
Edited by: 
Dr. Kulwinder Singh

Partial Differential Equations
DEMTH530



Edited By
Dr. Kulwinder Singh

Partial Differential Equations



Content

Unit 1: Linear First Order Partial Differential Equation 1
Dr. Preety Kalra, Lovely Professional University

Unit 2: Non-Linear First Order Partial Differential Equations- I 14
Dr. Preety Kalra, Lovely Professional University

Unit 3: Non-Linear First Order Partial Differential Equations-II 23
Dr. Preety Kalra, Lovely Professional University

Unit 4: Linear Second Order Partial Differential Equations with
Constant Coefficients - I

35

Dr. Preety Kalra, Lovely Professional University
Unit 5: Linear Second Order Partial Differential Equations with

Constant Coefficients - II
46

Dr. Preety Kalra, Lovely Professional University
Unit 6: Monge’s Method and Method of Separation of Variables 58

Dr. Preety Kalra, Lovely Professional University
Unit 7: Laplace Transforms 70

Dr. Preety Kalra, Lovely Professional University
Unit 8: Fourier Transform 82

Dr. Preety Kalra, Lovely Professional University
Unit 9: Other Transforms 91

Dr. Preety Kalra, Lovely Professional University
Unit 10: Laplace Equation I 97

Dr. Preety Kalra, Lovely Professional University
Unit 11: Laplace Equation II 105

Dr. Preety Kalra, Lovely Professional University
Unit 12: Wave Equation 113

Dr. Preety Kalra, Lovely Professional University
Unit 13: Similarity Solutions 120

Dr. Preety Kalra, Lovely Professional University
Unit 14: Heat Equations 128

Dr. Preety Kalra, Lovely Professional University



Unit 01:Linear First Order Partial Differential Equation 

Notes 

Unit 01: Linear First Order Partial Differential Equation 

CONTENTS 

Objectives 

Introduction 

1.1 Partial Differential Equation (P.D.E.) 

1.2 Classification of first order partial differential equations into linear, semi-linear, quasi-
linear and non-linear equations with examples 

1.3 Linear Partial Differential Equations of Order One 

1.4 Type 1 based on Rule I for solving (dx)/P = (dy)/Q = (dz)/R 

1.5 Type 2 based on Rule II for solving (dx)/P = (dy)/Q = (dz)/R. 

1.6 Type 3 based on Rule III for solving (dx)/P = (dy)/Q = (dz)/R 

1.7 Type 4 based on Rule IV for solving (dx)/P = (dy)/Q = (dz)/R 

1.8 Integral Surfaces Passing through a given Curve 

1.9 Surfaces Orthogonal to a Given System of Surfaces 

1.10 Cauchy’s Problem For First Order Equations 

Summary 

Keywords 

Self Assessment 

Answers for Self Assessment 

Review Questions 

Further Readings 

Objectives 

After studying this unit, you will be able to 

● understand about the different types of partial differential equations. 

● analyze in the form of an explicit form, preferably in the form of elementary functions. 

● find the qualitative property of the partial differential equation. 

● understand the integral surfaces and orthogonal surfaces.  

 

Introduction 

Partial differential equations arise in geometry, physics and applied mathematics when the number 
of independent variables in the problem under consideration is two or more. Under such a 
situation, any dependent variable will be a function of more than one variable and hence it 
possesses not ordinary derivatives with respect to a single variable but partial derivatives with 
respect to several independent variables. In the present part of the book, we propose to study 
various methods to solve partial differential equations. 

 

1.1 Partial Differential Equation (P.D.E.) 

Definition 1.1.1 An equation containing one or more partial derivatives of an unknown function of 
two or more independent variables is known as a partial differential equation. For examples of 
partial differential equations we list the following: 

Dr. Preety Kalra, Lovely Professional University 
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𝜕𝑧

𝜕𝑥
+

𝜕𝑧

𝜕𝑦
= 𝑧 + 𝑥𝑦         (1.1.1) 

(
𝜕𝑧

𝜕𝑥
)

2
+

𝜕3𝑧

𝜕𝑦3
= 2𝑥 (

𝜕𝑧

𝜕𝑥
)        (1.1.2) 

𝑧 (
𝜕𝑧

𝜕𝑥
) +

𝜕𝑧

𝜕𝑦
= 𝑥         (1.1.3) 

𝜕𝑢

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
+

𝜕𝑢

𝜕𝑧
= 𝑥𝑦𝑧        

 (1.1.4) 

𝜕2𝑧

𝜕𝑥2
= (1 +

𝜕𝑧

𝜕𝑦
)

1

2         (1.1.5) 

𝑦 {(
𝜕𝑧

𝜕𝑥
)

2
+ (

𝜕𝑧

𝜕𝑦
)

2
} = 𝑧 (

𝜕𝑧

𝜕𝑦
)        (1.1.6) 

Definition 1.1.2 Order of a partial differential equation: The order of a partial differential equation 
is defined as the order of the highest partial derivative occurring in the partial differential equation. 
In Art. 1.1.1, equations (1.1.1), (1.1.3), (1.1.4) and (1.1.6) are of the first order, (1.1.5) is of the second 
order and (1.1.2) is of the third order. 

Definition 1.1.3 Degree of a partial differential equations: The degree of a partial differential 
equation is the degree of the highest order derivative which occurs in it after the equation has been 
rationalised, i.e., made free from radicals and fractions so far as derivatives are concerned. In 1.1.1, 
equations (1.1.1), (1.1.2), (1.1.3) and (1.1.4) are of first degree while equations (1.1.5) and (1.1.6) are 
of second degree. 

Definition 1.1.4.Linear and non-linear partial differential equations: A partial differential equation 
is said to be linear if the dependent variable and its partial derivatives occur only in the first degree 
and are not multiplied. A partial differential equation which is not linear is called a non-linear 
partial differential equation. In Art. 1.1.1, equations (1.1.1) and (1.1.4) are linear while equations 
(1.1.2), (1.1.3), (1.1.5) and (1.1.6) are nonlinear. 

 

Notes: When we consider the case of two independent variables we usually assume them 
to be x and y and assume z to be the dependent variable. We adopt the following notations 
throughout the study of partial differential equations  

𝑝 =
𝜕𝑧

𝜕𝑥
,                𝑞 =

𝜕𝑧

𝜕𝑦
,                𝑟 =

𝜕2𝑧

𝜕𝑥2
,                 𝑠 =  

𝜕2𝑧

𝜕𝑥𝜕𝑦
,             and               𝑡 =

𝜕2𝑧

𝜕𝑦2
. 

In case there are n independent variables, we take them to be x1, x2....., xn and z is then 
regarded as the dependent variable. In this case we use the following notations : 

𝑝1 =
𝜕𝑧

𝜕𝑥1
,           𝑝2 =

𝜕𝑧

𝜕𝑥2
, 𝑝3 =

𝜕𝑧

𝜕𝑥3
,   … … … … … … . ., 𝑝𝑛 =

𝜕𝑧

𝜕𝑥𝑛
 

 

Caution:Sometimes the partial differentiations are also denoted by making use of suffixes. 

Thus we write 𝑢𝑥 =
𝜕𝑢

𝜕𝑥
, 𝑢𝑦 =

𝜕𝑢

𝜕𝑦
, 𝑢𝑥𝑥 =

𝜕2𝑢

𝜕𝑥2
, 𝑢𝑥𝑦 =

𝜕2𝑢

𝜕𝑥𝜕𝑦
and so on. 

 

1.2 Classification of first order partial differential equations into 
linear, semi-linear, quasi-linear and non-linear equations with 
examples 

Definition 1.2.1 Linear equation: A first order equation 𝑓 (𝑥, 𝑦, 𝑧, 𝑝, 𝑞)  =  0 is known as linear if it is 
linear in p, q and z, that is, if given equation is of the form  𝑃(𝑥, 𝑦) 𝑝 +  𝑄(𝑥, 𝑦) 𝑞 =  𝑅(𝑥, 𝑦) 𝑧 +
 𝑆(𝑥, 𝑦)  . 

 

Example 1.2.1:𝑦𝑥2𝑝 + 𝑥𝑦2𝑞 = 𝑥𝑦𝑧 + 𝑥2𝑦3and 𝑝 + 𝑞 = 𝑧 + 𝑥𝑦 are both first order linear 
partial differential equations. 

Definition 1.2.2 Semi-linear equation: A first order partial differential equation 𝑓 (𝑥, 𝑦, 𝑧, 𝑝, 𝑞)  =  0  
is known as a semi-linear equation, if it is linear in p and q and the coefficients of p and q are 
functions of x and y only i.e. if the given equation is of the form 𝑃(𝑥, 𝑦) 𝑝 +  𝑄(𝑥, 𝑦) 𝑞 =  𝑅(𝑥, 𝑦, 𝑧). 
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Example 1.2.2:𝑥𝑦𝑝 + 𝑥2𝑦𝑞 = 𝑥2𝑦2𝑧2and 𝑦𝑝 + 𝑥𝑞 = 𝑥2𝑧2/𝑦2 are both first order semi-linear 
partial differential equations. 

Definition 1.2.3Quasi-linear equation: A first order partial differential equation 𝑓 (𝑥, 𝑦, 𝑧, 𝑝, 𝑞)  =  0   
is known as quasi-linear equation, if it is linear in p and q, i.e., if the given equation is of the form 
𝑃(𝑥, 𝑦, 𝑧) 𝑝 +  𝑄(𝑥, 𝑦, 𝑧) 𝑞 =  𝑅(𝑥, 𝑦, 𝑧) 

 

Example 1.2.3:𝑥2𝑧𝑝 + 𝑦2𝑧𝑞 = 𝑥𝑦 and (𝑥2 − 𝑦𝑧)𝑝 + (𝑦2 − 𝑥𝑧)𝑞 = 𝑧2 − 𝑥𝑦 are first order 
quasi-linear partial differential equations. 

Definition 1.2.4Non-linear equation: A first order partial differential equation 𝑓 (𝑥, 𝑦, 𝑧, 𝑝, 𝑞)  =  0 
which does not come under the above three types, in known as a non-liner equation.  

 

Example 1.2.3:𝑝2 + 𝑞2 = 1, 𝑝𝑞 = 𝑧 and 𝑥2𝑝2 + 𝑦2𝑞2 = 𝑧2 are all non-linear partial 
differential equations. 

 

1.3 Linear Partial Differential Equations of Order One 

LAGRANGE’S EQUATION  

A quasi–linear partial differential equation of order one is of the form 𝑃𝑝 + 𝑄𝑞 = 𝑅,  where P, Q and 
R are functions of x, y, z. Such a partial differential equation is known as Lagrange equation. For 
Example xyp + yzq = zx  is a Lagrange equation. 

Lagrange’s method of solving Pp + Qq = R, when P, Q and R are functions of x, y, z 

Theorem 1.4.1: The general solution of Lagrange equation  

𝑃𝑝 + 𝑄𝑞 = 𝑅,         (1.4.1)  

is 𝜙( 𝑢 , 𝑣) = 0         (1.4.2) 

 where 𝜙  is an arbitrary function and  

𝑢(𝑥, 𝑦, 𝑧) = 𝑐1 and 𝑣(𝑥, 𝑦, 𝑧) = 𝑐2       (1.4.3) 

are two independent solutions of 

𝑑𝑥

𝑃
=

𝑑𝑦

𝑄
=

𝑑𝑧

𝑅
         (1.4.4) 

Here, 𝑐1and 𝑐2are arbitrary constants and at least one of 𝑢, 𝑣  must contain 𝑧. Also recall that 𝑢  and 
𝑣  are said to be independent if 𝑢/𝑣  is not merely a constant. 

Proof: Differentiating (1.4.2) partially w.r.t. ‘x’ and ‘y’, we get 

𝜕𝜙

𝜕𝑢
(

𝜕𝑢

𝜕𝑥
+ 𝑝

𝜕𝑢

𝜕𝑧
) +

𝜕𝜙

𝜕𝑣
(

𝜕𝑣

𝜕𝑥
+ 𝑝

𝜕𝑣

𝜕𝑧
) = 0       (1.4.5) 

𝜕𝜙

𝜕𝑢
(

𝜕𝑢

𝜕𝑦
+ 𝑞

𝜕𝑢

𝜕𝑧
) +

𝜕𝜙

𝜕𝑣
(

𝜕𝑣

𝜕𝑦
+ 𝑞

𝜕𝑣

𝜕𝑧
) = 0       (1.4.6) 

Eliminating 
𝜕𝜙

𝜕𝑢
 and 

𝜕𝜙

𝜕𝑣
 between (1.4.5) and (1.4.6), we have 

[
𝜕𝑢

𝜕𝑥
+ 𝑝

𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑥
+ 𝑝

𝜕𝑣

𝜕𝑧

𝜕𝑢

𝜕𝑦
+ 𝑞

𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑦
+ 𝑞

𝜕𝑣

𝜕𝑧
] = 0  

(
𝜕𝑢

𝜕𝑥
+ 𝑝

𝜕𝑢

𝜕𝑧
) (

𝜕𝑣

𝜕𝑦
+ 𝑞

𝜕𝑣

𝜕𝑧
) − (

𝜕𝑢

𝜕𝑦
+ 𝑞

𝜕𝑢

𝜕𝑧
) (

𝜕𝑣

𝜕𝑥
+ 𝑝

𝜕𝑣

𝜕𝑧
) =       

(
𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑦
−

𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑧
) 𝑝 + (

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑧
−

𝜕𝑣

𝜕𝑥

𝜕𝑢

𝜕𝑥
) 𝑞 = (

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑦
−

𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥
)     (1.4.7) 

Hence (1.4.2) is a solution of the equation (1.4.7) . 

Taking the differentials of 𝑢(𝑥, 𝑦, 𝑧) = 𝑐1 and 𝑣(𝑥, 𝑦, 𝑧) = 𝑐2, we get 

(
𝜕𝑢

𝜕𝑥
) 𝑑𝑥 + (

𝜕𝑢

𝜕𝑦
) 𝑑𝑦 + (

𝜕𝑢

𝜕𝑧
) 𝑑𝑧 = 0       (1.4.8) 

and 

(
𝜕𝑣

𝜕𝑥
) 𝑑𝑥 + (

𝜕𝑣

𝜕𝑦
) 𝑑𝑦 + (

𝜕𝑣

𝜕𝑧
) 𝑑𝑧 = 0       (1.4.9) 

Since u and v are independent functions, solving (1.4.8) and (1.4.9) for the ratios dx : dy : dz, gives 
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𝑑𝑥
𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑦
−

𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑧

=
𝑑𝑦

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑧
−

𝜕𝑣

𝜕𝑥

𝜕𝑢

𝜕𝑥

=
𝑑𝑧

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑦
−

𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥

       (1.4.10) 

Comparing (1.4.4) and (1.4.10), we obtain 

𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑦
−

𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑧

𝑃
=

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑧
−

𝜕𝑣

𝜕𝑥

𝜕𝑢

𝜕𝑥

𝑄
=

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑦
−

𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥

𝑅
= 𝑘, (𝑠𝑎𝑦)  

⇒
𝜕𝑢

𝜕𝑧

𝜕𝑣

𝜕𝑦
−

𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑧
= 𝑃𝑘,

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑧
−

𝜕𝑣

𝜕𝑥

𝜕𝑢

𝜕𝑥
= 𝑄𝑘,

𝜕𝑢

𝜕𝑥

𝜕𝑣

𝜕𝑦
−

𝜕𝑢

𝜕𝑦

𝜕𝑣

𝜕𝑥
= 𝑅𝑘  

Substituting these values in (1.4.7), we get 𝑘(𝑃𝑝 + 𝑄𝑞) = 𝑅𝑘, or 𝑃𝑝 + 𝑄𝑞 = 𝑅, which is the given 
equation (1.4.1). 

Therefore, if 𝑢(𝑥, 𝑦, 𝑧) = 𝑐1 and 𝑣(𝑥, 𝑦, 𝑧) = 𝑐2 are two independent solutions of the system of 

differential equations 
𝑑𝑥

𝑃
=

𝑑𝑦

𝑄
=

𝑑𝑧

𝑅
, then 𝜙( 𝑢 , 𝑣) = 0  is a solution of 𝑃𝑝 + 𝑄𝑞 = 𝑅,  being an 

arbitrary function. This is what we wished to prove.  

 

Notes: Equations (1.4.4) are called Lagrange’s auxiliary (or subsidiary) equations for (1.4.1). 

 

Working Rule for solving 𝑷𝒑 + 𝑸𝒒 = 𝑹 by Lagrange’s method. 

Step 1. Put the given linear partial differential equation of the first order in the standard form  

𝑃𝑝 + 𝑄𝑞 = 𝑅         (1.5.1)  

Step 2. Write down Lagrange’s auxiliary equations for (1.5.1) namely,  

𝑑𝑥

𝑃
=

𝑑𝑦

𝑄
=

𝑑𝑧

𝑅
         (1.5.2)  

Step 3. Solve (1.5.2) by using the well known methods. Let 𝑢(𝑥, 𝑦, 𝑧) = 𝑐1 and 𝑣(𝑥, 𝑦, 𝑧) = 𝑐2 be two 
independent solutions of (1.5.2).  

Step 4. The general solution (or integral) of (1.5.1) is then written in one of the following three 
equivalent forms : 𝜙( 𝑢 , 𝑣) = 0  , u=𝜙( 𝑣)  or v=𝜙( 𝑢),  𝜙 being an arbitrary function. 

 

Examples based on working rule 1.5.  

In what follows we shall discuss four rules for getting two independent solutions of  

𝑑𝑥

𝑃
=

𝑑𝑦

𝑄
=

𝑑𝑧

𝑅
         (1.6.1) 

Accordingly, we have four types of problems based on +𝑄𝑞 = 𝑅 .  

 

1.4 Type 1 based on Rule I for solving (dx)/P = (dy)/Q = (dz)/R 

Suppose that one of the variables is either absent or cancels out from any two fractions of given 
equations (1.6.1). Then an integral can be obtained by the usual methods. The same procedure can 
be repeated with another set of two fractions of given equations (1.6.1). 

 
Example 1.6.1:  Solve (

𝑦2𝑧

𝑥
) 𝑝 + 𝑥𝑧𝑞 = 𝑦2. 

Solution: Given (
𝑦2𝑧

𝑥
) 𝑝 + 𝑥𝑧𝑞 = 𝑦2       (1.6.2) 

The Lagrange’s auxiliary equations for (1.6.2) are 

𝑑𝑥

𝑦2𝑧

𝑥

=
𝑑𝑦

𝑥𝑧
=

𝑑𝑧

𝑦2
         (1.6.3) 

Taking the first two fractions of (1.6.3), we have  

𝑥2𝑧𝑑𝑥 = 𝑦2𝑧𝑑𝑦  or  3𝑥2𝑑𝑥 − 3𝑦2𝑑𝑦 = 0,    (1.6.4) 

Integrating (1.6.4), 𝑥3 − 𝑦3 = 𝑐1 , 𝑐1 being an arbitrary constant.     (1.6.5)  
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Next, taking the first and the last fractions of (1.6.3), we get  

𝑥𝑦2𝑑𝑥 = 𝑦2𝑧𝑑𝑧  or  2𝑥𝑑𝑥 − 2𝑧𝑑𝑧 = 0     (1.6.6)  

Integrating (1.6.6), 𝑥2 − 𝑧2 = 𝑐2, 𝑐2 being an arbitrary constant.    (1.6.7) 
   

From (1.6.5) and (1.6.7), the required general integral is 𝛷(𝑥3 − 𝑦3 , 𝑥2 − 𝑧2), 𝜙 being an arbitrary 
function. 

 

Example 1.6.2: Solve 𝑦2𝑝 − 𝑥𝑦𝑞 = 𝑥(𝑧 − 2𝑦). 

Solution: Here Lagrange’s auxiliary equations are 

𝑑𝑥

𝑦2
=

𝑑𝑦

−𝑥𝑦
=

𝑑𝑧

𝑥(𝑧−2𝑦)
         (1.6.8) 

Taking the first two fractions of (1.6.8) and re–writing, we get 

2𝑥𝑑𝑥 + 2𝑦𝑑𝑦 = 0 so that 𝑥2 + 𝑦2 = 𝑐1.      (1.6.9) 

Now, taking the last two fractions of (1.6.8) and re–writing, we get 

𝑑𝑧

𝑑𝑦
= −

𝑧−2𝑦

𝑦
  or  

𝑑𝑧

𝑑𝑦
+

𝑧

𝑦
= 2    (1.6.10) 

which is linear in z and y. Its I.F. =𝑒
∫ (

1

𝑦
)𝑑𝑦

= 𝑒𝑙𝑜𝑔𝑙𝑜𝑔𝑦 = 𝑦. Hence solution of (1.6.10) is 

𝑧. 𝑦 = ∫ 2𝑦𝑑𝑦 + 𝑐2 or   𝑧𝑦 − 𝑦2 = 𝑐2,  

Hence 𝜙(𝑥2 + 𝑦2 , 𝑧𝑦 − 𝑦2) = 0 is the desired solution, where 𝜙 is an arbitrary function. 

1.5 Type 2 based on Rule II for solving (dx)/P = (dy)/Q = (dz)/R. 

Suppose that one integral of (1.6.1) is known by using rule I explained in Art 2.5 and suppose also 
that another integral cannot be obtained by using rule I of Art. 2.5. Then one integral known to us is 
used to find another integral as shown in the following solved examples. Note that in the second 
integral, the constant of integration of first integral should be removed later on. 

 

Example 1.6.3:: Solve 𝑝 + 3𝑞 = 5𝑧 + 𝑡𝑎𝑛(𝑦 − 3𝑥). 

Solution: Given 𝑝 + 3𝑞 = 5𝑧 + 𝑡𝑎𝑛(𝑦 − 3𝑥)      (1.6.11) 

The Lagrange’s subsidiary equations for (1.6.11) are  

𝑑𝑥

1
=

𝑑𝑦

3
=

𝑑𝑧

5𝑧+𝑡𝑎𝑛(𝑦−3𝑥)
        (1.6.12)  

Taking the first two fractions, 𝑑𝑦 − 3𝑑𝑥 = 0      (1.6.13)  

Integrating (1.6.13), 𝑦 − 3𝑥 = 𝑐1, 𝑐1being an arbitrary constant     (1.6.14)  

Using (16.14), from (1.6.12) we get 
𝑑𝑥

1
=

𝑑𝑧

5𝑧+𝑡𝑎𝑛(𝑐1)
     (1.6.15) 

Integrating (1.6.15), 𝑥 −
1

5
𝑙𝑜𝑔 (5𝑧 +𝑡𝑎𝑛 𝑡𝑎𝑛𝑐1) =

1

5
𝑐2, 𝑐2being an arbitrary constant.  

or  5𝑥 − 𝑙𝑜𝑔 (5𝑧 + 𝑦 − 3𝑥)) = 𝑐2, using (1.6.14)      (1.6.16)  

From (1.6.14) and (1.6.16), the required general integral is 5𝑥 − 𝑙𝑜𝑔 (5𝑧 +𝑡𝑎𝑛 𝑡𝑎𝑛(𝑦 − 3𝑥)) = 𝜙(𝑦 −
3𝑥), where 𝜙 is an arbitrary function. 

 

Example 1.6.4:  Solve 𝑥𝑦𝑝 + 𝑦2𝑞 = 𝑧𝑥𝑦 − 2𝑥2. 

Solution: Given 𝑥𝑦𝑝 + 𝑦2𝑞 = 𝑧𝑥𝑦 − 2𝑥2      (1.6.17) 
The Lagrange’s subsidiary equations for (1.6.17) are 
𝑑𝑥

𝑥𝑦
=

𝑑𝑦

𝑦2
=

𝑑𝑧

𝑧𝑥𝑦−2𝑥2
         (1.6.18) 

Taking the first two fractions of (1.6.18), we have 
𝑑𝑥

𝑥𝑦
=

𝑑𝑦

𝑦2
   or  

𝑑𝑥

𝑥
−

𝑑𝑦

𝑦
= 0    (1.6.19) 
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Integrating (1.6.19), 𝑙𝑜𝑔𝑥 − 𝑙𝑜𝑔𝑦 =𝑙𝑜𝑔 𝑙𝑜𝑔𝑐1 or 
𝑥

𝑦
= 𝑐1    (1.6.20) 

From (1.6.20), 𝑥 = 𝑐1𝑦.  
Hence from second and third fractions of (1.6.18), we get 
 
𝑑𝑦

𝑦2
=

𝑑𝑧

𝑧𝑥𝑦−2𝑥2
  or  𝑐1𝑑𝑦 −

𝑑𝑧

𝑧−2𝑐1
2 = 0    (1.6.21) 

Integrating (1.6.21), 𝑐1𝑦 − 𝑙𝑜𝑔 (𝑧 − 2𝑐1
2) = 𝑐2 or 𝑥 −𝑙𝑜𝑔 𝑙𝑜𝑔 (𝑧 −

2𝑥2

𝑦2
) = 𝑐2   (1.6.22) 

From (1.6.20) and (1.6.22), the required general solution is 
 

𝑥 −𝑙𝑜𝑔 𝑙𝑜𝑔 (𝑧 −
2𝑥2

𝑦2
) = 𝜙 (

𝑥

𝑦
) , 𝜙 being an arbitrary function. 

 

1.6 Type 3 based on Rule III for solving (dx)/P = (dy)/Q = (dz)/R 

 
Let 𝑃1 , 𝑄1 and 𝑅1 be functions of 𝑥, 𝑦 𝑎nd 𝑧. Then, by a well–known principle of algebra, each 

fraction in (1.6.1) will be equal to 
𝑃1𝑑𝑥+𝑄1𝑑𝑦+𝑅1𝑑𝑧

𝑃𝑃1+𝑄𝑄1+𝑅𝑅1
     (1.6.23)  

If 𝑃𝑃1 + 𝑄𝑄1 + 𝑅𝑅1 = 0, then we know that the numerator of (1.6.23) is also zero. This give𝑃1𝑑𝑥 +
𝑄1𝑑𝑦 + 𝑅1𝑑𝑧 = 0 which can be integrated to give 𝑢(𝑥, 𝑦, 𝑧) = 𝑐1. This method may be repeated to 
get another integral 𝑢(𝑥, 𝑦, 𝑧) = 𝑐2. 𝑃1 , 𝑄1 and 𝑅1 are called multipliers. As a special case, these can 
be constants also. Sometimes only one integral is possible by use of multipliers. In such cases 
second integral should be obtained by using rule I or rule II as the case may be. 

 

Example 1.6.5: Solve 𝑧(𝑥 + 𝑦)𝑝 + 𝑧(𝑥 − 𝑦)𝑞 = 𝑥2 + 𝑦2. 

Solution: Given 𝑧(𝑥 + 𝑦)𝑝 + 𝑧(𝑥 − 𝑦)𝑞 = 𝑥2 + 𝑦2     (1.6.24) 

The Langrange’s subsidiary equations for (1) are 
𝑑𝑥

𝑧(𝑥+𝑦)
=

𝑑𝑦

𝑧(𝑥−𝑦)
=

𝑑𝑧

𝑥2+𝑦2
   (1.6.25) 

Choosing x, –y, –z, as multipliers, each fraction 
𝑥𝑑𝑥−𝑦𝑑𝑦−𝑧𝑑𝑧

𝑥𝑧(𝑥+𝑦)−𝑧𝑦(𝑥−𝑦)−𝑧(𝑥2+𝑦2)
= 

𝑥𝑑𝑥−𝑦𝑑𝑦−𝑧𝑑𝑧

0
 

∴ 𝑥𝑑𝑥 − 𝑦𝑑𝑦 − 𝑧𝑑𝑧 = 0   or   2𝑥𝑑𝑥 − 2𝑦𝑑𝑦 − 2𝑧𝑑𝑧 = 0  
Integrating, 𝑥2 − 𝑦2 − 𝑧2 = 𝑐1 ,  𝑐1being an arbitrary constant.    (1.6.26) 
Again, choosing y, x, –z as multipliers, each fraction 

𝑦𝑑𝑥+𝑥𝑑𝑦−𝑧𝑑𝑧

𝑦𝑧(𝑥+𝑦)+𝑧𝑥(𝑥−𝑦)−𝑧(𝑥2+𝑦2)
 = 

𝑦𝑑𝑥+𝑥𝑑𝑦−𝑧𝑑𝑧

0
 

∴  𝑦𝑑𝑥 + 𝑥𝑑𝑦 − 𝑧𝑑𝑧 = 0  
2𝑑(𝑥𝑦) − 2𝑧𝑑𝑧=0 
Integrating, 2𝑥𝑦 − 𝑧2 = 𝑐2 , 𝑐2 being an arbitrary constant.    (1.6.27)  
From (1.6.26) and (1.6.27), the required general solution is given by 𝜙(𝑥2 − 𝑦2 − 𝑧2 , 2𝑥𝑦 − 𝑧2), 𝜙 
being an arbitrary function. 
 

 

Example 1.6.6 : Solve (𝑥 + 2𝑧)𝑝 + (4𝑧𝑥 − 𝑦)𝑞 = 2𝑥2 + 𝑦. 

Solution: Here Lagrange’s auxiliary equations are 
𝑑𝑥

𝑥+2𝑧
=

𝑑𝑦

4𝑧𝑥−𝑦
=

𝑑𝑧

2𝑥2+𝑦
   (1.6.28) 

Choosing y, x, –2z as multipliers, each fraction of (1.6.28) 
𝑦𝑑𝑥+𝑥𝑑𝑦−2𝑧𝑑𝑧

𝑦(𝑥+2𝑧)+𝑥(4𝑧𝑥−𝑦)−2𝑧(2𝑥2+𝑦)
 = 

𝑦𝑑𝑥+𝑥𝑑𝑦−2𝑧𝑑𝑧

0
 = 𝑑(𝑥𝑦) − 2𝑧𝑑𝑧 = 0  so that 𝑥𝑦 − 𝑧2 = 𝑐1 (1.6.29) 

Choosing 2x, –1, –1 as multipliers, each fraction of (1.6.28) 
2𝑥𝑑𝑥−𝑑𝑦−𝑑𝑧

2𝑥(𝑥+2𝑧)−(4𝑧𝑥−𝑦)−(2𝑥2+𝑦)
= 

2𝑥𝑑𝑥−𝑑𝑦−𝑑𝑧

0
          or       2𝑥𝑑𝑥 − 𝑑𝑦 − 𝑑𝑧=0 so that 𝑥2 − 𝑦 − 𝑧 = 𝑐2 (1.6.30) 

∴ 𝐹𝑟𝑜𝑚 (2) 𝑎𝑛𝑑 (3), 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑠  𝜙(𝑥𝑦 – 𝑧2 , 𝑥2 –  𝑦 –  𝑧)  =  0, 𝜙 𝑏𝑒𝑖𝑛𝑔 𝑎𝑛 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛. 

 

 

1.7 Type 4 based on Rule IV for solving (dx)/P = (dy)/Q = (dz)/R 

 
Let 𝑃1 , 𝑄1 and 𝑅1 be functions of 𝑥, 𝑦 𝑎nd 𝑧. Then, by a well–known principle of algebra, each 
fraction of (1.6.1) will be equal to 
𝑃1𝑑𝑥+𝑄1𝑑𝑦+𝑅1𝑑𝑧

𝑃𝑃1+𝑄𝑄1+𝑅𝑅1
         (1.6.31)  
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Suppose the numerator of (1.6.31) is the exact differential of the denominator of (1.6.31). Then 
(1.6.31) can be combined with a suitable fraction in (1.6.1) to give an integral.  
However, in some problems, another set of multipliers 𝑃2, 𝑄2 and 𝑅2 are so chosen that the fraction 
𝑃2𝑑𝑥+𝑄2𝑑𝑦+𝑅2𝑑𝑧

𝑃𝑃2+𝑄𝑄2+𝑅𝑅2
          (1.6.32)  

is such that its numerator is exact differential of the denominator. Fractions (16.31) and (1.6.32) are 
then combined to given an integral. This method may be repeated in some problems to get another 
integral. Sometimes only one integral is possible by using the above rule IV. In such cases second 
integral should be obtained by using rule 1 or rule 2 or rule 3. 
 

 

Example 1.6.7 : Solve 𝑦2(𝑥 − 𝑦)𝑝 + 𝑥2(𝑦 − 𝑥)𝑞 = 𝑧(𝑥2 + 𝑦2). 

Solution: Here the Lagrange’s auxiliary equations for the given equation  

𝑑𝑥

𝑦2(𝑥−𝑦)
=

𝑑𝑦

𝑥2(𝑦−𝑥)
=

𝑑𝑧

𝑧(𝑥2+𝑦2)
        (1.6.33) 

Taking the first two fractions of (1.6.33), 𝑥2𝑑𝑥 = −𝑦2𝑑𝑦 or  3𝑥2𝑑𝑥 + 3𝑦2𝑑𝑦 = 0 

Integrating, 𝑥3 + 𝑦3 = 𝑐2 , 𝑐2 being an arbitrary as constant. 

Choosing 1, –1, 0 as multipliers, each fraction of (1.6.33) 

=
𝑑𝑥−𝑑𝑦

𝑦2(𝑥−𝑦)−𝑥2(𝑦−𝑥)
 = 

𝑑𝑥−𝑑𝑦

(𝑥−𝑦)(𝑦2+𝑥2)
       (1.6.34) 

Combining the third fraction of (1.6.33) with fraction (1.6.34), we get 

𝑑𝑥−𝑑𝑦

(𝑥−𝑦)(𝑦2+𝑥2)
=

𝑑𝑧

𝑧(𝑥2+𝑦2)
 or 

𝑑(𝑥−𝑦)

(𝑥−𝑦)
−

𝑑𝑧

𝑧
= 0. 

Integrating, 𝑙𝑜𝑔 𝑙𝑜𝑔(𝑥 − 𝑦) −𝑙𝑜𝑔 𝑙𝑜𝑔𝑧 =𝑙𝑜𝑔 𝑙𝑜𝑔𝑐2 or 
𝑥−𝑦

𝑧
= 𝑐2   

 (1.6.35) 

From (1.6.34) and (1.6.35), solution is 𝜙(𝑥3 + 𝑦3 ,
𝑥−𝑦

𝑧
) = 0, 𝜙  being an arbitrary function. 

 

Example 1.6.8 : Find the general integral of 𝑥𝑧𝑝 + 𝑦𝑧𝑞 = 𝑥𝑦. 

Solution: Here the Lagrange’s auxiliary equations are 

𝑑𝑥

𝑥𝑧
=

𝑑𝑦

𝑦𝑧
=

𝑑𝑧

𝑥𝑦
         (1.6.36) 

From the first two fractions of (1.6.36),   
𝑑𝑥

𝑥𝑧
=

𝑑𝑦

𝑦𝑧
.  

Integrating, 𝑙𝑜𝑔 𝑙𝑜𝑔𝑥 =𝑙𝑜𝑔 𝑙𝑜𝑔𝑦 +𝑙𝑜𝑔 𝑙𝑜𝑔𝑐1 
𝑥

𝑦
= 𝑐1     

 (1.6.37)  

Choosing 1/x, 1/y, 0 as multipliers, each fraction of (1.6.36)  

= 
(

1

𝑥
)𝑑𝑥+(1/𝑦)𝑑𝑦

(
1

𝑥
)𝑥𝑦+(1/𝑦)𝑦𝑧

=  
𝑦𝑑𝑥+𝑥𝑑𝑦

2𝑥𝑦𝑧
        (1.6.38) 

Combining the last fraction of (1.6.36) with fraction (1.6.37), we have  

𝑦𝑑𝑥+𝑥𝑑𝑦

2𝑥𝑦𝑧
=

𝑑𝑧

𝑥𝑦
 or     𝑦𝑑𝑥 + 𝑥𝑑𝑦 = 2𝑧𝑑𝑧 or      𝑑(𝑥𝑦) = 2𝑧𝑑𝑧  or        𝑑(𝑥𝑦) − 2𝑧𝑑𝑧 = 0  

Integrating, 𝑥𝑦 − 𝑧2 = 𝑐2 , 𝑐2  being an arbitrary constant.    (1.6.39)  

From (1.6.37) and (1.6.39) solution is 𝜙 (
𝑥

𝑦
, 𝑥𝑦 − 𝑧2) = 0,   𝜙being an arbitrary function. 

 

1.8 Integral Surfaces Passing through a given Curve 

In the last article we obtained general integral of 𝑃𝑝 + 𝑄𝑞 = 𝑅. We shall now present two methods 
of using such a general solution for getting the integral surface which passes through a given curve.  

Let 𝑃𝑝 + 𝑄𝑞 = 𝑅.          (1.7.1)  
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be the given equation. Let its auxiliary equations give the following two independent solutions 
𝑢(𝑥, 𝑦, 𝑧) = 𝑐1 and 𝑣(𝑥, 𝑦, 𝑧) = 𝑐2       (1.7.2)  

Suppose we wish to obtain the integral surface which passes through the curve whose equation in 
parametric form is given by x = x(t), y = (t), z = z(t),      (1.6.3)  

where t is a parameter. Then (1.7.2) may be expressed as  

𝑢(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) = 𝑐1 and 𝑣(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) = 𝑐2     (1.7.4) 

We eliminate single parameter t from the equations of (1.7.4) and get a relation involving c1 and c2. 
Finally, we replace c1 and c2 with help of (1.7.2) and obtain the required integral surface. 

 

Example 1.7.1:Find the integral surface of the linear partial differential equation 𝑥(𝑦2 +
𝑧)𝑝 –  𝑦(𝑥2  +  𝑧)𝑞 =  (𝑥2 – 𝑦2 )𝑧  which contains the straight line 𝑥 +  𝑦 =  0, 𝑧 = 1. 

Solution: Given 𝑥(𝑦2 + 𝑧)𝑝 –  𝑦(𝑥2  +  𝑧)𝑞 =  (𝑥2 – 𝑦2 )𝑧     (1.7.5)  

Lagrange’s auxiliary equations of (1.7.5) are  

𝑑𝑥

𝑥(𝑦2+𝑧)
=

𝑑𝑦

−𝑦(𝑥2 + 𝑧)
=

𝑑𝑧

(𝑥2 – 𝑦2  )𝑧
       (1.7.6)  

Choosing 1/x, 1/y, 1/z as multipliers, each fraction of (1.7.6)     

(
1

𝑥
)𝑑𝑥+(

1

𝑦
)𝑑𝑦+(

1

𝑧
)𝑑𝑧

(𝑦2+𝑧)−(𝑥2 + 𝑧)+(𝑥2 – 𝑦2  )
=    

(
1

𝑥
)𝑑𝑥+(

1

𝑦
)𝑑𝑦+(

1

𝑧
)𝑑𝑧

0
⇒𝑙𝑜𝑔 𝑙𝑜𝑔𝑥 +𝑙𝑜𝑔 𝑙𝑜𝑔𝑦 + 𝑙𝑜𝑧 𝑧 =𝑙𝑜𝑔 𝑙𝑜𝑔𝑐1 or  𝑥𝑦𝑧 =

𝑐1 (1.7.8)  

Choosing x, y, –1 as multipliers, each fraction of (1.7.6)  

𝑥𝑑𝑥 + 𝑦𝑑𝑦 − 𝑑𝑧

𝑥2(𝑦2 + 𝑧) − 𝑦2(𝑥2  +  𝑧) − 𝑧(𝑥2 – 𝑦2 )
=  

𝑥𝑑𝑥 + 𝑦𝑑𝑦 − 𝑑𝑧

0
 

⇒ 𝑥𝑑𝑥 + 𝑦𝑑𝑦 − 𝑑𝑧 = 0      𝑜𝑟   𝑥2 + 𝑦2 − 𝑧 = 𝑐2     
 (1.7.9) 

Taking t as a parameter, the given equation of the straight-line x + y = 0, z = 1 can be put in 
parametric form x = t, y = –t, z = 1.        (1.7.10)  

Using (1.7.10), (1.7.9) may be re–written as  t2 = c1 and 2t 2 – 2 = c2.     (1.7.11) 

 Eliminating t from the equations of (5), we have 2(c1) – 2 = c2 or 2c1 + c2 + 2 = 0.    (1.7.12)  

Putting values of c1 and c2 from (3) in (6), the desired integral surface is 2xyz + x2 + y2 – 2z + 2 = 0. 

 

1.9 Surfaces Orthogonal to a Given System of Surfaces 

Let f(x, y, z) = C         (1.8.1)  

represents a system of surfaces where C is a parameter. Suppose we wish to obtain a system of 
surfaces which cut each of (1.8.1) at right angles. Then the direction ratios of the normal at the point 

(x, y, z) to (1.8.1) which passes through that point are 
𝜕𝑓

𝜕𝑥
,

𝜕𝑓

𝜕𝑦
,

𝜕𝑓

𝜕𝑧
.  

Let the surface 𝑧 = 𝜙(𝑥, 𝑦)        (1.8.2)  

cuts each surface of (1.8.1) at right angles. Then the normal at (x, y, z) to (1.8.2) has direction ratios 
𝜕𝑧

𝜕𝑥
,

𝜕𝑧

𝜕𝑦
, −1 i.e., p, q, –1. Since normals at (x, y, z) to (1.8.1) and (1.8.2) are at right angles, we have  

𝑝
𝜕𝑓

𝜕𝑥
+ 𝑞

𝜕𝑓

𝜕𝑦
−

𝜕𝑓

𝜕𝑧
= 0 or 𝑝

𝜕𝑓

𝜕𝑥
+ 𝑞

𝜕𝑓

𝜕𝑦
=

𝜕𝑓

𝜕𝑧
     (1.8.3)  

which is of the form 𝑃𝑝 + 𝑄𝑞 = 𝑅.  

Conversely, we easily verify that any solution of (1.8.3) is orthogonal to every surface of (1.8.1). 

 

Example 1.8.1 : Find the surface which intersects the surfaces of the system z(x + y) = c(3z + 
1) orthogonally and which passes through the circle 𝑥2 + 𝑦2  =  1, 𝑧 = 1. 

Solution: The given system of surfaces is 𝑓(𝑥, 𝑦, 𝑧) =
𝑧(𝑥+𝑦)

3𝑧+1
= 𝑐    (1.8.4) 
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∴
𝜕𝑓

𝜕𝑥
=

𝑧

3𝑧+1
,  

𝜕𝑓

𝜕𝑦
=

𝑧

3𝑧+1
  

𝜕𝑓

𝜕𝑧
= (𝑥 + 𝑦)

3𝑧+1−𝑧3

(3𝑧+1)2
 = 

(𝑥+𝑦)

(3𝑧+1)2
 

The required orthogonal surface is solution of   

𝑝
𝜕𝑓

𝜕𝑥
+ 𝑞

𝜕𝑓

𝜕𝑦
=

𝜕𝑓

𝜕𝑧
  or  

𝑧

3𝑧+1
𝑝 +

𝑧

3𝑧+1
𝑞 =

(𝑥+𝑦)

(3𝑧+1)2
 

𝑧(3𝑧 + 1)𝑝 + 𝑧(3𝑧 + 1)𝑞 = (𝑥 + 𝑦)       (1.8.5) 

Lagrange’s auxiliary equations for (1.8.5) are 
𝑑𝑥

𝑧(3𝑧+1)
=

𝑑𝑦

𝑧(3𝑧+1)
=

𝑑𝑧

(𝑥+𝑦)
.   (1.8.6)  

Taking the first two fractions of (1.8.6), we get dx – dy = 0 so that x – y = c1.  (1.8.7) 

 Choosing x, y, –z(3z + 1) as multipliers, each fraction of (1.8.6) = 𝑥𝑑𝑥 +  𝑦𝑑𝑦 –  𝑧(3𝑧 +  1)𝑑𝑧/0  

𝑥𝑑𝑥 +  𝑦𝑑𝑦 –  3𝑧2 𝑑𝑧 –  𝑧𝑑𝑧 =  0 or   2xdx + 2ydy – 6z2 dz – 2zdz = 0  

Integrating, x2 + y2 – 2z3 – z = c2, c2 being an arbitrary constant.     (1.8.8)  

Hence any surface which is orthogonal to () has equation of the form  

x2 + y2 – 2z3 – z = 𝜙 (x – y), 𝜙 being an arbitrary function ...(6)  

In order to get the desired surface passing through the circle x2 + y2 = 1, z = 1 we must choose 𝜙 (x – 
y) = –2. Thus, the required particular surface is x2 + y2 – 2z3 – z = –2. 

 

1.10 Cauchy’s Problem For First Order Equations 

The aim of an existence theorem is to establish conditions under which we can decide whether or 
not a given partial differential equation has a solution at all; the next step of proving that the 
solution, when it exists, is unique requires a uniqueness theorem. The conditions to be satisfied in 
the case of a first order partial differential equation are easily contained in the classic problem of 
Cauchy, which for the two independent variables can be stated as follows:  

 

Cauchy’s problem for first order partial differential equation  

If (a) 𝑥0(𝜇), 𝑦0(𝜇) and 𝑧0(𝜇) are functions which, together with their first derivatives, are continuous 
in the interval I defined by 𝜇1 < 𝜇 < 𝜇2.  

(b) And if f(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) 𝑖s a continuous function of 𝑥, 𝑦, 𝑧, 𝑝 and 𝑞 in a certain region U of the 𝑥𝑦𝑧𝑝𝑞 
space, then it is required to establish the existence of a function 𝜙(𝑥, 𝑦)  with the following 
properties :  

(i) 𝜙(𝑥, 𝑦)  and its partial derivatives with respect to x and y are continuous functions of x and y in a 
region R of the xy space.  

(ii) For all values of x and y lying in R, the point {𝑥, 𝑦, 𝜙(𝑥, 𝑦), 𝜙𝑥(𝑥, 𝑦), 𝜙𝑦(𝑥, 𝑦)}  lies in U and 

𝑓{𝑥, 𝑦, 𝜙(𝑥, 𝑦), 𝜙𝑥(𝑥, 𝑦), 𝜙𝑦(𝑥, 𝑦)} = 0 .  

(iii) For all 𝜇 belonging to the interval I, the point {𝑥0(𝜇), 𝑦0(𝜇)} belongs to the region R, and 
𝜙{𝑥0(𝜇), 𝑦0(𝜇)} = z0 

Stated geometrically, what we wish to prove is that there exists a surface 𝑧 = 𝜙(𝑥, 𝑦)   which passes 
through the curve C whose parametric equations are given by 𝑥 = 𝑥0(𝜇), 𝑦 =  𝑦0(𝜇) and 𝑧 = 𝑧0(𝜇)  
and at every point of which the direction (p, q, – 1) of the normal is such that f(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) = 0 

 

Summary 

• The first-order linear, quasi-linear and semi linear partial differential equations are defined. 

• All the types of differential equations with examples are explained. 

• Different kinds of solutions of Lagrange’s equation are elaborated.  

• Discussion to find the integral surface passing through a given curve. 

• Surface orthogonalto a given system of surfaces determined. 
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Self Assessment 

1. The equation of 
yxzyxyqpx  22 )(

is 

A. Quasi-linear 

B. Semi-linear 

C. Linear  

D. Non-linear 

 

2. The differential equation  
zxqyp 2sectantan 

is of order 

A. 1 

B. 2 

C. 0 

D. None of these  

3. The equation 

02

22

2

2
































x

z

yx

z

x

z

is of order 

A. 1 

B. 2 

C. 3 

D. None of these 

4. The equation 
yxpqxqpyx  84)32(

  is    

A. Linear  

B. Non-linear  

C. Semi-linear  

D. Quasi-linear 

 

5. The equation 
yxzyzyxxzzyx  2)/)(23()/)((

  is    

A. Linear 

B. Quasi-linear 

C. Non-linear 

D. Semi-linear 

6. The partial differential equation 
),,()/)(,,()/)(,,( zyxhyzzyxgxzzyxf 

 is 

A. Quasi-linear 
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B. Semi-linear 

C. Linear  

D. Non-linear 

 

7. The auxiliary equation of 
01  qp

is  

A. 
dzdydx 

 

B. 
dzdydx 

 

C. 
dzqdypdx  //

 

D. None of these  

 

8. The general solution of partial differential equation 
RQqPp 

  is    

A. 
1),( vu

 

B. 
1),( vu

 

C. 
0),( vu

 

D. 
cvu ),(

 

 

9. What is the nature of Lagrange’s linear partial differential equation? 

A. First-order,Third-degree  

B. Second-order,First-degree  

C. First-order,Second-degree   

D. First-order, First-degree  

 

10. The solution of the equation 
0 yx yuxu

 is of the form 

A. 
)/( xyf

 

B. 
)( xyf 

 

C. 
)( xyf 

 

D. 
)(xyf

 

 

11. The subsidiary equations for partial differential equation 
22 / yzxyxzy 

are   

A. 
22 /// ydzzxdyzydx 

 

B. 
zxdzydyxdx /// 22 

 

C. 
zxdzydyzxdx /// 2 

 

D. 
)/1/()/1/()/1/( 22 zxdzydyxdx 

 

 

12. The general solution of partial differential equation 
yxqxzpzy  )()(

  is    

A. 
0),( 222  zyxzyx

 

B. 
0),( 222  zyxxyz

 

C. 
0),(  xyzzyx

 

D. 
0),( 222  zyxzyx

 

 

13. The integral surface which passes through the given curve is taken as equation in  

A. Parametric form 

B. Hyperbolic form 

C. Constants 

D. None of these 
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14. Theintegralsurfacetothefirstorderpartialdifferentialequation
)32()2()3(2  xyqzxpzy

passing through the curve  
0,222  zxyx

is  

A. 
042222  zxzyx

 

B. 
082222  zxzyx

 

C. 
082222  zxzyx

 

D. None of these 

 

15. The integral surface of the partial differential equation 
xyzqzxypyzx  222 )()(

which passes through the line 
0,1  yx

is 

A. 
0))((  zyzxyzxyyx

 

B. 
0))((  zyzxyzxyyx

 

C. 
0))((  zyzxyzxyyx

 

D. None of these 

 

16. The  direction ratios of normal to the surface 𝑧 = 𝜙(𝑥, 𝑦)𝑎𝑡 (𝑥, 𝑦, 𝑧) are   

A. (p,q,-1) 

B. (p,q,1) 

C. (-p,-q,1) 

D. (-p,q,-1) 

 

17. If the two surfaces are cuts orthogonal to each other, then the solutions of these equations 

are reduces to 

A. Heat equation 

B. Wave equation 

C. Lagrange’s linear equation  

D. None of these 

 

18. If the two surfaces 𝑧 = 𝜙(𝑥, 𝑦) and 𝑓(𝑥, 𝑦, 𝑧) = 𝑐 are orthogonal then it satisfy the condition  

A. 𝑝 
𝜕𝑓

𝜕𝑥
+ 𝑞 

𝜕𝑓

𝜕𝑥
=  

𝜕𝑓

𝜕𝑧
 

B. 𝑝 
𝜕𝑓

𝜕𝑥
+ 𝑞 

𝜕𝑓

𝜕𝑥
+ 

𝜕𝑓

𝜕𝑧
= 0 

C. 𝑝 
𝜕𝑓

𝜕𝑥
− 𝑞 

𝜕𝑓

𝜕𝑥
− 

𝜕𝑓

𝜕𝑧
=0  

D. None of these 

 

Answers for Self Assessment 

l. B 2. A 3. B 4. B 5. B 

6. A 7. B 8. C 9. D 10. A 

11. D 12. A 13. A 14. A 15. C 
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16. A 17. C 18. A     

 

Review Questions 

Q1. Find the equation of integral surface of the differential equation

xyzqzxypyzx  222 )()( passes through the line 0,1  yx . 

Q2. Solve
zyxqp  . 

Q3. Find the integral surface of the partial differential equation 

)32()2()3(2  xyqzxpzy which passes through the circle .2,0 22 xyxz   

Q4.  Find the general solution of the differential equation

zyx
y

z
y

x

z
x )(22 










. 

Q5.Find the integral surface of the linear partial differential equation 

)()()( 2222 yxzqzxypzyx  which contains the straight line .1,0  zyx  

 
Further Readings 

1. I.N. Sneddon(1957), Elements Of Partial Differential Equations, Mcgraw Hill 
Education. 

2. Lawrence C. Evans (1998), Partial Differential Equations, Universities Press Pvt. Ltd 

 

 

Web Links 

https://onlinecourses.nptel.ac.in/noc22_ma73/preview 

https://onlinecourses.nptel.ac.in/noc21_ma09/preview 

https://onlinecourses.swayam2.ac.in/cec22_ma12/preview 
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Objectives 

After studying this unit, you will be able to 

● understand about the nonlinear partial differential equation of first order. 

● analyze in the form of Cauchy’s characteristic curve functions. 

● find the envelope of family of curves. 

● understand the integral surfaces passing through the given curve.  

 

Introduction 

We turn now to the more difficult problem of finding the solutions of the partial differential 
equation  𝐹(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) = 0       (2.0.1)  

in which the function F is not necessarily linear in p and q. The partial differential equation of the 
two - parameter system  𝑓(𝑥, 𝑦, 𝑧, 𝑎, 𝑏) = 0      (2.0.2) 

was of this form. It will be shown a little later that the converse is also true; i.e., that any partial 
differential equation of the type (2.0.1) has solutions of the type (2.0.2). Any envelope of the system 
(2.0.2) touches at each of its points a member of the system. It possesses therefore the same set of 
values (𝑥, 𝑦, 𝑧, 𝑝, 𝑞) as the particular surface, so that it must also be a solution of the differential 
equation. In this way we are led to three classes of integrals of a partial differential equation of the 
type (1):  

(a) Two -parameter systems of surfaces 𝑓(𝑥, 𝑦, 𝑧, 𝑎, 𝑏) = 0 . Such an integral is called a complete 
integral.  

(b) If we take any one -parameter subsystem 𝑓(𝑥, 𝑦, 𝑧, 𝑎, 𝜙(𝑎)) = 0 of the system (2.0.2), and form its 
envelope, we obtain a solution of equation. 

(1). When the function 𝜙(𝑎) which defines this subsystem is arbitrary, the solution obtained is 
called the general integral of (2.0.1) corresponding to the complete integral (2.0.2). When a definite 
function 𝜙(𝑎) is used, we obtain a particular case of the general integral.  

(c) If the envelope of the two -parameter system (2.0.2) exists, it is also a solution of the equation 
(2.0.1); it is called the singular integral of the equation. 

 

Example 2.0.1: We can illustrate these three kinds of solution with reference to the partial 
differential equation  

Dr. Preety Kalra, Lovely Professional University 
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𝑧2(1 + 𝑝2 + 𝑞2) = 1        (2.0.3) 

We can show that (𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 + 𝑧2 = 1      (2.0.4)  

was a solution of this equation with arbitrary a and b. Since it contains two arbitrary constants, the 
solution (2.0.4) is thus a complete integral of the equation (2.0.3).  

Putting b = a in equation (2.0.4), we obtain the one -parameter subsystem  

(𝑥 − 𝑎)2 + (𝑦 − 𝑎)2 + 𝑧2 = 1  

whose envelope is obtained by eliminating a between this equation and  

𝑥 + 𝑦 − 2𝑎 = 0  

So that it has equation   (𝑥 − 𝑦)2 + 2𝑧2 = 0      (2.0.5)  

Differentiating both sides of this equation with respect to x and y, respectively, we obtain the 
relations  

2𝑧𝑝 = 𝑦 − 𝑥, 2𝑧𝑞 = 𝑥 − 𝑦 

from which it follows immediately that (2.0.5) is an integral surface of the equation (2.0.3). It is a 
solution of type (b); i.e., it is a general integral of the equation (2.0.3). 

The envelope of the two-parameter system (2.0.3) is obtained by eliminating a and b from equation 
(2.0.4) and the two equations  𝑥 − 𝑎 = 0, 𝑦 − 𝑏 = 0 i.e., the envelope consists of the pair of planes z 
= ± I. It is readily verified that these planes are integral surfaces of the equation (2.0.3) ; since they 
are of type (c) they constitute the singular integral of the equation.  

 

Notes:It should be noted that, theoretically, it is always possible to obtain different complete 
integrals which are not equivalent to each other, i.e., which cannot be obtained from one 
another merely by a change in the choice of arbitrary constants. When, however, one 
complete integral has been obtained, every other solution, including every other complete 
integral, appears among the solutions of type (b) and (c) corresponding to the complete 
integral we have found. 

 

2.1 Few Important Definitions 

Now we shall define few important terms which will help us to understand the Cauchy’s method 
of characteristics for solving non-linear partial differential equation. 

Definition 2.0.1: Plane Element:A plane passing through the point 𝑃(𝑥0 , 𝑦0 , 𝑧0)  with its normal 
parallel to the direction n defined by direction rations (𝑝0 , 𝑞0 , −1) is uniquely given by the set of 
five real numbers 𝐷(𝑥0 , 𝑦0 , 𝑧0 , 𝑝0 , 𝑞0). Conversely any such set of five real numbers defines a plane 
in three-dimensional space. Thus a set of five real numbers 𝐷(𝑥, 𝑦, 𝑧, 𝑝, 𝑞 ) is called a plane element 
of the space i.e., a plane in three dimensional space. 

Definition 2.0.2: Integral Element: Consider a partial differential equation of first order, i.e., 
𝑓(𝑥, 𝑦, 𝑧, 𝑝, 𝑞 ) = 0         (2.0.6) 

A particular plane element 𝐷(𝑥0, 𝑦0 , 𝑧0 , 𝑝0 , 𝑞0) whose components satisfy the equation (2.0.6)is called 
and integral element of equation (2.0.6) at the point (𝑥0, 𝑦0 , 𝑧0).  

Definition 2.0.3: Elementary Cone: We assume that it is possible to solve an equation of type (2.0.6) 
for q in terms of 𝑥, 𝑦, 𝑧 and 𝑝 i.e., from (2.0.6), we obtain an expression  

𝑞 = 𝐹(𝑥, 𝑦, 𝑧, 𝑝 )         (2.0.7) 

From (2.0.7) we can calculate the value q for given values of  𝑥, 𝑦, 𝑧 and  𝑝. 

 Now keeping 𝑥0 , 𝑦0 fixed 𝑧0 and varying 𝑝 only, we obtain a set of plane elements 
{𝑥0, 𝑦0 , 𝑧0 , 𝑝, 𝐹(𝑥0 , 𝑦0 , 𝑧0 , 𝑝)}, which depend on the single parameter p only. Thus, varying p we 
obtain a set of plane elements all of which pass through the fixed point 𝑃(𝑥0 , 𝑦0 , 𝑧0) i.e., all these 
plane elements envelope a cone with vertex at P. This cone is generated is called the elementary 
cone of equation (2.0.6) at the point 𝑃(𝑥0 , 𝑦0 , 𝑧0).  

Definition 2.0.4: Tangent Element:Consider a surface 𝑆 whose equation is  

𝑧 = 𝑔(𝑥, 𝑦)         (2.0.8) 
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If the function 𝑔(𝑥, 𝑦) and its first order partial derivatives 𝑔𝑥(𝑥, 𝑦) and 𝑔𝑦(𝑥, 𝑦) are continuous in a 

certain region 𝑅 of the 𝑥𝑦 plane, them the tangent plane at each point of the surface 𝑆 gives a plane 
element of the type {𝑥0, 𝑦0 , 𝑔(𝑥0, 𝑦0), 𝑔𝑥(𝑥0, 𝑦0), 𝑔𝑦(𝑥0, 𝑦0)} which is called tangent element of the 

surface 𝑆 at the point {𝑥0, 𝑦0 , 𝑔(𝑥0 , 𝑦0)}. 

Thus, the surface (2.0.8) is an integral surface (i.e. solution) of the partial differential equation (2.0.6) 
such that at each point of the surface, its tangent element touches the elementary cone of the 
equation (2.0.6). 

 

2.2 Cauchy's Method of Characteristics 

We shall now consider methods of solving the nonlinear partial differential equation 

𝐹 (𝑥, 𝑦, 𝑧,
𝜕𝑧

𝜕𝑥
,

𝜕𝑧

𝜕𝑥
) = 0        (2.1.1) 

In this section we shall consider a method, due to Cauchy, which is based largely on geometrical 
ideas. The plane passing through the point 𝑃(𝑥0, 𝑦0 , 𝑧0) with its normal parallel to the direction n 
defined by the direction ratios (𝑝0 , 𝑞0 , −1) is uniquely specified by the set of numbers 
𝐷(𝑥0, 𝑦0 , 𝑧0 , 𝑝0 , 𝑞0). Conversely any such set of five real numbers defines a plane in three -
dimensional space. For this reason a set of five numbers 𝐷(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) is called a plane element of 
the space. In particular a plane element (𝑥0, 𝑦0 , 𝑧0 , 𝑝0 , 𝑞0) whose components satisfy an equation 
𝐹(𝑥, 𝑦, 𝑧, 𝑝, 𝑞 ) = 0         (2.1.2) 

is called an integral element of the equation (2.1.2) at the point (𝑥0, 𝑦0 , 𝑧0). 

It is theoretically possible to solve an equation of the type (2.1.2) to obtain an expression  

𝑞 = 𝐺(𝑥, 𝑦, 𝑧, 𝑝)   (2.1.3) 

 

 

Figure 2.1 

from which to calculate q when 𝑥, 𝑦, 𝑧 and 𝑝 are known. Keeping 𝑥0, 𝑦0 and 𝑧0 fixed and varying 𝑝, 
we obtain a set of plane elements {𝑥0 , 𝑦0 , 𝑧0 , 𝑝0 , 𝐺({𝑥0, 𝑦0 , 𝑧0 , 𝑝0)}, which depend on the single 
parameter 𝑝. As 𝑝 varies, we obtain a set of plane elements all of which pass through the point 𝑃 
and which therefore envelop a cone with vertex 𝑃; the cone so generated is called the elementary 
cone of equation (2) at the point 𝑃. (see Figure 2.1.) 

Consider now a surface S whose equation is 

𝑧 = 𝑔(𝑥, 𝑦)  (2.1.4)  

If the function 𝑔(𝑥, 𝑦)and its first partial derivatives 𝑔𝑥(𝑥, 𝑦), 𝑔𝑦(𝑥, 𝑦) are continuous in a certain 

region 𝑅 of the 𝑥𝑦 plane, then the tangent plane at each point of S determines a plane element of the 
type {𝑥0, 𝑦0 , 𝑧0 , 𝑝0 , 𝐺({𝑥0 , 𝑦0 , 𝑧0 , 𝑝0)},   (2.1.5)  

which we shall call the tangent element of the surface S at the point {𝑥0, 𝑦0 , 𝑔(𝑥0, 𝑦0)}. It is obvious 
on geometrical grounds that: 

Theorem 2.1.1. A necessary and sufficient condition that a surface be an integral surface of a partial 
differential equation is that at each point its tangent element should touch the elementary cone of 
the equation.  

Proof: A. curve C with parametric equations  𝑥 = 𝑥(𝑡), 𝑦 = 𝑦(𝑡), 𝑧 = 𝑧(𝑡)   (2.1.6)  
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lies on the surface (4), 𝑧(𝑡) = 𝑔{𝑥(𝑡), 𝑦(𝑡)} for all values of t in the appropriate interval I. If P0 is a 
point on this curve determined by the parameters t0, then the direction ratios of the tangent line 
P0P1(see Figure 2.2) are {𝑥′(𝑡0), 𝑦′(𝑡0), 𝑧′(𝑡0)}where 𝑥′(𝑡0) denotes the value of dx /dt when. t = t0, 
etc. This direction will be perpendicular to the direction (𝑝0 , 𝑞0 , −1) if 

𝑧′(𝑡0) = 𝑝0𝑥0
′(𝑡0) + 𝑞0𝑦0

′ (𝑡0) 

For this reason we say that any set {𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), 𝑝(𝑡), 𝑞(𝑡) }   (2.1.7)  

of five real functions satisfying the condition  

𝑧′(𝑡)  =  𝑝(𝑡)𝑥′(𝑡)  +  𝑞(𝑡)𝑦′(𝑡)   (2.1.8)  

 

Figure: 2.2 

defines a strip at the point (x,y,z) of the curve C. If such a strip is also an integral element of 
equation (2.1.2), we say that it is an integral strip of equation (2.1.2 ); i.e., the set of functions (2.1.7) 
is an integral strip of equation (2.1.2) provided they satisfy condition (2.1.8) and the further 
condition 𝐹{𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), 𝑝(𝑡), 𝑞(𝑡)} = 0   (2.1.9)  

for all t in I. If at each point the curve (2.1.6) touches a generator of the elementary cone, we say that 
the corresponding strip is a characteristic strip. We shall now derive the equations determining a 
characteristic strip. The point (𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦, 𝑧 + 𝑑𝑧) lies in the tangent plane to the elementary 
cone at P if  

𝑑𝑧 = 𝑝𝑑𝑥 + 𝑞𝑑𝑦    (2.1.10)  

where p, q satisfy the relation (2.1.2). Differentiating (2.1.10) with respect to p, we obtain  

0 = 𝑑𝑥 +
𝑑𝑞

𝑑𝑝
𝑑𝑦  (2.1.11) 

where, from (2.1.2), 

𝜕𝐹

𝜕𝑝
+

𝜕𝐹

𝜕𝑞

𝑑𝑞

𝑑𝑝
= 0  (2.1.12) 

 Solving the equations (2.1.10), (2.1.11), and (2.1.12) for the ratios of dy, dz to dx, we obtain  

𝑑𝑥

𝐹𝑝
=

𝑑𝑥

𝐹𝑞
=

𝑑𝑧

𝑝𝐹𝑝+𝑞𝐹𝑞
  (2.1.13) 

So that along a characteristic strip , 𝑦′(𝑡), 𝑧′(𝑡) must be proportional to 𝐹𝑝, 𝐹𝑞𝑝𝐹𝑝 + 𝑞𝐹𝑞 , respectively. 

If we choose the parameter t in such a way that 

𝑥′(𝑡) = 𝐹𝑝, 𝑦′(𝑡) = 𝐹𝑞 ,  (2.1.14) 

And 𝑧′(𝑡) = 𝑝𝐹𝑝 + 𝑞𝐹𝑞 ,  (2.1.15) 

Along a characteristic strip p is a function of t so that  

𝑝′(𝑡) =
𝜕𝑝

𝜕𝑥
𝑥′(𝑡) +

𝜕𝑝

𝜕𝑦
𝑦′ 

=
𝜕𝑝

𝜕𝑥

𝜕𝐹

𝜕𝑝
+

𝜕𝑝

𝜕𝑦

𝜕𝐹

𝜕𝑞
 

=
𝜕𝑝

𝜕𝑥

𝜕𝐹

𝜕𝑝
+

𝜕𝑞

𝜕𝑥

𝜕𝐹

𝜕𝑞
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Since 
𝜕𝑝

𝜕𝑦
=

𝜕𝑞

𝜕𝑥
.  Differentiating equation (2) with respect to x, we find that  

𝜕𝐹

𝜕𝑥
+

𝜕𝐹

𝜕𝑧
𝑝 +

𝜕𝐹

𝜕𝑝

𝜕𝑝

𝜕𝑥
+

𝜕𝐹

𝜕𝑞

𝜕𝑞

𝜕𝑥
= 0 

so that on a characteristic strip  

𝑝′(𝑡) = −(𝐹𝑥 + 𝑝𝐹𝑧)  (2.1. 16) 

and it can be shown similarly that 𝑞′(𝑡) = −(𝐹𝑦 + 𝑞𝐹𝑧)  (2.1.17) 

 Collecting equations (2.1.14) to (2.1.17) together, we see that we have the following system of five 
ordinary differential equations for the determination of the characteristic strip  

𝑥′(𝑡) = 𝐹𝑝,    𝑦′(𝑡) = 𝐹𝑞 ,     𝑧′(𝑡) = 𝑝𝐹𝑝 + 𝑞𝐹𝑞 ,   𝑝′(𝑡) = −(𝐹𝑥 + 𝑝𝐹𝑧),         𝑞′(𝑡) = −(𝐹𝑦 + 𝑞𝐹𝑧) 

These equations are known as the characteristic equations of the differential equation (2.1.2).  

 

Notes: The characteristic strip is determined uniquely by any initial element (𝑥0 , 𝑦0 , 𝑧0 , 𝑝0 , 𝑞0) 
and any initial value to of t. The main theorem about characteristic strips is: 

Theorem 2.1.2: Along every characteristic strip of the equation F(x,y,z,p,q) = 0 the function 
F(x,y,z,p,q) is a constant. 

Proof: The proof is a matter simply of calculation. Along a characteristic strip we have  

𝑑

𝑑𝑡
𝐹{𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), 𝑝(𝑡), 𝑞(𝑡)} = 

= 𝐹𝑥𝑥′(𝑡) + 𝐹𝑦𝑦′(𝑡) + 𝐹𝑧𝑧′(𝑡) + 𝐹𝑝𝑝′(𝑡) + 𝐹𝑞𝑞′(𝑡) 

= 𝐹𝑥𝐹𝑝 + 𝐹𝑦𝐹𝑞 + 𝐹𝑧(𝑝𝐹𝑝 + 𝑞𝐹𝑞) − 𝐹𝑝 (𝐹𝑥 + 𝑝𝐹𝑧) − 𝐹𝑞 (𝐹𝑦 + 𝑞𝐹𝑧) 

= 0  

so that F(x,y,z,p,q) = k, a constant along the strip. 

 

Example 2.1.3: Find the characteristics of the equation 𝑧 = 𝑝𝑞, and determine the integral 
surface which passes through the parabola 𝑥 = 0, 𝑦2 = 𝑧. 

Solution: Given equation is 𝑧 = 𝑝𝑞  (2.1.18)  

We are to find its integral surface which passes through the given parabola given by 

𝑥 = 0, 𝑦2 = 𝑧   (2.1.19)  

Re-writing (2.1.19) in parametric form, we have  

𝑥 = 0,         𝑦 = 𝜆,             𝑧 = 𝜆2,          𝜆  being a parameter.  (2.1.20)  

Let the initial values 𝑥0 , 𝑦0 , 𝑧0 , 𝑝0 , 𝑞0 of 𝑥, 𝑦, 𝑧, 𝑝, 𝑞 be taken as 

𝑥0 = 𝑥0(𝜆) = 0,           𝑦0 = 𝑦0(𝜆) = 0,               𝑧0 = 𝑧0(𝜆) = 𝜆2   (2.1.21)  

Let 𝑝0 , 𝑞0 be the initial values of 𝑝, 𝑞 corresponding to the initial values 𝑥0 , 𝑦0 , 𝑧0. Since initial values  
(𝑥0, 𝑦0 , 𝑧0 , 𝑝0 , 𝑞0) satisfy (2.1.18), we have  

𝑝0𝑞0 = 𝑧0,    or    𝑝0𝑞0 = 𝜆2   by (2.1.21)  (2.1.22) 

Also, we have  

𝑧0
′ (𝜆) = 𝑝0𝑥0

′ (𝜆) + 𝑞0𝑦0′(𝜆) 

So that 2𝜆 = 𝑝0 × 0 + 𝑞0 × 1                or                    𝑞0 = 2𝜆  (2.1.23) 

 Solving (2.1.22) and (2.1.23),  𝑝0 =
𝜆

2
        and             𝑞0 = 2𝜆  (2.1.24) 

Collecting relations (2.1.21) and (2.1.24) together, initial values of (𝑥0, 𝑦0 , 𝑧0 , 𝑝0 , 𝑞0) are given by 

𝑥0 = 0,    𝑦0 = 𝜆,       𝑧0 = 𝜆2,       𝑝0 =
𝜆

2
,            𝑞0 = 2𝜆          𝑤ℎ𝑒𝑛   𝑡 = 𝑡0 = 0       (2.1.25) 

Re-writing (2.1.8), let 𝑓(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) = 𝑝𝑞 − 𝑧 = 0  (2.1.26) 

The usual characteristic equations of (2.1.26) are given by 

𝑥′(𝑡) = 𝑓𝑝 = 𝑞  (2.1.27) 
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𝑦′(𝑡) = 𝑓𝑞 = 𝑝  (2.1.28) 

𝑧′(𝑡) = 𝑝𝑓𝑝 + 𝑞𝑓𝑞 = 2𝑝𝑞  (2.1.29) 

𝑝′(𝑡) = −𝑓𝑥 − 𝑝𝑓𝑧 = 𝑝  (2.1.30) 

𝑞′(𝑡) = −𝑓𝑦 − 𝑞𝑓𝑧 = 𝑞  (2.1.31) 

From (2.1.27) and (2.1.31),  𝑥′(𝑡) − 𝑞′(𝑡) = 0,      so that     𝑥 − 𝑞 = 𝑐1 ,   (2.1.32) 

Where  𝑐1 being an arbitrary constant. Using initial values (2.1.25), (2.1.31) gives 

𝑥0 − 𝑞0 = 𝑐1,           0 − 2𝜆 = 𝑐1                𝑜𝑟                  𝑐1 = −2𝜆. 

Then (2.1.32) becomes 𝑥 − 𝑞 = −2𝜆       or         𝑥 = 𝑞 − 2𝜆  (2.1.33) 

From (2.1.28) and (2.1.31), 𝑦′(𝑡) − 𝑝′(𝑡) = 0,      so that     𝑦 − 𝑝 = 𝑐2 ,   (2.1.34) 

Where 𝑐2 being an arbitrary constant. Using initial values (2.1.25), (2.1.34) gives 

𝑦0 − 𝑝0 = 𝑐2,           𝜆 −
𝜆

2
= 𝑐2                𝑜𝑟                  𝑐2 = 𝜆/2. 

Then (2.1.34) becomes 𝑦 − 𝑝 =
𝜆

2
       or         𝑦 = 𝑝 +

𝜆

2
  (2.1.35) 

From (2.1.30) 𝑝′(𝑡) = 𝑝,     
1

𝑝
𝑑𝑝 = 𝑑𝑡,        𝑙𝑜𝑔 𝑙𝑜𝑔𝑝 = 𝑡 + 𝑙𝑜𝑔𝑐3 ,        𝑝 = 𝑐3𝑒𝑡  (2.1.36) 

From (2.1.25) , (2.1.36) gives ,        𝑝0 = 𝑐3𝑒0 ,     𝑐3 =
𝜆

2
.  

Hence (2.1.36) reduces to  𝑝 =
𝜆

2
𝑒𝑡 .  (2.1.37) 

From (2.1.31) 𝑞′(𝑡) = 𝑞,     
1

𝑞
𝑑𝑞 = 𝑑𝑡,        𝑙𝑜𝑔 𝑙𝑜𝑔𝑞 = 𝑡 + 𝑙𝑜𝑔𝑐4 ,        𝑞 = 𝑐4𝑒𝑡  (2.1.38) 

From (2.1.25) , (2.1.38) gives ,        𝑞0 = 𝑐4𝑒0,     𝑐4 = 2𝜆.  

Hence (2.1.38) reduces to  𝑞 = 2𝜆𝑒𝑡.  (2.1.39) 

Using (2.1.33) and (2.1.39),  𝑥 = 2𝜆𝑒𝑡 − 2𝜆 = 2𝜆(𝑒𝑡 − 1)  (2.1.40) 

Using (2.1.34) and (2.1.37),  or         𝑦 =
𝜆

2
𝑒𝑡 +

𝜆

2
=

𝜆

2
(𝑒𝑡 + 1)  (2.1.41) 

Substituting values of p and q from (2.1.36) and (2.1.38) in (2.1.29), we get 

𝑧′(𝑡) = 2
𝜆

2
𝑒𝑡 . 2𝜆𝑒𝑡             or      𝑧′(𝑡) = 2𝜆2𝑒2𝑡           or              𝑑𝑧 = 2𝜆2𝑒2𝑡𝑑𝑡 

Integrating, 𝑧 =  𝜆2𝑒2𝑡 + 𝑐5 ,     𝑐5 being an arbitrary constant.  (2.1.42) 

Using initial values (2.1.25), (2.1.42) gives 𝑧0 =  𝜆2𝑒0 + 𝑐5     or      𝜆2 =  𝜆2𝑒0 + 𝑐5    or 𝑐5 = 0  

Then, (2.1.41) gives 𝑧 =  𝜆2𝑒2𝑡.  (2.1.43) 

The required characteristics of (2.1.18) are given by (2.1.40), (2.1.41) and (2.1.43). 

To find the required integral surface of (2.1.18), we now proceed to eliminate two parameters 𝑡 and  
𝜆 from three equations (2.1.40), (2.1.41) and (2.1.43). Solving (2.1.40) and (2.1.41) for 𝑒𝑡and 𝜆, we 
have 

𝑒𝑡 =
𝑥+4𝑦

4𝑦−𝑥
                              and                          𝜆 =

4𝑦−𝑥

4
. 

Substituting these values of 𝑒𝑡and 𝜆 in (2.1.43), we have 

𝑧 = (
4𝑦−𝑥

4
)

2
(

𝑥+4𝑦

4𝑦−𝑥
)

2
               or                         16 𝑧 = (𝑥 + 4𝑦)2 

which is the required integral surface of (2.1.18) passing through (2.1.19). 

 
Example 2.1.4: Find the solutions of the equation 𝑧 =

1

2
(𝑝2 + 𝑞2) + (𝑝 −  𝑥)(𝑞 − 𝑦)which 

passes through the x -axis. 

Solution: It is readily shown that the initial values are 𝑥0 = 𝑣, 𝑦0 = 0, 𝑧0 = 0, 𝑝0 = 0, 𝑞0 = 2𝑣, 𝑡0 = 0. 

The characteristic equations of this partial differential equation are  

𝑑𝑥

𝑑𝑡
= 𝑝 + 𝑞 − 𝑦, 

𝑑𝑦

𝑑𝑡
= 𝑝 + 𝑞 − 𝑥,

𝑑𝑥

𝑑𝑡
= 𝑝 + 𝑞 − 𝑦,

𝑑𝑧

𝑑𝑡
= 𝑝(𝑝 + 𝑞 − 𝑦) + 𝑞(𝑝 + 𝑞 − 𝑥), 
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𝑑𝑥

𝑑𝑡
= 𝑝 + 𝑞 − 𝑦,

𝑑𝑥

𝑑𝑡
= 𝑝 + 𝑞 − 𝑥 

from which it follows immediately that 

𝑥 = 𝑝 + 𝑣, 𝑦 = 𝑞 − 2𝑣 

Also it is readily shown that 

𝑑

𝑑𝑡
(𝑝 + 𝑞 − 𝑥) = 𝑝 + 𝑞 − 𝑥 

𝑑

𝑑𝑡
(𝑝 + 𝑞 − 𝑦) = 𝑝 + 𝑞 − 𝑦 

giving 𝑝 + 𝑞 − 𝑥 = 𝑣𝑒𝑡, 𝑝 + 𝑞 − 𝑦 = 2𝑣𝑒𝑡 

Hence we have 𝑥 = 𝑣(2𝑒𝑡 − 1),    𝑦 = 𝑣(𝑒𝑡 − 1),      𝑝 = 2𝑣(𝑒𝑡 − 1),    𝑞 = 𝑣(𝑒𝑡 + 1)  (2.1.45) 

Substituting in the third of the characteristic equations, we have 

𝑑𝑧

𝑑𝑡
= 5𝑣2𝑒2𝑡 − 3𝑣2𝑒𝑡 

With solution 

𝑧 =
5

2
𝑣2(𝑒2𝑡 − 1) − 3𝑣2(𝑒𝑡 − 1)  (2.1.46) 

Now from the first pair of equations (2.1.45) we have  

𝑒𝑡 =
𝑦 − 𝑥

2𝑥 − 𝑦
, 𝑣 = 𝑥 − 2𝑦 

so that substituting in (2.1.46), we obtain the solution  

𝑧 =
1

2
𝑦(4𝑥 − 3𝑦). 

 

Summary 

 The first-order nonlinear partial differential equations are defined. 

 All the types of differential equations solutions with examples are explained. 

 One parameter and two parameter systems are elaborated. 

 Cauchy’s Method of Characteristic equations are derived  

 Integral surfaces for given nonlinear equation determined. 

 

Keywords 

 Non Linear PDE 

 One parameter solution 

 Two parameter solution 

 Plane element 

 Tangent element 

 Envelope  

 Cauchy’s Method of Characteristics 

 

Self Assessment 

1. If the characteristic strip contains at least one integral element of 
0),,,,( qpzyxf

 , 

then  

A. It is an integral strip of equation  

B. The elementary curve of the equation 

C. Line of the equation 
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D. Any curve to the equation  

 

2. The characteristics strip corresponding partial differential equation  zpq  are 

A. ptyqtx  )(,)(
 

B. 
ptyqtx  )(,)(

 

C. 
ptyqtx  )(,)(

 

D. None of these 

 

 

3. The characteristics strip corresponding partial differential equation

))((2/)( 22 yqxpqpz  are 

A. 
xqptqyqptp  )(',)('

 

B. 
xqptqyqptp  )(',)('

 

C. 
xptqyqtp  )(',)('

 

D. 
qptqqptp  )(',)('

 

 

4. The integral surface be an integral surface of a partial differential equation is that at each 

points its tangent element should touch to 

A. The elementary cone of the equation 

B. The elementary curve of the equation 

C. Line of the equation 

D. Any curve to the equation  

 

5. The equations of characteristics strip corresponding partial differential equation  

0),,,,( qpzyxf
are 

A. pq ftyftx  )(,)(
 

B. qp qftypftx  )(,)(
 

C. pq qftypftx  )(,)(
 

D. qp ftyftx  )(,)(
 

 

6. Along every characteristic strip of equation 𝐹(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) = 0,  

A. The function𝐹(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) is zero 

B. The function𝐹(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) is positive only 

C. The function𝐹(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) is a constant. 

D. None of these 

 

7. A solution of a partial differential equation of the first order that contains as many 

arbitrary constants as there are independent variables is called as  

A. Particular integral 

B. Singular solution  

C. Complete solution 

D. None of these 

 

8. Any envelope of system  0),,,,( bazyxf touches  

A. No point of its member system 
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B. Each point of its member system  

C. Entirely within the system  

D. None of these 

 

9. An envelope is defined as the curve that is 

A. Tangent to a given family of curves. 

B. Passing through given family of curves. 

C. Not tangent to a given family of curves. 

D. None of these 

 

Answers for Self Assessment 

l. A 2. C 3. B 4. A 5. A 

6. C 7. C 8. B 9. A   

 

Review Questions 

Q1. Determine the characteristics of the equation 𝑧 = 𝑝2 − 𝑞2 and find the integral surface which 

passes through the parabola 4𝑧 + 𝑥2 = 0, 𝑦 = 0. 

Q2. Determine the characteristics of the equation 𝑝2 + 𝑞2 = 4𝑧 and find the solution of this equation 

which reduces to 𝑧 = 𝑥2 + 1 when y = 0. 

Q3. Find a complete integral of the partial differential (𝑝2 + 𝑞2)𝑥 = 𝑝𝑧 and deduce the surface 

solution which passes through the curve 𝑥 = 0, 𝑧2 = 4𝑦. 

 

 Further Readings 

1. I.N. Sneddon(1957), Elements Of Partial Differential Equations, Mcgraw Hill Education. 

2. Lawrence C. Evans (1998), Partial Differential Equations, Universities Press Pvt. Ltd 

 

 

Web Links 

https://onlinecourses.nptel.ac.in/noc22_ma73/preview 

https://onlinecourses.nptel.ac.in/noc21_ma09/preview 

https://onlinecourses.swayam2.ac.in/cec22_ma12/preview 
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Objectives 

After studying this unit, you will be able to 

 identify the concept to solve nonlinear first order partial differential equations. 

 understand the concept of Charpit’s method 

 know about the general solution of nonlinear partial differential equations. 

 Applyspecial cases of Charpit’s methodto solve nonlinear first order partial differential 

equations. 

 find the condition of compatibility for systems of first order partial differential equations. 

 

Introduction 

In this chapter, more general method of solving partial differential equations of order one but of 
any degree and compatible system of first order partial differential equations will be discussed. 

A method of solving the partial differential equation  

𝑓(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) = 0         (3.0.1) 

due to Charpit, is based on the considerations of the previous chapter. The fundamental idea in 
Charpit's method is the introduction of a second partial differential equation of the first order 

𝑔(𝑥, 𝑦, 𝑧, 𝑝, 𝑞, 𝑎) = 0        (3.0.2) 

which contains an arbitrary constant a and which is such that:  

(a) Equations (3.0.1) and (3.0.2) can be solved to give 

𝑝 = 𝑝(𝑥, 𝑦, 𝑧, 𝑎), 𝑞 = 𝑞(𝑥, 𝑦, 𝑧, 𝑎) 

(b) The equation 

𝑑𝑧 = 𝑝(𝑥, 𝑦, 𝑧, 𝑎)𝑑𝑥 + 𝑞(𝑥, 𝑦, 𝑧, 𝑎)𝑑𝑦      (3.0.3) 

is integrable. When such a function g has been found, the solution of equation (3.0.3)  

𝐹(𝑥, 𝑦, 𝑧, 𝑎, 𝑏) = 0         (3.0.4) 

Dr. Preety Kalra, Lovely Professional University 
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containing two arbitrary constants a, b will be a solution of equation (3.0.1). Further, it will be seen 
that equation (3.0.4) is a complete integral of equation (3.0.1). 

 

3.1 Charpit’s Method 

Let the given partial equation differential of first order and non–linear in p and q be 

𝑓(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) = 0         (3.1.1) 

We know that  

𝑑𝑧 = 𝑝𝑑𝑥 + 𝑞𝑑𝑦         (3.1.2)  

The next step consists in finding another relation  

𝐹(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) = 0         (3.1.3)  

such that when the values of p and q obtained by solving (3.1.1) and (3.1.3), are substituted in 
(3.1.2), it becomes integrable. The integration of (3.1.2) will give the complete integral of (3.1.1).  

In order to obtain (3.1.3), differentiate partially (3.1.1) and (3.1.3) with respect to x and y and get 

𝜕𝑓

𝜕𝑥
+

𝜕𝑓

𝜕𝑧
𝑝 +

𝜕𝑓

𝜕𝑝

𝜕𝑝

𝜕𝑥
+

𝜕𝑓

𝜕𝑞

𝜕𝑞

𝜕𝑥
= 0        (3.1.4) 

𝜕𝐹

𝜕𝑥
+

𝜕𝐹

𝜕𝑧
𝑝 +

𝜕𝐹

𝜕𝑝

𝜕𝑝

𝜕𝑥
+

𝜕𝐹

𝜕𝑞

𝜕𝑞

𝜕𝑥
= 0       (3.1.5) 

𝜕𝑓

𝜕𝑦
+

𝜕𝑓

𝜕𝑧
𝑞 +

𝜕𝑓

𝜕𝑝

𝜕𝑝

𝜕𝑦
+

𝜕𝑓

𝜕𝑞

𝜕𝑞

𝜕𝑦
= 0        (3.1.6) 

and 

𝜕𝐹

𝜕𝑦
+

𝜕𝐹

𝜕𝑧
𝑞 +

𝜕𝐹

𝜕𝑝

𝜕𝑝

𝜕𝑦
+

𝜕𝐹

𝜕𝑞

𝜕𝑞

𝜕𝑦
= 0       (3.1.7) 

 

Eliminating 
𝜕𝑝

𝜕𝑥
from (3.1.4) and (3.1.5), we get 

(
𝜕𝑓

𝜕𝑥
+

𝜕𝑓

𝜕𝑧
𝑝 +

𝜕𝑓

𝜕𝑞

𝜕𝑞

𝜕𝑥
)

𝜕𝐹

𝜕𝑝
− (

𝜕𝐹

𝜕𝑥
+

𝜕𝐹

𝜕𝑧
𝑝 +

𝜕𝐹

𝜕𝑞

𝜕𝑞

𝜕𝑥
)

𝜕𝑓

𝜕𝑝
= 0      

or(
𝜕𝑓

𝜕𝑥

𝜕𝐹

𝜕𝑝
−

𝜕𝐹

𝜕𝑥

𝜕𝑓

𝜕𝑝
) + (

𝜕𝑓

𝜕𝑧

𝜕𝐹

𝜕𝑝
−

𝜕𝐹

𝜕𝑧

𝜕𝑓

𝜕𝑝
) 𝑝 + (

𝜕𝑓

𝜕𝑞

𝜕𝐹

𝜕𝑝
−

𝜕𝐹

𝜕𝑞

𝜕𝑓

𝜕𝑝
)

𝜕𝑞

𝜕𝑥
= 0    (3.1.8) 

 

Similarly,eliminating 
𝜕𝑞

𝜕𝑦
from (3.1.6) and (3.1.7), we get 

(
𝜕𝑓

𝜕𝑦

𝜕𝐹

𝜕𝑝
−

𝜕𝐹

𝜕𝑦

𝜕𝑓

𝜕𝑝
) + (

𝜕𝑓

𝜕𝑧

𝜕𝐹

𝜕𝑞
−

𝜕𝐹

𝜕𝑧

𝜕𝑓

𝜕𝑞
) 𝑞 + (

𝜕𝑓

𝜕𝑝

𝜕𝐹

𝜕𝑞
−

𝜕𝐹

𝜕𝑝

𝜕𝑓

𝜕𝑞
)

𝜕𝑝

𝜕𝑦
= 0    (3.1.9) 

Since
𝜕𝑞

𝜕𝑥
=

𝜕2𝑍

𝜕𝑥𝜕𝑦
=

𝜕𝑝

𝜕𝑦
, the last term in (3.1.8) is the same as that in (3.1.9), except for a minus sign and 

hence they cancel on adding (3.1.8) and (3.1.9).  

Therefore, adding (3.1.8) and (3.1.9) and rearranging the terms, we obtain 

(
𝜕𝑓

𝜕𝑥
+

𝜕𝑓

𝜕𝑧
𝑝)

𝜕𝐹

𝜕𝑝
+ (

𝜕𝑓

𝜕𝑦
+

𝜕𝑓

𝜕𝑧
𝑞)

𝜕𝐹

𝜕𝑞
+ (−𝑝

𝜕𝑓

𝜕𝑝
− 𝑞

𝜕𝑓

𝜕𝑞
)

𝜕𝐹

𝜕𝑧
+ ( −

𝜕𝑓

𝜕𝑝
)

𝜕𝐹

𝜕𝑥
+ ( −

𝜕𝑓

𝜕𝑞
)

𝜕𝐹

𝜕𝑦
= 0  (3.1.10) 

This is a linear equation of the first order and integral of (3.1.10) is obtained by solving the auxiliary 
equations 

𝑑𝑝
𝜕𝑓

𝜕𝑥
+

𝜕𝑓

𝜕𝑧
𝑝

=
𝑑𝑞

𝜕𝑓

𝜕𝑦
+

𝜕𝑓

𝜕𝑧
𝑞

=
𝑑𝑧

−𝑝
𝜕𝑓

𝜕𝑝
−𝑞

𝜕𝑓

𝜕𝑞

=
𝑑𝑥

−
𝜕𝑓

𝜕𝑝

=
𝑑𝑦

−
𝜕𝑓

𝜕𝑞

      (3.1.11) 

Since any of the integrals of (3.1.11) will satisfy (3.1.10), an integral of (3.1.11) which involves p or q 
(or both) will serve along with the given equation to find p and q. In practice, however, we shall 
select the simplest integral 

 

Remark 3.1.1:In what follows we shall use the following standard notations 

𝜕𝑓

𝜕𝑥
= 𝑓𝑥 ,      

𝜕𝑓

𝜕𝑦
= 𝑓𝑦 ,

𝜕𝑓

𝜕𝑧
= 𝑓𝑧 ,

 𝜕𝑓

𝜕𝑝
= 𝑓𝑝,

𝜕𝑓

𝜕𝑞
= 𝑓𝑞 
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Therefore, Charpit’s auxiliary equations (3.1.11) may be re–written as 

𝑑𝑝

𝑓𝑥+𝑝𝑓𝑧
=

𝑑𝑞

𝑓𝑦+𝑞𝑓𝑧
=

𝑑𝑧

−𝑝𝑓𝑝−𝑞𝑓𝑞
=

𝑑𝑥

−𝑓𝑝
=

𝑑𝑦

−𝑓𝑞
=

𝑑𝐹

0
. 

 

3.2 Working Rule While Using Charpit’s Method 

Step 1. Transfer all terms of the given equation to L.H.S. and denote the entire expression by f.  

Step 2. Write down the Charpit’s auxiliary equations (3.1.11)  

Step 3. Using the value of f in step 1 write down the values of i.e.fx, fy, ... etc. occuring in step 2 and 
put these in Charpit’s equations (3.1.11). 

Step 4. After simplifying the step 3, select two proper fractions so that the resulting integral may 
come out to be the simplest relation involving at least one of p and q.  

Step 5. The simplest relation of step 4 is solved along with the given equation to determine p and q. 
Put these values of p and q in dz = p dx + q dy which on integration gives the complete integral of 
the given equation. The Singular and General integrals may be obtained in the usual manner. 

 

Cautions:Sometimes Charpit’s equations give rise to p = a and q = b, where a and b are 
constants. In such cases, putting p = a and q = b in the given equation will give the 
required complete integral. 

 

SOLVED–EXAMPLES 

 

Example 3.2.1:Find a complete integral of 𝑧 = 𝑝𝑥 + 𝑞𝑦 + 𝑝2 + 𝑞2 . 

Solution: Let 𝑓(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) = 𝑧 − 𝑝𝑥 − 𝑞𝑦 − 𝑝2 − 𝑞2 = 0    (3.2.1.) 

Charpit’s auxiliary equations are 

𝑑𝑝
𝜕𝑓

𝜕𝑥
+

𝜕𝑓

𝜕𝑧
𝑝

=
𝑑𝑞

𝜕𝑓

𝜕𝑦
+

𝜕𝑓

𝜕𝑧
𝑞

=
𝑑𝑧

−𝑝
𝜕𝑓

𝜕𝑝
−𝑞

𝜕𝑓

𝜕𝑞

=
𝑑𝑥

−
𝜕𝑓

𝜕𝑝

=
𝑑𝑦

−
𝜕𝑓

𝜕𝑞

      (3.2.2) 

From (3.2.1), 𝑓𝑥 = −𝑝, 𝑓𝑦 = −𝑞, 𝑓𝑧 = 0,  𝑓𝑝 = −𝑥 − 2𝑝, 𝑓𝑞 = −𝑦 − 2𝑞   (3.2.3) 

Using (3.2.3), (3.2.2) reduces to 

𝑑𝑝

0
=

𝑑𝑞

0
=

𝑑𝑧

𝑝(𝑥+2𝑝)+𝑞(𝑦+2𝑞)
=

𝑑𝑥

𝑥+2𝑝
=

𝑑𝑦

𝑦+2𝑞
      (3.2.4) 

Taking the first fraction of (3.2.4), dp = 0 so that p = a       (3.2.5)  

Taking the second fraction of (3.2.4), dq = 0 so that q = b      (3.2.6)  

Putting p = a and q = b in (3.2.1), the required complete integral is 𝑧 = 𝑎𝑥 + 𝑏𝑦 + 𝑎2 + 𝑏2, a, b being 
arbitrary constants. 

 

Example 3.2.2:Find a complete integral of 𝑞 = 3𝑝2 . 

Solution: Here given equation is f(x,y,z,p,q) =3𝑝2 − 𝑞 = 0.    (3.2.7) 

Charpit’s auxiliary equations are  

𝑑𝑝
𝜕𝑓

𝜕𝑥
+

𝜕𝑓

𝜕𝑧
𝑝

=
𝑑𝑞

𝜕𝑓

𝜕𝑦
+

𝜕𝑓

𝜕𝑧
𝑞

=
𝑑𝑧

−𝑝
𝜕𝑓

𝜕𝑝
−𝑞

𝜕𝑓

𝜕𝑞

=
𝑑𝑥

−
𝜕𝑓

𝜕𝑝

=
𝑑𝑦

−
𝜕𝑓

𝜕𝑞

  

or
𝑑𝑝

0+0.𝑝
=

𝑑𝑞

0+0.𝑞
=

𝑑𝑧

−6𝑝2+𝑞
=

𝑑𝑥

−6𝑝
=

𝑑𝑦

1
       (3.2.8) 

Taking the first fraction of (3.2.7), dp = 0 so that p = a     (3.2.9)  

Substituting this value of p in (3.2.7), we get q = 3a2      (3.2.10)  

Putting these values of p and q in dz = pdx + qdy, we get dz = adx + 3a2dy so that 
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 z = ax + 3a2 y + b, which is a complete integral, a and b being arbitrary constants. 

 

Example 3.2.3:Find a complete integral of𝑧2(𝑝2𝑧2 + 𝑞2) = 1. 

Solution: Here given equation is 𝑓(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) = 𝑝2𝑧4 + 𝑞2𝑧2 − 1 = 0   (3.2.11) 

Charpit’s auxiliary equations are  

𝑑𝑝
𝜕𝑓

𝜕𝑥
+

𝜕𝑓

𝜕𝑧
𝑝

=
𝑑𝑞

𝜕𝑓

𝜕𝑦
+

𝜕𝑓

𝜕𝑧
𝑞

=
𝑑𝑧

−𝑝
𝜕𝑓

𝜕𝑝
− 𝑞

𝜕𝑓

𝜕𝑞

=
𝑑𝑥

−
𝜕𝑓

𝜕𝑝

=
𝑑𝑦

−
𝜕𝑓

𝜕𝑞

 

𝑑𝑝

𝑝(4𝑝2𝑧3+2𝑧𝑞2)
=

𝑑𝑞

𝑞(4𝑝2𝑧3+2𝑧𝑞2)
=

𝑑𝑧

−2𝑝2𝑧4−2𝑞2𝑧2
=

𝑑𝑥

−2𝑝𝑧4
=

𝑑𝑦

−
𝜕𝑓

𝜕𝑞

    (3.2.12) 

Taking the first two fractions, (1/p)dp = (1/q)dq so that p = aq. 

Solving (3.2.11) and (3.2.12) for p and q, 𝑝 =
𝑎

𝑧(𝑎2𝑧2+1)
1
2

,       𝑞 =
1

𝑧(𝑎2𝑧2+1)
1
2

. 

∴ 𝑑𝑧 = 𝑝𝑑𝑥 + 𝑞𝑑𝑦 =
𝑎𝑑𝑥+𝑑𝑦

𝑧(𝑎2𝑧2+1)
1
2

or𝑎𝑑𝑥 + 𝑑𝑦 = 𝑧(𝑎2𝑧2 + 1)
1

2 𝑑𝑧. 

Integrating 𝑎𝑥 + 𝑦 =  ∫(𝑎2𝑧2 + 1)
1

2 𝑧 𝑑𝑧      (3.2.13) 

Putting 𝑎2𝑧2 + 1 = 𝑡2 so that 2𝑎2𝑧 𝑑𝑧 = 2𝑡𝑑𝑡, (3.2.13) becomes 

𝑎𝑥 + 𝑦 =  ∫
1

𝑎2
𝑡𝑑𝑡or𝑎𝑥 + 𝑦 + 𝑏 = (

1

3𝑎2
) 𝑡3 , where 𝑡 = (𝑎2𝑧2 + 1)

1

2 

or𝑎𝑥 + 𝑦 + 𝑏 = (
1

3𝑎2
) (𝑎2𝑧2 + 1)

3

2  or 9𝑎4(𝑎𝑥 + 𝑦 + 𝑏)2 = (𝑎2𝑧2 + 1)3 

which is a complete integral, a and b being arbitrary constants. 

 

3.3 Special Methods of Solutions Applicable to Certain Standard 
Forms 

We now consider equations in which p and q occur other than in the first degree, that is non–linear 
equations. We have already discussed the general method. We now discuss four standard forms to 
which many equations can be reduced, and for which a complete integral can be obtained by 
inspection or by other shorter methods. 

 

Standard Form I. Only p and q Present 

Under this standard form, we consider equations of the form f(p, q) = 0     (3.3.1) 

Charpit’s auxiliary equations are 

𝑑𝑝

𝑓𝑥+𝑝𝑓𝑧
=

𝑑𝑞

𝑓𝑦+𝑞𝑓𝑧
=

𝑑𝑧

−𝑝𝑓𝑝−𝑞𝑓𝑞
=

𝑑𝑥

−𝑓𝑝
=

𝑑𝑦

−𝑓𝑞
  

giving
𝑑𝑝

0
=

𝑑𝑞

0
, by (3.3.1) 

Taking the first ratio, dp = 0 so that p = constant = a, say     (3.3.2)  

Substituting in (1), we get f(a, q) = 0, giving q = constant = b, say,    (3.3.3)  

where b is such that f(a, b) = 0.       (3.3.4)  

Then, dz = p dx + q dy = adx + bdy, using (3.3.2) and (3.3.3).  

Integrating, z = ax + by + c,        (3.3.5)  

where c is an arbitrary constant. (3.3.5) together with (3.3.4) give the required solution. 

Now solving (3.3.4) for b, suppose we obtain b = F(a), say.  

Putting this value of b in (3.3.5), the complete integral of (3.3.1) is  

z = ax + yF(a) + c,         (3.5.6)  
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which contains two arbitrary constants a and c which are equal to the number of independent 
variables, namely x and y.  

 

Remark 3.3.1:Sometimes change of variables can be employed to transform a given 
equation to standard form I. 

 

 

Example 3.3.1:Solve pq = k, where k is a constant. 

Solution: Given that pq = k.        (3.3.7)  

Since (3.3.7) is of the form f(p, q) = 0, its solution is  

z = ax + by + c,          (3.3.8)  

whereab = k     or             b = k/a,         on putting a for p and b for q in (3.3.7).   

From (3.3.8), the complete integral is z = ax + (k/a)y + c,     (3.3.9)  

which contains two arbitrary constants a and c.  

 

Example 3.3.2:p2 + q2 = m2 , where m is a constant. 

Solution: Given that p2 + q2 = m2       (3.3.10) 

 Since (3.3.10) is of the form f(b, q) = 0, its solution is z = ax + by + c,    (3.3.11)  

where a2 + b2 = m2 or b2 = (m2 –a2)1/2  , on putting a for p and b for b in (3.3.10).  

From (3.3.11), the complete integral is z = ax + (m2 –a2)1/2+ c,    (3.3.12)  

which contains two arbitrary constants a and c. 

 

Standard form II.Clairaut Equation. 

A first order partial differential equation is said to be of Clariaut form if it can be written in the 
form  

z = px + qy + f(p, q)        (3.3.13)  

Let F(x, y, z, p, q) ( px + qy + f(p, q) – z      (3.3.14)  

Charpit’s auxiliary equations are 

𝑑𝑝

𝑓𝑥+𝑝𝑓𝑧
=

𝑑𝑞

𝑓𝑦+𝑞𝑓𝑧
=

𝑑𝑧

−𝑝𝑓𝑝−𝑞𝑓𝑞
=

𝑑𝑥

−𝑓𝑝
=

𝑑𝑦

−𝑓𝑞
 or 

𝑑𝑝

0
=

𝑑𝑞

0
=

𝑑𝑧

−𝑝𝑥−𝑞𝑦−𝑝𝑓𝑝−𝑞𝑓𝑞
=

𝑑𝑥

−𝑥−𝑓𝑝
=

𝑑𝑦

−𝑦−𝑓𝑞
 by (3.3.13)    (3.3.15) 

Then, first and second fractions (3.3.15), dp = 0 and dq = 0 this gives p = a and q = b.  

Substituting these values in (3.3.13), the complete integral is z = ax + by + f(a, b) 

 

Remark 3.3.2:Observe that the complete integral of (3.3.13) is obtained by merely replacing 
p and q by a and b respectively.  

 

Example 3.3.3:Solve z = px + qy + pq. 

Solution: The complete integral is z = ax + by + ab, a, b being arbitrary constants. 

 

Example 3.3.4:Prove that complete integral of the equations (𝑝𝑥 + 𝑞𝑦 − 𝑧)2 = 1 + 𝑝2 + 𝑞2is 

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = (𝑎2 + 𝑏2 + 𝑐2)
1

2. 

Solution: Re–writting the given equation, we have  
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𝑝𝑥 + 𝑞𝑦 − 𝑧 = ±√1 + 𝑝2 + 𝑞2 or 𝑧 = 𝑝𝑥 + 𝑞𝑦 ± √1 + 𝑝2 + 𝑞2  (3.3.16)  

 

which is of standard form II and so its complete integral is 

𝑧 = 𝐴𝑥 + 𝐵𝑦 ± √1 + 𝐴2 + 𝐵2       (3.3.17) 

To get the desired form of solution we take +ve sign in (3.3.17) and set A = –a/c and B = –b/c. Then 
(3.3.17) becomes 

𝑧 = −(𝑎𝑥 + 𝑏𝑦)/𝑐 ±
1

𝑐
√𝑐2 + 𝑎2 + 𝑏2 

or 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = √𝑎2 + 𝑏2 + 𝑐2. 

 

Standard form III. Only p, q and z present. 

Under this standard form we consider differential equation of the form 

𝑓(𝑝, 𝑞, 𝑧) =0         (3.3.18) 

Charpit’s auxiliary equations are    

𝑑𝑝

𝑓𝑥+𝑝𝑓𝑧
=

𝑑𝑞

𝑓𝑦+𝑞𝑓𝑧
=

𝑑𝑧

−𝑝𝑓𝑝−𝑞𝑓𝑞
=

𝑑𝑥

−𝑓𝑝
=

𝑑𝑦

−𝑓𝑞
 or 

𝑑𝑝

𝑝𝑓𝑧
=

𝑑𝑞

𝑞𝑓𝑧
=

𝑑𝑧

−𝑝𝑓𝑝−𝑞𝑓𝑞
=

𝑑𝑥

−𝑓𝑝
=

𝑑𝑦

−𝑓𝑞
,  using (3.3.18) 

Taking the first two ratios, 
𝑑𝑝

𝑝
=

𝑑𝑞

𝑞
. 

Integrating, 𝑞 = 𝑎𝑝,a being an arbitrary constant.     (3.3.19) 

Now 𝑑𝑧 = 𝑝𝑑𝑥 + 𝑞𝑑𝑦 = 𝑝𝑑𝑥 + 𝑎𝑝𝑑𝑦, Using (3.3.19) 

𝑑𝑧 = 𝑝(𝑑𝑥 + 𝑎𝑑𝑦) = 𝑝𝑑(𝑥 + 𝑎𝑦) = 𝑝𝑑𝑢,      (3.3.20) 

Where u=𝑥 + 𝑎𝑦.         (3.3.21) 

Now, (3.3.20) ⇒ 𝑝 = 𝑑𝑧/𝑑𝑢 and so by (3.3.19)        𝑞 = 𝑞𝑝 = 𝑎 (
𝑑𝑧

𝑑𝑢
). 

Substituting these values of p and q in (3.3.18), we get 

𝑓 (
𝑑𝑧

𝑑𝑢
, 𝑎

𝑑𝑧

𝑑𝑢
, 𝑧) =0         (3.3.22) 

which is an ordinary differential equation of first order. Solving (3.3.22), we get z as a function of u. 
Complete integral is then obtained by replacing u by (x + ay). 

 

Working rule for solving equations of the form 

f(p,q,z) = 0         (3.3.23)  

Step I. Let u = x + ay, where a is an arbitrary constant.     (3.3.24)  

Step II. Replace p and q by dz/du and a(dz/du) respectively in (3.3.23) and solve the resulting 
ordinary differential equation of first order by usual methods.  

Step III. Replace u by x + ay in the solution obtained in step II. 

 

Example 3.3.5:Find a complete integral of 𝑝2 = 𝑞𝑧. 

Solution: Given equation is 𝑝2 = 𝑞𝑧       (3.3.25) 

which is of the form f(p, q, z) = 0. Let u = x + ay, where a is an arbitrary constant. Now, replacing p 
and q by dz/du and a(dz/du) respectively in (3.3.25), we get 

(
𝑑𝑧

𝑑𝑢
)

2
= 𝑎 (

𝑑𝑧

𝑑𝑢
) 𝑧or 

𝑑𝑧

𝑑𝑢
= 𝑎𝑧 or   

𝑑𝑧

𝑧
= 𝑎𝑢. 

Integrating,   𝑙𝑜𝑔𝑧 − log 𝑏 = 𝑎𝑢 or  𝑧 = 𝑏𝑒𝑎𝑢 or 𝑧 = 𝑏𝑒𝑎(𝑥+𝑎𝑦), 
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which is a complete integral containing two arbitrary constants a and b. 

 

Example 3.3.6:Find a complete integral of 𝑧 = 𝑝𝑞. 

Solution: Given equation is z = pq,        (3.3.26)  

which is of the form f(p, q, z) = 0.  

Let u = x + ay, where a is an arbitrary constant.  

Now, replacing p and q by 
𝑑𝑧

𝑑𝑢
 and 𝑎

𝑑𝑧

𝑑𝑢
respectively in (3.3.26), we get  

𝑧 = 𝑎 (
𝑑𝑧

𝑑𝑢
)

2
 or 

𝑑𝑧

𝑑𝑢
== ±

√𝑧

√𝑎
 or ±√𝑎𝑧−1/2𝑑𝑧 = 𝑑𝑢. 

Integrating, ±2√𝑎𝑧=u+b,   or 4𝑎𝑧 = (𝑥 + 𝑎𝑦 + 𝑏)2 as u = x + ay. 

 

Standard form IV. Equation of the form f1(x, p) = f2(y, q). 

A form in which z does not appear and the terms containing x and p are on one side and those 
containing y and q on the other side. 

Let𝐹(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) = 𝑓1(𝑥, 𝑝) − 𝑓2(𝑦, 𝑞) = 0      (3.3.27) 

Then Charpit’s auxiliary equations are 

𝑑𝑝

𝑓𝑥+𝑝𝑓𝑧
=

𝑑𝑞

𝑓𝑦+𝑞𝑓𝑧
=

𝑑𝑧

−𝑝𝑓𝑝−𝑞𝑓𝑞
=

𝑑𝑥

−𝑓𝑝
=

𝑑𝑦

−𝑓𝑞
 or 

𝑑𝑝

𝜕𝑓1/𝜕𝑥
=

𝑑𝑞

−𝜕𝑓2/𝜕𝑦
=

𝑑𝑧

−𝑝(
𝜕𝑓1
𝜕𝑝

)+𝑞(𝜕𝑓2/𝜕𝑞)
=

𝑑𝑥

−𝜕𝑓1/𝜕𝑝
=

𝑑𝑦

𝜕𝑓2/𝜕𝑞
, by (3.3.27) 

Taking the first and the fourth ratios, we have 

𝜕𝑓1

𝜕𝑝
𝑑𝑝 +

𝜕𝑓1

𝜕𝑥
𝑑𝑥 = 0or  𝑑𝑓1 = 0 

Integrating, 𝑓1 = 𝑎, a being an arbitrary constant. 

(3.3.27)⇒ 𝑓1(𝑥, 𝑝) = 𝑓2(𝑦, 𝑞) = 𝑎.       (3.3.28) 

Now, (3.3.28) ⇒ 𝑓1(𝑥, 𝑝) = 𝑎 and 𝑓2(𝑦, 𝑞) = 𝑎.      (3.3.29) 

From (3.3.29), on solving for p and q respectively, we get 

𝑝 = 𝐹1(𝑥, 𝑎), say and 𝑞 = 𝐹2(𝑦, 𝑎), 𝑠𝑎𝑦      (3.3.30) 

Substituting these values in 𝑑𝑧 = 𝑝𝑑𝑥 + 𝑞𝑑𝑦, we get 𝑑𝑧 = 𝐹1(𝑥, 𝑎), 𝑑𝑥 + 𝐹2(𝑦, 𝑎)𝑑𝑦. 

Integrating, 𝑧 = ∫ 𝐹1(𝑥, 𝑎)  𝑑𝑥 + ∫ 𝐹2(𝑦, 𝑎) 𝑑𝑦 + 𝑏, 

which is a complete integral containing two arbitrary constants a and b. 

 

Example 3.3.7:Find a complete integral of 𝑥(1 + 𝑦)𝑝 = 𝑦(1 + 𝑥)𝑞. 

Solution: Separating p and x from q and y, the given equation reduces to 

𝑥𝑝/(1 + 𝑥) = 𝑦𝑞/(1 + 𝑦). 

Equating each side to an arbitrary constant a, we have 

𝑥𝑝

(1+𝑥)
= 𝑎 and  

𝑦𝑞

1+𝑦
= 𝑎  so that    𝑝 = 𝑎 (

1+𝑥

𝑥
) and  𝑞 = 𝑎 (

1+𝑦

𝑦
). 

Putting these values of p and q in dz = p dx + q dy, we get 

𝑑𝑧 = 𝑎 (
1+𝑥

𝑥
) 𝑑𝑥 + 𝑎 (

1+𝑦

𝑦
) 𝑑𝑦  or  𝑑𝑧 = 𝑎 (

1

𝑥
+ 1) 𝑑𝑥 + 𝑎 (

1

𝑦
+ 1) 𝑑𝑦. 

Integrating, 𝑧 = 𝑎(𝑙𝑜𝑔𝑥 + 𝑥) + 𝑎(𝑙𝑜𝑔𝑦 + 𝑦) + 𝑏 = 𝑎(𝑙𝑜𝑔𝑥𝑦 + 𝑥 + 𝑦) + 𝑏, 

which is a complete integral containing two arbitrary constants a and b. 
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3.4 Compatible System of First–Order Equations 

Consider first order partial differential equations 

𝑓(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) = 0         (3.4.1)  

and𝑔(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) = 0        (3.4.2)  

Equations (3.4.1) and (3.4.2) are known as compatible when every solution of one is also a solution 
of the other. 

To find condition for (3.4.1) and (3.4.2) to be compatible. 

Let J = Jacobian of f and g = 
𝜕(𝑓,𝑔)

𝜕(𝑝,𝑞)
≠ 0      (3.4.3)  

Then (3.4.1) and (3.4.2) can be solved to obtain the explicit expressions for p and q given by  

𝑝 = 𝜑(𝑥, 𝑦, 𝑧)and𝑞 = 𝜓(𝑥, 𝑦, 𝑧)       (3.4.4) 

The condition that the pair of equations (3.4.1) and (3.4.2) should be compatible reduces then to the 
condition that the system of equations (3.4.4) should be completely integrable, i.e., that the equation 

𝑑𝑧 = 𝑝𝑑𝑥 + 𝑞𝑑𝑦  or  𝜙𝑑𝑥 + 𝜓𝑑𝑦 − 𝑧 = 0,, using (3.4.4)   (3.4.5) 

should be integrable. (3.4.5) is integrable if 

𝜙 (
𝜕𝜓

𝜕𝑧
− 0) + 𝜓 (0 −

𝜕𝜙

𝜕𝑧
) + (−1) (

𝜕𝜙

𝜕𝑦
−

𝜕𝜓

𝜕𝑥
) = 0 

which is equivalent to 

𝜕𝜓

𝜕𝑥
+𝜙

𝜕𝜓

𝜕𝑧
=

𝜕𝜙

𝜕𝑦
+ 𝜓

𝜕𝜙

𝜕𝑧
.        (3.4.6) 

Substituting from equations (3.4.4) in (3.4.1) and differentiating w.r.t. ‘x’ and ‘z’ respectively, we get 

𝜕𝑓

𝜕𝑥
+

𝜕𝑓

𝜕𝑝

𝜕𝜙

𝜕𝑥
+

𝜕𝑓

𝜕𝑞

𝜕𝜓

𝜕𝑥
= 0        (3.4.7) 

𝜕𝑓

𝜕𝑧
+

𝜕𝑓

𝜕𝑝

𝜕𝜙

𝜕𝑧
+

𝜕𝑓

𝜕𝑞

𝜕𝜓

𝜕𝑧
= 0        (3.4.8) 

From (3.4.7) and (3.4.8), 
𝜕𝑓

𝜕𝑥
+ 𝜙

𝜕𝑓

𝜕𝑧
+

𝜕𝑓

𝜕𝑝
(

𝜕𝜙

𝜕𝑥
+ 𝜙

𝜕𝜙

𝜕𝑧
) +

𝜕𝑓

𝜕𝑞
(

𝜕𝜓

𝜕𝑥
+ 𝜙

𝜕𝜓

𝜕𝑧
) = 0   (3.4.9) 

Similarly (3.4.2) yields ), 
𝜕𝑔

𝜕𝑥
+ 𝜙

𝜕𝑔

𝜕𝑧
+

𝜕𝑔

𝜕𝑝
(

𝜕𝜙

𝜕𝑥
+ 𝜙

𝜕𝜙

𝜕𝑧
) +

𝜕𝑔

𝜕𝑞
(

𝜕𝜓

𝜕𝑥
+ 𝜙

𝜕𝜓

𝜕𝑧
) = 0   (3.4.10) 

Solving (3.4.9) and (3.4.10), 
𝜕𝜓

𝜕𝑥
+ 𝜙

𝜕𝜓

𝜕𝑧
=

1

𝐽
{

𝜕(𝑓,𝑔)

𝜕(𝑥,𝑝)
+ 𝜙

𝜕(𝑓,𝑔)

𝜕(𝑧,𝑝)
}    (3.4.11) 

Again, substituting from equations (3.4.4) in (3.4.1) and differentiating w.r.t. ‘y’ and ‘z’ and 
proceeding as before, we obtain 

𝜕𝜙 

𝜕𝑦
+ 𝜓

𝜕𝜙

𝜕𝑧
= −

1

𝐽
{

𝜕(𝑓,𝑔)

𝜕(𝑦,𝑞)
+ 𝜓

𝜕(𝑓,𝑔)

𝜕(𝑧,𝑞)
}       (3.3.12) 

Substituting from equations (3.4.11) and (3.4.12) in (3.4.1) and replacing 𝜙, 𝜓  by p, q respectively, 
we obtain 

1

𝐽
{

𝜕(𝑓,𝑔)

𝜕(𝑥,𝑝)
+ 𝑝

𝜕(𝑓,𝑔)

𝜕(𝑧,𝑝)
} = −

1

𝐽
{

𝜕(𝑓,𝑔)

𝜕(𝑦,𝑞)
+ 𝑞

𝜕(𝑓,𝑔)

𝜕(𝑧,𝑞)
}or [𝑓, 𝑔] = 0    (3.4.13) 

Where   [𝑓, 𝑔] =
𝜕(𝑓,𝑔)

𝜕(𝑥,𝑝)
+ 𝑝

𝜕(𝑓,𝑔)

𝜕(𝑧,𝑝)
+

𝜕(𝑓,𝑔)

𝜕(𝑦,𝑞)
+ 𝑞

𝜕(𝑓,𝑔)

𝜕(𝑧,𝑞)
    (3.4.14) 

 

 

Example 3.4.1:Show that the equations 𝑥𝑝 = 𝑦𝑞 and z(𝑥𝑝 + 𝑦𝑞) = 2𝑥𝑦 are compatible and 
solve them. 

Solution: Let 𝑓(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) = 𝑥𝑝 − 𝑦𝑞 = 0      (3.4.15)  

and𝑔(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) = z(𝑥𝑝 + 𝑦𝑞) − 2𝑥𝑦 = 0      (3.4.16) 
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𝜕(𝑓, 𝑔)

𝜕(𝑥, 𝑝)
= ||

𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝑝
𝜕𝑔

𝜕𝑥

𝜕𝑔

𝜕𝑝

|| = |
𝑝 𝑥

𝑧𝑝 − 2𝑦 𝑥𝑧| = 2𝑥𝑦, 

𝜕(𝑓, 𝑔)

𝜕(𝑧, 𝑝)
= ||

𝜕𝑓

𝜕𝑧

𝜕𝑓

𝜕𝑝
𝜕𝑔

𝜕𝑧

𝜕𝑔

𝜕𝑝

|| = |
0 𝑥

𝑥𝑝 + 𝑦𝑞 𝑥𝑧
| = −𝑥2𝑝 − 𝑥𝑦𝑞, 

 

𝜕(𝑓, 𝑔)

𝜕(𝑦, 𝑞)
= ||

𝜕𝑓

𝜕𝑦

𝜕𝑓

𝜕𝑞
𝜕𝑔

𝜕𝑦

𝜕𝑔

𝜕𝑞

|| = |
−𝑞 −𝑦

𝑧𝑞 − 2𝑥 𝑧𝑦 | = −2𝑥𝑦, 

𝜕(𝑓, 𝑔)

𝜕(𝑧, 𝑞)
= ||

𝜕𝑓

𝜕𝑧

𝜕𝑓

𝜕𝑞
𝜕𝑔

𝜕𝑧

𝜕𝑔

𝜕𝑞

|| = |
0 −𝑦

𝑥𝑝 + 𝑦𝑞 𝑧𝑦
| = 𝑦2𝑞 + 𝑥𝑦𝑝. 

[𝑓, 𝑔] =
𝜕(𝑓, 𝑔)

𝜕(𝑥, 𝑝)
+ 𝑝

𝜕(𝑓, 𝑔)

𝜕(𝑧, 𝑝)
+

𝜕(𝑓, 𝑔)

𝜕(𝑦, 𝑞)
+ 𝑞

𝜕(𝑓, 𝑔)

𝜕(𝑧, 𝑞)
= 2𝑥𝑦 − 𝑥2𝑝2 − 𝑥𝑦𝑝𝑞 − 2𝑥𝑦 + 𝑥𝑦𝑝𝑞 + 𝑦2𝑞2 

= −𝑥𝑝(𝑥𝑝 + 𝑦𝑞) + 𝑦𝑞(𝑥𝑝 + 𝑦𝑞) = −(𝑥𝑝 − 𝑦𝑞)(𝑥𝑝 + 𝑦𝑞) = 0, using (3.4.15). 

Hence (3.4.15) and (3.4.16) are compatible.  

Solving (3.4.15) and (3.4.16) for p and q, 𝑝 =
𝑦

𝑧
and 𝑞 =

𝑥

𝑧
.     (3.4.17)  

Using (3.4.17) in dz = pdx + qdy, we have dz = (y/z)dx + (x/z)dy or z dz = d(xy).  

Integrating,
𝑧2

2
= 𝑥𝑦 +

𝑐

2
or 𝑧2 = 2𝑥𝑦 + 𝑐, where c is an arbitrary constant. 

 

Summary 

 The concept to solve nonlinear first order partial differential equation is discussed. 

 Charpit method and its special cases are derived 

 The compatibility of system of partial differential equation was discussed. 

 The condition of compatibility is derived with examples. 

 

Keywords 

 Non linear 

 Charpit’smethod 

 Compatible system 

 Clairaut 

 Special cases  

 

Self Assessment 

1. The Charpit’s auxiliary equation  is  

A. 
𝑑𝑥

𝑓𝑝
=

𝑑𝑦

𝑓𝑞
=

𝑑𝑧

𝑝𝑓𝑝+𝑞𝑓𝑞
=

𝑑𝑥

−𝑝𝑓𝑧
=

𝑑𝑥

−𝑓𝑦
 

B. 
𝑑𝑥

𝑓𝑝
=

𝑑𝑦

𝑓𝑞
=

𝑑𝑧

𝑝𝑓𝑝+𝑞𝑓𝑞
=

𝑑𝑥

−𝑓𝑥−𝑝𝑓𝑧
=

𝑑𝑥

−𝑓𝑦−𝑞𝑓𝑧
 

C. 
𝑑𝑥

𝑓𝑝
=

𝑑𝑦

𝑓𝑞
=

𝑑𝑧

𝑓𝑝+𝑓𝑞
=

𝑑𝑥

−𝑓𝑥−𝑓𝑧
=

𝑑𝑥

−𝑓𝑦−𝑓𝑧
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D. None of the above 

2. The complete integral of equation 𝐩𝐱𝐲 + 𝐩𝐪 + 𝐪𝐲 = 𝐲𝐳  is  

A. 𝑧 + 𝑎𝑥 = 𝑏ey(a + y)a 
B. z − ax = bey(a + y)a 
C. z − ax = bey(a + y)−a 
D. None of these 

3. The general solution of the partial differential equation𝟐𝐳𝐱 − 𝐩𝐱𝟐 − 𝟐𝐪𝐱𝐲 + 𝐩𝐪 = 𝟎 is 

A. 𝑧 = 𝑎𝑦(𝑥2 − 𝑎) 
B. 𝑧 = 𝑎𝑦 + 𝑏(𝑥2 − 𝑎) 
C. 𝑧 = 𝑎𝑦 − 𝑏(𝑥2 + 𝑎) 
D. None of these 

4. The Clairaut’s equation is  

A. 
),( qpfqypxz 

 

B. 
),( qpfqpxz 

 

C. 
),(22 qpfqypxz 

 

D. 
),( qpfpqxyz 

 

5. The complete integral of the equation 
)1( 22 qpcqypxz 

is 

A. 
)1( 22 cacbyaxz 

 

B. 
)1( 22 bacbyaxz 

 

C. 
cbyaxz 

 

D. 
cbyaxz 

 

6. The complete integral of the equation 
0),,( qpzf

is obtained by the relation 

A. 
aqp 

 

B. 
qypxz 

 

C. 
cbqap 

 

D. None of these 

 

7. The first order partial differential equation is separable if it can be written in the form 

A. 
),(),( qpgyxf 

 

B. 
),(),( qygpxf 

 

C. 
),(),( qzgpzf 

 
D. None of these 
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8. The partial differential equations 
0),,,,(,0),,,,(  qpzyxgqpzyxf

are 

compatible to each other if  

A. 

0
),(

),(






qp

gf

 

B. 

0
),(

),(






yx

gf

 

C. 

0
),(

),(






qp

gf

 

D. 

0
),(

),(






yx

gf

 

9. If the partial differential equations 
0),,,,(,0),,,,(  qpzyxgqpzyxf

are 

compatible to each other, then  

A. 
0],[ gf

 

B. 
0],[ gf

 

C. 
aagf ,],[ 

is an arbitrary constant 
D. None of these 

10. If the partial differential equations 
0),,,,(,0),,,,(  qpzyxgqpzyxf

are 

compatible to each other, then  

A. 

0
),(

),(

),(

),(

),(

),(

),(

),(
],[ 





















qz

gf

qy

gf

pz

gf

px

gf
gf

 

B. 

0
),(

),(

),(

),(

),(

),(

),(

),(
],[ 





















qz

gf
q

qy

gf

pz

gf
p

px

gf
gf

 

C. 

0
),(

),(

),(

),(

),(

),(

),(

),(
],[ 





















qz

gf
q

qy

gf

pz

gf
p

px

gf
gf

 
D. None of these 

 

11. The first order two partial differential equations are compatible if every solution of one is 
…………………….. 

A. Also a solution of other 
B. Not a solution of other 
C. Constant only 
D. None of these 
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Answers for Self Assessment 

l. A 2. C 3. B 4. A 5. B 

6. A 7. B 8. C 9. A 10. B 

11. A         

 

Review Questions 

Q1. Find a complete integral of yzp2 – q = 0. 

Q2.Find a complete and singular integrals of 2xz – px2 – 2q xy + pq = 0.
 

Q3.  Solve p2 + q2 = 1 

Q4. Find the complete integral of the equation z = px + qy + log (pq). 

Q5.  Show that the equations 
xp yq x 

 and 
2x p q xz 

 are compatible. 

 

 
Further Readings 

1. I.N. Sneddon(1957), Elements Of Partial Differential Equations,Mcgraw Hill Education. 

2. Lawrence C. Evans (1998), Partial Differential Equations, Universities Press Pvt. Ltd 

 

 
Web Links 

https://onlinecourses.nptel.ac.in/noc22_ma73/preview 

https://onlinecourses.nptel.ac.in/noc21_ma09/preview 

https://onlinecourses.swayam2.ac.in/cec22_ma12/preview 
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Unit 04: Linear Second Order  Partial Differential Equations with 
Constant Coefficients - I 

CONTENTS 

Objectives 

Introduction 

4.1 The Origin of Second -Order Equations 

4.2 Classification of Second Order Partial Differential Equation 

4.3 Linear Partial Differential Equations with Constant Coefficients 

4.4 Reducible Equations 

4.5 Irreducible Equations 

Summary 

Keywords 

Self Assessment 

Answers for Self Assessment 

Review Questions 

Further Readings 

Objectives 

After studying this unit, you will be able to 

 identify the concept of second order partial differential equations. 

 understand origin of second order differential equation. 

 Know about the classification of second order differential equations. 

 find the solution of linear differential equations with constant coefficients. 

 

Introduction 

In the last chapters we considered the solution of partial differential equations of the first order. We 
shall now proceed to the discussion of equations of the second order. In this chapter we shall 
confine ourselves to a preliminary discussion of these equations, and then in the following two 
chapters we shall consider in more detail the three main types of linear partial differential equation 
of the second order. Though we are concerned mainly with second -order equations, we shall also 
have something to say about partial differential equations of order higher than the second. 

 

4.1 The Origin of Second -Order Equations 

Suppose that the function z is given by an expression of the type  

𝑧 = 𝑓(𝑢) + 𝑔(𝑣) + 𝑤        (4.1.1) 
where f and g are arbitrary functions of u and y, respectively, and u, y, and w are prescribed 
functions of x and y. Then writing  

𝑝 =
𝜕𝑧

𝜕𝑥
,  𝑞 =

𝜕𝑧

𝜕𝑦
,  𝑟 =

𝜕2𝑧

𝜕𝑥2
, 𝑠 =

𝜕2𝑧

𝜕𝑥𝜕𝑦
,  𝑡 =

𝜕2𝑧

𝜕𝑦2
   (4.1.2)  

we find, on differentiating both sides of (4.1.1) with respect to x and y, respectively, that  

𝑝 = 𝑓′(𝑢)𝑢𝑥 + 𝑔′(𝑣)𝑣𝑥 + 𝑤𝑥 

Dr. Preety Kalra, Lovely Professional University 
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𝑞 = 𝑓′(𝑢)𝑢𝑦 + 𝑔′(𝑣)𝑣𝑦 + 𝑤𝑦 

and hence that 

𝑟 = 𝑓′′(𝑢)𝑢𝑥
2 + 𝑔′′(𝑣)𝑣𝑥

2 + 𝑓′(𝑢)𝑢𝑥𝑥 + 𝑔′(𝑣)𝑣𝑥𝑥 + 𝑤𝑥𝑥 

𝑠 = 𝑓′′(𝑢)𝑢𝑥𝑢𝑦 + 𝑔′′(𝑣)𝑣𝑥𝑣𝑦 + 𝑓′(𝑢)𝑢𝑥𝑦 + 𝑔′(𝑣)𝑣𝑥𝑦 + 𝑤𝑥𝑦 

𝑡 = 𝑓′′(𝑢)𝑢𝑦
2 + 𝑔′′(𝑣)𝑣𝑦

2 + 𝑓′(𝑢)𝑢𝑦𝑦 + 𝑔′(𝑣)𝑣𝑦𝑦 + 𝑤𝑦𝑦 

We now have five equations involving the four arbitrary quantities f ' f ", g', g ". If we eliminate 
these four quantities from the five equations, we obtain the relation 

|𝑝 − 𝑤𝑥𝑢𝑥𝑣𝑥𝑞 − 𝑤𝑦𝑢𝑦𝑣𝑦𝑟 − 𝑤𝑥𝑥𝑢𝑥𝑥𝑣𝑥𝑥          0000𝑢𝑥
2𝑣𝑥

2  𝑠 − 𝑤𝑥𝑦𝑢𝑥𝑦𝑣𝑥𝑦𝑡 − 𝑤𝑦𝑦𝑢𝑦𝑦𝑣𝑦𝑦  𝑢𝑥𝑢𝑦𝑣𝑥𝑣𝑦𝑢𝑦
2𝑣𝑦

2| =

0      (4.1.3)  

which involves only the derivatives p, q, r, s, t and known functions of x and y. It is therefore a 
partial differential equation of the second order. Furthermore if we expand the determinant on the 
left -hand side of equation (3) in terms of the elements of the first column, we obtain an equation of 
the form 

𝑅𝑟 + 𝑆𝑠 + 𝑇𝑡 + 𝑃𝑝 + 𝑄𝑞 = 𝑊       (4.1.4) 

where R, S, T, P, Q, W are known functions of x and y. Therefore the relation (4.1.1) is a solution of 
the second -order linear partial differential equation (4). It should be noticed that the equation 
(4.1.4) is of a particular type: the dependent variable z does not occur in it.  

As an example of the procedure of the last paragraph, suppose that 

𝑧 = 𝑓(𝑥 + 𝑎𝑦) + 𝑔(𝑥 − 𝑎𝑦)       (4.1.5) 

where f and g are arbitrary functions and a is a constant. If we differentiate (4.1.5) twice with 
respect to x, we obtain the relation 

𝑟 = 𝑓′′ + 𝑔′′ 

while if we differentiate it twice with regard to y, we obtain the relation 

𝑡 = 𝑎2𝑓′′ + 𝑎2𝑔′′ 

so that functions z which can be expressed in the form (4.1.5) satisfy the partial differential equation 

𝑡 = 𝑎2𝑟          (4.1.6) 

Similar methods apply in the case of higher -order equations. It is readily shown that any relation of 
the type 

𝑧 = ∑𝑛
𝑟=1 𝑓𝑟(𝑣𝑟)         (4.1.7) 

where the functions 𝑓𝑟 are arbitrary and the functions 𝑣𝑟 are known, leads to a linear partial 
differential equation of the nth order.  

 

Remarks 4.1.1: The partial differential equations we have so far considered in this section 
have been linear equations. Naturally it is not only linear equations in which we are 
interested. In fact, we have already encountered a nonlinear equation of the second order; 
that if the surface z = f(x,y) is a developable surface, the function f must be a solution of the 
second -order nonlinear equation  

𝑟𝑡 − 𝑠2 

 

4.2 Classification of Second Order Partial Differential Equation 

We classify second-order equations of the type (4.1.4) by their canonical forms; we say that an 
equation of this type is:  

(a) Hyperbolic if S2 -- 4RT > 0,  

(b) Parabolic if S2 - 4RT = 0,  

(c) Elliptic if S2 - 4RT < 0. 
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Homogeneous and Non–homogeneous linear equations with constant coefficients. 

A partial differential equation in which the dependent variable and its derivatives appear only in 
the first degree and are not multiplied together, their coefficients being constants or functions of x 
and y, is known as a linear partial differential equation. 

When all the derivatives appearing are of the same order, then the resulting equation is called a 
linear homogeneous partial differential equation with constant coefficients and it is then of the form 
𝐹(𝐷, 𝐷′) = 𝑓(𝑥, 𝑦) where F(D,D') denotes a differential operator of the type 

𝐹(𝐷, 𝐷′) =  ∑

𝑟

∑

𝑠

𝑐𝑟𝑠𝐷𝑟𝐷′𝑠 

On the other hand, when all the derivatives are not of the same order, then it is called a non–
homogeneous linear partial differential equation with constant coefficients.  

In this chapter we propose to study the various methods to find complementary functions for 
solving homogeneous linear partial differential equation with constant coefficients, namely. 

 

4.3 Linear Partial Differential Equations with Constant Coefficients 

We shall now consider the solution of a very special type of linear partial differential equation, that 
with constant coefficients. Such as equation can be written in the form  

𝐹(𝐷, 𝐷′) = 𝑓(𝑥, 𝑦)                (4.3.1)      

where F(D,D') denotes a differential operator of the type 

𝐹(𝐷, 𝐷′) =  ∑𝑟 ∑𝑠 𝑐𝑟𝑠𝐷𝑟𝐷′𝑠       
 (4.3.2) 

in which the quantities  𝑐𝑟𝑠are constants, and 𝐷 =
𝜕

𝜕𝑥
, 𝐷′ =

𝜕

𝜕𝑦
.  

The most general solution, i.e., one containing the correct number of arbitrary elements, of the 
corresponding homogeneous linear partial differential equation 

𝐹(𝐷, 𝐷′) = 0         (4.3.3) 

is called the complementary function of the equation (4.3.1), just as in the theory of ordinary 
differential equations. Similarly any solution of the equation (4.3.1) is called a particular integral of 
(4.3.1). As in the theory of linear ordinary differential equations, the basic theorem is : 

Theorem 4.3.1: If u is the complementary function and z1 a particular integral of a linear partial 
differential equation, then u +z1is a general solution of the equation. 

Proof: The proof of this theorem is obvious. Since the equations (4.3.1) and (4.3.3) are of the same 
kind, the solution u +zl will contain the correct number of arbitrary elements to qualify as a general 
solution of (4.3.1). Also 

𝐹(𝐷, 𝐷′)𝑢 = 0, 𝐹(𝐷, 𝐷′)𝑧1 = 𝑓(𝑥, 𝑦) so that 

𝐹(𝐷, 𝐷′)(𝑢 + 𝑧1) = 𝑓(𝑥, 𝑦) 

showing that u+ z1 is in fact a solution of equation (4.3.1). This completes the proof. 

Another result which is used extensively in the solution of differential equations is: 

Theorem 4.3.2: If𝑢1, 𝑢2, … … … , 𝑢𝑛are solutions of the homogeneous linear partial differential 
equation 𝐹(𝐷, 𝐷′)𝑧 = 0, then  

∑

𝑛

𝑟=1

𝑐𝑟𝑢𝑟  

where the 𝑐𝑟 ′𝑠 are arbitrary constants, is also a solution. 

Proof: The proof of this is immediate, since 

𝐹(𝐷, 𝐷′)(𝑐𝑟𝑢𝑟) = 𝑐𝑟𝐹(𝐷, 𝐷′)𝑢𝑟 

and    𝐹(𝐷, 𝐷′) ∑𝑛
𝑟=1 𝑣𝑟 = ∑𝑛

𝑟=1 𝐹(𝐷, 𝐷′)𝑣𝑟 
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for any set of functions 𝑣𝑟. Therefore 

𝐹(𝐷, 𝐷′) ∑

𝑛

𝑟=1

𝑐𝑟𝑢𝑟 =  ∑

𝑛

𝑟=1

𝐹(𝐷, 𝐷′)(𝑐𝑟𝑢𝑟) 

= ∑

𝑛

𝑟=1

𝑐𝑟𝐹(𝐷, 𝐷′)𝑢𝑟 = 0 

We classify linear differential operators 𝐹(𝐷, 𝐷′) into two main types, which we shall treat 
separately. We say that:  

(a) 𝐹(𝐷, 𝐷′)is reducible if it can be written as the product of linear factors of the form 𝐷 + 𝑎𝐷′ + 𝑏,  
with a, b constants;  

(b) 𝐹(𝐷, 𝐷′)is irreducible if it cannot be so written. 

For example, the operator  

(𝐷2 − 𝐷′2) 

which can be written in the form  

(𝐷 + 𝐷′)(𝐷 − 𝐷′) 

is reducible, whereas the operator s 

𝐷2 − 𝐷′ 

which cannot be decomposed into linear factors, is irreducible.  

 

4.4 Reducible Equations 

The starting point of the theory of reducible equations is the result: 

Theorem 4.3.3: If the operator 𝐹(𝐷, 𝐷′) is reducible, the order in which the linear factors occur is 
unimportant. 

The theorem will be proved if we can show that 

(𝛼𝑟𝐷 + 𝛽𝑟𝐷′ + 𝛾𝑟)(𝛼𝑠𝐷 + 𝛽𝑠𝐷′ + 𝛾𝑠) = (𝛼𝑠𝐷 + 𝛽𝑠𝐷′ + 𝛾𝑠)(𝛼𝑟𝐷 + 𝛽𝑟𝐷′ + 𝛾𝑟)  (4.3.4) 

for any reducible operator can be written in the form 

𝐹(𝐷, 𝐷′) = ∏𝑛
𝑟=1 (𝛼𝑟𝐷 + 𝛽𝑟𝐷′ + 𝛾𝑟)      

 (4.3.5) 

and the theorem follows at once. The proof of (4.2.4) is immediate, since both sides are equal to 

𝛼𝑟𝛼𝑠𝐷2 + (𝛼𝑠𝛽𝑟 + 𝛽𝑠𝛼𝑟)𝐷𝐷′ + 𝛽𝑟𝛽𝑠𝐷′2 + (𝛾𝑠𝛼𝑟 − 𝛼𝑠𝛾𝑟)𝐷 + (𝛾𝑠𝛽𝑟 + 𝛽𝑠𝛾𝑟)𝐷′ + 𝛾𝑟𝛾𝑠. 

Theorem 4.3.4:  If 𝛼𝑟𝐷 + 𝛽𝑟𝐷′ + 𝛾𝑟 is a factor of 𝐹(𝐷, 𝐷′) and 𝜙𝑟(𝜉)is an arbitrary function of the 
single variable 𝜉, then if 𝛼𝑟 ≠ 0, 

𝑢𝑟 =𝑒𝑥𝑝 𝑒𝑥𝑝 (−
𝛾𝑟𝑥

𝛼𝑟
) 𝜙𝑟(𝛽𝑟𝑥 − 𝛼𝑟𝑦) 

is a solution of the equation 𝐹(𝐷, 𝐷′) = 0. 

Proof: By direct differentiation we have 

𝐷𝑢𝑟 = −
𝛾𝑟

𝛼𝑟
𝑢𝑟 + 𝛽𝑟 𝑒𝑥𝑝 𝑒𝑥𝑝 (−

𝛾𝑟𝑥

𝛼𝑟
) 𝜙′𝑟(𝛽𝑟𝑥 − 𝛼𝑟𝑦) 

𝐷′𝑢𝑟 = −𝛼𝑟 𝑒𝑥𝑝 𝑒𝑥𝑝 (−
𝛾𝑟𝑥

𝛼𝑟
) 𝜙′𝑟(𝛽𝑟𝑥 − 𝛼𝑟𝑦) 

so that  

(𝛼𝑟𝐷 + 𝛽𝑟𝐷′ + 𝛾𝑟)𝑢𝑟 = 0         (4.3.6) 

Now by Theorem 4.3.3 

𝐹(𝐷, 𝐷′)𝑢𝑟 = {∏𝑛
𝑠=1 (𝛼𝑠𝐷 + 𝛽𝑠𝐷′ + 𝛾𝑠)}(𝛼𝑟𝐷 + 𝛽𝑟𝐷′ + 𝛾𝑟)𝑢𝑟    (4.3.7) 
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the prime after the product denoting that the factor corresponding to s = r is omitted.  

Combining equations (4.3.6) and (4.3.7), we see that 𝐹(𝐷, 𝐷′)𝑢𝑟 = 0 which proves the theorem.  

By an exactly similar method. we can prove: 

 

Remarks 4.3.5: If 𝛽𝑟𝐷′ + 𝛾𝑟 is a factor of 𝐹(𝐷, 𝐷′) and 𝜙𝑟(𝜉)is an arbitrary function of the 
single variable 𝜉, then if 𝛽𝑟 ≠ 0, 

𝑢𝑟 =𝑒𝑥𝑝 𝑒𝑥𝑝 (−
𝛾𝑟𝑦

𝛽𝑟
) 𝜙𝑟(𝛽𝑟𝑥) 

is a solution of the equation 𝐹(𝐷, 𝐷′) = 0. 

 

Remarks 4.3.6: In the decomposition of linear 𝐹(𝐷, 𝐷′) into linear factor we may get 
multiplication factors of the type (𝛼𝑟𝐷 + 𝛽𝑟𝐷′ + 𝛾𝑟)𝑛. Then the solution corresponding to 
factor of this type can be obtained by simple application of Theorem 4.3.4.  

 

Example 4.3.7: If n=2, we wish to find the solutions of equation 

(𝛼𝑟𝐷 + 𝛽𝑟𝐷′ + 𝛾𝑟)2𝑧 = 0        (4.3.8) 

Solution: If we let  𝑍 = (𝛼𝑟𝐷 + 𝛽𝑟𝐷′ + 𝛾𝑟)𝑧 

then (𝛼𝑟𝐷 + 𝛽𝑟𝐷′ + 𝛾𝑟)𝑍 = 0 

which according to Theorem 4.3.4 has solution 

𝑍 =𝑒𝑥𝑝 𝑒𝑥𝑝 (−
𝛾𝑟𝑥

𝛼𝑟
) 𝜙𝑟(𝛽𝑟𝑥 − 𝛼𝑟𝑦) 

if 𝛼𝑟 ≠ 0. To find the corresponding function 𝑧 we have therefore to solve the first order linear 
partial differential equation 

𝛼𝑟
𝜕𝑧

𝜕𝑥
+ 𝛽𝑟

𝜕𝑧

𝜕𝑦
+ 𝛾𝑟𝑧 = 𝑒𝑥𝑝 𝑒𝑥𝑝 (−

𝛾𝑟𝑥

𝛼𝑟
) 𝜙𝑟(𝛽𝑟𝑥 − 𝛼𝑟𝑦).     (4.3.9) 

We get the auxiliary equations are 

𝑑𝑥

𝛼𝑟
=

𝑑𝑦

𝛽𝑟
=

𝑑𝑧

−𝛾𝑟𝑧 + 𝑒
−

𝛾𝑟𝑥

𝛼𝑟 𝜙𝑟(𝛽𝑟𝑥 − 𝛼𝑟𝑦)
 

with solution   

𝛽𝑟𝑥 − 𝛼𝑟𝑦 = 𝑐1 

Substituting this in auxiliary equations, we get the  

𝑑𝑥

𝛼𝑟
=

𝑑𝑧

−𝛾𝑟𝑧 + 𝑒
−

𝛾𝑟𝑥

𝛼𝑟 𝜙𝑟(𝑐1)
 

which is a first order linear equation with solution  

 

𝑧 =
1

𝛼𝑟

{𝜙𝑟(𝑐1)𝑥 + 𝑐2}𝑒
−

𝛾𝑟𝑥

𝛼𝑟  

Equation (4.3.9) and hence equation (4.3.8), therefore has a solution  

𝑧 =
1

𝛼𝑟

{𝜙𝑟(𝛽𝑟𝑥 − 𝛼𝑟𝑦)𝑥 + 𝜓𝑟(𝛽𝑟𝑥 − 𝛼𝑟𝑦)}𝑒
−

𝛾𝑟𝑥

𝛼𝑟  

Where the functions 𝜙𝑟 , 𝜓𝑟 are arbitrary. 

This result readily generalized (by induction) to give 

 

Remarks 4.3.8: If (𝛼𝑟𝐷 + 𝛽𝑟𝐷′ + 𝛾𝑟)𝑛(𝛼𝑟 ≠ 0) is a factor of 𝐹(𝐷, 𝐷′) and if the functions 
𝜙𝑟1 , 𝜙𝑟2 , … … . . 𝜙𝑟𝑛 are arbitrary, then  
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𝑒
−

𝛾𝑟𝑥

𝛼𝑟 ∑

𝑛

𝑠=1

𝑥𝑠−1𝜙𝑟𝑠(𝛽𝑟𝑥 − 𝛼𝑟𝑦) 

is a solution of 𝐹(𝐷, 𝐷′) = 0. 

Similarly the generalization, If (𝛽𝑟𝐷′ + 𝛾𝑟)𝑚(𝛼𝑟 ≠ 0) is a factor of 𝐹(𝐷, 𝐷′) and if the functions 
𝜙𝑟1 , 𝜙𝑟2 , … … . . 𝜙𝑟𝑚 are arbitrary, then 

𝑒
−

𝛾𝑟𝑦

𝛽𝑟 ∑

𝑚

𝑠=1

𝑥𝑠−1𝜙𝑟𝑠(𝛽𝑟𝑥) 

is a solution of 𝐹(𝐷, 𝐷′) = 0. 

We are now in a position to state the complementary function of the equation (1) when the operator 
F(D,D) is reducible. As a result, we see that if 

𝐹(𝐷, 𝐷′) = ∏𝑛
𝑟=1 (𝛼𝑟𝐷 + 𝛽𝑟𝐷′ + 𝛾𝑟)𝑚𝑟      (4.3.10) 

and if none of the 𝛼𝑟
′ 𝑠  is zero, then the corresponding complementary function is 

𝑢 = ∑𝑛
𝑟=1 𝑒𝑥𝑝 𝑒𝑥𝑝 (−

𝛾𝑟𝑥

𝛼𝑟
) ∑𝑚𝑟

𝑠=1 𝑥𝑠−1𝜙𝑟𝑠(𝛽𝑟𝑥 − 𝛼𝑟𝑦)     

 (4.3.11) 

where the functions  𝜙𝑟𝑠(𝑠 =  1, . . . , 𝑛𝑟;  𝑟 =  1, . . . , 𝑛)  are arbitrary. If some of the 𝛼𝑟
′ 𝑠  are zero, the 

necessary modifications to the expression (4.3.11) can be made. From equation (4.3.10) we see that 
the order of equation (4.3.3) is m1 + m2 + + mn; since the solution (4.3.11) contains the same number 
of arbitrary functions, it has the correct number and is thus the complete complementary function. 
To illustrate the procedure we consider a simple special case: 

 
Example 4.3.9: Solve the equation 

𝜕4𝑧

𝜕𝑥4
+ 

𝜕4𝑧

𝜕𝑦4
= 2

𝜕4𝑧

𝜕𝑥2𝜕𝑦2
 

Solution: In the notation of this section this equation can be written in the form  

(𝐷 + 𝐷′)2(𝐷 − 𝐷′)2 = 0 

so that by the rule (4.3.11) the solution of it is  

𝑧 = 𝑥𝜙1(𝑥 − 𝑦) + 𝜙2(𝑥 − 𝑦) + 𝑥𝜓1(𝑥 + 𝑦) + 𝜓2(𝑥 + 𝑦) 

where the functions 𝜙1 , 𝜙2 , 𝜓1, 𝜓2are arbitrary. 

 

4.5 Irreducible Equations 

When the operator 𝐹(𝐷, 𝐷′) is irreducible, it is not always possible to find a solution with the full 
number of arbitrary functions, but it is possible to construct solutions which contain as many 
arbitrary constants as we wish. The equation can be homogenous or non-homogeneous which 
cannot reduced to linear factors. 

We can present C.F. of irreducible equation  

𝐹(𝐷, 𝐷′) = 0             
(4.3.12)  

in the following manner .  

C.F.= ∑ 𝐴𝑒ℎ𝑥+𝑘𝑦 

where A, h, k are arbitrary constants such that 𝐹(ℎ, 𝑘) = 0. 

 

Example 4.3.10: Solve(𝐷 − 𝐷′2)𝑧 = 0 

Solution: Here 𝐷 − 𝐷′2 is not a linear factor in D and D’. 

Let  𝑧 = ∑ 𝐴𝑒ℎ𝑥+𝑘𝑦  be a trial solution of the given equation. Then 

  LOVELY PROFESSIONAL UNIVERSITY  40



Unit 04: Linear Second Order Partial Differential equation with Constant 
Coefficients-II 

 

Notes 

𝐷𝑧 = 𝐴ℎ𝑒ℎ𝑥+𝑘𝑦 and 𝐷′2𝑧 = 𝐴𝑘2𝑒ℎ𝑥+𝑘𝑦 . 

Putting these values in the given differential equation, we get 

𝐴(ℎ − 𝑘2)𝑒ℎ𝑥+𝑘𝑦 = 0 so that ℎ − 𝑘2 = 0  or ℎ = 𝑘2 

Replacing h by k2 , the most general solution of the given equation is 

𝑧 = ∑ 𝐴𝑒𝑘2𝑥+𝑘𝑦, where A and k are arbitrary constants. 

 

Summary 

 The origin of second order differential equation is defined. 

 The concept of classification second order differential equation is discussed. 

 Linear partial differential equation with constant coefficients is elaborated. 

 The solutions of reducible and irreducible equations are derived with examples. 

 

Keywords 

● Linear second-order partial differential equation  

● Origin of second-order equations 

● Classification 

● Reducible  

● Irreducible  

 

Self Assessment 

1. The partial differential equation   is classified as 

A. Elliptic 

B. Parabolic 

C. Hyperbolic 

D. None of the above 

 

2. Using substitution, which of the following equations are solutions to the partial 

differential equation? 

                      

A.  

B.  

C.  

D.  
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3. The partial differential equation     is classified as 

A. Elliptic 

B. Parabolic 

C. Hyperbolic 

D. None of the above 

 

4. The partial differential equation    is classified as 

A. Elliptic 

B. Parabolic 

C. Hyperbolic 

D. None of the above 

5. The partial differential equation 
2

2

x

u

x

u
u

t

u















  is a  

A. linear equation of order 2 

B. non-linear equation of order 2 

C. linear equation of order 1 

D. non-linear equation of order 1 

 

6. What is the general form of second order non-linear partial differential equations (x and y 

being independent variables and z being a dependent variable)? 

A. F(x,y,z,∂z/∂x,∂z/∂y,∂2z/∂x2,∂2z/∂y2,∂2z/∂x∂y)=0 

B.  F(x,z,∂z/∂x,∂z/∂y,∂2z/∂x2,∂2z/∂y2)=0 

C. F(y,z,∂z∂x,∂z∂y)=0 

D.  F(x,y)=0 

 

7. The partial differential equation   of n order is requires 

A. Only one independent variable 

B. Two or more independent variables 

C. More than three independent variables 

D. Equal number of dependent and independent variables 

 

8. In partial differential equation   DDyxfzDDf  ,,),( means 

A. 
yx 







 

B. yx

 2
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C. yx 






2

2

 

D. 
xy 






2

2

 

9. In the solution of differential equation 
yxzDDDD 2))(2( 

, the CF is 

A. 
)()2( 21 yxyx  

 

B. 
)2()2( 21 xyxy  

 

C. 
)()( 21 xyyx  

 

D. 
)()2( 21 xyxy  

 

 

10. Point out the correct homogeneous linear partial differential equation 

A. 

x
x

z

x

z
sin

2

2











 

B. 

yx
y

z

x

z

x

z















2

2

 

C. 

0
2

22

2

2















xy

y

z

xy

z

x

z

 

D. 

0
2

2











y

z

x

z

 

11. Solution of the differential equation 06116 2223  DDDDDD is 

 

A. 
)3()2()( 321 xyxyxyz  

 

B. 
)3()()( 321 xyxyxyz  

 

C. )32()2()( 321 xyxyxyz  
 

D. 
)3()2()( 321 xyxyxyz  

 

12.The solution of differential equation 0)'33( 3223  zDDDDDD  is 

A. 
)()()2( 321 yxxyxyx  

 

B. 
)()()( 3

2

21 xyxxyxxy  
 

C. 
)()()2( 3

2

21 yxxyxxyx  
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D. None of these 

13. In the solution of differential equation yxtsr 2252  , the CF is 

A. 
)()2( 21 yxyx  

 

B. 
)2()2( 21 xyxy  

 

C. 
)()( 21 xyyx  

 

D. 
)()2( 21 xyxy  

 

14. Solution of the differential equation 0)12)(1'2( 2  ZDDDD is 

 A.   kyxkx Aexyez )12(

1

2

)2(
 

B.   kyxkx Aexyez )12(

1

2

)22(
 

C.   kyxkx Aexyez )12(

1

2

)2(
 

D.   kyxkx Aexyez )2(

1

2

)(
 

15. Solution of the differential equation 0)( 2  zDD is 

 

A. 
  ykxAez

 

B. 
  kyxkAez

2

 

C.   ykxAez
 

D. None of these 

 

Answers for Self Assessment 

l. C 2. A 3. B 4. D 5. B 

6. A 7. B 8. A 9. A 10. D 

11. A 12. B 13. B 14. C 15. B 

 

Review Questions 

Q1.  Solve (𝐷3 − 3𝐷2𝐷′ + 2𝐷𝐷′2)𝑧 = 0. 

Q2.  Solve (𝐷2 + 𝐷𝐷′ − 6𝐷′2)𝑧 = 0. 
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Q3. .  Solve 25𝑟 − 40𝑠 + 16𝑡 = 0 

Q4.  Solve (𝐷3 − 4𝐷𝐷′2 + 4𝐷𝐷′2)𝑧 = 0 

Q5.  Solve (2𝐷4 − 3𝐷2𝐷′ + 𝐷′2)𝑧 = 0 

Q6. Solve (𝐷 + 2𝐷′ − 3)(𝐷2 + 𝐷′)𝑧 = 0 

 

 Further Readings 

1.. I.N. Sneddon(1957), Elements Of Partial Differential Equations, Mcgraw Hill 
Education. 

2. Lawrence C. Evans (1998), Partial Differential Equations, Universities Press Pvt. Ltd 

 

 
Web Links 

https://onlinecourses.nptel.ac.in/noc22_ma73/preview 

https://onlinecourses.nptel.ac.in/noc21_ma09/preview 

https://onlinecourses.swayam2.ac.in/cec22_ma12/preview 
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Objectives 

After studying this unit, you will be able to 

 identify the concept of need of particular integral. 

 understand the concept of homogenous and non-homogenous differential equation 

solutions. 

 know about the conditions to find particular integral for second order and higher order.  

 apply appropriate method to find the complete solution. 

 

Introduction 

In in this chapter, how to find the particular integral for both homogeneous and non-homogeneous  
higher order linear partial differential equations will be discussed with different all its type. 

 

5.1 Particular Integral (P.I.) of Homogeneous Linear Partial 
Differential Equation 

𝐹(𝐷, 𝐷′)𝑧 = 𝑓(𝑥, 𝑦)        (5.1.1) 

The inverse operator
1

𝐹(𝐷,𝐷′)
of the operator 𝐹(𝐷, 𝐷′)is defined by the following identity  

𝐹(𝐷, 𝐷′) (
1

𝐹(𝐷, 𝐷′)
) 𝑓(𝑥, 𝑦) = 𝑓(𝑥, 𝑦)) 

Particular integral (P.I.) of (5.1.1) is (
1

𝐹(𝐷,𝐷′)
) 𝑓(𝑥, 𝑦). 

In what follows we shall treat the symbolic functions of D and D’ as we do for the symbolic 
functions of D alone in ordinary differential equations. Thus it will be factorized and resolved into 

Dr. Preety Kalra, Lovely Professional University 
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partial fractions or expanded in an infinite series as the case may be. The reader is advised to note 
carefully the following results 

(i) D, D2 , ... will stand for differentiating partially with respect to x once, twice and so 

on. 

For examples,    𝐷𝑥4𝑦5 =
𝜕

𝜕𝑥
𝑥4𝑦5 = 4𝑥3𝑦5,  𝐷2𝑥4𝑦5 =

𝜕2

𝜕𝑥2
𝑥4𝑦5 = 12𝑥2𝑦5. 

(ii) D’, D’2 ... will stand for differentiating partially with respect to y once, twice and so 

on.  

For example, 𝐷′𝑥4𝑦5 =
𝜕

𝜕𝑦
𝑥4𝑦5 = 5𝑥4𝑦4,  𝐷′2𝑥4𝑦5 =

𝜕2

𝜕𝑦2
𝑥4𝑦5 = 20𝑥4𝑦3. 

(iii) 1/D, 1/D2 , ... will stand for integrating partially with respect to x once, twice and so 

on.  

For example, 
1

𝐷
𝑥4𝑦5 = ∫ 𝑥4𝑦5𝑑𝑥 =

𝑥5𝑦5

5
,   

1

𝐷2
𝑥4𝑦5 = ∫ ∫ 𝑥4 𝑦5𝑑𝑥 =

𝑥6𝑦5

30
 

(iv) 1/D’, 1/D’2 , ... will stand for integrating partially with respect to y once, twice and so 

on.  

For example,  
1

𝐷′
𝑥4𝑦5 = ∫ 𝑥4𝑦5𝑑𝑦 =

𝑥4𝑦6

6
,  

1

𝐷′2
𝑥4𝑦5 = ∫ ∫ 𝑥4 𝑦5𝑑𝑥 =

𝑥4𝑦7

42
 

 

5.2 Short methods of finding the P.I. in certain cases 

Before taking up the general method for finding P.I. of F(D, D’)z = f(x, y) we begin with cases when 
f(x, y) is in two special forms. The methods corresponding to these forms are much shorter than the 
general methods. 

A Short Method I. When f(x, y) is of the form f(ax + by). 

The method under consideration is based on the following theorem.  

Theorem 5.2.1: If F(D, D’) be homogeneous function of D and D’ of degree n, then  

1

𝐹(𝐷, 𝐷′)
𝜙(𝑛)(𝑎𝑥 + 𝑏𝑦) =

1

𝐹(𝑎, 𝑏)
𝜙(𝑎𝑥 + 𝑏𝑦) 

 provided 𝐹(𝑎, 𝑏) ≠ 0, 𝜙(𝑛) being the nth derivative of 𝜙 w.r.t. ax + by as a whole. 

Proof: By direct differentiation, we have 𝐷𝑟𝜙(𝑎𝑥 + 𝑏𝑦) = 𝑎𝑟𝜙(𝑟)(𝑎𝑥 + 𝑏𝑦), 

𝐷′𝑠𝜙(𝑎𝑥 + 𝑏𝑦) = 𝑏𝑠𝜙(𝑠)(𝑎𝑥 + 𝑏𝑦), and 𝐷𝑟𝐷′𝑠𝜙(𝑎𝑥 + 𝑏𝑦) = 𝑎𝑟𝑏𝑠𝜙(𝑟+𝑠)(𝑎𝑥 + 𝑏𝑦). 

Since F(D, D’) is homogeneous function of degree n, so we have 

𝐹(𝐷, 𝐷′)𝜙(𝑎𝑥 + 𝑏𝑦) = 𝐹(𝑎, 𝑏)𝜙(𝑛)(𝑎𝑥 + 𝑏𝑦)    (5.2.1) 

Operating both sides of (5.2.1) by 1/F(D, D’), we have 

𝜙(𝑎𝑥 + 𝑏𝑦) = 𝐹(𝑎, 𝑏)
1

𝐹(𝐷,𝐷′)
𝜙(𝑛)(𝑎𝑥 + 𝑏𝑦).    (5.2.2) 

Since 𝐹(𝑎, 𝑏) ≠ 0,dividing both sides of (5.2.2) by F(a, b), we get 

1

𝐹(𝐷,𝐷′)
𝜙(𝑛)(𝑎𝑥 + 𝑏𝑦) =

1

𝐹(𝑎,𝑏)
𝜙(𝑎𝑥 + 𝑏𝑦).    (5.2.3) 

An important deduction from result (3): Putting ax + by = v, (5.2.3) gives 

1

𝐹(𝐷,𝐷′)
𝜙(𝑛)(𝑣) =

1

𝐹(𝑎,𝑏)
𝜙(𝑣)      (5.2.4) 

Integrating both sides of (5.2.4) n times w.r.t. ‘v’, we have 

1

𝐹(𝐷,𝐷′)
𝜙(𝑣) =

1

𝐹(𝑎,𝑏)
∫ ∫ … … … ∫ 𝜙(𝑣) 𝑑𝑣𝑑𝑣 … … … . 𝑑𝑣  where 𝑣 = 𝑎𝑥 + 𝑏𝑦. 

Exceptional case when F(a, b) = 0. When F(a, b) = 0, then the above theorem does not hold good. In 
such a case the new method is based on the following theorem. Note that F(a, b) = 0 if and only if 
(bD – aD’) is a factor F(D, D’). 
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Theorem 5.2.2:  
1

(𝑏𝐷−𝑎𝐷′)𝑛
𝜙(𝑎𝑥 + 𝑏𝑦) =

𝑥𝑛

𝑏𝑛𝑛!
𝜙(𝑎𝑥 + 𝑏𝑦). 

Proof: Consider the equation (𝑏𝐷 − 𝑎𝐷′)𝑧 = 𝜙(𝑎𝑥 + 𝑏𝑦)    (5.2.5) 

or 

𝑏𝑝 − 𝑎𝑞 = 𝑥𝑟𝜙(𝑎𝑥 + 𝑏𝑦)       (5.2.6) 

Lagrange’s subsidiary equations for (5.2.6) are 
𝑑𝑥

𝑏
=

𝑑𝑦

−𝑎
=

𝑑𝑧

𝑥𝑟𝜙(𝑎𝑥+𝑏𝑦)
  (5.2.7) 

Taking the first two fractions of (5.2.7),  𝑎𝑑𝑥 + 𝑏𝑑𝑦 = 0 so that 𝑎𝑥 + 𝑏𝑦 = 𝑐1 (5.2.8) 

Taking the first and third members of (5.2.7) and using (5.2.8), we get 

𝑑𝑥

𝑏
=

𝑑𝑧

𝑥𝑟𝜙(𝑐1)
 or   𝑑𝑧 =

𝑥𝑟𝜙(𝑐1)

𝑏
𝑑𝑥 

Integrating, 𝑧 =
𝑥𝑟+1𝜙(𝑐1)

𝑏(𝑟+1)
=

𝑥𝑟+1𝜙(𝑎𝑥+𝑏𝑦)

𝑏(𝑟+1)
     (5.2.9) 

(5.2.9) is a solution of (5.2.5). 

Now, from (5.2.5),  𝑧 =
1

𝑏𝐷−𝑎𝐷′
𝑥𝑟𝜙(𝑎𝑥 + 𝑏𝑦)     (5.2.10) 

From (5.2.9) and (5.2.10)  

𝑥𝑟+1𝜙(𝑎𝑥+𝑏𝑦)

𝑏(𝑟+1)
=

1

𝑏𝐷−𝑎𝐷′
𝑥𝑟𝜙(𝑎𝑥 + 𝑏𝑦) by (5.2.8)     (5.2.11) 

Hence, if 𝑧 =
1

(𝑏𝐷−𝑎𝐷′)𝑛
𝜙(𝑎𝑥 + 𝑏𝑦), then we have 

𝑧 =
1

(𝑏𝐷−𝑎𝐷′)𝑛−1
[

1

𝑏𝐷−𝑎𝐷′
𝑥0𝜙(𝑎𝑥 + 𝑏𝑦)] as 𝑥0 = 1. 

=
1

(𝑏𝐷−𝑎𝐷′)𝑛−1

𝑥

𝑏
𝜙(𝑎𝑥 + 𝑏𝑦)using (5.2.11) for r = 0 

=
1

𝑏

1

(𝑏𝐷 − 𝑎𝐷′)𝑛−2
[

1

𝑏𝐷 − 𝑎𝐷′
𝑥𝜙(𝑎𝑥 + 𝑏𝑦)] 

=
1

𝑏

1

(𝑏𝐷−𝑎𝐷′)𝑛−2

𝑥2

2𝑏
 𝜙(𝑎𝑥 + 𝑏𝑦)  using (5.2.11) for r = 1 

=
1

(𝑏𝐷−𝑎𝐷′)𝑛−2

𝑥2

2𝑏2
 𝜙(𝑎𝑥 + 𝑏𝑦)   

after repeated use of (5.2.11) for n – 2 times more 

=
𝑥𝑛

𝑛! 𝑏𝑛
 𝜙(𝑎𝑥 + 𝑏𝑦)   

 

Solved Examples based on Short Method I 

 

Example 5.2.1: Solve(𝐷2 + 3𝐷𝐷′ + 2𝐷′2)𝑧 = 𝑥 + 𝑦. 

Solution:  The auxiliary equation of the given equation is 

𝐷2 + 3𝐷𝐷′ + 2𝐷′2 = 0 

(𝐷 + 2𝐷′)(𝐷 + 𝐷′) = 0 

C.F is 𝜙1(𝑥 − 𝑦) + 𝜙2(2𝑥 − 𝑦), 𝜙1 and 𝜙2being arbitrary functions. 

Now, P.I = 
1

𝐷2+3𝐷𝐷′+2𝐷′2
(𝑥 + 𝑦) 

1

12+3.1.1+2.12 ∫ ∫ 𝑣 𝑑𝑣𝑑𝑣  where 𝑣 = 𝑥 + 𝑦 

= 
1

6
∫

𝑣2

2
𝑑𝑣 = 

𝑣3

36
=

1

36
(𝑥 + 𝑦)3. 

Hence required general solution is 𝑧 = 𝐶. 𝐹 + 𝑃. 𝐼 

𝑧 = is 𝜙1(𝑥 − 𝑦) + 𝜙2(2𝑥 − 𝑦) +
1

36
(𝑥 + 𝑦)3. 
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Example 5.2.2: Solve(𝐷3 − 6𝐷2𝐷′ + 11𝐷𝐷′2
− 6𝐷′3)𝑧 =  𝑒5𝑥+6𝑦 

Solution: The auxiliary equation of the given equation is (𝐷3 − 6𝐷2𝐷′ + 11𝐷𝐷′2
− 6𝐷′3 = 0 

(𝐷 − 𝐷′)(𝐷 − 2𝐷′)(𝐷 − 3𝐷′) = 0 

C.F is 𝜙1(𝑥 + 𝑦) + 𝜙2(2𝑥 + 𝑦) + 𝜙3(3𝑥 + 𝑦), 𝜙1 , 𝜙2 and 𝜙3being arbitrary functions. 

Now, P.I =  
1

(𝐷−𝐷′)(𝐷−2𝐷′)(𝐷−3𝐷′)
𝑒5𝑥+6𝑦 

=  
1

(5−6)(5−12)(5−18)
∫ ∫ ∫ 𝑒𝑣 𝑑𝑣𝑑𝑣𝑑𝑣 where 𝑣 = 5𝑥 + 6𝑦. 

= −
1

91
∫ ∫ 𝑒𝑣 𝑑𝑣𝑑𝑣 == −

1

91
𝑒𝑣 = = −

1

91
𝑒5𝑥+6𝑦 

Hence the required solution is 𝑧 = 𝜙1(𝑥 + 𝑦) + 𝜙2(2𝑥 + 𝑦) + 𝜙3(3𝑥 + 𝑦) −
1

91
𝑒5𝑥+6𝑦 

 

Example 5.2.3: Solve (𝐷3 − 4𝐷2𝐷′ + 4𝐷𝐷′2
)𝑧 =  2sin (3𝑥 + 2𝑦)   

Solution: The auxiliary equation of the given equation is  

𝐷(𝐷2 − 4𝐷𝐷′ + 4𝐷′2
) = 0 

𝐷(𝐷 − 2𝐷′)2 = 0 

C.F is 𝜙1(𝑦) + 𝜙2(2𝑥 + 𝑦) + 𝑥𝜙3(2𝑥 + 𝑦), 𝜙1 , 𝜙2 and 𝜙3being arbitrary functions. 

Now, P.I =  
1

𝐷(𝐷−2𝐷′)2
2sin (3𝑥 + 2𝑦)   

= 2
1

3(3−2 .2)2 ∫ ∫ ∫ 𝑆𝑖𝑛 𝑣 𝑑𝑣𝑑𝑣𝑑𝑣 where v = (3𝑥 + 2𝑦)   

=
2

3
∫ ∫ − cos 𝑣 𝑑𝑣𝑑𝑣 = −

2

3
∫ sin 𝑣 𝑑𝑣  =

2

3
cos 𝑣  

=
2

3
𝑐𝑜𝑠(3𝑥 + 2𝑦)   

Hence the required solution is 𝑧 = 𝜙1(𝑦) + 𝜙2(2𝑥 + 𝑦) + 𝑥𝜙3(2𝑥 + 𝑦) +
2

3
𝑐𝑜𝑠(3𝑥 + 2𝑦)   

 

Example 5.2.4: Solve (𝐷2 − 6𝐷𝐷′ + 9𝐷′2
)𝑧 =  𝑡𝑎𝑛 (3𝑥 + 𝑦)   

Solution: Here auxiliary equation is (𝐷2 − 6𝐷𝐷′ + 9𝐷′2
= 0 

(𝐷 − 3𝐷′)2 = 0 

C.F is 𝜙1(𝑦 + 3𝑥) + 𝑥𝜙2(𝑦 + 3𝑥), 𝜙1 and 𝜙2being arbitrary functions. 

Now, P.I =  
1

(𝐷−3𝐷′)2
𝑡𝑎𝑛 (3𝑥 + 𝑦)   

=  
𝑥2

12 .  2!
𝑡𝑎 𝑛(3𝑥 + 𝑦) =

𝑥2

2
tan (3𝑥 + 𝑦)   

The required solution is 𝑧 = 𝜙1(𝑦 + 3𝑥) + 𝑥𝜙2(𝑦 + 3𝑥) +
𝑥2

2
tan (3𝑥 + 𝑦), 𝜙1 and 𝜙2being arbitrary 

functions. 

 

5.3 Short Method II. When f(x, y) is of the form xmyn or a Rational 
Integral Algebraic Function of x and y 

Then the particular integral (P.I.) is evaluated by expanding the symbolic function 1/f (D, D’) in an 
infinite series of ascending powers of D or D’. In solved examples 1 and 2 of Art. 4.11, we have 
shown that P.I. obtained on expanding 1/f(D, D’) in ascending powers of D is different from that 
obtained on expanding 1/f(D, D’) in ascending powers of D’. Since to get the required general 
solution of given differential equation any P.I. is required, any of the two methods can be used. The 
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difference in the two answers of P.I. is not material as it can be incorporated in the arbitrary 
functions occuring in C.F. of that given differential equation. 

 

Remarks 5.3.1: If n < m, 1/f(D, D’) should be expanded in powers of D’/D whereas if m 
< n, 1/f(D, D’) should be expanded in powers of D/D’. 

 

Solved Examples based on Short Method II 

 

Example 5.3.1:  Solve(𝐷2 − 𝑎2𝐷′2
)𝑧 =  𝑥   

Solution: Here auxiliary equation is 𝐷2 − 𝑎2𝐷′2
= 0 

(𝐷 − 𝑎𝐷′)(𝐷 + 𝑎𝐷′) = 0 

C.F is 𝜙1(𝑦 + 𝑎𝑥) + 𝜙2(𝑦 − 𝑎𝑥), 𝜙1 and 𝜙2being arbitrary functions. 

Now, P.I =  
1

𝐷2−𝑎2𝐷′2  𝑥 =
1

𝐷2[1−𝑎2𝐷′2

𝐷2 ]
  𝑥 

= 
1

𝐷2
[1 − 𝑎2 𝐷′2

𝐷2
]

−1

 𝑥 =
1

𝐷2
[1 + 𝑎2 𝐷′2

𝐷2
+ ⋯ . ]  𝑥 =

1

𝐷2
𝑥 =

𝑥3

6
.  

The required solution is 𝑧 = 𝜙1(𝑦 + 𝑎𝑥) + 𝜙2(𝑦 − 𝑎𝑥) +
𝑥3

6
, 𝜙1 and 𝜙2being arbitrary functions. 

 

Example 5.3.2: Solve(𝐷2 − 6𝐷𝐷′ + 9𝐷′2
)𝑧 =  12𝑥2 + 36𝑥𝑦.     

Solution: Here auxiliary equation is (𝐷2 − 6𝐷𝐷′ + 9𝐷′2
= 0 

(𝐷 − 3𝐷′)2 = 0 

C.F is 𝜙1(𝑦 + 3𝑥) + 𝑥𝜙2(𝑦 + 3𝑥), 𝜙1 and 𝜙2being arbitrary functions. 

Now, P.I =  
1

(𝐷−3𝐷′)2
12(𝑥2 + 3𝑥𝑦) = 12

1

𝐷2(1−
3𝐷′

𝐷
)

2 (𝑥2 + 3𝑥𝑦) 

= 
12

𝐷2
(1 −

3𝐷′

𝐷
)

−2

(𝑥2 + 3𝑥𝑦) =
12

𝐷2
(1 + 6

𝐷′

𝐷
+ ⋯ … . . ) (𝑥2 + 3𝑥𝑦) 

[Retain upto D’ as maximum power of y in (𝑥2 + 3𝑥𝑦) is one] 

12

𝐷2
(𝑥2 + 3𝑥𝑦 + 6

𝐷′

𝐷
(𝑥2 + 3𝑥𝑦)) =

12

𝐷2
(𝑥2 + 3𝑥𝑦 + 6

1

𝐷
(3𝑥)) 

12

𝐷2
(𝑥2 + 3𝑥𝑦 + 18

𝑥2

2
) =

12

𝐷2
(10𝑥2 + 3𝑥𝑦) = 120 (

𝑥4

3 . 4
) + 36𝑦 (

𝑥3

2 . 3
) = 10 𝑥4 + 6𝑥3𝑦. 

 

5.4 A General Method of Finding the Particular Integral of Linear 
Homogeneous Equation with Constant Coefficients 

Working rule for finding P.I. (General method) of  𝐹(𝐷, 𝐷′)𝑧 = 𝑓(𝑥, 𝑦)   (5.4.1) 

𝑃. 𝐼 =
1

(𝐷−𝑚1𝐷′)(𝐷−𝑚2𝐷′)(𝐷−𝑚3𝐷′)…………(𝐷−𝑚𝑛𝐷′)
𝑓(𝑥, 𝑦)     (5.4.2) 

We shall use one of the following formulas :  

Formula I : 
1

(𝐷−𝑚𝐷′)
𝑓(𝑥, 𝑦) = ∫ 𝑓(𝑥, 𝑐 − 𝑚𝑥)𝑑𝑥,  where   c = y + mx    (5.4.3)  

Formula II : : 
1

(𝐷+𝑚𝐷′)
𝑓(𝑥, 𝑦) = ∫ 𝑓(𝑥, 𝑐 + 𝑚𝑥)𝑑𝑥, where c = y - mx   (5.4.4) 

Hence in order to evaluate P.I. (5.4.2), we apply (5.4.3) or (5.4.4) depending on the factor 𝐷 − 𝑚𝐷′ 
and 𝐷 + 𝑚𝐷′. Note that result (5.3.4) can be obtained from (5.3.3) by replacing m by –m. 
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Example 5.4.1: Solve (𝐷2 − 𝐷𝐷′ − 2𝐷′2
)𝑧 = (𝑦 − 1)𝑒𝑥 

Solution: Here given (𝐷2 − 𝐷𝐷′ − 2𝐷′2
)𝑧 = (𝑦 − 1)𝑒𝑥or (𝐷 + 𝐷′)(𝐷 − 2𝐷′)𝑧 = (𝑦 − 1)𝑒𝑥 

Its auxiliary equation is (𝐷 + 𝐷′)(𝐷 − 2𝐷′) = 0 

The C.F is 𝜙1(𝑦 − 𝑥) + 𝜙2(𝑦 + 2𝑥), 𝜙1 and 𝜙2being arbitrary functions 

P.I. =
1

(𝐷+𝐷′)(𝐷−2𝐷′)
(𝑦 − 1)𝑒𝑥 =

1

(𝐷+𝐷′)
{

1

(𝐷−2𝐷′)
(𝑦 − 1)𝑒𝑥} 

=
1

(𝐷+𝐷′)
∫(𝑐 − 2𝑥 − 1)𝑒𝑥𝑑𝑥 taking  𝑐 = 𝑦 + 2𝑥. 

=
1

(𝐷+𝐷′)
 {(𝑐 − 2𝑥 − 1)𝑒𝑥 − ∫(−2)𝑒𝑥𝑑𝑥 },   integrating by parts 

=
1

(𝐷 + 𝐷′)
{(𝑐 − 2𝑥 − 1)𝑒𝑥 + 2𝑒𝑥} =

1

(𝐷 + 𝐷′)
{(𝑐 − 2𝑥 + 1)𝑒𝑥} 

=
1

(𝐷 + 𝐷′)
{(𝑦 + 2𝑥 − 2𝑥 + 1)𝑒𝑥} ==

1

(𝐷 + 𝐷′)
 (𝑦 + 1)𝑒𝑥 

= ∫(𝑐′ + 𝑥 + 1)𝑒𝑥𝑑𝑥 and taking 𝑐′ = 𝑦 − 𝑥 

= (𝑐′ + 𝑥 + 1)𝑒𝑥 − 𝑒𝑥 = 𝑦𝑒𝑥 since as 𝑐′ = 𝑦 − 𝑥 

Hence the required general solution is 𝑧 = 𝜙1(𝑦 − 𝑥) + 𝜙2(𝑦 + 2𝑥) + 𝑦𝑒𝑥 

 
Example 5.4.2: Solve

𝜕𝑧

𝜕𝑥
+

𝜕𝑧

𝜕𝑦
= 𝑠𝑖𝑛𝑥. 

Solution:  Rewriting, the given equation is (𝐷 + 𝐷′)𝑧 = 𝑠𝑖𝑛𝑥. 

Its auxiliary equation is (𝐷 + 𝐷′) = 0. 

The C.F is 𝜙(𝑦 − 𝑥), where 𝜙 is an arbitrary function. 

P.I. =
1

(𝐷+𝐷′)
𝑠𝑖𝑛𝑥 = ∫ 𝑠𝑖𝑛𝑥 𝑑𝑥 = −cos 𝑥  

Hence the required solution is . 𝑧 = 𝐶. 𝐹 + 𝑃. 𝐼 = 𝜙(𝑦 − 𝑥) − cos 𝑥. 

 

5.5 Particular Integral of Non–Homogeneous Linear Partial 
Differential Equation 

𝐹(𝐷, 𝐷′)𝑧 = 𝑓(𝑥, 𝑦)        (5.5.1) 

The inverse operator 
1

𝐹(𝐷,𝐷′)
 of the operator 𝐹(𝐷, 𝐷′)  is defined by the following identity:  

𝐹(𝐷, 𝐷′) (
1

𝐹(𝐷, 𝐷′)
 𝑓(𝑥, 𝑦)) = 𝑓(𝑥, 𝑦) 

 Particular integral (P.I.) = (
1

𝐹(𝐷,𝐷′)
 𝑓(𝑥, 𝑦)). 

Determination particular integral of non–homogeneous linear partial differential 
equations (reducible or irreducible), namely 

𝐹(𝐷, 𝐷′)𝑧 = 𝑓(𝑥, 𝑦)        (5.5.2) 

The methods of finding particular integrals of non–homogeneous partial differential equations are 
very similar to those of ordinary linear differential equation with constant coefficients. We now 
give a list of some cases of finding P.I. of (5.5.2). 

Case I. When 𝑓(𝑥, 𝑦) = 𝑒𝑎𝑥+𝑏𝑦  and 𝐹(𝑎, 𝑏) ≠ 0. 

Then P.I = 
1

𝐹(𝐷,𝐷′)
𝑒𝑎𝑥+𝑏𝑦 =

1

𝐹(𝑎,𝑏)
𝑒𝑎𝑥+𝑏𝑦. 

Thus in this case we replace D by a and D’ by b. 

  LOVELY PROFESSIONAL UNIVERSITY  51



Unit 05: Linear Second Order Partial Differential Equations with Constant 
Coefficients-II 

Notes 

Case II. When 𝑓(𝑥, 𝑦) = Sin (𝑎𝑥 + 𝑏𝑦)  or  Cos (𝑎𝑥 + 𝑏𝑦) 

Then P.I = 
1

𝐹(𝐷,𝐷′)
sin (𝑎𝑥 + 𝑏𝑦) or 

1

𝐹(𝐷,𝐷′)
cos (𝑎𝑥 + 𝑏𝑦) 

Which is evaluated by putting D2 = –a2 , D2 = –b2 , DD' = –ab, provided the denominator is non–
zero. 

Case III. When 𝑓(𝑥, 𝑦) = 𝑥𝑚𝑦𝑛 . 

Then, P.I = 
1

𝐹(𝐷,𝐷′)
𝑥𝑚𝑦𝑛 = [𝐹(𝐷, 𝐷′]−1𝑥𝑚𝑦𝑛 

which is evaluated by expanding [F(D, D’)]–1 in ascending powers of D’/D or D/D’ or D or D’ as 
the case may be. In practice, we shall expand in ascending powers of D’/D. However note that if 
we expand in ascending powers of D/D’, we shall get a P.I. of apparently different form. In this 
connection remember that both forms of P.I. are correct because the two could be transformed into 
each other with the help of C.F. of the given equation. 

Case IV. When 𝑓(𝑥, 𝑦) = 𝑉𝑒𝑎𝑥+𝑏𝑦 ,when V is a function of x and y. 

Then, P.I = 
1

𝐹(𝐷,𝐷′)
𝑉𝑒𝑎𝑥+𝑏𝑦 = 𝑒𝑎𝑥+𝑏𝑦 1

𝐹(𝐷+𝑎,𝐷′+𝑏)
𝑉 

 

 
Example 5.5.1:Solve(𝐷2 − 𝐷′2 + 𝐷 − 𝐷′)𝑧 = 𝑒2𝑥+3𝑦 

Solution: The given equation can be re–written as 

((D − D′)(D + D′) + 𝐷 − 𝐷′)𝑧 = 𝑒2𝑥+3𝑦or (D − D′)(D + D′ + 1)𝑧 = 𝑒2𝑥+3𝑦 

∴ C.F is 𝜙1(𝑦 + 𝑥) + 𝑒−𝑥𝜙2(𝑦 − 𝑥), 𝜙1 and 𝜙2 being an arbitrary function. 

and P.I = 
1

(D−D′)(D+D′+1)
𝑒2𝑥+3𝑦 =

1

(2−3)(2+3+1)
𝑒2𝑥+3𝑦 = −

1

6
𝑒2𝑥+3𝑦 . 

Hence the required general solution is 𝑧 =  𝜙1(𝑦 + 𝑥) + 𝑒−𝑥𝜙2(𝑦 − 𝑥) −
1

6
𝑒2𝑥+3𝑦. 

 

Example 5.5.2: Solve(𝐷2 − 𝐷𝐷′ + 𝐷′ − 1)𝑧 = cos (𝑥 + 2𝑦)   

Solution: The given equation can be re–written as 

(𝐷2 − 𝐷𝐷′ + 𝐷′ − 1)𝑧 = cos (𝑥 + 2𝑦)  or (D − 1)(D − D′ + 1)𝑧 = cos (𝑥 + 2𝑦). 

∴ C.F is 𝑒𝑥𝜙1(𝑦) + 𝑒−𝑥𝜙2(𝑦 + 𝑥), 𝜙1 and 𝜙2 being an arbitrary function. 

P.I. =
1

(D−1)(D−D′+1)
cos(𝑥 + 2𝑦) =

1

−1+1 .2+𝐷′−1
cos(𝑥 + 2𝑦) =

1

𝐷′
cos (𝑥 + 2𝑦) 

= (
1

2
) sin(𝑥 + 2𝑦),  as 1/D’ stands for integration w.r.t. y keeping x as constant 

Hence the required solution is 𝑧 =  𝑒𝑥𝜙1(𝑦) + 𝑒−𝑥𝜙2(𝑦 + 𝑥) + (
1

2
) sin(𝑥 + 2𝑦). 

 

Example 5.5.3: Solve(𝐷2 − 𝐷′2 − 3𝐷 + 3𝐷′)𝑧 = 𝑥𝑦   

Solution: Re–writing, given equation is 

(𝐷 − 𝐷′)(𝐷 + 𝐷′ + 3)𝑧 = 𝑥𝑦   

Its C.F. is 𝜙1(𝑦 + 𝑥) + 𝑒3𝑥𝜙2(𝑥 − 𝑦), 𝜙1 and 𝜙2being arbitrary functions 

P.I.= 
1

(𝐷−𝐷′)(𝐷+𝐷′+3)
𝑥𝑦 =

1

𝐷
(1 −

𝐷′

𝐷
)

−1

(1 −
𝐷+𝐷′

3
) 𝑥𝑦 

=−
1

3𝐷
(1 +

𝐷′

𝐷
+ ⋯ . ) (1 +

𝐷+𝐷′

3
+

(𝐷+𝐷′)2

9
+ ⋯ … … … ) 𝑥𝑦 

=−
1

3𝐷
(1 +

1

3
𝐷 +

1

3
𝐷′ +

2

9
𝐷𝐷′ +

𝐷′

𝐷
+

1

3
𝐷′ + ⋯ . . ) 𝑥𝑦 
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=−
1

3𝐷
(𝑥𝑦 +

1

3
𝑦 +

2

3
𝑥 +

2

9
+

𝑥2

2
) = −

1

3
(

𝑥2𝑦

2
+

𝑥𝑦

3
+

𝑥2

3
+

2

9
𝑥 +

𝑥3

6
) 

∴ 𝑧 = 𝜙1(𝑦 + 𝑥) + 𝑒3𝑥𝜙2(𝑥 − 𝑦) −
1

3
(

𝑥2𝑦

2
+

𝑥𝑦

3
+

𝑥2

3
+

2

9
𝑥 +

𝑥3

6
) 

 

Summary 

 The particular integral is defined. 

 Particular method derived for homogenous differential equations.  

 Different kind of function with their P.I elaborated with examples. 

 The non-homogenous differential equation with all kinds of functions are discussed. 

 

Keywords 

 Homogeneous  

 Non-homogenous 

 Second order 

 Higher order 

 Particular Integral  

 Reducible 

 Irreducible 

 

Self Assessment 

1. In the solution of differential equation 

yxezDDDD 222 )2( 
the PI is 

A. 
yx 2

 

B. 
yxe 2

 

C. 
yxe 2

 

D. 
yxe 2

 
 

2. P.I of the equation is  )32cos(2 yxtsr  is 

A. –cos (2x+3y) 

B. cos (2x+3y) 

C. sin (2x+3y) 

D. –sin(2x+3y) 

 

3. In The PI of the partial differential equation   yxeZDDDD 3222 2   

A. yxe 32   

B. yxe 32

25

1   

C. yxe 32   

D. 

yxe 32

25

1 
 

4. The general solution of partial differential equation
)tan()( 2 xyzDD 

is 
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A. 

)tan(
2

)()(
2

21 xy
x

xyxxyz  
 

B. 

)tan(
2

)()(
2

21 xy
y

xyxxyz  
 

C. 

)tan(
2

)()(
2

21 xy
y

xyxyz  
 

D. 

)tan(
2

)()(
2

21 xy
x

xyxyz  
 

 

5. 

Solution of the differential equation 0)12)(1'2( 2  ZDDDD is

 

A.   kyxkx Aexyez )12(

1

2

)2(
 

B.   kyxkx Aexyez )12(

1

2

)22(
 

C. 
  kyxkx Aexyez )12(

1

2

)2(
 

D.   kyxkx Aexyez )2(

1

2

)(
 

 

6. 

Solution of the differential equation 
yxezDD  22 )( is

 

A.   ykxAez
 

B. 

yxkyxk eAez   22

 

C. 

yxykx eAez   2

 

D. None of these 

7. The particular integral of the equation 
22 2)( xyzDD  is 

A. yx2
 

B. 
22 yx  

C. xy  

D.

32 yx
 

 
8. The solution of In the solution of differential equation 

yxezDDDDDD 222 )'222(  the PI is 

A. yx 2  

B. yxe 2

3

1   
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C. yxe 2  

D. yxe 2

3

1
 

 

9. The solution of differential equation )2sin()1'( 2 yxzDDDD   is 

A. )]2sin(2)2[cos(
10

1
)()( 21 yxyxxyeye xx    

B. )]2sin(2)2[cos(
10

1
)()( 21 yxyxxyeye xx    

C. )]2sin(3)2[cos(
10

1
)()( 21 yxyxxyeye xx    

D. None of these 

 

10. In the solution of differential equation )32sin(23 yxqts  , the CF is 

A. )32()( 2

3/

1 yxex x     

B. )32()( 2

3/

1 yxex x    

C. )32()( 2

3/

1 yxex x    

D. 
)32()( 2

3/

1 yxex x   
 

 
 

11. 

The solution of the differential equation xyzqps  is

 

A. 
1)()( 21  xyxyxeyez yx 

 

B. 
1)()( 21   xyxyxeyez yx 

 

C. 

1)()( 21   xyxyxeyez yx 
 

D. 
1)()( 21   xxyxeyez yx 

 

 

12. 

Solution of the differential equation )cos(4)123( 22 yxezDDD yx  
is

 

A. 

)sin(
3

4
yxeAez yxkyhx  

 

B. 

)sin(
3

1
yxeAez yxkyhx  

 

C. 

)sin(
3

4
yxeAez yxkyhx  

 

D. None of these 

13. The PI of the differential equation is 
yxezDD  )( 2
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A. 
yxye   

B. yxe   

C. 
yxxye 

 

D. None of these 

 

14. The PI of the differential equation is 
yxxezDD  )( 2

 

 

A. yxex
x  )1(
4

 

B. 
yxexx  )1( yxe   

C. yxex
x  )1(
4

 

D. None of these 

 

15. The particular integral of the equation 
yxezDD  )( 2

is 

A. yxxe 

2

1
 

B. yxxe   

C. yxye 

2

1
 

D. 

yxxye 
 

 

Answers for Self Assessment 

l. B 2. B 3. B 4. A 5. B 

6. B 7. A 8. B 9. A 10. B 

11. B 12. C 13. A 14. A 15. B 

 

Review Questions 

Q1.  Solve (𝐷2 + 2𝐷𝐷′ + 𝐷′2
)𝑧 = 𝑒2𝑥+3𝑦. 

Q2.  Solve (𝐷3 − 2𝐷2𝐷′ − 𝐷𝐷′2 + 2𝐷′3)𝑧 = 𝑒𝑥+𝑦. 

Q3. .  Solve 𝑟 − 5𝑠 + 4𝑡 = sin (4𝑥 + 𝑦). 

Q4.  Solve (𝐷3 − 4𝐷2𝐷′ + 5𝐷𝐷′2 − 2𝐷′3)𝑧 = 𝑒𝑦+2𝑥 + (𝑦 + 𝑥)1/2 . 

Q5.  Solve (𝐷2 − 2𝐷𝐷′ + 𝐷′2)𝑧 = 𝑒𝑥+𝑦 + 𝑥3. 

Q6. Solve (𝐷2 + 𝐷𝐷′ − 6𝐷′2)𝑧 = 𝑦𝑠𝑖𝑛𝑥. 

Q7. Solve (𝐷2 − 𝐷𝐷′ − 2𝐷′2 + 2𝐷 + 2𝐷′)𝑧 = sin (2𝑥 + 𝑦). 

Q8. Solve (3𝐷2 − 2𝐷′2 + 𝐷 − 1)𝑧 = 4𝑒𝑥+𝑦cos (𝑥 + 𝑦). 

 

  LOVELY PROFESSIONAL UNIVERSITY  56



Partial Differential Equations 

Notes 

 Further Readings 

1. I.N. Sneddon(1957), Elements Of Partial Differential Equations,Mcgraw Hill Education. 
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https://onlinecourses.nptel.ac.in/noc22_ma73/preview 

https://onlinecourses.nptel.ac.in/noc21_ma09/preview 

https://onlinecourses.swayam2.ac.in/cec22_ma12/preview 
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Unit 06: Monge’s Method and Method of Separation of Variables 

CONTENTS 

Objectives 

Introduction 

6.1 Monge’s Method Of Integrating Rr + Ss + Tt = V 

6.2 Type 1. When the given equation Rr + Ss + Tt = V leads to two distinct intermediate 
integrals and both of them are used to get the desired solution 

6.3 Type 2. When the given equation Rr + Ss + Tt = V leads to two distinct intermediate 
integrals and only one is employed to get the desired solution 

6.4 Type 3. When the given equation Rr + Ss + Tt = V leads to two Identical Intermediate 
Integrals 

6.5 Type 4. When the given equation Rr + Ss + Tt = V fails to yield an intermediate integral as 
in cases 1, 2 and 3 

6.6 Separation of Variables 

Summary 

Keywords 

Self Assessment 

Answers for Self Assessment 

Review Questions 

Further Readings 

 

Objectives 

After studying this unit, you will be able to 

 identify the concept of need of Monge’s method. 

 understand the concept of method of separation of variables. 

 know the properties of Monge’s method. 

 apply appropriate methods to find the solutions of second order PDE. 

 

Introduction 

The most general form of partial differential equation of order two is 

f(x, y, z, p, q, r, s, t) = 0        (6.0.1)  

It is only in special cases that (6.0.1) can be integrated. 

Some well known methods of solutions were given by Monge. His methods are applicable to a 
wide class (but not all) of equations of the form (6.0.1).  

Monge’s methods consists in finding one or two first integrals of the form  

u = φ( v ),         (6.0.2)  

where u and v are known functions of x, y, z, p and q and φ is an arbitrary function. In other words, 
Monge’s methods consists in obtaining relations of the form (6.0.2) such that equation (6.0.1) can be 
derived from (6.0.2) by eliminating the arbitrary function. A relation of the form (6.0.2) is known as 
an intermediate integral of (6.0.1). Every equation of the form (6.0.1) need not possess an 

Dr. Preety Kalra, Lovely Professional University 
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intermediate integral. However, it has been shown that most general partial differential equations 
having (6.0.2) as an intermediate integral are of the following forms  

Rr + Ss + Tt = V   and   Rr + Ss + Tt + U(rt – s2 ) = V,   (6.0.3) 

where R, S, T, U and V are functions of x, y, z, p and q. Even equations (6.0.3) need not always 
possess an intermediate integral. In what follows we shall assume that an intermediate integral of 
(6.0.3) exists.  

 

6.1 Monge’s Method Of Integrating Rr + Ss + Tt = V 

Given Rr + Ss + Tt = V,         (6.1.1)  

where R, S, T and V are functions of x, y, z, p and q. 

We know that  𝑝 =
𝜕𝑧

𝜕𝑥
,    𝑞 =

𝜕𝑧

𝜕𝑦
, 

𝑟 =
𝜕2𝑧

𝜕𝑥2
=

𝜕

𝜕𝑥
(

𝜕𝑧

𝜕𝑥
) =

𝜕𝑝

𝜕𝑥
,    𝑡 =

𝜕2𝑧

𝜕𝑦2
=

𝜕

𝜕𝑦
(

𝜕𝑧

𝜕𝑦
) =

𝜕𝑞

𝜕𝑦
  

𝑠 =
𝜕2𝑧

𝜕𝑥𝜕𝑦
=

𝜕

𝜕𝑥
(

𝜕𝑧

𝜕𝑦
) =

𝜕𝑞

𝜕𝑥
,  and 𝑠 =

𝜕2𝑧

𝜕𝑦𝜕𝑥
=

𝜕

𝜕𝑦
(

𝜕𝑧

𝜕𝑥
) =

𝜕𝑝

𝜕𝑦
   (6.1.2) 

Now,  𝑑𝑝 =
𝜕𝑝

𝜕𝑥
𝑑𝑥 +

𝜕𝑝

𝜕𝑦
𝑑𝑦 = 𝑟𝑑𝑥 + 𝑠𝑑𝑦      (6.1.3) 

and 𝑑𝑞 =
𝜕𝑞

𝜕𝑥
𝑑𝑥 +

𝜕𝑞

𝜕𝑦
𝑑𝑦 = 𝑠𝑑𝑥 + 𝑡𝑑𝑦       (6.1.4) 

From (6.1.3) and (6.1.4), 𝑟 = (𝑑𝑝 − 𝑠𝑑𝑦)/𝑑𝑥 and 𝑡 = (𝑑𝑞 − 𝑠𝑑𝑥)/𝑑𝑦   (6.1.5) 

Substituting the values of r and s given by (6.1.5) in (6.1.1), we get 

𝑅(𝑑𝑝−𝑠𝑑𝑦)

𝑑𝑥
+ 𝑆𝑠 + 𝑇

(𝑑𝑞−𝑠𝑑𝑥)

𝑑𝑦
= 𝑉 or 𝑅(𝑑𝑝 − 𝑠𝑑𝑦)𝑑𝑦 + 𝑆𝑠𝑑𝑥𝑑𝑦 + 𝑇(𝑑𝑞 − 𝑠𝑑𝑥)𝑑𝑥 = 𝑉𝑑𝑥𝑑𝑦 

or {𝑅𝑑𝑝𝑑𝑦 + 𝑇𝑑𝑞𝑑𝑥 − 𝑉𝑑𝑥𝑑𝑦} − 𝑠{𝑅(𝑑𝑦)2 − 𝑆𝑑𝑥𝑑𝑦 + 𝑇(𝑑𝑥)2} = 0   (6.1.6) 

Clearly any relation between x, y, z, p and q which satisfies (6.1.6) must also satisfy the following 
two simultaneous equations 

𝑅𝑑𝑝𝑑𝑦 + 𝑇𝑑𝑞𝑑𝑥 − 𝑉𝑑𝑥𝑑𝑦 = 0       (6.1.7) 

𝑅(𝑑𝑦)2 − 𝑆𝑑𝑥𝑑𝑦 + 𝑇(𝑑𝑥)2        (6.1.8) 

The equations (6.1.7) and (6.1.8) are called Monge’s subsidiary equations and the relations which 
satisfy these equations are called intermediate integrals.  

Equation (6.1.8) being a quadratic, in general, it can be resolved into two equations, say 

𝑑𝑦 − 𝑚1𝑑𝑥 = 0         (6.1.9) 

𝑑𝑦 − 𝑚2𝑑𝑥 = 0         (6.1.10) 

Now the following two cases arise: 

Case I. When m1 and m2 are distinct in (6.1.9) and (6.1.10). 

In this case (6.1.7) and (6.1.9), if necessary by using well known result  

dz = pdx + qdy,  

will give two integrals u1 = a and v1 = b, where a and b are arbitrary constants. These give 

𝑢1 = 𝑓(𝑣1),         (6.1.11) 

where f1 is an arbitrary function. It is called an intermediate integral of (6.1.1).  

Next, taking (6.1.7) and (6.1.10) as before, we get another intermediate integral of (6.1.1), say  

𝑢2 = 𝑓(𝑣2),         (6.1.11) 

where f2 is an arbitrary function.Thus we have in this case two distinct intermediate integrals 
(6.1.11) and (6.1.12). Solving (6.1.11) and (6.1.12), we obtain values of p and q in terms of x, y and z. 
Now substituting these values of p and q in well-known relation  

dz = pdx + qdy          (6.1.13)  
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and then integrating (6.1.13), we get the required complete integral of (6.1.1). 

Case II . When m1 = m2 i.e., (6.1.8) is a perfect square. 

As before, in this we get only one intermediate integral which is in Lagrange’s form 

𝑃𝑝 + 𝑄𝑞 = 𝑅         (6.1.14) 

Solving (6.1.14) with help of Lagrange’s method, we get the required complete integral of (6.1.1). 

 

Remark 6.1.1: Usually while dealing with case I, we obtain second intermediate integral 
directly by using symmetry. However sometimes in absence of any symmetry, we find the 
complete integral with help of only one intermediate integral. This is done with help of 
using Lagrange’s method. 

 

Remark 6.1.2: While obtaining an intermediate integral, remember to use the relation dz = 
pdx + qdy as explained below :  

(i) pdx + qdy + 2xdx = 0 can be re–written as dz + 2xdx = 0 so that z + x2 = c.  

(ii) xdp + ydq = dx can be re–written as xdp + ydq + pdx + qdy = dx + pdx + qdy 

or d(xp) + d(yq) = dx + dz so that xp + yq = x + z + c, on integration 

 

Remark 6.1.3:Important Note. For sake of convenience, we have divided all questions 
based on Rr + Ss + Tt = V in four types. We shall now discuss them one by one. 

 

6.2 Type 1. When the given equation Rr + Ss + Tt = V leads to two 
distinct intermediate integrals and both of them are used to get the 
desired solution 

Working rule for solving problems of type 1. 

Step 1. Write the given equation in the standard form𝑅𝑟 + 𝑆𝑠 + 𝑇𝑡 = 𝑉.  

Step 2. Substitute the values of R, S, T and V in the Monge’s subsidiary equations: 

𝑅𝑑𝑝𝑑𝑦 + 𝑇𝑑𝑞𝑑𝑥 − 𝑉𝑑𝑥𝑑𝑦 = 0       (6.2.1)  

𝑅(𝑑𝑦)2 − 𝑆𝑑𝑥𝑑𝑦 + 𝑇(𝑑𝑥)2        (6.2.2)  

Step 3. Factorise (6.2.1) into two distinct factors.  

Step 4. Using one of the factors obtained in (6.2.1), (6.2.2) will lead to an intermediate integral. In 
general, the second intermediate integral can be obtained from the first one by inspection, taking 
advantage of symmetry. In absence of any symmetry, the second factor obtained in step 3 is used in 
(6.2.2) to arrive at second intermediate integral.  

Step 5. Solve the two intermediate integrals obtained in step 4 and get the values of p and q.  

Step 6. Substitute the values of p and q in dz = pdx + qdy and integrate to arrive at the required 
general solution by integrating dz = pdx + qdy. 

 

SOLVED EXAMPLES  

 

Example 6.2.1:Solve 𝑟 = 𝑎2𝑡   

Solution: Given equation is 𝑟 − 𝑎2𝑡 = 0  .  

Comparing it with Rr + Ss + Tt = V, we have R = 1, S = 0, T = – a2 , V = 0.  

Hence Monge’s subsidiary equations 

𝑅𝑑𝑝𝑑𝑦 + 𝑇𝑑𝑞𝑑𝑥 − 𝑉𝑑𝑥𝑑𝑦 = 0 and   𝑅(𝑑𝑦)2 − 𝑆𝑑𝑥𝑑𝑦 + 𝑇(𝑑𝑥)2 = 0 

become𝑑𝑝𝑑𝑦 − 𝑎2𝑑𝑞𝑑𝑥 = 0       (6.2.3) 
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and (𝑑𝑦)2 − 𝑎2(𝑑𝑥)2 = 0        (6.2.4) 

Equation (6.2.4) may be factorized as (𝑑𝑦 − 𝑎𝑑𝑥)(𝑑𝑦 + 𝑎𝑑𝑥) = 0. 

Hence two systems of equations to be considered are 

𝑑𝑝𝑑𝑦 − 𝑎2𝑑𝑞𝑑𝑥 = 0, 𝑑𝑦 − 𝑎𝑑𝑥 = 0      (6.2.5) 

and  𝑑𝑝𝑑𝑦 − 𝑎2𝑑𝑞𝑑𝑥 = 0, 𝑑𝑦 + 𝑎𝑑𝑥 = 0      (6.2.6) 

Integrating the second equation of (6.2.5), we get 𝑦 − 𝑎𝑥 = 𝑐1    (6.2.7) 

Eliminating dy/dx between the equations of (6.2.5), we get 

𝑑𝑝 − 𝑎𝑑𝑞 = 0 so that 𝑝 − 𝑎𝑞 = 𝑐2       (6.2.8) 

Hence the intermediate integral corresponding to (6.2.5) is 𝑝 − 𝑎𝑞 = 𝜙1(𝑦 − 𝑎𝑥)  (6.2.9) 

Similarly another intermediate integral corresponding to (6.2.6) is  

𝑝 − 𝑎𝑞 = 𝜙2(𝑦 + 𝑎𝑥)        (6.2.10) 

Here 𝜙1 and 𝜙2are arbitrary functions.  

Solving (6.2.9) and (6.2.10) for p and q, we have 

𝑝 =
1

2
{𝜙2(𝑦 + 𝑎𝑥) + 𝜙1(𝑦 − 𝑎𝑥)} and 𝑞 =

1

2𝑎
{𝜙2(𝑦 + 𝑎𝑥) − 𝜙1(𝑦 − 𝑎𝑥)}. 

Substituting these values of p and q in dz = pdx + qdy, we get 

𝑑𝑧 =  
1

2
{𝜙2(𝑦 + 𝑎𝑥) + 𝜙1(𝑦 − 𝑎𝑥)}𝑑𝑥 +

1

2𝑎
{𝜙2(𝑦 + 𝑎𝑥) − 𝜙1(𝑦 − 𝑎𝑥)}𝑑𝑦 

=
1

2𝑎
𝜙2(𝑦 + 𝑎𝑥)(𝑑𝑦 + 𝑎𝑑𝑥) −

1

2𝑎
𝜙1(𝑦 − 𝑎𝑥)(𝑑𝑦 − 𝑎𝑑𝑥) 

Integrating,  𝑧 = 𝜓2(𝑦 − 𝑎𝑥) + 𝜓1(𝑦 + 𝑎𝑥), 𝜓1, 𝜓2 being arbitrary functions. 

 

6.3 Type 2. When the given equation Rr + Ss + Tt = V leads to two 
distinct intermediate integrals and only one is employed to get the 
desired solution 

Working rule for solving problems of type 2. 

Step 1. Write the given equation in the standard form Rr + Ss + Tt = V.  

Step 2. Substitute the values of R, S, T and V in the Monge’s subsidiary equations  

𝑅𝑑𝑝𝑑𝑦 + 𝑇𝑑𝑞𝑑𝑥 − 𝑉𝑑𝑥𝑑𝑦 = 0       (6.3.1)  

𝑅(𝑑𝑦)2 − 𝑆𝑑𝑥𝑑𝑦 + 𝑇(𝑑𝑥)2        (6.3.2) 

Step 3. Factorize (6.3.1) into two distinct factors.  

Step 4. Take one of the factors of step 3 and use (6.3.2) to get an intermediate integral. Don’t find 
second intermediate integral as we did in type 1.  

Step 5. Re–write the intermediate integral of the step 4 in the form of Lagrange equation, namely, 
Pp + Qq = R. Using the well-known Lagrange’s method we arrive at the desired general solution of 
the given equation. 

 

SOLVED EXAMPLES  

 

Example 6.3.1:Solve (r –  s)y + (s –  t)x +  q –  p =  0. 

Solution: The given can be written as yr + s(x − y) − tx = p − q        (6.3.3) 

Comparing (1) with Rr + Ss + Tt = V, R = y, S = x – y, T = –x and V = p – q. 

Hence Monge’s subsidiary equations  
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𝑅𝑑𝑝𝑑𝑦 + 𝑇𝑑𝑞𝑑𝑥 − 𝑉𝑑𝑥𝑑𝑦 = 0  and   𝑅(𝑑𝑦)2 − 𝑆𝑑𝑥𝑑𝑦 + 𝑇(𝑑𝑥)2 = 0 

become  𝑦𝑑𝑝𝑑𝑦 − 𝑥𝑑𝑞𝑑𝑥 − (𝑝 − 𝑞)𝑑𝑥𝑑𝑦 = 0      (6.3.4) 

𝑦(𝑑𝑦)2 − (𝑥 − 𝑦)𝑑𝑥𝑑𝑦 − 𝑥(𝑑𝑥)2 = 0       (6.3.5) 

Rewriting (6.3.5), (𝑑𝑦 + 𝑑𝑥)(𝑦𝑑𝑦 − 𝑥𝑑𝑥) = 0. 

so that 𝑑𝑦 + 𝑑𝑥 = 0 or  𝑑𝑦 = −𝑑𝑥     (6.3.6) 

and 𝑦𝑑𝑦 − 𝑥𝑑𝑥 = 0. 

Using (6.3.6), (6.3.4) becomes  

−𝑦𝑑𝑝𝑑𝑥 − 𝑥𝑑𝑞𝑑𝑥 + 𝑞𝑑𝑥(−𝑑𝑥) − 𝑝𝑑𝑥𝑑𝑦 = 0  or 𝑦𝑑𝑝 + 𝑥𝑑𝑞 + 𝑞𝑑𝑥 + 𝑝𝑑𝑦 = 0 

or 𝑦𝑑𝑝 + 𝑝𝑑𝑦 + 𝑥𝑑𝑞 + 𝑞𝑑𝑥 = 0 or 𝑑(𝑦𝑝) + 𝑑(𝑥𝑞) = 0 so that 𝑦𝑝 + 𝑥𝑞 = 𝑐1.           (6.3.7) 

Integrating (6.3.6), 𝑥 + 𝑦 = 𝑐2,   𝑐2 being an arbitrary constant.    (6.3.8) 

From (6.3.7) and (6.3.8), one intermediate integral is 

𝑦𝑝 + 𝑥𝑞 = 𝑓(𝑥 + 𝑦),        (6.3.9) 

which is of the Lagrange’s form and so its subsidiary equations are 

𝑑𝑥

𝑦
=

𝑑𝑦

𝑥
=

𝑑𝑧

𝑓(𝑥+𝑦)
         (6.3.10) 

From first and second fractions of (6.3.10), 

2𝑥𝑑𝑥 − 2𝑦𝑑𝑦 = 0. 

Integrating, 𝑥2 − 𝑦2 = 𝑎, 𝑎being an arbitrary constant     (6.3.11)  

Taking first and third fractions of (6.3.10), we get 

𝑑𝑥

𝑦
=

𝑑𝑧

𝑓(𝑥+𝑦)
 or  

𝑑𝑥

(𝑥2−𝑎)1/2 =
𝑑𝑧

𝑓(𝑥+(𝑥2−𝑎)1/2)
 or  

𝑑𝑧 =  𝑓(𝑥 + (𝑥2 − 𝑎)1/2)(𝑥2 − 𝑎)1/2𝑑𝑥      (6.3.12) 

Put 𝑥 + (𝑥2 − 𝑎)1/2 = 𝑣 so that[1 +
𝑥

(𝑥2−𝑎)
1
2

] 𝑑𝑥 = 𝑑𝑣    (6.3.13) 

or 
𝑥+(𝑥2−𝑎)

1
2

(𝑥2−𝑎)
1
2

 𝑑𝑥 = 𝑑𝑣    or  
𝑑𝑥

(𝑥2−𝑎)
1
2

=
𝑑𝑣

𝑣
 

Then, (6.3.12) reduces to 𝑑𝑧 −
1

𝑣
𝑓(𝑣)𝑑𝑣 = 0. 

Integrating, 𝑧 − 𝐹(𝑣) = 𝑏 or 𝑧 − 𝐹 (𝑥 + (𝑥2 − 𝑎)
1

2) = 𝑏. 

𝑧 − 𝐹(𝑥 + 𝑦) = 𝑏 as  𝑦 = (𝑥2 − 𝑎)
1

2     (6.3.14) 

From (6.3.11) and (6.3.14), the required general solution is 

𝑧 − 𝐹(𝑥 + 𝑦) = 𝐺(𝑥2 − 𝑦2), 

𝑧 = 𝐹(𝑥 + 𝑦) + 𝐺(𝑥2 − 𝑦2), where F and G are arbitrary functions. 

 

6.4 Type 3. When the given equation Rr + Ss + Tt = V leads to two 
Identical Intermediate Integrals 

Working rule for solving problems of type 3 

Step 1. Write the given equation in the standard form Rr + Ss + Tt = V.  

Step 2. Substitute the values of R, S, T and V in the Monge’s subsidiary equations  

𝑅𝑑𝑝𝑑𝑦 + 𝑇𝑑𝑞𝑑𝑥 − 𝑉𝑑𝑥𝑑𝑦 = 0       (6.4.1)  

𝑅(𝑑𝑦)2 − 𝑆𝑑𝑥𝑑𝑦 + 𝑇(𝑑𝑥)2        (6.4.2) 

Step 3. R.H.S. of (2) reduces to a perfect square and hence it gives only one distinct factor in place of 
two as in type 1 and type 2.  
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Step 4. Start with the only one factor of step 3 and use (2) to get an intermediate integral.  

Step 5. Re–write the intermediate integral of the step 4 in the form of Pp + Qq = R and use 
Lagrange’s method to obtain the required general solution of the given equation. 

SOLVED EXAMPLES  

 

Example 6.2.1: Solve (1 +  q)2 r –  2(1 +  p +  q +  pq)s + (1 +  p)2 t =  0 

Solution: Comparing the given equation with Rr + Ss + Tt = V,     (6.4.3)  

R = (1 + q)2 , S = –2(1 + p + q + pq), T = (1 + p)2 , V = 0     (6.4.4)  

Monge’s subsidiary equations are 𝑅𝑑𝑝𝑑𝑦 + 𝑇𝑑𝑞𝑑𝑥 − 𝑉𝑑𝑥𝑑𝑦 = 0   (6.4.5) 

and  𝑅(𝑑𝑦)2 − 𝑆𝑑𝑥𝑑𝑦 + 𝑇(𝑑𝑥)2=0      (6.4.6)  

Using (6.4.4), (6.4.5) and (6.4.6) become 

(1 + 𝑞)2𝑑𝑝𝑑𝑦 + (1 + 𝑝)2𝑑𝑞𝑑𝑥 = 0       (6.4.7) 

and  (1 + 𝑞)2(𝑑𝑦)2 + 2(1 +  p +  q +  pq)𝑑𝑥𝑑𝑦 + (1 + 𝑝)2(𝑑𝑥)2 = 0   (6.4.8) 

Since 1 +  p +  q +  pq = (1 + p)(1 + q), (6.4.8) becomes [(1 + q)𝑑𝑦 + (1 + 𝑝)𝑑𝑥]2 = 0 

so that (1 + q)𝑑𝑦 + (1 + 𝑝)𝑑𝑥 = 0   or   (1 + q)𝑑𝑦 = −(1 + 𝑝)𝑑𝑥.    (6.4.9) 

Keeping (6.4.9) in view, (6.4.7) may be re–written as 

(1 + q)𝑑𝑝{(1 + q)𝑑𝑦} − (1 + 𝑝)𝑑𝑞{−(1 + 𝑝)𝑑𝑥} = 0.     (6.4.10) 

Dividing each term of (6.4.10) by (1 + q)dy, or its equivalent –(1 + p)dx, we get 

(1 + q)𝑑𝑝 − (1 + 𝑝)𝑑𝑞 = 0  or   
𝑑𝑝

1+𝑝
−

𝑑𝑞

1+𝑞
= 0 

Integrating it, 
(1+𝑝)

1+𝑞
= 𝑐1,   𝑐1being an arbitrary constant.    (6.4.11) 

From (6.4.9), 𝑑𝑥 + 𝑑𝑦 + 𝑝𝑑𝑥 + 𝑞𝑑𝑦 = 0,  or 𝑑𝑥 + 𝑑𝑦 + 𝑑𝑧 = 0,  as 𝑑𝑧 = 𝑝𝑑𝑥 + 𝑞𝑑𝑦 

Integrating it, x + y + z = c2, c2 being an arbitrary constant     (6.4.12)  

From (6.4.11) and (6.4.12), one intermediate integral of (6.4.3) is 

 1+𝑝

1+𝑞
= 𝐹(𝑥 + 𝑦 + 𝑧) or  1 + 𝑝 = (1 + 𝑞)𝐹(𝑥 + 𝑦 + 𝑧)  or  

𝑝 − 𝑞𝐹(𝑥 + 𝑦 + 𝑧) = 𝐹(𝑥 + 𝑦 + 𝑧) − 1.      (6.4.13) 

which is of the form Pp + Qq = R. So Lagrange’s auxiliary equations are 

𝑑𝑥

1
=

𝑑𝑦

−𝐹(𝑥+𝑦+𝑧)
=

𝑑𝑧

𝐹(𝑥+𝑦+𝑧)−1
       (6.4.14) 

Choosing 1, 1, 1 as multipliers, each fraction of (6.4.14)= 𝑑𝑥 + 𝑑𝑦 + 𝑑𝑧/0 

so that 𝑑𝑥 + 𝑑𝑦 + 𝑑𝑧 = 0 giving 𝑥 + 𝑦 + 𝑧 = 𝑐2     (6.4.15)  

Using (6.4.15) and taking the first two fractions of (6.4.14),  

we have 𝑑𝑥 = −𝑑𝑦/𝐹(𝑐2) or 𝑑𝑦 + 𝑑𝑥 𝐹(𝑐2)=0 

Integrating it, y+𝑥𝐹(𝑐2) = 𝑐3or y+𝑥𝐹(𝑥 + 𝑦 + 𝑧) = 𝑐3.     (6.4.16)  

From (6.4.15) and (6.4.16), the required general solution is y + x F(x + y + z) = G(x + y + z), F, G 
being arbitrary functions. 

 

6.5 Type 4. When the given equation Rr + Ss + Tt = V fails to yield an 
intermediate integral as in cases 1, 2 and 3 

Working rule for solving problems of type 4 
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Suppose the R.H.S. of 𝑅(𝑑𝑦)2 − 𝑆𝑑𝑥𝑑𝑦 + 𝑇(𝑑𝑥)2=0 neither gives two factors nor a perfect square (as 
in Types 1, 2 and 3 above). In such cases factors dx, dy, p, 1 + p etc. are cancelled as the case may be 
and an integral of given equation is obtained as usual.  

SOLVED EXAMPLES 

 

Example 6.5.1: Solve 𝑝𝑞 = 𝑥(𝑝𝑠 − 𝑞𝑟). 

Solution: Give 𝑥𝑞𝑟 − 𝑥𝑝𝑠 + 0. 𝑡 = −𝑝𝑞      (6.5.1) 

Comparing (1) with Rr + Ss + Tt = V, R = xq, S = xp, T = o and V = –pq 

Monge’s subsidiary equations 𝑅𝑑𝑝𝑑𝑦 + 𝑇𝑑𝑞𝑑𝑥 − 𝑉𝑑𝑥𝑑𝑦 = 0     

and  𝑅(𝑑𝑦)2 − 𝑆𝑑𝑥𝑑𝑦 + 𝑇(𝑑𝑥)2=0       

become 𝑥𝑞𝑑𝑝𝑑𝑦 + 𝑝𝑞𝑑𝑥𝑑𝑦 = 0       (6.5.2) 

and  𝑥𝑞(𝑑𝑦)2 − 𝑥𝑝𝑑𝑥𝑑𝑦=0       (6.5.3) 

Dividing (6.5.2) by qdy we get xdp + pdx = 0      (6.5.4)  

and dividing (6.5.3) by xdy, we get qdy + pdx = 0     (6.5.5)  

Using dz = pdx + qdy, (6.5.5) gives dz = 0 so that z = c1    (6.5.6)  

Integrating (6.5.4), xp = c2, c2 being an arbitrary constant     (6.5.7)  

From (6.5.6) and (6.5.7), one integral of (6.5.1) is xp = f(z) or𝑥
𝜕𝑧

𝜕𝑥
= 𝑓(𝑧) or   

1

𝑓(𝑧)

𝜕𝑧

𝜕𝑥
=

1

𝑥
 

 Integrating it partially w.r.t. x, F(z) = log x + G(y), F, G being arbitrary functions. 

6.6 Separation of Variables 

A powerful method of finding solutions of second -order linear partial differential equations is 
applicable in certain circumstances. If, when we assume a solution of the form  

z = X(x) Y(y)              (6.6.1)  

for the partial differential equation Rr + Ss + Tt + Pp + Qq + Zz = F     (6.6.2) 

it is possible to write the equation (6.6.2) in the form 

1

𝑋
𝑓(𝐷)𝑋 =

1

𝑌
𝑔(𝐷′)𝑌        (6.6.3) 

where 𝑓(𝐷), 𝑔(𝐷′) are quadratic functions of 𝐷 =
𝜕

𝜕𝑥
 and 𝐷′ =

𝜕

𝜕𝑦
 respectively, we say that the 

equation (6.6.2) is separable in the variables x, y. The derivation of a solution of the equation is then 
immediate. For the left -hand side of (6.6.3) is a function of x alone, and the right -hand side is a 
function of y alone, and the two can be equal only if each is equal to a constant, A. say. The problem 
of finding solutions of the form (6.6.1) of the partial differential equation (6.6.2) therefore reduces to 
solving the pair of second -order linear ordinary differential equations 

𝑓(𝐷)𝑋 = 𝜆𝑋,   𝑔(𝐷)𝑌 = 𝜆𝑌        (6.6.4) 

The method is best illustrated by means of a particular example. Consider the one -dimensional 
diffusion equation 

𝜕2𝑧

𝜕𝑥2 =
1

𝑘

𝜕𝑧

𝜕𝑡
         (6.6.5) 

If we write z = X(x)T(t) 

we find that 
1

𝑋

𝑑2𝑋

𝑑𝑥2 =
1

𝑘𝑇

𝑑𝑇

𝑑𝑡
 

so that the pair of ordinary equations corresponding to (6.6.4) is 

𝑑2𝑋

𝑑𝑥2 = 𝜆𝑋,
𝑑𝑇

𝑑𝑡
= 𝑘𝜆𝑇   

so that if we are looking for a solution which tends to zero as 𝑡 → ∞ we may take 

X = A cos (nx +є ), T= Be-kn2t 
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where we have written -n2 for A. Thus 

𝑧(𝑥, 𝑡) = 𝑐𝑛 cos(𝑛𝑥 + 𝜖𝑛)𝑒−𝑘𝑛2𝑡 

where cn is a constant, is a solution of the partial differential (6.6.5) for all values of n. 

Hence expressions formed by summing over all values of n 

𝑧(𝑥, 𝑡) = ∑ 𝑐𝑛 cos(𝑛𝑥 + 𝜖𝑛)𝑒−𝑘𝑛2𝑡∞
𝑛=0         (6.6.6) 

are, formally at least, solutions of equation (6.6.5). It should be noted that the solutions (6.6.6.) have 
the property that z→ 0 as 𝑡 → ∞ co and that 

𝑧(𝑥, 0) = ∑ 𝑐𝑛 cos(𝑛𝑥 + 𝜖𝑛)∞
𝑛=0        (6.6.7) 

For example, if we wish to find solutions of the form 

z = X(x) Y(y)T(t)          (6.6.8) 

𝜕2𝑧

𝜕𝑥2
+

𝜕2𝑧

𝜕𝑦2
=

1

𝑘

𝜕𝑧

𝜕𝑡
         (6.6.9) 

we note that for such a solution equation (6.6.9) can be written as 

1

𝑋

𝑑2𝑋

𝑑𝑥2 =
1

𝑌

𝑑2𝑌

𝑑𝑦2 =
1

𝑘𝑇

𝑑𝑇

𝑑𝑡
 

so that we may take 

𝑑𝑇

𝑑𝑡
= −𝑛2𝐾𝑡 ,    

𝑑2𝑋

𝑑𝑥2 = −𝑙2𝑋,   
𝑑2𝑌

𝑑𝑦2 = −𝑚2𝑌 

provided that 

𝑙2 + 𝑚2 = 𝑛2. 

Hence we have solutions of equation (6.6.9) of the form 

𝑧(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝑐𝑙𝑚 cos(𝑙𝑥 + 𝜖𝑙) cos(𝑚𝑦 + 𝜖𝑚) 𝑒−𝑘(𝑙2+𝑚2)𝑡∞
𝑚=0

∞
𝑙=0     (6.6.10) 

 

Summary 

 The concept of the Monge’s method is discussed. 

 The types of Monge’s method with their solution are derived. 

 The properties of Monge’s method were discussed. 

 The method of separation of variable is elaborated. 

 

Keywords 

 Second order PDE  

 Monge’s Method  

 Subsidiary Equations  

 Intermediate Integrals  

 Method of Separation of Variable.  

 

Self Assessment 

1. Which of the following equation satisfied the partial differential equation y
t

y

x

y










2

 , where 
  tety ,0

, 

A. T

T

X

XX ''



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B. T

T

X

XX ''




 

C. T

T

X

XX ''

2




  

D. T

T

X

XX ''




 

 

2. For

k
T

T

cX

X


'

2

'' 1

 when k is zero then solution for X is 
A. 

pxcpxcX sincos 21   
B. 

pxcX sin1  
C. 21 cxcX   
D. 

2

21 xcxcX   
 

3.If  

k
T

T

cX

X


''

2

'' 1

 , when k is negative, solution for T is  

A. 
ptpt ececT  21    

B. 

tptp ececT
22

21


 

C. 
ptcptcT sincos 21 

 

D. 
cptccptcT sincos 21 

 

 

4. Which of the following is a wave equation? 

A. 
t

u

x

u









2

2

  

B. 
2

2

2

2

x

u

t

u









  

C. 
x

u

t

u









  

D. None of these 

 

5.The equation 

0
2

2

2

2











y

u

x

u

is ___ in nature 

A. elliptic   

B. Hyperbolic   

C. Parabolic  

D. None of these  
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6. The equation  
2

2
2

y

u
a

t

u










 is ____ in nature 
A. Hyperbolic   

B. Parabolic   

C. elliptic  

D. None of these 

 

7.Solving 

k
T

T

cX

X


'

2

'' 1

 if k is negative and 𝐤 = −𝐩𝟐 then solution for T is 

A. 
tcpecT

2

1
  

B. 
tpcecT

22

1


   

C. 
cptecT 1

  

D. 

cptecT  1
 

 

 

 

8. Solving 

u
t

u

x

u










2

with the help of separation of variable and if 

k
T

T

X

XX


 ''

2 . 
The auxiliary equationsatisfied of X  is 

 

A. 
  021  km

 

B. 
  021  km

  

C. 021  km   

D. 021  km  

9. If by using method of separation of variables on 

02
2

2
















y

z

x

z

x

z

 , then which of the 

following satisfied 

A. Y

Y

X

XX '''' 2




  

B. Y

Y

X

XX '''' 2




  

C. Y

Y

X

XX ''' 2



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D. 
Y

Y

X

XX ''' 2



 

10.  The equation  𝑹𝒅𝒑𝒅𝒚 + 𝑻𝒅𝒒𝒅𝒔 − 𝑽𝒅𝒙𝒅𝒙𝒚 = 𝟎 is called 

A. Auxiliary equation 

B. Monge’s subsidiary equation 

C. Ordinary differential equation 

D. None of these        

 

11. Monge’s method is used to solve a partial differential equation of 

A. nth order 

B. third order 

C. second order 

D. None of these 

 

12.  The equation  𝑹(𝒅𝒚)𝟐 − 𝑺𝒅𝒙𝒅𝒙𝒚 + 𝑻(𝒅𝒙)𝟐 = 𝟎 is called 

A. Auxiliary equation 

B. Differential equation 

C. Monge’s subsidiary equation 

D. None of these  

 

13. Is case of repeating roots from  𝑹(𝒅𝒚)𝟐 − 𝑺𝒅𝒙𝒅𝒙𝒚 + 𝑻(𝒅𝒙)𝟐 = 𝟎 , then intermediate integral 
solved by 

A. Lagrange’s Method 

B. Cauchy’s Method 

C. Charpit’s Method 

D. None of these     

 

14. The Monge’s subsidiary equation for pde(𝒙 − 𝒚)(𝒙𝒓 − 𝒙𝒔 − 𝒚𝒔 + 𝒚𝒕) = (𝒙 + 𝒚)(𝒑 − 𝒒) is  

A.  𝑥(𝑥 − 𝑦)𝑑𝑝𝑑𝑦 + 𝑦(𝑥 − 𝑦)𝑑𝑞𝑑𝑥 − (𝑥 + 𝑦)(𝑝 − 𝑞)𝑑𝑥𝑑𝑦 = 0

 
𝐵.  𝑥(𝑥 − 𝑦)𝑑𝑝𝑑𝑥 + 𝑦(𝑥 − 𝑦)𝑑𝑞𝑑𝑦 − (𝑥 + 𝑦)(𝑝 − 𝑞)𝑑𝑥𝑑𝑦 = 0 

𝐶.  𝑥(𝑥 − 𝑦)𝑑𝑝𝑑𝑦 + 𝑦(𝑥 − 𝑦)𝑑𝑞𝑥 − (𝑥 + 𝑦)(𝑝 − 𝑞)𝑑𝑝𝑑𝑞 = 0

 
D.None of these 

  

15.The Monge’s subsidiary equation for pde(𝒙 − 𝒚)(𝒙𝒓 − 𝒙𝒔 − 𝒚𝒔 + 𝒚𝒕) = (𝒙 + 𝒚)(𝒑 − 𝒒) is  

𝐴.  𝑥(𝑥 − 𝑦)(𝑑𝑦)2 − (𝑥2 − 𝑦2)𝑑𝑦𝑑𝑥 + 𝑦(𝑥 − 𝑦)(𝑑𝑥)2 = 0

 
𝐵.  𝑥(𝑥 − 𝑦)(𝑑𝑦)2 + (𝑥2 − 𝑦2) + 𝑦(𝑥 − 𝑦)(𝑑𝑥)2 = 0 

𝐶. 𝑥(𝑥 − 𝑦)(𝑑𝑦)2 − (𝑥2 + 𝑦2) + 𝑦(𝑥 − 𝑦)(𝑑𝑥)2 = 0

 
D.None of these 
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Answers for Self Assessment 

l. C 2. C 3. D 4. B 5. A 

6. B 7. B 8. A 9. A 10. B 

11. C 12. C 13. A 14. A 15. A 

Review Questions 

Q1. By separating the variables, show that the one-dimensional wave equation 

2 2

2 2 2

1z z

x c t

 


 

has solutions of the form 
 exp ,A inx inct 

where A and n are constants. Hence show 

that functions of the form  , cos sin sinr r

r

r ct r ct r x
z x t A B

a a a

   
  

 
  where 

the 'rA s  and 'rB s are constants, and satisfy the wave equation and the boundary 

conditions 
 0, 0,z t   , 0z a t 

 for all t .  

Q2. Solve by Monge’s method

2 2
2

2 2
cos tan 0.

z z z
x x

x y x

  
  

    

Q3. 

Solve
     x y xr xs ys yt x y p q      

.  

Q4. 

Solve by Monge’s method  .0tancos2  xpxtr  

Q5. 
Using method of separation of variable, solve 

xexuwhereutuxu 36)0,(,)/(2/ 
 

 

 
Further Readings

 
1. I.N. Sneddon(1957), Elements Of Partial Differential Equations,Mcgraw Hill Education. 

2. Lawrence C. Evans (1998), Partial Differential Equations, Universities Press Pvt. Ltd 
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Objectives 

After studying this unit, you will be able to 

 identify the concept of Laplace transform. 

 understand the concept of inverse Laplace transform. 

 determine the properties of Laplace transform. 

 find the solution of PDE using Laplace transform. 

 

Introduction 

The method of Laplace transform provided an effective and easy means for the solutions of many 
problems in engineering and science. Thus the knowledge of Laplace transform has become an 
essential part of mathematical background required for engineers and scientists. The method of 
Laplace transform gives directly the solution of differential equations with given boundary 
conditions without first finding the solution and then evaluating constants by using given 
boundary conditions. Moreover, the ready tables of Laplace transform reduce the problem of 
solving differential equations to algebraic manipulation. 

 

7.1 Laplace Transform 

In this section we introduce the concept of Laplace transform and discusssome of its properties.  

Definition 

The Laplace transform is defined in the following way. Let f (t) be defined 
for t ≥ 0. Then the Laplace transform off, which is denoted by ℒ[f(t)] 
or by F(s), is defined by the following equations 

ℒ[f(t)] = F(s) = lim
T→∞

∫ f(t)e−stdt
T

0
= ∫ e−stdt

∞

0
     (7.1.1) 

The integral which defined a Laplace transform is an improper integral. An 
improper integral may converge or diverge, depending on the integrand. 
When the improper integral in convergent then we say that the function f (t) 
possesses a Laplace transform. So what types of functions possess Laplace 

Dr. Preety Kalra, Lovely Professional University 
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transforms, that is, what type of functions guarantees a convergent improper 
integral. 

 

Inverse Laplace Transform 

If ℒ[f(t)] = F(s), then we can write it as ℒ−1[𝐹(𝑠)] = 𝑓(𝑡). Here 𝑓(𝑡) is called the inverse Laplace 
transform of F(s). The symbol L, which transforms 𝑓(𝑡) to F(s)is called Laplace transformation 
operator. 

 

Laplace Transforms of Elementary Functions 

(i) ℒ[1] =
1

𝑠
 

(ii) ℒ[𝑡𝑛] = {

Γ(𝑛+1)

𝑠𝑛+1

𝑛!

𝑠𝑛+1 
, 𝑓𝑜𝑟 𝑛 = 0,1,2,3, … …

 

(iii) ℒ[𝑒𝑎𝑡] =
1

𝑠−𝑎
, (𝑠 > 𝑎) 

(iv) ℒ[sin 𝑎𝑡] =
𝑎

𝑠2+𝑎2
, (𝑠 > 0) 

(v) ℒ[cos 𝑎𝑡] =
𝑠

𝑠2+𝑎2
, (𝑠 > 0) 

(vi) ℒ[sinh 𝑎𝑡] =
𝑎

𝑠2−𝑎2
, (𝑠 > |𝑎|) 

(vii) ℒ[cosh 𝑎𝑡] =
𝑠

𝑠2−𝑎2
, (𝑠 > |𝑎|) 

These formulas are proved below in terms of following examples by using the definition (7.1.1). 

 

Example 7.1.1: Find the Laplace transform, if it exists, of each of the following functions 

(a) 𝑓(𝑡) = 𝑒𝑎𝑡      (b) 𝑓(𝑡) = 1      (c) 𝑓(𝑡) = 𝑡 

Solution: (a) Using the definition of Laplace transform we see that 

ℒ[𝑒𝑎𝑡] = ∫ 𝑒−(𝑠−𝑎)𝑡𝑑𝑡

∞

0

= lim
𝑇→∞

∫ 𝑒−(𝑠−𝑎)𝑡𝑑𝑡.
𝑇

0

 

But ∫ 𝑒−(𝑠−𝑎)𝑡𝑑𝑡 = {
𝑇                    𝑖𝑓 𝑠 = 𝑎 
1−𝑒−(𝑠−𝑎)𝑇

𝑠−𝑎
     𝑖𝑓 𝑠 ≠ 𝑎

𝑇

0
 

For the improper integral to converge we need s > a. In this case, 

ℒ[𝑒𝑎𝑡] = 𝐹(𝑠) =
1

𝑠 − 𝑎
, 𝑠 > 𝑎. 

(b) In a similar way to what was done in part (a), we find 

ℒ[1] = ∫ 𝑒−𝑠𝑡𝑑𝑡

∞

0

=
1

𝑠
, 𝑠 > 0. 

(c) We have  

 ℒ[1] = ∫ 𝑡𝑒−𝑠𝑡𝑑𝑡
∞

0
= [−

𝑡𝑒−𝑠𝑡

𝑠
−

𝑒−𝑠𝑡

𝑠2
]

0

∞

=
1

𝑠2
, 𝑠 > 0. 

 

Example 7.1.2: Find the Laplace transform, if it exists, of each of the following functions 

(a) 𝑓(𝑡) = sin 𝑎𝑡(b) 𝑓(𝑡) = cos 𝑎𝑡     (c) 𝑓(𝑡) = sinh 𝑎𝑡         (d)  𝑓(𝑡) = cosh 𝑎𝑡 
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Solution: (a) ℒ[𝑠𝑖𝑛 𝑎𝑡] =  ∫ 𝑒−𝑠𝑡 sin 𝑎𝑡 𝑑𝑡
∞

0
 = lim

𝑇→∞
∫ 𝑒−𝑠𝑡 sin 𝑎𝑡 𝑑𝑡

𝑇

0
 

== lim
𝑇→∞

[
1

𝑠2+𝑎2
𝑒−𝑠𝑡(−𝑠 𝑠𝑖𝑛𝑎𝑡 − 𝑎 cos 𝑎𝑡)]

0

𝑇
 

= 
1

𝑠2+𝑎2
[0 − 𝑒0(0 − 𝑎. 1)] =

𝑎

𝑠2+𝑎2
. 

 

(b) ℒ[𝑐𝑜𝑠 𝑎𝑡] =  ∫ 𝑒−𝑠𝑡 cos 𝑎𝑡 𝑑𝑡
∞

0
 = lim

𝑇→∞
∫ 𝑒−𝑠𝑡 cos 𝑎𝑡 𝑑𝑡

𝑇

0
 

== lim
𝑇→∞

[
1

𝑠2+𝑎2
𝑒−𝑠𝑡(−𝑠 𝑐𝑜𝑠 𝑎𝑡 + 𝑎 sin 𝑎𝑡)]

0

𝑇
 

= 
1

𝑠2+𝑎2
[0 − 𝑒0(−𝑠 + 0)] =

𝑠

𝑠2+𝑎2
. 

 

(c) ℒ[𝑠𝑖𝑛ℎ 𝑎𝑡] =  ∫ 𝑒−𝑠𝑡 sinh 𝑎𝑡 𝑑𝑡
∞

0
 

= ∫ 𝑒−𝑠𝑡
(𝑒𝑎𝑡 − 𝑒−𝑎𝑡)

2
𝑑𝑡

∞

0

 

=
1

2
[∫ 𝑒−(𝑠−𝑎)𝑡

∞

0

𝑑𝑡 − ∫ 𝑒−(𝑠+𝑎)𝑡
∞

0

𝑑𝑡] 

1

2
[

1

𝑠 − 𝑎
−

1

𝑠 + 𝑎
] =

1

2
[
(𝑠 + 𝑎) − (𝑠 − 𝑎)

𝑠2 − 𝑎2
] =

𝑎

𝑠2 − 𝑎2
 

 

(c) ℒ[𝑐𝑜𝑠ℎ 𝑎𝑡] =  ∫ 𝑒−𝑠𝑡 cosh 𝑎𝑡 𝑑𝑡
∞

0
 

= ∫ 𝑒−𝑠𝑡
(𝑒𝑎𝑡 + 𝑒−𝑎𝑡)

2
𝑑𝑡

∞

0

 

=
1

2
[∫ 𝑒−(𝑠−𝑎)𝑡

∞

0

𝑑𝑡 + ∫ 𝑒−(𝑠+𝑎)𝑡
∞

0

𝑑𝑡] 

1

2
[

1

𝑠 − 𝑎
+

1

𝑠 + 𝑎
] =

1

2
[
(𝑠 + 𝑎) + (𝑠 − 𝑎)

𝑠2 − 𝑎2
] =

𝑠

𝑠2 − 𝑎2
 

 

Inverse Laplace Transforms of Elementary Functions 

(i) ℒ−1 [
1

𝑠
] = 1 

(ii) ℒ[𝑡𝑛] = {

Γ(𝑛+1)

𝑠𝑛+1

𝑛!

𝑠𝑛+1 
, 𝑓𝑜𝑟 𝑛 = 0,1,2,3, … …

 

(iii) ℒ−1 [
1

𝑠−𝑎
] = 𝑒𝑎𝑡 

(iv) ℒ−1 [
1

𝑠2+𝑎2
] =

1

a
 sin 𝑎𝑡 

(v) ℒ−1 [
𝑠

𝑠2+𝑎2
] =  cos 𝑎𝑡 

(vi) ℒ−1 [
1

𝑠2−𝑎2
] =

1

𝑎
sinh 𝑎𝑡 

(vii) ℒ−1 [
𝑠

𝑠2−𝑎2
] = cosh 𝑎𝑡 
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Properties of Laplace Transform 

1. Linearity property: If𝑎, 𝑏, 𝑐 are constants and 𝑓, 𝜙, 𝜓 are any functions of t, then ℒ[𝑎𝑓(𝑡) +

𝑏𝜙(𝑡) − 𝑐𝜓(𝑡)] = 𝑎ℒ[𝑓(𝑡)] + 𝑏ℒ[𝜙(𝑡)] − 𝑐ℒ[𝜓(𝑡)] 

Poof: Now ℒ[𝑎𝑓(𝑡) + 𝑏𝜙(𝑡) − 𝑐𝜓(𝑡)] = ∫ 𝑒−𝑠𝑡[𝑎𝑓(𝑡) + 𝑏𝜙(𝑡) − 𝑐𝜓(𝑡)]𝑑𝑡
∞

0
 

= 𝑎 ∫ 𝑒− 𝑠𝑡  𝑓(𝑡)𝑑𝑡
∞

0

+ 𝑏 ∫ 𝑒− 𝑠𝑡  𝜙(𝑡)𝑑𝑡 − 𝑐 ∫ 𝑒− 𝑠𝑡 𝜓(𝑡)𝑑𝑡
∞

0

∞

0

 

= 𝑎ℒ[𝑓(𝑡)] + 𝑏ℒ[𝜙(𝑡)] − 𝑐ℒ[𝜓(𝑡)] 

 

Remarks 7.1.1: (i)The above property can be generalised to any number of functions. 

(ii) Due to above property, L is called linear operator. 

 

2. First shifting property: If ℒ[𝑓(𝑡)] = 𝐹(𝑠), then If ℒ[𝑒𝑎𝑡𝑓(𝑡)] = 𝐹(𝑠 − 𝑎). 

Proof: ℒ[𝑒𝑎𝑡𝑓(𝑡)] = ∫ 𝑒−𝑠𝑡(𝑒𝑎𝑡𝑓(𝑡)𝑑𝑡
∞

0
 

= ∫ 𝑒−(𝑠−𝑎)𝑡𝑓(𝑡)𝑑𝑡
∞

0
= ∫ 𝑒−𝑘𝑡𝑓(𝑡)𝑑𝑡

∞

0
 where 𝑘 = 𝑠 − 𝑎 > 0 

= 𝐹(𝑘) = 𝐹(𝑠 − 𝑎) 

Hence ℒ[𝑒𝑎𝑡𝑓(𝑡)] = 𝐹(𝑠 − 𝑎). 

 

Remarks 7.1.2:  (i) If the Laplace transform of 𝑓(𝑡) if 𝐹(𝑠), then the Laplace transform of 
𝑒𝑎𝑡𝑓(𝑡) is obtained simply by replacing 𝑠 𝑏𝑦 𝑠 − 𝑎. Now by applying first shifting 
property, we have the following list of useful results. 

(i) ℒ[𝑒𝑎𝑡] =
1

𝑠−𝑎
 

(ii) ℒ[𝑒𝑎𝑡𝑡𝑛] = {

Γ(𝑛+1)

(𝑠−𝑎)𝑛+1

𝑛!

(𝑠−𝑎)𝑛+1 
, 𝑓𝑜𝑟 𝑛 = 0,1,2,3, … …

 

(iii) ℒ[𝑒𝑎𝑡 sin 𝑏𝑡] =
𝑎

(𝑠−𝑎)2+𝑏2
, (𝑠 > 0) 

(iv) ℒ[𝑒𝑎𝑡cos 𝑏𝑡] =
𝑠

(𝑠−𝑎)2+𝑏2
, (𝑠 > 0) 

(v) ℒ[𝑒𝑎𝑡 sinh 𝑏𝑡] =
𝑎

(𝑠−𝑎)2−𝑏2
, (𝑠 > |𝑎|) 

(vi) ℒ[𝑒𝑎𝑡 cosh 𝑏𝑡] =
𝑎

(𝑠−𝑎)2−𝑏2
, (𝑠 > |𝑎|) 

Where in each case s>a. 

 

 

Example 7.1.3: Find the Laplace transform of  

(a) 𝑓(𝑡) = sin 2𝑡 cos 3𝑡(b) 𝑓(𝑡) = sin2 3𝑡              (c) 𝑓(𝑡) = (√𝑡 −
1

√𝑡
)

3
 

Solution: (a) Here 𝑓(𝑡) =
1

2
(2 sin 2𝑡 cos 3𝑡) =

1

2
[sin 5𝑡 − 𝑠𝑖𝑛𝑡 ] 

ℒ(𝑓(𝑡)) = {
1

2
(sin 5𝑡 − 𝑠𝑖𝑛𝑡)} =

1

2
[ℒ(sin 5𝑡) − ℒ(𝑠𝑖𝑛𝑡)] 

=
1

2
[

5

𝑠2 + 52
−

1

𝑠2 + 1
] 

(b) 𝑓(𝑡) = sin2 3𝑡 =
1

2
(1 − 𝑐𝑜𝑠6𝑡) 

ℒ(𝑓(𝑡)) = ℒ [
1

2
(1 − 𝑐𝑜𝑠6𝑡)] 
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=
1

2
[ℒ(1) − ℒ(𝑐𝑜𝑠6𝑡)] 

=
1

2
[

1

𝑠
−

𝑠

𝑠2+36
] =

1

2
[

𝑠2+36−𝑠2

𝑠(𝑠2+36)
] =

18

𝑠(𝑠2+36)
. 

(c) 𝑓(𝑡) = (√𝑡 −
1

√𝑡
)

3
= 𝑡3/2 −

1

𝑡
3
2

− 3√𝑡 
1

√𝑡
(√𝑡 − 1/√𝑡) 

= 𝑡3/2 − 𝑡−
3

2 − 3𝑡
1

2 + 3𝑡−1/2 

ℒ(𝑓(𝑡)) = ℒ(𝑡3/2 − 𝑡−
3

2 − 3𝑡
1

2 + 3𝑡−1/2) 

=
1

𝑠
5

2

Γ (
5

2
) −

1

𝑠
−1

2

Γ (−
1

2
) − 3

1

𝑠
3

2

Γ (
3

2
) +

3

𝑠1/2
Γ (

1

2
) 

We know that Γ(𝑛 + 1) = 𝑛Γ(n) = √𝜋. 

ℒ(𝑓(𝑡)) =
1

𝑠
5

2

3

4
√𝜋 −

1

𝑠
−1

2

(−2√𝜋) − 3
1

𝑠
3

2

(
1

2
√𝜋) +

3

𝑠
1

2

√𝜋. 

=
√𝜋

4
[

3

𝑠5/2
+

8

𝑠−1/2
−

6

𝑠3/2
+

12

𝑠1/2
] =

√𝜋

4𝑠5/2
[3 + 8𝑠3 − 6𝑠 + 12𝑠2] 

 

 

Example 7.1.4: Find the Laplace transform of  

(a) 𝑓(𝑡) = e2t(sin 2𝑡 cos 3𝑡)          (b) 𝑓(𝑡) = 𝑡2𝑒−2𝑡 

Solution: (a) 𝑓(𝑡) =
1

2
(2 sin 2𝑡 cos 3𝑡) =

1

2
[sin 5𝑡 − 𝑠𝑖𝑛𝑡 ] 

ℒ(𝑓(𝑡)) = {
1

2
(sin 5𝑡 − 𝑠𝑖𝑛𝑡)} =

1

2
[ℒ(sin 5𝑡) − ℒ(𝑠𝑖𝑛𝑡)] 

=
1

2
[

5

𝑠2 + 52
−

1

𝑠2 + 1
] 

ℒ[e2t(sin 2𝑡 cos 3𝑡)] =
1

2
[

5

(𝑠 − 2)2 + 52
−

1

(𝑠 − 2)2 + 1
] 

(b) ℒ(𝑡2) =
2

𝑠3
 

By applying the first shifting property 

ℒ(𝑒−2𝑡𝑡2) =
2

(𝑠 + 2)3
 

3. Change of scale property: If ℒ[𝑓(𝑡)] = 𝐹(𝑠), then ℒ[𝑓(𝑎𝑡)] =
1

𝑎
𝐹 (

𝑠

𝑎
). 

ℒ[𝑓(𝑎𝑡)] = ∫ 𝑒−𝑠𝑡𝑓(𝑎𝑡)𝑑𝑡
∞

0

= ∫ 𝑒−𝑠𝑢/𝑎𝑓(𝑢)
1

𝑎
𝑑𝑢

∞

0

 

[Putting at=u, dt=du/a, when t = 0, u = 0, when t → ∞, u → ∞] 

=
1

𝑎
∫ 𝑒−𝑠𝑢/𝑎𝑓(𝑢)

1

𝑎
𝑑𝑢

∞

0

=
1

𝑎
𝐹 (

𝑠

𝑎
). 

 
Example 7.1.5: If) ℒ(𝑠𝑖𝑛𝑡 𝑡) =

1

𝑠2+1 
, find the Laplace transform of  ℒ(𝑠𝑖𝑛𝑡𝑎𝑡)by using 

change scale property 

Solution: Given ℒ(𝑠𝑖𝑛𝑡 𝑡) =
1

𝑠2+1 
. 

By change scale property 

ℒ(𝑠𝑖𝑛𝑡 𝑎𝑡) =
1

𝑎

1

(
𝑠

𝑎
) 2+1 

=
1

𝑎

𝑎2

𝑠2+𝑎2
=

𝑎

𝑠2+𝑎2
. 
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Laplace Transforms of Derivative 

Let 𝑓(𝑡) be real, continuous functions for 𝑡 ≥ 0 and exponential order. Also 𝑓′(𝑡) is continuous. 
Then, 

(i) ℒ[𝑓′(𝑡)] = 𝑠𝐹(𝑠) − 𝑓(0)  

 

(ii) ℒ[𝑓𝑛(𝑡)] = 𝑠𝑛𝐹(𝑠) − 𝑠𝑛−1𝑓(0) − 𝑠𝑛−2𝑓′(0) − ⋯ … … … − 𝑠𝑓𝑛−2(0) − 𝑓𝑛−1(0)  

 

Laplace Transforms of Integrals 

If ℒ[𝑓(𝑡)] = 𝐹(𝑠), then ℒ [∫ 𝑓(𝑢)𝑑𝑢
𝑡

0
] =

1

𝑠
𝐹(𝑠). 

Multiplication by tn 

If ℒ[𝑓(𝑡)] = 𝐹(𝑠), then ℒ[𝑡𝑛𝑓(𝑡) ] = (−1)𝑛 𝑑𝑛

𝑑𝑠𝑛
 𝐹(𝑠). 

 

 

Example 7.1.4: Find the Laplace transform of  

(a) 𝑡3 sin 𝑎𝑡(b) 𝑓(𝑡) = 𝑡2𝑒−3𝑡 

Solution: (a) ℒ[sin 𝑎𝑡] =
𝑎

𝑠2+𝑎2
 

: ℒ[t3sin 𝑎𝑡] =
(−1)3𝑑3

𝑑𝑠3
(

𝑎

𝑠2+𝑎2
) = −𝑎

𝑑2

𝑑𝑠2
[

𝑑

𝑑𝑠
(𝑠2 + 𝑎2)−1] = −𝑎

𝑑2

𝑑𝑠2
[(−1)(𝑠2 + 𝑎2)−2(2𝑠)] 

 

= 2𝑎
𝑑2

𝑑𝑠2
[

𝑠

(𝑠2 + 𝑎2)2
] = 2𝑎

𝑑

𝑑𝑠
[
(𝑠2 + 𝑎2)2. 1 − 𝑠2(𝑠2 + 𝑎2)2𝑠

(𝑠2 + 𝑎2)2
] =  2𝑎

𝑑

𝑑𝑠
[
(𝑠2 + 𝑎2)[𝑠2 + 𝑎2 − 4𝑠2]

(𝑠2 + 𝑎2)4
] 

 

= 2𝑎
𝑑

𝑑𝑠
[

𝑎2 − 3𝑠2

(𝑠2 + 𝑎2)3
] = 2𝑎

𝑑

𝑑𝑠
[
(𝑠2 + 𝑎2)3(−6𝑠) − (𝑎2 − 3𝑠2). 3(𝑠2 + 𝑎2)2. 2𝑠

(𝑠2 + 𝑎2)6
] 

= 2𝑎
𝑑

𝑑𝑠
[

(𝑠2+𝑎2)2(−6𝑠)[𝑠2+𝑎2+𝑎2−3𝑠2]

(𝑠2+𝑎2)6
] = −

12𝑎𝑠

(𝑠2+𝑎2)4
[2𝑎2 − 2𝑠2] =

24𝑎𝑠(𝑠2−𝑎2)

(𝑠2+𝑎2)4
. 

(b) ℒ[𝑒−3𝑡] =
1

𝑠+3
 

ℒ[𝑡2𝑒−3𝑡] =
(−1)2𝑑2

𝑑𝑠2
(

1

𝑠 + 3
) =

2

(𝑠 + 3)3
 

 

 

7.2 Solution of Partial Differential Equation Using Laplace Transforms 

The Laplace transforms is very useful in solving various partial differential equations subject to the 
given boundary conditions: 

Laplace Transform of Some Partial derivatives 

(1) If ℒ [
𝜕𝑦

𝜕𝑡
] = 𝑠𝑦(𝑥, 𝑠) − 𝑦(𝑥, 0) 

(2) If ℒ [
𝜕2𝑦

𝜕𝑡2
] = 𝑠2𝑦(𝑥, 𝑠) − 𝑠𝑦(𝑥, 0) 

(3) If ℒ [
𝜕𝑦

𝜕𝑥
] =

𝑑𝑦

𝑑𝑥

̅
 

(4) If ℒ [
𝜕2𝑦

𝜕𝑥2
] +

𝑑2𝑦̅

𝑑𝑥2
= 0 

  LOVELY PROFESSIONAL UNIVERSITY  75



Unit 07: Laplace Transforms 

 

Notes 

 
Example 7.2.1: Solve

𝜕𝑦

𝜕𝑡
= 2

𝜕2𝑦

𝜕𝑥2
, where 𝑦(0, 𝑡) = 0 = 𝑦(5, 𝑡) and 𝑦(𝑥, 0) = 10𝑠𝑖𝑛4𝜋𝑥 

Solution: Taking the Laplace transform of both the sides of the given equation, we get 

ℒ [
𝜕𝑦

𝜕𝑡
] = 2ℒ [

𝜕2𝑦

𝜕𝑥2
] 

𝑠𝑦(𝑥, 𝑠) − 𝑦(𝑥, 0) = 2
𝑑2𝑦̅

𝑑𝑥2
 

𝑑2𝑦̅

𝑑𝑥2
−

𝑠

2
𝑦(𝑥, 𝑠) = −5𝑠𝑖𝑛4𝜋𝑥        (7.2.1) 

Taking the general solution of (7.2.1) is given by 

𝑦 = 𝐶1𝑒√𝑠/2𝑥 + 𝐶2𝑒−√𝑠/2𝑥 −
5𝑠𝑖𝑛4𝜋𝑥

−(4𝜋)2 −
𝑠

2

 

𝑦 = 𝐶1𝑒√𝑠/2𝑥 + 𝐶2𝑒−√𝑠/2𝑥 +
10𝑠𝑖𝑛4𝜋𝑥

32𝜋2 + 𝑠
 

Given that𝑦(0, 𝑡) = 0 = 𝑦(5, 𝑡). Therefore 

𝑦(0, 𝑠) = 0 = 𝑦(5, 𝑠). 

Putting these values in (7.2.1), we get 

0 = 𝐶1 + 𝐶2         (7.2.2) 

And 0 = 𝐶1𝑒5√𝑠/2 + 𝐶2𝑒−5√𝑠/2 +
10

32𝜋2+𝑠
𝑠𝑖𝑛20𝜋 

𝐶1𝑒5√𝑠/2 + 𝐶2𝑒−5√𝑠/2 = 0        (7.2.3) 

Solving (7.2.2) and (7.2.3), we get 𝐶1 = 𝐶2 = 0. 

Therefore from (7.2.1), we have 

𝑦 =
10

32𝜋2 + 𝑠
𝑠𝑖𝑛4𝜋𝑥 

𝑦 = ℒ−1 [
10

32𝜋2 + 𝑠
𝑠𝑖𝑛4𝜋𝑥] = 10𝑒−32𝜋2𝑡 sin 4𝜋𝑥 

 

 

Example 7.2.2:A semi-infinite solid 𝑥 > 0 is initially at temperature zero. At time 𝑡 > 0, a 
constant temperature 𝑉0 > 0 is applied and maintained at the force 𝑥 = 0. Find the 
temperature at any point of the solid at any time 𝑡 > 0. 

Solution: We know that the temperature 𝑢(𝑥, 𝑡) at any point of the solid at any time 𝑡 > 0 is 
governed by one dimensional heat equation 

𝜕𝑢

𝜕𝑡
= 𝐶2 𝜕2𝑢

𝜕𝑥2
, (𝑥 > 0, 𝑡 > 0)        (7.2.4) 

With boundary condition Solve 𝑢(0, 𝑡) = 𝑉0 , 𝑢(𝑥, 0) = 0. 

Taking Laplace transform of both sides of (7.2.4), we get 

ℒ [
𝜕𝑢

𝜕𝑡
] = 𝐶2ℒ [

𝜕2𝑢

𝜕𝑥2
] 

𝑠𝑢̅(𝑥, 𝑠) − 𝑢(𝑥, 0) = 𝐶2
𝑑2𝑢̅

𝑑𝑥2
 

𝑑2𝑢

𝑑𝑥2
−

𝑠

𝐶2
𝑢̅ = 0         (7.2.6) 

The solution of (7.2.6) is given by 

𝑢̅(𝑥, 𝑠) = 𝐴𝑒√𝑠/𝐶2𝑥 + 𝐵𝑒−√𝑠/𝐶2𝑥 . 

Since 𝑢 is finite when 𝑥 → ∞, therefore, 𝑢̅ is also finite when 𝑥 → ∞. 
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Therefore form (7.2.6), 𝐴 = 0, otherwise 𝑢̅ → ∞ as 𝑥 → ∞. Now, taking the Laplace transforms of the 
condition  𝑢(0, 𝑡) = 𝑉0, we have 

𝑢̅(0, 𝑠) = ∫ 𝑉0
∞

𝑡=0
𝑒−𝑠𝑡𝑑𝑡 =

𝑉0

𝑠
. 

Therefore, from (7.2.6), we have 

𝑢̅(0, 𝑠) = 𝐵 =
𝑉0

𝑠
. 

Hence 𝑢̅(𝑥, 𝑠) =
𝑉0

𝑠
𝑒−√𝑠/𝐶2𝑥. 

𝑢(𝑥, 𝑡) =  ℒ−1 {
𝑉0

𝑠
𝑒−√𝑠/𝐶2𝑥} 

 

𝑢(𝑥, 𝑡) =  
𝑉0

𝑠
erf {

𝑥

2𝑐√𝑡
}.  

 

Summary 

 The concept of the Laplace transform is discussed. 

 The properties of Laplace transform were elaborated. 

 The formula of Laplace transform with their solution are derived. 

 The Solution of PDE with Laplace transform method is elaborated. 

 

Keywords 

 Laplace transform 

 Inverse Laplace transform 

 Linearity property 

 First shifting property 

 Derivative formula 

 Integral Formula 

 Partial differential equation 

Self Assessment 

1. Laplace transform of 
te t 5cosh20

is 

A. 

25)20(

20
2 



s

s

 

B. 

25)20(

20
2 



s

s

 

C. 

400)25(

25
2 



s

s

 

D. 
400)25(

25
2 



s

s

 

  LOVELY PROFESSIONAL UNIVERSITY  77



Unit 07: Laplace Transforms 

 

Notes 

2. Laplace inverse of 7

3

s is 

A. 

te37
 

B. 

te73
 

C. 

te 73 

 

D. 
te 37 

 

3. Laplace transform of 
 22 2t

is 

A. 

5

42 4824

s

ss 

 

B. 

4

34824

s

ss 

 

C. 

5

4226

s

ss 

 

D. None of these 

4. Laplace inverse of 2

1

1

s
is 

A. 

te 2

 

B. 

t

e 2

1

 

C. 

t

e 2

1

 

D. 

te2

 

5. Laplace inverse of 
  22





s
is 

A. 
te t  sin
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B. 
te t  sin

 

C. 
te t  sinh

 

D. 
te t  sinh

 

 

6. Laplace transform of 
2

1

t is 

A. 

s



 

B. 

s



 

C. 

s



 

D. None of these 

 

7. .
  ......2cos2 tL

 

A. 

)16( 2

2

ss

s

 

B. 

)16(

8
2 ss

 

C. 

)16(

8
2

2





ss

s

 

D. 

)16(

8
2

2





ss

s

 

 

8. The Laplace inverse 492 s

s

 is equal to  

A. 
t7sin

 

B. 
t7cos

 

C. 
t7sinh

 

D. 
t7cosh
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9. The Laplace transform

32 te t

 is equal to  

A. 

1)2(

!3
 ns

 

B. 

4)2(

1

s

 

C. 

4)2(

!3

s

 

D. 

4)2(

1

s

 

10. Inverse Laplace transform of 

3)2(

2

s
is 

A. 

tet 2

 

B. 

tet 22

 

C. 

tet 2

 

D. 

tet 22 

 

11. Laplace transform of 
 2

cossin tt 
is 

A. 

 4

42
2

2





ss

ss

 

B. 

 4

42
2

2





ss

ss

 

C. 

 4

42
2

2





ss

ss

 

D. 

 4

42
2

2





ss

ss
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Answers for Self Assessment 

l. A 2. C 3. A 4. B 5. A 

6. A 7. D 8. C 9. D 10. D 

11. C         

 

Review Questions 

1. By using Laplace transforms, find the temperature  ,u x t in a slab whose ends 0x 

and x a are kept at temperature zero and whose initial temperature is  sin x
a

 .  

2. Solve 
𝜕𝑦

𝜕𝑡
=

𝜕2𝑦

𝜕𝑥2
, 𝑥 > 0, 𝑡 > 0, where 𝑦(0, 𝑡) = 1, and 𝑦(𝑥, 0) = 0. 

3. Solve 
𝜕𝑦

𝜕𝑡
=

𝜕2𝑦

𝜕𝑥2
, 𝑥 > 0, 𝑡 > 0, where 𝑦 (

𝜋

2
, 𝑡) = 0, (

𝜕𝑦

𝜕𝑥
)

𝑥=0
= 0 and 𝑦(𝑥, 0) = 𝑐𝑜𝑠5𝑥. 

4. An infinite long string having one end 𝑥 = 0 is initially at on the x-axis. The end 𝑥 =

0under goes a periodic transverse displacement given by 𝐴0 sin 𝑛𝑡, 𝑡 > 0, find the 

displacement of any point on the string at 𝑡 > 0. 

 

 
Further Readings 

1. I.N. Sneddon(1957), Elements Of Partial Differential Equations,Mcgraw Hill Education. 

2. Lawrence C. Evans (1998), Partial Differential Equations, Universities Press Pvt. Ltd 

 

 

Web Links 

https://onlinecourses.nptel.ac.in/noc22_ma73/preview 

https://onlinecourses.nptel.ac.in/noc21_ma09/preview 

https://onlinecourses.swayam2.ac.in/cec22_ma12/preview 
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Unit 08 : Fourier Transform 
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Summary 

Keywords 
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Review Questions 

Further Readings 

 

Objectives 

After studying this unit, you will be able to 

 identify the concept of Fourier transform. 

 understand the properties ofFourier transform. 

 know about the sine and cosine Fourier transform. 

 apply Fourier transform to solve partial differential equation. 

 

Introduction 

Fourier Transform 

If a function f(x) defined on the interval ]-∞, ∞ [, and piecewise continuous in each finite partial 
interval and absolutely integrable in ]-∞, ∞ [, then 

𝐹(𝑓(𝑥)) = 𝑓(̅𝑝) = ∫ 𝑒𝑖𝑝𝑥𝑓(𝑥)𝑑𝑥  
 ∞ 

−∞
  (8.0.1) 

is defined as Fourier transform of f(x). The inverse formula for Fourier transform is given by 

𝐹−1(𝑓(̅𝑝)) = 𝑓(𝑥) =
1

2𝜋
∫ 𝑒−𝑖𝑝𝑥𝑓̅(𝑝)𝑑𝑝                                                                                                           (8.0.2)

 ∞ 

−∞

 

 

Remark 8.0.1:We can also define  

𝐹(𝑓(𝑥)) = 𝑓(̅𝑝) =
1

√2𝜋
∫ 𝑒𝑖𝑝𝑥𝑓(𝑥)𝑑𝑥  

 ∞ 

−∞
and  

𝐹−1(𝑓̅(𝑝)) = 𝑓(𝑥) =
1

√2𝜋
∫ 𝑒−𝑖𝑝𝑥𝑓̅(𝑝)𝑑𝑝 

 ∞ 

−∞

 

 

8.1 Fourier Sine and Cosine Transform 

Definition (8.0.1): The infinite Fourier sine transform of the function f(x), 0<x<∞ is denoted by 

𝐹𝑠(𝑓(𝑥)) or 𝑓𝑠̅(𝑝)and defined by 

Dr. Preety Kalra, Lovely Professional University 
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𝐹𝑠(𝑓(𝑥)) = 𝑓𝑠̅(𝑝) = √
2

𝜋
∫  𝑓(𝑥) 𝑠𝑖𝑛𝑝𝑥 𝑑𝑥  

 ∞ 

0

 

The inverse formula for infinite Fourier sine transform is given by 

𝑓(𝑥) = 𝐹𝑠
−1(𝑓𝑠̅(𝑝)) = √

2

𝜋
∫ 𝑓𝑠̅(𝑝) 𝑠𝑖𝑛𝑝𝑥 𝑑𝑝 

 ∞ 

0

 

Definition (8.0.2):The infinite Fourier cosine transform of f(x), 0<x<∞ is denoted by 𝐹𝑐(𝑓(𝑥)) or 

𝑓𝑐̅(𝑝) and defined by 

𝐹𝑐(𝑓(𝑥)) = 𝑓𝑐̅(𝑝) = √
2

𝜋
∫  𝑓(𝑥)𝑐𝑜𝑠𝑝𝑥 𝑑𝑥  

 ∞ 

0

 

The inverse formula for infinite Fourier cosine transform is given by 

𝑓(𝑥) = 𝐹𝑐
−1(𝑓𝑐̅(𝑝)) = √

2

𝜋
∫ 𝑓𝑐̅(𝑝) 𝑐𝑜𝑠𝑝𝑥 𝑑𝑝 

 ∞ 

0

 

8.2 Linearity Property of Fourier Transform 

Let 𝑓(̅𝑝) and 𝑔̅(𝑝)are Fourier transforms of f(x) and g(x) respectively. Then  

F{af(x) + bg(x)} = a𝑓(̅𝑝)+b 𝑔̅(𝑝), where a and b are constants. 

 

Change of Scale Property 

Theorem 8.2.1.(For Complex Fourier Transform). If 𝑓(̅𝑝)is the complex Fourier transform of f(x), 

the complex Fourier transform of f(ax) is given by 

1

𝑎
𝑓̅ (

𝑝

𝑎
) 

Proof. By definition, we have  

𝑓(̅𝑝) = ∫ 𝑒𝑖𝑝𝑥𝑓(𝑥)𝑑𝑥  

 ∞ 

−∞

 

Consider  

𝑓(̅𝑎𝑝) = ∫ 𝑒𝑖𝑝𝑥𝑓(𝑎𝑥)𝑑𝑥  

 ∞ 

−∞

 

Putting  
𝑎𝑥 = 𝑡 ⇒ 𝑎𝑑𝑥 = 𝑑𝑡, we get  

 

𝑓(̅𝑎𝑝) =
1

𝑎
∫ 𝑒

𝑖𝑝(
𝑡

𝑎
)
𝑓(𝑡)𝑑𝑡 =

1

𝑎
∫ 𝑒

𝑖(
𝑝

𝑎
)𝑡

𝑓(𝑥)𝑑𝑥 =
1

𝑎

 ∞ 

−∞

 ∞ 

−∞

𝑓̅ (
𝑝

𝑎
) 

 

 

Remark 8.2.1: In a similar way, we can prove that: 

(a) If 𝑓𝑠̅(𝑝) is the Fourier sine transform of f(x), then Fourier sine transform of f(ax) is given 
by  

1

𝑎
𝑓𝑠̅ (

𝑝

𝑎
) 

(b) If 𝑓𝑐̅(𝑝) is the Fourier cosine transform of f(x), then Fourier cosine transform of f(ax) is 
given by  

1

𝑎
𝑓𝑐̅ (

𝑝

𝑎
) 
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Application to Partial Differential Equation 

Theorem 8.2.2 (Shifting Property). If𝑓(̅𝑝) is the complex Fourier transform of f(x), then complex 
Fourier transform of f(x-a) is eipa f(p).  

Proof. By definition, we have 

𝑓(̅𝑝) = ∫ 𝑒𝑖𝑝𝑥𝑓(𝑥)𝑑𝑥  

 ∞ 

−∞

 

Consider  

𝑓(̅𝑥 − 𝑎) = ∫ 𝑒𝑖𝑝𝑥𝑓(𝑥 − 𝑎)𝑑𝑥  

 ∞ 

−∞

 

Putting x-a=t, we have 

𝑓(̅𝑡) = ∫ 𝑒𝑖𝑝(𝑡+𝑎)𝑓(𝑡)𝑑𝑡 =   𝑒𝑖𝑝𝑎

 ∞ 

−∞

∫ 𝑒𝑖𝑝𝑡𝑓(𝑡)𝑑𝑡 = 𝑒𝑖𝑝𝑎𝑓̅(𝑝)

 ∞ 

−∞

 

 

Some Important Integrals (To be Used Directly) 

(1) ∫ 𝑒𝑎𝑥𝑠𝑖𝑛𝑏𝑥 𝑑𝑥 =
𝑒𝑎𝑥

𝑎2+𝑏2
(asin 𝑏𝑥 − 𝑏𝑐𝑜𝑠 𝑏𝑥) 

(2) ∫ 𝑒𝑎𝑥𝑐𝑜𝑠𝑏𝑥 𝑑𝑥 =
𝑒𝑎𝑥

𝑎2+𝑏2
(acos 𝑏𝑥 + 𝑏𝑠𝑖𝑛 𝑏𝑥) 

(3) ∫ 𝑒−𝑎𝑥 sin 𝑏𝑥 𝑑𝑥 =
𝑏

𝑎2+𝑏2

∞

0
 

(4) ∫ 𝑒−𝑎𝑥 cos 𝑏𝑥 𝑑𝑥 =
𝑎

𝑎2+𝑏2

∞

0
 

(5) 
𝑑𝑛

𝑑𝑥𝑛
(

𝑥

𝑎2+𝑥2
) =

(−1)𝑛𝑛!

(𝑎2+𝑥2)(𝑛+1)/2 
cos [(𝑛 + 1) 𝑡𝑎𝑛−1 (

𝑎

𝑥
)] 

(6) 
𝑑𝑛

𝑑𝑥𝑛
(

𝑎

𝑎2+𝑥2
) =

(−1)𝑛𝑛!

(𝑎2+𝑥2)(𝑛+1)/2 
sin [(𝑛 + 1) 𝑡𝑎𝑛−1 (

𝑎

𝑥
)] 

(7) ∫
sin 𝑝𝑥

𝑥
𝑑𝑥 = {

𝜋

2
; 𝑖𝑓  𝑝 > 0

−
𝜋

2
; 𝑖𝑓 𝑝 < 0 

∞

0
 

(8) ∫ 𝑒−𝑥2
dx = √𝜋

∞

−∞
, ∫ 𝑒−𝑥2

dx =
√𝜋

2

∞

0
 

Theorem 8.2.3 (Modulation Theorem) If 𝑓(̅𝑝)is the complex Fourier transform of f(x), then, the 
Fourier transform of 

f(x) cos ax is 
1

2
(𝑓(̅𝑝 − 𝑎) + 𝑓(̅𝑝 + 𝑎)) . 

Proof. By definition, we haves 

𝑓(̅𝑝) = ∫ 𝑒𝑖𝑝𝑥𝑓(𝑥)𝑑𝑥  

 ∞ 

−∞

 

Now,  

𝐹(𝑓(𝑥) cos 𝑎𝑥) = ∫ 𝑒𝑖𝑝𝑥𝑓(𝑥) cos 𝑎𝑥 𝑑𝑥  

 ∞ 

−∞

 

= ∫ 𝑒𝑖𝑝𝑥𝑓(𝑥)
𝑒𝑖𝑎𝑥 + 𝑒−𝑖𝑎𝑥

2
 𝑑𝑥  

 ∞ 

−∞
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=
1

2
∫ 𝑒𝑖(𝑝+𝑎)𝑥𝑓(𝑥)𝑑𝑥

∞

−∞

+
1

2
∫ 𝑒𝑖(𝑝−𝑎)𝑥𝑓(𝑥)𝑑𝑥

∞

−∞

 

 

=
1

2
(𝑓(̅𝑝 − 𝑎) + 𝑓(̅𝑝 + 𝑎)) 

 

8.3 Application of Fourier Transform to Boundary Value Problem 

The infinite sine and cosine transforms can be applied when the range of the variable selected for 
exclusion is 0 to ∞. The choice of sine and cosine transform is decided by the form of the boundary 
conditions at the lower limit of the variable selected for exclusion. Hence, we have 

𝐹𝑠 {
𝜕2𝑢

𝜕𝑥2
} = ∫

𝜕2𝑢

𝜕𝑥2
 𝑠𝑖𝑛𝑝𝑥 𝑑𝑥

∞

0

 

= [
𝜕𝑢

𝜕𝑥
sin 𝑝𝑥]

0

∞

− 𝑝 ∫
𝜕𝑢

𝜕𝑥

∞

0

𝑐𝑜𝑠𝑝𝑥 𝑑𝑥 

= −𝑝 ∫
𝜕𝑢

𝜕𝑥
 𝑐𝑜𝑠𝑝𝑥𝑑𝑥

∞

0

 

if 
𝜕𝑢

𝜕𝑥
→ 0 𝑎𝑠 𝑥 → ∞. 

= −𝑝 {[𝑢𝑐𝑜𝑠 𝑝𝑥]0
∞ + 𝑝 ∫ 𝑢𝑠𝑖𝑛𝑝𝑥 𝑑𝑥

∞

0

} 

= 𝑝(𝑢)𝑥=0 − 𝑝2𝑢̅𝑠 

[By assuming u→ 0 as x → ∞] 

Therefore, 𝐹𝑠 {
𝜕2𝑢

𝜕𝑥2
} = 𝑝𝑢(0, 𝑡) − 𝑝2𝑢̅𝑠(𝑝, 𝑡). 

where u(x, t) is a function of two variables x and t and 𝑢̅𝑠(𝑝, 𝑡) is the Fourier sine transform of u(x, t) 
with respect to x. 

Further  

𝐹𝑐 {
𝜕2𝑢

𝜕𝑥2
} = ∫

𝜕2𝑢

𝜕𝑥2
 𝑐𝑜𝑠𝑝𝑥 𝑑𝑥

∞

0

 

= [
𝜕𝑢

𝜕𝑥
cos 𝑝𝑥]

0

∞

− 𝑝 ∫
𝜕𝑢

𝜕𝑥

∞

0

𝑠𝑖𝑛𝑝𝑥 𝑑𝑥 

= − (
𝜕𝑢

𝜕𝑥
)

𝑥=0
+ 𝑝 ∫

𝜕𝑢

𝜕𝑥
 𝑠𝑖𝑛 𝑝𝑥𝑑𝑥

∞

0

 

assuming
𝜕𝑢

𝜕𝑥
→ 0 𝑎𝑠 𝑥 → ∞. 

= − (
𝜕𝑢

𝜕𝑥
)

𝑥=0
+ 𝑝 {[𝑢𝑠𝑖𝑛 𝑝𝑥]0

∞ − 𝑝 ∫ 𝑢𝑐𝑜𝑠𝑝𝑥 𝑑𝑥

∞

0

} 

= − (
𝜕𝑢

𝜕𝑥
)

𝑥=0
− 𝑝2 ∫ 𝑢(𝑥, 𝑡) cos 𝑝𝑥 𝑑𝑥

∞

0

 

Then,𝐹𝑐 {
𝜕2𝑢

𝜕𝑥2
} = − (

𝜕𝑢

𝜕𝑥
)

𝑥=0
− 𝑝2𝑢̅𝑐(𝑝, 𝑡). 

where, 𝑢̅𝑐(𝑝, 𝑡) is the Fourier cosine transform of u(x, t) with respect to x. 

 

Remark 8.3.1: It must be noted that the successful use of a sine transform in removing a 

term 
𝜕2𝑢

𝜕𝑥2
required u(0, t), i.e., u at x = 0, while the use of a cosine transform for the same 

purpose requires ux(0, t), i.e., 
𝜕𝑢

𝜕𝑥
 at x=0. 
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The term
 𝜕𝑢

𝜕𝑥
 or any partial derivative of odd order cannot be removed with the help of sine 

or cosine transforms. 

When one of the variables in a differential equation ranges from -∞ to ∞ then that variable 
can be excluded with the help of complex Fourier transforms. 

SOLVED EXAMPLES 

 
Example 8.3.1: Solve

 𝜕𝑢

𝜕𝑡
= 2

𝜕2𝑢

𝜕𝑥2
 if u(0, t) = 0, u(x, 0) = e-x, x>0, u(x, t) is bounded where x > 0, 

t> 0. 

Solution. As per given 
 𝜕𝑢

𝜕𝑡
= 2

𝜕2𝑢

𝜕𝑥2
       (8.3.1) 

subject to the boundary conditions  

u(0, t) = 0, u(x, t) is bounded.       (8.3.2) 

and initial condition  

u(x, 0) = e-x, x>0         (8.3.3) 

Since, u(0, t) is given, taking the Fourier sine transform of both sides of (8.3.1), we get 

∫
 𝜕𝑢

𝜕𝑡
sin 𝑝𝑥 𝑑𝑥 

∞

0

= 2 ∫
𝜕2𝑢

𝜕𝑥2

∞

0

 𝑠𝑖𝑛𝑝𝑥 𝑑𝑥 

 

 𝑑

𝑑𝑡
∫  𝑢(𝑥, 𝑡) sin 𝑝𝑥 𝑑𝑥 

∞

0

= 2 {(
 𝜕𝑢

𝜕𝑥
𝑠𝑖𝑛𝑝𝑥)

0

∞

− ∫
 𝜕𝑢

𝜕𝑥
𝑝𝑐𝑜𝑠 𝑝𝑥 𝑑𝑥

∞

0

} 

 𝑑𝑢𝑠

𝑑𝑡
= −2𝑝 ∫

 𝜕𝑢

𝜕𝑥
𝑐𝑜𝑠 𝑝𝑥 𝑑𝑥

∞

0
 if 

𝑑𝑢

𝑑𝑥
→ 0 as 𝑥 → ∞ 

Assume ūs(p, t) =∫ 𝑢𝑠𝑖𝑛𝑝𝑥𝑑𝑥
∞

0
 

= −2𝑝 {(𝑢(𝑥, 𝑡) 𝑐𝑜𝑠𝑝𝑥)0
∞ − ∫ 𝑢(𝑥, 𝑡)(−𝑝𝑠𝑖𝑛 𝑝𝑥) 𝑑𝑥

∞

0

} 

 

= −2𝑝 {0 − 𝑢(0, 𝑡) + 𝑝 ∫ 𝑢(𝑥, 𝑡)𝑠𝑖𝑛 𝑝𝑥𝑑𝑥
∞

0

} 

= 2𝑝𝑢(0, 𝑡) − 2𝑝2𝑢̅𝑠 

 𝑑𝑢̅𝑠

𝑑𝑡
= −2𝑝2𝑢̅𝑠 

On separating the variables, we get 

 𝑑𝑢̅𝑠

𝑢̅𝑠
= −2𝑝2𝑑𝑡 ⇒ log 𝑢̅𝑠 − log 𝐶 = −2𝑝2𝑡   

 

⇒ log
𝑢̅𝑠

𝐶
= −2𝑝2𝑡  ⇒ 𝑢̅𝑠 = 𝐶𝑒−2𝑝2𝑡                                                                                                                    (8.3.4) 

Now, taking the Fourier sine transform of both sides of (8.3.3), we get  

∫ 𝑢(𝑥, 0)𝑠𝑖𝑛 𝑝𝑥𝑑𝑥
∞

0

= ∫ 𝑒−𝑥  𝑠𝑖𝑛 𝑝𝑥𝑑𝑥
∞

0

 

𝑢̅𝑠(𝑝, 0) = [
𝑒−𝑥

1 + 𝑝2
(−𝑠𝑖𝑛𝑝𝑥 − 𝑝𝑐𝑜𝑠 𝑝𝑥)]

0

∞

=
𝑝

1 + 𝑝2
                                                                                  (8.3.5) 

Putting t=0 in (8.3.4) and (8.3.5), we get 
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𝑝

1 + 𝑝2
= 𝐶 

𝑢̅𝑠(𝑝, 𝑡) =
𝑝

1 + 𝑝2
𝑒−2𝑝2𝑡  

Taking the inverse Fourier sine transform, we get 

𝑢(𝑥, 𝑡) =
2

𝜋
∫

𝑝

1 + 𝑝2

∞

0

𝑒−2𝑝2𝑡 𝑠𝑖𝑛𝑝𝑥 𝑑𝑥 

 
Example 8.3.2: Solve

 𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑥2
, 𝑥 > 0, 𝑡 > 0  subject to the conditions u(0, t) = 0,  

𝑢(𝑥, 0) = {
1;   1 < 𝑥 < 1

0 ;    𝑥 > 1           
, u(x, t) is bounded where x > 0, t> 0. 

Solution. Taking the Fourier sine transform of both the sides of given PDE, we get 

∫
 𝜕𝑢

𝜕𝑡
sin 𝑝𝑥 𝑑𝑥 

∞

0

= ∫
𝜕2𝑢

𝜕𝑥2

∞

0

 𝑠𝑖𝑛𝑝𝑥 𝑑𝑥 

 

 𝑑

𝑑𝑡
∫  𝑢(𝑥, 𝑡) sin 𝑝𝑥 𝑑𝑥 

∞

0
= {(

 𝜕𝑢

𝜕𝑥
𝑠𝑖𝑛𝑝𝑥)

0

∞
− 𝑝 ∫

 𝜕𝑢

𝜕𝑥
𝑐𝑜𝑠 𝑝𝑥 𝑑𝑥

∞

0
}

 𝑑𝑢𝑠

𝑑𝑡
= −𝑝 ∫

 𝜕𝑢

𝜕𝑥
𝑐𝑜𝑠 𝑝𝑥 𝑑𝑥

∞

0
 if 

𝜕𝑢

𝜕𝑥
→ 0 as 

𝑥 → ∞ 

Assume ūs(p, t) = ∫ 𝑢𝑠𝑖𝑛𝑝𝑥𝑑𝑥
∞

0
 

= −𝑝 {(𝑢(𝑥, 𝑡) 𝑐𝑜𝑠𝑝𝑥)0
∞ + 𝑝 ∫ 𝑢(𝑥, 𝑡)𝑠𝑖𝑛 𝑝𝑥 𝑑𝑥

∞

0

} 

 

= 𝑝 {0 − 𝑢(0, 𝑡) + 𝑝 ∫ 𝑢(𝑥, 𝑡)𝑠𝑖𝑛 𝑝𝑥𝑑𝑥
∞

0

} 

= 𝑝𝑢(0, 𝑡) − 𝑝2𝑢̅𝑠if u→ 0 as x →∞  

On separating the variables, we get 

 𝑑𝑢̅𝑠

𝑢̅𝑠
= −𝑝2𝑑𝑡 ⇒ log 𝑢̅𝑠 − log 𝐶 = −𝑝2𝑡   

 

⇒ log
𝑢̅𝑠

𝐶
= −𝑝2𝑡  ⇒ 𝑢̅𝑠 = 𝐶𝑒−𝑝2𝑡                                                                                                                    (8.3.6) 

Putting t=0, we get  

𝑢̅𝑠(𝑝, 0) = 𝐶                                                                                                                                                  (8.3.7) 

Now, 𝑢̅𝑠(𝑝, 0) = ∫ 𝑢(𝑥, 0) sin 𝑝𝑥 𝑑𝑥
∞

0
 

= ∫ 𝑢(𝑥, 0)𝑠𝑖𝑛𝑝𝑥 𝑑𝑥 + ∫ 𝑢(𝑥, 0)𝑠𝑖𝑛𝑝𝑥 𝑑𝑥 = ∫ sin 𝑝𝑥 𝑑𝑥

1

0

∞

1

1

0

 

Now, from (8.3.6) 

𝐶 = ∫ sin 𝑝𝑥 𝑑𝑥

1

0

= [
cos 𝑝𝑥

−𝑝
]

0

1

=
1 − 𝑐𝑜𝑠𝑝

𝑝
 

Thus, (8.3.6) gives 𝑢̅𝑠(𝑝, 𝑡) = [
1−𝑐𝑜𝑠𝑝

𝑝
] 𝑒−𝑝2𝑡 

Finally, taking the inverse Fourier sine transform, we get 

𝑢(𝑥, 𝑡) =
2

𝜋
∫

1 − 𝑐𝑜𝑠𝑝

𝑝

∞

0

𝑒−𝑝2𝑡𝑠𝑖𝑛𝑝𝑥 𝑑𝑝 
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which is the required solution. 

 

Summary 

 The Fourier transforms and its integral formula is defined. 

 The properties of Fourier transform are discussed.  

 Fourier sine and cosine formula is derived. 

 Solution of PDE by using Fourier transform elaboratedwith an examples. 

 

Keywords 

 Fourier transform 

 Change scale property 

 Shifting property 

 Fourier sine transform 

 Fourier cosine transform 

 PDE 

 

Self Assessment 

Choose the most suitable answer from the options given with each question. 

1. The integral formula 𝐹(𝑓(𝑥)) = 𝑓(̅𝑝) = ∫ 𝑒𝑖𝑝𝑥𝑓(𝑥)𝑑𝑥  
 ∞ 

−∞
is known as 

A. Laplace transform 

B. Inverse Laplace transform 

C. Fourier transform 

D. None of these 

 

2. The inverse Fourier formula is given by 

A. 𝐹−1(𝑓(̅𝑝)) = 𝑓(𝑥) =
1

2𝜋
∫ 𝑒𝑝𝑥𝑓(̅𝑝)𝑑𝑝 

 ∞ 

0
 

B. 𝐹−1(𝑓(̅𝑝)) = 𝑓(𝑥) =
1

2𝜋
∫ 𝑒−𝑖𝑝𝑥𝑓̅(𝑝)𝑑𝑝 

 ∞ 

−∞
 

C. 𝐹−1(𝑓(̅𝑝)) = 𝑓(𝑥) =
1

2𝜋
∫ 𝑒𝑝𝑥𝑓̅(𝑝)𝑑𝑝 

 ∞ 

−∞
 

D. None of these 

 

3. Which of the properties are followed by Fourier transfer? 

A. Linearity 

B. Change scale 

C. Both (a) and (b) 

D. None of these 

4. The infinite Fourier sine transform of the function f(x), 0<x<∞ is 

A. 𝐹𝑠(𝑓(𝑥)) = 𝑓𝑠̅(𝑝) = ∫  𝑓(𝑥) 𝑐𝑜𝑠𝑝𝑥 𝑑𝑥  
 ∞ 

0
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B. 𝐹𝑠(𝑓(𝑥)) = 𝑓𝑠̅(𝑝) = √
2

𝜋
∫  𝑓(𝑥) 𝑠𝑖𝑛𝑝𝑥 𝑑𝑥  

 ∞ 

0
 

C. 𝐹𝑠(𝑓(𝑥)) = 𝑓𝑠̅(𝑝) = √
2

𝜋
∫  𝑓(𝑥) 𝑠𝑖𝑛𝑝𝑥 𝑑𝑥  

 ∞ 

− ∞ 
 

D. None of these 

5. The infinite Fourier cosine transform of the function f(x), 0<x<∞ is  

A. 𝐹𝑐(𝑓(𝑥)) = 𝑓𝑐̅(𝑝) = ∫  𝑓(𝑥) 𝑐𝑜𝑠𝑝𝑥 𝑑𝑥  
 ∞ 

0
 

B. 𝐹𝑐(𝑓(𝑥)) = 𝑓𝑐̅(𝑝) = √
2

𝜋
∫  𝑓(𝑥) cos 𝑝𝑥 𝑑𝑥  

 ∞ 

0
 

C. 𝐹𝑠(𝑓(𝑥)) = 𝑓𝑠̅(𝑝) = √
2

𝜋
∫  𝑓(𝑥) 𝑠𝑖𝑛𝑝𝑥 𝑑𝑥  

 ∞ 

− ∞ 
 

D. None of these 

6. The use of a sine transform in removing a term 
𝜕2𝑢

𝜕𝑥2
is required  

A. u(0, t), i.e., u at x = 0,  

B. ux(0, t), i.e., 
𝜕𝑢

𝜕𝑥
 at x=0. 

C. Both (a) and (b) 

D. None of these 

 

7. The use of a cosine transform in removing a term 
𝜕𝑢

𝜕𝑥
 is required 

A. u(0, t), i.e., u at x = 0,  

B. ux(0, t), i.e., 
𝜕𝑢

𝜕𝑥
 at x=0. 

C. Both (a) and (b) 

D. None of these 

 

Answer forSelfAssessment 

l. C 2. B 3. C 4. B 5. B 

6. A 7. B       

 

Review Questions 

1. Solve 
𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕𝑥2
, 𝑥 > 0, 𝑡 > 0 subject to conditions 

(i) 𝑢 = 0 when 𝑥 = 0, 𝑡 > 0 

(ii) 𝑢 = {
1, 0 < 𝑥 < 1

0, 𝑥 ≥ 1
 and 
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(iii) 𝑢(𝑥, 𝑡) is bounded 

2. Solve the boundary value problem 
𝜕2𝑢

𝜕2𝑡
= 9

𝜕2𝑢

𝜕𝑥2
 subject to boundary conditions 𝑢(0, 𝑡) =

0, 𝑢(2, 𝑡) = 0, 𝑢(𝑥, 0) = (0.05)𝑥(2 − 𝑥) 

𝑢𝑡(𝑥, 0) = 0, where 0<x<2, t>0. 

3. Use finite Fourier transform to solve 
𝜕𝑣

𝜕𝑡
=

𝜕2𝑣

𝜕𝑥2
, 0<x<6, t>0 and 𝑣𝑥(0, 𝑡), 𝑣𝑥(6, 𝑡), 𝑣(𝑥, 0) = 2𝑥. 

 
Further Readings 

1. I.N. Sneddon(1957), Elements Of Partial Differential Equations,Mcgraw Hill Education. 

2. Lawrence C. Evans (1998), Partial Differential Equations, Universities Press Pvt. Ltd 

 

 
Web Links 

https://onlinecourses.nptel.ac.in/noc22_ma73/preview 

https://onlinecourses.nptel.ac.in/noc21_ma09/preview 

https://onlinecourses.swayam2.ac.in/cec22_ma12/preview 
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CONTENTS 
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Introduction 

9.1 Hopf-Cole Transformation 
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9.3 Legendre Transform 
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Keywords 

Self Assessment 

Answer for self Assessment 
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Further Readings 

 

Objectives 

After studying this unit, you will be able to 

 identify the concept of transforms require to solve partial differential equation. 

 understand the more techniques for partial differential equation. 

 know about the Hopf-Cole transform for quadratic nonlinear partial differential equation. 

 apply Hodograph for nonlinear system of differential equation. 

 find the condition through Legendre transformfor system of differential equations. 

 

Introduction 

In this chapter, we describe several techniques or more transforms like Hodograph, Hopf-Cole and 
Legendre to solve linear, nonlinear, quasi linear partial differential equations by converting 
nonlinear to linear partial differential equation or by converting system of nonlinear to linear 
partial differential equations. 

 

9.1 Hopf-Cole Transformation 

a. A parabolic PDE with quadratic nonlinearity 

We consider first of all an initial-value problem for a quasilinear parabolic equation: 

 

{
𝑢𝑡 − 𝑎∆𝑢 + 𝑏|𝐷𝑢|2 = 0    𝑖𝑛    𝑅𝑛 × (0, ∞)

𝑢 = 𝑔                                    𝑜𝑛   𝑅𝑛 × {𝑡 = 0}
     (9.1.1) 

 

where 𝑎 > 0. This sort of nonlinear PDE arises in stochastic optimal control theory. 

Assuming for the moment u is a smooth solution of (9.1.1), we get  

𝑤 ≔ 𝜙(𝑢), 

Dr. Preety Kalra, Lovely Professional University 

 

  LOVELY PROFESSIONAL UNIVERSITY  91



Partial Differential Equations 

Notes 

where 𝜙: 𝑅 → 𝑅 is a smooth function, as yet unspecified. We will try to choose 𝜙 so that 𝑤 solves a 
linear equation. We have 

 𝑤𝑡 = 𝜙′(𝑢)𝑢𝑡, ∆𝑤 = 𝜙′(𝑢)∆𝑢 + 𝜙′′(𝑢)|𝐷𝑢|2;     

And consequently (9.1.1) implies 

 

𝑤𝑡 = 𝜙′(𝑢)𝑢𝑡 = 𝜙′(𝑢)[𝑎∆𝑢 − 𝑏|𝐷𝑢|2] 

= 𝑎∆𝑤 − [𝑎𝜙′′(𝑢) + 𝑏𝜙′(𝑢)]|𝐷𝑢|2 

= 𝑎∆𝑤, 

Provided we choose 𝜙 to satisfy 𝑎𝜙′′ + 𝑏𝜙′ = 0. We solve this differential equation by setting 𝜙 =

𝑒−
𝑏𝑧

𝑎 . Thus we see that if u solves (9.1.1), then  

𝑤 = 𝑒−
𝑏𝑢

𝑎           (9.1.2) 

Solves this initial-value problem for the heat equation (with conductivity a): 

 

{
𝑤𝑡 − 𝑎∆𝑤 = 0    𝑖𝑛    𝑅𝑛 × (0, ∞)

𝑤 = 𝑒−𝑏𝑔/𝑎                                     𝑜𝑛   𝑅𝑛 × {𝑡 = 0}
     (9.1.3) 

 

Formula (9.1.2) is the Hopf-Cole transformation. 

b. Burgers’ equation with viscosity. 

As a further application, we examine now for 𝑛 = 1 the initial-value problem for the viscous 
Burgers’ equation: 

 

{
𝑢𝑡 − 𝑎𝑢𝑥𝑥 + 𝑢𝑢𝑥 = 0    𝑖𝑛    𝑅𝑛 × (0, ∞)

𝑢 = 𝑔                                    𝑜𝑛   𝑅𝑛 × {𝑡 = 0}
      (9.1.4) 

 

If we set  

𝑤(𝑥, 𝑡) ≔ ∫ 𝑢(𝑦, 𝑡)𝑑𝑦
𝑥

−∞

 

        (9.1.5) 

and 

ℎ(𝑥) ≔ ∫ 𝑔(𝑦)𝑑𝑦
𝑥

−∞

 

 

{
𝑤𝑡 − 𝑎𝑤𝑥𝑥 +

1

2
𝑤𝑥

2 = 0    𝑖𝑛    𝑅𝑛 × (0, ∞)

𝑤 = ℎ                                    𝑜𝑛   𝑅𝑛 × {𝑡 = 0}
 

This is an equation of the form (9.1.1) for 𝑛 = 1, 𝑏 =
1

2
. 

 

9.2 Hodograph Transforms 

The hodograph transform is a technique for converting certain quasilinear systems of PDE into 
linear systems, by reversing the roles of the dependent and independent variables. As this method 
is most easily understood by an example, we investigate here the equations of steady, two-
dimensional, irrotational fluid flow: 

 

{
(𝑎) (𝜎2(𝑢) − (𝑢1)2)𝑢𝑥1

1 − 𝑢1𝑢2(𝑢𝑥2

1 + 𝑢𝑥1

2 ) +  (𝜎2(𝑢) − (𝑢2)2)𝑢𝑥2

2 = 0    

(𝑏)𝑢𝑥2

1 + 𝑢𝑥1

2 = 0                                                             
   (9.2.1) 
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in 𝑅2. The unknown is the velocity field 𝑢 = (𝑢1 , 𝑢2), and the function 𝜎(. ): 𝑅2 → 𝑅, the local sound 
speed, is given. 

The system (9.2.1) is quasilinear. Let us now, however, no longer regard 𝑢1 and 𝑢2 as functions of 
𝑥1 and 𝑥2: 

𝑢1 = 𝑢1(𝑥1, 𝑥2), 𝑢2 = 𝑢2(𝑥1, 𝑥2),       (9.2.2) 

But rather regard 𝑥1 and 𝑥2as functions of 𝑢1 and 𝑢2: 

𝑥1 = 𝑥1(𝑢1, 𝑢2), 𝑥2 = 𝑥2(𝑢1, 𝑢2).       (9.2.3) 

We have exchanged sub- and superscripts in the notation to emphasize the interchange between 
independent and dependent variables. 

According to the Inverse Function Theorem we can, locally atleast, invert equations (9.2.2) to yield 
(9.2.3) provided 

 

𝐽 =
𝜕(𝑢1,𝑢2)

𝜕(𝑥1,𝑥2)
= 𝑢𝑥1

1 𝑢𝑥2

2 − 𝑢𝑥2

1 𝑢𝑥1

2 ≠ 0       (9.2.4) 

 

in some region of 𝑅2. Assuming now (9.2.4) holds, we calculate 

 

{
𝑢𝑥2

2 = 𝐽𝑥𝑢1

1 , 𝑢𝑥1

2 = −𝐽𝑥𝑢1

2

𝑢𝑥2

1 = −𝐽𝑥𝑢2

1 , 𝑢𝑥1

1 = 𝐽𝑥𝑢2.
2         (9.2.5) 

 

We insert (9.2.5) in (9.2.1), to discover 

 

{
(𝑎) (𝜎2(𝑢) − 𝑢1

2)𝑥𝑢2

2 + 𝑢1𝑢2(𝑥𝑢2

1 + 𝑥𝑢1

2 ) +  (𝜎2(𝑢) − 𝑢2
2)𝑥𝑢1

1 = 0    

(𝑏)𝑥𝑢2

1 − 𝑥𝑢1

2 = 0.                                                             
   (9.2.6) 

 

This is a linear system for 𝑥 = (𝑥1 , 𝑥2), as function of 𝑢 = (𝑢1, 𝑢2). 

 

Remarks 9.2.1: We can utilize the method of potential functions to simplify further. 
Indeed, equation (9.2.6)(b) suggests that we look for a single function 𝑧 = 𝑧(𝑢) such that 

{
𝑥1 = 𝑧𝑢1

𝑥2 = 𝑧𝑢2.

 

Then (9.2.6)(a) transforms into the linear, second-order PDE 

 (𝜎2(𝑢) − 𝑢1
2)𝑧𝑢2𝑢2

 + 2𝑢1𝑢2𝑧𝑢1𝑢2
+  (𝜎2(𝑢) − 𝑢2

2)𝑧𝑢1𝑢1
= 0.                                          (9.2.7) 

 

9.3 Legendre Transform 

A technique closely related to the hodograph transform is the classical Legendre transform, a 
version of which we have already encountered before. The idea is to regard the components of the 
gradient of a solution as new independent variables. 

Once again an example is instructive. We investigate the minimal surface equation 

𝑑𝑖𝑣 (
𝐷𝑢

(1 + |𝐷𝑢|2)
1

2

) = 0, 

For which 𝑛 = 2 may be rewritten as 

(1 + 𝑢𝑥2

2 )𝑢𝑥1𝑥1
− 2𝑢𝑥1

𝑢𝑥2
𝑢𝑥1𝑥2

+ (1 + 𝑢𝑥1

2 )𝑢𝑥2𝑥2
= 0.     (9.2.8) 
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Let us now assume that at least in some region of 𝑅2, we can invert the relations 

𝑝1 = 𝑢𝑥1
(𝑥1, 𝑥2), 𝑝2 = 𝑢𝑥2

(𝑥1, 𝑥2),       (9.2.9) 

to solve for 

𝑥1 = 𝑥1(𝑝1, 𝑝2), 𝑥2 = 𝑥2(𝑝1, 𝑝2).       (9.2.10) 

 

The inverse function theorem assures us we can do so in a neighborhood of any point where 

𝐽 = det 𝐷2𝑢 ≠ 0.         (9.2.11) 

Now define 

𝑣(𝑝) ≔ 𝑥(𝑝). 𝑝 − 𝑢(𝑥(𝑝)),        (9.2.12) 

Where 𝑥 = (𝑥1 , 𝑥2) is given by (9.2.8),  𝑝 = (𝑝1 , 𝑝2). We discover after some calculations that 

 

 {

𝑢𝑥1𝑥1
= 𝐽𝑣𝑝2𝑝2

𝑢𝑥1𝑥2
= −𝐽𝑣𝑝1𝑝2

𝑢𝑥2𝑥2
= 𝐽𝑣𝑝1𝑝1

.
        (9.2.13) 

  

Upon substituting the identities (9.2.13) into  (9.2.8), we derive for 𝑣 the linear equation  

 (1 + 𝑝2
2)𝑣𝑝2𝑝2

+ 2𝑝1𝑝2𝑣𝑝1𝑝2
+ (1 + 𝑝1

2)𝑣𝑝1𝑝1
= 0. 

 

Remarks 9.3.1: The hodograph and Legendre techniques for obtaining linear out of 
nonlinear PDE are in practice tricky to use, as it is usually not possible to transform given 
boundary conditions very easily.  

 

Summary 

 The more methods to solve nonlinear and quasilinear partial differential equations are 

discussed.  

 Hopf-cole transformation is derived and applied to convert nonlinear to linear PDE. 

 The Hodograph technique is explained with an example. 

 The relation between the hodograph and Legendreis discussed. 

 

Keywords 

 Non Linear PDE 

 Quasi Linear PDE  

 Hodograph 

 Hope-Cole 

 Legendre 

 

Self Assessment 

1. The Hopf-Cole transformation converts a nonlinear partial differential equation to  

A. Linear pde 

B. Nonlinear pde 

C. System of pde 

D. None of these 
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2. The transform which convert a parabolic with quadratic nonlinearity to linear is  

A. Laplace transform 

B. Fourier transform 

C. Hopf-cole 

D. None of these 

 

3. The Hopf-cole transformation for the pde 𝒖𝒕 − 𝒂𝒖𝒙𝒙 + 𝒃|𝑫𝒖|𝟐 = 𝟎  is given by  

A. W = e−
bu

a  

B. W = e
bu

a  

C. W = e
au

b  

D. None of these 

 

4. The partial differential equation 𝒘𝒕 − 𝒘𝒙𝒙 = 𝟎 is known as  

A. Laplace equation 

B. Wave equation 

C. Heat equation 

D. None of these 

 

5. The Hodograph transformation converts certain quasi linear system of partial differential 

equation to  

A. Linear system of pde 

B. Nonlinear pde system 

C. System of equations 

D. None of these 

 

6. The Hodograph transformation convert nonlinear to linear system of pde   

A. By converting both in single variables 

B. By reversing the roleof the dependent and independent variables.       

C. By taking inverse of both the variables 

D. None of these 

 

7. The transformation which convert a nonlinear pde into linear by interchanging the 

variables is called 

A. Hopf-cole transformation  

B. Hodograph transformation 

C. Legendre transformation 

D. None of these 

 

Answer forself Assessment 

l. A 2. C 3. A 4. C 5. A 

6. B 7. C       
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Review Questions 

1. By using a transformation convert a parabolic PDE  with quadratic nonlinearity to linear 

partial differential equation. 

2. Describe the method to convert a quasi-linear partial differential equation to linear partial 

differential equation. 

3. Describe the method to convert a parabolic partial differential equation with quadratic non 

linearity to linear partial differential equation. 

4. Discuss the method to convert nonlinear system of differential to linear differential 

equations. 

 

 

 
Further Readings 

1. I.N. Sneddon(1957), Elements Of Partial Differential Equations,Mcgraw Hill Education. 

2. Lawrence C. Evans (1998), Partial Differential Equations, Universities Press Pvt. Ltd 

 

 
Web Links 

https://onlinecourses.nptel.ac.in/noc22_ma73/preview 

https://onlinecourses.nptel.ac.in/noc21_ma09/preview 

https://onlinecourses.swayam2.ac.in/cec22_ma12/preview 
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10.2 Elementary Solutions of Laplace's Equation 

10.3 Energy Method 
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Keywords 

Self Assessment 

Answers for Self Assessment 
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Further Readings 

 

Objectives 

After studying this unit, you will be able to 

 identify the concept of physical interpretation of Laplace equation. 

 understand the fundamental solution of Laplace equation 

 know about the elementary solution. 

 applyEnergy method to find the minimizers solution 

 

Introduction 

Laplace equation: Among the most important of all partial differential equations are undoubtedly 
Laplace’s equations  

∆𝑢 = 0          (10.0.1) 

In equation (10.0.1), 𝑥 ∈ 𝑈 and the unknown is  𝑢: 𝑈̅ → 𝑅, 𝑢 = 𝑢(𝑥), where 𝑈 ⊂ 𝑅𝑛 is a given open 
set.  

Definition 10.0.1: A𝐶2function 𝑢 satisfying (10.0.1) is called a harmonic function. 

Physical Interpretation: Laplace’s equation comes up in a wide variety of physical contexts. In a 
typical interpretation 𝑢 denotes the density of some quantity (e.g. chemical concentration) in 
equilibrium. Then if 𝑉 is any smooth sub region within 𝑈, the net flux of u through 𝜕𝑉 is zero: 





V

vdsF 0.          (10.0.2) 

𝐹 denoting the flux density and 𝑣 the unit outer normal field. In view of the Gauss-Green theorem, 
we have  

 

  
V V

vdSFFdxdiv ,0.        (10.0.3) 

and so 

Dr. Preety Kalra, Lovely Professional University 
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𝑑𝑖𝑣 𝐹 = 0  𝑖𝑛 𝑈,         (10.0.4) 

Since 𝑉 was arbitrary. In many instances it is physically reasonable to assume the flux 𝐹 is 
proportional to the gradient 𝐷𝑢, but points in the opposite direction (since the flow is from region 
of higher to lower concentration). Thus, 

𝐹 = −𝑎𝐷𝑢 (𝑎 > 0).        (10.0.5) 

Substituting into (10.0.4), we obtain Laplace’s equation 

𝑑𝑖𝑣(𝐷𝑢) = ∆𝑢 = 0.   

If 𝑢 denotes the {
𝑐ℎ𝑒𝑚𝑖𝑐𝑎𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛

𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑠𝑡𝑎𝑡𝑖𝑐 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙

 

equation (10.0.5) is {

𝐹𝑖𝑥′𝑠 𝑙𝑎𝑤 𝑜𝑓 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛

𝐹𝑜𝑢𝑟𝑖𝑒𝑟′𝑠 𝑙𝑎𝑤 𝑜𝑓 ℎ𝑒𝑎𝑡 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛
𝑂ℎ𝑚′𝑠 𝑙𝑎𝑤 𝑜𝑓 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛.

 

Laplace’s equation arises a well in the study of analytic functions and the probabilistic investigation 
of Brownian motion. 

10.1 Fundamental Solution 

One good strategy for investigating any partial differential equation is first to identify some explicit 
solutions and then, provided the PDE is linear to assemble more complicated solutions out of the 
specific ones previously noted. Furthermore, in looking for explicit solutions it is often wise to 
restrict attention to classes of functions with certain symmetry properties. Since Laplace’s equation 
in invariant under rotations, it consequently seems advisable to search first for radial solutions, that 
is, functions of 𝑟 = |𝑥|. 

Let us therefore attempt to find a solution 𝑢 of Laplace’s equation (10.0.1) in 𝑈 = 𝑅𝑛 , having the 
form 

𝑢(𝑥) = 𝑣(𝑟), 

Where 𝑟 = |𝑥| = (𝑥1
2 + 𝑥2

2 +⋯…+ 𝑥2
𝑛)1/2 

and 𝑣 is to be selected (if possible) so that ∆𝑢 = 0 holds. First note for 𝑖 = 1,2,…… . , 𝑛 that 

𝜕𝑟

𝜕𝑥𝑖
=
1

2
(𝑥1

2 + 𝑥2
2 +⋯…+ 𝑥2

𝑛)−1/22𝑥𝑖 =
𝑥𝑖
𝑟
(𝑥 ≠ 0). 

We thus have 

𝑢𝑥𝑖 = 𝑣
′(𝑟)

𝑥𝑖
𝑟
, 𝑢𝑥𝑖𝑥𝑖 = 𝑣

′′(𝑟)
𝑥𝑖
2

𝑟2
+ 𝑣′(𝑟)(

1

𝑟
−
𝑥𝑖
2

𝑟3
) 

for 𝑖 = 1,2,…… . , 𝑛 and so 

∆𝑢 = 𝑣′′(𝑟) +
𝑛 − 1

𝑟
𝑣′ . 

Hence ∆𝑢 = 0 if and only if  

 

𝑣′′(𝑟) +
𝑛 − 1

𝑟
𝑣′ = 0. 

 

If 𝑣′ ≠ 0, we deduce  

log(𝑣′)′ =
𝑣′′

𝑣′
=

1−𝑛

𝑟
, 

And hence 𝑣′(𝑟) =
𝑎

𝑟𝑛−1 
 for some constant 𝑎. Consequently if 𝑟 > 0, we have  

𝑣(𝑟) = {
𝑏 𝑙𝑜𝑔𝑟 + 𝑐, (𝑛 = 2)
𝑏

𝑟𝑛−2
+ 𝑐   (𝑛 ≥ 3)

 

where 𝑏 and c are constants. 
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These considerations motivate the following 

Definition:  The function 

𝜙(𝑥) =

{
 

 −
1

2𝜋
log|𝑥| , (𝑛 = 2)

1

𝑛(𝑛 − 2)𝛼(𝑛)|𝑥|𝑛−2
  (𝑛 ≥ 3)

, 

defined for 𝑥 ∈ 𝑅𝑛 , 𝑥 ≠ 0, is the fundamental solution of Laplace’s equation. 

 

10.2 Elementary Solutions of Laplace's Equation 

If we take the function p to be given by the equation 

𝜓 =
𝑞

|𝑟 − 𝑟′|
=

𝑞

√(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2+ (𝑧 − 𝑧′)2
                                                                                     (10.2.1) 

  

where q is a constant and (x',y',z') are the coordinates of a fixed point, then since 

𝜕𝜓

𝜕𝑥
= −

𝑞(𝑥 − 𝑥′)

|𝑟 − 𝑟′|3
, 𝑒𝑡𝑐. 

𝜕2𝜓

𝜕𝑥2
= −

𝑞

|𝑟 − 𝑟′|3
+
3𝑞(𝑥 − 𝑥′)2

|𝑟 − 𝑟′|5
, 𝑒𝑡𝑐 

It follows that 

∇2𝜓 = 0 

showing that the function (10.2.1) is a solution of Laplace's equation except possibly at the point 
(x',y',z'), where it is not defined. From what it follows that the function given by equation (10.2.1) is 
a possible form for the electrostatic potential corresponding to a space which, apart from the 
isolated point (x',y',z'), is empty of electric charge. To find the charge at this singular point we make 
use of Gauss' theorem. If S is any sphere with center (x',y',z'), then it is easily shown that 

∫
𝜕𝜓

𝜕𝑛 
𝑑𝑆 = −4𝜋𝑞

𝑆

 

from which it follows, by Gauss' theorem, that equation (1) gives the solution of Laplace's equation 
corresponding to an electric charge+𝑞. 

 By a simple superposition procedure it follows immediately that 

𝜓 =∑
𝑞𝑖

|𝑟 − 𝑟𝑖|

𝑛

𝑖=1

                                                                                                                                                       (10.2.2) 

is the solution of Laplace's equation corresponding to n charges 𝑞𝑖 situated at points with position 
vectors 𝑟𝑖 (i = 1, 2, . . . , n). In electrical problems we encounter the situation where two charges +q 
and -q are situated very close together, say at points 𝑟′ and 𝑟′ + 𝛿𝑟′, where 𝑟′ = (𝑙,𝑚, 𝑛)𝑎.The 
solution of Laplace's equation corresponding to this distribution of charge is 

𝜓 =
−𝑞

|𝑟 − 𝑟′|
+

𝑞

|𝑟 − 𝑟′ − 𝛿𝑟′|
 

Now 

1

|𝑟 − 𝑟′ − 𝛿𝑟′|
=

1

|𝑟 − 𝑟′|
+
𝑙(𝑥 − 𝑥′) +𝑚(𝑦 − 𝑦′) + 𝑛(𝑧 − 𝑧′)

|𝑟 − 𝑟′|3
𝑎 + 𝑂(𝑎2) 

so that if𝑎 → 0,𝑞 → ∞ in such a way that 𝑞𝑎 → 𝜇, i.e dipole is formed, it follows that the 
corresponding Laplace's equation is  

𝜓 = 𝜇
𝑙(𝑥 − 𝑥′) +𝑚(𝑦 − 𝑦′) + 𝑛(𝑧 − 𝑧′)

|𝑟 − 𝑟′|3
                                                                                                        (10.2.3) 

a result which may be written in other ways : If we introduce a vector 𝑣 = 𝜇(𝑙,𝑚, 𝑛), then 
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𝜓 =
𝑣. (𝑟 − 𝑟′)

|𝑟 − 𝑟′|3
                                                                                                                                                       (10.2.4) 

Also since 

𝜕

𝜕𝑥′

1

|𝑟 − 𝑟′|
=
(𝑥 − 𝑥′)

|𝑟 − 𝑟′|3
, 𝑒𝑡𝑐. 

it follows that (3) may be written in the form 

𝜓 = (𝑣. 𝑔𝑟𝑎𝑑′)
1

|𝑟 − 𝑟′|
= 𝜇 (𝑙

𝜕

𝜕𝑥′
+𝑚

𝜕

𝜕𝑦′
+ 𝑛

𝜕

𝜕𝑧′
)

1

|𝑟 − 𝑟′|
                                                                        (10.2.5) 

In reality we usually have to deal with continuous distributions of charge rather than with point 
charges or dipoles. By analogy with equation (10.2.2) we should therefore expect that when a 
continuous distribution of charge fills a region V of space, the corresponding form of the function v 
is given by the Stieltjes integral 

𝜓 = ∫
𝑑𝑞

|𝑟 − 𝑟′| 
(10.2.6)

𝑉

 

where q is the Stieltjes measure of the charge at the point r', or if p denotes the charge density, by 

 

𝜓(𝑟) = ∫
 𝜌(𝑟′)𝑑𝜏′

|𝑟 − 𝑟′|𝑉

(10.2.7) 

By a similar argument it can be shown that the solution corresponding to a surface S carrying an 
electric charge of density  is  

𝜓(𝑟) = ∫
 𝜎 (𝑟′)𝑑𝑆′

|𝑟 − 𝑟′|𝑆

(10.2.8) 

 

10.3 Energy Method 

Most of our analysis of harmonic functions thus far has depended upon fairly explicit 
representation formulas entailing the fundamentals solution and elementary solution. In this 
section we illustrate some ‘energy methods’ which is to say techniques involving the  
𝐿2- norms of various expressions. These ideas foreshadow latter theoretical developments in Parts.  

a. Uniqueness. 

Consider first the boundary value problem 

{
−∆𝑢 = 𝑓 𝑖𝑛  𝑈
𝑢 = 𝑔 𝑜𝑛 𝜕𝑈

                                                                                                                                  (10.3.1) 

We have already employed the maximum principle to show uniqueness, but now set forth a simple 
alternative proof. Assume 𝑈 is open, bounded, and 𝜕𝑈 is 𝐶1. 

Theorem 10.3.1(Uniqueness): there exists at most one solution 𝑢 ∈ 𝐶2(𝑈̅) of (10.3.1). 

Proof: Assume𝑢̅is another solution and set 𝑤 = 𝑢 − 𝑢̅. Then ∆𝑤 = 0 in 𝑈, and so an integration by 
parts shows 

0 = −∫ 𝑤∆𝑤𝑑𝑥 = ∫ |𝐷𝑤|2𝑑𝑥.
𝑈𝑈

 

Thus  

𝐷𝑤 = 0 𝑖𝑛 𝑈, 

And since 𝑤 = 0 𝑜𝑛 𝜕𝑈, we deduce 𝑤 = 𝑢 − 𝑢̅ = 0 in 𝑈. 

b. Dirichlet’s Principle 

Next let us demonstratethat a solution of the boundary-value problem (10.3.1) can be Poisson’s 
equation can be characterized has the minimizers of an appropriate functional. For this, we define 
the energy functional  
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𝐼(𝑤) = ∫
1

2
|𝐷𝑤|2 − 𝑤𝑓𝑑𝑥,

𝑈

 

𝑤 belonging to the admissible set  

Α = {𝑤 ∈ 𝐶2(𝑈̅)|𝑤 = 𝑔 𝑜𝑛 𝜕𝑈}. 

Theorem 10.3.1: (Dirichlets principal). Assume𝒖 ∈ 𝐶2(𝑈̅) solves (10.3.1). Then  

𝐼[𝑢] = min
𝑤∈𝐴

𝐼[𝑤].                                                                                                                                                  (10.3.2) 

Conversely, if 𝒖 ∈ 𝐴 satisfies (10.3.2)then𝑢 solves the boundary-value problem (10.3.1) 

In other words if 𝑢 ∈ 𝐴, the PDE ∆𝑢 = 𝑓is equivalent to the statement that𝑢 minimizes the energy 
I[.]. 

Proof:  1. Choose if 𝑤 ∈ 𝐴. Then (10.3.2) implies. 

 

0 = ∫(−∆𝑢 − 𝑓)(𝑢 −𝑤)𝑑𝑥.
𝑈

 

An integration by parts yields  

0 = ∫𝐷𝑢.𝐷(𝑢 −𝑤) − 𝑓(𝑢 −𝑤)𝑑𝑥,
𝑈

 

and there is no boundary term since 𝑢 −𝑤 = 𝑔 − 𝑔 = 0 on 𝜕𝑈. Hence 

∫|𝐷𝑢|2− 𝑢𝑓 𝑑𝑥 = ∫𝐷𝑢.𝐷𝑤 −𝑤𝑓 𝑑𝑥
𝑈𝑈

 

≤ ∫
1

2
|𝐷𝑢|2𝑑𝑥 +∫

1

2
|𝐷𝑤|2 − 𝑤𝑓 𝑑𝑥,

𝑈𝑈

 

Where we employed the estimates 

|𝐷𝑢. 𝐷𝑤| ≤ |𝐷𝑢||𝐷𝑤| ≤
1

2
|𝐷𝑢|2 +

1

2
|𝐷𝑤|2 , 

following from the Cauchy-Schwarz and Cauchy inequalities. Rearranging, we conclude  

𝐼[𝑢] ≤ 𝐼[𝑤](𝑤 ∈ 𝐴)                                                                                                                                     (10.3.3) 

Since 𝑢 ∈ 𝐴,  (10.3.2) follows from (10.3.3) 

2. Now, conversely, suppose (10.3.2) holds, Fix any 𝑣 ∈ 𝐶𝑐
∞(𝑈) and write 

𝑖(𝜏) ≔ 𝐼[𝑢 + 𝜏𝑣](𝜏 ∈ 𝑅). 
Since 𝑢 + 𝜏𝑣 ∈ 𝐴 for each 𝜏, the scalar function 𝑖(. ) has a minimum at zero, and thus 

𝑖′(0) = 0     (′ =
𝑑

𝑑𝜏
), 

Provided this derivative exists. But  

𝑖(𝜏) = ∫
1

2
|𝐷𝑢 + 𝜏𝐷𝑣|2 − (𝑢 + 𝜏𝑣)𝑓𝑑𝑥

𝑈

 

= ∫
1

2
|𝐷𝑢|2 + 𝜏𝐷𝑢.𝐷𝑣 + 𝜏2|𝐷𝑣|2− (𝑢 + 𝜏𝑣)𝑓𝑑𝑥.

𝑈

 

Consequently  

0 = 𝑖′(0) = ∫ 𝐷𝑢.𝐷𝑣 − 𝑣𝑓𝑑𝑥 = ∫(−∆𝑢 − 𝑓)𝑣𝑑𝑥.
𝑈𝑈

 

This identity is valid for each function 𝑣 ∈ 𝐶𝑐
∞(𝑈) and so −∆𝑢 = 𝑓 in 𝑈. 

 

Summary 

 The physical interpretation of Laplace equation is discussed. 

 The radial solution in terms of fundamental solution is determined.  
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 Theelementary function for Laplace equation is solved. 

 Determined the energy function for Laplace equation.  

 

Keywords 

 Laplace equation 

 Fundamental solution 

 Elementary solution 

 Energy method 

 

Self Assessment 

1. If the function 𝛗 is harmonic in a circle S and continuous of S, then the value of 𝛗at the 

center of S is equal to   

A. Arithmetic mean of its value on the circumference of S. 

B. Geometric mean of its value on the circumference of S. 

C. Arithmetic mean of its value everywhere on S. 

D. Geometric mean of its value everywhere on S. 

 

2. Which of function defined below for 
, 0,nx R x 

is the fundamental solution of 

Laplace’s Equation? 

A. 𝜑(𝑥) = 1

2𝜋
𝑙𝑜𝑔|𝑥|, 𝑛 = 2 

B. 𝜑(𝑥) = 1

2
𝑙𝑜𝑔|𝑥|, 𝑛 = 2 

C. 𝜑(𝑥) = 1

2
𝑙𝑜𝑔|𝑥|, 𝑛 = 2 

D. 𝜑(𝑥) = − 1

2𝜋
𝑙𝑜𝑔|𝑥|, 𝑛 = 2 

3. What is true for the fundamental solutions of Laplace equation? 
A. 𝜑(𝑥) = 1

𝛼(𝑛)𝑛(𝑛−2)
1

|𝑥|𝑛−1
, 𝑛 ≥ 3 

B. 𝜑(𝑥) = 1

𝛼(𝑛)𝑛(𝑛−1)
1

|𝑥|𝑛−1
, 𝑛 ≥ 3 

C. 𝜑(𝑥) = 1

𝛼(𝑛)𝑛(𝑛−2)
1

|𝑥|𝑛−2
, 𝑛 ≥ 3 

D. 𝜑(𝑥) = 1

𝛼(𝑛)𝑛(𝑛−1)
1

|𝑥|𝑛−2
, 𝑛 ≥ 3 

 

4. Laplace equation will be invariant  

A. Under rotation with respect to radial function  

B. Dilation with respect to radial function  

C. Magnification with respect to radial function  

D. None of these  

 

5. The elementary solution of the Laplace equation governed by the 

A. Charges situated at different point. 
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B. Motion of the particles. 

C. Energy function response 

D. None of these 

 

6. The elementary solution of the Laplace equation over the volume V with boundary surface 

S is  

A. 𝜓(𝑟) = ∫
𝜌(𝑟′)𝑑𝜏′

|𝑟−𝑟′|
 

B. 𝜓(𝑟) = ∫
𝜌(𝑟′)𝑑𝜏′

|𝑟+𝑟′|
 

C. 𝜓(𝑟) = −∫
𝜌(𝑟′)𝑑𝜏′

|𝑟−𝑟′|
 

D. 𝜓(𝑟) = −∫
𝜌(𝑟′)𝑑𝜏′

|𝑟+𝑟′|
 

7. The elementary solution of the Laplace equation is derived by using 

A. Green theorem 

B. Gauss’ theorem 

C. Both Green and Gauss 

D. None of these 

8. For the boundary value problem
)

~
(2 UCu

of 







Uongu

Uinfu

 

A. There exists at most one solution 

B. There exists more than one solution 

C. There exists no solution 

D. There exists infinite many solution 

 

9. The energy functional for w which is belonging the admissible set is 

 

A. 𝑰(𝒘) = ∫ 𝟏

𝟐
|𝑫𝑾|𝟐−𝒘𝒇𝒅𝒙 

B. 𝐼(𝑤) = ∫ 1

2
|𝐷𝑊|2+𝑤𝑓𝑑𝑥 

C. 𝐼(𝑤) = ∫ |𝐷𝑊|2−𝑤𝑓𝑑𝑥 

D. 𝐼(𝑤) = ∫ |𝐷𝑊|2+𝑤𝑓𝑑𝑥 

 

10. For the boundary value problem for Poisson’s equation which can be characterized as  

A. The maximize of the appropriate energy function 

B. The minimize of the appropriate energy function 

C. Neither minimize or  maximize of the appropriate energy function 

D. None on these 
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AnswersforSelf Assessment 

l. A 2. D 3. D 4. A 5. A 

6. A 7. A 8. A 9. A 10. A 

 

Review Questions 

1. Derive the fundamental solution using radial function for Laplace equation. 

2. Find the elementary function or solution for Laplace equation. 

3. Prove that solution of Laplace equation is minimizing the energy function. 

 

 

 
Further Readings 

1. I.N. Sneddon(1957), Elements Of Partial Differential Equations,Mcgraw Hill Education. 

2. Lawrence C. Evans (1998), Partial Differential Equations, Universities Press Pvt. Ltd 

 

 
Web Links 

https://onlinecourses.nptel.ac.in/noc22_ma73/preview 

https://onlinecourses.nptel.ac.in/noc21_ma09/preview 

https://onlinecourses.swayam2.ac.in/cec22_ma12/preview 
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11.1 The Spherical Mean 

11.2 Mean Value Theorem of Harmonic Functions 

11.3 Properties of Harmonic Functions 

11.4 Maximum-Minimum Principal 

11.5 Potential Function 

11.6 Green’s Function for Laplace Equation 

Summary 

Keywords 

Self Assessment 
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Objectives 

After studying this unit, you will be able to 

 understand about the harmonic function in term of Laplace equation. 

 know about the spherical mean and mean value theorem. 

 Apply potential function to solve system of PDE. 

 Determine Green’s function using harmonic function. 

 

Introduction 

In this chapter, we are going to discuss about harmonic function and its properties in terms of mean 
value formula. Further the Green’s function for harmonic function and potential function will be 
discussed.  

 

11.1 The Spherical Mean 

Let ℝ be a region bounded 𝜕 ℝand let P(x,y,z) be any point in ℝ. Also, let S(P,r) represents a sphere 
with centre at P and radius r such that it lies entirely within the domain ℝ. Let 𝑢 be continuous 
function in ℝ. Then the spherical mean of 𝑢 denoted by 𝑢̅ is defined as  

𝑢̅(𝑟) =
1

4𝜋𝑟2
∫ ∫ 𝑢(𝑄)

𝑆(𝑃,𝑟)

 𝑑𝑆                                                                                                                     (11.1.1) 

 
Where 𝑄(𝜉, 𝜂, 𝜁) is any variable point on the surface of the sphere S(P,r) and dS is the surface 
element of integration. For a fixed radius r, the value𝑢̅(𝑟) is the average of the values of 𝑢 taken 
over the sphere 𝑆(𝑃, 𝑟), and hence it is called the spherical mean. Taking the origin at 𝑃, in terms of 
spherical polar coordinates, we have  

Dr. Preety Kalra, Lovely Professional University 
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𝜉 = 𝑥 + 𝑟 sin 𝜃𝑐𝑜𝑠𝜙 

𝜂 = 𝑦 + 𝑟 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙 

𝜁 = 𝑧 + 𝑟 𝑐𝑜𝑠𝜃 

Then, the spherical mean can be written as  

𝑢(𝑟) =
1

4𝜋𝑟2
∫ ∫ 𝑢(

𝜋

𝜃=0

2𝜋

𝜙=0

 𝑥 + 𝑟 sin 𝜃𝑐𝑜𝑠𝜙 , 𝑦 + 𝑟 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙, 𝑧 + 𝑟 𝑐𝑜𝑠𝜃)𝑟2 sin 𝜃𝑑𝜃𝑑𝜙. 

Also, since 𝑢 is continuous on 𝑆(𝑃, 𝑟), 𝑢̅too is a continuous function of 𝑟 on some interval 0 < 𝑟 ≤
𝑅,  which can be verified as follows: 

𝑢̅(𝑟) =
1

4𝜋
∫ ∫ 𝑢(𝑄) sin 𝜃𝑑𝜃𝑑𝜙 =

𝑢(𝑄)

4𝜋
∫ ∫ sin 𝜃𝑑𝜃𝑑𝜙 = 𝑢(𝑄)

𝜋

0

.
2𝜋

0

 

Now, taking the limit as 𝑟 → 0, 𝑄 → 𝑃, we have  

lim
𝑟→0

𝑢̅ = 𝑢(𝑃). 

Hence, 𝑢̅ is continuous in 0 ≤ 𝑟 ≤ 𝑅. 

 

11.2 Mean Value Theorem of Harmonic Functions 

Theorem 11.2.1: Let𝑢 be a harmonic in a region ℝ. Also, let 𝑃(𝑥, 𝑦, 𝑧) be a given point in ℝ and 
𝑆(𝑃, 𝑟) be a sphere with centre at 𝑃 such that 𝑆(𝑃, 𝑟) is completely contained in the domain of 
harmonicity of 𝑢. Then  

𝑢(𝑃) = 𝑢̅(𝑟) =
1

4𝜋𝑟2
∫ ∫ 𝑢(𝑄)𝑑𝑆

𝑆(𝑃,𝑟)

. 

Proof: Since 𝑢 is harmonic in ℝ, its spherical mean 𝑢̅(𝑟) is continuous in ℝ and is given by  

𝑢̅(𝑟) =
1

4𝜋𝑟2
∫ ∫ 𝑢(𝑄)𝑑𝑆

𝑆(𝑃,𝑟)

=
1

4𝜋𝑟2
∫ ∫ 𝑢(𝜉, 𝜂, 𝜁)𝑟2 sin 𝜃𝑑𝜃𝑑𝜙

𝜋

0

2𝜋 

0

 

𝑑𝑢̅(𝑟)

𝑑𝑟
=

1

4𝜋
∫ ∫ (𝑢𝜉𝜉𝑟 + 𝑢𝜂𝜂𝑟

+ 𝑢𝜁𝜁𝑟) sin 𝜃𝑑𝜃𝑑𝜙
𝜋

0

2𝜋

0

 

1

4𝜋
∫ ∫ (𝑢𝜉𝑠𝑖𝑛𝜃 cos 𝜙 + 𝑢𝜂𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙 + 𝑢𝜁 cos 𝜃) sin 𝜃𝑑𝜃𝑑𝜙

𝜋

0

2𝜋

0

.                                                            (11.2.1) 

Noting that 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙, 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙 and 𝑐𝑜𝑠𝜃 are the direction cosines of the normal 𝑛̂ on 𝑆(𝑃, 𝑟), 

∇𝑢 = 𝑖𝑢𝜉 + 𝑗𝑢𝜂 + 𝑘𝑢𝜁 , 𝑛̂ = (𝑖𝑛1 , 𝑗𝑛2 , 𝑘𝑛3), 

The expression within the parentheses of the integrand of  eq. (11.2.1) can be written as ∇𝑢. 𝑛̂ . Thus  

𝑑𝑢̅(𝑟)

𝑑𝑟
=

1

4𝜋𝑟2
∫ ∫ ∇𝑢. 𝑛̂𝑟2 sin 𝜃𝑑𝜃𝑑𝜙

𝑆(𝑃,𝑟)

 

=
1

4𝜋𝑟2
∫ ∫ ∇𝑢. 𝑛̂ 𝑑𝑆

𝑆(𝑃,𝑟)

 

=
1

4𝜋𝑟2
∫ ∫ ∫ ∇. ∇𝑢 𝑑𝑉

𝑉(𝑃,𝑟)

 

 (by divergence theorem) 

As u is harmonic, 
1

4𝜋𝑟2
∫ ∫ ∫ ∇2𝑢 𝑑𝑉 = 0

𝑉(𝑃,𝑟)
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Therefore, 
𝑑𝑢

𝑑𝑟
= 0, implying 𝑢̅ 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

Now the continuity of 𝑢̅ at 𝑟 = 0 gives,  

𝑢̅(𝑟) = 𝑢(𝑃) =
1

4𝜋𝑟2
∫ ∫ 𝑢(𝑄)𝑑𝑆

𝑆(𝑃,𝑟)

. 

 

11.3 Properties of Harmonic Functions 

Solution of Laplace equation is called harmonic functions which possess a number of interesting 
properties, and they are presented in the following theorems.  

Theorem 11.3.1: If a harmonic function vanishes everywhere on the boundary, then it is identically 
zero everywhere. 

Proof: If 𝜙 is a harmonic function, then ∇2𝜙 = 0 in ℝ. Also, if 𝜙 = 0 on 𝜕ℝ, we shall show that 𝜙 = 0 
in ℝ̅ = ℝ𝑈𝜕ℝ. Recalling Green’s first identity, we get  

∫ ∫ ∫ (∇𝜙)2𝑑𝑉
𝑅

= ∫ ∫ 𝜙
𝜕𝜙

𝜕𝑛
 𝑑𝑆 − ∫ ∫ ∫ 𝜙∇2𝜙

𝑅

𝑑𝑉
𝜕𝑅

 

and using the above facts we have, at once, the relation 

∫ ∫ ∫ (∇𝜙)2

𝑅

𝑑𝑉 = 0. 

Since ∫ (∇𝜙)2
𝑅

 is positive, it follows that the integral will be satisfied only if ∇𝜙 = 0. This implies 

that 𝜙 is a constant in ℝ. Since 𝜙 is continuous in ℝ̅ and 𝜙 is zero in 𝜕ℝ, it follows that 𝜙 = 0 in ℝ. 

Theorem 11.3.2:  If 𝜙  is harmonic function in ℝ and 
𝜕𝜙

𝜕𝑛
= 0 on 𝜕ℝ,  then 𝜙 is a constant in ℝ̅. 

Proof: Using Green’s first identity and the data of the theorem , we arrive at 

∫ ∫ ∫ (∇𝜙)2

𝑅

𝑑𝑉 = 0 

implying ∇𝜙 = 0, i.e. 𝜙 is constant in ℝ. Since the value of 𝜙 is not known on the boundary 𝜕ℝ 

while 
𝜕𝜙

𝜕𝑛
= 0, it is implied that 𝜙 is a constant on 𝜕ℝand hence on ℝ̅. 

 

11.4 Maximum-Minimum Principal 

Theorem 11.4.1: Letℝ be the region bounded by 𝜕ℝ. Also, let 𝑢 be a function which is continuous in 
a closed region ℝ̅ and satisfies the Laplace equation ∇2𝑢 = 0 in the interior of ℝ. Further, if 𝑢 is not 
constant everywhere onℝ̅, then the maximum and minimum values of 𝑢 must occur on the 
boundary 𝜕ℝ. 

Proof: Suppose 𝑢 is a harmonic function but not constant everywhere on ℝ̅. If possible, let 𝑢 attain 
its maximum value 𝑀 at some interior point 𝑃 in ℝ. Since 𝑀 is the maximum of 𝑢 which is not 
constant, there should exists a sphere 𝑆(𝑃, 𝑟) about P such that some of the values of 𝑢 on 𝑆(𝑃, 𝑟) 
must be less than 𝑀. But by the mean value property, the value of 𝑢 at Pis the average of the values 
of 𝑢 on 𝑆(𝑃, 𝑟) and hence it is less than 𝑀. This contradicts the assumptions that 𝑢 is 𝑀 at P. Thus 
the 𝑢 must be constant over the entire sphere 𝑆(𝑃, 𝑟).  

Let 𝑄 be any other point inside 𝑅 which can be connected to 𝑃 by an arc lying entirely within the 
domain 𝑅. By covering this arc with sphere and using the Heine-Borel theorem to choose a finite 
number of covering spheres and repeating the argument given above, we can arrive at the 
conclusion that 𝑢 will have the same constant value at 𝑄 as at 𝑃. Thus 𝑢 cannot attain a maximum 
value at any point in side the region 𝑅. Therefore, 𝑢 can attain its maximum value only on the 
boundary 𝜕ℝ. A similar argument will lead to the conclusion that 𝑢 can attain its minimum value 
only on the boundary 𝜕ℝ. 
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11.5 Potential Function 

Another technique is to utilize a potential function to convert a nonlinear system of PDE into a 
single linear PDE. We consider as an example Euler’s equations for inviscid, incompressible fluid 
flow: 

{

(𝑎)  𝑢𝑡 + 𝑢. 𝐷𝑢 = −𝐷𝑝 + 𝑓 𝑖𝑛 𝑅3 × (0, ∞)

(𝑏)         𝑑𝑖𝑣 𝑢 = 0                𝑖𝑛 𝑅3 × (0, ∞)  

(𝑐)               𝑢 = 𝑔                 𝑖𝑛 𝑅3 × (𝑡 = 0)   

      (11.5.1) 

Here the unknowns are velocity field 𝑢 = (𝑢1, 𝑢2 , 𝑢3) and the scalar pressure 𝑝; external force 𝑓 =
(𝑓1 , 𝑓2 , 𝑓3) and the initial velocity 𝑔 = (𝑔1 , 𝑔2, 𝑔3) are given. Here 𝐷 as usual denotes the gradient 
in the spatial variables 𝑥 = (𝑥1 , 𝑥2, 𝑥3). The vector equation (11.5.1(a)) means  

𝑢𝑡
𝑖 + ∑ 𝑢𝑗𝑢𝑥𝑗

𝑖

3

𝑗=1

= −𝑝𝑥𝑖
+ 𝑓𝑖(𝑖 = 1,2,3). 

We will assume  

𝑑𝑖𝑣 𝑔 = 0         (11.5.2) 

If furthermore there exists a scalar function ℎ: 𝑅3 × (0, ∞) → 𝑅 such that 

𝑓 = 𝐷ℎ          (11.5.3) 

We say that the external force is derived from the potential ℎ. 

We will try to find a solution (𝑢, 𝑝) of (11.5.1) for which the velocity field 𝑢 is also derived from a 
potential, say 

𝑢 = 𝐷𝑣          (11.5.4) 

Our flow will then be irrotational, as 𝑐𝑢𝑟𝑙 𝑢 ≡ 0. Now equation (11.5.1(b)) says  

0 = 𝑑𝑖𝑣 𝑢 = ∆𝑣         (11.5.5) 

and so 𝑣 must be harmonic as a function of 𝑥, for ach time 𝑡 > 0. Thus if we can find a smooth 
function 𝑣 satisfying (11.5.5) and 𝐷𝑣(. ,0) = 𝑔, we can then recover 𝑢 from 𝑣 by (11.5.4). 

How do we compute the pressure 𝑝? 

Let us observe that if  

𝑢 = 𝐷𝑣,  then 𝑢. 𝐷𝑢 =
1

2
𝐷(|𝐷𝑣|2).  

Consequently (11.5.1(a)) reads  

𝐷 (𝑣𝑡 +
1

2
|𝐷𝑣|2) = 𝐷(−𝑝 + ℎ), 

In view of (11.5.3). Therefore we can take  

𝑣𝑡 +
1

2
|𝐷𝑣|2 + 𝑝 = ℎ.        (11.5.6) 

This is Bernoulli’s law. But now we can employ (11.5.5) to compute 𝑝, since 𝑣 and ℎ are already 
known. 

 

11.6 Green’s Function for Laplace Equation 

We return now to the consideration of the interior Dirichlet problem formulated. Suppose, in the 
first instance, that the values of 𝜓 and 𝜕𝜓/𝜕𝑛 are known at  every point of the boundary S of a finite 
region V and that ∇2𝜓 = 0 within V. We can then determine 𝜓 by a simple application of Green's 
theorem in the form. 

∫ (𝜓∇2𝜓′
Ω

− 𝜓′∇2𝜓)𝑑𝜏 = ∫ (𝜓
𝜕𝜓′

𝜕𝑛
− 𝜓′

∑

𝜕𝜓

𝜕𝑛
) 𝑑𝑆                                                                                     (11.6.1) 

 

Where  ∑  denotes the boundary of the region Ω. 
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If we are interested in determining the solution  𝜓(𝑟) of our problem at a point P with position 
vector r, then we surround P by a sphere C which has its center at P and has radius 𝜖and take ∑ to 
be the region which is exterior to C and interior to S. Putting 

𝜓′ =
1

|𝑟′ − 𝑟|
 

and noting that ∇2𝜓′ = ∇2𝜓 = 0, within Ω, we see that  

∫ {𝜓(𝑟′)
𝜕

𝜕𝑛

1

|𝑟′ − 𝑟|
− 

1

|𝑟′ − 𝑟|

𝜕𝜓

𝜕𝑛
}

𝐶

𝑑𝑆′ + ∫ {𝜓(𝑟′)
𝜕

𝜕𝑛

1

|𝑟′ − 𝑟|
− 

1

|𝑟′ − 𝑟|

𝜕𝜓

𝜕𝑛
}

𝑆

𝑑𝑆′ = 0                   (11.6.2)  

where the normal n are in the directions shown in Fig. . Now, on the surface of the sphere C, 

1

|𝑟′ − 𝑟|
=

1

𝜀
,   

𝜕

𝜕𝑛

1

|𝑟′ − 𝑟|
=

1

𝜀2
,   

𝑑𝑆′ = 𝜀2 sin 𝜃𝑑𝜃𝑑𝜙   

and  

𝜓(𝑟′) = 𝜓(𝑟) + 𝜀 {sin 𝜃 cos 𝜙
𝜕𝜓

𝜕𝑥
+ sin 𝜃 sin 𝜙

𝜕𝜓

𝜕𝑦
+ cos 𝜃

𝜕𝜓

𝜕𝑧
} 

𝜕𝜓

𝜕𝑛
= (

𝜕𝜓

𝜕𝑛
)

𝑃
+ 𝑂(𝜀) 

so that   

∫ {𝜓(𝑟′)
𝜕

𝜕𝑛

1

|𝑟′ − 𝑟|
}

𝐶

𝑑𝑆′ = 4𝜋𝜓(𝑟) +  𝑂(𝜀) 

and  

∫
1

|𝑟′ − 𝑟|

𝜕𝜓

𝜕𝑛𝐶

𝑑𝑆′ =  𝑂(𝜀) 

Substituting these results into equation (11.6.2) and letting s tend to zero, we find that 

𝜓(𝑟) =
1

4𝜋
∫ {

1

|𝑟′ − 𝑟|

𝜕𝜓(𝑟′)

𝜕𝑛
− 𝜓(𝑟′)

𝜕

𝜕𝑛

1

|𝑟′ − 𝑟|
}

𝑆

𝑑𝑆′                                                                                 (11.6.3) 

so that the value of 𝜓 , at an interior point of the region V can be determined in terms of the values 

of 𝜓, and 
𝜕𝜓

𝜕𝑛
  on the boundary S. 

A similar result holds in the case of the exterior Dirichlet problem. In this case we take the region 
Ωoccurring in equation (11.6.1) to be the region bounded by S, a small sphere C surrounding P, and  
∑a sphere with center the origin and large radius R. Taking the directions of the normals to be as 
indicated in Fig. 24 and proceeding as above, we find, in this instance, that 

4𝜋𝜓(𝑟) + 𝑂(𝜀) + ∫ {
1

𝑅

𝜕𝜓

𝜕𝑛
+

𝜓

𝑅2
}

∑

𝑑𝑆′ + ∫ {
1

|𝑟′ − 𝑟|

𝜕𝜓

𝜕𝑛
− 𝜓(𝑟′)

𝜕

𝜕𝑛

1

|𝑟′ − 𝑟|
}

𝑆

𝑑𝑆′ = 0                   (11.6.4) 

Letting 𝜀 → 0 and 𝑅 → ∞, we see that the solution (11.6.3) is valid in the case of the exterior 

Dirichlet problem provided that 𝑅𝜓 and 𝑅2 𝜕𝜓

𝜕𝑛
 remain finite as𝑅 → ∞.  

Equation (11.6.3) would seem at first sight to indicate that to obtain a solution of Dirichlet's problem 

we need to know not only the value of the function 𝜓 but also the value of 
𝜕𝜓

𝜕𝑛
. That this is not in fact 

so can be shown by the introduction of the concept of a Green's function. We define a Green's 
function G(r,r') by the equation 

𝐺(𝑟, 𝑟′) = 𝐻(𝑟, 𝑟′) +
1

|𝑟′ − 𝑟|
                                                                                                                               (11.6.5) 

where the function H(r,r') satisfies the relations 

(
𝜕2

𝜕𝑥′2
+  

𝜕2

𝜕𝑦′2
+

𝜕2

𝜕𝑧′2
) 𝐻(𝑟, 𝑟′) = 0                                                                                                                      (11.6.6) 

and 
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𝐻(𝑟, 𝑟′) +
1

|𝑟′ − 𝑟|
= 0   𝑜𝑛 𝑆                                                                                                                            (11.6.7) 

Then since, just as in the derivation of equation (11.6.3), we can show that 

𝜓(𝑟) =
1

4𝜋
∫ {𝐺(𝑟, 𝑟′)

𝜕𝜓(𝑟′)

𝜕𝑛
− 𝜓(𝑟′)

𝜕

𝜕𝑛
𝐺(𝑟, 𝑟′)}

𝑆

𝑑𝑆′ 

it follows that if we have found a function G(r,r') satisfying equations (11.6.5), (11.6.6), and (11.6.7), 
then the solution of the Dirichlet problem is given by the relation 

𝜓(𝑟) = −
1

4𝜋
∫ { 𝜓(𝑟′)

𝜕

𝜕𝑛
𝐺(𝑟, 𝑟′)}

𝑆

𝑑𝑆′ 

The solution of the Dirichlet problem is thus reduced to the determination of the Green's function 
G(r,r'). 

 

Summary 

 The spherical mean isderived for harmonic function. 

 The mean value theorem for harmonic function and its properties arediscussed.  

 The potential function for solution of system of PDE elaborated.  

 Determined the Green function for Laplace equation. 

 

Keywords 

 Laplace equation 

 Spherical Mean 

 Mean value theorem 

 Harmonic function and its properties  

 Potential function 

 Green function 

 

Self Assessment 

. 

1. If 
)(2 UCu
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D. 





),(),(

)(
rxBrxB

udyudSxu

 
 

2. If the function 𝝋 is harmonic in a sphere S and continuous on S, then the value of 𝝋 at the 

center of S is equal to 

A. Arithmetic mean of its value on the circumference of S. 
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B. Geometric mean of its value on the circumference of S. 

C. Spherical mean of its value on the circumference of S. 

D. None of these 

 

3. If u be harmonic in a Region R. Also, let P(x,y,z) be a given point in R and S(P,r) be a 

sphere with centre at P such that S(P,r) is completely contained in the harmonicity of u. 

Then  

A. 𝑢(𝑃) = 𝑢̅(𝑟) = −
1

4𝜋𝑟2 ∬ 𝑢(𝑄)𝑑𝑆
𝑆(𝑃.𝑟)

 

B. 𝑢(𝑃) = 𝑢̅(𝑟) =
1

4𝜋
∬ 𝑢(𝑄)𝑑𝑆

𝑆(𝑃.𝑟)
 

C. 𝑢(𝑃) = 𝑢̅(𝑟) =
1

4𝜋𝑟2 ∬ 𝑢(𝑄)𝑑𝑆
𝑆(𝑃.𝑟)

 

D. None of these 

4. If a harmonic function vanishes everywhere on the boundary, then 

A. It is identically zero everywhere. 

B. It is identically nonzero everywhere. 

C. It is identically zero only inside the domain. 

D. It is identically nonzero inside the domain. 

 

5. Maximum principle of Laplace equation is the  

A. Strong maximum principle 

B. Strong minimum principle  

C. Weak maximum principle 

D. Weak minimum principle 

 

6. If a harmonic function is not constant everywhere then the maximum value must occur 

A. Only on the boundary 

B. Inside the boundary 

C. Outside the boundary 

D. Anywhere on the domain. 

 

7. A function which is harmonic satisfying the Laplace equation 

A. Will not be a smooth function 

B. Not analytic anywhere in  

C. Will satisfy the mean value theorem 

D. None of these 

 

8. Potential functions helps to convert a nonlinear system of partial differential equation into 

A. A linear system of pde. 

B. A single linear pde. 

C. A semi linear pde 

D. None of these 

 

9. The equation 𝒗𝒕 +
𝟏

𝟐
|𝑫𝒗|𝟐 + 𝒑 = 𝒉 is known as  

A. Strong maximum value  
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B. Newton Law 

C. Bernoulli’s law 

D. None of these 

 

10. The Euler equation for an inviscid, incompressible fluid flow is given by 

A. 𝑢𝑡 + u. Du = −D𝑝 + 𝑓  

B. 𝑢𝑡 + u. Du = D𝑝 + 𝑓 

C. 𝑢𝑡 + Du = −D𝑝 + 𝑓 

D. None of these 

 

Answer forSelf Assessment 

l. C 2. C 3. C 4. A 5. A 

6. A 7. C 8. B 9. C 10. A 

 

Review Questions 

1) State and prove mean value theorem for harmonic function. 

2) Discuss the method to convert system of nonlinear PDE to linear PDE. 

3) Derive the Green function for Laplace equation. 

4) State and prove the maximum principle for harmonic function. 

 

 

 Further Readings 

1. I.N. Sneddon(1957), Elements Of Partial Differential Equations,Mcgraw Hill Education. 

2. Lawrence C. Evans (1998), Partial Differential Equations, Universities Press Pvt. Ltd 

 

 
Web Links 

https://onlinecourses.nptel.ac.in/noc22_ma73/preview 

https://onlinecourses.nptel.ac.in/noc21_ma09/preview 

https://onlinecourses.swayam2.ac.in/cec22_ma12/preview 
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Objectives 

After studying this unit, you will be able to 

 identify the concept of wave equation occurrence in other fields. 

 understand the application of wave equation  

 know about the elementary solution of wave equation. 

 determine the uniqueness of solution by energy method. 

 

Introduction 

In this chapter we shall consider the wave equation 

∇2𝜓 =
1

𝑐2

𝜕2𝜓

𝜕𝑡2                                                                                                                                                     (12.0.1) 

which is a typical hyperbolic equation. This equation is sometimes written in the form 

□2𝜓 = 0 

where □2denotes the operator 

𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 +
𝜕2

𝜕𝑧2 −
1

𝑐2

𝜕2

𝜕𝑡2 

If we assume a solution of the wave equation of the form 

𝜓 = Ψ(𝑥, 𝑦, 𝑧)𝑒±𝑖𝑘𝑐𝑡 

then the function Ψ must satisfy the equation 

(∇2 + 𝑘2)Ψ = 0 

which is called the space form of the wave equation or Helmholtz's equation. 

 

Dr. Preety Kalra, Lovely Professional University 
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12.1 The Occurrence of the Wave Equation in Physics 

We shall begin this chapter by listing several kinds of situations in physics which can be discussed 
by means of the theory of the wave equation.  

(a) Transverse Vibrations of a String. If a string of uniform linear density p is stretched to a 

uniform tension T, and if, in the equilibrium position, the string coincides with the x axis, 

then when the string is disturbed slightly from its equilibrium position, the transverse 

displacement y(x,t) satisfies the one -dimensional wave equation 

 

𝜕2𝑦

𝜕𝑥2
=

1

𝑐2

𝜕2𝑦

𝜕𝑡2
                                                                                                                                       (12.1.1)   

where 𝑐2 = 𝑇/𝜌. At any point 𝑥 = 𝑎 of the string which is fixed 𝑦(𝑎, 𝑡) = 0 for all values of 

t. 

(b) Longitudinal Vibrations in a Bar. If a uniform bar of elastic material of uniform cross 

section whose axis coincides with Ox is stressed in such a way that each point of a typical 

cross section of the bar takes the same displacement 𝜉(𝑥, 𝑡)  then 

 

𝜕2𝜉

𝜕𝑥2 =
1

𝑐2

𝜕2𝜉

𝜕𝑡2                                                                                                                                        (12.1.2) 

where𝑐2 = 𝐸/𝜌, E being the Young's modulus and 𝜌 the density of the material of the bar. The 
stress at any point in the bar is 

𝜎 = 𝐸
𝜕𝜉

𝜕𝑥
                                                                                                                                                  (12.1.3) 

For instance, suppose that the velocity of the end x = 0 of the bar 0 < x < a is prescribed to be v(t), 
say, and that the other end x =ais free from stress. Suppose further that at that time t = 0 the bar is 
at rest. Then the longitudinal displacement of sections of the bar are determined by the partial 
differential equation (12.1.2) and the boundary and initial conditions 

(i) 
𝜕𝜉

𝜕𝑡
= 𝑣(𝑡) for 𝑥 = 0 

(ii) 
𝜕𝜉

𝜕𝑥
= 0  for 𝑥 = 𝑎 

(iii) 𝜉 =
𝜕𝜉

𝜕𝑡
= 0 at 𝑡 = 0, 0 ≤ 𝑥 ≤ 0 

(c) Longitudinal Sound Waves. If plane waves of sound are being propagated in a horn 

whose cross section for the section with abscissa x is A(x) in such a way that every point of 

that section has the same longitudinal displacement 𝜉(x,t), then𝜉 satisfies the partial 

differential equation 

𝜕

𝜕𝑥
{
1

𝐴

𝜕(𝐴𝜉)

𝜕𝑥
} =

1

𝑐2

𝜕2𝜉

𝜕𝑡2                                                                                                                    (12.1.4) 

which reduces to the one -dimensional wave equation (12.1.2) in the case in which the cross section 
is uniform. In equation (12.1.4)  

𝑐2 = (
𝑑𝑃

𝑑𝜌
)

0
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where the suffix 0 denotes that we take the value of 
𝑑𝑃

𝑑𝜌
 in the equilibrium state. The change in 

pressure in the gas from the equilibrium value 𝑃0 is given by the formula 

𝑃 − 𝑃0 = −𝑐2𝜌0

𝜕𝜉

𝜕𝑥
 

where 𝜌0 is the density of the gas in the equilibrium state. For instance, if we are considering the 
motion of the gas when a sound wave passes along a tube which is free at each of the ends x = 0, x = 
a, then we must determine solutions of equation (12.1.4) which are such that 

𝜕𝜉

𝜕𝑥
= 0 at 𝑥 = 0  and  at 𝑥 = 𝑎. 

(d) Electric Signals in Cables. We have already remarked that if the resistance per unit length 

R, and the leakage parameter G are both zero, the voltage V(x,t) and the current z(x,t) both 

satisfy the one- dimensional wave equation, with wave velocity c defined by the equation  

𝑐2 =
1

𝐿𝐶
                                                                                                                                                                  (12.1.5) 

 

where L is the inductance. and C the capacity per unit length. 

(e) Transverse Vibrations of a Membrane. If a thin elastic membrane of uniform areal 

density 𝜎 is stretched to a uniform tension T, and if, in the equilibrium position, the 

membrane coincides with the xy plane, then the small transverse vibrations of the 

membrane are governed by the wave equation  

∇1
2𝑧 =

1

𝑐2

𝜕2𝑧

𝜕𝑡2
                                                                                                                                       (12.1.6)   

where z(x,y,t) is the transverse displacement (assumed small) at time t of the point (x,y) of 

the membrane. The wave velocity c is defined by the equation  

𝑐2 =
𝑇

𝜎
                                                                                                                                                      (12.1.6)   

If the membrane is held fixed at its boundaryΓ, then we must have 𝑧 = 0 on Γ for all values 

of t. 

(f) Electromagnetic Waves. If we write 

𝐻 = 𝑐𝑢𝑟𝑙 𝐴,       𝐸 = −
1

𝑐

𝜕𝐴

𝜕𝑡
− 𝑔𝑟𝑎𝑑 𝜙  

then Maxwell's equations  

𝑑𝑖𝑣 𝐸 = 4𝜋𝑞,      𝑑𝑖𝑣 𝐻 = 0 

𝑐𝑢𝑟𝑙 𝐸 = −
1

𝑐

𝜕𝐻

𝜕𝑡
,       𝑐𝑢𝑟𝑙 𝐻 =

4𝜋𝑖

𝑐
+

1

𝑐

𝜕𝐸

𝜕𝑡
 

are satisfied identically provided that A and 𝜙 satisfy the equations 

∇2𝐴 =
1

𝑐2

𝜕2𝐴

𝜕𝑡2 −
4𝜋

𝑐
𝑖,    ∇2𝜙 =

1

𝑐2

𝜕2𝐴

𝜕𝑡2 − 4𝜋𝜌  

Therefore in the absence of charges or currents and the components of A satisfy the wave 

equation.  

12.2 Elementary Solutions of the One -dimensional Wave Equation 

A general solution of the wave equation  
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𝜕2𝑦

𝜕𝑥2 =
1

𝑐2

𝜕2𝑦

𝜕𝑡2                                                                                                                                         (12.2.1) 

is 

𝑦 = 𝑓(𝑥 + 𝑐𝑡) + 𝑔(𝑥 − 𝑐𝑡)                                                                                                                     (12.2.2) 

where the functions f and g are arbitrary. In this section we shall show how this solution may be 
used to describe the motion of a string. In the first instance we shall assume that the string is of 
infinite extent and that at time 𝑡 = 0 the displacement and the velocity of the string are both 
prescribed so that 

𝑦 = 𝜂(𝑥),
𝜕𝑦

𝜕𝑡
= 𝑣(𝑥)  𝑎𝑡   𝑡 = 0                                                                                                                              (12.2.3) 

Our problem then is to solve equation (12.2.1) subject to the initial conditions (12.2.3). Substituting 
from (12.2.3) into (12.2.2), we obtain the relations 

𝜂(𝑥) = 𝑓(𝑥) + 𝑔(𝑥),   𝑣(𝑥) = 𝑐𝑓′(𝑥) − 𝑐𝑔′(𝑥)                                                                                                (12.2.4) 

Integrating the second of these relations, we have 

𝑓(𝑥) − 𝑔(𝑥) =
1

𝑐
∫ 𝑣(𝜉)𝑑𝜉

𝑥

𝑏

,    

where b is arbitrary. From this equation and the first of the equations (12.2.4) we obtain the 
formulas  

𝑓(𝑥) =
1

2
𝜂(𝑥) +

1

2𝑐
∫ 𝑣(𝜉)𝑑𝜉

𝑥

𝑏

 

𝑔(𝑥) =
1

2
𝜂(𝑥) −

1

2𝑐
∫ 𝑣(𝜉)𝑑𝜉

𝑥

𝑏

 

Substituting these expressions in equation (12.2.2), we obtain the solution 

𝑦 =
1

2
{𝜂(𝑥 + 𝑐𝑡) + 𝜂(𝑥 − 𝑐𝑡)} +

1

2𝑐
∫ 𝑣(𝜉)𝑑𝜉

𝑥+𝑐𝑡

𝑥−𝑐𝑡

                                                                                            (12.2.5) 

The solution (5) is known as d'Alembert's solution of the one -dimensional wave equation. If the 
string is released from rest, y0, so that equation (12.2.5) becomes 

𝑦 =
1

2
{𝜂(𝑥 + 𝑐𝑡) + 𝜂(𝑥 − 𝑐𝑡)}                                                                                                                          (12.2.6) 

showing that the subsequent displacement of the string is produced by two pulses of "shape" 𝑦 =
1

2
𝜂(𝑥), each moving with velocity c, one to the right and the other to the left. 

 

12.3 Energy Method 

This suggests that perhaps some other way of measuring the size and smoothness of functions may 
be appropriate. Indeed we will see in this section that the wave equation is nicely behaved with 
respect to certain integral ‘energy’ norm. 

Uniqueness 

Let 𝑈 ⊂ 𝑅𝑛 be a bounded, open set with a smooth boundary 𝜕𝑈, and as usual set 𝑈𝑇 = 𝑈 ×
(0, 𝑇], Γ = 𝑈̅𝑇 − 𝑈𝑇 , 𝑤ℎ𝑒𝑟𝑒 𝑇 > 0. 

We are interested in initial/boundary value problem 

 

{

𝑢𝑡𝑡 − Δ𝑢 = 𝑓 𝑖𝑛 𝑈𝑇

𝑢 = 𝑔 𝑜𝑛 Γ𝑇

𝑢𝑡 = ℎ 𝑜𝑛 𝑈 × {𝑡 = 0}.
                                                                                                                                (12.3.1) 
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Theorem 12.3.1: (Uniqueness for Wave equation). There exists at most 𝑢 ∈ 𝐶2(𝑈̅𝑇)solvinf (12.3.1) 

Proof:If 𝑢̅is another such solution, then 𝑤 = 𝑢 −  𝑢̅ solves 

{

𝑤𝑡𝑡 − Δ𝑤 = 0 𝑖𝑛 𝑈𝑇

𝑤 = 0 𝑜𝑛 Γ𝑇

𝑤𝑡 = 0 𝑜𝑛 𝑈 × {𝑡 = 0}.
 

 

Define the ‘’energy’’ 

𝑒(𝑡) =
1

2
∫ 𝑤𝑡

2(𝑥, 𝑡) + |𝐷𝑤(𝑥, 𝑡)|2

𝑈

𝑑𝑥   (0 ≤ 𝑡 ≤ 𝑇). 

We compute 

𝑒̇(𝑡) = ∫ 𝑤𝑡𝑤𝑡𝑡 + 𝐷𝑤. 𝐷𝑤𝑡
𝑈

𝑑𝑥                    [ . =
𝑑

𝑑𝑡
] 

= ∫ 𝑤𝑡(𝑤𝑡𝑡 − ∆𝑤)𝑑𝑥 = 0
𝑈

 

There is no boundary term since 𝑤 = 0, and hence 𝑤𝑡 = 0 , 𝑜𝑛 𝜕𝑈 × [0, 𝑇]. 

Thus for all 0 ≤ 𝑡 ≤ 𝑇, 𝑒(𝑡) = 𝑒(0) = 0, and so 𝑤𝑡, 𝐷𝑤 = 0 within 𝑈𝑇 .Since 𝑤 = 0  on 𝑈 × {𝑡 = 0}, we 
conclude 𝑤 = 𝑢 − 𝑢̅ = 0 𝑖𝑛 𝑈𝑇 . 

 

Summary 

 The wave equation and its occurrence in Physics is discussed. 

 Thespherical solution for wave equation is derived.  

 Theboundary value and initial value problem is defined. 

 The unique solution using energy method is determined. 

 

Keywords 

 Wave equation 

 Elementary solution 

 Unique solution 

 Energy method 

 

Self Assessment 

1. The elementary solution of the one dimensional wave equation is called also as 

A. D’ Alembert solution 

B. Helmholtz’s solution 

C. Riemann-Volterra solution 

D. Weber’s solution 

 

2. Which of the following is correct solution of wave equation? 

A. 𝑦 = 1

2
{𝜂(𝑥 + 𝑐𝑡) + 𝜂(𝑥 − 𝑐𝑡)} − 1

2
∫ 𝑣(𝜉)𝑑𝜉

𝑥+𝑐𝑡

𝑥−𝑐𝑡
 

B. 𝑦 = 1

2
{𝜂(𝑥 + 𝑐𝑡) − 𝜂(𝑥 − 𝑐𝑡)} + 1

2
∫ 𝑣(𝜉)𝑑𝜉

𝑥−𝑐𝑡

𝑥+𝑐𝑡
 

C. 𝑦 = 1

2
{𝜂(𝑥 + 𝑐𝑡) + 𝜂(𝑥 − 𝑐𝑡)} + 1

2
∫ 𝑣(𝜉)𝑑𝜉

𝑥+𝑐𝑡

𝑥−𝑐𝑡
 

D. 𝑦 = 1

2
{𝜂(𝑥 + 𝑐𝑡) + 𝜂(𝑥 − 𝑐𝑡)} − 1

2
∫ 𝑣(𝜉)𝑑𝜉

𝑥−𝑐𝑡

𝑥+𝑐𝑡
 

3. The energy function for the wave equation over the domain U is given by 
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A. 𝑒(𝑡) = 1

2
∫ 𝑤𝑡

2(𝑥,𝑡)+|𝐷𝑤|2𝑑𝑥,   (0≤𝑡<𝑇) 

B. 𝑒(𝑡) = ∫ 𝑤2(𝑥,𝑡)+|𝐷𝑤|2𝑑𝑥,   (0≤𝑡<𝑇) 

C. 𝑒(𝑡) = 1

2
∫ 𝑤𝑡

2(𝑥,𝑡)+|𝐷𝑤|4𝑑𝑥,   (0≤𝑡<𝑇) 

D. 𝑒(𝑡) = 1

2
∫ 𝑤𝑡

2(𝑥,𝑡)−|𝐷𝑤|2𝑑𝑥,   (0≤𝑡<𝑇) 

 

4. The uniqueness of the solution of boundary problem of wave equation is given by 

A. Elementary method 

B. Energy method 

C. Fundamental method 

D. None of these 

 

5. A general solution of the wave equation 
𝜕2𝑦

𝜕𝑥2
=

1

𝑐2

𝜕2𝑦

𝜕𝑡2
 is 

A. 𝑦 = 𝑓(𝑥 + 𝑐𝑡) + 𝑔(𝑥 − 𝑐𝑡) 

B. 𝑦 = 𝑓(𝑥 + 𝑐𝑡) − 𝑔(𝑥 − 𝑐𝑡) 

C. 𝑦 = 𝑓(𝑥 + 𝑐𝑡) 

D. None of these 

 

6. If the string is released from rest, then the elementary solution becomes 

A. {𝜂(𝑥 + 𝑐𝑡) − 𝜂(𝑥 − 𝑐𝑡)} 

B. 2{𝜂(𝑥 + 𝑐𝑡) − 𝜂(𝑥 − 𝑐𝑡)} 

C. 
1

2
{𝜂(𝑥 + 𝑐𝑡) + 𝜂(𝑥 − 𝑐𝑡)} 

D. 𝑁𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒𝑠𝑒 

 

7. The displacement of the string released from rest is produced by 

A. Two pulses 

B. Straight curve 

C. Arc 

D. None of these 

 

8. The equation is  {

𝑢𝑡𝑡 − Δ𝑢 = 𝑓 𝑖𝑛 𝑈𝑇

𝑢 = 𝑔 𝑜𝑛 Γ𝑇

𝑢𝑡 = ℎ 𝑜𝑛 𝑈 × {𝑡 = 0}.
 governed as  

A. Initial value problem 

B. Boundary Value problem 

C. Both (a) and (b) 

D. None of these 

 

 

Answersforself Assessment 

l. A 2. C 3. A 4. B 5. A 
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6. C 7. A 8. C     

 

Review Questions 

1. Derive d'Alembert's formulas for one dimensional wave equation.  

2. State and prove uniqueness by the energy methods for wave equation. 

 

 

 Further Readings 

1. I.N. Sneddon(1957), Elements Of Partial Differential Equations,Mcgraw Hill Education. 

2. Lawrence C. Evans (1998), Partial Differential Equations, Universities Press Pvt. Ltd 

 

 
Web Links 

https://onlinecourses.nptel.ac.in/noc22_ma73/preview 

https://onlinecourses.nptel.ac.in/noc21_ma09/preview 

https://onlinecourses.swayam2.ac.in/cec22_ma12/preview 
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Objectives 
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13.1 Plane and Traveling Waves 

13.2 Solitons 

13.3 Similarity Under Scaling 

Summary 

Keywords 

Self Assessment 

Answers for Self Assessment 

Review Questions 

Further Readings 

 

Objectives 

After studying this unit, you will be able to 

 identify the concept similarity solution. 

 understand about the plane wave and traveling wave solution 

 know about theexponential solution corresponding to number of equations. 

 determine soliton by using traveling wave function. 

 apply the similarity under scaling function for porous medium. 

 

Introduction 

Similarity Solutions 

When investigating partial differential equations it is often profitable to look for specific solutions 
u, the form of which reflects various symmetries in the structure of the PDE. We have already seen 
this idea in our derivation of the fundamental solutions for Laplace's equation, and our discovery of 
rarefaction waves for conservation laws. Following are some other applications of this important 
method. 

 

13.1 Plane and Traveling Waves 

Consider first a partial differential equation involving the two variables 𝑥 ∈ ℝ, 𝑡 ∈ ℝ.  

A solution u of the form 

u(x, t) =  v(x − σt), 𝑥 ∈ ℝ, 𝑡 ∈ ℝ       (13.1.1) 

is called a traveling wave (with speedσ and profile v).  

More generally, a solution u of a PDE in the n + 1 variables𝑥 = (𝑥1, 𝑥2 , … … . , 𝑥𝑛) ∈ 𝑅𝑛 , 𝑡 ∈ 𝑅 having 
the form  

u(x, t) =  v(y. x − σt), 𝑥 ∈ ℝ𝑛 , 𝑡 ∈ ℝ       (13.1.2) 

is called a plane wave (with wavefront normal to y Є R", velocity
σ

|y|
, andprofile u). 

Dr. Preety Kalra, Lovely Professional University 
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Exponential Solutions 

In view of the Fourier transform, it is particularly enlightening when studying linear partial 
differential equations toconsider complex-valued plane wave solutions of the form 

u(x, t) = ei(y.x+ωt)        (13.1.3) 

where ω ∈ ℂ and 𝑦 = (𝑦1 , 𝑦2 , … . . 𝑦𝑛) ∈ 𝑅𝑛 , ωbeing the frequency and {𝑦𝑖}𝑖=1
𝑛 ,the wave numbers.  

We will next substitute trial solutions of the form (13.1.3) into various linear PDE, paying particular 
attention to the relationship between y and ωforced by the structure of the equation. 
 

(i) Heat Equation. If u is given by (13.1.3), we compute 

𝑢𝑡 − ∆𝑢 = (𝑖ω + |y|2)𝑢 = 0, 

providedω = i|y|2.  Hence 

𝑢 = 𝑒𝑖y.x−|y|2𝑡 

 

solves the heat equation for each 𝑦 ∈ 𝑅𝑛. Taking real and imaginary parts,we discover further that  

𝑒−|y|2𝑡 cos(𝑦. 𝑥) and 𝑒−|y|2𝑡 sin(𝑦. 𝑥) are the solution as well. Notice in this example that since ω is 

purely imaginary, there resulta a real, negative exponential term 𝑒−|y|2𝑡 in the formulas, which 
corresponds to dissipation. 

 

(ii) Wave Equation. Upon our substituting (13.1.3) into the wave equation, we discover 

𝑢𝑡𝑡 − ∆𝑢 = (−ω2 + |y|2)𝑢 = 0, 

provided ω = ±|y|.  Consequently 

𝑢 = 𝑒𝑖(y.x±|y|)𝑡 

solves the wave equation, as do the pair of functions cos(y. x ± |y|)𝑡 and sin(y. x ± |y|)𝑡). Since ω is 
real, there are no dissipation effects in these solutions. 

 

(iii) Dispersive Equations. We now let n = 1 and substitute u(x, t) = ei(y.x+ωt)intoAiry's equation 

ut + 𝑢𝑥𝑥𝑥 = 0 

We calculate 

ut + 𝑢𝑥𝑥𝑥 = 𝑖(ω − y3)𝑢 = 0 

whenever ω = y3. Thus 

𝑢 = 𝑒𝑖(y.x±y3)𝑡 

 

solves Airy's equation, and once again as ω is real there is no dissipation.  

 

Notice: however that the velocity of propagation is y2, which depends non- linearly upon 

the frequency of the initial value 𝑒𝑖𝑦𝑥 . Thus waves of different frequencies propagate at 
different velocities: the PDE creates dispersion. 

 

(iv) Schrödinger's Wave Equation 

Likewise, if n ≥ 1 and we substitute  

u(x, t) = ei(y.x+ωt) 

into Schrödinger's equation,  

iut + ∆u = 0 
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we compute 

iut + ∆u − (ω + |y|2)𝑢 = 0. 

Consequentlyω = −|y|2, and 

u = ei(y.x−|y|2𝑡) 

Again, the solution displays dispersion. 

 

13.2 Solitons 

We consider next the Korteweg-De-Vries (KdV) equation in the form  

𝑢𝑡 + 6𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0   𝑖𝑛 ℝ × (0, ∞).                                                                                                                (13.2.1) 

This nonlinear dispersive equation being model for surface waves in water.  

We seek a traveling wave solution having structure  

𝑢(𝑥, 𝑡) = 𝑣(𝑥 − 𝜎𝑡)(𝑥 ∈ 𝑅, 𝑡 > 0)                                                                                                                       (13.2.2) 

Then u solves the KdV equation (13.2.1), provided v satisfies the ODE  

−𝜎 𝑣′ + 6𝑣𝑣′ + 𝑣′′′ = 0                       (′ =
𝑑

𝑑𝑠
)   (13.2.3) 

We integrate (13.3.3.) by first noting 

−𝜎 𝑣 + 3𝑣2 + 𝑣′′ = 𝑎      (1323.4) 

a denoting some constant. Multiply this equality by 𝑣′ to obtain 

−𝜎 𝑣𝑣′ + 3𝑣2𝑣′ + 𝑣′𝑣′′ = 𝑎𝑣′      (13.2.5) 

so deduce 

(𝑣′)2

2
= −𝑣3 +

𝜎

2
𝑣2 + 𝑎𝑣 + 𝑏       (13.2.6) 

where b is another arbitrary constant. 

We investigate (13.2.6) by looking now only for solutions 𝑣which satisfy 𝑣, 𝑣′ , 𝑣′′→ 0 as 𝑠 → ± ∞. (In 
which case the function u having the form (13.2.2) is called a solitary wave.) Then (13.2.6), (13.2.5) 
imply a = b = 0. Equation (13.2.6) thereupon simplifies to read 

 

(𝑣′)2

2
= 𝑣2 (−𝑣 +

𝜎

2
). 

Hence 𝑣′ = ±𝑣(𝜎 − 2𝑣)1/2. 

We take the minus sign above for computational convenience, and obtain then this implicit formula 
for 𝑣: 

𝑠 = − ∫
𝑑𝑧

𝑧(𝜎 − 2𝑧)1/2
+ 𝑐                                                                                                                              (13.2.7)

𝑣(𝑠)

0

 

 

For some constant c.  

Now substitute 𝑧 =
𝜎

2
sech2 𝜃. 

It follows that 
𝑑𝑧

𝑑𝜃
= −𝜎𝑆𝑒𝑐ℎ2𝜃 𝑡𝑎𝑛ℎ𝜃 and 𝑧(𝜎 − 2𝑧)1/2 =

𝜎
3
2

2
𝑆𝑒𝑐ℎ2𝜃 𝑡𝑎𝑛ℎ𝜃. Hence (13.2.7) becomes  

𝑠 =
2

√𝜎
𝜃 + 𝑐                                                                                                                                                         (13.2.8) 

where 𝜃 implicitly given by the relation  

𝜎

2
sech2 𝜃 = 𝑣(𝑠)(13.2.9) 

We lastly combine (13.2.8) and (13.2.9), to compute 
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𝑣(𝑠) =   
𝜎

2
sech2 (

√𝜎 

2
(𝑠 − 𝑐))        (𝑠 ∈ 𝑅)                                                                                               

Conversely, it is routine to check 𝑣so defined actually solves the ODE (13.2.3. 

The upshot is that  

𝑢(𝑥, 𝑡) =   
𝜎

2
sech2 (

√𝜎 

2
(𝑥 − 𝜎𝑡 − 𝑐))          𝑥 ∈ 𝑅, 𝑡 ≥ 0  

is a solution of KdV equation for each 𝑐 ∈ 𝑅, 𝜎 > 0.  A solution of this form is called a soliton . Note 
the velocity of the soliton depends upon its height.  

 

Notes: The KdV equation is in factutterly remarkable, in that it is completely integrable, 
which mean that in principle that the exact solution can be computed for essentially 
arbitrary initial data. 

13.3 Similarity Under Scaling 

We next illustrate the possibility of findings the other types of ‘similarity’ solutions to PDE. 

A scaling invariant solution Consider the porous medium equation 

𝒖𝒕 − 𝛁(𝒖𝜸) = 𝟎    𝒊𝒏 𝑹𝒏 × (𝟎, ∞)                                                                                                    (𝟏𝟑. 𝟑. 𝟏) 

where 𝑢 ≥ 0 and 𝛾 > 1 is constant. 

As in our later derivation of the fundamental solution od heat equation, let us look for a solution 𝑢 
having the form  

 

𝑢(𝑥, 𝑡) =
1

𝑡𝛼
𝑣 (

𝑥

𝑡𝛽
) ,       𝑥 ∈ 𝑅𝑛 , 𝑡 > 0,                                                                                               (13.3.2) 

 

Where the constants 𝛼, 𝛽 and the function 𝑣: 𝑅𝑛 → 𝑅 must be determined. 

Remember that we come upon  (13.3.2) if we seek a solution 𝑢 of (13.3.1) invariant under dilation 
scaling  

𝑢(𝑥, 𝑡) → 𝜆𝛼𝑢(𝜆𝛽𝑥, 𝜆𝑡) 

so that 𝑢(𝑥, 𝑡) =  𝜆𝛼𝑢(𝜆𝛽𝑥, 𝜆𝑡) 

for all 𝜆 > 0, 𝑥 ∈ 𝑅𝑛 , 𝑡 > 0. Setting 𝜆 = 𝑡−1 , we obtain (13.3.2) for 𝑣(𝑦) = 𝑢(𝑦, 1).  

We insert (13.3.2) into (13.3.1), and discover 

𝛼𝑡−(𝛼+1)𝑣(𝑦) + 𝛽𝑡−(𝛼+1)𝑦. 𝐷𝑣(𝑦) + 𝑡−(𝛼𝛾+2𝛽)∆(𝑣𝛾)(𝑦) = 0                                                                 (13.3.3) 

for  𝑦 = 𝑡−𝛽𝑥. 

In order to convert (13.3.3) into an expression involving the variable y alone, let us require 

𝛼 + 1 = 𝛼𝛾 + 2𝛽                                                                                                                                               (13.3.4) 

Then (13.3.3) reduces to  

𝛼𝑣 + 𝛽𝑦. 𝐷𝑣 + ∆(𝑣𝛾) = 0                                                                                                                                (13.3.5) 

At this point we have effected a reduction from n + 1 to n variables. We simplify further by 
supposing 𝑣 is radial; that is, 𝑣(𝑦) = 𝑤(|𝑦|)for some 𝑤: 𝑅 → 𝑅. Then (13.3.5) becomes 

𝛼𝑤 + 𝛽𝑟𝑤′ + (𝑤𝛾)′′ +
𝑛 − 1

𝑟
(𝑤𝛾)′ = 0                                                                                                     (13.3.6)  

Where = |𝑦|,      ′ =
𝑑

𝑑𝑟
. Now if we set 

𝛼 = 𝑛𝛽,                                                                                                                                                               (13.3.7) 

(13.3.6) thereupon simplifies to read  

(𝑟𝑛−1(𝑤𝛾)′)′ + 𝛽(𝑟𝑛𝑤)′ = 0 
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Thus 
𝑟𝑛−1(𝑤𝛾)′ + 𝛽𝑟𝑛𝑤 = 𝑎 

for some constant a.  

Assuming lim
𝑟→∞

𝑤, 𝑤′ = 0,  we conclude a = 0; whence 

(𝑤𝛾)′ = −𝛽𝑟𝑤. 

But then 

(𝑤𝛾−1)′ = −
𝛾 − 1

𝛾
𝛽𝑟 

Consequently  

𝑤𝛾−1 = 𝑏 −
𝛾 − 1

2𝛾
𝛽𝑟2 , 

b is constant; and so 

𝑤 = (𝑏 −
𝛾−1

2𝛾
𝛽𝑟2)

+
1

𝛾−1                                                                                                                                            (13.3.8) 

where we look the positive part of right hand side of (13.3.8) to ensure 𝑤 ≥ 0. Recalling 𝑣(𝑦) = 𝑤(𝑟) 
and (13.3.2), we obtain 

 

𝑢(𝑥, 𝑡) =
1

𝑡𝛼
(𝑏 −

𝛾 − 1

2𝛾
𝛽

|𝑥|2

𝑡2𝛽
)

+
1

𝛾−1 

,                         ( 𝑥 ∈ 𝑅𝑛 , 𝑡 > 0 )                                                 (13.3.9) 

 

where from (13.3.4) and (13.3.7), 

 

𝛼 =
𝑛

𝑛(𝛾 − 1) + 2
, 𝛽 =

1

𝑛(𝛾 − 1) + 2
                                                                                                            (13.3.10)    

 

The formula (13.3.9) and (13.3.10) are Barenblatt’s solution to the porous medium equation. 

 

Summary 

 The plane wave and traveling wave solutions are discussed. 

 The exponential solution are determined for different equation. 

 The dissipation effect using exponential is discussed.  

 The similarity solution under scaling are explained. 

 The soliton equation are elaborated with examples.  

 

Keywords 

 Plane wave 

 Traveling wave 

 Soliton 

 Similarity solutions 

 Porous medium 

 Scaling 
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Self Assessment 

1. The 𝑢 of the form  𝑢(𝑥, 𝑡) = 𝑣(𝑥 − 𝜎𝑡), 𝑥 𝜖 𝑅, 𝑡 𝜖 𝑅 with speed 𝜎 and profile 𝑣 is called as 

A. Traveling wave 

B. Plane wave 

C. Transverse wave 

D. Longitudinal wave 

 

2. The 𝑢 of the form  𝑢(𝑥, 𝑡) = 𝑣(𝑦. 𝑥 − 𝜎𝑡), 𝑥 𝜖 𝑅, 𝑡 𝜖 𝑅 with speed 𝜎 and profile 𝑣 is called as 

A. Traveling wave 

B. Plane wave 

C. Transverse wave 

D. Longitudinal wave 

 

3. Which of the equation has no dissipation effect? 

A. Heat equation 

B. Wave equation 

C. Dispersive equation 

D. None of these 

 

4. Which is not the kind of wave equation solutions? 

A. Traveling wave 

B. Plane wave 

C. Solitons 

D. None of these 

 

5. The nonlinear dispersive equation 𝑢𝑡 + 6𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0 is also known as 

A. Korteweg-de Vrise equation 

B. Alembert equation 

C. Helmholtz’s equation 

D. Riemann-Volterra equation 

 

6. The wave equation  which is used to represent the surface of water represent as 

A. 𝑢𝑡 + 6𝑢𝑢𝑥𝑥 + 𝑢𝑥𝑥𝑥 = 0 

B. 𝑢𝑡 + 6𝑢𝑢𝑥
2 + 𝑢𝑥𝑥𝑥 = 0 

C. 𝑢𝑡 + 6𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0 

D. 𝑢𝑡 + 6𝑢𝑢𝑥𝑥
2 + 𝑢𝑥𝑥𝑥 = 0 

 

7. The wave function represents below is the type of   

 

A.  Stationary wave 

B. Travelling wave 

C. Vibrating wave 

D. Plane wave 

 

8. The equation under scaling invariant of Porous media is represents as 

A. 𝑢𝑡 − Δ(𝑢𝛾) = 0 

B. 𝑢𝑡𝑡 − Δ(𝑢𝛾) = 0 

C. 𝑢𝑡 − D(𝑢𝛾) = 0 
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Notes 

D. 𝑢𝑡𝑡 − Ds(𝑢𝛾) = 0 

 

9. The Barenblatt’s solution is of which kind of equation 

A. Diffusion equation 

B. Porous media equation 

C. Wave equation 

D. Laplace equation 

 

10. The equation 𝑢𝑡 + 𝑢𝑥𝑥𝑥 = 0  is knows as 

A. Airy’s equation 

B. Non characteristic surface equation 

C. Water surface equation 

D. None of these 

 

11. The Schrodinger’s equations is represent as 

A. 𝑖𝑢𝑡 + Δ𝑢 = 0  

B. 𝑢𝑡 + 𝑖𝐷𝑢𝑥 = 0  

C. 𝑢𝑡𝑡 + 𝑖𝐷𝑢 = 0  

D. 𝑖𝑢𝑡𝑡 + 𝑢𝑥𝑥 = 0  

 

AnswersforSelf Assessment 

l. A 2. B 3. B 4. D 5. A 

6. C 7. B 8. A 9. B 10. A 

11. A         

 

Review Questions 

1. State and prove the Korteweg-de Vries (KDV) equation for solitons. 

2. Derive the exponential solution for plane and travelling wave equation by considering 

heat equation and wave equation. 

3. Derive the exponential solution for plane and travelling wave equation by considering 

Airy’sequation. 

4. State and prove Barenblatt’s solution to the porous medium equation by the method of 

similarity under scaling. 

 

 Further Readings 

1. I.N. Sneddon(1957), Elements Of Partial Differential Equations,Mcgraw Hill Education. 

2. Lawrence C. Evans (1998), Partial Differential Equations, Universities Press Pvt. Ltd 

 

 
Web Links 

https://onlinecourses.nptel.ac.in/noc22_ma73/preview 

https://onlinecourses.nptel.ac.in/noc21_ma09/preview 

https://onlinecourses.swayam2.ac.in/cec22_ma12/preview 
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Unit 14 : Heat Equations 

CONTENTS 

Objectives 

Introduction 

14.1 Fundamental Solution 

14.2 Elementary Solutions of the Diffusion Equation 

14.3 Energy Methods 

14.4 Green’s Function 

Summary 

Keywords 

Self Assessment 

Answers for Self Assessment 

Review Questions 

Further Readings 

 

Objectives 

After studying this unit, you will be able to 

 identify the concept of heat equation of diffusion equation.  

 understand about fundamental of solution of heat equation. 

 know about theelementary solution of diffusion equation. 

 determine green function and find uniqueness through energy functions. 

 

Introduction 

Next we study the heat equation 

𝑢𝑡 − ∆𝑢 = 0         (14.0.1) 

and the nonhomogeneous heat equation 

𝑢𝑡 − ∆𝑢 = 𝑓         (14.0.2) 

subject to appropriate initial and boundary conditions. Here t > 0 and 𝑥 ∈ 𝑈,where U ⊂ Rnis open. 
The unknown is u: Ū × [0, ∞) → R, u = u(x, t), and the Laplacian ∆ is taken with respect to the 
spatial variables 

𝑥 = (𝑥1, 𝑥2 , … … . 𝑥𝑛): ∆𝑢 = ∆𝑢𝑥 = ∑ 𝑢𝑥𝑖𝑥𝑖

𝑛
𝑖=1 . 

In (14.0.2) the function f: Ux[0, ∞) → R is given. 

A guiding principle is that any assertion about harmonic functions yields an analogous (but more 
complicated) statement about solutions of the heat equation. Accordingly our development will 
largely parallel the corresponding theory for Laplace's equation. 

Physical interpretation. The heat equation, also known as the diffusion equation, describes in 
typical applications the evolution in time of the density u of some quantity such as heat, chemical 
concentration, etc. If 𝑉 ⊂ 𝑈is any smooth subregion, the rate of change of the total quantity within 
V equals the negative of the net flux through 𝜕𝑉: 

Dr. Preety Kalra, Lovely Professional University 
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𝑑

𝑑𝑡
∫ 𝑢𝑑𝑥

𝑉

= − ∫ 𝐹. 𝑣𝑑𝑠
𝜕𝑉

 

F being the flux density. Thus 

𝑢𝑡 = −𝑑𝑖𝑣 𝐹                                                                                                                                                              (14.0.3) 

as V was arbitrary. In many situations F is proportional to the gradient of u, but points in the 
opposite direction (since the flow is from regions of higher to lower concentration): 

F=-aDu (a > 0). 

Substituting into (14.0.3), we obtain the PDE 

ut = a div(Du) = a∆u, 

which for a =1 is the heat equation. 

The heat equation appears as well in the study of Brownian motion. 

 

14.1 Fundamental Solution 

 Derivation of the fundamental solution: 

An important first step in studying any PDE is often to come up with some specific solutions. We 
observe that the heat equation involves one derivative with respectto the time variable t, but two 
derivatives with respect to the space variables𝑥𝑖 (i = 1,...,n). Consequently we see that if u solves 

(14.0.1), then so does 𝑢(𝜆𝑥, 𝜆2𝑡) 𝑓𝑜𝑟 𝜆 ∈ 𝑅. This scaling indicates the ratio 
𝑟2

𝑡
,     (𝑟 = |𝑥|) is important 

for the heat equation and suggests that we search for a solution of (14.0.1) having the form  

𝑢(𝑥, 𝑡) = 𝑣 (
|𝑥|2

𝑡
) , 𝑡 > 0, 𝑥 ∈ 𝑅𝑛 , 

for some function v as yet undetermined. 

Although this approach eventually leads to what we want, it is quicker to seek a solution u having 
the special structure 

𝑢(𝑥, 𝑡) =
1

𝑡𝛼
(

𝑥

𝑡𝛽
),    (𝑥 ∈ 𝑅𝑛 , 𝑡 > 0)                                                                                                          (14.1.1) 

where the constants 𝛼, 𝛽 and the function 𝑣: 𝑅𝑛 → 𝑅,  must be found. We come to (14.1.1) if we look 
for a solution u of the heat equation invariant under the dilation scaling 

𝑢(𝑥, 𝑡) → 𝜆𝛼𝑢(𝜆𝛽𝑥, 𝜆𝑡) 

That is, we ask 

𝑢(𝑥, 𝑡) =  𝜆𝛼𝑢(𝜆𝛽𝑥, 𝜆𝑡) 

for all 𝜆 > 0, 𝑥 ∈ 𝑅𝑛 , 𝑡 > 0. Setting 𝜆 = 𝑡−1 , we obtain (13.3.2) for 𝑣(𝑦) = 𝑢(𝑦, 1). 

Let us insert (14.1.1) into (14.0.1), and thereafter compute 

𝛼𝑡−(𝛼+1)𝑣(𝑦) + 𝛽𝑡−(𝛼+1)𝑦. 𝐷𝑣(𝑦) + 𝑡−(𝛼𝛾+2𝛽)∆𝑣(𝑦) = 0                                                                 (14.1.2) 

For𝑦 = 𝑡−𝛽𝑥. In order to transform (14.1.2) into an expression involving the variable y alone, we 

take ẞ=1/2. Then the terms with t are identical, and so (14.1.2) reduces to 

𝛼𝑣 +
1

2
𝑦. 𝐷𝑣 + ∆𝑣 = 0                                                                                                                                (14.1.3) 

We simplify further by guessing v to be radial; that is, 𝑣(𝑦) = 𝑤(|𝑦|)for some w: R→R. Thereupon 
(14.1.3) becomes 

𝛼𝑤 +
1

2
𝑟𝑤′ + 𝑤′′ +

𝑛 − 1

𝑟
𝑤′ = 0                                                                                                     (14.1.4)  

For 𝑟 = |𝑦|,      ′ =
𝑑

𝑑𝑟
Now if we set 𝛼 =

1

2
, this simplifies to read  

(𝑟𝑛−1𝑤′)′ + 𝛽(𝑟𝑛𝑤)′ = 0 
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Thus 
𝑟𝑛−1𝑤′ + 𝛽𝑟𝑛𝑤 = 𝑎 

for some constant a.  

Assuming lim
𝑟→∞

𝑤, 𝑤′ = 0,  we conclude a = 0; whence 

𝑤′ = −
1

2
𝑟𝑤. 

But for some constant b  

𝑤 = 𝑏𝑒−
𝑟2

4                                                                                                                                                           (14.1.5) 

Combining (14.1.1), (14.1.5) and our choices for, 𝛽, we conclude that 

𝑏

𝑡
𝑛

2

𝑒−
|𝑥|2

4𝑡  

solves the heat equation (14.0.1). 

This computation motivates the following 

DEFINITION. The functions 

𝜙(𝑥, 𝑡) ≔ {(

1

(4𝜋𝑡)
𝑛

2

𝑒−
|𝑥|2

4𝑡    ,      (𝑥 ∈ 𝑅𝑛 , 𝑡 > 0)

   0 ,                            (𝑥 ∈ 𝑅𝑛 , 𝑡 > 0)

 

is called the fundamental solution of the heat equation. 

 

Remark: 14.1.2:  Notice that 𝜙 is singular at the point (0,0). We will sometimes write 
𝜙(𝑥, 𝑡) = 𝜙(|𝑥|, 𝑡)  to emphasize that the fundamental solution is radial in the variable x.  

 

14.2 Elementary Solutions of the Diffusion Equation 

In this section we shall consider elementary solutions of the one - dimensional diffusion equation 

𝜕2𝜃

𝜕𝑥2
=

1

𝜅

𝜕𝜃

𝜕𝑡
                                                                                                                                                                (14.2.1)  

We begin by considering the expression 

𝜃 =
1

√𝑡
exp (−

𝑥2

4𝜅𝑡
)                                                                                                                                              (14.2.2) 

For this function it is readily seen that 

𝜕2𝜃

𝜕𝑥2
=

𝑥2

4𝜅2𝑡5/2
𝑒−𝑥2/4𝜅𝑡 −

1

2𝜅𝑡3/2
𝑒−𝑥2/4𝜅𝑡 

and  
𝜕𝜃

𝜕𝑡
=

𝑥2

4𝜅𝑡5/2
𝑒−𝑥2/4𝜅𝑡 −

1

2𝑡3/2
𝑒−𝑥2/4𝜅𝑡 

showing that the function (14.2.2) is a solution of the equation (14.2.1). It follows immediately that 

1

2√𝜋𝜅𝑡
exp

(−
(𝑥 − 𝜉)2

4𝜅𝑡
)

                                                                                                                                  (14.2.3)   

 

Where 𝜉 is an arbitrary real constant, is also a solution. Furthermore, if the function 𝜙(𝑥) is 
bounded for all real values of x, then it is possible that the integral 

 

1

2√𝜋𝜅𝑡
∫ 𝜙(𝜉)

∞

−∞

exp (−
(𝑥 − 𝜉)2

4𝜅𝑡
) 𝑑𝜉                                                                                                                    (14.2.4)   
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is also, in some sense, a solution of the equation (14.2.1). It may readily be proved that the integral 
(14.2.4) is convergent if t > 0 and that the integrals obtained from it by differentiating under the 
integral sign with respect to x and t are uniformly convergent in the neighborhood of the point (x,t). 
The function 𝜃(x,t) and its derivatives of all orders therefore exist for t > 0, and since the integrand 
satisfies the one -dimensional diffusion equation, it follows that 𝜃(x,t) itself satisfies that equation 
for t > 0. 

Now 

|
1

2√𝜋𝜅𝑡
∫ 𝜙(𝜉)

∞

−∞

exp (−
(𝑥 − 𝜉)2

4𝜅𝑡
)  𝑑𝜉 − 𝜙(𝑥)| 

 

= |𝐼1 + 𝐼2 + 𝐼3 − 𝐼4| 

Where 

𝐼1 =
1

√𝜋
∫ {𝜙(𝑥 + 2𝑢√𝜅𝑡)

𝑁

−𝑁

− 𝜙(𝑥)}𝑒−𝑢2
 𝑑𝑢 

𝐼2 =
1

√𝜋
∫ {𝜙(𝑥 + 2𝑢√𝜅𝑡)

∞

𝑁

}𝑒−𝑢2
 𝑑𝑢 

𝐼3 =
1

√𝜋
∫ {𝜙(𝑥 + 2𝑢√𝜅𝑡)

−𝑁

−∞

}𝑒−𝑢2
 𝑑𝑢 

𝐼4 =
2𝜙(𝑥)

√𝜋
∫ 𝑒−𝑢2

∞

𝑁

 𝑑𝑢 

If the function 𝜙(𝑥) is bounded, we can make each of the integrals 𝐼2 , 𝐼3 , 𝐼4 as small as we please by 
taking N to be sufficiently large, and by the continuity of the function 𝜙we can make the integral𝐼1 
as small as we please by taking t sufficiently small. Thus as 𝑡 → 0, 𝜃(𝑥, 𝑡) → 𝜙(𝑥). Thus the Poisson 
integral 

𝜃(𝑥, 𝑡) =
1

2√𝜋𝜅𝑡
∫ 𝜙(𝜉)

∞

−∞

exp (−
(𝑥 − 𝜉)2

4𝜅𝑡
) 𝑑𝜉                                                                                           (14.2.5)   

 

is the solution of the initial value problem 

𝜕2𝜃

𝜕𝑥2
=

1

𝜅

𝜕𝜃

𝜕𝑡
        − ∞ < 𝑥 < ∞ 

𝜃(𝑥, 0) = 𝜙(𝑥)                                                                                                                                                  (14.2.6)  

It will be observed that by a simple change of variable we can express the solution (14.2.5) in the 
form 

𝜃(𝑥, 𝑡) =
1

2√𝜋
∫ {𝜙(𝑥 + 2𝑢√𝜅𝑡)

∞

−∞

e−u2
𝑑𝑢                                                                                           (14.2.7)   

We shall now show how this solution may be modified to obtain the solution of the boundary value 
problem 

𝜕2𝜃

𝜕𝑥2
=

1

𝜅

𝜕𝜃

𝜕𝑡
        0 ≤ 𝑥 < ∞ 

𝜃(𝑥, 0) = 𝑓(𝑥)   𝑥 > 0                                                                                                                                            (14.2.8)  

𝜃(0, 𝑡) = 0, 𝑡 > 0  

 

14.3 Energy Methods 

a. Uniqueness. 

Let us investigate again the initial/boundary-value problem 

{
𝑢𝑡 − ∆𝑢 = 𝑓 𝑖𝑛  𝑈𝑇

𝑢 = 𝑔 𝑜𝑛 Γ𝑇
                                                                                                                          (14.3.1) 
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We earlier invoked the maximum principle to show uniqueness, and now-by analogy -provide an 
alternative argument based upon integration by parts. We assume as usual that UC R" is open, 
bounded and that 𝜕𝑈 is C¹. The terminal time T > 0 is given. 

Theorem14.3.1: (Uniqueness). There exists at most one solution 𝑢 ∈ 𝐶1
2(𝑈̅𝑇)of (14.3.1). 

Proof. 1. If 𝑢̅ is another solution, 𝑤 = 𝑢 − 𝑢̅solves 

{
𝑤𝑡 − ∆𝑤 = 0 𝑖𝑛  𝑈𝑇

𝑤 = 0 𝑜𝑛 Γ𝑇
                                                                                                                          (14.3.2) 

2. Set 

𝑒(𝑡) ≔ ∫ 𝑤2(𝑥, 𝑡)𝑑𝑥,     (0 ≤ 𝑡 < 𝑇).
𝑈

 

Then 

𝑒̇(𝑡) ≔ 2 ∫ 𝑤𝑤𝑡𝑑𝑥    (. =
𝑑

𝑑𝑡
)

𝑈

 

= 2 ∫ 𝑤∆𝑤𝑑𝑥     
𝑈

 

−2 ∫ |𝐷𝑤|2

𝑈

𝑑𝑥 ≤ 0, 

and so 𝑒(𝑡) ≤ 𝑒(0) = 0   (0 ≤ 𝑡 ≤ 𝑇). 

Consequently 𝑤 = 𝑢 − 𝑢̅  𝑖𝑛 𝑈𝑇. 

b. Backwards uniqueness. 

A rather more subtle question concerns uniqueness backwards in time for the heat equation. For 
this, suppose u and ũ are both smooth solutions of the heat equation in UT, with the same boundary 
conditions on 𝜕𝑈: 

 

{
𝑢𝑡 − ∆𝑢 = 𝑓 𝑖𝑛  𝑈𝑇

𝑢 = 𝑔 𝑜𝑛 𝜕𝑈 × [0, 𝑇],
                                                                                                                          (14.3.3) 

 

{
𝑢𝑡 − ∆𝑢 = 𝑓 𝑖𝑛  𝑈𝑇

𝑢 = 𝑔 𝑜𝑛 𝜕𝑈 × [0, 𝑇],
                                                                                                                          (14.3.4) 

 

for some function g. Note carefully that we are not supposing u = ũ at time t = 0. 

Theorem 14.3.2  (Backwards uniqueness). Suppose u, ũ € C²(ŪT) solve (14.3.3), (14.3.4). If 

u(x,T) = ũ (x,T) (𝑥 ∈ 𝑈),thenu =ũ within UT. 

In other words, if two temperature distributions on U agree at some time T > 0, and have had the 
same boundary values for times 0 <t<T, then these temperatures must have been identically equal 
within U at all earlier times. This is not at all obvious. 

Proof. 1. Write 𝑤 = 𝑢 − 𝑢̅and, as in the proof of Theorem (14.3.1), set 

𝑒(𝑡) ≔ ∫ 𝑤2(𝑥, 𝑡)𝑑𝑥,     (0 ≤ 𝑡 < 𝑇).
𝑈

 

As before  

𝑒̇(𝑡) ≔ −2 ∫ |𝐷𝑤|2

𝑈

𝑑𝑥,                                                                                                                                 (14.3.5)   

Further more  

𝑒̈(𝑡) ≔ −4 ∫ 𝐷𝑤. 𝐷𝑤𝑡
𝑈

𝑑𝑥 

≔ 4 ∫ ∆𝑤𝑤𝑡
𝑈

𝑑𝑥                                                                                                                                              (14.3.6) 
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 = 4 ∫ (∆𝑤)2

𝑈

𝑑𝑥   𝑏𝑦 (14.3.1) 

Now since w =0 on𝜕𝑈, 

∫ |𝐷𝑤|2

𝑈

𝑑𝑥 = − ∫ 𝑤∆𝑤 𝑑𝑥
𝑈

 

≤ (∫ 𝑤2𝑑𝑥
𝑈

)

1

2

(4 ∫ (∆𝑤)2𝑑𝑥
𝑈

)

1/2

 

= 𝑒(𝑡)𝑒̈(𝑡) 

 

Thus (143.5) and (14.3.6) imply 

(𝑒̇(𝑡))
2

≔ 4 (∫ |𝐷𝑤|2

𝑈

𝑑𝑥)

2

 

≤ (∫ 𝑤2𝑑𝑥
𝑈

) (4 ∫ (∆𝑤)2

𝑈

𝑑𝑥) 

= 𝑒(𝑡)𝑒̈(𝑡) 

Hence  

𝑒(𝑡)𝑒̈(𝑡) ≥ (𝑒̇(𝑡))
2

, 0 ≤ 𝑡 ≤ 𝑇.                                                                                                                          (14.3.7) 

2. Now if e(t) = 0 for all 0 ≤t≤ T, we are done. Otherwise there exists an interval [𝑡1 , 𝑡2] ⊂ [0, 𝑇], with 

𝑒(𝑡) > 0  for 𝑡1 < 𝑡 < 𝑡2 ,   𝑒(𝑡2) = 0.                                                                                                                  (14.3.8) 

3. Now write 

𝑓(𝑡) = log 𝑒(𝑡)(𝑡1 < 𝑡 < 𝑡2).                                                                                                                        (14.3.9) 

𝑓̈(𝑡) =
𝑒̈(𝑡)

𝑒(𝑡)
−

𝑒̇(𝑡)2

𝑒(𝑡)2
   𝑏𝑦     (14.3.7) 

and so f is convex on the interval (t1, t2). Consequently if 0 < 𝜏 < 1,  

t1<t< t2, we have 

Then 

𝑓((1 − 𝜏)𝑡1 + 𝜏𝑡) ≤ (1 − 𝜏)𝑡1 + 𝜏𝑓(𝑡) 

Recalling (14.3.9), we deduce 

𝑒((1 − 𝜏)𝑡1 + 𝜏𝑡) ≤ 𝑒(𝑡1)(1−𝜏)  + 𝑒(𝑡)𝜏 

and so 

0 ≤  𝑒((1 − 𝜏)𝑡1 + 𝜏𝑡) ≤ 𝑒(𝑡1)(1−𝜏)  + 𝑒(𝑡)𝜏  (0 < 𝜏 < 1  

But in view of (14.3.8) this inequality implies e(t) = 0 for all times t₁<t<t₂, a contradiction. 

 

14.4 Green’s Function 

We saw earlier how Green's functions may be employed with advantage in the determination of 
solutions of Laplace's equation. We proceed now to show how a similar function may be used 
conveniently in the mathematical theory of diffusion processes.  

Suppose we are considering the solution 𝜃(𝑟, 𝑡) of the diffusion equation 

𝜕𝜃

𝜕𝑡
= 𝜅∇2𝜃                                                                                                                                                 (14.4.1) 

in the volume V, which is bounded by the simple surface S, subject to the boundary condition 

𝜃(𝑟, 𝑡) = 𝜙(𝑟, 𝑡)         𝑖𝑓 𝑟 ∈ 𝑆                                                                                                               (14.4.2) 

and the initial condition 

  LOVELY PROFESSIONAL UNIVERSITY  133



Unit 14: Heat Equations 

Notes 

𝜃(𝑟, 0) = 𝑓(𝑟)         𝑖𝑓 𝑟 ∈ 𝑉                                                                                                               (14.4.3) 

We then define the Green's function G(r, r', t - t') (t > t') of our problem as the function which 
satisfies the equation 

𝜕𝐺

𝜕𝑡
= 𝜅∇2𝐺                                                                                                                                                          (14.4.4) 

the boundary condition 

𝐺(𝑟, 𝑟′ , 𝑡 − 𝑡′) = 0       𝑖𝑡 𝑟′ ∈ 𝑆                                                                                                                      (14.4.5) 

and the initial condition that   lim
𝑡→𝑡′

𝐺  is zero at all points of V except at the point r where G takes the 

form 

1

8(𝜋𝜅(𝑡 − 𝑡′))
3/2

exp (−
(𝑟 − 𝑟′)2

4𝜅(𝑡 − 𝑡′)
) 𝑑𝜉                                                                                                   (14.2.6)   

Because G depends on t only in that it is a function of t - t', it follows that equation (14.2.4) is 
equivalent to 

𝜕𝐺

𝜕𝑡′
+ 𝜅∇2𝐺 = 0                                                                                                                                                 (14.4.7) 

The physical interpretation of the Green's function G is obvious from these equations : ' G(r, r', t -- 
t') is the temperature at r' at time t due to an instantaneous point source of unit strength generated 
at time t' at the point r, the solid being initially at zero temperature, and its surface being 
maintained at zero temperature.  

Since the time t' lies within the interval of t for which equations (14.4.1) and (14.4.2) are valid, we 
may rewrite these equations in the form 

𝜕𝜃

𝜕𝑡′
= 𝜅∇2𝜃                 (𝑡′ < 𝑡)                                                                                                                                  (14.4.8) 

𝜃(𝑟′, 𝑡′) = 𝜙(𝑟′, 𝑡′)         𝑖𝑓 𝑟′ ∈ 𝑆                                                                                                                          (14.4.9) 

It follows immediately from equations (14.4.7) and (14.4.8) that 

𝜕(𝜃𝐺)

𝜕𝑡′
= 𝜃

𝜕𝐺

𝜕𝑡′
+ 𝐺

𝜕𝜃

𝜕𝑡′
= 𝜅(𝐺∇2𝜃−θ∇2𝐺) 

so that if 𝜖 is an arbitrarily small positive constant, 

 

∫ {∫
𝜕(𝜃𝐺)

𝜕𝑡′
𝑑𝜏′

𝑉

} 𝑑𝑡′
𝑡−𝜖

0

= ∫ {𝜅(𝐺∇2𝜃−θ∇2𝐺)dτ′}𝑑𝑡′
𝑡−𝜖

0

                                                                         (14.4.10)    

 

If we interchange the order in which we take the integrations on the left -hand side, we find that it 
takes the form 

∫ (𝜃𝐺)𝑡′=𝑡−𝜖 𝑑𝜏′ −
𝑉

∫ (𝜃𝐺)𝑡′=0𝑑𝜏′

𝑉

= 𝜃(𝑟, 𝑡) ∫ [𝐺(𝑟, 𝑟′, 𝑡 − 𝑡′]𝑡′=𝑡−𝜖𝑑𝜏′ − ∫ 𝐺(𝑟, 𝑟′ , 𝑡′)𝑓(𝑟′)𝑑𝜏′
𝑉𝑉

 

Now from the expression (14.4.6) for G(r, r', t - t') we can readily show that 

∫ [𝐺(𝑟, 𝑟′, 𝑡 − 𝑡′]𝑡′=𝑡−0𝑑𝜏′ = 1
𝑉

 

so that if we let 𝜖 → 0, the left -hand side of equation (14.4.10) becomes 

 

𝜃(𝑟, 𝑡) − ∫𝐺(𝑟, 𝑟′ , 𝑡′)𝑓(𝑟′)𝑑𝜏′
𝑉

 

On the other hand, if we apply Green's theorem to the right -hand side of equation (14.4.10) and 
make use of equations (14.4.2) and (14.4.5), we find that it reduces to 

−𝜅 ∫ 𝑑𝑡′
𝑡

0

∫ 𝜙(𝑟′ , 𝑡)
𝜕𝐺

𝜕𝑛
 𝑑𝑆′ 

𝑆
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in the limit as  𝜖 → 0. It will be recalled that a an denotes differentiation along the outward -drawn 
normal to S. We therefore obtain finally 

𝜃(𝑟, 𝑡) = ∫ 𝑓(𝑟′)𝐺(𝑟, 𝑟′ , 𝑡)𝑑𝜏′
𝑉

− 𝜅 ∫ 𝑑𝑡′
𝑡

0

∫ 𝜙(𝑟′, 𝑡)
𝜕𝐺

𝜕𝑛
 𝑑𝑆′                                                                 (14.4.11)

𝑆

 

as the solution of the boundary value problem formulated in equations (14.4.1), (14.4.2), and 
(14.4.3). 

 

Summary 

 The heat (diffusion) equation with its physical interpretation isdiscussed. 

 Theelementary and fundamental solutions are determined. 

 The energy method to find the uniqueness of boundary value problem is derived 

 The Green’ function for diffusion equation is elaborated.  

 

Keywords 

 Diffusion equation 

 Elementary solution  

 Fundamental solution 

 Energy method 

 Green’s function 

 

Self Assessment 

1. The function defined below for , 0,nx R x  is the fundamental solution of Heat 

Equation. 

A. 𝜑(𝑥) = 1

(4𝜋𝑡)
𝑛
2

𝑒
−

|𝑥|2

4𝑡 , (𝑥 𝜖 𝑅𝑛 , 𝑡 𝜖 𝑅)  

B. 𝜑(𝑥) = − 1

(4𝜋𝑡)
𝑛
2

𝑒
−

|𝑥|2

4𝑡 , (𝑥 𝜖 𝑅𝑛 , 𝑡 𝜖 𝑅) 

C. 𝜑(𝑥) = − 1

(4𝜋𝑡)
𝑛
2

𝑒
|𝑥|2

4𝑡 , (𝑥 𝜖 𝑅𝑛 , 𝑡 𝜖 𝑅) 

D. 𝜑(𝑥) = 1

(4𝜋𝑡)
𝑛
2

𝑒
|𝑥|2

4𝑡 , (𝑥 𝜖 𝑅𝑛 , 𝑡 𝜖 𝑅) 

 

2. The solution of heat equation in invariant under 

A. Dilation scaling 

B. Rotational scaling 

C. Magnification scaling 

D. None of these 

 

3. The energy function for the diffusion equation over the domain U is given by 

A. 𝑒(𝑡) = − ∫ 𝑤2(𝑥,𝑡)𝑑𝑥   

B. 𝑒(𝑡) = ∫ 𝑤2(𝑥,𝑡)𝑑𝑥   

C. 𝑒(𝑡) = ∫ 𝑤𝑡
2(𝑥,𝑡)𝑑𝑥   

D. 𝑒(𝑡) = − ∫ 𝑤𝑡
2(𝑥,𝑡)𝑑𝑥   

 

4. The one  dimensional  diffusion equation is defined as 
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A. 𝜅
𝜕2𝜃

𝜕𝑡2
=

𝜕𝜃

𝜕𝑥
 

B. 𝜅
𝜕2𝜃

𝜕𝑥2
=

𝜕𝜃

𝜕𝑡
 

C. 𝜅
𝜕2𝜃

𝜕𝑡2
=

𝜕2𝜃

𝜕𝑥2
 

D. 𝜅 
𝜕𝜃

𝜕𝑡
=

𝜕𝜃

𝜕𝑥
 

 

5. The function 𝜃 =
1

√𝑡
𝑒𝑥𝑝 (−

𝑥2

4𝜅𝑡
) is the solution of the equation 

A. 𝜅
𝜕2𝜃

𝜕𝑡2
=

𝜕𝜃

𝜕𝑥
 

B. 𝜅
𝜕2𝜃

𝜕𝑥2
=

𝜕𝜃

𝜕𝑡
 

C. 𝜅
𝜕2𝜃

𝜕𝑡2
=

𝜕2𝜃

𝜕𝑥2
 

D. 𝜅 
𝜕𝜃

𝜕𝑡
=

𝜕𝜃

𝜕𝑥
 

E. 𝜅
𝜕2𝜃

𝜕𝑡2
=

𝜕𝜃

𝜕𝑥
 

6. The function 𝜙(𝑥) is bounded for all real value for 𝑥 then the integral formula 

1

2√𝜋𝜅𝑡
∫ 𝜙(𝜉)𝑒𝑥𝑝{−(𝑥−𝜉)2

4𝜅𝑡
}𝑑𝜉

∞

−∞
 will satisfy the equation 

A. 𝜅
𝜕2𝜃

𝜕𝑡2
=

𝜕𝜃

𝜕𝑥
 

B. 𝜅
𝜕2𝜃

𝜕𝑥2
=

𝜕𝜃

𝜕𝑡
 

C. 𝜅
𝜕2𝜃

𝜕𝑡2
=

𝜕2𝜃

𝜕𝑥2
 

D. 𝜅 
𝜕𝜃

𝜕𝑡
=

𝜕𝜃

𝜕𝑥
 

 

7. The green function 𝐺(𝑟, 𝑟′ , 𝑡 − 𝑡′) (𝑡 > 𝑡′) for the diffusion problem is satisfy the equation 

A. 
𝜕𝐺

𝜕𝑡′
= 𝜅∇2𝐺 

B. 
𝜕𝐺

𝜕𝑡′
= −𝜅∇2𝐺 

C. 
𝜕2𝐺

𝜕𝑡2 = 𝜅∇2𝐺 

D. 
𝜕2𝐺

𝜕𝑡2 = −𝜅∇2𝐺 

8. The initial/bounday value problem  must have  

A. There exists at most one solution 

B. There exists more than one solution 

C. There exists no solution 

D. There exists infinite many solution 
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9. If two temperature distributions on U agree at some time T > 0, and had the same 

boundary values for times 0 ≤ 𝑡 ≤ 𝑇, then  

A. these temperature must be identically equal with in U at all earlier times. 

B. these temperature must be identically equal with in U at all later times. 

C. these temperature must not be identically equal with in U at all earlier times. 

D. these temperature must not be identically equal with in U at all later times 

 

10. Which kind of boundary value problems holds backward uniqueness? 

A. Heat Equation 

B. Wave equation 

C. Laplace equation 

D. None of these 

 

11. Which method helps to prove the uniqueness of solution of boundary value problem of 

heat equation? 

A. Green function method 

B. Energy method 

C. Elementary method 

D. Fundamental method 

 

12. Which kind of solution is not possible for heat equation? 

A. Particular unique solution 

B. Fundamental solution 

C. Elementary solution 

D. Radial vector solution 

 

13. For the heat equation , the solution 𝑢 having the special structure in term of function 

𝑣: 𝑅𝑛 → 𝑅.where 𝛼, 𝛽 are constants 

A. 𝑢(𝑥, 𝑡) =
1

𝑡𝛼
𝑣 (

𝑥

𝑡𝛽
) (𝑥 ∈ 𝑅𝑛 , 𝑡 > 0) 

B. 𝑢(𝑥, 𝑡) =
𝛼

𝑡𝛽
𝑣 (

𝑥

𝑡𝛽
) (𝑥 ∈ 𝑅𝑛 , 𝑡 > 0) 

C. 𝑢(𝑥, 𝑡) =
𝛼

𝑡𝛼
𝑣 (

𝑥

𝑡𝛼𝛽
) (𝑥 ∈ 𝑅𝑛 , 𝑡 > 0) 

D. 𝑢(𝑥, 𝑡) =
1

𝑡𝛼𝛽
𝑣 (

𝑥

𝑡𝛽
) (𝑥 ∈ 𝑅𝑛 , 𝑡 > 0) 

 

 

AnswersforSelf Assessment 

l. A 2. A 3. B 4. B 5. B 

6. B 7. B 8. A 9. A 10. A 

11. B 12. D 13. A     

 

Review Questions 

1. Derive the fundamental solution using dilation scaling for heat equation. 
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2. Derive elementary solution for heat equation. 

3. Discuss the uniqueness of solution using energy method. 

4. State and prove the backward uniqueness. 

5. Derive the Green’s function for diffusion problem. 

 

 

Further Readings 

1. Earl A Coddinton and Norman Levinson (2017). Theory of Ordinary Differential 
Equations, Mc Graw  Hill.  

2. P. Hartman (1964), Ordinary Differential equations, Johan Wiley. 

3. Shair Ahmad and Rama Mohan Rao (2014), Theory of Ordinary Differential Equations, 

East West Press Private Limited. 

4. S G Deo, V Lakshmikantham and V Raghvendra (2013), Ordinary Differential Equations, 

McGraw Hill Education (India) Private Limited. 
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