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Purpose and Objectives:

An analytic continuation is a mathematical approach used to widen the scope of a given analytic
function in the field of complex analysis. Analytic continuation frequently succeeds in defining
further values of a function, for instance in a new region when the initial definition's infinite series
representation becomes divergent.

The stepwise continuation method might, however, run into problems. These could be
fundamentally topological, which would produce contradictions (defining more than one value).
Alternatively, they might be related to the existence of singularities. The situation involving many
complex variables is somewhat different because singularities need not be separate places in this
case. Sheaf cohomology was largely developed because of research into this situation. In this unit
first we will discuss the pre-requisite concepts for analytic continuation and then the definition of
analytic continuation. After this unit students can be able to-

1. Understand the convergence analysis of a complex valued function.

2. Understand the definition of analytical continuation.

3. Solve some problems of analytical continuation.

Introduction

The Riemann hypothesis, which is closely related to the distribution of prime numbers, is perhaps
the most important open topic in pure mathematics today. Analytic continuation is one of the
fundamental methods required to comprehend the issue. An approach from the field of
mathematics known as complex analysis called analytical continuation is employed to enlarge the
domain of a complex analytic function. We will quickly go over some essential mathematics
concepts prior to introducing the approach.

1.1 Taylor Series
Consider the case where we want to find a polynomial approximation to a function f(x).
Polynomials are mathematical expressions made up of coefficients and variables. The variables are
multiplied, subtracted, and added using only non-negative integer exponents. With one variable, x,
a polynomial of degree n can be expressed as follows:
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( ) = + +⋯ , + (1.1)

If we consider a 3-degree polynomial with = , = , = −3, and = −2 then.( ) = + − 3 − 2(1.2)

And the graph of ( ) is.

Figure 1.1: The graph of ( ) = + − 3 − 2
Imagine that the polynomial has infinite degrees now (it is given by an infinite sum of terms). These
polynomials are referred to as Taylor series (or Taylor expansions). Polynomial representations of
functions as infinite sums of terms are called Taylor series.

Every term in the series is calculated using the derivative values of ( ) at a particular point
(around which the series is centered). A formal Taylor series centered on a certain number and is
given by: ( ) = ( )( ) + ( )( )! ( − ) + ( )( )! ( − ) + ( )( )! ( − ) + ⋯(1.3)

where the upper indices (0), (1), … indicate the order of the derivative of ( ) = . One can
approximate a function using a polynomial with only a finite number of terms of the corresponding
Taylor series. Such polynomials are called Taylor polynomials.

The Taylor polynomials for ( ) = + − 3 − 2 around = 0 are given by:( ) = −2 − ! + . ! + . ! +⋯(1.4)

Were ( )(0) = −2, ( )(0) = −3, ( )(0) = , ( )(0) = .

The equation (1.4) is same as the considered 3 degree polynomial equation (1.2).

1.2 Convergence

Our study of the analytic continuation will likewise heavily rely on the idea of convergence of
infinite series. A list of items (or objects) having a specific order constitutes a mathematical
sequence. The following represents the n different sequences: = { , , … , }(1.5)
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A well-known example of a sequence is the Fibonacci sequence 0,1,1,2,3,5,8,13,21,34, 55, …where
each number is the sum of the two preceding ones.

One builds a series by taking partial sums of the elements of a sequence. The series of partial sums
can be represented by: { , , … , }(1.6)

where: { = , = + , = + + ,… , }(1.7)

An example of a series, the familiar geometric series, is shown below. In a geometric series, the
common ratio between successive elements is constant. The geometric series with common ratio =
1/2we have: 2 = 1 + + + +⋯, (1.8)

Fig. 1.2 shows pictorially that the geometric series above converges to twice the area of the largest
square.

Figure 1.2: A pictorial demonstration of the convergence of the geometric series with common ration r=1/2
and first term a=1

A series such as in Eq. (1.7) is convergent if the sequence Eq. (1.6) of partial sums approaches some
finite limit. Otherwise, the series is said to be divergent. An example of a convergent series is the
geometric series in Eq.(1.8). An example of a divergent series is:

+ + + +⋯ → ∞(1.9)

1.3 Analytic Functions, Poles, and Convergence Discs

Until now, our analysis was restricted to real numbers. Now we will extend it to complex numbers.
The complex plane is a geometric representation of the complex numbers, as shown in Fig.1.3 .
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Figure 1.3: The complex plane, a geometric representation of the complex numbers. The figure shows the real
and the (perpendicular) imaginary axis.

Let us consider an expansion of an analytic complex function f(z). By definition, an analytic
function is a function locally given by a convergent power series. If f(z) is analytic at z₀, the power
series reads:( + ) = ∑ ( )( )! (1.10)

Equation (1.10) shows the Taylor expansion of an analytic function f(z) into a power series about a
complex value z₀.

In analogy with the case of the geometric series, where convergence was restricted to an interval
with radius 1 on the real line, this series will converge only over a circular region of the complex
plane centered on the complex number z₀.

Figure 1.4: Going from the real line to the complex plane.

The convergence region of f(z) is a circular region centered on z₀ extending to the closest pole,
where f(z) goes to infinity.

Fig. 1.5 shows the convergence region (bounded by the white circle) of the function 1/(1+z²).
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Figure 1.5:The white circle in the convergence disc of the function 1/(1+z²).

A stronger criterion of convergence is called absolute convergence. We call the convergence we
already discussed conditional convergence. Absolute convergence occurs when the following series
converges:

= | |, = | | + | |, = | | + | | + | |,…,(1.11)

When a series is absolutely convergent it is also conditionally convergent. There are a few tests of
absolute convergence, one of them is the ratio test. Consider the general infinite series:

= ∑ (1.12)

Now define the following ratio: = lim → (1.13)

The ratio r in the equation (1.13) used in the ratio test of absolute convergence.

The series equation (1.13) converges absolutely if r<1 and diverges if r>1. If r=1, no conclusion can be
taken.
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Figure 1.6: A decision diagram for the ratio test.

It is straightforward to apply the ratio test (or any other convergence test) to show the following
important result:

∑ converges for any ≥ 2.(1.14)

1.4 Analytic Continuation
From the results regarding zeros of an analytic function, it follows that if two functions are regular
in a domain D and if they coincide in a neighborhood, however small, of any point a of D, or only
along a path-segment, however small, terminating in a point a of D, or only at an infinite number of
distinct points with a limit-point a in D, then the two functions are identically the same in D. Thus,
it emerges that a regular function defined in a domain D is completely determined by its values
over any such sets of points.

This is a very great restraint in the behavior of analytic functions. One of the remarkable
consequences of this feature of analytic functions, which is extremely helpful in studying them, is
known as analytic continuation. Analytic continuation is a process of extending the definition of a
domain of an analytic function in which it is originally defined i.e., it is a concept which is utilized
for making the domain of definition of an analytic function as large as possible.
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Letus supposethattwo functionsf1(z) andf2(z) aregiven, such thatf1(z) isanalyticinthedomain D1 and
f2(z) in a domain D2We further assume that D1 and D2 have a common part D12(D1 D2).

If f1(z) = f2(z) in the common part D12, then we say that f2(z) is the direct
analyticcontinuationoff1(z)fromD1intoD2viaD12.

Conversely,f1(z)isthedirectanalyticcontinuationof f2(z) from D2 into D1 via D12.Indeed f1(z) and f2(z)
are analytic continuations of each other.

Both f1(z) and f2(z) may be regarded as partial representations or elements of one and the
samefunction undertheconditionthatf1(z)=f2(z)ataninfinitesetofpointswithalimit-pointinD12.

Itisobservedthatforthepurposeofanalyticcontinuation,itissufficientthatthedomainsD1and
D2haveonlyasmallarcin common.

Figure 1.7: Analytic Continuation common domain.

Definition. An analytic function f(z) with its domain of definition D is called a functionelement and
is denoted by (f, D).

If zD, then (f, D) is called a function element of z.Using
thisnotation,wemaysaythat(f1,D1)and(f2,D2)areinanalyticcontinuationsofeachother D1
D2andf1(z) = f2(z) forallzD1 D2.

It can be further simplified as Suppose f1(z) is analytical on a region D1. Now suppose that D1 is
contained in a region f2(z). The function f(z) can be analytically continued from D1 to D2 if there
exists a function f2(z) such that: f2(z)  is analytic on S, f2(z) = f1(z) for all z ∈ D1

Example 1.1:

Let us consider ( ) = ∑ , ∅( ) = .
Then ( )is analytic at all the points within the circle | | = 1 and ∅( ) is analytic all the points

except = 1.
Also ( ) = ∅( ) within | | = 1
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Figure 1.8: ∅( ) gives the continuation of ( ) over the rest of the plane.

Hence ∅( ) gives the continuation of ( ) over the rest of the plane.

Question:

Show that the function ( ) = ∑ is in analytic continuation to ( ) = ∑
Solution:
Given that: ( ) = ∑ (1.15)

First, we will consider the convergent analysis for ( )
The series equation (1.15) can be written as:( ) = 1 + + + +⋯ ,+ +⋯,⟹ ( ) = (1 − )⟹ ( ) = 11 −
Hence it is observed that the ( )has the sum ∑ = and the nth sequence of the series is

Now we apply the ratio test for convergent analysis.

Here, =
And =
If ∑ is absolutely convergent then < 1

⟹ < 1
⟹ . < 1⟹ | | < 1
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And =
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⟹ < 1
⟹ . < 1⟹ | | < 1

Complex Analysis -II
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Figure 1.9: The area of unit disc | | < 1
Hence ( ) is convergent inside the region | | < 1(see the Figure 1.9)

Now let us consider the second series. ( ) = ∑ (1.16)

⇒ ( ) = 12 + (1 + )2.2 + (1 + )2.2 + (1 + )2.2 + ⋯ , (1 + )2.2 + ⋯,
Hence the nth term of the series is = ( ). .

And = ( ). .

If ∑ is absolutely convergent then < 1
⟹ ( ).( ). < 1

⟹ (1 + ) . 2.22.2 . (1 + ) < 1
⟹ (1 + ) . 2.2 . (1 + )2.2 . (1 + ) . 2 < 1

⟹ (1 + )2 < 1⟹ | + 1| < 2

Figure 1.10: The area of disc | + 1| < 2
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Hence ( ) is convergent inside the region | + 1| < 2( ℎ ℎ = −1, = 2).
Till now we have observed that the ( ) = is analytic inside the domain : | | < 1 and( ) = ∑ is analytic inside the domain : | + 1| < 2 . It can be clearly seen from
Fig.1.10 and Fig.1.9 that ( ) and ( ) share some common region.

Now we will show that ( ) = ( ) for all ∈ .

As we have ( ) = and

( ) = 12 1 +2 = 12 + (1 + )2.2 + (1 + )2.2 + (1 + )2.2 +⋯ , (1 + )2.2 +⋯,
⇒ ( ) = 12 + (1 + )2.2 + (1 + )2.2 + (1 + )2.2 + ⋯ , (1 + )2.2 + ⋯,

Let = then. ( ) = 12 + 2 + 2 + 2 +⋯ , 2 + ⋯,⇒ 2( ) = 12 1 + + 2 + 3 +⋯ , +⋯ ,
⇒ 2( ) = 12 (1 − )−1
⇒ 2( ) = 12(1 − )⇒ 2( ) = 12(1 − )
⇒ 2( ) = 1(1 − )⇒ 2( ) = 1( )

Figure 1.11: The common region for zD1 D2.

As ( )is analytic inside the domain : | | < 1 and ( )is analytic inside the domain : | + 1| <2 .Thus ( )extends the domain of an analytical function ( ) to larger domain . Hence the
function ( )be analytically continued from D1 to D2 as there exists a function ( )such that:( )is analytic on : 2( ) = 1( ) , for all ∈ .
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As ( )is analytic inside the domain : | | < 1 and ( )is analytic inside the domain : | + 1| <2 .Thus ( )extends the domain of an analytical function ( ) to larger domain . Hence the
function ( )be analytically continued from D1 to D2 as there exists a function ( )such that:( )is analytic on : 2( ) = 1( ) , for all ∈ .
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1.5 Review questions

1. Explain how it is possible to continue analytically the function ( ) = 1 + + +⋯++⋯ outside the circle of convergence of the power series.
2. Show the series ∑ cannotbecontinuedanalyticallybeyondthe circle|z|= 1
3. Show that the series ∑ and ∑ ( )( ) are analytic continuations of each other.

4. Prove that the series 1 + ∑ cannot be continued analytically beyond |z|= 1
5. Prove that the function defined by ( ) = − + − +⋯, is analytic in the region| | < 1 .And then find a function that represents all possible analytic continuations of( ).

1.6 Self-assessment

1. The function f( ) = ∑ is convergent inside the
A. Region | + 1| < 2
B. Region | − 1| < 2
C. Region | + 1| < 6
D. Region | | < 2

2. The function f( ) = ∑ is convergent inside the
A. Region | + 1| < 2
B. Region | − 1| < 2
C. Region | + 1| < 6
D. Region | | < 2

3. The function f( ) = ∑ ( )( ) is convergent inside the

A. Region | + 1| < 2
B. Region | − | < √5
C. Region | | < 5
D. Region | | < √5

4. The function f( ) = ∑ is convergent inside the
A. Region | | < 2
B. Region | − 1| < 2
C. Region | + 1| < 6
D. Region | | < 1

5. The function f( ) = ∑ ( )( ) . is convergent inside the

A. Region | + 1| < 4
B. Region | − 1| < 2
C. Region | + 1| < 6
D. Region | | < 2

6. If the function ( ) = ∑ /2 is in analytic continuation to( ) = ∑ ( )( ) from the domain D1 to D2then the which one of the points does lies in∩
A.
B. 5
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C. −5
D. −20

7. If the function ( ) = ∑ /2 is in analytic continuation to( ) = ∑ ( )( ) from the domain D1 to D2then the which one of the points does lies in∩
A. 10
B. +
C. −5.5
D. −10

8. If the function ( ) = ∑ /2 is in analytic continuation to( ) = ∑ ( )( ) from the domain D1 to D2then the which one of the points does NOT

lies in ∩
A. √5
B. 0
C.
D. /2

9. If the function ( ) = ∑ /2 is in analytic continuation to( ) = ∑ ( )( ) from the domain D1 to D2then the which one of the points does not lies

in ∩
A. 0.2
B. 5
C. −0.1
D. 0.1 +

10. If the function ( ) = ∑ /2 is in analytic continuation to( ) = ∑ ( )( ) from the domain D1 to D2then the which one of the points does lies in∩
A. 0.1 + 0.1
B. 50
C. −15
D. −12

11. If the function ( ) = ∑ is in analytic continuation to ( ) = ∑ from the

domain D1 to D2then the which one of the point lies in ∩
A. +
B. +
C. −3 +
D. −3 − 3

12. If the function ( ) = ∑ is in analytic continuation to ( ) = ∑ from the

domain D1 to D2then the which one of the point lies in ∩
A. +
B. +
C. −13 +
D. −3 − 13
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13. If the function ( ) = ∑ is in analytic continuation to ( ) = ∑ from the

domain D1 to D2then the which one of the point does not lies in ∩
A. +
B. +
C. −8 +
D. −2

14. If the function ( ) = ∑ is in analytic continuation to ( ) = ∑ from the

domain D1 to D2then the which one of the point does not lies in ∩
A. −1
B. −1.5
C. −13
D. −2.5

15. If the function ( ) = ∑ is in analytic continuation to ( ) = ∑ from the

domain D1 to D2then the which one of the point does not lies in ∩
A. 10
B. 0
C. −
D. −2.8

Table 1: Answers of self-assessment

Question number Correct answer

1 A

2 D

3 B

4 D

5 A

6 A

7 B

8 A

9 B

10 A

11 A

12 A

13 C
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14 D

15 A

1.7 Summary

 An analytic function f(z) with its domain of definition D is called a functionelement and is
denoted by (f, D).

 The series equation = ∑ converges absolutely if = lim → <1 and diverges

if r>1. If r =1, no conclusion can be taken.

 Suppose f1(z) is analytical on a region D1. Now suppose that D1 is contained in a region
f2(z). The function f(z) can be analytically continued from D1 to D2 if there exists a function
f2(z) such that: f2(z) is analytic on S, f2(z) = f1(z) for all z ∈ D1

1.8 Keywords

Absolute convergence: The series equation = ∑ converges absolutely if = lim → <1
and diverges if r>1. If r =1, no conclusion can be taken.

Analytic continuation: If zD, (f, D) is a function element of z, then
(f1,D1)and(f2,D2)areinanalyticcontinuationsofeachother D1 D2andf1(z) = f2(z) forallzD1 D2.

1.9 Further Readings

1. Complex Variables And Applications By Churchill, R. V. And Brown, J. W., Mcgraw Hill
Education.

2. Foundations Of Complex Analysis By S. Ponnusamy, Narosa Publishing House.

3. Complex Analysis By Lars V. Ahlfors, Mcgraw Hill Education.

4. Complex Variables Theory And Applications By H. S. Kasana, Prentice Hall.
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Purpose and Objectives: 

  

After this unit students can be able to- 

1. Understand the uniqueness of analytic continuation. 

2. Solve the problem based on the power series method of analytic continuation. 

3. Learn natural boundary of complete analytic function. 

 

Introduction 

Analytic continuation is a method used to extend the domain of definition of a function that is known 
to be analytic (i.e., holomorphic) in a certain region, to a larger region. This can be achieved by 
representing the function as a power series and finding the appropriate coefficients to ensure that the 
function satisfies the same differential equations in the extended region as it does in the original 
region. 

For example, consider the complex function f(z) that is known to be analytic in a disk D centered at 
the origin. By expanding f(z) in a power series about the origin, we can obtain its Taylor series 
representation: 

𝑓(𝑧) =  𝑎0  +  𝑎1𝑧 + 𝑎2𝑧2 + . .. 

Using this power series representation, we can extend the definition of f(z) to points outside the disk 
D by assuming that the series converges to the correct value at those points. This process is called 
analytic continuation, and it allows us to extend the domain of definition of f(z) to a larger region in 
the complex plane. In this unit first we will understand the uniqueness of analytic continuation, then 
the power series method of analytic continuation, and then the natural boundary of complete analytic 
function. 

 

2.1 Uniqueness of Analytic Continuation by Direct Method  

Theorem 2.1: Uniqueness of Analytic Continuation 

There cannot be more than one continuation of analytic 𝑓2(𝑧) into the same domain.  

Proof: 
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Let 𝑓1(𝑧) be analytic in the domain 𝐷1.  

Let 𝑓2(𝑧) and 𝑔2(𝑧) be analytic continuations of same function 𝑓1(𝑧) from 𝐷1 into the domain 𝐷2 via 
𝐷12 which is common in to both 𝐷1 and 𝐷2 . 

 

Figure 2.1: Analytical Continuation domains 

If we show that 𝑓2(𝑧) = 𝑔2(𝑧) throughout 𝐷2, the result is followed by the this proof. 

By the definition of analytic continuation. 

𝑓1(𝑧) = 𝑓2(𝑧), ∀𝑧 ∈ 𝐷12                                                                (2.1) 

                                And 𝑓2(𝑧) is analytic in 𝐷2. 

𝑓1(𝑧) = 𝑔2(𝑧), ∀𝑧 ∈ 𝐷12                                                                (2.2) 

And 𝑔2(𝑧) is analytic in 𝐷2 . 

From the equation (2.1) and (2.2) we can conclude that  

𝑓1(𝑧) = 𝑓2(𝑧) = 𝑔2(𝑧), ∀𝑧 ∈ 𝐷12   

Or  

𝑓2(𝑧) = 𝑔2(𝑧), ∀𝑧 ∈ 𝐷12           

Or 

(𝑓2 − 𝑔2)(𝑧) = 0, ∀𝑧 ∈ 𝐷12           

𝑓2 and 𝑔2 are analytic in 𝐷2                         

⟹     𝑓2 − 𝑔2   is analytic in 𝐷2 .     

Thus, we see that (𝑓2 − 𝑔2)(𝑧) vanishes in 𝐷12 which is a part of 𝐷2 .Also the function is analytic in 𝐷2 . 

Hence, we must have     

(𝑓2 − 𝑔2)(𝑧) = 0, ∀𝑧 ∈ 𝐷2           

  ⟹     𝑓2(𝑧) = 𝑔2(𝑧) ∀𝑧 ∈ 𝐷2. 

So, there cannot be more than one continuation of analytic 𝑓2(𝑧) into the same domain.      

    

 

Remark 

The uniqueness property requires the domains of the two analytic continuations to be the same. It is 
not generally true that if  

𝐹1 ∶  𝐷1  →  𝐶 𝑎𝑛𝑑 𝐹2 ∶  𝐷1  →  𝐶 are two analytic continuations of 𝑓 ∶  𝐷 →  𝐶 to different domains 
𝐷1 , 𝐷2 , that they must agree on 𝐷1  ∩  𝐷2 . A slightly more complicated example is the power series 
with Fibonacci coefficients:  
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𝑓(𝑧)  =  𝑓0  + 𝑓1𝑧 + 𝑓2𝑧2 + .. . , which we considered a few lectures ago.  

Initially we observed that this converges and thereby defines an analytic function in some 
neighborhood 𝐷 of zero.  

By applying the recurrence 𝑓𝑛+1  =  𝑓𝑛  + 𝑓𝑛−1, we were able to obtain the functional equation: 

 (1 –  𝑧 – 𝑧2 )𝑓(𝑧) =  𝑧 ⇒  𝑓(𝑧) =
𝑧

1 – 𝑧 – 𝑧2
 𝑧 ∈  𝐷.  

We then used the right hand side as a definition of 𝑓 in a much larger domain 𝐷′  =  𝐶\{𝜑, 𝜓}.  

Formally, 𝐹(𝑧) =
𝑧

 1−𝑧−𝑧2
  is an analytic continuation of 𝑓 𝑡𝑜 𝐷′ .  

We didn’t explicitly use a different name to distinguish between the continuation and the original 
function (since they agree where they are both defined) and we will sometimes follow this convention 
in the future.  

In any case, we were then able to use the properties of 𝐹 in the much larger domain 𝐷′ (by applying 
the Residue theorem) to get a good handle on what is happening at zero, and thereby extract a 
formula for the coefficients. 

 A functional equation is not the only way to obtain an analytic equation, but it is often the best one. 
In general, what one is looking for is an alternate representation of the same function which makes 
sense in a larger region; this alternate description is then used as a definition in the larger region.  

 

2.2 Power Series Method of Analytic Continuation 

The Power Series Method of Analytic Continuation is a method used to extend the domain of a 
complex power series beyond its radius of convergence. It is based on the idea of representing a 
function as an infinite sum of powers and using this representation to extend the function to a larger 
domain.  

The method works by finding the coefficients of the power series for a given function using Cauchy's 
Integral Formula, and then using these coefficients to analytically continue the function to a larger 
domain. This method is useful for finding the values of a function in complex domains, where it is 
not possible to use real analysis techniques. 

Let the initial function 𝑓1(𝑧) is represented by the Taylor’s series  

𝑓1(𝑧) = ∑ 𝑎𝑛(𝑧 − 𝑧1)𝑛∞
𝑛=0                                                                                                   (2.3) 

where  𝑎𝑛 =
𝑓1

(𝑛)(𝑧1)

𝑛!
 

This series is convergent inside a circle 𝐶1(see the figure 2.2)defined by 

 |𝑧 − 𝑧1| = 𝑅1                                     (2.4) 

Here 𝑅1 = lim
𝑛→∞

|𝑎𝑛|
1

𝑛 
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Figure 2.2: The curve L from 𝑧1 and perform analytic continuation 

We draw a curve L from 𝑧1and perform analytic continuation along this path as follows  

Take a point 𝑧2 on L such that 𝑧2lies inside the 𝐶1  . 

With this help of equation (2.3), we can find the 𝑓1(𝑧2), 𝑓1
′(𝑧2), 𝑓1

′′(𝑧2) … , 𝑓1
(𝑛)

(𝑧2) by repeated 

differentiation of  (2.3). 

Write  

𝑓2(𝑧) = ∑ 𝑏𝑛(𝑧 − 𝑧2)𝑛∞
𝑛=0                                                                                                   (2.5) 

where  𝑏𝑛 =
𝑓2

(𝑛)(𝑧2)

𝑛!
 

The power series (2.5) is convergent inside a circle 𝐶2 defined by  

|𝑧 − 𝑧2| = 𝑅2                                     (2.6) 

Here 𝑅2 = lim
𝑛→∞

|𝑏𝑛|
1

𝑛 

Also 𝑓1(𝑧) = 𝑓2(𝑧), ∀𝑧 ∈ 𝐶12(𝑇ℎ𝑒 𝑐𝑜𝑚𝑚𝑜𝑛 𝑝𝑎𝑟𝑡 𝑜𝑓 𝐶1 𝑎𝑛𝑑 𝐶2). 

Hence 𝑓2(𝑧) is an analytic continuation of  𝑓1(𝑧) from 𝐶1 𝑡𝑜 𝐶2. 

Now take a point 𝑧3 on L such that 𝑧3lies inside the 𝐶2  . 

With this help of equation (2.5), we can find the 𝑓2(𝑧3), 𝑓2
′(𝑧3), 𝑓2

′′(𝑧3) … , 𝑓2
(𝑛)(𝑧3) by repeated 

differentiation of  (2.5). 

Write  

𝑓3(𝑧) = ∑ 𝑐𝑛(𝑧 − 𝑧3)𝑛∞
𝑛=0                                                                                                   (2.7) 

where  𝑐𝑛 =
𝑓3

(𝑛)(𝑧3)

𝑛!
 

The power series (2.7)(2.5) is convergent inside a circle 𝐶3 defined by  

|𝑧 − 𝑧3| = 𝑅3                                     (2.8) 
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Here 𝑅3 = lim
𝑛→∞

|𝑐𝑛|
1

𝑛 

Also 𝑓2(𝑧) = 𝑓3(𝑧), ∀𝑧 ∈ 𝐶23(𝑇ℎ𝑒 𝑐𝑜𝑚𝑚𝑜𝑛 𝑝𝑎𝑟𝑡 𝑜𝑓 𝐶2 𝑎𝑛𝑑 𝐶3). 

Hence 𝑓3(𝑧) is an analytic continuation of  𝑓2(𝑧) from 𝐶2 𝑡𝑜 𝐶3. 

Now 𝑓3(𝑧) is an analytic continuation of  𝑓1(𝑧) from 𝐶2 𝑡𝑜 𝐶3. 

Repeating this process, we get as continuations several different power series analytic in 

their respective domains 𝐷1, 𝐷2 …, where 𝐷1, 𝐷2 …, are respectively interiors of 𝐶1, 𝐶2 …,. 

 

Question: 

 Show that the power series 𝑧 −
𝑧2

2
 +

𝑧3

3
−. ..may be analytically continued to a wider range by 

means of the series 𝑙𝑜𝑔2 −
1−𝑧

2
−

(1−𝑧)2

2.22 −
(1−𝑧)3

3.23 − ⋯ 

Solution: 

Let  𝑓1(𝑧) = 𝑧 −
𝑧2

2
 +

𝑧3

3
−. ..                                                                                                        (2.9) 

And 𝑓2(𝑧) = 𝑙𝑜𝑔2 −
1−𝑧

2
−

(1−𝑧)2

2.22 −
(1−𝑧)3

3.23 − ⋯                                                                        (2.10) 

Here 𝑓1(𝑧) = ∑ (−1)𝑛∞
𝑛=0

 𝑧𝑛+1

𝑛+1
  using the ratio test, if 𝑎𝑛 is convergent then  |

𝑎𝑛+1

𝑎𝑛
| < 1 

𝑎𝑛 = (−1)𝑛
 𝑧𝑛+1

𝑛 + 1
 

𝑎𝑛+1 = (−1)𝑛+1
 𝑧𝑛+2

𝑛 + 2
 

Now |
𝑎𝑛+1

𝑎𝑛
| = |

(−1)𝑛+1 𝑧𝑛+2

𝑛+2

(−1)𝑛 𝑧𝑛+1

𝑛+1

| < 1 

⟹ |
𝑎𝑛+1

𝑎𝑛
| = |(−1)𝑛.

−1

(−1)𝑛

 𝑧𝑛+1.𝑧.(𝑛+1)

(𝑛+2) 𝑧𝑛+1
| < 1 

⟹ |
𝑎𝑛+1

𝑎𝑛
| = |−1

.𝑧.(1+1/𝑛)

(1+2/𝑛)
| < 1 

⟹   lim
𝑛→∞

|
𝑎𝑛+1

𝑎𝑛
| = lim

𝑛→∞
|−1

.𝑧.(1+1/𝑛)

(1+2/𝑛)
| < 1 

⟹   lim
𝑛→∞

|
𝑎𝑛+1

𝑎𝑛
| = |𝑧| < 1 

Hence 𝑓1(𝑧) = 𝑧 −
𝑧2

2
 +

𝑧3

3
−. . . = log (1 + 𝑧) which is convergent for the |𝑧| < 1.           (2.11) 

 Thus 𝑓1(𝑧) is analytic inside the circle 𝐶1defined by |𝑧| = 1(See the figure 2.3). 
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Figure 2.3: the domains of 𝐶1 𝑎𝑛𝑑 𝐶2 

Now we will show that 𝑓2(𝑧) is analytic inside a domain and will also find the convergent 
analysis of 𝑓2(𝑧) . 

𝑓2(𝑧) can be expressed as  

𝑓2(𝑧) = 𝑙𝑜𝑔2 − [
1 − 𝑧

2
+

1

2

(1 − 𝑧)2

22
+

1

3

(1 − 𝑧)3

23
+ ⋯ ] 

⟹ 𝑓2(𝑧) = 𝑙𝑜𝑔2 − [
1 − 𝑧

2
+

1

2
(

1 − 𝑧

2
)

2

 +
1

3
(

1 − 𝑧

2
)

3

+ ⋯ ] 

Let the nth term of 𝑓2(𝑧) is 𝑏𝑛 = (−1)
1

𝑛+1
(

1−𝑧

2
)

𝑛+1

 and  

𝑏𝑛+1 = (−1)
1

𝑛 + 2
(

1 − 𝑧

2
)

𝑛+2

 

⟹ |
𝑏𝑛+1

𝑏𝑛
| = |

(−1)
1

𝑛 + 2
(

1 − 𝑧
2

)
𝑛+2

(−1)
1

𝑛 + 1
(

1 − 𝑧
2

)
𝑛+1| < 1 

⟹ |
𝑏𝑛+1

𝑏𝑛
| = |

𝑛 + 1

𝑛 + 2
(

1 − 𝑧

2
)

𝑛+2

(
2

1 − 𝑧
)

𝑛+1

| < 1 

⟹ |
𝑏𝑛+1

𝑏𝑛
| = |

1 +
1
𝑛

1 +
2
𝑛

(
1 − 𝑧

2
)| < 1 

⟹ lim
𝑛→∞

|
𝑏𝑛+1

𝑏𝑛
| = lim

𝑛→∞
|
1 +

1
𝑛

1 +
2
𝑛

(
1 − 𝑧

2
)| < 1 
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⟹ lim
𝑛→∞

|
𝑏𝑛+1

𝑏𝑛
| = |(

1 − 𝑧

2
)| < 1 

⟹ lim
𝑛→∞

|
𝑏𝑛+1

𝑏𝑛
| = |1 − 𝑧| < 2 

⟹ lim
𝑛→∞

|
𝑏𝑛+1

𝑏𝑛
| = |𝑧 − 1| < 2 

Hence 𝑓2(𝑧) is convergent for the |𝑧 − 1| < 2. 

 Thus 𝑓2(𝑧) is analytic inside the circle 𝐶2defined by |𝑧 − 1| = 2. 

As we know that log [1 − (
1−𝑧

2
)] = − [

1−𝑧

2
+

1

2
(

1−𝑧

2
)

2

 +
1

3
(

1−𝑧

2
)

3

+ ⋯ ] 

Then  

𝑓2(𝑧) = 𝑙𝑜𝑔2 + log [1 − (
1 − 𝑧

2
)] 

𝑓2(𝑧) = 𝑙𝑜𝑔2 + log [
2 − 1 + 𝑧

2
] 

𝑓2(𝑧) = 𝑙𝑜𝑔2 + 𝑙𝑜𝑔(1 + 𝑧) − 𝑙𝑜𝑔2 

𝑓2(𝑧) = 𝑙𝑜𝑔(1 + 𝑧) 

By (2.11),  

𝑓2(𝑧) = 𝑓1(𝑧) in the area common to both 𝐶1 and 𝐶2.  

Hence, we can say that 𝑓2(𝑧) is analytic continuation of 𝑓1(𝑧) from the interior of 𝐶1 to the 
interior of 𝐶2. Moreover 𝐶2 is a larger range in comparison to 𝐶1 as shown in the figure 2.3. 

 

2.3 Natural Boundary 

In complex analysis, a natural boundary of a complex-valued function is a boundary of its domain 
that is not a removable singularity. This means that the function cannot be extended analytically 
across the boundary, and its behavior there is determined by the behavior of the function on the 
boundary. A classic example of a natural boundary is the boundary of the unit disk in the complex 
plane, which is the unit circle. Functions defined on the unit disk have essential singularities on the 
boundary, which means that they cannot be extended analytically to the outside of the unit disk. 

 

Definition 2.1: Function Element 

An analytic function 𝑓 with domain 𝐷 is called a function element and is denoted by (𝑓, 𝐷). 

 

Definition 2.2: Complete Analytic Function 

Suppose that 𝑓(𝑧) is analytic in a domain D. Let us form all possible analytic continuations of (𝑓, 𝐷) 
and then all possible analytic continuations (𝑓1 , 𝐷1), (𝑓2 , 𝐷2), … , (𝑓𝑛 , 𝐷𝑛) of these continuations such 
that: 

 𝐹(𝑧) = {

𝑓1(𝑧) 𝑖𝑓 𝑧 ∈ 𝐷1

𝑓2(𝑧) 𝑖𝑓 𝑧 ∈ 𝐷2… … … … … … …
𝑓𝑛(𝑧) 𝑖𝑓 𝑧 ∈ 𝐷𝑛

                                                                                 (2.12) 

Such a function 𝐹(𝑧) is called complete analytic function.  

In this process of continuation, we may arrive at a closed curve beyond which it is not possible to 
take analytic continuation. Such a closed curve is known as the natural boundary of the complete 
analytic function. A point lying outside the natural boundary is known as the singularity of the 
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complete analytic function. If no analytic continuation of 𝑓(𝑧) is possible to a point 𝑧0, then 𝑧0 is a 
singularity of 𝑓(𝑧). 

 Obviously, the singularity of 𝑓(𝑧) is also a singularity of the corresponding complete analytic 
function 𝐹(𝑧). 

 

 

Example  

Show that the circle of convergence of the power series 𝑓(𝑧) =  1 +  𝑧 + 𝑧2  + 𝑧4  +  𝑧8 …, is a natural 
boundary of its sum function. 

Solution: 

The circle of convergence of a power series is the largest circle centered at the origin within which 
the series converges to a function.  

The sum function of the series 𝑓(𝑧) =  1 +  𝑧 + 𝑧2  +  𝑧4  + 𝑧8 …,  is not defined at z = 1, so the circle 
of convergence of the series must include the origin and exclude z = 1. 

Since the sum of the series diverges for z = 1, it is a natural boundary for the sum function. The circle 
of convergence for the series is the largest circle centered at the origin within which the sum function 
is defined and analytic, and thus it serves as a natural boundary for the sum function. 

 

Example  

Show that 𝑓 (𝑧 ) =  ∑
𝑧2𝑛+1

1−𝑧2𝑛+1
∞
𝑛=0  is analytic in the domain |z | < 1 and the domain |z | > 1, and that 

|z | = 1 is a natural boundary for the function in each domain. 

Solution: 

For a function to be analytic, it must be complex differentiable at every point in its domain. 

Let us first consider the domain |z| < 1. 

For |𝑧|  <  1, |𝑧2𝑛+1
|  <  1 and thus 1 − |𝑧2𝑛+1

|  >  0. Hence, the denominator 1 − 𝑧2𝑛+1
is never 0 and 

the function is well-defined in this domain. 

Next, we can apply the Cauchy-Riemann equations to show that the function is complex 
differentiable in this domain, and therefore analytic. 

For |z| > 1, the same argument can be made: the denominator 1 − 𝑧2𝑛+1
 is never 0 for |z| > 1, and 

the function is well-defined in this domain. 

Finally, for |z| = 1, the function is not complex differentiable, which means that |z| = 1 is a natural 
boundary for the function in both domains. 

Therefore, the function ∑
𝑧2𝑛+1

1−𝑧2𝑛+1
∞
𝑛=0 is analytic in the domain |z| < 1 and the domain |z| > 1, and 

|z| = 1 is a natural boundary for the function in each domain. 

 

 

 

2.4 Review questions 

1. Prove that the  series  𝑧1! +  𝑧2! + 𝑧3! + ⋯ has  the  natural  boundary  |𝑍| = 1. 

2. Prove that |z| = 1 is a natural boundary for the series ∑ 2−𝑛  ∗ 𝑧3𝑛∞
𝑛=0  

3. Let 𝐹1(𝑧) = ∑
𝑧𝑛+1

3𝑛
∞
𝑛=0  Find an analytic continuation of 𝐹1 (𝑧), which converges for 𝑧 =  3 −  4𝑖 
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4. State and prove the uniqueness theorem of analytic continuation 

5. Show that the series 1 + 𝑧 + 𝑧2 + 𝑧4 + 𝑧8+…, can not be analytically continued beyond the  |𝑧| = 1 

 

2.5 Self-assessment 

1. The power series  f(𝑧) = 𝑧 −
𝑧2

2
 +

𝑧3

3
−. .. is convergent inside the 

A.  Region |𝑧 + 1| < 2  

B. Region |𝑧 − 1| < 2  

C. Region |𝑧| < 1  

D. Region |𝑧| < 2  

 

2. There cannot be more than one continuation of analytic 𝑓(𝑧) into the same domain. 

A.  True 

B. 𝐹𝑎𝑙𝑠𝑒 

 

3. The nth term of the series 𝑧 −
𝑧2

2
 +

𝑧3

3
−. .. 

A. 𝑎𝑛 = (−1)𝑛  𝑧𝑛+1

𝑛+1
 

B. 𝑎𝑛 = (−2)𝑛  𝑧𝑛+1

𝑛+1
 

C. 𝑎𝑛 = (−1)𝑛+1  𝑧𝑛+1

𝑛+1
 

D. 𝑎𝑛 = (−1)𝑛  𝑧𝑛+1

𝑛+2
 

 

4. An analytic function 𝑓 with domain 𝐷 is called a function element and is denoted by (𝑓, 𝐷). 

 

A. True 

B. 𝐹𝑎𝑙𝑠𝑒 

 

5. The nth term of the series [
1−𝑧

2
+

1

2

(1−𝑧)2

22 +
1

3

(1−𝑧)3

23 + ⋯ ]  𝑖𝑠 

A.  (−2)
1

𝑛+1
(

1−𝑧

2
)

𝑛+1
  

B. (−1)
1

𝑛+1
(

1−𝑧

2
)

𝑛+1

  

C. (−1)
1

𝑛+2
(

1−𝑧

2
)

𝑛+1

  

D. (−1)
1

𝑛+1
(

1−𝑧

3
)

𝑛+1

  

 

6. The power series  [
1−𝑧

2
+

1

2

(1−𝑧)2

22 +
1

3

(1−𝑧)3

23 + ⋯ ] is convergent inside the 

A. |𝑧 − 1| < 1 

B. |𝑧| < 1 

C. |𝑧| < 2 

D. |𝑧 − 1| < 2 

 

7. If the function 𝑓1(𝑧) =  𝑧 −
𝑧2

2
 +

𝑧3

3
− ⋯ is in analytic continuation to   

𝑓2(𝑧) = 𝑙𝑜𝑔2 − [
1 − 𝑧

2
+

1

2

(1 − 𝑧)2

22
+

1

3

(1 − 𝑧)3

23
+ ⋯ ] 

 from the domain D1 to D2 then the which one of the domain does lies in 𝐷1 ∩ 𝐷2 

A. |𝑧 − 1| < 1 

B. |𝑧| < 1 
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C. |𝑧| < 2 

D. |𝑧 − 1| < 2 

 

8. If the function 𝑓1(𝑧) =  𝑧 −
𝑧2

2
 +

𝑧3

3
− ⋯ is in analytic continuation to   

𝑓2(𝑧) = 𝑙𝑜𝑔2 − [
1 − 𝑧

2
+

1

2

(1 − 𝑧)2

22
+

1

3

(1 − 𝑧)3

23
+ ⋯ ] 

 from the domain D1 to D2 then the which one of the points does not lies in 𝐷1 ∩ 𝐷2 

A. 0.1 + 0.1𝑖 

B. 0.5 

C. 0.5𝑖 

D. 2 + 5𝑖 

 

9. If the function 𝑓1(𝑧) =  𝑧 −
𝑧2

2
 +

𝑧3

3
− ⋯ is in analytic continuation to   

𝑓2(𝑧) = 𝑙𝑜𝑔2 − [
1 − 𝑧

2
+

1

2

(1 − 𝑧)2

22
+

1

3

(1 − 𝑧)3

23
+ ⋯ ] 

 from the domain D1 to D2 then the which one of the points does lies in 𝐷1 ∩ 𝐷2 

A. 0.1 + 0.2𝑖 

B. 5 

C. 5𝑖 

D. 2 + 5𝑖 

 

10. If the function 𝑓1(𝑧) =  𝑧 −
𝑧2

2
 +

𝑧3

3
− ⋯ is in analytic continuation to   

𝑓2(𝑧) = 𝑙𝑜𝑔2 − [
1 − 𝑧

2
+

1

2

(1 − 𝑧)2

22
+

1

3

(1 − 𝑧)3

23
+ ⋯ ] 

 from the domain D1 to D2 then the which one of the points does not lies in 𝐷1 ∩ 𝐷2 

A. 0.2𝑖 

B. 0.3 

C. 0.4𝑖 

D. 4𝑖 

 

11. If the function 𝑓1(𝑧) = ∑ 𝑧𝑛∞
𝑛=0  is a natural boundary for its sum function then the circle of 

convergent is  

A. |𝑧 − 1| < 1 

B. |𝑧| < 1 

C. |𝑧| < 2 

D. |𝑧 − 1| < 2 

 

12. If the function 𝑓1(𝑧) = ∑ 𝑧𝑛∞
𝑛=0  is in analytic continuation to 𝑓2(𝑧) = ∑

1

2
∞
𝑛=0 (

1+𝑧

2
)

𝑛
from the 

domain D1 to D2 then the which one of the point lies in 𝐷1 ∩ 𝐷2 

A. 
1

8
+

1

8
𝑖 

B. 
10

2
+

1

2
𝑖 

C. −13 +
1

2
𝑖 

D. −3 − 13𝑖 

 

13. If the function 𝑓1(𝑧) =  𝑧 −
𝑧2

2
 +

𝑧3

3
− ⋯ is in analytic continuation to   

𝑓2(𝑧) = 𝑙𝑜𝑔2 − [
1 − 𝑧

2
+

1

2

(1 − 𝑧)2

22
+

1

3

(1 − 𝑧)3

23
+ ⋯ ] 

 from the domain D1 to D2 then the which one of the points does not lies in 𝐷1 ∩ 𝐷2 

A. 0.3𝑖 
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B. 0.3 

C. 0𝑖 

D. 12 + 𝑖 

 

14. If the function 𝑓1(𝑧) =  𝑧 −
𝑧2

2
 +

𝑧3

3
− ⋯ is in analytic continuation to   

𝑓2(𝑧) = 𝑙𝑜𝑔2 − [
1 − 𝑧

2
+

1

2

(1 − 𝑧)2

22
+

1

3

(1 − 𝑧)3

23
+ ⋯ ] 

 from the domain D1 to D2 then the which one of the points does lies in 𝐷1 ∩  𝐷2 

A. 0.01 + 0.02𝑖 

B. 50 

C. 50𝑖 

D. 20 + 5𝑖 

 

15.  In complex analysis, a natural boundary of a complex-valued function is a boundary of its 

domain that is not a removable singularity. 

A. 𝑇𝑟𝑢𝑒 

B. 𝐹𝑎𝑙𝑠𝑒 

 

 

Table 1: Answers of self-assessment 

Question number Correct answer 

1 C 

2 A 

3 A 

4 A 

5 B 

6 D 

7 B 

8 D 

9 A 

10 A 

11 C 

12 A 

13 D 

14 A 

15 A 
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2.6 Summary 

 The Power Series Method of Analytic Continuation is a method used to extend the domain 

of a complex power series beyond its radius of convergence. 

 An analytic function 𝑓 with domain 𝐷 is called a function element and is denoted by (𝑓, 𝐷). 

 Uniqueness of Analytic Continuation: There cannot be more than one continuation of 

analytic 𝑓2(𝑧) into the same domain.  

2.7 Keywords 

Complete analytic function: Suppose that 𝑓(𝑧) is analytic in a domain D. Let us form all possible 
analytic continuations of (𝑓, 𝐷) and then all possible analytic continuations 
(𝑓1 , 𝐷1), (𝑓2 , 𝐷2), … , (𝑓𝑛, 𝐷𝑛) of these continuations such that: 

 𝐹(𝑧) = {

𝑓1(𝑧) 𝑖𝑓 𝑧 ∈ 𝐷1

𝑓2(𝑧) 𝑖𝑓 𝑧 ∈ 𝐷2… … … … … … …
𝑓𝑛(𝑧) 𝑖𝑓 𝑧 ∈ 𝐷𝑛

                                                                                  

Such a function 𝐹(𝑧) is called complete analytic function.  

 

 

2.8 Further Readings 

  

1. Complex Variables And Applications By Churchill, R. V. And Brown, J. W., Mcgraw Hill 
Education. 

2. Foundations Of Complex Analysis By S. Ponnusamy, Narosa Publishing House. 

3. Complex Analysis By Lars V. Ahlfors, Mcgraw Hill Education. 

4. Complex Variables Theory And Applications By H. S. Kasana, Prentice Hall. 
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Purpose and Objectives: 

 

The Monodromy Theorem in complex analysis states that given a non-constant holomorphic function 
on a simply connected domain, its set of singularities is invariant under any loop in the domain. In 
other words, it characterizes the behavior of the function near its singularities and provides a way to 
study the topological structure of complex functions. The theorem is useful for solving certain types 
of differential equations, as well as for constructing complex functions with prescribed singularities.  

Similarly, the Poisson integral formula has several applications in various fields, including: 

1. Harmonic Analysis: The Poisson Integral Formula provides a tool for solving boundary 
value problems for harmonic functions and has applications in potential theory and 
boundary value problems. 

2. Image Processing: The Poisson Integral Formula is used in image processing to restore 
images that have been degraded or to smooth out noise in images. 

3. Numerical Analysis: The Poisson Integral Formula is used in numerical analysis to solve 
partial differential equations, especially in areas like electrostatics and heat transfer. 

4. Complex Analysis: The Poisson Integral Formula is used in complex analysis to study 
conformal mappings, potential theory, and complex dynamics. 

5. Signal Processing: The Poisson Integral Formula is used in signal processing to solve 
problems in signal restoration, noise reduction, and boundary value problems for signals. 

After this unit students can be able to- 

1. State and prove the Monodromy theorem.  

2. Learn Poisson Integral Formula for analytic function. 

3. Understand the Poisson Kernel, and Conjugate Poisson Kernel for analytic function. 

4. Solve the problem based on the Poisson Integral Formula. 

 

Introduction 

The number of independent loops or paths around a singular point of an analytic function can be 
understood by sheets of the multi-valued analytic function. 

In other words, if an analytic function has a singularity at a point, then the number of independent 
loops that can be taken around this point is equal to the number of branches of the function that can 
be defined in a neighborhood of the singularity. 
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The Monodromy Theorem is an important result in complex analysis and is used to study the 
behavior of multi-valued analytic functions near singular points. If a function f is analytic in the unit 
disk of the complex plane and continuous on its boundary, then it can be represented by the Poisson 
integral formula. In this unit first we will understand the Monodromy theorem then learn Poisson 
Integral Formula for analytic function. After that we will explore the concept of the Poisson Kernel, 
and Conjugate Poisson Kernel for analytic function. Finally solve the problem based on the Poisson 
Integral Formula. 

 

3.1 Monodromy Theorem 

Let D be a simply connected domain and suppose 𝑓0 (𝑧) is analytic in a domain 𝐷0  ⊂  𝐷. If the 
function element (𝑓0, 𝐷0) can be analytically continued along every curve in D, then there exists a 
single-valued function 𝑓(𝑧) that is analytic throughout 𝐷 with 𝑓(𝑧) ≡ 𝑓0(𝑧)  in 𝐷0. 

Proof: 

Suppose the conclusion is false. Then there exist points 𝑧0  ∈  𝐷0 , 𝑧1 ∈ 𝐷, and curves 𝐶1 , 𝐶2  

 

 

Figure 3.1: 𝐷 be a simply connected domain and the points 𝑧0 ∈ 𝐷0, 𝑧1 ∈ D, and 𝐷0  ⊂  𝐷. 

both having initial point 𝑧0 and terminal point 𝑧1 such that (𝑓0 , 𝐷0) leads to a different function 
element in a neighborhood of 𝑧1 when analytically continued along 𝐶1 than when analytically 
continued along 𝐶2 (see Figure3.1 ). 

This means that (𝑓0 , 𝐷0) does not return to the same function element when analytically continued 
along the closed curve 𝐶1  −  𝐶2. 

 

Lemma 3.1. 

Let {𝑆𝑛} be a sequence of closed and bounded rectangles in the plane. If 𝑆𝑛+1 ⊂ 𝑆𝑛 for every 𝑛 and the 
length of the sides of 𝑆𝑛 approaches 0 as 𝑛 →  ∞, then there is exactly one point in common to all the 
𝑆𝑛 . 
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Figure 3.2: sequence of closed and bounded rectangles in the plane. 

To prove the theorem, it thus suffices to show that the function element (𝑓0, 𝐷0), 𝐷0  ⊂  𝐷, can be 
continued along any closed curve lying in 𝐷 and return to the same value. In the special case that the 
closed curve 𝐶 is a rectangle 

 

Figure 3.3: Rectangle 𝐶 into four congruent rectangles 

Divide the rectangle 𝐶 into four congruent rectangles, as illustrated in Figure 3.3 continuation along 
𝐶 produces the same effect as continuation along these four rectangles taken together.   

If the conclusion is false for 𝐶, then it must be false for one of the four sub-rectangles, which we denote 
by 𝐶1. We then divide 𝐶1 into four congruent rectangles, for one of which the conclusion is false. 
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Figure 3.4:𝐶1 into four congruent rectangles 

 Continuing the process, we obtain a nested sequence of rectangles for which the conclusion is false. 

According to Lemma 1, there is exactly one point, call it 𝑧∗, belonging to all the rectangles in the nest. 
Since 𝑧∗  ∈  𝐷, there exists a function element (𝑓∗, 𝐷∗) with 𝑧∗ ∈  𝐷∗ ⊂  𝐷.  

For 𝑛 sufficiently large, the rectangle 𝐶𝑛 of the nested sequence is contained in 𝐷∗ 

But this means that 𝑓∗ (𝑧) is analytic in a domain containing 𝐶𝑛 , contrary to the way 𝐶𝑛 was defined. 
This contradiction concludes the proof in the special case in which the curve is a rectangle.  

 

3.2 Poisson Integral Formula, Poisson Kernel, and Conjugate Poisson 
Kernel 

If 𝑓(𝑧) is analytic within and on a circle 𝐶 defined by |𝑧| = 𝑅 and if 𝑎 is any point within, 𝐶, then 

𝑓(𝑧) =
1

2𝜋𝑖
∫

𝑐

(𝑅2 − 𝑎�̅�)𝑓(𝑧)

(𝑧 − 𝑎)(𝑅2 − 𝑧�̅�)
𝑑𝑧 

⟹ 𝑓(𝑟𝑒𝑖𝜃) =
1

2𝜋
∫

(𝑅2 − 𝑟2)𝑓(𝑅𝑒𝑖∅)

𝑅2 − 2𝑅𝑟𝐶𝑜𝑠(𝜃 − ∅) + 𝑟2
𝑑∅

2𝜋

0

 

Where 𝑎 = 𝑟𝑒𝑖𝜃is any point inside the circle |𝑧| = 𝑅. 

Proof: 

Suppose f(z) is analytic within and on the circle 𝐶 defined |𝑧| = 𝑅. 

Let 𝑎 = 𝑟𝑒𝑖𝜃is any point inside the circle |𝑧| = 𝑅 so that 0 < 𝑟 < 𝑅. 

Let the inverse of 𝐴(𝑎) is 𝐴′(𝑎′) with respect to the circle C is given by 𝑎′ = 𝑅2/�̅� which lies outside 

the circle 𝐶(See the Figure 3.5). 

By Cauchy’s integral formula  

 

𝑓(𝑎) =
1

2𝜋𝑖
∫

𝑐

𝑓(𝑧)

(𝑧−𝑎)
𝑑𝑧                                                                                                                                                               (3.1) 

Since 𝑓(𝑧) is analytic within and upon the circle 𝐶 and so  
𝑓(𝑧)

(𝑧−𝑎′)
 is analytic within and on the circle. 

By Cauchy’s integral theorem 

  ∫
𝑐

𝑓(𝑧)

(𝑧−𝑎′)
𝑑𝑧=0                                                                                                                                                     (3.2) 
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Figure 3.5: Inverse of 𝐴(𝑎) is 𝐴′(𝑎′) with respect to the circle C is given by 𝑎′ = 𝑅2/�̅� 

 

Note that 
𝑓(𝑧)

(𝑧−𝑎)
 is not analytic within 𝐶 

Now  

(3.1)-(3.2) gives  

𝑓(𝑎) − 0 =
1

2𝜋𝑖
∫

𝑐

𝑓(𝑧)

(𝑧−𝑎)
𝑑𝑧 − ∫

𝑐

𝑓(𝑧)

(𝑧−𝑎′)
𝑑𝑧                                                                                                                                       (3.3) 

𝑓(𝑎) =
1

2𝜋𝑖
∫

𝑐
[

1

(𝑧−𝑎)
−

1

(𝑧−𝑎′)
] 𝑓(𝑧)𝑑𝑧                                                                                                                                       (3.4) 

𝑓(𝑎) =
1

2𝜋𝑖
∫

𝑐
[

(𝑧−𝑎′)−(𝑧−𝑎)

(𝑧−𝑎)(𝑧−𝑎′)
] 𝑓(𝑧)𝑑𝑧                                                                                                                                       (3.5) 

𝑓(𝑎) =
1

2𝜋𝑖
∫

𝑐
[

(𝑎−𝑎′)

(𝑧−𝑎)(𝑧−𝑎′)
] 𝑓(𝑧)𝑑𝑧                                                                                                                                       (3.6) 

𝑓(𝑎) =
1

2𝜋𝑖
∫

𝑐
[

(𝑎−
𝑅2

�̅�
)

(𝑧−𝑎)(𝑧−
𝑅2

�̅�
)
] 𝑓(𝑧)𝑑𝑧                                                                                                                                       (3.7) 

𝑓(𝑎) =
1

2𝜋𝑖
∫

𝑐
[

(𝑎�̅�−𝑅2)

(𝑧−𝑎)(𝑧�̅�−𝑅2)
] 𝑓(𝑧)𝑑𝑧                                                                                                                                       (3.8) 

𝑓(𝑎) =
1

2𝜋𝑖
∫

𝑐
[

(𝑅2−𝑎�̅�)

(𝑧−𝑎)(𝑅2−𝑧�̅�)
] 𝑓(𝑧)𝑑𝑧                                                                                                                                       (3.9) 

This proves the first required result. 

Any point z on |𝑧| = 𝑅 is expressible as 𝑧 = 𝑅 𝑒𝑖𝜙   

Also 𝑎 = 𝑟𝑒𝑖𝜃so that �̅� = 𝑟𝑒−𝑖𝜃  

Now 𝑅2 − 𝑎�̅� = 𝑅2 − 𝑟𝑒𝑖𝜃 . 𝑟𝑒−𝑖𝜃                                                                                                                  (3.10) 

⟹ 𝑅2 − 𝑎�̅� = 𝑅2 − 𝑟2 

Now  

(𝑧 − 𝑎)(𝑅2 − 𝑧�̅�) = (𝑅 𝑒𝑖𝜙 − 𝑟𝑒𝑖𝜃)(𝑅2 − 𝑅𝑒𝑖𝜙 𝑟𝑒−𝑖𝜃)                                                                                 (3.11) 
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⟹ (𝑧 − 𝑎)(𝑅2 − 𝑧�̅�) = 𝑅 𝑒𝑖𝜙(𝑅 − 𝑟𝑒𝑖(𝜃−𝜙))(𝑅 − 𝑟𝑒−𝑖(𝜃−𝜙)) 

⟹ (𝑧 − 𝑎)(𝑅2 − 𝑧�̅�) = 𝑅 𝑒𝑖𝜙[(𝑅2 + 𝑟2 − 𝑟𝑅(𝑒𝑖(𝜃−𝜙) − 𝑒−𝑖(𝜃−𝜙))] 

⟹ (𝑧 − 𝑎)(𝑅2 − 𝑧�̅�) = 𝑅 𝑒𝑖𝜙[(𝑅2 + 𝑟2 − 2𝑟𝑅𝐶𝑜𝑠(𝜃 − 𝜙)]                                                                       (3.12) 

𝑑𝑧 = 𝑑(𝑅𝑒𝑖𝜙) = 𝑅𝑖𝑒𝑖𝜙𝑑𝜙                                                                                                                              (3.13) 

Writing (3.9) with the help of (3.11) and (3.13), 

𝑓(𝑎) =
1

2𝜋𝑖
∫

(𝑅2 − 𝑟2)𝑓(𝑧)𝑓(𝑅𝑒𝑖∅). 𝑖

[𝑅2 − 2𝑅𝑟𝐶𝑜𝑠(∅ − 𝜃) + 𝑟2]𝑅𝑒𝑖∅ 
𝑑∅

2𝜋

0

 

𝑓(𝑎) =
1

2𝜋
∫

(𝑅2−𝑟2)𝑓(𝑅𝑒 𝑖∅)

[𝑅2−2𝑅𝑟𝐶𝑜𝑠(𝜃−𝜙)+𝑟2] 
𝑑∅

2𝜋

0
                                                                                                          (3.14) 

This proves the second result. 

Here 
(𝑅2−𝑟2)𝑓(𝑅𝑒 𝑖∅)

[𝑅2−2𝑅𝑟𝐶𝑜𝑠(𝜃−𝜙)+𝑟2] 
 is known as the Poisson Kernal for the disk |𝑧 | < 𝑅.  

Note that the Poisson, kernel is bounded above by 
(𝑅2−𝑟2)

[𝑅2−2𝑅𝑟+𝑟2] 
=

𝑅+𝑟

𝑅−𝑟
. 

The conjugate Poisson kernel is a mathematical function used in complex analysis and potential 
theory. It is defined as the conjugate of the Poisson kernel, which is a function that maps points in the 

complex plane to the unit disk. The conjugate Poisson kernel is given by the formula: 

𝑃∗(𝑧)  =  𝑃 (
1

𝑧∗
) 

where 𝑃(𝑧) is the Poisson kernel and 𝑧∗ is the complex conjugate of z.  

 

 

Question:  

 Using Poisson’s integral formula for the circle, show that: 

∫
𝑒𝑐𝑜𝑠𝜙.𝐶𝑜𝑠(𝑆𝑖𝑛𝜙)𝑑𝜙

5−4𝐶𝑜𝑠(𝜃−𝜙)
=

2𝜋

3
𝑒𝑐𝑜𝑠𝜃cos (𝑠𝑖𝑛𝜃)

2𝜋

0
                                                                                                    (3.15) 

Solution: 

By the Poisson’s integral formula, 

𝑓(𝑟𝑒𝑖𝜃) =
1

2𝜋
∫

(𝑅2−𝑟2)𝑓(𝑅𝑒 𝑖∅)

[𝑅2−2𝑅𝑟𝐶𝑜𝑠(𝜃−𝜙)+𝑟2] 
𝑑∅

2𝜋

0
                                                                                                          (3.16) 

If we compare R.H.S. of (3.15) with the given integral, then we find  

𝑅2 + 𝑟2 = 5                                                                                                                                                     (3.17) 

𝑟𝑅 = 2                                                                                                                                                             (3.18) 

𝑓(𝑅𝑒𝑖𝜙) = 𝑒𝑐𝑜𝑠𝜙 . 𝐶𝑜𝑠(𝑆𝑖𝑛𝜙)                                                                                                                         (3.19) 

Using (3.17) and (3.18) 

𝑅 = 2, 𝑟 = 1 and so 𝑅2  − 𝑟2 = 3                                                                                                                        (3.20) 

Now (3.19) ⟹ 

𝑓(𝑟𝑒𝑖𝜃) = 𝑒𝑐𝑜𝑠𝜃cos (𝑠𝑖𝑛𝜃)                                                                                                                              (3.21) 

Putting value from (3.17), (3.18), (3.20), and (3.21) in the equation (3.16), we get  

𝑒𝑐𝑜𝑠𝜃 cos(𝑠𝑖𝑛𝜃) =
1

2𝜋
∫

3𝑒𝑐𝑜𝑠𝜙. 𝐶𝑜𝑠(𝑆𝑖𝑛𝜙)

5 − 4𝐶𝑜𝑠(𝜃 − 𝜙) 
𝑑∅

2𝜋

0

 

2𝜋

3
𝑒𝐶𝑜𝑠𝜃 Cos(𝑆𝑖𝑛𝜃) = ∫

𝑒𝑐𝑜𝑠𝜙 . 𝐶𝑜𝑠(𝑆𝑖𝑛𝜙)

5 − 4𝐶𝑜𝑠(𝜃 − 𝜙) 
𝑑∅

2𝜋

0
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Hence proved. 

 

 

Question:  

Using the Poisson integral formula, find the value of ∫
621𝑓(25𝑒

𝑖π
4 )

629−100𝐶𝑜𝑠(𝜋−
𝜋

4
) 

𝑑∅
2𝜋

0
 

Solution: 

We know that using the Poisson integral formula, 

𝑓(𝑟𝑒𝑖𝜃) =
1

2𝜋
∫

(𝑅2 − 𝑟2)𝑓(𝑅𝑒𝑖∅)

[𝑅2 − 2𝑅𝑟𝐶𝑜𝑠(𝜃 − 𝜙) + 𝑟2] 
𝑑∅

2𝜋

0

 

Here  

(𝑅2 − 𝑟2) =621 

𝑓(𝑅𝑒𝑖∅) = 𝑓(25𝑒
𝜋
4

𝑖) 

2𝑅𝑟 = 100 

𝜃 − 𝜙 = 𝜋 −
𝜋

4
 

(𝑅2 + 𝑟2) =629 

Hence, we can conclude that.  

𝑅 = 25 

𝑟 = 2 

𝜃 = 𝜋 

𝜙 =
𝜋

4
 

𝑓(𝑟𝑒𝑖𝜃) = 𝑓(2𝑒𝑖𝜋) 

∫
621𝑓 (25𝑒

𝑖π
4 )

629 − 100𝐶𝑜𝑠 (𝜋 −
𝜋
4) 

𝑑∅

2𝜋

0

= 2𝜋𝑓(2𝑒𝑖𝜋) 

 

3.3 Review questions 

1. Using the Poisson integral formula, find the value of ∫
75𝑓(10𝑒

𝑖π
4 )

125−100𝐶𝑜𝑠(
𝜋

2
−

𝜋

4
) 

𝑑∅
2𝜋

0
 

2. Using the Poisson integral formula, find the value of ∫
64𝑓(10𝑒

𝑖π
10)

136−120𝐶𝑜𝑠(
𝜋

2
−

𝜋

10
) 

𝑑∅
2𝜋

0
 

3. Using the Poisson integral formula, find the value of ∫
9𝑓(5𝑒

𝑖π
10)

41−40𝐶𝑜𝑠(𝜋−
𝜋

10
) 

𝑑∅
2𝜋

0
 

4. Using the Poisson integral formula, find the value of ∫
80𝑓(9𝑒

𝑖π
2 )

82−18𝐶𝑜𝑠(𝜋−
𝜋

2
) 

𝑑∅
2𝜋

0
 

5. Using the Poisson integral formula, find the value of ∫
99𝑓(10𝑒

𝑖π
10)

101−20𝐶𝑜𝑠(
𝜋

2
−

𝜋

10
) 

𝑑∅
2𝜋

0
 

  LOVELY PROFESSIONAL UNIVERSITY  33



Complex analysis-II 

3.4 Self-assessment 

1. Let D be a simply connected domain and suppose 𝑓0 (𝑧) is analytic in a domain 𝐷0  ⊂  𝐷. If 

the function element (𝑓0 , 𝐷0) can be analytically continued along every curve in D, then there 

exists a single-valued function 𝑓(𝑧) that is analytic throughout 𝐷 with 𝑓(𝑧) ≡ 𝑓0(𝑧)  in 𝐷0. 

 

A.  True 

B. 𝐹𝑎𝑙𝑠𝑒 

 

 

2. Let D be a simply connected domain and suppose 𝑓0 (𝑧) is analytic in a domain 𝐷0  ⊂  𝐷. If 

the function element (𝑓0 , 𝐷0) can be analytically continued along every curve in D, then there 

does not exists any single-valued function 𝑓(𝑧) that is analytic throughout 𝐷 with 𝑓(𝑧) ≡ 

𝑓0(𝑧)  in 𝐷0. 

 

A.  True 

B. 𝐹𝑎𝑙𝑠𝑒 

 

 

3. Let D be a simply connected domain and suppose 𝑓0 (𝑧) is analytic in a domain 𝐷0  ⊂  𝐷. If 

the function element (𝑓0 , 𝐷0) can be analytically continued along every curve in D, then there 

exists a single-valued function 𝑓(𝑧) that is not analytic throughout 𝐷 with 𝑓(𝑧) ≡ 𝑓0(𝑧)  in 

𝐷0. 

 

A.  True 

B. 𝐹𝑎𝑙𝑠𝑒 

 

4. Let {𝑆𝑛} be a sequence of closed and bounded rectangles in the plane. If 𝑆𝑛+1 ⊂ 𝑆𝑛 for every 

𝑛 and the length of the sides of 𝑆𝑛 approaches 0 as 𝑛 →  ∞, then there is exactly one point in 

common to all the 𝑆𝑛 . 

 

A. True 

B. 𝐹𝑎𝑙𝑠𝑒 

 

5. Let {𝑆𝑛} be a sequence of closed and bounded rectangles in the plane. If 𝑆𝑛+1 ⊂ 𝑆𝑛 for every 

𝑛 and the length of the sides of 𝑆𝑛 approaches 0 as 𝑛 →  ∞, then there are two points in 

common to all the 𝑆𝑛 . 

 

A. True 

B. 𝐹𝑎𝑙𝑠𝑒 

 

6. Using the Poisson integral formula, the 
1

2𝜋
∫

(𝑅2−1)𝑓(𝑅𝑒 𝑖∅)

[𝑅2−2𝑅𝐶𝑜𝑠(𝜋−𝜙)+1] 
𝑑∅ =

2𝜋

0
 

A. 𝑓(𝑒𝑖𝜋) 

B. 𝑓(2𝑒𝑖𝜋) 

C. 𝑓(3𝑒𝑖𝜋) 

D. 2 𝑓(𝑒𝑖𝜋) 

 

7. Using the Poisson integral formula, the ∫
(𝑅2−4)𝑓(𝑅𝑒 𝑖∅)

[𝑅2−4𝑅𝐶𝑜𝑠(𝜋−𝜙)+4] 
𝑑∅ =

2𝜋

0
 

A. 𝜋𝑓(𝑒𝑖𝜋) 

B. 2𝜋𝑓(2𝑒𝑖𝜋) 

C. 3𝜋𝑓(3𝑒𝑖𝜋) 

D.  𝑓(𝑒𝑖𝜋) 

 

  LOVELY PROFESSIONAL UNIVERSITY  34



Unit 03: Monodromy theorem and Poisson integration formula 

8. Using the Poisson integral formula, the 
1

2𝜋
∫

(𝑅2−9)𝑓(𝑅𝑒 𝑖∅)

[𝑅2−6𝑅𝐶𝑜𝑠(𝜋−𝜙)+9] 
𝑑∅ =

2𝜋

0
 

A. 𝑓(3𝑒𝑖𝜋) 

B. 𝑓(2𝑒𝑖𝜋) 

C. 𝑓(3𝑒𝑖𝜋) 

D. 2 𝑓(𝑒𝑖𝜋) 

 

9. Using the Poisson integral formula, the ∫
(𝑅2−16)𝑓(𝑅𝑒 𝑖∅)

[𝑅2−8𝑅𝐶𝑜𝑠(𝜋−𝜙)+16] 
𝑑∅ =

2𝜋

0
 

A. 𝜋𝑓(𝑒𝑖𝜋) 

B. 2𝜋𝑓(4𝑒𝑖𝜋) 

C. 3𝜋𝑓(3𝑒𝑖𝜋) 

D.  𝑓(5𝑒𝑖𝜋) 

 

10. Using the Poisson integral formula, the ∫
21𝑓(5𝑒 𝑖∅)

29−20𝐶𝑜𝑠(𝜋−𝜙) 
𝑑∅ =

2𝜋

0
 

A. 𝜋𝑓(𝑒𝑖𝜋) 

B. 2𝜋𝑓(2𝑒𝑖𝜋) 

C. 3𝜋𝑓(3𝑒𝑖𝜋) 

D.  𝑓(𝑒𝑖𝜋) 

 

11. Using the Poisson integral formula, the 
1

2𝜋
∫

27𝑓(6𝑒 𝑖∅)

45−36𝐶𝑜𝑠(𝜋−𝜙)] 
𝑑∅ =

2𝜋

0
 

A. 𝑓(3𝑒𝑖𝜋) 

B. 𝑓(2𝑒𝑖𝜋) 

C. 𝑓(3𝑒𝑖𝜋) 

D. 2 𝑓(𝑒𝑖𝜋) 

 

12. Using the Poisson integral formula, the ∫
20𝑓(6𝑒 𝑖∅)

52−48𝐶𝑜𝑠(𝜋−𝜙) 
𝑑∅ =

2𝜋

0
 

A. 𝜋𝑓(𝑒𝑖𝜋) 

B. 2𝜋𝑓(4𝑒𝑖𝜋) 

C. 3𝜋𝑓(3𝑒𝑖𝜋) 

D.  𝑓(5𝑒𝑖𝜋) 

 

13. Using the Poisson integral formula, the ∫
99𝑓(10𝑒𝑖∅)

101−20𝐶𝑜𝑠(𝜋−𝜙) 
𝑑∅ =

2𝜋

0
 

A. 𝜋𝑓(𝑒𝑖𝜋) 

B. 2𝜋𝑓(𝑒𝑖𝜋) 

C. 3𝜋𝑓(3𝑒𝑖𝜋) 

D.  𝑓(𝑒𝑖𝜋) 

 

14. Using the Poisson integral formula, the 
1

2𝜋
∫

91𝑓(10𝑒 𝑖∅)

109−60𝐶𝑜𝑠(𝜋−𝜙)] 
𝑑∅ =

2𝜋

0
 

A. 𝑓(3𝑒𝑖𝜋) 

B. 𝑓(2𝑒𝑖𝜋) 

C. 𝑓(3𝑒𝑖𝜋) 

D. 2 𝑓(𝑒𝑖𝜋) 

 

15. Using the Poisson integral formula, the ∫
4𝑓(5𝑒 𝑖∅)

41−40𝐶𝑜𝑠(𝜋−𝜙) 
𝑑∅ =

2𝜋

0
 

A. 𝜋𝑓(𝑒𝑖𝜋) 

B. 2𝜋𝑓(4𝑒𝑖𝜋) 

C. 3𝜋𝑓(3𝑒𝑖𝜋) 

D.  𝑓(5𝑒𝑖𝜋) 
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Table 1: Answers of self-assessment 

Question number Correct answer 

1 A 

2 B 

3 B 

4 A 

5 B 

6 A 

7 B 

8 D 

9 B 

10 B 

11 A 

12 B 

13 B 

14 A 

15 B 

 

3.5 Summary 

 If 𝑓(𝑧) is analytic within and on a circle 𝐶 defined by |𝑧| = 𝑅 and if 𝑎 is any point within, 𝐶, 

then 

𝑓(𝑟𝑒𝑖𝜃) =
1

2𝜋
∫

(𝑅2 − 𝑟2)𝑓(𝑅𝑒𝑖∅)

𝑅2 − 2𝑅𝑟𝐶𝑜𝑠(𝜃 − ∅) + 𝑟2
𝑑∅

2𝜋

0

 

Where 𝑎 = 𝑟𝑒𝑖𝜃is any point inside the circle |𝑧| = 𝑅. 

 
(𝑅2−𝑟2)𝑓(𝑅𝑒 𝑖∅)

[𝑅2−2𝑅𝑟𝐶𝑜𝑠(𝜃−𝜙)+𝑟2] 
 is known as the Poisson Kernal for the disk |𝑧 | < 𝑅.  

 The Poisson, kernel is bounded above by 
(𝑅2−𝑟2)

[𝑅2−2𝑅𝑟+𝑟2] 
=

𝑅+𝑟

𝑅−𝑟
. 

 The conjugate Poisson kernel is a mathematical function used in complex analysis and 

potential theory. It is defined as the conjugate of the Poisson kernel, which is a function that 

maps points in the complex plane to the unit disk. The conjugate Poisson kernel is given by 

the formula:𝑃∗(𝑧)  =  𝑃 (
1

𝑧∗
) where 𝑃(𝑧) is the Poisson kernel and 𝑧∗ is the complex conjugate 

of z.  
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3.6 Keywords 

Monodromy Theorem: 

Let D be a simply connected domain, and suppose 𝑓0 (𝑧) is analytic in a domain 𝐷0  ⊂  𝐷. If the 
function element (𝑓0, 𝐷0) can be analytically continued along every curve in D, then there exists a 
single-valued function 𝑓(𝑧) that is exists a single-valued function 𝑓(𝑧) that is analytic throughout 𝐷 
with 𝑓(𝑧) ≡ 𝑓0(𝑧)  in 𝐷0. 

 

3.7 Further Readings 

  

1. Complex Variables And Applications By Churchill, R. V. And Brown, J. W., Mcgraw Hill 
Education. 

2. Foundations Of Complex Analysis By S. Ponnusamy, Narosa Publishing House. 

3. Complex Analysis By Lars V. Ahlfors, Mcgraw Hill Education. 

4. Complex Variables Theory And Applications By H. S. Kasana, Prentice Hall. 
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Purpose and Objectives: 

 

The Mean Value Property states that for a harmonic function in a domain, the average value of the 
function over a ball is equal to the value of the function at the center of the ball. Harmonic functions 
are a type of function that satisfy the mean value property. Hence, the mean value property is a 
necessary condition for a function to be harmonic. 

In other words, harmonic functions are functions that have the property that the mean of their values 
over a small region is equal to the value of the function at a point in the interior of that region. The 
mean value property is a fundamental property of harmonic functions, and it plays a key role in 
various applications, such as potential theory and partial differential equations. 

Harnack's inequality is a fundamental result in mathematics with various applications in several 
areas, including partial differential equations, geometry, and potential theory. It provides a 
relationship between the values of a harmonic function on a small ball and on a large one, which is 
useful in the study of the regularity and behavior of solutions to elliptic equations. Additionally, 
Harnack's inequality is also crucial in the study of the asymptotic behavior of Markov processes, 
stochastic differential equations, and other areas in probability theory. 

The Dirichlet problem is a well-known problem in mathematics, specifically in the field of partial 
differential equations. It asks to find a solution to a partial differential equation that satisfies certain 
boundary conditions on a given domain. The problem is named after the German mathematician 
Peter Gustav Lejeune Dirichlet and has numerous applications in physics, engineering, and 
mathematics. It provides a way to model various physical phenomena such as heat conduction, 
diffusion, and potential flow. 

After this unit students can be able to- 

1. State and prove the Harnack's inequality.  

2. Learn the mean value property of harmonic functions. 

3. Solve the problem based on the Dirichlet problem. 
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Introduction 

The Harnack’s inequality is a result in mathematical analysis, which states that for a non-negative 
solution 𝑢(𝑥) of a linear elliptic partial differential equation in a domain, the maximum value of 𝑢 in 
a ball centered at a point is bounded above by the average value of 𝑢 over the same ball. Before 
embarking the concept of Harnack’s inequality, first we discuss the relationship between mean value 
property and harmonic function. This result has important applications in the study of heat diffusion 
and potential theory we will understand the Dirichlet problem to find solutions to boundary value 
problems in these areas.  

 

4.1 Relation Between Mean Value Property and Harmonic Functions 

4.1.1  Harmonic function 

A harmonic function is a real-valued function that satisfies Laplace's equation, which states that the 
sum of the second partial derivatives with respect to x and y is equal to zero. 

Mathematically, for a function 𝑢(𝑥, 𝑦), the Laplace's equation can be expressed as: 

 

𝜕2𝑢

𝜕𝑥2
  +

𝜕2𝑢

𝜕𝑦2
 =  0                                                                                                                                     (4.1) 

 

Harmonic functions have several important properties, including being analytic and continuous, 
having no local maxima or minima, and having a unique mean value over any region in which they 
are defined. These properties make harmonic functions useful in a variety of mathematical and 
scientific applications, such as solving boundary value problems and modeling physical phenomena. 

4.1.2  The harmonic conjugate of a harmonic function 

The harmonic conjugate of a harmonic function u is another harmonic function 𝑣 that satisfies the 
condition 𝑢 +  𝑖𝑣 is analytic (i.e., it has continuous first and second partial derivatives). In other 
words, u and v together form a complex function that is analytic in the region where u is defined. 

The harmonic conjugate of u is unique up to an additive constant, and it can be found by integrating 

the derivative of u with respect to y (or x, if u is expressed in terms of x).  

For example, if 𝑢(𝑥, 𝑦)  =  𝑓(𝑥)  +  𝑔(𝑦), then its harmonic conjugate is given by 𝑣(𝑥, 𝑦)  =  −𝑔(𝑥)  +
 𝑓(𝑦)  +  𝐶, where 𝐶 is an arbitrary constant. 

In conclusion, the harmonic conjugate of a harmonic function is a unique function that helps to form 
an analytic complex function in the region where the harmonic function is defined. 

The harmonic conjugate of an analytic function is another function that, when added to the original 
function, forms a harmonic function. A harmonic function is a function that satisfies Laplace's 
equation, which states that the sum of the second partial derivatives with respect to x and y is zero. 

Let 𝑓(𝑥, 𝑦) be an analytic function. Its harmonic conjugate, denoted by 𝑔(𝑥, 𝑦), is defined as: 

𝑔(𝑥, 𝑦)  =  𝜕𝑦 𝑢(𝑥, 𝑦)  −  𝜕𝑥 𝑣(𝑥, 𝑦) 

where 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) are the real and imaginary parts of 𝑓(𝑥, 𝑦), respectively. 

The two functions, 𝑓(𝑥, 𝑦) 𝑎𝑛𝑑 𝑔(𝑥, 𝑦), are called Cauchy-Riemann partners, and their sum is a 
harmonic function. 

4.1.3 Mean value property.  

The mean value property of harmonic functions states that, for any point in a ball in a harmonic 

function, the value of the function at that point is equal to the average of the function's values over 
the boundary of the ball.  

In mathematical terms, if 𝑢(𝑥) is a harmonic function in a ball 𝐵(𝑥0, 𝑅) centered at 𝑥0 with radius 𝑅, 
then: 

𝑢(𝑥0)  =  (
1

|𝐵(𝑥0,𝑟)|
) ∫ 𝑢(𝑥) 𝑑𝑥

{𝐵(𝑥0,𝑟)}
                                                                                                              (4.2) 
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where |𝐵(𝑥0, 𝑟)| is the measure (area or volume, depending on the dimension) of the ball.  

In other words, continuous function 𝑢 ∶  𝐺 → ℝ has the Mean Value Property (MVP) if whenever.  

𝐵 (𝑎 = 𝑥0;  𝑅) ⊂  𝐺, 𝑢(𝑎)  =   
1

2𝜋
∫ 𝑢(𝑎 + 𝑅𝑒𝑖𝜃)𝑑𝜃
2𝜋

0
                                                                                             (4.3)  

 

 

This property provides a useful tool for solving partial differential equations and finding potential 
functions in physics. 

Proof:  

Let 𝑢:𝐺 → ℝ  be a harmonic function and let �̅� (𝑎 ∶  𝑅) be a closed disk contained in 𝐺. If 𝐶 is the 

circle, |𝑧 −  𝑎|  =  𝑅 then then 𝑢(𝑎)  =
1

2𝜋
∫ 𝑢(𝑎 + 𝑅𝑒𝑖𝜃)𝑑𝜃
2𝜋

0
      

The proof of the Mean Value Theorem is since a harmonic function is equal to its mean over any 
region. This means that the average value of the function over the boundary of a disk is equal to the 
value of the function at the center of the disk. 

To prove this, we start by noting that a harmonic function is analytic, meaning it satisfies the Cauchy-
Riemann equations and can be represented by a power series. Using this representation, we can write 
the function as: 

𝑢(𝑧) =  𝑢(𝑎) +  ∑ (𝑧 − 𝑎)𝑛∞
𝑛=1 ∗

1

𝑛!
(
𝑑𝑛𝑢(𝑎)

𝑑𝑧𝑛
)                                                                                                     (4.4) 

where 
𝑑𝑛𝑢(𝑎)

𝑑𝑧𝑛
 is the nth derivative of 𝑢 evaluated at 𝑎. 

Next, we consider the value of the function at a point on the boundary of the disk, given by 𝑎 +  𝑅𝑒𝑖𝜃 . 
Using this, we can rewrite the above power series as: 

𝑢(𝑎 +  𝑅𝑒𝑖𝜃) =  𝑢(𝑎) +  ∑ (𝑎 +  𝑅𝑒𝑖𝜃  − 𝑎)
𝑛∞

𝑛=1 ∗
1

𝑛!
(
𝑑𝑛𝑢(𝑎)

𝑑𝑧𝑛
)                                                                     (4.5) 

⟹ 𝑢(𝑎 +  𝑅𝑒𝑖𝜃) =  𝑢(𝑎) + ∑ (𝑅𝑒𝑖𝜃 )
𝑛∞

𝑛=1 ∗
1

𝑛!
(
𝑑𝑛𝑢(𝑎)

𝑑𝑧𝑛
)                                                                               (4.6) 

Now, we integrate both sides over the interval [0, 2𝜋] to obtain: 

1

2𝜋
∫ 𝑢(𝑎 + 𝑅𝑒 𝑖𝜃)𝑑𝜃
2𝜋

0
 = 𝑢(𝑎)+

1

2𝜋
∫ ∑ (𝑅𝑒 𝑖𝜃  )

𝑛∞
𝑛=1 ∗

1

𝑛!
(
𝑑𝑛𝑢(𝑎)

𝑑𝑧𝑛
)𝑑𝜃

2𝜋

0
                                            (4.7) 

Since the function 𝑢 is harmonic, it follows that all its derivatives are also harmonic.  

This means that the second term on the right side is equal to zero. Therefore, we can simplify the 
above expression to: 

1

2𝜋
∫ 𝑢(𝑎 + 𝑅𝑒 𝑖𝜃)𝑑𝜃
2𝜋

0
 = 𝑢(𝑎)                                                                                                         (4.8) 

Thus, the average value of the function over the boundary of the disk is equal to the value of the 
function at the center of the disk, proving the Mean Value Theorem. 

 

4.2 Harnack's inequality 

Suppose 𝑢(𝑧 ) is harmonic in the disk 𝛥(𝑧0 ;  𝑅) = {𝑧 ∶  |𝑧 − 𝑧0 | < 𝑅},with 𝑢(𝑧 )  ≥  0  

for all 𝑧 ∈  𝛥(𝑧0 ;  𝑅), then for every z in this disk, we have 

𝑢(𝑧0 )
𝑅 − |𝑧 − 𝑧0 |

𝑅 + |𝑧 − 𝑧0 |
 ≤   𝑢(𝑧 )  ≤  𝑢(𝑧0 )

𝑅 + |𝑧 − 𝑧0 |

𝑅 − |𝑧 − 𝑧0 |
 

 

Proof:  

First, we consider the average value of the function u on the circle centered at z0 with radius |𝑧 – 𝑧0|. 
By definition, this average value is given by 
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𝐴(|𝑧 − 𝑧0|)  =  (
1

2𝜋
) ∫ 𝑢(𝑧0  +  |𝑧 −  𝑧0|𝑒

𝑖𝑡) 𝑑𝑡
2𝜋

0
 .                                                                                      (4.9) 

Next, we apply the Mean Value Property for Harmonic Functions to the function 𝑢 −  𝑢(𝑧0), which 
states that for any positive real number r such that 0 <  𝑟 <  𝑅, there exists a point θ in the interval 
[0, 2𝜋) such that 

𝑢(𝑧0  +  𝑟𝑒
𝑖𝜃)  −  𝑢(𝑧0)  =  𝑟 𝜕𝑟𝑢(𝑧0  +  𝑟𝑒

𝑖𝜃)                                                                                             (4.10) 

Substituting this expression into the formula for 𝐴(|𝑧 − 𝑧0|) and interchanging the order of 
integration and differentiation, we obtain 

𝐴(|𝑧 − 𝑧0|)  =  (
1

2𝜋
) ∫ 𝑢(𝑧0  + |𝑧 − 𝑧0|𝑒

𝑖𝑡) 𝑑𝑡
2𝜋

0

  

=  (
1

2𝜋
) ∫ [𝑢(𝑧0) +  |𝑧 − 𝑧0|𝜕𝑟  𝑢(𝑧0  + |𝑧 − 𝑧0|𝑒

𝑖𝑡)]𝑑𝑡
2𝜋

0

  

=  𝑢(𝑧0)  +  |𝑧 − 𝑧0|𝜕𝑟  𝑢(𝑧0). 

Finally, using the definition of partial derivative with respect to the radial coordinate, we have 

𝜕𝑟  𝑢(𝑧0) =  (
1

2
)
𝑢(𝑧0 + 𝑅)− 𝑢(𝑧0 − 𝑅)

𝑅
 =

𝐴(𝑅)

𝑅
.                                                                                                       (4.11) 

Substituting this expression into the formula for 𝐴(|𝑧 − 𝑧0|), we obtain 

𝐴(|𝑧 − 𝑧0|) =  𝑢(𝑧0) +
|𝑧 − 𝑧0|𝐴(𝑅)

𝑅
.                                                                                                                        (4.12) 

Dividing both sides by |𝑧 −  𝑧0| and rearranging, we find that 

𝑢(𝑧0)(𝑅 − |𝑧 − 𝑧0|)

𝑅 + |𝑧 − 𝑧0|
 ≤  𝐴(|𝑧 − 𝑧0|) ≤

𝑢(𝑧0)(𝑅 + |𝑧 − 𝑧0|)

𝑅 − |𝑧 − 𝑧0|
.                                                                                            (4.13) 

Since the average value of 𝑢 on the circle centered at 𝑧0 with radius |𝑧 − 𝑧0| provides an upper bound 
for the function 𝑢, we conclude that 

𝑢(𝑧0)(𝑅 − |𝑧 − 𝑧0|)

𝑅 + |𝑧 − 𝑧0|
 ≤  𝑢(𝑧) ≤

𝑢(𝑧0)(𝑅 + |𝑧 − 𝑧0|)

𝑅 − |𝑧 − 𝑧0|
                                                                                                     (4.14) 

for every 𝑧 in the disk 𝛥(𝑧0 , 𝑅). 

 

4.3 Dirichlet Problem 

The Dirichlet problem in complex analysis is a boundary value problem that seeks to find a complex 
valued function that is analytic within a given domain and takes on specified boundary values on 
the boundary of that domain. 

For example, consider the unit disk centered at the origin in the complex plane. The Dirichlet problem 
asks us to find a complex valued function 𝑓(𝑧) that is analytic within the unit disk and takes on the 

specified boundary value 𝑓(𝑒𝑖𝑡)  =  𝑔(𝑡) for all t in the interval [0,2𝜋], where 𝑔(𝑡) is a given function. 

One possible solution to this problem is to use the theory of complex analysis and the representation 
of analytic functions using power series. 

 By using the Cauchy-Riemann equations, it can be shown that any complex valued function that is 

analytic within the unit disk can be represented by a power series of the form. 

 𝑓(𝑧)  =  𝛴 𝑎𝑛(𝑧 − 𝑧0)
𝑛, where 𝑧0  is the center of the disk. 

The boundary values of the function can then be used to determine the coefficients of the power 
series. 

 For example, if 𝑔(𝑡) = cos(𝑡),  

then 𝑓(𝑒𝑖𝑡) = cos(𝑡) 

= 𝛴 𝑎𝑛 𝑒
𝑖𝑛𝑡,  

where the coefficients can be calculated by matching the real and imaginary parts of both sides of the 
equation. 

Initially, the problem was to determine the equilibrium temperature distribution on a disk from 
measurements taken along the boundary.  
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The temperature at points inside the disk must satisfy a partial differential equation called Laplace’s 
equation corresponding to the physical condition that the total heat energy contained in the disk shall 
be a minimum.  

A slight variation of this problem occurs when there are points inside the disk at which heat is added 
(sources) or removed (sinks) as long as the temperature remains constant at each point (stationary 
flow), in which case Poisson’s equation is satisfied.  

How to construct a harmonic function in a given domain when its values are prescribed on the 
boundary of the domain is the key problem is known as Dirichlet problem. 

 

Boundary value problems associated to Laplace equation.  

The Poisson equation is a second-order partial differential equation of the form 

𝛻2𝑢(𝑥)  =  𝑓(𝑥) 

where 𝑢(𝑥) is an unknown function and 𝑓(𝑥) is a given function. The equation states that the 
Laplacian of 𝑢(𝑥) is equal to 𝑓(𝑥).  

The solution to the Poisson equation depends on the boundary conditions for the unknown function 
𝑢(𝑥). 

There are several methods for solving the Poisson equation, including numerical methods, analytical 
methods, and Green's function methods. 

One common analytical method is to use the method of separation of variables.  

Suppose that 𝑢(𝑥)  =  𝑋(𝑥)𝑌(𝑦), then the Laplacian of 𝑢(𝑥) becomes. 

𝛻2𝑢(𝑥) =
𝜕2𝑢(𝑥)

𝜕𝑥2
  +

𝜕2𝑢(𝑥)

𝜕𝑦2
 

= 𝑋′′(𝑥)𝑌(𝑦)  +  𝑋(𝑥)𝑌′′(𝑦) 

where 𝑋′′(𝑥) 𝑎𝑛𝑑 𝑌′′(𝑦) denote the second derivatives with respect to 𝑥 and 𝑦, respectively. Setting 
the right-hand side equal to 𝑓(𝑥), we have 

𝑋′′(𝑥)𝑌(𝑦)  +  𝑋(𝑥)𝑌′′(𝑦)  =  𝑓(𝑥) 

Dividing both sides by 𝑋𝑌, we get 

𝑋′′(𝑥)

𝑋(𝑥)
+
𝑌′′(𝑦)

𝑌(𝑦)
 =

𝑓(𝑥)

𝑋𝑌
 

 

This equation is equal to a constant 𝜆, so we have 

𝑋′′(𝑥)

𝑋(𝑥)
=  − 𝜆

𝑌′′(𝑦)

𝑌(𝑦)
=  − 𝜆 +

𝑓(𝑥)

𝑋𝑌
 

 

Solving the above two differential equations, we obtain the general solution. 

𝑢(𝑥) =   ∑𝐶𝑛𝑋𝑛(𝑥)𝑌𝑛(𝑦)  

where 𝐶𝑛 are constants and 𝑋𝑛(𝑥) 𝑎𝑛𝑑 𝑌𝑛(𝑦) are the eigenfunctions corresponding to the eigenvalue 
𝜆𝑛 

The final solution depends on the specific boundary conditions and the values of the constants 𝐶𝑛. 

Note that this method is only applicable when the equation can be separated into two independent 
ordinary differential equations. In general, the Poisson equation requires numerical methods or 
Green's function methods to solve. 

Another of the generic partial differential equations is Laplace’s equation,  𝛻2𝑢 = 0 
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This equation first appeared in the unit on complex variables when we discussed harmonic functions. 
Another example is the electric potential for electrostatics. As we described for static electromagnetic 
fields, 

𝛻 ⋅ 𝐸 =
𝜌

𝜖0
, 𝐸 = 𝛻𝜙. 

In regions devoid of charge, these equations yield the Laplace equation  𝛻2𝜙 = 0. 

Another example comes from studying temperature distributions.  

Consider a thin rectangular plate with the boundaries set at fixed temperatures. Temperature 
changes of the plate are governed by the heat equation. The solution of the heat equation subject to 
these boundary conditions is time dependent.  

In fact, after a long period of time the plate will reach thermal equilibrium. If the boundary 
temperature is zero, then the plate temperature decays to zero across the plate. However, if the 
boundaries are maintained at a fixed nonzero temperature, which means energy is being put into the 
system to maintain the boundary conditions, the internal temperature may reach a nonzero 
equilibrium temperature.  

Reaching thermal equilibrium means that asymptotically in time the solution becomes time 
independent. Thus, the equilibrium state is a solution of the time independent heat equation, which 
is another Laplace equation, 𝛻2𝑢 = 0 

  

Example  

Equilibrium temperature distribution for a rectangular plate 

Let us consider Laplace’s equation in Cartesian coordinates, 

𝜕2𝑢

𝜕𝑥2
  +

𝜕2𝑢

𝜕𝑦2
= 0, 0 < 𝑥 < 𝐿, 0 < 𝑦 < 𝐻                                                                                 (4.15) 

 with the boundary conditions 

 

𝑢(0, 𝑦) = 0

𝑢(𝜋, 𝑦) = 0

𝑢(𝑥, 0) = 𝑓(𝑥) = 𝑆𝑖𝑛𝑥

𝑢(𝑥,𝐻 = 1) =
𝑆𝑖𝑛𝑥

𝑒 }
 
 

 
 

                                                                                                                                     (4.16) 

 

Figure 4.1: The boundary condition for the heat distribution problem. 
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Solution: 

This is a partial differential equation for Laplace's equation, which describes the distribution of heat 
in a 2D space. To solve this equation, we can use separation of variables method. 

Assume that the solution can be written as: 

𝑢(𝑥, 𝑦)  =  𝑋(𝑥) 𝑌(𝑦) 

Substituting this into the equation, we have: 

(𝑋(𝑥) 𝑌(𝑦))′′ + (𝑋(𝑥) 𝑌(𝑦))′′ =  0 

Dividing both sides by 𝑋(𝑥) 𝑌(𝑦), we get: 

𝑋′′(𝑥) 𝑌(𝑦)  +  𝑋(𝑥) 𝑌′′(𝑦)  =  0 

Since this must be true for all x and y, we can divide both sides by 𝑋(𝑥) 𝑌(𝑦), to get: 

(
𝑋′′(𝑥)

𝑋(𝑥)
)+  (

𝑌′′(𝑦)

𝑌(𝑦)
) =  0 

 

This can be simplified to: 

𝜆2  =  −
𝑋′′(𝑥)

𝑋(𝑥)
  =

𝑌′′(𝑦)

𝑌(𝑦)
 

 

where 𝜆2 is a constant. 

Solving for 𝑋(𝑥) 𝑎𝑛𝑑 𝑌(𝑦), we have: 

𝑋′′(𝑥)  + 𝜆2 𝑋(𝑥)  =  0  

𝑌′′(𝑦)  −  𝜆2 𝑌(𝑦)  =  0 

The solutions for 𝑋(𝑥) 𝑎𝑛𝑑 𝑌(𝑦) can be written as: 

𝑋(𝑥)  =  𝐴 𝑐𝑜𝑠(𝜆 𝑥)  +  𝐵 𝑠𝑖𝑛(𝜆 𝑥) 

𝑌(𝑦)  =  𝐶 𝑒−𝜆 𝑦  +  𝐷 𝑒𝜆 𝑦 

where 𝐴,𝐵, 𝐶, 𝑎𝑛𝑑 𝐷 are constants. 

Hence   𝑢(𝑥, 𝑦) =  𝐴 𝑐𝑜𝑠(𝜆 𝑥) +  𝐵 𝑠𝑖𝑛(𝜆 𝑥). [𝐶 𝑒−𝜆 𝑦  +  𝐷 𝑒𝜆 𝑦]                                                     (4.17) 

Using the boundary conditions, we can find the values of 𝜆 and the coefficients 𝐴, 𝐵, 𝐶, 𝑎𝑛𝑑 𝐷. 

⟹ 𝑢(0, 𝑦) =  𝐴 𝑐𝑜𝑠(𝜆 ∗ 0) +  𝐵 𝑠𝑖𝑛(𝜆 ∗ 0). [𝐶 𝑒−𝜆 𝑦  +  𝐷 𝑒𝜆 𝑦] = 0 

⟹ 𝑢(0, 𝑦) =  𝐴 . [𝐶 𝑒−𝜆 𝑦  +  𝐷 𝑒𝜆 𝑦] = 0 

⟹𝐴 = 0 

Now put 𝐴 = 0 in (4.17)                                                 

𝑢(𝑥, 𝑦) =   𝐵 𝑠𝑖𝑛(𝜆 𝑥). [𝐶 𝑒−𝜆 𝑦  +  𝐷 𝑒𝜆 𝑦]                                                     (4.18) 

Now  

𝑢(𝜋, 𝑦) = 𝐵 𝑠𝑖𝑛(𝜆 𝜋). [𝐶 𝑒−𝜆 𝑦  +  𝐷 𝑒𝜆 𝑦] = 0 

⟹ 𝑠𝑖𝑛(𝜆 𝜋) = 0 

⟹ 𝑠𝑖𝑛(𝜆 𝜋) = sin (𝑛𝜋) 

⟹ 𝜆 = n, n = ±1,±2,…,  

So 

𝑢(𝑥, 𝑦) =   𝐵 𝑠𝑖𝑛(𝑛 𝑥). [𝐶 𝑒−𝑛 𝑦  +  𝐷 𝑒𝑛 𝑦]                                                     (4.19) 

Now apply 𝑢(𝑥, 0)  =  𝑆𝑖𝑛𝑥 
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𝑢(𝑥, 0) =   𝐵 𝑠𝑖𝑛(𝑛 𝑥). [𝐶 +  𝐷 ] = 𝑠𝑖𝑛𝑥 

⟹𝐵𝐶 + 𝐵𝐷 = 1, 𝑛 = 1 

Now update the (4.19) Hence  

𝑢(𝑥, 𝑦) =   𝐵 𝑠𝑖𝑛𝑥. [𝐶 𝑒− 𝑦  +  𝐷 𝑒  𝑦]                                                     (4.20) 

Now apply 𝑢(𝑥, 1) =
𝑆𝑖𝑛𝑥

𝑒
 

𝑢(𝑥, 1) =   𝐵 𝑠𝑖𝑛𝑥. [𝐶 𝑒− 1  +  𝐷 𝑒  1] =
𝑠𝑖𝑛𝑥

𝑒
 

⟹𝐵𝐶
𝑠𝑖𝑛𝑥

𝑒
+ 𝐵𝐷. 𝑠𝑖𝑛𝑥. 𝑒 =

𝑠𝑖𝑛𝑥

𝑒
+ 0 

⟹ 𝐵𝐶 = 1,𝐵𝐷 = 0 

 

Now update the (4.20)(4.19) Hence  

𝑢(𝑥, 𝑦) =    𝑠𝑖𝑛𝑥. [ 𝑒− 𝑦 ] is the final solution of the given temperature distribution for a rectangular 
plate. 

 

Figure4.2: The temperature distribution in x and y direction. 

                                                

 

4.4 Review questions 

1. Explain the Mean value property of harmonic function? 

2. State and prove the Harnack’s inequality for harmonic function in the closed disc? 

3. Suppose 𝑢(𝑧 ) is harmonic in the disk 𝛥(1 ;  1) = {𝑧 ∶  |𝑧 −  1 | < 1},with 𝑢(𝑧 )  ≥  0  

for all 𝑧 ∈  𝛥(1 ;  𝑅), then for every z in this disk, then show that 

𝑢(1 )
1 − |𝑧 −  1 |

1 + |𝑧 −  1 |
 ≤   𝑢(𝑧 )  ≤  𝑢(1 )

1 + |𝑧 −  1 |

1 − |𝑧 −  1 |
 

4. Solve 
𝜕2𝑢

𝜕𝑥2
  +

𝜕2𝑢

𝜕𝑦2
= 0, 0 < 𝑥 < 𝐿, 0 < 𝑦 < 𝐻,under the boundary conditions 
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𝑢(0, 𝑦) = 0

𝑢(𝜋, 𝑦) = 0

𝑢(𝑥, 0) = 𝑓(𝑥) = 2𝑆𝑖𝑛𝑥

𝑢(𝑥, 1) =
𝑆𝑖𝑛𝑥

𝑒 }
 
 

 
 

                                                                                                                                      

5. Solve, 
𝜕2𝑢

𝜕𝑥2
  +

𝜕2𝑢

𝜕𝑦2
= 0, 0 < 𝑥 < 10,0 < 𝑦 < 𝐻, with the boundary conditions 

𝑢(0, 𝑦) = 0

𝑢(𝜋, 𝑦) = 0

𝑢(𝑥, 0) = 10𝑆𝑖𝑛𝑥

𝑢(𝑥, 10) = 10
𝑆𝑖𝑛𝑥

𝑒 }
 
 

 
 

                                                                                                                                      

 

4.5 Self-assessment 

1. Using the Mean Value property, the integral  
1

2𝜋
∫ 𝑢(5 + 𝑅𝑒 𝑖𝜃)𝑑𝜃
2𝜋

0
 =                                                                                                           

 

A.  𝑢(5)                                                                                                          

B.  𝑢 (
5

2
)                                                                                                          

C. 𝑢(25)                                                                                                          

D. 𝑢(10)                                                                                                          
 

 

2. Using the Mean Value property, the integral  
1

2𝜋
∫ 𝑢(15 +𝑅𝑒 𝑖𝜃)𝑑𝜃
2𝜋

0
 =                                                                                                           

 

A.  𝑢(15)                                                                                                          

B.  𝑢 (
15

2
)                                                                                                          

C. 𝑢(225)                                                                                                          

D. 𝑢(30)                                                                                                          
 

 

3. Using the Mean Value property, the integral  
1

2𝜋
∫ 𝑢(1 + 𝑖 + 𝑅𝑒 𝑖𝜃)𝑑𝜃
2𝜋

0
 =                                                                                                           

 

A.  𝑢(1)                                                                                                          
B.  𝑢(𝑖)                                                                                                          

C. 𝑢(1 + 𝑖)                                                                                                          

D. 𝑢 (
1

1+𝑖
)                                                                                                          

 

4. Using the Mean Value property, which one of the following is true  

A.   
1

2𝜋
∫ 𝑢(10+ 𝑅𝑒 𝑖𝜃)𝑑𝜃
2𝜋

0
 = 𝑢(10)   

B. 
1

2𝜋
∫ 𝑢(5 + 𝑅𝑒 𝑖𝜃)𝑑𝜃
2𝜋

0
 = 𝑢(5/2)                                                                                                          

C. 
1

2𝜋
∫ 𝑢(5/2+ 𝑅𝑒 𝑖𝜃)𝑑𝜃
2𝜋

0
 = 𝑢(5)                                                                                                          

D. 
1

2𝜋
∫ 𝑢(5 + 𝑅𝑒 𝑖𝜃)𝑑𝜃
2𝜋

0
 = 𝑢(10)             

                                                                                                                                                                                                     

5.    Using the Mean Value property, which one of the following is true  

A.   
1

2𝜋
∫ 𝑢(1 + 𝑅𝑒 𝑖𝜃)𝑑𝜃
2𝜋

0
 = 𝑢(10)   

B. 
1

2𝜋
∫ 𝑢(25 + 𝑅𝑒 𝑖𝜃)𝑑𝜃
2𝜋

0
 = 𝑢(5/2)                                                                                                          

C. 
1

2𝜋
∫ 𝑢(5/2+ 𝑅𝑒 𝑖𝜃)𝑑𝜃
2𝜋

0
 = 𝑢(5)                                                                                                          

D. 
1

2𝜋
∫ 𝑢(2 + 𝑖 + 𝑅𝑒 𝑖𝜃)𝑑𝜃
2𝜋

0
 = 𝑢(2 + 𝑖)                                                                                                                                                                                                                 
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6. Suppose 𝑢(𝑧 ) is harmonic in the disk 𝛥(𝑧0 ;  𝑅) = {𝑧 ∶  |𝑧  | < 1},with 𝑢(𝑧 )  ≥  0  

for all 𝑧 ∈  𝛥(0 ;  1), then which one of the following statements are true using the 

Harnack’s inequality for every z in this disk, 

𝐼: 𝑢(0 )
1 − |𝑧  |

1 + |𝑧  |
 ≤   𝑢(𝑧 )  

𝐼𝐼: 𝑢(𝑧 )  ≤  𝑢(0 )
1 + |𝑧  |

1 − |𝑧  |
 

A. 𝑂𝑛𝑙𝑦 𝐼                                                                                                          

B.  𝑂𝑛𝑙𝑦 𝐼𝐼                                                                                                          

C. 𝐵𝑜𝑡ℎ                                                                                                          

D. 𝑁𝑒𝑖𝑡ℎ𝑒𝑟 𝐼 𝑛𝑜𝑟 𝐼𝐼                                                                                                          
 

7. Suppose 𝑢(𝑧 ) is harmonic in the disk 𝛥(𝑧0 ;  𝑅) = {𝑧 ∶  |𝑧  | < 2},with 𝑢(𝑧 )  ≥  0  

for all 𝑧 ∈  𝛥(0 ;  2), then which one of the following statements are true using the 

Harnack’s inequality for every z in this disk, 

𝐼: 𝑢(0 )
2 − |𝑧  |

2 + |𝑧  |
 ≤   𝑢(𝑧 )  

𝐼𝐼: 𝑢(𝑧 ) ≥  𝑢(0 )
2 + |𝑧  |

2 − |𝑧  |
 

A. 𝑂𝑛𝑙𝑦 𝐼                                                                                                          
B.  𝑂𝑛𝑙𝑦 𝐼𝐼                                                                                                          

C. 𝐵𝑜𝑡ℎ                                                                                                          

D. 𝑁𝑒𝑖𝑡ℎ𝑒𝑟 𝐼 𝑛𝑜𝑟 𝐼𝐼                                                                                                          

 

8. Suppose 𝑢(𝑧 ) is harmonic in the disk 𝛥(𝑧0 ;  𝑅) = {𝑧 ∶  |𝑧 − 𝑖 | < 1},with 𝑢(𝑧 )  ≥  0  

for all 𝑧 ∈  𝛥(𝑖 ;  1), then which one of the following statements are true using the 

Harnack’s inequality for every z in this disk, 

𝐼: 𝑢(𝑖 )
1 − |𝑧  |

1 + |𝑧  |
 ≤   𝑢(𝑧 )  

𝐼𝐼: 𝑢(𝑧 )  ≤  𝑢(𝑖 )
1 + |𝑧  |

1 − |𝑧  |
 

A. 𝑂𝑛𝑙𝑦 𝐼                                                                                                          
B.  𝑂𝑛𝑙𝑦 𝐼𝐼                                                                                                          

C. 𝐵𝑜𝑡ℎ                                                                                                          

D. 𝑁𝑒𝑖𝑡ℎ𝑒𝑟 𝐼 𝑛𝑜𝑟 𝐼𝐼                                                                                                          
 

9. Suppose 𝑢(𝑧 ) is harmonic in the disk 𝛥(𝑧0 ;  𝑅) = {𝑧 ∶  |𝑧  | < 5},with 𝑢(𝑧 )  ≥  0  

for all 𝑧 ∈  𝛥(0 ;  5), then which one of the following statements are true using the 

Harnack’s inequality for every z in this disk, 

𝐼: 𝑢(0 )
5 − |𝑧  |

5 + |𝑧  |
>   𝑢(𝑧 )  

𝐼𝐼: 𝑢(𝑧 )  ≤  𝑢(0 )
5 + |𝑧  |

5 − |𝑧  |
 

A. 𝑂𝑛𝑙𝑦 𝐼                                                                                                          

B.  𝑂𝑛𝑙𝑦 𝐼𝐼                                                                                                          

C. 𝐵𝑜𝑡ℎ                                                                                                          

D. 𝑁𝑒𝑖𝑡ℎ𝑒𝑟 𝐼 𝑛𝑜𝑟 𝐼𝐼   
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10. Suppose 𝑢(𝑧 ) is harmonic in the disk 𝛥(𝑧0  ;  𝑅) = {𝑧 ∶  |𝑧 − 2  | < 1},with 𝑢(𝑧 )  ≥  0  

for all 𝑧 ∈  𝛥(0 ;  1), then which one of the following statements are true using the 

Harnack’s inequality for every z in this disk, 

𝐼: 𝑢(0 )
1 − |𝑧 − 2  |

1 + |𝑧 − 2  |
 ≤   𝑢(𝑧 )  

𝐼𝐼: 𝑢(𝑧 )  ≤  𝑢(0 )
1 + |𝑧 − 2  |

1 − |𝑧 − 2 |
 

A. 𝑂𝑛𝑙𝑦 𝐼                                                                                                          

B.  𝑂𝑛𝑙𝑦 𝐼𝐼                                                                                                          

C. 𝐵𝑜𝑡ℎ                                                                                                          

D. 𝑁𝑒𝑖𝑡ℎ𝑒𝑟 𝐼 𝑛𝑜𝑟 𝐼𝐼                                                                                                          
 

11. Consider the 𝑢(𝑥, 𝑦) =  𝐴 𝑐𝑜𝑠(𝜆 𝑥) +  𝐵 𝑠𝑖𝑛(𝜆 𝑥). [𝐶 𝑒−𝜆 𝑦  +  𝐷 𝑒𝜆 𝑦] be the solution of 

Laplace’s equation 
𝜕2𝑢

𝜕𝑥2
  +

𝜕2𝑢

𝜕𝑦2
= 0, 0 < 𝑥 < 𝐿, 0 < 𝑦 < 1 in Cartesian coordinates then what 

is the value of 𝐵 using 𝑢(0, 𝑦) = 0. 

A. 0 

B. 2𝜋 

C. 3 

D.  1 

 

with the boundary conditions 

𝑢(0, 𝑦) = 0.

𝑢(𝜋, 𝑦) = 0

𝑢(𝑥, 0) = 𝑓(𝑥) = 𝑆𝑖𝑛𝑥

𝑢(𝑥,𝐻 = 1) =
𝑆𝑖𝑛𝑥

𝑒 }
 
 

 
 

 

 

12. Consider the 𝑢(𝑥, 𝑦) =  𝐴 𝑐𝑜𝑠(𝜆 𝑥) +  𝐵 𝑠𝑖𝑛(𝜆 𝑥). [𝐶 𝑒−𝜆 𝑦  +  𝐷 𝑒𝜆 𝑦] be the solution of 

Laplace’s equation 
𝜕2𝑢

𝜕𝑥2
  +

𝜕2𝑢

𝜕𝑦2
= 0, 0 < 𝑥 < 𝐿, 0 < 𝑦 < 1 in Cartesian coordinates then what 

is the value of 𝜆 using 𝑢(0, 𝑦) = 0, , 𝑢(𝜋, 𝑦) = 0. 

A. 𝜆 = 0.5  

B. 𝜆 = n, n = ±1,±2,…,  

C. 𝜆 =
3

2
 

D. 𝐶𝑎𝑛 𝑛𝑜𝑡 𝑏𝑒 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑  

 

13. Consider the 𝑢(𝑥, 𝑦) =  𝐴 𝑐𝑜𝑠(𝜆 𝑥) +  𝐵 𝑠𝑖𝑛(𝜆 𝑥). [𝐶 𝑒−𝜆 𝑦  +  𝐷 𝑒𝜆 𝑦] be the solution of 

Laplace’s equation 
𝜕2𝑢

𝜕𝑥2
  +

𝜕2𝑢

𝜕𝑦2
= 0, 0 < 𝑥 < 𝐿, 0 < 𝑦 < 1 in Cartesian coordinates then what 

is the value of 𝐵𝐶 with the boundary conditions 

𝑢(0, 𝑦) = 0.

𝑢(𝜋, 𝑦) = 0

𝑢(𝑥, 0) = 𝑓(𝑥) = 𝑆𝑖𝑛𝑥

𝑢(𝑥, 𝐻 = 1) =
𝑆𝑖𝑛𝑥

𝑒 }
 
 

 
 

 

A. 0.5  

B. 1 

C. 
3

2
 

D. 𝐶𝑎𝑛 𝑛𝑜𝑡 𝑏𝑒 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑  

E.  

14.  Consider the 𝑢(𝑥, 𝑦) =  𝐴 𝑐𝑜𝑠(𝜆 𝑥) +  𝐵 𝑠𝑖𝑛(𝜆 𝑥). [𝐶 𝑒−𝜆 𝑦  +  𝐷 𝑒𝜆 𝑦] be the solution of 

Laplace’s equation 
𝜕2𝑢

𝜕𝑥2
  +

𝜕2𝑢

𝜕𝑦2
= 0, 0 < 𝑥 < 𝐿, 0 < 𝑦 < 1 in Cartesian coordinates then what 

is the value of 𝐵𝐷 with the boundary conditions 

𝑢(0, 𝑦) = 0.

𝑢(𝜋, 𝑦) = 0

𝑢(𝑥, 0) = 𝑓(𝑥) = 𝑆𝑖𝑛𝑥

𝑢(𝑥, 𝐻 = 1) =
𝑆𝑖𝑛𝑥

𝑒 }
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A. 0.5  

B. 1 

C. 
3

2
 

D. 0  

15.  Consider the 𝑢(𝑥, 𝑦) =  𝐴 𝑐𝑜𝑠(𝜆 𝑥) +  𝐵 𝑠𝑖𝑛(𝜆 𝑥). [𝐶 𝑒−𝜆 𝑦  +  𝐷 𝑒𝜆 𝑦] be the solution of 

Laplace’s equation 
𝜕2𝑢

𝜕𝑥2
  +

𝜕2𝑢

𝜕𝑦2
= 0, 0 < 𝑥 < 𝐿, 0 < 𝑦 < 1 in Cartesian coordinates then what 

is the general solution of  with the boundary conditions 

𝑢(0, 𝑦) = 0.

𝑢(𝜋, 𝑦) = 0

𝑢(𝑥, 0) = 𝑓(𝑥) = 𝑆𝑖𝑛𝑥

𝑢(𝑥,𝐻 = 1) =
𝑆𝑖𝑛𝑥

𝑒 }
 
 

 
 

 

A. 𝑢(𝑥, 𝑦) =    𝑆𝑖𝑛𝑥. [ 𝑒− 𝑦 ] 

B. 𝑢(𝑥, 𝑦) =    𝐶𝑜𝑠𝑥. [ 𝑒− 𝑦 ] 

C. 𝑢(𝑥, 𝑦) =    𝑆𝑖𝑛𝑥. [ 𝑒𝑦 ] 

D. 𝑢(𝑥, 𝑦) =    𝐶𝑜𝑠𝑥. [ 𝑒𝑦 ]  

 

Table 1: Answers of self-assessment 

Question number Correct answer 

1 A 

2 A 

3 C 

4 A 

5 D 

6 C 

7 A 

8 C 

9 B 

10 C 

11 A 

12 B 

13 C 

14 D 

15 A 

 

4.6 Summary 

 The mean value property of harmonic functions: 
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For any point in a ball in a harmonic function, the value of the function at that point is equal 

to the average of the function's values over the boundary of the ball.  

In mathematical terms, if 𝑢(𝑥) is a harmonic function in a ball 𝐵(𝑥0, 𝑅) centered at 𝑥0 with radius 𝑅, 

then: 𝑢(𝑥0)  =  (
1

|𝐵(𝑥0,𝑟)|
) ∫ 𝑢(𝑥) 𝑑𝑥

{𝐵(𝑥0,𝑟)}
                                                                                                               

where |𝐵(𝑥0, 𝑟)| is the measure (area or volume, depending on the dimension) of the ball. 

 The average value of the function over the boundary of the disk is equal to the value of the 

function at the center of the disk, proving the Mean Value Theorem. 

 

4.7 Keywords 

Harnack's inequality 

Suppose 𝑢(𝑧 ) is harmonic in the disk 𝛥(𝑧0 ;  𝑅) = {𝑧 ∶  |𝑧 − 𝑧0 | < 𝑅},with 𝑢(𝑧 )  ≥  0  

for all 𝑧 ∈  𝛥(𝑧0 ;  𝑅), then for every z in this disk, we have 

𝑢(𝑧0 )
𝑅 − |𝑧 − 𝑧0 |

𝑅 + |𝑧 − 𝑧0 |
 ≤   𝑢(𝑧 )  ≤  𝑢(𝑧0 )

𝑅 + |𝑧 − 𝑧0 |

𝑅 − |𝑧 − 𝑧0 |
 

 

4.8 Further Readings 

  

1. Complex Variables And Applications By Churchill, R. V. And Brown, J. W., Mcgraw Hill 
Education. 

2. Foundations Of Complex Analysis By S. Ponnusamy, Narosa Publishing House. 

3. Complex Analysis By Lars V. Ahlfors, Mcgraw Hill Education. 

4. Complex Variables Theory And Applications By H. S. Kasana, Prentice Hall. 
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Purpose and Objectives: 

 

After this unit students can be able to- 

1. Understand the Schwarz Reflection Principle for analytic functions? 

2. Prove the Schwarz Reflection Principle for analytic functions? 

3. Learn the consequences of the Schwarz Reflection Principle 

Introduction 

If a function is analytic in the upper half plane and its real part is non-negative on the boundary (the 
real axis), then it can be extended analytically to the entire plane. In other words, if a function f(z) is 

analytic in the upper half plane and satisfies the condition 𝑅𝑒(𝑓(𝑧)) ≥ 0 for all real 𝑧, then 𝑓(𝑧) can 

be extended to the entire complex plane. 

The Schwarz Reflection Principle has several important applications in complex analysis, such as 
proving the analyticity of functions, constructing entire functions with prescribed properties, and 
solving boundary value problems. In this unit we will explore the Schwarz Reflection Principle for 
analytic function. 

5.1 Schwarz Reflection Principle for Analytic Functions 

Statement: 

The Schwarz Reflection Principle states that if a complex valued function 𝑓(𝑧) is analytic in the upper 
half plane (𝐼𝑚(𝑧)  >  0), and continuous on the boundary of the upper half plane (𝐼𝑚(𝑧)  =  0), and 

if 𝑓(𝑧) satisfies 𝑓(𝑧) = 𝑓((𝑧̅))̅̅ ̅̅ ̅̅ ̅̅ , then the function 𝑓(𝑧) can be extended to be analytic in the entire 
complex plane. 
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or 

The Schwarz Reflection Principle states that if a function is analytic in the upper half plane and its 
real part is non-negative on the boundary (the real axis), then it can be extended analytically to the 
entire plane. In other words, if a function 𝑓(𝑧) is analytic in the upper half plane and satisfies the 

condition 𝑅𝑒(𝑓(𝑧)) ≥  0 for all real z, then 𝑓(𝑧) can be extended to the entire complex plane. 

  

Proof 1: 

The proof of the Schwarz Reflection Principle relies on the fact that if a function is analytic in the 
upper half plane and its real part is non-negative on the boundary, then it can be represented as a 
real part of another analytic function.  

Let 𝑓(𝑧) be analytic in the upper half plane and 𝑅𝑒(𝑓(𝑧)) ≥  0 for all real 𝑧.  

Then the function 𝑔(𝑧)  =  𝑓(𝑧) +  𝑖(−𝑓(𝑧)) is analytic in the upper half plane and satisfies 
𝑅𝑒(𝑔(𝑧))  =  0 for all real 𝑧. 

The proof also uses the maximum modulus principle and Liouville's theorem. 

Liouville's Theorem 

Liouville's Theorem states that a bounded holomorphic function on the entire complex plane must 
be constant. It is named after Joseph Liouville. 

Statement: 

Let 𝑓(𝑧): 𝐶 → 𝐶 be an entire function. Suppose there exists some real number𝑀 ≥ 0  such 
that |𝑓(𝑧)| ≤ 𝑀 for all 𝑧 ∈ 𝐶 Then 𝑓(𝑧) is a constant function. 

Or  

If a function 𝑓(𝑧) is entire and bounded in the complex plane, then 𝑓(𝑧) is constant throughout the 
plane. 

Proof: 

It is given that  

i. A function 𝑓(𝑧) is analytic in the entire complex plane  

ii. A function 𝑓(𝑧) is bounded, that |𝑓(𝑧)| ≤ 𝑀. 

Let us consider two points 𝑎 𝑎𝑛𝑑 𝑏 inside a particular domain(See the figure 5.1).  
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Figure 5.1: Two points 𝑎 𝑎𝑛𝑑 𝑏 inside a particular domain 

 

Then using Cauchy integral formula 

1

2𝜋𝑖 
∮

𝑐
(

𝑓(𝑧)

𝑧 − 𝑎
) 𝑑𝑧 = 𝑓(𝑎) 

1

2𝜋𝑖 
∮

𝑐
(

𝑓(𝑧)

𝑧 − 𝑏
) 𝑑𝑧 = 𝑓(𝑏) 

If 𝑓(𝑧) is constant throughout the domain, then 𝑓(𝑎) = 𝑓(𝑏). 

Now let’s prove 𝑓(𝑎) − 𝑓(𝑏) = 0. 

𝑓(𝑎) − 𝑓(𝑏) =
1

2𝜋𝑖 
∮

𝑐
(

𝑓(𝑧)

𝑧 − 𝑎
) 𝑑𝑧 −

1

2𝜋𝑖 
∮

𝑐
(

𝑓(𝑧)

𝑧 − 𝑏
) 𝑑𝑧 

𝑓(𝑎) − 𝑓(𝑏) =
1

2𝜋𝑖 
∮

𝑐
(

𝑓(𝑧)

𝑧 − 𝑎
−

𝑓(𝑧)

𝑧 − 𝑏
) 𝑑𝑧 

𝑓(𝑎) − 𝑓(𝑏) =
1

2𝜋𝑖 
∮

𝑐
𝑓(𝑧) (

1

𝑧 − 𝑎
−

1

𝑧 − 𝑏
) 𝑑𝑧 

𝑓(𝑎) − 𝑓(𝑏) =
1

2𝜋𝑖 
∮

𝑐
𝑓(𝑧) (

𝑧 − 𝑏 − 𝑧 + 𝑎

(𝑧 − 𝑎)(𝑧 − 𝑏)
) 𝑑𝑧 

𝑓(𝑎) − 𝑓(𝑏) =
𝑎 − 𝑏

2𝜋𝑖 
∮

𝑐
𝑓(𝑧) (

1

(𝑧 − 𝑎)(𝑧 − 𝑏)
) 𝑑𝑧 

|𝑓(𝑎) − 𝑓(𝑏)| = |
𝑎 − 𝑏

2𝜋𝑖 
∮

𝑐
𝑓(𝑧) (

1

(𝑧 − 𝑎)(𝑧 − 𝑏)
) 𝑑𝑧| 

|𝑓(𝑎) − 𝑓(𝑏)| ≤ |
𝑎 − 𝑏

2𝜋𝑖 
| ∮

𝑐
|𝑓(𝑧)| (

1

|(𝑧 − 𝑎)(𝑧 − 𝑏)|
) |𝑑𝑧| 

|𝑓(𝑎) − 𝑓(𝑏)| ≤ |
𝑎 − 𝑏

2𝜋𝑖 
| ∮

𝑐
|𝑓(𝑧)| (

1

(|𝑧| − |𝑎|)(|𝑧| − |𝑏|)
) |𝑑𝑧| 

Let 

𝑧 = 𝑟𝑒𝑖𝜃  
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𝑑𝑧 = 𝑟𝑒𝑖𝜃 . 𝑖. 𝑑𝜃 

|𝑑𝑧| = |𝑟𝑒𝑖𝜃 . 𝑖. 𝑑𝜃| 

|𝑑𝑧| = |𝑟|. |𝑒𝑖𝜃|. |𝑖|. |𝑑𝜃| 

Here |𝑟| = 𝑟 

|𝑒𝑖𝜃| = |𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃| = 1, 

|𝑖| = 1, 

|𝑑𝑧| = 𝑟. |𝑑𝜃| 

|𝑓(𝑎) − 𝑓(𝑏)| ≤
𝑎 − 𝑏

2𝜋 
∮

𝑐
𝑀 (

1

(𝑟 − 𝑎)(𝑟 − 𝑏)
)  𝑟. |𝑑𝜃| 

|𝑓(𝑎) − 𝑓(𝑏)| ≤
𝑎 − 𝑏

2𝜋 
∮

𝑐
𝑀 (

1

(1 − 𝑎/𝑟)(1 − 𝑏/𝑟)
) . |𝑑𝜃| 

If 𝑓(𝑧) is analytic in the entire complex plane, then |𝑧| = 𝑟 → ∞. So 

|𝑓(𝑎) − 𝑓(𝑏)| ≤ 0 

𝑓(𝑎) − 𝑓(𝑏) = 0 

Hence, we can say that 𝑓(𝑎) = 𝑓(𝑏). It means that 𝑓(𝑧) is a constant. 

Liouville's Theorem proof using Cauchy integral formula for derivatives. 

If f(z) is analytic in a simply connected region then at any interior point of the region, 𝑧0 inside C. 
Then say, the derivatives of 𝑓(𝑧) of any order exist and are themselves analytic (which illustrates 
what a powerful property analyticity is!). The derivatives at the point 𝑧0 are given by Cauchy’s 
integral formula for derivatives: 

∮
𝑐

(
𝑓(𝑧)

(𝑧−𝑧0)𝑛+1
) 𝑑𝑧 = 2𝜋𝑖

𝑓𝑛(𝑧0)

𝑛!
. 

where C is any simple closed curve, in the region, which encloses 𝑧0. Note the case 𝑛 =  1: 

1

2𝜋𝑖
∮

𝑐
(

𝑓(𝑧)

(𝑧−𝑧0)2
) 𝑑𝑧 = 𝑓′(𝑧0). 

|𝑓′(𝑧0)| = |
1

2𝜋𝑖
∮

𝑐
(

𝑓(𝑧)

(𝑧−𝑧0)2
) 𝑑𝑧|. 

|𝑓′(𝑧0)| ≤ |
1

2𝜋𝑖
| ∮

𝑐
(

|𝑓(𝑧)|

|(𝑧−𝑧0)2|
) |𝑑𝑧|. 

Here 𝑧 = 𝑟𝑒𝑖𝜃 

𝑑𝑧 = 𝑟𝑒𝑖𝜃 . 𝑖. 𝑑𝜃. 

|𝑑𝑧| = |𝑟𝑒𝑖𝜃 . 𝑖. 𝑑𝜃|. 

|𝑑𝑧| = |𝑟|. |𝑒𝑖𝜃|. |𝑖|. |𝑑𝜃|. 

Here |𝑧 − 𝑧0| = 𝑟 

|𝑒𝑖𝜃| = |𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃| = 1, 

|𝑖| = 1, 

|𝑑𝑧| = 𝑟. |𝑑𝜃|. 

|𝑓′(𝑧0)| ≤
1

2𝜋
∮

𝑐
(

𝑀

𝑟2
) 𝑟. |𝑑𝜃|. 

|𝑓′(𝑧0)| ≤
1

2𝜋
∮

𝑐
(

𝑀

𝑟
) . 𝑑𝜃. 

If 𝑓(𝑧) is analytic in the entire complex plane then 𝑟 → ∞. So 

|𝑓′(𝑧0)| ≤ 0 

𝑓′(𝑧0) = 0 

𝑓(𝑧) = constant. 
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By Liouville's theorem, the imaginary part of 𝑔(𝑧) is constant on the boundary, say 𝑐. Then the 
function ℎ(𝑧)  =  𝑔(𝑧)  +  𝑖𝑐 is analytic in the entire plane and has the same real part as 𝑓(𝑧). 

 

Proof 2: 

Let 𝑓(𝑧) be a complex valued function that is analytic in the upper half plane (𝐼𝑚(𝑧)  >  0), and 
continuous on the boundary of the upper half plane (𝐼𝑚(𝑧)  =  0). 

Consider a point 𝑧 in the lower half plane (𝐼𝑚(𝑧) <  0)[See figure 5.2] 

 

Figure 5.2: 𝑤 = 𝑓(𝑧) 

Let 𝑧 =  𝑥 +  𝑖𝑦, where 𝑥 is real and 𝑦 is negative. 

Let's define a new point, 𝑐𝑜𝑛𝑗(𝑧)=𝑧̅, which is equal to the complex conjugate of z. 

That is, 𝑐𝑜𝑛𝑗(𝑧)  =  𝑥 −  𝑖𝑦. 

Since 𝑓(𝑧) is continuous on the boundary of the upper half plane, it follows that 𝑓(𝑐𝑜𝑛𝑗(𝑧)) is 
continuous in the lower half plane. 

Also, since 𝑓(𝑧) satisfies 𝑓(𝑧)  =  𝑓((𝑧̅))̅̅ ̅̅ ̅̅ ̅̅ ,  we have: 

 

𝑓(𝑧)  = 𝑓((𝑐𝑜𝑛𝑗(𝑧)))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  

=   𝑓(𝑥 −  𝑖𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

=   𝑓(𝑥 +  𝑖(−𝑦))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

Thus, we can define a new function, 𝑔(𝑧), in the lower half plane as follows: 

𝑔(𝑧)  =  𝑓(𝑥 +  𝑖(−𝑦))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

Since 𝑔(𝑧)  =  𝑓(𝑧)̅̅ ̅̅ ̅̅  is continuous in the lower half plane, and the conjugate of a continuous function 
is continuous, it follows that 𝑔(𝑧) is continuous in the lower half plane. 

We now show that 𝑔(𝑧) is also analytic in the lower half plane. 

Let 𝑧 =  𝑥 +  𝑖𝑦, where 𝑥 is real and 𝑦 is negative. 

Consider the derivative of 𝑔(𝑧) at the point 𝑧: 

𝑔′(𝑧) =  (
𝑑

𝑑𝑧
)  𝑓(𝑥 +  𝑖(−𝑦))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

=  (
𝑑

𝑑𝑧
)  𝑓(𝑧)̅̅ ̅̅ ̅̅ ̅ 

=   (
𝑑

𝑑𝑧
) 𝑓(𝑧)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 

Since 𝑓(𝑧) is analytic in the upper half plane, it follows that (
𝑑

𝑑𝑧
) 𝑓(𝑧) is also analytic in the upper half 

plane. 

Therefore, conjugate of (
𝑑

𝑑𝑧
) 𝑓(𝑧) is also analytic in the lower half plane, and so is 𝑔′(𝑧). 
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Since 𝑔(𝑧) is continuous and its derivative is analytic in the lower half plane, it follows that 𝑔(𝑧) is 
analytic in the lower half plane. 

Thus, we have shown that if 𝑓(𝑧) is a complex valued function that is analytic in the upper half plane 
and continuous on the boundary of the upper half plane, and if 𝑓(𝑧) satisfies: 

 𝑓(𝑧)  =  𝑓(𝑐𝑜𝑛𝑗(𝑧))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , then the function 𝑓(𝑧) can be extended to be analytic in the entire complex plane 
by defining a new function, 𝑔(𝑧), in the lower half plane. 

5.2 consequences of the Schwarz Reflection Principle 

1. One consequence of the Schwarz Reflection Principle is that if a function is analytic in the 

upper half plane and its real part is non-negative on the boundary, then it can be extended 

to an entire function that is real valued on the real axis.  

2. Another consequence is that a function that is analytic in the upper half plane and satisfies 

a certain growth condition on the boundary (such as the Riemann mapping theorem) can 

be extended to an entire function with similar growth behavior.  

3. Additionally, the Schwarz Reflection Principle can be used to construct solutions to 

boundary value problems, such as the Dirichlet problem, by reflecting solutions from one 

half plane to the other. 

 

5.3 Different proofs of Schwartz Reflection Principle 

The Schwartz Reflection Principle can be proved by various methods 

1. Complex Analysis Proof: The Schwartz Reflection Principle can be proven using complex 

analysis by considering the analytic continuation of the function from the upper half plane 

to the lower half plane. The proof involves showing that the function, extended to the lower 

half plane, is a reflection of the function in the upper half plane across the real axis. 

 

2. Harmonic Functions Proof: The Schwartz Reflection Principle can also be proven using the 

theory of harmonic functions. A function is considered harmonic if it satisfies Laplace's 

equation. By assuming that the function is harmonic in the upper half plane, it can be shown 

that its extension to the lower half plane is also harmonic, and therefore satisfies Laplace's 

equation, meaning it must be a reflection of the function in the upper half plane across the 

real axis. 

 

 

3. Integral Transform Proof: The Schwartz Reflection Principle can be proven using the Fourier 

Transform by showing that the Fourier Transform of a function in the upper half plane, after 

being reflected across the real axis, is equal to the negative Fourier Transform of the original 

function in the lower half plane. 

 

4. Paley-Wiener Theorem Proof: The Schwartz Reflection Principle can also be proven using 

the Paley-Wiener theorem, which states that the Fourier Transform of a function with 

compact support is a function that is entire and decays rapidly. By assuming that the 

function in question is the Fourier Transform of a function with compact support in the 

upper half plane, it can be shown that the function, after being reflected across the real axis, 

is the Fourier Transform of a function with compact support in the lower half plane. 
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5. Bochner's Theorem Proof: The Schwartz Reflection Principle can also be proven using 

Bochner's theorem, which states that a positive definite function is the Fourier Transform of 

a positive measure. By assuming that the function in question is positive definite in the 

upper half plane, it can be shown that the function, after being reflected across the real axis, 

is positive definite in the lower half plane, implying that it is the Fourier Transform of a 

positive measure. 

 

5.4 Applications  

 The main application of the Schwartz Reflection Principle is in the study of distributions 
and their derivatives. It provides a means to extend the definitions of distributions and 
derivatives to unbounded functions. 

 The Schwartz Reflection Principle is a generalization of the Hahn-Banach Theorem. The 

Hahn-Banach Theorem states that a linear functional on a linear subspace can be extended 
to the entire space while preserving its norm. The Schwartz Reflection Principle extends this 
result to the case of distributions. 

 The Schwartz Reflection Principle is an important tool in mathematical physics for defining 
distributions and derivatives of functions. In particular, it allows for the extension of the 
definitions of distributions and derivatives to unbounded functions, which is particularly 
useful in quantum field theory and quantum mechanics. 

 

 

5.5 Review questions 

 

1. What is the main application of the Schwartz Reflection Principle? 

2. How does the Schwartz Reflection Principle relate to the Hahn-Banach Theorem? 

3. What is the significance of the Schwartz Reflection Principle in mathematical 

physics? 

4. State and prove the Schwartz Reflection Principle using Liouville's Theorem? 

5. State and prove the Schwartz Reflection Principle without Liouville's Theorem ? 

 

5.6 Self-assessment 

1. Which one the following statement is true for the reference of  Schwarz reflection principle?  

 

I: The principle that a complex function which is holomorphic in the upper half plane can 

be extended to a holomorphic function in the whole plane. 

  

II: The principle that states that a real-valued function cannot be analytically extended 

across a branch cut.  

 

A. Only I 

B. Only II 

C. Both I and II 

D. Neither I nor II 

 

2. Which one the following statement is true for the reference of Schwarz reflection principle?  
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I:  The principle that a holomorphic function in the unit disc can be extended to a 

holomorphic function in the whole plane.  

 

II: The principle that states that the maximum value of a subharmonic function is achieved 

on the boundary of its domain. 

  

 

A. Only I 

B. Only II 

C. Both I and II 

D. Neither I nor II 

 

3. Which one the following statement is true for the necessary condition for the Schwarz 

reflection principle?  

 

I:  The function must be bounded in the upper half plane.  

 

II: The function must be continuous in the upper half plane 

  

A. Only I 

B. Only II 

C. Both I and II 

D. Neither I nor II 

 

4. Which one the following statement is true for the necessary condition for the Schwarz 

reflection principle?  

 

I:  The function must be holomorphic in the upper half plane. 

II: The function must be continuous in the upper half plane 

  

A. Only I 

B. Only II 

C. Both I and II 

D. Neither I nor II 

 

5. The Schwarz reflection principle can be used to extend which type of functions to the whole 

plane?  

A. Only real-valued functions  

B. Only harmonic functions 

C. Both real valued and harmonic 

D. Neither real nor harmonic 

 

6. The Schwarz reflection principle can be used to extend which type of functions to the whole 

plane?  

A. Holomorphic functions 

B. Harmonic functions 

C. Subharmonic functions 

D. Neither real nor harmonic 

 

 

7. The Schwarz reflection principle states that the Fourier transform of the product of two 

signals is equal to the convolution of their Fourier transforms? 

A. True  
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B. False 

 

 

8. The principle that states that the reflection of a Schwartz function across the x-axis is also a 

Schwartz function? 

A. True  

B. False 

 

9. The principle that states that the Laplace transform of a signal is equivalent to its Fourier 

transform? 

A. True  

B. False 

 

10. The principle that states that the derivative of a Schwartz function is also a Schwartz 

function. 

A. True  

B. False 

 

11. What is the Schwartz Reflection Principle in mathematics? 

 

A. The principle that every polynomial function has a unique root  

B. The principle that states that the boundary values of an analytic function on the 

upper half-plane can be extended to an analytic function on the whole complex 

plane  

C. The principle that states that the roots of a polynomial equation occur in conjugate 

pairs. 

D. The principle that the value of a holomorphic function at a point is equal to its 

average value over any small circle centered at that point. 

 

12. Which of the following is the best definition of the Schwartz Reflection Principle? 

 

I: A mathematical theorem that states that the reflection of a function across a 

vertical line always results in an even function. 

II: A mathematical theorem that states that the reflection of a function across a 

vertical line always results in an odd function. 

A. Only I 

B. Only II 

C. Both I and II 

D. Neither I nor II 

 

13. Which of the following is the best definition of the Schwartz Reflection Principle? 

I: A mathematical theorem that states that the reflection of a function across a 

vertical line always results in a function with the same parity. 

 

II: A mathematical theorem that states that the reflection of a function across a 

vertical line always results in a different function. 

A. Only I 

B. Only II 

C. Both I and II 

D. Neither I nor II 
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14. The Schwarz Reflection Principle states that if a complex valued function 𝑓(𝑧) is analytic in 

the upper half plane (𝐼𝑚(𝑧)  >  0), and continuous on the boundary of the upper half plane 

(𝐼𝑚(𝑧)  =  0), and if 𝑓(𝑧) satisfies 𝑓(𝑧) = 𝑓((�̅�))̅̅ ̅̅ ̅̅ ̅̅ , then the function 𝑓(𝑧) can be extended to 

be analytic in the entire complex plane. 

A. True  

B. False 

 

15. Which one the following statement is true for the reference of  Schwarz reflection principle?  

 

I:  The Schwarz Reflection Principle states that if a function is analytic in the upper 

half plane and its real part is non-negative on the boundary (the real axis), then it can be 

extended analytically to the entire plane.  

 

II: If a function 𝑓(𝑧) is analytic in the upper half plane and satisfies the condition 

𝑅𝑒(𝑓(𝑧)) ≥  0 for all real z, then 𝑓(𝑧) can be extended to the entire complex plane. 

 

A. Only I 

B. Only II 

C. Both I and II 

D. Neither I nor II 

 

 

Table 1: Answers of self-assessment 

Question number Correct answer 

1 A 

2 D 

3 D 

4 A 

5 D 

6 A 

7 B 

8 A 

9 B 

10 B 

11 B 

12 D 

13 A 
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14 D 

15 C 

 

5.7 Summary 

 The Schwarz Reflection Principle states that if a complex valued function 𝑓(𝑧) is analytic in 

the upper half plane (𝐼𝑚(𝑧)  >  0), and continuous on the boundary of the upper half plane 

(𝐼𝑚(𝑧)  =  0), and if 𝑓(𝑧) satisfies 𝑓(𝑧) = 𝑓((�̅�))̅̅ ̅̅ ̅̅ ̅̅ , then the function 𝑓(𝑧) can be extended to 

be analytic in the entire complex plane. 

 

 The Schwarz Reflection Principle states that if a function is analytic in the upper half plane 

and its real part is non-negative on the boundary (the real axis), then it can be extended 

analytically to the entire plane.  

 

 If a function 𝑓(𝑧) is analytic in the upper half plane and satisfies the condition 𝑅𝑒(𝑓(𝑧)) ≥

 0 for all real z, then 𝑓(𝑧) can be extended to the entire complex plane. 

 

 If a function 𝑓(𝑧) is entire and bounded in the complex plane, then 𝑓(𝑧) is constant 

throughout the plane. 

 

 

5.8 Keywords 

Liouville's Theorem   

Let 𝑓(𝑧): 𝐶 → 𝐶 be an entire function. Suppose there exists some real number𝑀 ≥ 0  such 
that |𝑓(𝑧)| ≤ 𝑀 for all 𝑧 ∈ 𝐶 Then 𝑓(𝑧) is a constant function.  

 

5.9 Further Readings 

  

1. Complex Variables And Applications By Churchill, R. V. And Brown, J. W., Mcgraw Hill 
Education. 

2. Foundations Of Complex Analysis By S. Ponnusamy, Narosa Publishing House. 

3. Complex Analysis By Lars V. Ahlfors, Mcgraw Hill Education. 

4. Complex Variables Theory And Applications By H. S. Kasana, Prentice Hall. 
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Purpose and Objectives: 

Meromorphic functions are an important class of functions studied in complex analysis. They 
are defined as functions that are holomorphic (analytic) everywhere except at a finite number of 
isolated singularities. Meromorphic functions are useful in studying the behavior of complex 
functions near singularities, and they provide a representation of any meromorphic function in 
terms of its poles and their residues. After this unit students can be able to- 

1. Understand the Meromorphic functions 

2. State and prove the Mittag-Leffler theorem 

3. Learn the infinite product of complex Numbers 

Introduction 

In this unit first we will understand the concept of singularities and poles for meromorphic function 
then the we will use the mesomorphic function to prove the Mittag-Leffler theorem. Last we will 
focus on the infinite product of complex Numbers. 

6.1 Singularities 

A point z0 is called a singular point of a function 𝑓(z) if 𝑓(z) fails to be analytic at z0 but is analytic at 
some point in every neighborhood of z0. 
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 Example:  

Behavior of following functions at 𝑧 = 0. 

𝑓(𝑧) =
1

𝑧9
 

𝑓(𝑧) =
𝑆𝑖𝑛𝑧

𝑧
 

𝑓(𝑧) =
𝑒𝑧 − 1

𝑧
 

𝑓(𝑧) =
1

sin (1/𝑧)
 

We observed that all the functions mentioned above are not analytic at 𝑧 = 0.However in every 
neighbourhood of 𝑧 = 0, there is point at which 𝑓(𝑧) is analytic. 

 

 

 Example:  

 

Behavior of following function at 𝑧 = 1. 

𝑓(𝑧) =
𝑧

1 − 𝑧
 

 

We observed that the 𝑓(𝑧)is not analytic at 𝑧 = 1.However in every neighbourhood of 𝑧 = 0, there is 
point at which 𝑓(𝑧) is analytic. So 𝑧 = 1 is the singular point of 𝑓(𝑧). 

 

 

 Example:  
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𝑓(𝑧) = 𝑧2 is analytic everywhere so it has no singular point. 

 

 

 Example:  

Behavior of following function in the entire z plane 

𝑓(𝑧) = |𝑧|2  

We observed that the 𝑓(𝑧)is not analytic at 𝑧 = 1.However in every neighbourhood of 𝑧 = 0, there is 
point at which 𝑓(𝑧) is analytic. So 𝑧 = 1 is the singular point of 𝑓(𝑧). 

 

6.2 Classification of singularity 

The singularity of a complex function can be classified into two groups, isolated and non-isolated. It 
can be done via Laurent series expension, but we can also classify the singularity without the Laurent 
series expension. In the forthcoming units we will consider the classification using the Laurent series. 

The isolated singularity further can be classified into different type. The following diagram shows 
the different types of the singularities. 

 

 

6.2.1 Isolated singularity  

A point a is called an isolated singularity for 𝑓(𝑧) if 𝑓(𝑧) is not analytic at 𝑧 = 𝑎 and there exist 𝑟 > 0 
such that 𝑓(𝑧) is analytic in 0 < |𝑧 − 𝑎| < 𝑟. The neighbourhood |𝑧 − 𝑎| < 𝑟 contains no singularity 
of 𝑓(𝑧) except 𝑎. 
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 Example:  

  
𝒇(𝒛) =  

𝒛+𝟏

𝒛𝟐(𝒛𝟐+𝟏)
 has three isolated singularities 𝒛 =  𝟎, 𝒊, −𝒊. 

 

 

 Example:  

𝑓(𝑧) =  
1

𝑠𝑖𝑛𝑧
 has three isolated singularities 𝑧 =  0, ±π, ±2π, …,  

6.2.2 Removable singularity 

Let  𝑓(𝑧) is analytic everywhere execpt the point 𝑧0 inside and on the domain then if the lim
𝑧→𝑧0

𝑓(𝑧) 

exists then 𝑧0 is the removable singularity.  

 

 Example:  

Let 𝑓(𝑧) =
𝑠𝑖𝑛𝑧

𝑧
, clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 

lim
𝑧→𝑧0

𝑓(𝑧) = lim
𝑧→0

𝑠𝑖𝑛𝑧

𝑧
= 1. 

lim
𝑧→𝑧0

𝑓(𝑧) exists then 𝑧0 = 0 is the removable singularity. 

 

 Example:  

Let 𝑓(𝑧) =
𝑧−𝑠𝑖𝑛𝑧

𝑧3
, clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 

lim
𝑧→𝑧0

𝑓(𝑧) = lim
𝑧→0

𝑧−𝑠𝑖𝑛𝑧

𝑧3
 

lim
𝑧→𝑧0

𝑓(𝑧) = lim
𝑧→0

1−𝑐𝑜𝑠𝑧

3𝑧2
 [L-Hosptital rule] 

lim
𝑧→𝑧0

𝑓(𝑧) = lim
𝑧→0

0+𝑠𝑖𝑛𝑧

6𝑧1
 [L-Hosptital rule] 

lim
𝑧→𝑧0

𝑓(𝑧) = lim
𝑧→0

𝑐𝑜𝑠𝑧

6
 [L-Hosptital rule] 

lim
𝑧→𝑧0

𝑓(𝑧) = lim
𝑧→0

1

6
 

lim
𝑧→𝑧0

𝑓(𝑧) exists then 𝑧0 = 0 is the removable singularity. 

 

6.2.3 Pole 

Let  𝑓(𝑧) is analytic everywhere execpt the point 𝑧0 inside and on the domain then if the 
lim

𝑧→𝑧0

(𝑧 − 𝑧0)𝑘𝑓(𝑧) = 𝜆 , where 𝜆 ≠ 0, then 𝑧0 is the pole of order k.  

If 𝑘 = 1, then 𝑧0 is the simple pole. 

 

 

 Example:  
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Consider 𝑓(𝑧) =
𝑒𝑧

𝑧
 ,clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 

lim
𝑧→𝑧0

𝑓(𝑧) = lim
𝑧→0

𝑒𝑧

𝑧
 

lim
𝑧→𝑧0

(𝑧 − 0)1 𝑓(𝑧) = lim
𝑧→0

𝑧
𝑒𝑧

𝑧
 

lim
𝑧→𝑧0

(𝑧 − 0)1 𝑓(𝑧) = 𝑒0 = 1 ≠ 0. 

So 𝑧0 = 0 is the pole of order 1 or simple pole. 

 

 Example:  

 

Consider 𝑓(𝑧) =
𝑐𝑜𝑠𝑧

𝑧2
 , clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 

lim
𝑧→𝑧0

𝑓(𝑧) = lim
𝑧→0

𝑐𝑜𝑠𝑧

𝑧2
  

lim
𝑧→𝑧0

(𝑧 − 0)2 𝑓(𝑧) = lim
𝑧→0

𝑧2 𝑐𝑜𝑠𝑧

𝑧2 . 

lim
𝑧→𝑧0

(𝑧 − 0)2 𝑓(𝑧) = lim
𝑧→0

𝑐𝑜𝑠𝑧 = 1 ≠ 0. 

So 𝑧0 = 0 is the pole of order 2. 

 

 Example:  

Consider 𝑓(𝑧) =
1−𝑒2𝑧

𝑧3
 , clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 

lim
𝑧→𝑧0

𝑓(𝑧) = lim
𝑧→0

1−𝑒2𝑧

𝑧3
   

lim
𝑧→𝑧0

(𝑧 − 0)3 𝑓(𝑧) = lim
𝑧→0

𝑧3 (1−𝑒2𝑧)

𝑧3
= 0. 

lim
𝑧→𝑧0

(𝑧 − 0)2 𝑓(𝑧) = lim
𝑧→0

 𝑧2 (1−𝑒2𝑧)

𝑧3
. 

lim
𝑧→𝑧0

(𝑧 − 0)2 𝑓(𝑧) = lim
𝑧→0

 
(1−𝑒2𝑧)

𝑧
. 

lim
𝑧→𝑧0

(𝑧 − 0)2 𝑓(𝑧) = lim
𝑧→0

 
−2𝑒2𝑧

1
= −2 ≠ 0. 

So 𝑧0 = 0 is the pole of order 2. 

 

6.2.4  Essential singularity 

Let  𝑓(𝑧) is analytic everywhere execpt the point 𝑧0 inside and on the domain then if the 
lim

𝑧→𝑧0

(𝑧 − 𝑧0)𝑛𝑓(𝑧) = ∞ , then 𝑧0 is essential singularity.  

 

 Example:  

Consider 𝑓(𝑧) = 𝑒1/𝑧 , clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 

lim
𝑧→𝑧0

𝑓(𝑧) = lim
𝑧→0

𝑒1/𝑧     

lim
𝑧→𝑧0

(𝑧 − 0)𝑛 𝑓(𝑧) = lim
𝑧→0

𝑧𝑛𝑒1/𝑧 . 
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lim
𝑧→𝑧0

(𝑧 − 0)𝑛 𝑓(𝑧) = lim
𝑧→0

𝑧𝑛[1 +
1

𝑧
+

1

2!
(

1

𝑧
)

2
+

1

3!
(

1

𝑧
)

2
+ ⋯ , ] . 

lim
𝑧→𝑧0

(𝑧 − 0)𝑛 𝑓(𝑧) = ∞. 

So 𝑧0 = 0 is an essential singularity. 

 

6.2.5 Singularity at infinity  

We classify the types of singularities at infinity by letting w = 1/z and analyzing the resulting 
function at w = 0. 

 

 Example:  

𝑓(𝑧) = 𝑧3. 

𝑓(𝑧) = 𝑔(𝑤) = 1/𝑤3. 

𝑔(𝑤) has a pole of order 3 at w = 0 The function f(z) has a pole of order 3 at infinity. 

 

6.2.5 Non-isolated singularity 

A point a is called a non-isolated singularity for 𝑓(𝑧) if 𝑓(𝑧) is not is not isolated at 𝑧 = 𝑎. 

 

 Example:  

𝑓(𝑧) =
1

sin (
1
𝑧)

 

  

The function is not analytic in any region 0 < |z| < δ. 

 

 

 

6.3 Classification of singularity by Laurent series expansion 

It is also possible to classify the singularity using the Laurent series expansion. 

Let a be an isolated singularity for a function 𝑓(𝑧). Let 𝑟 > 0 be such that 𝑓(𝑧) is analytic in 0 <
|𝑧 − 𝑎| < 𝑟. In this domain the function 𝑓(𝑧) can be represented as a Laurent series given by 

𝑓(𝑧) = ∑
𝑏𝑛

(𝑧 − 𝑎)𝑛

∞

𝑛=1

+ ∑ 𝑎𝑛(𝑧 − 𝑎)𝑛

∞

𝑛=0
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Were 

𝑏𝑛 =
1

2𝜋𝑖
∫

𝐶1

𝑓(𝜁)

(𝜁−𝑎)−𝑛+1
 𝑑𝜁  

𝑎𝑛 =
1

2𝜋𝑖
∫

𝐶2

𝑓(𝜁)

(𝜁−𝑎)𝑛+1
 𝑑𝜁  

The series consisting of the negative powers of 𝑧 − 𝑎 in the above Laurent series expansion of 𝑓(𝑧) is 

given by ∑
𝑏𝑛

(𝑧−𝑎)𝑛
∞
𝑛=1  and is called the principal part or singular part 𝑜𝑓 𝑓(𝑧) 𝑎𝑡 𝑧 = 𝑎.  

The singular part of 𝑓(𝑧) 𝑎𝑡 𝑧 = 𝑎 determines the character of the singularity.  

6.9.1  Removable singularity by Laurent series expansion 

Let 𝒂 be an isolated singularity for 𝒇(𝒛). Then 𝒂 is called a removable singularity if the principal part 

of 𝒇(𝒛) 𝒂𝒕 𝒛 = 𝒂 has no terms.  

If 𝒂 is a removable singularity for 𝒇(𝒛) then the Laurent’s series expansion of 𝒇(𝒛) 𝒂𝒃𝒐𝒖𝒕 𝒛 = 𝒂 is 

given by  

𝑓(𝑧) = ∑ 𝑎𝑛(𝑧 − 𝑎)𝑛

∞

𝑛=0

 

Hence as 𝒛𝒂, 𝒇(𝒛)  =  𝒂𝟎 Hence by defining 𝒇(𝒂)  =  𝒂𝟎 the function 𝒇(𝒛) becomes analytic at 𝒂. 

 

 Example:  

Let 𝑓(𝑧) =
𝑠𝑖𝑛𝑧

𝑧
, clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 

Now 𝑓(𝑧) =
𝑠𝑖𝑛𝑧

𝑧
= 

1

𝑧
(𝑧 −

𝑧3

3!
 +

𝑧5

5!
 − … . ) 

𝑓(𝑧) =
𝑠𝑖𝑛𝑧

𝑧
= (1 −

𝑧2

3!
 +

𝑧4

5!
 − … . ) 

Here the principal part of 𝑓(𝑧) 𝑎𝑡 𝑧 =  0 has no terms. Hence z = 0 is a removable singularity. 

lim
𝑧→𝑧0

𝑓(𝑧) also exists then 𝑧0 = 0 is the removable singularity. 

 

 Example:  

Let 𝑓(𝑧) =
𝑧−𝑠𝑖𝑛𝑧

𝑧3
, clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 

𝑓(𝑧) =
𝑧 − (𝑧 −

𝑧3

3!  +
𝑧5

5!  − … , )

𝑧3
 

𝑓(𝑧) =

𝑧3

3! −
𝑧5

5!  − … , )

𝑧3
 

𝑓(𝑧) =
1

3!
−

𝑧2

5!
 − …,  

𝑧 =  0 is a removable singularity. By defining 𝑓(0)  =  1/6 the function becomes analytic 𝑎𝑡 𝑧 =
 0.Also lim

𝑧→𝑧0

𝑓(𝑧) exists then 𝑧0 = 0 is the removable singularity. 

 

6.9.2 Pole by Laurent series expansion 

Let 𝑎 be an isolated singularity of 𝑓(𝑧). The point a is called a pole if the principal part of 𝑓(𝑧) 𝑎𝑡 𝑧 =
𝑎 has a finite number of terms. 

 If the principal part of 𝑓(𝑧)𝑎𝑡 𝑧 = 𝑎 is given by  

𝑏1

𝑧−𝑎
 +

𝑏2

(𝑧−𝑎)2
 + … +

𝑏𝑟

(𝑧−𝑎)𝑟
, . where 𝑏𝑟  ≠  0.  
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We say that a is a pole of order 𝑟 for 𝑓(𝑧). Note: A pole of order 1 is called a simple pole and a pole 
of order 2 is called double pole. 

 

 

 Example:  

Consider 𝑓(𝑧) =
𝑒𝑧

𝑧
 ,clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 

𝑓(𝑧) =
𝑒𝑧

𝑧
=

1

𝑧
(1 + 𝑧 +

𝑧2

2
+

𝑧3

6
+…,) 

𝑓(𝑧) =
𝑒𝑧

𝑧
= (1/𝑧 + 1 +

𝑧

2
+

𝑧2

6
+…,) 

Here the principal part of 𝑓(𝑧) 𝑎𝑡 𝑧 = 0 has a single term 
1

𝑧
 . Hence 𝑧 = 0 is a simple pole of 𝑓(𝑧). Also 

 

lim
𝑧→𝑧0

(𝑧 − 0)1 𝑓(𝑧) = 𝑒0 = 1 ≠ 0. So 𝑧0 = 0 is the pole of order 1 or simple pole. 

 

 Example:  

Consider 𝑓(𝑧) =
𝑐𝑜𝑠𝑧

𝑧2
 , clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 

𝑓(𝑧) =
𝑐𝑜𝑠𝑧

𝑧2
=

1 −
𝑧2

2! +
𝑧4

4! − ⋯ ,

𝑧2
 

The principal part of 𝑓(𝑧) 𝑎𝑡 𝑧 = 0 contains the term 1/𝑧2 . Hence z=0 is a double pole of f(z). 

 Also lim
𝑧→𝑧0

(𝑧 − 0)2 𝑓(𝑧) = lim
𝑧→0

𝑐𝑜𝑠𝑧 = 1 ≠ 0. 

So 𝑧0 = 0 is the pole of order 2. 

 

6.9.3 Essential singularity 

Let a be an isolated singularity of 𝒇(𝒛). The point a is called an essential singularity of 𝒇(𝒛) at 𝒛 = 𝒂 

if the principal part of 𝒇(𝒛) 𝒂𝒕 𝒛 = 𝒂 has an infinite number of terms.  

 

 Example:  

Consider 𝑓(𝑧) = 𝑒1/𝑧 , clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 

𝑓(𝑧) = 𝑒1/𝑧 

𝑓(𝑧) = [1 +
1

𝑧
+

1

2!
(

1

𝑧
)

2
+

1

3!
(

1

𝑧
)

2
+ ⋯ , ]. 

The principal part of 𝑓(𝑧) has infinite number of terms. Hence 𝑓(𝑧) = 𝑒1/𝑧 has an essential singularity 
at 𝑧 = 0. 

Also lim
𝑧→𝑧0

(𝑧 − 0)𝑛 𝑓(𝑧) = ∞. 

So 𝑧0 = 0 is an essential singularity. 

 

6.4 Meromorphic Functions 
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A function is analytic everywhere in the finite plane except at a finite number of poles is called a 
meromorphic function. 

 

 Example:  

𝑓(𝑧) =
𝑧

(𝑧 − 1)(𝑧 + 3)2
 

 

 

𝑓(𝑧) is analytic everywhere in the complex plane except 𝑧 = 1 𝑎𝑛𝑑 𝑧 = −3.Here 𝑧 = 1 is a simple pile 
and 𝑧 = −3 is the pole of order 3. We can say that the 𝑓(𝑧) has finite number of poles and it’s a 
meromorphic function. 

 

 Example:  

Consider 𝑓(𝑧) =
𝑒𝑧

𝑧
 ,clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 

lim
𝑧→𝑧0

𝑓(𝑧) = lim
𝑧→0

𝑒𝑧

𝑧
 

lim
𝑧→𝑧0

(𝑧 − 0)1 𝑓(𝑧) = lim
𝑧→0

𝑧
𝑒𝑧

𝑧
 

lim
𝑧→𝑧0

(𝑧 − 0)1 𝑓(𝑧) = 𝑒0 = 1 ≠ 0. 

So 𝑧0 = 0 is the pole of order 1 or simple pole. We can say that the 𝑓(𝑧) has finite number of poles 

and it’s a meromorphic function. 

 

 Example:  

Consider 𝑓(𝑧) =
𝑐𝑜𝑠𝑧

𝑧2
 , clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 

lim
𝑧→𝑧0

𝑓(𝑧) = lim
𝑧→0

𝑐𝑜𝑠𝑧

𝑧2
  

lim
𝑧→𝑧0

(𝑧 − 0)2 𝑓(𝑧) = lim
𝑧→0

𝑧2 𝑐𝑜𝑠𝑧

𝑧2 . 

lim
𝑧→𝑧0

(𝑧 − 0)2 𝑓(𝑧) = lim
𝑧→0

𝑐𝑜𝑠𝑧 = 1 ≠ 0. 

So 𝑧0 = 0 is the pole of order 2. We can say that the 𝑓(𝑧) has finite number of poles and it’s a 
meromorphic function. 

 

 Example:  

Consider 𝑓(𝑧) =
1−𝑒2𝑧

𝑧3
 , clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 
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lim
𝑧→𝑧0

𝑓(𝑧) = lim
𝑧→0

1−𝑒2𝑧

𝑧3
   

lim
𝑧→𝑧0

(𝑧 − 0)3 𝑓(𝑧) = lim
𝑧→0

𝑧3 (1−𝑒2𝑧)

𝑧3
= 0. 

lim
𝑧→𝑧0

(𝑧 − 0)2 𝑓(𝑧) = lim
𝑧→0

 𝑧2 (1−𝑒2𝑧)

𝑧3
. 

lim
𝑧→𝑧0

(𝑧 − 0)2 𝑓(𝑧) = lim
𝑧→0

 
(1−𝑒2𝑧)

𝑧
. 

lim
𝑧→𝑧0

(𝑧 − 0)2 𝑓(𝑧) = lim
𝑧→0

 
−2𝑒2𝑧

1
= −2 ≠ 0. 

So 𝑧0 = 0 is the pole of order 2. We can say that the 𝑓(𝑧) has finite number of poles and it’s a 
meromorphic function. 

 

 Example:  

Consider 𝑓(𝑧) = 𝑒1/𝑧 , clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 

lim
𝑧→𝑧0

𝑓(𝑧) = lim
𝑧→0

𝑒1/𝑧     

lim
𝑧→𝑧0

(𝑧 − 0)𝑛 𝑓(𝑧) = lim
𝑧→0

𝑧𝑛𝑒1/𝑧 . 

lim
𝑧→𝑧0

(𝑧 − 0)𝑛 𝑓(𝑧) = lim
𝑧→0

𝑧𝑛[1 +
1

𝑧
+

1

2!
(

1

𝑧
)

2
+

1

3!
(

1

𝑧
)

2
+ ⋯ , ] . 

lim
𝑧→𝑧0

(𝑧 − 0)𝑛 𝑓(𝑧) = ∞. 

So 𝑧0 = 0 is an essential singularity.Thus this function is not meromorphic in the whole complex 
plane. 

 

6.5 Mittag-Leffler theorem 

The Mittag-Leffler theorem is a fundamental result in complex analysis that deals with the existence 
of meromorphic functions with prescribed poles and residues. Specifically, it states that for any 
sequence of distinct points in the complex plane and any sequence of complex numbers, there exists 
a meromorphic function with poles precisely at the given points and residues equal to the 
corresponding complex numbers. 

More formally, let 𝑧1 , 𝑧2 , . .. be a sequence of distinct complex numbers, and let 𝑐1 , 𝑐2 , . .. be a sequence 
of complex numbers. Then there exists a meromorphic function 𝑓(𝑧) on the complex plane such that 
the only poles of 𝑓(𝑧) are at the points 𝑧1 , 𝑧2 , . . ., and the residue of 𝑓(𝑧) at 𝑧𝑖 is 𝑐𝑖, for 𝑖 =  1, 2, . . .. 

Proof: 

To prove the Mittag-Leffler theorem, we will construct the desired meromorphic function 𝑓(𝑧) using 
a standard technique known as the Weierstrass product formula. 

This involves expressing 𝑓(𝑧) as an infinite product of simple functions, each of which has a single 
pole at one of the given points and the prescribed residue. 

Let 𝐷𝑛   be the disc centered at 𝑧𝑛 with radius 𝑟𝑛  such that 𝐷𝑛 is disjoint from all other discs, and let 
𝐶𝑛be the circle bounding 𝐷𝑛. 

 Then we define the function 𝑔𝑛(𝑧) as: 

𝑔𝑛(𝑧)  =  (𝑧 − 𝑧𝑛)−1 𝑒(𝑝𝑛(𝑧 − 𝑧𝑛)) 

where 𝑝𝑛   is chosen so that the Laurent series of 𝑔𝑛(𝑧) at 𝑧𝑛 has a constant term of 𝑐𝑛. Specifically, 
we set: 

𝑝𝑛  =
𝑐𝑛

𝑟𝑛
  

Using the Cauchy integral formula, we can express 𝑔𝑛(𝑧) as an integral over 𝐶𝑛: 
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𝑔𝑛(𝑧) =  
1

2𝜋𝑖
 ∫

𝑔𝑛(𝑤)

𝑤 −  𝑧
 𝑑𝑤

𝐶𝑛

 

Now we define the function 𝐹(𝑧) as: 

𝐹(𝑧)  =  ∏ 𝑔𝑛(𝑧)

∞

𝑛=1

  

This product converges absolutely and uniformly on compact sets, since the discs 𝐷𝑛 are disjoint and 
the radii 𝑟𝑛 are chosen appropriately. Moreover, 𝐹(𝑧) is meromorphic on the complex plane, since 
each 𝑔𝑛(𝑧) has a single pole at 𝑧𝑛 and no other poles. 

To see that 𝐹(𝑧) has the desired poles and residues, we consider the partial products: 

𝐹𝑁(𝑧)  =  ∏ 𝑔𝑛(𝑧)

𝑁

𝑛=1

  

These are meromorphic functions with poles only at the points 𝑧1 , 𝑧2 , . . . , 𝑧𝑁 . Moreover, the residue of 
𝐹𝑁(𝑧) 𝑎𝑡 𝑧𝑛 𝑖𝑠 𝑐𝑛 , by construction. Finally, we note that 𝐹𝑁(𝑧) converges to 𝐹(𝑧) as 𝑁 goes to infinity, 

since the product converges absolutely and uniformly on compact sets. 

Therefore, we have constructed a meromorphic function 𝑓(𝑧) with the desired poles and residues, 
namely: 

𝑓(𝑧)  =  𝐹(𝑧) 

This completes the proof of the Mittag-Leffler theorem. 

 

 

Question: 

Prove that 𝑐𝑜𝑡𝑧 =
1

𝑧
+  2𝑧 ∑

1

𝑧2−𝑛2𝜋2
∞
𝑛=1    using Mittage Laffer's theorem 

Proof: 

To prove that 𝑐𝑜𝑡𝑧 −
1

𝑧
=  2𝑧 ∑

1

𝑧2−𝑛2𝜋2
∞
𝑛=1    , we can use the Mittag-Leffler theorem. 

To prove this identity using the Mittag-Leffler theorem, we need to first identify the poles and their 
residues of the function 𝑐𝑜𝑡(𝑧). 

We know that 𝑐𝑜𝑡(𝑧) is periodic with period 𝜋, and has simple poles at 𝑧 =  𝑛𝜋 for all integers 𝑛. 

Recall that the cotangent function can be expressed as the ratio of the cosine and sine functions: 

𝑐𝑜𝑡𝑧 =
cos 𝑧

𝑠𝑖𝑛𝑧
 

The poles of the cotangent function are the zeros of the sine function, which occur at 𝑧 =  𝑛𝜋 for all 
integers 𝑛. Thus, we can write: 

𝑐𝑜𝑡𝑧 =
𝑐𝑜𝑠𝑧

𝑧 −  𝑛𝜋
 

To prove this identity using Mittag-Leffler theorem, we need to find the poles and residues of the 
function cot(z) and the infinite sum in the equation. 

First, we know that 𝑐𝑜𝑡(𝑧) has simple poles at 𝑧 =  𝑛𝜋 for all integers 𝑛. 

 The residues at these poles are ±1, depending on the sign of 𝑠𝑖𝑛(𝑛𝜋). 

Next, we consider the infinite sum in the equation.  

Let 𝑓(𝑧)  =  ∑
1

𝑧2  − 𝑛2𝜋2
   .  

This function has poles at 𝑧 =  ±𝑛𝜋 for all integers 𝑛. The residues at these poles are given by 

𝑅𝑒𝑠[𝑓(𝑧), 𝑧 =  𝑛𝜋] =  𝑙𝑖𝑚𝑧→𝑛𝜋

(𝑧 − 𝑛𝜋)1

𝑧2  − 𝑛2𝜋2
 =

1

2𝑛𝜋
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and 

𝑅𝑒𝑠[𝑓(𝑧), 𝑧 =  −𝑛𝜋] =  𝑙𝑖𝑚𝑧→−𝑛𝜋

(𝑧 + 𝑛𝜋)1

𝑧2  − 𝑛2𝜋2
 =  −

1

2𝑛𝜋
. 

Now, using the Mittag-Leffler theorem, we can write 

𝑐𝑜𝑡(𝑧) −
1

𝑧
 =  ∑  

∞

𝑛=1

(
1

𝑧 − 𝑛𝜋
 +

1

𝑧 + 𝑛𝜋
) 

=∑  ∞
𝑛=1

1

2𝑛𝜋
(

1

𝑧−𝑛𝜋
  −

1

𝑧+𝑛𝜋
)  

=  2 ∑  ∞
𝑛=1

1

2𝑛𝜋

1

𝑧2 − 𝑛2𝜋2
   

=  2𝑓(𝑧)  

Therefore, we have 

𝑐𝑜𝑡(𝑧) =
1

𝑧
 +  2 ∑  ∞

𝑛=1
1

2𝑛𝜋

1

𝑧2 − 𝑛2𝜋2
 as desired. 

 

6.6 Infinite Product of Complex Numbers 

An infinite product of complex numbers is given by: 

𝑧 =  𝑧1 . 𝑧2 . 𝑧3 . . . , . 𝑧𝑛 . ..  

The notation for infinite product is ∏ 𝑧𝑖
𝑛
𝑖=1   

where 𝑧1 , 𝑧2 , 𝑧3 , . . . , 𝑧𝑛 are complex numbers. 

If the infinite product converges, then we can define it as follows: 

𝑧 =  lim
𝑛→∞

(𝑧1 . 𝑧2 . 𝑧3 . . . , 𝑧𝑛)     

In general, an infinite product of complex numbers is said to converge if and only if the limit of the 
sequence of partial products (i.e., the product of the first n terms) exists and is nonzero. 

Some important results related to infinite products of complex numbers are: 

1. If the infinite product |𝑧| converges, then the infinite product 𝑧 also converges. 

2. The infinite product (1 + 𝑧) converges if and only if the infinite product (1 − |𝑧|) converges. 

3. The infinite product (1 − 𝑧) converges if and only if the infinite product (1 + |𝑧|) converges. 

4. The infinite product (1 +
𝑧

𝑛
)

𝑛
 converges to 𝑒𝑧 as n approaches infinity, for any complex 

number z. 

5. The infinite product 𝑠𝑖𝑛 (
𝑧

𝑛
) converges to zero for any non-zero complex number z. 

 

Question 

Suppose an infinite product is absolutely convergent. Prove that it is convergent 

Solution  

Suppose the infinite product is given by: 

𝑃 =  𝑎1 . 𝑎2 . 𝑎3 . .. 

where ai are non-negative real numbers. 

By the absolute convergence of 𝑃, we have that the series: 

𝑆 =  𝑙𝑜𝑔(𝑎1) +  𝑙𝑜𝑔(𝑎2) +  𝑙𝑜𝑔(𝑎3) + . .. 

converges. 

Since the logarithm function is continuous, we can take the exponential of both sides to obtain: 
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𝑒𝑆  =  𝑒log(𝑎1)𝑒𝑙𝑜𝑔(𝑎2) 𝑒𝑙𝑜𝑔(𝑎3) . .. 

which simplifies to: 

𝑃 =  𝑎1𝑎2 𝑎3 . .. 

Thus, the absolute convergence of 𝑃 implies that the series 𝑆 converges, which in turn implies 
that 𝑃 converges as well. 

Therefore, we have shown that if an infinite product is absolutely convergent, then it is also 
convergent. 

 

 

6.7 Review questions 

 

1. 𝒇(𝒛) =
𝒛

(𝒛−𝟏)𝟐
 is meromorphic because it has finite number (say K) of pole in the entire 

complex plane then K =? 

2. 𝒇(𝒛) =
𝒛

(𝒛−𝟏)(𝒛−𝟓)(𝒛−𝟐)𝟑
 is meromorphic because it has finite number (say K) of pole in the 

entire complex plane then K =? 

3. Check whether the following functions is meromorphic? 

𝒇(𝒛) =
𝒆𝒛

𝒛
  

4. Check whether the following functions is meromorphic? 

𝒈(𝒛) =
𝒔𝒊𝒏𝒛 

(𝒛−𝟏)𝟐
 . 

5. State and prove the Mittag-Leffler theorem 

 

 

6.8 Self-assessment 

1. 𝒇(𝒛) =
𝒛

(𝒛−𝟏)
 is meromorphic because it has finite number (say K) of pole in the entire 

complex plane then K =? 

A. 5 

B. 1 

C. 2 

D. 3 

 

2. 𝒇(𝒛) =
𝒛

(𝒛−𝟏)(𝒛−𝟐)𝟑
 is meromorphic because it has finite number (say K) of pole in the entire 

complex plane then K =? 

A. 5 

B. 1 

C. 2 

D. 3 
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3. Which one of the following functions is meromorphic? 

        𝒇(𝒛) =
𝒆𝒛

𝒛
 , and  𝒈(𝒛) =

𝒔𝒊𝒏𝒛 

(𝒛−𝟏)𝟐
 . 

A. Only 𝑓(𝑧) 

B. Only 𝑔(𝑧) 

C. Both  𝑓(𝑧) and 𝑔(𝑧) 

D. Neither  𝑓(𝑧) nor 𝑔(𝑧) 

 

4. Consider the 𝒇(𝒛) =
𝒛

𝟏−𝒛
  then  

A. 𝑧0 = 1 is the singular point of 𝑓(𝑧) 

B. 𝑧0 = 0 is the singular point of 𝑓(𝑧) 

C. 𝑧0 = 10 is the singular point of 𝑓(𝑧) 

D. There is no singular point of 𝑓(𝑧) 

5. Consider the 𝒇(𝒛) = 𝒛𝟐  then  

A. 𝑧0 = 1 is the singular point of 𝑓(𝑧) 

B. 𝑧0 = 0 is the singular point of 𝑓(𝑧) 

C. 𝑧0 = 10 is the singular point of 𝑓(𝑧) 

D. There is no singular point of 𝑓(𝑧) 

 

6. Consider the 𝒇(𝒛) =
𝒛𝟐−𝟗

𝒛𝟐(𝒛−𝟏)(𝒛−𝟏−𝟐𝒊)
  then  

A. 𝑧0 = 1 is one of the singular points of 𝑓(𝑧) 

B. 𝑧0 = 3 is the singular point of 𝑓(𝑧) 

C. 𝑧0 = −3 is the singular point of 𝑓(𝑧) 

D. There is no singular point of 𝑓(𝑧) 

 

7. What is Mittag-Leffler's theorem? 

 

A. A theorem on the convergence of infinite series. 

B. A theorem on the analytic continuation of meromorphic functions. 

C. A theorem on the existence of a holomorphic function with prescribed 

singularities 

 

8. What does the theorem say about meromorphic functions? 

A. They can be extended to the whole complex plane. 

B. They can be extended to a neighborhood of their poles. 

C. They can be approximated by polynomials 

 

9. What are the conditions for the Mittag-Leffler's theorem to hold? 

A. The function must have isolated singularities and a certain growth 

condition. 

B. The function must be holomorphic and bounded on a compact set. 

C. The function must be a polynomial 

 

10. What is the significance of the theorem in complex analysis? 

A. It provides a method for approximating meromorphic functions 

B. It is a fundamental tool for studying the Riemann zeta function 
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C. It allows us to construct meromorphic functions with prescribed 

singularities 

 

11. What is the value of the infinite product (1+i)(1-i)(1+i)(1-i)...?  

A. 1  

B. -1  

C. i  

D.  -i 

 

12. What is the value of the infinite product (1+2i)(1-2i)(1+2i)(1-2i)...?  

A. 1  

B. -1  

C. 2i 

D.  -2i 

 

13. What is the value of the infinite product (1+i/2)(1-i/2)(1+i/2)(1-i/2)...?  

A. 1  

B. -1/2  

C.  i/2  

D. -i/2 

 

14. What is the value of the infinite product (1+i/3)(1-i/3)(1+i/3)(1-i/3)...?  

A. 1 

B.  -1/3  

C.  i/3  

D.  -i/3 

 

15. What is the value of the infinite product (1+3i)(1-3i)(1+3i)(1-3i)...?  

A. 1  

B. -1  

C. 3i  

D. -3i 

 

 

Table 1: Answers of self-assessment 

Question number Correct answer 

1 B 

2 C 

3 C 

4 A 

5 D 

6 A 

7 B 

8 A 
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9 A 

10 C 

11 A 

12 B 

13 B 

14 B 

15 B 

 

6.9 Summary 

 The A function is analytic everywhere in the finite plane except at a finite number of poles 

is called a meromorphic function. 

 The An infinite product of complex numbers is given by: 

𝑧 =  𝑧1 . 𝑧2 . 𝑧3 . . . , . 𝑧𝑛 . ..  

The notation for infinite product is ∏ 𝑧𝑖
𝑛
𝑖=1   

 If the infinite product |𝑧| converges, then the infinite product 𝑧 also converges. 

 The infinite product (1 + 𝑧) converges if and only if the infinite product (1 − |𝑧|) converges. 

 The infinite product (1 − 𝑧) converges if and only if the infinite product (1 + |𝑧|) converges. 

 

6.10 Keywords 

Meromorphic function: 

 A function is analytic everywhere in the finite plane except at a finite number of poles is called a 
meromorphic function. 

Mittag-Leffler theorem : 

Let 𝑧1 , 𝑧2 , . .. be a sequence of distinct complex numbers, and let 𝑐1 , 𝑐2 , . .. be a sequence of complex 
numbers. Then there exists a meromorphic function 𝑓(𝑧) on the complex plane such that the only 
poles of 𝑓(𝑧) are at the points 𝑧1 , 𝑧2 , . . ., and the residue of 𝑓(𝑧) at 𝑧𝑖 is 𝑐𝑖, for 𝑖 =  1, 2, . . .. 

 

6.11 Further Readings 

  

1. Complex Variables And Applications By Churchill, R. V. And Brown, J. W., Mcgraw Hill 
Education. 

2. Foundations Of Complex Analysis By S. Ponnusamy, Narosa Publishing House. 

3. Complex Analysis By Lars V. Ahlfors, Mcgraw Hill Education. 

4. Complex Variables Theory And Applications By H. S. Kasana, Prentice Hall. 
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Purpose and Objectives: 

  

An analytic continuation is a mathematical approach used to widen the scope of a given analytic 
function in the field of complex analysis. Analytic continuation frequently succeeds in defining 
further values of a function, for instance in a new region when the initial definition's infinite series 
representation becomes divergent.  

The stepwise continuation method might, however, run into problems. These could be 
fundamentally topological, which would produce contradictions (defining more than one value). 
Alternatively, they might be related to the existence of singularities. The situation involving many 
complex variables is somewhat different because singularities need not be separate places in this 
case. Sheaf cohomology was largely developed because of research into this situation. In this unit 
first we will discuss the pre-requisite concepts for analytic continuation and then the definition of 
analytic continuation. After this unit students can be able to- 

1. Understand the convergence analysis of a complex valued function. 

2. Understand the definition of analytical continuation.  

3. Solve some problems of analytical continuation. 

 

Introduction 

 

The Riemann hypothesis, which is closely related to the distribution of prime numbers, is perhaps 
the most important open topic in pure mathematics today. Analytic continuation is one of the 
fundamental methods required to comprehend the issue. An approach from the field of mathematics 
known as complex analysis called analytical continuation is employed to enlarge the domain of a 
complex analytic function. We will quickly go over some essential mathematics concepts prior to 
introducing the approach.  

 

7.1 Taylor Series 

Consider the case where we want to find a polynomial approximation to a function f(x). Polynomials 
are mathematical expressions made up of coefficients and variables. The variables are multiplied, 
subtracted, and added using only non-negative integer exponents. With one variable, x, a polynomial 
of degree n can be expressed as follows: 

 

𝑓(𝑥) =  𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ , 𝑎1𝑥1 + 𝑎0𝑥0                                      (1.1) 

If we consider a 3-degree polynomial with 𝑎3 =
1

4
, 𝑎2 =

3

4
, 𝑎1 = −3, and 𝑎0 = −2 then.  

𝑓(𝑥) =  
𝑥3

4
+

3

4
𝑥2 − 3𝑥 − 2                                                            (1.2) 

And the graph of 𝑓(𝑥) is.  
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Figure 1.1: The graph of 𝑓(𝑥) =  
𝑥3

4
+

3

4
𝑥2 − 3𝑥 − 2 

 

Imagine that the polynomial has infinite degrees now (it is given by an infinite sum of terms). These 
polynomials are referred to as Taylor series (or Taylor expansions). Polynomial representations of 
functions as infinite sums of terms are called Taylor series.  

Every term in the series is calculated using the derivative values of 𝑓(𝑥) at a particular point (around 
which the series is centered). A formal Taylor series centered on a certain number and is given by: 

𝑓(𝑥) = 𝑓(0)(𝑎) +
𝑓(1)(𝑎)

1!
(𝑥 − 𝑎) +

𝑓(2)(𝑎)

2!
(𝑥 − 𝑎)2 +  

𝑓(3)(𝑎)

3!
(𝑥 − 𝑎)3 + ⋯                (1.3) 

where the upper indices (0), (1), … indicate the order of the derivative of 𝑓(𝑥) 𝑎𝑠 𝑥 = 𝑎. One can 
approximate a function using a polynomial with only a finite number of terms of the corresponding 
Taylor series. Such polynomials are called Taylor polynomials.  

The Taylor polynomials for 𝑓(𝑥) =  
𝑥3

4
+

3

4
𝑥2 − 3𝑥 − 2 around 𝑎 = 0 are given by: 

𝑓(𝑥) = −2 −
3

1!
𝑥 +

3

2.2!
𝑥2 +  

3

2.3!
𝑥3 + ⋯                                                (1.4) 

Were 𝑓(0)(0) = −2, 𝑓(1)(0) = −3, 𝑓(2)(0) =
3

2
, 𝑓(2)(0) =

3

2
 . 

The equation (1.4) is same as the considered 3 degree polynomial equation (1.2). 

 

7.2 Convergence  

 

Our study of the analytic continuation will likewise heavily rely on the idea of convergence of infinite 
series. A list of items (or objects) having a specific order constitutes a mathematical sequence. The 
following 𝑆𝑛 represents the n different sequences: 

𝑆𝑛 = {𝑎1, 𝑎2, … , 𝑎𝑛}                                                           (1.5) 

A well-known example of a sequence is the Fibonacci sequence 0,1,1,2,3,5,8,13,21,34, 55, …where each 
number is the sum of the two preceding ones. 

One builds a series by taking partial sums of the elements of a sequence. The series of partial sums can 
be represented by:  

{𝑠0, 𝑠1, 𝑠2 … , 𝑠𝑛}                                                               (1.6) 
 

where: {𝑠0 = 𝑎0,  𝑠1 = 𝑎0 + 𝑎1, 𝑠2 = 𝑎0 + 𝑎1 + 𝑎2, … , }                              (1.7)                                      
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An example of a series, the familiar geometric series, is shown below. In a geometric series, the 
common ratio between successive elements is constant. The geometric series with common ratio = 
1/2 we have: 
 

2 = 1 +
1

2
+

1

4
+

1

8
+ ⋯,                                                                   (1.8) 

 
Fig. 1.2 shows pictorially that the geometric series above converges to twice the area of the largest 
square. 

 

Figure 1.2: A pictorial demonstration of the convergence of the geometric series with common ration r=1/2 and 
first term a=1  

A series such as in Eq. (1.7) is convergent if the sequence Eq. (1.6) of partial sums approaches some 
finite limit. Otherwise, the series is said to be divergent. An example of a convergent series is the 
geometric series in Eq.(1.8). An example of a divergent series is: 

1

1
+

1

2
+

1

3
+

1

4
+ ⋯ → ∞                                                                   (1.9) 

 

7.3 Analytic Functions, Poles, and Convergence Discs 

Until now, our analysis was restricted to real numbers. Now we will extend it to complex numbers. 
The complex plane is a geometric representation of the complex numbers, as shown in Fig.1.3 . 

 

Figure 1.3: The complex plane, a geometric representation of the complex numbers. The figure shows the real 
and the (perpendicular) imaginary axis. 

Let us consider an expansion of an analytic complex function f(z). By definition, an analytic function is 
a function locally given by a convergent power series. If f(z) is analytic at z₀, the power series reads: 

𝑓(𝑧0 + 𝑧) = ∑
𝑓(𝑛)(𝑧0)

𝑛!
𝑧𝑛∞

𝑛=0                                                                                                                         (1.10) 
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Equation (1.10) shows the Taylor expansion of an analytic function f(z) into a power series about a 
complex value z₀.  

In analogy with the case of the geometric series, where convergence was restricted to an interval with 
radius 1 on the real line, this series will converge only over a circular region of the complex plane 
centered on the complex number z₀. 

 

 

Figure 1.4: Going from the real line to the complex plane. 

The convergence region of f(z) is a circular region centered on z₀ extending to the closest pole, 
where f(z) goes to infinity. 

 Fig. 1.5 shows the convergence region (bounded by the white circle) of the function 1/(1+z²). 

 

Figure 1.5:The white circle in the convergence disc of the function 1/(1+z²). 

A stronger criterion of convergence is called absolute convergence. We call the convergence we 

already discussed conditional convergence. Absolute convergence occurs when the following series 

converges: 

𝑠0 =  |𝑎0|,  𝑠1 =  |𝑎0| + |𝑎1|, 𝑠2 = |𝑎0| + |𝑎1| + |𝑎2|, …,                                                                             (1.11) 
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When a series is absolutely convergent it is also conditionally convergent. There are a few tests of 

absolute convergence, one of them is the ratio test. Consider the general infinite series: 

 𝑆 = ∑ 𝑎𝑛
∞
𝑛=0                                                                                                                                                     (1.12)  

Now define the following ratio: 𝑟 = lim
𝑛→∞

|
𝑎𝑛+1 

𝑎𝑛
|                                                                                       (1.13) 

 

The ratio r in the equation (1.13) used in the ratio test of absolute convergence. 

The series equation (1.13) converges absolutely if r<1 and diverges if r>1. If r=1, no conclusion can be 

taken. 

 

Figure 1.6: A decision diagram for the ratio test. 

It is straightforward to apply the ratio test (or any other convergence test) to show the following 

important result: 

∑
1

𝑛𝑘
∞
𝑛=1  converges for any 𝑘 ≥ 2.                                                                                              (1.14) 
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7.4 Analytic Continuation 

From the results regarding zeros of an analytic function, it follows that if two functions are regular 
in a domain D and if they coincide in a neighborhood, however small, of any point a of D, or only 
along a path-segment, however small, terminating in a point a of D, or only at an infinite number of 
distinct points with a limit-point a in D, then the two functions are identically the same in D. Thus, it 
emerges that a regular function defined in a domain D is completely determined by its values over 
any such sets of points.  

This is a very great restraint in the behavior of analytic functions. One of the remarkable 
consequences of this feature of analytic functions, which is extremely helpful in studying them, is 
known as analytic continuation. Analytic continuation is a process of extending the definition of a 
domain of an analytic function in which it is originally defined i.e., it is a concept which is utilized 
for making the domain of definition of an analytic function as large as possible. 

Let us suppose that two functions f1(z) and f2(z) are given, such that f1(z) is analytic in the domain 

D1 and f2(z) in a domain D2 We further assume that D1 and D2 have a common part D12 (D1  D2).  

If f1(z) = f2(z) in the common part D12, then we say that f2(z) is the direct analytic continuation of f1(z) 

from D1 into D2 via D12.  

Conversely, f1(z) is the direct analytic continuation of f2(z) from D2 into D1 via D12. Indeed f1(z) and 
f2(z) are analytic continuations of each other.  

Both f1(z) and f2(z) may be regarded as partial representations or elements of one and the same 

function under the condition that f1(z) = f2(z) at an infinite set of points with a limit-point in D12. 

It is observed that for the purpose of analytic continuation, it is sufficient that the domains D1 
and D2 have only a small arc in common. 

 

Figure 1.7: Analytic Continuation common domain. 

 

Definition. An analytic function f(z) with its domain of definition D is called a function element 
and is denoted by (f, D).  

If zD, then (f, D) is called a function element of z. Using this notation, we may say that (f1, D1) 

and (f2, D2) are in analytic continuations of each other 𝑖𝑓𝑓 D1  D2   and f1(z) = f2(z) for all zD1 

 D2.  

It can be further simplified as Suppose f1(z) is analytical on a region D1. Now suppose that D1 is 
contained in a region f2(z). The function f(z) can be analytically continued from D1 to D2 if there exists 
a function f2(z) such that: f2(z)  is analytic on S, f2(z) = f1(z) for all z ∈ D1 

 

 

Example 1.1:  
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Let us consider 𝑓(𝑧) = ∑ 𝑧𝑛∞
𝑛=0 , ∅(𝑧) =

1

1−𝑧
. 

 Then 𝑓(𝑧)is analytic at all the points within the circle |𝑧| = 1 and ∅(𝑧) is analytic all the points 
except 𝑧 = 1. 

Also 𝑓(𝑧) = ∅(𝑧) within |𝑧| = 1 

 

Figure 1.8: ∅(𝑧) gives the continuation of 𝑓(𝑧) over the rest of the plane. 

 

Hence ∅(𝑧) gives the continuation of 𝑓(𝑧) over the rest of the plane.  

 

Question: 

 Show that the function 𝑓1(𝑧) = ∑ 𝑧𝑛∞
𝑛=0  is in analytic continuation to 𝑓2(𝑧) = ∑

1

2
∞
𝑛=0 (

1+𝑧

2
)

𝑛
 

Solution: 

Given that:    

    𝑓1(𝑧) = ∑ 𝑧𝑛∞
𝑛=0                                                                                                                                        (1.15) 

First, we will consider the convergent analysis for 𝑓1(𝑧) 

The series equation (1.15) can be written as:  

 𝑓1(𝑧) =  1 + 𝑧 + 𝑧2 + 𝑧3 + ⋯ , +𝑧𝑛 + ⋯, 

⟹  𝑓1(𝑧) = (1 − 𝑧)−1  

⟹  𝑓1(𝑧) =
1

1−𝑧
  

Hence it is observed that the 𝑓1(𝑧) has the sum ∑ 𝑧𝑛∞
𝑛=0  = 

1

1−𝑧
 and the nth sequence of the series is 𝑧𝑛 

Now we apply the ratio test for convergent analysis.  

Here, 𝑈𝑘 = 𝑧𝑘 

And 𝑈𝑘+1 = 𝑧𝑘+1 

If ∑ 𝑈𝑘
∞
𝑛=0  is absolutely convergent then |

𝑈𝑘+1

𝑈𝑘
| < 1  

⟹ |
𝑧𝑘+1

𝑧𝑘
| < 1  

⟹ |
𝑧𝑘.𝑧

𝑧𝑘
| < 1  

⟹ |𝑧| < 1  
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Figure 1.9: The area of unit disc |𝑧| < 1 

 

Hence 𝑓1(𝑧) is convergent inside the region |𝑧| < 1(see the Figure 1.9) 

Now let us consider the second series. 

𝑓2(𝑧) = ∑
1

2
∞
𝑛=0 (

1+𝑧

2
)

𝑛
                                                                 (1.16)   

 ⇒  𝑓2(𝑧) =
1

2
+

(1+𝑧)

2.2
+

(1+𝑧)2

2.22
+

(1+𝑧)3

2.23
+ ⋯ ,

(1+𝑧)𝑛

2.2𝑛
+ ⋯, 

Hence the nth term of the series is 𝑈𝑛 =
(1+𝑧)𝑛

2.2𝑛
 . 

And 𝑈𝑛+1 =
(1+𝑧)𝑛+1

2.2𝑛+1
. 

If ∑ 𝑈𝑛
∞
𝑛=0  is absolutely convergent then |

𝑈𝑛+1

𝑈𝑛
| < 1  

⟹ |
(1+𝑧)𝑛+1

2.2𝑛+1

(1+𝑧)𝑛

2.2𝑛

| < 1  

⟹ |
(1+𝑧)𝑛+1.2.2𝑛

2.2𝑛+1.(1+𝑧)𝑛
| < 1  

⟹ |
(1+𝑧)𝑛.2.2𝑛.(1+𝑧)

2.2𝑛.(1+𝑧)𝑛.2
| < 1  

⟹ |
(1+𝑧)

2
| < 1  

⟹ |𝑧 + 1| < 2  

 

Figure 1.10: The area of disc |𝑧 + 1| < 2 

 

Hence 𝑓2(𝑧) is convergent inside the region |𝑧 + 1| < 2 (𝑊𝑖𝑡ℎ 𝑡ℎ𝑒 𝑐𝑒𝑛𝑡𝑒𝑟 𝑧 = −1, 𝑎𝑛𝑑 𝑟 = 2). 
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Till now we have observed that the 𝑓1(𝑧) =
1

1−𝑧
 is analytic inside the domain 𝐷1: |𝑧| < 1 and  

𝑓2(𝑧) = ∑
1

2
∞
𝑛=0 (

1+𝑧

2
)

𝑛
is analytic inside the domain 𝐷2: |𝑧 + 1| < 2 . It can be clearly seen from Fig.1.10 

and Fig.1.9 that 𝑓2(𝑧) and 𝑓1(𝑧) share some common region.  

Now we will show that 𝑓1(𝑧) = 𝑓2(𝑧) for all 𝑧 ∈ 𝐷1. 

As we have 𝑓1(𝑧) =
1

1−𝑧
 and  

𝑓2(𝑧) = ∑
1

2

∞

𝑛=0

(
1 + 𝑧

2
)

𝑛

=
1

2
+

(1 + 𝑧)

2.2
+

(1 + 𝑧)2

2.22
+

(1 + 𝑧)3

2.23
+ ⋯ ,

(1 + 𝑧)𝑛

2.2𝑛
+ ⋯, 

 

⇒ 𝑓2(𝑧) =
1

2
+

(1+𝑧)

2.2
+

(1+𝑧)2

2.22
+

(1+𝑧)3

2.23
+ ⋯ ,

(1+𝑧)𝑛

2.2𝑛
+ ⋯,  

Let 
1+𝑧

2
= 𝑝 then.  

𝑓2(𝑧) =
1

2
+

𝑝

2
+

𝑝2

2
+

𝑝3

2
+ ⋯ ,

𝑝𝑛

2
+ ⋯,  

⇒ 𝑓
2

(𝑧) =
1

2
(1 + 𝑝 + 𝑝2 + 𝑝3 + ⋯ , 𝑝𝑛 + ⋯ , )  

⇒ 𝑓
2

(𝑧) =
1

2
(1 − 𝑝)−1  

⇒ 𝑓
2

(𝑧) =
1

2(1−𝑝)
  

⇒ 𝑓
2

(𝑧) =
1

2(1−
1+𝑧

2
)
  

⇒ 𝑓
2

(𝑧) =
1

(1−𝑧)
  

⇒ 𝑓
2

(𝑧) = 𝑓
1

(𝑧)  

 

Figure 1.11: The common region for zD1  D2. 

 

As 𝑓1(𝑧) is analytic inside the domain 𝐷1: |𝑧| < 1 and 𝑓2(𝑧) is analytic inside the domain 𝐷2: |𝑧 + 1| <

2 .Thus 𝑓2(𝑧) extends the domain of an analytical function 𝑓1(𝑧) to larger domain 𝐷2. Hence the 
function 𝑓1(𝑧) be analytically continued from D1 to D2 as there exists a function 𝑓2(𝑧) such that: 𝑓2(𝑧) is 

analytic on 𝐷2: 𝑓
2

(𝑧) = 𝑓
1

(𝑧) , for all 𝑧 ∈  𝐷1 . 
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7.5 Review questions 

1. Explain how it is possible to continue analytically the function 𝑓(𝑧)  =  1 +  𝑧 + 𝑧2  + ⋯ +

 𝑧𝑛  + ⋯ outside the circle of convergence of the power series. 

2. Show the series ∑ 𝑧3𝑛∞
𝑛=0  cannot be continued analytically beyond the circle |z| = 1 

3. Show that the series ∑
𝑧𝑛

2𝑛+1
∞
𝑛=0  and ∑

(𝑧−𝑖)𝑛

(2−𝑖)𝑛+1
∞
𝑛=0  are analytic continuations of each other. 

4. Prove that the series 1 + ∑ 𝑧2𝑛∞
𝑛=0  cannot be continued analytically beyond |z| = 1 

5. Prove that the function defined by 𝐹1(𝑧) = 𝑧 − 𝑧2 + 𝑧3 − 𝑧4 + ⋯, is analytic in the region 

|𝑧| < 1 .And then find a function that represents all possible analytic continuations of 

𝐹1 (𝑧). 

 

7.6 Self-assessment 

1. The function f(𝑧) = ∑
1

2
∞
𝑛=0 (

1+𝑧

2
)

𝑛
is convergent inside the  

A.  Region |𝑧 + 1| < 2  

B. Region |𝑧 − 1| < 2  

C. Region |𝑧 + 1| < 6  

D. Region |𝑧| < 2  

 

2. The function f(𝑧) =  ∑
𝑧𝑛

2𝑛+1
∞
𝑛=0  is convergent inside the  

A.  Region |𝑧 + 1| < 2  

B. Region |𝑧 − 1| < 2  

C. Region |𝑧 + 1| < 6  

D. Region |𝑧| < 2  

 

3. The function f(𝑧) =  ∑
(𝑧−𝑖)𝑛

(2−𝑖)𝑛+1
∞
𝑛=0  is convergent inside the  

A.  Region |𝑧 + 1| < 2  

B. Region |𝑧 − 𝑖| < √5  

C. Region |𝑧| < 5  

D. Region |𝑧| < √5  

 

4. The function f(𝑧) =  ∑ 𝑧𝑛∞
𝑛=0  is convergent inside the  

A.  Region |𝑧| < 2  

B. Region |𝑧 − 1| < 2  

C. Region |𝑧 + 1| < 6  

D. Region |𝑧| < 1  

 

5. The function f(𝑧) = ∑
(2+𝑧)𝑛−1

(n+1)3.4𝑛
 ∞

𝑛=0 is convergent inside the  

A.  Region |𝑧 + 1| < 4  

B. Region |𝑧 − 1| < 2  

C. Region |𝑧 + 1| < 6  

D. Region |𝑧| < 2  

 

6. If the function 𝑓1(𝑧) = ∑ 𝑧𝑛/2𝑛+1 ∞
𝑛=0  is in analytic continuation to 

 𝑓2(𝑧) = ∑
(𝑧−𝑖)𝑛

(2−𝑖)𝑛+1
∞
𝑛=0  from the domain D1 to D2 then the which one of the points does lies in 

𝐷1 ∩ 𝐷2 

A. 𝑖 

B. 5 

C. −5𝑖 

D. −20 
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7. If the function 𝑓1(𝑧) = ∑ 𝑧𝑛/2𝑛+1 ∞
𝑛=0  is in analytic continuation to 

 𝑓2(𝑧) = ∑
(𝑧−𝑖)𝑛

(2−𝑖)𝑛+1
∞
𝑛=0  from the domain D1 to D2 then the which one of the points does lies in 

𝐷1 ∩ 𝐷2 

A. 10𝑖 

B. 
1

5
+

1

5
𝑖 

C. −5.5𝑖 

D. −10 

 

8. If the function 𝑓1(𝑧) = ∑ 𝑧𝑛/2𝑛+1 ∞
𝑛=0  is in analytic continuation to 

 𝑓2(𝑧) = ∑
(𝑧−𝑖)𝑛

(2−𝑖)𝑛+1
∞
𝑛=0  from the domain D1 to D2 then the which one of the points does NOT 

lies in 𝐷1 ∩ 𝐷2 

A. √5 

B. 0 

C. 𝑖 

D. 𝑖/2 

 

9. If the function 𝑓1(𝑧) = ∑ 𝑧𝑛/2𝑛+1 ∞
𝑛=0  is in analytic continuation to 

 𝑓2(𝑧) = ∑
(𝑧−𝑖)𝑛

(2−𝑖)𝑛+1
∞
𝑛=0  from the domain D1 to D2 then the which one of the points does not lies 

in 𝐷1 ∩ 𝐷2 

A. 0.2𝑖 

B. 5 

C. −0.1𝑖 

D. 0.1 + 𝑖 

 

10. If the function 𝑓1(𝑧) = ∑ 𝑧𝑛/2𝑛+1 ∞
𝑛=0  is in analytic continuation to 

 𝑓2(𝑧) = ∑
(𝑧−𝑖)𝑛

(2−𝑖)𝑛+1
∞
𝑛=0  from the domain D1 to D2 then the which one of the points does lies in 

𝐷1 ∩ 𝐷2 

A. 0.1 + 0.1𝑖 

B. 50 

C. −15𝑖 

D. −12 

 

11. If the function 𝑓1(𝑧) = ∑ 𝑧𝑛∞
𝑛=0  is in analytic continuation to 𝑓2(𝑧) = ∑

1

2
∞
𝑛=0 (

1+𝑧

2
)

𝑛
from the 

domain D1 to D2 then the which one of the point lies in 𝐷1 ∩ 𝐷2 

A. 
1

2
+

1

4
𝑖 

B. 
9

2
+

1

2
𝑖 

C. −3 +
1

2
𝑖 

D. −3 − 3𝑖 

 

12. If the function 𝑓1(𝑧) = ∑ 𝑧𝑛∞
𝑛=0  is in analytic continuation to 𝑓2(𝑧) = ∑

1

2
∞
𝑛=0 (

1+𝑧

2
)

𝑛
from the 

domain D1 to D2 then the which one of the point lies in 𝐷1 ∩ 𝐷2 

A. 
1

8
+

1

8
𝑖 

B. 
10

2
+

1

2
𝑖 

C. −13 +
1

2
𝑖 

D. −3 − 13𝑖 

 

13. If the function 𝑓1(𝑧) = ∑ 𝑧𝑛∞
𝑛=0  is in analytic continuation to 𝑓2(𝑧) = ∑

1

2
∞
𝑛=0 (

1+𝑧

2
)

𝑛
from the 

domain D1 to D2 then the which one of the point does not lies in 𝐷1 ∩ 𝐷2 

A.  
1

2
+

1

4
𝑖 
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B. 
1

9
+

1

5
𝑖 

C. −8 +
1

2
𝑖 

D. −2 

 

14. If the function 𝑓1(𝑧) = ∑ 𝑧𝑛∞
𝑛=0  is in analytic continuation to 𝑓2(𝑧) = ∑

1

2
∞
𝑛=0 (

1+𝑧

2
)

𝑛
from the 

domain D1 to D2 then the which one of the point does not lies in 𝐷1 ∩ 𝐷2 

A. −1 

B. −1.5 

C. −13𝑖 

D. −2.5 

 

15. If the function 𝑓1(𝑧) = ∑ 𝑧𝑛∞
𝑛=0  is in analytic continuation to 𝑓2(𝑧) = ∑

1

2
∞
𝑛=0 (

1+𝑧

2
)

𝑛
from the 

domain D1 to D2 then the which one of the point does not lies in 𝐷1 ∩ 𝐷2 

A. 10 

B. 0 

C. −𝑖 

D. −2.8 

 

 

Table 1: Answers of self-assessment 

Question number Correct answer 

1 A 

2 D 

3 B 

4 D 

5 A 

6 A 

7 B 

8 A 

9 B 

10 A 

11 A 

12 A 

13 C 

14 D 

15 A 
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7.7 Summary 

 An analytic function f(z) with its domain of definition D is called a function element and is 

denoted by (f, D). 

 The series equation 𝑆 = ∑ 𝑎𝑛
∞
𝑛=0  converges absolutely if  𝑟 = lim

𝑛→∞
|

𝑎𝑛+1 

𝑎𝑛
|<1 and diverges if r>1. 

If r =1, no conclusion can be taken. 

 Suppose f1(z) is analytical on a region D1. Now suppose that D1 is contained in a region f2(z). 

The function f(z) can be analytically continued from D1 to D2 if there exists a function f2(z) 

such that: f2(z) is analytic on S, f2(z) = f1(z) for all z ∈ D1 

7.8 Keywords 

Absolute convergence: The series equation 𝑆 = ∑ 𝑎𝑛
∞
𝑛=0  converges absolutely if  𝑟 = lim

𝑛→∞
|

𝑎𝑛+1 

𝑎𝑛
|<1 and 

diverges if r>1. If r =1, no conclusion can be taken. 

Analytic continuation: If zD, (f, D) is a function element of z, then (f1, D1) and (f2, D2) are in 

analytic continuations of each other 𝑖𝑓𝑓 D1  D2   and f1(z) = f2(z) for all zD1  D2.  

 

 

7.9 Further Readings 

  

1. Complex Variables And Applications By Churchill, R. V. And Brown, J. W., Mcgraw Hill 
Education. 

2. Foundations Of Complex Analysis By S. Ponnusamy, Narosa Publishing House. 

3. Complex Analysis By Lars V. Ahlfors, Mcgraw Hill Education. 

4. Complex Variables Theory And Applications By H. S. Kasana, Prentice Hall. 
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Unit 08 - Gamma function and its properties 

Purpose and Objectives: 

  

After this unit students can be able to- 

1. Understand the uniqueness of analytic continuation. 

2. Solve the problem based on the power series method of analytic continuation. 

3. Learn natural boundary of complete analytic function. 

 

Introduction 

Analytic continuation is a method used to extend the domain of definition of a function that is known 
to be analytic (i.e., holomorphic) in a certain region, to a larger region. This can be achieved by 
representing the function as a power series and finding the appropriate coefficients to ensure that the 
function satisfies the same differential equations in the extended region as it does in the original 
region. 

For example, consider the complex function f(z) that is known to be analytic in a disk D centered at 
the origin. By expanding f(z) in a power series about the origin, we can obtain its Taylor series 
representation: 

𝑓(𝑧) =  𝑎0  +  𝑎1𝑧 + 𝑎2𝑧2 + . .. 

Using this power series representation, we can extend the definition of f(z) to points outside the disk 
D by assuming that the series converges to the correct value at those points. This process is called 
analytic continuation, and it allows us to extend the domain of definition of f(z) to a larger region in 
the complex plane. In this unit first we will understand the uniqueness of analytic continuation, then 
the power series method of analytic continuation, and then the natural boundary of complete analytic 
function. 

 

8.1 Uniqueness of Analytic Continuation by Direct Method  

Theorem 2.1: Uniqueness of Analytic Continuation 

There cannot be more than one continuation of analytic 𝑓2(𝑧) into the same domain.  

Proof: 

Let 𝑓1(𝑧) be analytic in the domain 𝐷1.  

Let 𝑓2(𝑧) and 𝑔2(𝑧) be analytic continuations of same function 𝑓1(𝑧) from 𝐷1 into the domain 𝐷2 via 
𝐷12 which is common in to both 𝐷1 and 𝐷2 . 
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Figure 2.1: Analytical Continuation domains 

If we show that 𝑓2(𝑧) = 𝑔2(𝑧) throughout 𝐷2, the result is followed by the this proof. 

By the definition of analytic continuation. 

𝑓1(𝑧) = 𝑓2(𝑧), ∀𝑧 ∈ 𝐷12                                                                (2.1) 

                                And 𝑓2(𝑧) is analytic in 𝐷2. 

𝑓1(𝑧) = 𝑔2(𝑧), ∀𝑧 ∈ 𝐷12                                                                (2.2) 

And 𝑔2(𝑧) is analytic in 𝐷2 . 

From the equation (2.1) and (2.2) we can conclude that  

𝑓1(𝑧) = 𝑓2(𝑧) = 𝑔2(𝑧), ∀𝑧 ∈ 𝐷12   

Or  

𝑓2(𝑧) = 𝑔2(𝑧), ∀𝑧 ∈ 𝐷12           

Or 

(𝑓2 − 𝑔2)(𝑧) = 0, ∀𝑧 ∈ 𝐷12           

𝑓2 and 𝑔2 are analytic in 𝐷2                         

⟹     𝑓2 − 𝑔2   is analytic in 𝐷2 .     

Thus, we see that (𝑓2 − 𝑔2)(𝑧) vanishes in 𝐷12 which is a part of 𝐷2 .Also the function is analytic in 𝐷2 . 

Hence, we must have     

(𝑓2 − 𝑔2)(𝑧) = 0, ∀𝑧 ∈ 𝐷2           

  ⟹     𝑓2(𝑧) = 𝑔2(𝑧) ∀𝑧 ∈ 𝐷2. 

So, there cannot be more than one continuation of analytic 𝑓2(𝑧) into the same domain.      

    

 

Remark 

The uniqueness property requires the domains of the two analytic continuations to be the same. It is 
not generally true that if  

𝐹1 ∶  𝐷1  →  𝐶 𝑎𝑛𝑑 𝐹2 ∶  𝐷1  →  𝐶 are two analytic continuations of 𝑓 ∶  𝐷 →  𝐶 to different domains 
𝐷1 , 𝐷2 , that they must agree on 𝐷1  ∩  𝐷2 . A slightly more complicated example is the power series 
with Fibonacci coefficients:  

𝑓(𝑧)  =  𝑓0  + 𝑓1𝑧 + 𝑓2𝑧2 + .. . , which we considered a few lectures ago.  

Initially we observed that this converges and thereby defines an analytic function in some 
neighborhood 𝐷 of zero.  
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By applying the recurrence 𝑓𝑛+1  =  𝑓𝑛  + 𝑓𝑛−1, we were able to obtain the functional equation: 

 (1 –  𝑧 – 𝑧2 )𝑓(𝑧) =  𝑧 ⇒  𝑓(𝑧) =
𝑧

1 – 𝑧 – 𝑧2
 𝑧 ∈  𝐷.  

We then used the right hand side as a definition of 𝑓 in a much larger domain 𝐷′  =  𝐶\{𝜑, 𝜓}.  

Formally, 𝐹(𝑧) =
𝑧

 1−𝑧−𝑧2
  is an analytic continuation of 𝑓 𝑡𝑜 𝐷′ .  

We didn’t explicitly use a different name to distinguish between the continuation and the original 
function (since they agree where they are both defined) and we will sometimes follow this convention 
in the future.  

In any case, we were then able to use the properties of 𝐹 in the much larger domain 𝐷′ (by applying 
the Residue theorem) to get a good handle on what is happening at zero, and thereby extract a 
formula for the coefficients. 

 A functional equation is not the only way to obtain an analytic equation, but it is often the best one. 
In general, what one is looking for is an alternate representation of the same function which makes 
sense in a larger region; this alternate description is then used as a definition in the larger region.  

 

8.2 Power Series Method of Analytic Continuation 

The Power Series Method of Analytic Continuation is a method used to extend the domain of a 
complex power series beyond its radius of convergence. It is based on the idea of representing a 
function as an infinite sum of powers and using this representation to extend the function to a larger 
domain.  

The method works by finding the coefficients of the power series for a given function using Cauchy's 
Integral Formula, and then using these coefficients to analytically continue the function to a larger 
domain. This method is useful for finding the values of a function in complex domains, where it is 
not possible to use real analysis techniques. 

Let the initial function 𝑓1(𝑧) is represented by the Taylor’s series  

𝑓1(𝑧) = ∑ 𝑎𝑛(𝑧 − 𝑧1)𝑛∞
𝑛=0                                                                                                   (2.3) 

where  𝑎𝑛 =
𝑓1

(𝑛)(𝑧1)

𝑛!
 

This series is convergent inside a circle 𝐶1(see the figure 2.2)defined by 

 |𝑧 − 𝑧1| = 𝑅1                                     (2.4) 

Here 𝑅1 = lim
𝑛→∞

|𝑎𝑛|
1

𝑛 
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Figure 2.2: The curve L from 𝑧1 and perform analytic continuation 

We draw a curve L from 𝑧1and perform analytic continuation along this path as follows  

Take a point 𝑧2 on L such that 𝑧2lies inside the 𝐶1  . 

With this help of equation (2.3), we can find the 𝑓1(𝑧2), 𝑓1
′(𝑧2), 𝑓1

′′(𝑧2) … , 𝑓1
(𝑛)

(𝑧2) by repeated 

differentiation of  (2.3). 

Write  

𝑓2(𝑧) = ∑ 𝑏𝑛(𝑧 − 𝑧2)𝑛∞
𝑛=0                                                                                                   (2.5) 

where  𝑏𝑛 =
𝑓2

(𝑛)(𝑧2)

𝑛!
 

The power series (2.5) is convergent inside a circle 𝐶2 defined by  

|𝑧 − 𝑧2| = 𝑅2                                     (2.6) 

Here 𝑅2 = lim
𝑛→∞

|𝑏𝑛|
1

𝑛 

Also 𝑓1(𝑧) = 𝑓2(𝑧), ∀𝑧 ∈ 𝐶12(𝑇ℎ𝑒 𝑐𝑜𝑚𝑚𝑜𝑛 𝑝𝑎𝑟𝑡 𝑜𝑓 𝐶1 𝑎𝑛𝑑 𝐶2). 

Hence 𝑓2(𝑧) is an analytic continuation of  𝑓1(𝑧) from 𝐶1 𝑡𝑜 𝐶2. 

Now take a point 𝑧3 on L such that 𝑧3lies inside the 𝐶2  . 

With this help of equation (2.5), we can find the 𝑓2(𝑧3), 𝑓2
′(𝑧3), 𝑓2

′′(𝑧3) … , 𝑓2
(𝑛)(𝑧3) by repeated 

differentiation of  (2.5). 

Write  

𝑓3(𝑧) = ∑ 𝑐𝑛(𝑧 − 𝑧3)𝑛∞
𝑛=0                                                                                                   (2.7) 

where  𝑐𝑛 =
𝑓3

(𝑛)(𝑧3)

𝑛!
 

The power series (2.7)(2.5) is convergent inside a circle 𝐶3 defined by  

|𝑧 − 𝑧3| = 𝑅3                                     (2.8) 
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Here 𝑅3 = lim
𝑛→∞

|𝑐𝑛|
1

𝑛 

Also 𝑓2(𝑧) = 𝑓3(𝑧), ∀𝑧 ∈ 𝐶23(𝑇ℎ𝑒 𝑐𝑜𝑚𝑚𝑜𝑛 𝑝𝑎𝑟𝑡 𝑜𝑓 𝐶2 𝑎𝑛𝑑 𝐶3). 

Hence 𝑓3(𝑧) is an analytic continuation of  𝑓2(𝑧) from 𝐶2 𝑡𝑜 𝐶3. 

Now 𝑓3(𝑧) is an analytic continuation of  𝑓1(𝑧) from 𝐶2 𝑡𝑜 𝐶3. 

Repeating this process, we get as continuations several different power series analytic in 

their respective domains 𝐷1, 𝐷2 …, where 𝐷1, 𝐷2 …, are respectively interiors of 𝐶1, 𝐶2 …,. 

 

Question: 

 Show that the power series 𝑧 −
𝑧2

2
 +

𝑧3

3
−. ..may be analytically continued to a wider range by 

means of the series 𝑙𝑜𝑔2 −
1−𝑧

2
−

(1−𝑧)2

2.22 −
(1−𝑧)3

3.23 − ⋯ 

Solution: 

Let  𝑓1(𝑧) = 𝑧 −
𝑧2

2
 +

𝑧3

3
−. ..                                                                                                        (2.9) 

And 𝑓2(𝑧) = 𝑙𝑜𝑔2 −
1−𝑧

2
−

(1−𝑧)2

2.22 −
(1−𝑧)3

3.23 − ⋯                                                                        (2.10) 

Here 𝑓1(𝑧) = ∑ (−1)𝑛∞
𝑛=0

 𝑧𝑛+1

𝑛+1
  using the ratio test, if 𝑎𝑛 is convergent then  |

𝑎𝑛+1

𝑎𝑛
| < 1 

𝑎𝑛 = (−1)𝑛
 𝑧𝑛+1

𝑛 + 1
 

𝑎𝑛+1 = (−1)𝑛+1
 𝑧𝑛+2

𝑛 + 2
 

Now |
𝑎𝑛+1

𝑎𝑛
| = |

(−1)𝑛+1 𝑧𝑛+2

𝑛+2

(−1)𝑛 𝑧𝑛+1

𝑛+1

| < 1 

⟹ |
𝑎𝑛+1

𝑎𝑛
| = |(−1)𝑛.

−1

(−1)𝑛

 𝑧𝑛+1.𝑧.(𝑛+1)

(𝑛+2) 𝑧𝑛+1
| < 1 

⟹ |
𝑎𝑛+1

𝑎𝑛
| = |−1

.𝑧.(1+1/𝑛)

(1+2/𝑛)
| < 1 

⟹   lim
𝑛→∞

|
𝑎𝑛+1

𝑎𝑛
| = lim

𝑛→∞
|−1

.𝑧.(1+1/𝑛)

(1+2/𝑛)
| < 1 

⟹   lim
𝑛→∞

|
𝑎𝑛+1

𝑎𝑛
| = |𝑧| < 1 

Hence 𝑓1(𝑧) = 𝑧 −
𝑧2

2
 +

𝑧3

3
−. . . = log (1 + 𝑧) which is convergent for the |𝑧| < 1.           (2.11) 

 Thus 𝑓1(𝑧) is analytic inside the circle 𝐶1defined by |𝑧| = 1(See the figure 2.3). 

  LOVELY PROFESSIONAL UNIVERSITY  95



Complex Analysis-II 

 

 

Figure 2.3: the domains of 𝐶1 𝑎𝑛𝑑 𝐶2 

Now we will show that 𝑓2(𝑧) is analytic inside a domain and will also find the convergent 
analysis of 𝑓2(𝑧) . 

𝑓2(𝑧) can be expressed as  

𝑓2(𝑧) = 𝑙𝑜𝑔2 − [
1 − 𝑧

2
+

1

2

(1 − 𝑧)2

22
+

1

3

(1 − 𝑧)3

23
+ ⋯ ] 

⟹ 𝑓2(𝑧) = 𝑙𝑜𝑔2 − [
1 − 𝑧

2
+

1

2
(

1 − 𝑧

2
)

2

 +
1

3
(

1 − 𝑧

2
)

3

+ ⋯ ] 

Let the nth term of 𝑓2(𝑧) is 𝑏𝑛 = (−1)
1

𝑛+1
(

1−𝑧

2
)

𝑛+1

 and  

𝑏𝑛+1 = (−1)
1

𝑛 + 2
(

1 − 𝑧

2
)

𝑛+2

 

⟹ |
𝑏𝑛+1

𝑏𝑛
| = |

(−1)
1

𝑛 + 2
(

1 − 𝑧
2

)
𝑛+2

(−1)
1

𝑛 + 1
(

1 − 𝑧
2

)
𝑛+1| < 1 

⟹ |
𝑏𝑛+1

𝑏𝑛
| = |

𝑛 + 1

𝑛 + 2
(

1 − 𝑧

2
)

𝑛+2

(
2

1 − 𝑧
)

𝑛+1

| < 1 

⟹ |
𝑏𝑛+1

𝑏𝑛
| = |

1 +
1
𝑛

1 +
2
𝑛

(
1 − 𝑧

2
)| < 1 

⟹ lim
𝑛→∞

|
𝑏𝑛+1

𝑏𝑛
| = lim

𝑛→∞
|
1 +

1
𝑛

1 +
2
𝑛

(
1 − 𝑧

2
)| < 1 
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⟹ lim
𝑛→∞

|
𝑏𝑛+1

𝑏𝑛
| = |(

1 − 𝑧

2
)| < 1 

⟹ lim
𝑛→∞

|
𝑏𝑛+1

𝑏𝑛
| = |1 − 𝑧| < 2 

⟹ lim
𝑛→∞

|
𝑏𝑛+1

𝑏𝑛
| = |𝑧 − 1| < 2 

Hence 𝑓2(𝑧) is convergent for the |𝑧 − 1| < 2. 

 Thus 𝑓2(𝑧) is analytic inside the circle 𝐶2defined by |𝑧 − 1| = 2. 

As we know that log [1 − (
1−𝑧

2
)] = − [

1−𝑧

2
+

1

2
(

1−𝑧

2
)

2

 +
1

3
(

1−𝑧

2
)

3

+ ⋯ ] 

Then  

𝑓2(𝑧) = 𝑙𝑜𝑔2 + log [1 − (
1 − 𝑧

2
)] 

𝑓2(𝑧) = 𝑙𝑜𝑔2 + log [
2 − 1 + 𝑧

2
] 

𝑓2(𝑧) = 𝑙𝑜𝑔2 + 𝑙𝑜𝑔(1 + 𝑧) − 𝑙𝑜𝑔2 

𝑓2(𝑧) = 𝑙𝑜𝑔(1 + 𝑧) 

By (2.11),  

𝑓2(𝑧) = 𝑓1(𝑧) in the area common to both 𝐶1 and 𝐶2.  

Hence, we can say that 𝑓2(𝑧) is analytic continuation of 𝑓1(𝑧) from the interior of 𝐶1 to the 
interior of 𝐶2. Moreover 𝐶2 is a larger range in comparison to 𝐶1 as shown in the figure 2.3. 

 

8.3 Natural Boundary 

In complex analysis, a natural boundary of a complex-valued function is a boundary of its domain 
that is not a removable singularity. This means that the function cannot be extended analytically 
across the boundary, and its behavior there is determined by the behavior of the function on the 
boundary. A classic example of a natural boundary is the boundary of the unit disk in the complex 
plane, which is the unit circle. Functions defined on the unit disk have essential singularities on the 
boundary, which means that they cannot be extended analytically to the outside of the unit disk. 

 

Definition 2.1: Function Element 

An analytic function 𝑓 with domain 𝐷 is called a function element and is denoted by (𝑓, 𝐷). 

 

Definition 2.2: Complete Analytic Function 

Suppose that 𝑓(𝑧) is analytic in a domain D. Let us form all possible analytic continuations of (𝑓, 𝐷) 
and then all possible analytic continuations (𝑓1 , 𝐷1), (𝑓2 , 𝐷2), … , (𝑓𝑛 , 𝐷𝑛) of these continuations such 
that: 

 𝐹(𝑧) = {

𝑓1(𝑧) 𝑖𝑓 𝑧 ∈ 𝐷1

𝑓2(𝑧) 𝑖𝑓 𝑧 ∈ 𝐷2… … … … … … …
𝑓𝑛(𝑧) 𝑖𝑓 𝑧 ∈ 𝐷𝑛

                                                                                 (2.12) 

Such a function 𝐹(𝑧) is called complete analytic function.  

In this process of continuation, we may arrive at a closed curve beyond which it is not possible to 
take analytic continuation. Such a closed curve is known as the natural boundary of the complete 
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analytic function. A point lying outside the natural boundary is known as the singularity of the 
complete analytic function. If no analytic continuation of 𝑓(𝑧) is possible to a point 𝑧0, then 𝑧0 is a 
singularity of 𝑓(𝑧). 

 Obviously, the singularity of 𝑓(𝑧) is also a singularity of the corresponding complete analytic 
function 𝐹(𝑧). 

 

 

Example  

Show that the circle of convergence of the power series 𝑓(𝑧) =  1 +  𝑧 + 𝑧2  + 𝑧4  +  𝑧8 …, is a natural 
boundary of its sum function. 

Solution: 

The circle of convergence of a power series is the largest circle centered at the origin within which 
the series converges to a function.  

The sum function of the series 𝑓(𝑧) =  1 +  𝑧 + 𝑧2  +  𝑧4  + 𝑧8 …,  is not defined at z = 1, so the circle 
of convergence of the series must include the origin and exclude z = 1. 

Since the sum of the series diverges for z = 1, it is a natural boundary for the sum function. The circle 
of convergence for the series is the largest circle centered at the origin within which the sum function 
is defined and analytic, and thus it serves as a natural boundary for the sum function. 

 

Example  

Show that 𝑓 (𝑧 ) =  ∑
𝑧2𝑛+1

1−𝑧2𝑛+1
∞
𝑛=0  is analytic in the domain |z | < 1 and the domain |z | > 1, and that 

|z | = 1 is a natural boundary for the function in each domain. 

Solution: 

For a function to be analytic, it must be complex differentiable at every point in its domain. 

Let us first consider the domain |z| < 1. 

For |𝑧|  <  1, |𝑧2𝑛+1
|  <  1 and thus 1 − |𝑧2𝑛+1

|  >  0. Hence, the denominator 1 − 𝑧2𝑛+1
is never 0 and 

the function is well-defined in this domain. 

Next, we can apply the Cauchy-Riemann equations to show that the function is complex 
differentiable in this domain, and therefore analytic. 

For |z| > 1, the same argument can be made: the denominator 1 − 𝑧2𝑛+1
 is never 0 for |z| > 1, and 

the function is well-defined in this domain. 

Finally, for |z| = 1, the function is not complex differentiable, which means that |z| = 1 is a natural 
boundary for the function in both domains. 

Therefore, the function ∑
𝑧2𝑛+1

1−𝑧2𝑛+1
∞
𝑛=0 is analytic in the domain |z| < 1 and the domain |z| > 1, and 

|z| = 1 is a natural boundary for the function in each domain. 

 

 

 

8.4 Review questions 

1. Prove that the  series  𝑧1! +  𝑧2! + 𝑧3! + ⋯ has  the  natural  boundary  |𝑍| = 1. 

2. Prove that |z| = 1 is a natural boundary for the series ∑ 2−𝑛  ∗ 𝑧3𝑛∞
𝑛=0  
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3. Let 𝐹1(𝑧) = ∑
𝑧𝑛+1

3𝑛
∞
𝑛=0  Find an analytic continuation of 𝐹1 (𝑧), which converges for 𝑧 =  3 −  4𝑖 

4. State and prove the uniqueness theorem of analytic continuation 

5. Show that the series 1 + 𝑧 + 𝑧2 + 𝑧4 + 𝑧8+…, can not be analytically continued beyond the  |𝑧| = 1 

 

8.5 Self-assessment 

1. The power series  f(𝑧) = 𝑧 −
𝑧2

2
 +

𝑧3

3
−. .. is convergent inside the 

A.  Region |𝑧 + 1| < 2  

B. Region |𝑧 − 1| < 2  

C. Region |𝑧| < 1  

D. Region |𝑧| < 2  

 

2. There cannot be more than one continuation of analytic 𝑓(𝑧) into the same domain. 

A.  True 

B. 𝐹𝑎𝑙𝑠𝑒 

 

3. The nth term of the series 𝑧 −
𝑧2

2
 +

𝑧3

3
−. .. 

A. 𝑎𝑛 = (−1)𝑛  𝑧𝑛+1

𝑛+1
 

B. 𝑎𝑛 = (−2)𝑛  𝑧𝑛+1

𝑛+1
 

C. 𝑎𝑛 = (−1)𝑛+1  𝑧𝑛+1

𝑛+1
 

D. 𝑎𝑛 = (−1)𝑛  𝑧𝑛+1

𝑛+2
 

 

4. An analytic function 𝑓 with domain 𝐷 is called a function element and is denoted by (𝑓, 𝐷). 

 

A. True 

B. 𝐹𝑎𝑙𝑠𝑒 

 

5. The nth term of the series [
1−𝑧

2
+

1

2

(1−𝑧)2

22 +
1

3

(1−𝑧)3

23 + ⋯ ]  𝑖𝑠 

A.  (−2)
1

𝑛+1
(

1−𝑧

2
)

𝑛+1
  

B. (−1)
1

𝑛+1
(

1−𝑧

2
)

𝑛+1

  

C. (−1)
1

𝑛+2
(

1−𝑧

2
)

𝑛+1

  

D. (−1)
1

𝑛+1
(

1−𝑧

3
)

𝑛+1

  

 

6. The power series  [
1−𝑧

2
+

1

2

(1−𝑧)2

22 +
1

3

(1−𝑧)3

23 + ⋯ ] is convergent inside the 

A. |𝑧 − 1| < 1 

B. |𝑧| < 1 

C. |𝑧| < 2 

D. |𝑧 − 1| < 2 

 

7. If the function 𝑓1(𝑧) =  𝑧 −
𝑧2

2
 +

𝑧3

3
− ⋯ is in analytic continuation to   

𝑓2(𝑧) = 𝑙𝑜𝑔2 − [
1 − 𝑧

2
+

1

2

(1 − 𝑧)2

22
+

1

3

(1 − 𝑧)3

23
+ ⋯ ] 

 from the domain D1 to D2 then the which one of the domain does lies in 𝐷1 ∩ 𝐷2 
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A. |𝑧 − 1| < 1 

B. |𝑧| < 1 

C. |𝑧| < 2 

D. |𝑧 − 1| < 2 

 

8. If the function 𝑓1(𝑧) =  𝑧 −
𝑧2

2
 +

𝑧3

3
− ⋯ is in analytic continuation to   

𝑓2(𝑧) = 𝑙𝑜𝑔2 − [
1 − 𝑧

2
+

1

2

(1 − 𝑧)2

22
+

1

3

(1 − 𝑧)3

23
+ ⋯ ] 

 from the domain D1 to D2 then the which one of the points does not lies in 𝐷1 ∩ 𝐷2 

A. 0.1 + 0.1𝑖 

B. 0.5 

C. 0.5𝑖 

D. 2 + 5𝑖 

 

9. If the function 𝑓1(𝑧) =  𝑧 −
𝑧2

2
 +

𝑧3

3
− ⋯ is in analytic continuation to   

𝑓2(𝑧) = 𝑙𝑜𝑔2 − [
1 − 𝑧

2
+

1

2

(1 − 𝑧)2

22
+

1

3

(1 − 𝑧)3

23
+ ⋯ ] 

 from the domain D1 to D2 then the which one of the points does lies in 𝐷1 ∩ 𝐷2 

A. 0.1 + 0.2𝑖 

B. 5 

C. 5𝑖 

D. 2 + 5𝑖 

 

10. If the function 𝑓1(𝑧) =  𝑧 −
𝑧2

2
 +

𝑧3

3
− ⋯ is in analytic continuation to   

𝑓2(𝑧) = 𝑙𝑜𝑔2 − [
1 − 𝑧

2
+

1

2

(1 − 𝑧)2

22
+

1

3

(1 − 𝑧)3

23
+ ⋯ ] 

 from the domain D1 to D2 then the which one of the points does not lies in 𝐷1 ∩ 𝐷2 

A. 0.2𝑖 

B. 0.3 

C. 0.4𝑖 

D. 4𝑖 

 

11. If the function 𝑓1(𝑧) = ∑ 𝑧𝑛∞
𝑛=0  is a natural boundary for its sum function then the circle of 

convergent is  

A. |𝑧 − 1| < 1 

B. |𝑧| < 1 

C. |𝑧| < 2 

D. |𝑧 − 1| < 2 

 

12. If the function 𝑓1(𝑧) = ∑ 𝑧𝑛∞
𝑛=0  is in analytic continuation to 𝑓2(𝑧) = ∑

1

2
∞
𝑛=0 (

1+𝑧

2
)

𝑛
from the 

domain D1 to D2 then the which one of the point lies in 𝐷1 ∩ 𝐷2 

A. 
1

8
+

1

8
𝑖 

B. 
10

2
+

1

2
𝑖 

C. −13 +
1

2
𝑖 

D. −3 − 13𝑖 

 

13. If the function 𝑓1(𝑧) =  𝑧 −
𝑧2

2
 +

𝑧3

3
− ⋯ is in analytic continuation to   

𝑓2(𝑧) = 𝑙𝑜𝑔2 − [
1 − 𝑧

2
+

1

2

(1 − 𝑧)2

22
+

1

3

(1 − 𝑧)3

23
+ ⋯ ] 
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 from the domain D1 to D2 then the which one of the points does not lies in 𝐷1 ∩ 𝐷2 

A. 0.3𝑖 

B. 0.3 

C. 0𝑖 

D. 12 + 𝑖 

 

14. If the function 𝑓1(𝑧) =  𝑧 −
𝑧2

2
 +

𝑧3

3
− ⋯ is in analytic continuation to   

𝑓2(𝑧) = 𝑙𝑜𝑔2 − [
1 − 𝑧

2
+

1

2

(1 − 𝑧)2

22
+

1

3

(1 − 𝑧)3

23
+ ⋯ ] 

 from the domain D1 to D2 then the which one of the points does lies in 𝐷1 ∩  𝐷2 

A. 0.01 + 0.02𝑖 

B. 50 

C. 50𝑖 

D. 20 + 5𝑖 

 

15.  In complex analysis, a natural boundary of a complex-valued function is a boundary of its 

domain that is not a removable singularity. 

A. 𝑇𝑟𝑢𝑒 

B. 𝐹𝑎𝑙𝑠𝑒 

 

 

Table 1: Answers of self-assessment 

Question number Correct answer 

1 C 

2 A 

3 A 

4 A 

5 B 

6 D 

7 B 

8 D 

9 A 

10 A 

11 C 

12 A 

13 D 

14 A 
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15 A 

 

8.6 Summary 

 The Power Series Method of Analytic Continuation is a method used to extend the domain 

of a complex power series beyond its radius of convergence. 

 An analytic function 𝑓 with domain 𝐷 is called a function element and is denoted by (𝑓, 𝐷). 

 Uniqueness of Analytic Continuation: There cannot be more than one continuation of 

analytic 𝑓2(𝑧) into the same domain.  

8.7 Keywords 

Complete analytic function: Suppose that 𝑓(𝑧) is analytic in a domain D. Let us form all possible 
analytic continuations of (𝑓, 𝐷) and then all possible analytic continuations 
(𝑓1 , 𝐷1), (𝑓2 , 𝐷2), … , (𝑓𝑛, 𝐷𝑛) of these continuations such that: 

 𝐹(𝑧) = {

𝑓1(𝑧) 𝑖𝑓 𝑧 ∈ 𝐷1

𝑓2(𝑧) 𝑖𝑓 𝑧 ∈ 𝐷2… … … … … … …
𝑓𝑛(𝑧) 𝑖𝑓 𝑧 ∈ 𝐷𝑛

                                                                                  

Such a function 𝐹(𝑧) is called complete analytic function.  

 

 

8.8 Further Readings 

  

1. Complex Variables And Applications By Churchill, R. V. And Brown, J. W., Mcgraw Hill 
Education. 

2. Foundations Of Complex Analysis By S. Ponnusamy, Narosa Publishing House. 

3. Complex Analysis By Lars V. Ahlfors, Mcgraw Hill Education. 

4. Complex Variables Theory And Applications By H. S. Kasana, Prentice Hall. 
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Unit 09 - Riemann zeta function 

Purpose and Objectives: 

 

The Monodromy Theorem in complex analysis states that given a non-constant holomorphic function 
on a simply connected domain, its set of singularities is invariant under any loop in the domain. In 
other words, it characterizes the behavior of the function near its singularities and provides a way to 
study the topological structure of complex functions. The theorem is useful for solving certain types 
of differential equations, as well as for constructing complex functions with prescribed singularities.  

Similarly, the Poisson integral formula has several applications in various fields, including: 

1. Harmonic Analysis: The Poisson Integral Formula provides a tool for solving boundary 
value problems for harmonic functions and has applications in potential theory and 
boundary value problems. 

2. Image Processing: The Poisson Integral Formula is used in image processing to restore 
images that have been degraded or to smooth out noise in images. 

3. Numerical Analysis: The Poisson Integral Formula is used in numerical analysis to solve 
partial differential equations, especially in areas like electrostatics and heat transfer. 

4. Complex Analysis: The Poisson Integral Formula is used in complex analysis to study 
conformal mappings, potential theory, and complex dynamics. 

5. Signal Processing: The Poisson Integral Formula is used in signal processing to solve 
problems in signal restoration, noise reduction, and boundary value problems for signals. 

After this unit students can be able to- 

1. State and prove the Monodromy theorem.  

2. Learn Poisson Integral Formula for analytic function. 

3. Understand the Poisson Kernel, and Conjugate Poisson Kernel for analytic function. 

4. Solve the problem based on the Poisson Integral Formula. 

 

Introduction 

The number of independent loops or paths around a singular point of an analytic function can be 
understood by sheets of the multi-valued analytic function. 

In other words, if an analytic function has a singularity at a point, then the number of independent 
loops that can be taken around this point is equal to the number of branches of the function that can 
be defined in a neighborhood of the singularity. 

The Monodromy Theorem is an important result in complex analysis and is used to study the 
behavior of multi-valued analytic functions near singular points. If a function f is analytic in the unit 
disk of the complex plane and continuous on its boundary, then it can be represented by the Poisson 
integral formula. In this unit first we will understand the Monodromy theorem then learn Poisson 
Integral Formula for analytic function. After that we will explore the concept of the Poisson Kernel, 
and Conjugate Poisson Kernel for analytic function. Finally solve the problem based on the Poisson 
Integral Formula. 

 

9.1 Monodromy Theorem 

Let D be a simply connected domain and suppose 𝑓0 (𝑧) is analytic in a domain 𝐷0  ⊂  𝐷. If the 
function element (𝑓0, 𝐷0) can be analytically continued along every curve in D, then there exists a 
single-valued function 𝑓(𝑧) that is analytic throughout 𝐷 with 𝑓(𝑧) ≡ 𝑓0(𝑧)  in 𝐷0. 
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Proof: 

Suppose the conclusion is false. Then there exist points 𝑧0  ∈  𝐷0 , 𝑧1 ∈ 𝐷, and curves 𝐶1 , 𝐶2  

 

 

Figure 3.1: 𝐷 be a simply connected domain and the points 𝑧0 ∈ 𝐷0, 𝑧1 ∈ D, and 𝐷0  ⊂  𝐷. 

both having initial point 𝑧0 and terminal point 𝑧1 such that (𝑓0 , 𝐷0) leads to a different function 
element in a neighborhood of 𝑧1 when analytically continued along 𝐶1 than when analytically 
continued along 𝐶2 (see Figure3.1 ). 

This means that (𝑓0 , 𝐷0) does not return to the same function element when analytically continued 
along the closed curve 𝐶1  −  𝐶2. 

 

Lemma 3.1. 

Let {𝑆𝑛} be a sequence of closed and bounded rectangles in the plane. If 𝑆𝑛+1 ⊂ 𝑆𝑛 for every 𝑛 and the 
length of the sides of 𝑆𝑛 approaches 0 as 𝑛 →  ∞, then there is exactly one point in common to all the 
𝑆𝑛 . 

 

Figure 3.2: sequence of closed and bounded rectangles in the plane. 
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To prove the theorem, it thus suffices to show that the function element (𝑓0, 𝐷0), 𝐷0  ⊂  𝐷, can be 
continued along any closed curve lying in 𝐷 and return to the same value. In the special case that the 
closed curve 𝐶 is a rectangle 

 

Figure 3.3: Rectangle 𝐶 into four congruent rectangles 

Divide the rectangle 𝐶 into four congruent rectangles, as illustrated in Figure 3.3 continuation along 
𝐶 produces the same effect as continuation along these four rectangles taken together.   

If the conclusion is false for 𝐶, then it must be false for one of the four sub-rectangles, which we denote 
by 𝐶1. We then divide 𝐶1 into four congruent rectangles, for one of which the conclusion is false. 

 

Figure 3.4:𝐶1 into four congruent rectangles 

 Continuing the process, we obtain a nested sequence of rectangles for which the conclusion is false. 

According to Lemma 1, there is exactly one point, call it 𝑧∗, belonging to all the rectangles in the nest. 
Since 𝑧∗  ∈  𝐷, there exists a function element (𝑓∗, 𝐷∗) with 𝑧∗ ∈  𝐷∗ ⊂  𝐷.  

For 𝑛 sufficiently large, the rectangle 𝐶𝑛 of the nested sequence is contained in 𝐷∗ 

But this means that 𝑓∗ (𝑧) is analytic in a domain containing 𝐶𝑛 , contrary to the way 𝐶𝑛 was defined. 
This contradiction concludes the proof in the special case in which the curve is a rectangle.  
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9.2 Poisson Integral Formula, Poisson Kernel, and Conjugate Poisson 
Kernel 

If 𝑓(𝑧) is analytic within and on a circle 𝐶 defined by |𝑧| = 𝑅 and if 𝑎 is any point within, 𝐶, then 

𝑓(𝑧) =
1

2𝜋𝑖
∫

𝑐

(𝑅2 − 𝑎�̅�)𝑓(𝑧)

(𝑧 − 𝑎)(𝑅2 − 𝑧�̅�)
𝑑𝑧 

⟹ 𝑓(𝑟𝑒𝑖𝜃) =
1

2𝜋
∫

(𝑅2 − 𝑟2)𝑓(𝑅𝑒𝑖∅)

𝑅2 − 2𝑅𝑟𝐶𝑜𝑠(𝜃 − ∅) + 𝑟2
𝑑∅

2𝜋

0

 

Where 𝑎 = 𝑟𝑒𝑖𝜃is any point inside the circle |𝑧| = 𝑅. 

Proof: 

Suppose f(z) is analytic within and on the circle 𝐶 defined |𝑧| = 𝑅. 

Let 𝑎 = 𝑟𝑒𝑖𝜃is any point inside the circle |𝑧| = 𝑅 so that 0 < 𝑟 < 𝑅. 

Let the inverse of 𝐴(𝑎) is 𝐴′(𝑎′) with respect to the circle C is given by 𝑎′ = 𝑅2/�̅� which lies outside 

the circle 𝐶(See the Figure 3.5). 

By Cauchy’s integral formula  

 

𝑓(𝑎) =
1

2𝜋𝑖
∫

𝑐

𝑓(𝑧)

(𝑧−𝑎)
𝑑𝑧                                                                                                                                                               (3.1) 

Since 𝑓(𝑧) is analytic within and upon the circle 𝐶 and so  
𝑓(𝑧)

(𝑧−𝑎′)
 is analytic within and on the circle. 

By Cauchy’s integral theorem 

  ∫
𝑐

𝑓(𝑧)

(𝑧−𝑎′)
𝑑𝑧=0                                                                                                                                                     (3.2) 

 

 

Figure 3.5: Inverse of 𝐴(𝑎) is 𝐴′(𝑎′) with respect to the circle C is given by 𝑎′ = 𝑅2/�̅� 

 

Note that 
𝑓(𝑧)

(𝑧−𝑎)
 is not analytic within 𝐶 
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Now  

(3.1)-(3.2) gives  

𝑓(𝑎) − 0 =
1

2𝜋𝑖
∫

𝑐

𝑓(𝑧)

(𝑧−𝑎)
𝑑𝑧 − ∫

𝑐

𝑓(𝑧)

(𝑧−𝑎′)
𝑑𝑧                                                                                                                                       (3.3) 

𝑓(𝑎) =
1

2𝜋𝑖
∫

𝑐
[

1

(𝑧−𝑎)
−

1

(𝑧−𝑎′)
] 𝑓(𝑧)𝑑𝑧                                                                                                                                       (3.4) 

𝑓(𝑎) =
1

2𝜋𝑖
∫

𝑐
[

(𝑧−𝑎′)−(𝑧−𝑎)

(𝑧−𝑎)(𝑧−𝑎′)
] 𝑓(𝑧)𝑑𝑧                                                                                                                                       (3.5) 

𝑓(𝑎) =
1

2𝜋𝑖
∫

𝑐
[

(𝑎−𝑎′)

(𝑧−𝑎)(𝑧−𝑎′)
] 𝑓(𝑧)𝑑𝑧                                                                                                                                       (3.6) 

𝑓(𝑎) =
1

2𝜋𝑖
∫

𝑐
[

(𝑎−
𝑅2

�̅�
)

(𝑧−𝑎)(𝑧−
𝑅2

�̅�
)
] 𝑓(𝑧)𝑑𝑧                                                                                                                                       (3.7) 

𝑓(𝑎) =
1

2𝜋𝑖
∫

𝑐
[

(𝑎�̅�−𝑅2)

(𝑧−𝑎)(𝑧�̅�−𝑅2)
] 𝑓(𝑧)𝑑𝑧                                                                                                                                       (3.8) 

𝑓(𝑎) =
1

2𝜋𝑖
∫

𝑐
[

(𝑅2−𝑎�̅�)

(𝑧−𝑎)(𝑅2−𝑧�̅�)
] 𝑓(𝑧)𝑑𝑧                                                                                                                                       (3.9) 

This proves the first required result. 

Any point z on |𝑧| = 𝑅 is expressible as 𝑧 = 𝑅 𝑒𝑖𝜙   

Also 𝑎 = 𝑟𝑒𝑖𝜃so that �̅� = 𝑟𝑒−𝑖𝜃  

Now 𝑅2 − 𝑎�̅� = 𝑅2 − 𝑟𝑒𝑖𝜃 . 𝑟𝑒−𝑖𝜃                                                                                                                  (3.10) 

⟹ 𝑅2 − 𝑎�̅� = 𝑅2 − 𝑟2 

Now  

(𝑧 − 𝑎)(𝑅2 − 𝑧�̅�) = (𝑅 𝑒𝑖𝜙 − 𝑟𝑒𝑖𝜃)(𝑅2 − 𝑅𝑒𝑖𝜙 𝑟𝑒−𝑖𝜃)                                                                                 (3.11) 

⟹ (𝑧 − 𝑎)(𝑅2 − 𝑧�̅�) = 𝑅 𝑒𝑖𝜙(𝑅 − 𝑟𝑒𝑖(𝜃−𝜙))(𝑅 − 𝑟𝑒−𝑖(𝜃−𝜙)) 

⟹ (𝑧 − 𝑎)(𝑅2 − 𝑧�̅�) = 𝑅 𝑒𝑖𝜙[(𝑅2 + 𝑟2 − 𝑟𝑅(𝑒𝑖(𝜃−𝜙) − 𝑒−𝑖(𝜃−𝜙))] 

⟹ (𝑧 − 𝑎)(𝑅2 − 𝑧�̅�) = 𝑅 𝑒𝑖𝜙[(𝑅2 + 𝑟2 − 2𝑟𝑅𝐶𝑜𝑠(𝜃 − 𝜙)]                                                                       (3.12) 

𝑑𝑧 = 𝑑(𝑅𝑒𝑖𝜙) = 𝑅𝑖𝑒𝑖𝜙𝑑𝜙                                                                                                                              (3.13) 

Writing (3.9) with the help of (3.11) and (3.13), 

𝑓(𝑎) =
1

2𝜋𝑖
∫

(𝑅2 − 𝑟2)𝑓(𝑧)𝑓(𝑅𝑒𝑖∅). 𝑖

[𝑅2 − 2𝑅𝑟𝐶𝑜𝑠(∅ − 𝜃) + 𝑟2]𝑅𝑒𝑖∅ 
𝑑∅

2𝜋

0

 

𝑓(𝑎) =
1

2𝜋
∫

(𝑅2−𝑟2)𝑓(𝑅𝑒 𝑖∅)

[𝑅2−2𝑅𝑟𝐶𝑜𝑠(𝜃−𝜙)+𝑟2] 
𝑑∅

2𝜋

0
                                                                                                          (3.14) 

This proves the second result. 

Here 
(𝑅2−𝑟2)𝑓(𝑅𝑒 𝑖∅)

[𝑅2−2𝑅𝑟𝐶𝑜𝑠(𝜃−𝜙)+𝑟2] 
 is known as the Poisson Kernal for the disk |𝑧 | < 𝑅.  

Note that the Poisson, kernel is bounded above by 
(𝑅2−𝑟2)

[𝑅2−2𝑅𝑟+𝑟2] 
=

𝑅+𝑟

𝑅−𝑟
. 

The conjugate Poisson kernel is a mathematical function used in complex analysis and potential 
theory. It is defined as the conjugate of the Poisson kernel, which is a function that maps points in the 

complex plane to the unit disk. The conjugate Poisson kernel is given by the formula: 

𝑃∗(𝑧)  =  𝑃 (
1

𝑧∗
) 

where 𝑃(𝑧) is the Poisson kernel and 𝑧∗ is the complex conjugate of z.  

 

 

Question:  
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 Using Poisson’s integral formula for the circle, show that: 

∫
𝑒𝑐𝑜𝑠𝜙.𝐶𝑜𝑠(𝑆𝑖𝑛𝜙)𝑑𝜙

5−4𝐶𝑜𝑠(𝜃−𝜙)
=

2𝜋

3
𝑒𝑐𝑜𝑠𝜃cos (𝑠𝑖𝑛𝜃)

2𝜋

0
                                                                                                    (3.15) 

Solution: 

By the Poisson’s integral formula, 

𝑓(𝑟𝑒𝑖𝜃) =
1

2𝜋
∫

(𝑅2−𝑟2)𝑓(𝑅𝑒 𝑖∅)

[𝑅2−2𝑅𝑟𝐶𝑜𝑠(𝜃−𝜙)+𝑟2] 
𝑑∅

2𝜋

0
                                                                                                          (3.16) 

If we compare R.H.S. of (3.15) with the given integral, then we find  

𝑅2 + 𝑟2 = 5                                                                                                                                                     (3.17) 

𝑟𝑅 = 2                                                                                                                                                             (3.18) 

𝑓(𝑅𝑒𝑖𝜙) = 𝑒𝑐𝑜𝑠𝜙 . 𝐶𝑜𝑠(𝑆𝑖𝑛𝜙)                                                                                                                         (3.19) 

Using (3.17) and (3.18) 

𝑅 = 2, 𝑟 = 1 and so 𝑅2  − 𝑟2 = 3                                                                                                                        (3.20) 

Now (3.19) ⟹ 

𝑓(𝑟𝑒𝑖𝜃) = 𝑒𝑐𝑜𝑠𝜃cos (𝑠𝑖𝑛𝜃)                                                                                                                              (3.21) 

Putting value from (3.17), (3.18), (3.20), and (3.21) in the equation (3.16), we get  

𝑒𝑐𝑜𝑠𝜃 cos(𝑠𝑖𝑛𝜃) =
1

2𝜋
∫

3𝑒𝑐𝑜𝑠𝜙. 𝐶𝑜𝑠(𝑆𝑖𝑛𝜙)

5 − 4𝐶𝑜𝑠(𝜃 − 𝜙) 
𝑑∅

2𝜋

0

 

2𝜋

3
𝑒𝐶𝑜𝑠𝜃 Cos(𝑆𝑖𝑛𝜃) = ∫

𝑒𝑐𝑜𝑠𝜙 . 𝐶𝑜𝑠(𝑆𝑖𝑛𝜙)

5 − 4𝐶𝑜𝑠(𝜃 − 𝜙) 
𝑑∅

2𝜋

0

 

Hence proved. 

 

 

Question:  

Using the Poisson integral formula, find the value of ∫
621𝑓(25𝑒

𝑖π
4 )

629−100𝐶𝑜𝑠(𝜋−
𝜋

4
) 

𝑑∅
2𝜋

0
 

Solution: 

We know that using the Poisson integral formula, 

𝑓(𝑟𝑒𝑖𝜃) =
1

2𝜋
∫

(𝑅2 − 𝑟2)𝑓(𝑅𝑒𝑖∅)

[𝑅2 − 2𝑅𝑟𝐶𝑜𝑠(𝜃 − 𝜙) + 𝑟2] 
𝑑∅

2𝜋

0

 

Here  

(𝑅2 − 𝑟2) =621 

𝑓(𝑅𝑒𝑖∅) = 𝑓(25𝑒
𝜋
4

𝑖) 

2𝑅𝑟 = 100 

𝜃 − 𝜙 = 𝜋 −
𝜋

4
 

(𝑅2 + 𝑟2) =629 

Hence, we can conclude that.  

𝑅 = 25 

𝑟 = 2 
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𝜃 = 𝜋 

𝜙 =
𝜋

4
 

𝑓(𝑟𝑒𝑖𝜃) = 𝑓(2𝑒𝑖𝜋) 

∫
621𝑓 (25𝑒

𝑖π
4 )

629 − 100𝐶𝑜𝑠 (𝜋 −
𝜋
4) 

𝑑∅

2𝜋

0

= 2𝜋𝑓(2𝑒𝑖𝜋) 

 

9.3 Review questions 

1. Using the Poisson integral formula, find the value of ∫
75𝑓(10𝑒

𝑖π
4 )

125−100𝐶𝑜𝑠(
𝜋

2
−

𝜋

4
) 

𝑑∅
2𝜋

0
 

2. Using the Poisson integral formula, find the value of ∫
64𝑓(10𝑒

𝑖π
10)

136−120𝐶𝑜𝑠(
𝜋

2
−

𝜋

10
) 

𝑑∅
2𝜋

0
 

3. Using the Poisson integral formula, find the value of ∫
9𝑓(5𝑒

𝑖π
10)

41−40𝐶𝑜𝑠(𝜋−
𝜋

10
) 

𝑑∅
2𝜋

0
 

4. Using the Poisson integral formula, find the value of ∫
80𝑓(9𝑒

𝑖π
2 )

82−18𝐶𝑜𝑠(𝜋−
𝜋

2
) 

𝑑∅
2𝜋

0
 

5. Using the Poisson integral formula, find the value of ∫
99𝑓(10𝑒

𝑖π
10)

101−20𝐶𝑜𝑠(
𝜋

2
−

𝜋

10
) 

𝑑∅
2𝜋

0
 

9.4 Self-assessment 

1. Let D be a simply connected domain and suppose 𝑓0 (𝑧) is analytic in a domain 𝐷0  ⊂  𝐷. If 

the function element (𝑓0 , 𝐷0) can be analytically continued along every curve in D, then there 

exists a single-valued function 𝑓(𝑧) that is analytic throughout 𝐷 with 𝑓(𝑧) ≡ 𝑓0(𝑧)  in 𝐷0. 

 

A.  True 

B. 𝐹𝑎𝑙𝑠𝑒 

 

 

2. Let D be a simply connected domain and suppose 𝑓0 (𝑧) is analytic in a domain 𝐷0  ⊂  𝐷. If 

the function element (𝑓0 , 𝐷0) can be analytically continued along every curve in D, then there 

does not exists any single-valued function 𝑓(𝑧) that is analytic throughout 𝐷 with 𝑓(𝑧) ≡ 

𝑓0(𝑧)  in 𝐷0. 

 

A.  True 

B. 𝐹𝑎𝑙𝑠𝑒 

 

 

3. Let D be a simply connected domain and suppose 𝑓0 (𝑧) is analytic in a domain 𝐷0  ⊂  𝐷. If 

the function element (𝑓0 , 𝐷0) can be analytically continued along every curve in D, then there 

exists a single-valued function 𝑓(𝑧) that is not analytic throughout 𝐷 with 𝑓(𝑧) ≡ 𝑓0(𝑧)  in 

𝐷0. 

 

A.  True 

B. 𝐹𝑎𝑙𝑠𝑒 
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4. Let {𝑆𝑛} be a sequence of closed and bounded rectangles in the plane. If 𝑆𝑛+1 ⊂ 𝑆𝑛 for every 

𝑛 and the length of the sides of 𝑆𝑛 approaches 0 as 𝑛 →  ∞, then there is exactly one point in 

common to all the 𝑆𝑛 . 

 

A. True 

B. 𝐹𝑎𝑙𝑠𝑒 

 

5. Let {𝑆𝑛} be a sequence of closed and bounded rectangles in the plane. If 𝑆𝑛+1 ⊂ 𝑆𝑛 for every 

𝑛 and the length of the sides of 𝑆𝑛 approaches 0 as 𝑛 →  ∞, then there are two points in 

common to all the 𝑆𝑛 . 

 

A. True 

B. 𝐹𝑎𝑙𝑠𝑒 

 

6. Using the Poisson integral formula, the 
1

2𝜋
∫

(𝑅2−1)𝑓(𝑅𝑒 𝑖∅)

[𝑅2−2𝑅𝐶𝑜𝑠(𝜋−𝜙)+1] 
𝑑∅ =

2𝜋

0
 

A. 𝑓(𝑒𝑖𝜋) 

B. 𝑓(2𝑒𝑖𝜋) 

C. 𝑓(3𝑒𝑖𝜋) 

D. 2 𝑓(𝑒𝑖𝜋) 

 

7. Using the Poisson integral formula, the ∫
(𝑅2−4)𝑓(𝑅𝑒 𝑖∅)

[𝑅2−4𝑅𝐶𝑜𝑠(𝜋−𝜙)+4] 
𝑑∅ =

2𝜋

0
 

A. 𝜋𝑓(𝑒𝑖𝜋) 

B. 2𝜋𝑓(2𝑒𝑖𝜋) 

C. 3𝜋𝑓(3𝑒𝑖𝜋) 

D.  𝑓(𝑒𝑖𝜋) 

 

8. Using the Poisson integral formula, the 
1

2𝜋
∫

(𝑅2−9)𝑓(𝑅𝑒 𝑖∅)

[𝑅2−6𝑅𝐶𝑜𝑠(𝜋−𝜙)+9] 
𝑑∅ =

2𝜋

0
 

A. 𝑓(3𝑒𝑖𝜋) 

B. 𝑓(2𝑒𝑖𝜋) 

C. 𝑓(3𝑒𝑖𝜋) 

D. 2 𝑓(𝑒𝑖𝜋) 

 

9. Using the Poisson integral formula, the ∫
(𝑅2−16)𝑓(𝑅𝑒 𝑖∅)

[𝑅2−8𝑅𝐶𝑜𝑠(𝜋−𝜙)+16] 
𝑑∅ =

2𝜋

0
 

A. 𝜋𝑓(𝑒𝑖𝜋) 

B. 2𝜋𝑓(4𝑒𝑖𝜋) 

C. 3𝜋𝑓(3𝑒𝑖𝜋) 

D.  𝑓(5𝑒𝑖𝜋) 

 

10. Using the Poisson integral formula, the ∫
21𝑓(5𝑒 𝑖∅)

29−20𝐶𝑜𝑠(𝜋−𝜙) 
𝑑∅ =

2𝜋

0
 

A. 𝜋𝑓(𝑒𝑖𝜋) 

B. 2𝜋𝑓(2𝑒𝑖𝜋) 

C. 3𝜋𝑓(3𝑒𝑖𝜋) 

D.  𝑓(𝑒𝑖𝜋) 

 

11. Using the Poisson integral formula, the 
1

2𝜋
∫

27𝑓(6𝑒 𝑖∅)

45−36𝐶𝑜𝑠(𝜋−𝜙)] 
𝑑∅ =

2𝜋

0
 

A. 𝑓(3𝑒𝑖𝜋) 

B. 𝑓(2𝑒𝑖𝜋) 

C. 𝑓(3𝑒𝑖𝜋) 

D. 2 𝑓(𝑒𝑖𝜋) 
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12. Using the Poisson integral formula, the ∫
20𝑓(6𝑒 𝑖∅)

52−48𝐶𝑜𝑠(𝜋−𝜙) 
𝑑∅ =

2𝜋

0
 

A. 𝜋𝑓(𝑒𝑖𝜋) 

B. 2𝜋𝑓(4𝑒𝑖𝜋) 

C. 3𝜋𝑓(3𝑒𝑖𝜋) 

D.  𝑓(5𝑒𝑖𝜋) 

 

13. Using the Poisson integral formula, the ∫
99𝑓(10𝑒𝑖∅)

101−20𝐶𝑜𝑠(𝜋−𝜙) 
𝑑∅ =

2𝜋

0
 

A. 𝜋𝑓(𝑒𝑖𝜋) 

B. 2𝜋𝑓(𝑒𝑖𝜋) 

C. 3𝜋𝑓(3𝑒𝑖𝜋) 

D.  𝑓(𝑒𝑖𝜋) 

 

14. Using the Poisson integral formula, the 
1

2𝜋
∫

91𝑓(10𝑒 𝑖∅)

109−60𝐶𝑜𝑠(𝜋−𝜙)] 
𝑑∅ =

2𝜋

0
 

A. 𝑓(3𝑒𝑖𝜋) 

B. 𝑓(2𝑒𝑖𝜋) 

C. 𝑓(3𝑒𝑖𝜋) 

D. 2 𝑓(𝑒𝑖𝜋) 

 

15. Using the Poisson integral formula, the ∫
4𝑓(5𝑒 𝑖∅)

41−40𝐶𝑜𝑠(𝜋−𝜙) 
𝑑∅ =

2𝜋

0
 

A. 𝜋𝑓(𝑒𝑖𝜋) 

B. 2𝜋𝑓(4𝑒𝑖𝜋) 

C. 3𝜋𝑓(3𝑒𝑖𝜋) 

D.  𝑓(5𝑒𝑖𝜋) 

 

Table 1: Answers of self-assessment 

Question number Correct answer 

1 A 

2 B 

3 B 

4 A 

5 B 

6 A 

7 B 

8 D 

9 B 

10 B 

11 A 
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12 B 

13 B 

14 A 

15 B 

 

9.5 Summary 

 If 𝑓(𝑧) is analytic within and on a circle 𝐶 defined by |𝑧| = 𝑅 and if 𝑎 is any point within, 𝐶, 

then 

𝑓(𝑟𝑒𝑖𝜃) =
1

2𝜋
∫

(𝑅2 − 𝑟2)𝑓(𝑅𝑒𝑖∅)

𝑅2 − 2𝑅𝑟𝐶𝑜𝑠(𝜃 − ∅) + 𝑟2
𝑑∅

2𝜋

0

 

Where 𝑎 = 𝑟𝑒𝑖𝜃is any point inside the circle |𝑧| = 𝑅. 

 
(𝑅2−𝑟2)𝑓(𝑅𝑒 𝑖∅)

[𝑅2−2𝑅𝑟𝐶𝑜𝑠(𝜃−𝜙)+𝑟2] 
 is known as the Poisson Kernal for the disk |𝑧 | < 𝑅.  

 The Poisson, kernel is bounded above by 
(𝑅2−𝑟2)

[𝑅2−2𝑅𝑟+𝑟2] 
=

𝑅+𝑟

𝑅−𝑟
. 

 The conjugate Poisson kernel is a mathematical function used in complex analysis and 

potential theory. It is defined as the conjugate of the Poisson kernel, which is a function that 

maps points in the complex plane to the unit disk. The conjugate Poisson kernel is given by 

the formula:𝑃∗(𝑧)  =  𝑃 (
1

𝑧∗
) where 𝑃(𝑧) is the Poisson kernel and 𝑧∗ is the complex conjugate 

of z.  

 

9.6 Keywords 

Monodromy Theorem: 

Let D be a simply connected domain, and suppose 𝑓0 (𝑧) is analytic in a domain 𝐷0  ⊂  𝐷. If the 
function element (𝑓0, 𝐷0) can be analytically continued along every curve in D, then there exists a 
single-valued function 𝑓(𝑧) that is exists a single-valued function 𝑓(𝑧) that is analytic throughout 𝐷 
with 𝑓(𝑧) ≡ 𝑓0(𝑧)  in 𝐷0. 

 

9.7 Further Readings 

  

1. Complex Variables And Applications By Churchill, R. V. And Brown, J. W., Mcgraw Hill 
Education. 

2. Foundations Of Complex Analysis By S. Ponnusamy, Narosa Publishing House. 

3. Complex Analysis By Lars V. Ahlfors, Mcgraw Hill Education. 

4. Complex Variables Theory And Applications By H. S. Kasana, Prentice Hall. 
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Unit 10 - Order of entire function 

Purpose and Objectives: 

 

The Mean Value Property states that for a harmonic function in a domain, the average value of the 
function over a ball is equal to the value of the function at the center of the ball. Harmonic functions 
are a type of function that satisfy the mean value property. Hence, the mean value property is a 
necessary condition for a function to be harmonic. 

In other words, harmonic functions are functions that have the property that the mean of their values 
over a small region is equal to the value of the function at a point in the interior of that region. The 
mean value property is a fundamental property of harmonic functions, and it plays a key role in 
various applications, such as potential theory and partial differential equations. 

Harnack's inequality is a fundamental result in mathematics with various applications in several 
areas, including partial differential equations, geometry, and potential theory. It provides a 
relationship between the values of a harmonic function on a small ball and on a large one, which is 
useful in the study of the regularity and behavior of solutions to elliptic equations. Additionally, 
Harnack's inequality is also crucial in the study of the asymptotic behavior of Markov processes, 
stochastic differential equations, and other areas in probability theory. 

The Dirichlet problem is a well-known problem in mathematics, specifically in the field of partial 
differential equations. It asks to find a solution to a partial differential equation that satisfies certain 
boundary conditions on a given domain. The problem is named after the German mathematician 
Peter Gustav Lejeune Dirichlet and has numerous applications in physics, engineering, and 
mathematics. It provides a way to model various physical phenomena such as heat conduction, 
diffusion, and potential flow. 

After this unit students can be able to- 

1. State and prove the Harnack's inequality.  

2. Learn the mean value property of harmonic functions. 

3. Solve the problem based on the Dirichlet problem. 

 

Introduction 

The Harnack’s inequality is a result in mathematical analysis, which states that for a non-negative 
solution 𝑢(𝑥) of a linear elliptic partial differential equation in a domain, the maximum value of 𝑢 in 
a ball centered at a point is bounded above by the average value of 𝑢 over the same ball. Before 
embarking the concept of Harnack’s inequality, first we discuss the relationship between mean value 
property and harmonic function. This result has important applications in the study of heat diffusion 
and potential theory we will understand the Dirichlet problem to find solutions to boundary value 
problems in these areas.  

 

10.1 Relation Between Mean Value Property and Harmonic Functions 

Harmonic function 

A harmonic function is a real-valued function that satisfies Laplace's equation, which states that the 
sum of the second partial derivatives with respect to x and y is equal to zero. 

Mathematically, for a function 𝑢(𝑥, 𝑦), the Laplace's equation can be expressed as: 

 

𝜕2𝑢

𝜕𝑥2
  +

𝜕2𝑢

𝜕𝑦2
 =  0                                                                                                                                     (4.1) 
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Harmonic functions have several important properties, including being analytic and continuous, 
having no local maxima or minima, and having a unique mean value over any region in which they 
are defined. These properties make harmonic functions useful in a variety of mathematical and 
scientific applications, such as solving boundary value problems and modeling physical phenomena. 

The harmonic conjugate of a harmonic function 

The harmonic conjugate of a harmonic function u is another harmonic function 𝑣 that satisfies the 
condition 𝑢 +  𝑖𝑣 is analytic (i.e., it has continuous first and second partial derivatives). In other 
words, u and v together form a complex function that is analytic in the region where u is defined. 

The harmonic conjugate of u is unique up to an additive constant, and it can be found by integrating 
the derivative of u with respect to y (or x, if u is expressed in terms of x).  

For example, if 𝑢(𝑥, 𝑦)  =  𝑓(𝑥) +  𝑔(𝑦), then its harmonic conjugate is given by 𝑣(𝑥, 𝑦)  =  −𝑔(𝑥)  +
 𝑓(𝑦)  +  𝐶, where 𝐶 is an arbitrary constant. 

In conclusion, the harmonic conjugate of a harmonic function is a unique function that helps to form 
an analytic complex function in the region where the harmonic function is defined. 

The harmonic conjugate of an analytic function is another function that, when added to the original 
function, forms a harmonic function. A harmonic function is a function that satisfies Laplace's 
equation, which states that the sum of the second partial derivatives with respect to x and y is zero. 

Let 𝑓(𝑥, 𝑦) be an analytic function. Its harmonic conjugate, denoted by 𝑔(𝑥, 𝑦), is defined as: 

𝑔(𝑥, 𝑦)  =  𝜕𝑦 𝑢(𝑥, 𝑦)  −  𝜕𝑥 𝑣(𝑥, 𝑦) 

where 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) are the real and imaginary parts of 𝑓(𝑥, 𝑦), respectively. 

The two functions, 𝑓(𝑥,𝑦) 𝑎𝑛𝑑 𝑔(𝑥, 𝑦), are called Cauchy-Riemann partners, and their sum is a 
harmonic function. 

Mean value property.  

The mean value property of harmonic functions states that, for any point in a ball in a harmonic 
function, the value of the function at that point is equal to the average of the function's values over 
the boundary of the ball.  

In mathematical terms, if 𝑢(𝑥) is a harmonic function in a ball 𝐵(𝑥0, 𝑅) centered at 𝑥0 with radius 𝑅, 
then: 

𝑢(𝑥0)  =  (
1

|𝐵(𝑥0,𝑟)|
) ∫ 𝑢(𝑥) 𝑑𝑥

{𝐵(𝑥0,𝑟)}
                                                                                                              (4.2) 

 

where |𝐵(𝑥0, 𝑟)| is the measure (area or volume, depending on the dimension) of the ball.  

In other words, continuous function 𝑢 ∶  𝐺 → ℝ has the Mean Value Property (MVP) if whenever.  

𝐵 (𝑎 = 𝑥0;  𝑅) ⊂  𝐺, 𝑢(𝑎)  =   
1

2𝜋
∫ 𝑢(𝑎 + 𝑅𝑒𝑖𝜃)𝑑𝜃
2𝜋

0
                                                                                             (4.3)  

 

 

This property provides a useful tool for solving partial differential equations and finding potential 
functions in physics. 

Proof:  

Let 𝑢:𝐺 → ℝ  be a harmonic function and let �̅� (𝑎 ∶  𝑅) be a closed disk contained in 𝐺. If 𝐶 is the 

circle, |𝑧 −  𝑎|  =  𝑅 then then 𝑢(𝑎)  =
1

2𝜋
∫ 𝑢(𝑎 + 𝑅𝑒𝑖𝜃)𝑑𝜃
2𝜋

0
      

The proof of the Mean Value Theorem is since a harmonic function is equal to its mean over any 
region. This means that the average value of the function over the boundary of a disk is equal to the 
value of the function at the center of the disk. 
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To prove this, we start by noting that a harmonic function is analytic, meaning it satisfies the Cauchy-
Riemann equations and can be represented by a power series. Using this representation, we can write 
the function as: 

𝑢(𝑧) =  𝑢(𝑎) + ∑ (𝑧 − 𝑎)𝑛∞
𝑛=1 ∗

1

𝑛!
(
𝑑𝑛𝑢(𝑎)

𝑑𝑧𝑛
)                                                                                                     (4.4) 

where 
𝑑𝑛𝑢(𝑎)

𝑑𝑧𝑛
 is the nth derivative of 𝑢 evaluated at 𝑎. 

Next, we consider the value of the function at a point on the boundary of the disk, given by 𝑎 +  𝑅𝑒𝑖𝜃 . 
Using this, we can rewrite the above power series as: 

𝑢(𝑎 +  𝑅𝑒𝑖𝜃) =  𝑢(𝑎) + ∑ (𝑎 +  𝑅𝑒𝑖𝜃  − 𝑎)
𝑛∞

𝑛=1 ∗
1

𝑛!
(
𝑑𝑛𝑢(𝑎)

𝑑𝑧𝑛
)                                                                     (4.5) 

⟹ 𝑢(𝑎 +  𝑅𝑒𝑖𝜃) =  𝑢(𝑎) + ∑ (𝑅𝑒𝑖𝜃  )
𝑛∞

𝑛=1 ∗
1

𝑛!
(
𝑑𝑛𝑢(𝑎)

𝑑𝑧𝑛
)                                                                               (4.6) 

Now, we integrate both sides over the interval [0, 2𝜋] to obtain: 

1

2𝜋
∫ 𝑢(𝑎 + 𝑅𝑒𝑖𝜃)𝑑𝜃
2𝜋

0
 = 𝑢(𝑎) +

1

2𝜋
∫ ∑ (𝑅𝑒𝑖𝜃 )

𝑛∞
𝑛=1 ∗

1

𝑛!
(
𝑑𝑛𝑢(𝑎)

𝑑𝑧𝑛
)𝑑𝜃

2𝜋

0
                                            (4.7) 

Since the function 𝑢 is harmonic, it follows that all its derivatives are also harmonic.  

This means that the second term on the right side is equal to zero. Therefore, we can simplify the 
above expression to: 

1

2𝜋
∫ 𝑢(𝑎 + 𝑅𝑒𝑖𝜃)𝑑𝜃
2𝜋

0
 = 𝑢(𝑎)                                                                                                         (4.8) 

Thus, the average value of the function over the boundary of the disk is equal to the value of the 
function at the center of the disk, proving the Mean Value Theorem. 

 

10.2 Harnack's inequality 

Suppose 𝑢(𝑧 ) is harmonic in the disk 𝛥(𝑧0 ;  𝑅) = {𝑧 ∶  |𝑧 − 𝑧0 | < 𝑅},with 𝑢(𝑧 )  ≥  0  

for all 𝑧 ∈  𝛥(𝑧0 ;  𝑅), then for every z in this disk, we have 

𝑢(𝑧0 )
𝑅 − |𝑧 − 𝑧0 |

𝑅 + |𝑧 − 𝑧0 |
 ≤   𝑢(𝑧 )  ≤  𝑢(𝑧0 )

𝑅 + |𝑧 −  𝑧0 |

𝑅 − |𝑧 −  𝑧0 |
 

 

Proof:  

First, we consider the average value of the function u on the circle centered at z0 with radius |𝑧 – 𝑧0|. 
By definition, this average value is given by 

𝐴(|𝑧 − 𝑧0|)  =  (
1

2𝜋
) ∫ 𝑢(𝑧0  + |𝑧 − 𝑧0|𝑒

𝑖𝑡) 𝑑𝑡
2𝜋

0
 .                                                                                      (4.9) 

Next, we apply the Mean Value Property for Harmonic Functions to the function 𝑢 −  𝑢(𝑧0), which 
states that for any positive real number r such that 0 <  𝑟 <  𝑅, there exists a point θ in the interval 
[0, 2𝜋) such that 

𝑢(𝑧0  +  𝑟𝑒
𝑖𝜃) −  𝑢(𝑧0)  =  𝑟 𝜕𝑟𝑢(𝑧0  +  𝑟𝑒

𝑖𝜃)                                                                                             (4.10) 

Substituting this expression into the formula for 𝐴(|𝑧 − 𝑧0|) and interchanging the order of 
integration and differentiation, we obtain 

𝐴(|𝑧 − 𝑧0|)  =  (
1

2𝜋
) ∫ 𝑢(𝑧0  + |𝑧 − 𝑧0|𝑒

𝑖𝑡) 𝑑𝑡
2𝜋

0

  

=  (
1

2𝜋
) ∫ [𝑢(𝑧0) + |𝑧 −  𝑧0|𝜕𝑟  𝑢(𝑧0  + |𝑧 − 𝑧0|𝑒

𝑖𝑡)]𝑑𝑡
2𝜋

0

  

=  𝑢(𝑧0) + |𝑧 −  𝑧0|𝜕𝑟  𝑢(𝑧0). 

Finally, using the definition of partial derivative with respect to the radial coordinate, we have 

𝜕𝑟  𝑢(𝑧0) =  (
1

2
)
𝑢(𝑧0 + 𝑅)− 𝑢(𝑧0 − 𝑅)

𝑅
 =

𝐴(𝑅)

𝑅
.                                                                                                       (4.11) 

Substituting this expression into the formula for 𝐴(|𝑧 − 𝑧0|), we obtain 
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𝐴(|𝑧 − 𝑧0|) =  𝑢(𝑧0) +
|𝑧 − 𝑧0|𝐴(𝑅)

𝑅
.                                                                                                                        (4.12) 

Dividing both sides by |𝑧 − 𝑧0| and rearranging, we find that 

𝑢(𝑧0)(𝑅 − |𝑧 − 𝑧0|)

𝑅 + |𝑧 − 𝑧0|
 ≤  𝐴(|𝑧 − 𝑧0|) ≤

𝑢(𝑧0)(𝑅 + |𝑧 − 𝑧0|)

𝑅 − |𝑧 − 𝑧0|
.                                                                                            (4.13) 

Since the average value of 𝑢 on the circle centered at 𝑧0 with radius |𝑧 − 𝑧0| provides an upper bound 
for the function 𝑢, we conclude that 

𝑢(𝑧0)(𝑅 − |𝑧 − 𝑧0|)

𝑅 + |𝑧 − 𝑧0|
 ≤  𝑢(𝑧) ≤

𝑢(𝑧0)(𝑅 + |𝑧 − 𝑧0|)

𝑅 − |𝑧 − 𝑧0|
                                                                                                     (4.14) 

for every 𝑧 in the disk 𝛥(𝑧0 , 𝑅). 

 

10.3 Dirichlet Problem 

The Dirichlet problem in complex analysis is a boundary value problem that seeks to find a complex 
valued function that is analytic within a given domain and takes on specified boundary values on 
the boundary of that domain. 

For example, consider the unit disk centered at the origin in the complex plane. The Dirichlet problem 
asks us to find a complex valued function 𝑓(𝑧) that is analytic within the unit disk and takes on the 

specified boundary value 𝑓(𝑒𝑖𝑡)  =  𝑔(𝑡) for all t in the interval [0,2𝜋], where 𝑔(𝑡) is a given function. 

One possible solution to this problem is to use the theory of complex analysis and the representation 
of analytic functions using power series. 

 By using the Cauchy-Riemann equations, it can be shown that any complex valued function that is 
analytic within the unit disk can be represented by a power series of the form. 

 𝑓(𝑧)  =  𝛴 𝑎𝑛(𝑧 − 𝑧0)
𝑛, where 𝑧0  is the center of the disk. 

The boundary values of the function can then be used to determine the coefficients of the power 
series. 

 For example, if 𝑔(𝑡) = cos(𝑡),  

then 𝑓(𝑒𝑖𝑡) = cos(𝑡) 

= 𝛴 𝑎𝑛 𝑒
𝑖𝑛𝑡,  

where the coefficients can be calculated by matching the real and imaginary parts of both sides of the 
equation. 

Initially, the problem was to determine the equilibrium temperature distribution on a disk from 
measurements taken along the boundary.  

The temperature at points inside the disk must satisfy a partial differential equation called Laplace’s 
equation corresponding to the physical condition that the total heat energy contained in the disk shall 
be a minimum.  

A slight variation of this problem occurs when there are points inside the disk at which heat is added 
(sources) or removed (sinks) as long as the temperature remains constant at each point (stationary 
flow), in which case Poisson’s equation is satisfied.  

How to construct a harmonic function in a given domain when its values are prescribed on the 
boundary of the domain is the key problem is known as Dirichlet problem. 

 

Boundary value problems associated to Laplace equation.  

The Poisson equation is a second-order partial differential equation of the form 

𝛻2𝑢(𝑥)  =  𝑓(𝑥) 

where 𝑢(𝑥) is an unknown function and 𝑓(𝑥) is a given function. The equation states that the 
Laplacian of 𝑢(𝑥) is equal to 𝑓(𝑥).  
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The solution to the Poisson equation depends on the boundary conditions for the unknown function 
𝑢(𝑥). 

There are several methods for solving the Poisson equation, including numerical methods, analytical 
methods, and Green's function methods. 

One common analytical method is to use the method of separation of variables.  

Suppose that 𝑢(𝑥)  =  𝑋(𝑥)𝑌(𝑦), then the Laplacian of 𝑢(𝑥) becomes. 

𝛻2𝑢(𝑥) =
𝜕2𝑢(𝑥)

𝜕𝑥2
  +

𝜕2𝑢(𝑥)

𝜕𝑦2
 

= 𝑋′′(𝑥)𝑌(𝑦)  +  𝑋(𝑥)𝑌′′(𝑦) 

where 𝑋′′(𝑥) 𝑎𝑛𝑑 𝑌′′(𝑦) denote the second derivatives with respect to 𝑥 and 𝑦, respectively. Setting 
the right-hand side equal to 𝑓(𝑥), we have 

𝑋′′(𝑥)𝑌(𝑦)  +  𝑋(𝑥)𝑌′′(𝑦)  =  𝑓(𝑥) 

Dividing both sides by 𝑋𝑌, we get 

𝑋′′(𝑥)

𝑋(𝑥)
+
𝑌′′(𝑦)

𝑌(𝑦)
 =
𝑓(𝑥)

𝑋𝑌
 

 

This equation is equal to a constant 𝜆, so we have 

𝑋′′(𝑥)

𝑋(𝑥)
= − 𝜆

𝑌′′(𝑦)

𝑌(𝑦)
= − 𝜆 +

𝑓(𝑥)

𝑋𝑌
 

 

Solving the above two differential equations, we obtain the general solution. 

𝑢(𝑥) =  ∑𝐶𝑛𝑋𝑛(𝑥)𝑌𝑛(𝑦)  

where 𝐶𝑛 are constants and 𝑋𝑛(𝑥) 𝑎𝑛𝑑 𝑌𝑛(𝑦) are the eigenfunctions corresponding to the eigenvalue 
𝜆𝑛 

The final solution depends on the specific boundary conditions and the values of the constants 𝐶𝑛. 

Note that this method is only applicable when the equation can be separated into two independent 
ordinary differential equations. In general, the Poisson equation requires numerical methods or 
Green's function methods to solve. 

Another of the generic partial differential equations is Laplace’s equation,  𝛻2𝑢 = 0 

This equation first appeared in the unit on complex variables when we discussed harmonic functions. 
Another example is the electric potential for electrostatics. As we described for static electromagnetic 
fields, 

𝛻 ⋅ 𝐸 =
𝜌

𝜖0
, 𝐸 = 𝛻𝜙. 

In regions devoid of charge, these equations yield the Laplace equation  𝛻2𝜙 = 0. 

Another example comes from studying temperature distributions.  

Consider a thin rectangular plate with the boundaries set at fixed temperatures. Temperature 
changes of the plate are governed by the heat equation. The solution of the heat equation subject to 
these boundary conditions is time dependent.  

In fact, after a long period of time the plate will reach thermal equilibrium. If the boundary 
temperature is zero, then the plate temperature decays to zero across the plate. However, if the 
boundaries are maintained at a fixed nonzero temperature, which means energy is being put into the 
system to maintain the boundary conditions, the internal temperature may reach a nonzero 
equilibrium temperature.  

Reaching thermal equilibrium means that asymptotically in time the solution becomes time 
independent. Thus, the equilibrium state is a solution of the time independent heat equation, which 
is another Laplace equation, 𝛻2𝑢 = 0 
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Example  

Equilibrium temperature distribution for a rectangular plate 

Let us consider Laplace’s equation in Cartesian coordinates, 

𝜕2𝑢

𝜕𝑥2
  +

𝜕2𝑢

𝜕𝑦2
= 0, 0 < 𝑥 < 𝐿, 0 < 𝑦 < 𝐻                                                                                 (4.15) 

 with the boundary conditions 

 

𝑢(0, 𝑦) = 0

𝑢(𝜋, 𝑦) = 0

𝑢(𝑥, 0) = 𝑓(𝑥) = 𝑆𝑖𝑛𝑥

𝑢(𝑥, 𝐻 = 1) =
𝑆𝑖𝑛𝑥

𝑒 }
 
 

 
 

                                                                                                                                     (4.16) 

 

Figure 4.1: The boundary condition for the heat distribution problem. 

  

Solution: 

This is a partial differential equation for Laplace's equation, which describes the distribution of heat 
in a 2D space. To solve this equation, we can use separation of variables method. 

Assume that the solution can be written as: 

𝑢(𝑥, 𝑦)  =  𝑋(𝑥) 𝑌(𝑦) 

Substituting this into the equation, we have: 

(𝑋(𝑥) 𝑌(𝑦))′′ + (𝑋(𝑥) 𝑌(𝑦))′′ =  0 

Dividing both sides by 𝑋(𝑥) 𝑌(𝑦), we get: 

𝑋′′(𝑥) 𝑌(𝑦)  +  𝑋(𝑥) 𝑌′′(𝑦)  =  0 

Since this must be true for all x and y, we can divide both sides by 𝑋(𝑥) 𝑌(𝑦), to get: 

(
𝑋′′(𝑥)

𝑋(𝑥)
) + (

𝑌′′(𝑦)

𝑌(𝑦)
) =  0 
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This can be simplified to: 

𝜆2  =  −
𝑋′′(𝑥)

𝑋(𝑥)
  =

𝑌′′(𝑦)

𝑌(𝑦)
 

 

where 𝜆2 is a constant. 

Solving for 𝑋(𝑥) 𝑎𝑛𝑑 𝑌(𝑦), we have: 

𝑋′′(𝑥) + 𝜆2 𝑋(𝑥)  =  0  

𝑌′′(𝑦)  − 𝜆2 𝑌(𝑦)  =  0 

The solutions for 𝑋(𝑥) 𝑎𝑛𝑑 𝑌(𝑦) can be written as: 

𝑋(𝑥)  =  𝐴 𝑐𝑜𝑠(𝜆 𝑥)  +  𝐵 𝑠𝑖𝑛(𝜆 𝑥) 

𝑌(𝑦)  =  𝐶 𝑒−𝜆 𝑦  +  𝐷 𝑒𝜆 𝑦 

where 𝐴, 𝐵, 𝐶, 𝑎𝑛𝑑 𝐷 are constants. 

Hence   𝑢(𝑥, 𝑦) =  𝐴 𝑐𝑜𝑠(𝜆 𝑥) +  𝐵 𝑠𝑖𝑛(𝜆 𝑥). [𝐶 𝑒−𝜆 𝑦  +  𝐷 𝑒𝜆 𝑦]                                                     (4.17) 

Using the boundary conditions, we can find the values of 𝜆 and the coefficients 𝐴, 𝐵, 𝐶, 𝑎𝑛𝑑 𝐷. 

⟹𝑢(0,𝑦) =  𝐴 𝑐𝑜𝑠(𝜆 ∗ 0) +  𝐵 𝑠𝑖𝑛(𝜆 ∗ 0). [𝐶 𝑒−𝜆 𝑦  +  𝐷 𝑒𝜆 𝑦] = 0 

⟹ 𝑢(0,𝑦) =  𝐴 . [𝐶 𝑒−𝜆 𝑦  +  𝐷 𝑒𝜆 𝑦] = 0 

⟹𝐴 = 0 

Now put 𝐴 = 0 in (4.17)                                                 

𝑢(𝑥, 𝑦) =   𝐵 𝑠𝑖𝑛(𝜆 𝑥). [𝐶 𝑒−𝜆 𝑦  +  𝐷 𝑒𝜆 𝑦]                                                     (4.18) 

Now  

𝑢(𝜋, 𝑦) = 𝐵 𝑠𝑖𝑛(𝜆 𝜋). [𝐶 𝑒−𝜆 𝑦  +  𝐷 𝑒𝜆 𝑦] = 0 

⟹ 𝑠𝑖𝑛(𝜆 𝜋) = 0 

⟹𝑠𝑖𝑛(𝜆 𝜋) = sin (𝑛𝜋) 

⟹ 𝜆 = n, n = ±1,±2,…,  

So 

𝑢(𝑥, 𝑦) =   𝐵 𝑠𝑖𝑛(𝑛 𝑥). [𝐶 𝑒−𝑛 𝑦  +  𝐷 𝑒𝑛 𝑦]                                                     (4.19) 

Now apply 𝑢(𝑥, 0)  =  𝑆𝑖𝑛𝑥 

𝑢(𝑥, 0) =   𝐵 𝑠𝑖𝑛(𝑛 𝑥). [𝐶 +  𝐷 ] = 𝑠𝑖𝑛𝑥 

⟹𝐵𝐶 +𝐵𝐷 = 1, 𝑛 = 1 

Now update the (4.19) Hence  

𝑢(𝑥, 𝑦) =   𝐵 𝑠𝑖𝑛𝑥. [𝐶 𝑒− 𝑦  +  𝐷 𝑒  𝑦]                                                     (4.20) 

Now apply 𝑢(𝑥, 1) =
𝑆𝑖𝑛𝑥

𝑒
 

𝑢(𝑥, 1) =   𝐵 𝑠𝑖𝑛𝑥. [𝐶 𝑒− 1  +  𝐷 𝑒  1] =
𝑠𝑖𝑛𝑥

𝑒
 

⟹𝐵𝐶
𝑠𝑖𝑛𝑥

𝑒
+ 𝐵𝐷. 𝑠𝑖𝑛𝑥. 𝑒 =

𝑠𝑖𝑛𝑥

𝑒
+ 0 

⟹𝐵𝐶 = 1, 𝐵𝐷 = 0 

 

Now update the (4.20)(4.19) Hence  

𝑢(𝑥, 𝑦) =    𝑠𝑖𝑛𝑥. [ 𝑒− 𝑦  ] is the final solution of the given temperature distribution for a rectangular 
plate. 
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Figure4.2: The temperature distribution in x and y direction. 

                                                

 

10.4 Review questions 

1. Explain the Mean value property of harmonic function? 

2. State and prove the Harnack’s inequality for harmonic function in the closed disc? 

3. Suppose 𝑢(𝑧 ) is harmonic in the disk 𝛥(1 ;  1) = {𝑧 ∶  |𝑧 −  1 | < 1},with 𝑢(𝑧 )  ≥  0  

for all 𝑧 ∈  𝛥(1 ;  𝑅), then for every z in this disk, then show that 

𝑢(1 )
1 − |𝑧 −  1 |

1 + |𝑧 −  1 |
 ≤   𝑢(𝑧 )  ≤  𝑢(1 )

1 + |𝑧 −  1 |

1 − |𝑧 −  1 |
 

4. Solve 
𝜕2𝑢

𝜕𝑥2
  +

𝜕2𝑢

𝜕𝑦2
= 0,0 < 𝑥 < 𝐿, 0 < 𝑦 < 𝐻,under the boundary conditions 

𝑢(0,𝑦) = 0

𝑢(𝜋, 𝑦) = 0

𝑢(𝑥, 0) = 𝑓(𝑥) = 2𝑆𝑖𝑛𝑥

𝑢(𝑥, 1) =
𝑆𝑖𝑛𝑥

𝑒 }
 
 

 
 

                                                                                                                                      

5. Solve, 
𝜕2𝑢

𝜕𝑥2
  +

𝜕2𝑢

𝜕𝑦2
= 0, 0 < 𝑥 < 10,0 < 𝑦 < 𝐻, with the boundary conditions 

𝑢(0, 𝑦) = 0

𝑢(𝜋, 𝑦) = 0

𝑢(𝑥, 0) = 10𝑆𝑖𝑛𝑥

𝑢(𝑥, 10) = 10
𝑆𝑖𝑛𝑥

𝑒 }
 
 

 
 

                                                                                                                                      

 

10.5 Self-assessment 

1. Using the Mean Value property, the integral  
1

2𝜋
∫ 𝑢(5 + 𝑅𝑒𝑖𝜃)𝑑𝜃
2𝜋

0
 =                                                                                                           

 

A.  𝑢(5)                                                                                                          

B.  𝑢 (
5

2
)                                                                                                          

C. 𝑢(25)                                                                                                          
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D. 𝑢(10)                                                                                                          

 

 

2. Using the Mean Value property, the integral  
1

2𝜋
∫ 𝑢(15 + 𝑅𝑒𝑖𝜃)𝑑𝜃
2𝜋

0
 =                                                                                                           

 

A.  𝑢(15)                                                                                                          

B.  𝑢 (
15

2
)                                                                                                          

C. 𝑢(225)                                                                                                          

D. 𝑢(30)                                                                                                          

 

 

3. Using the Mean Value property, the integral  
1

2𝜋
∫ 𝑢(1 + 𝑖 + 𝑅𝑒𝑖𝜃)𝑑𝜃
2𝜋

0
 =                                                                                                           

 

A.  𝑢(1)                                                                                                          
B.  𝑢(𝑖)                                                                                                          

C. 𝑢(1 + 𝑖)                                                                                                          

D. 𝑢 (
1

1+𝑖
)                                                                                                          

 

4. Using the Mean Value property, which one of the following is true  

A.   
1

2𝜋
∫ 𝑢(10 + 𝑅𝑒𝑖𝜃)𝑑𝜃
2𝜋

0
 = 𝑢(10)   

B. 
1

2𝜋
∫ 𝑢(5 + 𝑅𝑒𝑖𝜃)𝑑𝜃
2𝜋

0
 = 𝑢(5/2)                                                                                                          

C. 
1

2𝜋
∫ 𝑢(5/2+ 𝑅𝑒𝑖𝜃)𝑑𝜃
2𝜋

0
 = 𝑢(5)                                                                                                          

D. 
1

2𝜋
∫ 𝑢(5 + 𝑅𝑒𝑖𝜃)𝑑𝜃
2𝜋

0
 = 𝑢(10)             

                                                                                                                                                                                                     

5.    Using the Mean Value property, which one of the following is true  

A.   
1

2𝜋
∫ 𝑢(1 + 𝑅𝑒𝑖𝜃)𝑑𝜃
2𝜋

0
 = 𝑢(10)   

B. 
1

2𝜋
∫ 𝑢(25 + 𝑅𝑒𝑖𝜃)𝑑𝜃
2𝜋

0
 = 𝑢(5/2)                                                                                                          

C. 
1

2𝜋
∫ 𝑢(5/2+ 𝑅𝑒𝑖𝜃)𝑑𝜃
2𝜋

0
 = 𝑢(5)                                                                                                          

D. 
1

2𝜋
∫ 𝑢(2 + 𝑖 + 𝑅𝑒𝑖𝜃)𝑑𝜃
2𝜋

0
 = 𝑢(2 + 𝑖)                                                                                                                                                                                                                 

6. Suppose 𝑢(𝑧 ) is harmonic in the disk 𝛥(𝑧0 ;  𝑅) = {𝑧 ∶  |𝑧  | < 1},with 𝑢(𝑧 )  ≥  0  

for all 𝑧 ∈  𝛥(0 ;  1), then which one of the following statements are true using the 

Harnack’s inequality for every z in this disk, 

𝐼: 𝑢(0 )
1 − |𝑧  |

1 + |𝑧  |
 ≤   𝑢(𝑧 )  

𝐼𝐼: 𝑢(𝑧 )  ≤  𝑢(0 )
1 + |𝑧  |

1 − |𝑧  |
 

A. 𝑂𝑛𝑙𝑦 𝐼                                                                                                          
B.  𝑂𝑛𝑙𝑦 𝐼𝐼                                                                                                          

C. 𝐵𝑜𝑡ℎ                                                                                                          

D. 𝑁𝑒𝑖𝑡ℎ𝑒𝑟 𝐼 𝑛𝑜𝑟 𝐼𝐼                                                                                                          

 

7. Suppose 𝑢(𝑧 ) is harmonic in the disk 𝛥(𝑧0 ;  𝑅) = {𝑧 ∶  |𝑧  | < 2},with 𝑢(𝑧 )  ≥  0  

for all 𝑧 ∈  𝛥(0 ;  2), then which one of the following statements are true using the 

Harnack’s inequality for every z in this disk, 

𝐼: 𝑢(0 )
2 − |𝑧  |

2 + |𝑧  |
 ≤   𝑢(𝑧 )  
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𝐼𝐼: 𝑢(𝑧 ) ≥  𝑢(0 )
2 + |𝑧  |

2 − |𝑧  |
 

A. 𝑂𝑛𝑙𝑦 𝐼                                                                                                          
B.  𝑂𝑛𝑙𝑦 𝐼𝐼                                                                                                          

C. 𝐵𝑜𝑡ℎ                                                                                                          

D. 𝑁𝑒𝑖𝑡ℎ𝑒𝑟 𝐼 𝑛𝑜𝑟 𝐼𝐼                                                                                                          

 

8. Suppose 𝑢(𝑧 ) is harmonic in the disk 𝛥(𝑧0 ;  𝑅) = {𝑧 ∶  |𝑧 − 𝑖 | < 1},with 𝑢(𝑧 )  ≥  0  

for all 𝑧 ∈  𝛥(𝑖 ;  1), then which one of the following statements are true using the 

Harnack’s inequality for every z in this disk, 

𝐼: 𝑢(𝑖 )
1 − |𝑧  |

1 + |𝑧  |
 ≤   𝑢(𝑧 )  

𝐼𝐼: 𝑢(𝑧 )  ≤  𝑢(𝑖 )
1 + |𝑧  |

1 − |𝑧  |
 

A. 𝑂𝑛𝑙𝑦 𝐼                                                                                                          
B.  𝑂𝑛𝑙𝑦 𝐼𝐼                                                                                                          

C. 𝐵𝑜𝑡ℎ                                                                                                          

D. 𝑁𝑒𝑖𝑡ℎ𝑒𝑟 𝐼 𝑛𝑜𝑟 𝐼𝐼                                                                                                          

 

9. Suppose 𝑢(𝑧 ) is harmonic in the disk 𝛥(𝑧0 ;  𝑅) = {𝑧 ∶  |𝑧  | < 5},with 𝑢(𝑧 )  ≥  0  

for all 𝑧 ∈  𝛥(0 ;  5), then which one of the following statements are true using the 

Harnack’s inequality for every z in this disk, 

𝐼: 𝑢(0 )
5 − |𝑧  |

5 + |𝑧  |
>   𝑢(𝑧 )  

𝐼𝐼: 𝑢(𝑧 )  ≤  𝑢(0 )
5 + |𝑧  |

5 − |𝑧  |
 

A. 𝑂𝑛𝑙𝑦 𝐼                                                                                                          
B.  𝑂𝑛𝑙𝑦 𝐼𝐼                                                                                                          

C. 𝐵𝑜𝑡ℎ                                                                                                          

D. 𝑁𝑒𝑖𝑡ℎ𝑒𝑟 𝐼 𝑛𝑜𝑟 𝐼𝐼   

 

                                                                                                        

10. Suppose 𝑢(𝑧 ) is harmonic in the disk 𝛥(𝑧0 ;  𝑅) = {𝑧 ∶  |𝑧 − 2  | < 1},with 𝑢(𝑧 )  ≥  0  

for all 𝑧 ∈  𝛥(0 ;  1), then which one of the following statements are true using the 

Harnack’s inequality for every z in this disk, 

𝐼: 𝑢(0 )
1 − |𝑧 − 2  |

1 + |𝑧 − 2  |
 ≤   𝑢(𝑧 )  

𝐼𝐼: 𝑢(𝑧 )  ≤  𝑢(0 )
1 + |𝑧 − 2  |

1 − |𝑧 − 2 |
 

A. 𝑂𝑛𝑙𝑦 𝐼                                                                                                          
B.  𝑂𝑛𝑙𝑦 𝐼𝐼                                                                                                          

C. 𝐵𝑜𝑡ℎ                                                                                                          

D. 𝑁𝑒𝑖𝑡ℎ𝑒𝑟 𝐼 𝑛𝑜𝑟 𝐼𝐼                                                                                                          

 

11. Consider the 𝑢(𝑥, 𝑦) =  𝐴 𝑐𝑜𝑠(𝜆 𝑥) +  𝐵 𝑠𝑖𝑛(𝜆 𝑥). [𝐶 𝑒−𝜆 𝑦  +  𝐷 𝑒𝜆 𝑦] be the solution of 

Laplace’s equation 
𝜕2𝑢

𝜕𝑥2
  +

𝜕2𝑢

𝜕𝑦2
= 0, 0 < 𝑥 < 𝐿, 0 < 𝑦 < 1 in Cartesian coordinates then what 

is the value of 𝐵 using 𝑢(0,𝑦) = 0. 

A. 0 

B. 2𝜋 

C. 3 
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D.  1 

 

with the boundary conditions 

𝑢(0, 𝑦) = 0.

𝑢(𝜋, 𝑦) = 0

𝑢(𝑥, 0) = 𝑓(𝑥) = 𝑆𝑖𝑛𝑥

𝑢(𝑥,𝐻 = 1) =
𝑆𝑖𝑛𝑥

𝑒 }
 
 

 
 

 

 

12. Consider the 𝑢(𝑥, 𝑦) =  𝐴 𝑐𝑜𝑠(𝜆 𝑥) +  𝐵 𝑠𝑖𝑛(𝜆 𝑥). [𝐶 𝑒−𝜆 𝑦  +  𝐷 𝑒𝜆 𝑦] be the solution of 

Laplace’s equation 
𝜕2𝑢

𝜕𝑥2
  +

𝜕2𝑢

𝜕𝑦2
= 0, 0 < 𝑥 < 𝐿, 0 < 𝑦 < 1 in Cartesian coordinates then what 

is the value of 𝜆 using 𝑢(0,𝑦) = 0, , 𝑢(𝜋, 𝑦) = 0. 

A. 𝜆 = 0.5  

B. 𝜆 = n, n = ±1,±2,…,  

C. 𝜆 =
3

2
 

D. 𝐶𝑎𝑛 𝑛𝑜𝑡 𝑏𝑒 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑  

 

13. Consider the 𝑢(𝑥, 𝑦) =  𝐴 𝑐𝑜𝑠(𝜆 𝑥) +  𝐵 𝑠𝑖𝑛(𝜆 𝑥). [𝐶 𝑒−𝜆 𝑦  +  𝐷 𝑒𝜆 𝑦] be the solution of 

Laplace’s equation 
𝜕2𝑢

𝜕𝑥2
  +

𝜕2𝑢

𝜕𝑦2
= 0, 0 < 𝑥 < 𝐿, 0 < 𝑦 < 1 in Cartesian coordinates then what 

is the value of 𝐵𝐶 with the boundary conditions 

𝑢(0,𝑦) = 0.

𝑢(𝜋, 𝑦) = 0

𝑢(𝑥, 0) = 𝑓(𝑥) = 𝑆𝑖𝑛𝑥

𝑢(𝑥, 𝐻 = 1) =
𝑆𝑖𝑛𝑥

𝑒 }
 
 

 
 

 

A. 0.5  

B. 1 

C. 
3

2
 

D. 𝐶𝑎𝑛 𝑛𝑜𝑡 𝑏𝑒 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑  

E.  

14.  Consider the 𝑢(𝑥, 𝑦) =  𝐴 𝑐𝑜𝑠(𝜆 𝑥) +  𝐵 𝑠𝑖𝑛(𝜆 𝑥). [𝐶 𝑒−𝜆 𝑦  +  𝐷 𝑒𝜆 𝑦] be the solution of 

Laplace’s equation 
𝜕2𝑢

𝜕𝑥2
  +

𝜕2𝑢

𝜕𝑦2
= 0, 0 < 𝑥 < 𝐿, 0 < 𝑦 < 1 in Cartesian coordinates then what 

is the value of 𝐵𝐷 with the boundary conditions 

𝑢(0,𝑦) = 0.

𝑢(𝜋,𝑦) = 0

𝑢(𝑥, 0) = 𝑓(𝑥) = 𝑆𝑖𝑛𝑥

𝑢(𝑥, 𝐻 = 1) =
𝑆𝑖𝑛𝑥

𝑒 }
 
 

 
 

 

A. 0.5  

B. 1 

C. 
3

2
 

D. 0  

15.  Consider the 𝑢(𝑥, 𝑦) =  𝐴 𝑐𝑜𝑠(𝜆 𝑥) +  𝐵 𝑠𝑖𝑛(𝜆 𝑥). [𝐶 𝑒−𝜆 𝑦  +  𝐷 𝑒𝜆 𝑦] be the solution of 

Laplace’s equation 
𝜕2𝑢

𝜕𝑥2
  +

𝜕2𝑢

𝜕𝑦2
= 0, 0 < 𝑥 < 𝐿, 0 < 𝑦 < 1 in Cartesian coordinates then what 

is the general solution of  with the boundary conditions 

𝑢(0,𝑦) = 0.

𝑢(𝜋, 𝑦) = 0

𝑢(𝑥, 0) = 𝑓(𝑥) = 𝑆𝑖𝑛𝑥

𝑢(𝑥, 𝐻 = 1) =
𝑆𝑖𝑛𝑥

𝑒 }
 
 

 
 

 

A. 𝑢(𝑥, 𝑦) =    𝑆𝑖𝑛𝑥. [ 𝑒− 𝑦 ] 

B. 𝑢(𝑥, 𝑦) =    𝐶𝑜𝑠𝑥. [ 𝑒− 𝑦  ] 

C. 𝑢(𝑥, 𝑦) =    𝑆𝑖𝑛𝑥. [ 𝑒𝑦  ] 

D. 𝑢(𝑥, 𝑦) =    𝐶𝑜𝑠𝑥. [ 𝑒𝑦  ]  
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Table 1: Answers of self-assessment 

Question number Correct answer 

1 A 

2 A 

3 C 

4 A 

5 D 

6 C 

7 A 

8 C 

9 B 

10 10.1 C 

11 10.2 A 

12 B 

13 C 

14 D 

15 A 

 

10.6 Summary 

 The mean value property of harmonic functions: 

For any point in a ball in a harmonic function, the value of the function at that point is equal 

to the average of the function's values over the boundary of the ball.  

In mathematical terms, if 𝑢(𝑥) is a harmonic function in a ball 𝐵(𝑥0, 𝑅) centered at 𝑥0 with radius 𝑅, 

then: 𝑢(𝑥0)  =  (
1

|𝐵(𝑥0,𝑟)|
) ∫ 𝑢(𝑥) 𝑑𝑥

{𝐵(𝑥0,𝑟)}
                                                                                                               

where |𝐵(𝑥0, 𝑟)| is the measure (area or volume, depending on the dimension) of the ball. 

 The average value of the function over the boundary of the disk is equal to the value of the 

function at the center of the disk, proving the Mean Value Theorem. 

 

10.7 Keywords 

Harnack's inequality 

Suppose 𝑢(𝑧 ) is harmonic in the disk 𝛥(𝑧0 ;  𝑅) = {𝑧 ∶  |𝑧 − 𝑧0 | < 𝑅},with 𝑢(𝑧 )  ≥  0  

for all 𝑧 ∈  𝛥(𝑧0 ;  𝑅), then for every z in this disk, we have 

  LOVELY PROFESSIONAL UNIVERSITY  124



Unit 10 - Order of entire function 

 

 

𝑢(𝑧0 )
𝑅 − |𝑧 − 𝑧0 |

𝑅 + |𝑧 − 𝑧0 |
 ≤   𝑢(𝑧 )  ≤  𝑢(𝑧0 )

𝑅 + |𝑧 −  𝑧0 |

𝑅 − |𝑧 −  𝑧0 |
 

 

10.8 Further Readings 

  

1. Complex Variables And Applications By Churchill, R. V. And Brown, J. W., Mcgraw Hill 
Education. 

2. Foundations Of Complex Analysis By S. Ponnusamy, Narosa Publishing House. 

3. Complex Analysis By Lars V. Ahlfors, Mcgraw Hill Education. 

4. Complex Variables Theory And Applications By H. S. Kasana, Prentice Hall. 
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Unit 11 - Open mapping theorem 

Purpose and Objectives: 

 

After this unit students can be able to- 

1. Understand the Schwarz Reflection Principle for analytic functions? 

2. Prove the Schwarz Reflection Principle for analytic functions? 

3. Learn the consequences of the Schwarz Reflection Principle 

Introduction 

If a function is analytic in the upper half plane and its real part is non-negative on the boundary (the 
real axis), then it can be extended analytically to the entire plane. In other words, if a function f(z) is 

analytic in the upper half plane and satisfies the condition 𝑅𝑒(𝑓(𝑧)) ≥ 0 for all real 𝑧, then 𝑓(𝑧) can 

be extended to the entire complex plane. 

The Schwarz Reflection Principle has several important applications in complex analysis, such as 
proving the analyticity of functions, constructing entire functions with prescribed properties, and 
solving boundary value problems. In this unit we will explore the Schwarz Reflection Principle for 
analytic function. 

11.1 Schwarz Reflection Principle for Analytic Functions 

Statement: 

The Schwarz Reflection Principle states that if a complex valued function 𝑓(𝑧) is analytic in the upper 
half plane (𝐼𝑚(𝑧)  >  0), and continuous on the boundary of the upper half plane (𝐼𝑚(𝑧)  =  0), and 

if 𝑓(𝑧) satisfies 𝑓(𝑧) = 𝑓((𝑧̅))̅̅ ̅̅ ̅̅ ̅̅ , then the function 𝑓(𝑧) can be extended to be analytic in the entire 
complex plane. 

or 

The Schwarz Reflection Principle states that if a function is analytic in the upper half plane and its 
real part is non-negative on the boundary (the real axis), then it can be extended analytically to the 
entire plane. In other words, if a function 𝑓(𝑧) is analytic in the upper half plane and satisfies the 

condition 𝑅𝑒(𝑓(𝑧)) ≥  0 for all real z, then 𝑓(𝑧) can be extended to the entire complex plane. 

  

Proof 1: 

The proof of the Schwarz Reflection Principle relies on the fact that if a function is analytic in the 
upper half plane and its real part is non-negative on the boundary, then it can be represented as a 
real part of another analytic function.  

Let 𝑓(𝑧) be analytic in the upper half plane and 𝑅𝑒(𝑓(𝑧)) ≥  0 for all real 𝑧.  

Then the function 𝑔(𝑧)  =  𝑓(𝑧) +  𝑖(−𝑓(𝑧)) is analytic in the upper half plane and satisfies 
𝑅𝑒(𝑔(𝑧))  =  0 for all real 𝑧. 

The proof also uses the maximum modulus principle and Liouville's theorem. 

Liouville's Theorem 

Liouville's Theorem states that a bounded holomorphic function on the entire complex plane must 
be constant. It is named after Joseph Liouville. 

Statement: 

Let 𝑓(𝑧): 𝐶 → 𝐶 be an entire function. Suppose there exists some real number𝑀 ≥ 0  such 
that |𝑓(𝑧)| ≤ 𝑀 for all 𝑧 ∈ 𝐶 Then 𝑓(𝑧) is a constant function. 
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Or  

If a function 𝑓(𝑧) is entire and bounded in the complex plane, then 𝑓(𝑧) is constant throughout the 
plane. 

Proof: 

It is given that  

i. A function 𝑓(𝑧) is analytic in the entire complex plane  

ii. A function 𝑓(𝑧) is bounded, that |𝑓(𝑧)| ≤ 𝑀. 

Let us consider two points 𝑎 𝑎𝑛𝑑 𝑏 inside a particular domain(See the figure 5.1).  

 

Figure 5.1: Two points 𝑎 𝑎𝑛𝑑 𝑏 inside a particular domain 

 

Then using Cauchy integral formula 

1

2𝜋𝑖 
∮

𝑐
(

𝑓(𝑧)

𝑧 − 𝑎
) 𝑑𝑧 = 𝑓(𝑎) 

1

2𝜋𝑖 
∮

𝑐
(

𝑓(𝑧)

𝑧 − 𝑏
) 𝑑𝑧 = 𝑓(𝑏) 

If 𝑓(𝑧) is constant throughout the domain, then 𝑓(𝑎) = 𝑓(𝑏). 

Now let’s prove 𝑓(𝑎) − 𝑓(𝑏) = 0. 

𝑓(𝑎) − 𝑓(𝑏) =
1

2𝜋𝑖 
∮

𝑐
(

𝑓(𝑧)

𝑧 − 𝑎
) 𝑑𝑧 −

1

2𝜋𝑖 
∮

𝑐
(

𝑓(𝑧)

𝑧 − 𝑏
) 𝑑𝑧 

𝑓(𝑎) − 𝑓(𝑏) =
1

2𝜋𝑖 
∮

𝑐
(

𝑓(𝑧)

𝑧 − 𝑎
−

𝑓(𝑧)

𝑧 − 𝑏
) 𝑑𝑧 

𝑓(𝑎) − 𝑓(𝑏) =
1

2𝜋𝑖 
∮

𝑐
𝑓(𝑧) (

1

𝑧 − 𝑎
−

1

𝑧 − 𝑏
) 𝑑𝑧 

𝑓(𝑎) − 𝑓(𝑏) =
1

2𝜋𝑖 
∮

𝑐
𝑓(𝑧) (

𝑧 − 𝑏 − 𝑧 + 𝑎

(𝑧 − 𝑎)(𝑧 − 𝑏)
) 𝑑𝑧 
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𝑓(𝑎) − 𝑓(𝑏) =
𝑎 − 𝑏

2𝜋𝑖 
∮

𝑐
𝑓(𝑧) (

1

(𝑧 − 𝑎)(𝑧 − 𝑏)
) 𝑑𝑧 

|𝑓(𝑎) − 𝑓(𝑏)| = |
𝑎 − 𝑏

2𝜋𝑖 
∮

𝑐
𝑓(𝑧) (

1

(𝑧 − 𝑎)(𝑧 − 𝑏)
) 𝑑𝑧| 

|𝑓(𝑎) − 𝑓(𝑏)| ≤ |
𝑎 − 𝑏

2𝜋𝑖 
| ∮

𝑐
|𝑓(𝑧)| (

1

|(𝑧 − 𝑎)(𝑧 − 𝑏)|
) |𝑑𝑧| 

|𝑓(𝑎) − 𝑓(𝑏)| ≤ |
𝑎 − 𝑏

2𝜋𝑖 
| ∮

𝑐
|𝑓(𝑧)| (

1

(|𝑧| − |𝑎|)(|𝑧| − |𝑏|)
) |𝑑𝑧| 

Let 

𝑧 = 𝑟𝑒𝑖𝜃  

𝑑𝑧 = 𝑟𝑒𝑖𝜃 . 𝑖. 𝑑𝜃 

|𝑑𝑧| = |𝑟𝑒𝑖𝜃 . 𝑖. 𝑑𝜃| 

|𝑑𝑧| = |𝑟|. |𝑒𝑖𝜃|. |𝑖|. |𝑑𝜃| 

Here |𝑟| = 𝑟 

|𝑒𝑖𝜃| = |𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃| = 1, 

|𝑖| = 1, 

|𝑑𝑧| = 𝑟. |𝑑𝜃| 

|𝑓(𝑎) − 𝑓(𝑏)| ≤
𝑎 − 𝑏

2𝜋 
∮

𝑐
𝑀 (

1

(𝑟 − 𝑎)(𝑟 − 𝑏)
)  𝑟. |𝑑𝜃| 

|𝑓(𝑎) − 𝑓(𝑏)| ≤
𝑎 − 𝑏

2𝜋 
∮

𝑐
𝑀 (

1

(1 − 𝑎/𝑟)(1 − 𝑏/𝑟)
) . |𝑑𝜃| 

If 𝑓(𝑧) is analytic in the entire complex plane, then |𝑧| = 𝑟 → ∞. So 

|𝑓(𝑎) − 𝑓(𝑏)| ≤ 0 

𝑓(𝑎) − 𝑓(𝑏) = 0 

Hence, we can say that 𝑓(𝑎) = 𝑓(𝑏). It means that 𝑓(𝑧) is a constant. 

Liouville's Theorem proof using Cauchy integral formula for derivatives. 

If f(z) is analytic in a simply connected region then at any interior point of the region, 𝑧0 inside C. 

Then say, the derivatives of 𝑓(𝑧) of any order exist and are themselves analytic (which illustrates 
what a powerful property analyticity is!). The derivatives at the point 𝑧0 are given by Cauchy’s 
integral formula for derivatives: 

∮
𝑐

(
𝑓(𝑧)

(𝑧−𝑧0)𝑛+1
) 𝑑𝑧 = 2𝜋𝑖

𝑓𝑛(𝑧0)

𝑛!
. 

where C is any simple closed curve, in the region, which encloses 𝑧0. Note the case 𝑛 =  1: 

1

2𝜋𝑖
∮

𝑐
(

𝑓(𝑧)

(𝑧−𝑧0)2
) 𝑑𝑧 = 𝑓′(𝑧0). 

|𝑓′(𝑧0)| = |
1

2𝜋𝑖
∮

𝑐
(

𝑓(𝑧)

(𝑧−𝑧0)2
) 𝑑𝑧|. 

|𝑓′(𝑧0)| ≤ |
1

2𝜋𝑖
| ∮

𝑐
(

|𝑓(𝑧)|

|(𝑧−𝑧0)2|
) |𝑑𝑧|. 

Here 𝑧 = 𝑟𝑒𝑖𝜃 

𝑑𝑧 = 𝑟𝑒𝑖𝜃 . 𝑖. 𝑑𝜃. 

|𝑑𝑧| = |𝑟𝑒𝑖𝜃 . 𝑖. 𝑑𝜃|. 

|𝑑𝑧| = |𝑟|. |𝑒𝑖𝜃|. |𝑖|. |𝑑𝜃|. 

Here |𝑧 − 𝑧0| = 𝑟 

|𝑒𝑖𝜃| = |𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃| = 1, 

|𝑖| = 1, 
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|𝑑𝑧| = 𝑟. |𝑑𝜃|. 

|𝑓′(𝑧0)| ≤
1

2𝜋
∮

𝑐
(

𝑀

𝑟2
) 𝑟. |𝑑𝜃|. 

|𝑓′(𝑧0)| ≤
1

2𝜋
∮

𝑐
(

𝑀

𝑟
) . 𝑑𝜃. 

If 𝑓(𝑧) is analytic in the entire complex plane then 𝑟 → ∞. So 

|𝑓′(𝑧0)| ≤ 0 

𝑓′(𝑧0) = 0 

𝑓(𝑧) = constant. 

By Liouville's theorem, the imaginary part of 𝑔(𝑧) is constant on the boundary, say 𝑐. Then the 
function ℎ(𝑧)  =  𝑔(𝑧)  +  𝑖𝑐 is analytic in the entire plane and has the same real part as 𝑓(𝑧). 

 

Proof 2: 

Let 𝑓(𝑧) be a complex valued function that is analytic in the upper half plane (𝐼𝑚(𝑧)  >  0), and 
continuous on the boundary of the upper half plane (𝐼𝑚(𝑧)  =  0). 

Consider a point 𝑧 in the lower half plane (𝐼𝑚(𝑧) <  0)[See figure 5.2] 

 

Figure 5.2: 𝑤 = 𝑓(𝑧) 

Let 𝑧 =  𝑥 +  𝑖𝑦, where 𝑥 is real and 𝑦 is negative. 

Let's define a new point, 𝑐𝑜𝑛𝑗(𝑧)=𝑧̅, which is equal to the complex conjugate of z. 

That is, 𝑐𝑜𝑛𝑗(𝑧)  =  𝑥 −  𝑖𝑦. 

Since 𝑓(𝑧) is continuous on the boundary of the upper half plane, it follows that 𝑓(𝑐𝑜𝑛𝑗(𝑧)) is 
continuous in the lower half plane. 

Also, since 𝑓(𝑧) satisfies 𝑓(𝑧)  =  𝑓((𝑧̅))̅̅ ̅̅ ̅̅ ̅̅ ,  we have: 

 

𝑓(𝑧)  = 𝑓((𝑐𝑜𝑛𝑗(𝑧)))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  

=   𝑓(𝑥 −  𝑖𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

=   𝑓(𝑥 +  𝑖(−𝑦))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

Thus, we can define a new function, 𝑔(𝑧), in the lower half plane as follows: 

𝑔(𝑧)  =  𝑓(𝑥 +  𝑖(−𝑦))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

Since 𝑔(𝑧)  =  𝑓(𝑧)̅̅ ̅̅ ̅̅  is continuous in the lower half plane, and the conjugate of a continuous function 
is continuous, it follows that 𝑔(𝑧) is continuous in the lower half plane. 

We now show that 𝑔(𝑧) is also analytic in the lower half plane. 

Let 𝑧 =  𝑥 +  𝑖𝑦, where 𝑥 is real and 𝑦 is negative. 

Consider the derivative of 𝑔(𝑧) at the point 𝑧: 
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𝑔′(𝑧) =  (
𝑑

𝑑𝑧
)  𝑓(𝑥 +  𝑖(−𝑦))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

=  (
𝑑

𝑑𝑧
)  𝑓(𝑧)̅̅ ̅̅ ̅̅ ̅ 

=   (
𝑑

𝑑𝑧
) 𝑓(𝑧)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 

Since 𝑓(𝑧) is analytic in the upper half plane, it follows that (
𝑑

𝑑𝑧
) 𝑓(𝑧) is also analytic in the upper half 

plane. 

Therefore, conjugate of (
𝑑

𝑑𝑧
) 𝑓(𝑧) is also analytic in the lower half plane, and so is 𝑔′(𝑧). 

Since 𝑔(𝑧) is continuous and its derivative is analytic in the lower half plane, it follows that 𝑔(𝑧) is 
analytic in the lower half plane. 

Thus, we have shown that if 𝑓(𝑧) is a complex valued function that is analytic in the upper half plane 
and continuous on the boundary of the upper half plane, and if 𝑓(𝑧) satisfies: 

 𝑓(𝑧)  =  𝑓(𝑐𝑜𝑛𝑗(𝑧))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , then the function 𝑓(𝑧) can be extended to be analytic in the entire complex plane 
by defining a new function, 𝑔(𝑧), in the lower half plane. 

11.2 consequences of the Schwarz Reflection Principle 

1. One consequence of the Schwarz Reflection Principle is that if a function is analytic in the 

upper half plane and its real part is non-negative on the boundary, then it can be extended 

to an entire function that is real valued on the real axis.  

2. Another consequence is that a function that is analytic in the upper half plane and satisfies 

a certain growth condition on the boundary (such as the Riemann mapping theorem) can 

be extended to an entire function with similar growth behavior.  

3. Additionally, the Schwarz Reflection Principle can be used to construct solutions to 

boundary value problems, such as the Dirichlet problem, by reflecting solutions from one 

half plane to the other. 

 

11.3 Different proofs of Schwartz Reflection Principle 

The Schwartz Reflection Principle can be proved by various methods 

1. Complex Analysis Proof: The Schwartz Reflection Principle can be proven using complex 

analysis by considering the analytic continuation of the function from the upper half plane 

to the lower half plane. The proof involves showing that the function, extended to the lower 

half plane, is a reflection of the function in the upper half plane across the real axis. 

 

2. Harmonic Functions Proof: The Schwartz Reflection Principle can also be proven using the 

theory of harmonic functions. A function is considered harmonic if it satisfies Laplace's 

equation. By assuming that the function is harmonic in the upper half plane, it can be shown 

that its extension to the lower half plane is also harmonic, and therefore satisfies Laplace's 

equation, meaning it must be a reflection of the function in the upper half plane across the 

real axis. 

 

 

3. Integral Transform Proof: The Schwartz Reflection Principle can be proven using the Fourier 

Transform by showing that the Fourier Transform of a function in the upper half plane, after 

being reflected across the real axis, is equal to the negative Fourier Transform of the original 

function in the lower half plane. 
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4. Paley-Wiener Theorem Proof: The Schwartz Reflection Principle can also be proven using 

the Paley-Wiener theorem, which states that the Fourier Transform of a function with 

compact support is a function that is entire and decays rapidly. By assuming that the 

function in question is the Fourier Transform of a function with compact support in the 

upper half plane, it can be shown that the function, after being reflected across the real axis, 

is the Fourier Transform of a function with compact support in the lower half plane. 

 

 

5. Bochner's Theorem Proof: The Schwartz Reflection Principle can also be proven using 

Bochner's theorem, which states that a positive definite function is the Fourier Transform of 

a positive measure. By assuming that the function in question is positive definite in the 

upper half plane, it can be shown that the function, after being reflected across the real axis, 

is positive definite in the lower half plane, implying that it is the Fourier Transform of a 

positive measure. 

 

11.4 Applications  

 The main application of the Schwartz Reflection Principle is in the study of distributions 
and their derivatives. It provides a means to extend the definitions of distributions and 
derivatives to unbounded functions. 

 The Schwartz Reflection Principle is a generalization of the Hahn-Banach Theorem. The 
Hahn-Banach Theorem states that a linear functional on a linear subspace can be extended 
to the entire space while preserving its norm. The Schwartz Reflection Principle extends this 
result to the case of distributions. 

 The Schwartz Reflection Principle is an important tool in mathematical physics for defining 
distributions and derivatives of functions. In particular, it allows for the extension of the 
definitions of distributions and derivatives to unbounded functions, which is particularly 
useful in quantum field theory and quantum mechanics. 

 

 

11.5 Review questions 

 

1. What is the main application of the Schwartz Reflection Principle? 

2. How does the Schwartz Reflection Principle relate to the Hahn-Banach Theorem? 

3. What is the significance of the Schwartz Reflection Principle in mathematical 

physics? 

4. State and prove the Schwartz Reflection Principle using Liouville's Theorem? 

5. State and prove the Schwartz Reflection Principle without Liouville's Theorem ? 

 

11.6 Self-assessment 

1. Which one the following statement is true for the reference of  Schwarz reflection principle?  

 

I: The principle that a complex function which is holomorphic in the upper half plane can 

be extended to a holomorphic function in the whole plane. 
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II: The principle that states that a real-valued function cannot be analytically extended 

across a branch cut.  

 

A. Only I 

B. Only II 

C. Both I and II 

D. Neither I nor II 

 

2. Which one the following statement is true for the reference of Schwarz reflection principle?  

 

I:  The principle that a holomorphic function in the unit disc can be extended to a 

holomorphic function in the whole plane.  

 

II: The principle that states that the maximum value of a subharmonic function is achieved 

on the boundary of its domain. 

  

 

A. Only I 

B. Only II 

C. Both I and II 

D. Neither I nor II 

 

3. Which one the following statement is true for the necessary condition for the Schwarz 

reflection principle?  

 

I:  The function must be bounded in the upper half plane.  

 

II: The function must be continuous in the upper half plane 

  

A. Only I 

B. Only II 

C. Both I and II 

D. Neither I nor II 

 

4. Which one the following statement is true for the necessary condition for the Schwarz 

reflection principle?  

 

I:  The function must be holomorphic in the upper half plane. 

II: The function must be continuous in the upper half plane 

  

A. Only I 

B. Only II 

C. Both I and II 

D. Neither I nor II 

 

5. The Schwarz reflection principle can be used to extend which type of functions to the whole 

plane?  

A. Only real-valued functions  

B. Only harmonic functions 

C. Both real valued and harmonic 

D. Neither real nor harmonic 
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6. The Schwarz reflection principle can be used to extend which type of functions to the whole 

plane?  

A. Holomorphic functions 

B. Harmonic functions 

C. Subharmonic functions 

D. Neither real nor harmonic 

 

 

7. The Schwarz reflection principle states that the Fourier transform of the product of two 

signals is equal to the convolution of their Fourier transforms? 

A. True  

B. False 

 

 

8. The principle that states that the reflection of a Schwartz function across the x-axis is also a 

Schwartz function? 

A. True  

B. False 

 

9. The principle that states that the Laplace transform of a signal is equivalent to its Fourier 

transform? 

A. True  

B. False 

 

10. The principle that states that the derivative of a Schwartz function is also a Schwartz 

function. 

A. True  

B. False 

 

11. What is the Schwartz Reflection Principle in mathematics? 

 

A. The principle that every polynomial function has a unique root  

B. The principle that states that the boundary values of an analytic function on the 

upper half-plane can be extended to an analytic function on the whole complex 

plane  

C. The principle that states that the roots of a polynomial equation occur in conjugate 

pairs. 

D. The principle that the value of a holomorphic function at a point is equal to its 

average value over any small circle centered at that point. 

 

12. Which of the following is the best definition of the Schwartz Reflection Principle? 

 

I: A mathematical theorem that states that the reflection of a function across a 

vertical line always results in an even function. 

II: A mathematical theorem that states that the reflection of a function across a 

vertical line always results in an odd function. 

A. Only I 

B. Only II 

C. Both I and II 

D. Neither I nor II 

 

13. Which of the following is the best definition of the Schwartz Reflection Principle? 
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I: A mathematical theorem that states that the reflection of a function across a 

vertical line always results in a function with the same parity. 

 

II: A mathematical theorem that states that the reflection of a function across a 

vertical line always results in a different function. 

A. Only I 

B. Only II 

C. Both I and II 

D. Neither I nor II 

 

14. The Schwarz Reflection Principle states that if a complex valued function 𝑓(𝑧) is analytic in 

the upper half plane (𝐼𝑚(𝑧)  >  0), and continuous on the boundary of the upper half plane 

(𝐼𝑚(𝑧)  =  0), and if 𝑓(𝑧) satisfies 𝑓(𝑧) = 𝑓((�̅�))̅̅ ̅̅ ̅̅ ̅̅ , then the function 𝑓(𝑧) can be extended to 

be analytic in the entire complex plane. 

A. True  

B. False 

 

15. Which one the following statement is true for the reference of  Schwarz reflection principle?  

 

I:  The Schwarz Reflection Principle states that if a function is analytic in the upper 

half plane and its real part is non-negative on the boundary (the real axis), then it can be 

extended analytically to the entire plane.  

 

II: If a function 𝑓(𝑧) is analytic in the upper half plane and satisfies the condition 

𝑅𝑒(𝑓(𝑧)) ≥  0 for all real z, then 𝑓(𝑧) can be extended to the entire complex plane. 

 

A. Only I 

B. Only II 

C. Both I and II 

D. Neither I nor II 

 

 

Table 1: Answers of self-assessment 

Question number Correct answer 

1 A 

2 D 

3 D 

4 A 

5 D 

6 A 

7 B 
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8 A 

9 B 

10 B 

11 B 

12 D 

13 A 

14 D 

15 C 

 

11.7 Summary 

 The Schwarz Reflection Principle states that if a complex valued function 𝑓(𝑧) is analytic in 

the upper half plane (𝐼𝑚(𝑧)  >  0), and continuous on the boundary of the upper half plane 

(𝐼𝑚(𝑧)  =  0), and if 𝑓(𝑧) satisfies 𝑓(𝑧) = 𝑓((�̅�))̅̅ ̅̅ ̅̅ ̅̅ , then the function 𝑓(𝑧) can be extended to 

be analytic in the entire complex plane. 

 

 The Schwarz Reflection Principle states that if a function is analytic in the upper half plane 

and its real part is non-negative on the boundary (the real axis), then it can be extended 

analytically to the entire plane.  

 

 If a function 𝑓(𝑧) is analytic in the upper half plane and satisfies the condition 𝑅𝑒(𝑓(𝑧)) ≥

 0 for all real z, then 𝑓(𝑧) can be extended to the entire complex plane. 

 

 If a function 𝑓(𝑧) is entire and bounded in the complex plane, then 𝑓(𝑧) is constant 

throughout the plane. 

 

 

11.8 Keywords 

Liouville's Theorem   

Let 𝑓(𝑧): 𝐶 → 𝐶 be an entire function. Suppose there exists some real number𝑀 ≥ 0  such 
that |𝑓(𝑧)| ≤ 𝑀 for all 𝑧 ∈ 𝐶 Then 𝑓(𝑧) is a constant function.  

 

11.9 Further Readings 

  

1. Complex Variables And Applications By Churchill, R. V. And Brown, J. W., Mcgraw Hill 
Education. 

2. Foundations Of Complex Analysis By S. Ponnusamy, Narosa Publishing House. 

3. Complex Analysis By Lars V. Ahlfors, Mcgraw Hill Education. 
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Unit 12 - Normal families of analytic functions 

Purpose and Objectives: 

Meromorphic functions are an important class of functions studied in complex analysis. They 
are defined as functions that are holomorphic (analytic) everywhere except at a finite number of 
isolated singularities. Meromorphic functions are useful in studying the behavior of complex 
functions near singularities, and they provide a representation of any meromorphic function in 
terms of its poles and their residues. After this unit students can be able to- 

1. Understand the Meromorphic functions 

2. State and prove the Mittag-Leffler theorem 

3. Learn the infinite product of complex Numbers 

Introduction 

In this unit first we will understand the concept of singularities and poles for meromorphic function 
then the we will use the mesomorphic function to prove the Mittag-Leffler theorem. Last we will 
focus on the infinite product of complex Numbers. 

12.1 Singularities 

A point z0 is called a singular point of a function 𝑓(z) if 𝑓(z) fails to be analytic at z0 but is analytic at 
some point in every neighborhood of z0. 

 

 

 Example:  

Behavior of following functions at 𝑧 = 0. 

𝑓(𝑧) =
1

𝑧9
 

𝑓(𝑧) =
𝑆𝑖𝑛𝑧

𝑧
 

𝑓(𝑧) =
𝑒𝑧 − 1

𝑧
 

𝑓(𝑧) =
1

sin (1/𝑧)
 

We observed that all the functions mentioned above are not analytic at 𝑧 = 0.However in every 
neighbourhood of 𝑧 = 0, there is point at which 𝑓(𝑧) is analytic. 
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 Example:  

 

Behavior of following function at 𝑧 = 1. 

𝑓(𝑧) =
𝑧

1 − 𝑧
 

 

We observed that the 𝑓(𝑧)is not analytic at 𝑧 = 1.However in every neighbourhood of 𝑧 = 0, there is 
point at which 𝑓(𝑧) is analytic. So 𝑧 = 1 is the singular point of 𝑓(𝑧). 

 

 

 Example:  

𝑓(𝑧) = 𝑧2 is analytic everywhere so it has no singular point. 

 

 

 Example:  

Behavior of following function in the entire z plane 

𝑓(𝑧) = |𝑧|2  

We observed that the 𝑓(𝑧)is not analytic at 𝑧 = 1.However in every neighbourhood of 𝑧 = 0, there is 
point at which 𝑓(𝑧) is analytic. So 𝑧 = 1 is the singular point of 𝑓(𝑧). 

 

12.2 Classification of singularity 

The singularity of a complex function can be classified into two groups, isolated and non-isolated. It 
can be done via Laurent series expension, but we can also classify the singularity without the Laurent 
series expension. In the forthcoming units we will consider the classification using the Laurent series. 

The isolated singularity further can be classified into different type. The following diagram shows 
the different types of the singularities. 
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6.2.1 Isolated singularity  

A point a is called an isolated singularity for 𝑓(𝑧) if 𝑓(𝑧) is not analytic at 𝑧 = 𝑎 and there exist 𝑟 > 0 
such that 𝑓(𝑧) is analytic in 0 < |𝑧 − 𝑎| < 𝑟. The neighbourhood |𝑧 − 𝑎| < 𝑟 contains no singularity 
of 𝑓(𝑧) except 𝑎. 

 

 

 

 Example:  

  
𝒇(𝒛) =  

𝒛+𝟏

𝒛𝟐(𝒛𝟐+𝟏)
 has three isolated singularities 𝒛 =  𝟎, 𝒊, −𝒊. 

 

 

 Example:  

𝑓(𝑧) =  
1

𝑠𝑖𝑛𝑧
 has three isolated singularities 𝑧 =  0, ±π, ±2π, …,  

6.2.2 Removable singularity 

Let  𝑓(𝑧) is analytic everywhere execpt the point 𝑧0 inside and on the domain then if the lim
𝑧→𝑧0

𝑓(𝑧) 

exists then 𝑧0 is the removable singularity.  

 

 Example:  
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Let 𝑓(𝑧) =
𝑠𝑖𝑛𝑧

𝑧
, clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 

lim
𝑧→𝑧0

𝑓(𝑧) = lim
𝑧→0

𝑠𝑖𝑛𝑧

𝑧
= 1. 

lim
𝑧→𝑧0

𝑓(𝑧) exists then 𝑧0 = 0 is the removable singularity. 

 

 Example:  

Let 𝑓(𝑧) =
𝑧−𝑠𝑖𝑛𝑧

𝑧3
, clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 

lim
𝑧→𝑧0

𝑓(𝑧) = lim
𝑧→0

𝑧−𝑠𝑖𝑛𝑧

𝑧3
 

lim
𝑧→𝑧0

𝑓(𝑧) = lim
𝑧→0

1−𝑐𝑜𝑠𝑧

3𝑧2
 [L-Hosptital rule] 

lim
𝑧→𝑧0

𝑓(𝑧) = lim
𝑧→0

0+𝑠𝑖𝑛𝑧

6𝑧1
 [L-Hosptital rule] 

lim
𝑧→𝑧0

𝑓(𝑧) = lim
𝑧→0

𝑐𝑜𝑠𝑧

6
 [L-Hosptital rule] 

lim
𝑧→𝑧0

𝑓(𝑧) = lim
𝑧→0

1

6
 

lim
𝑧→𝑧0

𝑓(𝑧) exists then 𝑧0 = 0 is the removable singularity. 

 

6.2.3 Pole 

Let  𝑓(𝑧) is analytic everywhere execpt the point 𝑧0 inside and on the domain then if the 
lim

𝑧→𝑧0

(𝑧 − 𝑧0)𝑘𝑓(𝑧) = 𝜆 , where 𝜆 ≠ 0, then 𝑧0 is the pole of order k.  

If 𝑘 = 1, then 𝑧0 is the simple pole. 

 

 

 Example:  

Consider 𝑓(𝑧) =
𝑒𝑧

𝑧
 ,clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 

lim
𝑧→𝑧0

𝑓(𝑧) = lim
𝑧→0

𝑒𝑧

𝑧
 

lim
𝑧→𝑧0

(𝑧 − 0)1 𝑓(𝑧) = lim
𝑧→0

𝑧
𝑒𝑧

𝑧
 

lim
𝑧→𝑧0

(𝑧 − 0)1 𝑓(𝑧) = 𝑒0 = 1 ≠ 0. 

So 𝑧0 = 0 is the pole of order 1 or simple pole. 

 

 Example:  

 

Consider 𝑓(𝑧) =
𝑐𝑜𝑠𝑧

𝑧2
 , clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 

lim
𝑧→𝑧0

𝑓(𝑧) = lim
𝑧→0

𝑐𝑜𝑠𝑧

𝑧2
  

lim
𝑧→𝑧0

(𝑧 − 0)2 𝑓(𝑧) = lim
𝑧→0

𝑧2 𝑐𝑜𝑠𝑧

𝑧2 . 
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lim
𝑧→𝑧0

(𝑧 − 0)2 𝑓(𝑧) = lim
𝑧→0

𝑐𝑜𝑠𝑧 = 1 ≠ 0. 

So 𝑧0 = 0 is the pole of order 2. 

 

 Example:  

Consider 𝑓(𝑧) =
1−𝑒2𝑧

𝑧3
 , clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 

lim
𝑧→𝑧0

𝑓(𝑧) = lim
𝑧→0

1−𝑒2𝑧

𝑧3
   

lim
𝑧→𝑧0

(𝑧 − 0)3 𝑓(𝑧) = lim
𝑧→0

𝑧3 (1−𝑒2𝑧)

𝑧3
= 0. 

lim
𝑧→𝑧0

(𝑧 − 0)2 𝑓(𝑧) = lim
𝑧→0

 𝑧2 (1−𝑒2𝑧)

𝑧3
. 

lim
𝑧→𝑧0

(𝑧 − 0)2 𝑓(𝑧) = lim
𝑧→0

 
(1−𝑒2𝑧)

𝑧
. 

lim
𝑧→𝑧0

(𝑧 − 0)2 𝑓(𝑧) = lim
𝑧→0

 
−2𝑒2𝑧

1
= −2 ≠ 0. 

So 𝑧0 = 0 is the pole of order 2. 

 

6.2.4  Essential singularity 

Let  𝑓(𝑧) is analytic everywhere execpt the point 𝑧0 inside and on the domain then if the 
lim

𝑧→𝑧0

(𝑧 − 𝑧0)𝑛𝑓(𝑧) = ∞ , then 𝑧0 is essential singularity.  

 

 Example:  

Consider 𝑓(𝑧) = 𝑒1/𝑧 , clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 

lim
𝑧→𝑧0

𝑓(𝑧) = lim
𝑧→0

𝑒1/𝑧     

lim
𝑧→𝑧0

(𝑧 − 0)𝑛 𝑓(𝑧) = lim
𝑧→0

𝑧𝑛𝑒1/𝑧 . 

lim
𝑧→𝑧0

(𝑧 − 0)𝑛 𝑓(𝑧) = lim
𝑧→0

𝑧𝑛[1 +
1

𝑧
+

1

2!
(

1

𝑧
)

2
+

1

3!
(

1

𝑧
)

2
+ ⋯ , ] . 

lim
𝑧→𝑧0

(𝑧 − 0)𝑛 𝑓(𝑧) = ∞. 

So 𝑧0 = 0 is an essential singularity. 

 

6.2.5 Singularity at infinity  

We classify the types of singularities at infinity by letting w = 1/z and analyzing the resulting 
function at w = 0. 

 

 Example:  

𝑓(𝑧) = 𝑧3. 

𝑓(𝑧) = 𝑔(𝑤) = 1/𝑤3. 

𝑔(𝑤) has a pole of order 3 at w = 0 The function f(z) has a pole of order 3 at infinity. 

 

  LOVELY PROFESSIONAL UNIVERSITY  141



Complex Analysis-II 

 

6.2.5 Non-isolated singularity 

A point a is called a non-isolated singularity for 𝑓(𝑧) if 𝑓(𝑧) is not is not isolated at 𝑧 = 𝑎. 

 

 Example:  

𝑓(𝑧) =
1

sin (
1
𝑧)

 

  

The function is not analytic in any region 0 < |z| < δ. 

 

 

 

12.3 Classification of singularity by Laurent series expansion 

It is also possible to classify the singularity using the Laurent series expansion. 

Let a be an isolated singularity for a function 𝑓(𝑧). Let 𝑟 > 0 be such that 𝑓(𝑧) is analytic in 0 <
|𝑧 − 𝑎| < 𝑟. In this domain the function 𝑓(𝑧) can be represented as a Laurent series given by 

𝑓(𝑧) = ∑
𝑏𝑛

(𝑧 − 𝑎)𝑛

∞

𝑛=1

+ ∑ 𝑎𝑛(𝑧 − 𝑎)𝑛

∞

𝑛=0

 

Were 

𝑏𝑛 =
1

2𝜋𝑖
∫

𝐶1

𝑓(𝜁)

(𝜁−𝑎)−𝑛+1
 𝑑𝜁  

𝑎𝑛 =
1

2𝜋𝑖
∫

𝐶2

𝑓(𝜁)

(𝜁−𝑎)𝑛+1
 𝑑𝜁  

The series consisting of the negative powers of 𝑧 − 𝑎 in the above Laurent series expansion of 𝑓(𝑧) is 

given by ∑
𝑏𝑛

(𝑧−𝑎)𝑛
∞
𝑛=1  and is called the principal part or singular part 𝑜𝑓 𝑓(𝑧) 𝑎𝑡 𝑧 = 𝑎.  

The singular part of 𝑓(𝑧) 𝑎𝑡 𝑧 = 𝑎 determines the character of the singularity.  

6.9.1  Removable singularity by Laurent series expansion 

Let 𝒂 be an isolated singularity for 𝒇(𝒛). Then 𝒂 is called a removable singularity if the principal part 

of 𝒇(𝒛) 𝒂𝒕 𝒛 = 𝒂 has no terms.  

If 𝒂 is a removable singularity for 𝒇(𝒛) then the Laurent’s series expansion of 𝒇(𝒛) 𝒂𝒃𝒐𝒖𝒕 𝒛 = 𝒂 is 

given by  

𝑓(𝑧) = ∑ 𝑎𝑛(𝑧 − 𝑎)𝑛

∞

𝑛=0
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Hence as 𝒛𝒂, 𝒇(𝒛)  =  𝒂𝟎 Hence by defining 𝒇(𝒂)  =  𝒂𝟎 the function 𝒇(𝒛) becomes analytic at 𝒂. 

 

 Example:  

Let 𝑓(𝑧) =
𝑠𝑖𝑛𝑧

𝑧
, clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 

Now 𝑓(𝑧) =
𝑠𝑖𝑛𝑧

𝑧
= 

1

𝑧
(𝑧 −

𝑧3

3!
 +

𝑧5

5!
 − … . ) 

𝑓(𝑧) =
𝑠𝑖𝑛𝑧

𝑧
= (1 −

𝑧2

3!
 +

𝑧4

5!
 − … . ) 

Here the principal part of 𝑓(𝑧) 𝑎𝑡 𝑧 =  0 has no terms. Hence z = 0 is a removable singularity. 

lim
𝑧→𝑧0

𝑓(𝑧) also exists then 𝑧0 = 0 is the removable singularity. 

 

 Example:  

Let 𝑓(𝑧) =
𝑧−𝑠𝑖𝑛𝑧

𝑧3
, clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 

𝑓(𝑧) =
𝑧 − (𝑧 −

𝑧3

3!  +
𝑧5

5!  − … , )

𝑧3
 

𝑓(𝑧) =

𝑧3

3! −
𝑧5

5!  − … , )

𝑧3
 

𝑓(𝑧) =
1

3!
−

𝑧2

5!
 − …,  

𝑧 =  0 is a removable singularity. By defining 𝑓(0)  =  1/6 the function becomes analytic 𝑎𝑡 𝑧 =
 0.Also lim

𝑧→𝑧0

𝑓(𝑧) exists then 𝑧0 = 0 is the removable singularity. 

 

6.9.2 Pole by Laurent series expansion 

Let 𝑎 be an isolated singularity of 𝑓(𝑧). The point a is called a pole if the principal part of 𝑓(𝑧) 𝑎𝑡 𝑧 =
𝑎 has a finite number of terms. 

 If the principal part of 𝑓(𝑧)𝑎𝑡 𝑧 = 𝑎 is given by  

𝑏1

𝑧−𝑎
 +

𝑏2

(𝑧−𝑎)2
 + … +

𝑏𝑟

(𝑧−𝑎)𝑟
, . where 𝑏𝑟  ≠  0.  

We say that a is a pole of order 𝑟 for 𝑓(𝑧). Note: A pole of order 1 is called a simple pole and a pole 
of order 2 is called double pole. 

 

 

 Example:  

Consider 𝑓(𝑧) =
𝑒𝑧

𝑧
 ,clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 

𝑓(𝑧) =
𝑒𝑧

𝑧
=

1

𝑧
(1 + 𝑧 +

𝑧2

2
+

𝑧3

6
+…,) 

𝑓(𝑧) =
𝑒𝑧

𝑧
= (1/𝑧 + 1 +

𝑧

2
+

𝑧2

6
+…,) 

Here the principal part of 𝑓(𝑧) 𝑎𝑡 𝑧 = 0 has a single term 
1

𝑧
 . Hence 𝑧 = 0 is a simple pole of 𝑓(𝑧). Also 

 

lim
𝑧→𝑧0

(𝑧 − 0)1 𝑓(𝑧) = 𝑒0 = 1 ≠ 0. So 𝑧0 = 0 is the pole of order 1 or simple pole. 
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 Example:  

Consider 𝑓(𝑧) =
𝑐𝑜𝑠𝑧

𝑧2
 , clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 

𝑓(𝑧) =
𝑐𝑜𝑠𝑧

𝑧2
=

1 −
𝑧2

2! +
𝑧4

4! − ⋯ ,

𝑧2
 

The principal part of 𝑓(𝑧) 𝑎𝑡 𝑧 = 0 contains the term 1/𝑧2 . Hence z=0 is a double pole of f(z). 

 Also lim
𝑧→𝑧0

(𝑧 − 0)2 𝑓(𝑧) = lim
𝑧→0

𝑐𝑜𝑠𝑧 = 1 ≠ 0. 

So 𝑧0 = 0 is the pole of order 2. 

 

6.9.3 Essential singularity 

Let a be an isolated singularity of 𝒇(𝒛). The point a is called an essential singularity of 𝒇(𝒛) at 𝒛 = 𝒂 

if the principal part of 𝒇(𝒛) 𝒂𝒕 𝒛 = 𝒂 has an infinite number of terms.  

 

 Example:  

Consider 𝑓(𝑧) = 𝑒1/𝑧 , clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 

𝑓(𝑧) = 𝑒1/𝑧 

𝑓(𝑧) = [1 +
1

𝑧
+

1

2!
(

1

𝑧
)

2
+

1

3!
(

1

𝑧
)

2
+ ⋯ , ]. 

The principal part of 𝑓(𝑧) has infinite number of terms. Hence 𝑓(𝑧) = 𝑒1/𝑧 has an essential singularity 
at 𝑧 = 0. 

Also lim
𝑧→𝑧0

(𝑧 − 0)𝑛 𝑓(𝑧) = ∞. 

So 𝑧0 = 0 is an essential singularity. 

 

12.4 Meromorphic Functions 

 

A function is analytic everywhere in the finite plane except at a finite number of poles is called a 
meromorphic function. 

 

 Example:  

𝑓(𝑧) =
𝑧

(𝑧 − 1)(𝑧 + 3)2
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𝑓(𝑧) is analytic everywhere in the complex plane except 𝑧 = 1 𝑎𝑛𝑑 𝑧 = −3.Here 𝑧 = 1 is a simple pile 
and 𝑧 = −3 is the pole of order 3. We can say that the 𝑓(𝑧) has finite number of poles and it’s a 
meromorphic function. 

 

 Example:  

Consider 𝑓(𝑧) =
𝑒𝑧

𝑧
 ,clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 

lim
𝑧→𝑧0

𝑓(𝑧) = lim
𝑧→0

𝑒𝑧

𝑧
 

lim
𝑧→𝑧0

(𝑧 − 0)1 𝑓(𝑧) = lim
𝑧→0

𝑧
𝑒𝑧

𝑧
 

lim
𝑧→𝑧0

(𝑧 − 0)1 𝑓(𝑧) = 𝑒0 = 1 ≠ 0. 

So 𝑧0 = 0 is the pole of order 1 or simple pole. We can say that the 𝑓(𝑧) has finite number of poles 

and it’s a meromorphic function. 

 

 Example:  

Consider 𝑓(𝑧) =
𝑐𝑜𝑠𝑧

𝑧2
 , clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 

lim
𝑧→𝑧0

𝑓(𝑧) = lim
𝑧→0

𝑐𝑜𝑠𝑧

𝑧2
  

lim
𝑧→𝑧0

(𝑧 − 0)2 𝑓(𝑧) = lim
𝑧→0

𝑧2 𝑐𝑜𝑠𝑧

𝑧2 . 

lim
𝑧→𝑧0

(𝑧 − 0)2 𝑓(𝑧) = lim
𝑧→0

𝑐𝑜𝑠𝑧 = 1 ≠ 0. 

So 𝑧0 = 0 is the pole of order 2. We can say that the 𝑓(𝑧) has finite number of poles and it’s a 
meromorphic function. 

 

 Example:  

Consider 𝑓(𝑧) =
1−𝑒2𝑧

𝑧3
 , clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 

lim
𝑧→𝑧0

𝑓(𝑧) = lim
𝑧→0

1−𝑒2𝑧

𝑧3
   

lim
𝑧→𝑧0

(𝑧 − 0)3 𝑓(𝑧) = lim
𝑧→0

𝑧3 (1−𝑒2𝑧)

𝑧3
= 0. 

lim
𝑧→𝑧0

(𝑧 − 0)2 𝑓(𝑧) = lim
𝑧→0

 𝑧2 (1−𝑒2𝑧)

𝑧3
. 

lim
𝑧→𝑧0

(𝑧 − 0)2 𝑓(𝑧) = lim
𝑧→0

 
(1−𝑒2𝑧)

𝑧
. 

lim
𝑧→𝑧0

(𝑧 − 0)2 𝑓(𝑧) = lim
𝑧→0

 
−2𝑒2𝑧

1
= −2 ≠ 0. 

So 𝑧0 = 0 is the pole of order 2. We can say that the 𝑓(𝑧) has finite number of poles and it’s a 
meromorphic function. 

 

 Example:  

Consider 𝑓(𝑧) = 𝑒1/𝑧 , clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 
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lim
𝑧→𝑧0

𝑓(𝑧) = lim
𝑧→0

𝑒1/𝑧     

lim
𝑧→𝑧0

(𝑧 − 0)𝑛 𝑓(𝑧) = lim
𝑧→0

𝑧𝑛𝑒1/𝑧 . 

lim
𝑧→𝑧0

(𝑧 − 0)𝑛 𝑓(𝑧) = lim
𝑧→0

𝑧𝑛[1 +
1

𝑧
+

1

2!
(

1

𝑧
)

2
+

1

3!
(

1

𝑧
)

2
+ ⋯ , ] . 

lim
𝑧→𝑧0

(𝑧 − 0)𝑛 𝑓(𝑧) = ∞. 

So 𝑧0 = 0 is an essential singularity.Thus this function is not meromorphic in the whole complex 
plane. 

 

12.5 Mittag-Leffler theorem 

The Mittag-Leffler theorem is a fundamental result in complex analysis that deals with the existence 
of meromorphic functions with prescribed poles and residues. Specifically, it states that for any 
sequence of distinct points in the complex plane and any sequence of complex numbers, there exists 
a meromorphic function with poles precisely at the given points and residues equal to the 
corresponding complex numbers. 

More formally, let 𝑧1 , 𝑧2 , . .. be a sequence of distinct complex numbers, and let 𝑐1 , 𝑐2 , . .. be a sequence 
of complex numbers. Then there exists a meromorphic function 𝑓(𝑧) on the complex plane such that 
the only poles of 𝑓(𝑧) are at the points 𝑧1 , 𝑧2 , . . ., and the residue of 𝑓(𝑧) at 𝑧𝑖 is 𝑐𝑖, for 𝑖 =  1, 2, . . .. 

Proof: 

To prove the Mittag-Leffler theorem, we will construct the desired meromorphic function 𝑓(𝑧) using 
a standard technique known as the Weierstrass product formula. 

This involves expressing 𝑓(𝑧) as an infinite product of simple functions, each of which has a single 
pole at one of the given points and the prescribed residue. 

Let 𝐷𝑛   be the disc centered at 𝑧𝑛 with radius 𝑟𝑛  such that 𝐷𝑛 is disjoint from all other discs, and let 
𝐶𝑛be the circle bounding 𝐷𝑛. 

 Then we define the function 𝑔𝑛(𝑧) as: 

𝑔𝑛(𝑧)  =  (𝑧 − 𝑧𝑛)−1 𝑒(𝑝𝑛(𝑧 − 𝑧𝑛)) 

where 𝑝𝑛   is chosen so that the Laurent series of 𝑔𝑛(𝑧) at 𝑧𝑛 has a constant term of 𝑐𝑛. Specifically, 
we set: 

𝑝𝑛  =
𝑐𝑛

𝑟𝑛
  

Using the Cauchy integral formula, we can express 𝑔𝑛(𝑧) as an integral over 𝐶𝑛: 

𝑔𝑛(𝑧) =  
1

2𝜋𝑖
 ∫

𝑔𝑛(𝑤)

𝑤 −  𝑧
 𝑑𝑤

𝐶𝑛

 

Now we define the function 𝐹(𝑧) as: 

𝐹(𝑧)  =  ∏ 𝑔𝑛(𝑧)

∞

𝑛=1

  

This product converges absolutely and uniformly on compact sets, since the discs 𝐷𝑛 are disjoint and 
the radii 𝑟𝑛 are chosen appropriately. Moreover, 𝐹(𝑧) is meromorphic on the complex plane, since 
each 𝑔𝑛(𝑧) has a single pole at 𝑧𝑛 and no other poles. 

To see that 𝐹(𝑧) has the desired poles and residues, we consider the partial products: 

𝐹𝑁(𝑧)  =  ∏ 𝑔𝑛(𝑧)

𝑁

𝑛=1

  

These are meromorphic functions with poles only at the points 𝑧1 , 𝑧2 , . . . , 𝑧𝑁 . Moreover, the residue of 
𝐹𝑁(𝑧) 𝑎𝑡 𝑧𝑛 𝑖𝑠 𝑐𝑛 , by construction. Finally, we note that 𝐹𝑁(𝑧) converges to 𝐹(𝑧) as 𝑁 goes to infinity, 

since the product converges absolutely and uniformly on compact sets. 
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Therefore, we have constructed a meromorphic function 𝑓(𝑧) with the desired poles and residues, 
namely: 

𝑓(𝑧)  =  𝐹(𝑧) 

This completes the proof of the Mittag-Leffler theorem. 

 

 

Question: 

Prove that 𝑐𝑜𝑡𝑧 =
1

𝑧
+  2𝑧 ∑

1

𝑧2−𝑛2𝜋2
∞
𝑛=1    using Mittage Laffer's theorem 

Proof: 

To prove that 𝑐𝑜𝑡𝑧 −
1

𝑧
=  2𝑧 ∑

1

𝑧2−𝑛2𝜋2
∞
𝑛=1    , we can use the Mittag-Leffler theorem. 

To prove this identity using the Mittag-Leffler theorem, we need to first identify the poles and their 
residues of the function 𝑐𝑜𝑡(𝑧). 

We know that 𝑐𝑜𝑡(𝑧) is periodic with period 𝜋, and has simple poles at 𝑧 =  𝑛𝜋 for all integers 𝑛. 

Recall that the cotangent function can be expressed as the ratio of the cosine and sine functions: 

𝑐𝑜𝑡𝑧 =
cos 𝑧

𝑠𝑖𝑛𝑧
 

The poles of the cotangent function are the zeros of the sine function, which occur at 𝑧 =  𝑛𝜋 for all 
integers 𝑛. Thus, we can write: 

𝑐𝑜𝑡𝑧 =
𝑐𝑜𝑠𝑧

𝑧 −  𝑛𝜋
 

To prove this identity using Mittag-Leffler theorem, we need to find the poles and residues of the 
function cot(z) and the infinite sum in the equation. 

First, we know that 𝑐𝑜𝑡(𝑧) has simple poles at 𝑧 =  𝑛𝜋 for all integers 𝑛. 

 The residues at these poles are ±1, depending on the sign of 𝑠𝑖𝑛(𝑛𝜋). 

Next, we consider the infinite sum in the equation.  

Let 𝑓(𝑧)  =  ∑
1

𝑧2  − 𝑛2𝜋2
   .  

This function has poles at 𝑧 =  ±𝑛𝜋 for all integers 𝑛. The residues at these poles are given by 

𝑅𝑒𝑠[𝑓(𝑧), 𝑧 =  𝑛𝜋] =  𝑙𝑖𝑚𝑧→𝑛𝜋

(𝑧 − 𝑛𝜋)1

𝑧2  − 𝑛2𝜋2
 =

1

2𝑛𝜋
 

and 

𝑅𝑒𝑠[𝑓(𝑧), 𝑧 =  −𝑛𝜋] =  𝑙𝑖𝑚𝑧→−𝑛𝜋

(𝑧 + 𝑛𝜋)1

𝑧2  − 𝑛2𝜋2
 =  −

1

2𝑛𝜋
. 

Now, using the Mittag-Leffler theorem, we can write 

𝑐𝑜𝑡(𝑧) −
1

𝑧
 =  ∑  

∞

𝑛=1

(
1

𝑧 − 𝑛𝜋
 +

1

𝑧 + 𝑛𝜋
) 

=∑  ∞
𝑛=1

1

2𝑛𝜋
(

1

𝑧−𝑛𝜋
  −

1

𝑧+𝑛𝜋
)  

=  2 ∑  ∞
𝑛=1

1

2𝑛𝜋

1

𝑧2 − 𝑛2𝜋2
   

=  2𝑓(𝑧)  

Therefore, we have 

𝑐𝑜𝑡(𝑧) =
1

𝑧
 +  2 ∑  ∞

𝑛=1
1

2𝑛𝜋

1

𝑧2 − 𝑛2𝜋2
 as desired. 
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12.6 Infinite Product of Complex Numbers 

An infinite product of complex numbers is given by: 

𝑧 =  𝑧1 . 𝑧2 . 𝑧3 . . . , . 𝑧𝑛 . ..  

The notation for infinite product is ∏ 𝑧𝑖
𝑛
𝑖=1   

where 𝑧1 , 𝑧2 , 𝑧3 , . . . , 𝑧𝑛 are complex numbers. 

If the infinite product converges, then we can define it as follows: 

𝑧 =  lim
𝑛→∞

(𝑧1 . 𝑧2 . 𝑧3 . . . , 𝑧𝑛)     

In general, an infinite product of complex numbers is said to converge if and only if the limit of the 
sequence of partial products (i.e., the product of the first n terms) exists and is nonzero. 

Some important results related to infinite products of complex numbers are: 

1. If the infinite product |𝑧| converges, then the infinite product 𝑧 also converges. 

2. The infinite product (1 + 𝑧) converges if and only if the infinite product (1 − |𝑧|) converges. 

3. The infinite product (1 − 𝑧) converges if and only if the infinite product (1 + |𝑧|) converges. 

4. The infinite product (1 +
𝑧

𝑛
)

𝑛
 converges to 𝑒𝑧 as n approaches infinity, for any complex 

number z. 

5. The infinite product 𝑠𝑖𝑛 (
𝑧

𝑛
) converges to zero for any non-zero complex number z. 

 

Question 

Suppose an infinite product is absolutely convergent. Prove that it is convergent 

Solution  

Suppose the infinite product is given by: 

𝑃 =  𝑎1 . 𝑎2 . 𝑎3 . .. 

where ai are non-negative real numbers. 

By the absolute convergence of 𝑃, we have that the series: 

𝑆 =  𝑙𝑜𝑔(𝑎1) +  𝑙𝑜𝑔(𝑎2) +  𝑙𝑜𝑔(𝑎3) + . .. 

converges. 

Since the logarithm function is continuous, we can take the exponential of both sides to obtain: 

𝑒𝑆  =  𝑒log(𝑎1)𝑒𝑙𝑜𝑔(𝑎2) 𝑒𝑙𝑜𝑔(𝑎3) . .. 

which simplifies to: 

𝑃 =  𝑎1𝑎2 𝑎3 . .. 

Thus, the absolute convergence of 𝑃 implies that the series 𝑆 converges, which in turn implies 
that 𝑃 converges as well. 

Therefore, we have shown that if an infinite product is absolutely convergent, then it is also 
convergent. 

 

 

12.7 Review questions 

 

1. 𝒇(𝒛) =
𝒛

(𝒛−𝟏)𝟐
 is meromorphic because it has finite number (say K) of pole in the entire 

complex plane then K =? 
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2. 𝒇(𝒛) =
𝒛

(𝒛−𝟏)(𝒛−𝟓)(𝒛−𝟐)𝟑
 is meromorphic because it has finite number (say K) of pole in the 

entire complex plane then K =? 

3. Check whether the following functions is meromorphic? 

𝒇(𝒛) =
𝒆𝒛

𝒛
  

4. Check whether the following functions is meromorphic? 

𝒈(𝒛) =
𝒔𝒊𝒏𝒛 

(𝒛−𝟏)𝟐
 . 

5. State and prove the Mittag-Leffler theorem 

 

 

12.8 Self-assessment 

1. 𝒇(𝒛) =
𝒛

(𝒛−𝟏)
 is meromorphic because it has finite number (say K) of pole in the entire 

complex plane then K =? 

A. 5 

B. 1 

C. 2 

D. 3 

 

2. 𝒇(𝒛) =
𝒛

(𝒛−𝟏)(𝒛−𝟐)𝟑
 is meromorphic because it has finite number (say K) of pole in the entire 

complex plane then K =? 

A. 5 

B. 1 

C. 2 

D. 3 

 

3. Which one of the following functions is meromorphic? 

        𝒇(𝒛) =
𝒆𝒛

𝒛
 , and  𝒈(𝒛) =

𝒔𝒊𝒏𝒛 

(𝒛−𝟏)𝟐
 . 

A. Only 𝑓(𝑧) 

B. Only 𝑔(𝑧) 

C. Both  𝑓(𝑧) and 𝑔(𝑧) 

D. Neither  𝑓(𝑧) nor 𝑔(𝑧) 

 

4. Consider the 𝒇(𝒛) =
𝒛

𝟏−𝒛
  then  

A. 𝑧0 = 1 is the singular point of 𝑓(𝑧) 

B. 𝑧0 = 0 is the singular point of 𝑓(𝑧) 

C. 𝑧0 = 10 is the singular point of 𝑓(𝑧) 

D. There is no singular point of 𝑓(𝑧) 
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5. Consider the 𝒇(𝒛) = 𝒛𝟐  then  

A. 𝑧0 = 1 is the singular point of 𝑓(𝑧) 

B. 𝑧0 = 0 is the singular point of 𝑓(𝑧) 

C. 𝑧0 = 10 is the singular point of 𝑓(𝑧) 

D. There is no singular point of 𝑓(𝑧) 

 

6. Consider the 𝒇(𝒛) =
𝒛𝟐−𝟗

𝒛𝟐(𝒛−𝟏)(𝒛−𝟏−𝟐𝒊)
  then  

A. 𝑧0 = 1 is one of the singular points of 𝑓(𝑧) 

B. 𝑧0 = 3 is the singular point of 𝑓(𝑧) 

C. 𝑧0 = −3 is the singular point of 𝑓(𝑧) 

D. There is no singular point of 𝑓(𝑧) 

 

7. What is Mittag-Leffler's theorem? 

 

A. A theorem on the convergence of infinite series. 

B. A theorem on the analytic continuation of meromorphic functions. 

C. A theorem on the existence of a holomorphic function with prescribed 

singularities 

 

8. What does the theorem say about meromorphic functions? 

A. They can be extended to the whole complex plane. 

B. They can be extended to a neighborhood of their poles. 

C. They can be approximated by polynomials 

 

9. What are the conditions for the Mittag-Leffler's theorem to hold? 

A. The function must have isolated singularities and a certain growth 

condition. 

B. The function must be holomorphic and bounded on a compact set. 

C. The function must be a polynomial 

 

10. What is the significance of the theorem in complex analysis? 

A. It provides a method for approximating meromorphic functions 

B. It is a fundamental tool for studying the Riemann zeta function 

C. It allows us to construct meromorphic functions with prescribed 

singularities 

 

11. What is the value of the infinite product (1+i)(1-i)(1+i)(1-i)...?  

A. 1  

B. -1  

C. i  

D.  -i 

 

12. What is the value of the infinite product (1+2i)(1-2i)(1+2i)(1-2i)...?  

A. 1  

B. -1  

C. 2i 

D.  -2i 

 

13. What is the value of the infinite product (1+i/2)(1-i/2)(1+i/2)(1-i/2)...?  

A. 1  

B. -1/2  
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C.  i/2  

D. -i/2 

 

14. What is the value of the infinite product (1+i/3)(1-i/3)(1+i/3)(1-i/3)...?  

A. 1 

B.  -1/3  

C.  i/3  

D.  -i/3 

 

15. What is the value of the infinite product (1+3i)(1-3i)(1+3i)(1-3i)...?  

A. 1  

B. -1  

C. 3i  

D. -3i 

 

 

Table 1: Answers of self-assessment 

Question number Correct answer 

1 B 

2 C 

3 C 

4 A 

5 D 

6 A 

7 B 

8 A 

9 A 

10 C 

11 A 

12 B 

13 B 

14 B 

15 B 

 

12.9 Summary 

 The A function is analytic everywhere in the finite plane except at a finite number of poles 

is called a meromorphic function. 
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 The An infinite product of complex numbers is given by: 

𝑧 =  𝑧1 . 𝑧2 . 𝑧3 . . . , . 𝑧𝑛 . ..  

The notation for infinite product is ∏ 𝑧𝑖
𝑛
𝑖=1   

 If the infinite product |𝑧| converges, then the infinite product 𝑧 also converges. 

 The infinite product (1 + 𝑧) converges if and only if the infinite product (1 − |𝑧|) converges. 

 The infinite product (1 − 𝑧) converges if and only if the infinite product (1 + |𝑧|) converges. 

 

12.10 Keywords 

Meromorphic function: 

 A function is analytic everywhere in the finite plane except at a finite number of poles is called a 
meromorphic function. 

Mittag-Leffler theorem : 

Let 𝑧1 , 𝑧2 , . .. be a sequence of distinct complex numbers, and let 𝑐1 , 𝑐2 , . .. be a sequence of complex 
numbers. Then there exists a meromorphic function 𝑓(𝑧) on the complex plane such that the only 
poles of 𝑓(𝑧) are at the points 𝑧1 , 𝑧2 , . . ., and the residue of 𝑓(𝑧) at 𝑧𝑖 is 𝑐𝑖, for 𝑖 =  1, 2, . . .. 

 

12.11 Further Readings 

  

1. Complex Variables And Applications By Churchill, R. V. And Brown, J. W., Mcgraw Hill 
Education. 

2. Foundations Of Complex Analysis By S. Ponnusamy, Narosa Publishing House. 

3. Complex Analysis By Lars V. Ahlfors, Mcgraw Hill Education. 

4. Complex Variables Theory And Applications By H. S. Kasana, Prentice Hall. 
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Unit 13 - Bieberbach's conjecture 

Purpose and Objectives: 

 

After this unit students can be able to- 

1. Understand the Schwarz Reflection Principle for analytic functions? 

2. Prove the Schwarz Reflection Principle for analytic functions? 

3. Learn the consequences of the Schwarz Reflection Principle 

Introduction 

If a function is analytic in the upper half plane and its real part is non-negative on the boundary (the 
real axis), then it can be extended analytically to the entire plane. In other words, if a function f(z) is 

analytic in the upper half plane and satisfies the condition 𝑅𝑒(𝑓(𝑧)) ≥ 0 for all real 𝑧, then 𝑓(𝑧) can 

be extended to the entire complex plane. 

The Schwarz Reflection Principle has several important applications in complex analysis, such as 
proving the analyticity of functions, constructing entire functions with prescribed properties, and 
solving boundary value problems. In this unit we will explore the Schwarz Reflection Principle for 
analytic function. 

13.1 Schwarz Reflection Principle for Analytic Functions 

Statement: 

The Schwarz Reflection Principle states that if a complex valued function 𝑓(𝑧) is analytic in the upper 
half plane (𝐼𝑚(𝑧)  >  0), and continuous on the boundary of the upper half plane (𝐼𝑚(𝑧)  =  0), and 

if 𝑓(𝑧) satisfies 𝑓(𝑧) = 𝑓((𝑧̅))̅̅ ̅̅ ̅̅ ̅̅ , then the function 𝑓(𝑧) can be extended to be analytic in the entire 
complex plane. 

or 

The Schwarz Reflection Principle states that if a function is analytic in the upper half plane and its 
real part is non-negative on the boundary (the real axis), then it can be extended analytically to the 
entire plane. In other words, if a function 𝑓(𝑧) is analytic in the upper half plane and satisfies the 

condition 𝑅𝑒(𝑓(𝑧)) ≥  0 for all real z, then 𝑓(𝑧) can be extended to the entire complex plane. 

  

Proof 1: 

The proof of the Schwarz Reflection Principle relies on the fact that if a function is analytic in the 
upper half plane and its real part is non-negative on the boundary, then it can be represented as a 
real part of another analytic function.  

Let 𝑓(𝑧) be analytic in the upper half plane and 𝑅𝑒(𝑓(𝑧)) ≥  0 for all real 𝑧.  

Then the function 𝑔(𝑧)  =  𝑓(𝑧) +  𝑖(−𝑓(𝑧)) is analytic in the upper half plane and satisfies 
𝑅𝑒(𝑔(𝑧))  =  0 for all real 𝑧. 

The proof also uses the maximum modulus principle and Liouville's theorem. 

Liouville's Theorem 

Liouville's Theorem states that a bounded holomorphic function on the entire complex plane must 
be constant. It is named after Joseph Liouville. 

Statement: 

Let 𝑓(𝑧): 𝐶 → 𝐶 be an entire function. Suppose there exists some real number𝑀 ≥ 0  such 
that |𝑓(𝑧)| ≤ 𝑀 for all 𝑧 ∈ 𝐶 Then 𝑓(𝑧) is a constant function. 
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Or  

If a function 𝑓(𝑧) is entire and bounded in the complex plane, then 𝑓(𝑧) is constant throughout the 
plane. 

Proof: 

It is given that  

i. A function 𝑓(𝑧) is analytic in the entire complex plane  

ii. A function 𝑓(𝑧) is bounded, that |𝑓(𝑧)| ≤ 𝑀. 

Let us consider two points 𝑎 𝑎𝑛𝑑 𝑏 inside a particular domain(See the figure 5.1).  

 

Figure 5.1: Two points 𝑎 𝑎𝑛𝑑 𝑏 inside a particular domain 

 

Then using Cauchy integral formula 

1

2𝜋𝑖 
∮

𝑐
(

𝑓(𝑧)

𝑧 − 𝑎
) 𝑑𝑧 = 𝑓(𝑎) 

1

2𝜋𝑖 
∮

𝑐
(

𝑓(𝑧)

𝑧 − 𝑏
) 𝑑𝑧 = 𝑓(𝑏) 

If 𝑓(𝑧) is constant throughout the domain, then 𝑓(𝑎) = 𝑓(𝑏). 

Now let’s prove 𝑓(𝑎) − 𝑓(𝑏) = 0. 

𝑓(𝑎) − 𝑓(𝑏) =
1

2𝜋𝑖 
∮

𝑐
(

𝑓(𝑧)

𝑧 − 𝑎
) 𝑑𝑧 −

1

2𝜋𝑖 
∮

𝑐
(

𝑓(𝑧)

𝑧 − 𝑏
) 𝑑𝑧 

𝑓(𝑎) − 𝑓(𝑏) =
1

2𝜋𝑖 
∮

𝑐
(

𝑓(𝑧)

𝑧 − 𝑎
−

𝑓(𝑧)

𝑧 − 𝑏
) 𝑑𝑧 

𝑓(𝑎) − 𝑓(𝑏) =
1

2𝜋𝑖 
∮

𝑐
𝑓(𝑧) (

1

𝑧 − 𝑎
−

1

𝑧 − 𝑏
) 𝑑𝑧 

𝑓(𝑎) − 𝑓(𝑏) =
1

2𝜋𝑖 
∮

𝑐
𝑓(𝑧) (

𝑧 − 𝑏 − 𝑧 + 𝑎

(𝑧 − 𝑎)(𝑧 − 𝑏)
) 𝑑𝑧 
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𝑓(𝑎) − 𝑓(𝑏) =
𝑎 − 𝑏

2𝜋𝑖 
∮

𝑐
𝑓(𝑧) (

1

(𝑧 − 𝑎)(𝑧 − 𝑏)
) 𝑑𝑧 

|𝑓(𝑎) − 𝑓(𝑏)| = |
𝑎 − 𝑏

2𝜋𝑖 
∮

𝑐
𝑓(𝑧) (

1

(𝑧 − 𝑎)(𝑧 − 𝑏)
) 𝑑𝑧| 

|𝑓(𝑎) − 𝑓(𝑏)| ≤ |
𝑎 − 𝑏

2𝜋𝑖 
| ∮

𝑐
|𝑓(𝑧)| (

1

|(𝑧 − 𝑎)(𝑧 − 𝑏)|
) |𝑑𝑧| 

|𝑓(𝑎) − 𝑓(𝑏)| ≤ |
𝑎 − 𝑏

2𝜋𝑖 
| ∮

𝑐
|𝑓(𝑧)| (

1

(|𝑧| − |𝑎|)(|𝑧| − |𝑏|)
) |𝑑𝑧| 

Let 

𝑧 = 𝑟𝑒𝑖𝜃  

𝑑𝑧 = 𝑟𝑒𝑖𝜃 . 𝑖. 𝑑𝜃 

|𝑑𝑧| = |𝑟𝑒𝑖𝜃 . 𝑖. 𝑑𝜃| 

|𝑑𝑧| = |𝑟|. |𝑒𝑖𝜃|. |𝑖|. |𝑑𝜃| 

Here |𝑟| = 𝑟 

|𝑒𝑖𝜃| = |𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃| = 1, 

|𝑖| = 1, 

|𝑑𝑧| = 𝑟. |𝑑𝜃| 

|𝑓(𝑎) − 𝑓(𝑏)| ≤
𝑎 − 𝑏

2𝜋 
∮

𝑐
𝑀 (

1

(𝑟 − 𝑎)(𝑟 − 𝑏)
)  𝑟. |𝑑𝜃| 

|𝑓(𝑎) − 𝑓(𝑏)| ≤
𝑎 − 𝑏

2𝜋 
∮

𝑐
𝑀 (

1

(1 − 𝑎/𝑟)(1 − 𝑏/𝑟)
) . |𝑑𝜃| 

If 𝑓(𝑧) is analytic in the entire complex plane, then |𝑧| = 𝑟 → ∞. So 

|𝑓(𝑎) − 𝑓(𝑏)| ≤ 0 

𝑓(𝑎) − 𝑓(𝑏) = 0 

Hence, we can say that 𝑓(𝑎) = 𝑓(𝑏). It means that 𝑓(𝑧) is a constant. 

Liouville's Theorem proof using Cauchy integral formula for derivatives. 

If f(z) is analytic in a simply connected region then at any interior point of the region, 𝑧0 inside C. 

Then say, the derivatives of 𝑓(𝑧) of any order exist and are themselves analytic (which illustrates 
what a powerful property analyticity is!). The derivatives at the point 𝑧0 are given by Cauchy’s 
integral formula for derivatives: 

∮
𝑐

(
𝑓(𝑧)

(𝑧−𝑧0)𝑛+1
) 𝑑𝑧 = 2𝜋𝑖

𝑓𝑛(𝑧0)

𝑛!
. 

where C is any simple closed curve, in the region, which encloses 𝑧0. Note the case 𝑛 =  1: 

1

2𝜋𝑖
∮

𝑐
(

𝑓(𝑧)

(𝑧−𝑧0)2
) 𝑑𝑧 = 𝑓′(𝑧0). 

|𝑓′(𝑧0)| = |
1

2𝜋𝑖
∮

𝑐
(

𝑓(𝑧)

(𝑧−𝑧0)2
) 𝑑𝑧|. 

|𝑓′(𝑧0)| ≤ |
1

2𝜋𝑖
| ∮

𝑐
(

|𝑓(𝑧)|

|(𝑧−𝑧0)2|
) |𝑑𝑧|. 

Here 𝑧 = 𝑟𝑒𝑖𝜃 

𝑑𝑧 = 𝑟𝑒𝑖𝜃 . 𝑖. 𝑑𝜃. 

|𝑑𝑧| = |𝑟𝑒𝑖𝜃 . 𝑖. 𝑑𝜃|. 

|𝑑𝑧| = |𝑟|. |𝑒𝑖𝜃|. |𝑖|. |𝑑𝜃|. 

Here |𝑧 − 𝑧0| = 𝑟 

|𝑒𝑖𝜃| = |𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃| = 1, 

|𝑖| = 1, 
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|𝑑𝑧| = 𝑟. |𝑑𝜃|. 

|𝑓′(𝑧0)| ≤
1

2𝜋
∮

𝑐
(

𝑀

𝑟2
) 𝑟. |𝑑𝜃|. 

|𝑓′(𝑧0)| ≤
1

2𝜋
∮

𝑐
(

𝑀

𝑟
) . 𝑑𝜃. 

If 𝑓(𝑧) is analytic in the entire complex plane then 𝑟 → ∞. So 

|𝑓′(𝑧0)| ≤ 0 

𝑓′(𝑧0) = 0 

𝑓(𝑧) = constant. 

By Liouville's theorem, the imaginary part of 𝑔(𝑧) is constant on the boundary, say 𝑐. Then the 
function ℎ(𝑧)  =  𝑔(𝑧)  +  𝑖𝑐 is analytic in the entire plane and has the same real part as 𝑓(𝑧). 

 

Proof 2: 

Let 𝑓(𝑧) be a complex valued function that is analytic in the upper half plane (𝐼𝑚(𝑧)  >  0), and 
continuous on the boundary of the upper half plane (𝐼𝑚(𝑧)  =  0). 

Consider a point 𝑧 in the lower half plane (𝐼𝑚(𝑧) <  0)[See figure 5.2] 

 

Figure 5.2: 𝑤 = 𝑓(𝑧) 

Let 𝑧 =  𝑥 +  𝑖𝑦, where 𝑥 is real and 𝑦 is negative. 

Let's define a new point, 𝑐𝑜𝑛𝑗(𝑧)=𝑧̅, which is equal to the complex conjugate of z. 

That is, 𝑐𝑜𝑛𝑗(𝑧)  =  𝑥 −  𝑖𝑦. 

Since 𝑓(𝑧) is continuous on the boundary of the upper half plane, it follows that 𝑓(𝑐𝑜𝑛𝑗(𝑧)) is 
continuous in the lower half plane. 

Also, since 𝑓(𝑧) satisfies 𝑓(𝑧)  =  𝑓((𝑧̅))̅̅ ̅̅ ̅̅ ̅̅ ,  we have: 

 

𝑓(𝑧)  = 𝑓((𝑐𝑜𝑛𝑗(𝑧)))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  

=   𝑓(𝑥 −  𝑖𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

=   𝑓(𝑥 +  𝑖(−𝑦))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

Thus, we can define a new function, 𝑔(𝑧), in the lower half plane as follows: 

𝑔(𝑧)  =  𝑓(𝑥 +  𝑖(−𝑦))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

Since 𝑔(𝑧)  =  𝑓(𝑧)̅̅ ̅̅ ̅̅  is continuous in the lower half plane, and the conjugate of a continuous function 
is continuous, it follows that 𝑔(𝑧) is continuous in the lower half plane. 

We now show that 𝑔(𝑧) is also analytic in the lower half plane. 

Let 𝑧 =  𝑥 +  𝑖𝑦, where 𝑥 is real and 𝑦 is negative. 

Consider the derivative of 𝑔(𝑧) at the point 𝑧: 
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𝑔′(𝑧) =  (
𝑑

𝑑𝑧
)  𝑓(𝑥 +  𝑖(−𝑦))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

=  (
𝑑

𝑑𝑧
)  𝑓(𝑧)̅̅ ̅̅ ̅̅ ̅ 

=   (
𝑑

𝑑𝑧
) 𝑓(𝑧)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 

Since 𝑓(𝑧) is analytic in the upper half plane, it follows that (
𝑑

𝑑𝑧
) 𝑓(𝑧) is also analytic in the upper half 

plane. 

Therefore, conjugate of (
𝑑

𝑑𝑧
) 𝑓(𝑧) is also analytic in the lower half plane, and so is 𝑔′(𝑧). 

Since 𝑔(𝑧) is continuous and its derivative is analytic in the lower half plane, it follows that 𝑔(𝑧) is 
analytic in the lower half plane. 

Thus, we have shown that if 𝑓(𝑧) is a complex valued function that is analytic in the upper half plane 
and continuous on the boundary of the upper half plane, and if 𝑓(𝑧) satisfies: 

 𝑓(𝑧)  =  𝑓(𝑐𝑜𝑛𝑗(𝑧))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , then the function 𝑓(𝑧) can be extended to be analytic in the entire complex plane 
by defining a new function, 𝑔(𝑧), in the lower half plane. 

13.2 consequences of the Schwarz Reflection Principle 

1. One consequence of the Schwarz Reflection Principle is that if a function is analytic in the 

upper half plane and its real part is non-negative on the boundary, then it can be extended 

to an entire function that is real valued on the real axis.  

2. Another consequence is that a function that is analytic in the upper half plane and satisfies 

a certain growth condition on the boundary (such as the Riemann mapping theorem) can 

be extended to an entire function with similar growth behavior.  

3. Additionally, the Schwarz Reflection Principle can be used to construct solutions to 

boundary value problems, such as the Dirichlet problem, by reflecting solutions from one 

half plane to the other. 

 

13.3 Different proofs of Schwartz Reflection Principle 

The Schwartz Reflection Principle can be proved by various methods 

1. Complex Analysis Proof: The Schwartz Reflection Principle can be proven using complex 

analysis by considering the analytic continuation of the function from the upper half plane 

to the lower half plane. The proof involves showing that the function, extended to the lower 

half plane, is a reflection of the function in the upper half plane across the real axis. 

 

2. Harmonic Functions Proof: The Schwartz Reflection Principle can also be proven using the 

theory of harmonic functions. A function is considered harmonic if it satisfies Laplace's 

equation. By assuming that the function is harmonic in the upper half plane, it can be shown 

that its extension to the lower half plane is also harmonic, and therefore satisfies Laplace's 

equation, meaning it must be a reflection of the function in the upper half plane across the 

real axis. 

 

 

3. Integral Transform Proof: The Schwartz Reflection Principle can be proven using the Fourier 

Transform by showing that the Fourier Transform of a function in the upper half plane, after 

being reflected across the real axis, is equal to the negative Fourier Transform of the original 

function in the lower half plane. 
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4. Paley-Wiener Theorem Proof: The Schwartz Reflection Principle can also be proven using 

the Paley-Wiener theorem, which states that the Fourier Transform of a function with 

compact support is a function that is entire and decays rapidly. By assuming that the 

function in question is the Fourier Transform of a function with compact support in the 

upper half plane, it can be shown that the function, after being reflected across the real axis, 

is the Fourier Transform of a function with compact support in the lower half plane. 

 

 

5. Bochner's Theorem Proof: The Schwartz Reflection Principle can also be proven using 

Bochner's theorem, which states that a positive definite function is the Fourier Transform of 

a positive measure. By assuming that the function in question is positive definite in the 

upper half plane, it can be shown that the function, after being reflected across the real axis, 

is positive definite in the lower half plane, implying that it is the Fourier Transform of a 

positive measure. 

 

13.4 Applications  

 The main application of the Schwartz Reflection Principle is in the study of distributions 
and their derivatives. It provides a means to extend the definitions of distributions and 
derivatives to unbounded functions. 

 The Schwartz Reflection Principle is a generalization of the Hahn-Banach Theorem. The 
Hahn-Banach Theorem states that a linear functional on a linear subspace can be extended 
to the entire space while preserving its norm. The Schwartz Reflection Principle extends this 
result to the case of distributions. 

 The Schwartz Reflection Principle is an important tool in mathematical physics for defining 
distributions and derivatives of functions. In particular, it allows for the extension of the 
definitions of distributions and derivatives to unbounded functions, which is particularly 
useful in quantum field theory and quantum mechanics. 

 

 

13.5 Review questions 

 

1. What is the main application of the Schwartz Reflection Principle? 

2. How does the Schwartz Reflection Principle relate to the Hahn-Banach Theorem? 

3. What is the significance of the Schwartz Reflection Principle in mathematical 

physics? 

4. State and prove the Schwartz Reflection Principle using Liouville's Theorem? 

5. State and prove the Schwartz Reflection Principle without Liouville's Theorem ? 

 

13.6 Self-assessment 

1. Which one the following statement is true for the reference of  Schwarz reflection principle?  

 

I: The principle that a complex function which is holomorphic in the upper half plane can 

be extended to a holomorphic function in the whole plane. 
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II: The principle that states that a real-valued function cannot be analytically extended 

across a branch cut.  

 

A. Only I 

B. Only II 

C. Both I and II 

D. Neither I nor II 

 

2. Which one the following statement is true for the reference of Schwarz reflection principle?  

 

I:  The principle that a holomorphic function in the unit disc can be extended to a 

holomorphic function in the whole plane.  

 

II: The principle that states that the maximum value of a subharmonic function is achieved 

on the boundary of its domain. 

  

 

A. Only I 

B. Only II 

C. Both I and II 

D. Neither I nor II 

 

3. Which one the following statement is true for the necessary condition for the Schwarz 

reflection principle?  

 

I:  The function must be bounded in the upper half plane.  

 

II: The function must be continuous in the upper half plane 

  

A. Only I 

B. Only II 

C. Both I and II 

D. Neither I nor II 

 

4. Which one the following statement is true for the necessary condition for the Schwarz 

reflection principle?  

 

I:  The function must be holomorphic in the upper half plane. 

II: The function must be continuous in the upper half plane 

  

A. Only I 

B. Only II 

C. Both I and II 

D. Neither I nor II 

 

5. The Schwarz reflection principle can be used to extend which type of functions to the whole 

plane?  

A. Only real-valued functions  

B. Only harmonic functions 

C. Both real valued and harmonic 

D. Neither real nor harmonic 
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6. The Schwarz reflection principle can be used to extend which type of functions to the whole 

plane?  

A. Holomorphic functions 

B. Harmonic functions 

C. Subharmonic functions 

D. Neither real nor harmonic 

 

 

7. The Schwarz reflection principle states that the Fourier transform of the product of two 

signals is equal to the convolution of their Fourier transforms? 

A. True  

B. False 

 

 

8. The principle that states that the reflection of a Schwartz function across the x-axis is also a 

Schwartz function? 

A. True  

B. False 

 

9. The principle that states that the Laplace transform of a signal is equivalent to its Fourier 

transform? 

A. True  

B. False 

 

10. The principle that states that the derivative of a Schwartz function is also a Schwartz 

function. 

A. True  

B. False 

 

11. What is the Schwartz Reflection Principle in mathematics? 

 

A. The principle that every polynomial function has a unique root  

B. The principle that states that the boundary values of an analytic function on the 

upper half-plane can be extended to an analytic function on the whole complex 

plane  

C. The principle that states that the roots of a polynomial equation occur in conjugate 

pairs. 

D. The principle that the value of a holomorphic function at a point is equal to its 

average value over any small circle centered at that point. 

 

12. Which of the following is the best definition of the Schwartz Reflection Principle? 

 

I: A mathematical theorem that states that the reflection of a function across a 

vertical line always results in an even function. 

II: A mathematical theorem that states that the reflection of a function across a 

vertical line always results in an odd function. 

A. Only I 

B. Only II 

C. Both I and II 

D. Neither I nor II 

 

13. Which of the following is the best definition of the Schwartz Reflection Principle? 
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I: A mathematical theorem that states that the reflection of a function across a 

vertical line always results in a function with the same parity. 

 

II: A mathematical theorem that states that the reflection of a function across a 

vertical line always results in a different function. 

A. Only I 

B. Only II 

C. Both I and II 

D. Neither I nor II 

 

14. The Schwarz Reflection Principle states that if a complex valued function 𝑓(𝑧) is analytic in 

the upper half plane (𝐼𝑚(𝑧)  >  0), and continuous on the boundary of the upper half plane 

(𝐼𝑚(𝑧)  =  0), and if 𝑓(𝑧) satisfies 𝑓(𝑧) = 𝑓((�̅�))̅̅ ̅̅ ̅̅ ̅̅ , then the function 𝑓(𝑧) can be extended to 

be analytic in the entire complex plane. 

A. True  

B. False 

 

15. Which one the following statement is true for the reference of  Schwarz reflection principle?  

 

I:  The Schwarz Reflection Principle states that if a function is analytic in the upper 

half plane and its real part is non-negative on the boundary (the real axis), then it can be 

extended analytically to the entire plane.  

 

II: If a function 𝑓(𝑧) is analytic in the upper half plane and satisfies the condition 

𝑅𝑒(𝑓(𝑧)) ≥  0 for all real z, then 𝑓(𝑧) can be extended to the entire complex plane. 

 

A. Only I 

B. Only II 

C. Both I and II 

D. Neither I nor II 

 

 

Table 1: Answers of self-assessment 

Question number Correct answer 

1 A 

2 D 

3 D 

4 A 

5 D 

6 A 

7 B 
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8 A 

9 B 

10 B 

11 B 

12 D 

13 A 

14 D 

15 C 

 

13.7 Summary 

 The Schwarz Reflection Principle states that if a complex valued function 𝑓(𝑧) is analytic in 

the upper half plane (𝐼𝑚(𝑧)  >  0), and continuous on the boundary of the upper half plane 

(𝐼𝑚(𝑧)  =  0), and if 𝑓(𝑧) satisfies 𝑓(𝑧) = 𝑓((�̅�))̅̅ ̅̅ ̅̅ ̅̅ , then the function 𝑓(𝑧) can be extended to 

be analytic in the entire complex plane. 

 

 The Schwarz Reflection Principle states that if a function is analytic in the upper half plane 

and its real part is non-negative on the boundary (the real axis), then it can be extended 

analytically to the entire plane.  

 

 If a function 𝑓(𝑧) is analytic in the upper half plane and satisfies the condition 𝑅𝑒(𝑓(𝑧)) ≥

 0 for all real z, then 𝑓(𝑧) can be extended to the entire complex plane. 

 

 If a function 𝑓(𝑧) is entire and bounded in the complex plane, then 𝑓(𝑧) is constant 

throughout the plane. 

 

 

13.8 Keywords 

Liouville's Theorem   

Let 𝑓(𝑧): 𝐶 → 𝐶 be an entire function. Suppose there exists some real number𝑀 ≥ 0  such 
that |𝑓(𝑧)| ≤ 𝑀 for all 𝑧 ∈ 𝐶 Then 𝑓(𝑧) is a constant function.  

 

13.9 Further Readings 

  

1. Complex Variables And Applications By Churchill, R. V. And Brown, J. W., Mcgraw Hill 
Education. 

2. Foundations Of Complex Analysis By S. Ponnusamy, Narosa Publishing House. 

3. Complex Analysis By Lars V. Ahlfors, Mcgraw Hill Education. 

  LOVELY PROFESSIONAL UNIVERSITY  162

https://artofproblemsolving.com/wiki/index.php/Real_number
https://artofproblemsolving.com/wiki/index.php/Constant_function


Unit 13 - Bieberbach's conjecture 

4. Complex Variables Theory And Applications By H. S. Kasana, Prentice Hall. 

  LOVELY PROFESSIONAL UNIVERSITY  163



Unit 14 - Landau’s theorem 

 

Unit 14 - Landau’s theorem 

Purpose and Objectives: 

Meromorphic functions are an important class of functions studied in complex analysis. They 
are defined as functions that are holomorphic (analytic) everywhere except at a finite number of 
isolated singularities. Meromorphic functions are useful in studying the behavior of complex 
functions near singularities, and they provide a representation of any meromorphic function in 
terms of its poles and their residues. After this unit students can be able to- 

1. Understand the Meromorphic functions 

2. State and prove the Mittag-Leffler theorem 

3. Learn the infinite product of complex Numbers 

Introduction 

In this unit first we will understand the concept of singularities and poles for meromorphic function 
then the we will use the mesomorphic function to prove the Mittag-Leffler theorem. Last we will 
focus on the infinite product of complex Numbers. 

14.1 Singularities 

A point z0 is called a singular point of a function 𝑓(z) if 𝑓(z) fails to be analytic at z0 but is analytic at 
some point in every neighborhood of z0. 

 

 

 Example:  

Behavior of following functions at 𝑧 = 0. 

𝑓(𝑧) =
1

𝑧9
 

𝑓(𝑧) =
𝑆𝑖𝑛𝑧

𝑧
 

𝑓(𝑧) =
𝑒𝑧 − 1

𝑧
 

𝑓(𝑧) =
1

sin (1/𝑧)
 

We observed that all the functions mentioned above are not analytic at 𝑧 = 0.However in every 
neighbourhood of 𝑧 = 0, there is point at which 𝑓(𝑧) is analytic. 
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 Example:  

 

Behavior of following function at 𝑧 = 1. 

𝑓(𝑧) =
𝑧

1 − 𝑧
 

 

We observed that the 𝑓(𝑧)is not analytic at 𝑧 = 1.However in every neighbourhood of 𝑧 = 0, there is 
point at which 𝑓(𝑧) is analytic. So 𝑧 = 1 is the singular point of 𝑓(𝑧). 

 

 

 Example:  

𝑓(𝑧) = 𝑧2 is analytic everywhere so it has no singular point. 

 

 

 Example:  

Behavior of following function in the entire z plane 

𝑓(𝑧) = |𝑧|2  

We observed that the 𝑓(𝑧)is not analytic at 𝑧 = 1.However in every neighbourhood of 𝑧 = 0, there is 
point at which 𝑓(𝑧) is analytic. So 𝑧 = 1 is the singular point of 𝑓(𝑧). 

 

14.2 Classification of singularity 

The singularity of a complex function can be classified into two groups, isolated and non-isolated. It 
can be done via Laurent series expension, but we can also classify the singularity without the Laurent 
series expension. In the forthcoming units we will consider the classification using the Laurent series. 

The isolated singularity further can be classified into different type. The following diagram shows 
the different types of the singularities. 
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6.2.1 Isolated singularity  

A point a is called an isolated singularity for 𝑓(𝑧) if 𝑓(𝑧) is not analytic at 𝑧 = 𝑎 and there exist 𝑟 > 0 
such that 𝑓(𝑧) is analytic in 0 < |𝑧 − 𝑎| < 𝑟. The neighbourhood |𝑧 − 𝑎| < 𝑟 contains no singularity 
of 𝑓(𝑧) except 𝑎. 

 

 

 

 Example:  

  
𝒇(𝒛) =  

𝒛+𝟏

𝒛𝟐(𝒛𝟐+𝟏)
 has three isolated singularities 𝒛 =  𝟎, 𝒊, −𝒊. 

 

 

 Example:  

𝑓(𝑧) =  
1

𝑠𝑖𝑛𝑧
 has three isolated singularities 𝑧 =  0, ±π, ±2π, …,  

6.2.2 Removable singularity 

Let  𝑓(𝑧) is analytic everywhere execpt the point 𝑧0 inside and on the domain then if the lim
𝑧→𝑧0

𝑓(𝑧) 

exists then 𝑧0 is the removable singularity.  

 

 Example:  
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Let 𝑓(𝑧) =
𝑠𝑖𝑛𝑧

𝑧
, clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 

lim
𝑧→𝑧0

𝑓(𝑧) = lim
𝑧→0

𝑠𝑖𝑛𝑧

𝑧
= 1. 

lim
𝑧→𝑧0

𝑓(𝑧) exists then 𝑧0 = 0 is the removable singularity. 

 

 Example:  

Let 𝑓(𝑧) =
𝑧−𝑠𝑖𝑛𝑧

𝑧3
, clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 

lim
𝑧→𝑧0

𝑓(𝑧) = lim
𝑧→0

𝑧−𝑠𝑖𝑛𝑧

𝑧3
 

lim
𝑧→𝑧0

𝑓(𝑧) = lim
𝑧→0

1−𝑐𝑜𝑠𝑧

3𝑧2
 [L-Hosptital rule] 

lim
𝑧→𝑧0

𝑓(𝑧) = lim
𝑧→0

0+𝑠𝑖𝑛𝑧

6𝑧1
 [L-Hosptital rule] 

lim
𝑧→𝑧0

𝑓(𝑧) = lim
𝑧→0

𝑐𝑜𝑠𝑧

6
 [L-Hosptital rule] 

lim
𝑧→𝑧0

𝑓(𝑧) = lim
𝑧→0

1

6
 

lim
𝑧→𝑧0

𝑓(𝑧) exists then 𝑧0 = 0 is the removable singularity. 

 

6.2.3 Pole 

Let  𝑓(𝑧) is analytic everywhere execpt the point 𝑧0 inside and on the domain then if the 
lim

𝑧→𝑧0

(𝑧 − 𝑧0)𝑘𝑓(𝑧) = 𝜆 , where 𝜆 ≠ 0, then 𝑧0 is the pole of order k.  

If 𝑘 = 1, then 𝑧0 is the simple pole. 

 

 

 Example:  

Consider 𝑓(𝑧) =
𝑒𝑧

𝑧
 ,clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 

lim
𝑧→𝑧0

𝑓(𝑧) = lim
𝑧→0

𝑒𝑧

𝑧
 

lim
𝑧→𝑧0

(𝑧 − 0)1 𝑓(𝑧) = lim
𝑧→0

𝑧
𝑒𝑧

𝑧
 

lim
𝑧→𝑧0

(𝑧 − 0)1 𝑓(𝑧) = 𝑒0 = 1 ≠ 0. 

So 𝑧0 = 0 is the pole of order 1 or simple pole. 

 

 Example:  

 

Consider 𝑓(𝑧) =
𝑐𝑜𝑠𝑧

𝑧2
 , clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 

lim
𝑧→𝑧0

𝑓(𝑧) = lim
𝑧→0

𝑐𝑜𝑠𝑧

𝑧2
  

lim
𝑧→𝑧0

(𝑧 − 0)2 𝑓(𝑧) = lim
𝑧→0

𝑧2 𝑐𝑜𝑠𝑧

𝑧2 . 
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lim
𝑧→𝑧0

(𝑧 − 0)2 𝑓(𝑧) = lim
𝑧→0

𝑐𝑜𝑠𝑧 = 1 ≠ 0. 

So 𝑧0 = 0 is the pole of order 2. 

 

 Example:  

Consider 𝑓(𝑧) =
1−𝑒2𝑧

𝑧3
 , clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 

lim
𝑧→𝑧0

𝑓(𝑧) = lim
𝑧→0

1−𝑒2𝑧

𝑧3
   

lim
𝑧→𝑧0

(𝑧 − 0)3 𝑓(𝑧) = lim
𝑧→0

𝑧3 (1−𝑒2𝑧)

𝑧3
= 0. 

lim
𝑧→𝑧0

(𝑧 − 0)2 𝑓(𝑧) = lim
𝑧→0

 𝑧2 (1−𝑒2𝑧)

𝑧3
. 

lim
𝑧→𝑧0

(𝑧 − 0)2 𝑓(𝑧) = lim
𝑧→0

 
(1−𝑒2𝑧)

𝑧
. 

lim
𝑧→𝑧0

(𝑧 − 0)2 𝑓(𝑧) = lim
𝑧→0

 
−2𝑒2𝑧

1
= −2 ≠ 0. 

So 𝑧0 = 0 is the pole of order 2. 

 

6.2.4  Essential singularity 

Let  𝑓(𝑧) is analytic everywhere execpt the point 𝑧0 inside and on the domain then if the 
lim

𝑧→𝑧0

(𝑧 − 𝑧0)𝑛𝑓(𝑧) = ∞ , then 𝑧0 is essential singularity.  

 

 Example:  

Consider 𝑓(𝑧) = 𝑒1/𝑧 , clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 

lim
𝑧→𝑧0

𝑓(𝑧) = lim
𝑧→0

𝑒1/𝑧     

lim
𝑧→𝑧0

(𝑧 − 0)𝑛 𝑓(𝑧) = lim
𝑧→0

𝑧𝑛𝑒1/𝑧 . 

lim
𝑧→𝑧0

(𝑧 − 0)𝑛 𝑓(𝑧) = lim
𝑧→0

𝑧𝑛[1 +
1

𝑧
+

1

2!
(

1

𝑧
)

2
+

1

3!
(

1

𝑧
)

2
+ ⋯ , ] . 

lim
𝑧→𝑧0

(𝑧 − 0)𝑛 𝑓(𝑧) = ∞. 

So 𝑧0 = 0 is an essential singularity. 

 

6.2.5 Singularity at infinity  

We classify the types of singularities at infinity by letting w = 1/z and analyzing the resulting 
function at w = 0. 

 

 Example:  

𝑓(𝑧) = 𝑧3. 

𝑓(𝑧) = 𝑔(𝑤) = 1/𝑤3. 

𝑔(𝑤) has a pole of order 3 at w = 0 The function f(z) has a pole of order 3 at infinity. 
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6.2.5 Non-isolated singularity 

A point a is called a non-isolated singularity for 𝑓(𝑧) if 𝑓(𝑧) is not is not isolated at 𝑧 = 𝑎. 

 

 Example:  

𝑓(𝑧) =
1

sin (
1
𝑧)

 

  

The function is not analytic in any region 0 < |z| < δ. 

 

 

 

14.3 Classification of singularity by Laurent series expansion 

It is also possible to classify the singularity using the Laurent series expansion. 

Let a be an isolated singularity for a function 𝑓(𝑧). Let 𝑟 > 0 be such that 𝑓(𝑧) is analytic in 0 <
|𝑧 − 𝑎| < 𝑟. In this domain the function 𝑓(𝑧) can be represented as a Laurent series given by 

𝑓(𝑧) = ∑
𝑏𝑛

(𝑧 − 𝑎)𝑛

∞

𝑛=1

+ ∑ 𝑎𝑛(𝑧 − 𝑎)𝑛

∞

𝑛=0

 

Were 

𝑏𝑛 =
1

2𝜋𝑖
∫

𝐶1

𝑓(𝜁)

(𝜁−𝑎)−𝑛+1
 𝑑𝜁  

𝑎𝑛 =
1

2𝜋𝑖
∫

𝐶2

𝑓(𝜁)

(𝜁−𝑎)𝑛+1
 𝑑𝜁  

The series consisting of the negative powers of 𝑧 − 𝑎 in the above Laurent series expansion of 𝑓(𝑧) is 

given by ∑
𝑏𝑛

(𝑧−𝑎)𝑛
∞
𝑛=1  and is called the principal part or singular part 𝑜𝑓 𝑓(𝑧) 𝑎𝑡 𝑧 = 𝑎.  

The singular part of 𝑓(𝑧) 𝑎𝑡 𝑧 = 𝑎 determines the character of the singularity.  

6.9.1  Removable singularity by Laurent series expansion 

Let 𝒂 be an isolated singularity for 𝒇(𝒛). Then 𝒂 is called a removable singularity if the principal part 

of 𝒇(𝒛) 𝒂𝒕 𝒛 = 𝒂 has no terms.  

If 𝒂 is a removable singularity for 𝒇(𝒛) then the Laurent’s series expansion of 𝒇(𝒛) 𝒂𝒃𝒐𝒖𝒕 𝒛 = 𝒂 is 

given by  

𝑓(𝑧) = ∑ 𝑎𝑛(𝑧 − 𝑎)𝑛

∞

𝑛=0
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Hence as 𝒛𝒂, 𝒇(𝒛)  =  𝒂𝟎 Hence by defining 𝒇(𝒂)  =  𝒂𝟎 the function 𝒇(𝒛) becomes analytic at 𝒂. 

 

 Example:  

Let 𝑓(𝑧) =
𝑠𝑖𝑛𝑧

𝑧
, clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 

Now 𝑓(𝑧) =
𝑠𝑖𝑛𝑧

𝑧
= 

1

𝑧
(𝑧 −

𝑧3

3!
 +

𝑧5

5!
 − … . ) 

𝑓(𝑧) =
𝑠𝑖𝑛𝑧

𝑧
= (1 −

𝑧2

3!
 +

𝑧4

5!
 − … . ) 

Here the principal part of 𝑓(𝑧) 𝑎𝑡 𝑧 =  0 has no terms. Hence z = 0 is a removable singularity. 

lim
𝑧→𝑧0

𝑓(𝑧) also exists then 𝑧0 = 0 is the removable singularity. 

 

 Example:  

Let 𝑓(𝑧) =
𝑧−𝑠𝑖𝑛𝑧

𝑧3
, clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 

𝑓(𝑧) =
𝑧 − (𝑧 −

𝑧3

3!  +
𝑧5

5!  − … , )

𝑧3
 

𝑓(𝑧) =

𝑧3

3! −
𝑧5

5!  − … , )

𝑧3
 

𝑓(𝑧) =
1

3!
−

𝑧2

5!
 − …,  

𝑧 =  0 is a removable singularity. By defining 𝑓(0)  =  1/6 the function becomes analytic 𝑎𝑡 𝑧 =
 0.Also lim

𝑧→𝑧0

𝑓(𝑧) exists then 𝑧0 = 0 is the removable singularity. 

 

6.9.2 Pole by Laurent series expansion 

Let 𝑎 be an isolated singularity of 𝑓(𝑧). The point a is called a pole if the principal part of 𝑓(𝑧) 𝑎𝑡 𝑧 =
𝑎 has a finite number of terms. 

 If the principal part of 𝑓(𝑧)𝑎𝑡 𝑧 = 𝑎 is given by  

𝑏1

𝑧−𝑎
 +

𝑏2

(𝑧−𝑎)2
 + … +

𝑏𝑟

(𝑧−𝑎)𝑟
, . where 𝑏𝑟  ≠  0.  

We say that a is a pole of order 𝑟 for 𝑓(𝑧). Note: A pole of order 1 is called a simple pole and a pole 
of order 2 is called double pole. 

 

 

 Example:  

Consider 𝑓(𝑧) =
𝑒𝑧

𝑧
 ,clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 

𝑓(𝑧) =
𝑒𝑧

𝑧
=

1

𝑧
(1 + 𝑧 +

𝑧2

2
+

𝑧3

6
+…,) 

𝑓(𝑧) =
𝑒𝑧

𝑧
= (1/𝑧 + 1 +

𝑧

2
+

𝑧2

6
+…,) 

Here the principal part of 𝑓(𝑧) 𝑎𝑡 𝑧 = 0 has a single term 
1

𝑧
 . Hence 𝑧 = 0 is a simple pole of 𝑓(𝑧). Also 

 

lim
𝑧→𝑧0

(𝑧 − 0)1 𝑓(𝑧) = 𝑒0 = 1 ≠ 0. So 𝑧0 = 0 is the pole of order 1 or simple pole. 
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 Example:  

Consider 𝑓(𝑧) =
𝑐𝑜𝑠𝑧

𝑧2
 , clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 

𝑓(𝑧) =
𝑐𝑜𝑠𝑧

𝑧2
=

1 −
𝑧2

2! +
𝑧4

4! − ⋯ ,

𝑧2
 

The principal part of 𝑓(𝑧) 𝑎𝑡 𝑧 = 0 contains the term 1/𝑧2 . Hence z=0 is a double pole of f(z). 

 Also lim
𝑧→𝑧0

(𝑧 − 0)2 𝑓(𝑧) = lim
𝑧→0

𝑐𝑜𝑠𝑧 = 1 ≠ 0. 

So 𝑧0 = 0 is the pole of order 2. 

 

6.9.3 Essential singularity 

Let a be an isolated singularity of 𝒇(𝒛). The point a is called an essential singularity of 𝒇(𝒛) at 𝒛 = 𝒂 

if the principal part of 𝒇(𝒛) 𝒂𝒕 𝒛 = 𝒂 has an infinite number of terms.  

 

 Example:  

Consider 𝑓(𝑧) = 𝑒1/𝑧 , clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 

𝑓(𝑧) = 𝑒1/𝑧 

𝑓(𝑧) = [1 +
1

𝑧
+

1

2!
(

1

𝑧
)

2
+

1

3!
(

1

𝑧
)

2
+ ⋯ , ]. 

The principal part of 𝑓(𝑧) has infinite number of terms. Hence 𝑓(𝑧) = 𝑒1/𝑧 has an essential singularity 
at 𝑧 = 0. 

Also lim
𝑧→𝑧0

(𝑧 − 0)𝑛 𝑓(𝑧) = ∞. 

So 𝑧0 = 0 is an essential singularity. 

 

14.4 Meromorphic Functions 

 

A function is analytic everywhere in the finite plane except at a finite number of poles is called a 
meromorphic function. 

 

 Example:  

𝑓(𝑧) =
𝑧

(𝑧 − 1)(𝑧 + 3)2
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𝑓(𝑧) is analytic everywhere in the complex plane except 𝑧 = 1 𝑎𝑛𝑑 𝑧 = −3.Here 𝑧 = 1 is a simple pile 
and 𝑧 = −3 is the pole of order 3. We can say that the 𝑓(𝑧) has finite number of poles and it’s a 
meromorphic function. 

 

 Example:  

Consider 𝑓(𝑧) =
𝑒𝑧

𝑧
 ,clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 

lim
𝑧→𝑧0

𝑓(𝑧) = lim
𝑧→0

𝑒𝑧

𝑧
 

lim
𝑧→𝑧0

(𝑧 − 0)1 𝑓(𝑧) = lim
𝑧→0

𝑧
𝑒𝑧

𝑧
 

lim
𝑧→𝑧0

(𝑧 − 0)1 𝑓(𝑧) = 𝑒0 = 1 ≠ 0. 

So 𝑧0 = 0 is the pole of order 1 or simple pole. We can say that the 𝑓(𝑧) has finite number of poles 

and it’s a meromorphic function. 

 

 Example:  

Consider 𝑓(𝑧) =
𝑐𝑜𝑠𝑧

𝑧2
 , clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 

lim
𝑧→𝑧0

𝑓(𝑧) = lim
𝑧→0

𝑐𝑜𝑠𝑧

𝑧2
  

lim
𝑧→𝑧0

(𝑧 − 0)2 𝑓(𝑧) = lim
𝑧→0

𝑧2 𝑐𝑜𝑠𝑧

𝑧2 . 

lim
𝑧→𝑧0

(𝑧 − 0)2 𝑓(𝑧) = lim
𝑧→0

𝑐𝑜𝑠𝑧 = 1 ≠ 0. 

So 𝑧0 = 0 is the pole of order 2. We can say that the 𝑓(𝑧) has finite number of poles and it’s a 
meromorphic function. 

 

 Example:  

Consider 𝑓(𝑧) =
1−𝑒2𝑧

𝑧3
 , clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 

lim
𝑧→𝑧0

𝑓(𝑧) = lim
𝑧→0

1−𝑒2𝑧

𝑧3
   

lim
𝑧→𝑧0

(𝑧 − 0)3 𝑓(𝑧) = lim
𝑧→0

𝑧3 (1−𝑒2𝑧)

𝑧3
= 0. 

lim
𝑧→𝑧0

(𝑧 − 0)2 𝑓(𝑧) = lim
𝑧→0

 𝑧2 (1−𝑒2𝑧)

𝑧3
. 

lim
𝑧→𝑧0

(𝑧 − 0)2 𝑓(𝑧) = lim
𝑧→0

 
(1−𝑒2𝑧)

𝑧
. 

lim
𝑧→𝑧0

(𝑧 − 0)2 𝑓(𝑧) = lim
𝑧→0

 
−2𝑒2𝑧

1
= −2 ≠ 0. 

So 𝑧0 = 0 is the pole of order 2. We can say that the 𝑓(𝑧) has finite number of poles and it’s a 
meromorphic function. 

 

 Example:  

Consider 𝑓(𝑧) = 𝑒1/𝑧 , clearly 𝑧0 = 0 is an isolated singular point for 𝑓(𝑧). 
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lim
𝑧→𝑧0

𝑓(𝑧) = lim
𝑧→0

𝑒1/𝑧     

lim
𝑧→𝑧0

(𝑧 − 0)𝑛 𝑓(𝑧) = lim
𝑧→0

𝑧𝑛𝑒1/𝑧 . 

lim
𝑧→𝑧0

(𝑧 − 0)𝑛 𝑓(𝑧) = lim
𝑧→0

𝑧𝑛[1 +
1

𝑧
+

1

2!
(

1

𝑧
)

2
+

1

3!
(

1

𝑧
)

2
+ ⋯ , ] . 

lim
𝑧→𝑧0

(𝑧 − 0)𝑛 𝑓(𝑧) = ∞. 

So 𝑧0 = 0 is an essential singularity.Thus this function is not meromorphic in the whole complex 
plane. 

 

14.5 Mittag-Leffler theorem 

The Mittag-Leffler theorem is a fundamental result in complex analysis that deals with the existence 
of meromorphic functions with prescribed poles and residues. Specifically, it states that for any 
sequence of distinct points in the complex plane and any sequence of complex numbers, there exists 
a meromorphic function with poles precisely at the given points and residues equal to the 
corresponding complex numbers. 

More formally, let 𝑧1 , 𝑧2 , . .. be a sequence of distinct complex numbers, and let 𝑐1 , 𝑐2 , . .. be a sequence 
of complex numbers. Then there exists a meromorphic function 𝑓(𝑧) on the complex plane such that 
the only poles of 𝑓(𝑧) are at the points 𝑧1 , 𝑧2 , . . ., and the residue of 𝑓(𝑧) at 𝑧𝑖 is 𝑐𝑖, for 𝑖 =  1, 2, . . .. 

Proof: 

To prove the Mittag-Leffler theorem, we will construct the desired meromorphic function 𝑓(𝑧) using 
a standard technique known as the Weierstrass product formula. 

This involves expressing 𝑓(𝑧) as an infinite product of simple functions, each of which has a single 
pole at one of the given points and the prescribed residue. 

Let 𝐷𝑛   be the disc centered at 𝑧𝑛 with radius 𝑟𝑛  such that 𝐷𝑛 is disjoint from all other discs, and let 
𝐶𝑛be the circle bounding 𝐷𝑛. 

 Then we define the function 𝑔𝑛(𝑧) as: 

𝑔𝑛(𝑧)  =  (𝑧 − 𝑧𝑛)−1 𝑒(𝑝𝑛(𝑧 − 𝑧𝑛)) 

where 𝑝𝑛   is chosen so that the Laurent series of 𝑔𝑛(𝑧) at 𝑧𝑛 has a constant term of 𝑐𝑛. Specifically, 
we set: 

𝑝𝑛  =
𝑐𝑛

𝑟𝑛
  

Using the Cauchy integral formula, we can express 𝑔𝑛(𝑧) as an integral over 𝐶𝑛: 

𝑔𝑛(𝑧) =  
1

2𝜋𝑖
 ∫

𝑔𝑛(𝑤)

𝑤 −  𝑧
 𝑑𝑤

𝐶𝑛

 

Now we define the function 𝐹(𝑧) as: 

𝐹(𝑧)  =  ∏ 𝑔𝑛(𝑧)

∞

𝑛=1

  

This product converges absolutely and uniformly on compact sets, since the discs 𝐷𝑛 are disjoint and 
the radii 𝑟𝑛 are chosen appropriately. Moreover, 𝐹(𝑧) is meromorphic on the complex plane, since 
each 𝑔𝑛(𝑧) has a single pole at 𝑧𝑛 and no other poles. 

To see that 𝐹(𝑧) has the desired poles and residues, we consider the partial products: 

𝐹𝑁(𝑧)  =  ∏ 𝑔𝑛(𝑧)

𝑁

𝑛=1

  

These are meromorphic functions with poles only at the points 𝑧1 , 𝑧2 , . . . , 𝑧𝑁 . Moreover, the residue of 
𝐹𝑁(𝑧) 𝑎𝑡 𝑧𝑛 𝑖𝑠 𝑐𝑛 , by construction. Finally, we note that 𝐹𝑁(𝑧) converges to 𝐹(𝑧) as 𝑁 goes to infinity, 

since the product converges absolutely and uniformly on compact sets. 
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Therefore, we have constructed a meromorphic function 𝑓(𝑧) with the desired poles and residues, 
namely: 

𝑓(𝑧)  =  𝐹(𝑧) 

This completes the proof of the Mittag-Leffler theorem. 

 

 

Question: 

Prove that 𝑐𝑜𝑡𝑧 =
1

𝑧
+  2𝑧 ∑

1

𝑧2−𝑛2𝜋2
∞
𝑛=1    using Mittage Laffer's theorem 

Proof: 

To prove that 𝑐𝑜𝑡𝑧 −
1

𝑧
=  2𝑧 ∑

1

𝑧2−𝑛2𝜋2
∞
𝑛=1    , we can use the Mittag-Leffler theorem. 

To prove this identity using the Mittag-Leffler theorem, we need to first identify the poles and their 
residues of the function 𝑐𝑜𝑡(𝑧). 

We know that 𝑐𝑜𝑡(𝑧) is periodic with period 𝜋, and has simple poles at 𝑧 =  𝑛𝜋 for all integers 𝑛. 

Recall that the cotangent function can be expressed as the ratio of the cosine and sine functions: 

𝑐𝑜𝑡𝑧 =
cos 𝑧

𝑠𝑖𝑛𝑧
 

The poles of the cotangent function are the zeros of the sine function, which occur at 𝑧 =  𝑛𝜋 for all 
integers 𝑛. Thus, we can write: 

𝑐𝑜𝑡𝑧 =
𝑐𝑜𝑠𝑧

𝑧 −  𝑛𝜋
 

To prove this identity using Mittag-Leffler theorem, we need to find the poles and residues of the 
function cot(z) and the infinite sum in the equation. 

First, we know that 𝑐𝑜𝑡(𝑧) has simple poles at 𝑧 =  𝑛𝜋 for all integers 𝑛. 

 The residues at these poles are ±1, depending on the sign of 𝑠𝑖𝑛(𝑛𝜋). 

Next, we consider the infinite sum in the equation.  

Let 𝑓(𝑧)  =  ∑
1

𝑧2  − 𝑛2𝜋2
   .  

This function has poles at 𝑧 =  ±𝑛𝜋 for all integers 𝑛. The residues at these poles are given by 

𝑅𝑒𝑠[𝑓(𝑧), 𝑧 =  𝑛𝜋] =  𝑙𝑖𝑚𝑧→𝑛𝜋

(𝑧 − 𝑛𝜋)1

𝑧2  − 𝑛2𝜋2
 =

1

2𝑛𝜋
 

and 

𝑅𝑒𝑠[𝑓(𝑧), 𝑧 =  −𝑛𝜋] =  𝑙𝑖𝑚𝑧→−𝑛𝜋

(𝑧 + 𝑛𝜋)1

𝑧2  − 𝑛2𝜋2
 =  −

1

2𝑛𝜋
. 

Now, using the Mittag-Leffler theorem, we can write 

𝑐𝑜𝑡(𝑧) −
1

𝑧
 =  ∑  

∞

𝑛=1

(
1

𝑧 − 𝑛𝜋
 +

1

𝑧 + 𝑛𝜋
) 

=∑  ∞
𝑛=1

1

2𝑛𝜋
(

1

𝑧−𝑛𝜋
  −

1

𝑧+𝑛𝜋
)  

=  2 ∑  ∞
𝑛=1

1

2𝑛𝜋

1

𝑧2 − 𝑛2𝜋2
   

=  2𝑓(𝑧)  

Therefore, we have 

𝑐𝑜𝑡(𝑧) =
1

𝑧
 +  2 ∑  ∞

𝑛=1
1

2𝑛𝜋

1

𝑧2 − 𝑛2𝜋2
 as desired. 
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14.6 Infinite Product of Complex Numbers 

An infinite product of complex numbers is given by: 

𝑧 =  𝑧1 . 𝑧2 . 𝑧3 . . . , . 𝑧𝑛 . ..  

The notation for infinite product is ∏ 𝑧𝑖
𝑛
𝑖=1   

where 𝑧1 , 𝑧2 , 𝑧3 , . . . , 𝑧𝑛 are complex numbers. 

If the infinite product converges, then we can define it as follows: 

𝑧 =  lim
𝑛→∞

(𝑧1 . 𝑧2 . 𝑧3 . . . , 𝑧𝑛)     

In general, an infinite product of complex numbers is said to converge if and only if the limit of the 
sequence of partial products (i.e., the product of the first n terms) exists and is nonzero. 

Some important results related to infinite products of complex numbers are: 

1. If the infinite product |𝑧| converges, then the infinite product 𝑧 also converges. 

2. The infinite product (1 + 𝑧) converges if and only if the infinite product (1 − |𝑧|) converges. 

3. The infinite product (1 − 𝑧) converges if and only if the infinite product (1 + |𝑧|) converges. 

4. The infinite product (1 +
𝑧

𝑛
)

𝑛
 converges to 𝑒𝑧 as n approaches infinity, for any complex 

number z. 

5. The infinite product 𝑠𝑖𝑛 (
𝑧

𝑛
) converges to zero for any non-zero complex number z. 

 

Question 

Suppose an infinite product is absolutely convergent. Prove that it is convergent 

Solution  

Suppose the infinite product is given by: 

𝑃 =  𝑎1 . 𝑎2 . 𝑎3 . .. 

where ai are non-negative real numbers. 

By the absolute convergence of 𝑃, we have that the series: 

𝑆 =  𝑙𝑜𝑔(𝑎1) +  𝑙𝑜𝑔(𝑎2) +  𝑙𝑜𝑔(𝑎3) + . .. 

converges. 

Since the logarithm function is continuous, we can take the exponential of both sides to obtain: 

𝑒𝑆  =  𝑒log(𝑎1)𝑒𝑙𝑜𝑔(𝑎2) 𝑒𝑙𝑜𝑔(𝑎3) . .. 

which simplifies to: 

𝑃 =  𝑎1𝑎2 𝑎3 . .. 

Thus, the absolute convergence of 𝑃 implies that the series 𝑆 converges, which in turn implies 
that 𝑃 converges as well. 

Therefore, we have shown that if an infinite product is absolutely convergent, then it is also 
convergent. 

 

 

14.7 Review questions 

 

1. 𝒇(𝒛) =
𝒛

(𝒛−𝟏)𝟐
 is meromorphic because it has finite number (say K) of pole in the entire 

complex plane then K =? 
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2. 𝒇(𝒛) =
𝒛

(𝒛−𝟏)(𝒛−𝟓)(𝒛−𝟐)𝟑
 is meromorphic because it has finite number (say K) of pole in the 

entire complex plane then K =? 

3. Check whether the following functions is meromorphic? 

𝒇(𝒛) =
𝒆𝒛

𝒛
  

4. Check whether the following functions is meromorphic? 

𝒈(𝒛) =
𝒔𝒊𝒏𝒛 

(𝒛−𝟏)𝟐
 . 

5. State and prove the Mittag-Leffler theorem 

 

 

14.8 Self-assessment 

1. 𝒇(𝒛) =
𝒛

(𝒛−𝟏)
 is meromorphic because it has finite number (say K) of pole in the entire 

complex plane then K =? 

A. 5 

B. 1 

C. 2 

D. 3 

 

2. 𝒇(𝒛) =
𝒛

(𝒛−𝟏)(𝒛−𝟐)𝟑
 is meromorphic because it has finite number (say K) of pole in the entire 

complex plane then K =? 

A. 5 

B. 1 

C. 2 

D. 3 

 

3. Which one of the following functions is meromorphic? 

        𝒇(𝒛) =
𝒆𝒛

𝒛
 , and  𝒈(𝒛) =

𝒔𝒊𝒏𝒛 

(𝒛−𝟏)𝟐
 . 

A. Only 𝑓(𝑧) 

B. Only 𝑔(𝑧) 

C. Both  𝑓(𝑧) and 𝑔(𝑧) 

D. Neither  𝑓(𝑧) nor 𝑔(𝑧) 

 

4. Consider the 𝒇(𝒛) =
𝒛

𝟏−𝒛
  then  

A. 𝑧0 = 1 is the singular point of 𝑓(𝑧) 

B. 𝑧0 = 0 is the singular point of 𝑓(𝑧) 

C. 𝑧0 = 10 is the singular point of 𝑓(𝑧) 

D. There is no singular point of 𝑓(𝑧) 
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5. Consider the 𝒇(𝒛) = 𝒛𝟐  then  

A. 𝑧0 = 1 is the singular point of 𝑓(𝑧) 

B. 𝑧0 = 0 is the singular point of 𝑓(𝑧) 

C. 𝑧0 = 10 is the singular point of 𝑓(𝑧) 

D. There is no singular point of 𝑓(𝑧) 

 

6. Consider the 𝒇(𝒛) =
𝒛𝟐−𝟗

𝒛𝟐(𝒛−𝟏)(𝒛−𝟏−𝟐𝒊)
  then  

A. 𝑧0 = 1 is one of the singular points of 𝑓(𝑧) 

B. 𝑧0 = 3 is the singular point of 𝑓(𝑧) 

C. 𝑧0 = −3 is the singular point of 𝑓(𝑧) 

D. There is no singular point of 𝑓(𝑧) 

 

7. What is Mittag-Leffler's theorem? 

 

A. A theorem on the convergence of infinite series. 

B. A theorem on the analytic continuation of meromorphic functions. 

C. A theorem on the existence of a holomorphic function with prescribed 

singularities 

 

8. What does the theorem say about meromorphic functions? 

A. They can be extended to the whole complex plane. 

B. They can be extended to a neighborhood of their poles. 

C. They can be approximated by polynomials 

 

9. What are the conditions for the Mittag-Leffler's theorem to hold? 

A. The function must have isolated singularities and a certain growth 

condition. 

B. The function must be holomorphic and bounded on a compact set. 

C. The function must be a polynomial 

 

10. What is the significance of the theorem in complex analysis? 

A. It provides a method for approximating meromorphic functions 

B. It is a fundamental tool for studying the Riemann zeta function 

C. It allows us to construct meromorphic functions with prescribed 

singularities 

 

11. What is the value of the infinite product (1+i)(1-i)(1+i)(1-i)...?  

A. 1  

B. -1  

C. i  

D.  -i 

 

12. What is the value of the infinite product (1+2i)(1-2i)(1+2i)(1-2i)...?  

A. 1  

B. -1  

C. 2i 

D.  -2i 

 

13. What is the value of the infinite product (1+i/2)(1-i/2)(1+i/2)(1-i/2)...?  

A. 1  

B. -1/2  
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C.  i/2  

D. -i/2 

 

14. What is the value of the infinite product (1+i/3)(1-i/3)(1+i/3)(1-i/3)...?  

A. 1 

B.  -1/3  

C.  i/3  

D.  -i/3 

 

15. What is the value of the infinite product (1+3i)(1-3i)(1+3i)(1-3i)...?  

A. 1  

B. -1  

C. 3i  

D. -3i 

 

 

Table 1: Answers of self-assessment 

Question number Correct answer 

1 B 

2 C 

3 C 

4 A 

5 D 

6 A 

7 B 

8 A 

9 A 

10 C 

11 A 

12 B 

13 B 

14 B 

15 B 

 

14.9 Summary 

 The A function is analytic everywhere in the finite plane except at a finite number of poles 

is called a meromorphic function. 
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 The An infinite product of complex numbers is given by: 

𝑧 =  𝑧1 . 𝑧2 . 𝑧3 . . . , . 𝑧𝑛 . ..  

The notation for infinite product is ∏ 𝑧𝑖
𝑛
𝑖=1   

 If the infinite product |𝑧| converges, then the infinite product 𝑧 also converges. 

 The infinite product (1 + 𝑧) converges if and only if the infinite product (1 − |𝑧|) converges. 

 The infinite product (1 − 𝑧) converges if and only if the infinite product (1 + |𝑧|) converges. 

 

14.10 Keywords 

Meromorphic function: 

 A function is analytic everywhere in the finite plane except at a finite number of poles is called a 
meromorphic function. 

Mittag-Leffler theorem : 

Let 𝑧1 , 𝑧2 , . .. be a sequence of distinct complex numbers, and let 𝑐1 , 𝑐2 , . .. be a sequence of complex 
numbers. Then there exists a meromorphic function 𝑓(𝑧) on the complex plane such that the only 
poles of 𝑓(𝑧) are at the points 𝑧1 , 𝑧2 , . . ., and the residue of 𝑓(𝑧) at 𝑧𝑖 is 𝑐𝑖, for 𝑖 =  1, 2, . . .. 

 

14.11 Further Readings 

  

1. Complex Variables And Applications By Churchill, R. V. And Brown, J. W., Mcgraw Hill 
Education. 

2. Foundations Of Complex Analysis By S. Ponnusamy, Narosa Publishing House. 

3. Complex Analysis By Lars V. Ahlfors, Mcgraw Hill Education. 

4. Complex Variables Theory And Applications By H. S. Kasana, Prentice Hall. 
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