation. The total computation “tA + tB" is according to the
sequence rule. According to the maximum rule, this computation time is (max (tA,tB)).

Example

Let

tA =O (n) and tB = θ (n2).

Then, the total computation time can be calculated as

Computation Time = tA + tB

= (max (tA ,tB))

= (max (O (n), θ (n2)) = θ (n2))

2. If-then-else:-The total time computation is according to the condition rule-"if-then-else."
According to the maximum rule, this computation time is max (tA ,tB).

Unit 02: Complexity of Algorithms

Notes

To determine the worst case efficiency of an algorithm, we have to analyze the algorithm to identify
the kind of input suitable for the largest value of the basic operation’s count C(n) among all possible
inputs of size n. Then, we can compute the worst case value Cworst(n)

Example: In case of sequential search, if the search element key is present at the nth position
of the list, then the basic operations and time required to execute the algorithm is more. Thus, it
gives the worst case time complexity. Worst case time complexity is represented as:

Cworst(n)=n

2.7 Control Structures
To analyse a programming code or algorithm, we must notice that each instruction affects the
overall performance of the algorithm and, therefore, each instruction must be analysed separately
to analyse overall performance.

Some algorithm control structures are

1. Sequencing: - Suppose our algorithm is divided into two parts, A and B. A takes time tA

and B takes time tB for computation. The total computation “tA + tB" is according to the
sequence rule. According to the maximum rule, this computation time is (max (tA,tB)).

Example

Let

tA =O (n) and tB = θ (n2).

Then, the total computation time can be calculated as

Computation Time = tA + tB

= (max (tA ,tB))

= (max (O (n), θ (n2)) = θ (n2))

2. If-then-else:-The total time computation is according to the condition rule-"if-then-else."
According to the maximum rule, this computation time is max (tA ,tB).

Unit 02: Complexity of Algorithms

Notes

To determine the worst case efficiency of an algorithm, we have to analyze the algorithm to identify
the kind of input suitable for the largest value of the basic operation’s count C(n) among all possible
inputs of size n. Then, we can compute the worst case value Cworst(n)

Example: In case of sequential search, if the search element key is present at the nth position
of the list, then the basic operations and time required to execute the algorithm is more. Thus, it
gives the worst case time complexity. Worst case time complexity is represented as:

Cworst(n)=n

2.7 Control Structures
To analyse a programming code or algorithm, we must notice that each instruction affects the
overall performance of the algorithm and, therefore, each instruction must be analysed separately
to analyse overall performance.

Some algorithm control structures are

1. Sequencing: - Suppose our algorithm is divided into two parts, A and B. A takes time tA

and B takes time tB for computation. The total computation “tA + tB" is according to the
sequence rule. According to the maximum rule, this computation time is (max (tA,tB)).

Example

Let

tA =O (n) and tB = θ (n2).

Then, the total computation time can be calculated as

Computation Time = tA + tB

= (max (tA ,tB))

= (max (O (n), θ (n2)) = θ (n2))

2. If-then-else:-The total time computation is according to the condition rule-"if-then-else."
According to the maximum rule, this computation time is max (tA ,tB).

Lovely Professional University 27

Data Structures

Notes

Example

• Suppose tA = O (n2) and tB = θ (n2)

• Calculate the total computation time for the following:

• Total Computation = (max (tA,tB))

• max (O (n2), θ (n2) = θ (n2)

3. For loop: - For loop used when programmer need continuous execution of an algorithm in
specific time.

The syntax of loop is

For (initialization; condition; updation) {

Statement(s);

}

4. While loop:-The simple technique for analysing the loop is to determine the function of
the variable involved whose value decreases each time around. It is necessary that the
value must be a positive integer to terminate the loop.

Task: Program to demonstrate the working of loops control structure.

Summary

 A computer program is written as a sequence of steps that needs to be performed to obtain
the desired result.

 Mathematical notation is a system of symbolic representations of mathematical objects and
ideas.

 Some of the mathematical functions are floor and ceiling functions, summation symbol,
factorial, Fibonacci numbers, and so on.

 The complexity of an algorithm is a function which describes the efficiency of an algorithm
in terms of the amount of data the algorithm must process.

 The efficiency of each algorithm can be checked by computing its time complexity.
 The asymptotic notations help to represent the time complexity in a shorthand way. It can

generally be represented as fastest possible, slowest possible, or average possible.

Data Structures

Notes

Example

• Suppose tA = O (n2) and tB = θ (n2)

• Calculate the total computation time for the following:

• Total Computation = (max (tA,tB))

• max (O (n2), θ (n2) = θ (n2)

3. For loop: - For loop used when programmer need continuous execution of an algorithm in
specific time.

The syntax of loop is

For (initialization; condition; updation) {

Statement(s);

}

4. While loop:-The simple technique for analysing the loop is to determine the function of
the variable involved whose value decreases each time around. It is necessary that the
value must be a positive integer to terminate the loop.

Task: Program to demonstrate the working of loops control structure.

Summary

 A computer program is written as a sequence of steps that needs to be performed to obtain
the desired result.

 Mathematical notation is a system of symbolic representations of mathematical objects and
ideas.

 Some of the mathematical functions are floor and ceiling functions, summation symbol,
factorial, Fibonacci numbers, and so on.

 The complexity of an algorithm is a function which describes the efficiency of an algorithm
in terms of the amount of data the algorithm must process.

 The efficiency of each algorithm can be checked by computing its time complexity.
 The asymptotic notations help to represent the time complexity in a shorthand way. It can

generally be represented as fastest possible, slowest possible, or average possible.

Data Structures

Notes

Example

• Suppose tA = O (n2) and tB = θ (n2)

• Calculate the total computation time for the following:

• Total Computation = (max (tA,tB))

• max (O (n2), θ (n2) = θ (n2)

3. For loop: - For loop used when programmer need continuous execution of an algorithm in
specific time.

The syntax of loop is

For (initialization; condition; updation) {

Statement(s);

}

4. While loop:-The simple technique for analysing the loop is to determine the function of
the variable involved whose value decreases each time around. It is necessary that the
value must be a positive integer to terminate the loop.

Task: Program to demonstrate the working of loops control structure.

Summary

 A computer program is written as a sequence of steps that needs to be performed to obtain
the desired result.

 Mathematical notation is a system of symbolic representations of mathematical objects and
ideas.

 Some of the mathematical functions are floor and ceiling functions, summation symbol,
factorial, Fibonacci numbers, and so on.

 The complexity of an algorithm is a function which describes the efficiency of an algorithm
in terms of the amount of data the algorithm must process.

 The efficiency of each algorithm can be checked by computing its time complexity.
 The asymptotic notations help to represent the time complexity in a shorthand way. It can

generally be represented as fastest possible, slowest possible, or average possible.

Lovely Professional University28

Unit 02: Complexity of Algorithms

Notes

 The floor and ceiling functions give the nearest integer up or down.
 In the Fibonacci sequence, after the first two numbers, i.e., 0 and 1 in the sequence, each

subsequent number in the series is equal to the sum of the previous two numbers.
 Analysis of an algorithm is required to determine the amount of resources such as, time and

storage required to execute the algorithm.

Keywords
Lower Bound: A mathematical argument which means that you can't hope to go faster than a
certain amount.

Memory: An internal storage area in the computer.

Notation: The activity of representing something by a special system of characters.

Upper Bound: A number equal to or greater than any other number in a given set.

Self Assessment

1. Space complexity of an algorithm is the maximum amount of _______ required by it during
execution.

A. Time
B. Operations
C. Memory space
D. None of the above

2. To measure Time complexity of an algorithm Big O notation is used which:
A. describes limiting behaviour of the function
B. characterises a function based on growth of function
C. upper bound on growth rate of the function
D. all of the mentioned

3. How is time complexity measured?
A. By counting the number of statements in an algorithm
B. By counting the number of primitive operations performed by the algorithm on a given

input size
C. By counting the size of data input to the algorithm
D. None of the above

4. Data space is
A. Amount of space used by the variables and data types
B. Amount of space used by the variables and constants
C. Amount of space used by the constants and data types
D. None of above

5. Which of the following case does not exist in complexity theory
A. Best case
B. Average case
C. Worst case
D. Null case

Lovely Professional University 29

Data Structures

Notes

6. Which of the following are types of assumption notations.
A. Big Theta
B. Big Oh
C. Big Omega
D. All of above

7. Which of the following best describes the useful criterion for comparing the efficiency of
algorithms?

A. Time
B. Memory
C. Both of the above
D. None of the above

8. Which are not looping structures?
A. For loop
B. While loop
C. Do...while loop
D. if…else

9. The first expression in a for… loop is
A. Step value of loop
B. Value of the counter variable
C. Condition statement
D. None of the above

10. Which of the following control structures is an exit-controlled loop?
A. For loop
B. While loop
C. Const and Goto
D. Do-While loop

11. Which of the following is an invalid if-else statement?
A. if (if (a == 1)){}
B. if (func1 (a)){}
C. if (a){}
D. if ((char) a){}

12. Which of the following statement about for loop is true?
A. Index value is retained outside the loop
B. Index value can be changed from within the loop
C. Goto can be used to jump, out of the loop
D. All of these

13. Some algorithm control structures are
A. Sequencing, if-else, for loop, while loop
B. Insertion, deletion
C. Sorting and merging
D. All of above

14. Loops in C Language are implemented using?
A. While Block
B. For Block
C. Do While Block
D. All the above

Lovely Professional University30

Unit 02: Complexity of Algorithms

Notes

15. Which loop is guaranteed to execute at least one time?
A. For
B. While
C. do while
D. None of the above

Answers for Self Assessment

1. C 2. D 3. D 4. B 5. D

6. D 7. C 8. D 9. B 10. D

11. A 12. D 13. A 14. D 15. C

Review Questions

1. “Mathematical notation is a system of symbolic representations of mathematical objects
and ideas.” Discuss.

2. “To select the best algorithm, it is necessary to check the efficiency of each algorithm.”
Justify.

3. “Big-O notation describes the performance or time complexity of an algorithm.”
Comment.

4. “The omega notation can be defined as f(n)≥ c∗ g(n).” Describe.
5. “Floor function gives the largest integer lesser than or equal to x.” Describe with an

example.
6. Describe modular arithmetic with the help of a 12 hour clock.
7. “Efficiency of an algorithm can be determined by calculating its performance.”

Comment.
8. “Time complexity of an algorithm is the amount of time required by an algorithm to

execute.” Discuss with an example.
9. “Time space tradeoff in context of algorithms relates to the execution of an algorithm.”

Comment.
10. “Analysis of an algorithm is required to determine the amount of resources it requires.”

Discuss.

Further Readings
Lipschutz. Seymour. Data Structures with C. Delhi: Tata McGraw Hill

Reddy.A.M Padma (2006). Data Structures Using C. Bangalore: Sri Nandi Publications

Web Links
https://devopedia.org/algorithmic-
complexity#:~:text=Algorithmic%20complexity%20is%20a%20measure,for%20large%20val
ues%20of%20n.&text=Algorithmic%20complexity%20is%20also%20called%20complexity%
20or%20running%20time.

Unit 02: Complexity of Algorithms

Notes

15. Which loop is guaranteed to execute at least one time?
A. For
B. While
C. do while
D. None of the above

Answers for Self Assessment

1. C 2. D 3. D 4. B 5. D

6. D 7. C 8. D 9. B 10. D

11. A 12. D 13. A 14. D 15. C

Review Questions

1. “Mathematical notation is a system of symbolic representations of mathematical objects
and ideas.” Discuss.

2. “To select the best algorithm, it is necessary to check the efficiency of each algorithm.”
Justify.

3. “Big-O notation describes the performance or time complexity of an algorithm.”
Comment.

4. “The omega notation can be defined as f(n)≥ c∗ g(n).” Describe.
5. “Floor function gives the largest integer lesser than or equal to x.” Describe with an

example.
6. Describe modular arithmetic with the help of a 12 hour clock.
7. “Efficiency of an algorithm can be determined by calculating its performance.”

Comment.
8. “Time complexity of an algorithm is the amount of time required by an algorithm to

execute.” Discuss with an example.
9. “Time space tradeoff in context of algorithms relates to the execution of an algorithm.”

Comment.
10. “Analysis of an algorithm is required to determine the amount of resources it requires.”

Discuss.

Further Readings
Lipschutz. Seymour. Data Structures with C. Delhi: Tata McGraw Hill

Reddy.A.M Padma (2006). Data Structures Using C. Bangalore: Sri Nandi Publications

Web Links
https://devopedia.org/algorithmic-
complexity#:~:text=Algorithmic%20complexity%20is%20a%20measure,for%20large%20val
ues%20of%20n.&text=Algorithmic%20complexity%20is%20also%20called%20complexity%
20or%20running%20time.

Unit 02: Complexity of Algorithms

Notes

15. Which loop is guaranteed to execute at least one time?
A. For
B. While
C. do while
D. None of the above

Answers for Self Assessment

1. C 2. D 3. D 4. B 5. D

6. D 7. C 8. D 9. B 10. D

11. A 12. D 13. A 14. D 15. C

Review Questions

1. “Mathematical notation is a system of symbolic representations of mathematical objects
and ideas.” Discuss.

2. “To select the best algorithm, it is necessary to check the efficiency of each algorithm.”
Justify.

3. “Big-O notation describes the performance or time complexity of an algorithm.”
Comment.

4. “The omega notation can be defined as f(n)≥ c∗ g(n).” Describe.
5. “Floor function gives the largest integer lesser than or equal to x.” Describe with an

example.
6. Describe modular arithmetic with the help of a 12 hour clock.
7. “Efficiency of an algorithm can be determined by calculating its performance.”

Comment.
8. “Time complexity of an algorithm is the amount of time required by an algorithm to

execute.” Discuss with an example.
9. “Time space tradeoff in context of algorithms relates to the execution of an algorithm.”

Comment.
10. “Analysis of an algorithm is required to determine the amount of resources it requires.”

Discuss.

Further Readings
Lipschutz. Seymour. Data Structures with C. Delhi: Tata McGraw Hill

Reddy.A.M Padma (2006). Data Structures Using C. Bangalore: Sri Nandi Publications

Web Links
https://devopedia.org/algorithmic-
complexity#:~:text=Algorithmic%20complexity%20is%20a%20measure,for%20large%20val
ues%20of%20n.&text=Algorithmic%20complexity%20is%20also%20called%20complexity%
20or%20running%20time.

Lovely Professional University 31

Unit 03: Introduction to Pointers

Notes

Unit 03: Introduction to Pointers

CONTENTS

Objectives

Introduction

3.1 Pointers

3.2 Accessing the Address of a Variable

3.3 Pointer Declaration

3.4 Address Operator - &

3.5 Indirection Operation - *

3.6 Pointer Variables

3.7 Initialization of Pointer Variables

3.8 Accessing a Variable through its Pointer

3.9 Pointer Expression

3.10 Pointer arithmetic

3.11 Pointer and Arrays

3.12 Array of Pointers

3.13 Pointers and Functions

3.14 NULL Pointer

3.15 Structure Definition

3.16 Structure Pointers

3.17 Self-Referential Structure

Summary

Keywords

Self-Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to:

 Discuss the concepts of pointers
 Identify pointer increment and scale factors
 Pointer expressions
 Pointers and arrays
 NULL Pointer
 Self-Referential structure

Introduction
Computers use their memory for storing instructions of the programs as well as the values of the
variables. Since memory is a sequential collection of storage cells each cell has an address

Lovely Professional University32

Dr. Prikshat Kumar Angra, Lovely Professional University

Data Structures

Notes

associated with it. Whenever we declare a variable, the system allocates, somewhere in the
memory, a memory location and a unique address is assigned to this location. Whenever a value is
assigned to this variable the value gets stored in the location having a unique address in the
memory associated with that variable. Therefore, the values stored in memory can be manipulated
using their addresses. Pointer is an extremely powerful mechanism to write efficient programs.
Incidentally, this feature makes C stand out as the most powerful programming language. Pointers
are the topic of this unit.

3.1 Pointers
A memory variable is merely a symbolic reference given to a memory location. Now let us consider
that an expression in a C program is as follows:

int a = 10, b = 5, c;

c = a + b;

The above expression implies that a, b and c are the variables which can hold the integer data. Now
from the above mentioned statement let us assume that the variable ‘a’ occupies the address 3000 in
the memory, ‘b’ occupies 3020 and the variable ‘c’ occupies 3040 in the memory. Then the compiler
will generate the machine instruction to transfer the data from the location 3000 and 3020 into the
CPU, add them and transfer the result to the location 3040 referenced as c. Hence

we can conclude that every variable holds two values:

Address of the variable in the memory (l-value)

Value stored at that memory location referenced by the variable. (r-value)

Pointer is nothing but a simple data type in C programming language, which has a
specialcharacteristic to hold the address of some other memory location as its r-value. C
programminglanguage provides ‘&’ operator to extract the address of any object. These addresses
can be storedin the pointer variable and can be manipulated.

The syntax for declaring a pointer variable is,

<data type> *<identifier>;

Example
int n;

int *ptr; /* pointer to an integer*/

The following statement assigns the address location of the variable n to ptr, and ptr is a pointer to
n.

ptr=&n;

Since a pointer variable points to a location, the content of that location is obtained by prefixing the
pointer variable by the unary operator * (also called the indirection or dereferencing operator) like,
*<pointer_variable>.

Example:

include<stdio.h>

main()

{

int a=10, *ptr;

ptr=&a; /* ptr points to the location of a */

printf(“The value of a pointed by the pointer ptr is: %d”, *ptr);

/* printing the value of a pointed by ptr through the pointer ptr*/

Data Structures

Notes

associated with it. Whenever we declare a variable, the system allocates, somewhere in the
memory, a memory location and a unique address is assigned to this location. Whenever a value is
assigned to this variable the value gets stored in the location having a unique address in the
memory associated with that variable. Therefore, the values stored in memory can be manipulated
using their addresses. Pointer is an extremely powerful mechanism to write efficient programs.
Incidentally, this feature makes C stand out as the most powerful programming language. Pointers
are the topic of this unit.

3.1 Pointers
A memory variable is merely a symbolic reference given to a memory location. Now let us consider
that an expression in a C program is as follows:

int a = 10, b = 5, c;

c = a + b;

The above expression implies that a, b and c are the variables which can hold the integer data. Now
from the above mentioned statement let us assume that the variable ‘a’ occupies the address 3000 in
the memory, ‘b’ occupies 3020 and the variable ‘c’ occupies 3040 in the memory. Then the compiler
will generate the machine instruction to transfer the data from the location 3000 and 3020 into the
CPU, add them and transfer the result to the location 3040 referenced as c. Hence

we can conclude that every variable holds two values:

Address of the variable in the memory (l-value)

Value stored at that memory location referenced by the variable. (r-value)

Pointer is nothing but a simple data type in C programming language, which has a
specialcharacteristic to hold the address of some other memory location as its r-value. C
programminglanguage provides ‘&’ operator to extract the address of any object. These addresses
can be storedin the pointer variable and can be manipulated.

The syntax for declaring a pointer variable is,

<data type> *<identifier>;

Example
int n;

int *ptr; /* pointer to an integer*/

The following statement assigns the address location of the variable n to ptr, and ptr is a pointer to
n.

ptr=&n;

Since a pointer variable points to a location, the content of that location is obtained by prefixing the
pointer variable by the unary operator * (also called the indirection or dereferencing operator) like,
*<pointer_variable>.

Example:

include<stdio.h>

main()

{

int a=10, *ptr;

ptr=&a; /* ptr points to the location of a */

printf(“The value of a pointed by the pointer ptr is: %d”, *ptr);

/* printing the value of a pointed by ptr through the pointer ptr*/

Data Structures

Notes

associated with it. Whenever we declare a variable, the system allocates, somewhere in the
memory, a memory location and a unique address is assigned to this location. Whenever a value is
assigned to this variable the value gets stored in the location having a unique address in the
memory associated with that variable. Therefore, the values stored in memory can be manipulated
using their addresses. Pointer is an extremely powerful mechanism to write efficient programs.
Incidentally, this feature makes C stand out as the most powerful programming language. Pointers
are the topic of this unit.

3.1 Pointers
A memory variable is merely a symbolic reference given to a memory location. Now let us consider
that an expression in a C program is as follows:

int a = 10, b = 5, c;

c = a + b;

The above expression implies that a, b and c are the variables which can hold the integer data. Now
from the above mentioned statement let us assume that the variable ‘a’ occupies the address 3000 in
the memory, ‘b’ occupies 3020 and the variable ‘c’ occupies 3040 in the memory. Then the compiler
will generate the machine instruction to transfer the data from the location 3000 and 3020 into the
CPU, add them and transfer the result to the location 3040 referenced as c. Hence

we can conclude that every variable holds two values:

Address of the variable in the memory (l-value)

Value stored at that memory location referenced by the variable. (r-value)

Pointer is nothing but a simple data type in C programming language, which has a
specialcharacteristic to hold the address of some other memory location as its r-value. C
programminglanguage provides ‘&’ operator to extract the address of any object. These addresses
can be storedin the pointer variable and can be manipulated.

The syntax for declaring a pointer variable is,

<data type> *<identifier>;

Example
int n;

int *ptr; /* pointer to an integer*/

The following statement assigns the address location of the variable n to ptr, and ptr is a pointer to
n.

ptr=&n;

Since a pointer variable points to a location, the content of that location is obtained by prefixing the
pointer variable by the unary operator * (also called the indirection or dereferencing operator) like,
*<pointer_variable>.

Example:

include<stdio.h>

main()

{

int a=10, *ptr;

ptr=&a; /* ptr points to the location of a */

printf(“The value of a pointed by the pointer ptr is: %d”, *ptr);

/* printing the value of a pointed by ptr through the pointer ptr*/

Lovely Professional University 33

Unit 03: Introduction to Pointers

Notes

}

A null value can be assigned to a pointer when it does not point to any data or in the other words,
as a good programming habit every pointer should be initialized with the null value. A pointer
with a null value assigned to it is nothing but a pointer which contains the address zero.

The precedence of the unary operators ‘&’ and ‘*’ are same in C language. Here as a special case we
can mention that ‘&’ operator cannot be used or applied to any arithmetic expression, it can only be
used with an operand which has unique address.

Pointer is a variable which can hold the address of a memory location. The value stored in a pointer
type variable is interpreted as an address. Consider the following declarative statement:

int num = 197;

This statement instructs the compiler to reserve a 2-byte memory location (assuming that the target
machine stores an int type in two bytes) and to put the value 84 in that location. Assume that a
system allocates memory location 1001 for num. diagrammatically it can be shown as:

As the memory addresses are numbers, they can be assigned to some other variable. Let ptr be the
variable which holds the address of variable num. We can access the value of num by the variable
ptr. Thus, we can say “ptr points to num”. Diagrammatically, it can be shown as:

3.2 Accessing the Address of a Variable
The actual location of a variable in the memory is system dependent and therefore, the address of a
variable is not known to us immediately. How can we then determine the address of a variable?

This can be done with the help of the operator & available in C. The operator & immediately
preceding a variable return the address of the variable associated with it.

Example: The statement

P = &quantity;

Would assign the address 5000 to the variable p. The & operator can be remembered as ‘address of’.

The & operator can be used only with a simple variable or an array element. The following are
illegal use of address operator:

& 125 (pointing at constant).

Int x[10];

&x (pointing at array names).

&(x+y) (pointing at expressions).

If x is an array, then expression such as

&x[0] and &x[i+3]

are valid and represent the addresses of 0th and (i+3)th elements of x

Unit 03: Introduction to Pointers

Notes

}

A null value can be assigned to a pointer when it does not point to any data or in the other words,
as a good programming habit every pointer should be initialized with the null value. A pointer
with a null value assigned to it is nothing but a pointer which contains the address zero.

The precedence of the unary operators ‘&’ and ‘*’ are same in C language. Here as a special case we
can mention that ‘&’ operator cannot be used or applied to any arithmetic expression, it can only be
used with an operand which has unique address.

Pointer is a variable which can hold the address of a memory location. The value stored in a pointer
type variable is interpreted as an address. Consider the following declarative statement:

int num = 197;

This statement instructs the compiler to reserve a 2-byte memory location (assuming that the target
machine stores an int type in two bytes) and to put the value 84 in that location. Assume that a
system allocates memory location 1001 for num. diagrammatically it can be shown as:

As the memory addresses are numbers, they can be assigned to some other variable. Let ptr be the
variable which holds the address of variable num. We can access the value of num by the variable
ptr. Thus, we can say “ptr points to num”. Diagrammatically, it can be shown as:

3.2 Accessing the Address of a Variable
The actual location of a variable in the memory is system dependent and therefore, the address of a
variable is not known to us immediately. How can we then determine the address of a variable?

This can be done with the help of the operator & available in C. The operator & immediately
preceding a variable return the address of the variable associated with it.

Example: The statement

P = &quantity;

Would assign the address 5000 to the variable p. The & operator can be remembered as ‘address of’.

The & operator can be used only with a simple variable or an array element. The following are
illegal use of address operator:

& 125 (pointing at constant).

Int x[10];

&x (pointing at array names).

&(x+y) (pointing at expressions).

If x is an array, then expression such as

&x[0] and &x[i+3]

are valid and represent the addresses of 0th and (i+3)th elements of x

Unit 03: Introduction to Pointers

Notes

}

A null value can be assigned to a pointer when it does not point to any data or in the other words,
as a good programming habit every pointer should be initialized with the null value. A pointer
with a null value assigned to it is nothing but a pointer which contains the address zero.

The precedence of the unary operators ‘&’ and ‘*’ are same in C language. Here as a special case we
can mention that ‘&’ operator cannot be used or applied to any arithmetic expression, it can only be
used with an operand which has unique address.

Pointer is a variable which can hold the address of a memory location. The value stored in a pointer
type variable is interpreted as an address. Consider the following declarative statement:

int num = 197;

This statement instructs the compiler to reserve a 2-byte memory location (assuming that the target
machine stores an int type in two bytes) and to put the value 84 in that location. Assume that a
system allocates memory location 1001 for num. diagrammatically it can be shown as:

As the memory addresses are numbers, they can be assigned to some other variable. Let ptr be the
variable which holds the address of variable num. We can access the value of num by the variable
ptr. Thus, we can say “ptr points to num”. Diagrammatically, it can be shown as:

3.2 Accessing the Address of a Variable
The actual location of a variable in the memory is system dependent and therefore, the address of a
variable is not known to us immediately. How can we then determine the address of a variable?

This can be done with the help of the operator & available in C. The operator & immediately
preceding a variable return the address of the variable associated with it.

Example: The statement

P = &quantity;

Would assign the address 5000 to the variable p. The & operator can be remembered as ‘address of’.

The & operator can be used only with a simple variable or an array element. The following are
illegal use of address operator:

& 125 (pointing at constant).

Int x[10];

&x (pointing at array names).

&(x+y) (pointing at expressions).

If x is an array, then expression such as

&x[0] and &x[i+3]

are valid and represent the addresses of 0th and (i+3)th elements of x

Lovely Professional University34

Data Structures

Notes

3.3 Pointer Declaration
Since pointer variables contain address that belongs to a separate data type, they must be declared
as pointers before we use them. Pointers can be declared just a any other variables. The declaration
of a pointer variable takes the following form:

data_type *pt_name;

The above statement tells the compiler three things about the variable pt_name.

1. The asterisk (*) tells that the variable pt_name is a pointer variable.

2. pt_name needs a memory location.

3. pt_name points to a variable of type data type.

Example: The statement

int *p;

declares the variable p as a pointer variable that points to an integer data type (int). The type int
refers to the data type of the variable being pointed to by p and not the type of the value of the
pointer.

Given below are some more examples of pointer declaration

Pointer declaration Interpretation

Int *rollnumber;
Create a pointer variable rollnumber capable of pointing to an integer type vari
able or capable of holding the address of an integer type variable

char *name;
Create a pointer variable name capable of pointing to a character type variable
or capable of holding the address of a character type variable

float *salary;
Create a pointer variable salary capable of pointing to a float type variable or
capable of holding the address of a float type variable

3.4 Address Operator - &
Once a pointer variable has been declared, it can be made to point to a variable by assigning the
address of that variable to the pointer variable. The address of a variable can be extracted using
address operator - &.

An expression having & operator generates the address of the variable it precedes. Thus, for
example,

&num

produces the address of the variable num in the memory. This address can be assigned to any
pointer variable of appropriate type (i.e., the data type of variable num) using an assignment
statement such as p = # which causes p to point to num. That is, p now contains the address
of num.

The assignment shown above is known as pointer initialization. Before a pointer is initialized, it
should not be used. A pointer variable can be initialized in its declaration itself.

int x;

int *p = &x;

statement declares x as an integer variable and p as a pointer variable and then initializes p to the
address of x. This is an initialization of p, not *p. On the contrary, the statement

int *p = &x, x;

is invalid because the target variable x is not declared before the pointer.

Data Structures

Notes

3.3 Pointer Declaration
Since pointer variables contain address that belongs to a separate data type, they must be declared
as pointers before we use them. Pointers can be declared just a any other variables. The declaration
of a pointer variable takes the following form:

data_type *pt_name;

The above statement tells the compiler three things about the variable pt_name.

1. The asterisk (*) tells that the variable pt_name is a pointer variable.

2. pt_name needs a memory location.

3. pt_name points to a variable of type data type.

Example: The statement

int *p;

declares the variable p as a pointer variable that points to an integer data type (int). The type int
refers to the data type of the variable being pointed to by p and not the type of the value of the
pointer.

Given below are some more examples of pointer declaration

Pointer declaration Interpretation

Int *rollnumber;
Create a pointer variable rollnumber capable of pointing to an integer type vari
able or capable of holding the address of an integer type variable

char *name;
Create a pointer variable name capable of pointing to a character type variable
or capable of holding the address of a character type variable

float *salary;
Create a pointer variable salary capable of pointing to a float type variable or
capable of holding the address of a float type variable

3.4 Address Operator - &
Once a pointer variable has been declared, it can be made to point to a variable by assigning the
address of that variable to the pointer variable. The address of a variable can be extracted using
address operator - &.

An expression having & operator generates the address of the variable it precedes. Thus, for
example,

&num

produces the address of the variable num in the memory. This address can be assigned to any
pointer variable of appropriate type (i.e., the data type of variable num) using an assignment
statement such as p = # which causes p to point to num. That is, p now contains the address
of num.

The assignment shown above is known as pointer initialization. Before a pointer is initialized, it
should not be used. A pointer variable can be initialized in its declaration itself.

int x;

int *p = &x;

statement declares x as an integer variable and p as a pointer variable and then initializes p to the
address of x. This is an initialization of p, not *p. On the contrary, the statement

int *p = &x, x;

is invalid because the target variable x is not declared before the pointer.

Data Structures

Notes

3.3 Pointer Declaration
Since pointer variables contain address that belongs to a separate data type, they must be declared
as pointers before we use them. Pointers can be declared just a any other variables. The declaration
of a pointer variable takes the following form:

data_type *pt_name;

The above statement tells the compiler three things about the variable pt_name.

1. The asterisk (*) tells that the variable pt_name is a pointer variable.

2. pt_name needs a memory location.

3. pt_name points to a variable of type data type.

Example: The statement

int *p;

declares the variable p as a pointer variable that points to an integer data type (int). The type int
refers to the data type of the variable being pointed to by p and not the type of the value of the
pointer.

Given below are some more examples of pointer declaration

Pointer declaration Interpretation

Int *rollnumber;
Create a pointer variable rollnumber capable of pointing to an integer type vari
able or capable of holding the address of an integer type variable

char *name;
Create a pointer variable name capable of pointing to a character type variable
or capable of holding the address of a character type variable

float *salary;
Create a pointer variable salary capable of pointing to a float type variable or
capable of holding the address of a float type variable

3.4 Address Operator - &
Once a pointer variable has been declared, it can be made to point to a variable by assigning the
address of that variable to the pointer variable. The address of a variable can be extracted using
address operator - &.

An expression having & operator generates the address of the variable it precedes. Thus, for
example,

&num

produces the address of the variable num in the memory. This address can be assigned to any
pointer variable of appropriate type (i.e., the data type of variable num) using an assignment
statement such as p = # which causes p to point to num. That is, p now contains the address
of num.

The assignment shown above is known as pointer initialization. Before a pointer is initialized, it
should not be used. A pointer variable can be initialized in its declaration itself.

int x;

int *p = &x;

statement declares x as an integer variable and p as a pointer variable and then initializes p to the
address of x. This is an initialization of p, not *p. On the contrary, the statement

int *p = &x, x;

is invalid because the target variable x is not declared before the pointer.

Lovely Professional University 35

Unit 03: Introduction to Pointers

Notes

3.5 Indirection Operation - *
Since a pointer type variable contains an assigned address of another variable the value stored in
the target variable can be obtained using this address. The value store in a variable can be referred
to using a pointer variable pointing to this variable using indirection operator (*).

Example: Consider the following code.

int x = 109;

int *p;

p = &x;

Then the following expression

*p

Represents the value 109.

3.6 Pointer Variables
The actual address of a variable is not known immediately. We can determine the address of a
variable using ‘address of’ operator (&). We have already seen the use of ‘address of’ operator in
the scanf() function.

Another pointer operator available in C is “*” called “value a address” operator. It gives the value
stored at a particular address. This operator is also known as ‘indirection operator’.

Example:

main()

{

int i = 3;

printf (“\n Address of i: = %u”, & i); /* returns the address * /

printf (“\t value i = %d”, * (&i)); /* returns the value of address of i */

}

3.7 Initialization of Pointer Variables
Since pointer variables contain address that belong to a separate data type, they must be declared
as pointers before we use them.

The declaration of a pointer variable takes the following form:

data_type *pt_name

This tells the compiler three things about the variable pt_name.

1. The asterisk (*) tells that the variable pt_name is a pointer variable.

2. pt_name needs a memory location.

3. pt_name points to a variable of type data type.

Example: int *p; declares the variable p as a pointer variable that points to an integer data
type. The type int refers to the data type of the variable being pointed to by p and not the type of
the value of the pointer.

Once a pointer variable has been declared, it can be made to point to a variable using an assignment
statement such as p = &quantity; which causes p to point to quantity. That is, p now contains the
address of quantity. This is known as pointer initialization. Before a pointer is initialized, it should
not be used. A pointer variable can be initialized in its declaration itself.

Unit 03: Introduction to Pointers

Notes

3.5 Indirection Operation - *
Since a pointer type variable contains an assigned address of another variable the value stored in
the target variable can be obtained using this address. The value store in a variable can be referred
to using a pointer variable pointing to this variable using indirection operator (*).

Example: Consider the following code.

int x = 109;

int *p;

p = &x;

Then the following expression

*p

Represents the value 109.

3.6 Pointer Variables
The actual address of a variable is not known immediately. We can determine the address of a
variable using ‘address of’ operator (&). We have already seen the use of ‘address of’ operator in
the scanf() function.

Another pointer operator available in C is “*” called “value a address” operator. It gives the value
stored at a particular address. This operator is also known as ‘indirection operator’.

Example:

main()

{

int i = 3;

printf (“\n Address of i: = %u”, & i); /* returns the address * /

printf (“\t value i = %d”, * (&i)); /* returns the value of address of i */

}

3.7 Initialization of Pointer Variables
Since pointer variables contain address that belong to a separate data type, they must be declared
as pointers before we use them.

The declaration of a pointer variable takes the following form:

data_type *pt_name

This tells the compiler three things about the variable pt_name.

1. The asterisk (*) tells that the variable pt_name is a pointer variable.

2. pt_name needs a memory location.

3. pt_name points to a variable of type data type.

Example: int *p; declares the variable p as a pointer variable that points to an integer data
type. The type int refers to the data type of the variable being pointed to by p and not the type of
the value of the pointer.

Once a pointer variable has been declared, it can be made to point to a variable using an assignment
statement such as p = &quantity; which causes p to point to quantity. That is, p now contains the
address of quantity. This is known as pointer initialization. Before a pointer is initialized, it should
not be used. A pointer variable can be initialized in its declaration itself.

Unit 03: Introduction to Pointers

Notes

3.5 Indirection Operation - *
Since a pointer type variable contains an assigned address of another variable the value stored in
the target variable can be obtained using this address. The value store in a variable can be referred
to using a pointer variable pointing to this variable using indirection operator (*).

Example: Consider the following code.

int x = 109;

int *p;

p = &x;

Then the following expression

*p

Represents the value 109.

3.6 Pointer Variables
The actual address of a variable is not known immediately. We can determine the address of a
variable using ‘address of’ operator (&). We have already seen the use of ‘address of’ operator in
the scanf() function.

Another pointer operator available in C is “*” called “value a address” operator. It gives the value
stored at a particular address. This operator is also known as ‘indirection operator’.

Example:

main()

{

int i = 3;

printf (“\n Address of i: = %u”, & i); /* returns the address * /

printf (“\t value i = %d”, * (&i)); /* returns the value of address of i */

}

3.7 Initialization of Pointer Variables
Since pointer variables contain address that belong to a separate data type, they must be declared
as pointers before we use them.

The declaration of a pointer variable takes the following form:

data_type *pt_name

This tells the compiler three things about the variable pt_name.

1. The asterisk (*) tells that the variable pt_name is a pointer variable.

2. pt_name needs a memory location.

3. pt_name points to a variable of type data type.

Example: int *p; declares the variable p as a pointer variable that points to an integer data
type. The type int refers to the data type of the variable being pointed to by p and not the type of
the value of the pointer.

Once a pointer variable has been declared, it can be made to point to a variable using an assignment
statement such as p = &quantity; which causes p to point to quantity. That is, p now contains the
address of quantity. This is known as pointer initialization. Before a pointer is initialized, it should
not be used. A pointer variable can be initialized in its declaration itself.

Lovely Professional University36

Data Structures

Notes

Example: int x, *p=&x; statement declares x as an integer variable and p as a pointer variable
and then initializes p to the address of x. This is an initialization of p, not *p. On the contrary, the
statement int *p = &x, x; is invalid because the target variable x is declared first.

3.8 Accessing a Variable through its Pointer
Consider the following statements:

int q, * i, n;

q = 35;

i = & q;

n = * i;

i is a pointer to an integer containing the address of q. In the fourth statement we have assignedthe
value at address contained in i to another variable n. Thus, indirectly we have accessed thevariable
q through n. using pointer variable i.

3.9 Pointer Expression
Like other variables, pointer variables can be used in expressions. Arithmetic and comparison
operations can be performed on the pointers. For example, if p1 and p2 are properly declared and
initialized pointers, then following statements are valid.

y = *p1 * *p2; /multiply values stored in variables pointed to by *p1/and *p2

sum = sum + *p1; /increment sum by the value stored in the variable/pointed to by p1

The pointer may point to any location in the memory therefore you should be careful while using
pointers in your programs.

3.10 Pointer arithmetic
A pointer in c is an address, which is a numeric value. Therefore, you can perform arithmetic
operations on a pointer just as you can on a numeric value. There are four arithmetic operators that
can be used on pointers: ++, --, +, and -

To understand pointer arithmetic, let us consider that ptr is an integer pointer which points to the
address 1000. Assuming 32-bit integers, let us perform the following arithmetic operation on the
pointer

Following arithmetic operations are possible on the pointer in C language:

Increment

Decrement

Addition

Subtraction

Comparison

Increment:

It is a condition that also comes under addition. When a pointer is incremented, it actually
increments by the number equal to the size of the data type for which it is a pointer.

Example:

If an integer pointer that stores address 1000 is incremented, then it will increment by 2(size of an
int) and the new address it will points to 1002. While if a float type pointer is incremented then it
will increment by 4(size of a float) and the new address will be 1004.

Data Structures

Notes

Example: int x, *p=&x; statement declares x as an integer variable and p as a pointer variable
and then initializes p to the address of x. This is an initialization of p, not *p. On the contrary, the
statement int *p = &x, x; is invalid because the target variable x is declared first.

3.8 Accessing a Variable through its Pointer
Consider the following statements:

int q, * i, n;

q = 35;

i = & q;

n = * i;

i is a pointer to an integer containing the address of q. In the fourth statement we have assignedthe
value at address contained in i to another variable n. Thus, indirectly we have accessed thevariable
q through n. using pointer variable i.

3.9 Pointer Expression
Like other variables, pointer variables can be used in expressions. Arithmetic and comparison
operations can be performed on the pointers. For example, if p1 and p2 are properly declared and
initialized pointers, then following statements are valid.

y = *p1 * *p2; /multiply values stored in variables pointed to by *p1/and *p2

sum = sum + *p1; /increment sum by the value stored in the variable/pointed to by p1

The pointer may point to any location in the memory therefore you should be careful while using
pointers in your programs.

3.10 Pointer arithmetic
A pointer in c is an address, which is a numeric value. Therefore, you can perform arithmetic
operations on a pointer just as you can on a numeric value. There are four arithmetic operators that
can be used on pointers: ++, --, +, and -

To understand pointer arithmetic, let us consider that ptr is an integer pointer which points to the
address 1000. Assuming 32-bit integers, let us perform the following arithmetic operation on the
pointer

Following arithmetic operations are possible on the pointer in C language:

Increment

Decrement

Addition

Subtraction

Comparison

Increment:

It is a condition that also comes under addition. When a pointer is incremented, it actually
increments by the number equal to the size of the data type for which it is a pointer.

Example:

If an integer pointer that stores address 1000 is incremented, then it will increment by 2(size of an
int) and the new address it will points to 1002. While if a float type pointer is incremented then it
will increment by 4(size of a float) and the new address will be 1004.

Data Structures

Notes

Example: int x, *p=&x; statement declares x as an integer variable and p as a pointer variable
and then initializes p to the address of x. This is an initialization of p, not *p. On the contrary, the
statement int *p = &x, x; is invalid because the target variable x is declared first.

3.8 Accessing a Variable through its Pointer
Consider the following statements:

int q, * i, n;

q = 35;

i = & q;

n = * i;

i is a pointer to an integer containing the address of q. In the fourth statement we have assignedthe
value at address contained in i to another variable n. Thus, indirectly we have accessed thevariable
q through n. using pointer variable i.

3.9 Pointer Expression
Like other variables, pointer variables can be used in expressions. Arithmetic and comparison
operations can be performed on the pointers. For example, if p1 and p2 are properly declared and
initialized pointers, then following statements are valid.

y = *p1 * *p2; /multiply values stored in variables pointed to by *p1/and *p2

sum = sum + *p1; /increment sum by the value stored in the variable/pointed to by p1

The pointer may point to any location in the memory therefore you should be careful while using
pointers in your programs.

3.10 Pointer arithmetic
A pointer in c is an address, which is a numeric value. Therefore, you can perform arithmetic
operations on a pointer just as you can on a numeric value. There are four arithmetic operators that
can be used on pointers: ++, --, +, and -

To understand pointer arithmetic, let us consider that ptr is an integer pointer which points to the
address 1000. Assuming 32-bit integers, let us perform the following arithmetic operation on the
pointer

Following arithmetic operations are possible on the pointer in C language:

Increment

Decrement

Addition

Subtraction

Comparison

Increment:

It is a condition that also comes under addition. When a pointer is incremented, it actually
increments by the number equal to the size of the data type for which it is a pointer.

Example:

If an integer pointer that stores address 1000 is incremented, then it will increment by 2(size of an
int) and the new address it will points to 1002. While if a float type pointer is incremented then it
will increment by 4(size of a float) and the new address will be 1004.

Lovely Professional University 37

Unit 03: Introduction to Pointers

Notes

Decrement:

It is a condition that also comes under subtraction. When a pointer is decremented, it actually
decrements by the number equal to the size of the data type for which it is a pointer.

For Example:

If an integer pointer that stores address 1000 is decremented, then it will decrement by 2(size of an
int) and the new address it will points to 998. While if a float type pointer is decremented then it
will decrement by 4(size of a float) and the new address will be 996.

Example:

Program to illustrate pointer increment/decrement

#include <stdio.h>

// Driver Code

int main()

{

// Integer variable

int N = 4;

// Pointer to an integer

int *ptr1, *ptr2;

// Pointer stores

// the address of N

ptr1 = &N;

ptr2 = &N;

printf("Pointer ptr1 "

"before Increment: ");

printf("%p \n", ptr1);

// Incrementing pointer ptr1;

ptr1++;

printf("Pointer ptr1 after"

" Increment: ");

printf("%p \n\n", ptr1);

printf("Pointer ptr1 before"

" Decrement: ");

printf("%p \n", ptr1);

// Decrementing pointer ptr1;

Unit 03: Introduction to Pointers

Notes

Decrement:

It is a condition that also comes under subtraction. When a pointer is decremented, it actually
decrements by the number equal to the size of the data type for which it is a pointer.

For Example:

If an integer pointer that stores address 1000 is decremented, then it will decrement by 2(size of an
int) and the new address it will points to 998. While if a float type pointer is decremented then it
will decrement by 4(size of a float) and the new address will be 996.

Example:

Program to illustrate pointer increment/decrement

#include <stdio.h>

// Driver Code

int main()

{

// Integer variable

int N = 4;

// Pointer to an integer

int *ptr1, *ptr2;

// Pointer stores

// the address of N

ptr1 = &N;

ptr2 = &N;

printf("Pointer ptr1 "

"before Increment: ");

printf("%p \n", ptr1);

// Incrementing pointer ptr1;

ptr1++;

printf("Pointer ptr1 after"

" Increment: ");

printf("%p \n\n", ptr1);

printf("Pointer ptr1 before"

" Decrement: ");

printf("%p \n", ptr1);

// Decrementing pointer ptr1;

Unit 03: Introduction to Pointers

Notes

Decrement:

It is a condition that also comes under subtraction. When a pointer is decremented, it actually
decrements by the number equal to the size of the data type for which it is a pointer.

For Example:

If an integer pointer that stores address 1000 is decremented, then it will decrement by 2(size of an
int) and the new address it will points to 998. While if a float type pointer is decremented then it
will decrement by 4(size of a float) and the new address will be 996.

Example:

Program to illustrate pointer increment/decrement

#include <stdio.h>

// Driver Code

int main()

{

// Integer variable

int N = 4;

// Pointer to an integer

int *ptr1, *ptr2;

// Pointer stores

// the address of N

ptr1 = &N;

ptr2 = &N;

printf("Pointer ptr1 "

"before Increment: ");

printf("%p \n", ptr1);

// Incrementing pointer ptr1;

ptr1++;

printf("Pointer ptr1 after"

" Increment: ");

printf("%p \n\n", ptr1);

printf("Pointer ptr1 before"

" Decrement: ");

printf("%p \n", ptr1);

// Decrementing pointer ptr1;

Lovely Professional University38

Data Structures

Notes

ptr1--;

printf("Pointer ptr1 after"

" Decrement: ");

printf("%p \n\n", ptr1);

return 0;

}

Pointer Comparisons
Pointers may be compared by using relational operators, such as ==, <, and >. If p1 and p2 point to
variables that are related to each other, such as elements of the same array, then p1 and p2 can be
meaningfully compared.

The following program modifies the previous example − one by incrementing the variable pointer
so long as the address to which it points is either less than or equal to the address of the last
element of the array, which is &var[MAX - 1]

3.11 Pointer and Arrays
When an array is declared, the compiler allocates a base address and sufficient amount of storage to
contain all the elements of the array in contiguous memory locations. The base address is the
location of the first element (index 0) of the array. The compiler also defines the array name as a
constant pointer to the first element.

The array declared as:

static int x[5] = {1, 2, 3, 4, 5}; is stored as follows:

Elements x[0] x[1] x[2] x[3] x[4]

Value 1 2 3 4 5

Address 1000 1002 1004 1006 1008

The name x is defined as a constant pointer pointing to the first element, x[0] and therefore the
value of x is 1000, the location where x[0] is stored. That is,

x = &x[0] = 1000

If we declare p as an integer pointer, then we can make the pointer p to point to the array x by the

assignment statement

p = x ;

which is equivalent to

p = &x[0];

Now we can access every value of x using p++ to move from one element to another. The
relationship between p and x is shown below:

p = &x[0] (=1000)

p+1 = &x[1] (=1002)

p+2 = &x[2] (=1004)

p+3 = &x[3] (=1006)

The address of an element is calculated using its index and the scale factor of the data type, i.e.,
Address of x[3] = Base Address + (3 × Scale Factor of int) = 1000 + (3 × 2) = 1006

When handling arrays, instead of using array indexing, we can use pointers to access
arrayelements, as *(p+3) gives the value of x[3]. The pointer accessing method is much faster than
array indexing. &x[i] and (x+i) both represent the address of the ith element of x. x[i] and *(x+i)

Lovely Professional University 39

Unit 03: Introduction to Pointers

Notes

both represent the contents of that address, the value of the ith element of x. The two terms are
interchangeable.

When assigning a value to an array element such as x[i], the left side of the assigned statement may
be written as either x[i] or as *(x+i). Thus, a value may be assigned directly to an array element, or it
may be assigned to the memory area whose address is that of the array element. While assigning an
address to an identifier, a pointer variable must appear on the left side of the assignment statement.
Expressions such as x, (x+1) and &x[i] cannot appear on the left side of an assignment statement
because it is not possible to assign an arbitrary address to an array name or an array element.

3.12 Array of Pointers
A multi-dimensional array can be expressed in terms of an array of pointers rather than as a pointer
to a group of contiguous arrays. In such situations the newly defined array will have one less
dimension than the original multi-dimensional array. Each pointer will indicate the beginning of a
separate (n - 1) dimensional array.

In general terms, a two dimensional array can be defined as one dimensional array of pointers by
writing

data_type *array[expression1];

rather than the conventional array definition data_type array[expression1] [expression2]; Similarly,
a n dimensional array can be defined as a (n-1) dimensional array of pointers by writing

data_type *array[expression1][expression2]...[expressionn-1];

rather than the conventional array definition data_type array[expression1] [expression2]...

[expressionn];

In these declarations data_type refers to the data type of the original n dimensional array, array is
the array name, and expression1, expression2, . . ., expression n are positive-valued integer
expressions that indicate the maximum number of elements associated with each subscript.

The array name and its preceding asterisk are not enclosed in parentheses in this type of
declaration. Thus, a right-to-left rule first associates the pairs of square brackets with array,
defining the named object as an array. The preceding asterisk then establishes that the array will
contain pointers.

Moreover, note that the last (the rightmost) expression is omitted when defining an array of
pointers, whereas the first (the leftmost) expression is omitted when defining a pointer to a group
of arrays.

When a n dimensional array is expressed in this manner, an individual array element within the n
dimensional array can be accessed by a single use of the indirection operator. The following
example illustrates how this is done.

Suppose that x is a two dimensional integer array having 10 rows and 20 columns, we can define x
as a one dimensional array of pointers by writing int *x[10];

Hence, x[0] points to the beginning of the first row, x[1] points to the beginning of the second row,
and so on. The number of elements within each row is not explicitly specified.

An individual array element, such as x[2][5], can be accessed by writing *(x[2] + 5). In this
expression, x[2] is a pointer to the first element in row 2, so that (x[2] + 5) points to element 5
(actually, the sixth element) within row 2. The object of this pointer, *(x[2] + 5), therefore, refers to
x[2] [5].

These relationships are illustrated below:

Lovely Professional University40

Data Structures

Notes

3.13 Pointers and Functions
We can use function pointers to avoid code redundancy. For example a simple qsort() function can
be used to sort arrays in ascending order or descending or by any other order in case of array of
structures. Not only this, with function pointers and void pointers, it is possible to use qsort for any
data type.

C programming allows passing a pointer to a function. To do so, simply declare the function
parameter as a pointer type. Following is a simple example where we pass an unsigned long
pointer to a function and change the value inside the function which reflects back in the calling
function.

#include <stdio.h>

#include <time.h>

void getSeconds(unsigned long *par);

int main () {

unsigned long sec;

getSeconds(&sec);

/* print the actual value */

printf("Number of seconds: %ld\n", sec);

return 0;

}

void getSeconds(unsigned long *par) {

/* get the current number of seconds */

*par = time(NULL);

return;

}

Lovely Professional University 41

Unit 03: Introduction to Pointers

Notes

Lab Exercise

// Program to demonstrate working of Pointers

#include<stdio.h>
int main(){

int n=123;
int *ptr=&n;
int **nn=n;

//*ptr=&n;
printf("Original value of variable n is = %d\n",n);
printf("Address of n is = %p\n",ptr);
printf("Address of n in decimal number is = %d\n",ptr);
printf("Value of %d",nn);
return 0;
}

Lab Exercise

// Program to access value using Pointers

#include<stdio.h>
int main(){
int x;
printf("Enter Value of x\n");
scanf("%d",&x);
int *p;
p=&x;
printf("value of x entered by user is %d\n",x);
printf("Address of variable x is %p\n",p);
printf("Getting value from pointer variable %d\n",*p);
printf("Address of variable x is %d\n",p);
printf("Address of variable x is %u\n",p);
*p=500;
printf("New value of x is %d\n",x);
return 0;

}

Lab Exercise

// Program for Pointer Arithmatics

#include<stdio.h>
int main(){
int a,b,sum,sub,mul,div;
int *ptr1,*ptr2;
printf("Enter first number");
scanf("%d",&a);
printf("Enter second number");
scanf("%d",&b);
ptr1=&a;

Unit 03: Introduction to Pointers

Notes

Lab Exercise

// Program to demonstrate working of Pointers

#include<stdio.h>
int main(){

int n=123;
int *ptr=&n;
int **nn=n;

//*ptr=&n;
printf("Original value of variable n is = %d\n",n);
printf("Address of n is = %p\n",ptr);
printf("Address of n in decimal number is = %d\n",ptr);
printf("Value of %d",nn);
return 0;
}

Lab Exercise

// Program to access value using Pointers

#include<stdio.h>
int main(){
int x;
printf("Enter Value of x\n");
scanf("%d",&x);
int *p;
p=&x;
printf("value of x entered by user is %d\n",x);
printf("Address of variable x is %p\n",p);
printf("Getting value from pointer variable %d\n",*p);
printf("Address of variable x is %d\n",p);
printf("Address of variable x is %u\n",p);
*p=500;
printf("New value of x is %d\n",x);
return 0;

}

Lab Exercise

// Program for Pointer Arithmatics

#include<stdio.h>
int main(){
int a,b,sum,sub,mul,div;
int *ptr1,*ptr2;
printf("Enter first number");
scanf("%d",&a);
printf("Enter second number");
scanf("%d",&b);
ptr1=&a;

Unit 03: Introduction to Pointers

Notes

Lab Exercise

// Program to demonstrate working of Pointers

#include<stdio.h>
int main(){

int n=123;
int *ptr=&n;
int **nn=n;

//*ptr=&n;
printf("Original value of variable n is = %d\n",n);
printf("Address of n is = %p\n",ptr);
printf("Address of n in decimal number is = %d\n",ptr);
printf("Value of %d",nn);
return 0;
}

Lab Exercise

// Program to access value using Pointers

#include<stdio.h>
int main(){
int x;
printf("Enter Value of x\n");
scanf("%d",&x);
int *p;
p=&x;
printf("value of x entered by user is %d\n",x);
printf("Address of variable x is %p\n",p);
printf("Getting value from pointer variable %d\n",*p);
printf("Address of variable x is %d\n",p);
printf("Address of variable x is %u\n",p);
*p=500;
printf("New value of x is %d\n",x);
return 0;

}

Lab Exercise

// Program for Pointer Arithmatics

#include<stdio.h>
int main(){
int a,b,sum,sub,mul,div;
int *ptr1,*ptr2;
printf("Enter first number");
scanf("%d",&a);
printf("Enter second number");
scanf("%d",&b);
ptr1=&a;

Lovely Professional University42

Data Structures

Notes

ptr2=&b;
sum=*ptr1+*ptr2;
sub=*ptr1-*ptr2;
mul=*ptr1* *ptr2;
div= *ptr1/ *ptr2;
printf("Using pointers, all arithmetic operations
performed\n");
printf("Sum of first and second number is =%d\n",sum);
printf("Subtraction of first and second number is %d\n",sub);
printf("Product of first and second number is %d\n",mul);
printf("Division of first and second number is %d\n",div);
printf("Address of first and second number a=%p, b=%p
",ptr1,ptr2);
return 0;
}

3.14 NULL Pointer
A Null Pointer is a pointer that does not point to any memory location. It stores the base address of
the segment. The null pointer basically stores the Null value while void is the type of the pointer.

If we do not have any address which is to be assigned to the pointer, then it is known as a null
pointer. When a NULL value is assigned to the pointer, then it is considered as a Null pointer.

Example:

#include<stdio.h>
int main(){

int *ptr;
ptr=NULL;
printf("Value of null pointer is %d",ptr);
return 0;
}

3.15 Structure Definition
A structure is a collection of variables referenced under one name providing a convenient means of
keeping related information together. The structure definition creates a format that may be used to
declare structure variables in a program later on.

The general format of structure definition is as follows:

struct tag_name

{

data_type member1;

data_type member2;

- - - - - - -

- - - - - - -

};

A keyword struct declares a structure to hold the details of fields of different datatypes. At this
time, no variable has actually been created. Only a format of a new data type has been defined.

Consider the following example:

struct addr

{

Data Structures

Notes

ptr2=&b;
sum=*ptr1+*ptr2;
sub=*ptr1-*ptr2;
mul=*ptr1* *ptr2;
div= *ptr1/ *ptr2;
printf("Using pointers, all arithmetic operations
performed\n");
printf("Sum of first and second number is =%d\n",sum);
printf("Subtraction of first and second number is %d\n",sub);
printf("Product of first and second number is %d\n",mul);
printf("Division of first and second number is %d\n",div);
printf("Address of first and second number a=%p, b=%p
",ptr1,ptr2);
return 0;
}

3.14 NULL Pointer
A Null Pointer is a pointer that does not point to any memory location. It stores the base address of
the segment. The null pointer basically stores the Null value while void is the type of the pointer.

If we do not have any address which is to be assigned to the pointer, then it is known as a null
pointer. When a NULL value is assigned to the pointer, then it is considered as a Null pointer.

Example:

#include<stdio.h>
int main(){

int *ptr;
ptr=NULL;
printf("Value of null pointer is %d",ptr);
return 0;
}

3.15 Structure Definition
A structure is a collection of variables referenced under one name providing a convenient means of
keeping related information together. The structure definition creates a format that may be used to
declare structure variables in a program later on.

The general format of structure definition is as follows:

struct tag_name

{

data_type member1;

data_type member2;

- - - - - - -

- - - - - - -

};

A keyword struct declares a structure to hold the details of fields of different datatypes. At this
time, no variable has actually been created. Only a format of a new data type has been defined.

Consider the following example:

struct addr

{

Data Structures

Notes

ptr2=&b;
sum=*ptr1+*ptr2;
sub=*ptr1-*ptr2;
mul=*ptr1* *ptr2;
div= *ptr1/ *ptr2;
printf("Using pointers, all arithmetic operations
performed\n");
printf("Sum of first and second number is =%d\n",sum);
printf("Subtraction of first and second number is %d\n",sub);
printf("Product of first and second number is %d\n",mul);
printf("Division of first and second number is %d\n",div);
printf("Address of first and second number a=%p, b=%p
",ptr1,ptr2);
return 0;
}

3.14 NULL Pointer
A Null Pointer is a pointer that does not point to any memory location. It stores the base address of
the segment. The null pointer basically stores the Null value while void is the type of the pointer.

If we do not have any address which is to be assigned to the pointer, then it is known as a null
pointer. When a NULL value is assigned to the pointer, then it is considered as a Null pointer.

Example:

#include<stdio.h>
int main(){

int *ptr;
ptr=NULL;
printf("Value of null pointer is %d",ptr);
return 0;
}

3.15 Structure Definition
A structure is a collection of variables referenced under one name providing a convenient means of
keeping related information together. The structure definition creates a format that may be used to
declare structure variables in a program later on.

The general format of structure definition is as follows:

struct tag_name

{

data_type member1;

data_type member2;

- - - - - - -

- - - - - - -

};

A keyword struct declares a structure to hold the details of fields of different datatypes. At this
time, no variable has actually been created. Only a format of a new data type has been defined.

Consider the following example:

struct addr

{

Lovely Professional University 43

Unit 03: Introduction to Pointers

Notes

char name [30];

char street [20];

char city [15];

char state [15];

int pincode;

};

The keyword struct declares a structure to hold the details of fine fields of address, namely, #name,
street, city, state, pin code. The first four members are character array and fifth one is an integer.

Creating Structure Variables
The structure declaration does not actually create variables. Instead, it defines data type only. For
actual use a structure variable needs to be created. This can be done in two ways:

1. Declaration using tagname anywhere in the program.

Example: struct book

{

char name [30];

char author [25];

float price;

}

struct book book1, book2;

2. It is also allowed to combine structure declaration and variable declaration in one statement.

This declaration is given below:

struct person

{

char * name;

int age;

char *address;

}

p1, p2, p3;

While declaring structure variables along with their definition, the use of tag name is optional.

struct

{

char *name;

int age;

char *address;

}

p1, p2, p3;

Giving Values to Members
As the members are not themselves variables they should be linked to the structure variables. The
Link between a member and a variable is established using member operator ‘.’ which is also
known as dot operator.

This can be explained using following example:

Unit 03: Introduction to Pointers

Notes

char name [30];

char street [20];

char city [15];

char state [15];

int pincode;

};

The keyword struct declares a structure to hold the details of fine fields of address, namely, #name,
street, city, state, pin code. The first four members are character array and fifth one is an integer.

Creating Structure Variables
The structure declaration does not actually create variables. Instead, it defines data type only. For
actual use a structure variable needs to be created. This can be done in two ways:

1. Declaration using tagname anywhere in the program.

Example: struct book

{

char name [30];

char author [25];

float price;

}

struct book book1, book2;

2. It is also allowed to combine structure declaration and variable declaration in one statement.

This declaration is given below:

struct person

{

char * name;

int age;

char *address;

}

p1, p2, p3;

While declaring structure variables along with their definition, the use of tag name is optional.

struct

{

char *name;

int age;

char *address;

}

p1, p2, p3;

Giving Values to Members
As the members are not themselves variables they should be linked to the structure variables. The
Link between a member and a variable is established using member operator ‘.’ which is also
known as dot operator.

This can be explained using following example:

Unit 03: Introduction to Pointers

Notes

char name [30];

char street [20];

char city [15];

char state [15];

int pincode;

};

The keyword struct declares a structure to hold the details of fine fields of address, namely, #name,
street, city, state, pin code. The first four members are character array and fifth one is an integer.

Creating Structure Variables
The structure declaration does not actually create variables. Instead, it defines data type only. For
actual use a structure variable needs to be created. This can be done in two ways:

1. Declaration using tagname anywhere in the program.

Example: struct book

{

char name [30];

char author [25];

float price;

}

struct book book1, book2;

2. It is also allowed to combine structure declaration and variable declaration in one statement.

This declaration is given below:

struct person

{

char * name;

int age;

char *address;

}

p1, p2, p3;

While declaring structure variables along with their definition, the use of tag name is optional.

struct

{

char *name;

int age;

char *address;

}

p1, p2, p3;

Giving Values to Members
As the members are not themselves variables they should be linked to the structure variables. The
Link between a member and a variable is established using member operator ‘.’ which is also
known as dot operator.

This can be explained using following example:

Lovely Professional University44

Data Structures

Notes

Example: / * Program to define a structure and assign value to members*/

struct book

{

char * name;

int pages;

char *author;

};

main()

{

struct book b1;

printf (“\n Enter Values:”);

scanf (“%s %d %s”, b1.name, &b1.page, b1.author);

printf (“%s, %d, %s, b1.name, b1.page, b1.author);

}

3.16 Structure Pointers
A complete structure can be transferred to a function by passing a structure-type pointer as an
argument. In principle, this is similar to the procedure used to transfer an array to a function.

However, we must use explicit pointer notation to represent a structure that is passed as an
argument. A structure passed in this manner will be passed by reference rather than by value.

Hence, if any of the structure members are altered within the function, the alterations will be
recognized outside the function.

Example:

#include <stdio.h>

typedef struct

{

char *name;

int acct_no;

char accttype;

float balance;

}

record;

/* transfer a structure-type pointer to a function */

main()

{

void adjust (record *pt); /* function declaration * /

static record customer = {“Smith”, 3333, ‘C’, 33.33};

printf (“%s %d %c %.2f\n”, customer.name, customer.acct_no,

customer.acct_type, customer.balance);

adjust (&customer);

printf (“%s %d %c %.2f\n”, customer.name, customer.acct_no,

Data Structures

Notes

Example: / * Program to define a structure and assign value to members*/

struct book

{

char * name;

int pages;

char *author;

};

main()

{

struct book b1;

printf (“\n Enter Values:”);

scanf (“%s %d %s”, b1.name, &b1.page, b1.author);

printf (“%s, %d, %s, b1.name, b1.page, b1.author);

}

3.16 Structure Pointers
A complete structure can be transferred to a function by passing a structure-type pointer as an
argument. In principle, this is similar to the procedure used to transfer an array to a function.

However, we must use explicit pointer notation to represent a structure that is passed as an
argument. A structure passed in this manner will be passed by reference rather than by value.

Hence, if any of the structure members are altered within the function, the alterations will be
recognized outside the function.

Example:

#include <stdio.h>

typedef struct

{

char *name;

int acct_no;

char accttype;

float balance;

}

record;

/* transfer a structure-type pointer to a function */

main()

{

void adjust (record *pt); /* function declaration * /

static record customer = {“Smith”, 3333, ‘C’, 33.33};

printf (“%s %d %c %.2f\n”, customer.name, customer.acct_no,

customer.acct_type, customer.balance);

adjust (&customer);

printf (“%s %d %c %.2f\n”, customer.name, customer.acct_no,

Data Structures

Notes

Example: / * Program to define a structure and assign value to members*/

struct book

{

char * name;

int pages;

char *author;

};

main()

{

struct book b1;

printf (“\n Enter Values:”);

scanf (“%s %d %s”, b1.name, &b1.page, b1.author);

printf (“%s, %d, %s, b1.name, b1.page, b1.author);

}

3.16 Structure Pointers
A complete structure can be transferred to a function by passing a structure-type pointer as an
argument. In principle, this is similar to the procedure used to transfer an array to a function.

However, we must use explicit pointer notation to represent a structure that is passed as an
argument. A structure passed in this manner will be passed by reference rather than by value.

Hence, if any of the structure members are altered within the function, the alterations will be
recognized outside the function.

Example:

#include <stdio.h>

typedef struct

{

char *name;

int acct_no;

char accttype;

float balance;

}

record;

/* transfer a structure-type pointer to a function */

main()

{

void adjust (record *pt); /* function declaration * /

static record customer = {“Smith”, 3333, ‘C’, 33.33};

printf (“%s %d %c %.2f\n”, customer.name, customer.acct_no,

customer.acct_type, customer.balance);

adjust (&customer);

printf (“%s %d %c %.2f\n”, customer.name, customer.acct_no,

Lovely Professional University 45

Unit 03: Introduction to Pointers

Notes

customer.acct_type, customer.balance);

}

void adjust (record *pt)

{

pt->name = “Jones”;

pt->acct_not = 9999;

pt->acct_type = ‘R’;

pt->balance = 99.99;

return;

}

This program illustrates the transfer of a structure to a function by passing the structure’s address
(a pointer) to the function. In particular, customer is a static structure of type record, whose
members are assigned an initial set of values. These initial values are displayed when the program
begins to execute. The structure’s address is then passed to the function adjust where different
values are assigned to the member of the structure.

Within adjust, the formal argument declaration defines pt as a pointer to a structure of type record.
Also, nothing is explicitly returned from adjust to main. Within main, the current values assigned
to the members of customer are again displayed after adjust has been accessed. Thus, the program
illustrates whether or not the changes made in adjust carry over to the calling portion of the
program.

Executing the program results in the following output:

Smith 3333 C 33.33

Jones 9999 r 99.99

The value assigned to the members of customer within adjust are recognized within main. A
pointer to a structure can be returned from a function to the calling portion of the program. This
feature may be useful when several structures are passed to a function, but only one structure is
returned.

As we define a pointer pointing to int, or a pointer pointing to a char, similarly, we can have a
pointer pointing to a struct. Such pointers are known as ‘structure pointers’. The program given
below demonstrates the usage of structure pointer.

main()

{

struct emp

{

char empname [25];

char company [25];

int empno;

};

static struct emp emp1 = {“Prashant”, “SOCEM’, 101};

struct emp *ptr;

ptr = &emp1;

printf (“%s %s %d\n”, emp1.empname,emp1.company,emp1.empno);

printf (“%s %s %d\n”, ptr->company, ptr->empno);

}

In the above program, two types of operators are used to refer to structure elements:

1. Dot Operator

Lovely Professional University46

Data Structures

Notes

2. Arrow Operator

When the structure is referred to by its name, the structure elements are addressed using
dot

operators.

Example: b1.name

When the structure is referred to by the pointer to structure, the structure elements are
addressed

using arrow operators.

Example: ptr->name

On the left hand side of ‘.’ structure operator, there must always be a structure variable,
whereas on the right hand side of the ‘->’ operator there must always be a pointer to a
structure.

The following program demonstrates the passing of address of a structure variable to a
function.

struct emp

{

char empname [25];

int empno;

}

main()

{

static struct emp emp1 = {Prashant”,”socem”, 101};

display (&emp1);

}

display (e)

struct emp *e; /*pointer to a structure */

{

printf (“%s \n%s\n%d”, e->empname, e->empno);

}

Output: Prashant

SOCEM

101

In the above example, -> operator is used to access the structure elements using pointer to
structure.

3.17 Self-Referential Structure
A self-referential data structure is essentially a structure definition which includes at least one
member that is a pointer to the structure of its own kind. A chain of such structures can thus be
expressed as follows.

struct name {

member 1;

Data Structures

Notes

2. Arrow Operator

When the structure is referred to by its name, the structure elements are addressed using
dot

operators.

Example: b1.name

When the structure is referred to by the pointer to structure, the structure elements are
addressed

using arrow operators.

Example: ptr->name

On the left hand side of ‘.’ structure operator, there must always be a structure variable,
whereas on the right hand side of the ‘->’ operator there must always be a pointer to a
structure.

The following program demonstrates the passing of address of a structure variable to a
function.

struct emp

{

char empname [25];

int empno;

}

main()

{

static struct emp emp1 = {Prashant”,”socem”, 101};

display (&emp1);

}

display (e)

struct emp *e; /*pointer to a structure */

{

printf (“%s \n%s\n%d”, e->empname, e->empno);

}

Output: Prashant

SOCEM

101

In the above example, -> operator is used to access the structure elements using pointer to
structure.

3.17 Self-Referential Structure
A self-referential data structure is essentially a structure definition which includes at least one
member that is a pointer to the structure of its own kind. A chain of such structures can thus be
expressed as follows.

struct name {

member 1;

Data Structures

Notes

2. Arrow Operator

When the structure is referred to by its name, the structure elements are addressed using
dot

operators.

Example: b1.name

When the structure is referred to by the pointer to structure, the structure elements are
addressed

using arrow operators.

Example: ptr->name

On the left hand side of ‘.’ structure operator, there must always be a structure variable,
whereas on the right hand side of the ‘->’ operator there must always be a pointer to a
structure.

The following program demonstrates the passing of address of a structure variable to a
function.

struct emp

{

char empname [25];

int empno;

}

main()

{

static struct emp emp1 = {Prashant”,”socem”, 101};

display (&emp1);

}

display (e)

struct emp *e; /*pointer to a structure */

{

printf (“%s \n%s\n%d”, e->empname, e->empno);

}

Output: Prashant

SOCEM

101

In the above example, -> operator is used to access the structure elements using pointer to
structure.

3.17 Self-Referential Structure
A self-referential data structure is essentially a structure definition which includes at least one
member that is a pointer to the structure of its own kind. A chain of such structures can thus be
expressed as follows.

struct name {

member 1;

Lovely Professional University 47

Unit 03: Introduction to Pointers

Notes

member 2;

. . .

struct name *pointer;

};

The above illustrated structure prototype describes one node that comprises of two logical
segments. One of them stores data/information and the other one is a pointer indicating where the
next component can be found. .Several such inter-connected nodes create a chain of structures.

The following figure depicts the composition of such a node. The figure is a simplified illustration
of nodes that collectively form a chain of structures or linked list.

Such self-referential structures are very useful in applications that involve linked data structures,
such as lists and trees. Unlike a static data structure such as array where the number of elements
that can be inserted in the array is limited by the size of the array, a self-referential structure can
dynamically be expanded or contracted. Operations like insertion or deletion of nodes in a self-
referential structure involve simple and straight forward alteration of pointers.

Example

#include<stdio.h>

struct data{

int a;

char c;

struct data *ptr;

};

int main(){

struct data data1;

struct data data2;

data1.a=100;

data1.c='A';

data1.ptr=NULL;

data2.a=200;

data2.c='B';

data2.ptr=NULL;

data1.ptr=&data2;

printf("Value of data 1 direct from structure %d %c \n",data1.a,data1.c);

printf("Values of data1 reference to the data2 %d %c", data1.ptr->a,data1.ptr->c);

return 0;

}

Unit 03: Introduction to Pointers

Notes

member 2;

. . .

struct name *pointer;

};

The above illustrated structure prototype describes one node that comprises of two logical
segments. One of them stores data/information and the other one is a pointer indicating where the
next component can be found. .Several such inter-connected nodes create a chain of structures.

The following figure depicts the composition of such a node. The figure is a simplified illustration
of nodes that collectively form a chain of structures or linked list.

Such self-referential structures are very useful in applications that involve linked data structures,
such as lists and trees. Unlike a static data structure such as array where the number of elements
that can be inserted in the array is limited by the size of the array, a self-referential structure can
dynamically be expanded or contracted. Operations like insertion or deletion of nodes in a self-
referential structure involve simple and straight forward alteration of pointers.

Example

#include<stdio.h>

struct data{

int a;

char c;

struct data *ptr;

};

int main(){

struct data data1;

struct data data2;

data1.a=100;

data1.c='A';

data1.ptr=NULL;

data2.a=200;

data2.c='B';

data2.ptr=NULL;

data1.ptr=&data2;

printf("Value of data 1 direct from structure %d %c \n",data1.a,data1.c);

printf("Values of data1 reference to the data2 %d %c", data1.ptr->a,data1.ptr->c);

return 0;

}

Unit 03: Introduction to Pointers

Notes

member 2;

. . .

struct name *pointer;

};

The above illustrated structure prototype describes one node that comprises of two logical
segments. One of them stores data/information and the other one is a pointer indicating where the
next component can be found. .Several such inter-connected nodes create a chain of structures.

The following figure depicts the composition of such a node. The figure is a simplified illustration
of nodes that collectively form a chain of structures or linked list.

Such self-referential structures are very useful in applications that involve linked data structures,
such as lists and trees. Unlike a static data structure such as array where the number of elements
that can be inserted in the array is limited by the size of the array, a self-referential structure can
dynamically be expanded or contracted. Operations like insertion or deletion of nodes in a self-
referential structure involve simple and straight forward alteration of pointers.

Example

#include<stdio.h>

struct data{

int a;

char c;

struct data *ptr;

};

int main(){

struct data data1;

struct data data2;

data1.a=100;

data1.c='A';

data1.ptr=NULL;

data2.a=200;

data2.c='B';

data2.ptr=NULL;

data1.ptr=&data2;

printf("Value of data 1 direct from structure %d %c \n",data1.a,data1.c);

printf("Values of data1 reference to the data2 %d %c", data1.ptr->a,data1.ptr->c);

return 0;

}

Lovely Professional University48

Data Structures

Notes

Summary

 Pointers are often passed to a function as arguments by reference. This allows data items
within the calling function to be accessed, altered by the called function, and then returned
to the calling function in the altered form.

 There is an intimate relationship between pointers and arrays as an array name is really a
pointer to the first element in the array.

 Access to the elements of array using pointers is enabled by adding the respective subscript
to the pointer value (i.e. address of zeroth element) and the expression preceded with an
indirection operator.

 As pointer declaration does not allocate memory to store the objects it points at, therefore,
memory is allocated at run time known as dynamic memory allocation.

 Self-referential structure are special structure that can hold links to the other structures.

Keywords

Array of Pointer: A multi-dimensional array can be expressed in terms of an array of pointers
rather than as a pointer to a group of contiguous arrays.
Pointer: It is a variable which can hold the address of a memory location rather than the value
at the location.
Pointer Expression: Like other variables, pointer variables can be used in expressions.
Arithmetic and comparison operations can be performed on the pointers

Self-Assessment

1. Which one is incorrect statement?
A. int x=90;
B. int *ptr1,*ptr2;
C. ptr1=&x;
D. ptr2=ptr1;

2. Which of the following symbol is used for declare a pointer.
A. #
B. @
C. $
D. *

3. What are the applications of pointers?
A. Implement data structure
B. Dynamic memory allocation
C. Accessing array and functions
D. Above all

4. What are the correct statements about pointers?
A. Pointer is a variable that stores the address of another variable
B. Pointer can also be used to refer to another pointer function
C. Pointers assign and releases the memory as well
D. All of above.

5. What format specifier is used for pointers?
A. %c
B. %d

Lovely Professional University 49

Unit 03: Introduction to Pointers

Notes

C. %p
D. %s

6. What is the output of following program?
#include<stdio.h>

int main(){

int *ptr=NULL;

printf(“Value of null pointer is= %d”,ptr);

return 0;

}

A. 1
B. 2
C. 0
D. 4

7. Which one is incorrect statement?
A. int x=90;
B. int *ptr1,*ptr2;
C. ptr1=&x;
D. ptr2=ptr1;

8. What type of arithmetic operations can be performed on pointers?
A. Addition
B. Subtraction
C. Multiply
D. Above all

9. What is the output of following program?
#include<stdio.h>
int main(){

int x=90,y=10,result;
int *ptr1,*ptr2;
ptr1=&x;
ptr2=&y;
result=*ptr1**ptr2;

printf("Product of x and y using pointers is %d\n",result);
return 0;
}

A. 100
B. 80
C. 900
D. 10

10. Which one is incorrect statement?
A. int a=10,*ptr;
B. ptr=/a;
C. ptr--;
D. above all

Lovely Professional University50

Data Structures

Notes

11. What are the different operations that can be performed on pointers?
A. Decrement
B. Addition
C. Subtraction
D. Above all

12. Structure can be nested by
A. separate structure
B. Embedded structure
C. both separate structure and Embedded structure
D. none of above

13. Self Referential Structures are_____
A. Have one or more pointers which point to the same type of structure, as their member.
B. Can dynamically be expanded or contracted
C. Both of them
D. None of above

14. What are the types of Self Referential Structures?
A. Structure with Single Link
B. Structure with Multiple Links
C. Both Structure with Single Link and Structure with Multiple Links
D. None of the above

15. What are the correct statements about pointers?
A. Pointer is a variable that stores the address of another variable
B. Pointer can also be used to refer to another pointer function
C. Pointers assign and releases the memory as well
D. All of above.

Answers for Self Assessment

1. C 2. D 3. D 4. D 5. C

6. C 7. C 8. D 9. C 10. B

11. D 12. C 13. C 14. C 15. D

Review Questions
1. Define ‘Pointer’. List down the various advantages of using pointers in a C program.

2. How pointer are initialized and implemented in C? Write a program to explain the concept.

3. Explain with the help of a C program, the concept of Pointer Arithmetic in C.

4. How printer in C incorporates the concept of Arrays? Write a suitable program to demonstrate
the concept.

Lovely Professional University 51

Unit 03: Introduction to Pointers

Notes

5. Differentiate the followings:

(a) Pointer and arrays

(b) Pointer to a variable and pointer to a pointer

(c) Pointer and variable

(d) Value in a function and address in a function

6. Twenty-five numbers are entered from the keyboard into an array. Write a program to find out
how many of them are positive, how many are negative, how many are even and how many odd.

7. Write a function to calculate the factorial value of any integer entered through the keyboard.

8. Write a program that demonstrate the working of self-referential structure.

9.Explain pointers and functions with suitable example.

10.As pointer declaration does not allocate memory to store the objects it points at, therefore, Memory is
allocated at run time known as dynamic memory allocation.

Further Readings
Books Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson
Education, Year of Publication, 2008

Lipschutz. Seymour. Data Structures with C. Delhi: Tata McGraw Hill

Reddy.A.M Padma (2006). Data Structures Using C. Bangalore: Sri Nandi
Publications

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett,
1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

YashvantKanetkar, Let us C

Web links
https://www.geeksforgeeks.org/pointers-in-c-and-c-set-1-introduction-arithmetic-and-
array/

https://www.careerride.com/C-self-referential-structure.aspx

Unit 03: Introduction to Pointers

Notes

5. Differentiate the followings:

(a) Pointer and arrays

(b) Pointer to a variable and pointer to a pointer

(c) Pointer and variable

(d) Value in a function and address in a function

6. Twenty-five numbers are entered from the keyboard into an array. Write a program to find out
how many of them are positive, how many are negative, how many are even and how many odd.

7. Write a function to calculate the factorial value of any integer entered through the keyboard.

8. Write a program that demonstrate the working of self-referential structure.

9.Explain pointers and functions with suitable example.

10.As pointer declaration does not allocate memory to store the objects it points at, therefore, Memory is
allocated at run time known as dynamic memory allocation.

Further Readings
Books Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson
Education, Year of Publication, 2008

Lipschutz. Seymour. Data Structures with C. Delhi: Tata McGraw Hill

Reddy.A.M Padma (2006). Data Structures Using C. Bangalore: Sri Nandi
Publications

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett,
1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

YashvantKanetkar, Let us C

Web links
https://www.geeksforgeeks.org/pointers-in-c-and-c-set-1-introduction-arithmetic-and-
array/

https://www.careerride.com/C-self-referential-structure.aspx

Unit 03: Introduction to Pointers

Notes

5. Differentiate the followings:

(a) Pointer and arrays

(b) Pointer to a variable and pointer to a pointer

(c) Pointer and variable

(d) Value in a function and address in a function

6. Twenty-five numbers are entered from the keyboard into an array. Write a program to find out
how many of them are positive, how many are negative, how many are even and how many odd.

7. Write a function to calculate the factorial value of any integer entered through the keyboard.

8. Write a program that demonstrate the working of self-referential structure.

9.Explain pointers and functions with suitable example.

10.As pointer declaration does not allocate memory to store the objects it points at, therefore, Memory is
allocated at run time known as dynamic memory allocation.

Further Readings
Books Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson
Education, Year of Publication, 2008

Lipschutz. Seymour. Data Structures with C. Delhi: Tata McGraw Hill

Reddy.A.M Padma (2006). Data Structures Using C. Bangalore: Sri Nandi
Publications

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett,
1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

YashvantKanetkar, Let us C

Web links
https://www.geeksforgeeks.org/pointers-in-c-and-c-set-1-introduction-arithmetic-and-
array/

https://www.careerride.com/C-self-referential-structure.aspx

Lovely Professional University52

Unit 04: Arrays

Notes

Unit 04: Arrays

CONTENTS

Objectives

Introduction

4.1 Arrays

4.2 Advantages of Arrays

4.3 Types of Arrays

4.4 Array Declaration

4.5 Array Initialization

4.6 Accessing Elements of an Array

4.7 Passing Array as an Argument to Function

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to:

 Explain arrays
 Describe two dimensional array
 Describe array initialization

Introduction
An array is a group of data items of same data type that share a common name. Ordinary variables
are capable of holding only one value at a time. If we want to store more than one value at a time in
a single variable, we use arrays.

An array is a collective name given to a group of similar quantities. Each member in the group is
referred to by its position in the group.

Arrays are allotted the memory in a strictly contiguous fashion. The simplest array is one
dimensional array which is simply a list of variables of same data type. An array of one-
dimensional arrays is called a two-dimension array.

4.1 Arrays
Arrays are allocated the memory in a strictly contiguous fashion. The simplest array is one
dimensional array which is a list of variables of same data type. An array of one dimensional arrays
is called a two dimensional array; array of two dimensional arrays is three dimensional array and
so on.

The members of the array can be accessed using positive integer values (indicating their order in
the array) called subscript or index. Look at an array of integers as shown below:

Lovely Professional University 53

Dr. Prikshat Kumar Angra, Lovely Professional University

Data Structures

Notes

a[0] a[1] a[2] a[3] a[4]

The description of this array is listed below:

Name of the array: a

Data type of the array: integer

Number of elements: 5

Valid index values: 0, 1, 2, 3, 4

Value stored at the location a[0] : 200

Value stored at the location a[1] : 120

Value stored at the location a[2] : -78

Value stored at the location a[3] : 100

Value stored at the location a[4] : 0

4.2 Advantages of Arrays
Arrays offer a number of advantages, some of which are elucidated below:

1. If only a limited number of variables of a particular data type is required ion a program, one can
choose the variable names to suite the situation. Let us say we require five integer type variables,
we can define them as follows:

int v_one, v_two, v_three, v_four, v_five;

Now, consider if we require hundred integer type variables, is the above approach convenient?
Obviously not. We can, instead, use an array of integer type having 100 elements as shown below:

int num[100];

2. Array elements can be accessed using index. Therefore, all the elements can be processed in a
desired manner in a single for loop that runs for each element, as shown below:

for(i=0; i<100; i++)

num[i]=num[i]+10;

In a single for loop, all the elements have been incremented by 10.

3. Since array elements are physically created contiguously in the memory, they can be accesses
using pointers (as you will learn later). Therefore, there are more than one way to reference array
elements.

4.3 Types of Arrays
According the number of subscripts required to access an array element, arrays can be of

Following types:

1. One-dimensional array

2. Multi-dimensional array

1. One-dimensional Array
A list of items can be given one variable name using only one subscript and such a variable is called
a one-dimensional array.

Example: If we want to store a set of five numbers by an array variable number. Then it will be
accomplished in the following way:

Lovely Professional University54

Unit 04: Arrays

Notes

int number [5];

This declaration will reserve five contiguous memory locations capable of storing an integer type
value each, as shown below:

As C performs no bounds checking, care should be taken to ensure that the array indices are within
the declared limits. Also, indexing in C begins from 0 and not from 1.

2. Two-dimensional and Multi-dimensional Array
It is possible to have an array of more than one dimensions. Two dimensional array (2-D array) is
an array of number of 1-dimensional arrays.

A two dimensional array is also called a matrix. Consider the following table:

This is a table of four rows and three columns. Such a table of items can be defined using two
dimensional arrays.

General form of declaring a 2-D array is

data_typearray_name [row_size] [colum_size];

Example: int marks [4] [2];

It will declare an integer array marks of four rows and two columns. An element of this array can
be accessed by the manipulation of both the indices. printf (“%d”, marks [2] [1]) will print the
element present in third row and second column.

C allows arrays of three or more dimensions. Multi-dimensional arrays are defined in much the
same manner as one-dimensional arrays, except that a separate pair of square brackets is required
for each subscript.

The general form of a multi-dimensional array is

data_typearray_name [s1] [s2] [s3] . . . [sm];

E.g.: int survey [3] [5] [12];

float table [5] [4] [5] [3];

Here, survey is a 3-dimensional array declared to contain 180 integer type elements. Similarly, table
is a 4-dimensional array containing 300 elements of floating point type.

Let us consider some applications of multidimensional array programming.

Tasks: Write a program to find transpose of matrix.

Example - Sorting an integer array.

include <stdio.h>

void main()

{

int arr [5];

Unit 04: Arrays

Notes

int number [5];

This declaration will reserve five contiguous memory locations capable of storing an integer type
value each, as shown below:

As C performs no bounds checking, care should be taken to ensure that the array indices are within
the declared limits. Also, indexing in C begins from 0 and not from 1.

2. Two-dimensional and Multi-dimensional Array
It is possible to have an array of more than one dimensions. Two dimensional array (2-D array) is
an array of number of 1-dimensional arrays.

A two dimensional array is also called a matrix. Consider the following table:

This is a table of four rows and three columns. Such a table of items can be defined using two
dimensional arrays.

General form of declaring a 2-D array is

data_typearray_name [row_size] [colum_size];

Example: int marks [4] [2];

It will declare an integer array marks of four rows and two columns. An element of this array can
be accessed by the manipulation of both the indices. printf (“%d”, marks [2] [1]) will print the
element present in third row and second column.

C allows arrays of three or more dimensions. Multi-dimensional arrays are defined in much the
same manner as one-dimensional arrays, except that a separate pair of square brackets is required
for each subscript.

The general form of a multi-dimensional array is

data_typearray_name [s1] [s2] [s3] . . . [sm];

E.g.: int survey [3] [5] [12];

float table [5] [4] [5] [3];

Here, survey is a 3-dimensional array declared to contain 180 integer type elements. Similarly, table
is a 4-dimensional array containing 300 elements of floating point type.

Let us consider some applications of multidimensional array programming.

Tasks: Write a program to find transpose of matrix.

Example - Sorting an integer array.

include <stdio.h>

void main()

{

int arr [5];

Unit 04: Arrays

Notes

int number [5];

This declaration will reserve five contiguous memory locations capable of storing an integer type
value each, as shown below:

As C performs no bounds checking, care should be taken to ensure that the array indices are within
the declared limits. Also, indexing in C begins from 0 and not from 1.

2. Two-dimensional and Multi-dimensional Array
It is possible to have an array of more than one dimensions. Two dimensional array (2-D array) is
an array of number of 1-dimensional arrays.

A two dimensional array is also called a matrix. Consider the following table:

This is a table of four rows and three columns. Such a table of items can be defined using two
dimensional arrays.

General form of declaring a 2-D array is

data_typearray_name [row_size] [colum_size];

Example: int marks [4] [2];

It will declare an integer array marks of four rows and two columns. An element of this array can
be accessed by the manipulation of both the indices. printf (“%d”, marks [2] [1]) will print the
element present in third row and second column.

C allows arrays of three or more dimensions. Multi-dimensional arrays are defined in much the
same manner as one-dimensional arrays, except that a separate pair of square brackets is required
for each subscript.

The general form of a multi-dimensional array is

data_typearray_name [s1] [s2] [s3] . . . [sm];

E.g.: int survey [3] [5] [12];

float table [5] [4] [5] [3];

Here, survey is a 3-dimensional array declared to contain 180 integer type elements. Similarly, table
is a 4-dimensional array containing 300 elements of floating point type.

Let us consider some applications of multidimensional array programming.

Tasks: Write a program to find transpose of matrix.

Example - Sorting an integer array.

include <stdio.h>

void main()

{

int arr [5];

Lovely Professional University 55

Data Structures

Notes

int i, j; temp;

printf (“\n Enter the elements of the array:”};

scanf (“%d”, &arr [i]);

for (i = 0; i< = 4; i ++);

{

for (J = 0; J < = 3; J ++)

if (arr [J] >arr [J+1])

{

temp = arr [J];

arg [J] = arr [J+1];

arr [J+1] = temp;

}

}

printf (“\ n The Sorted array is:”);

for (i = 0; i< 5; i++)

printf (“\ t %d”, arr [i]);

}

Example - Accept character string and find its length.

We will solve this question by looping instead of using Library function strlen().

include <stdio.h>

void main()

{

char name [20];

int i, len;

printf (“\n Enter the name:”);

scanf (“%s”, name);

for (i = 0; name [i] ! = ‘\0’; i++);

Len = i - 1;

print f(“\n Length of array is % d”, len);

Character Arrays
Just as a group of integers can be stored in an integer array, group of characters can be stored in a
character array or “strings”. The string constant is a one dimensional array of characters terminated
by null character (‘\0’). This null character ‘\0’ (ASCII value0) is different from ‘O’

(ASCII value 48).

The terminating null character is important because it is the only way the function that works with
string can know where the string ends.

Example: Static char name [] = {‘K’, ‘R’, ‘I’, ‘S’, ‘H’, ‘\0’};

Data Structures

Notes

int i, j; temp;

printf (“\n Enter the elements of the array:”};

scanf (“%d”, &arr [i]);

for (i = 0; i< = 4; i ++);

{

for (J = 0; J < = 3; J ++)

if (arr [J] >arr [J+1])

{

temp = arr [J];

arg [J] = arr [J+1];

arr [J+1] = temp;

}

}

printf (“\ n The Sorted array is:”);

for (i = 0; i< 5; i++)

printf (“\ t %d”, arr [i]);

}

Example - Accept character string and find its length.

We will solve this question by looping instead of using Library function strlen().

include <stdio.h>

void main()

{

char name [20];

int i, len;

printf (“\n Enter the name:”);

scanf (“%s”, name);

for (i = 0; name [i] ! = ‘\0’; i++);

Len = i - 1;

print f(“\n Length of array is % d”, len);

Character Arrays
Just as a group of integers can be stored in an integer array, group of characters can be stored in a
character array or “strings”. The string constant is a one dimensional array of characters terminated
by null character (‘\0’). This null character ‘\0’ (ASCII value0) is different from ‘O’

(ASCII value 48).

The terminating null character is important because it is the only way the function that works with
string can know where the string ends.

Example: Static char name [] = {‘K’, ‘R’, ‘I’, ‘S’, ‘H’, ‘\0’};

Data Structures

Notes

int i, j; temp;

printf (“\n Enter the elements of the array:”};

scanf (“%d”, &arr [i]);

for (i = 0; i< = 4; i ++);

{

for (J = 0; J < = 3; J ++)

if (arr [J] >arr [J+1])

{

temp = arr [J];

arg [J] = arr [J+1];

arr [J+1] = temp;

}

}

printf (“\ n The Sorted array is:”);

for (i = 0; i< 5; i++)

printf (“\ t %d”, arr [i]);

}

Example - Accept character string and find its length.

We will solve this question by looping instead of using Library function strlen().

include <stdio.h>

void main()

{

char name [20];

int i, len;

printf (“\n Enter the name:”);

scanf (“%s”, name);

for (i = 0; name [i] ! = ‘\0’; i++);

Len = i - 1;

print f(“\n Length of array is % d”, len);

Character Arrays
Just as a group of integers can be stored in an integer array, group of characters can be stored in a
character array or “strings”. The string constant is a one dimensional array of characters terminated
by null character (‘\0’). This null character ‘\0’ (ASCII value0) is different from ‘O’

(ASCII value 48).

The terminating null character is important because it is the only way the function that works with
string can know where the string ends.

Example: Static char name [] = {‘K’, ‘R’, ‘I’, ‘S’, ‘H’, ‘\0’};

Lovely Professional University56

Unit 04: Arrays

Notes

This example shows the declaration and initialization of a character array. The array elements of a
character array are stored in contiguous locations with each element occupying one byte of
memory.

Notes

1. Contrary to the numeric array where a 5 digit number can be stored in one array cell, in
the character arrays only a single character can be stored in one cell. So in order to store an
array of strings, a 2-dimensional array is required.

2. As scanf() function is not capable of receiving multi word string, such strings should be
entered using gets().

Task: Point out the errors, if any, in this program:

main(){

int i, a - 2, b - 3 ;

int arr.[2 +3] ;

for (i0;i<a+b;i++)

{

scanf("%d", &rarr[i]) ;

printf (" \ n%d", arr[i]) ;

}

}

4.4 Array Declaration
Arrays are defined in the same manner as ordinary variables, except that each array name must be
accompanied by the size specification.

The general form of array declaration is:

data_typearray_name [size];

data-type specifies the type of array, size is a positive integer number or symbolic constant that
indicates the maximum number of elements that can be stored in the array.

Example: float height [50];

This declaration declares an array named height containing 50 elements of type float. The compiler
will interpret first element as height [0]. As in C, the array elements are induced

for 0 to [size-1].

Two dimensional arrays can be declared similarly, as shown below:

data_typearray_name[size1][size2];

For instance, the following array (named b) is array of 2 arrays of integer type of size 5

Unit 04: Arrays

Notes

This example shows the declaration and initialization of a character array. The array elements of a
character array are stored in contiguous locations with each element occupying one byte of
memory.

Notes

1. Contrary to the numeric array where a 5 digit number can be stored in one array cell, in
the character arrays only a single character can be stored in one cell. So in order to store an
array of strings, a 2-dimensional array is required.

2. As scanf() function is not capable of receiving multi word string, such strings should be
entered using gets().

Task: Point out the errors, if any, in this program:

main(){

int i, a - 2, b - 3 ;

int arr.[2 +3] ;

for (i0;i<a+b;i++)

{

scanf("%d", &rarr[i]) ;

printf (" \ n%d", arr[i]) ;

}

}

4.4 Array Declaration
Arrays are defined in the same manner as ordinary variables, except that each array name must be
accompanied by the size specification.

The general form of array declaration is:

data_typearray_name [size];

data-type specifies the type of array, size is a positive integer number or symbolic constant that
indicates the maximum number of elements that can be stored in the array.

Example: float height [50];

This declaration declares an array named height containing 50 elements of type float. The compiler
will interpret first element as height [0]. As in C, the array elements are induced

for 0 to [size-1].

Two dimensional arrays can be declared similarly, as shown below:

data_typearray_name[size1][size2];

For instance, the following array (named b) is array of 2 arrays of integer type of size 5

Unit 04: Arrays

Notes

This example shows the declaration and initialization of a character array. The array elements of a
character array are stored in contiguous locations with each element occupying one byte of
memory.

Notes

1. Contrary to the numeric array where a 5 digit number can be stored in one array cell, in
the character arrays only a single character can be stored in one cell. So in order to store an
array of strings, a 2-dimensional array is required.

2. As scanf() function is not capable of receiving multi word string, such strings should be
entered using gets().

Task: Point out the errors, if any, in this program:

main(){

int i, a - 2, b - 3 ;

int arr.[2 +3] ;

for (i0;i<a+b;i++)

{

scanf("%d", &rarr[i]) ;

printf (" \ n%d", arr[i]) ;

}

}

4.4 Array Declaration
Arrays are defined in the same manner as ordinary variables, except that each array name must be
accompanied by the size specification.

The general form of array declaration is:

data_typearray_name [size];

data-type specifies the type of array, size is a positive integer number or symbolic constant that
indicates the maximum number of elements that can be stored in the array.

Example: float height [50];

This declaration declares an array named height containing 50 elements of type float. The compiler
will interpret first element as height [0]. As in C, the array elements are induced

for 0 to [size-1].

Two dimensional arrays can be declared similarly, as shown below:

data_typearray_name[size1][size2];

For instance, the following array (named b) is array of 2 arrays of integer type of size 5

Lovely Professional University 57

Data Structures

Notes

elements:

int b[2][5];

The array b has 10 (2 * 5) elements, each capable of storing an integer type data, referenced as:

b[0][0] b[0][1] b[0][2] b[0][3] b[0][4]

b[1][0] b[1][1] b[1][2] b[1][3] b[1][4]

Multidimensional arrays can be declared on the similar lines. A three dimensional array (named

c) of int type has been declared below:

Int c[2][2][5];

The array c has 20 (2 * 2 * 5) elements, each capable of storing an integer type data, referenced

as:

c[0][0][0] c[0][0][1] c[0][0][2] c[0][0][3] c[0][0][4]

c[0][1][0] c[0][1][1] c[0][1][2] c[0][1][3] c[0][1][4]

c[1][0][0] c[1][0][1] c[1][0][2] c[1][0][3] c[1][0][4]

c[1][1][0] c[1][1][1] c[1][1][2] c[1][1][3] c[1][1][4]

4.5 Array Initialization
One-dimensional Array
The elements of an array can be initialized in the same way as the ordinary variables, when they are
declared. Given below are some examples which show how the arrays are initialized.

static int num [6] = {2, 4, 5, 45, 12};

static int n [] = {2, 4, 5, 45, 12};

static float press [] = {12.5, 32.4, -23.7, -11.3};

In these examples note the following points:

1. Till the array elements are not given any specific values, they contain garbage value.

2. If the array is initialized where it is declared, its storage class must be either static or extern.

If the storage class is static, all the elements are initialized by 0.

3. If the array is initialized where it is declared, mentioning the dimension of the array is optional.

Two-dimensional Arrays
Two dimensional arrays may be initialized by a list of initial values enclosed in braces following
their declaration.

E.g.: static int table[2][3] = {0, 0, 0, 1, 1, 1};

initializes the elements of the first row to 0 and the second row to one. The initialization is done by
row.

The aforesaid statement can be equivalently written as

static int table[2][3] = {{0, 0, 0}, {1, 1, 1}};

by surrounding the elements of each row by braces.

We can also initialize a two dimensional array in the form of a matrix as shown below:

static int table[2][3] = {{0, 0, 0},

{1, 1, 1}};

The syntax of the above statement. Commas are required after each brace that closes off a row,
except in the case of the last row.

Data Structures

Notes

elements:

int b[2][5];

The array b has 10 (2 * 5) elements, each capable of storing an integer type data, referenced as:

b[0][0] b[0][1] b[0][2] b[0][3] b[0][4]

b[1][0] b[1][1] b[1][2] b[1][3] b[1][4]

Multidimensional arrays can be declared on the similar lines. A three dimensional array (named

c) of int type has been declared below:

Int c[2][2][5];

The array c has 20 (2 * 2 * 5) elements, each capable of storing an integer type data, referenced

as:

c[0][0][0] c[0][0][1] c[0][0][2] c[0][0][3] c[0][0][4]

c[0][1][0] c[0][1][1] c[0][1][2] c[0][1][3] c[0][1][4]

c[1][0][0] c[1][0][1] c[1][0][2] c[1][0][3] c[1][0][4]

c[1][1][0] c[1][1][1] c[1][1][2] c[1][1][3] c[1][1][4]

4.5 Array Initialization
One-dimensional Array
The elements of an array can be initialized in the same way as the ordinary variables, when they are
declared. Given below are some examples which show how the arrays are initialized.

static int num [6] = {2, 4, 5, 45, 12};

static int n [] = {2, 4, 5, 45, 12};

static float press [] = {12.5, 32.4, -23.7, -11.3};

In these examples note the following points:

1. Till the array elements are not given any specific values, they contain garbage value.

2. If the array is initialized where it is declared, its storage class must be either static or extern.

If the storage class is static, all the elements are initialized by 0.

3. If the array is initialized where it is declared, mentioning the dimension of the array is optional.

Two-dimensional Arrays
Two dimensional arrays may be initialized by a list of initial values enclosed in braces following
their declaration.

E.g.: static int table[2][3] = {0, 0, 0, 1, 1, 1};

initializes the elements of the first row to 0 and the second row to one. The initialization is done by
row.

The aforesaid statement can be equivalently written as

static int table[2][3] = {{0, 0, 0}, {1, 1, 1}};

by surrounding the elements of each row by braces.

We can also initialize a two dimensional array in the form of a matrix as shown below:

static int table[2][3] = {{0, 0, 0},

{1, 1, 1}};

The syntax of the above statement. Commas are required after each brace that closes off a row,
except in the case of the last row.

Data Structures

Notes

elements:

int b[2][5];

The array b has 10 (2 * 5) elements, each capable of storing an integer type data, referenced as:

b[0][0] b[0][1] b[0][2] b[0][3] b[0][4]

b[1][0] b[1][1] b[1][2] b[1][3] b[1][4]

Multidimensional arrays can be declared on the similar lines. A three dimensional array (named

c) of int type has been declared below:

Int c[2][2][5];

The array c has 20 (2 * 2 * 5) elements, each capable of storing an integer type data, referenced

as:

c[0][0][0] c[0][0][1] c[0][0][2] c[0][0][3] c[0][0][4]

c[0][1][0] c[0][1][1] c[0][1][2] c[0][1][3] c[0][1][4]

c[1][0][0] c[1][0][1] c[1][0][2] c[1][0][3] c[1][0][4]

c[1][1][0] c[1][1][1] c[1][1][2] c[1][1][3] c[1][1][4]

4.5 Array Initialization
One-dimensional Array
The elements of an array can be initialized in the same way as the ordinary variables, when they are
declared. Given below are some examples which show how the arrays are initialized.

static int num [6] = {2, 4, 5, 45, 12};

static int n [] = {2, 4, 5, 45, 12};

static float press [] = {12.5, 32.4, -23.7, -11.3};

In these examples note the following points:

1. Till the array elements are not given any specific values, they contain garbage value.

2. If the array is initialized where it is declared, its storage class must be either static or extern.

If the storage class is static, all the elements are initialized by 0.

3. If the array is initialized where it is declared, mentioning the dimension of the array is optional.

Two-dimensional Arrays
Two dimensional arrays may be initialized by a list of initial values enclosed in braces following
their declaration.

E.g.: static int table[2][3] = {0, 0, 0, 1, 1, 1};

initializes the elements of the first row to 0 and the second row to one. The initialization is done by
row.

The aforesaid statement can be equivalently written as

static int table[2][3] = {{0, 0, 0}, {1, 1, 1}};

by surrounding the elements of each row by braces.

We can also initialize a two dimensional array in the form of a matrix as shown below:

static int table[2][3] = {{0, 0, 0},

{1, 1, 1}};

The syntax of the above statement. Commas are required after each brace that closes off a row,
except in the case of the last row.

Lovely Professional University58

Unit 04: Arrays

Notes

If the values are missing in an initializer, they are automatically set to 0. For instance, the statement

static int table [2] [3] = {{1, 1},

{2}};

will initialize the first two elements of the first row to one, the first element of the second row to
two, and all the other elements to 0.

When all the elements are to be initialized to 0, the following short cut method may be used.

static int m [3] [5] = {{0}, {0}, {0}};

The first element of each row is explicitly initialized to 0 while other elements are automatically
initialized to 0.

While initializing an array, it is necessary to mention the second (column) dimension, whereas the
first dimension (row) is optional. Thus, the following declarations are acceptable.

static int arr [2] [3] = {12, 34, 23, 45, 56, 45};

static int arr[] [3] = {12, 34, 23, 45, 56, 45 };

Multi-dimensional Array

Example: Example of initializing a 4-dimensional array:

static int arr [3] [4] [2] = {{{2, 4}, {7, 8}, {3, 4}, {5, 6},},

{{7, 6}, {3, 4}, {5, 3}, {2, 3}, },

{{8, 9}, {7, 2}, {3, 4}, {6, 1}, } };

In this example, the outer array has three elements, each of which is a two dimensional array of

four rows, each of which is a one dimensional array of two elements.

Tasks: Write a program to find inverse of matrix.

4.6 Accessing Elements of an Array
Once an array is declared, individual elements of the array are referred using subscript or index
number. This number specifies the element’s position in the array. All the elements of the array are
numbered starting from 0. Thus number [5] is actually the sixth element of an array.

Consider the program given above. It has entered 6 values in the array num. Now to read values
from this array, we will again use for Loop to access each cell. The given program segment explains
the retrieval of the values from the array.

for (count = 0; count < 6; count ++)

{

printf (“\n %d value =”, num [count]);

}

Data can be inserted into array by treating the array elements just like any other variable. If an
integer value is to be read from keyboard into an array element (say c[2][3][0]), the following code
snippet would do the job:

Scanf(“%d”, &c[2][3][0]);

In order to read values in the entire array for loop may be used as explained by the following
examples:

main()

Unit 04: Arrays

Notes

If the values are missing in an initializer, they are automatically set to 0. For instance, the statement

static int table [2] [3] = {{1, 1},

{2}};

will initialize the first two elements of the first row to one, the first element of the second row to
two, and all the other elements to 0.

When all the elements are to be initialized to 0, the following short cut method may be used.

static int m [3] [5] = {{0}, {0}, {0}};

The first element of each row is explicitly initialized to 0 while other elements are automatically
initialized to 0.

While initializing an array, it is necessary to mention the second (column) dimension, whereas the
first dimension (row) is optional. Thus, the following declarations are acceptable.

static int arr [2] [3] = {12, 34, 23, 45, 56, 45};

static int arr[] [3] = {12, 34, 23, 45, 56, 45 };

Multi-dimensional Array

Example: Example of initializing a 4-dimensional array:

static int arr [3] [4] [2] = {{{2, 4}, {7, 8}, {3, 4}, {5, 6},},

{{7, 6}, {3, 4}, {5, 3}, {2, 3}, },

{{8, 9}, {7, 2}, {3, 4}, {6, 1}, } };

In this example, the outer array has three elements, each of which is a two dimensional array of

four rows, each of which is a one dimensional array of two elements.

Tasks: Write a program to find inverse of matrix.

4.6 Accessing Elements of an Array
Once an array is declared, individual elements of the array are referred using subscript or index
number. This number specifies the element’s position in the array. All the elements of the array are
numbered starting from 0. Thus number [5] is actually the sixth element of an array.

Consider the program given above. It has entered 6 values in the array num. Now to read values
from this array, we will again use for Loop to access each cell. The given program segment explains
the retrieval of the values from the array.

for (count = 0; count < 6; count ++)

{

printf (“\n %d value =”, num [count]);

}

Data can be inserted into array by treating the array elements just like any other variable. If an
integer value is to be read from keyboard into an array element (say c[2][3][0]), the following code
snippet would do the job:

Scanf(“%d”, &c[2][3][0]);

In order to read values in the entire array for loop may be used as explained by the following
examples:

main()

Unit 04: Arrays

Notes

If the values are missing in an initializer, they are automatically set to 0. For instance, the statement

static int table [2] [3] = {{1, 1},

{2}};

will initialize the first two elements of the first row to one, the first element of the second row to
two, and all the other elements to 0.

When all the elements are to be initialized to 0, the following short cut method may be used.

static int m [3] [5] = {{0}, {0}, {0}};

The first element of each row is explicitly initialized to 0 while other elements are automatically
initialized to 0.

While initializing an array, it is necessary to mention the second (column) dimension, whereas the
first dimension (row) is optional. Thus, the following declarations are acceptable.

static int arr [2] [3] = {12, 34, 23, 45, 56, 45};

static int arr[] [3] = {12, 34, 23, 45, 56, 45 };

Multi-dimensional Array

Example: Example of initializing a 4-dimensional array:

static int arr [3] [4] [2] = {{{2, 4}, {7, 8}, {3, 4}, {5, 6},},

{{7, 6}, {3, 4}, {5, 3}, {2, 3}, },

{{8, 9}, {7, 2}, {3, 4}, {6, 1}, } };

In this example, the outer array has three elements, each of which is a two dimensional array of

four rows, each of which is a one dimensional array of two elements.

Tasks: Write a program to find inverse of matrix.

4.6 Accessing Elements of an Array
Once an array is declared, individual elements of the array are referred using subscript or index
number. This number specifies the element’s position in the array. All the elements of the array are
numbered starting from 0. Thus number [5] is actually the sixth element of an array.

Consider the program given above. It has entered 6 values in the array num. Now to read values
from this array, we will again use for Loop to access each cell. The given program segment explains
the retrieval of the values from the array.

for (count = 0; count < 6; count ++)

{

printf (“\n %d value =”, num [count]);

}

Data can be inserted into array by treating the array elements just like any other variable. If an
integer value is to be read from keyboard into an array element (say c[2][3][0]), the following code
snippet would do the job:

Scanf(“%d”, &c[2][3][0]);

In order to read values in the entire array for loop may be used as explained by the following
examples:

main()

Lovely Professional University 59

Data Structures

Notes

{

int num [6];

int count;

for (count = 0; count < 6; count ++)

{

printf (“\n Enter %d element:” count+1);

scanf (“%d”, &num [count]);

}

}

In this example, using the for loop, the process of asking and receiving the marks is accomplished.
When count has the value zero, the scanf() statement will cause the value to be stored at num [0].

This process continues until count has the value greater than 5.

Case Study: Each element of the array has a memory address. The following program prints
an array limit value and an array element address.

Program:

#include <stdio.h>

void printarr(int a[]);

main()

{

int a[5];

for(int i = 0;i<5;i++)

{

a[i]=i;

}

printarr(a);

}

void printarr(int a[])

{

for(int i = 0;i<5;i++)

{

printf(“value in array %d\n”,a[i]);

}

}

void printdetail(int a[])

{

for(int i = 0;i<5;i++)

{

printf(“value in array %d and address is %16lu\n”,a[i],&a[i]);

\\ A

}

}

Data Structures

Notes

{

int num [6];

int count;

for (count = 0; count < 6; count ++)

{

printf (“\n Enter %d element:” count+1);

scanf (“%d”, &num [count]);

}

}

In this example, using the for loop, the process of asking and receiving the marks is accomplished.
When count has the value zero, the scanf() statement will cause the value to be stored at num [0].

This process continues until count has the value greater than 5.

Case Study: Each element of the array has a memory address. The following program prints
an array limit value and an array element address.

Program:

#include <stdio.h>

void printarr(int a[]);

main()

{

int a[5];

for(int i = 0;i<5;i++)

{

a[i]=i;

}

printarr(a);

}

void printarr(int a[])

{

for(int i = 0;i<5;i++)

{

printf(“value in array %d\n”,a[i]);

}

}

void printdetail(int a[])

{

for(int i = 0;i<5;i++)

{

printf(“value in array %d and address is %16lu\n”,a[i],&a[i]);

\\ A

}

}

Data Structures

Notes

{

int num [6];

int count;

for (count = 0; count < 6; count ++)

{

printf (“\n Enter %d element:” count+1);

scanf (“%d”, &num [count]);

}

}

In this example, using the for loop, the process of asking and receiving the marks is accomplished.
When count has the value zero, the scanf() statement will cause the value to be stored at num [0].

This process continues until count has the value greater than 5.

Case Study: Each element of the array has a memory address. The following program prints
an array limit value and an array element address.

Program:

#include <stdio.h>

void printarr(int a[]);

main()

{

int a[5];

for(int i = 0;i<5;i++)

{

a[i]=i;

}

printarr(a);

}

void printarr(int a[])

{

for(int i = 0;i<5;i++)

{

printf(“value in array %d\n”,a[i]);

}

}

void printdetail(int a[])

{

for(int i = 0;i<5;i++)

{

printf(“value in array %d and address is %16lu\n”,a[i],&a[i]);

\\ A

}

}

Lovely Professional University60

Unit 04: Arrays

Notes

Explanation

1. The function printarr prints the value of each element in arr.

2. The function printdetail prints the value and address of each element as given in statement A.
Since each element is of the integer type, the difference between addresses is 2.

3. Each array element occupies consecutive memory locations.

4. You can print addresses using place holders %16lu or %p.

Questions

1. Write a program to add two 6 x 6 matrices.

2. Write a program to multiply any two 3 x 3 matrices.

3. Write a program to sort all the elements of a 4 x 4 matrix.

4. Write a program to obtain the determinant value of a 5 x 5 matrix.

4.7 Passing Array as an Argument to Function
If you want to pass a single-dimension array as an argument in a function, you would have to
declare a formal parameter in one of following three ways and all three declaration methods
produce similar results because each tells the compiler that an integer pointer is going to be
received. Similarly, you can pass multi-dimensional arrays as formal parameters.

Method -1

Formal parameters as a pointer −

void myFunction(int *param) {

.

.

.

}

Method -2

Formal parameters as a sized array −

void myFunction(int param[10]) {

.

.

.

}

Method -3

Formal parameters as an unsized array −

void myFunction(int param[]) {

.

.

.

}

Lovely Professional University 61

Data Structures

Notes

Example:Now, consider the following function, which takes an array as an argument along
with another argument and based on the passed arguments, it returns the average of the numbers
passed through the array as follows −

double getAverage(int arr[], int size)

{

int i;

double avg;

double sum = 0;

for (i = 0; i< size; ++i) {

sum += arr[i];

}

avg = sum / size;

return avg;

}

Now, let us call the above function as follows −

#include <stdio.h>

double getAverage(int arr[], int size);

int main () {

int balance[5] = {1000, 2, 3, 17, 50};

double avg;

avg = getAverage(balance, 5) ;

printf("Average value is: %f ", avg);

return 0;

}

Tasks: Write a program to print sum of two matrices.

Summary

 An array is a group of memory locations related by the fact that they all have the same name
and same data type.

 An array including more than one dimension is called a multidimensional array.
 The size of an array should be a positive number. If an array in declared without a size and in

initialized to a series of values it is implicitly given the size of number of initializers.
 Array subscript always starts with 0. Last element’s subscript is always one less than the size

of the array e.g., an array with 10 elements contains element 0 to 9. Size of an array must be a
constant number.

Data Structures

Notes

Example:Now, consider the following function, which takes an array as an argument along
with another argument and based on the passed arguments, it returns the average of the numbers
passed through the array as follows −

double getAverage(int arr[], int size)

{

int i;

double avg;

double sum = 0;

for (i = 0; i< size; ++i) {

sum += arr[i];

}

avg = sum / size;

return avg;

}

Now, let us call the above function as follows −

#include <stdio.h>

double getAverage(int arr[], int size);

int main () {

int balance[5] = {1000, 2, 3, 17, 50};

double avg;

avg = getAverage(balance, 5) ;

printf("Average value is: %f ", avg);

return 0;

}

Tasks: Write a program to print sum of two matrices.

Summary

 An array is a group of memory locations related by the fact that they all have the same name
and same data type.

 An array including more than one dimension is called a multidimensional array.
 The size of an array should be a positive number. If an array in declared without a size and in

initialized to a series of values it is implicitly given the size of number of initializers.
 Array subscript always starts with 0. Last element’s subscript is always one less than the size

of the array e.g., an array with 10 elements contains element 0 to 9. Size of an array must be a
constant number.

Data Structures

Notes

Example:Now, consider the following function, which takes an array as an argument along
with another argument and based on the passed arguments, it returns the average of the numbers
passed through the array as follows −

double getAverage(int arr[], int size)

{

int i;

double avg;

double sum = 0;

for (i = 0; i< size; ++i) {

sum += arr[i];

}

avg = sum / size;

return avg;

}

Now, let us call the above function as follows −

#include <stdio.h>

double getAverage(int arr[], int size);

int main () {

int balance[5] = {1000, 2, 3, 17, 50};

double avg;

avg = getAverage(balance, 5) ;

printf("Average value is: %f ", avg);

return 0;

}

Tasks: Write a program to print sum of two matrices.

Summary

 An array is a group of memory locations related by the fact that they all have the same name
and same data type.

 An array including more than one dimension is called a multidimensional array.
 The size of an array should be a positive number. If an array in declared without a size and in

initialized to a series of values it is implicitly given the size of number of initializers.
 Array subscript always starts with 0. Last element’s subscript is always one less than the size

of the array e.g., an array with 10 elements contains element 0 to 9. Size of an array must be a
constant number.

Lovely Professional University62

Unit 04: Arrays

Notes

Keywords

Array: A user defined simple data structure which represents a group of same type of variables
having same name each being referred to by an integral index
Multidimensional array: An array in which elements are accessed using multiple indices
One dimensional array: An array in which elements are accessed using a single index
Subscript/Index: The integral index by which an array element is accessed
Two dimensional array: An array in which elements are accessed using two indices

SelfAssessment

1. What is an Array?
A. A group of elements of same data type.
B. An array contains more than one element.
C. Array elements are stored in memory in continuous or contiguous locations.
D. All the above.

2. An array Index starts with?
A. 1
B. 0
C. -1
D. 2

3. Arrays can
A. store data elements of same data type at contiguous memory location.
B. be used for CPU scheduling.
C. be used for reverse data elements, sort data elements etc.
D. All of above

4. How many kinds of elements an array can have?
A. Char and int type
B. Only char type
C. Only int type
D. All of them have same type

5. Choose the correct statement
A. Array stores data of the same type
B. Array can be a part of a structure
C. Array of structure is allowed
D. All of the above

6. Two dimensional arrays in C
A. An array of arrays is known as two dimensional array.
B. An array of loops
C. An array of tokens
D. All of above

Lovely Professional University 63

Data Structures

Notes

7. Choose the correct syntax for two dimensional array
A. data_type name_of_array;
B. data_type name_of_array[rows][columns];
C. data_type [rows][columns];
D. name_of_array[rows][columns];

8. What will be the output of the following C code?
#include <stdio.h>

void main()

{

int a[2][3] = {1, 2, 3, 4, 5};

int i = 0, j = 0;

for (i = 0; i< 2; i++)

for (j = 0; j < 3; j++)

printf("%d", a[i][j]);

}

A. 1 2 3 4 5 0
B. 1 2 3 4 5 junk
C. 1 2 3 4 5 5
D. Run time error

9. How do you initialize an array in C programming?
A. int arr[3] = (1,2,3);
B. int arr(3) = {1,2,3};
C. int arr[3] = {1,2,3};
D. int arr(3) = (1,2,3);

10. Matrix can be represented using one dimension array.
A. True
B. False

11. What are the advantages of arrays?
A. Objects of mixed data types can be stored
B. Elements in an array cannot be sorted
C. Index of first element of an array is 1
D. Easier to store elements of same data type

12. What is the maximum number of dimensions an array in C may have?
A. Two
B. Eight
C. Sixteen
D. Theoretically no limit. The only practical limits are memory size and compilers

13. Array can be considered as set of elements stored in consecutive memory locations but
having __________.

A. Same data type
B. Different data type
C. Same scope

Lovely Professional University64

Unit 04: Arrays

Notes

D. None of these

14. Array is an example of _______ type memory allocation.
A. Compile time
B. Run time
C. All of above
D. None of the above

15. Array elements assessed using index of array.
A. True
B. False

Answers forSelfAssessment

1. D 2. B 3. D 4. D 5. D

6. A 7. B 8. A 9. C 10. B

11. D 12. D 13. A 14. A 15. A

Review Questions

1. Explain the usefulness of Arrays in C.
2. What do you mean by ‘Array’? How it can be declared & initialized in a C program?
3. Draw a diagram to represent the internal storage of an Array.
4. Describe the different types of Array. Give suitable programs.
5. Find the smallest number in an array using pointers.
6. If an array arr contains n elements, then write a program to check if arr[0] = arr[n-1], arr[1] =

arr[n-2] and so on.
7. Write a program to copy the contents of one array into another in the reverse order.
8. Write a program to pick up the largest number from any 5 row by 5 column matrix.
9. Write a program to obtain transpose of a 4 x 4 matrix. The transpose of a matrix is

obtainedby exchanging the elements of each row with the elements of the corresponding
column.

10. Write a program that interchanges the odd and even components of an array.

Lovely Professional University 65

Data Structures

Notes

Further Readings
Books Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson Education,
Year of Publication, 2008

Lipschutz. Seymour. Data Structures with C. Delhi: Tata McGraw Hill

Reddy.A.M Padma (2006). Data Structures Using C. Bangalore: Sri Nandi Publications

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett, 1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

YashvantKanetkar, Let us C

Web Links
https://www.cs.uic.edu/~jbell/CourseNotes/C_Programming/Arrays.html

https://www.javatpoint.com/c-array

Data Structures

Notes

Further Readings
Books Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson Education,
Year of Publication, 2008

Lipschutz. Seymour. Data Structures with C. Delhi: Tata McGraw Hill

Reddy.A.M Padma (2006). Data Structures Using C. Bangalore: Sri Nandi Publications

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett, 1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

YashvantKanetkar, Let us C

Web Links
https://www.cs.uic.edu/~jbell/CourseNotes/C_Programming/Arrays.html

https://www.javatpoint.com/c-array

Data Structures

Notes

Further Readings
Books Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson Education,
Year of Publication, 2008

Lipschutz. Seymour. Data Structures with C. Delhi: Tata McGraw Hill

Reddy.A.M Padma (2006). Data Structures Using C. Bangalore: Sri Nandi Publications

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett, 1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

YashvantKanetkar, Let us C

Web Links
https://www.cs.uic.edu/~jbell/CourseNotes/C_Programming/Arrays.html

https://www.javatpoint.com/c-array

Lovely Professional University66

Unit 05: Operations on arrays

Notes

Unit 05: Operations on Arrays

CONTENTS

Objectives

Introduction

5.1 Arrays

5.2 Advantages of Arrays

5.3 Types of Arrays

5.4 Operations on Array

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to:

 Explain arrays
 Describe two dimensional array
 Describe array initialization

Introduction
An array is a group of data items of same data type that share a common name. Ordinary variables
are capable of holding only one value at a time. If we want to store more than one value at a time in
a single variable, we use arrays.

An array is a collective name given to a group of similar quantities. Each member in the group is
referred to by its position in the group.

Arrays are allotted the memory in a strictly contiguous fashion. The simplest array is one
dimensional array which is simply a list of variables of same data type. An array of one
dimensional arrays is called a two dimension array.

5.1 Arrays
Arrays are allocated the memory in a strictly contiguous fashion. The simplest array is one
dimensional array which is a list of variables of same data type. An array of one dimensional arrays
is called a two dimensional array; array of two dimensional arrays is three dimensional array and
so on.

The members of the array can be accessed using positive integer values (indicating their order in
the array) called subscript or index. Look at an array of integers as shown below:

a[0] a[1] a[2] a[3] a[4]

Lovely Professional University 67

Dr. Prikshat Kumar Angra, Lovely Professional University

Data Structures

Notes

The description of this array is listed below:

Name of the array : a

Data type of the array : integer

Number of elements : 5

Valid index values : 0, 1, 2, 3, 4

Value stored at the location a[0] : 200

Value stored at the location a[1] : 120

Value stored at the location a[2] : -78

Value stored at the location a[3] : 100

Value stored at the location a[4] : 0

5.2 Advantages of Arrays
Arrays offer a number of advantages, some of which are elucidated below:

1. If only a limited number of variables of a particular data type is required ion a program, one can
choose the variable names to suite the situation. Let us say we require five integer type variables,
we can define them as follows:

int v_one, v_two, v_three, v_four, v_five;

Now, consider if we require hundred integer type variables, is the above approach convenient?
Obviously not. We can, instead, use an array of integer type having 100 elements as shown below:

int num[100];

2. Array elements can be accessed using index. Therefore, all the elements can be processed in a
desired manner in a single for loop that runs for each element, as shown below:

for(i=0; i<100; i++)

num[i]=num[i]+10;

In a single for loop, all the elements have been incremented by 10.

3. Since array elements are physically created contiguously in the memory, they can be accesses
using pointers (as you will learn later). Therefore, there are more than one way to reference array
elements.

5.3 Types of Arrays
According the number of subscripts required to access an array element, arrays can be of

Following types:

1. One-dimensional array

2. Multi-dimensional array

1. One-dimensional Array
A list of items can be given one variable name using only one subscript and such a variable is called
a one dimensional array.

Example: If we want to store a set of five numbers by an array variable number. Then it will
be accomplished in the following way:

int number [5];

This declaration will reserve five contiguous memory locations capable of storing an integer type
value each, as shown below:

Data Structures

Notes

The description of this array is listed below:

Name of the array : a

Data type of the array : integer

Number of elements : 5

Valid index values : 0, 1, 2, 3, 4

Value stored at the location a[0] : 200

Value stored at the location a[1] : 120

Value stored at the location a[2] : -78

Value stored at the location a[3] : 100

Value stored at the location a[4] : 0

5.2 Advantages of Arrays
Arrays offer a number of advantages, some of which are elucidated below:

1. If only a limited number of variables of a particular data type is required ion a program, one can
choose the variable names to suite the situation. Let us say we require five integer type variables,
we can define them as follows:

int v_one, v_two, v_three, v_four, v_five;

Now, consider if we require hundred integer type variables, is the above approach convenient?
Obviously not. We can, instead, use an array of integer type having 100 elements as shown below:

int num[100];

2. Array elements can be accessed using index. Therefore, all the elements can be processed in a
desired manner in a single for loop that runs for each element, as shown below:

for(i=0; i<100; i++)

num[i]=num[i]+10;

In a single for loop, all the elements have been incremented by 10.

3. Since array elements are physically created contiguously in the memory, they can be accesses
using pointers (as you will learn later). Therefore, there are more than one way to reference array
elements.

5.3 Types of Arrays
According the number of subscripts required to access an array element, arrays can be of

Following types:

1. One-dimensional array

2. Multi-dimensional array

1. One-dimensional Array
A list of items can be given one variable name using only one subscript and such a variable is called
a one dimensional array.

Example: If we want to store a set of five numbers by an array variable number. Then it will
be accomplished in the following way:

int number [5];

This declaration will reserve five contiguous memory locations capable of storing an integer type
value each, as shown below:

Data Structures

Notes

The description of this array is listed below:

Name of the array : a

Data type of the array : integer

Number of elements : 5

Valid index values : 0, 1, 2, 3, 4

Value stored at the location a[0] : 200

Value stored at the location a[1] : 120

Value stored at the location a[2] : -78

Value stored at the location a[3] : 100

Value stored at the location a[4] : 0

5.2 Advantages of Arrays
Arrays offer a number of advantages, some of which are elucidated below:

1. If only a limited number of variables of a particular data type is required ion a program, one can
choose the variable names to suite the situation. Let us say we require five integer type variables,
we can define them as follows:

int v_one, v_two, v_three, v_four, v_five;

Now, consider if we require hundred integer type variables, is the above approach convenient?
Obviously not. We can, instead, use an array of integer type having 100 elements as shown below:

int num[100];

2. Array elements can be accessed using index. Therefore, all the elements can be processed in a
desired manner in a single for loop that runs for each element, as shown below:

for(i=0; i<100; i++)

num[i]=num[i]+10;

In a single for loop, all the elements have been incremented by 10.

3. Since array elements are physically created contiguously in the memory, they can be accesses
using pointers (as you will learn later). Therefore, there are more than one way to reference array
elements.

5.3 Types of Arrays
According the number of subscripts required to access an array element, arrays can be of

Following types:

1. One-dimensional array

2. Multi-dimensional array

1. One-dimensional Array
A list of items can be given one variable name using only one subscript and such a variable is called
a one dimensional array.

Example: If we want to store a set of five numbers by an array variable number. Then it will
be accomplished in the following way:

int number [5];

This declaration will reserve five contiguous memory locations capable of storing an integer type
value each, as shown below:

Lovely Professional University68

Unit 05: Operations on arrays

Notes

As C performs no bounds checking, care should be taken to ensure that the array indices are within
the declared limits. Also, indexing in C begins from 0 and not from 1.

2. Two-dimensional and Multi-dimensional Array
It is possible to have an array of more than one dimensions. Two dimensional array (2-D array) is
an array of number of 1-dimensional arrays.

A two dimensional array is also called a matrix. Consider the following table:

This is a table of four rows and three columns. Such a table of items can be defined using two
dimensional arrays.

General form of declaring a 2-D array is

data_typearray_name [row_size] [colum_size];

Example: int marks [4] [2];

5.4 Operations on Array

1. Traversing an array
2. Inserting an element in an array
3. Searching an element in an array
4. Deleting an element from an array
5. Merging two arrays

1. Traversing an Array

Traversing an array means accessing each and all elements of the array for a particular purpose.
Traversing the data elements of an array can include print every element, calculating the total
number of elements, or conducting any process on these elements.

Lab Exercise

Program to read and display numbers:

#include <stdio.h>

int main()

{

int i, n, arr[20];

printf("\n Enter the number of elements to store in the array : ");

scanf("%d", & n);

for(i=0;i<n;i++)

{

Unit 05: Operations on arrays

Notes

As C performs no bounds checking, care should be taken to ensure that the array indices are within
the declared limits. Also, indexing in C begins from 0 and not from 1.

2. Two-dimensional and Multi-dimensional Array
It is possible to have an array of more than one dimensions. Two dimensional array (2-D array) is
an array of number of 1-dimensional arrays.

A two dimensional array is also called a matrix. Consider the following table:

This is a table of four rows and three columns. Such a table of items can be defined using two
dimensional arrays.

General form of declaring a 2-D array is

data_typearray_name [row_size] [colum_size];

Example: int marks [4] [2];

5.4 Operations on Array

1. Traversing an array
2. Inserting an element in an array
3. Searching an element in an array
4. Deleting an element from an array
5. Merging two arrays

1. Traversing an Array

Traversing an array means accessing each and all elements of the array for a particular purpose.
Traversing the data elements of an array can include print every element, calculating the total
number of elements, or conducting any process on these elements.

Lab Exercise

Program to read and display numbers:

#include <stdio.h>

int main()

{

int i, n, arr[20];

printf("\n Enter the number of elements to store in the array : ");

scanf("%d", & n);

for(i=0;i<n;i++)

{

Unit 05: Operations on arrays

Notes

As C performs no bounds checking, care should be taken to ensure that the array indices are within
the declared limits. Also, indexing in C begins from 0 and not from 1.

2. Two-dimensional and Multi-dimensional Array
It is possible to have an array of more than one dimensions. Two dimensional array (2-D array) is
an array of number of 1-dimensional arrays.

A two dimensional array is also called a matrix. Consider the following table:

This is a table of four rows and three columns. Such a table of items can be defined using two
dimensional arrays.

General form of declaring a 2-D array is

data_typearray_name [row_size] [colum_size];

Example: int marks [4] [2];

5.4 Operations on Array

1. Traversing an array
2. Inserting an element in an array
3. Searching an element in an array
4. Deleting an element from an array
5. Merging two arrays

1. Traversing an Array

Traversing an array means accessing each and all elements of the array for a particular purpose.
Traversing the data elements of an array can include print every element, calculating the total
number of elements, or conducting any process on these elements.

Lab Exercise

Program to read and display numbers:

#include <stdio.h>

int main()

{

int i, n, arr[20];

printf("\n Enter the number of elements to store in the array : ");

scanf("%d", & n);

for(i=0;i<n;i++)

{

Lovely Professional University 69

Data Structures

Notes

printf("\n arr[%d] = ", i);

scanf("%d",&arr[i]);

}

printf("\n The array elements are ");

for(i=0;i<n;i++)

printf("\t %d", arr[i]);

return 0;

}

Output

2. Inserting an element in an array

If an element has to be inserted at the end of an existing array, then the task of insertion is quite
simple. We just have to add 1 to the upper_bound and assign the value. Algorithm to insert an
element in the middle of an array.

Lab Exercise

Program to insert element in between of the array

#include <stdio.h>

#include<stdio.h>

int main() {

int LA[] = {1,2,50,70,18};

int item = 10, k = 3, n = 5;

int i = 0, j = n;

printf("The original array elements are :\n");

for(i = 0; i<n; i++) {

printf("LA[%d] = %d \n", i, LA[i]);

}

n = n + 1;

Data Structures

Notes

printf("\n arr[%d] = ", i);

scanf("%d",&arr[i]);

}

printf("\n The array elements are ");

for(i=0;i<n;i++)

printf("\t %d", arr[i]);

return 0;

}

Output

2. Inserting an element in an array

If an element has to be inserted at the end of an existing array, then the task of insertion is quite
simple. We just have to add 1 to the upper_bound and assign the value. Algorithm to insert an
element in the middle of an array.

Lab Exercise

Program to insert element in between of the array

#include <stdio.h>

#include<stdio.h>

int main() {

int LA[] = {1,2,50,70,18};

int item = 10, k = 3, n = 5;

int i = 0, j = n;

printf("The original array elements are :\n");

for(i = 0; i<n; i++) {

printf("LA[%d] = %d \n", i, LA[i]);

}

n = n + 1;

Data Structures

Notes

printf("\n arr[%d] = ", i);

scanf("%d",&arr[i]);

}

printf("\n The array elements are ");

for(i=0;i<n;i++)

printf("\t %d", arr[i]);

return 0;

}

Output

2. Inserting an element in an array

If an element has to be inserted at the end of an existing array, then the task of insertion is quite
simple. We just have to add 1 to the upper_bound and assign the value. Algorithm to insert an
element in the middle of an array.

Lab Exercise

Program to insert element in between of the array

#include <stdio.h>

#include<stdio.h>

int main() {

int LA[] = {1,2,50,70,18};

int item = 10, k = 3, n = 5;

int i = 0, j = n;

printf("The original array elements are :\n");

for(i = 0; i<n; i++) {

printf("LA[%d] = %d \n", i, LA[i]);

}

n = n + 1;

Lovely Professional University70

Unit 05: Operations on arrays

Notes

while(j>= k) {

LA[j+1] = LA[j];

j = j - 1;

}

LA[k] = item;

printf("The array elements after insertion :\n");

for(i = 0; i<n; i++) {

printf("LA[%d] = %d \n", i, LA[i]);

}

return 0;

}

Output

Task

1. Make an application that perform all the operations on array.
2. Write a program to perform deletion on an array.

3. Searching an element in an array

Searching refers to find desired key element from an array.

Lab Exercise

Program to search an element from array

#include <stdio.h>

#define MAX_SIZE 100 // Maximum array size

Unit 05: Operations on arrays

Notes

while(j>= k) {

LA[j+1] = LA[j];

j = j - 1;

}

LA[k] = item;

printf("The array elements after insertion :\n");

for(i = 0; i<n; i++) {

printf("LA[%d] = %d \n", i, LA[i]);

}

return 0;

}

Output

Task

1. Make an application that perform all the operations on array.
2. Write a program to perform deletion on an array.

3. Searching an element in an array

Searching refers to find desired key element from an array.

Lab Exercise

Program to search an element from array

#include <stdio.h>

#define MAX_SIZE 100 // Maximum array size

Unit 05: Operations on arrays

Notes

while(j>= k) {

LA[j+1] = LA[j];

j = j - 1;

}

LA[k] = item;

printf("The array elements after insertion :\n");

for(i = 0; i<n; i++) {

printf("LA[%d] = %d \n", i, LA[i]);

}

return 0;

}

Output

Task

1. Make an application that perform all the operations on array.
2. Write a program to perform deletion on an array.

3. Searching an element in an array

Searching refers to find desired key element from an array.

Lab Exercise

Program to search an element from array

#include <stdio.h>

#define MAX_SIZE 100 // Maximum array size

Lovely Professional University 71

Data Structures

Notes

int main()

{

int arr[MAX_SIZE];

int size, i, toSearch, found;

printf("Enter size of array: ");

scanf("%d", &size);

printf("Enter elements in array: ");

for(i=0; i<size; i++)

{

scanf("%d", &arr[i]);

}

printf("\nEnter element to search: ");

scanf("%d", &toSearch);

found = 0;

for(i=0; i<size; i++)

{

if(arr[i] == toSearch)

{

found = 1;

break;

}

}

if(found == 1)

{

printf("\n%d is found at position %d", toSearch, i + 1);

}

else

{

printf("\n%d is not found in the array", toSearch);

}

return 0;

}

Output

Lovely Professional University72

Unit 05: Operations on arrays

Notes

4. Deleting an element from an array

Deletion refers to removing an existing element from the array and re-organizing all elements of an
array.

Lab Exercise

Program to delete an element from array

#include <stdio.h>

int main() {

int LA[] = {1,3,5,7,8};

int k = 3, n = 5;

int i, j;

printf("The original array elements are :\n");

for(i = 0; i<n; i++) {

printf("LA[%d] = %d \n", i, LA[i]);

}

j = k;

while(j< n) {

LA[j-1] = LA[j];

j = j + 1;

}

n = n -1;

printf("The array elements after deletion :\n");

Unit 05: Operations on arrays

Notes

4. Deleting an element from an array

Deletion refers to removing an existing element from the array and re-organizing all elements of an
array.

Lab Exercise

Program to delete an element from array

#include <stdio.h>

int main() {

int LA[] = {1,3,5,7,8};

int k = 3, n = 5;

int i, j;

printf("The original array elements are :\n");

for(i = 0; i<n; i++) {

printf("LA[%d] = %d \n", i, LA[i]);

}

j = k;

while(j< n) {

LA[j-1] = LA[j];

j = j + 1;

}

n = n -1;

printf("The array elements after deletion :\n");

Unit 05: Operations on arrays

Notes

4. Deleting an element from an array

Deletion refers to removing an existing element from the array and re-organizing all elements of an
array.

Lab Exercise

Program to delete an element from array

#include <stdio.h>

int main() {

int LA[] = {1,3,5,7,8};

int k = 3, n = 5;

int i, j;

printf("The original array elements are :\n");

for(i = 0; i<n; i++) {

printf("LA[%d] = %d \n", i, LA[i]);

}

j = k;

while(j< n) {

LA[j-1] = LA[j];

j = j + 1;

}

n = n -1;

printf("The array elements after deletion :\n");

Lovely Professional University 73

Data Structures

Notes

for(i = 0; i<n; i++) {

printf("LA[%d] = %d \n", i, LA[i]);

}

return 0;

}

Output

5. Merging two arrays

Merging two arrays in a third array means first copying the elements of the first array into the third
array and then copying the elements of the second array in the third array. Therefore, the merged
array contains the elements of the first array followed by the elements of the second array.

Lab Exercise

Program to merge two arrays

#include <stdio.h>

int main()

{

int arr1[10], arr2[10], arr3[20];

int i, n1, n2, m, index=0;

printf("\n Enter the number of elements in array1 : ");

scanf("%d", & n1);

printf("\n\n Enter the elements of the first array");

for(i=0;i<n1;i++)

{

printf("\n arr1[%d] = ", i);

scanf("%d", & arr1[i]);

}

printf("\n Enter the number of elements in array2 : ");

scanf("%d", & n2);

printf("\n\n Enter the elements of the second array");

for(i=0;i<n2;i++)

Data Structures

Notes

for(i = 0; i<n; i++) {

printf("LA[%d] = %d \n", i, LA[i]);

}

return 0;

}

Output

5. Merging two arrays

Merging two arrays in a third array means first copying the elements of the first array into the third
array and then copying the elements of the second array in the third array. Therefore, the merged
array contains the elements of the first array followed by the elements of the second array.

Lab Exercise

Program to merge two arrays

#include <stdio.h>

int main()

{

int arr1[10], arr2[10], arr3[20];

int i, n1, n2, m, index=0;

printf("\n Enter the number of elements in array1 : ");

scanf("%d", & n1);

printf("\n\n Enter the elements of the first array");

for(i=0;i<n1;i++)

{

printf("\n arr1[%d] = ", i);

scanf("%d", & arr1[i]);

}

printf("\n Enter the number of elements in array2 : ");

scanf("%d", & n2);

printf("\n\n Enter the elements of the second array");

for(i=0;i<n2;i++)

Data Structures

Notes

for(i = 0; i<n; i++) {

printf("LA[%d] = %d \n", i, LA[i]);

}

return 0;

}

Output

5. Merging two arrays

Merging two arrays in a third array means first copying the elements of the first array into the third
array and then copying the elements of the second array in the third array. Therefore, the merged
array contains the elements of the first array followed by the elements of the second array.

Lab Exercise

Program to merge two arrays

#include <stdio.h>

int main()

{

int arr1[10], arr2[10], arr3[20];

int i, n1, n2, m, index=0;

printf("\n Enter the number of elements in array1 : ");

scanf("%d", & n1);

printf("\n\n Enter the elements of the first array");

for(i=0;i<n1;i++)

{

printf("\n arr1[%d] = ", i);

scanf("%d", & arr1[i]);

}

printf("\n Enter the number of elements in array2 : ");

scanf("%d", & n2);

printf("\n\n Enter the elements of the second array");

for(i=0;i<n2;i++)

Lovely Professional University74

Unit 05: Operations on arrays

Notes

{

printf("\n arr2[%d] = ", i);

scanf("%d", & arr2[i]);

}

m = n1+n2;

for(i=0;i<n1;i++)

{

arr3[index] = arr1[i];

index++;

}

for(i=0;i<n2;i++)

{

arr3[index] = arr2[i];

index++;

}

printf("\n\n The merged array is");

for(i=0;i<m;i++)

printf("\n arr[%d] = %d", i, arr3[i]);

return 0;

}

Output

Unit 05: Operations on arrays

Notes

{

printf("\n arr2[%d] = ", i);

scanf("%d", & arr2[i]);

}

m = n1+n2;

for(i=0;i<n1;i++)

{

arr3[index] = arr1[i];

index++;

}

for(i=0;i<n2;i++)

{

arr3[index] = arr2[i];

index++;

}

printf("\n\n The merged array is");

for(i=0;i<m;i++)

printf("\n arr[%d] = %d", i, arr3[i]);

return 0;

}

Output

Unit 05: Operations on arrays

Notes

{

printf("\n arr2[%d] = ", i);

scanf("%d", & arr2[i]);

}

m = n1+n2;

for(i=0;i<n1;i++)

{

arr3[index] = arr1[i];

index++;

}

for(i=0;i<n2;i++)

{

arr3[index] = arr2[i];

index++;

}

printf("\n\n The merged array is");

for(i=0;i<m;i++)

printf("\n arr[%d] = %d", i, arr3[i]);

return 0;

}

Output

Lovely Professional University 75

Data Structures

Notes

Summary

 An array is a group of memory locations related by the fact that they all have the same name
and same data type.

 An array including more than one dimension is called a multidimensional array.
 The size of an array should be a positive number. If an array in declared without a size and in

initialized to a series of values it is implicitly given the size of number of initializers.
 Array subscript always starts with 0. Last element’s subscript is always one less than the size of

the array e.g., an array with 10 elements contains element 0 to 9. Size of an array must be a
constant number.

Keywords

 Array: A user defined simple data structure which represents a group of same type of variables
having same name each being referred to by an integral index

 Multidimensional array: An array in which elements are accessed using multiple indices
 One dimensional array: An array in which elements are accessed using a single index
 Subscript/Index: The integral index by which an array element is accessed
 Two dimensional array: An array in which elements are accessed using two indices.

SelfAssessment

1. Choose the correct statement
A. Search in array is delete an element from array
B. Search in array is insert an element in array
C. Search in array is find an element from array
D. None of above

2. Choose the correct statement
A. Search in array is delete an element from array
B. Search in array is insert an element in array
C. Search in array is update an element in array
D. None of above

3. Searching is a process in which we find element in array
A. True
B. False

4. What are the disadvantages of arrays?
A. Data structure like queue or stack cannot be implemented
B. There are chances of wastage of memory space if elements inserted in an array are lesser

than the allocated size
C. Index value of an array can be negative
D. Elements are sequentially accessed

5. Traversal is process of visit each element of an array
A. True

Lovely Professional University76

Unit 05: Operations on arrays

Notes

B. False

6. A ___ is required to perform traversal of an array
A. Loop
B. Switch Statement
C. Constant
D. All of above

7. Insertion in array insert a new element into array
A. True
B. False

8. Choose the correct statement
A. We can’t perform insertion on array
B. We can’t perform deletion on array
C. We can’t traverse an array elements
D. None of above

9. Choose the right statement
A. Insert an element at beginning is possible
B. Insert an element at end is possible
C. Insert an element at given location is possible
D. All of above

10. Deletion of an element from the array reduces the size of the array by________.
A. one
B. Two
C. Three
D. Four

11. Deletion of an element from the array is
A. Remove value from array
B. Insert Value in array
C. Merge an array
D. All of above

12. After performing deletion on array, its required to re-organizing all elements of array
A. True
B. False

13. Which of the following is allowed in case of arrays
A. Insertion in Array
B. Deletion in Array
C. Concatenate two Arrays
D. All of above

14. To merge two arrays we need at least three array variables

Lovely Professional University 77

Data Structures

Notes

A. True
B. False

15. To perform merge operation on array, minimum ____ arrays required
A. 2
B. 1
C. -2
D. 0

Answers for SelfAssessment

1. D 2. C 3. A 4. B 5. A

6. A 7. A 8. D 9. D 10. A

11. A 12. A 13. S 14. A 15. A

Review Questions

1. Write a program that perform insertion on an array.
2. Discuss in detail operations of an array.
3. What do you mean by ‘Array’? How it can be declared & initialized in a C program?
4. Draw a diagram to represent the internal storage of an Array.
5. Describe the different types of Array. Give suitable programs.
6. Delete the element from an array.
7. If an array arr contains n elements, then write a program to check if arr[0] = arr[n-1], arr[1] =

arr[n-2] and so on.
8. Write a program to merge different arrays.
9. Write a program to pick up the largest number from any 5 row by 5 column matrix.
10. Write a program that interchanges the odd and even components of an array.

Further Readings
Books Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson Education,
Year of Publication, 2008

Lipschutz. Seymour. Data Structures with C. Delhi: Tata McGraw Hill

Reddy.A.M Padma (2006). Data Structures Using C. Bangalore: Sri Nandi Publications

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett, 1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

YashvantKanetkar, Let us C

Web Links
https://www.cs.uic.edu/~jbell/CourseNotes/C_Programming/Arrays.html

https://www.javatpoint.com/c-array

Data Structures

Notes

A. True
B. False

15. To perform merge operation on array, minimum ____ arrays required
A. 2
B. 1
C. -2
D. 0

Answers for SelfAssessment

1. D 2. C 3. A 4. B 5. A

6. A 7. A 8. D 9. D 10. A

11. A 12. A 13. S 14. A 15. A

Review Questions

1. Write a program that perform insertion on an array.
2. Discuss in detail operations of an array.
3. What do you mean by ‘Array’? How it can be declared & initialized in a C program?
4. Draw a diagram to represent the internal storage of an Array.
5. Describe the different types of Array. Give suitable programs.
6. Delete the element from an array.
7. If an array arr contains n elements, then write a program to check if arr[0] = arr[n-1], arr[1] =

arr[n-2] and so on.
8. Write a program to merge different arrays.
9. Write a program to pick up the largest number from any 5 row by 5 column matrix.
10. Write a program that interchanges the odd and even components of an array.

Further Readings
Books Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson Education,
Year of Publication, 2008

Lipschutz. Seymour. Data Structures with C. Delhi: Tata McGraw Hill

Reddy.A.M Padma (2006). Data Structures Using C. Bangalore: Sri Nandi Publications

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett, 1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

YashvantKanetkar, Let us C

Web Links
https://www.cs.uic.edu/~jbell/CourseNotes/C_Programming/Arrays.html

https://www.javatpoint.com/c-array

Data Structures

Notes

A. True
B. False

15. To perform merge operation on array, minimum ____ arrays required
A. 2
B. 1
C. -2
D. 0

Answers for SelfAssessment

1. D 2. C 3. A 4. B 5. A

6. A 7. A 8. D 9. D 10. A

11. A 12. A 13. S 14. A 15. A

Review Questions

1. Write a program that perform insertion on an array.
2. Discuss in detail operations of an array.
3. What do you mean by ‘Array’? How it can be declared & initialized in a C program?
4. Draw a diagram to represent the internal storage of an Array.
5. Describe the different types of Array. Give suitable programs.
6. Delete the element from an array.
7. If an array arr contains n elements, then write a program to check if arr[0] = arr[n-1], arr[1] =

arr[n-2] and so on.
8. Write a program to merge different arrays.
9. Write a program to pick up the largest number from any 5 row by 5 column matrix.
10. Write a program that interchanges the odd and even components of an array.

Further Readings
Books Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson Education,
Year of Publication, 2008

Lipschutz. Seymour. Data Structures with C. Delhi: Tata McGraw Hill

Reddy.A.M Padma (2006). Data Structures Using C. Bangalore: Sri Nandi Publications

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett, 1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

YashvantKanetkar, Let us C

Web Links
https://www.cs.uic.edu/~jbell/CourseNotes/C_Programming/Arrays.html

https://www.javatpoint.com/c-array

Lovely Professional University78

Unit 06: Linked Lists

Notes

Unit 06: Linked Lists

CONTENTS

Objectives

Introduction

6.1 Linked list

6.2 Dynamic Memory Allocation

6.3 Types of linked list

6.4 Representation of Linked List

6.5 Deleting the Specified Node in Singly Linked List

6.6 Inserting a Node after the Specified Node in a Singly Linked List

6.7 Linked List Common Errors

6.8 Arrays vs. Linked list

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to:

• Dynamic Memory Management

• Understand the basics of linked list

• Discuss the operations of linked lists

Introduction
A data structure consists of a group of data elements bound by the same set of rules. The data
elements also known as members are of different types and lengths. We can manipulate data stored
in the memory with the help of data structures. The study of data structures involves examining the
merging of simple structures to form composite structures and accessing definite components from
composite structures. An array is an example of one such composite data structure that is derived
from a primitive data structure.

An array is a set of similar data elements grouped together. Arrays can be one-dimensional or
multidimensional. Arrays store the entries sequentially. Elements in an array are stored in
continuous locations and are identified using the location of the first element of the array.

6.1 Linked list
Linked lists are the most common data structures. They are referred to as an array of connected
objects where data is stored in the pointer fields. Linked lists are useful when the number of
elements to be stored in a list is indefinite.

Lovely Professional University 79

Dr. Prikshat Kumar Angra, Lovely Professional University

Data Structures

Notes

Concept of Linked Lists
An array is represented in memory using sequential mapping, which has the property that
elements are fixed distance apart. But this has the following disadvantage. It makes insertion or
deletion at any arbitrary position in an array a costly operation, because this involves the
movement of some of the existing elements.

When we want to represent several lists by using arrays of varying size, either we have to represent
each list using a separate array of maximum size or we have to represent each of the lists using one
single array. The first one will lead to wastage of storage, and the second will involve a lot of data
movement.

So, we have to use an alternative representation to overcome these disadvantages. One alternative
is a linked representation. In a linked representation, it is not necessary that the elements be at a
fixed distance apart. Instead, we can place elements anywhere in memory, but to make it a part of
the same list, an element is required to be linked with a previous element of the list. This can be
done by storing the address of the next element in the previous element itself. This requires that
every element be capable of holding the data as well as the address of the next element. Thus, every
element must be a structure with a minimum of two fields, one for holding the data value, which
we call a data field, and the other for holding the address of the next element, which we call link
field.

Therefore, a linked list is a list of elements in which the elements of the list can be placed anywhere
in memory, and these elements are linked with each other using an explicit link field, that is, by
storing the address of the next element in the link field of the previous element.

This program uses a strategy of inserting a node in an existing list to get the list created. An insert
function is used for this. The insert function takes a pointer to an existing list as the first parameter,
and a data value with which the new node is to be created as a second parameter, creates a new
node by using the data value, appends it to the end of the list, and returns a pointer to the first node
of the list. Initially the list is empty, so the pointer to the starting node is NULL.

Therefore, when insert is called first time, the new node created by the insert becomes the start
node. Subsequently, the insert traverses the list to get the pointer to the last node of the existing list,
and puts the address of the newly created node in the link field of the last node, thereby appending
the new node to the existing list. The main function reads the value of the number of nodes in the
list. Calls iterate that many times by going in a while loop to create the links with the specified
number of nodes.

6.2 Dynamic Memory Allocation
There are several limitations in static memory allocation:

This is done in RAM dedicated solely to a programme, which is frequently limited in capacity. The
size of a static array is fixed. We won't be able to expand it to accommodate situations that require
more elements. As a result, we'll likely to declare larger arrays than necessary, resulting in memory
waste. We also can't lower array size to conserve memory when fewer array elements are
necessary. Advanced data structures such as linked lists, trees, and graphs, which are needed in
most real-world programming situations, are not possible (or efficient) to develop.

C has a feature called dynamic allocation that is quite unique (amongst high level languages). It
allows us to design data types and structures of any size and duration to meet the needs of our
programmes. Dynamic memory allocation occurs when memory is allocated at runtime, that is,
when a programme is running. Pointers and four common library functions are used in dynamic
memory management.

Programming language (C) provides several functions for memory allocation and management,
namely, malloc, calloc, realloc and free.Functions are defined in the <stdlib.h> header file.

Lovely Professional University80

Unit 06: Linked Lists

Notes

Dynamic Memory Management Functions

Function Typical call Description

malloc malloc (sz) Allocate a block of size sz bytes from memory heap and return
a pointer to the allocated block

e.g., ptr = (cast.type*) malloc (byte_size);

calloc calloc in (sz) Allocate a block of size n x sz bytes from memory heap,
initialize it to zero and return a pointer to the allocated block

e.g., ptr = (cast_type*) calloc (n, elem_size);

realloc realloc (bl,; sz) Adjust the size of the memory block blk allocated on the heap
to sz, copy the contents to a new location if necessary and
return a pointer to the allocated block

e.g., ptr = realloc (ptr, newsize);

free free (blk) Free block of memory blk allocated from memory heap

e.g., free (ptr);

Advantages of Dynamic Memory allocation

 When we don't know how much memory will be required for the software ahead of time.
 When we need data structures that don't have a memory restriction.
 When you wish to make better use of your memory space.
 For example, if you allocate memory space for a 1D array like array[20] and only use 10

memory spaces, the remaining 10 memory spaces will be squandered, and this wasted
memory will be unavailable to other programme variables.

 Insertions and deletions in dynamically constructed lists may be done quickly and easily
by manipulating addresses, whereas insertions and deletions in statically allocated
memory result in additional movements and memory waste.

 Dynamic memory allocation is required when using the concepts of structures and linked
lists in programming.

6.3 Types of linked list

1. Single linked list
2. Double linked list
3. Circular linked list

A doubly-linked list is a linked data structure that consists of a set of sequentially linked records
called nodes. Each node contains two fields, called links that are references to the previous and to
the next node in the sequence of nodes.

In the single linked list each node provides information about where the next node is in the list. It
faces difficulty if we are pointing to a specific node, then we can move only in the direction of the
links. It has no idea about where the previous node lies in memory. The only way to find the node
which precedes that specific node is to start back at the beginning of the list. The same problem
arises when one wishes to delete an arbitrary node from a single linked list. Since in order to easily
delete an arbitrary node one must know the preceding node. This problem can be avoided by using
Doubly Linked List, we can store in each node not only the address of next node but also the
address of the previous node in the linked list. A node in Doubly Linked List has three fields

Lovely Professional University 81

Data Structures

Notes

1. Data

2. Previous Link

3. Next Link

Implementation of Doubly Linked List
Structure of a node of Doubly Linked List can be defi ned as:

struct node

{

int data;

struct node *llink;

struct node *rlink;

}

Circular Linked List
Circular Linked List is another remedy for the drawbacks of the Single Linked List besides Doubly
Linked List. A slight change to the structure of a linear list is made to convert it to circular linked
list; link fi eld in the last node contains a pointer back to the fi rst node rather than a Null.

6.4 Representation of Linked List
Because each node of an element contains two parts, we have to represent each node through a
structure.

While defi ning linked list we must have recursive defi nitions:

struct node

{

int data;

struct node * link;

}

Here, link is a pointer of struct node type i.e. it can hold the address of variable of struct node type.
Pointers permit the referencing of structures in a uniform way, regardless of the organization of the
structure being referenced. Pointers are capable of representing a much more complex relationship
between elements of a structure than a linear order.

Initialization:

main()

{

struct node *p, *list, *temp;

list = p = temp = NULL;

.

.

.

}

Lovely Professional University82

Unit 06: Linked Lists

Notes

Example:

Program:

include <stdio.h>

include <stdlib.h>

struct node

{

int data;

struct node *link;

};

struct node *insert(struct node *p, int n)

{

struct node *temp;

/* if the existing list is empty then insert a new node as the

starting node */

if(p==NULL)

{

p=(struct node *)malloc(sizeof(struct node)); /* creates new

node data value passes

as parameter */

if(p==NULL)

{

printf(“Error\n”);

exit(0);

}

p-> data = n;

p-> link = p; /* makes the pointer pointing to itself because

it is a circular list*/

}

else

{

temp = p;

/* traverses the existing list to get the pointer to the last node

of it */

while (temp->link != p)

temp = temp->link;

temp-> link = (struct node *)malloc(sizeof(struct node)); /*

creates new node using

data value passes as

parameter and puts its

address in the link field

Unit 06: Linked Lists

Notes

Example:

Program:

include <stdio.h>

include <stdlib.h>

struct node

{

int data;

struct node *link;

};

struct node *insert(struct node *p, int n)

{

struct node *temp;

/* if the existing list is empty then insert a new node as the

starting node */

if(p==NULL)

{

p=(struct node *)malloc(sizeof(struct node)); /* creates new

node data value passes

as parameter */

if(p==NULL)

{

printf(“Error\n”);

exit(0);

}

p-> data = n;

p-> link = p; /* makes the pointer pointing to itself because

it is a circular list*/

}

else

{

temp = p;

/* traverses the existing list to get the pointer to the last node

of it */

while (temp->link != p)

temp = temp->link;

temp-> link = (struct node *)malloc(sizeof(struct node)); /*

creates new node using

data value passes as

parameter and puts its

address in the link field

Unit 06: Linked Lists

Notes

Example:

Program:

include <stdio.h>

include <stdlib.h>

struct node

{

int data;

struct node *link;

};

struct node *insert(struct node *p, int n)

{

struct node *temp;

/* if the existing list is empty then insert a new node as the

starting node */

if(p==NULL)

{

p=(struct node *)malloc(sizeof(struct node)); /* creates new

node data value passes

as parameter */

if(p==NULL)

{

printf(“Error\n”);

exit(0);

}

p-> data = n;

p-> link = p; /* makes the pointer pointing to itself because

it is a circular list*/

}

else

{

temp = p;

/* traverses the existing list to get the pointer to the last node

of it */

while (temp->link != p)

temp = temp->link;

temp-> link = (struct node *)malloc(sizeof(struct node)); /*

creates new node using

data value passes as

parameter and puts its

address in the link field

Lovely Professional University 83

Data Structures

Notes

of last node of the

existing list*/

if(temp -> link == NULL)

{

printf(“Error\n”);

exit(0);

}

temp = temp->link;

temp-> data = n;

temp-> link = p;

}

return (p);

}

void printlist(struct node *p)

{

struct node *temp;

temp = p;

printf(“The data values in the list are\n”);

if(p!= NULL)

{

do

{

printf(“%d\t”,temp->data);

temp=temp->link;

} while (temp!= p);

}

else

printf(“The list is empty\n”);

}

void main()

{

int n;

int x;

struct node *start = NULL ;

printf(“Enter the nodes to be created \n”);

scanf(“%d”,&n);

while (n -- > 0)

{

printf(“Enter the data values to be placed in a node\n”);

scanf(“%d”,&x);

Lovely Professional University84

Unit 06: Linked Lists

Notes

start = insert (start, x);

}

printf(“The created list is\n”);

printlist(start);

}

6.5 Deleting the Specified Node in Singly Linked List
To delete a node, first we determine the node number to be deleted (this is based on the assumption
that the nodes of the list are numbered serially from 1 to n). The list is then traversed to get a
pointer to the node whose number is given, as well as a pointer to a node that appears before the
node to be deleted. Then the link fi eld of the node that appears before the node to be deleted is
made to point to the node that appears after the node to be deleted, and the node to be deleted is
freed.

Lab Exercise:

include <stdio.h>

include <stdlib.h>

struct node *delet(struct node *, int);

int length (struct node *);

struct node

{

int data;

struct node *link;

};

struct node *insert(struct node *p, int n)

{

struct node *temp;

if(p==NULL)

{

p=(struct node *)malloc(sizeof(struct node));

if(p==NULL)

{

printf(“Error\n”);

exit(0);

}

p-> data = n;

p-> link = NULL;

}

else

{

temp = p;

while (temp->link != NULL)

Unit 06: Linked Lists

Notes

start = insert (start, x);

}

printf(“The created list is\n”);

printlist(start);

}

6.5 Deleting the Specified Node in Singly Linked List
To delete a node, first we determine the node number to be deleted (this is based on the assumption
that the nodes of the list are numbered serially from 1 to n). The list is then traversed to get a
pointer to the node whose number is given, as well as a pointer to a node that appears before the
node to be deleted. Then the link fi eld of the node that appears before the node to be deleted is
made to point to the node that appears after the node to be deleted, and the node to be deleted is
freed.

Lab Exercise:

include <stdio.h>

include <stdlib.h>

struct node *delet(struct node *, int);

int length (struct node *);

struct node

{

int data;

struct node *link;

};

struct node *insert(struct node *p, int n)

{

struct node *temp;

if(p==NULL)

{

p=(struct node *)malloc(sizeof(struct node));

if(p==NULL)

{

printf(“Error\n”);

exit(0);

}

p-> data = n;

p-> link = NULL;

}

else

{

temp = p;

while (temp->link != NULL)

Unit 06: Linked Lists

Notes

start = insert (start, x);

}

printf(“The created list is\n”);

printlist(start);

}

6.5 Deleting the Specified Node in Singly Linked List
To delete a node, first we determine the node number to be deleted (this is based on the assumption
that the nodes of the list are numbered serially from 1 to n). The list is then traversed to get a
pointer to the node whose number is given, as well as a pointer to a node that appears before the
node to be deleted. Then the link fi eld of the node that appears before the node to be deleted is
made to point to the node that appears after the node to be deleted, and the node to be deleted is
freed.

Lab Exercise:

include <stdio.h>

include <stdlib.h>

struct node *delet(struct node *, int);

int length (struct node *);

struct node

{

int data;

struct node *link;

};

struct node *insert(struct node *p, int n)

{

struct node *temp;

if(p==NULL)

{

p=(struct node *)malloc(sizeof(struct node));

if(p==NULL)

{

printf(“Error\n”);

exit(0);

}

p-> data = n;

p-> link = NULL;

}

else

{

temp = p;

while (temp->link != NULL)

Lovely Professional University 85

Data Structures

Notes

temp = temp->link;

temp-> link = (struct node *)malloc(sizeof(struct node));

if(temp -> link == NULL)

{

printf(“Error\n”);

exit(0);

}

temp = temp->link;

temp-> data = n;

temp-> link = NULL;

}

return (p);

}

void printlist(struct node *p)

{

printf(“The data values in the list are\n”);

while (p!= NULL)

{

printf(“%d\t”,p-> data);

p = p->link;

}

}

void main()

{

int n;

int x;

struct node *start = NULL;

printf(“Enter the nodes to be created \n”);

scanf(“%d”,&n);

while (n- > 0)

{

printf(“Enter the data values to be placed in a node\n”);

scanf(“%d”,&x);

start = insert (start, x);

}

printf(“ The list before deletion id\n”);

printlist(start);

printf(“% \n Enter the node no \n”);

scanf(“ %d”,&n);

start = delet (start , n);

Lovely Professional University86

Unit 06: Linked Lists

Notes

printf(“ The list after deletion is\n”);

printlist(start);

}

/* a function to delete the specified node*/

struct node *delet(struct node *p, int node_no)

{

struct node *prev, *curr ;

int i;

if (p == NULL)

{

printf(“There is no node to be deleted \n”);

}

else

{

if (node_no> length (p))

{

printf(“Error\n”);

}

else

{

prev = NULL;

curr = p;

i = 1 ;

while (i<node_no)

{

prev = curr;

curr = curr->link;

i = i+1;

}

if (prev == NULL)

{

p = curr ->link;

free (curr);

}

else

{

prev -> link = curr ->link ;

free (curr);

}

}

Lovely Professional University 87

Data Structures

Notes

}

return(p);

}

/* a function to compute the length of a linked list */

int length (struct node *p)

{

int count = 0 ;

while (p != NULL)

{

count++;

p = p->link;

}

return (count) ;

}

6.6 Inserting a Node after the Specified Node in a Singly Linked List
To insert a new node after the specified node, first we get the number of the node in an existinglist
after which the new node is to be inserted. This is based on the assumption that the nodes ofthe list
are numbered serially from 1 to n. The list is then traversed to get a pointer to the node,whose
number is given. If this pointer is x, then the link field of the new node is made to point tothe node
pointed to by x, and the link field of the node pointed to by x is made to point to the newnode.
Figures 2.3 and 2.4 show the list before and after the insertion of the node, respectively.

Insertion in Linked List can happen at following places:

At the beginning of the linked list.

At the end of the linked list.

At a given position in the linked list.

Algorithm: Insertion at beginning
Step 1: IF PTR = NULL

Write OVERFLOW

Go to Step 7

[END OF IF]

Step 2: SET NEW_NODE = PTR

Step 3: SET PTR = PTR → NEXT

Step 4: SET NEW_NODE → DATA = VAL

Step 5: SET NEW_NODE → NEXT = HEAD

Step 6: SET HEAD = NEW_NODE

Step 7: EXIT

Deletion from a Linked List
Delete from beginning

Delete from end

Delete from middle/ given position

Lovely Professional University88

Unit 06: Linked Lists

Notes

Find the previous node of the node to be deleted.

Change the next pointer of the previous node

Free the memory of the deleted node.

In case of first node deletion, we need to update the head of the linked list.

Algorithm: Deletion at beginning
Step 1: IF HEAD = NULL

Write UNDERFLOW

Go to Step 5

[END OF IF]

Step 2: SET PTR = HEAD

Step 3: SET HEAD = HEAD -> NEXT

Step 4: FREE PTR

Step 5: EXIT

Searching in linked list
Searching is performed to find the location of a particular element in the list. Traversing is
performed in the list and make the comparison of every element of the list with the specified
element. If the element is matched with any of the list element then the location of the element is
returned from the function.

Algorithm: Searching in linked list
Step 1: SET PTR = HEAD

Step 2: Set I = 0

STEP 3: IF PTR = NULL

WRITE "EMPTY LIST"

GOTO STEP 8

END OF IF

STEP 4: REPEAT STEP 5 TO 7 UNTIL PTR != NULL

STEP 5: if ptr → data = item

write i+1

End of IF

STEP 6: I = I + 1

STEP 7: PTR = PTR → NEXT

[END OF LOOP]

STEP 8: EXIT

6.7 Linked List Common Errors
Here is summary of common errors of linked lists. Read these carefully, and read them againwhen
you have problem that you need to solve.

1. Allocating a new node to step through the linked list; only a pointer variable is needed.

2. Confusing the and the -> operators.

3. Not setting the pointer from the last node to 0 (null).

Lovely Professional University 89

Data Structures

Notes

4. Not considering special cases of inserting/removing at the beginning or the end of thelinked list.

5. Applying the delete operator to a node (calling the operator on a pointer to the node)before it is
removed. Delete should be done after all pointer manipulations are completed.

6. Pointer manipulations that are out of order. These can ruin the structure of the linked list.

Sorting and Reversing a Linked List
To sort a linked list, fi rst we traverse the list searching for the node with a minimum data
value.Then we remove that node and append it to another list which is initially empty. We repeat
thisprocess with the remaining list until the list becomes empty, and at the end, we return a
pointerto the beginning of the list to which all the nodes are moved.

Sorting of linked list

To reverse a list, we maintain a pointer each to the previous and the next node, then we make
thelink field of the current node point to the previous, make the previous equal to the current, and
thecurrent equal to the next.

6.8 Arrays vs. Linked list

Array Linked list

Data elements are stored in contiguous locations
in memory.

New elements can be stored anywhere and a
reference is created for the new element using
pointers.

Insertion and Deletion operations are costlier
since the memory locations are consecutive and
fixed.

Insertion and Deletion operations are fast and
easy in a linked list.

Memory is allocated during the compile time
(Static memory allocation).

Memory is allocated during the run-time
(Dynamic memory allocation).

Size of the array must be specified at the time of
array declaration/initialization.

Size of a Linked list grows/shrinks as and when
new elements are inserted/deleted.

Lovely Professional University90

Unit 06: Linked Lists

Notes

Summary

 An array is a set of same data elements grouped together. Arrays can be one-dimensional
ormultidimensional.

 A linear or one-dimensional array is a structured collection of elements (often called as array
elements) that are accessed individually by specifying the position of each element with a
single index value.

 Multidimensional arrays are nothing but "arrays of arrays". Two subscripts are used to refer to
the elements.

 The operations that are performed on an array are adding, sorting, searching, and traversing.
 Traversing an array refers to moving in inward and outward direction to access each element

in an array.
 Linked list is a technique of dynamically implementing a list using pointers. A linked list

contains two fields namely, data field and link field.
 A singly-linked list consists of only one pointer to point to another node and the last node

always points to NULL to indicate the end of the list.
 A doubly-linked list consists of two pointers, one to point to the next node and the other to

point to the previous node.
 In a circular singly-linked list, the last node always points to the first node to indicate the

circular nature of the list.
 A circular doubly-linked list consists of two pointers for forward and backward traversal and

the last node points to the first node.
 Searching operation involves searching for a specific element in the list using an associated

key.
 Insertion operation involves inserting a node at the beginning or end of a list.
 Deletion operation involves deleting a node at the beginning or following a given node or at

the end of a list.

Keywords
Non-linear Data Structure: Every data item is attached to several other data items in a way
thatis specific for reflecting relationships. The data items are not arranged in a sequential structure.

Searching: Finding the location of the record with a given key value, or fi nding the locations ofall
records, which satisfy one or more conditions.

Traversing: Accessing each record exactly once so that certain items in the record may
beprocessed.

Circular Linked List: A linear linked list in which the last element points to the fi rst element,
thus,forming a circle.

Doubly Linked List: A linear linked list in which each element is connected to the two
nearestelements through pointers.

SelfAssessment

1. A linear collection of data elements where the linear node is given by means of pointer is
called?

A. Linked list
B. Node list

Lovely Professional University 91

Data Structures

Notes

C. Primitive list
D. None of these

2. Which of the following are type of linked list
A. Single Linked List
B. Circular Linked List
C. Double Linked List
D. All of above

3. Linked list is considered as an example of ___________ type of memory allocation.

A. Static
B. Compile time
C. Heap
D. Dynamic

4. Among 4 header files, which should be included to use the memory allocation functions like
malloc(), calloc(), realloc() and free()?

A. #include<string.h>
B. #include<stdlib.h>
C. #include<memory.h>
D. All of above

5. DMA stands for
A. Dynamite Memory Access
B. Dynamic Memory Available
C. Direct Memory Access
D. None of Above

6. Dynamic memory allocation is
A. More efficient
B. Less efficient
C. Don’t know
D. None of above

7. Which function is used to delete the allocated memory space?
a) Dealloc()
b) free()
c) Both A and B
d) None of the above

8. Which of the following advantages of linked list over arrays?
A. Dynamic Size
B. Ease of insertion and deletion
C. All of above
D. None of above

Lovely Professional University92

Unit 06: Linked Lists

Notes

9. Linked list can be represented in the memory using
A. One array
B. Two arrays
C. Six arrays
D. None of above

10. Which of the following operations is performed for visit nodes in linked list?
A. Deletion
B. User Define Function
C. Traversing
D. None of above

11. Which of the following operations is performed for visit nodes in linked list?
A. Deletion
B. User Define Function
C. Traversing
D. None of above

12. Searching in a linked list is
A. Find element in linked list
B. Find element in linked list and move element to another location
C. Find element in linked list, if match found then the address of the node is returned

otherwise we process the next node
D. None of above

13. Insertion into linked list is process of
A. Create a new linked list
B. Insert a new node to linked list
C. All of above
D. None of above

14. Insertion in a linked list can be done at
A. The beginning of linked list
B. The end of linked list
C. A particular position in linked list
D. All of above

15. Deleting a node at the beginning is
A. Delete the first node of linked list
B. Delete all nodes of liked list
C. All of above
D. None of above

16. Which of the following operation remove node from linked list
A. Traversing
B. Inversing
C. Deletion
D. Insertion

Answers for Self Assessment

1. A 2. D 3. D 4. B 5. C

6. A 7. B 8. C 9. B 10. C

Lovely Professional University 93

Data Structures

Notes

11. C 12. C 13. B 14. D 15. A

16. C

Review Questions

1. Define array and its types.
2. Give an example of multidimensional array.
3. Discuss any two types of array initialization methods with example.
4. Discuss different sorting methods.
5. Write a program to sort the elements of a linked list.
6. Differentiate between array and linked list with suitable example.
7. Discuss different operation performed with linked list.
8. Discuss advantages of linked list as compared to arrays.

Further Readings
Books Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson Education,
Year of Publication, 2008

Lipschutz. Seymour. Data Structures with C. Delhi: Tata McGraw Hill

Reddy.A.M Padma (2006). Data Structures Using C. Bangalore: Sri Nandi Publications

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett, 1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

YashvantKanetkar, Let us C

Web Links
https://www.cs.uic.edu/~jbell/CourseNotes/C_Programming/Arrays.html

https://www.tutorialspoint.com/data_structures_algorithms/linked_list_algorithms.htm

Data Structures

Notes

11. C 12. C 13. B 14. D 15. A

16. C

Review Questions

1. Define array and its types.
2. Give an example of multidimensional array.
3. Discuss any two types of array initialization methods with example.
4. Discuss different sorting methods.
5. Write a program to sort the elements of a linked list.
6. Differentiate between array and linked list with suitable example.
7. Discuss different operation performed with linked list.
8. Discuss advantages of linked list as compared to arrays.

Further Readings
Books Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson Education,
Year of Publication, 2008

Lipschutz. Seymour. Data Structures with C. Delhi: Tata McGraw Hill

Reddy.A.M Padma (2006). Data Structures Using C. Bangalore: Sri Nandi Publications

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett, 1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

YashvantKanetkar, Let us C

Web Links
https://www.cs.uic.edu/~jbell/CourseNotes/C_Programming/Arrays.html

https://www.tutorialspoint.com/data_structures_algorithms/linked_list_algorithms.htm

Data Structures

Notes

11. C 12. C 13. B 14. D 15. A

16. C

Review Questions

1. Define array and its types.
2. Give an example of multidimensional array.
3. Discuss any two types of array initialization methods with example.
4. Discuss different sorting methods.
5. Write a program to sort the elements of a linked list.
6. Differentiate between array and linked list with suitable example.
7. Discuss different operation performed with linked list.
8. Discuss advantages of linked list as compared to arrays.

Further Readings
Books Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson Education,
Year of Publication, 2008

Lipschutz. Seymour. Data Structures with C. Delhi: Tata McGraw Hill

Reddy.A.M Padma (2006). Data Structures Using C. Bangalore: Sri Nandi Publications

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett, 1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

YashvantKanetkar, Let us C

Web Links
https://www.cs.uic.edu/~jbell/CourseNotes/C_Programming/Arrays.html

https://www.tutorialspoint.com/data_structures_algorithms/linked_list_algorithms.htm

Lovely Professional University94

Unit 07: Doubly Linked Lists

Notes

Unit 07: Doubly Linked Lists

CONTENTS

Objectives

Introduction

7.1 Doubly Linked List

7.2 Traversal in a Doubly Linked List

7.3 Insertion in a Linked List

7.4 Deletion from Doubly Linked Lists

7.5 Singly Linked List Vs Doubly Linked List

7.6 Circular Linked List

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to:

• Understand the circular linked list
• Discuss the operations of doubly linked lists
• Discuss the operations ofcircular linked lists

Introduction
Data Structures are the programmatic way of storing data so that data can be used efficiently.
Almost every enterprise application uses various types of data structures in one or the other way.
This tutorial will give you a great understanding on Data Structures needed to understand the
complexity of enterprise level applications and need of algorithms, and data structures.

Doubly Linked List is a variation of Linked list in which navigation is possible in both ways, either
forward or backward easily as compared to Single Linked List.

Circular Linked List is a variation of Linked list in which the first element points to the last element
and the last element points to the first element. Both Singly Linked List and Doubly Linked List can
be made into a circular linked list.

7.1 Doubly Linked List
Doubly linked list is a type of linked list in which each node apart from storing its data has two
links. The first link points to the previous node in the list and the second link points to the next
node in the list. The first node of the list has its previous link pointing to NULL similarly the last
node of the list has its next node pointing to NULL.

Lovely Professional University 95

Dr. Prikshat Kumar Angra, Lovely Professional University

Data Structures

Notes

Memory Representation of a doubly linked list
Memory The graphic below is a representation of a doubly linked list. In general, a doubly linked
list takes up more space for each node, making fundamental operations like insertion and deletion
take longer. However, because the list keeps pointers in both directions, we can simply change the
list's elements (forward and backward).

In the following image, the first element of the list that is i.e. 13 stored at address 1. The head
pointer points to the starting address 1. Since this is the first element being added to the list
therefore the prev of the list contains null. The next node of the list resides at address 4 therefore
the first node contains 4 in its next pointer.

We can traverse the list in this way until we find any node containing null or -1 in its next part.

Advantages and Disadvantages of Doubly Linked List over Singly Linked List

 Traversal can be done in both directions (from the start node to the end node as well as from
the end node to the start node) in a Doubly Linked list. But this is not possible in a Singly
Linked List and it can only be traversed only in one direction.

 Deletion and insertion operations are easy to implement in a Doubly LL than a Singly LL.
For example, in a singly linked list, to delete a node, the pointer to the previous node is
needed for which the list is to be traversed. In a Doubly LL, we just need to know the
pointer of the node to be deleted.

Data Structures

Notes

Memory Representation of a doubly linked list
Memory The graphic below is a representation of a doubly linked list. In general, a doubly linked
list takes up more space for each node, making fundamental operations like insertion and deletion
take longer. However, because the list keeps pointers in both directions, we can simply change the
list's elements (forward and backward).

In the following image, the first element of the list that is i.e. 13 stored at address 1. The head
pointer points to the starting address 1. Since this is the first element being added to the list
therefore the prev of the list contains null. The next node of the list resides at address 4 therefore
the first node contains 4 in its next pointer.

We can traverse the list in this way until we find any node containing null or -1 in its next part.

Advantages and Disadvantages of Doubly Linked List over Singly Linked List

 Traversal can be done in both directions (from the start node to the end node as well as from
the end node to the start node) in a Doubly Linked list. But this is not possible in a Singly
Linked List and it can only be traversed only in one direction.

 Deletion and insertion operations are easy to implement in a Doubly LL than a Singly LL.
For example, in a singly linked list, to delete a node, the pointer to the previous node is
needed for which the list is to be traversed. In a Doubly LL, we just need to know the
pointer of the node to be deleted.

Data Structures

Notes

Memory Representation of a doubly linked list
Memory The graphic below is a representation of a doubly linked list. In general, a doubly linked
list takes up more space for each node, making fundamental operations like insertion and deletion
take longer. However, because the list keeps pointers in both directions, we can simply change the
list's elements (forward and backward).

In the following image, the first element of the list that is i.e. 13 stored at address 1. The head
pointer points to the starting address 1. Since this is the first element being added to the list
therefore the prev of the list contains null. The next node of the list resides at address 4 therefore
the first node contains 4 in its next pointer.

We can traverse the list in this way until we find any node containing null or -1 in its next part.

Advantages and Disadvantages of Doubly Linked List over Singly Linked List

 Traversal can be done in both directions (from the start node to the end node as well as from
the end node to the start node) in a Doubly Linked list. But this is not possible in a Singly
Linked List and it can only be traversed only in one direction.

 Deletion and insertion operations are easy to implement in a Doubly LL than a Singly LL.
For example, in a singly linked list, to delete a node, the pointer to the previous node is
needed for which the list is to be traversed. In a Doubly LL, we just need to know the
pointer of the node to be deleted.

Lovely Professional University96

Unit 07: Doubly Linked Lists

Notes

 Memory has to be allocated for both the next and previous pointers in a node. Hence, the
occupation of memory is higher in Doubly LL.

 Both the pointers will have to be modified if any kind of operation is performed like
insertion, deletion, etc in case of Doubly LL.

Algorithm to create a Doubly linked list
Algorithm to create Doubly Linked list

Begin:

alloc (head)

If (head == NULL) then

write ('Unable to allocate memory')

End if

Else then

read (data)

head.data ← data;

head.prev ← NULL;

head.next ← NULL;

last ← head;

write ('List created successfully')

End else

End

Did you know?

The singly linked list had a single pointer pointing to the next node. But a doubly linked list
contains two pointers. One pointer points to the next node and one pointer to the previous node.
Thus, a doubly linked list is a two-way chain.

Every node in a doubly linked list has-

 Data
 Address of the next node
 Address of the previous node

Basic Operations on Double Linked List
The basic set of operations that we can perform on a doubly linked list are:

1. Traverse forward: It means visiting each node from the beginning till the end with the help of the
‘Next’ pointer.

2. Traverse backwards: This operation is performed to visit each node but in the reverse direction. It
will traverse the list from the end to the beginning.

3. Insertion: This operation inserts an element at any given position in the list.

4. Deletion: Deletion operation helps in deleting a node from the linked list.

5. Display forward: This operation is used to print/display all the data elements of the linked list
from beginning till the end.

Unit 07: Doubly Linked Lists

Notes

 Memory has to be allocated for both the next and previous pointers in a node. Hence, the
occupation of memory is higher in Doubly LL.

 Both the pointers will have to be modified if any kind of operation is performed like
insertion, deletion, etc in case of Doubly LL.

Algorithm to create a Doubly linked list
Algorithm to create Doubly Linked list

Begin:

alloc (head)

If (head == NULL) then

write ('Unable to allocate memory')

End if

Else then

read (data)

head.data ← data;

head.prev ← NULL;

head.next ← NULL;

last ← head;

write ('List created successfully')

End else

End

Did you know?

The singly linked list had a single pointer pointing to the next node. But a doubly linked list
contains two pointers. One pointer points to the next node and one pointer to the previous node.
Thus, a doubly linked list is a two-way chain.

Every node in a doubly linked list has-

 Data
 Address of the next node
 Address of the previous node

Basic Operations on Double Linked List
The basic set of operations that we can perform on a doubly linked list are:

1. Traverse forward: It means visiting each node from the beginning till the end with the help of the
‘Next’ pointer.

2. Traverse backwards: This operation is performed to visit each node but in the reverse direction. It
will traverse the list from the end to the beginning.

3. Insertion: This operation inserts an element at any given position in the list.

4. Deletion: Deletion operation helps in deleting a node from the linked list.

5. Display forward: This operation is used to print/display all the data elements of the linked list
from beginning till the end.

Unit 07: Doubly Linked Lists

Notes

 Memory has to be allocated for both the next and previous pointers in a node. Hence, the
occupation of memory is higher in Doubly LL.

 Both the pointers will have to be modified if any kind of operation is performed like
insertion, deletion, etc in case of Doubly LL.

Algorithm to create a Doubly linked list
Algorithm to create Doubly Linked list

Begin:

alloc (head)

If (head == NULL) then

write ('Unable to allocate memory')

End if

Else then

read (data)

head.data ← data;

head.prev ← NULL;

head.next ← NULL;

last ← head;

write ('List created successfully')

End else

End

Did you know?

The singly linked list had a single pointer pointing to the next node. But a doubly linked list
contains two pointers. One pointer points to the next node and one pointer to the previous node.
Thus, a doubly linked list is a two-way chain.

Every node in a doubly linked list has-

 Data
 Address of the next node
 Address of the previous node

Basic Operations on Double Linked List
The basic set of operations that we can perform on a doubly linked list are:

1. Traverse forward: It means visiting each node from the beginning till the end with the help of the
‘Next’ pointer.

2. Traverse backwards: This operation is performed to visit each node but in the reverse direction. It
will traverse the list from the end to the beginning.

3. Insertion: This operation inserts an element at any given position in the list.

4. Deletion: Deletion operation helps in deleting a node from the linked list.

5. Display forward: This operation is used to print/display all the data elements of the linked list
from beginning till the end.

Lovely Professional University 97

Data Structures

Notes

6. Display backwards: it will display the elements from the end to the beginning.

7. Search: Search operation helps in searching an element by traversing it.

7.2 Traversal in a Doubly Linked List
Traversal refers to linearly visiting each node. In a doubly linked list, we can traverse in both
forward and backward directions.

Following program has traverse function that used to visit each node in a program.

Lab Exercise

//Program

#include<stdio.h>

#include<stdlib.h>

void create(int);

int traverse();

struct node

{

int data;

struct node *next;

struct node *prev;

};

struct node *head;

void main ()

{

int choice,item;

do

{

printf("1.Insert In Doubly Linked List\n2.Traverse Doubly Linked List\n3.Exit\n4.Enter your
choice?");

scanf("%d",&choice);

switch(choice)

{

case 1:

printf("\nEnter the item\n");

scanf("%d",&item);

create(item);

break;

case 2:

traverse();

break;

case 3:

exit(0);

Data Structures

Notes

6. Display backwards: it will display the elements from the end to the beginning.

7. Search: Search operation helps in searching an element by traversing it.

7.2 Traversal in a Doubly Linked List
Traversal refers to linearly visiting each node. In a doubly linked list, we can traverse in both
forward and backward directions.

Following program has traverse function that used to visit each node in a program.

Lab Exercise

//Program

#include<stdio.h>

#include<stdlib.h>

void create(int);

int traverse();

struct node

{

int data;

struct node *next;

struct node *prev;

};

struct node *head;

void main ()

{

int choice,item;

do

{

printf("1.Insert In Doubly Linked List\n2.Traverse Doubly Linked List\n3.Exit\n4.Enter your
choice?");

scanf("%d",&choice);

switch(choice)

{

case 1:

printf("\nEnter the item\n");

scanf("%d",&item);

create(item);

break;

case 2:

traverse();

break;

case 3:

exit(0);

Data Structures

Notes

6. Display backwards: it will display the elements from the end to the beginning.

7. Search: Search operation helps in searching an element by traversing it.

7.2 Traversal in a Doubly Linked List
Traversal refers to linearly visiting each node. In a doubly linked list, we can traverse in both
forward and backward directions.

Following program has traverse function that used to visit each node in a program.

Lab Exercise

//Program

#include<stdio.h>

#include<stdlib.h>

void create(int);

int traverse();

struct node

{

int data;

struct node *next;

struct node *prev;

};

struct node *head;

void main ()

{

int choice,item;

do

{

printf("1.Insert In Doubly Linked List\n2.Traverse Doubly Linked List\n3.Exit\n4.Enter your
choice?");

scanf("%d",&choice);

switch(choice)

{

case 1:

printf("\nEnter the item\n");

scanf("%d",&item);

create(item);

break;

case 2:

traverse();

break;

case 3:

exit(0);

Lovely Professional University98

Unit 07: Doubly Linked Lists

Notes

break;

default:

printf("\nPlease enter valid choice\n");

}

}while(choice != 3);

}

void create(int item)

{

struct node *ptr = (struct node *)malloc(sizeof(struct node));

if(ptr == NULL)

{

printf("\nOVERFLOW\n");

}

else

{

if(head==NULL)

{

ptr->next = NULL;

ptr->prev=NULL;

ptr->data=item;

head=ptr;

}

else

{

ptr->data=item;printf("\nPress 0 to insert more ?\n");

ptr->prev=NULL;

ptr->next = head;

head->prev=ptr;

head=ptr;

}

printf("\nNode Inserted\n");

}

}

int traverse()

{

struct node *ptr;

if(head == NULL)

{

Lovely Professional University 99

Data Structures

Notes

printf("\nEmpty List\n");

}

else

{

ptr = head;

while(ptr != NULL)

{

printf("%d\n",ptr->data);

ptr=ptr->next;

}

}

}

7.3 Insertion in a Linked List
Insertion in a linked list occurs at three different positions:

1. Insertion at the beginning of the list
As in doubly linked list, each node of the list contain double pointers therefore we have to maintain
more number of pointers in doubly linked list as compare to singly linked list.

There are two scenarios of inserting any element into doubly linked list. Either the list is empty or it
contains at least one element. Perform the following steps to insert a node in doubly linked list at
beginning.

Allocate the space for the new node in the memory. This will be done by using the following
statement.

ptr = (struct node *)malloc(sizeof(struct node));

Check whether the list is empty or not. The list is empty if the condition head == NULL holds. In
that case, the node will be inserted as the only node of the list and therefore the prev and the next
pointer of the node will point to NULL and the head pointer will point to this node.

ptr->next = NULL;

ptr->prev=NULL;

ptr->data=item;

head=ptr;

In the second scenario, the condition head == NULL become false and the node will be inserted in
beginning. The next pointer of the node will point to the existing head pointer of the node. The prev
pointer of the existing head will point to the new node being inserted.

This will be done by using the following statements.

ptr->next = head;

head→prev=ptr;

Since, the node being inserted is the first node of the list and therefore it must contain NULL in its
prev pointer. Hence assign null to its previous part and make the head point to this node.

Lovely Professional University100

Unit 07: Doubly Linked Lists

Notes

ptr→prev =NULL

head = ptr

Algorithm:
Step 1: IF ptr = NULL

Write OVERFLOW

Go to Step 9

[END OF IF]

Step 2: SET NEW_NODE = ptr

Step 3: SET ptr = ptr -> NEXT

Step 4: SET NEW_NODE -> DATA = VAL

Step 5: SET NEW_NODE -> PREV = NULL

Step 6: SET NEW_NODE -> NEXT = START

Step 7: SET head -> PREV = NEW_NODE

Step 8: SET head = NEW_NODE

Step 9: EXIT

Lab Exercise

#include<stdio.h>

#include<stdlib.h>

void insertbeginning(int);

struct node

{

int data;

struct node *next;

struct node *prev;

Unit 07: Doubly Linked Lists

Notes

ptr→prev =NULL

head = ptr

Algorithm:
Step 1: IF ptr = NULL

Write OVERFLOW

Go to Step 9

[END OF IF]

Step 2: SET NEW_NODE = ptr

Step 3: SET ptr = ptr -> NEXT

Step 4: SET NEW_NODE -> DATA = VAL

Step 5: SET NEW_NODE -> PREV = NULL

Step 6: SET NEW_NODE -> NEXT = START

Step 7: SET head -> PREV = NEW_NODE

Step 8: SET head = NEW_NODE

Step 9: EXIT

Lab Exercise

#include<stdio.h>

#include<stdlib.h>

void insertbeginning(int);

struct node

{

int data;

struct node *next;

struct node *prev;

Unit 07: Doubly Linked Lists

Notes

ptr→prev =NULL

head = ptr

Algorithm:
Step 1: IF ptr = NULL

Write OVERFLOW

Go to Step 9

[END OF IF]

Step 2: SET NEW_NODE = ptr

Step 3: SET ptr = ptr -> NEXT

Step 4: SET NEW_NODE -> DATA = VAL

Step 5: SET NEW_NODE -> PREV = NULL

Step 6: SET NEW_NODE -> NEXT = START

Step 7: SET head -> PREV = NEW_NODE

Step 8: SET head = NEW_NODE

Step 9: EXIT

Lab Exercise

#include<stdio.h>

#include<stdlib.h>

void insertbeginning(int);

struct node

{

int data;

struct node *next;

struct node *prev;

Lovely Professional University 101

Data Structures

Notes

};

struct node *head;

void main ()

{

int choice,item;

do

{

printf("\nEnter the item which you want to insert?\n");

scanf("%d",&item);

insertbeginning(item);

printf("\nPress 0 to insert more ?\n");

scanf("%d",&choice);

}while(choice == 0);

}

void insertbeginning(int item)

{

struct node *ptr = (struct node *)malloc(sizeof(struct node));

if(ptr == NULL)

{

printf("\nOVERFLOW");

}

else

{

if(head==NULL)

{

ptr->next = NULL;

ptr->prev=NULL;

ptr->data=item;

head=ptr;

}

else

{

ptr->data=item;

ptr->prev=NULL;

ptr->next = head;

head->prev=ptr;

head=ptr;

Lovely Professional University102

Unit 07: Doubly Linked Lists

Notes

}

}

}

2. Insertion after a particular node
In order to insert a node after the specified node in the list, we need to skip the required number of
nodes in order to reach the mentioned node and then make the pointer adjustments as required.

Use the following steps for this purpose.

Allocate the memory for the new node. Use the following statements for this.

ptr = (struct node *)malloc(sizeof(struct node));

Traverse the list by using the pointer temp to skip the required number of nodes in order to reach
the specified node.

temp=head;

for(i=0;i<loc;i++)

{

temp = temp->next;

if(temp == NULL)

{

Return 0;

}

}

The temp would point to the specified node at the end of the for loop. The new node needs to be
inserted after this node therefore we need to make a fer pointer adjustments here. Make the next
pointer of ptr point to the next node of temp.

ptr → next = temp → next;

make the prev of the new node ptr point to temp.

ptr → prev = temp;

make the next pointer of temp point to the new node ptr.

temp → next = ptr;

make the previous pointer of the next node of temp point to the new node.

temp → next → prev = ptr;

Algorithm
Step 1: IF PTR = NULL

Write OVERFLOW

Go to Step 15

[END OF IF]

Lovely Professional University 103

Data Structures

Notes

Step 2: SET NEW_NODE = PTR

Step 3: SET PTR = PTR -> NEXT

Step 4: SET NEW_NODE -> DATA = VAL

Step 5: SET TEMP = START

Step 6: SET I = 0

Step 7: REPEAT 8 to 10 until I

Step 8: SET TEMP = TEMP -> NEXT

STEP 9: IF TEMP = NULL

STEP 10: WRITE "LESS THAN DESIRED NO. OF ELEMENTS"

GOTO STEP 15

[END OF IF]

[END OF LOOP]

Step 11: SET NEW_NODE -> NEXT = TEMP -> NEXT

Step 12: SET NEW_NODE -> PREV = TEMP

Step 13 : SET TEMP -> NEXT = NEW_NODE

Step 14: SET TEMP -> NEXT -> PREV = NEW_NODE

Step 15: EXIT

Lab Exercise

#include<stdio.h>

#include<stdlib.h>

void insert_specified(int);

void create(int);

struct node

{

int data;

Data Structures

Notes

Step 2: SET NEW_NODE = PTR

Step 3: SET PTR = PTR -> NEXT

Step 4: SET NEW_NODE -> DATA = VAL

Step 5: SET TEMP = START

Step 6: SET I = 0

Step 7: REPEAT 8 to 10 until I

Step 8: SET TEMP = TEMP -> NEXT

STEP 9: IF TEMP = NULL

STEP 10: WRITE "LESS THAN DESIRED NO. OF ELEMENTS"

GOTO STEP 15

[END OF IF]

[END OF LOOP]

Step 11: SET NEW_NODE -> NEXT = TEMP -> NEXT

Step 12: SET NEW_NODE -> PREV = TEMP

Step 13 : SET TEMP -> NEXT = NEW_NODE

Step 14: SET TEMP -> NEXT -> PREV = NEW_NODE

Step 15: EXIT

Lab Exercise

#include<stdio.h>

#include<stdlib.h>

void insert_specified(int);

void create(int);

struct node

{

int data;

Data Structures

Notes

Step 2: SET NEW_NODE = PTR

Step 3: SET PTR = PTR -> NEXT

Step 4: SET NEW_NODE -> DATA = VAL

Step 5: SET TEMP = START

Step 6: SET I = 0

Step 7: REPEAT 8 to 10 until I

Step 8: SET TEMP = TEMP -> NEXT

STEP 9: IF TEMP = NULL

STEP 10: WRITE "LESS THAN DESIRED NO. OF ELEMENTS"

GOTO STEP 15

[END OF IF]

[END OF LOOP]

Step 11: SET NEW_NODE -> NEXT = TEMP -> NEXT

Step 12: SET NEW_NODE -> PREV = TEMP

Step 13 : SET TEMP -> NEXT = NEW_NODE

Step 14: SET TEMP -> NEXT -> PREV = NEW_NODE

Step 15: EXIT

Lab Exercise

#include<stdio.h>

#include<stdlib.h>

void insert_specified(int);

void create(int);

struct node

{

int data;

Lovely Professional University104

Unit 07: Doubly Linked Lists

Notes

struct node *next;

struct node *prev;

};

struct node *head;

void main ()

{

int choice,item,loc;

do

{

printf("\nEnter the item which you want to insert?\n");

scanf("%d",&item);

if(head == NULL)

{

create(item);

}

else

{

insert_specified(item);

}

printf("\nPress 0 to insert more ?\n");

scanf("%d",&choice);

}while(choice == 0);

}

void create(int item)

{

struct node *ptr = (struct node *)malloc(sizeof(struct node));

if(ptr == NULL)

{

printf("\nOVERFLOW");

}

else

{

if(head==NULL)

{

ptr->next = NULL;

ptr->prev=NULL;

ptr->data=item;

head=ptr;

Lovely Professional University 105

Data Structures

Notes

}

else

{

ptr->data=item;printf("\nPress 0 to insert more ?\n");

ptr->prev=NULL;

ptr->next = head;

head->prev=ptr;

head=ptr;

}

printf("\nNode Inserted\n");

}

}

void insert_specified(int item)

{

struct node *ptr = (struct node *)malloc(sizeof(struct node));

struct node *temp;

int i, loc;

if(ptr == NULL)

{

printf("\n OVERFLOW");

}

else

{

printf("\nEnter the location\n");

scanf("%d",&loc);

temp=head;

for(i=0;i<loc;i++)

{

temp = temp->next;

if(temp == NULL)

{

printf("\ncan't insert\n");

return;

}

}

ptr->data = item;

ptr->next = temp->next;

ptr ->prev = temp;

Lovely Professional University106

Unit 07: Doubly Linked Lists

Notes

temp->next = ptr;

temp->next->prev=ptr;

printf("Node Inserted\n");

}

}

3. Insertion at the end of the list
In order to insert a node in doubly linked list at the end, we must make sure whether the list is
empty or it contains any element. Use the following steps in order to insert the node in doubly
linked list at the end.

Allocate the memory for the new node. Make the pointer ptr point to the new node being inserted.

ptr = (struct node *) malloc(sizeof(struct node));

Check whether the list is empty or not. The list is empty if the condition head == NULL holds. In
that case, the node will be inserted as the only node of the list and therefore the prev and the next
pointer of the node will point to NULL and the head pointer will point to this node.

ptr->next = NULL;

ptr->prev=NULL;

ptr->data=item;

head=ptr;

In the second scenario, the condition head == NULL become false. The new node will be inserted as
the last node of the list. For this purpose, we have to traverse the whole list in order to reach the last
node of the list. Initialize the pointer temp to head and traverse the list by using this pointer.

Temp = head;

while (temp != NULL)

{

temp = temp → next;

}

the pointer temp point to the last node at the end of this while loop. Now, we just need to make a
few pointer adjustments to insert the new node ptr to the list. First, make the next pointer of temp
point to the new node being inserted i.e.ptr.

temp→next =ptr;

make the previous pointer of the node ptr point to the existing last node of the list i.e. temp.

ptr → prev = temp;

make the next pointer of the node ptr point to the null as it will be the new last node of the list.

ptr → next = NULL

Algorithm

Lovely Professional University 107

Data Structures

Notes

Step 1: IF PTR = NULL

Write OVERFLOW

Go to Step 11

[END OF IF]

Step 2: SET NEW_NODE = PTR

Step 3: SET PTR = PTR -> NEXT

Step 4: SET NEW_NODE -> DATA = VAL

Step 5: SET NEW_NODE -> NEXT = NULL

Step 6: SET TEMP = START

Step 7: Repeat Step 8 while TEMP ->NEXT != NULL

Step 8: SET TEMP = TEMP -> NEXT

[END OF LOOP]

Step 9: SET TEMP -> NEXT = NEW_NODE

Step 10C: SET NEW_NODE -> PREV = TEMP

Step 11: EXIT

Lab Exercise

#include<stdio.h>

#include<stdlib.h>

void insertlast(int);

struct node

{

int data;

struct node *next;

struct node *prev;

};

Data Structures

Notes

Step 1: IF PTR = NULL

Write OVERFLOW

Go to Step 11

[END OF IF]

Step 2: SET NEW_NODE = PTR

Step 3: SET PTR = PTR -> NEXT

Step 4: SET NEW_NODE -> DATA = VAL

Step 5: SET NEW_NODE -> NEXT = NULL

Step 6: SET TEMP = START

Step 7: Repeat Step 8 while TEMP ->NEXT != NULL

Step 8: SET TEMP = TEMP -> NEXT

[END OF LOOP]

Step 9: SET TEMP -> NEXT = NEW_NODE

Step 10C: SET NEW_NODE -> PREV = TEMP

Step 11: EXIT

Lab Exercise

#include<stdio.h>

#include<stdlib.h>

void insertlast(int);

struct node

{

int data;

struct node *next;

struct node *prev;

};

Data Structures

Notes

Step 1: IF PTR = NULL

Write OVERFLOW

Go to Step 11

[END OF IF]

Step 2: SET NEW_NODE = PTR

Step 3: SET PTR = PTR -> NEXT

Step 4: SET NEW_NODE -> DATA = VAL

Step 5: SET NEW_NODE -> NEXT = NULL

Step 6: SET TEMP = START

Step 7: Repeat Step 8 while TEMP ->NEXT != NULL

Step 8: SET TEMP = TEMP -> NEXT

[END OF LOOP]

Step 9: SET TEMP -> NEXT = NEW_NODE

Step 10C: SET NEW_NODE -> PREV = TEMP

Step 11: EXIT

Lab Exercise

#include<stdio.h>

#include<stdlib.h>

void insertlast(int);

struct node

{

int data;

struct node *next;

struct node *prev;

};

Lovely Professional University108

Unit 07: Doubly Linked Lists

Notes

struct node *head;

void main ()

{

int choice,item;

do

{

printf("\nEnter the item which you want to insert?\n");

scanf("%d",&item);

insertlast(item);

printf("\nPress 0 to insert more ?\n");

scanf("%d",&choice);

}while(choice == 0);

}

void insertlast(int item)

{

struct node *ptr = (struct node *) malloc(sizeof(struct node));

struct node *temp;

if(ptr == NULL)

{

printf("\nOVERFLOW");

}

else

{

ptr->data=item;

if(head == NULL)

{

ptr->next = NULL;

ptr->prev = NULL;

head = ptr;

}

else

{

temp = head;

while(temp->next!=NULL)

{

temp = temp->next;

}

temp->next = ptr;

Lovely Professional University 109

Data Structures

Notes

ptr ->prev=temp;

ptr->next = NULL;

}

printf("\nNode Inserted\n");

}

}

7.4 Deletion from Doubly Linked Lists
Deletion in a linked list occurs at three different positions:

1. Deletion at beginning
Deletion in doubly linked list at the beginning is the simplest operation. We just need to copy the
head pointer to pointer ptr and shift the head pointer to its next.

Ptr = head;

head = head → next;

now make the prev of this new head node point to NULL. This will be done by using the following
statements.

head → prev = NULL

Now free the pointer ptr by using the free function.

free(ptr)

Algorithm
STEP 1: IF HEAD = NULL

WRITE UNDERFLOW

GOTO STEP 6

STEP 2: SET PTR = HEAD

STEP 3: SET HEAD = HEAD → NEXT

STEP 4: SET HEAD → PREV = NULL

STEP 5: FREE PTR

STEP 6: EXIT

2. Deletion at the end
Deletion of the last node in a doubly linked list needs traversing the list in order to reach the last
node of the list and then make pointer adjustments at that position.

In order to delete the last node of the list, we need to follow the following steps.

 If the list is already empty then the condition head == NULL will become true and therefore
the operation cannot be carried on.

Lovely Professional University110

Unit 07: Doubly Linked Lists

Notes

 If there is only one node in the list then the condition head → next == NULL become true. In
this case, we just need to assign the head of the list to NULL and free head in order to
completely delete the list.

 Otherwise, just traverse the list to reach the last node of the list. This will be done by using
the following statements.

ptr = head;

if(ptr->next != NULL)

{

ptr = ptr ->next;

}

.

 The ptr would point to the last node of the ist at the end of the for loop. Just make the next
pointer of the previous node of ptr to NULL.

ptr → prev → next = NULL

free the pointer as this the node which is to be deleted.

free(ptr)

Algorithm

Step 1: IF HEAD = NULL
Write UNDERFLOW
Go to Step 7
[END OF IF]

Step 2: SET TEMP = HEAD
Step 3: REPEAT STEP 4 WHILE TEMP->NEXT != NULL
Step 4: SET TEMP = TEMP->NEXT
[END OF LOOP]

Step 5: SET TEMP ->PREV-> NEXT = NULL
Step 6: FREE TEMP

3. Deletion of the node having given data
In order to delete the node after the specified data, we need to perform the following steps.

Copy the head pointer into a temporary pointer temp.

temp = head

Traverse the list until we find the desired data value.

while(temp -> data != val)

Lovely Professional University 111

Data Structures

Notes

temp = temp ->next;

Check if this is the last node of the list. If it is so then we can't perform deletion.

if(temp -> next == NULL)

{

return;

}

Check if the node which is to be deleted, is the last node of the list, if it so then we have to make the
next pointer of this node point to null so that it can be the new last node of the list.

if(temp -> next -> next == NULL)

{

temp ->next = NULL;

}

Otherwise, make the pointer ptr point to the node which is to be deleted. Make the next of temp
point to the next of ptr. Make the previous of next node of ptr point to temp. free the ptr.

ptr = temp ->next;

temp -> next = ptr ->next;

ptr -> next ->prev = temp;

free(ptr);

Algorithm
Step 1: IF HEAD = NULL

Write UNDERFLOW

Go to Step 9

[END OF IF]

Step 2: SET TEMP = HEAD

Step 3: Repeat Step 4 while TEMP ->DATA != ITEM

Step 4: SET TEMP = TEMP -> NEXT

[END OF LOOP]

Step 5: SET PTR = TEMP -> NEXT

Step 6: SET TEMP -> NEXT = PTR -> NEXT

Step 7: SET PTR -> NEXT -> PREV = TEMP

Step 8: FREE PTR

Step 9: EXIT

Lab Exercise

#include<stdio.h>

#include<stdlib.h>

void create(int);

Data Structures

Notes

temp = temp ->next;

Check if this is the last node of the list. If it is so then we can't perform deletion.

if(temp -> next == NULL)

{

return;

}

Check if the node which is to be deleted, is the last node of the list, if it so then we have to make the
next pointer of this node point to null so that it can be the new last node of the list.

if(temp -> next -> next == NULL)

{

temp ->next = NULL;

}

Otherwise, make the pointer ptr point to the node which is to be deleted. Make the next of temp
point to the next of ptr. Make the previous of next node of ptr point to temp. free the ptr.

ptr = temp ->next;

temp -> next = ptr ->next;

ptr -> next ->prev = temp;

free(ptr);

Algorithm
Step 1: IF HEAD = NULL

Write UNDERFLOW

Go to Step 9

[END OF IF]

Step 2: SET TEMP = HEAD

Step 3: Repeat Step 4 while TEMP ->DATA != ITEM

Step 4: SET TEMP = TEMP -> NEXT

[END OF LOOP]

Step 5: SET PTR = TEMP -> NEXT

Step 6: SET TEMP -> NEXT = PTR -> NEXT

Step 7: SET PTR -> NEXT -> PREV = TEMP

Step 8: FREE PTR

Step 9: EXIT

Lab Exercise

#include<stdio.h>

#include<stdlib.h>

void create(int);

Data Structures

Notes

temp = temp ->next;

Check if this is the last node of the list. If it is so then we can't perform deletion.

if(temp -> next == NULL)

{

return;

}

Check if the node which is to be deleted, is the last node of the list, if it so then we have to make the
next pointer of this node point to null so that it can be the new last node of the list.

if(temp -> next -> next == NULL)

{

temp ->next = NULL;

}

Otherwise, make the pointer ptr point to the node which is to be deleted. Make the next of temp
point to the next of ptr. Make the previous of next node of ptr point to temp. free the ptr.

ptr = temp ->next;

temp -> next = ptr ->next;

ptr -> next ->prev = temp;

free(ptr);

Algorithm
Step 1: IF HEAD = NULL

Write UNDERFLOW

Go to Step 9

[END OF IF]

Step 2: SET TEMP = HEAD

Step 3: Repeat Step 4 while TEMP ->DATA != ITEM

Step 4: SET TEMP = TEMP -> NEXT

[END OF LOOP]

Step 5: SET PTR = TEMP -> NEXT

Step 6: SET TEMP -> NEXT = PTR -> NEXT

Step 7: SET PTR -> NEXT -> PREV = TEMP

Step 8: FREE PTR

Step 9: EXIT

Lab Exercise

#include<stdio.h>

#include<stdlib.h>

void create(int);

Lovely Professional University112

Unit 07: Doubly Linked Lists

Notes

void delete_specified();

struct node

{

int data;

struct node *next;

struct node *prev;

};

struct node *head;

void main ()

{

int choice,item;

do

{

printf("1.Append List\n2.Delete node\n3.Exit\n4.Enter your choice?");

scanf("%d",&choice);

switch(choice)

{

case 1:

printf("\nEnter the item\n");

scanf("%d",&item);

create(item);

break;

case 2:

delete_specified();

break;

case 3:

exit(0);

break;

default:

printf("\nPlease enter valid choice\n");

}

}while(choice != 3);

}

void create(int item)

{

struct node *ptr = (struct node *)malloc(sizeof(struct node));

if(ptr == NULL)

{

printf("\nOVERFLOW\n");

Lovely Professional University 113

Data Structures

Notes

}

else

{

if(head==NULL)

{

ptr->next = NULL;

ptr->prev=NULL;

ptr->data=item;

head=ptr;

}

else

{

ptr->data=item;

ptr->prev=NULL;

ptr->next = head;

head->prev=ptr;

head=ptr;

}

printf("\nNode Inserted\n");

}

}

void delete_specified()

{

struct node *ptr, *temp;

int val;

printf("Enter the value");

scanf("%d",&val);

temp = head;

while(temp -> data != val)

temp = temp ->next;

if(temp -> next == NULL)

{

printf("\nCan't delete\n");

}

else if(temp -> next -> next == NULL)

{

temp ->next = NULL;

printf("\nNode Deleted\n");

Lovely Professional University114

Unit 07: Doubly Linked Lists

Notes

}

else

{

ptr = temp ->next;

temp -> next = ptr ->next;

ptr -> next ->prev = temp;

free(ptr);

printf("\nNode Deleted\n");

}

}

7.5 Singly Linked List Vs Doubly Linked List
Singly Linked List Doubly Linked List
Each node consists of a data value and
a pointer to the next node.

Each node consists of a data value, a pointer to the next
node, and a pointer to the previous node.

Traversal can occur in one way only
(forward direction).

Traversal can occur in both ways.

It requires less space. It requires more space because of an extra pointer.
It can be implemented on the stack. It has multiple usages. It can be implemented on the

stack, heap, and binary tree.

7.6 Circular Linked List
In a circular singly linked list, the last node of the list contains a pointer to the first node of the list.
We can have circular singly linked list as well as circular doubly linked list.

We traverse a circular singly linked list until we reach the same node where we started. The circular
singly liked list has no beginning and no ending. There is no null value present in the next part of
any of the nodes.

The following image shows a circular singly linked list.

Unit 07: Doubly Linked Lists

Notes

}

else

{

ptr = temp ->next;

temp -> next = ptr ->next;

ptr -> next ->prev = temp;

free(ptr);

printf("\nNode Deleted\n");

}

}

7.5 Singly Linked List Vs Doubly Linked List
Singly Linked List Doubly Linked List
Each node consists of a data value and
a pointer to the next node.

Each node consists of a data value, a pointer to the next
node, and a pointer to the previous node.

Traversal can occur in one way only
(forward direction).

Traversal can occur in both ways.

It requires less space. It requires more space because of an extra pointer.
It can be implemented on the stack. It has multiple usages. It can be implemented on the

stack, heap, and binary tree.

7.6 Circular Linked List
In a circular singly linked list, the last node of the list contains a pointer to the first node of the list.
We can have circular singly linked list as well as circular doubly linked list.

We traverse a circular singly linked list until we reach the same node where we started. The circular
singly liked list has no beginning and no ending. There is no null value present in the next part of
any of the nodes.

The following image shows a circular singly linked list.

Unit 07: Doubly Linked Lists

Notes

}

else

{

ptr = temp ->next;

temp -> next = ptr ->next;

ptr -> next ->prev = temp;

free(ptr);

printf("\nNode Deleted\n");

}

}

7.5 Singly Linked List Vs Doubly Linked List
Singly Linked List Doubly Linked List
Each node consists of a data value and
a pointer to the next node.

Each node consists of a data value, a pointer to the next
node, and a pointer to the previous node.

Traversal can occur in one way only
(forward direction).

Traversal can occur in both ways.

It requires less space. It requires more space because of an extra pointer.
It can be implemented on the stack. It has multiple usages. It can be implemented on the

stack, heap, and binary tree.

7.6 Circular Linked List
In a circular singly linked list, the last node of the list contains a pointer to the first node of the list.
We can have circular singly linked list as well as circular doubly linked list.

We traverse a circular singly linked list until we reach the same node where we started. The circular
singly liked list has no beginning and no ending. There is no null value present in the next part of
any of the nodes.

The following image shows a circular singly linked list.

Lovely Professional University 115

Data Structures

Notes

Following operations performed on circular linked list

Lab Exercise

#include<stdio.h>

#include<stdlib.h>

struct node

{

int data;

struct node *next;

};

struct node *head;

void beginsert ();

void lastinsert ();

void randominsert();

void begin_delete();

void last_delete();

void random_delete();

void display();

void search();

void main ()

{

int choice =0;

while(choice != 7)

{

printf("\n*********Main Menu*********\n");

printf("\nChoose one option from the following list ...\n");

printf("\n===\n");

printf("\n1.Insert in begining\n2.Insert at last\n3.Delete from Beginning\n4.Delete from
last\n5.Search for an element\n6.Show\n7.Exit\n");

printf("\nEnter your choice?\n");

scanf("\n%d",&choice);

switch(choice)

{

case 1:

beginsert();

break;

case 2:

lastinsert();

break;

Data Structures

Notes

Following operations performed on circular linked list

Lab Exercise

#include<stdio.h>

#include<stdlib.h>

struct node

{

int data;

struct node *next;

};

struct node *head;

void beginsert ();

void lastinsert ();

void randominsert();

void begin_delete();

void last_delete();

void random_delete();

void display();

void search();

void main ()

{

int choice =0;

while(choice != 7)

{

printf("\n*********Main Menu*********\n");

printf("\nChoose one option from the following list ...\n");

printf("\n===\n");

printf("\n1.Insert in begining\n2.Insert at last\n3.Delete from Beginning\n4.Delete from
last\n5.Search for an element\n6.Show\n7.Exit\n");

printf("\nEnter your choice?\n");

scanf("\n%d",&choice);

switch(choice)

{

case 1:

beginsert();

break;

case 2:

lastinsert();

break;

Data Structures

Notes

Following operations performed on circular linked list

Lab Exercise

#include<stdio.h>

#include<stdlib.h>

struct node

{

int data;

struct node *next;

};

struct node *head;

void beginsert ();

void lastinsert ();

void randominsert();

void begin_delete();

void last_delete();

void random_delete();

void display();

void search();

void main ()

{

int choice =0;

while(choice != 7)

{

printf("\n*********Main Menu*********\n");

printf("\nChoose one option from the following list ...\n");

printf("\n===\n");

printf("\n1.Insert in begining\n2.Insert at last\n3.Delete from Beginning\n4.Delete from
last\n5.Search for an element\n6.Show\n7.Exit\n");

printf("\nEnter your choice?\n");

scanf("\n%d",&choice);

switch(choice)

{

case 1:

beginsert();

break;

case 2:

lastinsert();

break;

Lovely Professional University116

Unit 07: Doubly Linked Lists

Notes

case 3:

begin_delete();

break;

case 4:

last_delete();

break;

case 5:

search();

break;

case 6:

display();

break;

case 7:

exit(0);

break;

default:

printf("Please enter valid choice..");

}

}

}

void beginsert()

{

struct node *ptr,*temp;

int item;

ptr = (struct node *)malloc(sizeof(struct node));

if(ptr == NULL)

{

printf("\nOVERFLOW");

}

else

{

printf("\nEnter the node data?");

scanf("%d",&item);

ptr -> data = item;

if(head == NULL)

{

head = ptr;

ptr -> next = head;

}

else

Lovely Professional University 117

Data Structures

Notes

{

temp = head;

while(temp->next != head)

temp = temp->next;

ptr->next = head;

temp -> next = ptr;

head = ptr;

}

printf("\nnode inserted\n");

}

}

void lastinsert()

{

struct node *ptr,*temp;

int item;

ptr = (struct node *)malloc(sizeof(struct node));

if(ptr == NULL)

{

printf("\nOVERFLOW\n");

}

else

{

printf("\nEnter Data?");

scanf("%d",&item);

ptr->data = item;

if(head == NULL)

{

head = ptr;

ptr -> next = head;

}

else

{

temp = head;

while(temp -> next != head)

{

temp = temp ->next;

}

temp -> next = ptr;

ptr -> next = head;

Lovely Professional University118

Unit 07: Doubly Linked Lists

Notes

}

printf("\nnode inserted\n");

}

}

void begin_delete()

{

struct node *ptr;

if(head == NULL)

{

printf("\nUNDERFLOW");

}

else if(head->next == head)

{

head = NULL;

free(head);

printf("\nnode deleted\n");

}

else

{ ptr = head;

while(ptr -> next != head)

ptr = ptr ->next;

ptr->next = head->next;

free(head);

head = ptr->next;

printf("\nnode deleted\n");

}

}

void last_delete()

{

struct node *ptr, *preptr;

if(head==NULL)

{

printf("\nUNDERFLOW");

}

else if (head ->next == head)

Lovely Professional University 119

Data Structures

Notes

{

head = NULL;

free(head);

printf("\nnode deleted\n");

}

else

{

ptr = head;

while(ptr ->next != head)

{

preptr=ptr;

ptr = ptr->next;

}

preptr->next = ptr ->next;

free(ptr);

printf("\nnode deleted\n");

}

}

void search()

{

struct node *ptr;

int item,i=0,flag=1;

ptr = head;

if(ptr == NULL)

{

printf("\nEmpty List\n");

}

else

{

printf("\nEnter item which you want to search?\n");

scanf("%d",&item);

if(head ->data == item)

{

printf("item found at location %d",i+1);

flag=0;

}

else

Lovely Professional University120

Unit 07: Doubly Linked Lists

Notes

{

while (ptr->next != head)

{

if(ptr->data == item)

{

printf("item found at location %d ",i+1);

flag=0;

break;

}

else

{

flag=1;

}

i++;

ptr = ptr ->next;

}

}

if(flag != 0)

{

printf("Item not found\n");

}

}

}

void display()

{

struct node *ptr;

ptr=head;

if(head == NULL)

{

printf("\nnothing to print");

}

else

{

printf("\n printing values ... \n");

while(ptr -> next != head)

{

Lovely Professional University 121

Data Structures

Notes

printf("%d\n", ptr -> data);

ptr = ptr ->next;

}

printf("%d\n", ptr -> data);

}

}

Summary

 Linked list is a technique of dynamically implementing a list using pointers. A linked list
contains two fields namely, data field and link field.

 A singly-linked list consists of only one pointer to point to another node and the last node
always points to NULL to indicate the end of the list.

 A doubly-linked list consists of two pointers, one to point to the next node and the other to
point to the previous node.

 In a circular singly-linked list, the last node always points to the first node to indicate the
circular nature of the list.

 A circular doubly-linked list consists of two pointers for forward and backward traversal and
the last node points to the first node.

 Searching operation involves searching for a specific element in the list using an associated
key.

 Insertion operation involves inserting a node at the beginning or end of a list.
 Deletion operation involves deleting a node at the beginning or following a given node or at

the end of a list.

Keywords
Non-linear Data Structure: Every data item is attached to several other data items in a way
thatis specific for reflecting relationships. The data items are not arranged in a sequential structure.

Searching: Finding the location of the record with a given key value, or finding the locations ofall
records, which satisfy one or more conditions.

Traversing: Accessing each record exactly once so that certain items in the record may
beprocessed.

Circular Linked List: A linear linked list in which the last element points to the fi rst element,
thus,forming a circle.

Doubly Linked List: A linear linked list in which each element is connected to the two
nearestelements through pointers.

SelfAssessment

1. Which of the following statements about a doubly linked list is not correct?
A. We can navigate in both the directions
B. It requires more space than a singly linked list
C. The insertion and deletion of a node take a bit longer
D. None of above

Lovely Professional University122

Unit 07: Doubly Linked Lists

Notes

2. What is a memory efficient double linked list?
A. Each node has only one pointer to traverse the list back and forth
B. The list has breakpoints for faster traversal
C. An auxiliary singly linked list acts as a helper list to traverse through the doubly linked list
D. A doubly linked list that uses bitwise AND operator for storing addresses

3. Traversing doubly linked list refer to visit each element of list.
A. True
B. False

4. In doubly linked lists, traversal can be performed?
A. Only in forward direction
B. Only in reverse direction
C. In both directions
D. None of the above

5. What is the worst case time complexity of inserting a node in a doubly linked list?
A. O(nlogn)
B. O(logn)
C. O(n)
D. O(1)

6. What is the functionality of following code

public class insertFront(int data)

{

Node node = new Node(data, head, head.getNext());

node.getNext().setPrev(node);

head.setNext(node);

size++;

}

A. Insert a node at the beginning of the list
B. Delete Node
C. Traverse List
D. None of above

7. Insertion into doubly linked list is
A. Insert new node
B. Insert USB stick into CPU
C. All of above
D. None of above

8. Which of the following operations does a doubly linked list execute more efficiently than a
singly linked list?

A. Deleting a node whose location in given
B. Searching of an unsorted list for a given item
C. Inverting a node after the node with given location
D. Traversing a list to process each node

Lovely Professional University 123

Data Structures

Notes

9. Deletion at the beginning in the doubly linked list is possible.
A. True
B. False

10. Which of the following basic operation of doubly linked list is responsible for delete element
from list?

A. Insert a node
B. Insert node at end
C. Delete a node
D. None of above

11. Deletion at the given position in the doubly linked list is possible.
A. True
B. False

12. Is there a linked list version in which the list's last node points to the list's beginning node?
A. Singly linked list
B. Doubly linked list
C. Circular linked list
D. Multiply linked list

13. In circular linked list, insertion of node requires modification of?
A. One pointer
B. Two pointer
C. Three pointer
D. Requires no modification

14. A variant of the linked list in which none of the node contains NULL pointer is?
A. Singly linked list
B. Doubly linked list
C. Circular linked list
D. None of the above

15. Which of the following are disadvantages of circular linked list?
A. Depending on the implementation, inserting at start of the list would require doing a search

for last node which could be expensive.
B. Finding the end of the list and loop control is harder (no NULL’s to mark the beginning and

end).
C. All of above
D. None of above

Answers for Self Assessment

1. D 2. A 3. A 4. C 5. C

6. A 7. A 8. A 9. A 10. C

11. A 12. C 13. B 14. C 15. C

Review Questions

1. Define circular linked list.
2. Give an example of doubly linked list.

Lovely Professional University124

Unit 07: Doubly Linked Lists

Notes

3. Discuss any two operations on doubly linked list.
4. Discuss different delete operation of doubly linked.
5. Write a program to traverse doubly linked list.
6. Differentiate between singly linked list and doubly linked list.
7. Write a program to delete element from a doubly linked list.

Further Readings
Books Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson Education,
Year of Publication, 2008

Lipschutz. Seymour. Data Structures with C. Delhi: Tata McGraw Hill

Reddy.A.M Padma (2006). Data Structures Using C. Bangalore: Sri Nandi Publications

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett, 1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

YashvantKanetkar, Let us C

Web Links
https://www.studytonight.com/data-structures/doubly-linked-list

https://www.tutorialspoint.com/data_structures_algorithms/linked_list_algorithms.htm

Unit 07: Doubly Linked Lists

Notes

3. Discuss any two operations on doubly linked list.
4. Discuss different delete operation of doubly linked.
5. Write a program to traverse doubly linked list.
6. Differentiate between singly linked list and doubly linked list.
7. Write a program to delete element from a doubly linked list.

Further Readings
Books Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson Education,
Year of Publication, 2008

Lipschutz. Seymour. Data Structures with C. Delhi: Tata McGraw Hill

Reddy.A.M Padma (2006). Data Structures Using C. Bangalore: Sri Nandi Publications

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett, 1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

YashvantKanetkar, Let us C

Web Links
https://www.studytonight.com/data-structures/doubly-linked-list

https://www.tutorialspoint.com/data_structures_algorithms/linked_list_algorithms.htm

Unit 07: Doubly Linked Lists

Notes

3. Discuss any two operations on doubly linked list.
4. Discuss different delete operation of doubly linked.
5. Write a program to traverse doubly linked list.
6. Differentiate between singly linked list and doubly linked list.
7. Write a program to delete element from a doubly linked list.

Further Readings
Books Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson Education,
Year of Publication, 2008

Lipschutz. Seymour. Data Structures with C. Delhi: Tata McGraw Hill

Reddy.A.M Padma (2006). Data Structures Using C. Bangalore: Sri Nandi Publications

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett, 1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

YashvantKanetkar, Let us C

Web Links
https://www.studytonight.com/data-structures/doubly-linked-list

https://www.tutorialspoint.com/data_structures_algorithms/linked_list_algorithms.htm

Lovely Professional University 125

Unit 08: Introduction to Stacks

Notes

Unit 08: Introduction to Stacks

CONTENTS

Objectives

Introduction

8.1 Stack Structure

8.2 Implementation of Stacks

8.3 Applications of Stacks

8.4 Tower of Hanoi

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to:

• Learn fundamentals of stacks
• Explain the basic operations of stack
• Explain the implementation and applications of stacks

Introduction
Stacks are simple data structures and an important tool in programming language. Stacks are linear
lists which have restrictions on the insertion and deletion operations. These are special cases of
ordered list in which insertion and deletion is done only at the ends.

The basic operations performed on stack are push and pop. Stack implementation can be done in
two ways - static implementation or dynamic implementation. Stack can be represented in the
memory using a one-dimensional array or a singly linked list.

Stack is another linear data structure having a very interesting property. Unlike arrays and link
lists, an element can be inserted and deleted not at any arbitrary position but only at one end. Thus,
one end of a stack is sealed for insertion and deletion while the other end allows both the
operations.

8.1 Stack Structure
The stack data structure is used to maintain records of a file in which the order among the records
of file is not important. Figure 7.1 displays the structure of a stack where stack is like a hollow
cylinder with a closed bottom end and an open top end. In the stack data structure, the records are
added and deleted at the top end. Last-In-First-Out (LIFO) principle is followed to retrieve records
from the stack. The records added last are accessed first.

A stack is a linear data structure in as much as its member elements are ordered as 1st, 2nd,…. and
last. However, an element can be inserted in and deleted from only one end. The other end remains
sealed. This open end to which elements can be inserted and deleted from is called stack top or top
of the stack. Consequently, the elements are removed from a stack in the reverse order of insertion.

Lovely Professional University126

Dr. Prikshat Kumar Angra, Lovely Professional University

Data Structures

Notes

A stack is said to possess LIFO (Last In First Out) property. A data structure has LIFO property if
the element that can be retrieved first is the one that was inserted last.

Basic Operations of Stack
The basic operations of stack are to:

1. Insert an element in the stack (Push operation)

2. Delete an element from the stack (Pop operation)

Push Operation

The procedure to insert a new element to the stack is called push operation. The push operation
adds an element on the top of the stack. ‘Top’ refers to the element on the top of stack. Push makes
the ‘Top’ point to the recently added element on the stack. After every push operation, the ’Top’ is
incremented by one. When the array is full, the status of stack is FULL and the condition is called
stack overflow. No element can be inserted when the stack is full

Algorithm to Implement Push Operation on Stack

PUSH (STACK, n, top, item) /* n = size of stack*/

if (top = n) then STACK_FULL; /* checks for stack overflow */

else

{ top = top+1; /* increases the top by 1 */

STACK [top] = item ;} /* inserts item in the new top position */

end PUSH

Pop Operation

The procedure to delete an element from the top of the stack is called pop operation. After every
pop operation, the ‘Top’ is decremented by one. When there is no element in the stack, the status of
the stack is called empty stack or stack underflow. The pop operation cannot be performed when it
is in stack underflow condition.

Algorithm to Implement Pop Operation in a Stack

POP (STACK, top, item)

if (top = 0) then STACK_EMPTY; /* check for stack underflow*/

else { item = STACK [top]; /* remove top element*/

top = top – 1; /* decrement stack top*/

}

end POP

Data Structures

Notes

A stack is said to possess LIFO (Last In First Out) property. A data structure has LIFO property if
the element that can be retrieved first is the one that was inserted last.

Basic Operations of Stack
The basic operations of stack are to:

1. Insert an element in the stack (Push operation)

2. Delete an element from the stack (Pop operation)

Push Operation

The procedure to insert a new element to the stack is called push operation. The push operation
adds an element on the top of the stack. ‘Top’ refers to the element on the top of stack. Push makes
the ‘Top’ point to the recently added element on the stack. After every push operation, the ’Top’ is
incremented by one. When the array is full, the status of stack is FULL and the condition is called
stack overflow. No element can be inserted when the stack is full

Algorithm to Implement Push Operation on Stack

PUSH (STACK, n, top, item) /* n = size of stack*/

if (top = n) then STACK_FULL; /* checks for stack overflow */

else

{ top = top+1; /* increases the top by 1 */

STACK [top] = item ;} /* inserts item in the new top position */

end PUSH

Pop Operation

The procedure to delete an element from the top of the stack is called pop operation. After every
pop operation, the ‘Top’ is decremented by one. When there is no element in the stack, the status of
the stack is called empty stack or stack underflow. The pop operation cannot be performed when it
is in stack underflow condition.

Algorithm to Implement Pop Operation in a Stack

POP (STACK, top, item)

if (top = 0) then STACK_EMPTY; /* check for stack underflow*/

else { item = STACK [top]; /* remove top element*/

top = top – 1; /* decrement stack top*/

}

end POP

Data Structures

Notes

A stack is said to possess LIFO (Last In First Out) property. A data structure has LIFO property if
the element that can be retrieved first is the one that was inserted last.

Basic Operations of Stack
The basic operations of stack are to:

1. Insert an element in the stack (Push operation)

2. Delete an element from the stack (Pop operation)

Push Operation

The procedure to insert a new element to the stack is called push operation. The push operation
adds an element on the top of the stack. ‘Top’ refers to the element on the top of stack. Push makes
the ‘Top’ point to the recently added element on the stack. After every push operation, the ’Top’ is
incremented by one. When the array is full, the status of stack is FULL and the condition is called
stack overflow. No element can be inserted when the stack is full

Algorithm to Implement Push Operation on Stack

PUSH (STACK, n, top, item) /* n = size of stack*/

if (top = n) then STACK_FULL; /* checks for stack overflow */

else

{ top = top+1; /* increases the top by 1 */

STACK [top] = item ;} /* inserts item in the new top position */

end PUSH

Pop Operation

The procedure to delete an element from the top of the stack is called pop operation. After every
pop operation, the ‘Top’ is decremented by one. When there is no element in the stack, the status of
the stack is called empty stack or stack underflow. The pop operation cannot be performed when it
is in stack underflow condition.

Algorithm to Implement Pop Operation in a Stack

POP (STACK, top, item)

if (top = 0) then STACK_EMPTY; /* check for stack underflow*/

else { item = STACK [top]; /* remove top element*/

top = top – 1; /* decrement stack top*/

}

end POP

Lovely Professional University 127

Unit 08: Introduction to Stacks

Notes

8.2 Implementation of Stacks
There are two basic methods for the implementation of stacks – one where the memory is used
statically and the other where the memory is used dynamically.

Array-based Implementation

A stack is a sequence of data elements. To implement a stack structure, an array can be used as it is
a storage structure. Each element of the stack occupies one array element. Static implementation of
stack can be achieved using arrays. The size of the array, once declared, cannot be changed during
the program execution. Memory is allocated according to the array size. The memory requirement
is determined before the compilation. The compiler provides the required memory. This is suitable
when the exact number of elements is known. The static allocation is an inefficient memory
allocation technique because if fewer elements are stored than declared, the memory is wasted and
if more elements need to be stored than declared, the array cannot expand. In both the cases, there
is inefficient use of memory.

The following pseudo-code shows the array-based implementation of a stack. In this, the elements
of the stack are of type T.

struct stk

{ T array[max_size];

/* max_size is the maximum size */

int top = -1;

/* stack top initially given value -1 */

} stack;

void push(T e)

/*inserts an element e into the stack s*/

{

if (stack.top == max_size)

printf(“Stack is full-insertion not possible”);

else

{

stack.top = stack.top + 1;

stack.array[stack.top] = e;

}

}

T pop()

/*Returns the top element from the stack */

{

T x;

if(stack.top == -1)

printf(“Stack is empty”);

else

{

x = stack.array[stack.top];

stack.top = stack.top - l;

return(x);

}

Lovely Professional University128

Data Structures

Notes

}

booleanempty()

/* checks if the stack is empty * /

{

boolean empty = false;

if(stack.top == -1)

empty = true else empty = false;

return(empty);

}

void initialise()

/* This procedure initializes the stack s * /

{

stack.top = -1;

}

The above implementation strategy is easy and fast since it does not have run-time overheads. At
the same time it is not flexible since it cannot handle a situation when the number of elements
exceeds max_size. Also, let us say, if max_size is derided statically to 100 and a stack actually has
only 10 elements, then memory space for the rest of the 90 elements would be wasted.

Linked List Representation of Stacks

The array representation of stacks is easy and convenient. However, it allows the representation of
only fixed sized stacks. The size of the stack varies during program application for different
applications. Representing stack using linked list can solve this problem. A singly linked list can be
used to represent any stack. In a singly linked list, the data field represents the ITEM and the LINK
field points to the next item.

In linked list implementation of the stack, we need to create nodes and the nodes are maintained
non-contiguously in the memory. Each node contains a pointer to its immediate successor node in
the stack. Stack is said to be overflown if the space left in the memory heap is not enough to create a
node.

Here the memory is used dynamically. For every push operation, the memory space for one
element is allocated at run-time and the element is inserted into the stack. For every pop operation,
the memory space for the deleted element is de-allocated and returned to the free space pool.
Hence the shortcomings of the array-based implementation are overcome. But since, this allocates
memory dynamically, the execution is slowed down.

The following pseudo-code is for the pointer-based implementation of a stack. Each element of the
stack is of type T.

Data Structures

Notes

}

booleanempty()

/* checks if the stack is empty * /

{

boolean empty = false;

if(stack.top == -1)

empty = true else empty = false;

return(empty);

}

void initialise()

/* This procedure initializes the stack s * /

{

stack.top = -1;

}

The above implementation strategy is easy and fast since it does not have run-time overheads. At
the same time it is not flexible since it cannot handle a situation when the number of elements
exceeds max_size. Also, let us say, if max_size is derided statically to 100 and a stack actually has
only 10 elements, then memory space for the rest of the 90 elements would be wasted.

Linked List Representation of Stacks

The array representation of stacks is easy and convenient. However, it allows the representation of
only fixed sized stacks. The size of the stack varies during program application for different
applications. Representing stack using linked list can solve this problem. A singly linked list can be
used to represent any stack. In a singly linked list, the data field represents the ITEM and the LINK
field points to the next item.

In linked list implementation of the stack, we need to create nodes and the nodes are maintained
non-contiguously in the memory. Each node contains a pointer to its immediate successor node in
the stack. Stack is said to be overflown if the space left in the memory heap is not enough to create a
node.

Here the memory is used dynamically. For every push operation, the memory space for one
element is allocated at run-time and the element is inserted into the stack. For every pop operation,
the memory space for the deleted element is de-allocated and returned to the free space pool.
Hence the shortcomings of the array-based implementation are overcome. But since, this allocates
memory dynamically, the execution is slowed down.

The following pseudo-code is for the pointer-based implementation of a stack. Each element of the
stack is of type T.

Data Structures

Notes

}

booleanempty()

/* checks if the stack is empty * /

{

boolean empty = false;

if(stack.top == -1)

empty = true else empty = false;

return(empty);

}

void initialise()

/* This procedure initializes the stack s * /

{

stack.top = -1;

}

The above implementation strategy is easy and fast since it does not have run-time overheads. At
the same time it is not flexible since it cannot handle a situation when the number of elements
exceeds max_size. Also, let us say, if max_size is derided statically to 100 and a stack actually has
only 10 elements, then memory space for the rest of the 90 elements would be wasted.

Linked List Representation of Stacks

The array representation of stacks is easy and convenient. However, it allows the representation of
only fixed sized stacks. The size of the stack varies during program application for different
applications. Representing stack using linked list can solve this problem. A singly linked list can be
used to represent any stack. In a singly linked list, the data field represents the ITEM and the LINK
field points to the next item.

In linked list implementation of the stack, we need to create nodes and the nodes are maintained
non-contiguously in the memory. Each node contains a pointer to its immediate successor node in
the stack. Stack is said to be overflown if the space left in the memory heap is not enough to create a
node.

Here the memory is used dynamically. For every push operation, the memory space for one
element is allocated at run-time and the element is inserted into the stack. For every pop operation,
the memory space for the deleted element is de-allocated and returned to the free space pool.
Hence the shortcomings of the array-based implementation are overcome. But since, this allocates
memory dynamically, the execution is slowed down.

The following pseudo-code is for the pointer-based implementation of a stack. Each element of the
stack is of type T.

Lovely Professional University 129

Unit 08: Introduction to Stacks

Notes

struct stk

{

T element;

struct stk *next;

};

struct stk *stack;

void push(struct stk *p, T e)

{

struct stk *x;

x = new(stk);

x.element = e;

x.next = NULL;

p = x;

}

Here the stack full condition is checked by the call to new which would give an error if no memory

space could be allocated.

T pop(struct stk *p)

{

struct stk *x;

if (p == NULL)

printf(“Stack is empty”);

else

{ x = p;

x = x.next;

return(p.element);

}

booleanempty(sstructstk *p)

{

if (p == NULL)

return(true);

else

return(false);

}

void initialize(struct stk *p)

{

p = NULL;

}

8.3 Applications of Stacks
There are numerous applications of the stack data structure in computer algorithms. It is used to
store return information in the case of function/procedure/subroutine calls. Hence, one would find

Lovely Professional University130

Data Structures

Notes

a stack in architecture of any Central Processing Unit (CPU). In this section, we would just illustrate
a few of them.

Expression Evaluation and Conversion

Parenthesis Checking

Backtracking

Function Call

String Reversal

Memory Management

Syntax Parsing

Parenthesis checker

Parenthesis checker is used for balanced Brackets in an expression. The balanced parenthesis means
that when the opening parenthesis is equal to the closing parenthesis, then it is a balanced
parenthesis.

(a+b*(c/d))

[10+20*(6+7)]

(x+y)/(c-d)

Balanced parenthesis
A = (50+25)

In the above expression there is one opening and one closing parenthesis means that both opening
and closing brackets are equal; therefore, the above expression is a balanced parenthesis.

Unbalanced parenthesis
A= [(15+25)

The above expression has two opening brackets and one closing bracket, which means that both
opening and closing brackets are not equal; therefore, the above expression is unbalanced.

Algorithm

 Initialize a character stack.
 Now traverse the expression string exp.
 If the current character is a starting bracket (‘(‘ or ‘{‘ or ‘[‘) then push it to stack.
 If the current character is a closing bracket (‘)’ or ‘}’ or ‘]’) then pop from stack and if the

popped character is the matching starting bracket then balanced else brackets are not
balanced.

 After complete traversal, if there is some starting bracket left in stack then not balanced

Expression conversion and evaluation
Arithmetic expressions can be represented in 3 forms:

• Infix notation
• Postfix notation (Reverse Polish Notation)
• Prefix notation (Polish Notation)

Infix Notation
Infix Notation can be represented as:

Lovely Professional University 131

Unit 08: Introduction to Stacks

Notes

operand1 operator operand1

Example: 15 + 26

a + b

Postfix Notation
Postfix Notation can be represented as

operand1 operand2 operator

Example: 15 29 +

a b +

Prefix notation
Prefix notation can be represented as

operator operand1 operand2

Example: + 10 20

+ a b

Infix notation is used most frequently in our day to day tasks. Machines find infix notations
tougher to process than prefix/postfix notations. Hence, compilers convert infix notations to
prefix/postfix before the expression is evaluated.

The precedence of operators needs to be taken care as per hierarchy

(^) > (*) > (/) > (+) > (-)

Brackets have the highest priority.

To evaluate an infix expression, We need to perform 2 steps:

 Convert infix to postfix
 Evaluate postfix

Task: Write a program that demonstrate working of PUSH and POP operation.

Sorting
A Sorting process is used to rearrange a given array or elements based upon selected algorithm/
sort function.

Quick Sort is used for sorting a list of data elements.Quicksort is a sorting algorithm based on the
divide and conquer approach.An array is divided into subarrays by selecting a pivot
element.During array dividing, the pivot element should be positioned in such a way that elements
less than pivot are kept on the left side and elements greater than pivot are on the right side of the
pivot.The left and right subarrays are also divided using the same approach. This process continues
until each subarray contains a single element

There are many different versions of quick Sort that pick pivot in different ways.

Always pick first element as pivot.

Unit 08: Introduction to Stacks

Notes

operand1 operator operand1

Example: 15 + 26

a + b

Postfix Notation
Postfix Notation can be represented as

operand1 operand2 operator

Example: 15 29 +

a b +

Prefix notation
Prefix notation can be represented as

operator operand1 operand2

Example: + 10 20

+ a b

Infix notation is used most frequently in our day to day tasks. Machines find infix notations
tougher to process than prefix/postfix notations. Hence, compilers convert infix notations to
prefix/postfix before the expression is evaluated.

The precedence of operators needs to be taken care as per hierarchy

(^) > (*) > (/) > (+) > (-)

Brackets have the highest priority.

To evaluate an infix expression, We need to perform 2 steps:

 Convert infix to postfix
 Evaluate postfix

Task: Write a program that demonstrate working of PUSH and POP operation.

Sorting
A Sorting process is used to rearrange a given array or elements based upon selected algorithm/
sort function.

Quick Sort is used for sorting a list of data elements.Quicksort is a sorting algorithm based on the
divide and conquer approach.An array is divided into subarrays by selecting a pivot
element.During array dividing, the pivot element should be positioned in such a way that elements
less than pivot are kept on the left side and elements greater than pivot are on the right side of the
pivot.The left and right subarrays are also divided using the same approach. This process continues
until each subarray contains a single element

There are many different versions of quick Sort that pick pivot in different ways.

Always pick first element as pivot.

Unit 08: Introduction to Stacks

Notes

operand1 operator operand1

Example: 15 + 26

a + b

Postfix Notation
Postfix Notation can be represented as

operand1 operand2 operator

Example: 15 29 +

a b +

Prefix notation
Prefix notation can be represented as

operator operand1 operand2

Example: + 10 20

+ a b

Infix notation is used most frequently in our day to day tasks. Machines find infix notations
tougher to process than prefix/postfix notations. Hence, compilers convert infix notations to
prefix/postfix before the expression is evaluated.

The precedence of operators needs to be taken care as per hierarchy

(^) > (*) > (/) > (+) > (-)

Brackets have the highest priority.

To evaluate an infix expression, We need to perform 2 steps:

 Convert infix to postfix
 Evaluate postfix

Task: Write a program that demonstrate working of PUSH and POP operation.

Sorting
A Sorting process is used to rearrange a given array or elements based upon selected algorithm/
sort function.

Quick Sort is used for sorting a list of data elements.Quicksort is a sorting algorithm based on the
divide and conquer approach.An array is divided into subarrays by selecting a pivot
element.During array dividing, the pivot element should be positioned in such a way that elements
less than pivot are kept on the left side and elements greater than pivot are on the right side of the
pivot.The left and right subarrays are also divided using the same approach. This process continues
until each subarray contains a single element

There are many different versions of quick Sort that pick pivot in different ways.

Always pick first element as pivot.

Lovely Professional University132

Data Structures

Notes

Always pick last element as pivot

Pick a random element as pivot.

Pick median as pivot.

Algorithm
quickSort(arr, beg, end)

if (beg < end)

pivotIndex = partition(arr,beg, end)

quickSort(arr, beg, pivotIndex)

quickSort(arr, pivotIndex + 1, end)

partition(arr, beg, end)

set end as pivotIndex

pIndex = beg - 1

for i = beg to end-1

if arr[i] < pivot

swap arr[i] and arr[pIndex]

pIndex++

swap pivot and arr[pIndex+1]

return pIndex + 1

8.4 Tower of Hanoi
The Tower of Hanoi, is a mathematical problem which consists of three rods and multiple
disks.Initially, all the disks are placed on one rod, one over the other in ascending order of size
similar to a cone-shaped tower.

The objective of this problem is to move the stack of disks from the source to destination, following
these rules:

1. Only one disk can be moved at a time.

2. Only the top disk can be removed.

3. No large disk can sit over a small disk.

Data Structures

Notes

Always pick last element as pivot

Pick a random element as pivot.

Pick median as pivot.

Algorithm
quickSort(arr, beg, end)

if (beg < end)

pivotIndex = partition(arr,beg, end)

quickSort(arr, beg, pivotIndex)

quickSort(arr, pivotIndex + 1, end)

partition(arr, beg, end)

set end as pivotIndex

pIndex = beg - 1

for i = beg to end-1

if arr[i] < pivot

swap arr[i] and arr[pIndex]

pIndex++

swap pivot and arr[pIndex+1]

return pIndex + 1

8.4 Tower of Hanoi
The Tower of Hanoi, is a mathematical problem which consists of three rods and multiple
disks.Initially, all the disks are placed on one rod, one over the other in ascending order of size
similar to a cone-shaped tower.

The objective of this problem is to move the stack of disks from the source to destination, following
these rules:

1. Only one disk can be moved at a time.

2. Only the top disk can be removed.

3. No large disk can sit over a small disk.

Data Structures

Notes

Always pick last element as pivot

Pick a random element as pivot.

Pick median as pivot.

Algorithm
quickSort(arr, beg, end)

if (beg < end)

pivotIndex = partition(arr,beg, end)

quickSort(arr, beg, pivotIndex)

quickSort(arr, pivotIndex + 1, end)

partition(arr, beg, end)

set end as pivotIndex

pIndex = beg - 1

for i = beg to end-1

if arr[i] < pivot

swap arr[i] and arr[pIndex]

pIndex++

swap pivot and arr[pIndex+1]

return pIndex + 1

8.4 Tower of Hanoi
The Tower of Hanoi, is a mathematical problem which consists of three rods and multiple
disks.Initially, all the disks are placed on one rod, one over the other in ascending order of size
similar to a cone-shaped tower.

The objective of this problem is to move the stack of disks from the source to destination, following
these rules:

1. Only one disk can be moved at a time.

2. Only the top disk can be removed.

3. No large disk can sit over a small disk.

Lovely Professional University 133

Unit 08: Introduction to Stacks

Notes

Unit 08: Introduction to Stacks

Notes

Unit 08: Introduction to Stacks

Notes

Lovely Professional University134

Data Structures

Notes

Iterative Algorithm
1. At First Calculate the number of moves required i.e. "pow(2,n) - 1" where "n" is number of discs.

2. If the number of discs i.e n is even then swap Destination Rod and Auxiliary Rod.

3. for i = 1 upto number of moves:

Check if "i mod 3" == 1:

Perform Movement of top disc between Source Rod and Destination Rod.

Check if "i mod 3" == 2:

Perform Movement of top disc between Source Rod and Auxiliary Rod.

Check if "i mod 3" == 0:

Perform Movement of top disc between Auxiliary Rod and Destination Rod.

Simulating Recursive Function using Stack
A recursive solution to a problem is often more expensive than a non-recursive solution, both in
terms of time and space. Frequently, this expense is a small price to pay for the logical simplicity
and self-documentation of the recursive solution. However, in a production program (such as a
compiler, for example) that may be run thousands of times, the recurrent expense is a heavy burden
on the system’s limited resources.

Thus, a program may be designed to incorporate a recursive solution in order to reduce the expense
of design and certification, and then carefully converted to a non-recursive version to be put into
actual day-to-day use. As we shall see, in performing such as conversion it is often possible to
identify parts of the implementation of recursion that are superfluous in a particular application
and thereby significantly reduce the amount of work that the program must perform.

Suppose that we have the statement

rout (x); where route is defi ned as a function by the header

rout(a); x is referred to as an argument (of the calling function), and a is referred to as a
parameter(of the called function).

Data Structures

Notes

Iterative Algorithm
1. At First Calculate the number of moves required i.e. "pow(2,n) - 1" where "n" is number of discs.

2. If the number of discs i.e n is even then swap Destination Rod and Auxiliary Rod.

3. for i = 1 upto number of moves:

Check if "i mod 3" == 1:

Perform Movement of top disc between Source Rod and Destination Rod.

Check if "i mod 3" == 2:

Perform Movement of top disc between Source Rod and Auxiliary Rod.

Check if "i mod 3" == 0:

Perform Movement of top disc between Auxiliary Rod and Destination Rod.

Simulating Recursive Function using Stack
A recursive solution to a problem is often more expensive than a non-recursive solution, both in
terms of time and space. Frequently, this expense is a small price to pay for the logical simplicity
and self-documentation of the recursive solution. However, in a production program (such as a
compiler, for example) that may be run thousands of times, the recurrent expense is a heavy burden
on the system’s limited resources.

Thus, a program may be designed to incorporate a recursive solution in order to reduce the expense
of design and certification, and then carefully converted to a non-recursive version to be put into
actual day-to-day use. As we shall see, in performing such as conversion it is often possible to
identify parts of the implementation of recursion that are superfluous in a particular application
and thereby significantly reduce the amount of work that the program must perform.

Suppose that we have the statement

rout (x); where route is defi ned as a function by the header

rout(a); x is referred to as an argument (of the calling function), and a is referred to as a
parameter(of the called function).

Data Structures

Notes

Iterative Algorithm
1. At First Calculate the number of moves required i.e. "pow(2,n) - 1" where "n" is number of discs.

2. If the number of discs i.e n is even then swap Destination Rod and Auxiliary Rod.

3. for i = 1 upto number of moves:

Check if "i mod 3" == 1:

Perform Movement of top disc between Source Rod and Destination Rod.

Check if "i mod 3" == 2:

Perform Movement of top disc between Source Rod and Auxiliary Rod.

Check if "i mod 3" == 0:

Perform Movement of top disc between Auxiliary Rod and Destination Rod.

Simulating Recursive Function using Stack
A recursive solution to a problem is often more expensive than a non-recursive solution, both in
terms of time and space. Frequently, this expense is a small price to pay for the logical simplicity
and self-documentation of the recursive solution. However, in a production program (such as a
compiler, for example) that may be run thousands of times, the recurrent expense is a heavy burden
on the system’s limited resources.

Thus, a program may be designed to incorporate a recursive solution in order to reduce the expense
of design and certification, and then carefully converted to a non-recursive version to be put into
actual day-to-day use. As we shall see, in performing such as conversion it is often possible to
identify parts of the implementation of recursion that are superfluous in a particular application
and thereby significantly reduce the amount of work that the program must perform.

Suppose that we have the statement

rout (x); where route is defi ned as a function by the header

rout(a); x is referred to as an argument (of the calling function), and a is referred to as a
parameter(of the called function).

Lovely Professional University 135

Unit 08: Introduction to Stacks

Notes

What happens when a function is called? The action of calling a function may be divided intothree
parts:

1. Passing Arguments

2. Allocating and initializing local variables

3. Transferring control to the function.

1. Passing arguments: For a parameter in C, a copy of the argument is made locally within the
function, and any changes to the parameter are made to that local copy. The effect to this scheme is
that the original input argument cannot be altered. In this method, storage for the argument is
allocated within the data area of the function.

2. Allocating and initializing local variables: After arguments have been passed, the local
variables of the function are allocated. These local variables include all those declared directly in
the function and any temporaries that must be created during the course of execution.

3. Transferring control to the function: At this point control may still not be passed to the
function because provision has not yet been made for saving the return address. If a function is
given control, it must eventually restore control to the calling routine by means of a branch.
However, it cannot execute that branch unless it knows the location to which it must return. Since
this location is within the calling routine and not within the function, the only way that the function
can know this address is to have it passed as an argument. This is exactly what happens. Aside
from the explicit arguments specified by the programmer, there is also a set of implicit arguments
that contain information necessary for the function to execute and return correctly. Chief among
these implicit arguments is the return address. The function stores this address within its own data
area. When it is ready to return control to the calling program, the function retrieves the return
address and branches to that location. Once the arguments and the return address have been
passed, control may be transferred to the function, since everything required has been done to
ensure that the function can operate on the appropriate data and then return to the calling routine
safely.

Task: Write a program to implement stack using linked list.

Summary

 A stack is a linear data structure in which allocation and deallocation are made in a last-in-
first-out (LIFO) method.

 The basic operations of stack are inserting an element on the stack (push operation) and
deleting an element from the stack (pop operation).

 Stacks are represented in main memory by using one-dimensional array or a singly linked
list.

 To implement a stack structure, an array can be used as its storage structure. Each element
of the stack occupies one array element. Static implementation of stack can be achieved
using arrays.

 Stack is used to store return information in the case of function/procedure/subroutine
calls. Hence, one would fi nd a stack in architecture of any Central Processing Unit (CPU).

 In infix notation operators come in between the operands. An expression can be evaluated
using stack data structure.

Keywords
LIFO: (Last In First Out) the property of a list such as stack in which the element which can be
retrieved is the last element to enter it.

Unit 08: Introduction to Stacks

Notes

What happens when a function is called? The action of calling a function may be divided intothree
parts:

1. Passing Arguments

2. Allocating and initializing local variables

3. Transferring control to the function.

1. Passing arguments: For a parameter in C, a copy of the argument is made locally within the
function, and any changes to the parameter are made to that local copy. The effect to this scheme is
that the original input argument cannot be altered. In this method, storage for the argument is
allocated within the data area of the function.

2. Allocating and initializing local variables: After arguments have been passed, the local
variables of the function are allocated. These local variables include all those declared directly in
the function and any temporaries that must be created during the course of execution.

3. Transferring control to the function: At this point control may still not be passed to the
function because provision has not yet been made for saving the return address. If a function is
given control, it must eventually restore control to the calling routine by means of a branch.
However, it cannot execute that branch unless it knows the location to which it must return. Since
this location is within the calling routine and not within the function, the only way that the function
can know this address is to have it passed as an argument. This is exactly what happens. Aside
from the explicit arguments specified by the programmer, there is also a set of implicit arguments
that contain information necessary for the function to execute and return correctly. Chief among
these implicit arguments is the return address. The function stores this address within its own data
area. When it is ready to return control to the calling program, the function retrieves the return
address and branches to that location. Once the arguments and the return address have been
passed, control may be transferred to the function, since everything required has been done to
ensure that the function can operate on the appropriate data and then return to the calling routine
safely.

Task: Write a program to implement stack using linked list.

Summary

 A stack is a linear data structure in which allocation and deallocation are made in a last-in-
first-out (LIFO) method.

 The basic operations of stack are inserting an element on the stack (push operation) and
deleting an element from the stack (pop operation).

 Stacks are represented in main memory by using one-dimensional array or a singly linked
list.

 To implement a stack structure, an array can be used as its storage structure. Each element
of the stack occupies one array element. Static implementation of stack can be achieved
using arrays.

 Stack is used to store return information in the case of function/procedure/subroutine
calls. Hence, one would fi nd a stack in architecture of any Central Processing Unit (CPU).

 In infix notation operators come in between the operands. An expression can be evaluated
using stack data structure.

Keywords
LIFO: (Last In First Out) the property of a list such as stack in which the element which can be
retrieved is the last element to enter it.

Unit 08: Introduction to Stacks

Notes

What happens when a function is called? The action of calling a function may be divided intothree
parts:

1. Passing Arguments

2. Allocating and initializing local variables

3. Transferring control to the function.

1. Passing arguments: For a parameter in C, a copy of the argument is made locally within the
function, and any changes to the parameter are made to that local copy. The effect to this scheme is
that the original input argument cannot be altered. In this method, storage for the argument is
allocated within the data area of the function.

2. Allocating and initializing local variables: After arguments have been passed, the local
variables of the function are allocated. These local variables include all those declared directly in
the function and any temporaries that must be created during the course of execution.

3. Transferring control to the function: At this point control may still not be passed to the
function because provision has not yet been made for saving the return address. If a function is
given control, it must eventually restore control to the calling routine by means of a branch.
However, it cannot execute that branch unless it knows the location to which it must return. Since
this location is within the calling routine and not within the function, the only way that the function
can know this address is to have it passed as an argument. This is exactly what happens. Aside
from the explicit arguments specified by the programmer, there is also a set of implicit arguments
that contain information necessary for the function to execute and return correctly. Chief among
these implicit arguments is the return address. The function stores this address within its own data
area. When it is ready to return control to the calling program, the function retrieves the return
address and branches to that location. Once the arguments and the return address have been
passed, control may be transferred to the function, since everything required has been done to
ensure that the function can operate on the appropriate data and then return to the calling routine
safely.

Task: Write a program to implement stack using linked list.

Summary

 A stack is a linear data structure in which allocation and deallocation are made in a last-in-
first-out (LIFO) method.

 The basic operations of stack are inserting an element on the stack (push operation) and
deleting an element from the stack (pop operation).

 Stacks are represented in main memory by using one-dimensional array or a singly linked
list.

 To implement a stack structure, an array can be used as its storage structure. Each element
of the stack occupies one array element. Static implementation of stack can be achieved
using arrays.

 Stack is used to store return information in the case of function/procedure/subroutine
calls. Hence, one would fi nd a stack in architecture of any Central Processing Unit (CPU).

 In infix notation operators come in between the operands. An expression can be evaluated
using stack data structure.

Keywords
LIFO: (Last In First Out) the property of a list such as stack in which the element which can be
retrieved is the last element to enter it.

Lovely Professional University136

Data Structures

Notes

Pop: Stack operation retrieves a value form the stack.

Infix: Notation of an arithmetic expression in which operators come in between their operands.

Postfix: Notation of an arithmetic expression in which operators come after their operands.

Prefix: Notation of an arithmetic expression in which operators come before their operands.

Push: Stack operation which puts a value on the stack.

Stack: A linear data structure where insertion and deletion of elements can take place only at one
end.

SelfAssessment

1. What type of data structure does a Stack is?
A. Linear
B. Non-linear
C. Both Linear and Non-Linear
D. None of above

2. It is impossible to do ___ operation on empty stack.
A. PUSH
B. POP
C. STATUS
D. None

3. Can we delete a node at front of a stack by using POP operation?
A. True
B. False

4. At which position in the stacks, the operations are being done.
A. TOP
B. SIZE
C. POP
D. PUSH

5. Other names for the insertion and deletion operations in Stacks?
A. PUSH – insertion, POP –Deletion.
B. PUSH – Deletion, POP – Insertion.
C. Both A and B are valid.
D. None.

6. Which of the following is an application of stack?

A. Finding factorial
B. tower of Hanoi
C. infix to postfix
D. all of the above

7. A pointer variable which contains the location at the top element of the stack is called …..
A. Top

Lovely Professional University 137

Unit 08: Introduction to Stacks

Notes

B. Last
C. Final
D. End

8. ………. is the term used to delete an element from the stack.
A. Push
B. Pull
C. Pop
D. Pump

9. The elements are removal from a stack in ………. order.
A. Reverse
B. Hierarchical
C. Alternative
D. Sequential

10. In the linked representation of the stack ……… behaves as the top pointer variable of stack.
A. Stop pointer
B. Begin pointer
C. Start pointer
D. Avail pointer

11. Choose the correct statement
A. Linked list allocates the memory dynamically. However, the time complexity in both the

scenario is the same for all the operations, i.e. push, pop and peek.
B. Array allocates the memory dynamically. However, the time complexity in both the scenario

is the same for all the operations, i.e. push, pop and peek.
C. All of above
D. None of above

12. Stack can be implemented using
A. Array
B. Linked list
C. Both array and linked list
D. None of above

13. The representation of stack can be done in ____________.
A. One way
B. Two ways
C. Three
D. None

14. Select true statement for implementation of stack using array is
A. The stack is formed by using the array.
B. All the operations regarding the stack are performed using arrays.
C. All of the above
D. None of the above

Lovely Professional University138

Data Structures

Notes

15. Which of the following is true about linked list implementation of stack?

A. In push operation, if new nodes are inserted at the beginning of linked list, then in pop
operation, nodes must be removed from end.

B. In push operation, if new nodes are inserted at the end, then in pop operation, nodes must
be removed from the beginning.

C. Both of the above
D. None of the above

Answers for Self Assessment

1. A 2. B 3. A 4. A 5. A

6. D 7. A 8. C 9. A 10. C

11. A 12. C 13. B 14. C 15. D

Review Questions
1 What do you mean by stack? Explain different applications of stack.

2 What are the advantages of implementing a stack using dynamic memory allocation method?

3 Explain concept of tower of Hanoi.

4 what are the different methods for implementing stacks?

5 Give an example of push and pop operation using stack.

6 Write an algorithm to reverse an input string of characters using a stack.

Further Readings
Books Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson Education,
Year of Publication, 2008

Lipschutz. Seymour. Data Structures with C. Delhi: Tata McGraw Hill

Reddy.A.M Padma (2006). Data Structures Using C. Bangalore: Sri Nandi Publications

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett, 1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

YashvantKanetkar, Let us C

Web Links
www.en.wikipedia.org

https://www.javatpoint.com/data-structure-stack

https://www.tutorialspoint.com/data_structures_algorithms/stack_algorithm.htm

Data Structures

Notes

15. Which of the following is true about linked list implementation of stack?

A. In push operation, if new nodes are inserted at the beginning of linked list, then in pop
operation, nodes must be removed from end.

B. In push operation, if new nodes are inserted at the end, then in pop operation, nodes must
be removed from the beginning.

C. Both of the above
D. None of the above

Answers for Self Assessment

1. A 2. B 3. A 4. A 5. A

6. D 7. A 8. C 9. A 10. C

11. A 12. C 13. B 14. C 15. D

Review Questions
1 What do you mean by stack? Explain different applications of stack.

2 What are the advantages of implementing a stack using dynamic memory allocation method?

3 Explain concept of tower of Hanoi.

4 what are the different methods for implementing stacks?

5 Give an example of push and pop operation using stack.

6 Write an algorithm to reverse an input string of characters using a stack.

Further Readings
Books Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson Education,
Year of Publication, 2008

Lipschutz. Seymour. Data Structures with C. Delhi: Tata McGraw Hill

Reddy.A.M Padma (2006). Data Structures Using C. Bangalore: Sri Nandi Publications

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett, 1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

YashvantKanetkar, Let us C

Web Links
www.en.wikipedia.org

https://www.javatpoint.com/data-structure-stack

https://www.tutorialspoint.com/data_structures_algorithms/stack_algorithm.htm

Data Structures

Notes

15. Which of the following is true about linked list implementation of stack?

A. In push operation, if new nodes are inserted at the beginning of linked list, then in pop
operation, nodes must be removed from end.

B. In push operation, if new nodes are inserted at the end, then in pop operation, nodes must
be removed from the beginning.

C. Both of the above
D. None of the above

Answers for Self Assessment

1. A 2. B 3. A 4. A 5. A

6. D 7. A 8. C 9. A 10. C

11. A 12. C 13. B 14. C 15. D

Review Questions
1 What do you mean by stack? Explain different applications of stack.

2 What are the advantages of implementing a stack using dynamic memory allocation method?

3 Explain concept of tower of Hanoi.

4 what are the different methods for implementing stacks?

5 Give an example of push and pop operation using stack.

6 Write an algorithm to reverse an input string of characters using a stack.

Further Readings
Books Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson Education,
Year of Publication, 2008

Lipschutz. Seymour. Data Structures with C. Delhi: Tata McGraw Hill

Reddy.A.M Padma (2006). Data Structures Using C. Bangalore: Sri Nandi Publications

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett, 1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

YashvantKanetkar, Let us C

Web Links
www.en.wikipedia.org

https://www.javatpoint.com/data-structure-stack

https://www.tutorialspoint.com/data_structures_algorithms/stack_algorithm.htm

Lovely Professional University 139

Unit 09: Introduction to Queues

Notes

Unit 09: Introduction to Queues

CONTENTS

Objectives

Introduction

9.1 Fundamentals of Queues

9.2 Types of Queue

9.3 Implementation of Queues

9.4 Applications of Queues

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to:

• Learn implementation of queues

• Explain priority queue

• Discuss applications of queues

Introduction
A queue is a linear list of elements that consists of two ends known as front and rear. We can delete
elements from the front end and insert elements at the rear end of a queue. A queue in an
application is used to maintain a list of items that are ordered not by their values but by their
sequential value.

The queue abstract data type is also a widely used one with applications very common in real life.
An example comes from the operating system software where the scheduler picks up the next
process to be executed on the system from a queue data structure. In this unit, we would study the
various properties of queues, their operations and implementation strategies.

9.1 Fundamentals of Queues
A queue is an ordered collection of items in which deletion takes place at one end, which is called
the front of the queue, and insertion at the other end, which is called the rear of the queue. The
queue is a ‘First In First Out’ system (FIFO). In a time-sharing system, there can be many tasks
waiting in the queue, for access to disk storage or for using the CPU. The queues in a bank, or
railway station counter are examples of queue. The first person in the queue is the first to be
attended.

The two main operations in the queue are insertion and deletion of items. The queue has two
pointers, the front pointer points to the first element of the queue and the rear pointer points to the
last element of the queue.

Lovely Professional University140

Dr. Prikshat Kumar Angra, Lovely Professional University

Data Structures

Notes

Basic Operations of Queue
The basic operations of queue are insertion and deletion of items which are referred as enqueue and
dequeue respectively. In enqueue operation, an item is added to the rear end of the queue. In
dequeue operation, the item is deleted from the front end of the queue.

Insert at Rear End

To insert an item into the queue, first it should be verified whether the queue is full or not. If the
queue is full, a new item cannot be inserted into the queue. The condition FRONT=NULL indicates
that the queue is empty. If the queue is not full, items are inserted at the rear end. When an item is
added to the queue, the value of rear is incremented by 1.

In queue we need to maintain two data pointers, front and rear. Operations on queue are
comparatively difficult to implement than that of stacks

Step 1 − Check if the queue is full.

Step 2 − If the queue is full, produce overflow error and exit.

Step 3 − If the queue is not full, increment rear pointer to point the next empty space.

Step 4 − Add data element to the queue location, where the rear is pointing.

Step 5 − return success.

Algorithm: Enqueue operation

procedure enqueue(data)

if queue is full

return overflow

endif

rear ← rear + 1

queue[rear] ← data

return true

end procedure

Delete from the Front End

To delete an item from the stack, first it should be verified that the queue is not empty. If the queue
is not empty, the items are deleted at the front end of the queue. When an item is deleted from the
queue, Dequeue operation include two tasks: access the data where front is pointing and remove
the data after access.

Step 1 − Check if the queue is empty.

Step 2 − If the queue is empty, produce underflow error and exit.

Step 3 − If the queue is not empty, access the data where front is pointing.

Step 4 − Increment front pointer to point to the next available data element.

Step 5 − Return success. the value of the front is incremented by 1.

Algorithm: Dequeue operation

procedure dequeue

if queue is empty

Lovely Professional University 141

Unit 09: Introduction to Queues

Notes

return underflow

end if

data = queue[front]

front ← front + 1

return true

end procedure

Example:

/*Program of queue using array*/

/*insertion and deletion in a queue*/

/*insertion and deletion in a queue*/

include <stdio.h>

define MAX 50

int queue_arr[MAX];

int rear = -1;

int front = -1;

void ins_delete();

void insert();

void display();

void main()

{

int choice;

while(1)

{

printf("1.Insert\n");

printf("2.Delete\n");

printf("3.Display\n");

printf("4.Quit\n");

printf("Enter your choice : \n");

scanf("%d",&choice);

switch(choice)

{

case 1 : insert();

break;

case 2 :ins_delete();

break;

case 3: ins_display();

break;

case 4: exit(1);

default:

Unit 09: Introduction to Queues

Notes

return underflow

end if

data = queue[front]

front ← front + 1

return true

end procedure

Example:

/*Program of queue using array*/

/*insertion and deletion in a queue*/

/*insertion and deletion in a queue*/

include <stdio.h>

define MAX 50

int queue_arr[MAX];

int rear = -1;

int front = -1;

void ins_delete();

void insert();

void display();

void main()

{

int choice;

while(1)

{

printf("1.Insert\n");

printf("2.Delete\n");

printf("3.Display\n");

printf("4.Quit\n");

printf("Enter your choice : \n");

scanf("%d",&choice);

switch(choice)

{

case 1 : insert();

break;

case 2 :ins_delete();

break;

case 3: ins_display();

break;

case 4: exit(1);

default:

Unit 09: Introduction to Queues

Notes

return underflow

end if

data = queue[front]

front ← front + 1

return true

end procedure

Example:

/*Program of queue using array*/

/*insertion and deletion in a queue*/

/*insertion and deletion in a queue*/

include <stdio.h>

define MAX 50

int queue_arr[MAX];

int rear = -1;

int front = -1;

void ins_delete();

void insert();

void display();

void main()

{

int choice;

while(1)

{

printf("1.Insert\n");

printf("2.Delete\n");

printf("3.Display\n");

printf("4.Quit\n");

printf("Enter your choice : \n");

scanf("%d",&choice);

switch(choice)

{

case 1 : insert();

break;

case 2 :ins_delete();

break;

case 3: ins_display();

break;

case 4: exit(1);

default:

Lovely Professional University142

Data Structures

Notes

printf("Wrong choice\n");

}/*End of switch*/

}/*End of while*/

}/*End of main()*/

void insert()

{

int added_item;

if (rear==MAX-1)

printf("Queue overflow\n");

else

{

if (front==-1) /*If queue is initially empty */

front=0;

printf("Enter an element to add in the queue : ");

scanf("%d", &added_item);

rear=rear+1;

queue_arr[rear] = added_item ;

}

} /*End of insert()*/

void ins_delete()

{

if (front == -1 || front > rear)

{

printf("Queue underflow\n");

return ;

}

else

{

printf("Element deleted from queue is : %d\n", queue_arr[front]);

front=front+1;

}

} /*End of delete() */

void display()

{

int i;

if (front == -1)

printf("Queue is empty\n");

else

{

printf("Elements in the queue:\n");

for(i=front;i<= rear;i++)

Lovely Professional University 143

Unit 09: Introduction to Queues

Notes

printf("%d ",queue_arr[i]);

printf("\n");

}

} /*End of display() */

Output:

1. Insert

2. Delete

3. Display

4. Quit

Enter your choice: 1

Enter an element to add in the queue: 25

Enter your choice: 1

Enter an element to add in the queue: 36

Enter your choice: 3

Elements in the queue: 25, 36

Enter your choice: 2

Element deleted from the queue is: 25

In this example:

1. The preprocessor directives #include are given. MAXSIZE is defined as 50 using the #define
statement.

2. The queue is declared as an array using the declaration int queue_arr[MAX].

3. In the while loop, the different options are displayed on the screen and the value entered in the
variable choice is accepted.

4. The switch case compares the value entered and calls the method corresponding to it. If the value
entered is invalid, it displays the message “Wrong choice”.

5. Insert method: The insert method inserts item in the queue. The if condition checks whether the
queue is full or not. If the queue is full, the “Queue overflow” message is displayed. If the queue is
not full, the item is inserted in the queue and the rear is incremented by 1.

6. Delete method: The delete method deletes item from the queue. The if condition checks whether
the queue is empty or not. If the queue is empty, the “Queue underflow” message is displayed. If
the queue is not empty, the item is deleted and front is incremented by 1.

7. Display method: The display method displays the contents of the queue. The if condition checks
whether the queue is empty or not. If the queue is not empty, it displays all the items in the queue.

9.2 Types of Queue
Simple Queue

In a simple queue, insertion takes place at the rear and removal occurs at the front. It follows the
FIFO (First in First out) rule.

Circular Queue

In a circular queue, the last element points to the first element making a circular link. In a circular
queue, the rear end is connected to the front end forming a circular loop. An advantage of circular
queue is that, the insertion and deletion operations are independent of one another. This prevents
an interrupt handler from performing an insertion operation at the same time when the main
function is performing a deletion operation.

Double ended queue

Lovely Professional University144

Data Structures

Notes

Double ended queue is also known as deque. It is a type of queue where the insertions and
deletions happen at the front or the rear end of the queue. The various operations that can be
performed on the double ended queue are:

1. Insert an element at the front end

2. Insert an element at the rear end

3. Delete an element at the front end

4. Delete an element at the rear end

Example:

Program for Implementation of Circular Queue.

#include<stdio.h>

#include<conio.h>

#define SIZE 5

int Q_F(int COUNT)

{

return (COUNT==SIZE)? 1:0;

}

int Q_E(int COUNT)

{

return (COUNT==0)? 1:0;

}

void rear_insert(int item, int Q[], int *R, int *COUNT)

{

if(Q_F(*COUNT))

{

printf("Queue overflow");

return;

}

*R=(*R+1) % SIZE;

Q[*R]=num;

*COUNT+=1;

}

void front_delete(int Q[], int *F, int *COUNT)

{

if(Q_E(*COUNT))

{

printf("Queue underflow");

return;

}

printf("The deleted element is %d\n", Q[*F]);

*F=(*F+1) % SIZE;

Data Structures

Notes

Double ended queue is also known as deque. It is a type of queue where the insertions and
deletions happen at the front or the rear end of the queue. The various operations that can be
performed on the double ended queue are:

1. Insert an element at the front end

2. Insert an element at the rear end

3. Delete an element at the front end

4. Delete an element at the rear end

Example:

Program for Implementation of Circular Queue.

#include<stdio.h>

#include<conio.h>

#define SIZE 5

int Q_F(int COUNT)

{

return (COUNT==SIZE)? 1:0;

}

int Q_E(int COUNT)

{

return (COUNT==0)? 1:0;

}

void rear_insert(int item, int Q[], int *R, int *COUNT)

{

if(Q_F(*COUNT))

{

printf("Queue overflow");

return;

}

*R=(*R+1) % SIZE;

Q[*R]=num;

*COUNT+=1;

}

void front_delete(int Q[], int *F, int *COUNT)

{

if(Q_E(*COUNT))

{

printf("Queue underflow");

return;

}

printf("The deleted element is %d\n", Q[*F]);

*F=(*F+1) % SIZE;

Data Structures

Notes

Double ended queue is also known as deque. It is a type of queue where the insertions and
deletions happen at the front or the rear end of the queue. The various operations that can be
performed on the double ended queue are:

1. Insert an element at the front end

2. Insert an element at the rear end

3. Delete an element at the front end

4. Delete an element at the rear end

Example:

Program for Implementation of Circular Queue.

#include<stdio.h>

#include<conio.h>

#define SIZE 5

int Q_F(int COUNT)

{

return (COUNT==SIZE)? 1:0;

}

int Q_E(int COUNT)

{

return (COUNT==0)? 1:0;

}

void rear_insert(int item, int Q[], int *R, int *COUNT)

{

if(Q_F(*COUNT))

{

printf("Queue overflow");

return;

}

*R=(*R+1) % SIZE;

Q[*R]=num;

*COUNT+=1;

}

void front_delete(int Q[], int *F, int *COUNT)

{

if(Q_E(*COUNT))

{

printf("Queue underflow");

return;

}

printf("The deleted element is %d\n", Q[*F]);

*F=(*F+1) % SIZE;

Lovely Professional University 145

Unit 09: Introduction to Queues

Notes

*COUNT-=1;

}

void display(int Q[], int F, int COUNT)

{

int i,j;

if(Q_E(COUNT))

{

printf("Queue is empty\n");

return;

}

printf("The contents of the queue are:\n");

i=F;

for(j=1;j<=COUNT; j++)

{

printf("%d\n", Q[i]);

i=(i+1) % SIZE;

}

printf("\n");

}

void main()

{

int choice, num, COUNT, F, R, Q[20];

clrscr();

F=0;

R=-1;

COUNT=0;

for(;;)

{

printf("1. iInsert at front\n");

printf("2. Delete at rear end\n");

printf("3. Display\n");

printf("4. Exit\n");

scanf("%d", &choice);

switch(choice)

{

case 1: printf("Enter the number to be inserted\n");

scanf("%d", &num);

rear_insert(num, Q, &R, &COUNT);

break;

case 2: front_delete(Q, &F, &COUNT);

break;

Lovely Professional University146

Data Structures

Notes

case 3: display(Q, F, COUNT);

break;

default: exit(0);

}

}

}

Output:

1. Insert at rear end

2. Delete at front end

3. Display

4. Exit

1

Enter the number to be inserted

50

1. Insert at rear end

2. Delete at front end

3. Display

4. Exit

1

Enter the number to be inserted

60

1. Insert at rear end

2. Delete at front end

3. Display

4. Exit

3

The contents of the queue are 50 60

1. Insert at rear end

2. Delete at front end

3. Display

4. Exit

2

The element deleted is 50

In this example:

1. The header files are included and a constant value 5 is defined for variable SIZE using #define
statement. The SIZE defines the size of the queue.

2. A queue is created using an array named Q with an element capacity of 20. A variable named
COUNT is declared to store the count of number elements present in the queue.

3. Four functions are created namely, Q_F(), Q_E(), rear_insert(), front_delete(),and display(). The
user has to select an appropriate function to be performed.

4. The switch statement is used to call the rear_insert(), front_delete(), and display() functions.

Lovely Professional University 147

Unit 09: Introduction to Queues

Notes

5. When the user enters 1, rear_insert() function is called. In the rear_insert() function, the if loop
checks if the count is full. If the condition is true, then the program prints a message “Queue is
empty”. Else, it checks for the value of R and assigns the element (num) entered by the user to R.
Initially, when there are no elements in the queue, the value of R will be 0. After every insertion, the
variable COUNT is incremented.

6. When the user enters 2, the front_delete() function is called. In this function, the if loop checks if
the variable COUNT is empty. If the condition is true, then the program prints a message “Queue
underflow”. Else, the element in the 0th

7. When the user enters 3, the display() function is called. In this function, the if loop checks if the
value of COUNT is 0. If the condition is true, the program prints a message “Queue is empty”. Else,
the value of F is assigned to the variable i. The for loop then displays the elements present in the
queue. position will be deleted. The size of F is computed and the COUNT is set to 1.

8. When the user enters 4, the program terminates.

Priority Queue

In priority queue, the elements are inserted and deleted based on their priority. Each element is
assigned a priority and the element with the highest priority is given importance and processed
first. If all the elements present in the queue have the same priority, then the first element is given
importance.

A priority queue is an abstract data type in which each element is associated with a priority
value.Elements are served on the basis of their priority.An element with high priority is dequeued
before an element with low priority.If two elements have the same priority, they are served
according to their order in the queue.

The priority queue moves the highest priority elements at the beginning of the priority queue and
the lowest priority elements at the back of the priority queue.It supports only those elements that
are comparable. Priority queue in the data structure arranges the elements in either ascending or
descending order.

Types of Priority Queue

Ascending Order Priority Queue

An ascending order priority queue gives the highest priority to the lower number in that queue

Example:

List: 5 6 20 22 10

Arrange these numbers in ascending order.

List 5 6 10 20 22

Descending Order Priority Queue

A descending order priority queue gives the highest priority to the highest number in that queue.

Example:

List: 5 6 35 22 10

Arrange these numbers

List: 35 22 10 6 5

Priority Queue Operations
Inserting an Element into the Priority Queue

Deleting an Element from the Priority Queue

Peeking from the Priority Queue (Find max/min)

Extract-Max/Min from the Priority Queue

Priority queue can be implemented using

Array

Lovely Professional University148

Data Structures

Notes

Linked list

Heap data structure

Binary search tree

Priority Queue Applications

Dijkstra’s algorithm: To find shortest path in graph.

Prim’s Algorithm: Prim’s algorithm uses the priority queue to the values or keys of nodes and
draws out the minimum of these values at every step.

Data Compression: Huffman codes use the priority queue to compress the data.

Operating Systems: load balancing and interrupt handling in an operating system

9.3 Implementation of Queues
There are two possible implementation strategies – one where the memory is used statically and the
other where memory is used dynamically.

Queue can be implemented using:

1. Array

2. Linked List

Queue implementation Using Array
To represent a queue we require a one-dimensional array of some maximum size say n to hold the
data items and two other variables front and rear to point to the beginning and the end of the
queue.

Queue implemented using array stores only fixed number of data values. Two variables front
andrear, that are implemented in queue. Front and rear variables point to the position from where
insertions and deletions are performed in a queue.

Initially both front and rear are set to -1.For insert a new value into the queue, increment rear value
by one and then insert at that position. For delete a value from the queue, then delete the element
which is at front position and increment front value by one.

Enqueue operation

Enqueue() function is used to insert a new element into the queue. In a queue, the new element is
always inserted at rear position. The enQueue() function takes one integer value as a parameter and
inserts that value into the queue.

Algorithm: Enqueue operation

Step 1: IF REAR = MAX - 1

Write OVERFLOW

Go to step

[END OF IF]

Step 2: IF FRONT = -1 and REAR = -1

SET FRONT = REAR = 0

ELSE

SET REAR = REAR + 1

[END OF IF]

Step 3: Set QUEUE[REAR] = NUM

Step 4: EXIT

Dequeue operation

Lovely Professional University 149

Unit 09: Introduction to Queues

Notes

Dequeue() is a function used to delete an element from the queue. In a queue, the element is always
deleted from front position. The Dequeue() function does not take any value as parameter.

Algorithm: Dequeue operation

Step 1: IF FRONT = -1 or FRONT > REAR

Write UNDERFLOW

ELSE

SET VAL = QUEUE[FRONT]

SET FRONT = FRONT + 1

[END OF IF]

Step 2: EXIT

Queue implementation Using Linked list
Due to the drawbacks of array. The array implementation cannot be used for the large scale
applications where the queues are implemented.The alternative of array implementation is linked
list implementation of queue. In a linked queue, each node of the queue consists of two parts i.e.
data part and the link part. Each element of the queue points to its immediate next element in the
memory.

In the linked queue, there are two pointers maintained in the memory i.e. front pointer and rear
pointer. The front pointer contains the address of the starting element of the queue while the rear
pointer contains the address of the last element of the queue.

Insert operation

There can be the two scenario of inserting this new node ptr into the linked queue.In the first
scenario, we insert element into an empty queue. In this case, the condition front = NULL becomes
true.In the second case, the queue contains more than one element. The condition front = NULL
becomes false.

Algorithm

Step 1: Allocate the space for the new node PTR

Step 2: SET PTR -> DATA = VAL

Step 3: IF FRONT = NULL

SET FRONT = REAR = PTR

SET FRONT -> NEXT = REAR -> NEXT = NULL

ELSE

SET REAR -> NEXT = PTR

SET REAR = PTR

SET REAR -> NEXT = NULL

[END OF IF]

Step 4: END

Delete operation

Deletion operation removes the element that is first inserted among all the queue elements. The
condition front == NULL becomes true if the list is empty. Otherwise, we will delete the element
that is pointed by the pointer front.

Algorithm

Step 1: IF FRONT = NULL

Write " Underflow "

Go to Step 5

[END OF IF]

Lovely Professional University150

Data Structures

Notes

Step 2: SET PTR = FRONT

Step 3: SET FRONT = FRONT -> NEXT

Step 4: FREE PTR

Step 5: END

9.4 Applications of Queues
One major application of the queue data structure is in the computer simulation of a real-world
situation. Queues are also used in many ways by the operating system, the program that schedules
and allocates the resources of a computer system. One of these resources is the CPU (Central
Processing Unit) itself. If you are working on a multi-user system and you tell the computer to run
a particular program, the operating system adds your request to its “job queue”. When your
request gets to the front of the queue, the program you requested is executed. Similarly, the various
users for the system must share the I/O devices (printers, disks etc.). Each device has its own queue
of requests to print, read or write to these devices. The following subsection discusses one
application of the queues – the priority queue. It is used in time-sharing multi-user systems where
programs of high priority are processed first arid programs with the same priority form a standard
queue.

In Operating systems:

a) Semaphores

b) FCFS (first come first serve) scheduling,

c) Spooling in printers

d) Buffer for devices like keyboard

In Networks:

a) Queues in routers/ switches

b) Mail Queues

Queues are used in operating systems for handling interrupts.

Queues are used as buffers in most of the applications like MP3 media player, CD player, etc

When a resource is shared among multiple consumers.

CPU scheduling,

Disk Scheduling.

Summary

 A queue is an ordered collection of items in which deletion takes place at the front and
insertion at the rear of the queue.

 In a memory, a queue can be represented in two ways; by representing the way in which the
elements are stored in the memory, and by naming the address to which the front and rear
pointers point to.

 The different types of queues are double ended queue, circular queue, and priority queue.
 The basic operations performed on a queue include inserting an element at the rear end and

deleting an element at the front end.
 A priority queue is a collection of elements such that each element has been assigned a

priority. An element of higher priority is processed before any element of lower priority.
 Two elements with the same priority are processed according to the order in which they

were inserted into the queue.

Lovely Professional University 151

Unit 09: Introduction to Queues

Notes

Keywords
FIFO: (First In First Out) The property of a linear data structure which ensures that the element
retrieved from it is the first element that went into it.

Front: The end of a queue from where elements are retrieved.

Queue: A linear data structure in which the element is inserted at one end while retrieved from
another end.

Rear: The end of a queue where new elements are inserted.

Dequeue: Process of deleting elements from the queue.

Enqueue: Process of inserting elements into queue.

SelfAssessment

1. A linear list of elements in which deletion can be done from one end (front) and insertion
can take place only at the other end (rear) is known as a?

A. Queue
B. Stack
C. Tree
D. Linked list

2. Process of inserting an elements at the end of queue is known as?

A. Dequeue
B. Enqueue
C. Push
D. Pop

3. The maximum size of the queue?
A. Can be changed
B. Cannot be change
C. Independent
D. None of these

4. Application of queue is
A. Serving request of a single shared resource, like a printer, CPU task scheduling
B. Call center phone system using queue to hold people calling
C. Handling of interrupt in real time system
D. All of above

5. Which of the following is not a basic operation of a queue?
A. enqueue()
B. dequeue()
C. input()
D. peek()

6. peek() function is

Lovely Professional University152

Data Structures

Notes

A. This function helps to add the data at the front of queue.
B. This function helps to delete the data at the front of queue.
C. This function helps to see the data at the front of queue.
D. None of above

7. isempty() function is
A. If the value of front is less than MIN or 0, it tells that queue is empty.
B. If the value of rear is less than MIN or 0, it tells that queue is empty.
C. All of above
D. None of above

8. What kind of a data structure does a queue is?

A. Linear
B. Non-linear
C. Both Linear and Non Linear
D. None

9. What is the operation we perform on Queues?
A. FIRST-IN –LAST-OUT
B. FIRST-IN-FIRST-OUT
C. Sum
D. All of above

10. Queue can be implemented
A. Sequential
B. Linked
C. Both sequential and linked
D. Neither sequential nor linked

11. Sequential implementation of queue means
A. Queue is implemented using array
B. Queue is implemented using linked list
C. All of above
D. None of above

12. Sequential implementation of queue means
A. Queue is implemented using array
B. Queue is implemented using linked list
C. All of above
D. None of above

13. In linked list implementation of queue, if only front pointer is maintained, which of the
following operation take worst case linear time?

A. Insertion
B. Deletion
C. To empty a queue
D. Both insertion and deletion

14. In Queue, ENQUEUE means____ whereas DEQUEUE refers____.

Lovely Professional University 153

Unit 09: Introduction to Queues

Notes

A. An insertion operation, a deletion operation.
B. End of the queue, defining a queue.
C. Traverse operation, Insert operation
D. None of above

Lovely Professional University154

Data Structures

Notes

15. push() and pop() functions are found in
A. Queue
B. Stack
C. Tree
D. All of above

Answers for Self Assessment

1. A 2. B 3. B 4. D 5. C

6. C 7. A 8. A 9. B 10. C

11. A 12. B 13. D 14. A 15. B

Review Questions
1 “Using double ended queues is more advantageous than using circular queues. “Discuss

2 “Stacks are different from queues.” Justify.

3 “Using priority queues is advantageous in job scheduling algorithms. “Analyze

4 Can a basic queue be implemented to function as a dynamic queue? Discuss

5 Describe the application of queue.

6 How will you insert and delete an element in queue?

7 Explain dynamic memory allocation advantages.

Further Readings
Books Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson Education,
Year of Publication, 2008

Lipschutz. Seymour. Data Structures with C. Delhi: Tata McGraw Hill

Reddy.A.M Padma (2006). Data Structures Using C. Bangalore: Sri Nandi Publications

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett, 1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

YashvantKanetkar, Let us C

Web Links
www.en.wikipedia.org

www.web-source.net

www.webopedia.com

https://www.geeksforgeeks.org/

https://www.javatpoint.com/data-structure-queue

https://www.tutorialspoint.com/data_structures_algorithms/dsa_queue.htm

Data Structures

Notes

15. push() and pop() functions are found in
A. Queue
B. Stack
C. Tree
D. All of above

Answers for Self Assessment

1. A 2. B 3. B 4. D 5. C

6. C 7. A 8. A 9. B 10. C

11. A 12. B 13. D 14. A 15. B

Review Questions
1 “Using double ended queues is more advantageous than using circular queues. “Discuss

2 “Stacks are different from queues.” Justify.

3 “Using priority queues is advantageous in job scheduling algorithms. “Analyze

4 Can a basic queue be implemented to function as a dynamic queue? Discuss

5 Describe the application of queue.

6 How will you insert and delete an element in queue?

7 Explain dynamic memory allocation advantages.

Further Readings
Books Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson Education,
Year of Publication, 2008

Lipschutz. Seymour. Data Structures with C. Delhi: Tata McGraw Hill

Reddy.A.M Padma (2006). Data Structures Using C. Bangalore: Sri Nandi Publications

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett, 1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

YashvantKanetkar, Let us C

Web Links
www.en.wikipedia.org

www.web-source.net

www.webopedia.com

https://www.geeksforgeeks.org/

https://www.javatpoint.com/data-structure-queue

https://www.tutorialspoint.com/data_structures_algorithms/dsa_queue.htm

Data Structures

Notes

15. push() and pop() functions are found in
A. Queue
B. Stack
C. Tree
D. All of above

Answers for Self Assessment

1. A 2. B 3. B 4. D 5. C

6. C 7. A 8. A 9. B 10. C

11. A 12. B 13. D 14. A 15. B

Review Questions
1 “Using double ended queues is more advantageous than using circular queues. “Discuss

2 “Stacks are different from queues.” Justify.

3 “Using priority queues is advantageous in job scheduling algorithms. “Analyze

4 Can a basic queue be implemented to function as a dynamic queue? Discuss

5 Describe the application of queue.

6 How will you insert and delete an element in queue?

7 Explain dynamic memory allocation advantages.

Further Readings
Books Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson Education,
Year of Publication, 2008

Lipschutz. Seymour. Data Structures with C. Delhi: Tata McGraw Hill

Reddy.A.M Padma (2006). Data Structures Using C. Bangalore: Sri Nandi Publications

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett, 1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

YashvantKanetkar, Let us C

Web Links
www.en.wikipedia.org

www.web-source.net

www.webopedia.com

https://www.geeksforgeeks.org/

https://www.javatpoint.com/data-structure-queue

https://www.tutorialspoint.com/data_structures_algorithms/dsa_queue.htm

Lovely Professional University 155

Unit 10: Introduction to Queues

Notes

Unit 10: Introduction to Queues

CONTENTS

Objectives

Introduction

10.1 Circular Queue

10.2 Deque

10.3 Recursion

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to:

• Learn implementation of queues

• Explain priority queue

• Discuss applications of queues

Introduction
A queue is a linear list of elements that consists of two ends known as front and rear. We can delete
elements from the front end and insert elements at the rear end of a queue. A queue in an
application is used to maintain a list of items that are ordered not by their values but by their
sequential value.

The queue abstract data type is also a widely used one with applications very common in real life.
An example comes from the operating system software where the scheduler picks up the next
process to be executed on the system from a queue data structure. In this unit, we would study the
various properties of queues, their operations and implementation strategies.

10.1 Circular Queue

 In a circular queue, all nodes are treated as circular. Last node is connected back to the first
node.

 Circular queue is also called as Ring Buffer.
 It is an abstract data type.
 Circular queue contains a collection of data which allows insertion of data at the end of the

queue and deletion of data at the beginning of the queue.

In a circular queue, the rear end is connected to the front end forming a circular loop. An advantage
of circular queue is that, the insertion and deletion operations are independent of one another. This
prevents an interrupt handler from performing an insertion operation at the same time when the
main function is performing a deletion operation. The figure 8.5 depicts a circular queue. The queue
elements are stored in an array. The front end of the queue is represented as F and the rear end is

Lovely Professional University156

Dr. PrikshatKumar Angra, Lovely Professional University

Data Structures

Notes

represented as R. Before inserting an element into the queue, the R pointer should be set to -1. The
value of R is then incremented to insert the elements. In the first figure of figure 8.5, only one
element (20) is present in the queue. Hence, the value of F and R pointer will be 0. In the second
figure of figure 8.5, two elements are added (40 and 60) to the queue. This can be done by
incrementing the R pointer. The following statement depicts the increment operation:

R=(R+1) % SIZE

Here,

SIZE is the queue size. In this case, the size is 5.

In the third figure of figure 8.5, elements 80 and 100 are added to the queue. Now the R value will
be 5.Since, the value of SIZE is also 5, R will point to 0.

The above figure shows the structure of circular queue. It stores an element in a circular way and
performs the operations according to its FIFO structure.

Did you know?

A circular queue is similar to a linear queue as it is also based on the FIFO (First In First Out)
principle except that the last position is connected to the first position in a circular queue that forms
a circle. It is also known as a Ring Buffer.

Features of Circular Queue
1. In case of a circular queue, head pointer will always point to the front of the queue, and

tail pointer will always point to the end of the queue.

2. Initially, the head and the tail pointers will be pointing to the same location, this would
mean that the queue is empty.

Data Structures

Notes

represented as R. Before inserting an element into the queue, the R pointer should be set to -1. The
value of R is then incremented to insert the elements. In the first figure of figure 8.5, only one
element (20) is present in the queue. Hence, the value of F and R pointer will be 0. In the second
figure of figure 8.5, two elements are added (40 and 60) to the queue. This can be done by
incrementing the R pointer. The following statement depicts the increment operation:

R=(R+1) % SIZE

Here,

SIZE is the queue size. In this case, the size is 5.

In the third figure of figure 8.5, elements 80 and 100 are added to the queue. Now the R value will
be 5.Since, the value of SIZE is also 5, R will point to 0.

The above figure shows the structure of circular queue. It stores an element in a circular way and
performs the operations according to its FIFO structure.

Did you know?

A circular queue is similar to a linear queue as it is also based on the FIFO (First In First Out)
principle except that the last position is connected to the first position in a circular queue that forms
a circle. It is also known as a Ring Buffer.

Features of Circular Queue
1. In case of a circular queue, head pointer will always point to the front of the queue, and

tail pointer will always point to the end of the queue.

2. Initially, the head and the tail pointers will be pointing to the same location, this would
mean that the queue is empty.

Data Structures

Notes

represented as R. Before inserting an element into the queue, the R pointer should be set to -1. The
value of R is then incremented to insert the elements. In the first figure of figure 8.5, only one
element (20) is present in the queue. Hence, the value of F and R pointer will be 0. In the second
figure of figure 8.5, two elements are added (40 and 60) to the queue. This can be done by
incrementing the R pointer. The following statement depicts the increment operation:

R=(R+1) % SIZE

Here,

SIZE is the queue size. In this case, the size is 5.

In the third figure of figure 8.5, elements 80 and 100 are added to the queue. Now the R value will
be 5.Since, the value of SIZE is also 5, R will point to 0.

The above figure shows the structure of circular queue. It stores an element in a circular way and
performs the operations according to its FIFO structure.

Did you know?

A circular queue is similar to a linear queue as it is also based on the FIFO (First In First Out)
principle except that the last position is connected to the first position in a circular queue that forms
a circle. It is also known as a Ring Buffer.

Features of Circular Queue
1. In case of a circular queue, head pointer will always point to the front of the queue, and

tail pointer will always point to the end of the queue.

2. Initially, the head and the tail pointers will be pointing to the same location, this would
mean that the queue is empty.

Lovely Professional University 157

Unit 10: Introduction to Queues

Notes

3. New data is always added to the location pointed by the tail pointer, and once the data is
added, tail pointer is incremented to point to the next available location.

4. In a circular queue, data is not actually removed from the queue. Only the head pointer is
incremented by one position when dequeue is executed. As the queue data is only the data
between head and tail, hence the data left outside is not a part of the queue anymore,
hence removed.

5. The head and the tail pointer will get reinitialised to 0 every time they reach the end of the
queue.

Unit 10: Introduction to Queues

Notes

3. New data is always added to the location pointed by the tail pointer, and once the data is
added, tail pointer is incremented to point to the next available location.

4. In a circular queue, data is not actually removed from the queue. Only the head pointer is
incremented by one position when dequeue is executed. As the queue data is only the data
between head and tail, hence the data left outside is not a part of the queue anymore,
hence removed.

5. The head and the tail pointer will get reinitialised to 0 every time they reach the end of the
queue.

Unit 10: Introduction to Queues

Notes

3. New data is always added to the location pointed by the tail pointer, and once the data is
added, tail pointer is incremented to point to the next available location.

4. In a circular queue, data is not actually removed from the queue. Only the head pointer is
incremented by one position when dequeue is executed. As the queue data is only the data
between head and tail, hence the data left outside is not a part of the queue anymore,
hence removed.

5. The head and the tail pointer will get reinitialised to 0 every time they reach the end of the
queue.

Lovely Professional University158

Data Structures

Notes

6. Also, the head and the tail pointers can cross each other. In other words, head pointer can
be greater than the tail. Sounds odd? This will happen when we dequeue the queue a
couple of times and the tail pointer gets reinitialised upon reaching the end of the queue.

Application of Circular Queue
• Round robin execution of Jobs in a multi programming OS.

• Looped execution of the slides of a presentation.

• Assigning turns to play for multiplayer gaming systems.

• Process management tasks by Operating System.

• Browsing through the open windows applications using alt + tab (Microsoft Windows).

• Time division multiplexing in case of Networks and Communications.

Memory Representation of Circular Queue
Circular Queues can also be represented in memory in two ways

1. Using the contiguous memory like an array.

2. Using the non-contiguous memory like a linked list.

Circular Queue using an Array

Data Structures

Notes

6. Also, the head and the tail pointers can cross each other. In other words, head pointer can
be greater than the tail. Sounds odd? This will happen when we dequeue the queue a
couple of times and the tail pointer gets reinitialised upon reaching the end of the queue.

Application of Circular Queue
• Round robin execution of Jobs in a multi programming OS.

• Looped execution of the slides of a presentation.

• Assigning turns to play for multiplayer gaming systems.

• Process management tasks by Operating System.

• Browsing through the open windows applications using alt + tab (Microsoft Windows).

• Time division multiplexing in case of Networks and Communications.

Memory Representation of Circular Queue
Circular Queues can also be represented in memory in two ways

1. Using the contiguous memory like an array.

2. Using the non-contiguous memory like a linked list.

Circular Queue using an Array

Data Structures

Notes

6. Also, the head and the tail pointers can cross each other. In other words, head pointer can
be greater than the tail. Sounds odd? This will happen when we dequeue the queue a
couple of times and the tail pointer gets reinitialised upon reaching the end of the queue.

Application of Circular Queue
• Round robin execution of Jobs in a multi programming OS.

• Looped execution of the slides of a presentation.

• Assigning turns to play for multiplayer gaming systems.

• Process management tasks by Operating System.

• Browsing through the open windows applications using alt + tab (Microsoft Windows).

• Time division multiplexing in case of Networks and Communications.

Memory Representation of Circular Queue
Circular Queues can also be represented in memory in two ways

1. Using the contiguous memory like an array.

2. Using the non-contiguous memory like a linked list.

Circular Queue using an Array

Lovely Professional University 159

Unit 10: Introduction to Queues

Notes

QUEUE- the name of the array storing queue elements.

MAX- defining that how many elements (maximum count) can be stored in the array representing
the queue.

FRONT- the index where the first element is stored in the array representing the queue. If the last
element is deleted from index MAX, then the FRONT variable is updated with 0 (first index of the
array).

REAR- the index where the last element is stored in array representing the queue. If last stored
value is at MAX and FRONT is not 0 then the new element will be stored at 0 index.

– In this representation the circular queue is implemented using a Linked List. Using linked
list for creating a queue makes it flexible in terms of access.

– Pointers (links) to store addresses of nodes for defining a circular queue are

Using Linked List
• FRONT- address of the first element of the Linked list storing the Queue.

• REAR- address of the last element of the Linked list storing the Queue. LINK part of the
REAR node stores the address of the first node.

Circular Queue Operations
• Two pointers FRONT and REAR

• FRONT track the first element of the queue

• REAR track the last elements of the queue

• Initially, set value of FRONT and REAR to -1

Enqueue Operation
• Check if the queue is full

• For the first element, set value of FRONT to 0

• Circularly increase the REAR index by 1 (i.E. If the rear reaches the end, next it would be
at the start of the queue)

• Add the new element in the position pointed to by REAR

Dequeue Operation
• Check if the queue is empty

• Return the value pointed by FRONT

• Circularly increase the FRONT index by 1

• For the last element, reset the values of FRONT and REAR to -1

Lab Exercise

#include<stdio.h>

define MAX 5

int cqueue_arr[MAX];

int front = -1;

int rear = -1;

void insert(int item)

Unit 10: Introduction to Queues

Notes

QUEUE- the name of the array storing queue elements.

MAX- defining that how many elements (maximum count) can be stored in the array representing
the queue.

FRONT- the index where the first element is stored in the array representing the queue. If the last
element is deleted from index MAX, then the FRONT variable is updated with 0 (first index of the
array).

REAR- the index where the last element is stored in array representing the queue. If last stored
value is at MAX and FRONT is not 0 then the new element will be stored at 0 index.

– In this representation the circular queue is implemented using a Linked List. Using linked
list for creating a queue makes it flexible in terms of access.

– Pointers (links) to store addresses of nodes for defining a circular queue are

Using Linked List
• FRONT- address of the first element of the Linked list storing the Queue.

• REAR- address of the last element of the Linked list storing the Queue. LINK part of the
REAR node stores the address of the first node.

Circular Queue Operations
• Two pointers FRONT and REAR

• FRONT track the first element of the queue

• REAR track the last elements of the queue

• Initially, set value of FRONT and REAR to -1

Enqueue Operation
• Check if the queue is full

• For the first element, set value of FRONT to 0

• Circularly increase the REAR index by 1 (i.E. If the rear reaches the end, next it would be
at the start of the queue)

• Add the new element in the position pointed to by REAR

Dequeue Operation
• Check if the queue is empty

• Return the value pointed by FRONT

• Circularly increase the FRONT index by 1

• For the last element, reset the values of FRONT and REAR to -1

Lab Exercise

#include<stdio.h>

define MAX 5

int cqueue_arr[MAX];

int front = -1;

int rear = -1;

void insert(int item)

Unit 10: Introduction to Queues

Notes

QUEUE- the name of the array storing queue elements.

MAX- defining that how many elements (maximum count) can be stored in the array representing
the queue.

FRONT- the index where the first element is stored in the array representing the queue. If the last
element is deleted from index MAX, then the FRONT variable is updated with 0 (first index of the
array).

REAR- the index where the last element is stored in array representing the queue. If last stored
value is at MAX and FRONT is not 0 then the new element will be stored at 0 index.

– In this representation the circular queue is implemented using a Linked List. Using linked
list for creating a queue makes it flexible in terms of access.

– Pointers (links) to store addresses of nodes for defining a circular queue are

Using Linked List
• FRONT- address of the first element of the Linked list storing the Queue.

• REAR- address of the last element of the Linked list storing the Queue. LINK part of the
REAR node stores the address of the first node.

Circular Queue Operations
• Two pointers FRONT and REAR

• FRONT track the first element of the queue

• REAR track the last elements of the queue

• Initially, set value of FRONT and REAR to -1

Enqueue Operation
• Check if the queue is full

• For the first element, set value of FRONT to 0

• Circularly increase the REAR index by 1 (i.E. If the rear reaches the end, next it would be
at the start of the queue)

• Add the new element in the position pointed to by REAR

Dequeue Operation
• Check if the queue is empty

• Return the value pointed by FRONT

• Circularly increase the FRONT index by 1

• For the last element, reset the values of FRONT and REAR to -1

Lab Exercise

#include<stdio.h>

define MAX 5

int cqueue_arr[MAX];

int front = -1;

int rear = -1;

void insert(int item)

Lovely Professional University160

Data Structures

Notes

{

if((front == 0 && rear == MAX-1) || (front == rear+1))

{

printf("Queue Overflow \n");

return;

}

if(front == -1)

{

front = 0;

rear = 0;

}

else

{

if(rear == MAX-1)

rear = 0;

else

rear = rear+1;

}

cqueue_arr[rear] = item ;

}

void deletion()

{

if(front == -1)

{

printf("Queue Underflow \n");

return ;

}

printf("Element deleted from queue is : %d \n",cqueue_arr[front]);

if(front == rear)

{

front = -1;

rear=-1;

}

else

{

if(front == MAX-1)

front = 0;

else

front = front+1;

}

Lovely Professional University 161

Unit 10: Introduction to Queues

Notes

}

void display()

{

int front_pos = front,rear_pos = rear;

if(front == -1)

{

printf("Queue is empty \n");

return;

}

printf("Queue elements : ");

if(front_pos<= rear_pos)

while(front_pos<= rear_pos)

{

printf("%d ",cqueue_arr[front_pos]);

front_pos++;

}

else

{

while(front_pos<= MAX-1)

{

printf("%d ",cqueue_arr[front_pos]);

front_pos++;

}

while(front_pos<= rear_pos)

{

printf("%d ",cqueue_arr[front_pos]);

front_pos++;

}

}

printf("null");

}

int main()

{

int choice,item;

do

{

printf("\n1.Insert\n");

printf("2.Delete\n");

printf("3.Display\n");

printf("4.Quit\n");

Lovely Professional University162

Data Structures

Notes

printf("\nEnter your choice : ");

scanf("%d",&choice);

switch(choice)

{

case 1 :

printf("Input the element for insertion in queue : ");

scanf("%d", &item);

insert(item);

break;

case 2 :

deletion();

break;

case 3:

display();

break;

case 4:

break;

default:

printf("Wrong choice \n");

}

}while(choice!=4);

return 0;

}

Output

10.2 Deque
Deque or Double Ended Queue is a type of queue in which insertion and removal of elements can
either be performed from the front or the rear. Thus, it does not follow FIFO rule (First in First Out).

Data Structures

Notes

printf("\nEnter your choice : ");

scanf("%d",&choice);

switch(choice)

{

case 1 :

printf("Input the element for insertion in queue : ");

scanf("%d", &item);

insert(item);

break;

case 2 :

deletion();

break;

case 3:

display();

break;

case 4:

break;

default:

printf("Wrong choice \n");

}

}while(choice!=4);

return 0;

}

Output

10.2 Deque
Deque or Double Ended Queue is a type of queue in which insertion and removal of elements can
either be performed from the front or the rear. Thus, it does not follow FIFO rule (First in First Out).

Data Structures

Notes

printf("\nEnter your choice : ");

scanf("%d",&choice);

switch(choice)

{

case 1 :

printf("Input the element for insertion in queue : ");

scanf("%d", &item);

insert(item);

break;

case 2 :

deletion();

break;

case 3:

display();

break;

case 4:

break;

default:

printf("Wrong choice \n");

}

}while(choice!=4);

return 0;

}

Output

10.2 Deque
Deque or Double Ended Queue is a type of queue in which insertion and removal of elements can
either be performed from the front or the rear. Thus, it does not follow FIFO rule (First in First Out).

Lovely Professional University 163

Unit 10: Introduction to Queues

Notes

Types of Deque

 Input Restricted Deque

In this deque, input is restricted at a single end but allows deletion at both the ends.

 Output Restricted Deque

In this deque, output is restricted at a single end but allows insertion at both the ends.

Operations performed on deque
There are the following operations that can be applied on a deque -

 Insertion at front
 Insertion at rear
 Deletion at front
 Deletion at rear

We can also perform peek operations in the deque along with the operations listed above. Through
peek operation, we can get the deque's front and rear elements of the deque. So, in addition to the
above operations, following operations are also supported in deque –

 Get the front item from the deque
 Get the rear item from the deque
 Check whether the deque is full or not
 Checks whether the deque is empty or not

Applications of deque

 An internet browser's history.
 Another common application of the deque is storing a computer code application's list of

undo operations.
 Have you ever see Money-Control App, it'll show the stocks you last visited, it'll take away

the stocks when a while and can add the most recent ones.
 Deque can be used as both stack and queue, as it supports both operations.
 Deque can be used as a palindrome checker means that if we read the string from both ends,

the string would be the same.

Lab Exercise

#include <stdio.h>

#define size 5

int deque[size];

int f = -1, r = -1;

// insert_front function will insert the value from the front

void insert_front(int x)

{

if((f==0 && r==size-1) || (f==r+1))

Unit 10: Introduction to Queues

Notes

Types of Deque

 Input Restricted Deque

In this deque, input is restricted at a single end but allows deletion at both the ends.

 Output Restricted Deque

In this deque, output is restricted at a single end but allows insertion at both the ends.

Operations performed on deque
There are the following operations that can be applied on a deque -

 Insertion at front
 Insertion at rear
 Deletion at front
 Deletion at rear

We can also perform peek operations in the deque along with the operations listed above. Through
peek operation, we can get the deque's front and rear elements of the deque. So, in addition to the
above operations, following operations are also supported in deque –

 Get the front item from the deque
 Get the rear item from the deque
 Check whether the deque is full or not
 Checks whether the deque is empty or not

Applications of deque

 An internet browser's history.
 Another common application of the deque is storing a computer code application's list of

undo operations.
 Have you ever see Money-Control App, it'll show the stocks you last visited, it'll take away

the stocks when a while and can add the most recent ones.
 Deque can be used as both stack and queue, as it supports both operations.
 Deque can be used as a palindrome checker means that if we read the string from both ends,

the string would be the same.

Lab Exercise

#include <stdio.h>

#define size 5

int deque[size];

int f = -1, r = -1;

// insert_front function will insert the value from the front

void insert_front(int x)

{

if((f==0 && r==size-1) || (f==r+1))

Unit 10: Introduction to Queues

Notes

Types of Deque

 Input Restricted Deque

In this deque, input is restricted at a single end but allows deletion at both the ends.

 Output Restricted Deque

In this deque, output is restricted at a single end but allows insertion at both the ends.

Operations performed on deque
There are the following operations that can be applied on a deque -

 Insertion at front
 Insertion at rear
 Deletion at front
 Deletion at rear

We can also perform peek operations in the deque along with the operations listed above. Through
peek operation, we can get the deque's front and rear elements of the deque. So, in addition to the
above operations, following operations are also supported in deque –

 Get the front item from the deque
 Get the rear item from the deque
 Check whether the deque is full or not
 Checks whether the deque is empty or not

Applications of deque

 An internet browser's history.
 Another common application of the deque is storing a computer code application's list of

undo operations.
 Have you ever see Money-Control App, it'll show the stocks you last visited, it'll take away

the stocks when a while and can add the most recent ones.
 Deque can be used as both stack and queue, as it supports both operations.
 Deque can be used as a palindrome checker means that if we read the string from both ends,

the string would be the same.

Lab Exercise

#include <stdio.h>

#define size 5

int deque[size];

int f = -1, r = -1;

// insert_front function will insert the value from the front

void insert_front(int x)

{

if((f==0 && r==size-1) || (f==r+1))

Lovely Professional University164

Data Structures

Notes

{

printf("Overflow");

}

else if((f==-1) && (r==-1))

{

f=r=0;

deque[f]=x;

}

else if(f==0)

{

f=size-1;

deque[f]=x;

}

else

{

f=f-1;

deque[f]=x;

}

}

// insert_rear function will insert the value from the rear

void insert_rear(int x)

{

if((f==0 && r==size-1) || (f==r+1))

{

printf("Overflow");

}

else if((f==-1) && (r==-1))

{

r=0;

deque[r]=x;

}

else if(r==size-1)

{

r=0;

deque[r]=x;

}

else

{

r++;

Lovely Professional University 165

Unit 10: Introduction to Queues

Notes

deque[r]=x;

}

}

// display function prints all the value of deque.

void display()

{

int i=f;

printf("\nElements in a deque are: ");

while(i!=r)

{

printf("%d ",deque[i]);

i=(i+1)%size;

}

printf("%d",deque[r]);

}

// getfront function retrieves the first value of the deque.

void getfront()

{

if((f==-1) && (r==-1))

{

printf("Deque is empty");

}

else

{

printf("\nThe value of the element at front is: %d", deque[f]);

}

}

// getrear function retrieves the last value of the deque.

void getrear()

{

if((f==-1) && (r==-1))

{

printf("Deque is empty");

}

Lovely Professional University166

Data Structures

Notes

else

{

printf("\nThe value of the element at rear is %d", deque[r]);

}

}

// delete_front() function deletes the element from the front

void delete_front()

{

if((f==-1) && (r==-1))

{

printf("Deque is empty");

}

else if(f==r)

{

printf("\nThe deleted element is %d", deque[f]);

f=-1;

r=-1;

}

else if(f==(size-1))

{

printf("\nThe deleted element is %d", deque[f]);

f=0;

}

else

{

printf("\nThe deleted element is %d", deque[f]);

f=f+1;

}

}

// delete_rear() function deletes the element from the rear

void delete_rear()

{

if((f==-1) && (r==-1))

{

printf("Deque is empty");

}

Lovely Professional University 167

Unit 10: Introduction to Queues

Notes

else if(f==r)

{

printf("\nThe deleted element is %d", deque[r]);

f=-1;

r=-1;

}

else if(r==0)

{

printf("\nThe deleted element is %d", deque[r]);

r=size-1;

}

else

{

printf("\nThe deleted element is %d", deque[r]);

r=r-1;

}

}

int main()

{

insert_front(10);

insert_front(5);

insert_rear(20);

insert_rear(60);

insert_rear(90);

display(); // Calling the display function to retrieve the values of deque

getfront(); // Retrieve the value at front-end

getrear(); // Retrieve the value at rear-end

delete_front();

delete_rear();

display(); // calling display function to retrieve values after deletion

return 0;

}

Output

Lovely Professional University168

Data Structures

Notes

10.3 Recursion

 Recursion is one of the most powerful tools in a programming language, but one of the most
threatening topics-as most of the beginners and not surprising to even experience students feel.

 When function is called within the same function, it is known as recursion in C. The function
which calls the same function, is known as recursive function.

 Recursion is defined as defining anything in terms of itself. Recursion is used to solve problems
involving iterations, in reverse order.

Disadvantages of Recursion

1. The computer may run out of memory if the recursive calls are not checked.
2. It is not more efficient in terms of speed and execution time.
3. According to some computer professionals, recursion does not offer any concrete

advantage over non-recursive procedures/functions.
4. Recursive solution is always logical and it is very difficult to trace.(debug and

understand).
5. Recursion takes a lot of stack space, usually not considerable when the program is small

and running on a PC.
6. Recursion uses more processor time.

Data Structures

Notes

10.3 Recursion

 Recursion is one of the most powerful tools in a programming language, but one of the most
threatening topics-as most of the beginners and not surprising to even experience students feel.

 When function is called within the same function, it is known as recursion in C. The function
which calls the same function, is known as recursive function.

 Recursion is defined as defining anything in terms of itself. Recursion is used to solve problems
involving iterations, in reverse order.

Disadvantages of Recursion

1. The computer may run out of memory if the recursive calls are not checked.
2. It is not more efficient in terms of speed and execution time.
3. According to some computer professionals, recursion does not offer any concrete

advantage over non-recursive procedures/functions.
4. Recursive solution is always logical and it is very difficult to trace.(debug and

understand).
5. Recursion takes a lot of stack space, usually not considerable when the program is small

and running on a PC.
6. Recursion uses more processor time.

Data Structures

Notes

10.3 Recursion

 Recursion is one of the most powerful tools in a programming language, but one of the most
threatening topics-as most of the beginners and not surprising to even experience students feel.

 When function is called within the same function, it is known as recursion in C. The function
which calls the same function, is known as recursive function.

 Recursion is defined as defining anything in terms of itself. Recursion is used to solve problems
involving iterations, in reverse order.

Disadvantages of Recursion

1. The computer may run out of memory if the recursive calls are not checked.
2. It is not more efficient in terms of speed and execution time.
3. According to some computer professionals, recursion does not offer any concrete

advantage over non-recursive procedures/functions.
4. Recursive solution is always logical and it is very difficult to trace.(debug and

understand).
5. Recursion takes a lot of stack space, usually not considerable when the program is small

and running on a PC.
6. Recursion uses more processor time.

Lovely Professional University 169

Unit 10: Introduction to Queues

Notes

7. Recursion is not advocated when the problem can be through iteration.
8. Recursion may be treated as a software tool to be applied carefully and selectively.

Difference between recursion and iteration

Iteration Recursion

In iteration,a problem is converted into a train
of steps that are finished one at a time, one
after another

Recursion is like piling all of those steps on top
of each other and then quashing the mall into
the solution.

With iteration,each step clearly leads on to the
next, like stepping stones across a river

In recursion, each step replicates itself at a
smaller scale, so that all of them combined
together eventually solve the problem.

Any iterative problem is solved recursively Not all recursive problem can solved by
iteration

It does not use Stack It uses Stack

Summary

 A queue is an ordered collection of items in which deletion takes place at the front and
insertion at the rear of the queue.

 In a memory, a queue can be represented in two ways; by representing the way in which the
elements are stored in the memory, and by naming the address to which the front and rear
pointers point to.

 The different types of queues are double ended queue, circular queue, and priority queue.
 The basic operations performed on a queue include inserting an element at the rear end and

deleting an element at the front end.
 Two elements with the same priority are processed according to the order in which they were

inserted into the queue.

Keywords
FIFO: (First In First Out) the property of a linear data structure which ensures that the element
retrieved from it is the first element that went into it.

Front: The end of a queue from where elements are retrieved.

Queue: A linear data structure in which the element is inserted at one end while retrieved from
another end.

Rear: The end of a queue where new elements are inserted.

Dequeue: Process of deleting elements from the queue.

Enqueue: Process of inserting elements into queue.

SelfAssessment

1. Circular Queue is also known as ________
A. Ring Buffer

Lovely Professional University170

Data Structures

Notes

B. Square Buffer
C. Rectangle Buffer
D. Curve Buffer

2. A data structure in which elements can be inserted or deleted at/from both ends but not in
the middle is?

A. Queue
B. Circular queue
C. Dequeue
D. Priority queue

3. Choose the application of circular queue
A. Looped execution of the slides of a presentation.
B. Assigning turns to play for multiplayer gaming systems.
C. Process management tasks by Operating System.
D. All of above

4. Circular queues can also be represented in memory using following ways.
A. Using contiguous memory allocation
B. Using non-contiguous memory allocation
C. Circular queue cannot be represented in memory
D. Using contiguous and non-contiguous memory allocation

5. A circular queue is one in which the insertion of a new element is done at the very first
location of the queue if the last location of the queue is full.

A. True
B. False

6. A data structure in which elements can be inserted or deleted at/from both ends but not in
the middle is?

A. Queue
B. Circular queue
C. Dequeue
D. Priority queue

7. Similarly in DEQUEUEs, insertion is performed at ___ end whereas the deletion is
performed at __ end.

A. FRONT, REAR
B. REAR, FRONT.
C. FRONT, REAR & REAR, FRONT
D. None of the above

8. What the applications are of dequeue?

A. A-Steal job scheduling algorithm
B. Can be used as both stack and queue
C. To find the maximum of all sub arrays of size k
D. All of above

Lovely Professional University 171

Unit 10: Introduction to Queues

Notes

9. What is a dequeue?
A. A queue with insert/delete defined for both front and rear ends of the queue
B. A queue implemented with a doubly linked list
C. A queue implemented with both singly and doubly linked lists
D. None of the mentioned

10. What is the functionality of the following piece of code?
public void function(Object item)

{

Node temp=new Node(item,trail);

if(isEmpty())

{

head.setNext(temp);

temp.setNext(trail);

}

else

{

Node cur=head.getNext();

while(cur.getNext()!=trail)

{

cur=cur.getNext();

}

cur.setNext(temp);

}

size++;

}

A. Insert at the front end of the dequeue
B. Insert at the rear end of the dequeue
C. Fetch the element at the rear end of the dequeue
D. Fetch the element at the front end of the dequeue

11. A function is called indirect recursive ______
A. If it calls the same function.
B. If it calls another function.
C. Execute other function
D. Above all

12. Function which call itself is called______
A. Static function
B. Auto function

Lovely Professional University172

Data Structures

Notes

C. Recursive function
D. All of above

13. Which of the following statements is true?
A. Recursion is always better than iteration
B. Recursion uses more memory compared to iteration
C. Recursion uses less memory compared to iteration
D. Iteration is always better and simpler than recursion

14. Recursion is similar to which of the following?
A. Switch Case
B. Loop
C. If-else
D. if el if else

15. When any function is called from main(), the memory is allocated to it on the stack.
A. True
B. False
C. Can be true or false
D. Neither true nor false

Answers for Self Assessment

1. A 2. B 3. D 4. D 5. A

6. C 7. C 8. D 9. A 10. B

11. B 12. C 13. B 14. B 15. A

Review Questions
1 “Using double ended queues is more advantageous than using circular queues. “Discuss

2 “Stacks are different from queues.” Justify.

3 Write a program that implement circular queue data structure.

4 Can a basic queue be implemented to function as a dynamic queue? Discuss

5 Describe the application of circular queue.

6 How will you insert and delete an element in circular queue?

7 Explain dynamic memory allocation advantages.

Further Readings
Books Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson Education,
Year of Publication, 2008

Lipschutz. Seymour. Data Structures with C. Delhi: Tata McGraw Hill

Reddy.A.M Padma (2006). Data Structures Using C. Bangalore: Sri Nandi Publications

Data Structures

Notes

C. Recursive function
D. All of above

13. Which of the following statements is true?
A. Recursion is always better than iteration
B. Recursion uses more memory compared to iteration
C. Recursion uses less memory compared to iteration
D. Iteration is always better and simpler than recursion

14. Recursion is similar to which of the following?
A. Switch Case
B. Loop
C. If-else
D. if el if else

15. When any function is called from main(), the memory is allocated to it on the stack.
A. True
B. False
C. Can be true or false
D. Neither true nor false

Answers for Self Assessment

1. A 2. B 3. D 4. D 5. A

6. C 7. C 8. D 9. A 10. B

11. B 12. C 13. B 14. B 15. A

Review Questions
1 “Using double ended queues is more advantageous than using circular queues. “Discuss

2 “Stacks are different from queues.” Justify.

3 Write a program that implement circular queue data structure.

4 Can a basic queue be implemented to function as a dynamic queue? Discuss

5 Describe the application of circular queue.

6 How will you insert and delete an element in circular queue?

7 Explain dynamic memory allocation advantages.

Further Readings
Books Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson Education,
Year of Publication, 2008

Lipschutz. Seymour. Data Structures with C. Delhi: Tata McGraw Hill

Reddy.A.M Padma (2006). Data Structures Using C. Bangalore: Sri Nandi Publications

Data Structures

Notes

C. Recursive function
D. All of above

13. Which of the following statements is true?
A. Recursion is always better than iteration
B. Recursion uses more memory compared to iteration
C. Recursion uses less memory compared to iteration
D. Iteration is always better and simpler than recursion

14. Recursion is similar to which of the following?
A. Switch Case
B. Loop
C. If-else
D. if el if else

15. When any function is called from main(), the memory is allocated to it on the stack.
A. True
B. False
C. Can be true or false
D. Neither true nor false

Answers for Self Assessment

1. A 2. B 3. D 4. D 5. A

6. C 7. C 8. D 9. A 10. B

11. B 12. C 13. B 14. B 15. A

Review Questions
1 “Using double ended queues is more advantageous than using circular queues. “Discuss

2 “Stacks are different from queues.” Justify.

3 Write a program that implement circular queue data structure.

4 Can a basic queue be implemented to function as a dynamic queue? Discuss

5 Describe the application of circular queue.

6 How will you insert and delete an element in circular queue?

7 Explain dynamic memory allocation advantages.

Further Readings
Books Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson Education,
Year of Publication, 2008

Lipschutz. Seymour. Data Structures with C. Delhi: Tata McGraw Hill

Reddy.A.M Padma (2006). Data Structures Using C. Bangalore: Sri Nandi Publications

Lovely Professional University 173

Unit 10: Introduction to Queues

Notes

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett, 1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

YashvantKanetkar, Let us C

Web links
https://www.programiz.com/dsa/circular-queue

https://www.geeksforgeeks.org/

https://www.javatpoint.com/data-structure-queue

Unit 10: Introduction to Queues

Notes

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett, 1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

YashvantKanetkar, Let us C

Web links
https://www.programiz.com/dsa/circular-queue

https://www.geeksforgeeks.org/

https://www.javatpoint.com/data-structure-queue

Unit 10: Introduction to Queues

Notes

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett, 1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

YashvantKanetkar, Let us C

Web links
https://www.programiz.com/dsa/circular-queue

https://www.geeksforgeeks.org/

https://www.javatpoint.com/data-structure-queue

Lovely Professional University174

Unit 11: Trees

Notes

Unit 11: Trees

CONTENTS

Objectives

Introduction

11.1 Trees

11.2 Types of Trees

11.3 Representation of Binary Tree

11.4 Binary Search Tree

11.5 Traversal

11.6 Searching

11.7 Insertion and Deletion in Binary Search Trees

Summary

Keywords

Self Assessment

Answer for Self Assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to:

 Define trees
 Explain different types of trees
 Discuss the applications of trees

Introduction
We know that a data structure is a collection of data pieces labelled with the same name. A data
structure can be thought of as a collection of rules for keeping data together. Data structures are
used in almost all computer programmes. Algorithms are incomplete without data structures. It can
be used to manage massive databases with large amounts of data. Data structures are prioritised in
several modern programming languages over algorithms.

There are many data structures that help us to manipulate the data stored in the memory, which we
have discussed in the previous units. These include array, stack, queue, and linked-list.

Choosing the best data structure for a program is a challenging task. Similar tasks may require
different data structures. We derive new data structures for complex tasks using the already
existing ones. We need to compare the characteristics of the data structures before choosing the
right data structure. A tree is a hierarchical data structure suitable for representing hierarchical
information. The tree data structure has the characteristics of quick search, quick inserts, and quick
deletes.

11.1 Trees
A tree is a very important data structure as it is useful in many applications. A tree structure is
amethod of representing the hierarchical nature of a structure in a graphical form. It is termed as

Lovely Professional University 175

Dr. Prikshat Kumar Angra, Lovely Professional University

Data Structures

Notes

"treestructure" since its representation resembles a tree. However, the chart of a tree is normally
upsidedown compared to an actual tree, with the root at the top and the leaves at the bottom.

Figure shows tree structure of books.

In the hierarchical organization of books shown in figure 10.1, Books is the root of the tree. Books
can be classified as Fiction and Non-fiction. Non-fiction books can be further classified as Realistic
and Non-realistic, which are the leaves of the tree. Thus, it forms a complete tree structure.

Trees are primarily treated as data structures rather than as data types.

A tree is a widely-used data structure that depicts a hierarchical tree structures with a set of linked
nodes. The elements of data structure in a tree are arranged in a non-linear fashion i.e., they use two
dimensional representations. Thus, trees are known as non-linear data structures. This data
structure is more efficient in inserting additional data, deleting unnecessary data, and searching
new data.

Did you Know?

 Other data structures such as arrays, linked list, stack, and queue are linear data structures
that store data sequentially.

 In order to perform any operation in a linear data structure, the time complexity increases
with the increase in the data size.

o But, it is not acceptable in today's computational world.
 Different tree data structures allow quicker and easier access to the data as it is a non-

linear data structure.

Advantages of trees
Trees are so useful and frequently used, because they have some very serious advantages:

 Trees reflect structural relationships in the data
 Trees are used to represent hierarchies
 Trees provide an efficient insertion and searching
 Trees are very flexible data, allowing to move sub trees around with minimum effort

Representation of Tree in Graphs

Data Structures

Notes

"treestructure" since its representation resembles a tree. However, the chart of a tree is normally
upsidedown compared to an actual tree, with the root at the top and the leaves at the bottom.

Figure shows tree structure of books.

In the hierarchical organization of books shown in figure 10.1, Books is the root of the tree. Books
can be classified as Fiction and Non-fiction. Non-fiction books can be further classified as Realistic
and Non-realistic, which are the leaves of the tree. Thus, it forms a complete tree structure.

Trees are primarily treated as data structures rather than as data types.

A tree is a widely-used data structure that depicts a hierarchical tree structures with a set of linked
nodes. The elements of data structure in a tree are arranged in a non-linear fashion i.e., they use two
dimensional representations. Thus, trees are known as non-linear data structures. This data
structure is more efficient in inserting additional data, deleting unnecessary data, and searching
new data.

Did you Know?

 Other data structures such as arrays, linked list, stack, and queue are linear data structures
that store data sequentially.

 In order to perform any operation in a linear data structure, the time complexity increases
with the increase in the data size.

o But, it is not acceptable in today's computational world.
 Different tree data structures allow quicker and easier access to the data as it is a non-

linear data structure.

Advantages of trees
Trees are so useful and frequently used, because they have some very serious advantages:

 Trees reflect structural relationships in the data
 Trees are used to represent hierarchies
 Trees provide an efficient insertion and searching
 Trees are very flexible data, allowing to move sub trees around with minimum effort

Representation of Tree in Graphs

Data Structures

Notes

"treestructure" since its representation resembles a tree. However, the chart of a tree is normally
upsidedown compared to an actual tree, with the root at the top and the leaves at the bottom.

Figure shows tree structure of books.

In the hierarchical organization of books shown in figure 10.1, Books is the root of the tree. Books
can be classified as Fiction and Non-fiction. Non-fiction books can be further classified as Realistic
and Non-realistic, which are the leaves of the tree. Thus, it forms a complete tree structure.

Trees are primarily treated as data structures rather than as data types.

A tree is a widely-used data structure that depicts a hierarchical tree structures with a set of linked
nodes. The elements of data structure in a tree are arranged in a non-linear fashion i.e., they use two
dimensional representations. Thus, trees are known as non-linear data structures. This data
structure is more efficient in inserting additional data, deleting unnecessary data, and searching
new data.

Did you Know?

 Other data structures such as arrays, linked list, stack, and queue are linear data structures
that store data sequentially.

 In order to perform any operation in a linear data structure, the time complexity increases
with the increase in the data size.

o But, it is not acceptable in today's computational world.
 Different tree data structures allow quicker and easier access to the data as it is a non-

linear data structure.

Advantages of trees
Trees are so useful and frequently used, because they have some very serious advantages:

 Trees reflect structural relationships in the data
 Trees are used to represent hierarchies
 Trees provide an efficient insertion and searching
 Trees are very flexible data, allowing to move sub trees around with minimum effort

Representation of Tree in Graphs

Lovely Professional University176

Unit 11: Trees

Notes

A graph G consists of a set of objects V = {v1, v2, v3 …} called vertices (points or nodes) and a set of
objects E = {e1, e2, e3 ….} called edges (lines or arcs).

The set V (G) is called the vertex set of G and E (G) is the edge set.

The graph is denoted as G = (V, E)

Let G be a graph and {u, v} an edge of G. Since {u, v} is 2-element set, we write {v, u} instead of {u,
v}.

This edge can be represented as uv or vu.

If e = uv is an edge of a graph G, then u and v are adjacent in G and e joins u and v.

This graph G is defined by the sets:

V (G) = {u, v, w, x, y, z} and E(G) = { uv, uw, wx, xy, xz}

Every graph has a diagram associated with it. The vertex u and an edge e are incident with each
other as are v and e. If two distinct edges e and f are incident with a common vertex, then they are
adjacent edges.

Following figure depicts three examples of graphs. Graphs, unlike trees, can have sets of nodes that
are disconnected from other sets of nodes.

In figure 10.3, the graph (i) has two different, unconnected set of nodes. Graphs can also contain
cycles. Graph (ii) has several cycles. One such path is from x1 to x2 to x4 and back to x1. Another
one is from x1 to x2 to x3 to x5 to x4 and back to x1. (There are also cycles in graph (ii).) Graph (iii)
does not have any cycles and all nodes are reachable. Therefore, it is a tree.

Tree Terminologies
Node

A node is an entity that contains a key or value and pointers to its child nodes.

Unit 11: Trees

Notes

A graph G consists of a set of objects V = {v1, v2, v3 …} called vertices (points or nodes) and a set of
objects E = {e1, e2, e3 ….} called edges (lines or arcs).

The set V (G) is called the vertex set of G and E (G) is the edge set.

The graph is denoted as G = (V, E)

Let G be a graph and {u, v} an edge of G. Since {u, v} is 2-element set, we write {v, u} instead of {u,
v}.

This edge can be represented as uv or vu.

If e = uv is an edge of a graph G, then u and v are adjacent in G and e joins u and v.

This graph G is defined by the sets:

V (G) = {u, v, w, x, y, z} and E(G) = { uv, uw, wx, xy, xz}

Every graph has a diagram associated with it. The vertex u and an edge e are incident with each
other as are v and e. If two distinct edges e and f are incident with a common vertex, then they are
adjacent edges.

Following figure depicts three examples of graphs. Graphs, unlike trees, can have sets of nodes that
are disconnected from other sets of nodes.

In figure 10.3, the graph (i) has two different, unconnected set of nodes. Graphs can also contain
cycles. Graph (ii) has several cycles. One such path is from x1 to x2 to x4 and back to x1. Another
one is from x1 to x2 to x3 to x5 to x4 and back to x1. (There are also cycles in graph (ii).) Graph (iii)
does not have any cycles and all nodes are reachable. Therefore, it is a tree.

Tree Terminologies
Node

A node is an entity that contains a key or value and pointers to its child nodes.

Unit 11: Trees

Notes

A graph G consists of a set of objects V = {v1, v2, v3 …} called vertices (points or nodes) and a set of
objects E = {e1, e2, e3 ….} called edges (lines or arcs).

The set V (G) is called the vertex set of G and E (G) is the edge set.

The graph is denoted as G = (V, E)

Let G be a graph and {u, v} an edge of G. Since {u, v} is 2-element set, we write {v, u} instead of {u,
v}.

This edge can be represented as uv or vu.

If e = uv is an edge of a graph G, then u and v are adjacent in G and e joins u and v.

This graph G is defined by the sets:

V (G) = {u, v, w, x, y, z} and E(G) = { uv, uw, wx, xy, xz}

Every graph has a diagram associated with it. The vertex u and an edge e are incident with each
other as are v and e. If two distinct edges e and f are incident with a common vertex, then they are
adjacent edges.

Following figure depicts three examples of graphs. Graphs, unlike trees, can have sets of nodes that
are disconnected from other sets of nodes.

In figure 10.3, the graph (i) has two different, unconnected set of nodes. Graphs can also contain
cycles. Graph (ii) has several cycles. One such path is from x1 to x2 to x4 and back to x1. Another
one is from x1 to x2 to x3 to x5 to x4 and back to x1. (There are also cycles in graph (ii).) Graph (iii)
does not have any cycles and all nodes are reachable. Therefore, it is a tree.

Tree Terminologies
Node

A node is an entity that contains a key or value and pointers to its child nodes.

Lovely Professional University 177

Data Structures

Notes

The last nodes of each path are called leaf nodes or external nodes that do not contain a
link/pointer to child nodes.

The node having at least a child node is called an internal node.

Edge
It is the link between any two nodes.

Root
It is the topmost node of a tree.

Height of a Node
The height of a node is the number of edges from the node to the deepest leaf (ie. the longest path
from the node to a leaf node).

Depth of a Node

The depth of a node is the number of edges from the root to the node.

Degree of a Node
The degree of a node is the total number of branches of that node.

Forest
A collection of disjoint trees is called a forest.

Data Structures

Notes

The last nodes of each path are called leaf nodes or external nodes that do not contain a
link/pointer to child nodes.

The node having at least a child node is called an internal node.

Edge
It is the link between any two nodes.

Root
It is the topmost node of a tree.

Height of a Node
The height of a node is the number of edges from the node to the deepest leaf (ie. the longest path
from the node to a leaf node).

Depth of a Node

The depth of a node is the number of edges from the root to the node.

Degree of a Node
The degree of a node is the total number of branches of that node.

Forest
A collection of disjoint trees is called a forest.

Data Structures

Notes

The last nodes of each path are called leaf nodes or external nodes that do not contain a
link/pointer to child nodes.

The node having at least a child node is called an internal node.

Edge
It is the link between any two nodes.

Root
It is the topmost node of a tree.

Height of a Node
The height of a node is the number of edges from the node to the deepest leaf (ie. the longest path
from the node to a leaf node).

Depth of a Node

The depth of a node is the number of edges from the root to the node.

Degree of a Node
The degree of a node is the total number of branches of that node.

Forest
A collection of disjoint trees is called a forest.

Lovely Professional University178

Unit 11: Trees

Notes

Height of a Tree
The height of a Tree is the height of the root node or the depth of the deepest node.

11.2 Types of Trees

1. General Tree
2. Binary Tree
3. Binary Search Tree
4. AVL Tree

1. General Tree: In the general tree, a node can have either 0 or maximum n number of
nodes. There is no restriction imposed on the degree of the node (the number of nodes
that a node can contain). The topmost node in a general tree is known as a root node. The
children of the parent node are known as subtrees.

Unit 11: Trees

Notes

Height of a Tree
The height of a Tree is the height of the root node or the depth of the deepest node.

11.2 Types of Trees

1. General Tree
2. Binary Tree
3. Binary Search Tree
4. AVL Tree

1. General Tree: In the general tree, a node can have either 0 or maximum n number of
nodes. There is no restriction imposed on the degree of the node (the number of nodes
that a node can contain). The topmost node in a general tree is known as a root node. The
children of the parent node are known as subtrees.

Unit 11: Trees

Notes

Height of a Tree
The height of a Tree is the height of the root node or the depth of the deepest node.

11.2 Types of Trees

1. General Tree
2. Binary Tree
3. Binary Search Tree
4. AVL Tree

1. General Tree: In the general tree, a node can have either 0 or maximum n number of
nodes. There is no restriction imposed on the degree of the node (the number of nodes
that a node can contain). The topmost node in a general tree is known as a root node. The
children of the parent node are known as subtrees.

Lovely Professional University 179

Data Structures

Notes

2. Binary Tree: Binary name itself suggests two numbers, i.e., 0 and 1. In a binary tree, each
node in a tree can have utmost two child nodes. Here, utmost means whether the node has
0 nodes, 1 node or 2 nodes.

Types of Binary Tree

Binary Search Tree

Binary search tree is a non-linear data structure in which one node is connected to n number of
nodes. It is a node-based data structure. A node can be represented in a binary search tree with
three fields, i.e., data part, left-child, and right-child.

AVL Tree

It is one of the types of the binary tree, or we can say that it is a variant of the binary search tree.
AVL tree satisfies the property of the binary tree as well as of the binary search tree.It is a self-
balancing binary search tree that was invented by Adelson VelskyLindas.Here, self-balancing
means that balancing the heights of left subtree and right subtree. This balancing is measured in
terms of the balancing factor.

Data Structures

Notes

2. Binary Tree: Binary name itself suggests two numbers, i.e., 0 and 1. In a binary tree, each
node in a tree can have utmost two child nodes. Here, utmost means whether the node has
0 nodes, 1 node or 2 nodes.

Types of Binary Tree

Binary Search Tree

Binary search tree is a non-linear data structure in which one node is connected to n number of
nodes. It is a node-based data structure. A node can be represented in a binary search tree with
three fields, i.e., data part, left-child, and right-child.

AVL Tree

It is one of the types of the binary tree, or we can say that it is a variant of the binary search tree.
AVL tree satisfies the property of the binary tree as well as of the binary search tree.It is a self-
balancing binary search tree that was invented by Adelson VelskyLindas.Here, self-balancing
means that balancing the heights of left subtree and right subtree. This balancing is measured in
terms of the balancing factor.

Data Structures

Notes

2. Binary Tree: Binary name itself suggests two numbers, i.e., 0 and 1. In a binary tree, each
node in a tree can have utmost two child nodes. Here, utmost means whether the node has
0 nodes, 1 node or 2 nodes.

Types of Binary Tree

Binary Search Tree

Binary search tree is a non-linear data structure in which one node is connected to n number of
nodes. It is a node-based data structure. A node can be represented in a binary search tree with
three fields, i.e., data part, left-child, and right-child.

AVL Tree

It is one of the types of the binary tree, or we can say that it is a variant of the binary search tree.
AVL tree satisfies the property of the binary tree as well as of the binary search tree.It is a self-
balancing binary search tree that was invented by Adelson VelskyLindas.Here, self-balancing
means that balancing the heights of left subtree and right subtree. This balancing is measured in
terms of the balancing factor.

Lovely Professional University180

Unit 11: Trees

Notes

11.3 Representation of Binary Tree
A binary tree data structure is represented using two methods. Those methods are as follows...

1. Linked List Representation
2. Array Representation (Sequential representation)

1. Linked representation

Binary trees in linked representation are stored in the memory as linked lists. These lists have nodes
that aren’t stored at adjacent or neighboring memory locations and are linked to each other through
the parent-child relationship associated with trees.

In this representation, each node has three different parts –

 pointer that points towards the right node,
 pointer that points towards the left node,
 data element.

This is the more common representation. All binary trees consist of a root pointer that points in the
direction of the root node. When you see a root node pointing towards null or 0, you should know
that you are dealing with an empty binary tree. The right and left pointers store the address of the
right and left children of the tree.

2. Sequential representation

Although it is simpler than linked representation, its inefficiency makes it a less preferred binary
tree representation of the two. The inefficiency lies in the amount of space it requires for the storage
of different tree elements. The sequential representation uses an array for the storage of tree
elements.

The number of nodes a binary tree has defines the size of the array being used. The root node of the
binary tree lies at the array’s first index. The index at which a particular node is stored will define
the indices at which the right and left children of the node will be stored. An empty tree has null or
0 as its first index.

11.4 Binary Search Tree
In a binary search tree, the value of all the nodes in the left sub-tree is less than the value of the root.

Similarly, value of all the nodes in the right sub-tree is greater than or equal to the value of the root.

Key property is value at node

Smaller values in left subtree.

Larger values in right subtree.

Example

X > Y

X < Z

Unit 11: Trees

Notes

11.3 Representation of Binary Tree
A binary tree data structure is represented using two methods. Those methods are as follows...

1. Linked List Representation
2. Array Representation (Sequential representation)

1. Linked representation

Binary trees in linked representation are stored in the memory as linked lists. These lists have nodes
that aren’t stored at adjacent or neighboring memory locations and are linked to each other through
the parent-child relationship associated with trees.

In this representation, each node has three different parts –

 pointer that points towards the right node,
 pointer that points towards the left node,
 data element.

This is the more common representation. All binary trees consist of a root pointer that points in the
direction of the root node. When you see a root node pointing towards null or 0, you should know
that you are dealing with an empty binary tree. The right and left pointers store the address of the
right and left children of the tree.

2. Sequential representation

Although it is simpler than linked representation, its inefficiency makes it a less preferred binary
tree representation of the two. The inefficiency lies in the amount of space it requires for the storage
of different tree elements. The sequential representation uses an array for the storage of tree
elements.

The number of nodes a binary tree has defines the size of the array being used. The root node of the
binary tree lies at the array’s first index. The index at which a particular node is stored will define
the indices at which the right and left children of the node will be stored. An empty tree has null or
0 as its first index.

11.4 Binary Search Tree
In a binary search tree, the value of all the nodes in the left sub-tree is less than the value of the root.

Similarly, value of all the nodes in the right sub-tree is greater than or equal to the value of the root.

Key property is value at node

Smaller values in left subtree.

Larger values in right subtree.

Example

X > Y

X < Z

Unit 11: Trees

Notes

11.3 Representation of Binary Tree
A binary tree data structure is represented using two methods. Those methods are as follows...

1. Linked List Representation
2. Array Representation (Sequential representation)

1. Linked representation

Binary trees in linked representation are stored in the memory as linked lists. These lists have nodes
that aren’t stored at adjacent or neighboring memory locations and are linked to each other through
the parent-child relationship associated with trees.

In this representation, each node has three different parts –

 pointer that points towards the right node,
 pointer that points towards the left node,
 data element.

This is the more common representation. All binary trees consist of a root pointer that points in the
direction of the root node. When you see a root node pointing towards null or 0, you should know
that you are dealing with an empty binary tree. The right and left pointers store the address of the
right and left children of the tree.

2. Sequential representation

Although it is simpler than linked representation, its inefficiency makes it a less preferred binary
tree representation of the two. The inefficiency lies in the amount of space it requires for the storage
of different tree elements. The sequential representation uses an array for the storage of tree
elements.

The number of nodes a binary tree has defines the size of the array being used. The root node of the
binary tree lies at the array’s first index. The index at which a particular node is stored will define
the indices at which the right and left children of the node will be stored. An empty tree has null or
0 as its first index.

11.4 Binary Search Tree
In a binary search tree, the value of all the nodes in the left sub-tree is less than the value of the root.

Similarly, value of all the nodes in the right sub-tree is greater than or equal to the value of the root.

Key property is value at node

Smaller values in left subtree.

Larger values in right subtree.

Example

X > Y

X < Z

Lovely Professional University 181

Data Structures

Notes

The properties that separate a binary search tree from a regular binary tree

1. All nodes of left subtree are less than the root node.
2. All nodes of right subtree are more than the root node.
3. Both subtrees of each node are also BSTs i.e. they have the above two properties.

A tree having a right subtree with one value smaller than the root is shown to
demonstrate that it is not a valid binary search tree.

Types of Binary Trees

1. Complete binary tree: All the levels in the trees are full of last level's possible exceptions.
Similarly, all the nodes are full, directing the far left.

2. Full binary tree: All the nodes have 2 child nodes except the leaf.
3. Balanced or Perfect binary tree: In the tree, all the nodes have two children. Besides, there is

the same level of each sub node.

Advantages of binary search tree

 Searching become very efficient in a binary search tree since, we get a hint at each step,
about which sub-tree contains the desired element.

 The binary search tree is considered as efficient data structure in compare to arrays and
linked lists. In searching process, it removes half sub-tree at every step. Searching for an
element in a binary search tree takes o(log2n) time. In worst case, the time it takes to search
an element is 0(n).

 It also speed up the insertion and deletion operations as compare to that in array and linked
list.

Data Structures

Notes

The properties that separate a binary search tree from a regular binary tree

1. All nodes of left subtree are less than the root node.
2. All nodes of right subtree are more than the root node.
3. Both subtrees of each node are also BSTs i.e. they have the above two properties.

A tree having a right subtree with one value smaller than the root is shown to
demonstrate that it is not a valid binary search tree.

Types of Binary Trees

1. Complete binary tree: All the levels in the trees are full of last level's possible exceptions.
Similarly, all the nodes are full, directing the far left.

2. Full binary tree: All the nodes have 2 child nodes except the leaf.
3. Balanced or Perfect binary tree: In the tree, all the nodes have two children. Besides, there is

the same level of each sub node.

Advantages of binary search tree

 Searching become very efficient in a binary search tree since, we get a hint at each step,
about which sub-tree contains the desired element.

 The binary search tree is considered as efficient data structure in compare to arrays and
linked lists. In searching process, it removes half sub-tree at every step. Searching for an
element in a binary search tree takes o(log2n) time. In worst case, the time it takes to search
an element is 0(n).

 It also speed up the insertion and deletion operations as compare to that in array and linked
list.

Data Structures

Notes

The properties that separate a binary search tree from a regular binary tree

1. All nodes of left subtree are less than the root node.
2. All nodes of right subtree are more than the root node.
3. Both subtrees of each node are also BSTs i.e. they have the above two properties.

A tree having a right subtree with one value smaller than the root is shown to
demonstrate that it is not a valid binary search tree.

Types of Binary Trees

1. Complete binary tree: All the levels in the trees are full of last level's possible exceptions.
Similarly, all the nodes are full, directing the far left.

2. Full binary tree: All the nodes have 2 child nodes except the leaf.
3. Balanced or Perfect binary tree: In the tree, all the nodes have two children. Besides, there is

the same level of each sub node.

Advantages of binary search tree

 Searching become very efficient in a binary search tree since, we get a hint at each step,
about which sub-tree contains the desired element.

 The binary search tree is considered as efficient data structure in compare to arrays and
linked lists. In searching process, it removes half sub-tree at every step. Searching for an
element in a binary search tree takes o(log2n) time. In worst case, the time it takes to search
an element is 0(n).

 It also speed up the insertion and deletion operations as compare to that in array and linked
list.

Lovely Professional University182

Unit 11: Trees

Notes

Binary Search Tree Applications

 In multilevel indexing in the database.
 For dynamic sorting.
 For managing virtual memory areas in Unix kernel.

Difference between BT (Binary Tree) and BST (Binary Search Tree)

A binary tree is simply a tree in which each node can have at most two children.

A binary search tree is a binary tree in which the nodes are assigned values, with the following
restrictions:

1. No duplicate values.
2. The left subtree of a node can only have values less than the node.
3. The right subtree of a node can only have values greater than the node and recursively

defined.
4. The left subtree of a node is a binary search tree.
5. The right subtree of a node is a binary search tree.

Example

Create the binary search tree using the following data elements

43, 10, 79, 90, 12, 54, 11, 9, 50

Insert 43 into the tree as the root of the tree.

Read the next element, if it is lesser than the root node element, insert it as the root of the left sub-
tree.

Otherwise, insert it as the root of the right of the right sub-tree.

Unit 11: Trees

Notes

Binary Search Tree Applications

 In multilevel indexing in the database.
 For dynamic sorting.
 For managing virtual memory areas in Unix kernel.

Difference between BT (Binary Tree) and BST (Binary Search Tree)

A binary tree is simply a tree in which each node can have at most two children.

A binary search tree is a binary tree in which the nodes are assigned values, with the following
restrictions:

1. No duplicate values.
2. The left subtree of a node can only have values less than the node.
3. The right subtree of a node can only have values greater than the node and recursively

defined.
4. The left subtree of a node is a binary search tree.
5. The right subtree of a node is a binary search tree.

Example

Create the binary search tree using the following data elements

43, 10, 79, 90, 12, 54, 11, 9, 50

Insert 43 into the tree as the root of the tree.

Read the next element, if it is lesser than the root node element, insert it as the root of the left sub-
tree.

Otherwise, insert it as the root of the right of the right sub-tree.

Unit 11: Trees

Notes

Binary Search Tree Applications

 In multilevel indexing in the database.
 For dynamic sorting.
 For managing virtual memory areas in Unix kernel.

Difference between BT (Binary Tree) and BST (Binary Search Tree)

A binary tree is simply a tree in which each node can have at most two children.

A binary search tree is a binary tree in which the nodes are assigned values, with the following
restrictions:

1. No duplicate values.
2. The left subtree of a node can only have values less than the node.
3. The right subtree of a node can only have values greater than the node and recursively

defined.
4. The left subtree of a node is a binary search tree.
5. The right subtree of a node is a binary search tree.

Example

Create the binary search tree using the following data elements

43, 10, 79, 90, 12, 54, 11, 9, 50

Insert 43 into the tree as the root of the tree.

Read the next element, if it is lesser than the root node element, insert it as the root of the left sub-
tree.

Otherwise, insert it as the root of the right of the right sub-tree.

Lovely Professional University 183

Data Structures

Notes

11.5 Traversal
Traversal is a process to visit all the nodes of a tree and may print their values too. Because, all
nodes are connected via edges (links) we always start from the root (head) node. We cannot
randomly access a node in a tree.

Ways of traversal are

1. In-order Traversal
2. Pre-order Traversal
3. Post-order Traversal

Example

Inorder (Left, Root, Right) : 4 2 5 1 3

Preorder (Root, Left, Right) : 1 2 4 5 3

Data Structures

Notes

11.5 Traversal
Traversal is a process to visit all the nodes of a tree and may print their values too. Because, all
nodes are connected via edges (links) we always start from the root (head) node. We cannot
randomly access a node in a tree.

Ways of traversal are

1. In-order Traversal
2. Pre-order Traversal
3. Post-order Traversal

Example

Inorder (Left, Root, Right) : 4 2 5 1 3

Preorder (Root, Left, Right) : 1 2 4 5 3

Data Structures

Notes

11.5 Traversal
Traversal is a process to visit all the nodes of a tree and may print their values too. Because, all
nodes are connected via edges (links) we always start from the root (head) node. We cannot
randomly access a node in a tree.

Ways of traversal are

1. In-order Traversal
2. Pre-order Traversal
3. Post-order Traversal

Example

Inorder (Left, Root, Right) : 4 2 5 1 3

Preorder (Root, Left, Right) : 1 2 4 5 3

Lovely Professional University184

Unit 11: Trees

Notes

Postorder (Left, Right, Root) : 4 5 2 3 1

Inorder algorithm

Until all nodes are traversed −

Step 1 − Recursively traverse left subtree.

Step 2 − Visit root node.

Step 3 − Recursively traverse right subtree.

Preorder algorithm

Until all nodes are traversed −

Step 1 − Visit root node.

Step 2 − Recursively traverse left subtree.

Step 3 − Recursively traverse right subtree.

Postorder algorithm

Until all nodes are traversed −

Step 1 − Recursively traverse left subtree.

Step 2 − Recursively traverse right subtree.

Step 3 − Visit root node.

Tree Traversal Methods
There are two methods for traversal

1. Recursive
2. Non Recursive

Example

// Postorder Traversal in using Recursion

#include <stdio.h>

#include <stdlib.h>

struct tree {

int val;

struct tree* left;

struct tree* right;

};

typedef struct tree TreeNode;

TreeNode* newTree(int data)

{

TreeNode* root = (TreeNode*)malloc(sizeof(TreeNode));

root->val = data;

Unit 11: Trees

Notes

Postorder (Left, Right, Root) : 4 5 2 3 1

Inorder algorithm

Until all nodes are traversed −

Step 1 − Recursively traverse left subtree.

Step 2 − Visit root node.

Step 3 − Recursively traverse right subtree.

Preorder algorithm

Until all nodes are traversed −

Step 1 − Visit root node.

Step 2 − Recursively traverse left subtree.

Step 3 − Recursively traverse right subtree.

Postorder algorithm

Until all nodes are traversed −

Step 1 − Recursively traverse left subtree.

Step 2 − Recursively traverse right subtree.

Step 3 − Visit root node.

Tree Traversal Methods
There are two methods for traversal

1. Recursive
2. Non Recursive

Example

// Postorder Traversal in using Recursion

#include <stdio.h>

#include <stdlib.h>

struct tree {

int val;

struct tree* left;

struct tree* right;

};

typedef struct tree TreeNode;

TreeNode* newTree(int data)

{

TreeNode* root = (TreeNode*)malloc(sizeof(TreeNode));

root->val = data;

Unit 11: Trees

Notes

Postorder (Left, Right, Root) : 4 5 2 3 1

Inorder algorithm

Until all nodes are traversed −

Step 1 − Recursively traverse left subtree.

Step 2 − Visit root node.

Step 3 − Recursively traverse right subtree.

Preorder algorithm

Until all nodes are traversed −

Step 1 − Visit root node.

Step 2 − Recursively traverse left subtree.

Step 3 − Recursively traverse right subtree.

Postorder algorithm

Until all nodes are traversed −

Step 1 − Recursively traverse left subtree.

Step 2 − Recursively traverse right subtree.

Step 3 − Visit root node.

Tree Traversal Methods
There are two methods for traversal

1. Recursive
2. Non Recursive

Example

// Postorder Traversal in using Recursion

#include <stdio.h>

#include <stdlib.h>

struct tree {

int val;

struct tree* left;

struct tree* right;

};

typedef struct tree TreeNode;

TreeNode* newTree(int data)

{

TreeNode* root = (TreeNode*)malloc(sizeof(TreeNode));

root->val = data;

Lovely Professional University 185

Data Structures

Notes

root->left = NULL;

root->right = NULL;

return (root);

}

void postorder(TreeNode* root)

{

if (root == NULL)

return;

postorder(root->left);

postorder(root->right);

printf("%d ", root->val);

}

int main()

{

TreeNode* t = newTree(9);

t->left = newTree(3);

t->left->left = newTree(0);

t->left->right = newTree(4);

t->left->right->left = newTree(5);

t->left->right->right = newTree(7);

t->left->right->right->left = newTree(8);

t->left->right->right->right = newTree(6);

t->right = newTree(2);

t->right->left = newTree(8);

t->right->right = newTree(10);

printf("postorder traversal of the above tree is:\n");

postorder(t);

return 0;

}

Output

Example

// Inorder Tree Traversal without Recursion

#include<stdio.h>

Data Structures

Notes

root->left = NULL;

root->right = NULL;

return (root);

}

void postorder(TreeNode* root)

{

if (root == NULL)

return;

postorder(root->left);

postorder(root->right);

printf("%d ", root->val);

}

int main()

{

TreeNode* t = newTree(9);

t->left = newTree(3);

t->left->left = newTree(0);

t->left->right = newTree(4);

t->left->right->left = newTree(5);

t->left->right->right = newTree(7);

t->left->right->right->left = newTree(8);

t->left->right->right->right = newTree(6);

t->right = newTree(2);

t->right->left = newTree(8);

t->right->right = newTree(10);

printf("postorder traversal of the above tree is:\n");

postorder(t);

return 0;

}

Output

Example

// Inorder Tree Traversal without Recursion

#include<stdio.h>

Data Structures

Notes

root->left = NULL;

root->right = NULL;

return (root);

}

void postorder(TreeNode* root)

{

if (root == NULL)

return;

postorder(root->left);

postorder(root->right);

printf("%d ", root->val);

}

int main()

{

TreeNode* t = newTree(9);

t->left = newTree(3);

t->left->left = newTree(0);

t->left->right = newTree(4);

t->left->right->left = newTree(5);

t->left->right->right = newTree(7);

t->left->right->right->left = newTree(8);

t->left->right->right->right = newTree(6);

t->right = newTree(2);

t->right->left = newTree(8);

t->right->right = newTree(10);

printf("postorder traversal of the above tree is:\n");

postorder(t);

return 0;

}

Output

Example

// Inorder Tree Traversal without Recursion

#include<stdio.h>

Lovely Professional University186

Unit 11: Trees

Notes

#include<stdlib.h>

#define bool int

struct tNode

{

int data;

struct tNode* left;

struct tNode* right;

};

struct sNode

{

struct tNode *t;

struct sNode *next;

};

void push(struct sNode** top_ref, struct tNode *t);

struct tNode *pop(struct sNode** top_ref);

bool isEmpty(struct sNode *top);

void inOrder(struct tNode *root)

{

struct tNode *current = root;

struct sNode *s = NULL;

bool done = 0;

while (!done)

{

if(current != NULL)

{

push(&s, current);

current = current->left;

}

else

{

if (!isEmpty(s))

{

current = pop(&s);

printf("%d ", current->data);

current = current->right;

}

else

done = 1;

}

}

Lovely Professional University 187

Data Structures

Notes

}

void push(struct sNode** top_ref, struct tNode *t)

{

struct sNode* new_tNode =

(structsNode*) malloc(sizeof(struct sNode));

if(new_tNode == NULL)

{

printf("Stack Overflow \n");

getchar();

exit(0);

}

new_tNode->t = t;

new_tNode->next = (*top_ref);

(*top_ref) = new_tNode;

}

bool isEmpty(struct sNode *top)

{

return (top == NULL)? 1 : 0;

}

struct tNode *pop(struct sNode** top_ref)

{

struct tNode *res;

struct sNode *top;

if(isEmpty(*top_ref))

{

printf("Stack Underflow \n");

getchar();

exit(0);

}

else

{

top = *top_ref;

res = top->t;

*top_ref = top->next;

free(top);

return res;

}

}

struct tNode* newtNode(int data)

{

Lovely Professional University188

Unit 11: Trees

Notes

struct tNode* tNode = (struct tNode*)

malloc(sizeof(struct tNode));

tNode->data = data;

tNode->left = NULL;

tNode->right = NULL;

return(tNode);

}

int main()

{

struct tNode *root = newtNode(1);

root->left = newtNode(2);

root->right = newtNode(3);

root->left->left = newtNode(4);

root->left->right = newtNode(5);

inOrder(root);

getchar();

return 0;

}

Output

Task

• Program to demonstrate working of traversal using recursive way.

• Program to demonstrate working of traversal using non recursive way.

11.6 Searching
Searching means finding or locating some specific element or node within a data structure.
However, searching for some specific node in the binary search tree is pretty easy due to the fact
that, elements in BST are stored in a particular order.

Following are steps involved in searching

 Compare the element with the root of the tree.
 If the item is matched, then return the location of the node.
 Otherwise, check if the item is less than the element present at the root. If so, then move to

the left sub-tree.
 If not, then move to the right sub-tree.
 Repeat this procedure recursively until a match is found.
 If an element is not found, it returns NULL.

Unit 11: Trees

Notes

struct tNode* tNode = (struct tNode*)

malloc(sizeof(struct tNode));

tNode->data = data;

tNode->left = NULL;

tNode->right = NULL;

return(tNode);

}

int main()

{

struct tNode *root = newtNode(1);

root->left = newtNode(2);

root->right = newtNode(3);

root->left->left = newtNode(4);

root->left->right = newtNode(5);

inOrder(root);

getchar();

return 0;

}

Output

Task

• Program to demonstrate working of traversal using recursive way.

• Program to demonstrate working of traversal using non recursive way.

11.6 Searching
Searching means finding or locating some specific element or node within a data structure.
However, searching for some specific node in the binary search tree is pretty easy due to the fact
that, elements in BST are stored in a particular order.

Following are steps involved in searching

 Compare the element with the root of the tree.
 If the item is matched, then return the location of the node.
 Otherwise, check if the item is less than the element present at the root. If so, then move to

the left sub-tree.
 If not, then move to the right sub-tree.
 Repeat this procedure recursively until a match is found.
 If an element is not found, it returns NULL.

Unit 11: Trees

Notes

struct tNode* tNode = (struct tNode*)

malloc(sizeof(struct tNode));

tNode->data = data;

tNode->left = NULL;

tNode->right = NULL;

return(tNode);

}

int main()

{

struct tNode *root = newtNode(1);

root->left = newtNode(2);

root->right = newtNode(3);

root->left->left = newtNode(4);

root->left->right = newtNode(5);

inOrder(root);

getchar();

return 0;

}

Output

Task

• Program to demonstrate working of traversal using recursive way.

• Program to demonstrate working of traversal using non recursive way.

11.6 Searching
Searching means finding or locating some specific element or node within a data structure.
However, searching for some specific node in the binary search tree is pretty easy due to the fact
that, elements in BST are stored in a particular order.

Following are steps involved in searching

 Compare the element with the root of the tree.
 If the item is matched, then return the location of the node.
 Otherwise, check if the item is less than the element present at the root. If so, then move to

the left sub-tree.
 If not, then move to the right sub-tree.
 Repeat this procedure recursively until a match is found.
 If an element is not found, it returns NULL.

Lovely Professional University 189

Data Structures

Notes

Algorithm

Search (ROOT, ITEM)

Step 1: IF ROOT -> DATA = ITEM OR ROOT = NULL

Return ROOT

ELSE

IF ROOT < ROOT -> DATA

Return search(ROOT -> LEFT, ITEM)

ELSE

Return search(ROOT -> RIGHT,ITEM)

[END OF IF]

[END OF IF]

Step 2: END

11.7 Insertion and Deletion in Binary Search Trees
Insertion in BST

Insertion Operation is performed to insert an element in the Binary Search Tree.The insertion of a
new key always takes place as the child of some leaf node.

Deletion in BST

In a binary search tree, the deletion operation is performed with O(n) time complexity. Deleting a
node from Binary search tree includes following three cases.

Case 1: Deleting a Leaf node (A node with no children)

Case 2: Deleting a node with one child

Case 3: Deleting a node with two children

Example

// Program to perform insertion, deletion and searching in Tree

#include<stdio.h>

#include<stdlib.h>

struct node

{

int info;

struct node*left;

struct node*right;

};

typedef struct node BST;

BST *LOC, *PAR;

Data Structures

Notes

Algorithm

Search (ROOT, ITEM)

Step 1: IF ROOT -> DATA = ITEM OR ROOT = NULL

Return ROOT

ELSE

IF ROOT < ROOT -> DATA

Return search(ROOT -> LEFT, ITEM)

ELSE

Return search(ROOT -> RIGHT,ITEM)

[END OF IF]

[END OF IF]

Step 2: END

11.7 Insertion and Deletion in Binary Search Trees
Insertion in BST

Insertion Operation is performed to insert an element in the Binary Search Tree.The insertion of a
new key always takes place as the child of some leaf node.

Deletion in BST

In a binary search tree, the deletion operation is performed with O(n) time complexity. Deleting a
node from Binary search tree includes following three cases.

Case 1: Deleting a Leaf node (A node with no children)

Case 2: Deleting a node with one child

Case 3: Deleting a node with two children

Example

// Program to perform insertion, deletion and searching in Tree

#include<stdio.h>

#include<stdlib.h>

struct node

{

int info;

struct node*left;

struct node*right;

};

typedef struct node BST;

BST *LOC, *PAR;

Data Structures

Notes

Algorithm

Search (ROOT, ITEM)

Step 1: IF ROOT -> DATA = ITEM OR ROOT = NULL

Return ROOT

ELSE

IF ROOT < ROOT -> DATA

Return search(ROOT -> LEFT, ITEM)

ELSE

Return search(ROOT -> RIGHT,ITEM)

[END OF IF]

[END OF IF]

Step 2: END

11.7 Insertion and Deletion in Binary Search Trees
Insertion in BST

Insertion Operation is performed to insert an element in the Binary Search Tree.The insertion of a
new key always takes place as the child of some leaf node.

Deletion in BST

In a binary search tree, the deletion operation is performed with O(n) time complexity. Deleting a
node from Binary search tree includes following three cases.

Case 1: Deleting a Leaf node (A node with no children)

Case 2: Deleting a node with one child

Case 3: Deleting a node with two children

Example

// Program to perform insertion, deletion and searching in Tree

#include<stdio.h>

#include<stdlib.h>

struct node

{

int info;

struct node*left;

struct node*right;

};

typedef struct node BST;

BST *LOC, *PAR;

Lovely Professional University190

Unit 11: Trees

Notes

void search(BST *root, int item)

{

BST *save,*ptr;

if (root == NULL)

{

LOC = NULL;

PAR=NULL;

}

if (item == root -> info)

{

LOC = root;

PAR = NULL;

return;

}

if (item < root->info)

{

save = root;

ptr = root->left;

}

else

{

save = root;

ptr = root ->right;

}

while(ptr != NULL)

{

if (ptr -> info == item)

{

LOC = ptr;

PAR = save;

return;

}

if(item <ptr->info)

{

save = ptr;

ptr = ptr->left;

}

else

{

save = ptr;

Lovely Professional University 191

Data Structures

Notes

ptr = ptr->right;

}

}

LOC = NULL;

PAR = save;

return;

}

struct node* findmin(struct node*r)

{

if (r == NULL)

return NULL;

else if (r->left!=NULL)

return findmin(r->left);

else if (r->left == NULL)

return r;

}

struct node*insert(struct node*r, int x)

{

if (r == NULL)

{

r = (struct node*)malloc(sizeof(struct node));

r->info = x;

r->left = r->right = NULL;

return r;

}

else if (x < r->info)

r->left = insert(r->left, x);

else if (x > r->info)

r->right = insert(r->right, x);

return r;

}

struct node* del(struct node*r, int x)

{

struct node *t;

if(r == NULL)

printf("\nElement not found");

else if (x < r->info)

r->left = del(r->left, x);

else if (x > r->info)

r->right = del(r->right, x);

Lovely Professional University192

Unit 11: Trees

Notes

else if ((r->left != NULL) && (r->right != NULL))

{

t = findmin(r->right);

r->info = t->info;

r->right = del(r->right, r->info);

}

else

{

t = r;

if (r->left == NULL)

r = r->right;

else if (r->right == NULL)

r = r->left;

free(t);

}

return r;

}

int main()

{

struct node* root = NULL;

int x, c = 1, z;

int element;

char ch;

printf("\nEnter an element: ");

scanf("%d", &x);

root = insert(root, x);

printf("\nDo you want to enter another element :y or n");

scanf(" %c",&ch);

while (ch == 'y')

{

printf("\nEnter an element:");

scanf("%d", &x);

root = insert(root,x);

printf("\nPress y or n to insert another element: y or n: ");

scanf(" %c", &ch);

}

while(1)

{

printf("\n1 Insert an element ");

printf("\n2 Delete an element");

Lovely Professional University 193

Data Structures

Notes

printf("\n3 Search for an element ");

printf("\n4 Exit ");

printf("\nEnter your choice: ");

scanf("%d", &c);

switch(c)

{

case 1:

printf("\nEnter the item:");

scanf("%d", &z);

root = insert(root,z);

break;

case 2:

printf("\nEnter the info to be deleted:");

scanf("%d", &z);

root = del(root, z);

break;

case 3:

printf("\nEnter element to be searched: ");

scanf("%d", &element);

search(root, element);

if(LOC != NULL)

printf("\n%d Found in Binary Search Tree !!\n",element);

else

printf("\nIt is not present in Binary Search Tree\n");

break;

case 4:

printf("\nExiting...");

return;

default:

printf("Enter a valid choice: ");

}

}

return 0;

}

Output

Lovely Professional University194

Unit 11: Trees

Notes

Did you Know?

Binary Search Tree time complexities

Search Operation - O(n)

Insertion Operation - O(1)

Deletion Operation - O(n)

Summary

 A tree structure is a way of presenting the hierarchical nature of a structure in a graphical
form.

 The trees can be represented as graphs.
 The three types of graphs are directed graphs, undirected graphs, and mixed graphs.
 The different kinds of trees include binary tree, binary search tree, 2-3 tree, and Huffman

tree.
 The two ways to represent trees are linked representation and array representation.
 The applications of trees include expression trees, game trees, and decision trees.
 To evaluate an expression tree, we recursively evaluate the left and right sub-trees and

then apply the operator at the root.

Keywords
Binary Search Tree:- A binary search tree follows some order to arrange the elements. In a Binary
search tree, the value of left node must be smaller than the parent node, and the value of right node
must be greater than the parent node.

Complete Binary Tree:-A complete binary tree is a binary tree in which all the levels are
completely filled except possibly the lowest one, which is filled from the left.

Tree: - A tree data structure is a non-linear data structure because it does not store in a sequential
manner.

SelfAssessment

1. Root is
A. The topmost node of a tree.
B. The child node of a tree.
C. The positive node of a tree.
D. None of above.

Unit 11: Trees

Notes

Did you Know?

Binary Search Tree time complexities

Search Operation - O(n)

Insertion Operation - O(1)

Deletion Operation - O(n)

Summary

 A tree structure is a way of presenting the hierarchical nature of a structure in a graphical
form.

 The trees can be represented as graphs.
 The three types of graphs are directed graphs, undirected graphs, and mixed graphs.
 The different kinds of trees include binary tree, binary search tree, 2-3 tree, and Huffman

tree.
 The two ways to represent trees are linked representation and array representation.
 The applications of trees include expression trees, game trees, and decision trees.
 To evaluate an expression tree, we recursively evaluate the left and right sub-trees and

then apply the operator at the root.

Keywords
Binary Search Tree:- A binary search tree follows some order to arrange the elements. In a Binary
search tree, the value of left node must be smaller than the parent node, and the value of right node
must be greater than the parent node.

Complete Binary Tree:-A complete binary tree is a binary tree in which all the levels are
completely filled except possibly the lowest one, which is filled from the left.

Tree: - A tree data structure is a non-linear data structure because it does not store in a sequential
manner.

SelfAssessment

1. Root is
A. The topmost node of a tree.
B. The child node of a tree.
C. The positive node of a tree.
D. None of above.

Unit 11: Trees

Notes

Did you Know?

Binary Search Tree time complexities

Search Operation - O(n)

Insertion Operation - O(1)

Deletion Operation - O(n)

Summary

 A tree structure is a way of presenting the hierarchical nature of a structure in a graphical
form.

 The trees can be represented as graphs.
 The three types of graphs are directed graphs, undirected graphs, and mixed graphs.
 The different kinds of trees include binary tree, binary search tree, 2-3 tree, and Huffman

tree.
 The two ways to represent trees are linked representation and array representation.
 The applications of trees include expression trees, game trees, and decision trees.
 To evaluate an expression tree, we recursively evaluate the left and right sub-trees and

then apply the operator at the root.

Keywords
Binary Search Tree:- A binary search tree follows some order to arrange the elements. In a Binary
search tree, the value of left node must be smaller than the parent node, and the value of right node
must be greater than the parent node.

Complete Binary Tree:-A complete binary tree is a binary tree in which all the levels are
completely filled except possibly the lowest one, which is filled from the left.

Tree: - A tree data structure is a non-linear data structure because it does not store in a sequential
manner.

SelfAssessment

1. Root is
A. The topmost node of a tree.
B. The child node of a tree.
C. The positive node of a tree.
D. None of above.

Lovely Professional University 195

Data Structures

Notes

2. Degree of a Node is
A. The degree of a node is the X number of branches of that node.
B. The degree of a node is the X+Y number of branches of that node.
C. The degree of a node is the total number of branches of that node.
D. All of above.

3. Which of the following is not a type of tree data structure?

A. General Tree
B. Primary Tree
C. Binary Tree
D. Binary Search Tree

4. Tree is a nonlinear data structure.
A. True
B. False

5. Choose the right statement about binary tree.
A. Every node in a binary tree has a left and right reference along with the data element.
B. A binary tree is a tree-type non-linear data structure with a maximum of two children for

each parent.
C. The node at the top of the hierarchy of a tree is called the root node. The nodes that hold

other sub-nodes are the parent nodes.
D. All of above.

6. Which of the following is not component of binary tree.
A. Data element
B. Pointer to left subtree
C. Pointer to right subtree
D. Super tree

7. Binary tree can be represented using
A. Arrays
B. Linked list
C. Both Array and Linked list
D. None of above

8. Which of the following is application of binary search tree.
A. In multilevel indexing in the database.
B. For dynamic sorting.
C. For managing virtual memory areas in Unix kernel.
D. All of above.

9. Which of the following is way of tree traversal?
A. In-order Traversal
B. Pre-order Traversal
C. Post-order Traversal

Lovely Professional University196

Unit 11: Trees

Notes

D. All of above

10. Select the traversal method in which root is visited after visit left sub-tree and right sub-tree.
A. In order Traversal
B. Pre-order Traversal
C. Post-order Traversal
D. None of above

11. Choose the tree traversal method from following
A. Recursive
B. Non Recursive
C. Both recursive and non-recursive
D. None of above

12. Post order traversal is

A. Traverse the left sub-tree, than traverse the right sub-tree, finally traverse the root
B. Traverse the root, than traverse the right sub-tree, finally traverse the left sub-tree
C. Traverse the left sub-tree, than traverse the right sub-tree
D. Traverse root only

13. Node within a data structure.

A. True
B. False

14. ______ is time complexity for insertion operation.
A. O(n)
B. O(1)
C. O(n)
D. None of above

15. O(n) is time complexity for
A. Search Operation
B. Insertion Operation
C. Deletion Operation
D. Merge operation

Answer for Self Assessment

l. A 2. C 3. B 4. A 5. D

6. D 7. C 8. D 9. D 10. C

11. C 12. A 13. A 14. B 15. C

Lovely Professional University 197

Data Structures

Notes

Review Questions
1. “Choosing the best data structure for a program is a challenging task”. Discuss.

2. “The trees can be represented as graphs”. Justify.

3. “There are different kinds of trees and it is important to understand the difference between
them”.

Analyze.

4. Explain binary search tree.

5. What is searching in tree?

6. How insertion performed in tree.

7. Differentiate between in-order traversal and pre-order traversal.

Further Readings
Books Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson Education,
Year of Publication, 2008

Lipschutz. Seymour. Data Structures with C. Delhi: Tata McGraw Hill

Reddy.A.M Padma (2006). Data Structures Using C. Bangalore: Sri Nandi Publications

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett, 1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

YashvantKanetkar, Let us C

Web links
https://www.gatevidyalay.com/tree-data-structure-tree-terminology/

https://www.javatpoint.com/searching-in-binary-search-tree

Data Structures

Notes

Review Questions
1. “Choosing the best data structure for a program is a challenging task”. Discuss.

2. “The trees can be represented as graphs”. Justify.

3. “There are different kinds of trees and it is important to understand the difference between
them”.

Analyze.

4. Explain binary search tree.

5. What is searching in tree?

6. How insertion performed in tree.

7. Differentiate between in-order traversal and pre-order traversal.

Further Readings
Books Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson Education,
Year of Publication, 2008

Lipschutz. Seymour. Data Structures with C. Delhi: Tata McGraw Hill

Reddy.A.M Padma (2006). Data Structures Using C. Bangalore: Sri Nandi Publications

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett, 1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

YashvantKanetkar, Let us C

Web links
https://www.gatevidyalay.com/tree-data-structure-tree-terminology/

https://www.javatpoint.com/searching-in-binary-search-tree

Data Structures

Notes

Review Questions
1. “Choosing the best data structure for a program is a challenging task”. Discuss.

2. “The trees can be represented as graphs”. Justify.

3. “There are different kinds of trees and it is important to understand the difference between
them”.

Analyze.

4. Explain binary search tree.

5. What is searching in tree?

6. How insertion performed in tree.

7. Differentiate between in-order traversal and pre-order traversal.

Further Readings
Books Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson Education,
Year of Publication, 2008

Lipschutz. Seymour. Data Structures with C. Delhi: Tata McGraw Hill

Reddy.A.M Padma (2006). Data Structures Using C. Bangalore: Sri Nandi Publications

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett, 1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

YashvantKanetkar, Let us C

Web links
https://www.gatevidyalay.com/tree-data-structure-tree-terminology/

https://www.javatpoint.com/searching-in-binary-search-tree

Lovely Professional University198

Unit 12: Graphs

Notes

Unit 12: Graphs

CONTENTS

Objectives

Introduction

12.1 Types of Graphs

12.2 Graph Terminology

12.3 Applications of Graph

12.4 Graph Representation

12.5 Breadth First Search (BFS)

12.6 Depth First Search

12.7 Difference Between Tree and Graph

Summary

Keywords

Self Assessment

Answers for self Assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to:

 Understand breadth first search
 Learn depth first search

 Discuss network flow problems andwarshall's algorithm
 learntopological sort

Introduction
Graph traversal entails visiting each vertex and edge in a predetermined order. You must verify
that each vertex of the graph is visited exactly once when utilizing certain graph algorithms. The
sequence in which the vertices are visited is crucial, and it may be determined by the algorithm or
question you're working on.It's critical to keep track of which vertices have been visited throughout
a traversal. Marking vertices is the most popular method of tracking them.

In Graph traversal visiting every vertex and edge exactly once in a well-defined order.In graph
algorithms, you must ensure that each vertex of the graph is visited exactly once. The order in
which the vertices are visited may depend upon the algorithm or type of problem going to solve.

Two common elementary algorithms for tree-searching are

– Breadth-first search (BFS)

– Depth-first search (DFS).

Both of these algorithms work on directed or undirected graphs. Many advanced graph algorithms
are based on the ideas of BFS or DFS. Each of these algorithms traverses edges in the graph,
discovering new vertices as it proceeds. The difference is in the order in which each algorithm
discovers the edges.

Lovely Professional University 199

Dr. Prikshat Kumar Angra, Lovely Professional University

Data structures

Notes

Notes:

• Graph is an abstract data type.

• It is a pictorial representation of a set of objects where some pairs of objects are connected
by links.

• Graph is used to implement the undirected graph and directed graph concepts from
mathematics.

• It represents many real life application. Graphs are used to represent the networks.
Network includes path in a city, telephone network etc.

• It is used in social networks like Facebook, LinkedIn etc.

Graph Components

Graph consist of two components

1. Vertices

2. Edges

 Graph is a set of vertices (V) and set of edges (E).
 V is a finite number of vertices also called as nodes.
 E is a set of ordered pair of vertices representing edges.

Example: In Facebook, each person is represented with a vertex or a node. Each node is a
structure and contains the information like user id, user name, gender etc.

V = {A, B, C, D, E, F}

Data structures

Notes

Notes:

• Graph is an abstract data type.

• It is a pictorial representation of a set of objects where some pairs of objects are connected
by links.

• Graph is used to implement the undirected graph and directed graph concepts from
mathematics.

• It represents many real life application. Graphs are used to represent the networks.
Network includes path in a city, telephone network etc.

• It is used in social networks like Facebook, LinkedIn etc.

Graph Components

Graph consist of two components

1. Vertices

2. Edges

 Graph is a set of vertices (V) and set of edges (E).
 V is a finite number of vertices also called as nodes.
 E is a set of ordered pair of vertices representing edges.

Example: In Facebook, each person is represented with a vertex or a node. Each node is a
structure and contains the information like user id, user name, gender etc.

V = {A, B, C, D, E, F}

Data structures

Notes

Notes:

• Graph is an abstract data type.

• It is a pictorial representation of a set of objects where some pairs of objects are connected
by links.

• Graph is used to implement the undirected graph and directed graph concepts from
mathematics.

• It represents many real life application. Graphs are used to represent the networks.
Network includes path in a city, telephone network etc.

• It is used in social networks like Facebook, LinkedIn etc.

Graph Components

Graph consist of two components

1. Vertices

2. Edges

 Graph is a set of vertices (V) and set of edges (E).
 V is a finite number of vertices also called as nodes.
 E is a set of ordered pair of vertices representing edges.

Example: In Facebook, each person is represented with a vertex or a node. Each node is a
structure and contains the information like user id, user name, gender etc.

V = {A, B, C, D, E, F}

Lovely Professional University200

Unit 12: Graphs

Notes

E = {(A, B), (A, C), (B, C), (B, D), (D, E), (D, F), (E, F)}

V = {A, B, C, D, E, F}

E = {(A, B), (A, C), (B, D), (C, E), (C, F)}

V = {A, B, C}

E = {(A, B), (A, C), (C, B)}

12.1 Types of Graphs
Directed Graph

• If a graph contains ordered pair of vertices, is said to be a Directed Graph.

• If an edge is represented using a pair of vertices (V1, V2), the edge is said to be directed
from V1 to V2.

• The first element of the pair V1 is called the start vertex and the second element of the pair
V2 is called the end vertex.

• Set of Vertices V = {1, 2, 3, 4, 5, 5}

• Set of Edges W = {(1, 3), (1, 5), (2, 1), (2, 3), (2, 4), (3, 4), (4, 5)}

Unit 12: Graphs

Notes

E = {(A, B), (A, C), (B, C), (B, D), (D, E), (D, F), (E, F)}

V = {A, B, C, D, E, F}

E = {(A, B), (A, C), (B, D), (C, E), (C, F)}

V = {A, B, C}

E = {(A, B), (A, C), (C, B)}

12.1 Types of Graphs
Directed Graph

• If a graph contains ordered pair of vertices, is said to be a Directed Graph.

• If an edge is represented using a pair of vertices (V1, V2), the edge is said to be directed
from V1 to V2.

• The first element of the pair V1 is called the start vertex and the second element of the pair
V2 is called the end vertex.

• Set of Vertices V = {1, 2, 3, 4, 5, 5}

• Set of Edges W = {(1, 3), (1, 5), (2, 1), (2, 3), (2, 4), (3, 4), (4, 5)}

Unit 12: Graphs

Notes

E = {(A, B), (A, C), (B, C), (B, D), (D, E), (D, F), (E, F)}

V = {A, B, C, D, E, F}

E = {(A, B), (A, C), (B, D), (C, E), (C, F)}

V = {A, B, C}

E = {(A, B), (A, C), (C, B)}

12.1 Types of Graphs
Directed Graph

• If a graph contains ordered pair of vertices, is said to be a Directed Graph.

• If an edge is represented using a pair of vertices (V1, V2), the edge is said to be directed
from V1 to V2.

• The first element of the pair V1 is called the start vertex and the second element of the pair
V2 is called the end vertex.

• Set of Vertices V = {1, 2, 3, 4, 5, 5}

• Set of Edges W = {(1, 3), (1, 5), (2, 1), (2, 3), (2, 4), (3, 4), (4, 5)}

Lovely Professional University 201

Data structures

Notes

Undirected Graph

• If a graph contains unordered pair of vertices, is said to be an Undirected Graph.

• In this graph, pair of vertices represents the same edge.

• In an undirected graph, the nodes are connected by undirected arcs.

• It is an edge that has no arrow. Both the ends of an undirected arc are equivalent, there is
no head or tail.

• Set of Vertices V = {1, 2, 3, 4, 5}

• Set of Edges E = {(1, 2), (1, 3), (1, 5), (2, 1), (2, 3), (2, 4), (3, 4), (4, 5)}

12.2 Graph Terminology

• Path

– A path can be defined as the sequence of nodes that are followed in order to reach some
terminal node V from the initial node U.

• Closed Path

– A path will be called as closed path if the initial node is same as terminal node. A path will
be closed path if V0=VN.

• Simple Path

– If all the nodes of the graph are distinct with an exception V0=VN, then such path P is called
as closed simple path.

• Cycle

– A cycle can be defined as the path which has no repeated edges or vertices except the first
and last vertices.

• Connected Graph

– A connected graph is the one in which some path exists between every two vertices (u, v) in
V. There are no isolated nodes in connected graph.

• Complete Graph

– A complete graph is the one in which every node is connected with all other nodes. A
complete graph contain n(n-1)/2 edges where n is the number of nodes in the graph.

• Weighted Graph

– In a weighted graph, each edge is assigned with some data such as length or weight. The
weight of an edge e can be given as w(e) which must be a positive (+) value indicating the
cost of traversing the edge.

• Digraph

– A digraph is a directed graph in which each edge of the graph is associated with some
direction and the traversing can be done only in the specified direction.

• Loop

Data structures

Notes

Undirected Graph

• If a graph contains unordered pair of vertices, is said to be an Undirected Graph.

• In this graph, pair of vertices represents the same edge.

• In an undirected graph, the nodes are connected by undirected arcs.

• It is an edge that has no arrow. Both the ends of an undirected arc are equivalent, there is
no head or tail.

• Set of Vertices V = {1, 2, 3, 4, 5}

• Set of Edges E = {(1, 2), (1, 3), (1, 5), (2, 1), (2, 3), (2, 4), (3, 4), (4, 5)}

12.2 Graph Terminology

• Path

– A path can be defined as the sequence of nodes that are followed in order to reach some
terminal node V from the initial node U.

• Closed Path

– A path will be called as closed path if the initial node is same as terminal node. A path will
be closed path if V0=VN.

• Simple Path

– If all the nodes of the graph are distinct with an exception V0=VN, then such path P is called
as closed simple path.

• Cycle

– A cycle can be defined as the path which has no repeated edges or vertices except the first
and last vertices.

• Connected Graph

– A connected graph is the one in which some path exists between every two vertices (u, v) in
V. There are no isolated nodes in connected graph.

• Complete Graph

– A complete graph is the one in which every node is connected with all other nodes. A
complete graph contain n(n-1)/2 edges where n is the number of nodes in the graph.

• Weighted Graph

– In a weighted graph, each edge is assigned with some data such as length or weight. The
weight of an edge e can be given as w(e) which must be a positive (+) value indicating the
cost of traversing the edge.

• Digraph

– A digraph is a directed graph in which each edge of the graph is associated with some
direction and the traversing can be done only in the specified direction.

• Loop

Data structures

Notes

Undirected Graph

• If a graph contains unordered pair of vertices, is said to be an Undirected Graph.

• In this graph, pair of vertices represents the same edge.

• In an undirected graph, the nodes are connected by undirected arcs.

• It is an edge that has no arrow. Both the ends of an undirected arc are equivalent, there is
no head or tail.

• Set of Vertices V = {1, 2, 3, 4, 5}

• Set of Edges E = {(1, 2), (1, 3), (1, 5), (2, 1), (2, 3), (2, 4), (3, 4), (4, 5)}

12.2 Graph Terminology

• Path

– A path can be defined as the sequence of nodes that are followed in order to reach some
terminal node V from the initial node U.

• Closed Path

– A path will be called as closed path if the initial node is same as terminal node. A path will
be closed path if V0=VN.

• Simple Path

– If all the nodes of the graph are distinct with an exception V0=VN, then such path P is called
as closed simple path.

• Cycle

– A cycle can be defined as the path which has no repeated edges or vertices except the first
and last vertices.

• Connected Graph

– A connected graph is the one in which some path exists between every two vertices (u, v) in
V. There are no isolated nodes in connected graph.

• Complete Graph

– A complete graph is the one in which every node is connected with all other nodes. A
complete graph contain n(n-1)/2 edges where n is the number of nodes in the graph.

• Weighted Graph

– In a weighted graph, each edge is assigned with some data such as length or weight. The
weight of an edge e can be given as w(e) which must be a positive (+) value indicating the
cost of traversing the edge.

• Digraph

– A digraph is a directed graph in which each edge of the graph is associated with some
direction and the traversing can be done only in the specified direction.

• Loop

Lovely Professional University202

Unit 12: Graphs

Notes

– An edge that is associated with the similar end points can be called as Loop.

• Adjacent Nodes

– If two nodes u and v are connected via an edge e, then the nodes u and v are called as
neighbours or adjacent nodes.

• Degree of the Node

– A degree of a node is the number of edges that are connected with that node. A node with
degree 0 is called as isolated node.

12.3 Applications of Graph
– In Computer science graphs are used to represent the flow of computation.

– Google maps uses graphs for building transportation systems, where intersection of two(or
more) roads are considered to be a vertex and the road connecting two vertices is considered
to be an edge, thus their navigation system is based on the algorithm to calculate the shortest
path between two vertices.

– In Facebook, users are considered to be the vertices and if they are friends then there is an
edge running between them. Facebook’s Friend suggestion algorithm uses graph theory.
Facebook is an example of undirected graph.

12.4 Graph Representation
By Graph representation, we simply mean the technique which is to be used in order to store some
graph into the computer's memory.There are two ways to store Graph into the computer's memory.

1. Sequential Representation
2. Linked Representation

1. Sequential Representation

In sequential representation, we use adjacency matrix to store the mapping represented by vertices
and edges. In adjacency matrix, the rows and columns are represented by the graph vertices. A
graph having n vertices, will have a dimension n x n.

Adjacency Matrix

• An undirected graph and its adjacency matrix representation is shown in the following
figure.

• A directed graph and its adjacency matrix representation is shown in the following figure.

Unit 12: Graphs

Notes

– An edge that is associated with the similar end points can be called as Loop.

• Adjacent Nodes

– If two nodes u and v are connected via an edge e, then the nodes u and v are called as
neighbours or adjacent nodes.

• Degree of the Node

– A degree of a node is the number of edges that are connected with that node. A node with
degree 0 is called as isolated node.

12.3 Applications of Graph
– In Computer science graphs are used to represent the flow of computation.

– Google maps uses graphs for building transportation systems, where intersection of two(or
more) roads are considered to be a vertex and the road connecting two vertices is considered
to be an edge, thus their navigation system is based on the algorithm to calculate the shortest
path between two vertices.

– In Facebook, users are considered to be the vertices and if they are friends then there is an
edge running between them. Facebook’s Friend suggestion algorithm uses graph theory.
Facebook is an example of undirected graph.

12.4 Graph Representation
By Graph representation, we simply mean the technique which is to be used in order to store some
graph into the computer's memory.There are two ways to store Graph into the computer's memory.

1. Sequential Representation
2. Linked Representation

1. Sequential Representation

In sequential representation, we use adjacency matrix to store the mapping represented by vertices
and edges. In adjacency matrix, the rows and columns are represented by the graph vertices. A
graph having n vertices, will have a dimension n x n.

Adjacency Matrix

• An undirected graph and its adjacency matrix representation is shown in the following
figure.

• A directed graph and its adjacency matrix representation is shown in the following figure.

Unit 12: Graphs

Notes

– An edge that is associated with the similar end points can be called as Loop.

• Adjacent Nodes

– If two nodes u and v are connected via an edge e, then the nodes u and v are called as
neighbours or adjacent nodes.

• Degree of the Node

– A degree of a node is the number of edges that are connected with that node. A node with
degree 0 is called as isolated node.

12.3 Applications of Graph
– In Computer science graphs are used to represent the flow of computation.

– Google maps uses graphs for building transportation systems, where intersection of two(or
more) roads are considered to be a vertex and the road connecting two vertices is considered
to be an edge, thus their navigation system is based on the algorithm to calculate the shortest
path between two vertices.

– In Facebook, users are considered to be the vertices and if they are friends then there is an
edge running between them. Facebook’s Friend suggestion algorithm uses graph theory.
Facebook is an example of undirected graph.

12.4 Graph Representation
By Graph representation, we simply mean the technique which is to be used in order to store some
graph into the computer's memory.There are two ways to store Graph into the computer's memory.

1. Sequential Representation
2. Linked Representation

1. Sequential Representation

In sequential representation, we use adjacency matrix to store the mapping represented by vertices
and edges. In adjacency matrix, the rows and columns are represented by the graph vertices. A
graph having n vertices, will have a dimension n x n.

Adjacency Matrix

• An undirected graph and its adjacency matrix representation is shown in the following
figure.

• A directed graph and its adjacency matrix representation is shown in the following figure.

Lovely Professional University 203

Data structures

Notes

• The weighted directed graph along with the adjacency matrix representation is shown in
the following figure.

2. Linked Representation

In the linked representation, an adjacency list is used to store the Graph into the computer's
memory.

Linked Representation

• Consider the undirected graph shown in the following figure and check the adjacency list
representation.

• An adjacency list is maintained for each node present in the graph which stores the node
value and a pointer to the next adjacent node to the respective node.

Data structures

Notes

• The weighted directed graph along with the adjacency matrix representation is shown in
the following figure.

2. Linked Representation

In the linked representation, an adjacency list is used to store the Graph into the computer's
memory.

Linked Representation

• Consider the undirected graph shown in the following figure and check the adjacency list
representation.

• An adjacency list is maintained for each node present in the graph which stores the node
value and a pointer to the next adjacent node to the respective node.

Data structures

Notes

• The weighted directed graph along with the adjacency matrix representation is shown in
the following figure.

2. Linked Representation

In the linked representation, an adjacency list is used to store the Graph into the computer's
memory.

Linked Representation

• Consider the undirected graph shown in the following figure and check the adjacency list
representation.

• An adjacency list is maintained for each node present in the graph which stores the node
value and a pointer to the next adjacent node to the respective node.

Lovely Professional University204

Unit 12: Graphs

Notes

• If all the adjacent nodes are traversed then store the NULL in the pointer field of last node
of the list. The sum of the lengths of adjacency lists is equal to the twice of the number of
edges present in an undirected graph.

• Consider the directed graph shown in the following figure and check the adjacency list
representation of the graph.

• In the case of weighted directed graph, each node contains an extra field that is called the
weight of the node. The adjacency list representation of a directed graph is shown in the
following figure.

12.5 Breadth First Search (BFS)
Breadth first search is a graph traversal algorithm that starts traversing the graph from root node
and explores all the neighbouring nodes. Then, it selects the nearest node and explore all the
unexplored nodes. The algorithm follows the same process for each of the nearest node until it
finds the goal.

For using BFS algorithm user should know about data structure queue and its relevant operations
like en-queue and de-queue.

Algorithm: Breadth First Search

Step 1: SET STATUS = 1 (ready state)

for each node in G

Step 2: Enqueue the starting node A

and set its STATUS = 2

(waiting state)

Step 3: Repeat Steps 4 and 5 until

QUEUE is empty

Unit 12: Graphs

Notes

• If all the adjacent nodes are traversed then store the NULL in the pointer field of last node
of the list. The sum of the lengths of adjacency lists is equal to the twice of the number of
edges present in an undirected graph.

• Consider the directed graph shown in the following figure and check the adjacency list
representation of the graph.

• In the case of weighted directed graph, each node contains an extra field that is called the
weight of the node. The adjacency list representation of a directed graph is shown in the
following figure.

12.5 Breadth First Search (BFS)
Breadth first search is a graph traversal algorithm that starts traversing the graph from root node
and explores all the neighbouring nodes. Then, it selects the nearest node and explore all the
unexplored nodes. The algorithm follows the same process for each of the nearest node until it
finds the goal.

For using BFS algorithm user should know about data structure queue and its relevant operations
like en-queue and de-queue.

Algorithm: Breadth First Search

Step 1: SET STATUS = 1 (ready state)

for each node in G

Step 2: Enqueue the starting node A

and set its STATUS = 2

(waiting state)

Step 3: Repeat Steps 4 and 5 until

QUEUE is empty

Unit 12: Graphs

Notes

• If all the adjacent nodes are traversed then store the NULL in the pointer field of last node
of the list. The sum of the lengths of adjacency lists is equal to the twice of the number of
edges present in an undirected graph.

• Consider the directed graph shown in the following figure and check the adjacency list
representation of the graph.

• In the case of weighted directed graph, each node contains an extra field that is called the
weight of the node. The adjacency list representation of a directed graph is shown in the
following figure.

12.5 Breadth First Search (BFS)
Breadth first search is a graph traversal algorithm that starts traversing the graph from root node
and explores all the neighbouring nodes. Then, it selects the nearest node and explore all the
unexplored nodes. The algorithm follows the same process for each of the nearest node until it
finds the goal.

For using BFS algorithm user should know about data structure queue and its relevant operations
like en-queue and de-queue.

Algorithm: Breadth First Search

Step 1: SET STATUS = 1 (ready state)

for each node in G

Step 2: Enqueue the starting node A

and set its STATUS = 2

(waiting state)

Step 3: Repeat Steps 4 and 5 until

QUEUE is empty

Lovely Professional University 205

Data structures

Notes

Step 4: Dequeue a node N. Process it

and set its STATUS = 3

(processed state).

Step 5: Enqueue all the neighbours of

N that are in the ready state

(whose STATUS = 1) and set

their STATUS = 2

(waiting state)

[END OF LOOP]

Step 6: EXIT

Example: Breadth First Search

Fig (a)

Fig (b)

Data structures

Notes

Step 4: Dequeue a node N. Process it

and set its STATUS = 3

(processed state).

Step 5: Enqueue all the neighbours of

N that are in the ready state

(whose STATUS = 1) and set

their STATUS = 2

(waiting state)

[END OF LOOP]

Step 6: EXIT

Example: Breadth First Search

Fig (a)

Fig (b)

Data structures

Notes

Step 4: Dequeue a node N. Process it

and set its STATUS = 3

(processed state).

Step 5: Enqueue all the neighbours of

N that are in the ready state

(whose STATUS = 1) and set

their STATUS = 2

(waiting state)

[END OF LOOP]

Step 6: EXIT

Example: Breadth First Search

Fig (a)

Fig (b)

Lovely Professional University206

Unit 12: Graphs

Notes

Fig (c)

Fig (d)

Fig (e)

Unit 12: Graphs

Notes

Fig (c)

Fig (d)

Fig (e)

Unit 12: Graphs

Notes

Fig (c)

Fig (d)

Fig (e)

Lovely Professional University 207

Data structures

Notes

Fig (f)

Fig (g)

Fig (h)

Algorithm Complexity

The time complexity of the BFS algorithm is represented in the form of O(V + E), where V is the
number of nodes and E is the number of edges.

The space complexity of the algorithm is O(V).

BFS Applications

 Path finding algorithms

Data structures

Notes

Fig (f)

Fig (g)

Fig (h)

Algorithm Complexity

The time complexity of the BFS algorithm is represented in the form of O(V + E), where V is the
number of nodes and E is the number of edges.

The space complexity of the algorithm is O(V).

BFS Applications

 Path finding algorithms

Data structures

Notes

Fig (f)

Fig (g)

Fig (h)

Algorithm Complexity

The time complexity of the BFS algorithm is represented in the form of O(V + E), where V is the
number of nodes and E is the number of edges.

The space complexity of the algorithm is O(V).

BFS Applications

 Path finding algorithms

Lovely Professional University208

Unit 12: Graphs

Notes

 To build index by search index
 Cycle detection in an undirected graph
 For GPS navigation
 In minimum spanning tree
 Social networking websites

12.6 Depth First Search
Depth first search is another way of traversing graphs, which is closely related to preorder traversal
of a tree. Recall that preorder traversal simply visits each node before its children. It is most easy to
program as a recursive routine.

DFS traversal is a recursive algorithm for searching all the vertices/ nodes of a graph or tree using
stack data structure.In Depth First Search (DFS) algorithm traverses a graph in a depth ward
motion.The DFS algorithm use the concept of backtracking.Depth-first search (DFS): Finds a path
between two vertices by exploring each possible path as far as possible before backtracking.Often
implemented recursively. Many graph algorithms involve visiting or marking vertices.
Steps for DFS

Step 1 − Visit the adjacent unvisited vertex. Mark it as visited. Display it. Push it in a stack.

Step 2 − If no adjacent vertex is found, pop up a vertex from the stack. (It will pop up all the
vertices from the stack, which do not have adjacent vertices.)

Step 3 − Repeat Rule 1 and Rule 2 until the stack is empty.

For using DFS algorithm user should know about data structure Stack (Last In First Out) and its
relevant operations like Push and Pop.

Algorithm: Depth First Search

Step 1: SET STATUS = 1 (ready state) for each node in G

Step 2: Push the starting node A on the stack and set its STATUS = 2 (waiting state)

Step 3: Repeat Steps 4 and 5 until STACK is empty

Step 4: Pop the top node N. Process it and set its STATUS = 3 (processed state)

Step 5: Push on the stack all the neighbours of N that are in the ready state (whose STATUS = 1)
and set their

STATUS = 2 (waiting state)

[END OF LOOP]

Step 6: EXIT

Example: Depth First Search

Fig (a)

Unit 12: Graphs

Notes

 To build index by search index
 Cycle detection in an undirected graph
 For GPS navigation
 In minimum spanning tree
 Social networking websites

12.6 Depth First Search
Depth first search is another way of traversing graphs, which is closely related to preorder traversal
of a tree. Recall that preorder traversal simply visits each node before its children. It is most easy to
program as a recursive routine.

DFS traversal is a recursive algorithm for searching all the vertices/ nodes of a graph or tree using
stack data structure.In Depth First Search (DFS) algorithm traverses a graph in a depth ward
motion.The DFS algorithm use the concept of backtracking.Depth-first search (DFS): Finds a path
between two vertices by exploring each possible path as far as possible before backtracking.Often
implemented recursively. Many graph algorithms involve visiting or marking vertices.
Steps for DFS

Step 1 − Visit the adjacent unvisited vertex. Mark it as visited. Display it. Push it in a stack.

Step 2 − If no adjacent vertex is found, pop up a vertex from the stack. (It will pop up all the
vertices from the stack, which do not have adjacent vertices.)

Step 3 − Repeat Rule 1 and Rule 2 until the stack is empty.

For using DFS algorithm user should know about data structure Stack (Last In First Out) and its
relevant operations like Push and Pop.

Algorithm: Depth First Search

Step 1: SET STATUS = 1 (ready state) for each node in G

Step 2: Push the starting node A on the stack and set its STATUS = 2 (waiting state)

Step 3: Repeat Steps 4 and 5 until STACK is empty

Step 4: Pop the top node N. Process it and set its STATUS = 3 (processed state)

Step 5: Push on the stack all the neighbours of N that are in the ready state (whose STATUS = 1)
and set their

STATUS = 2 (waiting state)

[END OF LOOP]

Step 6: EXIT

Example: Depth First Search

Fig (a)

Unit 12: Graphs

Notes

 To build index by search index
 Cycle detection in an undirected graph
 For GPS navigation
 In minimum spanning tree
 Social networking websites

12.6 Depth First Search
Depth first search is another way of traversing graphs, which is closely related to preorder traversal
of a tree. Recall that preorder traversal simply visits each node before its children. It is most easy to
program as a recursive routine.

DFS traversal is a recursive algorithm for searching all the vertices/ nodes of a graph or tree using
stack data structure.In Depth First Search (DFS) algorithm traverses a graph in a depth ward
motion.The DFS algorithm use the concept of backtracking.Depth-first search (DFS): Finds a path
between two vertices by exploring each possible path as far as possible before backtracking.Often
implemented recursively. Many graph algorithms involve visiting or marking vertices.
Steps for DFS

Step 1 − Visit the adjacent unvisited vertex. Mark it as visited. Display it. Push it in a stack.

Step 2 − If no adjacent vertex is found, pop up a vertex from the stack. (It will pop up all the
vertices from the stack, which do not have adjacent vertices.)

Step 3 − Repeat Rule 1 and Rule 2 until the stack is empty.

For using DFS algorithm user should know about data structure Stack (Last In First Out) and its
relevant operations like Push and Pop.

Algorithm: Depth First Search

Step 1: SET STATUS = 1 (ready state) for each node in G

Step 2: Push the starting node A on the stack and set its STATUS = 2 (waiting state)

Step 3: Repeat Steps 4 and 5 until STACK is empty

Step 4: Pop the top node N. Process it and set its STATUS = 3 (processed state)

Step 5: Push on the stack all the neighbours of N that are in the ready state (whose STATUS = 1)
and set their

STATUS = 2 (waiting state)

[END OF LOOP]

Step 6: EXIT

Example: Depth First Search

Fig (a)

Lovely Professional University 209

Data structures

Notes

Fig (b)

Fig (c)

Fig (d)

Data structures

Notes

Fig (b)

Fig (c)

Fig (d)

Data structures

Notes

Fig (b)

Fig (c)

Fig (d)

Lovely Professional University210

Unit 12: Graphs

Notes

Fig (e)

Fig (f)

Fig (g)

Unit 12: Graphs

Notes

Fig (e)

Fig (f)

Fig (g)

Unit 12: Graphs

Notes

Fig (e)

Fig (f)

Fig (g)

Lovely Professional University 211

Data structures

Notes

Fig (h)

Fig (i)

Fig (j)

Data structures

Notes

Fig (h)

Fig (i)

Fig (j)

Data structures

Notes

Fig (h)

Fig (i)

Fig (j)

Lovely Professional University212

Unit 12: Graphs

Notes

Fig (k)

Fig (l)

Fig (m)

Algorithm Complexity

Time complexity: O(V + E), where V is the number of vertices and E is the number of edges in the
graph.

Space Complexity: O(V).

DFS Applications

 Mapping Routes and Network Analysis.
 Path Finding.

Unit 12: Graphs

Notes

Fig (k)

Fig (l)

Fig (m)

Algorithm Complexity

Time complexity: O(V + E), where V is the number of vertices and E is the number of edges in the
graph.

Space Complexity: O(V).

DFS Applications

 Mapping Routes and Network Analysis.
 Path Finding.

Unit 12: Graphs

Notes

Fig (k)

Fig (l)

Fig (m)

Algorithm Complexity

Time complexity: O(V + E), where V is the number of vertices and E is the number of edges in the
graph.

Space Complexity: O(V).

DFS Applications

 Mapping Routes and Network Analysis.
 Path Finding.

Lovely Professional University 213

Data structures

Notes

 Cycle detection in graphs.
 Topological Sorting.
 Solving puzzle.

12.7 Difference Between Tree and Graph

Summary

 Graphs provide in excellent way to describe the essential features of many applications.
 Graphs are mathematical structures and are found to be useful in problem solving. They

may be implemented in many ways by the use of different kinds of data structures.
 Graph traversals, Depth first as well as Breadth First, are also required in many applications.
 Breadth first search is a graph traversal algorithm that starts traversing the graph from root

node and explores all the neighboring nodes.
 DFS traversal is a recursive algorithm for searching all the vertices/ nodes of a graph or tree

using stack data structure.

Keywords
Breadth-first search: -Breadth-first search is an algorithm for searching a tree data structure for a
node that satisfies a given property.

Depth-first search:-Depth first search (DFS) algorithm starts with the initial node of the graph G,
and then goes to deeper and deeper until we find the goal node or the node which has no children.

Graph: - A graph can be defined as a collection of vertices and the edges that connect them. A
graph is a cyclic tree in which the vertices (Nodes) preserve any complex relationship between
them rather than having a parent-child relationship.

Data structures

Notes

 Cycle detection in graphs.
 Topological Sorting.
 Solving puzzle.

12.7 Difference Between Tree and Graph

Summary

 Graphs provide in excellent way to describe the essential features of many applications.
 Graphs are mathematical structures and are found to be useful in problem solving. They

may be implemented in many ways by the use of different kinds of data structures.
 Graph traversals, Depth first as well as Breadth First, are also required in many applications.
 Breadth first search is a graph traversal algorithm that starts traversing the graph from root

node and explores all the neighboring nodes.
 DFS traversal is a recursive algorithm for searching all the vertices/ nodes of a graph or tree

using stack data structure.

Keywords
Breadth-first search: -Breadth-first search is an algorithm for searching a tree data structure for a
node that satisfies a given property.

Depth-first search:-Depth first search (DFS) algorithm starts with the initial node of the graph G,
and then goes to deeper and deeper until we find the goal node or the node which has no children.

Graph: - A graph can be defined as a collection of vertices and the edges that connect them. A
graph is a cyclic tree in which the vertices (Nodes) preserve any complex relationship between
them rather than having a parent-child relationship.

Data structures

Notes

 Cycle detection in graphs.
 Topological Sorting.
 Solving puzzle.

12.7 Difference Between Tree and Graph

Summary

 Graphs provide in excellent way to describe the essential features of many applications.
 Graphs are mathematical structures and are found to be useful in problem solving. They

may be implemented in many ways by the use of different kinds of data structures.
 Graph traversals, Depth first as well as Breadth First, are also required in many applications.
 Breadth first search is a graph traversal algorithm that starts traversing the graph from root

node and explores all the neighboring nodes.
 DFS traversal is a recursive algorithm for searching all the vertices/ nodes of a graph or tree

using stack data structure.

Keywords
Breadth-first search: -Breadth-first search is an algorithm for searching a tree data structure for a
node that satisfies a given property.

Depth-first search:-Depth first search (DFS) algorithm starts with the initial node of the graph G,
and then goes to deeper and deeper until we find the goal node or the node which has no children.

Graph: - A graph can be defined as a collection of vertices and the edges that connect them. A
graph is a cyclic tree in which the vertices (Nodes) preserve any complex relationship between
them rather than having a parent-child relationship.

Lovely Professional University214

Unit 12: Graphs

Notes

Self Assessment

1. A simple graph does not have which of the following properties?
A. Must be connected
B. Must be unweighted
C. Must have no loops or multiple edges
D. Must have no multiple edges

2. A graph consist of the following components
A. Vertices
B. Edges
C. Both edges and vertices
D. None of above

3. Which of the following is true?
A. A graph may contain no edges and many vertices
B. A graph may contain many edges and no vertices
C. A graph may contain no edges and no vertices
D. A graph may contain no vertices and many edges

4. Which of the following is not a graph?

a)

b)

c)

Unit 12: Graphs

Notes

Self Assessment

1. A simple graph does not have which of the following properties?
A. Must be connected
B. Must be unweighted
C. Must have no loops or multiple edges
D. Must have no multiple edges

2. A graph consist of the following components
A. Vertices
B. Edges
C. Both edges and vertices
D. None of above

3. Which of the following is true?
A. A graph may contain no edges and many vertices
B. A graph may contain many edges and no vertices
C. A graph may contain no edges and no vertices
D. A graph may contain no vertices and many edges

4. Which of the following is not a graph?

a)

b)

c)

Unit 12: Graphs

Notes

Self Assessment

1. A simple graph does not have which of the following properties?
A. Must be connected
B. Must be unweighted
C. Must have no loops or multiple edges
D. Must have no multiple edges

2. A graph consist of the following components
A. Vertices
B. Edges
C. Both edges and vertices
D. None of above

3. Which of the following is true?
A. A graph may contain no edges and many vertices
B. A graph may contain many edges and no vertices
C. A graph may contain no edges and no vertices
D. A graph may contain no vertices and many edges

4. Which of the following is not a graph?

a)

b)

c)

Lovely Professional University 215

Data structures

Notes

d)

5. directed graph is
A. A graph contains ordered pair of vertices.
B. A graph contains 2 pair of vertices.
C. A graph contains vertices.
D. None of the above

6. The Depth First Search traversal of a graph will result into?
A. Linked List
B. Tree
C. Queue
D. Array

7. The data structure which is being used in DFS is ______.
A. Stack
B. Tree
C. Queue
D. None of above

8. Choose the incorrect statement about DFS and BFS from the following.
A. BFS is equivalent to level order traversal in trees
B. DFS is equivalent to post order traversal in trees
C. DFS and BFS code has same time complexity
D. DFS is implemented using stack

9. Choose the correct statement from following
A. Depth-first search is an algorithm for insert node into tree or graph data structures.
B. Depth-first search is an algorithm for traversing or searching tree or graph data structures.
C. DFS is delete first style from data structure.
D. Depth-first search is an algorithm for count elements in the data structure.

10. In Depth First Search, how many times a node is visited?
A. Once
B. Twice
C. Thrice
D. Equivalent to number of in-degree of the node

11. The Data structure used in standard implementation of Breadth First Search is?
A. Stack
B. Queue

Lovely Professional University216

Unit 12: Graphs

Notes

C. Linked List
D. Tree

12. What can be the applications of Breadth First Search?
A. Finding shortest path between two nodes
B. Finding bipartiteness of a graph
C. GPS navigation system
D. All of the mentioned

13. Choose the correct statement from following
A. Breadth-first search is an algorithm for searching a tree data structure for a node that

satisfies a given property.
B. Breadth-first search is an algorithm used for insertion.
C. Breadth-first search is an algorithm for delete an element from array.
D. All of above

14. Which of the following is not an application of Breadth First Search?
A. Finding shortest path between two nodes
B. Finding bipartiteness of a graph
C. GPS navigation system
D. Path Finding

15. The data structure which is being used in DFS is stack.
A. True
B. False

Answersfor self Assessment

l. A 2. C 3. B 4. D 5. A

6. B 7. A 8. B 9. B 10. D

11. B 12. D 13. A 14. D 15. B

Review Questions

1. “A graph in which each edge is assigned a direction is called a directed graph”. Discuss
withexample.

2. “A graph consists of a set of vertices and edges/arcs”. Explain with diagram.
3. Write and explain breadth first search algorithm.
4. Write and explain depth first search algorithm.
5. Differentiate between tree and graph.
6. Discuss in detail applications of graph data structure.
7. Explain how graphs are different from tree.

Lovely Professional University 217

Data structures

Notes

Further Readings
Books Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson Education,
Year of Publication, 2008

Lipschutz. Seymour. Data Structures with C. Delhi: Tata McGraw Hill

Reddy.A.M Padma (2006). Data Structures Using C. Bangalore: Sri Nandi Publications

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett, 1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

YashvantKanetkar, Let us C

Web Links
https://www.simplilearn.com/tutorials/data-structure-tutorial/graphs-in-data-structure

https://www.freecodecamp.org/news/a-gentle-introduction-to-data-structures-how-
graphs-work-a223d9ef8837/

https://www.tutorialspoint.com/data_structures_algorithms/graph_data_structure.htm

Data structures

Notes

Further Readings
Books Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson Education,
Year of Publication, 2008

Lipschutz. Seymour. Data Structures with C. Delhi: Tata McGraw Hill

Reddy.A.M Padma (2006). Data Structures Using C. Bangalore: Sri Nandi Publications

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett, 1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

YashvantKanetkar, Let us C

Web Links
https://www.simplilearn.com/tutorials/data-structure-tutorial/graphs-in-data-structure

https://www.freecodecamp.org/news/a-gentle-introduction-to-data-structures-how-
graphs-work-a223d9ef8837/

https://www.tutorialspoint.com/data_structures_algorithms/graph_data_structure.htm

Data structures

Notes

Further Readings
Books Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson Education,
Year of Publication, 2008

Lipschutz. Seymour. Data Structures with C. Delhi: Tata McGraw Hill

Reddy.A.M Padma (2006). Data Structures Using C. Bangalore: Sri Nandi Publications

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett, 1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

YashvantKanetkar, Let us C

Web Links
https://www.simplilearn.com/tutorials/data-structure-tutorial/graphs-in-data-structure

https://www.freecodecamp.org/news/a-gentle-introduction-to-data-structures-how-
graphs-work-a223d9ef8837/

https://www.tutorialspoint.com/data_structures_algorithms/graph_data_structure.htm

Lovely Professional University218

Unit 13: Searching

Notes

Unit 13: Searching

CONTENTS

Objectives

Introduction

13.1 Search Techniques in Data structure

13.2 The Complexity of Sequential Search

Summary

Keywords

Self Assessment

Answer for Self Assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to:

 Understand Searching
 Explain linear search
 Analyze complexity
 Define binary search

Introduction
The process of discovering the location LOC of an element in a list is referred to as searching in a
data structure. This is a crucial feature of many data structure algorithms, because we can only
conduct one operation on an element if and only if we discover it. To determine whether an
element is present in a collection of objects, various algorithms have been defined. Both internal
and external data structures can be used with this approach. Any algorithm's efficiency is improved
by the efficiency of searching for an element.

Did you Know?

o Searching is the process of finding a given value position in a list of values.
o It decides whether a search key is present in the data or not.
o It is the algorithmic process of finding a particular item in a collection of items.

13.1 Search Techniques in Data structure

1. Linear Search
2. Binary Search

1. Linear Search

This is the traditional technique for searching an element in a collection of elements. In this type of
search, all the elements of the list are traversed one by one to find if the element is present in the list
or not. One example of such an algorithm is a linear search. This is a straightforward and basic

Notes

Unit 13: Searching

CONTENTS

Objectives

Introduction

13.1 Search Techniques in Data structure

13.2 The Complexity of Sequential Search

Summary

Keywords

Self Assessment

Answer for Self Assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to:

 Understand Searching
 Explain linear search
 Analyze complexity
 Define binary search

Introduction
The process of discovering the location LOC of an element in a list is referred to as searching in a
data structure. This is a crucial feature of many data structure algorithms, because we can only
conduct one operation on an element if and only if we discover it. To determine whether an
element is present in a collection of objects, various algorithms have been defined. Both internal
and external data structures can be used with this approach. Any algorithm's efficiency is improved
by the efficiency of searching for an element.

Did you Know?

o Searching is the process of finding a given value position in a list of values.
o It decides whether a search key is present in the data or not.
o It is the algorithmic process of finding a particular item in a collection of items.

13.1 Search Techniques in Data structure

1. Linear Search
2. Binary Search

1. Linear Search

This is the traditional technique for searching an element in a collection of elements. In this type of
search, all the elements of the list are traversed one by one to find if the element is present in the list
or not. One example of such an algorithm is a linear search. This is a straightforward and basic

Notes

Unit 13: Searching

CONTENTS

Objectives

Introduction

13.1 Search Techniques in Data structure

13.2 The Complexity of Sequential Search

Summary

Keywords

Self Assessment

Answer for Self Assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to:

 Understand Searching
 Explain linear search
 Analyze complexity
 Define binary search

Introduction
The process of discovering the location LOC of an element in a list is referred to as searching in a
data structure. This is a crucial feature of many data structure algorithms, because we can only
conduct one operation on an element if and only if we discover it. To determine whether an
element is present in a collection of objects, various algorithms have been defined. Both internal
and external data structures can be used with this approach. Any algorithm's efficiency is improved
by the efficiency of searching for an element.

Did you Know?

o Searching is the process of finding a given value position in a list of values.
o It decides whether a search key is present in the data or not.
o It is the algorithmic process of finding a particular item in a collection of items.

13.1 Search Techniques in Data structure

1. Linear Search
2. Binary Search

1. Linear Search

This is the traditional technique for searching an element in a collection of elements. In this type of
search, all the elements of the list are traversed one by one to find if the element is present in the list
or not. One example of such an algorithm is a linear search. This is a straightforward and basic

Lovely Professional University 219

Dr. Prikshat Kumar Angra, Lovely Professional University Unit 13: Searching

Data structures

algorithm. Suppose ARR is an array of n elements, and we need to find location LOC of element
ITEM in ARR. For this, LOC is assigned to -1, which indicates that ITEM is not present in ARR.
While comparing ITEM with data at each ARR location, and once ITEM == ARR[N], LOC is
updated with location N+1. Hence we found the ITEM in ARR.

Algorithm

LSEARCH(ARR, N, ITEM, LOC) Here ARR Is the array of N number of elements, ITEM holds the
value we need to search in the array and algorithm returns LOC, the location where ITEM is
present in the ARR. Initially, we have to set LOC = -1.

1. Set LOC = -1,i=1

2. Repeat while DATA[i] != ITEM:

i=i+1

3. If i=N+1 ,then Set LOC =0

Else LOC = N+1

4. Exit.

Example: Let’s say, below is the ARR with 5 elements. And we need to find whether ITEM=
12 is present in this array or not.

22 32 12 35 65

In the start, LOC =-1

Step 1: ITEM != 22 thus we move to next element.

22 32 12 35 65

12==

Step 2: ITEM != 32 thus we move to next element.

22 32 12 35 65

12==

Step 5: Hence ITEM == ARR[2] thus LOC updated to 3.

22 32 12 35 65

12==

Lab Exercise

// Program

#include<stdio.h>

int main(){

Data structures

algorithm. Suppose ARR is an array of n elements, and we need to find location LOC of element
ITEM in ARR. For this, LOC is assigned to -1, which indicates that ITEM is not present in ARR.
While comparing ITEM with data at each ARR location, and once ITEM == ARR[N], LOC is
updated with location N+1. Hence we found the ITEM in ARR.

Algorithm

LSEARCH(ARR, N, ITEM, LOC) Here ARR Is the array of N number of elements, ITEM holds the
value we need to search in the array and algorithm returns LOC, the location where ITEM is
present in the ARR. Initially, we have to set LOC = -1.

1. Set LOC = -1,i=1

2. Repeat while DATA[i] != ITEM:

i=i+1

3. If i=N+1 ,then Set LOC =0

Else LOC = N+1

4. Exit.

Example: Let’s say, below is the ARR with 5 elements. And we need to find whether ITEM=
12 is present in this array or not.

22 32 12 35 65

In the start, LOC =-1

Step 1: ITEM != 22 thus we move to next element.

22 32 12 35 65

12==

Step 2: ITEM != 32 thus we move to next element.

22 32 12 35 65

12==

Step 5: Hence ITEM == ARR[2] thus LOC updated to 3.

22 32 12 35 65

12==

Lab Exercise

// Program

#include<stdio.h>

int main(){

Data structures

algorithm. Suppose ARR is an array of n elements, and we need to find location LOC of element
ITEM in ARR. For this, LOC is assigned to -1, which indicates that ITEM is not present in ARR.
While comparing ITEM with data at each ARR location, and once ITEM == ARR[N], LOC is
updated with location N+1. Hence we found the ITEM in ARR.

Algorithm

LSEARCH(ARR, N, ITEM, LOC) Here ARR Is the array of N number of elements, ITEM holds the
value we need to search in the array and algorithm returns LOC, the location where ITEM is
present in the ARR. Initially, we have to set LOC = -1.

1. Set LOC = -1,i=1

2. Repeat while DATA[i] != ITEM:

i=i+1

3. If i=N+1 ,then Set LOC =0

Else LOC = N+1

4. Exit.

Example: Let’s say, below is the ARR with 5 elements. And we need to find whether ITEM=
12 is present in this array or not.

22 32 12 35 65

In the start, LOC =-1

Step 1: ITEM != 22 thus we move to next element.

22 32 12 35 65

12==

Step 2: ITEM != 32 thus we move to next element.

22 32 12 35 65

12==

Step 5: Hence ITEM == ARR[2] thus LOC updated to 3.

22 32 12 35 65

12==

Lab Exercise

// Program

#include<stdio.h>

int main(){

Lovely Professional University220

Unit 13: Searching

Notes

int a[5]={12,2,34,55,67};

int i, toSearch,flag=0;

printf("\n Original Array is \n");

for(i=0;i<5;i++){

printf("%d \t ", a[i]);

}

printf("\n Enter element to find");

scanf("%d",&toSearch);

for(i=0;i<5;i++){

if(a[i]==toSearch)

{

flag=1;

break;

}

else

flag=0;

}

if(flag!=0)

printf("Element %d is found at location %d\n",toSearch,i);

else

printf("\n Item not found\n");

return 0;

}

Output

13.2 The Complexity of Sequential Search
Here are the complexities of the linear search given below.

Space complexity

Unit 13: Searching

Notes

int a[5]={12,2,34,55,67};

int i, toSearch,flag=0;

printf("\n Original Array is \n");

for(i=0;i<5;i++){

printf("%d \t ", a[i]);

}

printf("\n Enter element to find");

scanf("%d",&toSearch);

for(i=0;i<5;i++){

if(a[i]==toSearch)

{

flag=1;

break;

}

else

flag=0;

}

if(flag!=0)

printf("Element %d is found at location %d\n",toSearch,i);

else

printf("\n Item not found\n");

return 0;

}

Output

13.2 The Complexity of Sequential Search
Here are the complexities of the linear search given below.

Space complexity

Unit 13: Searching

Notes

int a[5]={12,2,34,55,67};

int i, toSearch,flag=0;

printf("\n Original Array is \n");

for(i=0;i<5;i++){

printf("%d \t ", a[i]);

}

printf("\n Enter element to find");

scanf("%d",&toSearch);

for(i=0;i<5;i++){

if(a[i]==toSearch)

{

flag=1;

break;

}

else

flag=0;

}

if(flag!=0)

printf("Element %d is found at location %d\n",toSearch,i);

else

printf("\n Item not found\n");

return 0;

}

Output

13.2 The Complexity of Sequential Search
Here are the complexities of the linear search given below.

Space complexity

Lovely Professional University 221

Data structures

As linear search algorithm does not use any extra space, thus its space complexity = O(n) for an
array of n number of elements.

Time Complexity
Worst-case complexity: O(n) – This case occurs when the search element is not present in the array.

Best case complexity: O(1) – This case occurs when the first element is the element to be searched.

Average complexity: O(n) – This means when an element is present somewhere in the middle of
the array.

2. Binary Search

This is a technique to search an element in the list using the divide and conquer technique. This
type of technique is used in the case of sorted lists. Instead of searching an element one by one in
the list, it directly goes to the middle element of the list, divides the array into 2 parts, and decides
element lies in which sub-array the element exists.

Suppose ARR is an array with sorted n number of elements present in increasing order. With every
step of this algorithm, the searching is confined within BEG and END, which are the beginning and
ending index of sub-arrays. The index MID defines the middle index of the array where,

MID = INT(beg + end)/2

It needs to be checked if ITEM < ARR[N} where ITEM is the element that we need to search in ARR.

 If ITEM = ARR[MID] then LOC = MID and exit .
 If ITEM < ARR[MID} then ITEM can appear in the left sub-array, then BEG will be the

same and END = MID -1 and repeat.
 If ITEM > ARR[MID] then ITEM can appear in the right subarray then BEG = MID+1 and

END will be the same and repeat.

After this MID is again calculated for respective sub-arrays, if we didn’t find the ITEM, the
algorithm returns -1 otherwise LOC = MID.

Algorithm:
BSEARCH(ARR, LB, UB, ITEM, LOC) Here, ARR is a sorted list of elements, with LB and UB are
lower and upper bounds for the array. ITEM needs to be searched in the array and algorithm
returns location LOC, index at which ITEM is present else return -1.

1. Set BEG = LB, END = UB and MID = INT([BEG+END]/2)

2. Repeat step 3 and 4 while BEG <= END and ARR[MID] != ITEM

3. IF ITEM< ARR[MID] then:

Set END = MID-1

Else:

Set BEG = MID+1

4. Set MID = INT(BEG+END)/2

5. IF ARR[MID] = ITEM then:

Set LOC = MID

Lovely Professional University222

Unit 13: Searching

Notes

Else:

Set LOC = NULL

6. Exit.

Example:

Let’s say here, ITEM = 62

BEG = 1 and END =9 Hence MID = (1+9)/2 = 5

ARR[MID] = 52

Step 1: ARR[MID] < ITEM : thus END =9 and BEG = MID +1 = 6. Thus our new sub-array is,

Step 2: Now BEG =6 and END =9 thus MID = INT([6+9]/2)= 6

NOW ARR[6] =ITEM. Thus LOC = MID

Thus LOC = 6

The complexity of Binary Search
Here are the complexities of the binary search given below.

Worst Case: O(nlogn)

Best Case: O(1)

Average Case: O(nlogn)

Lab Exercise

// Program

#include<stdio.h>

int binarySearch(int[], int, int, int);

void main ()

{

int arr[10] = {10, 12, 21, 23, 40, 48, 50, 78, 90, 96, 100};

int item, location=-1;

printf("Enter the item which you want to search ");

scanf("%d",&item);

Unit 13: Searching

Notes

Else:

Set LOC = NULL

6. Exit.

Example:

Let’s say here, ITEM = 62

BEG = 1 and END =9 Hence MID = (1+9)/2 = 5

ARR[MID] = 52

Step 1: ARR[MID] < ITEM : thus END =9 and BEG = MID +1 = 6. Thus our new sub-array is,

Step 2: Now BEG =6 and END =9 thus MID = INT([6+9]/2)= 6

NOW ARR[6] =ITEM. Thus LOC = MID

Thus LOC = 6

The complexity of Binary Search
Here are the complexities of the binary search given below.

Worst Case: O(nlogn)

Best Case: O(1)

Average Case: O(nlogn)

Lab Exercise

// Program

#include<stdio.h>

int binarySearch(int[], int, int, int);

void main ()

{

int arr[10] = {10, 12, 21, 23, 40, 48, 50, 78, 90, 96, 100};

int item, location=-1;

printf("Enter the item which you want to search ");

scanf("%d",&item);

Unit 13: Searching

Notes

Else:

Set LOC = NULL

6. Exit.

Example:

Let’s say here, ITEM = 62

BEG = 1 and END =9 Hence MID = (1+9)/2 = 5

ARR[MID] = 52

Step 1: ARR[MID] < ITEM : thus END =9 and BEG = MID +1 = 6. Thus our new sub-array is,

Step 2: Now BEG =6 and END =9 thus MID = INT([6+9]/2)= 6

NOW ARR[6] =ITEM. Thus LOC = MID

Thus LOC = 6

The complexity of Binary Search
Here are the complexities of the binary search given below.

Worst Case: O(nlogn)

Best Case: O(1)

Average Case: O(nlogn)

Lab Exercise

// Program

#include<stdio.h>

int binarySearch(int[], int, int, int);

void main ()

{

int arr[10] = {10, 12, 21, 23, 40, 48, 50, 78, 90, 96, 100};

int item, location=-1;

printf("Enter the item which you want to search ");

scanf("%d",&item);

Lovely Professional University 223

Data structures

location = binarySearch(arr, 0, 9, item);

if(location != -1)

{

printf("Item found at location %d",location);

}

else

{

printf("Item not found");

}

}

int binarySearch(int a[], int beg, int end, int item)

{

int mid;

if(end >= beg)

{

mid = (beg + end)/2;

if(a[mid] == item)

{

return mid+1;

}

else if(a[mid] < item)

{

return binarySearch(a,mid+1,end,item);

}

else

{

return binarySearch(a,beg,mid-1,item);

}

}

return -1;

}

Output

Data structures

location = binarySearch(arr, 0, 9, item);

if(location != -1)

{

printf("Item found at location %d",location);

}

else

{

printf("Item not found");

}

}

int binarySearch(int a[], int beg, int end, int item)

{

int mid;

if(end >= beg)

{

mid = (beg + end)/2;

if(a[mid] == item)

{

return mid+1;

}

else if(a[mid] < item)

{

return binarySearch(a,mid+1,end,item);

}

else

{

return binarySearch(a,beg,mid-1,item);

}

}

return -1;

}

Output

Data structures

location = binarySearch(arr, 0, 9, item);

if(location != -1)

{

printf("Item found at location %d",location);

}

else

{

printf("Item not found");

}

}

int binarySearch(int a[], int beg, int end, int item)

{

int mid;

if(end >= beg)

{

mid = (beg + end)/2;

if(a[mid] == item)

{

return mid+1;

}

else if(a[mid] < item)

{

return binarySearch(a,mid+1,end,item);

}

else

{

return binarySearch(a,beg,mid-1,item);

}

}

return -1;

}

Output

Lovely Professional University224

Unit 13: Searching

Notes

Linear Search Vs. Binary Search

Key Differences Between Linear Search and Binary Search

1. Linear search is iterative in nature and uses a sequential approach. On the other hand,
Binary search implements a divide and conquer approach.

2. The best-case time in linear search is for the first element, i.e., O (1). As against, in binary
search, it is for the middle element, i.e., O (1).

3. Linear search can be implemented in an array as well as in a linked list, whereas binary
search cannot be implemented directly in a linked list.

4. Linear search is easy to use, and there is no need for any ordered elements. On the other
hand, the binary search algorithm is tricky, and elements are necessarily arranged in
order.

Summary

 Search is a programme that allows you to look for papers, files, and other forms of
information. A binary search is a form of advanced search method for finding and retrieving
data from a sorted list of things.

 Binary search is commonly known as a half-interval search or a logarithmic search.
 A binary search is not suitable for unsorted data.
 The linear search is simple to use, or we could say less complex, because the components in

a linear search can be put in any sequence, whereas the elements in a binary search must be
arranged in a specific order.

 The implementation of binary search is limited as it can be implemented only on those data
structures that have two-way traversal.

 In a linear search, the worst- case scenario for finding the element is O(n).

Keywords
Searching:Searching in data structure refers to the process of finding location LOC of an element in
a list.

Unit 13: Searching

Notes

Linear Search Vs. Binary Search

Key Differences Between Linear Search and Binary Search

1. Linear search is iterative in nature and uses a sequential approach. On the other hand,
Binary search implements a divide and conquer approach.

2. The best-case time in linear search is for the first element, i.e., O (1). As against, in binary
search, it is for the middle element, i.e., O (1).

3. Linear search can be implemented in an array as well as in a linked list, whereas binary
search cannot be implemented directly in a linked list.

4. Linear search is easy to use, and there is no need for any ordered elements. On the other
hand, the binary search algorithm is tricky, and elements are necessarily arranged in
order.

Summary

 Search is a programme that allows you to look for papers, files, and other forms of
information. A binary search is a form of advanced search method for finding and retrieving
data from a sorted list of things.

 Binary search is commonly known as a half-interval search or a logarithmic search.
 A binary search is not suitable for unsorted data.
 The linear search is simple to use, or we could say less complex, because the components in

a linear search can be put in any sequence, whereas the elements in a binary search must be
arranged in a specific order.

 The implementation of binary search is limited as it can be implemented only on those data
structures that have two-way traversal.

 In a linear search, the worst- case scenario for finding the element is O(n).

Keywords
Searching:Searching in data structure refers to the process of finding location LOC of an element in
a list.

Unit 13: Searching

Notes

Linear Search Vs. Binary Search

Key Differences Between Linear Search and Binary Search

1. Linear search is iterative in nature and uses a sequential approach. On the other hand,
Binary search implements a divide and conquer approach.

2. The best-case time in linear search is for the first element, i.e., O (1). As against, in binary
search, it is for the middle element, i.e., O (1).

3. Linear search can be implemented in an array as well as in a linked list, whereas binary
search cannot be implemented directly in a linked list.

4. Linear search is easy to use, and there is no need for any ordered elements. On the other
hand, the binary search algorithm is tricky, and elements are necessarily arranged in
order.

Summary

 Search is a programme that allows you to look for papers, files, and other forms of
information. A binary search is a form of advanced search method for finding and retrieving
data from a sorted list of things.

 Binary search is commonly known as a half-interval search or a logarithmic search.
 A binary search is not suitable for unsorted data.
 The linear search is simple to use, or we could say less complex, because the components in

a linear search can be put in any sequence, whereas the elements in a binary search must be
arranged in a specific order.

 The implementation of binary search is limited as it can be implemented only on those data
structures that have two-way traversal.

 In a linear search, the worst- case scenario for finding the element is O(n).

Keywords
Searching:Searching in data structure refers to the process of finding location LOC of an element in
a list.

Lovely Professional University 225

Data structures

Linear Search: This is the traditional technique for searching an element in a collection of elements.
In this type of search, all the elements of the list are traversed one by one to find if the element is
present in the list or not.

Binary Search: This is a technique to search an element in the list using the divide and conquer
technique. This type of technique is used in the case of sorted lists. Instead of searching an element
one by one in the list, it directly goes to the middle element of the list, divides the array into 2 parts,
and decides element lies in which sub-array the element exists.

Complexity:Complexity of an algorithm is a measure of the amount of time and/or space required
by an algorithm for an input of a given size (n).

Self Assessment

1. Which of the following is not a searching technique?
A. Linear Search
B. Binary Search
C. Queue Search
D. None of above

2. Where is linear searching used?
A. When the list has only a few elements
B. When performing a single search in an unordered list
C. Used all the time
D. When the list has only a few elements and when performing a single search in an unordered

list

3. What is the best case for linear search?
A. O(nlogn)
B. O(logn)
C. O(n)
D. O(1)

4. What is the worst case for linear search?
A. O(nlogn)
B. O(logn)
C. O(n)
D. O(1)

5. _________ Search is often called sequential search.
A. Binary Search
B. Linear Search
C. Both linear search and binary search
D. None of above

6. Linear search is mostly used to search an unordered list in which the items are not sorted.
A. True
B. False
C. Sometimes true

Lovely Professional University226

Unit 13: Searching

Notes

D. Sometimes false

7. Finding the location of a given item in a collection of items is called......
A. Discovering
B. Finding
C. Searching
D. Mining

8. Which of the following algorithm type is iterative in nature?

A. Binary Search
B. Linear Search
C. Both binary search and linear search
D. None of the above

9. The binary search algorithm uses
A. Linear way to search values
B. Divide and conquer method
C. Bubble sorting technique
D. None of them

10. Best case complexity of binary search algorithm is
A. O(1)
B. O(log n)
C. O(log n)
D. O(1)

11. Average case complexity of binary search algorithm is
A. O(1)
B. O(log n)
C. O(log n)
D. O(1)

12. Average case complexity and worst case complexity of binary search algorithm are same
A. True
B. False

13. Worst case complexity of binary search algorithm is
A. O(1)
B. O(log n)
C. O(log n)
D. O(1)

14. Which of the following is right statement for binary search
A. Binary search is a fast search algorithm with a run-time complexity of (log n).
B. Binary search is a fast search algorithm with a run-time complexity of (m log n).
C. Binary search is a fast search algorithm with a run-time complexity of (x log n).

Lovely Professional University 227

Data structures

D. Binary search is a fast search algorithm with a run-time complexity of (log X).

15. Which from the following technique is used for finding a value from an array?
A. Linear Search
B. Binary Search
C. Bubble sort
D. All above

Answer for Self Assessment

l. C 2. D 3. D 4. C 5. B

6. A 7. C 8. B 9. B 10. A

11. B 12. A 13. C 14. A 15. D

Review Questions

1. What is searching? Explain different types of searching in data structure.
2. Differentiate between linear search and binary search.
3. Linear search also known as sequential search. Comment.
4. What is the role of searching in data structure?
5. What are applications of searching?

Further Readings
Books Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson Education,
Year of Publication, 2008

Lipschutz. Seymour. Data Structures with C. Delhi: Tata McGraw Hill

Reddy.A.M Padma (2006). Data Structures Using C. Bangalore: Sri Nandi Publications

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett, 1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

YashvantKanetkar, Let us C

Web Links
https://www.javatpoint.com/ds-linear-search-vs-binary-search

https://en.wikipedia.org/

https://onlinedegree.iitm.ac.in/

Data structures

D. Binary search is a fast search algorithm with a run-time complexity of (log X).

15. Which from the following technique is used for finding a value from an array?
A. Linear Search
B. Binary Search
C. Bubble sort
D. All above

Answer for Self Assessment

l. C 2. D 3. D 4. C 5. B

6. A 7. C 8. B 9. B 10. A

11. B 12. A 13. C 14. A 15. D

Review Questions

1. What is searching? Explain different types of searching in data structure.
2. Differentiate between linear search and binary search.
3. Linear search also known as sequential search. Comment.
4. What is the role of searching in data structure?
5. What are applications of searching?

Further Readings
Books Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson Education,
Year of Publication, 2008

Lipschutz. Seymour. Data Structures with C. Delhi: Tata McGraw Hill

Reddy.A.M Padma (2006). Data Structures Using C. Bangalore: Sri Nandi Publications

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett, 1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

YashvantKanetkar, Let us C

Web Links
https://www.javatpoint.com/ds-linear-search-vs-binary-search

https://en.wikipedia.org/

https://onlinedegree.iitm.ac.in/

Data structures

D. Binary search is a fast search algorithm with a run-time complexity of (log X).

15. Which from the following technique is used for finding a value from an array?
A. Linear Search
B. Binary Search
C. Bubble sort
D. All above

Answer for Self Assessment

l. C 2. D 3. D 4. C 5. B

6. A 7. C 8. B 9. B 10. A

11. B 12. A 13. C 14. A 15. D

Review Questions

1. What is searching? Explain different types of searching in data structure.
2. Differentiate between linear search and binary search.
3. Linear search also known as sequential search. Comment.
4. What is the role of searching in data structure?
5. What are applications of searching?

Further Readings
Books Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson Education,
Year of Publication, 2008

Lipschutz. Seymour. Data Structures with C. Delhi: Tata McGraw Hill

Reddy.A.M Padma (2006). Data Structures Using C. Bangalore: Sri Nandi Publications

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett, 1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

YashvantKanetkar, Let us C

Web Links
https://www.javatpoint.com/ds-linear-search-vs-binary-search

https://en.wikipedia.org/

https://onlinedegree.iitm.ac.in/

Lovely Professional University228

Unit 14: Sorting

Notes

Unit 14: Sorting

CONTENTS

Objectives

Introduction

14.1 Sorting Algorithm

14.2 Bubble Sort

14.3 Insertion Sort

14.4 Selection Sort

14.5 Shell Sort

14.6 Merge Sort

14.7 Radix Sort

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to:

 Understand Sorting
 Define sorting algorithms
 Analyze sorting techniques

Introduction
Sorting is the process of arranging data in a preferred order in a data structure. Sorting data makes
it easier to swiftly and simply search through it. A dictionary is the most basic example of sorting.
When you wanted to look up a term in a dictionary before the Internet, you had to do it in
alphabetical order. This made things a lot easier.

Imagine the stress of having to sift through a large book containing all of the English words from
around the world in a jumbled sequence! It's the same dread that an engineer will feel if their data
isn't organized and categorized.

14.1 Sorting Algorithm
Sorting Algorithms are methods of reorganizing a large number of items into some specific order

such as highest to lowest, or vice-versa, or even in some alphabetical order.

These algorithms take an input list, processes it (i.e, performs some operations on it) and produce
the sorted list.

The most common example we experience every day is sorting clothes or other items on an e-
commerce website either by lowest-price to highest, or list by popularity, or some other order.

Lovely Professional University 229

Dr. Prikshat Kumar Angra, Lovely Professional University

Data structures

Notes

Did you know?

 Sorting is the process of ordering or placing a list of elements from a collection in some
kind of order. It is nothing but the storage of data in sorted order.

 Sorting can be done in ascending and descending order.
 It arranges the data in a sequence, which makes searching easier.

Example: Let’s suppose you have an array of strings: [h,j,k,i,n,m,o,l]

Now, sorting would yield an output array in alphabetical order.

Output: [h,i,j,k,l,m,n,o]

Sorting Categories

There are two different categories in sorting:

Internal sorting: If the input data is such that it can be adjusted in the main memory at once, it is
called internal sorting.

External sorting: If the input data is such that it cannot be adjusted in the memory entirely at once,
it needs to be stored in a hard disk, floppy disk, or any other storage device. This is called external
sorting.

Types of Sorting in Data Structure

1. Quick Sort
2. Bubble Sort
3. Merge Sort
4. Insertion Sort
5. Selection Sort
6. Heap Sort
7. Radix Sort
8. Bucket Sort

14.2 Bubble Sort
Bubble sort, also referred to as comparison sort, is a simple sorting algorithm that repeatedly goes
through the list, compares adjacent elements and swaps them if they are in the wrong order. This is
the simplest algorithm and inefficient at the same time. Yet, it is very much necessary to learn about
it as it represents the basic foundations of sorting.

Data structures

Notes

Did you know?

 Sorting is the process of ordering or placing a list of elements from a collection in some
kind of order. It is nothing but the storage of data in sorted order.

 Sorting can be done in ascending and descending order.
 It arranges the data in a sequence, which makes searching easier.

Example: Let’s suppose you have an array of strings: [h,j,k,i,n,m,o,l]

Now, sorting would yield an output array in alphabetical order.

Output: [h,i,j,k,l,m,n,o]

Sorting Categories

There are two different categories in sorting:

Internal sorting: If the input data is such that it can be adjusted in the main memory at once, it is
called internal sorting.

External sorting: If the input data is such that it cannot be adjusted in the memory entirely at once,
it needs to be stored in a hard disk, floppy disk, or any other storage device. This is called external
sorting.

Types of Sorting in Data Structure

1. Quick Sort
2. Bubble Sort
3. Merge Sort
4. Insertion Sort
5. Selection Sort
6. Heap Sort
7. Radix Sort
8. Bucket Sort

14.2 Bubble Sort
Bubble sort, also referred to as comparison sort, is a simple sorting algorithm that repeatedly goes
through the list, compares adjacent elements and swaps them if they are in the wrong order. This is
the simplest algorithm and inefficient at the same time. Yet, it is very much necessary to learn about
it as it represents the basic foundations of sorting.

Data structures

Notes

Did you know?

 Sorting is the process of ordering or placing a list of elements from a collection in some
kind of order. It is nothing but the storage of data in sorted order.

 Sorting can be done in ascending and descending order.
 It arranges the data in a sequence, which makes searching easier.

Example: Let’s suppose you have an array of strings: [h,j,k,i,n,m,o,l]

Now, sorting would yield an output array in alphabetical order.

Output: [h,i,j,k,l,m,n,o]

Sorting Categories

There are two different categories in sorting:

Internal sorting: If the input data is such that it can be adjusted in the main memory at once, it is
called internal sorting.

External sorting: If the input data is such that it cannot be adjusted in the memory entirely at once,
it needs to be stored in a hard disk, floppy disk, or any other storage device. This is called external
sorting.

Types of Sorting in Data Structure

1. Quick Sort
2. Bubble Sort
3. Merge Sort
4. Insertion Sort
5. Selection Sort
6. Heap Sort
7. Radix Sort
8. Bucket Sort

14.2 Bubble Sort
Bubble sort, also referred to as comparison sort, is a simple sorting algorithm that repeatedly goes
through the list, compares adjacent elements and swaps them if they are in the wrong order. This is
the simplest algorithm and inefficient at the same time. Yet, it is very much necessary to learn about
it as it represents the basic foundations of sorting.

Lovely Professional University230

Unit 14: Sorting

Notes

The diagram represents how bubble sorting actually works. This sort takes O (n2) time. It starts
with the first two elements and sorts them in ascending order.Bubble sort starts with the first two
elements. It compares the elements to check which one is greater.In the above diagram, element 40
is greater than 10, so these values must be swapped. This operation continues until the array is
sorted in ascending order.

Algorithm

bubbleSort(Arr[], totat_elements)

for i = 0 to total_elements - 1 do:

swapped = false

for j = 0 to total_elements - i - 2 do:

if Arr[j] > Arr[j+1] then

swap(Arr[j], Arr[j+1])

swapped = true

end if

end for

if(not swapped) then

break

end if

end for

end

Unit 14: Sorting

Notes

The diagram represents how bubble sorting actually works. This sort takes O (n2) time. It starts
with the first two elements and sorts them in ascending order.Bubble sort starts with the first two
elements. It compares the elements to check which one is greater.In the above diagram, element 40
is greater than 10, so these values must be swapped. This operation continues until the array is
sorted in ascending order.

Algorithm

bubbleSort(Arr[], totat_elements)

for i = 0 to total_elements - 1 do:

swapped = false

for j = 0 to total_elements - i - 2 do:

if Arr[j] > Arr[j+1] then

swap(Arr[j], Arr[j+1])

swapped = true

end if

end for

if(not swapped) then

break

end if

end for

end

Unit 14: Sorting

Notes

The diagram represents how bubble sorting actually works. This sort takes O (n2) time. It starts
with the first two elements and sorts them in ascending order.Bubble sort starts with the first two
elements. It compares the elements to check which one is greater.In the above diagram, element 40
is greater than 10, so these values must be swapped. This operation continues until the array is
sorted in ascending order.

Algorithm

bubbleSort(Arr[], totat_elements)

for i = 0 to total_elements - 1 do:

swapped = false

for j = 0 to total_elements - i - 2 do:

if Arr[j] > Arr[j+1] then

swap(Arr[j], Arr[j+1])

swapped = true

end if

end for

if(not swapped) then

break

end if

end for

end

Lovely Professional University 231

Data structures

Notes

Lab Exercise:

#include <stdio.h>

void bubble_sort(long [], long);

int main()

{

long array[100], n, c, d, swap;

printf("Enter Elements\n");

scanf("%ld", &n);

printf("Enter %ld integers\n", n);

for (c = 0; c < n; c++)

scanf("%ld", &array[c]);

bubble_sort(array, n);

printf("Sorted list in ascending order:\n");

for (c = 0 ; c < n ; c++)

printf("%ld\n", array[c]);

return 0;

}

void bubble_sort(long list[], long n)

{

long c, d, t;

for (c = 0 ; c < (n - 1); c++)

{

for (d = 0 ; d < n - c - 1; d++)

{

if (list[d] > list[d+1])

{

t = list[d];

list[d] = list[d+1];

list[d+1] = t;

}

}

}

}

Output

Data structures

Notes

Lab Exercise:

#include <stdio.h>

void bubble_sort(long [], long);

int main()

{

long array[100], n, c, d, swap;

printf("Enter Elements\n");

scanf("%ld", &n);

printf("Enter %ld integers\n", n);

for (c = 0; c < n; c++)

scanf("%ld", &array[c]);

bubble_sort(array, n);

printf("Sorted list in ascending order:\n");

for (c = 0 ; c < n ; c++)

printf("%ld\n", array[c]);

return 0;

}

void bubble_sort(long list[], long n)

{

long c, d, t;

for (c = 0 ; c < (n - 1); c++)

{

for (d = 0 ; d < n - c - 1; d++)

{

if (list[d] > list[d+1])

{

t = list[d];

list[d] = list[d+1];

list[d+1] = t;

}

}

}

}

Output

Data structures

Notes

Lab Exercise:

#include <stdio.h>

void bubble_sort(long [], long);

int main()

{

long array[100], n, c, d, swap;

printf("Enter Elements\n");

scanf("%ld", &n);

printf("Enter %ld integers\n", n);

for (c = 0; c < n; c++)

scanf("%ld", &array[c]);

bubble_sort(array, n);

printf("Sorted list in ascending order:\n");

for (c = 0 ; c < n ; c++)

printf("%ld\n", array[c]);

return 0;

}

void bubble_sort(long list[], long n)

{

long c, d, t;

for (c = 0 ; c < (n - 1); c++)

{

for (d = 0 ; d < n - c - 1; d++)

{

if (list[d] > list[d+1])

{

t = list[d];

list[d] = list[d+1];

list[d+1] = t;

}

}

}

}

Output

Lovely Professional University232

Unit 14: Sorting

Notes

14.3 Insertion Sort
Insertion sort is the sorting mechanism where the sorted array is built having one item at a time.
The array elements are compared with each other sequentially and then arranged simultaneously in
some particular order. The analogy can be understood from the style we arrange a deck of cards.
This sort works on the principle of inserting an element at a particular position, hence the name
Insertion Sort.

Did you Know?

• Insertion sort is a simple sorting algorithm.

• This sorting method sorts the array by shifting elements one by one.

• It builds the final sorted array one item at a time.

• Insertion sort has one of the simplest implementations.

• This sort is efficient for smaller data sets, but it is insufficient for larger lists.

• It has less space complexity than bubble sort.

• It requires a single additional memory space.

• Insertion sort does not change the relative order of elements with equal keys because it is
stable.

Unit 14: Sorting

Notes

14.3 Insertion Sort
Insertion sort is the sorting mechanism where the sorted array is built having one item at a time.
The array elements are compared with each other sequentially and then arranged simultaneously in
some particular order. The analogy can be understood from the style we arrange a deck of cards.
This sort works on the principle of inserting an element at a particular position, hence the name
Insertion Sort.

Did you Know?

• Insertion sort is a simple sorting algorithm.

• This sorting method sorts the array by shifting elements one by one.

• It builds the final sorted array one item at a time.

• Insertion sort has one of the simplest implementations.

• This sort is efficient for smaller data sets, but it is insufficient for larger lists.

• It has less space complexity than bubble sort.

• It requires a single additional memory space.

• Insertion sort does not change the relative order of elements with equal keys because it is
stable.

Unit 14: Sorting

Notes

14.3 Insertion Sort
Insertion sort is the sorting mechanism where the sorted array is built having one item at a time.
The array elements are compared with each other sequentially and then arranged simultaneously in
some particular order. The analogy can be understood from the style we arrange a deck of cards.
This sort works on the principle of inserting an element at a particular position, hence the name
Insertion Sort.

Did you Know?

• Insertion sort is a simple sorting algorithm.

• This sorting method sorts the array by shifting elements one by one.

• It builds the final sorted array one item at a time.

• Insertion sort has one of the simplest implementations.

• This sort is efficient for smaller data sets, but it is insufficient for larger lists.

• It has less space complexity than bubble sort.

• It requires a single additional memory space.

• Insertion sort does not change the relative order of elements with equal keys because it is
stable.

Lovely Professional University 233

Data structures

Notes

The above diagram represents how insertion sorting works. Insertion sorting works like the way
we sort playing cards in our hands. It always starts with the second element as the key. The key is
to compare it with the elements ahead of it and put it in the right place.In the above figure, 40 has
nothing before it. Element 10 is compared to 40 and is inserted before 40. Element 9 is smaller than
40 and 10, so it is inserted before 10 and this operation continues until the array is sorted in
ascending order.

Algorithm

INSERTION-SORT(A)

for i = 1 to n

key ← A [i]

j ← i – 1

while j > = 0 and A[j] > key

A[j+1] ← A[j]

j ← j – 1

End while

A[j+1] ← key

End for

Lab Exercise

#include <stdio.h>

int main()

{

int n, array[1000], c, d, t;

printf("Enter number of elements\n");

scanf("%d", &n);

printf("Enter %d integers\n", n);

for (c = 0; c < n; c++)

{

scanf("%d", &array[c]);

}

for (c = 1 ; c <= n - 1; c++)

{

d = c;

while (d > 0 && array[d] < array[d-1])

{

t = array[d];

array[d] = array[d-1];

array[d-1] = t;

d--;

Data structures

Notes

The above diagram represents how insertion sorting works. Insertion sorting works like the way
we sort playing cards in our hands. It always starts with the second element as the key. The key is
to compare it with the elements ahead of it and put it in the right place.In the above figure, 40 has
nothing before it. Element 10 is compared to 40 and is inserted before 40. Element 9 is smaller than
40 and 10, so it is inserted before 10 and this operation continues until the array is sorted in
ascending order.

Algorithm

INSERTION-SORT(A)

for i = 1 to n

key ← A [i]

j ← i – 1

while j > = 0 and A[j] > key

A[j+1] ← A[j]

j ← j – 1

End while

A[j+1] ← key

End for

Lab Exercise

#include <stdio.h>

int main()

{

int n, array[1000], c, d, t;

printf("Enter number of elements\n");

scanf("%d", &n);

printf("Enter %d integers\n", n);

for (c = 0; c < n; c++)

{

scanf("%d", &array[c]);

}

for (c = 1 ; c <= n - 1; c++)

{

d = c;

while (d > 0 && array[d] < array[d-1])

{

t = array[d];

array[d] = array[d-1];

array[d-1] = t;

d--;

Data structures

Notes

The above diagram represents how insertion sorting works. Insertion sorting works like the way
we sort playing cards in our hands. It always starts with the second element as the key. The key is
to compare it with the elements ahead of it and put it in the right place.In the above figure, 40 has
nothing before it. Element 10 is compared to 40 and is inserted before 40. Element 9 is smaller than
40 and 10, so it is inserted before 10 and this operation continues until the array is sorted in
ascending order.

Algorithm

INSERTION-SORT(A)

for i = 1 to n

key ← A [i]

j ← i – 1

while j > = 0 and A[j] > key

A[j+1] ← A[j]

j ← j – 1

End while

A[j+1] ← key

End for

Lab Exercise

#include <stdio.h>

int main()

{

int n, array[1000], c, d, t;

printf("Enter number of elements\n");

scanf("%d", &n);

printf("Enter %d integers\n", n);

for (c = 0; c < n; c++)

{

scanf("%d", &array[c]);

}

for (c = 1 ; c <= n - 1; c++)

{

d = c;

while (d > 0 && array[d] < array[d-1])

{

t = array[d];

array[d] = array[d-1];

array[d-1] = t;

d--;

Lovely Professional University234

Unit 14: Sorting

Notes

}

}

printf("Sorted list in ascending order:\n");

for (c = 0; c <= n - 1; c++)

{

printf("%d\n", array[c]);

}

return 0;

}

Output

14.4 Selection Sort
Selection sort is a simple comparison-based sorting algorithm. It is in-place and needs no extra
memory. The idea behind this algorithm is pretty simple. We divide the array into two parts: sorted
and unsorted. The left part is sorted subarray and the right part is unsorted subarray. Initially,
sorted subarray is empty and unsorted array is the complete given array.

We perform the steps given below until the unsorted subarray becomes empty:

1. Pick the minimum element from the unsorted subarray.
2. Swap it with the leftmost element of the unsorted subarray.
3. Now the leftmost element of unsorted subarray becomes a part (rightmost) of sorted

subarray and will not be a part of unsorted subarray.

A selection sort works as follow

Unit 14: Sorting

Notes

}

}

printf("Sorted list in ascending order:\n");

for (c = 0; c <= n - 1; c++)

{

printf("%d\n", array[c]);

}

return 0;

}

Output

14.4 Selection Sort
Selection sort is a simple comparison-based sorting algorithm. It is in-place and needs no extra
memory. The idea behind this algorithm is pretty simple. We divide the array into two parts: sorted
and unsorted. The left part is sorted subarray and the right part is unsorted subarray. Initially,
sorted subarray is empty and unsorted array is the complete given array.

We perform the steps given below until the unsorted subarray becomes empty:

1. Pick the minimum element from the unsorted subarray.
2. Swap it with the leftmost element of the unsorted subarray.
3. Now the leftmost element of unsorted subarray becomes a part (rightmost) of sorted

subarray and will not be a part of unsorted subarray.

A selection sort works as follow

Unit 14: Sorting

Notes

}

}

printf("Sorted list in ascending order:\n");

for (c = 0; c <= n - 1; c++)

{

printf("%d\n", array[c]);

}

return 0;

}

Output

14.4 Selection Sort
Selection sort is a simple comparison-based sorting algorithm. It is in-place and needs no extra
memory. The idea behind this algorithm is pretty simple. We divide the array into two parts: sorted
and unsorted. The left part is sorted subarray and the right part is unsorted subarray. Initially,
sorted subarray is empty and unsorted array is the complete given array.

We perform the steps given below until the unsorted subarray becomes empty:

1. Pick the minimum element from the unsorted subarray.
2. Swap it with the leftmost element of the unsorted subarray.
3. Now the leftmost element of unsorted subarray becomes a part (rightmost) of sorted

subarray and will not be a part of unsorted subarray.

A selection sort works as follow

Lovely Professional University 235

Data structures

Notes

In the above diagram, the smallest element is found in first pass that is 9 and it is placed at the first
position. In second pass, smallest element is searched from the rest of the element excluding first
element. Selection sort keeps doing this, until the array is sorted.

Lab Exercise

#include <stdio.h>

int main()

{

int array[100], n, c, d, position, swap;

printf("Enter number of elements\n");

scanf("%d", &n);

printf("Enter %d integers\n", n);

for (c = 0 ; c < n ; c++)

scanf("%d", &array[c]);

for (c = 0 ; c < (n - 1) ; c++)

{

position = c;

for (d = c + 1 ; d < n ; d++)

{

if (array[position] > array[d])

position = d;

}

if (position != c)

{

swap = array[c];

array[c] = array[position];

array[position] = swap;

}

}

printf("Sorted list in ascending order:\n");

Data structures

Notes

In the above diagram, the smallest element is found in first pass that is 9 and it is placed at the first
position. In second pass, smallest element is searched from the rest of the element excluding first
element. Selection sort keeps doing this, until the array is sorted.

Lab Exercise

#include <stdio.h>

int main()

{

int array[100], n, c, d, position, swap;

printf("Enter number of elements\n");

scanf("%d", &n);

printf("Enter %d integers\n", n);

for (c = 0 ; c < n ; c++)

scanf("%d", &array[c]);

for (c = 0 ; c < (n - 1) ; c++)

{

position = c;

for (d = c + 1 ; d < n ; d++)

{

if (array[position] > array[d])

position = d;

}

if (position != c)

{

swap = array[c];

array[c] = array[position];

array[position] = swap;

}

}

printf("Sorted list in ascending order:\n");

Data structures

Notes

In the above diagram, the smallest element is found in first pass that is 9 and it is placed at the first
position. In second pass, smallest element is searched from the rest of the element excluding first
element. Selection sort keeps doing this, until the array is sorted.

Lab Exercise

#include <stdio.h>

int main()

{

int array[100], n, c, d, position, swap;

printf("Enter number of elements\n");

scanf("%d", &n);

printf("Enter %d integers\n", n);

for (c = 0 ; c < n ; c++)

scanf("%d", &array[c]);

for (c = 0 ; c < (n - 1) ; c++)

{

position = c;

for (d = c + 1 ; d < n ; d++)

{

if (array[position] > array[d])

position = d;

}

if (position != c)

{

swap = array[c];

array[c] = array[position];

array[position] = swap;

}

}

printf("Sorted list in ascending order:\n");

Lovely Professional University236

Unit 14: Sorting

Notes

for (c = 0 ; c < n ; c++)

printf("%d\n", array[c]);

return 0;

}

Output

14.5 Shell Sort
Shell sort is the generalization of insertion sort which overcomes the drawbacks of insertion sort by
comparing elements separated by a gap of several positions. In general, Shell sort performs the
following steps.

Step 1: Arrange the elements in the tabular form and sort the columns by using insertion sort.

Step 2: Repeat Step 1; each time with smaller number of longer columns in such a way that at the
end, there is only one column of data to be sorted.

Lab Exercise

#include <stdio.h>

void shellsort(int arr[], int num)

{

int i, j, k, tmp;

for (i = num / 2; i > 0; i = i / 2)

{

for (j = i; j < num; j++)

{

for(k = j - i; k >= 0; k = k - i)

{

if (arr[k+i] >= arr[k])

Unit 14: Sorting

Notes

for (c = 0 ; c < n ; c++)

printf("%d\n", array[c]);

return 0;

}

Output

14.5 Shell Sort
Shell sort is the generalization of insertion sort which overcomes the drawbacks of insertion sort by
comparing elements separated by a gap of several positions. In general, Shell sort performs the
following steps.

Step 1: Arrange the elements in the tabular form and sort the columns by using insertion sort.

Step 2: Repeat Step 1; each time with smaller number of longer columns in such a way that at the
end, there is only one column of data to be sorted.

Lab Exercise

#include <stdio.h>

void shellsort(int arr[], int num)

{

int i, j, k, tmp;

for (i = num / 2; i > 0; i = i / 2)

{

for (j = i; j < num; j++)

{

for(k = j - i; k >= 0; k = k - i)

{

if (arr[k+i] >= arr[k])

Unit 14: Sorting

Notes

for (c = 0 ; c < n ; c++)

printf("%d\n", array[c]);

return 0;

}

Output

14.5 Shell Sort
Shell sort is the generalization of insertion sort which overcomes the drawbacks of insertion sort by
comparing elements separated by a gap of several positions. In general, Shell sort performs the
following steps.

Step 1: Arrange the elements in the tabular form and sort the columns by using insertion sort.

Step 2: Repeat Step 1; each time with smaller number of longer columns in such a way that at the
end, there is only one column of data to be sorted.

Lab Exercise

#include <stdio.h>

void shellsort(int arr[], int num)

{

int i, j, k, tmp;

for (i = num / 2; i > 0; i = i / 2)

{

for (j = i; j < num; j++)

{

for(k = j - i; k >= 0; k = k - i)

{

if (arr[k+i] >= arr[k])

Lovely Professional University 237

Data structures

Notes

break;

else

{

tmp = arr[k];

arr[k] = arr[k+i];

arr[k+i] = tmp;

}

}

}

}

}

int main()

{

int arr[30];

int k, num;

printf("Enter total no. of elements : ");

scanf("%d", &num);

printf("\nEnter %d numbers: ", num);

for (k = 0 ; k < num; k++)

{

scanf("%d", &arr[k]);

}

shellsort(arr, num);

printf("\n Sorted array is: ");

for (k = 0; k < num; k++)

printf("%d ", arr[k]);

return 0;

}

Output

Data structures

Notes

break;

else

{

tmp = arr[k];

arr[k] = arr[k+i];

arr[k+i] = tmp;

}

}

}

}

}

int main()

{

int arr[30];

int k, num;

printf("Enter total no. of elements : ");

scanf("%d", &num);

printf("\nEnter %d numbers: ", num);

for (k = 0 ; k < num; k++)

{

scanf("%d", &arr[k]);

}

shellsort(arr, num);

printf("\n Sorted array is: ");

for (k = 0; k < num; k++)

printf("%d ", arr[k]);

return 0;

}

Output

Data structures

Notes

break;

else

{

tmp = arr[k];

arr[k] = arr[k+i];

arr[k+i] = tmp;

}

}

}

}

}

int main()

{

int arr[30];

int k, num;

printf("Enter total no. of elements : ");

scanf("%d", &num);

printf("\nEnter %d numbers: ", num);

for (k = 0 ; k < num; k++)

{

scanf("%d", &arr[k]);

}

shellsort(arr, num);

printf("\n Sorted array is: ");

for (k = 0; k < num; k++)

printf("%d ", arr[k]);

return 0;

}

Output

Lovely Professional University238

Unit 14: Sorting

Notes

14.6 Merge Sort
Merge sort is the algorithm which follows divide and conquer approach. Consider an array A of n
number of elements. The algorithm processes the elements in 3 steps.

1. If A Contains 0 or 1 elements then it is already sorted, otherwise, Divide A into two sub-
array of equal number of elements.

2. Conquer means sort the two sub-arrays recursively using the merge sort.

3. Combine the sub-arrays to form a single final sorted array maintaining the ordering of the
array.

Example - A = {10, 5, 2, 23, 45, 21, 7}

Algorithm

Step 1: [INITIALIZE] SET I = BEG, J = MID + 1, INDEX = 0

Step 2: Repeat while (I <= MID) AND (J<=END)

IF ARR[I] < ARR[J]

SET TEMP[INDEX] = ARR[I]

SET I = I + 1

ELSE

SET TEMP[INDEX] = ARR[J]

SET J = J + 1

[END OF IF]

SET INDEX = INDEX + 1

[END OF LOOP]

Step 3: [Copy the remaining

elements of right sub-array, if

any]

Unit 14: Sorting

Notes

14.6 Merge Sort
Merge sort is the algorithm which follows divide and conquer approach. Consider an array A of n
number of elements. The algorithm processes the elements in 3 steps.

1. If A Contains 0 or 1 elements then it is already sorted, otherwise, Divide A into two sub-
array of equal number of elements.

2. Conquer means sort the two sub-arrays recursively using the merge sort.

3. Combine the sub-arrays to form a single final sorted array maintaining the ordering of the
array.

Example - A = {10, 5, 2, 23, 45, 21, 7}

Algorithm

Step 1: [INITIALIZE] SET I = BEG, J = MID + 1, INDEX = 0

Step 2: Repeat while (I <= MID) AND (J<=END)

IF ARR[I] < ARR[J]

SET TEMP[INDEX] = ARR[I]

SET I = I + 1

ELSE

SET TEMP[INDEX] = ARR[J]

SET J = J + 1

[END OF IF]

SET INDEX = INDEX + 1

[END OF LOOP]

Step 3: [Copy the remaining

elements of right sub-array, if

any]

Unit 14: Sorting

Notes

14.6 Merge Sort
Merge sort is the algorithm which follows divide and conquer approach. Consider an array A of n
number of elements. The algorithm processes the elements in 3 steps.

1. If A Contains 0 or 1 elements then it is already sorted, otherwise, Divide A into two sub-
array of equal number of elements.

2. Conquer means sort the two sub-arrays recursively using the merge sort.

3. Combine the sub-arrays to form a single final sorted array maintaining the ordering of the
array.

Example - A = {10, 5, 2, 23, 45, 21, 7}

Algorithm

Step 1: [INITIALIZE] SET I = BEG, J = MID + 1, INDEX = 0

Step 2: Repeat while (I <= MID) AND (J<=END)

IF ARR[I] < ARR[J]

SET TEMP[INDEX] = ARR[I]

SET I = I + 1

ELSE

SET TEMP[INDEX] = ARR[J]

SET J = J + 1

[END OF IF]

SET INDEX = INDEX + 1

[END OF LOOP]

Step 3: [Copy the remaining

elements of right sub-array, if

any]

Lovely Professional University 239

Data structures

Notes

IF I > MID

Repeat while J <= END

SET TEMP[INDEX] = ARR[J]

SET INDEX = INDEX + 1, SET J = J + 1

[END OF LOOP]

[Copy the remaining elements of

left sub-array, if any]

ELSE

Repeat while I <= MID

SET TEMP[INDEX] = ARR[I]

SET INDEX = INDEX + 1, SET I = I + 1

[END OF LOOP]

[END OF IF]

Step 4: [Copy the contents of TEMP back to ARR] SET K = 0

Step 5: Repeat while K < INDEX

SET ARR[K] = TEMP[K]

SET K = K + 1

[END OF LOOP]

Step 6: Exit

Lab Exercise

#include<stdio.h>

void mergeSort(int[],int,int);

void merge(int[],int,int,int);

void main ()

{

int a[10]= {12, 9,8, 25, 23, 44, 62, 78, 34, 23};

int i;

mergeSort(a,0,9);

printf("printing the sorted elements");

for(i=0;i<10;i++)

{

printf("\n%d",a[i]);

}

}

void mergeSort(int a[], int beg, int end)

{

int mid;

if(beg<end)

Data structures

Notes

IF I > MID

Repeat while J <= END

SET TEMP[INDEX] = ARR[J]

SET INDEX = INDEX + 1, SET J = J + 1

[END OF LOOP]

[Copy the remaining elements of

left sub-array, if any]

ELSE

Repeat while I <= MID

SET TEMP[INDEX] = ARR[I]

SET INDEX = INDEX + 1, SET I = I + 1

[END OF LOOP]

[END OF IF]

Step 4: [Copy the contents of TEMP back to ARR] SET K = 0

Step 5: Repeat while K < INDEX

SET ARR[K] = TEMP[K]

SET K = K + 1

[END OF LOOP]

Step 6: Exit

Lab Exercise

#include<stdio.h>

void mergeSort(int[],int,int);

void merge(int[],int,int,int);

void main ()

{

int a[10]= {12, 9,8, 25, 23, 44, 62, 78, 34, 23};

int i;

mergeSort(a,0,9);

printf("printing the sorted elements");

for(i=0;i<10;i++)

{

printf("\n%d",a[i]);

}

}

void mergeSort(int a[], int beg, int end)

{

int mid;

if(beg<end)

Data structures

Notes

IF I > MID

Repeat while J <= END

SET TEMP[INDEX] = ARR[J]

SET INDEX = INDEX + 1, SET J = J + 1

[END OF LOOP]

[Copy the remaining elements of

left sub-array, if any]

ELSE

Repeat while I <= MID

SET TEMP[INDEX] = ARR[I]

SET INDEX = INDEX + 1, SET I = I + 1

[END OF LOOP]

[END OF IF]

Step 4: [Copy the contents of TEMP back to ARR] SET K = 0

Step 5: Repeat while K < INDEX

SET ARR[K] = TEMP[K]

SET K = K + 1

[END OF LOOP]

Step 6: Exit

Lab Exercise

#include<stdio.h>

void mergeSort(int[],int,int);

void merge(int[],int,int,int);

void main ()

{

int a[10]= {12, 9,8, 25, 23, 44, 62, 78, 34, 23};

int i;

mergeSort(a,0,9);

printf("printing the sorted elements");

for(i=0;i<10;i++)

{

printf("\n%d",a[i]);

}

}

void mergeSort(int a[], int beg, int end)

{

int mid;

if(beg<end)

Lovely Professional University240

Unit 14: Sorting

Notes

{

mid = (beg+end)/2;

mergeSort(a,beg,mid);

mergeSort(a,mid+1,end);

merge(a,beg,mid,end);

}

}

void merge(int a[], int beg, int mid, int end)

{

int i=beg,j=mid+1,k,index = beg;

int temp[10];

while(i<=mid && j<=end)

{

if(a[i]<a[j])

{

temp[index] = a[i];

i = i+1;

}

else

{

temp[index] = a[j];

j = j+1;

}

index++;

}

if(i>mid)

{

while(j<=end)

{

temp[index] = a[j];

index++;

j++;

}

}

else

{

while(i<=mid)

{

temp[index] = a[i];

Lovely Professional University 241

Data structures

Notes

index++;

i++;

}

}

k = beg;

while(k<index)

{

a[k]=temp[k];

k++;

}

}

Output

14.7 Radix Sort
Radix sort is a sorting algorithm that sorts the elements by first grouping the individual digits of
the same place value. Then, sort the elements according to their increasing/decreasing order.

Lab Exercise

#include <stdio.h>

int largest(int a[]);

void radix_sort(int a[]);

void main()

{

int i;

int a[10]={90,23,101,45,65,23,67,89,34,23};

radix_sort(a);

Data structures

Notes

index++;

i++;

}

}

k = beg;

while(k<index)

{

a[k]=temp[k];

k++;

}

}

Output

14.7 Radix Sort
Radix sort is a sorting algorithm that sorts the elements by first grouping the individual digits of
the same place value. Then, sort the elements according to their increasing/decreasing order.

Lab Exercise

#include <stdio.h>

int largest(int a[]);

void radix_sort(int a[]);

void main()

{

int i;

int a[10]={90,23,101,45,65,23,67,89,34,23};

radix_sort(a);

Data structures

Notes

index++;

i++;

}

}

k = beg;

while(k<index)

{

a[k]=temp[k];

k++;

}

}

Output

14.7 Radix Sort
Radix sort is a sorting algorithm that sorts the elements by first grouping the individual digits of
the same place value. Then, sort the elements according to their increasing/decreasing order.

Lab Exercise

#include <stdio.h>

int largest(int a[]);

void radix_sort(int a[]);

void main()

{

int i;

int a[10]={90,23,101,45,65,23,67,89,34,23};

radix_sort(a);

Lovely Professional University242

Unit 14: Sorting

Notes

printf("\n The sorted array is: \n");

for(i=0;i<10;i++)

printf(" %d\t", a[i]);

}

int largest(int a[])

{

int larger=a[0], i;

for(i=1;i<10;i++)

{

if(a[i]>larger)

larger = a[i];

}

return larger;

}

void radix_sort(int a[])

{

int bucket[10][10], bucket_count[10];

int i, j, k, remainder, NOP=0, divisor=1, larger, pass;

larger = largest(a);

while(larger>0)

{

NOP++;

larger/=10;

}

for(pass=0;pass<NOP;pass++)

{

for(i=0;i<10;i++)

bucket_count[i]=0;

for(i=0;i<10;i++)

{

remainder = (a[i]/divisor)%10;

bucket[remainder][bucket_count[remainder]] = a[i];

bucket_count[remainder] += 1;

}

i=0;

for(k=0;k<10;k++)

{

for(j=0;j<bucket_count[k];j++)

{

a[i] = bucket[k][j];

Lovely Professional University 243

Data structures

Notes

i++;

}

}

divisor *= 10;

}

}

Output

Difference between Searching and Sorting Algorithm:

Searching Algorithm Sorting Algorithm

Searching Algorithms are designed to retrieve
an element from any data structure where it is
used.

A Sorting Algorithm is used to arranging the
data of list or array into some specific order.

These algorithms are generally classified into
two categories i.e. Sequential Search and
Interval Search.

There are two different categories in sorting.
These are Internal and External Sorting.

The worst-case time complexity of searching
algorithm is O(N).

The worst-case time complexity of many
sorting algorithms like Bubble Sort, Insertion
Sort, Selection Sort, and Quick Sort is O(N2).

Insertion Sort Vs. Selection Sort

BASIS FOR
COMPARISON INSERTION SORT SELECTION SORT

Basic
The data is sorted by inserting
the data into an existing
sorted file.

The data is sorted by selecting
and placing the consecutive
elements in sorted location.

Nature Stable Unstable

Data structures

Notes

i++;

}

}

divisor *= 10;

}

}

Output

Difference between Searching and Sorting Algorithm:

Searching Algorithm Sorting Algorithm

Searching Algorithms are designed to retrieve
an element from any data structure where it is
used.

A Sorting Algorithm is used to arranging the
data of list or array into some specific order.

These algorithms are generally classified into
two categories i.e. Sequential Search and
Interval Search.

There are two different categories in sorting.
These are Internal and External Sorting.

The worst-case time complexity of searching
algorithm is O(N).

The worst-case time complexity of many
sorting algorithms like Bubble Sort, Insertion
Sort, Selection Sort, and Quick Sort is O(N2).

Insertion Sort Vs. Selection Sort

BASIS FOR
COMPARISON INSERTION SORT SELECTION SORT

Basic
The data is sorted by inserting
the data into an existing
sorted file.

The data is sorted by selecting
and placing the consecutive
elements in sorted location.

Nature Stable Unstable

Data structures

Notes

i++;

}

}

divisor *= 10;

}

}

Output

Difference between Searching and Sorting Algorithm:

Searching Algorithm Sorting Algorithm

Searching Algorithms are designed to retrieve
an element from any data structure where it is
used.

A Sorting Algorithm is used to arranging the
data of list or array into some specific order.

These algorithms are generally classified into
two categories i.e. Sequential Search and
Interval Search.

There are two different categories in sorting.
These are Internal and External Sorting.

The worst-case time complexity of searching
algorithm is O(N).

The worst-case time complexity of many
sorting algorithms like Bubble Sort, Insertion
Sort, Selection Sort, and Quick Sort is O(N2).

Insertion Sort Vs. Selection Sort

BASIS FOR
COMPARISON INSERTION SORT SELECTION SORT

Basic
The data is sorted by inserting
the data into an existing
sorted file.

The data is sorted by selecting
and placing the consecutive
elements in sorted location.

Nature Stable Unstable

Lovely Professional University244

Unit 14: Sorting

Notes

Process to be followed
Elements are known
beforehand while location to
place them is searched.

Location is previously known
while elements are searched.

Insertion Sort Vs. Selection Sort

BASIS FOR
COMPARISON INSERTION SORT SELECTION SORT

Immediate data
Insertion sort is live sorting
technique which can deal with
immediate data.

It can not deal with immediate
data, it needs to be present at the
beginning.

Best case complexity O(n) O(n2)

Comparison of Sorting Methods

Sorting Method
Time
Complexity
Worst Case

Time
Complexity
Average Case

Time
Complexity Best
Case

Space
Complexity

Bubble Sort n(n-1)/2 = O(n2) n(n-1)/2 = O(n2) n(n-1)/2 = O(n2) Constant

Insertion Sort n(n-1)/2 = O(n2) n(n-1)/4 = O(n2) O(n) Constant

Selection Sort n(n-1)/2 = O(n2) n(n-1)/2 = O(n2) n(n-1)/2 = O(n2) Constant

Merge Sort O(n log n) O(n log n) O(n log n) Depends

Summary

 A Sorting Algorithm is used to rearrange a given array or list elements according to a
comparison operator on the elements.

 Internal sorting: If the input data is such that it can be adjusted in the main memory at once,
it is called internal sorting.

Lovely Professional University 245

Data structures

Notes

 External sorting: If the input data is such that it cannot be adjusted in the memory entirely at
once, it needs to be stored in a hard disk, floppy disk, or any other storage device. This is
called external sorting.

 Selection sort is a simple comparison-based sorting algorithm. It is in-place and needs no
extra memory.

Keywords

 Merge sort is a good choice if you want a stable sorting algorithm. Also, merge sort can
easily be extended to handle data sets that can't fit in RAM, where the bottleneck cost is
reading and writing the input on disk, not comparing and swapping individual items.

 Radix sort looks fast, with its O(n)O(n) worst-case time complexity. But, if you're using it to
sort binary numbers, then there's a hidden constant factor that's usually 32 or 64 (depending
on how many bits your numbers are). That's often way bigger than O(\lg(n))O(lg(n)),
meaning radix sort tends to be slow in practice.

 Merge Sort - Merge sort (also commonly spelled mergesort) is an efficient, general-purpose,
comparison-based sorting algorithm.

 Heap Sort- heapsort is a comparison-based sorting algorithm. Heapsort can be thought of as
an improved selection sort: like that algorithm, it divides its input into a sorted and an
unsorted region, and it iteratively shrinks the unsorted region by extracting the largest
element and moving that to the sorted region.

 Sorting: Sorting is the technique of arranging the data elements in some logical order, either
ascending or descending order. Some algorithms make use of sorted lists. Therefore,
efficient sorting is essential for optimizing these algorithms to ensure that they work
correctly.

 Internal sorting: If the input data is such that it can be adjusted in the main memory at once,
it is called internal sorting.

 External sorting: If the input data is such that it cannot be adjusted in the memory entirely
at once, it needs to be stored in a hard disk, floppy disk, or any other storage device. This is
called external sorting.

Self Assessment

1. Selection sort is a simple sorting algorithm which finds the smallest element in the array and
exchanges it with the element in the first position.

A. True
B. False
C. Sometimes true
D. Sometimes false

2. In the following scenarios, when will you use selection sort?
A. The input is already sorted
B. A large file has to be sorted
C. Large values need to be sorted with small keys
D. Small values need to be sorted with large keys

3. What is the worst case complexity of selection sort?
A. O(nlogn)
B. O(logn)

Lovely Professional University246

Unit 14: Sorting

Notes

C. O(n)
D. O(n2)

4. Shell sort algorithm is an example of?
A. External sorting
B. Internal sorting
C. In-place sorting
D. Bottom-up sorting

5. Shell short is also used for searching
A. True
B. False

6. Which of the following method is used for sorting in merge sort?
A. Merging
B. Partitioning
C. Selection
D. Exchanging

7. What will be the best case time complexity of merge sort?
A. O(n log n)
B. O(n2)
C. O(n2 log n)
D. O(n log n2)

8. Which of the following is a stable sorting algorithm?
A. Merge sort
B. Typical in-place quick sort
C. Heap sort
D. Selection sort

9. Which of the following sorting algorithm is in-place
A. Counting sort
B. Radix sort
C. Bucket sort
D. None

10. Best case complexity of radix sort is
A. (n log n)
B. n log n
C. (nk)
D. (n + k)

11. Which of the following is not a sorting technique?
A. Bubble Sort
B. Linear Sort
C. Selection Sort
D. Merge Sort

Lovely Professional University 247

Data structures

Notes

12. Bubble sort is
A. Bubble sort is a type of sorting.
B. It is used for sorting 'n' (number of items) elements.
C. It compares all the elements one by one and sort them based on their values.
D. All of above

13. What is the average case complexity of bubble sort?
A. O(nlogn)
B. O(logn)
C. O(n)
D. O(n2)

14. Which of the following is correct with regard to insertion sort?

A. Insertion sort is stable and it sorts In-place
B. Insertion sort is unstable and it sorts In-place
C. Insertion sort is stable and it does not sort In-place
D. None of above

15. Insertion sort sorting method sorts the array by shifting elements one by one.
A. True
B. False

Answers for Self Assessment

l. A 2. C 3. D 4. B 5. A

6. A 7. A 8. A 9. B 10. A

11. B 12. D 13. D 14. A 15. A

Review Questions

1. What is sorting? How it is different from searching.
2. Discuss the advantages of using sorting in the data structure.
3. Differentiate between selection sort and merge sort.
4. Write a program that demonstrates the working of merge sort.
5. Write a program that demonstrates the working of selection sort.
6. Write a program that demonstrates the working of bubble sort.
7. Differentiate between insertion sort and selection sort.
8. Write and explain insertion sort algorithm. What is the complexity of the algorithm?

Further Readings
Books Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson Education,
Year of Publication, 2008

Data structures

Notes

12. Bubble sort is
A. Bubble sort is a type of sorting.
B. It is used for sorting 'n' (number of items) elements.
C. It compares all the elements one by one and sort them based on their values.
D. All of above

13. What is the average case complexity of bubble sort?
A. O(nlogn)
B. O(logn)
C. O(n)
D. O(n2)

14. Which of the following is correct with regard to insertion sort?

A. Insertion sort is stable and it sorts In-place
B. Insertion sort is unstable and it sorts In-place
C. Insertion sort is stable and it does not sort In-place
D. None of above

15. Insertion sort sorting method sorts the array by shifting elements one by one.
A. True
B. False

Answers for Self Assessment

l. A 2. C 3. D 4. B 5. A

6. A 7. A 8. A 9. B 10. A

11. B 12. D 13. D 14. A 15. A

Review Questions

1. What is sorting? How it is different from searching.
2. Discuss the advantages of using sorting in the data structure.
3. Differentiate between selection sort and merge sort.
4. Write a program that demonstrates the working of merge sort.
5. Write a program that demonstrates the working of selection sort.
6. Write a program that demonstrates the working of bubble sort.
7. Differentiate between insertion sort and selection sort.
8. Write and explain insertion sort algorithm. What is the complexity of the algorithm?

Further Readings
Books Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson Education,
Year of Publication, 2008

Data structures

Notes

12. Bubble sort is
A. Bubble sort is a type of sorting.
B. It is used for sorting 'n' (number of items) elements.
C. It compares all the elements one by one and sort them based on their values.
D. All of above

13. What is the average case complexity of bubble sort?
A. O(nlogn)
B. O(logn)
C. O(n)
D. O(n2)

14. Which of the following is correct with regard to insertion sort?

A. Insertion sort is stable and it sorts In-place
B. Insertion sort is unstable and it sorts In-place
C. Insertion sort is stable and it does not sort In-place
D. None of above

15. Insertion sort sorting method sorts the array by shifting elements one by one.
A. True
B. False

Answers for Self Assessment

l. A 2. C 3. D 4. B 5. A

6. A 7. A 8. A 9. B 10. A

11. B 12. D 13. D 14. A 15. A

Review Questions

1. What is sorting? How it is different from searching.
2. Discuss the advantages of using sorting in the data structure.
3. Differentiate between selection sort and merge sort.
4. Write a program that demonstrates the working of merge sort.
5. Write a program that demonstrates the working of selection sort.
6. Write a program that demonstrates the working of bubble sort.
7. Differentiate between insertion sort and selection sort.
8. Write and explain insertion sort algorithm. What is the complexity of the algorithm?

Further Readings
Books Ashok N. Kamthane, “Programming with ANCI & Turbo C”, Pearson Education,
Year of Publication, 2008

Lovely Professional University248

Unit 14: Sorting

Notes

Lipschutz. Seymour. Data Structures with C. Delhi: Tata McGraw Hill

Reddy.A.M Padma (2006). Data Structures Using C. Bangalore: Sri Nandi Publications

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett, 1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

Yashvant Kanetkar, Let us C

Web Links
https://www.geeksforgeeks.org/sorting-
algorithms/https://betterexplained.com/articles/sorting-algorithms/

Unit 14: Sorting

Notes

Lipschutz. Seymour. Data Structures with C. Delhi: Tata McGraw Hill

Reddy.A.M Padma (2006). Data Structures Using C. Bangalore: Sri Nandi Publications

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett, 1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

Yashvant Kanetkar, Let us C

Web Links
https://www.geeksforgeeks.org/sorting-
algorithms/https://betterexplained.com/articles/sorting-algorithms/

Unit 14: Sorting

Notes

Lipschutz. Seymour. Data Structures with C. Delhi: Tata McGraw Hill

Reddy.A.M Padma (2006). Data Structures Using C. Bangalore: Sri Nandi Publications

Greg W Scragg, Genesco Suny, Problem Solving with Computers, Jones and Bartlett, 1997.

R.G. Dromey, Englewood Cliffs, N.J., How to Solve it by Computer, Prentice-Hall
International, 1982.

Yashvant Kanetkar, Let us C

Web Links
https://www.geeksforgeeks.org/sorting-
algorithms/https://betterexplained.com/articles/sorting-algorithms/

Lovely Professional University 249

Jalandhar-Delhi G.T. Road (NH-1)
Phagwara, Punjab (India)-144411
For Enquiry: +91-1824-521360
Fax.: +91-1824-506111
Email: odl@lpu.co.in

LOVELY PROFESSIONAL UNIVERSITY

	ECAP252 - U01 - B - Formatted.pdf
	ECAP252 - U02 - D - Finalized.pdf
	ECAP252 - U03 - D - Finalized.pdf
	ECAP252 - U04 - D - Finalized.pdf
	ECAP252 - U05 - D - Finalized.pdf
	ECAP252 - U06 - D - Finalized.pdf
	ECAP252 - U07 - D - Finalized.pdf
	ECAP252 - U08 - D - Finalized.pdf
	ECAP252 - U09 - D - Finalized.pdf
	ECAP252 - U10 - B - Formatted.pdf
	ECAP252 - U11 - B - Formatted.pdf
	ECAP252 - U12 - B - Formatted.pdf
	ECAP252 - U13 - B - Formatted.pdf
	ECAP252 - U14 - D - Finalized.pdf

