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Unit 1: Sequence of Real Numbers
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Objectives

Students will be able to

e  cite some properties of real numbers.
e discuss the sequence of real numbers.
e explain the concept of convergence of a sequence.

e validate the bounded and monotonic sequences

Introduction

You have the idea about the number system since you began your journey of learning mathematics.
In this unit we will learn about some more properties of real numbers, the concept of sequence of real
numbers and their properties of being bounded and of convergence.

1.1 Real numbers

All around us, the one thing which is constant is the change. The study of change is called
CALCULUS. It has applications in almost all the fields of science and social science. For
understanding the change, one needs to have the concept of measurement. We need to measure the
time, distance, heat, force, intelligence etc. in order to adjudge the change happening in them.

One way to judge the change in any situation is by finding the average rate of change over a range.
If the change is to be judged at a point, then instantaneous rate of change is required. To understand
the instantaneous rate of change, one needs to understand the concept of limit first. Moreover, to
understand anything and everything one needs to understand the number system first.

The advent of Calculus is accredited to two mathematicians. One is British mathematician Sir Issac
Newton and other is German Mathematician Gottfried Leibnitz.
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1.2 Number System

We know that since ancient times, the pebbles were used by the shepherds etc. to count their sheep
and this amounts to the counting numbers, which are now known as natural numbers.

With the invention of zero, natural numbers {1, 2, 3,...} along with {0} are known as whole numbers.
Then the idea of negative numbers got evolved and the set {..., -2, -1, 0, 1, 2,...} was named as the set
of integers.

Then the idea of rational numbers came up where a rational number takes the form p/q where q is
non-zero number and p and q are integers. The numbers which are not rational were called irrational
numbers.

The rational and irrational numbers taken together are called real numbers. Therefore all the
terminating, nonterminating-repeating, nonterminating-nonrepeating decimals are the real
numbers.

All the real numbers can be plotted on the real line.

<}1!4i%ii'§i>

> all | | | | | 1 | | | | | | | | | 1 1 1 | l)
Y T T R i e R B T T e AN W N R W A N
1 23 4 56 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 N
— 22 x 17
DRI R B 2 ' L .

|.”:
6 -5-4-3-2-101 2 4 5 6 7

Closed and Open interval

Let a and b be two given numbers such that a < b. Then, the set {x:a < x < b} is called a closed
interval and is denoted by [a, b]; the set {x:a < x < b} is called a closed interval and is denoted by
(a,b) and the set {x:a < x < b} or {x:a < x < b} is called a closed interval and is denoted by [a, b) or
(a, b] respectively.

Absolute function

Let x be a real number then there exist three possibilities, then it can be more than, less than or equal
to zero. The modulus value or absolute value of x is defined as

| |={ xifx=0

—x ifx<0 VXeR

Moreover, we can write |x| = max {x, —x}.

Also |x—a|l|>1l @2x—a>lor x—a< -1 and

[x—a|l<l = -l1<x—axl

1.3 Sequence of real number

LOVELY PROFESSIONAL UNIVERSITY
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Sequence is a kind of ordered list of numbers where a pattern can be seen. For example, 3,6, 9, . . . is
a list in which the first term is 3, second is 6 and so on. We can easily tell that the fourth term will be

12 and so on. This example here is of an infinite sequence.

Technically, a function whose domain is a set of natural numbers and range is a subset of real
numbers, is called a real sequence (and just sequence in this course). Since the domain of all sequences
is the set of natural numbers, therefore a sequence is completely determined if

f(m) VneN isknown. The sequence f is denoted as < f,, > or {f;,} mostly.

@ {%}, {(=1)"} etc.

Range of sequence is the set of all distinct terms of a sequence. It can be infinite or finite. The first
sequence in the example is an infinite one and the second one is finite.

1.4 Bounded and unbounded sequence

A sequence is said to be bounded if and only if its range is bounded.
A sequence {f,} is bounded abouve if there exists a real number K such that
fn<K V neN
A sequence {f,} isbounded below if there exists a real number k such that
fn=k V neN

A sequence is said to be bounded if it is bounded above as well as below. Hence a sequence

{f» } is said to be bounded if there exist two real numbers k and K such that
k<f, <K V neN
We call the sequence to be unbounded if it is not bounded.

@ Prove that the sequence {n} is not convergent and is not bounded.

Let p be a real number. Then, the neighbourhood (p - %, p+ i) will contain at most one term of the

sequence {n}. Therefore, in this neighbourhood, we cannot find infinitely many terms of the sequence.
Hence the sequence is not convergent.

On the other hand, we can see that all the elements of the sequence are more than 1 but we cannot
find any upper bound i.e. any number so that all the elements of the sequence are below that number.
Therefore, the sequence is just bounded below and not bounded above or simply the sequence is not
bounded.

LOVELY PROFESSIONAL UNIVERSITY 3
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1.5 Limit of a sequence

This concept of approach is of utmost importance to understand the calculus. A number a is called
the limit of an infinite sequence {f;, } if for any positive number € we can find a positive number N

depending on € such that
|fo —al < e Vintegersn > N

That is in any neighbourhood of a, f,, belongs to the same neighbourhood for infinite values of n.
Consider the sequence {n}. If you consider any neighbourhood of any number a, it will not
contain an infinite number of elements of the sequence. On the other hand any neighbourhood of

any number a, for the sequence {%} will contain infinitely many elements of the sequence.

1.6 Convergence of sequences

A sequence is said to be convergent if its limit exists and is unique. In other words, a sequence {f;}

has a limit a if the successive terms get closer and closer to a.

Theorems on limits of sequence

If i £ =A and Y7 g, = B, then

(I) nﬁg (fn+gn)=A+B

(”) nﬁm (fn_gn)zA_B

(iii) 24 fgn =AB

LOVELY PROFESSIONAL UNIVERSITY
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(v)  lm (gi) =2 provided B # 0

& If B=0, A#0 then the limit does not exist and if B=0, A=0 then the limit may or may not exist.

v) WU fP = AP, peR

(vi) 21T pfh=pA, peR

1.7 Infinite series

Let fi,f>, f3, . . . be a sequence. Create a new sequence by taking the sum of the terms taken one,
two, three... at a time. Let 53, S,,S3, ... be such that

S1=h
S =it/
Ss=fitfitfs

Sa=fHit+tfatfst+fy

Here S,, is called the nt" partial sum. The sequence Sy, S,, S3, ... is symbolized by

hth+fh+= Z fn
=)

which is called an infinite series. If ., S, = S exists, the series is called convergent and S is called
its sum, otherwise the series is called divergent.

For instance, the geometric progression (G. P.) a +ar+ar? +--.4+ar™ ! + . is a series which
a . . .
— >
converges to sum = provided |r| < 1 and diverges if |[r| = 1.

1.8 Monotonic sequences

A sequence {f,} is said to be monotonically increasing if f;4; = f, Vn € N and monotonically
decreasing if f,41 < f, ¥ n € N. For example, the sequence {n} monotonically increasing and the

sequence {;} is monotonically decreasing. The sequence which is either monotonically increasing or
decreasing is called the monotonic sequence.

¥=| Canyou recognize what kind of sequence is being depicted by the following graphs?

o

LOVELY PROFESSIONAL UNIVERSITY 5
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Notes
@ Prove that the sequence {%} is (i) monotonically increasing (ii) is bounded and (iii)
tends to limit {3}
3
2n-7
Let fo = 3n+2
2n->5
then f,1 = —
And frp — fo = n-s _ 27 o 25 >0VneEN

3n+5  3n+2  (3n+5)(3n+2)

This shows that the given sequence is monotonically increasing. Now if we write few terms of the

sequence {f, } , we can observe that all the terms are more than or equal to —1.

ie.f, = —-1VneN

n+9
3n+2

>0VneN

Moreover 1—f, =

This implies f, <1 Vn €N

And -1 < f, <1 Vn € N, therefore the sequence is bounded.

Now the limit can be found as follows,

7
lim ¢ — Um 2n—-7 _ limZTn _2

342
n

Summary

In this chapter we have seen the concept of the sequence, its convergence, boundedness, and
monotonicity.

Key words

Real Numbers, Sequence, Series, Convergence, Bounded function, Monotonic function

Self Assessment

1. Theinterval [3,99) isa

(@) closed interval
(b) open interval

(c) semi closed or semi open interval

6 LOVELY PROFESSIONAL UNIVERSITY



Unit 01: Sequence of Real Numbers

(d) semi open interval

2. |x| can be written as

(@ «x
(b) —x
(¢) min{—x,x}

(d) max {—x,x}

3. The solution of |x — 5| < 3 can be written as

@ [28]
(b) (2,8)
© (28]
(d) (-2.8)

4. The solution of |x — 5] = 3 can be written as

(@) (—,2]U[8, )
(b) [2.8]

(©) (=,2)U(8,)
(d) None of these

5. Which of the following is an infinite sequence?

(@) The prime numbers between 2 to 2000
(b) The set of even numbers
(c) The set of odd numbers between 3 to 30

(d) First ten multiples of seven

6. Function f is bounded if its range f(A) is a subset.

7. The supremum of a set is its least upper bound.

True

False

8. The infimum of a set is its greatest upper bound.

True

False

9. The sequence {n} is

(a) not convergent
(b) not bounded

LOVELY PROFESSIONAL UNIVERSITY
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(c) convergent and bounded

(d) neither convergent nor bounded

10. A sequence is said to be convergent
(a) if its limit exists
(b) ifitisunique
(c) if its limit exists and is unique
(d) None of these

11. If i £, =A and 1™ g, = B, then

@ 5% (fu+tgn)=A+B
(b) nﬁg (fu—gn)=—-A-B
(© nﬁg n-9n =A+B

(d) 5% fogn=A/B

12. The sequence {%} converges to
(@ 213
(b) -1
(© 1

(d) none of these

13. A sequence {f,,} is said to be monotonically increasing if

@ far1<faVneEN
(b) far1 <fnVnEN
(©) fa+1>faVnEN
(d) far1=faVnEN

14. A sequence {f,,} is said to be strictly monotonically increasing if

(@ fasrSHVYNREN
(b) fur1<fuVnEN
(©) fav1>faVnEN
(d) far1=2fnVREN

15. The sequence {n} is

(&) convergent

(b) monotonic

(c) convergent and monotonic

(d) neither convergent nor monotonic

8 LOVELY PROFESSIONAL UNIVERSITY
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Answers:
1 c 6 bounded 11
2 d 7 True 12
3 b 8 True 13
4 a 9 d 14
5 b 10 c 15

Review Questions

N g s~ e

10.
11.

12.

13.

14.
15.

L]

What is the solution of |x — 1| < 57?

Check whether the sequence {(—n)™} is bounded or not?
What is the solution of |x — 2| < 6?

What is the solution of |x — 1| >57?

Prove that |ab| = |al|b].

State true or false: {x: [x — 3| <4} ={x: -1 <x < 7}

lim n
Evaluate .27 logs Toga()

Check if the sequence {(—2)"} is bounded or not?
Check if the sequence {%} is bounded or not?

Check if the sequence {n?} is bounded or not?

Write a short note on boundedness of a sequence.

Check the monotonicity of the sequence {%}

Check the monotonicity of the sequence {%}

Write a short note on the monotonicity of a sequence.

Write a short note on the convergence of a sequence.

Further/Suggested Readings

1.

George B. Thomas Jr., Joel Hass, Christopher Heil & Maurice D. Weir (2018). Thomas’

Calculus (14th edition). Pearson Education.

Howard Anton, I. Bivens & Stephan Davis (2016). Calculus (10th edition). Wiley India.

http://mathonline.wikidot.com/calculus
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Unit 02: Definite integral as a limit of sum

CONTENTS

Objectives
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2.1 Integral as a limit of sum

2.2 Integration of irrational algebraic functions
2.3 Integration of transcendental functions
Summary

Key words

Review Questions

Further/Suggested Readings

Objectives

Students will -

e learn the concept of integral as a limit of sum.
e learn about the hyperbolic functions
e  Dbe able to integrate irrational algebraic functions.

e  Dbe able to integrate the transcendental functions

Introduction

You have learnt the rules of differentiation and integration at the senior secondary level. The definite
integral of a function gives you the area under the curve of that function between the specified limits.
In this unit we will look into the detail as to what is the integral as a limit of sum. We will evaluate
some definite integrals with this ab initio method. The functions can be classified as algebraic and
transcendental functions. The polynomial functions, rational functions are the algebraic functions
and exponential, logarithmic, trigonometric, inverse trigonometric functions, hyperbolic functions,
inverse hyperbolic functions are the examples of the transcendental functions. We will solve some
problems on integration of irrational as well as transcendental functions in this unit.

2.1 Integral as a limit of sum

Consider a continuous function defined on a closed interval [a, b], where all the values of the function
are non-negative. The area bound between the curve, the point x = a and x = b and the x-axis is the

definite integral f; f(x)dx of any such continuous function f.

\ ’
4 Y S
M.,
cL” D
I j\_\'\ > i L7
>
Q =
. p A B R
'€ > X
X ()\ 8=X % X X, X x.=b
v’
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First idea is to divide the interval [a, b] onto n equal sub-intervals as:
a = X0, X1, X2, ) Xn—2,Xn_1, Xy, = b . Now we can see that the length of each sub interval must be bn;a

and let it be denoted by h. Therefore we can write the points of the partition as follows:

Xg = Q,
Xx1=a+h
X, =a+2h

X, =a+nh=»>b

Clearly as = o , h = 0. In the above figure The region PRSQP is the sum of all the n sub-regions,
where each sub-region is defined on sub-interval [x,_1,x.],7 = 1,2, 3, ...n. Observe region ABDM.
Area of the rectangle (ABLC) < Area of the region (ABDCA) < Area of the rectangle (ABDM).

As h - 0 all these areas become almost equal to each other. Hence, we have
n-1

Sn = hIFGe) + FG) + o+ fG )] =h D )
r=0

and

Sw = RIFGe) + F() + o+ fCadl =B ) f(x)
r=1

Here s, and S,, denote the sum of areas of all lower rectangles and upper rectangles raised over
subintervals [x,_1 ,x,],7 = 1,2,3, ...n respectively.

Therefore we can write
sy < area of the region < S,

As n — oo, these strips become narrower. Further it is assumed that the limiting value of s, and S,
are the same in both cases and the common limiting value is the required area under the curve.

Symbolically we can write
lims, = limS, =area (PRSQP) =/ f(x)dx
n—oo n—oo

This area is also the limiting value of any area which is between that of the rectangles below the curve
and that of the rectangles above the curve. For convenience, we shall take the rectangles having
height equal to that of the curve at the left-hand-edge of each sub- interval. Hence, we can write

b
f f(x)dx = ,{H&h[f(a) +f(a+h)+-+f(a+ (n-1)h)]

b=a)lim[f(a) +fla+h)++fla+(n-Dh)]

n

| " fdx =

where h = bn;a — 0 asn — oo. This equation is the definition of definite integral as the limit of a sum.

@ Evaluate fzs x?dx asa limit of sum.

Here f(x) = x?

3
a=2b=5h= ==
n

LOVELY PROFESSIONAL UNIVERSITY 11
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b
f fx)dx = r{irgh[f(a +h)+ f(a+2h) + -+ f(a+ nh)]

a

5
3
f x%dx = lim ;[(2 +h)2 + (2 + 2h)2 + -+ (2 + nh)?]
2 n—oo

3
=lim—[n-22+h2(12+22+ - +n?) +4h(1 + 2 + - n)]

n-oon
n(n + 1)6(2n + 1)) +an (n(nz—l— 1))]

3] 3\2 n(n+1)2n+1) 3\ /(n(n+1)
= lim~{n22+ () <—6 )*4(;><—z )]

@ (2LCa)) oy ()
n 6 n >

n-oon

.
= lim — n~22+h2<

n—-ooMn

(L+3)(2+3)

6

1
+34)3) (t+s) :ﬁ)

lim [3.22 4+ 3(3)?
n—oo

12+9+18 =139

Thus the limit of the sum or in other words the area under the curve x? between lines x = 2 and x =
5 and above the x-axis is 39 square units.

@ Evaluate ff cos x dx as the limit of a sum.

Here f(x) = cosx
By definition of integral as a limit of sum we can write
f; cosx dx = rlli_tzloh[cos(a + h) + cos(a + 2h) + cos(a + 3h) + -+ + cos(a + nh)]
Let S = cos(a + h) + cos(a + 2h) + cos(a + 3h) + --- + cos(a + nh)
To calculate this sum, we must multiply both sides 2 sin (g) We get,
2 sin (g) S = 2sin (g) (cos(a + h) + cos(a + 2h) + cos(a + 3h) + ---+ cos(a + nh)
= sin(a +§h) - sin(a +§h) + sin(a +§h) - sin(a +§h) + ...+sin(a +%h) -

sin (a + 2n2—1 h)

=sin(a+znz—+1h)—sin(a+%h)
=sin(b+%h)—sin(a+%h) asnh=b—a
Thusf;cosxdxzéim %
—00 in(®
2
=sinb —sina

In the senior secondary level, you have learnt how to integrate the algebraic rational functions and
the trigonometric functions. In the next section we will see some cases of the integration of irrational
algebraic function.

1

7 dx as limit of sum.

Z| Evaluate f:

ans,
I

12 LOVELY PROFESSIONAL UNIVERSITY
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2.2 Integration of irrational algebraic functions

Certain types of integrals containing irrational expressions can be reduced to integrals of rational
functions by making appropriate substitutions. These substitutions are done with an intention to
convert the irrational function into a rational one.

m
Ei/‘ To integrate a function that contains only one irrational expression of the form x» we

1
make the substitution for xn.

ax+b

. X ax+b
An expression of the form (Cx+d

1 1
)” can be integrated by using the substitution for (Cx+d)” , where

a,b,c,d are real numbers. These substitutions reduce the integrals rational functions in the
transformed variable.

The integrals containing radicals of the form Va2 — x2,va? + x% and Vx2 — a2 can be evaluated with
the help of trigonometric and hyperbolic substitutions.

@ Consider the integral of f X dx

(a+bx)3

The denominator is having an irrational function and if we substitute a + bx = y* then the given
integrand can be written as a rational function in y. Let us see the steps.

If we substitute a + bx = y3

Then b dx = 3y?dy

And [ ——dx = [ (29)(2)ay

(a+bx)3 yb

1
= b—zf (v* — ay)dy

3 yS ayZ]
= —=|=—-—|+
b2[5 2 S

3 .2 3 _
o5z 2y*-5a)+C

where C is the constant of integration.

@ Evaluate f (\/?) dx

Putvx+9=u

dx =2udu
Then

) (‘fm) dx-[ (#) 2udu=2 [

X

u?-9+9
=2 —— du.
==

1;2 du
u<-9
—zjd +2f 2 d

= u uz_gu

u—3
u+3
=2Vx+9+3In|(Vx+9-3)/(Vx+9+3) +C

where C is the constant of integration.

1
E Evaluate [ (5x — 1)3dx

1
To solve this integral, substitute (5x — 1)z = u

1
=2u+2.9.gln‘ ‘+C

LOVELY PROFESSIONAL UNIVERSITY 13
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Notes
Gx—1)=u?
5dx = 3u?du
Then

1 3u?

[ (5x —1)3dx = fu%du
3
_ > 4

2Ou +C

3 5 4
= — — 3

20(x 1)3+C

2.3 Integration of transcendental functions

A number that is not the root of any integer polynomial is termed as a transcendental number. And
on the same lines a function that cannot be written using roots and the arithmetic found in
polynomials is known as a transcendental function.

e.g. Exponential function
Logarithmic function
Trigonometric function
Inverse trigonometric function
Hyperbolic function

Inverse hyperbolic functions etc.

Eio You are familiar with all the above mentioned functions except the hyperbolic
- function. So here is a short introduction to this family of transcendental functions.

Hyperbolic functions are the functions defined in terms of the exponential functions as follows.

) T_ = &= =
sinhz = £—-° coshz = £
2 2
hz— sibhz  e*—e® _ coshz _ e"te’”
- r= coshz = e*4e = cothz = sinhz =~ ef—e T
2 1 2
sechz = coshz =~ efte T cschz = sithz =~ e*T—e =

Just like with trigonometric functions, there are identities related to the hyperbolic functions.
cosh®z — sinh’z = 1;
1 — tanh’z = sech’z;
coth?z — 1 = cschﬂa:;
sinh 2z = 2 sinh x cosh ;

cosh 2z = cosh’z + sinh’z.

Rules of differentiation and integration are as follows. Here the prime symbol is for denoting the first
derivative.

14 LOVELY PROFESSIONAL UNIVERSITY
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(sinhz)’ = coshz

fcoshxdz =sinhz +C

(coshx)' = sinhx

fsinha:dz =coshz +C

(tanhz)' = sech’z

fsech23d3: =tanhz + C

(cothz)' = —csch’z

fcschg;rda: = —cothz+C

(sech :E)! = —sechztanhz

fsech ztanhzdz = —sechz + C

(csch :E)' = —cschzcothz

fcscha: cothzdz = —cschz + C

The graphs of the hyperbolic functions are shown below and it can be seen that with appropriate
range restrictions, they all have inverses (same as the case with the inverse trigonometric functions).

y y y
31 4] 31
3+ 3+ 3+
24 2 21
14 1+
Ga2 L8 123 4% 45210 123 4% 43238 123 4%
1+ —11 -1
-2t -2t -2t
-31 -31 -3+
—44 -4 —44
y = sinh x y = cosh x y = tanh x
() (b) (c)
y y
s 4 ]
3+ 34
2+ 2+
1+
~4=8 =2 —ilo 12 3 aX <4-3-2 4.9 1 2 g ¥ 1 2 3 4%
=1
_3..
—4
y = coth x y = sech x y = csch x
(d) (e) ®

LOVELY PROFESSIONAL UNIVERSITY 15



Unit 02: Definite integral as a limit of sum

Hyperbolic Function Inverse Hyperbolic Function Domain Range
. e —e* o =l )
smh;;,-:T sinh :nz]n(;c—i— :t:+1) —o<zr<oo | (—o0,00)
cosha*:=HTe_ cosh_la*:zl_n(;c+ ;cz—l) z>1 [0,00)
inh z_ ez 1. 1+
e P tanh 'z = —In z lz| <1 (—o0,00)
coshx et ez 2 1—=z
1
csch™lz = sinh! (—)
1 2 ‘
CSChx:si_n]la::e’—e—’ W 1+\/1—|——a‘:2 z#£0 (—o0,00)
= ||
1
sech 1z = coth™! (—)
T
sech L 2 0<x<1
" coshz er+e= I 1+ /1 — 22 -
T
1
coth™ z = tanh™! (;)
1 e* +e’*
mthx:tanh;czez—e—z _11,137"'_1 lz| >1
2 -1

The range in case of sech™! x is [0,) and for

inverse hyperbolic functions are as follows:

coth™ x is (—o,0)U(0, ). The derivative of the

d 1 du d -1 du
—sinhlu=—— — ueR —eschty=—— -~ "7 w0
dz 1 +u2 dr dr |'!.&| "’1+1.&2 dr

1 du d -1 du
all -1, __ - °= el o o U@
d:cCOSh u Md:c u>1 drsech u i dr 0<u<l
d 1 du d 1 du
— tanhtu = — 1| —cothlu= — 1
dz U 1—u? dx ful < d:r:co v 1—u?de ful >

The integral as an anti-derivative can be written easily from the above rules of differentiation.

dr =sinh lz+C

7=

1
f—dﬂ‘.‘ =—cschlz+C, z#0
/ 2
=]n(;t:—|— $2+1)—|—C evlte
1 f fédx=—sech_lm+0, 0<|z[<1
fxz_lda‘::cosh_ z+C, z>1 /1 — 22
1 -1 f ! dz = coth™' z + C, lz] > 1
1_$2d$:t’a'nh z+C, |z|<1 1— 22
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Thus you got a brief idea about the calculus of hyperbolic functions and inverse hyperbolic functions.
For more information you can check the following link.

https:/ /math.libretexts.org/Courses/Monroe_Community_College/ MTH_21
1_Calculus_II/Chapter_6%3A_Applications_of_Integration/6.9%3A_Calculus
_of_the_Hyperbolic_Functions

WWW

Now with the knowledge of the transcendental functions, we can look into the examples related to
the integration of the transcendental functions.

@ Evaluate [ (;;f)zdx

xe* (x+1-1)e*

I avme = G %
= (-2
- f (x+1 (x+1)2) e*dx
= % +C (Using integration by parts on the first term)

@ Evaluate [ sin (logx) dx

Putlogx =t

ie.ldx =dt
X

dx = etdt

Therefore [ sin (logx) dx = [ etsint dt
= —etcost +etsint — [ efsint dt
Clubbing the integral term, we get

2f etsint dt = et(sint — cost) + C
¢

e c
fetsintdt=7(sint—cost)+5

1
[ sin (logx) dx = Ex(sin (logx) — cos (logx)) + €

E] Calculate I = [ e®cos (bx + ¢)dx

ax

e b
I = cosbx+0)+ [ (E) sin (bx + ¢) e™dx
a

eax

I'=—cos (bx +¢) + (%) sin (bx + c) e®™ — %f cos(bx + c) e™dx (integrating by parts)

b2 eax
<1 + ?>I = ?(a cos(bx + ¢) + b sin (bx + ¢))

ax

I = m( acos(bx + ¢) + b sin(bx + ¢))
E Integrate tan™! ’I_—x with respect to x.
1+x
Let] =tan™! [=2
T4x

LOVELY PROFESSIONAL UNIVERSITY 17



Unit 02: Definite integral as a limit of sum

Put x = cos 6

dx = —sinf df

Therefore I = tan™! J[(l —c0s0)/(1+ cos )]
0
= -1 —
tan™" tan (2)

0
T2

Now [ tan~! ==X dx = [ g(—sine)de

1+x

1
= _5(_9 cos 8 + sinf)

1
= —E(—xcos‘lx-h/l—xz) +C

sinhx
@ Evaluate | ———dx
1+coshx

For this kind of integral we can go for a suitable substitution.
Let1+ coshx =u

It gives sinhx dx = du

J

sinhx

B aful 4 € = In [1+ coshx| + C
T+ coshx X = 5y = =In |1+ coshx]

E] Evaluate I = [ cosx/V(1 + sin? x) dx

Putsinx =u

cosx dx =du

1= \/ﬁ du (Refer to the rules of differentiation (integration) of the inverse hyperbolic functions)

=sinh~tu+C

= sinh~!sinx + C

E Evaluate the integral [ \/ﬁdx

Let us substitute 2x = u

2dx = du and this results in

[ = [
———dx =) ———du
4x2 —1 2Vu? —1

1
=—cosh™tu+C
2
1
= Ecosh‘l(Zx) +C

Summary

In this chapter we have seen how a definite integral can be calculated as a limit of sum. This is the ab
initio way to calculate the area under a curve y = f(x) bounded by the two vertical lines x = a,x =
b and the x-axis.

Key words

Real Numbers, Sequence, Series, Convergence, Bounded function, Monotonic function
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Review Questions

Evaluate the following;:

[ sinh3 x cosh x dx
[ sech?3x dx

% (cosh™ 3x)

1
| e
[VeX +1dx
fxz—Z dx

x+1
1-xdx

1+x x

[ Vsecx —1dx
f dx

S5+4cosx

o ® N oo LN

=
e

[ cosec®x dx
. [ sinh3x dx

. [ xsinhx dx

_oR
W N R

. Evaluate the definite integral f; x3dx as limit of sum.

—_
L

Evaluate the definite integral f; sinh x dx as limit of sum.

15. Evaluate the definite integral [ On/ % cos x dx as limit of sum.

Further/Suggested Readings

.. George B. Thomas Jr., Joel Hass, Christopher Heil & Maurice D. Weir (2018). Thomas’ Calculus
L J (14th edition). Pearson Education.

Howard Anton, I. Bivens & Stephan Davis (2016). Calculus (10th edition). Wiley India.
Shanti Narayan & Dr. P. K. Mittal (2018). Integral Calculus (11™ edition). S. Chand
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Unit 03: Integration by using reduction formula
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3.1 Reduction formula

3.2 Properties of definite integral
Summary
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Further/Suggested Readings

Objectives

Students will

e learn about an alternate method to solve the integrals.
e  be able to solve the problems employing reduction formula.
e prove various properties of definite integrals.

e  be able to solve definite integrals by using its properties.

Introduction

By now, you are well aware of the methods of substitution, method of integration by parts and the
method in which we decompose the given integrand in the sum of integrands with known integrals.
There is one more technique and that is called integration by successive reduction or integration
using reduction formula.

3.1 Reduction formula

Any formula which expresses an integral in terms of another integral of the same type but of lesser
degree or order is called a reduction formula. The successive application of the reduction formula
enables us to express the integral of the general member of the class of functions in terms of that of
the simplest member of the class. Mostly we obtain the reduction formula by using integration by
parts. We can understand the method by the following examples.

@ Establish a reduction formula for [ x"e%*dx.

Here the integrand is x™e®*. This is a general form of the function. In the reduction formula we seek
a relation of the given integral with another integral having the same form but involvingn — 1 orn —
2 etc. And that can be accomplished by integrating the given integral by parts.

Letl, = [ x"e®™dx

Integrating by parts, we get
xneax xn—leax

I, = 2 —[n 2 dx

20 LOVELY PROFESSIONAL UNIVERSITY
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xMe® nI
n a a n-1

Here you can see that I,,_; is having the same type as that of given integral except that the 'n’ has
reduced to 'n — 1'. Hence you can see the justification for the name ‘reduction formula’ also.

Now if we need to calculate [ x3e%*dx, we know what to do!

xMeax

In the reduction formula I, = — Zln_l we will get I3 in terms of I,, I, in terms of I; and I;in

terms of I;. The last integral in the recursion Ij is so easy to calculate. Then backward substitution
leads to the required integral.

Let’s see how it goes.

_ x%e™ 3
I3 = a _EIZ """ (1)

_x%e™ 2
Ly=——==-l - 2

xte® 1
e

Solving the right side of (3).

xleax 1e®x
I = —-——
a a a
xzeax 2 xleax 1 eax
e
a a\ a a a
. x3eax 3 [x2eax D [yleax 1 pax
3= a a a a a a a
x3e0X  3x20aX  gyeax eax
T a? a3 a*

which is the required solution.
@ Establish a reduction formula for [ x™sinnx dx.

In this integral, there are two parameters m and n. In order to have a reduction formula, let us

integrate by parts taking x™ as the first function and sin nx as the second function.
) xMcosnx m 1
[ x™sinnx dx = R — + zf x™~* cos nxdx

Again integrating by parts,

xMcosnx mx™ lsinnx m(m
+ p—

. -1) .
[ x™sinnx dx = — s— [ x™ 2 sinnxdx

n n? n
Therefore here we got the relation in two integrals of the same type but the one on the right side is of

lower degree. The left side integral can be written as I, , and the right-side integral which is reduced
version can be written as I,_5 .

Establish a reduction formula for [ x"e *dx and deduce that | 000 x"e *dx = n! where n is
any natural number.

[x"e*dx = —x"e™* + nf x" e *dx

Or

I, = —x"e ™ +nl,_; is the required reduction formula. Now for the deduction, consider the
integral,

¢ ¢
f x"e¥dx = |—x"e¥[} +nf x" e *dx
0 0
¢
=—the t + nf x" e *dx
0
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Unit 03: Integration by using reduction formula

The first term on the right-hand side tends to zero as t — oo.
Therefore, fom x"e *dx = fom x"le ¥dx

Orl, =nl,_4

Ly = (= Dipp

Iy = (n—2)Ih_3

Lz = (n=3)ln_s

I, =1.1 =1 (The integral I, can easily be calculated to be 1.)
By back substitution we get
I,=n(n—1)Mn-2)..3.2.1=n!

E] Establish the reduction formula for | ——— dx

(logx)™
In this integral, there are two parameters, and the idea is to get a relation of the given integral with
another integral of same type but reduced parameter(s) any one or both.

To integrate the given function, let us write the integrand in the following way:
1 1

= J 2 [ 2] a
mn = % (logx)™ " x x

Now the integration by parts can be applied taking the term in bracket as the second function.
Therefore,

log x -m+1 log x -m+1
O i e ICRR
logx)™™*1 n+1 x™
Ipp = x™*1 (log ) f — dx
' -m+1 m—1" (logx)m1

logx)™™*1  n+1 . . .
= x"*! % mlm—l,n is the required reduction formula.

Or Inn

L
[VE_] Evaluate [ Zsin™ x dx where n is a positive integer.

The reduction formula for the integral is given as,

="

n - n n-2
n—3
In—zzn zln—4
n—>5

I = 211 if n is odd
I, = %IO if n is even

Therefore it can be compiled as

22 LOVELY PROFESSIONAL UNIVERSITY
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n—-1n-3 n-5 21 fnis odd
o a—a3h ifniso
n—-1n-3n-5 1
n n—-2n-4"2

L, =

I, ifniseven

Now I; = [2 sinx dx = 1 and

T
i —Fld =
0—0 x_Z

Thus the above integral can finally be written as
n-1n-3n-5 2
n n—-2n-—47"3
n-1n-3n-5
n n—-2n-4"

if nis odd

L, =

1m i

—.— ifniseven

22

@ Obtain a reduction formula for | sin? x cos? x dx.

[ sin? x cos? x dx = [ sinP~! x(sin x cos? x)dx

> — [ (p—1)sinP2x. <—

cosd+1lx
q+1

cos9t1lx

=sinP x| -
( q+1

) cosx dx

sin?~1x cos?t1x p—=1. 5
= (- + [ sinP=2 x. cos9x cos? x dx
q+1 q+1
Now here we can use the trigonometric identity cos?x = 1 — sin? x in the last term.

-1 -1
(1 + %)I sin® x cos? x dx = —(sin?~ ! xcos?*1x)/(q + 1) + Zqu sinP~2 x cos9 x dx

-1
J sinP x cos? x dx = (—sinP~* x cos?*1 x)/(p + q) + quf sin?~2 x cos? x dx

is the required reduction formula.

n
@ Construct the reduction formula for [ ﬁ dx wheren € N

Here the integrand is an irrational function and it can be re written by involving the derivative of the
term in the denominator as follows:
_2ax+b-b
B 2a
(2ax + b)x™1 b x™ 1
el S -y . S—
2a” Vax?+bx+c 2a” Vax®+bx+c
1 b(n—1) c(n—1)
Iy=—a"Nax +brtc— (=Dl ———ly~——ly = 5=l

a

xn—l

dx

I, =—x"""axZ+bx +c— MI G I,_, is the required reduction formula.
na 2na na

Let us evaluate [ de You can see that this integral is a particular case of the integral whose

reduction formula is

Lo T et o — b(2n 1) -1 c(n 1) n—2
f w/ax2+bx+ dx ax ax®+bx+c— f \/ax2+bx+c f \/ax2+bx+c
The above reduction formula can be written as:
1
=122 2 A X .

f \/x2 2x+2 x 2x+2+3 f \/x2 2x+2 3f Vx2-2x+2 dx (1)

’\( — —_— 1 o e
Also [ s \/ﬁ Zx+2+; J‘x/xz 2x+2 dx f\/x2—2x+2 dx 2

Let us work on the two integrals on the right hand side of the equation (2).
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2x -2 2 I
f 7ﬁdx = %f 7ﬁdx +%f 7mdx = (XZ —2x + 2)1/2 + sinh 1(x - 1) ----- (3)
1 N
f ﬁdx = sinh 1(x - 1) ----- (4)
Substituting (3) and (4) in (2), we get
[ e s a4 S — 2x 4 2% 4 hsinh1(x - 1)
N x =oVx X > x > sin x
And the back substitution in equation (1) will give
%3
[ ——dx
Vx2 —2x+2

1 51 3 11
=—x%/x2—-2x+2 +§(E\/x2 —2x+2 +E(x2 —2x+2)2 +Esinh_1(x -1))

3
4
- §((x2 —2x + 2)Y2 + sinh~1(x — 1))

2x24+12) 1
= % ~5sinh™(x ~ 1)

. sinnx
@ Form a reduction formula for [ o dx

The parameter n can be seen in the numerator of the integrand. Here integration by parts may not

help in getting a reduced form of the same type of integral. So we can use trigonometric identity

. . Cc+D . C-D
(sinC —sinD = 2 cos—=sin——) as follows:

sinnx —sin(n — 2) x = 2 cos(n — 1) x sinx
sinnx = sin(n — 2) x + 2cos(n — 1) x sinx

Now we can rewrite the given integral as

sinnx sinn —2)x+ 2cos(n—1) xsinx
jsmnx ( ) ' ( ) i
sinx sinx
fsinnxd _fsin(n—Z)xd + [ 2.cos( Dxd
P x = . x cos(n x dx
sinnx sin(n —2) x 2sin(n—1)x
[—dx=] ( _ ) dx + ( )
sinx sinx n—1

which is the required reduction formula connecting the given integral with its reduced version.

3.2 Properties of definite integral

Before studying the properties of definite integral, let us recapitulate some basics about them.
Definite Integral

The definite integral is an integral of the form f; f(x) dx. This integral is read as the integral from a

to b of f(x) dx. The numbers a and b are said to be the limits of integration. For our problems, a is less
than b. Definite Integrals are evaluated using the Fundamental Theorem of Calculus.

Fundamental Theorem of Calculus

Let f(x) be a continuous function for a < x < b and F(x) be an anti-derivative of f(x). Then
[, f@) dx = [FEOlIE = F(b) - F(a),
If f(x) = 0fora < x < b. Then

g b Area Between f(x) and the
Definite Integral: fa f(x) dx = RN ;il o

The Second Fundamental Theorem of Calculus

If fis continuous on an open interval, I containing a, then for every x in the interval

d[r* dt| =
| [roal-re
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Chain Rule of Differentiation

d . '
2 F@() =f(g(x))g ()

Suppose we let F = f(g(x)) and let u = g(x). Then F = f(u) and hence

L= fand S =g'(x)

For F = f(g(x)) and u = g(x) we can use these ideas to rewrite the chain rule as follows:

oy _ ¢ _ .« .. du_dFdu
FO) ==t =f @y =f W=7

This gives another way to write the chain rule, which is as follows:
Chain Rule: Alternative Form
If we want to differentiate the compositionF(x) = f(g(x)), we set u = g(x) and compute the

dF _ dF du
dx  du dx

following: F'(x) =
For example, suppose we want to differentiateF (x) = (x2? + 7)1°
Then by taking, u = x? + 7, we have F = u10
Hence, 2£ = 10u° and 2% = 2x.

du dax
Therefore, for F(x) = (x? + 7)1°

dF _ dF du

F'(x) = — = =10u(2x) = 10(x? + 7)°(2) = 20x(x* + 7)°.

This way of expressing the chain rule can be useful when using the Second Fundamental Theorem of
Calculus. Suppose F(x) = f‘f(x) f(t) dt, then taking u = g(x) gives F = f: f@)dt

Then F'(x) =5+ 22 == ([ f(6) dt) - o = f(w) - = = f(g(x)) - g (x)

Properties
L [P p@dx =[] p(t)dt

Let [ ¢(x)dx = F(x) + ¢;

and [ ¢(t)dt = F(t) + c,

Therefore, [, ¢(x)dx = [F(x) + ¢;]5 = F(b) — F(a)

Similarly, 7 ¢()dt = F(b) - F(a)

This property explains the dummy nature of the variable of integration in a definite integral.
2. [ pdx = [7 p()dx + [ p(x)

Let [ ¢p(x)dx = F(x) + ¢,

Then the RHS= [F(x) + ;1§ + [F(x) + ¢;12

= F(c) — F(a) + F(b) — F(c)

= F(b) — F(a)

b
=J ¢(x)dx = LHS

3. f:¢(x)dx =— fbaqb(x)dx
Let [ ¢p(x)dx = F(x) + ¢,
Consider the RHS = — fba ¢ (x)dx
=—[F(x) +alj
=[F@+ca—-Fb) -
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b
=F()—-F(a) = J. ¢(x)dx = LHS

a
4, foa ¢(x)dx = foa ¢(a—x)dx

Lettinga—x =t

orx=a-—t

ordx = —dt

Now the RHS= [" ¢(a — x)dx = — [ ¢p(t)dt = [, ¢p(t)dt = [, p(x)dx

2[y pCdx  ifp(2a-x) = p(x)
0

2a —
5. [ ¢(x>dx—{ if (20 — x) = —p(x)

Consider faza ¢ (x)dx

Put 2a — x = t This implies —dx = dt. Therefore,

f B 0odx = - f  (2a— t)dt
= fa¢>(2a —t)dt
0

= fa¢(2a — x)dx
0
Now foza ¢(x)dx = f0a¢(x)dx + faza ¢(x)dx
= faq,‘)(x)dx + J-a ¢(2a — x)dx
0 0

The second integrand on the RHS can be ¢ (x) or —¢(x) and then accordingly it will yield 2 | Oa ¢d(x)dx
or a zero. Hence the property.

ifp(—x) = —¢p(x)

. (0
6. [ d(dx —{ 2 [} pCdx if p(—x) = p(x)

Consider [° ¢ (x)dx
Putx = —t,dx = —dt
Then [°, ¢@)dx = = [ ¢(~t)dt = J p(~x)dx
Therefore, [* ¢p(x)dx = [ p(x)dx + [} p(x)dx
0 if p(—x) = —p(x)
- { 2 fo “pdx i g(—x) = B)

Now let us evaluate a few integrals using the properties.

; Evaluate f(;T/Z log(1 + tan®) dé
Let I = [#log(1 + tanf) d6
= fozlog(l + tan (%— 9))d6
T
_ jZl (1 + 1-—- tan@) 0
A °8 1+ tané

T
4

2
a fo log (1 + tanQ) a6
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T

s %
= Zlogz - f log(1 + tan®) d6
0

Orl = glogZ

T[ .
@ Evaluate [ x sin® x cos* x dx

s .
Let] = [ xsin®xcos*x dx

= fn(n — x) sin®(m — x) cos*(r — x)dx
0

= fn(n) sin®(x) cos*(x)dx — fn(x) sin®(x) cos*(x)dx
0 0

/2
2] = Zﬂf sin® x cos* x dx
0

2531317
T 210.8.6.4.22

3m?

=533

Summary

In this chapter we have seen one more technique of solving the integral by writing a recursion
formula. Many general integrals can be solved by this method including their particular cases. We
have also seen the proofs of the properties of the definite integral.

Key words

Definite integral, reduction formula, properties of definite integral

Self-Assessment

1. f; x3dx is equal to

(@) 65 (b) 65/4 (c)% (d)63/4

2. If m # n, then f: cos mx cos nx dx is
@0 (®; @©r @2

3. f(?sinsxdx is
(@) 5/15 (b) 6/15 ()7/15 (d)8/15
4. [zsin®xdxis

(@) 5/32 (b)5m/32 (c)5/16 (d)5m/16

U
LA .
5. [fzcos”xdxis

(@) 16/35 (b) 6/15 (c)17/15 (d)8/35

6. fgcossxdx is
(a)5/32 (b)351/256 (c)35/256 (d) 57/16
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7. Jpcos2x dxis

(a) 5/64 (b)5m/64 (c)35/256 (d)m/16

8. folxz(l - xz)gdx is

@ B ©F @:=
/2 Vsinx .
9. fo Vsinx+vcosx dx is

(@) % (b)% (C)g (d) None of these

s M .
10. [, xsin®xcos*x dx is

3m? 3m? n?

@ 3 O L @

11. [zlogsinx dx is
(@) —Zlog2 (b)3log2 (c)—37n10g2 -3

12. fon log (1 + cos x)dx is
(@) —mlog2 (b)mlog 1/2 (c) Both (a) and (b) (d) None of these

/2 . .
13. f, /2 sinS x cos® x dx is

(a) 8/693 (b)8/69  (c) 8/6  (d) None of these

T/2 . .
14. f, /2 5inS x cos® x dx is
T

5 5
@) — (b) ﬁ (© Tooc (d) None of these

15. fon/z cos 2x cos3 x dx is
8 2

@ = 0= ©: @3

Answers:
1 b 2 a 3 d 4 b 5 a
6 b 7 b 8 a 9 b 10 ¢
11 a 12 ¢ 13 a 14 b 15 ¢

Review Questions

Construct the reduction formula for [ sin? x cos? x dx where p, g are positive integers.
Evaluate the definite integral [ On/ 2 sinP x cos? x dx where p, q are positive integers.

. . n . 2 _ 2
Using the properties prove that fo (xsinx)/(1 + cos® x) dx = m* /4.

. . /2 . . 1
Using the properties prove that fo sin? x/(sinx + cos x) dx = ﬁlog(ﬁ +1)

S e

Evaluate [ 0”/ % x cotx dx using the properties of definite integral.
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Objectives

Students will

e learn about the definition of real valued function
e learn about the limit of the function
e understand the epsilon delta definition of limit

e learn about infinite limit and limit at infinity

Introduction

In this unit we will understand one of the most crucial and fundamental concept of calculus. But
before that let us have an idea about the function. You can consider a function as a kind of rule
where you give in some input and get a specific output. The input is decided as everything that
keeps the function well defined. The technical name for such input is the domain. Let us see what a
function is! First of all there must be two non-empty sets 4 and B, then a function f from A to B is
denoted as f: A —» B and is defined as a function if for all the values in set 4, there corresponds a
unique value in set B. Set A is called the domain, B is called the codomain and f(4) is called the
range.

function

0®d-

4.1 Real valued function

The function can be expressed as a set, a formula, a table or as a graph. If the range of the function
is a set of real numbers, then it is called a real valued function.

For example: {(2,4), (3,9), (4,16), (5,25)} is a function where domain is the set {2,3,4,5} and range is
the set {4,9,16,25}. Clearly, the domain and range are discrete in this case and are subsets of real
numbers. In other form y = x? is a function. The input can be any real number as any real
number will keep the function well defined and with any real input,  the output is always going
to be a non-negative real number. Therefore the range is set of non-negative real number. The
same function can be represented in the form of the following graph:
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Of course here the domain and range are discrete and finite subsets of real numbers.

2_
Now let us consider a function f(x) = %. It is quite clear that the function is not well defined at
x = 3, and is good for all other real numbers. Therefore the domain is set of all real numbers except

3. If you input these values of the domain, the function can give any real number as the output,
except 6.

Now we know what happens at x = 3, can we just observe the behaviour of the function as x goes
closer to 3 from all possible directions? See the following table and see the pattern of f(x) as x goes

close to 3 from left as well as from the right direction.

X f(x)
29 59
2.99 5.99
2.999 5.999
3.01 6.01
3.001 6.001
3.0001 6.0001

So, you can observe that as x is approaching to 3, the f (x) is approaching to 6. Then we say that the

limit of the function exists at x = 3.
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Unit 04: Limit of a Real Valued Function

If the function does not approach to the same value from both directions, then we say that the limit
of the function does not exist.

Here it must be mentioned that the word ‘close’ that has been used to define the concept of limit is
not a crisp word. It can mean something to me and entirely different thing to you. This closeness
has to be quantized in order to have a crisp definition of limit and that has been achieved through
the epsilon delta definition.

4.2 Epsilon delta definition of the limit

A function is said to tend to limit [ as x tends to ¢, if Ve > 0 however small, 3 § > 0, such that

[f(x) — 1] < e whenever 0 < |[x —c¢| < §
or
fel—-el+e)Vxe(c—6,c)U(c,c+6)
The quantity € is how close you would like f(x) to be to its limit /; the quantity §

is how close you have to choose x to ¢ to achieve this.

[VE_] 1. Prove that , M4x +1 = -3

To prove that /7 f(x) = [ you can assume that someone has given you some small positive value of

€ and you need to find a positive value of § for which |f(x) — | < € whenever 0 < [x —c| < §
holds. This § surely depends on €.

Here we want to find the § such that whenever |x + 1| < &, [4x + 1 + 3| < € for a predefined e.

If we work out on the epsilon inequality, we can see |4(x + 1)| < e . That is |x + 1| < €/4. Now we can do
a smart work here. If we consider /4 as &, we are done. Thus for a given e and § = %, we have |[4x + 1 +

3| < € whenever |x + 1| < €/4.

@ 2. Prove that ' xsin (i) =0

Let € > 0 be given. Then we would like to find a § > 0, such that
[f(x) — 0] <€ whenever |x—0]|<§

Now

[f(x)—0] = |xsin (%)|

1
= |x| ‘sin (—)‘
x
< |x|

Now choosing § = € we can see that

|f(x) — 0| < e whenever |x| < e
. ™ xsin G) =0

4.3 Some results on limits

The precise definition of the limit is not so easy to use, and we won't use it very often in this course.
Instead, there are a number of properties that limits have, which allow you to compute them
without having to use the epsilon delta definition. Let us see some of the properties of limit in the
form of following results.

Let f and g are two functions such that ," f(x) =land ,“™ g(x) = m. Then,

A+ 0 =45 (F0) +9) =1 +m
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Here you can see that the limit of sum of two functions is the sum of their limits. In simple words, you can see
that as f(x) is getting close to I and g(x) is getting close to m as x — a, then f(x) + g(x) will go close to
[+ m only. Though it can be proved by definition, but here we will resort to common sense only. Similarly
We can see Some more properties:

AU - = (f) -g@) =1-m
The limit of difference of two functions is the difference in the respective limit of the individual functions.
A FPE) =45 f)gl) =1m
The limit of the product of two functions is the product of the respective limits of the individual functions.
A/ =4 f)/gx) =1/m  (m=#0)

The limit of the quotient of two functions is the quotient of the limits of respective functions.

N
E] 3. Evaluate ,/I ——

2 sin x sinE
1—cosx _ lim 7 l 7
_ =g ==

lim
x—0

x2

li etanx_ex
4, Evaluate XL“(} “onr—x

etanx_ox lim ex(emnx—x_l)
x—0

lim

e =e1=1

tanx—x tanx—x

im ((1F+2% et ¥\ 3%
@ 5. Evaluate ,/'™% (T”)

Note that 11 (14 f(x))" = ex"0 /@
Now we can modify the given function, so that it takes the form of the left hand side of the above result.

1"+2"+---+n")“/"

1425 ok a/x
Lz )
n

Then, it ( = (1+

lim (1 +1"+2"+w+n"—n a/x
x—0 n

tim (=142 =14 4n¥ =1\ 7
— x-0 n

a
lim (xlog1+xlog2+---+xlogn)§
= ex—)O n

a
lim (xlog n!)x

= e*0 n
1im axlog n!
=e*0 xn
a
=nln

4.4 Limit at infinity and infinite limits

Here we will learn when do we say that a function is approaching to infinity as x is approaching to
any number, as x — o , when a function has a finite limit and what is the behaviour of the function
as x approaches to positive/negative infinity.

A f(x) =0

A function f is said to tend to oo as x tends to c, if for any G > 0, however large, there corresponds a § > 0
such that
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Vr€e(—8Uc+d), f)>G Notes

Jf) = —oo

A function f is said to tend to —oo as x tends to c, if for any G > 0, however large, there correspondsa § > 0
such that

Vx€(—-686)U(,c+d), fx) < -G

L8 f0) =1
A function f is said to tend to [ as x tends to oo, if for any given e > 0, there corresponds a G > 0 such that
lf(x)=l1ll<e,Vx>G
x—»l—ig fx) =1
A function f is said to tend to [ as x tends to —oo, if for any given € > 0, there corresponds a G > 0 such that

If(x) =1l <e,Vx< -G

xﬁg f(x) =00
A function f is said to tend to oo as x tends to oo, if for any given € > 0, there corresponds a G > 0 such that

fx)>e,Vx>G

2ot f(x) =

A function f is said to tend to oo as x tends to —oo, if for any given € > 0, there corresponds a G > 0 such
that

f(x)>e,Vx<—G

xﬁg f(x) = —o0

A function f is said to tend to —co as x tends to oo, if for any given € > 0, there corresponds a G > 0 such
that

fx) <e,Vx>G

X—E‘g'} fx) = —o0

A function f is said to tend to —co as x tends to —oo, if for any given € > 0, there corresponds a G > 0 such
that

|
[

fx)<e,vVx<

Let us see some problems now!
i 1 i 1 i 1 .
@ 1. Prove that , (g} ~ =00, , {7 — = —ooand 7§ — does not exist.

Let =

X
Consider the case when x > 0. This implies that y > 0.
Let G > 0 be any number, then

IsGifo<x<?
x G

" LOVELY PROFESSIONAL UNIVERSITY



Calculus

Notes .
This implies that , 7 ~ = oo

Now consider the case when x < 0. This implies that y < 0.
Let G > 0 be any number, then

S<—Gif—=<x<0

This implies , 1" ~ = —co

Therefore the left hand limit is different from the right hand limit as x is approaching to zero and 7% i does
not exist.

3

@ 2. For f(x) = 2;%1 show that '™ f(x) = 2 and ,, "2 f (x) = 2

Let € > 0 be given

2x+1

Now <eforx>- +3

_2|

Ix 3]

xﬂ";ﬁf(x) =2

2+l 2|=ﬁ<eforx<——+3

Again |

o LHmE(x) = 2

If you look at the definitions of limits at infinity, you can find a positive number G, in both cases, which
fulfills the required criterion.

@ 3. Evaluate ,“M(VxZ +x+1—Vx2 +1)

xfﬁ(\/x2+x+1—\/x2+1)
lim X

x w\/x2+x+1+\/x2+1

— lim —

- x—>00
—+ +1+J—+1

Prove by epsilon delta definition that li1721(3x —4)=2.
is poi

E/ L’Hopital Rule

We have got a pretty good idea that for a quotient of two functions, such that the individual limit of
numerator is non-zero and of denominator is zero, then the overall limit of the quotient function
does not exist. In case the individual limit of numerator is zero and that of the denominator is non-
zero, then the overall limit of the quotient function is zero. The third case needs a special attention.
If the individual limit of both numerator as well as the denominator is zero, then this is called one
of the indeterminate forms and there are chances to get its value by using L’Hopital’s rule.

Consider lirré % Here the individual limit of the numerator is zero and of the denominator is also
X—

zero. This is % form. To evaluate this, we will have the following rule (for derivation you can see the
link 4 in the last section of the chapter).

Suppose f and g are differentiable functions over an open interval containing a, except possibly at
a.
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If B f(x) =0and % g(x) =0then % f(x)/g(x) = 2% f'(x)/g'(x) assuming the limit on the
right exists or is co or —co. This result also holds if we are considering one-sided limits, or if a = o

ora = —oo,
. . sinx s 0 . . o
Therefore using the above result for lmOlT as itis a 5 form. We can write the given limit as
X—

COISX. And the limit can be evaluated to be one.

lim
x-0

. . . .. 0 . ™ . .
There are mainly seven indeterminate forms and we try to convert them in ¢ or in — form first if

they are not so. And the by the above mentioned formula the limit can be evaluated. Let us see one
more question for better clarity.

@ Let us evaluate lirrg(xlog x) . Clearly it is 0 - oo form. So first of all we will rewrite the given
X

function in the desirable (0/0 or oo/) form.

i ) — 5 logx
xllr(%(x 8 X). - XT(} 1/X
1
_ x
= lm—7
-2
= lim(—x)
x-0

Now let us find the lirrol(cot x)'/198 *_Clearly this is an indeterminate form of type . First
b

@ of all we will rewrite the given function into the required form. Here you can see the
function as a power of another function. So logarithm can simplify the system.

1
logy = logxlOg(COtx)
) . log cot x
= limlog y = lim——
x—0 x-0 logx
—cosec?x/ cotx
=lim————
x—0 1
x
—-Xx 1
=lim——-
x->0sinx cosx
=-1
= loglirroly =-1
xX—
>limy=¢ = }
xl—rf(%y e = e

Summary

We learnt about the concept of going close to a number from all possible directions. Here we are
dealing with real numbers only so there are only two directions i.e. left and right. The limit of a
function was defined more rigorously using the epsilon delta definition. Since the epsilon delta
definition is tedious to apply, so some properties that can be proved by basic definition come
handy to evaluate the limits of various composite functions. Moreover we learnt the concept of the
limit at infinity and of infinite limits in eight different cases.

Key words

limit, epsilon-delta definition of limit, limit at infinity, infinite limits

Review Questions

1. When do you say that a function f(x) is approaching to infinity as x — ?

2. The L'Hopital rule is given as
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o f) '
lim== = lim—~
(a) Hag - ad @

. f) _ fla)
(b) izr; 9 gla

I _ 1@
© lmi = v@

(d) 1imZ2 = jim[£%2

x—a g(x) - x—a g(x)

. tan 5x
3. Evaluate lim——
xoE tanx
. sinx .
4. lim is
x-0 X

@ 0 M1 (c) -1 (d)undefined
5. r{irglo(l + %)" is given as
@ 1 ()2 (©3 e

6. Show that limi2 =00
x-0X
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Objectives

After studying this unit Students will

e learn about the concept of continuity and its geometric interpretation.
e explore some properties of the continuous functions
e learn various types of discontinuity

e  Dbe able to differentiate in continuity and uniform continuity

Introduction

With the word ‘continuity’, the first thing that comes to our mind is the ability to draw a graph
without lifting the pen.In this unit we will learn when can we tag a function as a continuous
function and if a function is continuous then what more can we know about the function. You will
learn about the various types of discontinuities and the concept of uniform continuity also.

5.1 Concept of continuity

Consider a function f(x).As the independent variable x will change, somehow f(x) will also
change. The idea of continuity is that if a small change is happening in x then a small change must
happen in f(x) i.e. the change in f(x) should not be sudden for a small change occurring in x. Now
here the word ‘small’ is not defined in a complete sense. My idea of small can differ from your idea
of small. Thus a more precise epsilon delta definition is there to address this issue.

Continuity of a function at a point in an interval

A function f is said to be continuous at a point c, if to any € > 0, there corresponds a number § > 0
such that

[fe+h) —fll<e
for all values of h, such that |h| < §.

In a different manner, a function f(x) is said to be continuous at ¢, if 3 an interval (¢ — §,¢ +
&)around c, such that for all x € (¢ — §,¢ + §), we have

floO)—e<fx)<f(c)+e
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A function f(x) is continuous at an interior point ¢ if and only if lim,_, f(x) = f(c)

@ Show that f(x) = 3x + 1 is continuous at x = 1.

Here f(1) = 4

fx)—f(1)=3x—-3=3(x-1)

Let € > 0 be given, we will show that [f(x) — f(1)| < € for some § > 0 such that [x — 1| < 6.
Letx >1

It implies 3(x —1) >0

Now [f(x) — f(D| =3(x -1) <€

ileifx—1< %

ieifx <1435 1)

Nowletx <1

It implies 3(x —1) < 0

Now [f(x) - f(DI =3(x-1) <e

leifl-x<3

ieifx>1—3%-—(2)

From (1) and (2) we can say that

F() — F(D| < eif1—§<x < 1+§

leif-s<x-1<:

In other words we have found a § suchthat—-§ <x—1<d8or|x—1| <8

Therefore f is continuous at 1.

: Prove that f(x) = sinx is continuous at any point ¢ in the domain.
Let € > 0 be any number. Consider

If(x) — f(c)] = | sinx —sinc|
x+c  x-—c
> sin > |

= |2 cos

x+c
=2 |cosT

. X—C
Now |51n7| <

XZ;C| and | cosxzil < 1Vxandc.
Now (1) can be written as
) . xX—c

| sinx —sinc| < 2 |T| =|x—c|

Therefore | sinx —sinc| < e when |[x —¢c| <e=§

Thus there exists an interval around c, such that V x € (¢ — §,¢ + 6),

|sinx —sinc| < e

Therefore f(x) = sinx is continuous at c.

S
Examine lim,,_,; (:)

When x # 1 the given function can be writtenas y = x + 1.

Let € > 0 be any number, however small.

Letx > 1theny > 2

LOVELY PROFESSIONAL UNIVERSITY 39



Unit 05: Continuity of a real valued function

ly-2l=y—-2=x+1-2=x—-1<eifx<1l+e¢

Therefore there exists an interval (1,1 + €) such that |y — 2| < e
~ limy = 2asx tends to 1.

Letx < 1theny <2
ly-2|=2—-y=2—-x—-1=1-x<eifx>1—-¢€

Therefore there exists an interval (1 — ¢,1) such that |y — 2| < €
~ limy = 2asx tends to 1.

Thus from both directions |y — 2| < € whenever |x — 1| < €

~limy=2asx - 1.

5.2 Properties of continuous functions

A function is said to be continuous if it is continuous at every point of its domain. Check the
domain of the function and apply the definition of continuity at the suspicious point.

Let us check the function f(x) = sin? x for continuity.

Cleary the set of real numbers is the domain of the function and to check if the function is
continuous or not, we need to check that the function should be continuous on each point of its
domain. Let us consider an arbitrary real number ¢ and any € > 0. Then

If(x) = f(c)| = | sin? x — sin? c| = |sinifix + ¢)||sinifx — )|
< |sinifx —c) | < |x —¢|
If [x —c| <e=6then |f(x) — f(c)| < e

2

Therefore by definition sin“ x is continuous for x = cV x as c¢ is any number.

Let us now see a piecewise function for its continuity. Let the function be
1
x when 0 < x < >
1
fx)=+11 when x = >
1
(1-x when§<x< 1
Here the function is a polynomial function or a constant function in the piecewise domains.
The problem of discontinuity can occur at % So let us work out on the left hand limit, the right hand

limit and the value of the function at %

The left hand limit is lim _1-x = %
2

The right hand limit is lim  ;+x = 1
x> 2

The value of the function at %, f G) =1

The limit of the function is existing but is not equal to the value of the function, so the function is
not continuous at x = % The point x = % is very much in the domain of the function, so we can say
that the function is not continuous.

Theorems on continuous functions

Suppose fand gare two functions defined in a neighbourhood of the point a. Then, if )l(l_r:r; f(x)and
)161_1}(11 g(x)are well-defined, we have the following;:

(1) limiff (x) + g(x))is defined, and equals the sum of the values )l(l_l)l;ll f(x)and )l(l_l)l;ll g().

) )161_12 (f (x) — g(x))is defined, and equals )1(1_r)1[11 fx)- )lgl_rg g@o).

(3) limf (x)g(x) is defined, and equals the product limf(x)limg(x).
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The scalar multiples result basically states that if limf (x)exists, and for any real number a
x—a
limaf(x) = alimf(x)
x—a x—=a
(4) lim f (x)andlim g (x) exist and if limg(x) # 0, then
x—a x—a x—-a

y floy  limf(x)
e g0 limg()

The notions of sum, difference, product and quotient of functions can be rewritten as:

Limif + g)(x) = Ll_rg"f(x) + LiLnEZEjj](x)

x-a a

limif — g)(x) =lim = f(x) — limig (x)

x—-a

limif. g) (x) = limF (). lim7 (x)

xX—=a

lim (f/g)x) = li}{rla f(x)/%fiir‘lfﬁ;'g(x)providedg(a) #0

x—a

You are much familiar with some elementary functions such as the constant function, identity
function, rational function, trigonometric functions, inverse trigonometric functions , exponential
functions and the logarithmic functions.

g
E; The domain of continuity of a function is same as the domain of the definition of function.
All the above mentioned elementary functions are continuous in their domain.

For the composed functions, we need to check the continuity every time. Some properties of
continuous functions can be stated as follows.

1. If f(x) is continuous at ¢ and f(c) # 0 the there exists an open interval (¢ —&,c + &)
around c¢ such that f(x)has the sign of f(c) for every x in this interval.

2. If f is continuous in a closed interval [a, b] and f(a), f (b) are of opposite signs, then f(x)
is zero for atleast one x € [a, b].

3. If f is continuous in [a, b], then there exist points ¢ and d in the interval [a, b] where f
assumes its greatest and least values M and m that is,
f(c) = Mandf(d) = m.

5.3 Intermediate value theorem

This theorem applies to the continuous functions. Using this theorem you can prove the solvability
of the algebraic and transcendental equations.

For example, sinx + x° = 0 is a transcendental equation and we can use the intermediate theorem
to know whether it is solvable or not.

INTERMEDIATE VALUE THEOREM: Let f be a continuous function on the closed interval
[a, b]. Assume that m is a number (y-value) between f(a)andf (b). Then there is at least one number
c(x- value) in the interval [a, bJwhich satisfies f(c) = m.

Assume that a function f is a continuous andm = 0. Then the conditions f(a) < 0 andf(b) >0
would lead to the conclusionthat the equation f (x) = 0 is solvable for x, i.e., f(c) = 0.

Intermediate Value Theorem guarantees the existence of a solution, but not what the solution is.
Steps to solve a problem:

1. Define a function y = f(x).

2. Establish that f is continuous.

3. Choose an interval [a, b].

4. Define a number (y-value) m.

5. Establish that there exists a value ¢, in [a, b] such that f(c) = m.
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Now let us use the intermediate value theorem to prove that the equation is solvable on the given
interval in the following examples.

E]sxS — 4x? =3 0n[0,2]

Let f(x) = 3x5 — 4x2 — 3

f (x)is continuous for every x as it is a polynomial function.

Now here f(0) = -3,f(2) =77

Letm =3as f(0) <m < f(2)

By intermediate value theorem, we can conclude that there exists ¢ € [0,2] such that f(c) =m
ie3c®—4c?+3=3

orc2(3c3 —4) =0

orc = 0,0, (2)1/3

Here all the values of c are lying in the given interval. In fact if only one value lies in the interval,
that itself is sufficient to say that the equation is solvable. If we draw the function on xy —plane, the
results are quite obvious.

20

10

(\J

@x2—4x3+1=x—7

Letf(x) =x?—4x34+1—-x+7=—-4x3+x>—-x+38
Here f(x) is continuous for all x.

Now in this problem the interval is not given as in the previous example. Therefore by hit and trial
we can look for two values x such that the value of the function at those values are of opposite
signs.
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f0)=8
f2) =-22
Letm = 0 (any number between -22 and 8 can be chosen as m)

Clearly all the assumptions of intermediate value theorem are met. Therefor there exists a ¢ € [0,2]
such that f(¢) =m

i.e. —4c3 + ¢? — ¢ + 8 = 0 and this equation is solvable.

If we check it by actually drawing the graph, we can easily see that the intermediate value theorem
is getting satisfied in the said interval.

-20 -10 0 10 20

-10

: x3 4+ 2 =sinx

Now this equation is a transcendental one. and no interval is given.
Let f(x) = x3+2 —sinx
The function f(x) is the sum of continuous functions so it is a continuous function for all x.
f0)=2
f(—m) = -29

Choosing m such that =29 <m < 2.
Letm=0

~ 3¢ € [-m, 0] such that f(c) =m
iecd+2—sinc=0

Therefore the equation is solvable. And we can verify this by actually plotting the graph which is as
follows:
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5.4 Geometric interpretation of continuity

Continuity at a pointc can be defined for a functionf on an open interval containingc. We may say
that fis continuous at ¢ if f(x) tends to f(c)as x tends to c. Or in plane words, the function f is
continuous if the difference in x and c is small, the difference in f(x) and f(c¢) will also be small.
That cannot be abrupt.

In simple words,

(i) Function fwill be continuous at x = cif there is no break in the graph of the function at the point

(e, f(e).

(ii) In an interval, function is said to be continuous if there is no break in the graph of the function
in the entire interval.

5.5 Types of discontinuity

Discontinuity of a function

A function is said to be discontinuous at a point of its domain if it is not continuous at that point.
Moreover, that point is called the point of discontinuity of the function.

Two possibilities:

1. The limit of the functions exists as x tends to ¢ but is different from the value of the
function at c.

2. The limit of the function does not exist at c.

On this basis, we can classify the discontinuities as follows:

Removable discontinuity

Jump discontinuity (Discontinuity of the first kind)
Discontinuity of the first kind from the left
Discontinuity of the first kind from the right

Discontinuity of the second kind ( Non removable or essential discontinuity)

AU i B

Discontinuity of the second kind from the left
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7. Discontinuity of the second kind from the right
Removable discontinuity

If lim, . f (x) exists but is not equal to f(c) (which may or may not exist), then that discontinuity is
called removable because we can redefine the function so that the function becomes continuous at
point c.

ielim,_ .- f(x) =lim,_ .+ f(x) # f(c)
SirlTxifx # 0
0 ifx=0

Clearly the limit of the function exists and is 1. But the value of the function at x = 0 is not 1.

For instance consider the function f(x) = {

Thus the function has a removable discontinuity at x = 0.
It means that we can redefine the function to remove this discontinuity by writing
sin x
Flx) = {Tifx #0
1 ifx=0
Jump discontinuity

This discontinuity is also called discontinuity of first kind. If lim,_.- f(x) and lim,_+ f(x) both
exist but are not equal, then we get a jump discontinuity.

ielimy .- f(x) # lim,_ .+ f(x)

1 ifx>0

For instance f(x) = {_1 fr<0

Clearly the left hand limit is -1 and right hand limit is +1 and you can see a jump right there near
zero, hence the name ‘jump discontinuity’.

Discontinuity of the first kind from the left

If lim, .- f(x) # f(c) = 1im+f(x)

Discontinuity of the first kind from the right

If lim, .- f(x) = f(c) # lim, fx)

Discontinuity of the second kind (Non removable or essential discontinuity)
If neither lim,_ - f(x) nor lim,_,.+ f(x) exists.

Discontinuity of the second kind from the left

If lim,_ .- f(x) does not exist.

Discontinuity of the second kind from the right

If lim, .+ f(x) does not exist.

@ Consider a function f(x) = 5%7

Clearly the function is not defined at 1 and -1. But we can see how the function will behave as x
approaches to 1 from both possible directions.

The left hand limit = lim, ;- 5#

Putx=1-h.h - Oasx - 1~

So the function can now be written as

x 1-h
lim 517 = lim 51017
x—-1" h—0

1-h

e — 1-h 1
= }llm(l) 5h@=h) (Here — tends to sash tends to zero.)

1
= lim 52r
h-0
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= 00

The right hand limit is lim,_,;+ 51=% and
x 1+h
lim 51—+ = lim 51-0+h?
x-1F h—0

1+h
= lim 5-zr-n?
h—-0

1
=lim5 2» =0
h—-0

Similarly at the point x = —1, the left hand limit is

X —1-h
lim 51—=? = }Llr% 51—(—1—}1)2 = 00
-

x-—-1"
And the right hand limit is
x —1+h
lim 517 = lim 51-C1+? =
h-0

x— =1

Therefore in this example the point -1 is a discontinuity of the second kind from the left and 1 is
also a discontinuity of the second kind from the left.

5.6 Uniform continuity

To understand uniform continuity let us recapitulate that a function fis said to be continuous on
Rif for every ¢ € Rand for every € > 0, there exists a § > 0 such that for every x € Rwith |[x —c| < §

we have |[f(x) — f(c)| < €. Here § can depend upon € and c.

On the other hand a function f is said to be uniformly continuous on Rif for every e > 0, there
exists a § > 0 such that for every x,y € Rwith |x —y| < § we have |f(x) — f(¥)| < €. Here § can
depend upon e.

The uniform continuity is a global concept. Here you have one single rectangle for the whole
domain whereas the continuity of a function at a point is a local concept and the size of the
rectangle will highly depend on the value of c.

We will see two theorems without proof to have a better idea of uniform continuity.

Theorem 1: Every uniformly continuous function on an interval is continuous on that interval but
the converse is not true.

Theorem 2: If a function is continuous on a closed interval, then it is uniformly continuous on that
closed interval.

l: Is the function f(x) = xx: uniformly continuous for x € [0,2]?

Let x, y be two arbitrary points in [0,2].Thenx > 0,y > 0
orx+1=>1,y+1>1

or(x+1Dy+1)=>1

1
o oD =

Now |f(x) —f)| =

x y lx=yl
2 | = < |x-
x+1  y+1 F+D+1) — | v

Let € > 0 be given. Choosing § = € we get
[fCx) = f(¥)] < ewhen ever|x — y| < § for every x,y € [0,2]

The same problem can be solved by using the second theorem also. The only problem point for the
function is {—1} and that is not in the domain. So all conditions are getting fulfilled of Theorem 2
and that implies that the given function is uniformly continuous in [0,2].

|: Show that the function f(x) = Xiz is uniformly continuous on [a, ©) where a > 0, but not

uniformly continuous on [0, ).

Let x,y = a > 0 be two arbitrary numbers in [0, ).
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1 1
£ = £ = [z =]
1 1511 1
-3}
x ylix -y
e
al xy
2
S$|X—}’|

Let € > 0 be given. Choose § = G;LS Then,
[f(x) — f()| < ewhen|x —y| < § forall x,y = a.
Therefore f is uniformly continuous on [a, ).

To show that f is not uniformly continuous on [0, ) let us take two numbers in the interval [0, o0)

as follows:
X = \/%andxz = \/%? be two numbers.
Now If(x)) = fe)l = | — =
1 2
=ln-(n+1|=1
—|Lr__1

And |x; — x| = NN
_ 1
C Vavn+ 1(Vn+ 1+ Vn)

11
<Trzvw "~ O (say)

Lete = % and 6 be any positive number such that n > %or % <34.

Therefore |f(x1) — f(x3)| > € when |x; — x| <6

= fis not uniformly continuous on [0, ©).

Summary

In this unit we have learnt about the technical definition of a continuous function and its various
properties.

e A function f(x) is said to be continuous at ¢, if 3 an interval (¢ — §, ¢ + §) around ¢, such

that for all x € (¢ — 6,¢ + §), we have
fl@—e<f)<flo)+e

e  For two continuous functions, the following properties hold.

migf + g)(x) = limfiF (x) + limfi (o)
limif — g)(x) =lim = f(x) — limig (x)
limif. g)(x) = limf (x). limizg (x)

lim (f/g)x) = li?la f(x)/lciiniffy(x)providedg(a) #0

x-a a

e A function is said to be discontinuous at a point of its domain if it is not continuous at that

point. Moreover, that point is called the point of discontinuity of the function.

We can classify the discontinuities mainly as:
1. Removable discontinuity

2. Jump discontinuity
3

Non removable or essential discontinuity
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The intermediate value theorem states that if a continuous function attains two values, it
must also attain all values in between these two values.

A function f is said to be uniformly continuous on Rif for every € > 0, there existsa § > 0
such that for every x,y € Rwith |x — y| < § we have |f(x) — f(y)| < €. Here § can depend
upon €.

Every uniformly continuous function on an interval is continuous on that interval but the
converse is not true.

If a function is continuous on a closed interval, then it is uniformly continuous on that

closed interval.

Key Words

continuity, discontinuity, intermediate value theorem, uniform continuity

Self Assessment

1.

Which of the following is a continuous function?

(@) Constant function

(b) Polynomial function

(c) Sine function

(d) All of the above

To verify that any equation is solvable or not, which theorem must be used?

(@) Mean value theorem

(b) Rolle’s theorem

(c) Intermediate value theorem

(d) None of these

If a function is continuous, it is definitely uniformly continuous.(True/False)

If you can redefine a function so that it becomes continuous, what kind of discontinuity
are you tackling?

(a) Jump

(b) Removable

(c) Discontinuity of first kind

(d) Discontinuity of second kind

lim, _,, % is

@)
b)
©)
(d) None of these

Which of these functions is not uniformly continuous on (0,1)?
(a) x?

()

(c) sinx

@) =

X

/-\
FN TSN N

e for b > 0.

Find lim,_,,
(@ 0

(b) o

© a

@) 7z
Which of the following is not a continuous function?

@ [x]

x—a
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10.

11.

12.

13.

14.

15.

(b) x|
(@

(d) ~,x#0

2_
If a function f is continuous for all real numbers and if f(x) = %when x # —2, then

f(—=2)is equal to

(@) -4
(b) -2
© -1
(d 0

Which of the following functions are continuous at x = 1
L Inx

IL. e*
III. In(e* — 1)
(@) Ionly

(b) Iand II only
(c) IIand III only
(d) L IIandIII

1 1

The function f(x) = %, x#0,f(0)=1hasx=0asa

ex—e x
(a) removable discontinuity

(b) jump discontinuity

(c) discontinuity of second kind from left

(d) discontinuity of second kind from right
Discontinuity of second kind happens when

(@) the left hand limit does not exist

(b) the right hand limit does not exist

(c) Dboth the left hand and right hand limits do not exist
(d) neither the left hand nor right hand limits exist
Discontinuity of the second kind is also known as
(a) removable discontinuity

(b) essential discontinuity

(c) jump discontinuity

(d) non-essential discontinuity

Jump discontinuity is a

(a) discontinuity of the first kind

(b) discontinuity of the first kind from left

(c) discontinuity of the first kind from right

(d) discontinuity of the second kind

Which of the following is/are true?

I Every uniformly continuous function on an interval is continuous on that interval

and conversely.

1I. If a function is continuous on an open interval, then it is uniformly continuous on

that closed interval.

(@) Only Iis true

(b) Only Ilis true

(c) BothIandII are true
(

d) None is true

Answers for Self Assessment

1. D

2. C 3. False 4. B 5.
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11. B

7. D 8 A 9. A 10. D

12. D 13. B 14. A 15. D

Review Questions

1.
2.
3.
4

10.

WWW

Prove that a constant function is a continuous function.
State the intermediate value theorem with an example.
Show that the function f(x) = 6x — 5 is continuous at x = 0.

Discuss the continuity of the following function:

_ (3x =5, ifx#1
f(x)‘{ 2, ifx=1

Determine the values of A and B so that the following function is continuous for all values

of x.
Ax—B, ifx < —1
f(x)_{ 2x2 +3Ax + B, if-l<x<1

andf(x) = 4,ifx > 1

Verify if the equation x>

= cosx — 2 is solvable or not?

lx=5] .
Examine the continuity of f(x) = { +s ' X5 1d discuss in case of any discontinuity.
1, ifx=5
Check if the function x% is uniformly continuous on [0,2].
lx=5| .
Examine the continuity of f(x) = { x5~ ifx>5
1, ifx<5

Discuss the kind ofdiscontinuity for the following function:

_(3x =5, ifx#1
f(")‘{ 2, ifx=1

Further Readings

George B. Thomas ]Jr., Joel Hass, Christopher Heil& Maurice D. Weir (2018). Thomas’
Calculus (14th edition). Pearson Education.

Howard Anton, 1. Bivens& Stephan Davis (2016).Calculus (10th edition).Wiley India.
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https:/ /math.libretexts.org/Bookshelves/Calculus/Book %3A_Active_Calculus_(Boelkins
et_al)/1%3A_Understanding_the_Derivative/1.7%3A_Limits_Continuity_and_Differenti

ability
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Unit 06: Differentiability of a Real Valued Function
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Objectives

Students will

e learn about the concept of differentiability
e explore the geometric interpretation of differentiability
e understand the relation in differentiability and continuity

e analyze the connection of differentiability and monotonicity

Introduction

After understanding the concept of limit, we can move on to know what is meant by
differentiability of a real valued function. As we know, calculus is all about the study of the change.
The general idea that comes to mind is the average rate of change. We want to say how fast we are,
and to know that, we go for finding the average speed, so if you want to compare two persons, you
just see their average speed or average velocity. Similarly, if you want to see where the bend is
sharper, you would like to see the curvature. To explain the phenomena in more detail, we would
like to know the velocity ‘at a particular point’ or the curvature ‘at a particular point’. Here we are
basically interested in the local change or the instantaneous rate of change. The average rate of
change is kind of global phenomenon, we are telling something for the whole period of time or for
the whole domain in general. In the first case, we need to understand something called
differentiability which is an instantaneous phenomenon or alocal phenomenon.

6.1 Derivability and derivative

Consider a function f: A — B. Let ¢ € A be any point in the domain A and B is a set of real numbers.
For h > 0, c + hand c — h lie on the right and left of c¢ respectively. The value of the function at ¢
and ¢ + h are respectively f(c)and f(c + h). Thus we can say that change in x is h and change in

fG)is fc+h) = f(c).

The average rate of change of the function w.r.t. the independent variable x is w . As the

value of h approaches to zero, the expression fes)=/()
h

called the derivative of the function f at point ¢, and is denoted by f’(c)and
fle+h) —f()
h

may tend to a limit. The limit if exists, is

f'(e) = lim

If the derivative of the function takes a finite value, the function is called finitely derivable at c.
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The left hand derivative is given as
P (RO 1 ©)
e =g =
and the right hand derivative can be written as

f/(c+2—)=o+limf(c + hz - f(C)

The function f is derivable if both the left and right hand derivatives exist and are equal.

E] Prove that the function f(x) = x? is derivable at x = 1.
Here the point of interest is ¢ = 1, so we check the functional value at 1 and 1 + h.
f=1
f(l+h)=1+2h+h?

h

To check the derivability, we need to check if the limit ’llirr(l) exists or not!
-

fQ+h)-£(1) = lim 2h+h?

Now lim =lim2+h=2
h—0 h h—0 h—0

Thus the limit exists and hence the function is derivable at x = 1.

: Check the differentiability of the modulus function at the zero.
Let the function be f(x) = |x|.

The domain of the function is the set of all real numbers. Here the point of interest is ¢ = 0. So we
will check if the limit

lim fo+h)-£(0)

exists or not.
h—0 h

_ fO+R)—fO) . |h]
lim——— = lim —
h—-0 h h-0 h

Since the modulus function is appearing in the function, whose limit is to be calculated, we need to
apply the definition of modulus function which is as follows:

h, h>0
Ihl_{—h, h<0

The left hand derivative is given as

vones 1. fO+R)=f(0)  |h|
fo7 =g T ==
And the right hand derivative is given as
0+h)—f(0 h
JOEN Oy 11 _

0+ — T
@ )—}}LI‘(I)L h=0 h

Clearly the limit does not exist at x = 0. Therefor f'(0) does not exist or we can say that the
modulus function is not differentiable at x = 0.

: Find the derivative of f(x) = vx.

The domain of the function is the set of all non-negative real numbers. So we need to check the
differentiability of the function for all x > 0 and at x = 0.

Let x > 0. We can write

fx+h) —f(x) Vx+h—+x

h h

PR (VX R+ VR)
Vx+h+Vx
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1
B Vx+h+Vx
Therefore lim 2= _ Lprovided x>0.
h—0 h 2Vx

To check the differentiability at x = 0, we can examine that

- fO+n—-f0O) . ~vh_ . 1
lim——————=lim— = lim—
h—0 h h=0 h  h-0+/p

Clearly, hli_%lar «/iﬁ — o0 and hll%l— \/% is not defined.

So we can say that f'(x) = % V x € (0,00)

: Check if the function f(x) = x|x| is derivable at the origin.

Since there is modulus function involved in the definition of the function, we can simplify it first.
2
. x x=0
It can be written as f(x) = { ’ -
fe) —x%, x<0

The point of interest is the origin. So let’s find the left hand and right hand derivatives at origin.
f—f@O _  —x?
x—0

lim —= lim —x=0

f (0_) = xll»r(l)]‘ h—-0" X h—-0~

_ 0 2
f'r) = limM= limx—= limx =0
x-0t  x—0 h—0* x h—0*

Therefore f'(07) = f'(0%) and it implies that f is derivable at the origin.

6.2 Geometrical interpretation of differentiability

Recall that if y = f(x), then, for any real number Ax,

Ay _fl+4x) —f(x)
Ax Ax
is the average rate of change of y with respect to x over the interval [x, x + Ax]. Now if the graph of

y is a straight line, that is, if y = mx 4+ b for some real numbers mand b, then i—z = m, the slope of

the line. In fact, a straight line is characterized by the fact i—iis the same for any values of xand Ax.
Moreover, i—iremains the same when Ax is infinitesimal; that is, the derivative of y with respect to x
is the slope of the line. For other differentiable functions f, the value of i—i depends upon both xand
Ax. However, for infinitesimal values of Ax, the shadow of i—z, that is, the derivative j—z, depends on
x alone. Hence it is reasonable to think of j—z as the slope of the curve y = f(x)at a pointx. Whereas
the slope of a straight line is constant from point to point, for other differentiable functions the
value of the slope of the curve will vary from point to point. If f is differentiable at a point a, we

call the line with slope f'(a)passing through (a, f (a))the tangent line to the graph of fat (a, f(a)).
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(a, fla))

That is, the tangent line to the graph of y = f(x) at x = a is the line with equation
y=f(@&x-a+f(a

Hence a tangent line to the graph of a function f is a line through a point on the graph of fwhose
slope is equal to the slope of the graph at that point.

Kinematic interpretation of differentiability
The motion of a particle along a straight line can be written as s = f(t), where s is the distance of
the particle at point P from a fixed point of reference on the line,at time t. Let after some time At,

the body covers a distance s + As and is at point Q now. Clearly ﬁ—: represents the average velocity

for this interval of time and it approximates the actual velocity at P. Clearly as this interval of time
gets smaller and smaller, the approximate value of the velocity gets better and better to the actual

value.
C g FEHAD-FO) . (As\ _ds_ . .
Le'AliIllo = Alglo (At) = —.= velocity (v) at time ¢

Similarly the instantaneous rate of change of velocity is interpreted as acceleration.

. v(t+AD)-v(t Av dv . .
Jim ZEr20v® _ (—) = —= acceleration (a) at time ¢
At—0 At At—o \At) T at

The third and fourth derivatives of distance w.r.t. time are called jerk and jounce.

a(t+At)-a(t) _ (A_a) _da_. . .
Jim =—r——= lim () = jerk (j) at time t
LA —ji®) _ (ﬂ) _dj_. .
Al%r_r)lo = Al%r_r}o ;) = 7.~ jounce (J) at time ¢

You can see and feel all these changes physically in the real world. But that will not be the case with
all the functions other than the distance function.

The derivative of various functions have been developed through the ab-initio definition. Two
examples are given.

Derivative of the function f(x) = k where k is a given number:
y=k
y+Ay=k
dy_0 _
Ax Ax

d . A
2= jim X =
dx  Ax-0Ax

Ofor every x € Set of real numbers

Derivative of the function f(x) = x™ where n is a natural number:
y=x"

y+ Ay = (x + Ax)"

nn—1)
2

=x" 4+ nx" 1Ax + x"2(Ax)% + -+ (AX)"
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Ay
Ax

nn-1)

=nx"1

dy . Ay
dx  avSoAx

=nx

n-1

+ Tx”‘zAx + -+ (Ax)™?

Once the basic understanding is there, we can use the formulae of differentiation directly. You have
studied and used them already still the lists of various formulae are presented below for your

revision.

Summary of Rules of Differentiation

Derivative of Polynomial Function

Constant Function y=¢
Linear Function : y=cx
Power Function: y=x

Constant Multiple Fumction: v=cf(x)

Stmi of Functions v=f(x)+g(x)
Difference of Functions v=flx)-g(x)
Product of Functions v=f(x)g(x)
flx)
Quotient of Functions : y==
' g(x)
Composite Function: \
! hatin v=/(g(x)
(The chain rule)
: x=/"(»)
Inverse Function . :
=y=f(x)

V=0
y=c

¥V =m
¥ =¢(x)

V=f(x)+g(x)
V=fx)-g(x)
V=f(x)g(x)+f(x)g'(x)
e S(x)g(x)-f(x)g'(x)

; 2
(glx))
V= ﬂéz*'{i'}
g
a_
dv v

ax

Derivative of Trigonometric Function

Sine Function: y=sinxy ¥ =cosx
Cosine Function y=cosx V' =-—snx
Tangent Function y=tanx ' =sec’x
Cotangent Function: y=cotx ' =—csc’x

Secant Function

Cosecant Function :

Derivative of Exponential

Function

Natural Exponential Function:

Exponential Function:

Natural Logaritlmic Function

Logarithmic Function

y=¢"
v=d
v=log, x
v=log,:

y=secx 1 =secxtanx

v=csex ¥ =-cscxcoty

and Logarithmic

Vv =a'log,a

xlog, a
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Derivative of Inverse Trigonometric Function

Inverse il 1 |.\ —1=
y ) v=sin_ x  1V'=
Sine Function: : : -+ / /
- X
Diverse y=gaile o -1 x:=-l<x<l
: . =cos” x V=
Cosine Funiction : : : -+ yir>y>0
Diverse yotantx v 1 | X=X <+n
Teangent Function : A ) / /
X N <X<+0 -
y:r>y>0
Dnverse P -1 )
J : T=Cd X = 7 W e T = x< y
Cofangent Function: - T T 1+ |-\ =< x <O 0<x<+m)
|v:(0> y>-74)U(74 > y>0)
Trarsa P ) 1 [#:(—0<x<=1 (1< x < +0)
d . y=sec' x ¥y=—p0——r i R 1Y Ry
Secant Function: sli?—1 I" ‘ A R ]I__,I{(L s A}
Iiverse 1 ' -1 |'T:l_'-f" <x<=U(L<x <o)
: y=ese X V=—e— -
Cosecant Function -1 lr [U > P> — / I I1 / cv=0)

Derivative of Hyperbolic Function

Hiperbolic Sine Function: y=smhy ' =coshxy
Hyperbolic Cosine Function v=coshy ' =smhxy
HiperbolicTangent Funiction : y=tanhy 1 =sech’x
Hyperbolic Cotanigent Function: v=cothx ' =—csch® x
Hyperbolic Secant Function : v=sechy '=-—sechxtanhy
Hiperbolic Cosecant Fumiction:  v=cschxy 3 =—cschyeothy

Derivative of Inverse Hyperbolic Function

Irverse Fhperbolic y=inlitiy 5= 1 {\' — < X<+
Sine Funcrion : - s V= < X<+
{\ l<x<+o
Inverse Hyperbolic  _ 40 4 1 J:0<y<io
Cosine Function 2_1 x:lex< o
y: 0> y> -
Inverse Hhperbolic =i ; 1 x:=l<xxl
) - i v=tanh™ x '= T
Temgent Function : = 1-x Vimon <y Hon
Inverse Fhperbolic 4 =1 ‘ x:(=m<x<=1)U(1<x <o)
e ont ipiction: 2 coth™x  V=—— E )
otamgent Frmction : -1 {1‘ (05 v =0 )U( 40> > 0)
'|.\':0- x<l
or
Inverse Hhperbolic = S 1 |‘,1 +o>y>0
. =g 3 =F— 3
Secant Funicrion: * = % #l—\'z [xri0-x<1

|1 0>y>-w

Inverse Hhperbolic i=@dids 3= 1 “T (Fo<x<0)U(0<x < +en)
v=csch™ x

. V=
Cosecant Frmction : - M /Tz_'_] “1.:‘0 3= —on )L (40> 1> 0)

6.3 Relation between differentiability and continuity

In a layman language, if you want to check the differentiability of a function at a point, just by
looking at its graph, you must zoom the figure at that point (in your mind, if not possible
otherwise!) If you see a straight line at that point, the function is differentiable and otherwise it is
non-differentiable. So corners or pointy edges in a graph imply non differentiable nature of the
function while smooth curve suggests a differentiable function.

Similarly the concept of continuity in a domain relates to the graph without any kink or cut or
break in that domain.

Theorem: If fis finitely derivable at ¢, then fis also continuous at c.
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Let f be a finitely derivable function at ¢, so that the expression — a finite limit ash —

0.

h

We can write

fle+ ) - re) = XN ZIE),,

limf(c+h) = f(c) = lim
=f()*0=0
~limf(c+h) = f(c) =0

limf(c+h) = f(c)

h—0

JeAD Q)

Alternatively,
limf(x) = f(c)

It implies that f is continuous at x = c.

The converse of this theorem is not necessarily true. One stark example is the absolute function. The
function f(x) = |x| is continuous on its domain but is not differentiable at the point 0 which is a
part of the domain.

1 1
| : l x(e x—ex
Examine f(x) = u X # 0 for the continuity and differentiability at origin.

x=0

The right hand limit is lim ————*
x=0% o xiex

e x+ex
xle x— 1)
= lim, = =0
0T eTr 41
x(e_%—e%)
The left hand limit is lim ———~*
X207 T xyex

x|1-— ei
= lim 7( 5 ) =0
=0T 4ex
The value of the function at 0 is also zero.

Therefore the given function is continuous at origin.

11
The right hand derivative is f'(0%) = lirgl+ [DTO _ iy cer
x—

x-0 x—0% e xtex
_2
e x—
= lim — =-1
x—-0 ——+ 1
11
The left hand derivative is f'(07) = lim fOTQ@ _ iy & —
x-0~ x—0 X207 o~ xyex
2
o 1—ex
= lim >=1
207 4oex

Therefore the function is not derivable at the origin.

6.4 Differentiability and monotonicity

Monotonicity gives an idea about the behaviour of the function. A function is said to be monotonic
function if it is either increasing or decreasing in its entire domain. For example,

f(x) = 2x + 3has the set of all real numbers as its domain and the function is monotonically
increasing on the entire domain.
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g(x) = —x3also has the set of all real numbers as its domain and the function is monotonically
decreasing on the entire domain.

We can recall that for an increasing function x; < x, = f(x;) < f(x,) and for a decreasing function

x; < x3 = f(x1) > f(x;). The functions which are increasing as well as decreasing in their domain
are known as non-monotonic functions. For example the absolute function, the sine function etc.

Monotonicity of a function at a point in its domain

A function is monotonically increasing at x = a if f(a + h) > f(a)and f(a — h) < f(a) for small h >
0. From the first expression, we can write

fla+h)—f(@) 0
h -
f(a+h})l—f(a)>

limf(a+ b —-fa@) S
h—-0 h

f'(a)>0

A function is monotonically decreasing at x = a if f(a + h) < f(a) and f(a — h) > f(a) for small
h > 0. From the first expression, we can write

flath)-f(@ _0
h h
far 1@ _

o f@tm—f@
h—-0 h

f'(@) <0

Thus we can see a relation in differentiability and monotonicity. If a function is monotonically
increasing at x = a, its first derivative at x = a has to be positive and if a function is monotonically
decreasing at x = a, its first derivative at x = a has to be negative.

0

0

0

Monotonicity in an interval

For an increasing function in some interval if Ax >0 < Ay > 0or Ax <0 < Ay <0, then the

function is said to be strictly monotonically increasing in that interval.

ie. if Z—z > 0 in some interval then y is said to be a strictly increasing function in that interval.

Similarly, if Z—Z < 0 in some interval then y is said to be a strictly decreasing function in that interval.

ifz—z > 0 in some interval then y is said to be a increasing function in that interval. Similarly, if Z—Z <
0 in some interval then y is said to be a decreasing function in that interval.

; Prove that f(x) = x — sinx is an increasing function.

Let us see how the function looks like!
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f(x) =x —sinx
f'(x)=1—cosx
f'(x)=0 Vx€ER

Therefore f(x) is monotonically increasing V x € R
Greatest and least value of a function

We can discuss the greatest and least value of a function with specific conditions under the
following three cases:

Casel.y = f(x) is strictly increasing in[a, b], then f(a) is the least value and f(b) is the greatest
value of the function.

Case IL.y = f(x)is strictly decreasing in [a, b], then f(b) is the least value and f(a) is the greatest
value of the function.

Case IIL.y = f(x)is non-monotonic in [a, b] and is continuous, then the greatest and least value of
f(x)in[a,b] are those values where f'(x) = 0 or it does not exist or at the extreme values.

: Find the interval in which the function f(x) = 2x? — In |x| is (i) decreasing (ii) increasing.
f(x) = 2x% —In|x|

1 4x2-1
fleg=4x ——=

X

Domain of the function is(0,). Therefore the denominator of f'(x) is always positive and
numerator has all the power to decide.

For f(x) to be decreasing

<0
4x2-1<0

For f(x) to be increasing
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f'(x)=0
4x2—-12>0

We can verify this by drawing the graph of the function and can observe the following:

20

J Fromé onwards the function is increasing
1 I .
e In (O’E] the function is decreasing.

1 . . ..
o At 3 the function is having a minimum value.

Summary

In this unit we have learnt the basic definition of differentiability and its geometric and kinematic
interpretations. We have learnt some results related to differentiability with continuity and
monotonicity. The following are the main point:

e  To check the derivability, we need to check if the limit }lirr(l) exists or not.
-

fle+n)—f ()
h
o If fis finitely derivable at c, then fis also continuous at c.

e If a function is monotonically increasing at x = a, its first derivative at x = a has to be
positive and if a function is monotonically decreasing at x = g, its first derivative at x = a

has to be negative.

Key Words
o Differentiability
e Derivability
¢ Differentiability and continuity

¢ Differentiability and monotonicity

Self Assessment

1. Which of the following does not lead to the idea of differentiability?

A. instantaneous rate of change
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o0

ONnw e

>

oONn w

ONwp o

oSN F >0

O N ® >N

N = >

average rate of change
slope of the function

local rate of change

A function f is said to be derivable in [a, b] if
f is finitely derivable at every point of [a, b]

f is infinitely derivable at every point of [a, b]
f is finitely derivable at some points of [a, b]

f is infinitely derivable at some points of [a, b

The derivative of the function vx + 2 is
1

x+2
1
2(x+2)
1

2vVx+2
1

2%

A function f is said to be derivable at point c if
lim £etm=f©)

exists
h—0~ h
. fletn)=r(e) .
lim ————— exists
h-07"
. [l ) .
lim ——— exists
h—0
o fletn)—f() .
lim ———— exists
h—0

The derivative of cosec x w.r.t. x is
cosecx cotx

—cosecx cotx

—cosec?x cotx

—cosecx cot? x

The derivative of log,x w.r.t. x is
1

X
1

xloggx
1

xlogea
none of these

The derivative of sin~x w.r.t. x is
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D. none of these

The derivative of tanh~'x w.r.t. x is

1+x2
none of these

ON W » o

10. The derivative of cosh x w.r.t. x is
sinh x
—sinhx

—sinh? x

o0 >

sinh? x

—_
—_

. Which of the following function is continuous and not differentiable in its domain?

xZ

Vx
|x|
1

X

9Ny

12. The function x|x| is

A. derivable at origin

B. continuous at origin

C. both derivable and continuous at origin
D

. none of these

13. If f is continuous at ¢, then f is also finitely derivable at c.
A. True
B. False

14. A function is said to be monotonic function if

A. itisincreasing in its entire domain

B. itis decreasing in its entire domain

C. itis either increasing or decreasing in its entire domain
D

. none of these

15. Which of the following suggests that the function is strictly decreasing?
A. x; < xpimplies f(x;) < f(x,)
B. x; < xpimplies f(x;) > f(x;)
C. x; < xpimplies f(x;) < f(x3)
D

. x1 < xpimplies f(x;) = f(x3)

16. Which of the following suggests that the function is decreasing?
A. x1 < xpimplies f(x;) < f(x,)
B. x; < xpimplies f(x;) > f(x;)
C. x; < xpimplies f(x1) < f(x2)
D

. x1 < xpimplies f(x1) = f(x3)
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17. The functions which are increasing as well as decreasing in their domain are known as

. increasing functions

. decreasing functions

A
B
C. monotonic functions
D

. non monotonic functions

18. The function 2x2 — log x is decreasing in the interval

1 1]
2’2

[0:3]
(0.3)
(0]

Answers for Self Assessment

1 B
6 C
11. C
16. D

2. A 3. C 4. B 5. D
7. B 8. D 9. A 10. A
12. C 13. B 14. C 15. B
17. D 18. D

Review Questions

AU e

10.

Find the derivative of f(x) = 2ax + b using first principle.

Find the derivative of f(x) = x21+3

Discuss the differentiability of the function (x) = |x — 2| + [x| + |x + 2] .

using first principle.

Find the slope of the tangents to the parabola y = x? at points (2, 4) and (-1, 1).

Find the interval in which the function f(x) = 3x% — In |x| is (i) decreasing (ii) increasing.
Find the interval in which the function f(x) = logx + x is (i) decreasing (ii) increasing.
x(e_al?—e%)
= X # 0 for the continuity and differentiability at origin.
1 x=0

Find the interval in which the function f(x) = x — cos x is (i) decreasing (ii) increasing.

Examine f(x) =

Find the derivative of hyperbolic sine function using ab initio method.
Design a function which is increasing on some part of the domain and decreasing on

other. Then discuss the differentiability and continuity of that function.

LOVELY PROFESSIONAL UNIVERSITY

63

Notes



Notes Calculus

l!!] Further Readings

George B. Thomas ]Jr., Joel Hass, Christopher Heil& Maurice D. Weir (2018). Thomas’
Calculus (14th edition). Pearson Education.

Howard Anton, I. Bivensé& Stephan Davis (2016). Calculus (10th edition). Wiley India.

A Geometric Interpretation of the Derivatives. (2020, November 17). Retrieved May 4,
2021, from https:/ /math.libretexts.org/@go/page/25429

Web Links

https:/ /math.libretexts.org/Bookshelves/Calculus/Book %3A_Active_Calculus_(Boelkins
et_al)/1%3A_Understanding_the Derivative/1.7%3A_Limits_Continuity_and_Differenti

ability

WWW|

64 LOVELY PROFESSIONAL UNIVERSITY


https://math.libretexts.org/Bookshelves/Calculus/Book%3A_Active_Calculus_(Boelkins_et_al)/1%3A_Understanding_the_Derivative/1.7%3A_Limits_Continuity_and_Differentiability
https://math.libretexts.org/Bookshelves/Calculus/Book%3A_Active_Calculus_(Boelkins_et_al)/1%3A_Understanding_the_Derivative/1.7%3A_Limits_Continuity_and_Differentiability
https://math.libretexts.org/Bookshelves/Calculus/Book%3A_Active_Calculus_(Boelkins_et_al)/1%3A_Understanding_the_Derivative/1.7%3A_Limits_Continuity_and_Differentiability

Notes
Unit 07: Differentiability of a Real Valued Function
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Unit 7: Differentiability of a Real Valued Function
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Objectives

Students will

e learn about the derivative of the function of function
e explore the property of a differentiable function called Darboux’s theorem
e learn to apply the Rolle’s theorem

Introduction

If the function is made up of functions called composed functions or a composite function, then
what to do in case, if we are interested in the derivative of a composed function! This question will
be answered in this unit. The derivative of function of function is popularly known as the chain rule
of differentiation.

Let f and ¢ be two derivable functions such that y = f(u)and u = ¢(x). Clearly you can see that y
is a function of u and u is a function of x and ultimately y is a function of x.

The range of ¢ must be a subset of the domain of f, then only we would be able to write y =
f(¢(x)) which is also called the composite function. Moreover we know that

(fop)(x) = f(¢(x))
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7.1 Chain Rule of Differentiation
The chain rule is a rule for differentiating compositions of functions.
d
d(¢()

d d
I (o) = fF(¢@0). 7 ()

Or it can be put simply as

d
o F(00) = 1 (¢(0))9'(x)

However, we rarely use this formal approach when applying the chain rule to specific problems.
Instead, we take an intuitive approach. For example, it is sometimes easier to think of the functions
f and ¢ as “'layers" of a problem. Function f is the “outer layer" and function ¢ is the “inner
layer." Thus, the chain rule tells us to first differentiate the outer layer, leaving the inner layer
unchanged (the term f ’(¢> (x)) , then differentiate the inner layer (the term ¢'(x) ) .

The chain rule provides us a technique for finding the derivative of composite functions, with the
number of functions that make up the composition determining how many differentiation steps are
necessary. For example, if a composite function f (x) is defined as

fG) = (goh)(x) = g(h(x))
Then f'(x) = g'(h(x).h'(x)
If the function is defined as f(x) = (gohok)(x) = g(h(k(x)))
Then f'(x) = g'(h(k(x)). h'(k(x)).k'(x)
Let us consider f and ¢ be two derivable functions such that y = f(u)and u = ¢(x). Let
Axbe the change in x

Aube the change in u

Aybe the change in y.
Then we can write
Ay Ay Au
Ax  Au'Ax
lim A_y= lim (&A_u)
Ax->0Ax  Ax-0\Au Ax
lim A_y= lim A_y lim &
Ax—>0Ax  Ax—>0Au Ax—0Ax
dy dy du
dx  dudx

Let us understand the rule better with the following examples:

: Find the derivative of the function V1 + x2.

You can see that the function is a composition of the polynomial function and the square root
function. So we can write this as

u=1+x%y=+u;theny = V1 + x2

Nowd—u=2x
dx
dy 1 1+ 1 1
—:—_z—l 2y~
i A AR
Therefore,ﬂ—d—y du _ _x

dx  du'dx  VitxZ

We can look at the same problem by layers’ point of view. The square root is the outer layer , it has
to be dealt with first and then the polynomial as the inner layer will be considered. We can write it
as
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d dvl+x2 d(1+x?)
—(\/ 1+ xz) = .
dx d(1+x2) dx
1 1
= 5(1 +x2)72.2x
X
V14 x2

: Find the derivative of the function /?
1
Leti—z= u, theny = Vu = uz

1

dy 1 _1 (1+x)5

i Rl Xl ey

du_ 2

dx (1 —-x)?
dy_1(1+x)‘§ 2 (14207
dx  2\1—-x/ "(1-x)2" (1—x)%

; Find the derivative of the function log(cosh x).

dy dlog(coshx) d(coshx)

dx —  d(coshx) =~ dx

= ———.sinhx = tanhx
coshx

; Find the derivative of the function sinh~?! x.

Lety = sinh™1x

= x =sinhy

dx
@ = coshy
dy 1
dx _ cosh y
=+ !
“ V(1 + sinh? y)
=+ !
it

The sign of the radical must be same as that of cosh y.

dy 1
Therefore, = =
Tdx  V1+x?

: Find the derivative of the function esfh ™ "*

Lety = sinh™!x

dy  d(es™7'%) d(sinh~!x)

dx d(sinh-'x) = dx
— esinh™x 1
V1 + x2
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7.2 Extreme Value Theorem

An major application of critical points or saddle points is in determining possible maximum and
minimum values of a function on certain intervals. The Extreme Value Theorem guarantees both a
maximum and minimum value for a function under certain conditions. It states the following;:

If a function f(x) is continuous on a closed interval [4, b], then f(x) has both a maximum and
minimum value on [a, b].

The steps for applying the extreme value theorem are as follows:

1. Establish that the function is continuous on the closed interval.

2. Determine all critical points in the given interval.

3. Evaluate the function at these critical points and at the endpoints of the interval.
4. Look for the largest and the smallest values of the function.

The largest function value from the previous step is the maximum value, and the smallest function
value is the minimum value of the function on the given interval.

@ Find the maximum and minimum values of f(x) =sin x+cos x on [0, 27].
The function is continuous on [0, 27].
f'(x) = cosx —sinx
The critical points are (%,\/E)and (%, —\/f). The function values at the end pointsof the given
interval are f(0) = 1land f(2n) = 1.

Thus, we can see that the maximum value of the function is V2
and the minimum value is —v/2.

E] Find the maximum and minimum values of f(x) = x* —
3x3—1on[-2,2].

The function is a polynomial, therefore is continuous on [-2, 2].
Its derivative is given as f'(x) = 4x3 — 9x2
For critical points, put f'(x) = 0

ordx3 —9x? =0

>x=0,-.
xO,4

Clearly x =% does not belong to the interval [—2,2]. The only
critical point occurs at x = 0. which is (0, —1).

The function values at the endpoints of the interval are f(2)=-9 and f(-2)=39; therefore, the
maximum function value is 39 at x = =2, and the minimum function value is =9 at x = 2.

Note the importance of the closed interval in determining the values to consider for critical points.

7.3 Darboux's Theorem

If f is differentiable on the closed interval [4, b] and r is any number between f ’(a) and f (b), then
there exists a number ¢ in the open interval (4, b) such that f* (c) = .

Proof
Consider the function
h(x) = £() = (F(b) +r(x — b))
Because f (x) is differentiable, it is definitely continuous.
f(b) + r(x — b) is also continuous and differentiable.

~ h(x)is continuous and differentiable on [a, b].
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By the extreme value theorem, there exists ¢ € (a, b) where h(x) has an extreme value . At this point
h'(c)=0

Wehaveh'(x) = f'(x) —r
Sof'(c)—r=0
=>fc)=r

Thus if fis differentiable on the closed interval [a, b] and r is any number between f '(a) and f " (b),
then there exists a number c in the open interval (4, b) such that f* (c) = .

Yy
) Jean Gaston Darboux was a French mathematician who lived from 1842 to 1917. Of his
several important theorems the one we just studied says that the derivative of a function has the
Intermediate Value Theorem property - that is, the derivative takes on all the values between the
values of the derivative at the endpoints of the interval under consideration.

Another interesting aspect of Darboux’s Theorem is that there is no requirement that the derivative
f’(x) be continuous!

The common example of such a function isf (x) = x? siniwhen x# 0and f(x) =0 whenx =0
Withf'(x) = 2x sin% - COS%, x+0

This function is differentiable and hence continuous. There is an oscillating discontinuity at the
origin. The derivative is not continuous at the origin. Yet, every interval containing the origin as an
interior point meets the conditions of Darboux’s Theorem, so the derivative while not being
continuous has the intermediate value property.

7.4 Rolle’s Theorem
TiclE O
If f(x) is continuous an [a,b] and differentiable on (a,b) —
and if f(a) = f(b) then there is some c in the interval (a,b) C _——:B
such that f '(c) = 0. fia) =|fib)
Proof

In the statement of Rolle's theorem, f(x) is a continuous function on the closed interval [a,b]. Hence
by the Intermediate Value Theorem it achieves a maximum and a minimum on [a,b]. Either one of
these occurs at a point c witha <c <b,

Since f(x) is differentiable on (a,b) and c is an extremum we then conclude that f '(c) = 0.
or both the maximum and minimum occur at endpoints.

Since f(a) = f(b), this means that the function is never larger or smaller than f(a). In other words, the
function f(x) is constant on the interval [a,b] and its derivative is therefore 0 at every point in (a,b).

Hence proved

Geometric interpretation

There is a point C on the interval (a,b)where the tangent to the graph of the function is parallel to
the x-axis.

2]
[ ]
{ ]
“& This property was known in the 12th century in ancient India. The outstanding Indian
astronomer and mathematician Bhaskara II mentioned it in his writings.

For instance, considerf(x) = |x| (where |x|is the absolute value of x on the closed interval [-1,1].
This function does not have derivative at= 0. Though f(x) is continuous on the closed interval [-1,1]
there is no point inside the interval (—1,1)at which the derivative is equal to zero. The Rolle’s
Theorem fails here becausef (x) is not differentiable over the whole interval(—1,1).
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Physical interpretation

Rolle’s Theorem has a clear physical meaning. Suppose that a body moves along a straight line, and
after a certain period of time returns to the starting point. Then, in this period of time there is a
moment, in which the instantaneous velocity of the body is equal to zero.

: Verify the Rolle’s Theorem for f(x) = x? in [—1,1]
The function is a polynomial, therefore it is continuous in [—1,1].

The function is differentiable in (—1,1). (You can verify it by ab initio definition or but just checking
that its derivative by the usual rules of differential calculus, exists in (—1,1).

And thirdly (1) = f(-1)

All conditions are getting fulfilled therefore in the interval(—1,1), there must exist at least a point
such that the derivative of the function at that point is zero.

ief'(c) =0
= 2c=0
=>c=0

And 0 € (-1,1)

Thus the Rolle’s Theorem gets verified.

: Verify Rolle’s theorem for f(x) = x(x + 3)e_§in [=3,0].
The function is a product of continuous functions, therefore it is continuous in [—3,0].

The function is differentiable in (—3,0). (solve for the derivative of the function and check if it exists
in (=3,0), It will be!)

f(=3)=f(0)
Therefore there will exist a point ¢, such thatf'(c) = 0.
Orc2—c—-6=0
Orc=-2,3
Thus we got at least a point —2 € (—3,0).

Thus Rolle’s theorem gets verified for the given function in the given interval.

Summary

This unit is an extension of the differentiability to a function of a function. We have understood and
learnt the formulae of the derivatives of elementary functions already.

e In order to differentiate a composite function, of course those formulae will not be
applicable directly. We need to use the chain rule.

o ZU(60) = F(6())$' ()

e A significant result for a differentiable function on a closed interval, given as,
If fis differentiable on the closed interval [4, b] and r is any number between f’(a) and
f7(b), then there exists a number c in the open interval (g, b) such that f* (c) = r.

e Rolle’s theorem states that ‘If f(x) is continuous an [a,b] and differentiable on (a,b) and if
f(a) = f(b) then there is some c in the interval (a,b) such that f '(c) = 0.

Key Words

chain rule, derivative of a function of function, extreme value theorem, Darboux’s theorem, Rolle’s
theorem

Self Assessment

1. The derivative of the function V2 + x2 is
A —=
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Unit 07: Differentiability of a Real Valued Function

2x
C. V2+x2
D x
T V2+x?

d .

2. a(sm(cosx)) =
sin x cos (cos x)
cos (sinx)

—sin x cos (cos x)
sin x cos (sin x)

ONwp

3. If fis differentiable on the closed interval [a, b] and r is any number between f”’ (a) and
f(b), then there exists a number c in the open interval (a, b) such that f’(c) = r. This
statement is of

intermediate value theorem

mean value theorem

Rolle’s theorem

Darboux’s theorem

9N wp

inh—1
eSinh™ x

oy is the derivative of the function

ans

on ® » *

The derivative of log(cosh x) w.r.t. x is
log (sinx)

log (sinh x)

cosech x

tanh x

ON o

d

dx
eS"™ cos x

cos (sinx)
— eSi"¥ cos x
sin x cos (sin x)

esSinx —

ON®Ep o

N

If a function f is

1. continuous on [a, b]
1I. derivable on (a, b)
M. f@=fb)

IV. then there exists one value ¢ € (a, b) such that f'(c) =0
Which of the following are correct for f to satisfy the Rolle’s Theorem?

I, Il and III
I, Il and IV
IL, III and IV
III and IV

SNwp

The function f(x) = x2 in [—1, 2] satisfies the Rolles’s theorem.
True
False

w

The function f(x) = x(x + 3)e_)2_c in [—1, 1] satisfies the Rolle’s Theorem.
True
False

W 0

10. For all the second degree polynomials y = ax? + bx + k, it is seen that the Rolles’ point is
at ¢ = 0. Also the value of k is zero. Then what is the value of b?
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A. 0
B. 1
C. -1
D. 56
11. If f is continuous function on the closed interval [a, b], and N is a number between f(a)

9NwE >

D.

and f(b), then there is ¢ € [a, b]such that f(c) = N is:
The Intermediate Value Theorem

The Mean Value Theorem

Rolle's Theorem

The Extreme Value Theorem

. According to Rolle's theorem, for a differentiable function f(x), if the start point f(a) and

the end point f(b) equal 0 then:

Rolle's Theorem does not apply.

Somewhere between f(a) and f(b) the instantaneous rate of change must be 0.
Somewhere between f(a) and f(b) the function must equal 0.

The function is flat.

Answer for Self Assessment

1 D
6 A
11. A

2 C 3. D 4. C 5 D
7 A 8. B 9. B 10. A
12. B

Review Questions

1. Find the derivative of the function f(x) = sin(\/ x2 — 5)

2. Find the derivative of the function f(x) = 1+xx

3. Find the derivative of the function f(x) = sin h(\/x2 + 5)

4. Find the derivative of the function f(x) = log (cosh e*)

5. Find the derivative of the function f(x) = 2(cosh )

6. Find the derivative of the function f(x) = tan™! x

7. Design a function which satisfies the Darboux’s theorem in certain interval.

8. State and prove the Rolle’s theorem.

9. Learn more about Michel Rolle!

10. Compare the Rolles’” theorem with the Darboux’s theorem.

11. Discuss the applicability of Rolle’s theorem to the function

x“+1, 0<x<1
f6) = { —-x, 1<x<2
Further Reading

George B. Thomas Jr., Joel Hass, Christopher Heil & Maurice D. Weir (2018). Thomas’
Calculus (14th edition). Pearson Education.

Howard Anton, I. Bivensé& Stephan Davis (2016).Calculus (10th edition).Wiley India.

https:/ /www.math.ucdavis.edu/~kouba/CalcOneDIRECTORY /chainruledirectory /Chain
Rule.html

https:/ /www.cliffsnotes.com/study-guides/calculus/calculus/ the-derivative/chain-rule

https:/ /www.cliffsnotes.com/study-guides/calculus/calculus/applications-of-the-
derivative/extreme-value-theorem

https:/ /www.math24.net/rolles-theorem
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Unit 08: Mean Value Theorems

CONTENTS

Objectives

Introduction

8.1 Lagrange’s Mean Value Theorem

8.2 Alternate form of Lagrange’s Mean Value Theorem
8.3 Geometric and Physical Interpretation of Lagrange’s Mean Value Theorem
8.4 Cauchy’s Mean Value Theorem

8.5 Alternate form of Lagrange’s Mean Value Theorem
Summary

Key Words

Self Assessment

Answer for Self Assessment

Review Questions

Further Reading

Objectives

Students will

e learn about the properties of a differentiable function

e understand the basics of Lagrange’s mean value theorem

e  be able to use Cauchy’s mean value theorem

e  Dbe able to interpret the mean value theorems geometrically

Introduction

If a function is appropriately differentiable and continuous then it can lead to much more
information about the nature and behavior of the function. In this chapter we will learn the more
general form of the Rolle’s Theorem and then the general form of the Lagrange mean value
theorem with their physical interpretations.

8.1 Lagrange’s Mean Value Theorem

This theorem is also called the First Mean Value Theorem and allows to express the increment of a
function on an interval through the value of the derivative at an intermediate point of the segment.
Lagrange’s mean value theorem (MVT) states that if a functionf(x) is continuous on a closed

interval[a, b]and differentiable on the open interval(a, b), then there is at least one pointx = ¢ on

this interval, such that/2S@ (b) f @ = f'(c).

Proof
Define a new function
¢d(x) = f(x) + Ax, x € [a, b]
We choose a number A such that the condition ¢(a) = ¢(b) is satisfied. Then
f(a) + Aa = f(b) + Ab

f) - f(a)

A=—
b—a

As a result, we have
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¢u)=f&)+(—592§£32>x

b
The function ¢(x) is continuous on the closed interval[a, b], differentiable on the open interval

(a, b) and takes equal values at the endpoints of the interval. Therefore, it satisfies all the conditions
of the Rolle’s Theorem. Then there is at least a point c in the interval (a, b) such that

$(© =0
It follows that

f'le)+A4=0
or

f1©) = -4
or

! _ fb)-f(a)
fll@)==—-—

(2]

°

b Joseph Louis Lagrange, the greatest mathematician of
the eighteenth century, was born at Turin on January 25,
1736, and died at Paris on April 10, 1813. His father, who
had charge of the Sardinian military chest, was of good
social position and wealthy, but before his son grew up he
had lost most of his property in speculations, and young
Lagrange had to rely for his position on his own abilities.
He was educated at the college of Turin, but it was not
until he was seventeen that he showed any taste for
mathematics - his interest in the subject being first excited
by a memoir by Halley across which he came by accident.
Alone and unaided he threw himself into mathematical
studies; at the end of a year's incessant toil he was already an accomplished mathematician, and
was made a lecturer in the artillery school.

8.2 Alternate form of Lagrange’s Mean Value Theorem

If a function f(x) is continuous on a closed interval [a, a + h]and differentiable on the open interval
(a,a + h), then there is at least one 6 € (0,1) such that w = f'(a + 6h).

Let b — a = h = length of the interval [a, b]

Therefore [a, b] can be written as [a, a + h]
Alsoa<c<a+h

Therefore c can be written as a + 6h where 6 € (0,1).

So, the expression

o f) = f(a) §
=" §
becomes .
0 a ¢ b X
fl@a+h)—f(a)=hf'(a+06h)
or

fla+h)=f(@+hf'(a+6h), 6€(01)
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8.3 Geometric and Physical Interpretation of Lagrange’s Mean Value
Theorem

Geometric interpretation

Lagrange’s mean value theorem has a simple geometrical meaning. The chord passing through the
points of the graph corresponding to the ends of the segment a and b has the slope equal to
f(b) - f(a)
b—a
Then there is a point x = cinside the interval[a, b] where the tangent to the graph is parallel to the
chord.
Physical interpretation

The mean value theorem has also a clear physical interpretation. If we assume thatf (t) represents

the position of a body moving along a line, depending on the timet, then the ratio
%is the average velocity of the body in the period of timeb — a. Sincef’(t)is the instantaneous
velocity, this theorem means that there exists a moment of time ¢ at which the instantaneous
velocity is equal to the average velocity.

Lagrange’s mean value theorem has many applications in mathematical analysis, computational
mathematics and other fields. Let us further note two remarkable corollaries.

Corollary 1

In a particular case when the values of the functionf(x) at the endpoints of the segment[a, b]are

equal, i.e.f(a) = f(b)the mean value theorem implies that there is a pointc € (a, b) such that

fb) ~ f@ _
b—a

and that is the Rolle’s theorem, which can hence be considered as a special case of Lagrange’s mean

value theorem.

f'©) = 0

Corollary 11

If the derivative f'(x) is zero at all points of the interval[a, b] then the functionf (x) is constant on
this interval.

For any two pointsx; and x, in the interval[a, b], there exists a point ¢ € (a, b)such that

fO) —fx) =f' () —x) =0

And this results in

flx1) = f(x2)

: If f(x) = (x—1)(x —2)(x — 3), x € [0,4], find c such that the average rate of change of f(x)
is equal to the derivative of f(x) at c.

Here,

f(0)=-6

fA =6
So, % =3
Also f'(x) =3x2 —12x + 11
According to the statement,

OOy,
3¢c2—12c+11-3=0
6+2V3
Sc=—yp
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: Verify the mean value theorem for f(x) = x%in [a, b]
The function is a polynomial, therefore continuous in [a, b]
f'(x) = 3x%exists in (a,b), therefore the function is differentiable in (a,b).

Since the function is satisfying the requirements of Lagrange’s mean value theorem, there must
exista ¢ € (a, b) such that

f(b) = f(a)
b—a
b3_a3
b—a

b2+ ab + a? = 3¢?

f'@e) =

3c2 =

. b% + ab + a?

3

b2 + ab + a?
ety

: Prove that for any quadratic function px? + gx + r, the value of 6 in Lagrange’s theorem is

c

always %, forany p,q,7,a, h.

Let f(x) = px?+qx +71,x € [a,a+ h]

Clearly, the given function is continuous in [a, a + h]
and derivable in (a,a + h)

Therefore, there exists a 6 in (0,1) such that

fla+h)—f(a) =hf'(a+6h)
Substituting and simplifying,
ph? = 2pOh?

1
= 0=5€(01)

Hence proved

8.4 Cauchy’s Mean Value Theorem

If two functions f(x) and F(x) are continuous on an interval [a, b], differentiable on (a, b) and F'(x)
is non zero for all x € (a, b), then there exists a point ¢ € (a, b) such that

f)—-f(@ f'()
F(b) —F(a)  F'(c)

This theorem is also known as generalized Lagrange’s mean value theorem as it can be seen as a
special case for F(x) = x.

Proof
Here F(b) — F(a) # 0

Define a new function
¢x)=f)+AF(x), x€]lab]
We choose a number A such that the condition ¢(a) = ¢(b) is satisfied. Then
f(a) + AF(a) = f(b) + AF(b)

_f®) - f@

A=~ =F@

As a result, we have
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_ fb) - f(a)
dC) = f(x) + <— m) F(x)

The function ¢(x) is continuous on the closed interval[a, b], differentiable on the open interval
(a, b) and takes equal values at the endpoints of the interval. Therefore, it satisfies all the conditions
of the Rolle’s Theorem. Then there is at least a point c in the interval (a, b) such that

¢'(c)=0
It follows that
f'(c)+AF'(c)=0
or
f'(©) = —AF'(c)
or

f'©)  fb)-f(a)
F'(c)  F(b)—F(a)’

F'(c)#0

Hence the result.

(2]

°

) Augustin-Louis Cauchy was one of the greatest mathematicians
during the nineteenth century. In fact, there are sixteen concepts and
theorems named after him, more than any other mathematician. His life
began in Paris, France on August 21, 1789, and ended at Sceaux, France on
May 22, 1857. His father, Luois-Francois, and his mother, Marie-
Madeleine Desestre, provided him and his siblings a comfortable life.

Cauchy was exposed to famous scientists as a child. The Cauchy family
once had Laplace and Berthollet as neighbors, and his father even knew
Lagrange. In fact, Lagrange had foreseen Augustin's scientific greatness
when he was a child by warning his father to not show him any
mathematical text before he was seventeen years old.

8.5 Alternate form of Lagrange’s Mean Value Theorem

We will see the following result without proof.

If two functions f (x) and F(x)are continuous on a closed interval [a, a + h]and differentiable on the
fla+h)—f(@) _ f'(a+6h)
F(a+h)-F(a) F'(a+6h)

open interval (a, a + h), then there is at least one 6 € (0,1) such that

; If in the Cauchy’s mean value theorem f(x) =e*and F(x) = e ¥, show that ¢ is the
arithmetic mean between a and b.

Here f'(x) = e*
F'(x)= —e7*
By Cauchy’s mean value theorem,

f'@ _ fb) = f(a)
F'(c) F(b)—F(a)

e¢ eb — e

—e~ € e—b —e-a

_eZC — _ea+b

This implies

_a+b
T2

c
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: ShowthatM=cot0, 0<a<9<[)’<%

cosfi—cosa

Looking at the result to be proved, you can see that the left hand side is a ratio of difference of two
functions and Cauchy’s theorem can be used to derive this, provided these two functions satisfy the
requirements of Cauchy’s mean value theorem.

Let f(x) = sinx
F(x) = cosxx € [a,B]
f'(x) = cosx
F'(x) = —sinx
By Cauchy’s mean value theorem we can write,

f® - 1@ _1'®)
F® —F@  F®)

sinf — sina cos @

cosf —cosa —sind
sinfd — sina
——— = —cotf
cosf —cosa
or
sina — sinfs
——— = cot6
cosf —cosa

Hence the result

; Check the validity of Cauchy’s mean value theorem for the functions f(x) = x* and g(x) =
x%on the interval[1,2].

Here
flx) =x*
f(x) = 4x3
g(x) = x?
g'(x) =2x

Both functions are satisfying all the criteria of continuity and differentiability, therefore we can
write

f'(c)  f(b)—f(a)
g'©  gb)-ga
4¢3 p*—at
2¢ b2-a?

2¢% = a? + b?
Herea=1,b=2
Therefore, ¢ = +v/2.5 and V2.5 € (1,2)
Therefore having found at least a value in (1,2) such that

' _ f)-f(a)

0~ 9@’ we can say that the Cauchy’ theorem is valid for the given functions.

Summary

This unit is an extension of the Rolle’s Theorem. Its generalized form can be seen as Lagrange’s

mean value theorem, which further can be generalized as the Cauchy’s mean value theorem.
e Lagrange’s mean value theorem (MVT) states that if a function f(x) is continuous on a
closed interval [a, b]land differentiable on the open interval (a, b), then there is at least one

point x = ¢ on this interval, such that [b)-/(a) (b) f @ = f'(¢c).
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e If two functions f(x) and F(x) are continuous on an interval [a, b], differentiable on (a, b)
and F’(x) is non zero for all x € (a, b), then there exists a point ¢ € (a, b) such that
f) - fla) _ f'(c)
F(b)-F(@)  F'(c)

Key Words

Lagrange’s mean value theorem, Cauchy’s mean value theorem

Self Assessment

X

1. The Lagrange’s mean value theorem is valid for the function f(x) = 5 on the interval[4, 5].
A. True

B. False

2. All points C satisfying the conditions of the MVT for the function f(x) = x3 — xin the interval
[—2,1] are

-1

1,-1

0

1

© 9N w >

For any quadratic functionpx? + qx +r, the value of 6 in Lagrange’s theorem, for any
p,q,7,a,his

. less than 2

. greater than %2

. always %2

9 N0 % >

. can take any value

4. For any quadratic function3x? + 2x + 1, the value of 6 in Lagrange’s theorem is

A. 0
B. 1
C. 05
D. 15

5. Cauchy’s Mean Value Theorem can be reduced to Lagrange’s Mean Value theorem.

A. True
B. False

6. Which of the following is not a necessary condition for Cauchy’s Mean Value Theorem?

A. The functions, f(x) and g(x) be continuous in [a, b]

B. The derivative of g'(x) be equal to 0

C. The functions f(x) and g(x) be derivable in (a, b)

D. There exists a value c € (a, b) such that, (f(b)—f(a)) / (g(b)—g(a)) =f- (c) / g ' (c)

7. Cauchy’s Mean Value Theorem is also known as ‘Extended Mean Value Theorem'.

A. True
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B. False

8. The Mean Value Theorem was stated and proved by

A. Leonhard Euler

B. Govindasvami

C. Michel Rolle

D. Augustin Louis Cauchy

9. The value of ¢ which satisfies the Mean Value Theorem for the function f(x) = x? + 2x + 1 on
[1,2] is

-5/2

-5/2

7/2

7/2

90w p

10. What is the value of ¢ which lies in [1, 2] for the function f(x)= 4x and g(x)= 3x2?
A1l

B.15

C.2

D.25

Answer for Self Assessment

1. A 2. A 3. C 4. C 5. A

6. B 7. A 8. D 9. D 10. B

Review Questions

1. State and prove the Lagrange’s mean value theorem.

2. State and prove the Cauchy’s mean value theorem.
3. Check the validity of Cauchy’s MVT for the functions f(x)= 4x and g(x)=3x2
4. Check the validity of Lagrange’s MVT for the function f(x) = x2 + 2x + 1 on [1,2].
5. Check the validity of Lagrange’s MVT for the function f(x) = x* + 2x + 1 on [-1,2].
6. Explain how the Lagrange’s MVT is a special case of Cauchy’s MVT.
7. Discuss the Lagrange’s MVT in the interval [a, a + h].
8. Discuss the Cauchy’s MVT in the interval [a, a + h].
Further Reading

L!.J George B. Thomas Jr., Joel Hass, Christopher Heil& Maurice D. Weir (2018). Thomas’
Calculus (14th edition). Pearson Education.

Howard Anton, I. Bivensé& Stephan Davis (2016).Calculus (10th edition).Wiley India.

https:/ /www.math24.net/cauchys-mean-value-theorem

https:/ /www.geeksforgeeks.org /lagranges-mean-value-theorem

https:/ /tutorial. math.lamar.edu/classes/calci/ MeanValueTheorem.aspx
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Unit 09: Higher Order Derivatives

CONTENTS
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9.2 The nthderivative for y = eax

9.3 Thenthderivative for y = ax + bm Where m is a Positive Integer More than n
9.4 The nthderivative for y = log(ax + b)

9.5 The nthderivative for y = sin(ax + b)
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Summary

Keywords

Self Assessment

Answer for Self Assessment

Review Questions

Further Reading

Objectives
Students will

e beable to find the n** derivative of elementary functions
e Dbe able to find the nt" derivative of the derived functions
e Dbe able to calculate the nt" derivative of the product of two functions using the Leibnitz

theorem

Introduction 5

By now, we have a good idea about what is differentiation, we

know the technique how to differentiate a function, we have f ‘
derived quite a few rules of the derivatives for some functions /_2‘ A . .
also. Continuing the stride, we now look into how the higher ;
derivatives can be found out in a general manner. We will *
discuss how to find the nth derivative for some specific f /

functions in this chapter. We will see the process of < - .
differentiating a given function successively n times, which is

known as successive differentiation and the results that you get t 3 -
are called successive derivatives.
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The adjacent image gives an idea of the higher derivatives. At first there are coffee beans, then some
changes happen and you see the change in the beans with respect to time (x say), it is the coffee
powder and then some more changes happening to this and you are getting the coffee.

So, we can say that f'(x) is the first derivative and f"”(x) is the second derivative. So this second
derivative has come up by differentiating the first derivative. So, this is the successive
differentiation, you can further differentiate to get the third derivative and so, on. This successive
differentiation is very much important for scientific and engineering applications.

9.1 Successive derivatives

The process of differentiating a given function successively n times are called successive
differentiation and the results of such differentiation are called successive derivatives.

Let the function be y = f(x).

. . . day _ ft
Differentiating it once we get == ()

. T . d(ﬂ) d?y
Differentiating it twice we get —* = —= = f"(x)
dzy
dl—5 3
Differentiating it thrice we get % = % = f""(x)

and so on

For instance, f(x) = x> +sin  x + e?*

f'(x) = 5x* + cos x + 2e?*
f'"(x) =20x3 —sin  x + 4e%*
f""(x) = 60x? — cosx + 8 e2*

and so on.

9.2 The nt"derivative for y = e®*

We will calculate the nt* derivative by generalizing first few derivatives.

y=ae?
y, = aledx
ys = aledx
y, = ae®™

9.3 Then'"derivative for y = (ax + b)™ Where m is a Positive Integer
More than n

We will calculate the n* derivative by generalizing first few derivatives.
y, = ma(ax + b)"™!
y, = m(m — 1)(ax + b)™ 2a?
y3 = m(m — 1)(m — 2)(ax + b)™3a?

Yp=m(m—1)(m—-2)..(m—n+ 1)(ax + b)™ "a"

The nt" derivative can further be written as

Vp = _m (ax + b)™ "a™
T (m—-n)!
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9.4 The nt"derivative for y = log(ax + b)

We will calculate the nt* derivative by generalizing first few derivatives.
y: = alax + b)™?!
y, = —a?*(ax + b)?
y; =2!'a3(ax + b) 73
ya = —3la*(ax + b)™*

Yo = (=)™ 1a"(ax + b) "

9.5 The nt"derivative for y = sin(ax + b)

We will calculate the nt* derivative by generalizing first few derivatives.

T
y; = acos(ax + b) =asin(ax+b+E)

Yo = azcos(ax+b+z) = azsin(ax+b+2—n)
2 2 2
Similarly
3 . 3
Yy3= a sm(ax+b +7>

Vn =a"sin(ax+b+%)

9.6 The nt"derivative for y = cos(ax + b)

We will calculate the nt* derivative by generalizing first few derivatives.

T
y1 = —asin(ax + b) = acos (ax +b +E)

Y2 = —azsin(ax+b+z) = azcos(ax+b+2—n)
2 2 2
Similarly

3 3

Yy3= a cos(ax+b+—)

Y, =a"cos(ax+b+E)
n 2

9.7 The nt"derivative for y = e®sin(bx + ¢)

y; = a e sin(bx + ¢) + b e* cos(bx + ¢)

= e (asin(bx + ¢) + b cos(bx + c))
Here substituting a = r cos 8, b = r sin 8 in the above expression.
y1 = e®r (cos 8 sin(bx + ¢) + sin 6 cos(bx + ¢))
=re®™sin(bx +c+0)
Similarly
v, = 12e%sin (bx + ¢ + 26)

Yn = r"e™ sin(bx + ¢ + no)
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wherer = VaZ + b2 and tan @ = 2

a

Therefore, y, = (a® + bz)feax sin (bx +c+ntan™ (§)>

9.8 The nt""derivative for y = e®*cos(bx + ¢)

v, = —b e sin(bx + ¢) + a e™ cos(bx + ¢)
= e®™(—b sin(bx + ¢) + a cos(bx + c))
Here substituting a = r cos 8, b = r sin 8 in the above expression.
y1 = e®r (—sin 6 sin(bx + c) + cos 6 cos(bx + ¢))
=re*cos(bx +c+9)
Similarly

v, =12e%cos (bx + ¢ + 26)

Yp = r"e™ cos(bx + ¢ + nb)

wherer = VaZ + b2 and tan =2

a

Therefore, y, = (a? + b?)ze** cos (bx +c+ntan™! (§)>

9.9 Determination of nt® Derivative of the Rational Functions

To calculate the nt* derivative of a rational function, we can decompose it into partial fractions. We
may use the De Moivre’s theorem also if the situation demands.

: Find the nt"* derivative of

1-5x+6x2"
Now here the given function is a composite function. We can work out on the function to write it as
an elementary function whose n‘" derivative is known.

Lety = Tisxz
1
T a-30-20
3 2

1-3x 1-2x

Now these two expressions are of the form ﬁ. Working out on the n* derivative of this function
(-1)"nla™

we get (axtpy

Using this general formula, we can write
3 n+1 2 n+1
=n! -
Yn =10 [(1 - 3x> (1 - 2x> ]

: Find the nt" derivative of sin 6x cos 4x

Using the trigonometric identities the given function can be written as y = sin6xcos4x =
%(sin 10x + cos 2x)

Applying the direct result of the sine and cosine functions, we get
1 nm nm
— _ n i n P
Vo = 2(10 sm(10x+ 2 ) +2 cos(2x+ 2 ))

2
: Ify=x+tanx,showthatcoszx%—2y+2x=O
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We can find the first and second derivatives of y and on substituting them in the left hand side, you
can easily get the result.

9.10 Leibnitz Theorem

If u and v are functions of x such that their nt"? derivativesexist, then the n®* derivative of their
product is given by

W)y = upv + 1C up_ vy + 5C U vy + -+ FC Uy v + -+ upy,

whereu, and v, represent the rt" derivatives of u and v respectively.

d? d
I (w) = a(uv1 +vuy) = uyv + 2uyv; +uv,

and continuing in the same manner, the ntt derivative can be obtained as

n
m(uv) = Wv)p = upv + 1C Upy_1v1 + 3C Uy + -+ C Uy vy + -+ Uuvy

Let us see some examples to understand the theorem better!

: Find the nt" derivative of x log x.

Here we can see the given function as a product of two functions and Leibnitz theorem can be
applied.

Letu =logx

1
Then u, = ;

1
uz _x_z
2
Us F
2.3
Uy = _X_4
D n-1)!
Un =5
Letv=x
V= 1
Uy, = 0
V3 = 0
v, =0

By Leibnitz theorem,
Wv)p = upv + 1€ Up_1v; + 5C Up_V5 + -+ FC Uy U + -+ UV,

_1\n=1(4y _ =20
(xlog), = =2 xnffll D nC 1)xn_(1n 2)!

(D)2 (m-2)!
=

; Find the nt" derivative of x2e3*sin4x
Let u = e3*sin4x and v = x?

By Leibnitz theorem,
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W)y = upv + 1€ uy_qvy + 5Cuy vy + -+ FC Uy v + - +uv,

4
(x?e3*sin4x), = e3*5" sin <4x +ntan™! (§)> x% 4+ n e3*5" 1sin (4x

(n—-1)
2

+(m—1)tan?! i) 2x) + r e3*5™" 2sin (4x + (n — 2) tan_lé) 2
3 3

The right hand side expression can be simplified for a concise form.

: If y = tan~! x, show that (1 + x2)y,42 + 2(n + Dxyne1 + n(n + Dy, = 0. Also find ¥, (0).
Here y =tan"1x

1
1+ x2

1=

>1+x)y, =1
Differentiating both sides w.r.t. x, we get
A+x3)y, +2xy; =0
Differentiating ‘n’ times w.r.t. x, we get
(A +x2)Ynsz +2X N Ynsg + 00— DYy + 208 Ynys + 1Y) =0
(1 +x)ynsz + 2x(+ Dypeq + 0+ Dyp = 0

which is the required expression to be proved. Now in order to deduce the second part, let us put
x = 0 in the expressions of y, y;,y, and y,;,, we get

y(0)=0
y(0)=1
y2(0) =0

Yn+2(0) = —n(n + 1)y,(0)
From this recursion formula, higher derivatives can be obtained.
y3(0) = —1.2.y;(0) = —2.1 = —2!
y4(0) = —=2.3.7,(0) =0
¥5(0) = —3.4.y5(0) = —3.4.(-2) = 4!
¥6(0) = —4.5.,(0) =0
¥7(0) = =5.6.y5(0) = —5.6.4! = —6!

Y2n+1(0) = (=1)™(2n)! and y,,(0) =0

This expression shows that all the even derivatives of the given function are zero at x = 0 and the
odd derivatives are given by y,,.1(0) = (=1)"(2n)!

Summary

This chapter is about the higher derivative of a function. We also learnt about how to find the nth
derivative of the product of two functions.

e The process of differentiating a given function successively n times are called successive
differentiation and the results of such differentiation are called successive derivatives.
e If u and v are functions of x such that their nt" derivatives exist, then the nt"* derivative of
their product is given by
W)y =upv + TC up_ vy + 5C U vy + -+ FC U0 + -+ upy,

whereu, and v, represent the ‘" derivatives of u and v respectively.
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Keywords

Successive differentiation, higher derivatives, Leibnitz theorem

Self Assessment

w

SN = >

-~

&

o0

oON®p N

oON w

SEOEC IS

oNnwp @

oNw» o

The derivative of the function V2 + x2 is

X

% (sin(cosx)) =
sin x cos (cosx)
cos (sinx)

—sin x cos (cos x)
sin x cos (sin x)

If fis differentiable on the closed interval [4, b] and r is any number between f’ (a) and

f 7 (b), then there exists a number c in the open
statement is of

intermediate value theorem

mean value theorem

Rolle’s theorem

Darboux’s theorem

inh—1
eSinh™ x

V1+x?

is the derivative of the function

e ans
e

The derivative of log(cosh x) w.r.t. x is
log (sin x)

log (sinh x)

cosech x

tanh x

d .
& psinx —

dx
st cos x

cos (sinx)

—eS"™ cosx

sin x cos (sin x)

The Leibnitz theorem is about

the n‘" derivative of the sum of two functions

the n** derivative of the difference of two functions
the n'" derivative of the quotient of two functions

the nt" derivative of the product of two functions

interval (a, b) such that f’(c) = r. This
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8. Which of the following is correct?
A, (W), = upv + TCup_1vy + %Cuy vy + %Cuy_3v3 + o+ Huy v+ U v,
B. (uv), =u v+1Cuy_1v; +%Cup_»vy + SCuy_3v3 + ...+ FCup_ v + ..+ u vy,
C. (uv), =uyv + 1Cup_1v1 + 5Cuy_5vy + 5Cuy_3v3 + oo+ HCUp_, v + o+ u v
D. (uv), =u v+1Cuy_1v; + %Cup_»vy + SCuy_3v3 + ...+ FCup_ v+ ..+ vu
9. Letf(x) = ls:z; The first derivative of f(x) at x = 0 is given by
A.
B. 0
C. -1
D. 2
10. The number of terms in the nt" derivative of x?e3*sin 4x are
A1
B. 2
C. 3
D. 4
11. Fory = tan™'x,(1 + x®)yp4p + 2(n + Dxy,4q + n(n + 1)y, = 0, Then y5(0) is
A 0
B. 1
C 2
D. 2
1o, A gmsine _
x|
A. —e ™ cosx
B. cos (sinx)
C. —e’"™cosx
D. sinx cos (sinx)

Answer for Self Assessment

1 D
6 A
11. D

2. C 3. D 4. C 5.
7. D 8. A 9. A 10.
12. A

Review Questions

1.
()
(i)
2.

Find the first three derivatives of the following expressions w.r.t. x
x%+a

x+a

8x* + 3.8x3 —%xz +x-7
If a body move according to the law

s =12 — 4.5t + 6.2t>

find its velocity and acceleration when t=4 seconds, s being in feet. Is the acceleration the

same for all values of t?
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3. Find the nt*derivative for y = e**cos(bx + c)

4. Find the nttderivative for y = e**sin(bx — c)

5. Find the n**derivative for y = tan™! %

6. Find the n*tderivative for y = =

7. State and prove Leibnitz theorem.

8. Ifl, = %(x” logx), prove that I, = nl,_; + (n — 1)

9.  Find the value of n*derivative for y = e™s" " "*for x = 0.

10. If y = "% prove that

(1 = x)Ynsz = @n+ Daxypsr — % +a®)y, = 0

Further Reading

LL]

George B. Thomas Jr., Joel Hass, Christopher Heil& Maurice D. Weir (2018). Thomas’

Calculus (14th edition). Pearson Education.

Howard Anton, I. Bivensé& Stephan Davis (2016).Calculus (10th edition).Wiley India.

http:/ /www.calculusmadeeasy.org/7.html

https:/ /www.math24.net/leibniz-formula
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Unit 10: Maclaurin’s and Taylor’s Theorems
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Introduction
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105  Taylor’s Theorem in Finite form with Cauchy forms of Remainder
Summary

Keywords

Self Assessment

Answer for Self Assessment

Review Questions

Further Reading

Objectives

Students will be able to

e expand the functions using Maclaurin’s theorem

e expand the functions using Taylor’s theorem

e apply the Taylor’s theorem in finite form with Lagrange form of remainder
e apply the Taylor’s theorem in finite form with Cauchy form of remainder

Introduction

In calculus, Taylor's theorem gives us a polynomial which approximates the function in terms of
the derivatives of the function. Since the derivatives are usually easy to compute, these polynomials
are also easy to compute.

A simple example of Taylor's theorem is the approximation of the exponential function e* near
x = 0. In other words, the exponential function can be approximated by an infinite polynomial
given as follows
2 43 X0
x = et
e¥=l+xtr gttt

For a derivable functionf, we can say that f’ exists in certain neighborhood of point ¢ and this
further implies that f is defined and is continuous in a neighborhood of c.

Similarly, if ' has derivative at ¢ has the same meaning as f has a second derivative at c. And this
further implies that f' is continuous at c.

In general if f™1(x) exists in the neighborhood of ¢, then the derivative of f*~1(x) at c, if exists, is
called the nt" derivative of f at ¢ and is written as f ™ (c).

10.1 Generalized Mean Value Theorem- Taylor’s Theorem

If n = 0is an integer and f is a function which is n times continuously differentiable on the closed
interval[a, x] and n + 1 times differentiable on the open interval(a, x), then
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f 1(a) i 2(;1)

Here, n! denotes the factorial of , and R, (x) is a remainder term, denoting the difference between
the Taylor polynomial of degree n and the original function. The remainder term R, (x)depends on
xand is small if xis close enough to a. There are several expressions available for it.

fr(@

(x—a)?+-+
n!

f) = fla) +

(x—a)"+R,(x)

We can state the theorem in the following form also.

If a function f is such that

(@) the (n — 1)* derivative ™! is continuous in [a, a + h],
(if) the nt" derivative f™ exists in (a, a + h) and
(iii) p is a given positive integer

Then there exists at least one 8 € (0,1) such that

h"™(1-0)""P

'(a) ""(a) ™(a)
fla+hn) =f@+hE2+ 24 pn D0y o[ (a+ 6h) (1)
Condition (i) assures that f, f, f"', ..., f*~* are continuous in [a,a + h].
Let a function ¢(x) be defined by
+ h—x)? +h—x)"1
600 = F() + @+ h— 00+ EATD iy e O T s L da b=

2! (n—1!
— @

whereA is to be determined such that

$(a) = pla+h)

Therefore,

¢(x)is a continuous in [a,a + h], derivable in (a,a + h) and ¢(a) = ¢(a + h). So, Rolle’s theorem
suggests that there must exist at leasta 6 € (0,1) such that

¢'(a+6h)=0
Now P'x)=f ) +@a+h—x)f"0)—f'(x)+ (aH;—I_X)Zf”'(x) —(@a+h=x)f"x)+-+
7((1?::’3!”_ fre - 7(71_1)8?;@"_ fr1(x) —pA(a + h—x)P~!
(a+h—x)"1 n
"(x) = - = = —x)r-1
p'x)=0= =D frx) =pAla+h—x)
+h—a—-0n)"!
&'(atom) =0 (nf o ) F™(a+6h) = pA(a + h —a — OR)P~
(h—6n)" "
- < = — r-1
=D f*(a + 6h) = pA(h — 6h)
L g ra-orr "(a+6h), 1-0+0, h=#0
T (m=Dp fila ! 0 *
Substituting A in the expression (2), we get the required result.
Corollary

Let x be a point of the interval [a,a + h]. Let f satisfies the conditions of Taylor’s theorem in
[a, a + h], thus it satisfies the condition for [a, x] also.

Writing a + h as x or h as x — a in the expression (1), we get

f'(@ (@) S k-t -e)nTP
1 ZTRR Gy el e T

f)=f@+(x—a) + (x —a)?

—a))

f*(a+6(x

~ @)

where0 < 6 < 1 and the expression (3) holds for all x € [a, a + h].

10.2 Maclaurin’s Theorem

Substituting a = 0 in (3) i.e. for all x € [0, k]
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) = fO + 5P+ (0 L2 4ot rt L0 DD gy o
which holds when

(i) f™~1 is continuous in [0, h]

(ii) f™ exists in (0, h) and

(iii) pis a given positive integer.
E] Show that

*= 1+x+x—2+£+ ---+L_1+£e9x
2! 3! (n=1! n!
Heref(x) = e*
f™1(x)is continuous in [0, h]
f™(x)exists in (0, h)
Letp = nin (4). Then,
f10) = e*f'(0) = 1
f700 = eXf1(0) = 1
£ G0 = () =1
frte) =e*fr i) =1
frGx) = e*f(6x) = 6x
Therefore, fromthe expression (4), we get
x% %3 X"y
e*=T1+x+or+o+ -~~+m+me9’f

Hence the proof.

10.3 Taylor's Theorem in Finite form with Lagrange form of
Remainder

From the previous section we know, Taylor’s theorem states that, if a function f is such that

(i) the (n — 1) derivative f™~! is continuous in [a, a + h],
(if) the nt"* derivative f™ exists in (a,a + h) and
(iii) p is a given positive integer
Then there exists at least one 8 € (0,1) such that
f' (a) f”(a) ff@ h"@-6)r"r
h) = h + h? + A" n 6h
fla+h) =f@+ T TR AL GRA0)
The term ,11.((:__—5))'1:; f™(a + 6h) is known as the remainder after n terms, better known as Taylor’s

remainder R, after n terms due to Schlomilch and Roche. In this expression if we substitute p = n
n
R, = % f™ (a + 6h)is the remainder after n terms due to Lagrange.

Therefore the Taylor’s theorem with Lagrange’s form of remainder is given as,

f'(@) f”(a) fr (@)

f(a+h)—f(a)+h—+hZ +hn1( —Di

= f"(a +6h)
or

[0 = f@+ @ -l2+ (- L0t ot - LD B a4 02— )

&The expression of f(x) in (5) will fail for those values of x for which

(i) f(x)or any of its differential coefficient becomes infinite.
(ii) f(x) or any of its differential coefficients is discontinuous and

92
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(i)  limpoe Ry # 0 ie. lim ’;— fr(a+6h) #0
n—-oo N

Similarly the expansion of f(x) by Maclaurin’s theorem is not valid for the values of x for which

() f(0) or any of f'(0), f"(0), ... is not finite
(ii) f(x) or any of its derivatives is discontinuous as x passes through zero and
(i) limye Ry # 0 ie. lim £ f7(0x) # 0

n—-oo N

104 Maclaurin's Power Series for a Given Function

Let a function f possesses continuous derivatives of all orders in the interval [0, x], so that we have

FG) = £0) +3f0) + o s f10) 4 Ry
whereR,, is the Lagrange form of remainder.
Therefore f(x) = £(0) +xf'(0) + -+ X F7(0) + - — (6)

is valid for all values of n for which lim,_,, R, = 0. The expression (6) is called Maclaurin’s infinite
series for the expansion of f(x) as power series.

'_’ Consider the function f(x) = e*
f"(x) =e*Vx€eR
The Lagrange’s form of remainder after n terms is
x™ x™
Ry, =—f"(6x) = —e®*where 0 <8 <1
n! n!
Now consider the caseif x > 0
Ox < x = e* < e*
Andifx <0

Then-x >0
Therefore 8 > 0

>—60x>0
e >e
sef* <1
Assuming that for all x
lim;, 00 G (The proof is given after the next example)

n!

Therefore R™ > 0asn »> o Vx €ER

2 n
e"=1+x+%+---+%+---isvalidforallxER

: Consider the function f(x) = sinx
) nm
frx) = sm(x +7) VXER
Lagrange’s form of remainder
xn

xm nmw
—_ n — i
R, = oy f™(6x) = —ysin (Bx +—2 )

X nm <x"
|R,| = ’F‘ |sm(0x+7)| =
andR, -0 asn—> oV xER

Thus
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V xER
x3 x5
sinx = x — 5' -
’?

:.- x"

= We can prove lim,,_, - = 0V x € Ras follows:
Letanzi—:lv x€Randn€eN
Ifx=0 lim,ena,=0
Ifx >0thenfore N,a, >0
For sufficiently large n (say n = x)

1 x
a, < a,

a =
LT 4+ n+1

This implies that after certainn, a,; < a,
Since a bounded monotonically decreasing sequence of real numbers must have a limit,

a=lima, = lima,4
n—oo n—oo

x
= lim lim a
n-oon + 1 n-w
>a=0
If x < 0, we introduce a(—1)™ factor
n 1\, n
ie. ):l—l = % where (—1)" is bounded and % tends to zero.

& {b, }is bounded and a,, — 0, then lim,,_,,, a,b, =0

XM

Therefore limn_,w; =0V x€R

Hence proved

10.5 Taylor's Theorem in Finite form with Cauchy forms of
Remainder

The Taylor’s theorem states that, if a function f is such that

i e(n— erivative f™~! is continuous in [a, a ,
i the (n — 1) derivative f* 11 ti in [a,a + h]
(ii) the nt"* derivative f™ exists in (a,a + h) and

iii p is a given positive integer

is a given positive integ

Then there exists at least one 8 € (0,1) such that

f'(a) f”(a) S @ Rt —-e)nP
f(a+h)—f(a)+h—+h2 “+h " =Dy

f"(a + 6h)

R(1-6)"P
n-1)'p
remainder R, after n terms due to Schlomilch and Roche. In this expression if we substitute p = 1

The term f™(a + 6h) is known as the remainder after n terms, better known as Taylor’s

pn-1(1-g)n-1

Ry = (n—-1)!t

f™ (a + 6h)is the remainder after n terms due to Cauchy.

Therefore the Taylor’s theorem with Cauchy’s form of remainder is given as,

f'@ f"(a) ff @ Rt -t

f(a+h)—f(a)+h—+h2 o TR e T

£ (a+ 6h)

or

_ f'(a) il (u) M Na) | (x-=a)"'(1-6)""
fO=fl@+x-a)7=+x-a? 5=+ + k- T+ =T L (a+6(x —

0 ©)
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Expansion of (1 4+ x)™, m € R
(1 + x)™possesses continuous derivatives of every order when 1+ x > 0 i.e. x > —1. Also
f"x) =mim—-1D(m-2)..(m—-—n+ 1A +x)™™"

n

X -1¢n
Rn=m(1—9) Lfn(ox)

n

= ﬁu o)™ mm = 1) ..(m —n + (1 + 6x)™"
mm—-1)..(m—-n+1)/1-6\""! .
=x" (n— D! (1+0x) (1 -+ 6"
Let|x| <1
>-1<x<1
Now -1 < x

= —0 < 6x
>1-60<1+4+6x
1-6 <1
=
1+ 6x

1—0 n-1
1+6x)

:0<(

Letm — 1 > 0, we have
0<o<1

=>0x<x
>0x+1<x+1
Moreover x > -1 = x <1
=2>60x+1<2

Therefore
0<Ox+1<2
> 0<(@x+1)m<2m < 2m
Letm —1 < 0, we have
Ox > —|x|
=2>60x+1>1-|x|

>0@x+1)™ < (- xP™?

m(m-1)..(m-n+1)x™

(-1 =0

We know, lim,,_,

~“R,—>0asn- xwiflx| <1

m(m-1)

@A+ =1+mx +Tx2 +-when—-1<x <1

Expansion of log(1 + x)
(1 + x)™possesses continuous derivatives of every order when 1 + x > 0 ie. x > —1. Also

(D" (- D!

f") = —q

Taking Cauchy’s form of remainder
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xn
(n-1)!
x™ D 1(n-D!

" m-1)! O 1+ 6x)n

-1
(1)1 1 (1—6)”
1+6x\1+0x

R, = 1= 1f"(6x)

Let|x] <1

>—-1<x<1
=>-0<60x<86

=21-0<1+0x<1+86

1-06
1+ 6x

1_g\1!
= <1
(1+6X)

Ox > —|x|

=0< <1

Also we have

=>1+06x>1-—|x|

1 < 1
ﬁ— ——
1+6x 1-—|x|

Therefore, for all n

1
[Ry| < |x|n1_ x| —»0asn— o
Therefore, when |x| < 1,
x2 3 (=1)nxn1
log(1+x) —x—7+?—~~+?

By taking the Lagrange’s form of remainder we may show that the infinite series expansion is valid
for x = 1 also.

For the formal expansion of a function, we will follow the following steps:

Calculate the nt"* derivative of the function
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4

Check the lim,_,,, Ry,

4

If lim,,_,, R,vanishes, then the function can be
expressed as a power series

If f(x) can be expressed as an infinite Maclaurin’s series, then

x2

f@) = £(0) +2xf"(0) + o f(0) + -

: Canf(x) = {%; x # (()) be expanded by Maclaurin’s theorem?

X =
In this problem we need to check all the conditions first regarding the function’s continuity anf
differentiability on its domain.

At the point x = 0, we can observe the limit of the function as

T 1
)ltl_r}(l)f(x)=}61£1?)6X—}61£1?)(1+;+m+@+"')—00

As the limit of the given function is not defined at x = 0, the continuity of the function can not be
established, so the given function can not be expanded by Maclaurin’s theorem

: Can f(x) = vx be expanded by Maclaurin’s theorem?
Clearly the function is a continuous one on its domain. Let us check the differentiability also.

We have

, 1 1 1
f'x) = Ex 2= m
P = —qri= -
Clearly £'(0), f"(0), ... do not exist.
@ Use Maclaurin’s theorem to expand y = log(1 + e*) = —-—--- 1)

e’ =1+¢e*

Differentiating both sides w.r.t.x
ey, = e —©

Differentiating again both sides w.r.t.x
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e’y +e¥yf = e* -~ (3)
Differentiating again both sides w.r.t.x
eVys + 3y,y,eY + eVy3 = e¥ - (4)
Differentiating again both sides w.r.t.x
€7y +y3e?y1 +3(172671 + € (y1ys +¥3)) + €¥3y2y, +yiery; = e* — (5)
Putx = 0in (1), (2), (3), (4) and (5)
1) = () =log2

1 1
2 :"(}’1)0:9107:;
log2 log2 1)?
(B) =e%y,+e (E) =1 )
) (J’z)o=z
4) :2y3+3——2+2§=1
2 +3+1—1
V3 274"
(y3)o=0

~ By Maclaurin's theorem
X2
y=0)ot+x 1o+ 2 2)o + -

log(1 +e*) =1 2+ sxmx? -t 4
og e*) =log 2x 8x 192x

: Can f(x) = {9(;‘_2 X ¢00 be expanded by Maclaurin’s theorem?
X =
Let f(x) = e_x%,x +0
Let us look into the differentiability of the function at x = 0
fO+h) —f(0)
h

A SO = iy

1

e n?

Substituting% = 6, we can write

MO =

1/6
=hn

— ]' 1
T 62520607

fO-hm)—-f(0)
—h

A SO = iy

=y =0
SFO) =0

Also, f'(x) = —xzz e Zx+0
2 1
i ! =]lim—e *?
}clir(l)f &) }clir(l) X3¢

Substitutingi =t
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—O—f(O)

Therefore the function is contmuous atx = O

If we find the higher derivative of f(x)for x # 0, we will get e multiplied by a
polynomial in %

Therefore, higher derivatives of f(x)will be zero at x = 0.

So, the function possesses continuous derivatives for every value of x.
By Maclaurin’s theorem

n—1
f(x)—f(0)+Xf(0)+ f”(0)+ oo 1),f"‘l(O)H‘?n
X2 n-1
and soe” xz—0+xO+2 0+ - (n—l)!' 0+R,

1
ieR, =e *
R, does not approach to zero as n approaches to infinity.
Therefore, f(x) can not be expanded by Maclaurin’s theorem

Summary

In this unit, we learnt about the finite form of Taylor’s and Maclaurin’s theorem.

e The Taylor’s theorem states that, if a function f is such that

(@) the (n — 1)* derivative ™! is continuous in [a, a + h],
(if) the n* derivative f™ exists in (a, a + h) and
(iii) p is a given positive integer
Then there exists at least one 6 € (0,1) such that
f'(@ f”(a) f"(a)
fO)=fl@+x-a)—7—+&- a)® +ot (x—a)t
G-ara-0"r
Wf (a+9(x—a))
e The Taylor’s theorem with Lagrange’s form of remainder is given as,
" n-1 "
fla+h) =fla)+ hf (a) hzf (a) +hn 1{ (1‘3 +—f(a+0h)

e  The Taylor’s theorem with Cauchy s forrn of remainder is given as,
f' (a) f”(a) ffli@ rta-ent
fla+h)=f(@+h =1 m= D
e  For the Maclaurin’s theorem with Lagrange and Cauchy’s form of remainder,
substitutea = 0 and h = x in the above expressions.

+ h? 4o+ At

£ (a+ 6h)

Kevywords

Taylor’s theorem, Maclaurin’s theorem, Lagrange’s form of remainder, Cauchy’s form of
remainder, Taylor’s series, Maclaurin’s series

Self Assessment

If a function f is derivable then which of the following is true?

f is defined

f is defined and is continuous in a neighborhood of a point c

f is defined and is uniformly continuous in a neighborhood of a point ¢
none of these

SRR

Expansion of function f(x) is?

FO) +Zf(0) +Z£7(0) ++ - £7(0)
1+ 2£1(0) +2 £7(0) 4+ £ (0)
£ =Zf1(0) +Z£(0) =+ £7(0)
FO+ZF@+EF7@) + -+ 2 ()

SEECIE I
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The necessary condition for the Maclaurin expansion to be true for function f(x) is that
f(x) should be continuous

f(x) should be differentiable

f(x) should exist at every point

f(x) should be continuous and differentiable

SEeREEY

The expansion of f(a+h) is

f@ =L @+% @) -+ E )
M@+ 2@+ @+ + 2 )
FR) +2F/ )+ f () + o+ S ()
f@+2f @ +2 @)+ + 2 fra)

SEESEE- T

The expansion of eS™ is
x , x*  x*
1+ 1 + - + ry + e

SEECEE- T
=
|
|
+
|
+
|
+

>

The (n + 1)™ term in the generalized mean value theorem or the Taylor theorem for the

function f(a + h) is
RM(140)P L,
oD f™"(a+6h)

A (1-6)"P
Ty f™(a+ 6h)
A (1-6)"P
oD f™(a + 6h)

A (1-6)""P
T 1 @70

o N >

In the expression hn((:__—f))!:p
6 €[0,1]

6 € (0,1)

6 can take any value

60>0

f™(a + 6h) which of the following is true for the 6 value?

ONwH N

h"(1-6)""

. P .
The expression D f™(a + 6h) is known as

Remainder term
Remainder after n terms
Remainder after n+1 terms
Remainder after n-1 terms

oONwE @

neq1_gyn-r
% f™(a + 6h) is due to

Schlomilch

Lagrange

Schlomilch and Roche
Cauchy

ON®p ©

Juny
o

. :—T f"(a + 6h) is the remainder after n terms due to
Schlomilch
Lagrange
Schlomilch and Roche
Cauchy

onwp

11. The Taylor’s theorem with Lagrange’s form of remainder for a function f(x) will fail for
those values of x for which

I f(x) or any of its differential coefficients becomes infinite
1I. f(x) or any of its differential coefficients becomes discontinuous
1I1. The remainder term is non-zero as n — oo
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A. Onlyl is true
B. Only IIis true
C. IIand III are true
D. 1,1l and III are true
. A 1(1-6)" 1 .
12. The expression e f™(a+ 6h) is known as
A. Remainder term
B. Remainder after n terms
C. Remainder after n+1 terms
D. Remainder after n-1 terms
13. % £(a + 6h) is due to
A. Schlomilch
B. Lagrange
C. Schlomilch and Roche
D. Cauchy

1
14. The function f(x) = {e"' x # 8 can be expanded by Maclaurin’s theorem.

0, x=
A. True
B. False
15. The function f(x) = Vx can be expanded by Maclaurin’s theorem.
A. True
B. False

Answer for Self Assessment

1 B 2 A 3 D 4 D 5 D
6 C 7 B 8 B 9 C 10. B
11. D 12. B 13. D 14. B 15. B

Review Questions

Expand cos x by Maclaurin’s series.

Expand log(1 + x) by Maclaurin’s theorem.

Expand log(x + a)in the powers of x by Taylor’s theorem.
Expand logsin x in powers of (x — 2).

Expand sin™!(x + h) in powers of x till the power of x°.
Expand tan™! x in the powers of (x - %)

Differentiate in the Taylor’s theorem with the Lagrange’s and Cauchy’s form of remainder.
Differentiate in the Maclaurin’s theorem with the Lagrange’s and Cauchy’s form of
remainder.

PN S PN

eX
e

9. By Maclaurin’s theorem, find first three non vanishing terms in the expansion of —

o

10. Expand e* cosx in the form of a power series.
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Unit 11: Maxima and Minima of a Function
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Objectives

Students will be able to

e  derive necessary and sufficient condition for extreme values
e apply the first derivative test to find maxima and minima
e apply the second derivative test to calculate the maximum and minimum value of a

function

Introduction

In this unit, we will see one very interesting application of calculus, and it is called the maxima and
minima of a function. When one says, Mount Everest or Mariana Trench, what comes to your
mind? You think of a high point on the surface of Earth, and a low point on the surface of Earth. So
if you can draw the Earth's topography, the highest point will refer to a place which is a mountain,
and that gives you the idea of the maximum height for any object on the earth. Similarly, the
minimum height or you can say the maximum depth is at the Mariana Trench, so these ideas of
maximum and minimum are inherently there in our daily lives. We can see one more example to
understand the topic better.

The adjacent graph is about a cricket match between Australia and India. The blue one is
representing the run rate of India and the green one is representing the run rate of Australia, with
respect to the overs. By mathematical ~ ® ' ' ' T anetrale
modeling, we can write the run rate in =~ 7 Inclz L
terms of overs, i.e. a function can be
framed or we can define some formula
in such a way that run rate, say 'y, s -
can be written in terms of ‘x” where x

is the overs.

Here the graph is available, on the
basis of the data of the actual match. 24 3
In the first over the run rate for the
Australian team was two only. And in
the first over the run rate for Indian o i 5 5 P s

OrvREs
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team was seven. In the very first over, India's run rate was maximum and then it fell down, and
then it rose up at a particular over (which one?), and then it rose then fell down then even more
down then it was constant for some time, and you can see the minimum run rate was at 11th over.
Just by looking at the graph it is quite clear, that for Australia, the minimum run rate was at the
second over, and the maximum was around at 10th over. So this is how, if we have a function we
can draw it and then from there, by just looking at the graph, we can tell about the maximum and
the minimum value of the function. But there should be a mathematical technique to deal with it,
without plotting the graphs! In this unit, we will look into how one can find the maximum and
minimum value of a function of one variable.

A high point is called a maximum (plural maxima).A low point is called a minimum (plural
minima).The general word for maximum or minimum is extremum (plural extreme).We say local
maximum (or minimum) when there may be higher (or lower) points elsewhere but not nearby.

Local maximum and minimum points are quite distinctive on the graph of a function, and are
therefore useful in understanding the shape of the graph. In many applied problems we want to
find the largest or smallest value that a function achieves (for example, we might want to find the
minimum cost at which some task can be performed) and so identifying maximum and minimum
points will be useful for applied problems as well.

11.1 Absolute and Local Maximum / Minimum

A function fhas an absolute maximum (also called global maximum) at c if f (c) = f (x) for all x in its
domain, D. The value f (c) is called the maximum value of f. A function fhas an absolute minimum
(or global minimum) at c if f (c) < f (x) for all x in its domain. Such a value f (c) is called the
minimum value of f. The maximum and minimum values of f are called the extreme values of f.

Whereas a function f has a local maximum (or relative maximum) at c if f (c) = f (x) when x near c.
That is, f (c) 2 f (x) for all x on some open interval containing c. Similarly, f has a local minimum (or
relative minimum) at c if f (c) < f (x) when x near c.

Before proceeding, let’s note two important issues regarding this definition. First, the term absolute
here does not refer to absolute value. An absolute extremum may be positive, negative, or zero.
Second, if a function fhas an absolute extremum over an interval I at cthe absolute extremum
isf(c) . The real number cis a point in the domain at which the absolute extremum occurs.

A function may have both an absolute maximum and an absolute minimum, just one extremum, or
neither. However, the following theorem, called the Extreme Value Theorem, guarantees that a
continuous function f(x)over a closed, bounded interval [a, b]has both an absolute maximum and
an absolute minimum.

The Extreme Value Theorem: If f is continuous on a closed interval [a, b] , then there exist (at least)
a point ¢ where f attains its maximum value, f (c), on the interval, and (at least) a point d where f
attains its minimum value, f (d), on the interval.

This means that if both of the following conditions: (1) the interval is closed, and (2)f is continuous
on it, are met, then f is guaranteed to have (at least) one absolute maximum and one absolute
minimum points on the interval. If either condition fails, then the existence of max / min points is
not guaranteed.

11.2 A necessary Condition for Extreme Values

A necessary condition for f(c) to be an extreme value of f is that f'(c) = 0.

Let f(c) be a maximum value of f. Then there exists an open interval (¢ — §, ¢ + §)around c, such
that if ¢ + h is a number other than c in (¢ = §,c + §) , we have

fle+h) <f(0)

Here h may be positive or negative. Thus

h>0 ﬁf(cLl’)l_f(C)<0

f(C+h)—f(C)>0

h<0=> A
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which implies that

h) — h) —

lim f—(c +h) = fEe) < 0 and lim f—(c = 1) =0

h—0% h h-0~ h
which will be true simultaneously if and only if f'(c) = 0.
Similarly the result holds if f(c)a minimum value of is f.
Note that, f'(c) = 0 is not the sufficient condition for .
f(c) to be an extreme value it can be explained with an
example.
Consider f(x) = x3 for x = 0. ¢

f'(x) =3x?

f'(0)=0

Now x >0 = f(x) >0=f(0)

x<0= f(x) <0=f(0)
Therefore it can be seen that f(0) is not an extreme

value even though f'(0) = 0.

: Prove that the function f defined by f(x) = 3|x| +
4|x — 1| Vx € R has a minimum value 3 at x = 1.

We can rewrite the function by using the definition of modulus function as follows:

(4—7x,x<0
! 4,x =0
fx)=<4—-x0<x<1
| 3,x=1
k 7x—4,x>1

Clearly it can be seen that at x = 1, the function has a maximum value equal to 3.

[ 2]
°
°
“®& A function is said to be stationary for ¢ and f(c) a stationary value of fif f'(c) = 0. The rate of
change of a function is zero at the stationary point.

: Find the greatest and least value of the function f(x) = 3x* — 2x3 — 6x% + 6x + 1in [0,2].
fl(x)=12x3—6x2—12x+6
=6(x—1Dx+1DR2x—-1)

Now by the necessary condition for an extreme value, f'(x) must be zero. And this gives x =
1,—1,%. Since -1 is not in the domain of the function, this value can be ignored. The other two
numbers are the candidates to be the point of maximum or minimum value of the function.

f)=2
f (1) LN
2 16
Moreover we must check the value of the function at the end points of the domain also.
f(O)=1
f2) =21

Thus the function has its maximum value at x = 2 and minimum value at x = 0.

11.3 Sufficient Condition for Extreme Value

f(c)is an extreme value of f if and only if f'(x) changes sign as x passes through c.

LOVELY PROFESSIONAL UNIVERSITY
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Fermat’s Theorem (test for local extreme values): If f has a local maximum or minimum at ¢, and if
f'(c) exists, then f'(c) = 0.

Note: Therefore, it follows that a local extreme point can only occur at places where either f'(x) = 0
or f '(x) is undefined (i.e., either at a point where the tangent line is horizontal, or at a non-
differentiable point). Examples: f (x) = (x — 2)2 at x = 2; g(x) =| x|, at x = 0.

Note: The converse is not always true: the fact that f'(c) = 0, or that f'(c) does not exist, does NOT
guarantee that c is a local extreme point of f. Example: f (x) = x3, at x = 0.

A critical point or critical number of a function f is a point x = ¢ in the domain of f such that either
f'(c) =0 or f'(c) does not exist.

Note: The critical points are all the candidate points for local maximum / minimum of f. That is,
every local extreme point is a critical point, but not every critical point is a local extreme point.
Naturally, the maximum/ minimum points of fhave to be in the domain of f, i.e. they are points on
the graph of f. Therefore, for example, if fis undefined at an infinite discontinuity then the point of
discontinuity is not a critical point even though f' does not exist there.

Steps to find the absolute maximum and minimum values of a continuous function f
on a closed interval:

1. Find all critical points of f in the given interval.
2. Evaluate f at the critical point(s) found in step 1, as well as at the two endpoints of the interval.

3. The point(s) of the largest value of f is the absolute maximum(s), the point(s) of the smallest
value is the absolute minimum(s).

Let us understand this by an example.

; Examine the polynomial f(x) = 10x®— 24x5 + 15x* — 40x3 + 108 for maximum and
minimum value

Here f'(x) = 60x2(x? + 1)(x — 2)
For maximum and minimum value f'(x) = 0 implies that x = 0,2 are the only real values.
Nowx <0 =f'(x) <0
0<x<2>=f"(x) <0and
x>2>f'(x)>0

Therefore f'(x) does not change sign as x passes through 0, so that £(0) is neither a maximum nor a
minimum value and f’(x) changes the sign from negative to positive as x passes through 2.

~ f(2) = —100is the minimum value.

~ f(x)has only one extreme value i.e. at 2.

: Find all local maximum and minimum points for the function

flx)=x3—x
The derivative isf’(x) = 3x% — 1.
This is defined everywhere and is zero at x = * %
Looking first at x = \/% we see that f (\/%) =- %E.
Now we test two points on either side of x = %, making sure that neither is farther away than the

.. . 1
nearest critical value; since V3 < 3,—3 <landwecanusex =0andx =1.

Since f(0) =0 > —%andf D=0> —?, there must be a local minimum atx = \/%
__a 1) _ 23

Forx = — 75 We see that(— ﬁ) =5

This time we can use x = 0Oand x = —1.
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23 . 1
57 SO there must be a local maximum at x = — Ned

This example is made very simple by our choice of points to test, for other choice of points the
calculations would have been comparatively lengthy.

114 Second Order Derivative Test

We find that(—1) = f(0) =0 <

Theorem: f(¢) is a minimum value of the function f if f'(c) = 0 andf" (c) > 0.

Proof:f"'(c) > 0 = 3 an open interval(c — 8, ¢ + §) around c for every point x of which, the second

derivative is positive.

= f'(x)is strictly increasing in (¢ — &, ¢ + §).

Also, f'(c) =0

s f'(x) <0V x € [c— 6, c) (strictly decreasing function)

and f'(x) >0V x € [c,c + §) (strictly increasing function)

= f (c)is a minimum value of f(x).

Theorem: f(c) is a maximum value of the function f if f'(c) = 0 andf"'(c) < 0.

Proof: f"(c) < 0 = 3 anopen interval(c — 8, ¢ + &) around c for every point x of which, the second

derivative is negative.

= f'(x)is strictly decreasing in (¢ — &, ¢ + §).

Also, f'(c) =0

s f'(x) > 0V x € [c — §, c)(strictlyincreasing function)
and f'(x) <0V x € [c,c + &) (strictly decreasing function)

= f (c)is a maximum value of f(x).

So, from now onwards we can follow the following steps to find the maximum / minimum of a
function:

Find the first derivative of the
function

2

Equate the first derivative to zero
and find all the critical points

Calculate the second order derivative
of the function

For each critical value, find the value of the
value of the second order derivative and
decide for maximum/minimum
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If the second derivative comes out to
be zero, then use the first derivative
test

1

: Show that the maximum value of (i)x is ee .

X
Lety = (2)
logy = —x logx

Differentiating both sides w.r.t.x.

dy 1*
T —(1+logx) <;)
Applying the necessary condition for extreme values, we get
logx = —1
x=e!

Now by the sufficient condition, we can check if the point x = e™!

point of minimum or neither of them.

is the point of maximum or a
1 d? L
At=e 1,d—x};=—e.ee<0

1
Therefore y has a maximum for x = e~! and the maximum value is ee.

@Find the maximum and minimum value of the functionf (x) = 8x> — 15x* + 10x2.
The given function is f(x) = 8x® — 15x* + 10x2
f'(x) = 40x* — 60x3 + 20x
=20x(2x3 —3x%+1)
=20x(x —1)?2x + 1)
Putting f'(x) = 0 for the critical points, we get

011
x_"2

Now these three points are the candidates to be the point of maximum or minimum or neither of
them. Let’s check with the help of the second derivative test.

We have
f"(x) = 160x3 — 180x2 + 20

f"(x)(atx=0)=20>0 = x = 0is apoint of minimum

f"()(at x =1) =0 = x = 1 is neither a point of minimum nor of maximumbecausef’(x) does not

change sign as x passes through 1.

f"(x) (atx = —%) =—45< 0= x= —;is a point of maximum.

; Find the absolute maximum and minimum points of f (x) =4 — x2 on each of the intervals (i)
[-3,1] and (ii) [2, 5].
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f'(x)=—2x

f' =0 at x =0 which is the only critical point because f is a polynomial, therefore, it has no non
differentiable points.

(i) Evaluate f at the critical point 0 and the endpoints =3 and 1:

f(=3)=-5 f0O0)=4 f(1)=3

Therefore, the absolute maximum point is (0, 4), and the absolute minimum point is (-3, =5).

(ii) The critical point x = 0 is not in this interval, therefore, just evaluate f at the endpoints 2 and 5:
f@)=0, fG)=-21

Therefore, the absolute maximum point is (2, 0), and the absolute minimum point is (5, —21).

Summary

In this unit we have seen how to calculate the maximum and minimum of a function if they exist.

e A function f has an absolute maximum (also called global maximum) at c if f (c)  f (x) for
all x in its domain.

e A function f has an absolute minimum (or global minimum) at c if f (c) < f (x) for all x in its
domain.

¢  The maximum and minimum values of f are called the extreme values of f.

e If f is continuous on a closed interval [a, b] , then there exist (at least) a point ¢ where f
attains its maximum value, f (c), on the interval, and (at least) a point d where f attains its
minimum value, f (d), on the interval.

e f(c) is an extreme value of f if and only if f'(x) changes sign as x passes through c.

e f(c)is a minimum value of the function f if f'(c) = 0 andf"'(c) > 0.

e f(¢)is a maximum value of the function f if f'(c) = 0 andf"'(¢) < 0.

Key Words

Maxima, Minima, maximum of a function, minimum of a function, First derivative test, critical
points, stationary points, second derivative test, Extreme value theorem, Fermat’s theorem

Self Assessment

What is the saddle point?
Point where function has maximum value
Point where function has minimum value

Point where function has zero value

oONwp

Point where function neither has maximum value nor minimum value

Which of the following is correct?

f(a) is an extreme value of f(x) if f '(a)=0

If f(a) is an extreme value of f(x), then f'(a) =0
If f'(a) =0, then f (a) is an extreme value of f(x)
All of these

oONnwpE
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3. The maxima and minima of the function f(x) =2x3—15x%+36x+ 10

respectively at

A. x=3andx=2
B. x=3andx=2
C. x=2andx=3
D. x=3andx=4

4. Find the maximum and minimum of f(x) = x> — 6x% + 9x + 1 on the interval [0, 5].

A. maximum of fis 21 and the minimum is 1

B. maximum of f is 1 and the minimum is -21
C. maximum of f is 20 and the minimum is 1
D

maximum of f is 2 and the minimum is -11

5. A necessary condition for f(c) to be an extreme value of f is that

A f'(c)+0
B. f(c)=0
C. f'lo)=0
D. f"(c)=0

6. The maximum value of sinx + cos x is

A 2

B. V2

C. 1

D. 1++2

7. The maximum value of f(x) = §x3 —2x%2+3x+1is

A. 3/7
B. 7/3
Cc 1
D. 7

8. f(¢)is a minimum value of the function if

A. f'(c)=0andf"(c) >0
B. f'(c)=0andf"(c) <0
C. f'(c)=0andf"(c)=0
D. f"(c)>0

9. f(c)is a maximum value of the function if
A. f'(c)=0andf"(c) >0
B. f'(c)=0andf"(c) <0
C. f'(c)=0andf"(c)=0
D. f'"(c)<0

1 X
10. The maximum value of (;) is
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O N w »
®

none of these

11. The saddle points for the function 10x° — 24x> + 15x* — 40x® + 108 are

A 01,2
B. -1,0,2
C 1,2
D. 0,2

12. The saddle points of the function 8x> — 15 x* + 10 x? are given as

A. -1/2,0
B. 0,1,%
C. -1/2,0,1
D

none of these

13. For the function 8x®> — 15 x* + 10 x?, x = 0 is

A. apoint of minimum
B. a point of maximum
C. point of inflexion

D. none of these

14. For the function8x> — 15 x* + 10 x2, x = —é is

A. apoint of minimum
B. a point of maximum
C. point of inflexion

D. none of these

15. For the function8x®> — 15 x* + 10 x2,x =1 is

A. apoint of minimum
B. apoint of maximum
C. point of inflexion

D. neither a point of maximum nor a point of minimum

Answer for Self Assessment

1 D 2 D 3 C 4 A 5 C
6 B 7 B 8 A 9 B 10. B
11. D 12. C 13. C 14. B 15. D
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Review Questions

1. Find the absolute maximum and minimum values of f (x) = x3 — 27x + 8 on the interval [0,
4].
2. Find the absolute maximum and minimum values of g(f) = £3/5 on the interval [-32, 1].
3. Find the maximum and minimum values of f (x) = x3 — 27x + 8.
4. Find the maximum and minimum values of g(t) = #3/5
5. Find the greatest and least value of the function x* —4x3—2x?+12x+1 in the
interval[—2, 5].
6. Find the greatest and least values of the function 2x* — 15x2 + 36x + 1 in the interval
[2, 3] as well as in the interval[0, 4].
7.  Show that the function f(x) = (x + 2)(x — 1)?(2x — 1)(x — 3) changes sign from positive
to negative as x passes through % and from negative to positive as x passes through -2 or
3. Also show that it does not change sign as x passes through 1.
8. Show that x® — 5x* + 5x% — 1 has a maximum value when x = 1, a minimum value when
x = 3 and neither when x = 0.
9. Show that the functionf defined by
f)=xP(1—-x)1 Vx€ER
wherep, q are positive integers, has a maximum value for
x=—_vpq
p+q
10. Find the extreme value of the expression:
X3
(x*+1)
11. Determine the value of x for which
x
1+ xtanx
has a maximum value.
12. Find the maximum and minimum value ofsinx cos2x.
13. Show that a cubic polynomial can have at most two critical points. Give examples to show
that a cubic polynomial can have zero, one, or two critical points.
14. What can be said for a quadratic polynomial with respect to the critical points?
Further Reading
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Objectives

Students will be able to

e calculate the curvature for different types of curves
e distinguish between various kinds of asymptotes
e find the asymptotes of a general algebraic curve

e find the parallel and oblique asymptotes

Introduction

This wunit is about two important
applications of derivatives namely
curvature and the asymptotes. Consider
that you are having a road trip in a hilly
region. Imagine the roads. You have the
technique to measure the distance
between any two points on a straight line.
But how to measure the bend happening
at a particular point needs some
elaboration on curvature! Similarly
another crucial feature of differential
calculus is the concept of asymptotes.
Basically it provides a frame for any curve

mzmehr
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(if asymptotes exist). Both these concepts are very helpful to trace the curves.

12.1 Curvature

Curvature is the numerical measure of bending of a curve. At a particular point on the curve, a
tangent can be drawn. Let this line makes an angle ¥ with positive x- axis. Then curvature is
defined as the magnitude of rate of change of Ywith respect to the arc length s.

Y Angle through which the
tangentturns as a point
moves along the curve from P
to Q through a distance As.

The total bending or total curvature is ArcPQ or Angle Ay

. A
The average curvature is A—lf

.. A d
The curvature of the curve at Pis lim 2% = &
Q-P As ds

It is quite intuitive that the smaller circle bends more sharply than larger circle and thus smaller
circle has a larger curvature and larger the circle, smaller will be its curvature.

Let us consider a circle with center 0 and radius r. Let the arcPQ = As

A
P
L) Y+ A
Angle POQ = =2
Ay 1
As r

Ay dp 1
lim —=—=

0-PAs ds r

Therefore, curvature at any point of a circle is the reciprocalof the radius, and hence is a constant.

12.2 Radius of Curvature

The reciprocal of the curvature of a curve at any point in case it is non zero, is called its radius of
curvature at that point. It is denoted generally by Greek alphabetp(rho).

_ds
P= 2
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Unit 12: Curvature and Asymptotes

Note that the radius refers to the distance between the center of a circle and any other point on the
circumference of the circle. While the radius of curvature is the radius of the circle that touches the
curve at a given point. Also, it has the same tangent and curvature at that point.

The radius is of a real figure or shape whereas the radius of curvature is of an imaginary circle at a
point on a given curve.

Curve
Radius of curvature

Center of curvature
(Imaginary) !
!
/

A . .

= Imagmawr circle

ol T completing the
curve

Find the radius of curvature at any point for the curve s = ctany
We have

_ds

oW p =csec?y

Find the radius of curvature at any point for the curve s = clogsecy

We have
_ ds
S
L p=ctany
12.3 Length of arc as a Function v

Let y = f(x) be the equation of the curve. P(x, y)is any point on the curve such
that the arc length AP = s. The point Q(x + Ax,y + Ay) is a point near point P on
the curve.

Then arc AQ = s + As
SoarcPQ =As
In triangle PQN, PQ? = (Ax)? + (Ay)?

() =) o—

On the left side introducing the arc PQ in numerator and the denominator, we

get
(chordPQ)2 (As)2 P (Ay)2
arcPQ Ax) Ax
As Q — P, the chord PQ and arc PQ become almost same making the above expression as
ds\? dy\?
& =1+&)
dx dx

ds dyy?
&+ @)

LOVELY PROFESSIONAL UNIVERSITY
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Corollary: 1. % = cos 1,[),% = siny

2. For parametric equations with parameter ¢, x = x(t),y = y(t)

@ =@ @

12.4 Radius of Curvature- Cartesian Equations

Consider a curve y = f(x)

d
We have tany = d—z

Differentiating w.r.t. s on both sides

dyp d?ydx

2 g %Y _4yax

sec” ¥ ds dx*ds

3

ds (1 +yf)e
ay P V2

If y, > 0,p > 0 at a point, then the curve will be concave upward at that point.
If y, < 0,p < 0 at a point, then the curve will be concave downward at that point.

= pis independent of the choice of x-axis and y-axis . p can also be given as

3

[+ )T
P
dy?

: Show that the curvature of the point (37‘1,37&) on the Folium x3 + y3 = 3axyis — Z—f.

Differentiation the equation of folium w.r.t. x, we get

dy ay—x*
dx ~ y?—ax

dy
(E)S_us_u =-1
2’2

a2y 32
dx? 3_az_a_ 3a

Therefore the curvature at the point (%a, 32—a) is

3
[ @)
Pl

dy?

8v2
3a

And

12.5 Radius of Curvature- Parametric Equations

For a curve given by x = f(t),y = g(t), For f'(t) # 0

dy ,
dy & _9'®)
dx 4 f(b)

dt
d’y 1 (f’(t)g”(t) - g’(t)f”(t)>

dax2 (o) f()?
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(g0
P - g ©Of

: For the cycloid x = a(t + sint),y = a(1 — cost), prove that p = 4a cos%.

dx
— =a(1l + cost)

dt
d_}t/ =asint
d_y = tanE
dx 2
d’y 1 tdt
=% 20
1 1
"4 cos*L
dx\? %
The radius of curvature p = % = 4a cos %
dy?

12.6 Radius of Curvature- Polar Equations

Let r = f(0) be the given curve.

Let x = rcos8,y = rsinf be the transformations.
ax _ _ . d_y _ .
i 11080 —1rsiné, i sin@ + rcos 6
dy 11sin@ +rcosf

= dx ~ rcosf —rsinf

3
_dly P+l
V2 =z T (rycosf — rsing)3
wherer; = f'(0),1, = f'(6)
Thus the radius of curvature can be written as
3
P+

T2 2 _
re+2rf—rm,

(=) . e
For the curve r™ = a™ cos m#@, prove that p = T,
Taking logarithm on both sides of the given equation and then differentiating w.r.t. 8, we get

mdr sin m@

T do =m cosmb

r, = —rtanmé

d?r

=gz= M sec®>mO + r tan® mo

T2

Using
3
T2 +1d):
S r242rt—rr
We get

p = (r®sec®m0) /(r? sec? mb + mr? sec? mf)

LOVELY PROFESSIONAL UNIVERSITY
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Hence the result!

[ 2]
[ )
= In 1643, French mathematician Rene Descartes developed a

formula relating the curvatures of four circles that all touch, or are
tangent, to each other.

Descartes’ Circle Equation Theorem:

Given four mutually tangent circles with curvatures a, b, c, and ‘q
d, then

(@2+b?+c?+d)=(1/2) @+ b+c+d)?

12.7 Asymptotes of a General Algebraic Curve

The name ‘asymptote’ originated from Greek word asymptotes which means ‘not meeting’.An
asymptote of a curve is a straight line such that the distance between the curve and the line
approaches to zero as one or both of the x or y coordinates tend to infinity. Simply put,an
asymptote is a line that a graph approaches without touching.

In some case a curve may have a branch or branches extending beyond the finite region. In this case
let P be a point on such a branch of the curve, having its coordinates (x,y) and if P moves along the
curve, so that at least one of x and y tend to + o or to -0, then P is said to tend to infinity.

A straight line is said to be an asymptote of a curve y = f (x), if the perpendicular distance of the
point P (x,y) on the curve from the line tends to 0 when x or y or both tend to infinity.

An asymptote parallel to y-axis may be referred as a vertical asymptote and parallel to x-axis as a
horizontal asymptote. An asymptote which is not parallel to either axis may be described as an
oblique asymptote and isgiven by y = mx + c. Only open curves which have some infinite branch
can have an asymptote. No closed curve can have an asymptote.The curve and its asymptote get
infinitely close, but they never meet.

Their major applications involve their usage in big O notation, they are simple approximations to
complex equations, and they are useful for graphing rational equations. In most cases, the
asymptote(s) of a curve can be found by taking the limit of a value where the function is not
defined.

For example, a cissoids given by the equation y?(2 — x) = x3, can be drawn as given below. It is
clear that the infinite branches of the curve seem to meet the straight line x = 2.

6

12.8 Determination of Asymptotes

The general equation of a straight line is
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y=mx+c
Y
Consider a point P on the curve and let M be the foot of the
perpendicular from point P on the straight line that can be an
asymptote. As P(x,y) = 0,x = ©
The equation y = mx + ¢ can be an asymptote of given curve if
p = PM and PM L NM. Then
_ly—mx—|
V14 m?
Nowp —» 0asx - o
e
limy—mx—c=0 0 X
X—00
limy—-mx=c
X—00
Y =(y— 1

Also;—m =(y mx)x

lim (X—m) = lim (y — mx) liml— 0

x—00 \X T x—eo Y x>0 x h
This implies

.Y
lim==m
x—-oo X
Thus knowing m and ¢, we can write y = mx + ¢ as the equation of asymptote .
: Examine the folium for asymptotes.
The folium is given by the equation x* + y3 — 3axy = 0 - (1)
3
or1 + (%) -3221 =0
X xx
) ,
We will calculate the slope and the intercept in the general ™
equation of a straight line under the definition of asymptote as
derived in the section above. M \P ()
Let x — oo then lim% = m
X—00
From equation (2) we can write 1 + m® = 0
m = —1is the only real root. For this value of m, we can find the
associated c.
¢=lim(y+x) o P
2

Puty+x=p
Asx - oo,p—>c
Puty =p—xin (1)
B+(p-—x)P3-3ax(p—x)=0

1 pd
3(p+a)—3p(p+a);+x—2=0

Asx - oo,p—>c
3(c+a)=0
c=-a

= The equation of the asymptoteis y = —x — a.

12.9 Asymptotes Parallel to the Coordinate Axis

For asymptote parallel to the y axis:

LOVELY PROFESSIONAL UNIVERSITY
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Letx=%k (1)

be the asymptote of the curve. As P(x,y) — oo along the curve y = oo and PM = x — k
limx—-k=0
y—00

lim x = kwhich gives k.

yoo0
For a general formula we arrange the given curve in descending powers of y i.e.
YP) + YT i () + Y™ 2 (x) + - =0 -2

where¢(x), ¢1(x), ¢,(x) ... are the polynomials in x.

Dividing (2) by y™, we get

PO +5 0100 + 5520+ =0 —(3)

Lety —» o0

thenlim x = k

y—00

(k) =0

Therefore k is the root of equation ¢(x) = 0. Let kq, k; etc. be the roots of ¢(x) =0, then the
asymptote parallel to y-axis are x = k;,x = k; etc.

= (x — ky) (x — ky)etc. are the factors of ¢(x) which is the coefficient of highest power y™ of y in the

given equation.

Similarly the derivation can be done for the asymptotes parallel to the x axis and can be
summarized as the following rules:

Rule 1: The asymptotes parallel to Y axis are obtained by equating to zero, the real linear factors in
the coefficient of highest power of y, in the equation of the curve.

Rule 2: The asymptotes parallel to X axis are obtained by equating to zero, the real linear factors in
the coefficient of highest power of x, in the equation of the curve.

Find the asymptote parallel to the coordinate axes of the curve
(? +y*)x —ay? =
The equation can be re written as
3 +y’(x—a)=0

Coefficient of highest power of x is 1 and that cannot be equated to zero. Therefore the asymptote
parallel to the x-axis does not exist.

Coefficient of highest power of y is x —a and equating it to zero gives x — a = 0.Therefore the
asymptote parallel to the y-axis is x = a.

12.10 Oblique Asymptotes

Asymptotes of the general rational algebraic equation

Consider the equation
Un+Un—1+Un—2+“'+U2+U1+U0 =0 — (1)

whereU, is a homogeneous expression of degree r in x,y and U, = x"¢, G) where ¢, (%) is a

polynomial in Z of degree r, at the most.
X
Therefore (1) can be written as
€ (5) + 2" nen () 4 w0 () + 90 (3) = 0 —@
Dividing by x™
(D) 42 tua B) ot ot (D) + o g0 () = 0

and taking the limit x — oo, we get
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$ulm) = 0 —0)
which determines the slope of the asymptote.

Let m; be one of the roots of this equation so that ¢, (m;) = 0

We can write y —myx = p;

i.e% =my + %

Substituting this in (2), we get

X", (ml + 1;_1) + xn—1¢n_1 (ml +%) + ot xgpy (ml +%) + ¢ (ml +ﬁ) -0

X
Expanding each term by Taylor’s theorem and re arranging the terms, we get

2
b1

x"p,(my) + xn_l(pld)rll(ml) + ¢n—1(m1)) + x"2 ( 2 n (my) + p1dp—_1(my) + Py (m1)) +--=0

Putting ¢, (m;) = 0 and dividing by x™~1, we get

1(p?

(p1¢,'1(m1) + ¢n—1(m1)) + ;(7 n(my) +p1y_(my) + ¢n—2(m1)) +--=0

Let x = oo, we write limp; = ¢;

S ¢ Pp(my) + dp_1(my) =0
_ Pn_1(my)

—_ 3 4
orey = == provided ¢y, (m;)#0
Therefore y = myx — ¢;,'z;m)1) is the asymptote corresponding to slopem,.
n 1
P _ Pn_1(my) _ Pn_1(m3) .
Similarly, y = myx — =7—=, y = mgx — =5 etc. are the asymptotes corresponding to m,, ms
Pn(mz) Pn(ms)

etc. which are the roots of ¢, (m) = 0, such that the denominator of the fractions is non zero.
When ¢;,(m;) =0 and ¢p,_;(m;) #0
There does not exist any value of ¢;. So there is no asymptote corresponding to the slope m;.

Now suppose that ¢,(m;) = 0 = ¢,_,(m,), then we can write

2
P, : !
71(1)71 (m1) + p1dn-1(m1) + Ppp_a(my) + (); +=0
Taking the limit as x — oo, we get c; is a root of the equation,

of

2

which determines two values of ¢; say c;and ¢;’, provided that ¢, (m;) # 0.

n (M) + c1dp_1 (M) + Pp_p(my) =0

Therefore y = m;x + ¢

andy = m;x + ¢;’ are the two asymptotes corresponding to the slope m; and this is also known as
the case of parallel asymptotes.

Steps to find oblique asymptotes:

Put x = 1,y = m in the highest degree term to get ¢,,(m) .
Similarly find ¢;,_4 (m), ¢, (m) etc.

Equate ¢,,(m) = 0, solve for the real values of m.
Find the corresponding value of intercept say, c;for the slope m; using ¢; = — %T(:l;)
n 1

Then y = mx + c is the required asymptote.

AN e

For the case of ¢, (m;) = 0 = ¢,_1(m,), find ¢; by the relation
2
‘1

5 P (M) + c1n_y (M) + dpnz(my) = 0

: Find the oblique asymptotes of the curve
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2x3 —x%y —2xy? +y3 —4x? +8xy —4x+1=0

Attempting the first and second step; put x = 1,y = m in the highest degree term to get ¢,(m) , we
get,

¢$3(m) =2 —-m—-2m? + m?

¢,(m) = —4+8m

$1(m) = —4
Equate ¢3(m) = 0, solve for the real values of m.
m=-1,1,2

_ o bnaOm ) _ ) _
Whenm =2,¢ ==y ooy~
The asymptote is y = 2x — 4

— ___Pna(m ) — _ $2(m) —
Whenm=1,¢ ===y a2

The asymptote is y = x + 2

E]Fimd the asymptotes of x3 — x2y —xy? +y3 + 2x2 —4y? + 2xy +x+y+1=0
¢s(m)=1-m—-—m?+m3
¢5(m) = -1 — 2m + 3m?
F(m)=-2+6m
¢,(m) =2 —4m? +2m
¢po(m) = —8m + 2
¢z(m)=14+m
>m3-m? -m+1=0
m?>-1)(m-1)=0
m=11-1

_ _ _¢z(m)
Whenm =1,c = oy,

$2(1) =0, p3(1) =0
2

65 0m) + cghom) + ¢4 (m) = 0

3445
Cc = 2

The asymptotes correspondingtom = 1 arey = x + 3+2—‘/§ andy = x + #

Summary

¢  The total bending or total curvature is ArcPQ or Angle Ay

. A
L The average curvature 1s A—lf

. A d
e The curvature of the curve at P is lim w_
Q—P As ds

e Radius of curvature for a Cartesian curve p =

3
f1®g" ®O-g'©Of"(®)
(r2+r12)%

2 2_
re+2r{-rr;

e Radius of curvature for a parametric curve p =

e Radius of curvature for a polar curve p =

¢  The asymptotes parallel to Y axis are obtained by equating to zero, the real linear factors in
the coefficient of highest power of y, in the equation of the curve.
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The asymptotes parallel to X axis are obtained by equating to zero, the real linear factors in
the coefficient of highest power of x, in the equation of the curve.

Steps to find oblique asymptotes:

1. Putx =1,y = min the highest degree term to get ¢, (m) .
2. Similarly find ¢,,_1 (m), ¢,_,(m) etc.
3. Equate ¢,(m) = 0, solve for the real values of m.
4. Find the corresponding value of intercept say, c;for the slope m; using ¢; = — %Zn;)
5. Theny = mx + c is the required asymptote.
6. For the case of ¢;,(m;) = 0 = ¢,_1(m,), find c; by the relation
2
c
?1 n (M) + c1dp_1(my) + dp_z(my) =0
Key Words

Curvature, radius of curvature, vertical asymptote, horizontal asymptote, oblique asymptotes

Self Assessment

1.

9N >

N

oNwp

oSnw» o

> o

Ny

oNw>

The angle through which the tangent turns as a point moves along the curve from a point
P to Q, will be large or small as compared to arc length, depends upon

slope of tangent

sharpness of bend

velocity
acceleration

Which of the following is true?
The curvature of a circle is the same at every point.
Larger the circle, smaller will be its curvature.
Only I
Only II

BothIand II
None is true

The reciprocal of the curvature of a curve at any point in case it is non- zero, is called

curvature

radius of curvature
bend

total bending

The radius of curvature at any point for the curve s = ¢ tamy is

csec?y
csec P
csec3y
ccot?y

For a curve if the radius of curvature is negative, it means that

the curve is concave upwards
the curve is concave downwards
the curve has no bend

none of these

For the cycloid x = a(t + sint),y = a(1 — cos t), the radius of curvature is given as

4acost
t

4 cos—
2
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C. 4cost
D. 4a cos%

7. Which of the following is true about asymptotes?

L An asymptote of a curve is a line to which the curve converges.
II. The curve and its asymptote get infinitely close, but they never meet.
A. Only Lis true

B. Only Il is true

C. BothIandII are true

D. Noneis true

8. For the curve y2(2 — x) = x3

A. there is no asymptote

B. there exists one asymptote only

C. there are two asymptotes

D. there are three asymptotes

9. Thecurve x® +y3 —3xy = 0 has

A. one oblique asymptote

B. two oblique asymptotes

C. noasymptote

D. no oblique asymptotes

10. For the curve y?(2 — x) = x3

A. there is one asymptote parallel to x-axis

B. there are two asymptotes parallel to y-axis
C. there are no asymptotes

D. there exists one asymptote parallel to y-axis

11. The curve x3 + y3 — 3xy = 0 has

one parallel asymptote
two parallel asymptotes
no asymptote

no parallel asymptotes

9N >

12. For the curve x2y — 3x2 — 5xy + 6y + 2 = 0, there are

one horizontal and two vertical asymptotes
two horizontal and two vertical asymptotes
two horizontal and one vertical asymptotes
one horizontal and one vertical asymptotes

SN=E >

13. A closed curve has

no asymptote

one asymptote

infinitely many asymptotes

n asymptotes where n is the degree of the curve

OSN=E >

14. The asymptotes of the curve xy — 2y — 3x = 0 are given by

x—2=0y+3=0
x+2=0y+3=0
x—2=0y—-3=0
x—2=0y=0

9Nwp

15. The asymptotes of the curve x2y? — a?(x? + y?) = 0 form a

A. circle
B. square
C. pentagon
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16.

1L

oNwp

17.

9SNw»

18.

oNwe

19.

oNwp

20.

SNn= >

21.

SNn= >

22.

SNwp

23.

o0wp

SNwp

triangle

Which of the following is true about asymptotes?

An asymptote of a curve is a line to which the curve converges.

The curve and its asymptote get infinitely close, but they never meet.

Only I is true

Only Il is true

Both I and II are true
None is true

For the curve y2(2 — x) = x3

there is no asymptote

there exists one asymptote only
there are two asymptotes

there are three asymptotes

The curve x3 + y3 — 3xy = 0 has

one oblique asymptote
two oblique asymptotes
no asymptote

no oblique asymptotes

For the curve y2(2 — x) = x3

there is one asymptote parallel to x-axis
there are two asymptotes parallel to y-axis
there are no asymptotes

there exists one asymptote parallel to y-axis

The curve x3 + y3 — 3xy = 0 has

one parallel asymptote
two parallel asymptotes
no asymptote

no parallel asymptotes

For the curve x2y — 3x% — 5xy + 6y + 2 = 0, there are

one horizontal and two vertical asymptotes
two horizontal and two vertical asymptotes
two horizontal and one vertical asymptotes
one horizontal and one vertical asymptotes

A closed curve has

no asymptote

one asymptote

infinitely many asymptotes

n asymptotes where n is the degree of the curve

The asymptotes of the curve xy — 2y — 3x = 0 are given by

x—2=0y+3=0
x+2=0y+3=0
x—2=0y—3=0
x—2=0y=0

. The asymptotes of the curve x*y? — a?(x? 4+ y*) = 0 form a

circle
square
pentagon
triangle
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Answer for Self Assessment

1 B 2 C 3 B 4 A 5 B
6 D 7 C 8 B 9 A 10. D
11. D 12. A 13. A 14. C 15. B
16. C 17. B 18. A 19. D 20. D
21. A 22. A 23. C 24. B

Review Questions

1. If the radius of circle A is 1/6, then its curvature is

Ol
A \
2. If the radius of circle B is 1/2, then its curvature is

3. If the radius of circle Cis 1/5, then its curvature is

4. If the radius of circle D is 1/3, then its curvature is

5. If you have a small circle and a large circle, which one will have the larger curvature?

6. Find the parallel asymptotes for the curve 2x3 — x?y + 2xy? + y3 —4x2 + 8xy —4x+ 1 = 0.
7. Find the rectangular asymptotes for the curve 2x3 — x2y + 2xy? 4+ y3 — 4x% + 8xy = 0.
8.Find the rectangular asymptotes for the curve x?y — 3x% — 5xy + 6y + 2 = 0.

9. Find the parallel asymptotes for the curve x%y + xy? + xy + y* + 3x = 0.

10. Find the oblique asymptotes for the curve 2x3 — x%y + 2xy? + y® —4x? + 8xy —4x + 1 = 0.
11. Find the oblique asymptotes for the curve 2x3 — x%y + 2xy? + y3 — 4x% + 8xy = 0.

12. Find the oblique asymptotes for the curve x?y — 3x% —5xy + 6y + 2 = 0.

13. Find the oblique asymptotes for the curve x2y + xy? + xy + y2 + 3x = 0.

14. Find all the asymptotes for the curve x3 — x2y —xy? + y3 + 2x2 —4y? + 2xy +x +y + 1 = 0.

15. Find all the asymptotes for the curve x3 — x2y — xy? + y3 + 2x% — 4y? + 2xy = 0.

Further Reading

L!IJ W. Thomas Finny (1998). Calculus and Analytic Geometry, 6th Edition, Publishers, Narsa,
India.

R. K. Jain, and Iyengar, SRK. (2010). Advanced Engineering Mathematics, 3 rd Edition
Publishers, Narsa, India.

Widder, D.V. (2002). Advance Calculus 2nd Edition, Publishers, PHI, India.
Piskunov, N. (1996). Differential and Integral Calculus Vol I, & II, Publishers, CBS, India.
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Unit 13: Concavity and Multiple Points
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Objectives

Students will be able to

e detect the lines of symmetry in a curve

e classify a point as a point of concavity, convexity or inflection
¢ find the tangents at origin

e understand various multiple points

e find the position and nature of the double points

Introduction

In this unit, we will mainly learn about various important aspects involved in the tracing of a curve.
We will begin with the symmetry and its various aspects in relation to different shapes. From the
differentiability we have the idea of smoothness or pointedness of the curve at a point. This idea
can be extended to concavity of a function, with a special focus on the points of inflection. There
will be further a discussion on the types of double points, their nature and their position.

13.1 Symmetry

The images which can be divided into identical halves are called symmetrical. The images that
cannot be divided into identical halves are asymmetrical.
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Any line splitting a shape into two parts such that the two parts are the same is called a line of
symmetry. These parts are also said to be symmetrical to each other.

For a square there are four lines of symmetry. for a hexagon, there will be six lines of symmetry.
Can you think of the lines of symmetry for a triangle and a pentagon?

You can take a piece of paper, draw the required shape on it, using the scale and pencil, cut out
them and fold it in various ways to find out the lines of symmetry.

Consider the folium of Descartes and the cardioid; you can observe that there is only one line of
symmetry.

Folium of Descartes Cardioid

N TN
g
\

AN

13.2 Various Kinds of Symmetry Lines Of Symmetry In A
Square

We can see that there are various lines of symmetry in various kinds e

of functions f (x,y) = 0. We can classify those lines as follows: ".. ..°'

Symmetry about the x-axis: R -

In the function f(x,y) =0, replace y with -y. If (x,—y) = f(x,y) , """",'-‘E":.'."""'

then the graph will be symmetric about the x-axis. & E e

e.g. y%(2a — x) = x3 is symmetric about the x-axis.
Symmetry about the y-axis:

In the function f (x,y) = 0, replace x with - x. If (—=x,y) = f(x,y) , then the graph will be symmetric
about the y-axis.

e.g. (x2 +y?)? = a®(x? — y?)is symmetric about the y-axis.
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Symmetry about the origin:

In the function f(x,y) = 0, replace x,y with -x,—y. If (—x,—y) = f(x,y) , then the graph will be
symmetric about the origin.

e.g. (x2 +y?)? = a?(x? — y?)is symmetric about the origin
Symmetry about the line,y = x:

In the function f(x,y) = 0, replace x with y and y with x.If (x,y) = f(y,x) , then the graph will be
symmetric about the line y = x.

e.g. (x% +y?)? = a?(x? — y?)is not symmetric about the line y = x.
Symmetry about the line, y = —x:

In the function f(x,y) = 0, replace x with —y and y with —x. If (x,y) = f(—y, —x) , then the graph
will be symmetric about the line y = —x.

e.g. (x% +y?)? = a?(x? — y?)is not symmetric about the line y = —x.
Symmetry in the opposite quadrants:

In the function f(x,y) = 0, replace x,y with -x,—y. If (=x,—y) = f(x,y) , then the graph will be
symmetric in the opposite quadrants.

e.g. xy = 1is symmetric in first and third quadrants.

v
v
M
u

= Discuss all possible lines of symmetry for the following curves:

@) y2(2a—x) = x3

(ii) (o +y*)? = a*(x* —y?)

(iii) (x=b)?(x?+y?)—a’x?2=0
(iv) x3 +y% = 3axy

(v) (% +y* —axy)? = 4a*(x* + y?)
(vi) x2+y?2=16

(vii) y?=2x

(vi) x*+y=2x+4

13.3 Concavity and Convexity

Although the first derivative test determines if a function is increasing or decreasing, we would
also like to know if the shape of the graph is curving upward or downward. This notion of
curvature of a graph upward or downward is known as concavity.

If the secant line passing through the points (x1, f(x1)) and (xo, f(x2)) is above the curve f(x)=y
between these two points, then f(x) is concave up.

If the secant line passing through the points (x1, f(x1)) and (x2, f(x2)) is below the curve f(x)=y
between these two points, then f(x) is concave below or concave down.

Concave up, Concave up,
Decreasing Increasing
\ /

\ /
Concave down, Concave down,
Decreasing Increasing
\\ //

\ /
\ /
\ ,’
|
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When the slope continually increases, the function is concave upward.

When the slope continually decreases, the function is concave downward.

:
]
|
|
| CONCAVE
: DOWN
(c, fc)) i
\ :
L ]
1
]
i \
: INFLECTION
CONCAVE ' POINT
upP |
|
]
!

Theorem:
Consider a function f(x) that is twice continuously differentiable on an interval I. The
Function f(x) is

® concave upwards if f'(x) > 0 for all xin I

® concave downwards if f"(x) <0 for all x in I

& You need to be careful while using the following terms:

¢ Concave Downward is also called Concave or Convex Upward

¢ Concave Upward is also called Convex or Convex Downward

: Discuss the curve y = x? for its concavity.
y'(x) =2x

Clearly the first derivative is positive whenever x is positive and is negative, whenever x is
negative. So by first derivative test, we can see that the slope is decreasing for negative values and
is increasing for positive values of x. Therefore the curve is concave up for all x.

Alternatively, we can find the second derivative
y'(x) =2

Clearly, it is positive for all the values of the domain, thus the curve y = x2 is concave upwards
V x €ER.

: Discuss the curve f(x) = 5x3 4+ 2x2 — 3x for its concavity.
f'(x) =15x>+4x -3
f"(x) =30x+4
2

f"(x) = 0 happens atx = ——=

Clearly f"(x) < 0in (—00, —12—5) = f(x) is concave downward in this interval and

2
f"(x) >0in (_E' oo) = f(x) is concave upward in this interval.

; Discuss the curve f(x) = In(1 + x2) for its concavity.

LOVELY PROFESSIONAL UNIVERSITY 131



Notes
Unit 13: Concavity and Multiple Points

We have
, 2x
fO=1e
. 2 —2x2
I =y

We can look for the values of x for which the f”(x) will be negative. That is
2—-2x%2<0
20-x)(1+x)<0

From this inequality, it is clear that,f (x) is concave downward in (—c,—1)U(1, ) and concave
upward in (—1,1). Let us also look at how the function looks like!

—4

R iins s pasanasatsp” casdns

™N v

-8 -4 0

N
o~
o

13.4 Points of Inflection

A point where a curve changes from Concave upward to Concave downward (or vice versa), is
called the inflexion point.

A point (c, f(c)) is said to be an inflection point for a point ¢ in (a, b) and for a continuous function
f(x) in (a, b) if the graph of y=f(x) changes concavity at (c, f(c)).

This also implies that the first derivative changes from increasing to decreasing or decreasing to
increasing at(c, f(c)).

Inflection
Point

Inflection
Point

Inflection

Point
S - -
Concave Concave Concave Concave Concave Concave
Downward Upward Upward Downward Upward Downward

E] Find the point of inflection for the curve f(x) = x e™2*
Finding the derivatives, we get
fl(x) =e?*(-2x+1)
f'(x) = e *(4x — 4)
The curve changes from concave upward to concave downward when
f'x)=0
Andsowegetx =1
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= the point of inflection is (1, e~2)

E] Find the point of inflection for the curve f(x) = (x — 1)3(x — 5)
Finding the derivatives, we get
o) =4(x-1*(x—-4)
f'"(x)=12(x—1)(x - 3)
The curve changes from concave upward to concave downward when
f'x)=0

=>x=1,3

Thus, the points of inflection are (1, 0) and (3, -16)

5
: Find the point of inflection for the curve f(x) = x + x3
Finding the derivatives, we get
5 2
f'f(x)=1+ 3%
10
100 = —
9x3

Here the f"(x) = 0 won’t make sense, so using the first derivative test, we can observe that

whenx < 0, f"(x) < 0and when x >0, f" (x) > 0.

So we can see the curve changes from concave downward to concave upward at (0, 0), So (0, 0) is
the point of inflection of the given curve.

E] Find the point of inflection for the curve f(x) = x* — 6x?
Finding the derivatives, we get
fl(x) =4x3—12x
F(x) = 12x% — 12
The curve changes from concave upward to concave downward when
f')=0

>x==1

The points of inflection are (1, -5) and (-1, -5).

13.5 Tangents at Origin

The general equation of rational algebraic curve of the n" degree which passes through the origin
O, when arranged according to ascending powers of x and y is of the form

(b1x + byy) + (c1x% + coxy + c3¥%) + (dyx3 + dpx?y + dyxy? + dgy®) + =0 (1)
Let P(x,y) be any point on the curve. The slope of the chord OP is i—/
IlJiH(l) chord OP = Tangentat O
Then whenx - 0,y - 0
limZ = mis the slope of the tangent.
X
So (1) implies
y Y Y -
(b1 + bzz) + (clx + C2;+ c3y;) +--=0

b1+b2m=0
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— bl
m= bz
y__h
X bz

~ byx + by = 01is the tangent at the origin, which can be written by equating the lowest degree
term to zero in equation (1).

If b, = 0 but by # 0, then considering the slope of OP with reference to y-axis, it can be shown that
the tangent retains the same form.

Let by = b, = 0, then the equation takes the form

ax?+cxytoy?+dixd+--=0
2
Xy y
C1+sz—2+03x—2+d1x+--~ =0

Asx -0

g +cm+cym? = —(2)
gives two values of m say mjand m,.

The equation of either tangent at the origin is y = m;x - (3)
Eliminating m; from (2) and (3), we get

cx? +cxy +c3y2=0 —-(4)

whichis the joint equation of two tangents at the origin, and it can also be written by equating the
lowest degree term to zero in the equation of the curve.

If ¢; = c; = c3 =0, then (4) becomes an identity and equations of tangents can still be written by
equating to zero, the terms of lowest degree, which is third, in this case.

Therefore the rule to find the tangents at origin can be summarized as:

The equation of the tangent or tangents at the origin is obtained by equating to zero
the terms of the lowest degree in the equation of the curve.

: Find the tangents at origin for the curve x* + y3 — 3axy = 0

Clearly the origin lies on the curve. To find the tangents at origin, let us seek the lowest degree term
in the curve and equate that to zero.

—3axy =0
=>x=0,y=0

are the required equations of the tangents at the origin.

@ Find the equation of the tangent(s) at (-1,-2) to the curve x3 + 2x2 + 2xy —y? + 5x — 2y = 0.
We can shift the origin to the point (-1, -2) by the following transformations:
x=X-1
y=Y-2
Using these, we get the transformed equation as:
X3—X242XY —Y2=0

Clearly the origin lies on the curve and we can find the tangents at origin easily by equating to zero
the terms of the lowest degree in the equation of the curve.

ie~X2+2XY-Y2=0
ie(X-Y)2=0
ieX—-Y=0
iex+1—-(y+2)=0

134 LOVELY PROFESSIONAL UNIVERSITY

Notes



Notes

Calculus

i.e. x —y = 1is the tangent at (-1, -2) for the given curve.

Therefore, we can find the tangent at any given point on a curve.

13.6 Multiple Points

If RS is an arc of a curve, and if at the point P on RS there exists one and only one tangent, AB, to
the curve, then point P is known as an ordinary point of the curve.

If at a point P on a curve there exist two and only two distinct tangents, then that point is called a
node.

If the two tangents at a given point are not distinct, but coincide, we have what is called a cusp.

Y Y
A A v
o P
P
o >x 2 =y = >X
Node sp of the Second Kind
Cusp of the First Kind
Y
Y
P o|P
0 X I > X
. " Isolated, or
Point of Osculation Conjugate
Point

There are several kinds of cusps:

(1) If the curve in the neighbourhood of a cusp lies partly on one side of the tangent and partly on
the other side, the point is known as a cusp of the first kind;

(2) If the curve lies entirely on one side of the common tangent (in the region of tangency), the point
is known as a cusp of the second kind;

(3) If there are two distinct cusps at the same point, it is known as a point of osculation.

All points having two and only two tangents, whether real or imaginary, distinct or coincident, are
called double points of the curve.

Thus nodes and cusps of all kinds are double points.

Triple points are such points on a curve for which there are three tangents; similarly there are four
for quadruple points etc.

An isolated point on a curve is also called a conjugate point.

All points that are not ordinary points are known as singular points.

13.7 Condition for any Point (x, v) to be a Multiple Point of the Curve
f(x, v)=0

For a curve f(x,y) =0 (1)

We can write
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6fdx+6fdy_
dxdx  dydx
d
fx+fyd_i= 0

At a multiple point of a curve, the curve has at least two tangents and Z—z must have at least two
values at multiple points.

d . d .
More than one value of d—i can satisfy f + f, é = 0iff f, = 0,f, = 0.

Therefore, to find the multiple points, we have to find the values of (x,y) which simultaneously
satisfy the three equations:

fx(6,y) =0
fy(xry) =0
flx,y)=0

Differentiate f, + f, Z—z =0 w.r.t. x, we get

dy  d% dy\*
o+ 2y e+ o g+ () =0

At the multiple points where f, = 0, f, = 0; the value of % are the roots of the quadratic equation,
dy dyy?
fex +2fxya+fyy (a) =0
In case fyy, fxy, fyy are not all zero and f, = 0 = f;, the point (x, y) will be a double point and will
be a

node if f,zcy — faxfyy >0
cusp if f,zcy — fxxfyy = 0and

conjugate point if f3, — frxfy, <0

&If frex = fey = fyy = 0, the point (x,y) will be a multiple point of the order higher than two,
those are not in the scope of this course.

E] Find the multiple points on the curve
x* —2ay® —3a?y? —2a%x?+a* =0
Let f(x) = x* — 2ay® — 3a?y? — 2a?x? + a*
fr = 4x3 — 4a’x
fy = —6ay?* — 6a*y
fx = O,fy =0=>x=0,a,—-a;y=0,—a.
= fyandf, vanish at (0,0), (0, —a), (a,0), (a, —a), (—a,0), (—a, —a).
Out of these, only (a, 0), (—a, 0)& (0, —a) lie on the given curve.
Now fix = 12x% — 4a?
fyy = —12ay — 6a?
fiy =0
We know,
2
fn 2 g+ o () =0
At (a,0)

A2
—6a? (%) +4(Q2a?) =0
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dy 2

dx ~ 43
Since there are two real values, the point (a, 0) is a node and the tangents at (a, 0) are

2 ( )
=t—((x—-a
Y 3

Similarly tangents at (—a,0):y = + \/2—5 (x+a)

and at (0,—a): y+a = -I_—£§x

Alternatively,
We can find tangents at (a, 0), by shifting the origin to (a, 0) by following transformations,
x=X+ay=Y
= X*+4X3a — 2aY® + 4a?X? - 3a%Y? =0
Tangents at origin are given by,
4a?X? —3a%Y? =0
3

X2 =2y?
4

X=4>y

V2

Similarly the tangents can be found at the other points too.

13.8 Position and Nature of Double Points

For the curve f(x,y) = 0, (x,y) is a double point if it satisfies

f(6,y) =0
fy(x'y) =0
flx,y)=0

Simultaneously.

The point (x,y) is anode, if £3, — fuxfyy > 0
The point (x,y) is a cusp, if 3, = fexfyy = 0
The point (x,y) is isolated, if £, — fyxfyy <0

Types of cusps in terms of their position:

Single cusp of first kind: Two branches on the same side of common normal and on opposite

sides of tangent.

Single cusp of second kind: Two branches lie on the same side of the normal as well as the

tangent.

Double cusp of second kind: Two branches lie on the different sides of normal and on the same

side of the tangent.

Point of oscu inflection: Two branches lie on different sides of normal but on one side they lie on

the same and on the other on opposite sides of the common tangent.

Let us learn about the position and nature of double points by an example.

@ Locate the double points of the curve y(y — 6) = x?(x — 2)3 — 9 and mention their nature.
Here f(x,y) =x2(x—2)3-9—y(y—6) =0
fr = x(x —2)%(5x — 4)
fy=6-2y
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frx = (x = 2)2(5x — 4) + 2x(x — 2)(5x — 4) + 5x(x — 2)?
fyy =2
fry =0
Now f, =0, f, = 0imply x = 0,2, gandy= 3

Therefore possible double points are
4
(03),2.3)and (z.3)

The point (% 3) does not satisfy the given curve. So there are only two double points.
At (0,3)
f& = fexfyy <0
So, (0, 3) is a conjugate point.
At (2,3)
f& = fxfyy =0
So, (2,3) is a cusp.
To know the nature of the cusp, let us shift the origin to the point (2, 3) by using
x=X+2
y=Y+3
The transformed equation is Y2 = X3(X + 2)?
The tangents at origin are Y2 = 0 i.e. the x-axis.
Moreover, Y = +(X + 2)VX3
When X < 0,Y is imaginary

When X > 0, Yhas two values, positive and negative. Therefore near the origin, the curve lies on
both sides of X-axis (tangent) and only on one side of the Y-axis (normal). The graph is given below
for better clarity.
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Therefore, the new origin (2,3) is a single cusp of first kind.

Summary

This chapter had variety of topics, which can be summarized as follows:

Symmetry about the x-axis: In the function f(x,y) = 0, replace y with -y. If (x,—y) =
f(x,y), then the graph will be symmetric about the x-axis.

Symmetry about the y-axis: In the function f(x,y) =0, replace x with -x. If (—x,y) =
f(x,y), then the graph will be symmetric about the y-axis.

Symmetry about the origin: In the function f(x,y) =0, replace x,y with -x,—y. If
(=x,—y) = f(x,¥) , then the graph will be symmetric about the origin.

Symmetry about the line, y = x:In the function f(x,y) = 0, replace x with y and y with x.
If (x,y) = f(y,x) , then the graph will be symmetric about the line y = x.

Symmetry about the line, y = —x:In the function f(x,y) = 0, replace x with —y and y with
—x.If (x,¥) = f(—y,—x) , then the graph will be symmetric about the line y = —x.
Symmetry in the opposite quadrants: In the function f(x,y) = 0, replace x,y with -x, —y.
If (—x,—y) = f(x,y) , then the graph will be symmetric in the opposite quadrants.
Consider a function f(x) that is twice continuously differentiable on an interval 1. The
function f(x) is concave upwards if f'(x) > 0 for all x in I and concave downwards if f"(x) <
Oforallxinl

A point where a curve changes from concave upward to concave downward (or vice

versa), is called the inflexion point.
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® The equation of the tangent or tangents at the origin is obtained by equating to zero the
terms of the lowest degree in the equation of the curve.
e The point (x,y) will be a double point and will be a node if £, — fixfyy > 0, cusp if £3, —
fexfyy = 0 and conjugate point if £3, — fyxf,y < 0
Keywords

Symmetry, lines of symmetry, concave up, concave down, convex, concave, point of inflection,
tangent at origin, multiple point, double point, node, cusp, isolated point

Self Assessment
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How many lines of symmetry are there for a pentagon?
2

3
4
5

For a lemniscate of Bernoulii, how many lines of symmetry are there?
2

3
4
5

The curve 2x% + 2y? = 11is

symmetric about the x-axis

symmetric about the y-axis

symmetric about the line y=x

all of the above

The notion of curvature of a graph upward or downward is known as
symmetry

asymptotes

concavity

multiple points

When the slope continually increases, the function
is concave upwards

is concave downwards

can not be deciphered

is decreasing

The function f(x) = 2x2 + 3x + 4 is

concave upwards on the set of real numbers
concave upwards on a specific interval
concave downwards on the set of real numbers

concave downwards on a specific interval

The point where a curve changes from concave upward to concave downward is called a

saddle point
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B. stationary point

C. critical point

D. inflexion point

8. Which of the following is true for the point of inflexion (¢, f(c) )?

A. the first derivative changes from increasing to decreasing or decreasing to increasing at (c,
£(c))

B. the first derivative changes from increasing to decreasing at (c, f(c))

C. the first derivative changes from decreasing to increasing at (c, f(c))
none of these

9. For f(x) = xe™2* the point of inflexion is

A (11)

B. (le)

C. (1,e7?)

D. (1,e?)

10. The equation of the tangent or tangents at the origin is obtained by

A. equating to zero the terms of the lowest degree in the equation of the curve.

B. equating to zero the terms of the highest degree in the equation of the curve.

C. equating to one the terms of the lowest degree in the equation of the curve.

D. equating to one the terms of the highest degree in the equation of the curve.

11. For the curve x3 + y3 — 3xy = 0, there exist____ tangent(s) at the origin.

A. one

B. two

C. three

D. four

12. For the curve x2(x? + y2) = 5(x — y), the equation of the tangent at origin is

A. x=5y

B. x=-5y

C. x=-y

D. x=y

13. If the two tangents at a given point are not distinct, but coincide, we get

A. anode

B. acusp

C. aconjugate point

D. none of these

14. If the curve lies entirely on one side of the common tangent (in the region of tangency),
the point is known as a

A. cusp of first kind

B. cusp of second kind
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C. node

D. point of osculation

15. Ata multiple point of a curve f(x) = 0, the curve has
A. one tangent

B. two tangents

C. atleast one tangent

D

at least two tangents

16. If at a point on a curve there exist two and only two distinct tangents, then that point is
called a

A. cusp of first kind

B. cusp of second kind

C. node

D

point of osculation

17. Ata double point (x,y) of a curve f(x,y) = 0, if £ — fixfyy = 0, then the double point is a
A. node

B. cusp

C. isolated point

D

none of these

18. Ata double point (x,y) of a curve f(x,y) = 0, if £3 — fixfyy > 0, then the double point is a
A. node

B. cusp

C. isolated point

D

none of these

19. Ata double point (x,¥) of a curve f(x,y) = 0, if £3 — fixfyy < 0, then the double point is a
A. node

B. cusp

C. isolated point

D. none of these

Answer for Self Assessment

1. D 2. A 3. D 4. C 5. A
6 A 7 D 8 A 9 C 10. A
11. B 12. D 13. B 14. B 15. D
16. C 17. B 18. A 19. C
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Review Questions

1. Draw any random closed figure with 8 straight lines and discuss its lines of symmetry.
2. In the nature around, spot five things, having symmetry.
3. Discuss all the lines of symmetry for the curve (x? + y?)x — 2ay? = 0
4. Discuss about the concavity of the curve x3 + y3 = 3axy
5. Discuss about the points of inflection of the curve x3 + y* = 3axy
6. Find the tangents at origin for the curve (x? + y?)x — 2ay? =
7. Find the tangents at origin for the curve (x? + y?)? = a?x? + b%y?
8. Find the tangents at origin for the curve 2y5 + 5x5 — 3x(x2 —y?) = 0
9. Find the tangents at origin for the curve (x? + y*)x? = a(x — y)
10. Find the double points of the curve x3 + y3 = 3axy
11. Find the double points of the curve (x? + y?*)x — 2ay? =0
12. Find the position and nature of the double point of the curve x?y? = (a + y)?(b? — y?) for
a < banda > b.
Further Reading
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Unit 14: Tracing of Curves

CONTENTS

Objectives

Introduction

14.1 Procedure for Tracing Curves Given in Cartesian Equations
142 Tracing of Polar Curves

143  Tracing of Parametric Curves
Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Reading

Objectives

Students will be able to

e list the properties which can be used to trace a curve
e trace the Cartesian curves
e trace the parametric curves

e trace the polar curves

Introduction
Can you recognize which of the following options depicts the curve x2y2(x+y)=1?

¥

N4

(a) x (b)

. TN
I .0

O

In order to answer the above question, we need to analyze the given Cartesian equation
thoroughly. An image is worth a thousand words. A curve which is the visual synonym of a
functionalrelation gives us the whole idea of information about the relation. Of course, we can also
obtain this information by analysing the equation which defines the functional relation. But
studying the associated curve is often easier and quicker. In addition to this, a curve which
represents a relation between two quantities also helps us to easily find the value of one quantity

144 LOVELY PROFESSIONAL UNIVERSITY

Notes



Notes

Calculus

corresponding to a specific value of the other. In this unit we shall be using many results from the
previous units and will try to understand what is meant by the graph of a relation like f(x, y) = 0,
and how one can draw it.

Recall that, that the set of points {(x, y): f(x, y) = 0) is known as the graph of the functional relation
f(x, y) = 0. Graphing a function or a functional relation means showing the points of the
corresponding set in a plane, thus, essentially curve tracing means plotting the points which satisfy
a given relation. However, there are some difficulties involved in this. Let's see what these are and
how to overcome them.

It is often not possible to plot all the points on a curve. The standard technique is to plot some
suitable points and to get a general idea of the shape of the curve by considering tangents,
asymptotes, singular points, extreme points, inflection points, concavity, monotonicity, periodicity
etc. Then we draw a free hand curve as nearly satisfying the various properties as is possible.

The curves or graphs that we draw have a limitation. If the range of values of either (or both)
variable is not finite, then it is not possible to draw the complete graph. In such cases the graph is
not only approximate, but is also incomplete. For example, consider the simplest curve, a straight
line. Suppose we want to draw the graph of f: R — Rsuch thatf(x) = c. We know that this is in line
parallel to the x-axis. But it is not possible to draw a complete graph as the line extends infinitely on
both sides.

Suppose the equation of a curve is f(x, y) = 0.We shall now list some steps which, when taken, will
simplify our job of tracing this curve.

14.1 Procedure for Tracing Curves Given in Cartesian Equations

Steps for curve sketching (preferably in the same order) are summarized below:

1. Domain

The first step is to determine the extentof the curve. In other words we try to find a region or
regions of the plane which cannot have any point of the curve. For example, no point on the curve
x = y?, lies in the second or the third quadrant, as the x-coordinate of any point on the curve has to
be non-negative. This means that our curve lies entirely in the first and the fourth quadrants.

Note thatit is easier to determine the extent of a curve if its equation can be written explicitly as y =
f(x) or x =f(y).

2. Intercepts

The next step is to determine the points where the curve intersects the axes. If we put y =0 in f(x, y)
= 0, and solve the resulting equation for x, we get the points of intersection with the x-axis.
Similarly, putting x = 0 and solving the resulting equation for y, we can find the points of
intersection with the y-axis.

3.  Symmetry

We find out if the curve is symmetrical about any line, or about the origin. We have already
discussed symmetry of curves in the previous unit. This step reduces our workload. If the curve is
symmetric about the x-axis, we can focus upon the region above x-axis only and then can replicate
that for the complete curve.

4. Asymptotes

The next step is to find the asymptotes, if there are any. They indicate the trend of the branches of
the curve extending to infinity. Asymptotes, if they exist, provide a frame for the curve.

5. Intervals of increase and decrease

Calculate dy/dx. This will help you in locating the portions where the curve is rising (dy/dx >0) or
falling (dy/dx <0) or the points where it has a corner (dy/dx does not exist).

6. Local maximum and minimum

Calculated?y/dx?. This will help you in locating maxima (dy/dx = O,% < 0) and minima (dy/dx =

d?y
O’ﬁ >O)
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7. Concavity / Convexity / Points of inflection/Multiple points

Calculated?y/dx?. This will help you in locating maxima (dy/dx =0, % < 0) and minima (dy/dx =

2
0, % >(0) along with concave up or concave down nature of the curve. You will also be able to

determine the points of inflection (% =0). These will give you a good idea about the shape of the

curve.

Another important step is to determine the singular points. The shape of the curve at these points
is, generally, more complex, as more than one branch of the curve passes through them. Find out
whether the origin lies on the curve. If it does, then find the equations of the tangents at the origin
by equating to zero the lowest degree terms and we can look out for cusps and nodes.

8. Graph of the Function

All the information obtained from above steps, finally has to be put on the x-y plane. Plot as many
points as you can, around the points already plotted. Also try to draw tangents to the curve at some
of these plotted points. For this you will have to calculate the derivative as these points. Now join

the plotted points by a smooth curve (except at points of discontinuity). The tangents will guide
you in this, as they give you the direction of the curve and the graph has to be traced then.

Warm up by tracing the simple popular curves like modulus function, exponential function,
parabola etc. using the above mentioned steps. Now let us trace the curve x2y?(x+ y) =1 which
was asked in the introductory section.

Since the function is not an explicit function of x or y, we can skip the domain part.

When x=0, we cannot find y and when y=0, we cannot find x. It means that the curve does not
make any intercepts on the axes.

The curve is symmetric about the line y=x only.
There are no horizontal and vertical asymptotes, but an oblique asymptote y=-x.
And by these many steps only, the correct answer out of four options can be inferred.

If not we would have undertaken next steps too.

; Tracey = x3 — 12x — 16

Let us trace the curve step by step. For your ease the steps are mentioned below:

1. Domain
The function can take all real values of x as its domain.
2. Intercepts
Whenx =0,y = -16
Wheny =0,x = —-2,4
Therefore the given curve meets the axes at (0, —16), (—2,0), (4,0).
3. Symmetry
No particular line of symmetry exists.
4. Asymptotes
No asymptote exists
5. Intervals of increase and decrease
y' =3x%-12
y'=0=>x =12
~ y isincreasing in (—oo, —2)
y is decreasing in (-2, 2)
y is increasing in (2, o)
6. Local maximum and minimum
y'" = 6x

Atx =-2,y" <0 = (—2,0)is a point of maximum.
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Atx =2,y" >0 = (2,—32)is a point of minimum.
7. Concavity/Convexity/Points of Inflection/Multiple points
y"" < 0 whenx < 0 = Concave downward
y" > 0 when x > 0 = Concave upward

8.  Graph of the Function

14.2 Tracing of Polar Curves

A polar equation is any equation that describes a relation between r and 0, where r represents the
distance from the pole to a point on a curve, and 0 represents the anti-clockwise angle made by a
point on a curve, the pole, and the initial line.
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1 //
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One advantage of using polar equations is that certain relations that are not functions in Cartesian
form can be expressed as functions in polar form.

Another advantage is that certain relations are much simpler to express in polar form rather than
Cartesian form.

Steps to trace a polar curve:
1. Symmetry

Consider a curve generated by the function r=£(0) in polar coordinates.

e  The curve is symmetric about the polar axis if for every point (7, 0) on the graph, the point
(r,—0) is also on the graph. Similarly, the equation r=f(0) is unchanged by replacing 0 with
-0

e The curve is symmetric about the pole if for every point (r, 0) on the graph, the point
(r,7+0) is also on the graph. Similarly, the 7
equation r=f(0) is unchanged when
replacing r with —r, or 6 with 7+0.

e The curve is symmetric about the vertical

line 8=71/2 if for every point (r, 8) on the /fi . ° S "
graph, the point (r,7-0) is also on the g ;
graph. Similarly, the equation r=£0) is ,/ : fr'/
unchanged when 0 is replaced by 7—0. ! ‘ /

2. Extent - ~o
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(i) Find the limits within which r must lie for the permissible values of 8. If r < a (r >a) for some a >
0, then the curve lies entirely within (outside) the circle r = a. (i) If 72 is negative for some values of
6, then the curve has no portion in the corresponding region.

3. Pole
The curve passes through the pole, if for r = 0, there corresponds a real value of 0
4. Asymptote

If O is the pole and P(r,8) is any point in the polar system PY is the line which is the asymptote,
and OY L PY.The polar equation of any line is p =rcos(6 —a) where p is the length of
perpendicular from the pole to the line and « is the angle which this perpendicular makes with the
initial line.
oY =p
2X0Y = «a
If P(r, 6) be any point on the line then ZPOY = 6 — «

andzr—) =cos(f —a)

~ p = rcos(8 — a)is the required equation of the line which is the prospective asymptote.
5. Region

Find the region in which the curve does not exist, or find the greatest and least numerical value of r
etc.

6. Specific points

Trace the variation of r as 0 varies.

; Trace r = a(1 + cos 9)

1. If we replace fto-0, the equation remains unchanged. So the given curve is symmetric
about the initial line.

2. The extent can be seen from the fact that maximum value of cos #is 1 and minimum value
is -1. Thus r can take values from 0 to 2a.
For r = 0, we can see thatf = . This means that the curve passes through the pole.

4. Since it’s a polar curve we can find the value of r at various 6 values and then plot the

curve on a polar plane.

0 0 T T T T 2m m
6 4 3 2 3
2a 3 a a 0
: (Fra) |(Z+D | 3, :
2 7z

From all the above points, the following curve can be traced:
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14.3 Tracing of Parametric Curves

When the path of a particle moving in the plane is not the graph of a function, we cannot describe it
using a formula that expresses y directly in terms of x, or x directly in terms of y. Instead, we need
to use a third variable t, called a parameter and write x = f(t) y = g(t).

The set of points (x, y) = (f(t), g(t)) described by these equations when t varies in an interval I form a
curve, called a parametric curve, and x = f(t), y = g(t) are called the parametric equations of the
curve.

: Trace the curve with parametric equations:
x =acos®0
y = bsin® 6

First of all we can make a table of variation of x and ywith 6.

2 0 n s 3m 2m

N
N

Now the (x, y)points can be plotted on the xy —plane.

For the parametric equations

dy 26 dx
@ g
ae
dy b . dx
Therefore — = —-tan 6 provided that — # 0
dx a dae
Moreover & = 0 for § = O,E,n,g—n,Zn
ae 2 2
When 8 =0, £ =0
dx
At (a,0), the tangent is given as,
dy
0= (%),
=>y=0

n d
When 0 ==, Y= w0
27 dx

At (0, b), the tangent is given as,

=>x=0
dy
When0 =m, —=0
dx
At (—a, 0), the tangent is given as,
dy
—0=(—=
y (dx)gzn- (X + a)
>y=0
Wheng =3, & =
2 dx

At (0, —b), the tangent is given as,
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+b—(dy) 0
y - d.x 9:377[()( )
=>x=0

Thus, the tangent at points (a, 0)and (—a, 0) is the x-axis and at the points (0, b)and (0, —b) is the y-
axis.

And from this information we can draw the following:

: Trace the curve with parametric equations:
x = a(f + sinf)
y =a(l + cosh)

First of all we can make a table of variation of x and ywith6.

0 0 T —T 3T —3r
X 0 ar —an 3ma —3ma
y 2a 0 0 0 0
d
dy % dx £0
dx 9’  dg
ae

dx
Here i a(l + cosB)

dy .
B- sin@
L — _tan gprovidedl +cos@ #0or 6 # +m
dx 2
When 6 =n

The equation of the tangent is x = am.
When 6 =0
The equation of the tangent is y = 2a.

Similarly the tangents at the other points can be checked and with the above information we can
trace the following;:

LN NN
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Summary

Steps for curve sketching of a Cartesian curve:
Domain

Intercepts

Symmetry

Asymptotes

Intervals of Increase and Decrease

Local Maximum and Minimum
Concavity/Convexity and Points of Inflection
Graph of the Function

Steps for curve sketching of a polar curve:
Symmetry

Pole

Asymptote

Region

V VV VYV V V V VYV V V VYV V V V

Specific points

Keywords

Curve tracing, Cartesian curve, polar curve, parametric curve

Self Assessment
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oONw > @ ON WP

0w » »

For the curve x2y?(x +y) = 10, which of the following is true?
The curve has an intercept on x-axis

The curve has an intercept on y-axis

The curve has an intercept on x-axis and y-axis

The curve has no intercept on x-axis and y-axis

For the curve x2y?(x +y) = 10, which of the following is true?
The curve is symmetric about x-axis only

The curve is symmetric about y-axis only

The curve is symmetric about the line y = x

The curve is symmetric about x-axis, y-axis and the line y = x

For the curve x2y?(x +y) = 10
there is one asymptote only
there are two asymptotes

there are three asymptotes

there are no asymptotes

For the curve y = tanx which of the following is false?
The origin is a cusp
x = 2ais an asymptote

Curve exists for all non-negative values of x
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9N wp @

=

ONn®p o

The curve is symmetrical about the x — axis

The folium of Descartes is given by
x3 +y3 = 3ax?y?

x3 +y% =3axy

x% +y? = 3axy

x* +y* = 3axy

The curve is symmetric about the polar axis if for every point (r, 0) on the graph, the point
(r, —0) is also on the graph.
True

False

The curve is symmetric about the polar axis if for some point (r, 0) on the graph, the point
(r, —0) is also on the graph.
True

False

The curve passes through the pole, if for r = 0, there corresponds a real value of 0.
True

False

The equation r = a(1 + cos 0) represents
a circle

a lemniscate

a cardioid

a cycloid

. The equation p = r cos(6 — a) with usual notations, represents a

line
circle
cardioid

lemniscate

. The equations of type x = {(t), y = g(t) are called

simultaneous equations
ordinary equations
parametric equations

none of these

. In the equations of type x = f(t), y = g(t), t is called the parameter.

True

False
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13. The curve having parametric equations x = 5 cos36,y = 7 sin® is

A. acircle
B. anellipse
C. acycloid
D

an asteroid

14. The curve r = a + bcos 6 is symmetrical about
A. initial line

B. y-axis

C. line perpendicular to the initial line

D. lineg =7

15. Number of loops in the curve r = a cos 26 is
2

SN = »

3
4
6

Answers for Self Assessment

1 D 2 C 3 A
6 A 7 B 8 A
11. C 12. A 13. D

Review Questions

Trace the following curves

1. y?=8x

2. x2+y%?=9

3. x%y?(x+y) =10

4. x3+y%=3axy

5. y?x%? =x%—a?

6. r=a(l+cos0)

7. r=a(l-cosB)

8. x=5cos%0,y =7sin%0
9. r=acos28,a>0

10. r =a+ bcos 0

11. x =0.5sect, y =1+ cott
12. x = cost,y = cott

13. rlogf =a
14. r = a(6 —sinf)
15. r=a+asinf,a>0

4 D 5
9 C 10
14. A 15.
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Piskunov, N. (1996). Differential and Integral Calculus Vol I, & II, Publishers, CBS, India.

https:/ /mathsdiitjee.page.tl/ Curve-Tracing.htm

https:/ /www.desmos.com/calculator/uulergkbey

https:/ /www kristakingmath.com/blog/sketching-polar-curves

https:/ /brilliant.org/wiki/polar-curves/

https:/ /math.libretexts.org /Bookshelves/Calculus/Map %3A_Calculus__Early_Transcen
dentals_(Stewart)/10%3A_Parametric_Equations_And_Polar_Coordinates/10.01%3A_Cu
rves_Defined_by_Parametric_Equations

https:/ /tutorial. math.lamar.edu/classes/ calcii/ parametricegn.aspx
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https://maths4iitjee.page.tl/Curve-Tracing.htm
https://www.desmos.com/calculator/uu1erqkbey
https://www.kristakingmath.com/blog/sketching-polar-curves
https://brilliant.org/wiki/polar-curves/
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/10%3A_Parametric_Equations_And_Polar_Coordinates/10.01%3A_Curves_Defined_by_Parametric_Equations
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/10%3A_Parametric_Equations_And_Polar_Coordinates/10.01%3A_Curves_Defined_by_Parametric_Equations
https://math.libretexts.org/Bookshelves/Calculus/Map%3A_Calculus__Early_Transcendentals_(Stewart)/10%3A_Parametric_Equations_And_Polar_Coordinates/10.01%3A_Curves_Defined_by_Parametric_Equations
https://tutorial.math.lamar.edu/classes/calcii/parametriceqn.aspx
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