Complex Analysis -l
DEMTH543

Edited by:
Dr. Kulwinder Singh

OVELY
ROFESSIONAL
NIVERSITY




5. [OVELY

O O,
B .
U

IEJROFESSIONAL
[VINIVERSITY

Complex Analysis - |l

Edited By
Dr. Kulwinder Singh




Unit 1:

Unit 2:

Unit 3:

Unit 4:

Unit 5:

Unit 6:

Unit 7:

Unit 8:

Unit 9:

Unit 10:

Unit 11:

Unit 12:

Unit 13:

Unit 14:

Content

Analytical Continuation

Rajesh Kumar Chandrawat, Lovely Professional University
Uniqueness of analytic continuation along a curve
Rajesh Kumar Chandrawat, Lovely Professional University
Monodromy theorem and Poisson integration formula
Rajesh Kumar Chandrawat, Lovely Professional University
Relation Between Mean Value Property and Harmonic Functions
Rajesh Kumar Chandrawat, Lovely Professional University
Schwarz reflection principle for harmonic functions
Rajesh Kumar Chandrawat, Lovely Professional University
Infinite sums and meromorphic functions

Rajesh Kumar Chandrawat, Lovely Professional University
Infinite product of analytic functions

Rajesh Kumar Chandrawat, Lovely Professional University
Gamma function and its properties

Rajesh Kumar Chandrawat, Lovely Professional University
Riemann zeta function

Rajesh Kumar Chandrawat, Lovely Professional University
Order of entire function

Rajesh Kumar Chandrawat, Lovely Professional University
Open mapping theorem

Rajesh Kumar Chandrawat, Lovely Professional University
Normal families of analytic functions

Rajesh Kumar Chandrawat, Lovely Professional University
Bieberbach's conjecture

Rajesh Kumar Chandrawat, Lovely Professional University
Landau’s theorem

Rajesh Kumar Chandrawat, Lovely Professional University

15

27

38

51

62

78

91

103

113

126

137

153

164



Rajesh Kumar Chandrawat, Lovely Professional University Unit 01: Analytical Continuation

Table of Contents

Purpose and ObJECtiVES:..........cciiiiiiiiiiici s 1
INEFOAUCHON ..o s 1
11 TAYIOT SEIIES......ocviiiiiiicc e 1
1.2 CONVEIZOIICE ...t 2
1.3 Analytic Functions, Poles, and Convergence Discs ............cccccoviiiiiiiiiinincceens 3
1.4 Analytic CONINUAION ...t 6
1.5 ReVIEW QUESHIONS.......cuiiiiiiiiiiiiiiicic e 11
1.6 Self-aSSESSINENL ...t 11
1.7 SUIMIMATY . s 14
1.8 KEYWOIAS ..o s 14
1.9 Further REAdINGS .......c.coviiiiiiiiiiii e 14

Purpose and Objectives:

An analytic continuation is a mathematical approach used to widen the scope of a given analytic
function in the field of complex analysis. Analytic continuation frequently succeeds in defining
further values of a function, for instance in a new region when the initial definition's infinite series
representation becomes divergent.

The stepwise continuation method might, however, run into problems. These could be
fundamentally topological, which would produce contradictions (defining more than one value).
Alternatively, they might be related to the existence of singularities. The situation involving many
complex variables is somewhat different because singularities need not be separate places in this
case. Sheaf cohomology was largely developed because of research into this situation. In this unit
first we will discuss the pre-requisite concepts for analytic continuation and then the definition of
analytic continuation. After this unit students can be able to-

1. Understand the convergence analysis of a complex valued function.
2. Understand the definition of analytical continuation.

3. Solve some problems of analytical continuation.

Introduction

The Riemann hypothesis, which is closely related to the distribution of prime numbers, is perhaps
the most important open topic in pure mathematics today. Analytic continuation is one of the
fundamental methods required to comprehend the issue. An approach from the field of
mathematics known as complex analysis called analytical continuation is employed to enlarge the
domain of a complex analytic function. We will quickly go over some essential mathematics
concepts prior to introducing the approach.

1.1 Taylor Series

Consider the case where we want to find a polynomial approximation to a function f(x).
Polynomials are mathematical expressions made up of coefficients and variables. The variables are
multiplied, subtracted, and added using only non-negative integer exponents. With one variable, x,
a polynomial of degree n can be expressed as follows:
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f(x) = apx™ +an_1x" 1+, a;xt + apx®(1.1)
If we consider a 3-degree polynomial with a; = i, a, = %, a, = —3, anday, = —2 then.
x3 3 2
fG) =T +76% —3x - 2(12)

And the graph of f(x) is.

Figure 1.1: The graph of f (x) = % + %xg —3x—2

Imagine that the polynomial has infinite degrees now (it is given by an infinite sum of terms). These
polynomials are referred to as Taylor series (or Taylor expansions). Polynomial representations of
functions as infinite sums of terms are called Taylor series.

Every term in the series is calculated using the derivative values of f(x) at a particular point
(around which the series is centered). A formal Taylor series centered on a certain number and is
given by:

Wi a) (2) Gla)
fx) = fOa) +f—%(x -a) +f—2!(—a}(x —a)+ f—g!—a(x —a)?+--(13)

where the upper indices (0), (1), ... indicate the order of the derivative of f(x) as x = a. One can
approximate a function using a polynomial with only a finite number of terms of the corresponding
Taylor series. Such polynomials are called Taylor polynomials.

3
The Taylor polynomials for f(x) = xT + %xz — 3x — 2 around a = 0 are given by:

2

fe) =-2 —%x YT

X a3+ (1)
Were f©(0) = =2, fP(0) = -3, f@(0) =2, f@(0) ==

The equation (1.4) is same as the considered 3 degree polynomial equation (1.2).

1.2 Convergence

Our study of the analytic continuation will likewise heavily rely on the idea of conwergerce of
infinite series. A list of items (or objects) having a specific order constitutes a mathematical
sequence. The following S,,represents the n different sequences:

Sp ={ay,a,, ...,a,}(1.5)

LOVELY PROFESSIONAL UNIVERSITY



Unit 01: Analytical Continuation

A well-known example of a sequence is the Fibonacci sequence 0,1,1,2,3,5,8,13,21,34, 55, ...where
each number is the sum of the two preceding ones.

One builds a series by taking partial sums of the elements of a sequence. The series of partial sums
can be represented by:

{S{]r 5'1, 52 aeey n}(lG)
where: {sy = ag, 51 = @y +ay,5; = @y + a; + az, ..., }(1.7)

An example of a series, the familiar geometric series, is shown below. In a geometric series, the
common ratio between successive elements is constant. The geometric series with common ratio =
1/2we have:

1 1: 1
2= 144+t (1.8)

Fig. 1.2 shows pictorially that the geometric series above converges to twice the area of the largest
square.

Figure 1.2: A pictorial demonstration of the convergence of the geometric series with common ration r=1/2
and first term a=1

A series such as in Eq. (1.7) is convergent if the sequence Eq. (1.6) of partial sums approaches some
finite limit. Otherwise, the series is said to be divergent. An example of a convergent series is the
geometric series in Eq.(1.8). An example of a divergent series is:

f . 1.1 :.%
;+E+§+Z+"'—>00(1.9)

1.3 Analytic Functions, Poles, and Convergence Discs

Until now, our analysis was restricted to real numbers. Now we will extend it to complex numbers.
The complex plane is a geometric representation of the complex numbers, as shown in Fig.1.3 .
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IMaginary s

-

real axis

Figure 1.3: The complex plane, a geometric representation of the complex numbers. The figure shows the real
and the (perpendicular) imaginary axis.

Let us consider an expansion of an analytic complex function f{z). By definition, an analytic
function is a function locally given by a convergent power series. If f{z) is analytic at zo, the power
series reads:

(1l
(2o +2) = £2. L2 7m(1.10)

n!

Equation (1.10) shows the Taylor expansion of an analytic function f(z) into a power series about a
complex value zo.

In analogy with the case of the geometric series, where convergence was restricted to an interval
with radius 1 on the real line, this series will converge only over a circular region of the complex
plane centered on the complex number zo.

z=xtiy

Real line 4 Complex plane

Ly e =7 0 :
Of\e Ix

_J’ _______ %

Figure 1.4: Going from the real line to the complex plane.

The convergence region of f(z) is a circular region centered on zo extending to the closest pole,
where f(z) goes to infinity.

Fig. 1.5 shows the convergence region (bounded by the white circle) of the function 1/ (1+z?).
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Unit 01: Analytical Continuation

Figure 1.5:The white circle in the convergence disc of the function 1/(1+2?).

A stronger criterion of convergence is called absolute convergence. We call the convergence we
already discussed conditional convergence. Absolute convergence occurs when the following series
converges:

Sp = |a0|, 51 = |an| + |a1|,52 — Ianl + |a1| o+ |a2|- .(1.11)

When a series is absolutely convergent it is also conditionally convergent. There are a few tests of
absolute convergence, one of them is the ratio test. Consider the general infinite series:

S = Inlean(112)

Qri41
ay

Now define the following ratio: 7 = lim,,_,, (1.13)

The ratio r in the equation (1.13) used in the ratio test of absolute convergence.

The series equation (1.13) converges absolutely if <1 and diverges if r>1. If r=1, no conclusion can be
taken.
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Figure 1.6: A decision diagram for the ratio test.

It is straightforward to apply the ratio test (or any other convergence test) to show the following
important result:

P - ﬁ converges for any k = 2.(1.14)

1.4 Analytic Continuation

From the results regarding zeros of an analytic function, it follows that if two functions are regular
in a domain D and if they coincide in a neighborhood, however small, of any point a of D, or only
along a path-segment, however small, terminating in a point a of D, or only at an infinite number of
distinct points with a limit-point a in D, then the two functions are identically the same in D. Thus,
it emerges that a regular function defined in a domain D is completely determined by its values
over any such sets of points.

This is a very great restraint in the behavior of analytic functions. One of the remarkable
consequences of this feature of analytic functions, which is extremely helpful in studying them, is
known as analytic continuation. Analytic continuation is a process of extending the definition of a
domain of an analytic function in which it is originally defined i.e., it is a concept which is utilized
for making the domain of definition of an analytic function as large as possible.

LOVELY PROFESSIONAL UNIVERSITY



Unit 01: Analytical Continuation

Letus supposethattwo functionsfi(z) andfz(z) aregiven, such thatfi(z) isanalyticinthedomain D; and
f2(z) in a domain D>We further assume that D; and D> have a common part Di2(D1n Dy).

If fi(zz = fo(z) in the common part D, then we say that f(z) is the direct
analyticcontinuationoffi(z)fromDjintoDsviaD1.

Conversely, fi(z)isthedirectanalyticcontinuationof f(z) from D, into D; via Di2.Indeed fi(z) and f(z)
are analytic continuations of each other.

Both fi(z) and f»(z) may be regarded as partial representations or elements of one and the
samefunction undertheconditionthatfi(z)=f>(z)ataninfinitesetofpointswithalimit-pointinD1»,

Itisobservedthatforthepurposeofanalyticcontinuation,itissufficientthatthedomainsDiand
Dshaveonlyasmallarcin common.

D12

Figure 1.7: Analytic Continuation common domain.

Definition. An analytic function f(z) with its domain of definition D is called a functionelement and
is denoted by (f, D).

If zeD, then (f, D) is called a function element of z.Using
thisnotation,wemaysaythat(f;,D1)and(f2,D2)areinanalyticcontinuationsofeachotherif f D1
Dozdandfi(z) = fo(z) forallze D1 D».

It can be further simplified as Suppose fi(z) is analytical on a region D;. Now suppose that D; is
contained in a region f»(z). The function f(z) can be analytically continued from D; to D; if there
exists a function f>(z) such that: o(z) is analytic on S, f2(z) = fi(z) for all z € D;

(=

Example 1.1:

1

1-z"

Let us consider f(z) = Xr_gz" 0(2) =

Then f (2)is analytic at all the points within the circle |z| = 1 and @(z) is analytic all the points
exceptz = 1.

Also f(z) = 0(z) within |z| =1

LOVELY PROFESSIONAL UNIVERSITY
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9(2)

Figure 1.8: @(z) gives the continuation of f(z) over the rest of the plane.

Hence @(z) gives the continuation of f(z) over the rest of the plane.

-
-

Question:

mn
Show that the function f; (z) = Y. 2" is in analytic continuation to f,(z) = X5., % (1_42,_2)

Solution:
Given that:
£(2) = 0 7(1.15)
First, we will consider the convergent analysis for f; (z)
The series equation (1.15) can be written as:
fiz)=14+z+22+23 4 42"+,
= filz)=1-2"

1
1—2z

= fi(z) =
Hence it is obscrved that the f; (z)has the sum Y5, z"= é and the nth sequence of the series is z"

Now we apply the ratio test for convergent analysis.
Here, U, = z*

And UFC{-I - Zk+1

If Y- Uy is absolutely convergent then |y{'j—?| <1

LOVELY PROFESSIONAL UNIVERSITY
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Figure 1.9: The area of unit disc |z] < 1

Hence f;(z) is convergent inside the region |z| < 1(see the Figure 1.9)

Now let us consider the second series.

f(@) = 302 (12) (116)

2

1 (1+2) (1+2°2 (A+=z)3 1+2z)"
= fZ(z) = -4 > = - = -
2 7 2.2 2.2 2.2
L (142"
Hence the nth term of the series is U, = T
(-l+ )ﬂ"’l
ANd Unyy = =00
If Yoo Uy is absolutely convergent then E’;_:; <1
(142)7+1
2_2'11'1
(1+z)" 1
2.2

(1 = E z)h+1_ 2.2n
2.2n+1 (1 4 z)n
[(1+2)"22" (1 +2)| i
| zzna+om2 |©

(1+2)
=2

<1

<1

=lz+1| <2

Figure 1.10: The area of disc |z + 1| < 2

LOVELY PROFESSIONAL UNIVERSITY
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Hence f,(z) is convergent inside the region |z + 1| < 2(With the center z = —1,and r = 2).

Till now we have observed that the f,(z) = i is analytic inside the domain D;: |z| < 1 and

n
f(2) = Z;‘;‘;Dé(l:—z) is analytic inside the domain D,:|z+ 1| <2 . It can be clearly seen from
Fig.1.10 and Fig.1.9 that f;(z) and f; (z) share some common region.

Now we will show that f;(z) = f;(2) forall z € D;.

As we have f;(z) = é and

b it i . ’
A=Y 2(55) _1,0+9 (42! a+2®  A+a"

202 ) 727 22 2.22 2.23 T K
n=0
1 (1+2) (1+2? (A+2)3 1+2)"
= RE) =5+ 2.2 228 Tam T
Letl;t—z = p then.
1 p pZ pB pn
f2(z) = §+§+—2‘ +—2—+"'.?+

1
= f,(2) =—2-(1+p+p2+p3 +...’pn+...’)

1
> f,@=50-p)"
L
21-p)
= 1__
21--=9)

= o5 =

= f,(2) =

1
= f,@ =m
=>f,@=f,2

Figure 1.11: The common region for z1 D1G Ds.

As fi(z)is analytic inside the domain D;:|z| < 1 and f,(z)is analytic inside the domain D;: |z + 1| <
2 .Thus f,(z)extends the domain of an analytical function f;(z) to larger domain D,. Hence the
function f;(z)be analytically continued from D; to D, as there exists a function f,(z)such that:
f2(2)is analytic on D,: f,(z) = f,(2) , forall z € D,.

LOVELY PROFESSIONAL UNIVERSITY



Unit 01: Analytical Continuation

1.5 Review questions

1. Explain how it is possible to continue analytically the function f(z) = 1 + z + z? + -+
z" + - outside the circle of convergence of the power series.

2. Show the series Y5> 23" ¢ annotbemntmuedanalyhcallybeyondthe circle |z |=
(z=i)"
( = JJ’\+|

4. Prove that the series 1 + Y5 z%" cannot be continued analytically beyond |z|=1

Show that the series ¥, —— T and Y=g are analytic continuations of each other.

Prove that the function defined by F,(z) = z — z? 4+ z3 — z* + -+, is analytic in the region

|z] < 1.And then find a function that represents all possible analytic continuations of
F (2).

1.6 Self-assessment

1. The function f(z) = ¥y, = (1—+—z)ni5 convergent inside the
2\ 2
A. Regionlz+1] <2
B. Region|z—1|<2
C. Region|z+1|<6
D. Region |z| <2

2. The function f(z) = ¥a_o ;m is convergent inside the
A. Region|z+1] <2
B. Region|z—1|<2
C. Region|z+1|<6
D. Region |z| < 2

(z=iy"

n 0 I

3. The function f(z) =

is convergent inside the

A. Region|z+1| <2
B. Region|z—i| <+/5
C. Region|z| <5

D. Region |z| <+/8

4. The function f(z) = Ej-oz" is convergent inside the
Region |z| < 2

Region |z — 1| < 2

Region |z + 1| < 6

Region |z| < 1

oSN >

. _ v (2+z)"70
5. The function f(z) = n=0{nr s an

A. Region|z+1| < 4
B. Region|z—1| <2
C. Regionlz+1|<6
D. Region |z| <2

is convergent inside the

6. If the function f; (z) = Ygq2z™/2""! is in analytic continuation to

£ =Yr0 (2Za Bmfrom the domain D; fo Drthen the which one of the points does lies in
D1 n D2

A

B. 5

LOVELY PROFESSIONAL UNIVERSITY
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C. =5i
D. -20

7. If the function f;(2) = Y5 z"/2™"! is in analytic continuation to

Alz) =% ﬂfrom the domain D; to Dsthen the which one of the points does lies in

n=0 (2—im+1
Dyn D,
A, 100
B. =i
5 5
C. -=5.5i
D. -10

8. If the function f; () = ¥5_52z™/2™"! is in analytic continuation to
(z=)"

(2 =¥3, (z_i)nﬂfrom the domain D; to Dsthen the which one of the points does NOT

liesin Dy n D,

A 5

B. 0

C. i

D. i/2

9. If the function f; (z) = Ya_,2"/2™"! is in analytic continuation to

B =35 @(L_;%from the domain D; to Dsthen the which one of the points does not lies
in D1 n D2

A, 0.2i

B. 5

C. —0.1i

D. 01+i

10. If the function f; (z) = ¥5_q2z™/2™"! is in analytic continuation to

iy
Alz) =% 270 trom the domain D; to Dsthen the which one of the points does lies in

n=0 (2_”:&1
D,Nn D,
A, 01+ 014
B. 50
C. -—15i
D. -12

11. If the function f,(z) = Y5, 2" is in analytic continuation to f,(z) = Zio%(l:—z

domain D; fo Dsthen the which one of the point lies in Dy N D,

A i
2 4
B. 243}
2 =
C —3+§i
D. -3-3i

1/1+z

12. If the function f;(2) = X5_, 2" is in analytic continuation to f,(z) = Ziﬂ?(_z_

domain D; to Dzthen the which one of the point lies in Dy N D,

1 g
A. §+§[

10 1
C. —13+§i
D. —-3-—13i

LOVELY PROFESSIONAL UNIVERSITY
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Unit 01: Analytical Continuation

mn
13. If the function f,(z) = Y- 2" is in analytic continuation to f,(z) = ?zni-(l:—z) from the

domain D1 fo Dythen the which one of the point does not lies in Dy N D,

A —+-i
2 4
B. 1+1i
9 5
C —8+§£
D. -2

n
14. If the function f;(2z) = ¥;-q2z" is in analytic continuation to f,(z) = 2f=0~21-(1—;—z) from the

domain Dj to Dathen the which one of the point does not lies in Dy N D,

A -1
B. —15
C. —13i
D. —-25
n
15. If the function f,(2z) = Y=o 2" is in analytic continuation to f,(z) = ?zni-(l:—z) from the
domain D; to Dythen the which one of the point does not lies in Dy N D,
A. 10
B. 0
C. —i
D. -28
Table 1: Answers of self-assessment
Question number Correct answer
1 A
2 D
3 B
4 D
5 A
6 A
7 B
8 A
9 B
10 A
11 A
12 A
13 C

LOVELY PROFESSIONAL UNIVERSITY
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14 D
15 A
1.7 Summary

¢ An analytic function f(z) with its domain of definition D is called a functionelement and is
denoted by (f, D).

o o . 5 [}
e The series equation § = Yo, a, converges absolutely if r = limy_ e |[——=
an=04"n n

<1 and diverges
a”

if r>1. If r =1, no conclusion can be taken.
e Suppose fi(z) is analytical on a region D;. Now suppose that D is contained in a region
f2(2). The function f(z) can be analytically continued from Dj to D; if there exists a function

f2(z) such that: f>(z) is analytic on S, f2(z) = fi(z) for all z € Dy

1.8 Keywords

. . . . 2}
Absolute convergence: The series equation § = ¥, a, converges absolutely if 7 = limy,_, [

<1

n

and diverges if r>1. If r =1, no conclusion can be taken.

Analytic continuation: If zeD, (f, D) is a function element of z, then
(f,D1)and(f>,D2)areinanalyticcontinuationsofeachotherif f Dim Da#pandfi(z) = fo(z) forallzeDin Ds.

1.9 Further Readings
Books
1. Complex Variables And Applications By Churchill, R. V. And Brown, J. W., Mcgraw Hill
Education.

2. Foundations Of Complex Analysis By S. Ponnusamy, Narosa Publishing House.
3. Complex Analysis By Lars V. Ahlfors, Mcgraw Hill Education.
4. Complex Variables Theory And Applications By H. S. Kasana, Prentice Hall.
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Purpose and Objectives:

After this unit students can be able to-

1. Understand the uniqueness of analytic continuation.
2. Solve the problem based on the power series method of analytic continuation.
3. Learn natural boundary of complete analytic function.

Introduction

Analytic continuation is a method used to extend the domain of definition of a function that is known
to be analytic (i.e., holomorphic) in a certain region, to a larger region. This can be achieved by
representing the function as a power series and finding the appropriate coefficients to ensure that the
function satisfies the same differential equations in the extended region as it does in the original
region.

For example, consider the complex function f(z) that is known to be analytic in a disk D centered at
the origin. By expanding f(z) in a power series about the origin, we can obtain its Taylor series
representation:

f(@2)=aq + a1z + a,z% +...

Using this power series representation, we can extend the definition of f(z) to points outside the disk
D by assuming that the series converges to the correct value at those points. This process is called
analytic continuation, and it allows us to extend the domain of definition of f(z) to a larger region in
the complex plane. In this unit first we will understand the uniqueness of analytic continuation, then
the power series method of analytic continuation, and then the natural boundary of complete analytic
function.

2.1 Uniqueness of Analytic Continuation by Direct Method

Theorem 2.1: Uniqueness of Analytic Continuation

There cannot be more than one continuation of analytic f, (z) into the same domain.

Proof:

LOVELY PROFESSIONAL UNIVERSITY
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Let f; (z) be analytic in the domain D;.

Let f,(2) and g,(z) be analytic continuations of same function f; (z) from D; into the domain D, via
D;, which is common in to both D; and D, .

Figure 2.1: Analytical Continuation domains

If we show that f,(z) = g,(z) throughout D,, the result is followed by the this proof.

By the definition of analytic continuation.

f1(2) = f,(2),Vz € Dy, 21)
And f,(2) is analytic in D,.
f1(2) = g2(2),Vz € Dy, 22

And g, (z) is analytic in D,.

From the equation (2.1) and (2.2) we can conclude that
f1(2) = f,(2) = g2(2),Vz € Dy,
Or
f2(2) = g,(2),Vz € Dy,
Or
(fz = 92)(2) =0,Vz € Dyp
f> and g, are analytic in D,
= f, — g, isanalyticin D,.
Thus, we see that (f, — g,)(z) vanishes in D;, which is a part of D,.Also the function is analytic in D,.
Hence, we must have
(fz2—92)(2)=0,vzeD,

= f2(2) = 92(2) Vz € D,.

So, there cannot be more than one continuation of analytic f,(z) into the same domain.

-
Remark

The uniqueness property requires the domains of the two analytic continuations to be the same. It is
not generally true that if

F;: Dy » CandF,: D; — C are two analytic continuations of f: D — C to different domains
Dy, Dy, that they must agree on D; N D,. A slightly more complicated example is the power series
with Fibonacci coefficients:
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Unit 2: Uniqueness of analytic continuation along a curve

f(2) = fo + fiz + f,z* + ..., which we considered a few lectures ago.

Initially we observed that this converges and thereby defines an analytic function in some
neighborhood D of zero.

By applying the recurrence f,.1 = f, + f,—1, we were able to obtain the functional equation:
(1-z-22)(2)=z > f(z)=ﬁz € D.

We then used the right hand side as a definition of f in a much larger domain D' = C\{op,¥}.

Formally, F(z) = is an analytic continuation of f to D’ .

z
1-z-2z2

We didn’t explicitly use a different name to distinguish between the continuation and the original
function (since they agree where they are both defined) and we will sometimes follow this convention
in the future.

In any case, we were then able to use the properties of F in the much larger domain D’ (by applying
the Residue theorem) to get a good handle on what is happening at zero, and thereby extract a
formula for the coefficients.

A functional equation is not the only way to obtain an analytic equation, but it is often the best one.
In general, what one is looking for is an alternate representation of the same function which makes
sense in a larger region; this alternate description is then used as a definition in the larger region.

2.2 Power Series Method of Analytic Continuation

The Power Series Method of Analytic Continuation is a method used to extend the domain of a
complex power series beyond its radius of convergence. It is based on the idea of representing a
function as an infinite sum of powers and using this representation to extend the function to a larger
domain.

The method works by finding the coefficients of the power series for a given function using Cauchy's
Integral Formula, and then using these coefficients to analytically continue the function to a larger
domain. This method is useful for finding the values of a function in complex domains, where it is
not possible to use real analysis techniques.

Let the initial function f; (z) is represented by the Taylor’s series
f1(2) = X0 an(z = 2,)" (23)

(n)
where a, = fln—(’zl)

This series is convergent inside a circle C, (see the figure 2.2)defined by

|Z - Z1| = Rl (2.4)

1
Here R, = lim |a,|»
n-oo

LOVELY PROFESSIONAL UNIVERSITY
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Figure 2.2: The curve L from z, and perform analytic continuation

We draw a curve L from z;and perform analytic continuation along this path as follows
Take a point z, on L such that z,lies inside the C; .

With this help of equation (2.3), we can find the f;(z,), fi' (z2), fi' (z2) ..., fl(n) (z;) by repeated
differentiation of (2.3).

Write
f2(2) = Xp=obn(z — 2)" (2.5)

(n)
where b, = fzn_(|Zz)

The power series (2.5) is convergent inside a circle C, defined by
|z —z,] =R, (2.6)
HereR, = %m|bn|%
Also f,(z) = f,(2),Vz € C,,(The common part of C, and C,).
Hence f,(z) is an analytic continuation of f;(z) from C; to C,.

Now take a point z; on L such that z;lies inside the C, .

With this help of equation (2.5), we can find the f,(23), f; (23), 5’ (23) ..., fz(n) (z3) by repeated
differentiation of (2.5).

Write
f3(2) = Eizo ez — 23)" (2.7)

(TL)(Z )
where ¢, = fBT3

The power series (2.7)(2.5) is convergent inside a circle C; defined by

|Z - Z3| = R3 (2.8)
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Unit 2: Uniqueness of analytic continuation along a curve

Here R; = 1lli_r)£1°|cn|%

Also f,(z) = f;(2),Vz € C,5(The common part of C, and C3).
Hence f;(z) is an analytic continuation of f,(z) from C, to Cs.
Now f;(2) is an analytic continuation of f;(z) from C, to C.

Repeating this process, we get as continuations several different power series analytic in
their respective domains D,, D, ..., where Dy, D, ..., are respectively interiors of Cy, C, ...,

-
v

Question:
2 3
Show that the power series z — 27 + Z? —...may be analytically continued to a wider range by
— 2 3
means of the series log2 — ==_ % - % —
2 22 3.2
Solution:
Z2 Z3
Let fi(2) =z -~ 5 (2.9
1-z (1-2)? (1-2)3
Andfz(z) —logZ———F—F—--- (210)
n+1
Here f;(z) = X5 (=D ;1 using the ratio test, if a,, is convergent then |a"+1 <1
n
Zn+1
= (="
an = (1) n+1
n+2
An+1 = (_1)n+1n T2
(- 1)n+1Z
Now a;”l = | <1
" Y
Ant1| _ n -1 z"lz(n+1)
= |( 1) (- 1)" (n+2) zn+1 1
An1| _ |_1 z.(1+1/n)
an | (1+2/n)
. An+1 _4:2(141/n)
= 7!1,1—1;1(’)10 n—>00| (1+2/n) | <1
= lim |2 = |z] < 1
n—-oo an
2 3
Hence f,(z) = z — 27 + Z? —...=log(1 + z) which is convergent for the |z| < 1. (2.11)

Thus f; (2) is analytic inside the circle C;defined by |z| = 1(See the figure 2.3).

LOVELY PROFESSIONAL UNIVERSITY
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Fiqure 2.3: the domains of C; and C,

Now we will show that f, (z) is analytic inside a domain and will also find the convergent
analysis of f,(z) .
f>(2) can be expressed as

1- 1(1-2)?% 1(1-2)3
fZ(z)=log2—[ ZZ+E( 222) +§( 232) +]

= /) =logz_[1;+;(1;)2 +§(1;Z)3+...]

+1
Let the nth term of f,(z) is b, = (—1) — (1;2)" and

n+1 2
1 1_Zn+2
b"+1=(_1)n+2( 2 )
1 1_Zn+2
bust| |V 72 (50
= - n+1 <1
n+1\ 2
b +1 1_ n+2 2 n+1
= =at) =) <
b, n+2\ 2 1-z
1
b 1+=-/1-2
= ZH = rzl( 2 )<1
n 1+E
1
b 1+-/1-2
= lim ZH = lim _121( > ) <1
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Unit 2: Uniqueness of analytic continuation along a curve

b1 1-z
=>nl_r)£1o b, > <
b
= lim [ =|1-21 <2
noos [ b,
b
= lim [ =1z7-1]< 2
noos [ b,

Hence f, (z) is convergent for the |z — 1| < 2.

Thus f,(2) is analytic inside the circle C,defined by |z — 1| = 2.

As we know that log [1 - (E)] =— [E + 1(1;2)2 +l(1;z)3 + ]

2 2 2 2 3 2
Then
1-z
f(2) = log2+log[1—< > >]
2—1+z
f2(2) =log2 + log [T]

f2(2) =log2 +log(1+ z) — log2
f>(2) = log(1+ z)
By (2.11),
f>(2) = fi(2) in the area common to both C; and C,.

Hence, we can say that f;(z) is analytic continuation of f; (z) from the interior of C; to the
interior of C,. Moreover C, is a larger range in comparison to C; as shown in the figure 2.3.

2.3 Natural Boundary

In complex analysis, a natural boundary of a complex-valued function is a boundary of its domain
that is not a removable singularity. This means that the function cannot be extended analytically
across the boundary, and its behavior there is determined by the behavior of the function on the
boundary. A classic example of a natural boundary is the boundary of the unit disk in the complex
plane, which is the unit circle. Functions defined on the unit disk have essential singularities on the
boundary, which means that they cannot be extended analytically to the outside of the unit disk.

=1
Definition 2.1: Function Element

An analytic function f with domain D is called a function element and is denoted by (f, D).
=
Definition 2.2: Complete Analytic Function

Suppose that f(z) is analytic in a domain D. Let us form all possible analytic continuations of (f, D)
and then all possible analytic continuations (f,D;), (f2,D3), ..., (fn, D) of these continuations such
that:

(@) ifzeD,

F@) =@z €D; (212)
fu(2) if z € Dy

Such a function F(z) is called complete analytic function.

In this process of continuation, we may arrive at a closed curve beyond which it is not possible to
take analytic continuation. Such a closed curve is known as the natural boundary of the complete
analytic function. A point lying outside the natural boundary is known as the singularity of the

LOVELY PROFESSIONAL UNIVERSITY
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complete analytic function. If no analytic continuation of f(z) is possible to a point z,, then z; is a
singularity of f(z).

Obviously, the singularity of f(z) is also a singularity of the corresponding complete analytic
function F (2).

=)

Example

Show that the circle of convergence of the power series f(z) = 1 + z + z% + z* + 78 .., isanatural
boundary of its sum function.

Solution:

The circle of convergence of a power series is the largest circle centered at the origin within which
the series converges to a function.

The sum function of the series f(z) = 1 + z + z2 + z* + z® .., isnot defined at z = 1, so the circle
of convergence of the series must include the origin and exclude z = 1.

Since the sum of the series diverges for z = 1, it is a natural boundary for the sum function. The circle
of convergence for the series is the largest circle centered at the origin within which the sum function
is defined and analytic, and thus it serves as a natural boundary for the sum function.

=

Example

Show that f (z) = Z;‘;O# is analytic in the domain |z | <1 and the domain |z | > 1, and that

|z | =1is anatural boundary for the function in each domain.
Solution:
For a function to be analytic, it must be complex differentiable at every point in its domain.

Let us first consider the domain |z | <1.

2n+ 2n+1

For|z| < 1,|z 1| < landthusl — |z | > 0.Hence, the denominator 1 — 22" isnever 0 and

the function is well-defined in this domain.

Next, we can apply the Cauchy-Riemann equations to show that the function is complex
differentiable in this domain, and therefore analytic.

For |z| > 1, the same argument can be made: the denominator 1 — 22" is never 0 for |z| >1, and
the function is well-defined in this domain.

Finally, for | z| =1, the function is not complex differentiable, which means that |z| =1 is a natural
boundary for the function in both domains.

an+1
Therefore, the function Z,‘fzoﬁis analytic in the domain |z| <1 and the domain |z| > 1, and

| z| =1 is a natural boundary for the function in each domain.

o
v

2.4 Review questions

1. Prove that the series z!' + z?'+z3' + .- has the natural boundary |Z| = 1.

2. Prove that |z| =1 is a natural boundary for the series Y5, 27™  z3"

Zn+1

3. LetF,(2) = Z;‘fzos—n Find an analytic continuation of F; (z), which converges forz = 3 — 4i
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Unit 2: Uniqueness of analytic continuation along a curve

4. State and prove the uniqueness theorem of analytic continuation

5. Show that the series 1 + z + z% + z* + z8+..., can not be analytically continued beyond the |z| =1

2.5 Self-assessment

1. The power series f(z) =z — % + 23—3—. .. is convergent inside the
A. Region|z+1| <2
B. Region|z—1| <2
C. Region|z| <1
D. Region |z| <2

2. There cannot be more than one continuation of analytic f(z) into the same domain.
A. True
B. False

2 3
The nth term of the series z — Z; +Z .

3
= (-Dn
=" n+1
= (-1)ntt i — zm

n+1
n — (_1)11

@

n+1
Znt1

Znt1

.Uo.w?

n+2

-~

A. True
B. False

1(1-2)?%  1(1-2)3
22 3 23

5. The nth term of the series [— + - + - ] is

A ( 2)_ (u)n+1

n+1
n+1
B ()
1-z\"t1
¢ 0(5)
1-z\"t1
b D(5)
2 _.N3
6. The power series %4_1(1222) §(12§) +---]is convergent inside the
A |z-1]<1
B. |z| <1
C. |zl <2
D. |z—-1]<2
3
7. If the function f, (z) = z — 27 + % — -+ is in analytic continuation to

2 3
£(2) = log2 - 1 . z %(1 222) +%(1 232) N
from the domain D7 to D> then the which one of the domain does lies in D; N D,
A |z-1]<1
B. lz| <1

LOVELY PROFESSIONAL UNIVERSITY
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10.

11.

12.

13.

24

C. lzl<2
D. |z—-1] <2

If the function f;(z) = z — 22—2 + ? — -+ is in analytic continuation to
1-z 1(1-2)* 11 -2)3
f2(2)=log2— > +E >z +§ >3 + -
from the domain D; to D; then the which one of the points does not lies in D; N D,
A. 0.1+4+0.1i
B. 0.5
C. 05
D. 2+45i
If the function f; (z) = z — ZZ—Z + 23—3 — -+ is in analytic continuation to
1-z 1(1-2)* 1(1-2)3
fZ(Z)Zlogz— > +E 2 +§ >3
from the domain D1 to D; then the which one of the points does lies in D; N D,
A. 0.1+4+0.2i
B. 5
C. 5i
D. 2+5i
If the function f; (z) = z — ZZ—Z + 23—3 — -++ is in analytic continuation to
1-z 1(1-22? 1(1-2)3
f>(z) = log2 — > +§ 52 +§ >3 + -
from the domain Dy to D; then the which one of the points does not lies in D; N D,
A. 0.2
B. 03
C. 0.4i
D. 4i

If the function f; (z) = Yn-, 2™ is a natural boundary for its sum function then the circle of
convergent is

A lz-1]<1

B. |z| <1
C. |zl <2
D. |lz—-1| <2

1+z

n
If the function f; (z) = Y-, 2" is in analytic continuation to f,(z) = Z;‘{LO% (T) from the

domain D; to D then the which one of the point lies in D; N D,

A il
8 8
10 1
C. —-13+:i
D. -3-13i
2 3
If the function f,(z) = z —27 +%— -+ is in analytic continuation to
1-z 1(1-2? 1(1-2)3
f(z) = log2 — sttty

from the domain Dy to D; then the which one of the points does not lies in D; N D,
A. 03i
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B. 03
C. 0i
D. 12+i
2 3
14. 1If the function f; (z) = z — % + % — +++ is in analytic continuation to
@) = log2 1—Z+1(1—Z)2+1(1—Z)3+
= [0 —_ —_— _— e
f2(2) = log 2 "2 22 '3 28
from the domain Ds to D; then the which one of the points does liesin D; N D,
A. 0.01+ 0.02i
B. 50
C. 50i
D. 20+5i
15. Incomplex analysis, a natural boundary of a complex-valued function is a boundary of its
domain that is not a removable singularity.
A. True
B. False
Table 1: Answers of self-assessment
Question number Correct answer
1 C
2 A
3 A
4 A
5 B
6 D
7 B
8 D
9 A
10 A
11 C
12 A
13 D
14 A
15 A
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2.6 Summary

e  The Power Series Method of Analytic Continuation is a method used to extend the domain
of a complex power series beyond its radius of convergence.

e  Ananalytic function f with domain D is called a function element and is denoted by (f, D).
e Uniqueness of Analytic Continuation: There cannot be more than one continuation of

analytic f,(z) into the same domain.

2.7 Keywords

Complete analytic function: Suppose that f(z) is analytic in a domain D. Let us form all possible
analytic continuations of (f,D) and then all possible analytic continuations
(f1,D1), (f2, D), ..., (fn, Dy,) of these continuations such that:

fi@)if zeD,
F(2)=1L@ i z€D,
fa(2) if z € Dy,

Such a function F(z) is called complete analytic function.

2.8 Further Readings
Books
1. Complex Variables And Applications By Churchill, R. V. And Brown, J. W., Mcgraw Hill
Education.

2. Foundations Of Complex Analysis By S. Ponnusamy, Narosa Publishing House.
3. Complex Analysis By Lars V. Ahlfors, Mcgraw Hill Education.
4. Complex Variables Theory And Applications By H. S. Kasana, Prentice Hall.
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Purpose and Objectives:

The Monodromy Theorem in complex analysis states that given a non-constant holomorphic function
on a simply connected domain, its set of singularities is invariant under any loop in the domain. In
other words, it characterizes the behavior of the function near its singularities and provides a way to
study the topological structure of complex functions. The theorem is useful for solving certain types
of differential equations, as well as for constructing complex functions with prescribed singularities.

Similarly, the Poisson integral formula has several applications in various fields, including;:

1. Harmonic Analysis: The Poisson Integral Formula provides a tool for solving boundary
value problems for harmonic functions and has applications in potential theory and
boundary value problems.

2. Image Processing: The Poisson Integral Formula is used in image processing to restore
images that have been degraded or to smooth out noise in images.

3. Numerical Analysis: The Poisson Integral Formula is used in numerical analysis to solve
partial differential equations, especially in areas like electrostatics and heat transfer.

4. Complex Analysis: The Poisson Integral Formula is used in complex analysis to study
conformal mappings, potential theory, and complex dynamics.

5. Signal Processing: The Poisson Integral Formula is used in signal processing to solve
problems in signal restoration, noise reduction, and boundary value problems for signals.

After this unit students can be able to-

1. State and prove the Monodromy theorem.
2. Learn Poisson Integral Formula for analytic function.
3. Understand the Poisson Kernel, and Conjugate Poisson Kernel for analytic function.
4. Solve the problem based on the Poisson Integral Formula.
Introduction

The number of independent loops or paths around a singular point of an analytic function can be
understood by sheets of the multi-valued analytic function.

In other words, if an analytic function has a singularity at a point, then the number of independent
loops that can be taken around this point is equal to the number of branches of the function that can
be defined in a neighborhood of the singularity.
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The Monodromy Theorem is an important result in complex analysis and is used to study the
behavior of multi-valued analytic functions near singular points. If a function f is analytic in the unit
disk of the complex plane and continuous on its boundary, then it can be represented by the Poisson
integral formula. In this unit first we will understand the Monodromy theorem then learn Poisson
Integral Formula for analytic function. After that we will explore the concept of the Poisson Kernel,
and Conjugate Poisson Kernel for analytic function. Finally solve the problem based on the Poisson
Integral Formula.

3.1 Monodromy Theorem

Let D be a simply connected domain and suppose f; (z) is analytic in a domain Dy c D. If the
function element (fy, Dy) can be analytically continued along every curve in D, then there exists a
single-valued function f(z) that is analytic throughout D with f(z) = f;(2) in D,.

Proof:

Suppose the conclusion is false. Then there exist points z, € Dy,z; € D, and curves C;,C,

Figure 3.1: D be a simply connected domain and the points z, € Dy, z; € D, and Dy < D.

both having initial point z, and terminal point z; such that (fy, D) leads to a different function
element in a neighborhood of z; when analytically continued along C; than when analytically
continued along C, (see Figure3.1).

This means that (fy, Dy) does not return to the same function element when analytically continued
along the closed curve C; — C,.

=1
Lemma 3.1.

Let {S,,} be a sequence of closed and bounded rectangles in the plane. If S,,.; € S, for every n and the
length of the sides of S,, approaches 0 asn — oo, then there is exactly one point in common to all the
S,.
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YA

yO---------- TR

Zo T

Figure 3.2: sequence of closed and bounded rectangles in the plane.

To prove the theorem, it thus suffices to show that the function element (fy, Dy),Dy © D, can be
continued along any closed curve lying in D and return to the same value. In the special case that the

closed curve C is a rectangle

R —~f—

¢ o2 T

0(3} 0{4)

e —_—

Figure 3.3: Rectangle C into four congruent rectangles

Divide the rectangle C into four congruent rectangles, as illustrated in Figure 3.3 continuation along
C produces the same effect as continuation along these four rectangles taken together.

If the conclusion is false for C, then it must be false for one of the four sub-rectangles, which we denote
by C,;. We then divide C; into four congruent rectangles, for one of which the conclusion is false.

LOVELY PROFESSIONAL UNIVERSITY
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Figure 3.4:C; into four congruent rectangles

Continuing the process, we obtain a nested sequence of rectangles for which the conclusion is false.

According to Lemma 1, there is exactly one point, call it z,, belonging to all the rectangles in the nest.
Since z, € D, there exists a function element (f,,D,) with z, € D, c D.

For n sufficiently large, the rectangle C,, of the nested sequence is contained in D,

But this means that f, (2) is analytic in a domain containing C,, contrary to the way C,, was defined.
This contradiction concludes the proof in the special case in which the curve is a rectangle.

3.2 Poisson Integral Formula, Poisson Kernel, and Conjugate Poisson
Kernel

If f () is analytic within and on a circle C defined by |z| = R and if a is any point within, C, then

1, (R-ad)f(2)
f@ =551 (z— a)(R? — za)
T R —r)f(Re®)

= f(re) = if do
2w ) R? —2RrCos(60 — @) +r?
0

Where a = reis any point inside the circle |z| = R.

Proof:

Suppose {(z) is analytic within and on the circle C defined |z| = R.

Let a = re¥is any point inside the circle |z| = R so that 0 < r < R.

Let the inverse of A(a) is A’'(a") with respect to the circle C is given by a’ = R?/a which lies outside
the circle C(See the Figure 3.5).

By Cauchy’s integral formula

flay==f L2 dz 3.1)

2mi” € (z—a)

@)

(z-a’)

Since f(z) is analytic within and upon the circle € and so is analytic within and on the circle.

By Cauchy’s integral theorem

[ L9 az=0 (32)

¢ (z-a")
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A(R/3)

C

Figure 3.5: Inverse of A(a) is A'(a") with respect to the circle C is given by ' = R*/a

Ty

Note that ) is not analytic within C

Now

(3.1)-(3.2) gives

fla@) - = o fC (J;(Z;) fc (5(?’) dz (3.3)
f(a) = Ef [(z a) (z a’)] f(Z)dZ (3'4)
f@) = =1 [E2ED) f(zydz (35)
f(a) - me [(z (Z)(Z )a’)]f(z)dz (3'6)
fl@=1], [ e ]f(Z)dz (37)
f(a) = me [(z (Z)a(z: )RZ)]f(Z)dZ (3'8)
fl@) = ﬁf [(z a)(Rili)za)]f(z)dZ 39

This proves the first required result.

Any point z on |z| = R is expressible as z = R e'®

Also a = ret®so thata = re~

Now R? —aa = R? —re¥.re~¥ (3.10)
= R?—aa=R?>-r?

Now

(z— a)(R? —za) = (R e® —re'®)(R? — Re® re~9) (3.11)
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= (z—a)(R? —za) = Re®(R —rel@M)(R —re~i(0-9))
= (z—a)(R?—za) = Re'P[(R? + 12 — rR(e!®~9) — ¢~i(6-9))]
= (z— a)(R? — za) = R e'®[(R? + r? — 2rRCos(8 — ¢)] (3.12)
dz = d(Re'®?) = Rie'?d¢ (3.13)
Writing (3.9) with the help of (3.11) and (3.13),

T R =r)f@f(Re®).i
f 7 49

1
flo =55 2 —2RrCos(® — 0) + r2]Re™®

2mi
0

_ 1 c2m (Rz—‘rz)f(Reiw)
f(a) T om fO [RZ=2RrCos(0—p)+12]

do (3.14)

This proves the second result.

(RZ—TZ)f(REw)
[R?2—2RrCos(0—¢)+71?]

Here is known as the Poisson Kernal for the disk |z | < R.

: . (R%-12) R+7T
Note that the Poisson, kernel is bounded above by 2R~ R

The conjugate Poisson kernel is a mathematical function used in complex analysis and potential
theory. It is defined as the conjugate of the Poisson kernel, which is a function that maps points in the
complex plane to the unit disk. The conjugate Poisson kernel is given by the formula:

ro o2

where P(z) is the Poisson kernel and z* is the complex conjugate of z.

=
Question:

Using Poisson’s integral formula for the circle, show that:

21 e°5? Cos(Sing)dd _ 27 o5 i
fo 5-4Cos(6-¢) 3 e™" cos(sin6) .

Solution:

By the Poisson’s integral formula,

1) = 3 oo gt 40 616
If we compare RH.S. of (3.15) with the given integral, then we find

R*+r?2=5 (3.17)
TR=2 (3.18)
f(Re'?) = o5 Cos(Sing) (3.19)
Using (3.17) and (3.18)

R=2r=1andsoR? —r?=3 (3.20)
Now (3.19) =

f(rei‘g) = e9¢cos(sinb) (3.21)

Putting value from (3.17), (3.18), (3.20), and (3.21) in the equation (3.16), we get

2n
1 [ 3e¢0s® Cos(Sing)
cosf [ o | & _Araed —
e¢%9 cos(sind) 2m) 5—4Cos(6 — )
0

21
- e®® Cos(Sing)
=" cos6 [ | E _—arnero —
e e Cos(Sin0) f 5—4Cos(6 — ¢)
0
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Hence proved.

=
Question:

im
621f(25€7>

629—100ch(7¢—§)

dg

Using the Poisson integral formula, find the value of [ 02”

Solution:
We know that using the Poisson integral formula,

oy 1 (R? —r?)f(Re™)
f(re 9) = er [R? — 2RrCos(6 — ¢) +1r?]
0

do

Here
(R?* —1?) =621

. T,
f(Re®) = f(25e%")
2Rr =100

0 _ s
p=m—7

(R% +12) =629

Hence, we can conclude that.

R =125
r=2
0=m
o
¢_4

f(reie) — f(zein)

T 621f 25¢%
i (25¢7)

629 — 100Cos (n - %)

do = 2nf(2e’™)
0

3.3 Review questions

i
75f( 10e4
125-100C0s(3-%)

2 4
i
64f(10910>

136-120C0s(5-)

9f(59%> ”

41-40Cos(n-)

80f(9ei7n> i

82-18Cos(n-2)

in
99f( 10e10

101-20Cos(5-)

do

1. Using the Poisson integral formula, find the value of fozn

2. Using the Poisson integral formula, find the value of fozn do
3. Using the Poisson integral formula, find the value of fozn
4. Using the Poisson integral formula, find the value of fozn

do

5. Using the Poisson integral formula, find the value of fozn

LOVELY PROFESSIONAL UNIVERSITY
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3.4 Self-assessment

1.

Let D be a simply connected domain and suppose f; (z) is analytic in a domain D, < D. If
the function element (fy, Dy) can be analytically continued along every curve in D, then there
exists a single-valued function f(z) that is analytic throughout D with f(z) = f;(2) in D,.

A. True
B. False

Let D be a simply connected domain and suppose f; (2) is analytic in a domain D, < D. If
the function element (fy, Do) can be analytically continued along every curve in D, then there
does not exists any single-valued function f(z) that is analytic throughout D with f(z) =
fo(2) in Dy.

A. True
B. False

Let D be a simply connected domain and suppose f; (2) is analytic in a domain D, < D. If
the function element (fy, Do) can be analytically continued along every curve in D, then there
exists a single-valued function f(z) that is not analytic throughout D with f(z) = fy(2z) in
D,.

A. True
B. False

Let {S,,} be a sequence of closed and bounded rectangles in the plane. If S, € S, for every
n and the length of the sides of S,, approaches 0 asn — oo, then there is exactly one point in
common to all the S,,.

A. True
B. False

Let {S,,} be a sequence of closed and bounded rectangles in the plane. If S,,,.; € S, for every
nand the length of the sides of S, approaches 0 as n — oo, then there are two points in
common to all the S,,.

A. True
B. False
Using the Poisson integral formula, the % fozn %d@ =
A. f(e™)
B. f(2e™)
C. f(3e™)
D. 2f(e™)

fzfr (R?-4)f(Re?)

Using the Poisson integral formula, the o [RP—aRCostr—g)+d] do =

A. n'f(ei”)
B. 27rf(2ei”)
C. 37rf(3ei”)
D. f(e™)
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10.

11.

12.

13.

14.

15.

(R?-9)f(Re'?)

Using the Poisson integral formula, the i foznmd(b =
A. f(3e™)
B. f(2e™)
C. f(3ei”)
D. 2f(e™)
Using the Poisson integral formula, the [ 02"% dg =
A. nf(e™)
B. 2nf(4e'™)
C. 3mf(3e™)
D. f(5e'™)

Using the Poisson integral formula, the

A.

B.

C.
D.

Using the Poisson integral formula, the =
2m

A.

B.

C.
D.

Using the Poisson integral formula, the

on 21f(5e'?) 4o

0 29-20Cos(m—¢)
nf(ei”)

2nf(2e'™)

3nf(3e™)

f(ein)

2m 27f(6e™®) _
fo 45-36Cos(m—¢)] g =

f(3ei”)
f(zein)
f(3ei”)
zf(ein)

J-Zﬂ.' 20f(6e'?) 4o

0 52-48Cos(nt—¢)

A. nf(e™)
B. 2nf(4e'™)
C. 3nf(3e™)
D. f(5e™)
Using the Poisson integral formula, the fozn%dQ) =
A. wf(e™)
B. 2nf(e™)
C. 3nf(3e™)
D f(ein)
Using the Poisson integral formula, the i ) 021: % dg =
A. f(3e™)
B. f(2e™)
C. f(3e™)
D. 2f(e™)

Using the Poisson integral formula, the

A.

B.

C.

f27r 4f(5e'?) 4o =

0 41-40Cos(mt—¢)
nf(ei”)

21Tf(4ei”)

31Tf(3ei”)

f(5et™)
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Table 1: Answers of self-assessment

Question number Correct answer
1 A
2 B
3 B
4 A
5 B
6 A
7 B
8 D
9 B
10 B
11 A
12 B
13 B
14 A
15 B
3.5 Summary

If £ (z) is analytic within and on a circle C defined by |z| = R and if a is any point within, C,

then

2r .
. 1 (R? —1r?®)f(Re™®)
0y — d
f(re®) 2nf R 2RrCos(8 — @) + 127
0
Where a = re'is any point inside the circle |z| = R.
(RZ_rZ)f(Rei(D)
[R2—2RrCos(0—¢)+12]

is known as the Poisson Kernal for the disk |z | < R.

2_..2
The Poisson, kernel is bounded above by % = g.

The conjugate Poisson kernel is a mathematical function used in complex analysis and
potential theory. It is defined as the conjugate of the Poisson kernel, which is a function that

maps points in the complex plane to the unit disk. The conjugate Poisson kernel is given by
the formula:P*(z) = P (Zi) where P(z) is the Poisson kernel and z* is the complex conjugate

of z.
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3.6 Keywords

Monodromy Theorem:

Let D be a simply connected domain, and suppose f; (z) is analytic in a domain D, c D. If the
function element (fy, Dy) can be analytically continued along every curve in D, then there exists a
single-valued function f(z) that is exists a single-valued function f(z) that is analytic throughout D
with f(z) = f,(z) in D,.

3.7 Further Readings
Books
1. Complex Variables And Applications By Churchill, R. V. And Brown, J. W., Mcgraw Hill
Education.

2. Foundations Of Complex Analysis By S. Ponnusamy, Narosa Publishing House.
3. Complex Analysis By Lars V. Ahlfors, Mcgraw Hill Education.
4. Complex Variables Theory And Applications By H. S. Kasana, Prentice Hall.
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Purpose and Objectives:

The Mean Value Property states that for a harmonic function in a domain, the average value of the
function over a ball is equal to the value of the function at the center of the ball. Harmonic functions
are a type of function that satisfy the mean value property. Hence, the mean value property is a
necessary condition for a function to be harmonic.

In other words, harmonic functions are functions that have the property that the mean of their values
over a small region is equal to the value of the function at a point in the interior of that region. The
mean value property is a fundamental property of harmonic functions, and it plays a key role in
various applications, such as potential theory and partial differential equations.

Harnack's inequality is a fundamental result in mathematics with various applications in several
areas, including partial differential equations, geometry, and potential theory. It provides a
relationship between the values of a harmonic function on a small ball and on a large one, which is
useful in the study of the regularity and behavior of solutions to elliptic equations. Additionally,
Harnack's inequality is also crucial in the study of the asymptotic behavior of Markov processes,
stochastic differential equations, and other areas in probability theory.

The Dirichlet problem is a well-known problem in mathematics, specifically in the field of partial
differential equations. It asks to find a solution to a partial differential equation that satisfies certain
boundary conditions on a given domain. The problem is named after the German mathematician
Peter Gustav Lejeune Dirichlet and has numerous applications in physics, engineering, and
mathematics. It provides a way to model various physical phenomena such as heat conduction,
diffusion, and potential flow.

After this unit students can be able to-

1. State and prove the Harnack's inequality.
2. Learn the mean value property of harmonic functions.
3. Solve the problem based on the Dirichlet problem.
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Introduction

The Harnack’s inequality is a result in mathematical analysis, which states that for a non-negative
solution u(x) of a linear elliptic partial differential equation in a domain, the maximum value of u in
a ball centered at a point is bounded above by the average value of u over the same ball. Before
embarking the concept of Harnack’s inequality, first we discuss the relationship between mean value
property and harmonic function. This result has important applications in the study of heat diffusion
and potential theory we will understand the Dirichlet problem to find solutions to boundary value
problems in these areas.

4.1 Relation Between Mean Value Property and Harmonic Functions

41.1 Harmonic function

A harmonic function is a real-valued function that satisfies Laplace's equation, which states that the
sum of the second partial derivatives with respect to x and y is equal to zero.

Mathematically, for a function u(x,y), the Laplace's equation can be expressed as:
— +— =0 (4.1)

Harmonic functions have several important properties, including being analytic and continuous,
having no local maxima or minima, and having a unique mean value over any region in which they
are defined. These properties make harmonic functions useful in a variety of mathematical and
scientific applications, such as solving boundary value problems and modeling physical phenomena.

41.2 The harmonic conjugate of a harmonic function

The harmonic conjugate of a harmonic function u is another harmonic function v that satisfies the
condition u + iv is analytic (i.e. it has continuous first and second partial derivatives). In other
words, u and v together form a complex function that is analytic in the region where u is defined.

The harmonic conjugate of u is unique up to an additive constant, and it can be found by integrating
the derivative of u with respect to y (or x, if u is expressed in terms of x).

For example, if u(x,y) = f(x) + g(¥), then its harmonic conjugate is given by v(x,y) = —g(x) +
f() + C,where C is an arbitrary constant.

In conclusion, the harmonic conjugate of a harmonic function is a unique function that helps to form
an analytic complex function in the region where the harmonic function is defined.

The harmonic conjugate of an analytic function is another function that, when added to the original
function, forms a harmonic function. A harmonic function is a function that satisfies Laplace's
equation, which states that the sum of the second partial derivatives with respect to x and y is zero.

Let f(x,y) be an analytic function. Its harmonic conjugate, denoted by g(x,y), is defined as:
gxy) = dyu(x,y) — 0xv(x,y)
where u(x,y) and v(x,y) are the real and imaginary parts of f(x,y), respectively.

The two functions, f(x,y) and g(x,y), are called Cauchy-Riemann partners, and their sum is a
harmonic function.

41.3 Mean value property.

The mean value property of harmonic functions states that, for any point in a ball in a harmonic
function, the value of the function at that point is equal to the average of the function's values over
the boundary of the ball.

In mathematical terms, if u(x) is a harmonic function in a ball B(x,, R) centered at x, with radius R,
then:

ulxo) = (IB(xlo,r)I) f{B(xo,r)}u(x) dx (4.2)
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where |B(xy, r)| is the measure (area or volume, depending on the dimension) of the ball.

In other words, continuous function u : G —» R has the Mean Value Property (MVP) if whenever.

B (a=xy R)C Gu(a) = %foznu(a +Re')do 4.3)

This property provides a useful tool for solving partial differential equations and finding potential
functions in physics.

Proof:

Let u:G » R be a harmonic function and let B (a : R) be a closed disk contained in G. If C is the
circle, |z — a|] = R thenthenu(a) = %foznu(a + Reig)de

The proof of the Mean Value Theorem is since a harmonic function is equal to its mean over any
region. This means that the average value of the function over the boundary of a disk is equal to the
value of the function at the center of the disk.

To prove this, we start by noting that a harmonic function is analytic, meaning it satisfies the Cauchy-
Riemann equations and can be represented by a power series. Using this representation, we can write
the function as:

_ . 1 /d™u(a)
u@ = u@ + TG —am (50 (44)
d™u(a) . . .
where is the nth derivative of u evaluated at a.

dzm™

Next, we consider the value of the function at a point on the boundary of the disk, given by a + Re®.
Using this, we can rewrite the above power series as:

u(a + Re®) = u(a)+ ¥=.,(a + Re® —a)" *%(d::ia)) (4.5)
i ) i " ( )

= u(a + Re?) = u(a) + ¥7_,(Re® )n * %(%) (4.6)

Now, we integrate both sides over the interval [0, 2] to obtain:

1 p2m i _ 1 (27 @ ig \* . 1 (d"u(a)

;fo u(a + Re”’)d@ = u(a) + ;fo anl(Re‘e ) * o (dz—n) do (47)

Since the function u is harmonic, it follows that all its derivatives are also harmonic.

This means that the second term on the right side is equal to zero. Therefore, we can simplify the
above expression to:

%fozn u(a + Re'®)do = u(a) (4.8)

Thus, the average value of the function over the boundary of the disk is equal to the value of the
function at the center of the disk, proving the Mean Value Theorem.

4.2 Harnack's inequality

Suppose u(z ) is harmonic in the disk 4(z ; R) ={z: |z — 2z, | < R}withu(z) = 0
forallz € A(zy ; R), then for every z in this disk, we have

R—|z — zy | R+ |z — zy |

W) gt < @) < Uz

R+|z —2zy| — —lz — z |

Proof:

First, we consider the average value of the function u on the circle centered at z0 with radius |z - z]|.
By definition, this average value is given by
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Az — z|) = (%) I u(zo + 1z = zole'®) dt . (4.9)

Next, we apply the Mean Value Property for Harmonic Functions to the function u — u(z,), which
states that for any positive real number r such that 0 < r < R, there exists a point 0 in the interval
[0,2m) such that

u(zy + re®) — u(zy) = rou(z, + re'd) (4.10)

Substituting this expression into the formula for A(]z — z|) and interchanging the order of
integration and differentiation, we obtain

1y (2 .
Az = 2]) = (E) j u(zo + |z — zole®) dt
0

21
u(zo) + |z — 7|0, u(zp).

1 21 '
(_) [w(zo) + 1z — 2010, u(zo + |z — zole™*)]dt
0

Finally, using the definition of partial derivative with respect to the radial coordinate, we have

0y ulz) = (5) =ttt 20 (4.11)

Substituting this expression into the formula for A(|z — z|), we obtain

Az = zol) = ulzy) + 2245, 412)
Dividing both sides by |z — z,| and rearranging, we find that
u(zo)(R — |z — zol) < Az — 7)) < u(zo)(R + |z — 2zo|) (4.13)

R+ |z -zl R — |z — z,|

Since the average value of u on the circle centered at z, with radius [z — z,| provides an upper bound
for the function u, we conclude that

u(zo)(R = |z = z4l) < u(z) < u(zo)(R + |z = z,)
R+ |z — zy| - - R—|z —zy|

(4.14)

for every z in the disk 4(zy, R).

4.3 Dirichlet Problem

The Dirichlet problem in complex analysis is a boundary value problem that seeks to find a complex
valued function that is analytic within a given domain and takes on specified boundary values on
the boundary of that domain.

For example, consider the unit disk centered at the origin in the complex plane. The Dirichlet problem
asks us to find a complex valued function f(z) that is analytic within the unit disk and takes on the
specified boundary value f(e®*) = g(t) for all t in the interval [0,27], where g(t) is a given function.

One possible solution to this problem is to use the theory of complex analysis and the representation
of analytic functions using power series.

By using the Cauchy-Riemann equations, it can be shown that any complex valued function that is
analytic within the unit disk can be represented by a power series of the form.

f(@) = X a,(z — zy)", where z, is the center of the disk.

The boundary values of the function can then be used to determine the coefficients of the power
series.

For example, if g(t) = cos(t),
then f(e%) = cos(t)
=X a, e'™,

where the coefficients can be calculated by matching the real and imaginary parts of both sides of the
equation.

Initially, the problem was to determine the equilibrium temperature distribution on a disk from
measurements taken along the boundary.

LOVELY PROFESSIONAL UNIVERSITY 41



Unit 04: Relation Between Mean Value Property and Harmonic Functions

The temperature at points inside the disk must satisfy a partial differential equation called Laplace’s
equation corresponding to the physical condition that the total heat energy contained in the disk shall
be a minimum.

A slight variation of this problem occurs when there are points inside the disk at which heat is added
(sources) or removed (sinks) as long as the temperature remains constant at each point (stationary
flow), in which case Poisson’s equation is satisfied.

How to construct a harmonic function in a given domain when its values are prescribed on the
boundary of the domain is the key problem is known as Dirichlet problem.

(7
[ ]
-

Boundary value problems associated to Laplace equation.
The Poisson equation is a second-order partial differential equation of the form
Vu(x) = f(x)

where u(x) is an unknown function and f(x) is a given function. The equation states that the
Laplacian of u(x) is equal to f(x).

The solution to the Poisson equation depends on the boundary conditions for the unknown function
u(x).

There are several methods for solving the Poisson equation, including numerical methods, analytical
methods, and Green's function methods.

One common analytical method is to use the method of separation of variables.
Suppose thatu(x) = X(x)Y (), then the Laplacian of u(x) becomes.
0%u(x) 0%u(x)
0x? dy?
=X"Y®) + XY )

where X" (x) and Y" (y) denote the second derivatives with respect to x and y, respectively. Setting
the right-hand side equal to f(x), we have

X'(Y Q) + X@Y'(y) = f(x)
Dividing both sides by XY, we get

V2u(x) =

X'x) YO _f)

X(x)  Y(@) XY

This equation is equal to a constant 4, so we have

X”(x) 3 Y”(y) B f(x)

XG0 Aty

_AY(y) B XY

Solving the above two differential equations, we obtain the general solution.

u(x) = Z Can(x)Yn(y)

where C, are constants and X, (x) and Y, (y) are the eigenfunctions corresponding to the eigenvalue
An

The final solution depends on the specific boundary conditions and the values of the constants C,.

Note that this method is only applicable when the equation can be separated into two independent
ordinary differential equations. In general, the Poisson equation requires numerical methods or
Green's function methods to solve.

Another of the generic partial differential equations is Laplace’s equation, V?u =0
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This equation first appeared in the unit on complex variables when we discussed harmonic functions.
Another example is the electric potential for electrostatics. As we described for static electromagnetic
fields,

V-EZE,EZV(p.
€o

In regions devoid of charge, these equations yield the Laplace equation 72¢ = 0.
Another example comes from studying temperature distributions.

Consider a thin rectangular plate with the boundaries set at fixed temperatures. Temperature
changes of the plate are governed by the heat equation. The solution of the heat equation subject to
these boundary conditions is time dependent.

In fact, after a long period of time the plate will reach thermal equilibrium. If the boundary
temperature is zero, then the plate temperature decays to zero across the plate. However, if the
boundaries are maintained at a fixed nonzero temperature, which means energy is being put into the
system to maintain the boundary conditions, the internal temperature may reach a nonzero
equilibrium temperature.

Reaching thermal equilibrium means that asymptotically in time the solution becomes time
independent. Thus, the equilibrium state is a solution of the time independent heat equation, which
is another Laplace equation, V?u = 0

=

Example
Equilibrium temperature distribution for a rectangular plate

Let us consider Laplace’s equation in Cartesian coordinates,

%u 0%u
E+W—0,0<X<L,O<}/<H (415)

with the boundary conditions

u(0,y) =0

\
u(m,y) =0 I
u(x,0) = f(x) = Sinx } (4.16)
u(x,H=1)= sinx

e

0 L
u = fi(x)

Figure 4.1: The boundary condition for the heat distribution problem.
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Solution:

This is a partial differential equation for Laplace's equation, which describes the distribution of heat
in a 2D space. To solve this equation, we can use separation of variables method.

Assume that the solution can be written as:
u(x,y) = X()Y()
Substituting this into the equation, we have:
E@OY®)" + X@YE)" =0
Dividing both sides by X(x) Y(y), we get:
X' Yy + X Y'(y) =0

Since this must be true for all x and y, we can divide both sides by X (x) Y(y), to get:
X" (x)) (Y”(y)>
—— |+t |=—==<]=0
( X(x) Y(»)

This can be simplified to:

_X® _Y'O)
XG) YD)

2 =
where A2 is a constant.
Solving for X (x) and Y(y), we have:

X'(x) + 2X(x) =0

Y') - 2Y(y) =0
The solutions for X (x) and Y(y) can be written as:
X(x) A cos(Ax) + Bsin(1x)
Y(y) = Ce ™Y + De?Y

where A, B, C, and D are constants.
Hence u(x,y) = Acos(Ax)+ Bsin(Ax).[Ce™*Y + De¥] 4.17)
Using the boundary conditions, we can find the values of A and the coefficients A, B, C,and D.
= u(0,y) = Acos(2*0)+ Bsin(Adx0). [C ey + D e)‘y] =0
=u(0,y) = A.[Ce™® + De??]=0
=A=0

Now put A = 0in (4.17)

u(x,y) = Bsin(Ax).[Ce™*Y + D e?¥] (4.18)
Now

u(m,y) = B sin(A ). [C e + D e“’] =0
= sin(An) =0
= sin(A ) = sin(nm)

= A =nn=+41,12, ..,
So

ulx,y) = Bsin(nx).[Ce ™Y + De™Y] 4.19)

Now apply u(x,0) = Sinx
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u(x,0) = Bsin(nx).[C + D] =sinx
=BC+BD=1n=1

Now update the (4.19) Hence

u(x,y) = Bsinx.[Ce™ + De?”]

Sinx

Now apply u(x, 1) = -

sinx
u(x,1) = Bsinx.[Ce™' + Del] =—
sinx sinx
= BC ——+ BD.sinx.e =——+0
e e

= BC=1,BD=0

Now update the (4.20)(4.19) Hence

ulx,y) =
plate.

(4.20)

sinx. [ e~ 7 ] is the final solution of the given temperature distribution for a rectangular

Figure4.2: The temperature distribution in x and y direction.

4.4 Review questions

N

Explain the Mean value property of harmonic function?

State and prove the Harnack’s inequality for harmonic function in the closed disc?
Suppose u(z ) is harmonicin the disk 4(1; 1) ={z: |z — 1| < 1},withu(z) = 0

forallz € A(1; R), then for every z in this disk, then show that

11—|z—1|< < 11+|z—1|
WDy S @) = DT
2 2
Solve% +ZTI:=O,0<x<L,O<y<H,under the boundary conditions
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u(0,y) =0 \I
u(m,y) =0
u(x, 0) = f(x) = 2Sinx }
u(x, 1) = Sleg J
5. Solve, % + ZZTZ =0,0 < x < 10,0 <y < H, with the boundary conditions
u(0,y) =0 1
u(m,y) =0 ¥
u(x,0) = 10Sinx

Sinx

u(x,10) = 10 T}

4.5 Self-assessment

1. Using the Mean Value property, the integral i f027r u(5 + Re ie)d@ =
u(s)

A
B
C. u(25)
D. u(10)

2. Using the Mean Value property, the integral % fozn u(15+ Re'?)do =

A. u(l15)
B u(3)
C. u(225)
D. u(30)

3. Using the Mean Value property, the integral ifozn u(l +i+ Reie)de =

A u(l)
B.  u(d)
C. u(l+i)
D

u()
4. Using the Mean Value property, which one of the following is true
A. ifoz”u(w + Re'?)dg = u(10)
— [ u(5 + Rei®)d6 = u(5/2)
C. —J u(5/2+ Re®®)d6 = u(5)
D. %fozn u(5 + Re'?)dd = u(10)

5. Using the Mean Value property, which one of the following is true
A [ u(1+Rei®)d6 = u(10)
B. — [, u(25+ Rei®)d6 = u(5/2)
C. —J " u(5/2+ Re®®)d6 = u(5)
D. — [ u(2+i+Re®)dd =u(2+1)
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6. Suppose u(z ) is harmonic in the disk 4(zy ; R) ={z: |z | < 1}withu(z) = 0
forallz € A(0; 1), then which one of the following statements are true using the

Harnack’s inequality for every z in this disk,

ru)==“ o e
Tr1z] =
1u(z) < u) =12
1—|z |
A. Onlyl
B. Onlyll
C. Both
D. Neither I norll

7. Suppose u(z ) is harmonic in the disk A(zy ; R) ={z: |z | < 2},withu(z) = 0
forallz € A(0; 2), then which one of the following statements are true using the

Harnack’s inequality for every z in this disk,

I u(0 2oz | _
su( )2+|Z | < u(z)
] 2+ |z |
I:u(z) = u(0)2_|ZI
A. Onlyl
B. Onlyll
C. Both
D. Neither I norll

8. Suppose u(z ) is harmonic in the disk A(zy ; R) ={z: |z—i| < 1},withu(z) = 0
forallz € A(i; 1), then which one of the following statements are true using the

Harnack’s inequality for every z in this disk,

ru)—2 o ue)
1+|z | —
Hiu@) < u@ )12
1-1z |
A. Onlyl
B. Onlyll
C. Both
D. Neither I norll

9. Suppose u(z ) is harmonic in the disk A(zy ; R) ={z: |z | <5}withu(z) = 0
forallz € A(0; 5), then which one of the following statements are true using the

Harnack’s inequality for every z in this disk,

1:u(0)§+:2 :> u(z)
:uz) < u0)—2]
5—|z |
A. Onlyl
B. Onlyll
C. Both
D. Neither I norll
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10.

11.

12.

13.

14.

Suppose u(z ) is harmonic in the disk 4(zg ; R) ={z: |z—2 | < 1},withu(z) = 0
forallz € A(0; 1), then which one of the following statements are true using the

Harnack’s inequality for every z in this disk,

1—-]z—=2|
I'u(0)1+|z—2 = u(z)
14+ |z—-2 |
II:u(z) u(O)ﬁ
A. Onlyl
B. Onlyll
C. Both
D. Neither I norll

Consider the u(x,y) = Acos(Ax)+ Bsin(1x).[Ce Y + De*Y] be the solution of

Laplace’s equation z — +Z ~—=0,0<x<L0<y<1in Cartesian coordinates then what
is the value of B using u(0,y) = 0.
A. 0
B. 2rm
C. 3
D. 1
u(0,y) =0. \I
u(m,y) =0
with the boundary conditions u(x,0) = f(x) = Sinx ¥
|
u(x,H - 1) Sinx )

Consider the u(x,y) = Acos(1x)+ Bsin(Ax).[Ce™?Y + De?Y] be the solution of

a? 92 . . .
Laplace’s equation — + ﬁ =0,0<x <L,0<y<1in Cartesian coordinates then what

a 2
is the value of A using u(0,y) = 0,,u(w,y) = 0.
A. 1=05
B. 2 =nn=+1,%+2,..,
C A=2
D. Can not be determined

Consider the u(x,y) = A cos(ﬂ x)+ Bsin(Ax).[Ce™?Y + De?Y] be the solution of

Laplace’s equation z — + =0,0 <x <L,0<y<1in Cartesian coordinates then what
u(0,y) = 0. \I
. . . u(m,y) =0
is the value of BC with the boundary conditions (. ) = F(x) = Sinx }
u(x‘ H = 1) Sinx J
A. 05
B. 1
c 2
2
D. Can not be determined
E.
Consider the u(x,y) = Acos(Ax) + Bsin(Ax).[Ce Y + De’?Y] be the solution of
2
Laplace’s equation 271: +Z ~=0,0<x<L0<y< 1in Cartesian coordinates then what
u(0,y) = 0.
u(m,y)=0
is the value of BD with the boundary conditions 4, (y 0) = £(x) = Sinx $
I
u(x H= 1) Smx J
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A. 05
B. 1
c 2
2
D. 0
15. Consider the u(x,y) = Acos(Ax)+ Bsin(Ax).[C e *Y + De?Y] be the solution of

2 2
Laplace’s equation % + ZTZ =0,0<x<L,0<y<1in Cartesian coordinates then what
u(0,y) = 0. \

u(m,y)=0 I
is the general solution of with the boundary conditions ;,(y, 0) = F(x) = Sinx $
' |

Sinx

u(x,H=1) = "

A. u(x,y)= Sinx.[e Y]

B. u(x,y)= Cosx.[e™ Y]

C. u(lx,y)= Sinx.[eY]

D. u(x,y) = Cosx.[eY]

Table 1: Answers of self-assessment
Question number Correct answer
1 A
2 A
3 C
4 A
5 D
6 C
7 A
8 C
9 B
10 C
11 A
12 B
13 C
14 D
15 A
4.6 Summary

¢ The mean value property of harmonic functions:
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For any point in a ball in a harmonic function, the value of the function at that point is equal

to the average of the function's values over the boundary of the ball.
In mathematical terms, if u(x) is a harmonic function in a ball B(x,, R) centered at x, with radius R,
then: u(x,) = (IB(xlﬂ) f{B(xo‘r)}u(x) dx
where |B(x,, r)| is the measure (area or volume, depending on the dimension) of the ball.

e  The average value of the function over the boundary of the disk is equal to the value of the

function at the center of the disk, proving the Mean Value Theorem.

4.7 Keywords
Harnack's inequality
Suppose u(z ) is harmonic in the disk 4(z ; R) ={z: |z — 2z, | < R}withu(z) = 0

forallz € A(zy ; R), then for every z in this disk, we have

R’—lz—zo|< < R4z — zy |
u(ZO)R+|Z ] S u(z) < u(Zo)R_lz ——
4.8 Further Readings
Books
1. Complex Variables And Applications By Churchill, R. V. And Brown, J. W., Mcgraw Hill
Education.

2. Foundations Of Complex Analysis By S. Ponnusamy, Narosa Publishing House.
3. Complex Analysis By Lars V. Ahlfors, Mcgraw Hill Education.
4. Complex Variables Theory And Applications By H. S. Kasana, Prentice Hall.
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Purpose and Objectives:

After this unit students can be able to-

1. Understand the Schwarz Reflection Principle for analytic functions?
2. Prove the Schwarz Reflection Principle for analytic functions?

3. Learn the consequences of the Schwarz Reflection Principle

Introduction

If a function is analytic in the upper half plane and its real part is non-negative on the boundary (the
real axis), then it can be extended analytically to the entire plane. In other words, if a function f(z) is
analytic in the upper half plane and satisfies the condition Re(f(z)) > 0 for all real z, then f(z) can
be extended to the entire complex plane.

The Schwarz Reflection Principle has several important applications in complex analysis, such as
proving the analyticity of functions, constructing entire functions with prescribed properties, and
solving boundary value problems. In this unit we will explore the Schwarz Reflection Principle for
analytic function.

5.1 Schwarz Reflection Principle for Analytic Functions

Statement:

The Schwarz Reflection Principle states that if a complex valued function f(z) is analytic in the upper
half plane (Im(z) > 0), and continuous on the boundary of the upper half plane (/m(z) = 0), and
if f(z) satisfies f(z) = f((2)), then the function f(z) can be extended to be analytic in the entire
complex plane.

LOVELY PROFESSIONAL UNIVERSITY
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or

The Schwarz Reflection Principle states that if a function is analytic in the upper half plane and its
real part is non-negative on the boundary (the real axis), then it can be extended analytically to the
entire plane. In other words, if a function f(z) is analytic in the upper half plane and satisfies the
condition Re(f(2)) = 0 for all real z, then f(2) can be extended to the entire complex plane.

Proof 1:

The proof of the Schwarz Reflection Principle relies on the fact that if a function is analytic in the
upper half plane and its real part is non-negative on the boundary, then it can be represented as a
real part of another analytic function.

Let f(2) be analytic in the upper half plane and Re(f(z)) = 0 for all real z.

Then the function g(z) = f(2) + i(—f(2)) is analytic in the upper half plane and satisfies
Re(g(z)) = 0 for all real z.

The proof also uses the maximum modulus principle and Liouville's theorem.

Liouville's Theorem

Liouville's Theorem states that a bounded holomorphic function on the entire complex plane must
be constant. It is named after Joseph Liouville.

Statement:

Let f(2):C - Cbe an entire function. Suppose there exists somereal numberM >0 such
that |f(z)| < M for all z € C Then f(2) is a constant function.

Or

If a function f(z) is entire and bounded in the complex plane, then f(z) is constant throughout the
plane.

Proof:

It is given that

i A function f(z) is analytic in the entire complex plane
ii. A function f(z) is bounded, that |f(2)| < M.

Let us consider two points a and b inside a particular domain(See the figure 5.1).
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Figure 5.1: Two points a and b inside a particular domain

Then using Cauchy integral formula
f@) )
2mi Sﬁ < dz = f(a)

2mi Sﬁ <f(Z) ) dz = f(b)
If f () is constant throughout the domain, then f(a) = f(b).
Now let’s prove f(a) — f(b) = 0.

@0 =56, () az 6, (22) a

2mi
(-1

fla)— f(b)——sﬁ

21i

F@) = F0) = 5oz $.f ) (22— b)dz

Z

— 1
fl@-f)= 2Ti Sﬁcf(z) ((Z —a)(z— b)) dz

F@ =8 = 58,5 (=

1f(@ - F b = ﬂsﬁcf(z) (c=m0=5) %

1
fﬁ If(2)| (m) ldz|

2|8, 1r(

If (@) —fD)] <

2mi

If (@) —fD)] < |dz|

2mi

z z )
Let

z =re'?
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dz=re®.i.do

|dz| = |rei9.i. d9|

|dz| = |r|. |ei9|. li].1d6|
Here|r|=r

le®| = |cos6 + isin| = 1,

i1=1,
ldz| = r.|d6|

p<2L¢ u ! 0
F@ = FO) = 5 M (s =) ™ 140

.|dé|

a—>b 1
If(&) - f(b)| < o SﬁcM ((1 —a/r)(1- b/r))

If £ () is analytic in the entire complex plane, then |z| = r — 0. So

If(@ = f(b)I <0

f(@—=f(b)=0

Hence, we can say that f(a) = f(b). It means that f(z) is a constant.

Liouville's Theorem proof using Cauchy integral formula for derivatives.

If f(z) is analytic in a simply connected region then at any interior point of the region, z, inside C.
Then say, the derivatives of f(z) of any order exist and are themselves analytic (which illustrates
what a powerful property analyticity is!). The derivatives at the point z, are given by Cauchy’s
integral formula for derivatives:
§,(L9) dz = 2mi )

c .

(z—2zy)+1 n!

where C is any simple closed curve, in the region, which encloses z,. Note the casen = 1:

¥ (25) dz = f'(zo).

2mi” ¢ \(z—2)?

[ _ L f(2)
If' (z0)| = 2mi ﬁc ((Z—ZO)Z) dZ|'

, 1 If @)
'@l < o] (L2 1zl

Here z = re'®

dz =re®.i.d6.

|dz| = |re'®.i.d6)|.

ldz| = |r|.[e®]. il.1d6].

Here |z — zy| =71

|ei‘9| = |cosO + isinB| =1,
lil =1,
|dz| =r.|d0]|.

If' @)l < 526 _(3)r-1del.
I @)l <56 _(%).d6.

If f(2) is analytic in the entire complex plane then r — oo. So
If'(zo)| <0
f'(z9) =0

f(z) = constant.
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By Liouville's theorem, the imaginary part of g(z) is constant on the boundary, say c. Then the
function h(z) = g(z) + ic is analytic in the entire plane and has the same real part as f(z).

Proof 2:

Let f(z) be a complex valued function that is analytic in the upper half plane (Im(z) > 0), and
continuous on the boundary of the upper half plane (Im(z) = 0).

Consider a point z in the lower half plane (Im(z) < 0)[See figure 5.2]

Figure 5.2: w = f(2)

Letz = x + iy, where x is real and y is negative.
Let's define a new point, conj(z)=z, which is equal to the complex conjugate of z.
That is, conj(z) = x — iy.

Since f(z) is continuous on the boundary of the upper half plane, it follows that f(conj(z)) is
continuous in the lower half plane.

Also, since f(z) satisfies f(z) = f((2)), we have:

f@ = f((con(2)))

= fx—w)

= flx + (=)

Thus, we can define a new function, g(z), in the lower half plane as follows:
9@ = f&x + 1=y

Since g(z) = f(z) is continuous in the lower half plane, and the conjugate of a continuous function
is continuous, it follows that g(z) is continuous in the lower half plane.

We now show that g(z) is also analytic in the lower half plane.
Letz = x + iy, where x is real and y is negative.

Consider the derivative of g(z) at the point z:

d

9@ = (%) Fo + 1)
- () 7@
- o
a

Since f (z) is analytic in the upper half plane, it follows that (dz) f (2) is also analytic in the upper half

plane.

Therefore, conjugate of (%) f(2) is also analytic in the lower half plane, and so is g'(2).
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Since g(z) is continuous and its derivative is analytic in the lower half plane, it follows that g(z) is
analytic in the lower half plane.

Thus, we have shown that if f(z) is a complex valued function that is analytic in the upper half plane
and continuous on the boundary of the upper half plane, and if f(z) satisfies:

f(2) = f(conj(z)), then the function f(z) can be extended to be analytic in the entire complex plane
by defining a new function, g(z), in the lower half plane.

5.2 consequences of the Schwarz Reflection Principle

1.

One consequence of the Schwarz Reflection Principle is that if a function is analytic in the
upper half plane and its real part is non-negative on the boundary, then it can be extended
to an entire function that is real valued on the real axis.

Another consequence is that a function that is analytic in the upper half plane and satisfies
a certain growth condition on the boundary (such as the Riemann mapping theorem) can
be extended to an entire function with similar growth behavior.

Additionally, the Schwarz Reflection Principle can be used to construct solutions to
boundary value problems, such as the Dirichlet problem, by reflecting solutions from one
half plane to the other.

5.3 Different proofs of Schwartz Reflection Principle

The Schwartz Reflection Principle can be proved by various methods

1.

Complex Analysis Proof: The Schwartz Reflection Principle can be proven using complex
analysis by considering the analytic continuation of the function from the upper half plane
to the lower half plane. The proof involves showing that the function, extended to the lower

half plane, is a reflection of the function in the upper half plane across the real axis.

Harmonic Functions Proof: The Schwartz Reflection Principle can also be proven using the
theory of harmonic functions. A function is considered harmonic if it satisfies Laplace's
equation. By assuming that the function is harmonic in the upper half plane, it can be shown
that its extension to the lower half plane is also harmonic, and therefore satisfies Laplace's
equation, meaning it must be a reflection of the function in the upper half plane across the

real axis.

Integral Transform Proof: The Schwartz Reflection Principle can be proven using the Fourier
Transform by showing that the Fourier Transform of a function in the upper half plane, after
being reflected across the real axis, is equal to the negative Fourier Transform of the original

function in the lower half plane.

Paley-Wiener Theorem Proof: The Schwartz Reflection Principle can also be proven using
the Paley-Wiener theorem, which states that the Fourier Transform of a function with
compact support is a function that is entire and decays rapidly. By assuming that the
function in question is the Fourier Transform of a function with compact support in the
upper half plane, it can be shown that the function, after being reflected across the real axis,

is the Fourier Transform of a function with compact support in the lower half plane.
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Bochner's Theorem Proof: The Schwartz Reflection Principle can also be proven using
Bochner's theorem, which states that a positive definite function is the Fourier Transform of
a positive measure. By assuming that the function in question is positive definite in the
upper half plane, it can be shown that the function, after being reflected across the real axis,
is positive definite in the lower half plane, implying that it is the Fourier Transform of a

positive measure.

5.4 Applications

The main application of the Schwartz Reflection Principle is in the study of distributions
and their derivatives. It provides a means to extend the definitions of distributions and
derivatives to unbounded functions.

The Schwartz Reflection Principle is a generalization of the Hahn-Banach Theorem. The
Hahn-Banach Theorem states that a linear functional on a linear subspace can be extended
to the entire space while preserving its norm. The Schwartz Reflection Principle extends this
result to the case of distributions.

The Schwartz Reflection Principle is an important tool in mathematical physics for defining
distributions and derivatives of functions. In particular, it allows for the extension of the
definitions of distributions and derivatives to unbounded functions, which is particularly
useful in quantum field theory and quantum mechanics.

5.5 Review questions

What is the main application of the Schwartz Reflection Principle?

How does the Schwartz Reflection Principle relate to the Hahn-Banach Theorem?
What is the significance of the Schwartz Reflection Principle in mathematical
physics?

State and prove the Schwartz Reflection Principle using Liouville's Theorem?

State and prove the Schwartz Reflection Principle without Liouville's Theorem ?

5.6 Self-assessment

1.

Which one the following statement is true for the reference of Schwarz reflection principle?

I: The principle that a complex function which is holomorphic in the upper half plane can
be extended to a holomorphic function in the whole plane.

II: The principle that states that a real-valued function cannot be analytically extended
across a branch cut.

A. Onlyl

B. Onlyll

C. BothlIandII
D. Neither I norII

Which one the following statement is true for the reference of Schwarz reflection principle?
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I: The principle that a holomorphic function in the unit disc can be extended to a
holomorphic function in the whole plane.

II: The principle that states that the maximum value of a subharmonic function is achieved

on the boundary of its domain.

A. Onlyl

B. Onlyll

C. BothlandII
D. Neither I nor II

Which one the following statement is true for the necessary condition for the Schwarz
reflection principle?

I: The function must be bounded in the upper half plane.

II: The function must be continuous in the upper half plane

A. Onlyl

B. Onlyll

C. BothlandII
D. Neither I nor II

Which one the following statement is true for the necessary condition for the Schwarz
reflection principle?

I: The function must be holomorphic in the upper half plane.

II: The function must be continuous in the upper half plane

A. Onlyl

B. OnlyIl

C. BothlandII
D. Neither I norII

The Schwarz reflection principle can be used to extend which type of functions to the whole
plane?

A. Only real-valued functions

B. Only harmonic functions

C. Both real valued and harmonic

D. Neither real nor harmonic

The Schwarz reflection principle can be used to extend which type of functions to the whole
plane?

A. Holomorphic functions

B. Harmonic functions

C. Subharmonic functions

D. Neither real nor harmonic

The Schwarz reflection principle states that the Fourier transform of the product of two
signals is equal to the convolution of their Fourier transforms?
A. True
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10.

11.

12.

13.

B. False

The principle that states that the reflection of a Schwartz function across the x-axis is also a
Schwartz function?

A. True

B. False

The principle that states that the Laplace transform of a signal is equivalent to its Fourier
transform?

A. True

B. False

The principle that states that the derivative of a Schwartz function is also a Schwartz
function.

A. True

B. False

What is the Schwartz Reflection Principle in mathematics?

A. The principle that every polynomial function has a unique root

B. The principle that states that the boundary values of an analytic function on the
upper half-plane can be extended to an analytic function on the whole complex
plane

C. The principle that states that the roots of a polynomial equation occur in conjugate
pairs.

D. The principle that the value of a holomorphic function at a point is equal to its
average value over any small circle centered at that point.

Which of the following is the best definition of the Schwartz Reflection Principle?

I: A mathematical theorem that states that the reflection of a function across a
vertical line always results in an even function.
II: A mathematical theorem that states that the reflection of a function across a
vertical line always results in an odd function.

A. Onlyl

B. Onlyll

C. BothlandII
D. Neither I norII

Which of the following is the best definition of the Schwartz Reflection Principle?
I: A mathematical theorem that states that the reflection of a function across a
vertical line always results in a function with the same parity.

II: A mathematical theorem that states that the reflection of a function across a
vertical line always results in a different function.

A. Onlyl

B. Onlyll

C. BothlIandII
D. Neither I norII
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14. The Schwarz Reflection Principle states that if a complex valued function f(z) is analytic in
the upper half plane (Im(z) > 0), and continuous on the boundary of the upper half plane
(Im(z) = 0), and if f(2) satisfies f(2) = f((2)), then the function f(z) can be extended to
be analytic in the entire complex plane.
A. True
B. False
15. Which one the following statement is true for the reference of Schwarz reflection principle?
I: The Schwarz Reflection Principle states that if a function is analytic in the upper
half plane and its real part is non-negative on the boundary (the real axis), then it can be
extended analytically to the entire plane.
II: If a function f(2) is analytic in the upper half plane and satisfies the condition
Re(f(2)) = 0 for all real z, then f(z) can be extended to the entire complex plane.
A. Onlyl
B. Onlyll
C. BothIandII
D. Neither InorII
Table 1: Answers of self-assessment
Question number Correct answer
1 A
2 D
3 D
4 A
5 D
6 A
7 B
8 A
9 B
10 B
11 B
12 D
13 A
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14 D
15 C
5.7 Summary

The Schwarz Reflection Principle states that if a complex valued function f(z) is analytic in
the upper half plane (Im(z) > 0), and continuous on the boundary of the upper half plane
(Im(z) = 0), and if f(2) satisfies f(z) = f((Z)), then the function f(z) can be extended to

be analytic in the entire complex plane.

The Schwarz Reflection Principle states that if a function is analytic in the upper half plane
and its real part is non-negative on the boundary (the real axis), then it can be extended

analytically to the entire plane.

If a function f(z) is analytic in the upper half plane and satisfies the condition Re(f(2)) =

0 for all real z, then f(z) can be extended to the entire complex plane.

If a function f(z) is entire and bounded in the complex plane, then f(z) is constant

throughout the plane.

5.8 Keywords

Liouville's Theorem

Let f(2z):C - Cbe an entire function. Suppose there exists somereal numberM >0 such
that |[f(z)| < M for all z € C Then f(z) is a constant function.

5.9 Further Readings

N

Books

Complex Variables And Applications By Churchill, R. V. And Brown, ]J. W., Mcgraw Hill
Education.

Foundations Of Complex Analysis By S. Ponnusamy, Narosa Publishing House.
Complex Analysis By Lars V. Ahlfors, Mcgraw Hill Education.
Complex Variables Theory And Applications By H. S. Kasana, Prentice Hall.
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Purpose and Objectives:

Meromorphic functions are an important class of functions studied in complex analysis. They
are defined as functions that are holomorphic (analytic) everywhere except at a finite number of
isolated singularities. Meromorphic functions are useful in studying the behavior of complex
functions near singularities, and they provide a representation of any meromorphic function in
terms of its poles and their residues. After this unit students can be able to-

1. Understand the Meromorphic functions

2. State and prove the Mittag-Leffler theorem

3. Learn the infinite product of complex Numbers

Introduction

In this unit first we will understand the concept of singularities and poles for meromorphic function
then the we will use the mesomorphic function to prove the Mittag-Leffler theorem. Last we will
focus on the infinite product of complex Numbers.

6.1 Singularities

A point zy is called a singular point of a function f (z) if f(z) fails to be analytic at zo but is analytic at
some point in every neighborhood of zo.
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(=)

Example:

Behavior of following functions at z = 0.

1
1) ==
Sinz
) ==
e?—1
)=
1
& = mazm

We observed that all the functions mentioned above are not analytic at z = 0.However in every
neighbourhood of z =0, there is point at which f(z) is analytic.

=

Example:

Behavior of following function at z = 1.
z
1-z

f2) =

o
K

We observed that the f(z)is not analytic at z = 1.However in every neighbourhood of z = 0, there is
point at which f(z) is analytic. So z =1 is the singular point of f(z).

=

Example:
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f(2z) = z? is analytic everywhere so it has no singular point.

=

Example:
Behavior of following function in the entire z plane
f(@) = Iz2?

We observed that the f(z)is not analytic at z = 1.However in every neighbourhood of z = 0, there is
point at which f(z) is analytic. So z =1 is the singular point of f(z).

6.2 Classification of singularity

The singularity of a complex function can be classified into two groups, isolated and non-isolated. It
can be done via Laurent series expension, but we can also classify the singularity without the Laurent
series expension. In the forthcoming units we will consider the classification using the Laurent series.

The isolated singularity further can be classified into different type. The following diagram shows
the different types of the singularities.

Sfﬂgwlmiij

Tsolated Now-isolated

Kew ovable Sfﬂgﬂmifj

Pole

v

Essential Simgulanity

Sfﬂgulaﬂi{j ot MSivite

6.2.1 Isolated singularity

A point a is called an isolated singularity for f(z) if f(z) is not analytic at z = a and there exist r > 0
such that f(z) is analytic in 0 < |z — a| < r. The neighbourhood |z — a| < r contains no singularity
of f(z) except a.
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=)

Example:

f(z) = 2(221) has three isolated singularities z = 0, i, —I.

=

Example:

f(z)= ﬁ has three isolated singularities z = 0, £m, £2m, ..,

6.2.2 Removable singularity
Let f(z)is analytic everywhere execpt the point z, inside and on the domain then if the lim f(z)
Zo2Zy

exists then z, is the removable singularity.

=)

Example:
Let f(2) = Siﬂ, clearly z, = 0 is an isolated singular point for f(z).
lim f(2) = hmﬂ =1

lim f(z) exists then z, = 0 is the removable singularity.

Z—oZy

=

Example:

z—sinz

Let f(2) = S clearly z, = 0 is an isolated singular point for f(z).

lim f(2) —hmz sinz

Z—oZy z

lim f(z) = 11m 1-cosz [L-Hosptital rule]
z-2,

lim f(z) = 11m 9+ sinz [L-Hosptital rule]

Z-Z

lim f(z) = 11m ﬂ [L-Hosptital rule]

Z-Z,

lim f(z) = 11m =

Z-Z,

lim f(z) exists then z, = 0 is the removable singularity.

VARIAN

6.2.3 Pole

Let f(z)is analytic everywhere execpt the point z,inside and on the domain then if the
lim (z — zy)*f(z) = 1, where 1 # 0, then z, is the pole of order k.
z-27,

If k = 1, then z, is the simple pole.

=

Example:
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eZ

Consider f(z) = — clearly zy = 0is an isolated singular point for f(2).
. . e~

lim f(z) =lim—

Z>Zg z-0 Z
. . e”

lim (z-0)! f(2) =limz—

Z-2Z z->0 Z

lim(z-0)'f(z)=e’=1=%0.

z-2Zg

So z, = 0 is the pole of order 1 or simple pole.

=

Example:

Consider f(z) = C‘Z’% , clearly z, = 0 is an isolated singular point for f(z).

cosz
22

lim f(z) =lim
Z—2Z z—0

lim (z - 0)% f (2) = lim z2 =~

z-2g z—-0 z

lim (z - 0)? f(2) = limcosz = 1 # o.
Z-2Zg z—0

So z, = 0 is the pole of order 2.

(=)

Example:

Consider f(z) = 1—Z_e322 , clearly z, = 0 is an isolated singular point for f(z).

1_322
3

lim f(z) = lir%

zZ—Z z z

lim (z — 0)3 f(2) =limz3(1_—e3zz) =0
zZ—Z z—0 z

_ 2z
lim (z — 0)? f(2) = lim z? (1—(2)
z-7, z—0 z

lim (2 — 0)2 f(2) = lim &=¢2.

zZ—Z z—0 z

lim (z — 0)2 f(2) =lim —22= = —2 # 0.
Z—2Z, z—-0 1

So z, = 0 is the pole of order 2.

6.2.4 Essential singularity

Let f(z)is analytic everywhere execpt the point z, inside and on the domain then if the
lim (z — zy)"f(z) = oo, then z, is essential singularity.
z-2,

=)

Example:
Consider f(z) = e'/%, clearly z, = 0 is an isolated singular point for f(z).
lim f(z) = lirr(l) ellz

lim (z — 0)" f(z) =lim z"e'/% .
Z—2Z, z—0
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lim (z— 0)" £ (2) = lim 2"[1 +§+%(§)2 +§(—)2 +o]
lim (2 - 0)" f(2) =

So z, = 0 is an essential singularity.

6.2.5 Singularity at infinity

We classify the types of singularities at infinity by letting w = 1/z and analyzing the resulting
function at w = 0.

=

Example:

f(z) =23,

f(2) =gw) =1/w?.

g(w) has a pole of order 3 at w = 0 The function f(z) has a pole of order 3 at infinity.

6.2.5 Non-isolated singularity

A point a is called a non-isolated singularity for f(z) if f(z) is not is not isolated at z = a.

=

Example:

f(z) =

1
sin (%)

AN AL AV V4 AL 3
N A A X

/x —1//(\2,7) m’< 1/(27) 1/z

z, =0 (non-isolated)

5

The function is not analytic in any region 0 < |z| <6.

6.3 Classification of singularity by Laurent series expansion

It is also possible to classify the singularity using the Laurent series expansion.

Let a be an isolated singularity for a function f(z). Let r > 0 be such that f(z) is analytic in 0 <
|z — a| < 7. In this domain the function f(z) can be represented as a Laurent series given by

f() = Z oot Z an(z = )"
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Were

b, =L 1O _ 40

T 2mi Y €1 ((—a)~n+1

_ 1 JiCo)
an Py sz ((—a)"*‘l d{

T omi

The series consisting of the negative powers of z — a in the above Laurent series expansion of f(z) is
given by Y., (21_7—’;),! and is called the principal part or singular part of f(z) at z = a.

The singular part of f(z) at z = a determines the character of the singularity.
6.9.1 Removable singularity by Laurent series expansion

Let a be an isolated singularity for f(z). Then a is called a removable singularity if the principal part
of f(z) at z = a has no terms.

If a is a removable singularity for f(z) then the Laurent’s series expansion of f(z) aboutz = a is
given by

[e3)

f@=) anz=ar

n=0

Hence as z—a, f(z) = a, Hence by defining f(a) = a, the function f(z) becomes analytic at a.

=

Example:

ST

Let f(2) = %, clearly z, = 0 is an isolated singular point for f(z).

sing_1, 2 L7

Nowf(z)—T—Z(z ot )
__sinz _ 2zt

f(z)——z =A@ =5 +5 - )

Here the principal part of f(z) at z = 0 has no terms. Hence z = 0 is a removable singularity.

lim f(z) also exists then z, = 0 is the removable singularity.

z-2z,
Example:
Let f(2) = Z_Zsinz, clearly z, = 0 is an isolated singular point for f(z).
z3  Z°
z—(z —F5 +5 — )
- 3r "5l
£ = —
z3 Z5 )
_ ? - ? = ey
foy =35
1z
f(Z) —a—a — ey

z = 0 is a removable singularity. By defining f(0) = 1/6 the function becomes analytic at z =
0.Also lim f(z) exists then z, = 0 is the removable singularity.
z-2,

6.9.2 Pole by Laurent series expansion

Let a be an isolated singularity of f(z). The point a is called a pole if the principal part of f(z) at z =
a has a finite number of terms.

If the principal part of f(z)at z = a is given by

b1 b, b,

z—a | (z-a)? (z—a)”

.where b, # 0.
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We say that a is a pole of order r for f(z). Note: A pole of order 1 is called a simple pole and a pole
of order 2 is called double pole.

=)

Example:

Consider f(z) = %Z ,clearly z, = 0 is an isolated singular point for f(z).

e? 1 z2  z3
f(Z) =—=;(1+Z+?+z+...,)

z

f@=%=/z+1+2+%+..)

Z

.. . 1 . .
Here the principal part of f(z) at z = 0 has a single term ~. Hence z = 0 is a simple pole of f(2). Also

lim (z - 0)* f(2)= e =1%0.50 Zy = 0 is the pole of order 1 or simple pole.
Z—Zy

(=]

Example:

Consider f(z) =

CcoSzZ
z

—, clearly z, = 0 is an isolated singular point for f(z).

2 4
z V4
cosz_l-grtag—

f(z) = =

z2 z2

The principal part of f(z) at z = 0 contains the term 1/z? . Hence z=0 is a double pole of f(z).

Also lim (z — 0)? f(2) = limcosz = 1 # 0.
Z-Zg z—0

So z, = 0 is the pole of order 2.

6.9.3 Essential singularity

Let a be an isolated singularity of f(z). The point a is called an essential singularity of f(z) atz =a
if the principal part of f(z) at z = a has an infinite number of terms.

=)

Example:
Consider f(z) = e'/?, clearly z, = 0 is an isolated singular point for f(z).

f(2)=e'V*
2 2
f@=1t+5+56) +36) +-0
The principal part of f(z) has infinite number of terms. Hence f(z) = e'/Z has an essential singularity
atz =0.

Also lim (z — 0)" f(z) = oo.

So z, = 0 is an essential singularity.

6.4 Meromorphic Functions
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A function is analytic everywhere in the finite plane except at a finite number of poles is called a
meromorphic function.

=

Example:

z

& =G"Da+3e

|
()
)
x

f (2) is analytic everywhere in the complex plane except z = 1 and z = —3.Here z = 1is a simple pile
and z = —3 is the pole of order 3. We can say that the f(z) has finite number of poles and it's a
meromorphic function.

(=)

Example:

Consider f(z) = e;z ,clearly z, = 0 is an isolated singular point for f(z).

z
lim f(z) =lim*=
Z-Zg z-0 Z

lim(z-0)' f(2) = lim z %
z-zg z-0 Z
lim(z-0)' f(z)=e®=1=0.
Z—Zy

So z, = 0 is the pole of order 1 or simple pole. We can say that the f(z) has finite number of poles
and it's a meromorphic function.

=

Example:

Consider f(z) = CZ# , clearly z, = 0 is an isolated singular point for f(z).

lim f(z) =lim=
Z—Zg z—-0 z

2 COSZ

. ) _
ZIHEO(Z‘O) f(2) =limz*=2=

lim (z - 0)* f(z) = limcosz = 1 # o.
Z—Zg z-0

So z, = 0 is the pole of order 2. We can say that the f(z) has finite number of poles and it's a
meromorphic function.

=

Example:

Consider f(z) = 1_2—§22 , clearly z, = 0 is an isolated singular point for f(z).
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1_322

z3

lim f(z) =lim
z—Zy z-0

_ 2z
lim (z — 0)? f(2) =limz3 £=¢2 = 0.
Z—2Z, z-0 z

_ 2z
lim (z — 0)? f(2) =lim z2 (1—33)
Z-Z, z-0 z

(1-e??)

lim (z — 0)2 f(2) =lim
z-27, z-0 z

=-2=0.

lim (z — 0)2 f(2) =lim sz
z-Z z—-0 1

So zy, = 0 is the pole of order 2. We can say that the f(z) has finite number of poles and it’s a
meromorphic function.

=

Example:
Consider f(z) = e'/Z , clearly z, = 0 is an isolated singular point for f(z).

lim f(z) =lime'/?

Z—Z z-0

lim (z — 0)" f(2) =lim z"e'/%
Z—Z z-0

I C R CINERE() SETC St
lim (z— 0)" £(z) = .

So z, = 0 is an essential singularity.Thus this function is not meromorphic in the whole complex
plane.

6.5 Mittag-Leffler theorem

The Mittag-Leffler theorem is a fundamental result in complex analysis that deals with the existence
of meromorphic functions with prescribed poles and residues. Specifically, it states that for any
sequence of distinct points in the complex plane and any sequence of complex numbers, there exists
a meromorphic function with poles precisely at the given points and residues equal to the
corresponding complex numbers.

More formally, let z;, z,, ... be a sequence of distinct complex numbers, and let ¢y, ¢,,. .. be a sequence
of complex numbers. Then there exists a meromorphic function f(z) on the complex plane such that
the only poles of f(z) are at the points z;, z,,..., and the residue of f(z) at z; is¢;, fori = 1,2,....

Proof:

To prove the Mittag-Leffler theorem, we will construct the desired meromorphic function f(z) using
a standard technique known as the Weierstrass product formula.

This involves expressing f(z) as an infinite product of simple functions, each of which has a single
pole at one of the given points and the prescribed residue.

Let D,, Dbe the disc centered at z, with radius r;; such that D,, is disjoint from all other discs, and let
Cpbe the circle bounding D,,.

Then we define the function g,,(2) as:
gn(@) = (z = 2)7 ePrz =)

where p,, is chosen so that the Laurent series of g, (z) at z, has a constant term of c,,. Specifically,
we set:

Cn
Pn T

Using the Cauchy integral formula, we can express g, (z) as an integral over C,;:
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1 gW)

21i dw

gn(Z)= W =z

Now we define the function F(z2) as:

Fo) = [ [9.
n=1

This product converges absolutely and uniformly on compact sets, since the discs D, are disjoint and
the radii r;,, are chosen appropriately. Moreover, F(z) is meromorphic on the complex plane, since
each g, (z) has a single pole at z,, and no other poles.

To see that F(z) has the desired poles and residues, we consider the partial products:

N
Fne = ngn(z)
n=1

These are meromorphic functions with poles only at the points z;, z, ..., zy. Moreover, the residue of
Fy(z) at zy is ¢,, by construction. Finally, we note that Fy(,) converges to F(z) as N goes to infinity,
since the product converges absolutely and uniformly on compact sets.

Therefore, we have constructed a meromorphic function f(z) with the desired poles and residues,
namely:

f(@) = F@2)
This completes the proof of the Mittag-Leffler theorem.

-
-

Question:
1 o 1 . .
Prove that cotz = ~+ 2z ¥;7.1 5—— using Mittage Laffer's theorem
Proof:
1 o 1 .
To prove that cotz — o= 2z anlm , we can use the Mittag-Leffler theorem.

To prove this identity using the Mittag-Leffler theorem, we need to first identify the poles and their
residues of the function cot(z).

We know that cot(z) is periodic with period m, and has simple poles at z = nr for all integers n.

Recall that the cotangent function can be expressed as the ratio of the cosine and sine functions:

The poles of the cotangent function are the zeros of the sine function, which occur at z = nr for all
integers n. Thus, we can write:

cosz

cotz =
Z — nmw

To prove this identity using Mittag-Leffler theorem, we need to find the poles and residues of the
function cot(z) and the infinite sum in the equation.

First, we know that cot(z) has simple poles at z = nm for all integers n.
The residues at these poles are +1, depending on the sign of sin(nmn).

Next, we consider the infinite sum in the equation.

Letf(z) = ¥ ——

z2 —n2pz °
This function has poles at z = +nm for all integers n. The residues at these poles are given by
(z—nm)1 1

Res[f(z),z = TlTL’] = limz_,nnm = %
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and

, (z+nm)1 1
Res[f(z),z = —nn] = leZﬁ_nnm = -5

Now, using the Mittag-Leffler theorem, we can write

1 1 1
cot(z) —— = E ( + )
z zZ—nmw z+nm

n=1

T (s )

2nm \z—-nnw Z+nT.
1 1
= 2Xn=1 Spyi s
= 2f(2)
Therefore, we have
cot(z) == + 2 Y1 Lﬁ as desired.
z 2nmz% - nm

6.6 Infinite Product of Complex Numbers

An infinite product of complex numbers is given by:

Z = Z1.23.Z3 .0, 2y ..

The notation for infinite product is [T} z;

where z;, 2, 73, .., Z, are complex numbers.

If the infinite product converges, then we can define it as follows:

z = lim(z,.25.25 ...,2,)
n—-oo

In general, an infinite product of complex numbers is said to converge if and only if the limit of the
sequence of partial products (i.e., the product of the first n terms) exists and is nonzero.

Some important results related to infinite products of complex numbers are:

1. If the infinite product |z| converges, then the infinite product z also converges.
2. The infinite product (1 + z) converges if and only if the infinite product (1 — |z|) converges.
3. The infinite product (1 — z) converges if and only if the infinite product (1 + |z|) converges.

n
4. The infinite product (1 + %) converges to e” as n approaches infinity, for any complex

number z.

5. The infinite product sin (%) converges to zero for any non-zero complex number z.

o
1111

nngq

Question
Suppose an infinite product is absolutely convergent. Prove that it is convergent
Solution
Suppose the infinite product is given by:
P = a;.a;.az..

where ai are non-negative real numbers.
By the absolute convergence of P, we have that the series:

S = log(ay) + log(a,) + log(as) +..
converges.

Since the logarithm function is continuous, we can take the exponential of both sides to obtain:
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eS = elog(al)elog(az) elog(aS) .

which simplifies to:

P = aa,a;..

Thus, the absolute convergence of P implies that the series S converges, which in turn implies
that P converges as well.

Therefore, we have shown that if an infinite product is absolutely convergent, then it is also
convergent.

6.7 Review questions

1.

f(2) = ﬁ is meromorphic because it has finite number (say K) of pole in the entire

complex plane then K =?

z . . . . . .
f(2) = D52y 18 meromorphic because it has finite number (say K) of pole in the

entire complex plane then K =?

Check whether the following functions is meromorphic?

f@)=%
Check whether the following functions is meromorphic?

sinz

9(@) =~

State and prove the Mittag-Leffler theorem

6.8 Self-assessment

1.

N

S0 W

S0 w

f(z) = ﬁ is meromorphic because it has finite number (say K) of pole in the entire

complex plane then K =?
5
1
2
3
f(z) = m is meromorphic because it has finite number (say K) of pole in the entire

complex plane then K =?

5
1
2
3
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3. Which one of the following functions is meromorphic?

e’ sinz

f@) =%, and g(z) = 2.

A. Only f(2)

Only g(2)

Both f(2) and g(2)
Neither f(z) nor g(z)

9N

Consider the f(z) = i then

zy = 1 is the singular point of f(z)
zy = 0 is the singular point of f(z)
zy = 10 is the singular point of f(z)

o0n® > &

There is no singular point of f(z)

Consider the f(z) = z* then

zy = 1 is the singular point of f(z)
zy = 0 is the singular point of f(z)
zy = 10 is the singular point of f(z)

N wp e

There is no singular point of f(z)

z%2-9

22(z—1)(z—1-2i) then

&

Consider the f(z) =

zy = 1 is one of the singular points of f(z)
zy =3 is the singular point of f(z)

zy = —3 is the singular point of f(z)

90w »

There is no singular point of f(z)

N

What is Mittag-Leffler's theorem?

A. A theorem on the convergence of infinite series.

B. A theorem on the analytic continuation of meromorphic functions.

C. A theorem on the existence of a holomorphic function with prescribed
singularities

8. What does the theorem say about meromorphic functions?
A. They can be extended to the whole complex plane.
B. They can be extended to a neighborhood of their poles.
C. They can be approximated by polynomials

9. What are the conditions for the Mittag-Leffler's theorem to hold?
A. The function must have isolated singularities and a certain growth
condition.
B. The function must be holomorphic and bounded on a compact set.
C. The function must be a polynomial

10. What is the significance of the theorem in complex analysis?

A. It provides a method for approximating meromorphic functions
B. Itisafundamental tool for studying the Riemann zeta function
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C. It allows us to construct meromorphic functions with prescribed

singularities
11. What is the value of the infinite product (1+i)(1-i)(1+i)(1-i)...?
A1
B. -1
C i
D. -4
12. What is the value of the infinite product (1+2i)(1-2i)(1+2i)(1-2i)...?
A1l
B. -1
C. 2
D. -2i
13. What is the value of the infinite product (1+i/2)(1-i/2)(1+i/2)(1-i/2)...?
A1
B. -1/2
C. i/2
D. -i/2
14. What is the value of the infinite product (1+i/3)(1-i/3)(1+i/3)(1-i/3)...?
A1
B. -1/3
C. i/3
D. -i/3
15. What is the value of the infinite product (1+3i)(1-31)(1+31)(1-3i)...?
A1
B. -1
C. 3i
D. -3i
Table 1: Answers of self-assessment
Question number Correct answer
1 B
2 C
3 C
4 A
5 D
6 A
7 B
8 A
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9 A
10 C
11 A
12 B
13 B
14 B
15 B
6.9 Summary

¢ The A function is analytic everywhere in the finite plane except at a finite number of poles
is called a meromorphic function.

¢  The An infinite product of complex numbers is given by:
Z = 20.29.25 0.0, 2y o
The notation for infinite product is [T} z;
e If the infinite product |z| converges, then the infinite product z also converges.
¢  The infinite product (1 + z) converges if and only if the infinite product (1 — |z|) converges.

¢  The infinite product (1 — z) converges if and only if the infinite product (1 + |z|) converges.

6.10 Keywords

Meromorphic function:

A function is analytic everywhere in the finite plane except at a finite number of poles is called a
meromorphic function.

Mittag-Leffler theorem :

Let zy,z,,...be a sequence of distinct complex numbers, and let ¢;, c;,... be a sequence of complex
numbers. Then there exists a meromorphic function f(z) on the complex plane such that the only
poles of f(z) are at the points z, z,,..., and the residue of f(z) at z; is¢;, fori = 1,2,....

6.11 Further Readings

N

Books

1. Complex Variables And Applications By Churchill, R. V. And Brown, J. W., Mcgraw Hill
Education.

2. Foundations Of Complex Analysis By S. Ponnusamy, Narosa Publishing House.
3. Complex Analysis By Lars V. Ahlfors, Mcgraw Hill Education.
4. Complex Variables Theory And Applications By H. S. Kasana, Prentice Hall.
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Rajesh Kumar Chandrawat, Lovely Professional University Unit 07: Analytical Continuation

Unit 07 - Infinite product of analytic functions

Purpose and Objectives:

An analytic continuation is a mathematical approach used to widen the scope of a given analytic
function in the field of complex analysis. Analytic continuation frequently succeeds in defining
further values of a function, for instance in a new region when the initial definition's infinite series
representation becomes divergent.

The stepwise continuation method might, however, run into problems. These could be
fundamentally topological, which would produce contradictions (defining more than one value).
Alternatively, they might be related to the existence of singularities. The situation involving many
complex variables is somewhat different because singularities need not be separate places in this
case. Sheaf cohomology was largely developed because of research into this situation. In this unit
first we will discuss the pre-requisite concepts for analytic continuation and then the definition of
analytic continuation. After this unit students can be able to-

1. Understand the convergence analysis of a complex valued function.
2. Understand the definition of analytical continuation.

3. Solve some problems of analytical continuation.

Introduction

The Riemann hypothesis, which is closely related to the distribution of prime numbers, is perhaps
the most important open topic in pure mathematics today. Analytic continuation is one of the
fundamental methods required to comprehend the issue. An approach from the field of mathematics
known as complex analysis called analytical continuation is employed to enlarge the domain of a
complex analytic function. We will quickly go over some essential mathematics concepts prior to
introducing the approach.

7.1 Taylor Series

Consider the case where we want to find a polynomial approximation to a function f(x). Polynomials
are mathematical expressions made up of coefficients and variables. The variables are multiplied,
subtracted, and added using only non-negative integer exponents. With one variable, x, a polynomial
of degree n can be expressed as follows:

fx) = apx™+ ap_x" 1+, a;xt + apx® 1.1)
If we consider a 3-degree polynomial with a; = %, a, = Z, a; = —3,and q; = —2 then.
x3 3 5
flx) = T t;x —3x-2 (1.2)
And the graph of f(x) is.
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Fiqure 1.1: The graph of f (x) = X;%— %xz —3x-2

Imagine that the polynomial has infinite degrees now (it is given by an infinite sum of terms). These
polynomials are referred to as Taylor series (or Taylor expansions). Polynomial representations of
functions as infinite sums of terms are called Taylor series.

Every term in the series is calculated using the derivative values of f(x) at a particular point (around
which the series is centered). A formal Taylor series centered on a certain number and is given by:

W@ @@ @@
f@=fO@+ G-+ Ea -0+ P - a) (13)

where the upper indices (0), (1), ... indicate the order of the derivative of f(x) as x = a. One can
approximate a function using a polynomial with only a finite number of terms of the corresponding
Taylor series. Such polynomials are called Taylor polynomials.

3
The Taylor polynomials for f (x) = x: + sz — 3x — 2 around a = 0 are given by:

3 3 3
fO) ==2——x+—x+ —x% 4 (14)

Were f(o)(O) = —Z,f(l)(O) = -3, f(Z)(()) — %’ f(Z) 0) = %

The equation (1.4) is same as the considered 3 degree polynomial equation (1.2).

7.2 Convergence

Our study of the analytic continuation will likewise heavily rely on the idea of convergence of infinite
series. A list of items (or objects) having a specific order constitutes a mathematical sequence. The
following S,, represents the n different sequences:

S, =1{a,a,,...,a,} (1.5)

A well-known example of a sequence is the Fibonacci sequence 0,1,1,2,3,5,8,13,21,34, 55, ...where each
number is the sum of the two preceding ones.

One builds a series by taking partial sums of the elements of a sequence. The series of partial sums can
be represented by:

{0, 51,82 s Sp} (1.6)

where: {sy = ag, 5, = ay +a;,5, =ag+a, +a,, ..., } (1.7)
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An example of a series, the familiar geometric series, is shown below. In a geometric series, the
common ratio between successive elements is constant. The geometric series with common ratio =
1/2 we have:

2o 4liiily (1.8)
2 4 8

Fig. 1.2 shows pictorially that the geometric series above converges to twice the area of the largest
square.

Figure 1.2: A pictorial demonstration of the convergence of the geometric series with common ration r=1/2 and
first term a=1

A series such as in Eq. (1.7) is convergent if the sequence Eq. (1.6) of partial sums approaches some
finite limit. Otherwise, the series is said to be divergent. An example of a convergent series is the
geometric series in Eq.(1.8). An example of a divergent series is:

1 1 1 1
R e e (1.9

7.3 Analytic Functions, Poles, and Convergence Discs

Until now, our analysis was restricted to real numbers. Now we will extend it to complex numbers.
The complex plane is a geometric representation of the complex numbers, as shown in Fig.1.3 .

imaginary axis

real axis

Figure 1.3: The complex plane, a geometric representation of the complex numbers. The figure shows the real
and the (perpendicular) imaginary axis.

Let us consider an expansion of an analytic complex function f{z). By definition, an analytic function is
a function locally given by a convergent power series. If f(z) is analytic at zo, the power series reads:

(n)
fzo +72) = By =20 gm (1.10)

n!
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Equation (1.10) shows the Taylor expansion of an analytic function f(z) into a power series about a
complex value zo.

In analogy with the case of the geometric series, where convergence was restricted to an interval with
radius 1 on the real line, this series will converge only over a circular region of the complex plane
centered on the complex number zo.

Complex plane
Re

Z=x-iy

Figqure 1.4: Going from the real line to the complex plane.

The convergence region of f(z) is a circular region centered on ze extending to the closest pole,
where f(z) goes to infinity.

Fig. 1.5 shows the convergence region (bounded by the white circle) of the function 1/ (1+z2).

Figure 1.5:The white circle in the convergence disc of the function 1/(1+2?).

A stronger criterion of convergence is called absolute convergence. We call the convergence we
already discussed conditional convergence. Absolute convergence occurs when the following series

converges:

So = lagl, 51 = lagl + |asl,s; = lag| + las| + la,|, ... (111)
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When a series is absolutely convergent it is also conditionally convergent. There are a few tests of
absolute convergence, one of them is the ratio test. Consider the general infinite series:

S = Xn=0an (1.12)

An+1

an

(1.13)

Now define the following ratio: r = lim
n

—00

The ratio r in the equation (1.13) used in the ratio test of absolute convergence.

The series equation (1.13) converges absolutely if <1 and diverges if r>1. If r=1, no conclusion can be

taken.

‘ Calculate

Gl+1

~ ~ . oo
il Is lim sup Shil <17 Yes Za.;.- converges absolutely
\ k—oo Qg =1
~
T
"-\.\_\
No

oo
Z aj. diverges
k=1

m‘—”' > 1 for almost all

g
ke N?

Is

z ay. diverges

k=1

> ‘

The ratio test can-
not be applied

Figure 1.6: A decision diagram for the ratio test.

It is straightforward to apply the ratio test (or any other convergence test) to show the following

important result:

Zleﬁ converges for any k > 2. (1.14)
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7.4 Analytic Continuation

From the results regarding zeros of an analytic function, it follows that if two functions are regular
in a domain D and if they coincide in a neighborhood, however small, of any point a of D, or only
along a path-segment, however small, terminating in a point a of D, or only at an infinite number of
distinct points with a limit-point a in D, then the two functions are identically the same in D. Thus, it
emerges that a regular function defined in a domain D is completely determined by its values over
any such sets of points.

This is a very great restraint in the behavior of analytic functions. One of the remarkable
consequences of this feature of analytic functions, which is extremely helpful in studying them, is
known as analytic continuation. Analytic continuation is a process of extending the definition of a
domain of an analytic function in which it is originally defined i.e., it is a concept which is utilized
for making the domain of definition of an analytic function as large as possible.

Let us suppose that two functions fi(z) and f»(z) are given, such that fi(z) is analytic in the domain
D1 and f»(z) in a domain D> We further assume that D; and D» have a common part D12 (D1 N Dy).

If f1(z) = f2(z) in the common part D1, then we say that f(z) is the direct analytic continuation of fi(z)
from D; into D» via Dia.

Conversely, fi(z) is the direct analytic continuationof f»(z) from D, into D; via D12. Indeed fi(z) and
f2(z) are analytic continuations of each other.

Both fi(z) and f>(z) may be regarded as partial representations or elements of one and the same
function under the condition that fi(z) = f2(z) at an infinite set of points with a limit-point in Dy»,

It is observed that for the purpose of analytic continuation, it is sufficient that the domains D,
and D have only a small arc in common.

D12

Figure 1.7: Analytic Continuation common domain.

Definition. An analytic function f(z) with its domain of definition D is called a function element
and is denoted by (f, D).

If zeD, then (f, D) is called a function element of z. Using this notation, we may say that (f;, D1)
and (f2, Dy) are in analytic continuations of each other if f D1 N D2 # ¢ and fi(z) = fo(z) for all zeD;
M Dz.

It can be further simplified as Suppose fi(z) is analytical on a region D;. Now suppose that D is
contained in a region f>(z). The function f(z) can be analytically continued from D; to D, if there exists
a function f,(z) such that: fo(z) is analytic on S, f2(z) = fi(z) forall z € D;

=

Example 1.1:
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Let us consider f(z) = Yoo z™, 0(2) = i

Then f(z)is analytic at all the points within the circle |z| = 1 and @(z) is analytic all the points
exceptz = 1.

Also f(z) = 0(z) within |z| = 1

g(z)

Figure 1.8: @(z) gives the continuation of f(z) over the rest of the plane.

Hence @(z) gives the continuation of f(z) over the rest of the plane.

-
M
M

o
1111

Question:

n
Show that the function f; (z) = X,;-, z" is in analytic continuation to f,(z) = Z;‘;O% (lzj)

Solution:
Given that:
i) = 32 (1.15)
First, we will consider the convergent analysis for f; (z)
The series equation (1.15) can be written as:
@ =1+z4+22 423+ 42" + -,
= fi@=>0-27"
= f@) =
Hence it is observed that the f; (z) has the sum },;_,z" = é and the nth sequence of the series is z"

Now we apply the ratio test for convergent analysis.

— Lk
Here, Uy, =z

And Uy, = 2"+

Uk+1
Uk

<1

If Y Uy is absolutely convergent then |

Zk+1

=

zk

Zk.Z

| <1

=|z|<1
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Figure 1.9: The area of unit disc |z| < 1

Hence f; (z) is convergent inside the region |z| < 1(see the Figure 1.9)

Now let us consider the second series.

fo(@) = 5202 (22)

_1, Q0+  a+2)®  a+2)® | a4+
= L@ =3+ 2.22 2.23 2.2m ’
.. (1+2)"
Hence the nth term of the series is Uy = =~
_ (1+z)n*1
And Upyq =
If Yoo Uy, is absolutely convergent then % <1
n
(1421
n+1
= | <1
2.2m

(1+2z)"*12.2™
2.2M+1 (1+2)n

<1

(1+2)"22™.(1+2)
2.2m.(142)".2

= [e2
2

<1

<1

=|z+1]<2

Figure 1.10: The area of disc |z + 1] < 2

Hence f,(z) is convergent inside the region |z + 1| < 2 (With the center z = —1,and r = 2).
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Till now we have observed that the f;(z) = i is analytic inside the domain D, : |z| < 1 and

n
fr(2) = Z;‘f;o% (%) is analytic inside the domain D,: |z + 1| < 2. It can be clearly seen from Fig.1.10

and Fig.1.9 that f, (z) and f; (z) share some common region.

Now we will show that f; (z) = f,(2) for all z € D,.

Aswehave f,(z) = i and

S 1/1+2" 1 (1+2) (1+2? (1+2)3 (1+2)"
fZ(Z)_ZE( 2 ) =0t o7 Yo tToE T T

n=0

(1+2z) , (1+2)? | (1+2)3 (1+2)"
2.2 2.22 2.23 7 o2.2n ’

> f,@) =5+

Let % = p then.

n

2 3
£(2) :%+§+%+%+...,%+...,
> f,@ =21 +p+p2+p3 " +,)
=f,@H=1(1-p"

1
=12 =

1
=>f2(Z)=m

= £, =55

=>f,@=f,2

Figure 1.11: The common region for zeD1 N D,.

As f; () is analytic inside the domain D;: |z| < 1 and f,(2) is analytic inside the domain D,: |z + 1| <
2 .Thus f,(z) extends the domain of an analytical function f; (z) to larger domain D,. Hence the
function f; (z) be analytically continued from D; to D; as there exists a function f, (z) such that: f, (z) is
analytic on D,: f,(z) = f,(2) ,forallz € D;.

M
M
M
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7.5 Review questions

1. Explain how it is possible to continue analytically the function f(z) = 1 + z + z? + -+
z™ + - outside the circle of convergence of the power series.
Show the series Y57, z3" cannot be continued analytically beyond the circle |z| =1

3. Show that the series Z;‘{;O% and ¥, ( ;Z__L')ir)wl

are analytic continuations of each other.

Prove that the series 1 + Y7, 2" cannot be continued analytically beyond |z| =1
Prove that the function defined by F, (z) = z — z2 + z3 — z* + -, is analytic in the region

|z| < 1.And then find a function that represents all possible analytic continuations of

F; (2).

7.6 Self-assessment

. w 1[1+z\™. L.
1. The function f(z) = Xn2o3 (T) is convergent inside the

A. Region|z+1| <2
B. Region|z—1| <2
C. Region|z+1|<6
D. Region |z| <2

2. The function f(z) = Z,‘fzozi—:ll is convergent inside the
Region |z+ 1| < 2

Region |z —1| <2

Region|z+ 1| <6

Region |z| < 2

SOowp

(z=)"

3. The function f(z) = Y5, 2w
A. Region|z+1| <2
. Region |z —i| <+/5
C. Region|z| <5
D. Region |z| <+/5

is convergent inside the

4. The function f(z) = },;_,z" is convergent inside the
Region |z| < 2

Region |z — 1| < 2

Region |z+ 1| <6

Region |z| < 1

SOowp

n-1
5. The function f(z) = Y7, ((j:f))3 4n

Region |z+ 1| < 4
Region |z — 1| < 2
Region |z + 1| < 6
Region |z| < 2

is convergent inside the

Sowp

6. If the function f; (z) = Y-, z"/2™*" is in analytic continuation to

(=)=, (2(2__[;3: - from the domain D; to D; then the which one of the points does lies in

D, N D,
A i
B. 5
C. —5i
D. —20
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10.

11.

12.

13.

If the function f; (z) = Y- z"/2™*? is in analytic continuation to

L@ =¥, (Z(Z_:)?:l from the domain D; to D, then the which one of the points does lies in

D, N D,
A. 10i
1 1
B. E+El
C. =55
D. -10

If the function f; (z) = Y- 2z"/2™*? is in analytic continuation to

(z=)"

f(2) =32, pa from the domain D; fo D then the which one of the points does NOT

liesinD; N D,

A. 5
B. 0
C. i
D. i/2

If the function f; (z) = Y=o 2" /2™*? is in analytic continuation to

f2(2) =200 (z(z_:;y):l from the domain D; to D; then the which one of the points does not lies

inD; N D,
A. 0.2
B. 5
C. -0.1i
D. 01+

If the function f; (z) = Y=o 2z"/2™*? is in analytic continuation to

L2 =Y, @=D"_ ¢/ om the domain D; to D; then the which one of the points does lies in

(2_i)n+1
D, N D,
A. 0.140.1i
B. 50
C. -—-15i
D. -12
. w0 m o . . . v 1(1+z\"
If the function f; (z) = Y5—,z" is in analytic continuation to f,(z) = Zn:()g (T) from the
domain D; to D then the which one of the point lies in D; N D,
1,1,
A. E + Z l
9 1.
B E + E l
C. —3+5i
D. -3-3i
n
If the function f; (z) = Y5—,z" is in analytic continuation to f,(z) = Z;‘fz(,%(lzj) from the
domain D; to D, then the which one of the point lies in D; N D,
A =41
8 ' 8
10 | 1
C. —13+4i
D. -3-13i
n
If the function f;(z) = Y- 2" is in analytic continuation to f,(z) = Z;‘{;O%(lzj) from the

domain D; to D then the which one of the point does not liesin D; N D,
A T4l
2 4
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1 1.
B. ;+El
C. —8+41i
2
D. -2

14. If the function f;(z) = Y5, 2" is in analytic continuation to f,(z) = Z;‘,‘;O%(

domain Dy to D; then the which one of the point does not liesin D; N D,

A -1

B. -1.5
C. -13i
D. =25

15. If the function f;(z) = X.;-z" is in analytic continuation to f,(z) = Z;‘,‘;O%(

domain D; to D, then the which one of the point does not liesin D; N D,

A. 10
B. 0

C. —i
D. -2.8

Table 1: Answers of self-assessment

n
ﬂ) from the
2

1+z

n
—) from the
2

Question number Correct answer
1 A
2 D
3 B
4 D
5 A
6 A
7 B
8 A
9 B
10 A
11 A
12 A
13 C
14 D
15 A
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7.7 Summary

e An analytic function f(z) with its domain of definition D is called a function element and is
denoted by (f, D).

e Theseriesequation S = Y7 a, converges absolutely if r = lim
n—oo

An+1

o <1and diverges if >1.
If r =1, no conclusion can be taken.

e Suppose fi(z) is analytical on a region D1. Now suppose that D; is contained in a region f>(z).
The function f(z) can be analytically continued from D; fo D; if there exists a function f(z)

such that: f2(z) is analytic on S, f>(z) = fi(z) for all z € D;

7.8 Keywords

Absolute convergence: The series equation S = },;"_, a,, converges absolutely if r = lim
n—-oo

An+1

<l and

an

diverges if r>1. If ¥ =1, no conclusion can be taken.

Analytic continuation: If zeD, (f, D) is a function element of z, then (fi, D1) and (5, D») are in
analytic continuations of each other if f D1 N D2 # ¢ and fi(z) = f2(z) for all zeD1 N Da.

7.9 Further Readings
Books
1. Complex Variables And Applications By Churchill, R. V. And Brown, J. W., Mcgraw Hill
Education.

2. Foundations Of Complex Analysis By S. Ponnusamy, Narosa Publishing House.
3. Complex Analysis By Lars V. Ahlfors, Mcgraw Hill Education.
4. Complex Variables Theory And Applications By H. S. Kasana, Prentice Hall.
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Rajesh Kumar Chandrawat, Lovely Professional University

Unit 08 - Gamma function and its properties

Purpose and Objectives:

After this unit students can be able to-

1. Understand the uniqueness of analytic continuation.
2. Solve the problem based on the power series method of analytic continuation.
3. Learn natural boundary of complete analytic function.

Introduction

Analytic continuation is a method used to extend the domain of definition of a function that is known
to be analytic (i.e., holomorphic) in a certain region, to a larger region. This can be achieved by
representing the function as a power series and finding the appropriate coefficients to ensure that the
function satisfies the same differential equations in the extended region as it does in the original
region.

For example, consider the complex function f(z) that is known to be analytic in a disk D centered at
the origin. By expanding f(z) in a power series about the origin, we can obtain its Taylor series
representation:

f(Z)= 27 + a1z + a222+...

Using this power series representation, we can extend the definition of f(z) to points outside the disk
D by assuming that the series converges to the correct value at those points. This process is called
analytic continuation, and it allows us to extend the domain of definition of f(z) to a larger region in
the complex plane. In this unit first we will understand the uniqueness of analytic continuation, then
the power series method of analytic continuation, and then the natural boundary of complete analytic
function.

8.1 Uniqueness of Analytic Continuation by Direct Method

Theorem 2.1: Uniqueness of Analytic Continuation

There cannot be more than one continuation of analytic f,(z) into the same domain.
Proof:

Let f; (z) be analytic in the domain D, .

Let f,(z) and g,(z) be analytic continuations of same function f; (z) from D; into the domain D, via
D;, which is common in to both D, and D, .

LOVELY PROFESSIONAL UNIVERSITY
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Figure 2.1: Analytical Continuation domains

If we show that f,(z) = g,(z) throughout D,, the result is followed by the this proof.

By the definition of analytic continuation.

f1(2) = f2(2),Vz € Dy, 21
And f,(2) is analytic in D,.
f1(2) = 92(2),Vz € Dy (2.2)

And g, (2) is analytic in D,.

From the equation (2.1) and (2.2) we can conclude that
f1(2) = f,(2) = g2(2),Vz € Dy,
Or
f2(2) = g,(2),Vz € Dy,
Or
(fz = 92)(2) =0,Vz €Dy
f> and g, are analytic in D,
= f, — g, isanalyticin D,.
Thus, we see that (f, — g,)(z) vanishes in D;, which is a part of D,.Also the function is analytic in D,.
Hence, we must have
(fz=92)(2)=0,vzeD,

= f2(2) = 92(2) Vz € D,.

So, there cannot be more than one continuation of analytic f,(z) into the same domain.

-2
Remark

The uniqueness property requires the domains of the two analytic continuations to be the same. It is
not generally true that if

Fy: Dy » CandF,: D; — C are two analytic continuations of f: D — C to different domains
Dy, Dy, that they must agree on D; N D,. A slightly more complicated example is the power series
with Fibonacci coefficients:

f(2) = fo + fiz + f,z* + ..., which we considered a few lectures ago.

Initially we observed that this converges and thereby defines an analytic function in some
neighborhood D of zero.
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By applying the recurrence f,.; = f,, + f,—1, we were able to obtain the functional equation:
A-z-2°)f(2)=z = f(2) =

We then used the right hand side as a definition of f in a much larger domain D’ = C\{¢p,¥}.

z

z € D.

1-z-22

Formally, F(z) = is an analytic continuation of f to D’ .

1-z-2z2

We didn’t explicitly use a different name to distinguish between the continuation and the original
function (since they agree where they are both defined) and we will sometimes follow this convention
in the future.

In any case, we were then able to use the properties of F in the much larger domain D’ (by applying
the Residue theorem) to get a good handle on what is happening at zero, and thereby extract a
formula for the coefficients.

A functional equation is not the only way to obtain an analytic equation, but it is often the best one.
In general, what one is looking for is an alternate representation of the same function which makes
sense in a larger region; this alternate description is then used as a definition in the larger region.

8.2 Power Series Method of Analytic Continuation

The Power Series Method of Analytic Continuation is a method used to extend the domain of a
complex power series beyond its radius of convergence. It is based on the idea of representing a
function as an infinite sum of powers and using this representation to extend the function to a larger
domain.

The method works by finding the coefficients of the power series for a given function using Cauchy's
Integral Formula, and then using these coefficients to analytically continue the function to a larger
domain. This method is useful for finding the values of a function in complex domains, where it is
not possible to use real analysis techniques.

Let the initial function f; (z) is represented by the Taylor’s series
f1(2) = Xnzoan(z = 2,)" (23)

fl(n)(z1)

where a, =
n!

This series is convergent inside a circle C, (see the figure 2.2)defined by

|Z - Z1| = Rl (2.4)

1
Here R, = lim |a,|»
n—-oo
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Figure 2.2: The curve L from z, and perform analytic continuation

We draw a curve L from z;and perform analytic continuation along this path as follows
Take a point z, on L such that z,lies inside the C; .

With this help of equation (2.3), we can find the f;(z,), fi' (z2), fi' (z2) ..., fl(n) (z;) by repeated
differentiation of (2.3).

Write
f2(2) = Xp=obn(z — 2)" (2.5)

(n)
where b, = fzn_(|Zz)

The power series (2.5) is convergent inside a circle C, defined by
|z —z,] =R, (2.6)
HereR, = %m|bn|%
Also f,(z) = f,(2),Vz € C,,(The common part of C, and C,).
Hence f,(z) is an analytic continuation of f;(z) from C; to C,.

Now take a point z; on L such that z;lies inside the C, .

With this help of equation (2.5), we can find the f,(23), f; (23), 5’ (23) ..., fz(n) (z3) by repeated
differentiation of (2.5).

Write
f3(2) = Eizo ez — 23)" (2.7)

(TL)(Z )
where ¢, = fBT3

The power series (2.7)(2.5) is convergent inside a circle C; defined by

|Z - Z3| = R3 (2.8)
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Here R; = 1lli_r)£1°|cn|%

Also f,(z) = f;(2),Vz € C,5(The common part of C, and C3).
Hence f;(z) is an analytic continuation of f,(z) from C, to Cs.
Now f;(2) is an analytic continuation of f;(z) from C, to Cs.

Repeating this process, we get as continuations several different power series analytic in
their respective domains D,, D, ..., where Dy, D, ..., are respectively interiors of Cy, C, ...,

v
v

Question:
2 3
Show that the power series z — 27 + Z? —...may be analytically continued to a wider range by
— 2 3
means of the series log2 — ==_ % - % —
2 2.2 3.2
Solution:
Z2 Z3
Let f,(2) =z—5 +5 .. (2.9)
-z _ (-2 (1-2)°
And £, (2) —logZ—Tz—#—&—;—--- (2.10)
n+1
Here f;(z) = X5 (=)™ ;1 using the ratio test, if a,, is convergent then |a"+1 <1
n
n+1
=D
n+2
Any1 = (_1)n+1n T2
a (- 1)n+1Z
Now 2:1 = o | <1
Y
Ant1| _ n -1 z"lz(n+1)
= |( 1) (- 1)" (n+2) zn+1 <1
Ani1| _ |_1 z.(1+1/n)
an | (1+2/n)
. An+1 _4:2(141/n)
= 7!1,1—1;1(’)10 n—>00| (1+2/n) | <1
= lim |2 = |z] < 1
n—-oo an
2 3
Hence f,(z) = z — 27 + Z? —...=log(1 + z) which is convergent for the |z| < 1. (2.11)

Thus f; (2) is analytic inside the circle C;defined by |z| = 1(See the figure 2.3).

LOVELY PROFESSIONAL UNIVERSITY

95



Complex Analysis-I1

Fiqure 2.3: the domains of C; and C,

Now we will show that f, (z) is analytic inside a domain and will also find the convergent
analysis of f,(z) .
f>(2) can be expressed as

1- 1(1-2)?% 1(1-2)3
fZ(z)=log2—[ ZZ+E( 222) +§( 232) +]

= /) =logz_[1;+;(1;)2 +§(1;Z)3+...]

+1
Let the nth term of f,(z) is b, = (—1) — (1;2)" and

n+1 2
1 1_Zn+2
b"+1=(_1)n+2( 2 )
1 1_Zn+2
bust| |V 72 (50
= - n+1 <1
n+1\ 2
b +1 1_ n+2 2 n+1
= =at) =) <
b, n+2\ 2 1-z
1
b 1+=-/1-2
= ZH = rzl( 2 )<1
n 1+E
1
b 1+-/1-2
= lim ZH = lim _121( > ) <1
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b1 1-z
=>nl_r)£1o b, > <
b
= lim [ =|1-21 <2
e | b,
b
= lim [ = |z-1] <2
oo | b,

Hence f, (z) is convergent for the |z — 1] < 2.

Thus f,(2) is analytic inside the circle C,defined by |z — 1| = 2.

As we know that log [1 - (E)] =— [E + 1(1;2)2 +l(1;z)3 + ]

2 2 2 2 3 2
Then
1—-2z
f(2) = log2+log[1—< > >]
2—1+z
f>(z) = log2 + log [T]

f2(2) =log2 +log(1+ z) — log2
f2(2) =log(1 +2z)
By (2.11),
f>(2) = fi(2) in the area common to both C; and C,.

Hence, we can say that f;(z) is analytic continuation of f; (z) from the interior of C; to the
interior of C,. Moreover C, is a larger range in comparison to C; as shown in the figure 2.3.

8.3 Natural Boundary

In complex analysis, a natural boundary of a complex-valued function is a boundary of its domain
that is not a removable singularity. This means that the function cannot be extended analytically
across the boundary, and its behavior there is determined by the behavior of the function on the
boundary. A classic example of a natural boundary is the boundary of the unit disk in the complex
plane, which is the unit circle. Functions defined on the unit disk have essential singularities on the
boundary, which means that they cannot be extended analytically to the outside of the unit disk.

=
Definition 2.1: Function Element

An analytic function f with domain D is called a function element and is denoted by (f, D).
=

Definition 2.2: Complete Analytic Function

Suppose that f(z) is analytic in a domain D. Let us form all possible analytic continuations of (f, D)
and then all possible analytic continuations (f;,D;), (f2,D3), ..., (fu, Dy,) of these continuations such
that:

(@) ifzeD,

F@) =422 2D (212)
fu(2) if z € Dy

Such a function F(z) is called complete analytic function.

In this process of continuation, we may arrive at a closed curve beyond which it is not possible to
take analytic continuation. Such a closed curve is known as the natural boundary of the complete
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analytic function. A point lying outside the natural boundary is known as the singularity of the
complete analytic function. If no analytic continuation of f(z) is possible to a point z,, then z; is a
singularity of f(z).

Obviously, the singularity of f(z) is also a singularity of the corresponding complete analytic
function F (2).

=

Example

Show that the circle of convergence of the power series f(z) = 1 + z + z% + z* + 78 .., isanatural
boundary of its sum function.

Solution:

The circle of convergence of a power series is the largest circle centered at the origin within which
the series converges to a function.

The sum function of the series f(z) = 1 + z + z? + z* + z%.., isnot defined at z = 1, so the circle
of convergence of the series must include the origin and exclude z = 1.

Since the sum of the series diverges for z = 1, it is a natural boundary for the sum function. The circle
of convergence for the series is the largest circle centered at the origin within which the sum function
is defined and analytic, and thus it serves as a natural boundary for the sum function.

(=)

Example

N+l
Show that f (z) = Z;‘;O# is analytic in the domain |z | <1 and the domain |z | > 1, and that

|z | =1is anatural boundary for the function in each domain.
Solution:
For a function to be analytic, it must be complex differentiable at every point in its domain.

Let us first consider the domain |z | <1.

2n+1 2n+1

For|z| < 1,|z | < 1andthus1 — |z | > 0.Hence, the denominator 1 — 22" !isnever 0 and

the function is well-defined in this domain.

Next, we can apply the Cauchy-Riemann equations to show that the function is complex
differentiable in this domain, and therefore analytic.

For |z| > 1, the same argument can be made: the denominator 1 — 22" is never 0 for |z| >1, and
the function is well-defined in this domain.

Finally, for | z| =1, the function is not complex differentiable, which means that |z| =1 is a natural
boundary for the function in both domains.

an+1
Therefore, the function Z,‘fzoﬁis analytic in the domain |z| <1 and the domain |z| > 1, and

| z| =1 is a natural boundary for the function in each domain.

TS

By
1111

8.4 Review questions

1. Prove that the series z!' + z?'+ z3' + .- has the natural boundary |Z| = 1.

2. Prove that |z| =1 is a natural boundary for the series Y5, 27™ * z3"
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3. Let F,(2) = ¥,

Zn+1

prs Find an analytic continuation of F; (z), which converges forz = 3 — 4i

4. State and prove the uniqueness theorem of analytic continuation

5. Show that the series 1 + z + z% + z* + z8+..., can not be analytically continued beyond the |z| =1

8.5 Self-assessment

2 3
1. The power series f(z) =z — % + % —... is convergent inside the

A.

B.
C.
D

Region |z+ 1| < 2
Region |z — 1| < 2
Region |z| < 1
Region |z| < 2

2. There cannot be more than one continuation of analytic f(z) into the same domain.

A. True
B. False
z Z3
3. The nth term of the series z — 5 + 3
n ZTL+1
A a,=(-1) —
_ n ZTL+1
B. a,=(-2) —
— (_1\n+1 zn+t
C. a,=(-1 —
_ n ZTL+1
D. a,=(-1) —
4. An analytic function f with domain D is called a function element and is denoted by (f, D).
A. True
B. False
_ )2 3
5. The nth term of the series |~— + 1a-a” + 1a-a7 + | is
2 2 22 3 23
1 /1-p\nt+1
A 2:(5)
1 1-7 n+1
B (05(5)
1 1-7 n+1
¢ vz(5)
1 1-7 n+1
. V(5
- —7)2 —_»3
6. The power series [u + l% + l% + - ] is convergent inside the
2 2 2 3 2
A Jz—1l<1
B. |zl <1
C. |zl <2
D. |z—-1] <2
2 3
7. If the function f, (z) = z — 27 + % — -+ is in analytic continuation to

1-z 1(1-2? 1(1-2)3
f>(z) = log2 — stttz

from the domain D7 to D> then the which one of the domain does lies in D; N D,
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A |z-1] <1
B. |zI<1
C. |zl <2
D. |z—-1] <2
2 3
8. If the function f;(z) = z — 27 + Z? — ++- is in analytic continuation to
@) = log2 1—Z+1(1—Z)2+1(1—Z)3+
= [0 _ -_— _
f>(2) = log 2 2 22 '3 23
from the domain D; to D; then the which one of the points does not lies in D; N D,
A. 0.1+4+0.1i
B. 05
C. 05
D. 2+5i
2 3
9. If the function f; (z) = z — 27 + Z? — -+ is in analytic continuation to
1-z 1(1-2)* 1(1-2)3
f2(z) = log2 — += += + -

2 2 22 3 28
from the domain Dy to D; then the which one of the points does lies in D; N D,

A. 01+4+0.2i
B. 5
C. 5i
D. 2+5i
2 3
10. If the function f; (z) = z — % + Z? — --- is in analytic continuation to

1-z 1(1-2? 1(1-2)3
f(z) = log2 — > +§ 52 +§ >3 + -

from the domain Dy to D; then the which one of the points does not lies in D; N D,

A. 0.2
B. 0.3
C. 04i
D. 4i

11. If the function f; (z) = Y.;7_( 2™ is a natural boundary for its sum function then the circle of
convergent is

A Jz—-1]<1
B. |z <1
C. |zIl<2
D. |z—-1] <2

1+z

12. If the function f;(z) = Y;7_(z" is in analytic continuation to f,(z) = Z;‘{LO% (T)nfrom the

domain D; to D then the which one of the point lies in D; N D,

A il
8 8
10,1,
B. 7+El
C. —13+4i
D. -3-13i
2 3
13. If the function f; (z) = z —27 +%— -+ is in analytic continuation to
1-z 1(1-2? 1(1-2)3
f(z) = log2 — += += + -

2 2 22 3 23
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from the domain Dy to D; then the which one of the points does not lies in D; N D,

A. 0.3i

B. 03

C. 0i

D. 12+

2 3
14. If the function f;(z) = z — % + % — -+ is in analytic continuation to
1-z 1(1-2)?%* 1(1-2)3
f2(2) = log2 — += += + -

2 2 22 3 28

from the domain Ds to D; then the which one of the points does lies in D; N D,
A. 0.01+0.02i

B. 50

C. 50i

D. 20+5i

15. Incomplex analysis, a natural boundary of a complex-valued function is a boundary of its
domain that is not a removable singularity.
A. True
B. False

Table 1: Answers of self-assessment

Question number Correct answer
1 C
2 A
3 A
4 A
5 B
6 D
7 B
8 D
9 A
10 A
11 C
12 A
13 D
14 A
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15 A

8.6 Summary

¢  The Power Series Method of Analytic Continuation is a method used to extend the domain
of a complex power series beyond its radius of convergence.

e  Ananalytic function f with domain D is called a function element and is denoted by (f, D).
e Uniqueness of Analytic Continuation: There cannot be more than one continuation of

analytic f,(z) into the same domain.

8.7 Keywords

Complete analytic function: Suppose that f(z) is analytic in a domain D. Let us form all possible
analytic  continuations of (f,D) and then all possible analytic continuations
(f1,D1), (f2,Dy), ..., (fn, Dy,) of these continuations such that:

fi()if ze D,
Fz2) =1~z €D,
fn(2)if z€ D,

Such a function F(z) is called complete analytic function.

8.8 Further Readings
Books
1. Complex Variables And Applications By Churchill, R. V. And Brown, J. W., Mcgraw Hill
Education.

2. Foundations Of Complex Analysis By S. Ponnusamy, Narosa Publishing House.
3. Complex Analysis By Lars V. Ahlfors, Mcgraw Hill Education.
4. Complex Variables Theory And Applications By H. S. Kasana, Prentice Hall.
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Rajesh Kumar Chandrawat, Lovely Professional University

Unit 09 - Riemann zeta function

Purpose and Objectives:

The Monodromy Theorem in complex analysis states that given a non-constant holomorphic function
on a simply connected domain, its set of singularities is invariant under any loop in the domain. In
other words, it characterizes the behavior of the function near its singularities and provides a way to
study the topological structure of complex functions. The theorem is useful for solving certain types
of differential equations, as well as for constructing complex functions with prescribed singularities.

Similarly, the Poisson integral formula has several applications in various fields, including;:

1. Harmonic Analysis: The Poisson Integral Formula provides a tool for solving boundary
value problems for harmonic functions and has applications in potential theory and
boundary value problems.

2. Image Processing: The Poisson Integral Formula is used in image processing to restore
images that have been degraded or to smooth out noise in images.

3. Numerical Analysis: The Poisson Integral Formula is used in numerical analysis to solve
partial differential equations, especially in areas like electrostatics and heat transfer.

4. Complex Analysis: The Poisson Integral Formula is used in complex analysis to study
conformal mappings, potential theory, and complex dynamics.

5. Signal Processing: The Poisson Integral Formula is used in signal processing to solve
problems in signal restoration, noise reduction, and boundary value problems for signals.

After this unit students can be able to-

1. State and prove the Monodromy theorem.
2. Learn Poisson Integral Formula for analytic function.
3. Understand the Poisson Kernel, and Conjugate Poisson Kernel for analytic function.
4. Solve the problem based on the Poisson Integral Formula.
Introduction

The number of independent loops or paths around a singular point of an analytic function can be
understood by sheets of the multi-valued analytic function.

In other words, if an analytic function has a singularity at a point, then the number of independent
loops that can be taken around this point is equal to the number of branches of the function that can
be defined in a neighborhood of the singularity.

The Monodromy Theorem is an important result in complex analysis and is used to study the
behavior of multi-valued analytic functions near singular points. If a function f is analytic in the unit
disk of the complex plane and continuous on its boundary, then it can be represented by the Poisson
integral formula. In this unit first we will understand the Monodromy theorem then learn Poisson
Integral Formula for analytic function. After that we will explore the concept of the Poisson Kernel,
and Conjugate Poisson Kernel for analytic function. Finally solve the problem based on the Poisson
Integral Formula.

9.1 Monodromy Theorem

Let D be a simply connected domain and suppose f; (z) is analytic in a domain D, c D. If the
function element (fy, Dy) can be analytically continued along every curve in D, then there exists a
single-valued function f(z) that is analytic throughout D with f(z) = f,(z) in D,.
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Proof:

Suppose the conclusion is false. Then there exist points z, € Dy,z, € D, and curves C;,C,

. Co

Figqure 3.1: D be a simply connected domain and the points zy € Dy, z; € D, and Dy < D.

both having initial point z, and terminal point z; such that (fy, Do) leads to a different function
element in a neighborhood of z; when analytically continued along C; than when analytically
continued along C, (see Figure3.1).

This means that (fy, Dy) does not return to the same function element when analytically continued
along the closed curve C; — C,.

=1
Lemma 3.1.

Let {S,,} be a sequence of closed and bounded rectangles in the plane. If S, .; € S,, for every n and the
length of the sides of S,, approaches 0 asn — oo, then there is exactly one point in common to all the
S,

YA

yO---------- TET]

Xo X

Figure 3.2: sequence of closed and bounded rectangles in the plane.
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To prove the theorem, it thus suffices to show that the function element (fy,Dy),D, © D, can be
continued along any closed curve lying in D and return to the same value. In the special case that the
closed curve C is a rectangle

- -+

oW o T

(3 (4

E— B

Figure 3.3: Rectangle C into four congruent rectangles

Divide the rectangle C into four congruent rectangles, as illustrated in Figure 3.3 continuation along
C produces the same effect as continuation along these four rectangles taken together.

If the conclusion is false for C, then it must be false for one of the four sub-rectangles, which we denote
by C;. We then divide C; into four congruent rectangles, for one of which the conclusion is false.

A

Figure 3.4:Cy into four congruent rectangles

Continuing the process, we obtain a nested sequence of rectangles for which the conclusion is false.

According to Lemma 1, there is exactly one point, call it z,, belonging to all the rectangles in the nest.
Since z, € D, there exists a function element (f,,D,) with z, € D, c D.

For n sufficiently large, the rectangle C,, of the nested sequence is contained in D,

But this means that f, (2) is analytic in a domain containing C,, contrary to the way C,, was defined.
This contradiction concludes the proof in the special case in which the curve is a rectangle.
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9.2 Poisson Integral Formula, Poisson Kernel, and Conjugate Poisson
Kernel

If f(z) is analytic within and on a circle € defined by |z| = R and if a is any point within, C, then
1 [ (R? —aa)f(2)

f(2)= 2mi’ ¢ (z— a)(R? — za) dz
oy 1 i (R? —r2)f(Re™)
= f(re®) = Ef R — 2RrCos(0 — 0) + 120

0

Where a = re'is any point inside the circle |z| = R.

Proof:
Suppose f(z) is analytic within and on the circle C defined |z| = R.
i0;

Let a = re'“is any point inside the circle |z| = R so that 0 < r <R.

Let the inverse of A(a) is A’(a’) with respect to the circle C is given by a’ = R? /a which lies outside
the circle C(See the Figure 3.5).

By Cauchy’s integral formula

_ 1 f@
fl@=5-J, a0z (3.1)
Since f(z) is analytic within and upon the circle € and so (Z _(Z),) is analytic within and on the circle.

By Cauchy’s integral theorem

[ L9 az=0 (32)

¢ (z-a”)

A(R73)

C

Figure 3.5: Inverse of A(a) is A’ (a") with respect to the circle C is given by a’ = R? /a

Note that ZZ- is not analytic within C
(z—-a)
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Now

(3.1)-(3.2) gives

f@=0=-f L% dz~ [, T2 dz (3.3)
f@ = =1 [~ o) f @z (34)
f@ =21 [E2 ] f(zydz (3.5)
fla) = Ef [(z (Z)(Z )a,)]f(z)dz (3:6)
fl@ ==/, [%]f( z)dz 3.7)
fl@)= Z_mf [(z (Z)a(zj )RZ)]f(Z)dZ (3.8)
f(a) me [(z a)(RZa)za)]f(Z)dZ (3'9)

This proves the first required result.

Any point z on |z| = R is expressible as z = R e'®
Also a =rePso that @ = re~

Now R? —aa = R? —re'¥.re™¥ (3.10)

= R?—-aa =R?>-7r?

Now
(z — a)(R? —za) = (R e'® —re®)(R? — Re'® re~i9) (3.11)
= (z—a)(R?—za) = Re'® (R —rel@= ) (R —re i(0-¢))
= (z—a)(R?* — za) = Re'P[(R? + 12 — rR(e!(0~9) — o~i(6-9)y]
= (z— a)(R? — za) = R e'®[(R? + 1% — 2rRCos(8 — ¢)] (3.12)
dz = d(Re'®) = Rie'®d¢ (3.13)

Writing (3.9) with the help of (3.11) and (3.13),

(R? —=r2)f(2)f(Re™).i
fla) = Eof [R? — 2RrCos(® — 0) + r2]Re® do
1 2m (R?-r2)f(Re'?)
f@=51; [R2—2RrCos(6-)+72] a (3.14)

This proves the second result.

(RZ—TZ)f(Rem)

Here [RZ2—2RrCos(6—¢)+1?]

is known as the Poisson Kernal for the disk |z | < R.
2_,2
Note that the Poisson, kernel is bounded above by % = R4
[R?2—2Rr+712] R-1

The conjugate Poisson kernel is a mathematical function used in complex analysis and potential
theory. It is defined as the conjugate of the Poisson kernel, which is a function that maps points in the
complex plane to the unit disk. The conjugate Poisson kernel is given by the formula:

ro - o2

where P(z) is the Poisson kernel and z* is the complex conjugate of z.

=4

Question:
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Using Poisson’s integral formula for the circle, show that:

fZTL' e95? Cos(Sing)d¢g _ 2T (0sB

0 5—4Cos(60—¢) 3

Solution:

—e“%Ycos(sinh)

By the Poisson’s integral formula,

. 2_,2 ip
f(relg) — ifozn' (R*-r )f(Re ) d@

[R%2—2RrCos(6-¢)+1?]

If we compare R H.S. of (3.15) with the given integral, then we find

RZ+7r?=5
TR=2

f(Re'®) = ecos® Cos(Sing)
Using (3.17) and (3.18)

R=2r=1andsoR? —r?2=3

Now (3.19) =

f(re??) = esPcos(sind)

Putting value from (3.17), (3.18), (3.20), and (3.21) in the equation (3.16), we get

2m
1 305, Cos(Sing)
cos@ 1 =or |l T _aroetg —
e cos(sind) = o7 | 5 " 4Cos(0 — ¢)
0

2m
- e Cos(Sing)
=7 Cos8 i = T ACoc(A — )
Se Cos(Sind) f 5—4Cos(6 — ¢)
0

Hence proved.

=4

Question:

Using the Poisson integral formula, find the value of fozn

Solution:

in
621f(25e4

629-100Cos(m -

We know that using the Poisson integral formula,

Here

(RZ _ TZ)f(ReiQ))

ao

ao

o)

el0)

1
f(ret?) = %[ [RZ — 2RrCos(0 — ¢) + 2]
0

(R? — %) =621

f(Re®) = f(25e7")

2Rr =100

0—¢p=m——

T
4

(R? +1%) =629

Hence, we can conclude that.

R =25

r=2
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0 =

I

¢ =
f(re®) = f(2e'™)

T 621f 2567
i (25¢7)

629 — 100Cos (n - %)

do = 2mf(2e'™)
0

9.3 Review questions

i
75f( 10e%
125-100C0s(3-%)

2 4

in

64f| 10e10
136-120C0s(3-7)
2 10

9f(5eilt§> d@

41—40605(11—%)

80f(9ei71[>
———d
82—18605(11—%) @

99f(10e%>

101-20Cos(3-2)

do

1. Using the Poisson integral formula, find the value of fom
2. Using the Poisson integral formula, find the value of fom ag
3. Using the Poisson integral formula, find the value of fom
4. Using the Poisson integral formula, find the value of fozn

do

5. Using the Poisson integral formula, find the value of fozn

9.4 Self-assessment

1. Let D be a simply connected domain and suppose f, (z) is analytic in a domain D, < D. If
the function element (fy, Dy) can be analytically continued along every curve in D, then there
exists a single-valued function f(z) that is analytic throughout D with f(z) = f,(2) in D,.

A. True
B. False

2. Let D be a simply connected domain and suppose f, (z) is analytic in a domain D, < D. If
the function element (fy, Dy) can be analytically continued along every curve in D, then there
does not exists any single-valued function f(z) that is analytic throughout D with f(z) =

fo(2) in Dy.
A. True
B. False

3. Let D be a simply connected domain and suppose f, (z) is analytic in a domain D, < D. If
the function element (fy, Dy) can be analytically continued along every curve in D, then there
exists a single-valued function f(z) that is not analytic throughout D with f(z) = f,(2) in
D,.

A. True
B. False
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10.

11.

Let {S,,} be a sequence of closed and bounded rectangles in the plane. If S, ,; © S,, for every
n and the length of the sides of S,, approaches 0 asn — oo, then there is exactly one point in
common to all the S,,.

A. True
B. False

Let {S,,} be a sequence of closed and bounded rectangles in the plane. If S;,.; € S, for every
nand the length of the sides of S, approaches 0 as n — oo, then there are two points in
common to all the S,,.

A. True
B. False

2_ ig
fzn (R?-1)f(Re'?) o

. . . 1
Using the Poisson integral formula, the — J/ (R?—2RCos(r—g) 1]

A. f(e™)
B. f(ze™)
C. f(3e™)
D. 2f(e™™)

2 (R?*-4)f(Re'®)
e

Using the Poisson integral formula, the | (2 —4RCostn—g) 4] dg =

A, mf(e™)
B. 2nf(2e'™)
C. 3uf(3e™)
D f(ein)
Using the Poisson integral formula, the i fozn % dg =
A. f(3e™)
B. f(2e™)
C. f(3e™)
D. 2f(e™)

2_ ip
Using the Poisson integral formula, the | 2n__(R-16)/(Re ) ] de =

0 [R%2-8RCos(m—¢)+16

A. wf(e™)
B. 2nf(4e™)
C. 3nf(3e™)
D. f(5e™)

ip
Using the Poisson integral formula, the | an__21f(5e”) dg =

0 29-20Cos(mt—¢)

A. nf(ei”)
B. an(Zei”)
C. 3nf(3ei”)
D. f(e™)

fzfr 27f(6e%) 46 =

. . . 1
Using the Poisson integral formula, the o 5 secosmod] =

A. f(3e™)
B. f(2e™)
C. f(3e™)
D. 2f(e™)
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12. Using the Poisson integral formula, the [ Ozn% dg =
A. nf(ei”)
B 21Tf(4—e"")
C. 3mf(3e™)
D. f(5e™)
13. Using the Poisson integral formula, the f;"%d@ =
A. nf(e™)
B. 2nf(e™)
C. 3mf(3e™)
D f(ein)

on' 91f(10e?) 4o =

. . . 1
14. Using the Poisson integral formula, the — J ™ ——=—-— Pl

A. f(3e™)
B. f(2e™)
C. f(3e™)
D. 2f(e™™)

o) a0 =

15. Using the Poisson integral formula, the J™ ———"—- =)

A. nf(e™)
B. 2nf(4e'™)
C. 3nf(3e™)
D. f(5e'")

Table 1: Answers of self-assessment

Question number Correct answer
1 A
2 B
3 B
4 A
5 B
6 A
7 B
8 D
9 B
10 B
11 A
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12 B

13 B

14 A

15 B
9.5 Summary

e If f(2z) is analytic within and on a circle C defined by |z| = R and if a is any point within, C,

then

2 .
(R* —r*)f (Re™)

f(re?) = if ag
2w ) R?—2RrCos(0 — @)+ r?
0

Where a = re'is any point inside the circle |z| = R.

2_..2 i
o [Rz_(imgoifgfﬁ) 1 o is known as the Poisson Kernal for the disk |z | < R.

2_.2
e The Poisson, kernel is bounded above by W(_RZTZL] = 2%:.

e The conjugate Poisson kernel is a mathematical function used in complex analysis and
potential theory. It is defined as the conjugate of the Poisson kernel, which is a function that

maps points in the complex plane to the unit disk. The conjugate Poisson kernel is given by

the formula:P*(z) = P (Zl) where P(z) is the Poisson kernel and z* is the complex conjugate

of z.

9.6 Keywords

Monodromy Theorem:

Let D be a simply connected domain, and suppose f; (z) is analytic in a domain D, c D. If the
function element (fy, Dy) can be analytically continued along every curve in D, then there exists a
single-valued function f(z) that is exists a single-valued function f(z) that is analytic throughout D

with f(2) = fy(z) inD,.

9.7 Further Readings
Books
1. Complex Variables And Applications By Churchill, R. V. And Brown, J. W., Mcgraw Hill
Education.

2. Foundations Of Complex Analysis By S. Ponnusamy, Narosa Publishing House.
3. Complex Analysis By Lars V. Ahlfors, Mcgraw Hill Education.
4. Complex Variables Theory And Applications By H. S. Kasana, Prentice Hall.
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Unit 10 - Order of entire function

Purpose and Objectives:

The Mean Value Property states that for a harmonic function in a domain, the average value of the
function over a ball is equal to the value of the function at the center of the ball. Harmonic functions
are a type of function that satisfy the mean value property. Hence, the mean value property is a
necessary condition for a function to be harmonic.

In other words, harmonic functions are functions that have the property that the mean of their values
over a small region is equal to the value of the function at a point in the interior of that region. The
mean value property is a fundamental property of harmonic functions, and it plays a key role in
various applications, such as potential theory and partial differential equations.

Harnack's inequality is a fundamental result in mathematics with various applications in several
areas, including partial differential equations, geometry, and potential theory. It provides a
relationship between the values of a harmonic function on a small ball and on a large one, which is
useful in the study of the regularity and behavior of solutions to elliptic equations. Additionally,
Harnack's inequality is also crucial in the study of the asymptotic behavior of Markov processes,
stochastic differential equations, and other areas in probability theory.

The Dirichlet problem is a well-known problem in mathematics, specifically in the field of partial
differential equations. It asks to find a solution to a partial differential equation that satisfies certain
boundary conditions on a given domain. The problem is named after the German mathematician
Peter Gustav Lejeune Dirichlet and has numerous applications in physics, engineering, and
mathematics. It provides a way to model various physical phenomena such as heat conduction,
diffusion, and potential flow.

After this unit students can be able to-

1. State and prove the Harnack's inequality.

2. Learn the mean value property of harmonic functions.

3. Solve the problem based on the Dirichlet problem.
Introduction

The Harnack’s inequality is a result in mathematical analysis, which states that for a non-negative
solution u(x) of a linear elliptic partial differential equation in a domain, the maximum value of u in
a ball centered at a point is bounded above by the average value of u over the same ball. Before
embarking the concept of Harnack’s inequality, first we discuss the relationship between mean value
property and harmonic function. This result has important applications in the study of heat diffusion
and potential theory we will understand the Dirichlet problem to find solutions to boundary value
problems in these areas.

10.1 Relation Between Mean Value Property and Harmonic Functions

Harmonic function

A harmonic function is a real-valued function that satisfies Laplace's equation, which states that the
sum of the second partial derivatives with respect to x and y is equal to zero.

Mathematically, for a function u(x, y), the Laplace's equation can be expressed as:

2%u 2%u
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Harmonic functions have several important properties, including being analytic and continuous,
having no local maxima or minima, and having a unique mean value over any region in which they
are defined. These properties make harmonic functions useful in a variety of mathematical and
scientific applications, such as solving boundary value problems and modeling physical phenomena.

The harmonic conjugate of a harmonic function

The harmonic conjugate of a harmonic function u is another harmonic function v that satisfies the
condition u + iv is analytic (i.e., it has continuous first and second partial derivatives). In other
words, u and v together form a complex function that is analytic in the region where u is defined.

The harmonic conjugate of u is unique up to an additive constant, and it can be found by integrating
the derivative of u with respect to y (or x, if u is expressed in terms of x).

For example, if u(x,y) = f(x) + g(¥), then its harmonic conjugate is given by v(x,y) = —g(x) +
f(¥) + C,where C is an arbitrary constant.

In conclusion, the harmonic conjugate of a harmonic function is a unique function that helps to form
an analytic complex function in the region where the harmonic function is defined.

The harmonic conjugate of an analytic function is another function that, when added to the original
function, forms a harmonic function. A harmonic function is a function that satisfies Laplace's
equation, which states that the sum of the second partial derivatives with respect to x and y is zero.

Let f(x,y) be an analytic function. Its harmonic conjugate, denoted by g(x, y), is defined as:
9(xy) = dyu(xy) — 0xv(x,y)
where u(x,y) and v(x, y) are the real and imaginary parts of f(x,y), respectively.

The two functions, f(x,y) and g(x,y), are called Cauchy-Riemann partners, and their sum is a
harmonic function.

Mean value property.

The mean value property of harmonic functions states that, for any point in a ball in a harmonic
function, the value of the function at that point is equal to the average of the function's values over
the boundary of the ball.

In mathematical terms, if u(x) is a harmonic function in a ball B(x,, R) centered at x, with radius R,
then:

u(xy) = (—IB(;M) S ey oy M) 4.2)

where |B(x,,7)| is the measure (area or volume, depending on the dimension) of the ball.

In other words, continuous function u : G — R has the Mean Value Property (MVP) if whenever.

B(a=x;R) c Gu(@) = — [ u(a+Re®)ds (4.3)

This property provides a useful tool for solving partial differential equations and finding potential
functions in physics.

Proof:
Let u:G » R be a harmonic function and let B (a: R) be a closed disk contained in G. If C is the

circle, |z — a| = R thenthenu(a) = ifoznu(a + Rew)dB

The proof of the Mean Value Theorem is since a harmonic function is equal to its mean over any
region. This means that the average value of the function over the boundary of a disk is equal to the
value of the function at the center of the disk.
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To prove this, we start by noting that a harmonic function is analytic, meaning it satisfies the Cauchy-
Riemann equations and can be represented by a power series. Using this representation, we can write
the function as:

) 1 (d"u(a)
u(@) = w(@) + Ti,(z - a)" = (T5) (44)

dzn

where a"u(@) is the nth derivative of u evaluated at a.

d™u(
dzm"

Next, we consider the value of the function at a point on the boundary of the disk, givenby a + Re'.
Using this, we can rewrite the above power series as:

u(a + Re®) = u(a) + ¥=_,(a + Re® —a)" *%(%) (4.5)
= u(a + Re®) = u(a) + 3=, (Re?® )" *%(%) (4.6)
Now, we integrate both sides over the interval [0, 2] to obtain:

1 p2m ; 1 [2M e ig \"* . 1 (d"u(a)

—Jy ula+Re?)do =u(@) + [ X, (Re'? )" * 5(%) do 4.7)

Since the function u is harmonicg, it follows that all its derivatives are also harmonic.

This means that the second term on the right side is equal to zero. Therefore, we can simplify the
above expression to:

ifoznu(a +Re®)do = u(a) (4.8)

Thus, the average value of the function over the boundary of the disk is equal to the value of the
function at the center of the disk, proving the Mean Value Theorem.

10.2 Harnack's inequality

Suppose u(z ) is harmonic in the disk A(zy; R) ={z: |z — zy | < R},withu(z) = 0

forallz € A(zy; R), then for every z in this disk, we have

R—|z — z| R+|z — z |

_— < < _—
u(ZO)R+|Z_Z0| = u(Z) = u(ZO)R_lz_Zol

Proof:

First, we consider the average value of the function u on the circle centered at z0 with radius |z - z|.
By definition, this average value is given by

Az = zo) = (52) J3"ulzo + 1z = zole™) dt. (4.9)

Next, we apply the Mean Value Property for Harmonic Functions to the function u — u(z,), which
states that for any positive real number r such that 0 < r < R, there exists a point 0 in the interval
[0, 2m) such that

u(z0 + reia) —u(zy) = raru(zo + rei‘g) (4.10)

Substituting this expression into the formula for A(|z — zy|) and interchanging the order of
integration and differentiation, we obtain

1 2n .
Az — zy|) = (E)f u(z0 + |z — zole”) dt
0
21

L .
(211) [w(zo) + 12 = 210, u(zo + |z — zole™)]dt
0

= u(z) + |z — 2|0, u(z).

Finally, using the definition of partial derivative with respect to the radial coordinate, we have

0 u(zg) = (5)HBtR ) 400 (411)

Substituting this expression into the formula for A(|z — z,|), we obtain
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Az — z]) = u(zy) + 2240, (4.12)
Dividing both sides by |z — z,| and rearranging, we find that
WE)R=l2=20) o g1y gy < MR Iz 20D (4.13)

R+ |z -z R — |z -z

Since the average value of u on the circle centered at z, with radius |z — z,| provides an upper bound
for the function u, we conclude that

u(zo) (R — |z — z)
R+ |z -z

u(Zo)(R + |z = 2])

< <
< uld) <

(4.14)

for every z in the disk 4(zy, R).

10.3 Dirichlet Problem

The Dirichlet problem in complex analysis is a boundary value problem that seeks to find a complex
valued function that is analytic within a given domain and takes on specified boundary values on
the boundary of that domain.

For example, consider the unit disk centered at the origin in the complex plane. The Dirichlet problem
asks us to find a complex valued function f(z) that is analytic within the unit disk and takes on the
specified boundary value f(e*) = g(t) for all t in the interval [0,27], where g(¢) is a given function.

One possible solution to this problem is to use the theory of complex analysis and the representation
of analytic functions using power series.

By using the Cauchy-Riemann equations, it can be shown that any complex valued function that is
analytic within the unit disk can be represented by a power series of the form.

f(2) = Y a,(z — z,)", where z, is the center of the disk.

The boundary values of the function can then be used to determine the coefficients of the power
series.

For example, if g(t) = cos(t),
then f(e%) = cos(t)
=X a, e™,

where the coefficients can be calculated by matching the real and imaginary parts of both sides of the
equation.

Initially, the problem was to determine the equilibrium temperature distribution on a disk from
measurements taken along the boundary.

The temperature at points inside the disk must satisfy a partial differential equation called Laplace’s
equation corresponding to the physical condition that the total heat energy contained in the disk shall
be a minimum.

A slight variation of this problem occurs when there are points inside the disk at which heat is added
(sources) or removed (sinks) as long as the temperature remains constant at each point (stationary
flow), in which case Poisson’s equation is satisfied.

How to construct a harmonic function in a given domain when its values are prescribed on the
boundary of the domain is the key problem is known as Dirichlet problem.

S
Boundary value problems associated to Laplace equation.

The Poisson equation is a second-order partial differential equation of the form

V2u(x) = f(x)

where u(x) is an unknown function and f(x) is a given function. The equation states that the
Laplacian of u(x) is equal to f(x).
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The solution to the Poisson equation depends on the boundary conditions for the unknown function
u(x).

There are several methods for solving the Poisson equation, including numerical methods, analytical
methods, and Green's function methods.

One common analytical method is to use the method of separation of variables.
Suppose that u(x) = X(x)Y(y), then the Laplacian of u(x) becomes.
0%u(x)  9%u(x)
dx? + dy?
=X"(0Y) + XCY"'()

where X"'(x) and Y"'(y) denote the second derivatives with respect to x and y, respectively. Setting
the right-hand side equal to f(x), we have

X'OY) + X(Y"'(y) = f(x)
Dividing both sides by XY, we get

Viu(x) =

X'"(x) Y'ly) [fx)
X(x) ' Y(@) XY

This equation is equal to a constant 4, so we have

X”(x) a Y”(y) B @
X(x) -4 Y(y) Ay

Solving the above two differential equations, we obtain the general solution.

@) = ) CXa O G)

where C, are constants and X, (x) and Y;,(y) are the eigenfunctions corresponding to the eigenvalue
An

The final solution depends on the specific boundary conditions and the values of the constants C,,.

Note that this method is only applicable when the equation can be separated into two independent
ordinary differential equations. In general, the Poisson equation requires numerical methods or
Green's function methods to solve.

Another of the generic partial differential equations is Laplace’s equation, V?u =0

This equation first appeared in the unit on complex variables when we discussed harmonic functions.
Another example is the electric potential for electrostatics. As we described for static electromagnetic
fields,

|7-E=£,E=\7gb.
€o

In regions devoid of charge, these equations yield the Laplace equation V2¢ = 0.
Another example comes from studying temperature distributions.

Consider a thin rectangular plate with the boundaries set at fixed temperatures. Temperature
changes of the plate are governed by the heat equation. The solution of the heat equation subject to
these boundary conditions is time dependent.

In fact, after a long period of time the plate will reach thermal equilibrium. If the boundary
temperature is zero, then the plate temperature decays to zero across the plate. However, if the
boundaries are maintained at a fixed nonzero temperature, which means energy is being put into the
system to maintain the boundary conditions, the internal temperature may reach a nonzero
equilibrium temperature.

Reaching thermal equilibrium means that asymptotically in time the solution becomes time
independent. Thus, the equilibrium state is a solution of the time independent heat equation, which
is another Laplace equation, V?u =0

LOVELY PROFESSIONAL UNIVERSITY
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Example

Equilibrium temperature distribution for a rectangular plate

Let us consider Laplace’s equation in Cartesian coordinates,

2 2
Ju 1 0% _00<x<L0<y<H (4.15)

dx2 ayz

with the boundary conditions

u(0,y)=0 \
u(m,y)=20 k
u(x,0) =f(x) = SinxI

u(x,H=1) =Sieg

(4.16)

0 L
u = f1(x)

Fiqure 4.1: The boundary condition for the heat distribution problem.

Solution:

This is a partial differential equation for Laplace's equation, which describes the distribution of heat
in a 2D space. To solve this equation, we can use separation of variables method.

Assume that the solution can be written as:
u(xy) = X(x)Y()
Substituting this into the equation, we have:
K@OY" + K@ YN =0
Dividing both sides by X (x) Y (y), we get:
X'@ Y + X Y'(y) = 0
Since this must be true for all x and y, we can divide both sides by X(x) Y (y), to get:

X"@\ (Y0
(X(x)>+ (Y(y)>‘ 0
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This can be simplified to:

X" _Y'®»

2 = _ =
PSR ST

where 1? is a constant.

Solving for X (x) and Y (y), we have:

X'"(x) + 2X(x) = 0
Y'y) - 22Y(@y) =0
The solutions for X(x) and Y (y) can be written as:
X(x) = Acos(Ax) + Bsin(dx)
Y(y) = Ce ™Y + De?Y
where 4, B, C,and D are constants.
Hence u(x,y) = Acos(Ax) + Bsin(Ax).[Ce™*Y + D e??] (4.17)

Using the boundary conditions, we can find the values of 1 and the coefficients 4, B, C, and D.
= u(0,y) = Acos(A+0) + Bsin(A+0).[Ce Y + De?¥] =0
=u(0,y)=A.[Ce™®¥ + De??]|=0
=A=0
Now put A = 0 in (4.17)

u(x,y) = Bsin(Ax).[Ce™*Y + De?¥] (4.18)

Now
u(m,y) = Bsin(An).[Ce™*¥ + De*¥]| =0
= sin(An) =0
= sin(A ) = sin(nm)
=A=nn=4%1%+2,.,
So

u(x,y) = Bsin(nx).[Ce™Y + De™Y] (4.19)

Now apply u(x,0) = Sinx
u(x,0) = Bsin(nx).[C + D] = sinx
=BC+BD=1n=1
Now update the (4.19) Hence

u(x,y) = Bsinx.[Ce™? + De?”] (4.20)

Sinx

Now apply u(x, 1) = ==

sinx
u(x,1) = Bsinx.[Ce™' + Del] =—

sinx ) sinx
= BCT+ BD.sinx.e =T+ 0

= BC=1BD=0

Now update the (4.20)(4.19) Hence

u(x,y) = sinx.[ e~ Y] is the final solution of the given temperature distribution for a rectangular
plate.
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10.9

10.8

Fiqure4.2: The temperature distribution in x and y direction.

104 Review questions

Explain the Mean value property of harmonic function?

2. State and prove the Harnack’s inequality for harmonic function in the closed disc?
3. Supposeu(z) is harmonic in the disk A(1; 1) ={z: |z — 1| < 1},withu(z) = 0

forallz € A(1; R), then for every z in this disk, then show that

11—|Z—1|< < w1 1+]z - 1]
WD — gy S w@ = w0
4. Solve % + ZZTZ = 0,0 <x < L,0 <y < H,under the boundary conditions
u(m,y) =0 }
u(x,0) = f(x) = ZSian
_ Sinx
u(x, 1) == )
2 2
5. Solve, 6—1: + & 0,0 < x < 10,0 <y < H, with the boundary conditions
dx dy?
u(0,y)=0 \I
u(m,y) =0 &
u(x,0) = 10Sinx

Sinx

u(x,10) = 10TJ

10.5 Self-assessment

1. Using the Mean Value property, the integral i I 02n u(5 + Re'?)do =

A. u(5)
B u(3)
C. u(25)
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D. u(10)

2. Using the Mean Value property, the integral i foznu(15 + Reie)de =

A. u(15)

B. u(%)
C. u(225)
D. u(30)

3. Using the Mean Value property, the integral i foznu(l +i+ Reig)de =
A, u(l)
B.  u(i)
C. u(l+1i)
1
D. u (1_+z)
4. Using the Mean Value property, which one of the following is true

A —J7"u(10 + Re®)do = u(10)
B. —J, u(5+Re®®)do =u(5/2)
C. —J; " u(5/2+ Re®®)do = u(s)
D. —J; " u(5 + Re®®)d6 = u(10)

5. Using the Mean Value property, which one of the following is true
A. ifoz”uu + Rei®)do =u(10)
B, —J, " u(25 + Re®)do = u(5/2)
C. —J; " u(5/2+ Re®®)d6 = u(s)
D. %foznu(Z +i+Re®)do =u(2 +1)

6. Suppose u(z) is harmonic in the disk A(zy ; R) ={z: |z | < 1},withu(z) = 0
forallz € A(0; 1), then which one of the following statements are true using the

Harnack’s inequality for every z in this disk,

ru@) 2 o e
1+|z | ~
I:u(z) < u(0)1+|z |
1=z |
A. Onlyl
B. Onlyll
C. Both
D. Neither I nor Il

7. Suppose u(z) is harmonic in the disk 4(zy ; R) = {z: |z | < 2},withu(z) = 0
forallz € A(0; 2), then which one of the following statements are true using the

Harnack’s inequality for every z in this disk,
2—|z |

1u(0) T <

u(z)
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2+ |z |
II:u(z) = u(O)z_ iz
A. Onlyl
B. Onlyll
C. Both
D. Neither I norll

8. Suppose u(z) is harmonic in the disk 4(zy; R) ={z: |z—i| < 1},withu(z) = 0
forallz € A(i; 1), then which one of the following statements are true using the

Harnack’s inequality for every z in this disk,

-z |
I:u(1)1+|z | < u(z)
Atz |
I:u(z) < u(l)l_lz |
A. Onlyl
B. Onlyll
C. Both
D. Neither I norll

9. Suppose u(z) is harmonic in the disk 4(zy ; R) ={z: |z | < 5},withu(z) = 0
forallz € A(0; 5), then which one of the following statements are true using the

Harnack’s inequality for every z in this disk,

I:u(O)S_lz | > u(z)
541z |
1:uz) < u(0)>12]
B 51z |
A. Onlyl
B. Onlyll
C. Both
D. Neither I nor Il

10. Suppose u(z) is harmonic in the disk A(zy; R) ={z: |z—2 | < 1},withu(z) = 0
forallz € A(0; 1), then which one of the following statements are true using the

Harnack’s inequality for every z in this disk,

I:u(O)w < u(z)
1+|z=-2| ~
Iuz) < )22 1
= 1—|z—2]
A. Onlyl
B. Onlyll
C. Both
D. Neither I nor Il

11. Consider the u(x,y) = Acos(Ax)+ Bsin(Ax).[C e *Y + De?Y] be the solution of

Laplace’s equation % + il; =0,0<x<L,0<y<1in Cartesian coordinates then what
x ady
is the value of B using u(0,y) = 0.
A. 0
B. 2m
C. 3
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12.

13.

D. 1
u(0,y) = 0. \
u(m,y)=0
with the boundary conditions 4,(x, 0) = f(x) = Sinx

|
u(x,H — 1) — Sinx J

Consider the u(x,y) = Acos(l x) + Bsin(1x).[Ce Y + De*Y] be the solution of

Laplace’s equation % + — =0,0<x<L,0<y<1in Cartesian coordinates then what
is the value of A using u(O,y) =0,,u(m,y) =0.
A. 21=05
B. 2 =nn=4+14+2,..,
c 1=1:
2
D. Cannot be determined

Consider the u(x,y) = Acos(l x) + Bsin(1x).[Ce™*Y + De?Y] be the solution of
Laplace’s equation ou + — =0,0<x<L,0<y<1in Cartesian coordinates then what

a 2
u(0,y) =0. \
u(m,y) =0
is the value of BC with the boundary conditions u(x,0) = f(x) = Sinx

u(xH—l)—Slﬂ )

A

B

c. 2

2

D. Cannot be determined

E.

14. Consider the u(x,y)= Acos(/l x)+ Bsin(1x).[Ce™*Y + De*Y] be the solution of

Laplace’s equation 621; +28-0,0<x<L0< y < 1 in Cartesian coordinates then what
ax ay2
u(0,y) =0. \I
u(m,y) =0
is the value of BD with the boundary conditions u(x,0) = f(x) = Sinx $
|
u(x, H=1) = Slﬂ )
A. 05
B. 1
c :
2
D. 0
15. Consider the u(x,y) = Acos(/l x)+ Bsin(1x).[Ce™*Y + De*Y] be the solution of
Laplace’s equation % + a_y2 =0,0<x<L,0<y<1in Cartesian coordinates then what
u(0,y) = 0. \
_ |
u(m,y) =0
is the general solution of with the boundary conditions y(x, 0) = f(x) = Sinx $
' |
u(x,H — 1) Sinx )

u(x,y) = Sinx.[e V]
u(x,y) = Cosx.[e 7]
u(x,y) = Sinx.[e¥ ]
u(x,y) = Cosx.[e”Y]

Sowp
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Table 1: Answers of self-assessment

Question number Correct answer
1 A

2 A

3 C

4 A

5 D

6 C

7 A

8 C

9 B

10 10.1C
11 10.2A
12 B

13 C

14 D

15 A

10.6 Summary

¢ The mean value property of harmonic functions:
For any point in a ball in a harmonic function, the value of the function at that point is equal
to the average of the function's values over the boundary of the ball.
In mathematical terms, if u(x) is a harmonic function in a ball B(x,, R) centered at x, with radius R,
_ 1
then: u(x,) = (—IB (xo,r)l) f{B tor)} u(x) dx
where |B(x,,7)| is the measure (area or volume, depending on the dimension) of the ball.
e The average value of the function over the boundary of the disk is equal to the value of the

function at the center of the disk, proving the Mean Value Theorem.

10.7 Keywords

Harnack's inequality
Suppose u(z ) is harmonic in the disk 4(zy; R) ={z: |z — zy | < R},withu(z) = 0

forallz € A(z,; R), then for every z in this disk, we have
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10.8

Books

R—|Z—ZO|< < R+|z — z|
u(ZO)R+|Z_ZO|—u(Z)—u(ZO)R_lz_Zol
Further Readings

Complex Variables And Applications By Churchill, R. V. And Brown, ]J. W., Mcgraw Hill
Education.

Foundations Of Complex Analysis By S. Ponnusamy, Narosa Publishing House.
Complex Analysis By Lars V. Ahlfors, Mcgraw Hill Education.
Complex Variables Theory And Applications By H. S. Kasana, Prentice Hall.
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Unit 11 - Open mapping theorem

Purpose and Objectives:

After this unit students can be able to-

1. Understand the Schwarz Reflection Principle for analytic functions?

2. Prove the Schwarz Reflection Principle for analytic functions?

3. Learn the consequences of the Schwarz Reflection Principle
Introduction

If a function is analytic in the upper half plane and its real part is non-negative on the boundary (the
real axis), then it can be extended analytically to the entire plane. In other words, if a function f(z) is
analytic in the upper half plane and satisfies the condition Re(f(z)) = 0 for all real z, then f(z) can
be extended to the entire complex plane.

The Schwarz Reflection Principle has several important applications in complex analysis, such as
proving the analyticity of functions, constructing entire functions with prescribed properties, and
solving boundary value problems. In this unit we will explore the Schwarz Reflection Principle for
analytic function.

11.1 Schwarz Reflection Principle for Analytic Functions

Statement:

The Schwarz Reflection Principle states that if a complex valued function f(z) is analytic in the upper
half plane (Im(z) > 0), and continuous on the boundary of the upper half plane (Im(z) = 0), and
if f(2) satisfies f(z) = f((2)), then the function f(z) can be extended to be analytic in the entire
complex plane.

or

The Schwarz Reflection Principle states that if a function is analytic in the upper half plane and its
real part is non-negative on the boundary (the real axis), then it can be extended analytically to the
entire plane. In other words, if a function f(z) is analytic in the upper half plane and satisfies the
condition Re(f (Z)) > 0 for all real z, then f(z) can be extended to the entire complex plane.

Proof 1:

The proof of the Schwarz Reflection Principle relies on the fact that if a function is analytic in the
upper half plane and its real part is non-negative on the boundary, then it can be represented as a
real part of another analytic function.

Let f(2) be analytic in the upper half plane and Re(f(z)) = 0 for all real z.

Then the function g(z) = f(2) + i(—f(z)) is analytic in the upper half plane and satisfies
Re(g(z)) = 0 for all real z.

The proof also uses the maximum modulus principle and Liouville's theorem.

Liouville's Theorem

Liouville's Theorem states that a bounded holomorphic function on the entire complex plane must
be constant. It is named after Joseph Liouville.

Statement:

Let f(2z):C - Cbe an entire function. Suppose there exists somereal numberM =0 such
that |[f(z)| < M for all z € C Then f(2) is a constant function.
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Or

If a function f(z) is entire and bounded in the complex plane, then f(z) is constant throughout the
plane.

Proof:

It is given that

i. A function f(2) is analytic in the entire complex plane
ii. A function f(z) is bounded, that |f(2)| < M.

Let us consider two points a and b inside a particular domain(See the figure 5.1).

|2l=

Fiqure 5.1: Two points a and b inside a particular domain

Then using Cauchy integral formula
f@) )
6. (L2 az = (@

2mi 45 ( e ) dz = f(b)
If £ (z) is constant throughout the domain, then f(a) = f(b).
Now let’s prove f(a) — f(b) = 0.

@ =56, (22) a5 -4, (29) az
@1 =56, (22 - 1D,
f(a)~f(b) = —.écf(z)( - )
F@)~f(b) = 5=, f(z )(%)dz
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a—>b 1
F@~F®) = 5O (w42

a—b 1
F@ ~FO)1 =[5 6D (G =) 42
a—b 1
F@ = FO = 5o S @ (= =) 142
a—b 1
1F@ = FO = 5o | S (= an e =Ton) 142
Let
z=rel
dz =re'®.i.do
|dz| = |re®.i.d6|

|dz| = |r|.|e®|. |i].|d6]
Here |r| =7

le®| = |cos6 + isin| =1,

il =1,
|dz| =r.|dé)|

a—b 1
F@ = FO = 5 M (s =) ™ 140

1
$.M ((1 —a/r(1-b/7)

If f () is analytic in the entire complex plane, then |z| = r — 0. So
If (@)= f(b)| <0

f@—fb)=0

Hence, we can say that f(a) = f(b). It means that f(z) is a constant.

If(@ - Fb)l <=

).|d0|

YA

Liouville's Theorem proof using Cauchy integral formula for derivatives.

If {(z) is analytic in a simply connected region then at any interior point of the region, z, inside C.
Then say, the derivatives of f(z) of any order exist and are themselves analytic (which illustrates
what a powerful property analyticity is!). The derivatives at the point z, are given by Cauchy’s
integral formula for derivatives:

6, (L9) dz = 2mi .

(Z_ZO)TL+1

where C is any simple closed curve, in the region, which encloses z,. Note the casen = 1:

b (L) dz = f'(z0).

2mi” ¢
1 _ L f(2)
If (ZO)I ~ omi §c ((z—zo)z) dZ|.
’ 1 |f(2)]
1" @)| < |5l $_(2ey) .

Here z = re'?

dz =re'®.i.de.

|dz| = |re'®.i.d6)|.

|dz| = |r|.[e®]. i].1d6].
Here |z — zy| =71

le®| = |cos6 + isind| =1,

lil =1,
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|dz| =r.|d6|.
If' @) < 5-$_(5)r-1del.

r

If' @)l <56 (5).do.

If f(z) is analytic in the entire complex plane then r — oo. So
If'(z)l <0

f'(z9) =0

f(2) = constant.

By Liouville's theorem, the imaginary part of g(z) is constant on the boundary, say c. Then the
function h(z) = g(z) + ic is analytic in the entire plane and has the same real part as f(z).

Proof 2:

Let f(z) be a complex valued function that is analytic in the upper half plane (Im(z) > 0), and
continuous on the boundary of the upper half plane (Im(z) = 0).

Consider a point z in the lower half plane (Im(z) < 0)[See figure 5.2]

Figure 5.2: w = f(2)

Letz = x + iy, where x is real and y is negative.
Let's define a new point, conj(z)=z, which is equal to the complex conjugate of z.
That is, conj(z) = x — iy.

Since f(z) is continuous on the boundary of the upper half plane, it follows that f(conj(z)) is
continuous in the lower half plane.

Also, since f(z) satisfies f(z) = f((2)), we have:

f@ = f((com(2)))

= fx—w

= flx + (=)

Thus, we can define a new function, g(z), in the lower half plane as follows:
9@ = f(x + 1=y

Since g(z) = f(z) is continuous in the lower half plane, and the conjugate of a continuous function
is continuous, it follows that g(z) is continuous in the lower half plane.

We now show that g(z) is also analytic in the lower half plane.
Letz = x + iy, where x is real and y is negative.

Consider the derivative of g(z) at the point z:
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9@ = () F&x + (=)
d
- () 7@

- @
4

Since f(z) is analytic in the upper half plane, it follows that (dz) f(2) is also analytic in the upper half

plane.

Therefore, conjugate of (%) f(2) is also analytic in the lower half plane, and so is g'(2).

Since g(z) is continuous and its derivative is analytic in the lower half plane, it follows that g(z) is
analytic in the lower half plane.

Thus, we have shown that if f(z) is a complex valued function that is analytic in the upper half plane
and continuous on the boundary of the upper half plane, and if f(z) satisfies:

f(2) = f(conj(2)), then the function f(z) can be extended to be analytic in the entire complex plane
by defining a new function, g(z), in the lower half plane.

11.2 consequences of the Schwarz Reflection Principle

1. One consequence of the Schwarz Reflection Principle is that if a function is analytic in the
upper half plane and its real part is non-negative on the boundary, then it can be extended
to an entire function that is real valued on the real axis.

2. Another consequence is that a function that is analytic in the upper half plane and satisfies
a certain growth condition on the boundary (such as the Riemann mapping theorem) can
be extended to an entire function with similar growth behavior.

3. Additionally, the Schwarz Reflection Principle can be used to construct solutions to
boundary value problems, such as the Dirichlet problem, by reflecting solutions from one

half plane to the other.

11.3 Different proofs of Schwartz Reflection Principle

The Schwartz Reflection Principle can be proved by various methods

1. Complex Analysis Proof: The Schwartz Reflection Principle can be proven using complex
analysis by considering the analytic continuation of the function from the upper half plane
to the lower half plane. The proof involves showing that the function, extended to the lower

half plane, is a reflection of the function in the upper half plane across the real axis.

2. Harmonic Functions Proof: The Schwartz Reflection Principle can also be proven using the
theory of harmonic functions. A function is considered harmonic if it satisfies Laplace's
equation. By assuming that the function is harmonic in the upper half plane, it can be shown
that its extension to the lower half plane is also harmonic, and therefore satisfies Laplace's
equation, meaning it must be a reflection of the function in the upper half plane across the

real axis.

3. Integral Transform Proof: The Schwartz Reflection Principle can be proven using the Fourier
Transform by showing that the Fourier Transform of a function in the upper half plane, after
being reflected across the real axis, is equal to the negative Fourier Transform of the original

function in the lower half plane.
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11.4

11.5

11.6

Paley-Wiener Theorem Proof: The Schwartz Reflection Principle can also be proven using
the Paley-Wiener theorem, which states that the Fourier Transform of a function with
compact support is a function that is entire and decays rapidly. By assuming that the
function in question is the Fourier Transform of a function with compact support in the
upper half plane, it can be shown that the function, after being reflected across the real axis,

is the Fourier Transform of a function with compact support in the lower half plane.

Bochner's Theorem Proof: The Schwartz Reflection Principle can also be proven using
Bochner's theorem, which states that a positive definite function is the Fourier Transform of
a positive measure. By assuming that the function in question is positive definite in the
upper half plane, it can be shown that the function, after being reflected across the real axis,
is positive definite in the lower half plane, implying that it is the Fourier Transform of a

positive measure.

Applications

The main application of the Schwartz Reflection Principle is in the study of distributions
and their derivatives. It provides a means to extend the definitions of distributions and
derivatives to unbounded functions.

The Schwartz Reflection Principle is a generalization of the Hahn-Banach Theorem. The
Hahn-Banach Theorem states that a linear functional on a linear subspace can be extended
to the entire space while preserving its norm. The Schwartz Reflection Principle extends this
result to the case of distributions.

The Schwartz Reflection Principle is an important tool in mathematical physics for defining
distributions and derivatives of functions. In particular, it allows for the extension of the
definitions of distributions and derivatives to unbounded functions, which is particularly
useful in quantum field theory and quantum mechanics.

Review questions

What is the main application of the Schwartz Reflection Principle?

How does the Schwartz Reflection Principle relate to the Hahn-Banach Theorem?
What is the significance of the Schwartz Reflection Principle in mathematical
physics?

State and prove the Schwartz Reflection Principle using Liouville's Theorem?

5. State and prove the Schwartz Reflection Principle without Liouville's Theorem ?

Self-assessment

Which one the following statement is true for the reference of Schwarz reflection principle?

I: The principle that a complex function which is holomorphic in the upper half plane can
be extended to a holomorphic function in the whole plane.
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II: The principle that states that a real-valued function cannot be analytically extended
across a branch cut.

A. Onlyl

B. Onlyll

C. BothlandII
D. Neither I nor II

Which one the following statement is true for the reference of Schwarz reflection principle?

I: The principle that a holomorphic function in the unit disc can be extended to a
holomorphic function in the whole plane.

II: The principle that states that the maximum value of a subharmonic function is achieved

on the boundary of its domain.

A. Onlyl

B. Onlyll

C. BothlandII
D. Neither I norII

Which one the following statement is true for the necessary condition for the Schwarz
reflection principle?

I: The function must be bounded in the upper half plane.

II: The function must be continuous in the upper half plane

A. Onlyl

B. Onlyll

C. BothlandII
D. Neither I norII

Which one the following statement is true for the necessary condition for the Schwarz
reflection principle?

I: The function must be holomorphic in the upper half plane.

II: The function must be continuous in the upper half plane

A. Onlyl

B. Onlyll

C. BothlandII
D. Neither I norII

The Schwarz reflection principle can be used to extend which type of functions to the whole
plane?

A. Only real-valued functions

B.  Only harmonic functions

C. Both real valued and harmonic

D. Neither real nor harmonic
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10.

11.

The Schwarz reflection principle can be used to extend which type of functions to the whole
plane?

A. Holomorphic functions

B. Harmonic functions

C. Subharmonic functions

D. Neither real nor harmonic

The Schwarz reflection principle states that the Fourier transform of the product of two
signals is equal to the convolution of their Fourier transforms?

A. True

B. False

The principle that states that the reflection of a Schwartz function across the x-axis is also a
Schwartz function?

A. True

B. False

The principle that states that the Laplace transform of a signal is equivalent to its Fourier

transform?
A. True
B. False

The principle that states that the derivative of a Schwartz function is also a Schwartz

function.
A. True
B. False

What is the Schwartz Reflection Principle in mathematics?

A. The principle that every polynomial function has a unique root

B. The principle that states that the boundary values of an analytic function on the
upper half-plane can be extended to an analytic function on the whole complex
plane

C. The principle that states that the roots of a polynomial equation occur in conjugate
pairs.

D. The principle that the value of a holomorphic function at a point is equal to its
average value over any small circle centered at that point.

12. Which of the following is the best definition of the Schwartz Reflection Principle?

I: A mathematical theorem that states that the reflection of a function across a
vertical line always results in an even function.
II: A mathematical theorem that states that the reflection of a function across a
vertical line always results in an odd function.

A. Onlyl

B. Onlyll

C. BothIandII
D. Neither I norII

13. Which of the following is the best definition of the Schwartz Reflection Principle?
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I: A mathematical theorem that states that the reflection of a function across a
vertical line always results in a function with the same parity.

II: A mathematical theorem that states that the reflection of a function across a
vertical line always results in a different function.

A. Onlyl

B. Onlyll

C. BothlandII
D. Neither I nor II

14. The Schwarz Reflection Principle states that if a complex valued function f(z) is analytic in
the upper half plane (Im(z) > 0), and continuous on the boundary of the upper half plane
(Im(z) = 0), and if f(z) satisfies f(z) = f((2)), then the function f(z) can be extended to
be analytic in the entire complex plane.
A. True
B. False
15. Which one the following statement is true for the reference of Schwarz reflection principle?
I: The Schwarz Reflection Principle states that if a function is analytic in the upper
half plane and its real part is non-negative on the boundary (the real axis), then it can be
extended analytically to the entire plane.
II: If a function f(z) is analytic in the upper half plane and satisfies the condition
Re(f(2z)) = 0 for all real z, then f(z) can be extended to the entire complex plane.
A. Onlyl
B. Onlyll
C. BothIandII
D. Neither InorII
Table 1: Answers of self-assessment
Question number Correct answer
1 A
2 D
3 D
4 A
5 D
6 A
7 B
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8 A
9 B
10 B
11 B
12 D
13 A
14 D
15 C
11.7 Summary

e  The Schwarz Reflection Principle states that if a complex valued function f(z) is analytic in
the upper half plane (Im(z) > 0), and continuous on the boundary of the upper half plane
(Im(z) = 0), and if f(2) satisfies f(z) = f((Z)), then the function f(z) can be extended to
be analytic in the entire complex plane.

e  The Schwarz Reflection Principle states that if a function is analytic in the upper half plane
and its real part is non-negative on the boundary (the real axis), then it can be extended
analytically to the entire plane.

e If afunction f(2) is analytic in the upper half plane and satisfies the condition Re(f(2)) =

0 for all real z, then f(z) can be extended to the entire complex plane.

e If a function f(z) is entire and bounded in the complex plane, then f(z) is constant

throughout the plane.
11.8 Keywords

Liouville's Theorem

Let f(z):C - Cbe an entire function. Suppose there exists somereal numberM >0 such
that |f(z)| < M for all z € C Then f(2) is a constant function.

11.9

&

Books

Further Readings

Complex Variables And Applications By Churchill, R. V. And Brown, J. W., Mcgraw Hill
Education.

Foundations Of Complex Analysis By S. Ponnusamy, Narosa Publishing House.
Complex Analysis By Lars V. Ahlfors, Mcgraw Hill Education.
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4. Complex Variables Theory And Applications By H. S. Kasana, Prentice Hall.

136 LOVELY PROFESSIONAL UNIVERSITY



Unit 12 - Normal families of analytic functions

Rajesh Kumar Chandrawat, Lovely Professional University

Unit 12 - Normal families of analytic functions

Purpose and Objectives:

Meromorphic functions are an important class of functions studied in complex analysis. They
are defined as functions that are holomorphic (analytic) everywhere except at a finite number of
isolated singularities. Meromorphic functions are useful in studying the behavior of complex
functions near singularities, and they provide a representation of any meromorphic function in
terms of its poles and their residues. After this unit students can be able to-

1. Understand the Meromorphic functions

2. State and prove the Mittag-Leffler theorem

3. Learn the infinite product of complex Numbers
Introduction

In this unit first we will understand the concept of singularities and poles for meromorphic function
then the we will use the mesomorphic function to prove the Mittag-Leffler theorem. Last we will
focus on the infinite product of complex Numbers.

12.1 Singularities

A point zq is called a singular point of a function f(z) if f(z) fails to be analytic at zy but is analytic at
some point in every neighborhood of zo.

Y

=

Example:

Behavior of following functions at z = 0.

) =
z) = -

Sinz

[ ===

e?—1
f@)=—
1

f@ = sin(1/z)

We observed that all the functions mentioned above are not analytic at z = 0.However in every
neighbourhood of z = 0, there is point at which f(z) is analytic.
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(=)

Example:

Behavior of following function at z = 1.
z
1-z

fz) =

o
K

We observed that the f(z)is not analytic at z = 1.However in every neighbourhood of z = 0, there is
point at which f(z) is analytic. So z =1 is the singular point of f(z).

=

Example:

f(z) = z?% is analytic everywhere so it has no singular point.

(=)

Example:
Behavior of following function in the entire z plane
f@ =1z

We observed that the f(z)is not analytic at z = 1.However in every neighbourhood of z = 0, there is
point at which f(z) is analytic. So z =1 is the singular point of f(z).

12.2 Classification of singularity

The singularity of a complex function can be classified into two groups, isolated and non-isolated. It
can be done via Laurent series expension, but we can also classify the singularity without the Laurent
series expension. In the forthcoming units we will consider the classification using the Laurent series.

The isolated singularity further can be classified into different type. The following diagram shows
the different types of the singularities.
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Sfﬂgulmifj

Tsolated I\\I’OV\; ISolated

Kewovable Sfﬂglﬁlmﬁj

Pole

N

Essential Singulanity

Sfﬂgula)ﬂ{j ot M§mite

6.2.1 Isolated singularity

A point a is called an isolated singularity for f(z) if f(z) is not analytic at z = a and there existr > 0
such that f(z) is analytic in 0 < |z — a| < r. The neighbourhood |z — a| < r contains no singularity
of f(z) except a.

=)

Example:

f(2) = 2( 2+1) has three isolated singularitiesz = 0,i,—

=)

Example:
f(z) = ﬁ has three isolated singularities z = 0,+m, 2, ...,

6.2.2 Removable singularity

Let f(z)is analytic everywhere execpt the point z; inside and on the domain then if the lim f(2)
z-2Z,

exists then z; is the removable singularity.

(=)

Example:
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Letf(2) = Siﬂ, clearly z, = 0 is an isolated singular point for f(z).

lim f(z) = 11mﬂ =1

z-2Z,

lim f(z) exists then z, = 0 is the removable singularity.
z-Z

=

Example:

z—-sinz

Letf(2) = , clearly z, = 0 is an isolated singular point for f(z).

lim f(z) = llmz sinz

z-2, z3
—cosz

lim f(z) = 11m

z-2Z,

[L-Hosptital rule]

lim f(Z) — 11 0+sinz [

Z—oZy

L-Hosptital rule]

coSz

lim f(z) = 11m

z-2Z,

o [L-Hosptital rule]
Jim £G) =l

lim f(z) exists then z, = 0 is the removable singularity.

Z—oZy

6.2.3 Pole

Let f(z)is analytic everywhere execpt the point z,inside and on the domain then if the
lim (z — 2y)*f(2z) = 1, where 1 # 0, then z, is the pole of order k.
z-2,

If k = 1, then z, is the simple pole.

=

Example:

Consider f(z) = — Clearly z, = 0 is an isolated singular point for f(z).

lim f(z) = llm—

Z—Zy

lim (z-0)! f(2) = lim z%
z-z z-0 Z
lim(z-0)'f(z)=e’=1=%0.
z—2Zg

So z, = 0 is the pole of order 1 or simple pole.

=

Example:

COSZ

Consider f(z) =

lim f(z) = lim#
Z—Zg z—0 z

, clearly z, = 0 is an isolated singular point for f(z).

2 COSZ

llm (z-0)f(2)= llmz
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lim (z - 0)? f(2) = limcosz = 1 # o.
Z>Zg z-0
So zy = 0 is the pole of order 2.

=

Example:

Consider f(z) = 1_2—5222 , clearly z, = 0 is an isolated singular point for f(z).

1—e?2

lim f(z) =lim

z-27, z—0 23
—p2Z
lim (z— 0)3 f(2) =1imz3(1—i) =0
Z-Z z—0 z
lim (z — 0)2 f(2) =lim z2 (1_—6:2)
Z-Z z—0 z
lim (z — 0)2 f(z) = lim &=,
z-2, z—0 z

¥4

=-2=0.

lim (z — 0)2 f(2) = lim =2~
zZ—Z z—0 1

So z, = 0 is the pole of order 2.

6.2.4 Essential singularity

Let f(z)is analytic everywhere execpt the point z, inside and on the domain then if the
lim (z — zy)"f(z) = oo, then z, is essential singularity.
z-2,

(=)

Example:
Consider f(z) = e'/? , clearly z, = 0 is an isolated singular point for f ().

lim f(z) =lim e/*
zZ—Z z—0

lim (z — 0)" f(2) =lim z"e'/% .
zZ—Z z—0

im (2 — 0V F(2) =1lim 21+~ + 2 (1) + L (1) 4 ...
Zh_)nzlo(z 0" f(2) lzl_I;%Z [1+Z+2!() +3!(Z) +-].

lim (z— 0)" f(2) = o

So z, = 0 is an essential singularity.

6.2.5 Singularity at infinity

We classify the types of singularities at infinity by letting w = 1/z and analyzing the resulting
function at w = 0.

(=)

Example:

f(z) =z53.

f(2) =g(w) =1/w?.

g(w) has a pole of order 3 at w = 0 The function f(z) has a pole of order 3 at infinity.
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6.2.5 Non-isolated singularity

A point a is called a non-isolated singularity for f(z) if f(z) is not is not isolated at z = a.

=)

Example:

f(2) =

1
sin @)

X KX R X X X
-1/7 -1/(2x) \ 1/(27) 1/x

z, =0 (non-isolated)

The function is not analytic in any region 0 < |z| <.

12.3 Classification of singularity by Laurent series expansion

It is also possible to classify the singularity using the Laurent series expansion.

Let a be an isolated singularity for a function f(z). Let r > 0 be such that f(z) is analytic in 0 <
|z — a| < r. In this domain the function f(z) can be represented as a Laurent series given by

f) = Z(z +Zan(z—a)n

Were

f ) d¢

Tl Cy ({—a)—n+1

Zm

_ £©
el & G-ay %

ZT[I.

The series consisting of the negative powers of z — a in the above Laurent series expansion of f(z) is
given by Y7,

by . o . -
oy and is called the principal part or singular part of f(z) at z = a.

The singular part of f(z) at z = a determines the character of the singularity.
6.9.1 Removable singularity by Laurent series expansion

Let a be an isolated singularity for f(z). Then a is called a removable singularity if the principal part
of f(z) at z = a has no terms.

If a is a removable singularity for f(z) then the Laurent’s series expansion of f(z) aboutz = a is
given by

[ =) anz—a)"

n=0
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Hence as z—a, f(z) = ay Hence by defining f(a) = a, the function f(z) becomes analytic at a.

=)

Example:
Let f(2) = %, clearly z, = 0 is an isolated singular point for f(z).
sinz 1 z3 z5
Now f(z) = - —;(Z -3 +E - )
sinz z? z*
f(Z) —T = (1 —; +; - )

Here the principal part of f(z) at z = 0 has no terms. Hence z = 0 is a removable singularity.

lim f(z) also exists then z, = 0 is the removable singularity.

z-2Z,
Example:
Letf(2) = Z_:inz, clearly z, = 0 is an isolated singular point for f(z).
Z3 Z5
z—(z —5y +& — )
_ 31 75
f2)= 3
Z3 Z5 )
_| - _| T ey
flz) =322
1 z?
f(Z) —E—a — ey

z = 0 is a removable singularity. By defining f(0) = 1/6 the function becomes analytic at z =
0.Also lim f(z) exists then z, = 0 is the removable singularity.
z—2,

6.9.2 Pole by Laurent series expansion

Let a be an isolated singularity of f(z). The point a is called a pole if the principal part of f(z) at z =
a has a finite number of terms.
If the principal part of f(z)at z = a is given by

b1 b,

bt

7—a | z-a)2 G where b, # 0.

We say that a is a pole of order r for f(z). Note: A pole of order 1 is called a simple pole and a pole
of order 2 is called double pole.

=

Example:

Consider f(z) = e; ,clearly z, = 0 is an isolated singular point for f(z).

_e 1 2. 7
f(z)—; 1+z+ >+ 6+...,)

z

f@)=%=1/z+ 1+§+%2+...,)

z

Here the principal part of f(z) at z = 0 has a single termi . Hence z = 0 is a simple pole of f(z). Also

lim (z - 0)* f(z)= e®=1+0.50 zy = 0 is the pole of order 1 or simple pole.
z-2zg
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=)

Example:

Consider f(z) = % , clearly z, = 0 is an isolated singular point for f(z).

z2 ozt
cosz l—mr+zr—,
f(2) = = : :

z2 z2

The principal part of f(z) at z = 0 contains the term 1/z2 . Hence z=0 is a double pole of f(z).

Also lim (z - 0)? f(z) =limcosz = 1 # 0.
Z-Z z—0

So zy = 0 is the pole of order 2.

6.9.3 Essential singularity

Let a be an isolated singularity of f(z). The point a is called an essential singularity of f(z) atz=a
if the principal part of f(z) at z = a has an infinite number of terms.

=

Example:
Consider f(z) = e'/%, clearly z, = 0 is an isolated singular point for f(z).

f2)=e'?
RO R O

z

The principal part of f(z) has infinite number of terms. Hence f(z) = e'/# has an essential singularity
atz =0.

Also lim (z — 0)" f(z) = oo.
z-2,

So z, = 0 is an essential singularity.

12.4 Meromorphic Functions

A function is analytic everywhere in the finite plane except at a finite number of poles is called a
meromorphic function.

(=)

Example:
A
@ =GDe+3e
y
Y . \
AN | 1 AN
I L X
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f(2) is analytic everywhere in the complex plane except z = 1 and z = —3.Here z = 1is a simple pile
and z = —3 is the pole of order 3. We can say that the f(z) has finite number of poles and it’s a
meromorphic function.

=)

Example:

Consider f(z) = %z ,clearly z, = 0 is an isolated singular point for f(z).
. . e~
lim f(z) =lim—
Z-2Z z—0 z
z
lim (z - 0)' f(z) =limz =
Z—2Z z-0 Z
lim(z-0)'f(z)=e’=1=%0.
VARTA

So z, = 0 is the pole of order 1 or simple pole. We can say that the f(z) has finite number of poles
and it's a meromorphic function.

=

Example:

Consider f(z) = azﬂ clearly z, = 0 is an isolated singular point for f(z).

2 7/

lim f(z) =lim=
Z-2Zg z—0 7z

lim (z - 0)? f(2) = lim z% =2,
Z-Zg z—0 4

lim (z - 0)? f(2) =limcosz = 1 # 0.
Z-Zg z—0

So zy, = 0 is the pole of order 2. We can say that the f(z) has finite number of poles and it’s a
meromorphic function.

=

Example:

Consider f(z) = 1_2—izz , clearly z, = 0 is an isolated singular point for f(z).

1-e%
Z3

lim f(z) =lim
zZ—Z z—0

lim (z — 0)3 f(2) = limz3(1_—zzz) =0
PRI z-0 z

_ 2z
lim (z — 0)% f(z) =lim z?2 (1—2)
PRI z—0 z

lim (z — 0)2 f(2) = lim &=¢2

z-7, z—0 z

lim (z — 0)2 f(z) = lim 2= = —2 # 0.
z-7, z50 1

So z, = 0 is the pole of order 2. We can say that the f(z) has finite number of poles and it's a
meromorphic function.

=

Example:

Consider f(z) = e'/%, clearly z, = 0 is an isolated singular point for f(z).
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lim f(z) =lim e'/?
z—Zy z-0

lim (z — 0)" f(2) =lim z"e'/% .
z—Zy z—-0

lim (z— 0)" f(2) = lim 2"[1 +§+%(§)2 +5(—)2 4]
lim (- 0)" £(2) = o».

So z, = 0 is an essential singularity.Thus this function is not meromorphic in the whole complex
plane.

12.5 Mittag-Leffler theorem

The Mittag-Leffler theorem is a fundamental result in complex analysis that deals with the existence
of meromorphic functions with prescribed poles and residues. Specifically, it states that for any
sequence of distinct points in the complex plane and any sequence of complex numbers, there exists
a meromorphic function with poles precisely at the given points and residues equal to the
corresponding complex numbers.

More formally, let zy, z,, ... be a sequence of distinct complex numbers, and let ¢y, ¢,,. .. be a sequence
of complex numbers. Then there exists a meromorphic function f(z) on the complex plane such that
the only poles of f(z) are at the points z;, z,,..., and the residue of f(z) at z; is¢;, fori = 1,2,....

Proof:

To prove the Mittag-Leffler theorem, we will construct the desired meromorphic function f(z) using
a standard technique known as the Weierstrass product formula.

This involves expressing f(z) as an infinite product of simple functions, each of which has a single
pole at one of the given points and the prescribed residue.

Let D,, be the disc centered at z, with radius r;; such that D,, is disjoint from all other discs, and let
Cpbe the circle bounding D,,.

Then we define the function g, (2) as:
gn(@) = (z = z,)7* ePre =)

where p, is chosen so that the Laurent series of g, (z) at z, has a constant term of c,,. Specifically,
we set:

Cn
Pn .

Using the Cauchy integral formula, we can express g, (z) as an integral over Cy:

1 In(w)

In(2) = 5=

- dw
2ni Jow — z
n

Now we define the function F(z2) as:

F@) = | [9.
n=1

This product converges absolutely and uniformly on compact sets, since the discs D,, are disjoint and
the radii r;,, are chosen appropriately. Moreover, F(z) is meromorphic on the complex plane, since
each g, (z) has a single pole at z,, and no other poles.

To see that F(z) has the desired poles and residues, we consider the partial products:

N
Fye = Hgn(l)
n=1

These are meromorphic functions with poles only at the points zj, zy, ..., zy. Moreover, the residue of
Fy(z) at zy is c,, by construction. Finally, we note that Fy,) converges to F(z) as N goes to infinity,

since the product converges absolutely and uniformly on compact sets.
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Therefore, we have constructed a meromorphic function f(z) with the desired poles and residues,
namely:

f(@) = F(2)
This completes the proof of the Mittag-Leffler theorem.

T

o
1111

Question:

Prove that cotz = i + 2z Z;‘{;l% using Mittage Laffer's theorem

z2-n?m?

Proof:
1 © 1 .
To prove that cotz — -= 2z Zn=1zz_—nZ”2 , we can use the Mittag-Leffler theorem.

To prove this identity using the Mittag-Leffler theorem, we need to first identify the poles and their
residues of the function cot(z).

We know that cot(z) is periodic with period m, and has simple poles at z = nm for all integers n.

Recall that the cotangent function can be expressed as the ratio of the cosine and sine functions:

The poles of the cotangent function are the zeros of the sine function, which occur at z = nr for all
integers n. Thus, we can write:

CoSZ

cotz =
Z — Nmw

To prove this identity using Mittag-Leffler theorem, we need to find the poles and residues of the
function cot(z) and the infinite sum in the equation.

First, we know that cot(z) has simple poles at z = nm for all integers n.
The residues at these poles are +1, depending on the sign of sin(nm).

Next, we consider the infinite sum in the equation.
Letf(2) = X

This function has poles at z = +nm for all integers n. The residues at these poles are given by

. (z—nm)1 1
Res[f(z),z = nn| = llmz_,nnm =

1
z2 —n2g2 "

and
. (z+nm)1 1
ReS[f(Z)’Z = —nﬂ] = llmzﬁ_nnm = _ﬁ'

Now, using the Mittag-Leffler theorem, we can write

1 < 1 1
cot(z)——=z ( + )
Z Z—nn zZ+nm

n=1

T s )

2nm \z—nn z+nm
1 1
=2 2;’—1 onm 22 — n2m?
= 2f(2)

Therefore, we have

cot(z) = i + 27, — L as desired.

1
2nm z% — n?m?
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12.6 Infinite Product of Complex Numbers

An infinite product of complex numbers is given by:

Z = 20.29.Z5...,.Zp ...

The notation for infinite productis [/, z;

where z,, 2, 73,..., z, are complex numbers.

If the infinite product converges, then we can define it as follows:

z = lim(z;.25.25...,2,)
n—-oo

In general, an infinite product of complex numbers is said to converge if and only if the limit of the
sequence of partial products (i.e., the product of the first n terms) exists and is nonzero.

Some important results related to infinite products of complex numbers are:
1.  If the infinite product |z| converges, then the infinite product z also converges.
2. The infinite product (1 + z) converges if and only if the infinite product (1 — |z|) converges.
3. The infinite product (1 — z) converges if and only if the infinite product (1 + |z|) converges.

n
4. The infinite product (1 + %) converges to e? as n approaches infinity, for any complex

number z.

5. The infinite product sin (%) converges to zero for any non-zero complex number z.

Question
Suppose an infinite product is absolutely convergent. Prove that it is convergent
Solution
Suppose the infinite product is given by:
P = a;.a5.a3..
where ai are non-negative real numbers.
By the absolute convergence of P, we have that the series:
S = log(ay) + log(a,) + log(az) +..
converges.
Since the logarithm function is continuous, we can take the exponential of both sides to obtain:
eS = eloga) glog(az) ylog(as)
which simplifies to:
P = a;a,a;..

Thus, the absolute convergence of P implies that the series S converges, which in turn implies
that P converges as well.

Therefore, we have shown that if an infinite product is absolutely convergent, then it is also
convergent.

12.7 Review questions

1. f(z)= (1—21)2 is meromorphic because it has finite number (say K) of pole in the entire

complex plane then K =?
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12.8

N

f(@

o0 w

oNn® > &

oS0 w >

S0 w >

z . . . P .
f(z) = D@23 1 meromorphic because it has finite number (say K) of pole in the

entire complex plane then K =?

Check whether the following functions is meromorphic?

e

f(2)=~—
Check whether the following functions is meromorphic?

sinz

9(2) =2

State and prove the Mittag-Leffler theorem

Self-assessment

f(2) = ﬁ is meromorphic because it has finite number (say K) of pole in the entire

complex plane then K =?
5
1
2
3

f(2) = m is meromorphic because it has finite number (say K) of pole in the entire

complex plane then K =?
5
1
2
3

Which one of the following functions is meromorphic?

sinz
(z-1)2°

=7, and g(2) =

Only f(2)

Only g(2)
Both f(2) and g(2)
Neither f(z) nor g(z)

Consider the f(z) = é then

zy = 1 is the singular point of f(z)
zy = 0 is the singular point of f(z)
zy = 10 is the singular point of f(z)

There is no singular point of f(z)

LOVELY PROFESSIONAL UNIVERSITY

149



150

Complex Analysis-I1

ONwp e

&

90w p

N

10.

11.

12.

13.

Consider the f(z) = z? then

zy = 1 is the singular point of f(z)

zy = 0 is the singular point of f(z)

zy = 10 is the singular point of f(z)

There is no singular point of f(z)

z2-9

Consider the f(z) = ————— then

z2(z—1)(z—1-2i)

zy = 1 is one of the singular points of f(z)

zy =3 is the singular point of f(z)

zy = —3 is the singular point of f(z)

There is no singular point of f(z)

What is Mittag-Leffler's theorem?

A.
B.
C

A theorem on the convergence of infinite series.

A theorem on the analytic continuation of meromorphic functions.

A theorem on the existence of a holomorphic function with prescribed
singularities

What does the theorem say about meromorphic functions?

A.

B.

C.

They can be extended to the whole complex plane.
They can be extended to a neighborhood of their poles.
They can be approximated by polynomials

What are the conditions for the Mittag-Leffler's theorem to hold?

A.

B.

C.

The function must have isolated singularities and a certain growth
condition.

The function must be holomorphic and bounded on a compact set.

The function must be a polynomial

What is the significance of the theorem in complex analysis?

A.

B.

C.

It provides a method for approximating meromorphic functions

It is a fundamental tool for studying the Riemann zeta function

It allows us to construct meromorphic functions with prescribed
singularities

What is the value of the infinite product (1+i)(1-i)(1+i)(1-i)...?

A1l
B. -1
C i

D. -i

What is the value of the infinite product (1+21)(1-2i)(1+2i)(1-2i)...?

A1l
B. -1
C 2
D. -2i

What is the value of the infinite product (1+i/2)(1-i/2)(1+i/2)(1-i/2)...?

A1
B. -1/2
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c. i/2
D. -i/2

14. What is the value of the infinite product (1+i/3)(1-i/3)(1+i/3)(1-i/3)...?

A1
B. -1/3
C. i/3

D. -i/3

15. What is the value of the infinite product (1+3i)(1-31)(1+3i)(1-3i)...?

A1

B. -1

C. 3i

D. -3i

Table 1: Answers of self-assessment

Question number Correct answer
1 B
2 C
3 C
4 A
5 D
6 A
7 B
8 A
9 A
10 C
11 A
12 B
13 B
14 B
15 B

12.9 Summary

e The A function is analytic everywhere in the finite plane except at a finite number of poles

is called a meromorphic function.
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e  The An infinite product of complex numbers is given by:
Z = 20.29.Z5...,.Zp ...
The notation for infinite productis []i, z;
e If the infinite product |z| converges, then the infinite product z also converges.
e  The infinite product (1 + z) converges if and only if the infinite product (1 — |z|) converges.

e  The infinite product (1 — z) converges if and only if the infinite product (1 + |z|) converges.

12.10 Keywords
Meromorphic function:

A function is analytic everywhere in the finite plane except at a finite number of poles is called a
meromorphic function.

Mittag-Leffler theorem :

Let zy,2,,...be a sequence of distinct complex numbers, and let ¢, c,,... be a sequence of complex
numbers. Then there exists a meromorphic function f(z) on the complex plane such that the only
poles of f(z) are at the points 2, z,,..., and the residue of f(2) at z; is¢;, fori = 1,2,....

12.11 Further Readings

&

Books

1. Complex Variables And Applications By Churchill, R. V. And Brown, J. W., Mcgraw Hill
Education.

2. Foundations Of Complex Analysis By S. Ponnusamy, Narosa Publishing House.
3. Complex Analysis By Lars V. Ahlfors, Mcgraw Hill Education.
4. Complex Variables Theory And Applications By H. S. Kasana, Prentice Hall.

LOVELY PROFESSIONAL UNIVERSITY



Rajesh Kumar Chandrawat, Lovely Professional University Unit 13 - Bieberbach's conjecture

Unit 13 - Bieberbach's conjecture

Purpose and Objectives:

After this unit students can be able to-

1. Understand the Schwarz Reflection Principle for analytic functions?

2. Prove the Schwarz Reflection Principle for analytic functions?

3. Learn the consequences of the Schwarz Reflection Principle
Introduction

If a function is analytic in the upper half plane and its real part is non-negative on the boundary (the
real axis), then it can be extended analytically to the entire plane. In other words, if a function f(z) is
analytic in the upper half plane and satisfies the condition Re(f(z)) = 0 for all real z, then f(z) can
be extended to the entire complex plane.

The Schwarz Reflection Principle has several important applications in complex analysis, such as
proving the analyticity of functions, constructing entire functions with prescribed properties, and
solving boundary value problems. In this unit we will explore the Schwarz Reflection Principle for
analytic function.

13.1 Schwarz Reflection Principle for Analytic Functions

Statement:

The Schwarz Reflection Principle states that if a complex valued function f(z) is analytic in the upper
half plane (Im(z) > 0), and continuous on the boundary of the upper half plane (Im(z) = 0), and
if f(2) satisfies f(z) = f((2)), then the function f(z) can be extended to be analytic in the entire
complex plane.

or

The Schwarz Reflection Principle states that if a function is analytic in the upper half plane and its
real part is non-negative on the boundary (the real axis), then it can be extended analytically to the
entire plane. In other words, if a function f(z) is analytic in the upper half plane and satisfies the
condition Re(f (Z)) > 0 for all real z, then f(z) can be extended to the entire complex plane.

Proof 1:

The proof of the Schwarz Reflection Principle relies on the fact that if a function is analytic in the
upper half plane and its real part is non-negative on the boundary, then it can be represented as a
real part of another analytic function.

Let f(2) be analytic in the upper half plane and Re(f(z)) = 0 for all real z.

Then the function g(z) = f(2) + i(—f(z)) is analytic in the upper half plane and satisfies
Re(g(z)) = 0 for all real z.

The proof also uses the maximum modulus principle and Liouville's theorem.

Liouville's Theorem

Liouville's Theorem states that a bounded holomorphic function on the entire complex plane must
be constant. It is named after Joseph Liouville.

Statement:

Let f(2z):C - Cbe an entire function. Suppose there exists somereal numberM =0 such
that |[f(z)| < M for all z € C Then f(2) is a constant function.
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Or

If a function f(z) is entire and bounded in the complex plane, then f(z) is constant throughout the
plane.

Proof:

It is given that

i. A function f(2) is analytic in the entire complex plane
ii. A function f(z) is bounded, that |f(2)| < M.

Let us consider two points a and b inside a particular domain(See the figure 5.1).

|2l=

Fiqure 5.1: Two points a and b inside a particular domain

Then using Cauchy integral formula
f@) )
6. (L2 az = (@

2mi 45 ( e ) dz = f(b)
If £ (z) is constant throughout the domain, then f(a) = f(b).
Now let’s prove f(a) — f(b) = 0.

@ =56, (22) a5 -4, (29) az
@1 =56, (22 - 1D,
f(a)~f(b) = —.écf(z)( - )
F@)~f(b) = 5=, f(z )(%)dz
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a—>b 1
F@~F®) = 5O (w42

a—b 1
F@ ~FO)1 =[5 6D (G =) 42
a—b 1
F@ = FO = 5o S @ (= =) 142
a—b 1
1F@ = FO = 5o | S (= an e =Ton) 142
Let
z=rel
dz =re'®.i.do
|dz| = |re®.i.d6|

|dz| = |r|.|e®|. |i].|d6]
Here |r| =7

le®| = |cos6 + isin| =1,

il =1,
|dz| =r.|dé)|

a—b 1
F@ = FO = 5 M (s =) ™ 140

1
$.M ((1 —a/r(1-b/7)

If f () is analytic in the entire complex plane, then |z| = r — 0. So
If (@)= f(b)| <0

f@—fb)=0

Hence, we can say that f(a) = f(b). It means that f(z) is a constant.

If(@ - Fb)l <=

).|d0|

YA

Liouville's Theorem proof using Cauchy integral formula for derivatives.

If {(z) is analytic in a simply connected region then at any interior point of the region, z, inside C.
Then say, the derivatives of f(z) of any order exist and are themselves analytic (which illustrates
what a powerful property analyticity is!). The derivatives at the point z, are given by Cauchy’s

integral formula for derivatives:

§, (L) ds = 2mi L1

(z—zp)"*?

where C is any simple closed curve, in the region, which encloses z,. Note the casen = 1:

b (L) dz = f'(z0).

2mi” ¢
1 _ L f(2)
I (z0)| = 2mi §c ((z—zo)z) dZ|.
’ 1 |f(2)]
1" @)| < |5l $_(2ey) .

Here z = re'?

dz =re'®.i.de.

|dz| = |re'®.i.d6)|.

|dz| = |r|.[e®]. i].1d6].
Here |z — zy| =71

le®| = |cos6 + isind| =1,

lil =1,
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|dz| =r.|d6|.
If' @) < 5-$_(5)r-1del.

r

If' @)l <56 (5).do.

If f(z) is analytic in the entire complex plane then r — oo. So
If'(z)l <0

f'(z9) =0

f(2) = constant.

By Liouville's theorem, the imaginary part of g(z) is constant on the boundary, say c. Then the
function h(z) = g(z) + ic is analytic in the entire plane and has the same real part as f(z).

Proof 2:

Let f(z) be a complex valued function that is analytic in the upper half plane (Im(z) > 0), and
continuous on the boundary of the upper half plane (Im(z) = 0).

Consider a point z in the lower half plane (Im(z) < 0)[See figure 5.2]

Figure 5.2: w = f(2)

Letz = x + iy, where x is real and y is negative.
Let's define a new point, conj(z)=z, which is equal to the complex conjugate of z.
That is, conj(z) = x — iy.

Since f(z) is continuous on the boundary of the upper half plane, it follows that f(conj(z)) is
continuous in the lower half plane.

Also, since f(z) satisfies f(z) = f((2)), we have:

f@ = f((com(2)))

= fx—w

= flx + (=)

Thus, we can define a new function, g(z), in the lower half plane as follows:
9@ = f(x + 1=y

Since g(z) = f(z) is continuous in the lower half plane, and the conjugate of a continuous function
is continuous, it follows that g(z) is continuous in the lower half plane.

We now show that g(z) is also analytic in the lower half plane.
Letz = x + iy, where x is real and y is negative.

Consider the derivative of g(z) at the point z:
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9@ = () F&x + (=)
d
- () 7@

- @
4

Since f(z) is analytic in the upper half plane, it follows that (dz) f(2) is also analytic in the upper half

plane.

Therefore, conjugate of (%) f(2) is also analytic in the lower half plane, and so is g'(2).

Since g(z) is continuous and its derivative is analytic in the lower half plane, it follows that g(z) is
analytic in the lower half plane.

Thus, we have shown that if f(z) is a complex valued function that is analytic in the upper half plane
and continuous on the boundary of the upper half plane, and if f(z) satisfies:

f(2) = f(conj(2)), then the function f(z) can be extended to be analytic in the entire complex plane
by defining a new function, g(z), in the lower half plane.

13.2 consequences of the Schwarz Reflection Principle

1. One consequence of the Schwarz Reflection Principle is that if a function is analytic in the
upper half plane and its real part is non-negative on the boundary, then it can be extended
to an entire function that is real valued on the real axis.

2. Another consequence is that a function that is analytic in the upper half plane and satisfies
a certain growth condition on the boundary (such as the Riemann mapping theorem) can
be extended to an entire function with similar growth behavior.

3. Additionally, the Schwarz Reflection Principle can be used to construct solutions to
boundary value problems, such as the Dirichlet problem, by reflecting solutions from one

half plane to the other.

13.3 Different proofs of Schwartz Reflection Principle

The Schwartz Reflection Principle can be proved by various methods

1. Complex Analysis Proof: The Schwartz Reflection Principle can be proven using complex
analysis by considering the analytic continuation of the function from the upper half plane
to the lower half plane. The proof involves showing that the function, extended to the lower

half plane, is a reflection of the function in the upper half plane across the real axis.

2. Harmonic Functions Proof: The Schwartz Reflection Principle can also be proven using the
theory of harmonic functions. A function is considered harmonic if it satisfies Laplace's
equation. By assuming that the function is harmonic in the upper half plane, it can be shown
that its extension to the lower half plane is also harmonic, and therefore satisfies Laplace's
equation, meaning it must be a reflection of the function in the upper half plane across the

real axis.

3. Integral Transform Proof: The Schwartz Reflection Principle can be proven using the Fourier
Transform by showing that the Fourier Transform of a function in the upper half plane, after
being reflected across the real axis, is equal to the negative Fourier Transform of the original

function in the lower half plane.

LOVELY PROFESSIONAL UNIVERSITY
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13.4

13.5

13.6

Paley-Wiener Theorem Proof: The Schwartz Reflection Principle can also be proven using
the Paley-Wiener theorem, which states that the Fourier Transform of a function with
compact support is a function that is entire and decays rapidly. By assuming that the
function in question is the Fourier Transform of a function with compact support in the
upper half plane, it can be shown that the function, after being reflected across the real axis,

is the Fourier Transform of a function with compact support in the lower half plane.

Bochner's Theorem Proof: The Schwartz Reflection Principle can also be proven using
Bochner's theorem, which states that a positive definite function is the Fourier Transform of
a positive measure. By assuming that the function in question is positive definite in the
upper half plane, it can be shown that the function, after being reflected across the real axis,
is positive definite in the lower half plane, implying that it is the Fourier Transform of a

positive measure.

Applications

The main application of the Schwartz Reflection Principle is in the study of distributions
and their derivatives. It provides a means to extend the definitions of distributions and
derivatives to unbounded functions.

The Schwartz Reflection Principle is a generalization of the Hahn-Banach Theorem. The
Hahn-Banach Theorem states that a linear functional on a linear subspace can be extended
to the entire space while preserving its norm. The Schwartz Reflection Principle extends this
result to the case of distributions.

The Schwartz Reflection Principle is an important tool in mathematical physics for defining
distributions and derivatives of functions. In particular, it allows for the extension of the
definitions of distributions and derivatives to unbounded functions, which is particularly
useful in quantum field theory and quantum mechanics.

Review questions

What is the main application of the Schwartz Reflection Principle?

How does the Schwartz Reflection Principle relate to the Hahn-Banach Theorem?
What is the significance of the Schwartz Reflection Principle in mathematical
physics?

State and prove the Schwartz Reflection Principle using Liouville's Theorem?

5. State and prove the Schwartz Reflection Principle without Liouville's Theorem ?

Self-assessment

Which one the following statement is true for the reference of Schwarz reflection principle?

I: The principle that a complex function which is holomorphic in the upper half plane can
be extended to a holomorphic function in the whole plane.
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II: The principle that states that a real-valued function cannot be analytically extended
across a branch cut.

A. Onlyl

B. Onlyll

C. BothlandII
D. Neither I nor II

Which one the following statement is true for the reference of Schwarz reflection principle?

I: The principle that a holomorphic function in the unit disc can be extended to a
holomorphic function in the whole plane.

II: The principle that states that the maximum value of a subharmonic function is achieved

on the boundary of its domain.

A. Onlyl

B. Onlyll

C. BothlandII
D. Neither I norII

Which one the following statement is true for the necessary condition for the Schwarz
reflection principle?

I: The function must be bounded in the upper half plane.

II: The function must be continuous in the upper half plane

A. Onlyl

B. Onlyll

C. BothlandII
D. Neither I norII

Which one the following statement is true for the necessary condition for the Schwarz
reflection principle?

I: The function must be holomorphic in the upper half plane.

II: The function must be continuous in the upper half plane

A. Onlyl

B. Onlyll

C. BothlandII
D. Neither I norII

The Schwarz reflection principle can be used to extend which type of functions to the whole
plane?

A. Only real-valued functions

B.  Only harmonic functions

C. Both real valued and harmonic

D. Neither real nor harmonic
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10.

11.

The Schwarz reflection principle can be used to extend which type of functions to the whole
plane?

A. Holomorphic functions

B. Harmonic functions

C. Subharmonic functions

D. Neither real nor harmonic

The Schwarz reflection principle states that the Fourier transform of the product of two
signals is equal to the convolution of their Fourier transforms?

A. True

B. False

The principle that states that the reflection of a Schwartz function across the x-axis is also a
Schwartz function?

A. True

B. False

The principle that states that the Laplace transform of a signal is equivalent to its Fourier

transform?
A. True
B. False

The principle that states that the derivative of a Schwartz function is also a Schwartz

function.
A. True
B. False

What is the Schwartz Reflection Principle in mathematics?

A. The principle that every polynomial function has a unique root

B. The principle that states that the boundary values of an analytic function on the
upper half-plane can be extended to an analytic function on the whole complex
plane

C. The principle that states that the roots of a polynomial equation occur in conjugate
pairs.

D. The principle that the value of a holomorphic function at a point is equal to its
average value over any small circle centered at that point.

12. Which of the following is the best definition of the Schwartz Reflection Principle?

I: A mathematical theorem that states that the reflection of a function across a
vertical line always results in an even function.
II: A mathematical theorem that states that the reflection of a function across a
vertical line always results in an odd function.

A. Onlyl

B. Onlyll

C. BothIandII
D. Neither I norII

13. Which of the following is the best definition of the Schwartz Reflection Principle?
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I: A mathematical theorem that states that the reflection of a function across a
vertical line always results in a function with the same parity.

II: A mathematical theorem that states that the reflection of a function across a
vertical line always results in a different function.

A. Onlyl

B. Onlyll

C. BothlandII
D. Neither I nor II

14. The Schwarz Reflection Principle states that if a complex valued function f(z) is analytic in
the upper half plane (Im(z) > 0), and continuous on the boundary of the upper half plane
(Im(z) = 0), and if f(z) satisfies f(z) = f((2)), then the function f(z) can be extended to
be analytic in the entire complex plane.
A. True
B. False
15. Which one the following statement is true for the reference of Schwarz reflection principle?
I: The Schwarz Reflection Principle states that if a function is analytic in the upper
half plane and its real part is non-negative on the boundary (the real axis), then it can be
extended analytically to the entire plane.
II: If a function f(z) is analytic in the upper half plane and satisfies the condition
Re(f(2z)) = 0 for all real z, then f(z) can be extended to the entire complex plane.
A. Onlyl
B. Onlyll
C. BothIandII
D. Neither InorII
Table 1: Answers of self-assessment
Question number Correct answer
1 A
2 D
3 D
4 A
5 D
6 A
7 B
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8 A
9 B
10 B
11 B
12 D
13 A
14 D
15 C
13.7 Summary

e  The Schwarz Reflection Principle states that if a complex valued function f(z) is analytic in
the upper half plane (Im(z) > 0), and continuous on the boundary of the upper half plane
(Im(z) = 0), and if f(2) satisfies f(z) = f((Z)), then the function f(z) can be extended to
be analytic in the entire complex plane.

e  The Schwarz Reflection Principle states that if a function is analytic in the upper half plane
and its real part is non-negative on the boundary (the real axis), then it can be extended
analytically to the entire plane.

e If afunction f(2) is analytic in the upper half plane and satisfies the condition Re(f(2)) =

0 for all real z, then f(z) can be extended to the entire complex plane.

e If a function f(z) is entire and bounded in the complex plane, then f(z) is constant

throughout the plane.
13.8 Keywords

Liouville's Theorem

Let f(z):C - Cbe an entire function. Suppose there exists somereal numberM >0 such
that |f(z)| < M for all z € C Then f(2) is a constant function.

13.9

&
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Further Readings

Complex Variables And Applications By Churchill, R. V. And Brown, J. W., Mcgraw Hill
Education.

Foundations Of Complex Analysis By S. Ponnusamy, Narosa Publishing House.
Complex Analysis By Lars V. Ahlfors, Mcgraw Hill Education.
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Unit 14 - Landau’s theorem

Purpose and Objectives:

Meromorphic functions are an important class of functions studied in complex analysis. They
are defined as functions that are holomorphic (analytic) everywhere except at a finite number of
isolated singularities. Meromorphic functions are useful in studying the behavior of complex
functions near singularities, and they provide a representation of any meromorphic function in
terms of its poles and their residues. After this unit students can be able to-

1. Understand the Meromorphic functions

2. State and prove the Mittag-Leffler theorem

3. Learn the infinite product of complex Numbers
Introduction

In this unit first we will understand the concept of singularities and poles for meromorphic function
then the we will use the mesomorphic function to prove the Mittag-Leffler theorem. Last we will
focus on the infinite product of complex Numbers.

14.1 Singularities

A point zq is called a singular point of a function f(z) if f(z) fails to be analytic at zy but is analytic at
some point in every neighborhood of zo.

Y

=

Example:

Behavior of following functions at z = 0.

) =
z) = -

Sinz

[ ===

e?—1
f@)=—
1

f@ = sin(1/z)

We observed that all the functions mentioned above are not analytic at z = 0.However in every
neighbourhood of z = 0, there is point at which f(z) is analytic.
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(=)

Example:

Behavior of following function at z = 1.
z
1-z

fz) =

o
K

We observed that the f(z)is not analytic at z = 1.However in every neighbourhood of z = 0, there is
point at which f(z) is analytic. So z =1 is the singular point of f(z).

=

Example:

f(z) = z?% is analytic everywhere so it has no singular point.

(=)

Example:
Behavior of following function in the entire z plane
f@ =1z

We observed that the f(z)is not analytic at z = 1.However in every neighbourhood of z = 0, there is
point at which f(z) is analytic. So z =1 is the singular point of f(z).

14.2 Classification of singularity

The singularity of a complex function can be classified into two groups, isolated and non-isolated. It
can be done via Laurent series expension, but we can also classify the singularity without the Laurent
series expension. In the forthcoming units we will consider the classification using the Laurent series.

The isolated singularity further can be classified into different type. The following diagram shows
the different types of the singularities.
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Sfﬂgulmifj

Tsolated I\\I’OV\; ISolated

Kewovable Sfﬂglﬁlmﬁj

Pole

N

Essential Singulanity

Sfﬂgula)ﬂ{j ot M§mite

6.2.1 Isolated singularity

A point a is called an isolated singularity for f(z) if f(z) is not analytic at z = a and there existr > 0
such that f(z) is analytic in 0 < |z — a| < r. The neighbourhood |z — a| < r contains no singularity
of f(z) except a.

=)

Example:

f(2) = 2( 2+1) has three isolated singularitiesz = 0,i,—

=)

Example:
f(z) = ﬁ has three isolated singularities z = 0,+m, 2, ...,

6.2.2 Removable singularity

Let f(z)is analytic everywhere execpt the point z; inside and on the domain then if the lim f(2)
z-2Z,

exists then z; is the removable singularity.

(=)

Example:
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Letf(2) = Siﬂ, clearly z, = 0 is an isolated singular point for f(z).

lim f(z) = 11mﬂ =1

z-2Z,

lim f(z) exists then z, = 0 is the removable singularity.
z-Z

=

Example:

z—-sinz

Letf(2) = , clearly z, = 0 is an isolated singular point for f(z).

lim f(z) = llmz sinz

z-2, z3
—cosz

lim f(z) = 11m

z-2Z,

[L-Hosptital rule]

lim f(Z) — 11 0+sinz [

Z—oZy

L-Hosptital rule]

coSz

lim f(z) = 11m

z-2Z,

o [L-Hosptital rule]
Jim £G) =l

lim f(z) exists then z, = 0 is the removable singularity.

Z—oZy

6.2.3 Pole

Let f(z)is analytic everywhere execpt the point z,inside and on the domain then if the
lim (z — 2y)*f(2z) = 1, where 1 # 0, then z, is the pole of order k.
z-2,

If k = 1, then z, is the simple pole.

=

Example:

Consider f(z) = — Clearly z, = 0 is an isolated singular point for f(z).

lim f(z) = llm—

Z—Zy

lim (z-0)! f(2) = lim z%
z-z z-0 Z
lim(z-0)'f(z)=e’=1=%0.
z—2Zg

So z, = 0 is the pole of order 1 or simple pole.

=

Example:

COSZ

Consider f(z) =

lim f(z) = lim#
Z—Zg z—0 z

, clearly z, = 0 is an isolated singular point for f(z).

2 COSZ

llm (z-0)f(2)= llmz
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lim (z - 0)? f(2) = limcosz =
Z>Zg z-0

So zy = 0 is the pole of order 2.

=

Example:

1=+0.

Consider f(z) = 1_2—5222 , clearly z, = 0 is an isolated singular point for f(z).

1—e?2

z3

lim f(z) =lim

Z-2Z, z-0
—p2Z

lim (z— 0)3 f(2) =1imz3(1—i) =0

Z—2Z, z-0 z

lim (z — 0)? f(2) =lim z2 —(1_i22).

Z-Z z—0 z

lim (z — 0)2 f(z) = lim &=,

z-2, z—0 z

¥4

=-2=%

lim (z — 0)2 f(2) = lim =2~
zZ—Z z—0 1

So z, = 0 is the pole of order 2.

6.2.4 Essential singularity
Let

0.

f(z)is analytic everywhere execpt the point z, inside and on the domain then if the

lim (z — zy)"f(z) = oo, then z, is essential singularity.
z-2,

(=)

Example:
Consider f(z) = e%/? , clearly z, = 0

lim f(z) =lim e/*
zZ—Z z—0

lim (z — 0)" f(2) =lim z"e'/% .
zZ—Z z—0

'\z

i — o) =1lim z™ 1.1
Zh_)nzlo(z 0" f(2) lzl_I;%Z [1+Z+2,(
lim (z—0)" f(z) = oo.

z-2,

So z, = 0 is an essential singularity.

is an isolated singular point for f(z).

1 1

31

)2+

6.2.5 Singularity at infinity

We classify the types of singularities at infinity by letting w = 1/z and analyzing the resulting

function atw = 0.

(=)

Example:
f(z) =z53.
f@)=gWw)=1/w’.

g(w) has a pole of order 3 at w = 0 The function f(z) has a pole of order 3 at infinity.

168
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6.2.5 Non-isolated singularity

A point a is called a non-isolated singularity for f(z) if f(z) is not is not isolated at z = a.

=)

Example:

f(2) =

1
sin @)

X KX R X X X
-1/7 -1/(2x) \ 1/(27) 1/x

z, =0 (non-isolated)

The function is not analytic in any region 0 < |z| <.

14.3 Classification of singularity by Laurent series expansion

It is also possible to classify the singularity using the Laurent series expansion.

Let a be an isolated singularity for a function f(z). Let r > 0 be such that f(z) is analytic in 0 <
|z — a| < r. In this domain the function f(z) can be represented as a Laurent series given by

f) = Z(z +Zan(z—a)n

Were

f ) d¢

Tl Cy ({—a)—n+1

Zm

_ £©
el & G-ay %

ZT[I.

The series consisting of the negative powers of z — a in the above Laurent series expansion of f(z) is
given by Y7,

by . o . -
oy and is called the principal part or singular part of f(z) at z = a.

The singular part of f(z) at z = a determines the character of the singularity.
6.9.1 Removable singularity by Laurent series expansion

Let a be an isolated singularity for f(z). Then a is called a removable singularity if the principal part
of f(z) at z = a has no terms.

If a is a removable singularity for f(z) then the Laurent’s series expansion of f(z) aboutz = a is
given by

[ =) anz—a)"

n=0
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Hence as z—a, f(z) = ay Hence by defining f(a) = a, the function f(z) becomes analytic at a.

=)

Example:
Let f(2) = %, clearly z, = 0 is an isolated singular point for f(z).
sinz 1 z3 z5
Now f(z) = - —;(Z -3 +E - )
sinz z? z*
f(Z) —T = (1 —; +; - )

Here the principal part of f(z) at z = 0 has no terms. Hence z = 0 is a removable singularity.

lim f(z) also exists then z, = 0 is the removable singularity.

z-2Z,
Example:
Letf(2) = Z_:inz, clearly z, = 0 is an isolated singular point for f(z).
Z3 Z5
z—(z —5y +& — )
_ 31 75
f2)= 3
Z3 Z5 )
_| - _| T ey
flz) =322
1 z?
f(Z) —E—a — ey

z = 0 is a removable singularity. By defining f(0) = 1/6 the function becomes analytic at z =
0.Also lim f(z) exists then z, = 0 is the removable singularity.
z—2,

6.9.2 Pole by Laurent series expansion

Let a be an isolated singularity of f(z). The point a is called a pole if the principal part of f(z) at z =
a has a finite number of terms.
If the principal part of f(z)at z = a is given by

b1 b,

bt

7—a | z-a)2 G where b, # 0.

We say that a is a pole of order r for f(z). Note: A pole of order 1 is called a simple pole and a pole
of order 2 is called double pole.

=

Example:

Consider f(z) = e; ,clearly z, = 0 is an isolated singular point for f(z).

_e 1 2. 7
f(z)—; 1+z+ >+ 6+...,)

z

f@)=%=1/z+ 1+§+%2+...,)

z

Here the principal part of f(z) at z = 0 has a single termi . Hence z = 0 is a simple pole of f(z). Also

lim (z - 0)* f(z)= e®=1+0.50 zy = 0 is the pole of order 1 or simple pole.
z-2zg
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=)

Example:

Consider f(z) = % , clearly z, = 0 is an isolated singular point for f(z).

z2 ozt
cosz l—mr+zr—,
f(2) = = : :

z2 z2

The principal part of f(z) at z = 0 contains the term 1/z2 . Hence z=0 is a double pole of f(z).

Also lim (z - 0)? f(z) =limcosz = 1 # 0.
Z-Z z—0

So zy = 0 is the pole of order 2.

6.9.3 Essential singularity

Let a be an isolated singularity of f(z). The point a is called an essential singularity of f(z) atz=a
if the principal part of f(z) at z = a has an infinite number of terms.

=

Example:
Consider f(z) = e'/%, clearly z, = 0 is an isolated singular point for f(z).

f2)=e'?
RO R O

z

The principal part of f(z) has infinite number of terms. Hence f(z) = e'/# has an essential singularity
atz =0.

Also lim (z — 0)" f(z) = oo.
z-2,

So z, = 0 is an essential singularity.

14.4 Meromorphic Functions

A function is analytic everywhere in the finite plane except at a finite number of poles is called a
meromorphic function.

(=)

Example:
A
@ =GDe+3e
y
Y . \
AN | 1 AN
I L X
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Unit 14 - Landau’s theorem

f(2) is analytic everywhere in the complex plane except z = 1 and z = —3.Here z = 1is a simple pile
and z = —3 is the pole of order 3. We can say that the f(z) has finite number of poles and it’s a
meromorphic function.

=)

Example:

Consider f(z) = %z ,clearly z, = 0 is an isolated singular point for f(z).
. . e~
lim f(z) =lim—
Z-2Z z—0 z
z
lim (z - 0)' f(z) =limz =
Z—2Z z-0 Z
lim(z-0)'f(z)=e’=1=%0.
VARTA

So z, = 0 is the pole of order 1 or simple pole. We can say that the f(z) has finite number of poles
and it's a meromorphic function.

=

Example:

Consider f(z) = azﬂ clearly z, = 0 is an isolated singular point for f(z).

2 7/

lim f(z) =lim=
Z-2Zg z—0 7z

lim (z - 0)? f(2) = lim z% =2,
Z-Zg z—0 4

lim (z - 0)? f(2) =limcosz = 1 # 0.
Z-Zg z—0

So zy, = 0 is the pole of order 2. We can say that the f(z) has finite number of poles and it’s a
meromorphic function.

=

Example:

Consider f(z) = 1_2—izz , clearly z, = 0 is an isolated singular point for f(z).

1-e%
Z3

lim f(z) =lim
zZ—Z z—0

lim (z — 0)3 f(2) = limz3(1_—zzz) =0
PRI z-0 z

_ 2z
lim (z — 0)% f(z) =lim z?2 (1—2)
PRI z—0 z

lim (z — 0)2 f(2) = lim &=¢2

z-7, z—0 z

lim (z — 0)2 f(z) = lim 2= = —2 # 0.
z-7, z50 1

So z, = 0 is the pole of order 2. We can say that the f(z) has finite number of poles and it's a
meromorphic function.

=

Example:

Consider f(z) = e'/%, clearly z, = 0 is an isolated singular point for f(z).
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lim f(z) =lim e'/?
z—Zy z-0

lim (z — 0)" f(2) =lim z"e'/% .
z—Zy z—-0

lim (z— 0)" f(2) = lim 2"[1 +§+%(§)2 +5(—)2 4]
lim (- 0)" £(2) = o».

So z, = 0 is an essential singularity.Thus this function is not meromorphic in the whole complex
plane.

14.5 Mittag-Leffler theorem

The Mittag-Leffler theorem is a fundamental result in complex analysis that deals with the existence
of meromorphic functions with prescribed poles and residues. Specifically, it states that for any
sequence of distinct points in the complex plane and any sequence of complex numbers, there exists
a meromorphic function with poles precisely at the given points and residues equal to the
corresponding complex numbers.

More formally, let zy, z,, ... be a sequence of distinct complex numbers, and let ¢y, ¢,,. .. be a sequence
of complex numbers. Then there exists a meromorphic function f(z) on the complex plane such that
the only poles of f(z) are at the points z;, z,,..., and the residue of f(z) at z; is¢;, fori = 1,2,....

Proof:

To prove the Mittag-Leffler theorem, we will construct the desired meromorphic function f(z) using
a standard technique known as the Weierstrass product formula.

This involves expressing f(z) as an infinite product of simple functions, each of which has a single
pole at one of the given points and the prescribed residue.

Let D,, be the disc centered at z, with radius r;; such that D,, is disjoint from all other discs, and let
Cpbe the circle bounding D,,.

Then we define the function g, (2) as:
gn(@) = (z = z,)7* ePre =)

where p, is chosen so that the Laurent series of g, (z) at z, has a constant term of c,,. Specifically,
we set:

Cn
Pn .

Using the Cauchy integral formula, we can express g, (z) as an integral over Cy:

1 In(w)

In(2) = 5=

- dw
2ni Jow — z
n

Now we define the function F(z2) as:

F@) = | [9.
n=1

This product converges absolutely and uniformly on compact sets, since the discs D,, are disjoint and
the radii r;,, are chosen appropriately. Moreover, F(z) is meromorphic on the complex plane, since
each g, (z) has a single pole at z,, and no other poles.

To see that F(z) has the desired poles and residues, we consider the partial products:

N
Fye = Hgn(l)
n=1

These are meromorphic functions with poles only at the points zj, zy, ..., zy. Moreover, the residue of
Fy(z) at zy is c,, by construction. Finally, we note that Fy,) converges to F(z) as N goes to infinity,

since the product converges absolutely and uniformly on compact sets.
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Therefore, we have constructed a meromorphic function f(z) with the desired poles and residues,
namely:

f(@) = F(2)
This completes the proof of the Mittag-Leffler theorem.

T

o
1111

Question:

Prove that cotz = i + 2z Z;‘{;l% using Mittage Laffer's theorem

z2-n?m?

Proof:
1 © 1 .
To prove that cotz — -= 2z Zn=1zz_—nZ”2 , we can use the Mittag-Leffler theorem.

To prove this identity using the Mittag-Leffler theorem, we need to first identify the poles and their
residues of the function cot(z).

We know that cot(z) is periodic with period m, and has simple poles at z = nm for all integers n.

Recall that the cotangent function can be expressed as the ratio of the cosine and sine functions:

The poles of the cotangent function are the zeros of the sine function, which occur at z = nr for all
integers n. Thus, we can write:

CoSZ

cotz =
Z — Nmw

To prove this identity using Mittag-Leffler theorem, we need to find the poles and residues of the
function cot(z) and the infinite sum in the equation.

First, we know that cot(z) has simple poles at z = nm for all integers n.
The residues at these poles are +1, depending on the sign of sin(nm).

Next, we consider the infinite sum in the equation.
Letf(2) = X

This function has poles at z = +nm for all integers n. The residues at these poles are given by

. (z—nm)1 1
Res[f(z),z = nn| = llmz_,nnm =

1
z2 —n2g2 "

and
. (z+nm)1 1
ReS[f(Z)’Z = —nﬂ] = llmzﬁ_nnm = _ﬁ'

Now, using the Mittag-Leffler theorem, we can write

1 < 1 1
cot(z)——=z ( + )
Z Z—nn zZ+nm

n=1

T s )

2nm \z—nn z+nm
1 1
=2 2;’—1 onm 22 — n2m?
= 2f(2)

Therefore, we have

cot(z) = i + 27, — L as desired.

1
2nm z% — n?m?

174 LOVELY PROFESSIONAL UNIVERSITY



Complex Analysis-I1

14.6 Infinite Product of Complex Numbers

An infinite product of complex numbers is given by:

Z = 20.29.Z5...,.Zp ...

The notation for infinite productis [/, z;

where z,, 2, 73,..., z, are complex numbers.

If the infinite product converges, then we can define it as follows:

z = lim(z;.25.25...,2,)
n—-oo

In general, an infinite product of complex numbers is said to converge if and only if the limit of the
sequence of partial products (i.e., the product of the first n terms) exists and is nonzero.

Some important results related to infinite products of complex numbers are:
1.  If the infinite product |z| converges, then the infinite product z also converges.
2. The infinite product (1 + z) converges if and only if the infinite product (1 — |z|) converges.
3. The infinite product (1 — z) converges if and only if the infinite product (1 + |z|) converges.

n
4. The infinite product (1 + %) converges to e? as n approaches infinity, for any complex

number z.

5. The infinite product sin (%) converges to zero for any non-zero complex number z.

Question
Suppose an infinite product is absolutely convergent. Prove that it is convergent
Solution
Suppose the infinite product is given by:
P = a;.a5.a3..
where ai are non-negative real numbers.
By the absolute convergence of P, we have that the series:
S = log(ay) + log(a,) + log(az) +..
converges.
Since the logarithm function is continuous, we can take the exponential of both sides to obtain:
eS = eloga) glog(az) ylog(as)
which simplifies to:
P = a;a,a;..

Thus, the absolute convergence of P implies that the series S converges, which in turn implies
that P converges as well.

Therefore, we have shown that if an infinite product is absolutely convergent, then it is also
convergent.

14.7 Review questions

1. f(z)= (1—21)2 is meromorphic because it has finite number (say K) of pole in the entire

complex plane then K =?

LOVELY PROFESSIONAL UNIVERSITY 175



Unit 14 - Landau’s theorem

14.8

N

f(@

o0 w

oNn® > &

oS0 w >

S0 w >

z . . . P .
f(z) = D@23 1 meromorphic because it has finite number (say K) of pole in the

entire complex plane then K =?

Check whether the following functions is meromorphic?

e

f(2)=~—
Check whether the following functions is meromorphic?

sinz

9(2) =2

State and prove the Mittag-Leffler theorem

Self-assessment

f(2) = ﬁ is meromorphic because it has finite number (say K) of pole in the entire

complex plane then K =?
5
1
2
3

f(2) = m is meromorphic because it has finite number (say K) of pole in the entire

complex plane then K =?
5
1
2
3

Which one of the following functions is meromorphic?

sinz
(z-1)2°

=7, and g(2) =

Only f(2)

Only g(2)
Both f(2) and g(2)
Neither f(z) nor g(z)

Consider the f(z) = é then

zy = 1 is the singular point of f(z)
zy = 0 is the singular point of f(z)
zy = 10 is the singular point of f(z)

There is no singular point of f(z)

176 LOVELY PROFESSIONAL UNIVERSITY



Complex Analysis-I1

ONwp e

&

90w p

N

10.

11.

12.

13.

Consider the f(z) = z? then

zy = 1 is the singular point of f(z)

zy = 0 is the singular point of f(z)

zy = 10 is the singular point of f(z)

There is no singular point of f(z)

z2-9

Consider the f(z) = ————— then

z2(z—1)(z—1-2i)

zy = 1 is one of the singular points of f(z)

zy =3 is the singular point of f(z)

zy = —3 is the singular point of f(z)

There is no singular point of f(z)

What is Mittag-Leffler's theorem?

A.
B.
C

A theorem on the convergence of infinite series.

A theorem on the analytic continuation of meromorphic functions.

A theorem on the existence of a holomorphic function with prescribed
singularities

What does the theorem say about meromorphic functions?

A.

B.

C.

They can be extended to the whole complex plane.
They can be extended to a neighborhood of their poles.
They can be approximated by polynomials

What are the conditions for the Mittag-Leffler's theorem to hold?

A.

B.

C.

The function must have isolated singularities and a certain growth
condition.

The function must be holomorphic and bounded on a compact set.

The function must be a polynomial

What is the significance of the theorem in complex analysis?

A.

B.

C.

It provides a method for approximating meromorphic functions

It is a fundamental tool for studying the Riemann zeta function

It allows us to construct meromorphic functions with prescribed
singularities

What is the value of the infinite product (1+i)(1-i)(1+i)(1-i)...?

A1l
B. -1
C i

D. -i

What is the value of the infinite product (1+21)(1-2i)(1+2i)(1-2i)...?

A1l
B. -1
C 2
D. -2i

What is the value of the infinite product (1+i/2)(1-i/2)(1+i/2)(1-i/2)...?

A1
B. -1/2
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c. i/2
D. -i/2

14. What is the value of the infinite product (1+i/3)(1-i/3)(1+i/3)(1-i/3)...?

A1
B. -1/3
C. i/3

D. -i/3

15. What is the value of the infinite product (1+3i)(1-31)(1+3i)(1-3i)...?

A1

B. -1

C. 3i

D. -3i

Table 1: Answers of self-assessment

Question number Correct answer
1 B
2 C
3 C
4 A
5 D
6 A
7 B
8 A
9 A
10 C
11 A
12 B
13 B
14 B
15 B

14.9 Summary

e The A function is analytic everywhere in the finite plane except at a finite number of poles

is called a meromorphic function.
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e  The An infinite product of complex numbers is given by:
Z = 20.29.Z5...,.Zp ...
The notation for infinite productis []i, z;
e If the infinite product |z| converges, then the infinite product z also converges.
e  The infinite product (1 + z) converges if and only if the infinite product (1 — |z|) converges.

e  The infinite product (1 — z) converges if and only if the infinite product (1 + |z|) converges.

14.10 Keywords
Meromorphic function:

A function is analytic everywhere in the finite plane except at a finite number of poles is called a
meromorphic function.

Mittag-Leffler theorem :

Let zy,2,,...be a sequence of distinct complex numbers, and let ¢, c,,... be a sequence of complex
numbers. Then there exists a meromorphic function f(z) on the complex plane such that the only
poles of f(z) are at the points 2, z,,..., and the residue of f(2) at z; is¢;, fori = 1,2,....

14.11 Further Readings

&

Books

1. Complex Variables And Applications By Churchill, R. V. And Brown, J. W., Mcgraw Hill
Education.

2. Foundations Of Complex Analysis By S. Ponnusamy, Narosa Publishing House.
3. Complex Analysis By Lars V. Ahlfors, Mcgraw Hill Education.
4. Complex Variables Theory And Applications By H. S. Kasana, Prentice Hall.
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