
Programming in Python
DECAP776

Edited by
Ajay Kumar Bansal

Edited By:
Ajay Kumar Bansal

user
Typewritten text
Programming in Python

Title: PROGRAMMING IN PYTHON

Author’s Name: Dr. Rajni Bhalla

Published By : Lovely Professional University

Publisher Address: Lovely Professional University, Jalandhar Delhi GT road, Phagwara - 144411

Printer Detail: Lovely Professional University

Edition Detail: (I)

ISBN: 978-81-19334-41-4

Copyrights@ Lovely Professional University

Content

Unit 1: Python Basics 1
Dr. Rajni Bhalla, Lovely Profssional University

Unit 2: Python Data Structures 16
Dr. Rajni Bhalla, Lovely Profssional University

Unit 3: OOP Concepts 37
Dr. Rajni Bhalla, Lovely Profssional University

Unit 4: More on OOP Concepts 50
Dr. Rajni Bhalla, Lovely Profssional University

Unit 5: Exception Handling 64
Dr. Rajni Bhalla, Lovely Profssional University

Unit 6: Introduction to Numpy 76
Dr. Rajni Bhalla, Lovely Profssional University

Unit 7: Operations on NumPy Arrays 88
Dr. Rajni Bhalla, Lovely Profssional University

Unit 8: NumPy Functions 97
Dr. Rajni Bhalla, Lovely Profssional University

Unit 9: Handling with Pandas 115
Dr. Rajni Bhalla, Lovely Profssional University

Unit 10: Data Cleanup 129
Dr. Rajni Bhalla, Lovely Profssional University

Unit 11: Data Visualization 144
Dr. Rajni Bhalla, Lovely Profssional University

Unit 12: Data Visualization 161
Dr. Rajni Bhalla, Lovely Profssional University

Unit 13: OOP Concepts 176
Dr. Rajni Bhalla, Lovely Profssional University

Unit 14: Machine Learning Algorithms 189
Dr. Rajni Bhalla, Lovely Profssional University

Unit 01: Python Basics

Notes

Unit 01: Python Basics

CONTENTS

Objectives

Introduction

1.1 What can Python do?

1.2 Why Python

1.3 Python Syntax compared to other Programming Languages

1.4 Download and Installation of Python

1.5 Python Data Types

1.6 Python Operators

1.7 Control Statements in Python

1.8 Python Functions

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives

 After studying this unit, you will be able to:
 Understand basic concepts about python
 Learn installation steps in python
 Learn control statements
 Understand basic concepts of functions in python

Introduction
Python is a popular high-level, general-purpose programming language. Guido van Rossum
invented it in 1991, and the Python Software Foundation continued to advance it. Programmers
may convey their ideas in less code because to its syntax, which was created with code readability
in mind.

Python is a programming language that enables quick work and more effective system integration.

Dr. Rajni Bhalla, Lovely Profssional University

 LOVELY PROFESSIONAL UNIVERSITY 1

Programming in Python

Notes

Beginning with Python programming:

1. Finding an interpreter:
a. Kaggle: supports background processing in a manner comparable to Jupyter Notebook.
b. Google Colab: uses a google account solely, similar to Kaggle. both GPU and TPU

compute, but only the pro version allows for background execution.
c. Python.org: like running Python from the command line
d. Programiz:Programmers are able to create and execute Python code online using this

Python compiler (interpreter). It can use an IDLE-like Python Shell and accept user input.
e. Online Python: You can create, execute, and distribute Python code online for free using

this online interpreter (compiler). It is the online Python interpreter that is the quickest, most
trustworthy, and most potent.

f. Online GDB: An online IDE with a Python interpreter is called OnlineGDB. It is quick and
simple to run a Python programme online with this interpreter. It works with Python 3.

g. Replit:The greatest website for Python online execution and interactive programming. The
name of this terminal is derived from the Lisp and Python read-eval-print loop.

2. Windows: The Python software can be acquired from http://python.org/, and it comes with
IDLE (Integrated Development Environment), one of many free interpreters that can be used to
run Python scripts.

3. Linux:Popular Linux distributions like Fedora and Ubuntu include Python by default. Enter
"python" in the terminal emulator to see what version of Python is currently running. When it
launches, the interpreter should print the version number.

4. macOS: Python 2.7 is typically included with macOS. Python 3 must be manually installed from
http://python.org.

1.1 What can Python do?

 Web applications can be developed on a server using Python.
 Workflows can be made with Python and other technologies.
 Database systems are connectable with Python. Files can also be read and changed by it.
 Big data management and advanced mathematical operations can both be done with

Python.
 Python can be used to produce software that is ready for production or for rapid

prototyping.

1.2 Why Python

 Python is cross-platform compatible (Windows, Mac, Linux, Raspberry Pi, etc).
 The syntax of Python is straightforward and resembles that of English.

1.Finding
an

Interpreter
1.Windows

1.Linux 1.macos

 LOVELY PROFESSIONAL UNIVERSITY 2

Unit 01: Python Basics

Notes

 Python's syntax differs from various other programming languages in that it enables
programmers to construct applications with fewer lines of code.

 Python operates on an interpreter system, allowing for the immediate execution of written
code. As a result, prototyping can proceed quickly.

 Python can be used in a functional, object-oriented, or procedural manner.

1.3 Python Syntax compared to other Programming Languages

 With influences from mathematics and a focus on readability, Python shares several
characteristics with the English language.

 In contrast to other programming languages, which frequently employ semicolons or
parentheses, Python uses new lines to finish a command.

 Indentation, which utilises whitespace, is how Python defines scope, including the scope
of loops, functions, and classes. Curly-brackets are frequently used for this in other
computer languages.

1.4 Download and Installation of Python
A popular high-level programming language is Python. Installing Python on our machine is the
initial step in writing and running Python code.

The process of installing Python on Windows is simple.

Step1: Select version of Python to Install
There are several versions of Python available, and each one has a different syntax and way of
functioning. We must select the version that we want to utilise or that we require. There are
numerous Python 2 and Python 3 iterations available.

Step2: Download Python Executable Intsaller
Navigate to the Download for Windows section on the Python website (www.python.org) using
your web browser.

A list of every Python version will be provided. Choose the version you need, then click
"Download." Let's say we go with Python version 3.9.1.

Unit 01: Python Basics

Notes

 Python's syntax differs from various other programming languages in that it enables
programmers to construct applications with fewer lines of code.

 Python operates on an interpreter system, allowing for the immediate execution of written
code. As a result, prototyping can proceed quickly.

 Python can be used in a functional, object-oriented, or procedural manner.

1.3 Python Syntax compared to other Programming Languages

 With influences from mathematics and a focus on readability, Python shares several
characteristics with the English language.

 In contrast to other programming languages, which frequently employ semicolons or
parentheses, Python uses new lines to finish a command.

 Indentation, which utilises whitespace, is how Python defines scope, including the scope
of loops, functions, and classes. Curly-brackets are frequently used for this in other
computer languages.

1.4 Download and Installation of Python
A popular high-level programming language is Python. Installing Python on our machine is the
initial step in writing and running Python code.

The process of installing Python on Windows is simple.

Step1: Select version of Python to Install
There are several versions of Python available, and each one has a different syntax and way of
functioning. We must select the version that we want to utilise or that we require. There are
numerous Python 2 and Python 3 iterations available.

Step2: Download Python Executable Intsaller
Navigate to the Download for Windows section on the Python website (www.python.org) using
your web browser.

A list of every Python version will be provided. Choose the version you need, then click
"Download." Let's say we go with Python version 3.9.1.

Unit 01: Python Basics

Notes

 Python's syntax differs from various other programming languages in that it enables
programmers to construct applications with fewer lines of code.

 Python operates on an interpreter system, allowing for the immediate execution of written
code. As a result, prototyping can proceed quickly.

 Python can be used in a functional, object-oriented, or procedural manner.

1.3 Python Syntax compared to other Programming Languages

 With influences from mathematics and a focus on readability, Python shares several
characteristics with the English language.

 In contrast to other programming languages, which frequently employ semicolons or
parentheses, Python uses new lines to finish a command.

 Indentation, which utilises whitespace, is how Python defines scope, including the scope
of loops, functions, and classes. Curly-brackets are frequently used for this in other
computer languages.

1.4 Download and Installation of Python
A popular high-level programming language is Python. Installing Python on our machine is the
initial step in writing and running Python code.

The process of installing Python on Windows is simple.

Step1: Select version of Python to Install
There are several versions of Python available, and each one has a different syntax and way of
functioning. We must select the version that we want to utilise or that we require. There are
numerous Python 2 and Python 3 iterations available.

Step2: Download Python Executable Intsaller
Navigate to the Download for Windows section on the Python website (www.python.org) using
your web browser.

A list of every Python version will be provided. Choose the version you need, then click
"Download." Let's say we go with Python version 3.9.1.

 LOVELY PROFESSIONAL UNIVERSITY 3

Programming in Python

Notes

Upon clicking download, a variety of executable installers with varying operating system
requirements will be made available. Select the installer that best fits your operating system and
download it. Imagine that we choose the Windows installer (64 bits).

The download is less than 30MB in size.

Step3: Run Executable Installer
The Python 3.9.1 Windows 64-bit installation was downloaded.

activate the installation. Click Install New after making sure that both of the checkboxes at the
bottom are selected.

The installation process begins when you click the Install Now button.

Programming in Python

Notes

Upon clicking download, a variety of executable installers with varying operating system
requirements will be made available. Select the installer that best fits your operating system and
download it. Imagine that we choose the Windows installer (64 bits).

The download is less than 30MB in size.

Step3: Run Executable Installer
The Python 3.9.1 Windows 64-bit installation was downloaded.

activate the installation. Click Install New after making sure that both of the checkboxes at the
bottom are selected.

The installation process begins when you click the Install Now button.

Programming in Python

Notes

Upon clicking download, a variety of executable installers with varying operating system
requirements will be made available. Select the installer that best fits your operating system and
download it. Imagine that we choose the Windows installer (64 bits).

The download is less than 30MB in size.

Step3: Run Executable Installer
The Python 3.9.1 Windows 64-bit installation was downloaded.

activate the installation. Click Install New after making sure that both of the checkboxes at the
bottom are selected.

The installation process begins when you click the Install Now button.

 LOVELY PROFESSIONAL UNIVERSITY 4

Unit 01: Python Basics

Notes

The installation procedure will take a few minutes to finish, and after it has, the screen below will
appear.

Step4: Verify python installed in windows
Verify that Python has been successfully installed on your system. Take the directions provided.

Launch the command window.

Enter "python" after you type it.

If Python is successfully installed on your Windows system, the version you have installed will be
shown.

Step5: Verify Pip was installed

Unit 01: Python Basics

Notes

The installation procedure will take a few minutes to finish, and after it has, the screen below will
appear.

Step4: Verify python installed in windows
Verify that Python has been successfully installed on your system. Take the directions provided.

Launch the command window.

Enter "python" after you type it.

If Python is successfully installed on your Windows system, the version you have installed will be
shown.

Step5: Verify Pip was installed

Unit 01: Python Basics

Notes

The installation procedure will take a few minutes to finish, and after it has, the screen below will
appear.

Step4: Verify python installed in windows
Verify that Python has been successfully installed on your system. Take the directions provided.

Launch the command window.

Enter "python" after you type it.

If Python is successfully installed on your Windows system, the version you have installed will be
shown.

Step5: Verify Pip was installed

 LOVELY PROFESSIONAL UNIVERSITY 5

Programming in Python

Notes

Pip is an effective framework for managing Python software packages. Therefore, confirm that it is
set up.

To check if pip was installed, adhere to the instructions provided.

Launch the command window.

To see if pip was installed, type pip -V.

If pip is successfully installed, the output shown below occurs.

Python and pip have been successfully installed on our Windows PC.

1.5 Python Data Types
 Built-in Data Types

The concept of data type is crucial in programming.

Different forms of data can be stored in variables, and different types can perform various
functions.

The following categories of data types are included by default in Python:

Text Type str

Numeric Types int, float, complex

Sequence Types List, tuple, range

Mapping Type dict

Set Types Set, frozenset

Boolean Type Bool

Binary Types Bytes, bytearray, memoryview

None Type NoneType

 Getting the Data Type
Using the type() method, you may determine the data type of any object:

x = 5

print(type(x))

Output

<class ‘int’>

 Setting the Data Type
When you give a variable a value in Python, the data type is already determined:

Programming in Python

Notes

Pip is an effective framework for managing Python software packages. Therefore, confirm that it is
set up.

To check if pip was installed, adhere to the instructions provided.

Launch the command window.

To see if pip was installed, type pip -V.

If pip is successfully installed, the output shown below occurs.

Python and pip have been successfully installed on our Windows PC.

1.5 Python Data Types
 Built-in Data Types

The concept of data type is crucial in programming.

Different forms of data can be stored in variables, and different types can perform various
functions.

The following categories of data types are included by default in Python:

Text Type str

Numeric Types int, float, complex

Sequence Types List, tuple, range

Mapping Type dict

Set Types Set, frozenset

Boolean Type Bool

Binary Types Bytes, bytearray, memoryview

None Type NoneType

 Getting the Data Type
Using the type() method, you may determine the data type of any object:

x = 5

print(type(x))

Output

<class ‘int’>

 Setting the Data Type
When you give a variable a value in Python, the data type is already determined:

Programming in Python

Notes

Pip is an effective framework for managing Python software packages. Therefore, confirm that it is
set up.

To check if pip was installed, adhere to the instructions provided.

Launch the command window.

To see if pip was installed, type pip -V.

If pip is successfully installed, the output shown below occurs.

Python and pip have been successfully installed on our Windows PC.

1.5 Python Data Types
 Built-in Data Types

The concept of data type is crucial in programming.

Different forms of data can be stored in variables, and different types can perform various
functions.

The following categories of data types are included by default in Python:

Text Type str

Numeric Types int, float, complex

Sequence Types List, tuple, range

Mapping Type dict

Set Types Set, frozenset

Boolean Type Bool

Binary Types Bytes, bytearray, memoryview

None Type NoneType

 Getting the Data Type
Using the type() method, you may determine the data type of any object:

x = 5

print(type(x))

Output

<class ‘int’>

 Setting the Data Type
When you give a variable a value in Python, the data type is already determined:

 LOVELY PROFESSIONAL UNIVERSITY 6

Unit 01: Python Basics

Notes

Example Data Type

x = "Hello World" str

x = 20 int

x = 20.5 float

x = 1j complex

x = ["apple", "banana", "cherry"] list

x = ("apple", "banana", "cherry") tuple

x = range(6) range

x = {"name”: "John", "age”: 36} dict

x = {"apple", "banana", "cherry"} set

x = frozenset({"apple", "banana", "cherry"}) frozenset

x = True bool

x = b"Hello" bytes

x = bytearray(5) bytearray

x = memoryview(bytes(5)) memoryview

x = None nonetype

Setting The Specific Data Type
If you want to specify the data type, you can use the following constructor functions:

Example Data Type

x = str("Hello World") str

x = int (20) int

x = float (20.5) float

x = complex(1j) complex

x = list (("apple", "banana", "cherry")) list

x = tuple (("apple", "banana", "cherry")) tuple

x = range (6) range

x = dict (name="John", age=36) dict

x = set (("apple", "banana", "cherry")) set

x = frozenset (("apple", "banana", "cherry")) frozenset

 LOVELY PROFESSIONAL UNIVERSITY 7

Programming in Python

Notes

x = bool (5) bool

x = bytes (5) bytes

x = bytearray (5) bytearray

x = memoryview (bytes (5)) memoryview

1.6 Python Operators
Operations on variables and values are carried out using operators.

The + operator is used to combine two values in the example below:

print(10+5)

Python Arithmetic Operators
Common mathematical procedures are carried out using arithmetic operators and numeric
quantities.

Operator Name Example

+ Addition x + y

- Subtraction x – y

* Multiplication x * y

/ Division x / y

% Modulus x % y

** Exponentiation x ** y

Py
th

on
 d

iv
id

es
 th

e
op

er
at

or
s

in
 th

e
fo

llo
w

in
g

gr
ou

ps
:

Arithmetic
operators

Assignment
operators

Comparison operators

Logical
operators

Identity operators

Membership
operators

Bitwise operators

 LOVELY PROFESSIONAL UNIVERSITY 8

Unit 01: Python Basics

Notes

// Floor division x // y

Python Assignment Operators
In order to assign values to variables, assignment operators are used:

Operator Example Same As

= X=5 X=5

+= x += 3 x = x + 3

-= x -= 3 x = x - 3

*= x *= 3 x = x * 3

/= x /= 3 x = x / 3

%= x %= 3 x = x % 3

//= x //= 3 x = x // 3

**= x **= 3 x = x ** 3

&= x &= 3 x = x & 3

|= x |= 3 x = x | 3

^= x ^= 3 x = x ^ 3

>>= x >>= 3 x = x >> 3

<<= x <<= 3 x = x << 3

Python Comparison Operators
To compare two values, comparison operators are employed.

Operator Name Example

== Equal x == y

!= Not equal X != y

> Greater than x > y

< Less than x < y

>= Greater than or equal to x >= y

<= Less than or equal to x <= y

 LOVELY PROFESSIONAL UNIVERSITY 9

Programming in Python

Notes

Python Logical Operators
Conditional statements are combined using logical operators:

Operator Description Example

And Returns True if both statements are
true

x < 5 and x < 10

Or Returns True if one of the statements
is true

x < 5 or x < 4

Not Reverse the result, returns False if the
result is true

not(x < 5 and x < 10)

Python Identity Operators
Identity operators are used to compare things to determine whether they are indeed the same object
in the same memory address rather than whether they are equal:

Operator Description Example

is Returns True if both variables are the same
object

x is y

isnot Returns True if both variables are not the
same object

x is not y

Python Membership Operators
To determine whether a sequence is contained in an object, membership operators are used:

Operator Description Example

In Returns True if a sequence with the specified
value is present in the object

x in y

not in Returns True if a sequence with the specified
value is not present in the object

x not in y

1.7 Control Statements in Python
Loops are used in Python to continually iterate over a section of code. Control statements are used
to modify a loop's execution from its default behaviour. On the basis of a condition, control
statements are used to alter how the loop executes. In Python, a variety of control statements are
available.

Control Statements in Python are:

 Break Statement
 Continue Statement
 Pass Statement

 LOVELY PROFESSIONAL UNIVERSITY 10

Unit 01: Python Basics

Notes

Break Statement

In Python, the break statement is used to end or remove the control from the loop that contains the
statement. It is used to end nested loops (a loop inside another loop), which are common with both
while and for loops. The inner loop is ended, and control is transferred to the statement in the
outside loop.

Continue statement

When a Python programme sees a continue statement, it skips the current iteration's execution
when the condition is satisfied and instead allows the loop to carry on to the next iteration. It is
used to keep the programme running even when it meets a break while being executed.

Pass statement

When the condition is met, the pass statement, a null operator, is used by the programmer to do
nothing. Python's control statement simply moves on to the next iteration without stopping the
execution or skipping any steps.

A programmer can use the pass statement to prevent the interpreter from throwing an error when a
loop is left empty.

1.8 Python Functions
A function is a section of code that only executes when called.

You can supply parameters—data—to a function.

As a result, a function may return data.

Creating a Function
In Python a function is defined using the def keyword:

Example:

def my_function ():
print("Hello from a function")

Calling a Function
Use the function name in parenthesis to invoke the function:

def my_function ():
print("Hello from a function")

my_function()
Arguments

Functions accept arguments that can contain data.

The function name is followed by parenthesis that list the arguments. Simply separate each
argument with a comma to add as many as you like.

The function in the following example only takes one argument (fname). A first name is passed to
the function when it is called, and it is utilised there to print the whole name:

Example:

def my_function(fname):

print(fname + " Application")

my_function("Computer")

my_function("Science")

Unit 01: Python Basics

Notes

Break Statement

In Python, the break statement is used to end or remove the control from the loop that contains the
statement. It is used to end nested loops (a loop inside another loop), which are common with both
while and for loops. The inner loop is ended, and control is transferred to the statement in the
outside loop.

Continue statement

When a Python programme sees a continue statement, it skips the current iteration's execution
when the condition is satisfied and instead allows the loop to carry on to the next iteration. It is
used to keep the programme running even when it meets a break while being executed.

Pass statement

When the condition is met, the pass statement, a null operator, is used by the programmer to do
nothing. Python's control statement simply moves on to the next iteration without stopping the
execution or skipping any steps.

A programmer can use the pass statement to prevent the interpreter from throwing an error when a
loop is left empty.

1.8 Python Functions
A function is a section of code that only executes when called.

You can supply parameters—data—to a function.

As a result, a function may return data.

Creating a Function
In Python a function is defined using the def keyword:

Example:

def my_function ():
print("Hello from a function")

Calling a Function
Use the function name in parenthesis to invoke the function:

def my_function ():
print("Hello from a function")

my_function()
Arguments

Functions accept arguments that can contain data.

The function name is followed by parenthesis that list the arguments. Simply separate each
argument with a comma to add as many as you like.

The function in the following example only takes one argument (fname). A first name is passed to
the function when it is called, and it is utilised there to print the whole name:

Example:

def my_function(fname):

print(fname + " Application")

my_function("Computer")

my_function("Science")

Unit 01: Python Basics

Notes

Break Statement

In Python, the break statement is used to end or remove the control from the loop that contains the
statement. It is used to end nested loops (a loop inside another loop), which are common with both
while and for loops. The inner loop is ended, and control is transferred to the statement in the
outside loop.

Continue statement

When a Python programme sees a continue statement, it skips the current iteration's execution
when the condition is satisfied and instead allows the loop to carry on to the next iteration. It is
used to keep the programme running even when it meets a break while being executed.

Pass statement

When the condition is met, the pass statement, a null operator, is used by the programmer to do
nothing. Python's control statement simply moves on to the next iteration without stopping the
execution or skipping any steps.

A programmer can use the pass statement to prevent the interpreter from throwing an error when a
loop is left empty.

1.8 Python Functions
A function is a section of code that only executes when called.

You can supply parameters—data—to a function.

As a result, a function may return data.

Creating a Function
In Python a function is defined using the def keyword:

Example:

def my_function ():
print("Hello from a function")

Calling a Function
Use the function name in parenthesis to invoke the function:

def my_function ():
print("Hello from a function")

my_function()
Arguments

Functions accept arguments that can contain data.

The function name is followed by parenthesis that list the arguments. Simply separate each
argument with a comma to add as many as you like.

The function in the following example only takes one argument (fname). A first name is passed to
the function when it is called, and it is utilised there to print the whole name:

Example:

def my_function(fname):

print(fname + " Application")

my_function("Computer")

my_function("Science")

 LOVELY PROFESSIONAL UNIVERSITY 11

Programming in Python

Notes

my_function("System")

Args is a common abbreviation for arguments in Python documentation.

Summary

 Python is a popular high-level, general-purpose programming language. Guido van Rossum
invented it in 1991, and the Python Software Foundation continued to advance it

 Web applications can be developed on a server using Python.
 Python is cross-platform compatible (Windows, Mac, Linux, Raspberry Pi, etc).
 Indentation, which utilises whitespace, is how Python defines scope, including the scope of

loops, functions, and classes. Curly-brackets are frequently used for this in other computer
languages.

 Operations on variables and values are carried out using operators.
 Loops are used in Python to continually iterate over a section of code. Control statements

are used to modify a loop's execution from its default behaviour.
 In Python, the break statement is used to end or remove the control from the loop that

contains the statement
 When a Python programme sees a continue statement, it skips the current iteration's

execution when the condition is satisfied and instead allows the loop to carry on to the next
iteration

 When the condition is met, the pass statement, a null operator, is used by the programmer to
do nothing.

Keywords
Python:The general-purpose, interactive, object-oriented, and high-level programming language
Python is particularly well-liked.

Python path: It has a role similar to PATH. This variable tells the Python interpreter where to
locate the module files imported into a program.

Python startup: It includes the location of a Python source code initialization file. Every time the
interpreter is launched, it is executed.

Unix:The original Python IDE for Unix is called IDLE.

Windows: The first Windows interface for Python is called PythonWin, and it is an IDE with a
GUI.

Macintosh:You can get the Macintosh version of Python and the IDLE IDE from the main website
in MacBinary or BinHex format.

Reserved Words:You cannot use them as identifier names for constants, variables, or anything
else.

Python Numbers: Number data types store numeric values.

Python Strings:Python defines strings as a contiguous group of characters that are enclosed in
quotation marks.

Python Lists:Of all the compound data types in Python, lists are the most flexible. Items in a list
are delimited by square brackets and separated by commas ([]).

Python Tuples: Another sequence data type that resembles the list is the tuple. A tuple is made up
of several values that are separated by commas.

Python Dictionaries: The dictionaries used by Python are something like hash tables. They
consist of key-value pairs and operate similarly to associative arrays or hashes seen in Perl.

 LOVELY PROFESSIONAL UNIVERSITY 12

Unit 01: Python Basics

Notes

Self Assessment
Q1: Who was the Python programming language's creator?

A. Mark
B. Guido can Rossum
C. Alfred novel
D. Ralf Kleinberg

Q2: What programming languages does Python support?

A. Structural programming
B. Object-oriented programming
C. Functional programming
D. All of the above

Q3. Select the correct extension of python file

A. .ps
B. .pyth
C. .py
D. .thon

Q4: Select true statement

A. Python code is both compiled and interpreted
B. Python code is neither compiled nor interpreted
C. Python code is only compiled
D. Python code is only interpreted

Q5: Which of the following is used in Python to define a block of code?

A. Key
B. Brackets
C. Indentation
D. All of the above

Q6: Which of the subsequent characters is used in Python to provide single-line comments?

A. //
B. #
C. /*
D. */

Q7: Which command is used to know the version of python

A. python -version
B. python -v
C. python -V
D. None of above

 LOVELY PROFESSIONAL UNIVERSITY 13

Programming in Python

Notes

Q8: What is Python's precedence hierarchy?

A. Exponential, Parentheses, Multiplication, Division, Addition, Subtraction
B. Exponential, Parentheses, Division, Multiplication, Addition, Subtraction
C. Parentheses, Exponential, Multiplication, Division, Subtraction, Addition
D. Parentheses, Exponential, Multiplication, Division, Addition, Subtraction

Q9: PIP stands for

A. Program installer Preferrable
B. Preferred Installer Program
C. Parenthesis installer program
D. Program installer Parenthesis

Q10: In Python programming, which of the following is not a basic data type?

A. Dictionary
B. Class
C. Tuple
D. Lists

Q11: Which of the above statements in Python is used to generate an empty set?

A. Empty(a)
B. {}
C. set()
D. None of above

Q12: Which of the following describes how a function in Python is used?

A. For your application, functions don’t improve modularity.
B. you can't also write your own functions.
C. Functions are reusable programme components
D. Functions are reusable programme components.

Q13: Which of the following sentences is utilized in Python's Exception Handling?

A. try
B. except
C. finally
D. All of the above

14: Which of the following list items is a legitimate Python escape sequence?

A. \n
B. \t
C. \\
D. All of the above

 LOVELY PROFESSIONAL UNIVERSITY 14

Unit 01: Python Basics

Notes

15. What language is written in Python?

A. C++
B. C
C. Java
D. None of these

Answers for Self Assessment

l. B 2. D 3. C 4. B 5. C

6. B 7. C 8. D 9. B 10. B

11. C 12. C 13. D 14. D 15. C

Review Questions

1. Write down steps to download and install python.
2. Write down challenges used in installing python.
3. Explain all python data types.
4. Explain control statements in python.
5. What is the difference between list and tuples in python.
6. What is Python? What is the benefit of using a python.

FurtherReadings

 Mark Lutz,Programming Python: Powerful Object-Oriented Programming, OREILLY
 Wes McKinney, Python for data analysis, OREILLY
 David Ascher and Mark Lutz, Learning Python, OREILLY
 Eric Matthes, Python Crash Course, 2nd Edition: A Hands-On, Project-Based

Introduction to Programming, Starch Pres

Web Links
https://www.tutorialspoint.com/python/index.htm

https://www.python.org/downloads/

https://www.w3schools.in/python/data-types

https://www.programiz.com/python-programming/online-compiler/

https://www.codecademy.com/catalog/language/python

Unit 01: Python Basics

Notes

15. What language is written in Python?

A. C++
B. C
C. Java
D. None of these

Answers for Self Assessment

l. B 2. D 3. C 4. B 5. C

6. B 7. C 8. D 9. B 10. B

11. C 12. C 13. D 14. D 15. C

Review Questions

1. Write down steps to download and install python.
2. Write down challenges used in installing python.
3. Explain all python data types.
4. Explain control statements in python.
5. What is the difference between list and tuples in python.
6. What is Python? What is the benefit of using a python.

FurtherReadings

 Mark Lutz,Programming Python: Powerful Object-Oriented Programming, OREILLY
 Wes McKinney, Python for data analysis, OREILLY
 David Ascher and Mark Lutz, Learning Python, OREILLY
 Eric Matthes, Python Crash Course, 2nd Edition: A Hands-On, Project-Based

Introduction to Programming, Starch Pres

Web Links
https://www.tutorialspoint.com/python/index.htm

https://www.python.org/downloads/

https://www.w3schools.in/python/data-types

https://www.programiz.com/python-programming/online-compiler/

https://www.codecademy.com/catalog/language/python

Unit 01: Python Basics

Notes

15. What language is written in Python?

A. C++
B. C
C. Java
D. None of these

Answers for Self Assessment

l. B 2. D 3. C 4. B 5. C

6. B 7. C 8. D 9. B 10. B

11. C 12. C 13. D 14. D 15. C

Review Questions

1. Write down steps to download and install python.
2. Write down challenges used in installing python.
3. Explain all python data types.
4. Explain control statements in python.
5. What is the difference between list and tuples in python.
6. What is Python? What is the benefit of using a python.

FurtherReadings

 Mark Lutz,Programming Python: Powerful Object-Oriented Programming, OREILLY
 Wes McKinney, Python for data analysis, OREILLY
 David Ascher and Mark Lutz, Learning Python, OREILLY
 Eric Matthes, Python Crash Course, 2nd Edition: A Hands-On, Project-Based

Introduction to Programming, Starch Pres

Web Links
https://www.tutorialspoint.com/python/index.htm

https://www.python.org/downloads/

https://www.w3schools.in/python/data-types

https://www.programiz.com/python-programming/online-compiler/

https://www.codecademy.com/catalog/language/python

 LOVELY PROFESSIONAL UNIVERSITY 15

Unit 02: Python Data Structures

Notes

Unit 02: Python Data Structures

CONTENTS

Objectives

Introduction

2.1 Assign String to a Variable

2.2 Multiline Strings

2.3 Strings are Arrays

2.4 Looping Through a String

2.5 String Length

2.6 Check String

2.7 Python Slicing Strings

2.8 Negative Indexing

2.9 Uppercase

2.10 Lowercase

2.11 Remove Whitespace

2.12 Replace String

2.13 Split String

2.14 Python – Format – Strings

2.15 Python-Escape Characters

2.16 Python-Lists

2.17 Python-Tuples

2.18 Python-Dictionary

Summary

Keywords

Review Questions

Answers for Self Assessment

Further Readings

Objectives
After this unit, student would be able to:

 understand basic concepts about strings
 learn about lists, tuples, sets, dictionaries

Introduction
In Python, strings are enclosed in either single or double quotation marks.

The same thing as "hello" is "hello".

With the print () method, a string literal can be shown:

Dr. Rajni Bhalla, Lovely Profssional University

 LOVELY PROFESSIONAL UNIVERSITY 16

Programming in Python

Notes

Example:

2.1 Assign String to a Variable
The variable name, an equal sign, and the string are used to assign a string to the variable:

Example:

2.2 Multiline Strings
A multiline string can be assigned to a variable by enclosing it in three quotes:

2.3 Strings are Arrays
Python's strings, like those of many other widely used programming languages, are collections of
bytes that represent unicode characters.

Python does not, however, support character data types; instead, a single character is represented
as a string with length 1.

To access the string's constituents, use square brackets.

Example:

Get the character at position 1 (remember that the first character has the position 0):

2.4 Looping Through a String
Strings are arrays;therefore, we can use a for loop to iterate through their characters.

Example: Loop through the letters in the word "apple":

#You can use double or single quotes:

print("Hello")

print('Hello')

a = "Hello"

print(a)

a = """Python is an interpreted, object-oriented, high-level,

dynamically semantic programming language.

It is particularly desirable for Rapid Application Development

as well as for usage as a scripting or glue language to tie

existing components together due to its high-level built-in

data structures, dynamic typing, and dynamic binding."""

print(a)

a = "Hello, World!"

print (a [1])

Programming in Python

Notes

Example:

2.1 Assign String to a Variable
The variable name, an equal sign, and the string are used to assign a string to the variable:

Example:

2.2 Multiline Strings
A multiline string can be assigned to a variable by enclosing it in three quotes:

2.3 Strings are Arrays
Python's strings, like those of many other widely used programming languages, are collections of
bytes that represent unicode characters.

Python does not, however, support character data types; instead, a single character is represented
as a string with length 1.

To access the string's constituents, use square brackets.

Example:

Get the character at position 1 (remember that the first character has the position 0):

2.4 Looping Through a String
Strings are arrays;therefore, we can use a for loop to iterate through their characters.

Example: Loop through the letters in the word "apple":

#You can use double or single quotes:

print("Hello")

print('Hello')

a = "Hello"

print(a)

a = """Python is an interpreted, object-oriented, high-level,

dynamically semantic programming language.

It is particularly desirable for Rapid Application Development

as well as for usage as a scripting or glue language to tie

existing components together due to its high-level built-in

data structures, dynamic typing, and dynamic binding."""

print(a)

a = "Hello, World!"

print (a [1])

Programming in Python

Notes

Example:

2.1 Assign String to a Variable
The variable name, an equal sign, and the string are used to assign a string to the variable:

Example:

2.2 Multiline Strings
A multiline string can be assigned to a variable by enclosing it in three quotes:

2.3 Strings are Arrays
Python's strings, like those of many other widely used programming languages, are collections of
bytes that represent unicode characters.

Python does not, however, support character data types; instead, a single character is represented
as a string with length 1.

To access the string's constituents, use square brackets.

Example:

Get the character at position 1 (remember that the first character has the position 0):

2.4 Looping Through a String
Strings are arrays;therefore, we can use a for loop to iterate through their characters.

Example: Loop through the letters in the word "apple":

#You can use double or single quotes:

print("Hello")

print('Hello')

a = "Hello"

print(a)

a = """Python is an interpreted, object-oriented, high-level,

dynamically semantic programming language.

It is particularly desirable for Rapid Application Development

as well as for usage as a scripting or glue language to tie

existing components together due to its high-level built-in

data structures, dynamic typing, and dynamic binding."""

print(a)

a = "Hello, World!"

print (a [1])

 LOVELY PROFESSIONAL UNIVERSITY 17

Unit 02: Python Data Structures

Notes

2.5 String Length
Use the len() function to determine a string's length.

Example: The length of a string is returned by the len() function:

Example Output

a = "Hello, World!"

print(len(a))

13

2.6 Check String
The keyword in can be used to determine whether a specific word or character is present in a
string.

Example: Check if "arrays" is present in the following text:

Example Output

txt = "Like many other popular programming
languages, strings in Python are arrays of
bytes representing Unicode characters.!"

print ("arrays" in txt)

True

It can be used in an if statement:

Example:

Example Output

txt = "Like many other popular programming
languages, strings in Python are arrays of
bytes representing Unicode characters.!"

If ‘arrays’ in txt:

print ("Yes, ‘arrays’ is present.”)

Yes, ‘arrays’ is present.

Check if NOT
The keyword not in can be used to determine whether a specific word or character DOES NOT exist
in a string.

Example: Verify that the following text DOES NOT contain the word "file":

Example Output

for x in "apple":

print(x)

Unit 02: Python Data Structures

Notes

2.5 String Length
Use the len() function to determine a string's length.

Example: The length of a string is returned by the len() function:

Example Output

a = "Hello, World!"

print(len(a))

13

2.6 Check String
The keyword in can be used to determine whether a specific word or character is present in a
string.

Example: Check if "arrays" is present in the following text:

Example Output

txt = "Like many other popular programming
languages, strings in Python are arrays of
bytes representing Unicode characters.!"

print ("arrays" in txt)

True

It can be used in an if statement:

Example:

Example Output

txt = "Like many other popular programming
languages, strings in Python are arrays of
bytes representing Unicode characters.!"

If ‘arrays’ in txt:

print ("Yes, ‘arrays’ is present.”)

Yes, ‘arrays’ is present.

Check if NOT
The keyword not in can be used to determine whether a specific word or character DOES NOT exist
in a string.

Example: Verify that the following text DOES NOT contain the word "file":

Example Output

for x in "apple":

print(x)

Unit 02: Python Data Structures

Notes

2.5 String Length
Use the len() function to determine a string's length.

Example: The length of a string is returned by the len() function:

Example Output

a = "Hello, World!"

print(len(a))

13

2.6 Check String
The keyword in can be used to determine whether a specific word or character is present in a
string.

Example: Check if "arrays" is present in the following text:

Example Output

txt = "Like many other popular programming
languages, strings in Python are arrays of
bytes representing Unicode characters.!"

print ("arrays" in txt)

True

It can be used in an if statement:

Example:

Example Output

txt = "Like many other popular programming
languages, strings in Python are arrays of
bytes representing Unicode characters.!"

If ‘arrays’ in txt:

print ("Yes, ‘arrays’ is present.”)

Yes, ‘arrays’ is present.

Check if NOT
The keyword not in can be used to determine whether a specific word or character DOES NOT exist
in a string.

Example: Verify that the following text DOES NOT contain the word "file":

Example Output

for x in "apple":

print(x)

 LOVELY PROFESSIONAL UNIVERSITY 18

Programming in Python

Notes

txt = "Like many other popular programming
languages, strings in Python are arrays of
bytes representing Unicode characters.!"

print("file" not in txt)

True

It can be used in an if statement:

Example Output

txt = "Like many other popular programming
languages, strings in Python are arrays of
bytes representing Unicode characters.!"

If ‘file’ not in txt:

print("No, ‘file’ is NOT present.”)

No, ‘file’ is NOT present

2.7 Python Slicing Strings
Slicing

The slice syntax allows you to return a range of characters.

To return a portion of the string, enter the start index and the end index, separated by a colon.

Get the characters (not included) from positions 3 to 7:

Example Output

b = "Hello, World!"

print(b[3:7])

lo,

Note: Character one has index 0.

Slice From the Start
The range will begin at the first character if the start index is omitted:

Example: Get the characters (not included) from position 1 to position 5:

Example Output

b = "Welcome, Students!"

print (b [:5])

Welco

Slice To the End
The range will extend to the end if the end index is omitted.

Example: Get the characters starting at position 2 and continuing to the very end.

Example Output

b = "Welcome, Students!"

print(b[2:])

lcome, Students!

Programming in Python

Notes

txt = "Like many other popular programming
languages, strings in Python are arrays of
bytes representing Unicode characters.!"

print("file" not in txt)

True

It can be used in an if statement:

Example Output

txt = "Like many other popular programming
languages, strings in Python are arrays of
bytes representing Unicode characters.!"

If ‘file’ not in txt:

print("No, ‘file’ is NOT present.”)

No, ‘file’ is NOT present

2.7 Python Slicing Strings
Slicing

The slice syntax allows you to return a range of characters.

To return a portion of the string, enter the start index and the end index, separated by a colon.

Get the characters (not included) from positions 3 to 7:

Example Output

b = "Hello, World!"

print(b[3:7])

lo,

Note: Character one has index 0.

Slice From the Start
The range will begin at the first character if the start index is omitted:

Example: Get the characters (not included) from position 1 to position 5:

Example Output

b = "Welcome, Students!"

print (b [:5])

Welco

Slice To the End
The range will extend to the end if the end index is omitted.

Example: Get the characters starting at position 2 and continuing to the very end.

Example Output

b = "Welcome, Students!"

print(b[2:])

lcome, Students!

Programming in Python

Notes

txt = "Like many other popular programming
languages, strings in Python are arrays of
bytes representing Unicode characters.!"

print("file" not in txt)

True

It can be used in an if statement:

Example Output

txt = "Like many other popular programming
languages, strings in Python are arrays of
bytes representing Unicode characters.!"

If ‘file’ not in txt:

print("No, ‘file’ is NOT present.”)

No, ‘file’ is NOT present

2.7 Python Slicing Strings
Slicing

The slice syntax allows you to return a range of characters.

To return a portion of the string, enter the start index and the end index, separated by a colon.

Get the characters (not included) from positions 3 to 7:

Example Output

b = "Hello, World!"

print(b[3:7])

lo,

Note: Character one has index 0.

Slice From the Start
The range will begin at the first character if the start index is omitted:

Example: Get the characters (not included) from position 1 to position 5:

Example Output

b = "Welcome, Students!"

print (b [:5])

Welco

Slice To the End
The range will extend to the end if the end index is omitted.

Example: Get the characters starting at position 2 and continuing to the very end.

Example Output

b = "Welcome, Students!"

print(b[2:])

lcome, Students!

 LOVELY PROFESSIONAL UNIVERSITY 19

Unit 02: Python Data Structures

Notes

2.8 Negative Indexing
To begin the slice at the string's end, use negative indexes.

Example:

acquire the characters:

the letter "e" in "Students!" (Position -5)

"s" in "Students!" (position -2) is to be added but is excluded:

Example Output

b = "Welcome, Students!"

print(b[-5:-2])

ent

Python-Modify Strings
You can use a variety of built-in methods on strings in Python.

List of those methods are:
UpperCase

Lower Case

Remove Whitespace

Replace String

Split String

2.9 Uppercase
The string is returned by the upper() function in upper case.

Example Output

a = "Welcome, Students!"

print(a.upper())

WELCOME, STUDENTS!

2.10 Lowercase
Lowercase characters are returned by the lower() function.

Example Output

a = "Welcome, Students!"

print(a.lower())

welcome, students!

2.11 Remove Whitespace
Whitespace is the blank space that appears before and/or after the actual text, and you should
usually eliminate it. Example

 LOVELY PROFESSIONAL UNIVERSITY 20

Programming in Python

Notes

The strip() method eliminates any leading or trailing whitespace.

Example Output

a = " Welcome, Students! "

print(a.strip())

Welcome, Students!

2.12 Replace String
A string is replaced with another string using the replace() method.

Example:

Example Output

a = "Welcome, Students!"

print(a.replace("W", "J"))

Jelcome, Students!

2.13 Split String
The text between the chosen separator is used as the list elements when the split() method returns a
list.

Example Output

a = "Welcome, Students!"

b = a.split(",")

print(b)

['Welcome', ' Students!']

Python – String Concatenation

Use the + operator to concatenate, or merge, two strings.

Example Output

a = "Welcome"

b = "Students"

c = a + b

print(c)

WelcomeStudents

Add a " " to create a pause between them:

Example Output

a = "Welcome"

b = "Students"

c = a + " " + b

print(c)

Welcome Students

 LOVELY PROFESSIONAL UNIVERSITY 21

Unit 02: Python Data Structures

Notes

2.14 Python – Format – Strings
String Format

This combination of strings and numbers is not possible:

age = 36

txt = "This is my file, I am " + age

print(txt)

Output

Type Error: must be str, not int

But by utilising the format() technique, we can combine texts and numbers!

The given arguments are formatted using the format() method, which also inserts them into the
string in the appropriate placeholders:

Example:

For strings, insert numbers using the format() method:

Example Output

age = 36

txt = "This is my file, and I am {}"

print(txt.format(age))

This is my file, and I am 36

There is no limit to the amount of arguments that can be passed to the format() method.

2.15 Python-Escape Characters
Use an escape character to inserted prohibited characters into a string.

Backslashes and the character you want to insert are considered escape characters.

A double quotation inside a string that is surrounded by double quotes is an illustration of an
unlawful character.

Example Output

txt = "String is a collection of "alphabets"
words or other characters."

SyntaxError: invalid syntax
#You will get an error if you use double

quotes inside a string that are surrounded by
double quotes:

Solution: Use the escape key to resolve this issue.

Example Output

txt = "String is a collection of \" alphabets \"
words or other characters."

String is a collection of "alphabets" words or
other characters.

Unit 02: Python Data Structures

Notes

2.14 Python – Format – Strings
String Format

This combination of strings and numbers is not possible:

age = 36

txt = "This is my file, I am " + age

print(txt)

Output

Type Error: must be str, not int

But by utilising the format() technique, we can combine texts and numbers!

The given arguments are formatted using the format() method, which also inserts them into the
string in the appropriate placeholders:

Example:

For strings, insert numbers using the format() method:

Example Output

age = 36

txt = "This is my file, and I am {}"

print(txt.format(age))

This is my file, and I am 36

There is no limit to the amount of arguments that can be passed to the format() method.

2.15 Python-Escape Characters
Use an escape character to inserted prohibited characters into a string.

Backslashes and the character you want to insert are considered escape characters.

A double quotation inside a string that is surrounded by double quotes is an illustration of an
unlawful character.

Example Output

txt = "String is a collection of "alphabets"
words or other characters."

SyntaxError: invalid syntax
#You will get an error if you use double

quotes inside a string that are surrounded by
double quotes:

Solution: Use the escape key to resolve this issue.

Example Output

txt = "String is a collection of \" alphabets \"
words or other characters."

String is a collection of "alphabets" words or
other characters.

Unit 02: Python Data Structures

Notes

2.14 Python – Format – Strings
String Format

This combination of strings and numbers is not possible:

age = 36

txt = "This is my file, I am " + age

print(txt)

Output

Type Error: must be str, not int

But by utilising the format() technique, we can combine texts and numbers!

The given arguments are formatted using the format() method, which also inserts them into the
string in the appropriate placeholders:

Example:

For strings, insert numbers using the format() method:

Example Output

age = 36

txt = "This is my file, and I am {}"

print(txt.format(age))

This is my file, and I am 36

There is no limit to the amount of arguments that can be passed to the format() method.

2.15 Python-Escape Characters
Use an escape character to inserted prohibited characters into a string.

Backslashes and the character you want to insert are considered escape characters.

A double quotation inside a string that is surrounded by double quotes is an illustration of an
unlawful character.

Example Output

txt = "String is a collection of "alphabets"
words or other characters."

SyntaxError: invalid syntax
#You will get an error if you use double

quotes inside a string that are surrounded by
double quotes:

Solution: Use the escape key to resolve this issue.

Example Output

txt = "String is a collection of \" alphabets \"
words or other characters."

String is a collection of "alphabets" words or
other characters.

 LOVELY PROFESSIONAL UNIVERSITY 22

Programming in Python

Notes

Escape Characters
Python also uses the following escape symbols:

Code Result

\' Single Quote

\\ Backslash

\n New Line

\r Carriage Return

\t Tab

\b Backspace

\f Form Feed

\ooo Octal value

\xhh Hex value

2.16 Python-Lists
Lists

Multiple elements can be kept in a single variable by using lists.

One of the four built-in data types in Python for storing data collections is the list; the other three
are the tuple, set, and dictionary, each of which has a unique purpose.

Square brackets are used to form lists.

Example:

Example Output

thislist = ["onion", "tomato", "brinjal"]

print(thislist)

['onion', 'tomato', 'brinjal']

List Items
List items can have duplicate values and are ordered and editable.

The first item in a list has the index [0], the second item has the index [1], et.

Ordered
When we refer to a list as being ordered, we indicate that the entries are in a specific order that will
not alter.

The new things will be added at the end of the list if you add more items.

Changeable
The list is modifiable, which means that after it has been generated, we can edit, add, and remove
entries from it.

Programming in Python

Notes

Escape Characters
Python also uses the following escape symbols:

Code Result

\' Single Quote

\\ Backslash

\n New Line

\r Carriage Return

\t Tab

\b Backspace

\f Form Feed

\ooo Octal value

\xhh Hex value

2.16 Python-Lists
Lists

Multiple elements can be kept in a single variable by using lists.

One of the four built-in data types in Python for storing data collections is the list; the other three
are the tuple, set, and dictionary, each of which has a unique purpose.

Square brackets are used to form lists.

Example:

Example Output

thislist = ["onion", "tomato", "brinjal"]

print(thislist)

['onion', 'tomato', 'brinjal']

List Items
List items can have duplicate values and are ordered and editable.

The first item in a list has the index [0], the second item has the index [1], et.

Ordered
When we refer to a list as being ordered, we indicate that the entries are in a specific order that will
not alter.

The new things will be added at the end of the list if you add more items.

Changeable
The list is modifiable, which means that after it has been generated, we can edit, add, and remove
entries from it.

Programming in Python

Notes

Escape Characters
Python also uses the following escape symbols:

Code Result

\' Single Quote

\\ Backslash

\n New Line

\r Carriage Return

\t Tab

\b Backspace

\f Form Feed

\ooo Octal value

\xhh Hex value

2.16 Python-Lists
Lists

Multiple elements can be kept in a single variable by using lists.

One of the four built-in data types in Python for storing data collections is the list; the other three
are the tuple, set, and dictionary, each of which has a unique purpose.

Square brackets are used to form lists.

Example:

Example Output

thislist = ["onion", "tomato", "brinjal"]

print(thislist)

['onion', 'tomato', 'brinjal']

List Items
List items can have duplicate values and are ordered and editable.

The first item in a list has the index [0], the second item has the index [1], et.

Ordered
When we refer to a list as being ordered, we indicate that the entries are in a specific order that will
not alter.

The new things will be added at the end of the list if you add more items.

Changeable
The list is modifiable, which means that after it has been generated, we can edit, add, and remove
entries from it.

 LOVELY PROFESSIONAL UNIVERSITY 23

Unit 02: Python Data Structures

Notes

Allow Duplicates
Lists can contain items with the same value since they are indexed.

Example:

Example Output

thislist = ["onion", "tomato", "brinjal",
"onion", "tomato"]

print(thislist)

['onion', 'tomato', 'brinjal', 'onion',
'tomato']

List Length
The len() method can be used to count the number of elements in a list:

Example Output

thislist = ["onion", "tomato", "brinjal”]

print(len(thislist))

3

List Items - Data Types
Any data type can be used for list items.

Example: String, int and boolean data types:

Example Output

list1 = ["onion", "tomato", "brinjal"]

list2 = [2, 3, 4, 5, 6]

list3 = [True, False, False]

print(list1)

print(list2)

print(list3)

['onion', 'tomato', 'brinjal']
[2, 3, 4, 5, 6]

[True, False, False]

Example: A list can contain different data types. A list with strings, integers and boolean
values shown in below table:

Example Output

list1 = ["def", 36, False, 42, "male"]

print(list1)

['def', 36, False, 42, 'male']

Accessing Values in Lists
Use the square brackets for slicing along with the index or indices to obtain the value located at that
index to access values in lists. For instance,

Unit 02: Python Data Structures

Notes

Allow Duplicates
Lists can contain items with the same value since they are indexed.

Example:

Example Output

thislist = ["onion", "tomato", "brinjal",
"onion", "tomato"]

print(thislist)

['onion', 'tomato', 'brinjal', 'onion',
'tomato']

List Length
The len() method can be used to count the number of elements in a list:

Example Output

thislist = ["onion", "tomato", "brinjal”]

print(len(thislist))

3

List Items - Data Types
Any data type can be used for list items.

Example: String, int and boolean data types:

Example Output

list1 = ["onion", "tomato", "brinjal"]

list2 = [2, 3, 4, 5, 6]

list3 = [True, False, False]

print(list1)

print(list2)

print(list3)

['onion', 'tomato', 'brinjal']
[2, 3, 4, 5, 6]

[True, False, False]

Example: A list can contain different data types. A list with strings, integers and boolean
values shown in below table:

Example Output

list1 = ["def", 36, False, 42, "male"]

print(list1)

['def', 36, False, 42, 'male']

Accessing Values in Lists
Use the square brackets for slicing along with the index or indices to obtain the value located at that
index to access values in lists. For instance,

Unit 02: Python Data Structures

Notes

Allow Duplicates
Lists can contain items with the same value since they are indexed.

Example:

Example Output

thislist = ["onion", "tomato", "brinjal",
"onion", "tomato"]

print(thislist)

['onion', 'tomato', 'brinjal', 'onion',
'tomato']

List Length
The len() method can be used to count the number of elements in a list:

Example Output

thislist = ["onion", "tomato", "brinjal”]

print(len(thislist))

3

List Items - Data Types
Any data type can be used for list items.

Example: String, int and boolean data types:

Example Output

list1 = ["onion", "tomato", "brinjal"]

list2 = [2, 3, 4, 5, 6]

list3 = [True, False, False]

print(list1)

print(list2)

print(list3)

['onion', 'tomato', 'brinjal']
[2, 3, 4, 5, 6]

[True, False, False]

Example: A list can contain different data types. A list with strings, integers and boolean
values shown in below table:

Example Output

list1 = ["def", 36, False, 42, "male"]

print(list1)

['def', 36, False, 42, 'male']

Accessing Values in Lists
Use the square brackets for slicing along with the index or indices to obtain the value located at that
index to access values in lists. For instance,

 LOVELY PROFESSIONAL UNIVERSITY 24

Programming in Python

Notes

Example Output

list1 = ['physics', 'chemistry', 1997, 2000];

list2 = [1, 2, 3, 4, 5, 6, 7];

print "list1[0]: ", list1[0]

print "list2[1:5]: ", list2[1:5]

list1[0]: physics

list2[1:5]: [2, 3, 4, 5]

Updating Lists
By providing the slice on the left-hand side of the assignment operator, you can change one or more
list elements. You can also add to list elements by using the append() method. For instance,

Example Output

list = ['physics', 'chemistry', 1997, 2000];

print "Value available at index 2: "

print list [2]

list [2] = 2001;

print "New value available at index 2: "

print list [2]

Value available at index 2:

1997

New value available at index 2:

2001

Delete List Elements
If you are certain whose element(s) you are deleting, you can use the del statement to remove them;
otherwise, you can use the remove() method. For instance

Example Output

list1 = ['apple', 'orange', 1998, 2015];

print list1

del list1[2];

print "After deleting value at index 2:

print list1

['apple', 'orange', 1998, 2015]

After deleting value at index 2:

['apple', 'orange', 2015]

Basic List Operations
The + and * operators act on lists similarly to how they act on strings; they signify concatenation
and repetition here as well, but the outcome is a new list rather than a string.

Python Expression Result Description

len([1, 2, 3]) 3 Length

[1, 2, 3] + [4, 5, 6] [1, 2, 3, 4, 5, 6] Concatenation

['Hi!'] * 4 ['Hi!', 'Hi!', 'Hi!', 'Hi!'] Repetition

3 in [1, 2, 3] True Membership

for x in [1, 2, 3]: print x, 1 2 3 Iteration

 LOVELY PROFESSIONAL UNIVERSITY 25

Unit 02: Python Data Structures

Notes

Indexing, Slicing, and Matrixes
Due to the fact that lists are sequences, indexing and slicing for lists function similarly to how they
do for strings.

Assuming the data below

L = ['file', 'File', 'FILE!']

Python Expression Result Description

L[2] FILE! Offset starts at zero

L[-2] File Negative: Count from the
right

L [1:] ['File', 'FILE!’] Slicing fetches section

Built-in Functions & Methods

Sr.no Function with Description

1 cmp(list1, list2)

Compares elements of both lists.

2 len(list)

Gives the total length of the list.

3
max(list)

Returns item from the list with max value.

4
min(list)

Returns item from the list with min value.

5
list(seq)

Converts a tuple into list.

Python includes the subsequent list of methods.

Sr.No Methods and Descriptions

1 list.append(obj)

Appends object obj to list

2 list.count(obj)

Returns count of how many times obj occurs in list

3 list.extend(seq)

Appends the contents of seq to list

4 list.index(obj)

Returns the lowest index in list that obj appears

5 list.insert(index, obj)

 LOVELY PROFESSIONAL UNIVERSITY 26

Programming in Python

Notes

Inserts object obj into list at offset index

6 list.pop(obj=list[-1])

Removes and returns last object or obj from list

7 list.remove(obj)

Removes object obj from list

8 list.reverse()

Reverses objects of list in place

9 list.sort([func])

Sorts objects of list, use compare func if given

2.17 Python-Tuples
An ordered and unchangeable group of things is referred to as a tuple. Sequences are what tuples
and lists both are. Tuples and lists vary in those tuples cannot be altered, although lists may, and
because tuples use parentheses while lists use square brackets.

Simply placing various values separated by commas forms a tuple. You may also choose to enclose
these comma-separated values in parenthesis. For instance:

tpl1 = (‘fruits’, ‘vegetables’, 2003, 2005);

tpl2 = (5,6,7,8,9);

tpl3 = “d”, “e”, “f”, “g”, “h”;

There are two parentheses surrounding the empty tuple, which contains nothing.

tpl1 = ();

Even though there is only one value in a tuple, you must still use a comma when writing it.

tpl1 = (50 ,);

Tuple indices begin at 0 like string indices do, and they can be concatenated, sliced, and other
operations.

Accessing Values in Tuples
Use the square brackets for slicing along with the index or indices to obtain the value located at that
index to access values in tuples. For instance:

tpl1 = (‘fruits’, ‘vegetables’, 2003, 2005);

tpl2 = (5,6,7,8,9,10,11);

print "tpl1[0]: ", tpl1[0];

print "tpl2[1:5]: ", tpl2[1:5];

The outcome of running the aforementioned code is the following:

tpl1[0]: fruits

tpl2[1:5]: [6,7,8,9]

Updating Tuples
Due to their immutability, tuples cannot be updated or have their element values changed. The
example that follows shows how to generate new tuples by using pieces of existing tuples:

tpl1 = (35, 45.56);

tpl2 = ('apple', 'orange');

So, let's create a new tuple as follows

 LOVELY PROFESSIONAL UNIVERSITY 27

Unit 02: Python Data Structures

Notes

tpl3 = tpl1 + tpl2;

print (tpl3);

The outcome of running the aforementioned code is the following:

(35, 45.56, 'apple', 'orange')

Delete Tuple Elements
Individual tuple elements cannot be eliminated. Naturally, there is nothing wrong with creating
another tuple after eliminating the undesirable components.

Simply use the del statement to specifically remove a whole tuple. For instance

Python Expression Result

tpl1 = (35, 45.56);

tpl2 = ('apple', 'orange');

print (tpl1);

del (tpl1);

print("After deletion")

print(tpl1);

Traceback (most recent call last):
File "./prog.py", line 8, in <module>

NameError: name 'tpl1' is not defined

Basic Tuple Operations
The + and * operators act on tuples similarly to how they act on strings; they signify concatenation
and repetition here as well, but the outcome is a new tuple rather than a string.

In fact, all of the general sequence operations we used on strings in the previous chapter work on
tuples as well.

Python Expression Result Description

len((1, 2, 3)) 3 Length

(1, 2, 3) + (4, 5, 6) (1, 2, 3, 4, 5, 6) Concatenation

('Hi!') * 4 ('Hi!', 'Hi!', 'Hi!', 'Hi!') Repetition

3 in (1, 2, 3) True Membership

for x in (1, 2, 3): print x, 1 2 3 Iteration

Indexing, Slicing, and Matrixes
Tuples function similarly to strings in terms of indexing and slicing because they are sequences.
assuming the data below

L = ('file', 'File', 'FILE!')

Python Expression Result Description

L[2] ‘FILE!’ Offset starts at zero

L[-2] ‘File’ Negative: Count from the right

 LOVELY PROFESSIONAL UNIVERSITY 28

Programming in Python

Notes

L [1:] ['File', 'FILE!’] Slicing fetches section

No Enclosing Delimiters
As seen in these brief examples, tuples are the default for any group of numerous objects that are
comma-separated and expressed without distinguishing symbols, such as brackets for lists and
parentheses for tuples.

Python Expression Result

print ('apple', -5.33e92, 19+5.6j, 'abc');

x, y = 3, 4;

print ("Value of x , y : ", x,y);

apple -5.33e+92 (19+5.6j) abc
Value of x , y : 3 4

2.18 Python-Dictionary
The items are separated by commas, each key is separated from its value by a colon (:), and the
entire structure is contained in curly brackets. A dictionary that is completely empty of all words is
written as follows:.

Values may not be unique within a dictionary, but keys always are. A dictionary's keys must be
immutable data types like texts, integers, or tuples, while its values can be of any kind.

Accessing Values in a Dictionary
You can make use of the well-known square brackets and the key to access dictionary items. Here is
a straightforward illustration:

Python Expression Result

dict = {'Name': 'Alisha', 'Age': 11, 'Class': 'Fifth'}

print ("dict['Name']: ", dict['Name'])

print ("dict['Age']: ", dict['Age'])

dict['Name']: Alisha
dict['Age']: 11

We see the following error if we try to retrieve a data item using a key that is not listed in the
dictionary:

Python Expression Result

dict = {'Name': 'Alisha', 'Age': 11, 'Class': 'Fifth'}

print("dict['Aalya']: ", dict['Aalya'])
Traceback (most recent call last):

File "./prog.py", line 2, in <module>
KeyError: 'Aalya'

Updating Dictionary
As seen in the straightforward example below, you can change a dictionary by adding a new entry,
a key-value pair, editing an existing entry, or deleting an existing entry.

Python Expression Result

 LOVELY PROFESSIONAL UNIVERSITY 29

Unit 02: Python Data Structures

Notes

dict = {'Name': 'Alisha', 'Age': 11, 'Class': 'Fifth'}

dict['Age'] = 8; # update existing entry

dict['Class'] = "Sixth"; # Add new entry

print ("dict['Age']: ", dict['Age'])

print ("dict['Class']: ", dict['Class'])

dict['Age']: 8
dict['Class']: Sixth

Delete Dictionary Elements
You can either wipe a dictionary's complete contents, or you can remove certain dictionary entries.
Additionally, you have the option to erase the entire lexicon at once.

Use the del statement to expressly erase an entire dictionary. Here is a straightforward illustration:

Python Expression Result

dict = {'Name': 'Alisha', 'Age': 11, 'Class': 'Fifth'}

del dict['Name']; # remove entry with key 'Name'

dict.clear(); # remove all entries in dict

del dict ; # delete entire dictionary

print ("dict['Age']: ", dict['Age'])

print ("dict['School']: ", dict['School'])

Traceback (most recent call last):
File “. /prog.py", line 6, in <module>

TypeError: 'type' object is not
subscriptable

Properties of Dictionary Keys
There are no limitations on dictionary values. They may be any Python object, whether they are
built-in or user-defined. The same is not applicable to keys, though.

There are two crucial things to keep in mind with dictionary keys.

(a) It is not permitted to use a key more than once. This implies that no duplicate keys are
permitted. When using duplicate keys, the most recent assignment is chosen. For instance,

Python Expression Result

dict = {'Name': 'Alisha', 'Age': 11, 'Name':
'Aalya'}

print ("dict['Name']: ", dict['Name'])

dict['Name']: Aalya

(b) Keys must not be changeable. In other words, you can use dictionary keys like ['key'] but not
strings, numbers, or tuples. Here is a straightforward illustration:

Python Expression Result

 LOVELY PROFESSIONAL UNIVERSITY 30

Programming in Python

Notes

dict = {['Name']: 'Alisha', 'Age': 11,}

print ("dict['Name']: ", dict['Name'])
Traceback (most recent call last):

File "./prog.py", line 1, in <module>
TypeError: unhashable type: 'list'

Built-in Dictionary Functions & Methods
The following dictionary functions are available in Python.

Sr.No. Function with Description

1 cmp (dict1, dict2)

Compares elements of both dict.

2 len(dict)

Gives the total length of the dictionary. This would be equal to the number of items in
the dictionary.

3 str(dict)

Produces a printable string representation of a dictionary

4 type(variable)

Returns the type of the passed variable. If passed variable is dictionary, then it would
return a dictionary type.

The following dictionary methods are available in Python.

Sr.No. Function with Description

1 dict.clear()

Removes all elements of dictionary dict

2 dict.copy()

Returns a shallow copy of dictionary dict

3 dict.fromkeys()

Create a new dictionary with keys from seq and values set to value.

4 dict.get(key, default=None)

For key key, returns value or default if key not in dictionary

5 dict.has_key(key)

Returns true if key in dictionary dict, false otherwise

6 dict.items()

Returns a list of dict's (key, value) tuple pairs

7 dict.keys()

Returns list of dictionary dict's keys

8 dict.setdefault(key, default=None)

Similar to get(), but will set dict[key]=default if key is not already in dict

 LOVELY PROFESSIONAL UNIVERSITY 31

Unit 02: Python Data Structures

Notes

9 dict.update(dict2)

Adds dictionary dict2's key-values pairs to dict

10 dict.values()

Returns list of dictionary dict's values

Summary

 Python's strings, like those of many other widely used programming languages, are
collections of bytes that represent unicode characters.

 Use the len() function to determine a string's length.
 The keyword in can be used to determine whether a specific word or character is present

in a string.
 The keyword not in can be used to determine whether a specific word or character DOES

NOT exist in a string.
 Use the + operator to concatenate, or merge, two strings.
 Similar to dynamically scaled arrays specified in other languages (such as vector in C++

and ArrayList in Java), Python lists are similar to them. A list is a group of items that are
denoted by the symbol [] and separated by commas.

 Refer to the index number to access the list entries. To retrieve a specific item in a list, type
[] in the index operator.

 In Python, positions from the array's end are represented by negative sequence indexes.
 Use of the built-in append() function allows for the addition of elements to the List. The

append() method can only add one element at a time to the list; loops must be used to add
many elements using the append() method.

 Python is a popular high-level, general-purpose programming language. Guido van
Rossum invented it in 1991, and the Python Software Foundation continued to advance it

 Web applications can be developed on a server using Python.

Keywords
Token:The smallest discrete unit in a Python programme is called a token. Tokens are used to
construct each statement and instruction in a programme.

Keywords:In a computer language, keywords are words that have a particular importance or
meaning. They cannot be utilised for any arbitrary reason, including as names for functions or
variables.

Identifiers:The names assigned to any variable, function, class, list, methods, etc. for identification
are known as identifiers.

Reserved Words:You cannot use them as identifier names for constants, variables, or anything
else.

Python Numbers: Number data types store numeric values.

Python Strings:Python defines strings as a contiguous group of characters that are enclosed in
quotation marks.

Literals or Values:The fixed values or data items used in a source code are known as literals.

Python Lists:Of all the compound data types in Python, lists are the most flexible. Items in a list
are delimited by square brackets and separated by commas ([]).

 LOVELY PROFESSIONAL UNIVERSITY 32

Programming in Python

Notes

Python Tuples: Another sequence data type that resembles the list is the tuple. A tuple is made up
of several values that are separated by commas.

Python Dictionaries: The dictionaries used by Python are something like hash tables. They
consist of key-value pairs and operate similarly to associative arrays or hashes seen in Perl.

Dictionary: Key-value pairs are stored in dictionaries. To make the dictionary more efficient, Key-
Value is offered.

Review Questions
Q1. What will be the output of above Python code?

str1="8/2"

print("str1")

print(str1)

A. str1
B. str1 8/2
C. str1 4.0
D. str1

Q2. Which statement is not correct?

A. Strings cannot be changed.
B. The capitalization() function in the string type returns a string after changing the entire

input string to uppercase.
C. The lower() function in the string language is utilised to return a string by lowercasing the

entire input string.
D. None of these.

Q3. Select the correct output of the following program.

str1="Good Morning"

print(str1[2:8])

A. od Mor
B. od Morn
C. odMor
D. oodMor

Q4. What would be outout of following program.

str1="This Is my File"

str2=str1.replace('i','I')

print(str2)

A. This Is my File
B. ThIsis my File
C. ThIs Is my FIle
D. ThIs Is my File

 LOVELY PROFESSIONAL UNIVERSITY 33

Unit 02: Python Data Structures

Notes

Q5. Select the correct output for the following code.

list1=['1','3','6','7']

str1="8"

for i in list1:

str1=str1+i

print(str1)

A. 81367
B. Error
C. 1367
D. 8 Error

Q6. What will following Python code return?

str1="This is my file"

print(len(str1))

A. 13
B. 14
C. 15
D. 16

Q7. What will following python code returns?

x = str(4)

y = int(4)

z = float(4)

print(x)

print(y)

print(z)

A. 4 4 4.0
B. 4.0 4 4
C. 4 4.0 4
D. None of above

Q8. What will following python code returns?

thistuple = tuple(("abc", "def", "ghi"))

print(len(thistuple))

A. 4
B. 5
C. 3
D. 9

Q9. What will following python code returns?

 LOVELY PROFESSIONAL UNIVERSITY 34

Programming in Python

Notes

tuple3 = (True, False, False)

print(type(tuple3))

A. <class ‘list’>
B. <class ‘tuple’>
C. <class ‘boolean’>
D. None of above

Q10. What will following python code returns?

thisset = {"apple", "banana", "cherry", "apple"}

print(thisset)

A. {‘apple’,‘banana’,’cherry’,’apple’}
B. {‘banana’,’cherry’,’apple’,’apple’}
C. {‘banana’,’apple’}
D. {‘banana’,’cherry’,’apple’}

Q11. What will following python code returns?

thisdict = {

"Section": "D1601",

"Class": "BCA",

"year": 1964,

"year": 2020

}

print(thisdict)

A. {'Section': 'D1601', 'Class': 'BCA', 'year': 1964}
B. {'Section': 'D1601', 'Class': 'BCA', 'year': 2020, ’year’:1964}
C. {'Section': 'D1601', 'Class': 'BCA', 'year': 2020,1964}
D. {'Section': 'D1601', 'Class': 'BCA', 'year': 2020}

Q12. What will following python code returns?

thisdict = {

"Name": "Aalya",

"Section": "D1601",

"Class": "BCA"

}

x = thisdict.get("Section")

print(x)

A. D1601
B. Error
C. String not allowed
D. Type incompatible

 LOVELY PROFESSIONAL UNIVERSITY 35

Unit 02: Python Data Structures

Notes

Q13What will following python code returns?

colors = ["red", "green", "burnt sienna", "blue"]

colors[2]

A. Green
B. Burnt sienna
C. Blue
D. Red

Q14: Which syntax use to delete dictonary.

A. del dict
B. Del dictionary
C. rmvdict
D. remove dictionary

Q15: Select right function of len()

A. compares element and then calculate length
B. gives total length of dictionary
C. Both a and b
D. None of above

Answers for Self Assessment

1. B 2. B 3. A 4. D 5. A

6. C 7. A 8. C 9. B 10. D

11. D 12. A 13. B 14. A 15. B

FurtherReadings

 Mark Lutz,Programming Python: Powerful Object-Oriented Programming, OREILLY
 Wes McKinney, Python for data analysis, OREILLY
 David Ascher and Mark Lutz, Learning Python, OREILLY
 Eric Matthes, Python Crash Course, 2nd Edition: A Hands-On, Project-Based

Introduction to Programming, Starch Pres

Web Links

https://www.tutorialspoint.com/python/index.htm

https://www.python.org/downloads/

https://www.w3schools.in/python/data-types

https://www.programiz.com/python-programming/online-compiler/

https://www.codecademy.com/catalog/language/python

Unit 02: Python Data Structures

Notes

Q13What will following python code returns?

colors = ["red", "green", "burnt sienna", "blue"]

colors[2]

A. Green
B. Burnt sienna
C. Blue
D. Red

Q14: Which syntax use to delete dictonary.

A. del dict
B. Del dictionary
C. rmvdict
D. remove dictionary

Q15: Select right function of len()

A. compares element and then calculate length
B. gives total length of dictionary
C. Both a and b
D. None of above

Answers for Self Assessment

1. B 2. B 3. A 4. D 5. A

6. C 7. A 8. C 9. B 10. D

11. D 12. A 13. B 14. A 15. B

FurtherReadings

 Mark Lutz,Programming Python: Powerful Object-Oriented Programming, OREILLY
 Wes McKinney, Python for data analysis, OREILLY
 David Ascher and Mark Lutz, Learning Python, OREILLY
 Eric Matthes, Python Crash Course, 2nd Edition: A Hands-On, Project-Based

Introduction to Programming, Starch Pres

Web Links

https://www.tutorialspoint.com/python/index.htm

https://www.python.org/downloads/

https://www.w3schools.in/python/data-types

https://www.programiz.com/python-programming/online-compiler/

https://www.codecademy.com/catalog/language/python

Unit 02: Python Data Structures

Notes

Q13What will following python code returns?

colors = ["red", "green", "burnt sienna", "blue"]

colors[2]

A. Green
B. Burnt sienna
C. Blue
D. Red

Q14: Which syntax use to delete dictonary.

A. del dict
B. Del dictionary
C. rmvdict
D. remove dictionary

Q15: Select right function of len()

A. compares element and then calculate length
B. gives total length of dictionary
C. Both a and b
D. None of above

Answers for Self Assessment

1. B 2. B 3. A 4. D 5. A

6. C 7. A 8. C 9. B 10. D

11. D 12. A 13. B 14. A 15. B

FurtherReadings

 Mark Lutz,Programming Python: Powerful Object-Oriented Programming, OREILLY
 Wes McKinney, Python for data analysis, OREILLY
 David Ascher and Mark Lutz, Learning Python, OREILLY
 Eric Matthes, Python Crash Course, 2nd Edition: A Hands-On, Project-Based

Introduction to Programming, Starch Pres

Web Links

https://www.tutorialspoint.com/python/index.htm

https://www.python.org/downloads/

https://www.w3schools.in/python/data-types

https://www.programiz.com/python-programming/online-compiler/

https://www.codecademy.com/catalog/language/python

 LOVELY PROFESSIONAL UNIVERSITY 36

Unit 03: OOP Concepts

Notes

Unit 03: OOP Concepts

CONTENTS

Objectives

Introduction

3.1 Class

3.2 Objects

3.3 Methods

3.4 Inheritance

3.5 Polymorphism

3.6 Data Abstraction

3.7 Encapsulation

Summary

Keywords

Self Assessment

Answer for Self Assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to:

 understand features of OOPs
 learn basic concepts about encapsulation
 learn inheritance and its types

Introduction
The Python programming style known as object-oriented programming (OOPs) makes use of
objects and classes. It seeks to incorporate in programming real-world concepts like inheritance,
polymorphism, encapsulation, etc. The fundamental idea behind OOPs is to unite the data and the
functions that use it such that no other portion of the code may access it.

Object-Oriented Programming's Core Ideas (OOPs) are:-

 Class
 Object
 Method
 Inheritance
 Polymorphism
 Data Abstraction
 Encapsulation

Dr. Rajni Bhalla, Lovely Profssional University

 LOVELY PROFESSIONAL UNIVERSITY 37

Programming in Python

Notes

3.1 Class
A class is a group of related items. The models or prototypes used to generate objects are included
in classes. It is a logical entity with a few methods and characteristics.Consider the following
scenario to better appreciate the need for generating classes: Suppose you needed to keep track of
the number of dogs that might have various characteristics, such as breed or age. If a list is utilised,
the dog's breed and age might be the first and second elements, respectively. What if there were 100
different breeds of dogs? How would you know which ingredient should go where? What if you
wanted to give these dogs additional traits? This is disorganised and just what courses need.

A few notes on the Python class:

 The keyword class is used to create classes.
 The variables that make up a class are known as attributes.
 With the dot (.) operator, attributes can always be retrieved and are always public. For

example: Myclass.Myattribute

Class Definition Syntax

Class Classname

{

#Statement-1

.

.

.

#Statement-N

}

Example: Making a Python class that is empty

Class Dog:

Pass

Using the class keyword, we built a class with the name dog in the example above.

3.2 Objects
The object is an entity that is connected to a state and activity. Any physical device, such as a
mouse, keyboard, chair, table, pen, etc., may be used. Arrays, dictionaries, strings, floating-point
numbers, and even integers are all examples of objects. Any single string or integer, more
specifically, is an object. A list is an object that may house other things, the number 12 is an object,
the text "Hello, world" is an object, and so on. You may not even be aware of the fact that you have
been using items.

An Object consists of:

State:The properties of an object serve as a representation of it. Additionally, it reflects an object's
characteristics.

Behavior:It is represented via an object's methods. It also shows how one object reacts to other
objects.

Identity: It gives a thing a special name and makes it possible for objects to communicate with one
another.

Let's look at the example of the class dog to better understand the state, behaviour, and identity
(explained above).

 The identity may be regarded as the dog's name.

Programming in Python

Notes

3.1 Class
A class is a group of related items. The models or prototypes used to generate objects are included
in classes. It is a logical entity with a few methods and characteristics.Consider the following
scenario to better appreciate the need for generating classes: Suppose you needed to keep track of
the number of dogs that might have various characteristics, such as breed or age. If a list is utilised,
the dog's breed and age might be the first and second elements, respectively. What if there were 100
different breeds of dogs? How would you know which ingredient should go where? What if you
wanted to give these dogs additional traits? This is disorganised and just what courses need.

A few notes on the Python class:

 The keyword class is used to create classes.
 The variables that make up a class are known as attributes.
 With the dot (.) operator, attributes can always be retrieved and are always public. For

example: Myclass.Myattribute

Class Definition Syntax

Class Classname

{

#Statement-1

.

.

.

#Statement-N

}

Example: Making a Python class that is empty

Class Dog:

Pass

Using the class keyword, we built a class with the name dog in the example above.

3.2 Objects
The object is an entity that is connected to a state and activity. Any physical device, such as a
mouse, keyboard, chair, table, pen, etc., may be used. Arrays, dictionaries, strings, floating-point
numbers, and even integers are all examples of objects. Any single string or integer, more
specifically, is an object. A list is an object that may house other things, the number 12 is an object,
the text "Hello, world" is an object, and so on. You may not even be aware of the fact that you have
been using items.

An Object consists of:

State:The properties of an object serve as a representation of it. Additionally, it reflects an object's
characteristics.

Behavior:It is represented via an object's methods. It also shows how one object reacts to other
objects.

Identity: It gives a thing a special name and makes it possible for objects to communicate with one
another.

Let's look at the example of the class dog to better understand the state, behaviour, and identity
(explained above).

 The identity may be regarded as the dog's name.

Programming in Python

Notes

3.1 Class
A class is a group of related items. The models or prototypes used to generate objects are included
in classes. It is a logical entity with a few methods and characteristics.Consider the following
scenario to better appreciate the need for generating classes: Suppose you needed to keep track of
the number of dogs that might have various characteristics, such as breed or age. If a list is utilised,
the dog's breed and age might be the first and second elements, respectively. What if there were 100
different breeds of dogs? How would you know which ingredient should go where? What if you
wanted to give these dogs additional traits? This is disorganised and just what courses need.

A few notes on the Python class:

 The keyword class is used to create classes.
 The variables that make up a class are known as attributes.
 With the dot (.) operator, attributes can always be retrieved and are always public. For

example: Myclass.Myattribute

Class Definition Syntax

Class Classname

{

#Statement-1

.

.

.

#Statement-N

}

Example: Making a Python class that is empty

Class Dog:

Pass

Using the class keyword, we built a class with the name dog in the example above.

3.2 Objects
The object is an entity that is connected to a state and activity. Any physical device, such as a
mouse, keyboard, chair, table, pen, etc., may be used. Arrays, dictionaries, strings, floating-point
numbers, and even integers are all examples of objects. Any single string or integer, more
specifically, is an object. A list is an object that may house other things, the number 12 is an object,
the text "Hello, world" is an object, and so on. You may not even be aware of the fact that you have
been using items.

An Object consists of:

State:The properties of an object serve as a representation of it. Additionally, it reflects an object's
characteristics.

Behavior:It is represented via an object's methods. It also shows how one object reacts to other
objects.

Identity: It gives a thing a special name and makes it possible for objects to communicate with one
another.

Let's look at the example of the class dog to better understand the state, behaviour, and identity
(explained above).

 The identity may be regarded as the dog's name.

 LOVELY PROFESSIONAL UNIVERSITY 38

Unit 03: OOP Concepts

Notes

 Breed, age, and colour of the dog are examples of states or attributes.
 You may infer from the behaviour whether the dog is eating or sleeping.

Creating an object as an example
Obj=Dog()

This will produce an object with the class Dog, named obj, as stated above. Let's first grasp the
fundamental terms that will be utilised while working with objects and classes before delving
further into them.

a. The self

 An additional initial parameter in the method declaration is required for class methods.
When we call the method, we don't supply a value for this parameter; Python does.

 Even if we have a method that doesn't require any parameters, we still need one.
 This is comparable to this Java reference and this C++ pointer.

This is the sole purpose of the special self. When we invoke a method of this object as
myobject.method(arg1, arg2), Python automatically converts it to MyClass.method(myobject, arg1,
arg2).

b. The __init__method
The constructors in Java and C++ are comparable to the __init__ method. As soon as a class object is
created, it is executed. Any initialization you want to perform on your object can be done with the
method.Let's build some objects utilising the self and __init__ methods after defining a class.

Example1: Class and object creation using class and instance properties

class Dog:

class attribute

attr1 = "mammal"

Instance attribute

def __init__(self, name):

self.name = name

Driver code

Object instantiation

Rodger = Dog("Rodger")

Tommy = Dog("Tommy")

Accessing class attributes

print("Rodger is a {}".format(Rodger.__class__.attr1))

print("Tommy is also a {}".format(Tommy.__class__.attr1))

Accessing instance attributes

print("My name is {}".format(Rodger.name))

print("My name is {}".format(Tommy.name))

Unit 03: OOP Concepts

Notes

 Breed, age, and colour of the dog are examples of states or attributes.
 You may infer from the behaviour whether the dog is eating or sleeping.

Creating an object as an example
Obj=Dog()

This will produce an object with the class Dog, named obj, as stated above. Let's first grasp the
fundamental terms that will be utilised while working with objects and classes before delving
further into them.

a. The self

 An additional initial parameter in the method declaration is required for class methods.
When we call the method, we don't supply a value for this parameter; Python does.

 Even if we have a method that doesn't require any parameters, we still need one.
 This is comparable to this Java reference and this C++ pointer.

This is the sole purpose of the special self. When we invoke a method of this object as
myobject.method(arg1, arg2), Python automatically converts it to MyClass.method(myobject, arg1,
arg2).

b. The __init__method
The constructors in Java and C++ are comparable to the __init__ method. As soon as a class object is
created, it is executed. Any initialization you want to perform on your object can be done with the
method.Let's build some objects utilising the self and __init__ methods after defining a class.

Example1: Class and object creation using class and instance properties

class Dog:

class attribute

attr1 = "mammal"

Instance attribute

def __init__(self, name):

self.name = name

Driver code

Object instantiation

Rodger = Dog("Rodger")

Tommy = Dog("Tommy")

Accessing class attributes

print("Rodger is a {}".format(Rodger.__class__.attr1))

print("Tommy is also a {}".format(Tommy.__class__.attr1))

Accessing instance attributes

print("My name is {}".format(Rodger.name))

print("My name is {}".format(Tommy.name))

Unit 03: OOP Concepts

Notes

 Breed, age, and colour of the dog are examples of states or attributes.
 You may infer from the behaviour whether the dog is eating or sleeping.

Creating an object as an example
Obj=Dog()

This will produce an object with the class Dog, named obj, as stated above. Let's first grasp the
fundamental terms that will be utilised while working with objects and classes before delving
further into them.

a. The self

 An additional initial parameter in the method declaration is required for class methods.
When we call the method, we don't supply a value for this parameter; Python does.

 Even if we have a method that doesn't require any parameters, we still need one.
 This is comparable to this Java reference and this C++ pointer.

This is the sole purpose of the special self. When we invoke a method of this object as
myobject.method(arg1, arg2), Python automatically converts it to MyClass.method(myobject, arg1,
arg2).

b. The __init__method
The constructors in Java and C++ are comparable to the __init__ method. As soon as a class object is
created, it is executed. Any initialization you want to perform on your object can be done with the
method.Let's build some objects utilising the self and __init__ methods after defining a class.

Example1: Class and object creation using class and instance properties

class Dog:

class attribute

attr1 = "mammal"

Instance attribute

def __init__(self, name):

self.name = name

Driver code

Object instantiation

Rodger = Dog("Rodger")

Tommy = Dog("Tommy")

Accessing class attributes

print("Rodger is a {}".format(Rodger.__class__.attr1))

print("Tommy is also a {}".format(Tommy.__class__.attr1))

Accessing instance attributes

print("My name is {}".format(Rodger.name))

print("My name is {}".format(Tommy.name))

 LOVELY PROFESSIONAL UNIVERSITY 39

Programming in Python

Notes

Output

Rodger is a mammal

Tommy is also a mammal

My name is Rodger

My name is Tommy

Example2:Class and object creation with methods

class Dog:

class attribute

attr1 = "mammal"

Instance attribute

def __init__(self, name):

self.name = name

def speak(self):

print("My name is {}".format(self.name))

Driver code

Object instantiation

Rodger = Dog("Rodger")

Tommy = Dog("Tommy")

Accessing class methods

Rodger.speak()

Tommy.speak()

Output

My name is Rodger

My name is Tommy

3.3 Methods
A function connected to an object is the method. A method is not specific to class instances in
Python. Any sort of object may have methods.

3.4 Inheritance
The capacity of one class to derive or inherit properties from another class is known as inheritance.
The class from which the properties are being derived is referred to as the base class or parent class,
and the class from which the properties are being derived is referred to as the derived class or child
class. The advantages of inheritance include:

Programming in Python

Notes

Output

Rodger is a mammal

Tommy is also a mammal

My name is Rodger

My name is Tommy

Example2:Class and object creation with methods

class Dog:

class attribute

attr1 = "mammal"

Instance attribute

def __init__(self, name):

self.name = name

def speak(self):

print("My name is {}".format(self.name))

Driver code

Object instantiation

Rodger = Dog("Rodger")

Tommy = Dog("Tommy")

Accessing class methods

Rodger.speak()

Tommy.speak()

Output

My name is Rodger

My name is Tommy

3.3 Methods
A function connected to an object is the method. A method is not specific to class instances in
Python. Any sort of object may have methods.

3.4 Inheritance
The capacity of one class to derive or inherit properties from another class is known as inheritance.
The class from which the properties are being derived is referred to as the base class or parent class,
and the class from which the properties are being derived is referred to as the derived class or child
class. The advantages of inheritance include:

Programming in Python

Notes

Output

Rodger is a mammal

Tommy is also a mammal

My name is Rodger

My name is Tommy

Example2:Class and object creation with methods

class Dog:

class attribute

attr1 = "mammal"

Instance attribute

def __init__(self, name):

self.name = name

def speak(self):

print("My name is {}".format(self.name))

Driver code

Object instantiation

Rodger = Dog("Rodger")

Tommy = Dog("Tommy")

Accessing class methods

Rodger.speak()

Tommy.speak()

Output

My name is Rodger

My name is Tommy

3.3 Methods
A function connected to an object is the method. A method is not specific to class instances in
Python. Any sort of object may have methods.

3.4 Inheritance
The capacity of one class to derive or inherit properties from another class is known as inheritance.
The class from which the properties are being derived is referred to as the base class or parent class,
and the class from which the properties are being derived is referred to as the derived class or child
class. The advantages of inheritance include:

 LOVELY PROFESSIONAL UNIVERSITY 40

Unit 03: OOP Concepts

Notes

 It accurately depicts relationships in the real world.
 It offers a code's reusability. We don't need to keep writing the same code. Additionally, it

enables us to expand a class's features without changing it.
 Because of its transitive nature, if a class B inherits from a class A, then all of class B's

subclasses will also automatically inherit from class A.

Types of Inheritance
Single Inheritance
A class can inherit properties from a single-parent class using single-level inheritance.

Multilevel Inheritance
A derived class can inherit properties from an immediate parent class, which in turn can inherit
properties from his parent class, thanks to multi-level inheritance.

Hierarchical Inheritance
More than one derived class can inherit properties from a parent class thanks to hierarchical level
inheritance.

Multiple Inheritance
One derived class may inherit properties from several different base classes thanks to multiple level
inheritance.

Example: Python inheritance

Python code to demonstrate how parent constructors

are called.

parent class

class Person(object):

__init__ is known as the constructor

def __init__(self, name, idnumber):

self.name = name

self.idnumber = idnumber

def display(self):

print(self.name)

print(self.idnumber)

def details(self):

print("My name is {}".format(self.name))

print("IdNumber: {}".format(self.idnumber))

child class

class Employee(Person):

def __init__(self, name, idnumber, salary, post):

self.salary = salary

self.post = post

 LOVELY PROFESSIONAL UNIVERSITY 41

Programming in Python

Notes

invoking the __init__ of the parent class

Person.__init__(self, name, idnumber)

def details(self):

print("My name is {}".format(self.name))

print("IdNumber: {}".format(self.idnumber))

print("Post: {}".format(self.post))

creation of an object variable or an instance

a = Employee('Rahul', 886012, 200000, "Intern")

calling a function of the class Person using

its instance

a.display()

a.details()

Output

Rahul

886012

My name is Rahul

IdNumber: 886012

Post: Intern

In the aforementioned article, two classes—Person (parent class) and Employee—have been
established (Child Class). The Person class is an ancestor of the Employee class. As can be seen in
the show function in the code above, we may use the methods of the person class through the
employee class. The details() function shows how a child class can alter the parent class's
behaviour.

3.5 Polymorphism
Simply put, polymorphism means having multiple forms. For instance, utilising polymorphism, we
can answer the question of whether the given species of birds fly or not using just one function.
Example:Python's use of polymorphism

class Bird:

def intro(self):

print("There are many types of birds.")

def flight(self):

print("Most of the birds can fly but some cannot.")

class sparrow(Bird):

def flight(self):

print("Sparrows can fly.")

class ostrich(Bird):

 LOVELY PROFESSIONAL UNIVERSITY 42

Unit 03: OOP Concepts

Notes

def flight(self):

print("Ostriches cannot fly.")

obj_bird = Bird()

obj_spr = sparrow()

obj_ost = ostrich()

obj_bird.intro()

obj_bird.flight()

obj_spr.intro()

obj_spr.flight()

obj_ost.intro()

obj_ost.flight()

OUTPUT

There are many types of birds.

Most of the birds can fly but some cannot.

There are many types of birds.

Sparrows can fly.

There are many types of birds.

Ostriches cannot fly.

3.6 Data Abstraction
Both data abstraction and encapsulation are frequently used interchangeably. Since data abstraction
is accomplished by encapsulation, the two terms are almost synonymous.

When using abstraction, internal details are hidden and only functionalities are displayed. Giving
things names that capture the essence of what a function or an entire programme does is the
process of abstracting something.

3.7 Encapsulation
One of the core ideas in object-oriented programming is encapsulation (OOP). It explains the
concept of data wrapping and the techniques that operate on data as a single unit. This restricts
direct access to variables and procedures and can avoid data alteration by accident. A variable can
only be altered by an object's method in order to prevent inadvertent modification. These variables
fall under the category of private variables.

A class, which encapsulates all the data that is contained in its member functions, variables, etc., is
an example of encapsulation.

 LOVELY PROFESSIONAL UNIVERSITY 43

Programming in Python

Notes

Table 1 Encapsulation in Python

Methods Variables

Python program to

demonstrate private members

Creating a Base class

class Base:

def __init__(self):

self.a = "EcontentOnline"

self.__c = "EcontentOnline"

Creating a derived class

class Derived(Base):

def __init__(self):

Calling constructor of

Base class

Base.__init__(self)

print("Calling private member of base class: ")

print(self.__c)

Driver code

obj1 = Base()

print(obj1.a)

Uncommenting print(obj1.c) will

raise an AttributeError

Uncommenting obj2 = Derived() will

also raise an AtrributeError as

private member of base class

is called inside derived class

Output

EcontentOnline

The c variable was generated as the private attribute in the example above. We are unable to even
directly read or modify the value of this attribute.

Difference between Object-Oriented vs. Procedure-Oriented Programming
Languages.

 LOVELY PROFESSIONAL UNIVERSITY 44

Unit 03: OOP Concepts

Notes

Object-oriented Programming Procedural Programming

The approach to addressing problems that
uses objects for computation is called object-
oriented programming.

A list of instructions is used in procedural
programming to perform calculations in
stages.

It makes development and upkeep simpler. When a project grows in scope, maintaining
the codes is difficult in procedural
programming.

It replicates the thing in the actual world.
Therefore, oops makes it simple to tackle
difficulties in the actual world.

It doesn't represent reality in any way. It
operates using detailed instructions broken
down into smaller units called functions.

It offers data concealment. Consequently, it
is safer than procedural languages. Private
information is not accessible from anyplace.

Because procedural languages don't offer a
suitable method for data binding, they are less
secure.

C++, Java, .Net, Python, C#, and other object-
oriented programming languages are
examples.

Procedural languages include C, Fortran,
Pascal, VB, and others.

Summary

 The Python programming style known as object-oriented programming (OOPs) makes use
of objects and classes.

 A class is a group of related items. The models or prototypes used to generate objects are
included in classes.

 The object is an entity that is connected to a state and activity. Any physical device, such as a
mouse, keyboard, chair, table, pen, etc., may be used.

 The constructors in Java and C++ are comparable to the __init__ method. As soon as a class
object is created, it is executed.

 A function connected to an object is the method. A method is not specific to class instances
in Python. Any sort of object may have methods.

 The capacity of one class to derive or inherit properties from another class is known as
inheritance.

 Simply put, polymorphism means having multiple forms. For instance, utilising
polymorphism, we can answer the question of whether the given species of birds fly or not
using just one function

 Both data abstraction and encapsulation are frequently used interchangeably. Since data
abstraction is accomplished by encapsulation, the two terms are almost synonymous

 One of the core ideas in object-oriented programming is encapsulation (OOP). It explains the
concept of data wrapping and the techniques that operate on data as a single unit.

 The approach to addressing problems that uses objects for computation is called object-
oriented programming.

 A list of instructions is used in procedural programming to perform calculations in stages

 LOVELY PROFESSIONAL UNIVERSITY 45

Programming in Python

Notes

Keywords
OOPS: Object-oriented programming is known as OOP. While object-oriented programming
involves constructing objects that include both data and methods, procedural programming
involves developing procedures or methods that perform actions on the data.

Class: Python is an object oriented programming language. Almost everything in Python is an
object, with its properties and methods. A Class is like an object constructor, or a "blueprint" for
creating objects

The __init__method: All classes have a function called __init__(), which is always executed when
the class is being initiated.

The __str__function: What should be returned when the class object is rendered as a string is
determined by the __str__() function.

Objects methods: Methods can also be found in objects. Object-specific functions are called
methods in an object.

Self-Parameter: To access class-specific variables, use the self parameter, which is a reference to
the currently running instance of the class.

Del:Using the del keyword, properties on objects can be deleted.

Pass statement: Although class definitions cannot be empty, if for some reason you have one that
is empty, add the pass statement to prevent an error.

Inheritance: By using inheritance, we may create a class that has all the methods and
attributes of another class.

Parent class:The class being inherited from, often known as the base class, is the parent class.

Child class:The class that inherits from another class is referred to as a child class or derived class.

Super Function:The super() function in Python allows a descendant class to inherit all of its
parent's methods and properties.

Self Assessment
Q1. Which option best encapsulates inheritance?

A. Ability of a class to include methods from other classes in its definition
B. Techniques for grouping instance variables and methods to limit access to certain class

members
C. A focus on variables and passing variables to functions
D. Enables the use of sophisticated software that is well-designed and flexible.

Q2. Which of the following claims about inheritance is false?

A. A class's protected members may be inherited.
B. The class that inherits is known as a subclass.
C. A class's private members can be accessed and inherited.
D. One characteristic of OOP is inheritance
.

Q3. What line of code should you write to activate the __init__ method in A from B if B is a
subclass of A?

 LOVELY PROFESSIONAL UNIVERSITY 46

Unit 03: OOP Concepts

Notes

A. A.__init__(self)
B. B.__init__(self)
C. A.__init__(B)
D. B.__init__(A)

Q4: What function type is a built-in in the context of classes?

A. Identifies the name of any value's object.
B. Identifies any value's class name.
C. Determines a value's class description
D. Identifies any value's file name

Q5: What one of the following is not an inheritance type?

A. Double-level
B. Multi-level
C. Single-level
D. Multiple

Q6: Which of these is not one of OOP's core characteristics?

A. Encapsulation
B. Inheritance
C. Instantiation
D. Polymorphism

Q7: Which of the following definitions best describes encapsulation?

A. The capacity of a class to derive individuals from other classes as part of its own definition.
B. Techniques for combining instance variables and methods to limit access to specific class

members
C. focuses on supplying parameters to functions and variables.
D. enables the use of sophisticated software that is well-designed and flexible.

Q8: Define Overriding.

A. Overriding can occur in the case of inheritance in class
B. It is a process of redefining inherited method in child class.
C. It is a magic method in python.
D. None of these

Q9: _____________ developed python language

A. Albert Einstein
B. Guido Van Rossum
C. Guido Evan
D. None of these

Q10: What year was the Python programming language created?

 LOVELY PROFESSIONAL UNIVERSITY 47

Programming in Python

Notes

A. 1975
B. 1989
C. 1972
D. 1990

Q11: Which of the following commands the expression with the most precedence?

A. Addition
B. Subtraction
C. Parentheses
D. Power

Q12: Of the following, which best describes abstraction?

A. Hiding the execution
B. displaying crucial information
C. Hiding the important data
D. Hiding the implementation and showing only the features

Q13: A class is an ____________ abstraction.

A. Object
B. Logical
C. Real
D. Hypothetical

Q14: Abstraction can be used for _______________.

A. Control and data.
B. Only data
C. Only control
D. Classes

Q15: Which of the following can be considered a combination of data abstraction and
programming?

A. Class
B. Object
C. Inheritance
D. Interfaces

Answer for Self Assessment

l. A 2. C 3. A 4. B 5. A

6. C 7. B 8. B 9. B 10. B

11. C 12. D 13. B 14. A 15. B

 LOVELY PROFESSIONAL UNIVERSITY 48

Unit 03: OOP Concepts

Notes

Review Questions
1. What do you understand by OOPS? Write down the code to make a python class that si

empty.
2. Define Objects. Write down example to create an object with methods.
3. What do you understand by inheritance and also define types of inheritance.
4. Write down difference between Single level inheritance, multilevel inheritance and multiple

inheritance.
5. Define Polymorphism. Write down python code that define use of polymorphism.
6. What do you understand by Encapsulation? Write down python program to demonstrate

private members.
7. Write down difference between object-oriented programming and procedural

programming.

FurtherReadings

 Mark Lutz,Programming Python: Powerful Object-Oriented Programming, OREILLY
 Wes McKinney, Python for data analysis, OREILLY
 David Ascher and Mark Lutz, Learning Python, OREILLY
 Eric Matthes, Python Crash Course, 2nd Edition: A Hands-On, Project-Based Introduction

to Programming, Starch Pres

Web Links

https://www.tutorialspoint.com/python/index.htm

https://www.python.org/downloads/

https://www.w3schools.in/python/data-types

https://www.programiz.com/python-programming/online-compiler/

https://www.codecademy.com/catalog/language/python

Unit 03: OOP Concepts

Notes

Review Questions
1. What do you understand by OOPS? Write down the code to make a python class that si

empty.
2. Define Objects. Write down example to create an object with methods.
3. What do you understand by inheritance and also define types of inheritance.
4. Write down difference between Single level inheritance, multilevel inheritance and multiple

inheritance.
5. Define Polymorphism. Write down python code that define use of polymorphism.
6. What do you understand by Encapsulation? Write down python program to demonstrate

private members.
7. Write down difference between object-oriented programming and procedural

programming.

FurtherReadings

 Mark Lutz,Programming Python: Powerful Object-Oriented Programming, OREILLY
 Wes McKinney, Python for data analysis, OREILLY
 David Ascher and Mark Lutz, Learning Python, OREILLY
 Eric Matthes, Python Crash Course, 2nd Edition: A Hands-On, Project-Based Introduction

to Programming, Starch Pres

Web Links

https://www.tutorialspoint.com/python/index.htm

https://www.python.org/downloads/

https://www.w3schools.in/python/data-types

https://www.programiz.com/python-programming/online-compiler/

https://www.codecademy.com/catalog/language/python

Unit 03: OOP Concepts

Notes

Review Questions
1. What do you understand by OOPS? Write down the code to make a python class that si

empty.
2. Define Objects. Write down example to create an object with methods.
3. What do you understand by inheritance and also define types of inheritance.
4. Write down difference between Single level inheritance, multilevel inheritance and multiple

inheritance.
5. Define Polymorphism. Write down python code that define use of polymorphism.
6. What do you understand by Encapsulation? Write down python program to demonstrate

private members.
7. Write down difference between object-oriented programming and procedural

programming.

FurtherReadings

 Mark Lutz,Programming Python: Powerful Object-Oriented Programming, OREILLY
 Wes McKinney, Python for data analysis, OREILLY
 David Ascher and Mark Lutz, Learning Python, OREILLY
 Eric Matthes, Python Crash Course, 2nd Edition: A Hands-On, Project-Based Introduction

to Programming, Starch Pres

Web Links

https://www.tutorialspoint.com/python/index.htm

https://www.python.org/downloads/

https://www.w3schools.in/python/data-types

https://www.programiz.com/python-programming/online-compiler/

https://www.codecademy.com/catalog/language/python

 LOVELY PROFESSIONAL UNIVERSITY 49

Unit 04: More on OOP Concepts

Notes

Unit 04: More on OOP Concepts

CONTENTS

Objectives

Introduction

4.1 What is function overloading?

4.2 Python Operator Overloading

4.3 Method Overriding in Python

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Question

Further Readings

Objectives
After this unit, student would be able to:

 learn various examples to elaborate upon the concepts of Python function overloading.
 understand operator overloading
 learn method overriding

Introduction
Function overloading is a phenomenon that occurs when several functions with the same name
have different numbers of parameters. In contrast to other languages, Python does not provide
function overloading, and the functional parameters lack a data type. Let's say we wish to leverage
the functional overloading functionality. In that scenario, we can change the method's default
values for arguments to None, which won't result in an error if that particular value isn't supplied
as an argument when the function is called.

4.1 What is function overloading?
Function overloading, as the name suggests, is the practise of using the same function numerous
times with various numbers of arguments. However, overloading of functions is not supported in
Python. If we implement the function overloading code like we do in other languages, an error is
thrown. Python lacks a data type for method parameters, which is the cause.

The new function with the same name replaces the prior function with the same name (but different
parameters). Therefore, we now see an error if we attempt to call the original function, which had a
different number of parameters, while passing a different number of arguments that are defined in
the second function. Let's attempt to comprehend the same.

Table 1 Function Overloading

Program Output

Dr. Rajni Bhalla, Lovely Profssional University

 LOVELY PROFESSIONAL UNIVERSITY 50

Programming in Python

Notes

class sumClass:

def sum(self, a, b):

print("First method:",a+b)

def sum(self, a, b, c):

print("Second method:", a + b + c)

obj=sumClass()

obj.sum(19, 8, 77) #correct output

obj.sum(18, 20) #throws error

Second method: 104

Traceback (most recent call last):

File "<string>", line 9, in <module>

TypeError: sum() missing 1 required positional
argument: 'c'

We can see from the programme above that the second sum technique takes precedence over the
first sum method. The function returns the output when we call it with three arguments, but an
error is returned when we call it with with two arguments. Thus, function overloading is not
supported by Python.

But does that imply there isn't another way to put this feature into practise? No, is the response.
Function overloading in Python can be implemented in a variety of ways.

This can be done by declaring one or more parameters in the function declaration as None. In order
to prevent an error from happening when calling a function that has a parameter set to None but no
argument provided, we will also include a checking condition for None in the function body.

Syntax
When we define a function, we set one or more parameters to None and include a checking
condition for None in the function body. This way, when we call the function, an error won't
happen even if we don't pass the argument for a parameter that we have set to None.

We choose to invoke the function with or without the parameter by setting the parameters to None.

SYNTAX:

class name:

def fun(self,p1=None,p2=None,...)

Table 2 Example of Function Overloading

Program Output

class sumClass:

def sum(self, a = None, b = None, c = None):

if a != None and b == None or c == None:

print("Provide more numbers") #if there
is only 1 number as input

else:

print("First method:", a + b + c) #for
calculating the sum

obj=sumClass()

First method: 104

Provide more numbers

 LOVELY PROFESSIONAL UNIVERSITY 51

Unit 04: More on OOP Concepts

Notes

obj.sum(19, 8, 77)#104

obj.sum(18)#Provide more numbers

Here, we can see that function overloading may be implemented by changing the parameter default
values to None and by including a few validations.

How function overloading works in Python?
In Python, the most recent definition of a function is taken into account for determining its validity.
Setting the function's default settings for its parameters to None will allow us to apply the idea of
function overloading. We have the choice of calling the function with or without the argument by
setting the value of any functional parameters to None. Therefore, it won't throw an error if we
don't include the parameter set as None.

Overloading Built-in Functions
We have a few special functions in the Python Data Model, and it gives us the ability to overload
the built-in functions. The special function names all start with double underscores ().

By adding the special function to the len() method in our example, we will alter its standard
behaviour. As a result, the interpreter calls the special function instead of the built-in function when
a built-in function is declared as a special function inside a class. Let's look at an illustration
utilising a unique Python function.

Program Output

class items:

def __init__(self, cart):

self.cart= list(cart)

#special function

def __len__(self):

print("The total items are:")

return len(self.cart)#built-in function

purchase = items(['apple', 'banana', 'mango','grapes'])

print(len(purchase))#prints the body of the special
function

The total items are:

4

The __init__ method is invoked whenever an object derived from a class is created. We are
attempting to alter Python's len() function's default behaviour, which merely shows the object's
length. The specific definition we have created for the __len__() function will retrieve the desired
results whenever we provide an object of our class to len().

We have inserted the desired code to our custom definition for __len__. Len() is overloaded by this.

Example:

Let's create some code in Python that calculates the area of figures using function overloading
(triangle, rectangle, square). We will call the same function with different parameters while setting
the default values of the parameters to None.

Program Output

class areaClass:

def area(self,a,b=None,c=None,d=None):

Area of the triangle 76.0

Area of the square 324

Unit 04: More on OOP Concepts

Notes

obj.sum(19, 8, 77)#104

obj.sum(18)#Provide more numbers

Here, we can see that function overloading may be implemented by changing the parameter default
values to None and by including a few validations.

How function overloading works in Python?
In Python, the most recent definition of a function is taken into account for determining its validity.
Setting the function's default settings for its parameters to None will allow us to apply the idea of
function overloading. We have the choice of calling the function with or without the argument by
setting the value of any functional parameters to None. Therefore, it won't throw an error if we
don't include the parameter set as None.

Overloading Built-in Functions
We have a few special functions in the Python Data Model, and it gives us the ability to overload
the built-in functions. The special function names all start with double underscores ().

By adding the special function to the len() method in our example, we will alter its standard
behaviour. As a result, the interpreter calls the special function instead of the built-in function when
a built-in function is declared as a special function inside a class. Let's look at an illustration
utilising a unique Python function.

Program Output

class items:

def __init__(self, cart):

self.cart= list(cart)

#special function

def __len__(self):

print("The total items are:")

return len(self.cart)#built-in function

purchase = items(['apple', 'banana', 'mango','grapes'])

print(len(purchase))#prints the body of the special
function

The total items are:

4

The __init__ method is invoked whenever an object derived from a class is created. We are
attempting to alter Python's len() function's default behaviour, which merely shows the object's
length. The specific definition we have created for the __len__() function will retrieve the desired
results whenever we provide an object of our class to len().

We have inserted the desired code to our custom definition for __len__. Len() is overloaded by this.

Example:

Let's create some code in Python that calculates the area of figures using function overloading
(triangle, rectangle, square). We will call the same function with different parameters while setting
the default values of the parameters to None.

Program Output

class areaClass:

def area(self,a,b=None,c=None,d=None):

Area of the triangle 76.0

Area of the square 324

Unit 04: More on OOP Concepts

Notes

obj.sum(19, 8, 77)#104

obj.sum(18)#Provide more numbers

Here, we can see that function overloading may be implemented by changing the parameter default
values to None and by including a few validations.

How function overloading works in Python?
In Python, the most recent definition of a function is taken into account for determining its validity.
Setting the function's default settings for its parameters to None will allow us to apply the idea of
function overloading. We have the choice of calling the function with or without the argument by
setting the value of any functional parameters to None. Therefore, it won't throw an error if we
don't include the parameter set as None.

Overloading Built-in Functions
We have a few special functions in the Python Data Model, and it gives us the ability to overload
the built-in functions. The special function names all start with double underscores ().

By adding the special function to the len() method in our example, we will alter its standard
behaviour. As a result, the interpreter calls the special function instead of the built-in function when
a built-in function is declared as a special function inside a class. Let's look at an illustration
utilising a unique Python function.

Program Output

class items:

def __init__(self, cart):

self.cart= list(cart)

#special function

def __len__(self):

print("The total items are:")

return len(self.cart)#built-in function

purchase = items(['apple', 'banana', 'mango','grapes'])

print(len(purchase))#prints the body of the special
function

The total items are:

4

The __init__ method is invoked whenever an object derived from a class is created. We are
attempting to alter Python's len() function's default behaviour, which merely shows the object's
length. The specific definition we have created for the __len__() function will retrieve the desired
results whenever we provide an object of our class to len().

We have inserted the desired code to our custom definition for __len__. Len() is overloaded by this.

Example:

Let's create some code in Python that calculates the area of figures using function overloading
(triangle, rectangle, square). We will call the same function with different parameters while setting
the default values of the parameters to None.

Program Output

class areaClass:

def area(self,a,b=None,c=None,d=None):

Area of the triangle 76.0

Area of the square 324

 LOVELY PROFESSIONAL UNIVERSITY 52

Programming in Python

Notes

#when a and c are passed as arguments

if a!=None and b!=None and a!=b and
a!=c:

print("Area of the triangle",(0.5*a*b))

#when a,b,c and d are passed as
arguments

elif(b!=None and c!=None and d!=None and
a==b and a==c):

print("Area of the square",(a*c))

elif(b==None and c==None and d==None):

print("Enter more numbers")

else:

if(a==c):

print("Area of the rectangle",(a*b))

else:

print("Area of the rectangle",(a*c))

obj=areaClass()

obj.area(19,8,77)#Area of the triangle 76.0

obj.area(18,18,18,18)#Area of the square 324

obj.area(72,38,72,38)#Area of the rectangle
2736

Area of the rectangle 2736

Introduction

Depending on the operands used, an operator's meaning can change in Python.

4.2 Python Operator Overloading
Built-in classes are supported by Python operators. However, the same operator responds
differently to several types. For instance, the + operator will combine two lists, concatenate two
strings, or perform arithmetic addition on two numbers.

Operator overloading is a Python feature that enables the same operator to have several meanings
depending on the context.

What transpires then when we utilize them with objects declared by a user? Let's have a look at the
class below, which aims to imitate a point in a 2-D coordinate system.

Table 3 Python Operator Overloading

Program Output

class Point:

def __init__(self, x=0, y=0):

self.x = x

Traceback (most recent call last):

File "<string>", line 9, in <module>

print(p1+p2)

TypeError: unsupported operand type(s) for +:

 LOVELY PROFESSIONAL UNIVERSITY 53

Unit 04: More on OOP Concepts

Notes

self.y = y

p1 = Point(1, 2)

p2 = Point(2, 3)

print(p1+p2)

'Point' and 'Point'

Here, we can see that a TypeError was thrown because Python was unable to combine two Point
objects.

However, using operator overloading in Python, we can complete this work. However, let's first
gain some understanding of special functions.

Python Special Functions

Python refers to class functions that start with a double underscore as special functions.

These are not the usual class-defined functions that we define. One of these is the __init__()
function that we previously defined. Every time we create a new object of that class, it is called.

Other unique functions are abundant in Python.We can integrate our class with built-in functions
by using custom functions.

>>> p1 = Point(2,3)

>>> print(p1)

<__main__.Point object at 0x00000000031F8CC0>

Let's say that instead of printing what we got, we want the print() function to print the coordinates
of the Point object. In our class, we may define a __str__() method that regulates how the item is
printed. Let's examine how we can accomplish this:

class Point:

def __init__(self, x = 0, y = 0):

self.x = x

self.y = y

def __str__(self):

return "({0},{1})".format(self.x,self.y)

Let's try the print() function once more right now.

Program Output

class Point:

def __init__(self, x=0, y=0):

self.x = x

self.y = y

def __str__(self):

return "({0}, {1})".format(self.x, self.y)

(2, 3)

 LOVELY PROFESSIONAL UNIVERSITY 54

Programming in Python

Notes

p1 = Point(2, 3)

print(p1)

Better still. It turns out that when we utilise the built-in functions format () or str(), this procedure is
also called ().

So, when you use str(p1) or format(p1), Python internally calls the p1. __str__ () method.

Overloading the + Operator

We will need to include the __add__() function in the class in order to overload the + operator.
Great power entails enormous responsibility. Within this function, we are free to perform whatever
we choose. But returning a Point object of the coordinate sum makes more sense.

Program Output

class Point:

def __init__(self, x=0, y=0):

self.x = x

self.y = y

def __str__(self):

return "({0},{1})".format(self.x, self.y)

def __add__(self, other):

x = self.x + other.x

y = self.y + other.y

return Point(x, y)

p1 = Point(1, 2)

p2 = Point(2, 3)

print(p1+p2)

(3, 5)

In reality, when you use p1 + p2, Python actually calls p1. Point is obtained by adding __add (p2)
(p1,p2). The addition operation is then completed in the manner that we instructed.

We can also overload other operators in a similar manner. Below is a summary of the special
function that needs to be implemented.

>>> str(p1)

'(2,3)'

>>> format(p1)

'(2,3)'

 LOVELY PROFESSIONAL UNIVERSITY 55

Unit 04: More on OOP Concepts

Notes

Table 4 Overload Operator

Operator Expression Internally

Addition p1 + p2 p1.__add__(p2)

Subtraction p1 - p2 p1.__sub__(p2)

Multiplication p1 * p2 p1.__mul__(p2)

Power p1 ** p2 p1.__pow__(p2)

Division p1 / p2 p1.__truediv__(p2)

Floor Division p1 // p2 p1.__floordiv__(p2)

Remainder (modulo) p1 % p2 p1.__mod__(p2)

Bitwise Left Shift p1 << p2 p1.__lshift__(p2)

Bitwise Right Shift p1 >> p2 p1.__rshift__(p2)

Bitwise AND p1 & p2 p1.__and__(p2)

Bitwise OR p1 | p2 p1.__or__(p2)

Bitwise XOR p1 ^ p2 p1.__xor__(p2)

Bitwise NOT ~p1 p1.__invert__()

Overloading Comparison Operator

Operator overloading is not restricted to arithmetic operators in Python. Additionally, we can
overload comparison operators.

Let's say we wanted to add the less than symbol to the Point class.

To achieve this, let's compare the distances between these places and the origin and then output the
result. It may be carried out as follows.

Program Output

overloading the less than operator

class Point:

def __init__(self, x=0, y=0):

self.x = x

self.y = y

def __str__(self):

return "({0},{1})".format(self.x, self.y)

def __lt__(self, other):

self_mag = (self.x ** 2) + (self.y ** 2)

True

False

False

 LOVELY PROFESSIONAL UNIVERSITY 56

Programming in Python

Notes

other_mag = (other.x ** 2) + (other.y ** 2)

return self_mag<other_mag

p1 = Point(1,1)

p2 = Point(-2,-3)

p3 = Point(1,-1)

use less than

print(p1<p2)

print(p2<p3)

print(p1<p3)

The special functions that must be implemented in order to overload other comparison operators
are listed below.

Table 5 Overload Comparison Operator

Operator Expression Internally

Less than p1 < p2 p1.__lt__(p2)

Less than or equal to p1 <= p2 p1.__le__(p2)

Equal to p1 == p2 p1.__eq__(p2)

Not equal to p1 != p2 p1.__ne__(p2)

Greater than p1 > p2 p1.__gt__(p2)

Greater than or equal to p1 >= p2 p1.__ge__(p2)

4.3 Method Overriding in Python
Any object-oriented programming language has the capability of allowing a subclass or child class
to offer a customised implementation of a method that is already supplied by one of its super-
classes or parent classes. This capability is known as method overriding. The term "override" refers
to a method in a subclass that replaces a method in a superclass when both methods share the same
name, same parameters, same signature, and same return type (or sub-type).

 LOVELY PROFESSIONAL UNIVERSITY 57

Unit 04: More on OOP Concepts

Notes

Figure 1 Method Overriding

The object that calls a method will determine which version of the method is executed. When a
method is called from an object of a parent class, the method's parent class version is executed;
however, when a method is called from an object of a subclass, the child class version is executed.
In other words, the version of an overridden method that is run depends on the type of the object
being referenced, not the type of the reference variable.

Program Output

Defining parent class

class Parent():

Constructor

def __init__(self):

self.value = "Inside Parent"

Parent's show method

def show(self):

print(self.value)

Defining child class

class Child(Parent):

Constructor

def __init__(self):

self.value = "Inside Child"

Child's show method

def show(self):

print(self.value)

Driver's code

Inside Parent

Inside Child

Unit 04: More on OOP Concepts

Notes

Figure 1 Method Overriding

The object that calls a method will determine which version of the method is executed. When a
method is called from an object of a parent class, the method's parent class version is executed;
however, when a method is called from an object of a subclass, the child class version is executed.
In other words, the version of an overridden method that is run depends on the type of the object
being referenced, not the type of the reference variable.

Program Output

Defining parent class

class Parent():

Constructor

def __init__(self):

self.value = "Inside Parent"

Parent's show method

def show(self):

print(self.value)

Defining child class

class Child(Parent):

Constructor

def __init__(self):

self.value = "Inside Child"

Child's show method

def show(self):

print(self.value)

Driver's code

Inside Parent

Inside Child

Unit 04: More on OOP Concepts

Notes

Figure 1 Method Overriding

The object that calls a method will determine which version of the method is executed. When a
method is called from an object of a parent class, the method's parent class version is executed;
however, when a method is called from an object of a subclass, the child class version is executed.
In other words, the version of an overridden method that is run depends on the type of the object
being referenced, not the type of the reference variable.

Program Output

Defining parent class

class Parent():

Constructor

def __init__(self):

self.value = "Inside Parent"

Parent's show method

def show(self):

print(self.value)

Defining child class

class Child(Parent):

Constructor

def __init__(self):

self.value = "Inside Child"

Child's show method

def show(self):

print(self.value)

Driver's code

Inside Parent

Inside Child

 LOVELY PROFESSIONAL UNIVERSITY 58

Programming in Python

Notes

obj1 = Parent()

obj2 = Child()

obj1.show()

obj2.show()

Method overriding with multiple and multilevel inheritance
Multiple Inheritance: Many inheritance is the term used when a class derives from multiple base
classes.

Example:Let's look at a scenario where we only wish to override methods from one parent
class. The implementation is shown below.

Program Output

Python program to demonstrate

overriding in multiple inheritance

Defining parent class 1

class Parent1():

Parent's show method

def show(self):

print("Inside Parent1")

Defining Parent class 2

class Parent2():

Parent's show method

def display(self):

print("Inside Parent2")

Defining child class

class Child(Parent1, Parent2):

Child's show method

def show(self):

print("Inside Child")

Driver's code

obj = Child()

Inside Child

Inside Parent2

Programming in Python

Notes

obj1 = Parent()

obj2 = Child()

obj1.show()

obj2.show()

Method overriding with multiple and multilevel inheritance
Multiple Inheritance: Many inheritance is the term used when a class derives from multiple base
classes.

Example:Let's look at a scenario where we only wish to override methods from one parent
class. The implementation is shown below.

Program Output

Python program to demonstrate

overriding in multiple inheritance

Defining parent class 1

class Parent1():

Parent's show method

def show(self):

print("Inside Parent1")

Defining Parent class 2

class Parent2():

Parent's show method

def display(self):

print("Inside Parent2")

Defining child class

class Child(Parent1, Parent2):

Child's show method

def show(self):

print("Inside Child")

Driver's code

obj = Child()

Inside Child

Inside Parent2

Programming in Python

Notes

obj1 = Parent()

obj2 = Child()

obj1.show()

obj2.show()

Method overriding with multiple and multilevel inheritance
Multiple Inheritance: Many inheritance is the term used when a class derives from multiple base
classes.

Example:Let's look at a scenario where we only wish to override methods from one parent
class. The implementation is shown below.

Program Output

Python program to demonstrate

overriding in multiple inheritance

Defining parent class 1

class Parent1():

Parent's show method

def show(self):

print("Inside Parent1")

Defining Parent class 2

class Parent2():

Parent's show method

def display(self):

print("Inside Parent2")

Defining child class

class Child(Parent1, Parent2):

Child's show method

def show(self):

print("Inside Child")

Driver's code

obj = Child()

Inside Child

Inside Parent2

 LOVELY PROFESSIONAL UNIVERSITY 59

Unit 04: More on OOP Concepts

Notes

obj.show()

obj.display()

Summary

 Function overloading is a phenomenon that occurs when several functions with the same
name have different numbers of parameters

 In Python, the most recent definition of a function is taken into account for determining its
validity.

 Built-in classes are supported by Python operators. However, the same operator responds
differently to several types.

 Python refers to class functions that start with a double underscore as special functions.
 Operator overloading is not restricted to arithmetic operators in Python. Additionally, we

can overload comparison operators.
 Any object-oriented programming language has the capability of allowing a subclass or

child class to offer a customised implementation of a method that is already supplied by one
of its super-classes or parent classes.

 Many inheritances are the term used when a class derives from multiple base classes.

Keywords
Operator Overloading: When an operator in Python is overloaded, it signifies that it has additional
meaning in addition to its usual operational meaning.

Multiple Inheritance: Many inheritance is the term used when a class derives from multiple base
classes.

Multilevel Inheritance:When we have a child and grandchild relationship.

Function Overloading: When many functions share the same name but have different numbers of
parameters, this is known as function overloading.

Built-in functions: We have a few special functions in the Python Data Model, and it gives us the
ability to overload the built-in functions. The special function names all start with double
underscores ().

Functions:A function is a segment of clean, reusable code that executes a single, connected
operation. A higher level of code reuse and improved application modularity are provided via
functions.

Operator Overloading: Built-in classes are supported by Python operators. However, the same
operator responds differently to several types. For instance, the + operator will combine two lists,
concatenate two strings, or perform arithmetic addition on two numbers.

Method Overriding:Any object-oriented programming language that supports method overriding
enables a subclass or child class to provide a particular implementation of a method that is already
supplied by one of its super-classes or parent classes.

Self Assessment
Q1. Which function overload the + operator?

A. __add__()
B. __plus__()
C. __sum__()

 LOVELY PROFESSIONAL UNIVERSITY 60

Programming in Python

Notes

D. None of the above

Q2:Which function overload the == operator?

A. __eq__()
B. __equ__()
C. __equal__()
D. None of the above

Q3: Which function overloads the >> operator?

A. __more__()
B. __gt__()
C. __ge__()
D. None of the above

Q4: Which operator is overloaded by the __or__() function?

A. ||
B. |
C. //
D. /

Q5: Which function overloads the // operator?

A. __div__()
B. __ceildiv__()
C. __floordiv__()
D. __truediv__()

Q6 : Select the valid ways of overloading the operators.

A. Using friend function
B. Using member function
C. Either member function or friend function can be used
D. Operators can’t be overloaded

Q7: Overloading a subprogram allows subprogram to

A. Operate on objects of different types
B. Operate on objects of same name
C. Operate on objects of different name
D. Operate on objects of same types

Q8: What is necessary condition to overload parameters type of a subprogram.

A. The base type of two parameter must differ.
B. The parameter can’t of integer type
C. The parameter must have a different name

 LOVELY PROFESSIONAL UNIVERSITY 61

Unit 04: More on OOP Concepts

Notes

D. The base type of two parameter must be same.

Q9: By overloading + operator, it is possible to ________

A. Use binary addition
B. Use arithmetic addition
C. Use it a subtract operator
D. None of the above

Q10: What is correct about overloading + and – operators.

A. They can be defined as binary operators only.
B. They can be defined as unary operators only.
C. They can define as ternary operators only
D. They can be defined as either binary or unary operators.

Q11: Which of the subsequent claims about variable names in Python is true?

A. All variable names must begin with an underscore.
B. Unlimited length
C. The variable name length is a maximum of 2.
D. All of the above

Q12: Which of the following commands the expression with the most precedence?

A. Division
B. Subtraction
C. Power
D. Parentheses

Q13: Which of the following option is not a core data type in the python language?

A. Dictionary
B. Lists
C. Class
D. All of the above

Q14: How to set up Numpy on a computer.

A. install numpy
B. pip install python numpy
C. pip install numpy
D. pip install numpypython

Q15: Which option from the list below best demonstrates how to import the Numpy module
into your programme?

A. import numpy
B. import numpy as np

 LOVELY PROFESSIONAL UNIVERSITY 62

Programming in Python

Notes

C. from numpy import *
D. All of the above

Answers for Self Assessment

1. A 2. A 3. D 4. B 5. C

6. C 7. A 8. A 9. A 10. D

11. B 12. D 13. C 14. C 15. D

Review Question

1. What is function overloading. Explain with example.
2. Explain operator overloading with example.
3. What do you understand by method overriding. Explain with example.
4. Explain function overloading with example.
5. What do you understand by type conversion and also explain difference between

overloaded functions and overridden functions?

FurtherReadings

 Mark Lutz,Programming Python: Powerful Object-Oriented Programming, OREILLY
 Wes McKinney, Python for data analysis, OREILLY
 David Ascher and Mark Lutz, Learning Python, OREILLY
 Eric Matthes, Python Crash Course, 2nd Edition: A Hands-On, Project-Based

Introduction to Programming, Starch Pres

Web Links
https://www.tutorialspoint.com/python/index.htm

https://www.python.org/downloads/

https://www.w3schools.in/python/data-types

https://www.programiz.com/python-programming/online-compiler/

https://www.codecademy.com/catalog/language/python

Programming in Python

Notes

C. from numpy import *
D. All of the above

Answers for Self Assessment

1. A 2. A 3. D 4. B 5. C

6. C 7. A 8. A 9. A 10. D

11. B 12. D 13. C 14. C 15. D

Review Question

1. What is function overloading. Explain with example.
2. Explain operator overloading with example.
3. What do you understand by method overriding. Explain with example.
4. Explain function overloading with example.
5. What do you understand by type conversion and also explain difference between

overloaded functions and overridden functions?

FurtherReadings

 Mark Lutz,Programming Python: Powerful Object-Oriented Programming, OREILLY
 Wes McKinney, Python for data analysis, OREILLY
 David Ascher and Mark Lutz, Learning Python, OREILLY
 Eric Matthes, Python Crash Course, 2nd Edition: A Hands-On, Project-Based

Introduction to Programming, Starch Pres

Web Links
https://www.tutorialspoint.com/python/index.htm

https://www.python.org/downloads/

https://www.w3schools.in/python/data-types

https://www.programiz.com/python-programming/online-compiler/

https://www.codecademy.com/catalog/language/python

Programming in Python

Notes

C. from numpy import *
D. All of the above

Answers for Self Assessment

1. A 2. A 3. D 4. B 5. C

6. C 7. A 8. A 9. A 10. D

11. B 12. D 13. C 14. C 15. D

Review Question

1. What is function overloading. Explain with example.
2. Explain operator overloading with example.
3. What do you understand by method overriding. Explain with example.
4. Explain function overloading with example.
5. What do you understand by type conversion and also explain difference between

overloaded functions and overridden functions?

FurtherReadings

 Mark Lutz,Programming Python: Powerful Object-Oriented Programming, OREILLY
 Wes McKinney, Python for data analysis, OREILLY
 David Ascher and Mark Lutz, Learning Python, OREILLY
 Eric Matthes, Python Crash Course, 2nd Edition: A Hands-On, Project-Based

Introduction to Programming, Starch Pres

Web Links
https://www.tutorialspoint.com/python/index.htm

https://www.python.org/downloads/

https://www.w3schools.in/python/data-types

https://www.programiz.com/python-programming/online-compiler/

https://www.codecademy.com/catalog/language/python

 LOVELY PROFESSIONAL UNIVERSITY 63

Unit 05: Exception Handling
Notes

Unit 05: Exception Handling

CONTENTS

Objectives

Introduction

5.1 Exceptions in Python

5.2 Python Custom Exceptions

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives
After this unit, student would be able to:

 Learn how to handle exceptions in your program using try, except and finally statements with
the help of example.

Introduction
In Python, there are two different sorts of errors: syntax errors and exceptions. Errors are issues in a
programme that cause it to halt during execution. On the other hand, exceptions are raised when
internal events take place that alter the program's usual course.

5.1 Exceptions in Python
Many built-in exceptions in Python are thrown when a problem is encountered by your
programme (something in the programme goes wrong).

The Python interpreter stops the running process and passes control to the calling process until
these exceptions are addressed. The software will crash if it is not addressed.

Let's take a software where function A calls function B, which then calls function C as an example.
An exception that occurs in function C but isn't handled there is passed to B before being handled
by A.

If the mistake is never addressed, a notification is shown and our software abruptly and
unexpectedly stops.

Catching Exceptions in Python

A try statement in Python can be used to manage exceptions.

The try clause contains the crucial operation that can cause an exception. The except clause contains
the code that manages exceptions.

Thus, once we have identified the exception, we may decide what actions to take. Here is an easy
illustration.

Program Output

import module sys to get the type of The entry is a

Dr. Rajni Bhalla, Lovely Profssional University

 LOVELY PROFESSIONAL UNIVERSITY 64

Programming in Python
Notes

exception

import sys

randomList = ['a', 0, 2]

for entry in randomList:

try:

print("The entry is", entry)

r = 1/int(entry)

break

except:

print("Oops!", sys.exc_info()[0],
"occurred.")

print("Next entry.")

print()

print("The reciprocal of", entry, "is", r)

Oops! <class 'ValueError'> occurred.

Next entry.

The entry is 0

Oops! <class 'ZeroDivisionError'>occured.

Next entry.

The entry is 2

The reciprocal of 2 is 0.5

We cycle through the values in the random Listlist in this application. The try block contains the
code that, as was discussed earlier, can lead to an exception.

The unless block is bypassed and normal flow resumes if there is no exception (for last value). But
the unless block handles any exceptions that do arise (first and second values).

Here, we use the excinfo () method in the sys module to print the name of the exception. As we can
see, a results in ValueError whereas 0 results in ZeroDivisionError.

We may alternatively complete the aforementioned work in the following manner because every
exception in Python inherits from the base Exception class:

Program

import module sys to get the type of exception

import sys

randomList = ['a', 0, 2]

for entry in randomList:

try:

print("The entry is", entry)

r = 1/int(entry)

break

except Exception as e:

print("Oops!", e.__class__, "occurred.")

print("Next entry.")

print()

print("The reciprocal of", entry, "is", r)

Catching Specific Exceptions in Python

In the example given above, the except clause did not contain any specific exceptions.

This is not a suitable programming technique because it will catch every exception and treat each
situation uniformly. Which exceptions an except clause should cover can be specified.

A try clause may contain any number of except clauses to address various exceptions, but only one
will be carried out in the event of an exception.

 LOVELY PROFESSIONAL UNIVERSITY 65

Unit 05: Exception Handling
Notes

Multiple exceptions can be specified in an except clause using a tuple of values. Here is an
illustration of pseudocode.

Program

try:

do something

pass

except ValueError:

handle ValueError exception

pass

except (TypeError, ZeroDivisionError):

handle multiple exceptions

TypeError and ZeroDivisionError

pass

except:

handle all other exceptions

pass

Raising Exceptions in Python

Exceptions are produced in Python programming when runtime issues happen. Using the raise
keyword, we can manually raise exceptions as well.

If we want to know why an exception was raised, we can optionally give values to the exception.

Program

>>> raise KeyboardInterrupt

Traceback (most recent call last):

...

KeyboardInterrupt

>>> raise MemoryError("This is an argument")

Traceback (most recent call last):

...

MemoryError: This is an argument

>>> try:

... a = int(input("Enter a positive integer: "))

... if a <= 0:

... raise ValueError("That is not a positive number!")

... except ValueError as ve:

... print(ve)

...

Enter a positive integer: -2

That is not a positive number!

Python try with else clause

 LOVELY PROFESSIONAL UNIVERSITY 66

Programming in Python
Notes

If the code block inside attempt executed without any issues, you could occasionally want to run
another section of code. You can pair the try statement with the optional else keyword in certain
situations.

Note: The previous except clauses do not apply to exceptions in the else clause.

x Output

Program to print the reciprocal of even numbers

try:

num = int (input ("Enter a number: "))

assert num % 2 == 0

except:

print("Not an even number!")

else:

reciprocal = 1/num

print(reciprocal)

Enter a number: 1

Not an even number!

If an even number is passed, the reciprocal is calculated and shown.

Enter a number: 4

0.25

If we do so, we receive a ZeroDivisionError since the previous except does not handle the code
block inside else.

Enter a number: 0

Traceback (most recent call last):

File "<string>", line 7, in <module>

reciprocal = 1/num

ZeroDivisionError: division by zero

Python try...finally

In Python, a finally clause is an optional addition to the try statement. This phrase, which is
typically used to release external resources, is always put into effect.

For instance, we might be utilizing a file or a Graphical User Interface while connecting via the
network to a distant data center (GUI).

In any of these scenarios, whether the programme ran successfully or not, we must clear away the
resource before it terminates. The finally clause carries out these operations (closing a file, shutting
a GUI, or disconnecting from the network) to ensure execution.

Here is a file operation example to demonstrate this.

try:

f = open("test.txt",encoding = 'utf-8')

perform file operations

finally:

f.close()

If an exception arises while the programme is running, this kind of construct ensures that the file is
closed.

 LOVELY PROFESSIONAL UNIVERSITY 67

Unit 05: Exception Handling
Notes

5.2 Python Custom Exceptions
Python comes with a variety of built-in exceptions that require your programme to print an error
when something goes wrong.

But occasionally you might need to make your own special exclusions that are tailored to your
needs.

Creating Custom Exceptions

Users in Python can define unique exceptions by developing new classes. This exception class must
directly or indirectly derive from the default Exception class. This class is also where the majority of
the built-in exceptions stem from.

>>> class CustomError(Exception):

... pass

...

>>> raise CustomError

Traceback (most recent call last):

...

__main__.CustomError

>>> raise CustomError("An error occurred")

Traceback (most recent call last):

...

__main__.CustomError: An error occurred

This exception is user-defined and derives from the Exception class. Its name is CustomError. The
raise statement with an optional error message can be used to raise this new exception as well as
other exceptions.

It is best practice to save every user-defined exceptions that our application raises in a separate file
when we are creating a large Python programme. Many common modules carry out this. As
errors.py or exceptions.py, respectively, they declare their exceptions (generally but not always).

Although user-defined exception classes can implement anything a regular class can, we often keep
them short and sweet. The majority of implementations declare a unique base class from which
they derive all additional exception classes. This idea is shown in the example that follows.

Example: User-Defined Exception in Python

We'll show how user-defined exceptions may be used in a programme to raise and catch problems
in this example.

Until the user correctly guesses a stored number, this programme will ask them to enter a number.
If their guess is larger than or less than the stored amount, a clue is given to assist them in figuring
it out.

define Python user-defined exceptions

class Error(Exception):

"""Base class for other exceptions"""

pass

class ValueTooSmallError(Error):

Enter a number: 12

This value is too large, try again!

Enter a number: 0

This value is too small, try again!

 LOVELY PROFESSIONAL UNIVERSITY 68

Programming in Python
Notes

"""Raised when the input value is too
small"""

pass

class ValueTooLargeError(Error):

"""Raised when the input value is too
large"""

pass

you need to guess this number

number = 10

user guesses a number until he/she gets it
right

while True:

try:

i_num = int(input("Enter a number: "))

if i_num< number:

raise ValueTooSmallError

elifi_num> number:

raise ValueTooLargeError

break

except ValueTooSmallError:

print("This value is too small, try again!")

print()

except ValueTooLargeError:

print("This value is too large, try again!")

print()

print("Congratulations! You guessed it
correctly.")

Enter a number: 8

This value is too small, try again!

Enter a number: 10

Congratulations! You guessed it correctly.

Error is a base class that we've defined.

The other two exceptions that are raised by our software, ValueTooSmallError and
ValueTooLargeError, are descended from this class. In Python programming, this is the typical
technique to define user-defined exceptions, but there are other options as well.

Customizing Exception Classes

This class can be further modified to take other arguments as needed.

You must be familiar with the fundamentals of Object-Oriented programming in order to learn how
to customize the Exception classes.

Program Output

class SalaryNotInRangeError(Exception):

"""Exception raised for errors in the input
salary.

Enter salary amount: 2000

Traceback (most recent call last):

 LOVELY PROFESSIONAL UNIVERSITY 69

Unit 05: Exception Handling
Notes

Attributes:

salary -- input salary which caused the
error

message -- explanation of the error

"""

def __init__(self, salary, message="Salary is
not in (5000, 15000) range"):

self.salary = salary

self.message = message

super().__init__(self.message)

salary = int(input("Enter salary amount: "))

if not 5000 < salary < 15000:

raise SalaryNotInRangeError(salary)

File "<string>", line 17, in <module>

raise SalaryNotInRangeError(salary)

__main__.SalaryNotInRangeError: Salary is
not in (5000, 15000) range

Here, we have modified the Exception class's function Object () {[native code]} to accept the custom
arguments message and salary. Super is then used to manually invoke the function Object ()
{[native code]} of the parent Exception class with the self. Message argument ().

It is defined to use the custom self. Salary attribute in the future.

When SalaryNot in RangeError is raised, the appropriate message is then shown using the
inherited __str__ function of the Exception class.

By replacing it, we may also alter the __str__ method itself.

Program Output

class SalaryNotInRangeError(Exception):

"""Exception raised for errors in the input
salary.

Attributes:

salary -- input salary which caused the
error

message -- explanation of the error

"""

def __init__(self, salary, message="Salary is
not in (5000, 15000) range"):

self.salary = salary

self.message = message

super().__init__(self.message)

def __str__(self):

return f'{self.salary} -> {self.message}'

salary = int(input("Enter salary amount: "))

if not 5000 < salary < 15000:

raise SalaryNotInRangeError(salary)

Enter salary amount: 2000

Traceback (most recent call last):

File "/home/bsoyuj/Desktop/Untitled-1.py",
line 20, in <module>

raise SalaryNotInRangeError(salary)

__main__.SalaryNotInRangeError: 2000 ->
Salary is not in (5000, 15000) range

 LOVELY PROFESSIONAL UNIVERSITY 70

Programming in Python
Notes

Summary

 When you have finished testing the software, you can turn an assertion on or off as a sanity
check.

 An event that occurs during the execution of a programme and obstructs the regular flow of
the program's instructions is an exception.

 Python uses try and except statements to catch and deal with exceptions.
 Using the raise statement, you can raise exceptions in a number of different ways.
 By deriving classes from the typical built-in exceptions, Python also lets you design your own

exceptions.
 To provide handlers for various exceptions, a try statement may contain more than one except

clause.
 The finally keyword in Python is always invoked following the try and except sections.
 The raise statement enables the programmer to compel the occurrence of a particular

exception. raise's lone argument identifies the exception that should be raised.
 When your programme encounters a problem, Python automatically throws a number of

built-in exceptions (something in the programme goes wrong).
 The finally keyword is available in Python, and it is always used after the try and except

blocks.

Keywords
Exceptions: The finally keyword is available in Python, and it is always used after the try and
except blocks.

try: A try statement in Python can be used to manage exceptions

try catch:The try clause contains the crucial operation that can cause an exception

Arithmetic error: Raised when an error occurs in numeric calculations

Keyerror: Raised when a key does not exist in a dictionary

Runtimeerror: Raised when an error occurs that do not belong to any specific expectations.

Unboundlocalerror: Raised when a local variable is referenced before assignment

Zerodivisionerror: Raised when the second operator in a division is zero

Identation error: Raised when indendation is not correct

Importerror: Raised when an imported module does not exist

AssertionError: Raised when an assert statement fails

AttributeError: Raised when attribute reference or assignment fails

EOFError: Raised when the input() method hits an "end of file" condition (EOF)

NameError: Raised when a variable does not exist

OverflowError: Raised when the result of a numeric calculation is too large

TabError: Raised when indentation consists of tabs or spaces

Self Assessment

1. A try-except block can only contain so many except statements.
A. Zero
B. One

 LOVELY PROFESSIONAL UNIVERSITY 71

Unit 05: Exception Handling
Notes

C. More than one
D. More than zero

2. Is the Python code below correct?

try:

#Do something

except:

#Do Something

else:

#Do something

A. No, there is no such thing lese
B. No, else cannot be used with except.
C. No, else must come before except
D. Yes

3. The finally block is executed when?
A. there is no exception
B. there is an exception
C. only if some condition that has been specified is satisfied
D. Always

4. What would the following Python code produce?

def foo ():

try:

print (1)

finally:

print (2)

foo ()

A. 12
B. 1
C. 2
D. 11

5. What occurs when '1' == 1 is put into action?
A. getting a True
B. we receive a False
C. a TypeError happens
D. There is a ValueError.\

6. What type of error is produced in python?
A. Compile time error
B. Run time error
C. Both a and b
D. None of these

 LOVELY PROFESSIONAL UNIVERSITY 72

Programming in Python
Notes

7. When a ________ error occurs, the interpreter refuses to run the programme until the error
is fixed; instead, we must save and rerun the programmes.

A. Syntax errors
B. Logical error
C. Runtime error
D. All of the above

8. A Python object called _________ stands for an error.
A. Interpreter
B. Compiler
C. Exception
D. Module

9. An exception is said to have been made when a programme fails to run as
intended___________

A. Created
B. Asserted
C. Triggered
D. Raised

10. When a local or global variable is not defined, it gets raised.
A. NameError
B. ValueError
C. TypeError
D. ZeroDivisionError

11. It is raised when a calculation's outcome is greater than the numeric data type's upper
limit.

A. ZeroDivisonError
B. OverFlowError
C. TypeError
D. ValueError

12. A rule is considered to be broken when
A. Error encountered and exception object is created
B. Runtime system searches for appropriate exception handler
C. Code that is designed to handle exception is executed
D. None of these

13. Exception handling is done in
A. try block
B. except block
C. finally, block
D. else block

 LOVELY PROFESSIONAL UNIVERSITY 73

Unit 05: Exception Handling
Notes

14. Which of the following keywords doesn't fall within the category of exception handling?
A. try
B. catch
C. except
D. finally

15. When managing exceptions, certain keywords are utilised.
A. raise, assert, throw, catch
B. try, except, throw, catch
C. try, except, else, finally
D. throw, catch, finally, assert

Answers for SelfAssessment

1. D 2. D 3. D 4. A 5. B

6. C 7. A 8. C 9. D 10. A

11. B 12. C 13. C 14. B 15. C

Review Questions

1. Describe how actually does the python try except clause works.
2. Give example how to catch specific exceptions in python.
3. With example explain raising exception in python.
4. Differentiate between try with else cluse and try with finally clause with example.
5. In Python can a try have multiple except?

Further Readings

 Mark Lutz,Programming Python: Powerful Object-Oriented Programming,
OREILLY

 Wes McKinney, Python for data analysis, OREILLY
 David Ascher and Mark Lutz, Learning Python, OREILLY
 Eric Matthes, Python Crash Course, 2nd Edition: A Hands-On, Project-Based

Introduction to Programming, Starch Pres

Web Links

 https://www.tutorialspoint.com/python/index.htm
 https://www.python.org/downloads/
 https://www.w3schools.in/python/data-types
 https://www.programiz.com/python-programming/online-compiler/
 https://www.codecademy.com/catalog/language/python
 https://www.programiz.com/python-programming/user-defined-exception

Unit 05: Exception Handling
Notes

14. Which of the following keywords doesn't fall within the category of exception handling?
A. try
B. catch
C. except
D. finally

15. When managing exceptions, certain keywords are utilised.
A. raise, assert, throw, catch
B. try, except, throw, catch
C. try, except, else, finally
D. throw, catch, finally, assert

Answers for SelfAssessment

1. D 2. D 3. D 4. A 5. B

6. C 7. A 8. C 9. D 10. A

11. B 12. C 13. C 14. B 15. C

Review Questions

1. Describe how actually does the python try except clause works.
2. Give example how to catch specific exceptions in python.
3. With example explain raising exception in python.
4. Differentiate between try with else cluse and try with finally clause with example.
5. In Python can a try have multiple except?

Further Readings

 Mark Lutz,Programming Python: Powerful Object-Oriented Programming,
OREILLY

 Wes McKinney, Python for data analysis, OREILLY
 David Ascher and Mark Lutz, Learning Python, OREILLY
 Eric Matthes, Python Crash Course, 2nd Edition: A Hands-On, Project-Based

Introduction to Programming, Starch Pres

Web Links

 https://www.tutorialspoint.com/python/index.htm
 https://www.python.org/downloads/
 https://www.w3schools.in/python/data-types
 https://www.programiz.com/python-programming/online-compiler/
 https://www.codecademy.com/catalog/language/python
 https://www.programiz.com/python-programming/user-defined-exception

Unit 05: Exception Handling
Notes

14. Which of the following keywords doesn't fall within the category of exception handling?
A. try
B. catch
C. except
D. finally

15. When managing exceptions, certain keywords are utilised.
A. raise, assert, throw, catch
B. try, except, throw, catch
C. try, except, else, finally
D. throw, catch, finally, assert

Answers for SelfAssessment

1. D 2. D 3. D 4. A 5. B

6. C 7. A 8. C 9. D 10. A

11. B 12. C 13. C 14. B 15. C

Review Questions

1. Describe how actually does the python try except clause works.
2. Give example how to catch specific exceptions in python.
3. With example explain raising exception in python.
4. Differentiate between try with else cluse and try with finally clause with example.
5. In Python can a try have multiple except?

Further Readings

 Mark Lutz,Programming Python: Powerful Object-Oriented Programming,
OREILLY

 Wes McKinney, Python for data analysis, OREILLY
 David Ascher and Mark Lutz, Learning Python, OREILLY
 Eric Matthes, Python Crash Course, 2nd Edition: A Hands-On, Project-Based

Introduction to Programming, Starch Pres

Web Links

 https://www.tutorialspoint.com/python/index.htm
 https://www.python.org/downloads/
 https://www.w3schools.in/python/data-types
 https://www.programiz.com/python-programming/online-compiler/
 https://www.codecademy.com/catalog/language/python
 https://www.programiz.com/python-programming/user-defined-exception

 LOVELY PROFESSIONAL UNIVERSITY 74

Programming in Python
Notes

 LOVELY PROFESSIONAL UNIVERSITY 75

Unit 06: Introduction to Numpy Notes

Unit 06: Introduction to Numpy

CONTENTS

Objectives

Introduction

6.1 What is List in Python?

6.2 What is Array in Python?

6.3 How to Create An Array from Existing Data

6.4 Indexing

6.5 Slicing

6.6 Tuple Slicing

6.7 Difference between Indexing and Slicing

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives

 Learn basic concepts about arrays and lists.
 Learn to differentiate between array and list.
 Learn several array creation routines in Numpy which are used to create Ndarray objects.

Introduction
Python uses the data structures list and array to store many elements. Let's examine some key
distinctions between lists and arrays in Python.

6.1 What is List in Python?
In Python, a list is a group of things that can include items of different data types, such as numeric,
character, logical values, etc. It is a collection that supports negative indexing and is ordered. [] can
be used to generate a list with data values.

Using Python's built-in methods, it is simple to merge and copy the contents of lists.

Program Output

creating a list containing elements

belonging to different data types

sample_list = [1,"ABC",['k','j']]

print(sample_list)

[1, 'ABC', ['k', 'j']]

An integer is the first element, a string is the second, and a list of characters is the third.

Dr. Rajni Bhalla, Lovely Profssional University

 LOVELY PROFESSIONAL UNIVERSITY 76

Programming in Python
Notes

6.2 What is Array in Python?
A vector with members that are homogenous, or of the same data type, is referred to as an array.
Contiguous memory regions are used to allocate elements, making it simple to modify them by
adding or removing them or accessing them. To declare arrays in Python, we must utilize the array
module. An exception with the message "Incompatible data types" is raised if an array's items have
distinct data types.

Program Output

creating an array containing same

data type elements

import array

sample_array = array.array('i', [4, 5, 6])

accessing elements of array

for i in sample_array:

print(i)

4

5

6

Difference between List and Array

List Array

can include components from several data
kinds.

only includes elements of the same data type.

No need to import a module specifically for
declaration

A module must be imported specifically for a
declaration.

cannot do mathematical calculations directly may do mathematical calculations directly

may hold several types of items by being
nested.

Contains either all identically sized nested
elements

preferred for shorter data item sequences preferred for longer data item sequences

Greater flexibility makes it simple to change
(add or remove) data.

Less flexibility because addition and deletion
must be done in terms of elements

Without using any explicit looping, the
complete list can be printed.

To print or retrieve the array's component
values, a loop must be created.

greater memory use for simple element
addition

smaller in size when compared to memory

Array Creation routines

There are numerous ways to generate Numpy arrays.

To construct ndarray objects, Numpy provides a number of array creation functions.

numpy.empt
y()

builds an array with the provided
form and datatype that is
uninitialized.

numpy.empty(shape_of_array
, dtype)

>>>a = np.empty([2,2],
dtype=int)

>>>print(a)

[[1 2]

[3 4]]

numpy.zeros produces an array with just zeros numpy.zeros(shape, dtype) [[0 0]

 LOVELY PROFESSIONAL UNIVERSITY 77

Unit 06: Introduction to Numpy Notes

() in it. x = np.zeros([2,2], dtype=int)

print(x)

[0 0]]

numpy.ones(
)

produces a single-item array. numpy.ones(shape,dtype)

x = np.ones([2,2])

print(x)

[[1. 1.]

[1. 1.]]

numpy.eye() produces a two-dimensional array
with one on each diagonal and
zeros everywhere else.

numpy.eye(N,M,k=0,dtype)

where

N → no. of rows

M → no. of columns

k → index of the diagonal

>>>x = np.eye(3,k=0,
dtype=int)

>>>print(x)

[[1 0 0]

[0 1 0]

[0 0 1]]

numpy.identi
ty()

gives the identity array with a
primary diagonal of 1.

#numpy.identity(n,dtype)

>>>x = np.identity(4,
dtype=int)

>>>print(x)

[[1 0 0
0]

[0 1 0
0]

[0 0 1
0]

[0 0 0
1]]

numpy.aran
ge()

makes an array with the given
range

#numpy.arange(value,<start>
<stop><step>):

>>>x = np.arange(10)

>>>print(x)

>>>y = np.arange(0,10)

>>>print(y)

>>>z = np.arange(0,10,2)

>>>print(z)

[0 1 2 3
4 5 6 7
8 9]

[0 1 2 3
4 5 6 7
8 9]

[0 2 4 6
8]

numpy.mat() Consider the input to be a matrix. #numpy.mat(data, dtype)

x =
np.mat([(1,2,3),(4,5,6),(7,8,9)],
dtype=int)

print(x)

[[1 2 3]

[4 5 6]

[7 8 9]]

numpy.full() produces a new array containing a
value for the fill.

#np.full(shape, fill_value)

>>>x = np.full(shape=(2,3),
fill_value=7)

>>>print(x)

[[7 7 7]

[7 7 7]]

numpy.asarr
ay()

creates a numpy array from a seque
nce type.

#numpy.asarray(data, dtype)

where

a --> i/p data [lists, tuples,
ndarrays] that can be

[[1 2]

[3 4]]

 LOVELY PROFESSIONAL UNIVERSITY 78

Programming in Python
Notes

converted to an array.

>>>x = np.asarray([[1,2],[3,4]],
dtype=int)

>>>print(x)

6.3 How to Create An Array from Existing Data
numpy.asarray
With the exception of the fact that it has fewer parameters, this function is comparable to
numpy.array. This procedure can be used to translate a Python sequence into a ndarray.

These following parameters are passed to the function Object () {[native code]}.

Sr.No. Parameter & Description

a Any type of data input is acceptable, including
list, list of tuples, tuples, tuples of tuples, and
tuples of lists.

dtype By default, the generated ndarray is affected
by the data type of the incoming data.

order F or C (row major) (column major). defaults to
C.

Examples Output

Example1
convert list to ndarray

import numpy as np

x = [1,2,3]

a = np.asarray(x)

print a

[1 2 3]

Example2
dtype is set

import numpy as np

x = [1,2,3]

a = np.asarray(x, dtype = float)

print a

[1. 2. 3.]

numpy.frombuffer

A buffer is treated as a one-dimensional array by this function. To return an ndarray, any object
that exposes the buffer interface is used as an argument.

numpy.frombuffer(buffer, dtype = float, count = -1, offset = 0)

The following parameters are passed to the constructor

Sr.No. Parameter & Description

numpy.asarray(a, dtype = None, order = None)

 LOVELY PROFESSIONAL UNIVERSITY 79

Unit 06: Introduction to Numpy Notes

1 buffer
whatever object offers the buffer interface

2 dtype

The returned data is a ndarray. by default, is float

3 count

the amount of data to read; a default value of -1 indicates all data

4 offset

the place to start reading from. default is zero.

Example Output

import numpy as np

s = 'Hello World'

a = np.frombuffer(s, dtype = 'S1')

print a

['H' 'e' 'l' 'l' 'o' ' ' 'W' 'o' 'r' 'l' 'd']

numpy.fromiter

This function converts any iterable object into an ndarray object. This function returns a brand-new
one-dimensional array.

numpy.fromiter(iterable, dtype, count = -1)

Sr.No. Parameter & Description

1 iterable

Any iterable object

2 dtype

Data type of resultant array

3 count

The number of items to be read from iterator. Default is -1 which means all data to be
read

The range () function, which may be used to return a list object, is demonstrated in the following
examples. An ndarray object is created using an iterator of this list.

Examples Output

Example1
create list object using range function

import numpy as np

list = range(5)

print list

[0, 1, 2, 3, 4]

Example2
obtain iterator object from list

import numpy as np

[0. 1. 2. 3. 4.]

 LOVELY PROFESSIONAL UNIVERSITY 80

Programming in Python
Notes

list = range(5)

it = iter(list)

use iterator to create ndarray

x = np.fromiter(it, dtype = float)

print x

Indexing and Slicing

Only sequence data types are capable of indexing and slicing. Sequence types maintain the order in
which elements are added, allowing us to retrieve their elements through indexing and slicing.

List, tuple, string, range, byte, and byte arrays are all sequence types in Python. Additionally, all of
these kinds are compatible with indexing and slicing.

6.4 Indexing
An element of an iterable is said to be "indexed" if it is based on where it is located inside the
iterable. Indexing starts at position 0. Index 0 represents the initial element in the sequence.
Indexing in the negative starts at 1. Index -1 serves as a representation of the final element in the
sequence. Each character in a string has a corresponding index number that can be used to access
that character. Characters in a String can be accessed in two different ways.

 Using positive indexing to access characters in strings
 Utilising negative indexing to access characters in strings

C O M P U T E R

Positive Indexing

Negative indexing

0 1 2 3 4 5 6 7 9

-8 -7 -6 -5 -4 -3 -2 -1

Accessing string characters using positive indexing

We pass a Positive index (that we want to access) in square brackets in this situation. Index number
zero is the first in the list of index numbers. (depicts the start of a string's characters).

Program Output

input string

inputString = "Hello tutorialspoint python"

print("0th index character:", inputString[0])

print("7th index character", inputString[7])

print("12th index character:", inputString[12])

('0th index character:', 'H')

('7th index character', 'u')

('12th index character:', 'a')

0th index character: H

7th index character u

12th index character: a

Accessing string characters using negative indexing

In this kind of indexing, the negative index that we want to access is passed in square brackets. In
this instance, the index number starts at -1. (that represents the last character of a string).

Program Output

 LOVELY PROFESSIONAL UNIVERSITY 81

Unit 06: Introduction to Numpy Notes

input string

inputString = "Hello tutorialspoint python"

print("last index character:", inputString[-1])

print("6th index character from last:",
inputString[-6])

('last index character:', 'n')

('6th index character from last:', 'p')

last index character: n

6th index character from last: p

Indexing in List

Program Output

input list

inputList=[1, 4, 8, 6, 2]

print ("Element at index 2:", inputList[2])

print ("last element of an input list:",
inputList[-1])

('Element at index 2:', 8)

('last element of an input list:', 2)

Element at index 2: 8

last element of an input list: 2

6.5 Slicing
Getting a subset of elements from an iterable based on their indices is referred to as "slicing."

By slicing a string, which is essentially a string contained within another string, we can produce a
substring. When we only require a section of the string and not the complete string, we use slicing.

Syntax:
string [start:end: step]

Parameters
start - index from where to start

end - ending index

step - numbers of jumps/increment to take between i.estepsize

Program Output

input string

inputString = "Hello tutorialspoint python"

print("First 4 characters of the string:",
inputString[: 4])

print("Alternate characters from 1 to 10
index(excluded):", inputString[1 : 10 : 2])

print("Alternate characters in reverse order
from 1 to 10 index(excluded):", inputString[-1 :
-10 : -2])

('First 4 characters of the string:', 'Hell')

('Alternate characters from 1 to 10
index(excluded):', 'eluo')

('Alternate characters in reverse order from 1

First 4 characters of the string: Hell

Alternate characters from 1 to 10
index(excluded): eluo

Alternate characters in reverse order from 1 to
10 index(excluded): nhy n

 LOVELY PROFESSIONAL UNIVERSITY 82

Programming in Python
Notes

to 10 index(excluded):', 'nhy n')

6.6 Tuple Slicing
Tuple slicing is an option. It functions similarly to how lists and strings do. Several elements can be
obtained through tuple slicing. The slicing operator is also used to accomplish tuple slicing. The
syntax can be used to express the slicing operator.

Syntax:

[start:stop:step]

6.7 Difference between Indexing and Slicing

Indexing Slicing

It only produces 1 item. A new list or tuple is returned.

If you try to utilise an index that is too big, an
IndexError will be thrown.

Out-of-range indices are handled kindly when
used for slicing.

The list's length cannot be altered by item
assignment during indexing.

By designating objects to slicing, we can
modify the list's length or even remove items
from it.

Indexing can be given a single element or an
iterable.

A Type Error occurs when we assign a single
element to slicing. It only permits iterables.

Summary

 In Python, a list is a group of things that can include items of different data types, such as
numeric, character, logical values, etc

 A vector with members that are homogenous, or of the same data type, is referred to as an
array

 With the exception of the fact that it has fewer parameters, this function is comparable to
numpy.array.

 A buffer is treated as a one-dimensional array by this function. To return an ndarray, any
object that exposes the buffer interface is used as an argument

 This function converts any iterable object into an ndarray object. This function returns a
brand-new one-dimensional array.

 Only sequence data types are capable of indexing and slicing. Sequence types maintain the
order in which elements are added, allowing us to retrieve their elements through indexing
and slicing.

 An element of an iterable is said to be "indexed" if it is based on where it is located inside the
iterable.

 We pass a Positive index (that we want to access) in square brackets in this situation. Index
number zero is the first in the list of index numbers. (depicts the start of a string's characters).

 In this kind of indexing, the negative index that we want to access is passed in square
brackets. In this instance, the index number starts at -1.

 Getting a subset of elements from an iterable based on their indices is referred to as "slicing."
 Tuple slicing is an option. It functions similarly to how lists and strings do. Several elements

can be obtained through tuple slicing.

 LOVELY PROFESSIONAL UNIVERSITY 83

Unit 06: Introduction to Numpy Notes

Keywords
append ():Adds an element at the end of the list

clear ():Removes all the elements from the list

copy ():Returns a copy of the list

count ():Returns the number of elements with the specified value

extend ():Add the elements of a list (or any iterable), to the end of the current list

index ():Returns the index of the first element with the specified value

insert ():Adds an element at the specified position

pop ():Removes the element at the specified position

remove ():Removes the first item with the specified value

reverse ():Reverses the order of the list

sort ():Sorts the list

SelfAssessment

1. Which of the ensuing commands will result in the creation of a list?
A. list1 = list()
B. list1 = []
C. list1 = list([1, 2, 3])
D. all of the mentioned

2. What is the output when we execute list(“hello”)?
A. [‘h’, ‘e’, ‘l’, ‘l’, ‘o’]
B. [‘hello’]
C. [‘llo’]
D. [‘olleh’]

3. What is max(list1) if list1 is [2445,133,12454,123]?
A. 2445
B. 133
C. 12454
D. 123

4. What function do we use to shuffle the list, let's say list1?
A. list1.shuffle()
B. shuffle(list1)
C. random.shuffle(list1)
D. random.shuffleList(list1)

5. What is list1[-1] if list1 is [2, 33, 222, 14, 25]?
A. Error
B. None

 LOVELY PROFESSIONAL UNIVERSITY 84

Programming in Python
Notes

C. 25
D. 2

6. What does Python's NumPy function do?
A. To do numerical calculations
B. To do scientific computing
C. Both A and B
D. None of the mentioned above

7. What other Python libraries are comparable to Pandas?
A. NPy
B. RPy
C. NumPy
D. none of the mentioned above

8. Which of the following statements about Python's Pip is true?
A. Pip is a standard package management system
B. It is used to install and manage the software packages written in Python
C. Pip can be used to search a Python package
D. All of the mentioned above

9. Arrays in NumPy can be.
A. Indexed
B. Sliced
C. Iterated
D. All of the mentioned above

10. What will happen if you observe the following code and predict the outcome?

import numpy as np

a=np.array([1,2,3,4,5,6])

print(a)

A. [1 2 3 4 5]
B. [1 2 3 4 5 6]
C. [0 1 2 3 4 5 6]
D. None of the mentioned above

11. What will happen if you observe the following code and predict the outcome?

import numpy as np

a = np.array([10, 20, 30, 40])

b = np.array([18, 15, 14])

c = np.array([25, 24, 26, 28, 23])

x, y, z = np.ix_(a, b, c)

 LOVELY PROFESSIONAL UNIVERSITY 85

Unit 06: Introduction to Numpy Notes

A. [[10]]
[[20]]
[[30]]
[[40]]]

B. [[[1]]
[[2]]
[[3]]
[[4]]

C. [[5]]]
[[[18]]
[[15]]
[[[14]]]

D. None of the mentioned above

12. ndim allows us to find:
A. We can determine the array's dimension.
B. array size
C. Matrix operational activities
D. None of the previously mentioned

13. What will the following Python code produce?

import numpy as np

a = np.array([(10,20,30)])

print(a.itemsize)

A. 10
B. 9
C. 8
D. All of the mentioned above

14. Which of the following is the truncation division operator in Python?
A. |
B. //
C. /
D. %

15. Which one of the following is not a keyword in Python language?
A. pass
B. eval
C. assert
D. nonlocal

Answers for SelfAssessment

1. D 2. A 3. C 4. A 5. C

 LOVELY PROFESSIONAL UNIVERSITY 86

Programming in Python
Notes

6. C 7. C 8. D 9. D 10. B

11. A 12. A 13. C 14. B 15. B

Review Questions

1. Explain difference between indexing and slicing
2. Differentiate between Arrays and lists with examples.
3. Write down advantages of NumPy arrays compared with lists.
4. Explain using arrays in python with example.
5. Explain copy (), extend (), index (), pop () and remove () method with example.

Further Readings

 Mark Lutz, Programming Python: Powerful Object-Oriented Programming,
OREILLY

 Wes McKinney, Python for data analysis, OREILLY
 David Ascher and Mark Lutz, Learning Python, OREILLY
 Eric Matthes, Python Crash Course, 2nd Edition: A Hands-On, Project-Based

Introduction to Programming, Starch Pres

Web Links

 https://www.tutorialspoint.com/python/index.htm
 https://www.python.org/downloads/
 https://www.w3schools.in/python/data-types
 https://www.programiz.com/python-programming/online-compiler/
 https://www.codecademy.com/catalog/language/python
 https://www.programiz.com/python-programming/user-defined-exception

Programming in Python
Notes

6. C 7. C 8. D 9. D 10. B

11. A 12. A 13. C 14. B 15. B

Review Questions

1. Explain difference between indexing and slicing
2. Differentiate between Arrays and lists with examples.
3. Write down advantages of NumPy arrays compared with lists.
4. Explain using arrays in python with example.
5. Explain copy (), extend (), index (), pop () and remove () method with example.

Further Readings

 Mark Lutz, Programming Python: Powerful Object-Oriented Programming,
OREILLY

 Wes McKinney, Python for data analysis, OREILLY
 David Ascher and Mark Lutz, Learning Python, OREILLY
 Eric Matthes, Python Crash Course, 2nd Edition: A Hands-On, Project-Based

Introduction to Programming, Starch Pres

Web Links

 https://www.tutorialspoint.com/python/index.htm
 https://www.python.org/downloads/
 https://www.w3schools.in/python/data-types
 https://www.programiz.com/python-programming/online-compiler/
 https://www.codecademy.com/catalog/language/python
 https://www.programiz.com/python-programming/user-defined-exception

Programming in Python
Notes

6. C 7. C 8. D 9. D 10. B

11. A 12. A 13. C 14. B 15. B

Review Questions

1. Explain difference between indexing and slicing
2. Differentiate between Arrays and lists with examples.
3. Write down advantages of NumPy arrays compared with lists.
4. Explain using arrays in python with example.
5. Explain copy (), extend (), index (), pop () and remove () method with example.

Further Readings

 Mark Lutz, Programming Python: Powerful Object-Oriented Programming,
OREILLY

 Wes McKinney, Python for data analysis, OREILLY
 David Ascher and Mark Lutz, Learning Python, OREILLY
 Eric Matthes, Python Crash Course, 2nd Edition: A Hands-On, Project-Based

Introduction to Programming, Starch Pres

Web Links

 https://www.tutorialspoint.com/python/index.htm
 https://www.python.org/downloads/
 https://www.w3schools.in/python/data-types
 https://www.programiz.com/python-programming/online-compiler/
 https://www.codecademy.com/catalog/language/python
 https://www.programiz.com/python-programming/user-defined-exception

 LOVELY PROFESSIONAL UNIVERSITY 87

Unit 07: Operations on NumPy Arrays
Notes

Unit 07: Operations on NumPy Arrays

CONTENTS

Objectives

Introduction

7.1 Arrays

7.2 Broadcasting with NumPy Arrays

7.3 Binary Operators

Summary

Keywords

Self Assessment

Answers for Self Assessment

Further Readings

Objectives
After this unit, student would be able to:

 learn basic manipulation operations on arrays.
 learn using broadcasting term how NumPy handles arrays of differing dimensions
 learn different types of binary operators with examples

Introduction
Arrays are not natively supported by Python, although Python Lists can be used in their place. You
can utilize LISTS as ARRAYS as demonstrated on this unit, but in order to interact with arrays in
Python, you must import a library like the NumPy library.

7.1 Arrays
Multiple values can be stored in an array in a single variable as shown in

Table 1 Creating an array containing colors name

Program Output

colors = ["Red", "Green", "Yellow"]

print(colors)

['Red', 'Green', 'Yellow']

What is an Array?

A unique type of variable called an array has the capacity to store several values at once.

If you have a list of objects, such as a list of automobile names, you might store the colors in
separate variables as follows:

colors1 = "Red"

colors2 = "Green"

colors3 = "Yellow"

Dr. Rajni Bhalla, Lovely Profssional University

 LOVELY PROFESSIONAL UNIVERSITY 88

Programming in Python
Notes

How would you discover a specific color if you wanted to loop through all of the colors? What if
you had 300 colors instead of only three?

A system is the answer!

You can use an index number to access the values in an array, which can store numerous values
under a single name.

Access the Elements of an Array

An array element is referred to by its index number.

Program Output

colors = ["Red", "Green", "Yellow"]

x = colors[0]

print(x)

Red

Example: Change the first array item's value:

Program Output

colors = ["Red", "Green", "Yellow"]

colors [0] = “Blue”

print(colors)

['Blue', 'Green', 'Yellow']

The Length of an Array

Return the length of an array using the len() function (the number of elements in an array).

Example:Give the array of colors' element count back:

Program Output

colors = ["Red", "Green", "Yellow"]

x = len(colors)

print(x)

3

An array's length is always one greater than its topmost array index.

Looping Array Elements

To iterate over each element of an array, use the for in loop.

Example: Print each element in the array of colours:

Program Result

colors = ["Red", "Green", "Blue"]

for x in colors:

print(x)

Red

Green

Blue

Adding Array Elements

The append () method can be used to include an element in an array.

Programming in Python
Notes

How would you discover a specific color if you wanted to loop through all of the colors? What if
you had 300 colors instead of only three?

A system is the answer!

You can use an index number to access the values in an array, which can store numerous values
under a single name.

Access the Elements of an Array

An array element is referred to by its index number.

Program Output

colors = ["Red", "Green", "Yellow"]

x = colors[0]

print(x)

Red

Example: Change the first array item's value:

Program Output

colors = ["Red", "Green", "Yellow"]

colors [0] = “Blue”

print(colors)

['Blue', 'Green', 'Yellow']

The Length of an Array

Return the length of an array using the len() function (the number of elements in an array).

Example:Give the array of colors' element count back:

Program Output

colors = ["Red", "Green", "Yellow"]

x = len(colors)

print(x)

3

An array's length is always one greater than its topmost array index.

Looping Array Elements

To iterate over each element of an array, use the for in loop.

Example: Print each element in the array of colours:

Program Result

colors = ["Red", "Green", "Blue"]

for x in colors:

print(x)

Red

Green

Blue

Adding Array Elements

The append () method can be used to include an element in an array.

Programming in Python
Notes

How would you discover a specific color if you wanted to loop through all of the colors? What if
you had 300 colors instead of only three?

A system is the answer!

You can use an index number to access the values in an array, which can store numerous values
under a single name.

Access the Elements of an Array

An array element is referred to by its index number.

Program Output

colors = ["Red", "Green", "Yellow"]

x = colors[0]

print(x)

Red

Example: Change the first array item's value:

Program Output

colors = ["Red", "Green", "Yellow"]

colors [0] = “Blue”

print(colors)

['Blue', 'Green', 'Yellow']

The Length of an Array

Return the length of an array using the len() function (the number of elements in an array).

Example:Give the array of colors' element count back:

Program Output

colors = ["Red", "Green", "Yellow"]

x = len(colors)

print(x)

3

An array's length is always one greater than its topmost array index.

Looping Array Elements

To iterate over each element of an array, use the for in loop.

Example: Print each element in the array of colours:

Program Result

colors = ["Red", "Green", "Blue"]

for x in colors:

print(x)

Red

Green

Blue

Adding Array Elements

The append () method can be used to include an element in an array.

 LOVELY PROFESSIONAL UNIVERSITY 89

Unit 07: Operations on NumPy Arrays
Notes

Example: Add this element to the array of colours:

Program Result

colors = ["Red", "Green", "Yellow"]

colors.append("Blue")

print(colors)

['Red', 'Green', 'Yellow', 'Blue']

Removing Array Elements

To iterate over each element of an array, use the for in loop.

Example:Subtract the second color from the array:

Program Output

colors = ["Red", "Green", "Blue"]

colors.pop(1)

print(colors)

['Red', 'Blue']

The remove () method can also be used to delete an element from an array.

Example: Eliminate the element whose value is "Green"

Program Output

colors = ["Red", "Green", "Blue"]

colors.remove("Green")

print(colors)

['Red', 'Blue']

The remove () method of the list simply eliminates the first instance of the entered value.

Array Methods

Method Description

append() adds a new element to the list's end

clear() removes all of the list's elements.

copy() gives a copy of the list back

count() returns the quantity of elements that have the given value.

extend() To finish the current list, append the entries of another list (or any
iterable)

index() gives back the position of the first element with the given value.

insert() adds a component in the designated location.

pop() removes the component from the designated place.

remove() the first item with the required value is eliminated.

Unit 07: Operations on NumPy Arrays
Notes

Example: Add this element to the array of colours:

Program Result

colors = ["Red", "Green", "Yellow"]

colors.append("Blue")

print(colors)

['Red', 'Green', 'Yellow', 'Blue']

Removing Array Elements

To iterate over each element of an array, use the for in loop.

Example:Subtract the second color from the array:

Program Output

colors = ["Red", "Green", "Blue"]

colors.pop(1)

print(colors)

['Red', 'Blue']

The remove () method can also be used to delete an element from an array.

Example: Eliminate the element whose value is "Green"

Program Output

colors = ["Red", "Green", "Blue"]

colors.remove("Green")

print(colors)

['Red', 'Blue']

The remove () method of the list simply eliminates the first instance of the entered value.

Array Methods

Method Description

append() adds a new element to the list's end

clear() removes all of the list's elements.

copy() gives a copy of the list back

count() returns the quantity of elements that have the given value.

extend() To finish the current list, append the entries of another list (or any
iterable)

index() gives back the position of the first element with the given value.

insert() adds a component in the designated location.

pop() removes the component from the designated place.

remove() the first item with the required value is eliminated.

Unit 07: Operations on NumPy Arrays
Notes

Example: Add this element to the array of colours:

Program Result

colors = ["Red", "Green", "Yellow"]

colors.append("Blue")

print(colors)

['Red', 'Green', 'Yellow', 'Blue']

Removing Array Elements

To iterate over each element of an array, use the for in loop.

Example:Subtract the second color from the array:

Program Output

colors = ["Red", "Green", "Blue"]

colors.pop(1)

print(colors)

['Red', 'Blue']

The remove () method can also be used to delete an element from an array.

Example: Eliminate the element whose value is "Green"

Program Output

colors = ["Red", "Green", "Blue"]

colors.remove("Green")

print(colors)

['Red', 'Blue']

The remove () method of the list simply eliminates the first instance of the entered value.

Array Methods

Method Description

append() adds a new element to the list's end

clear() removes all of the list's elements.

copy() gives a copy of the list back

count() returns the quantity of elements that have the given value.

extend() To finish the current list, append the entries of another list (or any
iterable)

index() gives back the position of the first element with the given value.

insert() adds a component in the designated location.

pop() removes the component from the designated place.

remove() the first item with the required value is eliminated.

 LOVELY PROFESSIONAL UNIVERSITY 90

Programming in Python
Notes

reverse() reverses the list sort's original order ()

sort() lists are sorted

Arrays are not supported by default in Python, however Python Lists can be used in their place.

7.2 Broadcasting with NumPy Arrays
The term "broadcasting" describes how Numpy handles arrays of differing dimensions when
performing operations that result in restrictions; the smaller array is broadcast across the bigger
array to ensure that they have similar forms.

As we know that Numpy is built in C, broadcasting offers a way to vectorize array operations so
that looping happens in C rather than Python. This results in effective algorithm implementations
without the requirement for extra data duplication. In some circumstances, broadcasting is a
negative idea because it results in memory usage that slows down computation.

Program Output

import numpy as np

a = np.array([5, 7, 3, 1])

b = np.array([90, 50, 0, 30])

array are compatible because of same
Dimension

c = a * b

print (c)

[450 350 0 30]

Broadcasting Rules:

1. Prepend the shape of the lower rank array with 1s until both shapes have the same length if the
arrays don't have the same rank.

2. If the two arrays in a dimension have the same size or if one of the arrays has size 1 in that
dimension, the two arrays are compatible in that dimension.

3. If the arrays are consistent with all dimensions, they can be broadcast together.

4. Each array acts as though it has a shape equal to the maximum element-wise shape of the two
input arrays after broadcasting.

5. The first array acts as if it were copied along any dimension where one array had size 1 and the
other array had size larger than 1.

7.3 Binary Operators
The binary operators fall into the following categories:

a. Arithmetic Operators

Common mathematical procedures are carried out using arithmetic operators and numeric values:

Operator Name Example

+ Addition x + y

_ Subtraction x - y

* Multiplication x * y

/ Division x / y

 LOVELY PROFESSIONAL UNIVERSITY 91

Unit 07: Operations on NumPy Arrays
Notes

% Modulus x % y

** Exponentiation x ** y

// Floor Division x // y

b. Bitwise Operators

To compare (binary) numbers, use the following bitwise operators:

Operator Name Description

& AND if both bits are 1, sets each bit to 1.

| OR if one of two bits is 1, it sets each bit to 1.

^ XOR if just one of two bits is 1, it sets each bit to 1.

~ NOT all the bits are inverted.

<< Zero fill left
shift

Pushing zeros in from the right causes a shift to the left, causing
the last few bits to disappear.

>> Signed right
shift

Push copies of the leftmost bit in from the left to shift right whil
e letting the rightmost bits fall off.

c. Relational Operators

The primary purpose of the relational operators, commonly referred to as comparison operators, is
to return either true or false depending on the value of the operands.

The relational operators are listed as follows:

1. <
2. >
3. <=
4. >=
5. ==
6. !=

Summary

 Arrays are not natively supported by Python, although Python Lists can be used in their place
 A unique type of variable called an array has the capacity to store several values at once.
 An array element is referred to by its index number.
 Return the length of an array using the Len () function (the number of elements in an array).
 To iterate over each element of an array, use the for in loop.
 The append () method can be used to include an element in an array.
 The term "broadcasting" describes how Numpy handles arrays of differing dimensions when

performing operations that result in restrictions; the smaller array is broadcast across the
bigger array to ensure that they have similar forms.

 The primary purpose of the relational operators, commonly referred to as comparison
operators, is to return either true or false depending on the value of the operands.

 Python's array module can be imported to generate an array. An array can be created by using
the syntax array (data type, value list), which takes two arguments: a data type and a value
list.

 LOVELY PROFESSIONAL UNIVERSITY 92

Programming in Python
Notes

 The Array can have elements added to it by using the built-in insert () function.
 (1)/O Time Complexity (n) (O(1) for inserting elements at the array's end, O(n) for inserting

elements at its start, and O(n) for inserting elements throughout the entire array.

Keywords
append()Adds an element at the end of the list

clear() Removes all the elements from the list

copy() Returns a copy of the list

count() Returns the number of elements with the specified value

extend()Add the elements of a list (or any iterable), to the end of the current list

index() Returns the index of the first element with the specified value

insert() Adds an element at the specified position

pop() Removes the element at the specified position

remove()Removes the first item with the specified value

reverse()Reverses the order of the list

sort() Sorts the list

Self Assessment

1. What does the following code produce as output?

L = ['d','e','f','g']

print("".join(L))

A. Error
B. None
C. defg
D. ‘d’,’e’,’f’,’g’

2. What does the following code produce as output?

print type(type(int))

A. <type ‘type’>
B. type ‘int’
C. integer
D. 0

3. When a function is declared inside a class, what is called?
A. Function
B. Module
C. Class function
D. Method

4. Which of the following describes how Python's id() function is used?
A. Id returns the identity of the object

 LOVELY PROFESSIONAL UNIVERSITY 93

Unit 07: Operations on NumPy Arrays
Notes

B. Id returns the first number in list
C. Id returns the last number in list
D. None

5. To declare an array, you must use
A. Parenthesis ()
B. Curly brackets { }
C. Pipes | |
D. Brackets []

6. An item's position in an array is known as its
A. Value
B. Location
C. Index
D. Position

7. What else is said to be a FOR-NEXT loop?
A. condition-controlled
B. count-controlled
C. Uncontrolled loop
D. Controlled loop

8. What is the index of the following array's lower bound?

Dim student (24) as string

A. 24
B. 25
C. 23
D. 0

9. In names=[Red, Green, Blue] Index value 1 is?
A. Red
B. Blue
C. 0
D. Green

10. len(names)
A. Finds the length of the list called names
B. Finds the length of the list called len
C. Finds the length of the list called Length
D. None

11. colors = ["Red", "Green", "Blue"]

for x in colors:

 LOVELY PROFESSIONAL UNIVERSITY 94

Programming in Python
Notes

print(x)

A. Red
B. Green
C. Red Green Blue
D. Blue

12. Use of pop () method
A. To add an element to an array
B. To remove an element from an array
C. To remove the first occurrence of the specified value
D. None of above.

13. Use of clear () method
A. Remove only first element from the list
B. Removes all the elements from the list
C. Reverse the list
D. None of above

14. What does the following code produce as output?

val1 = 4

val2 = 4

res = val1 + val2

print(res)

A. 88
B. 44
C. 8
D. 4+4

15. What does the following code produce as output?

val1 = 3

val2 = 2

res = val1 // val2

print(res)

A. 1
B. 2
C. 3
D. 0

16. Explain all arithmetic operatorswith example.
17. Explain bitwise operators with example.
18. Explain relational operators with example.
19. What do you understand by Arrays? Explain difference between array and lists.

 LOVELY PROFESSIONAL UNIVERSITY 95

Unit 07: Operations on NumPy Arrays
Notes

20. The term "broadcasting" describes how NumPy handles arrays of differing dimensions
when performing operations that result in restrictions. Explain with example.

Answers for Self Assessment

1. C 2. A 3. D 4. A 5. D

6. C 7. B 8. B 9. D 10. A

11. C 12. B 13. B 14. C 15. A

Further Readings

 Mark Lutz,Programming Python: Powerful Object-Oriented Programming,
OREILLY

 Wes McKinney, Python for data analysis, OREILLY
 David Ascher and Mark Lutz, Learning Python, OREILLY
 Eric Matthes, Python Crash Course, 2nd Edition: A Hands-On, Project-Based

Introduction to Programming, Starch Pres

Web Links

 https://www.tutorialspoint.com/python/index.htm
 https://www.python.org/downloads/
 https://www.w3schools.in/python/data-types
 https://www.programiz.com/python-programming/online-compiler/
 https://www.codecademy.com/catalog/language/python

Unit 07: Operations on NumPy Arrays
Notes

20. The term "broadcasting" describes how NumPy handles arrays of differing dimensions
when performing operations that result in restrictions. Explain with example.

Answers for Self Assessment

1. C 2. A 3. D 4. A 5. D

6. C 7. B 8. B 9. D 10. A

11. C 12. B 13. B 14. C 15. A

Further Readings

 Mark Lutz,Programming Python: Powerful Object-Oriented Programming,
OREILLY

 Wes McKinney, Python for data analysis, OREILLY
 David Ascher and Mark Lutz, Learning Python, OREILLY
 Eric Matthes, Python Crash Course, 2nd Edition: A Hands-On, Project-Based

Introduction to Programming, Starch Pres

Web Links

 https://www.tutorialspoint.com/python/index.htm
 https://www.python.org/downloads/
 https://www.w3schools.in/python/data-types
 https://www.programiz.com/python-programming/online-compiler/
 https://www.codecademy.com/catalog/language/python

Unit 07: Operations on NumPy Arrays
Notes

20. The term "broadcasting" describes how NumPy handles arrays of differing dimensions
when performing operations that result in restrictions. Explain with example.

Answers for Self Assessment

1. C 2. A 3. D 4. A 5. D

6. C 7. B 8. B 9. D 10. A

11. C 12. B 13. B 14. C 15. A

Further Readings

 Mark Lutz,Programming Python: Powerful Object-Oriented Programming,
OREILLY

 Wes McKinney, Python for data analysis, OREILLY
 David Ascher and Mark Lutz, Learning Python, OREILLY
 Eric Matthes, Python Crash Course, 2nd Edition: A Hands-On, Project-Based

Introduction to Programming, Starch Pres

Web Links

 https://www.tutorialspoint.com/python/index.htm
 https://www.python.org/downloads/
 https://www.w3schools.in/python/data-types
 https://www.programiz.com/python-programming/online-compiler/
 https://www.codecademy.com/catalog/language/python

 LOVELY PROFESSIONAL UNIVERSITY 96

Unit 08: NumPy Functions Notes

Unit 08: NumPy Functions

CONTENTS

Objectives

Introduction

8.1 Constants Provided by the Math Module

8.2 Numbers and Numeric Representation

8.3 Power and Logarithmic Functions

8.4 Trigonometric & Angular Conversion Functions

8.5 Statistical Function in Python

8.6 Sort, Search and Count Function

Summary

Keywords

Self Assessment

Answers for Self Assessment

Further Readings

Objectives

 learn built-in module to run mathematical functions
 learn built-in module to run statistical functions
 learn basic concepts pf sort, search and count Functions

Introduction
Mathematical calculations may occasionally be required when working on certain types of business
or scientific tasks. Python has a math module that can handle these calculations. Basic operations
like addition, subtraction, multiplication, and division as well as more complex ones like
trigonometric, logarithmic, and exponential functions are handled by the math module's functions.
With the aid of a sizable dataset comprising functions that are described with the aid of useful
examples, we learn about the math module from fundamentals to advanced concepts.

We must import the module into our code in order to utilize it.

import math

8.1 Constants Provided by the Math Module
The value of numerous constants, including pi and tau, is provided via the math module. The
usage of such constants eliminates the need to precisely and repeatedly write down the value of
each constant. These constants are offered by the math module:

Some Consonants

Sr.no Consonants & Descriptions

1 pi

Return the value of pi: 3.141592

Dr. Rajni Bhalla, Lovely Profssional University

 LOVELY PROFESSIONAL UNIVERSITY 97

Programming in PythonNotes

2 E

Return the value of natural base e. e is
0.718282

3 tau

Returns the value of tau. tau = 6.283185

4 inf

Returns the infinite

5 nan

Not a number type

8.2 Numbers and Numeric Representation
Numbers are represented using these functions in a variety of ways. The techniques are as follows:

Sr.No Function & Description

1 Ceil(x)
Give the Ceiling value back. It is the smallest integer that is either greater than or
equal to x.

2 copysign(x,y)
It copies the sign of y to x and returns the number x.

3 fbas(x)
gives x's absolute value back.

4 factorial(x)
returns the x factorial, where x >=0.

5 floor(x)
Give the Floor value back. It is the greatest integer that is less than or equal to x.

6 fsum(iterable)

Calculate the elemental sum of an iterable object.

7 gcd(x, y)

returns the x and y's greatest common divisor.

8 isfinite(x)
determines whether x is neither a nan nor an infinite.

9 isinf(x)
determines if x is infinite

10 isnan(x)
determines whether or not x is a number.

11 remainder(x,y)
Calculate the leftover after dividing x by y.

 LOVELY PROFESSIONAL UNIVERSITY 98

Unit 08: NumPy Functions Notes

Example Code

import math

print('The Floor and Ceiling value of 23.56 are: ' + str(math.ceil(23.56)) + ', ' +
str(math.floor(23.56)))

x = 10

y = -15

print('The value of x after copying the sign from y is: ' + str(math.copysign(x, y)))

print('Absolute value of -96 and 56 are: ' + str(math.fabs(-96)) + ', ' + str(math.fabs(56)))

my_list = [12, 4.25, 89, 3.02, -65.23, -7.2, 6.3]

print('Sum of the elements of the list: ' + str(math.fsum(my_list)))

print('The GCD of 24 and 56 : ' + str(math.gcd(24, 56)))

x = float('nan')

if math.isnan(x):

print('It is not a number')

x = float('inf')

y = 45

if math.isinf(x):

print('It is Infinity')

print(math.isfinite(x)) #x is not a finite number

print(math.isfinite(y)) #y is a finite number

Output

The Floor and Ceiling value of 23.56 are: 24, 23

The value of x after copying the sign from y is: -10.0

Absolute value of -96 and 56 are: 96.0, 56.0

Sum of the elements of the list: 42.13999999999999

The GCD of 24 and 56 : 8

It is not a number

It is Infinity

False

True

8.3 Power and Logarithmic Functions
These functions are used to do various power- and logarithmic-related calculations.

Sr.No Function & Description

1 pow(x,y)
the value of x raised to the power of y

2 sqrt(x)
determines x's square root

 LOVELY PROFESSIONAL UNIVERSITY 99

Programming in PythonNotes

3 exp(x)
Finds xe, where e = 2.718281

4 log(x[, base])
provides the base and returns the Log of x. The standard base is e.

5 log2(x)
gives the Log of x with base 2 as a result.

6 log10(x)
provides the Log of x with a base of 10.

Example Code

import math

print('The value of 5^8: ' + str(math.pow(5, 8)))

print('Square root of 400: ' + str(math.sqrt(400)))

print('The value of 5^e: ' + str(math.exp(5)))

print('The value of Log(625), base 5: ' + str(math.log(625, 5)))

print('The value of Log(1024), base 2: ' + str(math.log2(1024)))

print('The value of Log(1024), base 10: ' + str(math.log10(1024)))

Output

The value of 5^8: 390625.0

Square root of 400: 20.0

The value of 5^e: 148.4131591025766

The value of Log(625), base 5: 4.0

The value of Log(1024), base 2: 10.0

The value of Log(1024), base 10: 3.010299956639812

8.4 Trigonometric & Angular Conversion Functions
Different trigonometric operations are computed using these functions.

Sr.No. Function & Description

1 sin(x)
Specify x's sine in radians.

2 cos(x)
Specify x's cosine in radians.

3 tan(x)
Give back x's tangent in radians.

4 asin(x)
This is the sine's inverse operation; the other two are acos and atan.

5 degrees(x)
Change angle x's radian value to a degree.

 LOVELY PROFESSIONAL UNIVERSITY 100

Unit 08: NumPy Functions Notes

6 radians(x)
x-angle conversion from degrees to radians

Example Code

import math

print('The value of Sin(60 degree): ' + str(math.sin(math.radians(60))))

print('The value of cos(pi): ' + str(math.cos(math.pi)))

print('The value of tan(90 degree): ' + str(math.tan(math.pi/2)))

print('The angle of sin(0.8660254037844386): ' +
str(math.degrees(math.asin(0.8660254037844386))))

Output

The value of Sin(60 degree): 0.8660254037844386

The value of cos(pi): -1.0

The value of tan(90 degree): 1.633123935319537e+16

The angle of sin(0.8660254037844386): 59.99999999999999

8.5 Statistical Function in Python
By importing the statistic keyword, Python has the capacity to solve mathematical expressions and
statistical data. Numerous statistical and mathematical calculations can be performed using Python.

These procedures determine the sample or population's average value.

mean() Arithmetic mean value (average) of data.

harmonic_mean() Harmonic mean value of data.

median() Median value (middle value) of data.

median_low() Low median value of data.

median_high() High median value of data.

median_grouped() Median of the grouped data and also calculate
the 50th percentile of the grouped data.

mode() Maximum number of occurrence of data.

a. mean()

With the use of an iterator or series, this function determines the arithmetic mean or average value
of the sampled data.

Example Output

list = [1, 2, 3,3,4,5,]

print ("The mean values is : ",end="")

print (statistics.mean(list))

The mean value is : 3

b. harmonic_mean()

 LOVELY PROFESSIONAL UNIVERSITY 101

Programming in PythonNotes

This function computes a real-valued number's harmonic mean sequentially or iteratively.

Example Output

list = [1,2,3]

print ("The harmonic _mean values is : ",end="")

print (statistics.harmonic_mean(list))

The harmonic _mean values is :1.6

c. median()

The middle value of the arithmetic data is calculated using this function iteratively.

Example Output

list= [1, 3,5,7]

print ("The median values is : ",end="")

print (statistics.median(list))

The median values is :4.0

d. median_low()

When there are more even than odd components in the data, this function calculates the lower of
the two middle elements, rather than the median.

Example Output

list = [1,2,2,3,3,3]

print ("The median_low values is : ",end="")
print (statistics.median_low(list))

The median_low values is :2

e. median_high

If there are even numbers of items, this function calculates the higher of the two middle elements in
the data; otherwise, it calculates the median of the data.

Example Output

list = [1,2,2,3,3,3]

print ("The median_high values is : ",end="")

print (statistics.median_high(list))

The median_high values is :3

f. median_grouped

Example Output

list = [2,2,3,4]

print ("The median_grouped values is : ",end="")
print (statistics.median_grouped(list))

The median_grouped values is : 2.5

g. mode()

This method returns the data point with the greatest number of occurrences from nominal or
discrete data.

Example Output

list = [2,2,3,4,4,1,2]
print ("The mode values is : ",end="")
print (statistics.mode(list))

The mode values are: 2

 LOVELY PROFESSIONAL UNIVERSITY 102

Unit 08: NumPy Functions Notes

8.6 Sort, Search and Count Function
NumPy has a number of functions that are relevant to sorting. These sorting functions implement
many sorting algorithms, each of which is distinguished by its execution speed, worst-case
performance, required workspace, and algorithmic stability. Three sorting algorithms are compared
in the table below.

Kindl Speed Worst Case Work Space Stable

‘quicksort’ 1 O(n^2) 0 no

‘mergesort’ 2 O(n*log(n)) ~n/2 yes

‘heapsort’ 3 O(n*log(n)) 0 no

numpy.sort()

A sorted version of the input array is returned by the sort () function. The following characteristics
apply.
numpy.sort(a, axis, kind, order)

where,

Sr.No Parameter & Description

1 A
Array to be sorted

2 Axis
the direction that the array should be sorted
along. If none, sorting on the last axis flattens
the array.

3 Kind
default is quicksort

4 Order
If the array has fields, specify how they should
be sorted.

Example

import numpy as np

a = np.array([[3,7],[9,1]])

print 'Our array is:'

print a

print '\n'

print 'Applying sort() function:'

print np.sort(a)

print '\n'

print 'Sort along axis 0:'

print np.sort(a, axis = 0)

print '\n'

 LOVELY PROFESSIONAL UNIVERSITY 103

Programming in PythonNotes

Order parameter in sort function

dt = np.dtype([('name', 'S10'),('age', int)])

a = np.array([("raju",21),("anil",25),("ravi", 17), ("amar",27)], dtype = dt)

print 'Our array is:'

print a

print '\n'

print 'Order by name:'

print np.sort(a, order = 'name')

Output

Our array is:

[[3 7]

[9 1]]

Applying sort() function:

[[3 7]

[1 9]]

Sort along axis 0:

[[3 1]

[9 7]]

Our array is:

[('raju', 21) ('anil', 25) ('ravi', 17) ('amar', 27)]

Order by name:

[('amar', 27) ('anil', 25) ('raju', 21) ('ravi', 17)]

numpy.argsort()

The numpy.argsort() function returns an array of data indices by performing an indirect sort on the
input array along the specified axis. The sorted array is built using this indices array.

Example

import numpy as np

x = np.array([3, 1, 2])

print 'Our array is:'

print x

print '\n'

print 'Applying argsort() to x:'

y = np.argsort(x)

print y

print '\n'

print 'Reconstruct original array in sorted order:'

print x[y]

print '\n'

print 'Reconstruct the original array using loop:'

 LOVELY PROFESSIONAL UNIVERSITY 104

Unit 08: NumPy Functions Notes

for i in y:

print x[i],

Output

Our array is:

[3 1 2]

Applying argsort() to x:

[1 2 0]

Reconstruct original array in sorted order:

[1 2 3]

Reconstruct the original array using loop:

1 2 3

numpy.lexsort()

Function uses a series of keys to conduct an indirect sort. The keys can be thought of as a
spreadsheet column. The function provides a list of indices that can be used to access the sorted
data. Keep in mind that the sort's primary key just so happens to be the last key.

Example

import numpy as np

nm = ('raju','anil','ravi','amar')

dv = ('f.y.', 's.y.', 's.y.', 'f.y.')

ind = np.lexsort((dv,nm))

print 'Applying lexsort() function:'

print ind

print '\n'

print 'Use this index to get sorted data:'

print [nm[i] + ", " + dv[i] for i in ind]

Output

Applying lexsort() function:

[3 1 0 2]

Use this index to get sorted data:

['amar, f.y.', 'anil, s.y.', 'raju, f.y.', 'ravi, s.y.']

Numerous functions for searching inside an array are available in the NumPy module. There are
functions for determining the maximum, minimum, and items satisfying a particular criterion.

numpy.argmax() and numpy.argmin()

These two operations give back the indices of the highest and lowest elements along the specified
axis.

import numpy as np

a = np.array([[30,40,70],[80,20,10],[50,90,60]])

print 'Our array is:'

 LOVELY PROFESSIONAL UNIVERSITY 105

Programming in PythonNotes

print a

print '\n'

print 'Applying argmax() function:'

print np.argmax(a)

print '\n'

print 'Index of maximum number in flattened array'

print a.flatten()

print '\n'

print 'Array containing indices of maximum along axis 0:'

maxindex = np.argmax(a, axis = 0)

print maxindex

print '\n'

print 'Array containing indices of maximum along axis 1:'

maxindex = np.argmax(a, axis = 1)

print maxindex

print '\n'

print 'Applying argmin() function:'

minindex = np.argmin(a)

print minindex

print '\n'

print 'Flattened array:'

print a.flatten()[minindex]

print '\n'

print 'Flattened array along axis 0:'

minindex = np.argmin(a, axis = 0)

print minindex

print '\n'

print 'Flattened array along axis 1:'

minindex = np.argmin(a, axis = 1)

print minindex

Output

Our array is:

[[30 40 70]

[80 20 10]

[50 90 60]]

Applying argmax() function:

7

Index of maximum number in flattened array

[30 40 70 80 20 10 50 90 60]

Array containing indices of maximum along axis 0:

 LOVELY PROFESSIONAL UNIVERSITY 106

Unit 08: NumPy Functions Notes

[1 2 0]

Array containing indices of maximum along axis 1:

[2 0 1]

Applying argmin() function:

5

Flattened array:

10

Flattened array along axis 0:

[0 1 1]

Flattened array along axis 1:

[0 2 0]

numpy.nonzero()

The output of the numpy.nonzero() function is the indexes of the array's non-zero members.

Example

import numpy as np

a = np.array([[30,40,0],[0,20,10],[50,0,60]])

print 'Our array is:'

print a

print '\n'

print 'Applying nonzero() function:'

print np.nonzero (a)

Output

Our array is:

[[30 40 0]

[0 20 10]

[50 0 60]]

Applying nonzero() function:

(array([0, 0, 1, 1, 2, 2]), array([0, 1, 1, 2, 0, 2]))

numpy.where()

The where() function returns the indices of input array members that satisfy the specified criterion.

Example

import numpy as np

x = np.arange(9.).reshape(3, 3)

print 'Our array is:'

print x

print 'Indices of elements > 3'

y = np.where(x > 3)

 LOVELY PROFESSIONAL UNIVERSITY 107

Programming in PythonNotes

print y

print 'Use these indices to get elements satisfying the condition'

print x[y]

Output

Our array is:

[[0. 1. 2.]

[3. 4. 5.]

[6. 7. 8.]]

Indices of elements > 3

(array([1, 1, 2, 2, 2]), array([1, 2, 0, 1, 2]))

Use these indices to get elements satisfying the condition

[4. 5. 6. 7. 8.]

numpy.extract()

The elements satisfying any criterion are returned by the extract() function.

Example

import numpy as np

x = np.arange(9.).reshape(3, 3)

print 'Our array is:'

print x

define a condition

condition = np.mod(x,2) == 0

print 'Element-wise value of condition'

print condition

print 'Extract elements using condition'

print np.extract(condition, x)

Output

Our array is:

[[0. 1. 2.]

[3. 4. 5.]

[6. 7. 8.]]

Element-wise value of condition

[[True False True]

[False True False]

[True False True]]

Extract elements using condition

[0. 2. 4. 6. 8.]

 LOVELY PROFESSIONAL UNIVERSITY 108

Unit 08: NumPy Functions Notes

Summary

 Mathematical calculations may occasionally be required when working on certain types of
business or scientific tasks

 The value of numerous constants, including pi and tau, is provided via the math module
 By importing the statistic keyword, Python has the capacity to solve mathematical expressions

and statistical data.
 With the use of an iterator or series, this function determines the arithmetic mean or average

value of the sampled data.
 When there are more even than odd components in the data, this function calculates the lower

of the two middle elements, rather than the median.
 If there are even numbers of items, this function calculates the higher of the two middle

elements in the data; otherwise, it calculates the median of the data.
 NumPy has a number of functions that are relevant to sorting. These sorting functions

implement many sorting algorithms, each of which is distinguished by its execution speed,
worst-case performance, required workspace, and algorithmic stability

 A sorted version of the input array is returned by the sort() function.
 The numpy.argsort() function returns an array of data indices by performing an indirect sort

on the input array along the specified axis.
 Function uses a series of keys to conduct an indirect sort. The keys can be thought of as a

spreadsheet column.

Keywords
numpy.sort(): A sorted version of the input array is returned by the sort() function.

numpy.argsort(): The numpy.argsort() function returns an array of data indices by performing an
indirect sort on the input array along the specified axis. The sorted array is built using this indices
array.

numpy.lexsort(): function uses a series of keys to conduct an indirect sort. The keys can be
thought of as a spreadsheet column. The function provides an array of indices that can be used to
retrieve the sorted data.

numpy.argmax() and numpy.argmin(): These two operations give back the indices of the
highest and lowest elements along the specified axis.

numpy.nonzero():The output of the numpy.nonzero() function is the indexes of the array's non-
zero members.

numpy.where():The where() function returns the indices of input array members that satisfy the
specified criterion.

numpy.extract():The function extract() returns elements that meet any requirement.

Self Assessment

1. What does the following code produce as output?

Import math Library

import math

print(math.acos(0.65)

A. 0.863211890069541
B. 2.15316056466364

 LOVELY PROFESSIONAL UNIVERSITY 109

Programming in PythonNotes

C. 1.5707963267948966
D. 0.0

2. What does the following code produce as output?

Import statistics Library

import statistics

print(statistics.mean([2, 4, 8, 16, 9, 11, 13]))

A. 7
B. 9
C. 8
D. 0

3. What does the following code produce as output?

Import statistics Library

import statistics

print(statistics.median([2, 4, 6, 8, 16, 11, 13]))

A. 7
B. 9
C. 8
D. 8.5

4. What does the following code produce as output?

print(math.ceil(2.4))

print(math.ceil(6.3))

print(math.ceil(-4.3))

print(math.ceil(21.6))

print(math.ceil(15.0))

A. 4,7,-4,22,17
B. 4,7,-4,21,15
C. 4,7,-4,22,15
D. 3,7,-4,22,15

5. What does the following code produce as output?

import math Library

import math

print(math.isfinite(5670))

print(math.isfinite(-46.33))

print(math.isfinite(math.inf))

A. True, True, False
B. False, True, False
C. True, False, False
D. True, True, True

 LOVELY PROFESSIONAL UNIVERSITY 110

Unit 08: NumPy Functions Notes

6. What does the following code produce as output?

Import statistics Library

import statistics

Calculate the variance from a sample of data

print(statistics.variance([2, 4, 6, 8, 8, 10]))

A. 7.6666666
B. 8.6666666
C. 9.6666667
D. 7.456789

7. What does the following code produce as output?

Import statistics Library

import statistics

Calculate the standard deviation from a sample of data

print(statistics.stdev([2, 4, 6, 8, 10, 12]))

A. 3.7416573867739413
B. 3.8516573867739413
C. 4.7416573867739413
D. 3.9426673867739413

8. What does the following code produce as output?

Import statistics Library

import statistics

Calculate the mode

print(statistics.mode([2, 4, 4, 5, 6, 8, 8, 10]))

A. 3
B. 6
C. 5
D. 4

9. What does the following code produce as output?

Import math Library

import math

Initialize the number of items to choose from

n = 5

Initialize the number of possibilities to choose

k = 4

Print total number of possible combinations

print (math.comb(n, k))

A. 6
B. 7
C. 5
D. 4

 LOVELY PROFESSIONAL UNIVERSITY 111

Programming in PythonNotes

10. What does the following code produce as output?

#Import math Library

import math

#Convert angles from radians to degrees:

print (math.degrees(7.90))

print (math.degrees(-12))

A. 852.63665815335037, -687.5493541569879
B. 352.63665815335037, -687.5493541569879
C. 462.63665815335037, -887.5493541569879
D. 452.63665815335037, -687.5493541569879

11. What does the following code produce as output?

#Import math Library

import math

#Remove - sign of given number

print(math.fabs(-55.34))

print(math.fabs(-6))

A. 55.34, 6.0
B. 54.34,6.0
C. 55.24,6.0
D. None of above
E. Red Green Blue
F. Blue

12. What does the following code produce as output?

Import math Library

import math

Return the base-10 logarithm of different numbers

print(math.log10(1.8183))

A. 0.359665538729672
B. 0.269665538729672
C. 0.459665538729672
D. 0.259665538729672

13. What does the following code produce as output?

Import statistics Library

import statistics

Calculate the variance of an entire population

print(statistics.pvariance([2, 4, 6, 8, 9, 11]))

A. 10.222222222222223
B. 11.222222222222223
C. 9.222222222222223

 LOVELY PROFESSIONAL UNIVERSITY 112

Unit 08: NumPy Functions Notes

D. 12.222222222222223

14. What does the following code produce as output?

#Import math Library

import math

#find the the greatest common divisor of the two integers

print (math.gcd(4, 5))

A. 1
B. 2
C. 3
D. 4+4

15. What does the following code produce as output?

Import math Library

import math

Return the value of 9 raised to the power of 3

print(math.pow(4, 3))1

A. 12
B. 64
C. 444
D. None of above

16. Explain with example function of ceil () and copysign ()
17. Explain power and logarithmic functions
18. Explain trigonometric and angular conversion functions.
19. Explain statistical functions in python.
20. Explain sort, search and count function in python

Answers for Self Assessment

1. A 2. B 3. C 4. D 5. A

6. A 7. A 8. D 9. C 10. D

11. A 12. D 13. C 14. A 15. B

FurtherReadings

 Mark Lutz,Programming Python: Powerful Object-Oriented Programming,
OREILLY

 Wes McKinney, Python for data analysis, OREILLY
 David Ascher and Mark Lutz, Learning Python, OREILLY
 Eric Matthes, Python Crash Course, 2nd Edition: A Hands-On, Project-Based

Introduction to Programming, Starch Pres

Unit 08: NumPy Functions Notes

D. 12.222222222222223

14. What does the following code produce as output?

#Import math Library

import math

#find the the greatest common divisor of the two integers

print (math.gcd(4, 5))

A. 1
B. 2
C. 3
D. 4+4

15. What does the following code produce as output?

Import math Library

import math

Return the value of 9 raised to the power of 3

print(math.pow(4, 3))1

A. 12
B. 64
C. 444
D. None of above

16. Explain with example function of ceil () and copysign ()
17. Explain power and logarithmic functions
18. Explain trigonometric and angular conversion functions.
19. Explain statistical functions in python.
20. Explain sort, search and count function in python

Answers for Self Assessment

1. A 2. B 3. C 4. D 5. A

6. A 7. A 8. D 9. C 10. D

11. A 12. D 13. C 14. A 15. B

FurtherReadings

 Mark Lutz,Programming Python: Powerful Object-Oriented Programming,
OREILLY

 Wes McKinney, Python for data analysis, OREILLY
 David Ascher and Mark Lutz, Learning Python, OREILLY
 Eric Matthes, Python Crash Course, 2nd Edition: A Hands-On, Project-Based

Introduction to Programming, Starch Pres

Unit 08: NumPy Functions Notes

D. 12.222222222222223

14. What does the following code produce as output?

#Import math Library

import math

#find the the greatest common divisor of the two integers

print (math.gcd(4, 5))

A. 1
B. 2
C. 3
D. 4+4

15. What does the following code produce as output?

Import math Library

import math

Return the value of 9 raised to the power of 3

print(math.pow(4, 3))1

A. 12
B. 64
C. 444
D. None of above

16. Explain with example function of ceil () and copysign ()
17. Explain power and logarithmic functions
18. Explain trigonometric and angular conversion functions.
19. Explain statistical functions in python.
20. Explain sort, search and count function in python

Answers for Self Assessment

1. A 2. B 3. C 4. D 5. A

6. A 7. A 8. D 9. C 10. D

11. A 12. D 13. C 14. A 15. B

FurtherReadings

 Mark Lutz,Programming Python: Powerful Object-Oriented Programming,
OREILLY

 Wes McKinney, Python for data analysis, OREILLY
 David Ascher and Mark Lutz, Learning Python, OREILLY
 Eric Matthes, Python Crash Course, 2nd Edition: A Hands-On, Project-Based

Introduction to Programming, Starch Pres

 LOVELY PROFESSIONAL UNIVERSITY 113

Programming in PythonNotes

Web Links

 https://www.tutorialspoint.com/python/index.htm
 https://www.python.org/downloads/
 https://www.w3schools.in/python/data-types
 https://www.programiz.com/python-programming/online-compiler/
 https://www.codecademy.com/catalog/language/python

Programming in PythonNotes

Web Links

 https://www.tutorialspoint.com/python/index.htm
 https://www.python.org/downloads/
 https://www.w3schools.in/python/data-types
 https://www.programiz.com/python-programming/online-compiler/
 https://www.codecademy.com/catalog/language/python

Programming in PythonNotes

Web Links

 https://www.tutorialspoint.com/python/index.htm
 https://www.python.org/downloads/
 https://www.w3schools.in/python/data-types
 https://www.programiz.com/python-programming/online-compiler/
 https://www.codecademy.com/catalog/language/python

 LOVELY PROFESSIONAL UNIVERSITY 114

Unit 09: Handling with Pandas
Notes

Unit 09: Handling with Pandas

CONTENTS

Objectives

Introduction

9.1 Why use Pandas?

9.2 What is a Series

9.3 DataFrames

9.4 Python List Sort () Method

9.5 Working with CSV Files for Data Science

9.6 Operations Using Data Frame

Summary

Keywords

Self Assessment

Answers for Self Assessment

Further Readings

Objectives

 Series, Dataframe, Sorting, Working with Csv Files
 Operations Using Dataframe

Introduction
Python's Pandas package is used to manipulate data sets.

It offers tools for data exploration, cleaning, analysis, and manipulation.

Wes McKinney came up with the name "Pandas" in 2008, and it refers to both "Panel Data" and
"Python Data Analysis."

9.1 Why use Pandas?
With the aid of Pandas, we can examine large data sets and draw conclusions based on statistical
principles.

Pandas can organizedisorganized data sets, making them readable and useful.

In data science, relevant data is crucial.

Data Science is a subfield of computer science that focuses on the storage, utilization, and analysis
of data with the goal of extracting knowledge from it.

What can Pandas Do?

Pandas provides you with information on the data. Like:

Does a relationship exist between two or more columns?

What is the median value?

The maximum?

Minimum value

Dr. Rajni Bhalla, Lovely Profssional University

 LOVELY PROFESSIONAL UNIVERSITY 115

Programming in Python
Notes

Rows that are irrelevant or contain incorrect data, such as empty or NULL values, can also be
deleted by Pandas. This process is known as data cleaning.

Installation of Pandas

Pandas installation is fairly simple if Python and PIP are already installed on a machine.

Use this command to install it:

Use a Python distribution with Pandas already installed, such as Anaconda, Spyder, etc., if this
command fails.

Import Pandas

Once Pandas is installed, import it by adding the import keyword to your applications:

Pandas has been imported and is now ready for usage.

Example Output

import pandas as pd

mydataset = {

'cars': ["BMW", "Volvo", "Ford"],

'passings': [3, 7, 2]

}myvar = pd.DataFrame(mydataset)

print(myvar)

cars passings

0 BMW 3

1 Volvo 7

2 Ford 2

Pandas Series

9.2 What is a Series
A Pandas Series resembles a table's column.

It is a one-dimensional array that can hold any kind of data.

Program Output

import pandas as pd

a = [3, 6, 1]

myvar = pd.Series(a)

print(myvar)

0 3

1 6

2 1

dtype: int64

Labels

The values are identified with their index number if nothing else is supplied. The index of the first
item is 0, that of the second is 1, etc.

To access a certain value, use this label.

Program Output

import pandas as pd

a = [3, 6, 1]

myvar = pd.Series(a)

3

Import pandas

pip install pandas

 LOVELY PROFESSIONAL UNIVERSITY 116

Unit 09: Handling with Pandas
Notes

print(myvar[0])

Create Labels

You are able to name your own labels using the index option.

Program Output

import pandas as pd

a = [3, 6, 1]

myvar = pd.Series(a, index = ["a", "b", "c"])

print(myvar)

a 3

b 6

c 1

dtype: int64

When you create labels, you can use the label to get to an item.

Program Output

import pandas as pd

a = [3, 6, 1]

myvar = pd.Series(a, index = ["a", "b", "c"])

print(myvar["b"])

6

Key/Value Objects as Series

When constructing a Series, you can also utilise a key/value object like a dictionary.

Program Output

import pandas as pd

calories = {"day1": 330, "day2": 420, "day3":
300}

myvar = pd.Series(calories)

print(myvar)

day1 330

day2 420

day3 300

dtype: int64

Note: The labels are changed into the dictionary's keys.

Use the index option to specify only the words you wish to be included in the Series, leaving out
the rest of the words in the dictionary.

Program Output

import pandas as pd

calories = {"day1": 400, "day2": 320, "day3":
300}

myvar = pd.Series(calories, index = ["day1",
"day2"])

print(myvar)

day1 400
day2 320
dtype: int64

9.3 DataFrames
Known as DataFrames in Pandas, data sets are often multidimensional tables.

A DataFrame is the entire table, but a Series is similar to a column.

Program Output

 LOVELY PROFESSIONAL UNIVERSITY 117

Programming in Python
Notes

import pandas as pd

data = {

"calories": [320, 480, 590],

"duration": [30, 50, 55]

}

myvar = pd.DataFrame(data)

print(myvar)

calories duration

0 320 30

1 480 50

2 590 55

9.4 Python List Sort () Method

Program Output

colors = ['Red', 'Green', 'Blue']

colors.sort()

print(colors)

['Blue', 'Green', 'Red']

Definition and Usage

The list is automatically sorted ascending using the sort () method. Making a function to select the
sorting criteria is another option (s).

Syntax

list.sort(reverse=True|False, key=myFunc)

Parameter Values

Parameter Description

reverse Optional. reverse=True will sort the list
descending. Default is reverse=False

Key Optional. A function to specify the sorting
criteria(s)

Sort the list descending

Program Output

colors = ['Blue', 'Green', 'Red']

colors.sort(reverse=True)

print(colors)

['Red', 'Green', 'Blue']

Sort the list by length of values:

Program Output

 LOVELY PROFESSIONAL UNIVERSITY 118

Unit 09: Handling with Pandas
Notes

A function that returns the length of the
value:

def myFunc(e):

return len(e)

cars = ['Ford', 'Mitsubishi', 'BMW', 'VW']

cars.sort(key=myFunc)

print(cars)

['VW', 'BMW', 'Ford', 'Mitsubishi']

Sort a list of dictionaries based on the "year" value of the dictionaries

Program Output

def myFunc(e):

return e['year']

cars = [

{'car': 'Ford', 'year': 2005},

{'car': 'Mitsubishi', 'year': 2000},

{'car': 'BMW', 'year': 2019},

{'car': 'VW', 'year': 2011}

]

cars.sort(key=myFunc)

print(cars)

[{'car': 'Mitsubishi', 'year': 2000}, {'car': 'Ford',
'year': 2005}, {'car': 'VW', 'year': 2011}, {'car':
'BMW', 'year': 2019}]

9.5 Working with CSV Files for Data Science
What is CSV?

The term "Comma Separated Values" or CSV. It is the most basic way to save tabular data as plain
text. Because we as data scientists usually use CSV data in our daily work, it is crucial to know how
to work with it.

Structure of CSV

Year Experience Salary

2001 1 39343

2004 5 40000

2015 6 70000

The document is called "Salary Data.csv." The header line of a CSV file contains the names of the
fields and features.

Reading a CSV

Python offers a variety of CSV file handling options.

Using csv.reader
Using the csv.reader object, the Python language's built-in module for reading CSV files.

Steps to Read a CSV File

 LOVELY PROFESSIONAL UNIVERSITY 119

Programming in Python
Notes

1. Import the csv library

import csv

2. Open the csv file

file = open('Salary_Data.csv')

type(file)

3. Use the csv.reader object to read the csv file

csvreader = csv.reader(file)

4. Extract the field names

Make a header list that is empty. To get the header, use the next() method.

The.next() method advances to the following row while returning the current row.

When you call next() for the first time, it returns the header; the second time, it returns the
first record; and so on.

header = []

header = next(csvreader)

header

5. Extract the rows/records
As you iterate over the csvreader object, create an empty list called rows and append each
row to the rows list.

rows = []

for row in csvreader:

rows.append(row)

rows

6. Close the file

The opened file is closed using the.close() method. Once closed, we are unable to operate
on it in any way.

file.close()

Steps of reading CSV files using pandas

1. Import pandas library

import pandas as pd

2. Load CSV files to pandas using read_csv()

Basic Syntax: pandas.read_csv(filename, delimiter=’,’)

data= pd.read_csv("Salary_Data.csv")

3. Extract the field names

.columns is used to obtain the header/field names.

data.columns

4. Extract the rows

All the data of a data frame can be accessed using the field names.

data.Salary

 LOVELY PROFESSIONAL UNIVERSITY 120

Unit 09: Handling with Pandas
Notes

9.6 Operations Using Data Frame
The datasets will be loaded into a Pandas Data Frame in the real world from existing storage, which
may be a SQL database, a CSV file, or an Excel file. You can generate a Pandas Data Frame from
lists, dictionaries, and lists of dictionaries, for example. A data frame can be constructed in a variety
of ways. The following are some examples:

Creating Data Frame using List: You can generate a Data Frame from a single list or from a list
of lists.

Program Output

import pandas as pd

import pandas as pd

list of strings

lst = ['This', 'is', 'my', 'File',

'read', 'it', 'carefully']

Calling DataFrame constructor on list

df = pd.DataFrame(lst)

print(df)

0

0 This

1 is

2 my

3 File

4 read

5 it

6 carefully

Creating Data Frame from dict of ndarray/lists:
The length of each narray must be the same in order to generate a DataFrame from a dict of

narray/list. If index is supplied, the length index must match the length of the arrays. If no index is
provided, range(n), where n is the length of the array, will be used as the default index.

Program Output

Python code demonstrate creating

DataFrame from dictnarray / lists

By default addresses.

import pandas as pd

intialise data of lists.

data = {'Name':['Tom', 'nick', 'krish', 'jack'],

'Age':[20, 21, 19, 18]}

Create DataFrame

df = pd.DataFrame(data)

Print the output.

print(df)

Name Age

0 Tom 20

1 nick 21

2 krish 19

3 jack 18

Data is arranged in rows and columns in a data frame, which is a two-dimensional data structure.
Basic operations like selecting, removing, adding, and renaming can be done on rows and columns.

Column selection: We have two options for accessing columns in a Pandas DataFrame in order to
choose one of them.

 LOVELY PROFESSIONAL UNIVERSITY 121

Programming in Python
Notes

Program Output

Import pandas package

import pandas as pd

Define a dictionary containing employee
data

data = {'Name':['Jai', 'Princi', 'Gaurav', 'Anuj'],

'Age':[27, 24, 22, 32],

'Address':['Delhi', 'Kanpur', 'Allahabad',
'Kannauj'],

'Qualification':['Msc', 'MA', 'MCA', 'Phd']}

Convert the dictionary into DataFrame

df = pd.DataFrame(data)

select two columns

print(df[['Name', 'Qualification']])

Row Selection:Rows can be retrieved from a Data frame using a special mechanism that Pandas
offers. Rows from a Pandas DataFrame are retrieved using the DataFrame.loc method.
Additionally, rows can be chosen by giving an integer location to the iloc[] method.

Program Output

importing pandas package

import pandas as pd

making data frame from csv file

data = pd.read_csv("nba.csv", index_col
="Name")

retrieving row by loc method

first = data.loc["Avery Bradley"]

second = data.loc["R.J. Hunter"]

print(first, "\n\n\n", second)

Indexing and Selecting Data

In Pandas, picking specific rows and columns of data from a DataFrame constitutes indexing.
Selecting all the rows and part of the columns, some of the rows and all the columns, or a portion of
each row and each column is what is referred to as indexing. Another name for indexing is subset
selection.

Programming in Python
Notes

Program Output

Import pandas package

import pandas as pd

Define a dictionary containing employee
data

data = {'Name':['Jai', 'Princi', 'Gaurav', 'Anuj'],

'Age':[27, 24, 22, 32],

'Address':['Delhi', 'Kanpur', 'Allahabad',
'Kannauj'],

'Qualification':['Msc', 'MA', 'MCA', 'Phd']}

Convert the dictionary into DataFrame

df = pd.DataFrame(data)

select two columns

print(df[['Name', 'Qualification']])

Row Selection:Rows can be retrieved from a Data frame using a special mechanism that Pandas
offers. Rows from a Pandas DataFrame are retrieved using the DataFrame.loc method.
Additionally, rows can be chosen by giving an integer location to the iloc[] method.

Program Output

importing pandas package

import pandas as pd

making data frame from csv file

data = pd.read_csv("nba.csv", index_col
="Name")

retrieving row by loc method

first = data.loc["Avery Bradley"]

second = data.loc["R.J. Hunter"]

print(first, "\n\n\n", second)

Indexing and Selecting Data

In Pandas, picking specific rows and columns of data from a DataFrame constitutes indexing.
Selecting all the rows and part of the columns, some of the rows and all the columns, or a portion of
each row and each column is what is referred to as indexing. Another name for indexing is subset
selection.

Programming in Python
Notes

Program Output

Import pandas package

import pandas as pd

Define a dictionary containing employee
data

data = {'Name':['Jai', 'Princi', 'Gaurav', 'Anuj'],

'Age':[27, 24, 22, 32],

'Address':['Delhi', 'Kanpur', 'Allahabad',
'Kannauj'],

'Qualification':['Msc', 'MA', 'MCA', 'Phd']}

Convert the dictionary into DataFrame

df = pd.DataFrame(data)

select two columns

print(df[['Name', 'Qualification']])

Row Selection:Rows can be retrieved from a Data frame using a special mechanism that Pandas
offers. Rows from a Pandas DataFrame are retrieved using the DataFrame.loc method.
Additionally, rows can be chosen by giving an integer location to the iloc[] method.

Program Output

importing pandas package

import pandas as pd

making data frame from csv file

data = pd.read_csv("nba.csv", index_col
="Name")

retrieving row by loc method

first = data.loc["Avery Bradley"]

second = data.loc["R.J. Hunter"]

print(first, "\n\n\n", second)

Indexing and Selecting Data

In Pandas, picking specific rows and columns of data from a DataFrame constitutes indexing.
Selecting all the rows and part of the columns, some of the rows and all the columns, or a portion of
each row and each column is what is referred to as indexing. Another name for indexing is subset
selection.

 LOVELY PROFESSIONAL UNIVERSITY 122

Unit 09: Handling with Pandas
Notes

Indexing a Data frame using indexing operator []:

The square brackets that come after an item are referred to by the indexing operator. The indexing
operator is also used by the.locand.iloc indexers to make selections. To use the indexing operator
df[in this sentence.

Selecting a single column
Simply place the name of the column between the brackets to pick only that one.

Program Output

importing pandas package

import pandas as pd

making data frame from csv file

data = pd.read_csv("nba.csv", index_col
="Name")

retrieving columns by indexing operator

first = data["Age"]

print(first)

Indexing a DataFrame using. loc[]:

The label of the rows and columns is used to pick data in this function. Data is chosen by the df.loc
indexer in a different way than by the indexing operator alone. Subsets of rows or columns may be
chosen. Additionally, it can choose a subset of both rows and columns at once.

Selecting a single row
We provide a single row label in a.loc function in order to select a single row utilising that function.

Output:
Since there was only one parameter both times, two series were returned, as seen in the output
image.

 LOVELY PROFESSIONAL UNIVERSITY 123

Programming in Python
Notes

importing pandas package

import pandas as pd

making data frame from csv file

data = pd.read_csv("nba.csv", index_col
="Name")

retrieving row by loc method

first = data.loc["Avery Bradley"]

second = data.loc["R.J. Hunter"]

print(first, "\n\n\n", second)

Indexing a DataFrameusing .iloc[] :

We can retrieve rows and columns by position using this function. We must give both the desired
places for the desired rows and columns in order to accomplish that. While the df.iloc indexer is
quite similar to df.loc, it only selects integer locations.

Selecting a single row
We can supply a single integer to the.iloc[] function in order to use it to choose a single row.

Program Output

import pandas as pd

making data frame from csv file

data = pd.read_csv("nba.csv", index_col
="Name")

retrieving rows by iloc method

row2 = data.iloc[3]

print(row2)

Summary

 A one-dimensional labelled array called a series can store any kind of data (integer, string,
float, python objects, etc.). The term index refers to all of the axis labels.

 The index passed must have the same length as data if the data is an ndarray. If no index
is provided, range(n), where n is the array length, will be used as the default index, which
is [0,1,2,3.. range(len(array))-1].

 The values are identified with their index number if nothing else is supplied. The index of
the first item is 0, that of the second is 1, etc.

 You are able to name your own labels using the index option.
 The term "Comma Separated Values" or CSV. It is the most basic way to save tabular data

as plain text. Because we as data scientists usually use CSV data in our daily work, it is
crucial to know how to work with it.

 LOVELY PROFESSIONAL UNIVERSITY 124

Unit 09: Handling with Pandas
Notes

 The list is automatically sorted ascending using the sort() method. Making a function to
select the sorting criteria is another option (s).

 A 2-dimensional labelled data structure called a "DataFrame" has columns that could be of
many sorts. It can be compared to a spreadsheet, SQL table, or dictionary of Series objects.
It is typically the pandas object that is used the most.

 Data is arranged in rows and columns in a data frame, which is a two-dimensional data
structure.

Keywords
Dataframe:A Pandas DataFrame is a two-dimensional data structure having rows and columns,
similar to a two-dimensional array

Series: A Pandas Series resembles a table's column. It is a one-dimensional array that can hold any
kind of data.

Labels:The values are identified with their index number if nothing else is supplied. The index of
the first item is 0, that of the second is 1, etc.

Key/Value Object: When constructing a Series, you can also utilise a key/value object like a
dictionary.

DataFrames:In Pandas, data sets are often multidimensional tables, or "DataFrames."

CSV Files: Using CSV files is an easy approach to store large data sets (comma separated files).

Max_rows:The Pandas option settings control how many rows are returned.

Column_Selection: We have two options for accessing the columns in a Pandas DataFrame in
order to choose one of them.

Row_Selection: Rows from a Pandas DataFrame are retrieved using the DataFrame.loc method.

Indexing Operator: The indexing operator is also used by the.locand.iloc indexers to make
selections.

Dropna(): We used the dropna() method to remove null values from a dataframe. This function
removes rows and columns of datasets containing null values in several ways.

Self Assessment

1. Which of the following is not true about DataFrame?
A. A dataframe can be created by passing dictionaries
B. A dataframe is size immutable
C. A dataframe index can be string
D. A column of dataframe can have different types

2. In Pndas_____________ is used to store data in multiple columns.
A. Series
B. DataFrame
C. Both of the above
D. None of the above

3. A ___________ is a two-dimensional labelled data structure.
A. DataFrame
B. Series
C. List

 LOVELY PROFESSIONAL UNIVERSITY 125

Programming in Python
Notes

D. None of the above

4. ____________data structure has both a row and column index
A. DataFrame
B. Series
C. List
D. None of the above

5. Which library is imported for creating DataFrame?
A. Python
B. DataFrame
C. Pandas
D. Random

6. What does the following code produce as output?

Import pandas as pd

D1=pd.DataFrame([1,2,3])

A. 1
B. 4
C. 3
D. 2

7. We can create a DataFrame from ____________
A. Numpy Arrays
B. List of Dictionaries
C. Dictionaries of Lists
D. All of the above

8. Which of the following is used to give user defined column index in DataFrame?
A. index
B. column
C. columns
D. colindex

9. What does the following code produce as output?

#import pandas as pd

LoD = [{‘a’:10, ‘b’:20}, {‘a’:5, ‘b’:10, ‘c’:20}]

D1=pd.DataFrame(LoD)

A. 1
B. 2
C. 3
D. 4

10. In regards to separated value files such as .csv and. tsv, what is the delimiter?
A. Delimiters are not used in separated value files
B. Any character such as the comma (,) or tab (\t) that is used to separate the column data.

 LOVELY PROFESSIONAL UNIVERSITY 126

Unit 09: Handling with Pandas
Notes

C. Anywhere the comma (,) character is used in the file
D. Any character such as the comma (,) or tab (\t) that is used to separate the row data

11. In separated value files such as .csv and .tsv, what does the first row in the file typically
contain?

A. The source of the data
B. The column names of the data
C. Notes about the table data
D. The author of the table data

12. When iterating over an object returned from csv.reader(), what is returned with each
iteration?

For example, given the following code block that assumes csv_reader is an object returned
from csv.reader(), what would be printed to the console with each iteration?

for item in csv_reader:

print(item)

A. The full line of the file as a string
B. The column data as a list
C. The row data as a list
D. The individual value data that is separated by the delimiter.

13. When we create Data Frame from Dictionary of List then Keys becomes the ___________
A. Row Labels
B. Column Labels
C. Both of the above
D. None of the above

14. Data Frame created from a single Series has ______ column

Import math Library

import math

Return the value of 9 raised to the power of 3

print (math.pow (4, 3))1

A. 1
B. 2
C. n (n is the number of elements in the series)
D. None of above

15. What do you understand by pandas? Explain use of pandas with example along with
installation procedure.

16. What do you understand by CSV file? Explain the steps to read a CSV file.
17. Explain with example creation of DataFrame from dict of ndarrays.
18. Explain column selection and row selection in a DataFrame with examples.
19. Difference between. loc and. iloc function using example.

 LOVELY PROFESSIONAL UNIVERSITY 127

Programming in Python
Notes

Answers for Self Assessment

1. B 2. B 3. A 4. A 5. A

6. C 7. A 8. A 9. C 10. C

11. B 12. B 13. C 14. B 15. A

Further Readings

 Mark Lutz,Programming Python: Powerful Object-Oriented Programming,
OREILLY

 Wes McKinney, Python for data analysis, OREILLY
 David Ascher and Mark Lutz, Learning Python, OREILLY
 Eric Matthes, Python Crash Course, 2nd Edition: A Hands-On, Project-Based

Introduction to Programming, Starch Pres

Web Links

 https://www.tutorialspoint.com/python/index.htm
 https://www.python.org/downloads/
 https://www.w3schools.in/python/data-types
 https://www.programiz.com/python-programming/online-compiler/
 https://www.codecademy.com/catalog/language/python

Programming in Python
Notes

Answers for Self Assessment

1. B 2. B 3. A 4. A 5. A

6. C 7. A 8. A 9. C 10. C

11. B 12. B 13. C 14. B 15. A

Further Readings

 Mark Lutz,Programming Python: Powerful Object-Oriented Programming,
OREILLY

 Wes McKinney, Python for data analysis, OREILLY
 David Ascher and Mark Lutz, Learning Python, OREILLY
 Eric Matthes, Python Crash Course, 2nd Edition: A Hands-On, Project-Based

Introduction to Programming, Starch Pres

Web Links

 https://www.tutorialspoint.com/python/index.htm
 https://www.python.org/downloads/
 https://www.w3schools.in/python/data-types
 https://www.programiz.com/python-programming/online-compiler/
 https://www.codecademy.com/catalog/language/python

Programming in Python
Notes

Answers for Self Assessment

1. B 2. B 3. A 4. A 5. A

6. C 7. A 8. A 9. C 10. C

11. B 12. B 13. C 14. B 15. A

Further Readings

 Mark Lutz,Programming Python: Powerful Object-Oriented Programming,
OREILLY

 Wes McKinney, Python for data analysis, OREILLY
 David Ascher and Mark Lutz, Learning Python, OREILLY
 Eric Matthes, Python Crash Course, 2nd Edition: A Hands-On, Project-Based

Introduction to Programming, Starch Pres

Web Links

 https://www.tutorialspoint.com/python/index.htm
 https://www.python.org/downloads/
 https://www.w3schools.in/python/data-types
 https://www.programiz.com/python-programming/online-compiler/
 https://www.codecademy.com/catalog/language/python

 LOVELY PROFESSIONAL UNIVERSITY 128

Unit 10: Data Cleanup
Notes

Unit 10: Data Cleanup

CONTENTS

Objectives

Introduction

10.1 When and Why Do Records Get Lost?

10.2 Drop Missing Values

10.3 Replace Missing (or) Generic Values

10.4 Data Cleaning with Python

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives
After this unit, student would be able to:

 learn basic concepts about data cleanup

Introduction
Missing data is a constant issue in real-world situations. The accuracy of model predictions in fields
like machine learning and data mining is severely hampered by the poor quality of the data that
missing values produce. To improve the accuracy and validity of their models in these fields,
missing value treatment is a prominent area of focus.

10.1 When and Why Do Records Get Lost?
Let's have a look at an online product survey. People frequently don't disclose all the information
pertaining to them. Few people disclose their experience, but not the length of time they have been
using the product; few people disclose their experience, but not their contact information. As a
result, some data is always missing in some form, and this occurs frequently in real time.

Let's now examine how Pandas can be used to handle missing values, such as NA or NaN.

Program Output

import the pandas library

import pandas as pd

import numpy as np

df = pd.DataFrame(np.random.randn(5, 3),
index=['a', 'c', 'e', 'f',

one two three

a 0.077988 0.476149 0.965836

b NaNNaNNaN

c -0.390208 -0.551605 -2.301950

d NaNNaNNaN

e -2.000303 -0.788201 1.510072

Dr. Rajni Bhalla, Lovely Profssional University

 LOVELY PROFESSIONAL UNIVERSITY 129

Programming in Python
Notes

'h'],columns=['one', 'two', 'three'])

df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

print df

f -0.930230 -0.670473 1.146615

g NaNNaNNaN

h 0.085100 0.532791 0.887415

We have produced a DataFrame with missing values using reindexing. NaN stands for Not a
Number in the output.

Check for Missing Values
The isnull() and notnull() functions, which are also methods on Series and DataFrame objects, are
provided by Pandas to make identifying missing values more straightforward (and across various
array dtypes).

Program Output

import pandas as pd

import numpy as np

df = pd.DataFrame(np.random.randn(5, 3),
index=['a', 'c', 'e', 'f',

'h'],columns=['one', 'two', 'three'])

df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

print df['one'].isnull()

a False

b True

c False

d True

e False

f False

g True

h False

Name: one, dtype: bool

Cleaning / Filling Missing Data
Pandas offers several cleaning techniques for the missing values. The following sections provide
examples of how the fillna function can "fill in" NA values with non-null data in a few different
ways.

Replace NaN with a Scalar Value
The software that follows demonstrates how to change "NaN" to "0."

Program Output

import pandas as pd

import numpy as np

df = pd.DataFrame(np.random.randn(3, 3),
index=['a', 'c', 'e'],columns=['one',

'two', 'three'])

df = df.reindex(['a', 'b', 'c'])

print df

print ("NaN replaced with '0':")

print df.fillna(0)

one two three

a -0.576991 -0.741695 0.553172

b NaNNaNNaN

c 0.744328 -1.735166 1.749580

NaN replaced with '0':

one two three

a -0.576991 -0.741695 0.553172

b 0.000000 0.000000 0.000000

c 0.744328 -1.735166 1.749580

 LOVELY PROFESSIONAL UNIVERSITY 130

Unit 10: Data Cleanup
Notes

The value zero is being filled in here, but any other value may be used.

Fill NA Forward and Backward
We will fill in the missing data using the filling principles covered in the ReIndexing.

Method Action

Pad/fill fill methods forward

Bfill/backfill fill methods backward

Program Output

import pandas as pd

import numpy as np

df = pd.DataFrame(np.random.randn(5, 3),
index=['a', 'c', 'e', 'f',

'h'],columns=['one', 'two', 'three'])

df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

print df.fillna(method='pad')

one two three

a 0.077988 0.476149 0.965836

b 0.077988 0.476149 0.965836

c -0.390208 -0.551605 -2.301950

d -0.390208 -0.551605 -2.301950

e -2.000303 -0.788201 1.510072

f -0.930230 -0.670473 1.146615

g -0.930230 -0.670473 1.146615

h 0.085100 0.532791 0.887415

10.2 Drop Missing Values
Use the dropna method and the axis argument if you just want to ignore the missing values. A row
is removed from consideration if any value within it is NA by default because axis=0, or along row.

Program Output

import pandas as pd

import numpy as np

df = pd.DataFrame(np.random.randn(5, 3),
index=['a', 'c', 'e', 'f',

'h'],columns=['one', 'two', 'three'])

df = df.reindex(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'])

print df.dropna()

one two three

a 0.077988 0.476149 0.965836

c -0.390208 -0.551605 -2.301950

e -2.000303 -0.788201 1.510072

f -0.930230 -0.670473 1.146615

h 0.085100 0.532791 0.887415

 LOVELY PROFESSIONAL UNIVERSITY 131

Programming in Python
Notes

10.3 Replace Missing (or) Generic Values
We frequently need to swap out a generic value with a different value. Applying the replace
approach will allow us to accomplish this.

The fillna() function behaves in a manner analogous to replacing NA with a scalar value.

import pandas as pd

import numpy as np

df = pd.DataFrame({'one':[10,20,30,40,50,2000],

'two':[1000,0,30,40,50,60]})

print df.replace({1000:10,2000:60})

one two

0 10 10

1 20 0

2 30 30

3 40 40

4 50 50

5 60 60

10.4 Data Cleaning with Python
We will now guide you through the set of activities indicated below using Pandas and NumPy.
We'll offer a very brief overview of the assignment before describing the required code using the
terms INPUT (what you should enter) and OUTPUT (what you should see as a result).

The basic data cleansing chores that we'll take on are as follows:

1. Importing Libraries
2. Input Customer Feedback Dataset
3. Locate Missing Data
4. Check for Duplicates
5. Detect Outliers
6. Normalize Casing

1. Importing Libraries
Let's get your Python script going with NumPy and Pandas installed.

import pandas as pd

import numpy as np

In this situation, the libraries ought to be loaded into your

2. Input Customer Feedback Dataset
The feedback dataset is then read by our libraries. Let's have alook at that.

Input
data = pd.read_csv('feedback.csv')

Output:

 LOVELY PROFESSIONAL UNIVERSITY 132

Unit 10: Data Cleanup
Notes

As you can see, the dataset you wish to look at is "feedback.csv". And in this instance, we know we
are utilizing the Pandas library to read our dataset as we see "pd.read_csv" as the prior function.

3. Locate Missing Data
The isnull function, a sneaky Python exploit, will then be used to find our data. Actually a common
function, "isnull" aids in locating missing items in our collection. This information is helpful since it
shows what has to be fixed throughout the data cleaning process.

Input
data.isnull()

Output

We get a collection of boolean values as our output result.

The list can provide us with a variety of insights. The first thing to consider is where the missing
data is; any column with a 'True' reading denotes that the data file's category for that column
contains missing data.

Datapoint 1 has missing information in its Review section and Review ID section, for instance (both
are marked true).

Unit 10: Data Cleanup
Notes

As you can see, the dataset you wish to look at is "feedback.csv". And in this instance, we know we
are utilizing the Pandas library to read our dataset as we see "pd.read_csv" as the prior function.

3. Locate Missing Data
The isnull function, a sneaky Python exploit, will then be used to find our data. Actually a common
function, "isnull" aids in locating missing items in our collection. This information is helpful since it
shows what has to be fixed throughout the data cleaning process.

Input
data.isnull()

Output

We get a collection of boolean values as our output result.

The list can provide us with a variety of insights. The first thing to consider is where the missing
data is; any column with a 'True' reading denotes that the data file's category for that column
contains missing data.

Datapoint 1 has missing information in its Review section and Review ID section, for instance (both
are marked true).

Unit 10: Data Cleanup
Notes

As you can see, the dataset you wish to look at is "feedback.csv". And in this instance, we know we
are utilizing the Pandas library to read our dataset as we see "pd.read_csv" as the prior function.

3. Locate Missing Data
The isnull function, a sneaky Python exploit, will then be used to find our data. Actually a common
function, "isnull" aids in locating missing items in our collection. This information is helpful since it
shows what has to be fixed throughout the data cleaning process.

Input
data.isnull()

Output

We get a collection of boolean values as our output result.

The list can provide us with a variety of insights. The first thing to consider is where the missing
data is; any column with a 'True' reading denotes that the data file's category for that column
contains missing data.

Datapoint 1 has missing information in its Review section and Review ID section, for instance (both
are marked true).

 LOVELY PROFESSIONAL UNIVERSITY 133

Programming in Python
Notes

Each feature's missing data can be expanded further by coding:

INPUT:

data.isnull().sum()

OUTPUT:

From here, we really sanitise the data using code. There are only two primary alternatives here.
Either remove the data or enter the blanks. If you decide to:

a. Drop the data
Another choice will need to be made: to maintain the data in the set while simply dropping the
missing values, or to completely remove the feature (the entire column) because there are so many
missing datapoints that it is unusable for analysis.

You must go in and label the missing values as void in accordance with Pandas or NumBy
standards if you want to remove them (see section below). However, this is the code to remove the
full column:

INPUT:

remove = ['Review ID','Date']

data.drop(remove, inplace =True, axis =1)

OUTPUT:

Programming in Python
Notes

Each feature's missing data can be expanded further by coding:

INPUT:

data.isnull().sum()

OUTPUT:

From here, we really sanitise the data using code. There are only two primary alternatives here.
Either remove the data or enter the blanks. If you decide to:

a. Drop the data
Another choice will need to be made: to maintain the data in the set while simply dropping the
missing values, or to completely remove the feature (the entire column) because there are so many
missing datapoints that it is unusable for analysis.

You must go in and label the missing values as void in accordance with Pandas or NumBy
standards if you want to remove them (see section below). However, this is the code to remove the
full column:

INPUT:

remove = ['Review ID','Date']

data.drop(remove, inplace =True, axis =1)

OUTPUT:

Programming in Python
Notes

Each feature's missing data can be expanded further by coding:

INPUT:

data.isnull().sum()

OUTPUT:

From here, we really sanitise the data using code. There are only two primary alternatives here.
Either remove the data or enter the blanks. If you decide to:

a. Drop the data
Another choice will need to be made: to maintain the data in the set while simply dropping the
missing values, or to completely remove the feature (the entire column) because there are so many
missing datapoints that it is unusable for analysis.

You must go in and label the missing values as void in accordance with Pandas or NumBy
standards if you want to remove them (see section below). However, this is the code to remove the
full column:

INPUT:

remove = ['Review ID','Date']

data.drop(remove, inplace =True, axis =1)

OUTPUT:

 LOVELY PROFESSIONAL UNIVERSITY 134

Unit 10: Data Cleanup
Notes

Now, let’s examine our other option.

b. Input missing data
Technically speaking, adding individual values using Pandas or NumBy standards is
the same as adding missing data; we refer to it as adding "No Review." When entering
missing data, you have two options: manually enter the right information or add "No
Review" using the code below.

INPUT

data['Review'] = data['Review'].fillna('No review')

OUTPUT

As you can see, data point 1 has been successfully designated.

4. Check for Duplicates

Similar to missing data, duplicates are problematic and choke analytics tools. Let's find them and
get rid of them.

In order to find duplicates, we start with:

INPUT:

Unit 10: Data Cleanup
Notes

Now, let’s examine our other option.

b. Input missing data
Technically speaking, adding individual values using Pandas or NumBy standards is
the same as adding missing data; we refer to it as adding "No Review." When entering
missing data, you have two options: manually enter the right information or add "No
Review" using the code below.

INPUT

data['Review'] = data['Review'].fillna('No review')

OUTPUT

As you can see, data point 1 has been successfully designated.

4. Check for Duplicates

Similar to missing data, duplicates are problematic and choke analytics tools. Let's find them and
get rid of them.

In order to find duplicates, we start with:

INPUT:

Unit 10: Data Cleanup
Notes

Now, let’s examine our other option.

b. Input missing data
Technically speaking, adding individual values using Pandas or NumBy standards is
the same as adding missing data; we refer to it as adding "No Review." When entering
missing data, you have two options: manually enter the right information or add "No
Review" using the code below.

INPUT

data['Review'] = data['Review'].fillna('No review')

OUTPUT

As you can see, data point 1 has been successfully designated.

4. Check for Duplicates

Similar to missing data, duplicates are problematic and choke analytics tools. Let's find them and
get rid of them.

In order to find duplicates, we start with:

INPUT:

 LOVELY PROFESSIONAL UNIVERSITY 135

Programming in Python
Notes

data.duplicated()

OUTPUT:

Also known as a list of boolean values with duplicate values indicated by a 'True' reading.

Let's move forward and eliminate that duplicate (datapoint 8).

INPUT:

data.drop_duplicates()

OUTPUT:

Our dataset with our duplicate deleted is now available. Onwards.

5. Detect Outliers

Numerical values that are significantly beyond the statistical norm are considered outliers. They are
data points that are sufficiently out of range that they are probably misreads, to cut down on
superfluous science jargon.

They must be eliminated, just like duplicates. Pulling up our dataset first, let's look for an outlier.

INPUT:

data['Rating'].describe()

OUTPUT:

 LOVELY PROFESSIONAL UNIVERSITY 136

Unit 10: Data Cleanup
Notes

Look at that "max" value; none of the other values, including the mean (average), are even
close to 100. Your understanding of your dataset will now determine how you will address
outliers. The data scientists who entered the knowledge in this instance are aware that they
meant to enter a value of 1, not 100. In order to correct our data, we may safely delete the
outlier.

INPUT:

data.loc[10,'Rating'] = 1

OUTPUT:

Now that our dataset only contains ratings between 1 and 5, there won't be any big distortion
caused by a single errant 100.

6. Normalize Casing

Last but not least, we'll cross our ts and dot our i's. Meaning that we will uppercase Customer
Names so that our algorithms can recognise them as variables and standardise (lowercase) all
review titles to prevent confusing our algorithms.Here’s how to make every review title lowercase:

INPUT

data['Review Title'] = data['Review Title'].str.lower()

OUTPUT

 LOVELY PROFESSIONAL UNIVERSITY 137

Programming in Python
Notes

Looks fantastic! Now let's make sure that none of our sophisticated software misclassifies a
customer name since it isn't capitalised. How to capitalise "Customer Name" correctly is as follows:

INPUT:

data['Customer Name'] = data['Customer Name'].str.title()

OUTPUT:

And there it is—our data collection complete with all the fixings. Or, more accurately, with all the
fixes: To find and remove inaccurate data and normalise the remaining data, we made good use of
logical Python packages.

Summary

 The practise of correcting or deleting inaccurate, damaged, improperly formatted, duplicate,
or incomplete data from a dataset is known as data cleaning.

 LOVELY PROFESSIONAL UNIVERSITY 138

Unit 10: Data Cleanup
Notes

 The process of converting data from one format or structure to another is known as data
transformation.

 Remove duplicate or pointless observations as well as undesirable observations from your
dataset. The majority of duplicate observations will occur during data gathering.

 When you measure or transfer data and discover odd naming conventions, typos, or
incorrect capitalization, those are structural errors.

 There will frequently be isolated findings that, at first look, do not seem to fit the data you
are evaluating.

 The main measure of how well-founded and likely accurate a concept, conclusion, or
measurement is called validity.

 Similar to missing data, duplicates are problematic and choke analytics tools. Let's find them
and get rid of them.

 Numerical values that are significantly beyond the statistical norm are considered outliers.
 Another choice will need to be made: to maintain the data in the set while simply dropping

the missing values, or to completely remove the feature (the entire column) because there
are so many missing datapoints that it is unusable for analysis.

Keywords
Data type constraints: Each column's values must belong to a specific data type, such as
Boolean, numeric (integer or real), date, etc.

Range Constraints: Most of the time, dates or numbers must fall inside a specified range. In other
words, they have minimum and/or maximum values that are acceptable.

Unique Constraints: A field, or a group of fields, must be distinct throughout a dataset. The same
social security number cannot be shared by two people, for instance.

Set-Membership Constraints: A set of discrete values or codes is used to generate the values for
each column. A person's sex, for instance, may be Female, Male, or Non-Binary.

Foreign-key Constraints: The more typical case of set membership is this. One table's column
that has distinct values defines the set of values in another table's column. For instance, the "state"
column in a US taxpayer database must be one of the US's recognized states or territories; the list of
acceptable states and territories is kept in a separate State table. Foreign key is a word that was
adopted from relational database terminology.

Regular expression patterns: It may occasionally be necessary to validate text fields in this
manner. For instance, it might be necessary for phone numbers to follow the pattern (999) 999-9999.

Cross-field validation: A certain set of multi-field conditions must be true. For instance, in
laboratory medicine, the differential white blood cell count's component parts must add up to 100.
(Since they are all percentages). A patient's date of discharge from the hospital cannot be earlier
than the date of admission in a hospital database.

Accuracy:The degree of conformity of a measure to a standard or a true value.

Completeness: The extent to which all necessary actions are known. Data cleansing techniques are
usually never able to completely correct incompleteness since they cannot be used to infer
information that was not originally recorded in the data.

Consistency: A set of measures' degree of system-to-system equivalence.

Uniformity: The extent to which a set of data measures are defined across all systems using the
same units of measurement.

Duplicate Detection:An algorithm is needed for duplicate detection in order to determine
whether the same thing is represented twice in the data.

 LOVELY PROFESSIONAL UNIVERSITY 139

Programming in Python
Notes

Parsing:A parser determines whether a string of data complies with the specification for permitted
data. This is comparable to how a parser deals with languages and grammars.

Statistical Methods:An expert may discover values that are unexpected and thus incorrect by
analyzing the data using the mean, standard deviation, range, or clustering algorithms.

Self Assessment

1. Which of the following phrases describes the challenge of identifying abstract patterns (or
structures) in unlabeled data?

A. Supervised learning
B. Unsupervised learning
C. Hybrid learning
D. Reinforcement learning

2. Which clustering method calls for the merging approach?
A. Partitioned
B. Naïve Bayes
C. Hierarchical
D. Both A and C

3. Self-organizing maps are another example of a ________ style of learning.
A. Supervised learning
B. Unsupervised learning
C. Missing data imputation
D. Both A & C

4. The total number of neonates in the example of predicting the number of births can be
thought of as the ______________.

A. Features
B. Observation
C. Attribute
D. Outcome

5. Which of the following claims about the classification is accurate?
A. It is a measure of accuracy
B. It is a subdivision of a set
C. It is the task of assigning a classification
D. None of the above

6. How many different sorts of functions are there in data mining?
A. 5
B. 4
C. 2
D. 3

7. The ________________ is the analysis carried out to find the intriguing statistical correlation
between associated -attributes value pairs.

 LOVELY PROFESSIONAL UNIVERSITY 140

Unit 10: Data Cleanup
Notes

A. Mining of association
B. Mining of correlation
C. Mining of clusters
D. All of the above

8. Which of the following can be characterized as a data object that deviates from the norm (or
the model of available data)?

A. Evaluation Analysis
B. Outliner Analysis
C. Classification
D. Prediction

9. Which of the following statements about data cleaning is untrue?
A. It refers to the process of data cleaning
B. It refers to the transformation of wrong data into correct data
C. It refers to correcting inconsistent data
D. All of the above

10. The data mining system is categorised using:
A. Database technology
B. Information Science
C. Machine learning
D. All of the above

11. How many different types of data warehousing approaches are there to integrate
heterogeneous databases?

A. 3
B. 4
C. 5
D. 2

12. Select different types of attributes.
A. Nominal
B. Ordinal
C. Interval
D. All of the above

13. Select the correct examples for nominal
A. ID Numbers, eye color, zip codes
B. Rankings, taste of potato chips, grades, height
C. Calendar dates, temperature in Celsius or Fahrenheit
D. The temperature in Kelvin, length time, counts

14. Examples of Ordinal can be
A. ID Numbers, eye color, zip codes
B. Rankings, taste of potato chips, grades, height

 LOVELY PROFESSIONAL UNIVERSITY 141

Programming in Python
Notes

C. Calendar dates, temperature in Celsius or Fahrenheit
D. The temperature in Kelvin, length time, counts

15. Example of structured data are
A. Generally
B. Dimensionality
C. Resolution
D. All of the Above

Answers for Self Assessment

1. B 2. C 3. B 4. D 5. B

6. C 7. B 8 B 9 D 10 D

11 A 12 D 13 A 14 B 15 D

Review Questions

1. What do you understand by data cleaning? explain best practices for data cleanig.
2. Explain with code how null values stored in pandas data frames.
3. Difference between structured and unstructured data.
4. What are the effect of missing values in prediction and also explain functions that are used

to handle missing values.
5. Explain following with example.

a. How to see first five rows of Data Frame in python
b. Define data profiling.
c. How t check the class of each variable in pandas DataFrame
d. Write code to see the dimensions of a DataFrame in python.
e. Explain data mining.

FurtherReadings

 Mark Lutz,ProgrammingPython: Powerful Object-Oriented Programming, OREILLY
 Wes McKinney, Python for data analysis, OREILLY
 David Ascher and Mark Lutz, Learning Python, OREILLY
 Eric Matthes, Python Crash Course, 2nd Edition: A Hands-On, Project-Based

Introduction to Programming, Starch Pres

Web Links

https://www.tutorialspoint.com/python/index.htm

https://www.python.org/downloads/

https://www.w3schools.in/python/data-types

Programming in Python
Notes

C. Calendar dates, temperature in Celsius or Fahrenheit
D. The temperature in Kelvin, length time, counts

15. Example of structured data are
A. Generally
B. Dimensionality
C. Resolution
D. All of the Above

Answers for Self Assessment

1. B 2. C 3. B 4. D 5. B

6. C 7. B 8 B 9 D 10 D

11 A 12 D 13 A 14 B 15 D

Review Questions

1. What do you understand by data cleaning? explain best practices for data cleanig.
2. Explain with code how null values stored in pandas data frames.
3. Difference between structured and unstructured data.
4. What are the effect of missing values in prediction and also explain functions that are used

to handle missing values.
5. Explain following with example.

a. How to see first five rows of Data Frame in python
b. Define data profiling.
c. How t check the class of each variable in pandas DataFrame
d. Write code to see the dimensions of a DataFrame in python.
e. Explain data mining.

FurtherReadings

 Mark Lutz,ProgrammingPython: Powerful Object-Oriented Programming, OREILLY
 Wes McKinney, Python for data analysis, OREILLY
 David Ascher and Mark Lutz, Learning Python, OREILLY
 Eric Matthes, Python Crash Course, 2nd Edition: A Hands-On, Project-Based

Introduction to Programming, Starch Pres

Web Links

https://www.tutorialspoint.com/python/index.htm

https://www.python.org/downloads/

https://www.w3schools.in/python/data-types

Programming in Python
Notes

C. Calendar dates, temperature in Celsius or Fahrenheit
D. The temperature in Kelvin, length time, counts

15. Example of structured data are
A. Generally
B. Dimensionality
C. Resolution
D. All of the Above

Answers for Self Assessment

1. B 2. C 3. B 4. D 5. B

6. C 7. B 8 B 9 D 10 D

11 A 12 D 13 A 14 B 15 D

Review Questions

1. What do you understand by data cleaning? explain best practices for data cleanig.
2. Explain with code how null values stored in pandas data frames.
3. Difference between structured and unstructured data.
4. What are the effect of missing values in prediction and also explain functions that are used

to handle missing values.
5. Explain following with example.

a. How to see first five rows of Data Frame in python
b. Define data profiling.
c. How t check the class of each variable in pandas DataFrame
d. Write code to see the dimensions of a DataFrame in python.
e. Explain data mining.

FurtherReadings

 Mark Lutz,ProgrammingPython: Powerful Object-Oriented Programming, OREILLY
 Wes McKinney, Python for data analysis, OREILLY
 David Ascher and Mark Lutz, Learning Python, OREILLY
 Eric Matthes, Python Crash Course, 2nd Edition: A Hands-On, Project-Based

Introduction to Programming, Starch Pres

Web Links

https://www.tutorialspoint.com/python/index.htm

https://www.python.org/downloads/

https://www.w3schools.in/python/data-types

 LOVELY PROFESSIONAL UNIVERSITY 142

Unit 10: Data Cleanup
Notes

https://www.programiz.com/python-programming/online-compiler/

https://www.codecademy.com/catalog/language/python

 LOVELY PROFESSIONAL UNIVERSITY 143

Unit 11: Data Visualization

Notes

Unit 11: Data Visualization

CONTENTS

Objectives

Introduction

11.1 What is Data Visualization?

11.2 Matplotlib and Seaborn

11.3 Line Charts

11.4 Seaborn

11.5 Scatter Plot

11.6 Bar Graphs

11.7 Histograms

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives
After this unit, the student would be able to:

 learn basic concepts of data visualizations
 understand how to draw line plots and multiple subplots
 understand matplotlib, bar chart, histogram, box, and whisker plot.

Introduction
When working with data, it can be challenging to fully comprehend your data if it is just presented
in tabular form. We must visualize or represent our data visually to fully comprehend what it
means, to properly clean it, and to choose the best models for it. This makes patterns, correlations,
and trends more obvious that cannot be seen in data that is presented as a table or CSV file.

Data visualization is the act of using visual representations of our data to identify trends and
relationships. We can utilize a variety of Python data visualization libraries, like Matplotlib,
Seaborn, Plotly, etc., to do data visualization.

11.1 What is Data Visualization?
The study of how to visually represent data is known as data visualization. It effectively
communicates findings from data by graphically plotting the data.

We can obtain a visual summary of our data via data visualization. The human mind processes and
comprehends any given data more easily when it is presented with images, maps, and graphs. Both
small and large data sets benefit from data visualization, but large data sets are where it shines
because it is impossible to manually see, let alone process, and comprehend, all of our data.

Dr. Rajni Bhalla, Lovely Profssional University

 LOVELY PROFESSIONAL UNIVERSITY 144

Programming in Python

Notes

Data Visualization in Python

Figure 1 Data Visualization

Python provides several plotting libraries, including Matplotlib, Seaborn, and many other data
visualization tools with a variety of features for building educational, unique, and visually
appealing plots to present data most simply and powerfully.

11.2 Matplotlib and Seaborn
But when ought either of us to be used? Let's do a comparative study to better comprehend this.
The two well-known visualization libraries for Python, Matplotlib, and Seaborn, are compared in
the table below.

Matplotlib Seaborn

It is used to plot simple graphs like line charts,
bar graphs, and so forth.

It can carry out complicated visualizations
with fewer commands and is primarily used
for statistics visualization.

It primarily utilizes datasets and arrays. It is compatible with whole datasets.

Compared to Matplotlib, Seaborn is
significantly more organized and practical and
treats the entire dataset as a single entity.

With data arrays and frames, Matplotlib
functions effectively. The figures and aces are
seen as objects.

Seaborn is primarily used for statistical
analysis and has more built-in themes.

For exploratory data analysis, Matplotlib is
more customizable and works well with
Pandas and Numpy.

Figure 2 Matplotlib vs Seaborn

11.3 Line Charts
An informational graph called a line chart shows data as a collection of dots connected by straight
lines. Each marker or data point in a line chart is drawn and connected by a line or curve.

 LOVELY PROFESSIONAL UNIVERSITY 145

Unit 11: Data Visualization

Notes

Let's think about the Kanto apple yield (tonnes per hectare). Using this information, let's create a
line graph to show how the apple yield has changed over time. We begin by importing Seaborn and
Matplotlib.

import matplotlib.pyplot as plt

import seaborn as sns

Figure 3 Importing necessary modules

Using Matplotlib
To depict the yield of apples, we are utilizing arbitrary data points.

yield_apples = [0.895, 0.91, 0.919, 0.926, 0.929, 0.931]

plt.plot(yield_apples)

Figure 4 Plotting Apple Yield

We can also include the values for the x-axis to clarify the graph's meaning.

years=[2010, 2011, 2012, 2013, 2014, 2015]

yield_apples = = [0.895, 0.91, 0.919, 0.926, 0.929, 0.931]

plt.plot(years,yield_apples)

Figure 5 Axis Values

 LOVELY PROFESSIONAL UNIVERSITY 146

Programming in Python

Notes

Let's give the axes labels so we can demonstrate what each axis represents.

plt.plot(years, yield_Apples)

plt.xlabel(‘Year’)

plt.ylabel(‘Yield(tons per hectare)’);

Figure 6 Axis with Labels

Simply use the plt.plot method once for each dataset to plot numerous datasets on the same graph.
On the same graph, let's utilise this to compare the yields of apples and oranges.

years=range(2000,2012)

apples=[0.895, 0.91, 0.919, 0,926, 0.929, 0.931, 0.934, 0.936, 0.937, 0.9375, 0.9372, 0.939]

oranges=[0.962, 0.941, 0.930, 0.923, 0.918, 0908, 0.907, 0.904, 0.901, 0.898, 0.9, 0.896]

plt.plot(years, apples)

plt.plot(years, oranges)

plt.xlabel(‘Year’)

plt.ylabel(‘Yield(tons per hectare)’);

Figure 7 Plotting multiple graphs

Simply use the plt.plot method once for each dataset to plot numerous datasets on the same graph.
On the same graph, let's utilise this to compare the yields of apples and oranges.

plt.plot(years, apples)

 LOVELY PROFESSIONAL UNIVERSITY 147

Unit 11: Data Visualization

Notes

plt.plot(years, oranges)

plt.xlabel(‘year’)

plt.ylabel(‘yield(tons per hectare)’)

plt.title(“crop yields in kanto’)

plt.legend([‘apples’, ‘oranges’])

Figure 8 Plotting Multiple Graph

With the help of the marker parameter, we can use markers to show each data point on our graph.
Matplotlib offers a wide variety of marker shapes, including a circle, cross, square, diamond, etc.

Figure 9 Using Markers

To alter the size of the figure, use the plt.figure function.

Unit 11: Data Visualization

Notes

plt.plot(years, oranges)

plt.xlabel(‘year’)

plt.ylabel(‘yield(tons per hectare)’)

plt.title(“crop yields in kanto’)

plt.legend([‘apples’, ‘oranges’])

Figure 8 Plotting Multiple Graph

With the help of the marker parameter, we can use markers to show each data point on our graph.
Matplotlib offers a wide variety of marker shapes, including a circle, cross, square, diamond, etc.

Figure 9 Using Markers

To alter the size of the figure, use the plt.figure function.

Unit 11: Data Visualization

Notes

plt.plot(years, oranges)

plt.xlabel(‘year’)

plt.ylabel(‘yield(tons per hectare)’)

plt.title(“crop yields in kanto’)

plt.legend([‘apples’, ‘oranges’])

Figure 8 Plotting Multiple Graph

With the help of the marker parameter, we can use markers to show each data point on our graph.
Matplotlib offers a wide variety of marker shapes, including a circle, cross, square, diamond, etc.

Figure 9 Using Markers

To alter the size of the figure, use the plt.figure function.

 LOVELY PROFESSIONAL UNIVERSITY 148

Programming in Python

Notes

Figure 10 Changing Graph Size

11.4 Seaborn
A high-level interface called Seaborn was constructed on top of Matplotlib. It offers stunning design
themes and colour schemes to create graphs that are more appealing.

Enter the following command in the terminal to install Seaborn.

pip install seaborn

Programming in Python

Notes

Figure 10 Changing Graph Size

11.4 Seaborn
A high-level interface called Seaborn was constructed on top of Matplotlib. It offers stunning design
themes and colour schemes to create graphs that are more appealing.

Enter the following command in the terminal to install Seaborn.

pip install seaborn

Programming in Python

Notes

Figure 10 Changing Graph Size

11.4 Seaborn
A high-level interface called Seaborn was constructed on top of Matplotlib. It offers stunning design
themes and colour schemes to create graphs that are more appealing.

Enter the following command in the terminal to install Seaborn.

pip install seaborn

 LOVELY PROFESSIONAL UNIVERSITY 149

Unit 11: Data Visualization

Notes

Output

11.5 Scatter Plot
Python's Matplotlib toolkit provides a complete tool for building static, animated, and interactive
visualisations. It is used to create a variety of Python graphs, including scatter plots, 3-D plots,
histograms, bar charts, pie charts, and line plots. The Matplotlib library's information on scatter
plots will be used here.

matplotlib.pyplot.scatter()
Dots are used in scatter plots to show the relationship between variables, which are used to observe
relationships between variables. To create a scatter plot, use the matplotlib library's scatter()
method. Most often, scatter plots are used to show the relationship between variables and how
changing one affects the other.

Syntax
The syntax for scatter() method is given below:

matplotlib.pyplot.scatter(x_axis_data, y_axis_data, s=None, c=None, marker=None, cmap=None,
vmin=None, vmax=None, alpha=None, linewidths=None, edgecolors=None)

The following parameters are passed to the scatter() method:

An array of x-axis data is called x axis data.

import seaborn as sns

import matplotlib.pyplot as plt

import pandas as pd

reading the database

data = pd.read_csv("tips.csv")

draw lineplot

sns.lineplot(x="sex", y="total_bill", data=data)

setting the title using Matplotlib

plt.title('Title using Matplotlib Function')

plt.show()

 LOVELY PROFESSIONAL UNIVERSITY 150

Programming in Python

Notes

y axis data: An array of y-axis information

marker size s (can be scalar or array of size equal to size of x or y)

Color C of the Marker Color Sequence

linewidths, marker- marker style, and cmap- cmap name

- marker border width - marker border colour - marker border alpha

- blending value, which ranges from 0 (transparent) to 1. (opaque)

Program Output

import pandas as pd

import matplotlib.pyplot as plt

reading the database

data = pd.read_csv("tips.csv")

Scatter plot with day against tip

plt.scatter(data['day'], data['tip'])

Adding Title to the Plot

plt.title("Scatter Plot")

Setting the X and Y labels

plt.xlabel('Day')

plt.ylabel('Tip')

plt.show()

11.6 Bar Graphs
When you have categorical data, a bar graph can be used to display it. A bar graph uses bars to
indicate value on the y-axis and category on the x-axis to plot data. Bar graphs display data that
falls into a particular category using bars of varying heights.

Figure 11 Plotting Bar Graph

 LOVELY PROFESSIONAL UNIVERSITY 151

Unit 11: Data Visualization

Notes

Bars can also be stacked on top of one another. The data for apples and oranges should be plotted.

Figure 12 Plotting Stacked Bar Graphs

Next, let's use Seaborn's tips dataset. The dataset includes:

 Information about the sex (gender)

 Time of day

 Total bill

 Tips given by customers visiting the restaurant for a week

 LOVELY PROFESSIONAL UNIVERSITY 152

Programming in Python

Notes

To see how the average bill amount varies on various days of the week, we can create a bar chart.
By calculating the day-wise averages and utilising plt.bar afterwards, we can accomplish this.
Additionally, a barplot function that can compute averages automatically is offered by the Seaborn
library.

Figure 13 Plotting Averages of Each Bar

The hue option can be used to compare bar charts side by side. Based on the third feature
mentioned in this argument, a comparison will be made.

Figure 14 Plotting multiple bar graphs

By changing the axis, the bars can be made horizontal.

Figure 15 Plotting horizontal bar graphs

 LOVELY PROFESSIONAL UNIVERSITY 153

Unit 11: Data Visualization

Notes

11.7 Histograms
A histogram is a bar graph that shows how data changes over time. The range is plotted along the
x-axis, and the height of the data pertaining to a range is plotted along the y-axis. Data are plotted
using histograms over a range of values. To display the data corresponding to each range, they
employ a bar representation. Let's once more plot histograms using the "Iris" data, which provides
details about flowers.

Figure 16 Iris Dataset

Now, let’s plot a histogram using the hist() function.

Figure 17 Plotting Histogram

Numpy also allows us to modify the number and size of bins.

 LOVELY PROFESSIONAL UNIVERSITY 154

Programming in Python

Notes

Figure 18 Changing number and size of bins

We can create bins of unequal size too.

Figure 19 Bins of Unequal Size

We can include several histograms in a single chart, just like we can with line charts. So that the
bars of one histogram don't obscure those of the others, we can make each histogram less opaque.
Let's create distinct histograms for every type of flower.

Programming in Python

Notes

Figure 18 Changing number and size of bins

We can create bins of unequal size too.

Figure 19 Bins of Unequal Size

We can include several histograms in a single chart, just like we can with line charts. So that the
bars of one histogram don't obscure those of the others, we can make each histogram less opaque.
Let's create distinct histograms for every type of flower.

Programming in Python

Notes

Figure 18 Changing number and size of bins

We can create bins of unequal size too.

Figure 19 Bins of Unequal Size

We can include several histograms in a single chart, just like we can with line charts. So that the
bars of one histogram don't obscure those of the others, we can make each histogram less opaque.
Let's create distinct histograms for every type of flower.

 LOVELY PROFESSIONAL UNIVERSITY 155

Unit 11: Data Visualization

Notes

Figure 20 Multiple Histogram

If the stacked parameter is set to True, then many histograms can be piled on top of one another.

Figure 21 Stacking Histogram

Summary

 The human mind processes and comprehends any given data more easily when it is
presented with images, maps, and graphs

 It is used to plot simple graphs like line charts, bar graphs, and so forth.
 It can carry out complicated visualisations with fewer commands and is primarily used for

statistics visualisation.

 An informational graph called a line chart shows data as a collection of dots connected by
straight lines.

 Use the plt.plot method once for each dataset to plot numerous datasets on the same
graph.

 A high-level interface called Seaborn was constructed on top of Matplotlib. It offers
stunning design themes and colour schemes to create graphs that are more appealing.

 Python's Matplotlib toolkit provides a complete tool for building static, animated, and
interactive visualisations.

Unit 11: Data Visualization

Notes

Figure 20 Multiple Histogram

If the stacked parameter is set to True, then many histograms can be piled on top of one another.

Figure 21 Stacking Histogram

Summary

 The human mind processes and comprehends any given data more easily when it is
presented with images, maps, and graphs

 It is used to plot simple graphs like line charts, bar graphs, and so forth.
 It can carry out complicated visualisations with fewer commands and is primarily used for

statistics visualisation.

 An informational graph called a line chart shows data as a collection of dots connected by
straight lines.

 Use the plt.plot method once for each dataset to plot numerous datasets on the same
graph.

 A high-level interface called Seaborn was constructed on top of Matplotlib. It offers
stunning design themes and colour schemes to create graphs that are more appealing.

 Python's Matplotlib toolkit provides a complete tool for building static, animated, and
interactive visualisations.

Unit 11: Data Visualization

Notes

Figure 20 Multiple Histogram

If the stacked parameter is set to True, then many histograms can be piled on top of one another.

Figure 21 Stacking Histogram

Summary

 The human mind processes and comprehends any given data more easily when it is
presented with images, maps, and graphs

 It is used to plot simple graphs like line charts, bar graphs, and so forth.
 It can carry out complicated visualisations with fewer commands and is primarily used for

statistics visualisation.

 An informational graph called a line chart shows data as a collection of dots connected by
straight lines.

 Use the plt.plot method once for each dataset to plot numerous datasets on the same
graph.

 A high-level interface called Seaborn was constructed on top of Matplotlib. It offers
stunning design themes and colour schemes to create graphs that are more appealing.

 Python's Matplotlib toolkit provides a complete tool for building static, animated, and
interactive visualisations.

 LOVELY PROFESSIONAL UNIVERSITY 156

Programming in Python

Notes

 Dots are used in scatter plots to show the relationship between variables, which are used
to observe relationships between variables.

 When you have categorical data, a bar graph can be used to display it. A bar graph uses
bars to indicate value on the y-axis and category on the x-axis to plot data.

 A histogram is a bar graph that shows how data changes over time. The range is plotted
along the x-axis, and the height of the data pertaining to a range is plotted along the y-axis.

Keywords
Seaborn:Python has a dataset-oriented library called Seaborn that can be used to create statistical
representations.

Bokeh: For contemporary web browsers, there is a visualisation library called Bokeh.

Altair: A declarative statistical visualisation library for Python is called Altair. The Vega-Lite JSON
specification served as the foundation for Altair's user-friendly, dependable API.

Plotly:A high-level, declarative, interactive, open-source, and browser-based visualisation toolkit
for Python is called plotly.py.

Ggplot: The graphics grammar is implemented in Python by ggplot.

Bar Chart:When comparing metric values between various data subsets, a bar chart is utilised.

Column Chart: When comparing a single category of data between specific sub-items, such as
when comparing revenue between areas, column charts are typically utilised.

Stacked Bar Chart: When comparing the sums of the available groups and the makeup of the
various subgroups, a stacked bar chart is employed.

Pie Chart: Pie charts can be used to determine how much of each component there is in a given
whole.

Area Chart:To monitor changes over time for one or more groups, area charts are employed.

Column Histogram: To view the distribution for a single variable with few data points, column
histograms are utilised.

Scatter Plot:It is possible to use scatter plots to determine the relationships between two variables.

Box Plot:The form of the distribution, its central value, and its variability are displayed using a
box plot.

Waterfall Chart:A waterfall chart can be used to illustrate how a variable's value gradually
changes as a result of increments or decrements.

Venn Diagrams: To visualise the connections between two or three sets of items, utilise Venn
diagrams.

Self Assessment
Q1. Select those which does not visualize the data

A. Charts
B. Shapes
C. Graphs
D. Maps

Q2: Which of the following type of chart is not supported by pyplot?

A. Histogram
B. Boxplot

 LOVELY PROFESSIONAL UNIVERSITY 157

Unit 11: Data Visualization

Notes

C. Pie
D. All of the above

Q3: plot which is used to given statistical summary is

A. Bar
B. Line
C. Histogram
D. Box Plot

Q4: To compare data we can use _________ chart

A. Line
B. Bar
C. Pie
D. Scatter

Q5: To import pyplot module we can write

A. Import pyplot as plt
B. Import matplotlib.pyplot
C. Import matplotlib.pyplot as plt
D. Both b and c

Q6: Matplotlib is a ____________ plotting library

A. 1D
B. 2D
C. 3D
D. All of above

Q7: Data __________ refers to graphical representation of data.

A. Visualization
B. Analysis
C. Plotting
D. Handling

Q8: The interface of Matplotlib used for data visualization is

A. Seaborn
B. Anaconda
C. MATLAB
D. Pyplot

Q9: which library is the most used visualization library in python?

A. visual
B. matlibplot

 LOVELY PROFESSIONAL UNIVERSITY 158

Programming in Python

Notes

C. matplotlib
D. matlab

Q10: Which function of matplotlib can be used to create a line chart?

A. line
B. plot
C. graph
D. bar

Q11: Which graph should be used if we want to show distribution of elements?

A. pie
B. basemap
C. bar
D. histogram

Q12: which graph should be used If we want to find patterns in data?

A. bar
B. histogram
C. scatterplots
D. basemap

Q13: Which of the following command is correct to install matplotlib?

A. Pip install matplot
B. Pipe install matplot
C. Pip install matplotlib
D. None of the above

Q14: __________ function of the pyplot is used to create a figure/chart/plot.

A. show()
B. plotting()
C. plot()
D. plots()

Q15: A figure/chart contains

A. Plotting area
B. Legend
C. Axis labels
D. All of the above

 LOVELY PROFESSIONAL UNIVERSITY 159

Unit 11: Data Visualization

Notes

Answers for Self Assessment

1. B 2. D 3. D 4. B 5. D

6. B 7. A 8 D 9 C 10 D

11 D 12 C 13 C 14 C 15 D

Review Questions

1. What is data visulaizations? Write down benefits of Data Visualization.
2. Write down difference between Matplotlib and Seaborn.
3. Explain Line chart with example.
4. What do you understand by seaborn. Write down command to install seaborn. Explain use

of seaborn with example.
5. Explain difference between scatter plot, bar graph and histogram.

FurtherReadings

 Maheshwari, Anil. Big Data. McGraw-Hill Education, 2019.
 Mayer-Schonberger, Viktor; Cukier, Kenneth (2013). Big Data: A Revolution That

Will Transform How We Live, Work, and Think . Houghton Mifflin Harcourt.
 McKinsey Global Institute Report (2011). Big Data: The Next Frontier For

Innovation, Competition, and Productivity. Mckinsey.com
 Marz, Nathan, and James Warren (2015). Big Data: Principles and Best Practices of

Scalable Realtime Data Systems. Manning Publications.
 Sandy Ryza, Uri Laserson et.al (2014). Advanced-Analytics-with-Spark. OReilley.

White, Tom (2014). Mastering Hadoop. OReilley.

Web Links
1. Apache Hadoop resources: https://hadoop.apache.org/docs/r2.7.2/

2. Apache HDFS: https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

3. Hadoop API site: http://hadoop.apache.org/docs/current/api/

4. NoSQL databases: http://nosql-database.org/

5. Apache Spark: http://spark.apache.org/docs/latest/

6. Tutorials on Big Data technologies: https://www.tutorialspoint.com/

7. https://www.tutorialspoint.com/hadoop/hadoop_multi_node_cluster.htm

Unit 11: Data Visualization

Notes

Answers for Self Assessment

1. B 2. D 3. D 4. B 5. D

6. B 7. A 8 D 9 C 10 D

11 D 12 C 13 C 14 C 15 D

Review Questions

1. What is data visulaizations? Write down benefits of Data Visualization.
2. Write down difference between Matplotlib and Seaborn.
3. Explain Line chart with example.
4. What do you understand by seaborn. Write down command to install seaborn. Explain use

of seaborn with example.
5. Explain difference between scatter plot, bar graph and histogram.

FurtherReadings

 Maheshwari, Anil. Big Data. McGraw-Hill Education, 2019.
 Mayer-Schonberger, Viktor; Cukier, Kenneth (2013). Big Data: A Revolution That

Will Transform How We Live, Work, and Think . Houghton Mifflin Harcourt.
 McKinsey Global Institute Report (2011). Big Data: The Next Frontier For

Innovation, Competition, and Productivity. Mckinsey.com
 Marz, Nathan, and James Warren (2015). Big Data: Principles and Best Practices of

Scalable Realtime Data Systems. Manning Publications.
 Sandy Ryza, Uri Laserson et.al (2014). Advanced-Analytics-with-Spark. OReilley.

White, Tom (2014). Mastering Hadoop. OReilley.

Web Links
1. Apache Hadoop resources: https://hadoop.apache.org/docs/r2.7.2/

2. Apache HDFS: https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

3. Hadoop API site: http://hadoop.apache.org/docs/current/api/

4. NoSQL databases: http://nosql-database.org/

5. Apache Spark: http://spark.apache.org/docs/latest/

6. Tutorials on Big Data technologies: https://www.tutorialspoint.com/

7. https://www.tutorialspoint.com/hadoop/hadoop_multi_node_cluster.htm

Unit 11: Data Visualization

Notes

Answers for Self Assessment

1. B 2. D 3. D 4. B 5. D

6. B 7. A 8 D 9 C 10 D

11 D 12 C 13 C 14 C 15 D

Review Questions

1. What is data visulaizations? Write down benefits of Data Visualization.
2. Write down difference between Matplotlib and Seaborn.
3. Explain Line chart with example.
4. What do you understand by seaborn. Write down command to install seaborn. Explain use

of seaborn with example.
5. Explain difference between scatter plot, bar graph and histogram.

FurtherReadings

 Maheshwari, Anil. Big Data. McGraw-Hill Education, 2019.
 Mayer-Schonberger, Viktor; Cukier, Kenneth (2013). Big Data: A Revolution That

Will Transform How We Live, Work, and Think . Houghton Mifflin Harcourt.
 McKinsey Global Institute Report (2011). Big Data: The Next Frontier For

Innovation, Competition, and Productivity. Mckinsey.com
 Marz, Nathan, and James Warren (2015). Big Data: Principles and Best Practices of

Scalable Realtime Data Systems. Manning Publications.
 Sandy Ryza, Uri Laserson et.al (2014). Advanced-Analytics-with-Spark. OReilley.

White, Tom (2014). Mastering Hadoop. OReilley.

Web Links
1. Apache Hadoop resources: https://hadoop.apache.org/docs/r2.7.2/

2. Apache HDFS: https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

3. Hadoop API site: http://hadoop.apache.org/docs/current/api/

4. NoSQL databases: http://nosql-database.org/

5. Apache Spark: http://spark.apache.org/docs/latest/

6. Tutorials on Big Data technologies: https://www.tutorialspoint.com/

7. https://www.tutorialspoint.com/hadoop/hadoop_multi_node_cluster.htm

 LOVELY PROFESSIONAL UNIVERSITY 160

Unit 12: Data Visualization

Notes

Unit 12: Data Visualization

CONTENTS

Objectives

Introduction

12.1 Different categories of plot in Seaborn

12.2 Installation

12.3 Difference between Matplotlib vs Seaborn

12.4 Data Visualization with Seaborn

12.5 Seaborn: Statistical Data Visualization

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives
After this unit, student would be able to

 Understand basic concepts of seaborn
 Learn basic difference between seaborn and matplotlib
 Know how data visualization perform using seaborn

Introduction
Python's Seaborn visualization module is fantastic for plotting statistical visualizations. It offers
lovely default styles and color schemes to enhance the appeal of statistics charts. It is constructed on
top of the Matplotlib toolkit and is tightly integrated with the Pandas data structures.

With Seaborn, visualization will be at the heart of data exploration and comprehension. For a better
comprehension of the dataset, it offers dataset-oriented APIs that allow us to switch between
various visual representations for the same variables.

12.1 Different categories of plot in Seaborn
Plots are mostly used to show how different variables relate to one another. These variables may be
entirely numerical or may represent a category, such as a group, class, or division. Seaborn
categorizes the plot into the following groups.

Relational plots: This type of graphic is used to see how two variables are related.

Categorical plots: This graphic discusses categorical variables and the visualization of them.

Distribution Plots: Plots used to examine univariate and bivariate distributions include
distribution plots.

Regression plots: The main purpose of the regression plots in Seaborn is to provide a visual aid
that highlights patterns in a dataset during exploratory data analysis.

Dr. Rajni Bhalla, Lovely Profssional University

 LOVELY PROFESSIONAL UNIVERSITY 161

Programming in Python

Notes

Scatter Plots: Plots in a matrix An array of scatterplots makes up a matrix plot.

Multi-plot grids: Drawing numerous instances of the same plot on various subsets of the dataset
is a helpful strategy.

12.2 Installation
For python environment

pip install seaborn
For conda environment

conda install seaborn

Some basic plots using seaborn
Dist Plots: Histograms are plotted using the seaborn dist plot, as well as the kdeplot and rugplot
variants.

Program

Importing libraries
importnumpy as np

importseaborn as sns
Selecting style as white,

dark, whitegrid, darkgrid
or ticks

sns.set(style="white")
Generate a random univariate

dataset
rs=np.random.RandomState(10)

d =rs.normal(size=100)

Plot a simple histogram and kde
withbinsize determined automatically

sns.distplot(d, kde=True, color="m")
Output

Line Plot:One of the most fundamental plots in the Seaborn Library is the line plot. This graphic is
mostly used to depict continuous data in the form of a time series.

Program

importseaborn as sns
sns.set(style="dark")

fmri=sns.load_dataset("fmri")

 LOVELY PROFESSIONAL UNIVERSITY 162

Unit 12: Data Visualization

Notes

Plot the responses for different\
events and regions

sns.lineplot(x="timepoint",
y="signal",

hue="region",
style="event",

data=fmri)

Output

Lmplot:Another very simple plot is the lmplot. It displays a line denoting a linear regression
model together with data points in a 2D space, and the labels x and y can be set to represent the
horizontal and vertical axes, respectively.

Program

importseaborn as sns

sns.set(style="ticks")

Loading the dataset
df=sns.load_dataset("anscombe")

Show the results of a linear regression
sns.lmplot(x="x", y="y", data=df)

Output

 LOVELY PROFESSIONAL UNIVERSITY 163

Programming in Python

Notes

12.3 Difference between Matplotlib vs Seaborn
Data is graphically represented in data visualization. It facilitates data analysis and forecasting by
breaking down a large dataset into manageable graphs. It is a crucial component of data science
that simplifies and expands the accessibility of complex data.

The foundation of Python-based data visualization is made up of Matplotlib and Seaborn. With the
aid of additional libraries like NumPy and Pandas, Matplotlib is a Python library that is used to
plot graphs. It is an effective Python tool for data visualization. It is used to plot 2D graphs of
arrays and make static conclusions. John D. Hunter originally mentioned it in 2002.

It makes use of Pyplot to offer a free and open-source MATLAB-like interface. It can work with
different operating systems and their graphical front ends. Seaborn: Additionally, it is a Python
library that utilises Matplotlib, Pandas, and NumPy to plot graphs.

It is a superset of the Matplotlib library and is constructed on top of Matplotlib. It aids in the
visualization of single- and two-variate data. It embellishes Matplotlib visuals with lovely themes.
It serves as a valuable tool for visualizing linear regression models. It is used to create static Time-
Series data graphs. It also helps to make graphs more attractive by removing overlap.

Table of difference between Matplotlib and Seaborn

Features Matplotlib Seaborn

Functionality It is used to create simple
graphs. Bargraphs,
histograms, pie charts, scatter
plots, lines, and other visual
representations of data are
used to visualise datasets.

Data visualisation patterns
and graphs can be found
throughout Seaborn.
Interesting themes are
employed. It aids in
assembling all of the data into
a single plot. It also offers
data distribution.

Syntax It employs syntax that is
relatively intricate and
extensive. Example:
Matplotlib.pyplot.bar(x axis, y
axis) is theis the syntax for a
bar graph.

It has relatively simple syntax,
making it simpler to learn and
comprehend. Example: The
seaborn.barplot(x axis, y axis)
syntax for a bar graph.

Dealing multiple figures We can open and work with
many figures at once. They
are clearly closed, though.
One figure can be closed at a
time using the syntax
matplotlib.pyplot.close ().
Close all the figures using this
syntax:
matplotlib.pyplot.close("all")

Each figure's creation is given
a specific time by Seaborn.
But it might result in (OOM)
out of memory problems.

Visualization Matplotlib serves as a
graphics package for data
visualisation in Python and
integrates nicely with Numpy
and Pandas. Similar
capabilities and syntax are
available in Pyplot as in
MATLAB. Users of MATLAB
can therefore readily examine

With Pandas data frames,
Seaborn is more at ease.
Beautiful graphics are
provided in Python by using
simple sets of functions.

 LOVELY PROFESSIONAL UNIVERSITY 164

Unit 12: Data Visualization

Notes

it.

Pliability Matplotlib is a powerful and
highly customisable

With the aid of its default
themes, Seaborn prevents the
overlapping of plots.

Data Frames and Arrays When dealing with data
frames and arrays, Matplotlib
performs well. It views axes
and figures as objects. There
are several stateful plotting
APIs in it. Thus, methods
similar to plot() can operate
without parameters.

Compared to Matplotlib,
Seaborn is a lot more useful
and organised and treats the
entire dataset as a single
entity. Because Seaborn is not
very stateful, parameters are
needed when calling methods
like plot ()

Use Cases Matplotlib uses Numpy and
Pandas to plot a variety of
graphs.

The enhanced version of
Matplotlib, known as
Seaborn, plots graphs using
Matplotlib, Numpy, and
Pandas.

12.4 Data Visualization with Seaborn
The visual presentation of data is known as data visualisation. Because of the excellent ecosystem of
Python packages focused on data, it is crucial for data analysis. By summarising and presenting a
large quantity of data in a straightforward and understandable format, it also helps to grasp the
data, no matter how complex it may be, as well as the value of the data. It also aids in the effective
and clear transmission of information.

Pandas and Seaborn
One of those packages, Pandas and Seaborn, makes importing and analysing data more simpler.
Pandas and Seaborn will be used to examine the data in this article.

Pandas
Pandas provide tools for processing and cleaning up your data. It is the most widely used Python
data analysis library. A data table is referred to as a dataframe in pandas.

So, let’s start with creating Pandas data frame:

Program

Python code demonstrate creating

importpandas as pd

initialise data of lists.
data ={'Name':['Mohe', 'Karnal', 'Yrik', 'jack'],

'Age':[30, 21, 29, 28]}

Create DataFrame
df=pd.DataFrame(data)

Print the output.
df

 LOVELY PROFESSIONAL UNIVERSITY 165

Programming in Python

Notes

Output

Example2: : Load the CSV data from the system and display it through pandas.

Program

import module
importpandas

load the csv
data =pandas.read_csv("nba.csv")

show first 5 column
data.head()

Output

Seaborn
Python's Seaborn visualisation module is fantastic for plotting statistical visualisations. It is
constructed on top of the Matplotlib toolkit and is tightly integrated with the Pandas data
structures.

Installation
For python environment :

pip install seaborn

For condaenvironment :

conda install seaborn

Some basic plots using seaborn:

Importing libraries

import numpy as np

Programming in Python

Notes

Output

Example2: : Load the CSV data from the system and display it through pandas.

Program

import module
importpandas

load the csv
data =pandas.read_csv("nba.csv")

show first 5 column
data.head()

Output

Seaborn
Python's Seaborn visualisation module is fantastic for plotting statistical visualisations. It is
constructed on top of the Matplotlib toolkit and is tightly integrated with the Pandas data
structures.

Installation
For python environment :

pip install seaborn

For condaenvironment :

conda install seaborn

Some basic plots using seaborn:

Importing libraries

import numpy as np

Programming in Python

Notes

Output

Example2: : Load the CSV data from the system and display it through pandas.

Program

import module
importpandas

load the csv
data =pandas.read_csv("nba.csv")

show first 5 column
data.head()

Output

Seaborn
Python's Seaborn visualisation module is fantastic for plotting statistical visualisations. It is
constructed on top of the Matplotlib toolkit and is tightly integrated with the Pandas data
structures.

Installation
For python environment :

pip install seaborn

For condaenvironment :

conda install seaborn

Some basic plots using seaborn:

Importing libraries

import numpy as np

 LOVELY PROFESSIONAL UNIVERSITY 166

Unit 12: Data Visualization

Notes

import seaborn as sns

Selecting style as white,

dark, whitegrid, darkgrid

or ticks

sns.set(style = "white")

Generate a random univariate

dataset

rs = np.random.RandomState(10)

d = rs.normal(size = 50)

Plot a simple histogram and kde

with binsize determined automatically

sns.distplot(d, kde = True, color = "g")

Output

12.5 Seaborn: Statistical Data Visualization
Seaborn makes the statistical linkages easier to see. We use statistical analysis to determine the
relationships between variables in a dataset and how those relationships depend on other factors.
The statistical analysis used here makes it easier to see trends and spot different patterns in the
dataset. These are the plot will help to visualize:

 Line Plot
 Scatter Plot
 Box plot
 Point plot
 Count plot
 Violin plot
 Swarm plot
 Bar plot
 KDE Plot

Line Plot:

 LOVELY PROFESSIONAL UNIVERSITY 167

Programming in Python

Notes

Although scatter plots are quite successful, there is no one form of visualisation that is always the
best. Instead, the visual representation should be customised for the unique characteristics of the
dataset and the plot's intended purpose.You might want to comprehend how variations in one
variable as a function of time, or a similarly continuous variable, in various datasets. Making a line
plot in this case is a wise decision. By setting kind=" line, the lineplot() function in Seaborn can
carry out this task either directly or in conjunction with relplot().

Scatter Plot

A scatterplot can be used in conjunction with several semantic groups to aid in clear understanding
of a graph. They can use the semantics of colour, size, and style parameters to plot two-dimensional
visuals that can be improved by mapping up to three additional variables. Each parameter controls
the visual and semantic features used to distinguish the various subsets. Making graphics more
accessible can be achieved by using redundant meanings.

Syntax: seaborn.scatterplot(x=None, y=None, hue=None, style=None, size=None, data=None,
palette=None, hue_order=None, hue_norm=None, sizes=None, size_order=None,
size_norm=None, markers=True, style_order=None, x_bins=None, y_bins=None, units=None,
estimator=None, ci=95, n_boot=1000, alpha=’auto’, x_jitter=None, y_jitter=None, legend=’brief’,
ax=None, **kwargs)
Parameters:
x, y: Input data variables that should be numeric.
data: Dataframe where each column is a variable and each row is an observation.
size: Grouping variable that will produce points with different sizes.
style: Grouping variable that will produce points with different markers.
palette: Grouping variable that will produce points with different markers.
markers: Object determining how to draw the markers for different levels.
alpha: Proportional opacity of the points.
Returns: This method returns the Axes object with the plot drawn onto it.

Box Plot:

Programming in Python

Notes

Although scatter plots are quite successful, there is no one form of visualisation that is always the
best. Instead, the visual representation should be customised for the unique characteristics of the
dataset and the plot's intended purpose.You might want to comprehend how variations in one
variable as a function of time, or a similarly continuous variable, in various datasets. Making a line
plot in this case is a wise decision. By setting kind=" line, the lineplot() function in Seaborn can
carry out this task either directly or in conjunction with relplot().

Scatter Plot

A scatterplot can be used in conjunction with several semantic groups to aid in clear understanding
of a graph. They can use the semantics of colour, size, and style parameters to plot two-dimensional
visuals that can be improved by mapping up to three additional variables. Each parameter controls
the visual and semantic features used to distinguish the various subsets. Making graphics more
accessible can be achieved by using redundant meanings.

Syntax: seaborn.scatterplot(x=None, y=None, hue=None, style=None, size=None, data=None,
palette=None, hue_order=None, hue_norm=None, sizes=None, size_order=None,
size_norm=None, markers=True, style_order=None, x_bins=None, y_bins=None, units=None,
estimator=None, ci=95, n_boot=1000, alpha=’auto’, x_jitter=None, y_jitter=None, legend=’brief’,
ax=None, **kwargs)
Parameters:
x, y: Input data variables that should be numeric.
data: Dataframe where each column is a variable and each row is an observation.
size: Grouping variable that will produce points with different sizes.
style: Grouping variable that will produce points with different markers.
palette: Grouping variable that will produce points with different markers.
markers: Object determining how to draw the markers for different levels.
alpha: Proportional opacity of the points.
Returns: This method returns the Axes object with the plot drawn onto it.

Box Plot:

Programming in Python

Notes

Although scatter plots are quite successful, there is no one form of visualisation that is always the
best. Instead, the visual representation should be customised for the unique characteristics of the
dataset and the plot's intended purpose.You might want to comprehend how variations in one
variable as a function of time, or a similarly continuous variable, in various datasets. Making a line
plot in this case is a wise decision. By setting kind=" line, the lineplot() function in Seaborn can
carry out this task either directly or in conjunction with relplot().

Scatter Plot

A scatterplot can be used in conjunction with several semantic groups to aid in clear understanding
of a graph. They can use the semantics of colour, size, and style parameters to plot two-dimensional
visuals that can be improved by mapping up to three additional variables. Each parameter controls
the visual and semantic features used to distinguish the various subsets. Making graphics more
accessible can be achieved by using redundant meanings.

Syntax: seaborn.scatterplot(x=None, y=None, hue=None, style=None, size=None, data=None,
palette=None, hue_order=None, hue_norm=None, sizes=None, size_order=None,
size_norm=None, markers=True, style_order=None, x_bins=None, y_bins=None, units=None,
estimator=None, ci=95, n_boot=1000, alpha=’auto’, x_jitter=None, y_jitter=None, legend=’brief’,
ax=None, **kwargs)
Parameters:
x, y: Input data variables that should be numeric.
data: Dataframe where each column is a variable and each row is an observation.
size: Grouping variable that will produce points with different sizes.
style: Grouping variable that will produce points with different markers.
palette: Grouping variable that will produce points with different markers.
markers: Object determining how to draw the markers for different levels.
alpha: Proportional opacity of the points.
Returns: This method returns the Axes object with the plot drawn onto it.

Box Plot:

 LOVELY PROFESSIONAL UNIVERSITY 168

Unit 12: Data Visualization

Notes

The seaborn boxplot has a very simple structure. Distributions are represented visually using
boxplots.That is incredibly helpful when comparing data between two groups.
A boxplot may also be referred to as a box-and-whisker plot. Any box displays the dataset's
quartiles, and the whiskers extend to display the remainder of the distribution.The boxplot plot is
related with the boxplot() method.

Point Plot:

A point plot uses the position of the dot to indicate an estimate of the central tendency for a
numerical variable, and error bars are used to show the degree of uncertainty surrounding that
estimate.For comparisons between various levels of one or more categorical variables, point plots
may be more helpful than bar plots. They excel in demonstrating interactions, or how the
connection between levels of one category variable alters as levels of a second categorical variable
are added. It is simpler for the eyes to detect interactions by differences in slope rather than by
comparing the heights of various groupings of points or bars thanks to the lines that connect each
point from the same hue level.

Count
Plot:seaborn.countplot(data=None, *, x=None, y=None, hue=None, order=None, hue_order=Non
e, orient=None, color=None, palette=None, saturation=0.75, width=0.8, dodge=True, ax=None, **k
wargs)

A count plot resembles a histogram over a categorical variable as opposed to a quantitative one.
You can compare counts across nested variables because the fundamental API and settings are the
same as those for barplot().The more recent histplot() function, despite it has slightly different
default behaviour, offers greater capabilities.

Unit 12: Data Visualization

Notes

The seaborn boxplot has a very simple structure. Distributions are represented visually using
boxplots.That is incredibly helpful when comparing data between two groups.
A boxplot may also be referred to as a box-and-whisker plot. Any box displays the dataset's
quartiles, and the whiskers extend to display the remainder of the distribution.The boxplot plot is
related with the boxplot() method.

Point Plot:

A point plot uses the position of the dot to indicate an estimate of the central tendency for a
numerical variable, and error bars are used to show the degree of uncertainty surrounding that
estimate.For comparisons between various levels of one or more categorical variables, point plots
may be more helpful than bar plots. They excel in demonstrating interactions, or how the
connection between levels of one category variable alters as levels of a second categorical variable
are added. It is simpler for the eyes to detect interactions by differences in slope rather than by
comparing the heights of various groupings of points or bars thanks to the lines that connect each
point from the same hue level.

Count
Plot:seaborn.countplot(data=None, *, x=None, y=None, hue=None, order=None, hue_order=Non
e, orient=None, color=None, palette=None, saturation=0.75, width=0.8, dodge=True, ax=None, **k
wargs)

A count plot resembles a histogram over a categorical variable as opposed to a quantitative one.
You can compare counts across nested variables because the fundamental API and settings are the
same as those for barplot().The more recent histplot() function, despite it has slightly different
default behaviour, offers greater capabilities.

Unit 12: Data Visualization

Notes

The seaborn boxplot has a very simple structure. Distributions are represented visually using
boxplots.That is incredibly helpful when comparing data between two groups.
A boxplot may also be referred to as a box-and-whisker plot. Any box displays the dataset's
quartiles, and the whiskers extend to display the remainder of the distribution.The boxplot plot is
related with the boxplot() method.

Point Plot:

A point plot uses the position of the dot to indicate an estimate of the central tendency for a
numerical variable, and error bars are used to show the degree of uncertainty surrounding that
estimate.For comparisons between various levels of one or more categorical variables, point plots
may be more helpful than bar plots. They excel in demonstrating interactions, or how the
connection between levels of one category variable alters as levels of a second categorical variable
are added. It is simpler for the eyes to detect interactions by differences in slope rather than by
comparing the heights of various groupings of points or bars thanks to the lines that connect each
point from the same hue level.

Count
Plot:seaborn.countplot(data=None, *, x=None, y=None, hue=None, order=None, hue_order=Non
e, orient=None, color=None, palette=None, saturation=0.75, width=0.8, dodge=True, ax=None, **k
wargs)

A count plot resembles a histogram over a categorical variable as opposed to a quantitative one.
You can compare counts across nested variables because the fundamental API and settings are the
same as those for barplot().The more recent histplot() function, despite it has slightly different
default behaviour, offers greater capabilities.

 LOVELY PROFESSIONAL UNIVERSITY 169

Programming in Python

Notes

Violin
Plot:seaborn.violinplot(data=None, *, x=None, y=None, hue=None, order=None, hue_order=None
, bw='scott', cut=2, scale='area', scale_hue=True, gridsize=100, width=0.8, inner='box', split=False, d
odge=True, orient=None, linewidth=None, color=None, palette=None, saturation=0.75, ax=None, *
*kwargs)

A violin plot and a box and whisker plot serve the same purpose. In order to allow for comparison,
it displays the distribution of quantitative data across a number of levels of one (or more)
categorical variables. The violin plot includes a kernel density estimation of the underlying
distribution as opposed to a box plot, in which all of the plot elements correspond to actual
datapoints.This can be a useful and appealing technique to display numerous data distributions at
once, but take in note that the estimate procedure is affected by the sample size and so violins for
small samples may appear deceptively smooth.

Swarm Plot:The Seaborn swarmplot is presumably similar to the stripplot, with the exception that
the points are adjusted to avoid overlap in order to better depict the distribution of values. A
swarm plot can be created independently, but it also works well in conjunction with a box, which is
desirable since the names linked with the names will be used to annotate the axes. This plot style is
commonly referred to as a "beeswarm."

Syntax: seaborn.swarmplot(x=None, y=None, hue=None, data=None, order=None,
hue_order=None, dodge=False, orient=None, color=None, palette=None, size=5,
edgecolor=’gray’, linewidth=0, ax=None, **kwargs)

Parameters:
x, y, hue: Inputs for plotting long-form data.
data: Dataset for plotting.
color: Color for all of the elements
size: Radius of the markers, in points.

Bar Plot: A bar plot, often known as a bar chart, is a graph that uses rectangular bars with lengths
and heights proportionate to the values they represent to depict a category of data. Both horizontal

Programming in Python

Notes

Violin
Plot:seaborn.violinplot(data=None, *, x=None, y=None, hue=None, order=None, hue_order=None
, bw='scott', cut=2, scale='area', scale_hue=True, gridsize=100, width=0.8, inner='box', split=False, d
odge=True, orient=None, linewidth=None, color=None, palette=None, saturation=0.75, ax=None, *
*kwargs)

A violin plot and a box and whisker plot serve the same purpose. In order to allow for comparison,
it displays the distribution of quantitative data across a number of levels of one (or more)
categorical variables. The violin plot includes a kernel density estimation of the underlying
distribution as opposed to a box plot, in which all of the plot elements correspond to actual
datapoints.This can be a useful and appealing technique to display numerous data distributions at
once, but take in note that the estimate procedure is affected by the sample size and so violins for
small samples may appear deceptively smooth.

Swarm Plot:The Seaborn swarmplot is presumably similar to the stripplot, with the exception that
the points are adjusted to avoid overlap in order to better depict the distribution of values. A
swarm plot can be created independently, but it also works well in conjunction with a box, which is
desirable since the names linked with the names will be used to annotate the axes. This plot style is
commonly referred to as a "beeswarm."

Syntax: seaborn.swarmplot(x=None, y=None, hue=None, data=None, order=None,
hue_order=None, dodge=False, orient=None, color=None, palette=None, size=5,
edgecolor=’gray’, linewidth=0, ax=None, **kwargs)

Parameters:
x, y, hue: Inputs for plotting long-form data.
data: Dataset for plotting.
color: Color for all of the elements
size: Radius of the markers, in points.

Bar Plot: A bar plot, often known as a bar chart, is a graph that uses rectangular bars with lengths
and heights proportionate to the values they represent to depict a category of data. Both horizontal

Programming in Python

Notes

Violin
Plot:seaborn.violinplot(data=None, *, x=None, y=None, hue=None, order=None, hue_order=None
, bw='scott', cut=2, scale='area', scale_hue=True, gridsize=100, width=0.8, inner='box', split=False, d
odge=True, orient=None, linewidth=None, color=None, palette=None, saturation=0.75, ax=None, *
*kwargs)

A violin plot and a box and whisker plot serve the same purpose. In order to allow for comparison,
it displays the distribution of quantitative data across a number of levels of one (or more)
categorical variables. The violin plot includes a kernel density estimation of the underlying
distribution as opposed to a box plot, in which all of the plot elements correspond to actual
datapoints.This can be a useful and appealing technique to display numerous data distributions at
once, but take in note that the estimate procedure is affected by the sample size and so violins for
small samples may appear deceptively smooth.

Swarm Plot:The Seaborn swarmplot is presumably similar to the stripplot, with the exception that
the points are adjusted to avoid overlap in order to better depict the distribution of values. A
swarm plot can be created independently, but it also works well in conjunction with a box, which is
desirable since the names linked with the names will be used to annotate the axes. This plot style is
commonly referred to as a "beeswarm."

Syntax: seaborn.swarmplot(x=None, y=None, hue=None, data=None, order=None,
hue_order=None, dodge=False, orient=None, color=None, palette=None, size=5,
edgecolor=’gray’, linewidth=0, ax=None, **kwargs)

Parameters:
x, y, hue: Inputs for plotting long-form data.
data: Dataset for plotting.
color: Color for all of the elements
size: Radius of the markers, in points.

Bar Plot: A bar plot, often known as a bar chart, is a graph that uses rectangular bars with lengths
and heights proportionate to the values they represent to depict a category of data. Both horizontal

 LOVELY PROFESSIONAL UNIVERSITY 170

Unit 12: Data Visualization

Notes

and vertical graphs of the bars are possible. The comparisons between the distinct categories are
shown in a bar chart. The exact categories under comparison are shown by one of the plot's axes,
while the measured values associated with those categories are represented by the other axis.

KDEPLOT: Kdeplot, also known as a Kernel Distribution Estimation Plot, is a graphical
representation of the probability density function of continuous or non-parametric data variables; it
can be used to plot either a single variable or a number of variables simultaneously. We may create
a Kdeplot with various capabilities added to it using the Python Seaborn module.

Summary

 A package called Seaborn uses Matplotlib as its foundation to plot graphs. In order to see
random distributions, it will be used.

 The statistical link between the data points is depicted using relational graphs. Because it
enables humans to recognise trends and patterns in data, visualisation is essential.

 Histograms are plotted using the seaborn dist plot, as well as the kdeplot and rugplot
variants.

 Another very simple plot is the lmplot. It displays a line denoting a linear regression model
together with data points in a 2D space, and the labels x and y can be set to represent the
horizontal and vertical axes, respectively.

 Data is graphically represented in data visualisation. It facilitates data analysis and
forecasting by breaking down a large dataset into manageable graphs.

 Matplotlib is used to create simple graphs. Bar graphs, histograms, pie charts, scatter plots,
lines, and other visual representations of data are used to visualize datasets.

 Data visualisation patterns and graphs can be found throughout Seaborn. Interesting themes
are employed.

 The visual presentation of data is known as data visualisation. . Because of the excellent
ecosystem of Python packages focused on data, it is crucial for data analysis.

 Pandas provide tools for processing and cleaning up your data. It is the most widely used
Python data analysis library.

 Python's Seaborn visualisation module is fantastic for plotting statistical visualisations. It is
constructed on top of the Matplotlib toolkit and is tightly integrated with the Pandas data
structures.

 The seaborn boxplot has a very simple structure. Distributions are represented visually
using boxplots.

 A point plot uses the position of the dot to indicate an estimate of the central tendency for a
numerical variable, and error bars are used to show the degree of uncertainty surrounding
that estimate. For comparisons between various levels of one or more categorical variables,
point plots may be more helpful than bar plots.

 A violin plot and a box and whisker plot serve the same purpose. In order to allow for
comparison, it displays the distribution of quantitative data across a number of levels of one
(or more) categorical variables.

 The Seaborn swarmplot is presumably similar to the stripplot, with the exception that the
points are adjusted to avoid overlap in order to better depict the distribution of values.

 The KNN algorithm, also referred to as K-nearest neighbor, is a non-parametric algorithm
that groups data points according to their proximity and association with other pieces of
available information.

 LOVELY PROFESSIONAL UNIVERSITY 171

Programming in Python

Notes

Keywords
Relational plots: This type of graphic is used to see how two variables are related.

Categorical plots: This graphic discusses categorical variables and the visualization of them.

Distribution Plots: Plots used to examine univariate and bivariate distributions include
distribution plots.

Regression plots: The main purpose of the regression plots in Seaborn is to provide a visual aid
that highlights patterns in a dataset during exploratory data analysis.

Scatter Plots: Plots in a matrix An array of scatterplots makes up a matrix plot.

Multi-plot grids: Drawing numerous instances of the same plot on various subsets of the dataset
is a helpful strategy.

Visualizations:Data is graphically represented in data visualisation. It facilitates data analysis and
forecasting by breaking down a large dataset into manageable graphs.

Pandas and Seaborn: Pandas and Seaborn, makes importing and analysing data more simpler.

Scatter:A scatterplot can be used in conjunction with several semantic groups to aid in clear
understanding of a graph.

Box Plot:A boxplot may also be referred to as a box-and-whisker plot. Any box displays the
dataset's quartiles, and the whiskers extend to display the remainder of the distribution.The
boxplot plot is related with the boxplot() method.

Point plot: A point plot uses the position of the dot to indicate an estimate of the central tendency
for a numerical variable, and error bars are used to show the degree of uncertainty surrounding
that estimate

Self Assessment
Q1. Series and DataFrame's plot function is only a basic wrapper over _____________

A. gplt.plot()
B. plt.plot()
C. plt.plotgraph()
D. none of the mentioned

Q2. Please specify the ideal kind keyword combination for graph plotting.

A. ‘hist’ for histogram
B. ‘box’ for boxplot
C. ‘area’ for area plots
D. all of the mentioned

Q3. Which of the following values does the kind barplot keyword provide?

A. Bar
B. Kde
C. Hexbin
D. none of the mentioned

Q4. By utilising the _________ method in pandas.tools.plotting, you may produce a scatter plot
matrix.

 LOVELY PROFESSIONAL UNIVERSITY 172

Unit 12: Data Visualization

Notes

A. sca_matrix
B. scatter_matrix
C. DataFrame.plot
D. all of the mentioned

Q5: Indicate the incorrect kind keyword combination for graph plotting.

A. For scatter plots, use "scatter"
B. "kde" for bin plots with hexagonal axes
C. "pie" for plots of pie
D. None of the previously listed

Q6. Which of the following plots are used to check if a data set or time series is random?

A. Lag
B. Random
C. Lead
D. None of the mentioned

Q7: Which of the following does not visualize data.

A. Charts
B. Maps
C. Shapes
D. Graphs

Q8. Which of the chart is not supported by pyplot?

A. Histogram
B. Boxplot
C. Pie
D. All are correct

Q9: To display histogram with well-defined edge we can write

A. df.plot(type=’hist’, edge=’red’)
B. df.plot(type=’hist’, edgecolor=’red’)
C. df.plot(type=’hist’, line=’red’)
D. df.plot(type=’hist’, linecolor=’red’)

Q10: Plot which is used to given statistical summary is
A. Bar
B. Line
C. Histogram
D. Box Plot

Q11: Which of the following is not the parameter of pyplot’s plot() method.
A. Marker

 LOVELY PROFESSIONAL UNIVERSITY 173

Programming in Python

Notes

B. Lineheight
C. Linestyle
D. Color

Q12: To compare data, we can use ________ chart.

A. Line
B. Bar
C. Pie
D. Scatter

Q13: Which of the following chart element is used to identify data series by its color patterns.

A. Chart title
B. Legend
C. Marker
D. Data Labels

Q14: Matplotlib is _____________ plotting library.

A. 1D
B. 2D
C. 3D
D. All of the above

Q15: Data ________ refers to graphical representation of data.

A. Visualisation
B. Analysis
C. Plotting
D. Handling

Answers for Self Assessment

1. B 2. D 3. A 4. D 5. B

6. A 7. C 8. C 9. B 10. D

11. B 12. B 13. B 14. B 15. A

Review Questions

FurtherReadings

 Mark Lutz,Programming Python: Powerful Object-Oriented Programming, OREILLY

Programming in Python

Notes

B. Lineheight
C. Linestyle
D. Color

Q12: To compare data, we can use ________ chart.

A. Line
B. Bar
C. Pie
D. Scatter

Q13: Which of the following chart element is used to identify data series by its color patterns.

A. Chart title
B. Legend
C. Marker
D. Data Labels

Q14: Matplotlib is _____________ plotting library.

A. 1D
B. 2D
C. 3D
D. All of the above

Q15: Data ________ refers to graphical representation of data.

A. Visualisation
B. Analysis
C. Plotting
D. Handling

Answers for Self Assessment

1. B 2. D 3. A 4. D 5. B

6. A 7. C 8. C 9. B 10. D

11. B 12. B 13. B 14. B 15. A

Review Questions

FurtherReadings

 Mark Lutz,Programming Python: Powerful Object-Oriented Programming, OREILLY

Programming in Python

Notes

B. Lineheight
C. Linestyle
D. Color

Q12: To compare data, we can use ________ chart.

A. Line
B. Bar
C. Pie
D. Scatter

Q13: Which of the following chart element is used to identify data series by its color patterns.

A. Chart title
B. Legend
C. Marker
D. Data Labels

Q14: Matplotlib is _____________ plotting library.

A. 1D
B. 2D
C. 3D
D. All of the above

Q15: Data ________ refers to graphical representation of data.

A. Visualisation
B. Analysis
C. Plotting
D. Handling

Answers for Self Assessment

1. B 2. D 3. A 4. D 5. B

6. A 7. C 8. C 9. B 10. D

11. B 12. B 13. B 14. B 15. A

Review Questions

FurtherReadings

 Mark Lutz,Programming Python: Powerful Object-Oriented Programming, OREILLY

 LOVELY PROFESSIONAL UNIVERSITY 174

Unit 12: Data Visualization

Notes

 Wes McKinney, Python for data analysis, OREILLY
 David Ascher and Mark Lutz, Learning Python, OREILLY
 Eric Matthes, Python Crash Course, 2nd Edition: A Hands-On, Project-Based

Introduction to Programming, Starch Pres

Web Links

https://www.tutorialspoint.com/python/index.htm

https://www.python.org/downloads/

https://www.w3schools.in/python/data-types

https://www.programiz.com/python-programming/online-compiler/

https://www.codecademy.com/catalog/language/python

Unit 12: Data Visualization

Notes

 Wes McKinney, Python for data analysis, OREILLY
 David Ascher and Mark Lutz, Learning Python, OREILLY
 Eric Matthes, Python Crash Course, 2nd Edition: A Hands-On, Project-Based

Introduction to Programming, Starch Pres

Web Links

https://www.tutorialspoint.com/python/index.htm

https://www.python.org/downloads/

https://www.w3schools.in/python/data-types

https://www.programiz.com/python-programming/online-compiler/

https://www.codecademy.com/catalog/language/python

Unit 12: Data Visualization

Notes

 Wes McKinney, Python for data analysis, OREILLY
 David Ascher and Mark Lutz, Learning Python, OREILLY
 Eric Matthes, Python Crash Course, 2nd Edition: A Hands-On, Project-Based

Introduction to Programming, Starch Pres

Web Links

https://www.tutorialspoint.com/python/index.htm

https://www.python.org/downloads/

https://www.w3schools.in/python/data-types

https://www.programiz.com/python-programming/online-compiler/

https://www.codecademy.com/catalog/language/python

 LOVELY PROFESSIONAL UNIVERSITY 175

Unit 13: OOP Concepts

Notes

Unit 13: OOP Concepts

CONTENTS

Objectives

Introduction

13.1 Class

13.2 Objects

13.3 Methods

13.4 Inheritance

13.5 Polymorphism

13.6 Data Abstraction

13.7 Encapsulation

Summary

Keywords

Self Assessment

Answer for Self Assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to:

 understand features of OOPs
 learn basic concepts about encapsulation
 learn inheritance and its types

Introduction
The Python programming style known as object-oriented programming (OOPs) makes use of
objects and classes. It seeks to incorporate in programming real-world concepts like inheritance,
polymorphism, encapsulation, etc. The fundamental idea behind OOPs is to unite the data and the
functions that use it such that no other portion of the code may access it.

Object-Oriented Programming's Core Ideas (OOPs) are:-

 Class
 Object
 Method
 Inheritance
 Polymorphism
 Data Abstraction
 Encapsulation

Dr. Rajni Bhalla, Lovely Profssional University

 LOVELY PROFESSIONAL UNIVERSITY 176

Programming in Python

Notes

13.1 Class
A class is a group of related items. The models or prototypes used to generate objects are included
in classes. It is a logical entity with a few methods and characteristics.Consider the following
scenario to better appreciate the need for generating classes: Suppose you needed to keep track of
the number of dogs that might have various characteristics, such as breed or age. If a list is utilised,
the dog's breed and age might be the first and second elements, respectively. What if there were 100
different breeds of dogs? How would you know which ingredient should go where? What if you
wanted to give these dogs additional traits? This is disorganised and just what courses need.

A few notes on the Python class:

 The keyword class is used to create classes.
 The variables that make up a class are known as attributes.
 With the dot (.) operator, attributes can always be retrieved and are always public. For

example: Myclass.Myattribute

Class Definition Syntax

Class Classname

{

#Statement-1

.

.

.

#Statement-N

}

Example: Making a Python class that is empty

Class Dog:

Pass

Using the class keyword, we built a class with the name dog in the example above.

13.2 Objects
The object is an entity that is connected to a state and activity. Any physical device, such as a
mouse, keyboard, chair, table, pen, etc., may be used. Arrays, dictionaries, strings, floating-point
numbers, and even integers are all examples of objects. Any single string or integer, more
specifically, is an object. A list is an object that may house other things, the number 12 is an object,
the text "Hello, world" is an object, and so on. You may not even be aware of the fact that you have
been using items.

An Object consists of:

State:The properties of an object serve as a representation of it. Additionally, it reflects an object's
characteristics.

Behavior:It is represented via an object's methods. It also shows how one object reacts to other
objects.

Identity: It gives a thing a special name and makes it possible for objects to communicate with one
another.

Let's look at the example of the class dog to better understand the state, behaviour, and identity
(explained above).

 The identity may be regarded as the dog's name.

Programming in Python

Notes

13.1 Class
A class is a group of related items. The models or prototypes used to generate objects are included
in classes. It is a logical entity with a few methods and characteristics.Consider the following
scenario to better appreciate the need for generating classes: Suppose you needed to keep track of
the number of dogs that might have various characteristics, such as breed or age. If a list is utilised,
the dog's breed and age might be the first and second elements, respectively. What if there were 100
different breeds of dogs? How would you know which ingredient should go where? What if you
wanted to give these dogs additional traits? This is disorganised and just what courses need.

A few notes on the Python class:

 The keyword class is used to create classes.
 The variables that make up a class are known as attributes.
 With the dot (.) operator, attributes can always be retrieved and are always public. For

example: Myclass.Myattribute

Class Definition Syntax

Class Classname

{

#Statement-1

.

.

.

#Statement-N

}

Example: Making a Python class that is empty

Class Dog:

Pass

Using the class keyword, we built a class with the name dog in the example above.

13.2 Objects
The object is an entity that is connected to a state and activity. Any physical device, such as a
mouse, keyboard, chair, table, pen, etc., may be used. Arrays, dictionaries, strings, floating-point
numbers, and even integers are all examples of objects. Any single string or integer, more
specifically, is an object. A list is an object that may house other things, the number 12 is an object,
the text "Hello, world" is an object, and so on. You may not even be aware of the fact that you have
been using items.

An Object consists of:

State:The properties of an object serve as a representation of it. Additionally, it reflects an object's
characteristics.

Behavior:It is represented via an object's methods. It also shows how one object reacts to other
objects.

Identity: It gives a thing a special name and makes it possible for objects to communicate with one
another.

Let's look at the example of the class dog to better understand the state, behaviour, and identity
(explained above).

 The identity may be regarded as the dog's name.

Programming in Python

Notes

13.1 Class
A class is a group of related items. The models or prototypes used to generate objects are included
in classes. It is a logical entity with a few methods and characteristics.Consider the following
scenario to better appreciate the need for generating classes: Suppose you needed to keep track of
the number of dogs that might have various characteristics, such as breed or age. If a list is utilised,
the dog's breed and age might be the first and second elements, respectively. What if there were 100
different breeds of dogs? How would you know which ingredient should go where? What if you
wanted to give these dogs additional traits? This is disorganised and just what courses need.

A few notes on the Python class:

 The keyword class is used to create classes.
 The variables that make up a class are known as attributes.
 With the dot (.) operator, attributes can always be retrieved and are always public. For

example: Myclass.Myattribute

Class Definition Syntax

Class Classname

{

#Statement-1

.

.

.

#Statement-N

}

Example: Making a Python class that is empty

Class Dog:

Pass

Using the class keyword, we built a class with the name dog in the example above.

13.2 Objects
The object is an entity that is connected to a state and activity. Any physical device, such as a
mouse, keyboard, chair, table, pen, etc., may be used. Arrays, dictionaries, strings, floating-point
numbers, and even integers are all examples of objects. Any single string or integer, more
specifically, is an object. A list is an object that may house other things, the number 12 is an object,
the text "Hello, world" is an object, and so on. You may not even be aware of the fact that you have
been using items.

An Object consists of:

State:The properties of an object serve as a representation of it. Additionally, it reflects an object's
characteristics.

Behavior:It is represented via an object's methods. It also shows how one object reacts to other
objects.

Identity: It gives a thing a special name and makes it possible for objects to communicate with one
another.

Let's look at the example of the class dog to better understand the state, behaviour, and identity
(explained above).

 The identity may be regarded as the dog's name.

 LOVELY PROFESSIONAL UNIVERSITY 177

Unit 13: OOP Concepts

Notes

 Breed, age, and colour of the dog are examples of states or attributes.
 You may infer from the behaviour whether the dog is eating or sleeping.

Creating an object as an example
Obj=Dog()

This will produce an object with the class Dog, named obj, as stated above. Let's first grasp the
fundamental terms that will be utilised while working with objects and classes before delving
further into them.

a. The self

 An additional initial parameter in the method declaration is required for class methods.
When we call the method, we don't supply a value for this parameter; Python does.

 Even if we have a method that doesn't require any parameters, we still need one.
 This is comparable to this Java reference and this C++ pointer.

This is the sole purpose of the special self. When we invoke a method of this object as
myobject.method(arg1, arg2), Python automatically converts it to MyClass.method(myobject, arg1,
arg2).

b. The __init__method
The constructors in Java and C++ are comparable to the __init__ method. As soon as a class object is
created, it is executed. Any initialization you want to perform on your object can be done with the
method.Let's build some objects utilising the self and __init__ methods after defining a class.

Example1: Class and object creation using class and instance properties

class Dog:

class attribute

attr1 = "mammal"

Instance attribute

def __init__(self, name):

self.name = name

Driver code

Object instantiation

Rodger = Dog("Rodger")

Tommy = Dog("Tommy")

Accessing class attributes

print("Rodger is a {}".format(Rodger.__class__.attr1))

print("Tommy is also a {}".format(Tommy.__class__.attr1))

Accessing instance attributes

print("My name is {}".format(Rodger.name))

print("My name is {}".format(Tommy.name))

Unit 13: OOP Concepts

Notes

 Breed, age, and colour of the dog are examples of states or attributes.
 You may infer from the behaviour whether the dog is eating or sleeping.

Creating an object as an example
Obj=Dog()

This will produce an object with the class Dog, named obj, as stated above. Let's first grasp the
fundamental terms that will be utilised while working with objects and classes before delving
further into them.

a. The self

 An additional initial parameter in the method declaration is required for class methods.
When we call the method, we don't supply a value for this parameter; Python does.

 Even if we have a method that doesn't require any parameters, we still need one.
 This is comparable to this Java reference and this C++ pointer.

This is the sole purpose of the special self. When we invoke a method of this object as
myobject.method(arg1, arg2), Python automatically converts it to MyClass.method(myobject, arg1,
arg2).

b. The __init__method
The constructors in Java and C++ are comparable to the __init__ method. As soon as a class object is
created, it is executed. Any initialization you want to perform on your object can be done with the
method.Let's build some objects utilising the self and __init__ methods after defining a class.

Example1: Class and object creation using class and instance properties

class Dog:

class attribute

attr1 = "mammal"

Instance attribute

def __init__(self, name):

self.name = name

Driver code

Object instantiation

Rodger = Dog("Rodger")

Tommy = Dog("Tommy")

Accessing class attributes

print("Rodger is a {}".format(Rodger.__class__.attr1))

print("Tommy is also a {}".format(Tommy.__class__.attr1))

Accessing instance attributes

print("My name is {}".format(Rodger.name))

print("My name is {}".format(Tommy.name))

Unit 13: OOP Concepts

Notes

 Breed, age, and colour of the dog are examples of states or attributes.
 You may infer from the behaviour whether the dog is eating or sleeping.

Creating an object as an example
Obj=Dog()

This will produce an object with the class Dog, named obj, as stated above. Let's first grasp the
fundamental terms that will be utilised while working with objects and classes before delving
further into them.

a. The self

 An additional initial parameter in the method declaration is required for class methods.
When we call the method, we don't supply a value for this parameter; Python does.

 Even if we have a method that doesn't require any parameters, we still need one.
 This is comparable to this Java reference and this C++ pointer.

This is the sole purpose of the special self. When we invoke a method of this object as
myobject.method(arg1, arg2), Python automatically converts it to MyClass.method(myobject, arg1,
arg2).

b. The __init__method
The constructors in Java and C++ are comparable to the __init__ method. As soon as a class object is
created, it is executed. Any initialization you want to perform on your object can be done with the
method.Let's build some objects utilising the self and __init__ methods after defining a class.

Example1: Class and object creation using class and instance properties

class Dog:

class attribute

attr1 = "mammal"

Instance attribute

def __init__(self, name):

self.name = name

Driver code

Object instantiation

Rodger = Dog("Rodger")

Tommy = Dog("Tommy")

Accessing class attributes

print("Rodger is a {}".format(Rodger.__class__.attr1))

print("Tommy is also a {}".format(Tommy.__class__.attr1))

Accessing instance attributes

print("My name is {}".format(Rodger.name))

print("My name is {}".format(Tommy.name))

 LOVELY PROFESSIONAL UNIVERSITY 178

Programming in Python

Notes

Output

Rodger is a mammal

Tommy is also a mammal

My name is Rodger

My name is Tommy

Example2:Class and object creation with methods

class Dog:

class attribute

attr1 = "mammal"

Instance attribute

def __init__(self, name):

self.name = name

def speak(self):

print("My name is {}".format(self.name))

Driver code

Object instantiation

Rodger = Dog("Rodger")

Tommy = Dog("Tommy")

Accessing class methods

Rodger.speak()

Tommy.speak()

Output

My name is Rodger

My name is Tommy

13.3 Methods
A function connected to an object is the method. A method is not specific to class instances in
Python. Any sort of object may have methods.

13.4 Inheritance
The capacity of one class to derive or inherit properties from another class is known as inheritance.
The class from which the properties are being derived is referred to as the base class or parent class,
and the class from which the properties are being derived is referred to as the derived class or child
class. The advantages of inheritance include:

Programming in Python

Notes

Output

Rodger is a mammal

Tommy is also a mammal

My name is Rodger

My name is Tommy

Example2:Class and object creation with methods

class Dog:

class attribute

attr1 = "mammal"

Instance attribute

def __init__(self, name):

self.name = name

def speak(self):

print("My name is {}".format(self.name))

Driver code

Object instantiation

Rodger = Dog("Rodger")

Tommy = Dog("Tommy")

Accessing class methods

Rodger.speak()

Tommy.speak()

Output

My name is Rodger

My name is Tommy

13.3 Methods
A function connected to an object is the method. A method is not specific to class instances in
Python. Any sort of object may have methods.

13.4 Inheritance
The capacity of one class to derive or inherit properties from another class is known as inheritance.
The class from which the properties are being derived is referred to as the base class or parent class,
and the class from which the properties are being derived is referred to as the derived class or child
class. The advantages of inheritance include:

Programming in Python

Notes

Output

Rodger is a mammal

Tommy is also a mammal

My name is Rodger

My name is Tommy

Example2:Class and object creation with methods

class Dog:

class attribute

attr1 = "mammal"

Instance attribute

def __init__(self, name):

self.name = name

def speak(self):

print("My name is {}".format(self.name))

Driver code

Object instantiation

Rodger = Dog("Rodger")

Tommy = Dog("Tommy")

Accessing class methods

Rodger.speak()

Tommy.speak()

Output

My name is Rodger

My name is Tommy

13.3 Methods
A function connected to an object is the method. A method is not specific to class instances in
Python. Any sort of object may have methods.

13.4 Inheritance
The capacity of one class to derive or inherit properties from another class is known as inheritance.
The class from which the properties are being derived is referred to as the base class or parent class,
and the class from which the properties are being derived is referred to as the derived class or child
class. The advantages of inheritance include:

 LOVELY PROFESSIONAL UNIVERSITY 179

Unit 13: OOP Concepts

Notes

 It accurately depicts relationships in the real world.
 It offers a code's reusability. We don't need to keep writing the same code. Additionally, it

enables us to expand a class's features without changing it.
 Because of its transitive nature, if a class B inherits from a class A, then all of class B's

subclasses will also automatically inherit from class A.

Types of Inheritance
Single Inheritance
A class can inherit properties from a single-parent class using single-level inheritance.

Multilevel Inheritance
A derived class can inherit properties from an immediate parent class, which in turn can inherit
properties from his parent class, thanks to multi-level inheritance.

Hierarchical Inheritance
More than one derived class can inherit properties from a parent class thanks to hierarchical level
inheritance.

Multiple Inheritance
One derived class may inherit properties from several different base classes thanks to multiple level
inheritance.

Example: Python inheritance

Python code to demonstrate how parent constructors

are called.

parent class

class Person(object):

__init__ is known as the constructor

def __init__(self, name, idnumber):

self.name = name

self.idnumber = idnumber

def display(self):

print(self.name)

print(self.idnumber)

def details(self):

print("My name is {}".format(self.name))

print("IdNumber: {}".format(self.idnumber))

child class

class Employee(Person):

def __init__(self, name, idnumber, salary, post):

self.salary = salary

self.post = post

 LOVELY PROFESSIONAL UNIVERSITY 180

Programming in Python

Notes

invoking the __init__ of the parent class

Person.__init__(self, name, idnumber)

def details(self):

print("My name is {}".format(self.name))

print("IdNumber: {}".format(self.idnumber))

print("Post: {}".format(self.post))

creation of an object variable or an instance

a = Employee('Rahul', 886012, 200000, "Intern")

calling a function of the class Person using

its instance

a.display()

a.details()

Output

Rahul

886012

My name is Rahul

IdNumber: 886012

Post: Intern

In the aforementioned article, two classes—Person (parent class) and Employee—have been
established (Child Class). The Person class is an ancestor of the Employee class. As can be seen in
the show function in the code above, we may use the methods of the person class through the
employee class. The details() function shows how a child class can alter the parent class's
behaviour.

13.5 Polymorphism
Simply put, polymorphism means having multiple forms. For instance, utilising polymorphism, we
can answer the question of whether the given species of birds fly or not using just one function.
Example:Python's use of polymorphism

class Bird:

def intro(self):

print("There are many types of birds.")

def flight(self):

print("Most of the birds can fly but some cannot.")

class sparrow(Bird):

def flight(self):

print("Sparrows can fly.")

class ostrich(Bird):

 LOVELY PROFESSIONAL UNIVERSITY 181

Unit 13: OOP Concepts

Notes

def flight(self):

print("Ostriches cannot fly.")

obj_bird = Bird()

obj_spr = sparrow()

obj_ost = ostrich()

obj_bird.intro()

obj_bird.flight()

obj_spr.intro()

obj_spr.flight()

obj_ost.intro()

obj_ost.flight()

OUTPUT

There are many types of birds.

Most of the birds can fly but some cannot.

There are many types of birds.

Sparrows can fly.

There are many types of birds.

Ostriches cannot fly.

13.6 Data Abstraction
Both data abstraction and encapsulation are frequently used interchangeably. Since data abstraction
is accomplished by encapsulation, the two terms are almost synonymous.

When using abstraction, internal details are hidden and only functionalities are displayed. Giving
things names that capture the essence of what a function or an entire programme does is the
process of abstracting something.

13.7 Encapsulation
One of the core ideas in object-oriented programming is encapsulation (OOP). It explains the
concept of data wrapping and the techniques that operate on data as a single unit. This restricts
direct access to variables and procedures and can avoid data alteration by accident. A variable can
only be altered by an object's method in order to prevent inadvertent modification. These variables
fall under the category of private variables.

A class, which encapsulates all the data that is contained in its member functions, variables, etc., is
an example of encapsulation.

 LOVELY PROFESSIONAL UNIVERSITY 182

Programming in Python

Notes

Table 1 Encapsulation in Python

Methods Variables

Python program to

demonstrate private members

Creating a Base class

class Base:

def __init__(self):

self.a = "EcontentOnline"

self.__c = "EcontentOnline"

Creating a derived class

class Derived(Base):

def __init__(self):

Calling constructor of

Base class

Base.__init__(self)

print("Calling private member of base class: ")

print(self.__c)

Driver code

obj1 = Base()

print(obj1.a)

Uncommenting print(obj1.c) will

raise an AttributeError

Uncommenting obj2 = Derived() will

also raise an AtrributeError as

private member of base class

is called inside derived class

Output

EcontentOnline

The c variable was generated as the private attribute in the example above. We are unable to even
directly read or modify the value of this attribute.

Difference between Object-Oriented vs. Procedure-Oriented Programming
Languages.

 LOVELY PROFESSIONAL UNIVERSITY 183

Unit 13: OOP Concepts

Notes

Object-oriented Programming Procedural Programming

The approach to addressing problems that
uses objects for computation is called object-
oriented programming.

A list of instructions is used in procedural
programming to perform calculations in
stages.

It makes development and upkeep simpler. When a project grows in scope, maintaining
the codes is difficult in procedural
programming.

It replicates the thing in the actual world.
Therefore, oops makes it simple to tackle
difficulties in the actual world.

It doesn't represent reality in any way. It
operates using detailed instructions broken
down into smaller units called functions.

It offers data concealment. Consequently, it
is safer than procedural languages. Private
information is not accessible from anyplace.

Because procedural languages don't offer a
suitable method for data binding, they are less
secure.

C++, Java, .Net, Python, C#, and other object-
oriented programming languages are
examples.

Procedural languages include C, Fortran,
Pascal, VB, and others.

Summary

 The Python programming style known as object-oriented programming (OOPs) makes use
of objects and classes.

 A class is a group of related items. The models or prototypes used to generate objects are
included in classes.

 The object is an entity that is connected to a state and activity. Any physical device, such as a
mouse, keyboard, chair, table, pen, etc., may be used.

 The constructors in Java and C++ are comparable to the __init__ method. As soon as a class
object is created, it is executed.

 A function connected to an object is the method. A method is not specific to class instances
in Python. Any sort of object may have methods.

 The capacity of one class to derive or inherit properties from another class is known as
inheritance.

 Simply put, polymorphism means having multiple forms. For instance, utilising
polymorphism, we can answer the question of whether the given species of birds fly or not
using just one function

 Both data abstraction and encapsulation are frequently used interchangeably. Since data
abstraction is accomplished by encapsulation, the two terms are almost synonymous

 One of the core ideas in object-oriented programming is encapsulation (OOP). It explains the
concept of data wrapping and the techniques that operate on data as a single unit.

 The approach to addressing problems that uses objects for computation is called object-
oriented programming.

 A list of instructions is used in procedural programming to perform calculations in stages

 LOVELY PROFESSIONAL UNIVERSITY 184

Programming in Python

Notes

Keywords
OOPS: Object-oriented programming is known as OOP. While object-oriented programming
involves constructing objects that include both data and methods, procedural programming
involves developing procedures or methods that perform actions on the data.

Class: Python is an object oriented programming language. Almost everything in Python is an
object, with its properties and methods. A Class is like an object constructor, or a "blueprint" for
creating objects

The __init__method: All classes have a function called __init__(), which is always executed when
the class is being initiated.

The __str__function: What should be returned when the class object is rendered as a string is
determined by the __str__() function.

Objects methods: Methods can also be found in objects. Object-specific functions are called
methods in an object.

Self-Parameter: To access class-specific variables, use the self parameter, which is a reference to
the currently running instance of the class.

Del:Using the del keyword, properties on objects can be deleted.

Pass statement: Although class definitions cannot be empty, if for some reason you have one that
is empty, add the pass statement to prevent an error.

Inheritance: By using inheritance, we may create a class that has all the methods and
attributes of another class.

Parent class:The class being inherited from, often known as the base class, is the parent class.

Child class:The class that inherits from another class is referred to as a child class or derived class.

Super Function:The super() function in Python allows a descendant class to inherit all of its
parent's methods and properties.

Self Assessment
Q1. Which option best encapsulates inheritance?

A. Ability of a class to include methods from other classes in its definition
B. Techniques for grouping instance variables and methods to limit access to certain class

members
C. A focus on variables and passing variables to functions
D. Enables the use of sophisticated software that is well-designed and flexible.

Q2. Which of the following claims about inheritance is false?

A. A class's protected members may be inherited.
B. The class that inherits is known as a subclass.
C. A class's private members can be accessed and inherited.
D. One characteristic of OOP is inheritance
.

Q3. What line of code should you write to activate the __init__ method in A from B if B is a
subclass of A?

 LOVELY PROFESSIONAL UNIVERSITY 185

Unit 13: OOP Concepts

Notes

A. A.__init__(self)
B. B.__init__(self)
C. A.__init__(B)
D. B.__init__(A)

Q4: What function type is a built-in in the context of classes?

A. Identifies the name of any value's object.
B. Identifies any value's class name.
C. Determines a value's class description
D. Identifies any value's file name

Q5: What one of the following is not an inheritance type?

A. Double-level
B. Multi-level
C. Single-level
D. Multiple

Q6: Which of these is not one of OOP's core characteristics?

A. Encapsulation
B. Inheritance
C. Instantiation
D. Polymorphism

Q7: Which of the following definitions best describes encapsulation?

A. The capacity of a class to derive individuals from other classes as part of its own definition.
B. Techniques for combining instance variables and methods to limit access to specific class

members
C. focuses on supplying parameters to functions and variables.
D. enables the use of sophisticated software that is well-designed and flexible.

Q8: Define Overriding.

A. Overriding can occur in the case of inheritance in class
B. It is a process of redefining inherited method in child class.
C. It is a magic method in python.
D. None of these

Q9: _____________ developed python language

A. Albert Einstein
B. Guido Van Rossum
C. Guido Evan
D. None of these

Q10: What year was the Python programming language created?

 LOVELY PROFESSIONAL UNIVERSITY 186

Programming in Python

Notes

A. 1975
B. 1989
C. 1972
D. 1990

Q11: Which of the following commands the expression with the most precedence?

A. Addition
B. Subtraction
C. Parentheses
D. Power

Q12: Of the following, which best describes abstraction?

A. Hiding the execution
B. displaying crucial information
C. Hiding the important data
D. Hiding the implementation and showing only the features

Q13: A class is an ____________ abstraction.

A. Object
B. Logical
C. Real
D. Hypothetical

Q14: Abstraction can be used for _______________.

A. Control and data.
B. Only data
C. Only control
D. Classes

Q15: Which of the following can be considered a combination of data abstraction and
programming?

A. Class
B. Object
C. Inheritance
D. Interfaces

Answer for Self Assessment

l. A 2. C 3. A 4. B 5. A

6. C 7. B 8. B 9. B 10. B

11. C 12. D 13. B 14. A 15. B

 LOVELY PROFESSIONAL UNIVERSITY 187

Unit 13: OOP Concepts

Notes

Review Questions
1. What do you understand by OOPS? Write down the code to make a python class that si

empty.
2. Define Objects. Write down example to create an object with methods.
3. What do you understand by inheritance and also define types of inheritance.
4. Write down difference between Single level inheritance, multilevel inheritance and multiple

inheritance.
5. Define Polymorphism. Write down python code that define use of polymorphism.
6. What do you understand by Encapsulation? Write down python program to demonstrate

private members.
7. Write down difference between object-oriented programming and procedural

programming.

FurtherReadings

 Mark Lutz,Programming Python: Powerful Object-Oriented Programming, OREILLY
 Wes McKinney, Python for data analysis, OREILLY
 David Ascher and Mark Lutz, Learning Python, OREILLY
 Eric Matthes, Python Crash Course, 2nd Edition: A Hands-On, Project-Based Introduction

to Programming, Starch Pres

Web Links

https://www.tutorialspoint.com/python/index.htm

https://www.python.org/downloads/

https://www.w3schools.in/python/data-types

https://www.programiz.com/python-programming/online-compiler/

https://www.codecademy.com/catalog/language/python

Unit 13: OOP Concepts

Notes

Review Questions
1. What do you understand by OOPS? Write down the code to make a python class that si

empty.
2. Define Objects. Write down example to create an object with methods.
3. What do you understand by inheritance and also define types of inheritance.
4. Write down difference between Single level inheritance, multilevel inheritance and multiple

inheritance.
5. Define Polymorphism. Write down python code that define use of polymorphism.
6. What do you understand by Encapsulation? Write down python program to demonstrate

private members.
7. Write down difference between object-oriented programming and procedural

programming.

FurtherReadings

 Mark Lutz,Programming Python: Powerful Object-Oriented Programming, OREILLY
 Wes McKinney, Python for data analysis, OREILLY
 David Ascher and Mark Lutz, Learning Python, OREILLY
 Eric Matthes, Python Crash Course, 2nd Edition: A Hands-On, Project-Based Introduction

to Programming, Starch Pres

Web Links

https://www.tutorialspoint.com/python/index.htm

https://www.python.org/downloads/

https://www.w3schools.in/python/data-types

https://www.programiz.com/python-programming/online-compiler/

https://www.codecademy.com/catalog/language/python

Unit 13: OOP Concepts

Notes

Review Questions
1. What do you understand by OOPS? Write down the code to make a python class that si

empty.
2. Define Objects. Write down example to create an object with methods.
3. What do you understand by inheritance and also define types of inheritance.
4. Write down difference between Single level inheritance, multilevel inheritance and multiple

inheritance.
5. Define Polymorphism. Write down python code that define use of polymorphism.
6. What do you understand by Encapsulation? Write down python program to demonstrate

private members.
7. Write down difference between object-oriented programming and procedural

programming.

FurtherReadings

 Mark Lutz,Programming Python: Powerful Object-Oriented Programming, OREILLY
 Wes McKinney, Python for data analysis, OREILLY
 David Ascher and Mark Lutz, Learning Python, OREILLY
 Eric Matthes, Python Crash Course, 2nd Edition: A Hands-On, Project-Based Introduction

to Programming, Starch Pres

Web Links

https://www.tutorialspoint.com/python/index.htm

https://www.python.org/downloads/

https://www.w3schools.in/python/data-types

https://www.programiz.com/python-programming/online-compiler/

https://www.codecademy.com/catalog/language/python

 LOVELY PROFESSIONAL UNIVERSITY 188

Unit 14 : Machine Learning Algorithms
Notes

Unit 14: Machine Learning Algorithms

CONTENTS

Objectives

Introduction

14.1 Types of Machine Learning Algorithms

14.2 Linear Regression

14.3 K-Nearest Neighbor

14.4 Decision Trees

14.5 Random Forest

14.6 K-Means Clustering Algorithm

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Question

Further Readings

Objectives
After this unit, student would be able to learn:

 basic concepts of linear regression.
 how decision tree is used in python.
 basic concepts about random forests and k-means clustering.

Introduction
Programs that use machine learning algorithms are able to discover hidden patterns in data,
forecast results, and enhance performance based on past performance. In machine learning, various
algorithms can be used for various tasks, such as simple linear regression for prediction issues like
stock market forecasting and the KNN algorithm for classification issues.

Dr. Rajni Bhalla, Lovely Profssional University

 LOVELY PROFESSIONAL UNIVERSITY 189

Programming in Python

Notes

14.1 Types of Machine Learning Algorithms

Figure 1 Types of Machine Learning Algorithms

Supervised Learning Algorithms

A type of machine learning called supervised learning requires outside supervision for the machine
to learn. The labelled dataset is used to train the supervised learning models. After training and
processing, the model is put to the test by being given a sample set of test data to see if it predicts
the desired result.

In supervised learning, mapping input and output data is the main objective. It is the same as when
a student is studying under the teacher's supervision because supervised learning is dependent on
supervision. Spam filtering is a prime example of supervised learning.

The method of supervised learning involves giving the machine learning model the right input data
as well as the output data. Finding a mapping function to link the input variable (x) with the output
variable is the goal of a supervised learning algorithm (y).

Supervised learning has applications in the real world such as risk assessment, image
categorization, fraud detection, spam filtering, etc.

Unsupervised Learning Algorithms

In supervised machine learning, models are trained on labelled data while being watched over by
training data. However, there may be several instances where we lack labelled data and must
instead identify hidden patterns in the supplied dataset. Therefore, we need unsupervised learning
strategies to handle these kinds of problems in machine learning.

Unsupervised learning is a type of machine learning in which models are not supervised using
training datasets, as the name implies. Instead, models themselves decipher the provided data to
reveal hidden patterns and insights. It is comparable to the learning process that occurs in the
human brain while learning something new. It is characterized as:

Unsupervised learning is a subcategory of machine learning in which models are trained using
unlabeled datasets and are free to operate on the data without being checked by a human observer.

Because unlike supervised learning, we have the input data but no corresponding output data,
unsupervised learning cannot be used to solve a regression or classification problem directly.

Programming in Python

Notes

14.1 Types of Machine Learning Algorithms

Figure 1 Types of Machine Learning Algorithms

Supervised Learning Algorithms

A type of machine learning called supervised learning requires outside supervision for the machine
to learn. The labelled dataset is used to train the supervised learning models. After training and
processing, the model is put to the test by being given a sample set of test data to see if it predicts
the desired result.

In supervised learning, mapping input and output data is the main objective. It is the same as when
a student is studying under the teacher's supervision because supervised learning is dependent on
supervision. Spam filtering is a prime example of supervised learning.

The method of supervised learning involves giving the machine learning model the right input data
as well as the output data. Finding a mapping function to link the input variable (x) with the output
variable is the goal of a supervised learning algorithm (y).

Supervised learning has applications in the real world such as risk assessment, image
categorization, fraud detection, spam filtering, etc.

Unsupervised Learning Algorithms

In supervised machine learning, models are trained on labelled data while being watched over by
training data. However, there may be several instances where we lack labelled data and must
instead identify hidden patterns in the supplied dataset. Therefore, we need unsupervised learning
strategies to handle these kinds of problems in machine learning.

Unsupervised learning is a type of machine learning in which models are not supervised using
training datasets, as the name implies. Instead, models themselves decipher the provided data to
reveal hidden patterns and insights. It is comparable to the learning process that occurs in the
human brain while learning something new. It is characterized as:

Unsupervised learning is a subcategory of machine learning in which models are trained using
unlabeled datasets and are free to operate on the data without being checked by a human observer.

Because unlike supervised learning, we have the input data but no corresponding output data,
unsupervised learning cannot be used to solve a regression or classification problem directly.

Programming in Python

Notes

14.1 Types of Machine Learning Algorithms

Figure 1 Types of Machine Learning Algorithms

Supervised Learning Algorithms

A type of machine learning called supervised learning requires outside supervision for the machine
to learn. The labelled dataset is used to train the supervised learning models. After training and
processing, the model is put to the test by being given a sample set of test data to see if it predicts
the desired result.

In supervised learning, mapping input and output data is the main objective. It is the same as when
a student is studying under the teacher's supervision because supervised learning is dependent on
supervision. Spam filtering is a prime example of supervised learning.

The method of supervised learning involves giving the machine learning model the right input data
as well as the output data. Finding a mapping function to link the input variable (x) with the output
variable is the goal of a supervised learning algorithm (y).

Supervised learning has applications in the real world such as risk assessment, image
categorization, fraud detection, spam filtering, etc.

Unsupervised Learning Algorithms

In supervised machine learning, models are trained on labelled data while being watched over by
training data. However, there may be several instances where we lack labelled data and must
instead identify hidden patterns in the supplied dataset. Therefore, we need unsupervised learning
strategies to handle these kinds of problems in machine learning.

Unsupervised learning is a type of machine learning in which models are not supervised using
training datasets, as the name implies. Instead, models themselves decipher the provided data to
reveal hidden patterns and insights. It is comparable to the learning process that occurs in the
human brain while learning something new. It is characterized as:

Unsupervised learning is a subcategory of machine learning in which models are trained using
unlabeled datasets and are free to operate on the data without being checked by a human observer.

Because unlike supervised learning, we have the input data but no corresponding output data,
unsupervised learning cannot be used to solve a regression or classification problem directly.

 LOVELY PROFESSIONAL UNIVERSITY 190

Unit 14 : Machine Learning Algorithms
Notes

Finding the underlying structure of a dataset, classifying the data into groups based on similarities,
and representing the dataset in a compressed format are the objectives of unsupervised learning.

Difference between Supervised and Unsupervised Learning Algorithms

Supervised Learning Algorithms Unsupervised Learning Algorithms

Using labelled data, supervised learning
algorithms are taught.

Unlabeled data is used to train algorithms for
unsupervised learning.

A supervised learning model uses direct
feedback to determine whether or not it is
foretelling the correct outcome.

A model of unsupervised learning does not
incorporate feedback.

A model of supervised learning forecasts the
results.

Unsupervised learning models uncover data's
buried patterns.

In supervised learning, the model receives
input data in addition to output.

In unsupervised learning, the model receives
only input data.

The objective of supervised learning is to
develop the model's capacity to forecast
output in the presence of novel data.

Unsupervised learning aims to extract hidden
patterns and insightful information from an
unknown dataset.

To train the model in supervised learning,
supervision is required.

The model can be trained without any
supervision using unsupervised learning

Classification and regression issues can be
grouped under supervised learning.

The model can be trained without any
supervision using unsupervised learning.

When both the input and the associated output
are known, supervised learning may be
applied.

Unsupervised learning issues fall under the
categories of clustering and associations.

A supervised learning model yields reliable
results.

When we only have input data and no
corresponding output data, unsupervised
learning can be applied.

Supervised learning falls short of true artificial
intelligence because we must first train the
model for each set of data before it can
accurately predict the outcome.

In comparison to supervised learning, an
unsupervised learning model could produce
less accurate results.

It includes a variety of algorithms, including
Bayesian logic, decision trees, support vector
machines, multi-class classification, linear
regression, and logistic regression.

Unsupervised learning is more in line with
actual artificial intelligence because it acquires
knowledge by experience, much like a kid
does when learning daily tasks

It comprises a variety of procedures, including
Bayesian logic, decision trees, support vector
machines, multi-class classification, linear
regression, and logistic regression.

It contains a number of algorithms, including
the Apriori algorithm, KNN, and Clustering.

14.2 Linear Regression
One of the simplest and most widely used Machine Learning techniques is linear regression. It is a
statistical technique for performing predictive analysis. For continuous/real/numeric variables like
sales, salary, age, and product price, among others, linear regression makes predictions. The linear
regression algorithm, often known as linear regression, demonstrates a linear relationship between

 LOVELY PROFESSIONAL UNIVERSITY 191

Programming in Python

Notes

a dependent (y) and one or more independent (y) variables. Given that linear regression
demonstrates a linear relationship, it may be used to determine how the dependent variable's value
changes as a function of the independent variable's value. The link between the variables is
represented by a sloping straight line in the linear regression model. Think on the photo below:

Figure 2 Linear Regression

A linear regression can be conceptualized mathematically as:

y= a0+a1x+ ε

Y=Dependent Variable (Target Variable)

X=Independent Variable (predictor Variable)

a0=intercept of the line (Gives an additional degree of freedom)

a1=Linear regression coefficient (scale factor to each input value).

ε = random error

The values for x and y variables are training datasets for Linear Regression model representation.

Linear Regression in Python

Step1: Import Python Packages: To begin, we must import a few packages required for
linear regression:

 Numpy – fundamental package for scientific computing to create the example dataset.
 Pandas – a powerful tool for data analysis and manipulation.
 Scikit Learn (sklearn) – tools for predictive data analysis, including linear regression.
 Matplotlib: plotting library for visualization.

import numpy as np

import pandas as pd

from sklearn.linear_model import LinearRegression #only importing the linear_model function

import matplotlib.pyplot as plt

%matplotlib inline

Step2: Generate Random Training Dataset

We will create a random sample dataset as the training set since we want to present linear
regression in a straightforward manner.

With x1 serving as the only input variable, we first create a randomly generated dataset of size 50.
The output, y, is then set up to have an approximately linear relationship with x1. To introduce
noise to the dataset, the random variable noise is added.

Programming in Python

Notes

a dependent (y) and one or more independent (y) variables. Given that linear regression
demonstrates a linear relationship, it may be used to determine how the dependent variable's value
changes as a function of the independent variable's value. The link between the variables is
represented by a sloping straight line in the linear regression model. Think on the photo below:

Figure 2 Linear Regression

A linear regression can be conceptualized mathematically as:

y= a0+a1x+ ε

Y=Dependent Variable (Target Variable)

X=Independent Variable (predictor Variable)

a0=intercept of the line (Gives an additional degree of freedom)

a1=Linear regression coefficient (scale factor to each input value).

ε = random error

The values for x and y variables are training datasets for Linear Regression model representation.

Linear Regression in Python

Step1: Import Python Packages: To begin, we must import a few packages required for
linear regression:

 Numpy – fundamental package for scientific computing to create the example dataset.
 Pandas – a powerful tool for data analysis and manipulation.
 Scikit Learn (sklearn) – tools for predictive data analysis, including linear regression.
 Matplotlib: plotting library for visualization.

import numpy as np

import pandas as pd

from sklearn.linear_model import LinearRegression #only importing the linear_model function

import matplotlib.pyplot as plt

%matplotlib inline

Step2: Generate Random Training Dataset

We will create a random sample dataset as the training set since we want to present linear
regression in a straightforward manner.

With x1 serving as the only input variable, we first create a randomly generated dataset of size 50.
The output, y, is then set up to have an approximately linear relationship with x1. To introduce
noise to the dataset, the random variable noise is added.

Programming in Python

Notes

a dependent (y) and one or more independent (y) variables. Given that linear regression
demonstrates a linear relationship, it may be used to determine how the dependent variable's value
changes as a function of the independent variable's value. The link between the variables is
represented by a sloping straight line in the linear regression model. Think on the photo below:

Figure 2 Linear Regression

A linear regression can be conceptualized mathematically as:

y= a0+a1x+ ε

Y=Dependent Variable (Target Variable)

X=Independent Variable (predictor Variable)

a0=intercept of the line (Gives an additional degree of freedom)

a1=Linear regression coefficient (scale factor to each input value).

ε = random error

The values for x and y variables are training datasets for Linear Regression model representation.

Linear Regression in Python

Step1: Import Python Packages: To begin, we must import a few packages required for
linear regression:

 Numpy – fundamental package for scientific computing to create the example dataset.
 Pandas – a powerful tool for data analysis and manipulation.
 Scikit Learn (sklearn) – tools for predictive data analysis, including linear regression.
 Matplotlib: plotting library for visualization.

import numpy as np

import pandas as pd

from sklearn.linear_model import LinearRegression #only importing the linear_model function

import matplotlib.pyplot as plt

%matplotlib inline

Step2: Generate Random Training Dataset

We will create a random sample dataset as the training set since we want to present linear
regression in a straightforward manner.

With x1 serving as the only input variable, we first create a randomly generated dataset of size 50.
The output, y, is then set up to have an approximately linear relationship with x1. To introduce
noise to the dataset, the random variable noise is added.

 LOVELY PROFESSIONAL UNIVERSITY 192

Unit 14 : Machine Learning Algorithms
Notes

Now we have a simple linear regression problem.

num_obs = 50

x1 = np.random.uniform(low=-10.0, high=10.0, size=num_obs)

noise = np.random.normal(loc=0.0, scale=5.0, size=num_obs)

y = 10 + 2*x1 + noise

By using a scatterplot to represent the relationship between x1 and y, we can see that it is roughly
linear.

plt.figure(figsize=(20,7))

plt.plot(x1, y, 'o')

Figure 3 Scatter Plot

Step #3: Create and Fit Linear Regression Models

Let's now build a model using the scikit learn package's linear regression approach. The default
approach is Ordinary Least Squares.

Recall that:

 The numpy array x1 is converted to a matrix because the sklearn package requires it.
 reshape(-1,1): - 1 represents 1 column and instructs NumPy to retrieve the number of rows

from the original x1.
 We begin by making an instance of the class LinearRegression, abbreviated lr.
 The fit method's input parameters can vary, but we'll leave them at their default values.

features = x1.reshape(-1, 1)

target = y

lr = LinearRegression()

lr.fit(features, target)

Step #4: Check the Result Model: coefficients and plot

After fitting the model, we can call its attributes to look at the results. We can print out the
coefficients.
print (lr.intercept_)

Unit 14 : Machine Learning Algorithms
Notes

Now we have a simple linear regression problem.

num_obs = 50

x1 = np.random.uniform(low=-10.0, high=10.0, size=num_obs)

noise = np.random.normal(loc=0.0, scale=5.0, size=num_obs)

y = 10 + 2*x1 + noise

By using a scatterplot to represent the relationship between x1 and y, we can see that it is roughly
linear.

plt.figure(figsize=(20,7))

plt.plot(x1, y, 'o')

Figure 3 Scatter Plot

Step #3: Create and Fit Linear Regression Models

Let's now build a model using the scikit learn package's linear regression approach. The default
approach is Ordinary Least Squares.

Recall that:

 The numpy array x1 is converted to a matrix because the sklearn package requires it.
 reshape(-1,1): - 1 represents 1 column and instructs NumPy to retrieve the number of rows

from the original x1.
 We begin by making an instance of the class LinearRegression, abbreviated lr.
 The fit method's input parameters can vary, but we'll leave them at their default values.

features = x1.reshape(-1, 1)

target = y

lr = LinearRegression()

lr.fit(features, target)

Step #4: Check the Result Model: coefficients and plot

After fitting the model, we can call its attributes to look at the results. We can print out the
coefficients.
print (lr.intercept_)

Unit 14 : Machine Learning Algorithms
Notes

Now we have a simple linear regression problem.

num_obs = 50

x1 = np.random.uniform(low=-10.0, high=10.0, size=num_obs)

noise = np.random.normal(loc=0.0, scale=5.0, size=num_obs)

y = 10 + 2*x1 + noise

By using a scatterplot to represent the relationship between x1 and y, we can see that it is roughly
linear.

plt.figure(figsize=(20,7))

plt.plot(x1, y, 'o')

Figure 3 Scatter Plot

Step #3: Create and Fit Linear Regression Models

Let's now build a model using the scikit learn package's linear regression approach. The default
approach is Ordinary Least Squares.

Recall that:

 The numpy array x1 is converted to a matrix because the sklearn package requires it.
 reshape(-1,1): - 1 represents 1 column and instructs NumPy to retrieve the number of rows

from the original x1.
 We begin by making an instance of the class LinearRegression, abbreviated lr.
 The fit method's input parameters can vary, but we'll leave them at their default values.

features = x1.reshape(-1, 1)

target = y

lr = LinearRegression()

lr.fit(features, target)

Step #4: Check the Result Model: coefficients and plot

After fitting the model, we can call its attributes to look at the results. We can print out the
coefficients.
print (lr.intercept_)

 LOVELY PROFESSIONAL UNIVERSITY 193

Programming in Python

Notes

print(lr.coef_)

We can see that while.coef_ returns an array,.intercept_ returns a scalar. These coefficients' values
are fairly close to their actual values (y = 10 + 2*x1). The regression line and training dataset can
both be seen together in a visualization.

plt.figure(figsize=(20,7))

plt.plot(x1, y, 'o')x_chart = np.linspace(x1.min(), x1.max(), num=100)

plt.plot(x_chart, lr.intercept_ + lr.coef_[0]*x_chart)

Step #5: Make Predictions with Linear Regression!

The most thrilling part is this. Using our new model, let's make a prediction. Assuming we have
four new x1 input values (0, 1, 2, 3), we have two options:

Use the scikit-learn predict method or manually enter the values into the equation to predict.

#use the equation to predict

x_new = np.array([0, 1, 2, 3])

y_prediction = lr.intercept_ + x_new*lr.coef_[0]

y_prediction

use model to predict

lr.predict(x_new.reshape(-1,1))

Both methods return the same predicted values.

Output:

array([10.06295511, 11.85833473, 13.65371434, 15.44909395])

14.3 K-Nearest Neighbor
One of the simplest machine learning algorithms, based on the supervised learning method, is K-
Nearest Neighbor. The K-NN algorithm makes the assumption that the new case and the existing
cases are comparable, and it places the new instance in the category that is most like the existing
categories. A new data point is classified using the K-NN algorithm based on similarity after all the
existing data has been stored. This means that utilizing the K-NN method, fresh data can be quickly
and accurately sorted into a suitable category. Although the K-NN approach is most frequently
employed for classification problems, it can also be utilized for regression. Since K-NN is a non-
parametric technique, it makes no assumptions about the underlying data. It is also known as a lazy
learner algorithm since it saves the training dataset rather than learning from it immediately.
Instead, it uses the dataset to perform an action when classifying data. The KNN algorithm simply
stores the dataset during the training phase, and when it receives new data, it categorizes it into a
category that is very similar to the new data. Consider the following scenario: We have an image of
a creature that resembles both cats and dogs, but we are unsure of its identity.

 LOVELY PROFESSIONAL UNIVERSITY 194

Unit 14 : Machine Learning Algorithms
Notes

Figure 4 K-NN Classifier

Why do we need a K-NN Algorithm?

If there are two categories, Category A and Category B, and we have a new data point, x1, which
category does this data point belong in? We require a K-NN algorithm to address this kind of issue.
K-NN makes it simple to determine the category or class of a given dataset. Take a look at the
diagram below:

How does K-NN work?
The following algorithm can be used to describe how the K-NN works:

Step 1: Decide on the neighbors’ K-numbers.

Calculate the Euclidean distance between K neighbors in step two.

Step 3: Based on the determined Euclidean distance, select the K closest neighbors.

Step 4: Count the number of data points in each category among these k neighbors.

Step 5: Assign the fresh data points to the category where the neighbor count is highest.

Step 6: Our model is complete.

14.4 Decision Trees
A non-parametric supervised learning technique for classification and regression is called a
decision tree (DT). The objective is to learn straightforward decision rules derived from the data
features in order to build a model that predicts the value of a target variable. A piecewise constant
approximation of a tree can be thought of.

For instance, in the example below, using a set of if-then-else decision rules, decision trees learn
from data to approximate a sine curve. The decision rules are more complex and the model is more
accurate the deeper the tree is.

Unit 14 : Machine Learning Algorithms
Notes

Figure 4 K-NN Classifier

Why do we need a K-NN Algorithm?

If there are two categories, Category A and Category B, and we have a new data point, x1, which
category does this data point belong in? We require a K-NN algorithm to address this kind of issue.
K-NN makes it simple to determine the category or class of a given dataset. Take a look at the
diagram below:

How does K-NN work?
The following algorithm can be used to describe how the K-NN works:

Step 1: Decide on the neighbors’ K-numbers.

Calculate the Euclidean distance between K neighbors in step two.

Step 3: Based on the determined Euclidean distance, select the K closest neighbors.

Step 4: Count the number of data points in each category among these k neighbors.

Step 5: Assign the fresh data points to the category where the neighbor count is highest.

Step 6: Our model is complete.

14.4 Decision Trees
A non-parametric supervised learning technique for classification and regression is called a
decision tree (DT). The objective is to learn straightforward decision rules derived from the data
features in order to build a model that predicts the value of a target variable. A piecewise constant
approximation of a tree can be thought of.

For instance, in the example below, using a set of if-then-else decision rules, decision trees learn
from data to approximate a sine curve. The decision rules are more complex and the model is more
accurate the deeper the tree is.

Unit 14 : Machine Learning Algorithms
Notes

Figure 4 K-NN Classifier

Why do we need a K-NN Algorithm?

If there are two categories, Category A and Category B, and we have a new data point, x1, which
category does this data point belong in? We require a K-NN algorithm to address this kind of issue.
K-NN makes it simple to determine the category or class of a given dataset. Take a look at the
diagram below:

How does K-NN work?
The following algorithm can be used to describe how the K-NN works:

Step 1: Decide on the neighbors’ K-numbers.

Calculate the Euclidean distance between K neighbors in step two.

Step 3: Based on the determined Euclidean distance, select the K closest neighbors.

Step 4: Count the number of data points in each category among these k neighbors.

Step 5: Assign the fresh data points to the category where the neighbor count is highest.

Step 6: Our model is complete.

14.4 Decision Trees
A non-parametric supervised learning technique for classification and regression is called a
decision tree (DT). The objective is to learn straightforward decision rules derived from the data
features in order to build a model that predicts the value of a target variable. A piecewise constant
approximation of a tree can be thought of.

For instance, in the example below, using a set of if-then-else decision rules, decision trees learn
from data to approximate a sine curve. The decision rules are more complex and the model is more
accurate the deeper the tree is.

 LOVELY PROFESSIONAL UNIVERSITY 195

Programming in Python

Notes

Figure 5 Decision Trees Regression

Advantages of Decision Trees

 Easy to comprehend and interpret. One can picture trees.
 Little data preparation is necessary. Data normalization, the creation of dummy variables, and

the elimination of blank values are frequently necessary for other procedures. The module
does not, however, support missing values.

 As more data points are utilized to train the tree, the cost of using it to forecast data increases
exponentially.

 Capable of working with both categorical and numerical data. Categorical variables are not
currently supported by the Scikit-Learn implementation. Other strategies are mainly
specialized in studying datasets that have only one sort of variable. For more details, refer to
algorithms.

 able to manage issues with several outputs.
 using the white box model. Boolean logic makes it simple to explain a condition if it can be

observed in a model for a given situation. Results may be more challenging to interpret in a
black box model, such as an artificial neural network.

 It is possible to use statistical tests to verify a model. This enables the model's dependability to
be taken into account.

 performs well even if the underlying model from which the data were created slightly violates
some of its basic assumptions.

Disadvantages of Decision Trees

 The too complicated trees that decision-tree learners can produce do not effectively generalize
the input. Overfitting is the term for this. To prevent this issue, mechanisms like pruning,
defining the minimum number of samples needed at a leaf node, or establishing the
maximum depth of the tree are required.

 Because even slight changes in the data could produce an entirely different tree, decision trees
can be unstable. The solution to this issue is to employ decision trees as part of an ensemble.

 As can be seen in the above graphic, decision tree predictions are piecewise constant
approximations rather than smooth or continuous predictions. They therefore struggle with
extrapolation.

Programming in Python

Notes

Figure 5 Decision Trees Regression

Advantages of Decision Trees

 Easy to comprehend and interpret. One can picture trees.
 Little data preparation is necessary. Data normalization, the creation of dummy variables, and

the elimination of blank values are frequently necessary for other procedures. The module
does not, however, support missing values.

 As more data points are utilized to train the tree, the cost of using it to forecast data increases
exponentially.

 Capable of working with both categorical and numerical data. Categorical variables are not
currently supported by the Scikit-Learn implementation. Other strategies are mainly
specialized in studying datasets that have only one sort of variable. For more details, refer to
algorithms.

 able to manage issues with several outputs.
 using the white box model. Boolean logic makes it simple to explain a condition if it can be

observed in a model for a given situation. Results may be more challenging to interpret in a
black box model, such as an artificial neural network.

 It is possible to use statistical tests to verify a model. This enables the model's dependability to
be taken into account.

 performs well even if the underlying model from which the data were created slightly violates
some of its basic assumptions.

Disadvantages of Decision Trees

 The too complicated trees that decision-tree learners can produce do not effectively generalize
the input. Overfitting is the term for this. To prevent this issue, mechanisms like pruning,
defining the minimum number of samples needed at a leaf node, or establishing the
maximum depth of the tree are required.

 Because even slight changes in the data could produce an entirely different tree, decision trees
can be unstable. The solution to this issue is to employ decision trees as part of an ensemble.

 As can be seen in the above graphic, decision tree predictions are piecewise constant
approximations rather than smooth or continuous predictions. They therefore struggle with
extrapolation.

Programming in Python

Notes

Figure 5 Decision Trees Regression

Advantages of Decision Trees

 Easy to comprehend and interpret. One can picture trees.
 Little data preparation is necessary. Data normalization, the creation of dummy variables, and

the elimination of blank values are frequently necessary for other procedures. The module
does not, however, support missing values.

 As more data points are utilized to train the tree, the cost of using it to forecast data increases
exponentially.

 Capable of working with both categorical and numerical data. Categorical variables are not
currently supported by the Scikit-Learn implementation. Other strategies are mainly
specialized in studying datasets that have only one sort of variable. For more details, refer to
algorithms.

 able to manage issues with several outputs.
 using the white box model. Boolean logic makes it simple to explain a condition if it can be

observed in a model for a given situation. Results may be more challenging to interpret in a
black box model, such as an artificial neural network.

 It is possible to use statistical tests to verify a model. This enables the model's dependability to
be taken into account.

 performs well even if the underlying model from which the data were created slightly violates
some of its basic assumptions.

Disadvantages of Decision Trees

 The too complicated trees that decision-tree learners can produce do not effectively generalize
the input. Overfitting is the term for this. To prevent this issue, mechanisms like pruning,
defining the minimum number of samples needed at a leaf node, or establishing the
maximum depth of the tree are required.

 Because even slight changes in the data could produce an entirely different tree, decision trees
can be unstable. The solution to this issue is to employ decision trees as part of an ensemble.

 As can be seen in the above graphic, decision tree predictions are piecewise constant
approximations rather than smooth or continuous predictions. They therefore struggle with
extrapolation.

 LOVELY PROFESSIONAL UNIVERSITY 196

Unit 14 : Machine Learning Algorithms
Notes

 It is well known that learning an optimum decision tree under various conditions of
optimality, even for straightforward notions, is an NP-complete issue. Because each node
makes judgments that are locally optimal, heuristic algorithms like the greedy algorithm serve
as the foundation for practical decision-tree learning algorithms. Such algorithms cannot
promise to return the decision tree that is globally optimal. Multi-tree training in an ensemble
learner with replacement sampling for the features and samples can help to mitigate this.

 Certain concepts, like XOR, parity, or multiplexer difficulties, are challenging to understand
because decision trees do not simply describe them.

 If some classes predominate, decision tree learners will produce biased trees. As a result, it is
advised to balance the dataset before fitting it to the decision tree.

14.5 Random Forest
Every decision tree has a significant variance, but when we mix them all in parallel, the variance is
reduced since each decision tree is perfectly trained using that specific sample of data, so the output
is dependent on numerous decision trees rather than just one. The majority voting classifier is used
to determine the final output in a classification challenge. The final output in a regression problem
is the mean of every output. Aggregation describes this section.

Figure 6 Random Forest

With the aid of several decision trees and a method known as Bootstrap and Aggregation, also
referred to as bagging, Random Forest is an ensemble methodology capable of handling both
regression and classification tasks. This method's fundamental principle is to integrate several
decision trees to get the final result rather than depending solely on one decision tree.

Multiple decision trees serve as the fundamental learning models in Random Forest. We create
sample datasets for each model by randomly selecting rows and features from the dataset. This
component is known as Bootstrap.

The Random Forest regression technique must be approached similarly to other machine learning
techniques.

 Create a specific query or set of data, then ask the source to provide the needed information.
 Make that the data is in a format that can be accessed; if not, convert it to the necessary format.
 List any obvious abnormalities and missing data that may be needed to obtain the desired

data.
 Establish a machine learning model.
 Decide on the baseline model you wish to accomplish.
 train the machine learning model with the data.
 Using test data, provide insight into the model.

Unit 14 : Machine Learning Algorithms
Notes

 It is well known that learning an optimum decision tree under various conditions of
optimality, even for straightforward notions, is an NP-complete issue. Because each node
makes judgments that are locally optimal, heuristic algorithms like the greedy algorithm serve
as the foundation for practical decision-tree learning algorithms. Such algorithms cannot
promise to return the decision tree that is globally optimal. Multi-tree training in an ensemble
learner with replacement sampling for the features and samples can help to mitigate this.

 Certain concepts, like XOR, parity, or multiplexer difficulties, are challenging to understand
because decision trees do not simply describe them.

 If some classes predominate, decision tree learners will produce biased trees. As a result, it is
advised to balance the dataset before fitting it to the decision tree.

14.5 Random Forest
Every decision tree has a significant variance, but when we mix them all in parallel, the variance is
reduced since each decision tree is perfectly trained using that specific sample of data, so the output
is dependent on numerous decision trees rather than just one. The majority voting classifier is used
to determine the final output in a classification challenge. The final output in a regression problem
is the mean of every output. Aggregation describes this section.

Figure 6 Random Forest

With the aid of several decision trees and a method known as Bootstrap and Aggregation, also
referred to as bagging, Random Forest is an ensemble methodology capable of handling both
regression and classification tasks. This method's fundamental principle is to integrate several
decision trees to get the final result rather than depending solely on one decision tree.

Multiple decision trees serve as the fundamental learning models in Random Forest. We create
sample datasets for each model by randomly selecting rows and features from the dataset. This
component is known as Bootstrap.

The Random Forest regression technique must be approached similarly to other machine learning
techniques.

 Create a specific query or set of data, then ask the source to provide the needed information.
 Make that the data is in a format that can be accessed; if not, convert it to the necessary format.
 List any obvious abnormalities and missing data that may be needed to obtain the desired

data.
 Establish a machine learning model.
 Decide on the baseline model you wish to accomplish.
 train the machine learning model with the data.
 Using test data, provide insight into the model.

Unit 14 : Machine Learning Algorithms
Notes

 It is well known that learning an optimum decision tree under various conditions of
optimality, even for straightforward notions, is an NP-complete issue. Because each node
makes judgments that are locally optimal, heuristic algorithms like the greedy algorithm serve
as the foundation for practical decision-tree learning algorithms. Such algorithms cannot
promise to return the decision tree that is globally optimal. Multi-tree training in an ensemble
learner with replacement sampling for the features and samples can help to mitigate this.

 Certain concepts, like XOR, parity, or multiplexer difficulties, are challenging to understand
because decision trees do not simply describe them.

 If some classes predominate, decision tree learners will produce biased trees. As a result, it is
advised to balance the dataset before fitting it to the decision tree.

14.5 Random Forest
Every decision tree has a significant variance, but when we mix them all in parallel, the variance is
reduced since each decision tree is perfectly trained using that specific sample of data, so the output
is dependent on numerous decision trees rather than just one. The majority voting classifier is used
to determine the final output in a classification challenge. The final output in a regression problem
is the mean of every output. Aggregation describes this section.

Figure 6 Random Forest

With the aid of several decision trees and a method known as Bootstrap and Aggregation, also
referred to as bagging, Random Forest is an ensemble methodology capable of handling both
regression and classification tasks. This method's fundamental principle is to integrate several
decision trees to get the final result rather than depending solely on one decision tree.

Multiple decision trees serve as the fundamental learning models in Random Forest. We create
sample datasets for each model by randomly selecting rows and features from the dataset. This
component is known as Bootstrap.

The Random Forest regression technique must be approached similarly to other machine learning
techniques.

 Create a specific query or set of data, then ask the source to provide the needed information.
 Make that the data is in a format that can be accessed; if not, convert it to the necessary format.
 List any obvious abnormalities and missing data that may be needed to obtain the desired

data.
 Establish a machine learning model.
 Decide on the baseline model you wish to accomplish.
 train the machine learning model with the data.
 Using test data, provide insight into the model.

 LOVELY PROFESSIONAL UNIVERSITY 197

Programming in Python

Notes

 Compare the test data and the model's projected data's performance metrics now.
 You can try updating your model accordingly, dating your data, or using another data

modelling technique if it doesn't meet your expectations.
 You now interpret the information you have learned and report accordingly.
 In the example below, you will apply a similar sampling technique.

Here is a detailed example of how Random Forest Regression is implemented.

Importing the libraries

Step 1: Import the required libraries.

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

Step 2: Import and print the dataset

data = pd.read_csv('Salaries.csv')

print(data)

Step 3: Select all rows and column 1 from dataset to x and all rows and column 2 as y

the coding was not shown which is like that

x= df.iloc [:, : -1] # ” : ” means it will select all rows, “: -1 ” means that it will ignore last column

y= df.iloc [:, -1 :] # ” : ” means it will select all rows, “-1 : ” means that it will ignore all columns
except the last one

the “iloc()” function enables us to select a particular cell of the dataset, that is, it helps us select a
value that belongs to a particular row or column from a set of values of a data frame or dataset.

Step 4: Fit Random Forest regressor to the dataset

Fitting Random Forest Regression to the dataset

import the regressor

from sklearn.ensemble import RandomForestRegressor

create regressor object

regressor = RandomForestRegressor(n_estimators = 100, random_state = 0)

fit the regressor with x and y data

regressor.fit(x, y)

Step 5: Predicting a new result

p.array([6.5]).reshape(1, 1)) # test the output by changing values

Step 6: Visualising the result

Visualising the Random Forest Regression results

arrange for creating a range of values

from min value of x to max

value of x with a difference of 0.01

between two consecutive values

X_grid = np.arrange(min(x), max(x), 0.01)

reshape for reshaping the data into a len(X_grid)*1 array,

i.e. to make a column out of the X_grid value

X_grid = X_grid.reshape((len(X_grid), 1))

Scatter plot for original data

 LOVELY PROFESSIONAL UNIVERSITY 198

Unit 14 : Machine Learning Algorithms
Notes

plt.scatter(x, y, color = 'blue')

plot predicted data

plt.plot(X_grid, regressor.predict(X_grid), color = 'green')

plt.title('Random Forest Regression')

plt.xlabel('Position level')

plt.ylabel('Salary')

plt.show()

Output

Figure 7 Random Forest Regression

14.6 K-Means Clustering Algorithm
The clustering issues in machine learning or data science are resolved using the unsupervised
learning algorithm K-Means Clustering. In this chapter, we will learn what the K-means clustering
algorithm is, how it operates, and how to implement it in Python.

What is K-Means Algorithm?
Unsupervised learning algorithm K-Means Clustering divides the unlabeled dataset into various
clusters. Here, K specifies how many pre-defined clusters must be produced as part of the process;
for example, if K=2, there will be two clusters, if K=3, there will be three clusters, and so on.

It is an iterative technique that separates the unlabeled dataset into k distinct clusters, with each
dataset belonging to just one group with identical characteristics.

It gives us the ability to divide the data into various groups and provides a practical method for
automatically identifying the groups in the unlabeled dataset without the need for any training.

Each cluster has a centroid assigned to it because the algorithm is centroid-based. This algorithm's
primary goal is to reduce the total distances between each data point and its corresponding clusters.

It allows us to categories the data into different groups and offers a workable technique for quickly
and accurately determining the groups in the unlabeled dataset without the need for any training.

The technique is centroid-based, and each cluster has a centroid given to it. Reducing the overall
distances between each data point and its matching clusters is the main objective of this technique.

The algorithm starts with an unlabeled dataset as its input, separates it into k clusters, and then
continues the procedure until it runs out of clusters to use. In this algorithm, the value of k should
be predetermined.

The two major functions of the k-means clustering algorithm are:

Unit 14 : Machine Learning Algorithms
Notes

plt.scatter(x, y, color = 'blue')

plot predicted data

plt.plot(X_grid, regressor.predict(X_grid), color = 'green')

plt.title('Random Forest Regression')

plt.xlabel('Position level')

plt.ylabel('Salary')

plt.show()

Output

Figure 7 Random Forest Regression

14.6 K-Means Clustering Algorithm
The clustering issues in machine learning or data science are resolved using the unsupervised
learning algorithm K-Means Clustering. In this chapter, we will learn what the K-means clustering
algorithm is, how it operates, and how to implement it in Python.

What is K-Means Algorithm?
Unsupervised learning algorithm K-Means Clustering divides the unlabeled dataset into various
clusters. Here, K specifies how many pre-defined clusters must be produced as part of the process;
for example, if K=2, there will be two clusters, if K=3, there will be three clusters, and so on.

It is an iterative technique that separates the unlabeled dataset into k distinct clusters, with each
dataset belonging to just one group with identical characteristics.

It gives us the ability to divide the data into various groups and provides a practical method for
automatically identifying the groups in the unlabeled dataset without the need for any training.

Each cluster has a centroid assigned to it because the algorithm is centroid-based. This algorithm's
primary goal is to reduce the total distances between each data point and its corresponding clusters.

It allows us to categories the data into different groups and offers a workable technique for quickly
and accurately determining the groups in the unlabeled dataset without the need for any training.

The technique is centroid-based, and each cluster has a centroid given to it. Reducing the overall
distances between each data point and its matching clusters is the main objective of this technique.

The algorithm starts with an unlabeled dataset as its input, separates it into k clusters, and then
continues the procedure until it runs out of clusters to use. In this algorithm, the value of k should
be predetermined.

The two major functions of the k-means clustering algorithm are:

Unit 14 : Machine Learning Algorithms
Notes

plt.scatter(x, y, color = 'blue')

plot predicted data

plt.plot(X_grid, regressor.predict(X_grid), color = 'green')

plt.title('Random Forest Regression')

plt.xlabel('Position level')

plt.ylabel('Salary')

plt.show()

Output

Figure 7 Random Forest Regression

14.6 K-Means Clustering Algorithm
The clustering issues in machine learning or data science are resolved using the unsupervised
learning algorithm K-Means Clustering. In this chapter, we will learn what the K-means clustering
algorithm is, how it operates, and how to implement it in Python.

What is K-Means Algorithm?
Unsupervised learning algorithm K-Means Clustering divides the unlabeled dataset into various
clusters. Here, K specifies how many pre-defined clusters must be produced as part of the process;
for example, if K=2, there will be two clusters, if K=3, there will be three clusters, and so on.

It is an iterative technique that separates the unlabeled dataset into k distinct clusters, with each
dataset belonging to just one group with identical characteristics.

It gives us the ability to divide the data into various groups and provides a practical method for
automatically identifying the groups in the unlabeled dataset without the need for any training.

Each cluster has a centroid assigned to it because the algorithm is centroid-based. This algorithm's
primary goal is to reduce the total distances between each data point and its corresponding clusters.

It allows us to categories the data into different groups and offers a workable technique for quickly
and accurately determining the groups in the unlabeled dataset without the need for any training.

The technique is centroid-based, and each cluster has a centroid given to it. Reducing the overall
distances between each data point and its matching clusters is the main objective of this technique.

The algorithm starts with an unlabeled dataset as its input, separates it into k clusters, and then
continues the procedure until it runs out of clusters to use. In this algorithm, the value of k should
be predetermined.

The two major functions of the k-means clustering algorithm are:

 LOVELY PROFESSIONAL UNIVERSITY 199

Programming in Python

Notes

 uses an iterative technique to choose the best value for K center points or centroids.
 each data point is matched with the nearest k-center. A cluster is formed by the data points

that are close to a specific k-center.

As a result, each cluster is distinct from the others and contains data points with some
commonality.

The K-means Clustering Algorithm is explained in the diagram below:

Figure 8 K-Means Algorithm

How Does K-Means Algorithm Work?
The following stages illustrate how the K-Means algorithm functions:

Step 1: To determine the number of clusters, choose K.

Step 2: Pick K locations or centroids at random. (It might not be the supplied dataset.)

Step 3: Assign each data point to its nearest centroid, which will create the K clusters that have been
predetermined.

Step 4: Determine the variance and relocate each cluster's centroid.

Step 5: Re-assign each data point to the new centroid of each cluster by repeating the third step.

Step 6: Move to step 4 if there is a reassignment; otherwise, go to FINISH.

Step 7: The finished model

Summary

 The field of study known as machine learning enables computers to learn without being
explicitly programmed.

 Astrategy for predicting a response based on a single feature is simple linear regression.
 A subset of machine learning and artificial intelligence is supervised learning, commonly

referred to as supervised machine learning. It is distinguished by the way it trains computers
to accurately classify data or predict outcomes using labelled datasets.

 In order to accurately classify test data into different categories, classification uses an
algorithm.

 To comprehend the relationship between dependent and independent variables, regression is
used.

 Neural networks process training data by simulating the connectivity of the human brain
through layers of nodes, which is mostly used for deep learning algorithms.

Programming in Python

Notes

 uses an iterative technique to choose the best value for K center points or centroids.
 each data point is matched with the nearest k-center. A cluster is formed by the data points

that are close to a specific k-center.

As a result, each cluster is distinct from the others and contains data points with some
commonality.

The K-means Clustering Algorithm is explained in the diagram below:

Figure 8 K-Means Algorithm

How Does K-Means Algorithm Work?
The following stages illustrate how the K-Means algorithm functions:

Step 1: To determine the number of clusters, choose K.

Step 2: Pick K locations or centroids at random. (It might not be the supplied dataset.)

Step 3: Assign each data point to its nearest centroid, which will create the K clusters that have been
predetermined.

Step 4: Determine the variance and relocate each cluster's centroid.

Step 5: Re-assign each data point to the new centroid of each cluster by repeating the third step.

Step 6: Move to step 4 if there is a reassignment; otherwise, go to FINISH.

Step 7: The finished model

Summary

 The field of study known as machine learning enables computers to learn without being
explicitly programmed.

 Astrategy for predicting a response based on a single feature is simple linear regression.
 A subset of machine learning and artificial intelligence is supervised learning, commonly

referred to as supervised machine learning. It is distinguished by the way it trains computers
to accurately classify data or predict outcomes using labelled datasets.

 In order to accurately classify test data into different categories, classification uses an
algorithm.

 To comprehend the relationship between dependent and independent variables, regression is
used.

 Neural networks process training data by simulating the connectivity of the human brain
through layers of nodes, which is mostly used for deep learning algorithms.

Programming in Python

Notes

 uses an iterative technique to choose the best value for K center points or centroids.
 each data point is matched with the nearest k-center. A cluster is formed by the data points

that are close to a specific k-center.

As a result, each cluster is distinct from the others and contains data points with some
commonality.

The K-means Clustering Algorithm is explained in the diagram below:

Figure 8 K-Means Algorithm

How Does K-Means Algorithm Work?
The following stages illustrate how the K-Means algorithm functions:

Step 1: To determine the number of clusters, choose K.

Step 2: Pick K locations or centroids at random. (It might not be the supplied dataset.)

Step 3: Assign each data point to its nearest centroid, which will create the K clusters that have been
predetermined.

Step 4: Determine the variance and relocate each cluster's centroid.

Step 5: Re-assign each data point to the new centroid of each cluster by repeating the third step.

Step 6: Move to step 4 if there is a reassignment; otherwise, go to FINISH.

Step 7: The finished model

Summary

 The field of study known as machine learning enables computers to learn without being
explicitly programmed.

 Astrategy for predicting a response based on a single feature is simple linear regression.
 A subset of machine learning and artificial intelligence is supervised learning, commonly

referred to as supervised machine learning. It is distinguished by the way it trains computers
to accurately classify data or predict outcomes using labelled datasets.

 In order to accurately classify test data into different categories, classification uses an
algorithm.

 To comprehend the relationship between dependent and independent variables, regression is
used.

 Neural networks process training data by simulating the connectivity of the human brain
through layers of nodes, which is mostly used for deep learning algorithms.

 LOVELY PROFESSIONAL UNIVERSITY 200

Unit 14 : Machine Learning Algorithms
Notes

 A classification method known as Naive Bayes adopts the idea of Class Conditional
Independence from the Bayes Theorem.

 In order to anticipate future results, linear regression is frequently employed to determine the
relationship between a dependent variable and one or more independent variables.

 While logistical regression is used when the dependent variable is categorical, or has binary
outputs, such as "true" and "false" or "yes" and "no," linear regression is used when the
dependent variable is continuous.

 Vladimir Vapnik created the well-known supervised learning model known as the support
vector machine, which is used for both data classification and regression.

 The KNN algorithm, also referred to as K-nearest neighbor, is a non-parametric algorithm that
groups data points according to their proximity and association with other pieces of available
information.

Keywords
Linear Regression: When modelling the relationship between a scalar answer and one or more
explanatory variables in statistics, linear regression is a linear method.

Linearity:This indicates that the parameters (regression coefficients) and predictor variables are
combined linearly to produce the mean of the response variable.

Constant variance: This translates to the fact that the variance of the errors is independent of the
values of the predictor variables. Therefore, regardless of how big or small the responses are, the
variability of the responses for given fixed values of the predictors is the same.

Independence of Errors:This assumes that the errors of the response variables are uncorrelated
with each other.

K Nearest Neighbor: One of the simplest Machine Learning algorithms based on the Supervised
Learning technique is K-Nearest Neighbor.

Lazy Learner Algorithm: It is also known as a lazy learner algorithm since it saves the training
dataset rather than learning from it immediately. Instead, it uses the dataset to perform an action
when classifying data.

Euclidean Algorithm:The distance between two points, which we have already examined in
geometry, is known as the Euclidean distance.

Decision Trees:A non-parametric supervised learning technique for classification and regression
is called a decision tree (DT). The objective is to learn straightforward decision rules derived from
the data features in order to build a model that predicts the value of a target variable.

Random Forests: Leo Breiman and Adele Cutler are the creators of the widely used machine
learning technique known as random forest, which mixes the output of various decision trees to
produce a single outcome.

K Means Clustering: The goal of k-means clustering, a vector quantization technique that
originated in signal processing, is to divide n observations into k clusters, where each observation
belongs to the cluster that has the closest mean (also known as the cluster centroid or cluster
centre), which serves as a prototype for the cluster.

K Medoids: K-medoids, also known as Partitioning Around Medoids, or PAM, minimises the sum
of distances for any given distance function by using the medoid rather than the mean.

Principal Component Analysis:Principal component analysis provides the k-means clustering's
relaxed solution, which is determined by the cluster indicators (PCA)

K

Self Assessment

1. Choose the item from the list below that is not a kind of learning.
A. Semi supervisedunsupervisedlearning

 LOVELY PROFESSIONAL UNIVERSITY 201

Programming in Python

Notes

B. Supervised learning
C. Unsupervised Learning
D. Reinforcement Learning

2. What is the term for the application of machine learning techniques to a big database?
A. Supervised learning
B. Unsupervised Learning
C. Reinforcement Learning
D. Data mining

3. Machine learning approaches can be traditionally categorized into ______ categories
A. 2
B. 3
C. 4
D. 5

4. The following effects occur as the number of features increases:
A. longer computation times
B. more complex models
C. worse learning accuracy
D. all of the above.

5. The k-means algorithm is a
A. Supervised learning algorithm
B. Unsupervised learning algorithm
C. Semi-supervised learning algorithm
D. Weakly supervised learning algorithm

6. We have a model for unsupervised learning called.
A. interactive
B. predictive
C. descriptive
D. prescriptive

7. Any machine learning model's success Hinges on the engineering of a good feature space.
A. Pre-requisite
B. Process
C. Objective
D. None of the above

8. An example would be determining whether a tumour is benign or malignant.
A. Unsupervised Learning
B. Supervised Regression Problem
C. Supervised Classification Problem
D. Categorical Attribute

 LOVELY PROFESSIONAL UNIVERSITY 202

Unit 14 : Machine Learning Algorithms
Notes

9. This is a reference to the adjustments made to the detected data before to feeding it to the
algorithm.

A. Problem Identification
B. Identification of Required Data
C. Data Pre-processing
D. Definition of Training Data Set

10. Which of the following is true about SVM?
A. It is useful only in high-dimensional spaces
B. It requires less memory
C. SVM does not perform well when we have a large data set
D. SVM performs well when we have a large data set

11. Which of the following kNN choices would you take into account if there are a lot of
sounds in the data?

A. Increase the value of k
B. Decrease the value of k
C. Noise does not depend on k
D. k = 0

12. Decision tree defined as
A. Flow-Chart
B. Structure in which internal node represents test on an attribute, each branch represents

outcome of test and each leaf node represents class label.
C. Flow-Chart & Structure in which internal node represents test on an attribute, each branch

represents outcome of test and each leaf node represents class label.
D. None of the mentioned

13. Choose from the following that are Decision Tree nodes?
A. Decision Nodes
B. End Nodes
C. Chance Nodes
D. All of the mentioned

14. Decision Nodes are depicted by
A. Disks
B. Squares
C. Circles
D. Triangles

15. Which benefit(s) of the following apply to decision trees?
A. Possible Scenarios can be added
B. Use a white box model, If given result is provided by a model
C. Worst, best and expected values can be determined for different scenarios
D. All of the mentioned

 LOVELY PROFESSIONAL UNIVERSITY 203

Programming in Python

Notes

Answers for Self Assessment

1. A 2. D 3. B 4. D 5. B

6. C 7. A 8. C 9. C 10. D

11. A 12. C 13. D 14. B 15. D

Review Question

Further Readings

 Mark Lutz,Programming Python: Powerful Object-Oriented Programming,
OREILLY

 Wes McKinney, Python for data analysis, OREILLY
 David Ascher and Mark Lutz, Learning Python, OREILLY
 Eric Matthes, Python Crash Course, 2nd Edition: A Hands-On, Project-Based

Introduction to Programming, Starch Pres

Web Links

 https://www.tutorialspoint.com/python/index.htm
 https://www.python.org/downloads/
 https://www.w3schools.in/python/data-types
 https://www.programiz.com/python-programming/online-compiler/
 https://www.codecademy.com/catalog/language/python

Programming in Python

Notes

Answers for Self Assessment

1. A 2. D 3. B 4. D 5. B

6. C 7. A 8. C 9. C 10. D

11. A 12. C 13. D 14. B 15. D

Review Question

Further Readings

 Mark Lutz,Programming Python: Powerful Object-Oriented Programming,
OREILLY

 Wes McKinney, Python for data analysis, OREILLY
 David Ascher and Mark Lutz, Learning Python, OREILLY
 Eric Matthes, Python Crash Course, 2nd Edition: A Hands-On, Project-Based

Introduction to Programming, Starch Pres

Web Links

 https://www.tutorialspoint.com/python/index.htm
 https://www.python.org/downloads/
 https://www.w3schools.in/python/data-types
 https://www.programiz.com/python-programming/online-compiler/
 https://www.codecademy.com/catalog/language/python

Programming in Python

Notes

Answers for Self Assessment

1. A 2. D 3. B 4. D 5. B

6. C 7. A 8. C 9. C 10. D

11. A 12. C 13. D 14. B 15. D

Review Question

Further Readings

 Mark Lutz,Programming Python: Powerful Object-Oriented Programming,
OREILLY

 Wes McKinney, Python for data analysis, OREILLY
 David Ascher and Mark Lutz, Learning Python, OREILLY
 Eric Matthes, Python Crash Course, 2nd Edition: A Hands-On, Project-Based

Introduction to Programming, Starch Pres

Web Links

 https://www.tutorialspoint.com/python/index.htm
 https://www.python.org/downloads/
 https://www.w3schools.in/python/data-types
 https://www.programiz.com/python-programming/online-compiler/
 https://www.codecademy.com/catalog/language/python

 LOVELY PROFESSIONAL UNIVERSITY 204

Jalandhar-Delhi G.T. Road (NH-1)
Phagwara, Punjab (India)-144411
For Enquiry: +91-1824-521360
Fax.: +91-1824-506111
Email: odl@lpu.co.in

LOVELY PROFESSIONAL UNIVERSITY

	ECAP776 - U01 - B - Formatted.pdf
	ECAP776 - U02 - B - Formatted.pdf
	ECAP776 - U03 - B - Formatted.pdf
	ECAP776 - U04 - B - Formatted.pdf
	ECAP776 - U05 - B - Formatted.pdf
	ECAP776 - U06 - B - Formatted.pdf
	ECAP776 - U07 - B - Formatted.pdf
	ECAP776 - U08 - B - Formatted.pdf
	ECAP776 - U09 - B - Formatted.pdf
	ECAP776 - U10 - B - Formatted.pdf
	ECAP776 - U11 - B - Formatted.pdf
	ECAP776 - U12 - B - Formatted.pdf
	ECAP776 - U13 - B - Formatted.pdf
	ECAP776 - U14 - B - Formatted.pdf

