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Rajesh Kumar Chandrawat,Lovely Professional University Unit 01: Complex Function

Unit 01: Complex Function
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Objectives

The study of functions of a complex variable is an attempt to extend calculus to the complex space.
We will now look at the functions of a complex variable and build a limit and differentiation theory
for them. The section's major purpose is to introduce analytic functions, which are essential in
complex analysis.

After this unit, you would be able to

* understand the concept of complex functions and their different forms and types

*  learn the limit and continuity of a complex-valued function

*  explain the differentiability and Analyticity of a complex function

e compute the domain where a complex-valued function is continuous, differentiable, and

analytic

Introduction

We explore functions f(x) of a real variable x in one-variable calculus. Similarly, in complex
analysis, we investigate functions f(z) of a complex variable z € C. (or in some region of C).

A complex variable is a symbol, such as z, that may represent any of a set of complex integers.
Assume that each value of a complex variable z corresponds to one or more values of a complex
variable w. Then we claim that w is a function of z and write w = f(z). The variable z is sometimes
referred to as an independent variable, whereas the variable w is referred to as a dependent
variable.

In this unit of complex variable functions, we shall show how the operations of taking a limit and
using differentiation rules, finding the derivatives, which we are familiar with for functions of a
real variable, extend in a natural way to the complex plane.
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Complex Analysis-I

1.1 Complex Functions

Let the complex variable Z be defined by Z = x + iy where x and y are real variablesand i is, as usual,
given byi? = 1.

Now let a second complex variable w be defined by w = w + iv where u and v are real variables. If thereis
arelationship between w and z such that to each value of z in a given region of the z —plane there is assigned

one, and only one, the value of w then w is said to be afunction of z, defined on the given region.

Inthiscase, wewritew = f(z).

; Example: Consider w = z° — z,
which is defined for al values of z (that is, the right-hand side can be computed for every value of z).
Then, rememberingthat z = x + iy,

w=1u-+ v
=+ iy)? - (x+iy)
= x% + 2ixy — y* — x — iy.

Hence, equating real and imaginary parts: u = x* - x- y? and v = 2xy - y.

Question: Compute the value of w = z*- zforz =2+ 3i?

Solution

= x? + 2ixy — y* —x — iy
=22 4+ 2i%2¢«3 — 32 —2 — 3§
= —749i

Z
h
)
&
—t

PR

W -Plane

Figure 1: The mapping of z = 2+3i in the w plane by w = z2-z
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Unit 01: Complex Function

T
111

=) Task: (i) For which values of zisw = 1/ z defined?
(ii) For these values obtain u and v and evaluate w whenz = 2 — i.
Solution
(a) wis defined for allz # 0.

(b) Letw =u + iv

+‘__1_ 1
% = _x+iy
1 (x — iy)

Tx+ iy (x -

x — iy
Txl 4+ y?
X
Henceu = ——— andv = ~2—y———.
xZ + y2 X2 + y2

Ifz =2 -1 thenx = 2,y = -1
sothatx* + y* = 5. Thenu = 2/5,v = —1/5andw = 2 /5 — 1/51i.

1.2 The Exponential Function

Let z be the complex variable then using Euler’s relation we are led to define

ez=ex+i)!
eZ=e*, ¢

e?=e”*. (Cosy + iSiny)

e*=e*. (Cosy + iSiny)

Task: Find the solutions for z of the equation e* = i

e*. (Cosy +iSiny) =0+
e*.Cosy=0= y=Q2k+1n/2 Vkez

. s Sin(2k+1)mw
e*.Siny=i= ex.(—z)—= 1=2x=0.
i(2k+1)m

——

z=0+

1.3 Trigonometric Functions

We denote the complex counterparts of the real trigonometric functions cos x and sin x by cos z and
sin z and we define these funclions by the relations:

e'? = Cosz + iSinz , and

e~% = Cusz — iSine.

Cosz = (e? + e~2) /2, and

Sinz = (e —e~7)/2i

|El-bmmpfe:

Prove that Cos?z + Sin®z =1

Solution

L ovely Professional University
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Cos?z + Sinz = (%% +e 27 +2)/4 — (e + 722 —2) /4

1.4 Logarithmic Function

Since the exponential function is one-to-one it possesses an inverse function, which we call In z.

If w = u +iv is a complex number such that e* = z then the logarithm function is defined through
the statement: w = In z. To see what this means it will be convenient to express the complex number
z in exponential form as z = re'? and so

w = u+iv
= In In(re')

= Inr + i

@Example

(@ Inln(1 + D) =lnlin (ﬁe%) =inInvZ + i (§+ 2kn ) ="22 + i (n/4 + 2km)

2

(b) If Inlnz = 1-inthenz = e'™™ = el.e7™ = —¢

1.5 The Limit of a Complex Function

The limit of w = f (z)as z = z, is a number ! such that | f (z) — [| can be made as small as we
wish by making |z - zo| su_ciently small. With the function f (z) we are allowed to approach the

point z = z, along any path in the z-plane; we require merely that the distance |z - zy| decreases
to zero.

In some cases, the limit is simply f (zg).

E:IEs'cammmhs'

Letw = z? - z, the limit of this functionasz — iisf (i) = i*? — i = -1 — L
=] Task:
. z3—iz?+z-i
(a) Fmd the T‘

. Z C & .
(b) Find the P where z = (x — iy) is the complex conjugate of z

Solution
28 —iz%4z—i
(a) Bttt
Z—1

qzz(z—i)+z—i

z—1i
_ (Z2+ 1)(z% - )

. =0
z—i

z x+i x+i x
b)i=2=2=2=1,gnd
z x-ly x-ly x
xtiy iy

— = — = —1. Hence limit does not exist.
x—iy  —iy

L ovely Professional University



Unit 01: Complex Function

1.6 Continuity

Let f (z) be defined and single-valued in a neighborhood of z = zzas well as at z = z. The
function f () is said to be continuous at z = zzif f(z) = f(zg).

Note that this implies three conditions that must be met so that f (z) be continuous at z = zg :
1.  f(2) must exist

2 f(z) must exist, ie., f (z) is defined at z,

3. f(2) =f(20)

Equivalently, if f (z) is continuous at z;, we can write this in the suggestive form

@Example

The function f(z) =

Z
z%+4

is discontinuous at z = +2i asf (2i) and f(—2i) do not exist.

IS
1

=l Task: Check the continuity of f(z) = {z?z + i0z = i} ?
Solution

Here f(i) = Jand f(2) =i%2 = —1.50 f(z)is discontinuous at z = i

=) Task: Check the continuity of f(z) = {iz_—j:—’z # 23 + 4iz = 2i} ?

IS

Solution

=(z—21)(z+21’]

z-20

Here f(2i) =3+ 4iand f(z) = 4i, So f(z)is discontinuous at z = 2i

T
11

2241 >
z2-3z+2

=) Task: Check the continuity of f(z) =

Solution

Here f(z)is not defined as z? —3z + 2 = 0 .50 f(z)is discontinuous at z = 2 and z = 1. We can also
say f (z) is continuous for all z outside of |z| = 2

1.7 Differentiability

flzptdze)-f(zo)

The function f(z) is said to be differentiable at z = z; if the limit { e } exist.

Here Az = Ax + iAy. The derivative of f(z) at z = z, is denoted by (%) __orby f'(z)

Singular Point

A point at which the derivative of function f(z) does not exist is called a singular point of the
function.

A. Analvytic function

A function f (z) is said to be analytic at a point z, if it is di erentiable throughout a neighborhood
of z5, however small.

E Notes: (A neighborhood of zis the region contained within some circle |z — z5| = 7.

L ovely Professional University
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; Example: The function f (2) =

filz) = m It is clear that f'(z) is not defined at z = —i, and z = i. So, the singular

points of f (z) = are z = —i, and z = { and it is not analytic at z = —i, and z = i.

22+1

[LreY |
I

=l Task: Using differentiation rules, find the derivativesof f (z) = e?

Solution
f(z)=e*
f(2) = e*
f (2o + Az) = eZo*iD)
Now
+ Azg) — f(2)
F(z0) = {f(fa ZAUZ) f(zoJ}
) B elzo+dz) _ pZp
roo-{E=2
) B ezDe&z — %o
f'(z0) = {T}
e(e -1
fl’ (ZUJ = ’_(—eﬁz—zl
2
e0(1+ 5+ m;) 4o, —1)
f'(z0) = [ Nz

e Az (s + o R
f’(20)={ e
Az

A (Az)?
P =oof(1+428, @2 )

f'(z) = %0

Task: Using differentiation rules, find the derivatives of f (z) = z*

Solution
f@)=72°
f () = 7§
f (2o +22) = (25 + AZ)?
Now

F(z) = {f(zu +Azp) — f(zo)}

Az

(zo + Az)2 — 73
Az

f'(zp) = [

2 4+ (A2)® + 229z — 72
f:(zo):’ZO ( Z) = Zp ZO]

6 L ovely Professional University



Unit 01: Complex Function

P = {22082 220)

f'(zy) = {Az + 22}
f'(20) = 22,

Task: Show that the function f(z) = z is not analytic anywhere in the complex
plane.

Solution
f@ =z
f(z) =x+iy
fz)=x—iy
Zo = Xt 1Yo
Az = Ax + iAy
f(z0) = X —iyo
f (Az) = Ax —iAy
fzg+Azy) = xp + Ax — i(y, +Ay)
Now

+ Azg) —
f;(za):[f(zo L f(zu)}

) = [xo + Ag—idly, <+ Ay) — (x5 — iyo)}

Ax —iAy
r Xo +Ax — iy, +idy —xp + iy
fl(zo) = [ A; —idy ﬂ}
.o (Ax+ ity

f'zo) = {Ax = iﬂy}
f(z0) = {pim (EER(E) =1
And
£ teo) = {fim, R} 3) = 1

Here the left- and right-hand side limit does not exist so f'(zg) = {M(Z—")

Az
&
Notes:

} does not exist.

e If afunction is analytic at any given point in the complex plane, then it’s also differentiable
at the given point.

e If a function is differentiable at any given point in the complex plane, then it’s also
continuous at the given point.

L]

If a function is continuous at any given point in the complex plane, then the limit also
exists at the given point.

L ovely Professional University
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Summary

The limit of w = f (z)as z — z; is a number [ such that | f (2) — [| can be made as small as
we wish by making |z - z,| su ciently small.

Let f (z) be defined and single-valued in a neighborhood of z = zas well as at z = z;. The
function f (z) is said to be continuous at z = zyif f(2) = f(z,).

The function f(z) is said to be differentiable at z = z if the limit exist.

{f'(zu+6zAc;)—f(Zu]}
A point at which the derivative of function f(z) does not exist is called a singular point of the
function.

A function f (z)is said to be analytic at a point z, if it is di erentiable throughout a
neighborhood of z,, however small.

If a function is analytic at any given point in the complex plane, then it’s also differentiable at
the given point.

If a function is differentiable at any given point in the complex plane, then it’s also continuous
at the given point.

If a function is continuous at any given point in the complex plane, then the limit also exists at

the given point.

Keywords

Limit: The limit of w = f (z)as z = z is a number [ such that | f (z) — || can be made as small

as we wish by making |z - zy| su 'ciently small.

Continuity:f (z) be continuousat z = z; :

1.

2
G

f(z) must exist
f(z,) must exist, i.e., f (z) is defined at z,

f(z) =f(20)

Differentiability:The function f(2) is said to be differentiable at z = z, if the limit

{f'(lu+62c})—f[lu]

Az } exist.

Analytic function: function f (z)is said to be analytic at a point z, if it is di erentiable
throughout a neighborhood of z,.

Self Assessment

IS8

SN v »

BEo
. What is the value of -ZT:?

2
4
1
0

4

. z?=3z—
What is the value of ———7
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Unit 01: Complex Function

D. 1

3. Which one of the following is true?

A. If the limit of any function exists at a point, then the function is also continuous at the same
point

B. If the limit of any function does not exist at a point, then the function is continuous at the
same point

C. If a function is continuous at a point then the limit of function exists at the same point

D. If a function is continuous at a point then the limit of function does not exist at the same
point

4. The function f(z) = e? is continuous at

A. Everywhere in the complex plane

B. Nowhere in the complex plane

C. In only the positive quadrant of the complex plane

D. In only the negative quadrant of the complex plane

5. The function f(z) = Sinz/z is continuous at z=0

A. True

B. False

6. Which one of the following is true for the real part(x) value to solve e? =17

A x=1

B. x=2

C. x=0

D. x=3

7. Which one of the following is true for the imaginary part(y) value to solve e? =17

A. y=1

B. y=nm,nisodd

C. y=nm, niseven

D. y=3

L ovely Professional University
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8. The points where f(z) = 1/(z — 5) is not defined?

z=1
z=2
z=5
z=3

SN v »

et

Which one of the following is true for the real part(x) value to solve e¢* =i?

x=1
x=2
x=0
x=3

9 N v »

10. Which one of the following is true for the imaginary part(y) value to solve e =1i?

>

y=1

=(n+1)rr

=

,nisodd

(n+1)m i
=—,n1s even

o 0

y=3

11. Which of the following is true about f(z) = z??

A. Continuous and differentiable

B. Continuous but not differentiable

C. Neither continuous nor differentiable
D

. Differentiable but not continuous?

12. Which of the following is true about f(z) = z + iz ?

A. Continuous and differentiable

B. Continuous but not differentiable

C. Neither continuous nor differentiable

D. Differentiable but not continuous

z+iz

13. Which of the following is true about f(z) = ?

z2

A. Continuous and differentiable

B. Continuous but not differentiable

C. Neither continuous nor differentiable

D. Differentiable but not continuous

iz

?
z2—4

14. Which of the following is one of the singular points f(z) =

A 3

10 L ovely Professional University



Unit 01: Complex Function

o n =
_ e

b

15. Which of the following is one of the singular points f(z) =

2244

A 3

B. 4

C. 2i

D. 1
Answers for Self Assessment
1. B 2. B 3. C 4. A 5. A
6 C 7 C 8 C 9 C 10. C
1. A 12. A 13. C 14. C 15. C

Review Questions

1. Evaluate the z% — 5z + 10

FAR: ]
2. Evaluate the ———
24 +1z?+16

3z%—22% 48272245
3. Evaluate the ———————

z—i
4. Letw = f (z) = z(2— z). Find the values of w corresponding to z = mi.
5.Letw = f(2) = z/(2— z). Find the values of w corresponding to z = 2i.
6. Check the continuity of f (z) = —Cosz

7.Suppose f (z) and g(z) is continuous at z = a. Prove that 3f (z) — 4ig(z) is also continuous
at z =a

8. Check the continuity of f (z) = ifi—:z
9. Check the continuity of f (z) = ii:;

10. Using the definition, find the derivative of function f (z) = 3z%atthe z = 2

|

11. Using the definition, find the derivative of function f (z) = Sinz atthe z = E

12. Using the definition, find the derivative of function f (z) = 1/z atthez = %

3zt-2z%+82%-2245

z—i

13. Find the points where the is not analytic?

14. Find the points where the i—i—?— is not analytic?

15. Check whether the function f (z) = z(2 — z) is analytic everywhere?

L ovely Professional University

11

Notes



Notes

Complex Analysis-1

L“J Further Readings

1. Complex Variables and Applications by Churchill, R. V., And Brown, J. W,,
McGraw Hill Education.

2. Foundations Of Complex Analysis by S. Ponnusamy, Narosa Publishing House.
3. Complex Analysis by Lars V. Ahlfors, Mcgraw Hill Education.

4. Complex Variables Theory and Applications by H. S. Kasana, Prentice-Hall.
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Unit 02: Cauchy-Riemann Equations
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Summary

Keywords
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Further Readings

Objectives

The study of functions of a complex variable is an attempt to extend calculus to the complex space.
We will now look at the functions of a complex variable and build a limit and differentiation theory
for them. The section's major purpose is to introduce analytic functions, which are essential in
complex analysis.

After this unit, you would be able to

* understand the concept of the Cauchy-Riemann equation and their different forms
¢ learn the necessary conditions for a complex-valued function to be analytic at a point
*  explain the sufficient conditions for a complex-valued function to be analytic at a point

*  derive the Polar form of the Cauchy-Riemann equation

Introduction

When considering real-valued functions f(x,y) : R* - R of two variables, there is no notion of
‘the’ derivative of a function. For such functions, we instead only have partial derivatives
arx.y) af (xy)

——— and 2
(x,y) € R?.

(and also directional derivatives) which depend on how we approach a point

For a complex-valued function f(z) = f(x,y): € — R, we now have a new concept of derivative,
f'(z), which by definition cannot depend on how we approach a point (x,y) € C. It is logical, then,
that there should be a relationship between the complex derivative f'(z)and the partial derivatives
2’% and 3‘;;—2) (defined exactly as in the real-valued case). The relationship between the complex
derivative and partial derivatives is very strong and is a powerful computational tool. It is
described by the Cauchy-Riemann Equations, named after Augustin Louis Cauchy (1789-1857) and
Georg Friedrich Bernhard Riemann (1826-1866). In this unit of complex variable functions, we shall
understand the concept of the Cauchy-Riemann equation and their different forms and learn the
necessary and sufficient conditions for a complex-valued function to be analytic at a point and then
extend in a natural way to derive the Polar form of the Cauchy-Riemann equation.

L ovely Professional University

13

Notes



Notes

Complex Analysis-1

21 The Cauchy-Riemann Equations

Let the z=x+ iy and w = u(x,y) + iv(x,¥). A function w = f (z) be defined and continuous in
some neighborhood of a point z = x + {y and differentiable at z itself. Then at this point, the first-
order partial derivative of u(x,y) and v(x,y) exist and satisfy Cauchy-Riemann equations. These
state that w= f(z) is differentiable at a point z = z,if, and only if,

dv

du dv du
— =i—and—=——
dy

ax  dy dx

Proof:
If f (2) is differential at z then according to the definition of differentiability
i _ge FlEAE) =) v . .
fiz) = e{lmo—ﬂ— exists and unique along every path along which Az — 0
z— z

Py = lim {ulx + Ax,y + Ay) + iv(x + Ax,y + Ay)} — {u(x, v) + iv(x, y)}
AX—00y—0 Ax + iAy

Along the path Ax = 0.

{u(x,y +8y) +iv(e,y + Ay)} — {ulny) + iv(x, y)}
0+ iAy

Ur — l
/'@ = fim,

{ulx,y + Ay) —u(x, 1)} + {iv(x,y + Ay) — iv(x, )}
LAy

tr, _ i
[(2) s

{ulx,y + Ay) —ulx, y)} % i {vlx,y + Ay) —vix,y)}

f'@ = gﬁt’no 1Ay Ay=0 Ay

; _6u+6v
re=atsy
') = _6u+6v
A T

Along the path Ay = 0.

F1(2) = lim fu(x + Ax,y) + iv(x + Ax, y)} — {ulx,y) + iv(x, y)}
T Axo0 Ax +i0

o i {ulx + Ax, y) —ulx, y)} + {iv(x + Ax,y) —iv(x,y)}
fia= Ax—0 Ax

{ulx + Ax,y) —ulx, y)} 4 i LR T AGY) ~ Tty »}

1@ = jim,

Ax Ax—=0 Ax
., 0u 4 Lov
fle= dx Lay

Since f(z) is differential, the two limits in equation (2.7) and (2.11) are equal:

6u+.6v_ _6u+6v
dx Lay—" Lay dy

Equate real and imaginary part

14 L ovely Professional University



Unit 02: Cauchy-Riemann Equations

du _ adv dv du q s . .
i i which is the Cauchy-Riemann(C-R) equation.

2.2 The Necessary Condition for Analyticity of Complex Functions

A necessary condition that w = f(z) = u(x,y) + iv (x,y) be analytic or differentiable in a region

du dv dv ou
R is that, in R, u and v satisfy the Cauchy- Riemann equationsie:~—— = —,— = ——
’ dx dy ox dy

o The C-R equations are necessary conditions for a function to be differentiable or analytic at a
point. Thus, a function not satisfying C-R equations at a point will neither be differentiable
nor analytic at that point.

e These conditions are not sufficient. Thus, there exist functions that satisfy C-R equations at a

point but are not differentiable at that point.

2.3 Sufficient Condition for Analyticity of Complex Function

The sufficient condition that w = f(z) = u(x,y) + iv (x,y) be analytic at a point z is

du du dv dv . . . . .
—,and 5, are a continuous function of x and y in a certain neighborhood of z.

1. H,U,g,a,a}?

=20 % _are satisfied in the neighborhood of z.

. du
2. The C-R equations _= = o~

@Example 1:

Show thatw = e?is analytic in the entire complex plane
Solution
w = ¢*
= Xty
= e*.eY=e¥(cos cosy + isiny)
= e*cos y +ie*siny. Here

u=e*cosy

v=e*siny

du dv x
—=—=¢ ,and
dx dy Loz
2o e¥gin
ax  dy smy

Here The C-R equations are satisfied in the neighborhood of z.

du du v
Also U,V 2y ’5"1

analytic in the entire complex plane.

dv z S . . f
nd —— being polynomial is a continuous function of x and hence w = e*is

Task: Show that the simple function f(z) =z =x—1iy is not analytic anywhere in the
complex plane.

Solution
Here f(z) = x — iy and

u=x v=-y

L ovely Professional University
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Complex Analysis-I

du du
—=1,and —=10
dx d dy
dv du
E =(0and E =~1
v v, du
dx  ay " ax ay
. du v dv du . e . 5 . .
The C-R equations —— = —,—— = ———are not satisfied so function f(z) is not analytic anywhere in
dx dy ' dx dy

the complex plane.

Task: Show thatw = z? — zis analytic in the entire complex plane

Solution

w=(x+iy)%- (x + iy)

= x2 —y242xyi —x — iy

xt—y? —x +(2xy — )i

Here u = x* = y2 —x,and v =(2x}’ — y)

du dv du
=—=2x and—=
dy

.
dx By

- dx = _2}’
Here The C-R equations are satisfied in the neighborhood of z.

du du v
Also u, Vi 2y ‘ay’

analytic in the entire complex plane.

v 4 s 1 . . .
and —= being polynomial is a continuous function of x and hence w = zF—z i

TS
11

=) Task: Check whetherw = 1/zis analytic in the entire complex plane

Solution:

1 1 x-i
w=-= ——x 2

z x+iy  x-iy

X iy
x? +y2 x? +y2
X
Hereu = ——and v = -
x% 4y x? +y

Ju _ (x%+y?)- xx2x
ax (% +y2)2
dv_ —(x?+y5)+ yx2x
dy (x? +y2)?
a_u _ 0—xx2y
ay  (x% 4y
dv _ 0+ yx2x
dx  (x? 4y%)?

du du dv av . 5 .
u,v,— — -—,and — are not defined at z = 0. So w is not analytic at z = 0.

dx "dy "dy dx

2.4 Polar Form Cauchy- Riemann Equations.

The polar form of the Cauchy-Riemann equations is-
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Unit 02: Cauchy-Riemann Equations

ou_1ow v _ _1du
ar ree’ar  raoe
Proof:

Let f(z) = f(x + iy) = u(x,y) + v(x,y).
X =rcos 8, y = rsinf
r=\x?+y2, 60=tan"'(y/x)
The Cauchy- Riemann equations.
Remembering that z = x + iy and w = u + iv a function w = f(z) is analytic at a point.
This is provided by the Cauchy -Riemann equations

These state that w = f(2) is dif ferentiable at a point z = z, if, and only if,

du _ dv dv .
7 2y 8 d 5,- —3, atthatpoint.

Polar Form of Cauchy- Riemann Equations.

3u_3u8r+6u38
dx  drox 86 ox
du _6u6r+6u69
dy ~ ardy 06 ady

Ast =x?+y7?, 6=tan_1(%)

( 2 +}, ) 2 % 2x2 —(‘fszr z}—— =cos A
g_; — %(xz +y2)%— . x2+ —_—)= ——-sm 6
g = 75__11‘_? X [G;Zy]— ( i ) = -fsme

2
g ;i_:_z L i = (xzf-yz) = rlCDS g

xZ

du _ dudr  dudd _ du du ~1 .
S Ea—x—arxc059+ae(fsm6)

du _ dudr | dudd _a
AR i L —u———ux51n8+—(—c058)
dy ardy adeady ar

dv __dvdr  dvdd _ dv v ~1 .
a—ga+£a—arxcose+ag(rsmﬁ)

dv _dvdr  dvad _dv 5 dv 1
—=——+——=—xsind +_-(-cosf
dy  arady + agay ar a8 I[r )

du o
A% o =5y
Bux 6+6u(71 ‘6) Bvx . 6+61;' 1 p
A . — | —5i7 - — —
ar cos 30\ 7 sin 37 % sin 78 (Tcos )
du  1dw 2 1du _
=5~ 535/00870 - ( —+——5)sind. cost = 0
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du_  dv
A 5— _E S50
6u>< . B+6u(1 6) Bvx 6+6v(—1 _9)
_— —|—cosB )=~ — —|—
ar st a0 \r ar es ag\r L
du 10w, . dv | 1du i
= (5, — 739)50°0 +(5 + 735)c0s6.5inf = 0

After adding (2.26) and (2.27) we get

du 1dv
ar ras
After adding (2.26) from (2.27) we get
dv _ 1du
ar  rab

wiy,

Au  1du L dPu 0

Task: Using the polar form of the C-R equations show that —— +——=+

rar | riag?
Proof

The polar form of the Cauchy-Riemann equations is-

au_lav
ar roé
Bv_ 1du
ar~ roe

Now differentiate both sides of equation (2.30) partially concerning r and both sides of equation
(2.31) partially concerning 6

*u  -1dv 1 9%
ar?

=298 ;arog

9%v L) 13%u
990r ~ 1 a2

Now multiply equation (2.33) by 1/r and add {2.22)

?u —-1dr 1 0%u

ar? 7226 " r2a6?
Using C-R equation (2.31)

*u 1w 1 0%u

= tror Treaee 0

Summary

e Let the z=x+iyandw = ulx,y) + iv(x,y). A function w= f(z) be defined and
continuous in some neighborhood of a point z = x + iy and differentiable at z itself. Then
at this point, the first-order partial derivative of u(x,y) and v(x,y) exist and satisfy

du dv dv

du
=— and— ==—
dy

Cauchy-Riemann equations. = T -
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Unit 02: Cauchy-Riemann Equations

e A necessary condition that w = f(z) = u(x,y) + iv (x,y) be analytic or differentiable in
aregion R is that, in R, u and v satisfy the Cauchy- Riemann

o The C-R equations are necessary conditions for a function to be differentiable or analytic at
a point. Thus, a function not satisfying C-R equations at a point will neither be differential
nor analytic at that point.

e  These conditions are not sufficient. Thus, there exist functions that satisfy C-R equations at
a point but are not differential at that point.

e  The sufficient condition that w = f(z) = u(x,y) + iv (x,y) be analytic at a point z is

du  du dv v . . . .
a. u,V— . ~_.and — are a continuous function of x and y in a certain

dx ‘dy ‘dy dx

neighborhood
of z.
. du _ dv dv du i e . .
b. The C-R equations —— = ——,—— = ———are satisfied in the neighborhood of z.
dx dy dx dy

e  The polar form of the Cauchy-Riemann equations is-

du _1dv dv _ _1du
ar  rade’ar  rae
Keywords
Cauchy-Riemann equations: Let the z = x + iy and w = u(x,y) + iv(x,y). then
du dv du dv
E = 5 and 5 = _E

The polar form of the Cauchy-Riemann equations -

du _1dv dv _  1du

ar rag’ar  rae

Self Assessment

1. Letz=r.e?and f(z) =u+iv= \/Ethen‘;—i::?

A. —”-?sin(ﬁ/Z]
1

B. ECOS(S',/Z)

C. 5%5:’?1(8[2)

D. %Cos(ﬁ /2)

2. Letz=re®andf(z) =u+iv= ﬁthenj—gz?

A. —”—?51‘11(6/2]
1

B. ECOS(G{'Z)

C. 2—};5:’?1(8;‘2)

Jr

. S Cos(8/2)
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Complex Analysis-1

3.

A.

Letz=r.e@and f(z) =u+iv= ﬁthen% =7

—”l-;sin(ﬂ /2)

1
B. ECOS(S/'Z)

N

*®

O N p

D0 ®p

OO0 ® p

1 2
E-v?-];sm(efz)

T Cos(8/2)

v 2

Letz =7.¢"? and f(2) :u+iv=\z§then£:.

—V—gsin(ﬂ/Z)
1
ECOS(Q{'Z)

1 2
Z—v;;sm(e/z)

Jr

TCos(8/2)

Letz =7.e'% and f(z) :u+ivtheng—i:=?

av

a8

1 o
2yr a8
1dv
rdg

r ou
288

Letz=x+ivand f(z) =u+iv = eztheni—z =7

e*.Cosy
e*. Siny
—e*. Cosy

—e*. Siny

Letz=x+ivand f(z) =u+iv = eztheng—: =7

e*. Cosy
e*. Siny
—e*. Cosy

—e*. Siny

The function f(x + iy) = x* + y + i(y* — x)is...

analytic everywhere in the complex plane
analytic on the real axis
only analytic on the line y = x

differentiable on the line y = x and nowhere else. So, it is nowhere analytic.
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9N % »

9 N v p»

13.

SN = »

14.

9 N v p»

15.

A.

Let z = x + iy and f(z) =u+iv=gthenz—2=?

letz=x+iyand f(z) =u+iv= eztheng—zz?

. The function f(x + iy) = x* — y* + i(2xy) is ...

Analytic everywhere in the complex plane
Not analytic anywhere in the complex plane
Only analytic on the liney = x

Only analytic on the real axis

. Let f(x + iy) = x* + y?then

The Cauchy Remain equations forf(x + iy) are satisfied at x = 0,and y = 0.
The f(x + iy) is analytic.
The f(x + iy) is differentiable everywhere.

Only analytic on the real axis

Let f(x 4+ iy) = x — 2ay + i(bx — cy) is analytic then the value of ¢ is...

-1
2k, k is any real number
k, k is any real number

1+ 2i

Let f(x + iy) = x — 2ay + i(bx — cy) is analytic then the value of b is...

-1
2k, k is any real number
k, k is any real number

1+ 2i

Let f(x + iy) = x — 2ay + i(bx — cy) is analytic then the value of a is...

-1
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B. 2k, k is any real number
C. k, k is any real number

D. 1+2i

Answers for Self Assessment

1 B 2 A 3 C 4 D 5 C
6 A 7 B 8 D 9 A 10. B
1. A 12. A 13. A 14. B 15. C

Review Questions

. Check whether the Cauchy-Remain equation is satisfied for f(z) =5z + 10
. Check whether the Cauchy-Remain equation is satisfied for f(z) = z*

. Find the polar formf (r,8)of f(z) =z + 5

.Letw = f (2) z/(2 ~ z). Find the values of z wheref (2) Is not analytic?

1
2
3
4.Letw = f (z) = z(2 — z). Find the values of z wheref (z) is not analytic?
5
6. Does every function which satisfies the C-R equation is analytic?

7.Show that f (z) = 23 is analytic in the entire complex plane?

8. Show that f (z) = Sinz is analytic in the entire complex plane?

9. Show that f (z) = z.e” is analytic in the entire complex plane?

10. Check whether f (z) = z is analytic everywhere?

11. Check whether f (z) = |z|* is analytic everywhere?

12. Check whether f (z) = 1/z is analytic at the z = %

2
13. Find the points where the i is not analytic?

14. Verify the Cauchy-Remain equation for f (z) = e *?
15. Verify the Cauchy-Remain equation for f (z) = z(2 —z)?

L..J Further Readings
1. Complex Variables and Applications by Churchill, R. V., And Brown, ]J. W,,
McGraw Hill Education.

2. Foundations Of Complex Analysis by S. Ponnusamy, Narosa Publishing House.
3. Complex Analysis by Lars V. Ahlfors, Mcgraw Hill Education.

4. Complex Variables Theory and Applications by H. S. Kasana, Prentice-Hall.
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Unit 03: Harmonic Function
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Objectives

Harmonic functions arise often and serve an important role in mathematics, physics, and
engineering and they are governed by their singularities and boundary conditions (such as
Dirichlet boundary conditions or Neumann boundary conditions). In areas with no boundary,
adding the real or imaginary portion of any whole function generates a harmonic function with the
same singularity. The purpose for this section is to have complete understanding of the role of
harmonic function in complex domains.

After this unit, you would be able to
e describes the harmonic function of two variables in the provided domain.
*  check whether a particular component of a complex function is harmonic in the given domain.

*  compute the harmonic conjugate of a particular component of a complex function

Introduction

In this section, we will study the definition, several essential features, of a harmonic function and
how they are related to complex analysis. We will learn the fundamental relationship for the
analytic function, the real and imaginary portions are both harmonic.
We shall demonstrate that this is a straightforward result of the Cauchy-Riemann equations and in
the last we will learn how to compute the harmonic conjugate of one of the component of a
complex function.

3.1 Harmonic Function

A real-valued functionF (x, y)of two real variables x and y is said to be harmonic in a given domain
of the xy plane if, throughout that domain, it has continuous partial derivatives of the first and
second order and satisfies the partial differential equation

0?F(x, y) +82F(x,y) _

dx? ay? 0

: Example:

The temperatures T (x, y) thin plates lying in the xy plane are often harmonic.
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It is easy to verify that the function T (x,y) = e™ sin x is harmonic in any domain of the xy plane
and, in particular, in the semi-infinite vertical strip(shown in Figure1) 0 < x < m,y > 0.

y
e ———
F=0| L+t L,=0 | T=0
&) T=sinx m X

Figure 1: The geometry of plate for temperature distribution.

Here-
ar
— =e Y Cosx
dx

a%T ;

B o

o = e Y Sinx.
ar .
— =—e¥Sinx
dy

aer ;

it S

Gt B Sinx.

2T | @*T
Andﬁ+ﬁ— 0

So we can say that T is harmonic and the following graph shows the temperature distribution in x
and y direction.

Figure 2: The temperature distribution in x and y direction.
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Unit 03: Harmonic Function

Theorem 1. If a function f (z) = u(x,y) + iv(x,y) is analytic in a domain D, then its component
functions u and v are harmonic in D.

Proof:

To prove this, we need a result that is , if a function of a complex variable is analytic at a point, then
its real and imaginary components have continuous partial derivatives of all orders at that point.

Let the z = x + iy and w = u(x,y) +iv(x,y). A function w = f (z) be defined and continuous in
some neighborhood of a point z =x + iy and differentiable at z itself. Assuming that f (z) is
analytic in D. Then at this point, the first-order partial derivative of u(x,y) and v{x,y) exist. and

satisfy Cauchy-Riemann equations. These state that w= f(z) is differentiable at a point z = z,if, and

only if,
du _ av
dx ~ dy
du _ av
dy ~  ox

Differentiating both sides of equation (3.2) with respect to x andequation (3.3) with respect to y, we
have

*u v
9x?  dxdy
?u %
ay? ~  dyox

v v
dxdy  dydx

As vis continuous so Now add the equations (3.4) and (3.5).

0%y " u "
ax? ~ ay?
Similarly

Differentiating both sides of equation (3.2) with respect to i andequation (3.3) with respect to x, we
have

’u v

dydx ~ ay?

u v
dxdy ~  Ax?

- . *u _ F*u i TR
As uis continuous so s Now subtract the equations (3.8) from (3.7).

0%u  9%*u

PR
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-
-
=

Task: Show that the component of w = z? — zare harmonic in the entire complex plane

Solution

w=(x+iv)% (x +iy)

= x2 —y242xyi —x — iy
= 22 —y? —x +(2xy —¥)i

Here u = x* — y% —x, and v =(2xy — )

du dv

du dv
=—=2x and—=——
dy

_r'jx

ax ay =2y
Here The C-R equations are satisfied in the neighborhood of z.

du du v
Also u, e 3y ‘ay’

analytic in the entire complex plane.

Now

v 4 s s . . ;
and —— being polynomial is a continuous function of x and hence w = z?—z is

a*u a%u
E =2and 3—_}" =2,

o R W (Proved)

SOE ay?

Similarly
G 2%
Fretes 0 and 5 = 0.

v | 3%
So-—+ o 0 (Proved)

dx?

Task: Show that the component of u = x? — y? — yis harmonic.

Solution

Hereu = x* —y2 —y

du u
= 2x anda— =gy—=1
Now
8% a*u
E = 2and 3—_}" =-2.
Fu . Fu
So iy + a_yz =0 (PI‘OVGd)

3.2 Harmonic Conjugate

If two given functions u and v are harmonic in a domain D and their first-order partial derivatives
. . ) _ du _ dv du _  dv ; .
satisfy the Cauchy-Riemann equations (- = T and T 5,) throughout D, then v is said to be

a harmonic conjugate of u.
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E Notes: A function f (z) = u(x,y) + iv(x,y) is analytic in a domain D if and only if v is a
harmonic conjugate of u.

3.3 Method to find the Harmonic Conjugate of a Function

To find the harmonic conjugate of a funcionu(x,y), assuming that f (z) = u(x,y) + iv(x, y)is
analytic in D. Then at this domain the first-order partial derivative of u(x,y) and v(x,y) exist. and

satisfy Cauchy-Riemann equations.

6u_6v
dx ~ dy
6u_ av
dy ~ ox

Holding x fixed and integrating each side of equation (3.10 )here with respect to y,

[ Gar+ow = vay

Where v(x,y) is the harmonic conjugate of u(x, y) and ¢(x) is, at present, an arbitrary function of x.

Now partially differentiate each side of equation (3.12 ) with respect to x and partially differentiate
the u(x, y) with respect to y and then using the equation (3.11 ) find the @(x). Put the @(x) in the
equation (3.12) and the v(x, ¥).

: Example:Show that u (x,y) = y* —3x?yis harmonic and then find the harmonic conjugate
of u (x,y)?

Solution

Given that u (x,y) = y* —3x%y

Fu
Here e —6y, and

#*u

a—y2= 6y

%u ks u "
dx? = ay?
Sou (x,y) = y* — 3x2yis harmonic.

Now Harmonic Conjugates of u (x,y)

As we know that A function f (2) = u(x,¥) + iv(x,y) is analytic in a domain D if and only if vis a
harmonic conjugate of u.

Let v(x,y) is the harmonic conjugate of u(x, y) now using the above results we can say that f (z) is
analvtic.

If f (2) is analytic then u(x, y), v(x, y) must satisfy the C-R equations

du dv du  dv
ax oy M ByT  ox
Asu (x,y) = y* —3x%y.Then
du dv
— =3 2 Erpusis o
ay ye - 3x ox
v _du
dy ~ Y= ox
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. . . . . av .
Holding x fixed and integrating each side of B —6xy withrespecttoy,

J’ (—6xy)dy + @(x) = v(x,y)

So v(x,y) = —=3xy? + @(x)

Now differentiate the obtained v(x,y) = —3xy%@(x) with respect to x, we have

v
—_——— 2 !
o 3y* + @' (x)

Now put the expression g—z =—3y? 4+ ¢'(x) in the other form of C-R equation

du av
—_—= - 2= — = —(=3y? !
3 3y? — 3x o (=3y%2+ ¢'(0)

Hence

@'(x) =3x%,and

@(x) = J' 3x?dx + ¢

@(x) = x3 + ¢, here ¢ is the arbitrary constant.
Now put the value of @(x) in the v(x,y) = —3xy* + @(x)
vix,y) = =3xy* + 2% +¢
Let ¢ = 0,then v(x,y) = —3xy? + x® + is the harmonic conjugate of u(x,y) = y* — 3x?%y.

Iy

Task: Let u (x,y) = 2x(1 — y)is harmonic and then find the harmonic conjugate v(x,y) of
u (x,y) and show that v(x,y) is harmonic?

Solution
Given that u (x,y) = 2x — 2xy
Now Harmonic Conjugates of u (x,y)

As we know that A function f (z) = u(x,y) + iv(x,y) is analytic in a domain D if and only if v is a
harmonic conjugate of .

Let v(x,y) is the harmonic conjugate of u(x, y) now using the above results we can say that f (z) is
analytic.

If f (2) is analytic then u(x,y), v(x, y) must satisfy the C-R equations

du dv du  dv
dx ~ dy = dy ~  ox
Asu (x,y) = 2x — 2xy.Then
du _dv
ay . “*T 73
dv 5 _du
ay "~ Y= ox
Holding x fixed and integrating each side of g—; =2 — 2y with respecttoy,

f (2-2y)ay +@(x) = v(x,y)

So v(x,y) =2y - y* + o(x)
Now differentiate the obtained v(x,y) = —3xy?¢@(x) with respect to x, we have
av

5;=0+(p(x)
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Now put the expression g—z =0+ ¢'(x) in the other form of C-R equation

2 iz : = (0 ?( ))
= —2x =- = + @' (x
Hence

@'(x) = 2x, and

@plx) = J’ 2xdx + ¢

@(x) = x* + ¢, here c is the arbitry constant.
Now put the value of @(x) in the v(x,y) = 2y — y? + @(x)
vix,y) =2y —y* +x* +¢
Let ¢ = 0,then v(x,y) = 2y — y? + x? is the harmonic conjugate of u(x,y) = 2x(1 - y).

Now
%’; = 2,and
v
a2
%y . v o
ax? = ay? ~

Sov(x,y) = 2y — y* + x*is harmonic.

Summary

A real-valued functionF (x, y)of two real variables x and y is said to be harmonic in a given
domain of the xy plane if, throughout that domain, it has continuous partial derivatives of the
first and second order and satisfies the partial differential equation

0%F (x, *F(x,

( i y) 5 @y _ 0
dx ay*?

If a function f(z) = u(x,y) + iv(x,y¥) is analytic in a domain D, then its component
functions u and v are harmonic in D.
A function f (z) = u(x,y) + iv(x,¥) is analytic in a domain D if and only if v is a harmonic
conjugate of u.

If two given functions uand v are harmonic in a domain D and their first-order partial

. . . 5 . du dv du dv
derivatives satisfy the Cauchy-Riemann equations (- = 5 and i —5,) throughout D,

then v is said to be a harmonic conjugate of .

Keywords

Harmonic: A real-valued functionF (x, y)of two real variables x and y is said to be harmonic in a
given domain of the xy plane if, throughout that domain, it has continuous partial derivatives of
the first and second order and satisfies the partial differential equation

9%F (x, 9% F(x,
(y)+ (xy)=0

ax? dy?
Harmonic conjugate: harmonic conjugate of u If two given functions u and v are harmonic in a
; L . N . § : du _ 8
domain D and their first-order partial derivatives satisfy the Cauchy-Riemann equations (ﬁ = ﬁ

8 3 o . .
and ﬁ =— i) throughout D, then v is said to be a harmonic conjugate of wu.
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Self Assessment

9 N v »

@

-

N

9 N = » SN % >

9N w

A real function f (x, y) is called harmonic function in domain D if it satisfies...

i A
ax2+ay2_0
9 _

ax

af

& 0
a3*r
Pt

If f(x,y) = ulx,y) + iv(x,y) is analytic in some domain D, then ...

Only u(x, y) is harmonic in D
Only v(x,y) is harmonic in D
Both u(x,y) and v(x,y) is harmonic in D

Neither u(x, y) nor v(x,y) is harmonic in D

If f(x,¥) = ulx,y) + iv(x,y) is analytic in some domain D, and u(x,y) = ax? — by? then the
relation between a,and b is ...

a=b

a=bh

a+b=0

ab=2

If f(x,y) =ulx,y) + iv(x,y) is analytic in some domain D, and v(x,y) = x* + y* — kx?y?
then what is the value of k such that v(x, y)is harmonic?

5
6
7
8
If f(x,y) = u(x,y) + iv(x, y) is analytic in some domain D, and u(x, y) = e**Cosy then what

is the value of k such that u(x, y)is harmonic?

+1

[SSEEN 'S N )

If f(x,y) = u(x,y) + iv(x,y) is analytic in some domain D, and u(x,y) = e*Sinky then what
is the value of k such that u(x, y)is harmonic?

+1

0
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If z2—z=u(x,y)+iv(x,y) is analytic in some domain D, and u(x,y) = x? —y? +x is

harmonic?

A. True

False

If z2—z=u(x,y)+iv(x,y) is analytic in some domain D, and u(x,y) =2xy+y is

harmonic?

A. True

False

If z2—z=u(x,y)+iv(x,y) is analytic in some domain D, and v(x,y) =x* —y? +x is

harmonic?

A. True

10.

False

If z2—z=u(x,y)+iv(x,y) is analytic in some domain D, and v(x,y) =2xy+y is

harmonic?

A. True

oONnw >

O 0w

False

.If U =x? — y? — y is harmonic and f(z) = U + iV is analytic in entire complex plane then the

harmonic conjugate of U is?

x(2y+ 1D +C

xy+C
x(2y — 1) +C
x —y+C

If V =xy is harmonic and f(z) = U +iV is analytic in entire complex plane then the

harmonic conjugate of U is?
(% =32 +:&

x—y+C

€= 4o

+C

If U = 5x + 2xy is harmonic and f(z) = U +iV is analytic in entire complex plane then the

harmonic conjugate of U is?
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(y2—x*+5y) +C

S N = >
=
|
b
4+
g
+
o

14. If U = 2x? — 2y* + 4xy is harmonic and f(z) = U +{V is analytic in entire complex plane
then the harmonic conjugate of U is?

*—x*y) +C
4xy —2x2+2y? +C

2?45
X J-’6 3’+C

S 0w

2 a4
2y
3

15. The value of p such that 2x — x? + py? is harmonic?

1
2
3
4

9 N v »

Answers for Self Assessment

1 A 2 C 3 A 4 B 5 A
6 A 7 A 8 B 9 B 10. A
11. A 12. D 13. A 14. B 15. A

Review Questions

1) Provethatu =e ™ (xsiny ~ y cos y) is harmonic.
2) Suppose A is real or, more generally, suppose Im A is harmonic.
Prove that |curl grad A| = 0

3) Determine whether the functions u = x? — y% + 2xy — 2x + 3y is harmonic

4) Determine whether the functions u = 3x%y + 2x* — y* — 2y? is harmonic.

5) Determine whether the functions u = 3x?y + 2x? — ¥* — 2y? is harmonic.

6) Determine whether the functions u = 3y?x + 2xy — 2y? is harmonic.

7) Let u(x,y) =y% —3x%y is harmonic and then find the harmonic conjugate v(x,y) of
u(x,y)

8) Let v (x,y) =x*—3y%x is harmonic and then find the harmonic conjugate u(x,y) of
v(x,¥)

9) Letu(x,y) =2x—x®+3y?x is harmonic and then find the harmonic conjugate v(x, y) of
u(x,y)

10) Letu(x,y) = ?__ js harmonic and then find the harmonic conjugate v(x,y) of u (x,y)

X2y
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Further Readings

1.

Complex Variables and Applications by Churchill, R. V., And Brown, ]J. W,,
McGraw Hill Education.

Foundations Of Complex Analysis by S. Ponnusamy, Narosa Publishing House.
Complex Analysis by Lars V. Ahlfors, Mcgraw Hill Education.

Complex Variables Theory and Applications by H. S. Kasana, Prentice-Hall.
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Further Readings

Objectives

Integrals of complex-valued functions of a complex variable are defined on curves in the
complex plane, rather than on just intervals of the real line. Classes of curves that are
adequate for the study of such integrals are introduced in this section.

After this unit, you would be able to
» describe different types of curves in the complex plane.
» calculated the length of the curve in the given interval.

* evaluate the line integration of various complex functions in the given domain.

Introduction

To understand the different notions of the curves in the complex plane we need to know
the parametric representation of curves. Suppose the continuous real-valued functions
x = @(t) and y = y(t) are real functions of the real variable ¢ assumed continuous in
ty <t £ t;. Then the parametric equation z = x + iy is defined as

z(t) =x(t) +iy(t), t; <t <t,.

z(t)define a continuous curve or arc C in the z plane joining points a = z(t;) and
b = z(t;). See the following Figure 1:
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X

Figure 1: a continuous curve in the z plane

Here z(t) be a complex-valued function of a real variable t called a parametrization of C.

The point z(a) = x(a) + iy(a) or z; = (x(a),y(a)) is called the initial point of C and
z(b) = x(b) + iy(b) or z; = (x(b),y(b)) is its terminal point.

The expression z(t) = x(t) + iy(t) could also be interpreted as a two-dimensional vector
function. Consequently, z(a) and z(b) can be interpreted as position vectors.

As t varies from t=a to t=b we can envision the curve C being traced out by the moving
arrowhead of z(f).

4.1 Smooth Curve

Let z(t) = x(t) + iy(t), t; <t < t, be the parametric representation of any curve C.

Suppose the derivative of z(t)is z'(t) = x'(t) + iy'(t). We say a curve C in the complex
plane is smooth if z'(#) is continuous and never zero in the interval a < t < b.

As shown in the following Figure 2(a), since the vector z'(t) is not zero at any point P on
C, the vector z'(t) is tangent to C at P. Thus, a smooth curve has a continuously turning
tangent; or in other words, a smooth curve can have no sharp corners or cusps. Figure
2(b) is an example of a not smooth curve.

Im Im

Re Re

(a): Z'(t) = «'(t) + iy(t) as (b): Curve C'is not smooth
a tangent vector. since it has a cusp.

Figure 2: Example of a smooth and not a smooth curve
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4.2 Piecewise-Smooth Curve

A piecewise smooth curve C has a continuously turning tangent, except possibly at the
points where the component smooth curves Cy, Cs, ..., C,, are joined together.

™

Im

Figure 3: Piecewise-smooth curve

4.3 Simple Curve

A curve C in the complex plane is said to be simple if z(t;) # z(t,) for t; # t,, except
possibly for t = a and t = b. Figure 4 depicts the simple curve in the complex plane and
Figure 5 is an example of the non-simple curve.

h

Im

Figure 4: Simple curve

36 L ovely Professional University

Notes



Notes

Complex Analysis-1

M

Im

v

Figure 5: A non-simple curve

4.4 Simple Closed Curve

A curve C in the complex plane is said to be simpleclosed if z(t;) # z(t;) for t; # t,,
and z(a) = z(bh). Here a and b are initial and ending points of the path.

Im

Re

Figure 6: Simple closed curve
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Im

Re

Figure 7: non-simple closed curve

4.5 Contour

In complex analysis, a piecewise smooth curve C is called a contour or path. We define the positive
direction on a contour C to be the direction on the curve corresponding to increasing values of the
parameter £.

It is also said that the curve C has positive orientation. In the case of a simple closed contour C,
the positive direction corresponds to the counterclockwise direction.

For example, the circle z(t) = e, 0 < t < 2m, has positive orientation. Figure 8 shows the positive
orientation of the curve.

The negative direction on a contour Cis the direction opposite the positive direction. If C has an
orientation, the opposite curve, that is, a curve with opposite orientation, is denoted by —C.

On a simple closed curve, the negative direction corresponds to the clockwise direction.

For instance, the circle z(t) = e™%, 0 <t < 2w, has negative orientation. Figure 9 shows the
negative orientation of the curve.

z(t) = e Im

Re

-2

Figure 8: Positive orientation of the contour
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2{t) =% Im

IRe\

P t“)

Figqure 9: Negative orientation of the contour

4.6 Length of Arch/Curve

Let z(t) = x(t) +iy(t), t; <t < t, be the parametric representation of any curve C.

Suppose the derivative of z(t)is z'(t) = x'(t) + iy'(t) then the arc is called a differentiable

arc, and the real-valued function|z’(t)] =J(x’(t))2 + (y’(t))2 is integrable over the

interval a < t < b. In facl, according to the definition of arc length in calculus, the
length of C is the number

L= J;b|z’(t)|dt=J;bJ(;’(t))2 +(y’(t))2dt

length of the curve C.

Example

Consider the curve defined by z:[0,2r] —» € where z(t) = R(cos t + isin t). Then the length of the
curve is calculated as:

z(t) = R(cost + isin t)

Z'(t) = R(—sint + icos t)

|Z’(t)| = /R2(sin? t + cos?t) = JRr?
b 2m
L= f IZ'(t)Idtzf JR% dt
a ]
L

= R[t]{™ = 2nR

ey

Task: Find the length of the curve Cwhose parametric representation is given by
3
x(t) =t3, y(t) =%a50 <t<5

Solution:

f3
z(t) = t? +—3—L
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t2
z'(t) =3t? +3§I'

|2/ ()] = V9t* + t* = V10 ¢?
5
L = f V10 2 dt
0
125

t31°
=] -5

4.7 Complex line Integral

Let f(z) be continuous at all points of a curve €, which we shall assume has a finite length shown in
the Figure 10.

¥

Figure 10: A continuous curve with finite length.

Subdivide C into n parts by means of pointszy, z,,..., 2,1, chosen arbitrarily, and call a = 25, b =
Znis

Figure 11:Curve C is divided into n small arc.

On each arc joining z;_, to z; [where k goes from 1 to n], choose a point y. Form the sum

Sy =fir) (z —a) + fo(yy)- (za — 2) + -, +f () (b — 2,_1)
Sy = ka(}’k)- (2 — 2p—1) = ka(}’k)-AZk
k=1 k=1

Let the number of subdivisions 1 increase in such a way that the largest of the chord lengths

|Az)| = 0. Then, since f(z) is continuous, the sum S, approaches a limit that does not depend on
the mode of subdivision, and we denote this limit by

n b
n— o,|Az;| - O»ka(}’k)< Az, = J‘ f(z)dz
= fa
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called the complex line integral or simply line integral of f(z) along curve C, or the definite integral
of f(z) from a to b along curve C. In such a case, f(z) is said to be integrable along C. If f(z2) is
analytic at all points of a region R and if C is a curve lying in R, then f(z) is continuous and
therefore integrable along C.

Example:
Suppose that f(z) = u(x, y) + iv(x,y).Then
[ f@dz=[ (u(x,y) + iv(x,y))(dx + idy)
J f@dz=] ulx, y)dx — v(x, y)dy+if v(x, y)dx + u(x, y)dy

Task: Obtain the complex integral: fc zdz where C is the straight-line path from z = 1 +
itoz =3+ i

Solution

Consider the following diagram for the straight-line path fromz = 1 + itez = 3 + i

YA

3+ 31

k-
-

x

Figure 12: the straight-line path fromz=1+itoz =3 + 1.

J.zdz = (x + iy)(dx + idy)

Here, since y is constant (y = 1) along the given path then z = x 4 i, implying that u =
xandv = 1. Also, asy is constant, dy = 0.

3
. zdz = f (x + 1i)dx
1

x2 4
[ zdz= [—+xi] =4 +2i
c Z 1

[Ty |

111

Task: Obtain the complex integral: [ i zdz where C, is the straight-line path from z = 3+
itoz =3+ 3i

Solution

Consider the following diagram for the straight-line path fromz = 3 + itoz = 3 +3 1.

L ovely Professional University i



Unit 04: Curves in the Complex Plane

3+ 31

k-
-

x

Figqure 13: the straight-line path from z =3 + i fo z = 3 +31.

J.2dz = (x + iy)(dx + idy)

Here, since x is constant (x = 3) along the given path then z = 3 + yi, implying that u =
3andv = y. Also, as x is constant, dx = 0,

3
[ zdz = ] (3 + yi)idy
1

. P ,
J, zdz = [—-?+3y1]1 = —4+6i.

Task: Obtain the complex integral: | €‘12|dz where C; is the straight-line path from z =

—itoz=1
Solution
Consider the following diagram for the straight-line path fromz = —itoz =1L
N
2 7 .
Z = Xty
) [Z21 = \(HL -_"5|
< } @ - t
=32 =1 1 Z;
-1®
- ‘2/\_

Figure 14: the straight-line path from z =-i to z = 1.

S |zldz = |(x + iy)|(dx + idy)

Here, since x is constant (x = 0) along the given path then z = 0 + yi, implying that u =
0 and v = y. Also, as x is constant, dx = 0.

1
foleldz = [ (fyPyidy
-1
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J¢lzldz = [yTZI]l_l =0

Summary

This section deals with some basic defiritions and operations. These are summarized below:

Let z(t) =x(t) +iy(t), t; <t <t, be the parametric representation of any
curveSuppose the derivative of z(t)is z'(t) = x'(t) + iy'(t). We say a curve C in the
complex plane is smooth if z'(#) is continuous and never zero in the interval a <t <
b.

A curve C in the complex plane is said to be simple if z(t;) # z(t,) for t; # t;, except
possibly for t =aand t = b.

A curve C in the complex plane is said to be simple closed if z(t,) # z(t;) for t; # t;,
and z(a) = z(b). Here a and b are initial and ending jammu.h&_pam‘

The length of C is the number L = _fablz'(t)I dt = fab (x’(t))2 + (y’(t))2 dt.

Letf(z) is continuous, the sum Sy approaches a limit that does not depend on the mode of

subdivision and we denote this limit by
A b
n - o, |Az| -0 vz,fk(}’k)‘ Az =f f(2)dz
fe=1 9

called the complex line integral or simply line integral of f(z) along curve €

Keywords
Length of arch/curve

Let z(t) = x(t) +iy(t), t; <t < t, be the parametfric representalion of any curve C.

Suppose the derivative of z(t)is z'(t) = x'(t) + iy’ (t) then the arc is called a differentiable

arc, and the real-valued function|z'(t)] =J(;’(t))2+ (y’(t))2 is integrable over the

interval @ < t < b. In facl, according to the definition of arc length in calculus, the
length of C is the number

L= fab12’(f)| dt= f‘f J(;’(t))z + (y’(t))2 dt is length of the curve C.

Line integral:Let f(z) is continuous, the sum Sy approaches a limit that does not depend on the
mode of subdivision and we derote this limit by

L b
no w8z =0, filr)dn= [ f@)dz
fe=1 A

called the complex line integral or simply line integral of f(z) along curve C.

L ovely Professional University 43



Unit 04: Curves in the Complex Plane

Self Assessment

1. Consider the following figure for curvesCyand Cyin the complex plane then

onN @ p

2.

Re Re

Only (;1s smooth.
Only C,is smooth.
Both C;and £, are smooth

Neither Cynor C, is smooth

Consider the following figure for curve €yand €3 then

i

™

Zp Re

on e p

Only C;is not simple.
Only C,is not simple.
Both C;and C; are simple

Neither €;nor C, is simple

The statement “following figure3 represent the piecewise smooth curve” is...
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A. True
B. False

4. Which one of the following in Figure 4 is the simple closed curve?

Re

Only €,

Both C;and €5
Neither € nor C,
Only ¢,

9N p

5. A piecewise continuous closed smooth curve is called a contour?

A. False

=

True

6. The length of the arc for z(t) = x(t) + iy(t) where x(t) = t,y(t) = 2t, t € [0,1]

5
10
V5
V10

9 N F »

7. The length of the arc for z(t) = x(t) + iy(t) where x(t) = sint,y(t) = cost, t € [0,1]

A5
B. 10
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o
N

S N F »

X

9 N = »

12.

>

=

o 0

[

The length of the arc for z(t) = x(t) + iy(t) where x(¢) = %, y(t) = 6t*, t € [0,1]

5
6

V37
V35

The length of the arc for z(t) = x(t) + iy(t) where x(t) = 2t,y(t) = 6¢,t € [0,1]

. The length of the arc for z(t) = x(t) + iy(t) where x(t) = t,y(t) = 10, t € [0,10]

1
210

V10
10

. Evaluate folﬂ(x — y+ ix*)dz along the straight line from (0,0) to (1,1)

. Evaluate f;“(x -y+ Exz)dz over the path along the lines x = 0 and y = 1.

=1 o [

— ==

2 6
-1, 1,
—#4+=1
z 6
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14. Evaluate fo“'i(x -y+ Exz)dz over the path x = y2.

=11 [
A. ¥+E
B. = —-i
30 [}
=1 2
C ?1’;{
D. == +0i
30

15. Evaluate folﬂ(x —y+ ix?)dz along the curve G; x = t and y = t2.

A. 3

B _—1+11
2z
i

C'E

D, 6

1 A 2 A 3 A 4 D 5 B
6 C 7 C 8 C 9 C 10. D
1. A 12. B 13. A 14. B 15. B

Review Questions

1. Obtain the complex integral: [ zdz where C is the straight-line path from

z=1+itez =3 + 3i.?

2. Obtain the complex integral: [ zdz where C is the straight-line path from

z=2+2itoz =5+ 2i?

3. Obtain the complex integral: [ zdz where C is the straight-line path from
z=5+2itoz =5 + 5i?

4. Obtain the complex integral: [, zdz where C is the straight-line path from
z=2+2itoz =5 + 507

5. Obtain the complex integral: [ _|z|dz where C is the path from left half of the unit circle from
z=—itoz = 7

6. Obtain the complex integral: [,1/z dz where Cis the unit circle.

7.  Obtain the complex integral: [ (z? + z )dz where C is the path from left half of the unit circle
from z = 1toz = i?
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8. Obtain the complex integral: [ z2dz where C is the straight-line path from
z=1+itoz =3 + 3i.?
9. Obtain the complex integral: [ z?dz where C is the straight-line path from
z=2+2itor =75+ 27
10. Obtain the complex integral: [ z?dz where C is the straight-line path from

z=5+4+2itoz =5 + 5i?

Further Readings

1. Complex Variables and Applications by Churchill, R. V., And Brown, ]J. W,
McGraw Hill Education.

2. Foundations Of Complex Analysis by S. Ponnusamy, Narosa Publishing House.
3. Complex Analysis by Lars V. Ahlfors, Mcgraw Hill Education.

4. Complex Variables Theory and Applications by H. S. Kasana, Prentice-Hall.
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Objectives

The integration of a function of a complex variable along an open or close curve in the plane of the
complex variables is known as complex integration. Cauchy’s integral theoremis part of
complex integration. The study of complex integration is very useful in engineering physics and
mathematics as well as the concept of center of mass, the center of gravity, mass moment of inertia
of vehicles, etc. It can be used in placing a satellite in its orbit to calculate the velocity and trajectory.
After this section, you will be able to-

understand the concept of a simple and multi-connected domain.
Learn the Cauchy-Goursat theorem and apply it in to solve the complex integration
problem.

Solve the complex integral problem using the Cauchy integral formula.

Introduction

InthisSection,weintroduceCauchy’stheoremwhichallowsustosimplifythecalculationofcertain
contourintegrals. Asecandresult, knownasCauchy’sintegralformula,allowsustoevaluatesome

Where z, lies inside the closed curve c.

5.1 Simply and Multiply Connected Regions

A region R is called simply connected if any simple closed curve, which lies in R, can be shrunk to a
point without leaving R. A region R, which is not simply connected, is called multiply connected.

For example, suppose R is the region defined by |z| < 2,shown shaded in Figure 1: Simply
connected domain. If G is any simple closed curve lying in R [i.e., whose points are in R], we see
that it can be shrunk to a point that lies in R, and thus does not leave R, so that R is simply-
connected.
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On the other hand, if R is the region defined by 1 < |z| < 2 shown shaded in Figure 2, then there is
a simple closed curve G lying in R that cannot possibly be shrunk to a point without leaving R, so
that R is multiply-connected. Intuitively, a simply connected region is one that does not have any
“holes” in it, while a multiply connected region is one that does. The multiply connected regions of
Figure 2 and Figure 3 have, respectively, one and three holes in them.

Figure 1: Simply connected domain.

Figure 3: Multiply connected domain
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5.2 Jordan Curve

Any continuous, closed curve that does not intersect itself and may or may not have a finite length,
is called a Jordan curve.

5.3 Jordan Curve Theorem

A Jordan curve divides the plane into two regions having the curve as a common boundary. That
region, which is bounded [i.e., is such that all points of it satisfy |z|] <M where M is some positive
constant], is called the interior or inside of the curve, while the other region is called the exterior or
outside of the curve. Using the Jordan curve theorem, it can be shown that the region inside a
simple closed curve is a simply-connected region whose boundary is the simple closed curve.

5.4 Cauchy’s Theorem. The Cauchy-Goursat Theorem

Let f(z) be analytic in a region R and on its boundary C. Then

$. f(z)dz = 0.

This fundamental theorem, often called Cauchy’s integral theorem or simply Cauchy’s theorem, is
valid for both simply- and multiply-connected regions. It was first proved by use of Green's
theorem with the added restriction that f'(z) be continuous in R. However, Goursat gave a proof
which removed this restriction. For this reason, the theorem is sometimes called the Cauchy -
Goursat theorem when one desires to emphasize the removal of this restriction.

Wewillprovethetheoremunderanextrahypothesisthatf'isacontinuous function.

Green’sTheorem: Let Cbe a simple closed curve with  positive  orientation.LetR
bethedomainthatformstheinteriorofC. IfP andQ are continuousand have continuous partinl derivatives
Py Py Quand Qyat all points on Cthen

§.(PCuy)dx +QCuy)dy) = F10:0x:y) = Py ldxdy.

Proof.Letf(z)= flx+iy)=u(x,y)+iv(x,y). Then

fﬁc(u(x-JJ) +iv(x,y))(dx + idy) = §C(u(x,y)dx —v(x,y)dy) +i sﬁc(v(x‘y)dx + u(x, y)dy)
= ¢ v ) — Uy (0 Y)]dxdy + i flulx y) — vy (0 y)ldxdy
=0.

Example:
Let C: |z| <1 then 45{__ (z—iz) dz = 0. Clearly f(z) = z is analytic inside the C:|z| <1 and f(z) =z is

not analytic at z =2, which does not lie inside the C. So then §_ (ﬁ) dz = 0.

Consider the contour shown in Figure 4 and assume f (z) is analytic everywhere on and inside the
contour C.
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uaA

Y

Figure 4: analytic function inside the contour

Then by analogy with real line integrals
Jasef @dz+ [ g f(2)dz = $. f(2)dz = 0
By Cauchy’s theorem, since reversing the direction of integration reverses the sign of the integral.

This implies that we may choose any path between A and B and the integral will have the same
value providing f (z) is analytic in the region concerned.

5.5 Cauchy’s Integral Formula

If f(z) is analytic inside and on the boundary C of a simply-connected region then for any point zg
inside C. Then

$. (&) dz = 2mi f(2).

Z —zy
: Example: Evaluate the ) 5 (ﬁ) dz, where c is the path |z — i| = %

Solution

It is clear that the center of the circle is i and the radius is %.The following figure shows the path

1

lg—if =z

YA

Y

-i

Figure 5: the path |z — i| = %

4 Z
e (Grrg)dz= 4. ((z - 5)) i

flz)= é is analytic inside and on the curve c.Using Cauchy integral formula
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Z

$ L \dz = 2mif(z=1)

Z
2+ . ;
¢ (-{“-”—”)dz=2m*—=m.
c 2

zZ—1

1y

z

gy

1
>

Task: Evaluate the § (

€ \z%+1

)dz, where ¢ is the path |z + i| =
Solution
It is clear that the center of the circle is i and the radius is %.The following figure shows the path

|z +i] ==
2

k 4

T

@

Figure 6: the path |z + i| = %

9 (Ei?) dz=§, ((z T E)z(z = E)) A

flg)= é is analytic inside and on the curve c.Using Cauchy integral formula
Z

(z-1) e
$, o, dz = 2ni f(z = =)

Z+1

$ﬁc (@)dz = Zm'*:—: = 71i.

Task: Evaluate the § . Z_)dz, where c is the path |z] = 2.
¢ p

2241

Solution

It is clear that the center of the circle is i and the radius is 2.The following figure shows the path
|z| = 2.
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1

=

Y

Figure 7: the path |z| = 2.

$. (D)% = b (Grne=p)®

1 1
$. (Zzi l)dz = 9. (2(24— i) * 2(z— i))dz

flz)y== 15 analytic inside and on the curve c¢ execpt the z = i .Similarly f(z) =
and on the curve c execpt the z = —i .Using Cauchy integral formula

$. (22 = 1)dz =2ni[ f(z=10) + f(z = —i)]

gﬁc (;j-—i) z = 2111[; ;

$. (;%—1—) dz = 2mi.

5.6 The Derivative of an Analytic Function

- is analytic inside

If f(z) is analytic in a simply-connected region then at any interior point of the region, z; inside C.
Then say, the derivatives of f(z) of any order exist and are themselves analytic (which illustrates
what a powerful property analyticity is!). The derivatives at the point zy are given by Cauchy’s

integral formula for derivatives:

( fz) )dz fL?)

(z=z4)7*"

where C is any simple closed curve, in the region, which encloses z,. Note the case n = 1:

45 ( f(2) )d =2mif® tz)

(z—2g)%

Example

Evaluate the ¢, (2—32) dz, where c is the path |z]| = 2.

(z+1)

Solution

Let g(z) = z° and it is analytic within and on the circle C we use Cauchy’s integral formula for

derivatives to show that

$ ( o )dz—.&rng(zT_[_j—),

c\(z+1)?2

¢ ((z+1)2J dz = 2mi [32 |z-—-1.
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Summary

This section deals with some basic definitions and operations. These are summarized below:

A region R is called simply-connected if any simple closed curve, which lies in R, can be
shrunk to a point without leaving R. A region R, which is not simply-connected, is called
multiply connected.

Let f(z) be analytic in a region R and on its boundary C. Then

$.f(z)dz = 0.

If f{z) is analytic inside and on the boundary C of a simply-connected region then for any point
zy inside C. Then

ﬁ,_. (&) dz = 2mi f(z).

Z = Zp

If f(z) is analytic in a simply-connected region then at any interior point of the region, z, inside
C. Then say, the derivatives of f(z) of any order exist and are themselves analytic (which
illustrates what a powerful property analyticity is!). The derivatives at the point z, are given

by Cauchy’s integral formula for derivatives:

g;( fz) )dz: szr%).

(z—zq)H

Keywords

Simply connected domain:

A region R is called simply-connected if any simple closed curve, which lies in R, can be shrunk to a
point without leaving R.

Cauchy’s Integral Formula:

If f(z) is analytic inside and on the boundary C of a simply-connected region then for any point zg
inside C. Then

93[__( ) )dz = 2mi f(z).

zZ— 2y

Self Assessment

1. Which one of the following region is simply connected?
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. Only Dy

Only D»

Both Djand D,

. Neither D; nor D,

o N v >

2. Which one of the following region is not simply connected?

Dy A Dy X
. Only Dy
Only Dz
Both Djand D,
. Neither D1 nor D,

O 0 % »

3. If Cis a simple closed contour, then the conclusion follows from the Cauchy-Goursat
theorem is ¢ f(z)dz = 0

A. True
B. False

L

The value of [ c%dz , where C is the closed curve:|z| = 2

8mi
i
2mi
10mi

SN = >
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SN = >

e

SN % >

N

9N = »

*®

SN = >

et

9N = »

. The value of [

The value of frﬁdz , where C is the closed curve:|z — i| = %

8mi
i
2mi

10mi

4

The value of fL. dz , where C is the closed curve:|z + i| = %

2241

8mi
i
2mi
10mi

The value of fczz; dz , where C is the closed curve :|z| = 2

8mi
i
2mi
10mi

The value of frﬁdz , where C is the closed curve :|z| = 2

8mi

i

2mi

10mi

The value of frgdz , where C is the closed curve:|z — 1 —i| = 2
2mei

emi

2mi

0

. The value of frﬁdz , where C is the closed curve :|lz—1—i| =2

8mi
emi
2mi

0

6

TTETTES dz , where Cis the closed curve:|z— 3| =1

8mi

6ri
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C. 2mi
D. 10mi

12. The value of fLﬁ dz , where Cis the closed curve:|z — 3| =1

A. 8mi
B. 6mi
C. 2mi
D. 10mi

13. The value of frﬁdz , where C is the closed curve :|z| = 2

A. Bmi
B. mi
C. 0
D. 10mi

3

14. The value of f'-(z:—‘l)z dz , where C is the closed curve :|z| = 2

A. 6rmi
B. emi
C. 2mi
D. 0

¥
15. The value of fa(:_—m dz , where C is the closed curve:|z — 1| = 4

25mi
257 = g%
2mi

0

oSN v >

Answers for Self Assessment

1 A 2 A 3. A 4 A 5
6 B 7 C 8 C 9 A 10
11. B 12. B 13. C 14. A 15.

Review Questions

1. Obtain the complex integral: f(_zzdz where C: |z| < 22
2. Obtain the complex integral: fc z + 1dz where(: |z]| < 2?
3. Obtain the complex integral: ) Cidz whereC: |z] < 1?

4. Obtain the complex integral: [ [__ﬁ dz where(C: |z| < 1?
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5. Obtain the complex integral: ) I_,z%sdz whereC: |z —1]| < 17
6. Obtain the complex integral: [ (z— 1)/ z* dz where Cis the unit circle.
7. Obtain the complex integral: ) C-'zjdz where(: |z| < 1?

8. Obtain the complex integral: ) C:_—idz whereC: |z|] < 27

9. Obtain the complex integral: ff(z_sﬁjadz where(C: |z - 9| < 5?
10. Obtain the complex integral: [ _ 52 4z whereC: |z-9| <5?

(z—-10)°

L.I_J Further Readings
1. Complex Variables and Applications by Churchill, R. V., And Brown, ]J. W,

McGraw Hill Education.
2. Foundations Of Complex Analysis by S. Ponnusamy, Narosa Publishing House.
3. Complex Analysis by Lars V. Ahlfors, Mcgraw Hill Education.

4. Complex Variables Theory and Applications by H. S. Kasana, Prentice-Hall.
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Unit 06: Gauss Mean Value Theorem
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6.2 Cauchy’s Inequality
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Further Readings

Objectives

The complex analysis revolves around complex analytic functions. These are functions that have a
complex derivative. Unlike calculus using real variables, the mere existence of a complex derivative
has strong implications for the properties of the function. There are a small number of far-reaching
theorems that we will explore in this section and along the way, we will touch on some main
theorems. After this unit, you will be able to-

understand the concept of the Gauss mean value theorem.
prove the Cauchy inequality using the Gauss mean value theorem.

find the maximum value of a complex-valued function in the given domain.

Introduction

In this section first, the gauss means value theorem is discussed for an analytic function inside and
on the domain. After that using the Cauchy integral formula, the Cauchy inequality would be
proved and then using the Maximum modulus principal, the maximum value of |f(z)| would be
discussed.

6.1 Gauss’ Mean Value Theorem

Suppose f(z) is analytic inside and on a circle € with center al a and radius 7. Then f(a) is the
mean of the values of f(z) on C, i.e.

2m

1 _
fla) =), fla+7re®)dd

Proof

Let f(z) is analytic inside and on a circle € with center at a and radius r shown in the following
Figure 1.
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Figure 1: An analytic function inside the |z — a| £ r.

Using the Cauchy integral formula

ﬁf( ffzz)o) dz = 2mi f(zq).

z

Here z; = a so

z
fla) _Zm 95 (ﬂ ))
If the center of the circle is a and the radius is r.The equation of circle is |z — a| = 1.
Letz —a =re'
z=a+re?
dz =re”.i.de

Now put the z =a + re'?, and dz = re'?. (. df in the above equation.

fla )~ 56 (Ml)?’em,i‘dﬁ

a+re? —a

fl@) =—§, (f Grrs ’)refﬂde,ﬂ <9 <2m

2mi reif

f(@) = f;" f(a +7e'®)ds.

Example
Evaluate the Z—IHJ';ﬂ sin? (g + 23"9) de.

Suppose f(z) = sin?(z) is analytic inside and on a circle € with cenler at a and radius . Then f(a)
is the mean of the values of f(z) on C, i.e.

fla) = %fo ﬂf(a +7e?)de

w T . N
Here |z - -6-‘ =2,50a= ;and radius r = 2.Now using Gauss mean value thorem,

1

— [ sin? (§ L Zefﬂ) do = f (g)

@)= ()
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AR

iy
1

=J Task: Find the mean value of x? — y? + 2y over the circle |z — 5 + 2i| = 3.
Solution

Here the f(z) = x* — y* + 2y + 0i is analtytic inside the domianthat is the center of the circle is
a = 5 — 2i, and the radius is r = 3unit.The following Figure 2 depicts the circle |z — 5 + 2i| = 3.

Using the Gauss mean value thorem.
1 "
S i
fla) = 27 ), fla+re'®)de
a=>5—2i
a=5-12i

x=5y==2

Figure 2: The domain with center 5-2i, and radius 3
f(a) is the mean value so
fla) =5%— (=2)? +2(-2)
fla) =25~ 4—4.
fla) =17.

6.2 Cauchy’s Inequality

Suppose f(z) is analytic inside and on a circle € of radius r and center at z = a. Then

I @)l <25 n=012..

where M is a constant such that|f(z)| < M on C i.e., M is an upper bound of |f(z)| on C.
Proof

We have by Cauchy’s integral formulas

§. (L2 ) dz = 2mi 22

(Z—Zg]n +1 n!

_nl £
0 = 26, (L)
Itis also given that [z — a| = r and |f(2)| < M.

i@l = =9, (L) de]-(9

2mi
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Now
z—a=re'
z=a+re?
dz =re®.i.de
|dz| = |re®.i.d8|
ldz| = [r|.|e*?].|i]. |d6]

Here |r|=1r

|e"9| = |cos8 + isind| = 1,
lil =1,

|de| = da.
Finally

|ldz] =r.d8

Now using equation ...(*)

177(ao = 01 = ] . (L s
Al — e T f(@)

17"(o = o)1 = 5oy 6. (L g 0
wr D] (@

If" (2o = a)| = Zkﬁlgs‘ ((Z = a)'n+1) r.de

n! If(z}] )
mn — _— I S T
lf"(z = )l = 59, (I(z —a) " de
It is also given that |z — a| =7 and |f(2)| < M.

[f™(a)l s%gﬁc(;%)r,de

As0<8 <2m.

@l <5 m(”"’).ds

bl
1 2
I (@) s—n—'ﬁ d6
2mrnt

If* (@)l 4———11 (615"

If"@)] < 3= 2

@) s
f*(@)] s =M

6.3 Maximum Modulus Theorem

Suppose f(z) is analytic inside and on a simple closed curve € and is not identically equal to a
constant. Then the maximum value of | f(z)| occurs on C.

Proof

Suppose f(z) is analytic inside and on a circle € with center at a and radius 7. Then f(a) is the
mean of the values of f(z) on C, i.e.
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1 ipe® .
f(a)zz;r—J; f(a+7re®)dd

If@] <= 7| f(a+re®)|d6 ...(#)
Let us suppose that | f(a)| is a maximum so that |f(a +?’em)| < |f(a)).

If|f (a + re'®)| < |f(a)| for one value of @ then, by continuity of f, it would hold for a finite arc, say
8, < 6<6,.

But, in such case, the mean value of If(a + ?’em)| is less than | f(a)|, which would contradict ....(#).
It follows, therefore, that in any & —neighborhood of a, i.e., for |z — a| < &, f(z) must be a constant.

If f(2) is not a constant, the maximum value of |f(z)| must occur on C.

Example
Let f(z) = 2z + 5i, then let us find
(a) the maximum value of f(z) inside |z] < 1.
(b) the point where f(z) atlains it maximum inside |z| < 1.
Solution
(a) As it is clear that the f(z) = 2z + 5i is analytic inside |2} < 1.
It also mentioned that the center of the domain is 0. The radius of the disc is 1.
L =1, C’La = e"e
z=e% = cos@ + isind.
|z| = v/cos? 0 +sin? 6 = 1.
Now
f(z) = 2z + 5i.
f(z) = 2cos8 + i2sinf + 51
f(z) = 2cosf + (2sinf + 5)i.
|f(2)| = |2cos@ + (25inB + 5)i|.

If (2)| = +/4cos20 + 4sin? @ + 25 + 20sind
|f(2)| = V4 + 25 + 20siné
If (2)| = V29 + 20sind.

As we need the maximum value so we have to consider the maximum value of sin8.

sin# has the maximum value 1 at 8 = (2n + 1)m/2.

If(2)| = V49 =7

So the maximum value of f(z) is 7.

(b) Now we will find the point where f(z) attained its maximum value.
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z = ¢'® = cosf + isind,

Since the maximum value 1 at8 = (2n + 1)m/2. So
z =cos(2n + Dnu/2 + isin(2n + 1) /2

z = 0 + { is the point where f(z) attained its maximum value.

H.

E Task: Let f(z) = z + 5, then find

(a) the maximum value of f(z) inside |z|] < 2.

(b) the point where f(z) altains it maximum inside |z| = 2.

Solution

(a) As it is clear that the f(z) = z + 5 is analytic inside |2] < 2.

It also mentioned that the center of the domain is 0. The radius of the disc is 2.
gt 2.e9,

z=2.e"% =2 cos6 +i2.sinb.

|z| = \/4‘ c0s% 8 + 4.5in? § = 2.
Now
f(z) =z+5.
f(z) = 2cos@ + i2sinf + 5.
f(2) = 2cos6 + 5 + (2sinf)i.
|f(2)] = |2cos6 + 5 + (2sinB)il.

|f (2)] = V4cos?8 + 4sin? @ + 25 + 20cosd
|f(z)| =4+ 25+ 20cos0
|f ()| = V29 + 20cos6.

As we need the maximum value so we have to consider the maximum value of cos#.

cosf has the maximum value 1 at 8 = 2nm.
If(2)| = V49 =7
So the maximum value of f(z) is 7.
(b) Now we will find the point where f(z) attained its maximum value.
z=2.2"% =2 cosA + i2.sinb.
Since the maximum value 1 at § = 2nm. . So

z = 2.C0S 2nm. + (2. sin2nm.

z = 2 + 0i is the point where f(z) attained its maximum value.
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Summary

This section deals with some basic definitions and operations. These are summarized below:

Suppose f(z) is analytic inside and on a circle € with center at a and radius 7. Then f(a) is
the mean of the values of f(z) on C, i.e.
L .
Fla) = 2, fla+re?)ds
+  Suppose f(z) is analytic inside and on a circle C of radius r and center at z = a. Then
@) <5 n=012..

where M is a constant such that|f(z)| < M on C i.e,, M is an upper bound of |f(2)| on C.

Suppose f(z) is analytic inside and on a simple closed curve € and is not identically equal

to a constant. Then the maximum value of |f(z)| occurs on C.

Keywords

Maximum value of |f(z)|

The value where f (z) attains its maximum

Self Assessment

uTyy

1. Suppose f(z) = sin(z) is analytic inside and on the curve C with center and radius “2”

then using mean value theorem what is the value of-

1 por T
= sin(—2-+ 2e“*)de?
0
A 3
B. 1
c 21
D. 45

uy

2. Suppose f(z) = cos(z) is analytic inside and on the curve C with center 2 and radius “2”

then using mean value theorem what is the value of-

1 pm T
o cos (—2— + 28“’) de?
0
A 3
B. 1
C. 0
D. 45
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o1

o

on wp

S N = >

| H

90w >

9N = >

uy

Suppose f(2) = sin*(z) is analytic inside and on the curve C with center ¢ and radius “2”

then using mean value theorem what is the value of-

fsinz (—E + 2e"*) de?

SN =]

2

m

| H

Suppose f(z) = cos*(z) is analytic inside and on the curve C with center “0+0i” and radius

“2” then using mean value theorem what is the value of-

2
f Cos?(2e'%)d6 ?
(1}

=]

Suppose f(z) = x% + y? is analytic inside the curve C with center “-5+2i” and radius “3”
then using mean value theorem what is the value of f(z)

20
29
21
0

Suppose f(2z) = x* — y* + 2y is analytic inside the curve C with center ~ “5-2i” and radius
“3” then using mean value theorem what is the value of f(z)

20
29
21
0

uyy

E and radius “2” and M is

Suppose f(z) is analytic inside and on the curve C with center

the upper bound of f(z) on C then using Cauchy inequality which one of the following is

true-
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IA

1A

A%
MR omlE owlE onE

IV

Suppose f(z) is analytic inside and on the curve C with center “0+i0” and radius “5” and
10 is the upper bound of f(z) on C then using Cauchy inequality which one of the following

is true-

A |fr)) <2

IS8

0

o

10.

o N = »

MO
THOIEE

TROIEE=

Suppose f(z) is analytic inside and on the curve C with center “g" and radius “2” and 20 is

the upper bound of f(z) on C then using Cauchy inequality which one of the following is

true-

Suppose f(2) is analytic inside and on the curve C with center “10+i0” and radius “5” and
15 is the upper bound of f(z) on C then using Cauchy inequality which one of the following

is true-

Al <s

P R
[f'(0)] 5'3—

lf'(10)| >0

A= 5

. Suppose f(z) = 2z + 51 is analytic inside and on the curve C with center “0+0i” and radius

“1” then the maximum value of f(z) is__?

A7

=

10

C 3
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D.

ONw » o0 ® » o0 ® »

SN < »

4

. Suppose f(z) = 2z + 5i is analytic inside and on the curve C with center “0+0i” and radius

“1” then f(z)attains its maximum value at__?
z=7

z=10

z=3

. Suppose f(z) = 2z is analytic inside and on the curve C with center “0+0i” and radius “1”

then the maximum value of f(z)is__?

2
10
1
4

. Suppose f(z) = z is analytic inside and on the curve C with center “0+0i” and radius “5”

then the maximum value of f(z)is__?

B> = O N

. Suppose f(z) = z + 5 is analytic inside and on the curve C with center “0+0i” and radius “2”

then the maximum value of f(z)is_ ?

5
10
3
7

Answers for Self Assessment

1 B 2 C 3 B 4 B 5 B
6 C 7 A 8 A 9 A 10. A
1. A 12. D 13. A 14. B 15. D
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Review Questions

A

Let f(z) = 2z + 3i, then let us find the maximum value of f(z) inside |z| < 1.

Let f(z) = 2z + 3i, then let us find the point where f(z) attains it maximum inside |z| < 1.
Let f(z) = z + i, then let us find the maximum value of f(z) inside |z| < 1.

Let f(z) = z + i, then let us find the point where f(z) attains it maximum inside |z| < 1.
Suppose f(z) is analytic inside and on a circle C of radius 2 and center atz = 1,

such that|f(z)| <10 on C i.e., 10 is an upper bound of |f(z)| on C. Then using Cauchy
inequality find the |f?(a)| =?

Suppose f (2) is analytic inside and on a circle C of radius 1 and center at z = 0,

such that|f(z)| <5 on C i.e, 5 is an upper bound of |f(z)| on C. Then using Cauchy
inequality find the |f?(a)| =?

Evaluate the i _['021T Cos? (f—; + 2919) da

Evaluate the i _['021T sin G + eie) dé

Find the mean value of x? — y? over the circle [z—2 +i| = 1.

. Find the mean value of x? + 2y over the circle |z —5 + 2i| = 5.

Further Readings

1. Complex Variables and Applications by Churchill, R. V., And Brown, J. W,,
McGraw Hill Education.

2.  Foundations Of Complex Analysis by S. Ponnusamy, Narosa Publishing House.
3.  Complex Analysis by Lars V. Ahlfors, Mcgraw Hill Education.

4. Complex Variables Theory and Applications by H. S. Kasana, Prentice-Hall.
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Unit 07: Liouville’s Theorem
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Objectives

The analytic functions are the core of complex analysis. Unlike real-valued calculus, the presence of
a complex derivative has significant ramifications for the function's characteristics. We'll look at a
few far-reaching theorems in this part, as well as several key theorems along the way. After this
unit, you will be able to-

understand the concept of entire function.
prove the Liouville's Theorem using the Cauchy integral formula.
prove the fundamental theorem of algebra using the Liouville's Theorem.

prove Morera’s theorem using the Cauchy’s theorem.

Introduction

In this section first, the Liouville's Theorem is discussed for the entire function. After that using
Liouville's Theorem, the fundamental theorem of algebra is discussed and then the Morera’s
theorem would be proved using the Cauchy’s theorem.

7.1 Entire function

If f(z) is analytic on the whole complex plane, then it is said to be entire.

Or

A function f(z) is called entire if it has a representation of the form f(z) = Y, az®
valid for |z| < oo. This class of functions is designated by E. E is a linear space.
Example

Some examples of entire functions are-

Sin(z)

22

f;erzdt
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magy
1111

Task: Check whether the f(z) = -i—z is entire?

Solution
flz)=—
filzo) = ll [f(z" +AZOJ f(ZO)}
o
eFot42) _o
F(a0) = Jim. { D—ﬁi—l
J
l(( NENED M +) (.+T+_a_+ )
f (20) _ hm i (zg+4z) v EN)
)

1/(zo+A2) + 3+ 252 4 ) = 1/z0 + 1
f’(zo)=]im{( i K T Az) /B '+}

f'(zg)does not exist at z5 = 0.

Hence its not entire function.

7.2 Liouville's Theorem

In complex analysis, Liouville's Theorem states that a bounded holomorphic function on the entire
complex plane must be constant. It is named after Joseph Liouville.

Statement:

Let f(#):C = Cbe an entire function. Suppose there exists somereal numberM >0 such
that |f(z)| = M for all z € € Then f () is a constant function.

Or

If a function f(z) is entire and bounded in the complex plane then f(z) is constant throughout the
plane

Proof:

It is given that

i A function f(z) is analytic in the entire complex plane
ii. A function f (z)is bounded, that |f(z)| < M.

Let us consider two points a and b inside a particular domain.

//: ,\| lzl=x
e s

o

Then using Cauchy integral formula
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L (“Z}) dz = f(a)

2mi

f(2) :
2mi § ( )dz =fb)
If f(z) is constant throughout the domain then f(a) = f(b).
Now let’s prove f(a) — f(b) = 0.
f(2) f(z)
1@ = 1O =378, (725 €~ 6. (775
(f (z) [f(@ ) d

z—a z-b

fl@)—fb) = —Eﬁ

2mi

fla) = f(b) =:,—.955f(2)( -

L4y,

f@-f®) = 55”2)( a)(: +a)
f@-fo) =5—= sﬁ,ro(‘m)d"‘
r@- 1= M()(ﬁ)ﬂ

@ )1 < [ @ () 1

s
@ - o) = [5=] .1r 1 dzl

1
Uzl = lal)(lz] - |b|))
Let
z=ret?
dz = re®.i.d6
|dz| = |re®.i.d8|
ldz| = [r|.]e®].1i]. |d6]
Here |r|=r
|ei‘9| = |cosB + isin8| =1,
lil =1,
|dz| = r.|d6)]
1
—a)(r—b)

1@ - 7o) = 56, (- ) r-1ds|

|do|

1
|f(a) = f(b)] = 55 M ((-1 —a/n -—b/?’))'

If f(z) is analytic in the entire complex plane then |z| = r — o0, So
[fla)—f(D) <0
fl@—f()=0

Hence, we can say that f(a) = f(b). lt means that f(z) is a constant.

Liouville's Theorem proof using Cauchy integral formula for Derivatives.

If f(z) is analytic in a simply-connected region then at any interior point of the region, zy inside C.
Then say, the derivatives of f(z) of any order exist and are themselves analytic (which illustrates
what a powerful property analyticity is!). The derivatives at the point z, are given by Cauchy’s
integral formula for derivatives:

( s )dz = 21:1'%.

e \Gz=z0)"

L ovely Professional University

73

Notes



74

Complex Analysis-1

where C is any simple closed curve, in the region, which encloses z,. Note the casen = 1:

= (L2)dz = £ ().

2mi ¥ o Mz-zp)

If' o)l = |56 (L) 4z].

(z-2,)*
' < 1 |f (2}
IF' )l <[] 6 (7222) )

Here z = re'?

dz =rel?.i.do.

|dz| = |re'®.i.ds).

\dz| — 1rl. |&].[il. [de.

Here |z — zy| =7

|ei‘91 = |cos@ + isinf| = 1,
lil =1,
|dz] = r.|d6|.

If' @)l < =6 _(Z)r. 16l
IF' @)l <=6 (%).de.

If f(z) is analytic in the entire complex plane then r = oo, So
If (zo)| <0
f'(zg) =0

f(z) = constant.

7.3 Fundamental Theorem of Algebra

The fundamental theorem of algebra states that every nonconstant polynomial with complex
coefficients has a complex root.

In fact, every known proof of this theorem involves some analysis, since the result depends on
certain properties of the complex numbers that are most naturally described in topological terms.

It follows from the division algorithm that every complex polynomial of degree $n$ has $n$
complex roots, counting multiplicities. In other words, every polynomial over Csplits over Cor
decomposes into linear factors.

Proof

We  use Liouville's  Boundedness Theorem of complex analysis, which says that
every bounded entire function is constant.

Suppose that P(z) is a complex polynomial of degree n with no complex roots; without loss of
generality, suppose that P(z) is monic. Then 1/P(z) is an entire function; we wish to show that it is
bounded. It is clearly bounded when n = 0; we now consider the case when n > 0.

Let R be the sum of absolute values of the coefficients of P(z), so that R = 1. Then
for |z| = §,
|P(2)| > |z = (R=1)|]z""!| = |"7"|- [|z] - (B=1)] > B*".

It follows that 1/P(z) is a bounded entire function for |z| > R. On the other hand, by the Heine-
Borel Theorem, the set of z for |z| < Rwhich is a compact setso its image under 1/P(z) is also
compact; in particular, it is bounded.

Therefore, the function is bounded on the entire complex plane when n > 0.

Now we apply Liouville's theorem and see that1/P(z) is constant, so P(z) is a constant
polynomial. The theorem then follows.
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7.4 Morera’s Theorem

Let f(z) be continuous in a simply-connected region R and suppose that
$.f(z)dz =0

around every simple closed curve C in R. Then f{z) is analytic in R. This theorem, due to Morera, is
often called the converse of Cauchy’s theorem. It can be exiended to multiply-connected regions.

Proof

For a proof, which assumes that f'(z) is continuous in R.If f(z) has a continuous derivative inR,
then we can apply Green’s theorem to obtain

IfP andQ are continuousand have continuous partial derivatives PPy Qwand Quat all points on Cthen
(Py)dx +Q(xy)dy) = ﬁ'; [Q:(x.y) — Py (x, y)ldxdy.

Letf(z)= flx+iy)=u(x.y)+iv(x,y). Then

7. (e, y) + iv(x,y)) (dx + idy) = §_(u(x, y)dx — v(x,y)dY) +i §_(v(x,y)dx + u(x,y)dy)
= [~ (0 Y) = Uy (0 ) ]dxdy + i fluclxiy) = vy(x y)ldxdy
If _f(z)dz = 0around every closed path C in R, we must have

J(uley)dx — v(x, y)dy) = 0.6 (v(x, y)dx +ulx,y)dy) = 0.

It means
j{ ~ux(0Y) = Uy (0:Y)]dxdy = 0, ﬁ [1:(2:Y) = vy (% ¥)]dxdy = 0
. du _d 2 a
C-R equation ﬁ = ﬁ and ﬁ - _i

are satisfied and thus (since these partial derivatives are continuous) it follows thatf(z) = u + ivis
analytic.

Summary

- Let f(2): C = Cbe an entire function. Suppose there exists some real numberM =0 such
that |f(z)| < M forall z € € Then f(z) is a constant function.

- Let f(z) be continuous in a simply-connected region R and suppose that

f(z)dz = Daround every simple closed curve C in R. Then f(z) is analytic in R.

- The fundamental theorem of algebra states that every nonconstant polynomial with complex

coefficients has a complex root.

Keywords

Entire function: If f(2) is analytic on the whole complex plane, then it is said to
be entire.

Bounded function: Suppose there exists some real numberM = 0 such that|f(z)| < M,
then f(z) is bounded
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Self Assessment

1. Which of the following is true in the reference of Liouville’s Theorem?

A. If a function { is entire and bounded in the whole complex plane, then f is constant
throughout the entire complex plane.

B. If a function { is entire and unbounded in the whole complex plane, then f is constant
throughout the entire complex plane

C. If a function f is entire and bounded in the |z| < 1 complex plane, then f is constant
throughout the entire complex plane

D. If a function f is entire and bounded in the |z| = 1 complex plane, then f is constant
throughout the entire complex plane

2. If a function f(z) is entire and bounded in the whole complex plane, and a, b are two points
in the plane then which of the following is true in the reference of Liouville’s Theorem?

A. fla) =f(b)

B. f(a) # f(b)

C. f(a) =10 f(b)

D. f(a) =—f(b)

3. If a function f(z) is entire and bounded in the whole complex plane, then which of the
following is true in the reference of Liouville’s Theorem?

A fl(z)=0

B. f'(z2) %0

C fllz)=1

D. f'(z) =10

T

4. Let f(2) is the monic polynomial with degree 2 and real coefficients such that z = %+ %i is
one of the roots of f(z) then f(0) =?

Al

B. 2

C 0

D. 3

5. Let f(2) is the monic polynomial with degree 2 and real coefficients such that z = %+ fg-ji is
one of the roots of f(z) then f(1) =?

Al

B. 2

C. 0
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9 N v p»

N

9 N v p»

@

9 N % »

X

9 N v p»

9 N v p»

T
Let f(2) is the monic polynomial with degree 2 and real coefficients such that z = %+ %i is

one of the roots of f(z) then f(2) =?
1
2
0
3

Let f(2) is the monic polynomial with degree 2 and real coefficients such that z=1+1i is

one of the roots of f(z) then f(0) =?
1
2
0
3

Let f(2) is the monic polynomial with degree 2 and real coefficients such that z=1+1 is

one of the roots of f(z) then f(1) =?
1
2
0
3

Let f(2) is the monic polynomial with degree 2 and real coefficients such that z=1+1 is

one of the roots of f(z) then f(2) =?

1
2
0
3

. Let f(2) is the monic polynomial with degree 3 and real coefficients such that z=1+1,1

both are the roots of f(z) then f(0) =?
1

-2

0

3
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11.

oNnw » oNw » oNw »

O n = >

Let f(2) is the monic polynomial with degree 3 and real coefficients such that z=1+1i,1

both are the roots of f(z) then f(1) =?

N R W O

. Let f(2) is the monic polynomial with degree 3 and real coefficients such that z=1+1,1

both are the roots of f(z) then f(2) =?

1
2
0
3

. Let f(2) is the monic polynomial with degree 3 and real coefficients such that z=1+1,1

both are the roots of f(z) then f(3) =?

1
2
10
3

. If f(2) is continuous in a simply connected domain D and if f_f(z)dz = 0 for every simple

closed curve Cin D then __ ?

f(2) is analytic in D
f(2) is not analytic in D
f(2) is not continuous in D

f(2) is not differentiable in D

. The Moreira’s theorem is converse of Cauchy Integral theorem.

A. True

False
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Answers for Self Assessment

1 A 2 A 3 A 4 A 5 A
6 D 7 B 8 B 9 B 10. B
1. A 12. B 13. C 14. A 15. A

Review Questions

1. A force field is given by F = 3z + 5. Find the work done in moving an object in this force
field along the parabola z = t* + it fromz = 0,toz = 4 + 2i.

2. Suppose P(x, y) and Q(x, y) are conjugate harmonic functions and C is any simple closed
curve. Prove that _(P(xy)dx + Q(x y)dy) = 0.

3. Prove that every polynomial equation P(z) = a;+a,z + ayz* + -+, a,z™ = 0, where the
degree n =1 and a,, # 0, has exactly n roots.

Determine all the roots of the equation 1 + z + z° = ()

Determine all the roots of the equation 1 + 2z + 2z* = 0

Determine all the roots of the equation 1 + 2z + 522 = 0

NS o

Determine all the roots of the equation 10 + 2z + 2z% =0

L.lJ Further Readings

1. Complex Variables and Applications by Churchill, R. V., And Brown, J. W.,
McGraw Hill Education.

2. Foundations Of Complex Analysis by S. Ponnusamy, Narosa Publishing

House.
3. Complex Analysis by Lars V. Ahlfors, Mcgraw Hill Education.

4. Complex Variables Theory and Applications by H. S. Kasana, Prentice-Hall.
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Unit 08: Zeroes and Singularities

CONTENTS

Objective
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8.1 Zeroes of the Analytic Function
8.2 Singularities

8.3 Classification of Singularity
8.4 Isolated Singularity

8.5 Removable singularity

8.6 Pole

8.7 Essential Singularity
Summary

Keywords

Self Assessment

Answers for Self Assessment
Review Questions

Further Readings

Objective

After this unit, you will be able to

understand the concept of zeroes of complex function.

understand the different type singularities of complex function

Introduction

In this unit first, we will discuss the zeroes of complex plane, then the singularity of a complex
function will be classified. The singularity can be explored using the Laurent series expansion, but
in this unit, we will classify the different types like removable, essential, pole without the Laurent
series.

8.1 Zeroes of theAnalytic Function

Suppose that a function f(z) is analytic at a point z,. Then the zeroes of f(z) are the points zywhere

f (z0) = 0.

We know that all of the derivatives fU(z) (n = 1,2,...) exist at zg. If f (z5) = 0 and if there is a
positive integer m such that f (”‘}(za) # 0and each derivative of lower-order vanishes at z, , means

FO(z) = 0,
2 (z0) = 0,

f[nl}(z(]) * 0'
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then f(z) is said to have a zero of order m at zg.

Example:

f(z) = z has a simple zero at z = 0.

D
W

As f(z) =zand f'(z) =1 # 0.So f(z) = z has a simple zero or zero of order one at z = 0.

Example:

f(z) = (z—i)? has a zero of order two at z = i.

¥

®

As f(z) = (z—i)? and
fl@)=2(z—-1)=0atz=1i,
flz2)=2%0atz=1L

So f(z) = (z — i)? has a zero of order two at z = L,

Example:

f(2) = 2% — 1 has two simple zeros at z = +1.
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D
<>

X
Asf(z) =2z -1 and
fl(z)=2z+0atz=1andz=-1.
So f(z) = z% — 1 has a simple zero or order one at z = 1,and z = —1.
Example
f(z) = z* — 1 has a zero of order one at z = —i,i,—1,and 1.
})
€ >
P A
pa [ X

Asf(z) =z'—1 and
f@)=E-DEz+)E-1.
f(@) =0atz=—i,i,—1,and 1.
fl(@) =423 #0atz=1

So f(z) = z* —1 has a zero of order one at z = —i,i,—1,and 1,

Theorem 8.1. Let a function f (z) be analytic at a point z,. It has a zero of order m at z, if and only
if there is a function g(z), which is analytic and nonzero at zy, such that f (z) = (z — zg)™ g(z).

Example
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The polynomial f(z) = z® — 8 = (z — 2)(z* + 2z + 4) has azero of order m = latz; = 2
since

f2) = (z - 2)g(2).
where g(z) = z? + 2z + 4, and because f (z) and g (z) are entire and g(2) = 12 # 0.

Note how the fact that z; = 2 is a zero of order m = 1 of f (z) also follows from theobservations
that f (z) is entire and that

F(2)=0and f'(2) = 12 #0.

Example
The entire function f(z) = z(e® — 1) has a zero of orderm = 2 at the point z; = 0 since
fO) = f0)=0,and f"(0) = 2 #0.
f2)= (z — 0)?g(2).
where g(z) is the entire function
g(z) = (e? — 1)/zwhenz= 0,
g(z) =1whenz = 0.

Task: Find the zeroes of f(z) = e” +e~%.
Solution
f(z) =0.

e?+e %2 =0.

p2(tiy) = 1.
e, g% = —1.

e, (cos2y + isin2y) = —1.
e*. cos2y = —1.

ie?*, sin2y = 0.

x=0.

cos2y = —1.

y=02n+ /2.
zp=x+iy=0+i(2n + Dn/2.

Hence we can say that there are infinitely many zeroes.

8.2 Singularities

A point zy is called a singular point of a function f(z) if f(z) fails to be analytic at zo but is analytic
at some point in every neighborhood of zj.
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Y
Zo
X
: Example:
Behavior of following functions at z = 0.
1
f2)= o
Sinz
f@) =——
g%
f@ =
1
f@) = sin (1/z)

We observed that all the functions mentioned above are not analytic at z = 0.However in
@ every neighbourhood of z = 0, there is point at which f(z) is analytic.

Example

Behavior of following function at z = 1.
z

fla) =

1—2z

<
K

We observed that the f(z)is not analytic at z = 1.However in every neighbourhood of z = 0, there is
point at which f (z) is analytic. So z =1 is the singular point of f(z).

Example

f(z) = 2% is analytic everywhere so it has no singular point.

Example

Behavior of following function in the entire z plane

flz) = |z|?
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We observed that the f(z)is not analytic at z = 1.However in every neighbourhood of z = 0, there is
point at which f (z) is analytic. So z =1 is the singular point of f(z).

8.3 Classification of Singularity

The singularity of a complex function can be classified into two groups, isolated and non-isolated. It
can be done via Laurent series expansion, but we can also classify the singularity without the
Laurent series expansion. In the forthcoming units we will consider the classification using the
Laurent series.

The isolated singularity further can be classified into different type. The following diagram shows
the different types of the singularities.

Sfﬂgulanﬁj

T olabed NovL- (Solated

Kewovable Sfﬂablmiﬁj

Pole

Essential Singulanity

e

8.4 Isolated Singularity

S Tﬂgh IMH,j at (Wi te

=)

A point a is called an isolated singularity for f(z) if f(z) is not analytic at z = a and there exist
1 >0 such that f(z) is analytic in 0 < |z—a| <r. The neighbourhood|z — a| < r contains no
singularity of f(z) except a.

Example
flz)= 22(2:211) has three isolated singularities z = 0, i, —i.
Example

flz)= $ has three isolated singularities z = 0,+m, 2, ...,

8.5 Removable singularity

Let f(z)is analytic everywhere execpt the point zyinside and on the domain then if the lim,_,_ f(z)
exists then z; is the removable singularity.
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; Example

Let f(z) = '. , clearly z, = 0 is an isolated singular point for f(z).

sinz

lim,_,, f(z)= hmz_,0 =1.

lim,_,,, f (2)exists then z5 = 0 is the removable singularity.

Example

Let f(z) = Z_:inz, clearly z, = 0 is an isolated singular point for f(z).

z-sinz
z—»zo f(Z) IlInz—>0

1-cosz

lim,_, f(z)= Ilmz_,0 [L-Hosptital rule]

0+sinz

lim, ., f(z) = hmz_,o [L-Hosptital rule]

COsE

lim,_,, f(z)= Ilmz_,u [L-Hosptital rule]

1
z—»?u f(Z) Ilmz—’O 6

lim,_,, f(z)exists then z; = 0 is the removable singularity.

8.6 Pole

Let f(2)is analytic everywhere execpt the point zginside and on the domain then if the lim,_,, (z —
Z0#/z=4, where 4#0, then z01is the pole of order k.

If k = 1, then z, is the simple pole.

Examp!e
Consider f(z) = — clearly z; = 0is an isolated singular point for f(z).
. , e?
lim,_,;, f(2) =lim,_ 7y

lim gz (z — 0)' £(2) = limy_ 2 f"z—z

lim,_, (z—0)' f(z) =€’ =1=0.

So zy = 0 is the pole of order 1 or simple pole.

Example

COSZ

Consider f(z) =

COSZ

lim,, f(2) = 11mz—>0

. . 2 COSZ
lim,_,;, (z—0)* f(2) = Ilmz_,0 Z* x

lim,, (z-0)* f(z) =limcosz = 1 = o.
z—0

So zy = 0 is the pole of order 2.
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: Example

Consider f(z) = —1;—8:2- , clearly zy = 0 is an isolated singular point for f(z).

. . 1-g*
hmz—\zn f(Z) = lim,g i

. i (1-e?*
lim,_, (z—0)3 f(z) = lim;, 2 7) =

. i 1-e%
lim, ., (z = 0)? f(2) = limz? =

lim, _, (z = 0)? (2) = lim &=

limy, (z — 0)? f(2) = Iina_—z:j =—2#0.
lin

So zy = 0 is the pole of order 2.

8.7 [Essential Singularity

Let f(z)is analytic everywhere execpt the point z;, inside and on the domain then if the lim,_,,_ (z —
Z0nfz=co, then z01is essential singularity.

Example
Consider f(z) = /%, clearly zy = 0 is an isolated singular point for f(z).
lim,_,_ f(2) =1im,_o e!/?
lim, ., (z = 0)" f(2) = lim,_, z"e*/.

. _— 1.1 f1\% 1 71y?

limy g, (2= 0 f(2) = lim,_oz"[1+ 2 + 2 (2) + 2 (3) + 1.
lim,_,, (z —0)" f(z) = co.
So z, = 0 is an essential singularity.

Singularity at infinity
We classify the types of singularities at infinity by letting w = 1/z and analyzing the
@ resulting function at w = 0.
Example
fl@) =2
f(2) =gw) =1/w3.
g(w) has a pole of order 3 at w = 0 The function f(z) has a pole of order 3 at infinity.

Non-isolated singularity

A point a is called a non-isolated singularity for f(z) if f (z)is not is not isolated at z = a.

Example

fl@a=

1
sin G)
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x e x x

“V7z 1/(2n) \ U(2r) 1/x

z, =0 (non-isolated)

5

The function is not analytic in any region 0 < |z| <®.

Summary

Suppose that a function f(z) is analytic at a point 2y. Then the zeroes of f(z) are the points
zgwhere f (z5) = 0.

A point zo is called a singular point of a function f(z) if f(2) fails to be analytic at z, but is
analytic at some point in every neighborhood of zp.

A point a is called an isolated singularity for f(z) if f(z) is not analytic at z = a and there
exist ¥ > 0 such that f(z) is analytic in 0 < |z —a| < r. The neighbourhood |z —a| <1
contains no singularity of f(z) except a.

Let f(2)is analytic everywhere execpt the point zginside and on the domain then if the

lim,.., f(z) exists then z; is the removable singularity.

Let f(z)is analytic everywhere execpt the point zginside and on the domain then if the

lim,_, (z — z9)*f(z) = 1, where 1 # 0, then z is the pole of order k.

A point a is called a non-isolated singularity for f(2) if f(2)is not is not isolated at z = a.
Let f(z)is analytic everywhere execpt the point z; inside and on the domain then if the

lim,_,, (z — zo)" f (z) = oo, then z, is essential singularity.

Keywords

Zero: Suppose that a function f(z) is analytic at a point zy. Then the zeroes of f(z) are the
points zgwhere f (z5) = 0.
Pole: Let f(z)is analytic everywhere execpt the point zginside and on the domain then if

the lim,_, (z — 2¢)*f(2z) = 1, where 1 # 0, then z, is the pole of order k.

Self Assessment

1. The polynomial f(z) = z® —8hasa ?

A. Zero of order one at zy = 2

B. Zero of order three at zy = 2
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. Zero of order two at z; = 2

Zero of order one at z; = 8

The polynomial f(z) = e’(z— 1) hasa ?

Zero of order one at z; = 0
Zero of order three at z; =0
Zero of order two atzg = 0

Zero of order one al z5 = 1

The polynomial f(z) = z* — 1 hasa ?

Zero of order one at z; = 1
Zero of order four at z; = 1
Zero of order two at zg = 0

Zero of order one at zg =0

Consider the f(2) = ::then

zg = 1 is the singular point of f(z)
zy = 0 is the singular point of f(z)
zy = 10 is the singular point of f(z)

There is no singular point of f(z)

Consider the f(2) = z%then

zp = 11is the singular point of f(z)
zy = 0 is the singular point of f(z)
2y = 10 is the singular point of f(z)

There is no singular point of f(z)

229
22(z—1)(2—-1-21)

Consider the f(z) = then

zp = 11is one of the singular points of f(z)
2y =3 is the singular point of f(z)
zy = —3 is the singular point of f(z)

There is no singular point of f(z)

\ #-9
Consider the f{Z) = mthen

Zg = 1 + 2i is one of the singular points of f(z)
zy = 3 is the singular point of f(z)
2y = —3 is the singular point of f(z)

There is no singular point of f(z)
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13.
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o2

f(z) = @2 has

a pole of order three at z = =2
a simple pole at z = -2
a pole of order two at z = -2

a simple poleatz =0

tanz
z

f(2) = has

removable singularity at z = 0
a simple poleatz =0
a pole of order twoatz = 0

essential singularity at z = 0

L f(z) = e:%has_

. removable singularity at z = 0

a simple poleatz =0

a pole of order two atz = 0

. essential singularity at z = 0

1

. f(2) =2(ez_1)has_

. removable singularity at z = 0

a simple pole at z = 0

a pole of order two atz = 0

. essential singularity at z = 0

1
. f(2) =2—z(§5has_

. removable singularity at z = 0

a simple pole at z = 0

a pole of order two atz =0

. essential singularity at z = 0

f(2) =2%has ___

. removable singularity at z = 0

a simple pole at z = 0

a pole of order three at z = o

. essential singularity atz = 0

. f(2) = tan G) has

90
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Non-isolated singularity at z = 0
a simple pole atz = 0

a pole of order three at z = 0

9N v »

essential singularity at z = 0

15. f(z) = e*has ___
removable singularity atz = 0
a simple poleatz = 0

a pole of order three at z = o

9 N v »

essential singularity at z = oo

Answers for Self Assessment

1 A 2 C 3 A 4 A 5 D
6 A 7 A 8 A 9 A 10. D
11. C 12. C 13. C 14. A 15. D

Review Questions

Determine the zeros of the z%sinz

Determine the zeros of the (z — 1)?/e®

Determine the zeros of the (z—1)(z +2)/(z—5)(z - 2)
Determine the singularity of the z2/e”

Determine the singularity of the z%/(z — 5)

Determine the singularity of the z/(z — 6)(z — 5)
Determine the singularity of the e*/(z + sinz)

Determine the singularity of the 2z+1/(z — 2)(z — 1)

O ® N o0 W

Determine the singularity of the e”/(z — sinz)

—_
e

Determine the singularity of the sinz + z/sinz)

INA| Further Readings
1. Complex Variables and Applications by Churchill, R. V., And Brown, J. W,
McGraw Hill Education.

2. Foundations Of Complex Analysis by S. Ponnusamy, Narosa Publishing

House.
3.  Complex Analysis by Lars V. Ahlfors, Mcgraw Hill Education.

4.  Complex Variables Theory and Applications by H. S. Kasana, Prentice-Hall.
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Unit 09: Taylor and Laurent Series

CONTENTS

Objective

Introduction

9.1 Convergence of Power Series
9.2 Taylor’s Series

9.3 Laurent’s Series

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objective

A power series with non-negative power terms is called a Taylor series. In complex variable theory,
it is common to work with power series with both positive and negative power terms. This type of
power series is called a Laurent series. The primary goal of this unit is to establish the relation
between convergent power series and analytic functions. More precisely, we try to understand how
the region of convergence of a Taylor series or a Laurent series is related to the domain of analyticity
of an analytic function. The knowledge of Taylor and Laurent series expansion is linked with more
advanced topics, like the classification of singularities of complex functions, residue calculus, analytic
continuation, etc. After this unit, you will be able to

0  find the Taylor series expansion of a complex function.

L find the Laurent series expansion of a complex function.

Introduction

We originally defined an analytic function as one where the derivative, defined as a limit of ratios,
existed. We went on to prove Cauchy’s theorem and Cauchy’s integral formula. These revealed some
deep properties of analytic functions, e.g., the existence of derivatives of all orders. Our goal in this
topic is to express analytic functions as infinite power series. This will lead us to Taylor series. When
a complex function has an isolated singularity at a point, we will replace Taylor series by Laurent
series.

9.1 Convergence of Power Series

When we include powers of the variable z in the series, we will call it a power series. In this section
we'll state the main theorem we need about the convergence of power series.

Theorem: Consider the power series B(z) = Y.* (z — zp)". There is anumber B = 0 such that:
1.If @ > 0 then the series converges absolutely to an analytic function for |z — zy| < Bl

2. The series diverges for |z — zg| > B, @ is called the radius of convergence. The disk |z — zy| <
is called the disk of convergence.
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3. The derivative is given by term-by-term differentiation @'(z) = X%2,(z — z;)""'. The series for
B'(z) also has radius of convergence R.

4. 1f y is a bounded curve inside the disk of convergence then the integral is given by term-by-term
integration

f(Z) ElZ = E fmn(z -
zo)"
n=0
The theorem doesn’t say what happens when |z — z,| = B.

If @ = oo the function BA(z) is entire.

If @ = 0 the series only converges at the point z = z;. In this case, the series does not represent an
analytic function on any disk around z,. Often (not always) we can find @ using the ratio test.

9.2 Taylor's Series

Let B(z) be analytic in a region B containing z;. Then @(z) can be represented as a power series in
z — zp given by

Fizp) £z0) £4zp) 5
B(z) = A(zy) + (z—z) +2 2 (z—2zg) + o o + (z—z) +-

1! nl

The expansion is valid in the largest open disc with center z; contained in D.

Proof
Let @ > 0 be such that the disc |z — z3| < B < B. Let &; be the circle |z — zy| = B;.

1 ME’II:,’

By Cauchy’s integral formula, we have B(z) = Bz

J

Also, by theorem on higher derivatives we have

— iy

2mi

S
B2 =" hgy B
f 2mi

Now — ——

(-2 Gz0-2+70)
_ 1
=zl 1- 2207

{mzg
1 7.—zn_1
=g (e )
2 3
S ¢ R G B G G P

N&Wthultiplying throdghout by* ff‘l , integrating over C and using Cauchy integral theorem we get

IR T 2o e G B 4 (T

2mi E{:—z 2mi m‘[—zo 2mi rﬂ-&_m]z 0 2mi B (f—z)? 0

...,+ﬁ J ‘,1’_(5_)_)'" B(z—g )" 1.

B (-2
Taking limit as nl_= in (3) we get,
L£lzp) £ (z0) Ly 2
Bz) = B(z)+ ,, (z-z)+, (z=2z) + . . + (z—z) +

@ Example

The Taylor’s series for @(z) = jj“about z = 11is given by,
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o g+ TP - P -2+ P-13 4
+ —

1! 2! 3!

Now B(z) == = B(1) =

= 08'(1)=-1.
1 , A1
z (z2)=—-

72
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" 1 "
B (z)=2 =0 (1)=2.

73

1 .
(2) = -6 = 8"'(1) = —6.

74

*= B+ -1 @D T =D+
This expansion is valid in the disc |z — 1| < 1.
Example
The Taylor’s series for B(z) = Billz about z = 4£ is given by,

n, P 2 Zf N E .3
piBz = BEY + - 2~ f s W R LT e

Now B(7) = Biiz = B€) =\EL

; como 1
B (z) =@pEEz = -zf )72 .

8" (z) = -Qifz = ”(4-77IL = \—/ZL.

1

1

m  JE
(z) = —0B0z = :fT =\72

- — 1 2 1

Bilz = + Y2 (z=-"5)+ 2 (z =V (z-F+"
I - -
N )

This expgnsion is valid in the entive complex plane.

9.3 Laurent’s Series

Any function which is analytic in a region containing the annulus B < |z—z0| < B, can be
represented in a series of the form

220 Bz = zp)".
2l i i i = = D — =P i 7 ?
Eet Byt Tdmpaiarspegtivebo fiasons S disledtnuried 5 % fpd [ rogys B with B < B
Then B (z) can be represented as a convergent series of positive and negative powers of z — z; given
by
B,
(z—z)"

+ E n(z_z[}ﬂ

n=0

B(z) = 3
n=1

Where

=]

_ & @)
T 2mi IC[ ((—zgmH1 oe

- f()
2, _3;'[52 Gzt B¢
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Proof:
Let z be any point in the circular annulus B < |z — zp| < ;.

we have B(z) =1 J—m_{—_L 28, ulg

/ 2mi C?f‘-i—z) 2mi C1({—2)

As in the proof of Taylor’s theorem, we have

1 Al 1 _#() 1 2
i J__ S : :
2mi ff?z(—z 2m ff“ Tn?o Df“ o @)2 Prle—Et o f“ _ )8 RelE— )
+ it ol @E;} Al (z = z,
n—1
1 L) g —z )14
F e %= toG-n)+8 G, ETI)TTEG
+0a
Meret: (- 0 1 0 2 0 =1 0 n
Qo
=t I(z ({=z gt ¢

Ba(2) =50 [ O e
i i
i~z ({—zp-ztag)
1
(/ Zgf 1- ﬂ)

Zez

7

_ 1 -zl
- (z—ig) ( E—Zp )

2 3
£ +( L=z 4.0 ),

N&WshultiplyfingthrougHout by ‘é‘fz% , integrating over C and using Cauchy integral theorem we get

2mi E{ 2mi ""I 7 Ini E'{z—zg]z 0 2 B (g—zg)? 0
ot f?(z,? B¢~ )"
2ni fl'ﬂil e —(/—.c@) (-t—.zo)ﬁfz' Stk ]"—3:4 Tl @
@, —;;ff.@—_%.}.m"f
B () =— 1 [ A = zgé,(

2ni(z—zy)" 1 (z—4)

Now using the maximal modulus principle B,(z) - 0,8,(z) = 0, As @l - co.

Hence
1 a0 1 B
A(z) = jCz({—z) mq,szm(z_ouq
B(z) = Bo + B1(z —2p) + Ba(z = 20)* + -+, +Bp_1 (2 — 20)" " + 2
+ (z—zp)
. (z—z)
AL
4ot P—
B(2) = i + 520 B (2= 5 )"

@ Example
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Find the Laurent’s series expansion of B(z) = z° B'/Z about z = 0.
Solution

B(z) = z° @Y7 EEEEE z =0
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Clearly B(z) is analytic at all point z # 0,

2 3
Now, A(z) = z* [1+= +12%-} Jé}ﬂ + ]
12 L2
2
Bz) = [+ +22 + 250 4
# -2.! -3!
B(z) = [“+z+224 —+..]

This is therequired Laygentig,series expansion for B(z) at z = 0.

Summary
Jled (53 %SHWtic in a region B containing z;. Then B(z) can be represented as a power series

frlzp) frizoy £0z) 2

B(z) = BA(zy) + (z—zo)+22! (z—2zy) + .. .. + (z—z) +--

1 n!

The expansion is valid in the largest open disc with center z, contained in D.

U Any function which is analytic in a region containing the annulus B < |z —z0| < B, can be
represented in a series of the form

Ziooo n(z - ZD)“-

Keywords

Consider the power series B(z) = L (z — 2)" . There is a number @ > 0 such that:
1.If @ > 0 then the series converges absolutely to an analytic function for |z — z;| < B.

2. The series diverges for |z — zg| > B, @ is called the radius of convergence. The disk |z — zg| <
is called the disk of convergence.

Self Assessment

1. Expand B(z) = 2?87 in a Taylor series around z = 0 then what is the coefficient of z%?

1
2
3
4

o0 w »

2. Expand B(z) = z?B% in a Taylor series around z = 0 then what is the coefficient of
Z%7A. 1

B. 2
C. 3
D. 4

3. Expand B(z) = 2?87 in a Taylor series around z = 0 then what is the coefficient of z?°
?A. 45

B. 2
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C. 3
D. 4

4. Expand B(z) = 270874 in a Taylor series around z = 0 then what is the coefficient of z??
?A. 1

B. 2
C. 45
D. 4

5. Expand A(z) = 1BA(A + z) in a Taylor series around z = 0 then what is the coefficient of
Z7? A.

B. 2
C 3
D. 4

6. Expand A(z) = 1BA(A + z) in a Taylor series around z = 0 then what is the coefficient of
z? A.

B. -1/2
C. 1/3
D. -1/4

7. Expand B(z) = lBE(E + z) in a Taylor series around z = 0 then what is the coefficient of
Z7?2 A 1

B. -1/2
C. 1/3
D. -1/4

8. Expand B(z) = IAA(E + £) in a Taylor series around z = 0 then what is the coefficient of
z? A1

B. -1/2
C. 1/3
D. -1/4

9. Expand B(z) = £ ;mz in a Laurent series then what is the coefficient of z2?

1/6
2
3
4

SN = »
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10. Expand B(z) = 22_: 2 in a Laurent series then what is the coefficient of z7?
A0
B. 2
C. 3
D. 4
11. Expand B(z) = 2; P in a Laurent series then what is the coefficient of z??
. 1/6
1
B. =
1
C -
D. 0
12. Expand B(z) = 22_: 2 in a Laurent series then what is the coefficient of z7?
A0
B. 2
C. 3
D. 4
13. Expand B(z) = 22_: 2 in a Laurent series then what is the coefficient of z7?
A. 1/6
1
B. =
1
C -
D. 0
14. Expand B(z) = 2; P in a Laurent series then what is the coefficient of z%?
A 0
B. 2
C. 3
D. 4
15. Expand B(z) = 22_: 2 in a Laurent series then what is the coefficient of z7?
A0
B. 2
C. 3
D. 4
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Answers for Self Assessment

1 A 2 C 3. A 4 C
6 B 7 C 8. D 9 A
11. C 12. A 13. C 14. A

Review Questions

1. Expand zB?% in Taylor’s series about z=-1
Expand 1/ @2 in Taylor’s series when |z+1|<1

2
3. Expand 1/ @2 in Taylor’s series when [z-2|<2
4

5 A
10. A
15. A

Expand cos z into Taylor’s series about the point z = 7 /2 and determine the region of

convergence,
5. Expand — (-1)(z—2) + S apower series in z in the region |z |<1.
6. Expand — m , as a power series in z in the region 1< |z | <2.
7.  Expand — m, as a power series in z in the region |z |>1.
8. Find Laurent’s series for ————— aboutz = —2.
(z+1)(z+2)
——ztd . ’ . . .
9. Ifa(z) = GNP .Find Laurent’s series expansion in 0 < |z-1|<4.
z44

10. #8(2) = "0

m Further Readings

. -Find Laurent’s series expansion in |z-1|> 4.

1. Complex Variables and Applications by Churchill, R. V., And Brown, J. W., McGraw

Hill Education.

2.  Foundations Of Complex Analysis by S. Ponnusamy, Narosa Publishing House.

3.  Complex Analysis by Lars V. Ahlfors, Mcgraw Hill Education.

4. Complex Variables Theory and Applications by H. S. Kasana, Prentice-Hall.
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Unit 10: Singularity by Laurent Series, Residue, Cauchy Residue
Theorem

CONTENTS

Objective

Introduction

10.1  Classification of Singularity by Laurent Series Expansion
10.2  Meromorphic Functions
10.3  Residue at a Singularity
104  Cauchy Residue Theorem
Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objective

After this unit, you will be able to

classify the singularity through the Laurent series expansion.
find the residue at different type of singularity

evaluate the complex integration using residue theorem.

Introduction

In this unit first, we will discuss the singularity of a complex function using Laurent series
expansion. Then the residue of a complex function will be explored and then we will understand
the complex integration using residue theorem.

10.1 Classification of Singularity by Laurent Series Expansion

It is also possible to classify the singularity using the Laurent series expansion.

Let a be an isolated singularity for a function f(z). Let r > 0 be such that f(z) is analytic in
0 < |z = a| <. In this domain the function f(z) can be represented as a Laurent series given by

f) = i§§5~+ Y ante—a
n=1 n=0

Were
_ 1 ()
n= E}a €7 — a)-nﬁ d¢
1 f(0

=Ty ¥
The series consisting of the negative powers of z — a in the above Laurent series expansion of f(z)

by

(z_a)nand is called the principal part or singular part of f(z) at z = a.

is given by Y-+
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The singular part of f(z) at z = a determines the character of the singularity.

There are three types of singularities. They are

(i) Removable singularities

(ii) Poles

(iii) Essential singularities.
Removable singularity

Let a be an isolated singularity for f(z). Then a is called a removable singularity if the principal
part of f(2) at z = a has no terms.

If a is a removable singularity for f(z) then the Laurent’s series expansion of f(z) aboutz = a is
given by
o0

[ =) anz—a)

n=0

Hence asz® a, f(z) = ap Hence by defining f(a) = ag the function f(z) becomes analytic at a.

Example
Let f(z) = LZE, clearly zy = Qis anisolated singular point for f(z).

sinz 1 z3 z
=" = s
Now f(z) = —z(z o )

sinz 2% _ gt

f(2) =—Z—-= (1 BT +E - l)
Here the principal part of f(z) at z = 0 has no terms. Hence z = 0 is a removable singularity.

lim,_,,_ f(z)also exists then zg = 0 is the removable singularity.

Example
Let f(z) = z——:iﬁ, clearly z, = 0 is an isolated singular point for f(z).
Zj 25
g—ig——hie )
- 3t sl
f@ = -
7
=g )
e =22
1 =z
f(Z) :ﬁ_a o S

z = 0 is a removable singularity. By defining f(0) = 1/6 the function becomes analytic at z =
0.Also lim,_,, f(z)exists then z5 = 0 is the removable singularity.

Pole

Leta be an isolated singularity of f(z). The point a is called a pole if the principal part of
f(2) at z = a has a finite number of terms.

If the principal part of f(z)at z = a is given by

b1 b,

. +—2x_ whereb, # 0.

z-a  (z—-a)? T @)

We say that a is a pole of order 7 for f(z). Note: A pole of order 1 is called a simple pole and a pole
of order 2 is called double pole.
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E] Example

Consider f(z) = % «learly zy = 0 is an isolated singular point for f(z).

z!

z 2
f@Q=S=-+z+5+5+.)

2 z, 2
flz)= == (/241 + >4 —t.or)

Here the principal part of f(z) at z= 0 has a single termi . Hence z = 0 is a simple pole of f(z).
Also

lim,_,,, (z-0)'f(2) = e? =1 # 0.50 2y = 0 is the pole of order 1 or simple pole.

=

Example:

Consider f(z) =2, clearly zo = 0 is an isolated singular point for f ().

¥ asi
COSZ ' | ¥
,f(Z) = = 2t 24.

22 z
The principal part of f(z) at z = 0 contains the term 1/z2 . Hence z=0 is a double pole of f(z).
Alsolim,_,; (z—-0)* f(2) = lir%cosz =1%0.
Z—

So zy = 0 is the pole of order 2.

Essential singularity

Let a be an isolated singularity of f(z). The point a is called an essential singularity of f(z) atz=a
if the principal part of f(z) at z = a has an infinite number of terms.

Example
Consider f(z) = e'/?, clearly z, = 0 is an isolated singular point for f(z).

flz) =e'/?
f@ =142+ 2@ 42 Q) + -1

4

The principal part of f(z) has infinite number of terms. Hence f(z) =e!/? has an essential
singularity at z = 0.

Alsolim,_,, (z—0)" f(z) = oo.

So z, = 0 is an essential singularity.

10.2 Meromorphic Functions

A function is analytic everywhere in the finite plane except at a finite number of poles is called a
meromorphic function.
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z
E Example: f(Z) = m

|
(9%
=
x

f(z) is analytic everywhere in the complex plane except z = 1 and z = —3.Here z = 1 is a simple
pile and z = =3 is the pole of order 3. We can say that the f(z) has finite number of poles and it's a
meromorphic function.

10.3 Residue at a Singularity

The following lemmas provide methods for calculation of residues.
Lemma 1
If z = a is a removable singularity for f(z) then Res(f (z); a) =
The principal part of f(z) at z = a has no terms. lim,_,, f(z)also exists then z; = a is the

removable singularity.

Example
Let f(z) = 5—?-2 clearly z, = 0 is anisolated singular point for f(z).
Now f(z) —sz :1(2 i +z—5 |

2 4
f(2) =SZE= a —5— +55T - )

Here the principal part of f(z) at z = 0 has no terms. Hence z = 0 is a removable singularity.

lim,_.,, f(z)also exists then z5 = 0 is the removable singularity.

So Res (S—LE 0)

E] Example

Let f(z) = z—:inz, clearly z5 = 0 is an isolated singular point for f(z).

3
g L)
f@= S
7 e
— e —— ,)
31 5!
f@= = S
g
flz2) = § ——5-1 = ey
z = 0 is a removable singularity. By defining f(0) = 1/6 the function becomes analytic at z = 0.

Also

hmz—»zo f(Z) Ilmi—rt] Z_ﬂ

1-cosz

lim,_,, f(z)= Ilmz_.o [L-Hosptital rule]
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lim,_, f(2) = lim,_o “ [L-Hosptital rule]

lim,_, f(z)= limmi‘:l [L-Hosptital rule]

lim, —, f(2) = lim,~o

lim,_.,, f(z)exists then z; = 0 is the removable singularity.

So Res (Z_sz, i G) = 0.

23

Lemma 2
If z = a is a simple pole for f(z) then Res{f(z); a) = lim,_,(z — a)f(z).
Lemma 3

If a is a simple pole for f(z)and f(z) = %
where g(z) is analytic at a and g(a) # 0 then Res(f(z); a) = g(a).

Lemma 4

g(z)
{z—=a)m

Let a be a pole of order m > 1 for f(z) and let f(z) =

g" Ha)
(=1

where g(z) is analytic at a and g(a) # 0. Then Res (f(2); a) =

Example
Consider f(z) = % «learly zy = 0 is an isolated singular point for f(z).
=¥ L 2L
f@="=-(1+z+5++.)
f@=S=/z+1+%+ %+.,.,)

Here the principal part of f(2) at z= 0 has a single term% . Hence z = 0 is a simple pole of f(z).
Also

limz_% (z - 0)1 flz)= e =1%0.% zg = D is the pole of order 1 or simple pole.

Hence

z

Res (%; 0) =g0)=1

E] Example

Consider f(z) = CZ"ZZ , clearly z, = 0 is an isolated singular point for f(z).

L
gy L5 E peen
z? g*

flz) =

The principal part of f(z) at z = 0 contains the term 1/z? . Hence z=0 is a double pole of f(z).
Alsolim,_,, (z—-0)? f(2) =1inacosz =1=0,
Z—

So zy = 0 is the pole of order 2. Here g(z) = cosz

Hence

Res (%?: 0) =g'(0) = —1

Lemma 4
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Let f(2)is analytic everywhere except the point a inside and on the domain then if the lim,_,,_ (z —
anfz=co , then z0 is essential singularity. Then the coefficient of z—#—1 in the Laurent series
expansion is the residue of f(z)atz=a

Example

Consider f(z) = ze'/?, clearly z = 0 is an isolated singular point for f(z).
lim,_, f(2) = lim,_q ze'/?

lim,_,(z — 0)! f(2) =lim,_q z'e'/%.

lim, (7= 0)! f(2) = lim,o 2" [1 + +2l(§)2 + 31(5)2 +o].

lim,_q(z — 0)! f(2) = 0.

So z = 0 is an essential singularity. Now the coefficient of (z — 0)* is%

So
Res (ze'/%; 0) = 1/2

10.4 Cauchy Residue Theorem

Let f () be a function which is analytic inside and on a simple closed curve €

except for a finite number of singular points z;, z;, ..., z, inside €. Then
T
[ f(2dz = 2mi Z Res(f (2); 7}
=1

Proof

Let C,,C;,...,C,be circles with centres z;,2;, ..., 2, respectively such that all circles are interior to
C and are disjoint with each other. By Cauchy’s theorem for multiply connected regions we have,

[ f(2)dz = [, f@2ydz + [ f(@)dz+ -], f(z)dz
fcf(z)dz = 2mi Res{f(z); z;} + 2mi Res{f(z); z,} + - ,2mi Res{f (2); z,}

=

[ f(@)dz = 2mi $T, Res{f(2); z}
Example
f(_,s—izEdz ~where C is |z| < 2

Clearly z; = 0 is an isolated singular point for f(z).

sinz 1 z? z?
=" = T T R T
Now f(z) = —z(z o )

sinz 2 L

(@) =32—= -2t = )

Here the principal part of f(z) at z = 0 has no terms. Hence z = 0 is a removable singularity.

lim,.,, f(z)also exists then zy = 0 is the removable singularity.
So Res (S—LZE 0) = 0.

sinz . sinz :
dz = 2miRes (—Z—-, 0) =2mi*0=0.

Js

z
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E] mep!e

2252 47 where € is |z| < 2,

clearly z, = 0 is an isolated singular point for f(z).

z—(z —z—j; +575 - )
f(Z) = 3.23 5!
e )
f(Z) 3 5.23
ZZ
@ o

= 01is a removable singularity. By defining f(0) = 1/6 the function becomes analytic at z = 0.
Also

z-sinz

hmz—»zo f(Z) IlInz—>0

1-cosz

lim,_., f(z)= Ilmz_,o [L-Hosptital rule]

0+sinz

lim,_., f(z)= hmz_,o [L-Hosptital rule]

COsZ

im,_,, f(z)= Iimz_,u [L-Hosptital rule]
lim, ., f(2) = limmg

lim,.,,, f(z)exists then z, = 0 is the removable singularity.

So Res (z_:im, ; G) = 0.

sinz (Z = SIHZ

f ——-dZ—ZmRes p [))— 2ni* 0 =0.

E] Example

Consider f -—dz,where Cis|z| =2,
Clearly z, = 0 is an isolated singular point for f(z).
=& _1 2.2
f(2) =—=-(+z+5+-+.)
f@=S=/z+14245+0)

Here the principal part of f(z) at z= 0 has a single term% . Hence z = 0 is a simple pole of f(z).
Also

lim,_,, (z—-0)' f(2) = e = 1 # 0.S0 2y = 0 is the pole of order 1 or simple pole.

Hence
e® 3
R — 5 =1
es (Z ; 0) g(0)
z

e’ e
f{_,;-dz = 2miRes (—Z-, D) =2mi* 1 =2mi.
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Example
Consider [ CE(;? dz ,where Cis|z| = 2,

Clearly z, = 0 is an isolated singular point for f(z).

22, &
iy L=y grmen

b zZ

flz) =
The principal part of f(z) at z = 0 contains the term 1/z2 . Hence z=0 is a double pole of f(z).
Alsolim,_,, (z - 0)* f(z) = limcosz = 1 = 0.
z—0

So zy = 0 is the pole of order 2. Here g(z) = cosz

Hence
cosz : _
Res (?'. O)ZQ(UJ— 1

e? . coszZ . .
fL.—Z-dz = 2miRes (—Zz—. 0) =2mi* —1 = —2mi,

Example

Consider [ ze'/?dz, where C is |z| < 2,
Clearly z = 0 is an isolated singular point for f(z).
lim,_, f(2) = lim,_ ze/?
lim,_,(z — 0)! f(2) = lim,_q z1e/~.

) p ; i 1y# 1\?
lim, .. (z — 0)! f(2) =]1mz_,oz1[1+;+%(—) +i(—) 4]

z 3l \z
lim;q(z — 0)' f(2) = co.

1

So z = 0 is an essential singularity. Now the coefficient of (z — 0)~ is =

So
Res (ze/%; 0) = 1/2.

1
[ ze'/?dz = 2miRes(ze'/%; 0) = 2mi + 5= i,

Summary

Let f(z) be a function which is analytic inside and on a simple closed curve € except for a
finite number of singular points z, z;, ..., 2, inside C.
Then[ f(2)dz = 2mi ¥}, Res{f (2); z}

If z = a is a removable singularity for f(z} then Res(f(z); a) = 0.

If z = a is a simple pole tor {(z) then Res(f (z); a) = lim,_q(z — a)f(2).
_ 9@

Z—a

If a is a simple pole for f(z)and f(z)
where g(z) is analytic ata and g(a) # 0 then Res(f(z); a) = g(a).

Let f(2)is analytic everywhere except the point a inside and on the domain then if the
lim,,, (z — a)"f(z) = oo, then z; is essential singularity. Then the coefficient of (z — a)™

in the Laurent series expansion is the residue of f(z) atz=a
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giz)
(z-a)™
g" Ha)
{mr—1)

Let a be a pole of order m > 1 for f(z) and let f(z) =

where g(z) is analytic at a and g(a) # 0. Then Res (f(2); a) =

Keywords

If z = a is a removable singularity for f(z) then Res(f(z); a) = 0.

If z = a is a simple pole for f(z) then Res(f(z); a) = lim,_,(z — a)f(z)

Self Assessment

ez

1. f(@= P has __

apoleoforder3 atz = -1
a simple pole at z = —1

apoleoforder2atz =—1

SN = »

a simple poleatz = 0

N

f(@ =s%zhas_

removable singularity at z = 0
a simple pole at z = 0

apoleoforder2atz =0

SN v »

essential singularity at z = 0

@

In the Laurent series expansion of f(z) about z = 0, the principal part is 0 then f(z) has

removable singularity at z = 0
a simple pole at z = 0

apoleoforder2atz =0

O N

essential singularity at z = 0

-

In the Laurent series expansion of f(z) about z = a, the principal part has 5 terms then f(z)
has

removable singularity at z = a
asimple poleatz = a

apoleoforder5atz=a

O N p

essential singularity at z = a

5 f(z) =

e is meromorphic because it has finite number (say K) of pole in the entire

complex plane then K =?

L ovely Professional University 111



Notes

Complex Analysis-1

A5
B. 1
C 2
D. 2
6. f(2)= m is meromorphic because it has finite number (say K) of pole in the entire

complex plane then K =?

5
1
2
3

9 N v p»

7. Which one of the following functions is meromorphic?

sinz
(z-1)%°

f@ =2, and g(z) =

A. Only f(2)

B. Only g(2)

C. Both f(z) and g(z)
D. Neither f(z) nor g(z)

e}

. In the Laurent series expansion of f(z) about z = a, the principal part has infinite many
terms then f(z) has

removable singularity at z = a
asimple poleatz =a

apoleoforderaatz =a

9 N v »

essential singularity at z = a

f(z) = e2has

X

removable singularity at z = 0
a simple pole at z = 0

apoleoforder2atz =0

SN v »

essential singularity at z = 0

. .z —
10. Residues of f(z) = pr= atz =1
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11. Residues of f(z) = z)g atz =0

A
B

C. 1/8
D. -1/8

12. Residues of f(z) = ——z atz = -2

2(2+2)'*
A. 5
B. 1
C. 1/8
D. -1/8

Sinz

13. Residues of f(z) = =——atz =0

0
1
1/8
1/8

onN @ p

14. Residues of f(z) = 1/(z+1)% atz = -1

1
2
0
4

O N

f.a‘nz

15. Residues of f(z) = atz =0

A. 0
B. 1

C. 1/8
D. -1/8

16. Evaluate the[ (m) dzwhere C:|z] = 3

A. 2mi

IS8

i

C. 0
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D.

1
17. Evaluate the[ z. ez dzwhere C:|z| = 1

27mi
i

0

SN < »

T

18. Evaluate thefrg dzwhere C:|z] = 2

A. 2mie
B. mi
C. 0
D m

19. Evaluate thefcé%;: dzwhere C:lz— 3| =3

2ri e
i
0

SN = »

T

Answers for Self Assessment

1. A 2. A 3. A 4. C 5. A
6. C 7. C 8. D 9. D 10. A
11. C 12. D 13. A 14. C 15. A
16. A 17. B 18. A 19 C

Review Questions

z+1
2242244

1. Find the residue of

inside the circle |z 4+ 1 + i| <2

Z+1
[ SRS A S

2. Evaluate [ dz by using residue theorem, where C is the circle [z + 1 + i| = 2.

3. Find the residue of ?13 inside the circle |z| <2
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10.

Evaluate [ ﬁ dz by using residue theorem, where C is the circle |z| < 2.

C2r

Find the poles of f(z) = %
Find the poles of f(z) = zzf;z
Find the poles of f(z) = ﬁ
Find the poles of f(z) = z:;

z

Find the residue of —
z°+2z

1
Cz2+2z

Evaluate [

Further Readings

inside the circle |z| = 5

and determine the residues at the poles.

and determine the residues at the poles.

and determine the residues at the poles.

and determine the residues at the poles.

dz by using residue theorem, where C is the circle |z| < 5.

1. Complex Variables and Applications by Churchill, R. V., And Brown, J. W,

McGraw Hill Education.

2.  Foundations Of Complex Analysis by S. Ponnusamy, Narosa Publishing House.

3.  Complex Analysis by Lars V. Ahlfors, Mcgraw Hill Education.

4. Complex Variables Theory and Applications by H. S. Kasana, Prentice-Hall.
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Unit 11: Argument Principle, Rouche’s Theorem

CONTENTS

Objective

Introduction

111  Argument Principle
11.2 Rouche’s Theorem
Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objective

After studying this unit, you will be able to:

discuss the concept of the argument principle.

describe Rouhe's theorem.

Introduction

In the last unit, you have studied the Taylor series, singularities of complex-valued functions and
use the Laurent series to classify these singularities. This unit will explain the concept related to
argument principle and Rouche's theorem.

11.1 Argument Principle

Let € be a simple closed curve, and suppose f(z) is analytic on . Suppose moreover that the only
singularities of f(z)inside € are poles.

If f(z) #0forall z € C, then G = (C) is a closed curve which does not pass through the origin. Let
N be the number of zeros and P the number of poles then

1. 1@

a2 =N P

Proof
If f(z) #0forall z € C, thenG = (C) is a closed curve which does not pass through the origin.

If o(t), a <t <b is a complex description of C, thenx(t) = f(x(t)), aZ t sfis a complex description of
G

Now,

T B g
LAY dcLC

F@ =, Taw)
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But notice that X' (t) = f/((£))¥ (L.

Hence,
f'(2) J’Ef (r(®) $40)
dz t)dt ——dt
I 2= |, Tam Y0 =), &
Next, we sha I use the Residue Theorem to evaluate the integral [, ); (( ; dz. The singularities of the
1ntegrand ! are the poles of f(z)together with the zeros of f(z).

f(J

Let’s find the residues at these points.
First, letZ = {z,,2,,...,2 } be set of all zeros of f(z). Suppose the order of the zero z; is n;.
Then f(2) = (z— zj)n“' h(z) and h(z;) #0. Thus

[(z) R(z)  my
f(z) - h(z) (z - p),)m"

@ _(z-p) "W @) -
(Z P}) f(z) = h(z) (Z = p})m,-

Since h'(z)/h(z) is analytic at py, it has a Taylor series representation about that point; and so above

e
equation tells us that );—('—j has a pole of order  ; at p; , with residue m,.

f'iz)

¢ @ dz = 2mi[Sum of all the residue] Hence

Using the Cauchy residue theorem [

'@
fc;(z) dz=N-P.

2mi

where nis the winding number, or the number of times G winds around the origin-n > 0 means
[winds in the positive sense, and n negative means it winds in the negative sense. Finally, we

n =N — P, where N = n; + n, +...+ ng is the number of zeros inside C, counting multiplicity,
or the order of the zeros, and P = m; + m; +...+ m; is the number of poles, counting the order.
This result is the celebrated argument principle

@ Example

di
Let f(z) = sinmz then evaluate f[);—gl dz Where ¢: |z] < .,

Here f(z) = sinnz

f'(z) = mcosmz

J- f(z} _J- -rrcas.'rzdz.

€ f(z) € sinnz
Using argument principle
f (Z}
de
f(z )
Now the zeroes of f(z) = sinmz inside the |2z| < mare {-3,-2,-1,0,1,2,3}, N=7

T COSTTZ
=/, dz = 2mi[N - P]
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2y -2 41 [0 1L 2 3[’m=214

Now there is no poles of f(z) = sinmz inside the |z| < r, P=0.

f f’("’)dz zf Reosls dz = 2wi[7 - 0].

€ flz) € sinmz

T COSTZ 5

J ——dz = 14mi.
€ sinmz

J cotzdz = 7i.

@ Example
f'iz)

Let f(z) = z% ~ z then evaluatejcm)—dz Where ¢ |z| < m.

Here f(z) = 2% —z

f'(z) = mcosmz

§ L2 4, =g 21y,

() €z22y
Using argument principle
f'(2) 27~4 .
I, 0] dz —fl_zz — dz = 2mi[N — P]

Now the zeroes of f(z) = z? — z inside the |2z| < mw are { 0,1}, N=2.

Now there is no poles of f(z) = z% — z inside the |2z]| <, P=0.
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1224, = f 2—dz = 2mi[N — P].

€ flz) i

Sy s 1111.7—21151[2 0].

T T
_ICE dz = 4mi.

@ Example

Let f(z) = z2 ~ 5z + 6 then evaluatejl.);—(f}—)dZWhere clzl=m.

Here f(z) =2z —5z+6

f'(z2)=2z—5
f'@ 4 _ 2z-5
Je 1@ Ll P e
Using argument principle
r@ ., 2z~

[ 5= @ -—jlmdz = 2mi[N — P]

Now the zeroes of f(z) = z? — 5z + 6 inside the |z| < 7 are { 2,3}, N=2.

N=214

‘__,__-
PF‘
L ==

Now there is no poles of f(z) = z* — 5z + 6 inside the |z| <, P=0.

fliz) _ 2z-1 _ irki
J. o dz = ch2_52+6dz = 2mi[N — P].
2z-1 ;
I, zz_”szmdz = 2mi[2 — 0].
2z-1 ;
I, 22—252+6 dz = 4mi.

We can also evaluate J dmmide the |z| < m using the Cauchy Residue theorem.

g 2 S
271 2z—1
S Pyl P vy s L

z = 2,3 are inside the |z| = n.

Res( 2225 1+5' 2) =2=-3
( 2215;4-6 3) e
st — =i (522 e ).
18232—25_;5 = I’-‘ (z— 3;;(21 3) = Zpl[-3 +5].
1. 222_2;;6 dz = 4mi.

L ovely Professional University 119



Unit 11:Argument Principle, Rouche's Theorem

@ Example

Let f(z) = z° ~ 5 then evaluate [, ‘;((Z;

dz Where ¢! |z| < m.

Here f(z) =2z* -5

f'(z) =2z
f'iz) _ 2z
St B2 =Sy dz.
Using argument principle
£, 2z
fcf( 5 jlzz — dz = 2mi[N — P]

Now the zeroes of f(z) = z? — 5inside the |z| < & are { i\/'S}, N=2.

t—*"
vt
(J.J..-_
S
|
W
o

Now there is no poles of f(z) = z* — 5 inside the |z] <, P=0.

'(z)
_[C;(:) dz = [ =" dz = 2mi[N — P].

_[c - 5dz-Z:n:t[z 0].

_]'c > 5dz—4rn

We can also evaluate f,—— dzmslde the |z| < m using the Cauchy Residue theorem.

2z 2z
——dz=f ———————d
JCZZ—S . J"(2:—x/5)(2:+\/5) %

z = —/5,/5 are inside the |z] < .

Res( = s\/g) =§_:g=1-
Res( V(—) = _N— =1
2z 2z dz = 2mi[Res (: =5 v’E) + Res ( )]

JC z2-5 dz = JC (2-v5) (z+V5)

2z _ 2z _ :
JC;E dz _-Ic—_(z-\-’ﬁ](zw'i) dz = 2mi[1 + 1].

— zz _ i
-Ic e Sd jcmdz—xtm.
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11.2 Rouche’s Theorem

The Rouche’s theorem is a consequence of the argument principle. It can be useful in locating
regions of the complex plane in which a given analytic function has zeros.

Theorem. Let € denote a simple closed contour, and suppose that

(a) two functions f (z) and g(z) are analytic inside and on C;

() If (2)| > |g(z)| at each point on C.

Then f (z) and f (2) + g(z) have the same number of zeros, counting multiplicities, inside C.
Proof

The orientation of € in the statement of the theorem is evidently immaterial.

Thus, in the proof here, we may assume that the orientation is positive. We begin with the
observation that neither the function f (z) nor the sum f (z) + g(z) has a zero on €, since

If (2| > [g@)| = 0and |f (2) + g(@| =2 |If (2| —1g9(2)]]| > 0
when z ison C.
If Zy and Z; zdenote the number of zeros, counting multiplicities, of f (z) and f (z) + g(z),

respectively, inside C, we know that

1 1
Zy = E;T—Al.arg f2and Zs. g = i;dt.arg arglf (z2) + g(2)].
Consequently, since

A _ 1 giz)
Zr = ;Acarg f@and Z, 4 = ;A(_arg [f (21 +?fz_)]

Z = iﬂ.carg fRand Z; 4 = ziﬂAL.arg [f (2)] + iAEarg (%)}.

it is clear that,
1
Zerg =25 + -Z_H"AC argF (z),

_ 9(2)
F(z)=1 +}g"(.;§'

But IF (z)- 1| = I‘?((zz})ll < 1;

and this means that under the transformation w = F (z), the image of C lies in the open disk
[w — 1] < 1. Thatimage does not, then, enclose the originw = 0. Hence A.argF (z) = Oand,

Zgrg = ZgRouche’s theorem is proved.

@Example

In order to determine the number of roots of the equation z7 — 4z® + z — 1 = 0 inside the circle
lz] =1,

write f (z) = —4z%and g(z) = 27 + z — 1.
Then observe that |f (2)| = 4|z|® = 4
and |g(2)| < |z|7 + |z| + 1 = 3when |z| =1.

The conditions in Rouche’s theorem are thus satisfied. Consequently, since f (z) has three zeros,
counting multiplicities, inside the circle |z| = 1, so does f (z) + g(z). That is, equation has three
roots there.

Summary

Let € denote a simple closed contour, and suppose that
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(a) two functions f (z) and g(z) are analytic inside and on C;
() If (2)| > |g(z)| at each point on C.

Then f (z) and f (z) + g(z) have the same number of zeros, counting multiplicities, inside C.

Keywords

Let C be a simple closed curve, and suppase f(z) is analytic on €. Suppose moreover that the only
singularities of f(z)inside € are poles.

If f(z) =0 for all z € C, then G = (C) is a closed curve which does not pass through the origin. Let
N be the number of zeros and P the number of poles then

1 [

E"T;EIL.}'Z;j-dz =N-P

Self Assessment

1. Let f(2) = zzizsi = and N be the number of zero and P be the number of pole then N=?

A1l

B. 2

C. 3

D. 4

2. Letf(z) = zzizsi = and N be the number of zero and P be the number of pole then P=?

A1

B. 2

C. 3

D. 4

3. Let f(z) = sinmz and N be the number of zero, P be the number of pole inside C: |z| =
7 then N=?

A 7

B. 2

C. 3

D. 4

4. Let f(2) = sinmz and N be the number of zero, P be the number of pole inside C: |z| =
7 then P=?

A. 0

B. 2

C. 3

D. 4

5. Let f(z) = z— 2 and N be the number of zero, P be the number of pole inside C: |z| = 5 then
N=?

A1

B. 2

C. 3
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D.

6.

SN >

N

9N

S

N wp

X

9nFp

OSN=Ep

4

Let f(z) = z— 2 and N be the number of zero, P be the number of pole inside C: |z| = 5 then

p=?

B~ W N O

Let f(2) = 2z — 2z and N be the number of zero, P be the number of pole inside C: |z| =

2 then N=?

= W NN

Let f(z) = 22—z and N be the number of zero, P be the number of pole inside C: |z| =

2 then P=?

= W N o

Let f(z) = sinmz and N be the number of zero, P be the number of pole inside C: |z| =

f @& g
n then J —~ @ dz=
14i
2i
7
4

. Let f(z) is analytic inside C: |z| = 2,and N=10 be the number of zero, P=5 be the number of

r tZ)
€ f(z) da=

pole then ﬁ I,

—= W N O

. Let f(z) = z — 2 and N be the number of zero, P be the number of pole inside C: |z| = 5 then

then f ’f (2) z=?

2mi
i
2i
21

L ovely Professional University 123



Unit 11:Argument Principle, Rouche's Theorem

12. Let f(2) = z — 5 and N be the number of zero, P be the number of pole inside C: |z| = 5 then

then f ’f (2} d

27
il
2i
2

OSNFp»>

13. Let f(z) = 2% —z and N be the number of zero, P be the number of pole inside C: |z| =

2 then fc);(md

4mi
mi
2i
2

9N = »

14. Let f(2) is analytic inside C: |z| = 2,and N=100 be the number of zero, P=50 be the number

f'Z) =

of poles, then EI @

50
20
30
40

9SNF»

15. Let f(z) is analytic inside C: |z] = 2,and N=1 be the number of zero, P=0 be the number of

L

pole then m[l r (2

oN =
B W N =

Answers for Self Assessment

1 A 2 B 3 A 4 A 5 A
6 A 7 B 8 A 9 A 10. A
11. A 12. A 13. A 14. A 15. A

Review Questions

1. Let f(z) = z— 10 and N be the number of zero, P be the number of poles inside C: |z| =

5 then then jl);(':) dz=?
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2. Let f(z) = z/10 and N be the number of zero, P be the number of poles inside C: |z| =

5 then then [ L gy

€ flz)
3. Let f(z) = (z—10)(z — 5) and N be the number of zero, P be the number of poles inside
) _ ') ,
C: |z| = 10then then |, o 427

4. Let f(z) =1/10z and N be the number of zero, P be the number of poles inside C:

|2| = 10then then J L% dz=2

5. Letf(2) = zzz_zﬁ;ia and N be the number of zero and P be the number of pole then P=?
6. Letf(z)= zZ::i 5 and N be the number of zero and P be the number of pole then N=?
7. Letf(z) = zz_fﬁ and N be the number of zero and P be the number of pole then P=?
8. Letf(z)= ﬁ and N be the number of zero and P be the number of pole then N=?

l_.._] Further Readings

1. Complex Variables and Applications by Churchill, R. V., And Brown, J. W.,
McGraw Hill Education.

2. Foundations Of Complex Analysis by S. Ponnusamy, Narosa Publishing House.
3. Complex Analysis by Lars V. Ahlfors, Mcgraw Hill Education.

4. Complex Variables Theory and Applications by H. S. Kasana, Prentice-Hall.
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Unit 12: Integrals Involving Sines and Cosines Functions

CONTENTS
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Keywords
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Further Readings

Objective

We turn now to some important applications of the theory of residues, which was developed in
Unit 10. Cauchy residue theorem is used to evaluate certain types of definite and improper
integrals occurring in real analysis and applied mathematics. These integrals are first transformed
to associate counter integral. The counter integrals are then evaluated using Cauchy residue
theorem. After studying this unit, you will be able to:

evaluate the definite integral of type f: L) (cosB, sinf)deé.

evaluate the improper integral over semi-infinite and infinite interval
Introduction

In this unit first the definite integral of type f: " f(cos8, sinf)d6 would be explained and then we
will evaluate the improper integral over semi-infinite(0, ©), (—, 0) and infinite (—oo, co)interval.

12.1 Integrals Involving Sines and Cosines Functions

The integral around the unit circle of the type _[02“ f(cos8.sin@)d6, where f is a rational function of
cosf, and sind can be obtained by setting z = ¢ .

The fact that 8 varies from 0 to 2m leads us to consider # as an argument of a point z on a positively
oriented circle C centered at the origin. Taking the radius to be unity, we use the parametric
representation z = e'?,(0 < 6 < 2m).

=gt

a T =
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to describe C (in above figure). We then refer to the differentiation formula to write z—; = el =
iz,

210 i 4 o=if

__-if
We know that sinf = f and cosfd = . These relations suggest that we make the

-z z+z 7t
—cos B =
2i 2

substitutions sin @ = = ,df = %which transform integral into the contour integral

of a function of z around the unit radius circle C.

z-z" z+ z7\dz
JF T

2i iz

The original integral is, of course, simplya parametric form of integral and we can evaluate that
integral by means of Cauchy’s residue theorem once the zeros in the denominator

have been located and provided that none lie on C.

@Example

21 dg

Evaluate [ I wrre— around the unit radius circle C.
Solution
Let
J j.{l’{ de
- s 3 — 2cos8 + sinf
e | -1
Put sing =2 zzi cosf = Z+22 -, df :%_
Then
s dZ
- 0 i (3 9 z+ 271 + z—z—l)
L G 2i
2 2dz
I =

y (1-20)2% +6iz—1-2i

2
(1-2i)z*+6iz—1-21

Now obtain the poles of

(1—20)z2+6iz—1-2i =0

=61 +./(60)? —4(1 - 2))(—1 — 2i)

2(1 —2i)
—6i + 41
Z=o——
2(1 —2i)

z=2-1,(2-1)/5

Only " lies inside C.
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2
(1-2iz24+6iz—-1-21"

Res (

2
(1-20)z2+6iz—1-2i"

Res ( @-0/5) = 1/2i.

@-1)/5) = limyslz -

2
(1-2i)z2+6iz—1-2i

(2-1)/5}

4 fZ?i de B
- o 3 — 2cos8 + sind -

2

jZ'ﬂ: dz
P =
0 iz(s—z,———‘“l+z - )

2 20

= Zm'[Res(

4 JrZR de
"~ Jy 3~ 2cosf + sind

(1 =222+ 6iz—1—2

(2~ 13/5)]-

= 2mi[1/2i]

de

@Exampie

i
=y .
o 3~ 2cosf + sinfl

Evaluate f027! " around the unit radius circle C.
Solution
Let
n de
I = _—
o 5t 4sind
Put sinf = 22 cosf = X dp =%,
2t 2 iz
Then
2n dz
I'= e w BoETR
0 iz (5 + 4, — )
2i
in dz
I= ; zE-1
0 iz (5 F+ 32— )
L
I J’Z’I iz.dz
~ Jo iz(5zi + 22 - 2)
Jd'ﬂ: dz
= i Bm———
o 2z%+5iz-2
Now obtain the poles of ———
2z°+5iz-2

2z% + 5iz

-2=0
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_ =50 £{/(50)2 +16

- 4

—-5i +vV=25+16
4

e e

zZ =

Only z = - L Jies inside C.
2

1l
o
B

1

27%+5iz=2 é = lim { (_ _)}

Res
2z2+45iz-2"
1

)
) = limz—'—%m'
)=
) =3

G

Res (s
P
(e

i
2z 2+SlZ 2 2 —2i+5i

1

2z2+5iz— 2 2
% da 1 i

[ = —————————— = 2miRes (—2—, —-).
o 3 — 2cosh + sind 2z +5iz—2 2

I J"m s = 2mi[1/3i
B G 3 — 2cos0 + sin® mi{14]

in de
I = ———— 2?’1’/3
g 3~ 2cos8 + sinf

12.2 Improper Integrals, Integration Along Indented Contours

In calculus, the improper integral of a continuous function f (x) over the semi-infinite
interval 0=x<w is defined by means of  the equation

L7 () dx = limgoe [ f (%) dx

When the limit on the right exists, the improper integral is said to converge to that limit.
If f (x)is continuous for all x, its improper integral over the infinite interval —oo < x <
oo is defined by writing
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00 R
| redx = jim [ £

o rehde = Bmiss j_”Rl f (%) dox + limgoo 2 f (x) dx.

We now describe a method involving sums of residues, to be illustrated in the next
section, that is often used to evaluate improper integrals of rational functions.

ffom f (x) dx where f(x) = g(x)/h(x) and g(x),h(x) are polynomials in x and the degree
of h(x) exceeds that of g(x) by atleast two.

To evaluate this type of integral we take f(z) = g(z) h(z) .
The poles of f(z) are determined by the zeros of the equation h(z) = 0.
Case (i) No pole of f(z) lies on the real axis.

We choose the curve € consisting of the interval [—7, 7] on the real axis and the semi-circle
|z] = r lying in the upper half of the plane.

Here r is chosen sufficiently large so that all the poles lying in the upper half of the plane
are in the interior of C.

Then we have [, f(2)dz = [I f (x)dx + [, f(2)dz.
Where ¢, is the semi circle.

Since deg h(x) - deg f(x) = 2 it follows that fcl f(2)dz—0 as r ~» o and hence

o f@dz=| f@ax

fj; f (x) dxcan be evaluated by using Cauchy’s residue theorem.
Case (ii)f (z) has poles lying on the real axis.
Suppose a is a pole lying on the real axis.

In this case we indent the real axis by a semi circleC; of radius € with centre a lying in the
upper half plane where ¢ is chosen to be sufficiently small.

Such an indenting must be done for every pole of f(z) lying on the real axis.

It can be proved that [ ol (z)dz = —mi Res {f(2); a}. By taking limit as r—o0 and €0 we
obtain the value of [ f (x) dx.

Example

Use contour integration method to evaluate f:j

1
1+xt dx
Solution

Let f(z) = 1/(1 + z%)

The poles of f(z) are given by the roots of the equation z* + 1 = 0 which are the

four fourth roots of -1.
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d
z = (—1)
2
= (cosm + isinm)s
@2n+ Dm o (@n+ D
= cos 2 + sin 2 ,n=10,1,2,3.

i 3w  isw T

= e+, e+ ,e+,and e + which are all simple poles.

We choose the contour € consisting of the interval [—r,r] on the real axis and the upper
semi-circle |z] = r which we denote by C, .

2f f@dz = [ f@)dx + [ f(2)dz.

im 3w

The poles of f(z) lying inside the contour C are obviously e+, e+ only.

We find the residues of f(z) at these points.
Res {f(z); e%} = h(e™ k1™

where h(z) = 1and k(z) = z* +1
k'(z) = 4z°

-
o) = o()
) =4[
Res {f(z) ; e%‘} - (:;ETE)
Now
Res {f(z), B%E} = h(eB™) [k (eB3™)
where h(z) = Land k(z) = z* +1
k'(z) = 4z°
=

By residue theorem,
J £z = 2mi (Res {f (s ¢5)+ Res {f ) %))
1

1
i3mw + {97
4 (eT) 4 (eT)
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; 1 1
fcf(z)dz =ar (4(.:03 3n/4 + isin3n/4) * 4(cos 9 /4 + isin 91:/4))

[ @)z :( Zm'. . 2mi . )
¢ 4(1N2 + i1N2) 4(ANZ + i1/42)
[ f@)dz ==

NF)

2 f@dz = [| f@dx + [, f(z)dz
m

f @) dx + [, fl2)dz =

T odx T
T

Since deg h(x) - deg f(x) = 2 it follows that Iq f(2)dz—0 asr — o and hence
o f@dz= [ £ () dx

Todx T
| ot otz =

J""’ dx _m
e 14xt 2

ZJ‘W dx m
g 1+ /7

J‘W dx T
i L4xt 22

Summary
The integral around the unit circle of the type fozn'f(cosﬁ,sinf?)dﬁ, where f is a

rational function of cos#, andsiné can be obtained by setting z = e' .
The improper integral of a continuous function f (x) over the semi-infinite

interval 0 £ x < o is defined by means of the equation f:j fx)dx =

limpoeo fy f (%) dx.

When the limit on the right exists, the improper integral is said to converge to
that limit. If f (x) is continuous for all x, its improper integral over the infinite
interval —o < x < o is defined by writing

=) R
[ reoar=m [ e
IZ f () dx = limgoe ij1 f (%) dx + limg_g, [, f (x) dx.

Keywords

Improper integral: The improper integral of a continuous function f (x) over the semi-infinite

interval 0 < x < oo is defined by means of the equation f:’ f(x)dx = limg_e f: f (x) dx.
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Self Assessment

n de 2w s de F
1 Wy rmam = 5= then the value of b o
™
A. =
it
B. ==
m
C. =
T
D. 100
n de 2w s de F
2. ¥l omam = —:JT—b;then thevalue of [ ———is
T
A. 5
it
B. %
m
C. =
o
D. 100
n de 2w nde h
3. My o= —:JT—b;then thevalue of [ ———is
2
A. i
T
B. &
2m
C. z
2w
D. Frl
n  de 2w s de 2
4. If fﬂ eyl then the value of fﬂ eyl
1
A. e
w
B T
o
C 15
T
D. 100
n  de 2w s de 2
5 Wfy s = —:JT—b;then thevalue of [ ———is
L5
A. 3
it
B. ==
m
C. =
T
D. 100
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>

IH WA

=

10. Thevalueof [°

>

=

T

o 0

o 0

i is
2+15in@

g da w
if fl] m GZ___then the value of fl]

2w
V3

2n

2w
10

de
L Ju_then thevalue of [

10+8sin@ is

jun
=

|F=I wi|s

n de 2m nde .
if fl] gy —W,T—b;thenthevalueof fl} mls

The value of f°°(_22_5)_
x24

a}l;:l &=
(=]

|F=I vy

0 (x 2+25)

=gkl §|a

wi|s
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dx

11. The value of fwm—
X

12. Thevalueof [°——— (2 4]

>

4000

=

w18 5]

1000

13. The value of fm( T2
+

>

ERE

=
b
(=}

vy

H

SHNS
8|

14.Thevalueof [°——— (2 4]

Sla gl

®
O

o
=1
=1

15. Thevalueof [

“ (x zm

>

=
Sla “1% gl &l
(=]

o 0

16.Thevalueof [°——— (2 4]
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|=

A.
108
it
B. =
m
C. =
D. —

a
=1
=1

Answers for Self Assessment

L A 2. C 3. A 4. C 5. A
6 B 7 A 8 B 9 B 10. A
11. B 12. A 13. A 14. A 15. B
16. A

Review Questions

i g ]
1. Evaluate fﬂ Tt ora

T a8
2. Evaluate fa bom

T daa
3. Evaluate | T

s dd
4. Evaluate [ ———

™ da
5. Evaluate fﬂ P
dg
3.5-1.55in@

6. Evaluate f;

7. Use contour integration method to evaluate f:j ﬁ dx
8. Use contour integration method to evaluate f:j # dx

9. Use contour integration method to evaluate f:j ﬁ dx

w1
—dx

10. Use contour integration method to evaluate f; ——

11. Use contour integration method to evaluate fom (1—;? dx
12. Use contour integration method to evaluate fom m}d—zﬂ— dx

13. Use contour integration method to evaluate J, (szjZ_) dx

14. Use contour integration method to evaluate dx

[
0 (49+x2)2

o

15. Use contour integration method to evaluate |__, (1+;)2 d

o0 1

16. Use contour integration method to evaluate J___ T
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17. Use contour integration method to evaluate |

18. Use contour integration method to evaluate [

LL]

@0 1
- (81+x2)2
«0

|
—o0 (49+x2)2

Further Readings

1. Complex Variables and Applications by Churchill, R. V., And Brown, ]J. W,,
McGraw Hill Education.

2. Foundations Of Complex Analysis by S. Ponnusamy, Narosa Publishing House.

3. Complex Analysis by Lars V. Ahlfors, Mcgraw Hill Education.

4. Complex Variables Theory and Applications by H. S. Kasana, Prentice-Hall.
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Unit 13: Conformal Mapping

CONTENTS

Objectives

Introduction

13.1 Conformal Transformation

13.2  Necessary and Sufficient Conditions for Conformal Mappings
13.3 Classification of Conformal Transformation
Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives

A large number of problems arising in fluid mechanics, electrostatics, heat conduction,
and many other physical situations can be mathematically formulated in terms of the
Laplace’s equation. i.e, all these physical problems reduce to solving the equation
&y + @y, = 0, inacertain region D of the z —plane.

The function @(x, y), in addition to satisfying this equation also satisfies certain boundary
conditions on the boundary C of the region D. From the theory of analytic functions, we
know that the real and the imaginary parts of an analytic function satisfy Laplace’s
equation. Tt follows that solving the above problem reduces to finding a function that is
analytic in D and that satisfies certain boundary conditions on €. Using the conformal
mapping it turns out that the solution of this problem can be greatly simplified if the
region D is either the upper half of the z plane or the unit disk.

If in the z—plane we are given a potential @(x,y), and apply to it a conformal
transformation, in the w-plane we obtain a potential ¢(x,y) that is a solution of the
Laplace equation ¢, + ¢, = 0. After this unit you will be able to

understand the principle of conformal mapping and their different types.
learn the necessary and sufficient conditions for conformal mappings.

find the image of the curve € in the z—plane into w —plane under the
transformation w = f(z).

Introduction

A complex number z = x + iy can be represented by a point P whose coordinates
are (x,¥). The axis of x is called real axis and the axis of y is called imaginary axis.
The plane is called as a z —plane or a complex plane or Argand plane.

A number of points (x,y) are plotted on z —plane by taking different values of z (i.e,
different values of x and y ).
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The curve € is drawn by joining the plotted points in the z —plane. Now let w = u +
iv = f(z) = f(x + iy). To draw a curve of w, we take u-axis and v-axis.

By plotting different (#, ¥) on w-plane and joining them, we get a curve C; on
w —plane. For every point (x,y) in the z —plane, the relation w = f(z) defines a
corresponding point (u,v) in the w —plane shown as in the following figure.

¢ v

yal 1 Ll

w = f(z)

11 11

5 u

X

We call this as” transformation” or mapping of z —plane into w —plane. If a point z, maps
into the point wy, wy is known as the image of z,. As the point P(x,y) traces a curve C in
z —plane the transformed point P, (u, v) will trace a curve C; in w-plane.

We say that a curve C in the z —plane is mapped in to the corresponding curve C; in
w —plane by the relation w = f(z).

@ Example:
2

Transform the curve x* — y* = 4 under the mapping w = z%.
Solution:

w = z*

=u+iv = (x + iy)?
= (x* — y* 4+ i2xy).

This givesu = x* — y*and v = 2xy

Image of the curve x* — y? is a straight line, u = 4 parallel to the v-axis in w-plane.
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13.1 Conformal Transformation

Let two curves Cy, G, in the z —plane intersect at the point P and the corresponding curve
Co1, Cpz in the z —plane intersect at Py .

If the angle of intersection of the curves at P in z—plane is the same as the angle of
intersection of the curves of w —plane at P, in magnitude and sense, then the
transformation is called conformal transformation at P.

13.2 Necessary and Sufficient Conditions for Conformal Mappings

The Necessary and sufficient condition for the toning formation w = f (z) to be conformal in that
f (z) is analytic.

Theorem

Let f(z) be an analytic function of z in a region D of the z —plane and f'(z) # 0 in D. Then the
mapping w = f(z) is conformal at all points of D.

13.3 Classification of Conformal Transformation

1. Translation:

A translation is a transformation that slides a figure across a plane or through space. With
translation all points of a figure move the same distance and the same direction.

Basically, translation means that a figure has moved. An easy way to remember what translation
means is to remembera translation is a change in location. A translation is usually specified by a
direction and a distance.

The mappingisw = z + ¢, where ¢ is a complex constant.
Letz = x + iv,w = u(x,y)+ iv(x,y) and ¢ = ¢; + ic;. Thenw = z + ¢ will
implyu + iv = (x + iy)+ (¢; + icy)
= (x +c) +ily + ).
By comparing real and imaginary parts, we get, u = x + ¢, and v = ¥ + ¢, Thus, the

transformation of a point P(x,y) in the z — plane onto a point Py(x + ¢,y + ¢z). Hence,
the transformation is a translation of the axes and preserves the shape and size.

Triangle A is slide directly to the right.
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2. Rotation and Magnification:
A rotation is a transformation that turns a figure about (around) a point or a line.
The point a figure turns around is called the center of rotation. Basically, rotation
means to spin a shape. The center of rotation can be on or outside the shape.

Dilation changes the size of the shape without changing the shape. When you go
to the eye doctor, they dilate you eyes. Let’s try it by turning off the lights.

When you enlarge a photograph or use a copy machine to reduce a map, you are
making dilations. Enlarge means to make a shape bigger.

Reduce means to make a shape smaller. The scale factor tells you how much
something is enlarged or reduced.

This mapping is w = ¢z, where ¢ is a complex constant.

a. Cartesian form: Letw = u(x,y) + iv(x,y),z = x + iyand ¢ = ¢; + ic,. Thenw = cz will
imply that
u+ v = (¢ + lclx + ty)
= (¥ — ©Y) + i(ay + 6x)
By comparing real and imaginary parts, u(x,y) = ¢;x — ¢y and
v(x,¥) = 1y — X
Thus, the transformations of a point P(x,y) in the z —plane into a point

Py (c1x = 3y, ¢,¥ + Cx) in w-plane.

b. Polar form: Letw = Re'?,z = rei® and ¢ = pei®,
Then transformation w = cz becomes Re'®? = pel® . rei® = preilett),
By comparing, we have R = prandg = 6 + «

Thus, the transformation maps a point P(r,8) in the z —plane into a point Py(pr,8 4+ a) in the
w —plane.

Hence, the transformations consist of magnification of the radius vector of P by p = |c| and its
rotation through the angle a.

; Example

Describe how the triangle A was transformed to make triangle B

A B

Triangle A was rotated right 90°
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Notice each time the shape transforms the shape stays the same and only the size changes.

A A

Dilate the image with a scale factor
of 75%

/\

Dilate the image with a scale factor
of 150%

. . . 1. . .
3. Inversion and Reflection: The transformationw =~ is known as inversion and

reflection.
a) Cartesian Form: Letw = u + iv,z = x + iy, then
1
w=-
z
. 1
= u+iv = 2
x + iy
x— i
u + v = _,—y-“
o+ D) — )
2 X =1y
u+ iv z———~—(x2 55

By comparing the real and the imaginary parts, we get

X

D
S
- @4y
Thus, the transformation maps a point P(x,y) in the z-plane into a point

AN - -
Py ((x2+y2,1 : Uc:+y2})m the w —plane.

(b) Polar Form:
-i6

. s . ; 1
Letw = Re'? and z = re'?. Then the transformation becomes Re'? = -e

so that R = % and ¢ = —6. Thus under the transformation w =1/z, any point P(r,8) in

z-plane is mapped into the point P, (%, —8) . Note that, the origin z = 0 is mapped to the
point w = o, called the point at infinity.

E]E;mmple

142 L ovely Professional University



Notes

Complex Analysis-1

Consider the transformation w = z + (1 + i) and determine the region in the w-plane
corresponding to the triangular region bounded by the lines x = 0,y = 0Oandx + y =

1 in the z-plane.

Solution:

The given triangular region bounded by the lines x = 0, y = 0 and x+y = 1 is shown in the following
figure. Then the vertices of the triangular region are (0, 0),(1, 0) and (0, 1). Now, the given

transformation is

¥
&

* L
(0.0) (1’0\
v

w=2z++ (1

(1,1

©0)

v v

+ 0

su+iv=x+iy)+0+10)
su+iv=x+D+ily+1)

>u=x+landv =y + 1.

x=0=u

y=0=uv

x+y =12 u~1+v-1

The line x = 0 maps into u = 1, which is also the

Also, the line y = 0 maps into v = 1, which is
line x + y = 1 maps into the line u + v =
bounded by thelinesu = 1,v = L,u + v = 3;

@ Example

=1
= 1;
=1l>u+v=3
vertical line in w-plane.

the horizontal line in w-plane. And, the
3. Hence, the region becomes triangle
which is shown in above figure.

Find the image of the circle |z| = 2 under the transformationw = iz + 1.

Solution:
Letw=u+ivand z = x + iy.
Thenw = iz + 1
> u+iv=ilx +iy)+

l=ix—-y+1

= (1 - y)+ ix

=>u=1—yandv = x

>y=1-uandx =
= |z? =

= |x + iyl?
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=>x% +y2 =4
svi+ (1 —-w =4

>@w— 1D+ v =4

which is equation of the circle centered at (1, 0) and radius is 2. Thus the transformation

rotates the circle by 7/2 and translate its by unity to the right.

@ Example

Find the image of the liney —x + 1 = 0 under the mapping w

Solution:

Letw = u + iv,

z = x + iy. Then the transformation w 2%

1
> u+iv= 5
x + iy
+ i !
= x + iy =
¥ u + iv
. 1 u—iv
= x + iy = — X >
u+tiv u-iv
, v
> x4+ iy =

-
u? + v? U + v?
comparing real and imaginary parts

u
x=u2+v2
i
B

Nowy —x+1=0
3 x—y=1
u v
SE v o

= u 4+ v =ut+ vl
SwW—-—u+vi—-v=20
1 i

=>~uz—14t-}~—+vz+v+~-=1
4 42

2

~(u-9) +(*-3) =

which is the equation of the circle centered at(%,%) with radius ( )2

1
2

1 . .
= - . Show it graphically

| =
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(‘[],ﬂ_] [LUL/

0,0)

v 7-plane ! W-plane

; Example

Show that the image of the hyperbola x? — y

2 = 1 under the transformation w zé is the

lemniscate R? = cos 2¢, where w = Re'?

Solution:

Letw = u + iv,

z = x + iy. Then the transformation w 22

1
S>u+iv= z
x + iy
+ i !
= x iy =
4 u + (v
) 1 u—iv
= x4+ Y= — X -
u + v u- v

uw . 15
-1
u? + UZ uZ + v2

= x + iy =

comparing real and imaginary parts

u
R

v
YETUE ¥ 2
xi—yt =1

2 2
(u2 2 vz) _(u2 -T- vz) =1

= uz = vz = (uz + v2)2

Puttingu = Rcospandv = Rsing (v w = Re'?),

we get,

(R cos @)? — (Rsin @)? = ((Rcos @) + (R sin ¢)?)?
=R? = cos®’ ¢ —sin® @
R% = cos 2¢.

Hence, the image of hyperbola in z-plane is R*> = cos 2¢, which is lemniscate shown in
the following figure.

L ovely Professional University 145



Notes

Unit 13:Conformal Mapping

& 'Y &

'y
v
=
4
v

Z-plane W-plane

Summary

A complex number z = x + iy can be represented by a point P whose coordinates are (x,y).
The axis of x is called real axis and the axis of y is called imaginary axis. The plane is called as
a z —plane or a complex plane or Argand plane.

A curve C in the z —plane is mapped in to the corresponding curve €; in w —plane
by the relation w = f(z).

If the angle of intersection of the curves at P in z —plane is the same as the angle of
intersection of the curves of w —plane at P, in magnitude and sense, then the
transformation is called conformal transformation at P.

The Necessary and sufficient condition for the toning formation w = f (2) to be conformal in
that f (z) is analytic.

Let f(z) be an analytic function of z in a region D of the z —plane and f'(z) # 0 in D. Then the

mapping w = f(z) is conformal at all points of D.

Keywords

Translation: The mappingisw = z + ¢, where cis a complex constant.

Rotation and Magnification: This mapping is w = ¢z, where ¢ is a complex
constant.

Inversion and Reflection: The transformation w =- is known as inversion and

L

reflection.

Self Assessment

What is the region's shape formed by the set of complex numbers z satisfying |z-o|< a?
circle of radius @
circle with center o

disk of radius a

oNn ® =

disk with center a

2. Find the area of the region given by 11<|z| <19.
A. 120m sq. units
B. 180m sq. units
C. 240m sq. units
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D.

PR

0w > ©

ONn w» @

SN > N SEESHE TS oON o o

ON w > ®

320m sq. units

Describe the region given by |z — i|z|| — |z + i|z]| = 0.
real axis

imaginary axis

circle centered at origin

quadrant 2

The mapping w = e* is conformal in whole complex plane

True

False

The image of |z — 1| = 2 under thew = 2z
lw—2]=4

lw—1| =4

lw| =4

lw—=2|=2

The image of |z| = 2 under thew = 2z

lw| =4
lw—1| =4
lwl =4
lw—=2]=2

The image of |z — 1| = 2 under thew = 3z

lw—3l=6
lw—1|=6
lw| =6

lw=2|=4

The image of |z| = 2 under thew = 3z

lwl =6
lw—1]=6
lw| =4
lw—=2]=2

The image of z = i under thew = 3z + 4 — 2i

w=4+i
w=6+1i
w=4
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D w=2

10. The image of z = 1 + i under thew = 3z + 4 — 2i

A w=441
B. w=7+1i
C. w=+4%
D w=2

11. The image of z= 1 — i under the w = 3z + 4 — 2i

A w=4+41
B. w=7-5i
C w=4
D. . w=2

12. The image of |z — 1| = 2 under thew = 2z

A lw—=2|>4
B. lw—1|>4
C. |wl=4

D. lw=2|=2

13. The image of |z| > 2 under the w = 2z

A |wl >4
B. lw—1|=4
C. |lwl=4
D. lw=2|=2

14. The image of |z — 1| > 2 under thew = 3z

A lw=3]>6
B. lw—1|<6
C. |lwl=6

D. lw=2|=4

15. The image of |z] = 1 under thew = 3z

A |lw|l=3
B. [w—1|=3
C. |lwl=4
D. lw=2|=2

Answers for Self Assessment

L D 2. B 3. A 4. A 5. A
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11. B 12. A 13. A 14. A 15. A

Review Questions

1. Find the image of |z — 10| = 2 under thew = 2z +5
2. Find the image of |z — 10| = 2 under the w = 5z

3. Find the image of |z — 10| = 2 under the w = §

4. Find the image of z? = 2 under thew = 2z + 5

5. Find the image of z? — 5z = 2under the w = 5z

6. Find the image of z° — 1 = 2under the w = g

7. Find the image of |z — 10| = 2 under thew = 1/z
8. Find the image of |z — 10| = 2 under thew = 5/z

9. Find the image of |z — 10| = 2 under the w = %

10. Find the image of z? = 2 under thew = 1/z

[])] Further Readings

1. Complex Variables and Applications by Churchill, R. V., And Brown, ]J. W,
McGraw Hill Education.

2. Foundations Of Complex Analysis by S. Ponnusamy, Narosa Publishing House.
3. Complex Analysis by Lars V. Ahlfors, Mcgraw Hill Education.

4. Complex Variables Theory and Applications by H. S. Kasana, Prentice-Hall.
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Unit 14: Mobius Transformation

CONTENTS

Objectives

Introduction

141 Mobius Transformation
142 Property of Mobius Transformation
14.3 Fixed Point

144 Cross Ratio

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives

Mobius transformation are among those fundamental mapping in the geometry with
application from brain mapping to relativity theory. A Mobius transformation sense each
point in a plane to a corresponding point.In this section we investigate the Mobius
transformation which provides very convenient methods of finding a one-to-one
mapping of one domain into another.

After this unit you will be able to

understand the Mobius transformation and its property
learn theCross Ratio of cross-ratio of four pointsand its invariance property
solve the problem of fixed points and Mobius Maps.

Introduction

In the previous unit we have studied a linear transformation w = @(z):= Az + B,
where A and B are fixed complex numbers, 4 # 0. We write w = ¢(z) as [A|e*4@) z + B.

As we see this transformation is a composition of a rotation about the origin through the
angle Arg (a).

wy i= 9@ 7 a4 magnification.

w, = |A|w; and a translationw = w3 = w, + B.

Each of these transformations are one-to-one mappings of the complex plane onto itself
and gap geometric objects onto congruent objects. In this unit first, we will understand
the Mobius transformation and its property and then we will consider the fixed point,

and last, we will deduce the learn the Cross Ratio of cross-ratio of four points and its
invariance property.
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14.1 Mobius Transformation

. az +h
A transformation of the form w = f(z) B ,ad = bc# 0,a,b,c,d are complex
constants is called a bilinear transformation or mobius transformation. Bilinear
. . . dw ad —bc
transformation is conformal since — = * 0.
dz (cz + d)?
. . . . : —dw+b
The inverse mapping of the above transformation is f ™' (w) = z = -

which is also a bilinear transformation.

We can extend f and f™* to mappings in the extended complex plane. The value f (o)
should be chosen, so that f(z) has a limit co.

b
Therefore, we define f(®) =1lim,,, f(z) =lim, e a—;‘i = a/c
ey

a

and the inverse is f~1 (?) = o0, Similarly, the value f~' (o) is obtained by

b

e = lim fw) = lim —* = —dfc

. . i
and the inverse is ! (T) =09,

With these extensions we conclude that the transformation w = f(z) is a one-to-one
mapping of the extended complex z —plane into the extended complex w-plane.

@ Example

The Bilinear Transformation which transforms R(z)? 0 into the unit circle |w | <1

Here the region for R(z)® 0 is shown below.

}r
A

N

Z- plane
R(z)>o0

i
A,

And the following figure represents the region |w | < 1in the w -plane.
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P <

» U

Suppose the bilinear transformation w = B oo KA €))
CZ

The transforms the half plane R (z) ? 0 into the circle|w | < 1.

: . az+hja
w is expressible as w = —— d;:’c sssrisen wen sas (2)

This b ¢#0 , otherwise the points at infinity in the two planes would correspond.

We have seen that the transformation (2) transforms a straight line of z-plane into a circle
of w-plane and points symmetrical about the line transform into the inverse points
w.rtlw | = 1.

Here the points zand — Zsymmetrical about the imaginary axis x = R(z) =0 will
correspond to w = 0 and w =, the inverse points of the circle |[w | = 1.

Thus we may write, E = —oand ;5 = @ on putting above in eqn (2) ,we get w =0, w =co.
Then (2) takes the form w = % * % ............. (3)

The point z = 0 on the boundary of the half plane R (z) = 0 must correspond to a point on
the boundary of |w | = 1so that

ap (Zz—do
wi=[3+ =3l
cl lz+a
a 0—a
]_ = |— * ==
c 0+
a
[ =1
c
a .
— =t
c
Where | is real. Hence
L =
w = e « =
Z4+ 0

Evidently z =a gives w = 0. But w = 0 is an interior point of circle |w | = 1.

Hence z =a must be a point of the right half plane i.e., R (a) > 0. With this condition
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. & —
L

w=e —
Z4+a

is the required transformation.

Theorem
The composition of two Mobius transformations is again a Mobius transformation.
Proof

Just as translations and rotations of the plane can be constructed from reflections across
lines, the general Mobius transformation can be constructed from inversions about clines.

14.2 Property of Mobius Transformation

az+b

Every bilinear transformation w = ——,ad — bc # 0 is the combination of basic

transformations translations, rotations and magnification and inversion.

Mobius transformations = products of inversions (or sometimes orientation-preserving products)
Forms group of geometric transformations Contains all circle-preserving transformations in higher
dimensions (but not 2d) contains all conformal transformations.

14.3 Fixed Point
A point z, in complex plane is called a fixed point for the function f if f(z;) = z,.

To visualize Mobius transformations it is helpful to focus on fixed points and, in the case
of two fixed points, on two families of clines with respect to these points.

Given two points p and qin complex plane in the following figure, atype I cline
of pand qis a cline that goes through p and q, and a type II cline of p and qis a cline
with respect to which p and q are symmetric.

Type II clines are also called circles of Apollonius shows some type I and type II clines
of p and qq. The type Il clines of p and q are dashed.
I

Figure 1. Type I clines (solid) and Type II clines (dashed) of pp and q.
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@ Example

Find the fixed point/s of f(z) = 5;—1

Solution
z—1
f@="r=z
z=
z2—z+1=0
_—EDEJEDI-401 1
F= 2
_1£3i
=2
So
25 = 1—Jr;E,l—_;Eare the fixed points
@ Example
Find the fixed point/s of f(z) = i;—s
Solution
_zZ=5 _
f@)=——=z
Z~5
1= P
z2—z+5=0
(D) xJ(-1)2-4%1 5
F= 2
_ 1£vV19i
B2
So
zZ5 = I—Jr;ﬁ,l—_\;—mare the fixed points

14.4 Cross Ratio

We have already seen that Mobius transformations map circles to circles. In this section
we want to find a specific Mobius transformation that takes a specific circleto another
specific circle. Recall from Euclidean geometry that three points uniquely determine a
circle. Let us denote one circle by €, and one by C,. We choose points z;,2, and z; on
C; and wy, w, and wy on C,.

Then if we find a Mdbius transformation h that takes

h(z) = wy,
h(zz) = wa,
h(z3) = wy.

then h must map C, to C,.
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_ (z-z1)(z2-25)

If the points z; # oo, we define a Mtbius transformation f by f(z) = m) )
z-23)(22 -2

which clearly takes
f(z) =0,
flz) = 1,
f(z3) = .
If one of the three points z; = oo (which means that (; is a line) we have
_ %2~ 23 _
flz) = = as(z; = ),
N E— iy -
f(2) =2 as(z; = ),
Z=igy -
f(@) = —-as(z, = ),

which satisfy f(z;) = 0, f(z2) = 1,f(z3) = .

Now let g be another Mobius transformation which takes
glwy) = 0,g(w,) = 1, g(ws) = oo.

Then we notice that the equation h(z) = w can be written as
g (f@) = w e= gw) = f(2)

(z-21)(z2 ‘23]:(W-W1)(W2‘W3]
(z-23)(z2 - 21) (w-w3)(wz -w1)

which means that

These fractions are called cross ratios.

@ Example

Find a Mobius transformation that takes O to i, 1 to 2 and — 1 to 4 ratio?
Solution

We calculate the appropriate cross
(z - 0)1 - (=1)
(z—-(-D)1-0)
_ 2z
T z+1
w = D)2 — 4)
(w—4)2-1)
o —2(w—i)
Tw-42-0)

(z0,1,-1) =

(w,i,2,4) =

Now
(z-2)(z; - z3) - (W= wy)(w, - wy)
(z-23)(2-2z) (W-w3)(wy- wy)

2z —2w=i)
z+1 (w—4)2-1)

(16 — 6i)z + 2i

which givesw = h(z) = e

which is the desired Mobius transformation.
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@Example

Find a Mobius transformation that takes the region D; = {z € C||z| > 1} to the region
D, ={z e C| < 0}.

We choose both D; and D, to be left regions.

That is accomplished by choosing

z; =1,
Z; = —i,
zg = —1 and
w; = 0,
Wy = I,
Wy = 00

Since Mobius transformations take left regions to left regions, a solution to the problems
is a Mobius transformation that takes 1 to 0, —i to i and — 1 to oo,

As in the previous example we find such a Mobius transformation by equating the two
cross ratios, i.e.,(w,0,i,%) = (z,1,—i,—1)

which is the same as—‘:_’_;gz (z— 1)(——i + 1)/(z + 1)(—~i~ 1),

where we have used the first formula in Equation 6 to calculate the cross ratio for w. This

1-2
+

gives the desired Mobius transformation w = h(z) = :

There exists a unique bilinear transformation that maps four distinct points
73,23, 23 and z, on to four distinct points wy, wy, ws and w, respectively.

(21-23) (22— 24) _ (Wy—ws)lwa—wy)
(21— 24)(z3— 23) (wq—wy)(wz—ws)

An implicit formula for the mapping is given by,

The above expression is known as cross-ratio of four points.

Summary

Every bilinear transformation w = (az+ b)/(cz + d) ,ad — bc # 0 is the combination
of basic transformations translations, rotations and magnification and inversion.
The cross-ratio of four points is bilinear transformation that maps four distinct

points z;, Z;, z3 and z, on to four distinct points w;y, w;, w; and w, respectively is

given
(z1-23)(2Za~24) _ (W1-w3)(wy—wy)
"(z1- 24 )(22— 23) (W= wy)(wz—w3)
Keywords

Fixed point: A point 2z, in complex plane is called a fixed point for the function f
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if f(zo) = 2o.

Self Assessment

O 0w »

O N = »
= b2 |tn

7
1

2,4?
z-1

What ig/are the fixed points of

What is/are the fixed points of —=?

R W

= b2 |tn

What is/are the fixed points of ??

What is/are the fixed points of >?

R W

What ig/are the fixed points of 222
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6. What is/are the fixed points of 2=

z

4+v8i
Z

14T
4

7. What ig/are the fixed points of 22

8. What is/are the fixed points of —=?

[ I )

oS 0w p
[ Ty ]

. b, - .
A transformation of the formw = f(z) = j : -is called a bilinear transformation or

et

mobius transformation if ?

10
b#—
3

b#5
b+#7

S 0w »

+1

10. A transformation of the formw = f(z) = czz = -is called a bilinear transformation or

mobius transformation if ?
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A.ci,3

3
B. ¢#5
C.c#7

D.c#-

2z

11. A transformation of the form w = f(z) = :fis called a bilinear transformation or

3z

mobius transformation if ?

3z+b

12. A transformation of the form w = f(z) = — -is called a bilinear transformation or

mobius transformation if ?

>

.b#5
b+#6
. bh#E7

.b#3

O N =

3z+5
cZ+5

13. A transformation of the formw = f(z) = is called a bilinear transformation or

mobius transformation if ?

o N = >
()
H
~
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. b, o .
14. A transformation of the formw = f(z) = : : -is called a bilinear transformation or

5

mobius transformation if____?
b+4
b=+6
b#7
b#3

o N = p»

Z

15. A transformation of the formw = f(z) = :z: fis called a bilinear transformation or

mobius transformation if ?

A.a:;tl

4
B.c#4
Cc#7

1

D.c#-
7

Answers for Self Assessment

1 A 2 A 3 D 4 D 5 A
6 D 7 B 8 A 9 B 10. B
11. B 12. D 13. B 14. A 15. B

Review Questions

1. Find the fixed point of ——

2. Find the fixed point of ———

(1+i)z—i

3. Find the fixed point of o

3
z-i
4. Find the fixed point of ZL
2z—-1

5. Find the fixed point of =2
z~1

6. Analyze the Mobius transformation of 2—;_—1

7. Analyze the Mobius transformation of (1+;)zz—x
8. Analyze the Mobius transformation of 3;_2;_5
9. Analyze the Mobius transformation of %

10. Analyze the Mobius transformation of j%j
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L.lJ Further Readings

1. Complex Variables and Applications by Churchill, R. V., And Brown, ]. W,,
McGraw Hill Education.

2.  Foundations Of Complex Analysis by S. Ponnusamy, Narosa Publishing House.
3.  Complex Analysis by Lars V. Ahlfors, Mcgraw Hill Education.

4. Complex Variables Theory and Applications by H. S. Kasana, Prentice-Hall.
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