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Objectives
The study of functions of a complex variable is an attempt to extend calculus to the complex space.
We will now look at the functions of a complex variable and build a limit and differentiation theory
for them. The section's major purpose is to introduce analytic functions, which are essential in
complex analysis.

After this unit, you would be able to

• understand the concept of complex functions and their different forms and types
• learn the limit and continuity of a complex-valued function
• explain the differentiability and Analyticity of a complex function
• compute the domain where a complex-valued function is continuous, differentiable, and

analytic

Introduction
We explore functions ( ) of a real variable x in one-variable calculus. Similarly, in complex
analysis, we investigate functions ( ) of a complex variable ∈ . (or in some region of ).

A complex variable is a symbol, such as , that may represent any of a set of complex integers.
Assume that each value of a complex variable corresponds to one or more values of a complex
variable . Then we claim that is a function of and write = ( ). The variable is sometimes
referred to as an independent variable, whereas the variable w is referred to as a dependent
variable.

In this unit of complex variable functions, we shall show how the operations of taking a limit and
using differentiation rules, finding the derivatives, which we are familiar with for functions of a
real variable, extend in a natural way to the complex plane.
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Notes

1.1 Complex Functions

Let the complex variable be defined by = + where and are real variables and is, as usual,

given by = 1.
Now let a second complex variable w be defined by = + where u and v are real variables. If there is

a relationship between w and such that to each value of in a given region of the −plane there is assigned

one, and only one, the value of w then is said to be a function of , defined on the given region.

In this case, we write = ( ).
Example: Consider = − ,

which is defined for all values of (that is, the right-hand side can be computed for every value of ).

Then, remembering that = + ,

= += ( + ) − ( + )= + 2 − − − .
Hence, equating real and imaginary parts: = – – = 2 – .
Question: Compute the value of = – for = + ?

Solution = –= + 2 − − −= 2 + 2 ∗ 2 ∗ 3 − 3 − 2 − 3= −7 + 9

Figure 1: The mapping of z = 2+3i in the w plane by w = z2-z
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Unit 01: Complex Function

Notes

Task: (i) For which values of is = 1/ defined?

(ii) For these values obtain and evaluate when = 2 − .

Solution

(a) ≠ 0.
(b) = + + = 1 = 1+= 1+ . ( − )( − )

= −+= + = − + .= 2 − , ℎ = 2, = −1ℎ + = 5. ℎ = 2/ 5 , = − 1 /5 = 2 /5 − 1 /5 .

1.2 The Exponential Function
Let be the complex variable then using Euler’s relation we are led to define

=

= .
= . ( + )

Task: Find the solutions for of the equation =
= . ( + ) . ( + ) = 0 +. = 0 ⇒ = (2 + 1) /2 ,∀ ∈. = ⇒ . ( ) = 1 ⇒ =0 .= 0 + ( ) .

1.3 Trigonometric Functions
We denote the complex counterparts of the real trigonometric functions cos x and sin x by cos z and

sin z and we define these functions by the relations:= + , and= − .= ( + )/2, and= ( − )/2i
Example:

Prove that + = 1
Solution
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Notes

+ = ( + + 2)/4 − ( + − 2) /4
= 1

1.4 Logarithmic Function
Since the exponential function is one-to-one it possesses an inverse function, which we call ln z.

If w = u + iv is a complex number such that = then the logarithm function is defined through
the statement: w = ln z. To see what this means it will be convenient to express the complex number
z in exponential form as = and so = +== +

Example

(a) (1 + ) = √2 4 = √2 + 4+ 2 = 22 + ( /4 + 2 )
(b) = 1 – ℎ = = . = − .
1.5 The Limit of a Complex Function
The limit of = ( ) → is a number such that | ( ) − | can be made as small as we
wish by making – sufficiently small. With the function f (z) we are allowed to approach the
point = along any path in the z-plane; we require merely that the distance | – | decreases
to zero.

In some cases, the limit is simply f ( ).

Example

Let = – , the limit of this function as → is ( ) = − = −1 − .
Task:

(a) Find the

(b) Find the where = ( − ) is the complex conjugate of z

Solution

(a) = ( − ) + −−= ( + 1)( − )− = 0
(b) = = = = 1,= = −1. Hence limit does not exist.

Notes

+ = ( + + 2)/4 − ( + − 2) /4
= 1
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Unit 01: Complex Function

Notes

1.6 Continuity
Let ( ) be defined and single-valued in a neighborhood of = as well as at = . The
function ( ) is said to be continuous at = if ( ) = ( ).

Note that this  implies  three conditions  that  must  be  met so that ( ) be  continuous  at = :

1. ( ) must  exist

2 ( ) must exist,  i.e., ( ) is  defined  at

3. ( ) = ( )
Equivalently,  if  f (z)  is  continuous  at ,  we  can write  this  in  the  suggestive  form

Example

The function ( ) = is discontinuous at = ±2 as (2 ) and (−2 ) do not exist.

Task: Check the continuity of ( ) = { ≠ 0 = } ?

Solution

Here ( ) = 0 and ( ) = = −1. So ( )is discontinuous at =
Task: Check the continuity of ( ) = ( ) ≠ 2 3 + 4 = 2 ?

Solution

Here (2 ) = 3 + 4 and ( ) =( )( ) = 4 . So ( )is discontinuous at = 2
Task: Check the continuity of ( ) = ?

Solution

Here ( )is not defined as − 3 + 2 = 0 .So ( )is discontinuous at = 2 and = 1. We can alsosay ( ) is continuous for all outside of | | = 2
1.7 Differentiability

The function ( ) is said to be differentiable at = if the limit ( ∆ ) ( )∆ exist.

Here ∆ = ∆ + ∆ . The derivative of ( ) at = is denoted by or by ( )
Singular Point

A point at which the derivative of function ( ) does not exist is called a singular point of the
function.

A. Analytic function
A function ( ) is said to be analytic at a point if it is differentiable throughout a neighborhood
of , however small.

Notes:  (A neighborhood of is the region contained within some circle | − | = .
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Notes

Example: The function ( ) = has the( ) = − ( ) . It is clear that ( ) is not defined at = − , and = . So, the singular
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Notes

( ) = ∆ (∆ + 2 )∆( ) = {∆ + 2 }( ) = 2
Task: Show that the function ( ) = is not analytic anywhere in the complex

plane.

Solution ( ) =( ) = +( ) = −= +∆ = ∆ + ∆( ) = −(∆ ) = ∆ − ∆( + ∆ ) = 0 + ∆ − ( 0 + ∆ )
Now ( ) = ( + ∆ ) − ( )∆( ) = 0 + ∆ − ( 0 + ∆ ) − ( 0 − 0)∆ − ∆( ) = 0 + ∆ − 0 + ∆ − 0 + 0∆ − ∆( ) = ∆ + ∆∆ − ∆( ) = ∆ → ∆ + ∆∆ − ∆ = ∆∆ = 1
And( ) = ∆ → ∆ + ∆∆ − ∆ = − ∆∆ = −1

Here the left- and right-hand side limit does not exist so ( ) = ( ∆ ) ( )∆ does not exist.

Notes:

● If a function is analytic at any given point in the complex plane, then it’s also differentiable
at the given point.

● If a function is differentiable at any given point in the complex plane, then it’s also
continuous at the given point.

● If a function is continuous at any given point in the complex plane, then the limit also
exists at the given point.
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Notes

Summary

 The limit of = ( ) → is a number such that | ( ) − | can be made as small as
we wish by making – sufficiently small.

 Let ( ) be defined and single-valued in a neighborhood of = as well as at = . The
function ( ) is said to be continuous at = if ( ) = ( ).

 The function ( ) is said to be differentiable at = if the limit ( 0+∆ 0)− ( 0)∆ exist.
 A point at which the derivative of function ( ) does not exist is called a singular point of the

function.
 A function ( ) is said to be analytic at a point if it is differentiable throughout a

neighborhood of , however small.
 If a function is analytic at any given point in the complex plane, then it’s also differentiable at

the given point.
 If a function is differentiable at any given point in the complex plane, then it’s also continuous

at the given point.
 If a function is continuous at any given point in the complex plane, then the limit also exists at

the given point.

Keywords
Limit: The limit of = ( ) → is a number such that | ( ) − | can be made as small
as we wish by making – sufficiently small.

Continuity: ( ) be continuous at = :

1. ( ) must  exist

2 ( ) must exist, i.e., ( ) is  defined at

3. ( ) = ( )
Differentiability:The function ( ) is said to be differentiable at = if the limit( 0+∆ 0)− ( 0)∆ exist.

Analytic function: function ( ) is said to be analytic at a point if it is differentiable
throughout a neighborhood of .

Self Assessment

1. What is the value of ?

A. 2

B. 4

C. 1

D. 0

2. What is the value of ?

A. 2

B. 0

C. 1
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Notes

D. I

3. Which one of the following is true?

A. If the limit of any function exists at a point, then the function is also continuous at the same

point

B. If the limit of any function does not exist at a point, then the function is continuous at the

same point

C. If a function is continuous at a point then the limit of function exists at the same point

D. If a function is continuous at a point then the limit of function does not exist at the same

point

4. The function ( ) = is continuous at

A. Everywhere in the complex plane

B. Nowhere in the complex plane

C. In only the positive quadrant of the complex plane

D. In only the negative quadrant of the complex plane

5. The function ( ) = / is continuous at z=0

A. True

B. False

6. Which one of the following is true for the real part(x) value to solve = 1 ?

A. x=1

B. x=2

C. x=0

D. x=3

7. Which one of the following is true for the imaginary part(y) value to solve = 1 ?

A. y=1

B. y= ,
C. y= ,
D. y=3
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Notes

8. The points where ( ) = 1/( − 5) is not defined?

A. z=1

B. z=2

C. z=5

D. z=3

9. Which one of the following is true for the real part(x) value to solve = ?

A. x=1

B. x=2

C. x=0

D. x=3

10. Which one of the following is true for the imaginary part(y) value to solve = ?

A. y=1

B. y=( ) ,
C. y=( ) ,
D. y=3

11. Which of the following is true about ( ) = ?

A. Continuous and differentiable

B. Continuous but not differentiable

C. Neither continuous nor differentiable

D. Differentiable but not continuous?

12. Which of the following is true about ( ) = + ?

A. Continuous and differentiable

B. Continuous but not differentiable

C. Neither continuous nor differentiable

D. Differentiable but not continuous

13. Which of the following is true about ( ) = ?

A. Continuous and differentiable

B. Continuous but not differentiable

C. Neither continuous nor differentiable

D. Differentiable but not continuous

14. Which of the following is one of the singular points ( ) = ?

A. 3

Lovely Professional University10
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Unit 01: Complex Function

Notes

B. 4

C. 2

D. 1

15. Which of the following is one of the singular points ( ) = ?

A. 3

B. 4

C. 2i

D. 1

Answers for Self Assessment

1. B 2. B 3. C 4. A 5. A

6. C 7. C 8. C 9. C 10. C

11. A 12. A 13. C 14. C 15. C

Review Questions
1. Evaluate the − 5 + 10
2. Evaluate the

3. Evaluate the

4. Let = ( ) = (2 − ). Find the values of corresponding to = .

5. Let = ( ) = /(2 − ). Find the values of corresponding to = 2 .

6. Check the continuity of ( ) = −
7. Suppose ( ) ( ) is continuous at = .  Prove that 3 ( ) − 4 ( ) is also continuous
at =
8. Check the continuity of ( ) =
9. Check the continuity of ( ) =
10. Using the definition, find the derivative of function ( ) = 3 at the = 2
11. Using the definition, find the derivative of function ( ) = at the =
12. Using the definition, find the derivative of function ( ) = 1/ at the =
13. Find the points where the is not analytic?

14. Find the points where the is not analytic?

15. Check whether the function ( ) = (2 − ) is analytic everywhere?

Lovely Professional University 11



Notes

Further Readings
1. Complex Variables and Applications by Churchill, R. V., And Brown, J. W.,

McGraw Hill Education.

2. Foundations Of Complex Analysis by S. Ponnusamy, Narosa Publishing House.

3. Complex Analysis by Lars V. Ahlfors, Mcgraw Hill Education.

4. Complex Variables Theory and Applications by H. S. Kasana, Prentice-Hall.

Notes

Further Readings
1. Complex Variables and Applications by Churchill, R. V., And Brown, J. W.,

McGraw Hill Education.

2. Foundations Of Complex Analysis by S. Ponnusamy, Narosa Publishing House.

3. Complex Analysis by Lars V. Ahlfors, Mcgraw Hill Education.

4. Complex Variables Theory and Applications by H. S. Kasana, Prentice-Hall.

Notes

Further Readings
1. Complex Variables and Applications by Churchill, R. V., And Brown, J. W.,

McGraw Hill Education.

2. Foundations Of Complex Analysis by S. Ponnusamy, Narosa Publishing House.

3. Complex Analysis by Lars V. Ahlfors, Mcgraw Hill Education.

4. Complex Variables Theory and Applications by H. S. Kasana, Prentice-Hall.

Lovely Professional University12

Complex Analysis-I



Unit 02: Cauchy-Riemann Equations

Notes

Unit 02: Cauchy-Riemann Equations

CONTENTS

Objectives

Introduction

2.1 The Cauchy-Riemann Equations

2.2 The Necessary Condition for Analyticity of Complex Functions

2.3 Sufficient Condition for Analyticity of Complex Function

2.4 Polar Form Cauchy- Riemann Equations.

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives
The study of functions of a complex variable is an attempt to extend calculus to the complex space.
We will now look at the functions of a complex variable and build a limit and differentiation theory
for them. The section's major purpose is to introduce analytic functions, which are essential in
complex analysis.

After this unit, you would be able to

• understand the concept of the Cauchy-Riemann equation and their different forms
• learn the necessary conditions for a complex-valued function to be analytic at a point
• explain the sufficient conditions for a complex-valued function to be analytic at a point
• derive the Polar form of the Cauchy-Riemann equation

Introduction
When considering real-valued functions ( , ) ∶ → of two variables, there is no notion of
‘the’ derivative of a function. For such functions, we instead only have partial derivatives( , ) ( , ) (and also directional derivatives) which depend on how we approach a point( , ) ∈ .

For a complex-valued function ( ) = ( , ): → , we now have a new concept of derivative,( ), which by definition cannot depend on how we approach a point ( , ) ∈ . It is logical, then,
that there should be a relationship between the complex derivative ( )and the partial derivatives( ) ( ) (defined exactly as in the real-valued case). The relationship between the complex
derivative and partial derivatives is very strong and is a powerful computational tool. It is
described by the Cauchy–Riemann Equations, named after Augustin Louis Cauchy (1789–1857) and
Georg Friedrich Bernhard Riemann (1826–1866). In this unit of complex variable functions, we shall
understand the concept of the Cauchy-Riemann equation and their different forms and learn the
necessary and sufficient conditions for a complex-valued function to be analytic at a point and then
extend in a natural way to derive the Polar form of the Cauchy-Riemann equation.
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Complex Analysis-I

Notes

2.1 The Cauchy-Riemann Equations

Let the = + = ( , ) + ( , ).A function = ( ) be defined and continuous in

some neighborhood of a point = + and differentiable at z itself. Then at this point, the first-

order partial derivative of ( , ) ( , ) exist and satisfy Cauchy-Riemann equations. These

state that w= f(z) is differentiable at a point = if, and only if,

= and = −
Proof:

If ( ) is differential at then according to the definition of differentiability( ) = ∆ → ( ∆ ) ( )∆ exists and unique along every path along which ∆ → 0
′( ) = ∆ → ∆ → { ( + ∆ , + ∆ ) + ( + ∆ , + ∆ )} − { ( , ) + ( , )}∆ + ∆

Along the path ∆ = 0.
′( ) = ∆ → { ( , + ∆ ) + ( , + ∆ )} − { ( , ) + ( , )}0 + ∆
′( ) = ∆ → { ( , + ∆ ) − ( , )} + { ( , + ∆ ) − ( , )}∆
( ) = ∆ → { ( , + ∆ ) − ( , )}∆ + ∆ → { ( , + ∆ ) − ( , )}∆

′( = +
( ) = − +

Along the path ∆ = 0.
′( ) = ∆ → { ( + ∆ , ) + ( + ∆ , )} − { ( , ) + ( , )}∆ + 0
′( ) = ∆ → { ( + ∆ , ) − ( , )} + { ( + ∆ , ) − ( , )}∆
( ) = ∆ → { ( + ∆ , ) − ( , )}∆ + ∆ → { ( + ∆ , ) − ( , )}∆

′( = +
Since ( ) is differential, the two limits in equation (2.7) and (2.11) are equal:

+ = − +
Equate real and imaginary part
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Unit 02: Cauchy-Riemann Equations

Notes

= , = − which is the Cauchy-Riemann(C-R) equation.

2.2 The Necessary Condition for Analyticity of Complex Functions
A necessary condition that = ( ) = ( , ) + ( , ) be analytic or differentiable in a region

is that, in , satisfy the Cauchy- Riemann equations i.e.: = , = −
● The C-R equations are necessary conditions for a function to be differentiable or analytic at a

point. Thus, a function not satisfying C-R equations at a point will neither be differentiable
nor analytic at that point.

● These conditions are not sufficient. Thus, there exist functions that satisfy C-R equations at a
point but are not differentiable at that point.

2.3 Sufficient Condition for Analyticity of Complex Function
The sufficient condition that = ( ) = ( , ) + ( , ) be analytic at a point z is

1. , , , , , are a continuous function of x and y in a certain neighborhood of z.

2. The C-R equations = , = − are satisfied in the neighborhood of z.

Example 1:

Show that = is analytic in the entire complex plane

Solution === . = ( + )= + . Here === = , and= − = sin

Here The C-R equations are satisfied in the neighborhood of z.

Also , , , , , being polynomial is a continuous function of x and hence = is
analytic in the entire complex plane.

Task: Show that the simple function ( ) = = − is not analytic anywhere in the
complex plane.

Solution

Here ( ) = − and= , = −
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Complex Analysis-I

Notes

= 1, and = 0= 0 and = −1≠ , ≠ −
The C-R equations = , = − are not satisfied so function ( ) is not analytic anywhere in
the complex plane.

Task: Show that = − is analytic in the entire complex plane

Solution= ( + ) - ( + )= − +2 − −= − − +(2 − )
Here = − − , and =(2 − )
= = 2 and = − = −2

Here The C-R equations are satisfied in the neighborhood of z.

Also , , , , , being polynomial is a continuous function of x and hence = − is
analytic in the entire complex plane.

Task: Check whether = 1/ is analytic in the entire complex plane

Solution:

= = ×
= + − +

Here = and = −
= ( ) ×( )

= ( ) ×( )
= ×( )
= ×( ), , , , , are not defined at = 0. So is not analytic at = 0.

2.4 Polar Form Cauchy- Riemann Equations.
The polar form of the Cauchy-Riemann equations is-
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Notes
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Unit 02: Cauchy-Riemann Equations

Notes

= , = −
Proof:

Let ( ) = ( + ) = ( , ) + ( , ).= , == + , = ( / )
The Cauchy- Riemann equations.

Remembering that = + = + = ( ) .
This is provided by the Cauchy –Riemann equations

These state that = ( ) = , ,
= and = − at that point.

Polar Form of Cauchy- Riemann Equations.

= +
= +

As = + , =
= ( + ) × 2 =( )= =cos

= ( + ) . 2 =( )= =sin

= × [ ]= = - sin

= × = = cos

= + = × + ( )
= + = × + ( )
= + = × + ( )
= + = × + ( )

As =
× + −1 = × + (1 )

⟹( − ) -( + ) . = 0
Lovely Professional University 17
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Notes

As = − so

× + 1 = − × + −1
⟹ ( − ) +( + ) . = 0
After adding (2.26) and (2.27) we get

= 1
After adding (2.26) from (2.27) we get

= −1
Task: Using the polar form of the C-R equations show that + + = 0

Proof

The polar form of the Cauchy-Riemann equations is-

= 1
= −1

Now differentiate both sides of equation (2.30) partially concerning r and both sides of equation
(2.31) partially concerning

= −1 + 1
= −1

Now multiply equation (2.33) by 1/r and add (2.32)

= −1 + 1
Using C-R equation (2.31)

+ 1 + 1 = 0
Summary
● Let the = + = ( , ) + ( , ).A function = ( ) be defined and

continuous in some neighborhood of a point = + and differentiable at z itself. Then
at this point, the first-order partial derivative of ( , ) ( , ) exist and satisfy

Cauchy-Riemann equations. = and = −
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Unit 02: Cauchy-Riemann Equations

Notes

● A necessary condition that = ( ) = ( , ) + ( , ) be analytic or differentiable in
a region is that, in , satisfy the Cauchy- Riemann

● The C-R equations are necessary conditions for a function to be differentiable or analytic at
a point. Thus, a function not satisfying C-R equations at a point will neither be differential
nor analytic at that point.

● These conditions are not sufficient. Thus, there exist functions that satisfy C-R equations at
a point but are not differential at that point.

● The sufficient condition that = ( ) = ( , ) + ( , ) be analytic at a point z is

a. , , , , , are a continuous function of x and y in a certain

neighborhood

of z.

b. The C-R equations = , = − are satisfied in the neighborhood of z.

● The polar form of the Cauchy-Riemann equations is-= , = −
Keywords
Cauchy-Riemann equations: Let the = + = ( , ) + ( , ). then= and = −
The polar form of the Cauchy-Riemann equations -= , = −
Self Assessment

1. Let = . and ( ) = + = √ then =?
A. − √ ( /2)
B. √ ( /2)
C. √ ( /2)
D. √ ( /2)
2. Let = . and ( ) = + = √ then =?
A. − √ ( /2)
B. √ ( /2)
C. √ ( /2)
D. √ ( /2)
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Notes

3. Let = . and ( ) = + = √ then =?
A. − √ ( /2)
B. √ ( /2)
C. √ ( /2)
D. √ ( /2)
4. Let = . and ( ) = + = √ then =?
A. − √ ( /2)
B. √ ( /2)
C. √ ( /2)
D. √ ( /2)
5. Let = . and ( ) = + then =?
A.

B. √
C.

D.

6. Let = + and ( ) = + = then =?
A. .
B. .
C. − .
D. − .
7. Let = + and ( ) = + = then =?
A. .
B. .
C. − .
D. − .
8. The function ( + ) = + + ( − ) is …

A. analytic everywhere in the complex plane

B. analytic on the real axis

C. only analytic on the line =
D. differentiable on the line y = x and nowhere else. So, it is nowhere analytic.
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Unit 02: Cauchy-Riemann Equations

Notes

9. Let = + and ( ) = + = then =?
A. 1

B. 0

C. −1
D. 2
10. Let = + and ( ) = + = then =?
A. 1

B. 0

C. −1
D. −2
11. The function ( + ) = − + (2 ) is …

A. Analytic everywhere in the complex plane

B. Not analytic anywhere in the complex plane

C. Only analytic on the line =
D. Only analytic on the real axis

12. Let ( + ) = + then

A. The Cauchy Remain equations for ( + ) are satisfied = 0, = 0.
B. The ( + ) is analytic.

C. The ( + ) is differentiable everywhere.

D. Only analytic on the real axis

13. Let ( + ) = − 2 + ( − ) is analytic then the value of is…

A. -1

B. 2 , is any real number

C. , is any real number

D. 1 + 2
14. Let ( + ) = − 2 + ( − ) is analytic then the value of is…

A. -1

B. 2 , is any real number

C. , is any real number

D. 1 + 2
15. Let ( + ) = − 2 + ( − ) is analytic then the value of is…

A. -1
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Notes

B. 2 , is any real number

C. , is any real number

D. 1 + 2
Answers for Self Assessment

1. B 2. A 3. C 4. D 5. C

6. A 7. B 8. D 9. A 10. B

11. A 12. A 13. A 14. B 15. C

Review Questions
1. Check whether the Cauchy-Remain equation is satisfied for ( ) = 5 + 10
2. Check whether the Cauchy-Remain equation is satisfied for ( ) =
3. Find the polar form ( , )of ( ) = + 5
4. Let = ( ) = (2 − ). Find the values of where ( ) is not analytic?
5. Let = ( ) = /(2 − ). Find the values of where ( ) is not analytic?
6. Does every function which satisfies the C-R equation is analytic?

7. Show that ( ) = is analytic in the entire complex plane?

8. Show that ( ) = is analytic in the entire complex plane?

9. Show that ( ) = . is analytic in the entire complex plane?

10. Check whether ( ) = is analytic everywhere?

11. Check whether ( ) = | | is analytic everywhere?

12. Check whether ( ) = 1/ is analytic at the =
13. Find the points where the is not analytic?

14. Verify the Cauchy-Remain equation for ( ) = ?

15. Verify the Cauchy-Remain equation for ( ) = (2 − )?
Further Readings
1. Complex Variables and Applications by Churchill, R. V., And Brown, J. W.,

McGraw Hill Education.

2. Foundations Of Complex Analysis by S. Ponnusamy, Narosa Publishing House.

3. Complex Analysis by Lars V. Ahlfors, Mcgraw Hill Education.

4. Complex Variables Theory and Applications by H. S. Kasana, Prentice-Hall.
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Objectives
Harmonic functions arise often and serve an important role in mathematics, physics, and
engineering and they are governed by their singularities and boundary conditions (such as
Dirichlet boundary conditions or Neumann boundary conditions). In areas with no boundary,
adding the real or imaginary portion of any whole function generates a harmonic function with the
same singularity. The purpose for this section is to have complete understanding of the role of
harmonic function in complex domains.

After this unit, you would be able to

• describes the harmonic function of two variables in the provided domain.

• check whether a particular component of a complex function is harmonic in the given domain.

• compute the harmonic conjugate of a particular component of a complex function

Introduction
In this section, we will study the definition, several essential features, of a harmonic function and
how they are related to complex analysis. We will learn the fundamental relationship for the
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It is easy to verify that the function ( , ) = is harmonic in any domain of the plane
and, in particular, in the semi-infinite vertical strip(shown in Figure 1) 0 < < , > 0.

Figure 1: The geometry of plate for temperature distribution.

Here- == − . = −
= .

And + = 0
So we can say that T is harmonic and the following graph shows the temperature distribution in x
and y direction.

Figure 2: The temperature distribution in x and y direction.
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Theorem 1. If a function ( ) = ( , ) + ( , ) is analytic in a domain , then its component
functions are harmonic in .

Proof:

To prove this, we need a result that is , if a function of a complex variable is analytic at a point, then
its real and imaginary components have continuous partial derivatives of all orders at that point.

Let the = + = ( , ) + ( , ).A function = ( ) be defined and continuous in

some neighborhood of a point = + and differentiable at z itself.Assuming that ( ) is

analytic in D. Then at this point, the first-order partial derivative of ( , ) ( , ) exist. and

satisfy Cauchy-Riemann equations. These state that w= f(z) is differentiable at a point = if, and

only if,

=
= −

Differentiating both sides of equation (3.2) with respect to x andequation (3.3) with respect to y, we
have

=
= −

As is continuous so = .Now add the equations (3.4) and (3.5).

+ = 0
Similarly

Differentiating both sides of equation (3.2) with respect to y andequation (3.3) with respect to x, we
have

=
= −

As is continuous so = .Now subtract the equations (3.8) from (3.7).

+ = 0
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Task: Show that the component of = − are harmonic in the entire complex plane

Solution= ( + ) - ( + )= − +2 − −= − − +(2 − )
Here = − − , and =(2 − )
= = 2 and = − = −2

Here The C-R equations are satisfied in the neighborhood of z.

Also , , , , , being polynomial is a continuous function of x and hence = − is
analytic in the entire complex plane.

Now

= 2 and = −2.
So + = 0 (Proved)

Similarly

= 0 and = 0.
So + = 0 (Proved)

Task: Show that the component of = − − is harmonic.

Solution

Here = − −
= 2 and = −2 − 1

Now

= 2 and = −2.
So + = 0 (Proved)

3.2 Harmonic Conjugate
If two given functions are harmonic in a domain D and their first-order partial derivatives
satisfy the Cauchy–Riemann equations ( = and = − ) throughout D, then is said to be
a harmonic conjugate of .
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Notes: A function ( ) = ( , ) + ( , ) is analytic in a domain if and only if is a
harmonic conjugate of .

3.3 Method to find the Harmonic Conjugate of a Function

To find the harmonic conjugate of a funcion ( , ), assuming that ( ) = ( , ) + ( , )is
analytic in D. Then at this domain the first-order partial derivative of ( , ) ( , ) exist. and

satisfy Cauchy-Riemann equations.

=
= −

Holding x fixed and integrating each side of equation (3.10 )here with respect to y,+ ( ) = ( , )
Where ( , ) is the harmonic conjugate of ( , ) and ( ) is, at present, an arbitrary function of x.

Now partially differentiate each side of equation (3.12 ) with respect to x and partially differentiate
the ( , ) with respect to y and then using the equation (3.11 ) find the ( ). Put the ( ) in the
equation (3.12) and the ( , ).

Example:Show that ( , ) = − 3 is harmonic and then find the harmonic conjugate
of ( , )?
Solution

Given that ( , ) = − 3
Here = −6 , and= 6y.

+ = 0
So ( , ) = − 3 is harmonic.

Now Harmonic Conjugates of ( , )
As we know that A function ( ) = ( , ) + ( , ) is analytic in a domain if and only if is a
harmonic conjugate of .

Let ( , ) is the harmonic conjugate of ( , ) now using the above results we can say that ( ) is
analytic.

If ( ) is analytic then ( , ), ( , )must satisfy the C-R equations= = −
As ( , ) = − 3 .Then = 3 − 3 = −

= −6 =
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Holding x fixed and integrating each side of = −6 with respect to y,

(−6 ) + ( ) = ( , )
So ( , ) = −3 + ( )
Now differentiate the obtained ( , ) = −3 ( ) with respect to x, we have= −3 + ( )
Now put the expression = −3 + ( ) in the other form of C-R equation= 3 − 3 = − = − −3 + ( )
Hence( ) = 3 , and ( ) = 3 +( ) = + , here is the arbitrary constant.

Now put the value of ( ) in the ( , ) = −3 + ( )( , ) = −3 + +
Let = 0,then ( , ) = −3 + + is the harmonic conjugate of ( , ) = − 3 .

Task: Let ( , ) = 2 (1 − )is harmonic and then find the harmonic conjugate ( , ) of( , ) and show that ( , ) is harmonic?

Solution

Given that ( , ) = 2 − 2
Now Harmonic Conjugates of ( , )
As we know that A function ( ) = ( , ) + ( , ) is analytic in a domain if and only if is a
harmonic conjugate of .

Let ( , ) is the harmonic conjugate of ( , ) now using the above results we can say that ( ) is
analytic.

If ( ) is analytic then ( , ), ( , )must satisfy the C-R equations= = −
As ( , ) = 2 − 2 .Then = −2 = −

= 2 − 2 =
Holding x fixed and integrating each side of = 2 − 2 with respect to y,

(2 − 2 ) + ( ) = ( , )
So ( , ) = 2 − + ( )
Now differentiate the obtained ( , ) = −3 ( ) with respect to x, we have= 0 + ( )
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Now put the expression = 0 + ( ) in the other form of C-R equation= −2 = − = − 0+ ( )
Hence( ) = 2 , and ( ) = 2 +( ) = + , here is the arbitry constant.

Now put the value of ( ) in the ( , ) = 2 − + ( )( , ) = 2 − + +
Let = 0,then ( , ) = 2 − + is the harmonic conjugate of ( , ) = 2 (1 − ).
Now= 2, and= −2.

+ = 0
So ( , ) = 2 − + is harmonic.

Summary

 A real-valued function ( , )of two real variables is said to be harmonic in a given
domain of the plane if, throughout that domain, it has continuous partial derivatives of the
first and second order and satisfies the partial differential equation( , ) + ( , ) = 0

 If a function ( ) = ( , ) + ( , ) is analytic in a domain , then its component
functions are harmonic in .

 A function ( ) = ( , ) + ( , ) is analytic in a domain if and only if is a harmonic
conjugate of .

 If two given functions are harmonic in a domain D and their first-order partial

derivatives satisfy the Cauchy–Riemann equations ( = and = − ) throughout D,

 then is said to be a harmonic conjugate of .

Keywords
Harmonic: A real-valued function ( , )of two real variables is said to be harmonic in a
given domain of the plane if, throughout that domain, it has continuous partial derivatives of
the first and second order and satisfies the partial differential equation( , ) + ( , ) = 0
Harmonic conjugate: harmonic conjugate of If two given functions are harmonic in a

domain D and their first-order partial derivatives satisfy the Cauchy–Riemann equations ( =
and = − ) throughout D, then is said to be a harmonic conjugate of .
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Self Assessment

1. A real function ( , ) is called harmonic function in domain D if it satisfies…

A. + = 0
B. = 0
C. = 0
D. = 0
2. If ( , ) = ( , ) + ( , ) is analytic in some domain D, then …

A. Only ( , ) is harmonic in D

B. Only ( , ) is harmonic in D

C. Both ( , ) and ( , ) is harmonic in D

D. Neither ( , ) nor ( , ) is harmonic in D

3. If ( , ) = ( , ) + ( , ) is analytic in some domain D, and ( , ) = − then the

relation between , is …

A. =
B. ≠
C. + = 0
D. = 2
4. If ( , ) = ( , ) + ( , ) is analytic in some domain D, and ( , ) = + −

then what is the value of such that ( , )is harmonic?

A. 5

B. 6

C. 7

D. 8

5. If ( , ) = ( , ) + ( , ) is analytic in some domain D, and ( , ) = then what

is the value of such that ( , )is harmonic?

A. ±1
B. 0
C. 2

D. 3

6. If ( , ) = ( , ) + ( , ) is analytic in some domain D, and ( , ) = then what

is the value of such that ( , )is harmonic?

A. ±1
B. 0
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C. 2

D. 3

7. If − = ( , ) + ( , ) is analytic in some domain D, and ( , ) = − + is

harmonic?

A. True

B. False

8. If − = ( , ) + ( , ) is analytic in some domain D, and ( , ) = 2 + is

harmonic?

A. True

B. False

9. If − = ( , ) + ( , ) is analytic in some domain D, and ( , ) = − + is

harmonic?

A. True

B. False

10. If − = ( , ) + ( , ) is analytic in some domain D, and ( , ) = 2 + is

harmonic?

A. True

B. False

11. If = − − is harmonic and ( ) = + is analytic in entire complex plane then the

harmonic conjugate of is?

A. (2 + 1) +C

B. +C

C. (2 − 1) +C

D. − +C

12. If = is harmonic and ( ) = + is analytic in entire complex plane then the

harmonic conjugate of is?

A. ( − ) +
B. − +
C. +
D. +
13. If = 5 + 2 is harmonic and ( ) = + is analytic in entire complex plane then the

harmonic conjugate of is?

Lovely Professional University 31



Complex Analysis-I

Notes

A. ( − + 5 ) +
B. − +
C. +
D. +
14. If = 2 − 2 + 4 is harmonic and ( ) = + is analytic in entire complex plane

then the harmonic conjugate of is?

A. ( − ) +
B. 4 − 2 + 2 +
C. +
D. +
15. The value of such that 2 − + is harmonic?

A. 1

B. 2

C. 3

D. 4

Answers for Self Assessment

1. A 2. C 3. A 4. B 5. A

6. A 7. A 8. B 9. B 10. A

11. A 12. D 13. A 14. B 15. A

Review Questions
1) Prove that = ( − ) is harmonic.
2) Suppose A is real or, more generally, suppose Im A is harmonic.

Prove that | | = 0
3) Determine whether the functions = − + 2 − 2 + 3 is harmonic
4) Determine whether the functions = 3 + 2 − − 2 is harmonic.
5) Determine whether the functions = 3 + 2 − − 2 is harmonic.
6) Determine whether the functions = 3 + 2 − 2 is harmonic.
7) Let ( , ) = − 3 is harmonic and then find the harmonic conjugate ( , ) of( , )
8) Let ( , ) = − 3 is harmonic and then find the harmonic conjugate ( , ) of( , )
9) Let ( , ) = 2 − + 3 is harmonic and then find the harmonic conjugate ( , ) of( , )
10) Let ( , ) = is harmonic and then find the harmonic conjugate ( , ) of ( , )
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Objectives
Integrals of complex-valued functions of a complex variable are defined on curves in the
complex plane, rather than on just intervals of the real line. Classes of curves that are
adequate for the study of such integrals are introduced in this section.

After this unit, you would be able to

• describe different types of curves in the complex plane.

• calculated the length of the curve in the given interval.

• evaluate the line integration of various complex functions in the given domain.

Introduction
To understand the different notions of the curves in the complex plane we need to know
the parametric representation of curves. Suppose the continuous real-valued functions= ∅( ) and = ( ) are real functions of the real variable t assumed continuous in≤ ≤ . Then the parametric equation = + is defined as( ) = ( ) + ( ), ≤ ≤ .( )define a continuous curve or arc C in the z plane joining points = ( ) and= ( ). See the following Figure 1:
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Figure 1: a continuous curve in the z plane

Here ( ) be a complex-valued function of a real variable t called a parametrization of C.

The point ( ) = ( ) + ( ) or = ( ( ), ( )) is called the initial point of C and( ) = ( ) + ( ) or = ( ( ), ( )) is its terminal point.

The expression ( ) = ( ) + ( ) could also be interpreted as a two-dimensional vector
function. Consequently, z(a) and z(b) can be interpreted as position vectors.

As t varies from t=a to t=b we can envision the curve C being traced out by the moving
arrowhead of z(t).

4.1 Smooth Curve
Let ( ) = ( ) + ( ), ≤ ≤ be the parametric representation of any curve C.

Suppose the derivative of ( )is ′( ) = ′( ) + ′( ). We say a curve C in the complex
plane is smooth if z′(t) is continuous and never zero in the interval ≤ ≤ .

As shown in the following Figure 2(a), since the vector z′(t) is not zero at any point P on
C, the vector z′(t) is tangent to C at P. Thus, a smooth curve has a continuously turning
tangent; or in other words, a smooth curve can have no sharp corners or cusps. Figure
2(b) is an example of a not smooth curve.

Figure 2: Example of a smooth and not a smooth curve
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4.2 Piecewise-Smooth Curve
A piecewise smooth curve C has a continuously turning tangent, except possibly at the
points where the component smooth curves , , … , are joined together.

Figure 3: Piecewise-smooth curve

4.3 Simple Curve
A curve C in the complex plane is said to be simple if ( ) ≠ ( ) for ≠ , except
possibly for = and = . Figure 4 depicts the simple curve in the complex plane and
Figure 5 is an example of the non-simple curve.

Figure 4: Simple curve
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Figure 5: A non-simple curve

4.4 Simple Closed Curve
A curve C in the complex plane is said to be simpleclosed if ( ) ≠ ( ) for ≠ ,( ) = ( ). Here a and b are initial and ending points of the path.

Figure 6: Simple closed curve
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Figure 7: non-simple closed curve

4.5 Contour
In complex analysis, a piecewise smooth curve C is called a contour or path. We define the positive
direction on a contour C to be the direction on the curve corresponding to increasing values of the
parameter t.

It is also said that the curve C has positive orientation. In the case of a simple closed contour C,
the positive direction corresponds to the counterclockwise direction.

For example, the circle ( ) = , ≤ ≤ , has positive orientation. Figure 8 shows the positive
orientation of the curve.

The negative direction on a contour C is the direction opposite the positive direction. If C has an
orientation, the opposite curve, that is, a curve with opposite orientation, is denoted by −C.

On a simple closed curve, the negative direction corresponds to the clockwise direction.

For instance, the circle ( ) = , ≤ ≤ , has negative orientation. Figure 9 shows the
negative orientation of the curve.

Figure 8: Positive orientation of the contour
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Figure 9: Negative orientation of the contour

4.6 Length of Arch/Curve
Let ( ) = ( ) + ( ), ≤ ≤ be the parametric representation of any curve C.

Suppose the derivative of ( )is ′( ) = ′( ) + ′( ) then the arc is called a differentiable

arc, and the real-valued function| ′( )| = ( ) + ( ) is integrable over the
interval ≤ ≤ . In fact, according to the definition of arc length in calculus, the
length of C is the number= | ′( )| = ( ) + ( )
length of the curve C.

Example
Consider the curve defined by : [0,2 ] → where ( ) = (cos + ). Then the length of the
curve is calculated as:

( ) = (cos + )( ) = (− + )| ′( )| = (sin + cos ) = 2
= | ′( )| == [ ] = 2

Task: Find the length of the curve Cwhose parametric representation is given by( ) = , ( ) = as 0 ≤ ≤ 5
Solution: ( ) = + 3
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( ) = 3 + 3 3| ′( )| = 9 + = √10 2
= √10 2

= √10 3 = 1253 √10
4.7 Complex line Integral
Let ( ) be continuous at all points of a curve , which we shall assume has a finite length shown in
the Figure 10.

Figure 10: A continuous curve with finite length.

Subdivide into parts by means of points , , . . . , , chosen arbitrarily, and call = , =
.

Figure 11:Curve C is divided into n small arc.

On each arc joining [where k goes from 1 to n], choose a point . Form the sum= ( ). ( − ) + ( ). ( − ) + ⋯ ,+ ( ). ( − )
= ( ). ( − ) = ( ). ∆

Let the number of subdivisions n increase in such a way that the largest of the chord lengths|∆ | → 0. Then, since ( ) is continuous, the sum approaches a limit that does not depend on
the mode of subdivision, and we denote this limit by

→ ∞, |∆ | → 0 , ( ). ∆ = ( )
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called the complex line integral or simply line integral of ( ) along curve , or the definite integral
of ( ) from a to b along curve . In such a case, ( ) is said to be integrable along . If ( ) is
analytic at all points of a region and if is a curve lying in , then ( ) is continuous and
therefore integrable along .

Example:

Suppose that ( ) = ( , ) + ( , ).Then∫ ( ) =∫ ( , ) + ( , ) ( + )∫ ( ) =∫ ( , ) − ( , ) + ∫ ( , ) + ( , )
Task: Obtain the complex integral: ∫ where is the straight-line path from = 1 += 3 + .

Solution

Consider the following diagram for the straight-line path from = 1 + = 3 + .

Figure 12: the straight-line path from z = 1 + i to z = 3 + i.∫ = ( + )( + )
Here, since y is constant ( = 1) along the given path then = + , implying that == 1.Also, as y is constant, = 0.∫ = ( + 1 )
∫ = + =4 + 2i

Task: Obtain the complex integral: ∫ where is the straight-line path from = 3 += 3 + 3 .
Solution

Consider the following diagram for the straight-line path from = 3 + = 3 + 3 .
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Figure 13: the straight-line path from z = 3 + i to z = 3 +3i.∫ = ( + )( + )
Here, since x is constant ( = 3) along the given path then = 3 + , implying that =3 = .Also, as x is constant, = 0.∫ = (3 + )
∫ = − + 3 = −4 + 6i.

Task: Obtain the complex integral: ∫ 1| | where is the straight-line path from =− = .
Solution

Consider the following diagram for the straight-line path from = − = .

Figure 14: the straight-line path from z = -i to z = i.∫ | | = |( + )|( + )
Here, since is constant ( = 0) along the given path then = 0 + , implying that =0 = .Also, as x is constant, = 0.∫ 1| | = ( )
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∫ 1| | = =0

Summary
This section deals with some basic definitions and operations. These are summarized below:

 Let ( ) = ( ) + ( ), ≤ ≤ be the parametric representation of any
curveSuppose the derivative of ( )is ′( ) = ′( ) + ′( ). We say a curve C in the
complex plane is smooth if z′(t) is continuous and never zero in the interval ≤ ≤

.
 A curve C in the complex plane is said to be simple if ( ) ≠ ( ) for ≠ , except

possibly for = and = .
 A curve C in the complex plane is said to be simple closed if ( ) ≠ ( ) for ≠ ,( ) = ( ). Here a and b are initial and ending points of the path.
 The length of C is the number = ∫ | ′( )| = ∫ ( ) + ( ) .
 Let ( ) is continuous, the sum approaches a limit that does not depend on the mode of

subdivision and we denote this limit by

→ ∞, |∆ | → 0 , ( ). ∆ = ( )
called the complex line integral or simply line integral of ( ) along curve

Keywords
Length of arch/curve

Let ( ) = ( ) + ( ), ≤ ≤ be the parametric representation of any curve C.

Suppose the derivative of ( )is ′( ) = ′( ) + ′( ) then the arc is called a differentiable

arc, and the real-valued function| ′( )| = ( ) + ( ) is integrable over the
interval ≤ ≤ . In fact, according to the definition of arc length in calculus, the
length of C is the number= ∫ | ′( )| = ∫ ( ) + ( ) is length of the curve C.

Line integral:Let ( ) is continuous, the sum approaches a limit that does not depend on the
mode of subdivision and we denote this limit by

→ ∞, |∆ | → 0 , ( ). ∆ = ( )
called the complex line integral or simply line integral of ( ) along curve .
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Self Assessment

1. Consider the following figure for curves and in the complex plane then

A. Only is smooth.

B. Only is smooth.

C. Both and are smooth

D. Neither nor is smooth

2. Consider the following figure for curve and then

A. Only is not simple.

B. Only is not simple.

C. Both and are simple

D. Neither nor is simple

3. The statement “following figure3 represent the piecewise smooth curve’’ is…
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A. True

B. False

4. Which one of the following in Figure 4 is the simple closed curve?

A. Only

B. Both and

C. Neither nor

D. Only

5. A piecewise continuous closed smooth curve is called a contour?

A. False

B. True

6. The length of the arc for ( ) = ( ) + ( ) where ( ) = , ( ) = , ∈ [ , ]
A. 5

B. 10

C. √5
D. √10
7. The length of the arc for ( ) = ( ) + ( ) where ( ) = , ( ) = , ∈ [ , ]
A. 5

B. 10
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C. 1

D. 2

8. The length of the arc for ( ) = ( ) + ( ) where ( ) = , ( ) = , ∈ [ , ]
A. 5

B. 6

C. √37
D. √35
9. The length of the arc for ( ) = ( ) + ( ) where ( ) = , ( ) = , ∈ [ , ]
A. √20
B. 2√10
C. √10
D. 2√35
10. The length of the arc for ( ) = ( ) + ( ) where ( ) = , ( ) = , ∈ [ , ]
A. 1

B. 2√10
C. √10
D. 10
11. Evaluate ∫ − + along the straight line from (0,0) to (1,1)

A.

B.

C.

D.

12. Evaluate ∫ − + over the path along the lines = = .

A.

B. +
C.

D.

13. Evaluate ∫ − + over the path along the lines = = .
A. −
B. +
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C.

D.

14. Evaluate ∫ − + over the path = .

A. +
B. −
C. +
D. + 0
15. Evaluate ∫ − + along the curve C; = = .

A.

B. +
C.

D.

Answers for Self Assessment

1. A 2. A 3. A 4. D 5. B

6. C 7. C 8. C 9. C 10. D

11. A 12. B 13. A 14. B 15. B

Review Questions
1. Obtain the complex integral: ∫ where is the straight-line path from= 1 + = 3 + 3 .?
2. Obtain the complex integral: ∫ where is the straight-line path from= 2 + 2 = 5 + 2 ?

3. Obtain the complex integral: ∫ where is the straight-line path from= 5 + 2 = 5 + 5 ?

4. Obtain the complex integral: ∫ where is the straight-line path from= 2 + 2 = 5 + 5 .?
5. Obtain the complex integral: ∫ | | where is the path from left half of the unit circle from= − = ?

6. Obtain the complex integral: ∫ 1/ where is the unit circle.

7. Obtain the complex integral: ∫ ( + ) where is the path from left half of the unit circle
from = 1 = ?
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8. Obtain the complex integral: ∫ where is the straight-line path from= 1 + = 3 + 3 .?
9. Obtain the complex integral: ∫ where is the straight-line path from= 2 + 2 = 5 + 2 ?

10. Obtain the complex integral: ∫ where is the straight-line path from= 5 + 2 = 5 + 5 ?

Further Readings
1. Complex Variables and Applications by Churchill, R. V., And Brown, J. W.,

McGraw Hill Education.

2. Foundations Of Complex Analysis by S. Ponnusamy, Narosa Publishing House.

3. Complex Analysis by Lars V. Ahlfors, Mcgraw Hill Education.

4. Complex Variables Theory and Applications by H. S. Kasana, Prentice-Hall.
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Objectives
The integration of a function of a complex variable along an open or close curve in the plane of the
complex variables is known as complex integration. Cauchy’s integral theorem is part of
complex integration. The study of complex integration is very useful in engineering physics and
mathematics as well as the concept of center of mass, the center of gravity, mass moment of inertia
of vehicles, etc. It can be used in placing a satellite in its orbit to calculate the velocity and trajectory.
After this section, you will be able to-

 understand the concept of a simple and multi-connected domain.
 Learn the Cauchy-Goursat theorem and apply it in to solve the complex integration

problem.
 Solve the complex integral problem using the Cauchy integral formula.

Introduction
InthisSection,weintroduceCauchy’stheoremwhichallowsustosimplifythecalculationofcertain
contourintegrals.Asecondresult,knownasCauchy’sintegralformula,allowsustoevaluatesome
integrals of theform ∮ ( ) .

Where lies inside the closed curve c.

5.1 Simply and Multiply Connected Regions
A region R is called simply connected if any simple closed curve, which lies in R, can be shrunk to a
point without leaving R. A region R, which is not simply connected, is called multiply connected.

For example, suppose R is the region defined by | | < 2,shown shaded in Figure 1: Simply
connected domain. If G is any simple closed curve lying in R [i.e., whose points are in R], we see
that it can be shrunk to a point that lies in R, and thus does not leave R, so that R is simply-
connected.
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On the other hand, if R is the region defined by 1 < | | < 2 shown shaded in Figure 2, then there is
a simple closed curve G lying in R that cannot possibly be shrunk to a point without leaving R, so
that R is multiply-connected. Intuitively, a simply connected region is one that does not have any
“holes” in it, while a multiply connected region is one that does. The multiply connected regions of
Figure 2 and Figure 3 have, respectively, one and three holes in them.

Figure 1: Simply connected domain.

Figure 2: Multiply connected domain, 1 < | | < 2.

Figure 3: Multiply connected domain
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5.2 Jordan Curve
Any continuous, closed curve that does not intersect itself and may or may not have a finite length,
is called a Jordan curve.

5.3 Jordan Curve Theorem
A Jordan curve divides the plane into two regions having the curve as a common boundary. That
region, which is bounded [i.e., is such that all points of it satisfy | | <M where M is some positive
constant], is called the interior or inside of the curve, while the other region is called the exterior or
outside of the curve. Using the Jordan curve theorem, it can be shown that the region inside a
simple closed curve is a simply-connected region whose boundary is the simple closed curve.

5.4 Cauchy’s Theorem. The Cauchy–Goursat Theorem
Let f(z) be analytic in a region R and on its boundary C. Then∮ ( ) = 0.
This fundamental theorem, often called Cauchy’s integral theorem or simply Cauchy’s theorem, is
valid for both simply- and multiply-connected regions. It was first proved by use of Green’s
theorem with the added restriction that ( ) be continuous in R. However, Goursat gave a proof
which removed this restriction. For this reason, the theorem is sometimes called the Cauchy –
Goursat theorem when one desires to emphasize the removal of this restriction.

Wewillprovethetheoremunderanextrahypothesisthatf′isacontinuous function.

Green’sTheorem: Let Cbe a simple closed curve with positive orientation.LetR
bethedomainthatformstheinteriorofC. IfP andQ are continuousand have continuous partial derivatives
Px,Py,Qxand Qyat all points on Cthen∮ ( ( , ) + ( , ) ) = [ ( , ) − ( , )] .
Proof.Letf(z)= f(x+iy)=u(x,y)+iv(x,y).Then∮ ( , ) + ( , ) ( + ) = ∮ ( ( , ) − ( , ) ) + ∮ ( ( , ) + ( , ) )
=∯ − ( , ) − ( , ) + ∯[ ( , ) − ( , )]
=0.

Example:

Let : | | ≤ 1 then ∮ = 0. Clearly ( ) = is analytic inside the : | | ≤ 1 and ( ) = is

not analytic at z =2, which does not lie inside the C. So then ∮ = 0.
Consider the contour shown in Figure 4 and assume f (z) is analytic everywhere on and inside the
contour C.
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Figure 4: analytic function inside the contour

Then by analogy with real line integrals∫ ( ) + ∫ ( ) = ∮ ( ) = 0
By Cauchy’s theorem, since reversing the direction of integration reverses the sign of the integral.

This implies that we may choose any path between A and B and the integral will have the same
value providing f (z) is analytic in the region concerned.

5.5 Cauchy’s Integral Formula
If f(z) is analytic inside and on the boundary C of a simply-connected region then for any point
inside C. Then ∮ ( )− = 2 ( ).

Example: Evaluate the ∮ , where c is the path | − | = .
Solution

It is clear that the center of the circle is and the radius is ½.The following figure shows the path| − | = .

Figure 5: the path | − | = .
∮ + 1 = ∮ ( + )( − )

( ) = ( ) is analytic inside and on the curve c.Using Cauchy integral formula
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If f(z) is analytic inside and on the boundary C of a simply-connected region then for any point
inside C. Then ∮ ( )− = 2 ( ).

Example: Evaluate the ∮ , where c is the path | − | = .
Solution

It is clear that the center of the circle is and the radius is ½.The following figure shows the path| − | = .

Figure 5: the path | − | = .
∮ + 1 = ∮ ( + )( − )

( ) = ( ) is analytic inside and on the curve c.Using Cauchy integral formula
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Figure 7: the path | | = 2.
∮ + 1 = ∮ ( + )( − )∮ + 1 = ∮ 12( + ) + 12( − )

( ) = is analytic inside and on the curve c execpt the = .Similarly ( ) = is analytic inside
and on the curve c execpt the = − .Using Cauchy integral formula∮ + 1 = 2 [ ( = ) + ( = − )]

∮ + 1 = 2 [12 + 12]∮ + 1 = 2 .
5.6 The Derivative of an Analytic Function
If f(z) is analytic in a simply-connected region then at any interior point of the region, inside C.
Then say, the derivatives of f(z) of any order exist and are themselves analytic (which illustrates
what a powerful property analyticity is!). The derivatives at the point are given by Cauchy’s
integral formula for derivatives:∮ ( )( ) = 2 ( )! .

where C is any simple closed curve, in the region, which encloses . Note the case = 1:∮ ( )( ) = 2 ( )! .

Example

Evaluate the ∮ ( ) , where c is the path | | = 2.
Solution

Let ( ) = and it is analytic within and on the circle C we use Cauchy’s integral formula for
derivatives to show that∮ ( ) = 2 ( )! .∮ ( ) = 2 [ ]! .
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∮ ( ) = 2 !.∮ ( ) = 6 .

Summary
This section deals with some basic definitions and operations. These are summarized below:

 A region R is called simply-connected if any simple closed curve, which lies in R, can be
shrunk to a point without leaving R. A region R, which is not simply-connected, is called
multiply connected.

 Let f(z) be analytic in a region R and on its boundary C. Then∮ ( ) = 0.
 If f(z) is analytic inside and on the boundary C of a simply-connected region then for any point

inside C. Then ∮ ( )− = 2 ( ).
 If f(z) is analytic in a simply-connected region then at any interior point of the region, inside

C. Then say, the derivatives of f(z) of any order exist and are themselves analytic (which
illustrates what a powerful property analyticity is!). The derivatives at the point are given
by Cauchy’s integral formula for derivatives:∮ ( )( ) = 2 ( )! .

Keywords
Simply connected domain:

A region R is called simply-connected if any simple closed curve, which lies in R, can be shrunk to a
point without leaving R.

Cauchy’s Integral Formula:

If f(z) is analytic inside and on the boundary C of a simply-connected region then for any point
inside C. Then ∮ ( )− = 2 ( ).
Self Assessment

1. Which one of the following region is simply connected?
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A. Only D1

B. Only D2

C. Both  D1 and D2

D. Neither D1 nor D2

2. Which one of the following region is not simply connected?

A. Only D1

B. Only D2

C. Both D1 and D2

D. Neither D1 nor D2

3. If C is a simple closed contour, then the conclusion follows from the Cauchy-Goursat

theorem is ∮ ( ) =.
A. True

B. False

4. The value of ∫ , where C is the closed curve:| | =
A. 8
B.

C. 2
D. 10
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5. The value of ∫ , where C is the closed curve:| − | =
A. 8
B.

C. 2
D. 10
6. The value of ∫ , where C is the closed curve:| + | =
A. 8
B.

C. 2
D. 10
7. The value of ∫ , where C is the closed curve :| | =
A. 8
B.

C. 2
D. 10
8. The value of ∫ , where C is the closed curve :| | =
A. 8
B.

C. 2
D. 10
9. The value of ∫ , where C is the closed curve:| − − | =
A. 2
B.

C. 2
D. 0
10. The value of ∫ , where C is the closed curve :| − − | =
A. 8
B.

C. 2
D. 0
11. The value of ∫ ( )( ) , where C is the closed curve :| − | =
A. 8
B. 6
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C. 2
D. 10
12. The value of ∫ ( ) , where C is the closed curve :| − | =
A. 8
B. 6
C. 2
D. 10
13. The value of ∫ , where C is the closed curve :| | =
A. 8
B.

C. 0
D. 10
14. The value of ∫ ( ) , where C is the closed curve :| | =
A. 6
B.

C. 2
D. 0
15. The value of ∫ ( ) , where C is the closed curve:| − | =
A. 25
B. 25 ∗
C. 2
D. 0

Answers for Self Assessment

1. A 2. A 3. A 4. A 5. B

6. B 7. C 8. C 9. A 10. D

11. B 12. B 13. C 14. A 15. B

Review Questions
1. Obtain the complex integral: ∫ where : | | ≤ 2?
2. Obtain the complex integral: ∫ + 1 where : | | ≤ 2?
3. Obtain the complex integral: ∫ where : | | ≤ 1?
4. Obtain the complex integral: ∫ where : | | ≤ 1?
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5. Obtain the complex integral: ∫ where : | − 1| ≤ 1?
6. Obtain the complex integral: ∫ ( − 1)/ 2 where is the unit circle.

7. Obtain the complex integral: ∫ where : | | ≤ 1?
8. Obtain the complex integral: ∫ where : | | ≤ 2?
9. Obtain the complex integral: ∫ ( ) where : | − 9| ≤ 5?
10. Obtain the complex integral: ∫ ( ) where : | − 9| ≤ 5?

Further Readings
1. Complex Variables and Applications by Churchill, R. V., And Brown, J. W.,

McGraw Hill Education.

2. Foundations Of Complex Analysis by S. Ponnusamy, Narosa Publishing House.

3. Complex Analysis by Lars V. Ahlfors, Mcgraw Hill Education.

4. Complex Variables Theory and Applications by H. S. Kasana, Prentice-Hall.
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Further Readings

Objectives
The complex analysis revolves around complex analytic functions. These are functions that have a
complex derivative. Unlike calculus using real variables, the mere existence of a complex derivative
has strong implications for the properties of the function. There are a small number of far-reaching
theorems that we will explore in this section and along the way, we will touch on some main
theorems. After this unit, you will be able to-

 understand the concept of the Gauss mean value theorem.
 prove the Cauchy inequality using the Gauss mean value theorem.
 find the maximum value of a complex-valued function in the given domain.

Introduction
In this section first, the gauss means value theorem is discussed for an analytic function inside and
on the domain. After that using the Cauchy integral formula, the Cauchy inequality would be
proved and then using the Maximum modulus principal, the maximum value of | ( )| would be
discussed.

6.1 Gauss’ Mean Value Theorem
Suppose ( ) is analytic inside and on a circle with center at and radius . Then ( ) is the
mean of the values of ( ) on , i.e. ( ) = 12 ( + )
Proof
Let ( ) is analytic inside and on a circle with center at and radius shown in the following
Figure 1.
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Figure 1: An analytic function inside the | − | ≤ .

Using the Cauchy integral formula ∮ ( )− = 2 ( ).
Here = so ( ) = 12 ∮ ( )−
If the center of the circle is and the radius is .The equation of circle is | − | = .
Let − = = += . .

Now put the = + , and = . . in the above equation.( ) = 12 ∮ ( + )+ − . .
( ) = ∮ ( ) ,0 ≤ ≤ 2 .( ) = ∫ ( + ) .

Example

Evaluate the ∫ sin + 2 .

Suppose ( ) = sin ( ) is analytic inside and on a circle with center at and radius . Then ( )
is the mean of the values of ( ) on , i.e.( ) = 12 ( + )
Here − = 2, so = and radius = 2.Now using Gauss mean value thorem,∫ sin + 2 = .= sin .
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= = .

Task: Find the mean value of − + 2 over the circle |z − 5 + 2i| = 3.
Solution

Here the ( ) = − + 2 + 0 is analtytic inside the domianthat is the center of the circle is= 5 − 2i, and the radius is = 3unit.The following Figure 2 depicts the circle |z − 5 + 2i| = 3.
Using the  Gauss mean value thorem.

( ) = 12 ( + )= 5 − 2i, = 5 − 2i,= 5, = −2

Figure 2: The domain with center 5-2i, and radius 3( ) is the mean value so ( ) = 5 − (−2) + 2(−2)( ) = 25 − 4 − 4.( ) = 17.
6.2 Cauchy’s Inequality
Suppose ( ) is analytic inside and on a circle of radius and center at = . Then| ( )| ≤ . !, = 0,1,2…
where is a constant such that| ( )| < on i.e., is an upper bound of | ( )| on .
Proof

We have by Cauchy’s integral formulas∮ ( )( ) = 2 ( )! .( ) = ! ∮ ( )( ) .

It is also given that | − | = and | ( )| < .| ( )| = ! ∮ ( )( ) ….(*)
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Now − == += . .| | = . .| | = | |. . | |. | |
Here | | == | + | = 1,| | = 1, | | = .
Finally | | = .
Now using equation …(*) | ( = )| = !2 ∮ ( )( − ) | |

| ( = )| = !2 | | ∮ ( )( − ) .
| ( = )| = !2 ∮ ( )( − ) .
| ( = )| = !2 ∮ | ( )||( − ) | .

It is also given that | − | = and | ( )| < .| ( )| ≤ !2 ∮ .
As 0 ≤ ≤ 2 . | ( )| ≤ !2 .. .

| ( )| ≤ !2| ( )| ≤ !2 [ ]
| ( )| ≤ !2 2

| ( )| ≤ !
6.3 Maximum Modulus Theorem
Suppose ( ) is analytic inside and on a simple closed curve and is not identically equal to a
constant. Then the maximum value of | ( )| occurs on .

Proof

Suppose ( ) is analytic inside and on a circle with center at and radius . Then ( ) is the
mean of the values of ( ) on , i.e.
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( ) = 12 ( + )
| ( )| ≤ ∫ ( + ) ….(#)

Let us suppose that | ( )| is a maximum so that ( + ) ≤ | ( )|.
If ( + ) < | ( )| for one value of then, by continuity of , it would hold for a finite arc, say< < .

But, in such case, the mean value of ( + ) is less than | ( )|, which would contradict ….(#).

It follows, therefore, that in any −neighborhood of , i.e., for | − | < , ( ) must be a constant.

If ( ) is not a constant, the maximum value of | ( )| must occur on .

Example
Let ( ) = 2 + 5 , then let us find

(a) the maximum value of ( ) inside | | ≤ 1.
(b) the point where ( ) attains it maximum inside | | ≤ 1.
Solution

(a) As it is clear that the ( ) = 2 + 5 is analytic inside | | ≤ 1.
It also mentioned that the center of the domain is 0. The radius of the disc is 1.= . = .= = + .| | = cos + sin = 1.
Now ( ) = 2 + 5 .( ) = 2 + 2 + 5 .( ) = 2 + (2 + 5) .| ( )| = |2 + (2 + 5) |.| ( )| = 4 + 4 sin + 25 + 20| ( )| = √4 + 25 + 20| ( )| = √29 + 20 .
As we need the maximum value so we have to consider the maximum value of .

has the maximum value 1 at = (2 + 1) /2.

| ( )| = √49 = 7
So the maximum value of ( ) is 7.

(b) Now we will find the point where ( ) attained its maximum value.
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= = + .
Since the maximum value 1 at = (2 + 1) /2. So= cos(2 + 1) /2 + (2 + 1) /2= 0 + is the point where ( ) attained its maximum value.

Task: Let ( ) = + 5, then find

(a) the maximum value of ( ) inside | | ≤ 2.
(b) the point where ( ) attains it maximum inside | | ≤ 2.
Solution

(a) As it is clear that the ( ) = + 5 is analytic inside | | ≤ 2.
It also mentioned that the center of the domain is 0. The radius of the disc is 2.= . = 2. .= 2. = 2. + 2. .| | = 4. cos + 4. sin = 2.
Now ( ) = + 5.( ) = 2 + 2 + 5.( ) = 2 + 5 + (2 ) .| ( )| = |2 + 5 + (2 ) |.| ( )| = 4 + 4 sin + 25 + 20| ( )| = √4 + 25 + 20| ( )| = √29 + 20 .
As we need the maximum value so we have to consider the maximum value of .
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Summary
This section deals with some basic definitions and operations. These are summarized below:

 Suppose ( ) is analytic inside and on a circle with center at and radius . Then ( ) is
the mean of the values of ( ) on , i.e.( ) = 12 ( + )

 Suppose ( ) is analytic inside and on a circle of radius and center at = . Then| ( )| ≤ . !, = 0,1,2 …
where is a constant such that| ( )| < on i.e., is an upper bound of | ( )| on .
 Suppose ( ) is analytic inside and on a simple closed curve and is not identically equal

to a constant. Then the maximum value of | ( )| occurs on .

Keywords
Maximum value of | ( )|
The value where ( ) attains its maximum

Self Assessment

1. Suppose ( ) = ( ) is analytic inside and on the curve C with center “ ” and radius “2”

then using mean value theorem what is the value of-

+ ?
A. 3

B. 1

C. 21

D. 45

2. Suppose ( ) = ( ) is analytic inside and on the curve C with center “ ” and radius “2”

then using mean value theorem what is the value of-

+ ?
A. 3

B. 1

C. 0

D. 45
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3. Suppose ( ) = ( ) is analytic inside and on the curve C with center “ ” and radius “2”

then using mean value theorem what is the value of-

+ ?
A.

B.

C. 2
D.

4. Suppose ( ) = ( ) is analytic inside and on the curve C with center “0+0i” and radius

“2” then using mean value theorem what is the value of-

?
A.

B. 0
C. 2
D.

5. Suppose ( ) = + is analytic inside the curve C with center “-5+2i” and radius “3”

then using mean value theorem what is the value of ( )
A. 20
B. 29

C. 21
D. 0

6. Suppose ( ) = − + is analytic inside the curve C with center       “5-2i” and radius

“3” then using mean value theorem what is the value of ( )
A. 20
B. 29

C. 21
D. 0

7. Suppose ( ) is analytic inside and on the curve C with center “ ” and radius “2” and is

the upper bound of ( ) on C then using Cauchy inequality which one of the following is

true-
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A. ≤
B. ≤
C. >
D. ≥
8. Suppose ( ) is analytic inside and on the curve C with center “0+i0” and radius “5” and

is the upper bound of ( ) on C then using Cauchy inequality which one of the following

is true-

A. | (0)| ≤ 2
B. | (0)| ≤
C. | (0)| >
D. | (0)| ≥
9. Suppose ( ) is analytic inside and on the curve C with center “ ” and radius “2” and is

the upper bound of ( ) on C then using Cauchy inequality which one of the following is

true-

A. ≤ 10
B. ≤ 5
C. > 0
D. ≥ 15
10. Suppose ( ) is analytic inside and on the curve C with center “10+i0” and radius “5” and

is the upper bound of ( ) on C then using Cauchy inequality which one of the following

is true-

A. | (10)| ≤ 5
B. | (0)| ≤
C. | (10)| > 0
D. | (0)| ≥ 5
11. Suppose ( ) = + is analytic inside and on the curve C with center “0+0i” and radius

“1” then the maximum value of ( ) is__?

A. 7

B. 10

C. 3
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D. 4

12. Suppose ( ) = + is analytic inside and on the curve C with center “0+0i” and radius

“1” then ( )attains its maximum value at__?

A. z=7

B. z=10

C. z=3

D. z=i

13. Suppose ( ) = is analytic inside and on the curve C with center “0+0i” and radius “1”

then the maximum value of ( ) is__?

A. 2

B. 10

C. 1

D. 4

14. Suppose ( ) = is analytic inside and on the curve C with center “0+0i” and radius “5”

then the maximum value of ( ) is__?

A. 2

B. 5

C. 1

D. 4

15. Suppose ( ) = + is analytic inside and on the curve C with center “0+0i” and radius “2”

then the maximum value of ( ) is__?

A. 5

B. 10

C. 3

D. 7

Answers for Self Assessment

1. B 2. C 3. B 4. B 5. B

6. C 7. A 8. A 9. A 10. A

11. A 12. D 13. A 14. B 15. D
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Notes

Review Questions

1. Let ( ) = 2 + 3 , then let us find the maximum value of ( ) inside | | ≤ 1.
2. Let ( ) = 2 + 3 , then let us find the point where ( ) attains it maximum inside | | ≤ 1.
3. Let ( ) = + , then let us find the maximum value of ( ) inside | | ≤ 1.
4. Let ( ) = + , then let us find the point where ( ) attains it maximum inside | | ≤ 1.
5. Suppose ( ) is analytic inside and on a circle of radius 2 and center at = 1,

such that| ( )| < 10 on i.e., 10 is an upper bound of | ( )| on . Then using Cauchy
inequality find the | ( )| =?

6. Suppose ( ) is analytic inside and on a circle of radius 1 and center at = 0,
such that| ( )| < 5 on i.e., 5 is an upper bound of | ( )| on . Then using Cauchy
inequality find the | ( )| =?

7. Evaluate the ∫ Cos + 2
8. Evaluate the ∫ +
9. Find the mean value of − over the circle |z − 2 + i| = 1.
10. Find the mean value of + 2 over the circle |z − 5 + 2i| = 5.

Further Readings
1. Complex Variables and Applications by Churchill, R. V., And Brown, J. W.,

McGraw Hill Education.

2. Foundations Of Complex Analysis by S. Ponnusamy, Narosa Publishing House.

3. Complex Analysis by Lars V. Ahlfors, Mcgraw Hill Education.

4. Complex Variables Theory and Applications by H. S. Kasana, Prentice-Hall.
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CONTENTS
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Keywords

Self Assessment

Answers for Self Assessment
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Further Readings

Objectives
The analytic functions are the core of complex analysis. Unlike real-valued calculus, the presence of

a complex derivative has significant ramifications for the function's characteristics. We'll look at a
few far-reaching theorems in this part, as well as several key theorems along the way. After this
unit, you will be able to-

 understand the concept of entire function.
 prove the Liouville's Theorem using the Cauchy integral formula.
 prove the fundamental theorem of algebra using the Liouville's Theorem.
 prove Morera’s theorem using the Cauchy’s theorem.

Introduction
In this section first, the Liouville's Theorem is discussed for the entire function. After that using
Liouville's Theorem, the fundamental theorem of algebra is discussed and then the Morera’s
theorem would be proved using the Cauchy’s theorem.

7.1 Entire function
If ( ) is analytic on the whole complex plane, then it is said to be entire.

Or

A function ( ) is called entire if it has a representation of the form ( ) = ∑
valid for | | < ∞. This class of functions is designated by E. E is a linear space.

Example

Some examples of entire functions are-


( )

 2
 ∫
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Task: Check whether the ( ) = is entire?

Solution ( ) =
( ) = lim∆ → ( + ∆ ) − ( )∆
( ) = lim∆ → 0+∆0+∆ − 0∆
( ) = lim∆ → ⎩⎪⎨

⎪⎧ 1+ 0+∆1! 0+∆ 22! ⋯( 0+∆ ) − 1+ 01! 022! ⋯0∆ ⎭⎪⎬
⎪⎫

( ) = lim∆ → 1/( 0 + ∆ )+ 11!+ 0+∆2! +⋯ − 1/ 0 + 11!+ 02! +⋯∆( )does not exist at = 0.
Hence its not entire function.

7.2 Liouville's Theorem
In complex analysis, Liouville's Theorem states that a bounded holomorphic function on the entire
complex plane must be constant. It is named after Joseph Liouville.

Statement:
Let ( ): → be an entire function. Suppose there exists some real number ≥ 0 such
that | ( )| ≤ for all ∈ Then ( ) is a constant function.

Or

If a function ( ) is entire and bounded in the complex plane then ( ) is constant throughout the
plane

Proof:

It is given that

i. A function ( ) is analytic in the entire complex plane
ii. A function ( )is bounded, that | ( )| ≤ .

Let us consider two points inside a particular domain.

Then using Cauchy integral formula
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12 ∮ ( )− = ( )12 ∮ ( )− = ( )
If ( ) is constant throughout the domain then ( ) = ( ).
Now let’s prove ( ) − ( ) = 0.( ) − ( ) = 12 ∮ ( )− − 12 ∮ ( )−( ) − ( ) = 12 ∮ ( )− − ( )−( ) − ( ) = 12 ∮ ( ) 1− − 1−( ) − ( ) = 12 ∮ ( ) − − +( − )( − )( ) − ( ) = −2 ∮ ( ) 1( − )( − )| ( ) − ( )| = −2 ∮ ( ) 1( − )( − )| ( ) − ( )| ≤ −2 ∮ | ( )| 1|( − )( − )| | |

| ( ) − ( )| ≤ −2 ∮ | ( )| 1(| | − | |)(| | − | |) | |
Let == . .| | = . .| | = | |. . | |. | |
Here | | == | + | = 1,| | = 1, | | = . | || ( ) − ( )| ≤ −2 ∮ 1( − )( − ) . | |

| ( ) − ( )| ≤ −2 ∮ 1(1 − / )(1 − / ) . | |
If ( ) is analytic in the entire complex plane then | | = → ∞. So| ( ) − ( )| ≤ 0( ) − ( ) = 0
Hence, we can say that ( ) = ( ). It means that ( ) is a constant.

Liouville's Theorem proof using Cauchy integral formula for Derivatives.
If f(z) is analytic in a simply-connected region then at any interior point of the region, inside C.
Then say, the derivatives of ( ) of any order exist and are themselves analytic (which illustrates
what a powerful property analyticity is!). The derivatives at the point are given by Cauchy’s
integral formula for derivatives:∮ ( )( ) = 2 ( )! .
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where C is any simple closed curve, in the region, which encloses . Note the case = 1:∮ ( )( ) = ( ).| ( )| = ∮ ( )( ) .| ( )| ≤ ∮ | ( )||( ) | | |.
Here == . . .| | = . . .| | = | |. . | |. | |.
Here | − | == | + | = 1,| | = 1,| | = . | |.| ( )| ≤ ∮ . | |.| ( )| ≤ ∮ . .

If ( ) is analytic in the entire complex plane then → ∞. So| ( )| ≤ 0( ) = 0( ) = .
7.3 Fundamental Theorem of Algebra
The fundamental theorem of algebra states that every nonconstant polynomial with complex
coefficients has a complex root.

In fact, every known proof of this theorem involves some analysis, since the result depends on
certain properties of the complex numbers that are most naturally described in topological terms.

It follows from the division algorithm that every complex polynomial of degree $n$ has $n$
complex roots, counting multiplicities. In other words, every polynomial over splits over or
decomposes into linear factors.

Proof

We use Liouville's Boundedness Theorem of complex analysis, which says that
every bounded entire function is constant.

Suppose that ( ) is a complex polynomial of degree with no complex roots; without loss of
generality, suppose that ( ) is monic. Then 1/ ( ) is an entire function; we wish to show that it is
bounded. It is clearly bounded when = 0; we now consider the case when > 0.

Let be the sum of absolute values of the coefficients of ( ), so that ≥ 1. Then

for | | ≥ ,

It follows that 1/ ( ) is a bounded entire function for | | > . On the other hand, by the Heine-
Borel Theorem, the set of z for | | ≤ which is a compact set so its image under 1/ ( ) is also
compact; in particular, it is bounded.

Therefore, the function is bounded on the entire complex plane when > 0.

Now we apply Liouville's theorem and see that 1/ ( ) is constant, so ( ) is a constant
polynomial. The theorem then follows.
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7.4 Morera’s Theorem
Let ( ) be continuous in a simply-connected region and suppose that∮ ( ) = 0
around every simple closed curve . Then f(z) is analytic in R. This theorem, due to Morera, is
often called the converse of Cauchy’s theorem. It can be extended to multiply-connected regions.

Proof

For a proof, which assumes that ( ) is continuous in .If ( ) has a continuous derivative in ,
then we can apply Green’s theorem to obtain

IfP andQ are continuousand have continuous partial derivatives Px,Py,Qxand Qyat all points on Cthen

∮ ( ( , ) + ( , ) ) = [ ( , ) − ( , )] .
Letf(z)= f(x+iy)=u(x,y)+iv(x,y).Then∮ ( , ) + ( , ) ( + ) = ∮ ( ( , ) − ( , ) ) + ∮ ( ( , ) + ( , ) )
=∯ − ( , ) − ( , ) + ∯[ ( , ) − ( , )]
If ∮ ( ) = 0 around every closed path C in R, we must have∮ ( ( , ) − ( , ) ) = 0, ∮ ( ( , ) + ( , ) ) = 0.
It means − ( , ) − ( , ) = 0, [ ( , ) − ( , )] = 0
C-R equation = and = −
are satisfied and thus (since these partial derivatives are continuous) it follows  that ( ) = + is
analytic.

Summary

 Let ( ): → be an entire function. Suppose there exists some real number ≥ 0 such
that | ( )| ≤ for all ∈ Then ( ) is a constant function.

 Let ( ) be continuous in a simply-connected region and suppose that∮ ( ) = 0around every simple closed curve . Then f(z) is analytic in R.

 The fundamental theorem of algebra states that every nonconstant polynomial with complex
coefficients has a complex root.

Keywords
 Entire function: If ( ) is analytic on the whole complex plane, then it is said to

be entire.

 Bounded function: Suppose there exists some real number ≥ 0 such that | ( )| ≤ ,
then ( ) is bounded
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Self Assessment

1. Which of the following is true in the reference of Liouville’s Theorem?

A. If a function f is entire and bounded in the whole complex plane, then f is constant

throughout the entire complex plane.

B. If a function f is entire and unbounded in the whole complex plane, then f is constant

throughout the entire complex plane

C. If a function f is entire and bounded in the | | ≤ 1 complex plane, then f is constant

throughout the entire complex plane

D. If a function f is entire and bounded in the | | ≥ 1 complex plane, then f is constant

throughout the entire complex plane

2. If a function ( ) is entire and bounded in the whole complex plane, and , are two points

in the plane then which of the following is true in the reference of Liouville’s Theorem?

A. ( ) = ( )
B. ( ) ≠ ( )
C. ( ) = 10 ( )
D. ( ) = − ( )
3. If a function ( ) is entire and bounded in the whole complex plane, then which of the

following is true in the reference of Liouville’s Theorem?

A. ( ) = 0
B. ( ) ≠ 0
C. ( ) = 1
D. ( ) = 10
4. Let ( ) is the monic polynomial with degree 2 and real coefficients such that = + √ is

one of the roots of ( ) then ( ) =?
A. 1

B. 2

C. 0

D. 3

5. Let ( ) is the monic polynomial with degree 2 and real coefficients such that = + √ is

one of the roots of ( ) then ( ) =?
A. 1

B. 2

C. 0
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D. 3

6. Let ( ) is the monic polynomial with degree 2 and real coefficients such that = + √ is

one of the roots of ( ) then ( ) =?
A. 1

B. 2

C. 0

D. 3

7. Let ( ) is the monic polynomial with degree 2 and real coefficients such that = + is

one of the roots of ( ) then ( ) =?
A. 1

B. 2

C. 0

D. 3

8. Let ( ) is the monic polynomial with degree 2 and real coefficients such that = + is

one of the roots of ( ) then ( ) =?
A. 1

B. 2

C. 0

D. 3

9. Let ( ) is the monic polynomial with degree 2 and real coefficients such that = + is

one of the roots of ( ) then ( ) =?
A. 1

B. 2

C. 0

D. 3

10. Let ( ) is the monic polynomial with degree 3 and real coefficients such that = + ,
both are the roots of ( ) then ( ) =?

A. 1

B. -2

C. 0

D. 3
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11. Let ( ) is the monic polynomial with degree 3 and real coefficients such that = + ,
both are the roots of ( ) then ( ) =?

A. 0

B. 3

C. 1

D. 2

12. Let ( ) is the monic polynomial with degree 3 and real coefficients such that = + ,
both are the roots of ( ) then ( ) =?

A. 1

B. 2

C. 0

D. 3

13. Let ( ) is the monic polynomial with degree 3 and real coefficients such that = + ,
both are the roots of ( ) then ( ) =?

A. 1

B. 2

C. 10

D. 3

14. If ( ) is continuous in a simply connected domain D and if ∫ ( ) = for every simple

closed curve C in D then ___?

A. ( ) is analytic in D

B. ( ) is not analytic in D

C. ( ) is not continuous in D

D. ( ) is not differentiable in D

15. The Moreira’s theorem is converse of Cauchy Integral theorem.

A. True

B. False
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Notes

Answers for Self Assessment

1. A 2. A 3. A 4. A 5. A

6. D 7. B 8. B 9. B 10. B

11. A 12. B 13. C 14. A 15. A

Review Questions

1. A force field is given by = 3 + 5. Find the work done in moving an object in this force
field along the parabola = + from = 0, = 4 + 2 .

2. Suppose P(x, y) and Q(x, y) are conjugate harmonic functions and C is any simple closed
curve. Prove that ∮ ( ( , ) + ( , ) ) = 0.

3. Prove that every polynomial equation ( ) = + + +⋯ , = 0, where the
degree n ≥ 1 and ≠ 0, has exactly roots.

4. Determine all the roots of the equation 1 + + = 0
5. Determine all the roots of the equation 1 + 2 + 2 = 0
6. Determine all the roots of the equation 1 + 2 + 5 = 0
7. Determine all the roots of the equation 10 + 2 + 2 = 0

Further Readings
1. Complex Variables and Applications by Churchill, R. V., And Brown, J. W.,

McGraw Hill Education.

2. Foundations Of Complex Analysis by S. Ponnusamy, Narosa Publishing

House.

3. Complex Analysis by Lars V. Ahlfors, Mcgraw Hill Education.

4. Complex Variables Theory and Applications by H. S. Kasana, Prentice-Hall.
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Objective
After this unit, you will be able to

 understand the concept of zeroes of complex function.
 understand the different type singularities of complex function

Introduction
In this unit first, we will discuss the zeroes of complex plane, then the singularity of a complex
function will be classified. The singularity can be explored using the Laurent series expansion, but
in this unit, we will classify the different types like removable, essential, pole without the Laurent
series.

8.1 Zeroes of theAnalytic Function
Suppose that a function ( ) is analytic at a point . Then the zeroes of ( ) are the points where( ) = 0.
We know that all of the derivatives ( )( ) ( = 1, 2, . . . ) exist at . If ( ) = 0 and if there is a
positive integer m such that ( )( ) ≠ 0 and each derivative of lower-order vanishes at , means( )( ) = 0,( )( ) = 0,...( )( ) ≠ 0,
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then ( ) is said to have a zero of order .

Example:( ) = has a simple zero at = 0.

As ( ) = and ( ) = 1 ≠ 0. So ( ) = has a simple zero or zero of order one at = 0.
Example:( ) = ( − ) has a zero of order two at = .

As ( ) = ( − ) and( ) = 2( − ) = 0 at = .( ) = 2 ≠ 0 at = .
So ( ) = ( − ) has a zero of order two at = .

Example:( ) = − 1 has two simple zeros at = ±1.
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As ( ) = − 1 and( ) = 2 ≠ 0 at = 1, and = −1.
So ( ) = − 1 has a simple zero or order one at = 1, and = −1.

Example( ) = − 1 has a zero of order one at = − , , −1, 1.

As ( ) = − 1 and( ) = ( − 1)( + )( − ).( ) = 0 at = − , , −1, 1.( ) = 4 ≠ 0 at = .
So ( ) = − 1 has a zero of order one at = − , , −1, 1.
Theorem 8.1. Let a function ( ) be analytic at a point . It has a zero of order if and only
if there is a function (z), which is analytic and nonzero at , such that ( ) = ( − ) ( ).

Example
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The polynomial ( ) = − 8 = ( − 2)( + 2 + 4) has azero of order = 1 = 2
since( ) = ( − 2) ( ).
where ( ) = + 2 + 4, and because ( ) and ( ) are entire and (2) = 12 ≠ 0.
Note how the fact that = 2 is a zero of order = 1 of ( ) also follows from theobservations
that ( ) is entire and that(2) = 0 (2) = 12 ≠ 0.

Example
The entire function ( ) = ( − 1) has a zero of order = 2 at the point = 0 since(0) = (0) = 0 , (0) = 2 ≠ 0.( ) = ( − 0) ( ).
where ( ) is the entire function( ) = ( − 1)/ ℎ = 0,( ) = 1 ℎ = 0.

Task: Find the zeroes of ( ) = + .

Solution( ) = 0.+ = 0.+ = 0.+ 1 = 0.= −1.( ) = −1.. = −1.. ( 2 + 2 ) = −1.. 2 = −1.. 2 = 0.= 0.2 = −1.= (2 + 1) /2.= + = 0 + (2 + 1) /2.
Hence we can say that there are infinitely many zeroes.

8.2 Singularities
A point z0 is called a singular point of a function (z) if (z) fails to be analytic at z0 but is analytic
at some point in every neighborhood of z0.
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Example:
Behavior of following functions at = 0. ( ) = 1

( ) =
( ) = − 1
( ) = 1sin (1/ )

We observed that all the functions mentioned above are not analytic at = 0.However in
every neighbourhood of = 0, there is point at which ( ) is analytic.

Example
Behavior of following function at = 1. ( ) = 1 −

We observed that the ( )is not analytic at = 1.However in every neighbourhood of = 0, there is
point at which ( ) is analytic. So = 1 is the singular point of ( ).

Example( ) = is analytic everywhere so it has no singular point.

Example
Behavior of following function in the entire z plane( ) = | |
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We observed that the ( )is not analytic at = 1.However in every neighbourhood of = 0, there is
point at which ( ) is analytic. So = 1 is the singular point of ( ).
8.3 Classification of Singularity
The singularity of a complex function can be classified into two groups, isolated and non-isolated. It
can be done via Laurent series expansion, but we can also classify the singularity without the
Laurent series expansion. In the forthcoming units we will consider the classification using the
Laurent series.

The isolated singularity further can be classified into different type. The following diagram shows
the different types of the singularities.

8.4 Isolated Singularity

A point a is called an isolated singularity for ( ) if ( ) is not analytic at = and there exist> 0 such that ( ) is analytic in 0 < | − | < . The neighbourhood| − | < contains no
singularity of ( ) except .
Example

( ) = ( ) has three isolated singularities = 0, ,− .

Example

( ) = has three isolated singularities = 0,±π,±2π,…,
8.5 Removable singularity
Let ( )is analytic everywhere execpt the point inside and on the domain then if the lim → ( )
exists then is the removable singularity.
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Notes

Example

Let ( ) = , clearly = 0 is an isolated singular point for ( ).lim → ( ) = lim → = 1.lim → ( )exists then = 0 is the removable singularity.

Example

Let ( ) = , clearly = 0 is an isolated singular point for ( ).lim → ( ) = lim →lim → ( ) = lim → [L-Hosptital rule]lim → ( ) = lim → [L-Hosptital rule]lim → ( ) = lim → [L-Hosptital rule]lim → ( ) = lim →lim → ( )exists then = 0 is the removable singularity.

8.6 Pole
Let ( )is analytic everywhere execpt the point inside and on the domain then if the lim → ( −0 = , where ≠0, then 0 is the pole of order k.

If = 1, then is the simple pole.

Example

Consider ( ) = ,clearly = 0 is an isolated singular point for ( ).lim → ( ) = lim →lim → ( − 0)1 ( ) = lim →lim → ( − 0)1 ( ) = = 1 ≠ 0.
So = 0 is the pole of order 1 or simple pole.

Example

Consider ( ) = , clearly = 0 is an isolated singular point for ( ).lim → ( ) = lim → 2lim → ( − 0)2 ( ) = lim → .lim → ( − 0)2 ( ) = lim→ = 1 ≠ 0.
So = 0 is the pole of order 2.
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Example

Consider ( ) = , clearly = 0 is an isolated singular point for ( ).lim → ( ) = lim →lim → ( − 0) ( ) = lim → ( ) = 0.lim → ( − 0) ( ) = lim→ ( ).lim → ( − 0) ( ) = lim→ ( ).lim → ( − 0) ( ) = lim→ = −2 ≠ 0.
So = 0 is the pole of order 2.

8.7 Essential Singularity
Let ( )is analytic everywhere execpt the point inside and on the domain then if the lim → ( −0 =∞ , then 0 is essential singularity.

Example

Consider ( ) = / , clearly = 0 is an isolated singular point for ( ).lim → ( ) = lim → /lim → ( − 0) ( ) = lim → / .lim → ( − 0) ( ) = lim → [1 + + ! + ! +⋯ , ].lim → ( − 0) ( ) = ∞.

So = 0 is an essential singularity.

Singularity at infinity

We classify the types of singularities at infinity by letting w = 1/z and analyzing the
resulting function at w = 0.

Example( ) = .( ) = ( ) = 1/ .( ) has a pole of order 3 at w = 0 The function f(z) has a pole of order 3 at infinity.

Non-isolated singularity

A point a is called a non-isolated singularity for ( ) if ( )is not is not isolated at = .
Example ( ) = 1sin
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Example( ) = .( ) = ( ) = 1/ .( ) has a pole of order 3 at w = 0 The function f(z) has a pole of order 3 at infinity.

Non-isolated singularity

A point a is called a non-isolated singularity for ( ) if ( )is not is not isolated at = .
Example ( ) = 1sin
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Notes

The function is not analytic in any region 0 < |z| < δ.

Summary

 Suppose that a function ( ) is analytic at a point . Then the zeroes of ( ) are the points
where ( ) = 0.

 A point z0 is called a singular point of a function (z) if (z) fails to be analytic at z0 but is
analytic at some point in every neighborhood of z0.

 A point a is called an isolated singularity for ( ) if ( ) is not analytic at = and there
exist > 0 such that ( ) is analytic in 0 < | − | < . The neighbourhood | − | <
contains no singularity of ( ) except .

 Let ( )is analytic everywhere execpt the point inside and on the domain then if thelim → ( ) exists then is the removable singularity.

 Let ( )is analytic everywhere execpt the point inside and on the domain then if thelim → ( − ) ( ) = , where ≠ 0, then is the pole of order k.

 A point a is called a non-isolated singularity for ( ) if ( )is not is not isolated at = .
 Let ( )is analytic everywhere execpt the point inside and on the domain then if thelim → ( − ) ( ) = ∞ , then is essential singularity.

Keywords

 Zero: Suppose that a function ( ) is analytic at a point . Then the zeroes of ( ) are the
points where ( ) = 0.

 Pole: Let ( )is analytic everywhere execpt the point inside and on the domain then if
the lim → ( − ) ( ) = , where ≠ 0, then is the pole of order k.

Self Assessment

1. The polynomial ( ) = − has a____?

A. Zero of order one at = 2
B. Zero of order three at = 2
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C. Zero of order two at = 2
D. Zero of order one at = 8
2. The polynomial ( ) = ( − ) has a____?

A. Zero of order one at = 0
B. Zero of order three at = 0
C. Zero of order two at = 0
D. Zero of order one at = 1
3. The polynomial ( ) = − has a____?

A. Zero of order one at = 1
B. Zero of order four at = 1
C. Zero of order two at = 0
D. Zero of order one at = 0
4. Consider the ( ) = then

A. = 1 is the singular point of ( )
B. = 0 is the singular point of ( )
C. = 10 is the singular point of ( )
D. There is no singular point of ( )
5. Consider the ( ) = then

A. = 1 is the singular point of ( )
B. = 0 is the singular point of ( )
C. = 10 is the singular point of ( )
D. There is no singular point of ( )
6. Consider the ( ) = ( )( )then

A. = 1 is one of the singular points of ( )
B. = 3 is the singular point of ( )
C. = −3 is the singular point of ( )
D. There is no singular point of ( )
7. Consider the ( ) = ( )( )then

A. = 1 + 2 is one of the singular points of ( )
B. = 3 is the singular point of ( )
C. = −3 is the singular point of ( )
D. There is no singular point of ( )

Lovely Professional University 89



Unit 08: Zeroes and Singularities

Notes

8. ( ) = ( ) has ___

A. a pole of order three at = −2
B. a simple pole at = −2
C. a pole of order two at = −2
D. a simple pole at = 0
9. ( ) = has ___

A. removable singularity at = 0
B. a simple pole at = 0
C. a pole of order two at = 0
D. essential singularity at = 0
10. ( ) = has ___

A. removable singularity at = 0
B. a simple pole at = 0
C. a pole of order two at = 0
D. essential singularity at = 0
11. ( ) = ( ) has ___

A. removable singularity at = 0
B. a simple pole at = 0
C. a pole of order two at = 0
D. essential singularity at = 0
12. ( ) = ( ) has ___

A. removable singularity at = 0
B. a simple pole at = 0
C. a pole of order two at = 0
D. essential singularity at = 0
13. ( ) = has ___

A. removable singularity at = 0
B. a simple pole at = 0
C. a pole of order three at = ∞
D. essential singularity at = 0
14. ( ) = has ___
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A. Non-isolated singularity at = 0
B. a simple pole at = 0
C. a pole of order three at = 0
D. essential singularity at = 0
15. ( ) = has ___

A. removable singularity at = 0
B. a simple pole at = 0
C. a pole of order three at = ∞
D. essential singularity at = ∞

Answers for Self Assessment

1. A 2. C 3. A 4. A 5. D

6. A 7. A 8. A 9. A 10. D

11. C 12. C 13. C 14. A 15. D

Review Questions

1. Determine the zeros of the
2. Determine the zeros of the ( − 1) /
3. Determine the zeros of the ( − 1)( + 2)/( − 5)( − 2)
4. Determine the singularity of the /
5. Determine the singularity of the /( − 5)
6. Determine the singularity of the z/( − 6)( − 5)
7. Determine the singularity of the /( + )
8. Determine the singularity of the 2z+1/( − 2)( − 1)
9. Determine the singularity of the /( − )
10. Determine the singularity of the + / )

Further Readings
1. Complex Variables and Applications by Churchill, R. V., And Brown, J. W.,

McGraw Hill Education.

2. Foundations Of Complex Analysis by S. Ponnusamy, Narosa Publishing

House.

3. Complex Analysis by Lars V. Ahlfors, Mcgraw Hill Education.

4. Complex Variables Theory and Applications by H. S. Kasana, Prentice-Hall.
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Unit 09: Taylor and Laurent Series

CONTENTS

Objective

Introduction

9.1 Convergence of Power Series

9.2 Taylor’s Series

9.3 Laurent’s Series

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objective
A power series with non-negative power terms is called a Taylor series. In complex variable theory,
it is common to work with power series with both positive and negative power terms. This type of
power series is called a Laurent series. The primary goal of this unit is to establish the relation
between convergent power series and analytic functions. More precisely, we try to understand how
the region of convergence of a Taylor series or a Laurent series is related to the domain of analyticity
of an analytic function. The knowledge of Taylor and Laurent series expansion is linked with more
advanced topics, like the classification of singularities of complex functions, residue calculus, analytic
continuation, etc. After this unit, you will be able to

 find the Taylor series expansion of a complex function.

 find the Laurent series expansion of a complex function.

Introduction
We originally defined an analytic function as one where the derivative, defined as a limit of ratios,
existed. We went on to prove Cauchy’s theorem and Cauchy’s integral formula. These revealed some
deep properties of analytic functions, e.g., the existence of derivatives of all orders. Our goal in this
topic is to express analytic functions as infinite power series. This will lead us to Taylor series. When
a complex function has an isolated singularity at a point, we will replace Taylor series by Laurent
series.

9.1 Convergence of Power Series
When we include powers of the variable z in the series, we will call it a power series. In this section
we’ll state the main theorem we need about the convergence of power series.

Theorem: Consider the power series �( ) = ∑∞ ( − 0) . There is a number � ≥ 0 such that:

1. If � > 0 then the series converges absolutely to an analytic function for | − 0| < �.

2. The series diverges for | − 0| > �, �is called the radius of convergence. The disk | − 0| < �
is called the disk of convergence.
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0 0 0

0)

0 0 0

−1

3. The derivative is given by term-by-term differentiation �′( ) = ∑∞ ( − 0) −1. The series for�′( ) also has radius of convergence R.
=0

4. If is a bounded curve inside the disk of convergence then the integral is given by term-by-term
integration ∞∫�( ) � = ∑ ∫�� ( −0)=0
The theorem doesn’t say what happens when | − 0| = �.
If � = ∞ the function �( ) is entire.

If � = 0 the series only converges at the point = 0. In this case, the series does not represent an
analytic function on any disk around 0. Often (not always) we can find �using the ratio test.

9.2 T ay lor’ s Series
Let �( ) be analytic in a region �containing 0. Then �( ) can be represented as a power series in− 0 given by

( 0 ) ( 0)2 ( 0 ) 2�( ) = �( 0) + ( − ) +1! ( − )2! +  … … + ( − ) + ⋯!
The expansion is valid in the largest open disc with center 0 contained in D.

Proof
Let �> 0 be such that the disc | − 0| < �1 < �. Let �1 be the circle | − 0| = �1.

By Cauchy’s integral formula, we have �( ) = 1∫ 2
Also, by theorem on higher derivatives we have

( ) �� −

� ( ) = !
∫ 2

( ) ��( − ) +1

Now 1 = 1− ( − 0 – + 0)
= 1 ,( − ( 1− − 0 )− 0= 1 ( 1 − − 0 ) ,( − 0) − 0 2 3
= 1 (1 + ( − 0 ) + (− 0 ) + ( − 0) + ⋯ , ),

( − 0) − 0 − 0 − 0Now multiplying throughout by ( ) , integrating over C and using Cauchy integral theorem we get21 ∫ ( ) � = 1∫ ( ) � + 1∫ ( ) � ( − ) + 1∫ ( ) � ( − )2 +2 � − 2 � − 0 2 �( − 0)2 0 2 �( − 0)3 0⋯ , + 1 ∫ ( ) � ( − ) −1.2 �( − 0) 0
Taking limit as n∞ in (3) we get,

( 0 ) ( 0)2 ( 0 ) 2�( ) = �( 0) + ( − ) +1! ( − )2! + … … + ( − ) + ⋯!
Example

The Taylor’s series for �( ) = 1 about = 1 is given by,
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Mr. Rajesh Kumar Chandrawat Unit 09: Taylor and Laurent Series1 = �(1) + ′(1) ( − 1)+ ′′ (1) ( − 1)2 + ′′′(1) ( − 1)3 + ⋯.
1! 2! 3!

Now �( ) = 1 ⟹ �(1) =1 �′( ) = − 1
2

⟹ �′(1) = −1.
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)
)

∑

0
0

−∞

�′′( ) = 2 1 3�′′′( ) = −6 1 4
⟹ �′′(1) = 2.
⟹ �′′′(1) = −6....,

1 = �(1) + −1 ( − 1) + 2 ( − 1)2 + − 6 ( − 1)3 + ⋯.,1! 2! 3!
This expansion is valid in the disc | − 1| < 1.

Example

The Taylor’s series for �( ) = �� about = is given by,4′ ′′ ′′′�� = �( ) + ( 4 ) ( − ) + ( 4 ) ( − )2 + ( 4 ) ( − )3 + ⋯.4 1! 4 2! 4 3! 4
Now �( ) = �� ⟹ �( ) = 14 √2 �′( ) = ��� ⟹ �′ ( ) = 1 .4 √2�′′( ) = −�� ⟹ �′′ ( = − 1 .4 √2�′′′( ) = −��� ⟹ �′′′ ( = − 1 .

1 1 2 1

4 √2...,
3�� = 1 + √ 2 ( − ) + √ 2 (− ) − √ 2 ( −) + ⋯.

√2 1! 4 2! 4 3! 4This expansion is valid in the entire complex plane.

9.3 Laurent’s  Series
Any function which is analytic in a region containing the annulus �1 < | − 0| < �2 can be
represented in a series of the form∞ � ( − 0) .
Let �1 and �2 denote respectively the concentric circles | − 0| = �1 and | − 0| = �2 with �1 < �2.Let �( ) be analytic in a region containing the circular annulus �1 < | − 0| < �2.
Then �( ) can be represented as a convergent series of positive and negative powers of − 0 given
by ∞ ∞��( ) = ∑ ( − ) + ∑ �( − 0)
Where

=1 0 =0
1 ( )� = 2 ∫ 1 ( − )− +1 �1 ( )� = 2 ∫ 2 ( − ) +1 �
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0

0

0)

0
0

0

−1

Proof:

Let z be any point in the circular annulus �1 < | − 0| < �2.

we have �( ) = 1∫ ( ) � − 1∫ ( ) �
2 2 ( − ) 2 1 ( − )

As in the proof of Taylor’s theorem, we have1 �() 1 �() 1 �( ) 1 �( ) 22 ∫ 2 − � = 2 ∫ 2 − � + 2 ∫ 2 ( − )2 � ( − 0) + 2 ∫ 2 ( − )3 � ( − 0)1 0 �( ) 0 0−11 ∫ ( ) � =�
+ ⋯ , + 2 ∫ 2 ( − ) � ( − 0)
+ �( − ) + � ( − )2 + ⋯ ,+� ( − ) −1 + � ( ).

2 2 − 0 1 0 2 0 −1 0Here 1 ( )� = 2 ∫ 2 ( − ) +1 �( − 0 ) ( )�( ) = ∫ � .2 2 ( − 0) ( − )
Now 1 = 1− ( − 0 – + 0)
= 1( − ( 1− − 0 )− 0= 1 ( 1 − − 0 ) ,( − 0) − 0 2 3
= 1 (1 + ( − 0 ) + ( −

0 ) + ( − 0) + ⋯ , ),

( − 0) − 0 − 0 − 0Now multiplying throughout by ( ) , integrating over C and using Cauchy integral theorem we get21 ∫ ( ) � = 1∫ ( ) � + 1∫ ( ) � ( − ) + 1∫ ( ) � ( − )2 +2 � − 2 � − 0 2 �( − 0)2 0 2 �( − 0)3 0⋯ , + 1 ∫ ( ) � ( − ) −1.2 �( − 0) 01 ∫ ( ) � = �1 + �2 + ⋯ , + � −1 + � ( ).2 � −1 ( − 0)( ) ( − 0)2 ( − 0) −1� = 2 ∫ 1 ( − )− +1 � 1�( ) = 2 ( − ) ∫ 1 �( )( − 0 )( − ) �
Now using the maximal modulus principle �( ) → 0, �( ) → 0, As �→ ∞.

Hence 1 �( ) 1 �( )�( ) = 2 ∫ 2 ( − ) � + 2 ∫ 1 ( − ) � �1�( ) = �0 + �1( − 0) + �2( − 0)2 + ⋯ , +�−1( − 0) −1 ++ ( − 0) �2( − 0)2� −1+ ⋯ , + ( − ) −1�( ) = ∑∞ � + ∑∞ � ( − ) .=1 ( − 0) =0 0
Example
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Find the Laurent’s series expansion of �( ) = 2 �1/ about = 0.

Solution�( ) = 2 �1/ ����� = 0
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0 0 0

∑
=0

−∞

Clearly �( ) is analytic at all point z ≠ 0.
1 2 1 3

Now, �( ) = 2 [1 + 1 + ( ) + ( ) + … , ]2! 3!1 2 1 22�( ) = [ 2 + + 2 ( ) + 2 ( ) + … . ]2! 3!�( ) = [ 1 + + 2 + 1 + 1 … , ]2! 3! 4! 2This is the required Laurent’s series expansion for �( ) at = 0.
Summary
Let �( ) be analytic in a region �containing 0. Then �( ) can be represented as a power seriesin − 0 given by

( 0 ) ( 0)2 ( 0 ) 2�( ) = �( 0) + ( − ) +1! ( − )2! +  … … + ( − ) + ⋯!
The expansion is valid in the largest open disc with center 0 contained in D.

Any function which is analytic in a region containing the annulus �1 < | − 0| < �2 can be
represented in a series of the form∞ � ( − 0) .

Keywords
Consider the power series �( ) = ∑∞ ( − 0) . There is a number � ≥ 0 such that:

1. If � > 0 then the series converges absolutely to an analytic function for | − 0| < �.

2. The series diverges for | − 0| > �, �is called the radius of convergence. The disk | − 0| < �
is called the disk of convergence.

Self Assessment

1. Expand �( ) = ��� in a Taylor series around z = 0 then what is the coefficient of �?

A. 1

B. 2

C. 3

D. 4

2. Expand �( ) = ��� in a Taylor series around z = 0 then what is the coefficient of�? A. 1

B. 2

C. 3

D. 4

3. Expand �( ) = ��� in a Taylor series around z = 0 then what is the coefficient of ��
? A. 4.5

B. 2
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C. 3

D. 4

4. Expand �( ) = ��� in a Taylor series around z = 0 then what is the coefficient of ��
? A. 1

B. 2

C. 4.5

D. 4

5. Expand �( ) = ��(�+ ) in a Taylor series around z = 0 then what is the coefficient of�? A. 1

B. 2

C. 3

D. 4

6. Expand �( ) = ��(�+ ) in a Taylor series around z = 0 then what is the coefficient of�? A. 1

B. -1/2

C. 1/3

D. -1/4

7. Expand �( ) = ��(�+ ) in a Taylor series around z = 0 then what is the coefficient of�? A. 1

B. -1/2

C. 1/3

D. -1/4

8. Expand �( ) = ��(�+ ) in a Taylor series around z = 0 then what is the coefficient of�? A. 1

B. -1/2

C. 1/3

D. -1/4

9. Expand �( ) = − � in a Laurent series then what is the coefficient of �?�
A. 1/6

B. 2

C. 3

D. 4
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10. Expand �( ) = − � in a Laurent series then what is the coefficient of �?�
A. 0

B. 2

C. 3

D. 4

11. Expand �( ) = − � in a Laurent series then what is the coefficient of �?�
A. 1/6

B. - 15!
C. 17!
D. 0

12. Expand �( ) = − � in a Laurent series then what is the coefficient of �?�
A. 0

B. 2

C. 3

D. 4

13. Expand �( ) = − � in a Laurent series then what is the coefficient of �?�
A. 1/6

B. - 15!
C. 17!
D. 0

14. Expand �( ) = − � in a Laurent series then what is the coefficient of �?�
A. 0

B. 2

C. 3

D. 4

15. Expand �( ) = − � in a Laurent series then what is the coefficient of �?�
A. 0

B. 2

C. 3

D. 4
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Answers for Self Assessment

1. A 2. C 3. A 4. C 5. A

6. B 7. C 8. D 9. A 10. A

11. C 12. A 13. C 14. A 15. A

Review Questions
1. Expand �2 in Taylor’s series about z=-1

2. Expand 1/�2 in Taylor’s series when |z+1|<1
3. Expand 1/�2 in Taylor’s series when |z-2|<2
4. Expand cos z into Taylor’s series about the point = /2 and determine the region of

convergence.

5. Expand − 1 , as a power series in z in the region |z|<1.( −1)( −2)
6. Expand − 1 , as a power series in z in the region 1<|z|<2.( −1)( −2)
7. Expand − 1 , as a power series in z in the region |z|≥1.( −1)( −2)
8. Find Laurent’s series for about = −2.( +1)( +2)
9. If �( ) = +4 .Find Laurent’s series expansion in 0 < |z-1|< 4.( +3)( −1)2
10. If �( ) = +4 .Find Laurent’s series expansion in |z-1|> 4.( +3)( −1)2

Further Readings
1. Complex Variables and Applications by Churchill, R. V., And Brown, J. W., McGraw

Hill Education.

2. Foundations Of Complex Analysis by S. Ponnusamy, Narosa Publishing House.

3. Complex Analysis by Lars V. Ahlfors, Mcgraw Hill Education.

4. Complex Variables Theory and Applications by H. S. Kasana, Prentice-Hall.
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Unit 10: Singularity by Laurent Series, Residue, Cauchy Residue
Theorem

CONTENTS
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Summary

Keywords
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Objective
After this unit, you will be able to

 classify the singularity through the Laurent series expansion.
 find the residue at different type of singularity
 evaluate the complex integration using residue theorem.

Introduction
In this unit first, we will discuss the singularity of a complex function using Laurent series
expansion. Then the residue of a complex function will be explored and then we will understand
the complex integration using residue theorem.

10.1 Classification of Singularity by Laurent Series Expansion
It is also possible to classify the singularity using the Laurent series expansion.

Let a be an isolated singularity for a function ( ). Let > 0 be such that ( ) is analytic in0 < | − | < . In this domain the function ( ) can be represented as a Laurent series given by

( ) = ( − ) + ( − )
Were = 12 ∫ ( )( − )= 12 ∫ ( )( − )
The series consisting of the negative powers of − in the above Laurent series expansion of ( )
is given by ∑ ( ) and is called the principal part or singular part ( ) = .
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Notes

The singular part of ( ) = determines the character of the singularity.

There are three types of singularities. They are

(i) Removable singularities
(ii) Poles
(iii) Essential singularities.

Removable singularity
Let be an isolated singularity for ( ). Then is called a removable singularity if the principal
part of ( ) = has no terms.

If is a removable singularity for ( ) then the Laurent’s series expansion of ( ) = is
given by

( ) = ( − )
Hence as  , ( ) = Hence by defining ( ) = the function ( ) becomes analytic at .

Example

Let ( ) = , clearly = 0 is an isolated singular point for ( ).
Now ( ) = = ( − ! + ! − … . )( ) = = (1 − 3! + 5! − … . )
Here the principal part of ( ) = 0 has no terms. Hence z = 0 is a removable singularity.lim → ( )also exists then = 0 is the removable singularity.

Example

Let ( ) = , clearly = 0 is an isolated singular point for ( ).
( ) = − ( − ! + ! − … , )

( ) = ! − ! − … , )
( ) = 13! − 5! − …,= 0 is a removable singularity. By defining (0) = 1/6 the function becomes analytic =0.Also lim → ( )exists then = 0 is the removable singularity.

Pole
Let be an isolated singularity of ( ). The point a is called a pole if the principal part of( ) = has a finite number of terms.

If the principal part of ( ) = is given by+ ( ) + … + ( ) , . where ≠ 0.
We say that a is a pole of order for ( ). Note: A pole of order 1 is called a simple pole and a pole
of order 2 is called double pole.
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Hence as  , ( ) = Hence by defining ( ) = the function ( ) becomes analytic at .

Example

Let ( ) = , clearly = 0 is an isolated singular point for ( ).
Now ( ) = = ( − ! + ! − … . )( ) = = (1 − 3! + 5! − … . )
Here the principal part of ( ) = 0 has no terms. Hence z = 0 is a removable singularity.lim → ( )also exists then = 0 is the removable singularity.

Example

Let ( ) = , clearly = 0 is an isolated singular point for ( ).
( ) = − ( − ! + ! − … , )

( ) = ! − ! − … , )
( ) = 13! − 5! − …,= 0 is a removable singularity. By defining (0) = 1/6 the function becomes analytic =0.Also lim → ( )exists then = 0 is the removable singularity.

Pole
Let be an isolated singularity of ( ). The point a is called a pole if the principal part of( ) = has a finite number of terms.

If the principal part of ( ) = is given by+ ( ) + … + ( ) , . where ≠ 0.
We say that a is a pole of order for ( ). Note: A pole of order 1 is called a simple pole and a pole
of order 2 is called double pole.
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Notes

Example

Consider ( ) = ,clearly = 0 is an isolated singular point for ( ).( ) = = (1 + + + +…,)( ) = = (1/ + 1 + + +…,)

Here the principal part of ( ) = 0 has a single term . Hence = 0 is a simple pole of ( ).
Also

lim → ( − 0)1 ( ) = = 1 ≠ 0. So = 0 is the pole of order 1 or simple pole.

Example:

Consider ( ) = , clearly = 0 is an isolated singular point for ( ).
( ) = = 1 − ! + ! −⋯ ,

The principal part of ( ) = 0 contains the term 1/ . Hence z=0 is a double pole of f(z).

Also lim → ( − 0)2 ( ) = lim→ = 1 ≠ 0.
So = 0 is the pole of order 2.

Essential singularity
Let a be an isolated singularity of ( ). The point a is called an essential singularity of ( ) at =
if the principal part of ( ) = has an infinite number of terms.

Example

Consider ( ) = / , clearly = 0 is an isolated singular point for ( ).( ) = /( ) = [1 + + ! + ! +⋯ , ].
The principal part of ( ) has infinite number of terms. Hence ( ) = / has an essential
singularity at = 0.
Also lim → ( − 0) ( ) = ∞.

So = 0 is an essential singularity.

10.2 Meromorphic Functions

A function is analytic everywhere in the finite plane except at a finite number of poles is called a
meromorphic function.
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Complex Analysis-I

Notes

Example: ( ) = ( )( )

( ) is analytic everywhere in the complex plane except = 1 = −3.Here = 1 is a simple
pile and = −3 is the pole of order 3. We can say that the ( ) has finite number of poles and it’s a
meromorphic function.

10.3 Residue at a Singularity
The following lemmas provide methods for calculation of residues.

Lemma 1

If = is a removable singularity for f(z) then ( ( ); ) = 0.
The principal part of ( ) = has no terms. lim → ( )also exists then = is the
removable singularity.

Example

Let ( ) = , clearly = 0 is an isolated singular point for ( ).
Now ( ) = = ( − ! + ! − … . )( ) = = (1 − 3! + 5! − … . )
Here the principal part of ( ) = 0 has no terms. Hence z = 0 is a removable singularity.lim → ( )also exists then = 0 is the removable singularity.

So ; 0 = 0.
Example

Let ( ) = , clearly = 0 is an isolated singular point for ( ).
( ) = − ( − ! + ! − … , )

( ) = ! − ! − … , )
( ) = 13! − 5! − …,= 0 is a removable singularity. By defining (0) = 1/6 the function becomes analytic = 0.

Alsolim → ( ) = lim →lim → ( ) = lim → [L-Hosptital rule]
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Notes

lim → ( ) = lim → [L-Hosptital rule]lim → ( ) = lim → [L-Hosptital rule]lim → ( ) = lim →lim → ( )exists then = 0 is the removable singularity.

So , ; 0 = 0.
Lemma 2

If = is a simple pole for f(z) then ( ( ); ) = lim → ( − ) ( ).
Lemma 3

If a is a simple pole for ( ) ( ) = ( )
where ( ) is analytic at a and ( ) ≠ 0 then ( ( ); ) = ( ).
Lemma 4

Let a be a pole of order > 1 for ( ) and let ( ) = ( )( )
where ( ) is analytic at and ( ) ≠ 0. Then ( ( ); ) = ( )( )!

Example

Consider ( ) = ,clearly = 0 is an isolated singular point for ( ).( ) = = (1 + + + +…,)( ) = = (1/ + 1 + + +…,)
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The principal part of ( ) = 0 contains the term 1/ . Hence z=0 is a double pole of f(z).

Also lim → ( − 0)2 ( ) = lim→ = 1 ≠ 0.
So = 0 is the pole of order 2. Here ( ) =
Hence ; 0 = (0) = −1
Lemma 4
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Complex Analysis-I

Notes

Let ( )is analytic everywhere except the point inside and on the domain then if the lim → ( −=∞ , then 0 is essential singularity. Then the coefficient of − −1 in the Laurent series
expansion is the residue of ( ) at =
Example

Consider ( ) = / , clearly = 0 is an isolated singular point for ( ).lim → ( ) = lim → /lim → ( − 0) ( ) = lim → / .lim → ( − 0) ( ) = lim → [1 + + ! + ! +⋯ , ].lim → ( − 0) ( ) = ∞.

So = 0 is an essential singularity. Now the coefficient of ( − 0) is !
So / ; 0 = 1/2
10.4 Cauchy Residue Theorem
Let ( ) be a function which is analytic inside and on a simple closed curve

except for a finite number of singular points , , … , inside . Then

∫ ( ) = 2 { ( ); }
Proof

Let , , … , be circles with centres , , … , respectively such that all circles are interior to
and are disjoint with each other. By Cauchy’s theorem for multiply connected regions we have,∫ ( ) = ∫ ( ) + ∫ ( ) + ⋯ ,∫ ( )∫ ( ) = 2 { ( ); } + 2 { ( ); } + ⋯ ,2 { ( ); }
∫ ( ) = 2 ∑ { ( ); }
Example∫ ,where | | ≤ 2
Clearly = 0 is an isolated singular point for ( ).

Now ( ) = = ( − ! + ! − … . )( ) = = (1 − 3! + 5! − … . )
Here the principal part of ( ) = 0 has no terms. Hence z = 0 is a removable singularity.lim → ( )also exists then = 0 is the removable singularity.

So ; 0 = 0. ∫ = 2 ; 0 = 2 ∗ 0 = 0.
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Unit 10: Singularity by Laurent Series, Residue, Cauchy Residue Theorem

Notes

Example∫ ,where | | ≤ 2,
clearly = 0 is an isolated singular point for ( ).

( ) = − ( − ! + ! − … , )
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Complex Analysis-I

Notes

Example

Consider ∫ ,where | | ≤ 2,
Clearly = 0 is an isolated singular point for ( ).

( ) = = 1 − ! + ! −⋯ ,
The principal part of ( ) = 0 contains the term 1/ . Hence z=0 is a double pole of f(z).

Also lim → ( − 0)2 ( ) = lim→ = 1 ≠ 0.
So = 0 is the pole of order 2. Here ( ) =
Hence ; 0 = (0) = −1

∫ = 2 ; 0 = 2 ∗ −1 = −2 .
Example

Consider ∫ / , where | | ≤ 2,
Clearly = 0 is an isolated singular point for ( ).lim → ( ) = lim → /lim → ( − 0) ( ) = lim → / .lim → ( − 0) ( ) = lim → [1 + + ! + ! +⋯ , ].lim → ( − 0) ( ) = ∞.

So = 0 is an essential singularity. Now the coefficient of ( − 0) is !
So / ; 0 = 1/2. ∫ / = 2 / ; 0 = 2 ∗ 12 = .
Summary

 Let ( ) be a function which is analytic inside and on a simple closed curve except for a
finite number of singular points , , … , inside .
Then∫ ( ) = 2 ∑ { ( ); }

 If = is a removable singularity for f(z) then ( ( ); ) = 0.
 If = is a simple pole for f(z) then ( ( ); ) = lim → ( − ) ( ).
 If a is a simple pole for ( ) ( ) = ( )

where ( ) is analytic at a and ( ) ≠ 0 then ( ( ); ) = ( ).
 Let ( )is analytic everywhere except the point inside and on the domain then if thelim → ( − ) ( ) = ∞ , then is essential singularity. Then the coefficient of ( − )

in the Laurent series expansion is the residue of ( ) at =
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Summary

 Let ( ) be a function which is analytic inside and on a simple closed curve except for a
finite number of singular points , , … , inside .
Then∫ ( ) = 2 ∑ { ( ); }

 If = is a removable singularity for f(z) then ( ( ); ) = 0.
 If = is a simple pole for f(z) then ( ( ); ) = lim → ( − ) ( ).
 If a is a simple pole for ( ) ( ) = ( )

where ( ) is analytic at a and ( ) ≠ 0 then ( ( ); ) = ( ).
 Let ( )is analytic everywhere except the point inside and on the domain then if thelim → ( − ) ( ) = ∞ , then is essential singularity. Then the coefficient of ( − )

in the Laurent series expansion is the residue of ( ) at =
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 Let a be a pole of order > 1 for ( ) and let ( ) = ( )( )
where ( ) is analytic at and ( ) ≠ 0. Then ( ( ); ) = ( )( )!
Keywords

 If = is a removable singularity for f(z) then ( ( ); ) = 0.
 If = is a simple pole for f(z) then ( ( ); ) = lim → ( − ) ( )

Self Assessment

1. ( ) = ( ) has ___

A. a pole of order 3 at = −1
B. a simple pole at = −1
C. a pole of order 2 at = −1
D. a simple pole at = 0
2. ( ) = has ___

A. removable singularity at = 0
B. a simple pole at = 0
C. a pole of order 2 at = 0
D. essential singularity at = 0
3. In the Laurent series expansion of ( ) about z = 0, the principal part is 0 then ( ) has

A. removable singularity at = 0
B. a simple pole at = 0
C. a pole of order 2 at = 0
D. essential singularity at = 0
4. In the Laurent series expansion of ( ) about z = a, the principal part has 5 terms then ( )

has

A. removable singularity at =
B. a simple pole at =
C. a pole of order 5 at =
D. essential singularity at =
5. ( ) = ( ) is meromorphic because it has finite number (say K) of pole in the entire

complex plane then K =?
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A. 5

B. 1

C. 2

D. 3

6. ( ) = ( )( ) is meromorphic because it has finite number (say K) of pole in the entire

complex plane then K =?

A. 5

B. 1

C. 2

D. 3

7. Which one of the following functions is meromorphic?

( ) = , and ( ) = ( ) .

A. Only ( )
B. Only ( )
C. Both ( ) and ( )
D. Neither ( ) nor ( )
8. In the Laurent series expansion of ( ) about z = a, the principal part has infinite many

terms then ( ) has

A. removable singularity at =
B. a simple pole at =
C. a pole of order a at =
D. essential singularity at =
9. ( ) = has ___

A. removable singularity at = 0
B. a simple pole at = 0
C. a pole of order 2 at = 0
D. essential singularity at = 0
10. Residues of ( ) = ( ) at z =1

A. 1

B. 2
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C. 3

D. 4

11. Residues of ( ) = ( ) at z =0

A. 5

B. 1

C. 1/8

D. -1/8

12. Residues of ( ) = ( ) at = −
A. 5

B. 1

C. 1/8

D. -1/8

13. Residues of ( ) = at =
A. 0

B. 1

C. 1/8

D. -1/8

14. Residues of ( ) = /( + ) = −
A. 1

B. 2

C. 0

D. 4

15. Residues of ( ) = at =
A. 0

B. 1

C. 1/8

D. -1/8

16. Evaluate the∫ (( ) ( )) where C:| | =
A. 2

B.

C. 0
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D.

17. Evaluate the∫ . where C:| | =
A. 2

B.

C. 0

D.

18. Evaluate the∫ where C:| | =
A. 2

B.

C. 0

D.

19. Evaluate the∫ ( ) where C:| − | =
A. 2

B.

C. 0

D.

Answers for Self Assessment

1. A 2. A 3. A 4. C 5. A

6. C 7. C 8. D 9. D 10. A

11. C 12. D 13. A 14. C 15. A

16. A 17. B 18. A 19 C

Review Questions
1. Find the residue of inside the circle | + 1 + | ≤2

2. Evaluate ∫ dz by using residue theorem, where C is the circle | + 1 + | = 2.
3. Find the residue of inside the circle | | ≤2
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4. Evaluate ∫ dz by using residue theorem, where C is the circle | | ≤ 2.
5. Find the poles of ( ) = and determine the residues at the poles.

6. Find the poles of ( ) = and determine the residues at the poles.

7. Find the poles of ( ) = and determine the residues at the poles.

8. Find the poles of ( ) = and determine the residues at the poles.

9. Find the residue of inside the circle | | ≤ 5
10. Evaluate ∫ dz by using residue theorem, where C is the circle | | ≤ 5.

Further Readings
1. Complex Variables and Applications by Churchill, R. V., And Brown, J. W.,

McGraw Hill Education.

2. Foundations Of Complex Analysis by S. Ponnusamy, Narosa Publishing House.

3. Complex Analysis by Lars V. Ahlfors, Mcgraw Hill Education.

4. Complex Variables Theory and Applications by H. S. Kasana, Prentice-Hall.
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Unit 11: Argument Principle, Rouche’s Theorem

CONTENTS

Objective

Introduction

11.1 Argument Principle

11.2 Rouche’s Theorem

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objective
After studying this unit, you will be able to:

 discuss the concept of the argument principle.
 describe Rouhe's theorem.

Introduction
In the last unit, you have studied the Taylor series, singularities of complex-valued functions and
use the Laurent series to classify these singularities. This unit will explain the concept related to
argument principle and Rouche's theorem.

11.1 Argument Principle
Let be a simple closed curve, and suppose ( ) is analytic on . Suppose moreover that the only
singularities of (z)inside are poles.

If ( )  0 for all  , then  = ( ) is a closed curve which does not pass through the origin. Let
N be the number of zeros and P the number of poles then

∫ ( )( ) = −
Proof

If ( )  0 for all  , then  = ( ) is a closed curve which does not pass through the origin.

If ( ),   is a complex description of , then ( ) = (( )), is a complex description of
.

Now, ∫ ( )( ) = ( ( ))( ( ))  ( )
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But notice that  ( ) = (( )) ( ).
Hence, ∫ ( )( ) = ( ( ))( ( ))  ( ) =  ( )

( )
Next, we shall use the Residue Theorem to evaluate the integral ∫ ( )( ) . The singularities of the

integrand ( )( ) are the poles of ( )together with the zeros of ( ).
Let’s find the residues at these points.

First, let = { , , . . . , } be set of all zeros of (z). Suppose the order of the zero is .

Then ( ) = − ℎ( ) and ℎ( )  0. Thus( )( ) = ( )( ) − −
− ( )( ) = − ( ) −( ) −

Since ℎ ( )/ℎ( ) is analytic at , it has a Taylor series representation about that point; and so above
equation tells us that ( )( ) has a pole of order at , with residue .

Using the Cauchy residue theorem ∫ ( )( ) = [ ] Hence∫ ( )( ) = − .

where is the winding number, or the number of times  winds around the origin-n > 0 means
winds in the positive sense, and negative means it winds in the negative sense. Finally, we= − , where = + + . . . + is the number of zeros inside C, counting multiplicity,
or the order of the zeros, and = + + . . . + is the number of poles, counting the order.
This result is the celebrated argument principle

Example

Let ( ) = then evaluate ∫ ( )( ) Where : | | ≤ .

Here ( ) = ( ) =∫ ( )( ) = ∫ .

Using argument principle ∫ ( )( ) = ∫ = [ − ]
Now the zeroes of ( ) = inside the | | ≤ are {− ,− ,− , , , , }, N=7
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Now there is no poles of ( ) = inside the | | ≤ , P=0.∫ ( )( ) = ∫ = [ − ].∫ = .∫ = .

Example

Let ( ) = − then evaluate ∫ ( )( ) Where : | | ≤ .

Here ( ) = − ( ) =∫ ( )( ) = ∫ .

Using argument principle ∫ ( )( ) = ∫ −− = [ − ]
Now the zeroes of ( ) = − inside the | | ≤ are { , }, N=2.

Now there is no poles of ( ) = − inside the | | ≤ , P=0.
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∫ ( )( ) = ∫ = [ − ].∫ = [ − ].∫ = .

Example

Let ( ) = − 5 + 6 then evaluate ∫ ( )( ) Where : | | ≤ .

Here ( ) = − 5 + 6 ( ) = −∫ ( )( ) = ∫ .

Using argument principle ∫ ( )( ) = ∫ −− 5 + 6 = [ − ]
Now the zeroes of ( ) = − 5 + 6 inside the | | ≤ are { , }, N=2.

Now there is no poles of ( ) = − 5 + 6 inside the | | ≤ , P=0.∫ ( )( ) = ∫ = [ − ].∫ = [ − ].∫ = .

We can also evaluate ∫ inside the | | ≤ using the Cauchy Residue theorem.∫ −− 5 + 6 = ∫ −( − )( − )= 2, 3 are inside the | | ≤ .; 2 = = −3.; 3 = = 5.∫ = ∫ ( )( ) = [ ; 2 + ; 3 ].∫ = ∫ ( )( ) = [−3 + 5].∫ = .
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Example
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Here ( ) = − 5 ( ) =∫ ( )( ) = ∫ .

Using argument principle ∫ ( )( ) = ∫ − 5 = [ − ]
Now the zeroes of ( ) = − 5 inside the | | ≤ are { ±√ }, N=2.

Now there is no poles of ( ) = − 5 inside the | | ≤ , P=0.∫ ( )( ) = ∫ = [ − ].∫ = [ − ].∫ = .

We can also evaluate ∫ inside the | | ≤ using the Cauchy Residue theorem.∫ − 5 = ∫ ( − √ )( + √ )= −√ , √ are inside the | | ≤ .; √ = √√ = 1.; −√ = √√ = 1.∫ = ∫ ( √ )( √ ) = [ ; √ + ; −√ ].∫ = ∫ ( √ )( √ ) = [1 + 1].∫ = ∫ ( √ )( √ ) = .
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11.2 Rouche’s Theorem
The Rouche’s theorem is a consequence of the argument principle. It can be useful in locating
regions of the complex plane in which a given analytic function has zeros.

Theorem. Let denote a simple closed contour, and suppose that

(a) two functions ( ) ( ) are analytic inside and on ;

(b) | ( )| > | ( )| at each point on .

Then ( ) and ( ) + ( ) have the same number of zeros, counting multiplicities, inside .

Proof

The orientation of in the statement of the theorem is evidently immaterial.

Thus, in the proof here, we may assume that the orientation is positive. We begin with the
observation that neither the function ( ) nor the sum ( ) + ( ) has a zero on , since| ( )| > | ( )| ≥ 0 | ( ) + ( )| ≥ || ( )| − | ( )| | > 0
when .
If denote the number of zeros, counting multiplicities, of ( ) ( ) + ( ),
respectively, inside , we know that= 12 ∆ ( ) = 12 ∆ [ ( ) + ( )].
Consequently, since= ∆ arg ( ) = ∆ arg [ ( )(1 + ( )( )]= ∆ arg ( ) = ∆ arg [ ( )] + ∆ arg ( ( )( ))].
it is clear that, = + 12 ∆ arg ( ),

( ) = 1 + ( )( )
But ( )– 1 = | ( )|| ( )| < 1;
and this means that under the transformation = ( ), the image of C lies in the open disk| − 1| < 1. That image does not, then, enclose the origin = 0. Hence ∆ arg ( ) = 0 and,= Rouche’s theorem is proved.

Example

In order to determine the number of roots of the equation − 4 + − 1 = 0 inside the circle
|z| = 1,

write ( ) = −4 ( ) = + − 1.

Then observe that | ( )| = 4| | = 4
and | ( )| ≤ | | + | | + 1 = 3 when |z| = 1.

The conditions in Rouche’s theorem are thus satisfied. Consequently, since ( ) has three zeros,
counting multiplicities, inside the circle | | = 1, so does ( ) + ( ). That is, equation has three
roots there.

Summary
Let denote a simple closed contour, and suppose that
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write ( ) = −4 ( ) = + − 1.

Then observe that | ( )| = 4| | = 4
and | ( )| ≤ | | + | | + 1 = 3 when |z| = 1.

The conditions in Rouche’s theorem are thus satisfied. Consequently, since ( ) has three zeros,
counting multiplicities, inside the circle | | = 1, so does ( ) + ( ). That is, equation has three
roots there.

Summary
Let denote a simple closed contour, and suppose that
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Notes

(a) two functions ( ) ( ) are analytic inside and on ;

(b) | ( )| > | ( )| at each point on .

Then ( ) and ( ) + ( ) have the same number of zeros, counting multiplicities, inside .

Keywords
Let be a simple closed curve, and suppose ( ) is analytic on . Suppose moreover that the only
singularities of (z)inside are poles.

If ( )  0 for all  , then  = ( ) is a closed curve which does not pass through the origin. Let
N be the number of zeros and P the number of poles then∫ ( )( ) = −
Self Assessment

1. Let ( ) = and N be the number of zero and P be the number of pole then N=?

A. 1
B. 2
C. 3
D. 4

2. Let ( ) = and N be the number of zero and P be the number of pole then P=?

A. 1
B. 2
C. 3
D. 4

3. Let ( ) = and N be the number of zero, P be the number of pole inside C: | | =
then N=?

A. 7
B. 2
C. 3
D. 4

4. Let ( ) = and N be the number of zero, P be the number of pole inside C: | | =
then P=?

A. 0
B. 2
C. 3
D. 4

5. Let ( ) = − and N be the number of zero, P be the number of pole inside C: | | = then

N=?

A. 1
B. 2
C. 3
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D. 4

6. Let ( ) = − and N be the number of zero, P be the number of pole inside C: | | = then

P=?

A. 0
B. 2
C. 3
D. 4

7. Let ( ) = − and N be the number of zero, P be the number of pole inside C: | | =
then N=?

A. 7
B. 2
C. 3
D. 4

8. Let ( ) = − and N be the number of zero, P be the number of pole inside C: | | =
then P=?

A. 0
B. 2
C. 3
D. 4

9. Let ( ) = and N be the number of zero, P be the number of pole inside C: | | =
then ∫ ( )( ) =?

A. 14i
B. 2i
C. 7
D. 4

10. Let ( ) is analytic inside C: | | = ,and N=10 be the number of zero, P=5 be the number of

pole then ∫ ( )( ) =?

A. 5
B. 2
C. 3
D. 1

11. Let ( ) = − and N be the number of zero, P be the number of pole inside C: | | = then

then ∫ ( )( ) =?

A. 2
B.
C. 2
D. 2
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12. Let ( ) = − and N be the number of zero, P be the number of pole inside C: | | = then

then ∫ ( )( ) =?

A. 2
B.
C. 2
D. 2
13. Let ( ) = − and N be the number of zero, P be the number of pole inside C: | | =

then ∫ ( )( ) =?

A. 4
B.

C. 2
D. 2
14. Let ( ) is analytic inside C: | | = ,and N=100 be the number of zero, P=50 be the number

of poles, then ∫ ( )( ) =?

A. 50
B. 20
C. 30
D. 40

15. Let ( ) is analytic inside C: | | = ,and N=1 be the number of zero, P=0 be the number of

pole then ∫ ( )( ) =?

A. 1
B. 2
C. 3
D. 4

Answers for Self Assessment

l. A 2. B 3. A 4. A 5. A

6. A 7. B 8. A 9. A 10. A

11. A 12. A 13. A 14. A 15. A

Review Questions
1. Let ( ) = − and N be the number of zero, P be the number of poles inside C: | | =

then then ∫ ( )( ) =?
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2. Let ( ) = / and N be the number of zero, P be the number of poles inside C: | | =
then then ∫ ( )( ) =?

3. Let ( ) = ( − )( − ) and N be the number of zero, P be the number of poles inside

C: | | = then then ∫ ( )( ) =?

4. Let ( ) = / and N be the number of zero, P be the number of poles inside C:| | = then then ∫ ( )( ) =?

5. Let ( ) = and N be the number of zero and P be the number of pole then P=?

6. Let ( ) = and N be the number of zero and P be the number of pole then N=?

7. Let ( ) = and N be the number of zero and P be the number of pole then P=?

8. Let ( ) = and N be the number of zero and P be the number of pole then N=?

Further Readings
1. Complex Variables and Applications by Churchill, R. V., And Brown, J. W.,

McGraw Hill Education.

2. Foundations Of Complex Analysis by S. Ponnusamy, Narosa Publishing House.

3. Complex Analysis by Lars V. Ahlfors, Mcgraw Hill Education.

4. Complex Variables Theory and Applications by H. S. Kasana, Prentice-Hall.
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Unit 12: Integrals Involving Sines and Cosines Functions

CONTENTS

Objective

Introduction

12.1 Integrals Involving Sines and Cosines Functions

12.2 Improper Integrals, Integration Along Indented Contours

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objective
We turn now to some important applications of the theory of residues, which was developed in
Unit 10. Cauchy residue theorem is used to evaluate certain types of definite and improper
integrals occurring in real analysis and applied mathematics. These integrals are first transformed
to associate counter integral. The counter integrals are then evaluated using Cauchy residue
theorem. After studying this unit, you will be able to:

 evaluate the definite integral of type ∫ ( , ) .
 evaluate the improper integral over semi-infinite and infinite interval

Introduction
In this unit first the definite integral of type ∫ ( , ) would be explained and then we
will evaluate the improper integral over semi-infinite(0,∞), (−∞, 0) and infinite (−∞,∞)interval.

12.1 Integrals Involving Sines and Cosines Functions

The integral around the unit circle of the type ∫ ( , ) , where is a rational function of, can be obtained by setting = .

The fact that varies from 0 2 leads us to consider as an argument of a point on a positively
oriented circle centered at the origin. Taking the radius to be unity, we use the parametric
representation = , (0 ≤ ≤ 2 ).
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Notes

to describe C (in above figure). We then refer to the differentiation formula to write = =
.

We know that sin = – and cos = . These relations suggest that we make the

substitutions sin = – cos = , = which transform integral into the contour integral

of a function of z around the unit radius circle C.

∫ –2 , +2
The original integral is, of course, simplya parametric form of integral and we can evaluate that

integral by means of Cauchy’s residue theorem once the zeros in the denominator

have been located and provided that none lie on C.

Example

Evaluate ∫ 3−2 +20 around the unit radius circle C.

Solution

Let = 3 − 2 +2
0

Put sin = – cos = , = .

Then = 3 − 2. + −12 + – −12
2
0

= 2(1 − 2 ) 2 + 6 − 1 − 22
0

Now obtain the poles of ( ) (1 − 2 ) + 6 − 1 − 2 = 0
= −6 ± (6 ) − 4(1 − 2 )(−1 − 2 )2(1 − 2 )= −6 ± 42(1 − 2 )= 2 − , (2 − )/5

Only lies inside C.
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( ) ; (2 − )/5 = lim →( )/ { − (2 − )/5} ( ) .

( ) ; (2 − )/5 = 1/2 .

= 3 − 2 +2
0 = 3 − 2. + −12 + – −12

2
0

= 2 [ 2(1 − 2 ) 2 + 6 − 1 − 2 ; (2 − )/5 ].= 3 − 2 +2
0 = 2 [1/2 ]
= 3 − 2 +2

0 =
Example

Evaluate ∫ 5+420 around the unit radius circle C.

Solution

Let = 5 + 42
0

Put sin = – cos = = .

Then = 5 + 4. – −12
2
0

= 5 + 2. 2−12
0

= .(5 + 2 2 − 2)2
0= 2 2 + 5 − 22
0

Now obtain the poles of 2 + 5 − 2 = 0
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= −5 ± (5 ) + 164= −5 ± √−25 + 164= −5 ± √−94= −5 ± 34= −2 , = −2
Only = − lies inside C.

; − = lim → { − (− )} .

; − = lim → .

; − = .; − = .

= 3 − 2 +2
0 = 2 12 2 + 5 − 2 ; − 2 .= 3 − 2 +2

0 = 2 [1/3 ]
= 3 − 2 +2

0 = 2 /3
12.2 Improper Integrals, Integration Along Indented Contours
In calculus, the improper integral of a continuous function ( ) over the semi-infinite
interval 0 ≤ < ∞ is defined by means of the equation∫ ( ) = lim → ∫ ( )
When the limit on the right exists, the improper integral is said to converge to that limit.
If ( ) is continuous for all , its improper integral over the infinite interval −∞ < <∞ is defined by writing
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Notes

( ) = lim→ ( )
∫ ( ) = lim → ∫ ( ) + lim → ∫ ( ) .

We now describe a method involving sums of residues, to be illustrated in the next
section, that is often used to evaluate improper integrals of rational functions.∫ ( ) where ( ) = ( )/ℎ( )  and ( ), ℎ( ) are polynomials in and the degree
of ℎ( ) exceeds that of ( ) by atleast two.

To evaluate this type of integral we ( ) = ( ) ℎ( ) .
The poles of ( ) are determined by the zeros of the equation ℎ( ) = 0.( )No pole of ( ) lies on the real axis.

We choose the curve consisting of the interval [− , ] on the real axis and the semi-circle| | = lying in the upper half of the plane.

Here is chosen sufficiently large so that all the poles lying in the upper half of the plane
are in the interior of C.

Then we have ∫ ( ) = ∫ ( ) + ∫ ( ) .

Where is the semi circle.

Since deg ℎ( ) – ( ) ≥ 2 it follows that ∫ ( ) 0 as ∞ and hence

∫ ( ) = ( )
∫ ( ) can be evaluated by using Cauchy’s residue theorem.( ) ( ) has poles lying on the real axis.

Suppose a is a pole lying on the real axis.

In this case we indent the real axis by a semi circle of radius ε with centre lying in the
upper half plane where ε is chosen to be sufficiently small.

Such an indenting must be done for every pole of ( ) lying on the real axis.

It can be proved that ∫ ( ) = − { ( ); }. By taking limit as ∞ 0 we

obtain the value of ∫ ( ) .

Example

Use contour integration method to evaluate ∫
Solution

Let ( ) = 1/(1 + )

The poles of ( ) are given by the roots of the equation + 1 = 0 which are the

four fourth roots of -1. = −1
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= (−1)= ( + )= (2 + 1)4 + (2 + 1)4 , = 0,1,2,3.
= , , , which are all simple poles.

We choose the contour consisting of the interval [− , ] on the real axis and the upper
semi-circle | | = which we denote by .∴∫ ( ) = ∫ ( ) + ∫ ( ) .

The poles of ( ) lying inside the contour C are obviously , only.

We find the residues of ( ) at these points.( ); = ℎ( )/ ( )ℎ ℎ( ) = 1 ( ) = + 1
 ( ) = 4⟹

 = 4
 = 4
( ); = 14

Now ( ); = ℎ( )/ ( )ℎ ℎ( ) = 1 ( ) = + 1
 ( ) = 4⟹

 = 4
 = 4
( ); = 14

By residue theorem, ∫ ( ) = 2 ( ); + ( );
∫ ( ) = 2 14 + 14
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∫ ( ) = 2 14( 3 /4 + 3 /4) + 14( 9 /4 + 9 /4)∫ ( ) = 24 1/√2 + 1/√2 + 24 1/√2 + 1/√2∫ ( ) = √2
∴∫ ( ) = ∫ ( ) + ∫ ( )

( ) + ∫ ( ) = √2
1 + + ∫ ( ) = √2

Since deg ℎ( ) – ( ) ≥ 2 it follows that ∫ ( ) 0 as ∞ and hence

∫ ( ) = ( )
1 + + ∫ ( ) = √2

1 + =√22 1 + =√2
1 + =2√2

Summary

 The integral around the unit circle of the type ∫ ( , ) , where is a
rational function of , can be obtained by setting = .

 The improper integral of a continuous function ( ) over the semi-infinite
interval 0 ≤ < ∞ is defined by means of the equation ∫ ( ) =lim → ∫ ( ) .

 When the limit on the right exists, the improper integral is said to converge to
that limit. If ( ) is continuous for all , its improper integral over the infinite
interval −∞ < < ∞ is defined by writing

( ) = lim→ ( )
∫ ( ) = lim → ∫ ( ) + lim → ∫ ( ) .

Keywords
Improper integral:  The improper integral of a continuous function ( ) over the semi-infinite
interval 0 ≤ < ∞ is defined by means of the equation ∫ ( ) = lim → ∫ ( ) .
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Self Assessment

1. If ∫ = then the value of ∫ is

A.

B.

C.

D.

2. If ∫ = then the value of ∫ is

A.

B.

C.

D.

3. If ∫ = then the value of ∫ is

A. √
B. √
C.

D.

4. If ∫ = then the value of ∫ is

A.

B.

C.

D.

5. If ∫ = then the value of ∫ is

A.

B.

C.

D.
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6. If ∫ = then the value of ∫ is

A. √
B. √
C.

D.

7. If ∫ = then the value of ∫ is

A.

B.

C.

D.

8. If ∫ = then the value of ∫ is

A. √
B. √
C.

D.

9. The value of ∫
A.

B.

C.

D.

10. The value of ∫
A.

B.

C.

D.
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11. The value of ∫
A.

B.

C.

D.

12. The value of ∫
A.

B.

C.

D.

13. The value of ∫
A.

B.

C.

D.

14. The value of ∫
A.

B.

C.

D.

15. The value of ∫
A.

B.

C.

D.

16. The value of ∫
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A.

B.

C.

D.

Answers for Self Assessment

l. A 2. C 3. A 4. C 5. A

6. B 7. A 8. B 9. B 10. A

11. B 12. A 13. A 14. A 15. B

16. A

Review Questions

1. Evaluate ∫
2. Evaluate ∫
3. Evaluate ∫ . .
4. Evaluate ∫
5. Evaluate ∫
6. Evaluate ∫ . .
7. Use contour integration method to evaluate ∫
8. Use contour integration method to evaluate ∫
9. Use contour integration method to evaluate ∫
10. Use contour integration method to evaluate ∫
11. Use contour integration method to evaluate ∫ ( )
12. Use contour integration method to evaluate ∫ ( )
13. Use contour integration method to evaluate ∫ ( )
14. Use contour integration method to evaluate ∫ ( )
15. Use contour integration method to evaluate ∫ ( )
16. Use contour integration method to evaluate ∫ ( )
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17. Use contour integration method to evaluate ∫ ( )
18. Use contour integration method to evaluate ∫ ( )

Further Readings
1. Complex Variables and Applications by Churchill, R. V., And Brown, J. W.,

McGraw Hill Education.

2. Foundations Of Complex Analysis by S. Ponnusamy, Narosa Publishing House.

3. Complex Analysis by Lars V. Ahlfors, Mcgraw Hill Education.

4. Complex Variables Theory and Applications by H. S. Kasana, Prentice-Hall.
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1. Complex Variables and Applications by Churchill, R. V., And Brown, J. W.,

McGraw Hill Education.

2. Foundations Of Complex Analysis by S. Ponnusamy, Narosa Publishing House.

3. Complex Analysis by Lars V. Ahlfors, Mcgraw Hill Education.

4. Complex Variables Theory and Applications by H. S. Kasana, Prentice-Hall.

Lovely Professional University 137



Unit 13:Conformal Mapping

Notes

Unit 13: Conformal Mapping

CONTENTS

Objectives

Introduction

13.1 Conformal Transformation

13.2 Necessary and Sufficient Conditions for Conformal Mappings

13.3 Classification of Conformal Transformation

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives
A large number of problems arising in fluid mechanics, electrostatics, heat conduction,
and many other physical situations can be mathematically formulated in terms of the
Laplace’s equation. i.e, all these physical problems reduce to solving the equation+ = 0, in a certain region D of the −plane.

The function ( , ), in addition to satisfying this equation also satisfies certain boundary
conditions on the boundary of the region . From the theory of analytic functions, we
know that the real and the imaginary parts of an analytic function satisfy Laplace’s
equation. It follows that solving the above problem reduces to finding a function that is
analytic in and that satisfies certain boundary conditions on . Using the conformal
mapping it turns out that the solution of this problem can be greatly simplified if the
region is either the upper half of the z plane or the unit disk.

If in the −plane we are given a potential ( , ), and apply to it a conformal
transformation, in the w-plane we obtain a potential ( , ) that is a solution of the
Laplace equation + = 0. After this unit you will be able to

 understand the principle of conformal mapping and their different types.
 learn the necessary and sufficient conditions for conformal mappings.
 find the image of the curve in the −plane into −plane under the

transformation = ( ).
Introduction

A complex number = + can be represented by a point whose coordinates
are ( , ). The axis of is called real axis and the axis of is called imaginary axis.
The plane is called as a −plane or a complex plane or Argand plane.

A number of points ( , ) are plotted on −plane by taking different values of (i.e.,
different values of and ).
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Notes

The curve is drawn by joining the plotted points in the −plane. Now let = += ( ) = ( + ). To draw a curve of w, we take u-axis and v-axis.

By plotting different (u, v) on w-plane and joining them, we get a curve on−plane. For every point ( , ) in the −plane, the relation = ( ) defines a
corresponding point ( , ) in the −plane shown as in the following figure.

We call this as” transformation” or mapping of −plane into −plane. If a point maps
into the point , is known as the image of . As the point ( , ) traces a curve in−plane the transformed point ( , )will trace a curve in w-plane.

We say that a curve in the −plane is mapped in to the corresponding curve in−plane by the relation = ( ).
Example:

Transform the curve − = 4 under the mapping = .

Solution: =⇒ + = ( + )= ( − + (2 ).
This gives = − and = 2

Image of the curve − is a straight line, = 4 parallel to the v-axis in w-plane.
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Notes

13.1 Conformal Transformation
Let two curves , in the −plane intersect at the point and the corresponding curve, in the −plane intersect at .

If the angle of intersection of the curves at in −plane is the same as the angle of
intersection of the curves of −plane at in magnitude and sense, then the
transformation is called conformal transformation at .
13.2 Necessary and Sufficient Conditions for Conformal Mappings
The Necessary and sufficient condition for the toning formation = ( ) to be conformal in that( ) is analytic.

Theorem

Let ( ) be an analytic function of in a region of the −plane and ( ) ≠ 0 in D. Then the
mapping = ( ) is conformal at all points of .

13.3 Classification of Conformal Transformation
1. Translation:

A translation is a transformation that slides a figure across a plane or through space. With
translation all points of a figure move the same distance and the same direction.

Basically, translation means that a figure has moved. An easy way to remember what translation
means is to remembera translation is a change in location. A translation is usually specified by a
direction and a distance.

The mapping is = + , where is a complex constant.
Let = + , = ( , ) + ( , ) and = + . Then = + will
imply + = ( + ) + ( + )= ( + ) + ( + ).

By comparing real and imaginary parts, we get, = + , and = + Thus, the
transformation of a point ( , ) in the − onto a point ( + , + ). Hence,
the transformation is a translation of the axes and preserves the shape and size.
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2. Rotation and Magnification:
A rotation is a transformation that turns a figure about (around) a point or a line.
The point a figure turns around is called the center of rotation. Basically, rotation
means to spin a shape. The center of rotation can be on or outside the shape.

Dilation changes the size of the shape without changing the shape. When you go
to the eye doctor, they dilate you eyes. Let’s try it by turning off the lights.
When you enlarge a photograph or use a copy machine to reduce a map, you are
making dilations. Enlarge means to make a shape bigger.
Reduce means to make a shape smaller. The scale factor tells you how much
something is enlarged or reduced.

This mapping is = , where is a complex constant.

a. Cartesian form: Let = ( , ) + ( , ), = + and = + . Then = will
imply that + = ( + )( + )= ( − ) + ( + )

By comparing real and imaginary parts, ( , ) = − and( , ) = − .
Thus, the transformations of a point ( , ) in the −plane into a point( − , + ) in w-plane.

b. Polar form: Let = , = and = .

Then transformation = becomes = · = ( ).
By comparing, we have = = +
Thus, the transformation maps a point ( , ) in the −plane into a point ( , + ) in the−plane.

Hence, the transformations consist of magnification of the radius vector of by = | | and its
rotation through the angle .

Example

Describe how the triangle A was transformed to make triangle B
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Notice each time the shape transforms the shape stays the same and only the size changes.

3. Inversion and Reflection: The transformation = is known as inversion and
reflection.
a) Cartesian Form: Let = + , = + , then= 1⇒ + = 1++ = −( + )( − )+ = −( + )

By comparing the real and the imaginary parts, we get

= ( + )= −( + )
Thus, the transformation maps a point ( , ) in the z-plane into a point

( ) , ( ) in the −plane.

(b) Polar Form:

Let = and = . Then the transformation becomes = .

so that = = − . Thus under the transformation w = 1/z , any point ( , ) in

z-plane is mapped into the point ( , − ) . Note that, the origin z = 0 is mapped to the
point w = ∞, called the point at infinity.

Example
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Consider the transformation = + (1 + ) and determine the region in the w-plane
corresponding to the triangular region bounded by the lines = 0, = 0 + =1 in the z-plane.

Solution:

The given triangular region bounded by the lines x = 0, y = 0 and x+y = 1 is shown in the following
figure. Then the vertices of the triangular region are (0, 0),(1, 0) and (0, 1). Now, the given
transformation is

= + (1 + )⇒ + = ( + ) + (1 + )⇒ + = ( + 1) + ( + 1)⇒ = + 1 = + 1.= 0 ⇒ = 1;= 0 ⇒ = 1;+ = 1 ⇒ − 1 + − 1 = 1 ⇒ + = 3
The line x = 0 maps into = 1, which is also the vertical line in w-plane.

Also, the line = 0maps into = 1, which is the horizontal line in w-plane. And, the
line + = 1 maps into the line + = 3. Hence, the region becomes triangle
bounded by the lines = 1, = 1, + = 3; which is shown in above figure.

Example

Find the image of the circle | | = 2 under the transformation = + 1.
Solution:

Let w = u + iv and = + .

Then = + 1 ⇒ + = ( + ) + 1 = − + 1= (1 − ) +⇒ = 1 − =⇒ = 1 − = , | | = 2⇒ | | = 4⇒ | + | = 4
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⇒ + = 4⇒ + (1 − ) = 4⇒ ( − 1) + = 4
which is equation of the circle centered at (1, 0) and radius is 2. Thus the transformation
rotates the circle by /2 and translate its by unity to the right.

Example

Find the image of the line − + 1 = 0 under the mapping = . Show it graphically

Solution:

Let = + ,= + . Then the transformation =⇒ + = 1+⇒ + = 1+⇒ + = 1+ × −–⇒ + = + – +
comparing real and imaginary parts = += − +

− + 1 = 0⇒ − = 1⇒ + + + = 1⇒ + = +⇒ − + − = 0⇒ − + 14 + − + 14 = 12⇒ − 12 + − 12 = 12
which is the equation of the circle centered at , with radius
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Example

Show that the image of the hyperbola − = 1 under the transformation = is the
lemniscate = 2 , where =
Solution:

Let = + ,= + . Then the transformation =⇒ + = 1+⇒ + = 1+⇒ + = 1+ × −–⇒ + = + – +
comparing real and imaginary parts = += − +− = 1

+ − + = 1⇒ − = ( + )
Putting = = (∵ = ),
we get,

( ) − ( ) = (( ) + ( ) )⇒ = cos − sin= 2 .

Hence, the image of hyperbola in z-plane is = 2 , which is lemniscate shown in
the following figure.
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Summary

 A complex number = + can be represented by a point whose coordinates are ( , ).
The axis of is called real axis and the axis of is called imaginary axis. The plane is called as
a −plane or a complex plane or Argand plane.

 A curve in the −plane is mapped in to the corresponding curve in −plane
by the relation = ( ).

 If the angle of intersection of the curves at in −plane is the same as the angle of
intersection of the curves of −plane at in magnitude and sense, then the
transformation is called conformal transformation at .

 The Necessary and sufficient condition for the toning formation = ( ) to be conformal in
that ( ) is analytic.

 Let ( ) be an analytic function of in a region of the −plane and ( ) ≠ 0 in D. Then the
mapping = ( ) is conformal at all points of .

Keywords
 Translation: The mapping is = + , where is a complex constant.

 Rotation and Magnification: This mapping is = , where is a complex
constant.

 Inversion and Reflection: The transformation = is known as inversion and
reflection.

Self Assessment

1. What is the region's shape formed by the set of complex numbers z satisfying |z-ω|≤ α?

A. circle of radius ω

B. circle with center ω

C. disk of radius α

D. disk with center α

2. Find the area of the region given by 11≤|z| ≤ 19.

A. 120π sq. units

B. 180π sq. units

C. 240π sq. units
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D. 320π sq. units

3. Describe the region given by | − | || − | + | || = .
A. real axis

B. imaginary axis

C. circle centered at origin

D. quadrant 2

4. The mapping = is conformal in whole complex plane
A. True
B. False

5. The image of | − | = under the =
A. | − 2| = 4
B. | − 1| = 4
C. | | = 4
D. | − 2| = 2
6. The image of | | = under the =
A. | | = 4
B. | − 1| = 4
C. | | = 4
D. | − 2| = 2
7. The image of | − | = under the =
A. | − 3| = 6
B. | − 1| = 6
C. | | = 6
D. | − 2| = 4
8. The image of | | = under the =
A. | | = 6
B. | − 1| = 6
C. | | = 4
D. | − 2| = 2
9. The image of = under the = + −A. = 4 +B. = 6 +C. = 4
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D. = 2
10. The image of = + under the = + −
A. = 4 +
B. = 7 +
C. = 4
D. = 2
11. The image of = − under the = + −
A. = 4 +
B. = 7 − 5
C. = 4
D. = 2
12. The image of | − | ≥ under the =
A. | − 2| ≥ 4
B. | − 1| ≥ 4
C. | | ≥ 4
D. | − 2| = 2
13. The image of | | > 2 under the =
A. | | > 4
B. | − 1| = 4
C. | | = 4
D. | − 2| = 2
14. The image of | − | > 2 under the =
A. | − 3| > 6
B. | − 1| < 6
C. | | = 6
D. | − 2| = 4
15. The image of | | = under the =
A. | | = 3
B. | − 1| = 3
C. | | = 4
D. | − 2| = 2

Answers for Self Assessment

l. D 2. B 3. A 4. A 5. A
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6. A 7. A 8. A 9. A 10. B

11. B 12. A 13. A 14. A 15. A

Review Questions
1. Find the image of | − 10| = 2 under the = 2 + 5
2. Find the image of | − 10| = 2 under the = 5
3. Find the image of | − 10| = 2 under the =
4. Find the image of = 2 under the = 2 + 5
5. Find the image of − 5 = 2under the = 5
6. Find the image of − 1 = 2under the =
7. Find the image of | − 10| = 2 under the = 1/
8. Find the image of | − 10| = 2 under the = 5/
9. Find the image of | − 10| = 2 under the =
10. Find the image of = 2 under the = 1/

Further Readings
1. Complex Variables and Applications by Churchill, R. V., And Brown, J. W.,

McGraw Hill Education.

2. Foundations Of Complex Analysis by S. Ponnusamy, Narosa Publishing House.

3. Complex Analysis by Lars V. Ahlfors, Mcgraw Hill Education.

4. Complex Variables Theory and Applications by H. S. Kasana, Prentice-Hall.
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9. Find the image of | − 10| = 2 under the =
10. Find the image of = 2 under the = 1/

Further Readings
1. Complex Variables and Applications by Churchill, R. V., And Brown, J. W.,

McGraw Hill Education.

2. Foundations Of Complex Analysis by S. Ponnusamy, Narosa Publishing House.

3. Complex Analysis by Lars V. Ahlfors, Mcgraw Hill Education.

4. Complex Variables Theory and Applications by H. S. Kasana, Prentice-Hall.
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Objectives
Mobius transformation are among those fundamental mapping in the geometry with
application from brain mapping to relativity theory. A Mobius transformation sense each
point in a plane to a corresponding point.In this section we investigate the Mobius
transformation which provides very convenient methods of finding a one-to-one
mapping of one domain into another.

After this unit you will be able to

 understand the Mobius transformation and its property
 learn theCross Ratio of cross-ratio of four pointsand its invariance property
 solve the problem of fixed points and Mobius Maps.

Introduction
In the previous unit we have studied a linear transformation = ( ) ∶= + ,
where and are fixed complex numbers, ≠ 0.We write = ( ) as | | ( ) + .
As we see this transformation is a composition of a rotation about the origin through the
angle ( ).∶= ( ) , a magnification.= | | and a translation = = + .

Each of these transformations are one-to-one mappings of the complex plane onto itself
and gap geometric objects onto congruent objects. In this unit first, we will understand
the Mobius transformation and its property and then we will consider the fixed point,
and last, we will deduce the learn the Cross Ratio of cross-ratio of four points and its
invariance property.
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Notes

14.1 Mobius Transformation

A transformation of the form = ( ) = , − ≠ 0, , , , are complex
constants is called a bilinear transformation or mobius transformation. Bilinear
transformation is conformal since = ( ) ≠ 0.
The inverse mapping of the above transformation is ( ) = = –
which is also a bilinear transformation.

We can extend f and to mappings in the extended complex plane. The value (∞)
should be chosen, so that ( ) has a limit ∞.
Therefore, we define (∞) = lim → ( ) = lim → = /
and the inverse is = ∞. Similarly, the value (∞) is obtained by

(∞) = lim→ ( ) = lim→ − +− = − /
and the inverse is = ∞.

With these extensions we conclude that the transformation = ( ) is a one-to-one
mapping of the extended complex −plane into the extended complex w-plane.

Example

The Bilinear Transformation which transforms R(z) 0 into the unit circle | | ≤ 1
Here the region for R(z) 0 is shown below.

And the following figure represents the region | | ≤ 1in the w -plane.
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Suppose the bilinear transformation = . . . . . . . . . . . . . (1)
The transforms the half plane R (z)  0 into the circle| | ≤ 1.

is expressible as = // …………… (2)
This   0 , otherwise the points at infinity in the two planes would correspond.

We have seen that the transformation (2) transforms a straight line of z-plane into a circle
of w-plane and points symmetrical about the line transform into the inverse points
w.r.t.| | = 1.
Here the points − symmetrical about the imaginary axis = ( ) = 0 will
correspond to = 0 and  , the inverse points of the circle | | = 1.

Thus we may write, = −and =  on putting above in eqn (2) ,  0 ,  .
Then (2) takes the form = ∗ 


 .............. (3)

The point z = 0 on the boundary of the half plane R (z)  0 must correspond to a point on
the boundary of | | = 1so that | | = ∗ − + 1 = ∗ 0 − 0 + = 1= 

Where  is real. Hence =  ∗ − + 

Evidently z  gives w = 0. But w = 0 is an interior point of circle | | = 1.

Hence z  must be a point of the right half plane i.e., R () > 0. With this condition
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=  ∗ − + 

is the required transformation.

Theorem

The composition of two Möbius transformations is again a Möbius transformation.

Proof

Just as translations and rotations of the plane can be constructed from reflections across
lines, the general Möbius transformation can be constructed from inversions about clines.

14.2 Property of Mobius Transformation

Every bilinear transformation = , − ≠ 0 is the combination of basic
transformations translations, rotations and magnification and inversion.

Möbius transformations = products of inversions (or sometimes orientation-preserving products)
Forms group of geometric transformations Contains all circle-preserving transformations in higher
dimensions (but not 2d) contains all conformal transformations.

14.3 Fixed Point
A point in complex plane is called a fixed point for the function if ( ) = .

To visualize Möbius transformations it is helpful to focus on fixed points and, in the case
of two fixed points, on two families of clines with respect to these points.

Given two points p and q in complex plane in the following figure, a type I cline
of p and q is a cline that goes through p and q, and a type II cline of p and q is a cline
with respect to which p and q are symmetric.

Type II clines are also called circles of Apollonius shows some type I and type II clines
of p and qq. The type II clines of p and q are dashed.

Figure 1. Type I clines (solid) and Type II clines (dashed) of pp and q.
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Example

Find the fixed point/s of ( ) =
Solution ( ) = − 1 =

1 = − 1
− + 1 = 0= −(−1) ± (−1) − 4 ∗ 1 ∗ 12= 1 ± √32

So= √ , √ are the fixed points

Example

Find the fixed point/s of ( ) =
Solution ( ) = − 5 =

1 = − 5
− + 5 = 0= −(−1) ± (−1) − 4 ∗ 1 ∗ 52= 1 ± √192

So= , √ are the fixed points

14.4 Cross Ratio
We have already seen that Möbius transformations map circles to circles. In this section
we want to find a specific Möbius transformation that takes a specific circleto another
specific circle. Recall from Euclidean geometry that three points uniquely determine a
circle. Let us denote one circle by and one by . We choose points , on, .
Then if we find a Möbius transformation h that takesℎ( ) = ,ℎ( ) = ,ℎ( ) = .
then ℎ must map .
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If the points ≠ ∞, we define a Möbius transformation by ( ) = – –– –
which clearly takes ( ) = 0,( ) = 1,( ) = ∞.
If one of the three points = ∞ (which means that is a line) we have( ) = −– ( = ∞),( ) = – ( = ∞),( ) = – ( = ∞),

which satisfy ( ) = 0, ( ) = 1, ( ) = ∞.
Now let g be another Möbius transformation which takes( ) = 0, ( ) = 1, ( ) = ∞.
Then we notice that the equation ℎ( ) = can be written as( ) = ⇐⇒ ( ) = ( )
which means that – –– – = – –– –
These fractions are called cross ratios.

Example
Find a Möbius transformation that takes 0 , 1 2 − 1 4 ratio?

Solution

We calculate the appropriate cross( , 0, 1, −1) = ( − 0)(1 − (−1))− (−1) (1 − 0)= 2+ 1( , , 2, 4) = ( − )(2 − 4)( − 4)(2 − )= −2( − )( − 4)(2 − )
Now ( – )( – )( – )( – ) = ( – )( – )( – )( – )2+ 1 = −2( − )( − 4)(2 − )
which gives = ℎ( ) = ( )–
which is the desired Möbius transformation.
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Example

Find a Möbius transformation that takes the region = { ∈ | | | > 1} to the region= { ∈ | < 0}.
We choose both to be left regions.

That is accomplished by choosing = 1,= − ,= −1,= 0,= ,= ∞.
Since Möbius transformations take left regions to left regions, a solution to the problems

is a Möbius transformation that takes 1 0, − − 1 ∞.
As in the previous example we find such a Möbius transformation by equating the two
cross ratios, i.e.,( , 0, , ∞) = ( , 1, − , −1)
which is the same as – = – 1 (− + 1)/( + 1) − – 1 ,
where we have used the first formula in Equation 6 to calculate the cross ratio for w. This

gives the desired Möbius transformation = ℎ( ) = –

There exists a unique bilinear transformation that maps four distinct points, , on to four distinct points , , respectively.

An implicit formula for the mapping is given by, ( – )( )( )( ) = ( )( )( )( )
The above expression is known as cross-ratio of four points.

Summary

 Every bilinear transformation = ( + )/( + ) , − ≠ 0 is the combination
of basic transformations translations, rotations and magnification and inversion.

 The cross-ratio of four points is bilinear transformation that maps four distinct
points , , on to four distinct points , , respectively is
given
by, ( – )( )( )( ) = ( )( )( )( ).

Keywords
Fixed point: A point in complex plane is called a fixed point for the function
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if ( ) = .

Self Assessment

1. What is/are the fixed points of ?

A. ±√
B. ±√
C. ±√
D. ±√
2. What is/are the fixed points of ?

A. 3

B. 2

C.

D. 1

3. What is/are the fixed points of ?

A. ±√
B. ±√
C. ±√
D. 1 ± √3
4. What is/are the fixed points of ?

A. 3

B. 2

C.

D. 1

5. What is/are the fixed points of ?

A. ±√
B. ±√
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C. ±√
D. ±√
6. What is/are the fixed points of ?

A. ±√
B. ±√
C. ±√
D. ±√
7. What is/are the fixed points of ?

A. ±√
B. ±√
C. ±√
D. ±√
8. What is/are the fixed points of ?

A. 0

B. 2

C.

D. 1

9. A transformation of the form = ( ) = is called a bilinear transformation or

mobius transformation if____?

A. ≠
B. ≠ 5
C. ≠ 7
D. ≠
10. A transformation of the form = ( ) = is called a bilinear transformation or

mobius transformation if____?
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A. ≠
B. ≠ 5
C. ≠ 7
D. ≠
11. A transformation of the form = ( ) = is called a bilinear transformation or

mobius transformation if____?

A. ≠
B. ≠
C. ≠
D. ≠
12. A transformation of the form = ( ) = is called a bilinear transformation or

mobius transformation if____?

A. ≠ 5
B. ≠ 6
C. ≠ 7
D. ≠ 3
13. A transformation of the form = ( ) = is called a bilinear transformation or

mobius transformation if____?

A. ≠
B. ≠ 3
C. ≠ 7
D. ≠
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14. A transformation of the form = ( ) = is called a bilinear transformation or

mobius transformation if____?

A. ≠ 4
B. ≠ 6
C. ≠ 7
D. ≠ 3
15. A transformation of the form = ( ) = is called a bilinear transformation or

mobius transformation if____?

A. ≠
B. ≠ 4
C. ≠ 7
D. ≠

Answers for Self Assessment

l. A 2. A 3. D 4. D 5. A

6. D 7. B 8. A 9. B 10. B

11. B 12. D 13. B 14. A 15. B

Review Questions
1. Find the fixed point of

2. Find the fixed point of ( )
3. Find the fixed point of

4. Find the fixed point of

5. Find the fixed point of

6. Analyze the Möbius transformation of

7. Analyze the Möbius transformation of ( )
8. Analyze the Möbius transformation of

9. Analyze the Möbius transformation of

10. Analyze the Möbius transformation of
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Further Readings
1. Complex Variables and Applications by Churchill, R. V., And Brown, J. W.,

McGraw Hill Education.

2. Foundations Of Complex Analysis by S. Ponnusamy, Narosa Publishing House.

3. Complex Analysis by Lars V. Ahlfors, Mcgraw Hill Education.

4. Complex Variables Theory and Applications by H. S. Kasana, Prentice-Hall.
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