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Objectives
After studying this unit, you will be able to

e understand about the different types of partial differential equations.

e analyze in the form of an explicit form, preferably in the form of elementary functions.

find the qualitative property of the partial differential equation.

e understand the integral surfaces and orthogonal surfaces.

Introduction

Partial differential equations arise in geometry, physics and applied mathematics when the number
of independent variables in the problem under consideration is two or more. Under such a
situation, any dependent variable will be a function of more than one variable and hence it
possesses not ordinary derivatives with respect to a single variable but partial derivatives with
respect to several independent variables. In the present part of the book, we propose to study
various methods to solve partial differential equations.

1.1 Partial Differential Equation (P.D.E.)

Definition 1.1.1 An equation containing one or more partial derivatives of an unknown function of
two or more independent variables is known as a partial differential equation. For examples of
partial differential equations we list the following;:
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E"_@ =z+xy (111)
() +55=2(%) (112)
2()+ Z_y =X (1.1.3)

dx  0dy 0z
(114
9%z _ 9z %
T2 (14 5) (1.1.5)

822 822 9z
Definition 1.1.2 Order of a partial differential equation: The order of a partial differential equation
is defined as the order of the highest partial derivative occurring in the partial differential equation.

In Art. 1.1.1, equations (1.1.1), (1.1.3), (1.1.4) and (1.1.6) are of the first order, (1.1.5) is of the second
order and (1.1.2) is of the third order.

Definition 1.1.3 Degree of a partial differential equations: The degree of a partial differential
equation is the degree of the highest order derivative which occurs in it after the equation has been
rationalised, i.e., made free from radicals and fractions so far as derivatives are concerned. In 1.1.1,
equations (1.1.1), (1.1.2), (1.1.3) and (1.1.4) are of first degree while equations (1.1.5) and (1.1.6) are
of second degree.

Definition 1.1.4.Linear and non-linear partial differential equations: A partial differential equation
is said to be linear if the dependent variable and its partial derivatives occur only in the first degree
and are not multiplied. A partial differential equation which is not linear is called a non-linear
partial differential equation. In Art. 1.1.1, equations (1.1.1) and (1.1.4) are linear while equations
(1.1.2), (1.1.3), (1.1.5) and (1.1.6) are nonlinear.

E/' Notes: When we consider the case of two independent variables we usually assume them
- to be x and y and assume z to be the dependent variable. We adopt the following notations
throughout the study of partial differential equations
_o o - 4
~ox’ q= ay’ T ox2’ ~ oxay oy
In case there are n independent variables, we take them to be x1, x2....., Xn and z is then
regarded as the dependent variable. In this case we use the following notations :

_ 0z _ 0z _ 0z _ 0z
P = o, Dy = ox,’ p3 = Gy Pn = ox,

& Caution:Sometimes the partial differentiations are also denoted by making use of suffixes.

ou __ou 0%u

. 0%u
Thus we write u, = u s Uy = 5 Uy = ——and so on.

ax’ Y T ay 0xdy

1.2 Classification of first order partial differential equations into
linear, semi-linear, quasi-linear and non-linear equations with

examples

Definition 1.2.1 Linear equation: A first order equation f (x,y,z,p,q) = 0is known as linear if it is
linear in p, q and z, that is, if given equation is of the form P(x,y)p + Q(x,¥)q = R(x,y)z +
Sx,y) .

Example 1.2.1:yx?p + xy?q = xyz + x?y3%and p+q =z +xy are both first order linear
partial differential equations.

Definition 1.2.2 Semi-linear equation: A first order partial differential equation f (x,y,z,p,q) = 0

is known as a semi-linear equation, if it is linear in p and q and the coefficients of p and q are
functions of x and y only i.e. if the given equation is of the form P(x,y) p + Q(x,¥) ¢ = R(x,y,2).
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Example 1.2.2:xyp + x2yq = x2y2?z%and yp + xq = x2z2/y? are both first order semi-linear
partial differential equations.

Definition 1.2.3Quasi-linear equation: A first order partial differential equation f (x,y,z,p,q) = 0
is known as quasi-linear equation, if it is linear in p and q, i.e., if the given equation is of the form
P(x,y,2)p + Q(x,y,2) ¢ = R(x,y,2)

Example 1.2.3:x%zp +y?zq = xy and (x? —yz)p+ (y* —xz)q = z> — xy are first order
quasi-linear partial differential equations.

Definition 1.2.4Non-linear equation: A first order partial differential equation f (x,y,z,p,q) = 0
which does not come under the above three types, in known as a non-liner equation.

@ Example 1.2.3;p> +q?> =1, pg=zand x?p?+y?q?=2? are all non-linear partial
differential equations.

1.3 Linear Partial Differential Equations of Order One
LAGRANGE’S EQUATION

A quasi-linear partial differential equation of order one is of the form Pp + Qq = R, where P, Q and
R are functions of x, y, z. Such a partial differential equation is known as Lagrange equation. For
Example xyp + yzq = zx is a Lagrange equation.

Lagrange’s method of solving Pp + Qq =R, when P, Q and R are functions of x,y, Z
Theorem 1.4.1: The general solution of Lagrange equation

Pp+Qq =R, (1.4.1)
is¢p(u,v)=0 (1.4.2)
where ¢ is an arbitrary function and

ulx,y,z) = ¢, andv(x,y,z) = ¢, (1.4.3)

are two independent solutions of

x _dy _dz (1.4.4)
P Q R o

Here, c;and c,are arbitrary constants and at least one of u, v must contain z. Also recall that u and
v are said to be independent if u/v is not merely a constant.

Proof: Differentiating (1.4.2) partially w.r.t. ’x” and y’, we get

s Gerr) v (Girry) =0 (14.5)
3—3(3—3+q3—3)+3—f(2—3+q%)=0 (1.4.6)

Eliminating g—: and Z—f between (1.4.5) and (1.4.6), we have

ou oudv ovou  oudv 0v] _

ox Pgax pan qazay qaz

GrrR) Gras)-Gras) Grrd)=

dudv Ouodv dudv dvou _ (9udv _oudv
G aar+ G -aaa=Ga = 550) (1.4.7)
Hence (1.4.2) is a solution of the equation (1.4.7) .
Taking the differentials of u(x,y,z) = ¢; and v(x,y,z) = c,, we get

du du du
(55) ax + (5) dy +(5%)dz =0 (14.8)
and

v v v
(5%)ax + (5) dy+(32)dz =0 (1.4.9)

Since u and v are independent functions, solving (1.4.8) and (1.4.9) for the ratios dx : dy : dz, gives

LOVELY PROFESSIONAL UNIVERSITY 3



Notes

Partial Differential Equations

dx dy dz
dudv dudv — dudv dvou ~ dudv Judv (1410)
0z9dy 0yodz 0x0z 0x0x 0xdy 0yodx

Comparing (1.4.4) and (1.4.10), we obtain

auav_auav dudv ovou auav_auav
9z9y 8ydz __ 9xdz 0dxdx . 0xdy dydx __
= = =k, (say)

P Q R
dudv Oudv dudv 0dvou dudv OJudv

=5 MU _ pg, o g, TH T _ Rk
0z dy 0yoz 0x 0z 0x dx doxdy 0y dx

Substituting these values in (1.4.7), we get k(Pp + Qq) = Rk, or Pp + Qq = R, which is the given
equation (1.4.1).

Therefore, if u(x,y,z) =¢; and v(x,y,z) =c, are two independent solutions of the system of

differential equations % = {Z—y = %, then ¢(u,v) =0 is a solution of Pp+ Qq =R, being an

arbitrary function. This is what we wished to prove.

E;/° Notes: Equations (1.4.4) are called Lagrange’s auxiliary (or subsidiary) equations for (1.4.1).

Working Rule for solving Pp + Qq = R by Lagrange’s method.

Step 1. Put the given linear partial differential equation of the first order in the standard form
Pp+Qq=R (1.5.1)
Step 2. Write down Lagrange’s auxiliary equations for (1.5.1) namely,

&_w_d (15.2)
P Q R o

Step 3. Solve (1.5.2) by using the well known methods. Let u(x,y,z) = ¢; and v(x,y,z) = c, be two
independent solutions of (1.5.2).

Step 4. The general solution (or integral) of (1.5.1) is then written in one of the following three
equivalent forms : ¢(u,v) =0 ,u=¢(v) or v=¢(u), ¢ being an arbitrary function.

Examples based on working rule 1.5.

In what follows we shall discuss four rules for getting two independent solutions of

dx _dy _ dz (1.6.1)
P _Q R 6.

Accordingly, we have four types of problems based on +Qq =R .

1.4 Type 1 based on Rule I for solving (dx)/P = (dy)/O = (dz)/R

Suppose that one of the variables is either absent or cancels out from any two fractions of given
equations (1.6.1). Then an integral can be obtained by the usual methods. The same procedure can
be repeated with another set of two fractions of given equations (1.6.1).

@ Example 1.6.1: Solve (yxi) P+ xzq = y2.

Solution: Given (yTZZ)p + xzq = y*? (1.6.2)

The Lagrange’s auxiliary equations for (1.6.2) are

dx _ dy _ dz

2z y? (1.6.3)
Taking the first two fractions of (1.6.3), we have

x%zdx = y?zdy or 3x%dx — 3y%dy =0, (1.6.4)
Integrating (1.6.4), x* — y3 = ¢, ¢; being an arbitrary constant. (1.6.5)

LOVELY PROFESSIONAL UNIVERSITY
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Next, taking the first and the last fractions of (1.6.3), we get
xy?dx = y?zdz or 2xdx —2zdz =0 (1.6.6)

Integrating (1.6.6), x* — z2 = ¢,, ¢, being an arbitrary constant. (1.6.7)

From (1.6.5) and (1.6.7), the required general integral is @(x> — y3,x? — z2), ¢ being an arbitrary
function.

@ Example 1.6.2: Solve y?p — xyq = x(z — 2y).

Solution: Here Lagrange’s auxiliary equations are

dx _ dy _ dz

y2  —xy  x(z-2y) (1.6.8)
Taking the first two fractions of (1.6.8) and re-writing, we get

2xdx + 2ydy = 0 so that x? + y? = ¢,. (1.6.9)
Now, taking the last two fractions of (1.6.8) and re-writing, we get

dz _ 7=y dz Lz _

o " or & + 5 2 (1.6.10)

which is linear in z and y. Its LF. e’ (;)dy = el09!°9Y = y Hence solution of (1.6.10) is

zy=[ 2ydy+c, or zy —y? =c,,
Hence ¢(x? + y?,zy — y?) = 0 is the desired solution, where ¢ is an arbitrary function.

1.5 Type 2 based on Rule II for solving (dx)/P = (dy)/O = (dz)/R.

Suppose that one integral of (1.6.1) is known by using rule I explained in Art 2.5 and suppose also
that another integral cannot be obtained by using rule I of Art. 2.5. Then one integral known to us is
used to find another integral as shown in the following solved examples. Note that in the second
integral, the constant of integration of first integral should be removed later on.

@ Example 1.6.3:; Solve p + 3q = 5z + tan(y — 3x).

Solution: Given p + 3q = 5z + tan(y — 3x) (1.6.11)
The Lagrange’s subsidiary equations for (1.6.11) are

dx _ dy _ dz

13 5z+tan(y—3x) (1.6.12)
Taking the first two fractions, dy — 3dx = 0 (1.6.13)
Integrating (1.6.13), y — 3x = ¢y, ¢; being an arbitrary constant (1.6.14)

. d d

Using (16.14), from (1.6.12) we get = = Wzn(c) (1.6.15)
Integrating (1.6.15), x — élog(Sz +tan tanc,) = éCz/ c,being an arbitrary constant.

or 5x —log(5z +y — 3x)) = c;, using (1.6.14) (1.6.16)

From (1.6.14) and (1.6.16), the required general integral is 5x — log(5z +tan tan(y — 3x)) = ¢(y —
3x), where ¢ is an arbitrary function.

@ Example 1.6.4: Solve xyp + y?q = zxy — 2x2.

Solution: Given xyp + y%q = zxy — 2x? (1.6.17)
The Lagrange’s subsidiary equations for (1.6.17) are

&___d (1.6.18)
xy vy ZxXy—2Xx

Taking the first two fractions of (1.6.18), we have
ax _ d_32/ or @ _d_ g (1.6.19)
xy y x oy
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Integrating (1.6.19), logx — logy =log logc; or i =0 (1.6.20)

From (1.6.20), x = ¢y y.
Hence from second and third fractions of (1.6.18), we get

dy _ dz _ dz

32 T zxy-2x? or ady—.—5=0 (1.6.21)
2

Integrating (1.6.21), ¢,y — log(z — 2¢?) = ¢, or x —log log (z - Zyiz) =c, (1.6.22)

From (1.6.20) and (1.6.22), the required general solution is

x —log log (z - Zy—xzz) =¢ (i) , ¢ being an arbitrary function.

1.6 Type 3 based on Rule III for solving (dx)/P = (dv)/OQ = (dz)/R

Let P;,Q; and R; be functions of x,y and z. Then, by a well-known principle of algebra, each
P,dx+Q,dy+R,dz
dy+R,dz (1.6.23)

PP, +QQ,+RR;
If PP; + QQ4 + RR; = 0, then we know that the numerator of (1.6.23) is also zero. This giveP;dx +
Q,dy + Rydz = 0 which can be integrated to give u(x,y,z) = ¢;. This method may be repeated to
get another integral u(x,y,z) = c,. P;,Q and R, are called multipliers. As a special case, these can
be constants also. Sometimes only one integral is possible by use of multipliers. In such cases
second integral should be obtained by using rule I or rule II as the case may be.

@ Example 1.6.5: Solve z(x + y)p + z(x — y)q = x* + y2.

fraction in (1.6.1) will be equal to

Solution: Given z(x + y)p + z(x — y)q = x* + y? (1.6.24)
The Langrange’s subsidiary equations for (1) are ~ (:fy) =~ (:i]y) = x;-il—zyz (1.6.25)
Choosing x, -y, -z, as multipliers, each fraction

xdx—-ydy—-zdz _ xdx—-ydy-zdz
xz(x+y)—zy(x—y)—z(x%2+y?) 0
~xdx —ydy —zdz =10 or 2xdx — 2ydy — 2zdz =0
Integrating, x? — y% — z2 = ¢, ¢, being an arbitrary constant. (1.6.26)
Again, choosing y, x, -z as multipliers, each fraction

ydx+xdy—zdz _ ydx+xdy-zdz
yz(x+y)+zx(x—y)—z(x%2+y?) B 0

s~ ydx +xdy —zdz =0

2d(xy) — 2zdz=0

Integrating, 2xy — z% = ¢,, ¢, being an arbitrary constant. (1.6.27)
From (1.6.26) and (1.6.27), the required general solution is given by ¢(x? —y2 —z2%,2xy —z%), ¢
being an arbitrary function.

@ Example 1.6.6 : Solve (x + 22)p + (4zx — y)q = 2x% + y.

Lo , s . dx _ dy _ dz
Solution: Here Lagrange’s auxiliary equations are —— = ey = 2271y (1.6.28)

Choosing y, x, -2z as multipliers, each fraction of (1.6.28)

ydx+xdy—2zdz - ydx+xdy—2zdz - _ — 2
2t y) 22 y) 5 d(xy) —2zdz =0 sothatxy —z* = ¢, (1.6.29)
Choosing 2x, -1, -1 as multipliers, each fraction of (1.6.28)

2xdx—dy—dz _ 2xdx—dy—dz

or 2xdx—dy-—dz=Osothatx?—y—z=c, (1.630)

2x(x+2z)—(4zx—y)—(2x%2+y) 0

« From (2) and (3),solutionis ¢(xy - z?,x% -y - z) = 0,¢ being an arbitrary function.

1.7 Type 4 based on Rule IV for solving (dx)/P = (dy)/O = (dz)/R

Let P;,Q; and R; be functions of x,y and z. Then, by a well-known principle of algebra, each

fraction of (1.6.1) will be equal to
Pydx+Q.dy+R,dz
PP, +QQ,+RR,

(1.6.31)
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Suppose the numerator of (1.6.31) is the exact differential of the denominator of (1.6.31). Then
(1.6.31) can be combined with a suitable fraction in (1.6.1) to give an integral.
However, in some problems, another set of multipliers P,, Q, and R, are so chosen that the fraction
P,dx+Q,dy+R,dz (1632)
PP,+QQ3+RR,
is such that its numerator is exact differential of the denominator. Fractions (16.31) and (1.6.32) are
then combined to given an integral. This method may be repeated in some problems to get another
integral. Sometimes only one integral is possible by using the above rule IV. In such cases second
integral should be obtained by using rule 1 or rule 2 or rule 3.

@ Example 1.6.7 : Solve y%(x — y)p + x2(y — x)q = z(x? + y?).

Solution: Here the Lagrange’s auxiliary equations for the given equation

dx _ dy _ dz
Y2x-y)  x2y-x)  z(x?+y?) (1.6.33)
Taking the first two fractions of (1.6.33), x2dx = —y?dy or 3x%dx + 3y?dy =0
Integrating, x® + y® = ¢;, ¢, being an arbitrary as constant.
Choosing 1, -1, 0 as multipliers, each fraction of (1.6.33)
dx—dy _ dx—dy

yAx-y)—x2(y—-x) (- (¥2+x?) (1634)

Combining the third fraction of (1.6.33) with fraction (1.6.34), we get
dx-dy  _  dz dx-y) _dz _
= ?+x2)  z2(x2+y?) or w20
Integrating, log log(x —y) —log logz =log logc, or xz;y =c,
(1.6.35)
From (1.6.34) and (1.6.35), solution is ¢(x® + y3 ,xz;y) = 0,¢ being an arbitrary function.
@ Example 1.6.8 : Find the general integral of xzp + yzq = xy.
Solution: Here the Lagrange’s auxiliary equations are
& _dy_ 4z (1.6.36)
Xz vz Xy
From the first two fractions of (1.6.36), & _By
xz vz
Integrating, log logx =log logy +log logc, g =q
(1.6.37)

Choosing 1/x, 1/y, 0 as multipliers, each fraction of (1.6.36)
_ (%)dx+(1/y)dy _ ydx+xdy (1 6 38)

(Qrv+a/yyz — 2xyz o
Combining the last fraction of (1.6.36) with fraction (1.6.37), we have
ydx+xdy E _ _ _ —
Tz —xy or ydx+xdy=2zdz or d(xy)=2zdz or d(xy) —2zdz =10
Integrating, xy — z2 = ¢,, ¢, being an arbitrary constant. (1.6.39)

From (1.6.37) and (1.6.39) solution is ¢ (g, xy — 22) =0, ¢being an arbitrary function.

1.8 Integral Surfaces Passing through a given Curve

In the last article we obtained general integral of Pp + Qq = R. We shall now present two methods
of using such a general solution for getting the integral surface which passes through a given curve.

Let Pp+ Qq =R. (1.7.1)

LOVELY PROFESSIONAL UNIVERSITY
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be the given equation. Let its auxiliary equations give the following two independent solutions
u(x,y,z) = ¢ andv(x,y,2) = ¢, (1.7.2)

Suppose we wish to obtain the integral surface which passes through the curve whose equation in
parametric form is given by x = x(t), y = (t), z = z(t), (1.6.3)

where t is a parameter. Then (1.7.2) may be expressed as
u(x(t), y(t),z(t)) = ¢, and v(x(t),y(t), z(t)) = c, (1.7.4)
We eliminate single parameter t from the equations of (1.7.4) and get a relation involving c; and c».

Finally, we replace ¢; and c> with help of (1.7.2) and obtain the required integral surface.

Example 1.7.1:Find the integral surface of the linear partial differential equation x(y? +
Z)p- y(x* + z)q = (x* - ¥y? )z which contains the straightlinex + y = 0,z = 1.

Solution: Given x(y? + 2)p - y(x? + z)q = (x*-y?)z (1.7.5)
Lagrange’s auxiliary equations of (1.7.5) are

dx _ dy _ dz
x(y2+2)  —y(x2+z) (x2-y%)z (1.7.6)

Choosing 1/x, 1/y, 1/z as multipliers, each fraction of (1.7.6)

(l)dx+(l)dy+(1)dz (1)dx+(l)dy+(l)dz
X. y. Zz _ X. y VA - —
P2+ 3T p >log logx +log logy + loz z =log logc, or xyz=
¢ (1.7.8)
Choosing x, y, -1 as multipliers, each fraction of (1.7.6)
xdx +ydy — dz _ xdx+ydy—dz
x2(y2+2) —y2(x? + z) —z(x2 - y2) 0

Sxdx+ydy—dz=0 or x?+y?>—z=g¢,

(1.7.9)
Taking t as a parameter, the given equation of the straight-line x + y = 0, z = 1 can be put in
parametric formx =t, y=-t, z=1. (1.7.10)
Using (1.7.10), (1.7.9) may be re-written as t2=cjand 2t2-2=c,. (1.7.11)
Eliminating t from the equations of (5), we have 2(c1) -2=cor 2c; + 2 +2 =0. (1.7.12)

Putting values of ¢; and c; from (3) in (6), the desired integral surface is 2xyz + x2 + y2 -2z +2=0.

1.9 Surfaces Orthogonal to a Given System of Surfaces

Letf(x,y,z)=C (1.8.1)

represents a system of surfaces where C is a parameter. Suppose we wish to obtain a system of
surfaces which cut each of (1.8.1) at right angles. Then the direction ratios of the normal at the point
af of of

(x,y, z) to (1.8.1) which passes through that point are ==, 9y’ 97"

Let the surface z = ¢(x, y) (1.8.2)

cuts each surface of (1.8.1) at right angles. Then the normal at (x, y, z) to (1.8.2) has direction ratios

0z 0z

EPE —1li.e, p, q, -1. Since normals at (x, y, z) to (1.8.1) and (1.8.2) are at right angles, we have

o . o _of _ o, or _os
p$+q5—5—0 or p6x+q6y_6z (1.8.3)

which is of the form Pp + Qq = R.

Conversely, we easily verify that any solution of (1.8.3) is orthogonal to every surface of (1.8.1).

Example 1.8.1 : Find the surface which intersects the surfaces of the system z(x +y) = c(3z +
1) orthogonally and which passes through the circle x* + y? = 1,z = 1.

Solution: The given system of surfaces is f(x,y,z) = % =c (1.8.4)
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LOf _ z of _ z of _ ( )3z+1—z3 _ (x+y)
“ox  3z+1 dy  3z+1 9z (3z+1)2  (3z+1)?

The required orthogonal surface is solution of

Z_i Z_i = l;_); or 3zz+1p + 3zz+1 = (s;:/;z
zBz+Dp+zBz+1)g=(x+y) (1.8.5)
Lagrange’s auxiliary equations for (1.8.5) are ~ (3{1;1) =- (:Zy+ 5= (x(i_zy). (1.8.6)
Taking the first two fractions of (1.8.6), we get dx - dy =0 so that x - y = c1. (1.8.7)
Choosing x, y, -z(3z + 1) as multipliers, each fraction of (1.8.6) = xdx + ydy - z(3z + 1)dz/0
xdx + ydy-3z%dz-zdz =0  or 2xdx + 2ydy - 622 dz - 2zdz =0
Integrating, x2 + y2 - 2z3 - z = ¢y, ¢2 being an arbitrary constant. (1.8.8)

Hence any surface which is orthogonal to () has equation of the form
x2+y2-273 -z =¢ (x - y), ¢ being an arbitrary function ...(6)

In order to get the desired surface passing through the circle x2 + y2 =1, z = 1 we must choose ¢ (x -
y) = -2. Thus, the required particular surface is x2 +y2 - 273 - z = -2.

1.10 Cauchy’s Problem For First Order Equations

The aim of an existence theorem is to establish conditions under which we can decide whether or
not a given partial differential equation has a solution at all; the next step of proving that the
solution, when it exists, is unique requires a uniqueness theorem. The conditions to be satisfied in
the case of a first order partial differential equation are easily contained in the classic problem of
Cauchy, which for the two independent variables can be stated as follows:

Cauchy’s problem for first order partial differential equation

If (a) xo (1), yo (u) and zy (1) are functions which, together with their first derivatives, are continuous
in the interval I defined by py < u < ;.

(b) And if f(x,y,2,p,q) is a continuous function of x,y, z,p and q in a certain region U of the xyzpq
space, then it is required to establish the existence of a function ¢(x,y) with the following
properties :

(i) ¢(x,¥) and its partial derivatives with respect to x and y are continuous functions of x and y in a
region R of the xy space.

(ii) For all values of x and y lying in R, the point {x,y, $(x,¥), d,(x,¥),$,(x,y)} lies in U and
oy, 606 y), 626 y), by (2, )} = 0.

(iii) For all u belonging to the interval I, the point {x,(u),yo (1)} belongs to the region R, and
d{xo (W), yo (W)} = 20

Stated geometrically, what we wish to prove is that there exists a surface z = ¢(x,y) which passes
through the curve C whose parametric equations are given by x = x,(1),y = yo(n) and z = z, (1)
and at every point of which the direction (p, q, - 1) of the normal is such that f(x, y, z,p,q) = 0

Summary

+ The first-order linear, quasi-linear and semi linear partial differential equations are defined.
» All the types of differential equations with examples are explained.

+ Different kinds of solutions of Lagrange’s equation are elaborated.

» Discussion to find the integral surface passing through a given curve.

* Surface orthogonalto a given system of surfaces determined.
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1. Theequationofx P+ya=(X=y)z" +x yis

. Quasi-linear
Semi-linear

Linear

g0 W p

Non-linear

ptan y + qtan x = sec” z

The differential equation is of order
1
2
0

None of these

o0 w e

2 2 2
0 5—2 02 J{QJ =0
OX oxoy OX

®

The equation is of order

1
2
3

None of these

S0 w >

(2x+3y)p+4xq-8pg=Xx+y .

-~

The equation

. Linear
Non-linear

Semi-linear

o0 W »

Quasi-linear
The equation (X TYy- Z)(@Z/@X) + (3X + 2y)(6z /8}/) +272 =X+ Yy i
. Linear

Quasi-linear

Non-linear

ON WP

Semi-linear

6. The partial differential equation F(xy,2)(0z/0x) + 9(x,y, 2)(0z/ dy) = h(X,y,2) is

A. Quasi-linear
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B. Semi-linear

C. Linear

D. Non-linear

7. The auxiliary equation of p+q+1=0 is

A =dy=1dz

g Odx=dy=-dz

c Ox/p=dy/q=dz

D. None of these

8. The general solution of partial differential equation Pp+Qq=R is
. PUV) =

B,MwW——

c #uv)=0

b #UV)=c

9. What is the nature of Lagrange’s linear partial differential equation?
A. First-order,Third-degree

B. Second-order,First-degree

C. First-order,Second-degree

D. First-order, First-degree

o0 w5

. The sul%51d1a1a/ equatlons for péartlal differential equation

. The general soluztlon of partial dlfgerentlal equation

, . Xu, +yu =0
. The solution of the equation y is of the form
f(y/x)
f(y+x)
fly-x
f(xy)
2 2
yizlx+zxy=y°

dx/y°z=dy/zx=d
dx/ x> =dy/y? _dz/zx
dx/x’z=dy/y=dz/zx
dx/(1/ x*) = dy /(1/ y*) = dz /(1] zx)

(y-2)p+(z-Xg=x-y .
P(X+Yy+2X +y +2°)

p(xyzx* +y*+12%)=0

p(xX+y+zxyz)=0

p(x—y-zx*-y?*-2°)=0

. The integral surface which passes through the given curve is taken as equation in

. Parametric form

Hyperbolic form
Constants

None of these
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2y(z-3)p+(2x—2)q=y(2x-3)

passing through the curve
X2 +y*=2x2=0
X*+y?—z*-2x+4z=0
X*+y> -2 +2x+82=0
X*+y>+2°-2x+82=0
None of these
. The2 integral surface of the partial differential equation
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X+Y)(Xy+YyzZ+2X)+y+2=
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(X=y)(xy+yz+zX)+y—2z=0

. None of these

The direction ratios of normal to the surface z = ¢ (x, y)at (x,y,z) are
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(
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(

. If the two surfaces are cuts orthogonal to each other, then the solutions of these equations

are reduces to

. Heat equation

Wave equation

. Lagrange’s linear equation

. None of these

. If the two surfaces z = ¢ (x,y) and f(x,y, z) = c are orthogonal then it satisfy the condition
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BN
Po,tao, 5,70

OF _ 9 _ 9y

ox ox 0z
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16. A 17. C 18. A

Review Questions

Q1. Find the equation of integral surface of the differential equation

(X*—y2)p+(y* -2x)q=2" - XY passes through the line X =1Ly=0,

Q2.Solve PHA=X+Y+7,

Q3. Find the integral surface of the partial differential equation

2y(z=3)p+(2x-2)q = y(2x~3) which passes through the circle z=0, X* + y2 =2X.

a2,
OX

X
Q4. Find the general solution of the differential equation

y2%=(><+y)z.

Q5.Find the integral surface of the linear partial differential equation

2 2 2 2
X(y*+2)p-y(x“+2)q=z(x" -y )Which contains the straight line x-y=0,z=1

L.'J Further Readings

1. LN. Sneddon(1957), Elements Of Partial Differential Equations, Mcgraw Hill
Education.

2. Lawrence C. Evans (1998), Partial Differential Equations, Universities Press Pvt. Ltd
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Objectives
After studying this unit, you will be able to

e understand about the nonlinear partial differential equation of first order.
e analyze in the form of Cauchy’s characteristic curve functions.
e find the envelope of family of curves.

e understand the integral surfaces passing through the given curve.

Introduction

We turn now to the more difficult problem of finding the solutions of the partial differential
equation F(x,y,z,p,q) =0 (2.0.1)

in which the function F is not necessarily linear in p and q. The partial differential equation of the
two - parameter system f(x,y,z,a,b) =0 (2.0.2)

was of this form. It will be shown a little later that the converse is also true; i.e., that any partial
differential equation of the type (2.0.1) has solutions of the type (2.0.2). Any envelope of the system
(2.0.2) touches at each of its points a member of the system. It possesses therefore the same set of
values (x,y,z,p,q) as the particular surface, so that it must also be a solution of the differential
equation. In this way we are led to three classes of integrals of a partial differential equation of the

type (1):
(a) Two -parameter systems of surfaces f(x,y,z,a,b) = 0.Such an integral is called a complete
integral.

(b) If we take any one -parameter subsystem f(x,y,z, a, ¢(a)) = 0 of the system (2.0.2), and form its
envelope, we obtain a solution of equation.

(1). When the function ¢(a) which defines this subsystem is arbitrary, the solution obtained is
called the general integral of (2.0.1) corresponding to the complete integral (2.0.2). When a definite
function ¢ (a) is used, we obtain a particular case of the general integral.

(c) If the envelope of the two -parameter system (2.0.2) exists, it is also a solution of the equation
(2.0.1); it is called the singular integral of the equation.

Example 2.0.1: We can illustrate these three kinds of solution with reference to the partial
differential equation

14 LOVELY PROFESSIONAL UNIVERSITY
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Z2(1+p*+q») =1 (2.0.3)

We can show that (x —a)? + (y —b)? +z2 =1 (2.0.4)

was a solution of this equation with arbitrary a and b. Since it contains two arbitrary constants, the
solution (2.0.4) is thus a complete integral of the equation (2.0.3).

Putting b = a in equation (2.0.4), we obtain the one -parameter subsystem
x—a)+(@y—a)i+z2=1
whose envelope is obtained by eliminating a between this equation and
x+y—2a=0
So that it has equation (x —y)?+2z%2 =0 (2.0.5)

Differentiating both sides of this equation with respect to x and y, respectively, we obtain the
relations

2zp =y —x, 2zq=x—-y

from which it follows immediately that (2.0.5) is an integral surface of the equation (2.0.3). It is a
solution of type (b); i.e,, it is a general integral of the equation (2.0.3).

The envelope of the two-parameter system (2.0.3) is obtained by eliminating a and b from equation
(2.0.4) and the two equations x —a =0, y —b = 0 i.e,, the envelope consists of the pair of planes z
= £ L. It is readily verified that these planes are integral surfaces of the equation (2.0.3) ; since they
are of type (c) they constitute the singular integral of the equation.

Ei/' Notes:It should be noted that, theoretically, it is always possible to obtain different complete

- integrals which are not equivalent to each other, i.e., which cannot be obtained from one
another merely by a change in the choice of arbitrary constants. When, however, one
complete integral has been obtained, every other solution, including every other complete
integral, appears among the solutions of type (b) and (c) corresponding to the complete
integral we have found.

2.1 Few Important Definitions

Now we shall define few important terms which will help us to understand the Cauchy’s method
of characteristics for solving non-linear partial differential equation.

Definition 2.0.1: Plane Element:A plane passing through the point P(xy,y,,2,) with its normal
parallel to the direction n defined by direction rations (py, g, —1) is uniquely given by the set of
five real numbers D (xy, ¥y, Zy, Do, o). Conversely any such set of five real numbers defines a plane
in three-dimensional space. Thus a set of five real numbers D(x,y,z,p,q ) is called a plane element
of the space i.e,, a plane in three dimensional space.

Definition 2.0.2: Integral Element: Consider a partial differential equation of first order, i.e.,
f(x,y,2,p,q)=0 (2.0.6)

A particular plane element D (x, ¥, Zy, Do, o) Whose components satisfy the equation (2.0.6)is called
and integral element of equation (2.0.6) at the point (xg, ¥o, Zo)-

Definition 2.0.3: Elementary Cone: We assume that it is possible to solve an equation of type (2.0.6)
for q in terms of x, y, z and p i.e., from (2.0.6), we obtain an expression

q=Fxyzp) (2.0.7)
From (2.0.7) we can calculate the value q for given values of x,y,zand p.

Now keeping x,,y, fixed z, and varying p only, we obtain a set of plane elements
{x0, Y0, 20,0, F (X0, Y0, 20, )}, which depend on the single parameter p only. Thus, varying p we
obtain a set of plane elements all of which pass through the fixed point P(x,y,,2,) i.e., all these
plane elements envelope a cone with vertex at P. This cone is generated is called the elementary
cone of equation (2.0.6) at the point P(xy,yq, Zo)-

Definition 2.0.4: Tangent Element:Consider a surface S whose equation is

2= g(x,y) (2.0.8)
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If the function g(x,y) and its first order partial derivatives g, (x,y) and g, (x,y) are continuous in a
certain region R of the xy plane, them the tangent plane at each point of the surface S gives a plane
element of the type {x,,¥0,9(X0,¥0), 9x (X0, ¥0), gy (X0, ¥0)} Which is called tangent element of the
surface S at the point {xg, ¥y, (%o, ¥0)}.

Thus, the surface (2.0.8) is an integral surface (i.e. solution) of the partial differential equation (2.0.6)
such that at each point of the surface, its tangent element touches the elementary cone of the
equation (2.0.6).

2.2 Cauchy's Method of Characteristics

We shall now consider methods of solving the nonlinear partial differential equation

F(xy22,%)=0 (21.1)

In this section we shall consider a method, due to Cauchy, which is based largely on geometrical
ideas. The plane passing through the point P(x,,¥,,z,) with its normal parallel to the direction n
defined by the direction ratios (pg,qo,—1) is uniquely specified by the set of numbers
D (%0, Y0, 20, Po,qo)- Conversely any such set of five real numbers defines a plane in three -
dimensional space. For this reason a set of five numbers D(x,y, z,p, q) is called a plane element of
the space. In particular a plane element (x¢, ¥y, Zo, Po,qo) Whose components satisfy an equation

F(x,y,zp,q) =0 (21.2)
is called an integral element of the equation (2.1.2) at the point (x,y,, Zo).

It is theoretically possible to solve an equation of the type (2.1.2) to obtain an expression

q=G6xy,2p) (2.1.3)

n Elementary cone

Plane element

Figure 2.1

from which to calculate q when x, y, z and p are known. Keeping x,,y, and z, fixed and varying p,
we obtain a set of plane elements {xg,Vq,Z,Po, G({X0, Y0, 20, P0)}, Which depend on the single
parameter p. As p varies, we obtain a set of plane elements all of which pass through the point P
and which therefore envelop a cone with vertex P; the cone so generated is called the elementary
cone of equation (2) at the point P. (see Figure 2.1.)

Consider now a surface S whose equation is

z=g(xy) (2.1.4)

If the function g(x,y)and its first partial derivatives g, (x,y), g, (x,y) are continuous in a certain
region R of the xy plane, then the tangent plane at each point of S determines a plane element of the
tYPe {xO' yO!ZO! po,G({XO, yOIZOI pO)}l (215)

which we shall call the tangent element of the surface S at the point {x,,y, g(xo,¥)}. It is obvious
on geometrical grounds that:

Theorem 2.1.1. A necessary and sufficient condition that a surface be an integral surface of a partial
differential equation is that at each point its tangent element should touch the elementary cone of
the equation.

Proof: A. curve C with parametric equations x = x(t),y = y(t),z = z(t) (2.1.6)
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lies on the surface (4), z(t) = g{x(t),y(t)} for all values of t in the appropriate interval I. If Py is a
point on this curve determined by the parameters to, then the direction ratios of the tangent line
PoPi(see Figure 2.2) are {x'(t,), ¥’ (to),z' (to)}where x'(t,) denotes the value of dx /dt when. t = to,
etc. This direction will be perpendicular to the direction (py, o, —1) if

z'(to) = Poxo' (to) + Qoo (to)
For this reason we say that any set {x(t),y(t), z(t),p(t),q(t) } (2.1.7)

of five real functions satisfying the condition

Z'(t) = p(OX'(®) + q(®O)y'(®) (2.1.8)

{PO lqo J—l)

Figure: 2.2

defines a strip at the point (x,y,z) of the curve C. If such a strip is also an integral element of
equation (2.1.2), we say that it is an integral strip of equation (2.1.2 ); i.e., the set of functions (2.1.7)
is an integral strip of equation (2.1.2) provided they satisfy condition (2.1.8) and the further
condition F{x(t),y(t),z(t),p(t),q(t)} =0 (21.9)

for all tin L. If at each point the curve (2.1.6) touches a generator of the elementary cone, we say that
the corresponding strip is a characteristic strip. We shall now derive the equations determining a
characteristic strip. The point (x + dx,y + dy,z + dz) lies in the tangent plane to the elementary
cone at P if

dz = pdx + qdy (2.1.10)
where p, q satisfy the relation (2.1.2). Differentiating (2.1.10) with respect to p, we obtain

d
0=dx+ ﬁdy (2.1.11)
where, from (2.1.2),
oF | 9Fdq _
o o= 0 (21.12)

Solving the equations (2.1.10), (2.1.11), and (2.1.12) for the ratios of dy, dz to dx, we obtain

_dx_ _dz (2.1.13)

F,  F;  pFpy+qF,

So that along a characteristic strip ,y'(t), z’ (t) must be proportional to F,, F;pF, + qF;, respectively.
If we choose the parameter t in such a way that

x'(t) =, y'(t) =k, (2.1.14)
And z'(t) = pF, + qF,, (2.1.15)
Along a characteristic strip p is a function of t so that

OB 0N
dpdF O0pdF
“axop ' dyoq
dpdF 0qdF
“axop ' oxoq
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Since 2 = Z—Z. Differentiating equation (2) with respect to x, we find that

dy
dF OF dFdp OF dq
a+£p +%a+aa= 0
so that on a characteristic strip
p'(t) = —(F, + pF,) (2.1.16)
and it can be shown similarly that g’ (t) = —(F, + qF;) (2.1.17)

Collecting equations (2.1.14) to (2.1.17) together, we see that we have the following system of five
ordinary differential equations for the determination of the characteristic strip

O =k, y®)=F ZO=pE+qk p'®)=-(E+pE), q@O=-F+qF)
These equations are known as the characteristic equations of the differential equation (2.1.2).

= Notes: The characteristic strip is determined uniquely by any initial element (x,, ¥, Zo, Do, 90)
and any initial value to of t. The main theorem about characteristic strips is:

Theorem 2.1.2: Along every characteristic strip of the equation F(x,y,z,p,q) = 0 the function
F(x,y,z,p,q) is a constant.

Proof: The proof is a matter simply of calculation. Along a characteristic strip we have

P (0,(0,20,p(0,4(0) =
=Ex'(t) + E,y'(t) + Ez'(t) + E,p' () + F,q'(t)
= EF, + B Fg + F,(pF, + qFy) — F, (F, + pE) — Fy (F, + qF)
=0

so that F(x,y,z,p,q) =k, a constant along the strip.

Example 2.1.3: Find the characteristics of the equation z = pq, and determine the integral

surface which passes through the parabola x = 0,y% = z.
Solution: Given equation is z = pq (2.1.18)
We are to find its integral surface which passes through the given parabola given by
x=0,y=z (2.1.19)
Re-writing (2.1.19) in parametric form, we have
x=0, y=4 z =12 A being a parameter. (2.1.20)
Let the initial values xg, ¥, 2, Do, 9o Of X, ¥, Z, p, q be taken as
xo = %o(1) =0, Yo =Yo(1) =0, 7y = 2(1) = A? (21.21)

Let py, qo be the initial values of p, g corresponding to the initial values xg, Yy, zy. Since initial values
(%0, Y0, 29, Do, Qo) satisfy (2.1.18), we have

Poqo = Zy, OF DPoqo =A% by (2.1.21) (21.22)
Also, we have

25(A) = poxo(A) + qoYo' (D)

Sothat 24 =py X0+ ¢y x 1 or qo = 24 (2.1.23)
Solving (21.22) and (21.23), py =%  and Qo =21 (2.1.24)
Collecting relations (2.1.21) and (2.1.24) together, initial values of (xo, ¥y, 2o, Po,qo) are given by

X% =0 Vo=4, zg=2% po= %, qo =22 when t=t, =0 (2.1.25)
Re-writing (2.1.8), let f(x,y,2,p,q) =pq—z =0 (2.1.26)

The usual characteristic equations of (2.1.26) are given by

X(O=f,=q (2.1.27)
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Y@ =f;=p (2.1.28)
z'(t) = pfy + 4fy = 2pq (2.1.29)
') =—fi—pf=p (2.1.30)
9O =—fy—afz=q (21.31)
From (2.1.27) and (2.1.31), x'(t) —q'(t) =0, sothat x—q=¢, (2.1.32)
Where c; being an arbitrary constant. Using initial values (2.1.25), (2.1.31) gives

Xo — qo =y, 0-21=¢ or ¢ = —2A
Then (2.1.32) becomes x —q = —24  or x=q—21 (2.1.33)
From (2.1.28) and (2.1.31), y'(t) = p'(t) =0, sothat y—p=c,, (2.1.34)
Where c, being an arbitrary constant. Using initial values (2.1.25), (2.1.34) gives

Yo —DPo = (g, A—§=Cz or c, = A/2.
Then (2.1.34) becomesy —p = % or y=p+ % (2.1.35)
From (2.1.30) p'(t) =p, %dp =dt, log logp =t +logc;, p=czet (2.1.36)
From (2.1.25), (21.36) gives,  po = cze®, ¢; =2.
Hence (2.1.36) reduces to p = %et. (2.1.37)
From (2.1.31) q'(t) = q, édq =dt, loglogq =t +logc,, q=cuet (2.1.38)
From (2.1.25), (2.1.38) gives,  qo = c,e°, ¢, =21
Hence (2.1.38) reduces to q = 21e". (2.1.39)
Using (2.1.33) and (2.1.39), x = 22e® — 21 = 2A(e* — 1) (2.1.40)
Using (2134) and (2137), or  y=3et+2=2(et+1) (2.1.41)
Substituting values of p and q from (2.1.36) and (2.1.38) in (2.1.29), we get
Z'(t) = det.Z/lef or Zz'(t) =2A%e% or dz = 22%e%tdt
Integrating, z = A%e?' + ¢5, c¢5 being an arbitrary constant. (2.1.42)

Using initial values (2.1.25), (2.1.42) giveszy = A1?¢° +¢; or A%= 2%e°4+¢; orc; =0
Then, (2.1.41) gives z = A%e?.. (2.1.43)
The required characteristics of (2.1.18) are given by (2.1.40), (2.1.41) and (2.1.43).

To find the required integral surface of (2.1.18), we now proceed to eliminate two parameters t and
A from three equations (2.1.40), (2.1.41) and (2.1.43). Solving (2.1.40) and (2.1.41) for efand A, we
have

x+4
Rt and A==
4y—x 4

Substituting these values of e*and 2 in (2.1.43), we have

Z = (4—314—;()2 (Z;z_}z)z or 16z = (x + 4y)2

which is the required integral surface of (2.1.18) passing through (2.1.19).

@ Example 2.1.4: Find the solutions of the equation z = %(p2 +¢%) + (p — x)(q — y)which

passes through the x -axis.

Solution: It is readily shown that the initial values are x, = v,y, = 0,25 = 0,py = 0,qy = 2v,t, = 0.

The characteristic equations of this partial differential equation are

ax _ —y W e —y % - _
ZoPta-y. o =pra-—x_=p+q-y, =p@+qa-y)+q@+q-x),
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dx_ + dx_ +
dt_p q y’dt_p q—x

from which it follows immediately that
x=p+v,y=q—2v
Also it is readily shown that

d
E(p+q—x)—p+q—x

d

z@ta-»=p+ta-y
givingp+q—x=ve',p+q—y=2ve*
Hencewehavex = v(2et —1), y=v(et—1), p=2v(et—1), g=v(et+1)

Substituting in the third of the characteristic equations, we have

dz_ 5vZe?t — 3p2et
dt

With solution
z= gvz(e” —1) - 3vi(et-1)

Now from the first pair of equations (2.1.45) we have

e_YTX
2x -y’

v=x-—2y
so that substituting in (2.1.46), we obtain the solution

z = >y(4x —3y).

Summary

o The first-order nonlinear partial differential equations are defined.

o All the types of differential equations solutions with examples are explained.

¢ One parameter and two parameter systems are elaborated.
¢ Cauchy’s Method of Characteristic equations are derived

¢ Integral surfaces for given nonlinear equation determined.

Keywords
e Non Linear PDE

¢ One parameter solution
e Two parameter solution
¢ Plane element

e Tangent element

e Envelope

¢ Cauchy’s Method of Characteristics

Self Assessment

1. If the characteristic strip contains at least one integral element of
then

A. Itisan integral strip of equation

B. The elementary curve of the equation

C. Line of the equation
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D.

2.
A.
B.
C.
D.

90w »

b

90w »

o1

OnNwmp

OO ®m» 9

N

oS0 w»

> ®

Any curve to the equation

The characteristics strip corresponding partial differential equation PO = Zare
X)) =-qy®=p

X(t)=-9,y'(t) =-p

X =ay®=p

None of these

The characteristics strip corresponding  partial differential equation
2=(p*+0°)/2+(P=X)(A~ ¥) are

pP)=p+a+y, aq(t)=p+a+x

pP)=p+a-y q(t)=p+aq-x

p'()=a-y,a'(t)=p-x

p'(t)=p+q,a'(t)=p+q

The integral surface be an integral surface of a partial differential equation is that at each
points its tangent element should touch to

The elementary cone of the equation

The elementary curve of the equation

Line of the equation

Any curve to the equation

The equations of characteristics strip corresponding partial differential equation
f (X’ y’ Z’ p’ q) = Oare

Xt)="f,y'0="f,

x'(t) = pf,, y'(t) = of,

x'(t) = pf. y'(t) = of,

X't)="f,,y't)=f,

Along every characteristic strip of equation F(x,y,z,p,q) = 0,

The functionF (x,y, z, p, q) is zero

The functionF (x, y, z, p, q) is positive only
The functionF (x, y, z, p, q) is a constant.
None of these

A solution of a partial differential equation of the first order that contains as many
arbitrary constants as there are independent variables is called as

Particular integral

Singular solution

Complete solution

None of these

f(x,y,z,a,b)=0

No point of its member system

Any envelope of system touches
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B. Each point of its member system

C. Entirely within the system

D. None of these

9. Anenvelope is defined as the curve that is
A. Tangent to a given family of curves.

B. Passing through given family of curves.
C. Not tangent to a given family of curves.
D. None of these

Answers for Self Assessment

Review Questions

Q1. Determine the characteristics of the equation z = p? — ¢ and find the integral surface which
passes through the parabola 4z + x? = 0,y = 0.

Q2. Determine the characteristics of the equation p? + g% = 4z and find the solution of this equation
which reduces to z = x? + 1 when y = 0.

Q3. Find a complete integral of the partial differential (p® + q?)x = pz and deduce the surface
solution which passes through the curve x = 0, 2% = 4y.

L..J Further Readings
1. LN. Sneddon(1957), Elements Of Partial Differential Equations, Mcgraw Hill Education.

2. Lawrence C. Evans (1998), Partial Differential Equations, Universities Press Pvt. Ltd

L@ Web Links

https:/ /onlinecourses.nptel.ac.in/noc22 _ma73/preview

https:/ /onlinecourses.nptel.ac.in/noc21 _ma09/preview

https:/ /onlinecourses.swayam?2.ac.in/cec22_mal2/preview
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Objectives

After studying this unit, you will be able to

¢ identify the concept to solve nonlinear first order partial differential equations.

¢ understand the concept of Charpit’s method

¢ know about the general solution of nonlinear partial differential equations.

e Applyspecial cases of Charpit's methodto solve nonlinear first order partial differential
equations.

¢ find the condition of compatibility for systems of first order partial differential equations.

Introduction

In this chapter, more general method of solving partial differential equations of order one but of
any degree and compatible system of first order partial differential equations will be discussed.

A method of solving the partial differential equation
fxxy,z,p,9 =0 (3.0.1)

due to Charpit, is based on the considerations of the previous chapter. The fundamental idea in
Charpit's method is the introduction of a second partial differential equation of the first order

9(x,y,z,p,q,0) =0 (3.0.2)
which contains an arbitrary constant a and which is such that:

(a) Equations (3.0.1) and (3.0.2) can be solved to give
p=pr(xy2a), q=qxyza)
(b) The equation
dz =p(x,y,z,a)dx + q(x,y,z,a)dy (3.0.3)
is integrable. When such a function g has been found, the solution of equation (3.0.3)

F(x,y,z,a,b) =0 (3.0.4)

LOVELY PROFESSIONAL UNIVERSITY
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containing two arbitrary constants a, b will be a solution of equation (3.0.1). Further, it will be seen
that equation (3.0.4) is a complete integral of equation (3.0.1).

3.1 Charpit's Method

Let the given partial equation differential of first order and non-linear in p and q be

f(xy.zpq) =0 (3.1.1)
We know that
dz = pdx + qdy (3.1.2)

The next step consists in finding another relation
F(x,y,2,0,9) =0 (3.1.3)

such that when the values of p and q obtained by solving (3.1.1) and (3.1.3), are substituted in
(3.1.2), it becomes integrable. The integration of (3.1.2) will give the complete integral of (3.1.1).

In order to obtain (3.1.3), differentiate partially (3.1.1) and (3.1.3) with respect to x and y and get
of LOF, L9 9fda _ (3.14)

ox 0z dp 0x aqax_
OF L OF | 0FOp  0Fdq _

ox 0z apodx  dqox 0 (3'1'5)

of (O  9f0%p  0f0q _
oy To:9 559y T agay =0 (3.1.6)
and
oF (OF OFdp , 0Fdq _
oy T2:9  apay Tagay =0 (3.1.7)
Eliminating g—Zfrom (3.1.4) and (3.1.5), we get
(L4 2y 2020 20 _ (20 08, | 0600)of _
ox 0z dq dx/ dp dox 0z dq dx/ dp -
"’_f"’_F_"’_F"_f) "_f"_F_"_F"_f) Of9F _ OF0f)3q _
r(ax dp  9xdp (az dp 0z adp (Bq dp 9q ap) ax 0 (3'1'8)
.. .. . aq
Similarly,eliminating 5from (3.1.6) and (3.1.7), we get
0faF _0FOFY | (9f0F _0FOF) | (3FOF _0FOf\ap _
(ay op dy ap) (62 dq 0z aq) (Bp dq dp Bq) ay 0 (3'1'9)
2
Since2? = 22 — % he Jast term in (3.1.8) is the same as that in (3.1.9), except for a minus sign and
ox dxdy ay

hence they cancel on adding (3.1.8) and (3.1.9).

Therefore, adding (3.1.8) and (3.1.9) and rearranging the terms, we obtain

of |, Of \OF , (df L df \OF af _ _9f\oF af\ oF af\oF _
Getar)ot Graast (5 -a) e+ (-5) 5+ (-5)5 =0 (3.1.10)
This is a linear equation of the first order and integral of (3.1.10) is obtained by solving the auxiliary
equations

dp dq dz dx _ dy

9f,0f —9f,0f . _ 9 9f  _9f  _of (3.1.11)
ax sz By' qu pap “aq ap aq

Since any of the integrals of (3.1.11) will satisfy (3.1.10), an integral of (3.1.11) which involves p or q
(or both) will serve along with the given equation to find p and q. In practice, however, we shall
select the simplest integral

E;/° Remark 3.1.1:In what follows we shall use the following standard notations
of of of of of

ax_fxr @zfyr Ezfzr %zfp' %zfq
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Therefore, Charpit’s auxiliary equations (3.1.11) may be re-written as

dp _  dq _ dz _dx _ ay _ dF
fxtpfz fytaf; —Pfp—afq —fp —fq 0’

3.2 Working Rule While Using Charpit’s Method

Step 1. Transfer all terms of the given equation to L.H.S. and denote the entire expression by f.

Step 2. Write down the Charpit’s auxiliary equations (3.1.11)

Step 3. Using the value of f in step 1 write down the values of i.efy, fy, ... etc. occuring in step 2 and
put these in Charpit’s equations (3.1.11).

Step 4. After simplifying the step 3, select two proper fractions so that the resulting integral may
come out to be the simplest relation involving at least one of p and q.

Step 5. The simplest relation of step 4 is solved along with the given equation to determine p and q.
Put these values of p and q in dz = p dx + q dy which on integration gives the complete integral of
the given equation. The Singular and General integrals may be obtained in the usual manner.

& Cautions:Sometimes Charpit’s equations give rise to p = a and q = b, where a and b are

constants. In such cases, putting p = a and q = b in the given equation will give the
required complete integral.

SOLVED-EXAMPLES
@ Example 3.2.1:Find a complete integral of z = px + qy + p? + q2.

Solution: Let f(x,y,2,p,q) =z—px —qy —p* — q* = (3.21)

Charpit’s auxiliary equations are

dp dq dz dx dy

S A 02
From 3.21), fy=-0, fy=-q =0, fb=—x—2p, f=—y—2q (3.2.3)
Using (3.2.3), (3.2.2) reduces to

V= e = v e 624
Taking the first fraction of (3.2.4), dp =0so thatp=a (3.2.5)
Taking the second fraction of (3.2.4), dq =0so thatq=Db (3.2.6)

Putting p = a and q = b in (3.2.1), the required complete integral is z = ax + by + a? + b?, a, b being
arbitrary constants.

@ Example 3.2.2:Find a complete integral of ¢ = 3p?.

Solution: Here given equation is f(x,y,z,p,q) =3p* — q = 0. (3.2.7)
Charpit’s auxiliary equations are
dp = dq = dz = ﬂ = d—y
or-®__ 44 _ & _ 4 _dy (3.2.8)
0+0.p  0+0.g —6p2+q —6p 1
Taking the first fraction of (3.2.7), dp =0so thatp=a (3.2.9)
Substituting this value of p in (3.2.7), we get q = 3a2 (3.2.10)

Putting these values of p and q in dz = pdx + qdy, we get dz = adx + 3a2dy so that

LOVELY PROFESSIONAL UNIVERSITY
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z =ax + 3a?y + b, which is a complete integral, a and b being arbitrary constants.

@ Example 3.2.3:Find a complete integral ofz2 (p?z2 + ¢2) = 1.

Solution: Here given equation is f(x,y,2,p,q) = p?z* + ¢*z> - 1=0 (3.2.11)
Charpit’s auxiliary equations are
dp  dq dz _dxdy
of Lof T of L of T __Of _ Of T _of _9of
ox + 0z ay + 0z q p ap q aq ap aq
dp _ dq _ dz _ax d_y
p(4p2z3+42zq2)  q(4p2z3+2zq2?)  —2p2zt-2q%z%2  —2pzt _% (3212)
Taking the first two fractions, (1/p)dp = (1/q)dq so that p = aq.
Solving (3.2.11) and (3.2.12) forpand q,p = ———, q= —
z(a?z%2+1)2 z(a?z%2+1)2
«dz = pdx + qdy = 22 _oradx + dy = z(a?2% + 1)2 dz.
z(a?z%2+1)2

Integratingax +y = [(a?z%+ 1)2zdz (3.2.13)

Putting a?z? + 1 = t? so that 2a®z dz = 2tdt, (3.2.13) becomes
ax+y= [ tdtorax+y+b = (ﬁ) t3, where t = (a%z% + 1)

3
orax+y+b = (ﬁ) (a?z% + 1)2 or9a*(ax +y + b)? = (a?2? + 1)3

which is a complete integral, a and b being arbitrary constants.

3.3 Special Methods of Solutions Applicable to Certain Standard
Forms

We now consider equations in which p and q occur other than in the first degree, that is non-linear
equations. We have already discussed the general method. We now discuss four standard forms to
which many equations can be reduced, and for which a complete integral can be obtained by
inspection or by other shorter methods.

Standard Form I. Only p and q Present
Under this standard form, we consider equations of the form f(p, q) =0 (3.3.1)

Charpit’s auxiliary equations are

dp_ _ _dq_ _ _dz___ dx _dy
fx+pfz fy+qu _pfp_qfq _fp _fq

givingdo—p = %, by (3.3.1)

Taking the first ratio, dp = 0 so that p = constant = a, say (3.3.2)
Substituting in (1), we get f(a, q) = 0, giving q = constant = b, say, (3.3.3)
where b is such that f(a, b) = 0. (3.3.4)

Then, dz = p dx + q dy = adx + bdy, using (3.3.2) and (3.3.3).

Integrating, z = ax + by + ¢, (3.3.5)
where c is an arbitrary constant. (3.3.5) together with (3.3.4) give the required solution.

Now solving (3.3.4) for b, suppose we obtain b = F(a), say.

Putting this value of b in (3.3.5), the complete integral of (3.3.1) is

z=ax+yF(a) +c, (3.5.6)
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which contains two arbitrary constants a and ¢ which are equal to the number of independent
variables, namely x and y.

E;/* Remark 3.3.1:Sometimes change of variables can be employed to transform a given
~ equation to standard form I.

@ Example 3.3.1:Solve pq = k, where k is a constant.

Solution: Given that pq = k. (3.3.7)
Since (3.3.7) is of the form f(p, q) = 0, its solution is

z=ax+by+c, (3.3.8)
whereab=k or b=k/a, on putting a for p and b for qin (3.3.7).

From (3.3.8), the complete integral is z = ax + (k/a)y + ¢, (3.3.9)

which contains two arbitrary constants a and c.

@ Example 3.3.2:p2 + @2 = m2, where m is a constant.

Solution: Given that p2 + g2 = m? (3.3.10)
Since (3.3.10) is of the form f(b, q) = 0, its solution is z = ax + by + ¢, (3.3.11)
where a2 + b2 =m?2 or b2 = (m2 -a2)1/2 , on putting a for p and b for b in (3.3.10).

From (3.3.11), the complete integral is z = ax + (m?2 -a2)1/2+c, (3.3.12)

which contains two arbitrary constants a and c.

Standard form II.Clairaut Equation.

A first order partial differential equation is said to be of Clariaut form if it can be written in the
form

z=px+qy +1{(p, q) (3.3.13)
LetF(x, v,z p, q) (px+qy +f(p,q) -z (3.3.14)
Charpit’s auxiliary equations are

dp _ dq _ dz _ﬁ_d_yor
feApfs fyvafs  ~phmafy ~fy  ~fq
d_p — ﬂ — dz — dx — dy
0 =0~ Sear—phah, ~ of, Ry by (3.3.13) (3.3.15)

Then, first and second fractions (3.3.15), dp = 0 and dq = 0 this givesp=aand q =b.

Substituting these values in (3.3.13), the complete integral is z = ax + by + {(a, b)

E’ Remark 3.3.2:0bserve that the complete integral of (3.3.13) is obtained by merely replacing
~ p and q by a and b respectively.

@ Example 3.3.3:Solve z = px + qy + pq.

Solution: The complete integral is z = ax + by + ab, a, b being arbitrary constants.

Example 3.3.4:Prove that complete integral of the equations (px + qy —z)* = 1 + p? + ¢*is
1
ax + by + cz = (a? + b? + c?)z

Solution: Re-writting the given equation, we have
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px+qy—z=+,/1+p?+q? or z=px+qy+.1+p?+q? (3.3.16)

which is of standard form I and so its complete integral is

z=Ax+ By +V1+ A? + B? (3.3.17)

To get the desired form of solution we take +ve sign in (3.3.17) and set A = -a/c and B =-b/c. Then
(3.3.17) becomes

z= —(ax+by)/ci—\z [c? +a? + b?
or ax + by + cz =+Va? + b? + c2.

Standard form III. Only p, q and z present.

Under this standard form we consider differential equation of the form

f(p,q,2z) =0 (3.3.18)

Charpit’s auxiliary equations are

dp _ dq _ dz _dx _ dy or
fx+pfz fy+qu _pfp_qfq _fp _fq
dp dq dz dx dy .
—=—= =—=— 3.3.18
pfz qu _pfp_qfq _fp _fq usmg ( )
Taking the first two ratios, d?p = (:—q.
Integrating, ¢ = ap,a being an arbitrary constant. (3.3.19)

Now dz = pdx + qdy = pdx + apdy, Using (3.3.19)

dz = p(dx + ady) = pd(x + ay) = pdu, (3.3.20)
Where u=x + ay. (3.3.21)
Now, (3.3.20) = p = dz/duand so by (3.3.19) g=ap=a(y)
Substituting these values of p and q in (3.3.18), we get

dz dz _
f (G agez) =0 (33.22)

which is an ordinary differential equation of first order. Solving (3.3.22), we get z as a function of u.
Complete integral is then obtained by replacing u by (x + ay).

Working rule for solving equations of the form
f(p,qz) =0 (3.3.23)
Step I. Let u = x + ay, where a is an arbitrary constant. (3.3.24)

Step II. Replace p and q by dz/du and a(dz/du) respectively in (3.3.23) and solve the resulting
ordinary differential equation of first order by usual methods.

Step III. Replace u by x + ay in the solution obtained in step IL

@ Example 3.3.5:Find a complete integral of p? = qz.

Solution: Given equation is p? = qz 3.3.25
q

which is of the form f(p, q, z) = 0. Let u = x + ay, where a is an arbitrary constant. Now, replacing p
and q by dz/du and a(dz/ du) respectively in (3.3.25), we get

(dz)2 (dz) dz dz

—) =al—)zor—=az or = = qu.

du du du z

Integrating, logz —logh = au or 7z = be™or z = he®*+ay),
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which is a complete integral containing two arbitrary constants a and b.

@ Example 3.3.6:Find a complete integral of z = pq.

Solution: Given equation is z = pq, (3.3.26)
which is of the form f(p, g, z) = 0.

Let u = x + ay, where a is an arbitrary constant.

Now, replacing p and q by Z—i and a%respectively in (3.3.26), we get

2
z=a (Z—i) or Z—i == i% or +Vaz 1%dz = du.
Integrating, +2vaz=u+b, or4az = (x +ay + b)? asu=x +ay.

Standard form IV. Equation of the form fi(x, p) = f2(y, q).

A form in which z does not appear and the terms containing x and p are on one side and those
containing y and q on the other side.

LetF(x,y,z,p,q) = fi(x,p) = (r,q) = 0 (3.3.27)

Then Charpit’s auxiliary equations are

dp __ _dq__ _dz _dx _dy
fx+pfz fy+qu _pfp_qfq _fp _fq
dp dq dz dx dy

0w = 0foy ~ (@) raron  —onow  opaq Y 33%)

Taking the first and the fourth ratios, we have

"a—’;dp+%dx=00r df, =0

Integrating, f; = a, a being an arbitrary constant.

(3.3.27)= fi(x,p) = L,(¥,9) = a. (3.3.28)
Now, (3.3.28) = fi(x,p) =a and £,(y,q9) = a. (3.3.29)
From (3.3.29), on solving for p and q respectively, we get

p = Fy(x,a),say and q = F,(y,a), say (3.3.30)
Substituting these values in dz = pdx + qdy, we get dz = F; (x, a),dx + F,(y,a)dy.

Integrating, z = [ Fy(x,a) dx + [F,(y,a)dy + b,

which is a complete integral containing two arbitrary constants a and b.

@ Example 3.3.7:Find a complete integral of x(1 + y)p = y(1 + x)q.

Solution: Separating p and x from q and y, the given equation reduces to

xp/(1+x) =yq/(1+y).

Equating each side to an arbitrary constant a, we have

P _ Y4 _ =a(X* = a2
(lTx)—aand Ty =@ so that p—a(x) and q—a(y).
Putting these values of p and q in dz = p dx + q dy, we get

=q(X= Hy =a(t 1
dz—a(x)dx+a(y)dy or dz—a(x+1)dx+a(y+1)dy.

Integrating, z = a(logx + x) + a(logy +y) + b = a(logxy + x +y) + b,

which is a complete integral containing two arbitrary constants a and b.
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3.4 Compatible System of First-Order Equations

Consider first order partial differential equations
f&xy.zpq) =0 (3.4.1)
andg(x,y,z,p,q) =0 (34.2)

Equations (3.4.1) and (3.4.2) are known as compatible when every solution of one is also a solution
of the other.

To find condition for (3.4.1) and (3.4.2) to be compatible.

Let ] =Jacobian of f and g = % #0 (3.4.3)

Then (3.4.1) and (3.4.2) can be solved to obtain the explicit expressions for p and q given by
p = @(x,y,z)andq = P (x,y,2) (3.4.4)

The condition that the pair of equations (3.4.1) and (3.4.2) should be compatible reduces then to the
condition that the system of equations (3.4.4) should be completely integrable, i.e., that the equation

dz = pdx + qdy or ¢dx +pdy — z = 0,, using (3.4.4) (3.4.5)
should be integrable. (3.4.5) is integrable if
Y a¢ LA
¢(aZ—0)+¢(0— Oz)+(_1)(6y_ 6x)_0
which is equivalent to

Wy 09 28
P e 3y 3, (3.4.6)

Substituting from equations (3.4.4) in (3.4.1) and differentiating w.r.t. ’x” and ‘z’ respectively, we get

z—£+g—£3—f+g—’;3—f=o (347)
g—£+g—gg—‘j+g—’;3—f=o (3.4.8)
From (34.7) and (3.4.8), 2L + ¢ <L + ZTZ (52+922)+ g—g (32+92) =0 (3.4.9)
Similarly (3.4.2) yields ), 2 + ¢ 22 + g—z (52+922)+ Z—Z’ (B+902%) =0 (3.4.10)
Solving (3.4.9) and (3.4.10), 22 + ¢ 2 = %{% + ¢%} (34.11)

Again, substituting from equations (3.4.4) in (3.4.1) and differentiating w.r.t. 'y’ and ‘z’ and
proceeding as before, we obtain

o0 . 06 _ _1(00f.9) | 0(f.0)
ay Y oz ] {B(y,q) +y a(z,q)} (3.3.12)

Substituting from equations (3.4.11) and (3.4.12) in (3.4.1) and replacing ¢,y by p, q respectively,
we obtain

1(000) | 3G9)) _ _1(009) , 3(F0) _
1{a(x,p) +pa(z,p)} J{a(ym +qa(z,q)}°r f.91=0 (34.13)

_ 9.9 a(f.9) , 0(f.9) a(f.9)
Where [f,g] = i) +p 3zp) + 30 +q ) (34.14)

Example 3.4.1:Show that the equations xp = yq and z(xp + yq) = 2xy are compatible and

solve them.
Solution: Let f(x,y,2z,p,q) =xp—yq =0 (3.4.15)
andg(x,y,2,p,q) = z(xp + yq) —2xy =0 (3.4.16)
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of of
o(x,p) |99 9g|~ —2y xz| =XV
dx dp
of of
a(f,g)_az 6p_| 0 T
azp) |09 09| lp+yq xz| x*p —xyq,
dz 0p
of of
af,g9) _ dy dq | —q —y
o, q) (09 9g _|Zq—2x Zy|——2xy,
dy 0q
of of
a(f:g)_ oz @ _ 0 -y,
a(ZJQ)_ a_g 3_9 _|xp+yq zy =y“q +xyp.
dz 0dq
_a(f,9), df.9) (.9 af.g _ L, -
[f. 9] “Axp) T a(zp) +a(y,q) 329 = 2xy — x2p? — xypq — 2xy + xypq + y2q

= —xp(xp +yq) +yq(ep + yq) = —(xp — yq) (xp + yq) = 0, using (3.4.15).
Hence (3.4.15) and (3.4.16) are compatible.
Solving (3.4.15) and (3.4.16) for pand q, p = %and qg== (3.4.17)

Using (3.4.17) in dz = pdx + qdy, we have dz = (y/z)dx + (x/z)dy or z dz = d(xy).

2
Integrating,z? =xy+ gor z% = 2xy + ¢, where c is an arbitrary constant.

Summary

¢ The concept to solve nonlinear first order partial differential equation is discussed.
e Charpit method and its special cases are derived
¢ The compatibility of system of partial differential equation was discussed.

¢ The condition of compatibility is derived with examples.

Keywords

e Non linear

¢  Charpit’smethod

e  Compatible system
e  Clairaut

e  Special cases

Self Assessment

1. The Charpit’s auxiliary equation is

A G _dy __dz _ dx _ dx
) fp fq pfp'“]fq _pfz _fy
B dx _dy __dz _ dx _  dx
’ fp fq pfp'“]fq _fx_pfz _fy_qu
C dx _dy _ dz _ dx _ _dx

fo f1 fotfy  ~ffo —fHf
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. The complete integral of the equation

S0 w >

None of the above

The complete integral of equation pxy + pq + qy = yz is

. Zz+ax=beY(a+y)?

z—ax=beY(a+y)?
z—ax=beY(a+y)™?
None of these

The general solution of the partial differential equation2zx — px? — 2qxy + pq = 0 is

. z=ay(x*—a)

z=ay+b(x?*—a)
z=ay—b(x?*+a)
None of these

The Clairaut’s equation is
z=px+ay+ f(p,q)
z=px—q+ f(p,q)
z=px’+ay’ +f(p,q)
z=paxy+ f(p,q)

z=px+ay+cy(@+p*+0°)
z=ax—by—ci(l+a’+c?)
z=ax+by+c(l+a’+b?)

z=ax—-by+c
Zz=ax+by+c

f(z,p,q)=0

The complete integral of the equation is obtained by the relation

p=aq
Z=pxX+qy
ap+bg=c

None of these

The first order partial differential equation is separable if it can be written in the form

f(x,y)=9(p.q)
f(x,p)=9(y.a)
f(z,p)=9(z,0)

None of these
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on w >

ONw >

The partial differential equations

compatible to each other if

o1.9) _,
3(p.0)
o1.9) _,
3(x,y)
o1.9) 4
3(p.0)
21.9) 4
3(x,y)

If the partial differential equations

compatible to each other, then

[f,g]=0
[f.g]=0
[f,0]=a, a

is an arbitrary constant

. None of these

.If the partial differential equations

compatible to each other, then

f(X’ Y.z, p’q) = O’Q(X’ Y, Z, p’q) = Oal'e

f(X’ Y.z, p’q) = O’Q(X’ Y, Z, pvq) = Oare

f(x,y,2,p.9)=0,9(x,y,2,p,q) =0 __

e

_a(f.9), atg) , a(f.9)  af.g)

. Also a solution of other

Not a solution of other

. Constant only
. None of these

f.g]= -

81= 50 m "o o) T aa)

g2 0.0t af), a(te)
o p)  Po@p) o) o)

g o200 atg) At a(tg)
oxp) To@p) oy o)

. None of these

. The first order two partial differential equations are compatible if every solution of one is
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Answers for Self Assessment

L A 2. C 3. B 4. A 5. B
6. A 7. B 8. C 9. A 10. B
11. A

Review Questions

Q1. Find a complete integral of yzp2 - q = 0.

Q2.Find a complete and singular integrals of 2xz - px2 - 2q xy + pq = 0.
Q3. Solvep2+q2=1

Q4. Find the complete integral of the equation z = px + qy + log (pq).

— 2 —
Q5. Show that the equations XP=YA=X ng X PHA=X2 e compatible.

L..J Further Readings

1. LN. Sneddon(1957), Elements Of Partial Differential Equations,Mcgraw Hill Education.
2. Lawrence C. Evans (1998), Partial Differential Equations, Universities Press Pvt. Ltd

Web Links

WWW

https:/ /onlinecourses.nptel.ac.in/noc22_ma73/preview

https:/ /onlinecourses.nptel.ac.in/noc21_ma09/preview

https:/ /onlinecourses.swayam?2.ac.in/cec22_mal2/preview
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Objectives

After studying this unit, you will be able to

¢ identify the concept of second order partial differential equations.
¢ understand origin of second order differential equation.
¢ Know about the classification of second order differential equations.

¢ find the solution of linear differential equations with constant coefficients.

Introduction

In the last chapters we considered the solution of partial differential equations of the first order. We
shall now proceed to the discussion of equations of the second order. In this chapter we shall
confine ourselves to a preliminary discussion of these equations, and then in the following two
chapters we shall consider in more detail the three main types of linear partial differential equation
of the second order. Though we are concerned mainly with second -order equations, we shall also
have something to say about partial differential equations of order higher than the second.

4.1 The Origin of Second -Order Equations
Suppose that the function z is given by an expression of the type

z=fw+gWw)+w (4.1.1)
where f and g are arbitrary functions of u and vy, respectively, and u, y, and w are prescribed
functions of x and y. Then writing

_o _o P o 2
p ~ ox q oy T ox? ~ axoy’ T 9y

4.12)

we find, on differentiating both sides of (4.1.1) with respect to x and y, respectively, that

p=f'Wu, + g v, + wy
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q=f"Wu,+g v, +w,
and hence that
r=f"Wui+ 9" W+ f Wiy + 9 W) Vex + Wiy
s = f"(Wuuy + g" WIvevy + (Wit + ' (V) 0y + wyy
t=f"Wui+g" WV + f' Wuy, + g' Wvy, +wy,

We now have five equations involving the four arbitrary quantities f ' f ", g', g ". If we eliminate
these four quantities from the five equations, we obtain the relation

2.,2 2.2 —
|p = Wyl Uy — Wy Uy Uy T — Wiy Uy Vs 0000Us Uy S — Wiy Uy Uyt — Wyp, Uy Uy, uxuyvxvyuyvy| =
0 (4.1.3)

which involves only the derivatives p, g, 1, s, t and known functions of x and y. It is therefore a
partial differential equation of the second order. Furthermore if we expand the determinant on the
left -hand side of equation (3) in terms of the elements of the first column, we obtain an equation of
the form

Rr+Ss+Tt+Pp+Qq=W (4.1.4)

where R, S, T, P, Q, W are known functions of x and y. Therefore the relation (4.1.1) is a solution of
the second -order linear partial differential equation (4). It should be noticed that the equation
(4.1.4) is of a particular type: the dependent variable z does not occur in it.

As an example of the procedure of the last paragraph, suppose that
z=f(x+ay)+g(x—ay) (4.1.5)

where f and g are arbitrary functions and a is a constant. If we differentiate (4.1.5) twice with
respect to X, we obtain the relation

r=f"+g"

while if we differentiate it twice with regard to y, we obtain the relation

t=a?f" +a?g"
so that functions z which can be expressed in the form (4.1.5) satisfy the partial differential equation
t =a’r (4.1.6)
Similar methods apply in the case of higher -order equations. It is readily shown that any relation of
the type
z=Yr1 fr(v) (41.7)

where the functions f, are arbitrary and the functions v, are known, leads to a linear partial
differential equation of the nth order.

= Remarks 4.1.1: The partial differential equations we have so far considered in this section
have been linear equations. Naturally it is not only linear equations in which we are
interested. In fact, we have already encountered a nonlinear equation of the second order;
that if the surface z = f(x,y) is a developable surface, the function f must be a solution of the
second -order nonlinear equation

rt —s?

4.2 Classification of Second Order Partial Differential Equation

We classify second-order equations of the type (4.1.4) by their canonical forms; we say that an
equation of this type is:

(a) Hyperbolic if S2 -- 4RT > 0,
(b) Parabolic if S2 - 4RT =0,
(c) Elliptic if S2- 4RT < 0.
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Homogeneous and Non-homogeneous linear equations with constant coefficients.

A partial differential equation in which the dependent variable and its derivatives appear only in
the first degree and are not multiplied together, their coefficients being constants or functions of x
and y, is known as a linear partial differential equation.

When all the derivatives appearing are of the same order, then the resulting equation is called a
linear homogeneous partial differential equation with constant coefficients and it is then of the form
F(D,D") = f(x,y) where F(D,D') denotes a differential operator of the type

F(D,D’):Z Z D7D’
T S

On the other hand, when all the derivatives are not of the same order, then it is called a non-
homogeneous linear partial differential equation with constant coefficients.

In this chapter we propose to study the various methods to find complementary functions for
solving homogeneous linear partial differential equation with constant coefficients, namely.

4.3 Linear Partial Differential Equations with Constant Coefficients

We shall now consider the solution of a very special type of linear partial differential equation, that
with constant coefficients. Such as equation can be written in the form

F(D,D") = f(x,y) (4.3.1)
where F(D,D') denotes a differential operator of the type

F(D,D")= %, Xs D™D
(4.3.2)

é}

. . . a
in which the quantities c,sare constants, and D = P D' = 7

The most general solution, i.e., one containing the correct number of arbitrary elements, of the
corresponding homogeneous linear partial differential equation

F(D,D')=0 43.3)

is called the complementary function of the equation (4.3.1), just as in the theory of ordinary
differential equations. Similarly any solution of the equation (4.3.1) is called a particular integral of
(4.3.1). As in the theory of linear ordinary differential equations, the basic theorem is :

Theorem 4.3.1: If u is the complementary function and z; a particular integral of a linear partial
differential equation, then u +ziis a general solution of the equation.

Proof: The proof of this theorem is obvious. Since the equations (4.3.1) and (4.3.3) are of the same
kind, the solution u +z will contain the correct number of arbitrary elements to qualify as a general
solution of (4.3.1). Also

F(D,D")u=0, F(D,D")z; = f(x,y) so that

F(D,D")(u+2z) = f(xy)
showing that u+ z; is in fact a solution of equation (4.3.1). This completes the proof.
Another result which is used extensively in the solution of differential equations is:

Theorem 4.3.2: Ifuy, uy, ... ... ... ,Uyare solutions of the homogeneous linear partial differential
equation F(D,D")z = 0, then

n

Z Crlly

=1

where the ¢,'s are arbitrary constants, is also a solution.
Proof: The proof of this is immediate, since
F(D,D")(c,u,) = ¢, F(D,D")u,
and F(D,DNXr-y ve=X7—y F(D,D)v,
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for any set of functions v,.. Therefore

n n
F(D,D’)Z U, = Z F(D,D")(c, u,)
r=1 r=1
n

= Z ¢ F(D,DNu, =0

r=1

We classify linear differential operators F(D,D') into two main types, which we shall treat
separately. We say that:

(a) F(D, D")is reducible if it can be written as the product of linear factors of the form D + aD' + b,
with a, b constants;

(b) F(D, D")is irreducible if it cannot be so written.
For example, the operator
(D* - D"?)
which can be written in the form
(D +D")(D—-D"
is reducible, whereas the operator s
D?-D’

which cannot be decomposed into linear factors, is irreducible.

4.4 Reducible Equations

The starting point of the theory of reducible equations is the result:

Theorem 4.3.3: If the operator F(D,D') is reducible, the order in which the linear factors occur is
unimportant.

The theorem will be proved if we can show that
(D + BD"+ v, )(asD + BsD' +vs) = (asD + BsD" + ¥5)(arD + D" +v;) (434)
for any reducible operator can be written in the form

F(D, D) =121 (aD+B.D" +v)
(4.3.5)

and the theorem follows at once. The proof of (4.2.4) is immediate, since both sides are equal to

a,a;D* + (asBy + Bsa,)DD' + B BsD'* + (Vs — sy, )D + (Vs Br + Bs¥r)D' + ¥r¥s.

Theorem 4.34: If a,.D + B,D' +, is a factor of F(D,D") and ¢, ()is an arbitrary function of the
single variable ¢, then if a,, # 0,

YrX
Uy =exp exp (_ (l—) & (Brx — ary)
r

is a solution of the equation F(D,D") = 0.

Proof: By direct differentiation we have

)4 YrXN\
Du, = _a_rur + B exp exp (_;—)d) r(Brx — ayy)
r r

I yTx !
D'u, = —a; exp exp (_ (l—) @' (Brx — ayy)
T

so that

(a,D+ B.D'+y)u,.=0 (4.3.6)
Now by Theorem 4.3.3

FD, DY = [Ty (@D + D' + )} @D + B0’ + ¥, (43.7)
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the prime after the product denoting that the factor corresponding to s = r is omitted.

Combining equations (4.3.6) and (4.3.7), we see that F(D, D")u, = 0 which proves the theorem.

By an exactly similar method. we can prove:

Ei/~ Remarks 4.3.5: If 8D’ + y, is a factor of F(D,D") and ¢, (£)is an arbitrary function of the
- single variable ¢, then if 5, # 0,

%y

) ,8,)

U, =exp exp (—
is a solution of the equation F(D,D") = 0.

= Remarks 4.3.6: In the decomposition of linear F(D,D') into linear factor we may get
multiplication factors of the type (a,D + 8,D’ + ¥,)™. Then the solution corresponding to
factor of this type can be obtained by simple application of Theorem 4.3.4.

@ Example 4.3.7: If n=2, we wish to find the solutions of equation

(arD+ B, D' +y.)?2=0 (4.3.8)
Solution: If welet Z = (a,.D + 8,D' +v,)z
then (a,D+ B,D' +y,)Z =0

which according to Theorem 4.3.4 has solution
VX
7 =exp exp (=12 . (Byx - )
T

if a, # 0. To find the corresponding function z we have therefore to solve the first order linear
partial differential equation

a a .
"‘ra—i + ﬁrﬁ + vz = exp exp (— ya—x) &r (Brx — ary). (4.3.9)
We get the auxiliary equations are
dx dy dz
—_— == —rx
@ Byt e b B - )

with solution
Prx—ary=c
Substituting this in auxiliary equations, we get the
dx dz
gzt o (e

which is a first order linear equation with solution

1 _Irx
z=—{¢,(c)x+czle o
aT
Equation (4.3.9) and hence equation (4.3.8), therefore has a solution
1 _Inx
z= a_{¢r Brx — ayy)x + Y (Brx — ayy)le ar
.

Where the functions ¢, 1, are arbitrary.

This result readily generalized (by induction) to give

E/' Remarks 4.3.8: If (a,.D + B,.D' +y,)"(a, # 0) is a factor of F(D,D") and if the functions
- @11, Pr2s e ov . Ppyy are arbitrary, then
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n
_Yrx

e ar xs_1¢rs(ﬁrx - ary)

s=1
is a solution of F(D,D") = 0.

Similarly the generalization, If (8,D'+ )™ (a, # 0) is a factor of F(D,D") and if the functions
D11, Pr2s ooe e Pppy are arbitrary, then

_vry
e FBr xs_l(brs(ﬂrx)

s=1
is a solution of F(D,D") = 0.

We are now in a position to state the complementary function of the equation (1) when the operator
F(D,D) is reducible. As a result, we see that if

F(D,D) =TIy (@D + B, D' +y,)™ (43.10)
and if none of the a;.s is zero, then the corresponding complementary function is
u= :’rl=1 exp exp (_ %) 2221 xs_id)rs(ﬂrx - ary)

43.11)

where the functions ¢,5(s = 1,...,nr; r = 1,...,n) are arbitrary. If some of the a;s are zero, the
necessary modifications to the expression (4.3.11) can be made. From equation (4.3.10) we see that
the order of equation (4.3.3) is m; + my + + my; since the solution (4.3.11) contains the same number
of arbitrary functions, it has the correct number and is thus the complete complementary function.
To illustrate the procedure we consider a simple special case:

o'z _, 0%
6y4_ dx29y?

@ Example 4.3.9: Solve the equation Z%;

Solution: In the notation of this section this equation can be written in the form
(D+D)*(D—-D')?=0
so that by the rule (4.3.11) the solution of it is
z=x¢1(x =)+ (x —y) +xihy (x + y) +hp(x +¥)
where the functions ¢4, ¢,,14,9,are arbitrary.

4.5 Irreducible Equations

When the operator F(D,D’) is irreducible, it is not always possible to find a solution with the full
number of arbitrary functions, but it is possible to construct solutions which contain as many
arbitrary constants as we wish. The equation can be homogenous or non-homogeneous which
cannot reduced to linear factors.

We can present C.F. of irreducible equation

F(D,D')=0
(43.12)

in the following manner .
CF=Y Aex+ky
where A, h, k are arbitrary constants such that F(h, k) = 0.

@ Example 4.3.10: Solve(D — D'?)z =0

Solution: Here D — D'? is not a linear factor in D and D'.

Let z=Y,  Ae™** bea trial solution of the given equation. Then
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Dz = Ahe™ kY and D'z = Ak?e*+ky,

Putting these values in the given differential equation, we get

ACh — ke = 0sothath —k? = 0 or h = k?

Replacing h by k2, the most general solution of the given equation is

z=Y  AeF**% where A and k are arbitrary constants.

Summary

e The origin of second order differential equation is defined.
¢ The concept of classification second order differential equation is discussed.
¢ Linear partial differential equation with constant coefficients is elaborated.

o The solutions of reducible and irreducible equations are derived with examples.

Keywords

Linear second-order partial differential equation
Origin of second-order equations

Classification

Reducible

Irreducible

Self Assessment

Fz ¥z
5224652 xy
L . ot By . i
1. The partial differential equation is classified as
A. Elliptic
B. Parabolic
C. Hyperbolic
D. None of the above
2. Using substitution, which of the following equations are solutions to the partial

differential equation?

L E )
s ol 3x=3y)

o &7 sin( 7p)

b XY
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& 9%
Wy—=50—r
o
3. The partial differential equation is classified as

Elliptic
Parabolic
Hyperbolic

GRS

None of the above

3 1
5a—f+63—j= Xy
% chy

b

The partial differential equation is classified as

Elliptic
Parabolic

Hyperbolic

90w »

None of the above

ou ou o
The partial differential equation ot X X isa

o1

linear equation of order 2
non-linear equation of order 2

linear equation of order 1

90w »

non-linear equation of order 1

6. What is the general form of second order non-linear partial differential equations (x and y
being independent variables and z being a dependent variable)?
A. F(xy,z,0z/0x,0z/dy,d2z/ 9x2,02z / 82,02z / Oxdy)=0
B. F(x,z0z/0x,0z/0dy,0%z/0x2,02z/ dy2)=0
C. F(y,z,020x,0z0y)=0
D. F(xy)=0

B

The partial differential equation of n order is requires

Only one independent variable
Two or more independent variables

More than three independent variables

90w

Equal number of dependent and independent variables

f(D,D)z = f(x,y), DD’

8. In partial differential equation means
0 0

A OXOY
62

B X
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o0
c ox* oy
o0
dy? ox
(D+2D)(D+D")z= x+2y,,[heCFis

9. In the solution of differential equation

¢1(2X_Y)+¢2(X_y)

A

g $(2y+X)+¢,(2y+X)
c G(x=Yy)+4,(y+x)
p #(y+2X)+4,(y+X)

10. Point out the correct homogeneous linear partial differential equation

0%z 0 )

— +—=sin X
A OX

0%z o1 oz

2+ -
D. OX oy

3 21 12 12
11. Solution of the differential equation D°-6D°D’'+11DD™" -6D"" =0 is

A 2= A HX) + (Y +2%) + ¢ (y —3X)
g Z=A(Y=X)+8,(y+X)+ ¢y (y+3X)

C. z :¢1(y—x)+¢2(2y—x)+¢3(2y—3x)

o Z=4(Y=X)+6,(y—2X) + ¢, (y +3X)

3 2y 12 13 _
12.The solution of differential equation (D —3D°D"+3DD"-D )Z =0 is

Al ¢1(2X_ y)+¢2(x— y)+X¢3(X_ y)
LAY X)X, (Y X)X (Y + %)

o H(2X=Y)+ Xy (X y) + X Gy (x - Y)
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D. None of these

13, In the solution of differential equation 2r +5s +2t = X+ 2y, the CF is

A $(2X=Y)+d,(x-Y)
g 4(2y—x)+4¢,(y—2X)
c A(X=y)+4,(y+X)

b A(Y+2X)+¢,(y+X)

14. Solution of the differential equation (D-2D-1)(D-2 D" - DZ=0 is

_AX (2k2+1) x+k
L 1=¢ #(y—2x)+ > Ae d

z=e"¢,(2y +2x)+ Y MgVl

z=e"g(y+2x)+ D Ap@ D

z=e*g(y-x)+Y, Ak xHy

C.
D.

12 _
15. Solution of the differential equation (D-D")z=0 is

L z= Z Ae"tY

2
7 = Aek X+ky
EADY

_ kx—y
c zZ= z Ae
D. None of these

Answers for Self Assessment

L C 2. A 3. B 4. D 5. B
6 A 7 B 8 A 9 A 10. D
11. A 12. B 13. B 14. C 15. B

Review Questions

Q1. Solve (D* —3D2D' + 2DD'*)z = 0.

Q2. Solve (D? + DD' — 6D'?)z = 0.
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Q3.. Solve 25r —40s + 16t =0
Q4. Solve (D* — 4DD'? + 4DD'*)z =0
Q5. Solve (2D* —3D?D' +D'?)z=0

Q6. Solve (D +2D' —3)(D*+ D)z =0

L..J Further Readings

1.. ILN. Sneddon(1957), Elements Of Partial Differential Equations, Mcgraw Hill
Education.

2. Lawrence C. Evans (1998), Partial Differential Equations, Universities Press Pvt. Ltd

Web Links

WWW

https:/ /onlinecourses.nptel.ac.in/noc22_ma73/preview

https:/ /onlinecourses.nptel.ac.in/noc21_ma09/ preview

https:/ /onlinecourses.swayam?2.ac.in/cec22_mal2/preview
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Objectives
After studying this unit, you will be able to

¢ identify the concept of need of particular integral.

e understand the concept of homogenous and non-homogenous differential equation
solutions.

¢ know about the conditions to find particular integral for second order and higher order.

¢ apply appropriate method to find the complete solution.

Introduction

In in this chapter, how to find the particular integral for both homogeneous and non-homogeneous
higher order linear partial differential equations will be discussed with different all its type.

5.1 Particular Integral (P.I) of Homogeneous Linear Partial
Differential Equation

F(D,D")z = f(x,y) (5.1.1)
The inverse operator_—— . D,)of the operator F (D, D")is defined by the following identity

FO.0) (5 ) G0 = FG)
Particular integral (P.I.) of (5.1.1) is (F @, D,)) ).

In what follows we shall treat the symbolic functions of D and D’ as we do for the symbolic
functions of D alone in ordinary differential equations. Thus it will be factorized and resolved into
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partial fractions or expanded in an infinite series as the case may be. The reader is advised to note
carefully the following results

(i) D, D2, ... will stand for differentiating partially with respect to x once, twice and so
on.
For examples, Dx*y> = ;—xx“yS = 4x3y5, D?x*y5 = 66—;x4y5 = 12x2%y°.

(if) D, D2 ... will stand for differentiating partially with respect to y once, twice and so
on.
For example, D'x*y® = %x“yS = 5x*y*4, D"?x*y5 = 66—;x4y5 = 20x*y3.

(iii) 1/D, 1/D2, ... will stand for integrating partially with respect to x once, twice and so

on.
54,5 6,5
For example, %x“y5 = [x*ySdx = %, %x“y5 =[[x*y®dx = %
(iv) 1/D’,1/D2, ... will stand for integrating partially with respect to y once, twice and so
on.
4,,6 4.,7
For example, %x“ys = [x*ySdy = %, ﬁx“y5 =[[x*ySdx = %

5.2 Short methods of finding the P.1. in certain cases

Before taking up the general method for finding P.I. of F(D, D)z = f(x, y) we begin with cases when
f(x, y) is in two special forms. The methods corresponding to these forms are much shorter than the
general methods.

A Short Method I. When f(x, y) is of the form f(ax + by).
The method under consideration is based on the following theorem.

Theorem 5.2.1: If F(D, D’) be homogeneous function of D and D’ of degree n, then

1 1
W(ﬁ(n) (ax + by) = md)(ax + by)

provided F(a, b) # 0,¢™ being the nth derivative of ¢ w.r.t. ax + by as a whole.
Proof: By direct differentiation, we have D”¢(ax + by) = a” ™ (ax + by),
D"S¢(ax + by) = b5¢®) (ax + by), and D"D'*¢p(ax + by) = a" b9 (ax + by).
Since F(D, D’) is homogeneous function of degree n, so we have

F(D,D")¢(ax + by) = F(a,b)p"™ (ax + by) (5.2.1)
Operating both sides of (5.2.1) by 1/F(D, D’), we have

1
F(D,D")

¢(ax + by) = F(a,b) o™ (ax + by). (5.2.2)

Since F (a, b) # 0,dividing both sides of (5.2.2) by F(a, b), we get

1
F(D,D")

1

¢ (ax +by) = -

¢(ax + by). (5.2.3)
An important deduction from result (3): Putting ax + by = v, (5.2.3) gives
P () = ¢) (5:24)

1
F(D,D")

1
F(a,b)

Integrating both sides of (5.2.4) n times w.r.t. v/, we have

F(Dl'D,)gb(v) = F(;’b)ff ......... [d(W)dvdv ... .....dv wherev = ax + by.

Exceptional case when F(a, b) = 0. When F(a, b) = 0, then the above theorem does not hold good. In
such a case the new method is based on the following theorem. Note that F(a, b) = 0 if and only if
(bD - aD’) is a factor F(D, D).
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x'ﬂ
b"n!

1
(bD—aD'")"

Theorem 5.2.2: ¢(ax + by) = ¢(ax + by).

Proof: Consider the equation (bD — aD")z = ¢(ax + by)
or

bp —aq = x"¢p(ax + by)

, . g, . dx _ d_y _ dz
Lagrange’s subsidiary equations for (5.2.6) are — = = = —————— SaxtDy)

Taking the first two fractions of (5.2.7), adx + bdy = 0 so that ax + by = ¢;
Taking the first and third members of (5.2.7) and using (5.2.8), we get

dx dz

b xrhien O

dz = —xrd;(cl) dx

. _ x"¢(cy) _ x"p(ax+by)
Integrating, z = b - betD

(5.2.9) is a solution of (5.2.5).

_ 1
= bD-aD’

Now, from (5.2.5), z x"¢p(ax + by)

From (5.2.9) and (5.2.10)

x"1¢(ax+by)
b(r+1) ~ bD

—— x"p(ax + by) by (52.8)

1

fro_ 1
Hence, if Gp—ab)"

¢(ax + by), then we have

_ 1 0 0 _
2= GpTapyi [bD_aD,x ¢(ax + by)] asx’ = 1.

¢(ax + by)using (5.2.11) forr =0

_ 1 x
= (bD-aD")"1b

1 1 1
= b (bD — aD')2 [bD “ap <Plaxt by)]

1 1 x?

= D aD 25 ¢(ax + by) using (5.2.11) forr =1

1 X

2
=@p_apy7apz P(@X+ DY)

after repeated use of (5.2.11) for n - 2 times more

n

=n!b"

¢(ax + by)

Solved Examples based on Short Method I

@ Example 5.2.1: Solve(D? + 3DD’ + 2D'?)z =x + .

Solution: The auxiliary equation of the given equation is
D?+3DD'+2D'? =0

(D +2D")(D+D') =0

CFis ¢, (x—y) + ¢,(2x — y), ¢, and ¢,being arbitrary functions.

1
D2+3DD'+2D"2

Now, P.I= (x+y)

1
12+3.1.1+2.12

i v _ 1 3
_6f2dv 36_36(x+y)'

[ Jvdvdv wherev =x+y

Hence required general solutionis z = C.F + P.I

z=1is g1 (x = y) + b2 (2x — y) + 5= (x + ).

(5.2.5)

(5.2.6)
(62.7)

(5.2.8)

(5.2.9)

(5.2.10)

(5.2.11)
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@ Example 5.2.2: Solve(D3 — 6D2D’ + 11DD"* — 6D'3)z = e5%+6¥

Solution: The auxiliary equation of the given equation is (D3 — 6D2D’ + 11DD"* — 6D'3 = 0
(D-D")(D —2D")(D—-3D")=0
CFis¢pi(x+y)+ ¢,2x+y) + $3(3x + ¥), 1, ¢, and p3being arbitrary functions.

- 1 5x+6y
Now, P.I (D-D")(D-2D")(D-3D") e

1

= 1 v —
(5_6)(5_12)(5_18)fffe dvdvdv where v = 5x + 6y.

1 1 1
- - v — — ___pV — = ____p5x+6y
glffe dvdv 916 919

Hence the required solution is z = ¢, (x + ¥) + ¢, (2x + ¥) + ps(3x + y) — 91_1e5x+6y

@ Example 5.2.3: Solve (D3 — 4D2D’ 4+ 4DD"*)z = 2sin(3x + 2y)

Solution: The auxiliary equation of the given equation is
D(D? —4DD' +4D") =0
D(D—-2D")2=0
CFis ¢, (y) + ¢, (2x + y) + x¢3(2x + ¥), P41, ¢, and ¢3being arbitrary functions.

1
D(D—-2D")?

Now, P.I= 2sin(3x + 2y)

1

= szffSinvdvdvdv where v = (3x + 2y)

_2[[ dd—zf' d_Z
=3 cosv dvdv = —z | sinvdyv =zcosv

2
= §cos(3x +2y)

Hence the required solutionis z = ¢, (y) + ¢, (2x + y) + x¢3(2x + y) + gcos(3x + 2y)

Example 5.2.4: Solve (D2 — 6DD’ + 9D"*)z = tan(3x +y
P

Solution: Here auxiliary equation is (D? — 6DD’ +9D"* = 0
(D—-3D")?=0
C.Fis ¢, (y + 3x) + x¢,(y + 3x), ¢, and ¢,being arbitrary functions.

1

NOW, PI= (DTD')Z

tan(3x +y)

XZ

12,

S ta n(3x+y) = x?ztan(Sx +y)

The required solution is z = ¢ (¥ + 3x) + x¢,(y + 3x) + x;tan(3x +y), ¢1 and ¢,being arbitrary
functions.

5.3 Short Method II. When f(x, y) is of the form xmyn or a Rational
Integral Algebraic Function of x and y

Then the particular integral (P.1.) is evaluated by expanding the symbolic function 1/f (D, D’) in an
infinite series of ascending powers of D or D’. In solved examples 1 and 2 of Art. 4.11, we have
shown that P.I. obtained on expanding 1/f(D, D) in ascending powers of D is different from that
obtained on expanding 1/f(D, D’) in ascending powers of D’. Since to get the required general
solution of given differential equation any P.I. is required, any of the two methods can be used. The
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difference in the two answers of P.I. is not material as it can be incorporated in the arbitrary
functions occuring in C.F. of that given differential equation.

E;/* Remarks 5.3.1: If n <m, 1/£(D, D) should be expanded in powers of D’/D whereas if m
— <n, 1/{(D, D’) should be expanded in powers of D/D’".

Solved Examples based on Short Method II

@ Example 5.3.1: Solve(D? — a%D"*)z = x

Solution: Here auxiliary equation is D* — a%D" = 0
(D—aD"Y(D+aD")=0
CFis ¢, (y + ax) + ¢,(y — ax), ¢; and ¢,being arbitrary functions.

1
X =

2_g2p'? D'2

D%-a?D Dz[l_azﬁ]

Now, PI= X

D’Z 1 D'? 1 x
[1 2 =—[1+a2—+---.]x=—x=—-
D2 D2 D2 6

The required solution is z = ¢, (y + ax) + ¢, (y — ax) +5 p ¢>1 and ¢,being arbitrary functions.
E] Example 5.3.2: Solve(D? — 6DD’ + 9D"*)z = 12x2 + 36xy.
Solution: Here auxiliary equation is (D? — 6DD’ +9D"" = 0

(D-3D")%=0
CFis¢,(y + 3x) + x¢,(y + 3x), 1 and ¢,being arbitrary functions.

1
Now, P.I= = 3D,)2 12(x? + 3xy) = 12W(x2 + 3xy)
D
2 3D’
=;7(1_T) (x? +3xy)——(1+6 +- )(x2+3xy)

[Retain upto D’ as maximum power of y in (x? + 3xy) is one]

12 D' 12
D2 x? +3xy+6—(x + 3xy) Dz(x +3xy+6—= (3x))

12 X\ 12, x* X ,
D2 x? +3xy+182 =ﬁ(10x + 3xy) =120 33 + 36y >3 =10 x* + 6x3y.

5.4 A General Method of Finding the Particular Integral of Linear
Homogeneous Equation with Constant Coefficients

Working rule for finding P.I. (General method) of F(D,D')z = f(x,y) (54.1)
- fy) (542)

(D-m.D")(D—-m,D")(D—m3D").........(D—myDr)

P.I=

We shall use one of the following formulas :

Formulal: fx,y) = [ f(x,c — mx)dx, where c=y+mx (5.4.3)

(D—- mDI)

Formula Il : f(x,y) = [ f(x, ¢ + mx)dx, where c = y - mx (54.4)

(D+le)

Hence in order to evaluate P.I. (5.4.2), we apply (5.4.3) or (5.4.4) depending on the factor D — mD’
and D + mD'. Note that result (5.3.4) can be obtained from (5.3.3) by replacing m by -m.
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E] Example 5.4.1: Solve (D — DD’ — 2D"*)z = (y — 1)e*

Solution: Here given (D — DD’ — 2Dz = (y — 1)e*or (D + D")(D — 2D")z = (y — 1)e*
Its auxiliary equationis (D + D')(D —2D") =0
The C.Fis ¢y (y — x) + ¢, (y + 2x), ¢, and ¢, being arbitrary functions

1
PlL= 70] De* (D+D’) {(D 2D") (v —De* }

(D+D")(D-2D")

f(c—2x — 1)e*dx taking ¢ =y + 2x.

= (D+D')
(D+D,) {(c —2x —1)e* — [(—=2)e*dx}, integrating by parts
1
= m{(c —2x — 1)e" + Ze"} = m{(c —2x+ 1)€x}
1 x 1 x
=m{(y+2x 2X+1)€ } m(}1+1)€

= [(c’ + x + De*dx and taking ¢’ =y — x
=(c'+x+1)e*—e*=ye*sinceasc' =y —x

Hence the required general solution is z = ¢; (y — x) + ¢, (y + 2x) + ye*
@ Example 5.4.2: Solve”Z + 22 = sinx.

dx  0dy
Solution: Rewriting, the given equationis (D + D")z = sinx.

Its auxiliary equationis (D + D") = 0.

The C.Fis ¢(y — x), where ¢ is an arbitrary function.

sinx = [ sinx dx = —cosx
(D+D )

Hence the required solutionis.z = C.F + P.I = ¢(y — x) — cosx.

5.5 Particular Integral of Non-Homogeneous Linear Partial
Differential Equation

F(D,D")z = f(x,y) (5.5.1)

The inverse operator — of the operator F(D,D") is defined by the following identity:

(

1
F(D,D") (m f(er/)> =f(xy)

Particular integral (P.I) = (F o) f(x, y))

Determination particular integral of non-homogeneous linear partial differential
equations (reducible or irreducible), namely

F(D,D")z=f(x,y) (5.5.2)

The methods of finding particular integrals of non-homogeneous partial differential equations are
very similar to those of ordinary linear differential equation with constant coefficients. We now
give a list of some cases of finding P.I. of (5.5.2).

Case I. When f(x, y) = e®**PY and F(a, b) # 0.

pax+by — 1 ax+by

Then P.I= F(D 5D D) e

Thus in this case we replace D by a and D’ by b.
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Case II. When f(x,y) = Sin(ax + by) or Cos(ax + by)

1
F(D,D")

1

Then P.I=
F(D,D")

sin(ax + by) or cos(ax + by)

Which is evaluated by putting D2 = -a2 , D2 = -b2 , DD' = -ab, provided the denominator is non-
zero.

Case III. When f(x,y) = x™y™.

Then, P.1= ﬁxmy" = [F(D,D']"tx™y"

which is evaluated by expanding [F(D, D’)]-! in ascending powers of D’/D or D/D" or D or D’ as
the case may be. In practice, we shall expand in ascending powers of D’/D. However note that if
we expand in ascending powers of D/D’, we shall get a P.I. of apparently different form. In this
connection remember that both forms of P.I. are correct because the two could be transformed into
each other with the help of C.F. of the given equation.

Case IV. When f(x,y) = Ve®™*bY when V is a function of x and y.

1 Veax+by — eax+by 1

Then, P.I = FOD) F(D+a,D'+b)

@ Example 5.5.1:Solve(D? — D'? + D — D")z = e2**+3¥

Solution: The given equation can be re-written as
((D—D)(D+D)+D—DYz=e?*Yor (D—D')(D+ D'+ 1)z = e2*¥*+3¥
~CFis¢;(y +x) + e *¢,(y — x), ¢, and ¢, being an arbitrary function.

1 2x+3 1 2x+3 1 2x+3
and Pl=———%*3V = —— Y=_Z¢ v,
(D-Dr)(D+D’+1) (2-3)(2+3+1) 6

Hence the required general solutionis z = ¢, (y+ x) + e *¢,(y —x) — §92x+3y :

@ Example 5.5.2: Solve(D? — DD' + D' — 1)z = cos(x + 2y)

Solution: The given equation can be re-written as

(D?—DD'+ D' — 1)z = cos(x + 2y) or (D—1)(D—D’' + 1)z = cos(x + 2y).
~ CFise*¢p;(y) + e ¢, (y + x), $; and ¢, being an arbitrary function.

P.I

cos(x +2y) = cos(x +2y) = %cos(x +2y)

: =(D—1)(D—D’+1) —1+1.2+D'-1
= G) sin(x + 2y), as 1/D’ stands for integration w.r.t. y keeping x as constant

Hence the required solutionis z = e*¢,(y) + e *¢,(y +x) + G) sin(x + 2y).
@ Example 5.5.3: Solve(D? — D'? — 3D + 3D")z = xy
Solution: Re-writing, given equation is

(D-D"YD+D +3)z=xy
Its C.F. is ¢, (¥ + x) + €3* ¢, (x — ), ¢, and ¢, being arbitrary functions

=—$(1+%'+-~-.)(1+D+TD'+(D+;)')Z+~-- ......... )xy
=— (143D +1D" +2DD’ +%'+§D' o) xy
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1
3D

1,02, 02, 2\ _1(x%y xy x* 2 %%
(xy+3y+3x+9+2)— 3(2+3+3+9x+6)

2 1(x*y xy x* 2 x3
cz=g )t -y -S| ot tgat

Summary

The particular integral is defined.
Particular method derived for homogenous differential equations.
Different kind of function with their P.I elaborated with examples.

The non-homogenous differential equation with all kinds of functions are discussed.

Keywords

Self

Homogeneous
Non-homogenous
Second order
Higher order
Particular Integral
Reducible

Irreducible

Assessment
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ON e

(D?-2DD'+D'?)z =e"¥

In the solution of differential equation the Pl is

X+ 2y

gx+2y
ex—Zy
e2x+y

P.I of the equation is r—2s+t=cos(2x +3y) is

. —cos (2x+3y)

cos (2x+3y)
sin (2x+3y)
-sin(2x+3y)

2 2 2x+3
In The PI of the partial differential equation (D +2DD'+ D' )Z =g

e2x+3y

1
_ez><+3y

25

_ e2x+3y

1
- e2x+3y

25

N2, _
The general solution of partial differential equation (D D ) Z= tan( y+ X) is
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4 :¢1(y+x)+x¢2(y+x)+x—22tan(y+x)

A.
2
2= (Y =X) + X, (y =)+ tan(y + )
B.
2
2=y +3)+,(y + )+ tan(y +)
C. X2
z =¢1(y—x)+¢z(y—x)+7tan(y+x)
D.
Solution of the differential equation (D - 2D'_1)(D - 2D,2 +1)Z =0is
5.
RESLK A2 AgPDxky
z=e"¢ 2y +2X) + > Ag® Db
z=e"g(y+2x)+ > AelK X
C
b Z=e"h(y—x)+ > Ap@ Dby
Solution of the differential equation (D - D,Z)Z = e2x+y is
6.

. kx+y
N Z= E Ae
2
Z= E Ak 4 g2xty

z=> Ae¥"Y —e>"
C.
D. None of these

2 2
7. The particular integral of the equation (D - D’)Z = 2y —Xis
2
A XY
2,,2
B. XY
C. Xy

X2y3

8. The2 solution ) of In the ) solution of differential
(D°-DD'-2D"+2D+2D")2 =€" the Pris
A. X+2y

B _lex+2y

3
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C. e

D. le2x+y
3

9. The solution of differential equation (D2 +DD' + D'—l)Z = Sin( X+ 2y) is
A e g (y)+eg,(y—x)— %[oos(x +2y) + 2sin( X+ 2y)]

B. e g (y)+e g, (y—x) +%[cos(x +2y) —2sin( x+2y)]

C. e g (y)+e g, (y+x) +%[cos(x +2y) +3sin( x+2y)]

D. None of these

10. In the solution of differential equation 3s — 2t — q = sin( 2x + 3y), the CF is

A. ¢1( )+e_X/3¢2 (2X_3y)

11.

Solution of the differential equation (3D2 - 2D,2 +D _1)2 =4e ™y COS(X + Y) is

12.

z=> Ae™V — 4 gxy sin( X + y)
N 3

z=> Ae™Y +%eX+y sin( X + y)
B.

z=> Ae™Y 4 %e“y sin( X + y)
C.

D. None of these

2 r X+
13. The PI of the differential equation is (D - D )Z =g y
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_ ye X+y
ex+y
XyeX+y

None of these

9N = »

2 ' X+
14. The PI of the differential equation is (D -D )Z = xe*"”

X
A Z(x=1e*Y
4( )

B X(X+1)e" gxry

X
C. —(x+1e*"

4
D. None of these

2 ' X+

15. The particular integral of the equation (D -D )Z =" is
A. lxe)(vLy

2
B. xe*"”
C. l yex+y

E Xyex+y
D.

Answers for Self Assessment

L B 2. B 3. B 4. A 5. B
6 B 7 A 8 B 9 A 10. B
11. B 12. C 13. A 14. A 15. B

Review Questions

Q1. Solve (D? + 2DD' + D'?)z = e2*+3¥.,

Q2. Solve (D3 —2D2D’ — DD'? 4+ 2D'3)z = e**V,

Q3.. Solve r — 5s + 4t = sin(4x + y).

Q4. Solve (D3 — 4D?D' + 5DD'? = 2D"*)z = e¥*?* + (y + x)V/2.
Q5. Solve (D? —2DD' + D'?)z = e**Y + x5,

Q6. Solve (D% + DD’ — 6D'?)z = ysinx.

Q7. Solve (D? — DD’ —2D'? + 2D + 2D")z = sin(2x + y).

Q8. Solve (3D% —2D'? + D — 1)z = 4e**Ycos(x + y).
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Unit 06: Monge’s Method and Method of Separation of Variables
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Objectives

After studying this unit, you will be able to

¢ identify the concept of need of Monge’s method.
¢ understand the concept of method of separation of variables.
e know the properties of Monge’s method.

e apply appropriate methods to find the solutions of second order PDE.

Introduction

The most general form of partial differential equation of order two is

fx,y,z,p,qr1st)=0 (6.0.1)
It is only in special cases that (6.0.1) can be integrated.

Some well known methods of solutions were given by Monge. His methods are applicable to a
wide class (but not all) of equations of the form (6.0.1).

Monge’s methods consists in finding one or two first integrals of the form
u=¢(v), (6.0.2)

where u and v are known functions of x, y, z, p and q and ¢ is an arbitrary function. In other words,
Monge’s methods consists in obtaining relations of the form (6.0.2) such that equation (6.0.1) can be
derived from (6.0.2) by eliminating the arbitrary function. A relation of the form (6.0.2) is known as
an intermediate integral of (6.0.1). Every equation of the form (6.0.1) need not possess an

58 LOVELY PROFESSIONAL UNIVERSITY

Notes



Notes

Partial Differential Equations

intermediate integral. However, it has been shown that most general partial differential equations
having (6.0.2) as an intermediate integral are of the following forms

Rr+Ss+Tt=V and Rr+Ss+Tt+U(rt-s2) =V, (6.0.3)

where R, S, T, U and V are functions of x, y, z, p and q. Even equations (6.0.3) need not always
possess an intermediate integral. In what follows we shall assume that an intermediate integral of
(6.0.3) exists.

6.1 Monge’s Method Of Integrating Rr + Ss + Tt=V
GivenRr+Ss+Tt=V, (6.1.1)

where R, S, T and V are functions of x, y, z, p and q.

0z _ 0z

We know that p = o a=5
r=r=n() =% == () =5

== (3) =5 and  s=pr=0(F) =% (612
Now, dp =2 dx + Z—zdy = rdx + sdy (6.1.3)
and dg =2 dx + Z—zdy = sdx + tdy (6.1.4)
From (6.1.3) and (6.1.4), r = (dp — sdy)/dx and t = (dq — sdx)/dy (6.1.5)

Substituting the values of r and s given by (6.1.5) in (6.1.1), we get

R(dp-sdy)
dx

or {Rdpdy + Tdqdx — Vdxdy} — s{R(dy)? — Sdxdy + T(dx)?} =0 (6.1.6)

+Ss+ T% =V or R(dp — sdy)dy + Ssdxdy + T(dq — sdx)dx = Vdxdy

Clearly any relation between x, y, z, p and q which satisfies (6.1.6) must also satisfy the following
two simultaneous equations

Rdpdy + Tdqdx — Vdxdy = 0 (6.1.7)
R(dy)? — Sdxdy + T(dx)? (6.1.8)

The equations (6.1.7) and (6.1.8) are called Monge’s subsidiary equations and the relations which
satisfy these equations are called intermediate integrals.

Equation (6.1.8) being a quadratic, in general, it can be resolved into two equations, say
dy—m;dx =0 (6.1.9)
dy —mpdx =0 (6.1.10)
Now the following two cases arise:

Case I. When m; and m; are distinct in (6.1.9) and (6.1.10).

In this case (6.1.7) and (6.1.9), if necessary by using well known result

dz = pdx + qdy,

will give two integrals u; = a and vi = b, where a and b are arbitrary constants. These give

u = f(ny), (6.1.11)
where f; is an arbitrary function. It is called an intermediate integral of (6.1.1).

Next, taking (6.1.7) and (6.1.10) as before, we get another intermediate integral of (6.1.1), say

u; = f(vy), (6.1.11)

where f; is an arbitrary function.Thus we have in this case two distinct intermediate integrals
(6.1.11) and (6.1.12). Solving (6.1.11) and (6.1.12), we obtain values of p and q in terms of x, y and z.
Now substituting these values of p and q in well-known relation

dz = pdx + qdy (6.1.13)
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and then integrating (6.1.13), we get the required complete integral of (6.1.1).
Case II. When m; = my i.e., (6.1.8) is a perfect square.
As before, in this we get only one intermediate integral which is in Lagrange’s form
Pp+0Qq =R (6.1.14)
Solving (6.1.14) with help of Lagrange’s method, we get the required complete integral of (6.1.1).
5/° R.emark 6.1.1:. Usually while dealing with case I,.we obtain second intermediate i.ntegral
directly by using symmetry. However sometimes in absence of any symmetry, we find the

complete integral with help of only one intermediate integral. This is done with help of
using Lagrange’s method.

= Remark 6.1.2: While obtaining an intermediate integral, remember to use the relation dz =
pdx + qdy as explained below :
(@) pdx + qdy + 2xdx = 0 can be re-written as dz + 2xdx = 0 so that z + x2=c.
(ii) xdp + ydq = dx can be re-written as xdp + ydq + pdx + qdy = dx + pdx + qdy
or d(xp) + d(yq) = dx + dz so that xp + yq = x + z + ¢, on integration

2+  Remark 6.1.3:Important Note. For sake of convenience, we have divided all questions
=/ p q
based on Rr + Ss + Tt = V in four types. We shall now discuss them one by one.

6.2 Type 1. When the given equation Rr + Ss + Tt = V leads to two
distinct intermediate integrals and both of them are used to get the
desired solution

Working rule for solving problems of type 1.

Step 1. Write the given equation in the standard formRr + Ss + Tt = V.

Step 2. Substitute the values of R, S, T and V in the Monge’s subsidiary equations:

Rdpdy + Tdqdx —Vdxdy =0 (6.2.1)
R(dy)? — Sdxdy + T(dx)? 6.2.2)
Step 3. Factorise (6.2.1) into two distinct factors.

Step 4. Using one of the factors obtained in (6.2.1), (6.2.2) will lead to an intermediate integral. In
general, the second intermediate integral can be obtained from the first one by inspection, taking
advantage of symmetry. In absence of any symmetry, the second factor obtained in step 3 is used in
(6.2.2) to arrive at second intermediate integral.

Step 5. Solve the two intermediate integrals obtained in step 4 and get the values of p and q.

Step 6. Substitute the values of p and q in dz = pdx + qdy and integrate to arrive at the required
general solution by integrating dz = pdx + qdy.

SOLVED EXAMPLES

@ Example 6.2.1:Solve r = a?t

Solution: Given equationisr —a?t =0 .

Comparing it with Rr + Ss + Tt=V, wehave R=1,5=0,T=-a2,V =0.

Hence Monge’s subsidiary equations

Rdpdy + Tdqdx — Vdxdy = 0 and R(dy)? — Sdxdy + T(dx)? =0
becomedpdy — a?dqdx = 0 (6.2.3)
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and (dy)? —a?(dx)? =0 (6.2.4)
Equation (6.2.4) may be factorized as (dy — adx)(dy + adx) = 0.

Hence two systems of equations to be considered are

dpdy — a®dqdx = 0, dy —adx =0 (6.2.5)
and dpdy — a?dqdx =0, dy+adx=0 (6.2.6)
Integrating the second equation of (6.2.5), we get y —ax = ¢; (6.2.7)

Eliminating dy/dx between the equations of (6.2.5), we get

dp —adq =0sothatp —aq =c, (6.2.8)
Hence the intermediate integral corresponding to (6.2.5) is p — aq = ¢, (y — ax) (6.2.9)
Similarly another intermediate integral corresponding to (6.2.6) is

p—aq = ¢(y +ax) (6.2.10)

Here ¢; and ¢,are arbitrary functions.

Solving (6.2.9) and (6.2.10) for p and q, we have
p=3{¢2(y +ax) + ¢1(y — ax)} and q = —{¢(y + ax) — ¢, (y — ax)}.

Substituting these values of p and q in dz = pdx + qdy, we get

1 1
dz = §{¢z ¥y +ax) + ¢ (y — ax)}dx + Z{d)z (y + ax) — ¢, (y — ax)}dy

1 1
= 5=#2(y + @)(dy + adx) = 51 (v — ax)(dy - adx)

Integrating, z = ,(y — ax) + ¥, (y + ax), P4, , being arbitrary functions.

6.3 Type 2. When the given equation Rr + Ss + Tt = V leads to two
distinct intermediate integrals and only one is emplovyed to get the
desired solution

Working rule for solving problems of type 2.

Step 1. Write the given equation in the standard form Rr + Ss + Tt =V.

Step 2. Substitute the values of R, S, T and V in the Monge’s subsidiary equations

Rdpdy + Tdqdx — Vdxdy = 0 (6.3.1)
R(dy)? — Sdxdy + T(dx)? 6.3.2)
Step 3. Factorize (6.3.1) into two distinct factors.

Step 4. Take one of the factors of step 3 and use (6.3.2) to get an intermediate integral. Don’t find
second intermediate integral as we did in type 1.

Step 5. Re-write the intermediate integral of the step 4 in the form of Lagrange equation, namely,
Pp + Qq = R. Using the well-known Lagrange’s method we arrive at the desired general solution of
the given equation.

SOLVED EXAMPLES
@ Example 6.3.1:Solve (r- s)y + (s- )x + q-p = 0.
Solution: The given can be written as yr + s(x —y) —tx =p—q (6.3.3)

Comparing (1) withRr +Ss + Tt=V,R=y,S=x-y,T=-xand V=p -q.

Hence Monge’s subsidiary equations
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Rdpdy + Tdqdx — Vdxdy = 0 and R(dy)? — Sdxdy + T(dx)? =0
become ydpdy — xdqdx — (p — q)dxdy =0 (6.3.4)
y(dy)? — (x — y)dxdy — x(dx)?> = 0 (6.3.5)
Rewriting (6.3.5), (dy + dx)(ydy — xdx) = 0.

so thatdy +dx =0 or dy = —dx (6.3.6)

and ydy — xdx = 0.
Using (6.3.6), (6.3.4) becomes

—ydpdx — xdqdx + qdx(—dx) —pdxdy = 0 or ydp + xdq + qdx + pdy =0
or ydp + pdy + xdq + qdx = 0 or d(yp) + d(xq) = 0 so that yp + xq = ;. (6.3.7)
Integrating (6.3.6), x + y = ¢;, c; being an arbitrary constant. (6.3.8)

From (6.3.7) and (6.3.8), one intermediate integral is

yp+xq=f(x+y), (6.3.9)
which is of the Lagrange’s form and so its subsidiary equations are

dx _ dy dz

= = T (6.3.10)
From first and second fractions of (6.3.10),
2xdx — 2ydy = 0.
Integrating, x? — y? = a, abeing an arbitrary constant (6.3.11)
Taking first and third fractions of (6.3.10), we get
dx _ dz or dx _ dz or
y e+ (2-a)/2 " fx+(x-a)t/?)
dz = f(x + (x? — a)'/?)(x? — a)/?dx (6.3.12)
Putx+ (x2—a)2=v  so that[l + = 1] dx = dv (6.3.13)
(x%2-a)z
1
rwdx=dv or dx 1=ﬂ
(x2-a)2 (x2-a)2

Then, (6.3.12) reduces to dz — % fw)dv = 0.
Integrating, z — F(v) = b or z—F (x + (x? — a)E) =b.

1
z—F(x+y)=b as y=(x%—-a): (6.3.14)

From (6.3.11) and (6.3.14), the required general solution is
z—F(x+y)=G(x?—y?),

z=F(x+7y)+ G(x? — y?), where F and G are arbitrary functions.

6.4 Type 3. When the given equation Rr + Ss + Tt = V leads to two
Identical Intermediate Integrals

Working rule for solving problems of type 3

Step 1. Write the given equation in the standard form Rr + Ss + Tt = V.

Step 2. Substitute the values of R, S, T and V in the Monge’s subsidiary equations

Rdpdy + Tdqdx — Vdxdy = 0 (6.4.1)
R(dy)? — Sdxdy + T(dx)? 6.4.2)

Step 3. RH.S. of (2) reduces to a perfect square and hence it gives only one distinct factor in place of
two as in type 1 and type 2.
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Step 4. Start with the only one factor of step 3 and use (2) to get an intermediate integral.

Step 5. Re-write the intermediate integral of the step 4 in the form of Pp + Qq = R and use
Lagrange’s method to obtain the required general solution of the given equation.

SOLVED EXAMPLES

@ Example 6.2.1: Solve (1 + q)?r-2(1 + p+ q + pg)s + (1 + p)2t =0

Solution: Comparing the given equation with Rr + Ss + Tt =V, (6.4.3)
R=(1+q)?,5=-2(1+p+q+pq), T=(1+p)?, V=0 (6.4.4)
Monge’s subsidiary equations are Rdpdy + Tdqdx — Vdxdy = 0 (6.4.5)
and R(dy)? — Sdxdy + T(dx)?=0 (6.4.6)
Using (6.4.4), (6.4.5) and (6.4.6) become

(1 + @)*dpdy + (1 + p)*dqdx = 0 (6.4.7)
and (1+¢)%(dy)?+2(1+ p + q + pq)dxdy + (1 + p)?(dx)?> =0 (6.4.8)

Since14+ p + q + pq= (1 +p)(1 + q), (6.4.8) becomes [(1 + q)dy + (1 + p)dx]?> =0
sothat(1+q)dy+ (1 +p)dx=0 or (1+q)dy=-(1+p)dx. (6.4.9)
Keeping (6.4.9) in view, (6.4.7) may be re-written as

1+ @dp{(1 + @)dy} — (1 + p)dg{—(1 + p)dx} = 0. (6-4.10)
Dividing each term of (6.4.10) by (1 + q)dy, or its equivalent —(1 + p)dx, we get

- 4 _ da _
(1+qdp—-(1+p)dg=0 or op e
Integrating it, (i::’) = ¢y, cybeing an arbitrary constant. (6.4.11)

From (6.4.9), dx + dy + pdx + qdy = 0, ordx + dy + dz = 0, as dz = pdx + qdy
Integrating it, x + y + z = ¢, c2 being an arbitrary constant (6.4.12)

From (6.4.11) and (6.4.12), one intermediate integral of (6.4.3) is

11T+§=F(x+y+z) or 1+p=A+q@Fx+y+2) or

p—qF(x+y+2)=Flx+y+z)—1 (6.4.13)

which is of the form Pp + Qq = R. So Lagrange’s auxiliary equations are

W & (6.4.14)

E —F(x+y+2z) - F(x+y+z)—1

Choosing 1, 1, 1 as multipliers, each fraction of (6.4.14)= dx + dy + dz/0

sothatdx +dy +dz =0 givingx+y+2z =c, (6.4.15)
Using (6.4.15) and taking the first two fractions of (6.4.14),

we have dx = —dy/F(c;) ordy + dx F(c;)=0

Integrating it, y+xF(c,) = czor y+xF(x +y + z) = c3. (6.4.16)

From (6.4.15) and (6.4.16), the required general solutionisy + x F(x +y +z) =G(x +y + z), F, G
being arbitrary functions.

6.5 Type 4. When the given equation Rr + Ss + Tt = V fails to vield an
intermediate integral as in cases 1,2 and 3

Working rule for solving problems of type 4
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Suppose the RH.S. of R(dy)? — Sdxdy + T(dx)?=0 neither gives two factors nor a perfect square (as
in Types 1, 2 and 3 above). In such cases factors dx, dy, p, 1 + p etc. are cancelled as the case may be
and an integral of given equation is obtained as usual.

SOLVED EXAMPLES

@ Example 6.5.1: Solve pq = x(ps — qr).

Solution: Give xqr — xps + 0.t = —pq (6.5.1)
Comparing (1) withRr +Ss + Tt=V,R=xq,S=xp, T=oand V = -pq

Monge’s subsidiary equations Rdpdy + Tdqdx — Vdxdy = 0

and R(dy)? — Sdxdy + T(dx)?=0

become xqdpdy + pqdxdy = 0 (6.5.2)
and xq(dy)? — xpdxdy=0 (6.5.3)
Dividing (6.5.2) by qdy we get xdp + pdx =0 (6.5.4)
and dividing (6.5.3) by xdy, we get qdy + pdx =0 (6.5.5)
Using dz = pdx + qdy, (6.5.5) gives dz =0 so that z = ¢1 (6.5.6)
Integrating (6.5.4), xp = c2, 2 being an arbitrary constant (6.5.7)
From (6.5.6) and (6.5.7), one integral of (6.5.1) is xp = f(z) orx g—i = f(z) or %Z—i = %

Integrating it partially w.r.t. x, F(z) = log x + G(y), F, G being arbitrary functions.

6.6 Separation of Variables

A powerful method of finding solutions of second -order linear partial differential equations is
applicable in certain circumstances. If, when we assume a solution of the form

z=X(x) Y(y) (6.6.1)
for the partial differential equation Rr +Ss + Tt + Pp + Qq + Zz=F (6.6.2)

it is possible to write the equation (6.6.2) in the form
~f(D)X =~ g(DYY (6.6.3)

where f(D),g(D') are quadratic functions of D = % and D' = % respectively, we say that the

equation (6.6.2) is separable in the variables x, y. The derivation of a solution of the equation is then
immediate. For the left -hand side of (6.6.3) is a function of x alone, and the right -hand side is a
function of y alone, and the two can be equal only if each is equal to a constant, A. say. The problem
of finding solutions of the form (6.6.1) of the partial differential equation (6.6.2) therefore reduces to
solving the pair of second -order linear ordinary differential equations

F(D)X = 2X, g(D)Y = AY (6.6.4)
The method is best illustrated by means of a particular example. Consider the one -dimensional
diffusion equation

92 10
a—xj = ;a—j (6.6.5)

If we write z = X(x)T(t)

. 1d%x 1 dT
we find that=— = ——
Xdx? kT dt

so that the pair of ordinary equations corresponding to (6.6.4) is
dzx = X ar VAT
dx2 77 dt

so that if we are looking for a solution which tends to zero as t — oo we may take

X = A cos (nx +e ), T= Be-kn2t
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where we have written -n2 for A. Thus

z(x, t) = ¢, cos(nx + €,)e kn’t

where ¢, is a constant, is a solution of the partial differential (6.6.5) for all values of n.

Hence expressions formed by summing over all values of n

2(x,t) = X% ¢, cos(nx + €,)e Kt

(6.6.6)

are, formally at least, solutions of equation (6.6.5). It should be noted that the solutions (6.6.6.) have

the property that z— 0 as t — o co and that

z(x,0) = Y7o ¢ cos(nx + €,)

For example, if we wish to find solutions of the form
2= X(x) Y()T(t)

dz oz _ 10z
ax? = dy? kot

we note that for such a solution equation (6.6.9) can be written as
1d?X _1d’Y 14T
Xdx? Ydy? kTdt

so that we may take

ar ax o d¥Y
i Kt, W__l X, d_yz__m Y
provided that
12+ m? =n2
Hence we have solutions of equation (6.6.9) of the form
—k(12+m?)t

z(x,y,t) = X2 0 Lm0 Cim cos(lx + €;) cos(my + €,,) e

Summary

e The concept of the Monge’s method is discussed.
e The types of Monge’s method with their solution are derived.
e The properties of Monge’s method were discussed.

e The method of separation of variable is elaborated.

Keywords
e Second order PDE
¢ Monge’s Method
¢ Subsidiary Equations
¢ Intermediate Integrals

e Method of Separation of Variable.

Self Assessment

1. V@t\:‘k 20(21 thy following equationy satisfied the partial
ox ot y(0.t)=e

, where

LOVELY PROFESSIONAL UNIVERSITY

differential

65

(6.6.7)

(6.6.8)

(6.6.9)
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X =X _T_'
B X T
X -X __T_'
C 2X T
X +X T
D X T
X _1T
2. For X ¢’ T when k is zero then solution for X is
A X=C COS X +C, SIN X
g X =C;sin px
c X =CX+¢C, i
D, X =CX+C,X
X _IT _y
X ¢*T

, when k is negative, solution for T is

—cePt —pt
T=ce" +c,e

A.
2 2
T=ce” +c,e™
B.
T =c, cos pt+c,sin pt
C.
T =c, coscpt + ¢, sin cpt
D.

4. Which of the following is a wave equation?

0%u ou
A — = —
OX ot
o’u %
B. 3 T3
ot OX
a_a
ot ox

D. None of these

ou o
—2 + —2 = 0
ox® oy

5.The equation is __ innature

A. elliptic

B. Hyperbolic
C. Parabolic
D

. None of these
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6. The equation is in nature

A. Hyperbolic
B. Parabolic
C. elliptic
D

. None of these

X' _1T _,
— ===
7.Solving X ¢t T if k is negative and k = —p? then solution for T is
— ~ At
A T=Ce
2,2
T=ce"™
B. 1
— cpt
C. T= ce
— —cpt
T= c.e
D.
ou _,au X -X T
A_ My EANIEAN
8. Solving X ot with the help of separation of variable and if 2X T .

The auxiliary equationsatisfied of X is

A M=(1+2k)=0

5 M+(1+2k)=0

c. m-1+2k=0

p. M+1-2k=0
2
02 %, 2% g
ox* ox oy

9. If by using method of separation of variables on , then which of the

following satisfied

X' -2X Y
A. X Y

X +2X Y
B X Y

X +2X Y
C X Y
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X'-2X Y
X Y

D.

10. The equation Rdpdy + Tdqds — Vdxdxy = 0 is called

A. Auxiliary equation

B. Monge’s subsidiary equation
C. Ordinary differential equation
D

None of these

11. Monge’s method is used to solve a partial differential equation of

A. nth order

B. third order
C. second order
D. None of these

12. The equation R(dy)? — Sdxdxy + T(dx)? = 0 is called

. Auxiliary equation
Differential equation

. Monge’s subsidiary equation

o n 9w »

. None of these

13. Is case of repeating roots from R(dy)? — Sdxdxy + T(dx)? = 0 , then intermediate integral
solved by

A. Lagrange’s Method
B. Cauchy’s Method
C. Charpit's Method
D. None of these

14. The Monge’s subsidiary equation for pde(x — y)(xr —xs —ys + yt) = (x + y)(p — q) is
A. x(x —y)dpdy + y(x — y)dgdx — (x + y)(p — @)dxdy = 0

B. x(x — y)dpdx + y(x — y)dqdy — (x + y)(p — @)dxdy = 0

C. x(x —y)dpdy + y(x — y)dgx — (x + y)(p — q)dpdq = 0

D.None of these

15.The Monge’s subsidiary equation for pde(x — y)(xr —xs —ys + yt) = (x + y)(p — q) is
A. x(x = y)(dy)? — (x* — y*)dydx + y(x —y)(dx)* = 0
B. x(x = y)(dy)* + (x* —=y*) + y(x = y)(dx)* = 0
C.x(x —y)(dy)® — (x® +y*) + y(x —y)(dx)* = 0
D.None of these
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Answers for Self Assessment

1 C 2 C 3 D 4 B 5 A
6 B 7 B 8 A 9 A 10. B
11. C 12. C 13. A 14. A 15. A

Review Questions

o’z 10z

Q1. By separating the variables, show that the one-dimensional wave equation PN I
ox~ c¢° ot

Aexp(xinx*inct),

p( ) where A and n are constants. Hence show

{ rzct ) mct} r X

has solutions of the form

that functions of the form Z (X, t) = z

r

A c0S——+ B, sin—— »Sin—— where
a a a

the A 'S and B, 'Sare constants, and satisfy the wave equation and the boundary

2(0,t)=0, z(a,t)=0

conditions for allt.

0%z , 01 oz
Q2. Solve by Monge’s method — —COS™ X — + tan x— =0.
X oy ox

(x—y)(xr—xs—ys+yt)=(x+y)(p-q)

Solve .
Qs.
Solve by Monge’s method I' —t COS” X + ptan x =0.
Q4.
Using method of separation of variable, solve
Q5.

ou/ox = 2(0u/ ot) +u, where u(x,0) = 6>

L..J Further Readings

1. LN. Sneddon(1957), Elements Of Partial Differential Equations,Mcgraw Hill Education.

2. Lawrence C. Evans (1998), Partial Differential Equations, Universities Press Pvt. Ltd

@ Web Links

https:/ /onlinecourses.nptel.ac.in/noc22_ma73/preview

https:/ /onlinecourses.nptel.ac.in/noc21 _ma09/preview

https:/ /onlinecourses.swayam?2.ac.in/cec22_mal2/preview
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Objectives
After studying this unit, you will be able to

¢ identify the concept of Laplace transform.
¢ understand the concept of inverse Laplace transform.
e determine the properties of Laplace transform.

¢ find the solution of PDE using Laplace transform.

Introduction

The method of Laplace transform provided an effective and easy means for the solutions of many
problems in engineering and science. Thus the knowledge of Laplace transform has become an
essential part of mathematical background required for engineers and scientists. The method of
Laplace transform gives directly the solution of differential equations with given boundary
conditions without first finding the solution and then evaluating constants by using given
boundary conditions. Moreover, the ready tables of Laplace transform reduce the problem of
solving differential equations to algebraic manipulation.

7.1 Laplace Transform

In this section we introduce the concept of Laplace transform and discusssome of its properties.
Definition

The Laplace transform is defined in the following way. Let f (t) be defined
for t = 0. Then the Laplace transform off, which 1is denoted by L[f(t)]
or by F(s), is defined by the following equations

LIf©O] = F(s) = lim Jy f(e~tdt = [;° e stdt (7.1.1)

The integral which defined a Laplace transform 1is an improper integral. An
improper integral may converge or diverge, depending on the integrand.
When the improper integral in convergent then we say that the function f (t)
possesses a Laplace transform. So what types of functions possess Laplace
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transforms, that is, what type of functions guarantees a convergent improper
integral.

Inverse Laplace Transform

If L[f(t)] = F(s), then we can write it as L7}[F(s)] = f(t). Here f(¢t) is called the inverse Laplace
transform of F(s). The symbol L, which transforms f(t) to F(s)is called Laplace transformation
operator.

Laplace Transforms of Elementary Functions
) L[] =

T'(n+1)
(ii) L[t"] — gn+1
M forn=0123,.....

(i) Ll =—=,(s>a)

(iv) L[sinat] = ﬁ (s>0)

a?’

(v) L[cosat] = ﬁ (s>0)

a?’
(vi) L[sinhat] = ﬁ (s> la])

N

(vii) L[coshat] = -

s2—q?’

(s >lal)

These formulas are proved below in terms of following examples by using the definition (7.1.1).

@ Example 7.1.1: Find the Laplace transform, if it exists, of each of the following functions
@ fO=e* GFO=1 (fO=t

Solution: (a) Using the definition of Laplace transform we see that
z T
Lle*] = f e”Cm@fdt = lim | e~C"Vdt.

—00

0

r T ifs=a
But fO e_(s_“)tdt =1{1-e~G-a)T
s—a

ifs+a

For the improper integral to converge we need s > a. In this case,

L[e*]=F(s) = s> a.

)
s—a

(b) In a similar way to what was done in part (a), we find

[oe]

1
L[1] = f e Stdt = oS > 0.
0
(¢) We have

L[l] — fooo te_Stdt — [_ te~st e—St] 1

2
N N 0

@ Example 7.1.2: Find the Laplace transform, if it exists, of each of the following functions

(@) f(t) =sinat(b) f(t) =cosat (c) f(t) = sinhat (d) f(t) =coshat
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Solution: (a) L[sin at] = [

st o ™
e Stsinatdt = lim [ e Stsinatdt
0 T—o0 0

= Jim |

T—oo

T
_St .
e —s sinat — a cos at ]
s2+a? ( ) 0

=L [0-e’(0-a1)]==2—

s2+a? s2+a?

(b) Llcos at] = fooo e Stcosatdt = Jim fOT e Stcosat dt

== lim

T
—— e 5t(—s cos at + asin at)]
T—oo Ls*+a 0

=—L [0-e’(=s+0)]

_ N
s2+a?

s2+a?’

©

(¢) Llsinh at] = [~ e™**sinhat dt

2

— 1 [f e—(s—a)t dt — J- e—(s+a)t dt]
2 0 0

1[ 1 1 ]zl[(s+a)—(s—a) _a

2 2

° eat _ g-at
=fe‘“—( )dt
0

s—a s+a

s2 —q2 s2 —q?2

©

(©) Llcosh at] = [~ e~** coshat dt

e eat+e—at

2
1 [ee] _ _ [ee] _
= e (s a)fdt+ e (S+a)tdt
21Jo 0
1[ 1 + 1 ]_1 +a)+(s—-a)] s
2ls—a s+al” 2 s2—aq? T s2—q?

Inverse Laplace Transforms of Elementary Functions
0 =1

r(n+1)
STI.+1

forn=0,123,.....

(i) L[t"] =

n!
snt1’

(iif) L—l[ ! ]: et

s—a

(iv) L‘l[ ! ] =§ sinat

s2+a?
(v) L1 inaz] = cosat
(vi) L1 inaz] = %sinh at
(vii) L1 [Sz_az] = coshat
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Properties of Laplace Transform

1. Linearity property: Ifa, b, c are constants and f, ¢,y are any functions of t, then L[af (t) +
b () — cp(D)] = aL[f ()] + bL[$(D)] — cL[Y(D)]
Poof: Now L[af (t) + bp(t) — cp(t)] = [ e~ [af (t) + bp(t) — cp(t)]dt
= af e Stf()dt+b | e Stp(t)dt—c f e Sty(t)dt
= aLlf @] + bLB®)] - LY ()

E/;' Remarks 7.1.1: (i) The above property can be generalised to any number of functions.

(if) Due to above property, L is called linear operator.

2.  First shifting property: If L[f (¢)] = F(s), then If L[e* f(t)] = F(s — a).
Proof: L[e® f(t)] = fom e St(e® f(t)dt

= [ e T f()de = [° e ¥ f(t)dt wherek =s—a >0
=F(k)=F(s—a)
Hence L[e® f(t)] = F(s — a).

= Remarks 7.1.2: (i) If the Laplace transform of f(t) if F(s), then the Laplace transform of
e f(t) is obtained simply by replacing s by s —a. Now by applying first shifting
property, we have the following list of useful results.

1

: at] — _~
(@) Lle™] = —
r(n+1)
G  Lleem=q O
W,for n= 0,1,2,3, ......
(iii) L[e® sinbt] = ﬁ (s>0)
. S
(iv) L[e*cosht] = s 5> 0)
v) L[e sinh bt] = ﬁ (s> la)
(vi) L[e® cosh bt] = ﬁ (s> lal)

Where in each case s>a.

@ Example 7.1.3: Find the Laplace transform of
@) f(t) = sin 2t cos 3t(b) f(¢) = sin? 3¢ ©f@® = (ﬁ - %)3
Solution: (a) Here f(t) = %(2 sin 2t cos 3t) = % [sin 5t — sint ]
1 1
L(f@®) = {E (sin 5t — sint)} = 5 [£(sin5¢) — L(sint)]
1] s 1
2 [m B m]
(b) f()=sin?3t = %(1 — cos6t)

1
L(f©O) =1 [5(1 - Cos6t)]
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= % [£(1) — L(cos61)]

_1 [1 s ] _ 1[sz+36—sz _ 18
T 2ls  sz+36l T 2Lls(s2436)] T s(s2+36)

© f=(Vi-2) = o - V0

3
— 32— t73 3¢5 4 3t71/2

L(f(0) = L(t3? - £ - 365 + 3t~1/2)

N 31r3+3r(1
g (2>_ = (_2)_ I (2) s1/2 2)

s2 S 2
We know that T'(n + 1) = nI'(n) = V7.
13 1 1,1 3
L(f®) = =5z Vr——=(=2vn) - 3—3(—\/7?) +5m.
554 sz s2 \2 sz

_Vmy 3 8 6 12
-l

V1T
— 3 2
m—@'l‘ﬁ]—m[:g'l‘SS —6S+125]

@ Example 7.1.4: Find the Laplace transform of
(@) f(t) = e?(sin2t cos3t) (b) f(t) =t?e™2t
Solution: (a) f(t) = %(2 sin 2t cos 3t) = % [sin 5t — sint ]
1 1
L(F(©) = {E (sin5¢ — sint)} = S [£(sin5t) - L(sinD)]
17 5 1
_2[52+52 52+1]

5 1
(s—2)2+5%2 (s—2)2+1

, 1
L[e?*(sin2t cos 3t)] = 3 [

(b) L) =2
By applying the first shifting property
2

(s+2)3

L(e7?tt?) =

1. (s
3. Change of scale property: If L[f (t)] = F(s), then L[f(at)] = -F (Z)
[ee] [ee] 1
L[f(at)] = f e Stf(at)dt = f e SYaf(u) adu
0 0
[Putting at=u, dt=du/a, when t =0, u =0, when t — o, u — ]

= lfooe‘su/”‘f(v,t)ldu = lF(E)
al, a a \a/’

@ Example 7.1.5: If) L(sintt) = ﬁ, find the Laplace transform of L(sintat)by using

change scale property

1
s2+1°

Solution: Given L(sint t) =

By change scale property

1 1 1 a? a

a®2+1  as?+a? s2+a?’
a

L(sint at) =
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Laplace Transforms of Derivative

Let f(t) be real, continuous functions for ¢t = 0 and exponential order. Also f'(t) is continuous.
Then,

(i) LIf'(©)] = sF(s) — £(0)
(i) LI ()] = s"F(s) = s"1f(0) = s™2f/ O — e L —sf"72(0) — f771(0)

Laplace Transforms of Integrals
If LIf ()] = F(s), then £ [f; f(w)du| =1 F (s).
Multiplication by t»

If LIf ()] = F(s), then L[t"f(£) ] = (=1)" % F(s).

@ Example 7.1.4: Find the Laplace transform of
(@) t3sinat(b) f(t) =t2e 3

a

Solution: (a) L[sin at] =

s2+a?
) . _ (1@ a \_ _d’[d N -
: L[t3sinat] = T(su(ﬂ) = —aﬁ[g (s?+a?) 1] =—a_;[(-1(s* +a®)72(29)]

) d? [ s ]_ d [(s* +a*)?.1—5s2(s* +a?®)2s]| _ 5 d [(s? 4+ a?)[s? + a? — 4s?]
T stz a2z T “%as (s2 +a?)? T s (s2 + a?)*

_ Zai a? —3s? ] _ ai[(sz +a?)3(—6s) — (a® — 35%).3(s? + az)z.Zs]
ds|(s? +a?)3 ds (s2 + a2)6
_ Za% [(s2+a2)2(—(ii)ii;;z%az—%z]] - _ (;izzy [2d? — 252] = 24(‘;%;—;2).
) flev1= L 3
-1 1 2
Lltte™] = ( dzz (s+ 3) - (s+3)3

7.2 Solution of Partial Differential Equation Using Laplace Transforms

The Laplace transforms is very useful in solving various partial differential equations subject to the
given boundary conditions:

Laplace Transform of Some Partial derivatives
(1) L [5] = s9Ges) = y(x,0)
2 Ifc %] =s2y(x,s) — sy(x,0)
s _
(@) 1L[2]=2

@ L[ +L2=0

dx?
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@ Example 7.2.1: Solvez—f =2 S;Z, where y(0,t) = 0 = y(5,t) and y(x,0) = 10sindnx

Solution: Taking the Laplace transform of both the sides of the given equation, we get

oy %y
ele] =2 |z
d*y
_ _ _, &Y
sy(xs) —y(x,0) =275
g - %y(x, s) = —5sindnx (7.2.1)

Taking the general solution of (7.2.1) is given by

5 = €,V 4 Cze‘JS/_Z" B 55in4nxs
¥ = CreVs?% + e V52 4 —13(;:?1”:
Given thaty(0,t) = 0 = y(5,t). Therefore
¥(0,5s) =0 =y(5,5).
Putting these values in (7.2.1), we get
0=C +G (7.2.2)
And 0 = €,e5V5/2 + C,e™5V5/2 4 —2—sin20m
C,eSVs/2 4 Cle=5Vs/2 = (7.2.3)
Solving (7.2.2) and (7.2.3), we get C; = C, = 0.
Therefore from (7.2.1), we have
_ 10
y= msim}nx

10
y=L"1 [msiné}nx] = 10e~32""t sin 47rx

@ Example 7.2.2:A semi-infinite solid x > 0 is initially at temperature zero. At time t > 0, a
constant temperature V, >0 is applied and maintained at the force x = 0.Find the
temperature at any point of the solid at any time t > 0.

Solution: We know that the temperature u(x,t) at any point of the solid at any time t > 0 is
governed by one dimensional heat equation

o

U _ 2
o= C o (x>0,t>0) (7.2.4)
With boundary condition Solve u(0,t) = Vy, u(x,0) = 0.

Taking Laplace transform of both sides of (7.2.4), we get

d*u
u — = —
su(x,s) —u(x,0)=C a2

d*u s —

m - E u=20 (726)
The solution of (7.2.6) is given by

u(x, s) = AeVS/C** 4 Be=Vs/C?x

Since u is finite when x — oo, therefore, i is also finite when x — oo.

76 LOVELY PROFESSIONAL UNIVERSITY

Notes



Notes
EMTHb530: Partial Differential Equations

Therefore form (7.2.6), A = 0, otherwise © — oo as x — 0. Now, taking the Laplace transforms of the
condition u(0,t) = V,, we have

1(0,s) = f;oo Voe Stdt = %
Therefore, from (7.2.6), we have
(0,5) =B = 2.

_ Vo - J57CE
Hence@i(x,s) = le s/C*x

u(x’ t) — L—l {%8—115/C2x}

u(x, t) = %erf{zjﬁ}.

Summary

e The concept of the Laplace transform is discussed.
¢ The properties of Laplace transform were elaborated.
¢ The formula of Laplace transform with their solution are derived.

¢ The Solution of PDE with Laplace transform method is elaborated.

Keywords

¢ Laplace transform

¢ Inverse Laplace transform
e Linearity property

o First shifting property

e Derivative formula

¢ Integral Formula

e Partial differential equation

Self Assessment

—20t
1. Laplace transform of e cosh 5t is

s+20
(s+20)2 -25
A.
s-20
(s—20)2 -25
B.
s—-25
(s —25)% + 400
C.
s+25
o (s+25)°-400
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0

3

Laplace inverse of S+7 is

7e*
3e7t
3e -7t

7e—3t

(t2 +2)

Laplace transform of

24 +8s? + 4s*
S5

24 +8s + 4s°

S4

6+2s +s*
S5

None of these

1
Laplace inverse of 2 is

e—Zt

p

2 2
Laplace inverse of (S B 06) + ’B is

e” sin pt

2
is
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SN w »

e? sin at
e sinh ot

e sinh A

-
2
Laplace transform of t is

T

s
yr
s
z
S

None of these

s +8
s(s® +16)

S

2
The Laplace inverse s°-49 is equal to
sin 7t

cos 7/t
sinh 7t
cosh 7t
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9.

10.

11.

2t +3
The Laplace transform

3!
(S _ 2)n+1

_1
(s+2)°

3!
(s +2)°

1
(s-2)°

Inverse Laplace transform of

t?e ™

Laplace transform of

s2+2s+4

s(s? - 4)

s?—25+4

s(s2 —4)

s2+2s+4

s(s? +4)

s?—2s+4

s(s? +4)

80

(s +2)°.

(sin t +cost)

is equal to

2

2
is
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Answers for Self Assessment

1 A 2 C 3 A 4 B 5 A
6 A 7 D 8 C 9 D 10. D
11. C

Review Questions

1. By using Laplace transforms, find the temperature U (X, t) in a slab whose ends X =0
and X = @ are kept at temperature zero and whose initial temperature is SN (ﬂ- %) .
2. Solve % = %,x > 0,t >0, where y(0,t) =1, and y(x,0) = 0.

dy _ 9% T N=0 (2 = -
3. Solve 5 = X>0t>0, where y (2 , t) =0, (6x)x:o =0 and y(x, 0) = cos5x.

4. Aninfinite long string having one end x = 0 is initially at on the x-axis. The end x =
Ounder goes a periodic transverse displacement given by A, sinnt, t > 0, find the

displacement of any point on the string at t > 0.

L..J Further Readings

1. LN. Sneddon(1957), Elements Of Partial Differential Equations,Mcgraw Hill Education.
2. Lawrence C. Evans (1998), Partial Differential Equations, Universities Press Pvt. Ltd

Web Links

https:/ /onlinecourses.nptel.ac.in/noc22 _ma73/preview

WWW

https:/ /onlinecourses.nptel.ac.in/noc21_ma09/preview

https:/ /onlinecourses.swayam?2.ac.in/cec22_mal2/preview
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Unit 08 : Fourier Transform

CONTENTS

Objectives
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8.1 Fourier Sine and Cosine Transform

8.2 Linearity Property of Fourier Transform
8.3 Application of Fourier Transform to Boundary Value Problem
Summary

Keywords

Self Assessment

Answer for Self Assessment

Review Questions
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Objectives
After studying this unit, you will be able to

¢ identify the concept of Fourier transform.
¢ understand the properties ofFourier transform.
e know about the sine and cosine Fourier transform.

¢ apply Fourier transform to solve partial differential equation.

Introduction

Fourier Transform

If a function f(x) defined on the interval ]-, o [, and piecewise continuous in each finite partial

interval and absolutely integrable in ]-oo, o [, then

o)

F(f(0) = f(p) = [, eP*f(x)dx (8.0.1)

is defined as Fourier transform of f(x). The inverse formula for Fourier transform is given by

FUO) = f0) =5 [ e Fo)dp
21[_OO

__/' Remark 8.0.1:We can also define

F(f(0) = f(@) = 7=/, e™*f (x)dx and

(8.0.2)

) 1
PO =)= [O P F(p)dp

8.1 Fourier Sine and Cosine Transform

Definition (8.0.1): The infinite Fourier sine transform of the function f(x), 0<x<w is denoted by

F, ( f (x)) or f;(p)and defined by
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_ 2(
F(f0) = i) = j; | £ sinpxax
0
The inverse formula for infinite Fourier sine transform is given by
_1 v 2 ( v .
£ =F G0N = |+ [ F) simpxdp
0

Definition (8.0.2):The infinite Fourier cosine transform of f(x), 0<x<w is denoted by F,(f(x)) or
fe(p) and defined by

_ 27
F(f()=f.(p) = \[;f f(x)cospx dx
0

The inverse formula for infinite Fourier cosine transform is given by

_ 2 v _
f@) = B G@) = f; f 7.(p) cospx dp
0

8.2 Linearity Property of Fourier Transform

Let f(p) and §(p)are Fourier transforms of f(x) and g(x) respectively. Then
F{af(x) + bg(x)} = af (p)+b g(p), where a and b are constants.

Change of Scale Property

Theorem 8.2.1.(For Complex Fourier Transform). If f(p)is the complex Fourier transform of f(x),
the complex Fourier transform of f(ax) is given by

1-m
Q)
Proof. By definition, we have

3}

Fo) = f e f(x)dx

—o0o

Consider

3}

fap) = f e*f(ax)dx

—o0o

Putting
ax =t = adx = dt, we get

flap) = % f e"p(ﬁ)f(t)dt = % f ei(ﬁ)ff(x)dx - gf(g)

B~ Remark 8.2.1: In a similar way, we can prove that:
= y p

(a) If f;(p) is the Fourier sine transform of f(x), then Fourier sine transform of f(ax) is given

by
1-m
(@)

(b) If £.(p) is the Fourier cosine transform of f(x), then Fourier cosine transform of f(ax) is
given by
= (P
(3
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Application to Partial Differential Equation

Theorem 8.2.2 (Shifting Property). Iff (p) is the complex Fourier transform of f(x), then complex
Fourier transform of f(x-a) is eira f(p).

Proof. By definition, we have

Fo) = f e f(x)dx

Consider

o5}

f(x—a) = f eP*f(x — a)dx

—o00

Putting x-a=t, we have

for= [ ereos@de= ere [ evpde= e )

Some Important Integrals (To be Used Directly)

(1) [e**sinbx dx = a:v;z (asin bx — bcos bx)
(2) [ e%cosbx dx = ajf;z (acosbx + bsin bx)

3) fooo e %sinbx dx =

a?+b?

4) fooo e % coshxdx =

a?+b?

d_" x _ (-1)™n! -1 g)]
(5) dxm (a2+x2) T (aZ+x2)mt)/2 cos [(n + 1) tan (x

d_" a _ (-1)™n! . -1 g)]
©) daxn (a2+x2) T (a?+x2)(tn)/2 sin [(n +1)tan (x

T .
) [omegy =) 2P0
0 x —g;ifp<0

®) [T e d =vu,[leFd =2

Theorem 8.2.3 (Modulation Theorem) If f(p)is the complex Fourier transform of f(x), then, the
Fourier transform of

f(x) cos ax is%(f(p —a) +f(p+a)) .

Proof. By definition, we haves

Fo) = f e f(x)dx

— 00

Now,
[oe]

F(f(x)cosax) = f eP*f(x) cos ax dx
_ f eprf(x) eLax _;e—w.x dx

—00
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1 [ 1,
== Jel(p+“)"f(x)dx+§ fel(p_a)xf(x)dx

—0o —0o

N

= (fo-0+fo+a)

8.3 Application of Fourier Transform to Boundary Value Problem

The infinite sine and cosine transforms can be applied when the range of the variable selected for
exclusion is 0 to . The choice of sine and cosine transform is decided by the form of the boundary
conditions at the lower limit of the variable selected for exclusion. Hence, we have

0%u) [ 0%u
F; 72~ | 3x2 sinpx dx

ou
[8_ sin px - pf —cospx dx

©ou

=-p | M cospxdx

.. 0u
if —> 0asx — oo,
ax

=-p {[ucos px]y +p f usinpx dx}
0

=pWx=o — pzﬂs
[By assuming u— 0 as x — =]
Therefore, F; {%} = pu(0,t) — p*u(p, t).

where u(x, t) is a function of two variables x and t and i;(p, t) is the Fourier sine transform of u(x, t)
with respect to x.

Further

d%u 9%u
F. %2 (= | 32 cospx dx
_ [au d
I cospx p smpx x

= a Y pf — sinpxdx

assumingz—z - 0asx — oo,
ou [
=— (—) +pilusinpx]y —p f ucospx dx
ox x=0 5

ou r
=— (—) —p? f u(x, t) cos px dx

0x/ =0
0

Then,E, {%} =- (Z—Z)xzo — p?u.(p,t).

where, i1, (p, t) is the Fourier cosine transform of u(x, t) with respect to x.

E/ Remark 8.3.1: It must be noted that the successful use of a sine transform in removing a

term a—requlred u(0, t), i.e., u at x = 0, while the use of a cosine transform for the same

purpose requires ux(0, t), i.e., 5 at x=0.
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The term% or any partial derivative of odd order cannot be removed with the help of sine
or cosine transforms.

When one of the variables in a differential equation ranges from - to « then that variable
can be excluded with the help of complex Fourier transforms.

SOLVED EXAMPLES

@ Example 8.3.1: Solve— = 2 — 1f u(0, t) = 0, u(x, 0) = ex, x>0, u(x, t) is bounded where x > 0,
0.

Solution. As per glven— =22 (8.3.1)

0x2
subject to the boundary conditions
u(0, t) = 0, u(x, t) is bounded. (8.3.2)
and initial condition
u(x, 0) =ex, x>0 (8.3.3)

Since, u(0, t) is given, taking the Fourier sine transform of both sides of (8.3.1), we get

u
fa— sinpx dx —2f—smpxdx
0

o

d
Ef u(x, t)sinpxdx =2 {(—smpx f —pcos px dx}
0

dig
dt

© Ju .cdu
=-2p, 5, cospxdxif ——0asx > oo

Assume ts(p, t) = fooo usinpxdx

3}

=-2p {(u(x, t) cospx)y — f u(x, t)(—psin px) dx}
0
=-=2p {0 —u(0,t)+p fwu(x, t)sin pxdx}
0

= 2pu(0,t) — 2p?u,

dii,

dt = _szﬁs
On separating the variables, we get
du
= S = —2p2dt = log iy — log C = —2p?t
S
Us _ 2 = _ -2p%t
= logF = —2p°t = U, =Ce (8.3.4)

Now, taking the Fourier sine transform of both sides of (8.3.3), we get

[ee]

f u(x, 0)sin pxdx =f e™™ sin pxdx
0 0

p
1+ p?

- e_x .
ug(p,0) = [sz (—sinpx — pcos px)] = (8.3.5)
0

Putting t=0 in (8.3.4) and (8.3.5), we get
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— p -
us(p’t) = 1 +p2 e 2p%t

Taking the inverse Fourier sine transform, we get

2 (o) p a2
= — —2p°t ¢
u(x, t) ”fo 142 e sinpx dx

@ Example 8.3.2: Solve% = %, x > 0,t > 0 subject to the conditions u(0, t) =0,

u(x,0) = {01." i : ch <1 , u(x, t) is bounded where x > 0, t> 0.

Solution. Taking the Fourier sine transform of both the sides of given PDE, we get

[ ou 0%
fa— sinpx dx = Fr%) sinpx dx
0 0

——pfo —cospxdx if 50 as

d oo . a .
Efo u(x, t) sin px dx ={(a—gsmpx) —pfo —cospx dx} o

X = ©

Assume s(p, t) = fom usinpxdx

-p {(u(x, t) cospx)y +p f u(x, t)sin px dx}
0

=p {0 —u(0,t) + pf u(x, t)sin pxdx}
0

= pu(0,t) — p?ii,if u— 0 as x —w
On separating the variables, we get

dii,

= —p?dt = logiiy — logC = —p?t

S

u
= 1og€ = —p?t 21U, =Ce Pt (8.3.6)
Putting t=0, we get
us(p,0)=C (8.3.7)

Now, ii5(p,0) = [~

o u(x, 0) sin px dx

1 o) 1
= fu(x, 0)sinpx dx + f u(x, 0)sinpx dx = f sinpx dx
0 1 0

Now, from (8.3.6)

cos px]1 _ 1—cosp

1
C= fsmpx dx =
] -pr 1 p

Thus, (8.3.6) gives Uiz(p, t) = [1_2'&] e Pt

Finally, taking the inverse Fourier sine transform, we get

[ee]

2f1—cosp

u(x, t) = - - e P’tsinpx dp
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which is the required solution.

Summary

o The Fourier transforms and its integral formula is defined.
o The properties of Fourier transform are discussed.
¢ Fourier sine and cosine formula is derived.

¢ Solution of PDE by using Fourier transform elaboratedwith an examples.

Keywords

. Fourier transform

e  Change scale property

. Shifting property

. Fourier sine transform

. Fourier cosine transform
e PDE

Self Assessment

Choose the most suitable answer from the options given with each question.

1. The integral formula F(f(x)) = flp) = f_O:O eP*f(x)dx is known as
A. Laplace transform
B. Inverse Laplace transform
C. Fourier transform
D

None of these

2. The inverse Fourier formula is given by
1

A FH@) = fO0) = - f,” eP*f(p)dp

21

B. FL(f(p)) = f(x) =5 e " f(p)dp

T

C. FAf@) =f(x) =" ePfp)dp

D. None of these

3. Which of the properties are followed by Fourier transfer?
A. Linearity
B. Change scale
C. Both (a) and (b)

D. None of these

4. The infinite Fourier sine transform of the function f(x), 0<x<o is

A F(f)=fp) = J,” f) cospx dx
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B. E(f(0)) = fi®) = \/%fo“’ £(x) sinpx dx

C. R(fW)=F®) = 27, fG) sinpx dx
D. None of these

5. The infinite Fourier cosine transform of the function f(x), 0<x<o is

A. F(f))=Ff@ =J," f(&x) cospx dx

B. F(f(x)=Ff.(p)= \/%fom f(x) cos px dx

CR(f) = @) = (27, £ simp ax
D. None of these
6. The use of a sine transform in removing a term g%is required
A. u(0t),ie,uatx=0,
B. ux(0,t),ie, Z—Z at x=0.

C. Both (a) and (b)

D. None of these

7. The use of a cosine transform in removing a term Z—Z is required
A. u(0t),ie,uatx=0,
B. w0, 1), ie, 2% atx=0
. ux(0, 1), e, 5, atx=0.
C. Both (a) and (b)

D. None of these

Answer forSelf Assessment

Review Questions

d 8?2 . .
1. SolveZ=2% x>0,t>0 subject to conditions
at dx2

(i) u=0whenx=0,t>0

u={1'0<x<1and

0,x=>1

(i)
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(iti) u(x, t) is bounded

Solve the boundary value problem % = 9% subject to boundary conditions u(0,t) =

0,u(2,t) = 0,u(x,0) = (0.05)x(2 — x)
u;(x,0) = 0, where 0<x<2, t>0.

a%v

= ax?

Use finite Fourier transform to solve % 0<x<6, t>0 and v,.(0,t), v, (6,t),v(x,0) = 2x.

L.._] Further Readings

WWW

1. LN. Sneddon(1957), Elements Of Partial Differential Equations,Mcgraw Hill Education.

2. Lawrence C. Evans (1998), Partial Differential Equations, Universities Press Pvt. Ltd

Web Links

https:/ /onlinecourses.nptel.ac.in/noc22_ma73/preview

https:/ /onlinecourses.nptel.ac.in/noc21_ma09/ preview

https:/ /onlinecourses.swayam?2.ac.in/cec22_mal2/preview
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Unit 09: Other Transforms

CONTENTS

Objectives

Introduction

9.1
9.2
9.3

Hopf-Cole Transformation
Hodograph Transforms

Legendre Transform

Summary

Keywords

Self Assessment

Answer for self Assessment

Review Questions

Further Readings

Objectives
After studying this unit, you will be able to

identify the concept of transforms require to solve partial differential equation.
understand the more techniques for partial differential equation.

know about the Hopf-Cole transform for quadratic nonlinear partial differential equation.
apply Hodograph for nonlinear system of differential equation.

find the condition through Legendre transformfor system of differential equations.

Introduction

In this chapter, we describe several techniques or more transforms like Hodograph, Hopf-Cole and
Legendre to solve linear, nonlinear, quasi linear partial differential equations by converting
nonlinear to linear partial differential equation or by converting system of nonlinear to linear
partial differential equations.

9.1 Hopf-Cole Transformation

A parabolic PDE with quadratic nonlinearity

We consider first of all an initial-value problem for a quasilinear parabolic equation:

{ut—aAu+b|Du|2=0 in R™x (0,00) (9.1.1)

u=g on R™x{t= 0}

where a > 0. This sort of nonlinear PDE arises in stochastic optimal control theory.

Assuming for the moment u is a smooth solution of (9.1.1), we get

w = p(w),

LOVELY PROFESSIONAL UNIVERSITY
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where ¢: R — R is a smooth function, as yet unspecified. We will try to choose ¢ so that w solves a
linear equation. We have

we = ¢'Wue, Aw = ¢’ WAu + ¢" (W|Dul*
And consequently (9.1.1) implies

w, = ¢'(Wu, = ¢'(w)[adu — b|Dul?]
= alw — [a¢" (u) + b’ (w)]|Dul?
= alw,
Provided we choose ¢ to satisfy ag” + b¢' = 0. We solve this differential equation by setting ¢ =

bz
e a. Thus we see that if u solves (9.1.1), then

bu

w=e a (9.1.2)

Solves this initial-value problem for the heat equation (with conductivity a):

{ w—alAw =0 in R" X (0,00)

w = e~bg/a on R"x {t=0} (0-1.3)

Formula (9.1.2) is the Hopf-Cole transformation.

b. Burgers’ equation with viscosity.

As a further application, we examine now for n =1 the initial-value problem for the viscous
Burgers’ equation:

{ut—auxx+uux=0 in R™x (0,)

u=g on R™Xx{t= 0} (014)

If we set

X

w(x, t) :=f u(y, t)dy

(9.1.5)

and

h(x) = f g dy

2

1
iwt—awxx+—w,? =0 in R"x(0,)
w=h on R™x{t =0}

This is an equation of the form (9.1.1) forn = 1,b = %

9.2 Hodograph Transforms

The hodograph transform is a technique for converting certain quasilinear systems of PDE into
linear systems, by reversing the roles of the dependent and independent variables. As this method
is most easily understood by an example, we investigate here the equations of steady, two-
dimensional, irrotational fluid flow:

200N — (1 1V2V,1 4,149,201 2 200\ — (1,2)2),2 —
{(a) (W) — WHDuy, —w'u(uy, +uz )+ (@@ — WHHug, =0 ©21)

(Duy, +uZ =
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in R?. The unknown is the velocity field u = (u',u?), and the function a(.): R? - R, the local sound
speed, is given.

The system (9.2.1) is quasilinear. Let us now, however, no longer regard u' and u? as functions of
x; and x,:

ul = ul(xg, x5),u? = u?(xy,x,), 9.2.2)
But rather regard x* and x?as functions of u; and u,:
xt = x (ug,uy), 2% = x2 (ug, uy). (9.2.3)

We have exchanged sub- and superscripts in the notation to emphasize the interchange between
independent and dependent variables.

According to the Inverse Function Theorem we can, locally atleast, invert equations (9.2.2) to yield
(9.2.3) provided

_owru?) _

] = ey = Yoty ~ Uy, 0 (9.2.4)

in some region of R?. Assuming now (9.2.4) holds, we calculate

uf, = Jau,uy, = —Jxg,
1 — _Jpl 1 — ]2 (9.2.5)
Ux, = ]xuz' Uy, = ]xuz.
We insert (9.2.5) in (9.2.1), to discover
{(a) (0?2 (@) — ud)xy, + uguy ey, +x4) + (07 (W) —uxy, = 9.26)
()t - 2, = 2

This is a linear system for x = (x!,x2), as function of u = (uy,u,).

E;/° Remarks 9.2.1: We can utilize the method of potential functions to simplify further.
~ Indeed, equation (9.2.6)(b) suggests that we look for a single function z = z(u) such that

xt =1z,
x* =1z,
Then (9.2.6)(a) transforms into the linear, second-order PDE

(0.2 W — u%)zuzu2 + 2uluzzuluZ + (02 Ok u%)zulu1 =0. 9.27)

9.3 Legendre Transform

A technique closely related to the hodograph transform is the classical Legendre transform, a
version of which we have already encountered before. The idea is to regard the components of the
gradient of a solution as new independent variables.

Once again an example is instructive. We investigate the minimal surface equation
) Du
div|—= | =0,
(1 +|Dul?)z

(14 w2 2, — 20 U Uy, + (1 + U2 )1y, = 0. (9.2.8)

For which n = 2 may be rewritten as
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Let us now assume that at least in some region of R?, we can invert the relations
Pt = Uy, (01, 22), D7 = Uy, (X1, %2), (9.2.9)
to solve for

xt = x1(p1,p2), x* = x*(P1,D2)- (9.2.10)

The inverse function theorem assures us we can do so in a neighborhood of any point where

J =detD?u # 0. (9.211)
Now define
v(p) = x(p)-p — u(x(p)), (9.2.12)

Where x = (x',x2) is given by (9.2.8), p = (p;,p2). We discover after some calculations that

ux1x1 = ]vpzpz
Uy,x, = ~JVpp, (9.2.13)
uxzxz = ]vplpl'

Upon substituting the identities (9.2.13) into (9.2.8), we derive for v the linear equation

(1 + p%)vpzpz + 2p1p217p1p2 + (1 + p%)vplpl =0.

= Remarks 9.3.1: The hodograph and Legendre techniques for obtaining linear out of
~ nonlinear PDE are in practice tricky to use, as it is usually not possible to transform given
boundary conditions very easily.

Summary

¢ The more methods to solve nonlinear and quasilinear partial differential equations are
discussed.

e  Hopf-cole transformation is derived and applied to convert nonlinear to linear PDE.

¢ The Hodograph technique is explained with an example.

e  The relation between the hodograph and Legendreis discussed.

Keywords

e Non Linear PDE
e Quasi Linear PDE
e Hodograph

e Hope-Cole

e Legendre

Self Assessment

The Hopf-Cole transformation converts a nonlinear partial differential equation to
Linear pde

Nonlinear pde

System of pde

O N w s

None of these

LOVELY PROFESSIONAL UNIVERSITY



Notes

Unit 09: Other Transforms

The transform which convert a parabolic with quadratic nonlinearity to linear is
Laplace transform

Fourier transform

Hopf-cole

9N ® e

None of these

The Hopf-cole transformation for the pde u; — au,, + b|Du|? = 0 is given by
bu
W=e"a
bu
W =-¢ea
au

W = e?
None of these

OO0 > ®

The partial differential equation w, — w,, = 0 is known as
Laplace equation
Wave equation

Heat equation

9N w >

None of these

o1

The Hodograph transformation converts certain quasi linear system of partial differential

equation to
Linear system of pde

Nonlinear pde system

System of equations

SO0 w

None of these

The Hodograph transformation convert nonlinear to linear system of pde
By converting both in single variables

By reversing the roleof the dependent and independent variables.

By taking inverse of both the variables

SRR

None of these

N

The transformation which convert a nonlinear pde into linear by interchanging the
variables is called

Hopf-cole transformation

Hodograph transformation

Legendre transformation

S0 w >

None of these

Answer forself Assessment
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Review Questions

1.

WWW

By using a transformation convert a parabolic PDE with quadratic nonlinearity to linear
partial differential equation.

Describe the method to convert a quasi-linear partial differential equation to linear partial
differential equation.

Describe the method to convert a parabolic partial differential equation with quadratic non
linearity to linear partial differential equation.

Discuss the method to convert nonlinear system of differential to linear differential
equations.

Further Readings

1. LN. Sneddon(1957), Elements Of Partial Differential Equations,Mcgraw Hill Education.

2. Lawrence C. Evans (1998), Partial Differential Equations, Universities Press Pvt. Ltd

Web Links

https:/ /onlinecourses.nptel.ac.in/noc22_ma73/preview

https:/ /onlinecourses.nptel.ac.in/noc21_ma09/preview

https:/ /onlinecourses.swayam?2.ac.in/cec22_mal2/preview
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Unit 10 : Laplace Equation I

CONTENTS

Objectives
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10.1 Fundamental Solution

10.2  Elementary Solutions of Laplace's Equation
10.3  Energy Method

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives

After studying this unit, you will be able to
¢ identify the concept of physical interpretation of Laplace equation.
¢ understand the fundamental solution of Laplace equation

¢ know about the elementary solution.

¢ applyEnergy method to find the minimizers solution

Introduction

Laplace equation: Among the most important of all partial differential equations are undoubtedly
Laplace’s equations

Mu=0 (10.0.1)

In equation (10.0.1), x € U and the unknown is u:U — R,u = u(x), where U ¢ R" is a given open
set.

Definition 10.0.1: AC *function u satisfying (10.0.1) is called a harmonic function.

Physical Interpretation: Laplace’s equation comes up in a wide variety of physical contexts. In a
typical interpretation u denotes the density of some quantity (e.g. chemical concentration) in
equilibrium. Then if V is any smooth sub region within U, the net flux of u through dV is zero:

.[ Fvds=0 (10.0.2)
ov

F denoting the flux density and v the unit outer normal field. In view of the Gauss-Green theorem,
we have

I div Fdx = _[ F.vdS=0, (10.0.3)
\ ov

and so
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divF=01inU, (10.0.4)

Since V was arbitrary. In many instances it is physically reasonable to assume the flux F is
proportional to the gradient Du, but points in the opposite direction (since the flow is from region
of higher to lower concentration). Thus,

F = —aDu (a > 0). (10.0.5)
Substituting into (10.0.4), we obtain Laplace’s equation
div(Du) = Au = 0.

chemical concentration
If u denotes the temperature
electrostatic potential

Fix's law of dif fusion
equation (10.0.5) is{ Fourier's law of heat conduction
Ohm's law of electrical conduction.

Laplace’s equation arises a well in the study of analytic functions and the probabilistic investigation
of Brownian motion.

10.1 Fundamental Solution

One good strategy for investigating any partial differential equation is first to identify some explicit
solutions and then, provided the PDE is linear to assemble more complicated solutions out of the
specific ones previously noted. Furthermore, in looking for explicit solutions it is often wise to
restrict attention to classes of functions with certain symmetry properties. Since Laplace’s equation
in invariant under rotations, it consequently seems advisable to search first for radial solutions, that
is, functions of r = |x|.

Let us therefore attempt to find a solution u of Laplace’s equation (10.0.1) in U = R™, having the
form

u(x) = v(r),
Wherer = |x| = (x2 + x3 + -+ .. + x})/?
and v is to be selected (if possible) so that Au = 0 holds. First note for i = 1,2, ... ....,n that
ar 1 X;
Fr E(xl2 +xZ+ e xD) Y22 = ?l(x # 0).
We thus have
! x" rn xlz ! 1 xlz
Uy, =V (r)?ruxl-xl- =v (r)r—2+v ™ P}
fori =1,2,.......,nand so

n—1
Au=v"(r)+ - v'.

Hence Au = 0 if and only if

n—1
v'(r)+ - v' =0.

If v’ # 0, we deduce

A
log(v)' ===

And hence v'(r) = rni_l for some constant a. Consequently if r > 0, we have

blogr +c,(n=2)
v(r) =

+c (n=3)

-,-n—z

where b and c are constants.
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These considerations motivate the following
Definition: The function

1
——loglx|, (n = 2)
mm={ 2 :

)

kn(n —2)a(n)|x|"2 (n=3

defined for x € R™,x # 0, is the fundamental solution of Laplace’s equation.

10.2 Elementary Solutions of Laplace's Equation

If we take the function p to be given by the equation
9 _ q
=7l =22+ =y + (2 —2)?

Y= (10.2.1)

where q is a constant and (x',y',z") are the coordinates of a fixed point, then since

9 _ alx—x)
ox  |r—=r3
%P q 3q(x —x')? ,
oz r=rp r=rp
It follows that
V2 =0

showing that the function (10.2.1) is a solution of Laplace's equation except possibly at the point
(x'y',z"), where it is not defined. From what it follows that the function given by equation (10.2.1) is
a possible form for the electrostatic potential corresponding to a space which, apart from the
isolated point (x',y',z'), is empty of electric charge. To find the charge at this singular point we make
use of Gauss' theorem. If S is any sphere with center (x',y',z'), then it is easily shown that

oY
La ds = —4-7l'q

from which it follows, by Gauss' theorem, that equation (1) gives the solution of Laplace's equation
corresponding to an electric charge+q.

By a simple superposition procedure it follows immediately that

W= Z il (10.2.2)
i=1

|r —ri

is the solution of Laplace's equation corresponding to n charges g; situated at points with position
vectorsr; (i=1,2, ..., n). In electrical problems we encounter the situation where two charges +q
and -q are situated very close together, say at points v’ and r’ + ér', where r’ = (I, m,n)a.The
solution of Laplace's equation corresponding to this distribution of charge is

—q q

¥ = |r—r'|+|r—r’—6r’|
Now
1 1 Ix=x")Y+mly—-y)+nz-2") 5
lr—r" =& |r—1'| |[r—7']3 a+0(a%)

so that ifa » 0, » o0 in such a way that qa — u, ie dipole is formed, it follows that the

corresponding Laplace's equation is

I(x—x)Y+mly—y)+n(iz-2")
|[r—7r'|3

Y=u (10.2.3)

a result which may be written in other ways : If we introduce a vector v = p(l, m,n), then
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v (r=r') 1024
11[) - |T—T'|3 ( e )
Also since
5} 1 _(x—x') ;
o lr—r] Jr=rp "
it follows that (3) may be written in the form

— (v.grad’) _ (la+ 9 . a) ! 1025
l/) - v.gra |T—T’| =Uu ax, mayr nﬁz’ |T—T’| ( e )

In reality we usually have to deal with continuous distributions of charge rather than with point
charges or dipoles. By analogy with equation (10.2.2) we should therefore expect that when a
continuous distribution of charge fills a region V of space, the corresponding form of the function v
is given by the Stieltjes integral

_ [ _dg
V= | G 1026

where q is the Stieltjes measure of the charge at the point r', or if p denotes the charge density, by

p(r"dr’
r)=| ——(10.2.7
vo) = | o 02)
By a similar argument it can be shown that the solution corresponding to a surface S carrying an
electric charge of density is

W(r) = f o @S 1008

s lr—1|

10.3 Energy Method

Most of our analysis of harmonic functions thus far has depended upon fairly explicit
representation formulas entailing the fundamentals solution and elementary solution. In this
section we illustrate some ‘energy methods’” which is to say techniques involving the
L?- norms of various expressions. These ideas foreshadow latter theoretical developments in Parts.

a. Uniqueness.

Consider first the boundary value problem
{—Au =finU

= gondl (10.3.1)

We have already employed the maximum principle to show uniqueness, but now set forth a simple
alternative proof. Assume U is open, bounded, and 9U is C*.

Theorem 10.3.1(Uniqueness): there exists at most one solution u € C2(U) of (10.3.1).

Proof: Assumeiiis another solution and set w = u — it. Then Aw = 0 in U, and so an integration by
parts shows

0= —f wAwdx = f |Dw|?dx.
u U
Thus
Dw=0inU,
And since w = 0 on dU, we deducew =u —u = 01in U.

b. Dirichlet’s Principle

Next let us demonstratethat a solution of the boundary-value problem (10.3.1) can be Poisson’s
equation can be characterized has the minimizers of an appropriate functional. For this, we define
the energy functional
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1
I(w) = f = |Dw|? — wfdx,
vl

w belonging to the admissible set

A={we C*(U)|w = gonadU}.

Theorem 10.3.1: (Dirichlets principal). Assumeu € C*(U) solves (10.3.1). Then

Iu] = IMI/IEiEI[W]. (10.3.2)
Conversely, if u € A satisfies (10.3.2)thenu solves the boundary-value problem (10.3.1)

In other words if u € 4, the PDE Au = fis equivalent to the statement thatu minimizes the energy
IL.].
Proof: 1. Choose if w € A. Then (10.3.2) implies.

0= f (=Au— f)(u —w)dx.
u
An integration by parts yields
0= fDu.D(u —w) — f(u—w)dx,
]
and there is no boundary term sinceu —w = g — g = 0 on dU. Hence

fIDuIZ—ufdx=fDu.Dw—wfdx
U u

1 1
< f —|Du|2dx+f = |Dw|? — wf dx,
u2 v?2
Where we employed the estimates
1 1
|Du.Dw| < |Dul|Dw| < EIDuI2 +§|DW|2,

following from the Cauchy-Schwarz and Cauchy inequalities. Rearranging, we conclude

ITu] < Iwl(w € 4) (10.3.3)
Since u € 4, (10.3.2) follows from (10.3.3)
2. Now, conversely, suppose (10.3.2) holds, Fix any v € C;°(U) and write

i(t) =I[u+wv](zr €R).
Since u + v € A for each 1, the scalar function i(.) has a minimum at zero, and thus

0= (=2)

Provided this derivative exists. But
i(t) = fu% |Du + Dv|? — (u + ™) fdx
1
= fuf |Du|? + tDu. Dv + t2|Dv|? — (u + Tv)fdx.
Consequently
0=1i'(0) = f Du.Dv —vfdx = f (—Au — fHvdx.
u u

This identity is valid for each function v € C/°(U) and so —Au = f in U.

Summary

o The physical interpretation of Laplace equation is discussed.

e The radial solution in terms of fundamental solution is determined.
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o Theelementary function for Laplace equation is solved.

e Determined the energy function for Laplace equation.

Keywords

e Laplace equation
¢  Fundamental solution
¢  Elementary solution

¢  Energy method

Self Assessment

1. If the function ¢ is harmonic in a circle S and continuous of S, then the value of @at the

center of S is equal to
Arithmetic mean of its value on the circumference of S.

Geometric mean of its value on the circumference of S.

Arithmetic mean of its value everywhere on S.

90w

Geometric mean of its value everywhere on S.

n
2. Which of function defined below for xeR  X# 0’

is the fundamental solution of
Laplace’s Equation?
A @(x) = loglxl, n =2
B.  @(x) =3loglxl, n=2
1 —
C. (p(x) = Eloglxl, n=2

D. <p(x) = —%loglxl, n=2

3.  What is true for the fundamental solutions of Laplace equation?
A 9(X) = s 123

B. p()=—1 1 n>3

a(mnn-1)[x|"=T’
— 1 1
C () = g 23

j— 1 1
D 00 = s M 2 3

Laplace equation will be invariant
Under rotation with respect to radial function
Dilation with respect to radial function

Magnification with respect to radial function

oONw >

None of these

The elementary solution of the Laplace equation governed by the

A. Charges situated at different point.
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n v

O 0w » N

*®

S0 w >

oS0 w

Motion of the particles.
Energy function response

None of these

The elementary solution of the Laplace equation over the volume V with boundary surface
Sis

() = [25
Y(r) = [LO

|lr+7!|

P(r) = — [

[r=r']

W(r) = p(r')dr’

|[r+7r'|

The elementary solution of the Laplace equation is derived by using
Green theorem
Gauss’ theorem
Both Green and Gauss
None of these

{— Au=finU
For the boundary value problem uecC’ ) of u=gondu
There exists at most one solution
There exists more than one solution
There exists no solution

There exists infinite many solution

The energy functional for w which is belonging the admissible set is
I(w) = [ 2pw>-wfdx
I(w) = [ipwiz+wrax
I(w) = [ Ipw|?-wrax

I(W) = f |DW|?+wfdx

. For the boundary value problem for Poisson’s equation which can be characterized as

The maximize of the appropriate energy function
The minimize of the appropriate energy function
Neither minimize or maximize of the appropriate energy function

None on these
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AnswersforSelf Assessment

Review Questions

1. Derive the fundamental solution using radial function for Laplace equation.
2. Find the elementary function or solution for Laplace equation.

3. Prove that solution of Laplace equation is minimizing the energy function.

L..J Further Readings
1. LN. Sneddon(1957), Elements Of Partial Differential Equations,Mcgraw Hill Education.

2. Lawrence C. Evans (1998), Partial Differential Equations, Universities Press Pvt. Ltd
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Objectives

After studying this unit, you will be able to

¢ understand about the harmonic function in term of Laplace equation.
¢ know about the spherical mean and mean value theorem.
e Apply potential function to solve system of PDE.

e  Determine Green’s function using harmonic function.

Introduction

In this chapter, we are going to discuss about harmonic function and its properties in terms of mean
value formula. Further the Green’s function for harmonic function and potential function will be
discussed.

11.1 The Spherical Mean

Let R be a region bounded d Rand let P(x,y,z) be any point in R. Also, let S(P,r) represents a sphere
with centre at P and radius r such that it lies entirely within the domain R. Let u be continuous
function in R. Then the spherical mean of u denoted by u is defined as

1
u = ds 11.1.1
aw) fs o f u(Q) (11.11)

42

Where Q(¢,1,{) is any variable point on the surface of the sphere S(P,r) and dS is the surface
element of integration. For a fixed radius r, the valueii(r) is the average of the values of u taken
over the sphere S(P,7), and hence it is called the spherical mean. Taking the origin at P, in terms of
spherical polar coordinates, we have
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& =x+rsinfcosp
n =y +rsinfsing
{=z+rcosO
Then, the spherical mean can be written as

1
4mrr?

21 T
u(r) = f f u( x +rsinfcosd,y + r sinfsing, z + r cos8)r? sin 6dOd .
¢=0J0=0

Also, since u is continuous on S(P,r), utoo is a continuous function of r on some interval 0 < r <
R, which can be verified as follows:

2m T
u(r) = %Tf f u(Q)sin8dOd¢ = %g)f f sin8dfd¢ = u(Q).
o Jo

Now, taking the limitasr — 0,Q — P, we have
limu = u(P).
-0

Hence, u is continuous in 0 <r < R.

11.2 Mean Value Theorem of Harmonic Functions

Theorem 11.2.1: Letu be a harmonic in a region R. Also, let P(x,y,z) be a given point in R and
S(P,r) be a sphere with centre at P such that S(P,r) is completely contained in the domain of
harmonicity of u. Then

1
u(P) = i(r) = f fs , @

4mr?

Proof: Since u is harmonic in R, its spherical mean ii(r) is continuous in R and is given by

_ 1 1 2n M )
u(r) = 4ﬂT2f.L(p,r)u(Q)d5 = Wfo fo u(&,n,Or?sin0dod¢p
du(r) 1

2m T
e E.fo fo (ug, +uy, +ugl,)sin0dode

1 2T T
Ef f (ugsing cos ¢ + u, sinBsing + u; cos ) sin 0dOd¢. (11.2.1)
o Jo

Noting that sinfcos¢, sinfsing and cosf are the direction cosines of the normal #i on S(P,r),
Vu = iug + juy, + kug, i = (ing, jn,, kns),
The expression within the parentheses of the integrand of eq. (11.2.1) can be written as Vu.# . Thus

du(r) 1 .o
= fo Vu.fir* sin 8d6d¢
dr 4nr S(Pr)

=1l
= Vu.n dS
4mrr? S

=/ /]
= v.vudVv
4mrr? VP

1

([ war=o
4nr V(P

(by divergence theorem)

As u is harmonic,
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du . L
Therefore, e 0, implying u is constant.

Now the continuity of & atr = 0 gives,

1
u(r) =u(P) = JJ( )u(Q)dS.
S(P,r

4mr?

11.3 Properties of Harmonic Functions

Solution of Laplace equation is called harmonic functions which possess a number of interesting
properties, and they are presented in the following theorems.

Theorem 11.3.1: If a harmonic function vanishes everywhere on the boundary, then it is identically
zero everywhere.

Proof: If ¢ is a harmonic function, then VZ¢p = 0 in R. Also, if ¢p = 0 on R, we shall show that ¢p =0
in R = RUJR. Recalling Green’s first identity, we get

fffR(wp)de:f aRq&%ds—ffwaZ(pdv

and using the above facts we have, at once, the relation

[ [ [worar-o

Since [ (V¢)? is positive, it follows that the integral will be satisfied only if V¢ = 0. This implies
that ¢ is a constant in R. Since ¢ is continuous in R and ¢ is zero in dR, it follows that ¢ = 0in R.

Theorem 11.3.2: If ¢ is harmonic function in R and Z—f =0 on JR, then ¢ is a constant in R.

Proof: Using Green'’s first identity and the data of the theorem , we arrive at

[ [ [worar=c

implying V¢ = 0,i.e. ¢ is constant in R. Since the value of ¢ is not known on the boundary dR

while g—: = 0, it is implied that ¢ is a constant on dRand hence on R.

11.4 Maximum-Minimum Principal

Theorem 11.4.1: LetR be the region bounded by dR. Also, let u be a function which is continuous in
a closed region R and satisfies the Laplace equation V2u = 0 in the interior of R. Further, if u is not
constant everywhere onR, then the maximum and minimum values of u must occur on the
boundary dR.

Proof: Suppose u is a harmonic function but not constant everywhere on R. If possible, let u attain
its maximum value M at some interior point P in R. Since M is the maximum of u which is not
constant, there should exists a sphere S(P,r) about P such that some of the values of u on S(P,r)
must be less than M. But by the mean value property, the value of u at Pis the average of the values
of u on S(P,r) and hence it is less than M. This contradicts the assumptions that u is M at P. Thus
the u must be constant over the entire sphere S(P, ).

Let Q be any other point inside R which can be connected to P by an arc lying entirely within the
domain R. By covering this arc with sphere and using the Heine-Borel theorem to choose a finite
number of covering spheres and repeating the argument given above, we can arrive at the
conclusion that u will have the same constant value at Q as at P. Thus u cannot attain a maximum
value at any point in side the region R. Therefore, u can attain its maximum value only on the
boundary dR. A similar argument will lead to the conclusion that u can attain its minimum value
only on the boundary dR.
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11.5 Potential Function

Another technique is to utilize a potential function to convert a nonlinear system of PDE into a
single linear PDE. We consider as an example Euler’s equations for inviscid, incompressible fluid
flow:

(a) uy+u.Du=—Dp + f in R® X (0,)
() divu=0 in R3 x (0, ) (11.5.1)
(o) u=g inR3x (t=0)

Here the unknowns are velocity field u = (u',u? u®) and the scalar pressure p; external force f =
(f1,f2,f3) and the initial velocity g = (g%, g% g*) are given. Here D as usual denotes the gradient
in the spatial variables x = (x4, X, x3). The vector equation (11.5.1(a)) means

3
ul + Zujufcj = —py, + f1(I = 1,23).
=1

We will assume

divg =0 (11.5.2)
If furthermore there exists a scalar function h: R® x (0,0) — R such that

f=Dh (11.5.3)
We say that the external force is derived from the potential h.

We will try to find a solution (u, p) of (11.5.1) for which the velocity field u is also derived from a
potential, say

u=Dv (11.5.4)
Our flow will then be irrotational, as curl u = 0. Now equation (11.5.1(b)) says
0=divu=Av (11.5.5)

and so v must be harmonic as a function of x, for ach time t > 0. Thus if we can find a smooth
function v satisfying (11.5.5) and Dv(.,0) = g, we can then recover u from v by (11.5.4).

How do we compute the pressure p?

Let us observe that if

u = Dv, thenu.Du = %D(IDvIZ).

Consequently (11.5.1(a)) reads

D (vt + % |Dv|2) =D(-p+h),

In view of (11.5.3). Therefore we can take

v, + ; |Dv|® +p =h. (11.5.6)

This is Bernoulli’s law. But now we can employ (11.5.5) to compute p, since v and h are already
known.

11.6 Green’s Function for Laplace Equation

We return now to the consideration of the interior Dirichlet problem formulated. Suppose, in the
first instance, that the values of i and di/dn are known at every point of the boundary S of a finite
region V and that V21 = 0 within V. We can then determine i by a simple application of Green's
theorem in the form.

wrronds e [ 2P 2
v —wvwae= | wTr-w g as (1161)

Where ), denotes the boundary of the region Q.
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If we are interested in determining the solution (r) of our problem at a point P with position
vector 1, then we surround P by a sphere C which has its center at P and has radius eand take }; to
be the region which is exterior to C and interior to S. Putting

. 1
Ve
and noting that V2y' = V2y = 0, within Q, we see that
, 1 1 oYy, , 1 1y =0
f{lp( )an = | rlan}ds f{lp( )anlr -7l =7 Bn}ds (11.6.2)

where the normal n are in the directions shown in Fig. . Now, on the surface of the sphere C,
1 1 0 1 1
|r'—r| & on|r'—r| &%

ds’ = €% sin6dfd¢

and
Y =y + e{sin 0 cosqb% +sinf sind)% + cos Baa—f}

a0y

an = (5n), +0©
so that

1
f{w( ’)%ﬁ}ds’ = 4mp(r) + 0(&)

and

1
flr —r|_ ds' = 0(e)

Substituting these results into equation (11.6.2) and letting s tend to zero, we find that

1 oY) , 1 ,
[r"=7| on sy )_ }dS

on|r' —r|

Y(r)=-— { (11.6.3)
so that the value of ¥, at an interior point of the region V can be determined in terms of the values
of P, and Z—f on the boundary S.

A similar result holds in the case of the exterior Dirichlet problem. In this case we take the region
Qoccurring in equation (11.6.1) to be the region bounded by S, a small sphere C surrounding P, and
Y.a sphere with center the origin and large radius R. Taking the directions of the normals to be as
indicated in Fig. 24 and proceeding as above, we find, in this instance, that

4nlp(r)+0(s)+f {Ea_wJ’ w}ds +f{ 1 W end 1 }dS’=0 (11.6.4)

S — r|6n onlr' —r|

Letting € - 0 and R — o, we see that the solution (11.6.3) is valid in the case of the exterior
Dirichlet problem provided that Ry and R? Z—f remain finite asR — oo.

Equation (11.6.3) would seem at first sight to indicate that to obtain a solution of Dirichlet's problem
we need to know not only the value of the function ¥ but also the value of 2—1’. That this is not in fact

so can be shown by the introduction of the concept of a Green's function. We define a Green's
function G(r,r') by the equation

G(T,T ) =H(T,T)+m (1165)
where the function H(r,r') satisfies the relations

92 92 92
<6x’2 + 3y + aZ,2>H(r,r )=0 (11.6.6)
and
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1
H(r,r)+m=o onS (11.6.7)

Then since, just as in the derivation of equation (11.6.3), we can show that

_ 1 I 01/)(7”) I d ’ ’
IP(T)—EL{G(T»T) o~ —wm%c(nr)}ds

it follows that if we have found a function G(1,1') satisfying equations (11.6.5), (11.6.6), and (11.6.7),
then the solution of the Dirichlet problem is given by the relation

Y(r) = —ifs{l/)(r’);—nG(r,r’)} ds’

The solution of the Dirichlet problem is thus reduced to the determination of the Green's function
G(r,1).

Summary

e The spherical mean isderived for harmonic function.
¢ The mean value theorem for harmonic function and its properties arediscussed.
¢ The potential function for solution of system of PDE elaborated.

o Determined the Green function for Laplace equation.

Keywords

e Laplace equation

¢ Spherical Mean

¢ Mean value theorem

¢ Harmonic function and its properties
¢ Potential function

e Green function

Self Assessment

1. If ue C2 (U)is harmonic, then for each ball B(X’ r) cU.
u(x) =- ifudS = §udy
A B(x,r) B(x,r)
u(s) = i{uds =— §udy
B_ B(x,r) B(x,r)
u(x) = ifudS = fudy
C OB(x,r) B(x,r)
u(x) =- ifudS = §udy
OB (x,r) B(x,r)
D.

2. If the function ¢ is harmonic in a sphere S and continuous on S, then the value of ¢ at the
center of Sis equal to

A. Arithmetic mean of its value on the circumference of S.
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Geometric mean of its value on the circumference of S.
Spherical mean of its value on the circumference of S.

None of these

If u be harmonic in a Region R. Also, let P(x,y,z) be a given point in R and S(P,r) be a
sphere with centre at P such that S(P,r) is completely contained in the harmonicity of u.
Then

u(P) = 4(r) = = [y p,p w(Q)dS

u(P) = 4(r) = o [f; .,y w(Q)S

1

u(P) = u(r) = — [l ., w(@)dS

None of these

If a harmonic function vanishes everywhere on the boundary, then
It is identically zero everywhere.

It is identically nonzero everywhere.

It is identically zero only inside the domain.

It is identically nonzero inside the domain.

Maximum principle of Laplace equation is the
Strong maximum principle

Strong minimum principle

Weak maximum principle

Weak minimum principle

If a harmonic function is not constant everywhere then the maximum value must occur
Only on the boundary

Inside the boundary

Outside the boundary

Anywhere on the domain.

A function which is harmonic satisfying the Laplace equation
Will not be a smooth function

Not analytic anywhere in

Will satisfy the mean value theorem

None of these

Potential functions helps to convert a nonlinear system of partial differential equation into
A linear system of pde.

A single linear pde.

A semi linear pde

None of these

The equation v, + i |Dv|? + p = his known as

Strong maximum value

LOVELY PROFESSIONAL UNIVERSITY

111

Notes



Notes

112

Partial Differential Equations

B. Newton Law
C. Bernoulli’s law
D. None of these

10. The Euler equation for an inviscid, incompressible fluid flow is given by
us+uDu=-Dp+f

u+uDu=Dp+f

u+Du=-Dp+f

None of these

90w p

Answer forSelf Assessment

Review Questions

1) State and prove mean value theorem for harmonic function.

2) Discuss the method to convert system of nonlinear PDE to linear PDE.
3) Derive the Green function for Laplace equation.

4) State and prove the maximum principle for harmonic function.

Further Readings

1. LN. Sneddon(1957), Elements Of Partial Differential Equations,Mcgraw Hill Education.

2. Lawrence C. Evans (1998), Partial Differential Equations, Universities Press Pvt. Ltd
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Objectives

After studying this unit, you will be able to

e identify the concept of wave equation occurrence in other fields.
¢ understand the application of wave equation
e  know about the elementary solution of wave equation.

e determine the uniqueness of solution by energy method.

Introduction

In this chapter we shall consider the wave equation
19%y

2= 2 *

v c? ot?

which is a typical hyperbolic equation. This equation is sometimes written in the form

(12.0.1)

0%y =0
where O2denotes the operator
92 9% 9% 1 02
o2 " oy? o2 o
If we assume a solution of the wave equation of the form
= W(x,y,z)etket
then the function ¥ must satisfy the equation
V2+ k)Y =0

which is called the space form of the wave equation or Helmholtz's equation.
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Partial Differential Equations

12.1 The Occurrence of the Wave Equation in Physics

We shall begin this chapter by listing several kinds of situations in physics which can be discussed
by means of the theory of the wave equation.

(a) Transverse Vibrations of a String. If a string of uniform linear density p is stretched to a

uniform tension T, and if, in the equilibrium position, the string coincides with the x axis,

then when the string is disturbed slightly from its equilibrium position, the transverse

displacement y(x,t) satisfies the one -dimensional wave equation

9%y 109%

— == 12.1.1

0x?  c?ot? ( )
where ¢2 = T/p. At any point x = a of the string which is fixed y(a, t) = 0 for all values of
t.

(b) Longitudinal Vibrations in a Bar. If a uniform bar of elastic material of uniform cross
section whose axis coincides with Ox is stressed in such a way that each point of a typical

cross section of the bar takes the same displacement é(x,t) then

9% 10%

wherec? = E/p, E being the Young's modulus and p the density of the material of the bar. The
stress at any point in the bar is

o=E~ (12.1.3)

For instance, suppose that the velocity of the end x = 0 of the bar 0 < x < a is prescribed to be v(t),
say, and that the other end x =ais free from stress. Suppose further that at that time t = 0 the bar is
at rest. Then the longitudinal displacement of sections of the bar are determined by the partial
differential equation (12.1.2) and the boundary and initial conditions

6] % =v(t)forx =0
(ii) g=0forx=a

_ 08 _ _
(iii) §=5,=0att=00<x<0
(c) Longitudinal Sound Waves. If plane waves of sound are being propagated in a horn
whose cross section for the section with abscissa x is A(x) in such a way that every point of
that section has the same longitudinal displacement &(x,t), then¢ satisfies the partial

differential equation
a {1 a(Af)} 102%¢

A ox ) cZaer (1214

which reduces to the one -dimensional wave equation (12.1.2) in the case in which the cross section
is uniform. In equation (12.1.4)
dp
= ()
dp/,
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Unit 12: Wave Equation

where the suffix 0 denotes that we take the value of Z—i in the equilibrium state. The change in
pressure in the gas from the equilibrium value P, is given by the formula

0§

ox

where p, is the density of the gas in the equilibrium state. For instance, if we are considering the

motion of the gas when a sound wave passes along a tube which is free at each of the ends x =0, x =
a, then we must determine solutions of equation (12.1.4) which are such that

P_Poz_czpo

% —0atx=0and atx =a.
dax
(d) Electric Signals in Cables. We have already remarked that if the resistance per unit length
R, and the leakage parameter G are both zero, the voltage V(x,t) and the current z(x,t) both
satisfy the one- dimensional wave equation, with wave velocity ¢ defined by the equation
2_1 (12.1.5)
=1 1.

where L is the inductance. and C the capacity per unit length.

(e) Transverse Vibrations of a Membrane. If a thin elastic membrane of uniform areal
density o is stretched to a uniform tension T, and if, in the equilibrium position, the
membrane coincides with the xy plane, then the small transverse vibrations of the
membrane are governed by the wave equation

, 1 0%z
Vig=—— (12.1.6)

where z(x,y,t) is the transverse displacement (assumed small) at time t of the point (x,y) of

the membrane. The wave velocity c is defined by the equation

2L (12.1.6)

If the membrane is held fixed at its boundaryT, then we must have z = 0 on T for all values
of t.

(f) Electromagnetic Waves. If we write

H = LA E = 104 d
= curl A4, =TT grad ¢

then Maxwell's equations

divE =4nq, divH=0

4mi  10E

10H
curlE=———, curlH = -
c ot

c dt

are satisfied identically provided that A and ¢ satisfy the equations

oy LO7A 4T v 1924
== 1, =

=4
c2oit? ¢ c? ot2 P

Therefore in the absence of charges or currents and the components of A satisfy the wave

equation.

12.2 Elementary Solutions of the One -dimensional Wave Equation

A general solution of the wave equation
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0%y 1 09%
is
y=f(x+ct)+glx—ct) (12.2.2)

where the functions f and g are arbitrary. In this section we shall show how this solution may be
used to describe the motion of a string. In the first instance we shall assume that the string is of
infinite extent and that at time t = 0 the displacement and the velocity of the string are both
prescribed so that

G]
y = n(x),a—}t/ =v(x) at t=0 (12.2.3)

Our problem then is to solve equation (12.2.1) subject to the initial conditions (12.2.3). Substituting
from (12.2.3) into (12.2.2), we obtain the relations

n(x) = fx) +g&x), v(x) =cf'(x) —cg'(x) (12.24)
Integrating the second of these relations, we have

X

F) - g = ¢ [ we)a,

b

where b is arbitrary. From this equation and the first of the equations (12.2.4) we obtain the
formulas

£G) = g0 +5- [ v

b

909 = () — 5 [ v(©)ag

b

Substituting these expressions in equation (12.2.2), we obtain the solution

x+ct

1 1
y=§{n(x+ct)+n(x—ct)}+z—c f v(&)dé (12.2.5)

x—ct
The solution (5) is known as d'Alembert's solution of the one -dimensional wave equation. If the
string is released from rest, yo, so that equation (12.2.5) becomes

y= %{n(x +ct) +n(x —ct)} (12.2.6)

showing that the subsequent displacement of the string is produced by two pulses of "shape" y =
%r](x), each moving with velocity ¢, one to the right and the other to the left.

12.3 Energy Method

This suggests that perhaps some other way of measuring the size and smoothness of functions may
be appropriate. Indeed we will see in this section that the wave equation is nicely behaved with
respect to certain integral ‘energy’ norm.

Uniqueness

Let U c R™ be a bounded, open set with a smooth boundary dU, and as usual set Uy = U X
(0,T],T = Uy — Up,where T > 0.

We are interested in initial /boundary value problem

Uy —Au=finUr
u=gonly (12.3.1)
u; = hon U x {t = 0}.
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Theorem 12.3.1: (Uniqueness for Wave equation). There exists at most u € C2(Ur)solvinf (12.3.1)

Proof:If #iis another such solution, then w = u — # solves

w=0only

{ Wi —Aw = 0in Uy
w; =00onU x {t =0}.

Define the “energy”
1
e(t) = Ef w2(x,0) + [Dw(x, D2 dx (0<t<T)
U
We compute

d
e(t) = fW:W:: + Dw. Dw; dx [.= —
U dt

= th(Wtc —Aw)dx =0
U

There is no boundary term since w = 0, and hence w, = 0,0n dU x [0, T].

Thus forall 0 <t < T,e(t) = e(0) = 0, and so w;, Dw = 0 within Ur.Since w = 0 on U X {t = 0}, we
concludew =u— u=0inUy.

Summary

e The wave equation and its occurrence in Physics is discussed.
e  Thespherical solution for wave equation is derived.
e Theboundary value and initial value problem is defined.

¢ The unique solution using energy method is determined.

Keywords

e  Wave equation
e  Elementary solution
¢  Unique solution

¢ Energy method

Self Assessment

1. The elementary solution of the one dimensional wave equation is called also as
A. D’ Alembert solution

B. Helmholtz’s solution

C. Riemann-Volterra solution

D. Weber's solution

2. Which of the following is correct solution of wave equation?

Ay =2{nle+ct) +nx — ct)} =375 v(©as

B. y=1n(x+ct) —nlx—ct)}+ 105 v@ag
C. y=2nlx+ct)+nlx —ct)}+ 17 v@as
D. y=1n(x+ct) +nlx—ct)} -1 v@©ag

3. The energy function for the wave equation over the domain U is given by
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A
B

C.
D

SRONC IS

e(t) = ;[ wix+Ipw|2dx, (0st<T)
e(t) = [w2(x,0)+IDw|2dx, (0st<T)
e(t) = 1fwi+Ipw|*dx, (0st<T)

e(t) = [ wi,-Ipw|*dx, (0st<T)

The uniqueness of the solution of boundary problem of wave equation is given by

Elementary method
Energy method
Fundamental method
None of these

. . 9%y _ 1 9% .
A general solution of the wave equation ez —czgez 18

A y=f(x+ct)+g(x—ct)
B. y=f(x+ct)—glx—ct)
C. y=f(x+ct)
D

None of these

If the string is released from rest, then the elementary solution becomes

A. {nlx+ct) —nlx—ct)}
B. 2{n(x+ct) —n(lx —ct)}

C. %{n(x +ct) + n(x — ct)}

D. None of these

The displacement of the string released from rest is produced by

A. Two pulses

B. Straight curve
C. Arc

D. None of these

Uy —Au=finUr
The equation is u=gonly governed as
u; = honU x {t = 0}.

A. Initial value problem

B. Boundary Value problem
C. Both (a) and (b)
D

None of these

Answersforself Assessment

L A

118

2. C 3. A 4. B
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Review Questions

1. Derive d'Alembert's formulas for one dimensional wave equation.

2. State and prove uniqueness by the energy methods for wave equation.

L...] Further Readings
1. LN. Sneddon(1957), Elements Of Partial Differential Equations,Mcgraw Hill Education.

2. Lawrence C. Evans (1998), Partial Differential Equations, Universities Press Pvt. Ltd
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Unit 13: Similarity Solutions
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Objectives

After studying this unit, you will be able to

e  identify the concept similarity solution.

¢ understand about the plane wave and traveling wave solution

¢  know about theexponential solution corresponding to number of equations.
e determine soliton by using traveling wave function.

e apply the similarity under scaling function for porous medium.

Introduction

Similarity Solutions

When investigating partial differential equations it is often profitable to look for specific solutions
u, the form of which reflects various symmetries in the structure of the PDE. We have already seen
this idea in our derivation of the fundamental solutions for Laplace's equation, and our discovery of
rarefaction waves for conservation laws. Following are some other applications of this important
method.

13.1 Plane and Traveling Waves

Consider first a partial differential equation involving the two variables x € R,t € R.

A solution u of the form

u(x,t) = v(x—ot),x ER,tER (13.1.1)
is called a traveling wave (with speedo and profile v).

More generally, a solution u of a PDE in the n + 1 variablesx = (x4, x5, ... ..., X;,) € R™,t € R having
the form

u(x,t) = v(y.x—ot),x ER"tER (13.1.2)

is called a plane wave (with wavefront normal toy € R", velocity%, andprofile u).

120 LOVELY PROFESSIONAL UNIVERSITY
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Exponential Solutions

In view of the Fourier transform, it is particularly enlightening when studying linear partial
differential equations toconsider complex-valued plane wave solutions of the form

u(x,t) = elx+en (13.1.3)
where w € Cand y = (¥4, ¥2, .- Y1) € R™, wbeing the frequency and {y;}-,,the wave numbers.

We will next substitute trial solutions of the form (13.1.3) into various linear PDE, paying particular
attention to the relationship between y and wforced by the structure of the equation.

(i) Heat Equation. If u is given by (13.1.3), we compute
U — Au = (i + |y|Hu =0,
providedw = i|y|?. Hence

u= eiy.x—lylzt

solves the heat equation for each y € R™. Taking real and imaginary parts,we discover further that

eIy’ cos(y.x) and ey’ sin(y.x) are the solution as well. Notice in this example that since w is
purely imaginary, there resulta a real, negative exponential term e~¥t in the formulas, which
corresponds to dissipation.

(ii) Wave Equation. Upon our substituting (13.1.3) into the wave equation, we discover
Uy — Au= (—w? + |y Hu =0,
provided w = +|y|. Consequently
u = ellyxtlyht

solves the wave equation, as do the pair of functions cos(y.x * |y|)t and sin(y.x + |y|)t). Since w is
real, there are no dissipation effects in these solutions.

(iii) Dispersive Equations. We now let n = 1 and substitute u(x, t) = el0**®YintoAiry's equation
Up + Uy =0
We calculate
U+ Uy = (@ —y>u=0
whenever w = y3. Thus

u = elrxtydt

solves Airy's equation, and once again as w is real there is no dissipation.

=22 Notice: however that the velocity of propagation is y2, which depends non- linearly upon
the frequency of the initial value e®*. Thus waves of different frequencies propagate at
different velocities: the PDE creates dispersion.

(iv) Schrodinger's Wave Equation
Likewise, if n =1 and we substitute

u(x t) = elyx+on
into Schrédinger's equation,

iug+Au=20

LOVELY PROFESSIONAL UNIVERSITY 121
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we compute
iug + Au— (w + |y|>)u = 0.
Consequentlyw = —|y|?, and
u = elx-1yl*t)

Again, the solution displays dispersion.

13.2 Solitons

We consider next the Korteweg-De-Vries (KdV) equation in the form

U + 6UUy, + Uy = 0 in R X (0,0). (13.2.1)
This nonlinear dispersive equation being model for surface waves in water.

We seek a traveling wave solution having structure

u(x,t) =v(x —at)(x e R, t > 0) (13.2.2)
Then u solves the KdV equation (13.2.1), provided v satisfies the ODE

—ov' +6vv +v"" =0 (' = %) (13.2.3)

We integrate (13.3.3.) by first noting

—ocv+3vi+v'=a (1323.4)

a denoting some constant. Multiply this equality by v’ to obtain

—ovv' + 3V + Vv = av (13.2.5)
so deduce

O = 3+ 20 +av +b (13.2.6)

where b is another arbitrary constant.

We investigate (13.2.6) by looking now only for solutions vwhich satisfy v,v’,v""— 0 as s = £ . (In
which case the function u having the form (13.2.2) is called a solitary wave.) Then (13.2.6), (13.2.5)
imply a = b = 0. Equation (13.2.6) thereupon simplifies to read

@)’ =v? (—v + f)_

Hence v’ = +v(o — 2v)/2.

We take the minus sign above for computational convenience, and obtain then this implicit formula
for v:

v(s) dz
S=— j;) m +c (1327)

For some constant c.

Now substitute z = %sech2 6.
3
It follows thatz—z = —gSech?@ tanhf and z(o — 22)V/? = %ZSechZQ tanh@. Hence (13.2.7) becomes

2
s= \/_EG +c (13.2.8)
where 0 implicitly given by the relation

o
Esech2 0 = v(s)(13.2.9)

We lastly combine (13.2.8) and (13.2.9), to compute

122 LOVELY PROFESSIONAL UNIVERSITY
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v(s) = %sech2 (X/zj (s — c)) (SER)

Conversely, it is routine to check vso defined actually solves the ODE (13.2.3.
The upshot is that

o Vo
u(x,t) = EsechZ(T(x—ot—c)> XERt=0

is a solution of KdV equation for each ¢ € R, > 0. A solution of this form is called a soliton . Note
the velocity of the soliton depends upon its height.

=2 Notes: The KdV equation is in factutterly remarkable, in that it is completely integrable,
which mean that in principle that the exact solution can be computed for essentially
arbitrary initial data.

13.3 Similarity Under Scaling

We next illustrate the possibility of findings the other types of ‘similarity” solutions to PDE.

A scaling invariant solution Consider the porous medium equation
u,— V') =0 inR" X (0,0) (13.3.1)
whereu = 0 and y > 1 is constant.

As in our later derivation of the fundamental solution od heat equation, let us look for a solution u
having the form

1 x
— n
u(x, t) = r v(tﬁ)' X ERMt >0, (13.3.2)

Where the constants «, § and the function v: R® = R must be determined.

Remember that we come upon (13.3.2) if we seek a solution u of (13.3.1) invariant under dilation
scaling

u(x, t) » 1%u(APx, At)
so thatu(x, t) = 2%u(Afx, At)
forallA > 0,x € R", t > 0. Setting A = t %, we obtain (13.3.2) for v(y) = u(y, 1).
We insert (13.3.2) into (13.3.1), and discover
at~ @Dy (y) + pt=@ Dy Dy(y) + t~@+2BAWY)(y) = 0 (13.3.3)
for y =t Fx.

In order to convert (13.3.3) into an expression involving the variable y alone, let us require

a+l=ay+2p (13.34)
Then (13.3.3) reduces to
av+ By.Dv+A(WY) =0 (13.3.5)

At this point we have effected a reduction from n + 1 to n variables. We simplify further by
supposing v is radial; that is, v(y) = w(|y|)for some w: R = R. Then (13.3.5) becomes

n—1
aw + Brw’ + (w?)" + - w¥)Y =0 (13.3.6)
Where = |y|, '= %. Now if we set
a=ng, (13.3.7)

(13.3.6) thereupon simplifies to read
"W + B w) =0
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Thus
rlwY) + grtw=a

for some constant a.

Assuming lim w,w’ = 0, we conclude a = 0; whence
Tr—00

wY) = —Brw.
But then
-1
wry = -T=pr
Consequently
y—1
Y-1_—p — 2
w b 2y Bre,
b is constant; and so
-1 +—;1
w= (b—z—yﬁrz) v (1338)

where we look the positive part of right hand side of (13.3.8) to ensure w > 0. Recalling v(y) = w(r)
and (13.3.2), we obtain

_ L (v =tk = ERYt>0 13.3.9
u(x,t)—ta - 2y ﬁtZB , (x ,t>0) (13.3.9)
where from (13.3.4) and (13.3.7),
n 1
B (13.3.10)

azn(y—1)+2' =n()/—1)+2

The formula (13.3.9) and (13.3.10) are Barenblatt’s solution to the porous medium equation.

Summary

¢  The plane wave and traveling wave solutions are discussed.

¢  The exponential solution are determined for different equation.
e  The dissipation effect using exponential is discussed.

¢  The similarity solution under scaling are explained.

e  The soliton equation are elaborated with examples.

Keywords

e Plane wave

e Traveling wave

e Soliton

e Similarity solutions
e Porous medium

e Scaling
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Self Assessment

The u of the form u(x,t) = v(x — at), x € R, t € R with speed ¢ and profile v is called as
Traveling wave

Plane wave

Transverse wave

oNwp e

Longitudinal wave

The u of the form u(x,t) = v(y.x —ot),x € R, t € R with speed ¢ and profile v is called as
Traveling wave

2.
A.
B. Plane wave
C. Transverse wave
D.

Longitudinal wave

3. Which of the equation has no dissipation effect?
A. Heat equation

B. Wave equation

C. Dispersive equation

D

None of these

Which is not the kind of wave equation solutions?
Traveling wave

Plane wave

Solitons

SRR IS

None of these

The nonlinear dispersive equation u; + 6uu, + Uy, = 0is also known as
Korteweg-de Vrise equation

Alembert equation

Helmholtz’s equation

SR I

Riemann-Volterra equation

The wave equation which is used to represent the surface of water represent as
U + O6UU, + Uyyy =0

Up + 6UUZ + Uy = 0

Up + 6UU, + Uyy = 0

U+ 6UUZ, + Uyyy = 0

SEeRCIPES

7. The wave function represents below is the type of
u(x,t) = %sechQ(g(:c —ot —c)) (zeR, t=0)

A. Stationary wave

B. Travelling wave

C. Vibrating wave

D. Plane wave

8. The equation under scaling invariant of Porous media is represents as
A, u—AW) =0

B. u;—AW)=0

C. u,—DW")=0
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O

SEECR-I-SIC

O Nw >z

11.

o 0wy

Uy —Ds(u¥) =0

The Barenblatt’s solution is of which kind of equation
Diffusion equation

Porous media equation

Wave equation

Laplace equation

. The equation u; + Uy, = 0 is knows as

Airy’s equation
Non characteristic surface equation
Water surface equation

None of these

The Schrodinger’s equations is represent as

iu, +Au=0
us +iDu, =0
U +iDu=0

U + Uy =0

AnswersforSelf Assessment

1 A
6 C
1. A

Review Questions

WWW

State and prove the Korteweg-de Vries (KDV) equation for solitons.

Derive the exponential solution for plane and travelling wave equation by considering
heat equation and wave equation.

Derive the exponential solution for plane and travelling wave equation by considering
Airy’'sequation.

State and prove Barenblatt’s solution to the porous medium equation by the method of
similarity under scaling.

Further Readings

1. LN. Sneddon(1957), Elements Of Partial Differential Equations,Mcgraw Hill Education.

2. Lawrence C. Evans (1998), Partial Differential Equations, Universities Press Pvt. Ltd

Web Links

https:/ /onlinecourses.nptel.ac.in/noc22 ma73/preview

https:/ /onlinecourses.nptel.ac.in/noc21 _ma09/preview

https:/ /onlinecourses.swayam?2.ac.in/cec22 mal2/preview
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Unit 14 : Heat Equations
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Objectives

After studying this unit, you will be able to

identify the concept of heat equation of diffusion equation.

understand about fundamental of solution of heat equation.

know about theelementary solution of diffusion equation.

determine green function and find uniqueness through energy functions.

Introduction

Next we study the heat equation

u, —Au=0 (14.0.1)
and the nonhomogeneous heat equation

u —Au=f (14.0.2)

subject to appropriate initial and boundary conditions. Here t > 0 and x € U,where U c R"is open.
The unknown is u: U x [0, ©) — R, u = u(x, t), and the Laplacian A is taken with respect to the
spatial variables

X = (Xg, X eee o Xy )1 AU = AUy = P03 Uy
In (14.0.2) the function f: Ux[0, ) — Ris given.

A guiding principle is that any assertion about harmonic functions yields an analogous (but more
complicated) statement about solutions of the heat equation. Accordingly our development will
largely parallel the corresponding theory for Laplace's equation.

Physical interpretation. The heat equation, also known as the diffusion equation, describes in
typical applications the evolution in time of the density u of some quantity such as heat, chemical
concentration, etc. If V c Uis any smooth subregion, the rate of change of the total quantity within
V equals the negative of the net flux through aV:
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d
—Judx=—f F.vds
at Jy av

F being the flux density. Thus
uy =—divF (14.0.3)

as V was arbitrary. In many situations F is proportional to the gradient of u, but points in the
opposite direction (since the flow is from regions of higher to lower concentration):

F=-aDu (a > 0).

Substituting into (14.0.3), we obtain the PDE
u; = a div(Du) = aAu,

which for a =1 is the heat equation.

The heat equation appears as well in the study of Brownian motion.

14.1 Fundamental Solution

Derivation of the fundamental solution:

An important first step in studying any PDE is often to come up with some specific solutions. We
observe that the heat equation involves one derivative with respectto the time variable t, but two
derivatives with respect to the space variablesx; (i = 1,....n). Consequently we see that if u solves

(14.0.1), then so does u(Ax, A*t) for A € R. This scaling indicates the ratio ?, (r = |x]) is important

for the heat equation and suggests that we search for a solution of (14.0.1) having the form

|x|?
u(x,t)y=v -+ ,t>0,x €ER™,

for some function v as yet undetermined.

Although this approach eventually leads to what we want, it is quicker to seek a solution u having
the special structure

w(n ) = = (ﬁ) (x € R™,t > 0) (14.1.1)
o \th
where the constants a, f and the function v: R — R, must be found. We come to (14.1.1) if we look
for a solution u of the heat equation invariant under the dilation scaling
u(x, t) » 1%u(APx, At)
That is, we ask
u(x, t) = 1%u(APx, At)
forallA > 0,x € R", t > 0. Setting A = t %, we obtain (13.3.2) for v(y) = u(y, 1).
Let us insert (14.1.1) into (14.0.1), and thereafter compute
at= @ Dy(y) + ft= @Dy Dy(y) + t~@+2DAp(y) = 0 (14.1.2)
Fory = tPx. In order to transform (14.1.2) into an expression involving the variable y alone, we

take 3=1/2. Then the terms with t are identical, and so (14.1.2) reduces to

1
av + 5V Dv+Av=20 (14.1.3)

We simplify further by guessing v to be radial; that is, v(y) = w(|y|)for some w: R—R. Thereupon
(14.1.3) becomes

1 n—1
aw + Erw' +w"” + TW’ =0 (14.14)

I

Forr = |y|, = L Now if we set a = l, this simplifies to read
dr 2

WY + BEr"w)' =0
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Thus
™ W+ Briw =a

for some constant a.

Assuming lim w,w’ = 0, we conclude a = 0; whence
Tr—00

, 1
w = - ETW.
But for some constant b
r2
W= he—s (14.15)
Combining (14.1.1), (14.1.5) and our choices for, §, we conclude that
b _m?
—e 4t
tz
solves the heat equation (14.0.1).
This computation motivates the following
DEFINITION. The functions
1 =

—e & , (XxXERYt>0)
¢(x,t) =1 ((4nt):
0, (x € R™,t > 0)

is called the fundamental solution of the heat equation.

E,’ Remark: 14.1.2: Notice that ¢ is singular at the point (0,0). We will sometimes write
- ¢(x,t) = ¢(|x|,t) to emphasize that the fundamental solution is radial in the variable x.

14.2 Elementary Solutions of the Diffusion Equation

In this section we shall consider elementary solutions of the one - dimensional diffusion equation

0% 106 1421
9x2 kot (142.1)
We begin by considering the expression
0= ! x 14.2.2
= 79~ (14.2.2)
For this function it is readily seen that
2 2
ﬂ — X e—x2/4xt _ 1 e—xz/4xt
0x%  4x2t5/? 2Kt3/?
and
2
3_9 — Z X o e~ X?/4xt _ z 13'/2 X%/ 4kt
t Kt t

showing that the function (14.2.2) is a solution of the equation (14.2.1). It follows immediately that

. (_ (x— s>2>
2\/ﬁexp 4kt

(14.2.3)

Where ¢ is an arbitrary real constant, is also a solution. Furthermore, if the function ¢(x) is
bounded for all real values of x, then it is possible that the integral

1 (” (x—9)?
2vmKt f_ofb(f) P <_ 4t )df (14.2.4)
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is also, in some sense, a solution of the equation (14.2.1). It may readily be proved that the integral
(14.2.4) is convergent if t > 0 and that the integrals obtained from it by differentiating under the
integral sign with respect to x and t are uniformly convergent in the neighborhood of the point (x,t).
The function 6(x,t) and its derivatives of all orders therefore exist for t > 0, and since the integrand
satisfies the one -dimensional diffusion equation, it follows that 6(x,t) itself satisfies that equation
fort>0.

Now

1 e (- )7
‘2 — f m¢(€)eXp<— p— )df—cp(x)

=L+ L+ 15— 1
Where

= [ 0l 20E) - e
P 2u/kt)}e ™ d
; _ﬁfw {p(x + 2uvkt)}e™ du

I = %I__N{d)(x + 2uv/kt)}e ™ du

2 ©
I, = (35_:() fN e ™ du

If the function ¢ (x) is bounded, we can make each of the integrals I,, 13,1, as small as we please by
taking N to be sufficiently large, and by the continuity of the function ¢we can make the integrall;
as small as we please by taking t sufficiently small. Thus as t — 0,0(x, t) = ¢(x). Thus the Poisson
integral

00 t) = — fm¢(§) exp<— (x— sc)2>d§ (14.2.5)
’ 2wkt J_o, 4kt -

is the solution of the initial value problem

9%0 106 e
_— — 0 (e )
0x%2 kot X
6(x,0) = ¢(x) (14.2.6)

It will be observed that by a simple change of variable we can express the solution (14.2.5) in the
form

0(x,t) = %Iw {#(x + 2uvkt) e ™ du (14.2.7)

We shall now show how this solution may be modified to obtain the solution of the boundary value
problem

0%6 106 _
ax2  xot sx<e
0(x,0)=f(x) x>0 (14.2.8)

0(0,6)=0, t>0

14.3 Energy Methods

a. Uniqueness.

Let us investigate again the initial/boundary-value problem

{ut—Au=fin Ur

w=gonly (143.1)
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We earlier invoked the maximum principle to show uniqueness, and now-by analogy -provide an
alternative argument based upon integration by parts. We assume as usual that UC R" is open,
bounded and that dU is C'. The terminal time T > 0 is given.

Theorem14.3.1: (Uniqueness). There exists at most one solution u € CZ(Uy)of (14.3.1).

Proof. 1. If u is another solution, w = u — usolves

{Wt—Aw=0in Ur

w=0onl (14.3.2)

2. Set
e(t) = f w?(x, t)dx, (0<t<T).
u

Then

é(t):=2 fu ww,dx ( = %)

=2 f wAwdx
U

—Zf [Dw|?dx < 0,
U

andsoe(t) <e(0)=0 (0<t<T).
Consequently w = u — u in Ur.
b. Backwards uniqueness.

A rather more subtle question concerns uniqueness backwards in time for the heat equation. For
this, suppose u and i are both smooth solutions of the heat equation in Ur, with the same boundary
conditions on dU:

u,—Au=fin Uy

{u =gondU x[0,T], (14.3.3)
u,—Au=fin Uy

{u =gondU x[0,T], (14.3.4)

for some function g. Note carefully that we are not supposing u = @ at time t = 0.
Theorem 14.3.2 (Backwards uniqueness). Suppose u, @ € C2(Ur) solve (14.3.3), (14.3.4). If
u(x,T) =1 (x,T) (x € U),thenu =i within Ur.

In other words, if two temperature distributions on U agree at some time T > 0, and have had the
same boundary values for times 0 <t<T, then these temperatures must have been identically equal
within U at all earlier times. This is not at all obvious.

Proof. 1. Write w = u — @1and, as in the proof of Theorem (14.3.1), set
e(t) = f wi(x, t)dx, (0<t<T).
U
As before
é(t) = —Zf |Dw|? dx, (14.3.5)
u
Further more

ét) = —4-f Dw.Dw; dx
U

= 4f Aww, dx (14.3.6)
u
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= 4-[ (Aw)?dx by (14.3.1)
U
Now since w =0 ondU,

Jllede = —fwAwdx
u u

() (s o)

= e(t)é(t)

1/2

Thus (143.5) and (14.3.6) imply

(e()’ =4 (LIDWIZ dx)z

(I

(De®
Hence
e(MEM = (6()%0<t<T. (14.3.7)
2. Now if e(t) = 0 for all 0 <t< T, we are done. Otherwise there exists an interval [t;, t,] € [0, T], with
e(t)>0 fort,; <t<t, e(t,)=0. (14.3.8)
3. Now write
f@®) =loge(t)(t; <t <t,). (14.3.9)

. E(t) e’
TO=0 " e

and so f is convex on the interval (t;, t2). Consequently if 0 < 7 < 1,

by (14.3.7)

t1<t< t,, we have
Then
f(A-Dt +71t) < 1 -Dty + £ ()
Recalling (14.3.9), we deduce
e((1-Dt +1t) <e(t)™ +e()*
and so
0< e((1-Dt+1t) <e(t))™ +e(®) (0<7t<1

But in view of (14.3.8) this inequality implies e(t) = O for all times t:<t<t., a contradiction.

14.4 Green’s Function

We saw earlier how Green's functions may be employed with advantage in the determination of
solutions of Laplace's equation. We proceed now to show how a similar function may be used
conveniently in the mathematical theory of diffusion processes.

Suppose we are considering the solution 6(r, t) of the diffusion equation

27 2
5, = KV20 (14.4.1)

in the volume V, which is bounded by the simple surface S, subject to the boundary condition
o(r,t) = ¢(r,t) ifres (14.4.2)

and the initial condition
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0,0 =f(r) ifrev (14.4.3)

We then define the Green's function G(r, r', t - t)) (t > t) of our problem as the function which
satisfies the equation

aG

3¢ = KVG (14.4.4)
the boundary condition
Gr,r',t—t')y=0 itr'es (14.4.5)
and the initial condition that }Lrg G 1is zero at all points of V except at the point r where G takes the
form
1 (r—1")2
(e )" (avmer) (1420

Because G depends on t only in that it is a function of t - t, it follows that equation (14.2.4) is
equivalent to

G .
o5 TEVEG =0 (14.4.7)
ot

The physical interpretation of the Green's function G is obvious from these equations : ' G(x, 1, t --
t') is the temperature at r' at time t due to an instantaneous point source of unit strength generated
at time t' at the point r, the solid being initially at zero temperature, and its surface being
maintained at zero temperature.

Since the time t' lies within the interval of t for which equations (14.4.1) and (14.4.2) are valid, we
may rewrite these equations in the form

a0

P KVZ0 (t'<t) (14.4.8)
o(r',t") = (', t") ifr'es (14.4.9)
It follows immediately from equations (14.4.7) and (14.4.8) that

a(0G) _ B_G ﬁ _ 20_ 2

2 = 052+ G2 = K(GV?6—6V7G)

so that if € is an arbitrarily small positive constant,

f H{ f 8(9?) dr'} dt' = f t_E{K(GVZQ—GVZG)dT’}dt' (14.4.10)
0 74 at 0

If we interchange the order in which we take the integrations on the left -hand side, we find that it
takes the form

f(GG)t':t—e dt’ —f(QG)trzodT’ =6(r, t)f [G(r,r',t —t')pp_cdT’ — f G, t")Yf(rdr'
v v v v
Now from the expression (14.4.6) for G(r, r', t - t') we can readily show that
f[G(r,r',t —t'prop_dt’ =1
v

so that if we let € — 0, the left -hand side of equation (14.4.10) becomes

a(r,t) —fG(r,r',t’)f(r’)d‘r’
v

On the other hand, if we apply Green's theorem to the right -hand side of equation (14.4.10) and
make use of equations (14.4.2) and (14.4.5), we find that it reduces to

ftdt'f "t 96 das’
k) dt') oG D5,

134 LOVELY PROFESSIONAL UNIVERSITY

Notes



Notes

Partial Differential Equations

in the limit as € — 0. It will be recalled that a an denotes differentiation along the outward -drawn
normal to S. We therefore obtain finally

t G
(r,t) = jf(r')G(r,r',t)dT’—}cJ dt’Jqﬁ(r’,t)— ds’ (14.4.11)
4 0 s an
as the solution of the boundary value problem formulated in equations (14.4.1), (14.4.2), and
(14.4.3).
Summary

¢ The heat (diffusion) equation with its physical interpretation isdiscussed.
¢ Theelementary and fundamental solutions are determined.
¢ The energy method to find the uniqueness of boundary value problem is derived

e The Green’ function for diffusion equation is elaborated.

Keywords

¢ Diffusion equation

¢ Elementary solution

¢ Fundamental solution
¢ Energy method

e Green’'s function

Self Assessment

1. The function defined below for X ERn,X # 0, is the fundamental solution of Heat

Equation.
x|2
A, @(x) = —tpeit, (xeR%,teR)
(4mt)2
x|2
B. @(x) = —1yeit, (xeR™teR)
(amt)2
x| 2
C. @(x) = ——1f5, (xeRYteR)
(amt)2

xZ
D. o) = ne%, (xeR™MteR)

(amt)2

The solution of heat equation in invariant under
Dilation scaling

Rotational scaling

Magnification scaling

SEeE PN

None of these

The energy function for the diffusion equation over the domain U is given by
e(t) = - fw2(x,t)dx

e(t) = [w2(xt)dx

e(t) = [wi(xt)dx

O Nwpe

e(t) = - fw2(x,t)dx

4. The one dimensional diffusion equation is defined as
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SO0 w

oS0 W >

« 2% _ 28
a2~ ox

« 2% _ 28
ax2 ot
826 _ 926
a2~ ax?
20 _ 20
at  ox

2
The function 8 = it exp (— i) is the solution of the equation

7
2% _ a0
a2~ ox

(270 _ 20
ax2 ot

(220 _ 2%
a2~ ax?
96 _ 98
at  ox
2% _ a0
a2~ ox

The function ¢(x) is bounded for all real value for x then the integral formula

L fjooo B (&)exp{—222)d¢ will satisfy the equation

2v/mKct 4Kt
9%6 _ 96

8tz ox

9%6 _ 96
Koxz = ot

9%6 _ 926

Btz ax?

90 _ 06

ot ox

The green function G (r,r’,t — t") (t > t") for the diffusion problem is satisfy the equation

A 2L = gvig
atr

B. 2 = —kv2G
atr
926 2

C. m = kV*G
926 2

D. 2 = kV-G

u — Au=f inUr

w=g onlr

The initial/bounday value problem must have

There exists at most one solution
There exists more than one solution
There exists no solution

There exists infinite many solution
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9. If two temperature distributions on U agree at some time T > 0, and had the same
boundary values for times 0 < t < T, then

these temperature must be identically equal with in U at all earlier times.

these temperature must be identically equal with in U at all later times.

these temperature must not be identically equal with in U at all earlier times.

O 0w

these temperature must not be identically equal with in U at all later times

. Which kind of boundary value problems holds backward uniqueness?
Heat Equation
Wave equation
Laplace equation
None of these

SN w3

11. Which method helps to prove the uniqueness of solution of boundary value problem of
heat equation?
Green function method
Energy method

A
B
C. Elementary method
D. Fundamental method

12. Which kind of solution is not possible for heat equation?
A. Particular unique solution

B. Fundamental solution

C. Elementary solution
D

Radial vector solution

13. For the heat equation , the solution u having the special structure in term of function

v: R™ - R.where ¢, §§ are constants
1 X
A. u(x,t) =t—av(t—ﬁ) (x e Rt >0)
B. u(xt) =:—Bv(:—ﬁ) (x eR™t>0)
C. u(xt) =%v(ﬂ%) (x e Rt >0)

D. u(x,t) =ﬂ%ﬁv(tx—ﬁ) (x eR™t>0)

AnswersforSelf Assessment

1 A 2 A 3. B 4 B 5 B
6 B 7 B 8 A 9 A 10. A
11. B 12. D 13. A

Review Questions

1. Derive the fundamental solution using dilation scaling for heat equation.
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o LN

Derive elementary solution for heat equation.
Discuss the uniqueness of solution using energy method.
State and prove the backward uniqueness.

Derive the Green's function for diffusion problem.
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