Functional Analysis
DEMTH642

Edited by:
Dr. Kulwinder Singh

OVELY
ROFESSIONAL
NIVERSITY




5. [OVELY

£ O
A ¢,

IEJROFESSIONAL
[VINIVERSITY

Functional Analysis

Edited By
Dr. Kulwinder Singh




Title: Functional Analysis

Author’s Name: Dr. Arshad Ahmad Khan

Published By : Lovely Professional University

Publisher Address: Lovely Professional University, Jalandhar Delhi GT road, Phagwara - 144411

Printer Detail: Lovely Professional University

Edition Detail: (1)

ISBN:

Copyrights@ Lovely Professional University



Unit 1:

Unit 2:

Unit 3:

Unit 4:

Unit 5:

Unit 6:

Unit 7:

Unit 8:

Unit 9:

Unit 10:

Unit 11:

Unit 12:

Unit 13:

Unit 14:

Content

Normed Linear Space and Banach Spaces I

Dr. Arshad Ahmad Khan, Lovely Professional University
Normed Linear Spaces and Banach spaces II

Dr. Arshad Ahmad Khan, Lovely Professional University
Bounded Linear Operator and its Properties

Dr. Arshad Ahmad Khan, Lovely Professional University
Hahn-Banach Theorem and its Consequences

Dr. Arshad Ahmad Khan, Lovely Professional University
Uniform Boundedness Principle and its Consequences
Dr. Arshad Ahmad Khan, Lovely Professional University
Inner Product Space. Hilbert Space

Dr. Arshad Ahmad Khan, Lovely Professional University
Orthogonality of Inner Product Space

Dr. Arshad Ahmad Khan, Lovely Professional University
Open Mapping Theorem and Closed Graph Theorem
Dr. Arshad Ahmad Khan, Lovely Professional University
Decomposition Theorems in Hilbert Spaces

Dr. Arshad Ahmad Khan, Lovely Professional University
Riesz Representation Theorem and Operators on Hilbert
Dr. Arshad Ahmad Khan, Lovely Professional University
Unitary and Normal Operators

Dr. Arshad Ahmad Khan, Lovely Professional University
Reflexivity of Hilbert Space and Orthogonal Projection
Dr. Arshad Ahmad Khan, Lovely Professional University
Spectral Theory of Linear Operators in Normal Spaces
Dr. Arshad Ahmad Khan, Lovely Professional University
Spectrum Of Normal Operators

Dr. Arshad Ahmad Khan, Lovely Professional University

13

24

40

51

58

69

80

92

107

126

138

150

160



Notes

Unit 01: Normed Linear Space and Banach Spaces 1
Dr. Arshad Ahmad Khan, Lovely Professional University

Unit 01: Normed Linear Space and Banach Spaces I

CONTENTS
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1.2 Properties of Normed Linear Space

1.3 Banach Space (Complete normed Space)
Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives

After studying this unit, you will be able to understand:

e Normed linear spaces.
e Banach spaces.

e Properties of normed space.

Introduction

The notion of a norm is an abstract generalization of the length of a vector. It is axiomatically stated
that the norm is any real valued function that satisfies specific requirements. The linear space
together with the norm is called a normed linear space. Moreover, the Banach spaces is a type of
normed linear spaces that possess the additional property of completeness.

In what follows, K will denote the field of R (real numbers) or C (complex numbers). We shall
always assume that R and C have their usual metrics and that all the linear spaces that we consider
will be defined over K (R or C).

1.1 Normed Linear Space

In this section, we first introduce the formal definition of norm, which serves as the building block

of the subsequent sections.

Definition. A norm || - || is defined as the function || - || : X = R on a linear space X satisfying the

following properties:

(@) ||x]]=0, Vx€E€X;

(if) [|x || = 0if and only if x = 0;

(iii) Hx+yll <|lxll + [yl VX, y € X;
(iv) | ax||< |al||x||, vx € X,a € K.

Lovely Professional University 1
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A linear space X over K with norm ||. || defined on X is called a normed linear space or simply a
normed space over , written as (X,||.|[) or X. The normed linear space is real or complex

accordingly as the field K is R or C.

Next, we provide some examples for the lucid illustration of the normed spaces.

I = i

Example. Consider a linear space X together with the norm defined by ||x|| = |x|. Then, it is
easy to verify that the properties (i)-(iv) of the Definition holds. In particular, triangle inequality
follows by the fact [|[x + y|| = [x + y| < |x| + |y, V x,y € X.

'-_"' - Example. The_space R™ (n-dimensional Euclidean space) and C" (n-dimensional unitary

space) of all n-tuples of real and complex numbers are normal linear spaces with the norm defined

by

S

n
1
Jlxl], = <Z|xi|z’> = (Fal? + Lol + - PP 1< p < o0
i=1

I =|
" “Example. Let £,, be the space of all sequences x = {x,,}satisfying ~ X724[x;[? < o, p = 1.

1
Then, this space is a normed linear space with the norm ||x| |p = X2l P)p, vV x € 4,

I — |
Example. Consider ¢, space, that is, the space of all bounded sequences x = {x,}. Then, this

space is a normed linear space with the norm [|x||, = sup |x;|, 1< i < oo.

E]Example. Find ||x||1, ||x||2 and ||x||DO for the vector x = (2,3,1,—4) € R%.

1 1
Solution: We have ||x||p = (ZiL11x:17)P = (Ix1 [P + x5 |P + -+ + |x, [P)P.

Then,

Iy = lxal + x| + sl + gl = [2] + 3] + [1] + |-4] = 10

1

2\z 1
[lxl], = (Zialail®)” = (a2 + a2 + L 2 + Iy ]2)z

1
= (1212 + 312 + |11% + |-4]%)2 = V30.

Also,

Ixl],, = sup{lxl, x2l, lxs, [x41} = sup{|21, 131, 11], | = 4]} = 4.

—_—

L -'Example. Let C[a, b]denotes the space of continuous real valued functions defined on [a, b].

Then, C[a, b] defines a normed linear space with the norms:

L |Ifl] = sup |f )|, Vf € Cla,b],x € [a, b].
2. |Ifll = [21f)ldx, v f € Cla, b].

Lovely Professional University



Unit 01: Normed Linear Space and Banach Spaces 1

1.2 Properties of Normed Linear Space

We now recall some basic definitions, which shall be frequently used in the remaining part of this

section.

Definition . Let (X, ||.||) be the normed linear space on X. Then, we have the following definitions.

>

An open sphere (or open ball) with center xy and radius r > 0 is the set B(xq;7) = {x €
X: ||x - x0|| < r}. By the surface (or boundary) of this ball, we mean the set S(xq;7) = {x €
X: ||x —x0|| =r}.

The set B[xq; 7] = {x € X:||x — x¢|| < r} denoted by S[x¢,7r ] or S,[x,] is called the closed
sphere or closed ball with radius r and center x,.

A set D in X is said to be open if for every x € D, there exists a ball with center x which is
contained in D.

A set D in X is said to be closed if for any sequence {x,} in D with x,, — x implies that
x €D.

A set D in X is said to be bounded in X if there exists a constant M such that ||x|| < M,vVx €
D.

A set D in X is said to be compact if whenever {x,} € D, there exist a convergent
subsequence of {x,} whose limit is in D.

A sequence {x,} is said to be bounded, if there exists a real constant K > 0 such that
||xn|| <K,vn.

A sequence {x,} c X is said to be convergent if there exists an x € X such that
limn—»oo ”xn - X”=0

A sequence {x,} c X is said to be Cauchy sequence if for given € > 0,3 a positive integer N
such that

lim|lx, —x,|l <evmmn =N
n—oo
That is, x,, is said to be Cauchy sequence in X iff
lim|lxyp —xpll > 0asm,n -
n—-oo

The space X is said to be complete if every Cauchy sequence in X converges to an element

inX.

Theorem . Show that Every normed linear space is a metric space w.r.to the metric (x,y) =

[lx —y||;V x,y € X.But the converse may not be true.

Proof. Let X be a normed linear space. Define a mapping d: X x X - R by:

d(x,y) = llx — yll; V x, yeX.

We show that d is a metric on X.

Since (i) (x,y) = [|[x—y|| = 0.

Thatis, d(x,y) = 0.

Lovely Professional University
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(i) dCe,y) =|lx—y|| =0,iff x—y =0iff x = y.
Thatis, d(x,y) =0, iff x = y.
(iii) d(xy) = llx =yl = lly = xl| = d, ).
Thatis, d(x,y) = d(y, x).
(V) d0e2) = llx—2] = lx =y +y —z| < |lx =yl + |ly — zIl,
=d(x,y) +d(y,2).
Thus, d(x,z) < d(x,y)+d(y,2).

Hence, d is a metric on normed linear space X, known as metric induced by norm and hence X with

d is a metric space.

Now, we show that the converse of above theorem need not be true. For this consider a linear space

X with metric d defined as d(x,y) = %

We can clearly verify the above metric satisfies all the conditions of metric space.

If we take (x,y) = |lx — y|| = _1|+x|;i]|y| .
]

Or we can write ||Z|| =T

Vz=x—-y €X

Thus for any o scalar ||0(z|| = o = 1 ez * |a|||z||.
This shows that X is not normed linear space.
Theorem. Show that For any normed space ,
HxI =1yl < [lx = yILY x, yeX.
Proof . We now prove that |||x|| — [|¥||| < [|x — ||,V x, yeX.

We can write x =x—y +y.

So,

x| = |lx =y + yl| < |lx = yl| +|I¥l].
Implies, [|x|| = ly|l < [lx = yIl.

Similarly, we can writey =y — x + x.

So, [Iyll = [ly —x +x|| < |ly — x[| + [Ix]|:s
This implies, -||y — x|| < [[x][ = [IyIl.

Or —|[x =yl < [lxI[ = I¥ll-

So, from the above relations, we get

=[x =yl < [lx[l = [yl < [lx = ¥ll-
Implies, |[|x|| = [IylIl < [lx = ¥II.

Definition . Let X and Y are normed linear spaces, then f: X — Y is said to be continuous at xy € X

, If for given €>0, thereexists § > 0 such tha ||f(x) - f(x0)|| < € whenever ||x - x0|| < 6.

Lovely Professional University
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That is,

|x —x0|| < §, implies ||f(x) —f(x0)|| < €.
Theorem. Show that a norm function is continuous.
Proof. Let < x;, >— x in normed linear space X.
Thatis, x,, » x asn — oo,

Or, x,—x—>0asn — oo,

This gives ||x, —x|| - 0asn — oo.

Now, [ [Ixn|l = [IxI| | < [lxn —=x|| = 0asn — co.
This implies, | ||x,|] —||x]]| = 0asn — oo.
Or, |[|xpll—=1lx|]] = 0asn — oo.

Or, [lxp|l = [|x]| asn — oo.
This Shows that ||. || is a continuous function.
Theorem. Show that every convergent sequence is a cauchys sequence.
Proof. Let < x,, > be a sequence convergent to x, then for given € > 0, there exists ny € N such that
[, — x|| <§ ¥ n > ng.
In particular, ||x, —x|| < E for fixed m > n,,.
Now, |[xq — x|l = [|%n — X + x — x|
= 1(tn = 2) + (x = x|
< xn = x[| + [l = 2]
= |1t = x[| + | = 1]t = I
= ||xn—x|| + ||xm—x|| <§+§= e vmnz=n,
Thatis, ||x, — xu|| < € Vm,n = n,.
Therefore, < x, > is a Cauchy sequence in Normed linear space X.

Remark: Converse of above result need not be true in general. As every normed linear

space is a metric space, we will show this for metric space

For this , Consider X = (0, 1], with d(x,y) = |x —y| and consider sequence < x, > =<

1/n >, where x,, € X. then, < 1/n > is a Cauchy sequence as
d(xp, ym) = 11/n—=1/m| - 0 asm,n > .
However, d(1/n,0) = |1/n— 0] - 0asn — oo.

But 0 ¢ X. Therefore, < x,, > is a Cauchy sequence in X but not convergent in X.

Lovely Professional University 5
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Theorem . Let X be a normed linear space over the field K. Let < x,, > and < y, > be

sequences in X with limx, = x and limy, =y, respectively , and {a,} be a sequence in K
n—oo n—-oo

with lima, = a.
n—-oo

Then
(@) lim(x, +y,) = x+y.
n—oo
(ii) lim a,x, = ox.
n—-oo

Proof. We know by definition of norm
G +yn) = G+ W =110 — ) + O — W
< G =DM+ 1[G = M
- O0asn — .
Also, |[anx, — ax|| = |[an (X, = X) + (o, — ||
< lan||xn-x|| + oz — af||x]|

- 0asn — oo.

1.3 Banach Space (Complete normed Space)

Definition. A normed linear space X is called complete if every Cauchy sequence in X converges

to a limit point in X.
A complete normed linear space is called a Banach space.
(OR)
A normed linear space which is complete as a metric space is called a Banach space.

—

—_—

Example. The Spaces R and C of reals and complex numbers are Banach spaces. These are the

consequences from the real analysis result that every Cauchy sequence is convergent.

I — |
Example. The spaces R™ and C™ are Banach spaces . Here we prove that R™ is complete.
Let {x®}bea Cauchy sequence in R™,
x® = (xip),xép), ...,x,(f’)),p =1.2,..
Then, given any € > 0, there is a natural number n, such that
® _ @[
i=1 |xip X |

VD,q;p,q =1, implies ||x® — x@|| = <e

Hence, V p,q;p,q = ng , implies |xl-(p) - xl-(q)| < ||x®P —x@|| < €

Lovely Professional University
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) ®

So, for each i, xi(p is a cauchy sequence of real numbers. Since R is complete, x;"” converge to a real

number x; for all i = 1,2,3,...,n. But this implies that for already choosen ¢, there exist a natural

number p; such that
V p;p = p;, implies |xi(p) - xi| < €/\n
Take x = (x1, %3, ..., Xp), where x; = lim,_ xi(p). Then x € R™.

We show that x = lim,,_,, xi(p). Let po = max(p1, P2, ---)Pn)

2
V p;p = py = ng, implies [|x® — x@|| = ’Z?zl |xi(p) - xi(q)l < € By (1)

Hence {x®} converges to x € R", as required. Thus, R™ is complete and hence is a Banach Space.

; Example. The space [* is a Banach space . This space consists of all bounded sequences

x = {x;} of real or cpmplex numbers with addition and scalar multiplication defined by:
x+y={x+yl
ax = {ax;}.
The norm in [ is defined by:
||x|| = sup2qlxl
We show that [ is a Banach space.

Let {x”} be any Cauchy sequence in [®, x®) = x;;P). Then,given any € > 0, there is a natural

number n, such that:

3}

0,409 20 = |[x® = x@|| = supiZ, ¢ - x| <e.

So, foreachi =1,2,...,

v . >ne = |[x® — @] < [1x® — x@| <
pg;p,qzng = |x" —x; | <||x x| <e.

)

i

Hence, x;” is a Cauchy sequence of real (or complex ) numbers, since R(or() is complete , xi(p)

converges to x; foralli = 1,2,3, ...

Take x = x;. We show that x € [* andlim,,_,o, x® = x.

(»)

Since x;” - x;, there is a natural number n; such that
Vp,;p,=n = |xl-(p) - xi| < E, 1=12,.. )]
That is,

0 €
vp,;p, =10 = |[x® — x|| = sup®, |xi(”) - xil <;<e
Hence x® - x. Also, from (1)

@) + xi(p)l

lx;| = |x; — X;

Lovely Professional University 7
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< I — xP) + xP)

€
<S+ky

Now % + k;, is a finite number, independent of i. This proves completeness of [*.

l - I
" "Example. The space c¢ that isthe Space of all convergent real (or complex ) sequences is a

Banach space . It is a subspace of [*.

space

0

Example. The space c, that is the space of all sequences which converges to 0 is a Banach

Example. The space 1, (p = 1) : This is the space of all sequences x = {x;} such that ||x|| =

1
(Z;’lexilp)l’ is a Banach space.

; Example. The space C[a, b]. This is the space of all continuous functions from [a, b] to

R (or C) is a Banach space. The normin C[a,b]is ||f|| = sup If(x)I|, f € Cla, b].
x€[a,b]

Summary

A linear space X over K with norm ||.|| defined on X is called a normed linear space or
simply a normed space over , written as (X, ||.||) or X. The normed linear space is real or
complex accordingly as the field K is R or C.

An open sphere (or open ball) with center x, and radius r > 0 is the set B(xg;7) = {x €
X: ||x - x0|| < r}. By the surface (or boundary) of this ball, we mean the set S(xq;1) = {x €
X: ||x —x0|| =7}

The set Bxq; 7] = {x € X:||x — x¢|| < r} denoted by S[x,,7 ] or S,[x,] is called the closed
sphere or closed ball with radius r and center x,.

A set D in X is said to be open if for every x € D, there exists a ball with center x which is
contained in D.

A set D in X is said to be closed if for any sequence {x,} in D with x, — x implies that
x €D.

A set D in X is said to be bounded in X if there exists a constant M such that ||x|| <M,vx €
D.

A set D in X is said to be compact if whenever {x,} € D, there exist a convergent
subsequence of {x,} whose limit is in D.

A sequence {x,} is said to be bounded, if there exists a real constant K > 0 such that
||xn|| <K,vn.

A sequence {x,} C X is said to be convergent if there exists an x € X such that

limn—»oo”xn - X”=0

Lovely Professional University
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e Asequence {x,} c X is said to be Cauchy sequence if for given € > 0,3 a positive integer N
such that

lim||x, —xpll <e,Vmn=N
n—oo

That is, x,, is said to be Cauchy sequence in X iff

lim||xy, —x,ll 2 0asm,n - o
n—oo

e Thespace Xis said to be complete if every Cauchy sequence in X converges to an element

in X.

Keywords

e Normed linear space
¢  Open sphere

e  Closed sphere

e Bounded set

o  Compact set

¢ Convergent sequence
e  Cauchy Sequence

e  Banach space

Self Assessment

1. Which of the following is not a requirement for a normed linear space.

A. Associativity

B. Linearity

C. Triangle inequality
D. Homogeneity

2. If two vectors in a normed linear space have norms equal to zero , then

A. The vectors must be orthogonal

B. The vectors must be the zero vector

C. The vectors must be linearly dependent.
D

. The vectors must be equal

w

. In anormed linear space, the zero vector is unique because:

It satisfies the homogeneity property
It is defined as the multiplicative identity

It is defined as the additive identity

9 N % »

None of the above is correct

Lovely Professional University 9
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4. Which of the following is not a norm on a normed linear space.

A. Euclidean norm
B. Taxicab norm
C. Supremum norm

D. Inner product norm

5. Which of the following is not a property of norm in general.

A |lx]|=0
B. lx+yll < |lx|| + |I¥]l
C. |lkx|| = kl1X]|

D. ||x|| = 0,iff x = 0

6. Which of the following is true about a Banach space

A. Itis a finite dimensional vector space
B. Itis a normed linear space that is complete
C. Itis a vector space with finite no of elements

D. None of the above

7. Which of the following statement is true about a complete normed linear space.

Every Cauchy sequence converges within the space.
Every bounded sequence converges within the space.

Every convergent sequence is bounded within the space.

on = >

None of the above

8. In a normed linear space, if the norm of a vector is zero, then the vector must be:

Zero vector
Unit Vector

A non zero vector

O N

An infinite vector

9. A complete normed space is known as a:

A. Hilbert space
B. Banach space
C. Compact space
D

. Euclidean Space

10. Which of the following is a Banach space.

10 Lovely Professional University
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A. Space of all polynomial functions on [a, b] with supremum norm
B. Space of all continuous functions on [a , b] with supremum norm.
C. Space of all polynomial functions on [a, b] with the p- norm.

D. Space of all continuous functions on [a, b] with the p- norm.

11. Consider the statements.
(i) Every finite dimensional normed linear space is a Banach space.
(ii) Every Banach space is finite dimensional linear space.

Only (i) is true
Only (ii) is true

Both (i) and (ii) are true

SN v »

Neither (i) nor (ii) is true.

12. Which of the following is true in normed space.

Union of any family of open sets is open.
Intersection of any family of open sets is open.

Union of any family of closed sets is closed.

9 N v »

Intersection of any family of closed sets is open.

13. If p = q = 1, which of the following is true.

O N = »
-
I
-~

None of the above

14. Consider the statements:
(i) Every normed space is complete.
(ii) Every normed space can be identified as a dense subspace of a Complete normed space

A. Only (i) is true.
B. Only (ii) is true.
C. Both (i) and (ii) are true.

D. Neither (i) nor (ii) is true.

15. The linear span of empty set equals:

A. Zero subspace

B. Empty set

Lovely Professional University
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C. The whole space
D. None of the above

Answers for Self Assessment

1 A 2 B 3. C 4 D
6 B 7 A 8 A 9 B
11. A 12. A 13. B 14. B

Review Questions

Define a normed linear space.

What is definition of norm in normed linear space.

Define a Cauchy sequence in a normed linear space.

Define a Banach Spaces.

O X N o0 @ =

Further Readings

=

e Introductory Functional Analysis With Applications By Erwin Kreyszig.
e  Functional Analysis By Walter Ruddin, Mcgraw Hill Education.

¢ J.B Conway, A Course In Functional Analysis.

¢ C.Goffman G Pedrick, A First Course In Functional Analysis.

e B.V.Limaya, Functional Analysis.

Lovely Professional University

State triangle inequality property for a normed linear space.

Explain the concept of convergence in a normed linear space.

10.

15.

What is the difference between a normed linear space and a metric space.

What are the key properties that a space must satisfy to be considered a Banach space.

What is the difference between a normed space and a Banach space.
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Objectives

After studying this unit, you will be able to understand:

e Finite dimensional Normed Space and Subspaces.
e Quotient space and its completeness

e Dual space and completeness

e Equivalent Norms.

Introduction

In this chapter, We introduce the idea of finite dimensional normed spaces and subspaces . These
spaces have some pleasant and useful properties . Such spaces are all Banach spaces. Further, we
also discuss quotient space, dual space and their completeness. Finally, we shall see that any two
norms on finite dimensional normed spaces are equivalent.

2.1 Finite Dimensional Normed Space and Subspaces

In this section, we first introduce the formal definition of Schauder basis of a normed space which
serves as the building block of the subsequent section.

Definition. A collection B = {ey, e, ..., ey, ... } of elements of a normed space X is said to be a basis
for X if :

(i) B is linearly independent set and
(ii) For each x € X, there are uniquely determined scalers
0y, 0, eeny Oy e
such that
Lim lx = XLy i eill = 0.

If B is a basis for X, then each x € X is uniquely expressed as:

Lovely Professional University
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A normed space X is said to be finite dimensional if it has finite basis, otherwise X is said to be
infinite dimensional.

—
—

Example. The space R™ has
e; =(1,0,0,...,0),e, = (0,1,0, ...), ..., e, = (0,0, ...,1) as a basis.

Definition. A non empty subset Y of a normed space X is said to be a subspace of X if

(@) Y is a (linear) subspace of X considered as a linear space, and
(if) Y is equipped with the norm ||. ||y induced by the norm ||.|| on X.
ie ||x||y = ||x||,v x € Y. We may denote the subspace (Y, ||.|ly) simply by Y.

Theorem. Let Y be a subspace of a normed space X. Then Y is complete = Y is closed.

Proof. Suppose Y is complete and let x be a limit point of Y. Then every open sphere centered at
contains points of Y (other than x). In particular, the open sphere S1(x), where n is a positive integer

contains a point x,, of Y other than x. Thus {x,} is a sequence in Y such that
1
[lx, — x|l < ;,Vn.

= lim, L, X, = xin X.
= {x,} is a Cauchy sequence in X and hence in Y. But Y being complete, it
follows that x € Y. ThusY is closed.

Theorem. Let Y be a subspace of Banach space X. Then Y is closed = Y is complete.

Proof. Let Y be closed and let {x,,} be Cauchy sequence in Y. Then it is Cauchy in X. But X being
complete, = 3 x € X such that x,, — x. Either x € Y, then we are done, or each neighbourhood of x
contains points x,(# x). As such, x is a limit point of Y. But Y being closed , implies x € Y. Thus Y is
complete.

Corrolory. Let Y be a subspace of a Banach space X. Then Y is complete iff Y is closed.

2.2 Quotient Space of a Normed Space and its Completeness

In this Section, we shall consider one of the most useful methods of constructing new Banach
spaces from the given Banach spaces.
Let X be a normed space and Y a subspace of . For any x € X, the set
x+Y={x+y:y€eY}
is called a coset of Y determined by x or a translate of S by x. The set
{x+Y:x€e X}
Of all cosets of Y in X is a linear space under addition and scalar multiplication defined by
x+Y+y+Y=x+y+V,x,y €X
And alx+Y)=ax+Y,x€X,a EF,
This set of cosets of Y in X is called a quotient space of X by Y and is denoted by X /Y.
For any subspace Y of a linear space , the dimension of X/Y is called the deficiency of Y.
We can make X/Y. a normed linear space as follows:
Let ||. || be the norm in X. Foran x + Y € X/Y, put
llx +Ylly = infllx +y|| = d(x,Y)
YEY

Where d is the metric induced by the norm ||. || on X.
Theorem. If Y is a closed subspace of a normed space (X, ||.||),then X/Y is also a normed space
under the norm defined by
llx +Ylls = infllx + yll = d(x,Y).
YEY
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Proof. It is obvious from the definition that

Also ||x + Y|l; = 0if and only if inf||x + y||, so that by the property of infimum , there is a
YEY

sequence {y,}in Y such that
[l + yal|, > 0asn — oo
But then x + y,, =0 thatisy, — —xasn — . SinceY is closed subspace , x € Y
Hence
x +Y =Y, the zeroth element of X /Y.
Now, letx +Y,y+Y € X/Y,x,y € X.Then
x+Y+y+Y=x+y+Y€EX/Y
By definition of ||.||; in X/Y, there are sequences {x,} and {y,} in Y such that

limn_,w“x +xn|| = ”x+ Y”lr llmn—)oolly+yn|| = ||y+ Yl 1/

Hence, for any x,y € X and the definition of infimum,
llx+Y+y+YI| = |lx+y+YI

LS Hlx+y+x, + ]

< [l + xal| + |1y + yal|
Taking limits as n — oo, we have :
llx+Y+y+Yll = [lx+y+Yl,
< im0 12 + x| + limyoo |1y + 2|
< ||x+Y||1+ ||y+Y||1

So that condition (ii) is satisfied.
Now to prove (iii), For any scalar @ and x + Y € X/Y, consider an element
alx+Y)=ax+Y
If @ = 0, then
[laCx +y)||1 =[10.x + Y||1 = ||y||1 =0=|al|lx+ Y||1.
Let a # 0. Then
[lax + Y||1 = inf||ax + y||
YEY

inf|lax + ay'||
y'ey

lafinf [1x + y'l|
y'ey
== |a|||x + Y||1.
Hence (X/Y,||.|l1) is a normed space.
Now, we discuss the question of completeness of X/Y if X is complete. In a support of this we prove
the following theorem.
Theorem. Let Y be a closed subspace of a Banach space X. Then X/Y with the norm defined by
|lx +YI|, = infllx +yl| = d(x,Y)
YEY

is also a Banach space.
Proof. To prove that X/Y is a Banach space , we have to prove that every Cauchy sequence in X/Y
Converges to a point X/Y. Since a Cauchy sequence convergent if and only if it has a convergent
subsequence , we shall show that every Cauchy sequence in X/Y contains a convergent
subsequence .
Let x,, +Y, x,, € X be a Cauchy sequence in X/Y. Then, given any € > 0, there is a natural number
n, such that:

vm,n,mn=n, = ||xm +Y—(x, + Y)|I1 = ||xm —xp + Y||1 <e€

Take € = % and m = ny,n = ny, 1. Then
1
[[xn, +Y — (xn1 + Y)|| = ||xn1 — Xn, 41 +Y||1 <§

If we choose € = %, then there is a natural number n, such that
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1
||xnz tY - (x"z+1 + Y)||1 = ||xnz T Xngp + Y||1 < Z
Continuing in this way, we see that, in general there is a natural number n; such that
1
|, + ¥ = (Kr + Y)||1 = |12, = Xnrs + Y||1 <ox

In each x,,, +Y and x,, 41 + Y, select vectors yy, ¥+ respectively such that

1
[1yie = yisal] < oK
Then, for any k' > k,
e = yirll = 11Yie = Yiewr + Yiewr = Yiewz + = Yir-1 = Vel
S Uy = Yiwall + 11Yierr = Viewz [+ [yier—1 = vl
<gtamtotow
1
<1L_k%=#—>0ask—>oo.
Thus {y,} is a Cauchy sequence in X. Since X is complete, {y;} converges to a point of X. Hence
||xnk+Y—(y+Y)||1 <|lyk —yl| > 0ask >

So that the subsequece
Xp, +Yoy+YEX/Y
But then x,, + Y — y + Y. Hence X/Y is complete.

2.3 Dual Space and Completeness

Let X be a normed linear space and let K be a scaler field associated with X. This field is also a
normed linear space with norm defined as

llxll = |x|;x € K,
then

1. Alinear operator x": X — K is called a functional.
A functional x": X — K is said to be continuous at a point x, of X, if for each € > 0, there
exists § > 0 such that ||x — x¢l| < & implies [x'(x) — x'(x,)| < €. We say that x' is
continuous on X if and only if it is continuous on each point of X.

3. A functional x": X — K is said to be linear if

x'(axy + Bxy) = ax'(x1) + Bx'(x3),Vxy,x, € X;, B €K.
4. A linear functional x’ is said to be bonded if there exists M > 0 such that
|x"(x)] < M||x||,vx € X.

5. The set of all linear functionals defined on X is itsel a linear space , if addition and scaler
multiplication are defined by:

(e + x5)(x) = 21 (x) + x5(x)
(ax)(x) = ax'(x)
And is denoted by x/, called the algebraic dual ( conjugate) space of X.
6. A mnorm of a linear functional x" € x/ is defined as:

lx'll = sup |x'x|
llxll=1

= sup |x'x|
llxll=1

_ |x" x|
= SUPx=0 Il

Note that |x'x| < [|x'|| [[x]l; vx € X.

7. The set of all bounded (continuous) linear functionals defined on X is a linear subspace of
x/ and is denoted by X'.
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Anormon X' is given by (6). The linear space X' normed in this way is called normed
conjugate of X. Sometimes it is denoted by X™.

Remark:- Since X” is a linear space, we may also consider its algebraic dual (or conjugate) space

which we denote by (X/)” or X/7, that is the class of all linear functionals on X .We shall
denote elements of X// by x” (i, e x": x/ - K, the scaler field associated with x/) and we
shall use the notation x"'(x') for the value of x"" at x'.

Theorem. Let X be a norm linear space, then the norm conjugate space X’ of X is complete.

Proof. Let {x;} be a Cauchy sequence in X', then by definition of Cauchy sequence, for every € > 0,
there exists positive integer N such that

[l — x5|| < ewhenever m,n = N.
Consequently for each x € X,
[oer () — %0, O] = Qe — 2] < llxm — x5 lllx|l < €llx]|,vm,n = N............(1)

Which shows that {x,,(x)} ia a Cauchy sequence in the space R or C for each x € X. Since the scaler
field R or C is complete, so {x,,(x)} converges to a limit depending on X which we denote

by x'(x).
That is lim,,_, o, x5, (x) = x'(x).

Thus defining a functional x’ on X. We show that x" € X’ and for this it is enough to show that x' is
linear and bounded.

First we show that x’ is linear, since for scalers 1;, 4, and vectors x;, x, in X, we have
x' (A + Apx2) = rllgr()lo Xp (A1 %1 + A27)
= limy 0 X (A1) + rlli_r}(}oxﬁ(/lzxz)
= /117111_{1010 xn (1) + 42 TILHT(}OX;L(XZ)
= x" (1) + Aox" (x2).
Which shows that x’ is linear.

Now we show that x’ is bounded and hence continuous. Since {x;}is a Cauchy sequence, so it is
bounded . Therefore by definition, there exists a constant K > 0 such that [|x,|| < K; vn.

For x € X, we have

LGOI < Hlep 1]l

< Kllxll; v n.

Taking limit as n — oo, we get

lx" GOl Kllx][; ¥ n.
Which shows that x” is bounded and hence continuous . Hence x’ € X'.
To complete the proof , it remains to show that x;, — x'.
By (1), we have
oty () — x5, ()| = €llx|l, ¥ym,n = N.
Since the results holds for every m > N.

X (%) = x'(x)
We may let m — oo. Thus letting 1{1_)72), we get
|x" () —xn ()| < ellx|l; vn = N

Implies [(x" —xp)(x)| < €llx]l; yn = N
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By taking Sup over all x of norm, we have
lx" —xpll<e;Vn = N.

Which shows that {x,} converges to x’. Consequentely X' is complete.

2.4 Equivalent Norms

A norm |[|.||; on a vector space X is said to be equivalent to a norm ||.||, on X if there are positive
numbers a and B such thatV x € X we have

allxl], < [Ixl], < Bllx],.
This concept is motivated by the fact that Equivalent norms on X define the same topology for X.

—_—

—_—

1
Example. Let X = R? with norm ||x||; = |x;]| + |x,] ; x = (x4, x;) € R? and ||xll, = C&,1x:1%)?,

then show that ||x||; and ||x||, are equivalent norms.
Solution:- we have

lxlly = loeg | + Lozl = Bioq Il = B2, (Dl

< (2, (12 (52 ul?)

=V2|lxll,
This implies llxll, < V2 lIxll,
1
Or = laxlly < llxllpene 1)
Now,

1
2 2
Il = (Zw) = VInl 12,
i=1

< lxq |+ Ixlo= Nl

lxll < @) lIxllgeeenennnennees )
From (1) and (2)

1
—= lIxlly < llxll2 < (1) llxll4

V2

This shows that |[x]l; and ||x||, are equivalent norms.

Theorem. The relation of “ being equivalent to * among the norms that can be defined on a linear
space X is an equivalence relation.

Proof. In order to show that relation of * being equivalent to “ among the norms is an equivalence
relation, we have to show that it is reflexive, symmetric and transitive,

Reflexive. We have for any norm ||. || on X and for any x € X
allx|l < llxll < Bllxl
Is satisfied for « = = 1. Hence ||. [|~||. ||

Symmetric. If ||. [|;~[|. ||, then there are positive numbers a and 8 such that ¥ x € X, we have

allxll, < lixlly < Bllxll,
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1
B

1
= llxlly < llxllz < il

Hence || [l2~|I. I,

Transitive. If ||. ||, ~|l. ||, and ||. [|,~I|. ]| ; then there are positive numbers a, 5, @; and f; such that
V x € X, we have

allxll; < llxlly < Bllxll; and ayllxll; < llxll2 < Billxlls

1 B B
= aqllxllz < lxll; £ =llxfly £ =llxfl; £ —. X
lxlls < llxll; 6!II Il1 6!II Il p Billxlls

= allxlls < Il <2l
= aaylxlls < Il < B
Since a, 8, a4, 1 > 0.

Hence || l~I-1I5 .

Consequently the relation of * being equivalent to “ among the norms that can be defined on a
linear space X is an equivalence relation.

Theorem. Any two equivalent norms on a linear space X define the same topology on X.
Proof. Let ||.]l;~]l.]l, then there are positive numbers a and § such that V¥ x € X, we have
allxllz < llxlly < Blixll2
We show that every basic open ball in (X, || [l; ) is open in (X, || ||, ) and conversely.
For an x € X, let B(x; ) be an open ball in (X, ||. ||; ), then we show that it is open ball in (X, ||. ||, ).

For thislety € B(x;r) then|lx —y|l, = <7

=Ty

Consider B;(y;r') in (X, ||. ||;) where r’ =

Then for any z € B;(y;r") we have ||z —y|l, <’ then
lz=xlli=llz=y+y—xlly < llz=ylly + lly — xll,
lz=xll; <Bllz—yll, + 7 Since ||. [y~ 1l, and [lx = yll; =7 <7

-n

B
Hence z € B(x; r) implies € B;(y;r") € B(x;r) . Hence B(x;r) is open ball in (X, [l. ||, ). Similarly

)+r1=r=>||z—x||1<r

T
lz = xly < g1 + 12 = B

we can show that every basic open ballin (X, ||. ||, ) is openin (X, || ||; ). Hence any two equivalent
norms on a linear space X define the same topology on X.

The next theorem shows that equivalent norms preserve Cauchy property of sequence.

Theorem. Let |||, and ||. ||, be equivalent norms on a linear space X, then every Cauchy sequence
in (X, ||.1l;) is also Cauchy sequence inin (X, ||. |l ) and conversely.

Proof. Let {x,,} be a Cauchy sequence in in (X, ||. ||), then for given € > 0 there exists no € N
Such that
llxm — xnlli < € Vm,n > n,
1 €
ll2tm = 2nllz < —llotm = xnlly <3 ¥m,n>ng
llxm — xnll; < € Vm,n > n,

Hence {x,,} is a Cauchy sequence in in (X, ||. ||;). Similarly, we can prove converse.
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Summary

¢ A normed space X is said to be finite dimensional if it has finite basis, otherwise X is said
to be infinite dimensional.
e Let X be anormed space and Y a subspace of . For any x € X, the set
x+Y={x+y:y€ev}
is called a coset of Y determined by x or a translate of S by x. The set
{x+Y:x€e X}
Of all cosets of Y in X is a linear space under addition and scalar multiplication defined by
x+Y+y+Y=x+y+Y,x,y €X
And alx+Y)=ax+Y,x€X,a€EF,
This set of cosets of Y in X is called a quotient space of X by Y and is denoted by X /Y.
e For any subspace Y of a linear space , the dimension of X/Y is called the deficiency of Y.

Keywords

e  Subspace

e Basis

¢ Dimmension

¢  Finite dimension normed space
¢ Quotient space

e Dual space

e Completeness

e Norm

Self Assessment

1: What is normed space?

A. A vector space equipped with a norm.

B. A vector space equipped with an inner product.
C. A vector space equipped with a metric.

D. None of the above.

2: Which of the following statements is true about a normed space?

A. Every normed space is finite-dimensional.

B. Every normed space is infinite-dimensional.

C. A normed space can be either finite-dimensional or infinite-dimensional.
D. A normed space cannot have a dimension.

3: Which of the following is true about subspaces of a normed space?

A. Every subspace is finite-dimensional.

B. Every subspace is infinite-dimensional.

C. A subspace can be either finite-dimensional or infinite-dimensional.
D. A subspace cannot have a dimension.

4: Which of the following statements is true about finite-dimensional normed spaces?

A. Every finite-dimensional normed space is complete.

B. Every finite-dimensional normed space is incomplete.

C. A finite-dimensional normed space can be either complete or incomplete.
D. None of the above.
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5: What is the definition of a quotient space?

SN = >

A space obtained by dividing a normed space by a subspace.

A space obtained by dividing a normed space by a linear transformation.
A space obtained by dividing a normed space by a scalar.

A space obtained by dividing a normed space by a scalar multiple.

6: Which of the following conditions ensures the completeness of the quotient space?

9N = >

The subspace is open.

The subspace is dense.
The subspace is closed.
The subspace is connected.

7: Two norms ||.|l; and ||.[l; on a normed linear space X are equivalent, then there exists

SN = >

positive constants a and f such that:

all.ly < 1.1z < Bl |l; for all x in X.
[I.1l; = all.]l, for all x in X.

IIl.1ly = Bl |l for all x in X.

None of the above.

8: Two norms ||.[l; and |l. ||, on a normed linear space X are said to be equivalent if :

A.

B.
C.
D.

They induce the same topology on X.
They have the same dimension.
They have the same norm constant.
None of the above.

9: Which of the following statements about the quotient space is true?

A.

B.
C.
D.

o on<=»

O N%Ep»

The quotient space is always finite-dimensional.

The quotient space is always a normed linear space.

The quotient space is isomorphic to the original normed linear space .
The quotient space is always a complete space.

: Which of the following is a necessary condition for the quotient space to be finite-

dimensional?

. The original normed linear space must be finite-dimensional.

The subspace must be finite-dimensional .
The original normed linear space and the subspace must have the same dimension.

. (D)None of the above.

: Which of the following statements is true about a subspace of a normed linear space?

. It must contain all the vectors of the normed linear space.

It must contain the zero vector.
It must be a finite-dimensional space.

. It must be a closed set.

: Let V be a normed linear space and W be a subspace of V. Which of the following statements

is true about the dimension of W?
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The dimension of W is always greater than or equal to the dimension of V.
The dimension of W is always less than or equal to the dimension of V.
The dimension of W is always equal to the dimension of V.

o0 W

None of the above.

13: What is the dual space of a normed linear space?

A. The space of all linear transformations from the given space to its scalar field .

B. The space of all linear functionals from the given space to its scalar field.

C. The space of all continuous linear transformations from the given space to its scalar field
D. The space of all continuous linear functionals from the given space to its scalar field.

14: Which of the following statements is true about the dual space of a normed linear space?

A. The dual space is always finite-dimensional.

B. The dual space is always infinite-dimensional.

C. The dual space is always a Banach space.

D. The dual space can be finite-dimensional or infinite-dimensional.

15: Which of the following statements is true regarding the completeness of the dual space of a
normed linear space?

A. The dual space is always complete.

B. The dual space is never complete.

C. The dual space is complete if and only if the original normed linear space is finite-
dimensional.

D. The completeness of the dual space depends on the specific norm chosen for the original
space.

Answers for Self Assessment

1 A 2 C 3 C 4 A 5 A
6 C 7 A 8 A 9 B 10. C
11. B 12. B 13. D 14. D 15. C

Review Questions

1. Define a normed space and give an example of a finite dimensional normed space.
Define subspace of a normed space.

Is the Zero subspace always a proper subspace.

Define Quotient space of a normed linear space.

State the definition of equivalent norms.

Give an example of two norms that are equivalent.

NSl »N

Define dual space of a normed linear space.

m Further Readings

¢ Introductory Functional Analysis With Applications By Erwin Kreyszig.
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Functional Analysis By Walter Ruddin, Mcgraw Hill Education.
J. B Conway, A Course In Functional Analysis.

C. Goffman G Pedrick, A First Course In Functional Analysis.
B.V. Limaya, Functional Analysis
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Unit 03: Bounded Linear Operator and its Properties
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3.1  Bounded and Continuous Linear Operators
3.2 Linear Functional

3.3  Compactness and Finite Dimensional Space
Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives

After studying this unit, you will be able to understand:

¢ Bounded and continuous linear operator
e  The null space of a linear operator

e  Norm of a bounded linear operator

e  The space of bounded linear operators

e  Linear functional

¢ Compactness and finite dimensional space

Introduction

In this chapter, We introduce the idea of bounded and continuous linear operators. The study of
bounded and continuous linear operators serves as a powerful tool to analyze and understand the
behavior of functions between normed vector spaces. Further, we also discuss kernel or null space
of a linear operator , norm of a linear operator and the space of bounded linear operators. Finally
we discuss linear functional and the Compactness and finite dimensional space.

3.1 Bounded and Continuous Linear Operators

In calculus we consider the real line R and real-valued functions on R (or on a subset of R).
Obviously, any such function is a mapping of its domain into R . In functional analysis we consider
more general spaces, such as metric spaces and normed spaces, and mappings of these spaces.In
functional analysis, an operator is defined as a mapping between two vector spaces. Specifically, let
X and Y be two vector spaces (typically normed vector spaces or Banach spaces) over the same field
(usually R or C). An operator T is a function that maps elements from X to elements in Y.

Different types of operators are commonly encountered in functional analysis, such as linear
operators, bounded operators, compact operators, self-adjoint operators, unitary operators, and
many others. Each type of operator has its own set of properties and characteristics, which are
studied to understand the behavior and structure of the operator. Operators play the fundamental
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role in functional analysis, as they provide a way to study the relationship between vector spaces,
mathematical objects in a functional-analytic setting.

Before defining a bounded linear operator , we recall some definitions and results.

Definition. Let X and Y be normed spaces over a field F. We say that T: X — Y is a linear operator
if T is linear (thatisT(x+y)=Tx) +T(y)Vxy €Xand T(Ax) = AT(x))Vx E XandAEF.

@Example. Let X be any normed space, then the identity function I: X — X defined by :
Ix)=x,x €X
Is a linear operator .
Here for A,A, € F and xq,x, € X,
T(Agxy +A5x5) = Axq + Apx,
= M1 (xp) + 251 (x5).

l'_" Example. For any linear spaces X, Y, the function 0: X — Y defined by:
0x)=0,x€eX
Is a linear operator.

Note that zero operator is also called null operator or trivial operator.

I = !
" "Example. In the space Cla, b], define a function I: C[a, b] = Cla, b] by:

1F) =f F(0)dt, f € Cla,b].

Then I is a linear operator.

Example. Let K be the space of all analytic functions over € and D: K — K be defined by:
D(f) =f', f € Kand f' is the derivative of f. Then D is a linear operator.

: Example. Consider the linear space P of all polynomials p(x) with real coefficients defined

on [0,1], then the mapping D defined by D(p) = %, is a linear operator from P into itself.

The kernel or null space of a linear operator

Let T: X — Y be a linear operator. Then the set of those elements of X which are mapped onto the
zero element of Y is a subspace of X called the kernel or null space of T and is denoted by Ker T. To
see the Ker T is a subspace of X , let x1,x, € Ker T.

ThenTx; = 0,Tx, = 0 and forany Ay,A; € F,

T(A1x1 + A3x3) = MTx; + A, Tx,, by linearity of T,

So that A;xq +A,x, € Ker T.

Now we define the Continuous linear operator. Of special interest among the class of all linear
operators are those which are continuous . Since every normed space is also a metric space,
continuity of an operator is always with respect to the metric defined by the norm. Let X and Y be
normed spaces . A linear operator T: X — Y is said to be continuous at a point x, € X if given € > 0,
there is a real no & = 8(e) > 0 such that

Vx €X,|lx —xpll < 8= ||ITx — Txpll < e
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T is said to be continuous on X if it is continuous at every point of X. T: X — Y is continuous if and
only if, for all sequences {x, } which converges to x, Tx,, converges to Tx.
Another concept associated with linear operator defined on a normed space is that of boundness
which is equivalent to continuity of the operator.
A linear operator T: X — Y is said to be bounded if there is a constant k > 0 such that
[ITx]l < kllx|l vx € X.
The concepts of continuity and boundness of a linear operator are equivalent is shown in the
following theorem.
Theorem. Let T: X — Y be a linear operator . Then

(a) T is continuous on X if and only if T is bounded .

(b) T is continuous if and only if it is continuous at 0 € X.

() IfT is continuous on X then Ker T is closed in X.
Proof. Suppose that T is continuous on X. Then it is continuous at each x, € X. So given any € > 0,
there is a § > 0 such that

Vx €X,|lx —xoll < 8= |ITx — Txoll < e

Let y € X and put

X=X +L e x —x =5
0T oY Y 0= oY

Then, using the linearity of T and [|lx — x| = ”%y"y ” = g <3,

we have

)
Tx —Txyll = |IT(x — x =||T(— )”

[
=i lITyll <e
So that, ITyll < 3 Iyl

< kllyll k==
Hence T is bounded.

Alternatively, suppose that T is continuous but not bounded. Then for each natural number n,
there is an x,, in X, such that

T, 1l > nllxpll.

L X
e ™

Let y, =

Then ||Ty,|l = — || T x|l

nlxqll

nllxall _
nllxqll

1 1
Now [ly,ll = m“xn“ =-->0asn > o.

By continuity of T,
lyall = 0 = ITy,ll - 0
But ||Ty, || = 1 Vn, a contradiction . Hence T is bounded.
Conversely suppose that T is bounded . Then there is a real number k > 0 such that
ITx]| <k |x|| vx € X.

So, for any € > 0, choose 6 = i Then

llx —xoll < & = [ITx — Txoll = IT(x — x0)l

26 Lovely Professional University

Notes



Notes

Functional Analysis

< kllx = xoll
<eE€
Hence T is continuous.
(b) Suppose that T is continuous on X, then it is continuous on 0 € X.
Coversely suppose that T is continuous at 0 € X. Then, with x, = 0, given any € > 0, there is a
8 > 0 such that
vx €X,|lx —xoll = x|l <8 =|ITx —Txoll = lITx|l < e.
Hence, for any x, € X,
llx —xoll < & = ITx = Txoll = IT(x = xo)ll < €
So T is continuous at x, and therefore also on X.
(c) Suppose that T is continuous and let x be a limit point of Ker T. Then there is a sequence {x,} in
Ker T such that
lim x, = x
n—oo
By the continuity of T,
0 =limy,_ e Tx, = Tx.

Hence x € ker T and ker T is closed.

Norm of a Bounded Linear Operator

LetT: X — Y be a bounded linear operator . Then there is a real number k > 0 such

ITx|| < k ||x|| vx € X

Suppose that x # 0.Then "™ <k vx € X,x # 0.

[l =

So k is an upper bound for ”"Txx"". The leaset upper bound sup ”"TTXH is called the norm of T and is
x+0€Ex
denoted by ||T||. Thus
_ [ed]
ITlh=" S8

Note:- If X = {0}, then ||T|| = 0.
It is clear from definition of ||T||, [IT]| = 0 and ||T|| = 0 if and only if ||Tx|| = 0 vx € X, thatisT = 0.
Note:- We have another relation for a bounded linear operator namely

ITxll < IT1llx|l vx € X.

T
As we have ||T|| = sup 17 <k
xzoex Xl

Also by definition of supremum, LLE2 IT||Vx#0 € X

llxll —

This gives ||Tx|| < |IT|llIx]lvx #0 € X

But for x = 0,T 0 = 0 so that ||TO|| = ||0]| < ||T]|||0]].
Thus ||Tx|| < IIT|lllx]| vx € X.

Note:- We can also write [|T|| = supjy=1/ITx||=supj <1 /I Tl

1] y y
As||T|| = sup =— = sup ”T (—)” = supx=1ITx|l , when x = =
wwoex I yooby 11 iyl Il
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Because of various equivalent forms of norms of a linear operator yields the following definition of
boundedness.

A linear operator T: X — Y is said to be bounded if and only if ||T|| is finite.

; Example. The identity operator I: X — X defined by :
Ix)=xVx €X

is bounded as ||I|| = sup en _ Il _
vwoey Ml Il

; Example. The null operator (zero operator ) 0: X — Y defined by:

0(x)=0Vx€eX

Il _ lioll _

is bounded as as ||0|| = =
x;:oex (B4} [l]l

"_" Example. The operator A: R™ — R™ defined by

n m
x = Ay =Z<Za”xi>e/
j=1

Where x = (X1, %3, v, X)), ¥ = V1, V20 oer Vi)
And (ey, e, ...,,) and (e}, e}, ... e}) are basis of R™ and R™ respectively is bounded.
Asy; = ¥t a;j x;, so that

n n

lAxl2 = Iyl = Zly, Z

m
Zau “

n m m
< (Zlaijlz.zmIZ)
=1

= i=

( By Minkowski’s Inequality)

n m m
<2 ) Jaut? | ) Il
j=1i=1 i=1
< k2||x||?
where k? = Y7, ¥ la;j|? and |1x]1? = X7 x|

Hence ||Ax|| < k||x]|.

Therefore A is a bounded and hence a continuous linear operator .

QNote:- 1Al = / _1 2 laij|? is called the norm of matrix operator A.

ENote:- if ( X,ll.Il) bea normed space and {x;, x, x3, ..., X, } be a linearly independent set of
vectors in X. Then, there is a real number ¢ > 0 such that for all scalers a,, a,, ..., a,
1Y aixill = cXqlag]eeeeeennen(d)

Theorem. Show that every linear operator on a finite dimensional normed space is bounded .
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Proof. Let X be a finite dimensional normed space and let B = (ey, ey, ... e;) be a basis of X. Let

T:X - Y be alinear operator . For any x € X,

So that, by linearity of T

Hence

n

Z Xi Tei

i=1

7|l =

n
<> blliTel
i=1

<b Yl lxi|,b = suplt llTell.oeenennnnnnn. (2)
Also by (1) , there is a positive real number ¢ such that

[lxll = Xy xi el = e Xy 1xi]eeeeeeeee e ()

From (2) and (3),we have
llxll = ¢ Xy lx| = c.% Tl

ILe

b
7l < 2

ITxIl < k Ilx|l, where k =2 > 0.
Hence T is bounded linear operator.
Theorem. if T;:X - Y and T,:Y - Z be bounded linear operators .Then T,T; is bounded and
T Toll < NTANTL I = NTL T2
In particular, if T: X — X is a linear operator , then
™ < IIT|™.
Proof. Since Ty, T, are bounded , then ||Ty ||, ||IT,|| exists and are finite. Moreover, for any x € X
I TN = 1T (Tl
< TN Tyl
< T NNT
Hence [|T> Ty || < IT2 Tl = T3 Tl
In particular, if T: X — X is a linear operator , then by induction on n, we have

7™ < [T

Lovely Professional University 29



Unit 03: Bounder Linear Operator and its Properties

The space of bounded Linear operators.

Let X, Y be normed linear spaces and B(X,Y) denote the space of all bounded linear operators fron
Xto?Y.

Theorem. The space B(X,Y) of all bounded (hence continuous) linear operators from X to Y is a
normed space under the norm defined by

ITIl= sup |IT x|l,x € X.

I xll=1
Proof. First we show that B(X,Y) is a linear space .
For this, letS,T € B(X,Y). DefineS+T:X - Y by
S$+T)(x)=Sx+TxVx €X.
For any a, B scalers and x,y € X,then
S+TD(ax+ By) =S(ax+ By) + T(ax + By)
= aSx + BSy + aTx + BTy
=a(Sx +Tx) + B(Sy + Ty)
=alS+Tx+BES + Ty
Therefore S + T is a linear operator.
Morover, for any x € X,

IS+TIl = sup [I(S + x|l

Ixll=1

= sup |[Sx+ T x||
[lxll=1

< sup IS x|l + sup ||IT x||
[lxll=1 [lx|l=1

SNUSH+NT Nleeeveennnnnn(@)
Hence S + T is a bounded linear operator and so is in B(X, Y).
It is easy to see that the commutative and associative laws of addition are satisfied in B(X,Y). The
function 0: X — Ydefined by:
0(x)=0
Is linear and bounded. Also for any T € B(X,Y),
0+T=T+0=T
Next, for each T € B(X,Y), the function (-T)x = —Tx,x € X
Is linear and satisfies
T+(-T)=0
Also ||-T|l = IT|l
So —T € B(X,Y). Hence B(X,Y)is an additive abelian group .

Define the scaler multiplication in B(X,Y) as
(aT)(x) = aTx;Vx € X, T € B(X,Y), and « is scaler.

Forx,y € Xanda,b € F

(aT)(ax + by) = a.T(ax + by)
= a(aTx + bTy)
aaTx + baTy)
a(aT)x + b(aTy)

Il
[u=y

Also for any x € X, ||x||
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laTll = supll(al)xl|
= sup||a. Tx||
= |a|sup|Tx||
So that
Tl = [allI Tl eennnnennn. V)]

Therefore, aT € B(X,Y). Thus B(X,Y) is a linear space.

Since, forany T € B(X,Y), ITll =0

And ||IT|l =0 ifand only if T = 0 ............. 3)

Hence (1), (2) and (3) show that B(X,Y) is a normed space.

In the next theorem we discuss properties of B(X ,Y) in relation to the properties of Y.

Theorem. Show that, if Y is a Banach space , then so is B(X,Y) under the norm defined by
ITI| = sup||Tx|l,x € X,T € B(X,Y).

llxll=1
Proof. Suppose Y is a Banach space and let {T},} be a Cauchy sequence in B(X,Y), then for given
€ > 03 ny € N such that ||T, — Ty, || = sup{l|Tox — Tppx|l: x € X, [Ix]| = 1} < eVn,m = ny...........(l)
That is,
[[Tyx — Txll < evx €X,n,m =n,
So for any x € X,{ T,,x} is a cauchy sequence in Y. Since Y is complete, ,{ T;,x} converges in Y.
Let rllirngx =y=Tx
Where T: X — Y, which takes x — Tx. We will show that T is bounded linear operator .
Since Ty, is linear , for any o, 8 € F,x € X
To(ax + By) = al,x + BT,y
Thus, T, (ax + By) = 7lli_>r£L°Tn(ax + By)
= o+ Bl Ty
= aTx + BT,
Also letting m — oo in (1) and using the continuity of norm function, we have

”Tn — lim Tm” = sup{”Tnx—

m—oo

nélﬁonx” <eVx#0€X}
That s,
IT, — Tl = sup||Ty,x — Tx|l:x # 0 € X < eVn =n,

Hence T, — T € B(X,Y). But then
T =T, — (T,, — T), as difference of two elements of B(X,Y)

Thatis T, —» T asn — o as T, is a Cauchy sequence in B(X,Y) is in B(X,Y).
Hence B(X,Y) is a Banach space.
Note. Converse of above theorem is also true . That is, if B(X,Y) ia a Banach space , sois Y.

To prove this we make use of Hahn-Banach Theorem on normed spaces , which we will discuss

later in this chapter.

3.2 Linear Functional

In the previous section we considered functions called linear operators from one normed space into
another normed space defined over the same field . In this section we shall deal with a special type

of linear operators called linear functionals. These are linear operators from a normed space X
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Over F to F, where F is R or C and is itself a normed space under the usual norm defined by on R
orC.
Thus a function f: X — F is said to be linear functional if, for any x,y € Xand o, € F

flax + By) = af(x) + Bf(y).
A linear functional f: X — F is said to be continuous at a point x, € X, if fgiven € > 0, there is a real
number § > 0 such that
lx — xoll < & implies |f(x) — f(xp)| < eVx €X.
f is said to be continuous on X, if f is continuous at every point of X.
f is said to be bounded if there is a real number k > 0 such that

If GOl < Kllx|l, vx € X.

As in the case of linear operators we define the norm of a linear f:X — F by:

£ =sup{%;x¢o eX}

Then, if f is a bounded linear functional , so that ||f]| < k, then
£ < NIfNlllxll, vx € X.

It is now easy to establish the following equivalent forms of the norm of a linear functional f:

If =Sup{%:x¢0 eX}

_ IF eI,
= sup{—"x" x|l <1 EX}

= sup{lf()l: |Ix|]| = 1 € X}
Theorem. Let f: X — F be a linear functional . Then:
(@) f is continuous if and only if f is bounded.
(if) f is continuous on X if and only if it is continuous at 0 € X.
For a linear functional f: X — F, the kernel or null space denoted by Ker f is defined by:
Kerf = {x € X: f(x) = 0}
and is a subspace of X.

Proof. The proof of this theorem is same as in the case of linear operators.

Examples of Bounded linear functional

I =] |
Example. Let R™ be the n-dimmensional real normed space with with the norm defined

by :

llxll =

n
leilz,x = (x1,%2, ., %) ER"
=1
For any a = (a,,ay, ..., a,) € R™, define a function f,: R™ = R by:

n

fa(x) = Z a;x;,x € R"

i=1

It is easy to verify that f;is linear functional . By schwartz inequality
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n n

L@l< Y lalz Y a2

i=1 =1
< llallllx|l,x € R™
Hence f;, is a bounded and hence a continuous linear functional on R™. Also

fall < llallee.eeeeeenn(D)

However if we take x = a, we obtain

fal@ = )l = llall?
i=1

So that 1A su§M>M= Nalleee o oo ne(2)
x#

llxlt = llall

From (1) and (2), we get

Ifall = llall.

| = |
Example. For the space Cla, b] of all real continuous functions from [a, b] = R with the

sup norm ,define a function I: C[a, b] - R by :

b
uﬂ=ff@m

a
Then I is a linear functional . Also
b

Ol < [ If@©lde

b
< sup [f(O)] | dt
te[a,b] a

< @®-alfll
Hence,
< (b—a)eeenen(3)
Also, taking f,(t) = 1V t € [a, b], we get
a0l S 1)
(1] = supSg 2= b = G (d)

From (3) and (4) we get
I = - a.

I Example. Let ¢ be the space of all convergent real sequences x = {x,,}. Let f:c — R be defined
by f(x) = limx,
Then f is a bounded linear functional with

lIflh=1

3.3 Compactness and Finite Dimensional Space

Compactness is one of the most important concepts in analysis. We now define compact linear
operator.

Definition. Let X and Y be normed spaces . An operator T: X — Y is called a compact linear
operator (or completely continuous linear operator) if T is linear and if for every bounded subset M
of X, the image T (M) is relatively compact, that is the closure T(M) is compact .
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“

The term compact is suggested by the definition . The older term “completely continuous “ can be
motivated by the following lemma, which shows that a compact linear operator is continuous ,
where as the converse is not generally true.

Before proving the lemma, we first note the following .
I. A compact subset M of a metric space is closed and bounded .

II.  If anormed space X has the property that the closed unit ball M = {x € X: [|x|| < 1}

is compact , then X is finite dimensional.
Lemma. Let X and Y be normed spaces. Then:
(@) Every compact linear operator T: X — Y is bounded, hence continuous.
(b) If dim X = oo, the identity operator I: X — X( which is continuous ) is not compact.
Proof of (a). The unit sphere U = {x € X:||x|| = 1} is bounded. Since T is compact ,
T(U)
Is compact and is bounded by (I), so that

sup [|Tx|| < o
llxll=1

Hence T is bounded and shows that it is continuous.

Proof of (b). The closed unit ball M = x € X: ||x|| < 1 is bounded. If dim X = o, then

by (II) M cannot be compact, thus [(M) = M = M is not relatively compact.

We now prove tha compactness criteria for operators in the following theorem.

Theorem. Let X and Y be normed spaces and T: X — Y a linear operator .Then T is compact if and
only if it maps every bounded sequence {x,}in X onto a sequence {Tx,} in Y which has a
convergent subsequence.

Proof. If T is compact and {x,} is bounded, then the closure of {Tx,}in Y is compact and shows that
{Tx,} contains a convergent subsequence.

Conversely, assume that every bounded sequence {x,} contains a subsequence {xp, }

such that {Txp,, } converges in Y. Consider any bounded subset B c X, and let {y,} be any sequence
in T(B). Then y,, = Tx, for some x,, € B, and {x,,} is bounded since B is bounded. By assumption,
{Tx,} contains a convergent subsequence. Hence T(B) is compact because {y,}in T(B) was
arbitrary, by definition, this shows that T is compact.

Next, we study the compactness of finite dimensional linear operator. Prior to that, we recall the
following results.

Result 1. ( Compactness) In a finite dimensional normed space X, any subset M ¢ X is compact if
and only if M is closed and bounded.

Result 2. If a normed space X is finite dimensional, then every linear operator on X is bounded.
Result 3. Let T be a linear operator . Then, if dim D(T) = n < o, then dim R(T) < n.
Theorem. ( Finite dimensional domain or range) Let X and Y be normed spacesand T: X — Y
be a linear operator. Then:
(@) If T is bounded and dim T(X) < oo, the operator T is compact.
(b) dim X < oo, the operator T is compact.
Proof. Let {x,} be any bounded sequence in X. Then
[ITx, Il < Tl |l shows that {Tx,} is bounded . Hence {Tx,,} is relatively compact by result 1. Since

dimT(X) < co. It follows that {Tx,} has a convergent subsequence. Since {x,} was arbitrary
bounded sequence in X, the operator T is compact.
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Proof of b. It follows from (a) by noting that dim X < co implies boundedness of T by result 2 above
dimT(X) < dim X by result 3.

Summary

Let X and Y be normed spaces over a field F. We say that T: X — Y is a linear operator if T is

linear (thatisT(x+y) =TXx)+T()Vx,y € Xand T(Ax) = AT(x))Vx E Xand A € F.
Let X be any normed space, then the identity function I: X — X defined by :

I(x) =x,x €X
is a linear operator .
For any linear spaces X,Y, the function 0: X — Y defined by:
0(x)=0,x€eX
is a linear operator.
Zero operator is also called null operator or trivial operator.

In the space Cl[a, b], define a function I: C[a, b] - Cla, b] by:

1(f) =f f@®)dt, f € Cla,b).

Then I is a linear operator.
Let T: X — Y be a linear operator. Then the set of those elements of X which are mapped onto
the zero element of Y is a subspace of X called the kernel or null space of T and is denoted by
KerT.

Let X and Y be normed spaces . A linear operator T: X — Y is said to be continuous at a point
xo € X if given € > 0, there is a real no § = §(e) > 0 such that
Vx € X, |lx —xpll < 8= |ITx — Txoll < e.
T is said to be continuous on X if it is continuous at every point of X.
A linear operator T: X — Y is said to be bounded if there is a constant k > 0 such that
[ITx]l < kllx|lvx € X.

LetT: X — Y be a bounded linear operator . Then there is a real number k > 0 such

ITx|| < k ||x|| vx € X

Suppose that x # 0.Then ™™ < vx € X, x # 0.

llxll =

So k is an upper bound for % The leaset upper bound sup % is called the norm of T and
x#0€x
is denoted by ||T||. Thus
_ 17|l
ITl=" 22

1Al = } }lzl Y lagj|? is called the norm of matrix operator A.

Every linear operator on a finite dimensional normed space is bounded .

if T;: X - Y and T,:Y —» Z be bounded linear operators .Then T,T; is bounded and [T, Ty || <
IT2 N7l = NTL T

The space B(X,Y) of all bounded (hence continuous) linear operators from X to Y is a normed
space under the norm defined by

[ITIl = |Su?1”T x|, x € X.

[E3
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e IfY is a Banach space, then so is B(X,Y) under the norm defined by
IT| = sup ||ITx|l,x € X,T € B(X,Y).

[lxll=1
e Alinear functional f: X — F is said to be continuous at a point x, € X, if given € > 0, thereisa
real number 8§ > 0 such that

[[x — xoll < 8implies |f(x) — f(xo)| < eVx € X.

e Let X and Y be normed spaces . An operator T: X — Y is called a compact linear operator (or
completely continuous linear operator) if T is linear and if for every bounded subset M of X,

the image T (M) is relatively compact, that is the closure T (M) is compact

Keywords

¢ Bounded linear operator

e Continuous linear operator

e Null space of alinear operator
e Norm

e Closed

e Compact

e  Finite dimmensional

Self Assessment

1: If T is a bounded linear operator, then:
A ITx]l < NI ]|

B. [ITx|l = [ITIl. llx|l

C. NITxll = NITII. ]|

D. None of the above

2: Which of the following statements is true about a bounded linear operator?
A. Every bounded linear operator is continuous.

B. Every continuous operator is bounded.

C. Every bounded linear operator is compact.

D.

None of the above

3: Which of the following is NOT a property of a bounded linear operator?

A. Preserving the zero vector: T(0) = 0
B. Homogeneity

C. Additivity
D

. Surjective

4: What is the null space of a linear operator?

A. The set of all inputs for which the linear operator is not defined.
B. The set of all inputs that map to the zero vector under the linear operator.

C. The set of all outputs for which the linear operator is not defined.
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D. The set of all outputs that map to the zero vector under the linear operator.

5: Which property holds true for the norm of a linear operator with respect to scalar

multiplication.
A KTl = KIITI
B. [IKTIl = £ IITIl
C. Ikl = K2|ITIl
D. [IkT|l = [k|IITII

6: Which of the following statements is true regarding compactness in a normed linear space?

A. Every closed and bounded subset is compact.
B. Every open and bounded subset is compact.
C. Every closed and unbounded subset is compact.

D. Every open and unbounded subset is compact.

7: Which of the following statements about the norm of a linear operator is true?

A. The norm of a linear operator is always zero.
B. The norm of a linear operator is always one.
C. The norm of a linear operator can be negative.

D. The norm of a linear operator is always positive.

8: If the norm of a linear operator T is zero, what can we conclude?

A. T is the zero operator (T(x) = 0 for all x).
B. Tisnota linear operator.
C. Tis an invertible operator.

D. None of the above.

9:If X and Y are normed spaces, then the space of bounded linear operators B(X,Y) is a Banach
space if and only if:

X is a Banach space.
Y is a Banach space.

Both X and Y are Banach spaces.

9 N v »

Both X and Y are finite dimensional spaces.

10: If E is a normed space and if d is the metric induced by the norm, then for any scalar

k,d(kx, ky) equals

A. d(x,y)
B. |k|d(x,y)
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C. kd(x,y)
. k¥d(x,y)

g

11: Let X be a normed space and f be a bounded, non-zero linear functional on X. Then, which
of the following is not true?

. f is onto.
f is continuous

Ker f is a close subspace of f.

g N < >

. fis an open map.

=

2:If f is a linear functional on a normed space X, then Ker f is:
. Closed in X
Dense in X

Either dense or closed in X

o N < >

. None of the above.

13: Every complete subspace of a normed space is:

. finite
open

closed

O 0 % »

. None of the above

—_

4: Every bounded operator of finite rank is :
. Compact
Open

Has a zero adjoint

O N % >

. None of the above

—_
a1

: Rank of a linear operator A equals:
. dim(Im A)

dim(KerA)

dim(ImA*)

. dim(KerA*)

g N <

Answers for Self Assessment

1 A 2 B 3 D 4 B 5 A
6 A 7 D 8 A 9 B 10. B
11. D 12. C 13. C 14. A 15. A

Review Questions

1. What is a linear operator between two normed spaces?
2. Define a bounded linear operator between normed spaces.

3. What is kernel or null space of a linear operator.
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4. Define norm of a linear operator.
5. Define what a linear functional on a normed linear operator is.
6. Define kernel or null space of a linear operator.
7. Define norm of a linear operator.
8. Show that every linear operator on a finite dimensional normed space is bounded.
9. Define compact linear operator.

10. Let X and Y be normed spaces and T:X - Y be a linear operator. Prove that Ker T is a

subspace of X.

m Further Readings

e Introductory Functional Analysis With Applications By Erwin Kreyszig.

e  Functional Analysis By Walter Ruddin, Mcgraw Hill Education.
e J. B Conway, A Course In Functional Analysis.
e C. Goffman G Pedrick, A First Course In Functional Analysis.

e B.V.Limaya, Functional Analysis
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Objectives

After studying this unit, you will be able to understand:

e Conjugate of an operator

e Convex functional

e The Hahn- Banach theorem for Real spaces

e The Hahn- Banach theorem for complex spaces

e The Hahn- Banach theorem for normed spaces

Introduction

In this chapter, we introduce the idea of conjugate of an operator. Further , we also discuss convex
functional . Finally we discuss different forms of Hahn- Banach theorem and its consequences.

4.1 Conjugate of an Operator

In the context of normed spaces and linear operators, the conjugate of an operator is a concept
related to the duality between a normed space and its dual space. To understand the conjugate of
an operator, we first need Knowledge of normed spaces, dual spaces and linear operators, which
we have already discussed in previous chapters. We now define the conjugate of an operator.

Definition. Let X and Y be normed spaces. Let B(X,Y) be the space of all bounded linear operators
defined from X to Y. Let X* and Y™ be the conjugate spaces of X and Yrespectively. Let T € B(X,Y),
then we define an operator T’ : Y* — X* as follows:

Foreach f € Y*, f.T is a mapping from X to F. It is bounded because both T and f are bounded .

Sof.TeX" . ThenweputT'(f) = f.T coeereriinunn 1)
So, foreachx € X, Tx € Y and (f.T)x € F while T(f) € X* so that, foreachx € X, T'(f)x € F.
Hence we can write (1) as T'(f)x = (f. T)x = f(Tx) eeevvveennnn(2)
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The operator T', defined by (1) or (2), is called the conjugate (or sometimes, the adjoint ) of the
linear operator T.
We now discuss some properties of T"'.
L T’ is linear:
For this, let f;, f, € Y* and o4, a, € F.Then

T'(ayfi + axf2)x = (a1 f; + axfo)(Tx), Tx € Y
(a1f1)(Tx) + azf>(Tx)

ay (f1 (Tx)) + ax(f2(Tx))

ar (f1- T)x + az(f2. Tx

o T'(f)x + arT'(f2)x
[a:T'(f1) + a,T'(f,)]x, Vx € X.

Hence,
T’(alfl + azfz) = alT,(fl) + azT’(fz) .............. (3)
II. T' is bounded . Here, for any f € Y* and x € X,
IT'Nl = sup IT'"(OIl = sup T fl
[Iflls1 A YPTE
= sup |f (Tl
A=) g1

< IFIF sup ITx|
llxlls1

< sup [|ITx|l, lIfll <1

llxll<1
S [/ | )
Hence T’ is bounded.
1. The mapping ¢: B(X,Y) = B(Y*,X*) defined by
o) =T

Is an isometry.

Iv. If X =Y then ¢ preserves identity and reverses products.
That is :

o) =1'"and ¢(TyT;) = T,T{
Here [ is the identity mapping defined on X.

4.2 Hahn-Banach Theorem (Real and Complex Form) and its
Consequences

The Hahn-Banach theorem is an extension theorem for linear functionals. It guarantees that a
normed space is richly supplied with bounded linear functionals and makes possible an adequate
theory of dual spaces, which is an essential part of the general theory of normed spaces. In this way
the Hahn-Banach theorem becomes one of the most important theorems in connection with
bounded linear operators. Furthermore, our discussion will show that the theorem also
characterizes the extent to which values of a linear functional can be preassigned. The theorem was
discovered by H. Hahn (1927), rediscovered in its present more general form by S. Banach (1929)
and generalized to complex vector spaces by H. F. Bohnenblust and A. Sobczyk (1938).

Now we shall prove this theorem and also discuss some of its important implications.

Before proving the theorem we recall some important definitions .
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v' Let V be a linear space and F is the field of real or complex numbers . A functional
p:V - F is said to be finite , if p(x) is finite for all x € V.
v' A functional p: V - F is said to be convex functional (or seminorm) if:
(1) p(x)=0vVxeV,
(ii) p(ax) = ap(x) V x € V and real a > 0 (positive homogeneous property),
(iii) p(x+y) <pl) +p(y) vx,y €V (sub- additive property).

FlExample. The norm function |.||: V = F, where V is the normed space, is a convex functional.
A linear functional f defined on V is called an extension of a linear functional f; defined on a
subspace U of V if

fG) =fox)vxeU.

Theorem. (The Hahn- Banach Theorem for Real spaces).
Let p be a finite convex functional defined on a real vector space V and let U be a subspace of V. Let
fo: U = R be a linear functional such that
fo) <p)VxeU  ....... (1)
Then f; can be extended to a linear functional fdefined on V such that
f) <plx)vxeV
Proof. For U =V the result is trivial, so we suppose thatU =V .
Step I:
We first prove that f; can be extended onto a large subspace without violating condition (1).
Let z € V\U and put
Vi={x+azx €U,a € R}.
Then V; is a subspace of V and contains U properly.
Thatis, UcV; € V.
Define a function f':V; - R by ;
f'(x +az) = fo(x) + af '(2)
=fo)+ac, c=f'(2) .evreennn(2)

Then f' is a linear functional on V;.

We show that it is possible to choose a real number c such that the majorization condition
f'(x+az) <plx+az)

Is satisfied . That is there exists a real number ¢ such that

fox) +ac < p(x + az)

ACRTR
ie c<pE+z)=£(5) o3
if a > 0, and

f0(§)+62—(_ia)p(x+az)=—p( —x)

a—z
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c2 ()= fo(5) el
ifa<0.
Now for any two arbitrary points y’, "' of U, we have
fo") = L) =fHG" =y) <pO" -y
<pO'+z-(' +2))
SspO"+z+(-y' - 2)
<p("+2)+p(-y —2)
Hence

o) —p(—=y' —2) <pB" +2) = 1)) eenen(5)

Put ¢'= ileig{—fo(y’) -p(=y' —2)}
"= iré/;{za(y” +2) = fo(y")}
Then ¢’ < c”
By (5) and the fact that y’, y"" are arbitrary.
Now choose a ¢ such that
c'<c<sc”
Then, for this value of c, the linear functional f' defined on V; by (2) satisfies the condition that
') <p(x)Vx €Vy ..eueeeeen(6)
as condition (3) and (4) are satisfied . Hence f' is an extension of f; to a subspace V; containing U
properly and satisfying condition (1).
Step II
Now suppose that V, as a linear space is generated by a countable set of elements x4, X;, X3, ... X5, ...,
in V. Then we construct a linear functional on V by induction on n. That is, we construct a sequence
of subspaces
Vi ={x1, U}, Vo ={x,Va}, Vo = {xn, iy — 13, ..
each contained in the next . This prosess extends the functional f, onto the whole space V, since
every x in V is in some subspace V.
Step III. For the general case , that is, when no countable set generates V, THE theorem is proved by
applying Zorn’s lemma as follows:
Let F be the class of all possible extensions f* of f; satisfying the condition
fr(x) <= p(x) vx € D(f7)
And
fr(x) = fo(x) vx € D(fo)
Here D(fy) is the domain of fy. Then f is non empty because f’ constructed above is in F. We
partially order F as follows :

For f,g € F, we say that

If and only if g is an extension of f, that is

D(g) 2 D(f)
and gx) = f(x) vx € D(f).

Now let C be a chain in F. Define a linear functional f as follows:
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@) Domain of f =U,e. D(9),
(if) For x € D(f),
f(x) =gx) vx € D(g), g €C.
It is clear that f is a linear extension of f; and
f(x) <p(x) vx € D(f).
So f € F and is an upper bound for C. By Zorn’s lemma, F has a maximal element f which is
an extension of f; and
fx) < p(x)vx € D(f).
We claim that D(f) =V, otherwise let z € V\D(f).
Then as in step I, there is an extension f'of f to D(f),z, contracdicting the maximality of f.
Hence f is the required extension of f,. This proves the theorem completely.
Before discussing the complex version of the Hahn-Banach theorem we need the following

concept.
v" A functional p defined on a complex linear space V is said to be convex if:

) p(x)=0Vx€eV,

(ii) plax) = lalp(x)Va e Cand x €V,

(iii) plx+y) <px)+p()vx,y €V.

Theorem. (Hahn-Banach theorem for complex space)

Let p be a finite convex functional defined on a complex linear space V and let U be a

subspace of V. Let f; be alinear functional defined on U satisfying the condition:

[fo)| <plx)vx €U ........ 1)
Then f; can be extended to a linear functional f on V such that
lfl <px)vx eV

Proof. Since V is a complex linear space, for eachv € Vand a = oy + ia; € C, v € V.

If we restrict the scalers to real numbers only then V is a real vector space . Denote this

space by V(= V) and the correspondind subspace by Ug(= U). Clearly p is a finite

convex functional defined on Vi while f; given by:

fo (x) =real part of f,(x),x € Ug
Is a real linear functional on Ug. Hence, by the Hahn-Banach theorem for real spaces, there is a

linear extension f; defined on all V; satisfying the condition:

filx) <p) vx €Vr(=V) ... 2)
and f.(0) = f3()Vx € Ug(= U)
Also, —fi(x) = fi(=x) < p(=x) = |-1Ip(x) = p(x)
Thus filx) = —p(x)vx € Vg ceeeeeee(3)

From (2) and (3), we obtain
A <pIVxEVE e @

Now we consider f; as a linear functional on the complex space U. So

fo) =fo) +ifg'x) (5)

Since f; is linear on U,
ifo(x) = fo(ix) = fo(ix) + ify (ix) cevenen ©)
Multiplying (5) by i, we obtain
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ifo(x) = —fo' (x) +ify (x) RO v/ |
Comparing (6) and (7), we have
o () = —fg(ix)
Hence

fo(x) = fy (x) —ify(ix) R (.
If f; denotes the linear extension of f; to the whole of V, as a real linear space , then
put
fG) = fi(x) — ifi(ix) )
We show that the function f defined by (9) is the required linear extension of f;
To V and satisfies the given condition.
Obviously f is an extension of f; to the whole of V. Also
fa+y) = filx+y) —ifi(iCe +))

= () + () — ifi(ix + iy)

=)+ A0) — ifi(ix) — ifi (@)

=f+f) e (10)

And f(ax) = f((ay + iay)x)

= f(ayx + oyix)

= flax) + f(azix)

= filayx) — ifi(aqix) + f (apix) — ify (—ayx)

= oy fy (%) — iay fi (@x) + oy f1 (ix) + oy fy ()

= a; (fi(x) — if1(ix)) + i (f; () — if1(ix))

= (aq + i) (f1(x) — if1 (%))

=af(x)Vx,y eVanda € C.
Hence f is a linear extension of fj.
Finally, we show that

[f) <pvx eV.
Suppose, on the contrary, that |f(x¢)| > p(x,) for some x, € V.
Then,
f(xo) = pe'®,p>0
If we put
Yo = e %x,
Then y, € V and using |f (x,)| = p, we have
f:(0) = Ref (o) = Re (e™¢f (x,))
=p > p(xo) = p(yo)
Which contradicts (4). Hence
[f) <px)vxeV.

This completes the proof of the theorem.

Theorem. (The Hahn- Banach Theorem for normed spaces).

Let V be a normed space and U be a subspace of V. Let f; be a bounded linear functional on U with

norm ||f3ll. Then f; has a continuous linear extension f defined on V such that

A= 1foll-
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Proof. Since f; is a bounded linear functional , ||f, | is finite . Put
pC) = llfollllx|l vx € V
We show that p is a convex functional defined on V.
Clearly p(x) = 0. Also for any a € F,
p(ax) = llfollllax]l = lalllfollllx|l == lalpG), x € V.

Moreover , forx,y €V,

p(x+y) = lIfollllx + yli
< flldixl+lylD
< flldixll + £ HyID
<p(x) +p®)-
Also | £l < lIfollllxll
< p(x).

Thus, by the complex version of Hahn-Banach Theorem, there is a linear functional f defined on V

such that
lf GOl < pG) = llfollllxll vx €V
And f(x)=fo(x)Vx €U ........... 1)
From (1), we have
A< Nfoll e 2)
Also |If|l = xigﬁv% > xigﬁu% =Ifoll ceveeeeeena(3)

Hence, from (2) and (3)
A1l = 115l
This proves the proof of the theorem for normed spaces.

Next, we prove an important deduction of the Hahn-Banach theorem for normed spaces and
show that a non-trivial normed space X always have enough bounded linear functionals to
distinguish between the points of X.

Corrolory. Let X be a non-trivial normed space and x, # 0 be any point of X . Then there is a
continuous ( and so bounded ) linear functional f defined on X such that
If1l = Tand [If Cxo)ll = llxoll
Proof. Let0 # x, € X. Consider the subspace Y generayted by x,. An arbitrary element of Y is of
the form axy, a € F. Define a functional fy:Y — F by :
fo) = folaxy) = allxpll,y =axp, €Y,a€F ........... (1)
Then fj is linear because for y = axy and y’' = a’xyinY and a, o' € F, we have
folay +a'y") = fo((aa + o'a’)xo)
= (aa+a'a)llxll by (1)

aallxo |l + o' a’llxoll

=afo(y) +d' fo(¥")

Also |Ifpll = sup L® suplalllx"” =1,asy #0 sothata # 0

20,0y W aer lallxol

So f, is a bounded linear functional defined on Y. By the Hahn- Banach theorem for normed spaces
, there is a linear extension f of f; to X such that

Il =1fll=1f0) = () =allxll.y =axo €Y
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Thus [If]l = 1 and f(xp) = llx,l| as required.

Corrolory. Every non trivial normed space has a non zero linear functionals defined on it.
Corrolory. Let X be a normed space. Then, for any x,y € X,x # y, there is a bounded linear
functional f such that

) =f).

Summary

e LetV be a linear space and F is the field of real or complex numbers . A functional p:V — F
is said to be finite , if p(x) is finite for all x € V.

e A functional p:V — F is said to be convex functional if:

(@ px)=0vxev,

(ii) p(ax) = ap(x) Vx €V andreala = 0.

(ii)p(x +y) <p(x) +p() Vx,y €V.
e A linear functional f defined on V is called an extension of a linear functional f;, defined on a

subspace U of V if
fG) = fo(x) vx € U.
e (Hahn- Banach theorem for Real spaces)
Let p be a finite convex functional defined on a real vector space V and let U be a subspace of V.
Let fo: U = R be a linear functional such that
fox) <px)vxeU
Then f; can be extended to a linear functional fdefined on V such that
fx) <px)vxeV.
¢ (Hahn- Banach theorem for Complex spaces)
Let p be a finite convex functional defined on a complex linear space V and let U be a subspace
of V. Let f; be alinear functional defined on U satisfying the condition:
lfo()] <plx) vx €U
Then f; can be extended to a linear functional f on V such that

[fl<px)vxeV

¢ (Hahn- Banach theorem for normed spaces)
Let V be a normed space and U be a subspace of V. Let f; be a bounded linear functional on U

with norm [|fy]l. Then f; has a continuous linear extension f defined on V such that

A= 11l

Keywords

¢ Conjugate

e Bounded linear operator
e  Subspace

e  Convex functional

e Linear functional

e  Seminorm

e  Maximality

Lovely Professional University 47



Notes

Unit 04: Hahn- Banach Theorem and its Consequences

Self Assessment

1: In the context of normed spaces, what is the conjugate of a bounded linear operator?

A. The adjoint operator.

B. The inverse operator.
C. The transpose operator.
D. None of the above.

2: For a bounded linear operator T on a normed space X, the operator's conjugate, denoted
by T, satisfies which property?

A T'T=1

B. T'T=T.

C. T'T=-T.

D. None of the above.

3: Consider two normed spaces X and Y, and let T: X — Y be a bounded linear operator. Which

of the following statements is false?

A. If T is injective, then T’ is injective.
B. If T is surjective, then T’ is surjective.
C. If T is compact, then T’ is also compact.

D. If T' is compact, then T is also compact.

4: Every bounded operator of finite rank is :

Compact.
Open.

has a non zero adjoint.

9N = >

None of these.

5: Which of the following is the property of conjugate of the linear operator T.
T' is linear.

T' bounded.

Both (A) and (B).

9 N v »

None of the above.

6: Which of the following is a Banach space?
A. P[a, b ] with supremum norm.

B. C[a,b] with supremum norm.

C. Both (A) and (B).

D. None of the above.

7: Which of the following is true about Hahn-Banach theorem.
A. The Hahn-Banach theorem is an extension theorem for linear functionals.

B. The Hahn-Banach theorem is an extension theorem for linear functions.
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C.
D.

Both (A) and (B)

None of the above

8: Consider the statements:

()

Every compact operator is bounded.

(ii) Every bounded operator is compact.

A.
B.
C.
D.

Only (i) is true.
Only (ii) is true.
Both (i) and (ii) are true.

Neither (i) nor (ii) is true.

9: Which of the following statements is true regarding the Hahn-Banach theorem?

B 9N ®E o UN0OW S O N % »

g N < >

>

0:

. If A,B are invertible linear operators on X, then A + B is invertible.

2:

. Compact.

. It guarantees the existence of a continuous linear functional on every vector space.

It ensures the existence of a bounded linear functional on every normed space.

It provides a way to extend a bounded linear functional from a subspace to the whole space.

. It applies only to finite-dimensional vector spaces.

Which of the following is true?

If A,B are invertible linear operators on X, then AB is invertible.

If A is invertible linear operator on X, and k is any scalar, then kA is invertible.

. If A,B are invertible linear operators on X, then A — B is invertible.

: For any normed space X, the dual space X* is:

. Always a Banach space.

Always a compact set.

Always finite dimensional.

. Always an infinite dimensional.

Any bounded subset in R™ is :

Relatively compact.

open.

. Closed.

: Let V be a linear space and F is the field of real or complex numbers . A functional p:V - F

is said to be finite

. If p(x) is finite for all x € V.

If p(x) is finite for some x € V.
Both (A) and (B)

. None of the above

: A functional p: V — F is said to be convex functional if

.p(x) =0VxEeV,

plax) =ap(x) Vx €V andreala =0
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C px+y) <p)+p)Vx,y €V
D. All of the above are true.

15: For what type of normed spaces does the Hahn-Banach theorem always hold?

A. Only for finite-dimensional normed spaces.

B. Only for infinite-dimensional normed spaces.

C. Only for Banach spaces.

D. For all normed spaces.

Answers for Self Assessment

1 A 2 A 3 D
6 B 7 A 8 A
11. A 12. B 13. A

Review Questions

Define Convex functional.

S N A

m Further Readings

Define conjugate of an operator.

4 A 5 C
9 C 10. B
14. D 15. D

State Hahn-Banach theorem for real spaces.
State Hahn- Banach theorem in Complex form.

State Hahn- Banach theorem for normed spaces.

¢ Introductory Functional Analysis With Applications By Erwin Kreyszig.

¢ Functional Analysis By Walter Ruddin, Mcgraw Hill Education.

e ]. B Conway, A Course In Functional Analysis.

e C. Goffman G Pedrick, A First Course In Functional Analysis.

e B.V.Limaya, Functional Analysis.
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Objectives

After studying this unit, you will be able to understand:

e  Reflexive Spaces
e  Baire’s Category theorem

e  Uniform Boundedness Principle

Introduction

In this chapter, we discuss about Reflexive spaces . Further , we also recall some definitions like
first category, Second Category and discuss Baire’s Category theorem. Finally, we have proved
Uniform Boundedness Principle.

5.1 Reflexive Spaces

Reflexive spaces play an important role in the general theory of locally convex topological vector
space and in the theory of Banach spaces in particular. Hilbert spaces are prominent examples of
reflexive Banach spaces. Reflexive Banach spaces are often characterized by their geometric
properties. Now, we will define reflexive space.

Definition. Let X be a Banach space and J: X — X** be the canonical injection from X into X** given

by (J()(F) = dx(f) =f(x) VxeXfeX"
The space X is reflexive if ] is surjective, i,e J(X) = X**.
Remark. (i) Finite dimensional spaces are reflexive ( since dimX = dimX* = dimX™").
(ii) Every Hilbert space is reflexive.
(iii) L,L*,1' and I* are not reflexive.

(iv) € (K)=space of continuous functions on an infinite compact metric space K is not
reflexive.

(v) If a normed space X is reflexive, it is complete and hence a Banach space.
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5.2 Category Theorem

Category Theorem is an important result in general topology and functional analysis. Baire's
Category Theorem was first formulated by French mathematician René-Louis Baire in 1899. This
theorem deals with the properties of complete metric spaces and provides a powerful tool for
studying the nature of dense sets.

Before presenting the main theorem, it is essential to establish several important results. These
results serve as foundational building blocks that will contribute to the proof of the main theorem.
Hence, we now proceed to state these results.

Let X be a metric, a subset M C X is called rare ( or nowhere dense in X) if M has no interior point
ie int(M) = ¢.
A subset A of a metric space X is said to be of the first category ( meager) if and only if A can be

covered by a countable union of its nowhere dense subsets. Otherwise A is said to be of second
category (Non- Meager).

A space X is said to be of the first category if and only if X as a subset of itself can be written as a
countable union of nowhere dense subsets. Otherwise X is said to be of the second category.

Thus a metric space X is said to be of second category if and only if X cannot be expressed as a
countable union of nowhere dense subsets.

EExample. Consider the set Q of rationals as a subset of a real line . Let € Q , then {q} = {q}
because R — {q} = (—,q) U (q, ») is open. Clearly {q } contain no open ball. Hence Q is nowhere
dense in R as well as in Q . Also since Q is countable, it is the countable union of subsets
{g}q€eQ.

Thus Q is of the first category.
Now we prove the main theorem.
Theorem. (Baire’s Category Theorem). If a metric space X # ¢ is complete then it is non-meager
in itself. Hence if X # ¢ is complete and

X =Ui_ Ay, Ay isclosed .....uuueeeeneen @)

Then atleast one A, contains a nonempty open subset.

(Or)
A complete metric space is of second category.
Proof. Let X be a complete metric space. We show that for countable collection {4,:n € N} of

nowhere dense subsets, X is their union . That is, there is a point of X which is not in Upey 4.
Suppose, on the contrary that X = U,ey A, and each 4,, is nowhere dense subset.

Since A, is nowhere dense and X is open with X — 4; # ¢, there is an open ball B; Of radius < %
which is disjoint from A;. Let F; be a concentric closed ball of radius half of the radius of B;. Since
A, is nowhere dense , int(F;) contains an open ball B; of radius < % and disjoint from A,. Let F,
be the concentric closed ball of radius half that of B,.

Likewise, since Az is nowhere dense, int(F,) contains an open ball B of radius < % and disjoint

from Asz. Again choose a concentric closed ball F3 of radius half of the radius of B;.
Continuing in this way, we obtain a decreasing sequence of concentric closed balls F, of

diameter < with each F, disjoint from 4,,. By cantors intersection theorem there is a unique

241
point x €Nyey F, and so also in X but not in any of the set 4,. Thus
X #FUpen 4n

Therefore X is of the second category.

5.3 Uniform Boundedness Principle and its Consequences

Now, we prove another important result called the Banach Steinhass theorem which is
commonly known as the uniform boundedness principle. It is concerned with a sequence of point-
wise bounded sequences of linear operators. The uniform Boundedness Principle was obtained in
its general form by S. Banach and Steinhauss in 1927. That is why it is also known as Banach -
Steinhaus theorem. This theorem, like open mapping theorem and closed graph theorem, requires
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the completeness. Further, this theorem is derived from Baires Category theorem. The Principle of
Uniform Boundedness asserts that if a sequence of bounded linear operators T € B(X,Y) where X is
a Banach space and Y a normed space, is point wise bounded, then the sequence {T;,} is uniformly
bounded. In fact, it enables us to determine whether the norms of a given family of bounded linear
operators have a finite least upper bound.

Theorem.(Uniform boundedness Principle) Let X be Banach space and Y a normed space. Let T,
be a sequences of bounded linear opeartors from X to Y such that, for each x € X,

{T,x : n € N}is abounded subset of Y. Then the sequencef ||T,,||} of norms of T, is also bounded.
Proof. Let k be any natural number and
Ug={x eN:||ITxl|<k,n=12..,}

Then Uy, is closed subset of X. For if x € Uy, then there is a sequence {x,} in U, which converges to

x. S0 [Thxpll = lim||Tyx,ll = ”Tn(limxn) , as ||. || is continuous.
n-c n-oo
= IToxll < k
Hence x € Uy, so U, = U_k
Also, since each x € X is in some Uy for some natural number k.

Xcup,U,c X

So that

Now X is a Banach space so is complete. Hence by Baire’s Category theorem, atleast one of Uy's, say
Uy, is not nowhere dense in X. So Uy, contains an open ball (x, €) , that is

B(x0,€) S Uppervvvvvnnnn 2)
Next, let 0 # x be any arbitrary point of X. Take a point x" € X, such that
X' =xg+aXeeeennn ©)]
Where o = m Then
llx" = xoll =5 <e

So that x" € B(Xo,€) € Uy,. Hence

Tl < kg ....... 4)
Moreover,

1T xoll < ko....... (5)
Hence, using (3), we have foralln,n = 1,2, ... and allx € X,

T, (x" — xg) 1 ,
2 = — T = xo)l

T.x|| =
T, i

1
< m(llTnx’II + [ITuxoll)

2
< =
S ko
4k,
< 0
< 2ol
Hence,
4k,
ITall = sup [Tyxll <=2
XEXxll<1
Thus,

{lIT, 11} is bounded.

Theorem. Let X be a normed space and S be a non empty subset of X. Then S is bounded if and
only if f(S) is bounded for each bounded linear functional f defined on X, i,e for each f € X*.
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Proof. Suppose that S is bounded subset of normed space X. Then, for some positive real number k,
x| <kvVx €S........... 1)
Since f: X - F is bounded, there is a positive real number k; such that
lfOl <kllxll v x€S$
<kik Vx€S
Hence, f(S) is bounded.
Coversely suppose that , for each non-empty subset S of X and f € X*, f(S) is bounded . That is
Sup{lf(x)|:x € §} < co.
Let X** be the second dual of X and for each x € X, g,:X* — F be defined by

9x(f) = f(x)
Then the mapping ¢: X — X** defined by:

d(x) =gx),x€X
is the natural embedding of X in X**.
To see that g, is bounded for each x € X we note that
lgx(OD = 1fCOl < lIfllixll vf €N*
lgxll < llx]]
So, for each x € X there is an f; € X* such that

[Ifoll=1 and f;(x) = |Ixll, (as proved in previous chapter corrolory of Hahn-
Banach theorem)

Sollgxll = sup 1gx(N = 1g(fo)l = 1ol = llxll
F&Xiifi=1

Hence,
lgsll = llx]]
Now , consider the subset
G = {gy:x € S} of X™*. Now X" is complete so is a Banach space.
Also for each f € X*,
sup{lg>(f)l:gx € G} = sup{|f(x)|:x € S} < oo, by assumption,
Hence, by the uniform boundedness principle and using (3), we get
sup{llg.ll: g« € G} = sup{|lx|l:x € S} <
So S is bounded.

Summary

e Let X be a Banach space and J: X — X** be the canonical injection from X into X** given by
@) =¢()=f(x) VxeXfeX"
The space X is reflexive if ] is surjective, i,e J(X) = X**.
e  Finite dimensional spaces are reflexive.
e  Every Hilbert space is reflexive.
. L1, L”,1' and I* are not reflexive
e  (C(K)=space of continuous functions on an infinite compact metric space K is not
reflexive.
e Let X be a metric, a subset M € X is called rare ( or nowhere dense in X) if M has no

interior point i,e int(M) = ¢.
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e A subset A of a metric space X is said to be of the first category ( meager) if and only if A
can be covered by a countable union of its nowhere dense subsets. Otherwise A is said to
be of second category (Non- Meager).

. A space X is said to be of the first category if and only if X as a subset of itself can be
written as a countable union of nowhere dense subsets. Otherwise X is said to be of the

second category.
® Every complete metric space is of second category.

e Let X be Banach space and Y a normed space. Let T, be a sequences of bounded linear
opeartors from X to Y such that, for each x € X,
{T,x : n € N} is a bounded subset of Y. Then the sequencef{ ||T,,|[} of norms of T, is also
bounded.

Keywords

e  Banach Space

e Normed Space

e  Reflexive

e Bounded

e  First Category

e Second Category
e Interior point

e Linear functional

Self Assessment

1: Which of the following is true about Reflexive spaces.

A. Finite dimensional spaces are reflexive.

B. Every Hilbert space is reflexive.
C. Both (A) and (B).

D. None of the above.

2: Pick out the correct statement.
A. [ is not reflexive.

B. [ is not separable.
C. Both (A) and (B).

D. None of the above.

3: Pick out the correct statement.

A. [® is not reflexive.

B. [*is not separable.
C. Both (A) and (B).

D. None of the above.

4: Baire's Category Theorem is applicable to which of the following spaces?

Lovely Professional University
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All metric spaces.
Only compact metric spaces.

Only finite metric spaces.

SN = >

Only complete metric spaces.

5: Which of the following statement is true.

A. A space X is said to be of the first category if and only if X as a subset of itself can be

written as a countable union of nowhere dense subsets.

B. Complete metric space is of second category.
C. Both (A) and (B).

D. None of the above.

6: Pick out the correct statement.

The set Q of rationals is of First Category.
The set Q of rationals is of Second Category.

The set Q of rationals is uncountable.

9 N v p»

All of the above are true.

7: Which of the following statements is not true regarding the Uniform Boundedness Principle?

A. Ttis also known as the Banach-Steinhaus Theorem.
B. Itis applicable only to finite-dimensional normed spaces.
C. It guarantees pointwise convergence of a sequence of bounded linear operators.

D. Itis a fundamental result in functional analysis.

8: Which of the following spaces is reflexive?
A. Euclidean space R™.

B. L},L”.

C. Hilbert space.

D

. None of the above.

Answers for Self Assessment

Review Questions

Define a reflexive space.
2. Give an example of a Banach space that is not reflexive.
What is the concept of a "meager" or "nowhere dense" set in the context of Baire's Category

Theorem?
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4. State Baire’s Category Theorem.
5. What is the concept of a "meager" or "nowhere dense" set in the context of Baire's Category

Theorem.

m Further Readings

¢ Introductory Functional Analysis With Applications By Erwin Kreyszig.
¢ Functional Analysis By Walter Ruddin, Mcgraw Hill Education.

e ]. B Conway, A Course In Functional Analysis.

e C. Goffman G Pedrick, A First Course In Functional Analysis.

e B.V.Limaya, Functional Analysis.
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Unit 06: Inner Product Space. Hilbert Space
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Objectives

After studying this unit, you will be able to understand:

e Inner Product Space

e  Schwarz Inequality

e  Parallelogram identity

e  Polarization identity

¢  Continuity of an inner Product
e  Hilbert Space.

Introduction

In the preceding chapters, we studied normed and Banach spaces. These spaces enjoy linear
properties as well as metric properties. Although the norm on a linear space generalizes the concept
of length of a vector, but the main geometric concept, missing in abstract normed and Banach
spaces, is the angle between two vectors. In fact these spaces are still too general to yield

a really rich theory of operators. In this chapter, we study linear spaces having an inner product, a
generalization of usual dot product on finite dimensional linear spaces. The concept of an inner

product on a linear space leads to an inner product space and a complete inner product space
(Hilbert Space) is a special type of normed space (Banach space) which possesses an additional
Structure of an inner product.

The theory of Hilbert spaces was initiated in 1912 by a German mathematician, David Hilbert
(1863-1943) in his work on quadratic forms in infinitely many variables, which he applied to the
theory of integral equations. Years later John Von Neumann (1903-1957) first formulated an
axiomatic theory of Hilbert spaces and developed the modern theory of operators. His remarkable
contribution to this area has provided the mathematical foundation of quantum mechanics. His
work provided a physical interpretation of quantum mechanics in terms of abstract relations in an

infinite dimensional Hilbert spaces.
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6.1 Inner Product Space

Definition. Let X be a linear space over a field F (R or C). An inner product in X is a function
(,.): X XX->F

So that with each pair x,y in X, a scalar to be denoted by (x,y) is associated satisfying the
conditions

(i) (x,x)=0and(x,x) =0 ifandonlyifx =0,x € X,
(i) (x+yz)={&xz)+{y,z)Vxyz €X,
(iii) (ax,y) =afx,y)Vx,y,€Xanda €F
(i) (1y) = 7,x)Vxy,€X
Where (x, y ) denotes the complex conjugate of (x,y ).
The pair (X,(.,.)) is called an inner product space.

Remark. An inner product on X defines a norm on X given by

llx]| = +/{x, x), forall x € X

And a metric on X given by

dixy) = llx =yl =y{x -y, x-y)Vxy€X
Hence inner product spaces are normed spaces, and Hilbert spaces are Banach spaces.

Some Consequences of definition of inner product
(a) Forallx,y,z €eXando,BEF,

(ox + By, z) = alx, z) + By, z)
Also
(0,z) =(0.x,z) = 0.{x,z) =0Vz € X
(b) Forallx,y € Xanda €F,

{x,ay) = a{x,y)
As

(x, ay) = {ay, x) = a{ y, x)
=a(y,x)

=a(x,y)

© (x,ay+Bz) = Wx,y) + B( x,2)
Remark. If X is a real inner product space , then

(x,y) =(y,x)Vx,y €X

EExample: The space I3 with the inner product of two vectors
x = (x4, X3, ., X)) and y = (¥4, Y2, ..., V) defined by
(oY) =X % y;

is an inner product space.

EExample: The space [, with the inner product of two vectors
x = (x4, X5, ...) and y = (¥4, Y3, ... ) defined by

(xy)=> %y,
i=1

is an inner product space.
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Remark. An inner product is also called a pre-Hilbert space.

6.2 Further Properties of Inner Product Space

Schwarz Inequality

If X is an inner product space, then

I(x,y)lsm. WVx,y EXevierinin )
the equality holds Iff x and y are linearly dependent.
Proof. If y = 0, then (1) holds because (x, 0) = 0.
Also, if x = 0, then (1) holds because (0, y) = 0.
Now lety # 0. For every scalar a, we have
(x—ay,x—ay)=0
= (X, X) + (X, —ay) + (—ay, ) + (—ay, —ay) = 0

= (X, X) — X, y) — oy, x) + at{y,y) =0 ............ 2
Choose a = Loy ,we havea = Ly
¥,) ¥,
And so ait = &2 oY) I

@9 Wy w2

From equation (2), we obtain

o) _ low) 6,912
x)- 5 (x,y) oy X s =0
2 2 2
=>(x,m_l(x,y)l _xp) [, ¥ >0
%% v, ) v,y
2
:>(x'x>_l(x,y>l S
(}’;W
1(x, y)1?
b S (o X0

A

= (X2 < (X, x) (y,yD

= (X, V) < VX, X). (5, 9)

Which is the required result.
Next, we see that the equality in (1) holds iffy = 0
From (2), we have
126, ) < (x, x). [, y) iff (x —ay,x —ay) 2 0
iffx—ay =0
iffx=ay
iff x and y are linearly dependent.

Corollary. Let X be an inner product space, then for any x and y in X, we have

Vi +yx+y) < Jxx) +/3,9)
Proof. We can write

(x+y,x+y)=(x,x)+ (x,y) + (y, x+(y, y&
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= (x,x) + (x,y) + (x, y)+(y, v
= (x,x) + 2Re(x, y) + (y, y@
< (%) + 21, y) + (v, yE

< (x,x) + 2[{(x, ). )] + (v, yE
= [\/ {x,x) +/{y, y)]2
= (e +yx+y) < [V@0 + 5]

Taking Square root on both sides, we get

Jx+yx+y) < Jxx)+/,9).

Theorem. if X is an inner product space, then /(x, x) has the properties of norm.
(OR)
Proof. Let X be an inner product space . Defineamap || .|| : X = Rby [lx|| =/{x,x) Vx € X.

In order to show that [|x|| = 4/(x, x) defines a norm on the inner product space X, we need to show
that it satisfies all the conditions of a norm.

Now (i) For any x € X, ||x|| = M which gives
lxlI? = {x, x) = 0 (By definition)
= [xl? =0 = llx[| =0
Also ||x|| = m = |x)I2=(,x) =0 iffx=0
= |x|I?=0iffx=0;1ie. ||x]|=0iffx=0
(ii) By definition,
Il x|l = /{awx, ax)
= || ax|? = (ax, ax)
= aa(x, x
= a|?[|x]|?
= |l x|l = lallx]l
(iii) For x, y € X, we have
lx +yl? =(x+yx+y)
= (x,x) + (x,y) + (y, xB(y, y@
=[xl + (x, y) + (x, Y)+llyll?
= |lx|I* + 2Re(x, y) + llyll*
< llxll® + 2[4, ) + Iyl
< llxll? + 2l Iyl + llylI?
< (llxll + llylD?
Hence
Il + Nyl < Nl + Myl

We see that all the conditions of a norm are satisfied .Thus ||x|| = 1/{x, x) is a norm on X and hence
(X, Il .1 is a norm linear space.

Remark. The Schwarz inequality can now be written in the form

e,y < llxllllyll.
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Parallelogram Law or Identity for Inner Product Spaces.
If X is an inner product space, then
llx + ylI? + llx — ylI> = 2(llx]1* + llylI*) for xand y in X.
(OR)
In inner product spaces, parallelogram law holds.
Proof. We have
lx +ylI2 +llx —yllP=x+y,x+ )+ {x—yx—y
= (x,x) + (x,y) + v, x4y, ) + (6, x) = (x,y) — (v, x+(y, y@
= 2(x, x) + 2(y, y@
= 2IxI* + 2llylI?
=2(llxlI” + llylI*)
Hence,
llx + yII2 + llx = ylI2=2(lx ]I + 1y [I?).
Polarization Identity

If X is an inner product space, then for x, y in X, we have

3

Z illx + Tyl = 4(x, y).

=0
Proof. We have
3
Db+ iyl =l + I = = Yl + illx o+ 11 = il = iyl

=0

=(x+yx+y)—(x—y,x—y)+ilx +iy,x+iy)—i{x — iy, x —iy)
=(x,x) + (0, y) + (1, 2) + (v, y) — [x,x) = (x,9) = (v, 0) + (3, ¥)]
+il{x, x) + (x, iy) + (iy, x) + (iy, iy)] = i[{x, x) = (x, iy) = iy, x) + (iy, iy)]
=(6,x) + (0, y) + (v, 20) + (1, ¥) — (6 x) + (0 y) + (v, x) = (v, 9)
+i(x, x) + ix, iy) + i{iy, x) + iy, iy) — i{x, x) + i{x, iy) + i{iy, x) — i{iy, iy)

= 2(x,y) + 2(y, x) + 2i({x, iy) + 2i{iy, x)

= 2(x,y) + 2(y, x) + 2ix, y) — 2iKy, x)
=2(x,y) + 2(y,x) + 2{x, ) — 2(y, x)
= 4(x,y)

Hence

3

Db+ iyl = 46y,

r=0
Remark. If X is a real inner product space, then the polarization identity becomes:

4x,y) = llx + ylI? = llx —yl> forx,y €X.

The Schwarz inequality is quite important and will be used in proofs over and over again .

Another frequently used property is the continuity of inner product.

Continuity of Inner Product Space

Theorem. Let X be any inner product space and {x,} , {y,,} be any sequences in X such that

Xp = X, Yp = ¥, then (x,, y,8- (x, y@
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Proof. For any natural number n, we have from definition of inner product spaces
G, ynB= €6, B = [, B €, Y B (o, yB— (x, y B
= [xn, Yo = yB+ (6 — %, 50
< |Gty v = B + [ — x, 0
< Nl llyn = Il + o = I 1yl
(by Cauchy Schwarz Inequality)

Thus, if x, = x, y,, = y then {x,} is bounded and

Iy, = xIl = 0, lly, —yll > 0asn -
So that

[{xp, Yo B—{x,y8 - 0asn —» o
Hence
(xn, yn 8- (x, y8

Theorem. . Let X be any inner product space and if {x,}, {y,,} are Cauchy sequences in X, then
(xn, yolis a convergent sequence in F, where F = R or C.

Proof. Suppose that {x,} , {y,} are Cauchy sequences in X. Then for all natural numbers m,n we
have

lxn = Xl = 0, llyn = ymll » 0asm,n - o
Hence, as above,
[, ¥ B= i, Yin B = [, Y B= (X, Y B (X, Y B— (X, Y B
= (o0 Yn = Ym B+ (X — X, Y B
< W% Y = Ym8 + 16 — X, Yy B
< llxall Ny = w1l + llxc, = xI Iyl
(by Cauchy Schwarz Inequality)

Since every Cauchy sequence is bounded, the right hand side of above equation tends to 0 as
m,n — . Hence

{xn, ynBis a Cauchy sequence in F. Since F is R or C, this sequence converges in F.

6.3 Hilbert Space

Definition.
A complete inner product spac is called Hilbert space. Or an inner product space in which every
Cauchy sequence converges is said to be Hilbert Space.

@Example: Show that the Euclidean space R™ is a Hilbert space with inner product defined by
(%) = llxll? = T |,
Solution:- Let {x,} be a Cauchy sequence in R"™ where x,, = {xi(")}}’il, then for any € > 0 there

exists ny € N such that

[lxn — x| =\/(xn—xm,xn—xm) <€;Vm,n =ng

[ee]
n 2
= Z |x§ )—xﬁm)| <€;Vm,n = ng
i=1

Lovely Professional University 63



Unit 06: Inner Product Space. Hilbert Space

n
= |xf )—xgm)| <€;Vm,n = ng

= {xi )} is a Cauchy sequence in R and since R is complete therefore x{® - x; €ER, then

n €
()—xi|<—;VH2ni
p

i v
m

=[x, —xq| <%;Vn2n1

there exists a natural number n; € N such that |x

)
2

|2, — x5 <—=;vn>n,
p

N

€

ﬁi

Ix — x,| <—;vn>n

If x = (xq, x5, .., x,) then x € R™.

Letn’ = max(ny, ny, ..., n,) then for the above expression we have

llxn — x|l =

n ) n , n ]
=>“xn_x”= lein)—xll +Z|x§n)—x2| +...Z|x7(1")_xn|
i=1 i

i=1 =1
2 2 2 2
= lx, —xll < ’€—+€—+---E—= ’E;nZn’
n n n n

= ||lx, — x|| <e;n2n’:\/(xn—xm,xn—xm)<e;n2n’

This shows that x,, converges in R™. Hence R™ is a Hilbert space.

Similarly we can show that C™ is a Hilbert space with complex sequence.

@Example: The space [, of all complex sequences x = {x;} such that ¥2,|x;| < o isan
inner product space under inner product defined by (x ,y B= X" X; 3,; ¥ = {y;} € L.

We also know that [, is complete , hence I, is a Hilbert space.

h_" Example: Every finite dimensional inner product space is a Hilbert Space.

Because every finite dimensional inner product space is a finite dimensional normed linear space
and we know that every finite dimensional normed linear space is complete.

EExample: Space [P with p # 2 is not an inner product space , hence not a Hilbert space.

-=
Example: The space C[a, b] is not an inner product space , hence not not a Hilbert space.

Summary

Let X be a linear space over a field F (R or C). An inner product in X is a function

64 Lovely Professional University

Notes



Notes

Functional Analysis

(,,.): X XX->F
So that with each pair x,y in X, a scalar to be denoted by (x,y) is associated satisfying the
conditions
(i {x,x)=0and{x,x)=0 ifandonlyifx =0,x € X,
@ (x+yz)=xz)+{yz)Vxyz €X
(iii) (oax,y) =ofx,y)Vxy,EXanda EF
(iv) { x,y)=(y,x)Vxy,€X .
e The space [, with the inner product of two vectors
x = (x1,Xx5,...) and y = (¥4, Y2, ... ) defined by

Xy = %7
i=1

is an inner product space.
e Aninner product is also called a pre-Hilbert space.
e If X isan inner product space, then
[{(x, )] < m WVx,y € X.
(Cauchy Schwarx Inequality)

e IfXis an inner product space, then
llx + y112 + llx — 112 = 2(l|x[12 + lly]|?) for x and y in X.
(Parallelogram law)

e ifX is an inner product space, then +/(x, x) has the properties of norm.

e  The Schwarz inequality can also be be written in the form

1 < lixllliyll.
. If X is an inner product space, then for x, y in X, we have
Y3 oillx +imylI? = 4(x, y) (Polarization Identity)

e If X is a real inner product space, then the polarization identity becomes:
4x,y) = lx+ylI2 = llx —yll*> forx,y€X.

e Let X be any inner product space and {x,}, {y,} be any sequences in X such that

Xp = X, Yp =y, then (x,, y,8- (x, y@

e Let X be any inner product space and if {x,}, {y,,} are Cauchy sequences in X, then
(xn, yolis a convergent sequence in F, where F = R or C.

e A complete inner product spac is called Hilbert space. Or an inner product space in
which every Cauchy sequence converges is said to be Hilbert Space.

e Euclidean space R™ is a Hilbert space with inner product defined by

2
(x,x) = lIxl1? = X7y I

Keywords

e Inner product space

e Norm

e  Cauchy-Schwarz inequality
e  Polarization identity

e Parallelogram law

e  Continuity

e Cauchy sequence

e  Hilbert space
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Self Assessment

1: Pick the INCORRECT statement:

A.

B.
C.
D

Every Hilbert space is a normed space.
Every Banach space is a Hilbert space.
Every Banach space is a topological space.

Every normed space is a metric space.

2: Which of the following is Cauchy-Schwartz inequality.

A
B

C.
D

G, Y < (x, 007 Gy, )z
G, ) < (0 + (y, )z

1, y) = (x5, y)2
[{x, v)| < {x, x). (y,y).

3: Which of the following is known as Parallelogram law?

@ >

o 0

lx +y17 = 2ix 12 + 2]y)°

e + Y1+ lx —yI* = 20x 12 + 2]y
e +y1% + llx = yI* = 200 12+ lyl*)
e + Y11 = llx —ylI* = 20 12+ ly)*

4: If X is an inner product space, then for x, y in X, we have

Liooillx +imyll? =

A.

B
C.
D

5(x,y)
4(xy)
3(x,y)
None of these.

5: An inner product is also called a:

A.

B
C.
D

Pre-Hilbert space
Hilbert space

Complete normed space

None of these.

6: The term Hilbert space stands for a :

A.

B.
C.
D

Compact linear space
Complete normed space
Complete metric space

Complete inner product space.
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7 : In a complex inner product space , the conjugate symmetry property of the inner product is

given as .
A (xy)=(x)
B. (x,y)=—(yx)
C. (xy)=(,x
D. None of these.

8: Let V be a real inner product space. Which of the following statements is true?

A. The inner product is always positive definite.
The inner product is always symmetric.

The inner product is always commutative.

o 0w

The inner product is always associative.

9: Let V be a complex inner product space. Which of the following properties does the inner

product satisfy?
A. Conjugate symmetry.
B. Distributive property.
C. Anticommutativity.
D.

None of these

10: Let X be a finite-dimensional inner product space. Which of the following statements is always
true for any nonzero vector x € X?

The norm of x is always equal to 1
The norm of x is always greater than or equal to zero.

The norm of x is always less than or equal to zero.

oSN <>

The norm of x is always positive.

11: Let H be a Hilbert space over R and x,y € H, be such that ||[x|]| = 4, ||yl = 3 and [|x — y|| = 3.
Then (x,y ) equals:

A 6
B. 8
C. 10
D. 14

Answers for Self Assessment

1 B 2 A 3 C 4 B 5 A
6 D 7 C 8 B 9 A 10. D
11. B

Review Questions

1. What is the definition of an inner product space?
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SN T

Prove that the norm induced by an inner product satisfies the parallelogram law.
Give an example of a real inner product space.

Define a Hilbert space. How does it differ from a general inner product space?
State Cauchy Schwarz inequality for inner product space

State Parrallelogram identity for inner product space.

m Further Readings

1.

2
3.
4
5

Introductory Functional Analysis With Applications By Erwin Kreyszig.
Functional Analysis By Walter Ruddin, Mcgraw Hill Education.

J. B Conway, A Course In Functional Analysis.

C. Goffman G Pedrick, A First Course In Functional Analysis.

B.V. Limaya, Functional Analysis.

68 Lovely Professional University

Notes



Notes

Unit 07: Orthogonality of Inner Product Space
Dr. Arshad Ahmad Khan, Lovely Professional University

Unit 07: Orthogonality of Inner Product Space

CONTENTS

Objectives

Introduction

7.1  Orthogonality Of Vectors
7.2 Orthonormal Sets

7.3 Complete Orthonormal Sets
74  Pythagorean Theorem
7.5  Bessel’s Inequality

7.6  Riesz- Fischer Theorem
Summary

Keywords

Self Assessment

Answers for Self Assessment
Review Questions

Further Readings

Objectives
After studying this unit, you will be able to understand:

e Orthogonality of vectors

e  Orthonormal sets

o  Complete orthonormal set
e Pythagorean theorem

e  Bessel’s inequality

e  Riesz- Fischer theorem

Introduction

In this chapter , we introduce the idea of Orthogonality of inner product spaces and establish the
basic terminology. We also discuss complete orthonormal sets, Pythagorean theorem, Bessel’s
inequality, Parseval’s identity and Riesz- Fischer theorem. This chapter enables the students to
carefully use the concepts of Orthogonality.

7.1 Orthogonality Of Vectors

Recall that the dot product of two vectors in the space R? is zero, the vectors are orthogonal or at
least one of the vectors is the zero vector. We generalize this concept in an inner product space.

Definition. Let X be an inner product space. A vector x € X is said to be orthogonal to a vector
y € Xif (x,y)=0.

Such vectors x and y are called orthogonal vectors, written x L y (the symbol 11is
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pronounced as “per”). Similarly, for subsets A,B ¢ X, wewrite x L A ifx L aVa € Aand
A 1 Bifa L bva €eAand b €B.

Observations.

) xlyeylx
ii) x LOvVx €X

iii) 0 is the only vector in X orthogonal to itself.

(
(
(
(iv) For a subset A of an inner product space X, define the set
At ={x €X:x LA}

We write (AY)* = ALY, (AL = Attt andsoon.
(v) {0}t =Xand X* = {0} ie 0 is the only vector orthogonal to every vector .
Proof. We have

(O ={x eX:(x,0)=0}=X

Since (x,0) = 0,V x € X. Also if x # 0, then (x,x) # 0. In other words, a non zero vector can not be
orthogonal to the entore space X. Hence X* = {0}.

(vi) If A # ¢ is subset of X, then the set A" is closed subspace of X. Furthermore,
AN Al is either 0 or empty (when 0 ¢ A).
(vii) If Aand B are subsets of X such that A ¢ B, then A* D B.

Proof. Letx € B! then (x,y) = 0,V y € B and in particular V x € A since A ¢ B.This verifies that
x € At .Hence A* > Bt.

(viii)  If Ais asubsetof X, then A c A1t
Proof. Letx € A. Then x L A%, which means x € (A+)*

,thus A c AL,

(ix) If A # ¢ is a subset of X, then A+ = A++L,

[EExample: R" is an inner product space with inner product defined by

n
<X, Y) = Z Xiyi
i=1

Then the vectors (1,0,0, ...,0), (0,1,0, ...,0), ... (0, 0,0, ...,1) are orthogonal, as the inner product of any
two of the above vectors is zero.

IEExample: 12 is an inner product space with the inner product defined by

[e5)

xy) = Z Xi%i

i=1
Then the vectors e; = (1,0,0, ...,0), e, = (0,1,0, ...,0), e5 = (0,0,1, ...,0) ...e; = (0,0,0, ...,1,0,0, ...), ... in
12

are orthogonal because e; L e;Vi,j withi = j.

7.2 Orthonormal Sets

Definition. A set S = {x; : i € ] } in an inner product space X is said to be orthonormal if

0, ifi#]j

1, if i=j

i,e Bx;, x; B= §;;, the standard Kronecker delta. In other words the set S is said to be orthonormal if
it is orthogonal and ||x|| = 1 for every x € S.

Xi,Xj A= {
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@Example: Let {x;:i € 1} be an orthogonal set in an inner product space X, then the set

A= {” o il € I} is orthonormal.

Solution. Let = P " "xJ"eA then
Xi Xj

1
= ———[Blx;, x;
Il ||x1|| lell ff] ™

0=0

=——X
Izl "xi”
Thus the inner product of two different elements of A is zero. So that A is orthogonal .

Next, we show that norm of every element of 4 is 1.

For this let —- P " € A, then

” ” ol
B4 llxll

This shows that A is orthonormal.

7.3 Complete Orthonormal Sets

Definition. An orthonormal set S in an inner product space X is said to be complete if there exists
no orthonormal set in X of which S is a proper subset.

In other words, S is complete if it is maximal with respect to the property of being normal.

ENote: - If S is complete orthonormal set, then there does not exist any non-zero vector such
thatx L Sand ||x|| = 1.

EExample. In the space 12, the orthonormal set composed of e; = (1,0,0, ...,), e, = (0,10, ...,),
es = (0,0,1,...,) ..

Is a complete orthonormal set.

Orthonormal sets in Hilbert Spaces: An orthonormal set in a Hilbert space H is a non-empty
subset of H which consists of mutually orthogonal unit vector : that is, it is non empty subset {e;} of

H with the following property.

(1) e, e]' A= 0, ifi :/:]
(i1) ;e B=1, ifi=]

@‘Note: - See examples following the definition of orthonormal sets in Inner product spaces.

Remark. If H = {0} ie. H contains only the zero element, then it has no orthonormal set. If
H contains a non-zero vector x, then we can construct e by normalizing x, that is e = ”XT" then the

.
E

X

lIxIl

single element set {e} is clearly an orthonormal set because B, e B= ||e|

Generally speaking if {x;} is a non empty set of mutually orthogonal non zero vectors in H, and if

the x;'s are normalized by replacing each of them by e; = Tl ” then the resulting set {e;} is

orthonormal s

Remark. One of the simple geometric fact about orthogonal vectors is the Pythagorean theorem,
which is given as follows.
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7.4 Pythagorean Theorem

Theorem. If xand y are orthogonal vectors in an inner product space X, then

2 2 2
Ix +ylI” = 1x 12 +lylI” =[x —yll
Proof. We have
2
[x +y"=(x +y,x +y)

=(x,x)+(xy) +(y,x) +
(v,y)
=(x,x)+ 0+ 0+ (y,y)

=(x,x) +(y,y)
= [Ix [I* + llyll*
Similarly, we can show that
2 2
Ix =ylI™ = 1x 12 +|lyll
Hence,

2 2 2
I + 1™ = 1x 12 +Jyl” = lIx =yl

7.5 Bessel’s Inequality

Theorem. Let S = {ey, e, ..., e,} be an orthonormal set in a Hilbert space H. If x is any vector in H,
then

Tl e; B2 < lx|l?

(Bessel’s inequality)........... @
And x—X7 B, e;%; L e foreachj

ie.x — X B, el LS.
Proof. Wehave:0 < ||x — X, B, e; B;||?
=B — Yo, 0 ey, x — Y7o B, ;0
= B, x B— B, X7, B, e; ;80— B By, e;0;, x B+ B B, e;Be;, X1 B, e;Be;
=B, x B— 37 B, e, D0, ¢;0— X7, Bk, e, Wy, xB+ Y7y X7, B, e, Ok, e, by, ;
= B, x B- Y|t g8 — T |f, 8 + X, X0 B, B ¢ B By e; B
= B, x B- Y|t g8 — T 0k, e8% + T, 0k, o0, ¢, 0, ;0
02 3 [ T Rl [ 7 el [ 0
2
=0<B,xB- Z?=1|l?k,ej
=38, ejz < |Ix]1?, which is equivalent to (1)
In order to show that x — Y7, B, e;®; 1 S, consider any e; in S wherej = 1,2,3,...,n
Then B — Y710, e;B;, ;0= B, e;0— B, B, e; B, ;8
= bk, e;0— Y110k, e;0;, e

72 Lovely Professional University



Unit 07: Orthogonality of Inner Product Space

= B, ;80— B, e; 2, ¢; 1
= Bk, e;B— B, ¢;81
=0
This shows that x — Y7 B, e;%; 1 e; for each j
=S>x-2 Bel 1S
This completes the proof.

Theorem. If {e;} is an orthonormal set in a Hilbert space H and if x is any vector in H, then the set

S = {e;: &, e;@+ 0} is either empty or countable.

Theorem. (Generalization of Bessel’s inequality).
If {e;} is an orthonormal set in a Hilbert space H, then
2I8k, €82 < [lx]|? .evnennnn(1)
for every vector x € H.
Proof. Let us defineasetS as
S ={e;: %, e;B+= 0}
Then by the above theorem, S is either empty or countable .

If S is empty, then &, e;@= 0, so Y|, ;82 is zero and so in this case (1) reduces to 0 < ||x||?,
which is obviously true.

If S is countable , then S is finite or countably infinite .

When S is finite . Let it can be written in the form S = {e;, e, ..., e} for some positive integer n. In
this case, we denote Y|P, ;8% to be X™,|B, e; B2, which is clearly independent of the order in
which the vectors of S are arranged. So inequality (1) reduces to Yi-,|B, e; B2 < ||x||> which is the
Bessel’s inequality when {e;} is finite orthonormal set as proved already.

When S is countably infinite . Let the vectors in S be arranged in some definite order i.e. S =
{e1, €2, ..., €n, ...}, as by the theory of “absolutely convergent series” we know that if Y.i2,|B, e; 02
converges , then every series obtained from this series by rearranging its terms also converges and
all such series have the same sum. So we therefore can define }|B, ;8% to be Y, |B, e; B2 and it
follows that ¥|Bx, e;B? is a non-negative extended real number , which depends only on S and not
on the arrangement of vectors in S. So in this case (1) reduces to

2 1Bee B2 < |[x||? ... @)

Now from Bessel’s inequality for finite case, we have:
n
D18 e 82 < 12l
i=1

It follows that no partial sum of the series on left side of (2) can exceed ||x||? and so it is clear that (2)
is true .

n
= lim »'[ox, e, 82 < x|
n—oo
i=1

[oe]
= Y lEe; 87 < Il
i=1

This completes the proof.
Theorem. If {e;} is an orthonormal set in a Hilbert space H and if x is any vector in H, then the set
S = {e;: &, e; @+ 0} is either empty or countable.

Theorem. Let {e;} be an orthonormal set in a Hilbert space H and let x be a vector in H, then
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X— ZB{, eii 1 {ei}

Theorem. (orthonormal bases) Let H be Hilbert space and let {e;} be an orthonormal set in H, then
the following are equivalent

(i) {e;}is complete.

(i) xL {e}=x=0

(iil) If x is an arbitrary vector in H, then x = Y8, e; &;

(iv) If x is an arbitrary vector in H, then lx]|? = X| B, e;B2. (Parseval’s identity).
Proof. (i) = (ii)

Suppose (i) is true i.e. {e;} is complete .

= {e;} is maximal orthonormal set. On contrary suppose that (ii) is not true, then there exists a
vector x # 0 such thatx 1 {e;}.

Define e = ”XT" , then the set {e;, e} is an orthonormal set, which properly contains {e;}, but this

contradicts the completeness of {e;}. Hence (ii) is true.
(i) = (iii)
Suppose that (ii) is true i.e. x L {e;} = x = 0. Now by above theorem, we have
X — X%, e;Pe; is orthogonal to {e;}.
ie.
x= ) Bele L fe)
So by (ii), we get

x—Zl?k,eii =0

X = Z@(, eii

for any vector x € H. Hence (iii) is true.
(iii) = (iv)
Suppose that (iii) is true i.e. x = Y0, e;B; for any vector x € H.
Now x = X0, e;B; = Y720k, e;;
Then ||x]|* = & x B= &, X2, &, e; B;
=&, limye i B, e;0;

—_ 3 n
= limye 2imq B, 6,03, e;@

= Il = limp_e Xty 18, e;02
= Y2410 e,8?
Using Y8k, e;%; in place of }.;2,0, e;B;, we get
Ill? = 18, .82,
Hence (iv) is true.
Finally (iv) = (i)
Suppose that (iv) is true i.e. [|x]|? = [|x||? = X|B, e;82.

We show that (i) is true . On the contrary assume that (i) is not true i.e. {e;} is not complete , then it
is properly contained in an orthonormal set {e;, e}. So by definition of orthonormal set, we can say
that e is orthogonal to ejs.

Now [lell? = Z|&, e;8* by (iv)
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=Xllo|?
= llol|
=0
i.e |le]l = 0 and this contradicts the fact that ||e|| = 1.
So our supposition was wrong and hence {e;} is complete .
Hence (i) is true.
This completes the proof.

Remark. Let {e;} be a complete orthonormal set and let x be an arbitrary vector in a Hilbert space
H. Then the numbers [, e;Blare called the Fourier coefficients of x, the expression &, e;%; is called
the Fourier expansion of x and the equation ||x||? = X|B, ;B2 is called Parseval’s equation .

7.6 Riesz- Fischer Theorem

Theorem. Let {ej, e, ..., ey, ... } be an orthonormal set in a Hilbert space H. Then, for any sequence
{Cy} of scalars, the following are equivalent.

() {a} el
(ii) Yh=1 Cr ey converges in H
(iii) there is anelementx € H

B, e, 0= ¢, k = 1,2, ...

Proof. Suppose that (i) is true so that {c;} € (2. Then

[ee)
Z:|Ck|2 < oo
k=1

Forn=1,2,..,let

n
Sp = Z Cr€r

k=1

We first show that {s,,} is a Cauchy sequence in H. For this consider the expression ||s,, — spll,m >
n,

We have ||s,,, — s,l1? = By, — Sy, S — Sp @
= Bkn+1Ckek Z;H:nﬂ cpepll
2
= ZZLn+1|Ck|/

. . . . 2 .
Using the orthogonality of ;1 €n42, ..., e Since the series Y7, |cx | converges in F, by Cauchy’s
criterion of convergence,

lckl? > 0asm,n -
k=n+1

So {s,,} is a Cauchy sequence in H. As H is complete , s, > x € H

Thus
D=1 Crer
converges in H. So (i) = (ii).
Next suppose that (ii) is satisfied so that the series }.;2, c;e; converges to x € H.
Then
X = XiZq i€
So that, fork = 1,2, ... o
Bk, e, A= Z cie;, e,

=1
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= Y21 cille;, e, 0
Hence (iii) is satisfied .

Lastly suppose that (iii) holds. Then , by Bessels inequality,

[ee] o
Dlel = I e < x| < oo
k=1 k=1

So that {c,} € [?. Hence (iii) = (i).

Summary
e Let X be an inner product space. A vector x € X is said to be orthogonal to a vectory € Xif
(xy)=0.
Such vectors x and y are called orthogonal vectors, written x L y (the symbol L1 is pronounced as
“per”). Similarly, for subsets A,B < X, wewrite x L Aifx L aVa €A and A 1 Bif

albVae€eAand b €B.

e xXxlyeylx
e x 10,vx €X
¢ (is the only vector in X orthogonal to itself.

e For asubset A of an inner product space X, define the set
At ={x eX:x LA}

We write (AL = AL, (AYY)L = Attt andsoon.
e {0} =Xand X! = {0} ie 0 is the only vector orthogonal to every vector .
e If A # ¢ is subset of X, then the set A' is closed subspace of X. Furthermore, A N At is either 0
or empty (When 0 & A).
e If Aand B are subsets of X such that A ¢ B, then At o BL.
e IfAisasubsetofX, then A c AtL.
o IfA # ¢isasubset of X, then A+ = AtLL,
e R" is an inner product space with inner product defined by
xy)= Z XiYi
e Then the vectors (1,0,0, ...,0), (0,1,0, ...,0), ... (0,0,0,i31) are orthogonal, as the inner product of

any two of the above vectors is zero.

o AsetS ={x;:i€l}in an inner product space X is said to be orthonormal if

(0, ifi#)
i, xj 0= {1. if i=j

i,e Bx; x; B= §;;, the standard Kronecker delta. In other words the set S is said to be
orthonormal if it is orthogonal and ||x|| = 1 for every x € S.
e An orthonormal set S in an inner product space X is said to be complete if there exists no
orthonormal set in X of which S is a proper subset.
e In the space 12, the orthonormal set composed of
e; =(1,00,..,), e, =(0,1,0,..,), e3 = (0,0,1, ...,) ... is a complete orthonormal set.

e Ifxandy are orthogonal vectors in an inner product space X, then
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lIx +yll? = lIxII? + llyll* = lIx —yll?

(Pythagorean theorem)
Let S = {e, e, ..., €4} be an orthonormal set in a Hilbert space H. If x is any vector in H,
then

io11B e B2 < lx|1?
(Bessel’s inequality)
(Generalization of Bessel’s inequality).

If {e;} is an orthonormal set in a Hilbert space H, then

o e <

If {e;} is an orthonormal set in a Hilbert space H and if x is any vector in H, then the set
S = {e;: &, e;@= 0} is either empty or countable.
Let {e;} be an orthonormal set in a Hilbert space H and let x be a vector in H, then

X— ZB{, eii 1 {ei}

Keywords

Orthogonality

Inner product space
Complete orthonormal set
Hilbert space
Pythagorean theorem
Bessel’s inequality
Orthonormal bases
Parseval’s identity

Riesz- Fischer theorem

Self Assessment

1: Two Vectors x,y in an inner product space are orthogonal if :

A.

N

on v > P

(x,y) #0
lxll =yl =1
(x,y)=0

None of these.

If Two vectors x,y in an inner product space are orthogonal, then

lIx + 112 = 2llx 12 + 2llyll2
2 2

I +yII” = 1x 1 + iy
2

Ix +y[”=0

None of these.

3: Let M be a non empty subset of an inner product space X. Which of the following is not true.

A.

B.

MJ_ — MJ_J_J_
M c MJ_J_
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C M =M
D. If M = X, then M+ = {0}

4 : In an orthonormal set of vectors, what is the inner product of any vector with itself?

A0
B. -1
C 1

D. It depends on the vector.

5: If two vectors are orthogonal, what can be said about their inner product?

A. ltis always zero.

B. Itis always one.

C. Itis undefined for orthogonal vectors.
D. None of these.

6: In a Hilbert space, what is the significance of a complete orthonormal set?

A. It forms a basis for the Hilbert space.
B. Itis used for dimension reduction.
C. It only provides a partial basis,

D. None of these .

7: In the context of Hilbert spaces, what does Bessel’s inequality state?

A. Tt provides a bound on the norm of a vector in a Hilbert space.

B. It states that the sum of the squared coefficients of a vector with respect to to an
orthonormal set is bounded by the norm of the vector.

C. It defines the inner product between two vectors in a Hilbert space.

D. It establishes the existence of an orthonormal basis for any Hilbert space.

8: Let S = {ey, ey, ..., ey} be an orthonormal set in a Hilbert space H. If x is any vector in H, then
which of the following is true.

A XLqlBe; B = |x||?

B. YiLilB, e 8% < |lx||?

C. XLilB e 8% < lx||?

D. None of these .

9:If {¢;} is an orthonormal set in a Hilbert space H and if x is any vector in H, then the set
S = {e;: &, e;@+ 0} is:

A. Non empty and uncountable
B. Non empty

C. Uncountable

D. Either empty or countable

Lovely Professional University



Unit 07: Orthogonality of Inner Product Space

10: The Riesz-Fischer theorem provides a characterization of which type of space?

A. Hilbert spaces
B. Normed spaces
C. Metric space
D. None of these

Answers for Self Assessment

1. C 2. B 3. C 4. C 5. A

6. A 7. B 8. C 9. D 10. A

Review Questions

What does it mean for two vectors to be orthogonal?

Define a complete orthonormal set in a Hilbert space.

State Bessel's inequality in its general form, both for finite and countably infinite sets of
orthogonal functions.

State Parseval’s Identity.

State Pythagorean theorem.

State Riesz- Fischer Theorem.

m Further Readings
1. Introductory Functional Analysis With Applications By Erwin Kreyszig.
2. Functional Analysis By Walter Ruddin, Mcgraw Hill Education.
3. ]. B Conway, A Course In Functional Analysis.
4. C. Goffman G Pedrick, A First Course In Functional Analysis.
5

B.V. Limaya, Functional Analysis.
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Objectives

After studying this unit, you will be able to understand:

e  Open mapping Theorem and its Applications
e  Closed graph theorem
e  Weak and strong convergence

e  Convergence of Sequence of operators and functionals.

Introduction

In this chapter, we discuss some very basic theorems of fundamental importance in functional
analysis. These theorems include Open Mapping theorem , Closed graph theorem. Further we
discuss about weak and strong convergence . Finally, we discuss about Convergence of sequences
of operators and functionals.

8.1 Open Mapping Theorem and its Applications

We have discussed the Hahn-Banach theorem and the uniform boundedness theorem and shall
now approach the third "big" theorem in this chapter, the Open mapping theorem. It will be
concerned with open mappings. These are mappings such that the image of every open set is an
open set .

More specifically, the open mapping theorem states conditions under which a bounded linear
operator is an open mapping. As in the uniform boundedness theorem we again need
completeness, and the present theorem exhibits another reason why Banach spaces are more
satisfactory than incomplete normed spaces. The theorem also gives conditions under which the
inverse of a hounded linear operator is bounded. The proof of the open mapping theorem will be
based on Baire's category theorem.

Before proving the Open Mapping theorem , we first know the following definition and lemma’s .
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1. A mapping f: X - Y, where X and Y are topological spaces, is said to be open mapping if

f maps open subsets of X into open open subsets of Y.
Lemma. Let X be a normed linear space and B(x,, 7 ) be an open ball in X. Then
B(xo; 7)=xo +7 B(0;1)
Proof. By definition
Blxg;r) ={x€X:|lx —xoll <7}
={xeX:|z|l <r,wherez=x—xy}
={xeX:|z|l <r,wherex =z+ xq}
={xo+zeX: |zl <r}
=xo+{zeX: |zl <r}
=xot+{z€EX: ”;” <1}
=xo+{zeX:||Z'|| < 1wherez' = ;}
=xo+{zeX:|Z'|| < 1wherez=2z'r}

=xo+{rz' € X:||Z'|| < 1}

xo+r{z' €X:|Z'|| < 1}

xo+7r{z' €X:|lz' — 0]l < 1}
=xo+1rB(0,1)

ie. B(x¢;7) = xy +7rB(0,1)

Remark. In particular B(0;r) = rB(0; 1)

Lemma. Let T be a bounded linear operator from a Banach space X into a Banach space Y. Then for
each open ball By = B(0,1) c X, the image T(B,) contains an open ball in Y with centre at origion.

Theorem. ( The open mapping theorem)
A bounded linear operator T from a Banach space X into a Banach space Y is an open mapping.

Proof. Let T: X — Y be a bounded linear operator froam a Banach space X into a Banach space Y. In
order to show that T is an open mapping , we need to show that for any open set A € X, the image
of Aunder T is open in Y. For this let y € T(A): since T is an operator , so there exists x € A such that
y =Tx € T(4).

It is enough to show that T (4A)contains an open ball around y = Tx.

Since A is open in X;and X —A <0 by definition , it contains an open ball with centre x and

radius r
ie.
B(x;r)cA.
We know by lemma (1) above that:
B(x;r)=x+rB(0;1)........... (1)

By lemma (2) above, for the open ball B(0; 1) in X, there is an open ball B'(0,r") with centre at
origin, in Y such that

B'(0;r") € T(B(0;1))
c rT(B(0; 1))
=T(B(0;7))ceuneee ()
=y+r'B'(0,1) by (1)
Hence B'(y;r') =y + B'(0; ')
=y +T(B(0;1)) by (2)
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=Tx+T(B(0;1))
=T(x+ B(0;1))
=T(x+1rB(0,1))
CT(A)

ie. B'(y;r") ST(4)

This shows that T'(A) contains an open ball around y = Tx. Consequently T(4) is open in Y and
hence T is an open mapping.

Corollary. Let T: X — Y be a bijective bounded linear operator from a Banach space X into a Banach
space Y, then T is homeomorphism.

Proof. We recall that T is a homeomorphism if

() T is continuous .
(if) T is bijective.
(iii) T~1is Continuous.

Since T is continuous ( as T is bounded ) and bijective, so T™%: Y - X exists.

To show that T~ is continuous, let u be an open set in X, then (T~1)"1u = Tu, which is open in
Y because T is open by open mapping theorem. So that the image of any open set in Y is open
in X under T~*, showing that T~! is continuous. Hence T is a homeomorphism.

8.2 Closed Graph Theorem

The next important theorem which we shall prove is called the closed graph theorem. Before
provimg this theorem we have some definitions.

Let (X, [I. 1) and (Y, || llo) be normed spaces
P={(x,y)xeX,yeY}
Define addition and scalar multiplication in P by:
y)+ @, y)=@+x,y+y)ein 1)
alx,y)=(ax,ay)........... (2)

Forallx,x' € Xandy,y' €Yand a € F = (Ror C)

Then P is a linear space under the addition and scalar multiplication defined above. Next, we
define norm on P as follows:

For (x,y ) € P, we put

1
1Ge, )1, = (llxllP + llyll§)P 1 < p < oo €)
Then obviously,
I, y)ll 2 0and ||(x,y)ll =0 = x=0,y=0
And [la(x, y)II} = lal 11G,y)II;
1Ge,y )+ Gyl = 10+ x7y + ¥l
1
= (llx +x'lI” + lly + y'lIg)»
1
< (Il + Nl I1P + Iy NG + Nly'115)?
1 1
< (IxlP + Wy l15)? + Cll" 1P + Hly"15)?
(By Minkowski’s inequality)
S NGay)llp + 11y Ml

82 Lovely Professional University

Notes



Notes

Functional Analysis

Hence (P, || ]l,,) is a normed space, called the product of the normed spaces X and Y.
Forp =1, (3) assumes the form
1Ce, Mz = HlxIl + Hlyllo.
Another norm on P is given as follows: For (x,y ) € P, we put
1Gx, ¥ )llo = max(llxll, llyllo)
It can be established that all these norms on X X Y are equivalent.

For p = 2, we have

1Ge, vl = llxll? + IIyIIZ)%
If X and Y are Banach spaces then so is their product P. This follows from the observation that
X)) > y) S x> x, 9, 2y
For any two normed spaces X and Yand a mapping T: X — Y, the set
Gr ={(x,Tx):x € X}
is called the graph of T.

Since X and Y are metric spaces and so are Hausdroff spaces, their product P = X X Y, under the
metric indued by the norm on P, is also metric space.

In general, for two topological spaces X, Y, the graph G of a mapping T: X — Y may not be a
closed subspace of X x Y. Since every normed space is also a Hausdroff space , so in the case of
normed spaces,the graph of continuous mapping T: X — Y is always closed .

Theorem. (Closed Graph Theorem)

Let X and Y be Banach spacesand T: X — Y be a linear operator . Then T is continuous if and only
if the graph of T is a closed subspace of X X Y.

Proof. Suppose that T:X — Y is a continuous linear operator . we show that the graph
Gr ={(x,Tx):x € X}

is closed in X x Y. For this let (x,y ) € Gy. Then there are sequences {x,,} and {y,} in X and Y
respectively such that

Xn 2 X%Yn Y
Since T is continuous and Y;, = Tx,,,
Xp=2>x=>Tx, > Ty =y
Hence (x,y) = (x,Ty) € Gy, thus Gy is closed.
Conversely suppose that, for a linear operator T:X — Y, Gy is closed.Then Gy is a subspace of

X xY.Since X and Y are Banach spaces and Gr is a closed subspace of the Banach space X X Y, Gy
itself is complete and hence is a Banach space .

Consider the mapping f: Gr — X defined by
flx,Tx)=xVxe€X.
Then f is injective and linear . Also, since
I Ce, TN = llxll < 1[G, T

By definition of the product norm, f is continuous. By the open mapping theorem , f 71 is
continuous and so bounded. Moreover

(T2 I < NCe, T = IF72COll < IF el

Hence T is bounded and so is continuous .
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8.3 Strong and Weak Convergence

We know that in calculus we define different types of convergence i.e ordinary, conditional,
absolute and uniform convergence. This yields greater flexibility in the theory and applications of
sequence and series. The situation is similar in functional analysis, and one has an even greater
variety of possibilities that turn out to be of practical interest. Here we are concerned with weak
convergence .This is basic concept . We present it now since its theory makes essential use of the
uniform boundedness theorem which we have already discussed . In fact, this is one of the major
application of that theorem.

Definition. (Strong convergence) A sequence {x,} in a normed space X is said to be strongly

convergent (or convergent in the norm) if there is an x € X such that lim,_,,|lx, —x || = 0
ie.
lim x, = x
N0
or simply
Xy = X.

x is called the strong limit of {x,}, and we say that {x,} converges strongly to x .
Weak convergence is defined in terms of bounded linear functionals on X as follows.

Definition (Weak convergence) . A sequence {x,} in a normed space X is said to be weakly
convergent if there is an x € X such that for every f € X

limp, o f(xn) = f(x)
This is written
Xp = X
The element x is called the weak limit of {x,}, and we say that {x,} converges weakly to x.

Weak convergence has various applications throughout analysis for instance , in the calculus
of variation, and general theory of differential equation.

For applying weak convergence one needs to know certain basic properties, which we state in
the following lemma .

Lemma. Let {x,,} be a weakly convergent sequence in a normed space X, say x, = x. Then:

(i) The weak limit x of {x,} is unique.
(ii) Every subsequence of {x,} converges weakly to x.
(iii) The sequence (|[x,]l) is bounded.

Proof. (i) Suppose that x,, —» x as well as x,, = y . Then

fx) = f(x) as well as f(xn) = f(¥).

Since {f (x,,)} is a sequence of numbers , its limit is unique . Hence f(x) = f(y), that is for every
f € X' we have

f=f)=flx=y)=0
>x—y=0
This shows that the weak limit is unique.

(ii) follows from the fact that {f (x,)} is a convergent sequence of numbers, so that every
subsequence of {f(x,)} converges and has the same limit as the sequence.

(iil) Since {f(x,)} is a convergent sequence of numbers, it is bounded, say |f (x,)| <
¢ V n, where ¢ is a constant depending on f but not on n . Using the canonical mapping
C:X — X", we can define g,, € X" by

gn(f) =f(xn),fEX’

Then for all n,

lgn (O] = 1f (x| < ¢,
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that is, the sequence {|gn(f) |} is bounded for every f € X'. As we know the dual space X’

of a normed space X is a Banach space, so X'is complete , the Uniform boundedness theorem is
applicable and implies that {|gn(s)|} is bounded . Now |Ig, |l = [l .

In finite dimensional normed spaces the distinction between strong and weak convergence
disappears completely . Let us prove this fact and also justify the terms “strong” and “weak”.

Theorem. (Strong and weak convergence). Let {x,} be a sequence in normed space X. Then

(i) Strong convergence implies weak convergence with the same limit.
(ii) The converse of (i) is not generally true.
(iii) If dim X < oo, then weak convergence implies srrong convergence.

Proof. By definition, x, - x means [|x,, — x || = 0 and implies for every f € X,
IfCen) = FOIN = flxn —x) < |Ifllllxn — x|l > 0
This shows that x,, = x.

(ii) can be seen from an orthonormal sequence {e,} in a Hilbert space H. In fact, every f € H has a
Riesz representation f(x) = (x,z ). Hence f (e,) = {ey, z). The Bessels inequality is as

n=1l{en, 2)1? < llzII%.

Hence the series on the left converges , so that its terms must approach zero as n — co. This implies
f(en) = (en, z) = 0.
Since f € H' was arbitrary , we see that e, » 0. However, {e,} does not converge strongly because
llem — enll? = (em — en em — €n) = 2 (m # n).
(iv) Suppose that x, » x and dimX = k. Let {e,, e,, ... x} be any basis for X and say,
Xn = ain)el + -+ a,E")ek
And
X =aeq + -+ agey
By assumption, f(x,) = f(x) for every f € X'. We take in particular f;, ..., fi defined
by
fitep =1, filem) =0 (m # )
Then
f;Ge) = a, fi(x) = .

Hence f;(x,) = f;(x) = aj(") - a;. From this we readily obtain

k
e ==Y @™ = ape;
j=1

k
<D | = a[llel - 0
=1

As n — oo. This shows that {x,,} converges strongly to x.

Lovely Professional University 85



Unit 08: Open Mapping Theorem and Closed Graph Theoremn

It is interesting to note that there also exist infinite dimensional spaces such that strong and weak
convergence are equivalent concepts. As example is I*. In conclusion let us take a look at weak
convergence in two important types of spaces.

| - |
Example. Hilbert space. In a Hilbert space, x,, = x if and only if (xy, z) =
(x,2)V z 1in the space.
=
; |Example. In the space I”, where 1 < p < +o0, we have x,, — x if and only if

(@) The sequence {||x, ||} is bounded.
(i) For every fixed j we have f}n) - &jasn > o; here,

X, = (.f](.n)) and x = (§)).

8.4 Convergence of Sequences of Operators and Functional

Sequences of bounded linear operators and functionals arise frequently in the abstract formulation
of concrete situations, for instance in connection with convergence problems of Fourier series or
sequences of interpolation polynomials or methods of numerical integration. In such cases one is
usually concerned with the convergence of those sequences of operators or functionals with
boundedness of corresponding sequences of norms or with similar properties.

Experience shows that for sequences of elements in a normed space, strong and weak convergence
as defined in the above section are useful concepts. For sequences of operators T,, € B(X,Y ) three
types of convergence turn out to be of theoretical as well as practical value.These are

() Convergence in the norm on B(X,Y ),
(if) Strong convergence of {T,x}inY,
(iii) Weak convergence of {T,,x} inY,

The definition and terminology are as follows;

Definition. (Convergence of sequence of operators) Let X and Y be normed spaces. A
sequence {T,} of operators T, € B(X,Y) is said to be

(i) uniformly operator convergent if {T,;} converges in the norm on B(X,Y)
(ii) Strongly operator convergent if {T,,x } converges strongly in Y for every x € X,
(iii ) weakly operator convergent if {T,,x } converges weakly in Y for every x € X .

In formulas this means that there is an operator T: X — Y such that

@ IT, — Tl >0
(ii) ITx —Tx|| >0 forallx € X
(iii) lf(Tox) = f(Tx)|| >0 forallx € X andforall f €Y’

respectively. T is called the uniform, strong and weak operator limit of {T,}, respectively.

Definition. (Strong and weak convergence of a sequence of functional) Let {f,} be a sequence
of bounded linear functional on a normed space X. Then :

(a) Strong convergence of {f,} means that there is an f € X' such that ||, — fll = 0. This is

written

fo = f

(b) Weak convergence of {f;,} means that there is an f € X’ such that f,(x) = f(x) for all

x € X. This is written
o f-
f in(a) and (b) is called the strong limit and weak limit of {f,}, respectively.
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Lemma. Let T, € B(X,Y ), where X is a Banach space and Y a normed space . If {T,,} is strongly
operator convergent with limit T, then T € B(X,Y).

Proof. Linearity of T follows readily from that of T,. Since T;,x — Tx for every x € X, the sequence
{T,x} is bounded for every x. Since X is complete, ||T,|| is bounded by the uniform boundedness
theorem , say ||T,|l < ¢ Vn . From this, it follows that

ITox|l < T llllx]l < cllxll.
This implies
ITx I < cllx]|.

A useful criterion for strong operator convergence is

Theorem. A sequence {T,,} of operators T, € B(X,Y), where X and Y are Banach spaces, is strongly
operator convergent if and only if:

(A) The sequence {||T, |} is bounded.
(B) The sequence {T,,x } is Cauchy in Y for every x in a total subset M of X.

Proof. If T,,x — Tx for every x € X, then (A) follows from the uniform boundedness theorem (since
X is complete) and (B) is trivial.

Conversely, suppose that (A) and (B) holds, so that, say [|T,|| < ¢ V n. We consider any x € X and

show that {T;,x } converges strongly in Y. Let € > 0 be given . Since span M is dense in X, there is a
y € span M such that

€
- <=
lle =yl < 57
Since y € span M, the sequence {T,,y} is Cauchy by (B). Hence there is an N such that
Ty = Ty Il < (m,n > N)

Using these two inequalities and applying the triangle inequality, we see that {T;,x } is Cauchy in Y
because for m,n > N we obtain

”Tnx - me” < ”Tnx - Tny “ + ”Tny - Tmy” + ”Tmy - me”
<|Tallllx =y I +§+ Tl Nl =yl
€ € €
< C§+5+C;— €

Since Y is complete, {T,x } converges in Y. Since x € X was arbitrary, this proves strong operator
convergence of {T,}.

Corollary. (Functionals) A sequence {f,} of bounded linear functionals on a Banah space X is weak
convergent, the limit being a bounded linear functional on X, if and only if

(A) The sequence {||f,|I} is bounded.

(B) The sequence {f;,(x)} is Cauchy for every x in a total subset M of X.

Summary

e A mapping f:X —» Y, where X and Y are topological spaces, is said to be open mapping if
f maps open subsets of X into open open subsets of Y.

e Let X be a normed linear space and B(x,,r ) be an open ball in X. Then
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B(xg; 7 )=x¢ + 1 B(0; 1).

e LetT be a bounded linear operator from a Banach space X into a Banach space Y. Then for
each open ball B, = B(0,1) c X, the image T(B,;) contains an open ball in Y with centre
at origion.

e A bounded linear operator T from a Banach space X into a Banach space Y is an open
mapping. (Open mapping theorem)

e LetT:X — Y be a bijective bounded linear operator from a Banach space X into a Banach
space Y, then T is homeomorphism.

e LetX andY be Banach spacesand T:X — Y be a linear operator . Then T is continuous if
and only if the graph of T is a closed subspace of X x Y. ( Closed graph theorem).

e A sequence {x,} in a normed space X is said to be strongly convergent (or convergent in
the norm) if there is an x € X such that lim,_,||x, —x || =0
ie.

lim,, e X, = X .
e Asequence {x,} in a normed space X is said to be weakly convergent if there is an x € X

such that for every f € X
lim () = f(x)

This is written

Xp = X.

The element x is called the weak limit of {x,}, and we say that {x,,} converges weakly to x.

e LetT, € B(X,Y ), where X is a Banach space and Y a normed space . If {T},} is strongly
operator convergent with limit T, then T € B(X,Y).

Keywords
¢  Open mappings
e  Open set
e Bounded linear operator
e  Incomplete normed spaces
e Openball
¢  Homeomorphism
e Closed graph
e Closed subspace
e  Weak convergence
e  Strong convergence

e  Hilbert space

Self Assessment

1: If X, Y are normed spaces and if A : X — Y is a bijective, bounded linear map, then:
A. Ais always an open map.

B. Ais an open map if X is a Banach space.

C. Ais an open map if ¥ is a Banach space.

D. Ais an open map if both X and Y are Banach spaces.
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2:

o0 w e

3:
A

If X and Y are normed spaces, and if T : X — Y is a linear operator, then T is bounded if and
only if:
T maps bounded subsets of X into bounded subsets of Y.
T maps open subsets of X into open subsets of Y.
T maps closed subsets of X into closed subsets of Y.

. T is invertible.
Every bounded operator of finite rank is :

. Open.

B. Compact.

C
D

4:

A

. Has a non zero adjoint.

. None of these.
A bijective map A : X — Y is open if and only if :

. A: X - Y isinvertible.

B. A: X -» Y is bounded.

C
D

5:
A

. A™1: Y > Xisbounded.
. A™1: Y > Xisopen.

If {A,,} is a sequence of operators on a normed space X, then 4,, — A strongly if and only if:
Apx > AxVx€EX.

B. [|[A,—A]l > 0asn - oo.

C
D

6:
A

B
C
D

7:
A

B
C
D

8:

9N = >

. flApx) > f(Ax)VxeXandV f € X*.

. None of these.

If T is a bounded linear operator, then:
ATl = T ]

ATl < Tl

- NTxl = AT x|l

. None of these.

For x,y in a normed space X, which of the following is not necessarily true?
M+ yll < llxll + iyl

Ml =1iylll < Hlx =yl

Al =1yl < Nl + I
e =yl < Nl + Ny Il

Let X be a normed space and f be a bounded, non-zero linear functional on X. Then, which of
the following is not true?

f is onto.
f is continuous.
Kerf is a closed subspace of X.

f is an open map.

: Let X be a normed space and 4, B be bounded linear operators on X Then which of the
following is true?

1ABIl = [IAIl. 1Bl
llABII = llAll- |l
1ABIl < [IAIl. Bl

Lovely Professional University 89



Unit 08: Open Mapping Theorem and Closed Graph Theorem

D.

None of these.

10: Which of the following theorems guarantees that a bounded linear operator between Banach

90w p

9N = >

spaces is an open map if it is onto.
Hahn-Banach Theorem.

Open Mapping theorem.

Baire’s Category theorem.

None of these.

: Let X and Y be Banach spaces and T: X — Y be a bounded linear operator , if the range of T

is not closed, then which theorem can be used to find a closed subspace of X on which T is
injective?

Hahn-Banach Theorem.

Open Mapping theorem.

Closed graph theorem.

None of these.

12: What is the main difference between strong and weak convergence?

A.

Strong convergence requires convergence in norm, while weak convergence requires
pointwise convergence.

Strong convergence requires pointwise convergence, while weak convergence requires
convergence in norm.

Strong convergence and weak convergence are synonymous terms.

None of the above.

: Ina Hilbert space, which of the following statements is true?

Strongly convergent sequences are always weakly convergent.
Weakly convergent sequences are always strongly convergent.
Strong and weak convergence are equivalent.

None of these.

If a linear mapping between topological vector spaces is continuous, what can we conclude
about its graph?

The graph is open.
The graph is compace.
The graph is closed.

None of these.

Let X and Y be Banach spaces and T: X — Y be a linear map which is closed and surjective.
Then T is continuous and open. This is called

Closed graph theorem.
Hein-Borel theorem.
Open mapping theorem.

None of these.
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Answers for Self Assessment

1 D 2 A 3. B 4 C 5
6 B 7 D 8 D 9 C 10
11. C 12. A 13. A 14. C 15.

Review Questions

State the Open Mapping Theorem in functional analysis.
State the Closed Graph Theorem.

Define the graph of a linear operator.

S N A

What is difference between strong and weak convergence.

m Further Readings

1. Introductory Functional Analysis With Applications By Erwin Kreyszig.
2. Functional Analysis By Walter Ruddin, Mcgraw Hill Education.

3. J. B Conway, A Course In Functional Analysis.

4. C.Goffman G Pedrick, A First Course In Functional Analysis.

5. B.V. Limaya, Functional Analysis.
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Unit 09: Decomposition Theorems in Hilbert Spaces

CONTENTS

Objectives
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9.1  Orthogonal Complements and Direct Sums
9.2  Convex Sets in Hilbert Spaces

9.3 The Conjugate Space of a Hilbert Space H
Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to understand:

¢  Orthogonal complements and direct sums
e Pojection Theorem
e Convex sets in Hilbert Spaces

e  The conjugate space of a Hilbert space

Introduction

In this chapter, We discuss about Orthogonal complements and direct sums and its properties.
Futher, we prove Projection theorem and convex sets in Hilbert space and discuss some important
theorems. Finally we discuss about Conjugate space of a Hilbert space H.

9.1 Orthogonal Complements and Direct Sums

Definition. If M is any subset of a Hilbert space H, then the orthogonal complement of M denoted
by M*, is defined as

Mt={x€eH:{x,y)=0VyeM}
={x€H:x 1M}
Andalso Mt = (MYt ={x e H:(x,y)=0, Vy € M}
={xeHx LMY

Remark. From the above definitions, it is clear that

() {0} =H
(i) H* = {0}

Theorem. Let M;, M, be subsets of a Hilbert space H, then prove the following:
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(i) M; € M{*, that is any subset of H is contained in its double orthogonal complement .
(ii) If My, S M, then M} € M.

(iii) (M U My)* = Mi n M3 and (M, N My)* 2 Mt u M3

(iv) M = ML,

(v) M;nMic{o}).

(vi) M{ is aclosed subspace of H.

Proof.

(i) Let x € M;, then
(x,y)=0Vye€ Mi Hence
x € Mit, thatis M; c M{+.
(ii) Suppose that M; € M,. Let x € M3, then
(x,y)=0VyeEM,.
Since M; € M,, we have
(x,y)=0Vy€eM,.
Hence x L M;,
implies x € M-
that is My © M{-.
(iif) Since M; € M; UM, and M, € M; U M,
= (M; UM,)*t € M} and (M; U M,)* € My
> MUM)teMinMy.......... 1)
Now, let x € Mi n My
= x € M{ and x € M5
=>x 1M andx L M,
So by definition , {(x,u) = 0 for every u € M; and
{x,v) = 0 foreveryv € M, .
And so (x,u) = 0 for every u € M; U M,.
= x € (M; UM,)*
So that M{ N My < (My U M)*........... )
From (1) and (2), we get
(M; U My)t = M{ n My
Next, we show that (M; N M)+ 2 M- U M3
For this since, M; N M, € M; and M; N M, S M,
= (M)* € (M; n My)*+ and My S (M; N M,)*
= (M; N My)t 2 M{ U My .

(iv) By (i) M; € M{+
and so by part (ii) (M{1)* < M{

ie M € Mi.... @)
Also by part (i), M+ € (MYt =ML )
From (3) and (4), we have
Mi = M
(v) If M; N M = ¢, then clearly M; N M{ = ¢ < {0}

ie, M, n Mi c (0}
If M, N Mit # ¢, then let x € M; N M{
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= x € M; and x € M{.
Now since x € Mt and x € M,
=>(x,x)=0

= |lx|I* =0,

ie. |lx|l=0
ie,x=0
ie., x € {0}.
Hence,
M, n M{ € {0}.
(vi) Now we show M is a closed subspace of H.

Let x,y be any two elements in Mi* and @, § be any scalers, then for u in M;, we have:
(x,u) = 0 and (y,u) = 0 and therefore:
(ax + By, u) = (ax,u) + (By,u)
= alx,u) + B(y,u)
=a.0+p6.0
=0
ie., {ax + By,u) = 0 for any u in M;.
= ax + By € M{
Which shows that Mj- is a subspace of H.

To complete the proof , it remains to show that Mj- is closed and in order to prove this, it is enough
to show that if {x,} is any convergent sequence in Mi- converging to a point x (say)

ie., x, > x, then x € M{.
Now for any u € M;, we can write

(x,u) = (lim x,, u)
n—-oo

= lim (x,,, u)
n—co
= 0, because x,, € M{
ie,(x,u)=0foranyu € M{, = x L M;
= x € M{. Thus Mj is closed subspace of H.
Theorem. If M is a closed linear subspace of a Hilbert space H, then M n M+ = {0}.
Proof. Letx € M N M+, thenx € M and x € M*.
>x1M.
= {x,y) = 0 for every y in M.
= (x,x) = 0, because x € M.

= [lxlI>=0

> |x[=0=>x=0.
This shows that0 € M N M+ = {0} € M n M*.
But we know that M n M+ < {0}, by part (v) of above theorem.
Hence M n M+ = {0}.
Remark. For sets M and M+, M n M+ < {0} and for subspaces M and M+, M n M+ = {0}.

The reason is that it is not necessary for any subset to contain 0 but every subspace contains 0.
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Definition. (Direct sum). A vector space X is said to be the direct sum of two subspaces Y and Z of
X, written

X=Y®Z

if each x € X has a unique representation

x=y+zy€Y,zeZ

Then Z is called an algebraic complement of Y in X and vice versa, and Y,Z is called a
complementary pair of subspaces in X.

For example, Y = R is a subspace of the Euclidean plane R%. Clearly, Y has infinitely many
algebraic complements in R?, each of which is a real line. But most convenient is a complement that
is perpendicular. We make use of this fact when we choose a Cartesian coordinate system. In R the
situation is the same in principle.

Theorem 1. (Minimizing vector) Let M be a non empty complete convex subset of an inner
Product space X and x € X\M. Then there is a unique y € M such that
llx = yll = Infyrem llx = y'll
That is, there is a unique y € M which is closest to x.
Proof. We prove this theorem in the next section of this chapter.

Theorem 2. Let M be a complete subspace of an inner product space X. Then there is a non zero
vector z € X such that

z1l M

Theorem. Let M be a proper complete subspace of an inner product space X. Then

X =MeMt

Proof. Since M is complete and being a subspace, is convex, by theorem 1 above there is a unique
vector y € M such that

lx — yll = Infyremllx = y'll, for each x € X\M.
Put z = x — y, by theorem 2, z L M and so z € M which is a subspace of X. Hence
x=y+z,yeEMzeM. ... . 1)

To see that (1) is unique , suppose that

x=y;+2z;
Also then

y—yi1=2z —z€MnM!={0}

S0y =y,,z = z;. Therefore

X =MeM™

Remark. For any complete subspace M of an inner product space X the subspace M* of X is called
the orthogonal complement of M. In particular, if M is closed subspace of a Hilbert space H, the M*
is orthogonal complement of M in H.

Corollary. Let M be a closed subspace of a Hilbert space H. Then
H=MeM:.

Proof. Since M, as a closed subspace of a Hilbert space H which is always a complete space, is
complete.

Corollary. For any complete subspace M of an inner product X,
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M = M+,
Remark. A subspace M of a Hilbert space H is closed if and only if M = M*L.

Theorem. Show that if Mand N are closed subspaces of a Hilbert space H such that M L N. Then
M + N is closed subspace of H.

Proof. We know that if M and N are any subspaces, Then M+N is always a subspace . To show
that M+N is aclosed subspace of H, let z be a limit point of M+N, then there is a sequence {z,} in
M+N such that

z = lim z,
n-c0
Now
Zy = Xp + Y, Xn EM,y, €N.
We show that {x,,} and {y,} are Cauchy’s sequences in M and N respectively.
Since by Pythagorean theorem,
2 = znl1? = ll2tm + Y — X0 — nll?
= |lxn = Xn + Yim — Ynll?
= xm = %112 + llym — yull?

and since z, is a Cauchy sequence, so also are {x,}, {y,}. Also as closed subspaces of H, both M and
N are complete . So
limx, =x €M

n—o
lim y, =y €N

Hence z=lim,,x 2z, =lim,o(x,+y) =x+y

Thusz € M + N. Thatis, M + N is closed.

Theorem. Let M be a closed linear subspace of a Hilbert space H. Then M n M+ = {0}.

Proof. Since we know that if M is a subset of a Hilbert space H. Then

MAM-c€{0}.......... 1)

Given that M is closed linear subspace of H and we also know that M+ is closed linear subspace of
H.Letx € M n M*implies x € M and x € M* and so (x, x) = 0.

ie, [Ix]|?=0
>x=0=>0€M and0EMt=>0eMnML
>{0leMnM*t........... V)

Combining (1) and (2)

MMt = {0}

Projection Theorem.
Let M be any closed subspace of a Hilbert space H. Then
H=M@M*.
Proof. Suppose M + M* is proper subspaceof H then there is a non-zero vector z € H such that
zlM+MY)ieze M+ ML

Now M € (M + M%) implies (M + MY)* c M.
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Also we know Mt © (M + M*1) implies (M + M1)t c ML,

Thusz € (M + MY+ € M+ n M1t = {0} = z = 0, a contradiction .
Hence M + M* is the whole of H.i.e. H = M + M* since M n M+ = {0}.
Thus

H=M@® M*.

9.2 Convex Sets in Hilbert Spaces

Before defining the convex sets in Hilbert spaces we first recall the following.

In a metric space X, the distance § from an element x € X to a nonempty subset M c X is defined to
be

& =Infyeyd(x,y").
In a normed space this becomes

6 =Infyeyllx =yl

The line segment joining two given elements x and y of a space X is defined to be the set of all
z € X of the form: z = tx + (1 — t)y for every real number t such that0 <t < 1.

Definition. A subset M of X is said to be convex if for every x,y € M, the line segment joining x
and y is contained in M,

ie,z=tx+ (1 —t)y €M forevery t,where0 <t <1.
Every subspace Y of X is convex, and the intersection of convex sets is a convex set.
We shall use the notion of convexity in the following theorem.
Theorem. (Minimizing vector) Let M be a non empty complete convex subset of an inner product
space X and x € X\M. Then there is a unique y € M such that
llx = yll = Infyrepy llx—y'll

That is, there is a unique y € M which is closest to x.

Proof. Let d = Inf ey llx — y'l
Then by definition of infimum , there is sequence {y,} in M such that
d = lim|lx — y,ll
n—-oo
We show that {y, } is a Cauchy sequence in M.
Now by Parallelogram law, we have
llx’ = y' 112 = 2012112+ 2[ly" 12 = llx" + ¥ 112........... 1)
Replacing x’ by y,,, — x and y’ by y, — x, we have
1y = yall® = 2llym = xl1? + 2llyn = xII? = lym + yn — 2x |2
2
= 20y — I + 2l = 22 = 4 |5 O+ V) = x| oo @)
Since M is convex, % Ym + Yn) € M, so we have from (2)
1ym = yull? < 2llym — xI1? + 2ly, — x|I* — 4d?
—»0asmn— o

As |lym = x|l = d, lym — yll = 0. Hence {y,} is a Cauchy sequence in M. Since M is complete,
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Yp =Y EM.So

d = limn—»oo”x - yn”

= [ = timon|
= |lx — y|| withy € M.
Next we prove the uniqueness of y. Suppose there is another y, € M, such that
d = |lx = yoll

Then again, Using the parallelogram law as given in (1) and replacing x’ by y — x and y' by y, — x,
we have :

ly = voll® = 2lly — xlI* + 2llyo — xII> = lly + yo — 2x ||?
=llx=yl* = Infyrey llx = y'll
Since M is convex and % (v + y0) € M, we have
ly = yoll? < 4d? — 4d?
<0

But
ly = yoll = 0.

Hence ||y — yoll = 0, thatis y = y,.

This proves the uniqueness of y.

9.3 The Conjugate Space of a Hilbert Space H

Let H be a Hilbert space . Then a scalar valued fubction f: H — C is called a functional on H, if f is
linear and bounded (continuous). Set of all such functionals is denoted by B(H, () or simply H*
and H* is called conjugate space of a Hilbert space H.

Soif f € H* implies f: H — C is a functional .
(OR)

Let H be a Hilbert space . By H*, we denote the conjugate space of H (i.e. the set of all continuous
linear transformations of H into C). The elements of H*are called continuous linear functionals or
briefly functional.

One of the fundamental properties of a Hilbert space H is the fact that there is a natural
correspondence between the vectors in H and functional in H*.

Theorem. Let y be a fixed vector in a Hilbert space H and let f, be a function defined as
f,(x) = (x,y) for every x € H. Then f, is a functional on H and ||ly|l = ||£; ||-
Proof. We prove that f, is linear and continuous so that it is a functional .
To prove f,, is linear , let x1, x, € H and «, § be any two scalars. Then for any fixed y € H,
fylaxy + Bx;) = (ax; + Bx,,y)
= alxy,y) + Bxz, y)
= afy(x) + B, (xz).
This shows that f, is linear . To prove that f, is continuous, for any x € H

|1, (] = I(x, )]

< lxlllyll.....cenne. )
( by Schwarz inequality)
Suppose [lyll < M. Then for M > 0,

£, < Mlixll.
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Hence f,, is bounded and hence it is continuous.

Now if y = 0, |lyll = 0 and from the definition f, = 0 so that ||fy|| < |ly|l in this case.
Lety # 0.

From (1), we get

)
sup% <yl

Hence using the definition of the norm of a functional, we get

A0 < Iyl )
Further,
15,1l = sup{lf, GOl: llxll < 13. ... 3)
Since
y#0, (ﬁ) is a unit vector .From (3), we get
y
Al = |8 ()] @)
But

5 (on) = or??

1

=m(y,y>

= llyll.
Using this in (4), we get

7 = 15— )
Combining (2) and (5), we get

151 = liyll.

Thus we have proved that T: H — H* is such that T(y) = f,
is a norm preserving mappings.

Theorem. Show that the mapping ¢: H » H* defined by ¢(y) = f, where f,(x) = (x,y) for every
X € H is an additive, one to one onto isometry but not linear.

Proof. First, we prove that ¢ is additive. For this we have to show that

d(y1+y2) = d(y1) + o () fory,,y, € H.

Now we have

¢()’1 + yZ) = fy1+y2-

Hence for every x € H, we get

Fyi4y, () = (x,y1 + ¥2)
= <ny1) + <ny2>
= f, () + f5,(x)

= (fy1 + fyz)(x)-
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Hence,
forty, = b+ hye
Which implies,
¢(1 +y2) = ¢(y1) + ¢(¥2).
This shows that ¢ is additive.
Now we show ¢ is one -one . Let y;,y, € H. Then
¢(y1) = fy, and
¢(y2) = fy,, then
¢(y1) = ¢(y2), implies
fy, = fy,, which gives
[, ) =f,x)VxeEH........... (1)
fy,(x) = (x,y1) and
fy,(x) = (x,¥,), so we get from (1)
(x,y1) = (x,¥2)
ie, (x,y1 —y,)=0Vx€H......... (2)
Now choose x = y; — ¥,, then (2) gives (y; — ¥5,¥1 — ¥2) = lly1 — ¥l = 0.
Which implies y; = y,.
Therefore ¢ is one- one .

Now to prove ¢ is onto, let f € H*, then by Riesz representation theorem, there exists y € H such
that

f&x) =(xy)

Since f(x) = (x,y ), we get f = f, so that ¢(y) = f, = f. Hence for f € H*, there exists a pre image
v in H. There fore ¢ is onto.

To prove that ¢ is an isometry, let y;,y, € H. Then

lpGn) = ¢l = (|5, = f.l

=I5, + femll
But [|fy, + £y, || = | iy = lyr = y2ll -
Hence [[¢(y1) — ¢ 2)ll = lly1 = y2ll.
Finally, we prove that ¢ is not linear, for this let y € H and a be any scalar. Then
d(ay) = fo-

Hence for any x € H, we get fg, (x) = (x, ay)

=axy)

=afy, (x).
Which gives, f,,, = af,.
So that,

¢(ay) =agp(y)
This shows that the mapping is not linear. Such a mapping is called conjugate linear. Thus ¢
is conjugate linear.
Theorem. If H is a Hilbert space , then H* is also Hilbert space with the inner product defined by
fofy) =, x)Vx,y€H........... 1)
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Proof. Since H is a Hilbert space, so H is also a Banach space . We know that conjugate of a Banach
space is also a Banach space . Therefore H* is also a Banach space.

To show H* is a Hilbert space, it is sufficient to show that H* is inner product space with respect to
the inner product defined by

(fo.fy) =, x)Vx,y € H.

Letx,y € H and «a, f be complex scalars , we have

L {fufo) = (xx)

= |lx|I?

= |
So that
{for fx) = 0and |If;|l = 0 if and only if £, = 0.

2. foh)=x)

= (%)
= {fy: f)-
3. Inthe above theorem, we have shown that then f,, = af,.
Hence
fay =1 fy = afy.
Now
(afe +Bfy2) = (fax + fpyp fo) oo ?
But,
(fax + fg, f) = (@ @x+By) by (1)
Now,

(z,ax + By) = a(z,x) + E(Z. y)
= alf, f2) + By fa) e 3)
From (2) and (3), we have
(afy + Bfy 2) = alfe, f2) + By, f2)-
Which Completes the proof.

Summary

e If M is any subset of a Hilbert space H, then the orthogonal complement of M denoted by
M*, is defined as
Mt={x€eH:{(x,y)=0VyeM}
={x€eH:x 1M}
o MUt=MYH'={xeH:{(x,y)=0, Vye M}
={xeHx LMY}
o« {0} =H
s HY={0}
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e If My, M, be subsets of a Hilbert space H, then we have
v’ M; € M{*, that is any subset of H is contained in its double orthogonal
complement .
If M; € M,, then M5 S M.
(My UMt =Mt nMy and (M; N My)* 2 MU M3
ME = MpL

M, n ME < {0}.

AENENEN

v' Mg is aclosed subspace of H.
e If M is aclosed linear subspace of a Hilbert space H, then M n M+ = {0}.
e If M be a complete subspace of an inner product space X. Then there is a non zero vector
z € X such that
z1lM
e If M beaproper complete subspace of an inner product space X. Then
X =MoM*

e If M be a closed subspace of a Hilbert space H. Then
H=MOM*".

e  For any complete subspace M of an inner product X,
M =ML,
e If Mand N are closed subspaces of a Hilbert space H such that M L N. Then M + N is closed
subspace of H.
e Let M be a closed linear subspace of a Hilbert space H. Then M n M+ = {0}.
e LetM be any closed subspace of a Hilbert space H. Then
H = M @ M*( Projection Theorem)
e The line segment joining two given elements x and y of a space X is defined to be the set
of all z € X of the form: z = tx + (1 — t)y for every real number t such that0 <t < 1.
e A subset M of X is said to be convex if for every x,y € M, the line segment joining x and y

is contained in M,

ie,z=tx+ (1—t)y €M forevery t,where0 <t <1.

e Every subspace Y of X is convex, and the intersection of convex sets is a convex set.
e If M be a non empty complete convex subset of an inner product
space X and x € X\M. Then there is a unique y € M such that
llx =yl = Infyrepy llx—y'll
That is, there is a unique y € M which is closest to x.

e Let H be a Hilbert space. By H*, we denote the conjugate space of H (i.e. the set of all
continuous linear transformations of H into C). The elements of H*are called continuous
linear functionals or briefly functional.

e Lety be a fixed vector in a Hilbert space H and let f,, be a function defined as
f,(x) = (x,y) for every x € H. Then f, is a functional on H and ||yl = ||£; |-

e The mapping ¢: H —» H* defined by ¢(y) = f, where f,(x) = (x,y) for every x € His an
additive, one to one onto isometry but not linear.

e If H is a Hilbert space , then H" is also Hilbert space with the inner product defined by

(fofy)=@0)VryeH
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Keywords

e  Orthogonal complement
e  Direct sum

e Convex set

e Conjugate space

e  Closed subspace

e  Hilbert space

e Inner product space

e  Projection theorem

Self Assessment

1: Let H be a Hilbert space and M be a subspace of H. Then
which of the following is false?

A. M* is a subspace of H.

B. Mt isa closed subspace of H.
C. MnMt ={0}.

D. MnMt=¢

2: The distance between any two orthonormal vectors in an inner product space is:
Al

B. V2

C 2

D. V5

3: Let X be an inner product space. Then the orthogonal complement of {0} is:
A X

B. {0}

C. x{0}

D. x*

4: What is a convex set in a Hilbert space?

A. A set that contains only a single point.

B. A set where every line segment between two points in the set lies entirely within the set.
C. A set of orthogonal vectors.

D. A set that is closed under addition but not under scalar multiplication.

5: Every perfectly convex set is:
A. Closed

B. Open

C. Half open

D.

Convex

6: A convex set in a Banach space need not be:
A. Hausdorff

Convex

Perfectly convex

Closed

O N
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7: What is the orthogonal complement of a subspace?

A.

B.
C.
D.

[0}

>

= N ®W»2E UONW» 9 O

N w e

) onNn >

onNn <>

>

0:

3:

. It only contains real numbers.

The subspace itself.
The zero vector.
The set of all vectors orthogonal to the subspace.

None of the above.

: In an inner product space, which of the following statement is true regarding the direct sum of

two subspaces U and V, denoted as U @ V?

. U@ VisalwaysequaltoU + V.

Every vector in U € V can be uniquely expressed as the sum of a vector from U and a vector
from V.

U @ V contain only the zero vector.

. None of the above

Which property is satisfied by the intersection of any number of convex sets in a Hilbert space?

. The intersection is always a convex set.

The intersection is always a non -convex set.

. The intersection is always a singleton set.

. The intersection is always empty.

Let M;, M, be subsets of a Hilbert space H, then which of the following is true.

(My N My)* 2 M{- u M3,

1 111
M} = ML

. All the above.

: A subspace M of a Hilbert space H is closed if and only if:

M = M+t
M = M-*.
M c Mt

. All the above.

:If M be any closed subspace of a Hilbert space H. Then Which of the following is true?

. H=Mn ML,

H=M®M*.

. Both (A) and (B) are true.

. None of the above.

Which of the following statement is true about conjugate space of a Hilbert Space?

It is always a finite-dimensional vector space.

. It consists of continuous linear functionals on the Hilbert space.

. None of the above.

:If Mand N are closed subspaces of a Hilbert space H such that M L N, the which of the following

is true?

. M + N is closed subspace of H.

M+N is a subspace of H.
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C.
D.

o0 w e

=

9N = >

17:

9N < >

6:

Both (A) and (B) are true.

None of the above.

: Let My, M, be subsets of a Hilbert space H, then which of the following is true?

M,; © Mj+, that is any subset of H is contained in its double orthogonal complement .
If M1 c Mz, then M% c Mf'
Both (A) and (B).

. None of the above.

If My, M, be subsets of a Hilbert space H, then which of the following is true?

. My n M < {0}.

Mi is aclosed subspace of H.
M, n M} = {0}.

. All the above.

The mapping ¢: H —» H* defined by ¢(y) = f,, where f,(x) = (x,y) for every x € H s:

. An additive mapping.

One to one

Not linear.

. All the above.

Answers for Self Assessment

D 2 B 3 A 4 B 5 D
C 7 C 8 B 9 A 10 D
A 12 B 13 C 14 C 15 C
D 17 D

Review Questions

Define the orthogonal complement of a subset S in an inner product space.
Define a convex set in a Hilbert space.
Provide an example of a convex set that is not a closed set.

State the Projection Theorem for a Hilbert space.

A

What is meant by the “ conjugate ” or “dual” of a Hilbert space ? How is the dual space

constructed from the original Hilbert space?

o

Prove that If M is a closed linear subspace of a Hilbert space H, then M n M+ = {0}.
Prove that If Mand N are closed subspaces of a Hilbert space H such that M L N. Then
M + N is closed subspace of H.
8. Let My, M, be subsets of a Hilbert space H, then prove the following.
L M, € Mi*, that is any subset of H is contained in its double orthogonal
complement .
I.  If My © M,, then M3 € M.
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M. (M, UMt =MinME and (M, N M,)E 2 ME U M2

Iv.  Mf=MmHh

V. M, nM;ic {0}
9.  Prove that If M be a subset of a Hilbert space H, then M* is a closed subspace of H.
10. Show that the mapping ¢: H — H* defined by ¢(y) = f, where f,(x) = (x,y) for every

x € H is an additive, one to one onto isometry but not linear.

m Further Readings

1. Introductory Functional Analysis With Applications By Erwin Kreyszig.
2. Functional Analysis By Walter Ruddin, Mcgraw Hill Education.

3. J. B Conway, A Course In Functional Analysis.

4. C.Goffman G Pedrick, A First Course In Functional Analysis.

5

B.V. Limaya, Functional Analysis.
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Unit 10: Riesz Representation Theorem and Operators on Hilbert
Spaces

CONTENTS

Objectives
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10.1 Riesz Representation Theorem
10.2  Hilbert Adjoint Operator

10.3  Self Adjoint Operators

104 Positive Operator

10.5 Normal Operators

10.6  Unitary and Isometric Operators
Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to understand:

e Riesz representation theorem
e  Hilbert adjoint operator

e  Self adjoint operator

e  Positive operator

e  Normal operator

e  Unitary operator

e  Isometric operator

Introduction

In this chapter, we discuss about Riesz representation theorem. Further, we shall introduce the
operators on a Hilbert space like Hilbert adjoint operator, Self adjoint operator, positive operator,
normal operator, unitary operator and isometric operators.

10.1 Riesz Representation Theorem

Let H be a Hilbert space and let f be any arbitrary functional in H*, then there exists a unique
vector y in H such that f(x) = (x,y) for every x € H and ||f]| = [[yIl.

Proof. Let M be the null space (kernel) of f, that is
M ={x € H: f(x) = 0}
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Since f is continuous as f is functional, so by the continuity of f, the null space M of f is closed
subspace of H, as we know that the null space of a non-zero continuous linear operator is a closed
subspace .

If M = H, the f(x) = 0 as by definition of M.
= (x,0) forall x € H.

If M # H, then M is a proper closed subspace of H and so there exists a non-zero vector y, € H
which is orthogonal to M i,e. y, L M.

So y, is not in M, thus f(y,) # 0.

f(x)
fo)

For any vector x € H, the vector z = x — Yo isin M,

_ _f®
Because f(z) = f (x o0 .yo)

= £~ L2 ()

=0

Also since yy L M,sothaty, L zasz€ M
=(2,y0) =0

f(x)
(- .Y, Vo) =0

Fop) 7

= (x, yo) — (%YO ,Yo) =0

= (x, yo) — % (Yo,¥0) =0
16 B
=>f(y0)(yo,yo)——(x.yo>
_ fOo)
= f(x) - (yo‘y(]) (xr yO)
= () = (5, L0 y) = (2, L0y
Lety = %yo , then we have

f(x) =(x,y)forallx EH .

To complete the proof, it remains to show that y is unique.
For if suppose f(x) = (x,y’) for all x, then

(xy) = (xy")

=6y —(xy)=0

= (x,y—y')=0forallx € H.

In particular x = y — y’, we get:

Y=y,y—y"
=lly-y1l?=0
>y-y' =0
>y=y'

Hence y is unique .
Next we show that ||f|| = |lyll, we have

&) =(x,y)
So [f ()| = [{x, )l
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< |Ixllll¥ll ( By Schwarz inequality)

And thus it follows that

£l < llyll (taking Supjyj=1 over both sides)
Also

Iyll? =y =fO)

< IfI
< I vl
= llyll < lIfNl

Combining both the equations, we get

A= 1yl

10.2 Hilbert Adjoint Operator

Let T: H; —» H, be a bounded linear operator, where H; and H, are Hilbert spaces. Then the Hilbert
adjoint operator T* of T is the operator

T*: HZ 4 Hl
Such that for all x € H; and y € H,,

(Tx,y) = (x,T"y).
We first show that this definition makes sense, that is we prove that for a given T such a T* does
exists.

Theorem. Show that the Hilbert adjoint operator T* of T exists , is unique and is bounded linear
operator with norm

71 = N1l
Before proving this theorem, we first give the another statement of Riesz representation.
Theorem. Let Hy, H, be Hilbert spaces and
h:Hy x Hy > K
a bounded sesquilinear form. Then h has a representation
h(x,y) = (Sx,y)
Where S: H; - H, is a bounded linear operator. S is uniquely determined by h and has the norm

IS1F = 1IRlI.

Proof of the Main Theorem
The formula
h(y,x) =, Tx).......... 1)

defines a sesquilinear form on H, X H; because the inner product is sesquilinear and T is linear. In
fact, conjugate linearity of the form is seen from

h(y, ax; + Bxz) = (v, T(ax; + Bx;))

=(y,aTxy + BTx,)
= &y, Txy) + B(y, Txy)
= ah(y,x1) + Bh(y, x2)
h is bounded , by the Schwarz inequality
Ih(y,x)| = [y, Tx)|
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< lly Tl
< Ty 1T
This implies,
IRl < (IT1].
Moreover, we have

IRl = {ITI.

I, T)  [Tx,Tx) |
Iyl = 1Tl

llAll = sup
xX#0
y#0

= 71l
Combing the both equations, we get

IRl =NITII.
The above theorem gives a Riesz representation for h; writing T* for S, we have
h(x,y) =(T*y,x), cccccv, )

and we know from the above theorem that T*:H, — H; is a uniquely determined bounded linear
operator with norm

1T = llAll = IITI|
Also,

{y,Tx) = (T"y, x) by comparing (1) and (2), so that we have (Tx,y) = (x, T*y) by taking conjugates,
and we now see T* is the required operator.

For studying the properties of Hilbert adjoint opeartors , it will be convenient to make use of
following lemma.

Lemma. (Zero operator) . Let X and Y be inner product spaces and Q: X — Y a bounded linear
operator . Then:

(@) Q =0ifand only if(Qx,y) =0forallx e Xandy €Y.

(b) If Q:X — X, where X is complex, and (Qx,x ) = 0 for all x € X, then Q = 0.
Proof. (a) Q = 0 means Qx = 0 for all x,

= (Qx,y) =(0,y) = 0{w,y) = 0.

Conversely suppose that (Qx,y) = 0 for all x and y,
= Qx = 0 for all x.
So that, Q = 0 by definition.
(b) By assumption {Qv,v) = 0 forevery v =ax +y € X,
that is,

0=(Q(ax +y),ax +y)

= lal*(Qx, x) +(Qy,y) + a{Qx,y ) + @(Qy, x).
The first two terms on the right are zero by assumption. & = 1 gives

(Qx,y ) +(Qy,x) = 0.
a=igivesa = —iand

(Qx,y) —{(Qy,x) = 0.
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By addition,
(Qx,y ) = 0 and Q = 0 follows from (a).

ETNote: In part (b) of this lemma, it is essential that X be complex. Indeed , the conclusion may
not hold if X is real . A counterexample is a rotation Q of the plane R? through a right angle. Q is
linear, and Qx L x, hence (Qx,x ) = 0 for all x € R%, but Q # 0.

We now prove some general properties of Hilbert- adjoint operators which one uses quite
frequently in applying these operators.

Properties of Hilbert- adjoint Operators

Theorem. Show that the adjoint operator preserves addition, reverses the product and it is
conjugate linear. That is if T — T* is the adjoint operator on §(H), then

@) (Ti+T) =T +T;
(ii) (I T)" =TTy
(iii) (an)*=aT*

Proof. For every x,y € H, we have

(x, (Ty + T)"y) = ((Ty + T, y) .

But
((Ty + T)x,y) = (Tyx + Tox,y)
= (T1x,y) + (T2x, y)
=T y) +(x,T5 y)
=Ty +T5y)
Hence,

(x, (Ty + T)"y) = (x, (T7 +T3)y).

From the uniqueness of the adjoint, we get
(Ty+T) =Ty +T,.
(ii) For every x,y € H, we have (x, (T1T;)"y) = ((T1T2)x,y)
= (T1(Tyx),y).
But
(Ty(T2x),y) = (T2 (x0), T y) = (x, T3 T1y)
From the above two, we get

(x, (T1T2)*y ) = (x,(T;T])y) forally € H.

Therefore from uniqueness of adjoint

(T1Tp)" = T3 Ty
(iii) For every x,y € H, we have
(x, (@T)"y) = ((aT)x,y) = a(Tx, y).
But a(Tx,y) = alx, T*y)
= (x,a (T"y)).

Therefore , by the uniqueness of the adjoint, we have

(al)*=aT*.
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Theorem. Let H be a Hilbert space. Then the adjoint operator T — T* on S(H) ( set of all bounded
linear transformations on H into H) has the following properties:

) T =T
(i) =1 =17l
(iii) IT*T|l = ITII*

Proof. For every x,y € H, we get
(x,Ty) = (x, (T")y
=(T"x,y)
But
(T*x,y) = (y,T"x)
=(Ty,x)
= (x, Ty).

From the above two, we get

(x, T*y) = (x,Ty).
Which proves that

T** =T by the uniqueness of inverse.

(ii) For any vector y € H, we have
1Tyl < TNyl
Hence we get

Il
< ITl.

SUP y=o T =

Using the definition of norm of the operator T*, we get

[Ir=f<ri........... 1)

Now applying (i) to the operator T*, we get
T I < Tl
or
Hr=u<nr.......... )
But by (i), we have
T =T........... 3)

Using (3) in (2), we get

Il <nr........... 4)
From (1) and (4), we get

71 =T~

(iii) To prove [IT*T|l = |IT|I?,
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Let us consider,
T\ < IT*NTl............. (5)

By (ii) above, |IT*|| = |IT|| so that we get from (5)
IT*Tll < ITI>............ (6)
To obtain reverse inequality, let us consider
[ITx||? < (Tx, Tx)
=(T*Tx, X). v cve e (7)
By using Schwarz inequality ,we have
(T*Tx, x) < [IT"Tx|ll|x||
< T*TI Nxlllx]l........... 8)
From (7) and (8) we get
ITx]I2 < IT*T|l lIx||? for every x € H. .......... )
But

x=o0 [ Il

2
— {IIT(x)II}

oy (1T
=sup {0} (10)

x#0
From (9), we get
TN < IT*TI........... (11)

Therefore, we have from (6) and (11),

7Tl = ITII?
Taking T* instead of T, we get as in the above

N |l = T 1I%.

Using (i) and (ii) in the above , we get

ITT*Il = Tl

ENote: From the properties of T* as discussed above , we have the following corollary.

Corollary. If {T},} is a sequence of bounded linear operators on a Hilbert space H and T, = T, then
Ty =T

We have from the properties of T*
1T =Tl = I(Tn = T)*ll = I, = Tl

Since T, » T asn — o, T,y - T* follows from the above.

ENote: The adjoint operator on S(H) is one to one and onto. If T is non singular operator on H,
then T* is also non-singular and (T*)™! = (T~1)*.

10.3 Self Adjoint Operators

The motivation for the introduction of the self adjoint operators is the properties of complex
numbers with conjugate mapping z — Z. This mapping z — Z of the complex plane into itself
behaves like the adjoint operators .This operation z — Z has all the properties of the adjoint
operators. As we know that complex number is real if and only if z=Zz. Analogue of this
characterisation in f(H) leads to the notion of self adjoint operators in Hilbert spaces.
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Definition. An operator T on a Hilbert space H is said to be self adjoint operator if T* = T. From
this definition we have the following simple operators.

(i) 0 and I are examples of self adjoint operators.
(ii) An operator T on H is self adjoint operator , then (Tx,y) = (x, Ty) for every x,y € H

and conversely.
If T*is an adjoint opearator of T on H, then we know from the definition

(Tx,y) = (x,T*y) forallx,y € H.

If T is self adjoint then T* = T, using this in above we get,

(Tx,y) = (x,Ty) for every x,y € H.
To prove the converse, let us assume (Tx,y) = (x,Ty) forallx,y € H............ o))
We have to show that T is self adjoint . If T* is the adjoint of T, then we have
(Tx,y)=(, T*Y)........ )
From (1) and (2), we have

(x, Ty) = (x,T"y)
Which gives,
(x,(T—T*)y)=0forallx,y e H
Since x # 0, we have (T — T*)y = 0 forall x,y € H, we have
T=T"

Proving that T is self adjoint.

(iii) Forany T € B(H), T + T* and T"T are self adjoint.

By the propert of Hilbert adjoint operators, we have

(T+T*=T*+T*=T"+T =T+ T* so that we have

(T+T*=T+T?
also

(T*T)* = T*T** =TT, so that

(T*T)" =T"T.
Hence T + T* and T"T are self adjoint.

Theorem. If S and T are self adjoint opeartors on a Hilbert space H, then their product ST is self
adjoint if and only if they commute. That is ST = TS.

Proof. Given S and T are self adjoint opeartors on a Hilbert space H. Then §* = §,T* =T.

Let us assume that S and T commute, we will prove that ST is self adjoint.

Now,

(ST)* =T*S*
=TS
=ST

implies that
(ST) =ST

Conversely, let us assume that ST is self adjoint and we will show that ST commute.
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By hypothesis , we have
(ST)*=ST........... 1)
But
(ST)* =T*S* =TS, .c......... @)
( by properties of adjoint operators)
From (1) and (2), we have
ST =TS.
Or in other words we can say that if ST is self adjoint , then they commute.

Theorem. An operator T on a complex Hilbert space H is self adjoint if and only if (T, x) is real for
all x.

Proof. Let us assume that T is self adjoint operator on H.
i.e, T = T", then for every x € H, we have

(Tx,x) = (x,T*x)
= (x,Tx)

=(Tx,x) .
Thus (Tx, x) is equal to its own conjugate and is therefore real.

To prove the converse part, let us assume that (Tx, x) is real for all x € H and we will show that T is
self adjoint. Since (Tx, x) is real for all x € H, we have

(Tx,x) = (Tx,x)
= (x,T*x)

= (T"x,x)
Where T* is the adjoint of T which exists for every x € H, from the above we get
(Tx,x) —(T*x,x) =0forallx € H.
This gives (Tx — T"x,x) forall x € H.
Hence, we have
((T—T*x,x)=0forall x € H.

As we know that, if T is an operator on a Hilbert space H, then (Tx,x) = 0 for all x € H if and only if
T =0.

Thus, we have
or,

T=T"

Therefore the operator T is self adjoint.

10.4 Positive Operator

As we have seen in previous section that (Tx, x) is real for self adjoint operators, we can introduce
the order relation among them and define positive operators by considering the real values which
the self adjoint operators take.

Definition. If S is the set of all self-adjoint operators, we can define an order relation denoted by <
on S as follows.
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If Ty, T, € S, then we write
T, < T, if (Tyx, x) < (T,x,x) for all x € H.

Definition. A self adjoint operator T on H is said to be positive if T = 0 in the order relation. This
means (Tx,x) >0V x € H.

From the definition, we have the following properties:
(i) The identity operator I and the zero operator 0 are positive operators.

As we know that the identity operator I and the zero operator 0 are self adjoint .

Further,
(Ix, x) = (x, x)
= |lx]I?
> 0.
Also,
(0x,x) = (0,x)
=0.

Hence I and 0 are positive operators.
(ii) For an arbitrary T on H, then TT* and T* T are positive operators.
First we note that TT* and T* T are self-adjoint. Bu using properties of adjoint operators, we get

(TT* )* — (T* )*T*
— T**T*

=TT*
Also,
(T* T)* = T* (T* )*

— T* T**
=TT
Now we prove that they are positive,

ie (TT*x,x) =(T*x,T* x)

= |IT"x|?

> 0.
And
(T*Tx,x) =(Tx, T x)

= (Tx,Tx)
= ||Tx|I?

= 0.
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Hence TT* and T*T are positive operators.
E‘Note: If T is a positive operator on a Hilbert space H, then I + T is non -singular.

IENote: If two bounded self-adjoint linear operators S and T on a Hilbert space H are positive
and commute , then their product ST is positive.

10.5 Normal Operators

Definition. Let H be a Hilbert space and let N € §(H) and N* be the adjoint of N. Then N is said to
be normal operator if,

NN* = N*N.
Thatis N is said to be normal if it commutes with its adjoint.
From the definition of normal operator, we get the following properties.
(@) Every self adjoint operator is normal.
As since T is self adjoint, we have T* = T.

Hence,

TT* =TT is true so that T is normal operator.

|g'Note: A normal operator need not be self adjoint.

E‘Note: The limit N of any convergent sequence {Ny} of any normal operator is normal.

Theorem. If N; and N, are normal operators on a Hilbert space H with property that either
commutes with the adjoint of the other then:

(i) N; + N, is normal .
(ii) Nj. N, is normal .

Proof. Since N; and N, are normal, we get

and
So,

and

To prove (i), we have to show that
(Ny + N)(Ny + Ny)* = (Ny 4+ No)*(Ny + Ny )
Using the fact that adjoint operators preserves addition, we get
(Ny + N)(Ny + No)* = (Nq + No)(Ny + N3).
= NiN{ + Ny{N; + NpNi + NaNj. e (6)
By using (1) (2) (3) and (4) in (6),we get
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= N{N; + N;N; + NfN, + N3N,
= N;(Ny + N;) + N7 (Ny + N;)
= (N; + N2)(Ny +Np)
= (N + N2)*(Ny + Ny)

Hence,

(N1 + Np)(Ny + Np)* = (Ny + N)*(Ny + Np).
Therefore N; + N, is normal.
Now to prove (ii), we have to prove
(NyNo)(NyN3)* = (NyN;)* (N, N3)
Now we have

(N1Nz)(N1N2)* = N1N2N2*Nf

= N;(N,NZ)N5.
But,

Ni(N2N2)Ni = Ny(NzNz)Ny
= (N1Nz)(N2Np)

= (N7 Np)(NTNy).
But,
(N3N;)(N{N;) = N3 (N, N{)N,

= (N2 N{)(N1N2)

= (NyN2)" (N No).
Thus,
(N1Nz)(N1N2)* = (N1N2)*(N1N2)-
So that,

NN, is Normal.

ENote: An operator N on a Hilbert space H is normal if and only if
[IN*x|| = lINx]|| for every x € H.

gNote: If N is a normal operator on H, then
INZ]l = IINTI%.

10.6 Unitary and Isometric Operators

A special type of normal operators which are of considerable interest in applied mathematics is
that of unitary operators.
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Definition. An operator U on a Hilbert space H is said to be unitary if

uu*=U0'U=1.

From the definition of unitary operator, we note down the following
(i) If U is unitary, then it is normal ,
@) Ur = UL,

Before characterizing an unitary operator on a Hilbert space, we first define isometric operator
on H.

Definition. An operator T on H is said to be isometric if
ITx =Tyl = llx —yllVx,y € H

Since T is linear , the condition is equivalent to ||Tx|| = |[x|| V x,y € H .

'F_-'= :Example: Let {e4, 5, ... } be an orthonormal basis for a separable Hilbert space
Hand T € B(H) be defined as

T(xie1 + xye5 + ) = x1€1 + X5€5 + - where x = {x,,}
Then

o
ITxl? = ) bl = 11211
n=1

so T is an isometric operator. The operator T defined is called the right shift operator given by

Te, = epy1.

%‘Note: If T is an operator on a Hilbert space H, then the following conditions are equivalent to
one another .

i) T*T =1
(i) (Tx, Ty) = (x,y)¥V x,y € H.
(iii) ITx]| = |Ix]| ¥V x € H.

Theorem. An operator T on a Hilbert space H is unitary if and only if it is an isomorphism of H
onto itself.

Proof. Let T be an unitary operator on H. Then from the definition of the unitary operator, it is
invertible. Therefore it is onto . Further,

TT =1

Hence,

ITxl = llxI| ¥ x € H
This proves that T is an isometric isomorphism of H onto itself.
Now to prove the converse let us assume that T is an isometric isomorphism of H onto itself.
Then T is one-one and onto . Therefore T~! exists. From our assumption

[ITxll = lIxllVx€H. .......... 1)

By the above note we have T*T = 1.
Hence,

(T*T)T~! =1IT1,
Which gives,

T*(TT"1)=T"1!
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so that
T =T,
Thus
T*=T"1
Premultiplying this by T we have
TT* =TT
So that,
TT* =1
Now postmultiplying by T, we have
T*T=T71T
T'T =1

Hence T*T =TT* = 1.

Which proves that T is unitary.

ﬁNote: If T is an unitary operator on H, then ||Tx|| = 1.
For an unitary operator, we have

Tl = llxIl,
So that,

IT1l = sup =1 ITx|l = supjje=1 llxIl = 1.

|g‘Note: The range U(H) of a unitary operator U is a closed subspace of H.

Summary

o If His a Hilbert space and f be any arbitrary functional in H*, then there exists a
unique vector y in H such that f(x) = (x,y) for every x € H and ||f]| = llyll.
e If T:H; - H, be a bounded linear operator, where H; and H, are Hilbert spaces. Then the
Hilbert adjoint operator T* of T is the operator
T*:H, > H,
Such that for all x € H; and y € H,,
(Tx,y) = {x,T"y).

e The Hilbert adjoint operator T* of T exists, is unique and is bounded linear operator
with norm
711 = 1ITI.
e If X andY be inner product spaces and Q: X — Y a bounded linear operator . Then:
(i) @ =0ifand only if (Qx,y) =Oforallx EXand y €Y.
(i) If Q: X = X, where X is complex, and {Qx,x ) = 0 for all x € X, then Q = 0.
e  The adjoint operator preserves addition, reverses the product and it is conjugate
linear. That is if T — T* is the adjoint operator on §(H), then
a. (i+T) =T, +T;
b. (T\Tp)" =T;T7
c. (aT)=arT".
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¢ Let H be a Hilbert space. Then the adjoint operator T — T* on f(H) has the following

properties:
a. T =T
b. T =TI

e NT*Tl =TI

o If {T,,} is a sequence of bounded linear operators on a Hilbert space H and T;, = T,
thenT,; - T".

¢  The adjoint operator on S (H) is one to one and onto. If T is non singular operator on
H, then T* is also non-singular and (T*)~! = (T~H~.

e Anoperator T on a Hilbert space H is said to be self adjoint operator if T* = T.

e 0and/ are examples of self adjoint operators.

. If an operator T on H is self adjoint operator , then (Tx, y) = (x, Ty) for every x,y € H
and conversely.

e If Sand T are self adjoint opeartors on a Hilbert space H, then their product ST is self
adjoint if and only if they commute. That is ST = TS.

e Anoperator T on a complex Hilbert space H is self adjoint if and only if (Tx, x) is real
for all x.

e Aself adjoint operator T on H is said to be positive if T = 0 in the order relation. This
means (Tx,x) >0V x € H.

e  The identity operator I and the zero operator 0 are positive operators.

e For anarbitrary T on H, then TT* and T* T are positive operators.

e If T is a positive operator on a Hilbert space H, then I + T is non -singular.

e If two bounded self-adjoint linear operators S and T on a Hilbert space H are positive
and commute , then their product ST is positive.

e If H be a Hilbert space and let N € §(H) and N* be the adjoint of N. Then N is said to
be normal operator if,

NN* = N"N.
e  Every self adjoint operator is normal.
¢ A normal operator need not be self adjoint.

e  Thelimit N of any convergent sequence {N} of any normal operator is normal.

If N; and N, are normal operators on a Hilbert space H with property that either
commutes with the adjoint of the other then:
N; + N, is normal .

N;. N, is normal

An opeator N on a Hilbert space H is normal if and only if

[IN*x|| = lINx|| for every x € H.

If N is a normal operator on H, then
INZ]l = [IN]I%.
An operator U on a Hilbert space H is said to be unitary if
uu*=U0'U=1.

If U is unitary, then it is normal and U* =U -1
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e Anoperator T on H is said to be isometric if
ITx =Tyl =llx—yllVxy€H.
e Anoperator T on a Hilbert space H is unitary if and only if it is an isomorphism of H onto
itself.
e If T is an unitary operator on H, then ||Tx|| = 1.

e Therange U(H) of a unitary operator U is a closed subspace of H.

Keywords
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Self Assessment

1: Which of the following properties is true for Hilbert adjoint operator in a Hilbert space?
A. The adjoint operator preserves addition.

B. The adjoint operator reverses the product.

C. The adjoint operator is conjugate linear.

D. All of the above.

2: Let H be a Hilbert space. Then the adjoint operator T — T on S(H) ( set of all bounded linear
transformations on H into H) satisfies which of the following properties:

T =T.

71 = N1l

7Tl = IITI%.

All of the above .

9N = >

3: An operator T on a Hilbert space H is said to be self adjoint operator if:
A T =T.
B. T =T.
C. T"<T.
D. T*>T.

4: Which of the following is/are self adjoint operator/operators.

>

The zero operator.

B. The identity operator.
C. Both (A) and (B).

D. None of (A) and (B).
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5:If S and T are self adjoint opeartors on a Hilbert space H, then their product ST is self adjoint
if and only if .

A . S+T=T+S.

B. ST =TS.

C. ST >TS.

D. None of the above.

6: An operator T on a complex Hilbert space H is self adjoint if and only if (Tx, x) is:

A. Real for all x.
Real for some x.

Real for some x > 0.

N

All of the above are true.

N

if T is an operator on a Hilbert space H, then (Tx,x) = 0 for all x € H if and only if:

. T=0.
T >0.
T <O.
. T<O.

O N % >

8: Which of the following is/are positive operator/operators.
A. The zero operator.

B. The identity operator.

C. Both (A) and (B).

D. None of (A) and (B).

9: Let H be a Hilbert space and let N € f(H) and N* be the adjoint of N. Then N is said to be
normal operator if:

NN*=N.

NN* = N*N.

NN* = N".

. None of the above.

9N = >

—_

0: Which of the following is/are true?

. Every self adjoint operator is normal.
A normal operator need not be self adjoint.

The limit N of any convergent sequence {Ny} of any normal operator is normal.

oSN % >

. All of the above are true.

11: Which of the following is/are true about Unitary operator?

uur=U0U=1.
If U is unitary, then it is normal.
Ur=u-t

. All of the above are true.

9N = »

Lovely Professional University

123

Notes



Notes

Functional Analysis

124

12:

A.

B
C.
D

Which of the following is/are true about Unitary operator?

If T is an unitary operator on H, then ||Tx|| = 1.

. The range U(H) of a unitary operator U is a closed subspace of H.

Both (A) and (B).

. None of (A) and (B).

: Which of the following is/are true about Normal operator?

. An operator N on a Hilbert space H is normal if and only if ||[N*x|| = [|[Nx|| for every x € H.
If N is a normal operator on H, then |[N2|| = ||N||2.
If N; and N, are normal operators on a Hilbert space H with property that either commutes

with the adjoint of the other then:

N; + N, is normal and Nj. N, is normal.

D.

14:

o onNn <>

oOnNn <= >

5:

. The adjoint operator on S(H) is one to one.

All of the above are true.

An operator T on a Hilbert space H is said to be isometric if:

NTx=Tyll = llx—yllVx,y EH.

ITx =Tyll=llx—yllvx,y€H.

MTx =Tyl <llx—yllVx,y€H.
NTx =Tyl <llx—yllVx,y€EH.

Which of the following is/are true?

The adjoint operator on (H) is onto.

. Both (A) and (B).
. None of (A) and (B)

Answers for Self Assessment

1 D 2 D 3 A 4 C 5 B
6 A 7 A 8§ C 9 B 10 D
11 D 12 C 13 D 14 B 15 C

Review Questions

1
2.
3.
4

State Riesz representation theorem.

What is Hilbert adjoint operator.

Define Self adjoint operator.

Show that the Hilbert adjoint operator T* of T exists , is unique and is bounded linear

operator with norm

N1 =17

Show that the adjoint operator preserves addition, reverses the product and it is conjugate
linear.

Define self adjoint operator and give examples.
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7. Show that If S and T are self adjoint opeartors on a Hilbert space H, then their product ST

is self adjoint if and only if they commute. That is ST = TS.

Show that normal operator need not be self adjoint.

If N; and N, are normal operators on a Hilbert space H with property that either

commutes with the adjoint of the other then:

L
II.

N; + N, is normal .

N;. N, is normal .

10. Define Unitary operator and isometric operator.

m Further Readings

1.

2
3
4.
5

Introductory Functional Analysis With Applications By Erwin Kreyszig.
Functional Analysis By Walter Ruddin, Mcgraw Hill Education.

J. B Conway, A Course In Functional Analysis.

C. Goffman G Pedrick, A First Course In Functional Analysis.

B.V. Limaya, Functional Analysis.

Lovely Professional University

125

Notes



Notes

Unit 11: Unitary and Normal Operators

Dr. Arshad Ahmad Khan, Lovely Professional University

Unit 11: Unitary and Normal Operators

CONTENTS

Objectives

Introduction

11.1  Self Adjoint Operators
11.2  Positive Operator

11.3 Normal Operators
114 Unitary and Isometric Operators
Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives

After studying this unit, you will be able to understand:

e  Self adjoint operator and its properties
e  DPositive operator and its Properties
e Normal and Unitary operator and their properties.

e Isometric operator

Introduction

In this chapter, we discuss about Self adjoint operator and its properties. Further, positive operators
and its properties are discussed. Finally we discuss about normal operator, unitary operators and
isometric operator.

11.1 Self Adjoint Operators

The motivation for the introduction of the self adjoint operators is the properties of complex
numbers with conjugate mapping z — Z. This mapping z —» Z of the complex plane into itself
behaves like the adjoint operators .This operation z — Z has all the properties of the adjoint
operators. As we know that complex number is real if and only if z= 2. Analogue of this
characterisation in (H) leads to the notion of self adjoint operators in Hilbert spaces.

Definition. An operator T on a Hilbert space H is said to be self adjoint operator if T* = T. From
this definition we have the following simple operators.

(i) 0 and I are examples of self adjoint operators.
(ii) An operator T on H is self adjoint operator , then (Tx,y) = (x,Ty) for every x,y € H and

conversely.
If T*is an adjoint opearator of T on H, then we know from the definition

(Tx,y) = (x,T*y) forallx,y € H.
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If T is self adjoint then T* = T, using this in above we get,

(Tx,y) = (x,Ty) for every x,y € H.
To prove the converse, let us assume (Tx,y) = (x,Ty) forallx,y € H............ 1)
We have to show that T is self adjoint . If T* is the adjoint of T, then we have
(Tx,y )=, T*y).......... (2)
From (1) and (2), we have

(x,Ty) = (x,T"y)
Which gives,
(x,(T—T*)y)=0forallx,y e H
Since x # 0, we have (T — T*)y = 0 for all x,y € H, we have
T=T"

Proving that T is self adjoint.

(iii) Forany T € B(H), T + T* and T"T are self adjoint.

By the propert of Hilbert adjoint operators, we have

(T+T)*=T*+T*=T*+T =T + T* so that we have

(T+T)* =T +T",
also

(T*T)* = T*T** = T*T, so that

(T*T)* = T*T.
Hence T + T* and T"T are self adjoint.

Theorem. If S and T are self adjoint opeartors on a Hilbert space H, then their product ST is self
adjoint if and only if they commute. That is ST = TS.

Proof. Given S and T are self adjoint opeartors on a Hilbert space H. Then S* = S,T* =T.

Let us assume that S and T commute, we will prove that ST is self adjoint.

Now,

(ST =T*S*
=TS
=ST

implies that
(ST)* = ST

Conversely, let us assume that ST is self adjoint and we will show that ST commute.
By hypothesis , we have
(ST)*=ST........... 1)
But
(ST =T*S* =TS, ........... @)
( by properties of adjoint operators)
From (1) and (2), we have
ST =TS.

Or in other words we can say that if ST is self adjoint , then they commute.
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Theorem. An operator T on a complex Hilbert space H is self adjoint if and only if (Tx, x) is real for
all x.

Proof. Let us assume that T is self adjoint operator on H.
i.e, T = T", then for every x € H, we have

(Tx,x) = (x,T*x)
= (x,Tx)

=(Tx,x).
Thus (Tx, x) is equal to its own conjugate and is therefore real.

To prove the converse part, let us assume that (Tx, x) is real for all x € H and we will show that T is
self adjoint. Since (Tx, x) is real for all x € H, we have

(Tx,x) = (Tx,x)
= (x,T*x)

=(T"x,x)
Where T~ is the adjoint of T which exists for every x € H, from the above we get
(Tx,x) —(T*x,x) =0forall x € H.
This gives (Tx — T*x,x) forall x € H.
Hence, we have
((T—T*x,x)=0forall x € H.

As we know that, if T is an operator on a Hilbert space H, then (Tx, x) = 0 for all x € H if and only if
T =0.

Thus, we have

or,

Therefore the operator T is self adjoint.

11.2 Positive Operator

As we have seen in previous section that (Tx, x) is real for self adjoint operators, we can introduce
the order relation among them and define positive operators by considering the real values which
the self adjoint operators take.

Definition. If S is the set of all self-adjoint operators, we can define an order relation denoted by <
on S as follows.

If Ty, T, € S, then we write
T, < T, if (Tyx, x) < (T,x,x) for all x € H.

Definition. A self adjoint operator T on H is said to be positive if T > 0 in the order relation. This
means (Tx,x) >0V x € H.

From the definition, we have the following properties:
(i) The identity operator I and the zero operator 0 are positive operators.
As we know that the identity operator I and the zero operator 0 are self adjoint .
Further,
(Ix,x) = (x,x)

128 Lovely Professional University

Notes



Notes

Functional Analysis
= ||x|I?
=0
Also,
(0x,x) = (0, x)
=0.

Hence I and 0 are positive operators.
(ii) For an arbitrary T on H, then TT* and T* T are positive operators.
First we note that TT* and T* T are self-adjoint. Bu using properties of adjoint operators, we get

(TT* )* — (T* )*T*
— T**T*

=TT*
Also,
(T* T)* e T* (T* )*

= T* T**
=TT
Now we prove that they are positive,

ie (TT*x,x) =(T"x,T* x)
= [IT*x||?

> 0.
And
(T*Tx,x) = (Tx, T** x)

= (Tx, Tx)
= ||Tx]|?

= 0.

Hence TT* and T* T are positive operators.
@Note. If T is a positive operator on a Hilbert space H, then I + T is non -singular.

@Note. If two bounded self-adjoint linear operators S and T on a Hilbert space H are positive
and commute , then their product ST is positive.
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11.3 Normal Operators

Definition. Let H be a Hilbert space and let N € f(H) and N* be the adjoint of N. Then N is said to
be normal operator if,

NN* = N*N.
Thatis N is said to be normal if it commutes with its adjoint.
From the definition of normal operator, we get the following properties.
(@) Every self adjoint operator is normal.
As since T is self adjoint, we have T* = T.

Hence,

TT* = T*T is true so that T is normal operator.
%'Note: A normal operator need not be self adjoint.

@Note: The limit N of any convergent sequence {Ny} of any normal operator is normal.

Theorem. If N; and N, are normal operators on a Hilbert space H with property that either
commutes with the adjoint of the other then:

(i) N; + N, is normal .
(ii) Nj. N, is normal .

Proof. Since N; and N, are normal, we get

and

So,
NiNj = NiNj....ooe.... €)
and
NyN;i = NiNgeoooo.. @)
To prove (i), we have to show that
(Ny + N)(Ny + No)* = (Ny + No)*(Ny + Ny )

Using the fact that adjoint operators preserves addition, we get
(Ny + Np)(Ny + Np)* = (N + Np)(N; + N3).
= NlNl* + NINZ* + Nle* + NZNZ*' ............... (6)
By using (1) (2) (3) and (4) in (6),we get

= N;(Ny + No) + N7 (Ny + N;)

= (N; + N2)(N; +Np)

= (Nl + Nz)*(N1 + Nz)

Hence,
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(N1 + N2)(Ny + Np)* = (Ny + Np)*(Ny + Np).
Therefore N; + N, is normal.
Now to prove (ii), we have to prove
(N1N2)(NyNz)™ = (NyNp)" (N, N7)
Now we have

(NyN,)(NyN,)* = NyN,N; Ny

= N1 (N2Nz)Np .
But,

Ny (NN3)Ni = Ny(N; NNy
= (N;N3)(N2NY)

= (NzN1) (N1 N7).
But,
(N3N;)(N{N;) = N3 (N, N{)N,

= (N2 N{)(N1N2)

= (N N2)*(N1N7).
Thus,
(N1N2)(N1Nz)™ = (NyNp)* (N, N7).
So that,
N; N, is Normal.

|E.Note: An operator N on a Hilbert space H is normal if and only if
[IN*x|| = lINx|| for every x € H.

E‘Note: If N is a normal operator on H, then
(INZ]| = [INII2

11.4 Unitary and Isometric Operators

A special type of normal operators which are of considerable interest in applied mathematics is
that of unitary operators.

Definition. An operator U on a Hilbert space H is said to be unitary if

uur=U0"U=1.

From the definition of unitary operator, we note down the following
(i) If U is unitary, then it is normal ,
(i) ur=U"t

Before characterizing an unitary operator on a Hilbert space, we first define isometric operator
on H.

Definition. An operator T on H is said to be isometric if
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ITx =Tyl =llx—yllVx,y€H

Since T is linear , the condition is equivalent to || Tx|| = |[x]| Vx,y € H .

:: :Example: Let {eq, €5, ... } be an orthonormal basis for a separable Hilbert space
H and T € B(H) be defined as

T(x1eq + x3e5 + -+) = x1€1 + X35 + - where x = {x,}

Then

o
1Tl = ) bl = 11211
n=1

so T is an isometric operator. The operator T defined is called the right shift operator given by

Ten = eny1.

%‘Note: If T is an operator on a Hilbert space H, then the following conditions are equivalent to
one another .

@ T*T =1
(ii) (Tx,Ty) = {x,y)V x,y € H.
(iii) ITx]l = lIx|| ¥ x € H.

Theorem. An operator T on a Hilbert space H is unitary if and only if it is an isomorphism of H
onto itself.

Proof. Let T be an unitary operator on H. Then from the definition of the unitary operator, it is
invertible. Therefore it is onto . Further,

TT* =1
Hence,
ITx|l = llxll v x € H
This proves that T is an isometric isomorphism of H onto itself.
Now to prove the converse let us assume that T is an isometric isomorphism of H onto itself.
Then T is one-one and onto . Therefore T~! exists. From our assumption
ITx|| = llxl|Vvx€H. .......... 1)

By the above note we have T*T = I.

Hence,
(T*TT~t =IT1,
Which gives,
T*(TT™1) =T"1
so that
T*I =T,
Thus
T =T"1
Premultiplying this by T we have
TT* =TT 1!
So that,
TT* =1
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Now postmultiplying by T, we have

T*T=T71T
T*T =1.
Hence T*T =TT* =1.

Which proves that T is unitary.

gNote: If T is an unitary operator on H, then ||Tx|| = 1.
For an unitary operator, we have

x|l = llxIl,
So that,

IT1l = sup =1 ITx|l = supjjx=1 llxIl = 1.

|§’Note: The range U(H) of a unitary operator U is a closed subspace of H.

Summary

e Anoperator T on a Hilbert space H is said to be self adjoint operator if T* = T.

e 0 and are examples of self adjoint operators.

e If an operator T on H is self adjoint operator , then (Tx,y) = (x, Ty) for every x,y € H and
conversely.

e If S and T are self adjoint opeartors on a Hilbert space H, then their product ST is self adjoint
if and only if they commute. That is ST = TS.

e An operator T on a complex Hilbert space H is self adjoint if and only if (T'x, x) is real for all
x.

e A self adjoint operator T on H is said to be positive if T > 0 in the order relation. This means
(Tx,x) > 0Vx€EH.

e The identity operator I and the zero operator 0 are positive operators.

e For an arbitrary T on H, then TT* and T* T are positive operators.

e If T is a positive operator on a Hilbert space H, then I + T is non -singular.

o If two bounded self-adjoint linear operators S and T on a Hilbert space H are positive and
commute , then their product ST is positive.

o If H be a Hilbert space and let N € f(H) and N* be the adjoint of N. Then N is said to be
normal operator if,

NN* = N*N.

e Every self adjoint operator is normal.

¢ A normal operator need not be self adjoint.

e The limit N of any convergent sequence {N} of any normal operator is normal.

e If N; and N, are normal operators on a Hilbert space H with property that either
commutes with the adjoint of the other then:
a. N; +N,isnormal.

N;. N, is normal

e Anopeator N on a Hilbert space H is normal if and only if

[IN*x|| = lINx|| for every x € H.
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e If N is a normal operator on H, then

IN?]I = [INI%.
e Anoperator U on a Hilbert space H is said to be unitary if
vur=U'U=1.

. If U is unitary, then it isnormal and U*=U"1.
e Anoperator T on H is said to be isometric if
ITx —Tyll=llx—yllvx,y€H.
e Anoperator T on a Hilbert space H is unitary if and only if it is an isomorphism of H onto
itself.
e If T is an unitary operator on H, then ||Tx|| = 1.

e Therange U(H) of a unitary operator U is a closed subspace of H.

Keywords
e Hilbert Space

e Self adjoint operator
e Positive operator

e Normal operator

e Unitary operator

e Isometric operator

e Linear operator

e Zero operator

e Bounded linear transformation

Self Assessment

1: An operator T on H is said to be isometric if

ITx=Tyll=llx—yllvx,y€H.
A. True
B. False

2: An operator U on a Hilbert space H is said to be unitary if

uu*=U0'U=1.

A. True
B. False

3: An operator T on a Hilbert space H is said to be self adjoint operator if:
A T*=T.

B. T =T.

C. T*<T.

D. T*>T.

4: Which of the following is/are self adjoint operator/operators.
A. The zero operator.

B. The identity operator.

C. Both (A) and (B).

D. None of (A) and (B).
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5:If S and T are self adjoint opeartors on a Hilbert space H, then their product ST is self adjoint

9N = >

if and only if .
S+T=T+S.
ST =T8S.
ST > TS.

None of the above.

6: An operator T on a complex Hilbert space H is self adjoint if and only if (Tx, x) is:

A.

N

N

oSN % >

Real for all x.
Real for some x.
Real for some x > 0.

All of the above are true.

if T is an operator on a Hilbert space H, then (Tx,x) = 0 for all x € H if and only if:

T =0.
T >0.
T <O0.
T<0.

8: Which of the following is/are positive operator/operators.

A.

B.
C.
D.

The zero operator.
The identity operator.
Both (A) and (B).
None of (A) and (B).

9: Let H be a Hilbert space and let N € f(H) and N* be the adjoint of N. Then N is said to be

9N w e

[

O N % >

9N w e

0:

normal operator if:

NN* = N.
NN* = N"N.
NN* = N*.

. None of the above.

Which of the following is/are true?

. Every self adjoint operator is normal.

A normal operator need not be self adjoint.

The limit N of any convergent sequence {Ny} of any normal operator is normal.

. All of the above are true.

: Which of the following is/are true about Unitary operator?

uur=U0U=1.
If U is unitary, then it is normal.
Ur=u-t

. All of the above are true.
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12: Which of the following is/are true about Unitary operator?

A. If T is an unitary operator on H, then ||Tx|| = 1.

B. The range U(H) of a unitary operator U is a closed subspace of H.
C. Both (A) and (B).

D. None of (A) and (B).

13: Which of the following is/are true about Normal operator?

A. An operator N on a Hilbert space H is normal if and only if |[N*x|| = ||[Nx|| for every x € H.

B. If N is a normal operator on H, then |[N?|| = [IN]|2.

C. If N; and N, are normal operators on a Hilbert space H with property that either commutes
with the adjoint of the other then:

N; + N, is normal and Nj. N, is normal.

D. All of the above are true.

14: An operator T on a Hilbert space H is said to be isometric if:

MTx =Tyl = llx—yllvx,y €H.

ITx —Tyll = llx —yllvx,y €H.
MTx=Tyll<llx—yllVx,y €H.
MTx =Tyl <llx—yllvx,y€eH.

onNn >

—_
a1

: Which of the following is/are true?

. The adjoint operator on S(H) is one to one.
The adjoint operator on f(H) is onto.

. Both (A) and (B).

. None of (A) and (B).

OonNn <>

Answers for Self Assessment

1 A 2 A 3 A 4 C 5 B
6 A 7 A 8 C 9 B 10. D
11. D 12. C 13. D 14. B 15. C

Review Questions

Define self adjoint operator and give examples.
2. Show thatIf S and T are self adjoint opeartors on a Hilbert space H, then their product ST
is self adjoint if and only if they commute. That is ST = TS.
Show that normal operator need not be self adjoint.
4. If N; and N, are normal operators on a Hilbert space H with property that either
commutes with the adjoint of the other then:
L N; + N, is normal .
IL N;. N, is normal .

5. Define Unitary operator and isometric operator.
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Objectives
After studying this unit, you will be able to understand:

e Reflexivity of Hilbert space
e  Orthogonal Projection

e  Properties of Orthogonal Projection.

Introduction

In this chapter , we discuss about reflexivity of Hilbert space. Further, we discuss about Orthogonal
projection and properties of orthogonal projection.

12.1 Reflexivity of Hilbert space

Recall that a normed space X is reflexive if there is an isometric isomorphism between X and its
second dual X". In the following theorem we establish the reflexivity of Hilbert Spaces. Thus if H is
a Hilbert space and H" its second dual , then it will be shown that there is a bijective linear
mapping ¥ between H and H"' such that

iyl = [y vy € H.

Theorem. Show that every Hilbert space is reflexive.

Proof. Let H be a Hilbert space , H' its dual and y an arbitrary element of H. As by Riesz
Representation theorem that every bounded linear functional on H is of the form f, given by

) =(x,y)x€H........... 1)
And that the mapping ¢: H » H" given by
by =fpyEH. ......... @)
is an isometric isomorphism between H and H'. Now define a mapping : H - H'"' defined by
W)@ =93, geH ......... 3)

138 Lovely Professional University



Notes

Functional Analysis

We show that, provided H is a Hilbert space, ¥ is surjective mapping from H to H". For this we
have to prove that, given any element h of H"”, there is a z € H such that

¥, =H.
For this consider the mapping ¢: H — H" defined by (2), g:H = F as follows:
Foranyy € H, ¢(y) € H'. Also, forany h € H", h(¢(y)) isin F.
So we put
o) = f,,y €H.

Let y € H. Then under y, we let ¥ mapped onto 1, where 1, is an element of the dual space H" of
H' defined by :

9g») =h@G))........... (4)

We first show that g is linear.

Fory,,y, € H,
91 +y2) =h(@(1 +y2))
=h(@1) + ¢ (r2))
= h(¢(y1) + h($(2)
=gy)+90) e, )
And,
g(ay) = h(¢(ay))
= h(a(¢(»)))
= ah(¢())
(As ¢ is conjugate linear)
=ag(®) .ceoennnnn (6)
Now ,
g = [R(¢)]
= |h(p ()]
< kil
< llrllyIE, OO = 1fF OO = llyll,
so that,

llgll < lInll,

Where ||h]| is finite because h € H". Hence g is a bounded linear functional in H'. By Riesz
represemtation theoremthere is a unique z € H such that

9») =(y.2) = h(¢())

From (4) or equivalentely

h(p() = (z,y).

But then, from (3) and the definition of ¢ we have:

Lovely Professional University 139



Unit 12: Reflexivity of Hilbert Space and Orthogonal Projection

W (6M) = £, = (z,y) = h($())
forally € H,¢(y) € H'. Hence

Thus v is surjective.
To see that 1 is injective, suppose that, for y;,y, € H,
‘rbyl =1y 2
Then
(¥y,) @) = 90m) = 902) = Wy,)(9)
For all g € H'. Hence , by (1)
(6, 1) = (x,¥2)
For all x € H because each g is given by such an expression.
Therefore,
Y1 =Yo-

To show that ¥ is linear, let y;,y, € H. Then

(y,) (@) =90

(¥y,)(@) = 9(2)

And
(Wy,49,) (@) = g1 + ¥2)
=g(y1) + g(2)
= ¥y,)@ + (¥y,) (@
= Wy, +¥,,)(9)
.......... 8)
while

(Yay)g = g(@y)
=ag(y)

= a(Py)g
For all g € H'. Hence

Pty = ¥y Ty,
and
Y(ay) = apy.
Lastly, to see that 1 is an isometry , let y € H.

Then by Riesz representation theorem,

Iyl =gl
Where ¢(y) is in H'. Again by Riesz representation theorem, any g € H' is given by

g(@) ={(z,x),ze Hx€ H and ¢(y) =g.
llyll =llgll = Sup [g(2)I

zl|=1zen

140 Lovely Professional University

Notes



Notes

Functional Analysis

= Supygj=1, . |Wy)(9)I

geH'

= [yl

Hence v is an isometric isomorphism between H and H". So H is reflexive.

12.2 Orthogonal Projection

Let Y be a closed subspace of a Hilbert space H. Then we know that
H=Y®vt

xX=y+z, (yEY,ZEYY).
Since the sum is direct, y is unique for any given x € H. Hence (1) defines a linear operator
P:H->H
x —y=Px

P is called an orthogonal projection or projection on H. More specifically, P is called the projection
of H onto Y. Hence a linear operator P: H - H is a projection on H if there is a closed subspace Y of
H such that Y is the range of P and Y* is the null space of P and P/Y is the identity operator onY.
From (1), we can now write

x=y+z

=Px+ (I — P)x.
This shows that the projection of H onto Y+ is [ — P.
There is another characterization of a projection on H, which is sometimes used as a definition.

Theorem 1. A bounded linear operator P: H — H on a Hilbert space H is a projection if and only if P
is self adjoint and idempotent ( that is, P? = P).

Proof. Suppose that P is a projection on H and denote P(H) by Y. Then P? = P because for every
X € Hand Px =y € Y we have

P?x = Py =y = Px.

Furthermore, let x; = y; + z; and x, = y, + z,, where y;,y, € Y and z;,z, € Y. Then
1,22) = (¥2,21) = 0

because Y 1 Y+, and self adjointness of P is seen from

(Pxq,X2) = (Y1, Y2 + 22) = (Y1, ¥2) = (Y1 + 21, ¥2) = (x1, Px3)

Conversely suppose that P? = P = P* and denote P(H) by Y. Then for every x € H
x =Px+ (I — P)x.
Orthogonality Y = P(H) L (I — P)(H) follows from
(Px,(I — P)v) = (x,P(I — P)v) = {x, Pv — P?v) = {x,0) = 0.
Y is the null space N(I — P) of (I — P), because Y € N(I — P) can be seen from
(I—-P)Px=Px—P2x=0

and Y > N(I — P) follows if we note that (I — P)x = 0 implies x = Px. Hence Y is closed . Finally,
P\Y is the identity operator on Y since writing y = Px, we have Py = P2x = Px = y.

Theorem. For any projection P on a Hilbert space H,
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(Px,x) = [IPx]|?........... 2
P20, 3)
IPI<1;  [IPll=1 if P(H) # {0}.......... @

Proof. (2) and (3) follows from
(Px,x) = (P?x,x) = (Px,Px) = ||Px||> = 0

By the Schwarz inequality
I1PxI? = (Px,x) < ||Pxllllxll

So thatm < 1forevery x # 0,and ||P]| < 1.

[lx]

Also P2 _ 1 it x € P(H) and x # 0.

[1cl

This proves (5).

%Note: Every projection is linear. For if x;,x, € H, then
X1 =y, +2,y, €Y,z €Y
X, =V, +75,y, €Y,z €Y
So that,
P(xy +x3) = P(y1 +y2 + 21 + 23)

=y1tY2

= P(x1) + P(x2)
Also forany a € F,
P(ax;) = P(ay; + az;)

= ay:

=aP(x)Vx, €EH
ENote: The product of projections need not be a projection .

ENote: The Product of two bounded self adjoint linear operators S and T on a Hilbert space H
is self adjoint if and only if the operators commute,

ST =TS. (Already proved in chapter 10)
Theorem. (Product of projections)

In connection with product (composites ) of projections on a Hilbert space H, the following two
statements hold.

(@) P = P, P, is a projection on H if and only if the projections P; and P, commute, that is,
PP, = P,P;. Then P projects H onto Y = Y; NY,, where Y; = P;(H).
(if) Two closed subspaces Y and V of H are orthogonal if and only if the corresponding

projections satisfy PyP, = 0.
Proof. (i) Suppose that P; P, = P,P;. Then P is self adjoint, by above note. P is idempotent since
P? = (PP;)(P,Py)
- 1P}
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=P,P,
=P.
Hence P is a projection by theorem 1 above , and for every x € H we have
Px = P, (P,x) = P,(P;x).
Since P; projects H onto Y;,we must have P, (P,x) € Y;.
Similarly,
P,(Pix) € Y,.
Together, Px € Y; NY,. Since x € H was arbitrary, this shows that P projects HintoY =Y; N Y,.
Actually, P projects H onto Y. Indeed, if y €Y, theny € Y},y € Y, and
Py =PPy=Py=y.
Conversely, if P = P, P, is a projection defined on H, then P is self adjoint by theorem 1 above and
P, P, = P,P; follows by above note.
Proof of (ii) . if Y L VthenY nV = {0}
and
PyPyx = 0V x € H by part (i), so that PyP, = 0.
Conversely, if PyP, = 0, then for every y € Y and v € V we obtain
(y,v) = (Pyy, Pyv)

= (y, PyPyv)

=(y,v)

=0.
HenceY 1L V.

Theorem (Sum of projections). Let P; and P, be projections on a Hilbert space H. Then

(i) The sum P = P; + P, is a projection on H if and only
Y, = Py(H) and Y, = P,(H) are orthogonal .
(ii) If P = P; + P, is a projection, P projects Honto Y =Y; @ Y,.

Proof. If P = P, + P, is a projection, P = P%, by theorem 1 above, we have
Py + P, = (P, + P,)?
= P{ + PP, + P,P; + P;.
By theorem 1 above , we have
P2 =P
and

P22=P2/

Therefore,
PP, +P,P, =0.......(5)
Multiplying by P, from the left, we obtain
P,P,P, + P,P, = 0.......(6)

Multiplying this by P, from the right , we obtain

2P2P1P2 = O,
so that P,P; = 0 by (6) and ¥; L Y, by (ii) part of above theorem.
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Conversely, if Y; 1 Y,, then P;P, = P,P; = 0 again by (ii) part of above theorem.
This yields (5), which implies P? = P. Since P; and P, are self adjoint, so is
P = P; + P,. Hence P is a projection by Theorem 1.

Proof of (ii). We determine the closed subspace Y c H onto which P projects. Since
P = P; + P,, for every x € H we have

y = Px = P;x + Pyx.
Here Pix €Y, and P,x €Y,.Hencey €Y, @ Y,,sothatY c ¥, @ Y,.
Weshow thatY o Y; @ Y,.
Letv €Y; @Y, be arbitrary. Then
v=y,+y,.Here,y, EY;and y, €Y,,
Apply P and using ¥; 1 Y,, we thus obtain
Pv = Py(y1 +y2) + P,(y1 +¥2)

=Py, + Py,
=ty
=
HenceveYandY oV, @Y,.
Thus,
Y=Y,0Y,

12.3 Further properties of Projections

We now discuss some further properties of Projections.

1) Let P; and P, be projections defined on a Hilbert space H. Denote by

Y, = P;(H) and Y, = P,(H) the subspaces onto which H is projected by P; and P,, and let N(P;) and
N (P,) be the null spaces of these projections . Then the following conditions are equivalent:

a. PP,=PP,=P
b. v,cY,

c. N(P)DN(P)

d. ||Px|]| < |IPxl|lVx€EH
e. P <P,

2) Let P; and P, be projections defined on a Hilbert space H. Then

(i) The difference P = P, — P, is a projection on H if and only
ifY; c Yy, whereY; = P;(H).
(ii) If P = P, — P; is a projection, P projects H onto Y, where Y

is the orthogonal complement of ¥; in Y.

From these two properties of projection we can now derive a basic result about the convergence of
a monotonic increasing sequence of projections.
3) (Monotone increasing sequence). Let {F,} be a monotone increasing sequence of projections P,
defined on the Hilbert space H. Then
(@) {P,} is strongly operator convergent, say B,x — Px for every x € H,
and the limit operator P is a projection defined on H.

(if) P projects H onto
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pan = | ) man.
n=1
(iii) P has the null space

Ny = (N,
n=1

Notes: Two projections P and Q on a Hilbert space H are said to be orthogonal if

PQ = 0.

Notes: If P is the projection on the closed linear subspace Y of H, then x € Y if and only if
Px = x.

ENotesz If P is the projection on the closed linear subspace Y of H, then Px = x. if and only if
1Pl = llx]I.

Notes: If P is the projection on a Hilbert space H, then

(i) P isa positive operator on H.
() 0<P<1

(i) [IPx|l < llx|l for every x € H
(iv) 1Pl < 111l

E‘ Notes: A projection on H whose range and null spaces are orthogonal is called perpendicular

projection.

|ENotes: If P is the projection on a closed linear subspace Y of H if and only if (/ — P) is a
projection on ML,

Summary

e  Every Hilbert space is reflexive.

e If Y be a closed subspace of a Hilbert space H. Then we know that
H=Y@®YL

e A bounded linear operator P: H » H on a Hilbert space H is a projection if and only if P is
self adjoint and idempotent.

o Every projection is linear.

e The product of projections need not be a projection .

. The Product of two bounded self adjoint linear operators S and T on a Hilbert space H
is self adjoint if and only if the operators commute.

e The product of projections P = P, P, is a projection on H if and only if the projections P;
and P, commute, thatis, P;P, = P,P;. Then P projects H onto Y = Y; NY,, where Y; =
Pi(H).

e Two closed subspaces Y and V of H are orthogonal if and only if the corresponding
projections satisfy PyP, = 0.

e If P; and P, be projections on a Hilbert space H. Then

(i) Thesum P = P; + P, is a projection on H if and only
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Y; = Py(H) and Y, = P,(H) are orthogonal .

(ii) If P = P, + P, is a projection, P projects Honto Y =Y; @ Y.
e Two projections P and Q on a Hilbert space H are said to be orthogonal if

PQ =0.

e If P is the projection on the closed linear subspace Y of H, then x €Y if and only if
Px = x.
e If P is the projection on the closed linear subspace Y of H, then Px = x. if and only if
1Pl = llx]I.
e If P is the projection on a Hilbert space H, then

(@) P is a positive operator on H.
(i) 0<P<1

(iii) [IPx]l < |lx|| for every x € H
(iv) IPI < II1ll.

e A projection on H whose range and null spaces are orthogonal is called perpendicular
projection.
. If P is the projection on a closed linear subspace Y of H if and only if (I —P) is a

projection on M+,

Keywords

e Hilbert space

e Isometric isomorphism
¢ Reflexivity

e Dual

e Linear mapping

e Projection

¢ Orthogonal projection

Self Assessment

1: Which of the following statements is/are true?
A. Every Hilbert space is reflexive.

B. Every Banach space is reflexive.

C. Both (A) and (B).

D. None of (A) and (B).

2: Which of the following statements is/are true?

A. A bounded linear operator P: H — H on a Hilbert space H is a projection if and only if P is
self adjoint and idempotent.

B. Every projection is linear.

C. Both (A) and (B).

D. None of (A) and (B).

3: For any projection P on a Hilbert space H,which of the following is/are true?
A. (Px,x) = ||Px]|?.
B. P>0.
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C
D

4:

A.

B.

C.
D.

5:

A.

D.

6:

A.

N

8:

A

SN = »

Pl <15 IPIl=1 if P(H) # {0}

. All of the above are true.

Which of the following statement is/are true?

The product of projection is always a projection.

P = P, P, is a projection on H if and only if the projections P; and P, commute, that is ,
P,P, = P,P,.

The product of projection is never a projection.

None of the above.

Which of the following statement is/are true?

Two closed subspaces Y and V of H are orthogonal if and only if the corresponding
projections satisfy Py Py, = 0.
Two closed subspaces Y and V of H are orthogonal if and only if the corresponding
projections satisfy Py Py, > 0.
Two closed subspaces Y and V of H are orthogonal if and only if the corresponding
projections satisfy Py Py, < 0.

All of the above are true.

Let P; and P, be projections on a Hilbert space H. Then Which of the following statement
is/are true?
The sum P = P; + P, is a projection on H if and only if ¥; = P;(H) and Y, = P,(H) are
orthogonal .
If P = P; + P, is a projection if P projects HontoY =Y, @ Y,.
Both (A) and (B) are true.

None of the above.

Two projections P and Q on a Hilbert space H are said to be orthogonal if:

PO =1.
PQ.1.
PQ =0.

None of the above.

If P is the projection on the closed linear subspace Y of H, then Px = x. if and only if:

. IPx]| = x.

B. [IPx|| = llxI|.
C. ||Px]| =1.
D

9:

A
B.

. None of the above.

If P is the projection on a Hilbert space H, then which of the following is/are true?

. P is a positive operator on H.
0<pP<1

C Pl = NIl

D

. All of the above are true.

10: Which of the following statement is/are true?
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A.

A projection on H whose range and null spaces are orthogonal is called perpendicular
projection.

If P is the projection on a closed linear subspace Y of H if and only if (I — P) is a projection
on M*.

If P is the projection on the closed linear subspace Y of H, then x €Y if and only if
Px = x.

All of the above are true.

. If P is the projection on a closed linear subspace Y of H if and only if:

(I — P) is a projection on M*.
(I — P) is a projection on M++,
(I — P) is a projection on M.

None of the above .

. Let P; and P, be projections defined on a Hilbert space H. Then

The difference P = P, — P; is a projection on H if and only if Y; c Y,, where Y; = P;(H).

If P = P, — P; is a projection, if P projects H onto Y, where Y is the orthogonal complement
of Y; inY,.

Both (A) and (B) are true.

None of the above.

Answers for Self Assessment

1 A 2 C 3 D 4 B 5 A
6 C 7 C 8 B 9 D 10. D
1. A 12. C

Review Questions

NN

Show that every Hilbert space is reflexive.

Show that a bounded linear operator P: H - H on a Hilbert space H is a projection if and
only if P is self adjoint and idempotent.

Show that every projection is linear.

Show that two closed subspaces Y and V of H are orthogonal if and only if the
corresponding projections satisfy PyPy = 0.

Show that product P = P,P, is a projection on H if and only if the projections P; and P,

commute, thatis, P;P, = P,P;.

Further Readings

e Introductory Functional Analysis With Applications By Erwin Kreyszig.
e  Functional Analysis By Walter Ruddin, Mcgraw Hill Education.

e ]. B Conway, A Course In Functional Analysis.
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¢ C.Goffman G Pedrick, A First Course In Functional Analysis.

® B.V.Limaya, Functional Analysis.
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Unit 13: Spectral Theory of Linear Operators in Normal Spaces

CONTENTS

Objectives

Introduction

13.1 Spectrum of an Operator

13.2  Spectral Properties of Bounded Self-Adjoint Linear Operators
Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to understand:

e  Spectrum of an operator

e  Spectral properties of bounded linear operators

Introduction

In this chapter, we discuss about Spectrum of an operator. Further, we discuss about spectral
properties of bounded self-adjoint linear operator.

13.1 Spectrum of an Operator

The generalization of the matrix eigenvalue theory leads to the spectral theory of operators on a
Banach space or Hilbert space. Before defining the spectrum of an operator, we first recall some
definitions.

Definition. Let T be an operator on a Hilbert space H. Then a scalar 4 is called an
eigenvalue of T if there exists a non zero vector x in H such that

Tx = Ax.

E'IFNote: Eigenvalue is also called characteristic value, proper value or spectral value.
Definition. If 1 is an eigenvalue of T, then any non zero vector x in H such that

Tx = Ax is called an eigenvector of T.

|%:‘Note: Eigen vector is also called characteristic vector, proper vector or spectral vector.

Definition. The eigenvectors corresponding to eigenvalue 1 and the zero vector form a
vector subspace, which is called the eigenspace of T corresponding to eigenvalue A.

From the definition of eigenvalues and eigenvectors, we have the following properties.
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L If x is an eigen vector of T corresponding to eigenvalue A and « is any nonzero scalar,

then ax is also an eigenvector of T corresponding to same eigen value.

Since x is an eigenvector of T corresponding to the eigen value A and Tx = Ax. Since a # 0,

we have
ax # 0.
Hence (I) follows from
T(ax) = aTx
= adx,

Which gives,
T(ax) = A(ax).

E‘Note: Thus (I) tells us that corresponding to single eigenvalue there may correspond
more than one eigenvector.

|ﬁ"Note: If x is an eigenvector of T, then x cannot correspond to more than one eigenvalue of
T.

@Note: If the Hilbert space has no non-zero vectors, then T cannot have any eigenvectors
and hence the whole theory reduces to triviality. So we shall assume throughtout this chapter
H # {0}.

Spectrum of an operator

Definition. The set of all eigenvalues of T is called spectrum of T and is denoted by o(T). Its
complement p(T) = C — o(T) in the complex plane is called resolvent set of T.

; Example: For a two dimensional Hilbert space H, let B = {e;, e,} be a basis and T be an
operator on H given by the matrix

a11 Q12
A= |

T lazy g
If T is given by Te; = e, and Te, = —ey, find the spectrum of T.
Solution. Using the matrix A of the operator T, we have

Te, = aq1e1 + ayq€;

= eZ/
So that,

a1 = 0 and a1 = 1

Tey = ayze1 + azze;
=€y
So that,
a;; =—land a,, =0
Hence the matrix representation of T is

e
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For this matrix, the eigenvalues are given by the characteristic equation

-1 -1] _

1 —/1| =0

=>124+1=0

=>12=-1

=>1=+i,
So that,

a(T) = {£i}.

%Note: An operator T on a finite dimensional Hilbert space H is singular if and only if there
exists a non zero vector x in H such that Tx = 0.

Theorem. If T is an operator on a finite dimensional Hilbert space, then the following statements
are true.

(i) T issingular if and only if 0 € o (T).

(ii) If T is non -singular, then A € o(T) if and only if = € o(T™1).

(iii) If 4 is non singular, then 6(ATA™) = o(T).

(iv) f A€ o(T) andif P isa polynomial, thenP(1) € O'(P (T)).

Proof. (i) We know that T is singular if and only if there exists a non-zero vector x € H such that
Tx =0.

Thatis, Tx = Ox.

Hence T is singular if and only if 0 is the eigenvalue of T.

That is 0 € o(T).

(ii) Let T be non-singular and A € o(T). Hence 4 # 0 by (i) so thatA™! exist . Since 4 is an eigen
value of T, so there exixts a non -zero vector x € H such that

Tx = Ax.
Premultiplying by T~ we get
T 1Tx = T™1(Ax),
Which gives,
T 1(x) = %x for x # 0.
Hence 271 € (T).
(iii) Let S = ATA™!. Then we find S — Al
Now S — Al = ATA™ ' — A(ADA™?!

= A(T — ADA™™.
Hence,
det(S — AI) = det(A(T — ADA™L).
But,

det(A(T — ADA™Y) = det(T — AI)
This proves that det(S — AI) = det(T — AI).
Thus A is an eigen value of T if and only if det(T — AI) = 0.

Hence,
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det(T — AI) = 0 if and only if det(S — AI) = 0.
This proves that S and T have the same eigenvalues so that
d(ATA™Y) = o(T).
(iv) If 2 € 0(T), Ais an eigen value of T. Then there exists a non-zero vector x such that
Tx = Ax.
Hence,

T(Tx) = T(Ax)

= ATx

= A%x.

Hence if 1 is an eigenvalue of T, then A? is an eigenvalue of T?. Continuing in this way, we see that
if A is an eigen value of T, then A" is an eigenvalue of T™ for any positive integer n.

Let P(t) = ag + a,t + ayt? + - a,,t™, where ay, a, a,, ..., a,, are scalars. Then

[P(M)]x = (apgl + a;T + a,T? + -+ a,,T™)x

= aox + a;(Ax) + - apy (A™x)

= [ag + a; (D) + -+ am(A™)]x.

Hence P(1) = ay + a1 + -+ + a,,A™ is an eigen value of P(T). Thus if A € ¢(T), then P(1) €
a(P(T)).

%.Note: An operator on a Hilbert space H need not necessarily posses an eigenvalue as
illustrated by the following Example.

F]Example: Consider the Hilbert space [, and T on [, defined by
T(xq, %3, oy %) = {0,%4, x5, ... }-
If 1 is an eigenvalue of T, then there exists a non zero vector (x4, Xy, ..., X,) such that
Tx = Ax

Which gives,

{0, %1, x5, ... } = (Axy, Axy, ..., Axy),
which implies,

X1 =0,Ax; = x4, Ay, = Xp_q1 .
By hypothesis x = {x,,} € [, is non zero vector so that x,, # 0 for any n.
Hence Ax; = 0 implies A = 0 and Ax, = x; implies x; = 0 contracdicting that x is non-zero vector.
Hence T cannot have eigen values.
Theorem. (Spectral mapping theorem for polynomials )

Let T be an operator on a complex Banach space B and let p be a polynomial. Then

a(p(D) =p(a() = p(A): 2 € a(T)}.

l = I
Example. Find the spectrum of the idempotent operator T on a Banach space.

Since T is idempotent operator, then
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T?=T
or
T?-T=0.
Let p(T) = T? — T. Then p(T) = 0 by hypothesis.
Hence

p(a*(T)) = 6*(T) — o(T)

=o(TM)(c(T)—-1)=0
Sothato(T) =10ro(T) =0
Hence

a(T) = {0,1}.

13.2 Spectral Properties of Bounded Self-Adjoint Linear Operators

Throughout this section we shall consider bounded linear operators which are defined on a
complex Hilbert space H and map H into itself. Furthermore, these operations will be self-adjoint.
A bounded self-adjoint linear operator T may not have eigenvalues, but if T has eigenvalues, the
Following basic facts can readily be established.

Theorem. Let T:H — H be a bounded self-adjoint linear operator on a complex Hilbert space H.

Then
i All the eigen values of T (if they exists) are real.
ii. Eigenvectors corresponding to numerically different eigenvalues of T are orthogonal.

Proof. (i) Let 4 be an eigenvalue of T and x a corresponding eigenvector. Then x # 0 and Tx = Ax.
Using the self-adjointness of T, we have

Ax, x) = (Ax, x) = (Tx, x)
= (x,Tx)
= (x,Ax)

= AMx, x) .
Here (x, x) = ||x||* # 0, and division by (x,x) gives A = A
Hence 2 is real.

Proof of (ii). Let A and u be eigen values of T, and let x and y be corresponding eigenvectors .
Then

Tx = Ax
And

Ty = uy,
Since T is self-adjoint and u is real,

Mx,y) = {Ax,y) = (Tx,y)
=(x,Ty)

= (x, uy)
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= ux,y).
Since A # u, we must have
(,y)=0,
Which shows that x and y are orthogonal.

ﬁNote (Resolvent set) Let T: H — H be a bounded self adjoint linear operator on a complex
Hilbert space H. Then a number A belongs to the resolvent set p(T) of T if and only if there exists
a ¢ > 0 such that for every x € H,

T3l = clix]l........... 1)

Theorem. (Spectrum) The spectrum o(T) of a bounded self-adjoint linear operator T:H - H ona
complex Hilbert space H is real.

Proof. By above note , we show that al = a + if (a, f € R) with f # 0 must belong to p(T), so that
,a(T) CR.

For every x # 0 in H we have
(Tyx,x) = (Tx,x) — A{x, x)
and, since (x,x)and (Tx, x) are real,
(Tax, x) = (Tx, x) — Ax, x).
Here 1 = a — if. By subtraction,
(Thx, x) — (Tyx, x) = (1 — D{x, x)

= 2if|lxlI.

The left side is —2i Im (T, x, x), where Im denotes the imaginary part, the latter cannot exceed the
absolute value, so that, dividing by 2, taking absolute values and applying the Schwarz inequality,
we obtain

IBIIxNI? = 1Im Ty, )| < | (Tyx, x)| < [ Taxlllxl.
Division by [|lx|| # 0 gives |Blllx|l < [ITyxll.
If  # 0, then A € p(T) by above note . Hence for A € ¢(T), we must have f = 0, that is, 4 is real.

Summary

e If T be an operator on a Hilbert space H. Then a scalar A is called an eigenvalue

of T if there exists a non zero vector x in H such that
Tx = Ax.

e  Eigenvalue is also called characteristic value, proper value or spectral value.

e If 1 isaneigenvalue of T, then any non zero vector x in H such that
Tx = Ax is called an eigenvector of T.

o Eigen vector is also called characteristic vector, proper vector or spectral vector.

e The eigenvectors corresponding to eigenvalue A and the zero vector form a vector
subspace, which is called the eigenspace of T corresponding to eigenvalue A.

e If xis an eigen vector of T corresponding to eigenvalue A and « is any nonzero scalar,
then ax is also an eigenvector of T corresponding to same eigen value.

e  Corresponding to single eigenvalue there may correspond more than one eigenvector.

e If x is an eigenvector of T, then x cannot correspond to more than one eigenvalue of T.
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e The set of all eigenvalues of T is called spectrum of T and is denoted by (T). Its complement
p(T) = € — o(T) in the complex plane is called resolvent set of T.

e  Anoperator T on a finite dimensional Hilbert space H is singular if and only if there exists
a non zero vector x in H such that Tx = 0.

e If T is an operator on a finite dimensional Hilbert space, then the following statements are
true.

a) T is singular if and only if 0 € o(T).
b) IfT is non -singular, then A € (T) if and only if =1 € o(T™1).
¢) If Aisnon singular, then 6(ATA™!) = o(T).
d) IfA€0(T) andif Pisa polynomial, then P(1) € J(P(T)).
e An operator on a Hilbert space H need not necessarily posses an eigenvalue .
e If T be an operator on a complex Banach space B and let p be a polynomial. Then
o(p(1) = p(a(T)) = (P(A): A € 5(T)}.

e LetT:H — H be a bounded self-adjoint linear operator on a complex Hilbert space H. Then

a) All the eigen values of T (if they exists) are real.

b) Eigenvectors corresponding to numerically different eigenvalues of T are orthogonal.

e If T:H — H be a bounded self adjoint linear operator on a complex Hilbert space H. Then
a number A belongs to the resolvent set p(T) of T if and only if there exists a ¢ > 0 such
that for every x € H,

ITaxll = cllx]l

e  The spectrum o(T) of a bounded self-adjoint linear operator T:H — H on a complex
Hilbert space H is real.

e If T is an arbitrary operator on a finite dimensional Hilbert space H, then the spectrum of
T namely o(T) is a finite subset of the complex plane and the number of points in o(T)
does not exceed the dimension n of H.

e An operator T on a finite dimensional Hilbert space H is singular if and only if there exists

a non-zero vector x € H such that Tx = 0.

Keywords

e  Spectrum of an operator
¢ Bounded linear operator
e Eigen values

e  Eigen vectors

e Eigen space

e Closed subspace

e  Charteristic equation

e  Hilbert space

e  Banach space

¢ Idempotent operator

e  Self adjoint operator

Self Assessment

1: Let T be an operator on a Hilbert space H. Then a scalar 1 is called the ........... of T if
there exists a non zero vector x in H such that Tx = Ax.
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A. Eigenvalue
B. Proper value

C.

Characteristic value

D. All of the above.

2:If 1 is an eigenvalue of T, then any non zero vector x in H such that

Tx = Ax is called the .......... of T.
A. Eigenvector
B. Proper vector
C. Both (A) and (B)
D. None of (A) and (B)

3: If x is an eigen vector of T corresponding to eigenvalue A and « is any nonzero scalar, then ax is
also an eigenvector of T corresponding to same eigen value.

A.
B.

True

False

4: If the Hilbert space has no non-zero vectors, then the operator T cannot have any eigenvectors.

A. True
B. False
5: The set of all eigenvalues of an operator T is called................ of T.
A. Eigenvector
B. Proper vector
C. Spectrum
D. None of the above.
6: An operator T on a finite dimensional Hilbert space H is ................ if and only if there exists a

non zero vector x in H such that Tx = 0.

A.

B
C.
D

Non-singular
Singular
Regular

None of the above.

7: If T is an operator on a finite dimensional Hilbert space, then which of the following statements
is/are true.

A.

B
C.
D

T is singular if and only if 0 € o(T), where o(T) is the spectrum of T.
If T is non -singular, then 4 € o(T) if and only if 17! € o(T™1).

If A is non singular, then 6(ATA™) = o(T).

All of the above.

8: An operator on a Hilbert space H need not necessarily posses an eigenvalue.

A.
B.

True

False

9: Which of the following is the spectrum of the idempotent operator T on a Banach space.

A.

o(T) ={0,—1}.
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B. o(T) ={0,0}.
C. oM ={-11}
D. o(T) ={0,1}.

10: Let T: H — H be a bounded self-adjoint linear operator on a complex Hilbert space H.

Then which of the following statement is/are true.

All the eigen values of T (if they exists) are real.

Eigenvectors corresponding to numerically different eigenvalues of T are orthogonal.
Both (A) and (B)

None of (A) and (B)

oNnw >

11: The spectrum ¢ (T) of a bounded self-adjoint linear operator T: H - H on a complex Hilbert
space H is real.

A. True
B. False

12: The eigenvectors corresponding to eigenvalue 4 and the zero vector form a vector
subspace, which is called the eigenspace of T corresponding to eigenvalue A.

A. True
B. False

Answers for Self Assessment

1 D 2 C 3 A 4 A 5 C
6 B 7 D 8 A 9 D 10. C
11. A 12. A

Review Questions

Define Spectrum of an operator on a finite dimensional Hilbert space.

2. Define the resolvent set of an operator.
Show that an operator T on a finite dimensional Hilbert space H is singular if and only if there
exists a non zero vector x in H such that Tx = 0.

4. Find the spectrum of an idempotent operator T on a Banach space.
Show that if T: H - H be a bounded self- adjoint linear operator on a complex Hilbert space
H.Then all the eigen values of T, if they exists are real.
Define eigen values and eigen vectors of an operator.
Define eigenspace of an operator.
Show that eigenspace of an operator on a Hilbert space is a non zero closed linear Subspace of
H.

m Further Readings
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¢ Introductory Functional Analysis With Applications By Erwin Kreyszig.
¢ Functional Analysis By Walter Ruddin, Mcgraw Hill Education.
e ]. B Conway, A Course In Functional Analysis.

e C. Goffman G Pedrick, A First Course In Functional Analysis.

e B.V.Limaya, Functional Analysis
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Unit 14 : Spectrum Of Normal Operators

CONTENTS

Objectives

Introduction

14.1 Spectrum of Normal Operator
14.2  Spectral Resolution

143 Non-Emptiness of the Spectrum
Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives

After studying this unit, you will be able to understand:

e  Spectrum of Normal Operator
e  Spectral Resolution and its Properties

¢ Non-emptiness of the Spectrum

Introduction

In this chapter, we discuss about spectrum of Normal Operators. Further, we discuss about
spectral resolution and some of its important properties. Finally, we discuss nin-emptiness of the
spectrum.

14.1 Spectrum of Normal Operator

Below we shall give some properties of the spectra of a normal operator.

Theorem. If T is a normal operator on a Hilbert space H, then x is an eigen vector of T with eigen
value 1 iff x is an eigen vector of T* with eigenvalue A.

Proof. Since T is normal operator on H,therefore T — Al is also normal operator on H where A is any
scalar.

Now,

(T=AD*=T"=2I"

=T"—11I
Since T — Al is normal, we know that an operator T on a Hilbert space H is normal iff

[IT*x|l = IT x|l for every x, therefore we have
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(T — ADx|| = |I(T — AD*x|| Vx € H
o I =Dl = || = ADx| vx e H

S ||Tx — Ax|| = |

T*x —Ax||Vx €H........... 1)

From (1), we conclude that
Tx—Ax = 0ifand only if T*x —Ax =0

Therefore x is an eigen vector of T with eigen value A if and only if it is an eigenvector of T* with
eigen value 1.

Theorem. If T is a normal operator on a Hilbert space H, then the eigenspaces of T are pairwise
orthogonal.

Proof. Let M;, M, be eigenspaces of a normal operator T on H corresponding to the distinct
eigenvalues 1; and 4,.

Then to prove that M; L M,. Let x; be any vector in M; and x; be any vector in M,.

Then,
Tx1 = Alxl and TXZ = Azxz.
We have,
Ar{xy, X2) = (A1xq, X2)
= (Txy, x3)
= (x1, T"x3)
= <X1,ﬂ.—2 xZ)
= Aa(x1, X2).
Therefore,
(A = A)(x1,x2) = 0
Implies,
(x1,x%) =0asA; # 1,
>x Lx,
Thus,
X1 Lx; Yx; €My and V x, € M,.
Hence,

Theorem. If T is a normal operator on a Hilbert space H, then each eigenspace of T reduces T.

Proof. Let M be an eigen space of T corresponding to the eigen value 4, in order to prove that M
reduces T we have to show that M is invariant both under T and T*, as we know that a closed
linear subspace M of a Hilbert space H reduces an operator T iff M is invariant under both T and
T*.

Now M is invariant under T because M is eigenspace of T. To show that M is also invariant under
T*, let us take any vector x € M . Then

Tx = Ax

Therefore T*x = 1 x. Since M is linear subspace of H, therefore x € M and A is some scalar .
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Implies,

Ax € M.Thus x € M implies T*x =Ax €M .
Therefore M is also invariant under T*.

Hence M reduces T.

Theorem. Let T be an operator on a finite dimensional Hilbert space H. Let A4, ;. ..., 4, be the
distinct eigen values of T and let My, M, ..., M, be their corresponding eigenspaces , and let
Py, Py, ..., By, be the projections on these eigenspaces. Then the following statements are equivalent.

L The M;'s are pairwise orthogonal and span H.
II. The P/s are pairwise orthogonal, Py + P, + -+ P, =T and T = 1Py + 1,P, + -+ + 1,y P

111 T is normal.

14.2 Spectral Resolution
Definition. Let T be an operator on a Hilbert space H. If there exists distinct complex numbers

Ay Az, s Ay

and non zero pairwise orthogonal projections Py, Py, ..., P, such that
T =AM Py + AP + - + APy
and 1)
P+ P+ +Py =1,

Then the expression (1) for T is called spectral resolution for T.

ENote: The spectral theorem tells us that every normal operator T on a non zero finite
dimensional Hilbert space H has a spectral resolution.

Now in the following theorem we shall prove that spectral resolution of a normal operator on a
finite dimensional non zero Hilbert space is unique.

Theorem. The spectral resolution of a normal operator on a finite dimensional non zero Hilbert
space is unique.

Proof. Let T be a normal operator on a finite dimensional non zero Hilbert space H.

Let

T211P1+12P2+“'+Ampm .......... (1)
Be a spectral resolution of T.
Then

A1, Az, oo, Ay are distinet complex numbers and P;'s are non-zero pairwise orthogonal projections
such that

Pi+Py+ 4Py =1.......... )
First we show that the scalars 14, 45, ..., A, are precisely the distinct eigen values of T.
First we shall prove that the scalars 14, 45, ..., 4, are precisely the distinct eigen values of T.
Let us first show that for each i, ; is an eigen value of T.

Since P; # 0, therefore there exists a non zero vector x in the range of P;. But P; is the projection.
Therefore

Pix = x.

Now

Tx = (llpl + AZPZ + -+ Aum)x
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= (AIPI + AZPZ + -+ Aum)Plx

= /11P1Pix + lszPix + -+ AumPix

=P’x (PP =0,if i #))

= A;Px piz = p;, p; being a projection.

= /L-x.
Thus x is a non zero vector such that Tx = A;x, therefore ; is an eigen value of T.
Now we show that each eigen value of T is an element of the set {11, 1;, ..., 4, }.

Since T is an operator on a finite dimensional Hilbert space , therefore T must posses an eigen
value. Let A be an eigen value of T. Then there exists a non zero vector x such that

Tx = Ax

= Tx = Alx aslx =x

= (/11P1+/12P2+---+/1um)x=/1(P1+P2+“'+Pm)x

> —DPx+ A —DPyx+ -+ Ay — DBpx = 0.

Operating on this with p; and remembering that P? = P; and P, P =0,if i #j, we get

A —DPix=0fori=12,..,m
If ; # A for each i, then we have P;x = 0 for each i. Then we have

P;x = 0 for each i.
Therefore,
Pix+Pyx+--+Ppx=0
=P +Py++P)x=0

=>Ix=0

>x=0
This contradicts the fact that x # 0.
Hence A must be equal to A; for some i.

This we have proved that in the spectral resolution (1) of T the scalars 4;s are precisely the distinct
eigen values of T.

Therefore if

T=a101+a202+"'+(1k0k .......... (3)

is another spectral resolution of T, then the scalars a;s are precisely the distinct eigenvalues of T.
Therefore remaining the projections Q;s, if necessary , we can write (3) in the form

T =201+ 2,02 + - + 25,0

Now we shall show that in the spectral resolution (1) of T the P;s are uniquely determined as
specific polynomials in T.

We have
TO=I1=P +P,++PB,
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T=/11P1 +AZP2+”‘+Aum

TZ = (AIPI +12P2 + "'+Aum) (AIPI +12P2 + "'+Aum)

= 2P, + -+ A4 Py,

[P? = Pi, PP = 0,if i #]]
Similarly ,
T™ = ATP; + --- + A}, Py, where n is any positive integer.

Therefore, if g(t) is any polynomial with complex coefficients, in the complex variable t, then
taking linear combination of the above relation ,we get

9T = g(A)P; + g(Ax)P, + -+ g(An) P

=2k 9(4)P;.
Now suppose that p; is a polynomial such that
pi(4) = &
That is
piA) =1,ifi =]
and

pi(li) = O,Ifl ;tj.

Then taking p; in place of g, we get

pi(T) = Z pi(4)P;.
=

m
= 251'1'1’1‘-

Jj=1
= Pi'
Thus for each i, p;(T) = P;.

Which is a polynomial in T. But we must show the existence of such a polynomial p; over the field
of complex numbers .

Obiviously

(t=21) e (t =221 )t = Ajyq ) o (E = A)
A=A e A = 2D (A = Aigr ) o (B — A)

pi(t) =

Serves the purpose .

That is

i) =1,ifi=j

and

pi(A) =0, if i #j.

If we apply the above discussion for Q;s then we shall get
Q; = p;(T) for each i.

Therefore P; = Q; for each .

Hence, the two spectral resolutions are the same.
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%Note: If T is a normal operator on a finite dimensional Hilbert space H, the there exists an
orthonormal basis for H relative to which the matrix of T is diagonal matrix.

14.3 Non-Emptiness of the Spectrum

The following theorem establishes the non-emptiness of the spectrum of an operator on a finite
dimensional Hilbert space H.

Theorem. If T is an arbitrary operator on a finite dimensional Hilbert space H, then the spectrum
of T namely o (T) is a finite subset of the complex plane and the number of points in ¢(T) does not
exceed the dimension n of H.

For the proof of this theorem, we need the following lemma

Lemma. An operator T on a finite dimensional Hilbert space H is singular if and only if there exists
a non-zero vector x € H such that Tx = 0.

Proof of lemma . Suppose there exists a non zero vector x € H such that Tx = 0. We can write
Tx=0asTx =TO.
Since x # 0,

the two distinct elements x,0 € H have the same image under T. Therefore the mapping T is not
one-one . Hence T~! does not exists . Hence it is singular.

To prove the converse assume that T is singular. Suppose there exists no non-zero vector such
that

Tx = 0.
This means that Tx = 0,
implies ,

x = 0.

Then T must be one-one. Since H is finite dimensional and T is one-one, T is onto so that T is non-
singular contracdicting the the hypothesis that T is singular .

Hence there must be a non-zero vector x such that Tx = 0.

Proof of the theorem. Let T be an operator on a finite dimensional Hilbert space H of dimension n.
A scaler A € a(T), if there exists a non-zero vector x such that (T — Al)x = 0.

Now,

(T = ADx = 0 if and only if (T — Al) is singular by the above lemma .
But,

(T = A is singular if and only if det (T — AI) = 0.

Thus,

A € o(T)if and only if 1 satisfies the equation de (T — AI) = 0.

Let B be an ordered basis for H.Thus det (T — AI) = det ([T — Allg).

But,
det([T — Al]p) = det([T] — All1p).
Thus,
det(T — AI) = det([T]z — A[5;;]).
So,

det (T — AI) = 0 implies det([T]5 — A[8;;]) = 0............ 1)
If [T]p = [a;;] is the matrix of T, then (1) gives
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ay — A Aqp A1n
a a -1 a
21 22 0 = 0 )
An1 e Opp — A

The expansion of the determinant of (2) gives a polynomial equation in A of degree n with complex
coefficients . So, by the fundamental theorem of algebra this equation must have atleast one root in
the field of complex numbers. Hence every operator T on H has an eigenvalue so that a(T) # 0.
Further, this equation in 4 has exactely n roots in the complex field. If the equation has repeated
roots , then the number of distinct roots are less than n. So that T has an eigenvalue and the
number of distinct eigenvalues of T is less than or equal to n. Hence the number of elements of
o(T) is less than or equal to n.

IENote: If the scalers associated with H are complex, o(T) contains atleast one point. It may
contain as many as n distinct points but not more than n points. If the scaler field is real, it is
possible that o (T) is empty. Hence in the spectral theory, we usually take the complex scalers so
that we get a richer theory.

Summary

e If T is a normal operator on a Hilbert space H, then x is an eigen vector of T with eigen
value 1 iff x is an eigen vector of T* with eigenvalue 1.

e If T is a normal operator on a Hilbert space H, then the eigenspaces of T are pairwise
orthogonal.

e If T is a normal operator on a Hilbert space H, then each eigenspace of T reduces T.

e A closed linear subspace M of a Hilbert space H reduces an operator T iff M is invariant
under both T and T*.

e Anoperator T on a Hilbert space H is normal iff

[IT*x]l = IT x|| for every x.

e If T be an operator on a finite dimensional Hilbert space H. Let A4, 4,. ..., 4;, be the
distinct eigen values of T and let My, My, ..., My, be their corresponding eigenspaces , and
let Py, P,, ..., Py, be the projections on these eigenspaces. Then the following statements are
equivalent.

a. The M;'s are pairwise orthogonal and span H.

The P/s are pairwise orthogonal, Py + P, + -+ Py, =T and T = 1Py + 1,P5 + -+ + 1,y Py

c. Tisnormal

e If T be an operator on a Hilbert space H. If there exists distinct complex numbers

A1) Agy oo Ao
and non zero pairwise orthogonal projections Py, Py, ..., P, such that
T = 4Py + AP + - + APy
and (1)
P+ P+ 4P, =1,
Then the expression (1) for T is called spectral resolution for T.

e  The spectral resolution of a normal operator on a finite dimensional non zero Hilbert space
is unique.

e If T is anormal operator on a finite dimensional Hilbert space H, the there exists an
orthonormal basis for H relative to which the matrix of T is diagonal matrix.

e If T is an arbitrary operator on a finite dimensional Hilbert space H, then the spectrum of
T namely o(T) is a finite subset of the complex plane and the number of points in o(T)

does not exceed the dimension n of H.
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e An operator T on a finite dimensional Hilbert space H is singular if and only if there exists

a non-zero vector x € H such that Tx = 0.

Keywords

e  Spectrum of an operator

e  Normal operator

e  Spectral resolution

e  Hilbert space

e Eigenvalue

e Figenvector

e Eigenspace

e Linear space

e Invarience

¢  Finite dimensional non zero Hilbert space

e Diagonal matrix

Self Assessment

1: If T is a normal operator on a Hilbert space H, then x is an eigen vector of T with eigen value
Aiff x is an eigen vector of T* with eigenvalue 4.

A. True

B. False

2: Which of the following statement is /are true.

I.  If T is a normal operator on a Hilbert space H, then the eigenspaces of T are pairwise
orthogonal.

II.  If T is a normal operator on a Hilbert space H, then each eigenspace of T reduces T.

Only 1 is true.
Only Il is true.
Neither (I) nor (II)
Both (I) and (II).

SN = »

3: Which of the following statement is /are true.

I. A closed linear subspace M of a Hilbert space H reduces an operator T iff M is invariant
under both T and T~.
II.  Anoperator T on a Hilbert space H is normal iff

IT*x|l = IIT x|| for every x.

Only I .

Only I

Neither (I) nor (II)
Both (I) and (II).

SN = »
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4 : The spectral resolution of a normal operator on a finite dimensional non zero Hilbert space
is unique.

A. True

B. False

5: Which of the following statement is /are true.

I.  Every self adjoint operator is normal.

II. A normal operator need not be self adjoint.
Only I .

Only II

Both (I) and (II).

. Neither (I) nor (II)

9N = »

N

: If N is a normal operator on H, then

- INZI < IINTIZ.
IN?]l = [IN]I%.
INZ] > [INI%.

. None of the above.

o9 N % >

7: An operator T on a finite dimensional Hilbert space H is singular if and only if there exists a
non-zero vector x € H such that Tx = 0.

A. True
B. False

8.If T is a normal operator on a finite dimensional Hilbert space H, the there exists an
orthonormal basis for H relative to which the matrix of T is diagonal matrix.

A. True
B. False

Answers for Self Assessment

Review Questions

Q1:- What is Spectrum of Normal operator.

Q2:- Show that if T is a normal operator on a Hilbert space H, then the eigen spaces of T are
pairwise orthogonal.

Q3:- prove that the spectral resolution of a normal operator on a finite dimensional non zero Hilbert
space is unique.

Q4:- Prove that an operator T on a finite dimensional Hilbert space H is singular if and only if there
exists a non zero x in H such that Tx=0. Prove that the zero operator on any normed space is
compact.
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m Further Readings

Introductory Functional Analysis With Applications By Erwin Kreyszig.
Functional Analysis By Walter Ruddin, Mcgraw Hill Education.

J. B Conway, A Course In Functional Analysis.

C. Goffman G Pedrick, A First Course In Functional Analysis.

B.V. Limaya, Functional Analysis.
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