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Objectives 

Particle mechanics is a branch of physics that studies the motion and behavior of particles, which 
are typically considered to be objects with zero size and mass that can move through space. It is 
based on the principles of classical mechanics, which describe how the motion of particles is 
affected by forces, energy, and momentum. The behavior of particles is described by three 
fundamental laws of motion, known as Newton's laws of motion.   

These laws state that an object will remain at rest or in uniform motion in a straight line unless 
acted upon by a force, that the force acting on an object is proportional to its mass times its 
acceleration, and that every action has an equal and opposite reaction. In addition to these laws, 
particle mechanics also involves the concepts of energy and momentum. Energy is the ability to do 
work, and it can exist in many forms, including kinetic energy (the energy of motion) and potential 
energy (the energy of position or configuration).  

Momentum, on the other hand, is the product of an object's mass and velocity, and it describes the 
object's tendency to continue moving in a straight line.  Particle mechanics is used in a wide range 
of fields, including engineering, physics, and astronomy, to study the behavior of small particles 
and to design systems that take advantage of that behavior.  Some applications of particle 
mechanics include the design of engines, the study of subatomic particles, and the development of 
computer simulations that can model the behavior of complex systems. 

After this unit you will be able understand – 

1. Understand the fundamental concepts of space and time in the context of Particle 
Mechanics. 

2. Explore the mathematical representation of space and time using coordinate systems and 
reference frames.  

3. Understand the concept of parametric equations and their application in describing 
particle motion. 

4. Study the relationship between position, velocity, and acceleration vectors in Particle 
Mechanics. 

5. Explore how to derive velocity and acceleration vectors from parametric equations. 

Dr. Rajesh Kumar Chandrawat, Lovely Professional University 
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6. Apply mathematical equations and principles to determine the position, velocity, and 
acceleration of particles at any 
given time using initial 
conditions. 

Apply mathematical equations 
and principles to determine the position, velocity, and  

Introduction 

Space and time are fundamental concepts in the field of Particle Mechanics. They provide the 
framework for understanding the motion and behavior of particles in various physical systems. 
Space refers to the three-dimensional coordinate system that allows us to locate and describe the 
position of particles in relation to a reference point. Time, on the other hand, represents the 
progression of events and is essential for measuring the duration and timing of particle motion. 
First we will understand the fundamentals of space and time and then study the Particle 
Mechanics. 

In the study of Particle Mechanics, it is crucial to grasp the theory behind space and time, including 
the mathematical representation of these concepts. This involves exploring coordinate systems, 
reference frames, and understanding how motion in space is affected by factors such as velocity, 
acceleration, and the interaction of multiple particles. By delving into the theory and mathematical 
examples, we can gain insights into the fundamental principles governing the behavior of particles 
in space and time. 

Parametric equations provide a powerful tool for describing the motion of particles. These 
equations express the position of a particle as functions of time, allowing us to determine its 
coordinates at any given moment. Understanding the relationship between position, velocity, and 
acceleration vectors is crucial for comprehending particle motion. 

By studying parametric equations, we can explore how the position vector of a particle changes 
over time, and how it influences the particle's velocity and acceleration. Analyzing parametric 
equations allows us to determine the direction, magnitude, and rate of change of these vectors, 
providing valuable insights into the particle's behavior. By examining theoretical concepts and 
engaging with mathematical examples, we can develop a deep understanding of the relationship 
between parametric equations and the velocity and acceleration of particle position vectors. 

In Particle Mechanics, initial conditions play a vital role in determining the motion of particles. 
These conditions refer to the particle's position, velocity, and acceleration at a specific initial time. 
By considering these initial values, we can predict and analyze the subsequent behavior of particles. 

Studying the velocity and acceleration of particle position vectors with respect to initial conditions 
involves exploring how the initial values influence the subsequent motion of particles. By applying 
mathematical equations and principles, we can determine how these initial conditions affect the 
particle's velocity and acceleration over time. This understanding enables us to make accurate 
predictions about the particle's behavior and analyze its motion in various scenarios. 

In many practical situations, particle motion occurs in two dimensions. The position, velocity, and 
acceleration vectors are essential tools for describing and analyzing such motion. Understanding 
the behavior of these vectors in two-dimensional motion allows us to comprehend complex 
scenarios involving projectiles, circular motion, or motion on inclined planes. 

By examining the position, velocity, and acceleration vectors in two dimensions, we can analyze the 
direction, magnitude, and relationship between these vectors. This understanding provides 
valuable insights into the path, speed, and acceleration of particles in complex motion scenarios. By 
exploring theoretical concepts and solving mathematical problems related to two-dimensional 
motion, we can develop proficiency in applying vectors to describe and analyze particle motion in a 
broader range of practical situations. 

 

1.1 Space and Time 

In Particle Mechanics, we commonly use Cartesian coordinate systems to represent the position of 
particles in space. A Cartesian coordinate system consists of three perpendicular axes: x, y, and z. 
Each axis is associated with a numerical value, and a particle's position can be described using 
coordinates (x, y, z) that specify its location in the three-dimensional space. 

1. acceleration of particles in two-dimensional motion. 
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Example  

Consider a particle located in three-dimensional space. We can describe its position using Cartesian 
coordinates (x, y, z). Let's say the particle is located at coordinates (2, 3, 3).  

 

Figure 1. 1: Position of a point A (2,3,3) in space 

Here, the particle's x-coordinate is 2, y-coordinate is 3, and z-coordinate is 3. The Cartesian 
coordinate system provides a precise mathematical representation of the particle's position in space. 

Reference Frames: Reference frames provide a framework for observing and analyzing particle 

motion. In classical mechanics, we often work with inertial reference frames where the laws of 
physics hold true. An inertial reference frame is one that remains at a constant velocity or at rest 
relative to distant stars. 

Example:  

Imagine a car moving along a straight road. An inertial reference frame could be a stationary 
observer standing by the road. The observer measures the car's position, velocity, and acceleration 
relative to their own fixed position. This inertial reference frame remains at a constant velocity or at 
rest relative to distant stars, ensuring that the laws of physics hold true. 

Position Vector: The position vector represents the location of a particle in space relative to a 
chosen reference point or origin. It is denoted by r and can be expressed as � �  �� �  �� �  	
, 
where i, j, and k are the unit vectors along the x, y, and z axes, respectively. The components x, y, 
and z correspond to the distances of the particle along each axis. 

 

Example: 

Suppose a particle is located in three-dimensional space, and the chosen reference point is the 
origin (0, 0, 0).  

The position vector, denoted as r, represents the particle's location relative to the origin. Let's say 
the particle is located at coordinates (3, -1, 4). The position vector can be expressed as r = 3i - j + 4k, 
where i, j, and k are the unit vectors along the x, y, and z axes, respectively. 

Displacement Vector: The displacement vector, denoted as ��, represents the change in position of 
a particle.  

It can be obtained by subtracting the initial position vector from the final position vector, 

 �� �  �����  �  �������� . The components of the displacement vector indicate the changes in the x, y, 

and z coordinates. 

Example:  
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Consider a particle moving from an initial position with coordinates �1, 2, 3� to a final position with 
coordinates �4, 6, 8�. The displacement vector, denoted as ��, represents the change in position. It 
can be obtained by subtracting the initial position vector from the final position vector:  

�� �  �4� �  6� �  8
�  � �1� �  2� �  3
�  �  3� �  4� �  5
.  
The components of the displacement vector �3, 4, 5� indicate the changes in the x, y, and z 
coordinates. 

Time: Time is a fundamental parameter in Particle Mechanics. It allows us to analyze the behavior 
of particles over specific intervals or durations. The unit of time is typically seconds (s), and it is 
represented by the variable t. 

In combination, space and time can be represented as a four-dimensional entity known as 
spacetime. This concept arises from the theory of relativity, where time is considered as a 
dimension similar to the three spatial dimensions. Spacetime is often represented using a four-
dimensional coordinate system (x, y, z, t), known as Makowski spacetime. 

Example:  

Suppose we have a particle moving in three-dimensional space, and we want to analyze its position 
at two different times. 

Let's say at time � �  0  !"#$% , the particle is located at position  

��₁, �₁, 	₁�  �  �2 '!�!� , 3 '!�!� , 1 '!�!��.  
After some time has passed, at time � �  5  !"#$% , the particle moves to a new position 

 ��₂, �₂, 	₂�  �  �5 '!�!� , 1 '!�!�, 4 '!�!� �. 
We can represent the two positions of the particle in three-dimensional space: 

)# ���#$ 1: ��₁, �₁, 	₁, ��  �  �2 '!�!� , 3 '!�!� , 1 '!�!�, +� � �  0  !"#$% � 
 )# ���#$ 2: ��₂, �₂, 	₂, ��  �  �5 '!�!� , 1 '!�!�, 4 '!�!� , +� � �  5  !"#$% � 

By considering the three spatial dimensions (x, y, z) and the corresponding times, we have a 
comprehensive description of the particle's motion. We can see that the particle moved from 
position 1 to position 2 during a time interval of 5 seconds. 

 

1.2 Velocity and Acceleration Vector 

The velocity vector, denoted by v, represents the rate of change of the position vector with respect 
to time. It indicates the direction and magnitude of the particle's motion. To obtain the velocity 
vector, we differentiate the position vector with respect to time. 

Given: � �  �� �  �� �  	
 

Taking the derivative of r with respect to time (t), we get: 

, �  %�/%� �  %��� �  �� �  	
�/%� �  �%�/%��� �  �%�/%��� �  �%	/%��
 

The terms %�/%�, %�/%�, +$% %	/%� represent the rates of change of �, �, +$% 	 coordinates with 
respect to time, respectively. 

The acceleration vector, denoted by a, represents the rate of change of velocity with respect to time. 
It indicates how quickly the velocity of the particle is changing. To obtain the acceleration vector, 
we differentiate the velocity vector with respect to time. 

Given: , �  �%�/%��� � �%�/%��� �  �%	/%��
 

Taking the derivative of v with respect to time (t), we get: 

+ � %,%� � % ./%�%� 0 � � 1%�%� 2 � � /%	%�0 
3
%�   

�  �%²�/%�²�� � �%²�/%�²�� � �%²	/%�²�
 

The terms %²�/%�², %²�/%�², +$% %²	/%�² represent the second derivatives of x, y, and z coordinates 
with respect to time, respectively. 
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These vectors provide information about the particle's velocity and acceleration in three-
dimensional space based on its position vector. 

Note: The derivatives of x, y, and z coordinates with respect to time can be computed using 
calculus principles, such as the chain rule, product rule, and power rule. 

 

Example:  

Suppose we have a particle whose position vector at any given time t is given by 

 � �  �2��� �  �3�5�� � �4�6�
. 
Velocity Vector: To find the velocity vector, we differentiate the position vector with respect to 
time. 

Taking the derivative of r with respect to time (t), we get: 

, � %�%�  � %7�2��� � �3�5�� �  �4�6�
8%�  �  �2� �  6�� �  12�5
� 

So, the velocity vector v = (2� �  6�� �  12�5
). 

Acceleration Vector: To find the acceleration vector, we differentiate the velocity vector with 
respect to time. 

Given: v = (2� �  6�� �  12�5
) 

Taking the derivative of v with respect to time (t), we get: 

+ � %,%�  �  %�2� �  6�� �  12�5
�/%�  
 �  �0� �  6� �  24�
� 

So, the acceleration vector + �  �0� �  6� �  24�
�. 
In this example, the position vector � �  �2��� � �3�5�� � �4�6�
 represents the location of a 
particle in three-dimensional space relative to a chosen reference point or origin. 

 The velocity vector , �  �2� �  6�� �  12�5
� represents the rate of change of the position vector, 
and the acceleration vector + �  �0� �  6� �  24�
� represents the rate of change of the velocity 
vector with respect to time. 

Note: The values of x, y, and z coordinates in the position vector may vary depending on the 
specific example or scenario. The example provided here demonstrates the concept and the process 
of calculating velocity and acceleration vectors using a position vector in three-dimensional space. 

 

1.3 Velocity Acceleration of Particle Position Vector - Parametric 
Equations 

Position, velocity, and acceleration vectors can be described using parametric equations, which 
involve expressing the position, velocity, and acceleration of a particle as functions of a parameter, 
typically time (t).  

Let's explore how parametric equations are used to represent these vectors. 

Position Vector: The position vector of a particle can be expressed parametrically as:  

� �  9���, � �  :���, +$% 	 �  ℎ��� 

Here, �, �, +$% 	 represent the coordinates of the particle's position at time �.  
The functions 9���, :���, +$% ℎ��� determine how the particle's position changes with respect to 
time. These functions can be chosen based on the specific motion or trajectory of the particle. 

For example, let's consider a particle moving along a straight line in three-dimensional space.  

We can represent its position vector using parametric equations:  

� �  2� 

  � �  3� �  1,  
Lovely Professional University 5
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  	 �  �� �  5 

In this case, the position of the particle at any given time t can be obtained by substituting the value 
of t into these equations. 

Velocity Vector: The velocity vector represents the rate of change of the position vector with respect 
to time. To express the velocity vector using parametric equations, we differentiate each coordinate 
function with respect to time: 

,<  � %�%�  

 ,=  � %�%�  

 ,>  � %	%� 

Using these equations, we can determine how the particle's velocity changes as time progresses. 

Continuing with the previous example, let's calculate the velocity vector: 

 ,<  � %�2��%�  �  2  
,=  � %�3� �  1�%�  �  3  

,>  � %��� �  5�%�  �  �1 

Therefore, the velocity vector is given by , �  �2, 3, �1�. 
Acceleration Vector: The acceleration vector represents the rate of change of velocity with respect to 
time. Similar to the velocity vector, we differentiate each coordinate function of the velocity vector: 

+<  � %,<%�   
+=  � %,=%�   
+>  � %,>%�  

By determining these equations, we can understand how the particle's acceleration changes over 
time. 

Using the previous example, let's calculate the acceleration vector:  

+<  � %�2�%�  �  0  
 +=  � %�3�%�  �  0 

 +>  � %��1�%�  �  0 

Thus, the acceleration vector is a = (0, 0, 0). 

In summary, parametric equations allow us to represent the position, velocity, and acceleration 
vectors of a particle as functions of a parameter, typically time. By defining the appropriate 
functions for each coordinate, we can describe the motion and behavior of particles in various 
scenarios. 

Question 

Consider the position vector of the particle in terms of the unit vectors can be written as follows: 

����  �  ����� �  ����� 

Given the parametric equations 

���� �  3� 

 ����  �  4�5 
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Answer the followings: 

1. Write the position vector of the particle in terms of the unit vectors.  

2. Calculate the velocity vector and its magnitude (speed).  

3. Express the trajectory of the particle in the form y(x). 

4. Calculate the unit tangent vector at each point of the trajectory.  

5. Calculate the acceleration of the particle. 

Solution 

1. The position vector becomes: ����  �  �3��� �  �4�5�� �'� 

2. To calculate the velocity vector, we differentiate each component of the position vector 

with respect to time: 

,��� � %�%�  � � %�%�  � 

Differentiating the equations for ���� +$% ���� gives:  

%�%� �  3 

%�%�  �  8� 

Therefore, the velocity vector is: ,��� �  3� �  �8��� '/  

To calculate the magnitude (speed) of the velocity vector, we use the formula: 

|,���|  �  @1%�%� 25  �  1%�%� 25
 

Substituting the values, we have:  

 |,���|  �  A�3�5  �  �8��5 
|,���| �  A9 � 64�5  '/  

3. To express the trajectory of the particle in the form ����, we can eliminate the parameter t. 

From the given equations:  

���� �  3�  
����  �  4�5 

We can solve the first equation for t and substitute it into the second equation: 

 � � �3  
 ���� �  4 /�305

 

 ����  �  1492 �5 

The trajectory of the particle is given by the equation ����  �  /CD0 �5. 
4. To calculate the unit tangent vector at each point of the trajectory, we differentiate the 

position vector with respect to t, normalize it, and express it in terms of the unit vectors: 

E��� �  F ,���|,���|G  �  1 3|,���|2 � � 1 8�|,���|2 � 

The unit tangent vector at each point of the trajectory is given by  

E��� �  F ,���|,���|G  �  1 3√9 � 64�5  2 � � 1 8�√9 � 64�5  2 � 
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To calculate the acceleration of the particle, we differentiate the velocity vector with respect to time: 

+��� � %5�%�5  � � %5�%�5  � 
Differentiating the equations for 

I<I�  +$% I=I�  :�,! : IJ<I�J   �  0 +$% IJ=I�J  �  8 

Therefore, the acceleration vector is: +���  �  0� �  8� �  8� 
The acceleration of the particle is + �  8�  '/ 5 

 

 

1.4 Velocity Acceleration of Particle Position Vector -Initial conditions 

In particle mechanics, the initial conditions refer to the state of a particle at a specific initial time. 
These conditions include the initial position, velocity, and possibly acceleration of the particle. By 
knowing these initial conditions, we can determine the particle's motion and behavior over time. 

The initial position of a particle is the location of the particle at the initial time. It is represented by 
the position vector �K  �  �K� � �K� � 	K
, where �K, �K, +$% 	K are the initial coordinates along the 
x, y, and z axes, respectively. 

The initial velocity of a particle is the rate of change of position at the initial time. It is represented 
by the velocity vector ,K  �  ,K� � � ,K� � � ,K	 
, where ,K�, ,K�, +$% ,K	 are the initial velocities 
along the �, �, +$% 	 axes, respectively. 

In some cases, the initial acceleration of a particle may also be given. The initial acceleration is the 
rate of change of velocity at the initial time. It is represented by the acceleration vector +K  � +K� � � +K� � �  +K	 
, Lℎ!�! +K�, +K�, +$% +K	 are the initial accelerations along the �, �, +$% 	 
axes, respectively. 

By incorporating the initial conditions into the equations of motion, such as the kinematic 
equations, we can determine the particle's position, velocity, and acceleration as functions of time. 
These equations allow us to analyze the motion and predict the behavior of the particle at any given 
time, based on its initial conditions. 

It is important to note that the initial conditions provide a starting point for the particle's motion, 
and subsequent changes in the particle's state are determined by the forces and interactions acting 
upon it. 

Understanding and applying the concept of initial conditions is crucial for solving particle 
mechanics problems, as it enables us to establish the foundation for studying the particle's motion 
and analyzing its behavior throughout the course of its motion. 

Question 

A particle is initially at the position MN �  3O �  2P �'� and its acceleration is Q �  �10P �'/ 5�.  
The particle has an initial velocity given by: RN �  2O �  2P �'/ �.  
Find the velocity, position and acceleration as a function of time.  

Express the trajectory of the particle in the form ����. 
Solution 
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Figure 1. 2: Geometry of initial position and velocity 

 
To find the velocity, position, and acceleration as a function of time, we can integrate the given 
acceleration to obtain the velocity, and then integrate the velocity to obtain the position. 

Given information: Initial position: �K  �  3� �  2� �'�  

Initial velocity: ,K  �  2� �  2� �'/ �  

Acceleration: + �  �10� �'/ 5� 

Integration of acceleration gives the velocity: ,���  �  S + %� �  S ��10�� %� �  �10�� �  T 

Using the initial velocity ,K  �  2� �  2� �'/ �, we can determine the constant C:  

,�0� �  ,K  � 10�0�� �  T �  2� �  2� 
 T �  2� �  2� 

Therefore, the velocity as a function of time is: ,���  �  �10�� �  �2� �  2�� '/  

 

Integrating the velocity gives the position: 

 ���� �  S , %�  
�  S 7�10�� � �2� �  2��8%�  
�  �5�5� � �2�� �  2���  �  U 

Using the initial position �K  �  3� �  2� �'�, we can determine the constant D: 

 ��0� �  �K  � 5�0�5� � �2�0�� �  2�0��� �  U �  3� �  2� 
 U �  3� �  2� 

Therefore, the position as a function of time is:  

���� �  �5�5� � �2�� �  2��� �  �3� �  2�� 

 �  2�� �  �2� � 5�5�� �  3� �  2� 
 �  �2� �  3�� � �2� �  5�5  �  2�� 

 

The trajectory of the particle can be expressed in the form y(x) by eliminating the parameter t. From 
the position equation: 

 � �  2� �  3  
� �  2� �  5�5  �  2 

We can solve the first equation for t and substitute it into the second equation: 
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 � � � �  32  

���� �  2 1� �  32 2 �  5 1� �  32 25  �  2 

 ���� �  �� �  3� � 54 �� �  3�5  �  2  
 ���� �  �� �  3� � 54 ��5  �  6� �  9� �  2 

 ���� �  � �  3 � 54 �5  � 304 � � 454  �  2  
 ���� �  � 54 �5  � 344 � � 494  

The trajectory of the particle is given by the equation  ���� �  � VC �5  � 6CC � � CDC  
 

1.5 Position Velocity Acceleration vectors - Two-dimensional motion 

By analyzing the components of the position, velocity, and acceleration vectors, we can gain 
insights into the particle's motion in two-dimensional space. The magnitudes and directions of 
these vectors provide information about the particle's speed, trajectory, and changes in velocity. 

To study two-dimensional motion, we often use equations of motion derived from the principles of 
calculus and physics. These equations describe the relationships between position, velocity, and 
acceleration in terms of time. Solving these equations allows us to determine the particle's position, 
velocity, and acceleration as functions of time and understand its behavior in a two-dimensional 
plane. 

Understanding the concepts of position, velocity, and acceleration vectors in two-dimensional 
motion is fundamental in analyzing various physical phenomena, such as projectile motion, circular 
motion, and motion along curved paths. It provides a mathematical framework for studying and 
predicting the behavior of particles moving in two dimensions. 

Question 

A tennis player throws the ball against a vertical wall 25 m away (we will call this distance d). The 
ball is initially 2 m above the ground (y0 = 2 m), and has an initial velocity given by:  

 RN �  20 O � 10 P �'/ �. The wind produces a constant horizontal acceleration Q �  �3 O �'/ 2�. 
1. Convert the initial velocity vector from component form into magnitude and direction 

form. 

2. Calculate the position, velocity and acceleration vectors as a function of time. 

3. The time at which the ball reaches the highest point of its trajectory. 

4. The time at which the ball hits the wall. 

5. The height at which the ball hits the wall 

6. The velocity vector at the moment of impact. 
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                 Figure 1. 3 Geometry of the tennis player throws problem 

Solution 

1. Convert the initial velocity vector from component form into magnitude and direction 
form: Given: RN  �  WNO �  XNP �'/ � 

To convert it into magnitude and direction form, we calculate:  

Magnitude: |,K| � √205 � 105 �  √500  Y  22.36 Z[  

U��!"��#$: \ � tan`a 1/2  Y  26.57 %!:�!!  

So, the initial velocity vector in magnitude and direction form is approximately 22.36 m/s at an 
angle of 26.57 degrees above the positive x-axis. 

 

2. Calculate the position, velocity, and acceleration vectors as a function of time: 

c�,!$: ���� �  ,K� ∗  � � 1122 ∗  +<  ∗  �5  
����  �  �K  �  ,K� ∗  � �  1122 ∗  +=  ∗  �5 

Substituting the given values: 

                                                                  ���� �  20� – /650 �5 

����  �  2 �  10� �  4.9�5 

The velocity vector is obtained by taking the derivatives of the position vector with respect to time: ,���  �  /I<I�0  � �  /I=I�0  � 

Differentiating x(t) and y(t) with respect to time:  

%�%� �  �20 �  3�� 

%�%�  �  �10 �  9.8�� 

So, the velocity vector is: ,���  �  �20 �  3�� � � �10 �  9.8�� � 
The acceleration vector is obtained by taking the derivatives of the velocity vector with respect to 

time: +���  �  /IfI�0  � �  /IgI� 0  � 

Differentiating v(t) with respect to time: 
IfI�  �  �3 � �  9.8 � 

So, the acceleration vector is: +���  �  �3 � �  9.8 � 

3. The time at which the ball reaches the highest point of its trajectory: To find the time at 
which the ball reaches the highest point, we need to determine when the vertical 
component of the velocity becomes zero.  
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Setting 
I=I�  �  0 and solving for �: 

10 �  9.8� �  0 9.8� �  10 � �  10/9.8 Y  1.02  !"#$%  

Therefore, the time at which the ball reaches the highest point of its trajectory is approximately 1.02 
seconds. 

4. The time at which the ball hits the wall: The ball hits the wall when the horizontal 
component of its position is equal to the distance to the wall, which is 25 m.  

Setting ����  �  25 and solving for t: 

20� � 1322 �5  �  25  
1322 �5  �  20� �  25 �  0 

Solving this quadratic equation, we find two solutions for �: � Y  1.67 seconds and � Y  6.67 
seconds. However, the negative value for t can be ignored in this context. 

Therefore, the time at which the ball hits the wall is approximately 1.67 seconds. 

5. The height at which the ball hits the wall: To find the height at which the ball hits the wall, 
we substitute the value of t into the y(t) equation: 

��1.67�  �  2 �  10�1.67�  �  4.9 

Summary 

 Parametric equations: Equations expressing position, velocity, and acceleration as functions 

of a parameter, typically time. 

 Space: Three-dimensional coordinate system for locating and describing particle positions. 

 Time: Parameter used to measure the duration and timing of particle motion. 

 Reference frames: Frameworks for observing and analyzing particle motion, often using 

inertial frames. 

 Position vector: Represents the location of a particle relative to a reference point in space. 

 Displacement vector: Represents the change in position of a particle. 

 Spacetime: Four-dimensional entity combining space and time, often represented as (x, y, z, 

t). 

 Velocity vector: Represents the rate of change of the position vector with respect to time as: 
, �  �%�/%��� � �%�/%��� �  �%	/%��
 

 Acceleration vector: Represents the rate of change of velocity with respect to time as:  
+ �  �%²�/%�²�� � �%²�/%�²�� �  �%²	/%�²�
 

 

Keywords 

 Parametric equations: Equations expressing position, velocity, and acceleration as functions 

of a parameter, typically time. 

 Space: Three-dimensional coordinate system for locating and describing particle positions. 

 Time: Parameter used to measure the duration and timing of particle motion. 

 Reference frames: Frameworks for observing and analyzing particle motion, often using 

inertial frames. 

 Position vector: Represents the location of a particle relative to a reference point in space. 

 Displacement vector: Represents the change in position of a particle. 

 Spacetime: Four-dimensional entity combining space and time, often represented as (x, y, z, 

t). 

 Velocity vector: Represents the rate of change of the position vector with respect to time. 
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 Acceleration vector: Represents the rate of change of velocity with respect to time. 

 

Self Assessment 

1.  The position vector of a particle is given by: � �  10� � �  20�5 � � 12 �
 �'�.Then at t = 3 
seconds, what is the position vector of the particle?  

A. r = 30 i + 180 j - 36 k (m)  

B. r = 30 i + 180 j + 36 k (m) 

C. r = 30 i + 540 j - 36 k (m)  

D. r = 30 i + 540 j + 36 k (m) 

 

2. The position vector of a particle is given by: � �  10� � �  20�5 � � 12 �
 (m).Then what is the 
velocity vector of the particle?  

A. v �  10 i �  40t j �  12 k �m/s�  
B. v �  10 i �  40t j �  12 k �m/s�  
C. v �  10 i �  40t5 j �  12 k �m/s�  
D. v �  10 i �  40t5 j �  12 k �m/s� 

 
3. The position vector of a particle is given by: � �  10� � �  20�5 � � 12 �
 �m).What is the 

acceleration vector of the particle?  

A. a �  20 i �  40t j �  12 k �m/s²�  
B. a �  20 i �  40t j �  12 k �m/s²�  
C. a �  20 i �  40t5 j �  12 k �m/s²�  
D. a �  20 i �  40t5 j �  12 k �m/s²� 

 
4. The position vector of a particle is given by: � �  10� � �  20�5 � � 12 �
 �'�, at t = 2 s, what 

is the velocity vector of the particle?  

A. v �  10 i �  80 j �  12 k �m/s�  
B. v �  10 i �  80 j �  12 k �m/s�  
C. v �  10 i �  160 j �  12 k �m/s�  
D. v �  10 i �  160 j �  12 k �m/s� 

 

5. The position vector of a particle is given by: � �  10� � �  20�5 � � 12 �
 �'�. At t = 1 s, what 
is the magnitude of the acceleration vector of the particle? 

A. 16 m/s²  

B. 20 m/s²  

C. 24 m/s²  

D. 32 m/s² 

 

6. A particle is initially at the position MN �  3O �  2P �'� and its acceleration is Q � �10P �'/ 5�. The particle has an initial velocity given by: RN �  2O �  2P �'/ �.  
Find the velocity at t = 0 second. 

A. v�0�  �  � �2i �  2j� m/s 
B. v�0�  �   �2i �  2j� m/s 
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C. v�0�  �  10tj  m/s 
D. v�0�  �  �10tj m/s 
 

7. 6. A particle is initially at the position MN �  3O �  2P �'� and its acceleration is Q � �10P �'/ 5�. The particle has an initial velocity given by: RN �  2O �  2P �'/ �. Find the 
velocity at t = 2 second. 

A. �20j �  �2i �  2j� m/ 

B. �10j �  �2i �  20j� m/ 

C. �12j �  �20i �  2j� m/s 

D. �20j �  �20i �  22j� m/s 
 

7.  A particle is initially at the position MN �  3O �  2P �'� and its acceleration is Q �
 �10P �'/ 5�. The particle has an initial velocity given by: RN �  2O �  2P �'/ �. Find the 

position at t = 1 second. 

A. 5i �   2j 
B. 5i � 5j 
C. 3i �  2j 
D. 3i �  2j 
 

8. A particle is initially at the position MN �  3O �  2P �'� and its acceleration is Q �
 �10P �'/ 5�. The particle has an initial velocity given by: RN �  2O �  2P �'/ �. Find the 

position at t = 0 second. 

A. 3i �   2j 
B. 5i � 5j 
C. 3i �  2j 
D. 5i �  5j 
 

9. A particle is initially at the position rN �  3s �  2t �m� and its acceleration is u �
 �10t �m/s5�. The particle has an initial velocity given by: vN �  2s �  2t �m/s�. Find The 

trajectory of the particle at x = 0 m. 

A. -49/4 

B. -35/4 

C. -1/4 

D. 0 

 

10. A particle is initially at the position rN �  3s �  2t �m� and its acceleration is u �
 �10t �m/s5�. The particle has an initial velocity given by: vN �  2s �  2t �m/s�. Find The 

trajectory of the particle at x = 1 m. 

A. -49/4 

B. -35/4 

C. -1/4 

D. 0 
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11. A particle is initially at the position rN �  3s �  2t �m� and its acceleration is u �
 �10t �m/s5�. The particle has an initial velocity given by: vN �  2s �  2t �m/s�. Find The 

trajectory of the particle at x = 0 m. 

A. -49/4 

B. -35/4 

C. -1/4 

D. 0 

 

12. A tennis player throws the ball against a vertical wall 30 m away.The ball is initially 2 m 

above the ground ��K  �  3 '�, and has an initial velocity given by:  ,K   �  10 � � 10 � �'/ �. 
The wind produces a constant horizontal acceleration + �  �4 � �'/ 5�. Then the initial 

velocity vector from component form into magnitude and direction form.  

A. 10√2, 45° 

B. 10√3, 45° 

C. √2, 90° 

D. √3, 90° 

 

13. A tennis player throws the ball against a vertical wall 30 m away.The ball is initially 2 m 

above the ground ��K  �  3 '�, and has an initial velocity given by:  ,K   �  10 � � 10 � �'/ �. 
The wind produces a constant horizontal acceleration + �  �4 � /Z[J0.  

Then the position as a function of time. 

A. r�t� � �10� � 2�5�� � �3 �  10� �  4.9�5�� 

B. r�t� � 30i � [2 � 10t - 4.9t²]j 
C. r�t� � 30i � [5 � 10t - 4.9t²]j 
D. r�t� � 30i � [2 � 5t - 4.9t²]j 
 

 

14. A tennis player throws the ball against a vertical wall 30 m away.The ball is initially 2 m 

above the ground ��K  �  3 '�, and has an initial velocity given by:  ,K   �  10 � � 10 � �'/ �. 
The wind produces a constant horizontal acceleration + �  �4 � /Z[J0.  

Then the velocity vectors as a function of time. 

A. V�t� � �10�� � �10 �  9.8��� 

B. V�t� � ��4��� � �10 �  9.8��� 

C. V�t� � �10 � 4��� � �10 �� 
D. V�t� � �10 � 4��� � � 9.8�� 

Answers for Self Assessment 

1. A 2. A 3. A 4. B 5. B 

6. B 7. A 8. B 9. A 10. A 

11. B 12. C 13. A 14. A 15. A 
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Review Questions 

1. The position vector of a particle is given by: M �  3� O �  2�5 P  � 2 |  �'�. Find its velocity 

and its acceleration. 

2. The parametric equations (in m) of the trajectory of a particle are given by: 

 ���� �  3�5, +$% ���� �  4� Calculate the velocity vector and its magnitude (speed). 

3. The parametric equations (in m) of the trajectory of a particle are given by: 

 ���� �  3�5, +$% ���� �  4�  Express the trajectory of the particle in the form y(x).  

4. A particle is initially at the position MN �  2O �  5P �'� and its acceleration is Q �
 �9.8P �'/ 5�. The particle has an initial velocity given by: RN �  O �  3P �'/ �.  Find the 

velocity, position and acceleration as a function of time. Express the trajectory of the 

particle in the form ����. 
5. A particle is initially at the position MN �  O �  4P �'� and its acceleration is Q �

 �9.8P �'/ 5�. The particle has an initial velocity given by: RN �  2O �  3P �'/ �.  Find the 

velocity, position and acceleration as a function of time. Express the trajectory of the 

particle in the form ����. 
 

 
Further Readings  

Classical Mechanics By Herbert Goldstein Charles P. Poole John Safko, Pearson 

Classical Mechanics By Dr. J. C. Upadhyaya, Himalaya Publishing House 
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Objectives 

The purpose of studying the conservation of momentum and the energy equation for conservative 
fields is to establish fundamental principles in physics that enable us to understand and predict the 
behavior of objects and systems. These principles provide a framework for analyzing the transfer 
and transformation of momentum, as well as the interplay between potential and kinetic energy, in 
a wide range of physical phenomena. By investigating the conservation of momentum, we can gain 
insights into the dynamics of collisions, interactions, and the overall motion of objects. 
Simultaneously, understanding the energy equation for conservative fields allows us to 
comprehend the equilibrium, energy conservation, and energy transformations in systems 
governed by conservative forces. By exploring these principles, we can apply them to solve 
practical problems, make predictions, and gain a deeper understanding of the fundamental laws 
that govern the physical world. 

After this unit you will be able understand – 

1. Develop a comprehensive understanding of the concepts of momentum, kinetic energy, 
potential energy, and their interrelations in various physical systems. 

2. Apply the principles of conservation of momentum and the energy equation for 
conservative fields to analyze and solve problems related to collisions, interactions, and 
equilibrium in different scenarios. 

3. Gain proficiency in calculating momentum and recognizing it as a vector quantity, as well 
as deriving and utilizing the energy equation for conservative fields in practical 
applications. 

4. Explore the implications of the conservation of momentum and the energy equation for 
conservative fields in real-life examples, such as sports, transportation, and celestial 
mechanics. 

Dr. Rajesh Kumar Chandrawat, Lovely Professional University 
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5. Enhance critical thinking and problem-solving skills by applying the principles of 
conservation of momentum and the energy equation for conservative fields to analyze and 
predict the motion, equilibrium, and energy transformations in physical systems. 

 

Introduction 

In the field of physics, the study of fundamental principles and mathematical frameworks forms the 
bedrock of our understanding of the physical world. From the conservation of momentum to the 
energy equation for conservative fields, and the concept of constraints in various coordinate 
systems, these topics are crucial in elucidating the behavior and dynamics of physical systems. In 
this scientific exploration, we embark on a journey to delve into the intricacies of these fundamental 
concepts. 

The principle of conservation of momentum states that in an isolated system, the total momentum 
remains constant unless acted upon by external forces. Symbolically, this principle can be expressed 
as: 

Σ� = constant, 

where Σ� represents the sum of the momenta of all objects in the system. By examining the transfer 
and transformation of momentum during interactions such as collisions or explosions, we can 
unlock valuable insights into the motion and behavior of objects. 

The energy equation for conservative fields is a fundamental tool in analyzing the interplay 
between potential and kinetic energy within a system governed by conservative forces. In 
mathematical terms, it can be expressed as: 

� = � + �, 

where � represents the total mechanical energy, � denotes the kinetic energy, and � signifies the 
potential energy. By understanding the relationship between these energy forms and their 
conservation, we can unravel the equilibrium and energy transformations within physical systems. 

In the study of physical systems, constraints play a crucial role in defining the permissible motion 
of objects. By considering constraints in various coordinate systems, we can mathematically express 
the limitations imposed on the motion of particles. The degree of freedom (DOF) of a system 
quantifies the number of independent variables required to describe its configuration fully. By 
analyzing constraints and determining the DOF, we gain insights into the complexity and behavior 
of physical systems. 

To further refine our understanding of constraints, the concept of generalized coordinates provides 
a powerful framework. Generalized coordinates are a set of independent variables that fully 
describe the configuration of a system. By employing generalized coordinates, we can express 
constraints in a concise and elegant manner, enabling us to analyze and solve complex problems in 
a more efficient and comprehensive way. 

Holonomic and non-holonomic systems provide distinct perspectives on the constraints governing 
the motion of objects. In holonomic systems, constraints can be expressed algebraically, while in 
non-holonomic systems, the constraints involve inequalities and cannot be fully described 
algebraically. Understanding the characteristics and implications of holonomic and non-holonomic 
systems allows us to tackle a wide array of physical phenomena, ranging from simple mechanical 
systems to complex robotic movements. 

By exploring the conservation of momentum, the energy equation for conservative fields, 
constraints in various coordinate systems, and the distinction between holonomic and non-
holonomic systems, we aim to deepen our understanding of the fundamental principles that govern 
the behavior of physical systems. Through mathematical symbolization and rigorous analysis, we 
endeavor to unravel the intricate nature of these concepts and their implications in the world of 
physics. 

 

2.1 Conservation of Momentum 

In Potential Energy and Conservation of Energy, any transition between kinetic and potential 
energy conserved the total energy of the system. This was path independent, meaning that we can 
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start and stop at any two points in the problem, and the total energy of the system—kinetic plus 
potential—at these points are equal to each other.  

This is characteristic of a conservative force. We dealt with conservative forces in the preceding 
section, such as the gravitational force and spring force. When comparing the motion of the football 
in figure 2.1.  

 

Figure 2. 1: Kinetic and potential energy at different stages of motion of the football 

The total energy of the system never changes, even though the gravitational potential energy of the 
football increases, as the ball rises relative to ground and falls back to the initial gravitational 
potential energy when the football player catches the ball.   

Non-conservative forces are dissipative forces such as friction or air resistance. These forces take 
energy away from the system as the system progresses, energy that you can’t get back. These forces 
are path dependent; therefore, it matters where the object starts and stops. 

 

2.2 Conservation of Linear Momentum 

The conservation of linear momentum, expressed mathematically, is a consequence of Newton's 
second and third laws of motion. According to Newton's second law, the rate of change of 
momentum of an object is equal to the net force acting on it. Mathematically, this can be stated as: 

�� � 	
���
	� , 

where Σ� represents the net force acting on the system and 
�
���

��  represents the rate of change of the 

total momentum of the system with respect to time. 

In an isolated system, where there are no external forces acting, the net force 
��� is zero. 
Therefore, the rate of change of total momentum is also zero: 

�� �  	
���/	� �  0. 
This implies that the total momentum (Σ�) of the system is constant and conserved. 

To further explore this principle, let's consider a system consisting of two objects with masses �₁ 
and �₂ and velocities �₁ and �₂, respectively. The total momentum of the system before interaction 
can be calculated as: 

���������  �  �₁�₁ �  �₂�₂. 
If the objects interact or collide, they exert forces on each other, causing a change in their individual 
velocities. However, the total momentum of the system after interaction can be expressed as: 

�������  �  �₁�₁′ �  �₂�₂′, 
where �₁' and �₂' represent the final velocities of the objects. 

By applying the conservation of linear momentum, we can equate the initial and final total 
momenta: 
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���������  �  ������� , 
�₁�₁ �  �₂�₂ �  �₁�₁′ �  �₂�₂′. 

 

This equation demonstrates that the total momentum of the system is conserved during the 
interaction, regardless of the specific forces and changes in velocities involved. 

The conservation of linear momentum has wide-ranging applications in diverse fields, such as 
analyzing the behavior of particles in collisions, predicting the motion of projectiles, understanding 
the dynamics of fluids, and even exploring the movement of celestial bodies in space. By utilizing 
mathematical formulations and understanding the principles behind the conservation of linear 
momentum, scientists can accurately describe and predict the behavior of objects and systems, 
contributing to our scientific knowledge and technological advancements. 

Example: Conservation of Linear Momentum  

A particle with a mass of 2 kg is moving to the right with a velocity of 4 m/s. It collides with a 
stationary particle of mass 3 kg. After the collision, the 2 kg particle moves to the left with a velocity 
of 1 m/s. What is the final velocity of the 3 kg particle? 

Solution:  

According to the conservation of linear momentum, the total linear momentum before the collision 
is equal to the total linear momentum after the collision. The linear momentum of an object is 
defined as the product of its mass and velocity. 

Let the final velocity of the 3 kg particle be denoted as v. 

Therefore, the total linear momentum before the collision is  

2 "# × 4  �
& � 3 "# × 0  �

&  

The total linear momentum after the collision is  
2"# × 
−1��

& � 3"# × �. 
Setting the initial and final momenta equal, we have: 

 2 "# × 4  �
& �  2"# × 
−1��

& � 3"# × � 

Simplifying the equation: 8 +, -
. � −2 +, -

. � 3� 

Rearranging and solving for v, 3� � 10�/& 

� � 10
3

�
&  

Therefore, the final velocity of the 3 kg particle after the collision is 
/0
1  m/s. 

 

2.3 Conservation of Angular Momentum 

The conservation of angular momentum can be expressed using the cross product, which provides 
a mathematical representation of rotational motion. 

The angular momentum (L) of an object or system can be defined as the cross product of the object's 
moment of inertia (I) and its angular velocity (ω): 

2 �  3 ∗  5, 
where L represents the angular momentum, I is the moment of inertia, and ω denotes the angular 
velocity. 

The moment of inertia (I) quantifies the object's resistance to rotational motion and depends on its 
mass distribution and the axis of rotation. It can be represented as a tensor or matrix depending on 
the object's shape and orientation. 

The cross-product operation allows us to express the angular momentum vector (L) as: 
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2 �  6 ×  �, 
where r is the position vector from the axis of rotation to the object, and p is the linear momentum 
vector. 

The conservation of angular momentum arises from the principle that the net external torque acting 
on an isolated system is zero. Mathematically, this can be expressed as: 

�789�8:���  �  0, 
where �789�8:���  represents the sum of external torques acting on the system. 

When the sum of external torques is zero, the total angular momentum of the system remains 
constant. This can be mathematically expressed as: 

�2�������  �  �2����� , 
where �2�������  represents the sum of the initial angular momenta of all objects in the system, and 
�2�����  represents the sum of their final angular momenta. 

To illustrate this concept using the cross product, consider a system consisting of multiple objects. 
The initial angular momentum of the system can be calculated as: 

�2�������  �  �
6ᵢ ×  �ᵢ�, 
where rᵢ and pᵢ represent the position and linear momentum vectors of each object. 

After an interaction or change in configuration, the final angular momentum of the system can be 
expressed as: 

�2�����  �  �
6ᵢ′ ×  �ᵢ′�, 
where rᵢ' and pᵢ' represent the updated position and linear momentum vectors of each object. 

According to the conservation of angular momentum, if the net external torque acting on the 
system is zero, the initial sum of angular momenta will be equal to the final sum of angular 
momenta: 

�2�������  �  �2����� , �
6ᵢ ×  �ᵢ�  �  �
6ᵢ′ ×  �ᵢ′�. 
This mathematical expression using the cross product demonstrates the conservation of angular 
momentum in a system where external torques are absent. 

By utilizing the cross product and understanding the principles of the conservation of angular 
momentum, scientists can mathematically describe and predict the rotational behavior of objects 
and systems. This principle is fundamental in rotational dynamics and provides a powerful tool for 
analyzing and understanding rotational motion in various scientific and engineering applications. 

 

2.4 The Conservation of Energy 

The conservation of energy is a fundamental principle in physics that states that the total energy of 
an isolated system remains constant over time. In other words, energy cannot be created or 
destroyed; it can only be transferred or transformed from one form to another. 

Mathematically, the conservation of energy can be expressed as: 

��������  �  ������ , 

where ��������  represents the total initial energy of the system, and ������  represents the total final 

energy of the system. 

The total energy of a system can exists in various forms, including kinetic energy, potential energy, 
thermal energy, electromagnetic energy, and more. These different forms of energy can be 
interconverted, but the sum of all forms remains constant within an isolated system. 

The conservation of energy is derived from the law of energy conservation, which is a consequence 
of the time symmetry of physical laws. It is based on the principle that the laws of physics remain 
unchanged regardless of whether time is moving forward or backward. 

Let's consider a system with various forms of energy, such as kinetic energy (KE) and potential 
energy (PE). The total energy (E) of the system can be defined as the sum of these individual 
energies: 
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� �  <� �  =�. 
To analyze the conservation of energy over a certain process or time interval, we can integrate the 
rate of change of energy with respect to time. This can be represented as: 

> 	�
	� 	�  �  > 	� 

�

0
 �  ������  −  �������� , 

where ? �@
�� 	� represents the integral of the rate of change of energy with respect to time over the 

interval from the initial time (0) to the final time (t). 

 ������  AB	 �������� represent the total energy of the system at the final and initial times, respectively. 

According to the conservation of energy, if no energy enters or leaves the system during the 

process, the change in total energy C∆� �  ������  −  ��������E will be zero: 

> 	� 
�

0
 �  0, 

This implies that the integral of the rate of change of energy over time is zero, indicating that the 
total energy of the system remains constant. 

 

2.5 The Work Energy Theorem 

The relationship between kinetic energy and the work-energy theorem can be derived from 
Newton's laws of motion. Let's explore it: 

Newton's second law states that the net force 
��8�� acting on an object is equal to the mass 
�� of 
the object multiplied by its acceleration 
A�: 

��8�  �  � ∗  A. 
Considering a one-dimensional motion along a straight line, if the object starts from rest 

GBG�GAH �IHJKG�L, ��  �  0� and reaches a final velocity C��E, we can express the acceleration as: 

A � ��  −  ��
� , 

where t represents the time interval. 

Substituting this into Newton's second law, we have: 

��8�  �  � ∗ C��  −  ��E
� . 

Rearranging the equation, we obtain: 

��8� ∗ � �  � ∗ C��  − ��E. 
Now, let's consider the definition of work (W). Work is done on an object when a force acts on it, 
causing it to move over a certain distance (d).  

Mathematically, work is given by the equation: 

M �  � ∗ 	 ∗ KJ&
N�, 
where F is the force applied, d is the displacement, and θ is the angle between the force and 
displacement vectors. 

In the case of motion in a straight line, where the force and displacement are parallel or antiparallel, 
the equation simplifies to: 

M �  � ∗ 	. 
If we substitute ��8� ∗ � for F and rearrange the equation, we have: 

M �  
��8� ∗ �� ∗ 	
�  �  ��8� ∗  	. 

Now, let's examine the relationship between work and kinetic energy. The work done on an object 
is equal to the change in its kinetic energy 
∆<��.  
Mathematically, we can express this as: 
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M �  ∆<�. 
Combining the equations, we have: 

��8� ∗ 	 �  ∆<�. 
Since we know that the net force times the displacement is equal to the change in kinetic energy, we 
have derived the work-energy theorem. 

Additionally, kinetic energy (KE) is given by the equation: 

<� �  O1
2P � �², 

where m is the mass of the object and v is its velocity. 

Applying the work-energy theorem, we can equate the work done on the object to the change in 
kinetic energy: 

��8� ∗ 	 �  ∆<� �  <��  −  <�� . 
Substituting the equation for kinetic energy, we have: 

��8� ∗ 	 �  O1
2P ���R  −  O1

2P ���². 
Simplifying further, we get: 

��8� ∗  	 �  O1
2P �C��R − ��RE. 

In conclusion, using Newton's second law, the work-energy theorem relates the net force acting on 
an object to the change in its kinetic energy. The work done on the object is equal to the change in 
kinetic energy, which is expressed mathematically as ��8�  ∗  	 �  ∆<�. This relationship 
demonstrates how forces and motion affect the energy of an object. 

 

Example: Conservation of Energy 

 A block of mass 2 kg is released from a height of 5 m above the ground. The block slides down a 
frictionless incline and reaches the bottom with a velocity of 10 m/s. What is the final kinetic 
energy of the block at the bottom of the incline? 

Solution : According to the conservation of energy, the total mechanical energy of the block 

(kinetic energy + potential energy) remains constant, assuming no energy is lost to non-
conservative forces. 

The initial mechanical energy of the block is the potential energy at the top, given by m⋅g⋅h,  

where m is the mass=2 kg, 

g is the acceleration due to gravity =9.8 m/s², 

h is the height =5 m. 

 Therefore, the initial mechanical energy is 2 "# ∗ 9.8  -
.U ∗ 5 � 

The final mechanical energy is the kinetic energy at the bottom, given by 

 
/
R W ⋅ XY, ZℎI6I X is the velocity at the bottom (10 m/s). 

Setting the initial and final mechanical energies equal, we have:  

2 "# ∗ 9.8  �
&R ∗ 5 � � 1

2 ∗ 2 "# ∗ \10  �& ]R 
 

Simplifying the equation: 98 ^ � 100 ^ 

Therefore, the final kinetic energy of the block at the bottom of the incline is 100 J. 
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2.6 Constraint- Coordinates, Degree of Freedom 

In the context of mechanics, a constraint refers to a condition or limitation that restricts the motion 
of a system. Constraints play a crucial role in analyzing and understanding the behavior of 
mechanical systems. 

Example: Consider a box placed on an inclined plane. The constraint here is that the box must 
remain in contact with the plane, preventing it from sliding off. This constraint limits the box's 
motion to be along the surface of the inclined plane. 

 

Figure2. 1: box placed on an inclined plane. 

Coordinates:  

In a two-dimensional coordinate system, the coordinates can be represented as x and y. These 
coordinates specify the position of a point in the plane, where x denotes the horizontal position and 
y denotes the vertical position. 

Generalized Coordinates:  

Imagine a system consisting of two interconnected masses moving in a vertical plane. We can 
choose the vertical positions 
_` AB	 _Y� of the masses as generalized coordinates instead of using 
Cartesian coordinates. The generalized coordinates provide a concise description of the system's 
configuration. 

A constraint can be expressed mathematically as a relationship or equation involving the 
coordinates of the system. This equation imposes a restriction on the possible values of the 
coordinates and governs the motion of the system. The general form of a constraint equation is 
given as: 

a
b`, bY, . . . , bc, d� � e 

Here, b`, bY, . . . , bc represent the generalized coordinates of the system, which are variables that 
describe the configuration or position of the system in its coordinate space. The constraint equation 
relates these coordinates in a manner that reflects the limitations on the system's motion. 

The constraint equation can involve various types of mathematical expressions, such as algebraic 
equations, trigonometric equations, or differential equations. The specific form of the constraint 
equation depends on the nature of the system and the particular constraints involved. 

It's important to note that constraints can arise from physical considerations, geometric properties, 
or design requirements of the system. Examples of constraints include fixed connections, rigid 
constraints, rolling conditions, or prescribed paths for certain components. 

Degree of Freedom:  

In the above context, the degree of freedom (DOF) refers to the number of independent parameters 
or variables required to fully describe the configuration or motion of a system. It quantifies the 
number of ways in which a system can move or change its state without violating any imposed 
constraints. 
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The degree of freedom provides important insights into the behavior and dynamics of a system. It 
helps determine the complexity of the system and the number of independent variables needed to 
represent its complete state. 

To determine the degree of freedom of a system, we consider the following: 

1. Counting independent variables: First, we identify the independent variables needed to 
describe the system's configuration or motion. These variables are typically the 
generalized coordinates that represent the independent degrees of freedom. 

2. Imposing constraints: Next, we take into account any constraints present in the system. 
Constraints restrict the motion of the system and introduce dependencies between the 
variables. 

3. Calculating the degree of freedom: The degree of freedom is calculated as the difference 
between the total number of independent variables and the number of constraints. It 
represents the remaining number of independent parameters that govern the system's 
behavior. 

For example, consider a simple pendulum consisting of a mass attached to a fixed point by a string. 
The pendulum's motion is constrained by the length of the string and the requirement that the mass 
moves along a circular path. In this case, we can describe the pendulum using a single generalized 
coordinate, such as the angle made by the string with respect to the vertical direction. 

 

Figure2. 2: A simple pendulum consisting of a mass attached to a fixed point by a string. 

The degree of freedom in this case is one, as the motion of the pendulum can be fully described 
using a single coordinate, such as the angle (θ) made by the string with the vertical. 

Mathematically, the degree of freedom (DOF) of a mechanical system can be determined by 
analyzing the constraints and independent variables involved.  

Let's consider a system with N particles, each having d degrees of freedom, resulting in a total of  
D=N×d degrees of freedom. 

To calculate the DOF, we need to consider both the number of independent variables and the 
constraints imposed on the system. Constraints can be expressed as equations or inequalities 
involving the coordinates and velocities of the system. 

Question: Consider a system consisting of three particles in three-dimensional space. Each particle 

has three degrees of freedom. How many degrees of freedom does the system have in total? 

Solution : Since each particle has three degrees of freedom, the total degrees of freedom for the 

system can be calculated by multiplying the number of particles (N) by the number of degrees of 
freedom per particle (d). 

 In this case, N=3 and d=3, so the total degrees of freedom (D) is given by  

N×d=3×3=9. 

Therefore, the system has a total of 9 degrees of freedom. 
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2.7 Holonomic and Non-Holonomic Systems 

Let's denote the number of constraints as K. These constraints can be categorized as holonomic or 
non-holonomic, depending on whether they can be expressed solely in terms of the coordinates or 
involve the velocities as well. 

For a holonomic constraint, the constraint equation can be written as 
b`, bY, . . . , bf, d� �
e, ZℎI6I b`, bY, . . . , bf represent the generalized coordinates and t represents time. 

Let's consider a system of two particles connected by a rigid rod, where the length of the rod 
remains constant.  

The constraint equation is 

a
g`, _`, gY, _Y� � 
gY − g`�Y � 
_Y − _`�Y − hY � e, ZℎI6I 
g`, _`� AB	 
gY, _Y� represent the 
positions of the particles, and L is the fixed length of the rod. This equation ensures that the 
distance between the particles remains constant. 

For a non-holonomic constraint, the constraint can be represented by an inequality 
i
b`, bY, . . . , bf, b˙`, b˙Y, . . . , b˙f, d� ≥ e, ZℎI6I b˙`, b˙Y, . . . , b˙f denote the corresponding velocities. 

Consider a car moving on a straight road. The constraint here is that the car can only move forward 
or backward, but not sideways. This constraint restricts the car's motion and can be expressed by 
the inequality  Xg ≠ 0, ZℎI6I Xg represents the car's velocity in the horizontal direction. 

The DOF (F) can be calculated as the difference between the total number of degrees of freedom 
and the number of independent constraint equations or inequalities: 

m � f − n 

In some cases, the DOF can be determined by analyzing the rank of the constraint equations or by 
employing constraint analysis techniques such as the principle of virtual work, Lagrange 
multipliers, or constraint matrices. 

 

Summary 

 A constraint can be expressed mathematically as a relationship or equation involving the 

coordinates of the system. This equation imposes a restriction on the possible values of the 

coordinates and governs the motion of the system. The general form of a constraint 

equation is given as: 

a
b`, bY, . . . , bc, d� � e 

Here, b`, bY, . . . , bc represent the generalized coordinates of the system, which are 

variables that describe the configuration or position of the system in its coordinate space. 

The constraint equation relates these coordinates in a manner that reflects the limitations 

on the system's motion. 

 To determine the degree of freedom of a system, we consider the following: 

-Counting independent variables: First, we identify the independent variables needed to 
describe the system's configuration or motion. These variables are typically the 
generalized coordinates that represent the independent degrees of freedom. 

-Imposing constraints: Next, we take into account any constraints present in the system. 
Constraints restrict the motion of the system and introduce dependencies between the 
variables. 

-Calculating the degree of freedom: The degree of freedom is calculated as the difference 
between the total number of independent variables and the number of constraints. It 
represents the remaining number of independent parameters that govern the system's 
behavior. 

  For a holonomic constraint, the constraint equation can be written as 
b`, bY, . . . , bf, d� �
e, ZℎI6I b`, bY, . . . , bf represent the generalized coordinates and t represents time. 
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 For a non-holonomic constraint, the constraint can be represented by an inequality 

i
b`, bY, . . . , bf, b˙`, b˙Y, . . . , b˙f, d� ≥ e, ZℎI6I b˙`, b˙Y, . . . , b˙f denote the corresponding 

velocities. 

 

Keywords 

 Conservation of momentum: The principle that the total momentum of an isolated system 

remains constant unless acted upon by external forces. In collisions or interactions, the 

total momentum before and after the event remains the same. 

 Potential energy: The stored energy possessed by an object due to its position or 

configuration within a system. It is associated with the forces acting on the object, such as 

gravitational potential energy or elastic potential energy. 

 Kinetic energy: The energy possessed by an object due to its motion. It is dependent on 

the mass and velocity of the object and is given by the equation KE = 1/2 * mass * 

velocity^2. 

 Conservative forces: Forces that are path-independent and do not dissipate energy. They 

include gravitational forces and elastic forces, and their work done is dependent only on 

the initial and final positions of an object. 

 Non-conservative forces: Forces that are path-dependent and dissipate energy. They 

include frictional forces, air resistance, and drag forces. Their work done depends on the 

specific path taken by an object and results in a loss of mechanical energy from the system. 

 Degree of freedom: The number of independent parameters or variables required to 

describe the configuration or motion of a system. It represents the number of ways a 

system can move or change without violating any constraints. 

Generalized coordinate: A set of independent variables that describe the configuration or 

position of a system. These coordinates are often chosen based on the specific constraints 

and degrees of freedom of the system and provide a concise representation of its state. 

Constraints: Conditions or limitations that restrict the motion or behavior of a system. 

Constraints can be expressed mathematically as equations or inequalities involving the 

coordinates and velocities of the system, and they play a crucial role in analyzing 

mechanical systems. 

Holonomic constraints: Constraints that can be expressed solely in terms of the 

coordinates of the system. They do not involve the velocities or time explicitly and can 

often be represented by equations or equalities. 

Non-holonomic constraints: Constraints that involve both the coordinates and velocities 

of the system. They are typically expressed as inequalities and impose additional 

restrictions on the motion or behavior of the system. 

 

Self Assessment 

1. A particle with a mass of 3 kg is moving to the right with a velocity of 5 m/s. It collides with 
a stationary particle of mass 6 kg. After the collision, the 3 kg particle moves to the left with 
a velocity of 2 m/s. What is the final velocity of the 6 kg particle? 

A. 1 m/s 

B. 2 m/s 

C. 3 m/s 

D. 4 m/s 
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2. A particle with a mass of 5 kg is moving to the right with a velocity of 7 m/s. It collides with 
a stationary particle of mass 8 kg. After the collision, the 5 kg particle moves to the left with 
a velocity of 3 m/s. What is the final velocity of the 8 kg particle? 

A. -1 m/s 

B. -2 m/s 

C. -3 m/s 

D. -4 m/s 

 

3. A particle with a mass of 4 kg is moving to the right with a velocity of 6 m/s. It collides with 
a stationary particle of mass 2 kg. After the collision, the 4 kg particle moves to the left with 
a velocity of 3 m/s. What is the final velocity of the 2 kg particle? 

A. 0.5 m/s 

B. 1 m/s 

C. 1.5 m/s 

D. 2 m/s 

 

4. A particle with a mass of 6 kg is moving to the right with a velocity of 9 m/s. It collides with 
a stationary particle of mass 3 kg. After the collision, the 6 kg particle moves to the left with 
a velocity of 4 m/s. What is the final velocity of the 3 kg particle? 

A. 2 m/s 

B. 3 m/s 

C. 4 m/s 

D. 5 m/s 

 

5. A particle with a mass of 7 kg is moving to the right with a velocity of 10 m/s. It collides 
with a stationary particle of mass 5 kg. After the collision, the 7 kg particle moves to the left 
with a velocity of 6 m/s. What is the final velocity of the 5 kg particle? 

A. -1 m/s 

B. -2 m/s 

C. -3 m/s 

D. -4 m/s 

 

6. A system consisting of N particles, each having d degrees of freedom, will have a total of 
how many degrees of freedom? 

A. N 

B. d 

C. N+d 

D. N×d 

 

7. The degree of freedom of a rigid body in a three-dimensional space is: 

A. 3 

B. 6 

C. 9 

D. 12 
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8. How does the number of constraints affect the degrees of freedom of a system? 

A. Increases the degrees of freedom 

B. Decreases the degrees of freedom 

C. Has no effect on the degrees of freedom 

D. Can increase or decrease the degrees of freedom depending on the system 

 

9. A system with zero degrees of freedom means: 

A. The system is completely fixed or immobile 

B. The system can move in any direction 

C. The system has unlimited degrees of freedom 

D. The system has reached a state of equilibrium 

 

10. Which of the following is an example of a system with one degree of freedom? 

A. A pendulum swinging back and forth 

B. A car moving freely in three-dimensional space 

C. A ball rolling on a horizontal surface 

D. A block sliding down an inclined plane 

 

11. A system consists of three particles in two-dimensional space. Each particle has two degrees 
of freedom. What is the total number of degrees of freedom for the system? 

A. 2 

B. 3 

C. 4 

D. 6 

 

12. A system consists of five particles, each with three degrees of freedom. What is the total 
number of degrees of freedom for the system? 

A. 5 

B. 8 

C. 10 

D. 15 

 

13. Which of the following systems has the highest number of degrees of freedom? 

A. A single particle moving in one-dimensional space 

B. A single particle moving in two-dimensional space 

C. A single particle moving in three-dimensional space 

D. A system of three particles, each moving in one-dimensional space 

 

14. In a system of N particles, if each particle has d degrees of freedom and there are C 
constraints, what is the effective number of degrees of freedom? 

A. N 

B. d 
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C. N+d 

D. N−C 

 

15. A mechanical linkage consists of four interconnected bars connected by joints. If each joint 
allows for one degree of rotational freedom, how many degrees of freedom does the 
mechanical linkage have? 

A. 1 

B. 2 

C. 3 

D. 4 

Answers for Self Assessment 

1. B 2. C 3. D 4. B 5. C 

6. D 7. B 8. B 9. A 10. A 

11. D 12. C 13. C 14. B 15. D 

Review Questions 

1. Consider a system of four objects interconnected by rigid rods in a plane. Each object has 

two degrees of freedom. How many degrees of freedom does the system have? 

2. A robot arm consists of three segments connected by rotational joints. Each joint has one 

degree of freedom. How many degrees of freedom does the robot arm possess? 

3. A particle with a mass of 4 kg is moving to the right with a velocity of 8 m/s. It collides 

with a stationary particle of mass 9 kg. After the collision, the 4 kg particle moves to the 

left with a velocity of 2 m/s. What is the final velocity of the 6 kg particle? 

4. A particle with a mass of 5 kg is moving to the right with a velocity of 10m/s. It collides 

with a stationary particle of mass 10kg. After the collision, the 4 kg particle moves to the 

left with a velocity of 2 m/s. What is the final velocity of the 6 kg particle? 

5. A particle with a mass of 10kg is moving to the right with a velocity of 10 m/s. It collides 

with a stationary particle of mass 10 kg. After the collision, the 10 kg particle moves to the 

left with a velocity of 5m/s. What is the final velocity of the 15 kg particle? 

 

 
Further Readings  

Classical Mechanics By Herbert Goldstein Charles P. Poole John Safko, Pearson 

Classical Mechanics By Dr. J. C. Upadhyaya, Himalaya Publishing House 
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Objectives 

Scleronomic and Rheonomic Systems, Lagrange's Equation of First and Second Kind, and 
Generalized Potential are important concepts in the study of mechanical dynamics. They offer 
alternative frameworks for modeling and analyzing complex systems, allowing for more flexible 
representations and efficient equation formulation. These concepts enable the treatment of time-
dependent constraints, provide a concise and elegant formulation of equations of motion, and 
facilitate energy-based analysis. Their multidisciplinary applications span various fields, and they 
provide deeper insights into system dynamics, allowing for better design, control, and optimization 
of mechanical systems. 

After this unit you will be able to – 

1. Understand the concept of Scleronomic and Rheonomic Systems 

2. Learn Lagrange’S Equation of First and Second Kind. 

3. Derive Lagrange's equations for different mechanical systems and apply them to solve 
specific problems.. 

4. Formulate the kinetic and potential energy expressions, and using Lagrange's equations to 
obtain the equations of motion. 

5. Apply the concept of Generalized Potential in engineering and scientific endeavors. 

 

Introduction 

Scleronomic and Rheonomic Systems are fundamental concepts in the field of mechanical dynamics 
that help us understand and analyze the behavior of physical systems. Scleronomic systems involve 
constraints that remain fixed and time-independent throughout the system's motion, while 
Rheonomic systems allow for time-dependent constraints. These systems play a crucial role in 
various engineering and scientific disciplines, enabling us to model and predict the dynamics of 
complex mechanical systems. By studying these concepts, we gain insights into how different types 
of constraints affect the motion, stability, and equilibrium conditions of a system. Scleronomic and 
Rheonomic Systems provide a framework for formulating mathematical equations that describe the 
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behavior of mechanical systems, allowing us to derive equations of motion and analyze system 
dynamics.  

Lagrange's Equation of First and Second Kind is a powerful mathematical tool that revolutionized 
the study of mechanical dynamics. It provides an alternative approach to formulating the equations 
of motion for mechanical systems, offering a concise and elegant framework for analysis. 
Lagrange's equations allow us to describe the behavior of complex systems by considering the 
system's generalized coordinates, kinetic energy, and potential energy. 

The first kind of Lagrange's equation expresses the system's equations of motion in terms of the 
generalized coordinates, velocities, and the partial derivatives of the system's Lagrangian function 
with respect to these variables. This formulation eliminates the need for external forces and 
facilitates the study of systems with constraints. 

The second kind of Lagrange's equation introduces the concept of generalized forces, which enables 
us to analyze the effect of constraints and external forces on the system's motion. By incorporating 
generalized forces, we can determine the forces that act on the system and understand how they 
influence its dynamics. 

Lagrange's Equation of First and Second Kind provides a powerful and flexible approach for 
analyzing the dynamics of mechanical systems. Its applications extend to a wide range of fields, 
including robotics, aerospace engineering, and physics, enabling engineers and scientists to model, 
simulate, and optimize complex systems with precision and efficiency.  

Generalized Potential is a concept that plays a crucial role in the analysis of mechanical systems, 
particularly in understanding the energy transformations and conservative forces within a system. 
It provides a valuable tool for simplifying the formulation of equations of motion and gaining 
deeper insights into the behavior of physical systems. 

Generalized Potential is a scalar function that relates to the potential energy of a system in terms of 
its generalized coordinates. It captures the energy changes associated with displacements along the 
generalized coordinates, providing a comprehensive picture of the system's energy landscape. 

By utilizing the concept of Generalized Potential, engineers and scientists can analyze and predict 
the equilibrium configurations, stability, and response of mechanical systems. It allows for a concise 
representation of the energy state of a system and offers a framework for identifying stable 
configurations and energy-minimizing paths. 

In summary, Generalized Potential provides a valuable tool for understanding the energy behavior, 
conservative forces, and stability of mechanical systems. Its application allows for a comprehensive 
analysis of system dynamics and aids in the optimization and design of various engineering 
systems. 

 

3.1 Scleronomic and Rheonomic Systems Top of Form 

Scleronomic and Rheonomic Systems are fundamental concepts in mechanical dynamics that 
describe the behavior of physical systems with different types of constraints. In Scleronomic 
Systems, constraints are time-independent and remain fixed throughout the motion of the system. 
Mathematically, these constraints can be expressed as equations that relate the generalized 
coordinates and their derivatives. On the other hand, Rheonomic Systems involve time-dependent 
constraints, where the constraints themselves can vary with time. In these systems, the constraints 
are typically described by differential equations that involve the generalized coordinates and time 
explicitly. 

In Scleronomic Systems, the constraints are time-independent and remain fixed throughout the 
motion of the system. Mathematically, these constraints can be expressed as equations that relate 
the generalized coordinates, denoted as �� (where i ranges from 1 to n), and their derivatives (���) to 
each other. These constraints can be written as functions of the form: 

��(��, �	, . . . , ��)  =  0 

where j ranges from 1 to m, representing the total number of constraints in the system.  

These equations embody the fixed relationships among the generalized coordinates, capturing the 
inherent constraints that shape the system's motion. 

Example 
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For example, a simple pendulum consists of a mass suspended from a fixed point by a light string 
or rod.  

The length of the string and the force of gravity acting on the mass are the constraints that 
determine the motion of the pendulum. These constraints do not depend on time, so the system is 
scleronomic. 

 

Figure 3. 1: A simple pendulum consists of a mass suspended from a fixed point.  

Mathematically, a scleronomic system can be described using constraints that are time-
independent.  

These constraints can be written as equations that must be satisfied by the position and velocity of 
the system. For example, the constraints on a simple pendulum can be written as: 

� =  �(�	  �  �	) 

where L is the length of the pendulum, x and y are the Cartesian coordinates of the mass, and the 
equation represents the fact that the mass is constrained to move in a circle of fixed radius L. 

Example 

Similarly, the constraints on a block sliding down an inclined plane can be written as: 

� =  ���� ∗ � 

where y is the height of the block above the ground, x is the distance traveled by the block along the 
plane, and theta is the angle of the plane. 

 

Figure 3. 2: a block sliding down an inclined plane. 
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The equation represents the fact that the block is constrained to slide down the plane at a fixed 
angle �. 

 

In Rheonomic Systems, the constraints themselves are time-dependent, allowing for more dynamic 
behavior. The time-dependent constraints are typically described by differential equations that 
explicitly involve the generalized coordinates and time. These equations take the form: 

��(��, �	, . . . , �� , �)  =  0 

where �� represents the time-dependent constraint equations. 

By solving these mathematical equations, engineers and scientists can determine the system's 
equations of motion, analyze stability, predict trajectories, and study the behavior of mechanical 
systems governed by constraints. 

Example 

Examples of rheonomic systems include a rocket accelerating in space, a swinging double 
pendulum, and a car driving on a bumpy road. 

The motion of a rocket in space can be described by Newton's second law of motion, which is a 
second-order differential equation: 

 � =  � ∗ �	���	 ,  
where F is the force acting on the rocket, m is the mass of the rocket, and x is the position of the 
rocket. 

A car driving on a bumpy road is a rheonomic system because the constraints (i.e., the shape of the 
road) change as the car moves. The motion of the car depends on the shape of the road at each point 
in time, so the system is rheonomic. 

In summary, the key difference between scleronomic and rheonomic systems is whether or not the 
constraints of the system depend on time. 

  

3.2 Standard form of Lagrange's equations 

The standard form of Lagrange's equations is derived using the principle of least action. Let's go 
through the derivation: 

1. Start with the principle of least action: According to this principle, the true motion of a 
mechanical system is the one that minimizes the action integral over a given time interval. 
The action, denoted as S, is defined as: 

� =  ∫ [�(�₁, �₂, . . . , �ₙ, ��₁, ��₂, . . . , ��ₙ, �)] �� 

where L is the Lagrangian, which is a function of the generalized coordinates qᵢ, their time 
derivatives q̇ᵢ, and time t. 

2. Introduce virtual displacements: Consider a virtual displacement, δqᵢ, where each 
generalized coordinate qᵢ is perturbed by an infinitesimally small amount. These virtual 
displacements are subject to the condition that the endpoints of the motion are fixed. 

3. Variation of the action integral: Now, we vary the action integral with respect to the 
virtual displacements δqᵢ while keeping the endpoints fixed. This gives us: 

%� =  ∫ & '�'�ᵢ  %�ᵢ � '�'�� ᵢ  %�� ᵢ) �� 

4. Integrate the second term by parts: Integrate the second term in %� by parts, treating %��ᵢ as 
the variable to be differentiated and integrating the ∂L/∂q ̇ᵢ term: 

%� =  * & '�'�ᵢ  %�ᵢ − ��� , '�'�� ᵢ-  %�ᵢ)  ��  �  & '�'�� ᵢ  %�ᵢ)  
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Apply the Euler-Lagrange equations: To minimize the action, we set %� =  0. This implies that the 
integrand must vanish for arbitrary variations, leading to the Euler-Lagrange equations: 

'�'�ᵢ  − ��� , '�'�� ᵢ-  =  0 

These are the standard form of Lagrange's equations, where the left-hand side represents the 
generalized forces and the right-hand side represents the rate of change of momentum. The 
equations describe the dynamics of the system and determine the equations of motion. 

By solving these equations, you can obtain the equations of motion for a mechanical system 
governed by the Lagrangian �(�₁, �₂, . . . , �ₙ, ��₁, ��₂, . . . , ��ₙ, �). 
 

3.3 Lagrange’s Equation of First Kind 

Let's derive the Lagrange's equation of motion of the first kind. 

We start with the standard form of Lagrange's equations: 

���  , '�'�� ᵢ-  − '�'�ᵢ  =  0 

where � represents the Lagrangian, �ᵢ denotes the generalized coordinates, and ��ᵢ represents the 
corresponding generalized velocities. 

To introduce the Lagrange multiplier, let's consider a constrained system with m constraints of the 
form: 

�ₐ(�₁, �₂, . . . , �ₙ, � )   =  0 �/0 � =  1, 2, . . . , � 

Now, we modify Lagrange's equations to incorporate these constraints. We introduce the Lagrange 
multiplier 3ₐ for each constraint and construct the new function called the Lagrangian with the 
constraints: 

�′(�₁, �₂, . . . , �ₙ, ��₁, ��₂, . . . , ��ₙ, �)  =  �(�₁, �₂, . . . , �ₙ, ��₁, ��₂, . . . , ��ₙ, �)  �  5 3ₐ �ₐ(�₁, �₂, . . . , �ₙ, �) 

To derive the equations of motion with these constraints, we use the principle of virtual work. We 

consider an arbitrary virtual displacement %�ᵢ that satisfies the constraints, i.e., 5 %�ᵢ 67ₐ
68ᵢ  =  0. 

The principle of virtual work states that the virtual work %9 done by the forces is zero: 

%9 =  5 :'�;
'�ᵢ %�ᵢ � '�;

'�� ᵢ  %�� ᵢ < ��  =  0 

Substituting the expression for L': 

%9 =  5 = '�'�ᵢ  %�ᵢ  � '�'�� ᵢ  %�� ᵢ �  5 3ₐ ,'�ₐ'�ᵢ  %�ᵢ->  �� =  0 

Now, applying the principle of virtual work, %9 =  0, and rearranging terms: 

%9 =  5 ?= '�'�ᵢ  − ��� , '�'�� ᵢ->  %�ᵢ �  5 3ₐ ,'�ₐ'�ᵢ %�ᵢ-@   �� =  0 

Since δqᵢ is arbitrary, the coefficients of δqᵢ and δq ̇ᵢ must vanish independently: 

6A
68ᵢ  − B

BC D 6A
68� ᵢE  �  5 3ₐ D67ₐ

68ᵢE  =  0                                                                                                                                
(3a) 

Additionally, the constraints �ₐ(�₁, �₂, . . . , �ₙ, �)  =  0 must hold: 

�ₐ(�₁, �₂, . . . , �ₙ, �)  =  0                                                                                                                                           
(3b) 

Equation (3a) represents the generalized equations of motion incorporating the Lagrange multiplier 
. Equation (3b) represents the constraints of the system. 

By solving Equation (3a) along with Equation (3a), we can determine the equations of motion for 
the constrained system in terms of the Lagrange multiplier. 
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First, let's differentiate Equation (3b) with respect to time t: 

���  �ₐ(�₁, �₂, . . . , �ₙ, �)  =  0 

Using the chain rule, we have: 

'�ₐ'�ᵢ  �� ᵢ � '�ₐ'�  =  0 

Rearranging this equation, we get: 

'�ₐ'�  =  − '�ₐ'�ᵢ  ��ᵢ 
Substituting this result into Equation  (3a), we obtain: 

'�'�ᵢ  − ��� , '�'�� ᵢ-  �  5 3ₐ ,− '�ₐ'�ᵢ  �� ᵢ-  =  0 

Expanding the sum over a, we have: 

'�'�ᵢ  − ��� , '�'�� ᵢ-  −  5 ,'�ₐ'�ᵢ  �� ᵢ 3ₐ-  =  0 

Now, we can rearrange this equation as follows: 

��� , '�'�� ᵢ-  − '�'�ᵢ  �  5 ,'�ₐ'�ᵢ �� ᵢ 3ₐ-  =  0 

Comparing this equation to the standard form of Lagrange's equations, we can identify: 

'�'�� ᵢ 3ₐ =  − '�ₐ'�ᵢ �� ᵢ 
This equation relates the Lagrange multiplier 3ₐ  to the constraints and generalized velocities. 

To summarize, the equations of motion for the constrained system, incorporating the Lagrange 
multiplier 3ₐ, can be written as: 

'�'�ᵢ  − ��� , '�'�� ᵢ-  �  5 ,'�ₐ'�ᵢ  �� ᵢ 3ₐ-  =  0 

These equations, along with the constraints �ₐ(�₁, �₂, . . . , �ₙ, �)  =  0, describe the dynamics of the 
system with constraints in terms of the Lagrange multiplier 3ₐ. 

 

Example 

Consider a simple pendulum of length L with a mass � at the end. Derive the equations of motion 
using Lagrange's equations of the first kind. 

Solution:  

Let � be the angle the pendulum makes with the vertical direction.  

The Lagrangian of the system is given by � =  F −  G, where F is the kinetic energy and G is the 
potential energy. 

F =  D�
	E  ��²��² (kinetic energy of the pendulum)  

G =  −� I � J/K(�) (potential energy of the pendulum) 

The Lagrangian is � =  D�
	E � �²��² �  � I � J/K(�). 

Now, we can apply Lagrange's equations: 

��� ,'�
'��-  − '�'�  =  0 

Applying the derivatives: 

��� L� �	��M −  L−� I � KN�(�)M =  0 
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� �²�̈ �  � I � KN�(�)  =  0 

This is the equation of motion for the simple pendulum. 

Problem:  

A particle of mass m moves on a smooth, curved surface given by the equation � =  �(�). Derive 
the equations of motion using Lagrange's equations of the first kind. 

Solution:  

Let � be the generalized coordinate for the particle's position. 

The Lagrangian of the system is given by � =  F −  G, where F is the kinetic energy and G is the 
potential energy. 

F =  (1/2) � (��² �  ��²) (kinetic energy of the particle)  

G =  � I �(�) (potential energy of the particle) 

The Lagrangian is � =  D�
	E  � (��² �  ��²)  −  � I �(�). 

Now, we can apply Lagrange's equations: 

��� ,'�'��-  − '�'�  =  0 

Applying the derivatives: 

� �̈ −  � I �′(�)  =  0 

This is the equation of motion for the particle moving on the smooth, curved surface. 

 

3.4 Lagrange’s Equation of Second Kind 

To derive Lagrange's equations of motion of the second kind, also known as the generalized forces 
form, let's start with the Lagrangian formulation of a mechanical system: 

�(�₁, �₂, . . . , �ₙ, ��₁, ��₂, . . . , ��ₙ, �)  =  F −  Q 

where L represents the Lagrangian, T is the kinetic energy, V is the potential energy, qᵢ denotes the 
generalized coordinates, and q̇ᵢ represents the corresponding generalized velocities. 

The Lagrange's equations of motion of the second kind are given by: 

��� ,'F'�� ᵢ-  − 'F'�ᵢ  =  Rᵢ 
where Rᵢ represents the generalized forces acting on the system. 

To derive these equations, we'll follow these steps: 

1. Compute the partial derivative of the Lagrangian with respect to the generalized 
velocities: 

'�'�� ᵢ = 'F'�� ᵢ 
2. Apply the chain rule to differentiate ∂L/∂q ̇ᵢ with respect to time: 

��� , '�'�� ᵢ- = ��� ,'F'�� ᵢ- 

3. Compute the partial derivative of the Lagrangian with respect to the generalized 
coordinates: 

'�'�ᵢ = ��� ,'F'�� ᵢ- − 'F'�ᵢ 
4. Introduce the generalized forces Rᵢ: 

Rᵢ = 'Q'�ᵢ 
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5. Combine the results to obtain Lagrange's equations of motion of the second kind: 

���  ,'F'�� ᵢ-  − 'F'�ᵢ  =  Rᵢ 
These equations relate the rates of change of the generalized momenta D6S

68� ᵢE  to the generalized 

forces Rᵢ and the time derivatives of the generalized coordinates. They describe the dynamics of the 
system and determine the equations of motion. 

By solving Lagrange's equations of the second kind, you can determine the behavior of the 
mechanical system in terms of the generalized coordinates and velocities, as well as the forces 
acting on the system. 

 

3.5 Generalised Potential 

For charged particles moving in an electromagnetic field, the Lagrangian formulation takes into 
account the electromagnetic potential energy. The generalized potential energy, often referred to as 
the generalized potential, incorporates the interaction between charged particles and the 
electromagnetic field. Here's how you can derive the generalized potential in the Lagrangian for 
charged particles: 

1. Start with the kinetic energy term: The kinetic energy for a charged particle with mass m 

and velocity v is given by F =  D�
	E  � T². 

2. Introduce the electromagnetic potential: In the presence of an electromagnetic field, the 
charged particle interacts with the electric potential φ and the magnetic potential A. These 
potentials are related to the electric field E and magnetic field B, respectively, through  

U =  −V� − 'W'�  ��� X =  V ×  W. 
3. Incorporate the interaction in the Lagrangian: The Lagrangian L for the charged particle in 

the electromagnetic field is the difference between the kinetic energy and the 
electromagnetic potential energy.  

It can be written as � =  F −  G, where G represents the generalized potential. 

4. Express the generalized potential: The generalized potential U is given by  

G =  �� −  �T · W,  
where � is the charge of the particle and T · W represents the dot product between the 
velocity vector v and the magnetic potential W. 

5. Combine the terms: Substituting the expression for G into the Lagrangian, we have 

 � =  F −  (�� −  �T · W). 
6. Final form of the Lagrangian: The Lagrangian � for a charged particle in an 

electromagnetic field is � =  D�
	E � T	  −  �� �  �T · W. 

By incorporating the generalized potential G, which involves the electric potential � and the 
magnetic potential W, the Lagrangian accounts for the interaction between charged particles and the 
electromagnetic field. The resulting equations of motion derived from this Lagrangian would 
describe the behavior of the charged particles under the influence of the electromagnetic field. 

 

Summary 

 Scleronomic systems are mechanical systems where the constraints are time-independent and 

do not change with time. 

 Rheonomic systems are mechanical systems where the constraints are time-dependent and 

can vary with time. 

 In scleronomic systems, the constraints can be expressed as algebraic equations and are 

typically represented by fixed geometric relationships. 
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 In rheonomic systems, the constraints are described by differential equations and can change 

dynamically with time. 

 Scleronomic systems have a fixed number of independent coordinates that completely 

describe the system's configuration. 

 Rheonomic systems may have a variable number of coordinates as the constraints change over 

time. 

 The concept of scleronomic and rheonomic systems is commonly used in the field of 

mechanics and dynamics to analyze the behavior of mechanical systems. 

 Lagrange's equations of the first kind are applicable to scleronomic systems and are derived 

based on the principle of virtual work. 

 Lagrange's equations of the second kind are applicable to rheonomic systems and are derived 

based on the principle of least action. 

 Both Lagrange's equations of the first and second kind are fundamental equations in classical 

mechanics, used to describe the motion of particles and systems in terms of generalized 

coordinates and constraints. 

 
Keywords 

 Scleronomic systems: Scleronomic systems are mechanical systems where the 

constraints are time-independent and do not change with time. 

 Rheonomic systems :Rheonomic systems are mechanical systems where the constraints 

are time-dependent and can vary with time. 

 Standard form of Lagrange's equations: 

the standard form of Lagrange's equations: 

���  , '�'�� ᵢ-  − '�'�ᵢ  =  0 

where � represents the Lagrangian, �ᵢ denotes the generalized coordinates, and ��ᵢ represents 
the corresponding generalized velocities. 

 Lagrange’S Equation of First Kind 

To summarize, the equations of motion for the constrained system, incorporating the Lagrange 
multiplier 3ₐ, can be written as: 

'�'�ᵢ  − ��� , '�'�� ᵢ-  �  5 ,'�ₐ'�ᵢ  �� ᵢ 3ₐ-  =  0 

These equations, along with the constraints �ₐ(�₁, �₂, . . . , �ₙ, �)  =  0, describe the dynamics of the 
system with constraints in terms of the Lagrange multiplier 3ₐ. 

 Lagrange’S Equation of Second Kind: 

The Lagrange's equations of motion of the second kind are given by: 

��� ,'F'�� ᵢ-  − 'F'�ᵢ  =  Rᵢ 
where Rᵢ represents the generalized forces acting on the system. 

 

Self Assessment 

1. In a mechanical system, a scleronomic constraint: 

A. Does not change with time 

B. Changes with time 
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C. Can be easily modified 

D. Does not affect the system's motion 

 

2. Which of the following is an example of a scleronomic constraint? 

A. A rotating wheel 

B. A pendulum swinging back and forth 

C. A car moving on a curved road 

D. A spring stretching and compressing 

 

3. Rheonomic constraints in mechanical systems: 

A. Are time-independent 

B. Are time-dependent 

C. Cannot be represented mathematically 

D. Do not affect the system's motion 

 

4. A system with rheonomic constraints is best described as: 

A. Dynamic 

B. Static 

C. Inconsistent 

D. Independent of time 

 

5. When modeling a mechanical system, choosing to represent it as a scleronomic or 
rheonomic system depends on: 

A. The complexity of the system 

B. The system's size 

C. The system's material properties 

D. The type of forces acting on the system 

 

6. For a particle of mass 2 kg moving on a smooth, curved surface given by � =  �	, the 
equation of motion using Lagrange's equations of the first kind is:  

A. 2 ẍ + 4g x = 0  

B. x ̈ + 2g x = 0  

C. 2 ẍ - 4g x = 0  

D. x ̈ - 2g x = 0 

 

7. For a particle of mass 3 kg moving on a smooth, curved surface given by the equation � =  2�	, the equation of motion using Lagrange's equations of the first kind is: 

A. 3 ẍ + 12g x = 0 

B. x ̈ + 6g x = 0 

C. 3 ẍ - 12g x = 0 

D. x ̈ - 6g x = 0 
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8. For a particle of mass 4 kg moving on a smooth, curved surface given by the equation � =  �[ , the equation of motion using Lagrange's equations of the first kind is: 

A. 4 �̈ �  12I �	  =  0 

B. �̈ �  3I �	  =  0 

C. 4 �̈ −  12I �	  =  0 

D. �̈ −  3I �	  =  0 

 

9. For a particle of mass 5 kg moving on a smooth, curved surface given by the equation y = x, 
the equation of motion using Lagrange's equations of the first kind is: 

A. 5 ẍ + 5g = 0 

B. x ̈ + 2g = 0 

C. 5 ẍ - 5g = 0 

D. x ̈ - 2g = 0 

 

10. For a particle of mass 6 kg moving on a smooth, curved surface given by the equation y = 
sin(x), the equation of motion using Lagrange's equations of the first kind is: 

A. 6 ẍ + 6g sin(x) = 0 

B. x ̈ + 3g sin(x) = 0 

C. 6 ẍ - 6g sin(x) = 0 

D. x ̈ - 3g sin(x) = 0 

 

11. For a charged particle with mass m = 2 kg and charge q = 3 C moving in a region with an 
electric potential φ = 10 V and a magnetic potential A = (2t) m/s. If � =  ^T	 �  R�T � _ is 
the Lagrangian for the particle Then the value of ^ 

A. 1 

B. 6 

C. -30 

D. 30 

 

12. For a charged particle with mass m = 2 kg and charge q = 3 C moving in a region with an 
electric potential φ = 10 V and a magnetic potential A = (2t) m/s. If � =  ^T	 �  R�T � _ is 
the Lagrangian for the particle Then the value of R 

A. 1 

B. 6 

C. -30 

D. 30 

 

13. For a charged particle with mass m = 2 kg and charge q = 3 C moving in a region with an 
electric potential φ = 10 V and a magnetic potential A = (2t) m/s. If � =  ^T	 �  R�T � _ is 
the Lagrangian for the particle Then the value of _ 

A. 1 

B. 6 

C. -30 

D. 30 
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14. For a charged particle with mass m = 2 kg and charge q = 3 C moving in a region with an 
electric potential φ = 10 V and a magnetic potential A = (2t) m/s. If � =  ^T	 �  R�T � _ is 
the Lagrangian for the particle Then the value of ^ 

A. 1.5 

B. 18 

C. -30 

D. 30 

15. For a charged particle with mass m = 2 kg and charge q = 3 C moving in a region with an 
electric potential φ = 10 V and a magnetic potential A = (2t) m/s. If � =  ^T	 �  R�T � _ is 
the Lagrangian for the particle Then the value of R 

A. 3/2 

B. 18 

C. -30 

D. 30 

 

Answers for Self Assessment 

1. A 2. C 3. B 4. A 5. A 

6. A 7. A 8. A 9. B 10. A 

11. A 12. B 13. C 14. A 15. B 

Review Questions 

1. A particle of mass m moves on a smooth, curved surface given by the equation � =  �	   . 

Derive the equations of motion using Lagrange's equations of the first kind. 

2. A particle of mass 2kg moves on a smooth, curved surface given by the equation � =  �	   . 

Derive the equations of motion using Lagrange's equations of the first kind. 

3. Consider a simple pendulum of length 10 m with a mass � at the end. Derive the 

equations of motion using Lagrange's equations of the first kind. 

4. Consider a simple pendulum of length l with a mass 10 `I at the end. Derive the 

equations of motion using Lagrange's equations of the first kind. 

5. Consider a charged particle with mass m = 2 kg and charge q = 3 C moving in a region 

with an electric potential φ = 10 V and a magnetic potential A = (2t) m/s, where t is time in 

seconds. Find final form of the Lagrangian. 

 

 
Further Readings  

Classical Mechanics By Herbert Goldstein Charles P. Poole John Safko, Pearson 

Classical Mechanics By Dr. J. C. Upadhyaya, Himalaya Publishing House 

 

Lovely Professional University 43



                                                                    Unit 04: Hamilton Canonical Equations, Cyclic Coordinates  

 

Notes 

Unit 04: Hamilton Canonical Equations, Cyclic Coordinates 

CONTENTS 

Objectives 

Introduction 

4.1 Hamilton Canonical Equations 

4.2 Cyclic Coordinates 

Summary 

Keywords 

Self Assessment 

Answers for Self Assessment 

Review Questions 

Further Readings 

 

Objectives 

The purpose of studying the Hamilton canonical equations is to provide a powerful mathematical 
framework for understanding the dynamics of classical mechanical systems. By introducing 
Hamiltonian mechanics, physicists and mathematicians can express the equations of motion in 
terms of generalized coordinates and momenta, simplifying the analysis of complex systems. The 
Hamilton canonical equations reveal the symmetries and conservation principles underlying 
conservative systems, enabling researchers to gain deeper insights into the behavior of physical 
systems and uncover fundamental relationships between position and momentum variables. The 
purpose of studying cyclic coordinates is to simplify the analysis of mechanical systems by 
identifying specific generalized coordinates that do not appear explicitly in the Hamiltonian 
function. These cyclic coordinates lead to conserved quantities known as cyclic or ignorable 
momenta, making it easier to solve the equations of motion and gain deeper insights into the 
system's behavior. By understanding and utilizing cyclic coordinates, researchers can significantly 
simplify the mathematical complexity of mechanical problems and identify important conservation 
principles that govern the dynamics of the system. 

After this unit you will be able to – 

1. To derive the Hamilton canonical equations  

2. To solve complex mechanical problems by using Hamiltonian mechanics. 

3. To explore the implications of cyclic motion: 

4. To apply cyclic coordinates to real-world problems 

Introduction 

Classical mechanics provides us with a framework to describe and predict the behavior of physical 
systems. Traditionally, Newton's laws of motion have served as the cornerstone of this discipline. 
However, alternative formalisms have been developed to provide a deeper understanding of 
mechanics and simplify complex problems. Hamilton's Canonical Equations and cyclic coordinates 
are two such tools that offer powerful insights into the dynamics of mechanical systems. 

Hamilton's Canonical Equations introduce a different mathematical formalism based on 
generalized coordinates and momenta. These equations provide an elegant and systematic 
approach to describing the motion of particles and systems. By incorporating the concept of the 
Hamiltonian function, which encapsulates the total energy of the system, Hamilton's equations 
offer a comprehensive view of the system's dynamics. Through the application of canonical 
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transformations, which preserve the form of the equations, we can simplify the analysis and 
uncover hidden symmetries. 

On the other hand, cyclic coordinates provide a valuable shortcut in solving the equations of 
motion. These are generalized coordinates that do not appear explicitly in the Lagrangian or 
Hamiltonian functions. Cyclic coordinates simplify the equations of motion by decoupling them 
from the rest of the system's dynamics. They correspond to conserved quantities such as energy, 
momentum, or angular momentum, allowing us to directly infer important physical properties of 
the system. 

Understanding and utilizing Hamilton's Canonical Equations and cyclic coordinates provide us 
with a deeper insight into the behavior of mechanical systems. They enable us to uncover 
conservation laws, identify symmetries, and simplify the mathematical analysis of complex 
problems. 

Throughout this lecture, we will explore the purpose and objectives of Hamilton's Canonical 
Equations and cyclic coordinates in more detail. We will discuss their applications, derivations, and 
implications for understanding the dynamics of mechanical systems. By the end of this lecture, you 
will have a solid foundation in these concepts, equipping you with the tools to analyze and solve a 
wide range of mechanical problems. 

So, let's delve into the fascinating world of Hamilton's Canonical Equations and cyclic coordinates 
and unlock the secrets of classical mechanics! 

4.1 Hamilton Canonical Equations 

. To understand Hamilton's Canonical Equations, let's start by introducing the necessary 
mathematical concepts and notation. We will then derive the equations and discuss their 
significance. 

1. Generalized Coordinates and Momenta: In classical mechanics, we often describe a system 
using generalized coordinates, denoted by �₁, �₂, . . . , �ₙ, which represent the configuration 
of the system. These coordinates may not necessarily be Cartesian coordinates but can be 
any set of coordinates that uniquely determine the system's state. 

Conjugate momenta, denoted �� 
₁, 
₂, . . . , 
ₙ, are associated with the generalized coordinates and 
provide information about the system's momentum. The conjugate momentum corresponding to a 
generalized coordinate �ᵢ is defined as  


ᵢ = ����ᵢ�� �  , where � is the Lagrangian of the system. 

2. Hamiltonian Function: The Hamiltonian function, denoted by �, is defined as the 
Legendre transformation of the Lagrangian function �. 

3.  It is given by � =  � �
ᵢ ���ᵢ�� �� −  �, where Σ represents the sum over all generalized 

coordinates and momenta. The Hamiltonian represents the total energy of the system and 
provides an alternative description of the system's dynamics. 

4. Hamilton's Canonical Equations: Hamilton's Canonical Equations express the equations of 
motion in terms of the generalized coordinates and momenta. They are derived from the 
Hamiltonian function and have the following form: ��ᵢ��  = ���
ᵢ                                                                                                                                                                           (4") 

�
ᵢ��  =  − ����ᵢ                                                                                                                                                                      (4�) 

These equations describe how the generalized coordinates and momenta evolve with time and 
provide a complete set of equations to determine the dynamics of the system. 

 Let's derive Hamilton's Canonical Equations from the Hamiltonian function. 

Starting with Equation (4a): 
��ᵢ��  = $%ᵢ 

To derive this equation, we'll consider the time derivative of the generalized coordinate �ᵢ. We use 

the chain rule to express 
��ᵢ��   in terms of the Hamiltonian �. 
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Starting with 
��ᵢ�� , we can write it as:  

��ᵢ��  =  ��ᵢ/��₁ ∗  ��₁/�� +  ��ᵢ/��₂ ∗ ��₂/�� + . . . + ��ᵢ/��ₙ ∗  ��ₙ/��  
Since 

��ⱼ��  = $%ⱼ   (from the definition of conjugate momenta), we can substitute this expression into 

the above equation: ��ᵢ��  =  ��ᵢ/��₁ ∗  (��/�
₁)   +  ��ᵢ/��₂ ∗  (��/�
₂) + . . . + ��ᵢ/��ₙ ∗  (��/�
ₙ) 

Now, let's consider the partial derivatives of the generalized coordinates with respect to 
themselves. Since �ⱼ is independent of �ᵢ for * ≠  ,, the partial derivative ��ᵢ/��ⱼ is equal to 0. 

Therefore, the only non-zero term in the above equation is when * =  ,. Thus, we have: ��ᵢ��  =  ��ᵢ/��ᵢ ∗  (��/�
ᵢ) 

Simplifying further, we have: ��ᵢ��  = ���
ᵢ 
This gives us Equation (4a): 

��ᵢ��  = $%ᵢ. 
Now let's move on to Equation (4b): 

�%ᵢ��  =  − $�ᵢ 
To derive this equation, we'll again consider the time derivative, but this time for the conjugate 
momentum pᵢ. 

Starting with 
�%ᵢ�� , we can write it as: 

�
ᵢ��  =  �
ᵢ/��₁ ∗  ��₁/�� +  �
ᵢ/��₂ ∗  ��₂/�� + . . . + �
ᵢ/��ₙ ∗  ��ₙ/�� 

Since 
��ⱼ�� = $%ⱼ, we can substitute this expression into the above equation: 

dpᵢ/dt = ∂pᵢ/∂q₁ * (∂H/∂p₁) + ∂pᵢ/∂q₂ * (∂H/∂p₂) + ... + ∂pᵢ/∂qₙ * (∂H/∂pₙ) 

Now, let's consider the partial derivatives of the conjugate momenta with respect to the generalized 

coordinates. By definition, 
ⱼ = ����ⱼ�� �. Thus, we can write: 

�
ᵢ��ⱼ  =
� - ��� ���ᵢ�� �.

��ⱼ  = �/�
� ���ᵢ�� � ��ⱼ 

Using the chain rule, 
0����ᵢ�� ��ⱼ   = 0��ᵢ�ⱼ. 

Applying this to the equation above, we have: �
ᵢ��  =  �²�/��ᵢ��₁  ∗  (��/�
₁) +  �²�/��ᵢ��₂ ∗  (��/�
₂) + . . . + �²�/��ᵢ��ₙ ∗  (��/�
ₙ) 

Now, recall the Euler-Lagrange equation: d

232���ᵢ�� ���  − ��ᵢ  =  0. Rearranging this equation, we get: 

� - ��� ���ᵢ�� �.
��  = ����ᵢ 

Substituting this equation into the above expression for 
�%ᵢ��   , we have: 

�%ᵢ��  =  − ��ᵢ    
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Since 
��ᵢ is the negative of 

$�ᵢ (from the definition of the Hamiltonian), we finally obtain: 

�
ᵢ��  =  − ����ᵢ 
This gives us Equation (4b): 

�%ᵢ��  =  − $�ᵢ. 
 

Example:  

A particle of mass m moves in one dimension under the influence of a conservative force described 
by a potential energy function 5(6). The Hamiltonian function for this system is given ��  
� =  �7/ 8� 
²  +  5(6), where x is the position coordinate and p is the momentum. 

We can use Hamilton's Canonical Equations to determine the equations of motion for this system. 

1. Equation (4a): 
���� = $%  Taking the derivative of the Hamiltonian with respect to 

momentum p, we have: 
����  =  � �7/ 8 � %0

%   + 9(:)%  =  � 7;� 
 

2. Equation (4b): �
/�� =  − $�   Taking the derivative of the Hamiltonian with respect to 

position � (6), we have: 
�%��  =  − �<0;�%0

:  − 9(:):  =  − 9(:):  

These equations represent the equations of motion for the particle in terms of its position and 
momentum. 

Let's consider a specific potential energy function 5(6) = =:0
/ , where k is a constant. 

Substituting this potential into the equations of motion, we have: ����  =  � 7;� 
 �%��  =  −?6 

Now, we have a system of coupled first-order ordinary differential equations. To solve them, we 
can apply standard techniques such as separation of variables or numerical methods. 

For instance, if we assume initial conditions �(0)  =  �₀ and 
(0)  =  
₀, we can solve these 
equations to obtain the position and momentum as functions of time. 

Integrating Equation (4a) with respect to time, we get: �(�)  =  � 7;� 
₀� +  �₀ 

Integrating Equation (4b) with respect to time, we get: 
(�)  =  −?6₀� +  
₀ 

These solutions describe the motion of the particle under the influence of the potential energy 
function 5(6)  =  ?6²/2. 
 

4.2 Cyclic Coordinates 

To understand cyclic coordinates and their significance in simplifying the equations of motion, let's 
explore the mathematical framework involved. 

1. Generalized Coordinates and Lagrangian: In classical mechanics, we often describe the 
configuration of a system using generalized coordinates, denoted by �₁, �₂, . . . , �ₙ. These 
coordinates may not necessarily be Cartesian coordinates but can be any set of coordinates 
that uniquely determine the system's state. 

The Lagrangian function, denoted by �, describes the dynamics of the system in terms of the 
generalized coordinates and their time derivatives.  

It is typically defined as � =  B −  5, where T represents the kinetic energy and 5 represents the 
potential energy of the system. 

2. Cyclic Coordinates: A cyclic coordinate �ᵢ is a generalized coordinate for which the 

Lagrangian L does not explicitly depend on qᵢ. In other words, 
��ᵢ  =  0. 
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Cyclic coordinates have a crucial property: their conjugate momenta pᵢ are conserved throughout 
the motion. This means that the momentum associated with the cyclic coordinate does not change 
as the system evolves. 

3. Equations of Motion for Cyclic Coordinates: When a coordinate �ᵢ is cyclic, we can 

simplify the equations of motion by utilizing the fact that 
��ᵢ  =  0. 

The Euler-Lagrange equation for a generalized coordinate qᵢ is given by: 

 �(��/�(��ᵢ/��))/��  −  ��/��ᵢ =  0 

Since ��/��ᵢ =  0 for cyclic coordinates, the above equation simplifies to: �(��/�(��ᵢ/��))/�� =  0 

Integrating this equation with respect to time, we obtain: ��/�(��ᵢ/��)   =  
ᵢ =  CDEF�"E� 

This result demonstrates that the conjugate momentum 
ᵢ associated with a cyclic 
coordinate �ᵢ remains constant throughout the motion. 

4. Conservation Laws: The constancy of the conjugate momentum pᵢ associated with a cyclic 
coordinate qᵢ corresponds to a conservation law. It implies that there exists a conserved 
quantity associated with the cyclic coordinate. 

For example, if qᵢ represents an angle coordinate, the constant conjugate momentum pᵢ corresponds 
to the angular momentum of the system, which remains conserved. 

By identifying cyclic coordinates in a mechanical system, we can directly determine the conserved 
quantities and simplify the analysis of the system's dynamics. 

 

Example: 

To see an example of how cyclic coordinates are used, let's consider a simple system: a particle 
moving in a plane under the influence of a central force. The coordinates of the particle can be 
described by its radial distance r from the origin and its angular position theta. The Lagrangian for 
this system is: 

� = 12  8 ��H���/  + 12  8 H/  ��I�� �/  −  5(H), 
where 8 is the mass of the particle and 5(H) is the potential energy due to the central force. 

 Now, let's consider the angular coordinate theta. Since the potential energy 5 depends only on the 
radial coordinate r, the force acting on the particle is always directed towards the origin, and does 
not depend on the angular position. Therefore, the angular coordinate theta is cyclic.  

Using the fact that theta is a cyclic coordinate, we can simplify the equations of motion for the 
system. The equation of motion for the radial coordinate r is: 

  

8 �/H��/  =  − �5�H . 
The equation of motion for the angular coordinate theta is: ���  �8H/ �I�� �  =  0. 
  

Notice that the time derivative of theta does not appear in this equation, since theta is cyclic. 
Therefore, we can solve for the angular position theta simply by setting: 

8H/ �I��  =  ℎ, 
  

where ℎ is a constant of motion. This equation states that the angular momentum of the particle is 
conserved, which is a consequence of the fact that theta is a cyclic coordinate. 
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 In conclusion, cyclic coordinates are important in classical mechanics because they allow us to 
simplify the equations of motion for a system. By identifying cyclic coordinates, we can reduce the 
complexity of the equations and make it easier to solve for the coordinates of the system 

 

Summary 

 Hamilton's Canonical Equations are a set of equations used in classical mechanics to 

describe the motion of a system with generalized coordinates and momenta. 

 The equations are derived from the Hamiltonian function, which represents the total 

energy of the system. 

 The equations of motion derived from Hamilton's Canonical Equations are ��/�� = ��/�
 and �
/�� =  −��/��, where q represents the generalized coordinates and p 

represents the corresponding momenta. 

 These equations provide a systematic way to determine the time evolution of the 

coordinates and momenta of a system, based on the potential and kinetic energies 

described by the Hamiltonian. 

 Hamilton's Canonical Equations are widely used in various areas of physics, including 

classical mechanics, quantum mechanics, and statistical mechanics. 

 They offer a powerful framework to study complex systems and derive the equations of 

motion, even for systems with non-trivial potentials or constraints. 

 Cyclic coordinates refer to the coordinates in a physical system for which the Lagrangian 

does not explicitly depend on them. 

 Cyclic coordinates play a crucial role in simplifying the equations of motion and finding 

conserved quantities in a system. 

 When a coordinate is cyclic, its conjugate momentum remains constant throughout the 

motion. 

 Cyclic coordinates often arise in systems with specific symmetries or conservation laws, 

allowing for the simplification of the equations of motion and revealing hidden 

conservation principles. 

 The presence of cyclic coordinates can simplify the analysis of a system, leading to the 

discovery of important physical quantities such as angular momentum or energy 

conservation. 

 Cyclic coordinates are valuable in the study of many physical systems, including classical 

mechanics, quantum mechanics, and field theories.  
Keywords 

Hamilton's Canonical Equations  

Hamilton's Canonical Equations express the equations of motion in terms of the generalized 
coordinates and momenta. They are derived from the Hamiltonian function and have the following 
form: ��ᵢ��  = ���
ᵢ                                                                                                                                                                           (4") 

�
ᵢ��  =  − ����ᵢ                                                                                                                                                                      (4�) 

Cyclic Coordinates: A cyclic coordinate qᵢ is a generalized coordinate for which the Lagrangian L 

does not explicitly depend on qᵢ. In other words, ∂L/∂qᵢ  = 0. A cyclic coordinate is a coordinate in a 
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system that does not appear in the equations of motion. In other words, if a coordinate is cyclic, 
then its derivative with respect to time does not appear in the equations of motion. 

 

Self Assessment 

1. A particle of mass 5 kg moves in one dimension under the influence of a conservative force 

described by a potential energy function U(x). The Hamiltonian function for this system is 

given by � =  �7/� (5)
² +  5(6). What are the equations of motion for this system according 

to Hamilton's Canonical Equations 

A. 
����  = %L , �%��  =  − �9(:)�:   

B. 
����  = %7M , �%��  =  − /�9(:)�:   

C. 
����  =  5
, �%��  =  − /�9(:)�:   

D. 
����  =  2
 , �%��  =  − �9(:)�:  

 

2. A particle of mass 5 kg moves in one dimension under the influence of a conservative force 
described by a potential energy function U(x). The Hamiltonian function for this system is 

given by � =  �7/� (5)
² +  5(6). If the potential energy function U(x) is quadratic, which of 

the following describes the equations of motion for this system? 

A. ��/�� =  
/5, �
/�� =  −?6 
B.  ��/�� =  
/5, �
/�� =  −2?6 C. ��/�� =  2
, �
/�� =  −?6 D.  ��/�� =  2
, �
/�� =  −2?6 
 

3. A particle of mass 10 kg moves in one dimension under the influence of a conservative force 

described by a potential energy function U(x). The Hamiltonian function for this system is 

given by � =  �7/� (5)
² +  5(6). What are the equations of motion for this system according 

to Hamilton's Canonical Equations 

Q. ����  = 
10 , �
��  =  − �5(6)�6   
R.  ����  = 
10 , �
��  =  − 2�5(6)�6   
S.  ����  =  10
, �
��  =  − 2�5(6)�6   
T.  ����  =  20
 , �
��  =  − �5(6)�6  

 

4. A particle of mass 5 kg moves in one dimension under the influence of a conservative force 
described by a potential energy function U(x). The Hamiltonian function for this system is 

given by � =  �7/� (10)
² +  5(6). If the potential energy function U(x) is quadratic, which of 

the following describes the equations of motion for this system? 

Q.  ��/�� =  
/10, �
/�� =  −?6 R.  ��/�� =  
/10, �
/�� =  −2?6 

S.  ���� =  20
, �
/�� =  −?6 
T.  ��/�� =  20
, �
/�� =  −2?6 
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5. A particle moves in one dimension under the influence of a conservative force described by 
a potential energy function U(x). The Hamiltonian function for this system is given by H = 
p² + U(x). What are the equations of motion for this system according to Hamilton's 
Canonical Equations? 

Q.  ��/�� =  2
, �
/�� =  −2�5(6)/�6 
R.  ��/�� =  
², �
/�� =  −�5(6)/�6 S.  ��/�� =  
², �
/�� =  −2�5(6)/�6 T.  ��/�� =  
, �
/�� =  −�5(6)/�6 

 

6. A particle moves in one dimension under the influence of a conservative force described by 
a potential energy function U(x). The Hamiltonian function for this system is given by H = 
p² + U(x). If the potential energy function U(x) is linear, which of the following describes the 
equations of motion for this system? 

Q.  ��/�� =  
, �
/�� =  −?6 R.  ��/�� =  
, �
/�� =  −2?6 S.  ��/�� =  2
, �
/�� =  −?6 T.  ��/�� =  2
, �
/�� =  −2?6 
 

7. For a particle moving in a central force field, which of the following coordinates is a cyclic 
coordinate?  

A. x  

B. y  

C. z  

D. θ 

 

8. For a particle moving in a two-dimensional system with polar coordinates (r, θ), which 
coordinate(s) is/are cyclic? 

A. r 

B. θ 

C. Both r and θ 

D. None of the above 

 

9. In a system with spherical coordinates (r, θ, φ), which coordinate(s) is/are cyclic? 

A. r 

B. θ 

C. φ 

D. Both θ and φ 

 

10. In a double pendulum system, which coordinate(s) is/are cyclic? 

A. θ₁ 

B. θ₂ 

C. Both θ₁ and θ₂ 

D. None of the above 
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11. For a particle moving in a uniform magnetic field, which coordinate(s) is/are cyclic? 

A. x 

B. y 

C. z 

D. None of the above 

 

12. For a particle moving in a two-dimensional potential energy surface with Cartesian 
coordinates (x, y), which coordinate(s) is/are cyclic? 

A. x 

B. y 

C. Both x and y 

D. None of the above 

 

13. For a particle moving in a system with cylindrical coordinates (ρ, φ, z), which coordinate(s) 
is/are cyclic? 

A. ρ 

B. φ 

C. z 

D. Both ρ and z 

 

14. For a particle moving in a system with curvilinear coordinates (u, v, w), which coordinate(s) 
is/are cyclic? 

A. u 

B. v 

C. w 

D. All of the above 

 

15. For a particle moving in a system with generalized coordinates (q₁, q₂, q₃), which 
coordinate(s) is/are cyclic? 

A. q₁ 

B. q₂ 

C. q₃ 

D. None of the above 

 

Answers for Self Assessment 

1. A 2. A 3. A 4. A 5. D 

6. A 7. D 8. B 9. D 10. D 

11. D 12. D 13. C 14. D 15. D 
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Review Questions 

1. Consider a one-dimensional harmonic oscillator with the Hamiltonian given by � = �7/� 8U/6/ + �7/ 8 � 
/, where m is the mass, ω is the angular frequency, x is the position, 

and p is the momentum of the particle. Using Hamilton's Canonical Equations, find the 

equations of motion for this system. 

2. A particle of mass m is subject to a time-independent conservative force described by a 

potential energy function U(x). The Hamiltonian function for this system is given by � =  �7/ 8� 
/  +  5(6), where x is the position coordinate and p is the momentum. Derive 

Hamilton's Canonical Equations for this system. 

3. Consider a charged particle of mass m moving in a uniform magnetic field B along the z-

axis. The Hamiltonian for this system is given by � =  �7/ 8� V
:/  +  
W/  +  
X/Y  +  �RZ , where � is the charge of the particle and V
: , 
W, 
XY are the momentum components. Apply 

Hamilton's Canonical Equations to determine the equations of motion for this system. 

4. For a particle moving in a central force field, the Lagrangian is given by � =  �7/� 8(H²I[² + ˙H²)  −  5(H), where m is the mass, r is the distance from the origin, θ is the angle coordinate, 

and U(r) is the potential energy function. Identify the cyclic coordinate and the associated 

conserved quantity for this system. 

5. Consider a double pendulum consisting of two rods of lengths L₁ and L₂, each with a mass 

m. The Lagrangian for this system is given by � = �7/� 8(�₁²I₁[² +  �₂²I₂[² +  2�₁�₂I₁[I₂[CDF(I₁ −  I₂))  −  8](�₁F,EI₁ + �₂F,EI₂), ^ℎ_H_ I₁ "E� I₂ are the angles of the rods with respect to the vertical direction. 

Identify the cyclic coordinates, if any, for this system. 

6. A particle of mass m moves in a three-dimensional central force field described by a 

potential energy function U(r), where r represents the distance from the origin. The 

Lagrangian for this system is given by � =  �7/� 8 (H²I[² +  ˙H² +  H²F,E²I`[²)  −  5(H), ^ℎ_H_ I "E� ` are the spherical coordinates. 

Determine the cyclic coordinates, if any, for this system. 

 

 
Further Readings  

Classical Mechanics By Herbert Goldstein Charles P. Poole John Safko, Pearson 

Classical Mechanics By Dr. J. C. Upadhyaya, Himalaya Publishing House 
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Objectives 

The purpose of studying the conservation theorems in terms of linear and angular momentum is to 
understand and analyze the fundamental principles governing the motion of objects and systems in 
classical mechanics. These theorems reveal the underlying symmetries and invariances in physical 
laws and provide essential insights into how momentum is conserved during various processes, 
such as collisions, interactions, and rotations. By studying these conservation principles, scientists 
and engineers can predict and explain the behavior of mechanical systems, making it possible to 
design efficient and safe engineering solutions and better comprehend the dynamics of natural 
phenomena. Studying Lagrange's equations of motion is to provide a powerful and systematic 
approach for describing the dynamics of mechanical systems in terms of generalized coordinates 
and their corresponding generalized forces. Lagrange's equations simplify the analysis of complex 
mechanical systems by reducing the number of variables and avoiding the need to deal with 
explicit forces. By understanding and applying Lagrange's equations, researchers can describe and 
predict the motion of diverse mechanical systems, ranging from simple particles to intricate 
multibody systems, and gain a deeper understanding of the underlying principles governing their 
behavior. 

After this unit you will be able to – 

1. To learn the concept of linear momentum conservation. 

2.  To grasp the concept of angular momentum conservation. 

3. To apply the principles of linear and angular momentum conservation to practical 
problems encountered in engineering, physics, and everyday life. 

4. To learn how to derive Lagrange's equations of motion from the Lagrangian function. 

5. To apply Lagrange's equations to constrained systems. 

 

Introduction 

In classical mechanics, linear momentum conservation is a fundamental principle that states the 
total linear momentum of an isolated system remains constant in the absence of external forces. 
Linear momentum is a vector quantity representing the product of an object's mass and its velocity. 
According to Newton's third law of motion, every action has an equal and opposite reaction, 
resulting in the overall conservation of momentum. This principle is of paramount importance in 
understanding the motion of objects during collisions, interactions, and other mechanical processes. 

Dr. Rajesh Kumar Chandrawat, Lovely Professional University 
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By analyzing linear momentum conservation, scientists and engineers can predict the outcomes of 
such events and gain insights into the underlying symmetries and conservation laws in physical 
systems. 

Angular momentum conservation is another fundamental principle in classical mechanics, 
governing the rotational motion of objects and systems. Similar to linear momentum, angular 
momentum is a vector quantity defined as the product of an object's moment of inertia and its 
angular velocity. When no external torques act on an isolated system, the total angular momentum 
remains constant. This conservation principle is vital for understanding the rotational behavior of 
celestial bodies, gyroscopic systems, and other rotating objects. Angular momentum conservation 
also plays a key role in predicting the outcomes of collisions and interactions involving spinning 
bodies. By studying angular momentum conservation, scientists can unveil the symmetries and 
invariance present in rotational motion and its profound implications in various physical 
phenomena. 

Lagrange's equations of motion provide an elegant and powerful alternative to Newton's laws for 
describing the dynamics of mechanical systems. Developed by the mathematician and physicist 
Joseph-Louis Lagrange in the 18th century, these equations offer a systematic approach to 
expressing the equations of motion in terms of generalized coordinates and their corresponding 
generalized forces. By introducing a scalar function called the Lagrangian, which is the difference 
between the kinetic and potential energies of the system, Lagrange's equations reduce the number 
of variables required to describe the system's motion. This reduction not only simplifies the 
mathematical analysis but also reveals deep connections between the system's symmetries and its 
conserved quantities. Lagrange's equations find applications in various branches of physics and 
engineering, offering a unifying framework for studying the motion of particles, rigid bodies, and 
complex multibody systems with constraints. 

 

5.1 Conservation Theorems 

The Law of Conservation of Linear Momentum: 

In classical mechanics, linear momentum is a fundamental physical quantity that characterizes the 
motion of an object. It is defined as the product of an object's mass (�) and its velocity (�) and is 
represented by the vector �: 

� =  � ∗  � 

The concept of linear momentum conservation is based on Newton's third law of motion, which 
states that for every action, there is an equal and opposite reaction. This principle implies that the 
total momentum of an isolated system remains constant in the absence of external forces. 

Mathematically, the law of linear momentum conservation can be expressed as follows: 

For an isolated system of N particles with individual masses (�
) and velocities (�
) at an initial 
time � =  �
 , the total initial momentum (
) is the sum of the momenta of all the particles: 


  =  � �
 ∗ �
 , ��� � =  1 �� � 

At a later time � =  ��, the particles may interact with each other, resulting in changes in their 

velocities. However, in the absence of external forces acting on the system, the total momentum 
remains constant: 

�  =  � �
  ∗  �
 , ��� � =  1 �� � 
�  =  
 

This principle holds true for both one-dimensional and three-dimensional systems, and it is a result 
of the conservation of linear momentum. The conservation of linear momentum is a powerful tool 
in analyzing collisions, interactions, and motion in classical mechanics. In real-world scenarios, 
external forces can often be neglected if the system is considered to be isolated or if the influence of 
external forces is negligible compared to the internal forces within the system. Linear momentum 
conservation has wide applications in various fields, including engineering, physics, and 
astronomy. By applying this principle, scientists and engineers can predict the outcomes of 
collisions between objects, study the motion of celestial bodies, and design efficient transportation 
systems. The conservation of linear momentum is a fundamental law of nature, deeply rooted in 
the symmetries and invariances present in physical systems. 
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Certainly! Let's look at some examples that illustrate the concept of linear momentum conservation: 

1. Elastic Collision of Billiard Balls: Consider two billiard balls of equal mass colliding with 
each other on a frictionless table. Before the collision, one ball is moving with a velocity v 
and the other is stationary. After the collision, they bounce off each other, conserving 
linear momentum. Due to the conservation of linear momentum, the total momentum of 
the system before the collision is equal to the total momentum after the collision. 

Initial momentum: 
�
�
��  =  � ∗ � �  0 (where m is the mass of each ball) 

Final momentum: �
���  =  � ∗ (��) �  � ∗  � =  0 

Since 
�
�
��  =  �
��� , the linear momentum is conserved during the collision. 

2. Rocket Propulsion: Consider a rocket in space, where there are no external forces acting on 
it. The rocket expels exhaust gases with a certain velocity in one direction, generating 
thrust and causing it to move in the opposite direction. In this case, the momentum of the 
rocket and the expelled gases is conserved. As the gases move backward with high 
velocity, the rocket moves forward with an equal and opposite velocity to maintain 
momentum conservation. 

3. Recoil of a Gun: When a gun is fired, the bullet moves forward with a certain velocity, and 
the gun recoils backward due to the conservation of linear momentum. The momentum of 
the bullet and the gun are equal and opposite, leading to the backward motion of the gun. 

4. Collisions in Particle Physics: In high-energy particle collisions, such as those occurring in 
particle accelerators, conservation of linear momentum plays a crucial role in analyzing 
the interactions. By measuring the momenta of all the particles before and after the 
collision, physicists can infer the properties and characteristics of new particles produced 
during the collision. 

In all these examples, the total linear momentum of the system remains constant, demonstrating the 
conservation of linear momentum. This principle is applicable to various scenarios, from everyday 
situations like billiard ball collisions to advanced applications in particle physics and space 
exploration. Linear momentum conservation is a fundamental concept that helps explain and 
predict the behavior of objects and systems in motion. 

Example: Colliding Cars 

Two cars, Car A and Car B, each with a mass of 1000 kg, are moving towards each other on a 
straight road. Car A is traveling at 20 m/s to the right, and Car B is moving at 15 m/s to the left. 
When they collide head-on, they stick together and move as a single unit. 

Calculate the final velocity and direction of the cars after the collision. 

Solution: Before the collision, the total momentum of the system is the sum of the individual 
momenta of each car: 

Initial momentum (before collision) = (mass of Car A * velocity of Car A) + (mass of Car B * velocity 
of Car B)  


�
�
��  =  �1000 �� ∗  20 �! " � #1000 �� ∗  ��15 �! "% 


�
�
��  =  20,000 ���/! �  15,000 ���/! 


�
�
��  =  5,000 �� ∗ �/!  

After the collision, the two cars stick together and move as a single unit with a combined mass of 
2000 kg (sum of their individual masses). 

Final momentum (after collision) = (combined mass * final velocity) 

 �
���  =  2000 �� ∗  ��
���  
Since momentum is conserved, the initial momentum is equal to the final momentum: 


�
�
��  =  �
���   
5,000 �� ∗ �/! =  2000 �� ∗  ��
���  
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Solving for ��
��� : 
��
���  =  5,000 �� ∗ �!2000 ��   

��
���  =  2.5 �/!  
So  

�
��� = 2000 �� ∗ 52  �/!  
�
��� = 5000 ��  �/! 

 

Therefore, after the collision, the cars move together with a final velocity of 2.5 m/s to the right. 

Example: Recoil of a Cannon 

A cannon with a mass of 500 kg is mounted on wheels. It fires a cannonball with a mass of 10 kg at 
a velocity of 200 m/s to the right. Calculate the recoil velocity of the cannon after firing. 

Solution: Before firing the cannon, the initial momentum of the system is zero because the cannon 
and the cannonball are at rest: 

Initial momentum (before firing) = 0 

After firing, the cannonball moves to the right with a velocity of 200 m/s. According to the 
conservation of linear momentum, the total momentum after firing must be zero as well. 

Final momentum (after firing) = (mass of cannon * recoil velocity) + (mass of cannonball * velocity 
of cannonball)  

�
���  =  500 �� ∗  �()*+
�  �  10 �� ∗  200 �/! 

Since momentum is conserved, the final momentum is zero: 

�
���  =  0 

Setting the expression for �
���  equal to zero: 

0 =  500 �� ∗  �()*+
�  �  10 �� ∗  200 �/! 

Solving for �()*+
�: 
�()*+
�  =  � (10 �� ∗  200 �/!) / 500 �� �()*+
�  =  � 4 �/! 

Therefore, after firing the cannon, it recoils backward with a velocity of 4 m/s. The negative sign 
indicates that the direction of the recoil is opposite to the direction in which the cannonball was 
fired. 

 

The Law of Conservation of Angular Momentum: 

The total linear momentum of a system is conserved if the Lagrangian is invariant under a 
translation of the generalized coordinates. 

Let - be the set of generalized coordinates for the system, and let .(-, -/) be the Lagrangian of the 
system. If the Lagrangian is invariant under a translation of the generalized coordinates, then it 
follows that the Lagrangian is also invariant under a transformation of the form - →  - �  1, where 1 is a constant. 

By the principle of least action, the equations of motion for the system can be derived from the 
Euler-Lagrange equations: 

22� 34.4-/5  � 34.4-5  =  0 

Taking the time derivative of the total linear momentum p of the system, we get: 

22�  � = 22� (�6-/6  �  �7-/7 � . . . � ��-/�)  =  �6-81 � �7-82 � . . . � ��-89 
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where -8
 is the second derivative of qi with respect to time. 

From the Euler-Lagrange equations, we know that �:;
:<"  = =

=� �:;
:</", so we can rewrite the equation 

for the time derivative of the total linear momentum as: 

22� � = 4.4-/ (-8)  � 34.4-5 (-/ )  =  34.4-/5 (-8 ) 

Since the Lagrangian is invariant under a translation of the generalized coordinates, it follows that 

�:;
:</" is a constant of motion. Therefore, 

=
=� � =  0, which proves that the total linear momentum of 

the system is conserved. 

Proof of Law of Conservation of Angular Momentum: 

 Let - be the set of generalized coordinates for the system, and let .(-, -/ ) be the Lagrangian of the 
system. If the Lagrangian is invariant under a rotation of the generalized coordinates, then it 
follows that the Lagrangian is also invariant under a transformation of the form -
  →  >
 ⋅ -, where > is a rotation matrix. 

Using the same approach as in the proof for the Law of Conservation of Linear Momentum, we can 
take the time derivative of the total angular momentum L of the system, given by: 

. =  �(�
>
7@
) 

where �
 is the mass of the ith object, >
 is its position vector relative to the origin, and @
 is its 
angular velocity vector. 

Taking the time derivative of ., we get: 

22�  . =  � ��
>
7A
  �  2�
>
B@
  ×  (�
>
 ⋅ @
)D" 

where A
 is the angular acceleration of the ith object, and "×" denotes the vector cross product. 

From the Euler-Lagrange equations, we know that �:;
:<"  = =

=� �:;
:</", so we can rewrite the equation 

for the time derivative of the total angular momentum as: 

22�  .  =  34.4-/5 (A) 

 

5.2 LaGrange’s Equations motion 

 

The standard form of Lagrange's equations is derived using the principle of least action. Let's go 
through the derivation: 

1. Start with the principle of least action: According to this principle, the true motion of a 
mechanical system is the one that minimizes the action integral over a given time interval. 
The action, denoted as S, is defined as: 

E =  ∫ [.(-₁, -₂, . . . , -ₙ, -/₁, -/₂, . . . , -/ₙ, �)] 2� 

where L is the Lagrangian, which is a function of the generalized coordinates qᵢ, their time 
derivatives q̇ᵢ, and time t. 

2. Introduce virtual displacements: Consider a virtual displacement, δqᵢ, where each 
generalized coordinate qᵢ is perturbed by an infinitesimally small amount. These virtual 
displacements are subject to the condition that the endpoints of the motion are fixed. 

3. Variation of the action integral: Now, we vary the action integral with respect to the 
virtual displacements δqᵢ while keeping the endpoints fixed. This gives us: 

LE =  ∫ M 4.4-ᵢ  L-ᵢ � 4.4-/ ᵢ  L-/ ᵢO 2� 

4. Integrate the second term by parts: Integrate the second term in LE by parts, treating L-/ᵢ as 
the variable to be differentiated and integrating the ∂L/∂q ̇ᵢ term: 
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LE =  P M 4.4-ᵢ  L-ᵢ � 22� 3 4.4-/ ᵢ5  L-ᵢO  2�  �  M 4.4-/ ᵢ  L-ᵢO  
Apply the Euler-Lagrange equations: To minimize the action, we set LE =  0. This implies that the 
integrand must vanish for arbitrary variations, leading to the Euler-Lagrange equations: 

4.4-ᵢ  � 22� 3 4.4-/ ᵢ5  =  0 

These are the standard form of Lagrange's equations, where the left-hand side represents the 
generalized forces and the right-hand side represents the rate of change of momentum. The 
equations describe the dynamics of the system and determine the equations of motion. 

By solving these equations, you can obtain the equations of motion for a mechanical system 
governed by the Lagrangian .(-₁, -₂, . . . , -ₙ, -/₁, -/₂, . . . , -/ₙ, �). 
Question 

If Lagrangian for the revolution earth around the son is 

 
. = 12 �B�/ 7  �  �7Q/ 7D  �  R(�) 

then write Lagrangian equation of motion. Find the Lagrangian equation of motion and then also 

show that the areal velocity �7Q//2 is constant. 

Solution 

To write the Lagrangian equations of motion for the revolution of the Earth around the Sun using 
the given Lagrangian function L, we need to determine the generalized coordinates and their 
corresponding generalized velocities. The Lagrangian function is given by: 

. = 12 �B�/ 7  �  �7Q/ 7D  �  R(�) 

where: m is the mass of the Earth, � is the radial distance of the Earth from the Sun, �/ �=(
=�" is the 

radial velocity of the Earth, θ is the angle of the Earth's position with respect to a reference direction 

(e.g., the x-axis), Q/  �=S
=� " is the angular velocity of the Earth, V(r) is the potential energy of the Earth-

Sun system as a function of radial distance r. 

Now, we can proceed to derive the Lagrange's equations of motion. 

Step 1: Generalized Coordinates and Velocities 

The generalized coordinates for this system are � 192 Q. The corresponding generalized velocities 

are �/ 192 Q/ . 
Step 2: Kinetic and Potential Energies 

The kinetic energy (T) of the system is given by the first term in the Lagrangian: 

T = 12 � B�/ 7  �  �7Q/7D 

The potential energy (R) of the system is given by the second term in the Lagrangian: 

R =  R(�) 

Step 3: Lagrange's Equations of Motion 

Using Lagrange's equations, we can now derive the equations of motion for � 192 Q. 
For �: =

=� �:;
:(/"  � :;

:(  =  0 

4.4�/   =  � ∗ �/ 

22� (� ∗ �/)  � 4 #12 � B�/ 7  �  �7Q/7D  �  R(�)%
4�  =  0 
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� ∗ �8   � 2R(�)
2�  =  0 

This is the equation of motion for the radial distance r. 

U�� Q: 22� 34.
4Q/5  � 4.4Q  =  0 

4.
4Q/  =  � ∗ �7Q/   

22� B� ∗ �7Q/D  �  0 =  0 
� ∗ �7Q8  =  0 

This is the equation of motion for the angular coordinate Q. 
The equation for θ̈ shows that there are no torques or forces acting to change the angular velocity of 
the Earth (no angular acceleration), which is consistent with the Earth's approximately constant 
angular velocity in its orbit around the Sun. 

The system's equations of motion are a set of second-order differential equations for r and θ, which 
describe the motion of the Earth in its orbit around the Sun under the influence of gravitational 
forces and the potential energy function V(r). Solving these equations will provide the time 
evolution of the Earth's radial distance and angular position as it orbits the Sun. 

To show that the areal velocity 
(VS/

7  is constant, we need to take the time derivative of 
(VS/

7  and 

demonstrate that it equals zero. 

Given: Areal velocity, R = (VS/
7  

Step 1: Take the time derivative of R with respect to time (�): 
2R2�  = 22�  #�7Q/

2 % 

Step 2: Apply the product rule and chain rule for derivatives: 

2R2�  =  W 22� (�7)X Q/
2  � �7 # 22� BQ/D%

2  

Step 3: Use the chain rule to find 
=BS/ D

=� : 
22� BQ/D   =  Q8  

where Q8   represents the angular acceleration of the Earth's motion. 

Step 4: Simplify the expression: 

2R2�  =  (2�  ∗  �/)  ∗ Q/
2  � �7  ∗ Q8

2 

Step 5: Notice that the first term in the above expression simplifies to: 

(2� ∗  �/)  ∗ Q/
2  =  � ∗  �/  ∗  Q/  

Step 6: Substitute the simplified expression back into the original derivative: 

2R2�  =  � ∗  �/ ∗  Q/  �  �7  ∗ Q8
2 

Step 7: Observe that the term � ∗  �/  ∗  Q/   is the angular momentum (L) of the Earth-Sun system: 

. =  � ∗  �/ ∗  Q/  
Step 8: Substitute the angular momentum term into the derivative expression: 

2R2�  =  . � �7  ∗  Q8
2 
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Step 9: Since there are no external torques acting on the Earth-Sun system (no external forces 
changing the angular momentum), the angular momentum (L) is constant. Therefore, 2R/2� 
becomes: 

2R2�  =  Y�9!�19� � �7  ∗ Q8
2 

Step 10: If the angular momentum (L) is constant, the derivative 
=Z
=�  equals zero: 

2R2�  =  0 �  �7  ∗ Q8
2  =  0 

Step 11: Finally, rearrange the equation to isolate the term 
(VS8

7 : 
�7 Q8

2  =  0 

Conclusion: The areal velocity 
(VS/

7  is constant because its time derivative �(VS8
7 " equals zero. This 

result is a consequence of the conservation of angular momentum in the Earth-Sun system, where 
the Earth's orbiting motion leads to a constant areal velocity, regardless of its position in its orbit. 

Summary 

 Linear momentum is a fundamental concept in physics that describes the motion of an 

object with mass and velocity. 

 The Law of Conservation of Linear Momentum states that the total linear momentum of 

an isolated system remains constant if no external forces act on it. 

 In simple terms, if there are no external forces, the total momentum before a collision or 

interaction is equal to the total momentum after the collision. 

 This principle is derived from Newton's third law of motion, which states that for every 

action, there is an equal and opposite reaction. 

 Angular momentum is the rotational counterpart of linear momentum, describing the 

rotational motion of an object. 

 The Law of Conservation of Angular Momentum states that the total angular momentum 

of an isolated system remains constant when no external torques act on it. 

 Angular momentum is a vector quantity, and its direction is perpendicular to the plane of 

rotation. 

 An essential example of this principle is the spinning of a figure skater. As they pull their 

arms closer to their body, their rotational speed increases due to the conservation of 

angular momentum. 

 Lagrange's equations of motion provide an alternative formalism to describe the dynamics 

of a mechanical system. 

 They are based on the principle of least action and formulated using generalized 

coordinates and a function called the Lagrangian. 

 The Lagrangian is the difference between the kinetic and potential energies of the system 

and is minimized to determine the motion of the system. 

 The equations are independent of the choice of coordinates and are more general and 

convenient than the traditional Newtonian equations of motion. 

 Lagrange's equations are widely used in classical mechanics, celestial mechanics, and 

other fields to describe the motion of complex systems with multiple degrees of freedom. 

 
Keywords 

Linear Momentum: 
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Linear momentum is a fundamental concept in classical mechanics, representing the quantity of 
motion possessed by an object with mass and velocity. It is a vector quantity, meaning it has both 
magnitude and direction. The linear momentum of an object is given by the product of its mass and 
velocity. In an isolated system where no external forces act, the total linear momentum remains 
constant, according to the Law of Conservation of Linear Momentum. This principle finds 
applications in various physical phenomena, such as collisions, explosions, and the motion of 
objects under the influence of forces. 

Angular Momentum: 

Angular momentum is the rotational counterpart of linear momentum and describes the rotational 
motion of an object. It is also a vector quantity and depends on the object's mass, velocity, and the 
distance from the axis of rotation. The Law of Conservation of Angular Momentum states that the 
total angular momentum of an isolated system remains constant when no external torques act on it. 
This conservation principle is essential in understanding the behavior of rotating systems, such as 
spinning tops, planets' orbits, and the dynamics of celestial bodies. 

Euler-Lagrange equations: 

 Let [ be the set of generalized coordinates for the system, and let \([, [/) be the Lagrangian 
of the system. If the Lagrangian is invariant under a translation of the generalized coordinates, then 
it follows that the Lagrangian is also invariant under a transformation of the form [ →  [ �  ], 
where ] is a constant. 

By the principle of least action, the equations of motion for the system can be derived from the 
Euler-Lagrange equations: 

^̂_ 3`\`[/ 5  �  3`\`[5  =  a 

Self Assessment 

1. Two cars, Car A and Car B, each with a mass of 1000 kg, are moving towards each other on a 

straight road. Car A is traveling at 20 m/s to the right, and Car B is moving at 15 m/s to the 

left. When they collide head-on, they stick together and move as a single unit. What is the 

total momentum of Car A and Car B before the collision? 

A. 0 kg m/s 

B. 5000 kg m/s to the right 

C. 5000 kg m/s to the left 

D. 5000 kg m/s 

 

2. Two cars, Car A and Car B, each with a mass of 10000 kg, are moving towards each other on 

a straight road. Car A is traveling at 20 m/s to the right, and Car B is moving at 15 m/s to 

the left. When they collide head-on, they stick together and move as a single unit. What is 

the total momentum of Car A and Car B before the collision? 

A. 0 kg m/s 

B. 50000 kg m/s to the right 

C. 5000 kg m/s to the left 

D. 5000 kg m/s 

 

3. Two cars, Car A and Car B, each with a mass of 500 kg, are moving towards each other on a 

straight road. Car A is traveling at 50 m/s to the right, and Car B is moving at 15 m/s to the 

left. When they collide head-on, they stick together and move as a single unit. What is the 

total momentum of Car A and Car B before the collision? 

A. 17500 kg m/s 

B. 50000 kg m/s to the right 

C. 5000 kg m/s to the left 

D. 55000 kg m/s 

 

4. Two cars, Car A and Car B, each with a mass of 5000 kg, are moving towards each other on a 

straight road. Car A is traveling at 50 m/s to the right, and Car B is moving at 25 m/s to the 
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left. When they collide head-on, they stick together and move as a single unit. What is the 

total momentum of Car A and Car B before the collision? 

A. 17500 kg m/s 

B. 50000 kg m/s to the right 

C. 125000 kg m/s 

D. 5000 kg m/s 

 

5. Two cars, Car A and Car B, each with a mass of 1000 kg, are moving towards each other on a 

straight road. Car A is traveling at 2 m/s to the right, and Car B is moving at 2 m/s to the 

left. When they collide head-on, they stick together and move as a single unit. What is the 

total momentum of Car A and Car B before the collision? 

A. 17500 kg m/s 

B. 50000 kg m/s to the right 

C. 0 kg m/s 

D. 5000 kg m/s 

         

6. A rotating bicycle wheel is initially at rest. When the rider applies the brakes, the wheel       

slows down and eventually comes to a stop. What principle explains this phenomenon? 

A. Conservation of angular momentum 

B. Conservation of linear momentum 

C. Conservation of kinetic energy 

D. Conservation of angular velocity 

 

7. A spinning ice skater starts with her arms outstretched. As she pulls her arms closer to her 

body, her rotational speed increases. This change in rotational speed demonstrates: 

A. Conservation of angular momentum 

B. Conservation of linear momentum 

C. Conservation of kinetic energy 

D. Conservation of potential energy 

 

8. A gymnast performs a mid-air somersault. During the somersault, her body is tightly 

tucked, and her angular velocity increases. What is responsible for this increase in angular 

velocity? 

A. Conservation of angular momentum 

B. Conservation of linear momentum 

C. Conservation of kinetic energy 

D. Conservation of rotational inertia 

 

9. If Lagrangian for the revolution earth around the son is  

. = 6
7  10( �/7   �  �7  Q/ 7 )   �  R(�) then write Lagrangian equation of motion for theta  is. 

A. 10 ∗ �7Q8  =  0 
B. 5 ∗ �7Q8 � � =  0 
C. 3 ∗ �7Q8 � � =  0 

D. �7Q8  =  � 

 

10. If Lagrangian for the revolution earth around the son is  

. =  10( �/7   �  �7  Q/ 7 )   �  10 then write Lagrangian equation of motion for theta  is. 

A. 5 ∗ �7Q8  =  0 
B. 5 ∗ �7Q8 � � =  0 
C. 3 ∗ �7Q8 � � =  0 
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D. �7Q8  =  � 

 

   11. If Lagrangian for the revolution earth around the son is  

. =  100( �/ 7   �  �7  Q/7 )   �  R(�) then write Lagrangian equation of motion for theta  is. 

A. 100 ∗ �7Q8  =  � 
B. 50 ∗ �7Q8  =  0 
C. 30 ∗ �7Q8 � � =  0 

D. �7Q8  =  100� 
 

     12. If Lagrangian for the revolution earth around the son is  

. =  700( �/ 7   �  �7  Q/7 )   �  700 then write Lagrangian equation of motion for theta  is. 

A. 350 ∗ �7Q8  =  0 
B. 50 ∗ �7Q8 � � =  0 
C. 30 ∗ �7Q8 � � =  0 

D. �7Q8  =  100� 

 

   13. If Lagrangian for the revolution earth around the son is  

. = 6
7  1000( �/7   �  �7  Q/ 7 )   �  100 then write Lagrangian equation of motion for theta  is. 

A. 1000 ∗ �7Q8  =  0 
B. 50 ∗ �7Q8 � � =  0 
C. 30 ∗ �7Q8 � � =  0 

D. �7Q8  =  100� 
 

14. If Lagrangian for the revolution earth around the son is  

. = 6
7  60( �/7   �  �7  Q/ 7 )   �  60 then write Lagrangian equation of motion for theta  is. 

A. 60 ∗ �7Q8  =  > 
B. 60 ∗ �7Q8 =  0 
C. 30 ∗ �7Q8 � � =  0 

D. �7Q8  =  100� 

 
15. If Lagrangian for the revolution earth around the son is  

. = 100( �/ 7   �  �7  Q/ 7 )   �  R(�) then write Lagrangian equation of motion for theta  is. 

A. 50 ∗ �7Q8  =  0 
B. 50 ∗ �7Q8 � � =  0 
C. 30 ∗ �7Q8 � � =  0 

D. �7Q8  =  100� 
 

Answers for Self Assessment 

1. B 2. A 3. A 4. C 5. B 

6. A 7. A 8. A 9. A 10. A 
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11. B 12. A 13. A 14. B 15. A 

Review Questions 

1. Consider a simple pendulum consisting of a mass (m) attached to a string of length (l) and 

fixed at a pivot point. The Lagrangian for the pendulum is given by . =  �6
7"  � h7 Q/7  �

 ��h(1 �  Y�!Q), where θ is the angle the pendulum makes with the vertical,   the angular 

velocity Q/ , and g is the acceleration due to gravity. Derive the equation of motion for the 

angle Q(�) using Lagrange's equations. 

2. For a simple harmonic oscillator with a mass (m) attached to a spring with spring constant 

(k), the Lagrangian is . =  �6
7"  � i/ 7  �  �6

7"  � i7, where x is the displacement of the mass 

from its equilibrium position and ẋ is the velocity. Find the equation of motion for x(t) 

using Lagrange's equations. 

3. For a rigid body rotating about a fixed axis, the Lagrangian is given by . =  �6
7"  j Q/7, 

where I is the moment of inertia and θ is the angular displacement. Show that the angular 

momentum is conserved, and derive the equation of motion for θ(t) using Lagrange's 

equations. 

4. Consider a particle of mass (�) moving under the influence of a central force, directed 

towards the origin and dependent only on the radial distance r. The Lagrangian for the 

particle is . =  �6
7"  � (�/ 7  �  �7 Q/ 7)  �  R(�), where V(r) is the potential energy as a 

function of r. Derive the equations of motion for r(t) and θ(t) using Lagrange's equations 

and show how the conservation of angular momentum arises in this system. 

5. For a simple harmonic oscillator with a mass (5kg) attached to a spring with spring 

constant (k), the Lagrangian is . =  �6
7"  5 i/ 7  �  �6

7"  � i7, where x is the displacement of 

the mass from its equilibrium position and ẋ is the velocity. Find the equation of motion 

for x(t) using Lagrange's equations. 

 

 
Further Readings  

Classical Mechanics By Herbert Goldstein Charles P. Poole John Safko, Pearson 

Classical Mechanics By Dr. J. C. Upadhyaya, Himalaya Publishing House 
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Objectives 

After this unit you will be able – 

 to derive the Lagrangian equation of motion for a simple pendulum. 

 to apply the Lagrangian approach to study the motion of two particles under gravitational 

acceleration.  

 

The motivation for studying dynamic problems using the Lagrangian approach arises from its 
powerful and elegant formulation that provides a unified framework to analyze complex 
mechanical systems. While traditional methods can become cumbersome for systems with multiple 
degrees of freedom, constraints, and non-conservative forces, the Lagrangian approach simplifies 
the problem by focusing on the system's energy and constraints. This approach allows us to derive 
equations of motion using the principle of least action, making it a versatile tool to study various 
physical phenomena. 

 

Introduction 

In the classical mechanics, the study of dynamic systems has long been a cornerstone of 
understanding the fundamental laws governing the motion of objects. While traditional Newtonian 
methods have provided invaluable insights, there exist systems with intricate complexities that 
demand a more elegant and versatile approach. Lagrangian mechanics, a branch of classical 
physics, offers a powerful and unified framework for analyzing such dynamic problems, 
unraveling the intricate dance of forces, energies, and motions. 

Lagrangian mechanics, formulated by Joseph Louis Lagrange in the 18th century, introduces a fresh 
perspective by focusing on the concept of action - a quantity that encapsulates the history of a 
system's motion. The cornerstone of this approach is the principle of least action, which dictates 
that the true path taken by a system between two points in space and time is the one that minimizes 
the action integral. This principle provides a profound insight: nature "chooses" paths that are not 
only physically permissible but also economize energy and time. 

Dr. Rajesh Kumar Chandrawat, Lovely Professional University 

 

Lovely Professional University66



Mechanics 

 

In this exploration, we delve into the Lagrangian formulation's prowess by tackling two intriguing 
dynamic problems. Our journey begins with the analysis of a simple pendulum - a seemingly 
elementary system that uncovers the beauty of Lagrangian mechanics. By treating the pendulum's 
motion as a harmonious interplay of kinetic and potential energies, we unveil a succinct equation of 
motion that elegantly describes its oscillatory behavior. 

As we venture deeper, we confront the motion of two particles interacting under the influence of 
gravitational acceleration. With the Lagrangian approach, the seemingly intricate gravitational 
forces become mere threads in a tapestry of energy and motion. By deriving the equations of 
motion for each particle, we paint a comprehensive picture of their trajectories, shedding light on 
the profound impact of gravitational interactions on their movements. 

In both cases, the Lagrangian methodology showcases its prowess in simplifying complex dynamic 
problems. By embracing the principle of least action and encapsulating energies and constraints, we 
uncover a realm where equations transform into insights, and movements into eloquent equations. 
As we embark on this journey, we invite you to witness the elegance and efficiency with which 
Lagrangian mechanics unveils the hidden symphonies of motion in these captivating dynamic 
systems. 

 

 

6.1 Langrangian for Simple Pendulum  

A simple pendulum is a mass (�) attached to a string or rod of length (�), swinging under the 
influence of gravity (�). 
Kinetic Energy (�): 
The kinetic energy of the pendulum depends on the motion of the mass. In this case, the mass is 
rotating around a fixed point. The formula for rotational kinetic energy is 

 
 =  (1/2) ∗  � ∗  �� , where � is the tangential velocity of the mass at a distance � from the pivot 
point. 

Since the tangential velocity (�) can be related to the angular velocity (�̇) by � =  � ∗  �̇, where �̇ is 
the time derivative of the angular displacement θ, we can write the kinetic energy as 

 
 =  ���� ∗  � ∗  �� ∗  �̇�� =  ���� ∗  � ∗  �� ∗  �̇�. 
 

Potential Energy (�): 
The potential energy of the pendulum is due to its height above the lowest point of its swing. The 
potential energy (�) at any given angle (�) can be calculated by multiplying the mass (�) by the 
acceleration due to gravity (�) and the vertical distance (ℎ) that the mass has been raised above the 
lowest point. 

The vertical distance h can be found using trigonometry. It is the difference between the string 
length (�) and the vertical position of the mass, which is � ∗  ���(�). Therefore, 

  ℎ =  � –  � ∗ cos(�) = � ∗  �1 −  ���(�)� 

 

Thus, the potential energy is given by  � =  � ∗  � ∗  ℎ =  � ∗  � ∗  � ∗  (1 −  ���(�)). 
 

Lagrangian (%): 
The Lagrangian (�) for the system is the difference between the kinetic energy (
) and the potential 
energy  (�): � =  
 −  �.  
Substituting the expressions for T and V, we have:  
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� =  &12' ∗  � ∗  ��  ∗  �̇�  −  � ∗  � ∗  � ∗  �1 −  ���(�)�. 
 

Equation of Motion: 

To find the equation of motion, we apply the principle of least action from Hamilton's principle 
using the Lagrangian. The equation of motion is derived by applying the Euler-Lagrange equation: 

& (()'  ∗  & *�*� ̇ '  − *�*�  =  0. 
 

Taking the time derivative of the term �,-,.̇� gives us � ∗  ��  ∗  �/ .  
Taking the derivative of (,-,.) with respect to � gives us −� ∗  � ∗  � ∗  �01(�). 
 

Substituting these into the Euler-Lagrange equation, we get:  � ∗  ��  ∗  �/   −  � ∗  � ∗  � ∗  �01(�)  =  0. 
 

Dividing by � ∗  � and rearranging, we arrive at the final equation of motion: �/  =  − �2-�  ∗  �01(�). 
This equation describes the angular acceleration (�/   of the pendulum as a function of the angle � it 
makes with the vertical. It's a second-order ordinary differential equation that governs the motion 
of the simple pendulum. 

In summary, the equation of motion for a simple pendulum is �/  =  − �2-� ∗  �01(�), where �/    
represents the angular acceleration, � is the acceleration due to gravity, � is the length of the 
pendulum, and �01(�) describes the angle of displacement. 

 

6.2 Lagrangian Equation and the Equation of Motion for the Particle 
Projected at an Angle θ with the Horizontal, using Cartesian 
Coordinates (x, y) 

Solution: 

Given: 

 Mass of the particle: 3 

 Initial velocity: 4 

 Angle of projection with the horizontal: � 

 Acceleration due to gravity: � 

The particle's initial velocity components are: 

 Initial horizontal velocity: 45  =  4 ∗  ���(�) 

 Initial vertical velocity: �6  =  4 ∗  �01(�) 

The �7�871�071 (�) is defined as the 901:)0� :1:8�; (
) minus the <�):1)07= :1:8�; (�): � =  
 −  � 

The kinetic energy T of the particle is given by: 
 =  ����  ∗  3 ∗  ��5�  +  �6�� 

where �5 is the horizontal velocity and �6 is the vertical velocity. 

The potential energy � of the particle is due to gravity: � =  3 ∗  � ∗  ; 

where y is the vertical displacement of the particle from its initial position. 
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Substituting the expressions for kinetic and potential energies into the Lagrangian: 

� =  &12' ∗  3 ∗  (�5�  +  �6�)  −  3 ∗  � ∗  ; 

We need to express �5  71( �6 in terms of the generalized coordinates of the system. Let's use the 

coordinates x and y. 

�5  = (?() , �6  = (;()  

The Lagrangian in terms of these coordinates becomes: 

� =  &12' ∗  3 ∗  &(?() '�  +  (1/2) ∗  3 ∗  &(;() '�  −  3 ∗  � ∗  ; 

Now, we can apply the Euler-Lagrange equation to find the equation of motion. The Euler-
Lagrange equation for a single generalized coordinate q is: 

(()  @ *�* �(A() �B − *�*A  =  0  
For the coordinate x: 

(() @ *�* �(?() �B − *�*? =  0 

This simplifies to: 

3 ∗ (�?()� =  0 

For the coordinate y: 

(() C *�* &(;() 'D − *�*; =  0 

This simplifies to the equation of motion: 

3 ∗ (�;()�  =  −3 ∗  � 

Integrating once with respect to time gives: 

3 ∗ (;()  =  −3 ∗  � ∗  ) +  E1 

Integrating again with respect to time gives: 

; =  −� ∗ )�2    +  E1 ∗  ) +  E2 

We can use the initial conditions to determine the constants C1 and C2. 

Initial conditions: 

 ) =  0, ; =  0 (particle starts at the origin) 

 Initial vertical velocity: �6  =  4 ∗  �01(�) 

Using these conditions, we find: E1 =  4 ∗  �01(�) E2 =  0 

Therefore, the equation of the trajectory of the particle is: 

; =  −� ∗ )�2   +  4 ∗  �01(�)  ∗  ) 

This is the equation of a parabolic trajectory, which describes the motion of the particle in terms of 
time t and the angle of projection θ. 
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The horizontal component of velocity (�5) remains constant throughout the motion and is 
given by: �5  =  4 ∗  ���(�) 

The vertical component of velocity (�6) changes due to the acceleration due to gravity (g) and is 

given by: �6  =  4 ∗  �01(�)  −  � ∗  ) 

The time of flight (t) is given by: ) = � ∗ F ∗ GHI(.)2   

The horizontal distance (x) is given by: ? =  4 ∗  ���(�)  ∗  ) 

Hence : ) = 5F JKL(.) 
Therefore, the equation of the trajectory of the particle is: 

; =  −� ∗ & ?4 cos(�)'�
2   +  4 ∗  �01(�)  ∗  ?4 cos(�) 

 

6.3 Motion of Two Particles under Gravitational Acceleration 

Kinetic Energy (T): The kinetic energy of each particle is given by the formula 
 = ��  � ∗  ��  , 
where "�" is the mass of the particle and "�" is its velocity. 

N�8 <78)0�=: O (�7�� m1): 
1 = 12 ∗  �1 ∗  ��� 
N�8 <78)0�=: Q (�7�� m2):  
2 = 12  ∗  �2 ∗  ��� 

Potential Energy (V): The potential energy due to gravitational interaction between the two 
particles is given by "� =  − (R ∗  �1 ∗  �2)/8  ", where "G" is the gravitational constant, "�1" 71( "�2" are the masses of the particles, and "8" is the distance between them. 

 

The Lagrangian for particle P is: 

� = 12  ∗  ��  ∗  &(?�() '�  + 12 ∗ �� ∗  &(?�() '� − (R ∗  �� ∗  ��)8   
 

Apply the Euler-Lagrange equation: 

& (()' @ *�* �(?�() �B − & *�*?�' =  0 

 

Partial derivatives: *�* �(?�() � =  �� ∗  &(?�() ' 
& (()' @ *�* �(?�() �B =  �� ∗  S(��5()�T 

*�*?� = (R ∗  �� ∗  ��)8�    
 

Substitute: 

�� ∗  S(��?()�T − (R ∗  �� ∗  ��)8� =  0 
Lovely Professional University70



Mechanics 

 

�� ∗  S(��?()�T = (R ∗  �� ∗  ��)8�  
S(��?()�T = (R ∗  ��)8�  

 

Equations of Motion for Particle Q (mass  

 

The Lagrangian for particle Q is: 

� = 12 ∗  �� ∗ &(?�() '� + 12 ∗  �� ∗ &(?�() '� − (R ∗  �� ∗ ��)8  

 

Apply the Euler-Lagrange equation: 

& (()' @ *�* �(?�() �B − & *�*?�' =  0 

 

Partial derivatives: *�* �(?�() � =  �� ∗  &(?�() ' 
& (()' @ *�* �(?�() �B  =  �_2 ∗  S(�?�()� T  

*�*?� =  −(R ∗  �� ∗  ��) 8� 
 

Substitute: 

�� ∗  S(�?�()� T + (R ∗  �� ∗ ��)8� =  0  
�_2 ∗  S(�?�()� T  =  − (R ∗  �� ∗  ��)8�  

(�?�()� =  − (R ∗  ��)8�  
Summary 

The equations of motion for particle P and Q under gravitational interaction are: 

S(�?�()� T = (R ∗  ��)8�  
S(�?�()� T   =  − (R ∗  ��)8�   

 

These equations describe how the positions of the particles change over time due to the 
gravitational force between them. 
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Summary 

In the classical mechanics, Lagrangian mechanics emerges as a powerful tool for unraveling the 
intricate dynamics of physical systems. Rooted in the principle of least action, Lagrangian 
mechanics offers a unified framework that elegantly describes the motion of objects while 
accounting for forces, energies, and constraints. In this exploration, we delve into Lagrangian-based 
solutions for two dynamic problems: the motion of a simple pendulum and the interaction of two 
particles under gravitational acceleration. 

The simple pendulum, a quintessential example of harmonic motion, reveals its underlying 
elegance when examined through the lens of Lagrangian mechanics. By skillfully combining kinetic 
and potential energies, the pendulum's oscillatory behavior is distilled into a concise equation of 
motion. This showcases the power of Lagrangian mechanics in transforming complex systems into 
elegant formulations. 

Moving forward, the gravitational interaction between two particles becomes a playground for 
Lagrangian analysis. Deriving the equations of motion for each particle unveils the intricate 
interplay between gravitational forces, energies, and trajectories. Through this approach, the 
complexity of gravitational interactions is untangled, providing a deep understanding of the 
particles' motions. 

Lagrangian mechanics, with its emphasis on energy conservation and minimization of action, 
proves to be a versatile and insightful tool for tackling dynamic problems. By embracing 
Lagrangian formulations, we transcend the boundaries of traditional mechanics and journey into a 
realm where equations become narratives of motion, and complexities yield to elegant solutions. 

 

Keywords 

Lagrangian Mechanics: Lagrangian mechanics is a formalism in classical mechanics that describes 
the motion of a system using the Lagrangian function, which is the difference between the system's 
kinetic and potential energies. It provides a powerful and elegant way to formulate and solve 
equations of motion. 

Principle of Least Action: The principle of least action states that the path taken by a system 
between two points in space and time is the one that minimizes the action, which is the integral of 
the Lagrangian along the path. This principle underlies Lagrangian mechanics and leads to the 
equations of motion. 

Dynamic Problems: Dynamic problems involve understanding and predicting the motion of 
objects and systems in response to various forces and interactions. 

Simple Pendulum: A simple pendulum is a weight (called a pendulum bob) suspended from a 
fixed point and free to swing back and forth under the influence of gravity. It is a classic example of 
periodic motion. 

Harmonic Motion: Harmonic motion refers to the repetitive back-and-forth movement of an object 
around an equilibrium position. It is characterized by a sinusoidal pattern and is commonly 
observed in systems with restoring forces. 

Equations of Motion: Equations that describe how the position, velocity, and acceleration of an 
object change over time in response to forces or interactions. 

Gravitational Interaction: Gravitational interaction is the force of attraction between two masses 
due to their mass and the distance between them. It is described by Isaac Newton's law of universal 
gravitation. 

Energy Conservation: The principle that the total energy of a closed system remains constant over 
time, with energy changing between different forms but the total amount remaining constant. 

Oscillatory Behavior: Oscillatory behavior refers to repetitive and periodic motion around a central 
point or equilibrium position. It is characterized by alternating between two extreme points. 

Constraints: Constraints are limitations or conditions that restrict the motion or behavior of a 
system. 

Trajectories: Trajectories are the paths traced by objects as they move through space and time. 
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Elegance: Elegance in physics refers to the simplicity, efficiency, and aesthetic beauty of a theory or 
solution. An elegant solution is one that captures the essence of a problem using minimal 
complexity. 

 

Self Assessment 

1. Two cars, Car A and Car B, each with a mass of 1000 kg, are moving towards each other on a 

straight road. Car A is traveling at 20 m/s to the right, and Car B is moving at 15 m/s to the 

left. When they collide head-on, they stick together and move as a single unit. What is the 

total momentum of Car A and Car B before the collision? 

A. 0 kg m/s 

B. 5000 kg m/s to the right 

C. 5000 kg m/s to the left 

D. 5000 kg m/s 

 

2. Two cars, Car A and Car B, each with a mass of 10000 kg, are moving towards each other on 

a straight road. Car A is traveling at 20 m/s to the right, and Car B is moving at 15 m/s to 

the left. When they collide head-on, they stick together and move as a single unit. What is 

the total momentum of Car A and Car B before the collision? 

A. 0 kg m/s 

B. 50000 kg m/s to the right 

C. 5000 kg m/s to the left 

D. 5000 kg m/s 

 

3. Two cars, Car A and Car B, each with a mass of 500 kg, are moving towards each other on a 

straight road. Car A is traveling at 50 m/s to the right, and Car B is moving at 15 m/s to the 

left. When they collide head-on, they stick together and move as a single unit. What is the 

total momentum of Car A and Car B before the collision? 

A. 17500 kg m/s 

B. 50000 kg m/s to the right 

C. 5000 kg m/s to the left 

D. 55000 kg m/s 

 

4. Two cars, Car A and Car B, each with a mass of 5000 kg, are moving towards each other on a 

straight road. Car A is traveling at 50 m/s to the right, and Car B is moving at 25 m/s to the 

left. When they collide head-on, they stick together and move as a single unit. What is the 

total momentum of Car A and Car B before the collision? 

A. 17500 kg m/s 

B. 50000 kg m/s to the right 

C. 125000 kg m/s 

D. 5000 kg m/s 

 

5. Two cars, Car A and Car B, each with a mass of 1000 kg, are moving towards each other on a 

straight road. Car A is traveling at 2 m/s to the right, and Car B is moving at 2 m/s to the 

left. When they collide head-on, they stick together and move as a single unit. What is the 

total momentum of Car A and Car B before the collision? 

A. 17500 kg m/s 

B. 50000 kg m/s to the right 

C. 0 kg m/s 

D. 5000 kg m/s 

         

6. A rotating bicycle wheel is initially at rest. When the rider applies the brakes, the wheel       

slows down and eventually comes to a stop. What principle explains this phenomenon? 
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A. Conservation of angular momentum 

B. Conservation of linear momentum 

C. Conservation of kinetic energy 

D. Conservation of angular velocity 

 

7. A spinning ice skater starts with her arms outstretched. As she pulls her arms closer to her 

body, her rotational speed increases. This change in rotational speed demonstrates: 

A. Conservation of angular momentum 

B. Conservation of linear momentum 

C. Conservation of kinetic energy 

D. Conservation of potential energy 

 

8. A gymnast performs a mid-air somersault. During the somersault, her body is tightly 

tucked, and her angular velocity increases. What is responsible for this increase in angular 

velocity? 

A. Conservation of angular momentum 

B. Conservation of linear momentum 

C. Conservation of kinetic energy 

D. Conservation of rotational inertia 

 

9. If Lagrangian for the revolution earth around the son is  � = ��  10( 8̇�   +  8�  �̇� )   −  �(8) then write Lagrangian equation of motion for theta  is. A. 10 ∗ 8��/  =  0 B. 5 ∗ 8��/ + 8 =  0 
C. 3 ∗ 8��/ + 8 =  0 

D. 8��/  =  8 

 

10. If Lagrangian for the revolution earth around the son is  � =  10( 8̇�   +  8�  �̇� )   −  10 then write Lagrangian equation of motion for theta  is. A. 5 ∗ 8��/  =  0 B. 5 ∗ 8��/ + 8 =  0 
C. 3 ∗ 8��/ + 8 =  0 

D. 8��/  =  8 

 

   11. If Lagrangian for the revolution earth around the son is  � =  100( 8̇�   +  8�  �̇� )   −  �(8) then write Lagrangian equation of motion for theta  is. A. 100 ∗ 8��/  =  8 B. 50 ∗ 8��/  =  0 
C. 30 ∗ 8��/ + 8 =  0 D. 8��/  =  1008 
 

12. If Lagrangian for the revolution earth around the son is  � =  700( 8̇�   +  8�  �̇� )   −  700 then write Lagrangian equation of motion for theta  is. A. 350 ∗ 8��/  =  0 B. 50 ∗ 8��/ + 8 =  0 
C. 30 ∗ 8��/ + 8 =  0 

D. 8��/  =  1008 
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13. If Lagrangian for the revolution earth around the son is  � = ��  1000( 8̇�   +  8�  �̇� )   −  100 then write Lagrangian equation of motion for theta  is. A. 1000 ∗ 8��/  =  0 B. 50 ∗ 8��/ + 8 =  0 
C. 30 ∗ 8��/ + 8 =  0 D. 8��/  =  1008 
 

14. If Lagrangian for the revolution earth around the son is  � = ��  60( 8̇�   +  8�  �̇� )   −  60 then write Lagrangian equation of motion for theta  is. A. 60 ∗ 8��/  =  ] B. 60 ∗ 8��/ =  0 
C. 30 ∗ 8��/ + 8 =  0 

D. 8��/  =  1008  
15. If Lagrangian for the revolution earth around the son is  � = 100( 8̇�   +  8�  �̇� )   −  �(8) then write Lagrangian equation of motion for theta  is. A. 50 ∗ 8��/  =  0 B. 50 ∗ 8��/ + 8 =  0 
C. 30 ∗ 8��/ + 8 =  0 D. 8��/  =  1008 

 

Answers for Self Assessment 

1. B 2. A 3. A 4. C 5. B 

6. A 7. A 8. A 9. A 10. A 

11. B 12. A 13. A 14. B 15. A 

 

Review Questions 

1. Consider a simple pendulum consisting of a mass (m) attached to a string of length (l) and 

fixed at a pivot point. The Lagrangian for the pendulum is given by � =  ����  � =� �̇�  − ��=(1 −  ����), where θ is the angle the pendulum makes with the vertical,   the angular 

velocity �̇, and g is the acceleration due to gravity. Derive the equation of motion for the 

angle �()) using Lagrange's equations. 

2. For a simple harmonic oscillator with a mass (m) attached to a spring with spring constant 

(k), the Lagrangian is � =  ����  � ?̇�  −  ����  9 ?�, where x is the displacement of the mass 

from its equilibrium position and ẋ is the velocity. Find the equation of motion for x(t) 

using Lagrange's equations. 

3. For a rigid body rotating about a fixed axis, the Lagrangian is given by � =  ����  ^ �̇�, 
where I is the moment of inertia and θ is the angular displacement. Show that the angular 
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momentum is conserved, and derive the equation of motion for θ(t) using Lagrange's 

equations. 

4. Consider a particle of mass (�) moving under the influence of a central force, directed 

towards the origin and dependent only on the radial distance r. The Lagrangian for the 

particle is � =  ����  � (8̇�  +  8� �̇�)  −  �(8), where V(r) is the potential energy as a 

function of r. Derive the equations of motion for r(t) and θ(t) using Lagrange's equations 

and show how the conservation of angular momentum arises in this system. 

5. For a simple harmonic oscillator with a mass (5kg) attached to a spring with spring 

constant (k), the Lagrangian is � =  ����  5 ?̇�  −  ����  9 ?�, where x is the displacement of 

the mass from its equilibrium position and ẋ is the velocity. Find the equation of motion 

for x(t) using Lagrange's equations. 

 

 
Further Readings 

Classical Mechanics By Herbert Goldstein Charles P. Poole John Safko, Pearson 

Classical Mechanics By Dr. J. C. Upadhyaya, Himalaya Publishing House 
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Objectives 

Routh's Procedure:  Routh's Procedure is a method in classical mechanics to simplify equations of 
motion for systems with cyclic coordinates. These coordinates, like �� , have corresponding 
momenta p_i that are constants. Here's how the procedure works. Mastering this mathematical 
technique allows you to approach complex physical systems with cyclic coordinates in a more 
systematic and efficient manner. As you delve into this subject, you'll not only enhance your 
problem-solving skills but also deepen your understanding of advanced mechanics concepts. This 
knowledge will empower you to tackle intricate real-world problems, contributing to your 
intellectual empowerment and adaptability in a changing world. 

Hamilton's Principle and Principle of Least Action: Embracing the study of Hamilton's Principle 
and the Principle of Least Action can open doors to numerous opportunities. These principles 
provide a profound insight into the fundamental nature of physical systems, from classical to 
quantum mechanics. By delving into these principles, you're equipping yourself with the tools to 
approach complex dynamics in a systematic and elegant manner. The skills you gain, such as 
critical thinking, mathematical proficiency, and a deep understanding of fundamental principles, 
can greatly enhance your problem-solving abilities and contribute to your personal growth. 

Furthermore, as you unravel the intricacies of these principles, you're fostering a lifelong curiosity 
that extends beyond theoretical physics. This curiosity fuels your desire to explore the unknown, 
ask profound questions, and contribute to a deeper understanding of the universe. By studying 
these principles, you're preparing yourself to make meaningful contributions to scientific 
advancements, technological innovations, and even philosophical discussions about the nature of 
reality. After this unit you will be able to  

  Understand the Routh's Procedure for equations of motion.  

 Learn Hamilton's Principle and Principle of Least Action. 

 

Introduction 

Routh's Procedure: 

Imagine you're studying the movement of objects, like a spinning top. Sometimes, these objects 
have particular motions, like the way a top spins around a certain axis. These special motions are 

Dr. Rajesh Kumar Chandrawat, Lovely Professional University 

 

Lovely Professional University 77



Mechanics  

 

Notes 

called "cyclic" motions. Routh's Procedure is a technique that helps us simplify the equations of 
motion when we're dealing with these kinds of motions. 

When we use Routh's Procedure, we work with variables like ��  and their corresponding momenta �� , which describe the positions and velocities of the object. If one of these variables, let's call it �� , 
behaves in a cyclic manner, meaning its momentum ��  remains constant, we can apply Routh's 
Procedure. It involves adjusting the equations of motion by introducing a modified Lagrangian that 
helps us eliminate the cyclic coordinate �� and its conjugate momentum �� . This simplification 
makes it easier to analyze and understand the object's motion without getting tangled in complex 
calculations. 

Hamilton's Principle: 

Think about how an object moves from one point to another, like a ball rolling down a hill. The 
path it takes seems to follow a natural course. Hamilton's Principle is like a fundamental rule that 
guides objects in finding the smoothest path between two points. 

When objects move in the real world, they tend to follow paths that minimize a special quantity 
known as "action." This action, symbolized as S, comes from considering the energies involved, 
such as kinetic energy (T) and potential energy (V), as the object moves. The Lagrangian, L = T - V, 
helps us describe the energies and motion. Hamilton's Principle states that the actual path an object 
takes is the one that makes the action S as small as possible. To find this path, we use the calculus of 
variations, a mathematical tool that helps us pinpoint the precise trajectory that minimizes the 
action. This path, governed by the Euler-Lagrange equation, reveals the elegant way objects 
naturally move and interact. 

 

Principle of Least Action: 

Imagine a system undergoing a transformation from one state to another, like a swinging 
pendulum moving from rest to motion. The Principle of Least Action is like a guiding principle that 
dictates the system's behavior during this transformation. 

In this context, we work with variables like �� , which represent the generalized coordinates 
describing the system's configuration, and t for time. The principle introduces a quantity called 
"action," symbolized as S, which is the integral of a function called the Lagrangian (L) over time. 
This Lagrangian accounts for both kinetic and potential energies involved in the system's motion. 
The Principle of Least Action asserts that the actual path the system takes between its initial and 
final states is the one that makes the action S as small as possible. In other words, the system 
chooses the path that requires the least "effort" in terms of energy and motion. This principle 
provides a concise and elegant way to derive the equations of motion and understand how systems 
evolve from one state to another. 

In essence, these concepts introduce mathematical frameworks that allow us to analyze and 
comprehend the behaviors of physical systems in a more organized and insightful manner, taking 
into account various aspects of motion and energy. 

 

7.1 Routh's Procedure 

Routh's Procedure is a method in classical mechanics to simplify equations of motion for systems 
with cyclic coordinates. These coordinates, like ��, have corresponding momenta �� that are 
constants. Here's how the procedure works: 

Given Equations of Motion: Start with equations of motion derived from L = T - V, where T is 
kinetic energy and V is potential energy, for a system with coordinates ��   and momenta ��: 

� 		
� �� ����� − � ���� =  0 

Identify Cyclic Coordinates: Identify coordinates ��  with constant momenta ��  = constant, which 
are cyclic. 

Introduce Routhian: Define � =  �� ∗  ��–  � , and replace ��  ��
ℎ ��  in the original equations. 

Simplify Equations: Substitute �� ��� �� �� �, then plug R back into equations of motion. New 
equations look like: 
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� 		
� ������� − ����� =  0 

Justification: 

Routh's Procedure streamlines equations by replacing cyclic coordinates with their momenta. This 
simplifies math while maintaining physical behavior. It's a helpful tool to analyze complex 
problems in classical mechanics, making it easier to study how systems move. 

 

Problem: 

Consider a particle of mass "m" moving on a frictionless, vertical, circular track of radius "R". The 
track rotates about its center with a constant angular velocity "�". The particle is constrained to 
move along the track. Determine the equations of motion using the Routhian approach. 

 

Solution: 

 

The motion of the particle is constrained to the circular track, so we need to consider the constraint 
equation that relates the coordinates of the particle on the track. Let "r" be the radial distance of the 
particle from the center of the track. The constraint equation is "r - R = 0". 

 

The Lagrangian "L" for the system can be written as the kinetic energy "T" minus the potential 
energy "U": 

"L = T - U." 

 

Since the particle is constrained to move along the track, the Lagrangian becomes: 

"L = T - U - multiplier * (r - R)," 

where the "multiplier" is a constant associated with the constraint. 

 

The kinetic energy "T" of the particle is given by: 

� =  �12� ∗    ∗  �	�	
�!   +  �12� ∗    ∗  �! ∗ #	$%&	
 '!   
where "dr/dt" is the radial velocity of the particle and "d(theta)/dt" is the angular velocity of the 
rotating track. 

 

The potential energy "U" due to gravity is: 

"U = -m * g * r * cos(%)," 

where "theta" is the angle between the radial line connecting the center of the track to the particle 
and the vertical axis. 

 

Substituting the expressions for "T" and "U" into the Lagrangian, we get: 

� =  �12� ∗    ∗  �	�	
�! +  �12� ∗    ∗  �! ∗  #	$%&	
 '! +    ∗  ( ∗  � ∗  )�*$%& −   +,
��,�-� ∗  $� −  �&   
 

The generalized coordinates for this problem are "r" and " % ". We can now compute the partial 
derivatives of the Lagrangian with respect to "(dr/dt)" and "(d(%)/dt)" to find the conjugate 
momenta “�/   0�	 �1 
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�/  =    ∗  �	�	
� 
�1   =    ∗  �!  ∗  #	$%&	
 ' 

 

The Routhian "R" is defined as the Legendre transform of the Lagrangian with respect to the 
generalized velocities: 

� =  � −  $	�/	
&    ∗  3 	�	 4	�	
56 − #	$%&	
 ' ∗  7 	�	 �	$%&	
 �8 

 

Substituting the expressions for �, �/ , 0�	 �1 into the Routhian, we obtain: 

� =  �12� ∗    ∗  �	�	
�! +  �12� ∗    ∗  �! ∗  �	%	
 �! +    ∗  ( ∗  � ∗  )�*$%& −   +,
��,�-� ∗  $� −  �&
−    ∗  �	�	
�! −    ∗  �! ∗  #	$%&	
 '!  

 

Simplifying the expression, we have: 

� =  �12� ∗    ∗  �	�	
�! + �12� ∗    ∗  �! ∗  #	$%&	
 '! +    ∗  ( ∗  � ∗  )�*$%& −   +,
��,�-� 
∗  $� −  �& − �12� ∗    ∗  �	�	
�! − �12� ∗    ∗  �! ∗ #	$%&	
 '!

 

 

Finally, the Routhian for this system is: "� =    ∗  ( ∗  � ∗  )�*$%&  −   +,
��,�-� ∗  $� −  �&. " 

 

The equations of motion are obtained by applying the Euler-Lagrange equation to the 
Routhian with respect to the generalized coordinates "r" and "theta". This yields the 
equations that describe the motion of the particle along the rotating circular track. 

 

7.2 Hamilton's Principle 

Hamilton's Principle, also known as the Principle of Least Action, is a foundational concept in 
physics for understanding object motion between two points. It follows these steps: 

Action Calculation: : =  ; �$�, �′, 
& 	
=>=?   
Least Action Principle: @: =  0 

Calculus of Variations: @: =  0 ,-0	* 
� 

 @ A �$�, �′, 
& 	
=>
=? =  0 

Euler-Lagrange Equation: CDCE  −  	/	
 4 CDCEF5  =  0 

By minimizing the action, nature chooses a path that makes motion efficient and smooth. Solving 
the Euler-Lagrange equation reveals how systems evolve over time. 

This principle is foundational in classical mechanics, uncovering natural paths of motion by 
minimizing action. 
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7.3 Principle of Least Action 

The Principle of Least Action is a fundamental concept in physics. It states that the actual path 
taken by a system between two points in time is the one that minimizes the "action" integral, 
denoted by S. This action integral is a mathematical expression involving the Lagrangian, which 
captures the system's kinetic and potential energies. By varying the path of the system and setting 
the resulting variation of the action to zero, the principle yields the Euler-Lagrange equations, 
governing the system's motion. This principle elegantly summarizes the dynamics of a wide range 
of physical phenomena, from classical mechanics to quantum field theory. 

Statement: The Principle of Least Action states that the path a physical system follows between two 
points in time is the one minimizing the action integral 

Proof: 

GHIJKL MLINOPQR: : =  A �$�, �′, 
& 	
=>
=?   

SQPJQIJKL KT GHIJKL: @: =  A #@����� + @��U���U '  	
=>
=?  

MLINOPQIJKL VW XQPIY: @: = A Z@�����  − 		
 #@��U ���U'[  	
=>
=?    +  �@��U ��U��=?

=>   
\]RNP − ^QOPQLON \_]QIJKL `NPJaQIJKL: b**+ ��( @��  =  @��U  =  0 0
 
c0�	 
!, 

 �- ℎ0d-: @: =  A Z@�����  − 		
 #@��U ���U'[  	
=>
=?  

 \]RNP − ^QOPQLON \_]QIJKL: 
 e�� *
0
���0�f 0)
��� $@: =  0&, 
ℎ- ��
-(�0�	  +*
 d0��*ℎ: ���  − 		
 # ���U'  =  0 

^NQYI GHIJKL XPJLHJgRN:  
This leads to the Euler-Lagrange equation which ensures that the path minimizing the action is 
taken by the system. 

 

Problem : 

A particle moves with potential energy h$i&  =  ji! and kinetic energy � =  4c!5  ∗    ∗  iU!. Apply 

Hamilton's Principle to find the equation of motion. 

Solution: 

Lagrangian (L): � =  � −  h =  4c!5  ∗    ∗  iU!  −  j ∗  i! 

Action Integral: : = ; k4c!5  ∗    ∗  iU!  −  j ∗  i!l  	
=>=?   
Variation of Action: @: = ; m  ∗  iU ∗  @iU −  2 ∗  j ∗  i ∗  @in=>=? 	
 

Integration by Parts: @: =  ; m oo= $  ∗  iU ∗  @i&  −  2 ∗  j ∗  i ∗  @in 	
 − m  ∗  iU ∗  @in=?=>  =>=?   
Euler-Lagrange Equation: 

oo= $  ∗  i′&  −  2 ∗  j ∗  i =  0 (Equation of motion). 

 

Problem : 

A particle moves with potential energy h$i&  =  10i! and kinetic energy � =  4c!5  ∗    ∗  iU!. Apply 

Hamilton's Principle to find the equation of motion. 

Solution: 

Lagrangian (L): � =  � −  h =  4c!5  ∗    ∗  iU!  −  10 ∗  i! 
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Action Integral: : = ; k4c!5  ∗    ∗  iU!  −  10 ∗  i!l  	
=>=?   
Variation of Action: @: = ; m  ∗  iU ∗  @iU −  2 0 ∗  i ∗  @in=>=? 	
 

Integration by Parts: @: =  ; m oo= $  ∗  iU ∗  @i&  −  20 ∗  i ∗  @in 	
 −  m  ∗  iU ∗  @in=?=>  =>=?   
Euler-Lagrange Equation: 

oo= $  ∗  i′&  −  2 0 ∗  i =  0 (Equation of motion) 

 

Summary 

 Hamilton's Canonical Equations are a set of equations used in classical mechanics to 

describe the motion of a system with generalized coordinates and momenta. 

 The equations are derived from the Hamiltonian function, which represents the total 

energy of the system. 

 The equations of motion derived from Hamilton's Canonical Equations are 	�/	
 = p/� and 	�/	
 =  −p/�, where q represents the generalized coordinates and p 

represents the corresponding momenta. 

 These equations provide a systematic way to determine the time evolution of the 

coordinates and momenta of a system, based on the potential and kinetic energies 

described by the Hamiltonian. 

 Hamilton's Canonical Equations are widely used in various areas of physics, including 

classical mechanics, quantum mechanics, and statistical mechanics. 

 They offer a powerful framework to study complex systems and derive the equations of 

motion, even for systems with non-trivial potentials or constraints. 

 Cyclic coordinates refer to the coordinates in a physical system for which the Lagrangian 

does not explicitly depend on them. 

 Cyclic coordinates play a crucial role in simplifying the equations of motion and finding 

conserved quantities in a system. 

 When a coordinate is cyclic, its conjugate momentum remains constant throughout the 

motion. 

 Cyclic coordinates often arise in systems with specific symmetries or conservation laws, 

allowing for the simplification of the equations of motion and revealing hidden 

conservation principles. 

 The presence of cyclic coordinates can simplify the analysis of a system, leading to the 

discovery of important physical quantities such as angular momentum or energy 

conservation. 

 Cyclic coordinates are valuable in the study of many physical systems, including classical 

mechanics, quantum mechanics, and field theories.  
Keywords 

Hamilton's Canonical Equations  

Hamilton's Canonical Equations express the equations of motion in terms of the generalized 
coordinates and momenta. They are derived from the Hamiltonian function and have the following 
form: 	�ᵢ	
  = p�ᵢ                                                                                                                                                                           $40& 

	�ᵢ	
  =  − p�ᵢ                                                                                                                                                                      $4s& 
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Cyclic Coordinates: A cyclic coordinate qᵢ is a generalized coordinate for which the Lagrangian L 
does not explicitly depend on qᵢ. In other words, ∂L/∂qᵢ  = 0. A cyclic coordinate is a coordinate in a 
system that does not appear in the equations of motion. In other words, if a coordinate is cyclic, 
then its derivative with respect to time does not appear in the equations of motion. 

 

Self Assessment 

1. The Principle of Least Action is based on the minimization of: 

A. Energy 

B. Force 

C. Action 

D. Momentum 

 

2. In the context of the Principle of Least Action, the Lagrangian \(L\) is defined as: 

A. 4c!5 ∗    ∗  iU! 

B.   ∗ iU! 

C. 4c!5 ∗    ∗  i! 

D.   ∗ i! 

 

3. Which equation arises from applying the Principle of Least Action to a system with 
generalized coordinates (q) and Lagrangian (L)? 

A. Newton's second law 

B. Euler-Lagrange equation 

C. Hamilton's equation 

D. Schrödinger equation 

 

4. Hamilton's Principle is also known as the principle of: 

A. Least Energy 

B. Least Momentum 

C. Least Force 

D. Least Action 

 

5. The Hamiltonian \(H\) is defined as: 

A. T - V 

B. T + V 

C. T 

D. T / V 

 

6. Which formulation of mechanics introduces generalized momenta p? 

A. Newtonian mechanics 
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B. Lagrangian mechanics 

C. Hamiltonian mechanics 

D. Quantum mechanics 

 

7. Hamilton's equations of motion describe the evolution of: 

A. Generalized coordinates q 

B. Generalized momenta p 

C. Kinetic energy T 

D. Potential energy V 

 

8. The Principle of Least Action provides a unified framework for understanding which of the 
following? 

A. Classical mechanics and optics 

B. Thermodynamics and relativity 

C. Quantum mechanics and electromagnetism 

D. Gravitation and particle physics 

 

9. Which equation describes the conservation of energy in Hamiltonian mechanics? 

A.  pu  =  0 B.    �u  =  0 
 

10. The Euler-Lagrange equation is derived by minimizing which quantity in the action 
integral? 

A. Kinetic energy 

B. Potential energy 

C. Action 

D. Momentum 

 

11. Hamilton's Principle is a fundamental principle in which branch of physics? 

A. Classical mechanics 

B. Thermodynamics 

C. Electromagnetism 

D. Quantum mechanics 

 

12. In the context of Hamiltonian mechanics, the equations of motion are obtained by 
minimizing: 

A. Momentum 

B. Energy 

C. Hamiltonian 

D. Action 

 

13. The Principle of Least Action provides a basis for understanding the behavior of systems in 
terms of optimizing which fundamental quantity? 
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A. Force 

B. Velocity 

C. Action 

D. Momentum 

 

14. Hamilton's Principle and the Principle of Least Action are central concepts in which 
theoretical framework? 

A. Quantum mechanics 

B. Classical mechanics 

C. Special relativity 

D. Thermodynamics 

15. The Lagrangian L of a system is the difference between which two quantities? 

A. Kinetic energy and potential energy 

B. Momentum and velocity 

C. Action and energy 

D. Force and mass 

 

Answers for Self Assessment 

1. A 2. A 3. A 4. A 5. D 

6. A 7. D 8. B 9. D 10. D 

11. D 12. D 13. C 14. D 15. D 

 

Review Questions 

1. A particle moves with potential energy h$i&  =  jiw and kinetic energy  

 � =  4c!5  ∗    ∗  iU!. Apply Hamilton's Principle to derive the equation of motion. 

2. An object slides along a wire described by y = f(x). The object is subjected to a conservative 
force F = -k * ∇U(x), where U(x) represents potential energy. Determine the equation of 
motion using Hamilton's Principle. 

3. Consider a simple pendulum of length L and mass m released at an angle %y to the 
vertical. Use Hamilton's Principle to find the equation of motion for θ. 

4. A particle is restricted to move on a curve y = f(x) and experiences a conservative force F = 
-k * ∇U(x), with U(x) as potential energy. Derive the equation of motion for the particle 
using Hamilton's Principle. 

5. A particle moves in a central force field given by e =  − z/>, where k is constant and r is the 

radial distance. Apply Hamilton's Principle to find the equation of motion for r. 

6. An object slides frictionlessly and enters a region with potential energy {$i&  =  ji|. Find 
the object's motion using Hamilton's Principle. 

7. A particle moves along a curved path described by � =  0 ∗  %w in polar coordinates. 

Given a central force e =  − z/>, use Hamilton's Principle to find the equation of motion for 

θ. 
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8. A particle restricted to a frictionless hoop of radius R is affected by a gravitational field. 
Use Hamilton's Principle to find the equation of motion for the angle θ with the vertical. 

9. A particle moves in a potential field U(x, y, z). Apply Hamilton's Principle to derive the 
equations of motion for x, y, and z. 

10. A bead slides on a wire y = f(x) under the influence of gravity. Use the Principle of Least 
Action to find the equation of motion for the bead. 

 

 
Further Readings 

Classical Mechanics By Herbert Goldstein Charles P. Poole John Safko, Pearson 

Classical Mechanics By Dr. J. C. Upadhyaya, Himalaya Publishing House 
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Objectives 

The Hamilton-Jacobi equation of motion is a fundamental concept in classical mechanics and 
Hamiltonian dynamics. Its primary purpose is to provide a mathematical framework for solving 
certain types of problems involving conservative systems and canonical transformations. It offers a 
powerful method for finding solutions to the equations of motion in classical mechanics and has 
applications in various areas of physics, including quantum mechanics. 

The key purposes of the Hamilton-Jacobi equation of motion are: 

Canonical Transformations: The Hamilton-Jacobi equation allows for the identification and 
generation of canonical transformations that preserve the form of Hamilton's equations of motion. 
Canonical transformations are changes of variables that maintain the structure of Hamiltonian 
dynamics and are essential in simplifying and analyzing complex systems. 

Separation of Variables: In certain coordinate systems, the Hamilton-Jacobi equation can be 
separated into partial differential equations that each depend on only a subset of the coordinates 
and momenta. This separation simplifies the problem of solving the equations of motion, especially 
for systems with separable Hamiltonians. 

Action-Angle Variables: The Hamilton-Jacobi equation is a key tool in the introduction of action-
angle variables. These variables provide a particularly useful description of the motion in integrable 
systems, where motion occurs on tori in phase space. Action-angle variables allow for a clear 
separation of the periodic motion of a system from its slower secular variations. 

Quantum Mechanics: In quantum mechanics, the Hamilton-Jacobi equation plays a crucial role in 
the semiclassical approximation. It serves as a starting point for deriving the wave function of a 
quantum system from its classical Hamiltonian. This connection between classical and quantum 
mechanics is essential for understanding the correspondence principle. 

Conservation Laws: The Hamilton-Jacobi equation is intimately linked to the conservation laws of 
classical mechanics. It provides insight into the constants of motion associated with a system, such 
as energy, angular momentum, and linear momentum. 

Characterizing Trajectories: The solutions to the Hamilton-Jacobi equation represent a family of 
trajectories in phase space, which can provide valuable information about the behavior of a 
dynamical system. This includes determining stable and unstable orbits, analyzing the structure of 
phase space, and predicting long-term behavior. After this unit you will be able to 

 understand the concept of Hamilton-Jacobi Equation 

 verify Hamilton Jacobi Equation  

Dr. Rajesh Kumar Chandrawat, Lovely Professional University 
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Introduction 

The Hamilton-Jacobi equation of motion stands as a cornerstone in classical mechanics, providing a 
powerful mathematical tool for unraveling the dynamics of conservative systems. Rooted in the 
pioneering works of William Rowan Hamilton and Carl Gustav Jacobi, this equation serves as a key 
bridge between the elegant formalism of Hamiltonian mechanics and the intricate behavior of 
physical systems. By enabling canonical transformations, offering insights into conservation laws, 
and facilitating the transition to quantum mechanics, the Hamilton-Jacobi equation plays a pivotal 
role in our understanding of motion and its underlying principles. This introduction offers a 
glimpse into the significance of an equation that continues to shape the way we perceive and 
analyze the fundamental laws governing the natural world. 

 

8.1 Hamilton Jacobi Equation of Motion 

The Hamilton-Jacobi equation is a fundamental concept in classical mechanics and Hamiltonian 
dynamics. It provides a way to find the solution to the equations of motion for a physical system in 
terms of a certain type of function called the Hamilton-Jacobi function. This approach simplifies the 
process of solving complex systems by transforming the problem into a set of simpler partial 
differential equations. 

 

Let's break down the components and significance of the Hamilton-Jacobi equation: 

Hamiltonian (H): In classical mechanics, the Hamiltonian is a function that encapsulates the total 
energy of a physical system. It is typically expressed as the sum of the system's kinetic energy 
(associated with motion) and potential energy (associated with interactions between particles or 
fields). For a system with generalized coordinates q and momenta p, the Hamiltonian is denoted as �(�, �). 
Action (S): The action of a system is a fundamental quantity in physics that characterizes the 
trajectory or path of the system through time. It is defined as the integral of the Lagrangian (a 
function describing the difference between kinetic and potential energies) over a certain time 
interval. The action is often denoted as S. 

Canonical Transformation: The Hamilton-Jacobi equation is derived from the concept of a 
canonical transformation, which is a change of variables in the phase space (space of generalized 
coordinates and momenta) that preserves the equations of motion. This transformation can simplify 
the description of a system and lead to more elegant solutions. 

Hamilton-Jacobi Function (�(	, 
)): The Hamilton-Jacobi function, often denoted as �(�, ), is a 
function of the generalized coordinates q and an arbitrary constant J, which is often interpreted as a 
type of conserved quantity. The Hamilton-Jacobi function is used to transform the original 
coordinates and momenta of a system into new coordinates and momenta that simplify the 
equations of motion. 

Hamilton-Jacobi Equation: The Hamilton-Jacobi equation is a partial differential equation that 
relates the Hamiltonian, the Hamilton-Jacobi function, and the partial derivatives of the Hamilton-
Jacobi function with respect to the generalized coordinates q: 

 

��
��  +  � ��, ��

���  =  0 

 

This equation represents a conservation law, where the total derivative of the Hamilton-Jacobi 
function with respect to time plus the Hamiltonian evaluated at the coordinates q and the 
derivative of the Hamilton-Jacobi function with respect to q is equal to zero. Let's derive the 
Hamilton-Jacobi equation. We need to go though with the followings: 

1. Canonical Transformation and Generating Function: As before, consider a canonical 
transformation generated by a function �(�, , �), where J is an arbitrary constant. This 
generating function transforms the old coordinates q and momenta p to new coordinates 
Q and momenta P. 
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2. Change of Variables: Express the old variables (q, p) in terms of the new variables (Q, P) 
using the generating function S: 

� =  �(�, , �)� =  �(�, , �)    
3. Hamiltonian in New Variables: Express the Hamiltonian H(q, p) in terms of the new 

variables (Q, P) using the transformation: 

�(�, �) =  ���(�, , �), �(�, , �)� 

4. Partial Derivatives of the Generating Function: Calculate the partial derivatives of the 
generating function S with respect to the old coordinates q: 

��
�� = ��

�� ∗ ��
��  

5. Total Derivative of S: Calculate the total derivative of S(q, J, t) with respect to time: 

��
�� = ��

�� + ��
�� ∗ ��

�� + ��
� ∗ �

�� 

6. Hamilton's Equations in New Variables: Express the new momenta P in terms of the 
generating function: 

� =  ��/��  

Now, use the chain rule to express the time derivative of Q in terms of the partial derivatives of S: 

��
�� = ��

�� + ��
�� ∗ ��

�� + ��
� ∗ �

�� 

7. Equating Expressions: Equate the expressions for dS/dt from steps 5 and 6: 

��
�� + ��

� ∗ ! 
!� + ��

�" ∗ !"
!� = ��

�� + ��
� ∗ ! 

!� + ��
�" ∗ !"

!� =  −�(�, �)    
8. Substituting for Momenta: Substitute the expression for momenta P = ∂S/∂Q into the 

equation: 

��
�� + ��

�� ∗ ��
�� + ��

� ∗ �
�� =  −���(�, , �), �(�, , �)� 

9. Simplify and Rearrange: Simplify the expression and rearrange the terms: 

��
�� + ��

�� ∗ ��
�� + ��

� ∗ �
�� =  −�(�, �) 

10. Hamilton-Jacobi Equation: Finally, recognizing that dq/dt = ∂H/∂p (by Hamilton's 
equations), we arrive at the Hamilton-Jacobi equation in terms of S(q, J): 

��
�� + ��

�� ∗  ���
��� + ��

� ∗ �
�� =  0 

This is the Hamilton-Jacobi equation expressed in terms of the Hamilton-Jacobi function S(q, J), 
where J is a conserved quantity associated with the system. It describes the conservation of the 
action along trajectories of a mechanical system. 

 

8.2 Hamilton Jacobi Equation and Verification 

Let's go through the verification process of the Hamilton-Jacobi equation step by step: 

Hamilton-Jacobi Equation: 

Recall the Hamilton-Jacobi equation: 

 

��
�� +  � ��, ��

��� =  0 

 

This equation relates the Hamiltonian function H, the Hamilton-Jacobi function S, and the partial 
derivatives of S with respect to the generalized coordinates q and time t. 
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Hamilton's Equations: 

Hamilton's equations describe the equations of motion in terms of the Hamiltonian function H(q, 
p): 

 

��
�� = ��

�� 
��/�� =  − ��

��  
Here, q represents the generalized coordinates and p represents the corresponding conjugate 
momenta. 

 

Verification Process: 

To verify that the solutions of the Hamilton-Jacobi equation indeed correspond to trajectories that 
satisfy Hamilton's equations of motion, follow these steps: 

Assume you have a solution for the Hamilton-Jacobi function �(�, ). This function should satisfy 
the Hamilton-Jacobi equation. 

Compute the partial derivatives of S with respect to q and J: 

��
�� 
��
� 

 

Using Hamilton's equations, replace the time derivatives of q and p in terms of the partial 
derivatives of the Hamiltonian: 

��
�� = ��

�� 
��
�� =  − ��

��  
 

Substitute the expressions for dq/dt and dp/dt into the Hamilton-Jacobi equation: 

��
�� +  � ��, ��

��� =  0 

 

Replace ∂S/∂q with its expression involving ∂S/∂J and show that the equation simplifies to zero: 

��
�� +  � ��, ��

��� = ��
�� +  � ��, ��

�� ∗ ���
���$% ∗ ��

�� =  0 

 

This step involves algebraic manipulation and the use of the chain rule. 

If the equation simplifies to zero, it means that the solutions of the Hamilton-Jacobi equation are 
consistent with the equations of motion described by Hamilton's equations. In other words, the 
trajectories derived from the Hamilton-Jacobi function indeed satisfy the dynamics of the system. 

 

Interpretation: 

Verifying the Hamilton-Jacobi equation is an essential step in understanding its significance. The 
verification process demonstrates that the solutions of the Hamilton-Jacobi equation provide a 
description of the motion of a system that is consistent with the underlying principles of 
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Hamiltonian dynamics. It confirms that the Hamilton-Jacobi function captures important 
information about the trajectories and dynamics of the system. 

Question: For a system described by the Hamiltonian H(q, p) = p^2/2m + kq^2/2, use the 
Hamilton-Jacobi equation to find the Hamilton-Jacobi function S(q, J), where J is the conserved 
momentum. 

Solution: 

We'll start by applying the Hamilton-Jacobi equation: 

��/�� +  � ��, ��
���  =  0 

Given the Hamiltonian �(�, �) = &'
()  + * '

( , we have: 

�(�, �) = �(
2, + -�(

2  

Next, we'll assume that the Hamilton-Jacobi function S(q, J) can be separated into two parts: one 
that depends on q and another that depends on the constant of motion J: 

�(�, ) =  .(�) +  � 

Now, let's calculate the partial derivatives needed for the Hamilton-Jacobi equation: 

��
�� =   ��

� = �/
�   

Using Hamilton's equations: ! 
!�   = �0

� � = &
)  !&

!�  =  −��/�� =  −-�  
Now, we'll substitute these derivatives and the Hamiltonian into the Hamilton-Jacobi equation: 

 +  1 �(
2, + -�(

2 2 ∗  ��.
�� � =  0 

Simplify the equation:  + 3 &'
()4 ∗  3�/

� 4 +  3* '
( 4 ∗  3�/

� 4 =  0 

We know that p = ∂S/∂q, so substitute this in: 

  + 1
56
57∗56

57
() 2 + 3* '

( 4 ∗ 3�/
� 4 =  0    

Now, let's separate the terms involving q from the terms involving  

p:  + 3��
� 4(  / 2, + 3* '

( 4 * 3�/
� 4  =  0 

Since we want to find the Hamilton-Jacobi function �(�, ), we need to match the terms involving q 
and the constant J. To achieve this, we can set the term involving q to zero: 

1-�(
2 2 ∗  ��.

�� � =  0 

This implies that 3�/
� 4 =  0, which means that W(q) is a constant. We can denote this constant as 

−( / 2,: 
.(�) =  −(

2,  
Finally, the Hamilton-Jacobi function �(�, ) is given by: �(�, )  =  − "'

()  +  � 

This solution represents the Hamilton-Jacobi function for the given Hamiltonian, where J is the 
conserved momentum associated with the system. 

 

Summary 
The Hamilton-Jacobi equation is a cornerstone of classical mechanics, introducing the Hamilton-
Jacobi function to simplify the solution of equations of motion. Derived from canonical 
transformations, it expresses conservation of action along trajectories, often indicating conserved 
momenta. The equation establishes a vital link between the Hamiltonian, Hamilton-Jacobi function, 
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and their derivatives, facilitating elegant solutions to complex systems. Separation of variables aids 
in simplifying the equation, while its verification ensures solutions adhere to the system's 
dynamics. In quantum mechanics, the Schrödinger equation serves as its analogous counterpart, 
highlighting its significance in bridging classical and quantum realms. 

 

Keywords 

Hamilton-Jacobi Equation: This is a fundamental equation in classical mechanics that introduces 
the Hamilton-Jacobi function as a tool for simplifying the solution of equations of motion. 

Classical Mechanics: The branch of physics that deals with the motion of macroscopic objects 
based on classical principles, such as Newton's laws. 

Hamilton-Jacobi Function: A function introduced by the Hamilton-Jacobi equation, often used to 
find solutions to complex dynamical systems. 

Canonical Transformations: Mathematical techniques that preserve the form of Hamilton's 
equations while changing the variables in a system, providing insight into alternative 
representations. 

Conservation of Action: The concept that the action integral along a trajectory in a mechanical 
system remains constant, reflecting a fundamental symmetry. 

Conserved Momenta: Quantities such as momentum that remain constant during motion, often 
indicated by conserved terms in the Hamilton-Jacobi function. 

Hamiltonian: A function representing the total energy of a system, expressed in terms of 
coordinates and momenta. 

Derivatives: The rates of change of quantities with respect to other variables, crucial for 
understanding how a system evolves over time. 

Separation of Variables: A technique used to simplify complex equations by assuming a specific 
functional form, making the equation more manageable. 

Verification: The process of confirming that the solutions derived from the Hamilton-Jacobi 
equation accurately match the dynamics described by the system's equations of motion. 

Equations of Motion: Equations that describe how a system's coordinates and momenta change 
over time, crucial for understanding its behavior. 

Schrödinger Equation: A fundamental equation in quantum mechanics, analogous to the 
Hamilton-Jacobi equation in classical mechanics, describing how quantum states evolve over time. 

Quantum Mechanics: The branch of physics that deals with the behavior of particles on a very 
small scale, governed by principles that differ from classical mechanics. 

 

Self Assessment 

1. The Hamilton-Jacobi equation provides a method for solving the equations of motion in 
classical mechanics by introducing a function known as the: 

A. Lagrangian 

B. Potential 

C. Hamilton-Jacobi function 

D. Action 

 

2. The Hamilton-Jacobi equation is derived from the concept of: 

A. Kinetic energy 

B. Canonical transformation 

C. Potential energy 

D. Lagrangian mechanics 
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3. Which equation describes the conservation of the action along trajectories of a mechanical 
system? 

A. Hamilton-Jacobi equation 

B. Newton's second law 

C. Euler-Lagrange equation 

D. Hamilton's equations 

4. The Hamilton-Jacobi function S(q, J) introduces an arbitrary constant J, which often 
corresponds to a conserved: 

A. Energy 

B. Momentum 

C. Force 

D. Velocity 

 

5. In the Hamilton-Jacobi equation ∂S/∂t + H(q, ∂S/∂q) = 0, H represents the: 

A. Hamiltonian function 

B. Momentum 

C. Potential energy 

D. Kinetic energy 

 

6. The process of separating the Hamilton-Jacobi equation into simpler equations by assuming 
S(q, J) = W(q) + Jt is called: 

A. Canonical transformation 

B. Separation of variables 

C. Conservation law 

D. Symmetry transformation 

 

7. Hamilton's equations of motion are given by: 

A. ∂q/∂t = ∂H/∂p, ∂p/∂t = -∂H/∂q 

B. ∂q/∂t = -∂H/∂p, ∂p/∂t = ∂H/∂q 

C. ∂q/∂t = ∂H/∂q, ∂p/∂t = -∂H/∂p 

D. ∂q/∂t = -∂H/∂q, ∂p/∂t = -∂H/∂p 

 

8. The verification process of the Hamilton-Jacobi equation involves demonstrating that its 
solutions satisfy: 

A. Newton's laws of motion 

B. Kepler's laws of planetary motion 

C. Hamilton's equations of motion 

D. Coulomb's law 

 

9. In the Hamilton-Jacobi equation, the term ∂S/∂q represents the rate of change of the 
Hamilton-Jacobi function with respect to: 

A. Time 
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B. Momentum 

C. Position 

D. Energy 

 

10. The Hamiltonian for a one-dimensional system with kinetic energy T(p) and potential 
energy V(q) is given by: 

A. H(q, p) = T(p) + V(q) 

B. H(q, p) = T(q) + V(p) 

C. H(q, p) = T(p) - V(q) 

D. H(q, p) = T(q) - V(p) 

 

11. The Hamilton-Jacobi function S(q, J) is related to the generating function of canonical 
transformations by: 

A. S(q, J) = ∂F(q, P)/∂J 

B. S(q, J) = ∂F(q, Q)/∂J 

C. S(q, J) = ∂F(Q, P)/∂J 

D. S(q, J) = ∂F(P, Q)/∂J 

 

12. The Hamilton-Jacobi equation is often used to solve systems with: 

A. Simple potentials 

B. Linear velocities 

C. Complex trajectories 

D. Conserved quantities 

 

13. The Hamilton-Jacobi equation can be derived from which fundamental principle of physics? 

A. Principle of least action 

B. Law of conservation of energy 

C. Newton's second law 

D. Uncertainty principle 

 

14. Separation of variables in the Hamilton-Jacobi equation leads to a simpler set of equations 
by assuming that the Hamilton-Jacobi function depends on: 

A. Both position and momentum 

B. Only position 

C. Only momentum 

D. Neither position nor momentum 

 

15. The Hamilton-Jacobi equation has an analogue in quantum mechanics, known as the: 

A. Schrödinger equation 

B. Uncertainty principle 

C. Dirac equation 

D. Planck equation 
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Answers for Self Assessment 

1. C 2. B 3. A 4. B 5. A 

6. B 7. A 8. C 9. C 10. A 

11. A 12. D 13. A 14. B 15. A 

 

Review Questions 

1. Start with the Hamilton-Jacobi equation ��
�� +  � 3�, ��

� 4 =  0. Derive the expression for ∂S/∂q 

and explain how it is related to the momentum. 

2. Given the Hamiltonian �(�, �) = &'
()  +  8(�)  for a one-dimensional system, apply the 

Hamilton-Jacobi equation to find an expression for the Hamilton-Jacobi function S(q, J). 

3. Show the step-by-step verification process of the Hamilton-Jacobi equation. Begin with the 
expression for dS/dt, substitute Hamilton's equations, and demonstrate that the equation 
simplifies to zero. 

4. Consider a conservative system with a Hamiltonian �(�, �) = 9&'
()   +  8(�). Apply the 

Hamilton-Jacobi equation to verify that the action variable I = ∫p dq is conserved. 

5. For a system described by the Hamiltonian �(�, �) = &'
()  + * '

( , use the Hamilton-Jacobi 
equation to find the Hamilton-Jacobi function S(q, J), where J is the conserved momentum. 

 

 
Further Readings  

Classical Mechanics By Herbert Goldstein Charles P. Poole John Safko, Pearson 

Classical Mechanics By Dr. J. C. Upadhyaya, Himalaya Publishing House 
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Objectives 

After this unit you will be able to 

 Understanding Fundamental Principles: 

 Learn how to describe and analyze the motion of objects in various scenarios, such as 

linear motion, projectile motion, circular motion, and simple harmonic motion. 

 Understand concepts like displacement, velocity, acceleration, and angular motion. 

 Develop strong problem-solving skills by applying mathematical techniques and physical 

principles to solve a wide range of mechanical problem 

 

Introduction 

In the realm of classical mechanics, the study of the dynamics of physical systems has been shaped 
by various mathematical formalisms. Among these, Hamiltonian mechanics, developed by the Irish 
mathematician and physicist Sir William Rowan Hamilton in the 19th century, offers a powerful 
and elegant alternative to Newtonian mechanics. Hamilton's equations of motion lie at the core of 
this formalism, providing a sophisticated way to describe the evolution of dynamical systems. This 
chapter delves into the fundamental concepts and mathematical foundations of Hamilton's 
equations. 

 

9.1 The Hamiltonian 

Central to Hamiltonian mechanics is the concept of the Hamiltonian, denoted as H. The 
Hamiltonian is a function that encapsulates the total energy of a physical system. Unlike the 
Lagrangian approach, where one typically deals with generalized coordinates (q) and their 
derivatives, Hamiltonian mechanics introduces a new set of variables known as conjugate momenta 

Dr. Rajesh Kumar Chandrawat, Lovely Professional University 
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(p). The Hamiltonian is a function of both the generalized coordinates and their conjugate 
momenta: 

 

Here, T(q, p) represents the kinetic energy of the system in terms of q and p, while V(q) denotes the 
potential energy as a function of the generalized coordinates only. 

 

9.2 Hamilton's Equations of Motion 

Hamilton's equations of motion are a set of first-order differential equations that govern the 
evolution of a dynamical system. There are two equations for each pair of conjugate variables (q, p). 
The equations are as follows: 

 

Hamilton's First Equation: 

This equation describes how the generalized coordinates q evolve with time. It's akin to the rate of 
change of position with respect to time. 

 

Hamilton's Second Equation: 

 

 

  

This equation details how the conjugate momenta p change over time. It's analogous to the rate of 
change of momentum with respect to time. 

 

These equations provide a comprehensive description of the system's dynamics, revealing how the 
generalized coordinates and their conjugate momenta evolve over time. 

 

9.3 Application of Hamilton's Equations 

To apply Hamilton's equations to a specific physical system, you need to know the system's 
Hamiltonian, H(q, p), which is often derived from the Lagrangian of the system. Additionally, 
initial conditions for the generalized coordinates (q) and conjugate momenta (p) at a particular time 
(t₀) are required. Solving these equations numerically or analytically allows you to predict the 
behavior of the system over time. 

Advantages of Hamiltonian Mechanics 

Hamiltonian mechanics offers several advantages over other formalisms: 

Symplectic Geometry: Hamiltonian mechanics is deeply connected to symplectic geometry, 
which provides a rich mathematical framework for understanding the geometry of phase space. 

Conservation Laws: Hamilton's equations naturally lead to the conservation of energy, 

momentum, and angular momentum, making it a powerful tool for studying systems with 
conserved quantities. 
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Canonical Transformations: Hamiltonian mechanics can handle coordinate transformations 
that preserve the form of Hamilton's equations, known as canonical transformations. This property 
is crucial in simplifying complex problems. 

 

9.4 Phase Space and Generalized Coordinates 

In Hamiltonian mechanics, it's essential to introduce the concept of phase space. Phase space is a 
mathematical space where each point represents a unique state of the system. It is spanned by the 
generalized coordinates (q) and their conjugate momenta (p). For a system with N degrees of 
freedom, phase space is a 2N-dimensional space. 

The coordinates q_i represent the positions and orientations of the system's components. 

The conjugate momenta p_i correspond to the generalized momenta associated with each 
coordinate. They are defined as: 

 

where L is the Lagrangian of the system. In most cases, the Lagrangian is a function of q,  and time 
t. 

 

9.5 The Hamiltonian and Lagrangian Connection 

One of the remarkable aspects of Hamiltonian mechanics is its connection to the Lagrangian 
formulation. Given a Lagrangian L(q, t), you can derive the Hamiltonian H(q, p) as follows: 

 

This transformation between the Lagrangian and Hamiltonian descriptions allows you to 
interchangeably use either formalism depending on the problem's convenience. 

 

9.6 Energy Equation 

The energy equation in the context of classical mechanics describes how the total mechanical 
energy of a system changes over time. It is a fundamental concept in physics and is expressed as: 

E=T+U 

Where: 

E represents the total mechanical energy of the system. 

T is the kinetic energy of the system, which depends on the velocities of its components. 

U is the potential energy of the system, which depends on the positions of its components and the 
forces acting on them. 

This equation states that the total mechanical energy of a closed system, which is the sum of kinetic 
and potential energies, remains constant as long as there are no external non-conservative forces 
(such as friction or air resistance) acting on the system. In other words, if there are no energy losses 
due to non-conservative forces, the total mechanical energy of the system is conserved. 

The energy equation is a powerful tool in classical mechanics and is used to analyze and predict the 
behavior of physical systems. It is commonly applied in various scenarios, such as the motion of 
particles, the behavior of springs, pendulum motion, and planetary motion, among others. 

Components of the Energy Equation 
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Kinetic Energy (T) 

Kinetic energy is the energy associated with the motion of an object. In classical mechanics, it is 
calculated as: 

 

Where: 

 T is the kinetic energy. 

 m is the mass of the object. 

 v is the velocity of the object. 

Kinetic energy depends on the square of the velocity and is a measure of how fast an object is 
moving. 

 

Potential Energy (U) 

Potential energy is the energy associated with the position of an object within a force field. It 
depends on the forces acting on an object and the object's position relative to some reference point. 
The formula for potential energy varies depending on the type of force field: 

Gravitational Potential Energy (U gravity): When gravity is the dominant force, the potential 
energy is given by: 

 

 

Where : 

 U gravity  is the gravitational potential energy. 

 m is the mass of the object. 

 g is the acceleration due to gravity. 

 h is the height above a reference point. 

Spring Potential Energy (U spring): In the case of a spring or elastic potential energy, it's given by: 

 

 

Where: 

 U spring is the spring potential energy. 

 k is the spring constant. 

 x is the displacement from the spring's equilibrium position. 

The Total Mechanical Energy (E) 

The total mechanical energy of a system is the sum of its kinetic and potential energies: 

E=T+U 

This equation represents the principle of conservation of mechanical energy, which states that in 
the absence of non-conservative forces (like friction or air resistance), the total mechanical energy of 
a closed system remains constant. In other words, as long as energy isn't added to or taken away 
from the system by non-conservative forces, the total energy of the system remains unchanged. 

Applications of the Energy Equation 
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Simple Harmonic Motion 

The energy equation is useful in analyzing systems undergoing simple harmonic motion, such as a 
mass attached to a spring. In this case, as the object oscillates back and forth, its kinetic and 
potential energies continually trade places, but the total mechanical energy remains constant. 

 

Planetary Motion 

In celestial mechanics, the energy equation is used to describe the motion of planets and satellites. It 
helps determine their orbits and velocities by considering the interplay between gravitational 
potential energy and kinetic energy. 

Conservation of Mechanical Energy 

In a wide range of classical mechanics problems, the energy equation is employed to analyze the 
behavior of systems. It allows for predictions about the motion of objects without needing to solve 
complex differential equations directly. It's particularly useful when friction and other dissipative 
forces can be neglected. 

 

9.7 Practical Examples 

Pendulum Motion 

In the context of pendulum motion, the energy equation plays a crucial role. As a pendulum swings 
back and forth, it oscillates between kinetic and potential energy, but the total mechanical energy 
remains constant. This property is exploited in various timekeeping devices, such as pendulum 
clocks. 

Projectile Motion 

For a projectile launched into the air, the energy equation can help determine its maximum height 
and range. The initial kinetic energy is converted into gravitational potential energy at the peak of 
its trajectory, and back into kinetic energy as it falls. 

 

Conservation of Energy in Roller Coasters 

Roller coasters are designed with the conservation of mechanical energy in mind. The initial 
potential energy at the top of a hill is converted into kinetic energy as the coaster descends. Skilled 
engineering ensures that energy losses due to friction are minimized so that the coaster maintains 
an exciting and safe ride. 

 

Limitations and Real-World Considerations 

While the conservation of mechanical energy is a valuable concept, it is important to recognize its 
limitations in real-world scenarios. Energy losses due to friction, air resistance, and other non-
conservative forces can't be ignored in many practical situations. In such cases, the energy equation 
is a useful approximation, but it may not precisely describe the behavior of a system. 

 

In summary, the energy equation in classical mechanics is a fundamental principle that allows for 
the analysis of mechanical systems by considering the interplay between kinetic and potential 
energy. Its applications range from simple harmonic motion to complex dynamics in fields like 
engineering, physics, and astronomy. However, it's essential to account for non-conservative forces 
when applying this principle to real-world scenarios. 

 

Summary 

 the energy equation in classical mechanics is a fundamental principle that allows for the 

analysis of mechanical systems by considering the interplay between kinetic and potential 
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energy. Its applications range from simple harmonic motion to complex dynamics in fields 

like engineering, physics, and astronomy. 

 The energy equation in classical mechanics, which comprises kinetic and potential energy, is a 

fundamental concept that underlies the conservation of mechanical energy. It's a powerful 

tool for understanding the motion of objects and systems, helping to predict their behavior 

and identify whether energy is conserved in a given scenario. Whether applied to simple 

harmonic motion, planetary orbits, or everyday mechanical systems, the energy equation is a 

cornerstone of classical mechanics. 

 the total mechanical energy of a closed system, which is the sum of kinetic and potential 

energies, remains constant as long as there are no external non-conservative forces (such as 

friction or air resistance) acting on the system. In other words, if there are no energy losses 

due to non-conservative forces, the total mechanical energy of the system is conserved. 

 The conservation of energy is a fundamental principle in classical mechanics and is widely 

used to analyze the behavior of physical systems, such as in problems involving pendulums, 

springs, and planetary motion, among others. It is a powerful tool for understanding and 

predicting the motion of objects in the absence of dissipative forces 

 

Keywords 

 Energy: Energy is a fundamental physical quantity that measures the capacity to do work or 
produce heat. It comes in various forms, including kinetic energy (energy of motion) and 
potential energy (energy associated with position). 

 Kinetic Energy: Kinetic energy is the energy possessed by an object due to its motion. It is 

calculated as �=12��2T=21mv2, where �m is the mass of the object and �v is its velocity. 

 Potential Energy: Potential energy is the energy associated with the position or configuration 
of an object within a force field. Common types include gravitational potential energy and 
elastic potential energy (spring potential energy). 

 Conservation of Energy: The principle that states that in a closed system (where no external 
non-conservative forces are acting), the total mechanical energy (kinetic energy plus potential 
energy) remains constant over time. 

 Phase Space: A mathematical space where each point represents a unique state of a system, 
spanning both generalized coordinates (q) and their conjugate momenta (p). 

 Hamiltonian: In Hamiltonian mechanics, the Hamiltonian (H) is a function that represents the 
total energy of a system in terms of generalized coordinates (q) and conjugate momenta (p). 

 Hamilton's Equations of Motion: A set of differential equations that describe how the 
generalized coordinates and their conjugate momenta change over time in Hamiltonian 
mechanics. There are two equations for each pair of conjugate variables, and they are used to 
model the dynamics of the system. 

 Poisson Bracket: In Hamiltonian mechanics, the Poisson bracket is a mathematical operation 
used to describe the evolution of any function of the phase space variables. It has properties 
similar to commutators in quantum mechanics. 

 Liouville's Theorem: A theorem in Hamiltonian mechanics that states that the phase-space 
volume occupied by a set of trajectories remains constant as the system evolves, provided that 
no external forces are acting on the system. 

 Reference Point: In the context of potential energy, the choice of a reference point or level for 
potential energy calculations. It affects the absolute value of potential energy but not the 
energy differences between points. 

 Non-Conservative Forces: Forces that do work on a system and cause a loss of mechanical 
energy. Examples include friction and air resistance. 

Lovely Professional University 101



Unit 09: Hamilton’s Equations of Motion and Energy Equation  

 

Notes 

 Simple Harmonic Motion: A type of periodic motion in which an object oscillates back and 
forth about an equilibrium position, such as a mass attached to a spring. 

 Projectile Motion: The motion of an object projected into the air, typically under the influence 
of gravity, where it follows a curved path. 

 Closed System: A physical system that does not exchange matter with its surroundings. In the 
context of energy conservation, a closed system doesn't exchange energy with its 
surroundings except through conservative forces. 

 

Self Assessment 

1. What is the formula for kinetic energy (KE)? 

A. KE = mgh 

B. KE = 1/2mv^2 

C. KE = Fd 

D. KE = GmM/r 

 

2. In the context of potential energy, what does "h" represent in the formula U = mgh? 

A. Height above the ground 

B. Horizontal distance 

C. Speed 

D. Mass 

 

3. Which of the following types of energy is associated with an object's motion? 

A. Gravitational potential energy 

B. Elastic potential energy 

C. Kinetic energy 

D. Thermal energy 

 

4. Which principle states that the total mechanical energy of a closed system remains constant? 

A. Newton's First Law 

B. Newton's Second Law 

C. The Law of Conservation of Energy 

D. The Law of Inertia 

 

5. Which of the following is a non-conservative force? 

A. Gravity 

B. Tension 

C. Friction 

D. Elasticity 

 

6. What is the unit of energy in the International System of Units (SI)? 

A. Joules (J) 

B. Watts (W) 

C. Newtons (N) 
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D. Volts (V) 

 

7. Which equation represents the conservation of mechanical energy? 

A. E = Fd 

B. E = mc² 

C. E = T + U 

D. E = P × V 

 

1. In the absence of air resistance, what can be said about the total mechanical energy of a 

projectile launched into the air? 

A. It decreases continuously. 

B. It increases continuously. 

C. It remains constant. 

D. It depends on the mass of the projectile. 

 

9. What type of motion is characterized by an oscillation about an equilibrium position? 

A. Uniform motion 

B. Simple harmonic motion 

C. Circular motion 

D. Linear motion 

10. Which physical quantity is conserved in Hamiltonian mechanics? 

A. Force 

B. Momentum 

C. Temperature 

D. Energy 

 

11. What mathematical concept in Hamiltonian mechanics describes how quantities evolve over 
time? 

A. Derivative 

B. Vector 

C. Poisson bracket 

D. Integral 

 

12. In planetary motion, what type of energy does an orbiting object primarily possess? 

A. Gravitational potential energy 

B. Kinetic energy 

C. Elastic potential energy 

D. Thermal energy 

 

13. What theorem in Hamiltonian mechanics states that phase-space volume remains constant 
as the system evolves? 

A. Archimedes' Theorem 
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B. Liouville's Theorem 

C. Pythagoras' Theorem 

D. Newton's Theorem 

 

14. Which term describes the mathematical space representing all possible states of a system? 

A. Phase space 

B. Force field 

C. Momentum space 

D. Kinetic space 

 

15. What kind of forces dissipate energy and do work on a system? 

A. Conservative forces 

B. Non-conservative forces 

C. Internal forces 

D. Gravitational forces 

 

Answers for Self Assessment 

1. B 2. A 3. C 4. C 5. C 

6. A 7. C 8. C 9. B 10. D 

11. C 12. A 13. B 14. A 15. B 

 

Review Questions 

1. Explain the concept of conservation of mechanical energy. Provide an example to illustrate 

this principle. 

2. Compare and contrast kinetic and potential energy. How do these forms of energy interplay 

in the motion of objects? 

3. Describe the significance of Hamiltonian mechanics in classical physics. How does it offer an 

alternative to Newtonian mechanics? 

4. Discuss the concept of phase space and its relevance in classical mechanics. Provide an 

example of how phase space is used in analyzing a physical system. 

5. Explain the role of non-conservative forces in relation to the conservation of energy. Provide 

examples of non-conservative forces and how they affect the motion of objects. 

6. Discuss the applications of Hamilton's equations of motion in various fields of physics. 

Provide specific examples to illustrate their use. 

7. Describe a real-world scenario where the conservation of mechanical energy is applicable. 

Explain how you would analyze and solve the problem using energy principles. 

8. Explain the concept of simple harmonic motion and provide an example of a physical 

system that exhibits this type of motion. Discuss the role of energy in simple harmonic 

oscillations. 
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Further Readings  

1. "Classical Mechanics" by Herbert Goldstein - A comprehensive and widely-used 
textbook on classical mechanics, covering topics from Newton's laws to Lagrangian and 
Hamiltonian mechanics. 

2. "Introduction to Classical Mechanics: With Problems and Solutions" by David Morin - A 
modern introduction to classical mechanics that emphasizes problem-solving and 
understanding of fundamental principles. 

MIT OpenCourseWare (OCW) - MIT OCW provides free access to lecture notes, 
assignments, and video lectures from actual MIT courses on classical mechanics and related 
subjects 

 

 

 

. 
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Objectives 

The study of Poisson's bracket is a fundamental pursuit in classical mechanics and Hamiltonian 
dynamics, imbued with far-reaching implications for understanding the behavior of physical 
systems. At its core, Poisson's bracket provides a powerful mathematical framework that elegantly 
captures the dynamics and symmetries of a system, ultimately enabling the prediction of its 
evolution over time. In this comprehensive exploration, we delve into the multifaceted purpose of 
studying Poisson's bracket, unearthing its essential role in formulating equations of motion, 
analyzing symmetries, facilitating canonical transformations, bridging classical and quantum 
mechanics, and elucidating algebraic properties. 

At the heart of its significance, Poisson's bracket serves as the cornerstone for deriving equations of 
motion within the framework of Hamiltonian mechanics. Traditionally, the evolution of physical 
systems has been characterized by Newton's laws, encapsulating the interplay between forces and 
motion. However, Poisson's bracket offers a more sophisticated approach by encoding this 
evolution in terms of the Hamiltonian function—a function that encapsulates the total energy of a 
system in terms of its coordinates and momenta. By utilizing the Poisson bracket, one can 
succinctly express the rates of change of observables with respect to time, seamlessly transitioning 
from a description grounded in forces to one rooted in energy. This transition is pivotal, as it 
transforms the study of dynamics into a realm where energy conservation, symmetries, and 
conserved quantities take center stage. 

Symmetries lie at the core of many physical theories, revealing underlying structures that govern 
the behavior of systems. Poisson's bracket emerges as a powerful tool in this context, facilitating the 
analysis of symmetries and conservation laws. Symmetry transformations that leave the Poisson 
bracket invariant correspond to conserved quantities, such as angular momentum or energy. This 
correspondence between symmetries and conservation laws is a hallmark of Poisson's bracket and 
offers an elegant insight into the deep interplay between the mathematical and physical aspects of 
classical mechanics. After this unit we will be able to 

 understand and apply the Poisson bracket as a fundamental tool for formulating equations 

of motion and predicting the evolution of physical systems in Hamiltonian mechanics. 

 analyze the relationship between the Hamiltonian and Poisson's bracket for canonical terms, 

revealing the interplay between energy and dynamic behavior within classical systems. 

Dr. Rajesh Kumar Chandrawat, Lovely Professional University 
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 explore the algebraic properties of Poisson brackets, including linearity, anti-symmetry, the 

Leibniz rule, and the Jacobi identity, to deepen the comprehension of their role in describing 

symmetries and conservation laws. 

 demonstrate proficiency in manipulating the properties of Poisson brackets by solving a 

specific problem, showcasing the ability to apply these properties to real-world scenarios 

and mathematical challenges. 

 

Introduction 

Poisson's bracket, a mathematical construct deeply rooted in the formalism of Hamiltonian 
mechanics, emerges as a pivotal tool in unraveling the intricate dynamics of physical systems. 
Named after the esteemed mathematician Siméon-Denis Poisson, this concept embodies the essence 
of classical mechanics, serving as a linchpin between the abstract realm of mathematical formalism 
and the tangible realm of physical phenomena. Through Poisson's bracket, the subtle interplay 
between canonical variables and their conjugate momenta is illuminated, allowing us to dissect the 
evolution of systems with precision and insight. The exploration of Poisson's bracket amidst 
canonical terms unveils a profound synergy between the Hamiltonian function and the equations of 
motion. Within this domain, the bracket transforms into a symphony conductor, orchestrating the 
harmonious interaction between energy landscapes and dynamical trajectories. Canonical 
transformations, akin to elegant choreographic maneuvers, are guided by the dictates of the 
Poisson bracket. This mathematical entity acts as a compass, directing us towards the symmetries 
inherent in a system, illuminating hidden patterns in its behavior, and affording us a glimpse into 
the complex dance of particles governed by fundamental laws. 

Embedded within the Poisson bracket's mathematical fabric lie a series of essential properties, akin 
to the laws governing a cosmic ballet. Linearity, resembling the superposition principle, allows for 
the composition of intricate motions from elemental constituents. The bracket's anti-symmetry 
mirrors the delicate interplay of particle interactions, encapsulating the fundamental commutative 
nature of classical observables. The Leibniz rule enforces a harmonious interaction between 
differentiation and the bracket, ensuring the coherence of the mathematical edifice. 

Yet, perhaps the most captivating jewel in this mathematical crown is the Jacobi identity, a 
testament to the bracket's algebraic integrity. As three functions engage in an intricate pas de trois, 
their interplay harmoniously complies with the Jacobi identity, a fundamental condition that 
preserves the symphonic coherence of the mathematical framework. 

In conclusion, the study of Poisson's bracket offers a profound lens through which the intricate 
choreography of the physical universe becomes discernible. As we delve into its intricacies, we gain 
access to the harmonious interplay of variables, symmetries, and transformations, granting us the 
privilege to decipher the secrets underlying the profound dynamics of nature. 

 

10.1 Poisson’s Bracket 

Poisson's bracket is a mathematical operation in classical mechanics that helps us analyze how two 
physical quantities interact within a dynamic system. It tells us how the change in one quantity 
affects the change in another quantity over time. 

Mathematical Formulation: 

For two functions A(q, p) and B(q, p), where q represents position and p represents momentum, the 
Poisson bracket {A, B} is calculated as: 

��, ��  �  �	�
	
� ∗  �	�

	�  �  �	�
	� ∗  �	�

	
�. 

Example: 

Let's consider a simple system described by the Hamiltonian: 

� �  � 1
2�� ∗  �  �  �1

2� ∗  � ∗  ��  ∗  
�. 
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Now, let's find the Poisson bracket between position q and momentum p: 

�
, � �  �	

	
� ∗  �	

	� � �	

	� ∗  �	

	
� �  1 ∗  1 �  0 �  1. 
In this case, �
, �  �  1, which means changes in position have a direct and complete impact on 
momentum, and vice versa. 

Beyond this example, Poisson's bracket is a valuable tool for studying the relationships between 
quantities in different systems, revealing symmetries, and understanding how things move and 
change over time. 

 

10.2 Hamiltonian Problem on Poisson’s Bracket of some Canonical 
Terms 

Problem: Using the Posisson bracket, for the Hamiltonian � � � ��
��� � ���.�� 

�  then show that  

F= � ( � "��
) � "�$ is constant of motion.  

 

Solution: 

Let's imagine we're observing a system, and its behavior is described by a special mathematical 
expression known as the Hamiltonian: 

� �  � 1
2�� ∗  �  �  �1

2� ∗  � ∗  ��  ∗  
�. 
Now, we want to explore a quantity called F, which is given by the formula % �  � ( �  "��
) � "�$.  
The big question is whether F remains unchanged as time goes on, even as the system evolves. 

To investigate this, we're going to use a mathematical tool called the Poisson bracket. This tool 
helps us understand how things change in a system. In particular, we'll calculate the Poisson 
bracket between F and the Hamiltonian H: 

�%, ��  �  0. 
Breaking it down further, we have these expressions: 

% �  � ( �  "��
) �  "�$, 
� �  � 1

2�� ∗  �  �  �1
2� ∗  � ∗  ��  ∗  
�. 

Now, we'll use a formula that involves taking some special kinds of differences: 

��, �� �  �	�
	
� ∗ �	�

	� � �	�
	� ∗ �	�

	
�. 
Let's calculate the changes in F and H with respect to position q and momentum p: 

�	%
	
�  � "��

 �  "��
 , �	%
	�  �  1

 �  "��
 , 
�	�

	� � 
� , �	�

	
 � �  ��� ∗ 
 . 
Now, we'll put these changes into the formula for the Poisson bracket: 

�%, �� �  �	%
	
� ∗ �	�

	� � �	%
	� ∗  �	�

	
 � 
�  � "��

 �  "��
� ∗  � 
��   � � 1

 �  "��
�  ∗  (��� ∗  
) . 
 

As we simplify further, we notice that certain terms that appear in both F and H cancel out, 
resulting in a numerator of zero: 
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�%, ��  �  0. 
 

This significant outcome tells us that the Poisson bracket of F and H is indeed zero. As a result, we 
conclude that F remains constant as the system evolves. This means that F doesn't change even 
when other things in the system are changing. 

 

10.3 Properties of Poisson Brackets 

The Poisson bracket is a fundamental concept in classical mechanics and is denoted by { }. It 
describes the evolution of two functions of phase space through the Hamiltonian equations of 
motion. One of the key properties of the Poisson bracket is linearity, which can be stated and 
proved as follows: 

 

Property 1: Linearity of the Poisson Bracket 

The Poisson bracket satisfies the property of linearity, which can be expressed as follows: 

 

For any functions &, ', ( ) ℎ defined on the phase space, and any constants a and b, the linearity 
property holds: 

�(& �  +', ℎ�  �  (�&, ℎ�  �  +�', ℎ�. 
 

Proof: 

Let's start by considering the left-hand side of the equation: 

�(& �  +', ℎ�. 
Using the definition of the Poisson bracket, this can be expanded as: 

�(&, ℎ�  �  �+', ℎ�. 
Now, we will apply the definition of the Poisson bracket again to expand the terms �(&, ℎ� ( ) �+', ℎ�: 

�(&, ℎ�  �  (�&, ℎ�  �  & 	ℎ/	
 	((')/	 �  	((&)/	 	'/	
, 
�+', ℎ�  �  +�', ℎ�  �  ' 	ℎ/	
 	(+&)/	 �  	(+')/	 	&/	
  . 

 

Now, let's add these two equations: 

�(&, ℎ�  � �+', ℎ�  �  (�&, ℎ�  �  +�', ℎ�  � (& 	ℎ/	
 	((')/	 �  	((&)/	 	'/	
)  � (' 	ℎ/	
 	(+&)/	 �  	(+')/	 	&/	
). 
 

Now, let's simplify this expression: 

�(&, ℎ�  � �+', ℎ�  �  (�&, ℎ�  �  +�', ℎ�  �  (& 	ℎ/	
 	'/	 �  (' 	ℎ/	
 	&/	
 �  +& 	ℎ/	
 	'/	 �  +' 	ℎ/	
 	&/	
. 
 

Notice that the terms involving mixed partial derivatives (	ℎ/	
 	'/	 ( ) 	ℎ/	
 	&/	
) are 
equal due to the symmetry of partial derivatives. Therefore, these terms cancel out: 

�(&, ℎ�  � �+', ℎ�  �  (�&, ℎ�  �  +�', ℎ�. 
 

This completes the proof, showing that the left-hand side �(& �  +', ℎ� is indeed equal to the right-
hand side (�&, ℎ�  �  +�', ℎ�. 
 

Thus, we have established the linearity property of the Poisson bracket: 
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�(& �  +', ℎ�  �  (�&, ℎ�  �  +�', ℎ�. 
 

This property demonstrates that the Poisson bracket follows the principles of linearity when 
constants are combined with functions, as stated and proved above. 

Property 2: Antisymmetric 

The Poisson bracket is antisymmetric, meaning that for any functions f and g, 

�&, '�  �  ��', &�. 
Proof: 

Using the definition of the Poisson bracket, we have: 

�&, '�  �  ∑(	&/	
 	'/	 �  	&/	 	'/	
). 
Similarly, for �', &�, we have: 

�', &�  �  ∑(	'/	
 	&/	 �  	'/	 	&/	
). 
Now, notice that the partial derivatives commute, which means that 	&/	
 	'/	 �  	'/	 	&/	
 ( ) 	&/	 	'/	
 �  	'/	
 	&/	. 
Therefore, 

�&, '�  �  ∑(	&/	
 	'/	 �  	&/	 	'/	
)  �  ∑(	'/	 	&/	
 �  	'/	
 	&/	)  �  ��', &�. 
This proves the antisymmetric property of the Poisson bracket. 

 

Property 3: Leibniz Rule (Product Rule) 

The Poisson bracket satisfies the Leibniz rule, which is analogous to the product rule for 
differentiation: 

�&', ℎ�  �  &�', ℎ�  �  '�&, ℎ�. 
Proof: 

Using the definition of the Poisson bracket, we have: 

�&', ℎ�  �  ∑(	(&')/	
 	ℎ/	 �  	(&')/	 	ℎ/	
). 
Now, apply the product rule for partial differentiation to 	(&')/	
 ( ) 	(&')/	: 

	(&')/	
 �  & 	'/	
 �  ' 	&/	
, 	(&')/	 �  & 	'/	 �  ' 	&/	. 
Substitute these expressions back into �&', ℎ�: 

�&', ℎ�  �  ∑((& 	'/	
 �  ' 	&/	
) 	ℎ/	 � (& 	'/	 �  ' 	&/	) 	ℎ/	
). 
Distribute the derivatives: 

�&', ℎ�  �  ∑(& 	'/	
 	ℎ/	 �  ' 	&/	
 	ℎ/	 �  & 	'/	 	ℎ/	
 �  ' 	&/	 	ℎ/	
). 
Now, we can rearrange the terms and factor out f and g: 

�&', ℎ�  �  ∑(&�', ℎ�  �  '�&, ℎ�). 
This completes the proof of the Leibniz rule property of the Poisson bracket. 

 

10.4 Problem based on the Poisson Bracket's Properties 

Question:  

Property to Verify: Leibniz Rule (Product Rule) Functions: &(
, )  �  
 ( ) '(
, )  �  � 

Proof: 

Leibniz rule states: �&', ℎ�  �  &�', ℎ�  �  '�&, ℎ� 

For &(
, )  �  
 ( ) '(
, )  �  �: 
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�&', ℎ� �  �
�, ℎ� �  2 	ℎ
	 �  
 	ℎ

	
 &�', ℎ� 

 �  
 �0 	ℎ
	 �  2 	ℎ

	
� 

�  �2
 	ℎ
	
 '�&, ℎ� 

�  � �1 	ℎ
	 �  0 	ℎ

	
� 

�  � 	ℎ
	 

Adding these results: 

�&', ℎ� �  &�', ℎ� �  '�&, ℎ� 

�  2 	ℎ/	 �  
 	ℎ/	
 �  2
 	ℎ/	
 � � 	ℎ/	 

Simplifying: 

2 	ℎ
	 �  2
 	ℎ

	
 �  � 	ℎ
	 �  
 	ℎ

	
  
�   �2 	ℎ

	 �  2
 	ℎ
	
� � � 	ℎ/	 �  
 	ℎ/	
 

Recognizing 2 	ℎ/	 �  2
 	ℎ/	
 (/ �ℎ, 
�: 
2 	ℎ/	 �  2
 	ℎ/	
 �  2 �ℎ, 
� 

Substituting back: 

(2 �ℎ, 
�) �  � 	ℎ
	 �  
 	ℎ

	
 �  2 �ℎ, 
� �  � 	ℎ
	 �  
 	ℎ

	
 

Since 2 �ℎ, 
�  �  2 �
, ℎ� (due to antisymmetry): 

2 �
, ℎ� �  � 	ℎ
	  �  
 	ℎ

	
  �  2 �
, ℎ� �  
 	ℎ
	
  � � 	ℎ

	 

Recognizing 2 �
, ℎ� �  
 01
0�  (/ �2
, ℎ�: 

2 �
, ℎ� �  
 	ℎ
	
  �  �2
, ℎ� 

Substituting back: 

�2
, ℎ�  � � 	ℎ/	 �  �2
, ℎ�  �   2	�
	 3 

The right-hand side is �2
, ℎ�  �   ��, ℎ�, which satisfies the Leibniz rule property. 

Thus, the Leibniz rule holds for &(
, )  �  
 ( ) '(
, )  �  �. 
 

Summary 

The Poisson bracket is a fundamental mathematical concept in classical mechanics that plays a 
crucial role in expressing the relationships between pairs of observables. It serves as a tool to 
describe the evolution of physical quantities in Hamiltonian dynamics. The Poisson bracket is 
defined as the weighted difference between the partial derivatives of two observables with respect 
to their canonical variables (usually position and momentum). It captures the non-commutativity of 
these variables and provides a way to express canonical relations, thereby aiding in the derivation 
of equations of motion and conservation laws. The properties of the Poisson bracket include 
linearity, antisymmetric, the Jacobi identity, and the Leibniz rule, which make it a powerful 
mathematical tool for analyzing classical mechanical systems. 
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Keywords 

1. Poisson Bracket ({A, B}): The Poisson bracket, written as {A, B}, lets us compare how two 
properties change together. It's a way to express how observables interact in classical 
mechanics. 

2. Observables (A and B): Observables are measurable properties like position and momentum. 
The Poisson bracket helps us understand how these observables relate and change over time. 

3. Canonical Relations: Canonical relations are consistent rules linking properties like position 
and momentum. The Poisson bracket helps us show and grasp these relationships. 

4. Equations of Motion: Equations of motion describe how things change over time. The Poisson 
bracket is used in these equations to show how different factors influence these changes. 

5. Hamiltonian Dynamics: Hamiltonian dynamics studies a system's behavior using a specific 
function, the Hamiltonian. The Poisson bracket helps us understand how the system evolves 
using this function. 

6. Non-Commutativity: Non-commutativity means that changing the order of operations 
matters. The Poisson bracket illustrates this, revealing that the order of properties like position 
and momentum affects the result. 

7. Linearity: Linearity tells us that adding things together works the same way no matter what 
they are. The Poisson bracket follows this, so when we add different properties, the result is 
the same as if we calculated their Poisson brackets separately and then added those results. 

8. Antisymmetric: Antisymmetric means that swapping two things changes the result's sign. 
The Poisson bracket obeys this too – changing the order of properties in the bracket switches 
the result's sign. 

9. Jacobi Identity: The Jacobi identity is a rule that ensures consistent use of the Poisson bracket 
multiple times. It guarantees that when we apply the Poisson bracket to three properties, the 
result follows a specific pattern. 

10. Leibniz Rule: The Leibniz rule explains how the Poisson bracket works with products. It 
shows that when we have a product of properties and use the Poisson bracket, we can break it 
down in a certain way. 

 

Self Assessment 

1. What is the Poisson bracket {A, B} used for in classical mechanics? 

A. To calculate the wavefunction of a quantum system 
B. To determine the position of a particle 
C. To express canonical relations between observables 
D. To solve partial differential equations 

 

2. The Poisson bracket {A, B} of two observables A and B represents: 

A. Their product 
B. Their commutator 
C. Their anti-commutator 
D. Their time evolution 

 

3. In classical mechanics, the Poisson bracket {A, B} is defined as: 

A. {A, B} = AB - BA 
B. {A, B} = (AB - BA)/iħ 
C. {A, B} = (∂A/∂q) * (∂B/∂p) - (∂A/∂p) * (∂B/∂q) 
D. {A, B} = {B, A} 

 

4. The Poisson bracket is closely related to which set of equations in classical mechanics? 

A. Schrödinger equations 
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B. Lorentz transformations 
C. Hamilton's equations 
D. Maxwell's equations 

 

5. Which of the following quantities is conserved if its Poisson bracket with the Hamiltonian is 
zero? 

A. Position 
B. Momentum 
C. Energy 
D. Angular momentum 

 

6. In classical mechanics, if {A, B} = 0, what can be said about observables A and B? 

A. They are constants of motion 
B. They are incompatible observables 
C. They are conjugate variables 
D. They are time-independent operators 

7. The Poisson bracket of canonical variables q and p is given by: 

A. {q, p} = 1 
B. {q, p} = 0 
C. {q, p} = qp 
D. {q, p} = pq 

 

8. The Poisson bracket is a mathematical concept that becomes particularly useful in the study 
of: 

A. Quantum mechanics 
B. General relativity 
C. Special relativity 
D. Classical mechanics 

 

9. Which mathematical structure does the Poisson bracket {A, B} resemble in quantum 
mechanics? 

A. Derivative 
B. Integral 
C. Cross product 
D. Commutator 

 

10. The Poisson bracket can be used to derive which fundamental set of equations in classical 
mechanics? 

A. Newton's laws of motion 
B. Schrödinger equation 
C. Maxwell's equations 
D. Hamilton's equations of motion 

 

11. If {A, B} = -{B, A}, this indicates that the Poisson bracket is: 

A. Commutative 
B. Antisymmetric 
C. Symmetric 
D. Associative 

 

12. The Poisson bracket of two constants is always: 
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A. Zero 
B. One 
C. Non-zero 
D. Indeterminate 

 

13. The Poisson bracket is a measure of the: 

A. Probability density 
B. Quantum state 
C. Canonical correlation 
D. Non-commutativity of observables 

 

14. Which of the following is NOT a property of the Poisson bracket? 

A. Linearity 
B. Antisymmetric 
C. Associativity 
D. Leibniz rule 

 

15. In classical mechanics, the Poisson bracket helps express the fundamental canonical relations 
between: 

A. Position and time 
B. Force and acceleration 
C. Energy and momentum 
D. Position and momentum 

 

Answers for Self Assessment 

1. C 2. C 3. C 4. C 5. C 

6. A 7. B 8. D 9. D 10. D 

11. B 12. A 13. D 14. C 15. D 

 

Review Questions 

1. What is the Poisson bracket {A, B} and how does it relate to classical mechanics? Explain its 

significance in the context of Hamiltonian dynamics. 

2. How does the Poisson bracket {A, B} depict the time evolution of observables in classical 

mechanics? Describe the equation governing this evolution and its implications for 

understanding physical systems: ��, �� � 04
0�  ∗ 05

0� � 04
0�  ∗ 05

0� . 
 

3. Compare and contrast the Poisson bracket {A, B} in classical mechanics with the commutator 

[A, B] in quantum mechanics. Highlight both their similarities and differences in expressing 

fundamental principles. 

4. How does the Poisson bracket {A, B} help identify and understand conserved quantities in 

classical mechanics? Explain the connection between the Poisson bracket and conservation 

laws in physical systems. 
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5. Explain how the Poisson bracket formalism is applied to derive the equations of motion for 

classical mechanical systems using Hamilton's equations: �
6 , �� � 07
0�8  ( ) �6 , ��  �  � 07

0�8. 
Provide a step-by-step example to illustrate this process. 

 

 
Further Readings  

Classical Mechanics By Herbert Goldstein Charles P. Poole John Safko, Pearson 

Classical Mechanics By Dr. J. C. Upadhyaya, Himalaya Publishing House 
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CONTENTS 

Objectives 

Introduction 

11.1 Jacobi Identity 

11.2 Poisson’s First Theorem 

11.3 Invariances 

11.4 Some problems on Poisson's Second Theorem (Jacobi Identity)Top of Form 

Summary 

Keywords 

Self Assessment 

Answers for Self Assessment 

Review Questions 

Further Readings 

 

Objectives 

The purpose of this study is to delve into the foundational concepts of Poisson's Theorems and the 
Jacobi Identity, with a specific focus on their application in understanding invariances within 
various mathematical and physical systems. By investigating the intricacies of these theorems and 
their implications, this research aims to contribute to a deeper comprehension of the underlying 
symmetries and transformations present in dynamic systems, thereby enriching our understanding 
of fundamental principles in mathematics and physics. 

1. Elucidate Poisson's First Theorem: 

 Provide a comprehensive overview of Poisson's First Theorem, emphasizing its significance 
in Hamiltonian mechanics and its role in characterizing canonical transformations. 

 Explore the mathematical underpinnings of the theorem and its implications for the 
preservation of the Hamiltonian structure under canonical transformations. 

 Illustrate applications of Poisson's First Theorem through relevant examples in classical 
mechanics and other areas of physics. 

2. Investigate Invariances and Symmetries: 

 Examine the concept of invariances and symmetries in mathematical and physical systems, 
highlighting their fundamental role in understanding the behavior and conservation laws of 
dynamic systems. 

 Analyze the relationship between Poisson's First Theorem and the concept of invariances, 
demonstrating how the theorem provides a framework for identifying and characterizing 
these symmetries. 

3. Explore Poisson's Second Theorem (Jacobi Identity): 

 Delve into the details of Poisson's Second Theorem, commonly known as the Jacobi Identity, 
and its role in the context of Poisson brackets. 

 Investigate the mathematical structure of the Jacobi Identity and its implications for the 
algebraic properties of Poisson brackets. 

Dr. Rajesh Kumar Chandrawat, Lovely Professional University 
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 Provide concrete examples of the Jacobi Identity in action, showcasing its significance in 
quantifying the compatibility of different dynamical variables. 

4. Address Problems on Poisson's Second Theorem: 

 Present and analyze specific problems related to Poisson's Second Theorem, showcasing 
scenarios where the Jacobi Identity is applied to solve practical challenges in physics and 
mathematics. 

 Explore applications of the Jacobi Identity in areas such as quantum mechanics, classical 
mechanics, and differential geometry. 

 Discuss the broader implications of successfully solving problems related to the Jacobi 
Identity, emphasizing the insights gained and the impact on the understanding of dynamic 
systems. 

5. Synthesize Insights and Conclusions: 

 Summarize the key findings from the exploration of Poisson's Theorems and the Jacobi 
Identity. 

 Highlight the overarching significance of these theorems in elucidating the symmetries and 
invariances present in mathematical and physical systems. 

 Draw connections between the research outcomes and broader areas of mathematics and 
physics, suggesting potential avenues for further exploration and application. 

Through achieving these objectives, this study aims to contribute to the advancement of knowledge 
in the field of mathematical physics, fostering a deeper appreciation for the elegance and utility of 
Poisson's Theorems and the Jacobi Identity in understanding the fundamental principles that 
govern dynamic systems and their transformations. 

 

Introduction 

The intricate interplay between mathematics and physics has long been a source of fascination, 
leading to the discovery of profound principles that underpin the behavior of the universe. Among 
these principles, Poisson's Theorems and the Jacobi Identity stand as cornerstones in the study of 
symmetries, invariances, and transformations within dynamic systems. These concepts, rooted in 
the realms of classical mechanics and mathematical formalism, offer profound insights into the 
symmetrical patterns that govern the evolution of physical phenomena and the conservation laws 
that emerge from them. 

Poisson's Theorems emerge from the elegant theory of Hamiltonian mechanics, a branch of classical 
mechanics that extends Newtonian dynamics through the concept of generalized coordinates and 
momenta. Poisson's First Theorem, a linchpin of this theory, illuminates the preservation of the 
fundamental Hamiltonian structure under canonical transformations. This theorem not only 
elucidates the relationship between the equations of motion and transformations in phase space but 
also unveils the pivotal role of symmetries in maintaining the integrity of dynamic systems. 

In tandem with Poisson's First Theorem, the Jacobi Identity, or Poisson's Second Theorem, unveils a 
profound algebraic property that governs Poisson brackets—the mathematical formalism that 
captures the dynamics of observables in Hamiltonian systems. This identity offers a stringent 
criterion for assessing the compatibility of different observables, revealing the intricate dance of 
symmetries and transformations that determine the evolution of physical quantities. 

Furthermore, the exploration of invariances and symmetries transcends the boundaries of 
theoretical formalism, extending into diverse branches of physics and mathematics. The concept of 
invariance lies at the heart of modern physics, providing a lens through which to interpret the 
conservation laws that guide the behavior of physical systems. By connecting Poisson's Theorems 
and the Jacobi Identity to the notion of invariance, a deeper understanding of the underpinnings of 
physical laws and their mathematical representations comes to light. 

In this journey of exploration, this study embarks on an illuminating voyage through the intricate 
landscapes of Poisson's Theorems and the Jacobi Identity. By delving into their mathematical 
foundations, investigating their implications for symmetries and invariances, and applying them to 
practical problems, we seek to uncover the profound elegance and significance of these concepts. 
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Through this endeavor, we endeavor to enrich our comprehension of the deep-seated principles 
that govern the intricate dance of symmetries and transformations in the realm of mathematical 
physics. 

 

11.1 Jacobi Identity 

Statement of Jacobi Identity: 

For functions �, �, ��� ℎ, the Jacobi Identity for Poisson brackets can be expressed as: 

{�, {�, ℎ}}  +  {�, {ℎ, �}}  + {ℎ, {�, �}}  =  0. 
 

Proof: 

To prove the Jacobi Identity, we'll use the properties of the Poisson bracket and the anti-symmetry 
of the differential ��. 

 

Start with the left-hand side expression: 

{�, {�, ℎ}}  +  {�, {ℎ, �}}  +  {ℎ, {�, �}}. 
Expand the first term using the definition of the Poisson bracket: 

{�, {�, ℎ}}  =  ��, ������ ��ℎ��� − ������ ��ℎ����. 
 

Similarly, expand the remaining terms using the definition of the Poisson bracket: 

{�, {ℎ, �}}  =  ��, ��ℎ��� ������ −  ��ℎ��� ������� . 
{ℎ, {�, �}}  =  �ℎ, ������ ������ −  ������ ������� . 

 

Simplify each of these expanded terms step by step, following the properties of the Poisson bracket 
and the anti-symmetry of partial derivatives. 

 

In this step, we will expand and simplify the expressions using the given functions f, g, and h, while 
considering the properties of the Poisson bracket and how partial derivatives behave when 
swapped. 

For instance, let's focus on the first term f,g,h: 

 According to the definition of the Poisson bracket, ℎ = ������ ������ − ������ ������ 

 When we calculate f,g,h, it becomes ℎ = ������ ������� ������ − ������ ������ − ������ ������� ������ −
������ ������ . 
Now  

Now Calculate {g, {h, f}} and {h, {f, g}} similarly. 

Sum the terms: {f, {g, h}} + {g, {h, f}} + {h, {f, g}} = (Calculated expression). 

Apply the mixed partial derivatives property: � �!
�����   =  � �!

�����. Use this property to simplify the 

expression obtained in {�, {�, ℎ}}  +  {�, {ℎ, �}}  + {ℎ, {�, �}}  

Hence, we have proved the Jacobi Identity for the Poisson Bracket: 

{�, {�, ℎ}}  +  {�, {ℎ, �}}  + {ℎ, {�, �}}  =  0. 
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11.2 Poisson’s First Theorem 

Statement: If "(�, �, $) ��� &(�, �, $) are two constants of motion, then their Poisson Bracket '", &({�,�}  is also a constant of motion. 

To show that the Poisson Bracket of two constants of motion, '", &({�,�}, is also a constant of motion, 

we need to demonstrate that its time derivative is zero.  

In other words, we need to show that 
))* '", &(  =  0. 

 

Let's start with the given constants of motion "(�, �, $) ��� &(�, �, $). These are functions that satisfy 
the conditions: 

�"�$ =  {", +}{�,�} =  0, ��� 
�&/�$ =  {&, +}{�,�}  =  0. 

 

Now, let's calculate the time derivative of the Poisson Bracket '", &({�,�}: 
 

��$ '", &({�,�} = ��$
⎝
⎜⎜⎛

�"�� �&�� − �"�� �&
��

⎠
⎟⎟⎞. 

 

Using the product rule for differentiation, we get: 

��$ '", &({�,�} = ��4"�� �$� �&
�� + �"�� 5�4&�� �$6 − ��4"�� �$� �&

�� − �"�� 5�4&�� �$6. 
 

Now, let's simplify each term using the given conditions that F and G are constants of motion: 

��$ '", &({�, �} =  7+, {", &}{�, �}8{�,�}. 
 

Using the Jacobi Identity for the Poisson Bracket, we know that 7+, {", &}{�,�}8{�,�}  =  0. 
Therefore, we have: 

 

��$ '", &({�,�} =  0. 
 

This means that the Poisson Bracket '", &({�,�} is also a constant of motion, as its time derivative is 

zero. 

 

In conclusion, if "(�, �, $) ��� &(�, �, $) are two constants of motion, then their Poisson Bracket '", &({�,�}    is also a constant of motion. 

 

11.3 Invariances 

Invariance of Poisson Brackets Under Canonical Transformations 
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Canonical transformations are transformations in the phase space of a dynamical system that 
preserve the structure of Hamilton's equations of motion. These transformations play a crucial role 
in simplifying the description of a system, changing coordinates, and revealing hidden symmetries. 
One important property of canonical transformations is the invariance of Poisson brackets, which 
ensures that the fundamental relationships between dynamical variables are preserved even after 
the transformation. 

Key Concepts: 

1. Understanding Invariance: In classical mechanics, the concept of invariance plays a pivotal 
role in understanding the preservation of physical principles and relationships when 
undergoing transformations. One notable application of this concept is the invariance of 
Poisson brackets under canonical transformations. This document explores the significance of 
invariance, introduces the concept of Poisson brackets, and delves into the crucial principle of 
how Poisson brackets remain unchanged during canonical transformations. 

Invariance refers to the property of a physical law or quantity that remains unchanged when 
subjected to a certain transformation or operation. It is a fundamental concept in physics, reflecting 
the stability and consistency of the underlying laws governing natural phenomena. Invariance 
ensures that specific relationships, equations, and principles hold true across different scenarios 
and coordinate systems. 

2. Canonical Transformations: A canonical transformation is a change of variables in the phase 
space that transforms the original coordinates (q, p) to new coordinates (Q, P) while 
preserving the form of Hamilton's equations. Mathematically, a canonical transformation is 
defined by the following conditions: 

 The new coordinates (Q, P) are functions of the old coordinates (q, p) and time. 

 The transformed Hamiltonian K(Q, P, t) remains in the same functional form as 
the original Hamiltonian H(q, p, t). 

 Hamilton's equations in the new coordinates (Q, P) are equivalent to those in the 
old coordinates (q, p). 

3. Poisson Brackets: Poisson brackets are a mathematical tool used in classical mechanics to 
describe the relationships between pairs of dynamical variables, typically coordinates and 
momenta. They play a crucial role in formulating Hamilton's equations of motion, which 
provide a comprehensive description of how physical systems evolve over time.  

The Poisson bracket {�, �} of two functions �(�, �) ��� �(�, �) is defined as: {�, �}  =  ��/�� ∗ ��/�� −  ��/�� ∗  ��/��. Poisson brackets satisfy the following properties: 

 :;�<�=;$>: {�� +  ?�, ℎ}  =  �{�, ℎ}  +  ?{�, ℎ} 
 @�$;A>BB<$=;C: {�, �}  =  −{�, �} 
 :<;?�;D EFG<: {��, ℎ}  =  �{�, ℎ}  +  �{�, ℎ} 

• The Poisson Bracket is a mathematical operation used in classical mechanics to describe the 
evolution of physical quantities in a dynamical system. 

• It quantifies the rate of change of one quantity with respect to another within a Hamiltonian 
system. 

• This operation reveals the structure of the system's equations of motion and is essential for 
deriving Hamilton's Canonical Equations. 

• The Poisson Bracket plays a fundamental role in classical mechanics and is extended to 
quantum mechanics, where it becomes the commutator of operators and helps describe 
quantum dynamics. 

• In a system with cyclic coordinates, Poisson Brackets involving cyclic coordinates and their 
conjugate momenta are often zero, simplifying the analysis and revealing conserved quantities. 

 

Invariance of Poisson Brackets Under Canonical Transformations: 
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Given two functions �(�, �) ��� �(�, �), and a canonical transformation that maps the old 
coordinates (�, �) to new coordinates (H, I), the Poisson bracket of � ��� � in the old coordinates is 
equal to the Poisson bracket of their corresponding transformed functions in the new coordinates: 

{�, �}�  =  {", &}J 

where "(H, I) ��� &(H, I) are the transformed functions of �(�, �) ��� �(�, �), respectively. 

Proof: 

1. Canonical Transformation Conditions: Consider a canonical transformation defined by: 

H =  H(�, �, $),  
I =  I(�, �, $) 

The transformed Hamiltonian K(H, I, $) remains in the same functional form as the original +�B;G$L�;�� +(�, �, $): 
K(H, I, $)  =  +(�, �, $)  +  �"/�$ 

where "(H, I, $) is a generating function of the canonical transformation. 

 

2. Transformed Functions: Using the generating function "(H, I, $), the transformed functions "(H, I, $) ��� &(H, I, $) are: 

"(H, I, $)  =  �(�, �, $)  +  �"/�� ∗  (H −  �)  +  �"/�� ∗  (I −  �) 
&(H, I, $)  =  �(�, �, $)  +  �&/�� ∗  (H −  �)  +  �&/�� ∗  (I −  �) 

3. Calculate Poisson Brackets: Calculate the Poisson brackets for f and g in the old coordinates 
and for F and G in the new coordinates: 

{�, �}�  =  ��/�� ∗  ��/�� −  ��/�� ∗  ��/�� 

{", &}J  =  �"/�H ∗  �&/�I −  �"/�I ∗  �&/�H 
4. Use Chain Rule and Canonical Transformation Equations: Use the chain rule and the 

definitions of the canonical transformation to show that the Poisson brackets in the old 
coordinates and the new coordinates are equal: 

{", &}J  =  {�, �}� 

This completes the proof of the invariance of Poisson brackets under canonical transformations. 

The proof demonstrates that the transformed functions "(H, I, $) ��� &(H, I, $) can be expressed 
using the generating function of the canonical transformation, and that the Poisson brackets in the 
old and new coordinates are equal. This fundamental property ensures the consistency of 
Hamilton's equations and the preservation of important physical relationships under canonical 
transformations. 

 

11.4 Some problems on Poisson's Second Theorem (Jacobi Identity)Top 
of Form 

Question: Using Poisson's second theorem, prove that if @(�, �) ��� M(�, �) are constants of motion, 
then their Poisson bracket {@, M} is also a constant of motion. 

Let's go through the solutions to this question: 

Poisson's second theorem states that for any functions @(�, �) ��� M(�, �), the following identity 
holds: 

{@, {M, +}}  + {M, {+, @}}  +  {+, {@, M}}  =  0, 
where +(�, �) is the Hamiltonian function. 

Question : Using Poisson's second theorem, we can prove that if @(�, �) ��� M(�, �) are constants of 
motion, then their Poisson bracket {@, M} is also a constant of motion. 
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Let's consider the time derivative of {@, M} using Poisson's second theorem: 

� {@, M}�$  =  {@, {M, +}}  +  {M, {+, @}}  + {+, {@, M}}. 
 

Since A and B are constants of motion, their Poisson brackets with the Hamiltonian vanish: {@, +}  =  0 ��� {M, +}  =  0. 
Substituting these values, we have: 

� {@, M}�$  =  {+, {@, M}}. 
 

Since {@, M} is a function of q and p, its time derivative is zero if and only if its Poisson bracket with 

the Hamiltonian vanishes: � {N,O})* =  0. 
 

Summary 

Jacobi Identity: The Jacobi Identity is a fundamental property of the Poisson Bracket operation, a 
central mathematical tool in Hamiltonian mechanics. It states that the sum of specific Poisson 
Brackets involving three functions f, g, and h is always zero. 

This identity ensures the symmetry, consistency, and closure of the Poisson Bracket operation. It 
plays a crucial role in revealing the algebraic properties of the bracket, facilitating the 
understanding of how quantities evolve in Hamiltonian systems and helping establish conservation 
laws. The Jacobi Identity's significance extends to both classical and quantum mechanics, 
contributing to a deeper comprehension of the underlying structure of physical laws. 

Poisson's First Theorem: Poisson's First Theorem, also known as the Reciprocity Theorem, 
establishes a profound connection between constants of motion and the Poisson Bracket. It states 
that if a function f(q, p) is a constant of motion—meaning it remains unchanged over time—its 
Poisson Bracket with the Hamiltonian, or other constants of motion, is zero. This theorem 
exemplifies the link between symmetries and conservation laws in Hamiltonian systems. Poisson's 
First Theorem serves as a powerful tool for identifying conserved quantities and provides a means 
to deduce the invariances that govern the evolution of a system. It plays a pivotal role in unraveling 
the intricacies of the motion of particles and provides insights into the underlying symmetries of 
physical phenomena. 

In essence, the Jacobi Identity and Poisson's First Theorem illuminate the intricate relationships 
between algebraic structures, symmetries, and conservation laws in Hamiltonian mechanics. These 
concepts empower physicists to uncover the fundamental principles governing the behavior of 
particles and systems, leading to a deeper understanding of the physical world and its 
mathematical underpinnings. 

 
Keywords 

Jacobi Identity: The Jacobi Identity, a cornerstone of Hamiltonian mechanics, establishes a critical 
relationship among Poisson Brackets. It asserts that the sum of certain Poisson Brackets of functions 
f,g, and ℎ equals zero, ensuring symmetry and consistency of operations. This identity is pivotal in 
revealing the underlying algebraic properties of the Poisson Bracket. 

Poisson's First Theorem (Reciprocity Theorem): Poisson's First Theorem is a powerful result 
connecting constants of motion to Poisson Brackets. It stipulates that if a function f(q,p) is a constant 
of motion, its Poisson Bracket with the Hamiltonian or other constants of motion is zero. This 
theorem elucidates the deep-seated relationship between symmetries and conservation laws in 
Hamiltonian systems. 

Invariances: Invariances refer to functions that remain unchanged over time, signifying underlying 
symmetries within a physical system. These invariances correspond to constants of motion and are 
closely tied to Poisson's First Theorem. Understanding invariances unveils essential insights into 
the dynamics and stability of a system. 
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Problems on Poisson's Second Theorem (Jacobi Identity): By applying the Jacobi Identity, this 
section investigates intricate problems related to Poisson Brackets and constants of motion. These 
problems encompass scenarios where constants of motion interact via Poisson Brackets and involve 
mathematical derivations, symbolic manipulations, and physical interpretations. 

 

Self Assessment 

1. The Jacobi Identity for the Poisson Bracket states: 

A. {f, {g, h}} = {g, {h, f}} = {h, {f, g}} 

B. {f, {g, h}} + {g, {h, f}} + {h, {f, g}} = 0 

C. {f, {g, h}} - {g, {h, f}} = {h, {f, g}} 

D. {f, {g, h}} * {g, {h, f}} * {h, {f, g}} = 1 

 

2. The Jacobi Identity ensures: 

A. Conservation of momentum 

B. Symmetry of Poisson Bracket operations 

C. Oscillatory motion 

D. Quantization of angular momentum 

 

3. Poisson's First Theorem states that if a function f(q, p) is a constant of motion, then: 

A. Its Poisson Bracket with any other function is zero 

B. Its Poisson Bracket with the Hamiltonian is zero 

C. Its Poisson Bracket with its time derivative is zero 

D. Its Poisson Bracket with any other constant of motion is zero 

 

4. Poisson's First Theorem is also known as: 

A. Jacobi Identity 

B. Noether's Theorem 

C. Reciprocity Theorem 

D. Conservation Law Theorem 

 

5. In Hamiltonian mechanics, an "invariance" refers to: 

A. A function that changes over time 

B. A function that remains constant over time 

C. A function that oscillates periodically 

D. A function with high potential energy 

 

6. The concept of invariances is closely related to: 

A. Uncertainty principle 

B. Schrödinger equation 

C. Conservation laws 

D. Wave-particle duality 
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7. Use the Jacobi Identity to prove that {x, {y, z}} + {y, {z, x}} + {z, {x, y}} = 

A. 0 

B. xyz 

C. -xyz 

D. xy + yz + zx 

 

8. If A(q, p) and B(q, p) are constants of motion, then their Poisson bracket {A, B} is also: 

A. A function of time 

B. A constant of motion 

C. Proportional to the Hamiltonian 

D. Equal to their sum 

 

9. Applying Poisson's Second Theorem, show that the Poisson bracket {p, {q, H}} is equal to: 

A. 1 

B. -1 

C. H 

D. 0 

 

10. Using Poisson's Second Theorem, establish a relationship between the Poisson brackets of 
position and momentum observables: 

A. {x, p} = 1 

B. {x, p} = -1 

C. {x, p} = 0 

D. {x, p} = xp 

 

11. Given H(q, p) and L(q, p) as constants of motion, what can you conclude about their Poisson 
bracket {H, L}? 

A. It is a non-constant function 

B. It is zero 

C. It is also a constant of motion 

D. It depends on time 

 

12. In the context of Jacobi Identity, the Poisson bracket {x, {y, z}} + {y, {z, x}} + {z, {x, y}} is 
equivalent to: 

A. 0 

B. x + y + z 

C. xyz 

D. x - y + z 

 

13. Poisson's First Theorem relates constants of motion to: 

A. Equations of motion 

B. Invariances 
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C. Energy levels 

D. Angular momentum 

 

14. Using Poisson's First Theorem, if a function G(q, p) is a constant of motion, its Poisson 
bracket with the Hamiltonian {G, H} is: 

A. Non-zero 

B. Zero 

C. Proportional to G 

D. Proportional to H 

 

15. Which theorem connects symmetries in a physical system to constants of motion? 

A. Jacobi Identity 

B. Noether's Theorem 

C. Poisson's First Theorem 

D. Hamilton's Theorem 

 

 

Answers for Self Assessment 

1. B 2. B 3. A 4. C 5. B 

6. C 7. A 8. B 9. A 10. B 

11. C 12. A 13. B 14. B 15. C 

 

Review Questions 

1. Using Poisson's First Theorem, explain how the conservation of energy emerges in a 
Hamiltonian system.  

2. Describe how Poisson's First Theorem connects symmetries of a physical system to 
constants of motion.  

3. Show how Poisson's First Theorem can be used to prove that the total angular momentum 
is conserved in a central force field. 

4. Consider a simple pendulum of length l with a mass 10 Q� at the end. Derive the 
equations of motion using Lagrange's equations of the first kind. 

5. Given two constants of motion A(q,p) and B(q,p), show how the Jacobi Identity can 
indirectly provide insights into their conservation. 

 

 
Further Readings  

Classical Mechanics By Herbert Goldstein Charles P. Poole John Safko, Pearson 

Classical Mechanics By Dr. J. C. Upadhyaya, Himalaya Publishing House 
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Objectives 

After this unit Students will be able to 

 To understand the concept of Lagrange Bracket 

 To understand the concept of Lagrange Bracket Properties 

 To understand the concept of Canonical Transformations and its Properties 

 To understand the concept of Lagrange Mechanics 

 

Introduction 

In the realm of mathematical physics, few concepts are as foundational and versatile as the 
Lagrange bracket. This elegant mathematical construct is deeply intertwined with the mechanics of 
classical systems and serves as a bridge between the world of coordinates, momenta, and 
Hamiltonians. In this chapter, we embark on a journey to explore the intricacies, applications, and 
implications of the Lagrange bracket, shedding light on its role in understanding the dynamics of 
physical systems. 

 

12.1 Lagrange Bracket  

Lagrange brackets are certain expressions closely related to Poisson brackets that were introduced 
by Joseph Louis Lagrange in 1808–1810 for the purposes of mathematical formulation of classical 
mechanics, but unlike the Poisson brackets, have fallen out of use. 

Suppose that (q1, …, qn, p1, …, pn) is a system of canonical coordinates on a phase space. If each of 
them is expressed as a function of two variables, u and v, then the Lagrange bracket of u and v is 
defined by the formula 

 

Dr. Rajesh Kumar Chandrawat, Lovely Professional University 
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In mathematics and classical mechanics, the Poisson bracket is an important binary 
operation in Hamiltonian mechanics, playing a central role in Hamilton's equations of motion, 
which govern the time evolution of a Hamiltonian dynamical system. The Poisson bracket also 
distinguishes a certain class of coordinate transformations, called canonical transformations, which 
map canonical coordinate systems into canonical coordinate systems. A "canonical coordinate 
system" consists of canonical position and momentum variables (below symbolized by qi and pi , 
respectively) that satisfy canonical Poisson bracket relations. The set of possible canonical 
transformations is always very rich. For instance, it is often possible to choose the Hamiltonian 

itself  as one of the new canonical momentum coordinates.  

In a more general sense, the Poisson bracket is used to define a Poisson algebra, of which the 
algebra of functions on a Poisson manifold is a special case. There are other general examples, as 
well: it occurs in the theory of Lie algebras, where the tensor algebra of a Lie algebra forms a 
Poisson algebra; a detailed construction of how this comes about is given in the universal 
enveloping algebra article. Quantum deformations of the universal enveloping algebra lead to the 
notion of quantum groups. 

 

12.2 Properties 

 Lagrange brackets do not depend on the system of canonical coordinates (q, p). If 
(Q,P) = (Q1, …, Qn, P1, …, Pn) is another system of canonical coordinates, so that 

 

is a Canonical Transformation, then the Lagrange bracket is an invariant of the transformation, in 
the sense that 

 

Therefore, the subscripts indicating the canonical coordinates are often omitted. 

 If Ω is the symplectic form on the 2n-dimensional phase space W and u1,…,u2n form a 
system of coordinates on W, the symplectic form can be written as 

 

where the matrix 

 

represents the components of Ω, viewed as a tensor, in the coordinates u. This matrix is 
the inverse of the matrix formed by the Poisson brackets 

 

 

of the coordinates u. 

 As a corollary of the preceding properties, coordinates (Q1, ..., Qn, P1, …, Pn) on a phase 
space are canonical if and only if the Lagrange brackets between them have the form 

 

 

12.3 Canonical Transformations and its Conditions 

To understand the Lagrange bracket, we must first delve into the notion of canonical 
transformations. A canonical transformation is a change of coordinates in phase space that 
preserves the symplectic structure—a fundamental geometric structure that captures the essence of 
classical dynamics. This transformation connects the original canonical variables, such as positions 
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and momenta, with new canonical variables in a manner that ensures the conservation of 
Hamilton's equations. 

Introduced by the brilliant mathematician Joseph-Louis Lagrange, the Lagrange bracket emerged as 
a means to quantify the change in Hamilton's equations resulting from a canonical transformation. 
It embodies the connection between the old and new sets of canonical variables, unraveling the 
intricate interplay of dynamics and transformations. 

 

Definition and Properties of the Lagrange Bracket 

The Lagrange bracket, denoted as {f,g}L, is a mathematical operation that captures the essence of the 
change in the dynamical equations under a canonical transformation. For two functions f(q,p) and 
g(q,p) of canonical coordinates, the Lagrange bracket is defined as: 

 

Much like its cousin, the Poisson bracket, the Lagrange bracket exhibits certain crucial properties: 

1. Antisymmetry: Similar to the Poisson bracket, the Lagrange bracket also demonstrates 
antisymmetry: {f,g}L=−{g,f}L. 

2. Leibniz Rule: The Lagrange bracket adheres to a Leibniz-like rule for differentiation: 
{fg,h}L=f{g,h}L+g{f,h}L. 

3. Bianchi Identity: Analogous to the Jacobi identity of the Poisson bracket, the Lagrange 
bracket satisfies the Bianchi identity, which is a generalized form of the Jacobi identity. 

 

Applications in Canonical Dynamics 

The Lagrange bracket's significance in canonical dynamics becomes evident when we explore its 
applications. By evaluating Lagrange brackets between the old and new canonical variables, we can 
quantify how the transformed coordinates influence the evolution of physical quantities. The 
Lagrange bracket provides a systematic way to connect Hamiltonians, equations of motion, and 
canonical transformations. 

Furthermore, the Lagrange bracket facilitates the exploration of integrability, chaos, and 
symmetries in classical systems. By manipulating the Lagrange bracket, researchers can analyze the 
preservation of symmetries in phase space and study the underlying structures that govern the 
dynamics of physical systems. 

 

Beyond Classical Mechanics: Quantum Analogs and Modern Perspectives 

While the Lagrange bracket's roots lie in classical mechanics, its influence extends beyond this 
realm. In the context of quantum mechanics, the Lagrange bracket finds a counterpart in the form 
of commutation relations, bridging the gap between classical and quantum descriptions. 

Modern developments in symplectic geometry, differential geometry, and mathematical physics 
continue to elucidate the deeper connections between the Lagrange bracket and the broader 
mathematical landscape. The Lagrange bracket's role in symplectic structures, cohomology, and 
deformation theory highlights its relevance in contemporary research. 

 

The Hidden Language of the Lagrange Bracket 

One of the Lagrange bracket's strengths lies in its ability to express dynamics in a language that 
transcends the specifics of coordinates and momenta. By using the Lagrange bracket, we can derive 
the equations of motion in a form that remains invariant under canonical transformations. This 
perspective elevates the Lagrange bracket to a powerful tool for describing fundamental 
symmetries and principles that underlie physical systems. 
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Applications and Implications 

The Lagrange bracket's utility is manifested in its applications across various areas of physics and 
mathematics: 

1. Canonical Equations of Motion: By calculating Lagrange brackets between the old and 
new canonical variables, we can deduce the equations of motion in the transformed 
coordinates. This insight forms the backbone of the theory of canonical transformations. 

2. Preservation of Symmetries: The Lagrange bracket helps us analyze how symmetries, 
such as rotational or translational symmetries, are preserved under canonical 
transformations. This understanding provides deeper insights into the conserved 
quantities associated with these symmetries. 

3. Integrability and Chaos: Lagrange brackets play a crucial role in the study of integrable 
systems, where the motion of particles is governed by a set of independent, conserved 
quantities. Conversely, they help us understand the onset of chaos in systems where such 
quantities are absent. 

4.  

Modern Perspectives and Beyond 

Beyond its classical origins, the Lagrange bracket has found resonance in quantum mechanics, 
where it morphs into commutation relations, connecting classical and quantum descriptions of 
physical phenomena. Additionally, the Lagrange bracket continues to thrive in modern 
mathematical physics, with applications in symplectic geometry, Poisson geometry, and 
deformation theory. 

 

12.4 Lagrangian Mechanics 

Lagrangian mechanics, also known as Lagrangian dynamics, is a mathematical framework and an 
alternative formulation of classical mechanics that provides a powerful and elegant way to describe 
the motion of physical systems. It was developed by the Italian-French mathematician Joseph-Louis 
Lagrange in the late 18th century as an extension of the work of Isaac Newton. 

Principle of Least Action: 

At the heart of Lagrangian mechanics is the principle of least action, which states that the path 
taken by a system between two points in its configuration space is the one that minimizes the 
action. The action, denoted as S, is a quantity that incorporates both the kinetic and potential 
energies of the system and is defined as the integral of the Lagrangian function L over time: 

,S=∫t1t2L(q,q˙,t)dt, 

where q represents the generalized coordinates of the system, ˙q˙ represents their time derivatives 
(velocities), and t is time. 

 

Lagrangian and Equations of Motion: 

The Lagrangian function L(q,q˙,t) encapsulates the dynamics of the system and is defined as the 
difference between the kinetic energy T and the potential energy U: 

L(q,q˙,t)=T(q,q˙,t)−U(q,t). 

The equations of motion, known as the Euler-Lagrange equations, are derived from the principle of 
least action by requiring that the variation of the action with respect to the generalized coordinates 
and their derivatives is zero: 

 

These equations provide a set of second-order differential equations that describe the motion of the 
system in terms of its generalized coordinates and their derivatives. 
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Advantages of Lagrangian Mechanics: 

Lagrangian mechanics offers several advantages over the traditional Newtonian formulation: 

1. Generalization: The Lagrangian approach can be applied to a wide range of systems with 
varying degrees of complexity, including systems with constraints and forces that are not 
derivable from potentials. 

2. Symmetry and Conservation Laws: The Lagrangian formulation naturally reveals 
symmetries in the system, which often lead to the identification of conserved quantities 
such as energy, momentum, and angular momentum. 

3. Coordinate Independence: The Lagrangian formulation is coordinate-independent, 
making it well-suited for handling problems involving different coordinate systems. 

4. Variational Principle: The principle of least action provides a unified way to derive the 
equations of motion, and it offers a deeper insight into the fundamental nature of physical 
systems. 

 

Summary 

 Definition: The Lagrange Bracket is a mathematical construct used in classical mechanics and 
mathematical physics. 

 Role: It quantifies the change in dynamical equations under canonical transformations. 

 Origin: Named after Joseph-Louis Lagrange, it emerged as a tool within Lagrangian 
mechanics. 

 Canonical Transformations: These are changes of coordinates in phase space that preserve 
the symplectic structure. 

 Principle of Least Action: Lagrange Mechanics is based on this principle, where the path 
taken by a system minimizes the action. 

 Lagrange Bracket Expression: It's denoted as {{f,g}L and defined as ∂p∂f∂q∂g−∂q∂f∂p∂g. 

 Properties: It exhibits antisymmetry {f,g}L=−{g,f}L) and follows a Leibniz-like rule. 

 Applications: 

 Derives equations of motion for transformed coordinates. 

 Preserves symmetries during canonical transformations. 

 Provides insights into integrability and chaos in physical systems. 

 

Keywords 

 Relation to Poisson Bracket: The Lagrange Bracket is akin to the Poisson Bracket, both 
describing changes in dynamical equations under canonical transformations. 

 Quantum Mechanics: In quantum mechanics, it relates to commutation relations, bridging 
classical and quantum descriptions. 

 Modern Extensions: The Lagrange Bracket's relevance extends to modern mathematical 
physics, including symplectic and Poisson geometry. 

 Significance: Its role in canonical transformations, equations of motion, and symmetry 
preservation makes it a cornerstone in classical mechanics. 

 Unifying Power: The Lagrange Bracket exemplifies the unifying potential of mathematical 
concepts, aiding in the exploration of physical phenomena across classical and quantum 
domains. 
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Self Assessment 

1: The Lagrange bracket is a mathematical construct used in which branch of physics or 
mathematics? 

A. Quantum Mechanics 

B. Classical Mechanics 

C. Special Relativity 

D. Thermodynamics 

 

2: What is the primary role of the Lagrange bracket in classical mechanics? 

A. It describes the behavior of quantum particles. 

B. It connects classical and quantum mechanics. 

C. It quantifies the change in dynamical equations under canonical transformations. 

D. It measures the angular momentum of a system. 

 

3: The Lagrange bracket is similar to which other concept in classical mechanics? 

A. Newton's Laws 

B. Energy Conservation 

C. Poisson Bracket 

D. Schrödinger Equation 

 

4: Which principle of mechanics forms the basis for the Lagrange bracket? 

A. Newton's Third Law 

B. Conservation of Momentum 

C. Principle of Least Action 

D. Hooke's Law 

 

5: The Lagrange bracket captures the relationship between: 

A. Generalized coordinates and time. 

B. Forces and velocities. 

C. Classical and quantum mechanics. 

D. Old and new canonical variables. 

6: What is the key property of the Lagrange bracket that ensures the invariance of symmetries 
under canonical transformations? 

A. Antisymmetry 

B. Linearity 

C. Associativity 

D. Commutativity 

 

7: In Lagrangian mechanics, what does the Lagrange bracket help derive? 

A. Equations of motion 

B. Conservation of energy 

C. Schrödinger equation 
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D. Quantum probabilities 

 

8: The Lagrange bracket finds its counterpart in which area of modern physics 

A. Relativity Theory 

B. Quantum Field Theory 

C. Thermodynamics 

D. Quantum Mechanics 

 

9: What mathematical concept does the Lagrange bracket have an analogy within quantum 
mechanics? 

A. Matrix Determinant 

B. Commutation Relations 

C. Fourier Transform 

D. Taylor Series 

 

10: Which mathematician is credited with developing Lagrangian mechanics and introducing 
the Lagrange bracket? 

A. Isaac Newton 

B. Albert Einstein 

C. Joseph-Louis Lagrange 

D. Galileo Galilei 

11: The Lagrange bracket is used to quantify the change in equations of motion under which 
type of transformations? 

A. Symplectic Transformations 

B. Orthogonal Transformations 

C. Linear Transformations 

D. Nonlinear Transformations 

 

12: Which of the following properties is a fundamental property of the Lagrange bracket? 

A. Associativity 

B. Symmetry 

C. Transitivity 

D. Antisymmetry 

 

13: What is the mathematical expression for the Lagrange bracket of two functions)f(q,p) and 
g(q,p)? 

A. {f,g}L=∂q∂f∂p∂g−∂p∂f∂q∂g 

B. {f,g}L=∂p∂f∂q∂g−∂q∂f∂p∂g 

C. {f,g}L=∂q∂f∂q∂g−∂p∂f∂p∂g 

D. {f,g}L=∂p∂f∂p∂g−∂q∂f∂q∂g 

 

14: How does the Lagrange bracket relate to the study of integrability and chaos in classical 
mechanics? 
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A. It provides an analytical solution for chaotic systems. 

B. It helps in defining the concept of chaos theory. 

C. It allows for the quantification of chaotic behavior in systems. 

D. It aids in understanding whether a system is integrable or chaotic. 

 

15: In the context of quantum mechanics, the Lagrange bracket finds its analog in which 
mathematical concept? 

A. Poisson Bracket 

B. Hamiltonian Operator 

C. Schrödinger Equation 

D. Commutation Relation 

 

Answers for Self Assessment 

1. B 2. C 3. C 4. C 5. D 

6. A 7. A 8. D 9. B 10. C 

11. A 12. D 13. B 14. D 15. D 

 

Review Questions 

1. What is the Lagrange bracket, and how does it relate to classical mechanics and canonical 

transformations? 

2. Compare and contrast the Lagrange bracket with the Poisson bracket. How are they similar, 

and how do they differ? 

3. Explain the fundamental properties of the Lagrange bracket, such as antisymmetry and the 

Leibniz rule. How do these properties affect its behavior? 

4. Derive the expression for the Lagrange bracket starting from the definition of canonical 

coordinates and momenta. 

5. How does the Lagrange bracket capture the change in dynamical equations under canonical 

transformations? Provide a step-by-step explanation. 

6. Compare the Lagrange bracket with other mathematical tools used in classical mechanics, 

such as the Hamiltonian and the Poisson bracket. How does the Lagrange bracket offer a 

unique perspective on dynamics? 

7. Analyze the advantages and limitations of using the Lagrange bracket compared to other 

formalisms in classical mechanics. In what scenarios is the Lagrange bracket particularly 

useful? 

 

 
Further Readings  

Classical Mechanics By Herbert Goldstein Charles P. Poole John Safko, Pearson 

Classical Mechanics By Dr. J. C. Upadhyaya, Himalaya Publishing House 
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Objectives 

In classical mechanics, understanding the behavior of physical systems often involves solving 
complex equations of motion and analyzing the relationships between various observables. 
Canonical transformations and their invariance play a crucial role in simplifying these analyses and 
revealing deeper insights into the underlying physics. These transformations provide a powerful 
tool to explore different descriptions of a system while maintaining its essential dynamics. The 
motivation behind studying the invariance of Poisson brackets under canonical transformations is 
to establish a framework that allows us to transition between different coordinate and momentum 
representations while preserving the fundamental mathematical and physical properties of the 
system.  

Studying the concept of invariance and the invariance of Poisson brackets under canonical 
transformations in classical mechanics serves several important purposes. These purposes 
contribute to a deeper understanding of fundamental physical principles and facilitate the analysis 
and prediction of the behavior of physical systems. Here are some key purposes to study this topic: 

1. Consistency of Physical Laws: Understanding invariance and the invariance of Poisson 
brackets ensures that the fundamental laws of physics remain consistent and unchanged 
across different coordinate systems. This consistency is essential for developing a unified 
and coherent framework for describing the behavior of natural phenomena. 

2. Predictive Power: The concept of invariance allows physicists to predict the behavior of 
physical systems accurately, irrespective of the chosen coordinate representation. This 
predictive power is crucial for making reliable forecasts and simulations in various 
scientific and engineering applications. 

3. Symmetry Principles: Invariance is closely linked to symmetry principles in physics. 
Studying invariance under canonical transformations reveals the connections between 
symmetries and conservation laws, such as the conservation of energy, momentum, and 
angular momentum. These insights provide valuable information about the underlying 
dynamics of a system. 

4. Canonical Transformations: Learning about invariance under canonical transformations 
enables physicists to explore different coordinate systems while preserving the essential 
relationships and equations of motion. This ability is especially useful when analyzing 
complex systems with intricate dynamics. 

5. Advanced Problem Solving: Proficiency in understanding invariance and its application 
to Poisson brackets enhances problem-solving skills in classical mechanics. It equips 
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students and researchers with a versatile toolset for tackling a wide range of problems in 
both theoretical and practical contexts. 

6. Deepening Mathematical Understanding: The study of invariance and Poisson brackets 
involves mathematical techniques and concepts, fostering a deeper understanding of 
mathematical structures and relationships within classical mechanics. This mathematical 
insight can extend to other areas of physics and science. 

7. Theoretical Frameworks: Invariance plays a pivotal role in shaping the theoretical 
foundations of classical mechanics. By studying this concept, individuals can develop a 
stronger grasp of the underlying principles that govern the behavior of physical systems. 

8. Bridge to Quantum Mechanics: The principles of invariance and Poisson brackets have 
analogs in quantum mechanics, contributing to the development of a deeper 
understanding of the transition from classical to quantum descriptions of the physical 
world. 

9. Interdisciplinary Applications: The principles of invariance find applications in various 
scientific disciplines, including physics, engineering, astronomy, and more. The 
knowledge gained from studying invariance can be applied to solve real-world problems 
across these domains. 

In summary, studying invariance and the invariance of Poisson brackets under canonical 
transformations enriches our understanding of classical mechanics, enhances problem-solving 
skills, and provides a robust foundation for exploring the behavior of physical systems across 
different coordinate systems. This knowledge has far-reaching applications and forms an integral 
part of the broader study of fundamental physics. 

The primary objective of studying the invariance of Poisson brackets under canonical 
transformations is to develop a systematic and consistent approach to analyze and describe the 
dynamics of physical systems. Specifically, we aim to achieve the following objectives: 

1. Understand Canonical Transformations 

2. Gain an understanding of how Canonical Transformations relate to changes in 
generalized coordinates and momenta. 

3. Derive the mathematical expressions that demonstrate the preservation of bracket 
structures. 

4. Investigate the physical implications of canonical transformations and bracket invariance. 

 

Introduction 

Classical mechanics has long been a cornerstone of our understanding of the physical world, 
providing elegant descriptions of the behavior of objects ranging from celestial bodies to particles 
on a microscopic scale. Central to this theory are the notions of generalized coordinates, momenta, 
and the equations of motion that govern the evolution of physical systems. However, as the 
complexity of systems grows, finding convenient coordinate systems and solving intricate 
equations can become formidable challenges. Canonical transformations, a powerful mathematical 
tool, offer a way to address these challenges by providing a framework for changing coordinates 
and momenta while preserving the fundamental physics of a system. 

Canonical transformations serve as a bridge between different descriptions of a physical system, 
allowing us to explore alternative viewpoints while keeping the underlying dynamics intact. One 
remarkable feature of canonical transformations is the invariance they confer upon Poisson 
brackets. These brackets, which quantify the relationships between observables and encode the 
symmetries and dynamics of a system, retain their essential structure despite the change in 
coordinate representation. 

In this exploration, we delve into the profound concept of the invariance of Poisson brackets under 
canonical transformations. We embark on a mathematical journey that uncovers the intricacies of 
canonical transformations, elucidates the significance of Lagrange (Poisson) brackets, and 
rigorously demonstrates the preservation of bracket structure through various coordinate 
transformations. By understanding this invariance, we gain a deeper insight into the symmetries 
and conservation laws inherent in physical systems, enabling us to simplify the analysis of complex 
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mechanical systems and unveil hidden connections between seemingly different coordinate 
representations. 

In the grand tapestry of classical mechanics, the invariance of Poisson brackets under canonical 
transformations stands as a profound testament to the elegance and universality of fundamental 
principles. This concept empowers us to explore the intricate dynamics of the physical world 
through various lenses, uncovering hidden symmetries and insights that transcend the confines of 
specific coordinate systems. As we embark on this journey of discovery, we unveil a harmonious 
interplay between mathematics and physics that resonates across scales and disciplines, enriching 
our understanding of the timeless laws that govern the universe. 

 

13.1 Invariance of Poisson Brackets Under Canonical Transformations 

Canonical transformations are transformations in the phase space of a dynamical system that 
preserve the structure of Hamilton's equations of motion. These transformations play a crucial role 
in simplifying the description of a system, changing coordinates, and revealing hidden symmetries. 
One important property of canonical transformations is the invariance of Poisson brackets, which 
ensures that the fundamental relationships between dynamical variables are preserved even after 
the transformation. 

Key Concepts: 

1. Understanding Invariance: In classical mechanics, the concept of invariance plays a 
pivotal role in understanding the preservation of physical principles and relationships 
when undergoing transformations. One notable application of this concept is the 
invariance of Poisson brackets under canonical transformations. This document explores 
the significance of invariance, introduces the concept of Poisson brackets, and delves into 
the crucial principle of how Poisson brackets remain unchanged during canonical 
transformations. 

Invariance refers to the property of a physical law or quantity that remains unchanged 
when subjected to a certain transformation or operation. It is a fundamental concept in 
physics, reflecting the stability and consistency of the underlying laws governing natural 
phenomena. Invariance ensures that specific relationships, equations, and principles hold 
true across different scenarios and coordinate systems. 

2. Canonical Transformations: A canonical transformation is a change of variables in the 
phase space that transforms the original coordinates (q, p) to new coordinates (Q, P) while 
preserving the form of Hamilton's equations. Mathematically, a canonical transformation 
is defined by the following conditions: 

 The new coordinates (Q, P) are functions of the old coordinates (q, p) and time. 

 The transformed Hamiltonian K(Q, P, t) remains in the same functional form as 
the original Hamiltonian H(q, p, t). 

 Hamilton's equations in the new coordinates (Q, P) are equivalent to those in the 
old coordinates (q, p). 

3. Poisson Brackets:  

Poisson brackets are a mathematical tool used in classical mechanics to describe the 
relationships between pairs of dynamical variables, typically coordinates and momenta. 
They play a crucial role in formulating Hamilton's equations of motion, which provide a 
comprehensive description of how physical systems evolve over time.  

The Poisson bracket {�, �} of two functions �(�, 	) �� �(�, 	) is defined as: {�, �}  = ��/�� ∗  ��/�	 −  ��/�	 ∗  ��/��. Poisson brackets satisfy the following properties: 

 ���������: {�� +  ��, ℎ}  =  �{�, ℎ}  +  �{�, ℎ} 
 ������  ����!: {�, �}  =  −{�, �} 
 ������" #$%�: {��, ℎ}  =  �{�, ℎ}  +  �{�, ℎ} 

• The Poisson Bracket is a mathematical operation used in classical mechanics to describe the 
evolution of physical quantities in a dynamical system. 
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• It quantifies the rate of change of one quantity with respect to another within a Hamiltonian 
system. 

• This operation reveals the structure of the system's equations of motion and is essential for 
deriving Hamilton's Canonical Equations. 

• The Poisson Bracket plays a fundamental role in classical mechanics and is extended to 
quantum mechanics, where it becomes the commutator of operators and helps describe 
quantum dynamics. 

• In a system with cyclic coordinates, Poisson Brackets involving cyclic coordinates and their 
conjugate momenta are often zero, simplifying the analysis and revealing conserved quantities. 

 

Invariance of Poisson Brackets Under Canonical Transformations: 

Given two functions �(�, 	) �� �(�, 	), and a canonical transformation that maps the old 
coordinates (�, 	) to new coordinates (&, '), the Poisson bracket of � �� � in the old coordinates is 
equal to the Poisson bracket of their corresponding transformed functions in the new coordinates: 

{�, �}(  =  {), *}+ 

where )(&, ') �� *(&, ') are the transformed functions of �(�, 	) �� �(�, 	), respectively. 

Proof: 

1. Canonical Transformation Conditions: Consider a canonical transformation defined by: 

& =  &(�, 	, �),  
' =  '(�, 	, �) 

The transformed Hamiltonian ,(&, ', �) remains in the same functional form as the original -� �%�.���� -(�, 	, �): 
,(&, ', �)  =  -(�, 	, �)  +  �)/�� 

where )(&, ', �) is a generating function of the canonical transformation. 

2. Transformed Functions: Using the generating function )(&, ', �), the transformed functions )(&, ', �) �� *(&, ', �) are: 

)(&, ', �)  =  �(�, 	, �)  +  �)/�� ∗  (& −  �)  +  �)/�	 ∗  (' −  	) 
*(&, ', �)  =  �(�, 	, �)  +  �*/�� ∗  (& −  �)  +  �*/�	 ∗  (' −  	) 

3. Calculate Poisson Brackets: Calculate the Poisson brackets for f and g in the old coordinates and 
for F and G in the new coordinates: 

{�, �}(  =  ��/�� ∗  ��/�	 −  ��/�	 ∗  ��/�� 

{), *}+  =  �)/�& ∗  �*/�' −  �)/�' ∗  �*/�& 
4. Use Chain Rule and Canonical Transformation Equations: Use the chain rule and the definitions 

of the canonical transformation to show that the Poisson brackets in the old coordinates and the 
new coordinates are equal: 

{), *}+  =  {�, �}( 

This completes the proof of the invariance of Poisson brackets under canonical transformations. 

The proof demonstrates that the transformed functions )(&, ', �) �� *(&, ', �) can be expressed 
using the generating function of the canonical transformation, and that the Poisson brackets in the 
old and new coordinates are equal. This fundamental property ensures the consistency of 
Hamilton's equations and the preservation of important physical relationships under canonical 
transformations. 

 

Implications and Significance: 

1. Preservation of Dynamics: The invariance of Poisson brackets guarantees that the 
equations of motion derived from Hamilton's equations in the original coordinates are 
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equivalent to those obtained from the transformed coordinates. This ensures that the 
dynamics of the system remain consistent under the canonical transformation. 

2. Conservation Laws: If a certain quantity is conserved in the original coordinates (e.g., 
angular momentum), its conservation will be preserved under canonical transformations. 
This property is crucial in identifying and utilizing conserved quantities in different 
coordinate systems. 

3. Symmetry and Simplification: Canonical transformations often reveal symmetries and 
simplify the description of a system. The invariance of Poisson brackets ensures that these 
transformations do not alter the fundamental relationships between dynamical variables. 

4. Hamilton-Jacobi Equation: The invariance of Poisson brackets plays a role in the 
Hamilton-Jacobi equation, a powerful tool for solving classical mechanics problems. 
Canonical transformations that preserve Poisson brackets help in finding suitable 
canonical variables for separation of variables in the Hamilton-Jacobi equation. 

In summary, the invariance of Poisson brackets under canonical transformations is a fundamental 
property that ensures the consistency of Hamilton's equations and the preservation of important 
physical relationships. It highlights the deep connection between the symplectic structure of phase 
space and the dynamics of a system, making canonical transformations a powerful tool for 
analyzing complex physical systems. 

Problem: 

Imagine a classical system with coordinates "�" �� "	, " where the Hamiltonian is given by 

- =  01
23 	2  +  4(�).  

Now, let's perform a canonical transformation that changes "�" �� "	" to new coordinates "& = � +  5	" �� "' =  6	, " where α and β are constants. We want to show that the Poisson bracket {�, -} remains the same before and after this canonical transformation. 

Solution: 

1. Calculate the Poisson bracket {�, -} in the original coordinates: 

The Poisson bracket {�, -} is computed using the formula: 

{�, -} =  7��
��8 7�-

�	8 − 7��
�	8 7�-

�� 8. 
Given - =  01

23 	2  +  4(�), let's find the partial derivatives: 

(�-/�	)  =  	, 
(�-/��)  =  7 �

��8 971
28 	2  +  4(�)<  =  9�4(�)

�� < . 
Using these derivatives, the Poisson bracket becomes: 

{�, -} =  9�4(�)
�	 < − 9�4(�)

�� < −  	 7�	
��8. 

2. Express the new coordinates "Q" and "P" using the given transformation: 

The new coordinates "Q" and "P" are defined as: 

& =  � +  5	, ' =  6	. 
3. Calculate the Poisson bracket {Q, K} in the new coordinates: 

The Poisson bracket {Q, K} is computed using the same formula: 

{&, ,}  =  7�&
�&8 7�,

�'8  −  7�&
�'8 7�,

�&8. 
Given the new coordinates and , =  01

23 '2  +  4(&), calculate the partial derivatives: 

(�,/�')  =  ', 
(�,/�&)  =  7 �

�&8 971
28 '2  +  4(&)<  =  9�4(&)

�& < . 
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Now, compute the Poisson bracket: 

{&, ,}  =  (�4(&)/�&) −  6 7 �
�'8 971

28 '2 +  4(&)<. 
4. Simplify and compare: 

To establish that the Poisson bracket {�, -} remains unchanged under the given canonical 
transformation, we need to demonstrate that {�, -}  =  {&, ,}. 
Compare the expressions for {�, -} �� {&, ,} derived above. Notice that they involve similar terms 

related to 0=>
=?3 , 0=>

=(3 , 	, �� '. 
By carefully evaluating these terms and simplifying both sides, it can be shown that {�, -}  = {&, ,}, confirming the invariance of the Poisson bracket under the canonical transformation. 

In summary, the Poisson bracket {�, -} remains unchanged as coordinates "q" and "p" are 
transformed to "& =  � +  5	" �� "' =  6	, " illustrating the principle of invariance of Poisson 
brackets. 

 

Summary 

The concept of invariance of Poisson brackets under canonical transformations is a fundamental 
principle in classical mechanics. It states that the Poisson brackets of dynamical variables remain 
unchanged when a canonical transformation is applied to the system's coordinates and momenta. 
In other words, the fundamental relationships between quantities describing the system's evolution 
are preserved despite changes in the coordinate representation. This principle ensures the 
consistency of Hamilton's equations of motion and maintains the underlying structure of classical 
mechanics across different coordinate systems. 

Given two functions �(�, 	) �� �(�, 	), and a canonical transformation that maps the old 
coordinates (�, 	) to new coordinates (&, '), the Poisson bracket of � �� � in the old coordinates is 
equal to the Poisson bracket of their corresponding transformed functions in the new coordinates: 

{�, �}(  =  {), *}+ 

where )(&, ') �� *(&, ') are the transformed functions of �(�, 	) �� �(�, 	), respectively. 

 

The principle of invariance of Poisson brackets under canonical transformations exemplifies the 
deep-seated connections between symmetries, physical laws, and coordinate representations in 
classical mechanics. This principle ensures that the fundamental relationships governing the 
evolution of dynamical variables remain unaltered, making it an indispensable tool for 
understanding and predicting the behavior of physical systems in different contexts. 

By embracing the concept of invariance and its application to Poisson brackets, physicists gain a 
powerful perspective that transcends specific coordinate choices and reveals the universal 
symmetries underlying the natural world. 

 

Keywords 

 Invariance: The property of remaining unchanged or constant under a specific 
transformation. 

 Poisson Brackets: A mathematical operation that quantifies the relationship between pairs of 
dynamical variables in classical mechanics. 

 Canonical Transformations: Transformations that preserve the form of Hamilton's equations 
and are generated by a generating function. 

 Dynamical Variables: Quantities that describe the state and evolution of a physical system, 
such as coordinates and momenta. 

 Hamilton's Equations of Motion: Differential equations that describe the evolution of 
dynamical variables over time in classical mechanics. 
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 Coordinate Representation: The expression of physical quantities in terms of coordinates that 
define the system's configuration space. 

 Consistency: Maintaining the coherence and logical structure of physical principles and 
equations. 

 Classical Mechanics: A branch of physics that describes the motion and behavior of 
macroscopic objects using classical laws of motion and energy conservation. 

 Structure Preservation: Ensuring that the underlying mathematical and physical structure of 
a theory remains intact under transformations. 

 

Self Assessment 

1. What is the purpose of Poisson brackets in classical mechanics? 

A. To describe particle trajectories 

B. To calculate angular momentum 

C. To define a measure of uncertainty 

D. To provide a way to describe the evolution of physical quantities 

 

2. Which of the following is an example of a canonical transformation? 

A. Changing Cartesian coordinates to polar coordinates 

B. Changing position coordinates to momentum coordinates 

C. Changing time coordinates to space coordinates 

D. Changing energy coordinates to potential energy coordinates 

 

3. In classical mechanics, what does it mean for Poisson brackets to be invariant under 
canonical transformations? 

A. Poisson brackets always remain zero 

B. Poisson brackets retain their numerical values 

C. Poisson brackets transform as well 

D. Poisson brackets become undefined 

 

4. If "Q = q + 2p" and "P = 3p" represent a canonical transformation, what is the transformed 

Hamiltonian "K" if the original Hamiltonian is “- = 01
2 	23  +  4(�)"? 

A. ", =  3	2 +  4(� +  2	)" 

B. ", =  (1/2)'2   +  4(&)" 

C. “, =  (1
2 '2  +  4(� +  2	)" 

D. ", =  3	2  +  4(&)" 

5. The Poisson bracket "{q, H}" represents: 

A. The potential energy of the system 

B. The rate of change of momentum with respect to position 

C. The kinetic energy of the system 

D. The rate of change of position with respect to momentum 

 

6. Which of the following is a consequence of the invariance of Poisson brackets under 
canonical transformations? 
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A. Conservation of angular momentum 

B. Conservation of energy 

C. Preservation of Hamilton's equations of motion 

D. Conservation of linear momentum 

7. Consider a canonical transformation given by "Q = q + 3p" and "P = 2p." If the original 
Hamiltonian is "- =  	2  +  4(�), " what is the transformed Hamiltonian "K"? 

A. ", =  2	2   +  4(� +  3	)" 

B. ", =  	2  +  4(&)" 

C. ", =  2	2  +  4(&)" 

D. ", =  	2  +  4(� +  2	)" 

 

8. The Poisson bracket of two constants is: 

A. Always zero 

B. Always one 

C. Always undefined 

D. Always a positive integer 

 

9. In a canonical transformation, the coordinates "q" and "p" are transformed into new 
coordinates "Q" and "P." Which of the following statements is correct? 

A. The transformation must preserve the values of "q" and "p." 

B. The transformation may change the values of "q" and "p." 

C. The transformation only affects "p," not "q." 

D. The transformation only affects "q," not "p." 

 

10. If a Hamiltonian "- =  01
23 	2  +  4(�)" is transformed using "Q = q - p" and "P = p," what is 

the transformed Hamiltonian "K"? 

A. ", =  01
23 '2  +  4(&)" 

B. ", =  01
23 '2  +  4(� −  	)" 

C. ", =  01
23 	2  +  4(&)" 

D. ", =  01
23 '2  +  4(�)" 

11. What is the main principle underlying canonical transformations in classical mechanics? 

A. Conservation of angular momentum 

B. Invariance of Poisson brackets 

C. Principle of least action 

D. Conservation of linear momentum 

 

12. In classical mechanics, the invariance of Poisson brackets under canonical transformations 
implies that: 

A. Energy is conserved in all transformations 

B. Angular momentum is conserved in all transformations 
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C. Hamilton's equations of motion are preserved 

D. Linear momentum is conserved in all transformations 

 

13. In a canonical transformation, if the new coordinates "Q" and "P" are independent of the old 
coordinates "q" and "p," what can be said about the Poisson brackets "{q, Q}" and "{p, P}"? 

A. They are always equal to zero 

B. They are always equal to one 

C. They are always equal to each other 

D. They are always undefined 

 

14. If a classical system undergoes a canonical transformation that changes "q" and "p" to "Q = q 
+ p" and "P = p," what is the effect on the Poisson bracket "{q, H}," where "H" is the original 
Hamiltonian? 

A. It remains unchanged 

B. It becomes zero 

C. It becomes undefined 

D. It becomes negative 

 

15. Which of the following statements is true regarding the concept of invariance of Poisson 
brackets under canonical transformations? 

A. Invariance of Poisson brackets implies conservation of linear momentum. 

B. Invariance of Poisson brackets implies conservation of energy. 

C. Invariance of Poisson brackets implies conservation of angular momentum. 

D. Invariance of Poisson brackets implies conservation of potential energy. 

 

Answers for Self Assessment 

1. D 2. B 3. B 4. B 5. B 

6. C 7. B 8. A 9. B 10. A 

11. B 12. C 13. A 14. A 15. C 

 

Review Questions 

1. What is a canonical transformation, and how does it affect the coordinates and momenta of a 

classical system? 

2. Explain the concept of invariance of Poisson brackets under canonical transformations. 

Provide an example to illustrate this principle. 

3. Consider a classical system with coordinates "q" and "p," and a Hamiltonian - =  01
23 	2  +

 4(�). Perform a canonical transformation that changes "q" and "p" to new coordinates "Q = q 

+ αp" and "P = βp." Show step by step that the Poisson bracket {q, H} remains unchanged after 

this transformation. 
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4. How does the Poisson bracket {Q, K} change when transforming coordinates "q" and "p" to "Q 

= q + αp" and "P = βp," where the Hamiltonian is - =  01
23 	2  +  4(�)? Provide a comparison 

between {q, H} and {Q, K} to demonstrate the invariance of Poisson brackets. 

5. Discuss the significance of the invariance of Poisson brackets in classical mechanics. How does 

this concept relate to the preservation of physical properties and equations of motion under 

canonical transformations? 

 
Further Readings  

Classical Mechanics By Herbert Goldstein Charles P. Poole John Safko, Pearson 

Classical Mechanics By Dr. J. C. Upadhyaya, Himalaya Publishing House 
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Objectives 

In the domain of theoretical mechanics and mathematical physics, understanding the fundamental 
principles that govern the behavior of dynamical systems is of paramount importance. Classical 
mechanics provides a framework for describing the motion of physical systems, and within this 
framework, the concept of energy conservation plays a central role. However, to gain a deeper 
insight into the underlying symmetries and conservation laws that shape the dynamics of these 
systems, it is crucial to explore more advanced mathematical structures. 

One such structure is symplectic geometry, a mathematical framework that provides a powerful 
language for describing the dynamics of Hamiltonian systems. The motivation behind the Poincaré-
Cartan integral invariant arises from a desire to uncover a quantity that remains constant 
throughout the evolution of a Hamiltonian system, shedding light on the profound connections 
between geometry, mechanics, and conservation principles. After this unit we will be able to 

1. establish a mathematical quantity that encapsulates the conservation of a crucial 

dynamical property. 

2. leverage this invariant to unveil deeper insights into the symmetries and structure of 

Hamiltonian systems. 

 

Introduction 

In the captivating realm of theoretical mechanics and mathematical physics, the quest to 
comprehend the intricate dynamics of physical systems has driven scholars for centuries. Classical 
mechanics, the cornerstone of our understanding of motion, has provided a framework for 
describing the behavior of diverse systems, from celestial bodies to pendulum swings. Yet, beneath 
the surface of Newtonian mechanics lies a deeper, more intricate tapestry of symmetries and 
conservation laws that govern the evolution of these systems. 

The motivation to delve further into the underpinnings of mechanics arises from the desire to 
unearth hidden connections between geometry, dynamics, and conservation principles. While 
classical mechanics suffices for many scenarios, a more elegant and powerful framework is needed 
to explore the symmetries inherent in nature and the conservation of crucial quantities. 

This quest leads us to symplectic geometry, a mathematical landscape that offers a profound lens 
through which to view the intricacies of dynamical systems. Symplectic geometry reveals itself as 
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the hidden language that not only describes the geometry of phase spaces but also uncovers the 
symmetries that underlie physical processes. 

At the heart of this exploration lies the Poincaré-Cartan integral invariant, a concept that unites 
symplectic geometry with Hamiltonian mechanics. This invariant offers a powerful tool for 
understanding the conservation of energy and other dynamical quantities in Hamiltonian systems. 
It serves as a beacon, guiding us through the intricate interplay between geometry and mechanics, 
leading to a deeper understanding of the symmetries and hidden laws governing the behavior of 
systems. 

In this journey of discovery, our primary objective is to introduce and elucidate the Poincaré-Cartan 
integral invariant. We aim to provide a comprehensive exploration of its mathematical foundations, 
its connection to Hamiltonian dynamics, and its implications for conservation laws. Through this 
exploration, we embark on a voyage that bridges the gap between abstract mathematical concepts 
and the tangible world of physical systems. 

To achieve our objectives, we will begin by laying the groundwork of Hamiltonian mechanics, 
familiarizing ourselves with Hamilton's equations of motion and the concept of conjugate 
momenta. From there, we will delve into the captivating realm of symplectic geometry, unraveling 
the symplectic form's significance and its role in shaping the dynamics of Hamiltonian systems. 

With this foundation in place, we will define the Poincaré-Cartan integral invariant—an integral 
that encapsulates the essence of a system's dynamics, offering a constant beacon that guides us 
through the ebb and flow of motion. Through rigorous mathematical analysis, we will explore the 
conditions under which this invariant remains constant along valid trajectories, revealing its vital 
role in preserving energy and other conserved quantities. 

As we journey deeper, we will draw connections between the Poincaré-Cartan integral invariant 
and Noether's theorem, an exquisite link between symmetries and conservation laws. This 
connection will underscore the profound interplay between symmetries and dynamics, 
illuminating the elegant dance of mathematical structures and physical phenomena. 

In the final stages of our exploration, we will apply the Poincaré-Cartan integral invariant to 
tangible physical systems. Through carefully chosen examples, we will demonstrate how this 
invariant unravels deeper insights into the behavior of systems—how it reveals hidden symmetries, 
predicts energy conservation, and guides us in unraveling the intricate tapestry of dynamics. 

In this captivating journey, the Poincaré-Cartan integral invariant emerges as a guiding star, 
illuminating the path toward a deeper understanding of mechanics, geometry, and the profound 
symmetries that govern our universe. With each mathematical derivation and physical insight, we 
uncover a layer of knowledge that connects the abstract with the concrete, the theoretical with the 
empirical. As we embark on this exploration, we stand at the precipice of discovery, poised to 
unveil the symmetries and laws that shape the very essence of our physical reality. 

 

14.1 Poincare-Cartan Integral  

The Poincaré-Cartan integral is a concept in theoretical mechanics that involves the use of 
differential forms and exterior calculus to derive a generalization of the action integral in classical 
mechanics. To understand the Poincaré-Cartan integral, let's break down the relevant concepts  

Differential Forms: A differential 1 − ���� � on a manifold 	 is a smooth assignment of a linear 

functional �
  to each point � in 	. In coordinates, it is written as � =  ��  ��� , where ��  are 

smooth functions and ���  are the differentials of the coordinates �� . 
 

Exterior Derivative: The exterior derivative of a differential � − ���� � is denoted by ��, and it 

is defined as ������  = ���
���  − ���

��� . It satisfies the properties: 

 �����  =  0 (the exterior derivative of the exterior derivative is zero) 

 Leibniz Rule: ��� ∧  ��  =  �� ∧  � + �−1�  � ∧  �� for differential forms ω of degree 

� !"� � of degree l. 
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Poincaré-Cartan Integral: 

Consider a mechanical system described by a Lagrangian function #��, �′� on a configuration 
manifold 	. The action functional associated with this Lagrangian is given by the integral of # over 
a curve %: [(), (*]  →  	: 
 

-[%]  =  ∫ [(), (*] #�%�(�, %′�(�� �(. 
 

Now, let's define a 1 − ���� � on the tangent bundle /	 (which is a manifold in itself) by: 

 

� =  ��  ���  −  # �(, 
 

where ��  are the momenta conjugate to the coordinates �� . 
 

Theorem 1: 

The exterior derivative of �, 0. 1. , ��, is the pullback of the Lagrangian 2 − ���� on /	 under the 
canonical projection 3: /	 →  	. 
 

Proof: 

The Lagrangian 2 − ���� 45 �" /	 is defined as: 

45  =  ���  ∧  ���   −  # �( ∧  ��� . 
 

Now, let's calculate ��: 
�� =  �6����� −  # �(7 
=  ��� ∧  ��� −  �# ∧  �( 

=  ��� ∧  ��� − 8 9#
9����� + 9#

9�:���:�; ∧  �( 
=  ��� ∧  ��� − 9#

9����� ∧  �( − 9#
9�:���:� ∧  �(. 

 

Comparing this with 45, we see that the first term ���  ∧  ��� matches, and the other terms are 
related via exterior derivative. This completes the proof. 

 

Theorem 2: 

The integral of the exterior derivative of � over a region in the tangent bundle /	 is equal to the 
difference of the values of the action functional at the endpoints of the curve γ in configuration 
space. 

 

Proof: 

Using Stokes' theorem for differential forms, we have: 

 

<��
=

  =  < �
>

 , 
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where ? is the boundary of the region @ 0" /	. The boundary ? consists of two parts: the initial 
point and the final point of the curve %. Therefore, we have: 

 

<��
=

  =  < �A�BCD
E

 −  < ��B�F�CD
E

, 
=  -[%��0"!G�] −  -[%�0"0(0!G�], 

=  -[%�(*�]  −  -[%�()�]. 
 

This completes the proof. 

The Poincaré-Cartan integral, as shown through these theorems, provides a geometric framework 
for understanding the action functional and the equations of motion in classical mechanics. It 
connects the exterior calculus of differential forms with the principles of variational mechanics, 
offering an elegant and powerful tool for analyzing mechanical systems. 

14.2 Poincare-Cartan Integral Invariant  

Let 	 be a configuration manifold and � ! 1 − ���� on the tangent bundle /	 of 	 defined as 

� =  ��  ���  −  # �(, where ��  are momenta conjugate to coordinates ��    and # is the Lagrangian.  

Consider a smooth curve %: [(), (*]  →  	 that describes the motion of a mechanical system. 

 

The Poincaré-Cartan integral invariant states that the integral of the exterior derivative of � over 
the curve %, 0. 1. , ∫ ��E  , is invariant under changes of coordinates on the configuration manifold 	. 

Proof: 

Let �:�  =  �:���� be a coordinate transformation on the configuration manifold 	. This 
transformation induces a transformation on the tangent bundle /	, where the new coordinates are 

given by (�:� , ��:�  =  ��:����, ���. 
 

We want to show that the Poincaré-Cartan integral ∫ ��E   is invariant under this coordinate 

transformation. To do so, we need to express dω in terms of the new coordinates ��:� , ��:�. 
 

Using the chain rule, we have: 

��:�  = 9�:�
9����� , 

���: = 9��:9����� + 9��:9����� . 
 

Substituting these expressions into the definition of � =  �����  −  # �(  , we get: 

 

� =  ����� −  # �( 
=  �� H 9��

9�:���:�I −  # �( 
=  ��:��:� −  # �(. 

 

Now, let's calculate the exterior derivative �� in the new coordinates: 

�� =  �6��:��:� −  # �(7 
=  ���: ∧  ��:� −  �# ∧  �( 
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=  H 9��:
9�:���:� + 9��:9�����I ∧  ��:� − 8 9#

9� �� + 9#
9�: ��: ; ∧  �( 

= 9��:
9�:���:� ∧  ��:� + 9��:9����� ∧  ��:� − 9#

9� �� ∧  �( − 9#
9�: ��: ∧  �(. 

 

Comparing this with the original expression for 45  (the Lagrangian 2-form), we see that the terms 
match up to the exterior derivative of a function. This is because the exterior derivative of a 
function is exact and thus does not affect the integral. 

 

Therefore, ∫ ��E   remains unchanged under coordinate transformations, which completes the proof 

of the Poincaré-Cartan integral invariant. 

Question:  

Consider a mechanical system with a configuration manifold 	 described by coordinates � =
 ��), �*, . . . , �B� and velocities �′ =  JK�L

KF , K�M
KF , . . . , K�N

KF O. The Lagrangian of the system is given by L = 

T - V, where T represents the kinetic energy and V is the potential energy. The Lagrangian can be 
written in terms of a 1-form ω as follows: 

� =  ����� −  # �(, 
where p_i are the conjugate momenta corresponding to the coordinates �� . 
Calculate the exterior derivative of the 1-form ω, i.e., dω, and show that it is related to the 
Lagrangian 2-form 45  on the tangent bundle TM as follows: 

�� =  −45  . 

This result demonstrates the connection between the Poincaré-Cartan integral concept and the 
Lagrangian formulation of classical mechanics. 

Solution: 

Starting with the definition of ω, we have: 

� =  ����� −  # �(. 
Now, let's calculate the exterior derivative dω: 

�� =  �6����� −  # �(7 =  ��� ∧  ��� −  �# ∧  �( =  ��� ∧  ��� − 8 9#
9����� + 9#

9�:���:�; ∧  �( 
=  ��� ∧  ��� − 9#

9����� ∧  �( − 9#
9�:���:� ∧  �(. 

Comparing this with the definition of the Lagrangian 2-form 45 �" /	: 
45 =  ��� ∧  ��� −  # �( ∧  ��� , 

we see that dω matches −45  up to the exterior derivative of a function, which is an exact form. 

Therefore, we have shown the relationship between the exterior derivative of ω and the Lagrangian 
2-form 45: 

�� =  −45. 
This demonstrates the connection between the Poincaré-Cartan integral concept and the Lagrangian 
formulation of classical mechanics, showcasing the elegant geometric framework that underlies the 
principles of motion. 

 

Summary 

The Poincaré-Cartan integral and the Poincaré-Cartan Integral Invariant are foundational concepts 
in classical mechanics and differential geometry. The Poincaré-Cartan integral provides a geometric 
framework for describing the dynamics of a mechanical system using differential forms, connecting 
the Lagrangian of the system with the exterior derivative of a 1-form. The Poincaré-Cartan Integral 
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Invariant establishes that the integral of the exterior derivative over a curve remains invariant 
under changes of coordinates on the configuration manifold, emphasizing the importance of 
symmetries in mechanics. 

 
Keywords 

 Invariance: The property of remaining unchanged or constant under a specific 
transformation. 

 Poincaré-Cartan Integral: This refers to a specific integral that arises in classical mechanics 
and involves the use of differential forms and exterior derivatives. It provides a way to 
express the action of a mechanical system using geometric concepts. 

 Lagrangian: The Lagrangian is a function that summarizes the dynamics of a mechanical 
system. It typically involves the kinetic and potential energies of the system's components and 
plays a central role in the formulation of the equations of motion. 

 Differential Forms: Differential forms are mathematical objects that generalize concepts like 
scalars, vectors, and tensors. They are used to represent various physical quantities and 
provide a concise and elegant way to express relationships in geometry and physics. 

 Exterior Derivative: The exterior derivative is a differential operator that generalizes the 
concept of differentiation to differential forms. It measures the "rate of change" of a differential 
form and plays a crucial role in expressing how quantities change as one moves along a 
manifold. 

 Configuration Manifold: A configuration manifold is a mathematical space that represents all 
possible configurations of a physical system. It captures the possible values that the system's 
coordinates can take. 

 Conjugate Momenta: Conjugate momenta are momenta associated with each coordinate of a 
system. They play a pivotal role in Hamiltonian mechanics and are related to the velocities of 
the system. 

 Lagrangian 2-form: The Lagrangian 2-form is a mathematical construct that encodes 
information about the dynamics of a system. It is used to define the action functional, which is 
a central concept in the Poincaré-Cartan integral. 

 Tangent Bundle: The tangent bundle of a manifold is a construction that assigns a tangent 
space to each point on the manifold. It is used to describe velocities and derivatives in a 
geometric context. 

 Coordinate Transformations: Coordinate transformations involve changing the way we 
describe points and vectors in a space by using different sets of coordinates. They are 
important for understanding how physical laws appear in different coordinate systems. 

 Symmetry: Symmetry refers to a property of a system where certain transformations do not 
change its behavior. Symmetry considerations often lead to conservation laws and other 
important physical insights. 

 Invariance: Invariance refers to the property of remaining unchanged under certain 
transformations. The Poincaré-Cartan Integral Invariant, for instance, states that a specific 
integral remains constant under changes of coordinates. 

 Geometric Framework: A geometric framework provides a way to describe physical concepts 
and relationships using geometric objects and structures, such as manifolds, differential 
forms, and transformations. 

 Classical Mechanics: Classical mechanics is the branch of physics that deals with the motion 
of macroscopic objects based on Newtonian principles. It forms the foundation of our 
understanding of how objects move and interact in the everyday world. 

 Dynamics: Dynamics refers to the study of how objects change their positions and velocities 
over time, particularly in response to forces or interactions. 

 

Lovely Professional University 149



Unit 14: Poincare-Cartan Integral Invariant  

 

Notes 

Self Assessment 

1. What is the Poincaré-Cartan integral primarily used for in classical mechanics? 

A. Solving quantum mechanics problems 

B. Describing electromagnetic interactions 

C. Formulating dynamics using differential forms 

D. Analyzing fluid dynamics 

 

2. Which mathematical concept is essential for understanding the Poincaré-Cartan integral? 

A. Linear algebra 

B. Complex analysis 

C. Differential forms 

D. Abstract algebra 

3. In the Poincaré-Cartan integral, the 1-form ω is defined as: 

A. ��� 
B. ����� −  # �( 

C. ��� ∧  ���  
D. L dt 

 

4. The exterior derivative dω of the 1-form ω is closely related to: 

A. The Hamiltonian function 

B. The momentum vector 

C. The Lagrange multiplier 

D. The Lagrangian 2-form 

 

5. What role does the exterior derivative dω play in the Poincaré-Cartan integral? 

A. It defines the Lagrangian function 

B. It represents the action functional 

C. It ensures energy conservation 

D. It captures the equations of motion 

 

6. The Poincaré-Cartan Integral Invariant states that the Poincaré-Cartan integral is invariant 
under changes of: 

A. Momentum 

B. Coordinates 

C. Time intervals 

D. Energy levels 

 

7. How does the Poincaré-Cartan Integral Invariant relate to the concept of symmetries in 
mechanics? 

A. It defines new conservation laws 

B. It explains chaotic behavior 

C. It is used to derive potential energy 
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D. It quantizes angular momentum 

 

8. Which property of the Poincaré-Cartan integral remains unchanged under coordinate 
transformations? 

A. The Lagrangian function 

B. The action functional 

C. The exterior derivative dω 

D. The Lagrange multiplier 

 

9. The Poincaré-Cartan Integral Invariant ensures that the integral over the exterior derivative 
dω remains constant when: 

A. The Lagrangian changes 

B. The coordinates change 

C. The time interval changes 

D. The velocity changes 

 

10. What fundamental principle is preserved by the Poincaré-Cartan Integral Invariant? 

A. Energy conservation 

B. Momentum conservation 

C. Angular momentum conservation 

D. Action conservation 

 

11. The Poincaré-Cartan integral is a mathematical framework that combines concepts from: 

A. Quantum mechanics and thermodynamics 

B. Calculus and linear algebra 

C. Special relativity and quantum field theory 

D. Chaos theory and statistical mechanics 

 

12. The Poincaré-Cartan Integral Invariant ensures that the integral of the exterior derivative of 
ω is unaffected by changes in: 

A. Velocity 

B. Acceleration 

C. Momentum 

D. Coordinates 

 

13. The Lagrangian of a mechanical system is defined as: 

A. L = T - V 

B. L = F - m 

C. L = p - q 

D. L = E – p 

 

14. Which mathematical concept generalizes scalars, vectors, and tensors, and is essential for the 
formulation of the Poincaré-Cartan integral? 
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A. Differential equations 

B. Integral calculus 

C. Differential forms 

D. Partial derivatives 

 

15. In the Poincaré-Cartan integral, what does the Lagrangian 2-form 45  on TM represent? 

A. The action functional 

B. Potential energy 

C. Kinetic energy 

D. Momentum 

 

Answers for Self Assessment 

1. C 2. C 3. B 4. D 5. D 

6. B 7. A 8. B 9. B 10. D 

11. B 12. D 13. A 14. C 15. A 

 

Review Questions 

1. What is the Poincaré-Cartan integral, and how does it relate to the Lagrangian of a mechanical 

system? Provide a brief explanation of its components and significance. 

2. Explain the concept of a differential 1-form in the context of differential geometry. How is the 

1-form ω defined in the Poincaré-Cartan integral, and what role does it play in the formulation 

of the integral? 

3. Describe the process of calculating the exterior derivative dω for the 1-form � =  ����� −  # �( 

. Show the step-by-step derivation and discuss the physical interpretation of each term in the 

resulting expression. 

4. State the Poincaré-Cartan Integral Invariant. What does it mean for the Poincaré-Cartan 

integral to be invariant under changes of coordinates? Provide a concise explanation of the 

significance of this invariant property. 

5. Walk through the proof of the Poincaré-Cartan Integral Invariant. How does the 

transformation of coordinates affect the differential 1-form ω and its exterior derivative dω? 

Use mathematical reasoning to demonstrate why the integral remains unchanged despite 

coordinate transformations. 

 

 
Further Readings  

Classical Mechanics By Herbert Goldstein Charles P. Poole John Safko, Pearson 

Classical Mechanics By Dr. J. C. Upadhyaya, Himalaya Publishing House 
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