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Unit 01: Integral Domains
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Objectives

After studying this unit, you will be able to

e define rings and integral domains,

e understand the concept of divisibility in any integral domain,

e understand Unique Factorization Domain, Principal Integral Domain, and Euclidean
Domain with the help of examples,

e relate Euclidean Domain with Principal Ideal Domain and Unique Factorization Domain.

Introduction

In this unit, you will be introduced to rings, and then to special rings whose specialty lay in the
properties of their multiplication. In this unit, we will introduce you to yet another type of ring,
namely, an integral domain. You will see that an integral domain is a ring with identity in which
the product of two non-zero elements is again a non-zero element. We will discuss the various
properties of such rings. Next, we will look at special classes of integral domains namely Unique
Factorization Domain, Principal Integral Domain, and Euclidean Domain. The examples, properties
and their relation will be discussed.

1.1 Ring and Integral Domain

Ring:A syatem (R, + -} where # iz a non-empty set, + and - are two binary operations defined on
set /, is called a ring if it satisfies the following, properties:

a) (#, +)is an abelian groug.
(i) Closure under additionzs + b€ R va be &
(ii) Associativez{a+ #} +c =g+ b +cl¥aboE N
(iii) Identity: ¥ @ € &, thers exists an element 0 € 7§ such that a +0 =a =04 g, The
element U is called zero or addibve identity of the sing,
fiwy Imwerse: For sach o € &, there exists b € # such that @+ =0 = b +a. Then b is
called —r or addilive inverse of a
vl Abelianig+bh=b+uv¥uwbel
b) [(® }isasemi-group
(i) Closure under multiplication: - b B v a b £ &
(ii) Associative:(m-h)-c=m: (b -civabcER
c) Distributive laws hold &t {f, + )
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Advanced Abstract Algebra-I1
(i) Left Distributive Laiw:z - {h—cl=nm-h+a-cv¥abceER
(i) Right Distributive Lawzig +8)c =a-c+h . cvabrcER

Ring with unity:An element 1 & # s valled a unity if
E-U=u-g=a¥eeR

We generally denote unity by 1.A ring that contains a unity element is called a ring with unity.

ﬁ' Note:

A ring May or may not with unity. For example, the ring of integers Z has unity 1 and the

g of ¢yen integers 2Zcontains no such element 1 =atisfying the condition &t - 1t = 1t -t =
a¥aely

Units of a ring: Let & be a ring with unity 1. Then an element @ € & is ralled a unit if there exists an
element s € B such thatg - b=1=5 @

*  Not,
Let g pe a ring with unity 1. Then 1 is always a unit.

(i) Except for unity, the ring may have some elements are units, but some are not.
For example, in the ring of integers, only 1 and —1 are units and all integers
except 1 and —1 are not units.

(i) It may also happen that all the non-zero elements of the ring are units. For
example, in the ring of rational numbers, all the non-zero elements of the ring
are units.

Ring with/without zern divisors:Let # bra ring
* Anelement s £ # is called a teft zero-divisor if & - b = I} for some non-zero i E R,
* Anelements £ # is called o right zero-divisor if fr - i = 1 for some non-zero [ € R.
* A non-zero element & £ ® which is either left or right zero divisor is called a proper zero
divisor.
= 3 Note:

In a ring g, 4 (The additive identity of a ring) is always a zero divisor, called
improper or trivial zero divisor.

(i) There are rings without any proper zern divisor. For examyle, the ring
of integers (E} as fosr bwo integers m, fr we know that @ - fr = 0 imiplies at
least one of @ i fr is Zera.

(i) Some rings are with proper zero divisors. For example, Zg under the
compositions of additizn and multiplication modulo 6. Then Z, 5 E Zg

are both non-zerobut Z2-3 =10

For the sake of convenience, we: will write & in place of a - b.

Commutative Ring: A ring |5 called commutative if @ - b = b - [or all @, b £ K.

%‘ suterA ring may or may not be commutative. For example, the ring of integers (Z) is
commutative and the ring of square matrices of arder 2 aver the field of real numbers
My,4(R) is not commutative. For examyife,

o 2l &l=15 &

2 Lovely Professional University



Unit 01: Integral Domains

and =

L2l =0 &

This implies, M, (R) is not commutative.

Integral Domaim:4 commutative ring & without proper zera divisors is called an Infrgral Domain.
For example, Z, Mz, (R} are both integral domains arud Zgis mat an integral domair.

Left Ideal of a ring: Let ! # ¢ be a subset of a ring #. Then ! |= called a left ideal of # i

(i) a—bel¥abel
(i) ragl¥reRael

Right Ideal of a ring: Let [ # o be a subset of a ring #. Then { |= called a right ideal of # il

() a=belvabel
(i) arelvrefac!

Ideal of a ring: A non-empty subset [ of a ring ¥ is called an ideal of ¥ if it is both left as well as
right ideal of &.

Divisibility in a commufative ring with unity:Let # bea commutative ring with unitv. Let o, b be
wo elements in ®, i is said to divide a, symbolically wewrite bla, if @ = be for some ¢ € 7.

[: is ralled a factor of ur,
fr i= said to be a prevper factor of a i both i and ¢ are non-units.
Par ¢xample, in the ring of integers, 3 divides 6 as there exists integer 2 such that 6 = 3 - 2.

Associsteslet B be a commutative ring, with unity, An element @ of # i= said to be an associate of
be & i = bu for soime unit o € R, 1 is demated as a<h, For example,

In the ring of integers, for any element g, Lhwre ane bwo associates of & ¢tiven by a, —a.
In the ring Zg, assoclates of Z are given by Z and #,

Theorem 1.1.1:Let # bt a commutative ring with unity.The relation ~ of associates is an equivalence
relation.

Proof: Let 1 is thw umity of rinmg, /.
Reflexive; For all @ £ B, = @+ 1, Hence, this relation is retlexive,
SymmwetricFor @, & € #. Lot a~h, This imiplies,m = e where 1 is @ unit.
Since 1 is @ unit, therelone, u~" exists in ¥,
Post-multiply a = & with 177, we get,
au = b
This implies, b~ Henoe, tie relation is symmstric
TransitivesTor a, b, ¢ € R, Let a~b and d-~c
There exist units u, ¥ & B such that o = i and b = cp
Consider & = b= {rriw = civig)
Since w amd ¢! Bath are units so war Is also a unit.
This implies s =¢.
Hence, the relation is transitive.
Therefore, the relatior is an equivalemce relation
Thenrem 1.1.2:In a dosnain &, for @, & 2 0, a~f implies @]k and b|a,
Proaf:iiven that 0 = @, E &
Let @~ir

Then there exists a unit i £ & such that @ = b

Lovely Professional University
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By the definition of divisibility, k|«

Again, the relation of associates is symmetric implies B--q, and then with the same logic, we can
say, |

This implies, | & and hfo.
Conversely, Let )b and 4|z
Then there exist ¢, 0 € § swch that e = be and b = ad

Now & = ad
= b
S>bl-adl=10D

Given that b = &rand B is an integral domain.

This implies, | —cd =0

Thatis, od =1

This implies ¢ is a usnit. Then @ = e implies @~k

Prime element:Lel & B2 a commutative ring with unity. p € ¥ is valled a prime element of #if

(1) p # b non-unit
{ii] Fora, b € #, whensver p|ab,p|a orp|b.

Irreducible element:Let & b a commutative ring with unity. p € ¥ is called an irreducible element
of i il

(1) p =+ 0, mon-umnil
(i) If p = ab lorsome a,b € & then a or kb is ¢ unit.

@ Example 1.1.3:Example of an element of a ring which is a prime element as well as
irreducible.

Every prime number in the ring of integers is a prime as well as an irreducible
element.

@ Example 11.4:An element in a commutative ring th unity which is a prime but
not irredducible element. o

Consider %% & Hy i prime but nut irreducible.
Proof:lel }ablor 7. b £ 2,

This implies, ah — 2 = 6k k€ Z

So, abh = &k + 1

This irplies 2jeb in T

2 is a prime element in &,

This implies, 2{a ar 2ih

Hence, 2| or 2| k.

That proves that 2 js o prime element in Zg.

But = Z: 1 whare both Zandd hoth are non-units in Z,
Hence, 2 & 24 is not irreducible.

@ Example 1.1.5:An element in an integral domain . ith unity which is an irreducible
but not prime eleviwil; S

Proof:Consider 3 € £[y=5] = {4 + by/'=5| 2.& € T Then 3 ic an irreducible but not prime element.
Let3 = (@ +W=5)[c +dv—=Shmbcd e E
Taking conjugate on bola sides, we get,
i=[a~- b".":a(r.' - a.hl'—_S)
Multiplying the two equations we get,
9 = (&? +5B%)(c* + 5d%)
This implies &* + 56 and £? + 57 are both puwsitive: divisors of 9.
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Unit 01: Integral Domains

That is, a* + 5b* = 1,3 4r 9
Case 1: lf ® 4+ 562 =1
This is possible shly if a = +1,5 =0
So that, & + /=5 = +1, that is, a unil,
Case 2: 1f @* + 5B =3
Note that there de ot exist integers a, & such that a? + 557 = 3.
Therefore, this case i=aal pessible,
Case 3:If g + 5h% = 9, then ¢ + 502 = 1
Then as dorain Lase 1, ¢ + dy—5
Hence, either a + /=5 orc + dy—3 is.a urit.
Therefore, 3 is ar rreducible glement in # | -.'_Frf
Now, we prove that 2 ig mat a prive elemel.
Note that 3|9, that is, 3|2 + v=5}{2 — ¥—5})
If possible, let 3|2 4 v~ &
Then there exists i 4 /=5 € 2 i ,.-‘:§| such that
2 ++=5 = 3(a+ bW=5)

= #1i8 a unil.

Comparing the real parts, we get,

2 =3a
which is not possible for any integer .
So, our supposition was wrong.

Similarly, we can see that 3 does not divide 2 — v—5.
This proves that 3 is not a prime element.

@ Example 1.1.6:An element in a commutative integral domain " Wlth unity which is
neither prime nor irreducible element.
In the ring of integers, every composite number is neither prime nor an irreducible element.
Theorem 1.1.7: Every prime element in an integral domain is irreducible.
Proof: Let f bi+an integral domain.
Let p be a prime glement in fi.,
Then by definition aof a prune glement, p # 0, non-unit.
Let p = ab forsome a.h € R
Then pipimplies p|dk
Sinee 3 15 a prime clement, therefore, pla o1 p|ix,
If pla, then there exist ¥ € £ such that e = px
That is, @t = abx
This immplies, a{1 — px} =10
Since @ # 0 &rud R is an integral domain, we get,
1-br=1
That is, Irr = 1, hence fr is @ unit.
Similarly, if p|k than @ is a unit.

This implies, p is an irreducible element.

Task:

LTIy

1) Consider theset § = {Ij :-I | x & H}.

Then check whether § i5 # ring under the usual addition and multiplication of
matrices or not.

If yes, check whether 5 is 1 ring with writy of mat.

2) Show that in an integral domain &, If a* = a for some a € K, then = ) or 1.
3) Determine if Z4 15 integral domain ornat.

Lovely Professional University
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1.2 Unique Factorization Domain

Definition 1.2.1:A commutative integral dormiin f with unity is called a Unique Factorization
Domain (UFDY) if it satisfies the filionring comditinns

*  Every non-zero non-unit ekement of # 15 a finite product of irreducible faitors,

o Ifa=pp;..pr and @ =g, .0, are two expressions of @ a5 a predduct of irrediicible
elements, then T = 5 ani there exists a 1-1 correspondence between pjs and ;s such that
the correspondirng elemensis are associates.

@ Example 1.2.2: The ring of integers is a Unique Factorization Domain.

Proof: In Z, there are only two units given by 1 and —1.

We know that except 1 and -1, all integers can be written as a product of finite number of prime
numbers.

Also, every prime number is an irreducible element in the ring of integers.

Therefore, except 1 and -1, all integers can be written as a product of finite number of irreducible
elements.

Hence, Z is a Unique Factorization Domain.

E] Example 1.2.3: Every field is a Unique Factorization Domain.

Proof: Since there does not exist any element in a field that is non-zero and non-unit, therefore
trivially every field is a Unique Factorization Domain.

Theorem 1.24:In a Unique Factorization Domain, every irreducible element is a prim#element.
Proof: Let i bia Unigue Factorization Domain and p be an irreducible element of &,
Then p I= nom-zero and non-unit.

Let plab for sore ab € &

Then there exist « € f such that ab = pr .. (1)

Three cases arise:

Case 1:Jf & aind 7 ape both units.

This implies p# is @ unit that is not so.

Hence, @ and I are not both units.

Caset ZLet @ or b isa unit

If o 15 & unit.

Then from (1) B=a"pc

Since [ is commutative, this implies, p|k

Similarly, if i 15 a unit then p|a

Case XLt q and I both are non-umits.

Since @ and b both are non-zero, non-unit elements of a Unique Factorization Domainf, there exist
irveducible alements .y, ... Pre by, Q. -0, 0 0 7 such that

4= iy e Ppand b= gy, ol

Claimic |5 not a unit.

If ¢ is a unit hen (1) implies that p is associate of mh,

Since p is irreducible, i o i i5 ¢ unit which is not so in this case.

Therefore, ¢ is not a unit. So, there exist irreducible elements 7y, 15, ..., 73 in & such that

Lovely Professional University



Unit 01: Integral Domains

C®Pra...F
Then from (1)
Bl e PrQatiz ol = PRIT2 00 1

By uniqueness ot expression in & Linigue Factorization Domain,
p~p; for some i or pij; for some §

That is, jz|jo; for some | av plg; for some §

Also, pjja &t and q b ¥ |

This implies, p|a or p|b.

Hence, p is a prime element.

1.3 Principal Ideal Domain

For a non-empty subset 5 of a commutative ring #, the icdisal generated by & k= the smallest ideal
containing .

Definition 1.3,1; Let & bra commutative ring andd @ & & then the ideal generated by a sirgle
element is called the primvipal ideal of . IF 1 | the prmcigal ideal of # generated by & then we
denoteitas i = = g =

Theoreém 1.32:In & ¢ommutative ring # with unity, <@ = = {ar|r € §]
Proof: Let & e a commmutative ring with unity 1. To prowethat fdeal fof & generated by @ is same
as set § = {ar|r £ /], we nimd to prove that
i aES
ii. & i=amideal of R
iii. If there is any atherideal | of Reontaininga then 5 < |

5= {ar|r € R] =af
Since # & a 1ing with unity 1. Therefore, @l = @ € &, which proves .
Now, we prove, X is an ideal of &,
Since o £ 5 5 # @
Letar,ary EMTE R
Now, .7y € R and ¥ 54 ring. Thenry, — 1y, 7yr E K.
Then ary —ar; = a{fy =HJE S
and {arr =einrie f
This implies, % is an ideal of & which proves ii.
Let [ be an ideal of & containing a, then by the definition of ideal, ar € | wr €
This implies, 5 < |
Hence, < = = {ar|r € /]

Definition 1.3.3:An integral domtait ® with unity is called a Principal Integral Domain (Principal
Ideal Tioumiin) if every ideal of | is gemerated by a single elermeat of .

In other winrds, an integral domain & with umity is called a Friniipal Ideal Domain if, for every
ideal Icd I, there exists some element @ & # such that | == g =

@ Examiple 1.3.4: Every field is a Principal Ideal Domain.

Proof: Let F be a fleld.

Let I be a nor-zers ideal of F.

Then there exists al keast one non=zero element o € |

& belng o nonezero element of [ s a non-eero elerment of field F. Hence, a=! € F.
Thera e fa ' EFimplies, az ' =1€!

Forullb g L b = kil

This tmplies | =< 1 =

Henice, evary wleal of F s penerated by a single element.

So, F s o Principal Ideal Iemain.

Lovely Professional University
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@ Example 1.3.5: The ring of integers (z) .. a Principal Ideal Domain.

Proasf: The ring of integers is an Integral demain

Let I e o poni-zero ideal of

Then trers exists at least one man-zerc elerment in | Let @ be a non-zero element in .
If @ € | sainwe [ i= an ideal, therefore, —m & [ amd one nf the o, —a is a positive integer.
Chioose 1he smealfest positive integer in .

Let @ € { is the smmalles| positive integer in [,

Claim/ = <@g =

SneaEl,<a>i|

Letébed

Diiwide b bv a, then by divisibility theory of integers there exist g, £ £ such that
b=ag+rir=lorO<r<h

Ifr =i
r=h-—ag
Now, & € l.g € &, by the definition of ideal, ag € 1.
Also, b E |, this imiplies, b —ag E 1
Thatis, r & {
Since 1 is the leasl positive integer in Fand r = 0
Therefore, r & [
So, we arrive at a contradicton.
This implies, r =0
That i, & = g € < ¢ =
So, I S it = amd hencrr, | =< & >
Henewe, avery ideal of # |= gﬂ:u-i'.nlml by a single element. So, £ I= a Principal Ideal Domain.

Ry TS rry @ eleme
@ Example 1.3.6: Let | field Then - Prinwipal Ideal Domain.
Proadf: Lel | bwa mon-zero ideal of F|x],
Then thiere exidts at least one non-zera palynomial in 7
Chaunse the polynomial with the least degree.
Let fix} € [ is the polynomisl with the smallest degree.
Claim:f =< fix} =
Since fix} € l,< flx} >
Letgix) €
Divide g(x] by flx]), then by divisibility theary of polynomials there exist qix ) rix] € F|x] such
thit
1) = gle)fix) +r{x):¥{x} = 0 or 0 < degrix) < deg fix}

If pixcy = 0
rix) = glx] - q(x)f{x)
Now, f{x} € Lgix) & Flx], by the definition of ideal, gl fix) € 1.
Also, giz} & [, this implios, g(x] = g{z]fi{x) €}
That i, r{x} E S
Since fix} s the polymoinial with least degree in [ and deg r{x] < deg f{x]
Therefore, vl x] & [
So, we arrive at a contradiction.
This irmplies, r{x} = {0
That is, g{x) = fizlq(x) E< [z} =
So, I £ fix] = and hence, [ == Flx) =
Henwwa, avary deal of Flx] is generated by a single element. So, #[x] is a Principal Ideal Domain.

Theorem 1.3.7:[n a Principal Ideal Donain, every irreducible element is a prime element.

Proaf: Lot & bina Principal Tideal Domain,

Let @ & K be an irreducible element of &,

Ther p is nion=Eero and mowrs-inil

Leta, i € R such that plab

If passible, lef i does not dividea.

< p > and = & =are both ideals of &, lhence < p = +< v = is an ideal of R,

Since f is Principal Ideal Domain, thess existd € K suchithat< p > +<b > =<d =
<p>CE<pm+chz=<d>

So,pe<u =.dlp

Lovely Professional University
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Therefore, Lhere exists & € f, such thal p = dx
But p is irred ucibile, s, d or x i 4 onit.
Case 1: If of i5 a unil.
<p>+<bz==<d>=<1>(dlsaunit)
So, there exist r. ¥ £ # =uch that
px by = 1
Pre-multiply both sides by a, we get,
mpx +aby =a
Since gl wer get, plapx + aby = o
That i, g|a but p does st davide a.
Case Zx |= o unit.
Then 7" exists.
pxrl=gddE<p>

That is,
<p>H=hz=<p>
This implies,
<bzC=zp>
So,

plk
Therefore, i is a prime elefment in #.

Lemma 1.3.&In any ring ®, the union of an ascending chain of ideals 1; € A, € - € A, & ~- isan
ideal of H,

Proof: Let

A= U.l‘h
13

Consider &, s € A = U, A;
There exist powitive inbegets Lt such that e € A, b €4,
Withaat loss of generality, let ¢ = 7
Sincr the chaimn {4} 15 ascending chain of ideals, Ay S A, so that e, b € 4,
Alsa, Ay txan sl of f,soo0—h E A,
Fora € A.,v & R,ar,re € A,
Butd, = 4
Therefors, we get, @ — b, ar,ra € A
Henee, A is an ideal of &,

Lemma 1.3.9:In a Principal Ideal [omain®, for every ascending chain of ideals 4y € A, € - ©
A, £ -, there exists an integer  such that A, =4, ¥Ym =i

= U.rh
7
is an ideal af ®.

Given that & is Principal Ideal Domain. Therefore, there exists & £ A such that 4 = =< @ =

ﬂEA:UIIh
i

There exists a posifive integer £ such that o € 4;

Now comsigler mi 2 £,4; £ A, ... (1}

Further, & € A; implies, < a > A; sothat A € A, ... (2)
From (1]and (2L,AE A, 24, EA

Thatis, 4; = A, ¥m = ¢

Proof: From Lemma 1.3.8, we get that,

Definition 1.3.10:Let & be a Principal ldeal Domaln, An ideal ! of & is called a maximal ideal of # &f
there does nol exist amy ideal | ot F such that
lcjeRr
where A = i means A + & that is, A is propedy contalmed in &
In other words, if there exists any ideal / such that I = [ = & thenf=Tlor ] =R.

Remark 1.3.11: A maximal ideal in a Principal Ideal Domain is always generated by an irreducible
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elemet.

Proat: Let d b 8 maximal ideal of & Principal Ideal Domain R. Therefore, there exists & £ & such
that { == q >
Leta = be;ho & R
Mow Bl thls implies, <a>Cdb>c §
=< o = iz a maximal ideal of B This implies, <b >=<a=or<b>=§
sbzx=<a>=
This implies, b = ax;x € &
Then b = gxr
= [a—axe) =10
Sail —xcl=10
Sirwear @ # 0, cx = 1
This impies ¢ =4 vl
If < b= R then I isa unit.
Therodare, gither fr 07 is 4 unit.
Hence, & is an irreducibie element of &,

Lemma 1.3.82ZFor every non-zero nosrunit element i« in a Principal Ideal T'omain there exists an
irreducible element p such that p|a.

Proof: Leg @ bz a non-zero, non-unil element of Princigal Tdeal Diommain®,
Letfy =< @ >
If iy b= maximal ideal this implies; a is an irreducible element of &, Then there is motling to prove.
If 1 s not maximal ideal, thn there exists an ideal fy of K such that /, c §, = .
Thesrs exists some element @, € | such that [y =< g, = thatm, <a >co g, =
If i; is @ maximal ideal, ther i, isirreducible thin we can choose @; = p, hescap|a
If I, i= not maximal ideal, then ihere exists f such that I, =, £ &
Cantliing 50 on, we get,
heheclycs
By Lemima 1.3.11, there exists some natural number n swch that I, i= a maximal ideal.
Hence, I, =< p =iy ks an irreducible element of &,
Also, cly=<p>c<p>=pla

Theorem 1.3.13: Every Principal Ideal Domain is Unique Factorizakin Cramigin.

Proof:Let @ b a noen-zera, nen-unit element of & Principal Ideal Dioirain,

By Lemima 3, there exists et Irreducible element 1 such that p, |a,

Singe gy o, there exists same i, € & such that ¢ = a2

This implies, < a > © =g, >

feuasnes<ay =

= @ £ < a #, s, there exists some # € § such that @, = ar

That is, @y = a4, 9,7

Safll=pri=1

Asgp =0l =mr=1

=>mr =1 = @ is 8 unit.

Therelnre, wa arrive it a contradiction.

Hemoe, < @ >0 <@ =

If ry #58 ORdt T = a, 1y

This impties, @ is associate of p,, ence a is an irreducible element.

If @y 15 not a umit, then there exist= somse irreducible element p, such that p, |, = a; = @,p, for
somi i, € K eathat a = a0 = 4,020,

That 18, < @ =c <y =

If a1, = a unil, we see (it @ is associate of p,p, twatis a finite product of irreducible elements.
If o, i= not a unit then contituing so on, we will jred &5 such that

<dty 3O < flp PO, DE
By Lemina 1.5.12, there exists snme natural number n such that a,, isa unit.
Then a,_ = anGyy: iy i= an brreducible element and herse o,,_,is an irreducible element.
=0y = QaPpPy e = By o g Where pp = iy,
Mow we prove unigueness:
&= PPz . Prand & = g, 4, .. 4y be two expressions of & as a product of irreducible elements of #.
Form = | there is nothing ta prove.
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Uwif 01: Integral Domains

Let the ressult b= true lor all those a wiich can be expressed as a product of #1 number of irreducible
elemerils where m < 1

Now & = Pypz weifin = Gyl o Gr

This implies, g4 thal is, 4y [p1 1% - Pr

= there exists somwe fysucly that 4y |p;

Since g, @and py are both irreducible so, 1here exists some unit 1; such that p; = g1
Withant ks of generaliiy, let { = 1,p; = gquy

So that, oyt - Py = M2 e Gr

That 58, G115P7 . P = @192 - dr

= Pyo-Pn =Gyl where pi = upepl=p;viz 1

So, pj is anassociate of p; i

Let b= pi .ppy = 01 gy

Thus, & has pwo expressions with i — 1 number of irreducible elements.

By the inductios hypothesis, there exists a one-one correspondence between p; am 4j; such that p|
is an associate of . Also.n —1=r—|

So,m=r

Alse, p~pi~1l;

Therefare, p; - gLy =4

Also, py =i

Therefore, p; 55 associate to a unique g;.

Hence, every Principal Ideal Domain is a Unique Factorization Domain.

L

Let ¥ be  eld. Then prove or disprove:

Flx] ks 8 rencipal Integral Domain.

F|x| &5 a Unique Factorization Domain.

Prove that Z[x] 15 a Unique Factorization Domain but not a Principal Ideal
Domain.

1.4 Euclidean Domain

Definition 1.4.1:A pin-sern integral domain # is called a Euclidean Domain (ED) if there exists a
function &: # — {i}] = E such that
i #mE)z0¥asf-{0]
ii. flahl = dla) Y a.b e R —{0}
ili.  ¥WaeREeR —|0), there exist unique q,+ € ® such that @ = bg 4 v, v = Dor 5(r) = 8(E).

Property i. is called non-negativity and iii. is called Euclidean algorithm. The function & is called
Euclidean evaluation.

@ Example 1.4.2:7 is Euclidean Dormain

Proof: Congider 5: 2 — (0] = Z as fla) = |a| Ya € T = (0)

Clearly, &{n) = laf = 0va e E- (0}

dlab) = |ab| = ||k = |al (Fe T ={0)[h =1)

By davision of miegers, there exist g, 7 € T such thata = by # ror = 0or [r] < [B|
Thatis, &t = Ing + ¥, = or S(ri= &k

Hence, E i= Euclidean Mamain

[VE—] Exa.mpl.r L4.3: Every field is Euclidean Domtain.

Proaf: Let F e a field

Deline a function & F = [0] =« Eas dla) =1vae F— [
Flagy=120vaeF-{0}

fiah) = | = dla)&(H ¥ o, b & F —{0]

Alsoyfora € F,0 € F— {0}

Since b= 0andbe F, b1 EF

a = (@b i+ g =ab ', r =0

Henpe, every Field #5 o Fuclidean Domain.

Lovely Professional University
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Advanced Abstract Algebra-II

ra-11
@ Example 1.4.8%[e) _ [ b E 1) i5 Fuclidean Domain.

Proaf:Lefire map &: Zfi] = 0} = Las &la + M) = g? + B*

The sum of the square of two integers i always non-negative. Hence,
Sla+hil=a®+b* =0V a+hieZi]-[0}

Let et + Bi,c +ufi € Z[i] — (0}. Then

s R

= (s bR (e + 5]

Sincer ¢ + i # 0, € &, this impliese? + d* # 0 thatis, c? +d* =1
That Is d({a + bi){c + di]) = (a® +b?)(c? + d%) 2 a° + b? = 5(a + bi)
Forat 4 I € Z[i),c 4 i € Z[(] - {a)

Themn
o+ bi —_——
e+l iy
where,
ac + fbd bc — ad

o

=—-=~], — (=
[ rz_,,.dze ) €an,gz 'ﬁl
Therefore, there exist integers m, ke swch that Jp — m| = = |qg—n] = 3
Letp—-m=aq,qg—n=[
Then

Let#* = {e¢ + Bi){c + i)

Ifr* w i
= - ('r‘ b B LS A
< G pEale® d?
= (5 +3) e? + a)
1 - 3,) <
= E (.—_-2 + <7}
fr o

A

So, ¥ = Qo §(F) < & + i)
Henew, EJi| is Buclidean Demain.

Theurem 1.4.5Every Euclidean Domain is Principal Ideal Domain.

Proat:l et # baa Euclidean Dlomain with Euclidean evaluation 4.
Tt A b a mon-zero ddeal of K.

Therefare, there exists D # x € A

Consider M = {8}l = x £ A)

fix) is s nom-negative integer forall € A

Let #(h] s the least non-negalive Integer in M, so that b € 4, B 2 0.
Claimzt = < b =

Mow, b Edimplies > A

Forane A, b=10

By property ik of the definitton of Buclidean Dormain, we get 4,7 € { such that
a=by+rir=D0o0r8(r} =< 5]

Letr #£.0,r = g — Iy

Since it b € A+ € &, then by definition of ideal, a —bg =+ £ 4

By chaire od I, since 8{r) = 6(B), we getr & A

Lovely Professional University



Unit 01: Integral Domains

So, wi arrive gl & vontradicticm.

Therefore, r = land henee, g =bg E < b >

That s, A S < b 2=

So,dl=xh>

Henww, every ideal of / is a principal ideal.

So, every Euclidean Dusnain is Principal Ideal Domain.

Summary

Rings and integral domains are defined.

The concept of divisibility in any integral domain is elaborated.

Unique Factorization Domain, Principal Integral Domain, and Euclidean Domainare
explained with the help of examples.

Relation betweenEuclidean Domain,Principal Ideal Domain, and Unique Factorization
Domain is established. That is, every Euclidean Domain is Principal Ideal Domain as well
as Unique Factorization Domain. Every Principal Ideal Domain is a Unique Factorization
Domain but may not be a Euclidean Domain.

Keywords

Rings and Integral Domain
Divisibility in Rings

Principal Integral Domain
Euclidean Domain

Unique Factorization Domain

Self Assessment

ON®»N

oo wm>»

onNwEpr

oNw >

onNw>o

The number of proper zero divisors in the ring of integers is
0

1

2

Infinite

An Integral Domain is always
With zero divisors

With infinitely many units
With finitely many units
Comumtative

Let & bearing. Let f and [ are two ideals of &, ¥hich of the following is not true?
i+ iz amideal oxf R

{ i) ks an ideal of i

{ U isanideal of #

il is an igdeal of

In the ring of integers, associates of 2 are
2

=2

2,-2

All integers

In the ring Zs, which of the following is not a zero divisor?
1

2
4
3
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6. Which of the following is a prime ideal of #

A. 6Z

B. 4Z

C. 3z

D. 8z

7. Which of the following is trisz in a PID R?

A. Every element of # is prim as well as irreducible

B. Every prime elemesnt of # 15 irreducible and vice versa

C. A prime element may nat b irreducible

D. Anirreduciiie element may not be prime

8. ImaPID #, ar ideal < @ = is maximal ideal then

A. @iz a prime element but net irreducible

B. uis irreducible but not prime

C. atisirreducible as well as prime

D. & is neither irreducible nor prime

9. Which of the following is not a PID?

A. Ring of integers

B. Ring of real numbers

C. Ring of square matrices of order 2 over the set of real numbers

D. Ring of rational numbers

10. A PID is always

A. Aring with zero divisors

B. Afield

C. With zero divisors

D. A Unigue Factorization Domain

11. Let & denote the ring of integers. Then & i=s

A. A PIY but not ED

B. An ED but not UFD

C. A UFD but not PID

D. APID, ED as well #s a LIFD

12. All the units of R ={m + byv'=5|a.b € Z} are

A1

B. -1

C 1,-1

D. 0,1,-1

13. Leb & be a Euclidean Domain with unity 1 and Euclidean evaluation &. Then §(a} = &§(1)
implies

A @@=

B. a is the unity «f &

C a=0

D. & is2unitin f

14. Twery ideal of an ED is generated by ...... number of elements.

A1

B. 1

C. mywheren E I

14 Lovely Professional University



Unit 01: Integral Domains

D. Infinitely many

15. Let R bt a Euclidean Domain with unity 1 and Euclidean evaluation &. Then for a. b € H,

é(ab)
A, = &(ua)
B. > 6(ul
C. <6(x}
D. = &(m)

Answers for Self Assessment

1. A 2. D 3. C 4. C 5 A
6. C 7. B 8. C 9. C 10. D
11. D 12. C 13. D 14. A 15. D

Review Questions

1. Letn he a positive integer and i = a divisor of 1 such that 1 < m = . Then show

that @t 15 a zero divisar in &,

List all the zero divisors i Z,

For whish rings with unity will unity be a zero divisor?

4. Let # beraring and @ € F b a zero divisor. Then show that every element of the
principsl ideal i is a oo divisor.

5. Show that a subring at & PID need not be PID.

@ N

L] ] Further Readings

e Basic abstract algebra by P. B. Bhattacharya, S. K. Jain, S. R
Nagpal,Cambridge universitypress
e Topics in algebra by I.N. Hartstein, Wiley

e  Abstract algebra by David S Dummit and Richard M Foote, Wiley

[@ Weblinks

e https://nptel.ac.in/courses/111/102/111102009/
e  https://nptel.ac.in/courses/111/105/111105112/#
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Unit 02: Polynomial Ring Over a UFD

CONTENTS

Objectives

Introduction

21 Polynomial Rings Over a UFD
Summary

Keywords

Self Assessment

Answer for Self Assessment

Review Questions

Further Readings

Objectives

After studying this unit, you will be able to

»  define Highest Common Factor (HCF) and Least Common Multiple (LCM) of two elements
of a commutative ring with unity,

+  illustrate the concept of existence/non-existence and non-uniqueness of HCF and LCM with
examples,

»  prove that HCF and LCM of two elements of a PID and UFD always exist,
*  define content of a polynomial and primitive polynomial over a UFD,
*  prove results about primitive polynomials,

» illustrate with the help of example that a UFD need not be a PID.

Introduction

In this unit, you will be able to generalize the notion of Highest Common Factor (HCF) and Least
Common Multiple (LCM) of two non-zero integers to that of two non-zero elements of a ring. You
will see that unlike in the set of integers, it may happen that HCF and LCM of two non-zero
elements does not even exist. Moreover, if they exist, then they may not be unique. Further you will
understand the characteristics of polynomial rings over a UFD.

2.1 Polynemial Rings Over a UFD

Definitien 2.1.1: Lot R b¢ @ commutative ring. 45iven fwo non-zero elements & and b of &, a non-
zero elemenit ¢ of £ i said 0 be a HCV of o and b in # it

i cla and <if in §; and
ii. Forany d =0, d € & if d|w and dib in &theo 2c in &

HCF of @ and i is derwited as (a, fr]

Definitien 2.1.2: Let B be a commutative ring, Given {wo non-zero elements @ and & of &, a non-
zero elemenit if of £ 15 said be a LOCM of @ and b in # if

i. al and g in & and

ii. Forany ¢ =10, ¢ € R if a|c and B|c in &, then djc in &

16 Lovely Professional University
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LCM of ut arud I ks denoted as [, k).

@ Example 2.1.3: HCF & LCM of two elements in a ring may not be unique.

Solution:Consicter the ring &£y ;,

Consider &, € &5

Note thatfi= &+ Jand &= .

This implies, ] & and &f #

Alsay if there is any ¥ € I, such that #| § and £| 8
This implies, ¥ f— 6= 3

So, HLF (&

This implies,:i"llﬁl Gand 16T

Also, if there is ars ¥ € 2 5 daach that £] 6 and £| 8
This itnplies: £ ZHE - 6= 11

So, HCF (6,8 = 1/

Therefore, HCF is not unique.

B L
g el € and @ are both nLr

it oo ASEOCIATEE,

Bl @ and & oo

Prood: Consider ¢ = HCF (a, b).

Since d = HLF{a, b}, f is 2 common factor of @ and b

So, d .

Consider ¢ as a conumon factor and o as HEF, we get, old
Therefore, ofd and d|c

Thus, ¢ amd a are associates.

a commutative ring th unity then
R owwd Ca

1

Example 2.1.4:A pair f non-zero elements a and b in a ring with unity such that LCM of

a, b does not exist.

Solution: Cansider the ring 2,
Consider i, 8 £ #,;

If possibile, tet LCM 16d]=#
This trmplies, 6] ¥ and 8] 7

So, ¥ = Gifl; fl € F,,

The only cammon valuse is , il Since Lo is always non-zero.
Therefore, LLM dies mol exisl,

Theorem 2.1.5: In a PID #, HLF and LEM always exist

Lovely Professional University
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it 02: Polymennial Bing Oroer a LUFD

Proof:We claim that every pair of non-zero elements. @ and b ol § has an #CF and LCM. Further if
d = GED o, b) then o = ax + by for some x, ¥ € K.

Consider<i > +< p =< = ER
<asc<d>=da
CchrC<d==d|b
If there exist x € & such that x|a and x|b

Thi=n
<R K AT e D De e T

This implies, <g >+ Chrmcd>o x>

= x|d =d = HCF {a.b)

<@g =<an +<b>a d=gx + by forsome x,y € R

Again, <@ =N < b > |5 ako an ideal.

Then thereexistst Ef, =a =>N<b>=<c>
<cmE<alsalc
<cBc<b>»=>ble

Let d € F puch that e]d and k|d

So,<drc<<a»ic<h>=<c>

= ¢fd, hencec = LEM [a, B

Theorem 2162 In a UFD R, HCF and LICM of two non- zero elements always exist.

Prow®t Let i, b = 0 elements of a UFD &,

If ks a umit, then

b= a3 = ai

Then HEF (@, b} =a and LCM [a,b] = b.

Tf e and & are both mom-units.

Theng = i finite prosduct of irreducible elements in &

« # D, nun-unit in #, there exists smime irreducible element p € & such that p|a

[f p does not dividek, then p°| k.

@ =p ps? .. py%; w ks aunitand @, > 0

b= upflpfz g fma umit and @ 2 0

Let c = py'ph' s ¥y = min{og, ) and o = p)"pl* ... pi*; oy = max(ay, Bi)

Then ¢ = HEF (@ bland o = LEM (g, k)

Carollary 2,1.7:Arty tinite number of non-zero elements of a UFD have an HCF and LCM

Proast:Let g, , 15, ... . ity € B isa UFD.

Ifn=2,

By thenrem, HEF (o, ) always exists.

Let thie result is true tor n — 1, therefore, HOF {ay, @, ..., 41,_4) exists.

Letd = MCF (@4, @3, - lln_1)

Consider WOF (d.ag) =«¢

= e and cjay

sdlgvl<is=a-1

So, i ¥l<i=n

Also, if there exists ' & § such that d'|a; ¥ i, then @' |d and @|a,

18 Lovely Professional University
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Therefore, &' |«

Thatis, ¢ = HLF {ay, g, 00, ).

Definition 2.1.8:Let B be a LIFDYL Then & polynomial fix] =@ +ax +a,x? + - + @70, #0isa
polyniomial of degree o,

CiF) =Content of fx)=HEF{gg g, ..y

A polynomial [ix) e B[x] & called primitive polynomial if its conient is a unit. For example,
24 3x + 3t isa primitive pelvnomial over the ring of integers.

Lemma 2.L.EIf F is o I'FO fhen every nan=zero polynomial in #[x] ks a product of a primitive
polynomial over B and an element of R

Proaf:Let Fix) = @y +ax + -4 &,x™ € =]
Letd = C(F) = HEF (tg iy, ovos i)
dpvd<i=n

Let i@ =db;;£}" Ef

£Cxy T a0 4 oatx - anx”
- -+ - P

g F gl A - cr, oAt
= e i3

Ao+ dp1 T sdbna

- ” P
dba + ol e L

- A CHO + Bl + .- Bnacd

dChg -+ byx +

T crd g

where C(f} € B glx] = by + Byx 4 + bx™
L= ST- 5} = M £BO, Bl e, bR
e
= &g A dn
Cata ' a
. :iL . ; )
_1
_E(,ro_ah--_’an)
[ SV NS 1y |
_d
d uwieair

Result 21.10:The product of two primitive polynomials over a UFLD is a primitive polynomial

Proof: Let ({x) = 0. + .70+ + apx™ and glx] = by + byx + 4 Bpx™ be two polynomials over a
UF DR with degree i and n respectively

Let

h(xj = S der Cad
bl
= a;
Y
i+j=k

Jwi

iy
i+ i=n
LTI

= L
2,

fe=

=

Let d = WCF {es hs s Can)
If d i nied & it then thiere exists an imreducible dlement p € & such that pld
Splg¥lEcgEntm

Also, HLF {mg,ay, ..,y ) and HOF {Bg. By, ..., B, 1 are both units.
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There exists @ least positive beger ¢ such that p does pot divide a; and a least pesitive integer 1
such that p does not divide &,

Copy = (gbppy 0y Beyyey + o dmey by + achy + (g by g + - + Weyq, Bl
Since plitghesy + @Bpay_q + -+ Gp_yBypy and plagy by g + o + iy Bo.
Also, plcsiu
This implies, Pl
p is irreducible and bence prime element of K.
Therefore, p|a o pliy,
So, we arrive at a confradiction to the chwices of g, and by,
This implies, it = HLF (g4, o frype) 18 @ umii and hence g 1= a primitive polynomial.
Thenrem 2.1.11:For two polynomials [ and g over a UFD, C{f gl = CIFM0(g).
Proai:
Let fix} = C{f1f(xd and glx) = C(ghg; (x] where f (x] amd g, (x} are primitive polynomials.
Then flxlgle] = COFF CLGMG ()9 (x)
By thw theorem, being product of primitive pelynemials f (x)g, () is a primitive polynomial.
So, falz} = CLFICLE)f (2] g, (x) limplies, C1Fa) =C0f W0 (a)
Remark: If fy isprimitive pelynomiel then F and g both are primitive polynomials.
Proof: Suppas  is not primitive poynnomial.
There exists & & R =uch that o] C(F}, ¢ i= not a unit.
This implies; @]£{Fg)
That is, fg 1= nala primitive polynomial.
So, we arrive aka coritradiction. Our supposition was wrong.
Therefore, [ arid g are bth primitive polyvniomials.

Lemma 2.1.12:Let #lx| be a polynamial ving over a commutative [T} & Lot f{r} and 0 = g(x} be
pelynomials in R[x] of degrees mand r pespectively. Let k = max{m —r + 1, 0), and a be the
leading coefficient of gl Then thiete exisi unbgque polynomials gix] and r(x} € #[x] such that
akfixe) = gl glxl + rixi, where rix) = 0 or r{x) has degree less than thal of g[x)

Proof: Suppose i = &

We take.qi{x) = 0and rix} = f{r]

Her# the result lofds trivially.

Letmnandk=m—-n+1

We use PMI o= it 1o prove this result.

We assume tat resylt is true for all polynomials of degree < m.
Letdeg f (x) = m and leading coefficient of (21 = b,
Consider the polynomial af{x) — bx™ "g(x]

af{x] has leading coefficient ah and is of degree m and bx™™ glx] has leading coefficient fr, and
18 of degres m,

Therefore,af (x] — bx™ " glx] is a polynomial of degree < m,
By Induction hypothesis, there exists g, {x} r {x) such that
@™t af(x) — be™ " glx)) = i (=g (a) + v (a)
This implies,
akf{x) = (ba™ "™ + g, (x))glx) + 1y (x)

So, the result is true for 1 also.

20 Lovely Professional University
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Lemma 2.1.13:L2t R is a UFD then every irreducible element of R[x] is a prime element of R[x]
Proef: Let p{x) is an irreducible element of fx].
This irmplies, plx) = 0. non-unit.
Let /{x). g(x} € Fia] such that p(x)|f{x]g(x)
Case 1: If plx] is @ constant polynomial.
Letpixi=cER
p(x]| Fixkaix) implies there exists h(x) € & =uch that F{x)g{x] = p(zlkix] = chix)
E(f1ctg) = € €1k
That is, ¢f C(FICIg]
pix) = ¢ is breducible slement of &[] and hence in B, it is irreducible.
# 15 UFD implies cis prime element.
This implies, ciC(f} or c]€(g) ard hence c|fix] ar cigix].
Case ELet degp(x]l =0
p(x] dioes nod divide fix]
Consider 5 = < f{x] = +<p(x) =
Then elemment= of & are of type
Alx)f(x) + Bixdp(x); Alx), Bz} € Rlx]
Let 0w i{x] € 3 be of smallest depree and @ as & beading coefficient of ¢(x].
By Lermma 2.1.12; there exists hix ], r{x] such thai
&% flx) moglxdhix) + rixd;r(x] = Dor degriz] = deg4ifx]
= rix) = a*fix) — ¢lxlhizr) €5
If degrix) < degd(x]
>r{rl g5

Therefore, r{x] =0

a®roa T @ lanhia

LA
rCxFe )
T ccprpalar no,

where gy i 1) is a primitive polynomial.
$lxdia flx)
= a* f{x) = dyix)eix)
= E() =a* &)
= a¥| C{t) = a*|t{x)
Also, g {xJt(x] = a* f(x} and #[x] is an integral domain.
=y (01F ()
Similardy, ¢, (x)|p(x), pix]) s irreducible.
(%) is @ unit or p(x}|fix)
= aby () 5 & wnit,
> g xlER
Thus, $x) = Clblg (x) € B
Pri=aER
& = AT FLE) + BOE)p () ARY, B(x) € B[]
= a glrl = Alx)fix) glx) + Bixlpix) glx) : A(x). Bx) € R[x]
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= p(x)|glxd

Theorem Z.1.14: If B = UFD then R|x] is a WFO.

Proof:Let Fir] bea non-zero, non-unit element of #|x].

Witrout lo=z2 of generality, we may assume that f{x] = a primitive polynomial.
Letdegf =1

F is vither primitive polynomial or irrediicible polynomial. So, we are done in this case.
Asasume thal the result is true fordeg [ <

Fordeg i =mn

If Fix] is irreducible then flx} = fix).

If fx} is reducibie, fix2 = ) F (2]

Theredore, deg f {x), deg Llr) < n

HG) =y (g2 (0 @ (0) ) 9y (X gy are @l irredeciDle slemenis in Rix)

F () = g2l x) gy (13955 150 .. gom () g5 areall imreducible eléments in R]x]

Then Fix] = gyqlx)ie (E)is (&) o (o G i (218 0x) o flam (3] i1, 52 are all irreducible
elements in ftfx|

Uniqueness fillanas from Lemma 2.

Therefore, f[x] 15 a UFD.
[Vg_] Example 2005 A LFLD
Vi anork B da #ridl

Praof: I iza HFIL.
= Zlx] is also ITFD,
If possible, let &[] is a PID.
< 2> +<x =isanideal of #[x|
This implies; there exists fix] € Zlx] suchthat = 2> 4 <x>==<f =
Now2€e< =
There exists gix} € £[x] such that 2 = fixlgix).
This implies, deg F{x) gix) = deg2 =0
That is, deg Fie) = degglx) =0
Again < ¥ =€ < f = implies f|r
This implies, there exists k(x] € Z{x] such matzx = fixlkix)
Comparing degrees, we get, deghiz) = 1
So, 1 = fixMiending coeff af i)
That is, flrd = +1:awnitin g,
<2 +<xz=<f = Fx
Butx+ 1€ x| =<2> +<u
r+ 1 =2f(x) +xglx); fix), glx) € Z{x]
Comparing constant terni w1 both sides, we get, 1 = £2 which s absird.

This implies, < 2 > + < x =isnot a principal ideal and hence, #[x] ts not a PID.

Task:

Express ; @s g9 + 1. where degr < deg g.in each of the following cases.

a) f=x 4l :_x:ina[ij ——
b) f—-‘f3+2x2_'f Lg=3 % linZ,[x
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C) P 1.?"'—‘_"11, i in
- - =

— = -~ — 1 ]

Summary

Highest Common Factor (HCF) and Least Common Multiple (LCM) of two elements of a
commutative ring with unity are defined.

The concept of existence/non-existence and non-uniqueness of HCF and LCM with
examples is illustrated.

Proved that HCF and LCM of two elements of a PID and UFD always exist

Content of a polynomial and primitive polynomial over a UFD is defined.

Results about primitive polynomials are proved.

Example is given to prove that a UFD need not be a PID

Keywords

Highest Common Factor
Least Common Multiple
Content of a polynomial
Polynomial ring over a UFD
Primitive Polynomial

Self Assessment

onwp e

DOowmr®

o

oNw»

SEORES

oNw»

Lt B b a commutative ring with unity, Let a, b € &, Choose the correct statement.
HCF (o, B} always exists but LOM (a, &) may not

LCM (@, b)) always exists bat HOM o, b} miay mot

HEF {m, b) omd LCM [a, b)) both always exist, and both are unique

HCF {a, b and LCM (a0, B) may or may not exist

Let K I a conmittiative ring with unity. Let @, & € K. If ¢ and & are both NLF{a, k). Then
=gl

¢ 15 am associate of o

£ i inverse of of

¢ and d both are units

Let B b g PID. Then for two elements a, b € &,

HEF and LEM always exist abd are unique

HEF and LCM may tad exis

HEF and LEM always exist and if there are two or more of them then they are associates

HCF @ LEF always exist o 11 there are twa of e 1hien tiey are additive inverse of each other

Let  denotes the ring of integers. Then HEF {4, 12} =
4

-4

4 and -4

1

In Z[x], the polvmomial fing over the set of intepers, consider 72 + 2x + 1 and 22 — 1. Let
c=HCF{x® + 2x+ 1,x® = L) and d = LEM{x? + Zx + 1,2% — 1). Then

cmydldmE-]

e=x+ld=(x+1x -1

e=(r+IPd=x—1

c=lr+Dd=[x—-12
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JNwr®  TAEEN  ON®Ep S

ON=wpe

=>B

oWy

> 5

SnwErR

]

TECF (8,3) £ Z,, is/are

‘IHI |
—

[
;=.Z

Which at the following is a primitive polynomial over Z (Ring of integers)?
4% &+ 2r + 6

3rf+2r+1

9x* +1%r +h

24x* + 3x

Let B b a FIC. Then content of the polynomial g 4 aqx 4 @y e over K is
HEF fog iy, az)

LEM{ay, 8, as)

min {11y, @y, a;)

ma ':419.4:[1,{!2]

A polynomial fix} & F[x], where & is a UFD, is called primitive if
Its leading coeffirient 15 1

Its leading coefficient is a unit

Its content is 1

Its content is a unit

. True/False Sum of two primitive polynomials is always primitive

True
False

. Let & bea UFL) Let f, g € &|x] be two polynomials of degree 3 each and ¢{f} =3,L(g] =

I Then

Cifal=5degfa=n
Cifgl=nudegfa=6
Cifgl = liegfa=n
Cifgl=nhdegfFag=3

Let & bea UFD. Let f, g € #[x] be twir polynomials such that Cifg) = u
Then w ig o unit in &

§ or g & & primitive polynomial in #]x]

| amil g bath are primitive polynonzials im R|x|
Heither f mor g is a primitive polynemial in #|x)
There is ns primifive polynomial in F[x}

. True/False Content of a polynomial over a UFD # always exists

True
False

. Which of the following staterments is true?

If # is a PID then so is Rfx]

If # 15 2 UFD then so is #[x]
If # &5 an ED then so is R[]
If & i= a field then so is F[x]

x| isa

24 Lovely Professional University

Notes



Notes

Advanced Abstract Algebra- 1T

onw»

PID
ED
UFD
Field

Answer for Self Assessment

1. D 2. B 3. C 4. C 5. B
6. D 7. B 8. A 9. D 10. B
11. C 12. B 13. A 14. B 15. C

Review Questions

1.

LL]

W

Let & ke a commutative integral domain with unity that is net a [Gied; show that fhe
polynomial ring K[x] ina variakie x is nota PID

Show' that the palymomiial ring F|x, ¥] in bwo variables over a figld F i & UFD but maot & FID.
Let F[x] be polynamial ring over a field F. Show that a mon-zero polynomial fic) € Flz}isa
unit if and only if F{x) & F,

Let f b a commutativie rimg with unity, Show that an element f{x) € B[x] 15 a zero divisor if
and only if thers exists an element 0 # b € & swch that Bfi{x) = 0

Show that the # ® n matrix ring [R|xl}, ever a polynoamial ring #[x] is isomorphic to the
polynomial ring F,,[x | cver the 1 = 1 matrix ring Hy,

Further Readings

e Basic abstract algebra by P. B. Bhattacharya, S. K. Jain, S. R. Nagpal,Cambridge
universitypress
e Topics in algebra by I.N. Hartstein, Wiley

e Abstract algebra by David S Dummit and Richard M Foote, Wiley

Weblinks

e https://nptel.ac.in/courses/111/102/111102009/
e  https://nptel.ac.in/courses/111/105/111105112/ #
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Unit 03: Vector Spaces and Subspaces
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Objectives
After studying this unit, you will be able to

*  generalize the concept of vectors done in vector analysis and geometry in such a way that
it is no more restricted to two or three dimensions,

* understand the concept of vector space and study its properties,

*  define subspace and understand it with the help of examples,

*  define linear dependent and linear independent set of vectors,

*  define basis and dimension of a vector space,

* find standard basis and dimension of some vector spaces,

»  find the basis and dimension of a subspace generated by a given set of vectors,

* extend an L. I set to a basis of vector space.

Introduction

In this unit, you will be introduced to vector spaces and subspaces. Several important results
related to these structures will be explained. Linear dependence and Independence of vectors are
defined and explained with the help of examples. The concept of basis and dimension will be
elaborated. Results regarding extension of a linearly independent set to a basis and reduction of a
spanning set to a basis are proved.

3.1 Vector Spaces

Definition 3.1.1:Let 1V he a non-empiy set and s a division ring. Consider a Bnary operation @
on ¥ and a mapping * ' from 2 =1 — V' such that Jor each element o € I, € I, there is a unique
elerent v E I

Then V iscallid a left vector space ever I if it satisfies the following axioms
1. (V) is an abelion groap
2. Foralle f €0, x.xv €V, we have

i. a-(Eyl=a-zPa-y

26 Lovely Professional University
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ii. (@+pfr-r=a-xHf x
iii. (affy vx = (- x)

iv. 1-#=x

Remarks 3.1.2:The maj " - k= called scalar multiplication.
*  Elements of I are called vectors.
»  Elements of {1 are called scalars.
* By defining scalar multiplication as v @, we get the right vector spuce.
*  For the sake ool convenience, wi# will write + in plece of @ and oy inplace of - w

* Incase, [¥ isa field then by defining v« as « - v, wa get that ¥ is both left as well as right
vector spure. Then we call I s a vectar space nver the field I,

= BN BmOAE ¢ B, PREY BETL LIlal
M spravcs over e field 7.

@ Exam.l:‘h,,£| 3.1.3:For any fietd . LMy = {[t‘r. r.'llﬂl A
Then | s g vector space over F upder vecior addition given by
(mq, By) +iery, Br) = (2 + 2z, B+ 5;)
and scalar multiplication is given by
alay, fi) = (@ay, afi;)
where @, uty, @tz By, B, € F

V is generally denated as F7,

Proof: Consider {ery i ), (e, 1 €V

iy iy By €F

(F. 41 is always closed. This implies, a; + a5, f; + B, € F so that (a; + a5, 5, + ) €V

That is, [ity. ;) + (2, fy) €V

So, (V. #} is closed.

Again. conzider (2;, £,), {1z, B ) (a3, 85) €V

Then [{ay, ) + (@3, 8) ) + s By) = (@ + a2, fr + f2) + (a3, B3)
= (o + o) + ag (B + By) + f3)
= [ay + (ay +a3), i + (B2 + F2))
= (a2, fy) + (iez + @3, fy + fiz)
= (&1, By) + (a2, B2) + (@5, 53))

So, (¥, +} s associative.

0 € Faathat (0,01 EV

For (@l eV e f eFandthisa+0=a,f=F+0

That is, (a, §) # (0,0) = (= @) = (0,0) + (e, f)

Hence (0, ®) isthe additive identity of V.

For (a, B} € V,a, p € F, tmplies —a,~f € F

Also, (a, ) + (—a,—B) = (a + (—a), f + (—B)) = (1.0}

Again, (—a,—f) + (@) = ((-a) +a, (=F) + B} = (0,0)

That is, —(@, f) = (—a, —§]

Hence #very element of Vhas an additive inverse in V.

Consider (ay,fi ), (@2, 82) €V

Since aty, By, @z, fi; € Foey +iip =ap + @y and By + P2 = > +

So that (ay, ) + (a2, f2) = (@ + @, 1 + 1) = (@ +aq, By + 1) = (a2, 8,) + (a1, 61)
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V is abelian.
Leta E Jl.-':a'ltﬁ'l)i ([IZu .32) eV

Consider

e ((;:1-,6'1) + (uZ:/f'z)l = o Ceer T azegh F p2d
. = —es
x (ory £ -+ 4
(e Cavr + ez )i agpr + g2))

ey ER a2
( e . 4+ g

ex o

creel T+ orerzs (\'/.i'l ¥ c\'t.i'z)

) reen RS
(n(r + Fa 4 xS
creels cr.-u'l) - crerzy cefin )
(st L2 £z o
Cor,xy ¥, - e

cr Coxts B1) T oo crme 520

Again, consider

(

+ ; = ;
e - .ﬂ")C(zi:[ii) (Cer + [i')(zi:((y + Feavit]

Tk [ER T F
-

4 7
Cox Ter bV

ceeer + oot et + o ga)
1 g L R
Cerer  + Lex i

ot o
crCerir g1) © Blceis 1)

Consider

e ||(11:[€1) - (Cerf@deets (uﬁ“)[f'i)
f 1 g

(Cexaie Cargidy )

(=2 w1 a(_..-ﬁ't))

ey g
(€@ doe

e el 2510

oa
@ Foan, B

“geed LY

Now 1 E F
U 1 = (Qay, 16,) = (aqg, Br)

Thus, ¥ = £? is a vector space over F.
i L] - TE W ONVHT T

Em ple 14 ‘or ld any positive integer e set of all 1ples
L 3 . :F s Faie O manad PO P 1 R L
Ceirggae - gn); @ € (15" eetor gt under the addition Ll scalar multipucation

dl.f“h'l{?d by

(g, @z, oy @) + (i1, Bay s i) = (g + Froctg + 8, on, i + )
and
ooy, 0y, ., ) = (01, €&y, ., £ln ]

where¢ EF, a;, liEFW 1 =i = n.

L
@ Example 3.1.5:The set } 3t perlynamials in ene variable x over 2 field :ctor space

oy 1 Fis a ve
under usual addition e polynomials and forany
@ EF, flxl =ag+ax++ax" €V,

scalar multiplication defined as

a(fix)) = aag + aa,x + - + Ka,x"
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@ Example 3.1.6:The set —matrices of order ——ith entries from the field of real
. I o < TH OFCTEL WA T . .
numbers is a vector Spuace ander usual additicwes «wmer scalar multiplication of matrices
given by

ay] + [y = [my; + by
and
clay] = feay]
where ¢ E R, ﬂi}ll I.'ﬁ{fl EV
—»' Note:The last property of vector space may not be true even if all other properties are
true.

AT EEEEE TTLEY TIOT

@ Example 3.1.7:Consider V= { R}

@, ke, Gy e 1

Define

(@, Briva) = (@2 Barv2) = (@ + @ fir + B vy +72)
and

Al B,y) = (Aa, AE,0)

forall 4, @, # vy, Bryq, a2 ¥ € R,
Note that 1 (m.8,y) = (1, 1§, 0) = G, 2, 0) # (a,B,7)
Therefare, ¥ is not a vector space over the field of rea] numibers.
Propetties of a Vector Spare:

Let V¥ b& @ vector space over a field Famd &y end 0y be the additive identities of V¥ and F
respectively, Then forallg e F, v EV

(1) ally = 0ty

() Gpe =i

(i) = =1{=Dw

(iv) (e = pi-p} = ~(av)

v) If ar =0y, thena =0 or e =0y

Prood:

) Oy =y +0y
iy =g (0, + By
This implies,

@l F Oy = aly + aly
Using left canceliation law,
Oy = ailly ar aly = 0y,

(i} Ppe=i
Oy = g + 0
v e (U + Dp v
et 4 Dy = Opp 4 0pp

Oy = Oew
Or
Gpl.-' = GV
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i) == (=1
Opv = (1+(-1))w

=lp+-1)r
= 4 (—1)
Similarly,
by =(C-Dr+w

Therefore, (—111 = -1

(%) (—elr = a(—v) = —(ar)

0, = 0pr

=[a+ (-o))e

=gqv+ [~y
So, (—alv = ~[ax] .. (1)
Again, y = iy

=afv+ (-v]}
= av + a(-v)
From (1),
(—m)r =a(—v) = —(av)
(V¥ U v =0y, thena =y or v =iy

Given that aw =,
ltas# 0
atEF
a e} =a (0]
le = Oy

|.-'=GV

Task:

I

1. Which is the smallest subspace amil o many elements does it contain?
2. Let F beafield. Then prove that F & & ¥ictor space over itself.

3.2 Subspaces

Definition 3.2.1:A sua-gvriply subaet B of a vector space Iy is called a subspace of I i
1. Foranyu, hEW.a+ ke W
2. Foranya EWand ¢ EF, cn E'W

There are at least o subspaces, called trivial sulwputes, of & non-zero vector spase given by {0}
and itself.

Lemma 3.22:If ' iz a subspace of a wector space ¥ then W' is a subsgroup of < V, 4= and it is a
vector spaie over the same field F.

Proaf:(W, +]is a subgroup of (W.+!if and only if W £ ¥ and & — i € W for every &, b £ W.
wel

ForbkeWw.,-1eF

By propearty (i) of definition (— 11k = ~b & W

For ut, I € W, by property ({l.a + (-Db=a -b € W
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Therefare, W ksa subgroup of (I, 4.
Also, (W,+) is an abelian group.

Rest all the priperties are true by the condition that W 1" and they are defined over the same
field.

Therefore, W' isa vector space.

P hneanees wa o

am - - the subsets . _
@ o) W AT e il g e £y, Vhen Wi = {(a, 0)|e & &1 and
Wz = [[D. IT.}Ia [ .F} dfn ot subspaces of ¥

Solutiom:N € F = ((1,0) € W,

Therefore, Wi == ¢

Also, W; €V

Let (i, 0), (8.7) € Wy

Then (a, 0) + [#,0) = {a + 8,0) = W,.

Again letw € F, (e, 0] € W,

afm, 0) = (amal} = (nm,0) E W)

Hence, W, iz a subspace of vevtor spave I over F,

Similarly, we can show that W, is a sulspace of 1.

Result 3.2.4:4 non-empty subset W of a vecior space Vi is a subspace of ¥ il and only if
i+ EWYa beEWanda e F

Proof; Let W i= a subspace of ¥

Foralla€ W, e F.aa € W

Nowaa, b EW =ma+hE W

Conversely, etma + hER Yoe Fa b e W

leFsolg+bh=e+helW

Again,a=—1.b=u

Weget, (~1la+a=0eclWf

For, & € Foa, D E W

aqa+l=mn W

Therefore, W' isa subspace of I,

Theorem 3.2.5:Inter=action of any family of subspaces of a vector spacs i5 again a sasbsgpuace.

Proof: Let 5 = [W |« € A} be a family of subspaces of i vector space I pver a field F,

Consider

W, isasubspae of ¥ ¥ EA,

So, 0 € W, Vo EA.

Henoe W= ¢
Leta.bE W,mEF

n.bew-ﬂm

S>a b e W, Vaen
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Saa+ b E B, Vaen

=>aq+£rFﬂWa:W
@E A

= W k=a subspace of V.

[VE_] Example 3.2.6:Unic of two subspaces of a vector space need not be a subspace

Proof: ¥ = ifa, #ila, # € F}
Wy = {(r0)]a & Fland W, ={(0,a)|la € F}aresibspaces of IF.
(1,0) € Wy, (0, 1) € W,
(1,0),(0,1) € 1¥, U I,
(1,0) + (0,1) = (1, 1) € W, UW,
This implies, W, & W is nat a subspace of 1.
Definition 22.7:].et X = ¥; V is a vector space over some field F.
Then a subsspace W nf V is raid 1 1% spanned by or generated by X if
1. X¥X=EwW
2. 1t W' isa spbspace of Voontaining X then W © W*
Wedenote W = < X =,

Elements of spanned subspace:let V¥ be a vector space and X = {xl, Fay wiv xn] is a subsel of
V. Then subspace spanned by X is the set of all vectors of the form ajxq + a1, + -+ + ityTy iM; €
Fyi=i<n

Proadt:

Lt W be the set of all elemenits of the form a3 + a0, + -+ aprn g EF¥ 1 Sl =0
Theer we nised b prove that W =< X =

={e i i, %, )

W ={mxg+mx; + -+ la; e FY¥ 1= <n

0.1EF

ap=lay=0%i=1

Ta; +0x; + -+ lx, EW

That is, 7y & ¥

Similarly, we canshow that ; EWvl=s/=mn

Thatis, ¥ = W

Again, let @, x; + @75 + - + @1y oy Hiha + o+ B, EW e EF

Consider
ax;: ax,- ~1¢a = ~+ oz x ; ;
+rz(, 7, 1+1- 5 z-i-+ Sy fn ) crarlal T oopeeZ oz ': P P Aixt gz
Cplxl f2xz T gnaen) - filckag)

+ - "

aar T g1 5 Wl Corery, + J.'\-"_ZL_::'x,z + -
* Cran ™ pr)xn

Since o, . fi; E F
aa; + 3 € Fvi

Hence, al(im,xy + azay + -+ + a@pint + (W ay + fx, + o+ fyx,) €W
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So, W is a subspace of V

Let W be a subspace of ¥ containing (3, 15, .. 5, }
Consider 1y + @axp + o+ apa, EWLa; € FRI
nEW!'YI

ax EW'Yia eEF

T

=i

That i, ey xy + @exs + - Figx; € W'

[ =

Hence, W =< X = X = (1,22, i, Tn)

In case, ¥ is an infinite set then the subspace W =< X = comiains elernents of the type
{my 3, + @,x; + -+ [all bul finllely many «;'s are zrro}.

Definition 3.2.8:For any finite number of weifors Xq, %y, 3, in a vector space V. and
scalars iy, itz ..., &y € F, the vector

Xy +oatgEy + o ilpxy,
is called a linear cambination of the wectors 1., x5, ..., Iy,

Definition 3.2.9:For any two stbspaces W, and W, of a wector space V., the sum of two
subspacesh; and W, is denoted as W) + Wy and defined as

Wy + WS ={wy +w| wy e W, ws € WG

Theorem 3.2.1{kFor any two subspaces Wy and W of a vector space Iy, W) + W, is a subspace of ¥
spanned by W wr W,

Proof: Ta prauwe this result, we need tor prove
1. WouW., cw +W,
2. W, 4 Wyis asubspace af ¥
3. I W is asubspace of ¥ containing WG UW,, then WG + W, € WY
letr € Wi W Wy
This kmplies, © € Wy or 1 € W,
If x & Wy, 0 E W,
So that x = x + 0 E W + 45
Similarly, if x £ W5.x € Wy + W,
Thiz implies, W) LW, © W £ ¥
leta,beW, + W5 0 €F

= +ﬂ1 ﬂ.Fldh:b-l +bz;ﬂ1,ﬁ1 E; H-", undﬂ;.bz E WZ

Consider
s tlh +  arat Foaa¥ (bl + b2l
LT 2z T
s (e e - Ok [
T Nwar o) oy (cra:a + Bz2)
Thius

ity EWLaEF
W is o subspisce of V.
@y + b €W

Similarly, ira; + by €W,
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a F B o= (oo + b)) + (g + b)) € W + W,
Henee, o + B E W, + WY

VabEW +Wo.agF

Therefore, W, + W, is a subs=pace of V.,

Let W' b a subspoce of ¥ such that W U, € W
Letax E W + W

Then e = x+ yxe W,y E W,

TEW, S WU, W and y € W, E W, UK, € WY
Iy E Wand W is a subspace of V.

r+yEW =aew’

Theretare, W, + W, € W'

Hence W) + W, = < W, UW,; >

Task:

[
11l

Let (51 genotes the wictor space of polynomials with the degree at the most 3. Then find
two dsihapmaces of P53 (/] such that union of both the subspaces is

1. A subspace
2. Not a subspace

3.3 Basis and Dimension of Vector Space

Definition 3.%.1:Let x,, x4,..., ,, b a finite number of members (not retcessarily all distirct) of a
vector space V.

These vectors are said to be linearly dependent If for some scalars ay, i, ..., @, € F, with at least
one of them non-zero and

Xy T Xy o+ ityx, =0

Definition 3.3.EThe vectors 1y, x5, ..., 7, £ ¥ are said to be linearly independent over the field F if
foralla;; 1 <i=m,

such that
Qi F apx, + o gk = 0
we get
m=0V1<i=n
Remarks 3.3.3:Linearly Dependence/ Independence in infinite sets of vectors

Consider the infinite set S of v&ttors then set S is said to be Linearly Independent if and only if all
its finite subsets are Linearly Independent.Otherwise, it is called Linearky Dependent.

Results 3.3.4:A singleton set [x] is linearly dependent if and only if x = 0,
Proof:Let the singleton sek {x} iz L. [

So, there #xists non-zero m & F such that ax = .

Also, if ¢x = [, then either @ = 0 or x = 1.

Since, a # 0, therefore, x = Ii.

Conversely, consider x = 0

Then since we know that 1x =xVxX €V

Wehave,1-0=0and 1 # 0.

So, there exist non-zero a € F, such that a0 = 0
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This implies, {0} is L. D.
A set containing an L- D. set is L., D.
LetS = {Xy.%,..., Xz} and T = {x1_. K iee) x:} such that 1 > n and Sis L.D.
Then S € T. Since S is L. D. therefore, there exists ay, iy, ..., &, € F (not all zero) such that
Qyiy + Xy + -+ Xy =0
We can also write,
Xy + Xy + o+ op¥y + 0Xpq +-+0x, =0
which implies that T is L. D.
The subset of an L. I. set is L. L.
LetS = {X;,%,..., Xz} and T = {x1, Xz, s X:} such that1 > nw amd T is L.I.
If possible, let Sbe L. D.
Then by the result that a set containing an L. D. set is always L. D., we get that T is L. D.
which is contradictory to the fact that Tis L. I.
Therefore, our assumption was wrong.
Thatis, Sis L. L.
A set containing 0 is always linearly dependent.
Let S be a set containing 0.
Thatis, {0} € S
Singleton set {0} is L. D. and a set containing an L. D. set is always L. D.
Therefore, we get that Sis L. D.

@ Example 3.3.5:The set {1 » 5 & he vector space }is
s . i O LT TN V={(x. )| x. yve R
linearly independent over the roia ¢f 1owi naanbers.

Let a, f € Rsuch that &(1,0)+ g(0,1) = (0,0)
That is, (a, £} = (1. 1]

>a=0=0

This implies, {[1, 0}, [0, 1}}is L. *

Theorem 3.3.6:If ;, ¥z, ... Iy, are L. I. in a vector space ¥y, then each element of the subspace W
spanned by them is expressible uniquely as a linear combifiatien of ty, gy, v, Pp.

Proof:If possible, let i £ I can be expressed as

1 7

&) =Z-!'I'g1'1 =Z.I?_f"'i

i=1 i=1

forai, ﬁiE}'ﬂ'l

This implies,

v —Z.I?ii'i =10

i=1 i=1

That is,

n

> (@— o =0

=1
Sincewy, 'z, ..., 14, are L. L. therefore,

a;— i =0Vi
That is,
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m =B Vi
This proves the uniqueness of expression.

Theorem 33.7let 1y, Up. .. 1ty be any r L. L wectors inoa vector space V. Any 1 4 1 vectors
Uy, Py -0 Vaig. each of which is @ lineir combination of w;, uy,..., wyare L. D.

Proof:If v; = D for som [, then the wectors vy py, .-, ¥uyq are L.D. So, without loss of generality,
we may assume that vy = i tor ail i

We prawe the result by usirg Induction on m,
For nn = L, consider uy; vy and v, are two vectors which is a linear combination of 1.
Then there exist ay, iy € F, for which
By = iyl and v, = @y
Then sinee vy, vy = 0, therelore, ay, ay # 0
Consider @y vy — @y vy = @il iy — @yaaliy =0
Thus, v, and ©, are linearly dependent
So, the result is true for it = 1.
Suppose that the result holds for any &k{< n} linearly independent vectors.
Now we prove the result for i linearly independent vectors.
Then there exist i;; € F.

Wy =gl il + oo+ iy,

Py = (aqly +ilzoly + -+ ifanliy

Bpi41 = Qppqg Wi+ Tpag e + 0+ Qg gl o 1)

If ;;, = O for alll < { = m+ 1, then each w; i=a finear canshination of n — I victors,
then by the indurtion hypothesis, we get thaty,, i3, ..., 1, and hence vy, vy, .., 4y @re LD.
Now we suppose thit iy, = 0 for some I,
We assume thatiry, # 0
Multipiy:ll_u; the equation vy, = 1y + i 51, + = + Wy liy

with iy, and subtracting from each eguation in the system (1), we getforvach2 < f =i + 1,
-l
Wy = b — Epyn Iy = l (@t — iy ity iy
1 jEn—1

So, by the induction hypothsis, w;, 2 £ 15 n 4 1areL. D.

Therefore, there exist &, £, .., ffns1 € F, ot all 2ere, such that

141
fw; =0
iml
This implies,
n+1i
(0 = ity ) =0
iml
This implies that ©: ¥z, i, Vgsq are L. D.

&, by the Principle of Mathematical Induction, the result is true for all .

Corollary 3.3.81If {v,. 14, ..., U] I5a linearly independent subset of a vector space ¥, then any subset
W of V' having mare than m vectors each of which can be expressed as a linear wembination of
Uy, Ty, .0, By must be L.D.
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Proof:5ire W contains more than i elements. Choose a subset Wi of W consisting of &+ 1
elements,

Then Wy is a set consistimg of 1 + 1 elemenits, all of which are linear combinations of m wrctors
Py, Ug, ., BBy theorem, W, is L. D and hence W is L. D.

Definition 3.3.9: A sulrset # of a vector space V. is called a basis of V if
1. i is linearly independent
2. K spans I
A vector space ¥ is called finitely generated if it has a finite subset thal spans ¥,

Lemma 330kl & = {1, ,1,,.., 3,} 15 a linearly deprmdeni set of non-zero vectors in Iy, then for
some 2 < (= m, 1; 5 & linear combination of its predecessors x5, .., x;_, and the subspuace
spanned by 5 is sarrur a5 the subspace spanned by 5 — {x;}.

Proof:Since the set & i= L.D., therefore, there exist a; € F% | = | = 1, such that at least one r; #
0and

H

Z o = 0. (1)

J=1
Let i be the largest suffix such that @; # 0. Thatis, @; =0V | = L.
Se, {1} implies,

L

Z x =10..(2)

j=1
Thiz implies,
i-1 ‘ i-1
n= — o] Ky = ) fiixj ... 3) wherefj=—ai'a;V1<|=i-1
j=1 i=1
This proves that x; is a linear combination. of its predecessars %, Xz, ..., Xj—1.

Again, let W be the subspace of ¥ spanmnisd by elements of &,

For any x € W, there existy; € F. | = j = m, such that

H
r= Z ¥i%j
=
n -1
Z ¥iy N l“x" + ylxt

< Jwi

J=1

=1
= Z y.i'x} + ]/IIZ E-':;\'-J- (,l' o {30 )
J=0

Ji
=t =1
E=1 n
= Z(?’f + i pxd + Z ¥ixi
j=1 J=i+i

which is @ liriear comhination of elements of 5 — {x;}, which proves the second part of the lemma.

Theorem 3,3.11:Let I, b= a finitely generated vector space. Then Iy has a finite basis and any twi
bases of ¥, have the samwe number of vectors.

Froof=since Ve is a finitely geemates vector space therefore, there exists a finite subset H =
{21 %z, -1, T} which spans V. Withoult loss of generality, we may assume that 0 ¢ B.

If I is linearly independent, then i is the basis of I
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If B is linearly dependent, then by lemma, we may choose some x; in B such that x; can be expressed
as a linear combination of its preceding elements and B; = B — {x;} spans V.

If B, 1= linearly independent, then B, is the basis of V.

If B, is linearly dependent, thim bw lemma, we may choose some x;in H, such that x; can be
@xpressed as a linear combinaticn o is preceding elements and B, = By — {x;] spans V.

Simce the number of vectors in [ is finite, therefore, this process can not continue after at the most
iz = 1 steps.

At the most, we will be left with a set containing only one element which is non-zero and hence
linearly independent.

Thus. we will get a basis of V.
Supprase B’ = another basis of Vi having m elements
Let m = n.

Each element of V and hence B’ is a linear combination of elements of B and B is linearly
independent.

Therefore, B'has 1o be L. D. but B’ being basis is L. L.
So, we arrive it & contradiction.
That is, m = 1.

Alsn, &' is a basis of Wimplies that each element of V and hence B is a linear combination of
elerments of B ard &' 1s |mear|}' independent.

If m < n, then i is L. [ but & being a basis is L. L.

This implies m =mn which proves that two bases of a vector &f#ice have the same numf=r of
elements.

Remarks 3.3.12:Number of elements in a basis wl i victor space V. is called the dimensiin of IV,

»  If the dimension of a vector space, ¥ = f. tien any set containing mire than m ¢lements is

LI
» I the dimension of a vector space, I = m, then an L.I. set containing m elements is a basis of
|5
Theorem 3.3.1%0f [y, 15, ..., 4} is an L. I. subset of a finite-dimensional vector space ¥y, then it can

be extended v a basis of 17
Proof:Let dim I¥ = .
Then any n + 1 wectorsin ¥ are L. I Hence, & = &,

Let {wy, ey, ..., W] 15 @ basis of IY. Consider the set S = {iy, 1z, .., L. Wy, Wy, ..Wy]. Since &
contains rwwe than m elements, theredoue, 5 s L. D.

Hence, there exist some elements in S, which can be expressed as a linear combination of its
proceeding elements.

If possible, let that element is u; faxr some 1 = | = k. Then there exist BieF1<j=<i-1 such that

-1
= Stom

=
which proves that the set [14, 1, ..., 1#;}and hence {l..:,, Uiz, ) un} i5s L. D.
Bast the set {1y, g, oo iy} i 1= L

Theretare, the element which can be expresaed as a linear combination of its proceeding elements is
w; forsome 1 < f = m. Also, 5 — {wﬁ apans 1,

If 5 — fw;] is LI then it is the requircil hasis. Otherwise, we continue the process urntil we get an L.1.
sel. Al the most, after eliminating n = k alements, we will get a subset of & containing with
elements which is the same as dim 1"
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Since the elimiinztesl elements are all from the set {iy,w;,...wy, | therefore, the set obtained by
eliminating ft — k elements is the basis containing the set {ii, iy, ..., 1}

Corollary 3.3.14; If dimension V = 1, then any set Scontaining less than 1 el#ments, subspase
spanned I ¥ is & proper subset of V.

Corollary 3.3.15:Far any subspace W o a finite-dimensional vector space Fy, dim W = dim V.
Further, W = IV if and only if dim W = dm V.

Proof: Lot dim V' = n.

Since ¥ eannot contaim an L. L set Baving mare than n vectors, W cannot have any L.I. sirhst
contaitusg more than m elements.

So, we can find LI subset & = {¥;, ¥3,.... ¥} of ' containing the maximum number, say 1, of
elemerits.

Then 1 = 1 and any m + 1 vectors in "W are L. D.
Therefore, for stme y &€ W, ¥y, ¥ .ons Ve ¥la L D.

So, there exists i, 1, |, B, B € F imat all zero) such that

m

Z Biyj + gy =10
j=1

If f =0, then we get,

m
Znﬂj}'j =10
J=1

Since [f is L. I. therefore, we get that §; =0V j
which is a contradiction to the fact that 84, B;,_, B, B are not all zero.
So. R # 0.

Thiz implies,
Y= 2_ =1 By
1% A

That is I spans W

Now, if # wontaing r1 elements then & is an LI subset of V¥ containing n #lements where 1 =dim V¥,
This implies shiat B is a basis of V.

Hence, span (i} = ¥ = I¥".

Conversely, if V = W, then trivially dim ¥ = dirmn ¥

Theorem 3.3.16:If [ amd W' are subspacas of a finite-dinyensional weckar space Vi, then
dim(lF + W} = dim I + dim W —dim(I/ n W7

Proof:

Let dim¥l = ¢ dim W =5 amd dinagl! i W) = ¢

Lot fay. @ ..., o] be a hiasis of I oy,

Simew [N W is a subspace of I, wee can rxtend the above basis to a basis {#q, .., £, 1, -, 8s—¢} of
W and o basis{eg. o, e fiy o femc T 00

Let B= f&y s B Boomr Frge Bii el sh
We claim that s the basis of IF + W,
letre I+ W

Thenx =u+winell, we W

Sincew € If amd {£y, .-, #,, fi, .., fr_¢+}1s a basis of U.
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So, there exist a;, BjEF, such that

F=

imh + ) B

i=1 fe=

-

(=1

Again, w & Wand {2, ., €, 0y, .., 9_¢}1s a basis of ¥,

So, there exist y, fi; € F, such that

t s—f
= Zm; +Z 54;
i=1 J=1

Adding these equations, w jet.
r=u+tws= l(a + v+ er _f_l Zd.gj
=1
So, every x £ [ + W is a linear combination of elements of f.
That is & spane i + W,
Now, we prave that & is linearly independent.

Let ;i By vi € F such that

t

r—t S5—i
Zafef +ZFM} ¥ E]"kgk =1
f=1 k=1

i=1

t =t 5=¢
> Zﬂ'it'x *Zfl'.f,j = Z}'xsik
i=1 i=1 =1
Therefore,

t r—t -
eriel £ @F. Y g EUAW
i=1 J=1 k=1

Butli W has the basis {91, B2, ) et}
Therefore,
S=i 11
=ij{.ﬁ'i
fe=1 i=1
That is,

u:
Wi

t
- Za.gl -0
=1

Since the left side is a linear combination of elements of basis, therefore, we get,y;, = 0V k

=
[}

1

Putting in (1), we get,

r=t

iﬂ'a"a + ) Bifi=

=1 =
Now again it is a linear combination of elements of a basis, which implies,
m=gj=0VL|
This implies that & is L. 1.
Hence, 15 & basis of [ + .
dimil/ + W) =r+s-1¢
=dim U+ dim W —dim N W

Theorem 3.3.17:If [ and W are subspaces of a finite-dimensional vector space V., then
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dim(I7 + Wi = dim I + dim W —dim (17 n W)

Proef:
Letdim Ul =r,dimW = 5 amd dim{Lf n W) = ¢
Lok & = {ry, €5, €} be & basisaf Il i W,

Since 'O W iy a subspace of as well as W, we can extrnd the above basis to bases Hy =
{B1s s €00 f1 o frg] of T aind By, ={3|----: €4, H1, "'l-';'.:-t} of W.

Let &= fey v € fquw Froer G1r =0 st}
We clatm that 7 is the basis of 1+ W,

Letxe i/ + W
Thenx = +wiv €/, we W
Sinceu £ W amd By = {2y, 80 fiv o, ot} is o basis of I,

So,for1 < i =t 1= =r—t there existu;, f; € F, such that

=t
me; + Z ki
=1

Again, w € W and By =2, .. 20 91, -, fla_e} 18 a basis of 4.

B =

-

i=1

So,for1<i<t 1<j<zg—t, Lhere exisl y; §; € F, such thal

t 5=r
W =Z'|n",t'i +Z 'ilgj
i=1 J=1

Adding these equations, w ggt,
t r=t st
9
I=Su+w= Z(ﬂ. +voe “'Z-ﬂjrf *‘Z 8,4;

%1 J=1 J=1
So, every x € [ + W 5 & linear combination of elements of &,
That is & spans I + W
Now, we prrovver that 5 is |:inE'.Brl:_|.' independent.

Forl<i=t l=j=sr—t 1=k<s-fleta;, f: ¥ € F such that

Therefore,

i
Butli i1 W has the basis B = {g;, &5, ..., &}

Therefore,
s—t ¢
Fiele = Z 4
fe=1 i=1
That is,
=1 t
z Yicie -Zﬂﬂﬁf =0
k=1 i=1

Lovely Professional University 1



Unilt #3: Vector Spaces and Sibspaces

Since e Ltz side is a linear combination of elements of the basis fiy;, therefore, we get, vy, =0V 1 <
k<sz-—1

Putting in equation (1), we get,
t F=t

Zmo; +Z i h =0

i= =1
Now again it is a linear combination of elémrents of a basis iy, which implies,

om=g=0vVL|
This imrlees that B is L. I
Hence, 1= & basis of [ + W.
dirm{ll + W) =r+i—1
= @im U + dim W =aim ' 0 W

(A

} is a basis of vector space R- . ver R.
(1, 0), (0,12

@ Example 3.3.18:Thi s#4 B = {

Firsl, we prove that the set B 35 LI

Let a, # € Rsuch that @(1,0) + g(0,1) = (0,0)

Thatis, (a, g] = [0, 0}

> a=0=0

This implies the set i is L. 1.

Next, we prave that B generates R?.

Let [%, ) & B?

Then we can observe that (x. %) = x(1,0) + y(0,1)

That is, every element in R? i= expressible as a linear combination of elements of B.

This proves that B is the basis of R?.

%* Note:

The basis of a vertor space twer a field is not unique but there is a unique standard
basis for vector spuace.

Standard Bast=: The set B = [[1, 0], {i1,11} is called the stardard basis of R? and hence Dim {E?) =
2.

The set B = [ay, #3,2,, ..., ;] 1= standard basis of F*; where ¥ is any field and #; is m —tuple
with ith coordinate equal to 1 and all others 0,

For example, ey = {1, @ %...2% ez = {0, 1. 0.0} .
So, for any fiehl F, [im [F") =n.

o Let¥ = F[x| = {ay + @y % + a5% + - |y € F] be the vector space of all polynomials over a
field ¥ in indetermimate x, thep the 1 bag infinite basis and its standard basis is given by
{1, T X } Thus, ¥ t5 mfinite-dimersional.

o LetV=F={a +ar+ar? +mx’e £ F) be the vector space of all polynomials of
depgree less than or equal to 3, over a field F in indeterminate x, then the standard basis of
Vis{ L. £, x%, x*}. Therefore, Dim (7] = 4.

n ) N L op [0 1] [0 O [0 O
Let V' = My, (R), then the standard basis of V¥ iz given by {[0 OI'[I'_I OI [1 Ol'lfl 1!}
Hence, f¥m (M 51 = 4

Dimension:For any field F, Dim (F?] = n.

* Dim(P)=mn+1
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*  Dim (M) = 11 12
. Dim ({0}) =0

*  The vector space of all polynomials over a field Fin indeterminate x is infinite-
dimensional.

rerner

E] Example 3.3.19:Find the basis and dimension of the vector space " symmetric
matrices of order 2over the field of real numbers ve

Consider the set

= S 28 2]

First, we prove that i is L.L

Let e, B, ¥ € R such that
afp oJ+eli ol+vlo 1= ¢

a fl_p[0 |
ﬁ[ﬁ }f]_[ﬂ 0
:}a:ﬁ:}r:[)
This implies, B s L1

]

Now, lst |I"l £V
b

@ ] _ 1 0], .[0 1],.[0 ©
Then[g cJ=aly ol +5ly pl*ely 3
This implies each element of ¥ is a linear combination of elements of &. Hence § s a basis of I.

Finding a basis: Let 11 = &5 [ind a basiz of the subspace W af IV gunerated by the vectors x; =
(L1, 0hx,=(01,1) 2 =(23 1)andx, = {1, 1. 1)

Since Dim (R?*)= 3. Therefore, the &t {xy, x3. %3, ¥4] is L. [

Now we need to form a relation @, x; + ayx; + 2333 + 4%y = 0 such thata; € F ¥ { and a5 are not
all zero.

That is,
o, (1,1,0) + a42(0,1,1) + 03(2,3,1) + s (1,1,1) = (0, 0, 0)
(0q + 203 + g, 04 + 0y + 303 + 0y, 0y + a3z +ay) = (0,0,0)
So, we get a system of equations,
i + 203+ =0
oy + 0ty + 3y +0g =0
ay +az+og =0
Equivalently,
(0
1.0 2 1|, 0
2
11 3 1], |=|0
3
]

01 11

Uy

Now we apply row reduction on the matrix

1 0 2 1

1 1 3 1

01 1 1
Applying R; —R,, we get,

1 0 2 1

01 10

01 1 1

Applying R; —Rj,
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1 0 21
01 10
00 0 1
System of linear equations becomes,
dy
1o 2 17f, ] [0
2
0 1 1 0ffgf=10
00 o ul’| lo
That is,
(11'{"20{3 + oy =0
az+az3 =00, =0
This implies,

oy = =203 ,0; = —og,04 =0
So, (04, O, tg, tt3) = (=2t —t,t,0); t = e
Therefore, the basis of the subspace W iz given by {[—E. =1, 1, 0}] and Dden (W) = 1.

Extension of an L.I. set to a basis: Let 3, = (0, 1, 0) and x, = f—i'.. 0, 1}. Extend the set {xy,3;} th a
basis of R3,

First, we check that the given vectors are L. I.
Let o, B € R such that a(0,1,0) + B(—2,0,1) = (0,0,0)
This implies, (0,a, 0) + (—28,0,B) = (0,0,0)
= (-2B,a,B) = (0,0,0)
>a=p=0
So, the given vectors are L. L.

Since an L.I. set containing the same number of elements as the dimension of the vector space is
always a basis so next, we try to find a vector x3 € R? such that {,,¥,, 73} izan L. L. set.

Consider the set B = {(0, 1, 0), (-2, 0, 1),(1, 0, 0)}
Let o, B,y € R such that
a(0,1,0) + B(-2,0,1) + v(1,0,0) = (0,0,0)
= (0,a,0) + (=2B,0,8) + (v,0,0) = (0,0,0)
= (-2 +v,a,8) =(0,0,0)
Sa=f=y=0

Therefore, B is L. I. set and hence the required basis of R3.

Summary

e The concept of vectors done in vector analysis and geometry in such a way that it is no
more restricted to two or three dimensions is generalized.

e The concept of vector space and its properties are explained.

e Subspace is defined.

e linear dependent and linear independent set of vectors are defined.

e The basis and dimension of a vector spaceare defined, and related results are proved.

e  The standard basis and dimension of some vector spaces are found.

e  The basis and dimension of a subspace generated by a given set of vectors is explained.

e AnL.L set to a basis of vector space is extended to a basis.
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Self Assessment
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®
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Let V be a vector space over a field F. Then which of the following options are incorrect?
¥ i% a group under addition of vectors.

WV I8 abeblan under additon

Y iz a commutative group under multiplication

cxEVioreveryc e F,r el

Minimum number of elements in a vector space are
0

1
2
3

Which of the following is a vector space over the field of real numbers?
Set of all rational numbers

Set of all irrational numbers

Set of all matrices

Set of all =guare matrices of order 2

Let V= % Then which of the following is a subspace of V?
{(z.y,2)iz =1}

{(ry,2)le =57

{ryalls +y+2=0

{(z.yzlly=x+1)

Let V Dbe the set of all polynomials over the set of real numbers. Then which of the
following is a subspace of V

Set of all polynomials with degree equal to 3.

Set of all polynomials with degree less than or equal to 3.

Set of all polynomials with degree greater than 3.

Set of all polynomials with degree greater than or equal to 3.

Which of the following is NOT a sulbspace of vector space of square matrices of order
All upper triangular malrices of ardar »

All non-singular matrices of order n

All symmetric matrices of order i

All matrices of order i with trace [I.

Which of the following set is linearly independent in #3.
{(1,0,0), (0,0,1), (0,1, 0), (1,1, 0)}

{(1,0,0), (0,0,1), (1,1, 0)}

{1, 0,0), (2,0,0)}

{(1,0,0), (0,1,0), (1,1, 0)}

Which of the following sets is linearly dependent always?

Lovely Professional University 45



Unit 03: Vector Spaces and Subspaces

SNw» =2 UNwWE ©  Un@p

Juy
=

9Nn=p

SReL P

5 Unw» g

9N=p

SO

4 {Empty set)
[
{3}

None of the alwve

LetS = {2 —x+ %% x + 1% 1 — 2x7] be a subset of vector space V of all the polynomials
with degree less tham or equeal o 2. Then

Sis linearly dependent.

S is linearly independent.

S contains a linearly dependent set.

Every set containing Sis linearly independent.

Let V be a vector space over a field F such that dim V=n and W be its proper subspace
such that dim W= m. Then which of the following is NOT correct?

Any hasis of W can be extended to a basis of V.

Any ricarzero singleton set in W can be extended to a basis of V.

Corresponding to every basis B of W, we can find a basis C of V such that C contains B.

m =T

Let & I} a generating set of a vector space V with dim V= 10. Then the number of
element= inSis

<10

=10

=10

>10

The dimension of the subsguce af victor space of square matrices of order 2, spanned by
_J0 0] 11y, ..
thesetSwhereS—{ln Ol'll'l Olln

W N -

The dimension of vector space of symmetric matrices of order 1 iz given by
it + 1)

njn— 1)

nin+ 1)/2

nin—1)/2

['he= dimension of vector space of all the polynomials of degree less than or equal to 3 with
fuy=0is
£

3
2
1

Let S= {2 —x + %x?, ¥ + ¥%,1 - 2x7] ke a subset of vector space V of all the polynomials
with degree loss than or equal to 2. Then

Sis linearly dependent.

S is linearly independent but L(S) # V.

L(S)=V but S is not Linearly independent.

Sis a basis of V.
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Answers for Self Assessment

1. C 2. B 3. D 4. C 5. B
6 B 7 B 8 B 9 B 10. D
11. C 12. B 13. C 14. B 15. D
Review Questions

1. Let F be a field. Consider the three sets A, § and © such that
iy A= [Lrg, 2,00 <}
(@) = {ix;, %) |xx0 = 0}
(iii) € = [lxg, 75) |7 = x5}

Which of these are sut=paces of F**ive reasons?

2. Let¥ be the vector space of functions from B mio K, Let I ke the subset of I¥ containing all the
even functions [ =uch that fir) = Fl=x1¥x € ¥, Lt 15, be the subset of odd functions that is,
fi=2) = —f(x). Then

(i) Prove that ¥, and Vyare subspaces of I
(i) Provethatl} 4 ¥y =1
(iii) Prove that V., ¥, ={u]

3. Prove that the set {(1,2,11),(2,1,2),(3,1,1)} is a basis for #3.

Prove that if two vectors are linearly dependent, one of ther is a scalar multiple of the other.

5. Prove that the set of vectors containing null vector is always linearly dependent.

-~

L.'J Further Readings

o Basic abstract algebra by P. B. Bhattacharya, S. K. Jain, S. R. Nagpal,Cambridge
universitypress

o Topics in algebra by I.N. Hartstein, Wiley

o Abstract algebra by David S Dummit and Richard M Foote, Wiley

Weblinks

¢ https://nptel.ac.in/courses/111/102/111102009/
e https:/ /nptel.ac.in/courses/111/105/111105112/#

[
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Unit 04: Linear Transformations

CONTENTS

Objective

Introduction

41 Linear Transformation

42 Re-presentation of Transformations by Matrices
43 Rank-Nullity Theorem

4.4 The Similarity of Linear Transformations
Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objective
After studying this unit, you will be able to

e define linear transformations from a vector space to another vector space over the same
field

e understand linear transformations with the help of examples

e find the matrix of a linear transformation

e  define null space and range space of a linear transformation

e  find null space and range space of a linear transformation

e state and prove Rank Nullity theorem

e observe the similarity between matrices corresponding to two different sets of bases

Introduction

In this unif, vou will be introduced to linear iransformations from a vector space I i a vector space
W, where W my or may not be equal to V. ¥arious examples will be given to elaburile the concept.
It matrix of a linear transformation witf respect to a given basis will be found. Null space and
Range space of the linear transformation will be defined, and related results will be explained. The
Rank-Nullity theorem will be stated and proved. It will be observed that matrices corresponding to
two different sets of bases are similar.

4.1 Linear Transformation

Definiticn 4.1.1:Lel Land ¥ b2 wo vector spaces over a field F. A mapping T: Il =+ is called a
linear transtarmatio if it satizfies the following properties

1. Tix+¥)l=Tx)+Tl¥)
2. Tilox) =gl(x)
forallx, v Elfand & & F,

Theorem 4.1.2:Let [f and V¥ be two vector spaces over a field F. & mapping T: If =17 is a linear
transformation if and only if Tlex + v} = g¢¥T(x] + @fT{y}¥a,FEFin.y €D

48 Lovely Professional University



Notes

Advanced Abstact Algelra 1T

Proof: Let T: If = ¥ 15 a linear transformation.
Consider &, ff E F:x, % € U; then bry the definition of vector space, ax, gy € Y
Then by property (1) of the defimitiom exf a limwar transformation, we have,
T{ax + §¥) = Tiox) + T8y .. (1)
Using property (2) of the definition of a linear iranstormation, we have,
Tlex) = aT-(x), T(x) = BT(x) .. {2)
Using eqquations (1) and (2), we get.
Tlax + fiy) = aT(x) + BTiy)
forallw, 1 & F, x, y £ (L
Conversely, let Tiax + ) = aT(x] + FTv)
for allwr, ' € F, x, 3 € II,
Since 1 € F, Taking a = B = 1, we gri that,
Tix+yi=T{x)+T)¥x, yE
Also,0 € ¥, Taking f = 0, we get that,
Tlex) =alix) Ye e F.x el

Hence, T | a linear transformation.
Enamplctl,‘]_‘]-:
Let Wan.d ¥ be fwn vector spaces over a field g Tjyen the zero-mapping defined as
Tix) = 0% x € Uis alinear transformation.

Proof:letx, w & i and ¢, f £ F

Then ¥k + @y = @

Also, eF izl + fT{¥]l=gx Q4+ f-0=0

This implies, T{ex 4 Fy] = aT(x] + Ty vy Ela,fEF

Hence, T i% a linear transformation.
Eump]: 4.1.4:
Let [be a vector space aver a field g, [y the identity mapping defined as 7(x} =
ay x & U is & linear lransformation.

Proofilletx.y € Ward o, 8 € F

Then Tiax + fi¥] = &x + fy = a¥llx} + T}

This impies, Tiex + 8] = aTix) + TivIvay el a, B e F

Hence, T iz a linear transformation.

E] Examyp . .15
Le

t - — Flxl. Thea for any palynomial flas — ag gaga s -+ aga™, e mapping
defined as T{f{x)) = M + Zo,x + -+ e s & lnwer transformation.
Proof:Let fix) = @y + X + =+ 8ux™ and glx} = by + byx + -~ + bpx™ € Flzland g, f € F
Withaut boss of generality let n = .
Then

Tiaf(x) + Ba(x)) = Ti({ang 4 by} + {aay + pb jx + -+ (way + By ™ + f by, 3™ 4.
+ Bh,x™)

= (@i + Bly) + -+ (wey + Bhy a1 + B (0 + D™ + o + fimplypx™
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Also,
Tiaf(x)) + T(Aglx)} = T(meg + ampx + -+ ean s} + T+ fhx + =+ 2hpa™)
= ay + -+ (aa, ™ 4 {4 fiby # B (R Dbge x® 4o+ fmpg ™ol
= (amy +Bh) + -+ + (@, + Lo ma™ ™+ Jin+ Vg 0™ + o + fmby, ™
=Tlaf{z} +Bglxl)

Hence, Tis a linear transformation.

@ Example 4.1.6:

Yor any field r, wnsider the map v:r? = ¥ giun by T(a,5,9) = (a,p)is a linear
ransformation
Let x = {exy, By, Fa) ¥ = (o3, fzeyz) E FLimBEF
Consider
Tlax + fy) = T{alay, B y1) + Blitz B2, 7))
=T(aa; + fay, apy + 1By, ay; + Fv2)
= Ly + o, afy + [)
Also,
al(x) + BT{x} = aT (@, f1. v1} + BT (w3, v2)
= ooy, fiy) + Bleez By
= {eery + Farg, affy + BB;)
= Tlmx + fiy)

Therefore, T is a linear transformation.

@ Example 4.1.7:

Let & denote the field of comeplex nambers. Then - j« 4 yector space over itself. Define
Tog = Ca=Tx +1¥) = 1. Then T I8 ot a linear tranwsiormation.

Considera =2 +L x =2 il

Then 2+ TE—d=(2+12=44+2i

and T2+ (2=} =T(5) =5

So, ¥ ix] = Tlax)

Therefore, T i not linear transfarmation.

Properties 4.l.8:Let [fand ¥ be two vector spaces over a field F. Let T [J = is a linear
transformuatinm Denote additive Identity of [f az 0, and additive identity of V¥ as 8. Then

1. Ti0y) =0y
Proof: Since Tis a linear transformation, therefors,
Tina + f¥) = al(a) + #T{y) iorevery a, F EF. x,y € I
Takingpr =y =0y @ = f =1, we get,
Tl 4 0y) =T (Uyd & Vi)
= Ty = T, )+ T{0,)
= Tl + 0, =Ti(0L] +TE_‘DU)
= Thgh = 0y
2T—x)==Tlx)¥x el
Proof: T{ax + vl = aT(x] + fT(¥)¥a,f EF.x.y EL
Let o = —1 and B = 0, we get that
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TU-1)x+0y) = —1T{x] + D Tiy)

This fmplies,

Ti=x) = =T[x)

3T —yt=Tz) -TxI¥zel

Proof: T{ox + fy) = oaT(@) + ATV R eF,x,y €U

Leta = 1and f = —1, we get that

Tl o+ (=10 =1- T+ (-1} T

This implies.T{x — ¥} = Tix] = T(¥)

4. 1 13, .., uy are Lo B vectors in I then Twy), Tlw), ..., T(i,) are L I in 1.
Proof: Sinee uy, 1y, .., iy are Lo D, therefore, there exist @y, @ ..., @y € £, mat all zero such that
iy + @alig + o gl = 0y

= Ty + gty + 10 mgley) = T0y)

= oy T{y) + @ T{ue) + -+ Ty, = 0y

Sincegry, ity ..., &, € F are not all zero, therefore, we get that the vectors Tiuy), Tlw,), .., T{w,) are L.
D.in V.

Task:

e
111

1. Intwo-dimension space ¥, consider the transformation
Tixr, v} = (zcos & — v 5ind, xsind +yoosd)
Check whether T s a limvear transcharmstion or notd
2. Give an example @i a linear transformation that is neither one-one nor onto.

4.2 Re-presentation of Transformations by Matrices

Definition 4.21:Letl, be a vertor space of finite dimension n. Then any ordered nr — tuple

(¥, %5, 0, T} of 1 members of V. is called an ordered basis of V. if the set {3, ,, ..., I| i5 a basis of
¥

In an ordered basis, the order af arrangement of membisrs ol the basis.is also considered.
For example, the sats {1, 0], (0, 17] and [(0,1), (1, 0]} are two distinet ordered beses of RE.

Definition 4. ZEMNow we define how we [ind the matrix of any r ~baple (v, y,, ..., ¥} of vectors in
a vecter space Vi wiith respect to sarie ordered basis B = (1,,35, ..., a5} of V.

Since i =[xy, %y, .... ¥n} 5 @ basis of ¥y, therefore, each element of ¥ is uniquely expressible as a
linear combinaticss of slemente of B

Also, 7 eV, W1<j=r

So, there exist unique &r;; € F: 1 = { =, 1= = rsuch that

"

1

¥i =l"|f-’-’i

=1
The column vector (it azj, ..., I:-r.,J}II iy rallesd coordinate vertor associated with ;.
Thus, we get it x r malrix over F given by

LIV T I U

Qz3 @z - B2r
“l’f!=

My Wmp .. Oy

W call this matrix, the matrix of (¥, ¥, ..., -1 relative to or with respect to the ordered basis
B= 1y, 3, .., Tp}
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Theorem &.2.3:Let {1, x5, ..., 3,) 8 a0 ordered basis of ¥y and (%, ¥z ..., ¥, i5 an ordered m —
tuples of elements of V. Thent [¥1:¥2.-, ¥) i5 an ordered basis of ¥y if and only if the matrix of
(¥3.¥2 -1 ¥a ) Felistive to the basis {Xy, X5..., T} i% non-singular.

Proof:Let (ir;;) be the matrix of [ ¥y, ¥3..... ¥} relative to the basis {iy, 75, ..., En}.

Then by definition
¥ =Em.f:; 1<jEnr.a(l)
=]

Let {¥1,¥2, ..., ¥n} is an ordered basis of V. and let (5;;) be the matrix of fx1,I2. ooy T} relative to the
basis {11, ¥2, ... ¥a} 50 that
-

If=zﬂ'ﬂ}'k;1515ﬁ---[2)

fom 1
From (1) and (2), we get,
= .|
X =Z Exﬁ( ﬂ,’,«.‘f]‘)
1= =]
2 oow
= 2 (kz 'J'Jkﬁ;cf) X
il
However,
n
= ZJuI: ;
=1
whered; =0VI=®L6; =1V
Therefore,
n
n - E‘
Z-ﬁu-’?: = z ( ﬂuﬁk:) ]
=1 =1 k=1
This gives us,
n
&y = Z o0y B
=1

So that () = (ay ) ()
That is, [} B} =1
Similarly, we can show that
(B e} =1
Hence, the matrix (u;;) is non-singular.
Conversely,

Let (a;) is non-singular and {£;;} = [ral.l.}q. Then kerany 1 < i< n,

Z vy = Z fHii (Z '-Tkj-':k)
Jj=1 - k=1
IEL
= ; (Z '-Tkjﬁjf) T =X
' =1
le=1

Hence each x; £ W'; where I is a subspace of ;. spanned by elements {4, ¥, ... ¥n]-
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So, {¥y. ¥, w1 ¥ ] 15 @ basis of V.

Hence (¥, ¥3.-... ¥n) I=an ordered basis of 1.

U S
Ve
@ % e ‘.LZE_‘;:(._mmhhr 2 eld F, we know that , . vevtey SPACE OVer Fi [_i:in1|1der
.Iﬁ = II ik, 0]_ A= l:].a "Wa n#. f] = [1. i, lll:l? where a, B € F —{i] Then

1. Find the mairix of (f;. f, f5} relative to & standard ordered basis of F°.
2. Prove that {.f;, i3} is a basis for 7,
3. Find the nuatrix of standaril bazis relative to the ordered basis {1, 3. f5}.

Solution:Stanclard basis of £ js given by {ey,2,, 6;} where £ = (1.22), 2, = (0,1,0), £5 = (0,0,1).
1. F=(10,0)=¢ =1& +0e+0e;
fam(l, e 0)=1g +0e,+0e;
=2, e B)=1e +ae, + fey
So that the matrix of [ f;, f, f} relative to standard ordered basis of F? is given by
111
[D £

0 o g

2. Since the matrix of [ fi, f, fz} relative to standard ardered basis of ¥ is given by

1 1 1
.r1=[ﬂ? o
0 o g

Given that i, i are non-zero elements of a field and a field is always withiaul proper zero divisors.

The determinani of this matrix is @ff = ), which proves that the matrix A i= nor-singular.
Hence {{;, 2, {7 ] i* a basis for ¥3
3. In this case, matrix of standard basis relative to the ordered basis {f;, f;, f3} i given by A1,
Note that
For any (x, y. r} € 3
Since {fi. . f3} i & basis of F*, therefore, there exist @, b, € F such that (x, v, ) = af, +bf +cf
That is, [z w.2) = a(LO00) + &L 0] + cf 1, i, )
= (¥ 2} = (o, ) + (B bee, 00 + (oo 28]
= i) = (a+b +r, b + oo f)
witich implies,
F=rE =t
¥y=B+chmb=rat —gf
r=g4+b4oa=x—ya
Using these we get, &, = [1, L. 00) = 1f, + 0, +0f3
e =10,1,0)=—a"'fi+a i+ 0f
£ =00,0,1) =0/ +p'fs
so that the matrix of standard basis relative to the ordered basis {f;, 2, 2]} it given by

1 —=g! 0
0 &' —pt
0 0 B

[%f Note:

Let Vand W be two finite-dimensional vector spaces over the same field ¥.
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Ly "V linear transformation. Lat dim1 =m Consider the basis ,ariom
{e 7 + A* be a L =
B )i V.

Then T @i be uniquely determined from T{x,), Tix,), ., Tlx,

Matrix of Linear Transformation:LetVand B be two finite-dimensional vector spaces over the
same field F. T : ¥ = W be a linear transformation, Let dim ¥ = pand dim B = w.

Consider the bases 8 = [ 2, x,, ... x,} and B = {37, 35, .3} of Vand W respectively.

Then for any & € ¥, we have segn that T{x}can be uniquely determined from Tix;), T{x,), ., T{xy,).
So, we find Tiaxy 1, Tlxs), o, Tl

Also, T{x;) € W¥iand B'is a bass of W,

So, there exist unique aj; € F such that

m

Tix) = er,.-,-}];l <i=n

I=1

Then the matrix () is called the matrix of T with respect to the bases # and &'; Il is denoted as
[T B 8.

E. Note:

The matrix of a linear tramsformation depends 1 the bases.Correspnmshinig 1o a pair of
banes, the malric is unbque. Uniqueness foiiows llom the fact that every alpment uf a
vector space is unigquely expressed as 8 linear cambination of elements of (1= basis.la
case, T o= V) we call T isa linear operator on V. Then for any basis & of V; the matrix of
T is dencled ax [T; #] or [T]elet T:17 — W be a linear transformatian. If diml* =n and
dim W = m then a matrix of T 12 of arder m % L
Example 4.25:Consider the derivalive map from Py to F,; that ks,
TePy = Py s given by Tiag 4 @yx + az%% +@ax”) = iy + 2ir + Jagx™,
Fimd the matrix of [T, B, B'] where B and & are standard bases of ) and P, respectively.
B={1, . 2* Pland ¥ = {1, £. ]
T(1=0=0-1+0-x+0-x*
Txl=1=1-14+0-x+ D x*
Tx)=2x=0-1+2-x40 2
Tix®l=3xr"=0-1+0-x+3-x°

G 1 0 0
[T.&:®8]= 10 0 2 0
0 0 0O 3

Remark 4.L6:For any linear transformation T from R™ — ™) we can always find a matrix 4 such
that T{x] = Ax%r & " Consider the standard bases I = (g, &5,.., &,] and #' = {81 €5e s Bm]
of R*and R= respectively. Then the matrix A 1= the matrix with | = th coluzrm equal to Tle).

o owma anm SretemE ta sk mEaE — 1e1s =

Al to T e

@ I_.Mlmple a7 e - Re we 2 linear transformation such that — 2) and
= = i, 1) = (1,
o, —13=(3, 2}

Tie 1atr

Find the transfarmation T amnd matris A of T such that T{x] = Ax ¥ x € B
Consider B = {{1, 1), [0, = 1}}

1 0 _
Notei}'ml[] —I| ==1%#0

Also, H romtains 2 elements. Therefore, 14 basis of #2.

E=1{i11, (0, -1}
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TL1)=(,2)
T —1) = (3, 2)
For [, ¥ & R?
(x, ¥} = (1,1 + {0, —1)
={m, a— &)
Thatis, it =x.a—b=y =bh=z-y
fx, ¥) = x(1,1) + [x = ¥}0, —1)
Tie ¥l =x TILI + {x=¥ T =1)
= {1, Z) + {x= 33 2)
= (z+ 3x—3u Zx + 2% — 2y)
= (4x — 3y, 4x — Iy}
So,
T(1,0) = (4, 4) =4(1,0) +4(0, 1)
T0,1)=(-3, —-2)=-3(1,0)-2(0, 1)

4 -3
A=
Hence, [ 4 —2
Remark 4.2.8:Let V and W be two finite-dimensiomal wector spaces over the same field R.
T ¥ — W be a linear transformation. Let dim V¥ = 1 and dim W = m

Then every element x £ I, Lhere exist unique scalars @4, &z, .., @y € R such that

=
2=, o
=1

Associating, #ach x € V with the vector (&,.e;,.., @), we see that I¥ can be mapped to R™.
Similarly, W' «an he mapped to R” and hesce T can be associated with a unique linear
transformaticst from R™ to R” .

Task:

ey |
111

1. lf Tand o are two linear operalors om N gefined by 7%} = (y,+) and
[x,¥] = (x,0). Than find the malrix of T with respect lo the standard basis of
F*. Further, find tha matrix of If with respect to the basis {(1, 2162, 1)},

2. Lat T be W unique linear operator tn L7 for which
TLy,a) = (1,0,(LT{0,1,0) = (0,1,1), T 0, 1) = (I, L), Is T invertible?

Lot T e the unique lmear aperator on 7 for which
Te, =1 07 Te =0 17, ) Pe_ (il 0y

Is T irpwertible?

4.3 Rank-Nullity Theorem

Defimitinn d.3.ELetl! and IV be two vector spaces over a field F.

Let Tt Il = V is a linear transfcermation.
Then the karnel of T [Ker T i= defined by

KerT =[x € /| T{x) =0}
Kernel T iz also knowm as null space of T

Theorem 432:Let [fand V¥ be two veclor spaces over a field F. [el T: [l =¥ i= a linear
transformatian. Kerriel T is a subspace of I,

Note that T{il1= 0
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Therefore, 0 E Hex T

That is, KerT is a non-empy subset of [

Letx, ¥ € kerT, wEF

Since &, ¥ € ker T, therefore, T(xl =Tiv) =0

Also, T + ¥} =Tl +T{¥1 =0 +0=0

and Tlpxl = aT{x}=al =10

This implies x + w, ex € Ker T forall v € kerT, d € F
Hence, Ker T s a subspace of L]

Defimition 4.3.3:Let [/ and ¥ be two vector spaces ower a field F.
Let Tt [f = I f5 a linear transformation.

Then range space of I k= given by = [T{e)|x € U}

Theorem 4.34:Let Fand ¥ be two wector spaces ower a field £. [el T: [f =17 is a linear
transformation. B = Range space of T i=a subspace of V.

Note that F{ili = 0

Therefore, 1 € &

That 18, & i2 & sou-emply subset of ¥,

Letx, yER, @ €F

Since x, ¥ € K, so thereexist xy, ¥y € B such thay
r=T(x)andy = T(r)

Thenz +3#=T(x) +Thy) =Tix, +%) R
and pxy = aliz,} = Tiox; ) E §

Henece  is a subspace of ¥,

Remurks d.3.5:Letlfand ¥ be two finite-dimensional vector spaces over a field F.
Let T: [f — ¥ is & linear transformatiom.

Then

. Ker T, bedng, subspace of [f js fintbe-dimensional. So, Ker T hias 4 basis. Dimension of Egr T
iz callad mullity of T aivd it i= denofed as v(T ).

+  f =Range T, being subspace of I 15 finite-dimensional. So, # has a basis. Dimension of i is
called the tank of T and it = dennted as g7},

*  Range T is asubspace of I implies dim & = dim V.
Similarly, Ker T |= a sabspace of 1 implies dim(Ker T = dim [,

Theorein 4.3.6:Letll and V¥ be two finite-dimensional vector spaces over a field F. Lat T: [l =
I is o linear brareformation.

Then ¥er T =i it and only if T is & one-one map.
Proof:Let Ker ¥ = {1
Let x, ¥ € U such thist T{x) = Ty}
This irmpdees, T(x) =Ty} =0

>Tlx=y}=0
S zx=)Ekerl"
But Ker T = (1}

Therefore, x —y =1
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S>r=4y

= T i= one-one.

Conversely,

Let T is one-one,

Letr € KerT

= Tix] =0

But T(0) =D

= Tix) = T(0)

Since T &5 one-onie, therefore, we get, x = (i
That is, Ker T = {i}

Theorem (Rank- Nullity Theorem) 4.3.7:Letif amd I b two finite-

dimensional vector spaces over a field F, Let T: If — 1/ |= a linear transformation. Then dim [ =
S e

Proof:letdimU =mn, v(T1 =L p{TI =5

Let & = {uy, s, —. 14; | b a basi= of Keér T. Then & is a linearly independent subset of [ and hence, it
can b extenided too 5 hasle of I¥.

Let &' = {4, ., Uy | i the hasis of U chdtained by extending £.
Claim: The et 5 — { Ty, 1), Ti{deea), o, T{1n)) Is a basisof £.
Let ¢ & . Then by definition of range space, there exists x € [f such that ¥ = T{x].

Now, x £ Ii amd H' is a basis of II. %n, there exial unisyuee ;1 < i = n such that
n
s Z L AT

i=1

Tz} =T (i cmt.)

i=1

t n
~r(Yact Y o
i=tt+1

=1
r n
'~'Za|1'-fur} + Z or; Tl
i=1 i=t+1

so that,

Tl

= > @l

i=t+1
That is, every element of R/ i a linear combination of elements of 5. Fence & spans i,
Now we prove that 5 is linesarly independent

Let Erp10Eypp7.ailn € F such hat
T

> aliu) =0

i=t+1

Fl

n
>T Z =0
U
i=t+1
H
> Z ity € KerT
i=t+1

Since i is & basis of Ker T, 50, there exist £y, B, .., B € F such that
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That is,

whereyy=q;vVit+i<isnandy,=—fv¥l<i=ti
This is a linear combimation of elements of basis &' af [, hence y; =0V &
That is, @y = 0 Vi, This implies  is finearty independent.
Herei, & 1= a basis of .
#IT1 =Numberof slements in§ =n —§
=dim I —v(T}
That is, dim If = w{T) 4 @(T).
Corollary4.3.8:Let

I be

a finite-dim#nsional vector space over a field F. Let T: [ — U is a linear transformation. Then T is

one-one if ard only if it is onto.
Proof:Let T is orve-ome
This imiplies ker T = [0}
So, viTi=0
By Rank Nullity theorem,

Wit [ = p(T
That is dim If = dim &; & is range space of T,
We have proved that / is a subspace of U,
So, dimif = dim i knplies that i = [If
Thal ks, range= codomain
So, T i= into.
Converzely,
Let T is oo
This imphies Range T = [f
That is @i} = dlim IF
Using this anid the Rank Nullity theorern, we gel,

viTl =0

This implies ier T = {0} and hence T i% bne-one.

Example 4.5 3

Let Vp amd {vz be two vector spaces. Define # limear transformation 7.1 v iy @5 7(x) =

0 v & ¥, Find null space and range space of T+ #Also, find nullity and rark of T-

Range space = £ = [T1]|x € V'] = {0}. & = [0}
Hencerank T = g{T) =0
By Rank Mullity Thaearem,
dim¥ = pi{T} + (T}
=0+w(T)
Hence, nullity T = dim |
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That is dimi Ker T = dém ¥

Also, Ker T is & subspace of 17,

This implies er T =1

Example 4.3.1G,
For any field ~, sider the map 1. &% = ¢* Eiﬂ.‘n by T, it ¢l = G, p) is @ limwear
tranafoemation. Find =ull space and rarge space of T+ Also, find nullity and rank of T.
Let (a, B, y) ENerT
= T(a, B, y)=(0, 0)
= (a, B3 = (0, )
sa=00L=10
Hence, I:a. Byl= (@, 0, V)
Therefore, Ker T ={{0, 0, vi|y & F}
Hence, Kev T = < {(0, 0, 1:!] -
So, {[, 0, 1)} is & basis of Key T and ¥(T) = 1.
Again, & = {(o, B)|m, f € F] = F?
Therefore, p(T] = dim F? = 2
So, ¥{Ti4p(Tl =142 =3 =dimF?
T ! Lian &

e 4.3.11:Let 5 ‘hen or oar v ; =g N
@ E:"_.HIIJII (my 1 R3] rur-l:,.n“:rnlal F s b oL i

. = | 3YH) 1« i
iy tjie mapping defirecct as Tirch W=+ 2000 S, is A LinedT Mhiniorseeon.

Find null space and range space of T. Also, find nullity and rank of T

Leti flx} =aa+max +art + a7 €Ner T
= T{fix)) =10
a1y + 2upx + Ingx® =0
This implies, 0; =a; =eg =0
Thus,
KerT = lag +ayx + a3x% + azx¥|ag ER, a; =a; =a; =0} = {aghz, ER] =R
v(F)y=1
By Rank Mullity theorern,
pr=dimP; —w(Tj=4—1=3
Lal f{x} = ag + @ya + dz33" + aax® € Py (K)
T{F() = ay + 2a;% + 3ax®
= by + byt + Byr?
by =ay, bs = Jag by =303
Therefore, R is sparned by {1, z, 2} = P,(K)
Hence, R = P4 (/]
Remarks 4.3.12:A field F is always vector space over itself.
The dimension of a field is 1.
Let = [1}; where 1 is the unity of F.
Since [ is i singleton st cunlaining a non-zere - ement, therefore, it is L. L.

Also, every element @ € F can be written as &, 1, which proves that & spans IV,
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Hencr, the set containing unity of the field is it basis of F.

Let ¥ bx a vector space over a field ¥ then a linear fransformatien 7:¥ — F iz alled linear
funciional.

|t T b & maan-zero linear functional on a vector space Iy such that dim ¥ = r.
piT) = dim F, that ds p(T) =1

This implies; p(T1=0o0r1

Since T # I, therefore, p(T) = 0.

That is, piT1 =1

Using the Rank Nullity theorem, we get, v(T} =dim I = 1.

4.4 The Similaritv of Linear Transformations

Theorem d£1:Let YWarnd W be two Holledimensional veclor spaces over the feld Fsuch that
diml =n and dimW = mLer TV <= W be a linear transformation Lel 8 = [y, 2, .0, &} and
B =o' a5, 2] be two bases of V.o Let C={n.0% 0 Y] and & =359 . ¥'albe o
bases of W.Let [T, B; €] = (o) and [T, B E'l = (i) Let P and @ be the matrices of sets &' and £
relative to the hases § and £ respoctively. Then (8} = ¢ e, )P

Proof: Since #is the matrix of set &' relative to the basis K.

Therefore, we have

H

x =Z.rj-pﬁ;15 [=Zn..{1)

=1

Similarly, if ¢~ = (q'ull. then

I
=Zy’;ﬂ"ﬂ i1<iz=m..[2)
=
Further, T, ;] = (&} implies
m
Tix) = Z ¥giil<lZn..(3)
Jj=1

From (1)

Tla) = T(Z ’J'Pﬂ) Z e

=1 J=1

n
Tix) = Z ( k':‘kj pji = ; Z (Z }’éﬂ:'g)ﬂkj Pji
k=1 ' bored W21

m
Tz = ; 'n:kj pji = Z Vi
J 1 t=1

= :c1

From (2),

T
n
wherewr,; = ; Z T el jPji
£ =

fe=1
Thus, the matrix (i, ) of T nelative to the bases &' amd £ 1s 7" [y |
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Theorem 44.2:Let ¥ be a finite-dimensional vector space over the field F.T be a linear operator on
V. LletdimV =mand § = [ x;,%5,.., %] is a basis of .Let [T. B] = [uu}. Consider another ordered
basis B = { 1'%, o 2’5} 0f V.Let P be the matrix of set ' relative to the basks B,

By taking & = ¢ and &' = [ I the previous theorem, we get #* = {# and hence T, &'| = P~ {a;;} P

Exal,“pq E4.4.3:

Let T | the linear speritar an ©F defined by T(x. ¥] = (x, 0). | ot B iy jhe standard
ordered basis for €¥ and let B = {m,, a;}, where @, = (1, (}. @, = (-1, 2).

1. Find the matvix P of B relative to the basis .
2. Find T, &
3, Find [T 8]

Matrix of B’ relative to the basis F
First, we express elements of i’ as a lineir combination of elements of basis &
(L i)=1(L 0 + (0, 1)
(L 2)=—i(1, 0) + 2(, 1)

The matrix
-3

2.[T, B]
& =1(1, 0), (0, 1)}
Ti1,0)=(1,0)=1(1 0 +0(0, 1)
Ti0, 1) = (0, 0) =0(1, 0) + (0, 1)
So, the matrix
[T. B] = é g
3.[T, ]
B = (1, i) (- 22}

Matrix of i relative to the basis P = [: _EI]

i = [_2¢ ”
Then
[T, B'] = P7E[T. B)P
2 =2
—% - +1

Definition 4.4.4:Tw square matrices 4 and & of arder n are said to be similar if there exists an
invertible miatrix  sach that

A=P"BP
By taking F'~! = [} w# can observe that
B =g AQ
Hence this relation of similarity i= symmetric.
Remark 4.4.5:In the theorem, we have seén that if T i= a linear operator on a vector space V.

Then the matrices (ar;;) and [ff;} cerresponding to twe different bases B and ' of V' have the
relation

fpu}_1 (i Mpis} = (8:))
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That is, the matrices (sr;;) and [ j]- are similar matrices. In other words, we can say that matrices of
a linear operator corresponding to diflerent bases are similar to each other:,

Theorem d4.bel el Vbe a fintte-dimensional vector space aver the fleld F.T be a limeir opserator on
V. Let dimV =n and & ={ x),%,, ..., x;} i3 a basis of V.Lat A= T, £i'| = [ary;}. Then p(T1 = Row
rank of A

Proof:Let T, B| = [} implies

n
Tx;) = Z gl <i=n. 1)
Jj=1
Let column rank of A is s.
Now, we can find i,,i3, ... i, such that the ¢, th, i,th, ., i,thcolumns of A are linearly independent

and all other columns are expressible as a linear combimation of these columns.

Suppose

5

Z T(-Eik}ﬁk =0

fe=1

for some f3; € F

From (1),
H
T I:.Iik} = Z xjji,
=
That is,
B
"
(Z 'T,I ftj{k)ﬁk 0
j V=
k=1
Or,
n
- 5
k}'( ﬂ;:kﬁk) =1
2—4 =1
Ju1
This implies,
£
Z '-TJIkﬁk =0
=1
Since iyth, ixth, ., (thoolumns of Aare linearly independent, theredors, fi, =0% k. Hence,
T(xg, ) T(x ) .. T(x,) are linearly independentAll the columns are expressible as a linear
comibination of iy th, ith, ., i,th columns af A. 5o, there exist scalars ay;, @4;,,.., fig; € F such that
T
= Z Wi T
fe=1
Also, from (1),
n
T[.'I:'i:l =Z -'I'Jlej
i=1
n
2 5
= 2 l’;‘( '?fe-'k"kr)
fe=1
Ju1
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= (Z ""_l'“jl'k }-Ilki
] J= h)

k=

1
s
- Z T(J'_-p‘iﬂg.-.
k=1

Now the space T{¥) is spanned by Tlx,), Tlrz), . T(kal-

Further, 'J'I:-.tlk'l: I=&<xare LL and all other Tlx;)'s are expressible as linear combinations of
these & vectors,

Conseqmmrl:.-.{Tl:r_;*_}}:_‘_"ﬂ i= a basis of T(IX)

Hence, g{T1 =dim[T{F]} = £ = calumn rank of A.

Summary

e linear transformations from a vector space to another vector space over the same fieldare
defined.

e linear transformations are explained with the help of examples.

e  the matrix of a linear transformation is found.

e null space and range space of a linear transformation is defined.

e method to find the null space and range space of a linear transformation is given.

¢  Rank Nullity theorem is proved.

e the similarity between matrices corresponding to two different sets of bases is observed.

Keywords

e linear transformations

e Null space of a linear transformation

e Range of a linear transformation

e  Matrix corresponding to a linear transformation
e Rank Nullity theorem

e  The similarity between the matrices

Self Assessment

1. Let W be the wector space of all the polynamials over the field of real numbers. Then
which of the follow ifi 12 & linear transformaticm from V to itself

A, TIf) = f" where ' denctes the derivative of f

B. Tf}=f+1

C. Tify=f+1

D. ]-[f b= ,"- +3

2. Let ¥ be the vector space of square matrices of order 3. Then T from V to itself defined as
T[A1 = A + ¢l is a linear ransformation (where c is a real number, and I is identity map of
arder 3 if and only ifc =

A 3

B. 2

C 1

D. 0

3. Let W=} b the vector space over the field of real numbers. Then which of the following

15 ruot @ linar transfbormation from V to R
A Tixyl=z+y
B. Tix,y) =xy+1
C '.r[_'l:,_'l.'l =-2¥ 4=y
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=~

oW

o

6.

9n= >

A:

T{x, ¥} =5z

Let T be a Jinear fransformation from a vector space V to itself. Let 0 be the additive
identity of V. Then which of the following is true

T=0

Ti=x]=xlorxeV¥

Tlx—1) =T{x} +Tiy)

TiexY =¢c*x

Let T: #? = i? b a linear transformation. Then the order of the matrix of T with respect to
any bascs of #* mnd ®' is

2x3

3x2

2x2

3x3

Let T: B* — F3is given by Tlx, ¥} = (x.%.x + ¥}. Then matrix of T with respect to standard
bases of K~ and R is

-1 0
0 =1
1 1
1 0
{0 1
1 1
-1 0
{ 0 1
1 -1
-1 0
0 1
-1 1

Let T: B? — [%is given by T(x.¥} = (—¥.x]. Then matrix of T with respect to the basis B=
{(1,2),(1,-1}) is

W=
R

[

| e

!

RET R R
-

|
!

I

Wl =
W wd |

W
-

Let ¥ bw the vector space ¢f polymismials of degree 3 or lis= tham 3 in variable x over the
field af real numbers. Let 8 and B, be two bases of the vector space V given by &, =
{1,r.7%, 7" and i, = {2,3x. 47", 57"}, Then matrix P of if, from i, is given by

2 0 0 0
0 3 0 0}
0 0 4 0
0 0 05
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B:

9.

oN®p

oNwp

Juny
N

R

E 9nNw»

oNw»

50 0 0
0 =3 0 0
00 4 0
Lo 0 0 5
2 0 0 07
03 0 0
0 0 —4 0
o 0 o sl
2 0 0 07
03 0 0
00 4 0
000 -5

ooz

Mull space of a linear transformation T from a vector space V to a vector space W is
defimed s

{x € VITix]} = 0y}, 0p denotes the additive identity of V

{r & ¥IT(x} = Oy}, 0, denotes the additive identity of W

{Tixllx €V)

{Tix)x W)

Let ¥ = R*. Then V is a vector space over the field of real numbers. Let T: ¥ = I¥ be defined
as Tlx,¥} = (x + y.x — ¥}, then null space of T is given by

{(0, )

¢

(1, 0}

{0, 1)}

[tange space of zero transformation defined on vector space &* to B is
¥l

[10,0,0,0)}
|2,0,0)}
R1

Let P, denotes the vector space af polynomials with degree less than or equal to m. Lot T be
a linear fransformation from ¥, to Pysuch that nullity of T = 2. Then rank T=
1

2
3
4

Let V be the vector space of square matrices of trder 2 aver the field of real numbers. Let T

be a linear transformation on V defined as T ([';J ED = [E :1& Then nullity of T is
1
2
3
4

Let V be a vector space with an odd dimension. Then for a linear transformation defined
onV

Nullity T is odd

Nullity T is 0

Nullity T is either odd or zero

Rank T is even
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15. Let T:f? = R® be a linear transformation such that matrix of T with respect to the
standard basis of #%is given by [(1) é!.'l'hm matrix of T with respect to the basis B=
[11,2),{1, -1} is

A [i —01|
B[
C:[-11 —01]
b: [:} —01|

Answers for Self Assessment

1 A 2 D 3 B 4 A 5 B
6 B 7 C 8 A 9 B 10. A
11. C 12. A 13. B 14. C 15. C

Review Duestions

1. Censider the space ¥ represenivd geometrically by the plane and the transfarmation
Tix, ) = (ax, byl Then prove/ disprove that 1" % a linear transformation.

2. Lot B e the field of real numbers and et V be the space of all functions from # Imfo &
which are continuous. Define T by

T(Fix)) = rfm de
1)

Thern pronve that T is a linear transtormiation from ¥ o itsedl,

3. LetF baa field. Show that F™ = F7 if amal only if m =mn,

4. Let ¥ be the sel of complex numbers regarded as a vector space over tee Beld of real
numbers, Define a function T from V¥ into the space of Z = 2 real maltrices, as follows.

£+ Ty 5y

-1y x—7y

5. Prove that the mapping T defimed in problem 4, is a one-one real linear transtormation ot
¥ info the space of 2 X 2 real matrices.

Tix+iyl= . Then verify that ]'fl:_r +iyliE+ |'u;'|]- =Tz +iy) Tl + jw)l.

|..'.J Further Readings

¢ Basic abstract algebra by P. B. Bhattacharya, S. K. Jain, S. R. Nagpal,Cambridge
universitypress

e Topics in algebra by I.N. Hartstein, Wiley

o Abstract algebra by David S Dummit and Richard M Foote, Wiley

@ Weblinks

e https:/ /nptel.ac.in/courses/111/102/111102009/
e https:/ /nptel.ac.in/courses/111/105/111105112/#
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Unit 05: Modules

CONTENTS

Objective

Introduction

51 Definition, Examples, and Properties of Modules
5.2 Theorems on Modules and Submodules
Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objective
After studying this unit, you will be able to

o  define mudules over a ring and understand modules= writh the help of examples

e  define =ufmodules,

e  define # —homomorphisms and relate # —homuszmorphisms with linear transformations,
¢ understand important properties and resulls abwut # —homomorphisms,

e  define quotient modules,

e state and prove the Fundamental theorem of # —homomorphism,

e define exact sequences and prove important resulis based on it.

Introduction

In this unit, ¥ou will b= introduced i» modules and submodules. Both the structure will be
explained with the help of #xamples. # — homomorphisms will be defined and it will be discussed
that every # — homomorphism is a linesar transformation. Quotient modules will be defined. The
fundamental theorem of & —homomorphisms will be proved.

5.1 Definition, Examples, and Properties of Modules

Definition 5.1.1:Let M be an addifive abelian group. Let End {M} b the ring of endomorphisms of
M. If v £ Ewd (M), m & M, fhen rim will denote the image of w1 by r. Therefore,

i rimg + mz) = roty + rms,
ii. (ry +rlm = w4 o,
ii. (ryradm = ry{rym]

iv. 1m = m,

wherer, ry,1; € B, my,m, € M.
Then we say M is a left module over the ring # = End {M) according to the tollowing definition.

Definition 5.1.2:Let & be a ring and M be an additive abelian group. Let [r, m} = rm, a mapping of
R = M intoc M sch that

i r{my + 1itz] = Py + rimes,

ii. (r + r)m =mym +rym,
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iii. (rgrydm = ry{rgm}

iv. Im=miflER
where r, 1, r; € fihm, ™y, m,; € M.
Thenn M is called a left & —module.

Definifion 5.13:Let & be o ring and M be an additive abelian group. Let [, ¥} = inr, a mapping of
oot M into W such that

i [my + ma)r = myr + mer,
ii. wLEy 4 1) = o s,
iii. mfryrg] = (i i
iv. ml=miflER
where ¥, ry,1; € Bym, my, 1z EM

Then i is called a right # —inodule.

B e

e I R i=a division ring, then a left n _odule i called a left verior space over g

o rm is<alled the scalar multiplication af m by ron the left.

e If # is # commutative ring and M is m left ¥ —~imodule, then M cam B+ made into a
right # —module by defining mr = rm. Hance, over a commutative ring, left and
right # =thodules are the sami-. Im this cise, we simply call it an # =todule.

Theorem 5.1.4 (Praperties of an E —module M)
Let M B a left & —module. Let 04 and D, bix the additive identities of M and ¥ respectively. Then
Optin = Ty

Prool:

ForaER, mEMN

a+llp =n

= [+ Oglm = am

= qam + gm = g + 0,
= Ogtir = My

Fora € &, ally = Uy
Proof:

letaER mEM

w4+ gy =

= afm + 0] = am

= g + Al = am + [y
= ally =y

3. Fwanel, me M,
(—akm = =(am) = a{—m)
Praoi:

Leta € R, m e M

= allyy = iy

= alm + (—m)) = 0y

= am + al=me) = 0y

= —(am) = af-m1) . (1)
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Again, Ggm = Oy

= [+ (=a}ym = 0y

= am + (—ajm = (y

= =fuwmp={=ulm ..{2}
Fram (1} and (2], we get,

(—ajm =—(am]) = ai—m)

E_y’ Note:

From here, we will consider the modules as left modules, unless otherwise stated.

Lat A b an additive abeliom group. Then 4 i= a left (right) Z —module.

For k. &y, &5 £ Z and for &, ay,a, € A

Consider kim + ag)

[Ek >0

Efay +uap) = (my +a) + (g +ag) + -+ (2 + 1)
=fmy g b+ i)+ G+ + o0+ amp)
= iy + ki

[k =l enl=-k>0

[{ay + az] = o, + o,

=k[ay +azl = {=k)ay + (—kn,

—(kiny + ax)) = —(kay + kay)

Efay +ag} = kba, + kag

I & = 0 them

Efay +a;) = 0 = kay + ka;

S, iyl thie cases, we have, klny +ay) = kay + ka,

Similar arpuments show that

By +kgla = kypa + kya

(kykzla = gy (kpc)

la=1

for all k, ky, k, € & and for a, ay,a; € A

This proves that A i= laft £ =module.

In other words, every additive abelian graaip is a left # —module.

Since ¥ iz commutative, therefore, every addifive abelian group is a right # —module as well.

That is, every additive abelian group is a # —module.

@ Example 5.1.5:

Let B e o sing. Then g 12711 #n te tegarded as a left g -mrdule by defining e, = e

fi. & € /. tobe & product of @ Gfid i1 45 elements of the ring &

Then the distributive law and associative law for muliiplication in the ring ® =how that # is left

B —module. Similardy, # is alsoa dght B =module.

Direct Product of Modules:let M and W ke two ® —modules. Consider the cartesian product

MxN={(xylxeM, vEN]L

Define the compositions as
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)+ =i+t y £ ¥
rix, ¥l = (rz; rp)

forallz, =" £ M, y,3' € N, r € K. Then M x N is an # —module and it is called the direct product of
the i =modules M aicd M.

Definition 5.1.6:4 non-empiy subset N af an # —module M is called an & —submodule (or simply
submodule} af M if

i. a—bENYg 0EN
ii. raENYaEN FrER

Clearly, {0} and M are # —submodules, called trivial submodules. Any other submodule of ¥ is
called the proper submodule of M,

@ Example 5.1.7:

Each left ideal of a ring R is an # ==ubmodule of the left # —module R, and conversely.

From the definition f a lett ideal af ring #.

A non-emprty subset [ of a ring R is a left ideal of & if
i. a—hE!Ya, BE]
ii. raElvaEl, rER

So, from the detinition of the lett ideal, the result is clear.

— wid & £ M, then the
KX = {rx|r € i}

@ Example5.1.81f  san W odule ¢ ' set
A oa 2]

is an # —submodule of . for,
B —rpx = [r; —ry)x € Rx
ty(rx) = (K1 )x € Br

forall ™y, € R

Task:

TS

1. Show thal the polynomial ring ¥[x] ot2r the ring B 15 &n = module.

2. Let f bea ring and let § demote the = of all sequences (a).i € N,a; € &, Define
G} + (B3 = (m; + B0l ) = (ma;). where o, b, ER. Then 5 is a left-R
module.

5.2 Theorems on Modules and Submodules

Definition 5.21:0et [ be a mapping of an & —module M to an K —module W such that for all
n YyEM rek,

L e+ = +F0)
ii. flrxy=rfi{x)
then f is ralled an # —linear mapping or a linear mappringor an & —hornomaorghism of M into N,
Notations:
+  Theset ol all B —homomorphisms of M into W is deroted as Ham, (M, N).

o If M =N, then [ is called an endomorphism of M, and then the set Hom, (M, M) is also
denatad as Hamy (M),

» If # iz a lield or a division ring, then § i also called a linear transformation of the vector
space M fo the vector space .

@ Examples:
f:x = x of M

e Let " be an “ Module. Then the mapping onto " is an
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omomorp ca identity he ‘ph L

=T hism  llead IR ism,
e The mapping , p > o gfined by ry L 0V, ¢ 5 Is @n R _pomomorphism
called z#:rp hol‘lh,m'l()l‘phle_ul.

e Every lingar transformation defined from a vector space ¥ to a vector space W;
is an & ~Homomorphism.
Properties of K —hemomorphism
Let i ~ N be an & — homuomorphism of an # —module M into an & —=module V. Then
i fia =40
ii. fi—z)= =f{x}, rE M
i flr—3)=Flr) - f) Ly eM
fimy=o0
Proof:
+0=0
flo+ 01 = fli
Fioy+ Fioy = {03+ 0
fluy=0
(i) fl=x) ==flx), xEM
Letx €M, x+(-x]=0
flx + (—x¥)=r(0)
flx)+ fl—=x)=0
Since M &5 an additive abelian group.
Henwoe, fia} + fl—x} = f{—x) + fix) =0
So, fi—xl=—flx)
(iii) flx = y) = fix) = flyl. Ty €M
Forx, y €M
filz =¥ = flx+ {~y1)
= flx) + f{=¥)
= flx) = f(¥)

Definition 5.2.2:Let i M — K be an # —homomorphism of an K -~module M inte an B —rodule W.

Then
*  Theset & = fx e M|f{x) = 0] s called the kernel of f and is denoted as Ker .

o The set (M) = [f{x]|x € M} i5 called the homomorphic image (or simply image) of M
under [ and is denoted as im [,

Results:1. ¥er | isan #l —submodule of M
Proof: Since f{0] = 0

Theretore, 1 € Kev f

So, Ker f # i

Letx, yEKerf.reR

This implies, fix) = fi¥) =10

Consider fi{xr — ¥} = fiz] — fiy)

and

Lovely Professional University

Notes



Notes

72

Adpanced Abstract Algebra IT

firx) =rflx)
= i) =)
Therefore, x — y. rr E Ner f¥x. yEKerf,TER
Herwe, Ker [ 15 § —submaedule of M.
2. 1m fisan R —stbmodule of W
Proof: Sinee F{II1 = 0
Therctore, 0 € fm f
So, lm | #¢h
Letxr,yElmf.re Rk
This implies, there mxisl %y, y; € M such that x = fix), ¥ = Fiw)
Consider f{x; — ¥} = fi{x;) ~ fiy,)

and
Flrx) =rfix)
= rx
Thevefore, s =y, rx € lmf¥x, yEImf, reER
Hence, fm f is en § —sobmodule of M,
3.Ker [ = {0} if and only if £ is1-1
Let Ker [ = {0]) and fir) = fiv}forsomex, y € M
Then f{z—) = flz] = fy} =8
This implies, x =y € Ker [ = {0}
x —y =l which irnplies, x = ¥
Hence, F s 1-1.

Conversely, let f s -1 and x € Ker [

Then
fix) =0
Pt
i) =0
That is,
fixh=F(0)

f is 1-1, whishi implies, x = 0.
Notations:

« If f &5 1-1, we say that M is isomorphic or # —isomorphic into IV, or M is embeddable in
i, or there is awopy ©of M in .

* Wewriteitas M % ¥,
*  If f is both 1-1 and onifa, then we say that M is isomorphic or # —Isomorphic ano N
*  Wewriteitas M = I

Theorem 5.2.3:Relation of # —isomorphism is an equivalence relation in the set of ¥ —modules.
Proof:

Reflexive:

For an R —muoulule M, fi:M — M given by fix) =x%x &M is 1-1, onto and & —homomorphism.
Hence, M = M,
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Theraiore, ini= relatiofs ks reflexive.

Symmetric:

Let M and W are two & —msdules such that M = .
S, there exists function £t W — N such that

F 15 1-1, anto and & —homomorphism.

Since f i5 -1 and onto,

therefore, f~": W — M exlzts and il is 1-1 and onto.
Mow we will prove that £~ is & —homormorphism.
Letx, yEN

f:M — N is onto So, there exist x,, ¥; € M such that
flx)) =xand fly,) =y

Consider
g+ ¥ = ol +fpl=x+y
That is,
F U+ =z +3 =@+ ()
That is,

Fllat =n+p=F1=+F10)
Again for v £ #
flrml=rfim)l=71

That is,

firx)=rx, =rf1(x)
Hence, f~': W = M is # —=isomorphism and N = M.
Therefore:, this redation is syrnmetric.
Transkive:
List M, 4, and P ls=three & —madules such that M = N and N = P,

Then there exist mappings fiM = N and g: N — P such that f and g are both 1-1, onto and
## ~homomorphisms.

Consider the composite map h = g = f: M - F,
Since the compesite map of two 1-1, onto maps is 1-1 and onto.
Hence, h iz 1-] an«d onto.

Again for x, y £ M

P T g S )
-l S S o
T et + 22)
g(FEx + 32)
= (£ Cxd 4 D)
a(fx) + rivd)
= 2 () + a(ran)
g UFCx1) + a(rad)
= &G = FOxd g e O
Againforx € M, v € K,
h( =

) =ge g om SCEES
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T eroram)
a(Forad)

T arroo)

T S L “ea)

Hence, h: M - F is 1-1, onto and # —homomorphism which proves that M = F.
That is, this relation is *ransitive:

Hence, thi relation is in equivalence relation.

Thewrem 5.24:Let M be an & —rmodule. Then Hamg{M, M} is a subring of Hom (M, M} where

Hom (M, M1 is the set of all # —hamomorphisms o # —module M and How (M, M) is a set of all
groug homoirorphisms regarding M as an additive group.

Proof:
Clearly, Homg{MH. M} = Hom (M, M).
Againlet f, g € Homy[M, M), M. rE K

Then
(f = g)lrx) = firx) - girx)
= vfi{x) = rule}
= r{flz}—glx))
= r{(f = gi{z1}
Further,

(Fg)irey = flglrad)
= f{raixi)
=rf(gle})
=r{falx]]
Therefore, f — g, fa € Homy, (M, M.
Hence, Homg[M, M} isa subring of Hom (M, M].

Theorem 5.2.5:Let & b a ring with wnity, Let Homg (8, §] dencte the ring of endomorphisms of 7
regarded as a right & —module. Then R & Homg (R, R as rings.

Solution: Consider the mapping f: R — Homg (R, k) ghven by fia) =a’, where p’(x) = ax, r € K.
Letx, ¥, v € R Then

a'lr+yl=uwlr +¥l=ax +ay = a"{x) +a ¥}
and
a'(xr) = alxr] = {axkr = {a"xlr
Thus, a* = an i —hormomorphism of the right # —module # into itself; that is, a* &€ Mo, [, K]
We now showw that f s a ring homomor phism.
Leta, b E K. Then lorany re R,
(x40 (2] = (@ +ble=ax+bxr=a(x]+b(x) =(a" +B5]x]
Thus,(a + k)" = a" +5"
Similarly,
(b} () = (alx
= aibr} = alb'x)
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=a*{b*x) = (m"B")(x),
o, (@d]” =a"b

Hemce,

fla B ={a+F" =a + b8 = fia) +fb)
amil

flak) = (b} = o'k = Flodfb)

fis1-1

Let @, b € & such that e® = 6"
Then a* (¥} =b"(xI W x E R
This implies, 2% = e x € K,
In particular, sike 1 € R, [a— b1 =0
Thatis, a =5
So, s 1-1.
[ is anto
Now suppose ¢ € Homg (R, R}
Letrill=a
Claim: = a°
Now for any x € f,
t(x) = t(1x) = t(1)x = ax = a"(x)
Henwe, & = a”
So, [ is an anko map.
Therefore, & = Hamy(R, &)

Definition 5.2.6:The opposite of a ring is another ring with the same elements and addition
operation, but with the multiplication performed in the reverse order.

More explicitly, the agposite of a ring (R, +, -) i the mng ([, +, ) whose multiplication * is defined
bya*b=b-aforallabinR.

Theorem 5.2.7:Let f be a ring with unitv. Let Hemg (R, /) denote the ring of endomorphisms of &
regarded as a left & —module. Then f*" = Homg{R, R) as rings.

Solutiom: By taking the map F: #P — Moy (®, B}, given by fig) =, where n*ix] =max = ra,

Then g° = an # ~hamumorphism of the left f —muodule # Into itself, and the mapping [ is a ring
isomowprhasm, The prood (s exactly similar to the previcus theorem.

Definitinm 5.2.8:Let i b an & —submodule of an & —inodule M.,
Let @ az € M,

Diefine a relation = on M as

&y = iy med N} IF and only ifay —a, € M.

Theorem 5.2.9:This relatiomn is an equivalénde relation.
Proof:

Reflexive: Since A 1= an & —submodule of # —module M.
Therefore, U & &

Thatis, g =@ ENYaE M

This implies, @ = a (mod N} ¥a € N.

Hence, this relation is reflexive.

Symmetric:
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Letm, & & & such that @ = bmod N

Thatis, a—f & M

Since ¥ Lering, # —submadale of # —module M is additive group, —(a =k} £ N
This implies, b —a & W

Hence fr = a{mad V)

This implies this relation is symmetric.

Transitive:

Let @, &c € M such that

@ =b{mod ¥)and b = ¢ (mod N}

Thatis,a - b=cEN

Since W ks am additive grouy, therefore, (@ =B} + (B =c) EN
This imprlwes, a —¢ & M.

Hence, @ = ¢[mod W)

So, this relation is transitive.

Hence, this relation is an 2guivalemoe relétion.

Equivalence Class:Let a € M and 4 denittes the equivalence class of i,
Then i = {& & Mk = a{mad N}
Now, b= a (med Nimplies, b —a € N
That is, & —a = x;jx € I

b=a+xix€W¥
So,i=fa+zxlreN]=a+N
The set of these equivalence classes is denoted as M/ oir M — N ntii_

Definition 5.L1(k {{Juotient module) Consider the set # /¥ #= defined and the operations in M /I a=
given

Foram, beM, rER
(@4+M+h+Mi={c+b)+N
ra+N=r{iz+N
Then M /N is an K —module unider these compositions. This muxdule is called the questient module.,

Theorem 5.2.11:The submodules of the quotient module MW are of the form i/, where [f'is a
submodule of M conizining W,

Proaf: Let £ M = M /I birthe canonical mapping given by
Firl=r+N¥zeM.
Let X e an & —submodule of M /iV.
Consider
U ={xeM|fixl EX]
Claime ¥ ks an B —submodule of M.
Letx, yEI, rER,
Then f{x), Fix) € X amd X 15 an § —submodule of M /¥,
Therefore, f{x] = fFiy}EX
Since f is # —homomorphism, so, fix] — fix} = Fix —¥} € X and rflx) = Flrx) EX
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That s, x—w raE I
So, If b8 an i —subimodube of M.

LetxrENthen fixl =x +N=N=0€X

This implie=. x & [

Thatis, ¥ = If

Also, since [ is onto map, therefore, for x € X, Lhere exists ¥ € M such that f{y) = x.
Thatis, Fixl e X =y e li

This implies, ¥ = (). (1)

Again forx € [ilF]

There exists ¥ € I such that & = f{y)

Since y € I, theretore, F{y} € X

Thatis, x £ ¥

This imiplics, f{if} € X ...(2)

Thus, & = f{in

But Fili) = H/N.

Thus X = [I/V

Theorem 5.2.12:f'undamental theorem &t # —homomorphisms

Let [ boan # —homomorphism of an # —homamorphism of an & —module M into an # —module
. Then

Ker f = f(b}

Proof:Consider the mapping

- e 7 FiM)
as
plm + Ker £) = fm) ¥m € M
gisl-1
Let 1, + Kev f, m, + Ker f € %
such that
gl + Ker ) = gim; + Ker f)
s flmyd = fln,)
= flmg) = flmg) =0
= flmy =my) =0
= my — iy € Ker [
=my + Ker f =m; + Ker f
Hence, g is 1-1.

g is B —homomorphism

Letm, + Ker F, m, + Ker f € M,.rFE

Ker

Consider
alimy + Ker F) + (mz + Ker 1)
= glm, +m, + Ker £}
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= flmy +mgz)
= f(m,} + f(m,)
= gimy + Ker [} + gim; + Yer [)
Again,
alrim, + Ker f1) = glrm, + Ker f)
= firmmy)
= rflm)
=rg{my + Ker f}

Hence, i is & —homomorphism.
g is onta

For aiy ¥ € (M}, thers exists x € M such that ¥ = fix]
M

Since x € M, x + Ker f E?c:f
plr+Ker Fi=Flxl =y
Hence, j i= onto.
This implies,
%_ = f)
Theorem 5.2.13:Let A and & b # —submodules of R —=maodules ¥ and N respectively. Then
MxN M N
ARG A B

Proof: Define a mapping

M
M —_—
I BI{N—FH:H:B

-

by flm.nl={m+ 4 n fB_‘,\h’mEM, nEMN
f is B —homomiorphism

Let ty, tiny € M, fiy, 0, EN, ¥ ER
P
£t ) o (n.2> nz)d) = Ferar F paze v oz

ey rezn ez
< -2 . ok 3

(

Crrey aa AL Crig -

il toamz oA, bz s

(om1F oAy + oz T Ay, ¢ T B8) + (2 T BY)
ey - - s s
Cr -AY (e oA, + £ b (e o+
(-ml toan B - ome T oAk T oED
- 4, T e
Gy 4 3 - B) - H

Lo s gz nz)

Again,

£ Crmts rll.}l =] S Crrrts —

=
“Cr 12l

(

Crr, Lowa, &

e Hoa, e HoED

(rCrna T ad, rom ey
ey - e
(rr - A, ny - B

o oA, m HoED
.
Ll e Y A 1

i Grals n!)

Hence, f is # —homomorphism.
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f is onto

Let [m + A, |z+H}E:—'

L
o =
F

.. - M N
This implies, m + 4 = andn+ 6 E =
sothat, m& M, nE N
Consider f(m, 7} =[m+ A, n +§)

Thus, { is onto.

Kerf=AxB
Let
Let
Kerf f = {(m, ved | rre = A v o= A, £ Crre, ved — (A,B_)_I
e, )| e € M, ne N, fGrn, n) = (A, B))
- {(m. 1| E M. e N, {4+ A m A B) = €A, B}
{(vn. )| mEeE M, ne N, Om+ A n+ B) = (A, B)}

e, 2| e E ML o E N A = oA, - B = B

] L B =B
= {_("-'I_. n)|meM, ni

={(m,n)|mEMn.-1_nENnr_r'|-

N, e A, o noe BY

pre, ki & Mo A e N

={(

{02, mdlmn

. 2l & A, s B

A w2

So, by the Fundamental theorem of & —hormximarghksms
M=N M N
AxE ~ AR

Definition 5.2.14: We call a sequence (finite or infinitej of R —modules and R —homomorphisms

exact if fimt f, = Ker feq Vi

Theorem 5.2.15Suppose that the following diagram of ® —modules and & —homomorphismsis
commutative and has exact rows. Snow that

If e, and §" are -1, then so is [#

If i, ¥, and @ are onto, then so is .

» —b»

A P> A »
it e o

i 1
P
» »
L e >
-
L L
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Proof: Let i1 € Ker f
Becaise the diagram commutes,
¥alm] = g'8(m) =0,
So, glml =1
Therefore, m € Ker g = im f
This implies, m = Fik) forsome k € K,
Again, because the diagram commutes, fa = #f.
Thus, f'atk) = gf (k] =f#im) = 0.
This implies, & =0
Thenm = fik} = f[i#] = 0 which proves part (i).
Letin' € M"
Then g'im7} & L
Since ¥ 15 dnify, there exlsis [ € L
such that g'{m'y = y¥{[}
Also, j is oo
There wxizis, m & M such that g(m) = [
Now, g'[#lm]} = Fgtm)
=y(kglm) =1
= g'(m’)
Apain ) =g (@ (m] —m’)
This implies,
Blm)—w' € Ker g' = Im [
So, there exists k' & K such that /' {k") = f#i{m] = m’
Since ¢r i3 ontao,
So, there exists & € K such that a(k) = &'
Now, i1 = f{k} €M
Also,
Bl = f{k)} = g(m) = B(fk))
Since the diagram is commutative,
B (k) = f'alk)
= f'{k')
= fm) ~m’'
Hence
Blm — F(k)} = B(m) — B(fFk})
= §{m) - (B(m) —m") = m’
So, 1 - f(k} € M such that f{m — Fk}} = m'

Hence £ is onto.
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Summary

moidules over a ring are defined and explained with the help of examples.
=ubmodules are defined.

## —homomorphisms are defin=t and related to linear transformations.
urslerstand important propertiss# and results about # —homomorphisms.
quotient modules are defined.

The fundamental theorem of # —homomorphism is proved.

exact sequences are defined,and important results based on them are proved.

Keywords
o mmuilules

submodules

## —homomorphisms

Juaotient modules

Fundamental theorem of # —homomorphism
Exact sequence

Self Assessment

ONWpE-S

ON&wEH>e

onwm»

o

A.

onN=meP

Consider the statements

Every module is a vector space
Every vector space is a module
Iis true but Il is false

Il is true but I is false

Both I and II are true

Botli T and II are false

Let # b a commutative ring. Then # s alwaysa ...... over itself
Module

Vector space

Field

None of the sbove

Let M be an # —module. Then # is called a vector space
If & & commutative

If # is a ring with unity

If # 35 without zero-divisors

If # 1= @ field

Let M beoa lell & —module over a commutative ring  with unity 1. Then which of the
following is MOT true?

nm € R Vm &M

Ime=mymegM

Ir=rvVrER

ok EM VR EZmEM

True/ False Let W be an & —submodule of an # —module M, Then (¥, +] is a subgroup of
(M, +).

True

False

Let M and W be two B —modules. A map f: M — W i= called an # —endomorphism if and
only if

{18 R —howmomorphism

=N
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C.
D.

N

onwp

ONEFe gnw»®

ONwp g

@ >

SOwrR

0O w>

dimM = dim V¥
{ is it =homomwrphism and M = M

Leat A be an additive abelian group. Then which of the following is an & —=homomorphism
ar AT

fixl=2xwrxcd

f{rl=x2vired

firl=2x+1vxed

fixl=r?+1vzEA

Let M be an # —module. Define f: M —+ M as fim] = 0V i € M. Then
{ 15 an # — homumorphism but nat ar # — endameaphism

{ 18 un # —emwdomorphism

{ 15 an anto B — endomorphism

fisa 11 # — emaomorphism

Let M beean B —miodule. Define f: M > M as f{m] =m ¥m £ M. Then
Ketr f=M,Im[=M

Ker f = {0} 4m [ = [{]

Ker f={0},im[f=M

Ker F=M Tm [ =)

Relation of # —isomorphism on the set of # —modules is
Reflexive arid symmetric but not transitive

Transitive and symmetric but not reflexive

Reflexive and transitive but not symmetric

All Reflexive, symtrmeiric and transitive

Traef False Let Homg (M, M} is set of all # ~homomorphisms ¢ an # —module M and
Homi{M, M} is set ¢f all group homomorphisms on module 8. Then Haing (M. M} is a
zubgroup of Hawi[M, M) considering both as groups under the usuwal widiticer of
functions.

True

False

Let M Be an # —module and ¥ bean # ~submodule of M. Then M /N cansists of
All the subgroups of (8, +)

All the cumsets of W kn M comsidering both az adiditive groups

All the # —submasdules of M containing ¥

All the zatz of the type [ /N: where I iz an # —submodule of M containing /.

. Let M be an ¥ —mwdule and N b an & —submodule of M. Then # —submodules of M/}

Are

Subgroups of (N, +]

Ciosets of W in M comsidering both as additive group

f —submadubes of M containing &

ke se%s of the type [N where [f |5 sn # —submodule of M containing N.

Let M and W are two ¥ —maedules such that thiere exists a function f: M - W which is onto
and & =homamorphism. Then

N &% lscarorphic to M

W I= isomorphic to & proper & —submodule of M

W is isomorphic to a quotient madule of M
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D. N is =momorphic to R

15. Let MW, and P e three ¥ — submodules. Let fiM >N and g:W —=F he two
R =homamorphismes. Then the sesjuence is given below

is exact if and only if

F

- > II"I > P

A Imf=~Kerg

B. Imf=~N

C. Kerf=1Img

D. lmgaf=F
Answers for Self Assessment
1. B 2. A 3. D 4. A 5. A
6 D 7 A 8 B 9 C 10. D
11. A 12. B 13. D 14. C 15. A

Review Questions

1. Lel M be an additive abelian group. Show fiuat there i= only one way nf making it a
F —module.

2. Let¥ = ' bea vector space uf & — tuples over the field &. Dletermine if ¥ is a subspace of
K. where W B the set of all (& ¥, 2} such that x = L

3. LetV = /" bea vector space af 3 = iuples over the field f. Dietermine if W is a subspace of
¥, where W is theset of all (roy, 71 such that x + y=0

4.  Show that the sel of all fundtions F from e real Geld # fo # @i be made into a vector
space by the usual operations of sum amnd scalar produdct

5. Let A #. and £ be ? — submodules of an i =madule M such that B © A Show that

A+ =F+{AnC)

L..J Further Readings

e Basic abstract algebra by P. B. Bhattacharya, S. K. Jain, S. R. Nagpal,Cambridge
universitypress

¢ Topics in algebra by L.N. Hartstein, Wiley

e Abstract algebra by David S Dummit and Richard M Foote, Wiley

Weblinks

e https://nptel.ac.in/courses/111/102/111102009/
e https:/ /nptel.ac.in/courses/111/105/111105112/ #

W
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Unit 06: Cyclicand Simple Modules

CONTENTS

Objective

Introduction

6.1 Cyclic and Simple Modules

6.2 Semi-Simple Modules and Schur's Lemma
6.3 Free Modules

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objective
After studying this unit, you will be able to

e find generating set of & given subset § of an R —module M,

e define cyclic muodule and observe its structure,

e  prove that the sum of R —modules is generated by the set obtained by taking their union,

e define semi-simple pr completely reducible modules,

e prove that an # —submodule and a quotient module of a semi-simple module is semi-
simple,

o define the basis of a free module and analyze that not every module is a free module,

e prove that every basis of a free module has the same number of elements,

o define the rank of a free module and observe that a vector space is always semi-simple.

Introduction

In this unit, you will be introduced to the concept of cyclic, simple, and semi-simple modules.
Important results about these classes of modules are proved. It will be proved that an
i —submodule and a quotient module of a semi-simple module is semi-simple. Further, the basis of
a mudule will be defined. It will be proved that not every module has a basis. Based on this, a free
module will be defined.

6.1 Cyclic and Simple Modules

Theorem 6.1.1:f M is an # —muodule and x & M, then the set & = [rx + nxlr E R, n € F} isan K —
submadule of M pontaining x. Further, if R has unity, then K = R

Proaf: (K, +] i an abelian subgroup of (M, +)
Letm,he XK

Then ¢ =nxr +nxand b =rxr +1mxmy, n, e Hand iy, n, € F

. =R T g s P
a—bh = Sla 4 mixd — CrZax 4 n2ad
yor re rza -
(; -+ &I — [ I Sy |
P1 —#edx o+ €1l T n2dx € K

Letre &

84 Lovely Professional University



Notes

Aduvanced Abstract Algebra 11

ra =r{rnz +nx)

Ifig >0
FOriae - mdx) :r(v'1x+x—&-x4—--.+x)
1x
O +xx 4 -- XD
= (»-7'1 T S S = T
If iy <0
Ol - relxd = rlrla + (-_.rj -+ (‘_.:J o - -+ (_.:c}]
-
A A - AR
= - T el
Ifiiy =0
r{fnx +mxd = rinx + Mx) =rmx
In all the cases, #(#x +1m;x] = 1y for some u €
Hence, ria £ &
Therelfore, (K, +) i5 an abellan subgroup of (M, +).
xEK
reler+1lx0ER T2
Hence, x € K
If L is any K —swbmodule containing x, then K € L
Let L s any & —submasdule containing x
Conspder r € K, n € £ 50 that,
ri+nreE R
Sikeré R xel;
Lis R —submedule of & —owdube M, therefore,
r¥ EL
Again, n £ £, x € L, and L iz additive group, therefore, ny £ L
Also, rx, nx & L kmplies, rx + nx g L
This implies, f{ £ L.,
Therefore, & i# tive smallesi B —submodule containing x.
Further, list & has unity e,
Clairm: {rx + nx|r & K, n € Z} = {rzir € &)
LetrER nEE
Ifre=D
e T = Fa = relex)
_ ra - edeel
- P e wi  ab ¥ - iy
- Ea e - + ex
=(?'+e-+e-+-:. A0 = e
Ifn<D
v o D= (—x) = ra = f—r) (eC—xd)
PR o L= B O |
= L | LR I o A3 + (_l-n]
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_ ( (¥ 06 i yilic ana

5o
Ifrn=10
KX +nx =rx
In all the cases, vx + nx = vx for some & E R
Thevefore, {rx +nzlr £ R, » € 2) € {rxjr € R} ..(1)
Apain forr £ R,
tx=rxtilnre RandD e &
Thatis, {rxlr R} € fre+nx|r e R, neZ}..(2)
From (1) and (2),
[rr4nxire® neZ}={rxlr e KL

Theorem 6.1.2:Let {V; |;c, be a famnily of & —submodules @i an & —module M. Then Njep IV, isalso an
# —submodule.

Proof: Let {V;J;c, be a family of # —submodules of an # —module #
Let
M= ;

Forx,y EN,rER,
ryEN, relk viEA
Since M is an / =submodule of § ~module M, therefore, x — ¥, Tx E N, ¥i En,
Thatis,x —y, rk ENY X, y EN
Hence, W is also am §# —submodule of # —module M.

Definitinn 6.1.3:Lat § be & non-empty subset of an # — module M.Let A = {W| is an & —submodule
of M containing 5}.

Then A # ¢ becaise M € A

Let K = Mgga ™

Then 1 is the smallest B —submodule of M cortaining 5 and is denobed by =< 5 .

Thie smallest R —submaodule of M containing a subset 5 is ralled the # —submaodule genevated by 5.
IF5 = (35, %3, 4 ®m] i5 a finite set, then < S = is also wrilten as < {;, 25, ..., Tm] =,

Definition &,1.4: An i —module M is called! a finitely gemerated module if for some 3y EM, 1 < =
M =< {.‘:,. Xayre, Km ] ». The elemenis {.‘:,. Fyy e A | a2 s2id to gEnerite M,

Definition 6.1.5:An & —module M = called a cyclic modulelf M =« x > for some x £ M.This shows
that a cyclic module generated by x is precisely {rx + ruc|r ER. n € Z} and if & has unily then it
simplifies o [rejr € B} = Rx.

Theorem &.1.6:If an § —module M is generated by a set {v, %5, x,] and L € R, then M =
{ry3y * rexz 4 o+ muagln € R)The sight side is symbolically written as Ef. , K.

Proaf: Fiz=t, we prove that the et ¥, Bx isan & —submodule of & —module M,
Let r, i1y, € Loy Rx; and v ER,

Thenm =YL, ryts, My = DLy ki c My = Fi0g Fapy for somme vy, ¥ 7 ERV1Z (<n

# i n
- ‘ 1
My — W = ZT‘HI{ —Zrlt-’-'f =Z(”-‘n‘ —Ty)x; E Z 1Rl’t
i=1 i=1 im1 "

Also,
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Il
I

|
~
3
e
=
¥
m
g #
=]
H

Therefore,
Yo R i= an & ~submesuly of R =module M.
Now we prowe that the sek [vq. x5, ..., x,,} € YL, Ry,
Forl<i<=mn,ancelER
‘ H
A= ':|.I| + DIZ B R o 0'11_\1 + 1,1,','_ -+ U.x,‘,.| + 4 OIn E A RJI‘,'E
i1
That s, ) & E, B2 ¥ L Hence, {005, -, 13 & L5 By

Let N be any R —submodule of M containing {2, ..., 2.}, then by definition of submiodule
FyEy Ry o ek, E N wherer EEVI<[{=nHece ¥, Ry, C N

Thatis, X1, R¥; is the smallest ® —submodule of # —madule M containing the set {1, xz, ... iy ).

As per the statement, the smallest # —submodule of # —module M containing the set {11..:3.- -
is M itself. Therefore, By Ry = M,

Definition 6.1.7:If an element m € M can be expressed as #1 = Fx, + iy + o+ 1y, 7 E B for
somkr; E M, V1 <i=mn, then we sgy that m is a linear combiralion of elemenls 1,, 3, ..., I, over

it
s Note:

The set af generators of a module need nat b« unique.

For examyle, let & bathe set of all polynoumnials in x over the field £ of degree less than or equal to .

Then 5 s o vector space over ¥ with{l, =, 17, =t 2™ and {1, 1 +x, =¥, 27, .., =] s two distinct
sets of gererators.

Definition 6.1.8:Lit {8 |, P& & family of B — submodules of a mgxdule M, Then the subrmodule
generated by U;‘,_,J'i'. [that 1s,the smallest submodule containing, the submoeules N;, 1< ( =k, I=
called the sum of submodules M, | < i = k. and is denoted by TE., &

Theorem 6.1.9:If{V; ], ;. b a family of & = submodules of a module M. Then

K
ZN,' ={m +x, + -+ 3l E ;]
i=1

Proof: Let

5 =Zr-.'i ={x; +x; + o+ xlx € N
i=1

Consider x, ¥ € §
X Xy b Xy
and
Y=mtyat ot WA EN YISk
Then

r—y=in+m+to+tn) -ty + o+ 0
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=@ —y)+ @ =)+ + @ =)
Sine 1, ¥ € N and
W ks an # —submodule of B —~module M,

therefore, 7; — v; € N; ¥ i

Hence,
K k
r-y= D Gu-yJEY N
i=1 i=1
Consider,
=g = rex1 Hoaz -“+ afe
- 2 2 E

- e
=Tx T L R

#acke

Since x; € Wi, ¥ € & and N; isan & —submodule of # —module M, therefore, rx; € W; ¥ {
Hence,

rx = ZTX;' EZN:

i=1 i=1

Also, for

&k
reEf,x=1 +i+ -+ 3 EZN‘

i=1

we hawve pw:.-..'l-d. hetry E }:L., N;

So, & = E::'ﬂ &5 a left @ —submodule of # —imodule M,

Let i s any left i —submotule that contalns each submaodule Ny, then forx +x3 + -+ 3 €5
nEN CKYI<isk

So, x; € K ¥ i and K being § —submodule is an additive group, Thatis, xy +xz + - + 33 E N

Thus, & containg all elements of the form x; + v, + -+ K EN; V1< 1= E

Thatis, & & .50, 5 is the smallest # —submodule of # —module M containing each M;, 1 <1 = k.

Therefore, by definition of Tk, M

Remark 6.1.10:The sum Y 4 ¥ of a tamily { ¥}, of # —submodules of an # — module # is defined
similarly as the submodule gessesuted by Uf.-;,: iy As dene for a finite number of submodules, it can
be easily observed that

e —
j K= x| 1 E !"Ii
E.Ej [t

where ¥ s00 7 stanids for any finite sunt of elements of # —submodules Ny, | EA.

Definition 6.1.11:The sum E;c, N, ol a family (%}, of # —submodules of an i = module M is

called a direct sumif each element x af e, W; can be uniquely written asx = ¥, x;, where x; £ N;
and x; = D for almost all ¢ €A When the sum T 3 s direct, we write it as @ Xie s V)

If A is @ finite set,{1, 2, ..., k}, then the direct sum @ ¥;c4 N, i written as
N E N, @ . Ny

Each M, in this direct sum is called a direct summand of the direct sum.
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Theorem 6.1.12:Let {M;]izic be a family of & — submodules of an & — module M. Then the
followiryg are equivalent.

(i) Liea N, i= a direct sum.

(ii) 0 = j ¥, € Ny My implies 7, = 0V i
i

L
(i) N, 0 l N, = {0}, i€en
FEN, gwi
iimplies ii
Let Yjeq N is a direct summ,

N

Let0=£ I": € Liea Vi

Also,

By eefinition of direct sum, representation of 0 as a sum of elements of N, i € A is unique. Hence,
p=0V1

ii implies iii

Let b = E X € Nieq Ny impliesx; =0V [,
1

Letx €N n Z N
FLERS L
x € N; lmplies x = x; € N,

TE 2_ N, implies x = 2 X

Jea fei jeA, jwi "

That is X; = Z .'t"l
Jea, j=i

This implies,z ¥y =0wherey; =x; ¥j+iandy =-x
aieq

Fromii. we get = DV §
Thatis, x; = D% }

In particaslar, 1, =D
Hemwe, s = x; =10

N -
SO, Nl' i A l"ul_. = {0}

JEA, jwi
iii implies i

LetV;ni S

- .-'U, = 0
‘5-'JE.1. j=i 3

Letx £ EiE-ﬂ WJ

Then by definition x can be expressed as # sum of elements of &, { €4 If possible, let

= E:r,.= Z}',

i=A igA
This implies,
NN
IREDIEL
JjEa jaa
That is,
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j {xj— ¥1=0

Choose any [ €4,

= Z E=¥)+@E=y]=0
JeA, Jwi

= Y G- ) ===y ()
_|FA [l

x;, ¥ E Wpand N is an f =submodule of an & =module M. Hence, x; — 3; £ N} ...(2)

Similarly, x;, ¥; € N; ¥ jlmplies x; = y; € N, That is,

(%)~ ¥j) € :)_'_, Ny (3)
JEA, Jmi JeAjwi
From (1), (2) and (3), we get,
I';'—J-'IENIIHI 24 |"|II;
fon fwi
By ii
N, l N, = {0}
ded sl
This implies,
T =i

That is, the expressiom if x &s 8 sum of elements of ; { £4 = unique. S0,X;e 4 Miis ot direct sum.

Theorem 6.1.13:Let f ba ring with unity. An R ~mexdule M is cyclic if and only if

it

meET

Its

for some lett ideal I of R,
Proot: Let M = fix be a cyclic module generated by x.
Let! =[r € Rlrx = 0]
Forv, el re X
fE=10rpr=1>0
Thisimplies, mpr —ma=0 = (i —r)x=10
Thatis, 1, —rz €
Againr(rix) =r0 =10
This implies, rry € 1
Hence, {i= a et ideal of 7.
Define & mapping F: 8 +Rxby firi=mx, rER
So, F iz an ¥ —homomorphism and onto,
Also, Ker F={refrer=0]=1
So, by the Fundamental theorem of# —homomerphisms,

i

T:RI

Conversely,
. B
Given that M = 2

Since { 15 2 ring with unity 1.
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1+1€E u
+1E T

I
Forr+le-,TER

r+i=1r+i=[{1+"N{r+1

S‘-‘? iz cyclic left  —module generated by 1 + 1.
Biing isomorphic to a cyrlic module,
M Is a cyclic module.

[refinition 6.1.14:Let # be & ring and M be an & —module, Then BM = {E;rym;|n € B, m; €
Miwhere the summation £ nimy; 1= a finite sum An [ —module M s called simple or irreducibbe if

(40 RM = {0}
({0 andd M ave e only # —submodules i M.
Remark 6115 / is a ring with unity 1, #M = {{} only if M = {0}
Proaf: Lot &M = {0}
Letx e M
Since 1 E K, therefore, 1x = x € BM
But i = {0}
This implies, x = 0
Hence, M = {0}.

Example:

Every field is a simple module over itself.

Proad: Lot F twe a field.

Since F i nan-zero and a ring with unity, so, Bl = F? % {0},
Let i v an F —submodule of F —miodule F.

Let W = {0}

Ther there exists at least one mon-zere element x € W

So, x is a non=zro element of N arsd herice of field F. Hemce x71 € F.
By definition ofthe module, x—1x € N

Thatis, 1 € N

This implies W = F

Hence, {0} and F are the only F —submodules of F.

Thus, every field is a simple module over itself.

Similarly, we can show that every division ring is a simple module over itself.

Examplc 6.1

Let R = Iz b the ring of 2 X 2 matrices over a field ¥

Letd = [['I': g] | € F]. Then A ks an # —submodule of & —module K.

Claim: A is sitnple.
Let {0} # N be anv & —submodule of A.

Thenv[ﬂ ;| ENZA wehave, £ =4 = 0.
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Since & # [[1], theretare, atleast one of 4 or [ is non-zero.
Ifa=+), b=0D

Then for any |": il ER

oy 0 _[pa 0

Ir _-z”u ﬂl B [m u] EN
So, wearfive at a conlradiction as W s a submodule of A.
Ifa=0,F=0
Then for any [?: gl ER

[ 36 =0 alew

So, we arrive at & comtradiction as W s a submodule of A.

Therefore, @, I & i

But in that case, 4 = N

Therefore, A has no proper submodule, and herice, 4 is a simple & —module.

Remiark 6.1.17:A minimal l#ft ideal in a ring R is not necessary a simple ¥ —module.let A be an
adiditiwe abalion group of order p,p is a prime number. Defining mulliplication in A as ab =
0% o b & &, we see that A 15 a ring. Then 4 15 & minimal left ideal but 4 is not a simple A ~mwodule
becauze A% = [0}.Note that n minimal left ideal in @ rting & with unity is always a =imple
# —imodule.

Theorem £1.18:Let # b# a ring with unity and let M be an & —imodule. Then the following
statements itre equivalerit:

i M is simple.
ii. = [, and M i3 generated by any 0 # x € M
iii. M= ‘Ji where [ |= 4 maximal left ideal of &.
Proof:
iimplies i
LetO#x & M.
Then = x > = frx is a non-zero # —submodule generated by x.
From |, M is simpie
So, fxr =M
Thatis, M == ¥ =,
ii implies i
Let {0} = ¥ be an # —submadiule of M.
Let0 #x €N,
Thenby ii,  =<x = C N
Hence, W =M
This implies M is simple.
i implies iii
Because i impliess ii, therefore M =y, for x(= 0) e M
Define a map f: K = Bz by fla) =axva € R
f is B —homomarphism
For m, b. v £ H, we have

Fla+b) = (o +blx = ax + b = fla) + f(b)
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and
firal = (ra)x = riax) = rfla)
Therefore, fis 8 —homomerphism.
[ iz onto
V ax £ flx, there exists & € & such that fe) =ax
Therefore, f is onto.

So, by the Fundamental theorem of # — homarnurghism,

R
I".IE‘I"JF = Rr
Let Kev f =1
Then,
i
| =fkx=M

Since M s a simple module, F/1 is & simple module

We know that a submodule ¥ of # /1 i= left ideal of #/f a= ring and vice versa.

Simce B /1 is o simple module, st it has no proper submodule &n henice no praper left ideal as ring.
Thus=, /1 is a simple ring.

If I i= not maximal left ideal of #, then there exists some ideal [ of # such that f = f < |/

But then &/ isa proper left ideal ot & /I as rings which contradicts the fact that # /1 i= a simple ring.
Hence, [ i= @ maximal left ideal of .

iii implies |

From iii,; = M where I i= a maximal left ideal of &,

Because [ iz a maximal left ideal of K, s, F is the only left ideal prwperly contasning 1.

But any submuodiile of ? is of fype % where [['is o submaodule of & containing 1.

Therefore, K {1 has no proper submodule hence,lji i= i sitnple module.

Being isomorphic to HT M iz 4 simple # —module.

6.2 Semi-Simple Modules and Schur's Lemma

Definition 6.2.1:An # —module M is called semi-simple or completely reducible if

M.:ZM"'

1=

where M, are simple i —submodules.

@ Exampl, 5.2.,

Let B = g he ihe ring of 2 X 2 matrices over a field g tiywv that g is a semi-simple
F m':"-hulu,

Sol.

Let [* 3} ERa b cdeER

Letd={(? D)|a cerlandm={(0 b)|n aeF)
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We have already proved that A is & simple module. Similarly, we can show that f {= a simple
madule,

Also,
v{“ﬂ E)EH.
@ D=0 (5 Jears

Hence, # = A + H; where A and H are simple # —subrmndules.
Hence, & is semi-simiple.

Theorem 6.2.3:Let M = Y .. M, be a sum of simple ¥ — submaodules M_. et K ke a submodule of
. Then there existsa subset A" oif A such -hat F 00 M, i a direct sum, and

M;Hm(mzma)

Let 5 = {A = .\| EireaM, 12 a direct sum, and K 1 E,eq M, = {0}}.

Proat:

If A= ¢, we take T ey M, as{0}.

Clearly, @ €5, 5 # ¢

5 is partially orderad by inclusion, and every chain {4} in 5 has an upper bound UI A;in 5.
By Zorn's lemma, 5 hais a maximal member, say .

Let
N=K® (-$ > Ma)
agA
Claim:N = M
Let B € A, My is simple,
eithes Mp M1 N = (0} o Mg N N = Mp.
If My 1N = (0}
Let x £ My 01 Bagy M,
Then x € Mg amd x € EgeaM,
Also, N =K @ (B Zaea My)
Thatis, @ Xyueq Mo S N
This imphes, x € Mg n NV = {0}
Hence, x = (
Thatis, Mg N Eyeq My = {0}
50, Yeeavgs) My is a direct sum
Also, by choice of A, ¥ 11 Laeq M, = {0} ... (1)
Also, Mg n N = (fland K E N
Therefore, Mg N K = {0} ...(2)
From (1) and (2),

(xn eZMQ)mwnMﬁ;F{O}

A

That is,
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K n(m z Ma)={|.1}
aesAL]ED

which implies that A L {fi} € 5

By the choiwe ot A, A is the maximal member of 5.

Therefore, [ & A

This implies, V 8 € 4, My = N. which implles, N = M.

Corollary 6.2.4: Let # = ¥__. M. be a sums of the familv of simple & —submodules M,. Then there

exists a subfamily A' of A siach that Yyeq My i= a direct 5um, and
M =@ z M,
aea’

Proof: By taking K = [{], ir thetheorem, we get this result.
Lemma 6.2.5:If4 and & are & —imodules, then

A+R R
A TaAnp
Proof: Define a map
Fid+B = ANE
asfia+bhy=b+{dnBlvat+tbcsA+ b
[ is wiell defined
lete+bh=a'+Woa eAb M ER
Thisimpliesa—a" =h'—h
cg=d"Edand b’ -bhe R
So, =W EANE
Thatts b+ {ANnB) =& + (41 &)
or,fla+ bk} = fla' + B
So, f 15 well defined
[ is B ~homomorphism
Letma'e b, FER TER
Then
£G4+ b)Y 4 (u' + B = = e +a Toan2
_ Fex + al 4.— B+ B0
T bas *tlanad
b 4+ B4 (A M B

= (B + can B+ +Cney

_ (& —+ A m B)) f U:’-' R

T fea b - roa’ *a"d
Again,

L(rCa + b)) =] SCra 4 k)
Fira + rb)
b o4 LA M BDY
b 4 (A M ED
(B + (A EY)
(8 4+ CA M B))

#(fCex + B2
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Hence, f is i —hommmarphism.

f iz onto

B
V.b-l-fﬂnﬂ':lEﬁ'E

There exists b € B, Consider-any element @ € A,
Then fia + &) =& +{A N &}
Hence, § 15 onto.

So, by the Fundamental theorem of & —homsmcrphizim, we get,

A+8 8 ()
Kerf Ank'
s e
it} =422
keef fo ={@ 4 placa, bef, an b4+(ANBE) —An
,
O S
={a +blace A, be M wral b € AN B}
{n +hla e A be fpund b ae.And
T tiE A B EAFEBY=aA
From (1)
A+ & B
—_—

A

AN E
Theorem 6.2fLet M ke a semi-simple madule and K b & non-zero submodule of M. Then K i
serni-simple aind K |s & direct summand of M,

Froof: Siner M is a completely reducible module, therefore,
M = Y eq M., where M. are simple modules.

Also, we have proved that, if K is a submodule ot M, then there exists A' & A sich that
M=K (ﬁau Z Ma) (D
e’

which shows that ¥ i= a direct surnmand of M.

Also, by lemma and the fact that & i ({0 Egey M) = {0}, we el

i I:E'I:EBEHq' M) K

L~ (e

& Yoeat Ma {01

This implies,
M
—_—=K
(&) Zﬂé.ﬂ’ M,
or,
M
ZoeaMa_ o)
(&) Zaen' M,
LetA" =A-A"
so that
Z M, = Z Mo+ Z M,
A aen’ wen"
That is,

;M, —D ; M, +a; M, .. (3)

Claim: @ Y peq My B Tieqt M, 1= a direct sum.
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Considler Mg N M, where fi, ¥ € A" such thatf =y

Sinee Mz N M, € M, end M, is simple,

therefore, Mg 11 M, = M, or {0}

If My r My, = My, then M, € Mg, which is not possible as Mg is simple. Also, M,, # My and M, # {0}.
Therefore, Mg n M, = {2}

Hence, Y qeq My 15 a direct sum,

Similarly, if we consider M5 N M, where & € A" arul € € A", we get that Mg 1 M, = {0},

which shows that @ Y, e My, B Eieqt My 15 a direct sum.

Also, from (2), we have,

ZQEA Ma =K
&b ﬁn’hs.q’ M, -
From (3),
D Yoea Mg + Epp s My =
$ EII’E.-!'HH -
From the claim,
D Yaea Mo B Egeqe Mg =
& ZaEﬂ'Ma B
Using lemma, we get,
& Baca® Mo a
(@ Taen Mad N (D 2,0 Ma)
This implies,
D Yaeqs My =
{0} -
That is,

Km EBEM“
wen"

where M,; are simple submodules of K.
Hence, K iz eompletely reducible.

Theorem 6.2.7:Let M e a semi-simple module and K = M be a submodule ¢f M. Show that % is
completely resducible.

Froof: Since M is a completely reducible maslule, therefore there exist simple # —modules M, a €
A such that

M:ZM’“

Therefore,

for some A" = A.

Also,
K@ E@ Erer" Ma} - & Eaez\’ Ma
i TEN (B Xpen My)
This implies,
ﬂ = & Yaes Mo
K~ {o}
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That is,

M
F56 ) M
aen’

Therefore, MK is isomorphic to the direct sum of simnple submodules.

Hence M /K is a completely reducible module.

Lemma 6.2.8 (Schur’s Lenyma):Let M be a simple K —mmodule. Then Homy,[M, M) is a division ring.
Proof:

We know that amg (M, M is a subring of Ham[M, M1 so, Homy (M, M) is a ring.

T prove that it i a division ring, it is sufficient to prove that every non-zero element of
Momg (M, M) i=aamit.

Let 0 # b € Hormy( M, M).

Consider the # —suhmiilules Ker ¢ ard fm ¢ of M.

Now, M is & simple R =module.

Therefore, Ker ¢p = M or {0}.

Sitrtidarly, b b = M on {0},

If Ker ¢ = M, then ¢ = 0 but ¢ # 0, therefore, Ker i = {0,
Also, I ¢ = {0}, then ¢ = 0 but ¢ # 0, therefore, fim ¢ = M.
Ker ¢ = {0} implies ¢ is 1-1.

It ¢ = M implies ¢ 15 onto.

Hence, 4 15 bijective which pravis that ¢ i invertible.

So, every non-zero element of Mam, (M, M} is a unit.

Task:

LTIy

1

1. Let gy pe a compietely reducible module and let g - py oe a subrnadule of pg,
Show- shat M /K [s completely reducible.

2. Show that :p%; is 1 completely reducible # —module, where p and 4 are distinct

prime numbers.

6.3 Free Modules

Definitiom 6.3.1:A list —that is, a finite sequénce 1y, £z ... ¥, of elements of an K — module M i=

called linearly indepindent i, for any iy, @, ..., &, € f4,0; + a0, + - + i1, = 0 implies,a; =
0V 1<i=mh linite sequence i= called lirearly dependent If It is nol lirsarly indepeandent.

A subset 5 of an # —module M is called linearly independent if every finite sequence of distimt
elements af & is linewrly indeperulent.Otherwise, it is called linearly dependent.

That is, if & coatains at least one sequence of distinct elements which is linearly dependent, then & i
linearly dependent.

E] Examples 6.51__2

Let F e a field. Consider ¢ 35 F =module. Then the set {1, ;. .2, x%,...] is linearly
independent in Flx],

« Let F = a flold. Consider F as F —module. Then the set {1,x. 14 x,%?%, ...} is
linearly dependent in Flx],

*  Let M ke an ® —module. The set {0} i «lway= litearly dependent if # i= the ring

with senidey
« Letighe® titlp with unity. Let M = ™ be an f = mPals,
N T N . e; is n —t1 -
Then the set { , s linearly independent, where the 1ple with
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entry 1, all ot fzwitme fc-

s e
+  Let ¥ bw i field Then hf = F, is the set of all square matrices of order 2 with
entries from F, k2 a F —mpdule.

Then the set [||!_| gl IE él[? gl IE (1)!] i= 1 linearly independent set.

Definition .3.3:A subset if of an # —module M is called a basis of M if
i. Klis generated by &,
il B iz a linearly independert tet.

Thee set [eg, 8, ., 5] 15 a basis of M = £™, where F I= a ring with unity and g; I= the i —tuple with
i —thentry 1, all athers zero.

E] Exalmphﬁ_l-i!

Let g ju & ring with unily {1}. Then B —podule g pas a basis {1] or {u], where j jsa
unit.Let ¢ € K awd u is a unit in #.Then clearly, ¢ = w{u 'a} € <u > Hence, {u}
generabes K
Again, let & € f such that e = @,
Since 1i is @ unitso ™" £ H,
Pre-multiplying both sides by 1~*, we get,
™ (ue) =0

That is,

This implies {1} i= lincarly independent.
Hence, it is a basis of # —mxiule H.

Remark 6.35:Not every mid ale hars o basis,
Consider a cyclie group 7, regard i as a # —module.
Clajmif has a hasis if and only if it is infinite.
Let iy = « = has a basis.

Let ma be any element of the basis of (7.

Then {mi] must be linearly independent.
Thatis d(ma) = ¢& & il and only if 1 =0

If @ is finite. That i= 2{G} = n.

Then, nimuay = ;m =)

So, we atrive at a contradiction.

Hence, i; miust be infinite.

Corverzely,

let = <> isuan infinite cyelic gooup.

Then clearly,{u} isa hasis of i as & & —module.

Definition 6.3.6:An # —module if 15 called a {free module if M admils a basis. In other words, M is
free if there exists a-subset 5 of M such that M = < & = and 5 15 a linearly independent set.¥e
consider {0} as a free module with @mpty set as the basis.
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@ Example 6.3.7:TheZ —muodule Q is not free.

If passihle, let Q has a basis B.

Let B has more than ome element.

In 1
Then we can choose a; = n—‘,.:r2 = Eﬁ € [ zuch that @, # @z, my,1;,m5,1, € & — [0}
1 2

Now mipriyiry + (=it Jatq i, = 0

Also, m,m, and —;7; both are non-zero integers.

This proves that {u,,a,} is a linearly dependent set. But being a subset of basis &, {a;, a,}is L. 1.

So, we arriwe at @ contradiction.

That mears, B comtains only one element.
Now, let b = [}

That neans Q =< a >

Now, & E Q

This implies, a? € Q =< a >

Thatis, a® =koa;k € Z

This implies, a = k € Z

This means Q € Z, which is not true.
That means Q has no basis overZ.

Hence, it is not a free module.

Example 6.3.8:

A submodulse of a free module need not be a free module.

Consider fi = £, as § —module.

Then & s free & —imodule with basis {1}.

Consider § = 2%,

Then & i= & ff ~submodule

If possible, let § has a basis {x,, x5, .., x,) over R.

Then every plement x of § can be expressed as

X =1pxy + iy e+ paywherer; €R

Since R contains 6 elemertls, so, x has 6® -hoices.

This implies, S contains 6® elements for some natural number n.
But we know that S has 3 elements.

So, we arrive at i contradiction. Hence, S is not a free R —madule.

Theorem: Let M be a free it —module with a basis {#;,£;, ..., £,}. Then M = E™.

Proof: Define a mapping ¢ M — E™ Ly

¢(.1=1 ?"ié‘x) = ;Tifz

where, f; = fD. i ..,0,1,0, O] ERn
¢ is well-defined.
Let
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This implies,

That is

i=1 i=1
7 n
Znel —2 rig; =10
i=1 i=1
7
{ry = I"l":l-Ei =0

i=1

Using linear independence of {ey, 25, .-, 2,];

we get thatr —r = 0¥ |
Hence, #; =7 w i

Therafare, ¢ = wall-defined.

Now+, we prove that ¢ is R —homomorphism

Letm =X1 rie.

andr E &

Consider

Also,

' A n
olm +m') = qb( Ti€; + r,"el)
= i=1

ey

= 7= 7
mn
¢ [rZ':r" ) ei)
L=

m |
n

= an 7ty fi

=]
- R

L i

i=1 i=1

Ry

T B i)
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. T

1=

o Crisi
= Vil are )

Therefore, ¢ is R —homomorphism.
¢is1-1

"I"
Let rie; € Ker ¢

Ly
Then @i EL , re;1 =0
Thatis, Xizy rifi =0
By linear independence of £, f, .., F.
we get thatw = 1 ¥ |
That is, XL rae = 0.
Hence, Ker g = [{ij and 4 is 1-1.
¢ is onhis
Since {f;.f2, ., fal I3 a basis of £", therefore for every ¥ £ §™", there exist unique ty, 1y, .., I E &
such that

1
y= z rifi
=1
Consider
n
I = Z T €; € M
=1

Then gplx] =y

Hence, & is5 onta.
Therefore; M = #™.

Theorem £.3.9:Lel M be a finitely generated free module over a commutative ring K. Then all the
bases of M are finite

Proof: Let B = {g;], { £4, be a basis of #. and let {¥,.v,. ..., ¥, } h» a set of generators of M,

Then each x; can be expressed as

T =Z w8 s € R

T

Also, all but finitely mamy ;s are zero.
Thus, the set of those g/ thal cccur in the expression of all the x5 1= | =nislinite.
These many g baing part of the linearly independent set are linearly independent.
So, finitely many &= will become the basis.
Hence, M has a finite basis.
Since [ is 2n arbitrary basis of M, so we can say that every basis of M is finite.
Lemma 631 for ¢ commulative ring with unity #, we have ™ = #™, then m = n.
ProofiLet " = R™, m < n
Let gz B™ — B™ be an & —&crnorphism.
Since ¢ is 1-1 and onto, therefcre, there exists a = ¢~ .

Let {gy, 83, ..., e L and {f, f5.... Fi] e ordered bases of #™ and H™ respectively.
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Let us write
n
¢ (ei} =Z agfiil<i=m
=1
and
w(f) = ln.;cf;lsf <n
=k

Let A = [ay;] and & = [By;] be r = and m x & matrices.

Then

(b)) = Y byen, 1<i<m
=1
ksl

Thus, by the linear independence of the #;s and by the fact that ¥ = ¢, we have,
Z by = by
=
These yields
BA =1y
That is the identity matrix of order .
Similarly, A = [,

Let us consider the aupmented matrices,
A'=[4 0]and &' = lgl where each of 0 is a zero matrix of appropriate size.

Then

0
1

AB =iy, B8 = [
This implies det(A'6') = 1 and det(5°A") =10
ButA', B'are siquire matrices of order m ower a commutative ring. So det(A'H*) = der(H'4"),
So, we arrive at a comradiction.
Hence, m = n
By symumiedry, i 2= m

Hence i =

Theorem fi.3.11:Let M be a finitely generated free modulbe ever @ commutative ring #. Then all the
bases of M have the saime rumber of elememits,

Proof: Let M be a free # —modulelet M has twa bases § and B'

If possible, tet the numoer of elements i & and §'be m and n respectively.

Since i 5 o hasis of M having m elements, therefore, W = #™

Also, sinceff’ i5 a basis of M having # elements, therefars
M = g”

We know that relation of # —[somorphism is an #quivalence relation. Therefore, we get,
™ =R

Using the Lemma, we get,
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Definition 6.3.12:The number of elements in any basts of a finitely generated free module M over a

ring f with unity is called the rank of M, written as rank M.In particular, if # |= a field or division
ring themn the rank is the same as the dimension defined foa vector spaces.

Examples 6.3.13:Every finitelw generated module is @ hemomorphic image of a firitely
generated free module.

Proof:Let M be 2 finitely generated i —module and. {%,, x5, .., 3] is the set of generators of M.

Let #; be the n ~tuple with all entries 0 except at tha i ~ th place, where the entry is 1.

Then {&y, &3, ..., €y} are limearly independent over f @nd generate a free module ™

Define a map ¢: #™ = M by

o(Sre)-So

Vi= i=1
Because each x € R™ has & unique representation as B, re;, therefore, ¢ is well defined.

n
rig, ¥ = by e and v E R,
i=1

oo N
Further, if x = /

then

- -
i n
o
= 02 r;
UETEN (i
i i=1

i=

2 Feacy 2 L]

=1 =1

[

T x4 i)

Also,

=1
n
= T &
o2 LT,
i=1
o3 Ol
_ ¥
T wakiao)

Therefore, ¢ is R ~homomorphism.
¢ is nmto
Let ¥ € M. Since [x;, ¥y, ..., ¥] is the set of generators of M.

So, there exist 1; £ # for 1 < | = m suwh that
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n
y= Z?"ii‘-’i

i=1
Since {&;, &5, ..., £n] Is a basis of #™ awver H, therefore,

n

X =Zrie; € R

i=1
Neote that g (x) = ¢
Henoe, gy is onto
If ¥ = Ker ¢,
then by the Fundamental Theorem of # ~homamarplism, we have,

fn

That is, M is isomorpHiic ko momarphic image K7 /K of 4 finitely generated free module over K.
Theorem £.3.14:Let I be a vector space over a field £ with a basis {g;];.,. Then
i. Vs D YierFe; 20 EjeaF;, F=F.

ii. I i semi-simple.

iii. 1€ W is a subspace of I, then there exists a subspace W' such that 1 = ¢ ) W,
Proof; Civen that £ 4., is a basis of I
V€ V.x can be uniquely expressed asr = e ity @ € F
Thus ¥ & Fjep Fy
Thatis £ € B YjenFe
Tlence V¥ = @ Yyen Fi
[efine a function i Fe; —+ F aag(ee;) =aVa € F
& is one-one, tta, B —harmomorphism.
‘imisimplies, Fe; &= F ¥ i € & which proves part i.
Far part ii.
I is called simi-simple if ¥ = Ei:, W, ; W; isa simple subspace of V.
From i, V' = ® Y Fii F; = Fhiing a field is simple.
Henee, 1* f5 semi-sinple.
For part iii.
V' =D Yien Fe; b5 smi-simple.

W is a subspace of I then there exists A" = & such that
0 =H-"E|({I3§ Fel-)
)

=W W, W = FienFe; is asubspace of V.

Summary

e The method to find the generating set of a given subset § of an R —module M is explained.

e the cyclic module i= defined, and its structure is observed.

e  Generating a set of the sum of R —modules is found by taking their union.

e semi-simple or conmpletely reducible modules are defined.

e proved that an # —submodule and a quotient module of a semi-simple module is semi-
simple
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basis of a free moduleis defined, and it has been analyzed that not every module is a free
module

proved that every basis of a free module has the same number of elements

defined rank of a free module and observed that a vector space is always semi-simple

Keywords

Generating set of a module
Cyclic module
Semi-simple module
Quotient module

Free module

The rank of a free module

Self Assessmment

1.

N on=p

onw»

oNwp e

UNwrE-9

oN&pe

ON&E» o

Let M be'an R =module and x € #. Then the smallest # —submodule of M containing x is
gever by
{rx+nzlire BmE )
{ralre &)
{nxin € 2}
{rn+xlrefnef}

The smallest # —submoduleaf an & —module M containing & non-empty sulset § of M is
obtained by

Taking the union of all the # =submodules of & =mailule M which contain &

Taking intersection of all the # —submodules ai # —madule M which contain 5

Taking the finite sum of all the ' —submodules at i ~module ¥ which contain &

Taking the product of all the & —submodules of # ~madule M which contain 5

Smallest generating set of the # —module & consists of ... number of elements
0

1

2

Infinitely many

Let M e a simple # — module then

KM = {0}
M= {1
fiM = {01}
AW =D}

The number of proper submodules of a simple module is
0

1

2

Infinite

Let R be a ring with unity. Then consider the statements

M is a cyclic R module

M is isomorphic to a quotient module of R given by R/I, where I is left ideal of R
Iimplies II but II does not imply I

II'implies I but I does not imply II

Iimplies I and II implies I

Neither I implies II, nor II implies I
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onw»
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N

onw»

ooz

0@ >

Let B and Fbe submodules of an R module M. Then M = N i #* implies that
NP = (i)

MhE=gp
WLP=pM
WO E = ()

Consider the statemisnts and choose the correct option
Every simple # —masiluile is semi-simple

Every semi-simple # —imodule is simple

Statement I is true and Il is false

Statement II is true, and I is false

Statement I and II both are true

Statement I and II both are false

True/ False Every semi-simple module can be expressed as a direct sum of some of its
simple sub-modules

True

False

Let & b a free cyclic module over the ring of integers. Then the number of elements in
0 is

1

2

Any finite number

Infinite

Chitose the correct statemment

Every £ —module is free

Submadule of a free module 15 always free

# —module i} i5 not free (f} denotes the ring of rational numbers)
M cyclic & —maodule is free

Lat M e a free # —module with a basis having m elements. Then M = E™; where n is a
natural number

o= i
R |
m 2> m
m =17

A finitely genarated vector space I ower a field F, vonsidered as an F —midule is always
Free module

Semi-simple maxdule

Isomorphic to F™; 1 £ N

All options are true

True/False Let M be a finitely generated free # —imodule. Then M always has a unique
basis.
True
False

Let f and I be bases of a fimitely generated free f —module M having m and = number of
elemenls respectively. Then

1 and n are both infinite

m and n are both finite and m < n

tr1 and rare both finite and 1 = i
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D. i ard i are both finite and m = 1

Answers for Self Assessment

1 A 2 B 3 B 4 D 5 A
6 C 7 A 8 A 9 A 10. D
11. C 12. D 13. D 14. B 15. D

Review Questians

1. Let & be a ring with unity. Show Lhal & &= an i —module is completely reducitle if and
only if each # =module M Is completely reducible.

2. Let A end B be rings such thal A amd B are completely reducible modules as A —modile
amd B —module tespectively. Let & = A i & be the ring direct sum of A arxl &, Show thit
i iscompletely reducible as # —madale,

3. Lol & bea commutative ring with unity and let e = 0, 1 be wlempotent. Prove that e can
nut be a free # —module.

4. Prowe that the direct product My x M, = .. x M;. of free # —modules M; is again a free
i —module.

5. Let fx;}e e a basis of a free # —module M. Prove that M = @ Y;¢,, B7;.

L..J Further Readings

o Basic abstract algebra by P. B. Bhattacharya, S. K. Jain, S. R. Nagpal,Cambridge
universitypress

e Topics in algebra by LN. Hartstein, Wiley

o Abstract algebra by David S Dummit and Richard M Foote, Wiley

Weblinks

e https://nptel.ac.in/courses/111/102/111102009/
e https:/ /nptel.ac.in/courses/111/105/111105112/#
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Unit 07: Noetherian and Artinian Modules

CONTENTS

Objective

Introduction

7.1 Noetherian and Artinian Modules and Rings
7.2 Hilbert Basis Theorem

Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Regarding

Objective

After studying this unit, you will be able to

e  define Noetherian and Artinian modules and rings,

e understand Noetherian and Artinian modules and rings with examples,

e understand left and right Noetherian (Artinian) rings,

e prove with examples that a right Noetherian (Artinian) ring may not be left Noetherian
(Artinian),

o see the relation between nilpotent and nil ideals in an Artinian or Noetherian ring,

e state and prove Hilbert Basis Theorem,

e analyze that this theorem is not true for Artinian rings,

e  prove an important characterization of Noetherian rings in terms of its prime ideals.

Introduction

In this unit, you will be introduced to Noetherian and Artinian rings and modules and understand
the concept of Noetherian and Artinian rings and modules with the help of examples. The concept
of left and right Noetherian (Artinian) rings is defined. It will be proved that the right (left)
Noetherian (Artinian) ring may not be left (right) Noetherian (Artinian). Nil and nilpotent ideals
are proved. Hilbert basis theorem is proved.

7.1 Noetherian and Artinian Modules and Rings

K
Definition 7.1.1:Let M ={D E i; be an # —module which is a direct sum of & —modules M;.
t=1

Then for any w1 &€ M, m can be uniquely exjriessed as
x
-
E =Zm‘ i E My
=

In other words, eviety m € M, is associated with unibgue (m,, [ PO

For each index j, cansider 4 M; - M which takes m £ M; to the k —tuple whose | = th coordinate is
. all others 0.

For example, letk =5, j = 3
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M=EIBES:M.-

Then A3: M3 —= M is defined as
Az(m) = (0,0, m, 0,0)VmeM;
Now, we define a projection map. Define a map m;: M — M; as follows,

For all

K
m EM=€BZM1.
i=1

Then form = (14, My, ., W]
Then i {m} = 1, Lthat is | — th coordinate of m.

For example,

letk =5, j=3
5
M= M;
i=1
Then m3: M - M, is defined as
walny T (mh NN, J—
= m3

k
Hemarks 7.1.2:LetM =& / M;be an # —module which is the direct sum of & —modules
lj=1

;. Then

1. The inclusion map A M; —+ M which takes m & M; to the & —tuple whose j — tft coordinate
is m, all others 0 is # ~homomnrphism

2. The projection map m;: M ~ M; which takes each element of M to its j — th cnordinate
when expressad as a sun of elements of ;.

3. Thesum Zf.(__] m; = 1; where 1 is identitv map on M.
4. Thesum Lj, 4m = 1; where 1 is identity map an M
5. For some it & flomg |, M}, q,b[..tj]- = (irmplies ¢ = 0.

The inclusion map A My > M which takes 11 € Mj to the i —tuple whose | — th coordinate is i,
all cthers (1 is R —~homomorphism

Letm;, m; e M; v E R,

Then
.= s 0, .o 0
Af (rrnf 4 wrlf] =] (o, o, B I T LI
¥
(0, o, ok o )
= ., 0 e, 0 ., 0 L, 0
(0, 0.7 e, 7 Ty e (o 0,7 T oy, 07T
P -
o Sen Tondd 08
AfCrrg) - Aj Cond )
Again,
A () =0 (0, 0, Y g, 0 0)
7
(o os wrr . O a)
— . |
(o, 0, T ey, 07 0)
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T
T Tt 07

- FAF (ewf )
Hence, the inclusion map &;: M; — M is f —homomarphism

2. The prgleclicn map m: M — Mywhich takes m & M fo the j — th coordinate of m, when expressed
as a sum g elements of M; is # — homomerphism

Letm. m"EM. TER

Let i = (i1y, H, ..., ® Jand m' = [H1], 1), .., #)

Then
A 4wl =T i ( Gtz =) k) (m'u;n’a- o ke )y
L, TN L mih, * b
Ll sy R 1 v g
sttt T owritrrne T aniver wae = wrkd
4 i oy TR
- (i L s b ¥
= s A F P 2
wref = wrtd T e Cem) - af Cere &
Again,
wj Gred 7wt cmis vzt k)
i rei, zaen Ea
7 (e 3 T |
i Crrrats vamze ol ek

. '
L TR PO

arf = wrf (a1

Hence, the prajection map is # —homomorphism.

3 Thesum Y} | # = 1; where 1 is identity map on M.

;M > M; V | 15 defined as

L3
2]
m(m) = ¥m =Zm‘ EM,

dm]

k k
zm(m] = er.- {my, mg, .., M)
i=1

i=1

[

gt
3
[
5

im1
Herve, B m =1
Le:k =5
s M = My as follows,
For m = [, g, Mg, My, ms)
5
-'-|
mlm) = Zml
=1

That is my (#1] = 1y, @ () = Hp, ..., Ts(H] = g
Then
5 5
Zm(r:-lj = l =i
i=1 im1
4. The surn X1, J;m; = 1; where 1 is identity map on M

Consider m = Zfﬂ m; EM
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) E,
M i) = M l m; | =1

em]

k
Al m; | | = A (hg)
(o(3m)) -0

So,

=(0,0, .., 0, my, 0...,0)

k k
Z-:Im (m) = z t;
=1 =1

where f; is k& —tuple with [ —the entry my, all others 0.
So that

k k
Z.ilm (m) = Z t; =M.
=1 1=1
Hence, i kymy = 1
5. Far somuet i £ Hom (M, M), ¢4} = U implies ¢ = 0.
Let $[A:) =
This implies g(2;}(ve,) = 0 vy € M,
That is $(, @, ...,0, m;, 0, ... 0} =0Vm; EM;, 1<j=k..{1)
Consider m = I:'Ini, Py m.‘.'] EM
Then
m = (mq, 1, ..,0) + (0, mz 0, ..,0) + -+ (0, 0, ..., w1,
Consider
¢(m) = p({my,0,...,0) + (0, m5,0,...,0) + -+ + (0, 0, .., 1))
=¢(my,0,..,0) + ¢(0, 3,0, ...,0)+..+¢(0, 0, ..., 1}
=0+0+--0 (from (1))
=0
Hence, ¢(in) = 0V m, hence ¢ = 0.

Theorem 7.1.3:Lel M =€ EE‘=1 My b a direct sum of & —=modules M;, Then

Homg(My, My) HomgiMy, My} Homg(My, My)
Hamy(M, b = |TPmaCM, Mp) Homg(My, My) - Homy (M, My)
iHamg My, M) Homg(M, My) - Momg (M, M,

as rings.

(The right side is a ring T, sav, of k% kinatrices f = |_.ﬂ fl under the usual matrix addition and
multiplication, where fi, € Nomg(M;, M;),

Proot:

Let ¢ € Howyg (M, M),

Let Aj: My — M and m;: M — M; be the natural inclusion and projection mappings, respectively.
Then myd; € Homg (M, M)

[Jefine: @ mapping o; Homg{M, M} —= T by selling o(¢) to be the square matrix of order k, whose
U = thenry is md;, where ¢ € Howng (M, M)

We proceed to show that i is an isomorphism.
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So let ¢, ¥ € Homg (M, M).

Then
0(¢ + 1]}) = g AT ]
_ 7r‘C(]) + ia‘J)"-_r]
T migaf] 4 [miwar)
=o(d) + o)
Further,
o(@o() =]

srip ALl [szlapas]
L AT Y Ay

- [Z "E'wn!mkf]
[ I=1
o

“Jeo ()

Since ZL., Aimy = 1, it follows that
a(Pla(y) = mdipd;] = o (guf)
Therefore,  is a homamorphism.

Now, we prove that «r is 1-1. Let ¢ € Ker o,

That is,
o(¢) =0

But,

a(¢) = mpay]
Therefore,

mpA; =0V I, f
This implies

k
mipAd; =0

=1

But since

Therefore, we get,
pAi=0vj
Similarly, we can show that ¢ = 0
Herwe a is 1-1.
o is onto
Let f = [fy]e T,
Then f;;: M; — M, i an & —homomorphism.
Set ¢ = Xy diffym
Then ¢ € Nowm, (M, M}

By definition ofa, (i} is the k = k matrix whose (g, £ eniry is (¥, ;4 i e = Ffies
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Because myd, = 8. Hence, a(g) = [Fel = F.
Thus 1 is onto.

Hence, we get that « is the desired isomorphism.

Task:

1. Lel =M b M; be the direct sum of simple modules M; and gy Such that
iy is mot isomorphic to My Show that the ring Endy(M) i= a dirert sum of
dieisgion Tings.

2. LetM = My & M, be the direct sum of isomorphic simple modules M, and M,.
Show that iy (M} = {1, the 2 x 2 matrix ring over a division ring.

Definition 7.1.4:An K —module M is called Noetherian if for every ascending sequence of
i —submodules of M,

M1 o= M2 (= M3 on
there exists a positive integer & such that
My = My1q =My =

If M is Noetherian, then we also say that the ascending chain condition for submodules holds in M,
or M has acc.

Definition 7.1.5:An # —imodule M is called Artinian if for every descending sequence of
i —submodules of M,

M, DM, DMz
there exists a positive integer &k such that
M= My =My =

If M is Artinian, then we also say that the descending chain condition for submodules holds in M, or
M has DCC.

@ Example 7.1.6:

The ring of integers is INoetherian but not Artinian
Consider #, (he ring of integers. BPecause the ring of inlegers ¥ s a principal ideal ring, any
ascendiny; chietn of jdeals of £ i= of the form
<m®= C wmy > C =y >c-e.(1)
where m, 14,13, .. € £
Because < iy > C < iy >impliesnyy, divides w;.

The ascend ing chain (1) of ideals in & starting with i can have at most # listinct terms. This shows
that & as a & —module is Noetherian.

But & as a £ — mindule has an infinite properly descending chain
<2> D <4>--
showing that £ is not Artinian as a & —module.

Before we give more exiirples, we frove two theorems providing us with criteria for a module to
be Noetherian or Artinian

Theorem 7.1.7:For an # —moduie M, the following are equivalent:

i M is Noetherian.
ii. Every submusiule oif M is finitely generated.,
iii.  Every non-empty set 5 of submodules of M has a maximal efement (that is, there exists a

submodule M, in 5 such that for any submodule Wy in 5 with My = My, we have Ny = My).

Proof:
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i implies ii

Let # is Noetherianf —module. Let M = a submodule of i,
Assume that [V ig nok finitely generated.

First, closerve that W is inflniie.

For any pasitivi: irtleger k,

let gty v iz € N.

Then W = < aq,z,..., i =.

Choose a1, € N =uch that @ € <y, 03,0 = . We then obizin an infinite properly ascending
chain

<y >C <ty >C <y, fp, i3 >C
Since M is Moetherian, therefore, every ascending chain ot submodules must be finite.
So, we atriv'e at a contradiction.
Hence, I ks finitely generated.
Therefore, every submodule of a Maetherian module 1= finitely gererated.
i implies iii
Let § = [My)r £A]isa family of # —submodules of # —module M.
If possible, ket & does not contain a maximal element.
Considder M, € 5
Since M is not a maximal element, therefore, there exists My, € § such that Me, © Mg,
Again, M, is not a maximal element, therefore, there eaists M, € & such that M, © M,
Continuing so on, we get an ascending rhain of R —submaodules,
My, €My, CM; =
Since 5 dies not contain a maxiimal element, therefore, this chain is infinite
which contradicts the fact tnat M is Noetheriam.
Hence, our supposition ##= wrong.
That is, every family of & —submodules «’ & —~module M has a maximal element.
ii implies i
From ¥, we havi, every submodule of M is finitely generated.
In particular, M s finitely generated
Let M = <& = where 5= [1‘1,,1';.. 1',,}
Then for any ascending chain of # —submodules,
MycM, c My
Since each M; is generated by a subset of finite set 4.
Therefore, it is a finite chain. It cannot have more than 1 submodules.
Hence, M is Noetherian.
iii implies i
Let us consider an asersling chain of § — submiodules,
MycM,cM c-
Congider the family 5 = [M;] of # —submodules of M
By iii, & has a maximal element.

Let M, is the maximal element of&

Lovely Professional University

115

Notes



Notes

116

Advaviced Alsstrizct Algebra 11

LettEN, t =k
Since the chain of submodules is asc#riding, therefore,

My c M, ...(1)
Also, My, is a maximal element of i, implies that

Moo M, .. (D)
From (1) and (2), we get that

My=MVi=k
Therefore, every ascending chain of submodules is finite.
Hence, i i= Noetherian.
Theorei 7.1.8:Similar result for Artinian modules is given by
For an # —module M, the followimngare equivalent:
i M s Artinian

ii. Every non-eitipty set 5 of submodules of M has & minimal element (that is, there exists a
submodule M, in 5 such that for any submodule Ny in 5 with Ny = My, we have Wy = M).

Theorem 7.E:Let # bara ring. Then the following are equivalent
i il s Moetherian.
ii. Let A b any left ideal of . Then A I= finitely generated.

iii. Every nonempty set 5 of left ideals of # has a maximal element.
In particular, every prinwipal left ideal ring is a Noetherian ring.
Theorem 7.1.10:Let # b a ring. Then the following are equivalent

i it is Artiniarn.
ii. Every nonemply set 5 of left ideals of i fus a minimal element.

Theorem F.1.11:Let # b a ring. Then the following, are equivalent

i I is Artinian.
ii. Every nonempty set & of left ideals of # fuis a minimal element.
Examples 7.1.12:

Example af a module which is Moetherian as well as Artinian

Consider a field F. Regard F as an F —module.
Then we know that F is @ simple ¥ —mmdule. Hence, it has enly two submodules {0} and F.
So, only ascending chain of sabimcdules that is,
[nlec F
is finite, which implies that  is Moetherianf —msod e,
Again, the only descending ciwin of subsrodutes that s,
Faim

is finite, which implies that ¥ is Ariinian¥ —mnodule.

Remark 7.1.13: As rings also, every field or division ring is Noetherian as well as Artinian ring.

@ Exa'mph: 71 44.

Let | e an 5, —gimensional vector spase over & field & Then v is poth Noetherian and
Artindan

For, if W iz a proper subspace of V¥, then dim W < diml¥ = n,

Consider W, W, ..., Wy, he 1n + 1 subspaces of ¥ such that
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WicW, o c W, c Wy ..(D

This implies,
dim W, < dim W, < - < dim W,y < dim W
Since 0 < dim W = dim " =n
So, (1) cannot have 1 + 2
There can exist at the most it + 1in an ascending chain of subspaces.
Hence, every ascending chain i subspuaces is finite whiwh pronves that 17 is Noetherian.
Consider descending chain of subspuces
Wi = W, oWy o2 Wy D Wy o)
Then

Wiz CWo Wy C - C W, C W,

is ascending chain of subspaces.

As discussed earlier, it can have at the most 11 + | terms and hence (2) contain at the most 1 +
1 subspaces.

Thus, any properly descending chain of subspaces cannot have more than n + 1 terms hence V is
Artinian.

Example 7.1.15:

Example of a module that is Moetherian but not Artinian.

Comsider the ring of integers # a% ¥ —module.
Ther we have already proved that

Z i5 Noetherian but not Artinian.

Example 7.1.16:

Example of a module that is Artinian but not Noetherian
Let p be a prime number, and let
m m
R=2(p") ={Seuns 521

be the rimg where addition is modulo positive integers, and multiplication is trivial; that is, @b = @
for all m,fr £ /., Then H is Artinian but not Noetherian.

Proof:

Claim: Each ideal in # is of the form

where & i5 o positive integer,
Let A # [0} be any ideal of i, and
let k b= the smallest pusitive integer such thet for some positive integer m. m/p* € A.

Consider %. with i 2= kEand GCD [I?. p}=:1

We assert that n/p’ & A.

Now if = € A
el
Then
no_ g _mpk_n
=. — —=—€ .
i P = >
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Also, by choice of k, pT

Because GCD (i, ) = 1, wee can find integers @ and b such thatan + bp = 1
Then from uli. F € A, we have that e/ p* {reduced modulo whole numbers) and fip/p” {reduced

modulo whale nuimbers} lie in .

na+b 1 .
Hence, ‘17—*' -— £ A, we arrive al a contradiction.

Thus, nnj'T',. i >k, GCD(n, p)=1eanliein A.
1 i pl-1-1
o=y pt—.:----'-ka-O]

We denote it as A, 5o that

Hence, A = [

1 2 k-1
el 2 2500)

Pk p pk

Because earch ideal contains a finite number of elements, each descending chain of ideals must be
finite.

Hence, /& i= Artinian.
X = [T 2 ph=1
Consider A, = [17‘. p A .—r;.—.O}

For % € Ay, ;—,. = % £ Ay, 1(reduced modulo whole numbers)

Hence, Ay, & Ay  V i

The chain A; & A4, © A3 © ---is an infinite properly ascending chain of left ideals, chowing that # is
not Noethesinn

Note that although each ideal A af # is finite and, hence, finitely generated, # its2lf is not finitely
generated.
Example 7.1.17:
Example of a module that is neither Artinian nor Noetherian.
Let R bw the ring of real-valued fumshions defimed on the set of real numbers (R) under the
compr=itions of addition and multiplication defired as
(F +g)(x) = fx]) + glx)
and
(fakix) = fiz)glz) ¥z R
Letlo ={f E RIf(z} = 0¥z & [=n, n)in e H.
First, we prove that v = £ B, I,is anideal of R.
Letf. g€ RER,
ThenV x € [=m, ), fix] =glx) =1
(F=gux) = fix}=g(x]=0=0=0
Again
izl = fixahiz) = 0h(x]} =0
hilx) = nlxd)f(x) =h@E@ID=0
Hence, f = g. fh hf eluwfigEdpand h e &
This praves that I, is en ideal of B
Now; we assert that Iy = Iy
Let € f4)

Then fiz] =0V & [=(r+ 1), n+ 1)
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Letx € [~r n) = [—(m+ 1), n+ 1)
flxl=0vVzx & [—n, 1)
Hence, " € iy
That i5, [} = I; = iy = -~is an infinite descending chain of idealsso, /i= not Artinian.
Letly=1{f eRlf{z)l=0%x>n}nEN.
First, we prove that W £ B, [,,is an ideal of K.
Letf, # € lus 1 E R,
ThenV x =m, fix} =glxl =0
(F-gitx) = flxl=gla}=0-0=0
Again
Fhlx) = Fixdhiz] = 0hixl =0
hf(x) = hix)f(x) = h(x}D = 0
Hence, f =, flu if Efu ¥ fug €1, and h € &
This proves that [, is an ideal of &.
Now, we aszsert that Iy = I,
Let f € Iy
Then fix1 =0Vx =n
Letx>»n+1=>=n
fixl=0vr=n+1
Hence, | € fuyq
Thatis, f; € I, c {3 c s an infinite ascending chain of idealsso, #is not Noetherian.
Theorem: Every submaiduteof a Noetherian maidule is Noetheriari.
Let M b a Noetheriank —module and i be an # —submodule of M,
Since M is a Noethertam# —imodule.

We know that an # — submodule is Noetherian if and only if all its submodules are finitely
generated.

This smyilies all the submoxlules of M are finitely generated.

Let # hir a submodule of # —module W. Then ™ i= also a submodule of & —mmodule M, hence it is
finitely generated.

So, all the submodules af & aie finitely generated.

Hence, ¥ ia Noetherian# —imodule.

This poves that every sabmodule of a Moetherian module is Neetherian.
Theorim 7.1.18:Every submodule of an Artinian mnodule is Artinzan.

Let M be an Artinianf! —module and ¥ bean # —submodule of M.

We knos that an # —module M is Artinian if and only if every non-empty set 5 of submodules of M
has & mtinimal elerserit.

Let T b any non-empty set of submodules of i Since every submodizle of M ks a submodule of M.
So, T |=a norrmpty set of submodules of M.# is Artinian implies, T hi#s a minimal element.
Therefore, W s Artinian.

Theorem 7.1.19:Homomorphic image of a Noetherian module is Noetherian.
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Proofilet M be a Noetheriank —module and ™' be the homomorphic image of M. Then by the
fundamental theorem of K =isomorphism there exists a function f:M - ' and M’ = %’_, whre
N =Ker |

Claim: ¥ /I i= Noetherianf —module.

Consider an ascending chain of submodule= of # /I
M M

o= e

A e )

The submadulis of the quotient module M /W are of the form [f /I, where [ is a submodule of M
containing M.

Also, let m £ M,
¥ o Mina
Thenm + M & i
This implies, 1 & M;, 4
This prowves that M; € M, © Mj ... is an ascending chain of submodules of M
Since M Is Noetherian, therefore, there exi4ks sorms natural number &, such that M;, = M, v = k

Hence,

MJ.' M:
W J=F":"[3_="‘:'

This proves that (1) i= finite. So, M /N 1= Noetherian and hence M is No#therian.

Theorem 7.1.20: Homomorphic image o an Artinian module is Artinian

Let M berart Artiniani —module and M b the homomorphic image of M.

Then by tae tundamental thewrem of # —somorphism there exists a function f: M -» M’ and M* = ":"
where W = Ker F

Claim:M /I i= an Artinian¥ —module.

Consider a descending chain of submoxiutles of M /N

My _ Ma
%:;—‘ :.%-_1---(1)

The submodules of the quotient module M /N are of the form I/, where I7 is a submodule of M
containing M.

Also, let m £ M,
My My
Then in + N & e
This imrplies, 1 & M;_4
This proves that M; o M, o M; ... is a descending chain of submasduiles of M

Since M s Artinian, therefore, there exists some natural number k&, siuch that M, = M,V = k

Hence,

Mo _Meyinn
NN

This proves that (1) is finite. So, M/ i= Artinfan and hence #" is Artinian.

Remark 7.1.21:If all the submodules of a module are Noetherian, the module need not be
Noetherian.

Exa,ple 7.1.22:

Let p be a prime number, atid let

m m
R=Zp=) ;{FE'];_'“]EF{:[
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be the ring where addition is modulo positiveintegers, and multiplication is trivial; that is, mir = i
for all &, b £ R,

We have proved that each proper ideal of & iz of the form
3w gL Z, 0}
plt? plt T et
and hence finite.
So, every proper ideal of i is fiititely generated

Hence, every proper ideal of K is Noetherian but we: know that & is not Noetherian.

Theorem 7.1.23:Let M be an # —rnodule and let W betan # —submodule of M. Then M is Noetherian
if ansd only if both N aid M /N are Noetherian

Proaf:

Let M ber a Nestherian® —module and let N b an # —submodule of M. Then we know that every
submdule and homomarphic image of M Is Moetherdan.

Hence, N and M /N are Noetherian.
Converzely,
Let W and M /N be Noetherian andlet K be any submodule of M.

K4+MN
-~

Then

; “
i= n submodule of ] anrid, hence,

it is finitely generaied,

- : E . o
But then S22 =~ implies —— is finitely generated, say
L3 L Nk : 4

K
NNk

=< o+ NN, L+ (INAK), o o+ (WK =

Consider x € K, then x + (N nK) € ﬁ

Since

N K—--C N +HINAK) 2+ (NNKE) o 2+ (NNK) =
So, there exist @y, a3, ..., @, € K =wch thal
m
THIVAK) = ) (it (N AKY)
=1

£
1

= Zﬂ‘}ci + (N N K)

i=1

R, g = 2 ;'“"'xi-n-(NnK)

i=1

™m
.'I:'—Zﬂ'f.'l:'l' ENNK
i=1

or,
m
:=z:rix;+}':}'E|"-'|‘|H

=1
which implies that
N =<1y, I3 00y Xy = +NNK

Further, because I iz Noetherian, its submodule ¥ n ¥ i= fi'nitely generated, say by ¥;, ¥z, ..., ¥n-
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This implies for ¥ € W K, there exist By, Bor 10 B such that
n
P ZF&J’:‘

i=1

X + Zﬁi}'x

=1

so that

I =

1=

-

This implies, K =< 3,73, e Tiis ¥1) ¥y 00, ¥ = i fimitely generated.
Hence, every subnmodule of M is finitely generated which proves that M s Moetherian.

Theorem 7.1.24:1.¢t # he= am & —module and let W b an # —submodule of #. Then M is Artinian if
and only if both W and M /N are Artinian.

Proct:

Let M 2= an Artinlan® —module and let N b an ¥ —submodule of M. Then we know that every
subnsdule and homomorphic image of M & Actinien.

Hence, W and MW are Artinian.
Conversely,
Let i and M /N be Artinian andlet K b+ any submodule of M.
Consider any descending chain of sulsnodules
My D My o My ...(1) of § —mwdule M,
Then
MynN M, n N 23 My 0V ... (2)is descending chain of submodules of Artinian module /.
Therefore, chain (2) is stationary
There exists positive integer #1 siich that ¥ n &= m
M, AN=M, 0N
Consider the descending chain of zubmodules af Artinian madule M /N

My+N M, +N M+N
N =] ¥ = T .(3)
Then since M /¥ i= Artinian, there exists pasitive imteger § such that vV i = [
M+ N M +N
L L

Let ¥ = maxfm. I
ThenVviz=r
M.AN=MnN
and
M + N M+N
N N
This implies,
M. +N=M+ N
Claim: V [ =¥, M; = M,
M, =M, n(M, + N)
=M, n(M; + M)
=M; +[M.nN)

This i= due to reodular law if A, B, and C are three # —submodules of an § — module M, such that
Bedthendn{B+Cl=RE+{AnD)
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So,

which proves that chain (1) of & — submodule=: of # is finite.

Since (1) is an arbitrary descending thain of # — submodules of M, hence M satisfies DCC. So, M is
Artinian.

Theorem 7.1.25:Let #;, 1< (= n be a family of Noetherian (Artinian) rings each with a unity
element. Then their direct sum & = },;_, K; i=again Noetherian (Artinian).

Proof:
We know that each left ideal & of | is of the form
ALBALEALE. A,
where A; areleft ideals in &.
So, if mleft ideal
B=08 DHDE E B,
of % is such that A = §, then itis clear that 4; = &, ¥ 1< [ < n.

Hence, any properly ascending (descending) chain of left ideals in & mmust be finite because each ®;
is Noetherian (Artinian).

Theorem 7.1.26:A subring of a Noethirian (Artinian) ring need not be Noetherian {Artinian)

Proof:

For the Meaetherian case, the ring # of 2 X 2 matrices over the rational numbers i is a Noetherian
ring.

Claim: [g gi i5 a subring of & which is not left Noetherian.

First, we prove that

p=[2 g ={[2 Yjaezbceq)

is a subring af .
z ¢
Clearly, [0 0 c R
. L PR I ' b-_-J] [.E' o
Consniei'[n rrj.l 8. o B 00
Then ay, a1z € £ implics ay, —a,, ;€ Z

Again By, by, £y, ¢y € [ implies by — by, £y — €5, 0.0 + ey, S EQ
This implies
i b]"_[llg b2!=[-ﬂi_-|12 bl_bz‘EH
i Ty 1] Cz 0 £y = L3 A

and

X, hl as bz il -|1-|.|.I?2 + b1 &
= E H'l
i] el n L {1 E5 e

Hence, R, i=a subring of ¥,

Consider for fixed k,

el 3o
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is a beft ideal of R,
m n
¥ 2"‘]. § ?] € iy
a ol o o

For

n n . — 1
R e

o a o i 0
. a b 05
Agamlet[n clEHpL %]Eﬂk
n an
[ hl’u F]="‘1 ?]E-hc
ety ol lo o

Hence, 4;. i=a left ideal of &;.

Also, A, © A € -+ is an infinite chain of left ideals of ®;, which proves that H; is not left
Noetherianm.

For Artinian, consider the ring of rational numbers {7, being field if is Artinian.
But its subring, the ring of integers ¥ i= not Artinian.

As
<2>D2<4>0<8>D

is an infinite descending chain of ideals in the ring of integers.
Definitions 7.1.27:

* A ring is called a right Noetherian (Artinian) ring if it satisfies acc (DCC) on its right
ideals.

*  Aringis called a left Noetherian (Artinian) ring if it satisfies acc (DCC) on its left ideals.

ﬁ* Note:

A right (left) Noetherian ring may not be left (right) Noetherian.

Example 7.1.28:

A right Noetherian ring may not be left Noetherian

Consider the ring

#=[5 gl={§ llaez b ceq}

Then as proved, R is not left Moetherian.
Now w« prove that # iz right Noetherian.
Claim: Any rlght ldeal of & 15 generated by at the most two elements
Let A4 be & non-zero right ldeal of K. Lel

) ) B -
X=[n F..'-!"|||:I ,r,! £ A forsome x, ¥ € '}
Then it i=clear that X & an ideal in 2. Henee,
¥ = <mny >faorsomeng € ¥, bevause ¥ is a principal ideal ring.
Case 1. X # 0]

. e 1 — [ 1 |

We clainid = [n 1ER._-|:_.-1 [n A i

. : L . . e 1 g 1
That is, A i= a principal right ideal of / generaied by [ a 1[ -.1-1'[ P

First, let

itg A

i EIIE.H:.E':EI.)

Then
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rzg ﬂ[ I [rzgl‘-r rig.':+{|:_]-' i

forallk € & x. ¥ € ().

1

g2
3 - — —_ b
Taking & =1, ¥ =1, T=, wesee that

[':]“ ”Eﬂ

:il be an arbitrary elermert of A Then
R & Izo I 71 _
a d 1 o
i

In case, (2, 2) entry of each element of A is {1 The general element of A is

Next, let [lzom

Hence, 4 = [ﬂno “ &

ol
Then

c)[k x] _ [mok mex +oy
nln _-pl'[u Q IE"‘
forallk € &, x, ¥ E[:

Taking k = 1, ¥ = 1, ¥ = —, we see that

[Ih;. lIEﬂ

WM

Next, let [ I be an arbitrary element of £, Then

il
()]

c—
My
o

o 1
Hence, 4 = [n DIH
So, in case, (2, 2) entry of each element of A i= [, Then
_ g 1
= | n al B
Case 2. X = {00}

Subcase 1.

Suppose A I= Lhe principal right ideal generated by some nor-zero element of the form
0 #
S nreo
Then

1=[o Sle={ Blwed)

Subca=e 1. Suppose /1 i= not the principal right icial.

Then A ciontains at least one element

[0 1-'1 kvl
PN ,Gl [0 0 S [ I 0 1
Becauselfﬁkov[o v E.'1.1hm-'1—[0 1iﬁ'and1fy70v[0 0|E.-1,!hﬂn-‘1— 0 OIH

which is not possible as # is not principal ideal.

Hence,
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ﬂ—.a[O ﬂﬁe:{[g ":_ﬂwcuimm*[g ﬂ.':

0 ¥

0
So, we can choose, [ 0 f,l £ A such that

o ¥le [o Fle
That is,there does not exist ¥ &€ i} such that
= fy, v =y

or,
.4 #-T—Illulis,ﬂ“y—y'ﬁ = ik
B r
Hence the system of ecjuatics

p=fx+Fra=yztyy
has a unique solution x, ¥ € { tor arbitrary p, 4 £ .

Since p, g €  are artiiratry, therefore,
U ..
the matrix 0 -!T! is a general matrix in A.
Also,
o al=lo 76 3+ Yl >
[u 7= lo y[o :|+0 vHe ¥l €4
Hence, A i= generated by &, anc £5;.
That is, generated by two elements.
So, the claim is established.

We have proved that each right ideal of ¥ iz finitely generated hence, # iz right Noetherian.

Example 7.1.29:

A right Artinian ring may not be left, Artinian

Consider the ring
_[@ RBy_qma A :
[ _'[{I- R _{[D rllu:l EfbcE H}
Mote that @ denotes the field of rational numbers and Eidenites the field of real numbers,

Bine R is infinite-dimensional vector space over (), iherefore, there exist infinitely many
iy, iy, ., Oy, ... Which are linearly indeperident: over (3,

Let for each positive integer k,
0 =
Ay = l 0 0] @€ <ap Appqs o >}
Then A, is a left ideal of B, and Ay = Ay,

A lso,

E ﬂ(!]kl E Ay but lg !Elki 3 P

Therefore, Ay, # Ajy1
We gel an infinile descepding chain of left ideals, hence R, isnot left, Artinian.
Now we prove that ity isright Artinian.

Let Iy 2 iy, Iy # Iybe two right ideals of Ry,
Let "n: fl El,wherea e @, Ly ER

We have two cases
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Casel.a+#0

Let it be the least positive integer such that

[5 S
Therefore,
[r:t ﬁ] [0 ]]EJ-
0 yllo ol =™
b ole
That is,
1
b AGE Mer
So,
[ olet
This implies,
o ol#ls e
[g ﬁlE.’;
Also,
B
[g }'l [(1) E]EI?
¢ Gen
Hence
5 M5 S Sles
So,

—_—
(==}

e
Also, a # 0, [:.'II :lerl:'l' gl =P

Thatis [§ 0] e,

Similarly, if y # 0, then [2 I,:“ Ely

Thatis, if y # 0. then {, = f,, which is not possible, as I, iz properly contained in f;.
Therefore,

01
4 0

Let I3 b gny non-zero right ideal of #, such that

¥ =1 and I, is generated by |E| glﬂn.:l{

hobohh=hL=0h

Let lg EI £ I be any non-zero element.

Ifa=0
Then
I 1
G5 9+10 D[z o<
This implies

Lovely Professional University

127

Notes



Notes
Advanced Abstract Algebra 11

10
[0 ol =5
P O 01
That is, [0 I.I} lﬁ 0] 0 OI =
This means, I = [3; which is not true.
So, =0 =hb=D
o 5[ 9.
Hence, [0 I:I In i] =
This implies
01
0 ol &%

So, I is generated by [g (1)

That is, #; s the minimal right ideal of &;.
So, descending chain of right ideals, in this case, is finite. Hence, &, isright Artinian.

Case 2. = 1l
0 ,8!
Here, [0 v =
Subcase T
If all othwsr elemients of 1 can be expressed as
;t[o '8], for some A € # then I, = = [0 '8' -
0 v 0y

Hence, I, i= minimal right ideal and chain

ih=l,2{0}
is finite. So, #, i right Arlimian
Subcase 2.

If there exists some l"' l'! £ [, such that
a «
0 &b 0 B
[[] {I T [0 4 b
forany 1 € R thm% & :T

Now,[g ':],[g ﬁIEIZ

Therefore, ¢ [g ’{:1 - }f[g i’l! £l
That is,

0 fBec=yh
Therefore, [ 0 o I Ef,

This implies,
1] 0

0 fc—yb 1
o B
0 o 1} m

£

.01
Thatls,[0 0|E|’;
This further implies,
0 17[0 0O
e [0 ﬂl €k
That is,

lo ole
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T
So, IO }"I £ II:

0 1
Ity =0%f theni, = < [0 0| =
Hence, I, i= mmimimal right ideal and chain

=21 >{0}
is [inite. So, B, isright Arlgnian.
0o

Ify =0, IJn:n[E ?L?H'-' %] el

so.0 Oen

Henwe, 5 is penerated by [[1) 8| and |ql:]l (i)'
Let [} be any non-zero right ideal of &, such that
Lhabolhhh#hL =0
Then I, is the minimal right ideal generated by |E él
So, descending chain of right idrals, in this mase, is finite. Hence, iy 15 right Artinian.
Definiticn 7.1.30:

* A right (or left) ideal 4 In & ring, i i2 called nilpotent if 4™ = {0} for some positive integer
1,

*  Aright (or left) ideal A Iriaring # is ralled a nil ideal if each element of A is nilpotent.

[‘%* Note:

Every nilpsstent right (or left) ideal is nil. Howewver, the coaverse is not true.

Thewrem 7.1.3L:1If] |= nil left ideal in an Artinian ring ®. Then [ I= nilpotent.
Proef:
Let [ 1= nll left ideal in an Axtinian ring & =uch that | 1= not nilpotent.
This implies, [* 3 {il] for any positive integer k.
Consider a lamily {,I'. F P }
Because /! is Artinian, this family has a minimall element, say

B ="
Thvem

Bapmc=§

(m.a € 1% a € [, where I is an ideal of & Ting F).
implies 57 = B [By minimality of &)
Comsider armther family
F = [A|A i= a left ideal contained in B with #4 = [}
Then

F#g

B-B=B=B=[]"*{0}

Also, # = & i5a lett ideal.
So, B £ F, hence F £ ¢
Since R i Arlinian, therefore, £ hias a minimal element say .

Then f4 = {{1],
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This implies theve exists an element a € A such that

fia = {4

But fn = dand Bifr) = e = 8o = (0}.

Thus, S E F.

Hence, by minimality of A, Bz = A,

This gives that thare exsts an element & € F such that ba = .

This implies ke = a for all pesitive integers i, But because i is o nilpotent element,
So, there exists same positive integer & far which BF = 0.

This implies k*¥a = 1}, hence & = 0.

But in that case, fiz = , so we arrive al a contradiction.

Therefore, for =ome positive integer &, I =@y

Lemma 7.1.3%:Let & b2 a Noetherian ring. Then the sum of nilpotent ideals in # is a nilpotent ideal.
Proof:Let # b the sum of nilpotent ideals in ¥,

Because # i= Mawetheriar (1e.. left Noetherian), # is finitely generated as a left ideal,
Suppose B =< 3, 1, .., ¥, = Then each ; lies in the sum of finitcly many 4,z

Hence, B is contained in the sum of a finite number of A;'s, sav (after reindexing if necessary)
.|'.|1. 1‘12, e .I'1n.

Thus,
B=d +A,+ .. +4,
which being finite sum of nilpotent ideals is nilpotent ideah.

which being finite sum al filpotent ideals is nilpotent ideal.

Definition 7.1.33:1f £ is amy non-empty subset of a ring &, tleni(5] = {x € F|x5 = 0} is called the
left annihilator of 5 in K.
[{4] = a left ideal af K.

Theorem 7.1.3:Let ¥ w2 a Noetherian ring having no non-zero nilpotent ideals. Then # has no non-
zero nil ideals

Proafilet ¥ be a non-zere nil ideal in &,
Let F = {I{n}|nn £ N, n + 0} be a family of left annihilator ideals.
Becaus: R is Moethwrian, # fias @ maximal member, say [}
Let x € ®, Then nx & W50, there exists a smallest positive integer & such that (ra)® = 0,
Now, let p € i{n). Then yn = 0
Flnad ! = ylnayined - [red = yn {oxn o xnx) =0
So,fin) = I{[nx)*1)
Because (mx}1 # D, [{imx3*" 11 e F,
But then by maximality of [{n},
I(n) = H{(nay ")
Now,
(nx)* =0
implies
ny £ [{(nx1k"1) = [(n)
Thatis,mmn =0¥xef nEN

Now
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(RuRY = Enk&nk = knknl = 0

Therefore, by hypothesis,
ftnR =10
If1 e & then
Inl =n =),

a contradiction. In this case, we arg dione.
Otherwise,
Corsider the ideal generated by n,

<n> =nk+fn+ ek 4 nd
Set Al = ni + Hn

Becausermxmn =¥ xr = f

A2 - ( o
Frali
WAELR - M EL - R e Bl

R 4 Baie - LRRn

= +0- a
-0 4+ nmifn + Rn R
=0
By hypothesis, A = {0}
< = _
e == R - Rre 4+ Mo &
_ e 4 Fley = Rk —+ ri#z
- A+ M 4 nE
A+ Rk + s
- A A+ e
Ifr® =0,
Then we have
(A + nE)k = {0
Therefeore, by hypothesis,
A+ nf = [0]

Since A = [}, we get, i and hence e =0

Again, we irrive at a contradiction.

Hence, # has no non-zero nil ideals.

Remark 7.1.35:Indeesd, ene can similarly show that R has ne nonzere right or left nil ideals.
Next, we show that i milideal in a Noetherian ring is nilptent.

Theorem 7.1.36:Let W bia nil ideal in a Noetherizn ring #. Then W s nilpotent.

Proof:Lei T be the sum of nilpotent ideals in #,

Then R {T has no non-zero nilpatent ideals,
. Ay . . Am .
for if A/T i= nilpotent, then |:_1—_:| = {0} implies— = {0} s, A™ = T.
But since T is nilpotent, there exists a pusitive integer k such that
( l.-rn:l :Ik — {0}
Hence, 4 It=2if is nilpotent, so A = T.

L. . il
This 1mphes1—_ = {0}
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Consieder thenil ideal A_II_— in fr_?
Since #{T his no non-zero nilpotent ideal, sit i /T 45 no non-zero nil ideal.
This implies,

N+T
T

This implies, N = T, which is a nilpotent ideal. Hence, I is nilpotent.

= {0}

Theorem 7.1.37:A right Artinian ring having more than one element and having no proper zero
divisarsis a division ring.

Proat:

Let # be the Artinian ring without zers divisors, which has at l#ast two elements.
Then tnere exists &t least one element &= 0) € I,

Naw, R 15 Artinian, so the descending chain of right ideals of #,

<> D <g'm 23 =a'm o i hnite,

That is, there exists | € W such that Vv k == [,

<@¥F» = <a' >
In particular,
<alx = <atl>
This implies,
e gt >
That is,

fl=ag"r+nal. re B, ne?
This implies,
a' = a'tar +ma)

As I is without zero divisors, canceling @' ™" on bath sidiss,

a = flar + nal

a=agie=ar+ g el
This implies,
ag = ae?,
that is,
£ =g?
So,Vx € R, ze = xe?
(e =Xx}e =10

=ra—-r=0
S>xw=x¥reR
Also, 8%r = px % x € Rpives, ex = x

So, ¢ I= the unity of &.

Therefore,
at> =a'k
and
= re“" > = 41'”1'?\7
Now,

deca'B=<al> = <ol > =gt
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This implies,
ale =o'z ER
That gives,
& =qas
Thus, every non-zero element of [ is a unit, hence ¥ Is a division ring.
Remarks 7.1.28:
e An Arfinian integral domain with at least two elements is a field.

+ If & I5 a commutative Artinian ring with unity, then every prime ideal of ¥ is a maximal
icieal,

Proof: Let B bva commutative Artinian ring and F bz a prime ideal of &,
Then # /i 15 also commutativie and Artinian ring.

Also, 1 € R implies 1 4 P € 2

Pelendl+pel

fPF=1+Pthenle P

But in this case, F = &

So, 1+ F=F

Therefors, E is commutative, with unity, Artinian ring having at least 2 elements 1 + * and .

Hence, E i5 a field that implies, ¥ is the maximal ideal of .

7.2 Hilbert Basis Theorem

Theorem T.L1:Hilbert Basis Theorem: Let # b a Noetherian ring, Then the polynonial ring & [x] is
also a Noetherian ring

Proof:Let Fand F be the families of lefi ideale of R and R[x|, respectively. Let n be a nonnegative
integer. Dlefine a mapping d,: F* = F wheredy, (1) = {0 € | Jax™ 4 bx™ '+ €1, @ # 0} U {0}

Claim L i1 E F

We need to prove that gy, (/1 iz a left ideal of .

Let itg, &t; € gfiy i), r ER

Then there exist polynomials
agr® + byl 4 e
i # b 4 e

Since ! iz a loft ideal of F|x]

Therefore,
(mox™ 4+ Box™ * + =) — (@ x™ + Byz™* + ) €]
and
rlEpx™ + bpx™ 1 4 ) €]
That is,
(g — oy )%™ + Chig — by Jxr"™ 1 4 - € 1
and

gt 4 vl € 1
which implies,

g — iy, Ty E d’n(r} oLy, @y € (bn(ll:lu rER
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which proves that

i1 is a leftisdeal of R, snd bence,p, (1) € F

Claim 2: If #, { € ' withi <[ and ¢, (I1 =@, (J1¥m =0, theni =]
Let 0 # f(x) & I of degree m,

Because ¢, (1) = iy (1],

there exisls @y (%) € | with leading coefficient the same as that of fix]. and f{x] — @,,(x] iz either 0
or of degree at misi m — 1.

Suppose f{x} —gmlx} = 0.
Because Fix} — gmix} = [, we can similarty find
dm-i1(x) el
such that flx}=gpyix] =g, ()€ [ and degree Is either 0 of of degree at most m— 2.
Contirvuing Vike this, we arrive, after at most m steps, at

Flx) — gmlx) = g1 (F) = — g (x3 =0
Now, gylzl £ f ¥
This implies, gy (=} + g, (€] + -« + g (2] €1
That is f{x) &
This implies, [ = ],
Let A; © A; = Az < - be an ascending sequence of 1e% idaals of &[x).
Then for each non-negative integer .
$aldd = () cild) -

is an ascending sequence of left ideals of &;
hence, there exists a positive integer k{n} such that

Ay} = Bl Arcirivir) = SnlAinye2) =

Further, because R is Moetherian, the collection of left ideals {¢,,(A;1% 1 € N, { € N, has a maximal
element, say (a q s

Then

$olAg) = n(Ag) ¥z p

=palA)vnzp izqg
Therefore, we may chiuose k(n) = gforalln = pin (1),
Moreover,if s = k( 17 .. k{p — 1)q, then

Pn(As) = Pullyq) = -
forallm & M.
Hence, by the result proved in the first paragraph, A; =4, = -
Therefore, K[x] is Noetherian.
Remark 7.2.2:Hilbert Basis Theorem does not hold for Artinian rings.
Let I be a field
This imiplies, ¥ is Ariinian,
Since I being & field is an integral domain.
Also, we ki that if # is an integral domain, then so is #[x],
Hence, F[x] i5 an Integral domain.

Also,0, 1€ F
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Hence 00, 1 € Flx]

So, if F[x] is Artinian, then being an Artinian integral domain, with at least two elements, #[x] iz a
field.

But x £ Fjx] 5 not a unit.
So, we afrive il a contradiction.
That is, F[x] 15 not Artimiamn.

Theorem 7.2.3:Let i he & commutative ring with wriity. Let ¥ be the family of all infinitely
generated ideals of &. If i 15 not Noetherian, then F hasa prime ideal of & as ifs maximal element.

Proof: Given that # i= noi Noetherian. Therefore, there exiats some ideal of # which is not finitely
generated. That Is, F =

Also, F 15 pardially ordered set under the inclusion ' €', Mo if £ s @ class in F, then the union of all
the elemient= in & will ke its upper bound.

By #oin's Lemima, there exists some maximal efement in F, call it 2.

IF possible, let # 15 not the prime bdeal of K, This implies, there exist elements x.y € & such that
ayEPande g FyEP.

Considir the set ¥ = {r € Rlrx € P]

Claim:¥iz amideal of ¥ containing * properly.
SimeyE XX =6

Leta, b € X

>ax,breP

S>ax— bhreF

Sa—-MPxeP

Sag=hEeX

Letre f.aEX

Then (rajx = riax) € F

Therefore, rq £ X.

Hence, X k5 an ideal of &,

Let @ € PP

S gy EF

>aEX

=P X

Fusther, xy € P, yx g P

¥ E N but ¥ @ P impplies X = P

That is, P i propedly contained in X,

Now, #+ < x = is anideal of § containing F.
Asx @ PPy x =P

Since P lga maximal eleremd of F, P <xr > € F
This implies P+ < x = and ¥ are both finitely generated.
Let P =2 x5 = Py+ <2 x = where Py = < {pg, Py, e, P} > P EF
Claim: £ = Py + xX

PoEF

Again, p; E PV i

Therefore {pg, 1, ., Pn} > S F. hence Py €
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Also,vre rxe PLaN e P

That is; F—"u +IXo P

letpE F

PEP+raxze= Bt<nn

SP=l HrEpPyE PorER

S¥rXEP

SreEXN

So,p=pg#rx€Py+eX

Hence, * = By +xX

Since both P, gmie ¥ are tinitely generated, I is finitely generated. Ifence,  is a prime ideal.

Theorem 7.2.4:1.ef B bim a commutative ring with unity. Then # fs Noetherian if and only if every
primi ideal of & is finitely generated.

Proat:

Let f ks a Noetherian ring. Then by definition, every ideal of s finitely generated.
Hence, every prime ideal of & is finitizlv generated.

Conversely, let #viary prime ideal of # is linitely generated.

If possible, let # iz not Noetherian, then by theorem, there exists at least one prime ideal of & which
is infinitely genarajed.

So, we arrive at a coniradiction.
That is, # is Noetherian

Theorem 7.2.5:Let # b a Noetherian ring. Then every ideal of # crnlains a finite product of prime
ideals.

Proaf: 1 possible, let there exists an ideal of a Noetherian ring # which does not contain any
produst of prime ideals.

Let ¥ be the family of all such kdeals.

A5 per the assumption, F = df

Since R is Moetrerian, £ hasa maximal element M,

M £ £, M L= nait containing amy finite prosiuct of prime ideals,

This implies, M 1s rat & prirm ideal

That is, there -exist A and B, ideals of Rsuchthat ABEM AL M, FEM
Consider, (A+ MIE+ M) CAR+ AM+ME+M C M
SmecA+MMcE+MM=44+MMEzR+M,

s Mizanelement of F, A+ M B &M ¢ F

A+ M and B + M concain @ product of a finite number of prime ideals.
This imiplies, {4 + M| # + M} contains a finite product of prirre ideats.
But(A+ MiHE+MiC M

Hence, #f rontains a finite product of prime ideals. That is, # # ¥

So, we arrive at a contradiction.

Remark 7.2.6:Converse of Flilort Basis Theoren

Let f be & commutative ring with anity such thal §[x] is Moetherian, then & s also Noetherian.
Comsider a function F: Rix] = R as Flog +a,x+ ) =iy

Them f isR —homoimaor phism.

v € &, Fla) =a 50, F isonto.
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By the Fundamental theorem of homomorphizmn,

R|x]
=g
Ker F

. : . H . ; . .
Since f|x] is Noetherian, —;l is Maetherian and hence, # is Noetherian.

Summary

Noetherian and Artinian modules and rings are defined.

Noetherian and Artinian modules and rings are explained with the help of examples.

with the help of examples proved that a right Noetherian (Artinian) ring may not be left
Noetherian (Artinian).

relation between nilpotent and nil ideals in an Artinian or Noetherian ring is elaborated.
Hilbert Basis Theorem is proved.

analyzed that this theorem is not true for Artinian rings.

proved an important characterization of Noetherian rings in terms of its prime ideals.

Keywords

Noetherian and Artinian Rings
Noetherian and Artinian Modules
Right Noetherian ring

Left Noetherian ring

Nilpotent ideals

Nil ideals

Hilbert basis theorem

Self Assessment

= oNwpr

onw»

ON&wE»e

ONw > e

Lt M =7 T M, be a direct sum of R —modules M;. Then
Hoing (M, M} is an # —module

Hamy (M, M} is a subring of Wom (M, M)

Haom, [ M, M} s isomorphic tu a1 ring of matrices

All aptions are true

Lat W }-z M, be an & =module which is a direct sum of # =modules M;. Let

=i=]
e M = My s projection mep and 43 M, — ¥ be the inclusion map defined as 3 (w14, 115,
mi=mr i and A2m2=0, w2 ) Then =342
A ore-ofe map
Onto map
Identity map
Zero map

Which of the following is not an Artinian ring?
Z (ring of integers)

Q (ring of rational numbers)

C (ring of complex numbers)

R (ring of real numbers)

For a module M over aring R,

M is Artinian if and only if it is Noetherian

M is Artinian implies that it is not Noetherian
M is Noetherian implies it is not Artinian

M may be Noetherian as well as Artinian
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5. The module of 2 X 2 matrices over the field of real numbers is
A. Both Noetherian and Artinian

B. Neither Noetherian nor Artinian

C. Noetherian but not Artinian

D. Artinian but not Noetherian

6. Consider the statements

I.  Every vector space is Noetherian as well as Artinian

II.  Every field is Noetherian as well as Artinian

A. TandII both are true

B. [lis true but Il is false

C. [IIistrue butIis false

D. BothIandII are false

7. Which of the following rings is neither Mpetherian nor Artinian?
A. The ring of rational numbers

B.  The ring of square matrices of order k with entries from rational numbers
C. The ring of real-valued functions defimsd on the set of real numbers
D. The rimg of integers

8. Let M be a Noetherian module. Then

A. Every submodule of M is Artinian

B. Every homomorphic image of M is Artinian

C. Every submodule of M is Noetherian

D. Every submodule of M is finite

9. Let M be a Noetherian module over a ring f. Let 0 # x € M. Then Hx
A. is always a Noetherian submodule of

B. isalways an Artinian submodule if M

C. is always a proper submodule of ¥

D. may or may not be a submodule af M

10. Aring # is Noetherian if and only if

A. Each subring of # 5 Npetherian

B. Eachideal of ¥ is Moetherian

C. Each homomarphic image ol | & Moetherian

D. For someideal | of #,! and # /i both are Noetherian

11. LetR be a Noetherian ring. Then

A. Every subring of R is Noetherian

B. Every ideal of R is Noetherian

C. Every subring of R is Artinian

D. Every ideal of R is Artinian

12.  Let § b a Noetherian ring with unity. Then

A. ¥ always has a maximal ideal.

B. H m#ver has a maximal ideal

C. # may or may not has a maximal ideal

D. # always has a non-zero mirimal ideal

13.  Fof the ring of integers &, rhoose the incorrect statement

A. Zi=PID

B. ZisED

C. & iz Noetherian

D. £ is Artinian
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14.  Which of the following rings is neithier Moetherian nor Artinian?

A. The ring of rational numbers

B. The ring of square matrices of order k with entries from rational numbers
C. Thering of real-valued functions defims+f on the set of real numbers

D. The ring of integers

15. Let A bea ring with wmity. Then chonse the correct statement

A. If # 12 PID then so is #]x]

B. If f is ED then so is f|x]

C. If i i right Noetherian, thea so is [ ]

D. If R is right Artinian, then so is #[x]

Answers for Self Assessment

1 D 2 D 3 A 4 D 5 A
6 A 7 C 8 C 9 A 10. D
11. B 12. A 13. D 14. C 15. C

Review Questions

1 Letne™andm | o | == . Than slai (hat m ks a6 zeeo divisoar In '-l".

2 List nll the zero divisoss in 2

i For which ringz with unity will 1 be a zero divasor?

4 Let K. bea nng and a & K be a zero divisor: Them show that every elememnt of the princapal
sclicnd a3 o zoon divinos:

5 In & domain, chowe that the amby solubone of e squabor s =warex =land x = 1

& Prove that 6 = the paly idlpofent element i donsain

7. Let #y,Hy, ., Ry be a family of Noetherian rings. Show that their direct sum & = &; €

Ry & . B R, Is again Noetherian.
8. Prawi thit the intersection of all prime ideals in a Noetherian ring is nilpisterit.
9. Show INat every principal left ideal ring is a Noetherian ring.

10. Let R ¢ a Noetherian ring. Show that the ring of 3 X 3 matrices R wver & is also

Noetfwerian.

11. Let it bwa Noetherian integral domain. Then show that for all 0 # ¢ £ &, fr |5 large.

[Y]] Further Regarding

e Basic abstract algebra by P. B. Bhattacharya, S. K. Jain, S. R. Nagpal,Cambridge

universitypress
e Topics in algebra by I.N. Hartstein, Wiley
e Abstract algebra by David S Dummit and Richard M Foote, Wiley

Weblinks

e https://nptel.ac.in/courses/111/102/111102009/
e https:/ /nptel.ac.in/courses/111/105/111105112/#

W
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Objectives

After studying this unit, you will be able to

o observe that for every non-zero minimal left ideal 4 in a ring R, either A% = {0} or
A=PRe;e* =e€R,

e state and prove Wedderburn— Artin Theorem,

e see important consequences of Wedderburn — Artin Theorem,

e  define uniform and primary modules,

e understand prime ideals associated with a module over a noetherian ring,

e prove that a non-zero finitely generated module over a commutative noetherian ring
hasonly a finite number of primes associated with it,

e state and prove Noether-Lasker Theorem.

Introduction

In this unit, you will be introduced to many concepts related to the Wedderburn— Artin Theorem
and Noether Lasker theorem. You will understand the statement and proof of these theorems.
Uniform and Primary modules will be explained with the help of examples.

8.1 Wedderburn Artin Theorem

Lemma 8.1.1:Let A bs 2 minimal left ideal in a ring #. Then either A? = {0} or A = Fe, where £ is an
idempotent element ir .

Proef:Suppose A7 # {(}.

Then there exists @ € A such that Ao = (0]

But Ag < A, and the minimality of A sl Ao = A.

Trom this, it fallows that there exists # & A such that e = &,
amd, clearly,

« = D because @ # ).

Moreover,
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£2a = e(em) =en

or
(e? —glx =10
= {¢cdlsa = 0]
Claim:# is a left ideal of R
Letc, d Efi, TE/,
Then
(c=du=ea—dp=0-0=0
and
(rela=rica) =rl =1
Hence,c =d, re eB¥¢, dEB reR,
That is, B iz a left ideal of &,
Claim:Bc 4 B=A
Letc £ 8 = {c € Al ta =]
Clearly, fi = A
Also,mg E A, Am =D
That is, there= exasis at least one element x £ A such that xa =+ i
But then = # it
That is, A4 = K
Therefore, we must have & = {D}. But, then
(22— &la =0

implies

e — el ={}

Hence,

Il
4 ]

Now fr = Aamd fe = (1], because
0# e= g€ Re
Accordingly, e = A

Lemima 81.2: Let & bwxleft (or right) Artinian ring with unity and no non-zera nilpsatent ideals. Let
¢ € K be an idempotent element. Then for some non-zero idempotent 2, € 81 - &,

{hoye =0
() Lt e’ = e 48y = egy; then @ = ¢’ and g2’ = 0
(R (A-e") 2 R(1—¢)
(ehe; € R(1—eY)
Proof:
Since
8 € R(1 - a)
So, 8y = 1l — &) for some v € K
Contider, gy = {1l = gle =r{g —e?) =0

So, #y,# = ) which proves part (i}
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Lete' =&+, —e8y

Then
e (e + el —eatdle 4 a1 — o1
I —t -en o= &
G +e:r' e | '1. gD
~F o mefer Fole 4 ef T elecl T ecle —eei toeereen
Usimg., the results that
ot =g, ] meand g8 = D,
Q' T e eel — el T o1 — eot
e W e
e+e]—(_‘l-l-|_l aitot
T edel —ee1 =&’
So, (#"1? = ¢
Also,
a1a’ ¥ = =1 ((" 4 el - c—el)
i, - = ’
e‘ TR S =
= |- —
ele o+ =i elecl
e
- -;0
T el F

For part [{if])
Letx € R(I —¢")

Then
r=r{l—¢'LTER
That is,
x = = rfl — e — el +(‘—("1)
_ S
»C1l — & = =

(1 — @l — el - @1))

i
(L —e - — ey
et — e12Ca e

(1 - e (1
E -

RC1 - ed

which proves part (I}

For part (iv) Letey € R{l—e")
Thertey =r'(l =g'Lire R
Consider eye’ = r'{] = &')e’ = 0
Bute e’ =

So,e; € R (1 — &'}

Lemma 8.1.3:Let # b left (o right) Artinian ring with unity and no mom-zero nilpotent ideals. Then
each mamezero left ideal in # 15 of the form Fe [or some idempotent &,

Proci:
Let A be any non-zero left ideal.

[f we have a family of non-zero left ideals of  rixntained in A, then this family of left ideals contains
A and hence it is non-empty.
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Thenisince # is left Artinaan, this family and hesse A contains a minimal left ideal M.
By Lemma 8.1.1, either #* = (@)or M = He for some idempotent #
If M# = {0},
Since M is left ideal of #, BM < M.
Hence,

(MR)? = MRMR c M?f = (0}
S0,

(MR)? = {0}
by hypaothesis, MR = {0}
Siarice / is a ring with unity, so,
ME = {0} implies M = {0},
So, we arrive ab a ciniradiction.,
Hence, M = Fr
Consider none a family Fof left ldeals, namely,
F=f{R(1-adnAd2e=e* cc A
Clearly, ¥ i% tuinr-empty.
Because # is left Artinian,# has a minimal member, say Fi{1 — &) ™ A.
Claim:
We claim #[1 — e} A = [0}
Otherwise; fhere exists a non-zero idempalent
geER1—elnA
Sae & R(1L-2)
By Lemma 8.1.2,
{eyE=1
(i) I " = ¢ & &) — pethen e? = ¢’ and gy’ = 0
G RI—e e Rl ~&)
(v € R{1L—eg"]

This imptlies,

Ri-ednAch(l-eind
Also, If g; e B({1—-e'jnd. g, ER(T—e)n A
This proves that

R1-e)nAcR(1-a)nmA
and

Ri1-&nA=R(1-e)nmd
By minimality of #{1 -~ &} 11 4.
we get a coniradiction.
This establizshes our clairn, {1 — o) nd = [0}
Next, Izt m £ A,
Then @il — el € R{1 - &) mA ={D}

Thus, @ =ae
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ThenA =M = Re = e = 4
This imples, A = Re

Lemma &1.&If M and N are two simple® —modules such that M is not isomorphic to N then
Homg( M, W)= {0,

Proof: Let T =g € Homg (M, V)

i M — N is an # ~ homemorphism.

Ker ¢ and Fm ¢hare submodules of M and W respectively.
But M and N are simple & —madules.

So, Ker ¢ ={0}or M and fm ¢ = {D)or ¥

Since ¢ = i therefore, Ker b # M and fm ¢ # {0}

Hence, Ker ¢ = {0} and {fm ¢ = N

This implies, ¢ is one-one and onto.

This gives a contradiction to the fact that M and I are not isomorphic.
Our supposition was wrong.

So, Hamg(M, N} = {0].

Lemma 8.1.5:Lest M =P E{-‘:1 M; be a direct sun of § —modules M;. Then

HomgiMy, My) Homg(My, My} Homg(My, M)
Hamg (M, M) = Homg (M, M) : Haomg (M, M) Hnnr“fj:wk, M,
tHompi My, Myy HamgiM, Mgy - Nomg (M, M,

as rings.

(The right side is a ring T, =av, of k X k matrices J = Lﬂ- j| under the usual matrix addition and
multiplication, where f;; & Nmmg(M;, M;),

The proof is given in Unit 7.

Theorem 8.1.6 (Wedderburn— Artin The@rem): Let & sz left (or right) Artinian ring with unity
and no nof-2#10 nilpotent ideals. Then # [= isomorphir fn a finite direct sum of matrix rings over
division rimgs,

Proof: Let A b= any non-zero left ideal.

By Letnima 8.1.3, each nio-zero left ideal in ¥ is of the form Re for some idempotent 2.
This imyplies, A = fe for some idempotent element ¢ € K,

Let & be the sum of all mimimal left ideals in #, Ther 5 isa left ideal of B.

By Lemma 813, 5§ = He for same idempotent #

IR — e} 2 [}], then there exisis @ minimal left ideal A contained in Bl — ).

A i= o minimal leit icleal of # and 5 be the sum of all minimal left ideals in #. 5o, A = 5 = fe
Also; A& B(L — e}

This wnplies, A © fe o B(1—2) .. (1)

Letx € Ren R{L—¢g)

Thenx =rgr E K

and x = r'{1 =&}

Considerxe = v'(1 —ele =

But x¢ = [rele =re® = 1e

So, x# = {kimplies re = 0
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Hence, x = 10

This implies, Fe 1 &1 — &) = {0}

Then from (1), & = [}

So, we arrive at o contiadiction

Hence Bil -2l =10

Thatis, R =Re =5

So, B = Yien ;i where {A;],1 €4, s the family of all minimal left ideals in .

So, there exists a subfamily {A;],1 €' af the farily of the tminimal left ideals such that

1
R=0) A
fEa’
Let
1=y +eg+- o0+ e €Ay e
Then

K= Rey, + Beg +--- + Reg
After reindexing, if necessary, we may write

B =FRe, + Rey +--- + Fey
a direct sum of minimal left ideals.
In the family of minimal left ideals fay , ..., e,

choose the largest subfamily consisting of all minimal l&ft ideals that are not isomorphic to each
other as left R-modules.

After renumbering, if necessary, let this subfamily be fe;, ey, ... Fey.
Suppose the number of left ideals in the family {#g;}, 1 < i = &, Lhat are isomorphic to Fe; is 1.

Then

L PR BT ST R Suman s W U Rl

where each set of brackets contains pairwise isomorphic minimal lett ideals

and no minimal lelt ideal in any pair of brackets is isomorphic to a minimal left ideal in another
pair.

By Lemma 8.1.4, Hnr.rr,,l:ﬁ'e';. Rr.';_‘_l =0¥i=f
By Schur’s Lemma, Hainy (e, feg} = [ is adivision ring.
Using Lemma 8.1.5,

|:||j_l-|ﬂ-1 ]
Momg (F, B) = [ - 3
b (B,

= (b, In, ® ('I-Jz]nz & .0 (ﬂkjnk
But since Hamy(#, ] = #*P gs rings

and the opposite ring of a division ring is a division ring, ¥ is a finite direct sum of matrix rings
over division rings.

Remark 8.1.7:Because the matrix rings over division rings are both right and left noetherian and
Artinian,

and a finite direct sum of noetherian anil Arstinian rings is again noetherian and Artiniam,

we get, for left (or right) Artinian ring # with unity and no non-zero nilpotent ideals, # is also right
and left Artinian (noetherian).
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Theorem &.1.8:Let R be a ring with unity. Then the following are equivalent

i it is left Artinian with no nonzero nilpotent ideals.
ii. # iz left Artinian withno non-zere nil ideals.
iii. # &5 a finite direct suim of minimal left ideals,

iv. Bty left ideal 0f i 15 of the form Re, e L idempalent.
v. R I= a finite direwt sum of matrix rings over division rings.

Proof: (i} implies ({{}# is left Artinian with no non-zero nilpotent ideal. Let | b @ nom-zero nil
ideal in ¥, 5inwe we know that every nil ideal is nilpotent in an Artirtian ring. Hence [ = a nilpotent
ideal.

Therefore, i venfains a non-zero nilpotent ideal which contradicts (i}, hence # does not contain any
non-zero nill ideal.

(£ implies (1if}Since division rings are simple rings so, by Wedderburn Artin Theorem, the result
husdids,

({1t} implies (i1} # |= a finite sum of minimal left ideals. That is,

R=HBZ:'¢;

EM

{5 is @ minimal left ideal V & € A.

I, is @ simple ring. Also, we can choose, A'< # stch that

R=0 ) I,

aen

I, is simple ¥ o € &, {, = {0}

So, l,=<ey > 0Fe, EM,

That is, f; = Regor Be; (0= @ € M)

(iv) implies [w}: Let M = e be a maximal Jefi ideal of #,s = 2

Then #i1 - ¢} i=a minimal left ideal.
" = R 3
E =Ml-
Being isomirphic fo a simple module, it is a simple module. Therefore, if 5 ks the sum of all minimal
left icheats of § then 5= {0}.
We cliim 5 = ¥

If & % & then & is rontained m a maximal lefl ideal Bf: f = f"but B(1 - £} is a minimal left ideal
which is not camtained in &

SnBI~fIc BRI~ F1={0}

So, we arrive at a contradiction. Hence, 5 = H. 5o, # i5 a finite sum of matrix rings over division
rings.

(v) implies (i): Matrix rings over division rings are both right and left Artinian. Also, a finite sum
of left (right) Artinian rings is again left (right) Artinian.

Therefore, from (5), it is left (right) Artinian.

Further, the matrix rings owver division rings are simple rings with unity and hence, they have no
naon-zero nilpotent ideal.

i & =4, @84, @& . @A, = a lnite direct sum of simple rings, each with unity, then any non-zero
ideal &= of the foem

Ay @A, @ ... Ay, 5o, = not nilpotent.
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8.2 Uniform and Primary Madules

Definitinn 8.2.1: A non-zero module M is called uniform if any two non-zero submodules of M
havea nerizero intersection.

That is, # is a uniform module if &, N K, = {0}

for any non-zero submodules M, and ¥, af M.

E‘ Note:

There exist modules that are never uniform. Remarks 8.2.2 and 8.2.3 prove this
statement.

Remark 8.2.2:Dirext sum of two uniform modules is never a uniform module.
Proof:Let M, and N, Be two uniform & —modules.

Consider § = My @ N,

By the definition of direct sum, ¥, n W, = {0}

Both N, amd N, are nom-zern & ~—-submodules of W such that their intersectiam 15{0}
Hence, I i= not a unifrm mindule.

Remark 8.2.3:Let N, and M, ke two proper submodules of a uniform ® —module M such that
neither submodule certains the other. Then M f(N, ri ¥, ] is never uniform.

Proof: Consider

atned

! z
Ny ni W, oy
Wi know that any § =submadule of"f_ is of the form : where [ is a # —submodule of M containing
.

M,

)
prad —

Both
MyMN, [ gL ]

are i —submodules of M /(W N A5).

Again Wy & M. and N, & N,

Therefans ﬁ‘— = [Ny 0 Mo and ;%"—2 # {M; NiM,}. That is, both the submodules are not equal to
zera submodiale of M/ (N, 0 ;).

Let x + (N; n Nz} € Ny /(Mg 0 NG)

Then x & My

If x € Ny then x € ¥y n NV

That is, & < (N, it N=¥ = Ny n M, that is zero submodule of M /(%, niA,).

Hence, M /Ty mi#y ) Is never uniform.

Definition E.24:f I and I are uniform modules, we say [f ks sub-isomorphic to I and write I~ ¥
provided [f and I contain mari-zero isomorphic submodules

Theorem 8.2.5:The relation definel i Dxefiniticn 8.2.4 is an equivakence relation
Proof:

Reflexive: For a uniform module [, f:[i — IF defined as Fix] = x ¥x € Il is # —isomorphism. Hence
[I'=IF fom every umifarm meodule &F

Symimetric: Let If and ¥ be two uniform # —~muodules such that i~V

Thi=implies, there axist [, and ¥, such that [f; isa submodule of [f and V¥, iza submodule of ¥ and
{I; tnisomorphic to Iy, Since the relation of istemorphism is an equivalence relation. Therefore V; is
iseumorphic to [fy and kence IF=[,
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Tramsitive: Let [,V and W ba three uniform micdules such thatif =17 and 17 -1

Then there exis: [0, 1, and W, submodules of I, I¥ and W' respectively such that [f; = 1 and
V2= WL Again using the fart that isomorphisrn s s equuivalence relation, we get, I, = W7,

Hence, [i~4".
Therefore, ~ is an equivalencit relation.

Definition 8.2.6:A module ¥ is called primar¥ if each non-zero submodule of M has & uniform
submodule and any twa uniform submodules af M are sub-isomorphic.

A non-zern submodule N of M is called large if W 1 & = {{I} for all non-zero submodules ¥ af M.
Remark 8.2.7: Every uniform module is primary.

Proaf:let M b & uniform module.

Consider {0 = N bea submodule of M,

Lt &y and N, be two non-zero submodules of M and hence of M.
M ¢ a uniferm module so, Wy N A, = {0}

So, W is umiform.

Let i, and Ny be pwo nan-zero uniform sutrmodules of i,
Consider Ny m ¥z = {{F]

Also, ¥y n & s an & —submod ulle of both ¥, and N,.

So, we fave X, r A, in both IV, and W, such that Ny N, = N, N,
Hence i, ~&;

Therefore, i s a primary module.

[E] Example 8.2.8: Z as a Z —module is uniform and primary.

Proaf: Consider  as a Z —module.

Let #; an 1y be bwn mon-ero submodules of Z.
There exist ny,n, € Esuch that

Ly=<n mand I =<n, =

Since fi.d; = |0} ngn, =0

Consider i = < #,m; >

Sincemyi, €<y > n<ny > 1S hnl,.

Also, m,m, =1l

This implies, I = = 1%, > # {0}

So, Z as a Z —modul is uniform as well as primary.

Theorem §.29:Let M be & noetherian module or any module over a rnistherian ring &, Then each
nen-zero sulnodule of M contains a uniferm module

Pronf; Let M be a nan-zero moddule. Then there exists at least one 0 # x £ M,
If M #s noetherian, xff = a submuodule of M, rence it is noetherian.

If # is neetherian then 1/ being the homomorphic image of ring # fs noetherian. Therefore, x# i=
noetherian

Let F = (K| iz a submodule of xR, ¥ is not large}
Clearly, {0} € F, hence F & @
Since & 18 noetherian, F has a maximal element say K

then K {s not large.
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Sa, thire exist non-zero submodule [ of xf# such that K m [ = {0)
Claiml! i= uniform.
If [ is nob uniforem, then there exist non-zero submodules A armd § of [ such that A 0 & = {0}
Letxre ik AaAnE
reEK @AxER

Thisimplies, x =k + ok E K,aedandx =bbEA
Sothat b=k +mk=h-a

ke befellieedcl
Now, b € I and [7 is submodule implies, b — & € If hence &k € [,
> EEK N =0}

>k=10
sh—ax=1
S>hk=n

Butthenb &€ BLaEda =5
s>heElnA=[0}
=h=a=0

oy =i}

(K g A)n & ={0

K A is not large

Also, ¥ = K A

So, we arrive at a contradiction.
Our assiimjition was wrong.
Hence, [ iz nniform.

Mefinition B2 1001 B is a commutative noetherian ring and P ks a prime ideal of &, then P is said to be
asspcizted with the module M if B /F embeds in M, ar equivalently # = r{x) for seme x € M,where

r{r} = {& € B|ra = 0} denotes the annihilator of x.

Definition 8.2.11:A miidule M is called P —primary for some prime ideal # if ¥ is the only prime ideal
as=ociated with M

Remmark 8.2.12:1f # is @ commutative noetherian ring and ¥ i= a prime ideal of &, thén an & —module
isP —primary if and nnly if each non-zera submodule of M is sub-isomorphicto & /F.

Theorem 8.2.13:Let [/ b a uniform module over a commutative noetherian ring K. Then [ cantalns a
submodule isomorphic to B/# for precisely one prime ideal #, that is, [f is sub-isomarphic b &/ for
exactly one prime ideal P (The ideal # in the above theorem iz usually called the prime ideal assockamed
with unitfierm moduale &)

Proof: Let# = {r{z]|l = x € [}
Since & is noetherian, there exists a maximal ideal in F. Letr{x] € F is the maximal ideal.
Claim:F* = r{x] is a prime ideal.
Letak € P = rix}
> xafp=0..(1)
Ifa & rix)
> xa#l
Let ¥ £ rir]
S xy =1

>yx=10
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= [¥xla =1
= yixa} =0
= 3 E rixal

So, r{x) = riral

Also, r{zal € F

By the maximalicy of ¥ (%3, r{za) = r{x)
Fram (1}, xab =10

> b Er(ral=7{x)

= b erlx)

Sxh=1

So, eithera € rix) or b € rix)
Hence r{x] is a prime ideal.
Claim:yR = rIRT = %
Definesh:x® - P +r¥ref
¢ is homemorphism

Let xry, xr; € xfl,r EN

Consider
aogers Fosnl} | = @ (x0r1 + r‘z))
ofs (xn'al ’z.v;
T e haR)
T+ n) . et iy
= ¢ Gert) + plrrs)
Again,

<b(_(x!‘1)r}| =¢ = g (arir))

a0 473D

TP e
'
sk oy

- (r-' 41D
r
e+ b

- db(xf'l)r‘

Hence, ¢ is # — homomorphism.
Since ¥ & commutative
¢ (rixr)) = rélan)
¢ is ane-onse
Let fixry ) = bilxr)
Skher=Pen
=> P =nEPF=r{r]
sxlnp-n)=10
= X1 S IT
Therefore, ¢ is one-one.

¢ is onto
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LetP+rE Ehenryelemrntofg;r E&

Since r € R.xr E xR

Thendixr) = P+r

Hernce, i is aela

¢:xit — R/Pis an £ —izamorphism.

Sa, xit ::'E

H/F is embedded in IV,

Uniqueness: If for any other prime ideal , U= &/ that is, B/} is embedded in [} then

R &
= ===
7l =gl =
So, there exist cyclic submodules oF and ¥8 of § /P and #/7 respectively such that xf = »¥,

R &
but ri = Sand yf = 2
. . . R_R
This implies, o ;and hence P =0

Definition 8.2.14:We proved that if [ is a uniferm maodule over a commutative noetherian ring &. Thenl/
contains a submodule isomorphic ta #/# far precizely one prime ideal F. This unique prime ldeal i=
called prime ideal associated with unifarm module [,

Theorem 8.2.15:Let M be a non-zero finitely generated module over a commutative noetherian ring .
Then there are nnly a finite number of primes associated with M.

Proof: Let ¥ b the family of direct suims &1l gjiclic weifarm submadules of M. Then ¥ # ¢.

Define partial order relation’ <’ on ¥ by

ﬁlrl'n = @ZJJ{JH
rer J=7

ifand only if i = fand xR S R wiE !
By Zorn’s lemma, £ lias a maximal element M.
Let
N=2 Z i
AEn

Also, M is noetherian, so ¥ iz finitely generated.

That is,

for some pingilive integer i
As each x; # i= uniform, there exists x;m; € x;/ such that P; = r{x;m;] is prime ideal associated with x;#.

Let

K= Z :I.';ﬂ';l"."

iml

Claim: If €} is any associated prime ldeal of M then f = F; for some (; 1 = [ = i
Since &} 15 assoclated peime, @ = rixlx € M,

Sioce N s a maximal memier in F.

W 1 Land K 0 L are both non-zero for all non-zero submodules . af M.

Theretore,
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xR K w (0]

Letli® py Exfin K

SymInrERady =30, xamn

Let xjiyrys = 0

= s Erlne) =R

Suppose iy # (0

SHEP

SEER

Therefore, P, is prime.

Hence if xpa;8; = O then vixa | = rixa )

Now,

P s g

o
=1

- ,r—]?'(x'[a‘:)
Uy

P e
=

- r—] i
(1%,

where I €A implies, x;m;1; = 10

Now
"
E =rf
Therefiore, there exist # E ~+ xf which is one-one, nnta, and & —hamomarphism.

For y € £, 67! (&} is a cyclic submodule of %, that i5; 671 (¥R = B/

Now
0 =rix)=rin) =[ |~
i6A
Therefore, (P = F, ¥
Suppose F; & (Wi E A
There exists x; & ; such thatx; & { v L
As

and i} is prime

therefore, fhere exists at least one x; € (.
So, we drrive ata contradiction.

Hence, #; < (@ far sume |.

Therefore, P; = {j farsome i € &
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1. Prove that a vector space over a field g j; ypiform if and only if it is one-
dimensional.
2. Prove that one-dimensional subspaces of a vector space are always primary.

8.3 Noether Lasker Theorem

Theorem 8.3.1:Maowther- Lasker Theowem: Let M be & firitely grmerated module ower a commutative
noetherian ring R. Then there exists a finite famuily M, .., M of submodules of 8 such that

a) Nizy ¥ ={0}and N[, ., M = {0} forall1<io=1,
b) Each quatient M /W isa P; —primary module for some prime ideal P;.
c¢) The #; are all distinct, 1 < i < [
d) The primary component & Is unique if and anly if #; does not contain P fur any | = |
Proof: Consider the uniform modules Rx, 1 =5 § < m
Choose Rx;'s such that [Rx;] # Fxy| forim j
After re-indexing, we take
li=Kx,1<i=t

Note that [Rx] = &z

- -

R R
D =
PP
>/ =F

Henxe the only prime ideals associated with M are &, %, ..., I, and P;'s are all distinct which proves
part (c)

Lel F; b ihe family of submodules of M which do not contain any submodule sub-isomorphic to
Dl =i=f

Let N, be the maximal element of ;.
(ar} Suppose

[1m=

This implies, M1V, contains a unifesm module [T
Let P b the umigue prime associated with [, Then ¥ i5 the associated prime of M.

Theretore, ' = Pj lorsome 1 < j =t
R
=[] = li’}] = 1]

as [ = Ij, we arrive at a contradiction.

Claim Every uniform submodule of % belongs to (171

Let N brany submodule of M containing .
If W; isa proper submodule of M. This implis=, N & F;.

Hence, we can find a uniform submodule [ @i W such that there exists a one-one map 8: [ = [i;
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Restricting 6 Lo [F i1 ;, we get a submodule of I7' NV in ;.
By choice of ¥, If i &; = {0}
Thus, the map

g It B
=

— [l

as 0" (x + N;1 = #(x] ¥x & N; remains an embed:ling,.

Proof of (a):Let [ b« a uniform submodule of ¥ such that & & [IF;]

Then there idoes not exi=t any monomorphism from [f fa Ai fori = j.
!

Henee [ niN; =0 for [ = |

As U s uniloem,

[ Yo nag) = 10

iwf

= Uﬁ(ﬂh‘r = {0}

(b)Let i bea prime ideal asscciated with %-
Let U i% the submodule of % such that IF = f—l.
Then [f i= & uniform submodule of M /#;,
Hence, I £ [if;]

&

[l = w1 =mma.
= [} = P; as Py 15 unique prime associated with [f;. Thus M /I; is P; —primary.
(¢) is already proved,

(d) Assumel; s unigue.

Suppose for some | = L P S 8

Let F:; —rﬁ is given by fFlr +P) =r+P;.
Then if ¥ & #,5 & By, 50 [ is well defined.
Since: [{1+ # ] = P; that is, non-zero.

Therefore, fis non-zero # —homomorphisi.

Let [f and ¥ be uniform submodules of [f; and [ respectively such that [F &= & /P and V¥ = & /7.

Hence, there exists a non-zero homomorghism

R R
g: b —G-F,;—I-E—il-'r.

Let x € U such that gi{x) = 0
Claim:rs = (| == i'{_-t' —[a [.:I.']]-) =0
Suppse rx =10

Then gire) = i

= rglxl =0
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= rix—glx¥} —rx —rglx) =0
Conversely, let rix = _g"l_x.'l:] =1
=rix}=rglx}EUnV
ts 0 & [ and ¥ = [0
I W oe= i)
=rx=1
B
rix)
= Rz — gix))
Aslie |y | Ver

Rr =

= fx € F; ond hence R(x — gix]) € F;

Let My undh ¥y bemaximal elements of F; containing #x and #(x — g(x]] respectively.
As mmaxineai elemet uf F; is unique.

Hence fy = Ng.

> Er+Rr—gixi) T

= Rglrl &F

But glix} & V anc [V = [1]

So, we arrive at a eomtradiction.

That is, P; & Ppwf +d

= there does not exist any nonszero & —homomaorphism from 8 /P to & /P;.
Let W and L be twio maximal elements of F;,

Then N £ Land L & Wit = L

= The map M - "f gives a non-zevs: homomarphism 6: I — "—:
Every uniferm submodule of"f_ helongs to [14]

Hence # is the prime ideal associated with E

Let I b the uniform submodule of M /¥ Isemurphic 1o R /P, Restricting 6 to V¥, the pre-image of If
under #, we et a homomorphism fremt Bt # ;.
As V' £ F;, Py is a prime associated with V¥ fnir some | = I

. P R TR L
Consequently, we get a non-zero homomorphism from » o which is a contradiction. Hence, F;
f i

has a unique maximal element.

Summary

e observed that for every non-zero minimal left ideal 4 in a ring R, either A% = {0} or
A=Re;e’=ecR.

e Wedderburn— Artin Theorem is proved.

e Important consequences of Wedderburn— Artin Theorem are explained.

e  Uniform and primary modules are defined.

e  Prime ideals associated with a module over a noetherian ring are explained.

¢ Noether-Lasker Theorem is proved.

Keywords
e  Wedderburn Artin Theorem
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Uniform Modules
Primary Modules

Prime ideals

Noether Lasker Theorem

Self Assessment

Uo®pw Uow e

TO®p R

N gnw» 9

o0 >

9NwEp -

ON®E o

Let A be a mirimal lefl ideal in a ring R such that A% # [0}. Then
A= Rewheree =p? g §

A = Re whereeis the anity of R

A = [e} where e I= the unity of &

A=8

Let A i the mintmal left ideal of 2 ring & and & is any left ideal of #. Then
B i= contmined in A

& condains A

I 8 is contained ind, then B = 4

If & vaontains A, then & = A

et M be a simple # ~muxdule. Let f ks2an # —endomorphism on #. Then
{15 always 1-1

{ 18 1-1if and only if { » D

{15 1-1if and only if f =10

F is never 1-1

Lei M be a simple # —maxlule. Let f b an & —endomorphism on M. Then
[ s always onto

f iz onto if and only if f = D

{15 onto if and only if f =D

f is never onto

Lt ff b a left Arfinian ring with unity and no nonzero nilpotent ideals
All ideals of # are nil ideals

it Futs no nil ideal

i =1[0}

# has monon-zero nil ideal

Let & bia left Artinlan ring with unity and no non-zero nilpotent ideals. Then each non-
zera lett ideal of i of the form e, where ¢ is

Additive identity of #

Multiplicative idemtity af f

Any element of &

An idempotent element of &

Let / bar a left Artinian ring with unity and no non-zero nilpotent ideals. If 5 is the sum of
all minimal left ideals in &, then

& 15 1 minimal left ideal of &

4 15 d left ideal of #

5 k5 the maximal left sileal of #

5 may or may nit be a left ideal of B

True/False Let # b a left Artinian ring with unity and no non-zero nilpotent ideal. Then &
is always right Arfirtian
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A.
B

ON O

=S

=

onw»

ON® R

Juny
L

oONw»

oNwp

True
False

Let M b @ non-zero uniform module and I and ] are two non-zero submodules of M then

fuj=M
I =M
fnji=[0
tnj={0}

True/False Two uniform submodules of the & —module £ are sub-isomorphic.
True
False

. True/ False Each non-zero submodule of a noetherian module contains a uniform module.

True
False

Let ™ b a prime ideal of # and M be an P —primary # —module. Then the number of
prime icleals associated with M is

0

1

2

Infinite

Let M be an # module. Then

M is primary if ind only if it is uniform
M is uniform implies it is primary

M is primary implies it is uniform

If M is not uniform, it cannot be prime

Let M be @ non-zero finitely generated noetherian module over a commutative ring . Let
there are m primes associated with M. Then

n=j

=1

i i% a finite number

i Ay e infinite

Let [ 1% a uniform m<iule over a commutative noetherian ring &, Then the unique prime
ideal # for whichll canlains a submodule isomorphic to #/# is called ...... ideal associated
with wniform modurle I,

prime

Irreducible

Maximal

Zero

Answers for Self Assessment
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11. A

12. B 13. B 14. C 15. A

Review Questions

1.

2.

Let # be a left Artinian ring with unity and no non-zero nilpetent ideals. Then show thik
for each ideal J wf . K /1 is afsp left Artinian with no non-zero milpotent ideals.

Let B be a prune lefs Artinian ring with unity. Show that # is isomorphic to the i = it
maltix aver a division ring. Hence, show that a prime ideal in an: Artinian ring is maxirmal
Let & bean Artinian ring. Then show that the following sets are equal ideals:

N = sum of nil ideals

[F = =um of all nilpotent left ideals

¥ =siim of all milpotent right ideal=

Let MU, and ¥ b as defined in quistion 3, show that &/ s no non-zero nil ideals.

Let # b a finite-dimensional algehsa over an algebraically closed field F. Suppose # has
no nenr-zero nil ideals. Show that # 15 Isomorphic to the direct sum of matsix rirygs over F.

Further Readings

e Basic abstract algebra by P. B. Bhattacharya, S. K. Jain, S. R. Nagpal,Cambridge
universitypress

e Topics in algebra by 1.N. Hartstein, Wiley

e Abstract algebra by David S Dummit and Richard M Foote, Wiley

Weblinks

e https://nptel.ac.in/courses/111/102/111102009/
e https://nptel.ac.in/courses/111/105/111105112/ #
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Unit 09: Smith Normal Form
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Objective

Introduction

9.1 Smith Normal form over a PID

9.2 Row Module, Column Module and Rank

9.3 Fundamental Theorem for Finitely Generated Modules over a Principal Ideal Domain

9.4 Application of Fundamental Theorem for Finitely Generated to Finitely Generated Abelian
Groups

Summary

Keywords

Self Assessment

Answers for Self Assessment
Review Questions

Further Readings

Objective
After studying this unit, you will be able tn
*  find Smith Normal Form of an m * n matrix over a PID i,
* understand the Smith Mormeal Form with the help of examples,
. define row module, columm module and rank of a mitlrix,
*  prove that for a matrix A over a PID, row rank of A i= sual to colutmn rank of A,
*  express a finitely generated module over a PID as a direct sum of # —modules,
. define torsion module and understand results about torsion modules,

* important result on Fundamental theorem (Structure theorem) of finitely generated
module over a PID,

*  explain the applications of Structure theorem with the help of examples.

Introduction

In this unit, you will be able to understand Smith Normal form of an 1 %1 matrix over a PID
i with the help of examples. Further, row module, column module and rank of module will be
detined. Torsion modules will be defined and Fundamental theorem of finitely generated module
over a PID will be proven.

9.1 Smith Normal form over a PID

Definition 9.1.1:Let A e an w1 xn matrix over #. The lollowing three types of operations on the
rows (volumng) of A are called elementary row (calumn) operations

Intervhuanging bwi ruws (columns): We denote by #; = Rj, (£; = ;). the nperation of interchanging
the i = th and | — th rows (columns).

Multiplying the elements of one row (cclumm) by a non-zero element of ¥, Ye denote by
iy, (i}, ) the operation of multiplying the j — th row (column) by i € i,
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Adding ti the elemerts o one row (calumm) @ Hmes the corresponding elements of a different row

(coluirnn), where it € . We denote by #; +afi; [L; 4l ] thw operation oxf adding to the elements of
the i =t row (column) i fimes the corresponding elemeni= of the | = th row (column).

Example 9.1.2:
Consider the 4 X 4 matrix over the field of real numbers given by
1 0 2 3
-1 2 1 2
A=
z 0 0 1
3 -1 11

(1 0 2 3] [-1 2 1 2
-1 2 12 |1 0 2 3
2 0 @ 112 0 01
i o-1 11 3 -1 11
Applying second operation on A, #, =+ 3#,, we gel,
1 0 2 3] [3 0 6 9
-1 2 12| [-1 2 12
2 oo If fz o0 01
3 =1 1 1 3 -1 11
Applying third operation on A, Ry — i, + 3#,, we zet,
[1 0 2 3] [1t 0 2 3
-1 2 121 1|2 2 7 11
2 0 01 2 0 0 1
- L 1 3 -1 1 1

Similarly, we can applv erperaticks om columns,

Notatiom:We denote g5, 1< 4, j =m, the m = matrix units. That is, #;; is square matrix of order
with (i, {lth entey 1, alt olher entries U,

For example, &y, of 4 X 4 order is

cooo
= oo
o oo
=0 0o

Remarks 9.1.3:We show that
EirEy =&

and

gk =0V i#k
Let us dennte (p, g}rh enivies of e and ey as apg ind byg respectively.
Then
(L I} = th eneey of eqpeq = =y aim by
Now, i, = 1 if and enly'il g = j, atherwise Wi =0
So. Xy by =l = by =1
Againconsidirp £ iorg =1,
(p. q) — th entry of #i8j = Xl Ayl
Sincep # i, iy =0 ¥ k
Hence, [p, g = theniry of g0 = 0V p+ i, q %1

Therefore, only (i, [} the entry of #;;#;; = 1, all others 0.
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That is, e;;e;; =y
Remarks 9.1.4:Navr we prove
e =DV #k
Let us denote (p, lth entries of g;; and 2y a5 m,, and f,, Tespectively.
Then
(7 q) = theniry of eyyey = 37 ) Gunbing
Ifm |, then apm =0
50, I3 wy tgmbmg = tpibyq
ap; =1 if and only if p = i, stherwise itz equal to 0.
Then
(p, @) = thentry of & ey = by if p = 1, otherwise it is 0.
Buthy, = L by =0Vi#=hk ¥yq
This implies, g = @
Hence, gy, — 0¥ | # &
Therefore, we can say that &0k = 8j8; where fj is the Kronecker delta.
Theoreny: Let A be anom % n matrix over B,
(LU Ey; = 1 — oy — gy + 8y 425,

then Ej;A(AE; ) is the matrix obtained from A by interchanging the i —th ard the j—th rows
(eolamms).

Also, Bt = Ej

(it} i) = 1+ (& — 1ley andw s an invertible efement in i,

tien Li(a)A (AL (a)] & tve matrix obtained from A &y multiplying the i — th row (column) by a.
Al L7 a) = 14 (e~ = Vg

(Eir) fMy L) =1 + ey,

then M;;{a)A [AM;;{)] is the matrix obtained from A by multiplying the j — th row (column) by & and
adding it to the i — th row (column).

Also, Mij' {e) =1 — (adey;.

Proaf:

Let (p, q)thentry of e and A is by, and a,, respectively.
Then [p, qjth entry of g4 s given by F ' By

But by the definition of &, dyy = 1, by, = Qifp 21 org = .
In particulas, b,y =0V k= |

Hence, (p, @)tk entry of e;;4 s given by by ijq.

Also, byjajg = mjg iip =1

Qtherwise, 0

Which clearly implies that,

;4 i the matrix whose | — th row is the | — th row of A, and all other rows are zero,

Takingl = |, we get that #;;41 is the matrix whose [ = tli row is the same as that of A, and all other
TOWS are Zera.

Then
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£l = |:| —Ej <y eyt D_.,-_]A
= A =g —eA + oA + epd
This expression has no change on any row of A exicept the [ = #h and | = i row.
The complete expression on right side thus interchanges the | = thand | — th rows of 4.
Moreaver,
E;; Interchanges thet = thand | — th rows of 4.

Again, applying E;, we are again interchanging thei — thand j — th rows and thus getting them at
their original place back.

That is,
Ef; = §
or,
Ej = Ey
For part (it}

Consider L;{a} = 1 + (& — 1)e; and i is an invertible ebement in &,
then L;la)A = (1 + (i — 1)ey)A
=4+ (o — Dey
Mide that in gy A, all rows excegst the { = th row are zertand § ~ th is same as that of A

Sa, for « € i, ce;A has all rows except the & = th fow are zeroand 1+ — £k = ¢ Limes thel —
th vow of A.

That is, i —th o of (o —Thegd is @ — 1 times | — cheow of A and hence | —ph row of A+
(& = 1IegA s {1 4 & = 1) tmes that is, ¢ fimes the { — e row of 4.

Alsa, for amy J= 1, since j— throw of (w— 13eyA is i, so, j— th row of A + (@ — DeyA 15 same as
the j ~ th soww of 4.

So, L;[a)A denutes the: mmtrix vbtained from 4 by multiplying the ¢ — ti row (volumn) by .
Further, consider

A+ @—De)il+ @ = D) =1+ @ ' —1+a-Deg+ (A —aw—a '+ 1ef
Since £} = y;
So, we get,

A+ =D+ (@ — Dey) =1
Hence,
Liay =14 (@ = Ney

Part (iif}My{a) = 1 + aey;,
The matrix #;;4 = the matriz whose { = th row is the | = th row of A, and all other rows are zero.

Hence, the mmmxix e, 4 is the malrix whose I — th rine i= i times the j— ¢h row of A, and all other
TOWS @il 221,

The rmatrix My;(2iA = A 4 weypa 15 the matrix with [ = phrow @8 sum of { = th row of A and « Himes
the j—th rowe of A, all other rows are same as that of matrix .

Moreover,
Consider
(14 ae )1 = agy) =1 +ae; — wey —ae
_ 2
=1- a‘-Ei}'

Note that #;; is the matrix with [ i, {Jtfi entry 1, all other entries 0.
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So, e?j =10
Hence, f[ + Grei,f]f[ = “fij] =1

Definition 9.1.5:The matrices Ej;, I';(a) and M;;(a) are known as elementary matrices.

B Note:

An elementary matrix is the result of performing a single elementary row or column
operation on an identity matrix.

Precisely,
e the matrix obtained from the identity y nging the
wif = malris B/ interchs { —th an f —th
rows (equivalently, interchanging the ; — 5 and j — ¢n oopumns).
Ty " [ (W) anc g — ey an
" then i ained from the identity matrix ,Plying the Nb o x
L aer) it LI by el bt il & acwa-
“ ZeTO s € i fu» .lulvalently, by multiplying the ; Z ¢ ;njumn by by & i "aro] = S/
1l 5] " s Coran 3N neEea
¥ ‘: , = ther trix obtained from the identity matrix by  aing v the ele  2r the | —th
nii b “ra m_ 115 of

row fimes the corresponding elements of the |, "l roww, where

oar i i
matrix (""lamed from the identity matrix by aJdl"S. i ihe elenweats o che i —th

column # times the corresponding elements of the | = i ¢otumn]

e is als the

In addition to these three elementary rows (column) operations, we apply a non-elementary
operation to the rows and columns of 4

that is, multiplication by matrices of the form

M
[ 1

—_—

[ 4

1

I 5
where [L .II is invertible in i, the ring of square matrices of order 2 over .

Multiplying A on the right (left] b+ & suitable matrix of the above form has the effect of replacing
two of the entrie= on a given row {column) by their greatest comumon divisor and 0, respectively,

Definition 9.1.6:Consider two 11 * 1 mairices A and & over &, Then A is siid to be eguivalent bo B il
there exists an invertible matrix P € R, and an invertible matrlx f € Fy,, =ach that § = FPAG.

Now we see that "being equivalent" defines an equivalence relation in the sel of m * m matrices
with entries in .

Theorem 9.1.7:Be1ng equivalent is an equivalener relation on the set of my * 1w matrices.
Every matrix A of order m » 1 can be written as
A= Al
where [, is (he identity matrix of order &,
So, this relation is reflexive,
Consider, twi matrices A and B of order m = n,
surh that A i= equivalent to &,
That iz, there exists an frivertible matrix P € R, and an invertible matrix Q € R, such that B = PAQ.

P and (b are both invertille. "bl:' pre-multiplying both sides by P~* and post- multiplying both sides
by F weget, PIRGT =
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So, If is5-zquivalent to 4.

That is, the relation of equivalerce i matrices ol order m % n is symmetric.
Consider, three matrices A. B and © of order m 1,

such that A iz equivalent to i and & is equivalent io C.

That is, there exist invertible matrix Fy, F; € R, and an };, {; € R, such that B= P,AQ, &nd
0= P00,

L =P:BQy = PrAAQL D,
Being product of two invertible matrices, P, and 41}, are both inwertikle.
So, A i=equivalent to .

That is, the relatizsni of #iquivitlince of matrices of order i = I5 lransitivie ind hence, an
equivalence relatict.

Theorem 9.1.8:If A is an m = 11 Matrix over a principal ideal domain #, then A is mquivalent to a
matrix that has the “diagonal” form

iy
iy

oy

where a; # 0, 4|4, |as] @,
Proof:

We detine the length [(a} of @ # ) to be the number of prime factors occurring in the factorization,
@ =y, Py, Where p; are all primes (not necessarily distinct). We use the convention that
[lu) = I if 1 isa onit.

If 4 = 0. then there is nothing to prove. Otherwise, Il a;; be a non-zero element of 1 wilh minimal
length [{a;;}. Elementary ruw and column operaticrs brirg this element to the (1,1) position.

We maw then assume that the non-zero element of A with smallest lengih is at the (1,1) persition.
Let @y dipes not divide @y,

Interchangmg, the serond and the k — th columns, we may assume @y, does net divide ay ;.
Letd = [z, ;2] b the greatest comman divisor of o, ard a,;,

Then [{d}) < [{a, ). Thers exist elements w, ¥ € & such that & + gpu = d

Because i = (i, 4144 } be the greatest common divisor of iyy and a,,, there exist 5,1 € ¥ such that

g = s, iy = de
Also,
dyg e = d
s + i = d
so that,

s+ ve o]

It can be verified that
| Y ool
=[o 1l

—'Esi is invertible. Multiplying A on the right by

which implies that [.:f
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We obtiirn the malrix whose first row is
@ 0 Bz o Bypd
where [{d} = [{aqq).

Continuing this process yields an equivalent matrix whese first row las all entries 0, except the
(1,1) entry.

Similarly, appropriate elementary row operations ({}— [tit] anl the mon-elementary operation of
multiplying on the left by the matrix of the form given in (ir} reduce the elements in the first
column after the (1,1) position to 0 and either keep the elemerits ir thi first row unaltered (i.e., all
apart from (1,1) entry are zero) or reduce the length of the (1,1) entry.

In the second case, we repeat the process by which all the elements in the first row exuep the one at
the (1,1) position are reduced to 0. Because [{f;; } i= finite, this process (of alternately re:ducing the
first row and the first column) must come te an end. When it does, we have reduced A Lo the form

-:':':: 0 0 .. 0]

P AG, =[9 A '
0

where A, is an (i — 1) X (iz — 1) matrix, arzd &, and ) are m 2w and 7 %5 lnvertible matrices
respectivily

Similarly, there exist invertible matrices # and @3 af orders (1 —1) X (f =1) and (& = 1) X (12 =
1), respectively such that,

a, 0 0 o]
: |
| L3 -
24,0 0 A, J
0

where A, isan (m — 2) X (1 — 2) matrix.
Let

I | ] 1 0
2=[o pland0a= g

be, respectively, 1 1 and 1 * 1 invertible matrices, Then

[ (1 0]
I ] a 0 OI
PP Az = g |
; Az J
]

Continuing like this (or by inductiom am 1 + #}, we obdain
PAQ = digg (a,, a3, ...,a85,0, ...,0)

Finally, we show that we can reduce PAJ further such that a4 |, ... |a;-.
Assume i, dves not divide ;.
Add the second row to the first row.
The first row then becomes

(@, @z w @ 0 .. 0)
By performing these operations, we can reduce the length of a;.

Thus, by further reduction, we may assume 4, |ay, and, similarly, a; |a;, 1 = 3, 4, ..., 7.
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By repeating this procedure for «; in place of oy, and so or,

we finally reach a situation where at; [;44. £ = L., ¥ = 1.

Definition 9.1.9:The nom-zero diagonal elements of the matrix having the diagonal farm given in
theorem are called the imvariant faitors of 4.

That is, the non-zero e, @y, ..., &, found such that @, @] ... [#, @re invariant factors of A.

The invariant factors are uniques U to unit multipliers.

Result 9.1.10:Two #1 = 1 mairices are equivalent if and only if they have the same invariant factors.
Let twa matrices of order m x n ar: equivalent.

Let invariant factors of A wre iy, @z, ., iy,

Then A iz equivalent to the matrix 4", whete A" is given by
i

T

AEy-

Since relation of egu-valente matrices is an equivalenws melation, therefore, f§ is equivalent to A,
Further Iy uniqueness of invariant factors, we get thiat B has same invariant factor= as that of 4.

Conversely, 2t B and A have same invariant factors iy, &y, ..., ..
Then & and A both are equivakent to A,
Since relatluin of equivalence mtatrices is an equivalence relation,

therefore, i 15-exquivalent to .

@ Example 9.1.11:

Obtain the Smith normal form and rank for the matrix with integral entries

HE

1 2 3

Sglution:let A = [.’. : 0

i, = B, —4R,
NI

0 -3 -12
'l:z =% Cz = ?’l:].'l::-; _"'r-3 _3C1
oo

g =3 -12
Gz = G —Ha

_([J) —03 g

i, = (DR,

“lo 30

Invariant factors are 1 and 3. Hence, rank A = Z.

@ Example 9.1.12:

Obtain the Smith normal form and rank for the matrix with integral entries
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z -1
To— 8 37
= -4 A4l

over the ring of integers. Also find the rank.

Solution:
0 2 -1
A= I—ﬂ 8 3 ]
2 -4 -1
£y + iy
-1 2 ]
- 3 8 3
-1 -4 2
C; =+ (=1,
1 2 i}
ecl=3 @ =3
1 -4 2
£, =+ 5 — 20
i ¢ 0
~l=3 14 5
L1 -6 2.
R, = R, + 3R,
1 0 0
=0 14 3
1 -6 2
H; = .I'E3 = I"-'1
1 1] 1)
-0 14 3
o -6 2
R
1 0 0
~|0 =3 14
n 2 -6
Now since we are in the ring of integers, so we need o ajrply non-elementary operations.
1 0 D
We need o post-muliply it with a matrix |0 1w ¢
0 » -5

Now GED (=3, 14} =1
—Bu4+ltr=Lu=9p=2
Also, =3 = —3{1} 11 =140
Thatis, & = =3t = 14

10 0
So, wi: past-multiply it Iy the matrix {[I 9 14]

TESEESEEIS

Ry — Ry —6R;

1 06 0
“lo 1 u]
0 0 10
So,rank A = &

Then
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9.2 Row Module, Column Module and Rank

Lenima 9.2.1:Letf b a principal ideal deoamair and let ¥ be & free B —module with & basis consisting
of i slement=. Then any submodule K of £ | alsy free with ¢ basis vonsisting of 1 elements, such
that m < n,

Proof:
Sinee F 15 o free § —module with a basis cons=isting of 1 elements, therefore, £ = K™ as R-modules.
T frrove the theorem, we use induction i1 it

R® is interpreted as a {0} module, and this i= fres on the empty set. Therefore, we may a==ume that
n = 1, and let us identify the copy of K in " {under the isomorphism £ = &™] with K liself. Let
m: K — & be the mapping defined by

M{X) s X3y o, X=Xy
Ifr = 0, them ¥ — Kerw < B, and the thearem follows by induction on .
If T # @ its image 15 a non-zero ideal Ba in #;
that is, m{ K1 = Ra, @ = 0.
Choose k £ K such that mlk} = .
We assert

KN=RkPKerm

For, letx E &,
Write m{x} = buz, b € K.
Then n(x — bk} = n(x) = bk} =ba - =0
Hence,

= bk + {xr— bk)
implies that x € Rk + kerm.
Thus, K = i + Ker .
To prove that the sum is direct, let

ck ERE N Kerm, cE R
Then 01 = w(ck) = ¢
Since ¢ # D, therefore, we have ¢ = ik
This proves our essertion that K = Rt @ Her m.
It is easy v check that the raapying r — rk of & onto KE is an # —=isomorphism.
Further, Kev = ([, w700, %0 My, € R},
Thus, ¥erm is embedded i B%°L,
Hence, by induction, Ker m is free, with a basis corsizting of af tost m — 1 generators. Therefore,
K =Rk$ Kerm

=RFER" mEn—1

So, KR m+lisn

Motations:Let A e an m o e matrix over K, The rows (columns) of A are the elements of the
# —imodule B*™™ (F™*'}y consisting of the 1 ® #{m x 1) matrices over K.

Generally, we write R?*™ (and #™*" j as #™ {and #™).

Using the notation ™ to denote rows as well as columns never creates any confusion because
context always make= the meaning clear.
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Definition 9.2.2:Let A be an im = r matrix over . The submodule of #™ generated by the i ruws of
A is called the row module of 4: and the submodule of £™ generated by the = calumns of A 1= called
the cofumn module of A,

R{AY end C{A), respectively, denote the row module and the column module of the matrix A. If the
ring B is a Hebd, R{AY and £(A) are, respectively, called the row space and column space of matrix
A

@‘ Mote:

giar and £(A] gee finitely generated submodules of free modules H® and K"
respeciively. Thus, by Lemma, both #i] and C(A] are free modules. Let A b an i = 1
maltrix over i, The rank of the module #(A1|(A]] is called the row rank (volumn ek}
of A

Theorem 9.2.3:Let A he an m % n matrix over ®. Let P and {3, respectively, be m x i and n =
invertible matrices over K, Then

row (column) rank (PAZ] = row (column) rank (A}

Since #* and {} are invertible matrices, therefore, #A( s equivalent i@ A. Hence, both FA( and A
have samw invariant factors,

This proves that row {calumn) sank (PAG) = row (column) rank (4]

Theorem 9.24:Let 4 be an m = n matrix over a PID K. Then

row rank A = oolumn rank A.

Proof:

Choose P anid £} invertible malrices of suitable sizes such that PA is in Smith normal form. Then
row rank A = row rank FAQ = r

Also, column rank PAf = column rank A,

But being a diagonal matrix row rank of PAY scolumn rank of #AL}

which proves thatrow rank A = column rank .

The common value of row rank and column rank of a matrix A ower a PID # is known as rank.

9.3 Fundamental Theorem for Finitely Generated Modiiles over a
Principal Ideal Domain

Theorem %.3.1 (Structure Theorem):Let ® be a principal ideal domain and let M oe any finitely
generated i —module. Then

M2l @ B @ .. o
- Ray, — Ray 7 Ry
a direct sum of cyclic modules, where the 4; @re non-zero non-units and a; [@t;4q, L = 1,..., ¥ = 1

Proof:

Because M is a finitely generated i —module, o, it is izomarphic to a homomorphic image of a free
module. Thatis, M = §™ /K.

Again, let M is generated by m elements, so, M = B ym =n
Let # ke this isomorphism from #™ o &
Thus,

K =™
Let {£, #3.-., ¥m be a basis of A™.

Forl1<i=m,
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pled € K = R™
riyg
34
@ley) = € K"
141 3
rityn

ﬂze]
pley) =] ¢ |ERT

LTy

iy
Gam

plemi=| i |eR
B
Then ¢(K™] = AR™, where d = [a;;| is an x % m mairix
Choose imvertible matrices F amd {# of order 1t x nand m = m, respectively, such that
PAQ = dtaglay, m3, ...0 0 0;...00,

where i i, ... |a;. Then

M = = — = zE
K o(R™) AR™ T PAQR™
Ith-ﬂ Rn
M= FagRm - fa, ;
iIp R
K
&y |-
0 ]
0 E
[a—
0 &
_ RBAE._-OR
B Rl'-l1 $ lrllﬂ:g $ @ Rﬂ*
__k@r@.DF

M =

R, ﬁlﬁ'{t;- & .. B Ray

Hint—fc gopias
————

zﬁﬂﬁ @ . EE' E

By deleting the zero terms if any, corrrspc-ndinp to those ajs that are units.

'_R_-!'!:EB @——%R“

By re-numbering, if necessary, we get
LI I
Ra, & 7 Ray @
Becausi fint ary ideal I, including {0}, # /I i= a cyclic # —module.

Thereturs, M is a direct sum of ¢yikiv moidules, wherethe a1; are non-zero non-units and u; [+, | =
1,.., =1

Definition 9.3.2:4n ¢lement x «f an # —module M is called a torsiom element if there exists a mon-
zero element ¥ & ¥ such that rx = (L A non-zero eliment x of an B —module M is called a torsion-
free element vy = 0, ¥ € #, implies v =1

Theorem 9.3.3:Let # bwa principal ideal domain and let M be an # —inodule. Then
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Tor M = [x & M|xis lorsion} is a submodule of M.

Proof:

Consitter ihe M

Then¥d =@ivr &R

Theretore, 2 € Tar M

So, Tar M # ¢

Consider @, b€ Tor M, r € &

This implies, there exist non-zero elements 1y, v, € B, such thatma =0, k=10

Consider 1yl = Bl = ryrqa = vyrsb

This implies, @ — i € Tar M
Again,
r(ral =rinal =0
So, ria € Tar M
This imgrlies,
= eTorMva beTor M, rE &
Hence,Tor # is a submodule of # —module M.

Definition 2.3.4:A maiule is said to be torsion module if every element is a torsion element.A
module havirtg no-nonzero torsion element is called a torsion free module. The set of all torsion
elements of a module M [over a commutative ring) form a submodule, called torsion part of M, it is
denoted as ;.

Remark 9.3.5:Every non-zero element of M is linearly independent if and only if M is torsion free
module.

Proof:
Let every nem=zero element of M is |inrarly independent.
This implies, Y0 = xeEMandr E K,
frs={thenr =1
Therefore, ¥ i= kprsion free element.
Conversely,
Let M i= torsion free module.
Let x be a mor-zero element of M.
Since M is torsion friee mbdule,
therefore, x is torsion free element.
This kmplies v = it and only if = =
So, x i= linearly independent.
Remarks %.3.6:
1. I} i=the largest torsion submasinie of M.
2. M i= torsion free if and ol if M, = {0}
Proof: Let N be any torsion subrmisdule of M.
Thss smplies all the elements of i are torsion elements.
If x € W, then  is tprsion element.

Since M, is the set of all torsion elements.
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S>SXEM = NCM,

Therefore, every torsion submodule of M is contained in M;. Hence, M; is the largest torsion
submodule of M.

Next, let M is torsion free.
& 0 is the only torsion element of M.
e M, = {0}

Theorem 9.3.7:For amy module M over a commutative integral domain, the quotient M/M; is
torsion free.

Proef:To prove that /M, is torsion free,

we will prove that if  {s lorsiom element of MM, then & = {, that is, ¥ = M,.
Let & = x + M, x £ M b a lorsion element of # /M,
sri=0frsome0+rER

> rixd M) =M,

=¥ + M, = M,

= X E M

=asthere exisls % 0, 1; € ¥ such that

ry(rx) =1

> Hrix =10

Sirwe 1, 1y e bath son-rero elements of an integral domain # and integral domains are without
praper zero divisors, therefore, fyr =

= br=Dwhere kb =rr + 0
= x is torsion element of M.
> x E M

=>r+ M =M

So, & =10

Therefore, I /M, his no non-zero torsion element and hence it is torsion free.

Example 9.3.8:

Every torsion free module netd not be fres

Proaf: We have alveady proved that £ —module 7 is not free.

Let B — 2, M = (), +)

Since¥lzxreRandx e

ry=0aonlyif xr=10

= M, = {0) and hence M is torsion free.

Theorem #.3%A finitely penerated torsiom free module over a PID is free.
Proaf:Let M b a finitely generated torsion free module.

Lat M =< X > where X = (X1, ¥4, .-, Tx}

I == [} implies st least one of the s = (]

If X i= linearly dependent, we can choose a subset of X which is linearly independent, and it is
possitde since M is torsiom free module.

Let B = {xy, T3, ..., Iy ) b the maximal inearly independent subset.
Let linear span of ff = F

Since # is non-zero and f penerates i
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M contains at least one non-zero element implies

That # # ¢ and wm = 1

Also, M is borsiom free

Consider | < i = 1z, then if some x; is not in the submodule generated by K.

Then & U [x;} iz linearly independent subrset of X, which contradicts to the maximality of &,
So, it is mot possible thatis, V 1 < 1 =, x; is in the submaodule generated by .

Choose x; & &, x; is in the submmiule generated by i imnplies Ui {x;} is linearly dependent.

Therefore, there exist scalars, a;, ; j {not all zero)

such that
m
;T +Z oy % = 0. (1)

J=
If i€ = 0
Then (1) becomes,

m

II.I.I'.'I‘.'j =9
J=1

Note that on the left side, we have a linear combination of elements of linearly independent set .
Henve aj;, =0V |

But u, 4y @re not all zeve.

So, eur suppesition Wis wrang.

Thatbs. @; #0¥1=(<n

Let & = i ...k

Since M Is torsion free so, it = )

From (1)

n;r-=~v} 01X}
b s =

j=
is a linear cambination of elements of &

Hence, a;x; £ F ¥ L

Consider
X = d e Ok
= [0y <o B iy g oee il HEX
EF
ax; EFYQ
Letr e M

i is generated by X. S, there exist a; € # such that

= mr ja; €ER

M:

i=1

rff)

vi=1

So,
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n n

= Z alax) = Zﬂx(ﬂ-'f:l" EF

i=1 i=i
Hence,

oM = F
Consider the map f1 M - F as f{x] = ax then
[ is B —hsmemorphism
Letr;yEM, TER

flx +y) = alx+¥) = ux +ay = fx) + fiy)

and
Firx) = alrx) = riox} = rfix)
[ is ome=nne
Letx & Ker f
= filx) =1
Sax =1

Since @ = ¥, i )= Lorsion element

But M is tarsion free implies x = 1

Sa, Ker [ =1{1]

Henez M = fiM)

FLM being submodule of free modul# ¥ is o free module.

Being isomorphic to a free module, # is a free module.

Task:

FITe

111

1. List all the torsion elements of the ring nf integers considering it as a
module over itself.

2. Listall the torsion elements of the ring £,«asidering it as a £ ~mhodule.

3. Listall the torsion elements of the ring £s¢#asidering it as a £ = hodule.

Theorem 9.3.10:Let M be a finitely generated musilule over a princioal ideal domain &. Then
M=F@iTar M

where,

(I} F = BT lor some non-negative Diteger g, amd

o R ¥ . .
() Tor M = o &1 . i - wherea are non-zero non-unit elements in & such that a;|a;| .. [a,
,

Proof:

By the structure theorem for finitely generated madubes tver a PILY,

M = R"-H_-‘,iﬂﬁj—&% EBE—
Ry~ Ra, [ 2
a direct sum of cyclic modules, where the 1«; are nen-zeTe non-units and a; [@4q, (= 1,..., F=1
It then follows that
M=F@T
where F = K and
R
T ER_T;:GBE;@ ...@R—i:.. ¢8)
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Clairm: a, T =1

Letx €T

Let ¢ e the isomorphism between T ad

Then

That is,

Now

Implies,

Also,

This implies

From (2)

As, [ 15 commutative

Now,

Therefore,

This implies,

Since 4 is B —isomorphism

So, ¢ (i = O implies a.x = 0
Since a, # [, & € Tar M

So, ¢l x) = U impliss a,x =00
This imiplies, ¥ & Tor M

So, T =Tor M ...(5)
Nextletx e Tor M e M =F@T

176

iy R R
E@lﬁ;@m@ﬁ:

R R R
MI]EEEBE;@"'@E

¥

s
= LILE—¥1<]|
b(x] Z;.rl I, ER::, 1<i=¥r

2
Har;

e
I =x+Fa, 3, € F..(2)
e, Yi<i<r
@ = rn E R (3)
I, =X + K,
T = i, [x + Kay),
= iy (x; + K[ From (3)]

o {x; + Bag) = reply + ;)

i0; € Koy

v £ Ry
ridyx + Ray = Ray
it (% BiEy )= K

Hp Xy = ﬁ |:-'¢:|

a0 () = e, B + ap ¥ + -+ i, %

=l at+l=1i
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r=x tx;, nEF, R eT
Because x € Tor M, 3, e T =Tar M
Consider

n=x—1, €TarM

This implies, fhere exists non-zero £ ¥ such that
TX; =10
Since ¥ = B
Therefore, there exists : F =+ §* such that ¥ is i =iscrnorphism.
nLEF
S0,
W) € R®

Let

() = (Fu Yzoue, ¥s)
Sinceray; =10

= Plrxg] = i) =0

= (¥, 7Y, TH) =0

>ry=0vVIi<i=ss
Sance ¢ =
T, ¥; € # and & is an integral domain, hence: withoul zero divisors

S>y=0¥1l=zi=s

= x) =0
But ¥ is one-one implies, 1y, =0
Thenx=ux; +i; =3, €T
Therefore, x € T
>TarMcT.. (6}

From (5) and (6), we get

T=Tor M
Theorem 9.3.11:Let & b a principal ideal domain and let M be a finitely generated # —module.
Suppose
R R
5 — —— i
M= &g flary E} fa 2$ "'$Rﬂ._ it

where «; are non-zero non-unil elements im B such that a, inzl o 2,

M= R EBE'T [D Gﬁ B Eb: 2k
where by are fno-gero net-unit elements in § such that by 6] ... b, and
Thens =t u=w fm; =Rk, 1<i=u
Proof:

Frem the Shucture theorem, we have,

M=F@BTorMand M =F @ Tor M

where F = 8, F' z R}t

T - — _
T=Tor M R‘m% @ . @Rnu

Lovely Professional University 177



Unit 9: Smith Normal Form

and
i) R R
T=TorM E—h—EFJﬁ:GE-J...@E:
First, we prove that s = ¢
F=R" F'sRt

M _FEBT‘-u-r.H
Tor M~ TorM
F
*FaterM ¥

Also,
M F@TorM
TorM~  TorM
~ Pl’ —
TFATorM

F

This irngiies,

But F =R, F' & R*

=R ===t
Next, we prove thatw = vand o, = Kb w1 < =u
If X 15 any & —module, p iz any prime number
Define X,, = {x € X| px = 0}
Clearly, g # Dand V xr € X, px =1
Since px =i, p=0

>xETarM

Therefore, X, © Tar MV E —module X,

Fork =T,
T, ={x €T|px =0}
Since
u
T=O » R/Rmy
)
Therefore,
R
720 ) (gg), -
=1 Yo
Claim 1:
B (2]
i ?
| [} v}
[R‘nin [ Rﬂ‘- .prl i
i otherwise
If )y

a; =pr; lorsome 1; € &
i
v R e ()
R'-Ili P

o pix + Rajb = Ra; & px + Ra; = Ba;

S pxE Rﬂ'=IER[ﬂj
* p
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')

12
a

S x4 Ray €

R
A R
<a(2y) 2)

If p dioes nol divide a;
. i
For ¥ £ (.n_u.jp

spi=10

= plx + Rag) = Bay

= px E Ra,

Spx=ra, R ER

If x = Oy piryay

Sirce p does naot divide a;
SpnYyneR

= # =<« p = which is not possible.
Therefore, ¥ = Dand

hence

(3=), =

bl
So, the claim is established.
[i - f{—;] if pla
R-Ill' Jp - R‘Ti .
1] oLAETWIEE

# ks principal ideal domain. This implies, < p > is maximal ideal of .

So, IR
<p>

That is Ri" I= a field,

U2
Consider I = ,.;:.J as @ vector space over the field F = ;—n

[etr eV
i =£'_|!{|:E"} +Ral) where & € —
P B

ﬁ

Since X €V =
#uly
i
= ¥ =¥+ Na; wherex € R [:—]
p
That is, * = -';ﬁ fpor some 1; E R
= I =X+ Ray

iy
=——+Ra;
"

av i u;
=:;[-—L+Ra£JE < — 4 fm; =
P r

apy

'u —! ¥ i
Then -—RI';'":’- is generated by a single element (%) + Ry,

ey

.G . . [
That is, — is or= dimensional vector space over =
{3 [

Ha,
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From (3), T, is & veclar spuice ﬁiférni;’ with dimension equal to number of terms ;%- such that p|a;,
{3

Suppose p|lay Since g, |azl .. |a,
This implies plax; % 1 < { =

Again,
T - & . & .0 - 4
“Rb, RB, T RE, - (4)

Sinceply ¥l <i<wu
In this case, dim T, =u

Hence from decomposition (4) andl the fact that dim T, = u, we get,

) R R
ﬁlaﬂ(ﬁ;(:ﬂﬁszfﬁ @;TE J =1

This implies, p|b; for at least u number of fx .
SuLw
Similarly, we can show that v = u

This implies, u = »

:>T_HIJ|€BEIET; EBET" ’ (5)
fiiplel
i ] L

First, we prove that Ra, — &by,

Since 1, T =1

From (4}, Rmy, — iy,

Also, b, T = [t implies, Bb, c fa,
Hence, fa, = b,

Now assuttie Ra; = Rb;Vk =1 £ u

We show &y, = Ry,

Let p be & prime element in # such that p¥|m,_y, p®*!dees not divide &,
Also,pfby_,, p™ does not divide by _;.
If & = # for each prime p, fay,_y = b4
Otherwise, let a = i

a1
Put:=L;;ﬂeR

where p® |, p**1dces not divide .

Then
R it R
T=x [E'-'T 3] E,‘E; i . mﬁ:]
Rx 4+ Ray _ Rx+ Ray fx + Ra,
T Ray B Ra, -9 Ba, @
Putting = = pﬂ;:' and since p*|@y_q, Mp—q = p A, _,
We get,

The (k = 1)t summand is
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Bp®la,
Ex+Ray, ~ + Rpa,_,
Rme,  Rpfai,
R
" Rpta_,

a-ty , .. “Tg ;
where d = IiEPT“,p“ﬂ'A_L:I . the greatest comman. divisor of EPT“,}J“F*_L.

But
ayy |y
This implies,

T Ve
Oy = FF ng

=1

a
= G (p P 2 .p“n;_t) =p*ta;_,

Therefore, d = p®~tay _,
Thus, the (k = 1)th summand in (7) is
Rp“ayy R
Rp"og., Rp
Because in any integral domain,
Ra P R
Rab = Rb'

Similarly, we can show that any summand preceding the (i — 1)th summand is either j—n ar {0}

Qwa BbER

Also, indeed if any summand is {0} then all the preceding ones are also zero.

Therefore, (7 cans=sseritten as,

i Banniterme

EEEEmE

=7 = [0} @ (0] Famd]

where s, t =20, s+t =k—2

Again from (6)
P & & @ .0 R 'J.|
T =*\%s, O, © - O rp,
and its (k — 1)th summand is
Bplh, |
fr+Rbey 8 +RpB
Rbe_y Rpfly;_,
where 50D [_b,'{-l. pl=1
Because a > f§ and fy,_q |y,
Therefore,
Bier
g
B = 5
pﬂ
This implies,
, prrwilbu
p'ubn.-.q ] pn
Hence,

Rx + Rby _ RpPhy_,
Rb._,  Rpfh_,

=0}
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That is, zero of R /Ry, thatis, Rly,_;.
Therefore,
Rz € Rby_
Because Rl © Rly_, € -~ c B, it follows that the first & — 1 summands are all zero.

Therefore, the decompositicarifiiasf xT maw be writben as

Aimk—E ddr iy

i S—— R o
= :.mmmea...@m...

Comparing (8) and (9), we arrive at a contradiction.

Because any two such decompositions of a module over a PID must have equal number of non-zero
summands

Therefore,

a<p
Similarly, we can show that

f=a
This implies,

a=p

Hence Rty = Rby_;

which implies, fa; = fly; ¥ 1 <i=u

Task:

iy
111

Lef ¥ b, a Wertor space. Let ), @l Wy are o subspaces of V sich that 1 i a direct sum
of Wy and H'.ﬂ Then prove theat dime {17 = dim Wy + iime Wz.

9.4 Application of Fundamental Theorem for Finitely Generated to
Finitely Generated Abelian Groups

Remark 9.4.1:Because the rimng, of integers # i= a PID
and any abelian group is a £ — inodule,

an immediate appliration of the theorem gives an alternative proof of the decomposition theorem
for a finitely generate abelian group.

Theorem 9.4.2:Let /| b a finitely generated abelian group. Then
1= D - .. =
L a2 T
where 5 i5 @ fwn-negative integer and g; are non-zero non-units in #, such that,a, |ay| .. |,

Further, the decompusition of A suldect to the given condition is unique. (27 i= interpreted as {0}.)

IfA is generated by {x,, x4, ..., 7, } subject Lo

n

-
‘} oy =0, 1<[=m,
L

=

Then

£
A=2Fuwlix Xi—x. ®x—,
(i ' N

Where iy, 43, ...., , are the invariant factors of #1 = e matrix 4.

@ Example 9.4.3:

The abelian group generated by a3 #nd =2 Sudject to
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2x; =)
and
3.":'2 ={

Then we prove that this group i stmmirphic to Zg:
Solution: Cowfficient matrix is given by = [£ 9]
olution: Cowlficient matrix is given byA = | 5
Note that A [= in diagonal form, but not in Sntith nermal form as 2 does not divide 3.
_[2 W
e [D 3
By = R+ Ry
23
0 3
; ot .
Pre-multiply by [1, -s! whese w, ¥, 5,1 are given by,

2u+3v= L3 =(1) and 2 = 2(1)

Sothat,i==1l,r=1t=3 =2

‘q“[ﬁ g"? —32|=[i15 —Oel

Applying, B, = (—1)#,, we get,

=g 8)

Thus, the required abelian group is isomorphic to #.

Example 9.4.4:

Find the abelian group generated by {x,. x;, 73} suhject to
S5r; +9x; +5x3 =0
23 + iy, +2xy =0

I 4 I — 3T =)

Solution: The coefficient matrix is given b¥

5 9 &
A=12 4 2
1 1 -3
Hi (""R3
i 58 =3
~l2 4 2
s 9 5
R, = Ry — 2Ry, Ry = Ry — SR
11 =3
g 2 R
a4 2o
Cp = 0 — £y, 03 = 3 + 36,
[1 & &
~10 2 4
10 4 20
Ry = Ry —2R;
1 06 0
~|0 2 8
0 0 4
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C3 —= C3 —JC?
T 00

~|10 2 0
o4

Since 1|2|4 so, it is the smith normal form.

Hence, the required group is isomorphic to &, x &,.

| ety TR

@ Example 9.4.5:C )m ut thi invariant= amd find the structures of the abelian groups
. i I [ (-8 %] .
with generators .y, 2 44 Sl,pject to the following relations

gy —2xx =10
xp+x; =0

—Ty 3T, 40, =

Solution: The coefficient matrix is given kwy

a2 -2 0
A=1]1 o1

-1 3 2
Ry«
1 a 1
~13 -2 0
-1 3 2]
R, — R, — 3Ry, Ry — By + Ry
I % i
~f0 =2 -3
0 3 3
fiy & Fy
1 0 0
~ |0 3 3
-2 -3
1 0 0
Pre-multiply with the matrix |0 u ®©
0 & ==
w—2r=Lu=le=1=2,5= =3
1 0 o)fr o 0 1 0 0
A= 1 1(fr 3 3 |=|0 L O
2 310 -3 =31 o » 3

Hence, the required group is isomorphic to #;.

Example 9.4.6:

Compule the invariants and find the siructures of the abelian groups with generators
iy, iy subject to the following relations

B t+E=0

Solution: The coefficient matrix is
A=[1 1]
R
A=11 0]
So, the group is isomorphic to Z.
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Summary

*  Smith Normal Form of an m ®m matrix over a PID ® iz explained with the help of
examples.

*  Row module, column module and rank of a matrix are defined.
* A finitely generated module over a PID is expressed as a direct sum of & —inodules.

»  Torsion module is defined and results about torsion modules are proved.

» Important result on Fundamental theorem (Structure theorem) of finitely generated
module over a PID are discussed.

*  The applications of Structure theoremare explained with the help of examples.

Keywords

e  Smith Normal Form over a PID
¢  Row module

e  Column module

e  Rank of a matrix over a PID

e  Structure Theorem

e Torsion elements

Self Assessment

1. Let#,y be 2 matrix of order 4. Then g5, is
A. ascalar rralrix
B. a diagonal matrix
C. zero matrix
D. non-singular matrix
2. The operator £ jA appiied on a matrix A
A. interchanges i = th-and j — th rows
B. interchanges{ — th ani | — th columns
C. addi—rthand j—ithrow
D. addi=rthand | = thealumn
3. The matrix ## =
A. Identity matrix
B. Identity matrix if i = |
C. The matrix & il f = &
D. The matrix e, | =k
4. In the ring of integers, length of 120 is
A. 5
B. 4
C. 3
D. 2

l’] 2 3]
5. Rank of the matrix ) is

4 5 0

A. 0
B. 1
C. 2
D. 3

6. Length of a unit in a Principal Integral Domain is
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N opwm»

9Nn= >

ONwp®

SR P

oNwp 2

—_
=

9NFp

UNwrR

@ 5

SR~

0

1

Infinite

Not idefined

Lt B b a principal ideal dioimain and let £ be a free & —module with a basis consisting of
i elatents. Let N be an # =submodule of F, Then

i may or may not be free

i iz always free and rank ¥ < 1

i i= always free and rank & = it

i i= always free anck rank & = n

Consider the map m: F3 — £ as w(e, ¥, 2) = ¥ then Kern ia
a subspace of ¥ of dirmsesision 3

a subspace of ¥7 ¢l dirmension 2

a subspace of ¥* ¢f dimension 1

not a subspace of F3

Lest A b an i = st mistrix over a PID K. Let row rank A = E and column rank A = [. Then
E <[ < min{m,n}
k= [ = min{m, r}
k=1 = min{im, it]
k= [ = min {in,n}

An elemant xoof an E-module M is torsion element then
There exisls o unique element r & R such that rx =0
There exisls a non-zemo element ¥ € & such that vy = [
tx =Nforall ¥ € R

rx = 0forallr e &

Let M = &g be the additive group of integers wnder addition modulo 6. Consider M as -
moclule. Thes: the set of torsion element(s) of M is given by

2]

3]

12,3

g

. Mis torsion free R module. Then torsion part of M denoted by Tor M is

Equal to M
Equal to {0} where 0 is additive identity of module M
Equal to R
Equal to {0} where0 is the additive identity of ring R

. True/False Let M bea [initely generated modulke over a principal ideal domain & swch that

M = F B Tar M. Then F 15 a free module over .
True
False

The non-zero, non-unit elements obtained in the structure theorem are called
Units

Unity

Invariant Factors

Multipliers
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15.

onwp

Invariant factors of the matrix [g gl over the ring of integers & are

2and 3
land 6
land 3
land 4

Answers for Self Assessment

1 B
6 A
11. D

2 A 3 D 4 A 5 C
7 D 8 B 9. D 10. B
12. B 13. A 14. C 15. B

Review Questions

1.

Find the invariant factors of the fallowing matrix vver §f]x]:

Si-x 1 -2 4
] - 2 2
0 0 5-x 3
U 0 1] 4

Find the rank of the subgroup of #* generated by the elements
{(3,6,9,0), (-4, —8,—12,0)}.
Find the rmank of the subgroup of #* generated by the elements
{(2,3,1,4),1,2,3.0), (1, 1,1,4]]
Compute the invariasts and write dowm the struitures of the abelian groups with
generators Iy, Ty. T3 sutgect to the follewwing relations:
Igy =L, =Ux; 4+ 2y =1 —%; +35 + e =4

Compute the invariatits and write dewn the structures of the abelian groups with
generators xy, ¥,, ¥z subject to the following relations:

2y —33=0,-33;, +Ba;+ 315 =0,23; —day; —33 =0

Further Readings

e Basic abstract algebra by P. B. Bhattacharya, S. K. Jain, S. R. Nagpal,Cambridge
universitypress

e Topics in algebra by I.N. Hartstein, Wiley

e Abstract algebra by David S Dummit and Richard M Foote, Wiley

Weblinks

¢ https://nptel.ac.in/courses/111/102/111102009/
e https://nptel.ac.in/courses/111/105/111105112/#
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Unit 10: Characteristic Values and Diagonal Canonical Form

Dr. Isha Garg, Lovely Professional University

Unit 10: Characteristic Values and Diagonal Canonical Form

CONTENTS

Objective

Introduction

10.1 Characteristic Values
10.2 Annihilating Polynomials
10.3  Diagonal Canonical Form
Summary

Keywords

Self Assessment

Answers for Self Assessment
Review Questions

Further Regarding

Objective
After studying this unit, you will be able to

» define characteristic value and characteristic vector of a linear operator on a finite-
dimensional veclor space V over F,

+  define annihilating polynomial of a linear operator T o a finite-dimensional vector space
1" over a field F,

»  prove that the set of annihilating polynomials is an ideal of F|x],

»  show the existence and uniqueness of minimal polynomial,

»  state and prove the Cayley Hamilton Theorem,

* understand how to find minimal and annihilatirng polynomials «f @ inear operator,
+  define dlagonalizable operator on a finite-dimnsional vector spitce,

*  Corresponding to a diagonalizable operator T, find the basis # nf underlying space such
that [T] s a diagonal matrix.

Introduction

In this unit, you will be introduced to characteristic values and characteristic vectars af a linear
operator on a finite-dimensional vector space ¥ ower F. Amnihilating polynomiais will be
defined. It will be proved that the set of annihilating polynemials is an ideal of F[x} Further,
the relation between annihilating, minimal and characteristic polynomial will Iw explained
with the help of examples. Diagonal canonical forms are defined, and the operators are
classified in terms of diagonalizable or not.

10.1 Characteristic Values

Definition 10.1.1:Let I be a vector space over the field F amd let T bo a linear operator on VA
chiaracteristic value of T is a scalar ¢ im F such thathere is a nor-zero vecior o € ¥ with Ter = o

If © i= a characteristic ¥alue of T, ther we can @hserve the following points:

(o} any non-zero vectar i such that Tir = rr is ulled a characteristic vector of T associated with the
characteristic value ¢;
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({¥} Lhe collection of all a such that Tir = ¢ux is called the characteristic space associated with «.

Characteristic values are often called characteristic roots, latent roots, eigenvalues, proper values, or
spectral values.

We shall use only th name ‘characteristic values,’
Theorem MLLEI T is anv linear operator and r is any scalar, the set of vectors a such that Tir = i
is a subspace of I,
Proof:Let 5 = {u|Ta = cx)
Since T{0} =0 =cit, O EY
Hence, § # b
Letir, BES, e EF
Then since T i= & linear wpreraton
Tioe +8) = al(a) +TI(E)
Also, a, B € 5 imply Tar = ¢ and T = cff
So,

Flerer 4 5 ¥ Coed b LAY
T (ard + TCAD
N
oo 4 ofF

o erce A 73

Therefore ae + f € S¥a, FES. a € F

Hence, & i= & subspace of I.

%’ Note:

From this result, it is tlear that if;; is a characterist vector of a linear operator 7
carresponding w the characteristic value ¢, then kb € F 1= als a charscteristic vector
of & linear operalor T cotresponding to the mame characteristic value ¢ Hemce, there exist
infinitely many characteristic vectors corresponding to omi characteristic value
c.However, § is a subspace of finite-dimensional vector space V"5a, dim 5 is finite. This
implies the mumib1 af linearly independent characteristic vecturs correspussling to the
characteristiz ¥alus r iz always finite- This finite number is calleit the geometric
multiplicity of ¢

Thestrém 10.1.3:Let T b a linear aperator on an i —dimensional vector space V¥ wwer a field F.

If ¢ isa characteristic value of T'and «r is the corresponding characteristic vecter.Then for any
positive integer
i, {sa characteristic value of T™ and i is the corresponding characteristic veclorSince ¢ 15 a
characieristic value of T anud ¢ is the corresponding characteristic vector. Then, T = s

First, we prove the result for iz = 2,
720> = T (T Cexd)
T Cexd)
T o)
T {eexr)

T Cerd

£
eloa) = o cr

We assume thal the result is true for 1 = 1.
So, T V&) = ¢™ 'iw

Now we prove for 1,
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13 FESTE
W—io: o fe o Values o

e T rerT Tlap)

L |
(T Cex

™ T

So, the result is true fas all natural numbers.

Theorem 10.1.8:Let T b a linear opemator on an i —dimensional vector space I aver a field £.1{ ¢ i
a characteristic valuer of Tand o is the corresponding characteristic vector.Then for any
polynomial fix],

Flc) 18 a characteristic valwe of f(T7) and & & the corresponding characteristic vector.

Proof:Let fix] =g +u,x +a,5% + - + @™ be a polynomial of order m,

Consider
e (ucu b T azr® + an? " e
=3 (5] = =
C ol E T a-s PO T Py
= s @17 o + az?” Ca Tt e Cord
Lising the Tisult that, for every positive integer

I, ¢* is a characteristic value of T* and a is the corresponding characteristic vector.
We get, THah = chav ik
So,

£ e cOcr Ly @l (o) + azt Cad oot ant " Ced

a ]

.
— 2 o

- nl.oﬁr + Mea + 426 k, _Il— i 1:5,1(:"nr
= (ap +aic +azc? + - + ancMa

Cergy —+ ex

Flcder

So, filc} isa characteristic value of F(T1 and « is the corresponding characteristic vector.

@ Example 10.1.5:

Consider the identity linear aperator T an the vector space g* Tnen with respect to the
standard basis of %, the corresponiding malrix 5 the identity matrix of order
2. Apparently, for any vector [x, ¥} € i*

o 1lbl=bl

So, every non-zero vector in f? is a characteristic vector of T corespamading to the characteristic
value 1.But we also know tha! in H? & set containing mwere than 2elements is linearly
dependent.So, any linearly independent et of characteristic vectors of T muust contain at the most
two elements.So, the number of linearly independent characteristic vectors i= 2.

I%- Note:

From the faci that, if T is any limear operator and - i any scalar, then T = of & also o
linear oevator o 1Y, Paste that the set of vectors ir such that Tix = i i% thet Siree as:the
null space ol operalar T — of Again, the null space of operater T = ¢f is mon-zero if and
only if T =&t I5 Nl & Ohe.one oparatar.
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Because of these points, we have the next result

Thearem 10.1.6:Let T be a linear experator on a finite-dimensional space ¥ and let « be a scalar. The
following are equivalent,

(f)¢ is a chavacteristic value ot T,

(1] The operator T' = cf 5 singular (not invertible).

() det T =al = 0.

{i} implies (ii)

¢ is the characteristic value of T. %o, there exigls a non-zero wector @ € V such thatTo = o
S>Ta—ex=10N
>T—clla=10

= o € Mull spece of T — ¢l

Since & # O, Mull space ob T = of = [0]

Therefore, T = ¢! is nol one-one and hence not invertible.

(i} implies (iii)

T =l i5 not imverkiblse,

So, for amy hasis of T = cl, [T = cl]z has determinant 0.

= det(T —efl =D

(iii) Tplies {i)

det (T =il =1

This tnplies (T — cfla = I has a nom-Irivial solution.

So, ¢ |5 Lnhe characteristic value of T.

g Note:

The determinant criterican {feey 13 very imporiant becanse it tell= us where 1o look for the
characieristic values of T_ Since det (T = of} ls a polynomial of degree r in the variable
¢, we will Hnd the charscteristic values as the roots of that polynomial. In ather words,
1if = am ordeped basis fox WV and A = [Tg, then T — ¢l iz invertible if and only i the
matrix A = el ihwertihle,

Definition MLL7:0E A is ann % 1 matrix over the field F. a characteristic value of A in ¥ is ascalar ¢
in F such that the matrix A — ¢! is singuler (not invertibde). So, ¢ 5 & cheracteristic value of A if and
only if det (A —el} = 0, or squivalently if andoonly if det [ — A) = 0.

We form the matrix %! — A with polynomial entries,consider the poiyraomial f[x]) = det(af — AL
Clearly, the characteristic values of A in F ira just the scalars ¢ in F such that fic) = 0.

For this reason, [ i= called the characteristic polynomial of A. It is important to note that f i= a
monic polynomial that has degree exactly m,

Lemma 10.1.8:5milar matrices have the same characteristis polynomials.
Proof: Let A and & are two similar matrices of srdier i =,

This implies, there exists an invertible matrix F =uch 1hat

f=p-tap
The characteristic polynomial of | _ =det(_
By
= det (xf-' e —r tar

(= o o R Vo]

= det(-.-‘-"(.-\.r

A
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G Estic

=det . e

t ('_m = an sl Fliagggars

i Af man FE

" oaler Cxf

= det ( ) A
= Characteristic polynomial of
A

So, similar matrices have the same characteristic polynomials.

I%/ Notes:

«  We know that matrices of a linear operatanr on a vector space
V(¥ vorresponding to two distinct ordered bases of I¥ are always similar.

»  This implies that matrices of a linear operator corresponding to any bases of
the vector space have the same ch#racleristic polynomial and hence the same
characteristic values.

*  Also, since a linear operatar in art it — dimensianal vector space gives rise toa
square matrix of order # and ifs cluracteristic polynomial is of degree .
Hemice, it can not have mare than = roots In F

« There exist operators with no chitraleristic value, with less than
1 characteristic values, and with exactly % tharacteristic values.

Definition 10.1.9:

*  The set of all characteristic values of T = talled the spectrum of T.

»  The number of times a characteristic ¥itlle appears as a root of a characteristic plyTiomial
is called the algebraic multiplicity of the characteristic value.

*  The dimension of the eigenzpace of T cmrrresponding to the characteristic value « is alled
geometric multiplicity of «.

E] Example 10.1.10:

Example of a linear operator with no characteristic value. Let 7 pe a linear operator on
fi* which is represented in the standard ordered basis by the matrix

o -1
A =
i %o
Put det(xf — A1 =D
We get,
r 1)_
dGzt[—l .':'l_ﬂ

This implies, 2 + 1 =0

Since this polynomial has no roots in . 5o, T his no characteristic values.

Examjrie 10.1.11:

Exaraple cf a linear operator with twa characteristic values. Let 5 jw a linear operator
on £# whivh is represented in the standard ordered basis by the matrix

0 -1
&= [1 ol
The characteristic patynamial of 4 is given by x% + 1 which has two roots i and —i in £50, A has

tw characteristic values i and —i,

Corresponding tod =1

(.-1—EII.'|'=tI
(5 J1-ls D El=0
=1 ZEl=0
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>r=iy=1U
A=0=>1
= = =y
[ [mt *ly
So, the characteristic vector is [III

Corresporuling to 4 — —I

(A+iNE=0

(7 21+l D l=e

~[i Flhl=e

Sx+iy=10
=B =[71=>[3]

So, the characteristic vector is [?I

@ Exa]mpl.-: 10.1.12:

Let b a linear operator on g which is represented in the standard ordered basis by
the mualrix
31 -1
=(2 2 -1
2 2 0

We find characteristic values and characteristic vectors of T. /lso, find the algebraic and geometric
multiplicity of each characteristic value.

To find 1k characteristic polynomial,

put |[A— Al =

3—1 1 -1

2 2=21 -1|mn

7 2 0-2
~en 2 A-CoP 3 et Ll

> —(4-2@-D)+12B-D-D-A(3-DC2-H~2)=0
= -24+4—-22—-21(4+12-51)=0

> A3 ~512+81—4=0

SA~-1DP-41+4)=0

51=1.42-41+4=0

=>A=1,22

Since 4 =1 is appearing once as a root of the characteristic polynomial. Hence its algebraic
multiplicity is 1.

Since 4 =2 is appearing twice as a root of the characteristic polynomial. Hence its algebraic
multiplicaty is 2.

X

,'.-'] b the corresponding characieristic vector
E

Ford=1,letX =

@=NxX=0

Implies,
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2 1 —-1|° 0

2 1 —-1||¥=]0

2 2 -1tz 0
Applying Ry = Ry — Ry, Rz = Ry —

[2 1 —1]* 0

00 o [_!r'l =10

i 1 dltz L0

We get,
2x4y=-2=U0 =10

Thatis, 2xr —z=10, v=10

x X 1
(3] -
E T .

1

The only linearly irlegendent characteristic vector corresponding to 4 =1 is [0] Therefore, its
2

geomrtric multiplicity is1.

i)
Ford =2, let¥ = I'-r] I the corresponding chiracteristic vector
o

@=2x=0

That is,

11 17« 0

20 -1 _!-’] = Dl

2 2 =212 D
Applying R, = R, — 2Ry, By = Ry — 2R,

I 1 —-1)x 0

0 -2 -1 _!-'] =10

0 0 O0ll= 0

Wegeb g+ y=zm= 0, —2y—z=1
Orz=2y.x=%

That is,

M-l

The only linearly independent characteristic vector corresponding to 4 =2 is [1] Therefore, its
2
geometric multiplicity is 1.

- Task:

ey

1. Consider any matrix 4 of order 2 X 2 over tha field of real numbers, Then
observe that the characterisiic polynomial of 4 I= x* — (frace Alx + et

2. Let A be the identity matrix of order 3 over the field of real numbers. Then
prove that A has exactly 3 linearly independent characteristic vectors.

10.2 Annihilating Polynomials

Definition 10.2.1:LetT b a linear operator on a finite-dimensicnal veclor space ¥ over a field F.

Then a polynomial fix] € F[x| iz said to be annihilating polymamndal of T if F{T} = 0. For example,
annihilating polynomuiil o identity operator on V is given by fix] = .

@ Exaisgrle 10.2.2:
P

Let " " an operator on 2 glven by (v = (% 0):Fird

the annihilating polynomial
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fior T,

Sol:T: 87 = B is defined as
Tlx, yl =[x, 0

T(T{z, ¥}) =Tz, 0] = (z, O)
Therefore.T {T{I. }'}) =Tlx ¥}
Hence, T? = T

Consider f{x] = ? —x,

then clearly,

=TT =1

So, fix] ks annihilating polynomial for the linear operator T

ExarﬂFIE 10.2.3:

Let 7w an cPerator on g' given by T(x, vz} = (0, x. ). Find the annihilating

polyniomial for T-
Sol
Tix y 2) =0 x 3]
T(1x, 3 2)) =T(0 x, ¥4 = (0, 0, x)
T(x, w, 2} = (0, O, x)
A Eain,
T(T%x, v, #¥) = TI0, 9, x) = (0, 0, 0)
Hence, T2 = i
Consider f(r] = x3,
then clearly,
fiTl=T"=0
So, f{x] is annihilating pelymimial for the linear aperator T,
Theorem 10.2.4:Suppose T i= a lingar operator on |, & vector space ower the field F.
If 1 i5a polynomial over F, then p{T} s again a linear apwerator on I,
If g &5 another polynomial over F, then F[x] is a ring under the compositions

(p + 1T =p(T) + (T
(padT) = p(Tg(T]

The: collection 5 of polynomials p which annihilate T i= an ideal in the polynomial algebra F[x].

Mote thal, zero polynomial is annihilating polynomial for all the matrices. So, zero polynomial is in
5.
Hence ¥ = ¢b

Let £, g €5, h € Flz]so that F(T} = 0 and (T} = 0

Then,
F=giTra ((Tr=g(T)=0=0=0
and
FRIT) = f(TIR(T) = OR(T) =0
RF(T) = R(CTIF(T) = A0 =0
So,

F—g Fh AFESYF, gES. he Flz]
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So, & I= an ideal of F|x|.

@- Note:

In gerral, il 1= possible that for a linear operator 7 gy a vector space |+ gyer a field &
there i& only omw annihilating polynomial that is, zero polynomial.Now we prove thl »
case V' s nmnite-dimensional, there exists at least one non-zero polynomial § that
anniliilates T.
Suppose dim ¥ =n
Then dimension of the space of linear operatoss en wector apace I ks r?,
So, the 1t¥ + 1 powers of T given by
T, T%., T
is linearly dependent.
Therefore, there exist scalars ¢, 'y, ..., ¢ [net all zern) sucl that
o3l + T+ -, T =0
Consider
fix) =g +oyx + o+ gppx™
Sinces| s are not all zero. So, fix} = 0 and (T =0
That is, T has non-zero annihilating polynomial.

Remark 10.2.5:Fcr every field F, Flx] is & I'[D.So, every ideal 15 geaerated by a single dlemeniLet T
be a linear operalar on a finste-dimensicnal vector space ¥ over F.Then st 5§ of annihilating
polynommials of T, biing ar ideal of F|x] ts generated by a single element f, fanerators of & may not
be unigue but there always exists a unique monic polynamial that generates 5,

Let fix) bea generator ot S,

Then far any gixl € 5, there exists f(x} € F[x] such that glx] = Fix]hix)
Let a be the leading coefficient of Fix].

Thena #0, g € F

So, "L EF

Consider pix) = o= Fia]

Then p(x] i manic polymaemial.

Also, p(Th=a 'fiTi=at0=0

That i=, p anniftilates T

So, p(x1 € &

Also, for any g{x] € 5, there exists h(x] € F|x| such that glx] = Fix]k(x]

That is the same as,

&y (el reaea) (ankoxd)
(e —V£FCxl
- eDECxRD

where {{x} € F|x[. This implies, p{x} ks a monic gemerator of 5.
If possibiis, ket g (] b another muasnic generator of 5,
Since p(x] i= the generator of 5 and gix] € 5, thereforep(x])|q(x]
Similarly,

gixlfpix]
This implies,
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p(x) =cqlxlic EF
Comparing, the leading coefficients on both sides, we get & = 1
Hence, p(s} = gix) which proves uniqueness.

Definition 10.2.6:Let T b a linear operator on a finite-dimensional vector space I @wer the field F.
The miinimal polyrwwmiial for T is the (unique) monic generator of the ideal of plynomials over
Fwhich annihilate T. The nante “minimal polynomial’ stems from the [t that the generator of a
polymomial ideal is characterized by being the monic polynomial of minimum degree in the ideal.

That means that the minimal polynomial p for the linear operator T #s uniquely determined by
these three properties:

(1)p is a monic polynomial over the scalar field F,
@Eplr) =0

(3) No polynomial over § which annihilates T l#s a smaller degree than p has.

@ Nipe:

If 445 8N %1 Mygtrix over g, We j2fine the minimal polynomial for A 14, ;4 arulogros
Way, @5 thi Unigue monic gemertor of the ideal of all polwnomials aver F whih
annihilates Af fhe operator T fs represented in some ordered basis by the muatriv 4,
then T and A have the 5atme Minimal polyhomial. That is berslse FiT) ks represented i
thebasis by the matriv f{4) so that F{T) = 0if and only if f{4T = 0.

Result 10.2.7:Letfix] =g +ax +a,7? + - +ayr™, Then FIPF AP =P 1 FiA)F where P is an
invertitle matrix.
Proof:
Fix) = ag ¥ @x + @px® + o 4 g™
FUPLAP) = agl + ag (P AR) + a3 (FYAPY + ot ap (P AP
Nate that(P~1AFZ = PLAPP AP = PLATAP = PLARP
Similarly, (F7'AP1E = P-akPyk,
Then,

B r

rerTtar aof +atlr 'ary +aze tater o+ U ane tame

o - E =
wp [P o el ¥ a2t a -

Y Caor - ald - aza® + o ana™y e

g
P Cag e
= g NP

et rca
So, for every polynomial f.
FIPTLAP) = PTLF(AIP
Thesrem 1{L2.5Similar matrices have the sami mimimal polynomial
Let A amd B are similar matrices.So, there exisls an invertitde matrix # such that
B=pPl4F
Let p(a ) and gix] be the minimal polynomials of A4 and i respectively. Then p(4] = Dimplies,
p(PUAP) = P plA)F = D
So,
p(B}=0
Therefore, gix]|pix]
Similarly, we can show that pfx}|g{x}
Since both are monic polynom:::l:c. sa, plx] = qix]

Remark 10.2.9:Suppose that A i=an 1 = n matrix with entries in the field F.
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Suppose that ; it a field that contains F a5 & sabfield
(For example, A rmight be a matrix with rational entries, while Fy 33 the field of real msmbers).

We may regard A wither as an n ® 1 matrix over ¥ or as an i =1 matrix over ¥, U the surface,
we might obtain twe different mirimal polynomials fur A. Forfunately, that is nol the case. Now we
see why?

According to the definition of the minimal polynomial for A, regardedas an m = i malrix over the
field F e consider all monic pnl ynonials with coefficients im F which annihilate 4. and we choose
the o of least degree.

If f is 2 monic polynomial over § given by
k=1

_If = .'I:"'C + Zﬁjl’j .(1)

j=o
Then fiA) = D implies,
A e, AR il gl = 0..(2)

The degree of the minimal polyrnomial i+ the least positive immeger & such that there is a linear
relation of the form (2) betwern the powers of . Furthermmore, by the uniqueness of the minimal
polynomial, there is for that k ette and wnly one relation of this form i.e, ones the minimal & iz

determined, there are unique stalars g, ..., @_y in F such that (23 haolds, They amn: the
coefficients of the minimal pedymimial. Now (for each k) we have in (2], & system of n* linear

equations for the unknowns iy, . . ., fi;—q. Since the entries of 4 lie in F, the coefficients of the
system of equations {27 are in £,

Therefote, If the system has a solution with #y, #), ..., @e—; in F, il has a =olutiom with
dig, - . -, iy in F, It should now be clear that the twir minimal pelynemisls are the same.

Theorem 10.2.10:Let T b a linear operator on an 1 —dimensinmal vector space 1 for, let Abe an
n = n mintrix]. The characteristic and minimal polynomals for T [for 4] have the same roots, except
tor muliplicities.

Proaf: Let p be the minimal polvnomial for T.

Let ¢ & a scalar.

We want te show is that p(c} = 0 if and only if r i= 2 characteristic value of T.

First, suppose plcj = 0,

Thenp = (x —rlg where f i a polynomial.

Since deg q < deg p, the dafinition of the minimal polynomial p tells us that g (T = 0.
Choiise a witor i such that g(Tj# = 0.

Let e = gi(T}p.
Then
0 = ;-('rm'
= e
=G am

Thus, ¢ |5 a characteristic vl of T.
Conversely, suppese that r is a characterisiic valve of T,
that is, there exists non-zer® & suca thatTor =

We know that if it is a chararteristic vector of T cimresponding to the characteristic value ¢, then a
is a characteristic vactor of F{T} corresponding to the characteristic value Fich

So,
p(Te = p(eie
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Since p{T} =0, ir #0,
So, p(e1 =0
Therefore, the roots of characteristic and imititmal polynomiials are the same.

Theorem 10.2.11:Cayley-Hamilton: Let T ks a lirsar fperator on a finite-dimensional vector space
. It f is the characteristic polynomial fer T, them [(T] = 0; in other worils, the minimal
pedynamial divides the characteristic polynomial fesr T

Proof:Let i b the commutative ring with identity consisting of all polynomials in T
of course, K iz a commutallve algebra with identity over the scalar field.

Chagae an ordered basis {u:-.. Ty aiii ﬂ',.} for I, and

let A hir the matrix that represents T in the given basis.

Then

n
Ta; =Zﬁj,aj. 1<i=n
=1

These equations may be written in the equiwilent Formm

Hn
Z(é“q]— = nj;l'.:lﬂj =0;1<({=mn
=1

Let & dencte the element of K™ with entries

By =48,T — Al
Whenmn =2
g [T —Aul  =dal
Al Tl
and

detB = (T — Ay [T = Aggl) — N85
=T — (Agy #+ A22)T & (4345, — Al W
={iE}
where f Is the characteristic polynomial f = £ — {¢rare Alx + det A
For the case 1 = 2, itis also clear thatder & = f{T)
Since f is the determinant of the matrix xl — A whose eniries are the polynomials
(& — Ay =z — Ay
We wish o show that f{T1=0.
Forf (T be the zero ssperator, it is mecessary and sufficient that (det &} a; = 0for1 < k =n

By the definition of &, thi vectors ity ..., . =atisfy the condition

n

‘} Bu;=0,1<i=n
‘_: L

=

When i = 2, we can write the above su in thes form
I'I"-r1-.|-" = Al [aII‘IO
Agal T— Azl Lol —
In this case, the classical adjoint, adf i is the matrix

g_[T—AHI Ayl l
- Ayl T =l

and

5= ["5" gasl
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Hence, we have

(et o 1% - = ey [S]
55 |a |
5 (5[]
B (&

K

In the general case, we have,

n
Zl ﬂnﬁ'{jaj =0
J=1

For each pair k, 1 and summing on i, we have

Now BE = (det &) [, = that

Z E\'iEIf =5;” det &
i,m1

Therefore,

0= 6 (detf)a
d=1

={detf}a, 1<k=n
This proves the result that f{T1 = 0 whate [ is the characteristic polymmial of T
That is, characteristic polynomial of T is annihilating polynomial of T

Therefore,

n
0= & (det) g
=1

={detf}a 1<k=n
This proves the result that f{T1 = 0 whe [ is the characteristic polymomial of T.
That is, characteristic polynontial «if T is annikilating pulynomial of T
Remark 10.2.12:By Cayley Hamniltom Thearem, we have if the characteristic polynomial is
Fld)=1x — o )" (r — o) (x — o™
Then the minimral polynomial is given by
gl =T — )% (& — )% .. (z — g )%
where 1 < &; = &

So, it narrows down the search for minimal polynomials of various operators.

@‘ Note:

If a linear operator has all characteristic values distinct, that is no repeated characteristic
value, then
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N

Since,
1<g=d;=1
Therefore, #; =1V L.

Hence, its characteristic and minimal polynomials are the same.

@ Examph 10.2.13:

Let 4 b ine 4 X 4 (rational) matrix

0 1

0 1
1 0}
10

Tu
]
—
==
oOrOoOR

0O 1 0 1
11 0 1 0
”‘L} 10 J
1 01 0
Squaring we get,
2. 0 20
»_ o 2 0 2
% ‘“[2 0 2 o}
02 0 2
Again,
0 4 0 4
a_[4 0 4 0f_
A —L 4 0 4}—4..-1
4 0 4 0

Consider f{x)} = x* = 4x
Then f{Al = A® =44 = 1
Therefore, fix] = x* — 4x ks the annihilating polynomial for A.

rial

Vg polyr oAl

il 3 K xT T X
L 4'::
= ;\'(_;r2 4)
A — s
T R ?,)(x i+ z)
Let p(x) be the minimal polynomial of A.
pGxH fix]

So, choices of p(x are

p)=x, x=2 x4+ 2 x(x=2), x{x +2), x(x* — 1)
If deg plxi =1
Leti(zxl =Cx+ D, L, DEF
Now p{a} = 0
SCA+DI=00=0
S>A=- 5 I, sealar multiple of identity
But 4 is no a =calar multiple of identity.
So, degplx]l =1
If degp(z] =2
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Lerplx) =x"+ Dy + E,
20, A+ +E=0

A=~ —E
Z 0 2 0 a =& n =i E 0 E 0
020 2[_[-2 & -p of_[0o E 0 E
2 0 2 0 ¢ = 0 =p E 0 E O
0 2 0 2 = O =k 0 g E o E

Comparing entry in Znd row, 1% column, we get,
0=—0—1{thatiz, I =

= A% = —£l, sealar multiple of identity.

But A% i= not & scalar multiple of identity.

Hence degplx) = 1

Therefare, degpix] = 3

So, p(a] = x(x — Z}lx + 2) is the minimal polynomial of .

Since rods of minimal polynomial and characteristic polynomials it same, therefore, characteristic
polynasniial of A has roots 0, 2, and —2.

Now, 4 Is a4 matrix of nwder 4. Therefore, there is one more root say x.
Then 0 + 2 + L=2] + x = froce A

Thatisx = trace A =10

So, four characteristic values of A are (1, 0, 2, and —2.

Hence characteristic polynomial is x%(x? — 4).

2

saal in
@ Example 10.2.14:Let ST Slements of a field F, lat L following matrix
di, AF @i O T 4 be t
NV
A=|1 0 b
@ 14

Find the characteristi ans minimal polynomial for A.

0 0 r
So:A=|1 0 bk
0 1 &
For characteristic polynomial, put |xf — A| =0
x i =
=>|-1 = —h|=0
g -1 r—a

S>xi(x=u)-br=c=10

Sl ~agrt—hkr—c=10

The characteristic polynomial of 4 Iz x3 —qx? — bx — ¢

Since 4 i= it a scalar matrix.

Therefore, the degree of 115 minimal polynomial is not equal to 1.
If the degree of the minimal polynomial is 2.

Let p{x) = x* + ¥ + « b the minimal polynomial.

Then A +dA+ el = 0

So, A* = —dA — el ...{1}

0 0 ¢
GivenA=|1 0 &
0 1 @
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0 ¢ £l

Then 4% = [0 B c4bn
1 'a bsa?

Putin {1].

0 « o 1] r -~de e 0
[0 b +.ﬁ|.|'] = [—d )] —.[:Iﬂ"] - [U e ﬂ]
1 @ b4t 0 - —urd 0 0 e

0 r il - @ —dc
0 b ct+bal=|=-d -r ~ft J
1 a b+a? F —=d —ad—e¢

Comparing entry at (2, 1] place,

0==d, d=i

Then 4% = —&f

But A% is nil a scalar multiple of identity.

So, degp(x] =2

Therefore, degp(x] = 3 = degree of the clraracteristic polvismial

Since minimal polynomial divides characterfstic polymiomial, minimal polynomial and

characteristic polynomial are same that is #* —az? — br — .

Task:

Iy

1.  Find a linear operator which has annihilating polynomial »2.
2. Prove that for a square matrix of order i, W tan always find an annihilating
polynomial of degree less than or equal t 7.

10.3 Diagonal Canonical Form

Definition 10.3.1:L+7 be a linear operator on the finite-dimensional space 1Y, We say that T is
diagonalizable if there i a hasis for V, each vector of which s & characteristic vector of ¥ That i,
there exists a has=is & = [ir,, ms. ..., .-_:,1} of I such that all the a/s are characteristic vectors off

Theorem 10.3.ELet V' b an m —dimensional vector space over a field F, L&t T F = 1¥ iz a linear
operator an ¥. Then T is diagomalizable if and only if there exists a basis & of IV such thst [T]g is a
diagonal mairix.

Proof:Let T is a diaguonalizable linear opurator on V.5n, there exists a basis if = {4r1, A T
such that all the /s are characienstic veciors of T.Since, a; i a characteristic vector of T% 1 €1 = m,

Therefore, there exist ¢; € F, 1 =i =mu =uwh that Tr; = ga;
Now we find the matrix of T with respect to hasis B,
Tlay) = dyay = oy + lhay + -+ Oy

Tlirp) = Sap = 0@y + 0, + -+ Uay,

Tl = cpay = g+ Oy + - + £p@y

Hence, the matrix of T with respect to basis ii 15

L5 0 '['
0 ¢ 0
Me=" " .
G f0 ey

which is a diaganal matrix.

Conversely, let B = [y, @y, ..., @y} is a basis of IV such that the matrix of T writh respect to basis & is
a diagonal matrix {3,

Let
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& o 0
Fiies (] L .|)
ig - e
Then clearly,
Tlety) = cyy + Day + -+ + 0ty = 2,04
TliEs) = Oty + gz, + - + Uy = L300,
Tim,) = 0oy + Oty + - + Sty ™ £,
That is,

T[ag)zqm"flSLE ;]
Also, simoear; € H% 1

Since i heing the basis of V¥ is lineerly independent énd any set consisting of 0 is linearly
dependent. This implies, a; # 0% [, Hence, Thm] = pa; V1 < { = nand a; # 050, each @; is an
wigemivector of T,

i i= a basis of ¥ ramsisting of eigenvectors of T.5a, T i= diagonalizable.

Theorem 1{L33:Characteristic vectors iiresponding to distinct charicteristic vitlues are always
linearly independent.

Proef:Let T hira linear operatar or an m —dimensional vector space ' over a field ¥.

First, we prove this result for w — 2

Let i, f# are characteristic veriors cortesponding to distinct characteristic values ¢; and ¢, oif T.
That is, T (] = cpewand T(F) = o ff

Consider &, I+ € F such that

aer + B =0
Then
Tiae + b)) =TW0} =0
That is,
aTie) +BT(B) =1
Or,

Qe +hegff =0
Multiply aee + B = [ by ¢, and subtract from ac, o + bo = 0, we get,

b':ﬁ —rp)li =10
Note that j# being a characteristic vector is non-zero and ¢y # 1y implies & = 1
Put i =Dinar + bff =10,
using the fact that i being & characteristic vector is non-zero, we get, @ = 1)
Therefore, a and i are linearly independent.
So, the result is true for i = 2.
Let the result is trae for o~ 1.

Now wee prave the result for .

Let &y, &30 0y be 1 distinct characteristic values and ¥y, xp,.., X, be the corresponding
characteristic vectors.Consider @, i1y, ..., ay € Fsuch that

X P aErg e ity Ey = 0..(1)
This implies,
Tlagx +ax, + o+ apx, ) =T =0
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That is.
T Y H it T+~ + aglxg) =0
Using Tlx; ) = c;a;, we get,
M0y Ty + @olpXy + v+ Byl Xy =0...(2)

Multiply (1) by ¢, and subtract from (2), we get,

n=1
2’ ayleq — o lx =10
=
The left side is a linear combination of m — 1 characteristic vectors corresponding to distinct

characteristic values.
So, by the inchuctivn by puthesis,
mle, —c)=0vli<i=Znr-—1
Note that ¢, = ¢; ¥i % %
Hence, ity = Q¥ 1 <i5n=1
Putting in (1}, we get, @, = 0
Hence, 1, 1, ..., 7, are linearly independent.

So, characteristic vectors corresponding to distinct characteristic values are always linearly
independent.

Theorem 11.3.4:Characteristic polynomial of a diagonalizable linear operator is a presduct of linear
factors

Proaf:l#t T be a diagonalizable limeen operator en a finitr-dimensional vector space |f mver a field .
Letcy, . . ., i be the distinct rharacteristic valies of T

Theen there is an @rdered basis i In which T is epresented by a diagonal matrix which has for its
diagomal entries the scalars ¢, each repeated a cedtain number of times.

If ¢; is repeated 4 limes, then (we may arrange that) this matrix has the block form
oyl
[T]s = 20
o
where [, is tle identity matrix of orde: d;.
The matrix [T]z 5 a diagonal ruatrix. Sa, its characteristic polynomial is piven by
Flixd= (x=g)¥(@=cy) o lx =g P
which is a product ot linrar factors.

Remark:If the scalar field ¥ is algebraically closed, e, the field of complex numbers, every
polynomial cwer F can be sa factored; however, if F Is mat algebraically closed, then we will see a
special property of T when we say that its characteriztic polynomial has such a factorization. That
is, we see i5 that d;, the number of times which & is repeated as the root of characteristic
polynomial §, is equal tp the dimension of the spae nf chiaracteristic vectors associated with the
characteristic value ¢;. HBecause the nullity of a diagonal matris i= equal to the number of zeros
which it has on its muiin diagonal, and the matrix T — 4.';|'|B has f; #eros on its main diagonal. This
relation between the dimension of the characteristic space ared tie gealtiplicity of the characteristic
value as a root of [ wil provide us with a simpler way of determining whether a given operator is
diagonalizable.

Lemma 10.3.5:LetT be a linear aperator oy the finite-dimensional space I, Let ¢y, . . ., & b the
distinct characteristic values of T amd let I¥; T the space of characteristic vectees associated with the
characteristic value ;.

If
W =W + W+ -+ W,
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then dim W = dim W, + . + dim W),

If & ks an ordered hasis for W), then & = [ &, B, ..., 8] i= an ordered basis for I¥.

Praof:The space W = W) + W5 + -+ W, is the subspace spanned by all the characteristic vectors
of T. Mote that usuallydim W' < dim W, + .. — dim W), Thiz i because of linear relations which
may exist between vectars in the various spaces.

To prove this lemma, il i= suificient o prove that the characteristic spaces associated with different
characteristic values are independert of ane another.

Suppase that (for each i) m; € F, it; € W

aay + @z + o+ e, =0..(1)
Since ; € W;, @y isa characteristic vector of T carresponding to the characteristic value «;, then so is
agir. Let By = aga;
Then (1} is,

B+t +p.=0

where I 15 a characteristic vector of T corresponding to the characteristic value «;.
We will show that f; =0V [
Since Tj%; = ;%

= rorao
Fas =1

rovrsegs + gz + e
oy - I

FOFaC - P+ +

T rovagy + rorage + FCTa s

BT e T .
Fezz for a - FC e

) e A

Choose polynomials f;, f;, .., fi such that

1 (=}
filgj) =8,y = [0 i
Then
0 = fcro
f= 7

= :; stigl = gt

Now, let By; be an ordered basis for W, and

let i be the sequence & = (B, #,, .., Bl

Then E spans the subspace W' = Wy + ... + Wy,

Also, 1 is a linearly independent sequence af vexiors, for the following reason.

Any linear relztion between the vectors in & will have the form §#, + ji, + -+ ##, = 0 where f; is
some linear cambination of the vectors in f;. Frum what we just did, se kisow that ff; = 0 for each 1,
Since each #; is [inearly Independent, we sew that we have only the trivial linear relation betveen
the vectors in &,

Theorem 10.3.6:Let T ks a linear operator om a finite-dimensional space V. Led oy, . . ., o be the
distinci characteristic values of T and let W be the null space of (I' = ;i) The lollowirg are
equivalent,

(1)T = diagonalizable.
(11} The characteristic polynomial for T s f = (x —::1}"!1 o[ _:k}ﬂ'-k

anddim W; = d;,i=1,..., k
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(i) dirm Wy dim W5+ + dim W), = dim ¥
Proof:We have chasrvexd that () impkies (i)
Now wei prrower, (i) bmplies (L)
From (i1].
The characteristic polynomial for T is
== .x—grk
and dim W = d,
Since dim ¥ = 1 = deg f
Therefore,
dy +dy+--+d,=n

That is,

dim iy + dim W, + -+ + dim W, = dim ¥
Now wi prrovee, (i} amiplies (i)
From (iii },

dim W, 4 dim Wi + - + dim ¥y = dim ¥
Froim lemma,

dim W, +dim W, +--- + dim W}, = dim W
W i5:a subspace of 11 and dim ¥ = dim I
Then V¥ = W'
That is,

V=W + W, +- + W,

So, characteristic vectors of T span V' That is, T i= diagonalizable.

This theorem gives an important characterization of diagonalizable operators given by a linear
operatar is diagamaYzable if and only if its characteriatic pol¥namial i%a product of linear factors.

Rentark 10.3.7:The matrix analegue of this theorem may be farmulated as follows.

Let A e anm n = n matrix wilh entries in a field F, snd let ¢, , . ., £y be the distinct characteristic
values of A in F. For cach 1, bel W; be the space of columinmatsices ¥ (with entries in £} sach that

(A =g 3X = Dand let B be an ordeved basis for W

The bases Hy. Bz, ... H; rollectively string together to form the seguernce of columns of a matrix P
Fo= B Paw] = By, ..., By

The matrix A is similar over ¥ toa diagomal matrix if and only if # is a square matrix.

When F 14 sqgiiare, P {8 linvertilile and P~ "AF is diagonal.

Theorem 10.3.8:Let]” be a diagonalizable linear operator on an 1 —dimsnsional vector space I' awer
a field F and let &4, &, ..., £ be the distinct characteristic values of T. Then the minimal polyrossial
for T is liwe palynenmuial

p=@=0)m.- (& =)

Proof:If ur is a characteristic vector, then one of the operators T —oyl, . .., T — g J sends @ into 0.
Therefore

(T =) . (AT =cplia = 0...(D)
for every vharacteristic vector a.

Also, T i= diagonalizable implies ther is & basis {a;, @, ..., @y} for the underlying space I which
consists al characteristic vectors of T;

Hence, each i; is a characteristic vector of T
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Let x £ V. Then there exist unique x;. &3, .., 1, € F such that
X = Xl + Xqil; + - + Epily
Consider
L’('("Jl = = (7' — 1 FICT — 20D ... (T — cklx
T—c¢ IMT —¢ 13 .. IT —c¢ iz
n

= (p — Apyer — 203 o — ckr_l|: xi!zi)
i=1

T

= ZI*":T — FUT — 28} — [T = ckPiai

= 0 (From (1))

So,p(Tlix=0LVxEV
This implies, p(T1 =0

= Note:
From the above results, it is clear that

* The minimal polynomial of a diagonalizable linear operator on a finite-
dimensional vector space is a product of distinct linear factors.

*  However, we will see soon that it is T tharacterizing condition for a linear
operator to be diagonalizable.
Result 10.3.9:Minimal polynomial &l & limear operalor T iz of degree 1 if and only if it is a scalar
multiple of identity operator.
Preof: Lel minimal polynomial of T is x +a;m € F
oT+u=10
oT=-al
& T i= a scalar multiple of identity operator.

Result 10.3.10:Minimal polynomial oif a non-zero linear operator T is never a non-zero constant
polynomial

Proof: Let minimal polynomial of T is
flx)=ge 0, ceF
FiTi=0od=N0mc=]

But ¢ = 0, so, we arrive at a contradiction. Therefore, f{x} = .

Exa 10.3.11:
muprle
Let § | a linear operator on g which is represented in the standard ordered basis by
the ruatix
o -1
A = |i| 0 l

Then since T has no characteristic value and hence, no characteristic vector. Therefore, T is not
diagonalizalsle.

E] Exalmplc 10.3.12:

Let 7 b a linear operator on ;% wijch is represented in the standard ordered basis by

the ratrix
a=[y 7l
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We will distuss whether it is diagonalizable or mio. If yes, then we try to find the matrix # fizr
which P~ AP i= a diagonal matrix.

Characteristic values of 4 are { and —(.Moregver, correspending to |, characteristic vector is Hl and

. - . =t
corresponding to —1, ciaracteristic vector is [ i | .

o
P [i 1
Then detP = 21 = (]
1 .
i =Ef[—11 ;l
Thus
1 - _ -
i =§f[—11 {“2 u[”: II

j |
=zl A=l %

Exal 10.3.13:

mpla

Let 7 | @ linear operator on g which is represented in the standard ordered basis by
the munirix
31 -1
A=[2 2 -1
2.2 0

We will disiuss whether it is diagonalizable or not. If yes, then we try to find the matrix ¥ fizr
which #~'AP i= a diagonal matrix.

A hias three charactertstic values 1, 2, 2

1
Corresponding to A = 1, the characteristic vector is [0]
2

1
Corresponding to 4 = 2, the characteristic vector is [1]
2

Corresponding to three characteristic values, the rumber of linearly independent characteristic
vectors is 2.

dim f* =3
Therefore, we can’t find a basis of & having characteristic vectors of T.

Hence, T iz not diagonalizable.

Exalm ple 10.3.14:

Let | @ linear operator on g which is represented in the standard ordered basis by

the mairEx
5 -6 -6
A=|-1 4 2

3 -6 —4

If possible, find a basis of £, corresponding to which the matrix of T i= a diagonal matrix.

5 -6 -6
A=|-1 4 2

3 -6 -4

Sol: Given
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The characteristic equation of A I=

A=Al =10
5-1 -6 -6
> -1 4-1 2 |=0
3 -6 —4-2

Solving we get, 1 = 1, 2, 2.

Corresponding tod =1, let X =

x
;.r] 2 a characteristic vector. Then
g

(A—NK=0
[4 —6 —6][* 0
=>|-1 3 2 ,'rl =10
13 —6 -—5llz 0
Interchanging &, with #;,
[-1 3 2 rx 0
=4 -6 -6 _!-"l =10
L3 -6 =51z 0
Applying i, — R, + 48, 3 = f; + 38,
-1 3 2]« 0
>0 6 2 ,!r'] =10
0 3 1it= L0
Applying fz = F; — 28,
-1 3 2> O
=0 & Z||¥=|0
o o ollz 1]
—x+3y+2z=06y+2z=1

That is, # = =iy = x

x —ay =7
.5'"]=[ ¥ ‘=}'[ll
E —dy =3

The characteristic vector is

So,

-3
1|
-3

I¥; has basis &, ={(-13. 1, — 3]

T
Corresponding to 4 = 2, let X' = ;.r] b= a characteristic vector. Then
¥4

A—-2INK =40

3 -6 -6 0

=>|-1 2 2 _!r'l =10

3 —6 -—6li= 0

Interchanging #, with ;,

[-1 2 2% 0

=3 -6 -6 _!-’1 =|0

L3 -6 —6liz 0

Applying &, — f, + 3#;, H; = f3 + 38,
-1 3 2= n
3§ 8-
0 O jte ]
= —rt+hy+Z=10

So,

-7 ol
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2
I characterstic vesctors are l1 ] and [L'I
i}

.

1

W, has basis B; = {(2, 1; ¢}, {Z, 0, 1)}

Consider & = [H1, b, )= {[—3, 1, — 3].[2. 1, 0}, {2 0 1)}.

Summary

Characteristic walue amd characteristic vector of a linear operator on a finite-dimensiaral
vector apace ¥ over F are defined.

Annihilatmng, polynomial of a linear operator T om a finite-dimensional vector space I over
a field F 15 delined.

Proved that the set of annihilating polynomials is an ideal of F[x],
The existence and uniqueness of minimal polynomial are proved.
Cayley Hamilton Theorem is stated and proved.

Examples are given to understand how to find minimal and annihilating polynomials of a
linear operator

The diagonalizable operator on a finite-dimensional vector space is defined.

Keywords

Characteristic Values
Characteristic Vectors
Annihilating Polynomials
Minimal Polynomial

Cayley Hamilton theorem
Diagonalization
Diagonalizable linear operator

Self Assessment

1.

N

oNw»

onw»

oNw» @

Let eigenvalues of a matrix A of order 3 are 1, 2, and x. If determinant A is 6. Then the
value of x is
1

2
3
6

2 1 3
Largest eigenvalue of the matrix (1 & 1]is
{1 n 2

o W N

3 -2
Let A= L I satisfies the matrix equation A" — kA + 21 = 0, then the value of k is
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o 0w >

oNwEp ONwE P9

ON®y N

®

unw»

©

ON=p»

=
©

9Nn=p

11.

0
The characteristic polynomial of the matrix |0 4 1fis
4

il 1]
(xr-4)°
(-4 @=-1
(z=-1D%@-=9
(z-1)°

Minimal polynomial of a matrix A of order 3 X 3 is of degree 1. Then A is &
scalar matrix

Zero matrix

Either scalar or zero matrix

Identity matrix

Similar matrices have the same
Characteristic polynomial
Characteristic values

Trace

All options are correct

Which of the following is an incorrect statement?

Minimal polynomial of a square matrix always divides its characteristic polynomial
Minimal polynomial of a square matrix divides each of its annihilating polynomials
The monic annihilating polynomial of a matrix is always unique

Roots of the minimal polynomial are the characteristic values of the matrix

Let T [ a linear operator on %' such that the minimal polynomial of T is - [_:I_' - !) then

the mumber of distinct charactersslic values of T |=
1

2
3
4

1
0
0
0

SO N
SO rRrLrNW
N W
—
-
®

Anmnihilating polynomial of matrix 4 = [

T 1

(r = 1)
(r - 1)°
(-1

Let A be a square matrix of order 3 with entries from real numbers. Let A satisfies A3= A.

Then A

is diagonalizable

is not diagonalizable

is invertible

has repeated eigenvaliles

| 1] 0
The matrix A= | | I 0
1 1 1
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onw»

onw»

is diagonalizable

is not invertible

has distinl eigenvalues
is not diagonalizahle

1 2
Let A= L 4] then hoose the correct statement

A is not diagonalizable

A is invertible

A has distinct eigenvalues

A has only one independent eigenvector

The invertible matrix P, such that P1AP is a diagonal matrix where A= | |

2 -1 i 0
14. LetP= and = . [f I¥= P-1AP then A3=
> 1 i} 1

A [165]6
B 16 515
< [16515
b [16515

15. The matrix [

R (The field of resl numibers)

Z (The ring of integers)

Q (The field of rational numbers)
C (The field of complex numbers)

oNwp

62
154

62
154
60
154
62
150

1 1
1I is diagonalizable over
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Answers for Self Assessment

1 C 2 B 3 B 4 B 5 A
6 D 7 C 8 B 9 D 10. A
11. A 12. C 13. B 14. B 15. D

Review Questions

1. Let P be the operator on §* which projects each vector omto the ¥ —axis, parallel o the
¥ —axig Pir, )t = {x, 007, Shew that P is linear. What is the minirmal polynomial kar £7

2. Let A bean 1 = n matrix with characteristic polynominl f = (x — L1 Ll = )%, Show
that eyl +apay + =+ gpidy, = frace 4,

3. Let ¥ be the vector space atn = n mairices over fhwe field £, Let 4 be a fixed m = m matrix.
Let I ke the linear operator om V' defined by T(E} =Af. Show that the minimal
polymnomial for T [s the minimal polysumual for A

4. Let A bra4 x 4 matrix over the field of real numbers

1 1 00
q=|-1 -1 00
-2 -2 2 1
1 1 -10

Find the characteristic and mlsikinal polynomials of A.

5. Check whether the matrix A given in exercise 4 is similar over the field of complex
numbers to a diagonal matrix

L..J Further Regarding

e Basic abstract algebra by P. B. Bhattacharya, S. K. Jain, S. R. Nagpal,Cambridge
universitypress

e Topics in algebra by L.N. Hartstein, Wiley

o Abstract algebra by David S Dummit and Richard M Foote, Wiley

[@ Weblinks

e https://nptel.ac.in/courses/111/102/111102009/
e https:/ /nptel.ac.in/courses/111/105/111105112/#
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Unit 11: Invariant Subspaces and Triangular Form

CONTENTS

Objective

Introduction

111 Invariant Subspaces

112 Reduction to Triangular Form
Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objective
After studying this unit, you will be able to
*  define imvatiant subspaces of a vecti:r space under a linear operatar,
*  prove impartant results related to invariant subspaces,
+  define T —ronductor of an element it into an invariant subspace W of I/,

» understand the concept of triangulable operators with the help of examples.

Introduction

In this unit, ¥ou will be introduced to & special tlass of subspaces that are invartant under a linear
operator T. Important results related to thwse subspaces will be proved. Further T —conductor of an
element & info an invariant subspace W i I wrill be defined and the triangulatien process will be
explained with the help of examples.

11.1 Invariant Subspaces

Definition 11.1.1:LetV b a vector space and T a linear aperator on 17, IF W is a subspace of ¥, we
say that W' is invariant urder T if for each vector @ € W, Tla) € W i, 8 T{W'} is contained in W'.

For example, every subspace is invariant under the identity operator.

LY DS e e an ey ¥ urpre

to =, Than

@ Example weaeecew o finite-dimensional vec  space over a field for any
operator T on V, Ker v j2 aninvariant subspace of v,

Proof:Ker T = {x E V|Tix, = 0}

We know that Ker T is a s1bspace of .
Considier @ € Ker T

This implies, T{a} =&

Since T is linesar <:-|1t'r.r!nr.T {0 =40
Thatis 0 € Ker T

This impliesTla) € Ker T ¥a € Ker T
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Hence, ¥er T i= invariant under T,

for any

e

@ Example suwa.a wet v o finite-dimensional vectc apiCe over a field -
operator ¥ on V. Bange ¥ i+ an invariant subspace of 1+,

Proof:Range T = [T(xijx € V]

We know that Range T is a subspace of I,

Considder it € Range T

This impiies, Mnere exists § € ¥V such thatT(f) = a

Since T is a linear operator on V, T € I

LetT{#) =yEV

Then T(y) =T (T 1)) = Tia)

So, Tia) € Range T € Range T

Hence, Range T is invariant under T.

Theorem 11.1.4:Let T b a limear operator on V.Let [f b any linear operator om ¥ which commiuates
with T, ix, TH = UT.Let W be the range of [f and let W be the null space of I, Both W and W are
invariant andes ¥'.

Proof: Let ir € W =Range I
This implies, there exists [ & I such thatli{f) = o
Censider T i) = T(L(E))
=TU(g)
= [ITi#) € Range [ = W
This implies, Tie) € W¥a € W
That is, ' in irrvariant under T
Again, letw € ¥,
This implies, Uil =1
Consider L) = T[[{a))
=TI
This implies, T{a) € N ¥a € ¥
That is, & in invariant under T,

Remark 11,1.5:5imce any polynomial in T commutes with T, o for any polynomial I = F{T, range
space and il space of [ are invariant undes T.

Takingll =T — i, ¢ € F,we see that the null space of I is invariant under T,
But null space of If' iz the space of characteristic vestirs of T aszociated with characteristic vzlue «.

This implies the space of characteristic vectors of T associated with characteristic value ¢ is invariant
under T,

@ !'::...F“Pl'., 11'.].5:Let R v me Hpa.lce over the field of real numbers. Define
T: 8% = k% as T(x, v} = (—v, x}. Then T is 4 linear operator.

Consider the subspace W = {[x. 0}|x € B} ol V.
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Then {1, 8} € W
ButT(1, 0)=(0 1) W
Hence, W s not invariant under T,

Example 11.1.7:Let """ the linear opératar ar » “ whuch is represented in the standard
ordered basis by the wirix *

-1
4= [l 0 I
Ther the only subspaces of 7 which are invariant under T are #7 gjd the zero subspace.

Proof: Licl W be a subspace of §* invariant under T.

Since W' is a subspice of #¥ and dim #? = 2.

Therefore, dim W =1, 1 or 2.

If dim W = 0 then W is {D} subspace,

If dim W = 2 = dim #* then W = R?

If dim# =1

Let B = [}, @ = Q be the basis of W

Since W s invariant under T amd ¢ € W

So, Tia) € W == =

That iz, there exists ¢ € B such that T{a) = ca

This implies ¢ is a characteristic value of T,

Since T is represented by the matrix

A=l

which has no real characteristic value.

Henc#, we arrive ata contradiction.

That is, dim W =1

So, W ={0} or #?

Remark 11.1.8:Let T hw i linzar operator o @& tinite-dimensional vector space V' aver a field F.
Let W be a subspace of ¥ invariant under T Thien b definition, T(W) = W

In this case, we can have a linear operator Ty, om I such that Ty (a) = Tlal vV a € W

Lo
Pave o livsfos sm

= Note: ",
B TW. T aa ¢ =1

Theorem 11.1.9:Let T bw a linear operator o a fimite-dimensional vector space ¥ over a fleld F.

Let W be a subspace of ¥V invariant under T.Lat B' = {,, @y, ... &} be a basis of W and

By = (i, 130 s, @y, ..., @} is the basis of ¥ axtended from §' Then [1]y = [g EI wheee B, C and
i) are block matrices of appropriate sizes.

Proof:B' = {my. wy, ... &, | b a basis of W and B w= {ety, @y, ..., @0y, ..., @n} is the basis of ¥ exended
from B’.

Since a; € WV I = j = rand W is invariant under T

Therefore, Tfaj-] EW¥l<j=r

Lovely Professional University
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=
T['[I}]- = 2‘ -'1”'[7{(', 1 Sf =F
i=)

That is,
Tlay) = Ay + Ay + -+ Ay + 0+ 04+ -4+ 0
Tilag) = Ayzaq + Agqo, + -+ Aza, +04+0+ -4+ 0
Tie ) = Ao + Ay + -+ A, +0+ 0+ -+ 0
Tlre1) = Appaitn + o+ Arppa @ + 4 Aprgg g
Tlay) = Agpay + - 4 Apptte ko + Ay
That is,
& €
A =
o n
where #,  and [} are matrices given by
Ay e Ay Appg o A
Ary v Ay Aizpr - A
Ariir1 Ary1m
= : and [ denotes the zero matrix i order 1 =¥ = ¥
"1nr+1 A

Lemma 11.1.10:Let W' be an invariani subspace for T. The characteristic polynomial for the
restriction operator Ty divides the characieristic polynomial for T. The minimal polynomial for Ty
divides the minimal pobenomial for 7.

Proof:We have done that ' ={z,. az..... &, ] be a basis of W and

By = fary, G300, @y @) i the basis of ¥ extended from &,
Then A = [Ty = lﬁ ;I whare B, € and [ are block matrices of appropriate sizes.

Clearly, [Ty]g = &
Because of the block form of 1w rmatrix

det (vl — A1 = det [zl — B)det (zf — D)
That proves the statement about characteristic polynomials.

o Absn
E/' Note: We used resent identity matrices of three different sizes.
=i [ T

For example, 4 = 8 matrix of size n ¥ i, soidentity miatrix used in xf = A |= of order & = i, ele.

The & —th power of the matrix A has the block form

[ LS N
k- I
= [':' |I-Jk|

where ([, i= some T % (rm — ) malrix.

Therefore, any pudvromial which annihilates A also gnmhilates & {and [ too). So, the minimal
polynomial for & divides the minimal polynomial for .

Remark 11.1.11:We have proved the lollowing results

1. Let The a linear operator an a finite-dimensional space I, Let o, . .., & be the distinct
characieristic values of T ard let W; be the null space of (T — ;1. The follewing are equivalent.

(#]T i= diagonalizable.
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(11 The characteristic polynomial far T is

F=ix =) . (x —g)%
and

dim W, =d,i=1..., &

() dim Wy + dim W + -+ + dim Wy = dim
2. The charzateristic space associated with characteristic value ¢; of T i imvariant under T.
Now let W' b the subspace spannéxd Iy all the characteristic vectors of T
Then, we ks it
dim W = dim W, + dim ¥ + - 4 dim W,

Also, let By, By, ..., By be the bases of Wy, Wa, ..., Wy respectively then B = (B, B,, ..., B,) is a basis
of W',

Let B = {1, @z, ..., ) so that the first few a’s are from fi;, the next from &, and so on. Then
Te; =L, 1=1,2,..,r

wher® (Brp wios b} = (€10 Crris Ogp 21000 €24 oo Gip ey T

Each ¢|l= repeated dim W; lirmes.

Now I tsinvariant under T, zince far each @ € W, we have

&= X0y + ¥ty + o+ Xy

Then
T{a) = Tl +xsag 4+ X0t
= Ly + X0 + o+ LXpay
Choose any other vectors ..y, ., &y € I such that R = {my. ..., a;} is a basis for V.

The matrix of T relative toB", ias the block ferm given by

& O
A=
g 0
and the matrix of the restriction operatar Ty relative i the basis B’ is
t;, 0 0
B=)® D
n o o gy

The characteristic palynomial of B {le., of Ty) is
=T 5)" @ — ) —lr—y )%
where ¢; = dim W},
Further, g divides f, the characteristic polyrarriial for T,
Therefore, the rrulipllcly of £, 45 a 100t of [ is &t least dim I].

Remark 11.1.12:From this discus=ion, it is obvious that T is diagnnalizable if and only if © = 1, that
is,if and onily g, + e + -, =m

So, in other wirds, T is diagonalizable if and only if there are 1 lirearly independent characteristic
vectors of T

Task: Lel ¥t a vector ‘e of dimension 2. Let —_— linear operator on ove
= . . A . .
= that the 1-dim. nsional . *_'learlant subspace of I: senerated by a chari.. stic
vector of T
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11.2 Reduction to Triangular Form

Definition 11.21:Let W be an invariant subspace for T and let & bet a vector in I, The T —conductor
of @ into W is the set 57 (a; W} which consists of all palynomials g {over the scalar field) such that
GIT Je ds im W,

That is,

Srl W) = {g € Flx[\p(TIa e W]
Remark 11.2.2:111 case, W' = {0},

Sr(a; 0) = {g € Flx]lg(Tla = 0}
iz valled the ¥ —annihilitor of a.

Sance the operator T will be fixed throughout miost discu=sions, we shall usually drop the subscrigt
T and write 5 (1t ; W)

Lemma 11.23:f¥ is an invanant subspace [oc T, then W is invariant under every polynomial in T
Thus, for each e it ¥, the conductor S{a; W) b an ideal in the polynomial algebra #[x].

Proof: Ifj? iz in W, then T isin W
Consequently, T(TE) = T*f is in W
By induction, T%§ is in W for each k.
Let f(x} = ap + ax + -+ @™ € Flx|
Then fITI8 = (aal + & T 4 - + @, T™IB
= apff + @ T+ a,T B €W
Thus (¥ is im W for every polynomial f.
Further, we prove that {m; W' b an ideal of F|x]
Let F. g € 5(o; W)
Then f{Tla, g(Tie € W
Since W' tsa subspace of I,
FiThe — giTie e W
Or,
F—gTaEW
This imprlies f — g € Sia; W)
Leth € Flx|
Then since W i= invariani under T,
hf(Te = h(TIf(TIa € W
Similarly, FhiT je & W.
So that
Fh Af e Sl W9 f € 5(a; W, h € Flx]
This implies, 5 [a; W} i5 an ideal of #|x].

o ) i
* Note: B principal ideal domain and hence all its ideals are generated by single
elemerits.

Remark 11.2.4:The unique monic gemwratir of the ideal 5, W k& alzo callad the T —conductor of @
into W (the T —arnihilator im case W = [}), The T-comductor of @ irlo W iz the meoric polynomial
@ of least degres such that g7 is in W.

A polynomial f is in Sia; W) if and only if g divides f,
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Note that the remductor Sie; ¥} always coatains the minimal polynaimial for T;
Because if h i& minimat polyneamial for T, then A(T1 =0 and hence h(Tlr = 0L £ ¥,
henice, every T —conducior of & Into I divides the minimal polynomial fur T,

Definition 11.2.5:Letl" be @ finite-dimensional vector space over a field F.Let T a linear pperator on
I, The linear operlor T is called triangulable if there is an ordered basiks Im which T s represented
by @ triangular matrix,

Lemma 11.2.6:Letl be a finite-dimensicmal vertor space over ihe field F.Let T b a linear operator
on I such that the minimal palynomial for T is a praduct of linear factors

p=@E=o)". .. @@=t cinF

Let 4 be a proper (W = 1) subspace of V¥ wehich is invariant under T
Thiere ewists a vinlor a In ¥ such that
(ahe 15 ot in W
(&HT — e is in W, for some characteristic value ¢ of the operator T.
Proet: Sincel = W and W isa subspace uf 1,
Let [ be sy vector in I which ks not in W
Let i e the T —~conductor of j# it 4.
Then g divides pu 1 minimal polynomial fer T
If i is constant plvnomial, then g[T I € W implies § € W',
Since £ is not in W', the polynomial g is not constant.
Therefore,

g= x=g)@=g)%... @ =gl
where al least one oif the integers #; is positive.
Chooss § sa that g; = [
Then x — ¢y divides gt gy = (x — )k
By the definition of g, the vector @ = k(T cannot be in 141
But [T =gile = [T —gi}iTIf = g(TIF Isin W

Theorem 11.2T:Let I be & finite-dimensional vector space over the field F amd let T ba a linear
operator on I, Then T i= Iriangulable if and only if the minimal polynomial feir T is a product of
linear polynaasials over F,

Proof:SupjHse that the minimal polynomial factors
pe= (=l (r =~
Consider W, = {0}.

By the lemma, thete mists @, € V¥ such that @, is not in W, but (T —gf)a, is in W, for some
characteriatis value ¢; of the operator T,

Thatis, (T =i =0
T(ay) = aq .. (1)
Now choose W, the sut=pace spanrsed by a,.

Then by lemma, there exists iz € ¥ such that @, is not in W, but [T —gi)a, is in W, for some
characteristic value ¢ of the operator T,

That is, I:T' - ij)ﬂ'z = Qyally)iltys EF
orTury = dypity + piry

By repeated application of the lemma above and renaming, the scalars, we shall arrive at an ordered
basis I = {n', L L P n',,} in which the matrix representing T i= upper-triangular.
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rﬂ';; By LR Tyn
l:' '|1_l'g &23 e Rzn
[]-ls =|0 ] M3y 7 3n
0 () 0 = itpp
and Ta; &5 in the subspace spanned by a;, ..., ;.

Conversely, if T i= triangulable then there exists a basis i = {a1, 3, ...,Ctn} of ¥ such that [T]g is
upper-triangular.

Let
LTI - T Tan
o Ty fEpg (L™
[Fla=| 0 A3 li3n
l I-I E' D nr"l

Then characteristic polynomial of T i= given by

(=) (x — ) o (T — W)

which is a product af lingar factors. Since minimal polynomial divides characteristic polynomial, so.
it is also a product of linearfactors.

Corollary 11.2.8:Let¥ he an algebraically closed field. Then we know thal every pelynomial can b
split into a product of linear factors over F.The rninimal polynomilal of % = r matrix over ¥ is a
product of linear factors.Hence, every squara mairix is similar over ¥ tova triangular matrix.

fovrd

@ Example 11.2.9:Let == neal Operator defined on L. letmatrixof " respect to the
standard ordered biwis of 43 i« given by s

D 1 0
A=12 -2 2
2 =3 2
Find a basis & such that [Tz &5 in the triangular form.

Or equivalently, find an invertible matrix * fo vehich P~' AP i a triangular matrix.

Solution: First we find characteristic values by putting |4 = 4i] =1

That is,
—4 1 0
2 —-2-2 2 |=0
2 -3 2—-4
>A4 - +4-61-22-1) =0
=>13=0
=>4=0,00
Now we fird charicteristic vector corresponding tix 1 = 0
e
Let0# & = [_‘-‘] b the characteristic vector of A ¢urresponding to 4 = 0.
r

Then AX = 0¥ or AX = 0 implies,

[0 1 o0O]x 0
2 =2 2 }'l =10
12 -3 24l 0
Applying rew operation B: - B3 — R, we get,
[0 1 O0]p* 0
2 =2 2 J-'l =10
10 —1 Dt ]

This impliesiy = Band 2r — Zy + 2z =1

Thatis, ¥ = 0, x = <&
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T x 1
So that X = 3.-] ={‘l‘-l] =_-|;-[ q].“
4 =X ~1
1
Then ey = | 0 | i= the sequired vector.
-1

Mow we wish to find {wr,. 4] so that the set & = {a;, @, ;] is a basis of & zuch that the matrix
[T:H] is an wpper triangular matrix.

Consider ir3, vy theorem, it can be obtained b the ralation

l'h"'z = 4Ty +d:|"1; ﬂ'1 R

Az
Let @, = [‘.-'2] sinces; =0,
2
0 1 O0][* L
=>[2 -2 Z[Fz}=ﬂ1[D]
2 =3 21L# ~1

This implies, ¥, = d,;
2.1'; = i_ln'.l_ + 222 =1

Sn=p-n=4 -5

A2 Wy — 2y 1 1
SO, [}Iz i [ dl ] R dl [1] B 22[ D]
iz ] -1

2
1
Wetake a, = |1
0

Now, to fimd ag, take Aaz = ryay + i a; + dyaq; iy, dy € B

3
Putting r3 =0 and a3 = [ﬂsJ,
23

-'10(3 = ftgfl!z- + dg.ﬂ]
0 1 Qff* 1 1
=02 -2 ﬂlﬁ = d, tl-.'rdj ]
2 =3 UL\ 0 =1
¥a iy +ds
:[2331}'3*223 =| d; ]
2.?(3 = 3}'3 + 233 -—d3
=>y3=|ig+d,u11dx_|—d'z—d3~+rj='|T"
3
:>.'r3=Ed2+d3—z1.y3=d2+d3,23=23
w3 1 -1
st= 2y +(1ds + aJa3
L
3 0 0 1
=
Take a3 = i
0

Then K = {ay, a5, a3} is the required basis. That is, [T: &] Is an upper triangular matrix #~'4P=uch
that,

1 1 % 0 0 -1 01 0
F= 0 1 I’P_1: -2 3 —ZJ-:'"'H.‘i FlAP=(0 0 1}-
0 0

2 =2 2 0 0 O
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Example 11.2.10:Let —a lir,,,, operator defined on + - =et matrix of ——th respect to
the standard ordered 1.Zis of i i given by s
1 -3 3
A=(0 -1 2
4 -3 4

Find a basis & such that [Tz &5 in the triangular form.

Or equivalently, find an invertible matrix * {7 which F~1AF i5 4 triangular matrix.

1 -3 3
A=(0 -1 2]

0 -3 4

Solution:

First, we find characteristic values by putting |4 — 47| = [}

That is,

>(1-D[-1+D4-1D+6]=0
S>(1-DA2-31+2)=0
>1=1,1,2

Now we fird characteristic vector corresponding to 1 = 1

X

Let0# X = |,'-' is the required characteristic vector.
=

Then (A —=1}X =0
[1 —3 3] 0
=0 -1 2] ¥ =
10 -3 4ll¥
Applymg iy — R, —"ﬁh'“ Hg _"I"f3 _I"h
[0 =3 37" 0
=10 0 0] ¥l =10

0 o i

Ay = cgoy + dyery + oy dy,d, R
= (A —esllog = dyey + dya,

-1 =3 3[*: 1 i
ﬁ[o 3 2“:-';]=de0 +a,H
0 =3 2lL# ( 1

= —Ip— 3_'&'2 + 3.22 = -Iii,—"3_'|.'2 + 2.22 = -Iiz
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=S —x+ 8 =dp =i,

ﬁ.rzzzz—di"l‘dz

_ﬂ.: +‘:|'.I££
= _',,'2 =i —_.‘—
Xy o ﬂ';- + ":2 3 1 1
Then Pz] = gt = [2]?1_ old, + 1 d;
1 3 3
P2 7 3 a 0
Take a4 = (3, 2,3)
1 0 3 1 0 0
Then P =|0 1 2]._1m1|'-'"‘.-1|‘-"= 0 1 ol
o1 3 0 0 2

Consider & = [{1,0,0},(1.1,1),(3,2,3)}and [T: &) = F~14F.

Theorem 11.211:Let I b a finite-dimensiomal vector space over fae field F and let T be a linear
operatar on ¥, Then T = diagonalizable if and oniy if the minimal pwlynomial for T has the form

p = (x =ejix=0) ... (x =g
where ¢y, €3, ..., & are distinct elements of ¥,

Proof:We have proved earlier that, if T is diagonalizable, its minimal polynomial is a product of
distinct limear factoes.

To prove thi comverse, let W ke the subspace spanned by all the chararteristic vectors of T, and
suppose W' = ¥

By the lewnma, there is a vector &t not in W amd a characteristic value i ol T zuch that the vector
= (T —gl)a
lies in W.
Since fisin W. 8 = B; + B, + -+ f; where T8, = f;, 1 < [ = k and therefore,
the vector k{7 = hilo }#) + -4 h(ep )iy 15 In W, for every polynomial h.
Now p = [x — &y )i for some polynomial 4,
Also, g =gz} = [ =g}k
We have
(T - alg)a = hTHT - gT)a = 4TI
But h(T) i= in 1’ and, since
0 = p(Ta = [T =i }giT e,
the vector q (1 k5 i W,
Therefore, q(c; i is in W
Since ¢t Is not in W, e have (g1 = 0.

That contradicts the fact that p has distinct roots.
=& LI L33 ks o
=% Note: » are two o check whether an operator an dimnensional vector

space Ip. l:l'--'l*r a field F"T:'E‘:;onalizable or not Ten B
+  Th& number of linearly independent characteristic vectors of T s 1 if and only if
T iz diagonalizable.

+ T is diagonalizable if and only if its minimal polynomial is a product of distinct
linear factors.

* T is triangulable if and only if its minimal polynomial is a product of linear
faciers.

*  Every diagonal matrix is a triangular matrix as well so, every diagonalizable
operator (matrix) is triangulable as well.
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O 1 0
Every triangulable matrix may not be diagonalizable as seen in the example A = [.& -2 2] is

2 -3 2

triangulable but not diagonalizable.

Summary

imvariant subspaces of a vector space under a linear operator are dafined.
important results related to invariant subspaces are provexd
T —ronductor of an element it into an invariant subspace W o I s defined.

the concept of triangulable operators is explained with the help of examples.

Keywords

invariant subspaces

linear operator

T —conductor of an element
Triangulable operator
Triangulation of a linear operator

Self Assessment

1.

ONwE &  ON®W» ©  gNw» N gNw»

o

©

Let T bwra linear operator 421 i finit#-dimensional vector space ¥ @wer a field F, Then one-
dimensional invariant subspare of 1 is generated by

Any non-zero ekemient of If

A characteristic vilue of T

A characteristir wevhor of T

Unity of field

The st W ={[x,0)lx € B} be & subspace of V' = R?, Consider the operator T on ¥ as
Tix.y} = (22.0), Then

W' i% an snvariant subspace of ¥ under linear opwrator T

W 15 a subspace of IV but et invariant under T

I s not a subspace oif If

T i not a linear npermior

The set W = [[x,0)x € B} be @ subspace of ¥ = R*, Consider the operator T on V¥ as
Tix. ¥} = (Zx + L) Then

W i5 an invariant subspace of 1Y under linear opwrator T

W 1% a subspace of V¥ but mwit invariant under T

I 15 not a subspace uf I/

T i= mat i linear operatar

Let T be a linear operator on a finite-dimensional vector space V¥ owver a field F. Consider
! = FiT);where FiT) iza polynomial in T, Then

Ko [ 18 invariant wnder T and [T both

Ker [ s Invariant under T but mot under [

er [ i= invariant under [ but not under T

Ker [ iz invariant neither under T nor under [

True/False The spuice of characteristic vectors assiisted with some characteristic value of
a linear operator T @ a finite-dimensional space IV is always invariant under T

True

False
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6. LetT:B® = R? as T{x,¥] = (=y.x). Let ¥ b a non-zero subspace of R? and it is invariant
under T. Then dimb¥ is

A =0

B. =1

C. =2

D. <2

7. Let T bea linear operaicr defined on a finite-dimensional vector space I ower a field F. Let
W b0 o subspace of ¥ invariant under 7.

A. The restriction map Tiy i= defined and Ty = T

B. The restriction map Ty is defined and Ty (] =Tlx) ¥x € V¥

C. The restriction map Ty k5 not defined

D. The restriction map Ty is defined and Ty (x] = Tlx] wx € W

8. Let T bwa linear operator defined on a finite-dimensional vector spaces ¥ swer a field F. Lel
W b o subspace of I invariant under T. Which of the following is nol true?

A. Characteristic polynuuminl of T Is divistble by characteristic polymmial of T,

B. Characteristic polynomial ¢f T iz divisible by minimal polynomiil cif Ty,

C. Minimal polynomial of T = divigible by characteristic polynomiaf f Ty

D. Minimal polynomial of T i= iivisible by minimal polynomial of T,

9. Let T bea linear operstor defined on a finite-dimensional ¥ecior space ¥ owver a field F. Let
W be & subspace of V invariant under T. Let ' is a bagis of W and i |5 a basis of ¥ by
extending &' such that [Tz =@ and [T ]z = A' then

A, A5 o disgamal mattic with the same diagonal entries as A

B. A'isa miinor of A

C. A5 a sguare submatrix of A

D. A'=4

10. Let T:Py — P, he defined a= diffarentiation operator. Conskder the subspace W = P, of Py
then for standard bases B and §'of P; amd ) respectively, [Tlg and [Ty g are

01 00
|00 2 0 [0 1
Allls=lp o o 3|andlwls _Io 0!
0 0 00
0 1 0 07
. _|0 0 2 0 _J0 0
B:[Tls=|0 o & 3|and [Tyly = [0 1|
0000
M 0 0 0]
. _{0 1.0 0 _J0 0
Cirs=lg o 3 oladTls=[; |
o 0 0 3
0 1 0 0]
. oo 20 o

D:lTle= o o o 3|end Muwle =[y 4]

00 0O

11. Choose the correct statement

A. Characteristic values of every diagonalizable operator are always distinct

B. Characteristic values of every triangulable operator are always distinct

C. Every diagonalizable operator is always triangulable

D. Every iriangulable operator is always diagonalizable

12. Let T b a linear operater on a finite-dimensional wector space over a freld F, Let W be an

invarign: subspace of V. Then if § € IV such that @ @ W and g(T1# £ W [or some ron-zero
polynomial g & ¥[x]. Then

Lovely Professional University
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A.

B.
C.
D.

onw»

ST

degig =0
degg =0

degig =0
None o the options is correct

Which of the following is not a sufficient condition for an operator T owver ' 1o be
triangulable?

All the characteristic values af " are distin

The characteristic polynomial a1t T iz a praduct of linear factors

The minimal polynomial of T |= a product of linear factors

The degree of the minirmal pofymomial of T is 2.

A square matrix A ol @rder i is triangulable but not diagonalizable. Then choose the
correct statement.

Characteristic polynomial it A i=a produict of distinet linear factors

Minimal polynomial of A = & prisiuct of distinct linear factors

Number of linearly indepwnitent charssteristic vectors of T i= equal to i

Roots of the minimal polynomial of T are not all distinct

Let minimal polynomial of an operator T o £ t5.x(x? — 1). Then

T iz dliagonalizable

T is Iriangulable but not diagonalizable

T i= neither diagonalizable nor triangulable

Tha given information is not sufficient to decide if the operator is diagonalizable or not

Answers for Self Assessment

1 C
6 C
11. C

2 A 3 D 4. A 5 A
7 D 8 C 9. C 10. A
12. C 13. D 14. D 15. A

Review Questions

Let T be the linear operalor on #?, the matrix of which In the standard ordered busis is
given by A = H _zll I"rove that the ¢nly subspaces of #? invariant under T are #* and

the e subspace.
Let W' be am invariant subspace for T, prove that the minimal polynomial for the restriction
operatir Ty divides the minimal palynamial for T, withaut referring to matrices.

2 -2 -4
Show that for the matrix 4 = [»—1 3 4 ] A= 4
1 r =3
Find the characteristic pofymomial of the matrix A given in Problem 3. Also, check whether

A i= triangulable or not? If yes, find the corresponding triangular form.
Show that every matrix A such that 4% = A i= similar to a diagonal matrix.

Further Readings

e Basic abstract algebra by P. B. Bhattacharya, S. K. Jain, S. R. Nagpal,Cambridge
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VW

universitypress
¢ Topics in algebra by .N. Hartstein, Wiley
o Abstract algebra by David S Dummit and Richard M Foote, Wiley

Weblinks

¢ https://nptel.ac.in/courses/111/102/111102009/
e https:/ /nptel.ac.in/courses/111/105/111105112/ #
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Unit 12: Nilpotent Operators and Invariants of Nilpotent Operators
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Objective
After this lecture, you will be able to

e  define nilpotent operators and observe that all its characteristic values are 0,

e understand the canonical form associated with the nilpotent matrices,

e  study the invariant factors of a nilpotent transformation,

e understand how to find the canonical form and invariance factors of a nilpotent operator
on a finite-dimensional vector space.

Introduction

In this unit, you will be introduced to a special class of operators called nilpotent operators. The
structure of characteristic values of nilpotent operators will be discussed. Further, we will discuss
invariant factors of nilpotent operators and the method to find them. All the concepts will be
elaborated with the help of examples.

12.1 Nilpotent Operators and Index of Milpotency

Defiinition 12.1.1:Let}’ bt an m —ilimensional vector space over a field F, Led T b a linear operator
on ¥, then T iz valled nilpwtent apwrator if and only if T™ = 0 for some positive inliger 1

e ra [LTRR T
Cills

Ef Note An operator " 'the vector space of dimension 1 is nilpotent if and only if )
- =Ty 1 1

Remark 12 1.25a1 of nilpotent operaters is not a vector space

Proof:Let V = §*

Let Ty and T, be twa operators on i#* given by Ti(x. ¥} = (0, x) and T, (x. ¥) = (3. 0)
Ty (xyh= (D, x]

TZ(x:%) = Ty (0.x) = (0, D)

This imyplies, T = 0

Again, T7 (r.y) = T, (.1 = (0,0)
Thus, T# =0

But
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(;.I +:E)(.x, ) =h Cevnd + 720000

2, - Talx )

= (0, = (
2D A a0 - 2o

Consider
(7'1 + 72" = (7'1 + o2 ery o) Ce, 22)
L 2K
T T €T +'Ta

71 + 7200, 20

EE =
(s + T=200w [

710 20 4+ 7205, 20

.xd - T=203 2

(

= (0'.:/) ot e L N0

This implies, (T; +T)* =0V k

So, the set uf nilpoten: operators is not closed under addition and hence it is ot & vector sjuce.
Remark 12.1.3:"nwer of & milpotent eperator is again a nilpotent operator.

Proof:Let T: 17 =+ ¥ hira nilpient operator. Then there exists natural number k such that T =0
For any pusitivie infeger 1, consider T™;

Then (T™}* = T¥m = (T¥j™ = 0

Hence, T™ i3 nilpotent operator.

Remark 12.1.4:For a nilpotent operator T and any polynomial f{x] = mgr + @ x” + -+ + @y,x®, FIT)
is also nilpwrent

Proof:Let T: ¥ — ¥ o a nilpatent operatar, Then there exists natural number k such that TF =0

Consider fi{rl=g,x +mx? + - + gyr"

Then
£y T air o+ azrt + ant
Z 3 td
@ T oo d P - i o
= e -1
T el d 4 2T canT 2

Consider [{{T1)" = T (a0 + @,T + - + ux Tk = 0

Theor#m 12.1.5:Characteristic values ol & nilpotent operator are all zero.
Proof:Let T b2 a nilpotent aperator on IV,

Then T™ = [ for spmie positive integer .

Consider fix] = 1™ then fi{x} is the annihilating polynomial of T.

Since minimal polymomial of T is a divisor of Fix]

Let minimal polynomial of T isp(x]

Thenp(x) = ek < m

IfE=0

Then pix) = 1 this implies p(T1 = I, which is not possible as p(T1 =0.
So, k= |

Therefare, the minimal polynomial has only one root 0.

So, T hiss only one characteristic value 0.

Theorem 12.1.6:Nilpotent operator i= always triangulable.

Proof:As seen in Theorem 12.1.5, minimal polynomial p(x} of T is given by p(x) = x%;k = |

That is, the minimal polynomial of T iz a product of linear factors.
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Hence, T is & friangulable operator.
Remark 12.1.7:A nilpotent operator T 15 iliagonalizable if and only if it i= a zero operator
Proof:Let T iz a nilpotent opetatar o an n —dimensionasl vectar space V¥ over a field F.
Then minimal potyriomial p(x) of T is

pEl=x1<k=n

We know that T i= diagonalizable if and only if its minimal polynomial is a product of distinct
linear factors

That is, p(x) = x
This implies, p(T1 =T
Alsa, pir] i= minimal polynomial of T implies,
pM =T =)
So, T i diagonalizable if and only if T = 0.

B‘ Note: A nom-zero nilpotent operator is triangulable bul never diagonalizal#e.
Lemma 12.L8Ifl = I, &1, & ... D V. whara each subspace V| is of dimension i; and is invariani

under T, where T is a linear aperator nm V, then a basis of V¥ can he found so that the matrix of T in
this baszs 55 of the frem

.1'11 0 W I
DA .0
00 .. A

where each A; is an m; ® w; malrix and is the matrix of the [inear transformation induced by T o ;.

Proof:Lel us choose a basss of V asfallows:

Let By = {I'::”. ""I'.:IJ i= 1 basis of ¥,

B, = {u,('“, - |'.',';'] in a hasis of ¥, and sa on.

Then basis B of ¥ is {u::"', .,.,1351", pI:Z), & |.>f3, G s |.'1“‘), x., |.',E’:)}
Consider v, ;1 < i =

Then since L'ém € V, arnd ¥} iz invariant under T,

So, the restriction map Ty, is defined and T [l.-f1)) € ¥, and B, i= a basis of V5.

=0,
y
T [Piﬁ)::l = 2 r:I:IL"P}:I)
i=1
Similarly,

Consider I-’:”,’] SEE
Then since vi{z) € 1, and V5 I= invariant urvder T,

So, the restriction map Ty, is defined and T fufzj) E 1, and &, is @ basis of 1.

So,
2y
@Y (2
r(69) =3t e
=1
and so on...
Then we get
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r..i1) L |
ity L
@ @
Bt
i2) L]
v
[Tls = (:2) (-
£
n,1 7 ngn
ey
(1)
L 'u:n;‘i
That is,
A, 0 v B
0 A L]
[Tls'_ : :2
a0 . A
where,
Ap=] i z
n|(|i|“| ﬂr(:‘:l,
is the 17; = 13; matrix that is,
"I1"=|JI"-H:'|3rL

Lemma 12.1.9:IfT i= a linear operator on an n — dimensicnil vector space I over Fsuch that T is

nilpotent, then
ap 4+ ayT 4+ - +a; T™,
where the ir; £ F, i= invertible if ay # (1

Proofil.et 5 b a linear erperator on an m —dimensional verion spaoe ¥V

(k)
iy,

05

]

First, we prove that if 5 is nilpotent and iy # 0, &y € F. then & +x, is invertible.

Since & is nilpotent, there exists some positive integer r =i that 57 =0

Consider

-l

2

i i 2
@t el et T V)

FRGE
.

This imoiies,

Ty + 5 i inverdible.

Let ¥ =T+ =+ x,, T™

Since T I= nilpotent then 5 ks &lso nilpotent

Thus, for any

ay# 0, ap € F,

g + 5 5 invertible.

Notation:M; denote the f  t malrix all of whose entries are 0 except on the super-diagonal, where

they are all 1's.

01 0 0 0
0 0 1 00
0 0 0 1 0
l0 0 0 0 1J
00 O 0 0
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Unit 12: Nilpoten! Operatars and Invariaunts of Milpoleut Oyerators

Definition 12.1.10:If T is a linear operator on an 1 —dimensional vector space I over F.

If T i= nilpotent, then the smallest positive irleger k for which T* =1, Is called the index of
nilposency,

That is, if k L= the index of nilpotency of T then T* = 0, but T™ = 0 for all 1 = k.

st

@ Example12.1.11:Let “"a linear o
A" Trae

perator on B* f’_}".'l"'l'l by
T(x, v, 23 =10, 1, 3}

then T 1% hilpotent.

Solution: Given that
Tz, ¥. 2) =10, z. ¥)

Then

o e I T Tl 2))
bl = VR
bl ds BERE )

a3

©,0,”

B

#(0,0,0)
Further,
T’ (x-;v,d . (e, a0 23)

TCFE e

O, 0 X0
=(0,0,0)

Hence, T3 =1}

This implies, T is @ nilpotent operator with index of nilpotency 3.

Task:
1 1 1
1. LetA=|-1 -1 -—1| Check whether A is nilpotent or not. If yes, find its index
1 1 0
of nilpotency.

2. Find a nilpotent operator on 3 with an index of nilpotency 2.

12.2 Invariant of Nilpotent Transformation

Theorem 122 LT is a linear operator on an 1 —idimensioral vector space ¥ over the field ¥ such that
T iz a nilpotent operator with the index af nilpotency m,, then a basis of ¥ can be found such that the
matrix of T in this basis has the form

[M“1 ]
M,

2
M,

where nmy =my = ... > 1y andwhere my + 5y 4 + 1, =dim V.

Index of nilpatency af T ls .

‘Ihisimplies, T = (bt T 2 0

5o, there exists 1* € ¥ such thar T ' & 0. (1)

T is @ linear transtormatian and it is nilpotent,

Claim 1: The vectors {l'. T T2, T l.'} are linearly independent over F.
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Suppose
a{p) + apTr 4 eal?e & o ity o T e =0..(2)
If @; are not all zero, then there exisli some iy = (0 and £ is the least positive integer for which ag # 0
(1) becomes,
ET e F o T+ + a1 T e = 10
That is,
T* g + o T4 o+t T e =0..(3)
T ig milpotent and @ = @
By lemma
@ + i T+ -+ ary T is invertible.
This implies, T* 1w =0
For & « 1y
Tri-ly = Pr—sts=1y,
=TM (T 1y} = 0
T™~1p = [j which is @ contradiction to (1)
So, our suppasition Was wrong.
Therefors, iy = 0% i
Hence, (v, Tv, T?p, .., T™ v} is linearly independent.
So, (laim 1 is established.
Let ¥, be the subspace of V¥ spanned by B where B = {T™ g, 7% p,..., Tr, v}

We have prroved in clabm 1 that & (= linearly independent and  spans V5. Lat L{E]} denates the linear
span of #. Then I, = L(B}

Hence, i is a basis ot ;.
Claim 2: I} is invariant under T.

Va€el =LiE)

This implies,
-1
a= ) BTl pieF
=0
So that

Ti@) =T (Z BT w) ) L Z BT ()
i=0

i=0
SinceT™ =0

n—2

- Z BT (w) € L(B) =,
i=0

So, T(a) €Wy ¥ E W,

Therefore, ¥, i invariant under T

Claim3: Ty,| = My,

Consider Ty, that is, the restriction of T am 1.
By the deflnition of reatriction magp,

Ty lx) =Tlx)wz eV,

T [T (@) =TT (@) =T (¥} = 0

Lovely Professional University 235



Notes

Unit 11 Nilpotent Operators and Invariants of Nilpotent Operators
T (T2 ()} = T{T™2(p)) = T (1)

T (T(e)) = T(Tiw}) = T2(v)

Ty, (v} =Tl

Considey B = [T by, 702, ., Ty, v}

T [T 1(e]) =0 = 0T™ v 4 0T 2w+ -+ OTe 4+ Ov

T [T 2@} = T Wp) = iTH e + 0TS 2w+ +0Tw + 0w

Ty, (1) = 72w} = 0T™ 1y + 0T™ 2 p 4 . AT + DT 4 D

Ty, ) =Tip) = 0T "p + OT™ 2 p 4« + 1Tv + Dp

So,

D1 0 0 0

0 1 0 0]

=1 o
Tl = 00 0 . 1 oM

o0 0 . o1

00 0 . 0O
Claim #: 1w € ¥, s such that T = Dwinere 0 < I =< 1y, then u = T*u, for some 1y £ 14

Since it E ¥ = L{K]
Therefore, there exist @y, az, ..., an, € ¥ such that

74

1w Zml‘“‘(u] )

i=1

2
THik (Zmr“ (u]) =0
i=1

T

Since T™Fu =1

This implies,

Zmrm-k+1—1 (L-'] =0

=

=

Or,

ﬁl
Zmr"i""”"(u] =0

=1
Since T™ =0,

So, we get
ke

Za,r”i"'“'(vjl= 0

i=1
Consider By = {T"1_’f(|:]-. TR-ktl(gy), ., T2 (g}, T u}
Then &, is contained in &.
Hence, f; is linearly inclependent.
So,q; =0V1<i=k

Then from (4),
y

= Z T ()
i=lc+1
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= T"( umr"-‘(ul)
2

= Tkl.l!g

where gy = Z?=l1 T ) ELIB) = ¥

Claim 5: Theere exists a suhspace Wol I, invariant under T sush that ¥ = 1} @& W

Let W e a subspace of ¥, of largest possible dimension such that
(¥ W = {0}
(1) W is invariantunder T
Weshow that V =1, + W
fv=%+Ww
I, and W Eoth are subspaces of .
So, ¥ + W 15 a subspace of I and hence,
Vi+W el

There exists z € V¥ such that z § V; + &
Since T™ = 0, there exists integer k, I < k < n, such that

TEz e +W
and

T +Whri<k

Trer EV; + W for some 0 < k = m,
This implies,

Trz=u+w;uelV, wEW

Consider
Thg =TT ")
= {(T™)(r*e)
=Tk (1 + w)
= TRy £ Thik gy,
Since T™ =0
So, we get,

TrimEp g Ty =)

Since both IY; and I are invariant under T

Therefore,
Tty EW
and
Thhwew
That s,
THFy =T w el niW¥ ={0}
By Claim (4],

it = T ug where 1y € V;
Henrr,

Tiz=u4+w=T 4w
Letz =2 —1uy

Then

Lovely Professional University
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Tezy =Tz —TEug =weE W

Then
Tioy =Tz —Truy =we W
Form 2 &
TRz = T AT ) =T W) EW
Fori < k

Tz, =THa =uwp) =T = T {ug)
Since I i theleast positive integer for which Tz, € ¥, W
andi < &
T el +W
So, Tz = Thug @ ¥ + W
Let I¥; be the subspare of ¥ spanned by W' and 2, Tz, ., T 1z
Since #; & W and W o= I
Therefore, dim W = dim W
Since T*#, € W ...(5) and W isinvariant under T
This implies, W, is invariant under T
Alsa, Wi a maximal invariant subspace of I such that I; nil#" = {0} and W i= properly contained in W;.
So, ¥; nil = {0}
There exists snme element
=W+ az +oTy w5 %D
If ap = 0¥ i, then
X =1y E W
So, x € ¥y n ¥ = {0}
This implies, x =0
Butx = 0
So, we arrive al 3 contradiction.
That is, @;x are not all zero.

Let &g be the first non-zero ;. That is, &, = 0% { < s and e, # 0.

Then
X =Wy 42+ o ley ¥ a, TF 12
= wy + a':']"x—li-l 4 'I.-:HTSIl ca C(k'i"k”i_?1
=wo + T N ag + ey T+ + 1Ty € W,
Since i, # 0

By lemmia, ag + @, T + -+ + e, T* 7" is invertible.
Ler i be theinverse of ag + @y T+« + ap TF2,
Then 7 1s also a polynomial in T
W and I are invariant under T implies, ¥ and ¥; are tnvarian: under &,
Consider
w4+ T2 ERRECY

Again,

T g el +wRal, + W

Sinces— 1<k
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We arrive at a contradiction to the choice of k.

So, our supjsitinn was wrong.

+W =
Also, since I} n W = {0}
Therefore,

V=V @Ww
Proof of theorem:

I =¥, @ W where ¥ s invariant under T
Using basis & = {'!'“'“: p T~y .. Tw l-'} of 1} astaken in Claim 1.
By Claim 3, we get, Ty,; Hl = My,

This implies,

= [T 0]

-l 2]

where A; is matrix of T; that is a linear transformation of T intuced on 4.

Since T™ = i
Also, To(xl =T{(x) ¥x & W
This implies, T;z = 0 for some 1, < iy

Repeating the same process on T, and W, we get the matrix,
[ |

M,, |
| )

where iy >, = ... = andng + w4+ i =dim Y
Remark:

«  Theintegers 1y, Ny, .., n. arecalled invariant factors of T

+ Taking B = {T“l’1 p, TH=2p . The |.'},
g1 0 .. 00
a0 1 . 00
we get the matrix Ty,; B| = i 0 o 1 0
0o 0 O 0 1
0 0 0 ]

But some authors take
B={p Tw.., TM % T 1g)

and then the matrix obtained is

¢ 0 o0 01
1 0 0 0
T.:Bl=0 1 0 0

Any approach can be used.

Example 12.2.2:Lel,. .o B2 such that the matrix of linear operator .

the standard basis & is giver: by

Lovely Professional University
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)1 1

Sivand s oarragl dare
9 0 O
Find the corresponding form as
[M“H ]
I an
| Mr-r

where 1y =i, = ..o 20, amd  w 4wy 44+ n =dim . Also, find the basis

corresponding towhich Ty, |, = My,
Proof:
0 1 1
A=|0 0O 0O
o oon
0 1 17160 1 1 ¢ 9 0
Consider A= 10 0 of|¢ 0 o|=|0 0 0
0 0 olln @ 0 0o
Since A% =1, index of nilpotency of A = 1, =2
Now, iy =11 = -+ such thatm; +m1, 4+ =3
Since 1ty =2, =1
M g 1 0
Then the carresponding arm is | 2 ]= 0 oo
¥ a oo

We chionsi v sgich that Te =0
Take 1* = {1,1,0), Ty = (1.1,0)

Then & = {(1,0,0), (0, 1,0)} is the required basis and ]".,,1|B = g (1) 2

Summary

e nilpotent operators are defined.

e characteristic values of nilpotent operators are obtained.

e The canonical form associated with the nilpotent matrices is explained.

e The invariant factors of a nilpotent transformation are defined.

e  Examples are given tounderstand how to find the canonical form and invariance factors of
a nilpotent operator on a finite-dimensional vector space.

Keywords

¢ Nilpotent operators

e Characteristic values of a nilpotent operator
e The canonical form of a nilpotent operator
e Invariant factors of a nilpotent operator

Self Assessment

An operator T ¢ the field of real numbers is nilpotent. Then the index of nilpotency of T I=
=1

>1

=0

Not defined

9Ny

Let T be a non-zero nilpotent linear operator on #7. Then its index of nilpotency is
<2

>N
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B.
C.
D.

w

oNwp

oNwp e

o OO P o

onw»

ON®FL  ONWE® OOWpN

onwe 2

=2
=1
=0

Let T and [f are two nilpotent opexatars on a finite-dimensiomsl vector space If ower a field
I, Then thoose the correct statermrit

T + [ is always nilpotent where (¥ + [jx = Tr+ Urw¥x e Y

T = [ i= always nilpotent where {I" = [jx = Tr = flx v x £ !/

T is always nilpotent where (TIlx = (Tx)[lixi ¥ x £ I

Mome of the above options is carrech

Let T be o nilpotent operator. Then which of the following is not nilpotent operator
5T

2T +T2

T+T2+1

Let T be a linear operator on &% defined as T'ix, ¥, 2) = (0, z.¥}. Then T is
Not nilpotent

Nilpotent of order 1

Nilpotent of order 2

Nilpatest of order 3

: Let I¥ bt the vector space of all polynaimials of degree less than or equal to 3. Let i he the
differemtiation operator defined on V¥, Then [ is the nilpotent operator with index of
nilpotency

1

2
3
4

Which of Lhe follow ing operator is nilpotent on #3
T{x.y.z) = 2x,y.2)

Tixy.z)=(2x,2¥%.1]

Tix, v, 2y =(0.0,x)

Tl ¥, 2 = (0,0,2)

Let T b a nilpotent transformation. Then all the eigenvalues of T are
Distinict

Equal but non-zero

Equal and all zero

Purely imaginary

A non-zero nilpotent operator is

Always diagonalizable

Always triangulable but never diagonalizable
Never triangulable

May or may not be diagonalizable

Which of the following is not a nilpotent operator on £*4?
Tix, y 2w = (2w, 22,0,0)

Tz, ¥ 2wl = (0,0, 2%, 2v)

Tix. . zowl = (2x 2w, Zx,0)

Tlx, v, z,w) = (0,220,
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11. Let mymg, .., 1, are oll the invariant factors of a linear operator T wij an i —dimensional
vertor apace F over a field F, Then

|!1+lt?+' FH =1

Mgty .ty =R

h, =R

Ny =iy < < Ry

ON=p»

12. M, is equal to
A: [2 (l]l
B: [2 3'
0 1|
0 0

D: [g 2'

c|

13. Let T be a nilpotent linear operator on an 1 —dimensional vector space ¥ over a field F
with index of nilpoterwy k. Consider a vector » such that T e 2 0. Consider the sets
A={vTe.Te, ... T "vland B = [¢,Tr.T?p, ....T"r]. Then

A s linearly independent ard & 18 finearly dependent

A and i Bath are linearly indepemdent

A and f both are linearly depsendent

A = linearly dependent and # is linearly independent

9Nn=p

14. Let T bea linear operalos on a vistor space V owver a field F, Let W ke a maximal invariant
subspace of V under T. Let W) is any subspace of I containing W. Then

W, i= always inwariant under

W, i never invariant unier T

W, iz invariant under T if and only if W; = W

W, is invariant under T if and anly if W, = {d]

g0 w»

15. Let T b« a linear operator on &% given by T{x, v,z = (0, x, 0} Then invariant factors of T
are

Ny
DWW
o= N

~

Answers for Self Assessment

1 A 2 A 3 C 4 D 5 C
6 D 7 C 8 C 9 B 10. C
1. A 12. C 13. A 14. B 15. C

Review Questions

6 -3 -2
1. Letd= [ 4 -1 —2]- Check whether A is nilpotent or not. If yes, find its index of
10 -5 -3
nilpotency.

2. Prove that the only nilpotent operator defined on a 1- dimensional vector space is
the zero operator.
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3. LetT bea linear operator on 7 defined as Tix, v, 2,t1 = {0, £,0,0). Checkwhether
T 15 nilpotent or nok. If yes, find it= index of nilpmtency.
4, LetT:#3 — B be such that the matrix of linear operator T writh respect to the

standard basis i i= given by
01 0
A=10 0 0
100
Find the correspondisig form as
M

ny

iy

2

M,

where my 273 2 .. 2m. aml A, i + -~ +m. =dim ', Also, find the
basis corresponiding to which IT._.I|B = My,

1 4 2
5 Letd = [6 1 2| Check whether 4 {5 nilpotent or not. If yes, find its index of
1 5 3
nilpotency.

Further Reading

¢ Basic abstract algebra by P. B. Bhattacharya, S. K. Jain, S. R. Nagpal,Cambridge
universitypress

e Topics in algebra by I.N. Hartstein, Wiley

e Abstract algebra by David S Dummit and Richard M Foote, Wiley

Weblinks

¢ https://nptel.ac.in/courses/111/102/111102009/
e https:/ /nptel.ac.in/courses/111/105/111105112/ #

Wnw
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Unit 13: The Primary Decomposition Theorem

CONTENTS

Objective

Introduction

13.1 Primary Decomposition Theorem
Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objective
After studying this unit, you will be able to

e state and prove the Primary Decomposition Theorem,

e understand the theorem with the help of an example.

Introduction

In this unit, you will s introduced to projections on a finite-iimensional vitrtor space V¥ ower a field
. Important results about the range set and null soace of i projection map are expilained, Further,
an 1mportant freorem Primary Decompositiont Theorem 15 proved. This theorsm extablishes that
for & linear operator Tom a finite-dimensional wectir space ¥ ower a field F, we can find subspaces
Wy, Wa, ..., W}, irom the miinimal polynomial of T such that 17 is a direct sum of Wy, W, ..., W,

13.1 Primary Decomposition Theorem

Definition 13.1.1:Lat I be an v —dimensional vector space over a field £,
. A projection an I is a linear aperator £ such that F* = E

«  Let £ be a projection on 1Y, then the range of £ is denoted as R and the null space of E iz
denated as N,

Theorem 13.1.2:Let V¥ b an m —dimensional vector space over a field . Then
(i} # € R if and only if Eg =

(Fr=RE@N

Proof:Let i &,

There exists some a € V such that § = Ela) ... (1)

This implies,

B o= ECEe)
<

E U E o)

2
£ o
ERor

oo

Ve
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This implies, Ef = fw e R
Conversely, lel £ = j§

F=EfER

For proof of part (i)

Lat e ¥

v =Er+ir - Ev)

Proon part (35w € /&

Consider
Eiv—Evl=Fv—Fv=Er—Er=10
This implkes, v = Ev g ¥
So,e=Fr+(r-Ev)ER+N
Henwe, ¥ =R+ &

Letxr e Bn N

Then by part (i}, x € B, £y =x
Again,x E N, Er=10

Therefore.

r=E¥=1

So, # MW = {0} and hence, I = R & N

Theorem 13.1.3:Any projection ¥ on an m —dimensional vector space ¥ awer a field F is always
diagmmalizable.

Proaf:
Let ¥ e a projectionon ¥,
Then £2 = £
This implies, flx] = x* —r is annihilating polynomial of E over F,
Let p(x} be minimal polynomial of £ owver F,
Then p{x) divides fix}
So, p(x1 =z, x — 1or x(x =1)
In any case, plx] k= a product of distinct linear factors over F.
Hence, E s diagonalizable.
Task:
1. If E; and E, are projections onto independent subspaces, then £ + E; iz a projection, True
or false?

2. If E is a projection and £ is a polynonial, then f{E] = af + BE. What are a and [ in terms
of coefficierits ¢ [7

Theotem 13.14kLet IV = W, @ W, D ... D W, then there exist k linear operators Ey, &,,..., £, on ¥
such thal

(1} Each Eiis a projeclion.

(ix) For i » j, EE =10

(i = Ey ¥ E; + o+ e

() R(E ) = W whese R(E]) s panpe of E;,

Comnwversely, if E,, £, ..., E, are E linear operators on V¥ which satisfy (i}, (i} arsd (i}, and if we let
IW; Is the range if &; than
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=W, ®W, D ..0W.
Pruof:
=W, W, D ..DW,
var € V, there exist wmnigue @, @y, .., &, € W; =uch that
=gy +dtg ooty (1)

Define the moarp Ej: I = W as Ej{a) = o5
Since the repmesemtation (1) is unique, the map Fj is well defined.
Proof of (i}
Consider « € I

o= +oy+ -+ agiay MW

Fila) =aq; €W; W

By the uniqueness, we can write

@ =0+0+--+0+a +0+-+0

So that
ACHES
That is
£y (E()) = Ej{a) v eV
This implies,

£} = Ejwhich proves part ((} that each Ej is a projection.
Proad of part {ii)
Lete =ty +utp + -+ €V

Then

Fil Cerd il

p=1
where f; = mand f, =0V p # |
For some [ # |,
E (F:f(n-.)] - Ei(eir)
W R
K
= gi (Z ﬂ'p} = pi
p=1

Butsince, 1 =, ;=0
This implies,

E(Ei) =0vaew
Thatis, E;E; = 0% i # |

Proof of part (iii}
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Consider & = @, +at, + +a €V

Then
Eilal = ay

k e
ZE;((I) =Zq’_f =«
j=1 =
So,

k
ZE;(C() =fa)vael
=1

Thiz proves that

k
ZE,—:f
=

Proof of part {iv]
Since £;: ¥ — Wi, lherefore; &{#;} s contained in ;.
Now let & € W¥;
Thenx= 040+ +0+x+H+--0
So that, E;{x] = x. which implies x & R(E;)
This proves part (e} that R(E;} = W},
Conversely,
Suppose £y, Bz w0, £ are lnear operators on IF which satisfy the first three conditions,
and let ¥} be the range of £
Then for e & ¥
From (i}, Mad = (E; + E;, + - + B la
That is,
a = () + E(a) + - + Epla)
=a;+a;+ -+ ag..(2)
where a; = E;{a) £ B(E;) = W;
Therefore,
V=W, + W, + -+ W,
Now, if pogsible, let
a=fy+fz+- o+ fig .- (3)
Then since f; € W; = RiE;]
Ei(B)=pVI

Consider

k
OB A

};_—,‘I L L U5 3D

- !:"le,.'.‘ilf) {LJ.-sing (II 3]
) (Usie ra

T Ei(A) Using i
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From (2), Ejia) = a;
This implies,
= fiyv |

Hence the sum is given by

V=W, + W, + -+ W,
is a direct sum.
That is,

V=W, &W,d..0W

Drefinition 13.1.5:C onsider the direct-sum drcompositions V' = W; i W; & .. @ W), where each of
the sulspaces W; is invariant unider some given linear operator T. Given such a decomposition of
I, T Induces a linear operator T; o esh W} by restriction. The aitiosrof T |= then this.

If
Q=g+ + - +a, €V,
then ¢; € W; is uniquely determined.
We can observe that T = Ty, + Tya, + -+ + Ty,
We shall describe this situaticn by saying thai T is the direct sum ol the operators Ty, . . ., Tj.

It must be remembered in using this terminology that the T; are not limear operators on the space V¥
but the various subspaces W, The fact that ¥ = W) (B W, @& .. & W, enables us to associate with
each & € I, a uniquet & —tuple [y, iy, ..., @5 ) of vectors a; € W (by = @, + @z + -+ u),) insuch a
way that we can carry oul the linear operations in I bw working In the individual subspaces IW;.

The fact, that each W; is invariant under T enables us to view the action of T a= the indepenident
action of the operators T; o the subspaces Wj.

Note:Our purpose is It study T by finding invariant direct-sum decormpositions in which the T, are
operators of an elemetitary nature.

Theorem 13.1.6:Lel T b a linear operator on the space V' and let W, W .o Wy and &, B, .., £ be
as defined earlieT. Them a necessary and sufficient conditiom that each subsnace W) be lnvariant

under T is that T comnomte with esch of the projections &, ia, TE; = ET, 1 =1, 2,..., k,
Proef:
Suppose TE, = BT, 1 =1, 2,..., k.
Let ¢ & W = R(E;]
Then Ejr = @ and
Ta = T[Ejx]

= Ej{Ta)
which shows that Tiz £ W, =o W} ks tavariant under T".
Conversely, assume thal each W} is invariant under T

We shall show that TE; = E;T ¥ j,

Leta €V,
Then

o = By + Byir + -4 Eyir
so that,

Ta=TEn+TEa+ ~+TE.a

Since E;a € W;, which is invariant under T, s,
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TiEux) = E;ff; for some vector ;.

Then
EjTEa = E;E\
_ [ 0, ifi=jf
“lgg wi=i
Thus

ETa =ETE e+ -+ 5TEa
= &6, = TEja
Thia holds for each & & V, s0 £,T = TE;.
Theorem 13.1.7:1.et T b a linear xperator on a finite-dimensional space I,

If T is diagonalirahle aned if ry, ¢, 0. 0 are the distinet characteristic values of T, then there exist,
linear operators,E,, Ey, ..., B on ¥ such thad

(T =6 F +ceFa + -+ 0,
(i =E; + B2+ =+ E;
() EE=9¥i®]
(fnIET=E
() the range of E; is the characteristic space for T' associnted with c;.

Conversely, if there exist & distinet salars ¢y, &, .., 0y and k non-zero linear esperators Fy, .. ., &
which =atisfy conditions (1), [if), amd [1i7},

then T is diagonalizabile, ¢y, o3, ..., £ are the distinct characteristic values of T, &iid conditions (i)
and {x} are satisfied als

Proaf: Suppose that T |= diagonalizable, with distinct characteristic values ¢y, ¢3, ..., €.
Let 14 I the space of characteristic vectors associated with he characteristic value ;.
As we have seemn,

V=W, DW: D .. 0 W,
Let ¥y, Ey, ..y B be the projections associated with this decomposition.
Then we kave proved that ((L). {iit), (1w}, &nd {©] are satisfied.
To verify (],
For each it € I,

a=Ea+--+Ea
and so,
Ta = FEla b T EZa 4 ot T o

e o o
L A E e

= e 4

1V EY e - o2 EZer F ol Elecr

In other words, T =, By + ooy + =+ . B,

Now supparse that wet are given a limear operator T along with distinct scalars ; ard non-zero
operators &; which satisdy [4], (i1}, and {iif).

Since £;F; = 0l when | = |,
we mulliply both sides of

I=E+E+-+E
by E;

and obtain immediately E7 = ;.
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Multiplyving
T=0E +o B+ + 0B
by £,
we then have
TE = ol
T =alE =0
whikch shiows that any vector in thi range of E; #s in the null space of (T — ;1.

Simce we have assumed that £; # (I, this proves that there is a nan-zero vector in the null space of
(T — ¢, i that ¢ is a characteristic value of T

Furthermore, the ¢; are all Ihe characteristic values of T; for, if ¢ |s any scalar,
then
T—cl =gy —c) By + {0 —)E; + - + (0 —£)E
So, if [T — ella = 1,
Then
((er = € By + ez — €)Ba + -+ (g =)o =0
we must have (¢, — ¢}Ea = Q.
If it is not the zerw vector, then E;ar # 0 for some 1§, =i that for this i,
wehavey; — ¢ =
Since we have shewn that every non-#ero vector in the range of £; is & characteristic vestor of T,

and the fact that I = E, + ... + Ezhows thal these characteristic weclors span I, therefore, T is
diagonalizable.

Now we shw that the null space of (T — ;) is exactly the range of £;,
Let a Is im null space of (T = g1},
That is, Tir =y, then using. (T = ;D& = Dand

(T =i = ((cy — ) By + -+ (g =) B e

k

Z(Cf —e)Eje =0

=
hence (; ~ ¢;)E;a = 01 for each |
and then e =11, j# (.

Since «r = Eyir + -+ Epr and Eja = 0 for j # 1, we have & = E;a, which proves that « is in the
range of E;,

Theorem 13.1.8:Primary [F¢compositiori Theorem: Let T be a linear operator on the finite-
dimensional vector spawe [f cver the field T,

Let p b the minimal pelynomial tor T, p = p,""]'.'.:’ p;“where the p; are distinct irreducible monic
polynamials over ¥ and the r; are posifive integers,

Let W, be e null space of T i=1, 2, ... k.

Then

V=W EW. D. 0w,

(it} #ach W} & invariant under T;

(1t} if T; i= the operator induced on W; by T, then the minimal polynomial for T; is p{ k
Proof:

For each {, lil
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Fit1

p r. Fi=
IFI =£,?:: p;IPJJ Fl—IIF|+1 p;k
i

Note that p; does not divide f; and p; divides f; ¥ j # i,

Since py, Pz, .-, Py are distinct pl.‘i me pulynomials, the polynomials fi, f, .., fi. are relatively
prime.

Thus, there are polynomials gy, gz, ..., @ such that

K
2 figi =1
i=1

Note also thatif { # f, thin
2
’ P
iy =~
P; P;
;‘_F.'? ";"r'

= ¥1oaE ri-1 riv1

it gk o PR B e ST e R
is divisibie by the polynomial p, because f; f; contains each pr2 as a factor.

Consider bhe polynomials iy = fig;.

Let E; = h;(T) = F[T1g(T

Since Y., fig; =1 and p divides fifivi=},

we have,
P T + Be- hl Gy hz (C P + hk(?')
_ .L“:T", i+ }..2,('7'_| e 5 ﬂnk('r)
T Al b+ AGgzl + T decrarcr
Fa LT ki
SO, E1+Ez++f'k= [1:|
Again, p divides fif; ¥j =1
fefy = puig € Flx|
Since p is winimal polynomial for T, p{T} = i impiies,
flTIGT) =pTigiTI=0Vi=]
For { # J, consider
BigY = | ACTet T (T ar (T

i I i i
F (T CTIF g D
FECT T CT I Gi (T ai €T

DA T
=0V

s
EEj=0vVi=/f. (2}
From (1), 8, + Ex + -+ E, =1
Pre-multiplying both sides by E; and using (2), we e,

B} = E; ¥i..(3)
Thus, the E; are projections that correspani fir some direct-sum decomposition of the space I.
Now we wish to show that the range of E; is rxactly the subspace W;.

Conversely,
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Let it & ¥ = Null space of p/*(T)
If =i then fig; is divisible by p{* and so f;(T)g;(TJa = 0 that is Eye = 0 for j = L.
Also, I =E, + E; +++
e} = E (&) + Ex(00) + - + Ep[ux)
That is,
a=Ea
which implies,& € Range of £,
This proves that the range of £, iz exactly the subspace W;.
I¥,. being null space of p; (T} that s, the null space of a polynemial in T s invariant under T.
If T; is the operator induced w1 W; by T, then E“-’idl'l'lll}'p?(r[_:l =0
because by definition, pir £(T'1 = 0 on the subspace ¥,
This shows that the minimal polynomial for T «ivitles pir 5
Conversely, let g beany polynomial such that
(T = O
Then g(T)f(T)1 = 0.
Thus, gf; 1= divisible by the minima! pelynomial p of T: L&, p; ' f; divides gf;.
It is easily seen that J:-,“ divides g.
Hence the minimal polynomial for T; is p{ 5

Example 13.1.9:LetT ks a linear operator on &' which is represented in the standard ordered basis
by the matrix

& -3 -2

i o1 o

i -5 -3

Express the minimal polynomial p for T im the form p = p,p,, where p, and p; #te monic and
irreducifle aver the Field of real numbers.

Let W; e the null space of p;(T'1. Find bases 8; for the spaces Wil = 1, 2. If T; Is the operator
indwred on W; by T, lind the matrix of T; |n the basis f;.

6 -3 -2
n=l:1 -1 —2]

m -5 -3

Sol:

The characteriztic pelynomial of A is |zf = A|

x—B 3 2
= -4 x+1 2. |=0
—1a 5 43

Syi-Mf+x-2=0
S>@-HE?P+1)=0
The characteristic polynomial of A i= (¥ = 2)(x? + 1).
Also, the characteristic polynomial is the sarmne as the minimal polynomial.
That is, the mimimal palynomial is
p(x] = (x = H(x? + 1) = p,p,
Herep, =x—2, pa = %%+ 1
mm=T=21
Wy = {X € | p, (T)X = 0}
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" 8
1l

T
Py (TIX = 0
S(T—MX=0or(A=2K =0

[4 -3 2]
=>4 -3 =2 [}’] =
110 -5 51tz
Applying R, = Rz — Ry

[4 -3 =2]% 0]
=>/0 0 ] ”1-} = [EI
110 —5& 51tz 1]

—-a

0
0
0

Applying Rz — “—-5’

& —=3F =2} 0
= IU 0 1) _!-"|= 0
2 =1 -1& L0
R1 —:"R1 _2R3
G —f O7Fgx [0
=0 0 0 I}-’]= 0
2 -1 =1llz 10
y=02x==x
X X 1
}’I= U]=1H
z 2T 2
B ={{1 0, 2)}

W =null 4pace of p, (T ={X € B3|p,(TIX = 0}

-

(T2 + DX =D

5 =5 Qfr¥ 0
=0 o i [}’l = 0]
1 =10 otz 0
Sy —Sy=0x=y

i 1] 0
Jr'l= 1 +=z|0
E a 1
Hy = [(1,1,0), (0,0, 1}
T{1,0,0) = (6, 4, 10)
T 1.0 =€¢-3, —1, —5)
T 4 1) ={-2 =2, —3)

x
.T]”

For {z. v z) € &Y

Tix, 3, 2) = (6x — 3y — 2z, 4x —y — Z&, 10z — 5y — 3z}
T{1,8,2)=(2,0,4)=2(1,0, 2)

[Tyle, = [2]

T201,1,0) =TI[1, 1, 0) = (3,3,5)

Talih 0, D) =T(0L 0, 1) =(-2, —2, —3)
T.411,0)=(335=2(,10)+5(0,0, 1)
T:(0,0,1)=(-2, —2, —3)=-2(1,1,0)-3(0,0, 1)

[Tz»]sz: [g :3|
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Unit 13: The Primary Decomposition Theorem

Summary

A projection map is defined for a finite-dimensional vector space
Important results about the null space and range space of a projection map are explained.

The Primary Decomposition Theorem is proved.

Keywords

Projection map
Range of a projection map
Null space of a projection map

The Primary Decomposition Theorem

Self Assessment

N

ON=F >

w

-

oNnw e

ONF >

9N = »

Let £ be a prrojection defined on a vector space I awver a field F. Them
E*=E

ES = E

E£* = £ for every natural number k

All oprions are correct

Let E s a projection on an n dimensional vector space I aver a field F amd & denotes the
rangg ol £, Then

f € R ifand only if Eff = §

f € R if and only if Eff =

f € Fitand only if Ef =1

B € kifand only if Ef = 1

Let Ebe a projection on an r dimensiomal vector space V' ower a field F. Lel & and N denote
the range space and null space of £ respectively. Then # 1N =

i (Empty set)

]

v

F

Let £ be a projection on a 5- dimensional vechor space ¥ owver F, Ther which of the

fallowing cannot be the minimal polynomials of E.

x
r—1

(x=1]
= 1)

The set of characteristic values of a non-zero, non-identity projection map is given by
{0}
{1}
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C.
D.

g 0 = »

oNn®p N

U N w> ®

0

o0 w»

oNw >

0,1}
{0,1,-1}

Let V= W, @ W, & W, such that there exist 3 linear operators Ey, F,, £5 on I such that
ench £y 5 & projection, Then

kg = 0 and £ = 1) (0 denotes the zero map)

kg = 1 andd £} = D{I denotes the identity map)

E;E, = Dand E = &,

EyE: =tand Ef =

Letl E be @ projection map and [ i= an identity map on vector space I, Then E¥[E — i) =
E(E=1)

E(l —E)
EE — 1) or E(l — E)
I|__'J|c+1 _Ek

Let E bi a projection map on B then x5 — x is

An annihilating but not chargcteristic potynomial of E
A characteristic polynomial of £

A minimal polynomial of ¥

All options are correct

Let F = 8°, # denotes the field of real numbers. Define T: #* — B as Tlxy, 1, 34,5,,55) =
[xy,%,,0,0,0). Then

I" i 4 linear map but s a projection

T 5 4 projection on * with characteristic polynomial £ — x

T i= & projection on #* with characteristic polynomial x?(x = 1)?

T i= a projection on H¥ with characteristic polvnomial =% (x — 1)?

True/False: Differentiation map defined on #, the vector space of polynomials of degree
less than or equal to 3 over the field of real numbers, is a projection on
True

False

Let i denote the field of real numbers. Let T BY — B2 ke defined as T(x, ¥} = (3. —x1. Then
= W, @ W, @ ... ® W), where each W} is T —invariant.

% has a primary decomposition with k = 2.

% has a primary decomposition with k = 3.

f#* has a primary decomposition with & = 4.

#? has no such primary decomposition
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12. Let ¥ be an n —dimensional vector space over a field F. Lel T be a linear operator with
distinet characleristic values ¢, £z, .., 0. Then there exist finear maps £y, £y, ..., Esuch
that T = ¢y + ¢, 8, + -+ + £,.5, If and only if

T i= any linear operator

T i= diagonalizable

T i% a linear operator with distinct characteristic values

oSN = »

T | riangulable

13. Let ¥ be an i —dimensiomal vector space over a fleld ¥, Let T be a diagonalizable linear
operator with  distinet  characterlstic  values ©,,03,..,0,. Consider linear maps
Ey B3, .. Epsuch that T = o E, + o, &, +- + 5. ThenT? =

B+ eiBy+ -+ c2Ey

bl ki 4 -4 g ]

o1 By + 20 By b 4 2¢,.E;

By + BBy + o + B B

9N < »

14. Cowsider a linear operator T on & given by Tlx. %1 = (y.1). Then
A. T canbe expressed as a sum of two projections on #?

B. T can be expressed as a difference of two projections i1 R

C. T uan be expressed as a product of two projections ari fi*
D

T can be expressed as a sum of three projections on f*

15. Consider a Yinear operalor T on B* given by Tlx, ¥} = (wx). Then T = E; + ¢, B, such
that

A Efz,¥) = (x” X*X) E,(1.¥) = (52' ,y—z-)
- I = x--.- x+y | T y—x

B.E (% y) = (5%, 22). 8.y} = (12, 25)

&
CE Gy = (S8, 50) By = (22,22)

2
D) = (22220, e = (E2.22)

Answers for Self Assessment

1 D 2 A 3 B 4 D 5 C
6 C 7 C 8 A 9 D 10. B
11. D 12. B 13. A 14. B 15. A

Review {Juestions

1. LetT e the diagonalizable linear operator on & represented by the matrix

5 -6 -6
A=|-1 4 2

3 -6 -4
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Use the Lagrange polynomials to write the representing matrix A In the form A = £ +
2B, By + B =1L EE =1

2. Let A b the 4 x 4 matrix given by

0
[F] 0
I 01 DO

Find matrices £| .£:.!‘-‘3 such that A = I:|F' + Ez + '|.'3|!'-3, i':‘1 + f‘-‘z + E3 =1, FJ =0V #]

b D

1
a3 0
A= 4

3. Let ¥ b a real vectos space and E am idempotent linear operator on I, that is, a projection.
Prove that [ + E is invertible. Find (I + E1-1.

4. Find & projection Ethat projects #2 onio the subspace spanned By (1,—1) along the subspacs
spanmed by (1, 2]

5. Let E bo a projection of V¥ and let ¥ be & linear operator on 1Y, Frove that the range of F s
invariant under T if and only il £TE = TE. Prove that both the range and null space of E are

invariant under T if and only if ET = TF,

L] Further Readings

¢ Basic abstract algebra by P. B. Bhattacharya, S. K. Jain, S. R. Nagpal,Cambridge
universitypress

e Topics in algebra by I.N. Hartstein, Wiley

e Abstract algebra by David S Dummit and Richard M Foote, Wiley

@E Weblinks
i e https://nptel.ac.in/courses/111/102/111102009/
e https://nptel.ac.in/courses/111/105/111105112/#
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Unit 14: Rational and Jordan Canonical Form

CONTENTS

Objective

Introduction

141  Cyclic Subspaces and Annihilators

142  Cyclic Decomposition and the Rational Form
14.3 Jordan Blocks, Jordan Forms, and Generalized Jordan Form over any Field.
Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objective
After studying thes unil, you will be able to

e define T =cyeli subspace exsrm=sponding to a linear operator T defined on a weckor space ¥
over a field F and understard results abant the sans,

e define T =anmihilator of seme element i correspemiding to a linear operator T defined on a
vector space 1 over a field F and understand results about the same,

e define T —admissible subspaces of a vector space V¥ and a linear operator T on I,

e state and puove the Cyclic Decomposition Theorers,

e understand rational canonical form and find rational canomical form corresponding to a
given operator (on a finite dimensional vector space) or a =jusre matrix,

¢ understand Jordan Canonical form of a given matrix A @r a linear operator T o a finite
dimensional vector space I,

Introduction

In this unit, we are laking linear operators on a finite- dimensional vector space over a field F.
T —cyclic =subspace rarresponding to a linear operator Twill be defined and understand results
about the same. T —annihilator of some element acmrresponding to a linear operator Tis
defined.T —admissible subspaces of a vector space Vwill be defined. Cyclic Devaimpositivn
Theorem: will be proved. Rational canonical form is explained and rational camumical form
corresporidiig to a given operator (on a finite dimensional vector space) or a square matrix is
elaborated with the help of examples. Jordan Canonical form of a given matrix A or a linear
operator T @i a finite dimensional vector space I is explained.

14.1 Cyclic Subspaces and Annihilators

Theorem 14.1.1:Let ¥ is i1 finite-dimer=ional vector space swver the field F and T is a fixed
(but arbitrarTyv} linear operator an I, It is any vector in ¥ and ¥ is an invariant subspace
of Venntaining, then g (T )it € W for every polynomial g = Fli]

Proof:Let W is any subspace of ¥ which is invariant under T and contains i, then W must
also contain the vector Tiy; hence W muast conta n

TiTal = Ta,

TiT?z) = T3
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T ‘o) =T*avk

Consider

glx) =my +ax + - + @ x™
Then

& O der = (ucu T e M an? e
= =] 1
O oaf & T A o
= ot A TPa =W
cx0cr - 1l Texr 4 --- e .

In other words, W must contain g (T Jr for every polynomial g over F,

. .. PR . .
%‘ Note:There is a smallest subspace of Iuch is invariant under 1 contains
T T ar .

This subspace can be defined as the intersection @ all T — invatiant subspaces which comtain . In
particular, the set of all vectors of the [orm @(Tlx with g im F[x], 5 the smallest T ~invariant
sist=pisce which contains a.

Definition 14.1.2:If & is any vector in ¥, ihe T — cwclic subspace generated by ar is the subspace
Z{x:That all vechors of the form g(Ta, g £ Flx].

If #{e: T} = ¥, then & is called a cyclic vector fur T

In other wards, #{a: T Is the subspace spammis by the vectors T*a; k = 0, and thus « is a cyclic
vector for T If and only if these vectors span I,

@ E"_'h::imple 14"1_11:

(11 For any 5. the T = :yclic subspace generated by the zero vector is the zero
subsnace

(it] The space {a; T i=one dimensional if and only if « is a characteristic vector for T,

(1] For the 1-imtity operator, €VETY non-zero vector generates a one-dimensional Cyclic
subspace; thus, if dimension of V > 1, the identity operator has no cyclic vector.

Proof:Recall that
2{a;T) ={g(Talg € Flx]}
Fora =0
FLO:T) = {,9 CFI0| o e Flx]}
= {0}

That proves part (i}

For part (11}

The space Z(e; T is one dimenisional

Claim:& = {i} is a basisof Zla; T)

Let {i#] b thwe basis of Z(x; T)

Since g{The € Zfa: T} fur alh g € F[x]

Taking g(x} = 1, we get, m € Z(a; T)
Therefore, it = cffic € F

Clearly, ¢ = 0sothat 8 = ¢ 'u

So, i = < a = thisimplies, Z{e; V) = < a >

Again, since g{Tla € Z{a; T1%¥ g £ Flx]
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This implies, @{Tjm = < a >

Also, taking glx) = x, we have, g{Tla = ¢'a
That is, Ter = ¢'ix

So that, it s characteristic wector of T,
Conversely, let at is characteristic vectar o T,
Then there exist some ¢ € F such that Te = car
In that case, g(Tla = glcia

This implies, g{T)e = = o> forall g € F[x]
That i5, Z{m; T} =< & =

Proof of part (i1}

For T'= [,

Fla: 1) = {g(Nm g & Fx]}

Let glx] = g # ilyx + dur? + o + dpx™

Then
o = = qor 4 a1r® + .. + anr™
x,_,‘ —O—:x.lj_ R
= (czo + a1 “’anj! — ad
So that,
ZCex; 1} = ={I.'Ir o = )
el & € F}
= {aor; o & F}
=<5
Simce a.% @,
{ar} is linear?y independent.
So, #{a: T) has basis {x]
That s £im; 71 is 1 —dimensional,
Further, it dimension ¥V = L, T =1
then Z{a; T} i= oine dimensional
but since dimension 1V = L
That k=, £ia; T} t2a propet subspace of ¥,
So, V¥ # £{a; T) far any e,
hence, identity operator has no cyclic vector if dim ¥ =1
Exan 14.1.4:An opera_ i w ; . 'h has a cyclic vector.
phe T vhix E
Let 7 jw an operator on ¢ w.pjch is represemted in the standard ordered basis by matrix

a0
¥ ol
Praof:Let o = {1, 0}
Clairm: #{e; T) = 2
Zla: T = {9iT)m|g € F[x]}is a subspace of 2.
Therefore, Fia; T1 = F2 .. (1]
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Let I:_ra. JJ_:I E F?

Let glz}l =m + bx

@ e (...- - BT o

Cexf — BT o

wlex & BT Cor)

wrer —+ [
= 1. 0) + 2 T, 0)
= BT 3
= L, )+ B0, 1) = ((r. i3
So,
(m, B) =g(Tew e Z(a; T
That is,

F2u Z(@:T)...(2)
From (1) and (2), we get,
F2 =Z(&;T)
This proves that it Is a cyclic vectar.
Definition 141-%bet @ € Vthen T —annthilator of & is the set M (@; T of Flx] given by
M T) ={g € Flxjlg(Tla = 0}
Ifa =0, then g[T)a = 0% & Flx]
So, if @ = 0 then M(a; T} = F|x]|
Theorem 14.1.6: M (a; T} is an ideal of F[x]
Prouf:
M(a; TY = fu € Flx]lg(Tla = 0}
Letglr) =0Vx

gn) =0
g{Tm =0
So, glx1 =0, g € M(a; T}
Mia;T) = o

Letg, he M(a; T
@lTla=0, i(T)a=0

Then
ATl —h(T)a =0
implies
(@-N@a=0
That is,
g—heM(T]

Let f € Flz], g € M(&; T)
This implies, g(T e = 0
(Fa)iThr = f(T)g(Tlx =0
That is,
FaEM(@T)
Similarly,

af € M(&T)
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This implies, M (a; T I= an ideal of F/x].

@- Notes:

. Flx] s 2 principal ideal domain therefore, apf(a; T3 is generated by a single
element.

We denote it as p,.

. D.is also called the T —annilitlator ofa.
. Patiivides the mimimal polynmial ofT.

Let p is the minimal polvmomial for T.
Then p(T'} = (LHence p(T)am = 0

So, p € Mia; T} = < p, > this implies, p,|p

degpy, > Ounless o =0

Let ¢ = 0 and degp, = i

Thenp, =cic € F

Since po(Tha =0, el = 0, o = 0

Again, @ # [implies¢ =1

Then M(e; T) =< p, > = D)

But the mimimal polynonital p of T belongs to M(er; T).
That is, p = 0 and hemce T = )

Consiger g(x) = ¢

Then giT)a =Ta=10

So, g EM(a; T) =10}

That is not true.

So, we get a contradiction to our supposition.

That means, dlegP. > 0 unless © = 0

Thewrern 14.1.7:Let « be any non-zero vector in ¥ arrd let p, b the T —annihilator of
(i) The degree of p, is equsal o the dimevsian of the cvelic subspace Z(a; T),
(45) §f the degres of p, is b, then the vectors o, Te, T2, ., T a form a basis for Zia; T
(1) If [F is the lnear operator on &{; T induced by T, then the minimal polynomial for [ ispg.
Let 3 beany polynomial over the field F,
Write
g =paq +r
where, either ¥ = Dordeg (v} < fdeg (p.) =K.
The polynomial p, ks n the T —annihilator of &, and so p.,(TJa =0
and hence
PatflT e = pa (TI(F g = q(Tp, (Tla = 0
This implies,
glTMa = ¢v{T)a.
Since v = flordeg [r) = k,
Let
r{x] =i &% + i3y + o+ artin ko €F

Then
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T e =apa+ o Ta ¢ 0TPa + - +oa,Ten <k

the vertor (T i is a linear combmation of the vectors &, Tir. ..., T 'a and
=ine g1 o i any vector in & [a; T, this shows that these & vectors span {o; T,

These wvectors are cerfainly [inearly independent, because if not, them there exist scalars
MToi My, i, Wy N0t all zero) such thatage + o Ta + a; T2+ v Fap ,TF-r= 1)

Then consider gix} = ity 415 + 232? + - + @y, x, then g[Tla = Obut deg {5 = deg (p),
which i= absurd.

This proves (i)
Let [T bwi the linear operator o £1r: T obtained by restricting T.

If g i= any polynomial over ¥, then

prex (!l)g CF e FEled ('!")_g CF e
LAS
P T, T ler
T acrpalrie
FCT I

= G CT 0 .
Thus, the opirator p, (I} sends every vector in Z{a; T int (1 and is the zero operator on Z{a; T,

Furthermore, if # i5 a polynomial of degree less than k, we cannot have h(U) = 0, for then
h(IMe = h(Tha = 0, contradicting the definition of p,. This shows that p,, is the minimal
potymomial for IF,

Rermark 14.1.8:A particular consegquerice of this theorem is the following:

If er happens to b a cyclic vector fur T, Lhien the minimal polynomial for T must have degree equal
to the dimensicm i the space Vihencr, the Cayley-Hamilton theorem toll= us that the minimal
polynomial for T |= the characteriztic polynomial for T,

. ace v o e R
e
@ Examiple 14.1,9:Lct *a space  dimension t .. 2 linear operator on ich
Wb of B s B b o
thay U/ has a cyeuc vector | Find matria of [, ith respect to the busis

(a, Uy, ., BF-1g),

Given basis is {a, ;... 11 a}

Let
oy = it
a; = llm
Ay = Ukte

oy = e == ap = 0y + Taz + Oz + -+ + Oay,

[ty = %@ = t3 = 0ay + Oixy + 1iky + -+ + Qit
1 2 3 4

oy = 1 'a =g, = Oy + Oz + -+ Ly
tey, = e
Let pg = Cg + 1 4 =+ £y 71 4 x¥ he [ — annihilator of i in W
and hence minimal palynomial af I,
We know that p, ([} =0
ol + iyl + o+ o I+ 5 =0
(cal + e lF + =4 £ T + 0¥ = 0
ot + ol + - + o U e + MR =0

Loty + 0@y + -+ Oy + Uhir, = 0
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Uay, =Ly — £y =~ T T
That is,
e+ gy I g+ oo+ oy i+ gt = 0
So,
0 0 0 .. 0 —gg
1 0 0 .. 0 —ry
[l =0 1 0 0 "
0 0 0 - 1 T

This matrix is knows é= companion matrix of the mamic polynoniial p,.

Theorem 14.1.10: If[i i a linear operator on the finite-dimensiomal space W, then If has a cyclic
vector if and only if there is some ordetedd basis for W' im which [ is represented by the sompanicn
matrix of the minimal polynomial for I,

Proof. We have just observed that if If hits a cyelic vevtar, then there is such an ordered basis for W,

Conversely, if we have some ordered basis i = {a-,. T, ... ,nk} for W in which [f is represented by
the companion matrix of its minimal polynomial,

That is,
0 0 0 0 —¢5 1
1 0 0 0 -
[(]s=[0 1 0 0
('J 0 0 ~ 1 Tk
Then
e, = 0a; + 1a; + 0ay + -+ 0y = @y
[fay = 0ay + Oap + lag + -+ Doy = ag
[ler, = Oay + Oy + -+ 1@y, = &y,
oy = —tgity — C1lty ~ -~ — Cp 141y,
So that

i= :l’fl. Uﬂl, “ag, ey U(rk—l}
= {ay, Uy, Py, ..., UFay)
Clearly, @, i= a cyclic vector for I,

Corollary 14.1.11:If4 is the companian matrix of a monic polynomial p, then p is both the minimal
and the charatteristic paalynomial of A

Proof. Let II b the linear operator on ¥ which is represented by A in the standard ordered basis.

Apply theorem together with the Cayley-Hamilton theorem, we get the desired result.

@ Example 14.1.12: Let " “the linear operator on 1' . hich is represented in the standard
ordered basis by the ia.tr:x
2.0 0
02 0

0 0 -1
Prove that T has no cyclic vector. Find thi T ~cyclic subspace generated by the vector {1, =1, 3]
Ti{1,0,0) =(20,0)
T(0.1,0) = (0, 2, 0)
T3 = (0, 0, — 1)
Hence for any [x, ¥. 2]} € B3

Tiz, v, ) = (2x, 2y, —z)
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T2z, ¥ ) =Ti2x, 2y —2)
= {Ax, 4y, 2}
If possible. let {x, ¥, 2] be the cyclic vertor for T,
Then theset B = {(x, v, 2], T{x w. #), T*(x, . 2]} 152 basis of &3,
Then B = {[x, y. 2} [Zx, 2y, — =) (4= 4y. 2)}
Note that
2(x, ¥, 2D 4 (2x, By, —2) = (4x, 4y, 2} =D
This implies that K is linearly dependent but f bsxing basis is linearly independent.
So, we arrive at a contradictiom
That is, T has ne cyclic vertor.
Consider the vector a = (1. =1, 3}
Then T(a} = (2. —2, -3}
So, the T =¢yclic subspace W generated by (1, = 1, 3}is{a(1, = 1, 3} +B(2, =2, - 3}|a. b € K}
That i, {(a + 2b, — {a+ 2h), 3a —3b)|m, b € R)
So, W = {[x.—x, 3(x — 3y})|x. ¥ € R}

[E Example 14.1.13:Let " “the linear operator o1 ¥ _....2h is represented in the standard
ordered basis by the sssrix

Sol:

To And the characleristic equation, we put,
|zl = ] =0

=1 —i i
i x-2Z i =0
0 -1 x-1
5 E=-1)E?—3x+2+2)=0

=

So, the characteristic pelvnomial is (x — 1}x? — 3x + Z + 2(}.
Minimal paalyeamial 35 (¥ — 1){z% = 3x + 2 + 2i),
Consider & = {1, 1, 0}
Let p be the T = annihilator of i then
pl = 1D(@? —3x + 2+ 21}
Cleatly, 2 = 0
If degp =0
p=c,c#0
p(Mla=cw*0
Therefore, degp # 0
Ifdegp=1
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p=Ex+a aEF
piThe = 0implies (T + alja =1
A+alla=0

=(H' 51+l 5 -+

1+ i 0 1
—1 E+n —i I (.l|=i}

1+ al LG

1+ ﬂ
= {} which is not true.

Therefore, dogp # 1,

Ifdegp=2

pEl=xr*+ar+b

p(Tla = 0 implies (T? + aT + b =0
That i, (A% +g4 + bl =0

1=t¢ @i 0 B 0O

= ( =3 4 = :.1 —34, ~a Xa ~ig|+ |0 B D ) =1
il 1—1i a0 la o &

(1= +a+b

= -3 —g = (I which is not true.

-1
degp(r) #2

Hence degpi{x) =3
So, p(x) = [x = 1}{r? — 3x + 2+ 2i)

1
Letg = [ﬂ]
i

0o &« 1M1
Consider {td =N = |-1 1 —Il ﬂl =0

0 1 0
That, (A-Ng =10

So, f{x] =x = 1is T —annihilator of [ i V.

Task:

[Ty |
1111

1. Prove that if ' hus a cyclic wector, then ¥ Iigs a cyclic vector. I the canverse
true?

2. Let ¥ be an n —dimensional wector space over the field &, and let W b a
nilpotent limear aperator on V. Snppose ™2 2 1, and let o be any vector in V
such that N™ " # 0. Prove that o 15 & cvclic veclor for N. What exactly is the
matrix of W N the ordered basis {#F Ve, ..., N7=Tar],

14.2 Cyclic Decomposition and the Rational Form

Remark 14.21:Letd = Wp W' W and WY both are invariant under T then for f €
V, giTlF & Wi g(T)p = g(T)y for some p € W

Proofsl €V =W B W'

There exist unigee y € W, § € W auch that
B=y+é

piTIf = glThy +g(T)6

Since W mnd W™ are both invariant under T, Lherefore, for
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rEW, giTiy e Wand &g W', g(Ti6 € W' .. (1)

Again, g{T 1 = g(Ty + g(T)s
This implies, gITI8 — g(Tly = g(T16
ALTHE & W (given)

ATy € W {Froami 1)

= gilif~gTly € W
=> T ew

Also, g(T)é & W
=>alTiFeWniW ={U)
=>g(TiE=10

Henee, g(T)8 = g(Thy

[Definilion 14.2.2:Le1T b= & linear operator on a vector space anil let W be a subspace of
V. W say that W is T —~admissible if

(LW = imvariant wreder T;
(i il FITIH isin W, there exists a vectar y in W sach that F{T)E = FiT)y.
Theorem 14.2. 2% et¥’ be-any proper T —fovvariar subspacs of IV,
Then there exists somie non-zevo a such that W 2@ T1 = {0}
Proof: Since W' # ¥V, W s 2 subspace of V.
There exist § = [T such that - £V, e W
T — conductor of I in W isS{E: W) = {gla(T)B € W)
Let f = s(fi: W) bw the monic generator of S{#; ).
Then fiT)3 € W
Now. if W is T —admissible, there exists y € W" such that F{T1g = FiTly.. (1)
Leta=g -y
Theny =8 —n
FEW., sof—ma—BEW
That megns, g7 )g € W it and only if g(T e € W
That is, s{e; W) = s{g: W)
So, [ & also T —ronductor of & in W But from (1]
fATMB=y) = f{T)B— f(T)y =0
So, Fi{Tur =0
This imphies. g{Ther & W i and only if g{Tla =0
Therefore, Z(a:T) n W ={0}
Zl:T)and W are independent and [ is T —annihilator of a.
Thearem 14.2.4:Cyclic Drecomposition Theorem:

Let T be a linear operakar on a finite<dimenisivinal vector space Vamd let Iy be a proper T —
admissible subspace of |.

There exist non-zero vectors @y, iz, .., @ in ¥ with respective T —annihilators py, p;, ..., pr such
thiat

(¥ = Wy D 2(ax; TIEE ... ® Zlay; T
(i1} py divides py_q, £ =2, 3,...,T.
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Furthermare, the integer r amd the annihilators p,,.P...,Pr ire uniquely determined by
(L} fLL), arcd the fact that no ay s 0.

Proof:We will do the proof in 4 steps. We shall abbreviate f{T)f to f.
Step 1:
There exist m-eera vectors [y, B ... fir € V such that
@V = W @ AT R @ IBT
(B1IF1 <k =rand
We=WoDZ@E;TIE .0 Zf:T)

then the condusctor py. = s(ff: Wi_; ! has maximum degres among all the T - conductors into the
subspace W)._, that is, for all &,

deg p, = maxdeg sla, W)
Prosd of step 1:
If W' isa proper T —invariant subspace; then

0< m;mdegs[:z: W) < dimV ..(1)
degsifi; W'} = maxdegsia; W)
aEV

Now if f € Wihen g[Ti# & ¥ laking g(T) asa constant polynomial. So, the constant polynaomial is
the least degree polynomial hence deg £(8; W) = 0, which is a contradiction to (1). 50 f & W',

Since W is invariant under T and Z{i; 7] comsists of polynomials in T. Thus, the subspace W +
Z(B; T T ~invariant. Since @ & W, W 4 Z(#: 7] hus dimension lafger tham dim W,

Lince ¥ was arbiirary proper subspace of V. Similarly, for W, we can find f#; such that It +
Z1B3: T lsa proper invariant subspace of 17,

Let W, = Wy 4 Z(B; T

For W, 3 some [, such thatdeg s{ji,; W, ] = max,, deg 5 (e; W) Jand proceeding like this we get,
Wo 4+ Z(B T +Z(B T4

SO orL.

This process will comtinue for & finite number of steps because f#. ffz..... [fr can not be more tham
diml® (As dim W, > dim Wy_; ¥ & | Therefore, we must reach W, = ¥ is not more than n =
dim1® =ieps.

V=W, + Z(BT)+Z(E; TI + - + Z(BT)
Step I: Lel ), {¥s, ..., fr be non-zero vectors that satisfy conditions (&} and (&) of step 1.
Fixk, 1<k =r letf €Vand f ==(f: W, _,)
If
FTIE=fat D af BEW;

ISk
then f divides each putynomiul gy and By = FIT Iy, where y, € Wy
Proof of Step 2: For k = 1, W i T —admissible.
Let us prove the result fr & = 1
We needl tio prove that Flge ¥ i
Divide f by g;, we get hy, v; such that g; = fl; + v where r; = Dor degr; < deg f ... [¥)

Let

k=1
e

=B hifi (@

im]

Now, ; € Wi ¥iand W, C W, VI
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So, f; E Wy, ¥1<i=k—1and W,_, iz asubspare of V¥

N

b E W,y
=1
implies y — f € Wj._,
This implies,
sFi Wi-1) = 5B Wi ) =

Furthermore,

k=1
FTy = FTB = ) FITIN
fm]

[

i

L@gi _ perynigiy
1

The second part is due to the given stairment.
R_-_{
[Ty =B+ ) (gi — F{TIN)B:
i=1
-

=po+ ) nfi..(3)

(]
wherer;, = g; — fITlh;
Suppise some 1; # i
let | baa the largest index, for which r; # {0l thatis, V { = {, ¥ = (L.

From (3) applying g wii both sides, we gel,

f)
Py = 2o+ ) griby . i4)

i=1
Py =gy = anb; +abo + l gnBi .. (5)
1mi<f
Now,
fo+ D T €Wy
1si<)
q (ﬁo + Z il | E Wiy
(BT
Also,
pr =p{T)y € Wj_,
From (5),

gl € Wiy
Now from condition (&} of step 2
deglgn) = degs{B; W1}
From the statement of step 1,
degs(B;; Wj—1 ) = degp;

Hence,

deg(‘qﬂ_I i > deg B
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2dd Td:=—""#dcrsrcad «

= dEgSl.l' Wwjo1)

= %
= deg = deg,ﬂ

This implies,

degry = deg f

which is a contradictiosn o ().

Therefore, ry =il

thetefore, [ divides g; i

Also, from (2)

Bo = FITHy

Since Wy it T —admissible and #) € W

This implies, fiT 1y € Wy

Then from the definition of T —admissible subspace there exist y, such that [Ty = FiTly,

Step 3: There exist non-zero vectors ity , iy, ..., & € Fiwhich satisfy (i} and (1t} of the statement of the
theorem.

Proof of Step &

Start with . ff5,..., # as in step 1. Fix &k, 1<k =<, apply step 2, we find f=f), and T -
conductor f = py, we vhserve,

v o e
B g€ Wi
,rf,: = 41,,_1'

= . = e = e ...+ 2 " >
WO -+ ZOEL T 4 Z0E2 T Z Rl T
Vo (=

LHY

y0 4+ 5t

1sisk—1

ke

we get,

il
B = Pivo + l pehiBi
1sink—1

where yy € Wy and hy, hy, ..., hy_; are polynomials.

Let

o = ~vo— l b
1wink—1

Since fi;, — i € Wy 4

Therefore, £{a); Wic-12 = 5{i; Wi—1) = pic

Since ppa. =10

let somwe-ector £ & W4

Consider I —comdmctor of f & W _, is s(f; W._,) = [, This implies, [{TJ8 € Wj,_;.
Also, T —conductor of ff), in W),_; i= p.

S0, prdT ) € Wyo,

W _q is T ~admissible, therefore, there exists y;. such that p.fi. = PiVie Vi € Wi—1.
Let ay = B = ¥

Then pya, = 0

For any pudynoamizl g, giTa, € W)._, it and only if g[Tla, = 0

= Wy N Elay; T) ={0}
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Therefore,

Wy, = Wy D 2(ay; TV B Z(ay; TIE .. © Zley; T)
Claim: P p-1
Sire, pia; = 0V i

ity =0+ pyay + -+ P @p-q

FITYB = fo + 2 2.8 B € W,
TEC=CH

implies f|g; ¥ i

Here, f =y s = 0, g =pu fi = @;
That is,

pelpi Vi k

In particular, py|pr—1
Step 4: The number rand the polvnortials by, pa, ..., pr are uniquely determined.

Proof of step & Let in addition to iy, g, .., @, in step 3, we have non-zero ¥y, ¥, ..., ¥, with
respective T —annihilators @y, gy, .., @y such that

F=Wo DIy TIE .. 0 Ely T)
Gl ¥R=243, .8

Clafm: ¢ — 5 and py = g Wi

gy 8 T —conductor of I inir Wy

Let S{V: Wl ={ FIT)|FTi € Wy ¥ g € V]

In other words, range of F{T) is ¢ontained in Wy,

Also, (1, W, ) i= an ideal in Fx] with a monic generator g;.

Asforany B EV =Wy D Elp;; TIH .. O Z(ys; T)

B:ﬁn*’iﬂ}ﬁ

i=1
This implies,
£
B = 3o+ Zglfil’i
=1
= Gelifi-1 ¥
= alm Vi

= g = iy hi € Flx]
and gy =0
Consider gay = gibyy = hygey; =0
@l = iy € Wy Vg
Therelnre, g, € 5017 W)
Also, g, 1 a mornic polynomial af feast degree in 5(1; 1)
Sirmilarly, p; is the generator of 5114 I ]
Theretore, p; = g,
Ifr=2,
Vo= Wyl Zla;TIE B ZianT)

That is,

dimV =dim Wy 4+ dim #{a; T + - + dim £[a,; T) > dim Wy + dim £{ay; T)
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Now p; = i
that is, generator af Z(aq; Thand Z(y,; ') are same.
This implies, dim Z(iy; T1 = dim Z{y;; T
dim ¥ = dim ¥y 4 dim Z(yy; T
This implies, = = 2
Therefore, s, rxists.
From two decompositions of I, we have,
Pl = Wy iR Zipya;:T)
and
PV =p,Wo D Elpoy; TR ... © Z(paye; T) -.(6)
Now py = gy
This implies,
dimZ(pyaq; T) =dim Z (i, T
>dimZ(p,y;TI=0vi>2
= ppye = 0 that is, iy|p,
Similarly, we can shaw that p,| g,
Hence, the decompogitinn is unique.

Corollary 1425:1f T i= a linear operator am a finite-dimensional vector space. tfen every
T —admissivle subspisce has a complementary subspace which is also invariant under T.

Proof: Let W, be an T —admissible subspace of I,
It Wy =V,
The: cismplement we seek is {0}.
If Iy #s proper, applying the theorem, and letting,

Wy = Elmy: T .. D (e T)
Then W is invariant under T and

V=W W'

Comriflany: Let T bea linear opserator on a finite-dimensional veitor space .
(u} There exists a vector « in | such that the T —annihilator of & is the minimal polynsamial for T.
(B} T bass a cvelic vectos if and only if the characteristic and minimal polynomials for T are identical.
Proast. [f I = 0], the results are trivially true,
=0} letV = Wo D Za; TG ... Zlay T
where the T —annihilatars py, ps, ..., prare such that p,,, divides p, 1 <k =r—1

As we moted in the priood of Thewrem, it easily follows that p, is the minimal pelynomial for T, i.e.,
the T —conductor of ¥ info {0}. W' have proved (a}.

We have already seen that, if T has a cyclic vector, the minimal polynomial for T coincides with the
characteristic palyromial.

The content of (f#} isin the converse. Choos amy i s in [a].
If the digree of the minimal polynomial is dém V. then V' = Z{a; T,
Rational Cananical Form

Let T be a linear operator and the direct-sum decomposition given in Cyclic Decomposition
Theorem, Let f; be the ‘cyclic ordersd basisw, Tay, ..., TR Va;Jfor Ela; T).

Here k; ifenotes the dimension of #{u;; T}, that is, the degree of the annihilator p;. The matrix of the
induced operator T; imthe ordered kas:s H; is the companion matrix of the polynomial p;.
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Thus, if we ket & be the ordered hasis for ¥ which is (e union of the &; arranged in the order
By, B, ..., By, ther the matrix of T in the ordered basis § will be

A D L@
_|10 4 D
A=l 5% L
0 o0 .. A

where 4, i= the k; x k; campanion matrix of p;.

An i = i matrix A, which is the direct sum of comtpanion matrices of non-scalar monic
polysomuals py, Pg, il Such that pyyy divides gy Far L = 1,. .., ¢ — 1, will be said to be in
rational form.

Theorem 14.2.5:Let F b a fleld and let B bean i = & muatrix over F. Then & is zimilar over the field
F to one aml only one matrix which is in rational form.

Proof:Let T b the linear nperator on ¥ wehich is representad by B in the standard ordered basis.

A= we have just observed, there is some ordered basis for F7 in which T is represented by @ matrix
A in rationt] form, Then ¥ is similar to this matrix A Suppose § is similar over F to another matiix ©
which is in rational form. This means simiply that there. % some ardered hasis for F* {n which the
operator T is tepreseated by the meairk £ C 1= the divect sum of companiost matrlves £ of monic
polynomials gy, gy, - ., @, such that goy divides g, foe i = 1,.. ., 5 = 1, then it is apparent that
we shall have non-zero vectoss ), Hi. ... fy in V' with T ~anedhilators gy, g4, . . ., g, such that

V=2 TIRZIETIE .. B 2B T)

But then by the uniqueness statement in the cyclic decomps=ition tfecrenm, the polynomials g; are
identical with the polynomials p; which defines the matrix /. Thus £ = A.

My mrown T LI L T ERTIRT

hiiy

Example 14.2.7: Su e a lin aperator om a vector space 1 a field

. . |"I""’|‘. i aar A . L =h" F of
dimension 2. Then 1|, jimusier over ,- a8 malriz of one of the two types

b -t c O
i
Proof: Since dim I = 2
Therefore, the characteristic plynomial of T iz of degree 2.
Let minimal polynomial of T |= p.
Two cases arise
Case L:degp = 2

Letp(xf=x? +ax + bym, bEF

Then T is 1epresented by the companion matrix of its 11iaimal polynomial.

[0 —p
1 —iy

Then is, it is of the type

wheretp =8, 1y =a

Case Zdegp = 1

Letp(zl =x+ma EF

Then characteristic polynomial of T iz {x * aJ”

Then for any two linearly independent veciors g amd da; in I, we have
V= Z(a,; T) B I(a:T)
MmEN=F=gc=4

So, T awer F |= skmilar to the matrix [E ﬂl
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ir 1
@ Example 14.2.8:Let e the linear aprator on fﬂ_w}hil.h i5 represented by the matrix

5 -6 -6
A=|-1 4 2
3 -4 -4

Find the corresponding ratisinal meatrix A" and a basis & sach that [T: 8] = 4",
Characteristic polynomial | = {x — 1)(x — £)?
Minimal polynomial
p=@EF-Dx=2=x*-3x+2
We know that in the cyclic decomposition far T, the vector @, will have p as its T — annihilator.

Corresponiling companion matrix is I? _5]2|

Since dim &3 = 3, therefore, there will b only one other vecior a;,.
It must be the characteristic vector of T. Its T —annihilator p, must be such that pp, = f
Thatis, py —x =2
Corresgramiding rompanion matrix is [2]
So, A= A'where

G -2 0

A = [1 3 0]

o o 2

That is, T is tepresented by A" in some prdensd busis,

Mow we need to find basis B=[#,, B where B, is the ordercd hasis for Z(ay;T) and #, far
o T)

dim Z(m: Ty =degreep = 2
dim Z{m:T) = degreep, = 1
Consider {{1, 0, 0}, (0, 1, 0}, (0, 0, 1]}.
Let ey = 1, 0, 0)
T(1,0,0)=(5 —1.3)=&(l. 0, Nforanyc € F
Take a; = [1, i @)
A, ={my, Ty} ={(1, 0,0), (5, — 1, 3)}

Apgin, £{ey;Ti is 1 —dimensional space. It is generated by a characteristic vector of T
corresponding tnd = 2.

A=2X =0
[ 3 —6 —6}x Q‘
= |-1 2 A :.rl=ﬂ
13 -6 -—allE L0

Interchanging f, with &;

-1 2 2 )yx ]
= |3 - —J l'rl = [U
[ 3 =6 -—hllZ a

Applying F; =+ By + 3Rand Ry — By + 38,

—1 2 21¢% 0
> |¢ 00 H-—[Dl
g 0o Mtz 0

S=r+iy+lr=(

=X =2v+ 2z

X Zy + 22 2 2
}']=[ ¥ =r[1 +s[ﬂ
2 4 a 1
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'”2 i [':'r.ﬂ.l 3 {(21 1r 0)}
B=1{i1,00), (5 —-1,3) (2,10}

@ Example 14.2.9:Let;2'1 "the linear operator on o hich s represented by the matrix

0 6 1
A=11 0 -1
01 1
Find the matrix Psuch that P~1AF i= in the rational form
Sol: Characteristic polynomial is given by
(E e

r =B =1
-1 = 1 |=0

0 -1 -1

> x-1D=-5r-D=0
2@ -5)E-D=0
Characteristic polynomial f = {x — 1)(z? — 5)

So, the corresponding rational form is

1 0 0
2 0 5
i 10
Mowe the reguired matvix will correspond b the matrix # = [1, v, Twy] where 1y is such that
x = 1 iz T —annihilator of v, and ¥? — 5 is T —annihilator of ;.
a
Let v, =[ﬂ L By EQ
¥

£ 3
[

=>h8=0 a=y%

24 1
Therefore, 1y = lﬁ] = rr[tl]
@ 1

Taking o = 1, 1 = [0}
1

Let vy = I.H]
y

@ —58Nw, =0
6 1 -5 50 0
1 3G § e
11 ¢ ] Li 5
511«
3 -
1 1 =511y

sa+f-5=0
:u:LIﬁ:—IIy:D

1
'y =1-1
0
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0 6 1 1 ~f

Tre =dAp, =1 O —]1 —1] =1 l
01 1Mo =1

1 1 -6
=10 -1 1

1 0 -1

14.3 Jordan Blocks, Jordan Forms, and Generalized Jordan Form over
any Field.

Remark 14.3.1:5uppose that W is a nilpotent linear operator on the finite-dimensinnal space V.

Caonsider the cyelic decomposition of N, we have a posilive imleger v and r nom-zero vectors
iy, 482, ..., &y in V with & —annihilators gy, pg, o0, pr such that

Vo= 2{m; N} . © Zl{me.; V)
and p;,q divides p; fori = 1,..., 7 — 1
Since W is nilpotent, the minimal polynomial is x* tor some k = n,
Thus, each p; is of the form

Py = xke,
and the divisihility condition simply say# that
bz =2k

Also, by =k and & = 1.

The companion matrix of x¥: iz the square matrix of order k; ziven by

0 0 = = 0 0
10 ~ = 0 0f
a=|} o0
00 - oo OJ
0 0 = = 10

Thus, by cyclic decompositinin theorem there exists an ordered basis for ¥ in which thws matrix of N
is the direct sum of the elernentary nilpotent matrices, the #ize% of which decrease as | khcreases.

The companion matrix of 7% iz the square matrix of order k; given by

0 0 = = 0 0
10 = = 0 0
N
00 = = 0 OJ
00 = = 10

Thus, by cyclic decomposition theorem there exists an exredired basis for V¥ in which the matrix of N
is the dires:t suirm of the elementary milpestent matrices, the sizes ol whith decrease as [ iwreases,

One sees fropm thvis that associated with i milpotent n % i matrix 1 a positive integer v amd r posilive
integers &y, ky, ..., by such that &y +k; + + ke = and k& =k, and these positive integers
detarimine the rational farm of the mualris, se., determine the matix wyp fo similarity.

The positive integer * i= precisely the nullity of N; in fact, the null space has as a basis the r veclors
I"llki--'-u:z'.

For, let i bt in the null space of W. e write i in the form
€= fog + -+ fay
where f; i a polynomial, the degree of which we may assume is less than k;.

Since Wi = il for each | wehave

T Nl

0
MNOF ey

ML Ceei”
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Thus, xf; is divisible by =, and since deg(f;} = k. this means that f; = r;z%~" where ¢; is some
scalar.
But then

a=cixfila) + o+ i ay)
which shows us that the vectors {*~ir;} form a basis for the null space of M.
This fact is also quite clear from the matrix point of view.

Now we wish to do is to combine our findings of nilpotent operators or matrices with the primary
decompositior th#orem.

The situation is this:

Suppose that T s a linear operator &n I and that the characteristic pelinomial for T factors over ¥
as followrs:

F=(x=o)%. . .(x—g)%
where ¢y, ©3, ..., ¢ are distinct elemenls of F amid ; == 1.
Then the minimal polynomial for T will be

p=(x —5)... (@ —gJ*
where 1 < ¥; = 4y,
If W; is the null space of [T —:;n'}ri;
then the primary decornpesition theorem tells us that

V=W, 2 W, 8 .. AW,

and that the operator T; induced on W; by T has nitnimal polynomial (x — {I]ra_
Let &y 'pe the linear pperator on W; defimed by N; = T) —ayl.
Thein N, s milpotent and has minimal polynomish x'
On W;, T acis like f; plus the scalar «; thines the identity operator.

Suppose we choos# @ hasis for the subspace I¥; iorresponding to the cyclic decomposition for the
nilpotent operator I;

Then the matrix of T; imthis ordered basis will be the direct sum of matrices

c D ... 00O
[ 1l D .. 0O
[ 00 0 .. ¢ @
0 0 O 1 ¢

each with ¢ = ¢;.

Furthermore, the sizes of these matzites will decrease as one reads from left to rigi.

A matrix of this form is called an el¥mentary Jordan matrix with characteristic value r.
Now if we paat all the bases fur the i logether, we obtain an ordered basis for I

Let us descrits the matrix A of T in this ordereil basis.

The matrix A is the direct sum

.1'11 D e ‘“
0 0 e Ay

of matrices Ay, Ay, ... Ay.

Each A; i= uof the form
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Yo L

@
a0 B0
00 . i)Y

where each _f;;“' igan #lrmentary Jordan matrix with characteristic value ¢;.
Alzn, within each 4, the sizes of the matrices f}“ decrease as | imcreases.

An n x n matrix A which satisfies all the conditions described so far (for some distinct scalars
£y, €2, .- Ty | will be said to be in |ardan form.

We have just pointed out that if T i% a linear aperrator for which the characteristic polynomial factors
completely over the scalar field,

then there is an ordered basis for V¥ in which T is represented by a matrix which is in Jordan form.

We should like to show now that this matrix is something uniquely associated with T, up to the
order in which the characteristi’ values of T are written down.

In other words, if two matrices dre in Jordan form and they are similar, then they can differ only in
that the order of the scalars r; s different.

The uniqueness we see is as follows.

Suprase there j5 some ordered basis for V¥ in which T is represerited by the Jordan matrix A
dezcribed in the previous paragraph,

If A; Is a a; = o) matrix, then ; is clearly the multiplicity of ¢; #= a root of the characteristic
polynamial ford, ur T,

In other words, the characteristic polynomial fox T s

f=l=a . (@ = o)
Then shows that ¢y, 3, ..., ¢ and dy, dgi . dy are unique, up 15 the order in which we write them.
The fact that A 12 the direct sum of the mairices A; gives us a direct sum decomposition

V=W, 0W.S.0W

invariant under T.
Now note that W} must be the null space of (T -u:;n'}n. swhere i = dime ' for, A; =il Is clearly
nilpotent and d; — ¢ Is non-singular for § # [
So, wir see Lhal ihi* subspaces W; re unigues

If T; is the aperator induced on W; by T, then the matrix /; is uniquely determined as the rational
form tor (T; =id)

Now we wish to muike some further observations about the operator T and the Jordan matrix A
which represents T in some ardered basis.

We shall list a string; of pbsarvations:

(1) Every entry af A nol on or immestiately below the main diagonal is 0.¢n the diagonal of A
occur the k distinet characteristic values ¢y, @3, ... €, 0f T. Also, i; i3 repeated ), times,
where d; f5 the multiplicity of ¢; asa root of the charatesistic polynomial i.e., d; = dim #.

(2) For each 1, the matrix 4; I= the direct sum of i; elemensary lordan matrices f}i} with
characteristic value ;. The numbey m (= precisely the dimension of the space of
characteristic vectars assrciated ‘with the characteristic value ;. For, m; is the number of
elementary nilpotent blocks in the rudonal form for [T — gf} and s thus equal to the
dimensior of the null space of [T — ;i) Notive that T is diagomalizable if and only if
n; = d; foreach i,

(3) For each i, the first block ;E“ in the matrix A; i= an r %1, matrix, where 7 is the
multiplicity of r; s a root of the sminimal polynormial for T,

This follows from the fact that the minimal polynomial for the nilpotent operator T; — ;' is a7,
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Of vourse, we hawves a5 usual the straight malrix result. If & k2 an r = nomatrix over the field F
and if the characteristic polynomial for & factors completely awer F, then | i= similar over ¥ b
an m * 7 matrix A i Jordan form,

and A is unique 1R to a rearrangement of the order of its characteristic values. We call A the
Jordan fawrm of &.

Also, note that if £ is an algebraically closed field, them the above remarks apply to every linear
operator on a finite=dimensicnal space over F. or mvery m » 1 matrix over F.

Thus, for example, every i = i matrix over the field of complex numbers is similar to an
essentially unique matrix in Jordan frem.
' T s s

I
Example 14.3.2:Suppos._ 1" i 2 on .., n imilar over 1atrix
3 7 1 # o oan

g,
lu'u-..;r o, Tator r2 L has T A

of one of the two types [‘lj cs Oy | '; i-*]

Sol: The charecteristic polynomial of T s of types

If=t—o®

Nf=Ix—lx —¢);c, 6, 0 EF

It f =(x -} Let p be the minimal pifyriomial. Then p = x — ¢ or (x — o)

— gl e o
If p = x — ¢ then Jordan block is l“ "
I p = (x =€) then Jorsan block is [{ E|
Casellp = (xr = ¢q)(x — ¢z

Then Jordan form is [{'1 2 I
0 )

@ Example 14.3.3:LetL e complex 3 x 3 malrix

200

A= [ﬂ! 2 0 ]
b ¢ -1
then # i= &imilar to a diagwnal matrix if and only f @ = 0,

Sol: Characteristic polynomial of 4 = {x — 21*(r + 1)
The minimal polyrnamial can be (x — 23 [x 4 1) but in this case, it is not diagonalizable.
So, minimal palyiceal g =[x — H(x + 1)

This implies, (A — 2/ A+ =0

G0 o3 o o
= [T'I: g o [ﬂ 3 n] - i
h o —3lLh ¢ O
n a o
= [ 3n 0 =0
3b+uac—3h 0 D

o 0 o
=>[:iu i =0

agc 0 1N

= a=0

20 0 20 0
o 2 ()I“-CI 2 0]
b ¢ =1 a n -1

o]
@ Example 14.3.4:Let;:]l e complex 4 X 4 matrix

A=
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Sol: Characteristic polynomial of 4 15 (x — 217
The minimal polynomial of d isx — 2, (x — 2)?, (x — 1)3, (x — B)*

If minimal polynomial p = & = 2

S>d=El=0
> Ad=3
Butd = If

Now consider (x — 2)?

0 0 b il
_amz_|1 0 D 0
(-2 “L} 0 n n}
00 @ 1
If reinimal polynomial p = x — 2
>A=2I=Dn
=>4=2
Buta = 2
Now consider (& — Z)?
A-INt=0
p=(x=2)7?
If & = 0, then the matrix is given by
2. 0 00
1 2 0 0
D0 2 0
0 0 0 2
If @ = |, then the matrix is given by
2. 0 00
1 2 0 0
D0 2 0
0 0 1 2
Note that these two forms are not similar.
When &t = 0) then the Jordan form is
2 0 0 O
1 2 0 0
D0 2 0
0 0 0 2

So that 1w characteristic spasce for 2 is of dimension 3.
When & = 1, then the sams space has dimension 2.

Definition 143.5:Let 4 £ £ i=a characteristic value of A € F™*", tken a non-zero X € F" 15 called a
generalizad charicteri=tic vertor of A cortesponding ta charmcteristic value A if (4 = AI™X = 0 for
some 171 £ W

The smallest 1 i= called the period of the generalized characteristic vector.
Mote thiat o characteristic vector is a generalized characteristic visckor with period 1.

Mathod:Hese we see the method to find the invertible matrix # such that for a given square matrix
A, F7RAP 1= In the Jordan form.

Step 1: Find the distinct iharacteristic values.
Step 2: Find the period = o a characteristic value A
Step 3: Corresponding to the characteristic value 4, firsd the least positive integer 1 such that

roak (A — AT = rook (A — A0
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Step 4: Find 1 nnumber of linearly independent soluticrs to (4 = /1Y — ffand (4 — 411X 20
It will give generalized characteristicc vevior ¥ correspording to the characieristic value 4,
Step 5: Find the vectors X, {4 — 41X, .{A —Af""1X these are first 5 columns of P

Repeat this process with all characteristic values and find the matrix .

E] s 1 —2 4
Example 14.3.6:Let 4 — [g

0
in Jordan canonical form.

Find an invertible matrix p g ch that p=1 4 e

S oul -
o Ul
BN

(r

Let ¥ b a linear operator on §* such that matrin of T with respect to the standard ordered basis of
i1 iz given by A. Find a basis & of #* such that [T]g is in Jordan form

Sol: Given
51 -2 4
a-0 s 2 2
10 0 5 3
0 0 0 4
Distinct characteristic values of A are 5 and 4.
01 -2 4
oo 2 2
“"”"u 0 0 3}
0 0 -1

Apply Ry — iy +%R3

01 -2 4
00 2 2
0 0 0 3
00 0O
Rank (A =51 =13
0 0 2 -8j
Cepz_ |00 0 4
@=5F=15 o o 3
00 0 1
Rank (A =512 =2
0 0 0 147
3 _|0 0 0 —4
@=5F=1p o o 3
0o 0 0 -1
Rank (A~ 51 =1
Rark (A —5N* =1
g =d=rank(A=5{1=4=3=1
i, =rank (A— 50 —rank {4 - 517 =1
a3 =144 =0
Jordan block corresponding to A = 5 is of size 3.
500
1 50
0 1 5
1 1 -2 4
e _acle 1 2 2
Again, A — 4l = 00 1 3}
0 0 O
Rank (4 = 4/} =3
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1 2 -2 0
2 _ 01 4 8|_
Rank (4 = 4{3* = Rank L 0 1 3}—3
00 0O
G =4-3=1
g, =0

Corresponding Jordan block is [4]

50 0 0
—1aqo—|1 5 0 0
PAF 0150
0 0 0 4
To fimd P,
Pericd of 5 = 3
Let(A=8PY =0, (A=5"2K =#D
0 0 0 147~
00 0 —4l¥ .,
0 0 0 =3||=
00 0 1°'¢
We get, t =1l
Consider (A4 = 512X # 0
0 0 2 -81*
0 0 0 4 ¥l 2o
0 0 o —3||= "
0 0o o 1idlo
220, 221
0
Take]":h}
0

07 1—27 12

. e (D] [ 2] [0

X, [d=E8NX, 1A —-50%X —L},[ OW,LN
0 0 0

For A =4
Period of 4 =1

A—40K =0
1 1 -2 4%
01 2 2(|¥ . D
00 1 3]||=
00 0 0 ¢

Applying Ry = f; — K

1 0 —4 2
01 2 29|» )
i 0 1 3|
i 0 b aiflr

r=—14f, y = 41, 2 = =3t
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5 00 0
14|11 5 0 0
FIIIII':._I'!'150

0 0 0 4

The corresponding tazis is

i =100,0,10),(-220,0), (20,0, 0), (14, 4, -3, 1)}

Summary

T —uyclic subspace correspondirng to a linear oiperator Tare defined ard related results are
explined.

T —annihilator of some element i correspomiding to a linear operator Tis defined.

T —admissible subspaces of a vector space Vi= defined.

The cyclic Decomposition Theorem is proved.

The rational canonical form is explained aml rational canonical farm corresponding to a
given operatar (on a finite-dimensional verior space) or a square matrix is elaborated with
the help of examifles.

Jordan Canortiial form of a given matrix A or a linear operator T on a finite-dimensional
vector space I |= explained.

Keywords

T —uyclic subspace

T —annihilator of &

T —admissible suk=pace
Rational Canonical Form
Jordan Canonical Form

Self Assessment

1.

oNE» N TN®>P

oN®p @

=~

Let V' be & finite-dimensional vector space over the field F, Let W be an invariant subspace
of V. Then for any palynomdal g & Flx],

GIMEEWYEREV

ATIEEW Y Fe W

(T & Wit and only if # € W

Ma eption is correct

Let 1Y be a finite-dimensional vector space over the field F. The T —cyclic subspace
generated by i Is 1 —dimensional Then

it |s any non-zero element of ¥

=0

# is any non-zero characteristic vglue of T

i is a characteristic vector of T

Choose the correct skixtement
degp, =0V eV

degp, = dim V¥

degp, = dim & (@, T)

£la; This not T —invariant

Companian malrx of the polynomial f{x) = x3 + 2x% + 1 is

0 0 -1

1 0 Ol

0 1 -2
0 -1
Lo
0 -2
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T 0 -1
C [0 1 —21
00 -1
00 -1
D: [1 0 —2]
01 -1
000 -1
. 100 3|, . . . .
5. The matrix o1 o o |&<cempanion matrix to the polynomial
o1 2
A 2V =21 =y" %1
B. x*42x? +4r—1
C. x*—21% 33" +1
D. zt=%x®—3xr+1
6. If T Is a linear operator on a finite-dimensional vector spat#;, then every T —admissible
subspace
A. has a complementary subspace which is also invariant under T
B. has a complementary subspace which is not invariant under T
C. may or may not have a complementary subspace
D. isa finite subspace
7. Let T s an operator on a finite-dimensional vector space I =such that it has a cyclic vector.
Thern
A. Characteristic and minimal polynomial of T are always the mame
B. Characteristic polynomial and minimal polynimial are alwiays distinct
C. Characteristic polynomial and minimal polynomial may cr sy not be distinct
D. Degr#e of the minimal polynomial is less than dimensidon V¥
8. Let ¥ be g finlte-dimensional weclor space over a field F. Lel ¥ be a T =invariant subspace
of V. Ler g e ¥V, & W, then
A. dim W = tliml:l‘l-" +2(B; T.I]
B. dim MW =dim(W +Z{(8:T))
C. dimW =dim{l +Z(8;T1)
D. dim W =dim[W + Zig; T1)
9. True/False Every T —admissible subspace is T —invariant.
A. True
B. False
-3 2 0
10. Rational canomical form of the matrix [ 1 0 1]|is
1 -3 -2
0 0 -3
A: [1 0 —71
0 1 -5
0 0 -3
B:1t 0 7
0 1 -5
[0 0 3
Cl1 0 —71
0 1 -5
0 0 -3
D:]11 0 —5]
10 1
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11. True/False Rational form of a matrix is unique

A. True
B. False

12.True; False Suppose T is a linear operator or1 & vector space I¥ owver a field F of dimension
2.If T has distinct characteristic values, then T is diagonalizahle

A. True
B. Falae

13.Lezt 4 be a matrix of order 3 such that eigenvalues of A are1, 1, 2. Then the Jordan block
corresponding to the eigenvalue 1 is

A: E él
B: [(1) }l
C: [i H

o:fy 3l

14.Let a rmatrix A of order 3 has only one eigenvalue 1. Then Jordan canonical form of A is

A 0
A |0 4 0
0 0 2
A 1 0
B:[0 A4 1
0 0 A
A 1 0
Clo 1 1
0 0 1
[1 0 0
D:|0 A 0
0 1 4

15. Let characteristic equation of a matrix A @f order 3 is [x = 1)?(x —2) and minimal
polynomial is [x — 1)(x — Z). Then Jordan canumical form of A is

1 0 0
A:lD0 1 0
D 0 2
[1 1 0
B:[0 1 0
0 0 2
1 10
Cilo 1 1
0 0 2
2 1 1
D:jo0 1 1
10 0 1

Answers for Self Assessment

B 2. D 3. C 4. A 5. D
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6. A 7. A 8. A 9. A 10. A

11. A 12. A 13. B 14. B 15. A

Review Questions

1. Let T tw=a linear operalor on the finite-dimensional space ¥, and let & b the range of T
Prove that B Tas a complementary T —invarianit subspace if amad only il # is mdependerit &
thie null space N of T

2. Let T e a linear operalor on the finite-dimensionul space V. and let R be the range of T. I
B oend W are imdependent, prove that N is the wumigue T —|nvariant subsprace
cormplemantacy to /,

3. Let T s the linear upwrator on F* whirh i= represented in the standard ordered basis by
the matrix

c 0 0

1 ¢ 0 d

g1 c @

-0 1 ¢

Let W' be the null space of T = «i. Prowe that I L= the subspace spanmied by g4,
0 -1 -1
4. Find the minimal and the rational form of the matrix | 1 0 0 |

-1 0 0

5. The differentiation operator on the space of polynomials of degree less than or equal to 3
is represented in the natural ordered basis by the matrix

01 0 0
[0 0 2 0“
0 0 0 3
00 0O

What is the Jordan form of this matrix?

|_..J Further Readings

¢ Basic abstract algebra by P. B. Bhattacharya, S. K. Jain, S. R. Nagpal,Cambridge
universitypress

e Topics in algebra by I.N. Hartstein, Wiley

e Abstract algebra by David S Dummit and Richard M Foote, Wiley

@ Weblinks

e https:/ /nptel.ac.in/courses/111/102/111102009/
e https:/ /nptel.ac.in/courses/111/105/111105112/ #
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