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Unit 01: Lebesgue Outer Measure
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Objectives

After studying this unit, students will be able to:

understand extended real numbers
define outer measure

identify properties of outer measure
define F, —set and G5 —set

explain Cantor set and its measure

Introduction

The goal of this unit is to study a set function, on a collection of setstaking values in the non-negative
extended real numbers, that generalizes the notion of length of an interval. All the sets, considered in
this unit are subsets of the set of real numbers, unless stated otherwise. This unit provides the basis for
the forthcoming study of Lebesgue measurable sets, Lebesgue measurable functions, and the Lebesgue
integral.

1.1 Extended Real Numbers

Let R* = RU {4+o0} U {—0}, where R = (—o0, ).

That is, we can write R* = [—o0, o],

Here +oo arnd —oo are two symbols.

Order relation on R*

For every x € R, —00 < x < +o0

Here —oo is the smallest element in R* and +oo is the largest element in R".

Algebraic operations on R*

L ovely Professional University 1
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Addition: For every x € R

(~o0) +x = ~00
(+00) + x = +oo

(+00) + (+0) = +o0
(=0) + (~e) = —oo

L s

Ei/° Notes: (+) + (—) is not defined.

Multiplication:If x > 0, then
x(+) = (+00)(x) = +00

x(~0) = (=) (x) = —oo

and if x < 0, then
(+00)x = (+o0)(x) = —o0
(—e0)x = (—00)(x) = +oo.
Further, we have,
(+0)(0) = (=0)(0) =0
(£0)(+) = £oo
(£0)(—) = +co
The set R* also denoted as [—oo. o] with the above properties is called the set of extended real numbers.
Supremum and infimum in R*: Let A € R* be any non-empty set.
Sup (4) = +oo if A N R is not bounded above.
Inf (4) = — if A N R is not bounded below.

Ei/' Notes: Sup(A) and Inf(A) always exists for every non-empty subset A of R*.

1.2 Set Function

Let € be the class of subset ofX. A function u:C — [0,] is called a set function. It is a function whose
domain is a collection ofsets. Therefore, it is called a set function.

A set function p: € — [0, ] is said to bemonotone if for all A, BE €, u(4) < pu(B) whenever <
B.
A set function u: € — [0, 0] is said to be finitely additive if

u (EJ A{') = i#(*‘l:)

i=

whenever Ay, Az, ..., A, € CandUj-, 4; EC, A;NA; = ;fori+].
A set functiony: € - [0, 0] is said to be countably additive if

u (0 1‘1;‘) = iﬂ(r‘]d

i=

2 L ovely Professional University



Unit 01: Lebesgue Outer Measure

whenever 44, 44, ... € € and UA" EC,ANA =¢fori+]

i=1

A set function p:C — [0, ] is said to be countably subadditive if

u (0 A;‘) < iﬂ(r‘h)

=1

o

whenever A4, 4,, ... € € and UA" eC.

i=1

1.3 Outer Measure

Length of an interval: The length of an interval is defined as the difference of endpoints of the interval.

If I is any one of the intervals [a,b]/ (a, b)/ [a, b)/ (a, b], then the length of each interval will be b —a
and is denoted as () or | I [.

If I is of the form (a, @), [a, ©0), (—, b), (—09, b] or (—o0, ) then I(I) = oo,

Length of an open set: If 0 is an open subset of R then O can be written as a countable union of
pairwise disjoint open intervals, say {I,,} i.e.,
0= U"“'
T
Then the length of an open set @ is defined as
10) :z 1

T

Length of a closed set: Let F be a closed subset of R cortained in some interval (a, b), then the length of
the closed set F is defined as

I(F) =b —a—l(F*)whereF® = (a,b) — F.

Lebesgue outer measure of a set: The Lebesgue outer measure or simply outer measure of a subset A of
R is denoted by m*(A) and is defined as

m'(A) = inf {Z l(1,,): {I,,}is a countable collection of open intervals such that A U .'n]
n

n

Here infimum is taken over all possible countable coverings of A.

is taken oy

E' Notes: ).
:/ e (A) = €
Ly =4

nm then

E/‘ Notes: If {m_l Ly countable collecyjqp of opeM intervals such that A € U

m*(4) S:E L(In).

Theorem1.1: (i)ym”(¢) = 0, where ¢ is an empty set.
(ii) If A and B are subsets of R such that A € B then m"(4) < m"(B).
(i) m*({x}) = 0 forany x € R.
(iv) If E is a countable subset of R then m"(E) = 0.

Proof: (i)Lete > 0 be given, then

L ovely Professional University
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>m'p) <l ((x —%.x +§))

=>m'(p) <e
Since € is arbitrary, therefore we have,
m*(¢) = 0.

(ii) Let {I,,} be a countable collection of open intervals such that

U;'n =)
n

> m'(A) < E 1.

n

But {i,,} is an arbitrary collection of open intervals such that

U.'n;B.

n

m'(4) < inf[ZE(IH):B c U.'n]

=m"(B).

Thus, we get m*(4) < m*(B) wheneverA € B.

Therefore,

(iii)Since  {x} € (x—r—lt,x +T—11);n EN
~m (fxh) < i((x—%,x-f—%)):n EN

2

=—=0asn—cw
n

= m"({x}) =0.

(iv) Let Ebe a countable subset of R then we may express E as
B ot s e Mo v }
Let € > 0 be given

Then the collection {I,,}, where

Iy= (xn _Zr‘%'x” +2n—€+1)

is a sequence of open intervals such that

@0
U L5E
=1

Therefore,

L ovely Professional University



Unit 01: Lebesgue Outer Measure

mE) < ) 1)

277
i
=€ z
=
=¢€
>m'(E) e
Since € > 0, is arbitrary.
Therefore, we get m"(E) = 0.
This completes the proof.
@ Example:If [b;; _— 0< Y 2}, Q the set of rationalsthen find .

Solution: We have
E={xeQ:0<x=<2}
=>FEcCc@
=m’(E) =m'(Q)
Since Q is countable.
Therefore, m"(Q) = 0
=>m"(E) = 0.
F, — set: A set which is a countable union of closed sets is called F, —set.

Example:

(ol e D[a+%,b —%]

G5 — set: A set which is a countable intersection of open sets is known as Gsset.

Example:
o0
1 1
[a,b] = n(a——,b +=).
n n
n=1
Theorem 1.2:The outer measure of an interval is its length.
Proof:Let I be an interval.
We have three cases.
Case (i):I=[a,b]

For every € > 0, we have

L ovely Professional University
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i E‘+E
C (a 2,9 2}

m'(D <l ((a -—g,b +§))

€ €
=b—a+e

Le, m{N< b—a+ee>0
>m' (D= b—a (D

Also, we have

m*(I) = inf[z.!(.'n): Ic U.'n]

= for given € > 0,there exists a countable collection {J;,} of open intervals such that

and
z I1,) <m* () + ¢ )
n
Now {I,} is an open cover of I and I, being closed and bounded subset of R,is a compact set.
~ T afinite subcover I, say {(ay, by), (az, bs), ..., (ay, b )} such that
a,<a<bandb; <b

a2€b1 4b2ﬂndb2€b

Qg < bps < bk._1ar'ld b1 < b
ag < bk—1 < bkand bk >b

Then from (2),we have

m'()+e> Z (1)
=1

k

> Z [((an, b))

n=1
= I((ay, b)) +1((az,b)) + -+ U((a, b))
= (b1 —ay) + (by — ay) + - (by — a)
= by + [(be—y —a)] + -+ [(by —ay)] — a4

=h,—
>b—a vh,>b>a>a
i.e, m'(N+e>b—a ve>0
=m'()=b—-a -(3)

From (1) and (3), we get
m*(I) =b—a=I(I).

Case (ii):/ is oneof form (a,b), (a,b] or [a, b).

6 L ovely Professional University



Uwnit 01: Lebesgue Outer Measure

For any € > 0, we can find a closed interval J such that J€ I and {(J) > I(I) — ¢
= (D —-e<l()
=m*(){by case (i)}
=m () il = |

=1(D)
=I()
>IN —e<m™ () SUI)¥e>0
= () <m* () <L)
= (1) =m*(I).
Case (iii):If I is one of the forms [a,), (a, ), (-0, b) or(-e9,b] or (—oo, 00), then {(I) = oo.
Here we will show that m* (1) = oo = I(I)
Given any real number k > 0,3 closed bounded interval / < I such that I(J) = k
Since
¥ e
> m()) £ m' (D)
m'() zm’(J)
=1()  {bycase (1)}
=k
m"(I) = k.for any positive real numberk.
= for givenk > 0, however large m*(I) =2 k
Hence, m*(I) = co = ().
This completes the proof.
Theorem 1.3 (Countable Subadditivity Property):

If {4,,} is a countable collection of sets of reals, then

m" (UA”) =< Z m*(A,)

Proof: Ifm*(A,) = <« for somenthen the result holds trivially.
Therefore, let m*(4,,) < o vn

Now,
m*(4,) = inf {Z I(l,): {In‘,- } a countable collection of open intervals such thatA4,, U .‘,u-].
i i

= for given € > 0 and for each A, there exists a collection {.'n_i}iof open intervals such that
ne| i,
i

and

Z Ul < m*(An) + % (D)

Now,

L ovely Professional University
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i.e. the collection [fm-]m_ forms a countable collection of open intervals which covers U, Ay

Therefore,

m' (U Ay) = z: t("n..i)
= (Z t(fn.a)

i

<D M @A)+ by

ST
=§ m‘[An)-I—a(l_l)
n 2

= E m (A, + ¢
i.e. m' (UA,,) < Zm‘(An) +&
= m‘(UAn) < Z m"*(4,).

|

This completes the proof.

Theorem 1.4: If m"(4) = 0 then m"(A U B) = m"(B)

Solution: We have

m' (AU B) <m"(4) + m"(B)
~m(AUB)<0+m*(B)

= m*'(AUB) <m"(B) (D)
Now,
B < AUB
= m"(B)< m"(AUB) - (2)

From (1) and (2), we get
m"(B)= m"(AUB).
This completes the proof.

Theorem 1.5:Prove that m"is translation invariant.

8 L ovely Professional University



Unit 01: Lebesgue Outer Measure

Or
IfEC R, thenm"(E+y)=m"(E),yeER, E+u={x+y :x€EL

Proof:We know “If I be any interval with endpoints a and b then I+y is also an interval with endpoints
a+y,b+yandis defined as

I+y={x+wvxelland (I +y) =I{)"
Let & > 0 be given. We have
m'(E) = inf Z I(1,): {I,,}is a countable collection of open intervals such thatE € U .'n]

n T

=~ J acollection {I,,} of open intervals such that

EEU.‘n
n

and
z () <m'(E)+e  ...(D
Now,

EEU]‘H
n

=>E+yQU(1n+y)
n

>m"(E+y)<m’ (U(J’n + J’))

SE m" (I, +y)

= U +y)

D)

amE+y) < E 1)

<m'(E)+e  {by(1)}

Thus, we get
m'(E+y)<m'(E)+e,e>0

=>m"(E+y) £m*(E) . (2)
Now, we have
E=E+y)-y
~m*((E+y)+(-y)) Sm*(E+Y) (by 2)
=>m(E)=m (E+y) ..(3)

From (2) and (3), we get
m"(E) =m"(E +y).
This completes the proof.

L ovely Professional University
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Theorem1.6: Let A be any set of reals.
Then,
i for given & > 0, there exists an open set 0 = A such that m"(0) < m"(4) + eand the inequality
is strict in case we have m"(4) < .
ii. there exists aGs —setG 2A such that m*(4) = m*(G).
Proof:(i) Let m*(A) < co, We have,

m*(4) = inf{z I(1,,): {1, }is a countable collection of open intervals such that A € U .'n]
n

n

Therefore, for given £ > 0, there exists a countable collection {i,,} of open intervals such that

Ac U;'n
I

and

E I0) <m* @A)+ ..(1)

n

Let

0= U.‘n.
n

Therefore, 0is an open set and 0 2 A.

Also,
m'(0) =m" (U.‘n)
<> m ()

= 10

<m*(4) + elby(1)}
Le.m(0)<m'(4A) +¢ ..(2)
Let m*(A) = co.
Since 0 2 A, therefore
m'(0) 2m'(4) = «
> m*(0) = oo.

>m'(0)=m'(A) +ec = «(3)

From (2) and from (3), we get

m*'(0) <m"(0) + &.

(ii) Taking £ = r_l1 n € N in (i), there exists an open set 0, 2 A such that

m*(0,) < m'(4) +% (4

Let

L ovely Professional University
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= GisalGs—setand G 2 A.

Now,
G<S0, Vn
= m*'(G) =m"(0,)
1
<m*(4) -1—% ,nEN (by4d)
=> m"(G) <m"(4) ...(5)
Also,
ACG
= m'(4) <m"(G) ..(6)

From (5) and (6) we get

m (4) = m"(G).

This completes the proof.
Cantor set: LetCqy = [0, 1].

Step-1: We divide [0, 1] into 3 subintervals of the same length and remove open middle subinterval, to

get
1=1%3 U 371

Step-2: We divide each of the 2 resulting intervals above into 3 subintervals again and remove the open

middle subintervals, to get
e:=[oglufs 3w alvf 1]
7= el leal el ¥ g
Similarly, we get

c _[0 1]U[2 1]U[2 7]u{8 1,]U[2 19]U[20 7 i 8 ZS]U[% 1]
227k Flartel T le a2zl - 12773) A3 27) G2y el B le 27l R 2l

Continuing this way, we get a sequence {C,} of sets such that

i BBEoR..
ii. €, isunion of 2™ disjoint closed intervals each of length 3—1,1

Then the set € = ;4 Cy, is defined as a Cantor set.

Ei,’ Notes: If the outer measure of a set is zero, then the set may not be countable.

e.g., Cantor setC where = N;_; C,; ,C, is union of 2™ disjoint closed intervals each of length 3—1,1 ;

Now,
cet, vn

>m"(C) =m"(C,) vn

L ovely Professional University 11
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=>m"(C) = 0.

Thus, we get outer measure of an uncountable set (Cantor set) is zero.

Summary

We denote the set of extended real numbers by R*which isdefined as R* = R U {+o0} U
{—o}, where R = (—o0, ). That is, we can write R* = [—o0, ]. Here +o0 and —oo are two
symbols.

For everyx € R, —o0 < x < +, Here —o0 is the smallest element in R* and +o is the
largest element in R".

Forevery x € R, (—o0) + x = —00, (+00) + x = +00, (+) + (+0) = 400, (—00) 4 (—o0) =
—oo.
If x>0, then x(4+00) = (+0)(x) = +00, x(—0) = (—®)(x) = —co0 and if x < 0, then
(+0)x = (+0)(x) = =00,  (—)x = (—00)(x) = +oo.
Let A € R* be any non-empty set. Sup (4) = +< if AN R is not bounded above.Inf (A) = —oo if
A N R is not bounded below.
Let C be the class of subset ofX. A function u:C — [0, %] is called a set function. It is a function
whose domain is a collection ofsets. Therefore, it is called a set function.
A set function y: € — [0, 0o] is said to be monotone if for all A, Be C, u(4) < u(B) whenever C B .
A set function g: € — [0, ©0] is said to be finitely additive if u(UjL; 4;) = Xty u(Ap)

whenever Ay, 4y, ..., Ay € CandUj_; 4; € C, A; N A; = ¢ fori #j.

A set function p: € - [0, 0] is said to be countably additive if u(UiZ; 4;) = X2, u(4;).

[+s]
whenever A4, 45, ... € € and UAE EC,A;NAj=¢gfori=+j.

i=1

A set function p:C — [0, ] is said to becountably subadditive ifu(UiZ, 4;) < X2, u(4;)

=3
whenever A4, 45, ... € € and UAE EC.
i=1
The length of an interval is defined as the difference of endpoints of the interval.
If O is an open subset of R then O can be written as a countable union of pairwise disjoint open

intervals, say {I,,} i.e.,

0 = Uy In- Then the length of an open set 0 is defined as [{0) = X, I,

Let F be a closed subset of R contained in some interval (a, b), then the length of the closed set F
is defined as I(F) = b —a — [(F*)whereF® = (a,b) — F.
The Lebesgue outer measure or simply outer measure of a subset A of R is denoted by m"(A)

and is defined as

m'(A)=inf ’Z 1(1,): {I,,}is a countable collection of open intervals such thatA € U In].
n

n

A set which is a countable union of closed sets is called F, —set.
A set which is a countable intersection of open sets is known as Gy set.

If {4,,} is a countable collection of sets of reals, then m*(U,; 4,,) < Xnm" (4,,).

L ovely Professional University



Unit 01: Lebesgue Outer Measure

If {I,,} is any countable collection of open intervals such that A € U, I, then m*(4) < ¥, {(I,).
m*(¢) = 0, where ¢ is an empty set.

If A and B are subsets of R such that 4 € B then m*(4) < m"(B).

m*({x}) = 0 for any x € R.

If £ is a countable subset of R then m*(E) = 0.

The outer measure of an interval is its length.

If m*(4) = 0 thenm*"(A U B) = m*(B)

m*is translation invariant i.e., if E C R, thenm*(E +y) =m"(E),yER, E+u={x+y 1 x € E}.
Let A be any set of reals.Then, for given & > 0, there exists an open set 0 = A such that m"(0) <
m"(A) + eand the inequality is strict in case we have m"(4) < o and there exists a G5 —set G 2A
such that m*(4) = m"(G).

If the outer measure of a set is zero, then the set may not be countable.

Keywords

Extended Real Numbers: We denote the set of extended real numbers by R*which isdefined as
R* =R U {+w}U {—w}, where R = (—o0, ).

That is, we can write R* = [—o0, o0]. Here +00 and —co are two symbols.
Order relation on R*: For everyx € R, —o0 < x < +
Here —oo is the smallest element in IR* and +oo is the largest element in R*.
Additionon R*: For every x € R

(=) + x = —o0

(+00) +x =+

(+00) + (+00) = +cn

(=) + (—) = —o
Multiplicationon R*: If x > 0, then

x(+) = (+o0)(x) = +o0, x(—00) = (—0)(x) = —o0
and if x < 0, then

(+00)x = (+00)(x) = —00, (—o0)x = (—0)(x) = +oo.
Supremum and infimum in R": Let A € R* be any non-empty set.

Sup (A) = +o if A N R is not bounded above.

Inf (A) = —o0 if A N R is not bounded below.

Set function: Let C be the class of subset ofX. A function u:€ — [0, 0] is called a set function. It is a
function whose domain is a collection ofsets. Therefore, it is called a set function.

Length of an interval: The length of an interval is defined as the difference of endpoints of the interval.

Length of an open set: If 0 is an open subset of R then O can be written as a countable union of
pairwise disjoint open intervals, say {I,} i.e.,
0= U I
n

Then the length of an open set 0 is defined as

L ovely Professional University
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10) :E -

n

Length of a closed set: Let F be a closed subset of R contained in some interval (g, b), then the length of
the closed set F is defined as

I(F)=b —a — l(F*)whereF¢ = (a,b) — F.
Lebesgue outer measure of a set: The Lebesgue outer measure or simply outer measure of a subset A of

R is denoted by m*(A) and is defined as

m*'(A) =inf iz L(1,,): {I,}is a countable collection of open intervals such that A € U .'n],
n

n

F, — set: A set which is a countable union of closed sets is called F, —set.
G5 — set: A set which is a countable intersection of open sets is known as Gg set.

Countable Subadditivity Property: If {4,} is a countable collection of sets of reals, then

m* (UA”) Sz m*(4,).

Self Assessment

1) Select the incorrect option:
A. (40) 4 (0) = 400

B. (~90) + (~0) = —oo

C. (4+90) + (—) is not defined

D. none of these

2) Consider the following statements:

(D) (s)(+) = +o0 and(s)(—=) = —0,0 <sE R

(ID) (s)(+) = +o0 and(s)(—w) = —c0,s € Rand s < 0
A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct

D. both (I) and (II) are incorrect

3)Let M < R” be a non-empty set. Consider the following statements:
() sup M = 40 if M is bounded above in R.

(I) inf M = —co if M is not bounded below in R.

A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct

D. both (I) and (II) are incorrect

L ovely Professional University



Unit 01: Lebesgue Outer Measure

4)Range of a set function is a subset of the set of non-negative real numbers.

A. True
B. False

5)A set function p: € — [0, ] is said to be countably additive if u(UiZ,4;) < Xi2, #(A;) whenever
Ay, .., 4;, ... € Csuch that UjZ, 4; € C.

A. True
B. False

6) Consider the following statements:

(DA set function u:C - [0,c0] is said to be finitely additive if u(UjL,4;) = Xt u{4;) whenever
Ay, ..., Ay € € such that UL, A; € € and A;'s are pairwise disjoint.

(INA set function p:€ — [0,00] is said to be countably subadditive if pu(UjZ;4;) < X2, u(4;)
whenever 4y, ..., 4;, ... € € such that UjZ, 4; € C.

A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct
D. both (I) and (II) are incorrect

7) Consider the following statements:
(I) Length of the interval (-0, b] = o0
(I)Length of the interval (—oo, &) = o
(IIN)Length of the interval (a,b) =b —a
(IV)Length of the interval (a, 00) = o
A. only (I) is correct

B. only (III) is correct

C. all are correct

D. all are incorrect

8) If A is an open set such that 4 = U, I, where I, is an open interval for each n then the length of
the set A is equal to X, [(I},).

A. True
B. False
9) Outer measure of any set is non-negative.
A. True

B. False

10)If A € Unly thenm®(4) < ¥, 1{1).

L ovely Professional University
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A. True
B. False

11) Consider the following statements:

(I) Outer measure of an empty set can be any positive number.
(IT) Outer measure of a singleton set can be any positive number.
A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct

D. both (I) and (II) are incorrect

12) Consider the following statements:
(D If A € B then m"(4) = m"(B)

(IT) Outer measure of a countable set is zero.

A. only (I) is correct
B. only (II) is correct
C. both (I) and (II) are correct

D. both (I) and (II) are incorrect

13)If A € @ thenm"(4) =0

A. True
B. False

14) Intersection of an arbitrary collection of closed sets in R need not be closed.

A. True
B. False

15) Intersection of an arbitrary collection of open sets in R need not be open.

A. True
B. False

16) Union of a finite collection of closed sets in R is closed.
A. True

B. False

17) Union of an arbitrary collection of closed sets in R need not be closed.

A. True

L ovely Professional University



Unit 01: Lebesgue Outer Measure

B. False

18) Union of an arbitrary collection of open sets in R need not be open.

A. True
B. False

19) Consider the following statements:

(I) A set which is a countable union of closed sets is called F,-set.

(II) A set which is a countable intersection of open sets is called Gg-set
A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct

D. both (I) and (II) are incorrect

20) Consider the following statements:

(1) If {By,} is a countable collection of sets of reals then m*(U B,,) = X m"(B,,).
(IT) If set A is compact then every open cover of A has a finite subcover. Then
A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct

D. both (I) and (II) are incorrect

21) Consider the following statements:
0 () > m*(1),] = (—e0, b]

(L) <m*(N,1 = (—oo0, )

(I = m*(I),1 = (a,b)

A. (I) and (IT)are correct

B. only (III) is correct

C. (I) and (IlT)are correct

D. all are incorrect

22) Consider the following statements:

(I) Cantor set is countable.

(IT) Outer measure of the Cantor set is zero. Then
A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct

D. both (I) and (II) are incorrect

L ovely Professional University
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23) Consider the following statements:

(I)Outer measure of a countable set is always zero.

(IT) If the outer measure of a set is zero then the set need not be countable. Then
A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct

D. both (I) and (II) are incorrect

24) Consider the following statements:

(DOuter measure need not be translation invariant.

(I) Let A be any set of reals. Then there exists a G5 - set G 2 A such that m"(4) = m"(G). Then
A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct

D. both (I) and (II) are incorrect

Answers for Self Assessment

1. D 2. A 3. B 4. A 5. B
6. C 7. C 8. A 9. A 10. A
11. D 12. B 13. A 14. B 15. A
16. A 17. A 18. B 19. C 20. B
21. B 22. B 23. C 24. B

Review Questions

Find m* (E)if;
1)E ={xeR:1<x< 10},

2)E ={xeN:1<x <10}
JE={xeER:1/2<x=5}nQ.
4E={xeN:1/2<x<5}nR
5E={x€eR:i—oo<x <2}

L“J Further Readings
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W

Measure theory and integration by G DE BARRA, New Agelnternational.
Real Analysis by H LRoyden and P M Fitzpatrick, Pearson.

Lebesgue Measure and Integration by P K Jain, V P Gupta and Pankaj Jain, New Age
International.

Graduate Texts in Mathematics, Measure Integration and Real Analysis, Sheldon Axler,
Springer.

An Introduction to Measure and Integration, I K Rana.

Web Links
https:/ /nptel.ac.in/courses/111/101/111101100/

https:/ /www.youtube.com/watch?v=xUMRSOtM654 &list=PL_alTI5CCIRGKYvo8XNFTK9z
kiMbYTEwS

https:/ /www.youtube.com/watch?v=YIrx8 W5nyq8&t=29s
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Unit 02: Measurable Sets
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Objectives
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2.1 Measurable Set
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Self Assessment

Answers for Self Assessment
Review Questions

Further Readings

Obijectives
After studying this unit, students will be able to:

determine the conditions to prove that a set is measurable or not

understand the algebra of measurable sets
define algebra and sigma algebra

describe Borel sigma algebra

define Lebesgue measure

demonstrate the concept of sum modulo 1

Introduction

Outer measure has four properties: (i) outer measure is defined for all sets of real numbers, (ii)
outer measure of an interval is its length, (iii) outer measure is countably sub additive, (iv) outer
measure is translation invariant. But Outer measure fails to be countably additive.

In order to have the property of countable additivity satisfied, we have to restrict the domain of

definition for the function m” to some suitable subset, (say) M, of the power set P(R). The members
of M are called measurable sets. There are various ways to define a measurable set but we follow

an approach due to Constantine Caratheodory.

2.1 Measurable Set

A subset E of R is said to be Lebesgue measurable or, briefly measurable if for each set A € R, we

have

m(A)=m"(AnE)+m"(AnE®)

I"i?l' Notes: Sirce A = AN K

=ANn(EVE®Y)
=(ANE)U(ANE®)
smA)=m (AnE)+m*(4dnE°)

Thus, in order to improve E to be a measurable set, we only need to show that

m A =m(AnE)+m*(AnEc).

20 L ovely Professional University
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Theorem2.1: If m*(E) = 0, then E is a measurable set.
Proof: Let A be any subset of R then
AnECE
> m(AnE)<m*(E)=0
> m(AnE)<0
> mAnE)=0 mANnE)=0
smANE)Y+m (ANE) =04+ m (AN ES) <m"(A)
v AnE*C A = m*(AnE®) <m*(4)
Lem'(A)Z2m"(AnE)+m"(AnE®)
Therefore, E is a measurable set.
This completes the proof.
Corl: Every countable set is measurable.
Proof: Let Ebe a countable set.
Then m"(E) = 0, therefore by above theorem, E is measurable.
Hence every countable set is measurable.
Cor 2: Cantor set is measurable.
Proof: Let 'C’ be the cantor set then m*(C) = 0.
Therefore, by above theorem, C is a measurable set.
Hence Cantor-set is measurable.
Theorem 2.2: Prove the following.
(i) If E is a measurable set, then E€ is also measurable.
(ii) If E;andE, are measurable then E; U E;.
Proof: (i) Since E is a measurable set,
s mA)=m(AnE)+m (ANES),AcR
> mA)=m"(ANE)+m"(An(E°)),ACSR
= Eis measurable.
(ii) Since E; is a measurable set,
o mA) =mANE)+m(ANED),ACR (D
Again as E, is a measurable set,
M ANED) =m (ANEfNE) +m (ANEfNES),ACR - (2)
Using (2) in (1), we get
m'(A) =m"(AnE) +m (AnEf N E;) + m" (AN Ef nES)
>m'[{AnE)UANE; NnE)]+m (AnEfnES)
=m [(ANEDU{AN (E; — EDH+m'[ANn (E; U E,)E]
=m'[AN{E; U (E; — ED} +m"[ANn (B; U £;,)°]
=m*[4 N (E, VE)]+m*[An (E; UE,)¢]
iL.eem'(4) =m'[An (B, UE)] +m'[An (E; UE,)]
= E; U E; is measurable
This completes the proof.
Cor 1: If E; and E, are measurable then E; N E; is also measurable.
Proof: Since E; and E, are measurable therefore Ef and ES are also measurable

= Ef U E5is measurable
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= (E; n E;)"is measurable
= [(E, N E;)¢]%is measurable
= E; n E,is measurable
Cort 2: If E; and E, are measurable then £, — E, is also measurable.
Proof: Since E; and E, are measurable therefore E; and E£ are also measurable
= E; n Efis measurable i. e., E; — E; is also measurable.
Algebra:

A non-empty collection «Aof subsets of a set X is called an algebra if

i) Empty set @ € A.
if) AEA=AEA
iii) A BEA=>AUBEA

[_;2' Noteg. 1f 4 i8 an dlgeliva gnen
= ABEADAB et A UBes 2 (ANBFE# DANBE A,
o —algebra:
A non-empty collection ¢4 of subsets of a setX is called o —algebra if
(i)deA
(IDAE A= A€

el
(iii)A,E AneEN> UA“ € A
n=1

| A
i

E
I":?I‘ Notes:If isa -al e /h
= P oo g brarflen
AnEANEW> ASeANnEN

0 0 3 o
:>UA§EJ. :(ﬂfin) € 4 :ﬂAnch..
n=1 n=1 n=1

@* Notes: Every -algebra is algebra.

Theorem 2.3: If Ey, E;, ..., E,, are disjoint measurable sets, then

An (LHJE.})] :im' (AnE),ACR
i=1 =1

Proof: We prove the result by induction on n.

m"

Forn = 1, we have

m(AnE)=m"(AnE)
which is true.
~ result is true for n = 1.

Let the result be true for (n — 1) sets i.e.

Now since E,, is measurable, we have

so({)6)] -l ((Je) s

i=1

m” +m"

n
An(UEI)nE;;

i=1

22 L ovely Professional University
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v Ey,E,, ..., E, are disjoint

and

i=1

n n-1
& g)l e UANED [,4 (U=)
(0 U

-1

=m*'(ANE,) + Z m* (A n E;) [by induction hypothesis]
i=1

= im' (AnE;).

n n-1
AI’\(UEI)I"IEEZAH( EL)

Therefore

This completes the proof.

Cor: If Ey, E;, ..., E,, are disjoint measurable sets, then

T

m" (LJ EJ) = ; m' (E;)

=1

Proof: Taking A = R in above theorem, we get
n

- mm(UEi)] =im’(RﬂE:)

i=1

Theorem 2.4: If {E,} is a sequence of disjoint measurable sets, then Uj, Ey, is also measurable.

Proof: Let E =Uj. E, and F, = UL, E; then F, being finite union of measurable sets, is
measurable.

sm Al =m AnE]+m [AnESLACR ..(1)

Now for n € N, we have

E, CE,
=> Ef 2 E°
S ANE 2ANE"
>m (AnE)=m* (ANnEY)
>mANE)+m (ANE) 2m (AnE)+m" (AnES) ..(2)
From (1) and (2), we get

m*(4) = m'(An E) +m (AN E°)

n
=m" [A n (U EE)] +m"(ANE")

i=1

i
- Zm' (AN E) +m'(AnES)
i=1
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e m W

i=1

n
AN (U E.f)] = Z m" (ANE)ACR,E,,E,, .., E,are disjoint measurable sets.
i=1
T
. m'(A) = Zm' (ANE)+m*"(AnE"),neN
i=1

T
=> m'(A) = ?EI—I’TJOZ m" (AN E;)) +m*(AnE")

i=1

= m*'(4) = Z m* (A nE)+m"(AnE®)
i=1

>m"

U(A n Ei)} +m*"(AnE®)
i=1

AN (U Ei)] +m (AN E®)

=m(AnE)+m'(AnE®)
smA) z2mANE)+mANnES),ACR

=m"

o0
>E= U E,, is measurable.

n=1
This completes the proof.
Theorem 2.5: If {E,,} is a sequence of measurable sets, then Uj_, E,, is also measurable.

Proof: Let

Py = E; ~E;
F; =E; — (B, VEy)

=1
i s (U El-)
=1

Since Ey, Ey, ..., En—q are measurable sets, ! E; is also measurable.

fi-1
w By =E, - (U El-) is measurable and F; = E;

i=1

= {E,} is a sequence of disjoint measurable sets.

o
= U E, is measurable. ...(1)

n=1
Claim
) o
Us-Ue.
n=1 n=1
We have
-1
E, zEn—a( Ei),Fl = E,
i=1
E,CE,.Vn
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ﬁDFHQDEn .. (2)

o
Now, x € U E,
n=1

Then x € Ej, for some k € N. Let mbe the least positive integer such that x € E;;,

lLeex€EE,andx € Effori=12,..,m—1

m=1
=>XE.E-,«,-,'—UE‘,[
i=1

>x€eFR,

o
= xEUFn.
n=1
o0 0
UE“ c UF“ e

n=1 =1

=

From (2) and (3), we get

el

e
Fn:UEn

n=1 =1
o0
~ by(1), U E,, is a measurable set.
n=1
This completes the proof.
Cor: If {E,,} is a sequence of measurable sets, then N~y Ey, is also measurable.

Proof: Since E,, is measurable, Vn € N therefore Ef; is also measurable Yn € N

s
= U E; is measurable.
n=1

¢

o8
= (ﬂ E,,) is measurable

=1

=

= E, is measurable

— s

fors

n=
Theorem 2.6: If E;andE, are measurable sets such that E, € E; then
m*(E; — E) = m"(E;) — m" (Ez)
Proof: Since E;andE, are measurable sets, therefore E, and E; — E, are also measurable.
E, and E; — E, are disjoint sets.
am[E; U (Ey — Ex)] =m"(Ey) +m' (B — E)
=>m*(E,) =m*(E;) + m*(E, —E,) v E, € E;
= m"(E; — E,) =m"(E;) —m"(E,).
This completes the proof.
Theorem 2.7: If E;andE, are measurable sets, then show that
m'(Ey UEy)) +m'(E; N E;) = m*(Ey) + m*(Es)
Proof: Since E; is measurable, therefore
m*(E; UE,) = m'[(Ey U Ey) nEy] +m*[(E, U E;) nEf]
=m"(E;) + m'[(E; n Ef) U (E; n Ef)]
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=m"(E;) + m* [P U (E, - E;)]
=m"(E) +m"(E, — E;)
Adding m"(E; n E;) on both sides, we get
m*(E; UE,) +m'(Ey N E;) =m' () + m*(E, — E)) + m™(E; N Ey)
=m'(E;) + m'[(E; —E;) U (Ey N Ey)]
v Ey — E,andE; n E,are also disjoint
=m"(Ey) +m"(E;).

This completes the proof.
Theorem 2.8: The collectionM of measurable subsets of R is a o — algebra.
Proof: We know “If a non-empty collection ¢ of subsets of a setX is given, then is called
o — algebra if

1) ®eA

2) AeA=> A€

3) ApELA,VneEN = Updy €L
i) We know ® is a measurable set.
ii) LetE € M
= E is a measurable set.
= E° is a measurable set.
S>E‘eM
iii) Let E, E M ,vneEN

= E, is ameasurableset,Vn €N

=0
> U E, is a measurable set.

n=1
= UEHEM
n

Hence M is a o — algebra.
This completes the proof.
Theorem 2.9: Every interval is a measurable set.
Proof: Let I = (a,») be any interval and A be any subset of R.
Letd; = An (a,)and4, = An ((a, w))E = An(—oo,al,
Therefore, to show ‘I’ is measurable, we will show that

m"(A) = m"(4,) + m"(43)
If m*(4) = o, then result holds trivially.

If m*(A) < oo, then for given € > 0,3 a countable collection {I,,} of open intervals such that
Ac U 1, and z;Un) <m@+e  .(D)
n n

Letly = I, N (a,o)andly = I, N (—oo,a]

Then
I, UL = [ n(a,0)] U I, N (—0,al]
=1, N [(a,20) U (~,a]]
=L,NR=1,
Also
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L0l =t n (@) n In(-o,a
= I, N [(a, %) n (~o0,al]
=Lnd=o

Thus, we get
L=hLhuljandl;nl =@
= (L) = (1Y) + L) (2

Now

Dfé = DUH N (a, )]
= (Dfn)n (a,%) 2 An (a,) = 4 ( Ac ijn)

1

- U I 24,
n=1
>m* () < > 1)
n

Now,

EJ I = CJU" N (—oo,a]]
) (0’?‘) N(=c,a] 24N (-»,a] =4,

n=1

o
el 1224,
U
=> m'(4;) < > U
2
~m (A +mt(4;) £ Z () + Z 1(Iy
mn mn

=D (W) +10) = Y 1) by @)

<m'(A)+e€ (by (1))
ie., mA)+m(A) <m (A +ee>0
=m*(4;) + m*(4,) < m*(4)
i.e., m'(A) = m"(A;) + m"(4;)
Hence I = (a, ) is a measurable set.

Now, since the class Mof measurable sets is a o — algebra. Therefore, it gives the result for other
types of intervals also.

This completes the proof.
Cor 1: Every open set is measurable.

Proof: Let 0 be an open set. Then 0 can be expressed as a countable union of disjoint collection of
open intervals. Since open intervals are measurable sets and countable union of measurable sets is
measurable, therefore 0 is a measurable set.

Cor 2: Every closed set is measurable.
Proof: Let F be a closed set. Then F€ is an open set. = F€ is measurable.

= (F%)° = F is also measurable.

L ovely Professional University 27



Unit 02: Measurable Sets

Cor 3: F, —set and G —sets are measurable sets.

Proof: Since F, —set is countable union of closed sets and closed sets are measurable. Also,
countable union of measurable sets is measurable. Therefore F, —set is measurable

NowGg —set is countable intersection of open sets and open sets are measurable, therefore G5 —sets
are measurable, since countable intersection of measurable sets is measurable.

Borel o — algebra

The intersection of all the o —algebras of subsets of R that contain the open sets is a o —algebra
called the Borel & —algebra.Members of this collection are called Borel sets.

e AE “r
@
¥

A
I’__‘EI‘,' Notes: The Borel 'r—algebra is contained in ¢ty IJ—algebra that contains all open sets.

. €F - 2VE o - o s
Therefore, since e measurable sets are a  -algeora containing all open sets, every

a

Borel set is measurable.

Lebesgue Measure: The restriction of the set function outer measure to the class of measurable sets
is called Lebesgue measure. It is denoted by m, so that if E is a measurable set, its Lebesgue
measure, m(E), is defined by

m(E) = m"(E)

Theorem 2.10: For a given set E, the following statements are equivalent:

i) E is measurable.

if) For given € > 0,3 an openset 0 2 E such that m*(0 — E) <.

iii) There exists a Gg —set G 2 E such that m* (G — E) = 0.

iv) For given e > 0, there exists a closed set FF € E such thatm*(E - F) < e.
v) There exists a F;, —set, F € E such that m"(E — F) = 0.

Proof: (i) = (ii)
We have fallowing two cases:

Case I: m"(E) < o. By the definition of outer measure, for given € > 0,3 a countable collection {I,,}
of open intervals such that E € U,, I, and

Z ) <m'(E)+e  ..(1)

Let0 = U Lo
n

Then O is an open set such that 0 2 E.
Also

m*(0) = m’ (Urn)

n

SE m*(I,)

=1

<m(E)+e  (by(D)
>m*(0)—-m"(E) <e - (2)
Now, Obeing open set, is measurable and E is also measurable.
~ 0 ~ E is a measurable set.
Now
m*(0) = m*[Eu (0 — E)][+ 0 2 E]
=m"(E)+m"(0 —E) [+ E and O — E are disjoint
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Leem (0)—m*"(E)=m"(0—E)= m'(0—-E) <e (by (2))

Case II) m(E) = o
We can find a sequence {/,,} of open disjoint intervals such that

IR=U L) < o
n=1
~E=RNE

= (U:;l[n) nE
- U;“" nE)

:U EW,EEZIHOE,HEN
n=1

Now,
m*(Ep) = m' (I, N E)

<m*(1,)

=1l{I,) <

and each E,, is measurable as I,, and E are measurable.

= By case I, 3 an open set 0,, 2 E,, such that
€
m"(0, — E,) < o ~(3)

Let 0 = U§L, 0. Then Ois an open set such that 0 2 E,

And

0-£=|Jou-| B | Jou -0,
2 m*(0 —E) = m’ (U 0 — UE)
<m’ (U(on ~En))
< Zm (On = En)
<2 zi:(bywn

n
1
OF
n

>m'(0—E)<e

(i) = (iif)
By (ii), for given € = r—11 > 0 (n € N),3 an open set 0, 2 E such that

1
m'(0, —E) < =~ (@

Let G = N, 0y, so that G isa Gs —set and G 2 E. Also

m'(G—E) = m‘(ﬂon—ﬁ')
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(0]
=t (Moaneo)

mn

= m"(ﬂ(On —E)),n eN

1
<— VnehN
n

(by(4))

1
i.e, m'(G—E)<; vneEN

= m(G-E)=0

(iif) = (1)

By (iii), there exists a G —set and G 2 E such that m*(G —E) =0

= G — E is measurable,

Also, G, being G5 —set is measurable.
«» G — (G — E) = E is measurable.

@ = ()

Since E is measurable therefore E€ is also measurable.

By (ii), for given € > 0,3 an open set 0 2 E€ such that
m'(0 —E°) <e
Let F = 0°. Then F is a closed setand F C E.

o O _'D_EC
>F=0°CE
Also

m'(E—F)=m"'(E nF*)
=m"(E n0)
=m*(0 n (E)°)
=m*(0—E°) <e (by(5)
i.e, m'(E—~F)<e

(iv) = (v)

. (5)

By (iv), for given € = r_11 > 0,n € N there exists closed set E, such that E, € E and

1
m(E—-F,) <—
n
Let F = U, E,, so that Fis E, — setand F C E.
Also

. (6)
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=m' [ﬂ{E nEf)
=m [ﬂ(c B Fn)]

<m*(E—-E,),vneN

1
< = Yn €N (by(ﬁ))

L.em'(E—F) <i- vne N
= m(E-F)=0
(w) =@
By (v), 3 a F, ~setsuchthat F € E andm"(E—F) =0
= E — F is a measurable set.
Also, F, being a F; —set, is measurable.
Therefore (E — F) U F = E is measurable.
This completes the proof.

Theorem 2.11: If {E;} is a sequence of disjoint measurable sets then

m (L_J EJ) = ; m(E;)

Proof: Since {E;} is a sequence of measurable sets, soU;Z, E; is also measurable.

Therefore, by countable subadditivity property of outer measure, we have

i=1 i=1
Let Fn = 0 E_f
i=1

i

then

m(F,) zm(o Ei) zim(ﬁ}) ..(2)

T

Y m (U Ej) =>m(E,) = Zm(h}),‘u’n (by(‘z))

i=

1
=3 i3

= m(U Ei) > li_ngoZWIE:)
i=1

i=1

> m(D EI) Eim[&-) ..(3)

=1

]
i= i

From (1) and (3), we get

[NMs

m(Ei-).

oy

1

This completes the proof.
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Theorem 2.12: Let {E,;} be an infinite decreasing sequence of measurable sets (i.e.E,q € E, Vn)

such that m(E;) < oo. Then
m (| ' EL-) = lim m(E,,)
i=1 =00

Proof: We have m(E;) < coand E, € E; Vn€N.
~ m(E,) <m(F;) <o = m(E,) <oo,n €N.

Let F; = E; — E;44, 50 that F/'s are pairwise disjoint.

LetE = ﬂ E,'_.
i=1

Then
(=}
m(E; -E) = m( F,-)
U
= z m(F;)
=1
e mi=B) Zm(E} B (D)
i=1
Now
E; =E U (E; — E)and E, E; — E are disjoint.
& m(E,) = m(E) + m(E, — E)
=>m(E, — E) =m(E;)) —m(E) ..(2)
Also

E; =E; 1 U (E; — Ejy1)andEiq, E; — Eiqare disjoint.
~m(E) = m(Ejq) + m(E; — E;yy)
= m(E; — Ejyq) = m(E)) —m(Eq) .. (3)
From (1), (2) and (3), we get

o

m(E) =m(E) = ) () = m(Eisn)]

=1

= AﬂZ[m(E‘l] = m(Eg'H)]

=1

= ?11_’1'1;10[??'1(51) o m[E'.rH-l)]
= m(El) = ?11_1:10]9 m(En)

=>m(E) = ,!L“;'o m(E,)

ie, m(ﬂ EL-) = lim m(E,).
f=1 n—uo

This completes the proof.

E;/- Notes: The condition m(k;) | » in above theorem cannot be dropped.

e.g, Let E, = (n,o0). Then {E,} is an infinite decreasing sequence of measurable sets, such that
m(E,,) = o foreachn € N and

Now since
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el
E,-®
n=1
el
=>m (ﬂ En) =)
n=1
But

m(E,) = o,n €N,

- i m(Ey) =

.3
>m (ﬂ En) #* r}mga m(E,).

n=1

Theorem2.13:Let{E,,} be an infinite increasing sequence of measurable sets

(i.e.Enpq 2 Eyfor each n). Then

[=4]
m(U E.';) = lim m(E,)
i=1
Proof: Case I. m(E;,) = oo for some k € N we have,

=

i

[=4]
E;
=1
[++]
wm (U F;) = m(Ey) = o
i=1

Now as {Ep}is increasing sequence, therefore
E,2E,¥n=k
>m(E,) 2m(E,) =0 Yn=k
> lim m(E,) = o
From (1) and (2), we have
o
m (U Ei) = r}1_[1;1& m(E,) .
i=1

Case ll)m(E;) < wforalli € N.
Let F, = E; and F;,, = E;;; — E; foreach i € N. Then

and Fs are disjoint.

i=1
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= Jim m().
This completes the proof.
Theorem 2.14: If A is a measurable set and m*(4AB) = 0, then show that B is also measurable and
m(B) = m(4)
Proof: We have
AAB = (A—B)U (B —4)
~ A—B € AABand B — A € AAB
=>m'(A—B) <m (AAB) = 0 andm"(B —A) < m"(AAB) =0
s m(A—B) =0andm*(B—A4)=0
= 4 — B and B — A are measurable sets.
Now A and A — B are measurable, therefore A — (A — B) = A n B is also measurable.
~ B — Aand A n B are measurable.
= (B — A) U (4 n B) = Bis also measurable.
Further,
m(B) =m[(B—-A)U (A nB)]
=m(B—-A)+m(AnB)

=0+m(AnB)
i.e, m(B) =m(ANB) (@)
Similarly, we can obtain,
m(A) =m (AnB) 3]
Therefore from (1) and (2), we get
m(A) =m (B)

Sum Modulo 1
If x,y € [0,1), then we define sum modulo 1 as

s _{x+y ifx+y<1
T = le+y—1 ifx+y>1

e.g. Ifx=06,y=03then x+y=x+yandlf x=06,y=09then x+y=x+y— 1L
0.6, v on X ) ) ? then »— 1.
Ial' Notes: For " 1)and ~_ )1), we define *~ *~anslation f _  ulooneby”

E4y = {x+y:x € E}

Theorem 2.15: Let E € [0,1) be a measurable set and y € [0,1). Then the set
E+y={x+y:x € E}
is measurable and m(E+y) = m(E).
Proof: Let
E,=En[0l—y)andE, =En[l—y,1)
Then E; and E,are measurable sets and E; U E; = E,E; NE; =&
m(E) =m(E, UE;)
=m(E) + m(Ez) ..(1)
Also, if
yiEEI=EN[01-y)
y, € Eandy, € [0,1—y)
O=sy;<1-y
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=>y+y <1
Eity=E +y ()
If y,eb,=En[1-y1)
=y, €E[1=-y1)
=2l-y=y,<l=2y+y, 21
syt =y+@-1)
Edy=E+(y-1) ..(3)
Since RHS of (2) and (3) are measurable. Therefore, LHS of (2) and (3) are also measurable
= E;+y andE,+y are measurable.

and
m(E;+y) = m(Ey +y) = m(E;) .. (4)

m(Es+y) =m(Ey +y) =m(E)  ..(5)
Now let z € (B, 4+v) n (E,+y)
=z=e +y=e,+y—11forsomee,e, € E<[01)
= e, = e; — 1 < 0,which is a contradiction.
~ E+y = (Ey+y) U (B, +y) where (E;+y) n (E;+y) = ©.
Hence E+y being the union of two measurable sets is also measurable and
m(E+y) = m(Ei+y) + m(Ez+y) = m(Ey) + m(E;) =m(E).  {by (1),(4), (5)}
This completes the proof.
Theorem 2.16: There exists a non-measurable subset of [0,1).

Proof: Two elements x,y € [0,1) are said to be related and we write x~y if and only if x —y is a
rational number.

x—x=0€e@ vx€[01) x~xV¥x € [0,1) = ~ is reflexive.
Let
x~y,x,y€[01l) x-yeEQ y—x€eQ y~x
Therefore ~ is symmetric.

Now let x~y and y~z, x,y,z € [0,1) then

x—yy—z€Q
x=-+-2€Q
x—ze@
X~Z
~ is transitive.

Thus ~ is an equivalence relation in [0,1) and partitions [0,1) into mutually disjoint equivalence
classes.

Axiom of choice says, “If {E,|a € A} is a non-empty collection of non-empty disjoint subsets of a set
X, then asetV € X containing just one element from each set E,.”

We can construct a set P € [0,1) by taking exactly one element from each of these equivalence
classes.

Let [011) n @ = {TO,TI,T2.<..,},T(] =0.
Define P; = P4r; Vi.

Claim:
i)y PN P =ofori #j

i UPE- —[0.1)
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For (i)letx € PN Pyi = j. {(Herei & =13+ 717}
v x € Pandx € F;
x = p+nand x = g+, forsome p,q € P
= p+r; = gty
Following possibilities arises.
ap+r=q+7
Byp+rn—1=g+n
gptrni=q+n5-1
dp+rn—-1=q+1r-1
p — q € Qin all cases, therefore p~q.
But P contains one and only one element from each equivalence cless. If p = g then
rn=rnorn=r—lorp=r—1

which is impossible because r;andr; are different and 7;,7; € [0,1) implies ; =73 —1< 0,75 =1; —
1<0.

Hence P; n P; = ®fori + j.
For (ii) let x € [0,1) then x belongs to some equivalence class. Then p P such that x~p.
= x — p must be a rational number.
Now if x > p. Then
x=p+x-p) Piryri=x—-pel0l)
If x < p then
x=p+x-p+1)—-1_Pinpn=x—-p+1 [01)

xEUP-i-n-
i
:>XEUP£
I

[0,1) U P; but U P; €[0,1)is obviously true.
i i

x € P+r;for some i

Therefore[0,1) = UP!'
i

Thus {P;} is a sequence of pairwise disjoint sets and

UP*' = [0

Now, if possible, let P be a measurable set. Then 7; = P+r; is measurable i and
m(P;) = m(P)
1=m([0,1))

()

8
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_ [O ifm(P) =0
oo if m(P) >0

which is impossible.

Hence P is a non-measurable subset of [0,1).

Summary

If m"(E) = 0, then E is a measurable set.

If E is a measurable set, then E€ is also measurable.

If E;andE; are measurable then E; U E;.

If E, and E, are measurable then E, n E, is also measurable.

If E; and E, are measurable then E; — E, is also measurable.

If E;,E;, ..., Ep are disjoint measurable sets, then m*[An (UL, E)l =XL,m" (AnE;),AC
R

If Ey, E,, ..., E,, are disjoint measurable sets, thenm" (U=, E;) = XL m’ (E;).

If {E,} is a sequence of disjoint measurable sets, then Uy~ E,, is also measurable.

If {E,,} is a sequence of measurable sets, then UL, E, is also measurable,

If {E,,} is a sequence of measurable sets, then M., E, is also measurable.

If E;andE, are measurable sets such that E, € E, thenm*(E; — E;) = m*(E;) — m*(E,).

If E;andE, are measurable sets, thenm"(E; U E;) + m*(E; n E;) = m"(E;) + m"(E,).

The collection M of measurable subsets of R is a ¢ — algebra.

Every interval is a measurable set.

Every open set is measurable.

Every closed set is measurable.

F, —setand G4 —sets are measurable sets.

If {E;} is a sequence of disjoint measurable sets thenm (U2, E;) = EiZ; m(E,).

Let {E,} be an infinite decreasing sequence of measurable sets (i.e.E,,, € E, V¥n) such
that m(E;) < co. Then m(N{Z, E;) = lim,, ., m(E,,).

Let {E,} be an infinite increasing sequence of measurable sets (i. e. E; ;1 2 E,for each n).
Thenm(UZ, E;) = lim,,_ o, m(E,,).

If A is a measurable set and m"(AAB) = 0, then show that B is also measurable and
m(B) = m(A).

Let E € [0,1) be a measurable set and y € [0,1). Then the setE+y = {x+y:x € E}

is measurable and m(E+y) = m(E).

There exists a non-measurable subset of [0,1).

Keywords

Algebra: A non-empty collection < of subsets of a set X is called an algebra if
(i) Empty set ® € cA.
(i)A€EA=AEA
(iii)A,BEA AUBEA.
o —algebra: A non-empty collection <4 of subsets of a set X is called ¢ —algebra if
HdeA
(A€ A=A €
©
()A€ AneN=| |a,en

n=1

Borel o — algebra
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The intersection of all the o —algebras of subsets of R that contain the open sets is a o —algebra
called the Borel & —algebra. Members of this collection are called Borel sets.

Lebesgue Measure: The restriction of the set function outer measure to the class of measurable sets
is called Lebesgue measure. It is denoted by m, so that if F is a measurable set, its Lebesgue
measure, m(E), is defined by

m(E) =m"(E)
Sum Modulo 1
If x,y € [0,1), then we define sum modulo 1 as

. (x+y ifx+y<],
x+y_lx+y—1ifx+y21.

Self Assessment

1)Consider the following statements:
I)ym"(E) =0 E is measurable.
(II) E is measurable m"(E) = 0.

A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct
D. both (I) and (II) are incorrect

2) Consider the following statements:
(I) Every measurable set is countable.
(IT) Every countable set is measurable.

A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct
D. both (I) and (II) are incorrect

3) Consider the following statements:
(I) Cantor set is uncountable.

(IT) Cantor set is measurable.

A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct
D. both (I) and (II) are incorrect

4) Consider the following statements:

() (E; N E,)° is measurable 2 E; N E; is measurable.
(IT) Ey, E; are measurable  E; N E5 is measurable.
A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct
D. both (I) and (II) are incorrect
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5)If is algebra then empty set ¢ €

A. True
B. False

6)If issigma algebra, A, € #, k € Nthen U}, 4y € f butU. A, € /.

A. True
B. False

7) Every sigma algebra is algebra.

A. True
B. False

8) Every algebra is sigma algebra.

A. True
B. False

9) If Ey, Ez, .., En are disjoint measurable sets then
A YL, m*(E) <m" (UL, E)
B. JiLym"(E;) >m" (Ui, Ep)
C. YLym'(E) =m"(UL,E)

D. cannot say anything

10) Consider the following statements:
(I) If {E, } is a sequence of disjoint measurable sets, then Uy, Ey, is also measurable.
(IT) If {E,,} is a sequence of measurable sets, then Uj-; Ey, need not be measurable.
A. only (I) is correct

. only (II) is correct

B
C. both (I) and (II) are correct
D. both (I) and (II) are incorrect

11) Consider the following statements:
(I) If {E,, ]} is a sequence of measurable sets, then U5, E, is also measurable.

(IT) If {E,.} is a sequence of measurable sets, then Nj=; £y, need not be measurable.

A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct
D. both (I) and (II) are incorrect

12) Choose the correct statement:

A. Every open set is measurable but every closed set need not be measurable.
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B. Every closed set is measurable but every open set need not be measurable.
C. Every open set is measurable and every closed set is measurable.

D. Every open set need not be measurable and every closed set need not be measurable.
13) Gs sets are measurable.

A. True
B. False

14) Not all E; sets are measurable.

A. True
B. False

15) Consider the following statements:
(Om*(E; U E) + m"(E; N Ep) = m'(E;) — m"(Ey)

(I)The collection of measurable subsets of R is sigma algebra.

A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct
D. both (I) and (II) are incorrect

16) Consider the following statements:
(I) E is measurable  for given > 0, there exists an open set 0 2 E such that m"(0 — E) <&.

(I) E is measurable  for given > 0, there exists a closed set F € E such thatm"(E = F) <€,

A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct
D. both (I) and (II) are incorrect

17) Consider the following statements:

(I) E is measurable  there exists a Ggset G 2 E such thatm* (5 — E) = 0.
(II) E is measurable there exists a F; set F € E such that m"(E — F) = 0.
A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct
D. both (I) and (II) are incorrect

18) Consider the following statements:

(I) If {E,} be an infinite decreasing sequence of measurable sets such that m(E;) < o then
m(NZ, Ey) = lim,,_ o m(Ey).

() If {E,} be an infinite increasing sequence of measurable sets then
m(Np=1 Er) = lim,,_ o m(E,).

A. only (I) is correct

B. only (II) is correct
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C. both (I) and (II) are correct
D. both (I) and (II) are incorrect

19) Consider the following statements:

(I) If {E,} be an infinite increasing sequence of measurable sets such that m(E;) < oo then
m(U2, Ep) = limy,_ o, m(E,,).

(I If {E,} be an infinite increasing sequence of measurable sets then
m(UZ, Eg) = limy, oo m(Ey).

only (I) is correct

only (II) is correct

both (I) and (II) are correct

both (I) and (II) are incorrect

90w p

20) Consider the following statements:
() If A is a measurable set such that m"{AAB) = 0 then B is measurable.
(I) If A is a measurable set such that m"(4AB) = 0 then m(B) < m(4).

A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct
D. both (I) and (II) are incorrect

21) There exists a non-measurable subset of [0, 1).

A. True
B. False

22) Let E € [0, 1) be a measurable set and y € [0, 1). Consider the following statements:
(Hm(E+y) > m(E)
(IDThe set E+y = {x+y: x € E} is measurable.

A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct
D. both (I) and (II) are incorrect

Answersfor Self Assessment

11.

16.

A 2 B 3 C 4 C 5 A
B 7 A 8 B 9. C 10. A
A 12. C 13. A 14. B 15. B
C 17. C 18. A 9. C 20. A
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21. A 22. B

Review Questions

1) Show that union of countable collection of measurable sets is measurable.

2) Prove that if sigma algebra of subsets of real numbers contains intervals of the form (a, @), then
it contains all intervals.

3)Show that intersection of countable collection of measurable sets is measurable.

4)Prove or disprove: Let {E,} be an infinite decreasing sequence of measurable sets (i.e.E,.q S
E, vn), then m(N52, E;) = limy,_ o m(E,).

5) Prove that any set of outer measure zero is measurable.

L“J Further Readings

Measure theory and integration by G DE BARRA, New Agelnternational.
Real Analysis by H LRoyden and P M Fitzpatrick, Pearson.

Lebesgue Measure and Integration by P K Jain, V P Gupta and Pankaj Jain, New Age
International.

@ Web Links

https:/ /nptel.ac.in/courses/111/101/111101100/
https:/ /www.youtube.com/watch?v=xUMRSOtM654&list=PL_alTI5CCIRGKYvo8XNF

TK9zkiMbYTEwS
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Unit 03: Measurable Functions
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Obijectives
After studying this unit, students will be able to:

define measurable functions

understand the algebra of measurable functions
demonstrate the theorems related to measurable functions
describeBorel measurable functions and its related theorems

explain characteristic function and simple function

Introduction

In this unit we study the measurable functions to lay the foundation for studying Lebesgue integral,
which we discuss in the next unit. We discuss the algebra of measurable functions and some other
related concepts.

3.1 Measurable Functions

Let f be an extended real valued function defined on a measurable set E. Then f is Lebeseque
measurable function or briefly, a measurable function, if, for each « € R, the set {x: f(x) > a} is
measurable.

Theorem 3.1: Let f be an extended real valued function with measurable domain E € R. Then the
following statements are equivalent.

i) {x: f(x) > @} is a measurable set for each & € R.
if) {x: f(x) = «}is a measurable set for each @ € R.
iii) {x: f(x) < a} is a measurable set for each & € R.
iv) {x: f(x) < a} is a measurable set for each a € R.

Proof: (i) = (ii)
Firstly, we show that for any « € R,

{x: flx) = a}=ﬁ{x:f(x) 5 a—%}

Let
yE{x:f(x) = a)
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>f)za
:>f(y)>a—%, vnenN
aye{x:f(x)> a—%}VnEN
.dmﬂﬂZGQQﬁ“mﬂﬂ>a—3 (D
Again let .

1
=>f(y)>af—-£ vneN

= fza=>yefxfx) = a}

1
{x:f(x) >« —;} clix:flx) = a} (2

s

T

1

From (1) and (2), we get

el

{x flx) = a}=ﬂ{x:f(x)> a—%}

n=1

Now by (i), {x: flx) > a- r—ll} is measurable for each 'n’ and countable intersection of measurable
sets is measurable.

20

1
ﬂ {x: flx)> a- ;} is measurable.

n=1
= {x: f(x) = alis measurable.
(i) = (iii)
By (ii), {x: f(x) = a}is measurable for each a € R.
= {x: f(x) = a}“is also measurable for each a € R.
= {x: f(x) < al}is measurable for each a € R.
(iii) = (iv)

Firstly, we show that for any « € R,

{x: fx) < a}=ﬁ{x:f(x) < a+%}

Let
ye{x:f(x) < a}
> fly)<a
=>,F(y}<a+?—11. vneN
aye{x:f(x)< ai-%}VnEN
- 1
o flx) € a}gﬂ{x:f(x)< a+;} .. (3)
Again let
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yeﬁ{x:f(x) < a+%}
n=1
:yE{x:f(x)< a-l—}l]VnEN

1
=>f(y)<a+a, vneN

= fM<a
s>yef{xfl) < a}

ﬁ {x:f(x) <a +%} Clxflx) < a} - (4)

n=1

From (3) and (4), we get
. ~ 1
{x:f(x) < a} = Q{x:f(x) < a+;}

Now by (iif), {x: fx)< a+ i} is measurable for each n and countable intersection of measurable
sets is measurable.

- 1
" ﬂ {x: f(x) < a+ ;} is measurable.

-

= {x: f(x) £ a}is measurable.
(iv) = ()
By (iv), {x: f(x) £ «}is measurable for each a € R.
= {x: f(x) < a)¢is also measurable for each a € R.
= {x: f(x) > al}is measurable for each « € R.

Theorem 3.2: Show that if f is measurable then {x: f(x) = a} is measurable for each extended real
number .

Proof: Let & € R then
xf=al={xfx)zaln{xfx) <al

Now f is a measurable function. Therefore {x: f(x) = a}and{x: f(x) < a} are measurable.
= {x: f(x) = a} n {x: f(x) < a}is measurable.
= {x: f(x) = a}is a measurable set.

If @ = oo then

e f0) =0} = [/ @) > )

n=1

Since f is measurable function, therefore {x: f (x) > n} is measurable set for each n € N.

=0
> ﬂ{x: f(x) > n}is ameasurable set.

n=1
= {x: f(x) = a}is a measurable set.

If @ = —oo then

P00 = =0 } = [ o f) < -n)

n=1

Since f is measurable function, therefore {x: f (x) < —n} is measurable set for each n € N.
20
= n{x: f(x) < —n}is a measurable set.

n=1

= {x: f(x) = —oo}is a measurable set.
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Hence {x: f(x) = &} is a measurable set for each extended real numbera.
Theorem 3.3: Show that every function defined on a set of measure zero is measurable.
Proof: Let f: £ — R’ be a function with m“(E) = 0.
Let a be any real number then
{xeE:fx) >a}CE
m{xel: f(x)>a}=m"(E)=0
m{xeE:flx)>a}l=0
{x € E: f(x) > a}is ameasurable set.

f is ameasurable function.

[VE_] Example: Constant function with measurable domain is a measurable function.

Solution: Let the function f defined by f(x) = ¢ with measurable domain E. Let a be any real
number. Then

{xEE:f(x)>rx}=[£::g;E

Since sets on RHS are measurable therefore set on LHS is measurable,

f is ameasurable function.

Theorem 3.4: If f is a measurable function on a set E and E; € E is a measurable set, then f is a
measurable function on E;.

Proof: Let & be any real number. Then,
{xeE :f(x)>a}={x€E: f(x)>a}nE
Now, {x € E : f(x) > a} is a measurable set as f is a measurable function on E.
Also E; is a measurable set.
{x €E: f(x) > a} n E,is a measurable set.
{x € E; : f(x) > a}is ameasurable set.
f is ameasurable function on E,.

Theorem 3.5: If fis a measurable function on each of the sets in a countable collection {E,} of
measurable set, then f is measurable on Uy, E;,.

Proof: Let £ = U, E,,.

Since each E,, is a measurable sct and countable union of measurable sets is measurable, therefore E
is a measurable set. Let @ be any real number. Then

{xEE:f(x}>tr}=ixEUEn:f(x) >a]

= U{xE En: f(x) > a}

Now, f is @ measurable function on E,, for eachn.

{x € E,; : f(x) > a}is ameasurable set for each n.

U{x € E,: f(x) > a}is a measurable set.
n

{x € E : f(x) > al}is ameasurable set.

f is ameasurable functionon E = U i
n

@ Example: Every continuous function with measurable domain is measurable.
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Solution: Let f be a continuous function defined on measurable domain E.
Now, (@, =) is an open set in R and f is continuous on E.
Therefore f~!((e, )) is an open set in E.

{x €E: f(x) > alisopensetinE.

{x € E: f(x) > a}isameasurable setforeacha R.

f is ameasurable function on E.

I':"j,- Notes: A measurable function may not be continuous.

e.g.definef: [0,2] - Rby

(Lifxe[0d]
flx) = [2 ifx € (12]

Let a be any real number.

[02] fa<1

{xe[02] f(x) >a}={(1,2]if1£a<2
pifa=2

Since the sets on RHS are measurable. Therefore, set on LHS is also measurable i.e.f is a
measurable function on [0,2]. But f is discontinuous at x = 1. Hence f is measurable function on
[0,2] which is discontinuous on [0,2].

Theorem 3.6: Let f be a measurable function on E. Then {x € E: a < f(x) < b} = f~'([a,b]) is a
measurable set.

Proof: We have
{xeE:rasfx)<bl={xeE:f(x)=zaln{xekE: f(x)<h}
Now, the sets on RHS are measurable. Therefore
{xeE: f(x)=a}n{xeE: f(x) < b}is measurable.
= {x € E:a < f(x) < bh}is ameasurable set.
i.e, f '([a, b])is a measurable set.
Similarly, we can show that
{xeE:a<f(x) =b}=Ff""(ab])
1 ([a, b)) and f~! ((a, b)) are measurable sets.

Positive and negative parts of a function: Let f be a function. Then positive part of f written as f*
and negative part of f written as f~, defined to be the non-negative functions given by

f* =max{f,0}andf~ = max{—f,0}.

¥ ma nay_ =r

= f.0}a

—_ 3 +
= Notes:| | _f*+f-and _ +_ -

Theorem 3.7: Let ¢ € R and f, g be measurable functions with same measurable domain E. Then
each of the following functions are measurable on E.

W f+tec @cf B f+g Bf-g GF*6)fg DIfI
Proof: (1) Foreacha € R, wehave{x €E: f(x) +c>a}={x€E: f(x) >a —c}.
Since f is measurable, therefore {x € E : f(x) > a — c} is a measurable set.

{x € £ : f(x) + ¢ > a}is a measurable set.

f + ¢ is ameasurable function.

(2)Case(i)If ¢ =0 then cf = 0 (constant) and constant function is measurable. Therefore cf is
measurable.

Case(ii)If ¢ > 0 thencf (x) > a: f(x) >%
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g _ ] E
{xEE-cf(x)>a}—{xEE-f(x)>C}

Since f is measurable, therefore {x eE:flx)> %} is a measurable set.

{x € E : ¢f(x) > a}is a measurable set.
cf is a measurable function.

Case(iii)If ¢ < 0 thencf(x) > a = f(x) (cc—(
{x€E:cf(x) >a}={xEE:f(x)<§}

Since f is measurable, therefore {x eEE:flx)< %} is a measurable set.
{x € E: ¢f(x) > al}is a measurable set.
cf is a measurable function.
(3) Since f(x) + g(x) < a = f(x) > a — g(x) therefore the set
{xeE:fx)+gx)>al}= U[{xe E:f(x) >r}n{r€Er>a—gx)}]
reR

= U[{xEE:f(x) >rinfxeEglx)>a-7}] ..(1
TreQ

Now LHS of (1) is measurable as RHS of (1) is measurable.
f + g is a measurable function.

(A)Wehave f —g = f + (—g).

Since g is measurable  —g is measurable.

Now f,—g are measurable functions
f + (—g)is a measurable function.

> f — g is a measurable function.

(5)If & = 0, then
xeE: fP(xX)>al={x€E: f(x) >Va} {x€E:f(x)<—Va} .. (2)

Since f is a measurable function therefore each of sets on RHS of (2) is measurable and hence their
union is also measurable.

LHS of (2) is a measurable set
f2is a measurable function.
Ifa <0 thentheset{x € E: f?(x) >a}=FE
Since E is a measurable set
{x € E : f*(x) > a}is ameasurble set
f?is a measurable function.
(6)Since f and g are measurable functions on E.
f + g and f — g are measurable functions on E
(f + g )*and(f — g)? are measurable functions on £
(f + g )? — (f — g)? are measurable functions on E

4fg is measurable function.

1
Z (4fg) = fg is a measurable function.

E ifa<0
(MHx € E: ) >a}:[{xE.‘j':f(x) >al {x € E: f(x) < —a otherwise - (3)

Now both the sets on RHS of (3)are measurable.

| flis measurable function.
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Theorem 3.8: For a finite family {f;}i-; of measurable functions with common domain E, the
functions max{fi. fs, ..., fu} and min{fy, f5, ..., f} are also measurable.

Proof: For any a € R, we have

n

geEmalh, foo @ > =| JueBA@>a @)

fe=1

Now the set on RHS of (1) is measurable since it is the finite unicn of measurable sets. Therefore,
the set on LHS of (1) is measurable. Thus, the function max{f;, f5, ..., fu} is measurable.

Now min{fy, fy, s fu} = —max{=fi, =f, ... = fn}-
Now, fi, fzs .+, [y are measurable function.

—fi,—fs, -, —fnare also measurable.

max{—f1, —fa: -..» — [, } i5s a measurable function.

—max{—fi, —f2, ....—f1} iS a measurable function.

min{fy, f2, ..., Jn} is @ measurable function.
Cor: Since | f|(x) = max{f (x),—fF(x)}, f*(x) = max{f(x), 0}, f~(x) = max{—f(x),0}.
Therefore, if f is measurable on E, so are the functions |f|, f*, f~.
Theorem 3.9: f is measurable if and only if f* and f~ are measurable.
Proof: f is measurable

f", fare measurable.
Conversely, let f*andf™ are measurable.

ft — f~is measurable

f is measurable function

Theorem 3.10: Let f be a function defined on a measurable set E. Then f is a measurable function if
and only if f~1() is a measurable set for every open set G in R.

Proof: Let 'f' be a measurable function on measurable set E and 'G' be any open set in R. Then G
can be written as countable union of disjoint open interval. Suppose

6= Jeanbw
@ = £ (U(an.bn))

=/ @b

Then

Now f~*[(an, bn)] is a measurable set for each n as f is a measurable function.

U f [(an, by)] is a measurable set.
m

s f '(G)is a measurable set.
Conversely, suppose inverse image of each open set is measurable. Now,
{x € E: f(x) > a} = f*|(a, ©)]is a measurable set.

f is ameasurable function.

Theorem 3.11: Let f be a measurable real valued function defined on a measurable set E. If g is a
continuous function defined on R, then show that the composition g o f is a measurable function on
E.

Proof: Let a be any real number. Now,
{xeE:(gef)x)>a)= {x € E:g(f[x)) > a}
={x € E: g(f(x) € (@ )}
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={x€eE:f(x) € g7'[(a, )]} = F~1(G),where G = g~'[(a,0)]

Now g is continuous and (a, ) is an open set therefore g~'[(&, )] is an open set. i.e.G is an open
set.

Also f is given measurable
F~H(&)is a measurable set.
{x € E: (g = f)(x) > ajis a measurabe set.
g f is ameasurable funcionon E

Theorem 3.12: Let {f,} be a sequence of measurable functions defined on a measurable domain E.
Then

i) sup f, is measurable on E.
n
ii) inf f,, is measurable on E.
T

iii) lim sup f,, is measurable on E.
iv) limi inf f;; is measurable on E.

Proof: Let @ be any real number. Let g = sup f;,. Then
n

{xeE: g(x)>a}= U{xEE:fn(x) > al

Now f, is a measurable function for each n.

{x € E: f,,(x) > a}is a measurable set for each n.

U{x € E: f,(x) > a}is ameasurable set
mn

{x € E: g(x) > a}is a measurable set.

= g = sup f; is a measurable function.
n
it) inff, = —sup(—f,)
n T
Since f, is measurable for each 'n’,

—f.is measurable for each 'n’

sup(—f,) is measurable.
b
—sup(—f,) is measurable.
T
= inf(f,) is measurable.
n

iii) We know
limsup f,, = jlnfsup fm = inf E,where F, = sup f,is a measurable function for each 'n’'by using(i).
n

mzn man
Therefore by (if), infF, = lim sup f;, is measurable function on E.
n

(iv) Since lim inf f, = —lim sup(—f,) and so is measurable.

Cor: If {f,} is a sequence of measurable functions defined on E, then lim f; is measurable on E, if it
exists.

Proof: If lim f, exists, then
limsup f, =liminff, =lim f,

Now by above theorem, both lim sup £, and lim inf f;, are measurable on E. Therefore lim f, is also
measurable on E.

Definition: If a property holds except on a set of measure zero, we say that it holds almost
everywhere, usually abbreviated to a.e.
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» Notes: Two functions f and g defined on the same domain E are~aid to be equal almost
everywhere on E if ?

fla) = glx),vx€E—-F and f(x) # g(x),v x € Fwithm(F) = (.
Theorem 3.13: If f is a measurable function on measurable domain E and f = ga.e on E then g is
measurable on E.
Proof: We define A ={x € E: f(x) # g(x)}.
Since f = ga.e on E
m(A) = 0.

Now
xeEiglx)>al={xedigx)>a}l [HxeEfx)>a}n(E-4)] ..(1

Since m(A) = 0,therefore, {x € 4: g(x) > a}is a measurable set, since it is a subset of a set of
measure zero, {x € E: f(x) > a} is measurable, since f is given measurable on E.

Also E — A is measurable, since E and 4 are measurable sets.
RHSof(1) is measurable.
LHS of(1) is measurable.
g is measurable function on E

Essential Supremum: Let f be a measurable function then inf{a: f < « a.e.}is called the essential
supremum of f denoted by esssup f.

Essential infimum: Let f be a measurable function then sup {a: f =« a.e. }is called the essential
infimum of f denoted by ess inf f.

Essential Bounded: If f is a measurable function and esssup|f| < oo, then f is said to be essentially
bounded.

§° C LSS supf a.e
Notes: - esssup(f+g) < esssupf+esssup g

esssupf<supf

esssup f < —essinf (—f)

Let f = g a.e.where f is a continuous function then
esssup [ = ésssupg = sup f-

Borel Measurable Function:A function f is said to be Borel measurable provided its domain E is a
Borel setand for each a t R,{x € E: f(x) > «} is a Borel set.

E Notes: Every Borel measurable function is Lebesgue measurable but converse need not
= be true.

e
isa i B isa

B~ Notes: If  ; a Borel function and . Borel set then . Borel set.
5 £

Theorem 3.14: Let f be an extended real valued function defined on a Borel set E. Then the
following statements are equivalent:

){x€ E: f(x) > a}isaBorelsetforeach @ € R
ii){x € E: f(x) = a} isaBorel setforeacha ¢ R
iii) {x € E: f(x) < a} isa Borzl setforeacha ¢ R
iv) {x € E: f(x) < alisaBorel setforeacha ¢ R

Theorem 3.15: Let 'c’ be any real number and let f and g be real-valued Borel measurable functions
defined on same Borel set E.

Then f +c,cf,f + g.f — g, fg are also Borel measurable functions on E.
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Theorem 3.16: Let < f;, > be a sequence of Borel measurable functions defined on same Borel set E.
Then each of the following functions are Borel measurable:

L) sup f;

1=i=n
i) inf f;
1=i=mn
iii) sup fn
i}
iv) inf f,
n
v) lim sup f;
vi) lim inf f;

Theorem 3.17: If f and g are Borel measurable functions then the composition f ¢ g is also Borel
measurable.

Proof: Let a be any real number then
{: (/e 9)(x) > a}={x: f(g(x) > a}
={x:g(x) € A} =g '(A), where A = {y: f(y) > a}.

Now f is Borel function therefore 4 is a Borel set.
Since g is a Borel function and A is a Borel set.

g~ 1(A)isa Borel set.

{x: (f  g)(x) > alis a Borel set.

f © g is a Borel measurable function.

Characteristic Function: If 4 is any subset of R, then the characteristic function of 4, written as x4,
is the function on R defined by

lifxeA
Oifx # A

Theorem 3.18: Let E be a measurable set and A € E. Then A is measurable if and only if y, is a
measurable function.

Xalx) = {

Proof: Let A be a measurable set and let @ be any real number.

b if ax=1
{xeEE: yslx) >al=14 if0<a<1
E if a<0

Since the sets on RHS are measurable therefore the set on LHS is measurable.
¥ais ameasurable function.
Conversely, suppose x4 is measurable.
Now foreachx €4, y,4(x) =1>10
A={x: y4(x) > 0}
Since y,4 is measurable therefore {x: ¥ 4(x) > 0} is a measurable set.
A is a measurable set.

Properties of characteristic functions: Let A and B be subsets of E. Then

1) xp=0andyg=1

2) ASB=x,< g

3) Xang = Xa'Xs

4) Xag=XatXs—Xa Xg

5) xa=1-2,

6)  Xa-B = Xa— XanB

7) fA=Uf Apand A;nA; =i jthen x4 =371 x4,
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Simple Function: Let s be a real valued function defined on X. If the range of s is finite, we say that
s is simple function.

Suppaose range of s consists distinct numbers ¢y, ¢y, ..., Cp.

Let E; = {x:5(x) = ¢} (i = 1,2,...,n)then s = £{2, ¢; ¥z, that is every simple function is finite linear
combination of characteristic functions. This expression of s is called the canonical representation of
the simple function s.

EELE3TY O9T T T TN 1
ale Furc

@* ~asurableif and only if the sets . measurable.

Elr B2, BT ara

Step function: A function ®:[a, b] — R is said to be a step function if there exists a partition
{a = xo, X1, %2, o) Xy = b}
of the interval [a, b] such that in every subinterval (x;_,, x;) the function ® is constant.

ie, O =c,Vx € (xq,x) (i =12,..,n).

Summary

Let f be an extended real valued function with measurable domain E € R. Then the
following statements are equivalent.

1. {x: f(x) > a}is a measurable set for each @ € R.

2. {x:f(x) = «}is a measurable set for each @ + R.

3. {x: f(x) < a} is a measurable set for each @ r R.

4, {x: f(x) < a} is a measurable set foreach @ t R.
If f is measurable then {x: f(x) = a} is measurable for each extended real number a.
Every function defined on a set of measure zero is measurable,
Constant function with measurable domain is a measurable function.
If f is a measurable function on a set £ and E; € E is a measurable set, then f is a
measurable function on E,
If f is a measurable function on each of the sets in a countable collection {E,} of
measurable set, then f is measurable on U, E,,.
Every continuous function with measurable domain is measurable.
A measurable function may not be continuous.
Let f be a measurable function on E. Then {x€E:a < f(x) <b}=f"'([a,b]) isa
measurable set.
Let ¢ € R and f, g be measurable functions with same measurable domain E. Then each of
the following functions are measurable on E.
Wf+e @cf @f+tg Wf-g G 6)fg MDIfI
For a finite family {f; }i-, of measurable functions with common domain E, the functions
max{fi, f, ..., fn}and min{fy, fz, ..., f,} are also measurable.
f is measurable if and only if f* and f~ are measurable.
Let f be a function defined on a measurable set E. Then f is a measurable function if and
only if f~(G) is a measurable set for every open set G in R.
Let f be a measurable real valued function defined on a measurable set E. If g is a
continuous function defined on R, then show that the composition g e f is a measurable
function on E.
Let {f,} be a sequence of measurable functions defined on a measurable domain E. Then
i) sup f, is measurable on E.
ii) iann is measurable on E.
iii) lriim sup f, is measurable on E.

iv) liminf £, is measurable on E.
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If f is a measurable function on measurable domain E and f = ga.e on E then g is
measurable on E.
Let E be a measurable set and A € E. Then A is measurable if and only if x, is a

measurable function.

Keywords

Measurable functions: Let f be an extended real valued function defined on a measurable set E.
Then f is Lebeseque measurable function or briefly, a measurable function, if, for each @ t R, the
set {x: f(x) > a} is measurable.

Positive and negative parts of a function: Let f be a function. Then positive part of f written as f*
and negative part of f written as f~, defined to be the non-negative functions given by

£ =max{f,0}andf~ = max{—f, 0}.

Essential supremum: Let f be a measurable function then inf{e: f < a a.e.}is called the essential
supremum of f denoted by esssup f.

Essential infimum: Let f be a measurable function then sup {a: f = « a.e. } is called the essential
infimum of f denoted by ess inf f.

Essentially bounded: If f is a measurable function and esssup|f| < o, then fis said to be
essentially bounded.

Borelmeasurable function: A function f is said to be Borel measurable provided its domain E is a
Borel set and for each @ « R, {x € E: f(x) > «}is a Borel set.

Characteristic function: If 4 is any subset of R, then the characteristic function of 4, written as y,, is
the function on R defined by

lifxed

Xal) = {0 ifx % A

Simple function: Let s be a real valued function defined on X. If the range of s is finite, we say that
s is simple function.

Self Assessment

1) Consider the following statements:

(DIf f is measurable then {x: f(x) = a} is measurable for each extended real number a.
(IDIf f is measurable then {x: f(x) = «} is measurable only for @ t R.

A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct
D. both (I) and (II) are incorrect

2) Consider the following statements:

(D{x: f(x) > a} is measurable {x: f(x) < a} is measurable.
(ID{x: f(x) < a}is measurable {x: f(x) > a} is measurable.
A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct
D. both (I) and (II) are incorrect

3) Let the function f be defined on a measurable set E such that m(E) = 0, then f must be
measurable.
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A. True
B. False

4) Let the function f be defined on a measurable set E such that f(x) = 2, then f need not be
measurable.

A. True
B. False

5) Consider the following statements:

(I) Every measurable function with measurable domain is continuous.
(I)Every continuous function with measurable domain is measurable.
A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct
D. both (I) and (1) are incorrect

6) f* = max{f,0}

A. True
B. False

7) f~ = —max{f, 0}

A. True
B. False

8) Consider the following statements:
@) L= =~

(IDf =f*+f~

A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct
D. both (I} and (II) are incorrect

9) Let f be a measurable function. Consider the following statements:
(I) f* = max( f,0) is measurable.

(I)f~ = —min(f,0) is not measurable. Then
A. only (I) is correct
B. only (II) is correct

(
(
C. both (
(

I) and (II) are correct
D. both (I) and (II) are incorrect

10) Consider the following statements:

(DIf f is measurable then f?is also measurable.
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(IDIf f? is measurable then f is also measurable.

only (I) is correct
only (II) is correct

both (I) and (II) are correct

90w p

both (I) and (II) are incorrect

11) Let f be a function defined on a measurable set E. Consider the following statements:
(I)fis measurable function ~ f~'(0) is a measurable set for every open set 0 inR.

(IDIf £~1(0) is a measurable set for every openset @ in R f is measurable function.
only (I) is correct

only (II) is correct

both (I) and (II) are correct
both (I) and (II) are incorrect

90w p

12) inf{a: f < a a.e.} is known as ess supf.

A. True
B. False

13) sup{a: f = a a.e. } is known as ess supf.

A. True
B. False

14)ess supf = —ess inf(—f)

A. True
B. False

15) Consider the following statements:

(Dsup f <esssup f
(ID)f <esssup f a.e,

A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct
D. both (I) and (II) are incorrect

16) Consider the following statements:

Dxans = Xa-Xe
(I)Xge =1— X,

only (I) is correct

only (II) is correct

both (I) and (II) are correct
both (I) and (II) are incorrect

9N = >
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17) Consider the following statements:
(Dxaus = XatXe ~ Xans

(IDxacs = Xa*Xs — Xa- X8

A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct
D. both (I) and (II) are incorrect.

Answers for Self Assessment

1 A 2 C 3 A 4 B 5 B
6 A 7 B 8 D 9 A 10. A
11. C 12. A 13. B 14. A 15. B
16. C 17. C

Review Questions

1
2
3
4

Every measurable function is continuous. Prove or disprove.
If f(x) = 3, then show that f is measurable.

Show that if f is measurable then {x: f(x) = —oo} is measurable.

NN NN

Define f:[0,3] - R by

(lifx€[01]
fe) = [Bifx e (13].

Check the measurability of f.
5) Show that the real valued function f defined on [—1, 1] by f(x) = x is measurable.

L..J Further Readings
Measure theory and integration by G DE BARRA, NewAgelnternational.
Real Analysis by H LRoyden and P M Fitzpatrick, Pearson.
Lebesgue Measure and Integration by P K Jain, V P Gupta and Pankaj Jain, New Age

International

Web Links

https:/ /nptel.ac.in/courses/111/101/111101100/
https:/ /www.youtube.com/watch?v=xUMRSOtM654 &list=PL_alTI5CCIRGKYvo8XNFTK

9zkiMbYTEwS
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Unit 04: The Lebesgue Integral of Bounded
Dr. Monika Arora, Lovely Professional University Functions Over a Set of Finite Measure

Unit 04: The Lebesgue Integral of Bounded Functions Over a Set of
Finite Measure

CONTENTS

Objectives

Introduction

4.1 Lebesgue Integral of Simple Functions:
4.2 Lebesgue Integrable Function
Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Obijectives
After studying this unit, students will be able to:

determine the integral of simple functions
define upper and lower Lebesgue integral
demonstrate Lebesgue integrable function
understand the relation between Riemann integral and Lebesgue integral

explain theorems related to Lebesgue integral

Introduction

In this unit, we first define the integral of simple functions. The Lebesgue integral of a bounded
function over a set of finite measure is defined with the help of the integral of simple functions. We
also compare the Lebesgue integral and Riemann integral.

4.1 Lebesgue Integral of Simple Functions:

A measurable real-valued function ¢ defined on a set E is said to be simple provided it takes only a
finite number of real values. If ¢ takes the distinct valuesa,,as,...,a,on E, then the canonical
representation of ® on E is defined as:

¢ = aixp Ei={x€E:p(x)=qa;} (i=12,..,n)

The canonical representation is characterized by the E| s being disjoint and the a;s being distinct.

Definition: For a simple function ¢ defined on a set of finite measure E, we define the integral of ¢

over E by
T
[6=3 am@
E i=1

where ¢ has the canonical representation given as
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n
¢ = Z A XE;
i=1

Lemma 4.1: Let {E;}'., be a finite disjoint collection of measurable subsets of a set of finite measure
E.For 1 <i < n,leta; be a real number.

If

T
b= Z ajxg, onkE
i=1

Then

ch - Za m(E).

Proof: The collection {E;}i%, is disjoint but the above may not be the canonical representation since
a;'s may not be distinct.

Let ‘a’ be an element in the range of ¢. Then the canonical representation of ¢ is given by

¢ = za)(su-

where 'a’ varies over the range of ¢ and the set B, is given by

Bﬁ:{xEE:ti)(x):a}:UEE

aj=a

J;¢; :Eﬁ am(B,)
=§ am U E;

[ a;=a

> a(;am@)

= Za,-m(E:_).

=1
This completes the proof.
Theorem 4.2: (Linearity and Monotonicity of Integration)

Let ¢ and 1 be simple functions defined on a set of finite measure E. Then for any « and 8,

1)L(a¢»+ﬁ¢)=a£¢+ﬁfsw

2)Ifqb51ponEthenf$SfllJ
E E

Proof: 1) Since both ¢ and s takes only a finite number of values on E, we may choose a finite
disjoint collection on {£;}}-; of measurable subsets of E, the union of which is E, such that ¢ and ¢
are constant on each E;.

For each i, 1 < i <n, let a;andb;, respectively be the values taken by ¢ andy on E;.

By the preceding lemma,

1

= i m(E;
Eqb zam( )

=1

szibfm(&)
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The simple function a¢ + S\ takes the constant value aa; + £b; on E;. Thus

+ = ¢ + Bb;) m(E;)
~[E(o@ ) 2;(“a Bb) m

7 1

= a:Za,- m(E;) +ﬁz by m(E;)

=1 [3
=a£¢+BL$

2) Assumen =y —¢onkE,
Since ¢ < U on E, therefore,n7 = 0.

Consider

L¢~L¢=me¢)=ano

Since the non-negative simple function has a non-negative integral.

= [v=]e
L e.L(fJ = Lll!,(b < yonk,

This completes the proof.

4.2 Lebesgue Integrable Function

Lower and Upper Lebesgue Integral:

Let f be a bounded function defined on a measurable set E with m(E) < o,

Leta< f(x)<pB Vx€E,af€R

Let ¢ and 3 be the simple functionssuchthatp < f < f.Nowp < f<fanda< f V¥

=$L¢€Lﬁ=ﬁm@)

and

= J;xb = La =am(E)

= {f,¢:¢issimpleandp < f} is a non-empty subset of R which is bounded above and
[ ) - W ris simple andls = f ] is a non-empty subset of R which is bounded below.

sup [ ¢ and inff { exist.
sf yzf
¢—simple P—-simple
We define sup [, ¢ aslower Lebesgue integral of f over E and denoteitby £ [, f and inf [ s
b=f - yzf
¢—simple Yr—simple
as upper Lebesgue Integral of f over £ and denoteitby £ [, f .

A bounded measurable function f defined on a measurable set E of finite measure is said to be
Lebesgue Integrable if
L J f= Lf I
E E

and common value is denoted by £ | gfor 1) gf:

Theorem 4.3: Let f be a bounded function defined on the closed bounded interval [a, b]. If f is
Riemann integrable over [a, b], then it is Lebesgue integrable over [a, b] and the two integrals are
equal.

Proof: Let f be R —integrable over [a, b]. Then
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B 8
Rdeszdex

b

sup | ¢ dx
p=f
p-step @

b

A

sup ¢ dx
g1
p—simple @

b
=Ljfdx

b
SLde.x

b

= inf dx
Y= J W
Y—simple a

b

= g |

Y—step @

3
ZRffd_x

b

=72Jrfdx

B b

"

b b
ijdxsﬁjfdxgﬁffdxssajfdx

b b

]
Ljfdxzﬁffdxzsa [ i

a
b b
L] fdx=R| fdx
[7e=2)
This completes the proof.

I"i?l' Notes:Lebesgue Integrable functions may not be Riemann Integrable.

@ Example 4.4: Let o 1] - Rbe gych that

_ {1 if xisrational
[ = {t} if x is irrational.

Show that f is Lebesgue integrable but not Riemann integrable.

Solution: Let P = {0 = xg, X3, ..., ¥, = 1} be any partition of [0,1].
Let
m; =inf{f(x):x € [x;_1,x:]} =0
M; = sup{f (x): x € [x;—1, 1]} = 1

Therefore,
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L(P, f) -‘Zm:‘(xf =x-1)=0
=

UP,) =) MG —xi0) =1

Now

RJ-fdxzsupL(P,f)zﬂ
2 P

1
:Rff dx = infU(P,f) =1
1]

f is not R integrable over [0,1]
Now if A =@ n [0,1] then f = x4

1 1
LJ-fdxzj-l'XA=m(A):D.
0 0
This completes the proof.

Theorem 4.5: Let f and g be bounded measurable functions defined on a set E of finite measure.
Then

1) ch:ch.r:ER

2)L(f+g)=Lf+Lg

3) Iff=ga.e.0nEthenjf=jg
E E

4)[ff$ga,e.onEthenff5fg
E E

5)|Lf ,efElﬂ

6)Ifa < f <f onE then a m(E) Sffﬁﬁm(h“)
E

7) If A and B are disjoint measurable subsets of E then f= ff + J £
AUB A B

Proof: If ¢ andy are simple on E such that m(E) < ce and ¢ = Y a.e. then

o=

L1u52¢ - el(‘b ¥ Ef)

1) Since f is 8 bounded measurable function on E.

And if E; andE, are disjoint then

cf is also bounded measurable function on E.
cf is Lebesgue integrable on E.

Now, if ¢ = 0,the result holds trivially.

For ¢ # 0,

Casel:c >0

Here
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fcf = inf (Cl!J'
E “E

cpizcf
cli —simple

CaselIl)Ifc < 0

f cf = inf | cUr
E E
cpzcf

cp=simple
=c supjtp
E

Yys=f

Y—simple

=cf£f.

2) Since f and g are bounded measurable functions on E. Therefore f + g is integrable over E.

Let ¢p;and¢, be any two simple functions such that ¢; < f and¢, < g then ¢, + ¢, is simple such

that
o+ <f+yg

Lv+mszw¢a:L@+L@

J;_(f +g9)= sup 'L(bl + sup Lsz

$i=f $2=g
y—simple hy—simple

[e+o=[r+[s .
E E E
Let yandy; be any two simple functions such that iy = f andip, = g then i, + i, is simple such

that
i+ 2f+g

LU+M£LWﬁwﬁ

iy ~simple Y, —simple
L(f+g) gLf+Lg - (2)

From (1) and (2),
[e+a=[r+]g

E E E
3) Since f = g a.e.on E, therefore,f —g =0a.e.onE.

Let ¢ and 3 be simple functions such that
p<sf—-g<y= p<0aeonEP>0aeonk

f¢s0andf¢zo
E E
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Supjd) < Oandinfftp >0
E E

dsi-g Y=f-g
h—simple Yi=simple

LU—g)ﬁﬂandL(f—g)ZO

The converse of this part is not true.
e.g., If fi[-11] - Rsuch that

. (2ifx< 0
f(x)‘{eifx>0

and g: [-1,1] - R,such that g(x) = 1,¥x € [-1,1], then
i

1
J‘fdxz jgdxz?.hutfiga.e.
=1

= |
4)Since f < ga.e.onE

g—f=0ae.onkE.
Let i be a simple function such that = g — f then

Yp=z0aeonk

sze

infbe =0
E

Yzg—f
Y-simple

Lm—f)zo L9~Lf20 ngLﬁ

5) The function |f| is measurable and bounded on E.
|f] is integrable on E.
Now

=lfl<f<IflonE

—Dﬂstsmew
[r]= [

6) Let ¢ and ¢ be simple functions such that ¢ < f <y then¢ < fanda <y

:L_-ﬁsLﬁanchrst

5upf¢: sfﬁ andfas infjm
E E E E
=f Pzt

G—simple =simple

=%

J”f < fm(E)and e m(E) < ff
s E

am(E) < ff < B m(E)
E
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7) Both f * y4and f + ¥ are bounded measurable function on E. Since 4 and B are disjoint,
“frXaws=frxatfxs

Now, for any measurable subset E;of E,

¥ =[x,

Therefore, bythe linearity of integration,

LUB}C:LfXALB:LfXA+LfXB:Lf+Lf-

This completes the proof.

Lemma 4.6: Let {¢,, } and {1,} be the sequences of measurable functions, each of which is integrable
over E such that {¢,} is increasing while {i,,} is decreasing on E. Let the function f on E have the
property that ¢, < f <, on E foralln.

If
i | [ = dal =0
n-o E

Then

1) {¢.} - f pointwise a.e.on E.

2) {i,} - f pointwise a.e.on E.

3) f is intergrable over E,

4 Jim [ on=[ 7

S)ALrgawan =Lf

Proof: For x in E, define
¢'() = lim ¢ () andy(x) = lim ()
Pu S P <f <Y< yPponEVn (1)
0S = " S = n) 1
[ o< [@n-60
o< | (@ -¢)<li n— Gn) =0
J[w -2 = tim [ G- 40
Sincey” — ¢'is anon-negativemeasurable function and
f(zp' - )=0 P ' =¢'aeinEbutd’' < f<Y onkE
E

= ¢, - fandy, -~ f pointwise a.e.on E
= f is measurable
0<f—¢; <y, — ¢, onE and i, and ¢, are integrable over E, f is integrable over E.

From (1), we have

Ostn—J;f:L(¢n=f)£L(¢n”¢n)
Ost—~L¢n=L(f—fﬁn)S'L(ipn”'f’n)

r}'fgaL‘pn:szr!'P;Lwn-
This completes the proof.
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Theorem 4.7: Let f be a bounded function on a set of finite measure E. Then f is Lebesgue
integrable over E if and only if it is measurable.

Proof: Simple Approximation Lemma says “Letf be a measurable function on X that is bounded on
X, i.e. there exists M = O for which |f| < M on X. Then for each € > 0, there are simple functions¢,
and i, defined on X

D ¢e<f=te
2) 0syY.—¢p<eonX”

Let n be a natural number. By the Simple Approximation Lemma, with € = 711’ there are two simple
functions ¢y, and 1, defined on E for which ¢, < f < Y, onE and 0 < ¢, — ¢, < r—11 onE.

osfwn—j{rn:f[wn~¢n1$%m(5)

< inf f¢~ sup ¢<fwn f¢n_ m(E)

y=f
Yp—simple ¢—3me£€
inf = su
yzf L‘f’ ¢5Ig J;(P
Y-simple P-simple

L‘L—f :LL}‘

f is integrable over E.
Conversely, suppose f is integrable. There are sequences of simple function {¢,} and {i,,} for
which ¢,, < f < i, on E for all n and
i [ G = 4a) =0
oo E

Using monotonicity of integration and by possibly replacing ¢, by max;<;<n ¢; and ¥, by

min, ¢j<p, PP, we may suppose that {¢,,} is increasing and {i,} is decreasing. By preceding lemma,
¢, = [ pointwise a.e.on E. Therefore f is measurable since it is the pointwise limit a.e. of a
sequence of measurable functions.

This completes the proof.
Theorem 4.8 (Bounded Convergence Theorem)
Let {f;, }be a sequence of measurable functions defined on a set F of finite measure. Let |f,,(x)| <

M,)x € Eand n € N forsome0< M ¢ RIf limy,_, f,(x) = f(x) for each x € E then

qullmfn

e
e jim o= i [
Proof: Since f, is a measurable function on E forall n € N, therefore f = lim,, 4 f; isalso a
measurable function on E.
Sincelfu(x)] < MiyneN, xeE. |f(x)|]<M, xekE.
Thus f is a bounded measurable function on E.
f is Lebesgue integrable over E.

€ 2 i €
Therefore, for given m >0and § = m>0za measurable set 4 € E withm(4d) < 6 = e and

a positive integer N such that

3
|fn(x)—f(x)|<§m Vvi=NVYxeE—-A (1)

Lfn— fl= L(fn—f)|

66 L ovely Professional University

Notes



Notes

Real Analysis I1

[t-n+ (fn—f)]
E =A

E

jH(fn -f)|
sjsua —fl +L_Ai,rﬂ—fr

E
= L'f" - +L_42[m(5) ey

3
< WA+ 1+ gy mE - vz N

=

L(,‘%—f)‘+

sf(M+M)+ m(E)~E-ACE
A

€
2[m(E) + 1]
< 2M m(4) +§
€

€
<2M—+=-=¢
41m

2
Efn—_Lf

im [ =7

Le <evn=N

This completes the proof.

Summary

For a simple function ¢ defined on a set of finite measure E, we define the integral of ¢
over E by fE,gb =35 a; m(E;) where ¢ has the canonical representation given as ¢ =
201 AiXE

Let ¢ and 1 be simple functions defined on a set of finite measure E. Then for any « and g,

(l)L(rxqb + Ay = ach +,6’L1|; (2)If ¢ = YonE then L¢ = L¢.

A bounded measurable function f defined on a measurable set E of finite measure is said
to be Lebesgue Integrable if £ f, f = £ J, f and common value is denoted by £ [, f or f, f.

Let f be a bounded function defined on the closed bounded interval [a, b]. If f is Riemann
integrable over [a, b], then it is Lebesgue integrable over [a, b] and the two integrals are
equal.

Lebesgue Integrable functions may not be Riemann Integrable.

Let f and g be bounded measurable functions defined on a set E of finite measure. Then

1) J'cf=c_Lf.cER

2 [r+o=[r+]e
Iff=g a.e.onEthenJ'Ef=J'Eg

4) [ffgga.e.onEthenffﬁfg
3 E

5)|Lf sLlfl F

6)Ifa<f <f onE thena m(E) Sffﬁﬁm(l-?)
E

7) If A and B are disjoint measurable subsets of E then f=1f+ ff
AUB A B
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Let {¢.} and {1,,} be the sequences of measurable functions, each of which is integrable
over E such that {¢,} is increasing while {1} is decreasing on E. Let the function f on E
have the property that ¢, < f < P, on E for all n. If lim,,_ ., fE[r,bn — ¢,] = 0.Then

1) {¢,} -~ f pointwise a.e.on E.

2) {§,} = f pointwisea.e.on E.

3) f is intergrable over E.

4 i [ #u= | 7
) Jim [ = [ 1

Let f be a bounded function on a set of finite measure E. Then f is Lebesgue integrable

over E if and only if it is measurable.

Keywords

Lebesgue Integral of Simple Functions: For a simple function ¢ defined on a set of finite measure
E, we define the integral of ¢ over E by
1
[6=) am@
5 =1

Whereg has the canonical representation given as ¢ = YL; a; ¥,

Lower and Upper Lebesgue Integral: We define sup [, ¢ as lower Lebesgue integral of f over E

¢=r
¢d—simple

and denote it by LJ f and inf [, as upper Lebesgue Integral of f over E and denote it by
- yzf
o Y—simple
L—IE T
Lebesgue Integrable Function: A bounded measurable function f defined on a measurable set E of
finite measure is said to be Lebesgue Integrable if £ f, f = L f, f and common value is denoted by

Ly forlf,f.

Bounded Convergence Theorem: Let {f; }be a sequence of measurable functions defined on a set E
of finite measure. Let | f,(x)| < M,¥x € E and vn € N forsome 0 < M € R If lim,,_ o fi,(x) = f(x)
foreachx € E thenJ:Ef =lim,.e fi L e, fb_]immm fro=limy,_ o fF £

Self Assessment

T
DIf ¢p = Z aixg, » where Eis are disjoint measurable sets, then

i=1

Af¢c;mm>
B.J’ ¢ =a i?rt(ﬁ})

i=1

C.J' ¢ zi aym(E;)

D. none of these

2) If ¢ is a simple function which vanishes outside a set of finite measureand E, and E,

are disjoint measurable sets then ¢ > f o+ | o
EyUE, E, E,
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A. True
B. False

3) If @ is zero almost everywhere then f ¢ need not be zero.
A. True
B. False

4)If @ and Y are simple furctions which vanish outside a set of finitt measuresuch that

o=y ae, thenfo=f
A. True
B. False

5) The lower Lebesgue integral of bounded measurable function f over E is defined as

sup f{,‘b
¢ [Jg

=5t 1;;; =

A.
@

B. sup fqb
= E
h=step

C. inf
! f F¢

=
-simple

D. None of these

6) The upper Lebesgue integral bounded measurable function f over E is defined as

A, sup f{b
¢¢>5 rJE

=simpie

C. inf ¢

qb--.?;;ptcf E

D. None of these

7) Every Lebesgue integrable function is Riemann integrable.
A. True
B. False

8)Every Riemann integrable function is Lebesgue integrable.
A. True
B. False

9) Let f be an integrable function, then

a|fr]=[in

B.|ff = fIf|
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=T

D. None of these

10)]1:
E

A. 0

B. 1

C. m(E)

D. None of these

11)J;‘_ cf <c -[.r f. where c € R~ and f is bounded measurable functions defined on a set E of
finite measure.

A. True
B. False

12)Consider the following statements:

(Let f and g be bounded measurable functions defined on a set E of finite measure.

Iffzga.e.onEthenjf zfg.
E E

(INLet f and g be bounded measurable functiors defined on a set E of finite measure.

If J f = j,g then f = ga.e.onE.

only (I) is correct

only (II) is correct

both (I) and (II) are correct
d)both (1) and (II) are incorrect

9N = >

13)Let f be bounded measurable function defined on measurable set E. Then for any
measurable subset E; of E, J'E1 f= s fxe,

A. True
B. False

14)Let E = E; U E; where E; and E, are measurable and disjoint and f is bounded measurable
function on E. ThenJ, f = Ia f+ j’E2 f

A. True
B. False

15)Let m(E) < o0 and f, defined on Eis measurable for each n such that for 0 < M ¢ R,
|fu(x)| < M for all x and all n. If f,, = f asn — o then

A.jf<lim f,
E n-=Jg

5.[ 7=t [
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C.j f > lim ffn
E L)
D. None of these

Answers for Self Assessment

1 C 2 B 3 B 4 A 5 A
6 D 7 B 8 A 9 C 10. C
11. B 12. A 13. A 14. A 15. B

Review Questions

1) Every Lebesgue integrable function is Riemann integrable. Prove or disprove this statement.

2) Prove the linearity property of integration for bounded measurable function on a set of finite
measure.

3) Prove the monotonicity property of integration for bounded measurable function on a set of
finite measure.

4)Let {f, }be a sequence of measurable functions defined on a set E of finite measure. Let | £,(x)] <
M,'x€Eand ne€NforsomeO<Me¢ RIff, » fa.e onk, then_fEf =1lim,, .o f

5) Bounded convergence theorem may not hold in case of Riemann integration. Give an example in
support of this statement.

L[] Further Readings
Measure theory and integration by G DE BARRA, New Agelnternational.
Real Analysis by H LRoyden and P M Fitzpatrick, Pearson.
Lebesgue Measure and Integration by P K Jain, V P Gupta and Pankaj Jain, New Age
International.
Web Links
https:/ /nptel.ac.in/courses/111/101/111101100/

https:/ /www.youtube.com/watch?v=xUMRSOtM654&list=PL_alTI5SCCIRGKYvo8XNFTK
9zkiMbYTEwS

WO
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Unit 05: The Lebesgue Integral of Non-negative Measurable
Functions

CONTENTS

Objectives

Introduction

5.1 The Lebesgue integral of non-negative functions
Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Obijectives
After studying this unit, students will be able to:

determine the Lebesgue integral of non-negative functions

define monotonicity property of Lebesgue integral of non-negative functions
explain linearity property of Lebesgue integral of non-negative functions
demonstrate Fatou’s lemma

explain monotone convergence theorem

Introduction

In the previous unit, we have discussed the Lebesgue integral of bounded functions over a set of
finite measure. Here, we will discuss Lebesgue integral of non-negative functions in terms of
bounded measurable functions.

5.1 The Lebesgue integral of non-negative functions

Definition:Forf a non-negative measurable function on E, we define the integral of f over E by

ff = sup{f h:0 < h < f, his bounded measurable function such that h

vanishes outside a set of finitt measure i.e. m{x: h(x) # 0}}.

Theorem 5.1: Let f and g be non-negative measurable functions defined on a measurable set E.
Then

(E)chchf,c>G

@[s+a=[r+[g

E E E

(iii)If f < gonEthen [ f< [ g

(iv)If A and B are measurable subsets of E such that A 2 B then [, f = [ g.

Proof: (i)
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fcf- sup Cf,c>0

Oschsef .

where ch is a bounded measurable function which vanishes outside a set of finite measure.

-‘-fcfzsup cf = supf _cff
E Oshsf E Oshsf
if) Let h,k be bounded measurable functions such that 0 <h < f,0 < k < g and both vanishes

outside a set of finite measure.

Then h+ k is a bounded measurable function such that 0 <h+k < f+g and h + k vanishes
outside a set of finite measure.

LLm+msLu+m

> Lh+Lksf(f+g)

= sup | h+ sup k<f(f+g)
oshsfJgp  osksg!

=>Lf+£gsf5(f+g) (D)

Tet | be a bounded measurable function which vanishes outside a set of finite measure and
0=sl=sf+g
Let A(x) = min{f(x), 1(x)}, k(x) = l(x) — h(x). Then

a) h(x) < f(x)
b) k(x) = 1(x) — h(x)

_ [i(X) = flx) ifh(x) = f(x)
[{x) — l(x) ifh(x) = I(x)

- [f(x) — fif h(x) = f(x)
Lo ifh(x) = l(x)

sg[-g=20l=<f+gl

_ (G if ) < 1) _
DI = {11 i 160 < Foy <

d) [k@)| = [I(x) = h(x)]

_ {lf(x) =l fl) <1x)
[1(x) = L(x)] 5 Ux) < f(x)

- {ll(x) = f)]; f) = 1(x)

< ()]

“lo s d{E) = i x)
() = o) fx) < Ux)
= [0 1) < flag = 1!

From (c) and (d), we get h(x) and k(x) are bounded measurable function.
flzf(h+k)=fh+fk5ff+fg
E E E E E E
sup l< jf+ jg
Osi=sf+g /g E E

=>£_(f+g)sf5f+f£9 - (2)

iii) Let h be a bounded measurable function such that 0 < h < f and h vanishes outside a set of
finite measure.

Nowh<gasf<g

thLg
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sup | h SJg
Osh=f Jg E

= JEfsJ-Eg.

iv) Since A 2 B, therefore, y4f = ¥gf

szLXAfELXBf:Lf
[l

This completes the proof.

Theorem 5.2: Show that if f is a non-negative measurable function on E then f = 0 a.e.on E if and
only if J, f = 0.

Proof: Suppose f = 0 a.e.on E. Let ¢ be a simple function and h a bounded measurable function
whichO<¢p <h<fonE. Then¢ =0a.e. onE

fo-s

sup | ¢p=0
Ds¢shJg

fh-—-()
E

sup fhzﬂ
oshsfJg

Conversely, suppose [, f = 0.

IfE, ={xEE'f(x)>l]then0=J’f:>J’E-)( =—1—m(E)=>m(E)=O
mn e n b - En Exy n mn n

but{x: f(x) > 0} = U E,~m (U Eﬂ) =0
0

Lem{x:f(x)>0}=0 f=
This completes the proof.
Theorem 5.3 (Fatou’s Lemma)

Let{f,,} be a sequence of non-negative measurable functions on E. If f;, = f a.e.on E then

ff < liminfffn
& £

Proof: Since the integral over the set of measure zero is zero. Therefore, we may assume that f;, = f
everywhere on E. Let h be a bounded measurable function such that 0 < h < f and h vanishes
outside a set of finite measure. Let

E,={x€E:h(x) #0}=m(E;)) <wandh(x) =0, x€E—E,

For every n € N, define h,,(x) = min( h(x), f, (x)),then h, is bounded measurable function bounded
by the bounds of h and vanishes outside E,.

lim By () = lim min{h(x), f ()} = hx)

Therefore by bounded convergence theorem,

lim | hpy(x)=| h
8-t £
fh:f h
E Ey
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=liminf | h,
E

Sliminff,ﬁ,
E

sup fhi]iminfj,ﬁi
E E

o<hsf

ff < lim infffn.
E E
This completes the proof.

E‘ Notes:The inequality in Fatou’s lemma may be strict.

@ Example 54:{_  non-negativ, i, ., U, Pi, fnctions O Ry such that
};’1 = Y¥Eq' En = [n.n+ 1l

Show that strict inequality holds in Fatou’s lemma.

Solution: f, = ¥, En = [m,n + 1]

Then
fG) = Jim fu) =0
fr=o0
)
and
fmﬁl - Lﬂfn ! R‘-Eufn
= 1+ 0
fa
=1-m(E,) =1
Thus

J’r,xf < lim ian'Mf;L

Theorem 5.5 (Monotone Convergence Theorem)

Let {f,} be a monotonically increasing sequence of non-negative measurable functions on E. If

fn = f a.e.onE then
limf :f
lim E)% Ef

JEf < lim inffﬁ, (D)
E

Proof: By Fatou’s Lemma, we have

Since {f,, }is increasing and lim f;, = f a.e.

fu<fV¥na.eonkE

lnsly
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lim sup Lfn ELf .. (2

From (1) and (2), we get

ffsnmme,fns]imsup[fnSJ;f
; .

YE

lim infffn = lim sup Lfn = ff
- E

IimLﬁ1 = Lf.

Corl: Let {u,} be a sequence of non-negative measurable functions on E. If

This completes the proof.

0
f:Zun a.e.onk
fi=

1

Then

=Tl

oo o0
i‘e.J’ Zun: E [un.
En=1 n=1"F

Proof: Let f, = EIL, u;. Then {f;,} is increasing sequence of non-negative measurable functions such
that f;, = f a.e. Therefore by monotone convergence theorem, we have

I
?:&
=)
M=
e !
£

This completes the proof.

Cor 2: Let f be a non-negative measurable function on E and

)
E= U Eni
n=1

where E,'s are pairwise disjoint measurable sets. Then

[l

Proof: Let u,, = f * xz, then {u,} is a sequence of non-negative measurable functions on E. Also
[ x5 =fXup,E,
= £ (e, + 25, + )
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This completes the proof.

Definition: A non-negative measurable function f defined on a measurable set E is said to be
integrable over E provided [ f < co.

Theorem 5.6: Let f and g be two non-negative measurable functions on E. If f is integrable over E
and g < f on E then g is also integrable over E and

LU—Q):LfﬂLg
fosfreo fo<o

g is integrable over £

Proof: Since g < f on E

Now f — g and g are non-negative measurable functions.
[r=[t-+a
L fi= LU -g)+ L g
Jo-0=[r-]s

This completes the proof.

Summary

Let f and g be non-negative measurable functions defined on a measurable set E. Then

(O] ch = L‘JEf,C >0

@[o+o=[r+[g

E E E

(iii) If f < g on Ethen fEf < J'Eg

(iv) If A and B are measurable subsets of E such that A 2 B then [, f = fB g.

If f is a non-negative measurable function onE then f = 0 a.e. on E if and only if J'E f=0.

Let{f,} be a sequence of non-negative measurable functions on E. If f;, = f a.e.on E then

ff < limian’ﬁi‘
& &

The inequality in Fatou’s lemma may be strict.
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Let {f,} be a monotonically increasing sequence of non-negative measurable functions on

E.If f, = f a.e.onE then
i [h=[r

Let {u,,} be a sequence of non-negative measurable functionson E. If f =37, u, a.e.onE,

then
fsz[un i.e.qun=Zjun.
5 n=1"F Ea=1 n=1"%

Let f be a non-negative measurable function on E andE = Uj_, E,, where E,,'s are
pairwise disjoint measurable sets. Then

el
[r-3 s
B n=1""5n
A non-negative measurable function f defined on a measurable set E is said to be
integrable over E provided J, f < .

Let f and g be two non-negative measurable functions on E. If f is integrable over E and
g < f onE then g is also integrable over E and J,(f —g) =, f — [, g.

Keywords

Lebesgue integral of non-negative function: For f a non-negative measurable function on E,
we define the integral of f over E by

ff = sup{f h:0 < h < f, his bounded measurable function such that h vanishes outside a set of
E E

finite measure i.e. m{x: h(x) # 0}}.

Fatou’s Lemma: Let{f,} be a sequence of non-negative measurable functions on E. If f, =
f a.e.onE then

ff < lim ian’fn‘
& &

Monotone Convergence Theorem: Let {f,,} be a monotonically increasing sequence of non-negative
measurable functions on E. If f;, = f a.e.on E then

i [r=[r

Self Assessment

1) Let f be a non-negative measurable function defined on a set E and h is a bounded non-negative
measurable function such that m{x: h(x) # 0} < oo . Then J'E f=

A.sup [ h

hsf
B. jnf f, h
C.J.h

D. None of these

2) Consider the following statements:

()Let f be non negative measurable functions defined on a set E. If f = 0 a.e.on E then f f=0
E

(INLet f be non-negative measurable functions defined on a set E. If JF f=0then f =
Oa.e.onkE.
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A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct
D. both () and (II) are incorrect

3) Let f be non-negative function defined on a measurable set E and 4, B are susets of E such
that ACB then J x.f = J, xsf.

A. True
B. False

4) Let f be a non-negative measurable function defined on measurable set E. Thenjb_ cf =c J'F f.
c>0.

A. True
B. False

5) Let {f,.} be a sequence of non-negative measurable functions such that {f;;} = fa.e. on E. Then

A. [ f=liminf [, fy
B. §, f = liminf J £,
C . f <liminff_f,
D. None of these

6)Let{f,} be a monotonically increasing sequence of non-negative measurable
functions such that {f;,} = f onE. Then

A. J'E f=lim J'E fa

B. {, f = liminf f_f,

C. ., f <liminff_f,
D. None of these

7) A non-negative measurable function f defined on measurable set E is said to be integrable
over E if [, f < oo,

A. True
B. False

8) Let {u,} be a sequence of non-negative measurable functions on E. If f =37, u, a.e.onE
then

A.Lf&:;Luﬂ
B. Lf‘?nZlLun
e =T b

D. Cannot say anything
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9) Let f be non-negative measurable function on E and E = Uj_, E,, where sets E,, are pairwise
disjoint measurable sets. Then

A. J;f: E"f
st_ij
C.Lf<i[.,,f

D. Cannot say anything

10)Let f be a measurable function over E. If there is an integrable function g such that |f| < g,
then ffis integrable over E.

A. True
B. False

11) Strict inequality is not possible in Fatou Lemma.

A. True
B. False

12) Monotone convergence theorem also holds for every decreasing sequence.

A. True
B. False

13)Fatou Lemma may not hold if functions are not non-negative.

A. True
B. False

14)Let h be non-negative bounded measurable function such that it vanishes outside the set of
finite measure. Then m{x: h(x) £ 0} < o .

A. True
B. False

15)Let E = U~ Ep, where sets E,, are pairwise disjoint measurable sets. Then fxy = Yne1 f X5,

A. True
B. False

Answersfor Self Assessment
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11. B 12. B 13. A 14. A 15. A

Review Questions

1) Show with the help of an example that Fatou’s lemma may not hold if f,’s are not non-negative.

2) Monotone convergence theorem may not hold for monotonically decreasing sequence of
functions. Give an example in support of this statement.

3)Prove the linearity property of integration for non-negative measurable function on a set of finite
measure.

4)Prove the monotonicity property of integration for non-negative measurable function on a set of
finite measure.

5) Let f be a non-negative measurable function on E. If f = 0 a.e. onE then J'E f = 0.1Is the converse
true?

[]]] Further Readings
Measure theory and integration by G DE BARRA, NewAgelnternational.
Real Analysis by H LRoyden and P M Fitzpatrick, Pearson.

Lebesgue Measure and Integration by P K Jain, V P Gupta and Pankaj Jain, New Age
International.

@ Web Links

https:/ /nptel.ac.in/courses/111/101/111101100/

https:/ /www.youtube.com/watch?v=xUMRSOtM654 &list=PL_alTI5CCIRGKYvo8XNFTK
9zkiMbYTEwS
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Unit 06: The General Lebesgue Integral

CONTENTS

Objectives

Introduction

6.1 The General Lebesgue Integral
Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives

After studying this unit, students will be able to:

determine the Lebesgue integral of measurable functions

define monotonicity property of Lebesgue integral of measurable functions
explain linearity property of Lebesgue integral of measurable functions
demonstrate Lebesgue dominated convergence theorem

explain generalized Lebesgue dominated convergence theorem

Introduction

In the previous unit, we have discussed the Lebesgue integral of non-negative functions. Here we
discuss the general Lebesgue integral with the help of positive and negative parts of a function.
Recall that

fT(x) =max{f(x), 0}andf~(x) = max{—f(x), 0}.

f*and f~ both are non-negative functions.
f=f"—frandIf| = f*+f".

f is measurable if and only if both f* and f~ are measurable.

6.1 The General Lebesgue Integral

Definition: Let f be a measurable function on E, Then f is said to be Lebesgue integrable over E if

Lf* < ooandJ;f‘ <ooande sz* —JE,F_

Definition: If E is a measurable set, f is a measurable function and y; f is integrable, we say that f
is integrable over E and its integral is given by

Lf:jf‘l’ﬁ-

_L.f
I%‘ Notes:Let | integrable over € a measurable subset of n
F e

- ff -

Theorem 6.1: A measurable function f is integrable over E if and only if | f| is integrable over E.

Proof: Let f be integrable over E. Then f* and f~ are integrable over E.
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=> Lf+<mandj;f‘4m

fin=farer= [ [r <o

= | f|is integrable over E.

Conversely, let | f| be integrable over E.

= L|f|<°°
=>L(f“+f‘)<°o
> Lf++£:f‘<oo

= [f* <Doandff‘<oo
E g

= f%and f~are integrable over E.

= f isintegrable over E.

This completes the proof.

Theorem 6.2: Let f and g be two integrable functions over E. Then

1) cf is integrable over Eand fE cf = ch,F.c e R.

) f+gisintegrable over Fand [[(f+g) =[.f + [, 9

3) Iff<gaethenf f<[g
)

If E;and E, are disjoint measurable subsets of E, then

[ r=[r+]r
EyUE, E, E;
Proof: 1) We have

i cftc=0
(f) _[—cf_: c<0
and
e cf;c=0
@ =}¢rtic <
Icf-!-.C}D { ff+
F(Cf) B f—n(f‘; c<0 {k ff‘, c<0 =
and
Ic’f‘;czD ff
F(Cf)—= " f
: *pe<0 |- iy 0
L cfts e gl FFy o
cf is integrable over E.
Now

fE of = L f)t - L (cf)-
ch'* — ch‘; cz0

e[ r-cofr e<o

~[s
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2)Wehave(f+g)" < ft+gtand(f +g) = f +g~
Since f and g are integrable.

f*.f g% g areintegrable

(f + g)Tand(f + g)~are integrable.

f + g is integrable.
Also

G+ -G +a) =f+g=F"+g"—f —g”
2+ +f g =+ +fT+g"

LU+9)*+LF+L9‘=L(f+gJ‘+Lf*+Lg*
LU+9)+—LU+g)-=(Lr+—Lf—)+(Lg+—ng~)
L(f+g)=f£f+f£g

3)Since f < ga.e.
g—f=z0ae

fg—f?(]a.e.

e

L9=L[C9—f)+f]

=L(g—f)+f£f

ngLfﬁLstg-

4) f= .rf'}fEltJEz

By UE,

=[F ().’E1 +X53)

=Lf)(51 +J;IfXE2

T

This completes the proof.

Theorem 6.3: Let f be a measurable function over E. If there is an integrable function g such that
|f] < g, then f is integrable over E.

Proof:We have

f+5|f|£9=>f+£g=>Lf+£Lg<co Lf+<m

f<lflsg=f<g :Lf‘ngm Lf‘<°°

f*andf~are integrable over E
= f is integrable over E.
This completes the proof.
Example 6.4: Let f be a measurable function and g be an integrable function such that
a=f=fac,a,f€ER
Show that there exists v € R such that
asv<pBand[flgl=v/[lgl
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Solution: Since
asf=<pfae.:|fgl <(al+18Dlglae.
Since g isintegrable.
fg is integrable.

Now, a<f<fae.

= algl < flgl = Bigla.e.

=aflgl<fflgl<pflgl ..(D
If [ |g| =0 then g = 0 a.e. and the result is trivial.

If J’lgl # 0,take v =J-—fm

Jial

Then from (1), we have, @ < v < fand also,

[ r1a1=v 101

Example 6.5: If f is an integrable function over E, then show that f is finite valued a.e. on E.

Solution: Since f is integrable over E, - |f]| is also integrable over E.

:f|f|<oo ()

If possible, let |f| = onaset A € E and m(4) > 0 then |f| > non A

f]ﬂ = flfl >nm(A)forall n.
E a

= f|f| = oo, which contradicts(1).
E

Hence f is finite valued a.e. on E.

Example 6.6:Letf be an integrable function. Show that

|/ Fl = FIfL.
When does the equality occur?

Solution: Since f < |f| and —f < |f]

[ £ < [iniana [ < [1n
[r<inans—[r< s
-[[o<fon.

Casel: [f=0

|f|ff|=f1f|thenff=f|f|

ﬁm—ﬁ=n

Ifl—f=0ae.
lfl=fae

f=0a.e

Casell:[ f<0

[ 1= [ r1ehen = [ = [1r

[ar+n =0

If

Ifl+f=0a.e
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[fl==fae

=>f<0ae
Hence equality occurs when either f > 0a.e.orf <0 a.e.

Theorem 6.7: Let f be a Lebesgue integrable function over E. Then for given € > 0, & > 0 such that
for every set A € E with m(4) < §, we have
[r
A

Proof: Case :When f is a non-negative function.

Subcase I: When f is bounded on E. Here |f(x)| < M,' x € E and for some 0 < M ¢ R.

< E

For given € >0,let A € E withm(A4) <§ = % then

J’ng’M-:Mm(A)*:M-%=£Le.Lf <€

Subcase II: When f is unbounded on E. Let {f,} be a sequence of functions defined by

_(fGf) =n
o) = [n;f(x) >n

Then {f,,} is an increasing sequence of bounded functions such that f;, = f a.e.

Therefore, by monotone convergence theorem, we have

Lf = lim Lﬁi

Therefore, for given € > 0, a positive integer N such that

Lfﬂfﬁfm} [r-r<5 @

Now fy is bounded non-negativemeasurable function on E. Therefore by subcase I, for given

€ >0, & > 0Such that for every measurable set A € Ewith m(4) < §, we have
[fe<s @
A4 2

Then

Lf=£[(f—f~)+ﬁ¢]

:L{f_fN)+LfN

<[-ro+[s
E A
€ €
< 3 + A €
L. e.ff <€
A
Case II) When f is any Lebesgue Integrable function.

Wehave, f=f*—f~,ft=0,f"=0

Therefore, by case |, for given € > 0, §; > 0 such that for every set A € E with m(4) < &;, we have
€
fr<= i
[<3 ®3)
Similarly, &, > 0 such that for every set A € E with m(4) < §,, have
[ <5 @
A 2 "

Choose § = min(d;, 8,), so that (3) and (4) hold for every set A € E with m(4) < 8.
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Thus if m(A) < &, then we have

[r|=[m
A A
= [¢r+)
A
=|fT+]f
A A
E E_
<§+E_E
i.e fl<e
A

This completes the proof.

Example 6.8: Let f be an integrable function over E. Show that for given € > 0, a simple function s
such that

f |f—sl<e

E

Solution: Since f is integrable over E. Therefore f* and f~are integrable over E.

ff=z0and f- 20, increasing sequences {s,} and {¢,} of non-negative simple functions such
that

. i _ e
r}l{l;la Sy =f ,r!]_rn; t, = fforeveryx € E.

Therefore, by the monotone convergence theorem, we have

L S ]imLsn,Lf‘ :IimLt’1

Therefore 3 positive integers n; and n, such that

f(f* —sn1)<§andf(f‘ —ty) <§
E E

Taking s = s, — tp,, we have

Llf—SISLIF ~—sn1|+f5|f*—tn2|

Llf—5|4€-

Theorem 6.9 (Lebesgue Dominated Convergence Theorem)
Let g be an integrable function over E and {f,} be a sequence of measurable functions such that

|ful £ gonEforallnandf, — f a.e.onE. Then f is integrable over E and

L,f=[1'm L,‘;.

Proof: Since |f;,| < g on E for all n and g is integrable over E, therefore, every f, is integrable over E.
Also limy,o, f, = f a.e.on E and|f,| < g onE forall n.

|fl<gaeonE
f is integrable over E.
Now, [fnl < g onE foralln
= —g=f,<gonkEforalln
~g+f=0andg—f, = 0foralln
= {g + f.}and{g — f,} are sequences of non-negative measurable function on E such that

g+fm—-g+faeandg—fr->g—f
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Therefore, by Fatou's Lemma, we have

f(g-i—f}i]in1inff(g+fn]andf(g—f)Eliminfj(g+fn)
E E E E

L9+Lf£L9+limi“fonandLg*Lf éLg—limsupon
Lf <lim infL,f;_ and Lf > lim SUPJ;f“
J;f < lim infoﬂ <lim SupJ:Eﬁ, < -Lf

= lim infffn z]imsupffn =ff

Lf = lim wa

This completes the proof.

Cor 1: Let {uy,} be a sequence of integrable functions over E such that } ;. u,, converges a.e. on E,
Let g be an integrable function over E such that

n
i=1

=gnekN

Then 3 7.4 uy, is integrable over E and

2]

[

=1

o0
En=1

Proof: Let

fn ZE i y and f = Z:lui

i=1

Then {f,} is a sequence of integrable functions over E such that |f,| < g onE foralln and f, -
f a.e. on E. Therefore, by Lebesgue Dominated convergence theorem, we have

[r=1m [
E E
=2 n
[Supmf 3
Ea= BNyt
"
= lim Z J-ul-
n=voo i=1Jg

o

This completes the proof.

Cor 2: If f is integrable over E and {E;} is a sequence of disjoint measurable sets such that E =

Ui2, E; then
r=>[r
Jr=21,

Proof: Let uy, = f * ¥z, then

0 b 4] m
Zunzz,f'lﬁn:fZXEn—f'XUEanF'XE
n=1 n=1 n=1

o0

zun:f'xﬁ'

=1
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Now, |un| = |f - xg,| < |f| and |f| is integrable over E, therefore u,, is integrable over E for all n also

n
|Z ui| < |flforalln
i=1

Therefore, by cor 1, we have

szi[fzg K

n=1"En
This completes the proof.
Theorem 6.10: (General Lebesgue Dominated Convergence Theorem)

Let {f,} be a sequence of measurable functions on E that converges a. e. on E to f. Suppose there isa
{gn} of non-negative measurable functions on E that converges a.e. on E to g and dominates {f;,} on
E in the sense that|f,| < gnon E for all n.

If1imy, o [ Gn = f9 < oo thenlim, o, [, fu = . f.
Proof: Since|f,,| £ g, Vn
=l <gaevn
= eachf,is integrable.
Also f, = fa.e.and|f,| < gvn
Ifl<ga.e
f is integrable.
Now |fl < g,V
= ~gn < fnLgnVn
S gn+t fu=0andg, — f,20vwn
{gn + ) and {g,, — [} are sequences of non-negative measurable functions such that

{gn+fl—-g+faeandg,~f,}-g—fae

Therefore, by Fatou’s Lemma, we have

L(g + f) <lim infL(gn + f) andJ;(g - f1 <lim infL(gn — )
Lg +Lf < lim infL(gn +fﬂ)andLg - Lf < linlinfL(gn —£)

= LfgliminfLﬁiandJ;falimsupon

lim Lfn = Lf 4

This completes the proof.

Summary

If E is a measurable set, f is a measurable function and y; f is integrable, we say that f is
integrable over E and its integral is given by

Lf=.r[_f‘i’f:'<

Let f be integrable over E and C a measurable subset of E. Then

J;f:Lf'Xc.
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A measurable function f is integrable over E if and only if | f| is integrable over E.

Let f and g be two integrable functions over £, Then
1) cf is integrable over Eand [, cf = ¢ J ficeR

2) f + g isintegrable over £ and [.(f +g9) =J, f + |, 9
3)Iff<gaethen f<]g
)

4) If Eyand E, are disjoint measurable subsets of E, then

Lluszf - Ezf " Ezf

Let f be a measurable function over E. If there is an integrable function g such that
[f] € g, then f is integrable over E.

If f is an integrable function over £, then show that f is finite valued a.e. on E.

Let f be a measurable function and g be an integrable function such thate < f <
B a.e.,a f € Rthen there exists v € Rsuchthate s v < pgand [ flg| =v [lg|.

Let f be an integrable function, then |f f| < [|f|. Equality occurs when either f >

Oa.c.orf <0a.e.
Let f be a Lebesgue integrable function over E. Then for given € >0, & > 0 such that for

every set A € F with m(4) < &, we have |fAf| <e

Let f be an integrable function over E. Then for given € > 0, a simple functions such that
LIf—sl<e

Let {u,} be a sequence of integrable functions over E such that ¥, u,, converges a.e. on

E. Let g be an integrable function over E such that |[J7., u;| < g,n € N.
If f is integrable over E and {E;} is a sequence of disjoint measurable sets such that
E = U, E; then

o

2l

i=1"Fi

Keywords

General Lebesgue Integral: Let f be a measurable function on E. Then f is said to be Lebesgue

integrable over E if
ff* <ooandff‘ <ooandffsz+—ff“

Lebesgue Dominated Convergence Theorem: Let g be an integrable function over E and {f;,} be a
sequence of measurable functions such that

|ful < gonEforallnandf, = f a.e.onE. Then f is integrable over E and

L;’tlim L);.

General Lebesgue Dominated Convergence Theorem: Let {f,,} be a sequence of measurable
functions on E that converges a.e. on E to f. Suppose there is a {g,} of non-negative measurable
functions on E that converges a.e. on E to g and dominates {f,} on E in the sense that |f,| <
gnon E forall n. If imy,_ o [ gn = J; g < 0 then

i [r=[r

Self Assessment

1) f is integrable if both non-negative functions f* and f~ are integrable.

A. True
B. False
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U f=If"+If"

A. True
B. False

3)A measurable function f is integrable over E if, and only if | f| is integrable over E.

A. True
B. False

YLV =5F=Tf

A. True
B. False

5 f(cH)f =cffre=0

A. True
B. False

6)f(cf)y =cffe=z0

A. True
B. False

NIt =—cf fre<0

A. True
B. False

[l

8) S (cf) =—c[fe<0

a) True

b) False

—ffre<0

I

9) I (ef)”

A. True
B. False

10) F(cf)~ = cf f*,c <0

A. True

B. False

11) If f is integrable function over E, then f is finite valued a.e. on E.
A. True

B. False

12) Consider the following statements:
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(I) Let f be an integrable function and f = 0 a.e. then |[ f| = [ |f].

(I) Let f be an integrable function and f < 0 a.e. then |f f | < JIf|. Then
A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct
D. both (I) and (II) are incorrect

13) Let {un} be a sequence of integrable functions over E such that Y ;. ; u, converges a.e. on E.
Let g be an integrable function over E such that |}, u;| < g a.e. on E then

AJ T un S Ta fpun
BJE Wiy U B2 s fﬁ— Up
Cofy Tt Un = X fp
D. None of these

14) If f is integrable function over F and {E;} is a sequence of disjoint measurable sets such that

E= U:}; E;, thenjEf =32, f.m(E).

A. True
B. False

15) If f is integrable function over £ and {E;} is a sequence of disjoint measurable sets such that

E=\; E then |, f =§ ot

A. True
B. False

Answers for Self Assessment

1 A 2 B 3 A 4 B 5 A
6 A 7 A 8 B 9 A 10. B
11. A 12. A 13. C 14. B 15. A

Review Questions

1) Let {f,} be a sequence of integrable functions such that {f,} - f a.e. with f integrable. Then
[ fa—fl=0ifandonlyif f | fo 1= f1f 1.

2n, x € (~L 5)

2n’n
0, x € (Gzin) U(rl;’l)'

Show that Fatou’s lemma holds but Lebesgue Dominated Convergence theorem does not.

2)Forn € N, let f,(x) = {

3) Define positive and negative parts of a function. When a measurable function f is said to be
integrable over E?

4) Prove the linearity property of integration for measurable function.

5)Prove the monotonicity property of integration for measurable function.
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[]]] Further Readings

Measure theory and integration by G DE BARRA, New Agelnternational.
Real Analysis by H LRoyden and P M Fitzpatrick, Pearson.
Lebesgue Measure and Integration by P K Jain, V P Gupta and Pankaj Jain, New Age
International.
Web Links
https:/ /nptel.ac.in/courses/111/101/111101100/

W

https:/ /www.youtube.com/watch?v=xUMRSOtM654 &list=PL_alTI5CCIRGKYvo8XNFT
K9zkjMbYTEwWS
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Objectives

After studying this unit, students will be able to:

Define the functions of bounded variation

Investigate the properties of the functions of bounded variation
Explain Jordan decomposition theorem

understand variation function

solve problems on functions of bounded variation

Introduction

In this unit, we explore those functions which do not behave too erratically over an interval. The
members of this special class of functions on closed and bounded intervals can be expressed as the
difference of two increasing functions.

7.1 Functions of Bounded Variation

Definition: Let f be a real-valued function defined on the closed and bounded interval [g, ] and
let

P={a=xpxy

waXy = b}

be a partition of [a, b].
We define

n

p= Z[ﬁrl) — Flx T

i=1
mn

= Z[f(':r[-) - f(_'_"('[_ J_-_:l]-.
i=1

t=p+n
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=Z}ﬂff] = flxi_yl

E’ Notes: t,p,1 2 0.

Further, we write # = Fr[a.b] = supp,
N = Nyla,b] = supn,
= T;—[ﬁ,b] = supt.

Here the suprema are taken over all possible partitions of [, &] are defined as positive variation,

negative variation, and total variation of f on [a, #] respectively.
If ]}-[a. b] < v then f is called a function of bounded variation on [a, b].

We denote the class of functions with this property by Bv[a, b].

g A function is said to belong to B¥{—u,o2) if it belongs to BV [a, &] for all finite g and b

Theorem 7.1: A monotonic function f defined on [a, &]is a function of bounded variation and
Tyla, ] = |f(B) - fla)l

Proof: Let P = {a = x x,,....x,, = b} be a partition of [a, b]

Then

n
£= Zt flx) — fx;_pl

Z[f (x;) = flx;_]: f is increasing
=4 =
Z[— f(x) + flxg_y)]: f is decreasing
=1

=|f(b)— fla)l

= Tplo 0] = supt

=|f(b)— fla)] <=

= f is a function of bounded variation.

This completes the proof.
Theorem 7.2: If f is a function of bounded variation on [@, b] then

?:r[ﬁ, b] = Ff [Qxb] =+ JN}'ECLb]

and
f(&) - fla) = Ps[a.b] — N¢[a.b].

Proof: Let P = {a = x5, x,....x, = b} be any partition of fa, #]then
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p-n =) [F0) — fes )1 = D ) — fxi_I”
i=1

=1
= ) lftd - Fixe_]
i=1

sp-n=fb)—fle) ..(1]
=p=n+fb)—fla)
< N¢la.b] + f(b) — f(a)

= Sﬁp? < Nela, 2]+ f(B) - f(a)

= Brla.b] < Ny[a, b1+ f(8) — f(@)

:>Pf [a,B] —Iu:f[a,b] = f(b)— fla) (2]
Again,
n=p+ fla)— f(b)
< B[a.b] + f(a)— f(B)

= supn < Fla.b] +fla) - f(b)
o

= f(b) - f(a) < Pgla.b] - Nfla.b]  ..(3)
From (2) and (3)

f(b) - fa) = Pla.b] — Ne[a.b]  ..(4)
Since

t=n+p

o Glab] Zn+p

= Tyla.b] = p - [f(b) —fla)]l + p

= 2p — [Py [0, 5] - #pla,b]]

= T;[a,b] = 2P¢[a. b] — Pla.b] +N[a.b]

= Tf[ﬁ-, bh] = Py [a.b] +h}[n.b] - (3)

Also

Tyla, b] = sup(t)
u
=sup(p+m)
P
<supp t+sugn
P P
= P¢[a, b] + Ngla, ]

= Trla, b] < Frla, 0] + Ne[a,p]  ..(8)

2% L ovely Professional University

Notes



Real Analysis I1

From (5) and (6),

Tyla, b] = Pyla.b] + N[a.b].

This completes the proof.

Theorem 7.3: For any function f and g defined on [a, b]
1) Tregla, 0] = Tyla,b] + T [a,b]

i) Tefla.B] = lel TelablceR

Proof: Let P = {a = xg %, .-.. Xy, = b} be a partition of [a, b]

§) ) |G+ — (F + @il = ) IF G +96x) — Fi_y) — 90l
i=1

i=l

n n
SZIf{xE) —f(_xE_L)I + ZIQ(.IE:I - g(x,-_l_}l

i=1 i=1
n n
Ssup ) | £0)=fCi-ol+ 1B ) | 05) = 9 (xi_y)
i=1 i=1
= i}r[u, bl + 'i’:g[(:-, b]
n
= sup ) [(f +4)(%) — ( + (%) < Tyla. b1+ Ty[a. b]
P

= Trogla.b] < Tgla, b1+ Tla. bl

£ Zl{cﬁ(m — ezl = Zlcllf{m — flx DI
i=1 i=1

n
=lel ) If ) — fixizy)l
=1

< lel Tgfa.b]

= Tefla,b] < lclTyla, b] (1)

Also

lel ) Iftx) — Fxiol = ) le)en - el
i=1 i=1

=T, f[a, b]
= el Tfle. b] < Teela b] - (2)
From (1) and (2),
T:f[a.b] = |:r|i':,r[u, bl.

This completes the proof.

Cor1:If f.g & BV[a. b thensois f +g.
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Proof: Since f, g € BV[a,b] thereforeTy[a. b] < oo andl,[a,b] < oo,

Now,
Tf,,g[a,b] = Tf[a,b] +1g [a.&]

2 Tp,glab] < m
= -+ g e BV[a.b]
Cor 2: If f € BV[a.b] thensois ¢ f,c € R
Proof: Since [ & BW[a,b] = T¢la,b] < . Now,
Tefla,b] < [c|Tfla. b] < =

= ¢f € BV][a. b]

Theorem 7.4: A function of bounded variation is bounded.

Proof: Let f:[a, 5] = K be a function of bounded variation, T¢[a. 5] <= o=.
LetP ={@ = xp X4y e Xy = B}

Be a partition of [a,b]. Now for any x € [a, b] we have

1fixdl = [fla)l = | f(x) — fla)l

= [f)] < |fta)] +1f(x) - fla)]
<|fta) + sgp;lﬂxf) —F (%)l

= | f(a)] + Tyla. b]

= f is bounded.

This completes the proof.

Ey' Notes: A bounded function may not be a function of bounded variation.

Iﬁ‘ Notes: A continuous function need not be a function of bounded variation.

Iﬁ Notes: A function of bounded variation need not be continuous.

@ Example: Let f:[0,1] — & such tha

_'(sln(;)::r -'#DI
ix =0

flx) = {

Show that f is not of bounded variation.

2 2 2
Zn+1'2Zn—1'2n-3""

212
Solution: Let P = {0 sy 1} be the partition of[0,1].m € &
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|ftll )l If ) (: |+ +If n— 1) f(znil)l-"lf(znil)_ﬂml

2 2 2 2
===+ +

3 3 5 2n+1
—4(.1+ + et ]
- 3 5 Zn+1

. . L. . . i g TH .
Since the series ¥, oo isa divergent series, therefore its " partial sum

ol %is not bounded above.
a5 Zn+1

Hence T¢[0,1] = o= = f € 5V[0,1]

Notes: Let f:[0.2] = R defined by f(x] = [x] then f, being increasing is a function of
bounded variation.

Theorem 7.5: The product of two functions of bounded variation is also of bounded variation.

Proof: Let f,g € BV[a. b] then f and g are bounded on [a.b].230 <k; € Kand 0 <&, € K such
that

| fix)| <k, for all x € [a, bland|g(x)| < k.forallx & [a, B]
Let k = max{k . k.3 = |f(x)] <k and |g(x)| < &k for all x € [a, b].

Let P = {1 = X Xgs wuen Xy = B}
then

Zlcfmtxn — (gl —Zlfw::q )90x) — Flxip) 9%yl

i=1

Zﬂxngw Fx) 9059+ FO8) 908 — FO6i_p) gl

<Ztﬂmngw ~ g0l +ngm DIIFee) - flxl

i=L
T m
<k ) g0e) — sl +E ) 1fC6) — Flxio)l
=1 1=1
<k [f; [a.b] + Tyla.b]]

= Tpgla, b] < k [T [a.b] + Ty [a,b]

Since

f.g € BV[a,b] - Tgla, b] < oo andT,[a.0] < =

= ng[a.b]t: w = fge BV[ab].

This completes the proof.

Theorem 7.6: Let f € BV[a.b] and [f(x)| =k for all x & [a, &] for some D < k € K then
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1
— € BV[a.b].

f
Proof: Let P = {a = x x,, .-..%,; = b} be the partition of [a, b].
Then
n J_ 1. n ]_ l
; Kf)(xd— (}:){f:cf-ﬂl =;ﬂm_ f_ut__l)|
_ Z fl_y) — fx)
T4 fapfoy)

=l

n
1 .
‘_:inf(xf') — flai_ )|

i=1

I
‘_:FT}![G, &]
- 1 .
=’T% [a.B]= FTf[a,b] < oo

1
= — € BV[a.b].
f
This completes the proof.
Cor:If f, g € BV[@, bland |g(x)| = &forall x € [a. b]for some 0 < k € K then

f

=€ BV[a.b].
g

Proof: By preceding theorem,

1

— € BV[a.b
- [a.0]
Also,

f € BV[a.b] - _f(:_j) = ‘g € BV[a.b].

Theorem 7.7:If f € BV[a,&]and u < ¢ < bthen f € BV[a.c], f € BV[c.b] and
Tf[n, b= Tf[n:.c'] +Tf[c.b].

Proof: Let P, ={a = xp. v,y = €} and B = {c = xz. %3, ... Xy = b} be partitions of [a,¢] and
[c. bl respectively so that P = P, U & = {i = 13,74, ..., X, = B} is a partition of [a, §]
Then

Fid n
Zi Flx) - flx_pl< Zi Flx) — flx_ )l

i=1 i=1

= T‘f[ﬂ_. b]

K
=3 Sglpzlif(xl:l - f{x;-;_)l = Tf[ﬂ,b]
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= Tfla.c] = Tyla. b] < oo
= f e BV]arc]

Similarly, we can show f € BV|[c, b].

Now

Iy n n
Zi Flx) — flx_ Ol + Z 1fx— fx_pl= Zl Fe— fix_ )l < Tp{a.b]
i=1 i=1

i=k+1

= SL'FZU () - fle_ ol + Z Iflx) — fle_ )l < Tela,b]

i=L I=k+1

n
= Tyla.cl+sup D IF(x) —f(xi-y)l < Tyla.b]

2=kt

= T¢la,c] +Tylc.b] = Tyla. b] (1]

LetP' =§a=¥p. ¥y ¥i_po€} and B = {6V} ¥jep . ¥n =B} be partitions of [@,c] and [c,b]
respectively.

Let P* = {@ =, yg. ¥'1 e ¥jo vens ¥ = B}

Now,

n -1
Z! flyd—flyl < ZEJ“ (yi) = fOyi Dl + | fied —fC_rJ;L)II
=3

i=l
"‘I!f (y) - f(e)| + Z Ify) —f U‘f-LN‘
i=j+1
=Tyla.c] + Tp[e.b]

= T¢la.b] < Tyla. ]+ Tyle. b] - {2)

From (1) and (2),

Tf[ﬂ, b= Tf[r:.c'] +Tf[c.b].

This completes the proof.

Variation Function: Let fi[a.b]—= K& be a function of bounded variation on [a.b] The

function¥}: [a.b] — ® defined by

Vfl;_t,] = Tf{ﬁ,.t’]

is called variation function.

Ig ¥¢ is monotonically increasing because if y = x then
T¢la, y] = Ty [a,x] +T¢[x, y] = T¢[a,x]
i.ey >x = Vely) 2 Ve (y)

Theorem 7.8 (Jordan’s Theorem):
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A function f is of bounded variation on [, #] if and only if it is the difference of two monotonically

increasing real-valued functions on [a, b]
Proof: Supposef € BV[a, b].
Letg = .—iCl‘}--i- f},h = %(‘? — f), thenf =g- h.

Let xy,x» € [a.8]and x; < %, then
; i 1 B . 1 . o
§0x) = glxy) = 5 [Vyle) + flxz)] = 5[V (o) + £ )]

1. R i
= E[I-"fq:c:} — ¥y (x)] + U Cx2) — f(x,)] -{1]
and

) o 1 B - 1 i )
ke — hix) =5 [Vilxz) — flae)] -5 Vo) — flz)]

= = [V(z) =¥ (x)] = 517 (x) = )] ~(2)
Now
f € BV[a.b]
= e BV, X-]
2 1f () = Flx)l < Tyl 2]
= [Tf{rz,xil +Tf[xl.x:]] — Tyla. x4
=T¢[a, x,] — Tela,x]
= Velxg) — Ve (xy)
= |fixs) — Flal = Vp() — V()
= )= f(x)) S V(%) —Vplx;)and — [fxz) — fxy)] < Vp(x) — V()
= [V (%) — V()] - [f(x2) - F(x,)] 2 0 and[¥ylxa) — V()] + [f(xn) — flx)] = 0
= glx,)—g(x,)=0and h(x,) — hix,) = C
= g and h are monotonically increasing functions f = g —h.

Converse: Let f = g —h where g and k are monotonically increasing real-valued functions on

[a.b]

Then for any P = {a = x4 xy, ... X, = b} of [a,b] we have

Y- fEi_pl= Y g -h) - (g - Wyl
=1

i=1
n n
< ) lgt) - gl + Y Ir(x) - hx_,)
i=1 i=1

= [g(&) — gla)] + [h(b) - hla)]
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= Tf[a, bhl<oo

= f €BV[a b].

This completes the proof.

Theorem 7.9: Show that if " exists and is bounded on [a, #] then f £ BV[a.b].

Proof: Since f"is bounded on [a, 5], .- | f'(x)| = M. forallx € [a,b]

and forsome 0 < M € R
Let P ={& = xp 1y, ...,y = b then

If':.fo - ff-fg_j_)l

Ix_ < | =Ml<i=mn
1~ =1

= [fla) —fla_ Dl EM(x% —xi_y)

mn n
=Z| FOe—flypls M Z(_x,- —x_y)
=1 i=1

=M(b—a)

n
= supZ[ft"x[-) — flxi_ )l = M(b —a)
Pl

=T¢la.b] < M(b —a) < =

= f e BV[ab].

This completes the proof.

@ Example: Show that the function f:[0,1] — [ defined by

5 1
f('x') — 11 cns}. 10
0, a=0

is of bounded variation on [0, 1].

Solution: f is continuous on [0,1].

oy JUR)= FLO)
‘r(o}_}f‘—l}a h
hcos=
— T r_
_1??—?: h =0
and for x =0,

i of . 1yg 1
fix) :r(—sm—)(——-;)+2xms'—
X x X
3 1
=sin—+ Zxcos—
X X

= f'(x) exists in[0, 1]
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. 1 1
If'(xl = |si.n—+ Exm:.'—l
x X

NI 1
= |5m—| + 2|l |L'-Ds—|
EY X

I

1+2=13

Therefore f € BV[0,1]

Summary
A monotonic function f defined on [a.#] is a function of bounded variation and
Tfla. b] = |f(b) - Fla)l
If f is a function of bounded variation on [&, i¥] thenT¢[a, b] = P [a.b] + Ne[a.bland
F(0) — fla) = Prla,b] — Ne[a.D].
For any function f and g defined on [a.b], we have
i) Tz, gla, b] < Tla,b] +T; [a,b]

i) T fla.b] = || Tfla.Bl.c e R
If f.g € BV[a.b]thensois f +g
If feBV[ab]lthensoiscfre®
A function of bounded variation is bounded.
A bounded function may not be a function of bounded variation.
A continuous function need not be a function of bounded variation.
A function of bounded variation need not be continuous.
The product of two functions of bounded variation is also of bounded variation.
Let f £ BV[a.b] and |f{x)| =k for all x & [a, b] for some
0= Kk € R then

1
— € BV[a.b]
f

If f,g € BV[a,b]and | g(x}| = & for all x € [&, b] for some 0 < k ER then

f

— € BV[a.b
g [a.b]
If feBV[@b] and a<c<b then fEeBV[a.c]
JEBV[e,b]and
T¢la. b] = Tyla.c] +T¢lc.b]
If f" exists and is bounded on [a, 5] then f = BV [a.b].

Keywords

Functions of bounded variation: If ?}‘[ﬁ, b] = o= then f is called a function of bounded variation on

[a.b] We denote the class of functions with this property by BV[a.b].

Variation Function: Let f:[a.b] = R be a function of bounded variation on [a, ] The function

Vi [a.b] — H defined by Vz(x) = T [a.x]is called variation function.
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Jordan’s Theorem: A function f is of bounded variation on [a, ] if and only if it is the difference of

two monotonically increasing real-valued functions on [a, b].

Self Assessment

1) Consider the following statements:
(I) A monotonically increasing function f defined on [g, 5] is a function of bounded variation.

(I) A monotonically decreasing function f defined on [a, b] is a function of bounded
variation.Then

only (I) is correct
only (II) is correct

both (I) and (II) are correct
both (I) and (II) are incorrect

9N = >

2) Consider the following statements:
(I) If f is a function of bounded variation then T¢[a, b] < .
(I) Ty[a, b] = Brla, b] + Nyla, blwheneverf € BV[a,b] Then

A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct
D. both (I) and (II) are incorrect

3) Fyla.b] — N¢la, b] = f(b) + f(a)wheneverf € BV[a,b].

A. True
B. False

4) Total variation, positive variation, and negative variation need not be non-negative
quantities.

A. True
B. False

5) Consider the following statements:
() Tpla.b]+ T la.b] = T ¢, 4 [0.0].
(1) Tepla, ] = cT¢la.b] .c € R Then

only (I) is correct

only (II) is correct

both (I) and (II) are correct
both (I) and (II) are incorrect

9N = >
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6) Consider the following statements:

(I) A function of bounded variation must be bounded.

(I) A bounded function must be a function of bounded variation. Then
A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct
D. both (I) and (II) are incorrect

7) Consider the following statements:

(I) A function of bounded variation must be continuous.

(IT) A continuous function must be a function of bounded variation. Then
A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct
D. both (I) and (II) are incorrect

8) Consider the following statements:

(I) The product of two functions of bounded variation is also of bounded variation.

m)fesﬂmmamﬂfuﬂiaﬁrmue[mMmmoicemhmmaﬁesvmﬁlﬂmn

A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct
D. both (I) and (II) are incorrect

9) Consider the following statements:
() f € BV[a.b] = ¢f € BV[a. b] only when ¢ is a non-negative real number.

(I) f = BV[a.b] = cf € BV[a.b] for every real number ¢.Then

A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct
D. both (I) and (II) are incorrect

10) f,g € BV[a.b]Consider the following statements:
(D) f + g € BV[a,b]
() f — g € BV[a.b]. Then

A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct
D. both (I) and (II) are incorrect
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11) Let f € B¥[a.b]and @ < ¢ < b. Consider the following statements:
() Tyla, b] — T¢[e, b] = T¢la, c ]

(1) f € BV[a.c] Then

only (I) is correct

only (II) is correct

both (I) and (II) are correct
both (I) and (II) are incorrect

90w p

12) Variation function is a monotonically increasing function.

A. True
B. False

13) Consider the following statements:

(I) If f & BV[a,b] then it can be written as the difference of two monotonically increasing
functions.

(IT) If fis the difference of two monotonically increasing functions then f is a function of
bounded

only (I) is correct
only (II) is correct

both (I) and (II) are correct
both (I) and (II) are incorrect

9N = >

14) Choose the correct option.

If f is bounded then it is a function of bounded variation.
If f" exists then it is a function of bounded variation.

If f' exists and is bounded then it is a function of bounded variation.

9N = >

none of these

15) Suppose f is a real-valued function on [0, 1] defined by

x:cos(i.‘)- 1 =0
flx) = ' T,
0ix=0
then
[ exists.
[ is a function of bounded variation.
f'is bounded.

all are correct.

9N = >
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Unit 07: Functions of Bounded Variation

Answers for Self Assessment

1 C 2 C 3 B 4 B 5 D
6 A 7 D 8 A 9 B 10. C
11. C 12. A 13. C 14. C 15. D

Review Questions

1) A bounded function may not be a function of bounded variation. Give an example in support of
this statement.

2) Let f:[0,1] = K.such that
3
f(_':r:} _ xcns(ﬁ)-. ¥ 0.
D:x=0

Show that f is not of bounded variation.
3) Show with the help of an example that a continuous function need not be of bounded variation.

4) A function of bounded variation need not be continuous. Give an example in support of this
statement.

5) Let f:[—1,1] —= B, such thal
2. (1Y
flo) = X *sin l;}t 0.
Opx=0

Show that f is of bounded variation on [-1, 1].

l_.._] Further Readings

Measure theory and integration by G DE BARRA, New Age International.
Real Analysis by H L Royden and P M Fitzpatrick, Pearson.
Lebesgue Measure and Integration by P K Jain, V P Gupta and Pankaj Jain, New Age
International
Web Links
https:/ /nptel.ac.in/courses/111/101/111101100/

WWW

https:/ /www.youtube.com/watch?v=xUMRSOtM654 &list=PL_alTI5CCIRGKYvo8XNFTK
9zkjMbYTEwWS
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Unit 08: The Four Derivatives and Differentiation and Integration
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Objectives
After studying this unit, students will be able to:

determine the four derivatives

define the relationship between differentiation and integration
explain Lebesgue point of a function

demonstrate Lebesgue set of a function

explain the Vitali covering lemma

understand Lebesgue theorem

Introduction

Differentiation and integration are closely connected. The fundamental theorem of calculus tells us
that differentiation and integration are inverse processes. In this unit, we will examine these
concepts in detail.

8.1 The Four Derivatives

If f is an extended real-valued function, finite at x and defined in an open interval containing x,
then the following four quantities, not necessarily finite, are called as the four derivatives or Dini
Derivative,

flx+h) - f(x)
h
flx+h)—f(x)

f h

1) D* f(x) = h]i—»rg+ sup (Upper Right Derivative)

2)D, flx) = hlirg+ in (Lower Right Derivative)

+h)— f(x
p w (Upper Left Derivative)

DD fx) = Jim su

, ff(X+h)—f(x)

HD_flx)= ;llr& in b (Lower Left Derivative)

L ovely Professional University 109



Notes
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Notes; 1) The function f  lifferentiable at ~ nd only if, the four derivatives have a
finite common value. e x if a

2) D* f(x) 2 Dy f(x)
3) D™ f(x) = D_ f(x)
#) D' (~f) = ~D, (f)
5) D~(~f) = ~D_ (f)
6) D, f(x) = ~D* (=f(x))
7)D_ @) = ~D~(=f ().

Example:If ;
Fx) = x|, fine DF £FCO). D FCO)D  FOO), D= FOON,

Solution:
. fO+h) - f(0)
+ —
D* £(0) = Jirg sup ™
L f(h)
= g, sup
— ]' n
= attR
=1
h)— f(0
b 1@ = i, it D=
g MR T
= g f(h)—f(0)
D f(O)—hllbrgﬁsup?
= L
T g T
h)— f(0
b 1@ = i 1ot D@
= Jim it =1
—hlrgﬁ11 =L
Toam T W
=) :
(T S —ix 3 e -
Example: I fGx) ='i 0“; _ 0* O, findD+ £(0),D" £(0),D £(0),D~ f(O).
. f(h) - f(0)
+ = _—
D* £(0) = irg, sup=——
-
hsm;

= g sup T,

) .1

= h'[% sup smﬁ
1

=inf sup sin—=1
n<hes N

P |
Dy f(0) = h"ﬂ# mfsmE =-1
2 o 1
D f(O)—f!I!rg"supS|nE—l

1
D_f(0) = lim infsin = —1.
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—‘t,q rne r,_”“ iva tii s anc I=fferenti—tion an  Intes
Eif PUEEY Fx) & ll;x & QT £ [0.1'] R, fin: ,D+ f((]), D FON DB £C0). D- F(O).
x+h)— flx
Solution: Whenx € @, Dt f(x) = h]ir{]k supf(—%ﬂ
— g sp R _ (o o) =
= |m+ sup % = h[?* sup orh =00

D, f(x) = Jim in S - L pp— (Dor%)z{]

=1
h-0*

D™ f(x) = J[rg" supﬂx; h) = P}lrg_ sup ([} oré) =}
D_ f(x) = hlim" nff(x +h = ,.,IL’},‘— inf (0 or%) = -
rreq 0° 10 = iy sp P < i sup FEE 2
= figs0p = =l s (T or0) =0

D, f(x) = 41?+ inf (_Tlor D) =
D™ flx) = Jim_sup (_Tlor D) =

D: flx) = Jirg" inf (—_h—l or 0) =0

[/E_] Example: If

1 1
(ax sin?— + bx cos?—, x>0
X x
X) = 1 1 i
f&) pxsin?—+gxcos?=, x>0
X X
0 i x=10

a < p,p < q@findPy £C0),D+ £(0),D- £(0),D_ f(0).

T .
Solution: D £(0) Jirm, p_—h

1
oF
Uy
o

I
=
w
[

©

) ah sin? 2 —+ bh c052
N h

Il
=
wy
c

©

1
Ilm sup [asm —+ b cos? 7

— i a 1 2y b F e 2
_hl'?+5”pl5( msh)+2( ‘“Shﬂ

; 1 2
= Enl'l“% sup [(a +b)+(b—a) COSEJ

1
=5(a+b+b-a)=b

D, f(0) = hlir(r)y_ infit%

1 2 1
=3 Jim inf[@+5) + (b —a)cos>| =2 (a+b—b+a) =a

2h-0
D~ f(0) = Ilm *;upQ

— i [ s'n21+ 21-
—er"(r)l_sup psi ; acos’y
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1 2
= Ehllﬂrgﬁsup [(p tq)+(@-p) cosEJ

1
=§[p+q+q-p]=q

D f(0) = lim i1f£;i)

1
2

‘e 2
Jim, mf[(p +q) + (g —p)cosy

1
=§[p+q—q+p]=P

Indefinite Integral: If f is an integrable function on [a, b] then the function F defined by

Flx) = ff(t)drw(a)

is called the indefinite integral of f.

Theorem 8.1: Let f be an integrable function on [a,b]. Then the indefinite integral of f is a
continuous function of bounded variation on [a, b].

Proof: Let F be an indefinite integral of f defined on [a, b]
Flx) = ffu)dr +F(a)
(3
Let ¢ be any point of [a, b]. Then

[F(x) = F(c)l =

ff(tJdt = ff(t)df ff(t)dt —ff(t)dt

frf(t)dt

< j FOlde (D)

Now f is integrable over [a, b].
|f lis integrable over[a, b].

Therefore, for given € > 0, § >0 such that for every measurable set 4 € [a, b] with m(4) < &, we

have
[ir1<e
A

jlf(t)]dt <eforlx—cl <&  ..(2)

|F(x) —F(c)| <eforlx—c| <&
F is continuous at ¢ and hence on[a, b].
Let P = {a = x9, X1, ..., X} be any partition of [a, b].

Then

£y

f f(t)de

Xi—

Si fff(t)ldt

=1x_,

n

i=1 i=1
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b
= j IF()ldr

T b
sup ;mxu — Pl )l < j (Ol dt

b

Tla,b] < [ IF(©)lde <

a
F € BV[a, b].
This completes the proof.

Theorem 8.2: If f is an integrable function on [a, b]land

x

Jf(t)dt =0

a
for all x € [a, b] then f = 0 a.e.in[a, b].

Proof: If possible, let f # 0 a.e.in[a,b]. Let f(t) > 0 on set E € [a, b] with m(E) > 0.Then a closed
setF € Esuch that m(F) > 0.

Let O = F¢ = [a,b] — F so that 0 is an open set. Let 0 = Uy(an, by) where {(an, by)} is a sequence of
pairwise disjoint open intervals.

Now

F(t)dt = 0 forall x € [a, b]

TR

j F(&)dt = 0

flt)ydt=20
OUF

Lf(r) dt—l—";f(t) dt=10

ff(t) dt = ~ff(t) dt
) r
Since f(t) > 0on F and m(F) > 0.

f FO)dt # 0
F

-jf(t)dt:tﬁ
el

J' f(t)dt+ 0
Un{aba)

b,
Z ff(t)dneo

n
by
f f(t)dt # 0 for some positive integer N.

an

}Nf(t)dt - }Nf(t)dt =0
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by ay

=>f f)dt = ﬂorJ flt)dt =0

which is contrary to the given. Hence f = 0 a.e.on[a, b].

This completes the proof.

Lebesgue Point of a Function: Let fbe an integrable function on [a, b]. A point x in [a, b] is said to
be a Lebesgue point of f if

x+h

1
im [ 17 - r@lde = 0

Lebesgue set of a function:
The set of all Lebesgue points of a function f in [a, b] is called the Lebesgue set of a function f.
Theorem 8.3: Every point of continuity of an integrable function f is a Lebesgue point of f.
Proof: Let f be continuous at x.
for given € > 0, & > 0 such that
|f(£) — fxg)| < e whenever|t — x,| < &

Now for 0 < |h| < 8§, we have

xp+h xgth

1 1
7 f lf(t) = flxglldt < e= E%ﬁ f If(t) = f(xg)ldt = 0.

This completes the proof.

8.2 Differentiation and Integration

Theorem 8.4: Let f be bounded measurable function defined on [a, b]. If

F(x) = ff(t)dt + F(a)

Then
F'(x) = f(x) a.e.on[a,b]

Proof: Since f is bounded and measurable on [a, b].

f is integrable on[a, b].

F is a continuous function of bounded variation on [a, b].

F' exists a.e. in [a, b].
Now, f is bounded on [a, b].
Therefore a positive real number k such that [f(x)| < k forall x € [a, b].
For each positive integer n, define

F(x+ h) — F(x) h—l

falx) = n =

Then

x+h x
1
falx) :EU f{t}dt—Jf(t]dt}

x+h

= % [ f(t)de
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Unit 08: The Four Derivatives and Differentiation and Integration

x+k

1
G =5 f Fde

x+h

< [ ol

X
x+h

<kf dt=k

=5 t=
x

[0 < k.
Also
) ) r :JL'+—:1-)-—F(1')
finy ) =l ——%——
T
F(x+ h)— F(x)
=lim—————
h=0 h
=F'(x) a.e.

Therefore, by bounded convergence theorem, for every ¢ € [a, b],

JEF’(x)dx = r}l_p; fﬁ:(X)dx

P+ h)—F@
= l1mf——dx
h—0 h

[}

‘ l 13 14
= Im fF(x + h)dx —fF(x)dx]
a a
1 cth e
= lim© J' F(x]dx—fF(x]dx]
a+h a
1 [ c+h &
= lim fF[x)dx+j F(x)dx—jp(x)dx}
a+h c a
1 a c+h
:E%El J' Flfx)dx—i—[ F(x)dx]
a+h ¢

_1‘ 1
S0

cth ath
f F{x)d;r—f F(x)dx‘ « (1)

F is continuous therefore lim,, _ . i);“h F(x)dx = F(c)

(@) fF"(:c)dx =F(c) —F(a) = ff(x)dx

f [F'(x) - £(©)] dx = 0 ¥c € [a, b]

= F'(x) — f(x) = 0 a.e.in[a, b]
F'(x) = f(x) a.e.in[a, b].
This completes the proof.

Theorem 8.5: Let f be an integrable function on [a, b] and
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Bl = f F(©)dt + F(a)

Then F'(x) = f(x) a.e.in[a, b].
Proof: We may assume that f = 0. Define a sequence {f,} of function

(&) fl) =n
f“tx)_{n i flx) >n

Each f, is bounded and measurable on [a, b].
d [ ‘
= [ mode = fu@ acinlab) )
(3
Let
6 = [(F = fr)men
[

Then G, (x) is monotonically increasing function of x.

Gnis differentiable a.e. in [a, b] by using the result “If f is monotonically increasing real-valued
function on [a, b] then f is differentiable a.e. and f’ is measurable,

b

J' Fi0dx < f(b) — F(a)."

@

F(x) sz(s)de(a)
:j(f—ﬁc)dt+jfudt+,ﬁ‘(q)
a a

= G,(x) + f fu(®) dt+ F(a)

F'(x) = Gy (x) + f,(x) a.e.
F'(x) = fu(x) a.e.¥n
F'(x) = f(x) a.e.

b

J' F'(x)dx = f £ ()dx

@

= F(b) — F(a)
b
JF’(x)dx > F(b) - F(a) Q)

Also, we have
b

jF’(x)d:r < F(h) —F(a) ..(3)

a

F'(x)dx = F(h) — F(a) —jf(x)dx

F'(x)dx = J FOOdx

[+

j
Jrosc- |
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b

[ 1760 = reondx

a

F'(x) - f(x)=0a.e.

F'(x) = f(x) a.e.in[a, b).
This completes the proof.

Vitali Cover: Let E € R, then a collection V of closed intervals of positive lengths is said to be Vitali
Cover of E if for given ¢ > 0 and any x € E,3 an interval | € V such thatx € I and I(]) < e.

Vitali’s Covering Lemma: Let E be a set of finite outer measure and V be a Vitali cover of E.
Given e >0, a finite disjoint collection {I1, I, ..., Iy} of intervals in V such that
N
m" (E = U In) <€
n=1
Proof: Since m*(E) < o, therefore we can find an open set 0 2 E such that m*(0) < o
Since IV is a Vitali cover of E, we may assume that each interval in V is contained in 0.
Now we choose a sequence {I,} of disjoint intervals of V by induction as follows:

Let I be any arbitrary interval of V and let k,; be the supremum of the lengths of the intervals in V
which do not have any point in commeon with 1.

Then ki < o0 ask; < m(0) < oo.
Now, we choose an intervall, from V, disjoint from /Iy, such thatl(l,) > %k,.

Let k; be the least upper bound of the lengths of the intervals in V which do not have any point
common with I orl; and k, < co.

Choose I3 from Vwhich is disjoint from I; U Lsuch that [(I3) > % K.

In general, having already chosen n disjoint intervals, Iy, I, ..., I,, we denotek,, < oo, the l.u. b of the
lengths of all intervals in V which do not have any point common with U, /; and choose an
intervall,, ;4 from V such that it is disjoint from the preceding intervals and

1
i(“n{»i) > Ekn-

Now, if for some n, the set Uj-,[; contains almost every point of the set E, then the lemma is
proved; otherwise, we get an infinite sequence {I,} of intervals from V such that

lrinllj:¢,viij
and
ky
{(las1) > E'k“ <oo,n=123,..

Here, we note that the sequence {k,} is a monotonically decreasing sequence of non-negative real
numbers.

Since

1,0

s iCs

1(f) < m(0) < oo

1

(1) converges.

s %

=

=1

for given € > 0, aninteger N such that Z (L) < g (1)

n=N+1
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N
let J=E— U i
n=1

Claim:m*(J) < e.

N
Letx € ] thenx ¢ UI“'

=1

UN_4 I, is closed set not containing x, we can find an interval / in V such that x € I and L(I) so small
that I does not meet any of the intervals Iy, /5, ..., Iy

ielnl=¢,i=12.,N.
Then we may have
WD) < ky < 2 U(Iyss)
Since lim,, ., I(I,,) = 0.
Therefore, interval I must meet at least one of the intervals in the sequence {I,,}.

Let ngbe the smallest integer such that / meets I, .
Then ng > N and I(I) < kp,-1 < 2{(I5,,) w(2)
Since x € I and I has a common point with I, .

Therefore, the distance of x from the midpoint of I, is at most

1 1 5
D +5U(1,) < 2U(ly,) +=U(1.,) =5 UI,,)
z . 0 A U é 0
Therefore, if ], is an interval concentric with I, such that
1(Jn,) =5U(Iy, ), wefinuthat x € J, i.e.¥x€/,In=N+1

such that x € J,, and
L) =5 1(1,)

[¥s]

qunzulfn

m'(]) < i 1Gw)

n=N+1
=5 ) l)<e {byW)
n=N+1
Thus, we get
m'(J) <e.
This completes the proof.
Theorent 8.6 (Lebesgue Theorem):

Let f be monotonically increasingthe real-valued function on [a, b]. Then f is differentiable a.e.
and f'is measurable.

Further,

b

"

J £/ dx < f(b) - f(a).

[+

Proof: We first show that the set of points of (a, b) where any of two Dini derivatives are unequal is
of measure zero.

Let
E={x € (a,b):D* f > D_f}
F={xe(a,b):D” f>D.f}
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G={xe(ab):D" f>D_f}
H={x€e(ab):D"'"f>D,f}
Since
DY f(x) 2Dy f(x), D™ flx) = D_ f(x)
Therefore, it is sufficient to show that the measure of each of the setsE, F, G, H is zero.

We shall show that m"(E) = 0 and the results in respect of the sets F,G and H can be proved
similarly.

For any rationalsr and s, with r > s, we define the set

Eio={x:DV f(x) 57 >5 >D- f(x)}

=B, .

rseq

Then

Let m*(Eyc) = .
Then for given ¢ > 0,3 anopen set 0 containing Ey ;,such that m(0) < a + ¢ (2]

SinceD_ f(x) < s Vx € E,., therefore, there exists an arbitrary small interval[x — h,x] € 0

such that
fl) = flx—h)
&

fx) = f(x—h) <sh W (3)
Thus, the collection V = [.’x: x € Er‘j.}. wherel, = [x — h, x] forms a Vitali cover of E;;.

Hence by Vitali’s covering lemma, for given € > 0, there exists finite disjoint collection
{le i 1x, o1 I, } of intervals of V such that

m" (E‘” — U "'ra) <€

i=1

Let Ixi = [xi = hg,xg],i = 1,2, ey N.
Then,

N

N
Z[f(x:) —fli—h)l<s Z hy< sm(0) <s(a+e).

i=1

Let,

N
A= Emﬂ [U I;?i].and yEA
i=1

Since D* f(y) > r, therefore, there exist arbitrary small interval[y, y + k] contained in some I, such
that f(y + k) — f(y) > rk.

Again, by using Vitali’s covering lemma, a finite disjoint collection {J;.,Jy.,....Jy,} of intervals,
where J,,, = [yj,yj + kj], j=12,.., M such that

M
m" A_U‘ny < €,
j=1

Now,m*'(Ad) >a —€

M
AN j’fﬂ>a~—2£,
(v

m"

and
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M M
Z[f(y;— +k) = f(vy)] > ?’Z ki >1(a — 2€)
=1 j=1
But each Iy, is contained in some I, therefore, summing over those j for WhiChfy; C I, we get

DO+l = FO] < ) (FG) - Fxi = )

N M
Z[f(x;) —fla~h)l= Z[f(yj +k;) = f(yy)]
i=1 Jj=1

s(a+e) >r(a—2¢)
Since € > 0, is arbitrary. Therefore, we have
sx=zra
a=0~s<r
m*(Eps) =0
m(E) =0
This shows that

fGx+h)—flx)
h

is defined a.e. in [a, b] and f is differentiable whenever g is finite.

900 = Iy

Now we write

flx+3)-F@
In(x) =————,f(x) = f(b),vx = b
n
Since f is increasing, therefore, {g,,} is a sequence of nonnegative measurable functions.

Also,
lim g,,(x) = g(x) a.e.inla, b]
g is measurable.

So, by Fatou’s Lemma, we have

b

b
Jg Sliminfj G5
a

a

= liminfn JE lf (x +%) - f(x)]

|' b+; !:
=liminf|n f f—nJ f

L #g =
b by ety b
=liminfn a:[%f+bj f_;! f—aLf
[ b+l a+s
=|iminf{n! f—n:! f
= lim inf{nﬂb) -n “f‘f

120 Lovely Professional University



Notes

Unit 08: The Four Derivatives and Differentiation and Integration

1
at+—
n

= f(b) —lim supn f vd

<f(b) - fla) <o
g is integrable and hence finite a.e. in[a, b].
Hence f is differentiable a.e.in [a,b] and g = f' a.e.in [a, b].

This completes the proof.

Summary

Upper Right Derivative:
) flx+h)—f(x)
+ Py
Dt f(x) = rﬂr& sup b .

Lower Right Derivative:

flx+h)— f(x)
==

D, f(x) = jJirg,{ inf
Upper Left Derivative:
I fl+h) = Fx)
A
Lower Left Derivative:
o 2

If f is an integrable function on [a, b] then the function F defined by

D_f(x) = hli_rgl_ inf

Fe) = [ f(0de +F ()

is called the indefinite integral of f.
Let f be an integrable function on [a, b]. A point x in [a, b] is said to be a Lebesgue point of
fif
1 x+h
im [ 1@ - Flde = 0

The set of all Lebesgue points of a function f in [a,b] is called the Lebesgue set of a
function f.

Let E € R, Vis the collection of closed intervals of positive lengths is said to be Vitali
Cover of E if for given € > 0 and any x € E,3 an interval I € V such thatx € [ and I(I) < e.
Let E be a set of finite outer measure and V be a Vitali cover of E. Given € > 0, ™ a finite

disjoint collection {Iy, I, ..., Iy } of intervals in V such that

N
m" (E — Ufn) <&
n=1

Let f be increasing the real-valued function on [a,b]. Then f is differentiable a.e., f'is

measurable and
b
| F@dxsf®) - fl@.

Let f be an integrable function on [a, b]. Then the indefinite integral of f is a continuous
function of bounded variation on [a, b].

If f is an integrable function on [a,bland J:f(t)dt =0for all x €[a,b] then f =
0 a.e.inla, b].

Every point of continuity of an integrable function f is a Lebesgue point of f.
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Let f be bounded measurable function defined on [a,b]. If F(x) = f:f(t)dt + F(a) then
F'(x) = f(x) a.e.on[a, b].

Let f be an integrable function on [a,b] and F(x) zjj f(t)dt + F(a),then F'(x) =
f(x) a.e.inla, b].

Keywords

Upper Right Derivative: D f(x) = lim,, .5+ sup itail e ih 1]

h
LowerRight Derivative: D, f(x) = lim,_ g+ infw.
UpperLeft Derivative: D™ f(x) = lim;,_o- sup w

inff(x+h)—f(1)_

LowerLeft Derivative: D_ f(x) = limy,_ - .

Indefinite Integral: If f is an integrable function on [a, b] then the function F defined by
F(x) = ff(t)dt + F(a)
(1}

is called the indefinite integral of f.

Lebesgue Point of a Function: Let f be an integrable function on [a, b]. A point x in [a, b] is said to
be a Lebesgue point of f if

x+h

1
im [ 17 - r@lde = 0

X

Lebesgue set of a function: The set of all Lebesgue points of a function f in [a, b] is called the
Lebesgue set of a function f.

Vitali Cover: Let E € R, Vis the collection of closed intervals of positive lengths is said to be Vitali
Cover of E if for given € > 0 and any x € E,3 an interval | € V such that x € ] and I(I) < e.

Vitali’s Covering Lemma: Let E be a set of finite outer measure and V be a Vitali cover of E.

Given € > 0, a finite disjoint collection {I;, 15, ..., Iy} of intervals in V such that

N
m" (E = Ufn) <€
n=1

Lebesgue Theorem: Let f be increasing the real-valued function on [a,b]. Then f is differentiable
a.e., f'is measurable and

b
Jf%ﬂdxéfw)—fwl

Self Assessment

1) Consider the following statements:

M) D*f @) = lim i“fﬁ&‘f_‘i-_f@

fx+h)—fx)
up

(D~ f(x) = girg]gs . Then

only (I) is correct

only (II) is correct

both (I) and (II) are correct
both (I) and (II) are incorrect

9N = >
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2) Consider the following statements:

 flxr+h)—fx)

MD_f(x) = h!i%mf h

(DD, f(x) = ;fi’?% in N

only (I) is correct

only (II) is correct

both (I) and (II) are correct
both (I) and (II) are incorrect

SN = »

3) Consider the following statements:
M) DY) = Dyf(x)
() D~ f(x) = D_f(x).Then

A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct

D. both (I) and (II) are incorrect

4) Consider the following statements:
() D*(=f) = ~D*(f)
() D=(—=f) = D_f(x).Then

only (I) is correct

only (II) is correct

both (I) and (II) are correct
both (I) and (II) are incorrect

SN = »

5) Consider the following statements:
(1) =D*(=f) = D.(N)
() = D~(=f) = D_(f). Then

A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct

D. both (I) and (II) are incorrect

6) Consider the following statements:

(DLet f be an integrable function on [a, b]. Then the indefinite integral of f is a continuous

function on [a, b].

(INLet f be an integrable function on [a, b]. Then the indefinite integral of f is a function of

bounded variation on [a, b].
A. only (I) is correct
B. only (II) is correct
C. both (I) and (II) are correct
D. both (I) and (II) are incorrect

ff(x+h)—f(x)
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7)If f is an integrable function on [a, b] andj;r f(t)dt = 0,vx € [a,b] then f = 0 a.e. on[a, b].

A. True
B. False

8) Let x be a Lebesgue point of integrable function f then

1 x+h
hmﬁj; |F(t) — f(x)|dt < 0.

k-0

A. True
B. False

9) Every point of continuity of an integrable function f need not be Lebesgue point of f.

A. True
B. False

10) Let f be an integrable function on [a, b] and F(x) = ];f f(t)dt + F(a), then F'(x) =
f(x)a.e.on [a,b).

A. True
B. False

fO)flx)<n

11) Let f,,(x) = {n' X then each f; need not be bounded.

A. True
B. False

12) Letf —g = 0and J.(f —g) =Othen f = g a.e.

A. True
B. False

13) A family H of closed intervals of positive lengths is said to be Vitali cover of set E if for
given > 0and any x € E, there exists an interval I € H such that x € I and {(I) >€.

A. True
B. False

14) Let H be Vitali cover of E,m"(E) < oo, then for any <> 0, there exists a finite disjoint
collection {I,},n = 1,2,..., N of intervals in H such that

N
m'(E — U In ) <E,
n=1

A. True
B. False

15) Let Iy, I, be two intervals such that I; has a point in common with I,. Let x € I;, then the
distance of x from the midpoint of I, is at most {(I;) + % L(I,).
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A. True
B. False

16) Let f be monotonically increasing real-valued function defined on [a, b]. Then f is
differentiable almost everywhere.

A. True
B. False

17) Let f be monotonically increasing real-valued function defined on [a, b]. Then f' is
measurable.

A. True
B. False

18) Let f be monotonically increasing real-valued function defined on [a, b]. Then
b
A.f £/ < ) - f(a)
b
B. [ 10 <f@-r®)
b
& f F0) > FB) + (@

b
D, f F10) < Fb) +f(@)

19) Let h(x) = f (x + 711) — f(x), f is monotonically increasing function then {h,,} is a sequence
of nonnegative measurable functions.

A. True
B. False

Answers for Self Assessment

11.

16.

D 2. B 3. C 4. D 5. C
C 7 A 8 B 9 B 10. A
B 12. A 13. B 14. A 15. B
A 17. A 18. A 19. A

Review Questions

1) If f(x) = [

XCOS X0 nap, £(0),D* £(0), D~ £(0),D- £(0).

0;x=0

2) If £(x) = 2|x|,findD, £(0),D* £(0),D~ f(0), D_ f(0).

O;xe@

1) = {50y g @ findDs F(OLD* £(0),D7 £(0),D- F(0).
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4H If
1 1
(2xsin2—+3xcosz—, x>0
) 1
fla) = \3xsin2—+5xcusz—, x>0’
% x
0 " x=0

a< b'p < ‘?;fiﬂ( D+ f(o))D+ f([))j D_ f(G),D_f(0)>
5) Let f be bounded measurable function defined on [a, b]. If F be the indefinite integral of f
F.Then F'(x) = f(x) a.e.on[a, b].

|_..J Further Readings

Measure theory and integration by G DE BARRA, New Agelnternational.
Real Analysis by H LRoyden and P M Fitzpatrick, Pearson.

Lebesgue Measure and Integration by P K Jain, V P Gupta and Pankaj Jain, New Age
International.

Graduate Texts in Mathematics, Measure Integration and Real Analysis, Sheldon Axler,
Springer.

An Introduction to Measure and Integration, I K Rana.

@ Web Links

https:/ /nptel.ac.in/courses/111/101/111101100/

https:/ /www.youtube.com/watch?v=xUMRSOtM654&list=PL_alTISCCIRGKYvo8XNFT
K9zkiMbYTEwS

https:/ /www.youtube.com/watch?v=YIrx8 W5nyq8&t=29s
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Unit 09: Abstract Measure Spaces
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Objectives
After studying this unit, students will be able to:

define ring and ¢ —ring

explain algebra and o — algebra
definehereditaryo —ring
demonstrate measure on ring R

understand measurable space and measure space

Introduction

In this unit, the definition of measurable sets and functions are provided for abstract measure
spaces. We present in this general setting, the main results of measurable sets, measurable
functions, and Lebesgue integral on the real line provided in the previous units.

9.1 Abstract Measure Spaces

Definition: A class of sets R, of some fixed space X, is called a ringif whenever E € Rand F € R,
then E U F and E — F belong to R.

e. g. The class of finite unions of intervals of the form [a, b) forms a ring.

B- Notes: Since the class is closed under the union of two sets, it is closed under the union
- of the finite number of sets.

= Notes: AAB = (A — B) U (B -
ANB = (4AUB)— (4AB) € R.

9
A) e R

E‘ Notes: The intersection of a finite collection of rings on . \gain a ring.

e anter Ilect
I"i?l* Notes: If class of subsets of en ntersection of all ri o0
-t . . K is a . X, th e 1 . s contai E is a
ring which i< called the ring generarea by £'@1,d is denoted by R(YJ: L85 the smancet

ring containing a given class of subsets of space X talled a generated ring.

Definition: If the ring R has the property that A € R = A° € R for every A € R then R is called
algebra.
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I'g,)' Notes: Every algebra is a ring but the converse is not true.

e. g. In an infinite set, if we take the collection of all finite subsets then it is a ring but not
an algebra.

Definition: A ring is called a o — ring if it is closed under the formation of countable unions.

o A ring is called a o — ring if

B‘ a countable intersection.
= Notes: o — ring is closed under

E;,' Notes: A - ring is a ring but the converse is not true.

e

= Notes: The intersection of a family of -ringsis againa - ring.

CELOI OF & s
__/ Notes: We define . _:‘) to be the smallest - ring containing a class of sets which is
- called the S )

o " ring generated by E-

Definition: A o — ring is called a ¢ — algebra if it is closed under complementation.

Definition: A class of sets H with the property, namely that every subset of one of its members
belongs to the class, is said to be hereditary i.e.if A € H and B © A = B € H then K is said to be
hereditary.

Definition: A class of sets 3, is called hereditary o — ring if it is & — ring and is hereditary.
E‘ Notes: (R)denotes the - ring generated by the ring R.
& o - &

E?p‘ Jotes: 7 (R) denotes the class consisting of (R) together with all subsets of the sets of
o3 % ( .'R) ) =

e ar "

= Notes: H(R)isa - ringand is the smallest hereditary - ring containing R.

i L

E‘ Notes: The intersection of hereditary - ring is again a hereditary - ring.

ACTIEOT O MErcaitar? o — Cing

—¢ Notes: H(R) =H S )
t R

F(FHCR ).

Definition: A set function g defined on a ring R is a measure if

1) pisnon-negative
2) w@)=0

3) for any sequence {4,,} of disjoint sets of R such thatU3., 4, € R, we have

I (G An) = i p(Ay).

=1

Definition: If R is a ring, a set function u* defined on the class H (R) is anouter measure if:

1) p'is non-negative.
2) IfACSBthenu'(4A) <u'(B)
3) wip)=0
4) for any sequence < A, > of sets of H(R),
o (U An) < z 1t (An).
n=1 n=1
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s Notes: Lebesgue outer measure 5 an outer measure in the sense of the above
= et i

definition.

TTTRENEASLITET TR 1N ST1 ) ITET  ITIeEsLITes 1T

@ Example: Show that if 4,5 € ,

!
R arm A= & ther p(A) = p(B8).

Solution: Since B =AU (B —A)
= u(B) = u(A) + u(B — 4)
= p(A) < u(B)

Theorem 9.1: Let {4;} be a sequence in a ring R, then there is a sequence {B;} of disjoint sets of R
such that B; € A; for each i and
N
Al' =5 U B;

=1 i=1

—-

for each N, so that

gs
i
.gs

n
b
n
b

Proof: Define {B; }as follows.
By = Ay,
n-1

Bn:ARHUBi,n>1 (1)
i=1

B{' € R and Bi c Ai for each i.

Also, as B, and U} B; are disjoint, we have B, N B, = ¢ forn >m.

B, = A; and if
k k
UBE = UAI (2
i=1 i=1
then

This completes the proof.
Theorem 9.2: If it is a measure on ringRand if the set function y* is defined on #H'(R) by

wi(E) = inflz u(E):E,ERNn=12,., EC U En]. .. (1)

n=1 n=1

then
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i) for E € R, u'(E) = u(E)
if) u" is an outer measure on H (R).
Proof: (i) If E € R then (1) givesu' (E) < u(E) - (2)
Now, suppose E € R and
e
i U E,
n=1

where E,, € R then we may replace the sequence {E; N E} by a sequence {F;} of disjoint sets of R
such that F; € E; n E and

C
el
™
=
=

i

Cs ™
=
I
m

(3

n
b

Since
FnginE:’Fl _C_Ei
= u(F;) < u(E;) foreachi (4

Now,

u(E) = u(lj Ff)

i=1

Zﬂ(ﬁ
Eiu&?)

i.e. pu(E) < Za(ﬁ})

= u(E) = ' (E) -~ (5)
From (2) and (5), we get

u(E) = p’ (E).

(ii) Now we will show that " is an outer measure on H(R). By part (i) we get

1) ¢ is non-negative
2) IfAC Bthenu'(A) <pu'(B)
3) wi(p)=0

Next, we will show that for any sequence < E; > of sets of H (R),
5] o3
u (U EI) < Z w(Eo).
i=1 i=1

Suppose {Ei } is a sequence of sets in H (R) then

uCg

w'(E) = mf{z ,u(EU) [EU}]S a sequence of sets ofRfor each i such thatE;
j=1

Therefore, for given € > 0 and for each E;, 3 a collection {EiJ }-} of sets of R such

oo
EE' = U Ef_j
Jj=1
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and

o0

Zﬂ(ﬁ':.j) < u'(E) +§ . (6)

J=1

The sets E; ; form a countable class covering Uiz, E;, so

. (L:J E.f) < 22#(&.;)

o

< D )+
1

Theorem 9.3: Show that

o0
H®R) ={E:Ec Ugn,Ene:e]

n=1

Proof: Here RHS defines a class of sets that is hereditary, contains R, and is a & —ring.

So, it contains H (R). 1. e.

HR) € %E: fic U Bk € R] )

n=1

Now, if E,, € R for each n,

D E, € S(R)

and so, each subset belongs to H (R).i.e.

(=]
’E:EEUEH,EHER

=1

c H(R) (2

From (1) and (2), we get

0
}[(R)z%E:EEUEn,EnER

n=1

This completes the proof.
Definition: Let ¢ be an outer measure on H (R) then E € H (R) is u* —measurable if for each
AeH(R),
W) =p (ANE) +p (AnES)

Theorem 9.4: Let u* be the outer measure on H (R) defined by g on R, then §*contains S(R), the
g —ring generated by R. Here §* denotes the class of u* —measurable sets which is a ¢ —ring.

Proof: Since §” is a 0 ~ring, therefore it is sufficient to show that R € §*.

IfEeR AeH(R),e>0,3 asequence {E,} of sets of R such that

Ac EJEn (D)
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and
R +e2 ) uEn)
n=1
= ul(E 0 B)U (B, 0 ED)]
n=1
_ Z u(En N E) + Z 1(E, N E°) -~ (2)
n=1 n=1

b <] b <
Also, we have, wWANE) < Z#(En nNE), w'(AnE®) < Zp(E‘n nE®S)
n=1 =1

@=2pw@+ezp (ANE)+ ' (ANEY)
2 (A2 (ANE)+ ' (ANES)
s (A)=pwAnE)+p (AnES)
= E isy® — measurable
>EeS"=2RCS"
This completes the proof.
Definition: A measure g on R is complete if whenever E € R,F € E,and u(E) = 0 then F € R.

Definition: A measure u on R is o —finite if, for every set E € R, we have E = Up-; E,, for some
sequence {E,} such that E,, € R and u(E,,) < o for each n.

Theorem 9.5: Let 4" be an outer measure on H (R) and let §* denote the class of u* —measurable
sets which forms a o —ring then u" restricted to §* is a complete measure.

Proof: Suppose {E;} is a sequence of disjoint sets in §*, we get
(=43 (=43

v (U EI) =Y wE)
i=1 =1

So p' is a measure on the o-ring §*. Also,everysetE € H(R) such that u'(E) =0 is
1" —measurable because ifA € H (R) then

wA) s (ANnE) +p'(AnES)
S (E) +p (A) = p (4)
and F is u*-measurable. In particular, ifE € $*and p"(E) = 0 and F C E then it follows that F € §~
= Sop" is a complete measure onS™ .

This completes the proof.

E"/ Notes: If * l:)e the outer measure on M (R) defined by n®Ri.e.if
= g

oo

o0 o
' (E) = inf’z B T BER, poed?, o BT U En],

n=1 n=1

we Will denote the measure obtained by restricting " to 8*, by . Then I is an extension
of /-

Theorem 9.6: Show that if g is a ¢ —finite measure on R then the extension f of puto §* is also
o —finite.

Proof: Let E € §*. Then by definition of  there is a sequence {E,,} of sets of R such that

A(E) < 3 uEy)

But each E,, is the union of a sequence [Em-, i=12, } of sets of R such that y(E,, i) < » for each n
and i. Therefore,
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H(E) < Zm: i p(Er 1)

n=1i=1
and so E is the union of a countable collection of sets of finite ji —measure.

Definition: (X,5) where § is a o —algebra of subsets of a space X,which is called a measurable
space. The sets of § are called measurable sets.

Definition: (X, 8, ) is called a measure space if (X,§) is a measurable space and y is a measure
ond.

Definition: Let f be an extended real-valued function defined on X. Then f is said to be measurable
if Va,

{x:f(x) >a}es

Integration with respect to a measure:

1) Let ¢ be a simple function defined as

Tt
¢ = Z aiXa;
i=1

then

f‘f’d#:iﬂiﬁai

i=1

2) Let f be non-negative measurable function defined on X then
J’f dy = sup U’ ¢ du:¢ < f,¢isasimple function}

3) Let f be non-negative measurable function defined on F € §

ffdu = ff X dp
E E

4) If f is measurable and both [ f¥du and [ f~dp are finite, then f is said to be integrable

[ rau=[rrau-| r-an

and

5) f isintegrable ifand only if|f| is integrable.

6) fELXp

7) [fdumeans [ fyxsdy f€LX,p)EES

8) [fdu=[ftdu~ [ f-dp, provided at least one of the integrals on RHS is finite.

Theorem 9.12: Let f, g be integrable functions and a and b be constant, then af + bg is integrable
and

J’(af-#bg]dp:affdp—f—bfgdp

ffd#=fgdu
fra

f=z0aeorf<0a.e.

If f = g a.e. then

Theorem 9.13: Let f be integrable then

< [1f1du

With equality if, and only if,

We also have Fatou’s lemma, monotone convergence theorem, Lebesgue dominated convergence
theorem in the case of fixed measure space (X, §, ).
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The proofs of the above theorems work on the same line as we have done in Lebesgue measure for
real line with only changes in notation i.e., dx by dpu.

Summary

A class of sets R, of some fixed space X, is called a ring if whenever E € Rand F € R, then
EUF and E — F belong to R.
If the ring R has the property that A€ R A° € R for every A € R then R is called an
Algebra.
A ring is called a ¢ — ring if it is closed under the formation of countable unions.
A g —ring is called a ¢ — algebra if it is closed under complementation.
A class of sets H, is called hereditary ¢ — ring if it is ¢ — ring and is hereditary.
A set function u defined on a ring R is a measure if
1) pis non-negative
2) u(@)=0

3) for any sequence {4,} of disjoint sets of R such that U;_, 4, € R, we have
o0 0
u (U An) = uAn).
n=1 n=1

If R is a ring, a set function i” defined on the class H (R) is an outer measure if:

1) p" is non-negative.

2) IfACBthenpu'(A) <u'(B)

3) wip)=0

4) for any sequence < A,, > of sets of H (R),

» ®
w (U An) WA
n=1 n=1

A measure i on R is complete if whenever E € R, F C E,and u(E) = 0 then F € R.

A measure g on R is g —finite if, for every set E € R, we have E = Uj., E, for some
sequence {E,} such that E,, € R and p(E,,) < oo for each n.

(X,8) where § is a o —algebra of subsets of a space X, is called a measurable space. The
sets of § are called measurable sets.

X, 8, ) is called a measure space if (X,S) is a measurable space and g is a measure on §.
The ring R is closed under the union of a finite number of sets.
AAB=(A-B)U(B—-A)ER

AnB=(AUB) - (AAB) € R.

The intersection of a finite collection of rings on X is again a ring.

If E is a class of subsets of X, then the intersection of all rings containing E is a ring called
the ring generated by E and is denoted by R(E). i. e.3 the smallest ring containing a given
class of subsets of space X called a generated ring.

Every algebra is a ring but the converse is not true.

o — ring is closed under a countable intersection.

A @ —ring is a ring but the converse is not true.

The intersection of a family of ¢ — rings is again a ¢ — ring.

We define S(E) to be the smallest o — ring containing a class of sets which is called the

@ — ring generated by E.

A class of sets H with the property, namely that every subset of one of its members
belongs to the class, is said to be hereditary i.e. if A € H and Bc A= B € H then H is
said to be hereditary.
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8(R) denotes the o — ringS generated by the ring R.

H (R) denotes the class consisting of §(R) together with all subsets of the sets of §(R).
H(R) is a ¢ —ring and is the smallest hereditary ¢ — ring containing R.

The intersection of hereditary ¢ — ring is again a hereditary ¢ — ring.

H(R) = H(S(R)) = H(H(R)).

Let {A;} be a sequence in a ring R, then there is a sequence{B;} of disjoint sets of R such
that B; € 4, for each i and U, 4; = U, Bfor each N, so that U2, 4; = U2, B;.

If p is a measure on ringR and if the set function y" is defined on # (R) by

w(E) = inf[Z u(E):EReERn=12 ., EC UEHI,

n=1 n=1

then for E € R, u*(E) = u(E) and y" is an outer measure on H (R).

H(R) ={E:E € U1 Ep,En ER}
Let u° be an outer measure on H (R)then E € H(R) is u* —measurable if for each A €
H(R),

() =p(AnE) +p'(AnE)
Let #” be the outer measure on H (R) defined by p on R, then §*contains S(R), the g —ring
generated by R. Here § denotes the class of g —measurable sets which is a ¢ —ring.
Let u* be an outer measure on H(R) and let §* denote the class of g" —measurable sets
which forms a ¢ —ring then p” restricted to § is a complete measure.
If u* be the outer measure on H (R) defined by pon R
Le ifu (E) =inf{3o, u(E,) : E, ER,n=12,.. E C Up-y E,}we will denote the
measureobtained by restricting u* to §°, by u. Then g is an extension of u.

if g is a ¢ —finite measure on R then the extension g of gto § is also ¢ —finite.

Keywords

Ring: A class of sets R, of some fixed space X, is called a ring if whenever E € Rand F € R, then
EUF and E - F belong to R.

Algebra: If the ring R has the property that A€ R A° € R for every A € R then R is called an
Algebra.

o — ring: A ring is called a o — ring if it is closed under the formation of countable unions.
o —algebra: A g —ring is called a o — algebra if it is closed under complementation.
Hereditary o — ring: A class of sets #, is called hereditary o — ring if it is & — ring and is hereditary.
Measure on Ring R: A set function u defined on a ring R is a measure if
4) pis non-negative

5) u(¢)=0

6) for any sequence {4,} of disjoint sets of R such that Ug., 4,, € R, we have
o0 o0
o) = Y wian.
n=1 n=1

Outer measure on H(R): If R is a ring, a set function p* defined on the class H'(R) is an outer
measure if:

5) ¢’ is non-negative.

6) IfACBthenpu'(A) <u(B)

7) w(g)=0

8) for any sequence < 4,, > of sets of H(R),
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o (D An) < i 1" (An).

=1

Complete measure: A measure i on R is complete if whenever E € R, F € E, and u(E) = 0 then
FeR.

o —finitemeasure: A measure g on R is o —finite if, for every set E € R, we have E = U5., E, for
some sequence {E,} such that E,, € R and u(E,,) < oo for each n.

Measurable space:(X,8) where § is a o —algebra of subsets of a space X, is called a measurable
space. The sets of § are called measurable sets.

Measure space: (X,8,u) is called a measure space if (X,§) is a measurable space and y is a measure
onS§.

Self Assessment

1) Consider the following statements:
(I) Every ring is an algebra.

(IT) Every algebra is a ring.

only (I) is correct

only (II) is correct

both (I) and (II) are correct

both (I) and (II) are incorrect

9N = >

2) Consider the following statements:
(I) @ —ring is closed under the countable union.
(II) & —ring is closed under the countable intersection.
A. only (I) is correct
. only (II) is correct

B
C. both (I) and (II) are correct
D. both (I) and (II) are incorrect

3) Consider the following statements:
(I) Every o —ring is a ¢ —algebra.

(IT) Every o —algebra is a ¢ —ring,.
only (I) is correct

only (II) is correct

both (I) and (II) are correct
both (T) and (II) are incorrect

9N = >

4) Let p be a measure on a ring R and #(R)betheHereditarys — ring. If the set function p’
defined on x(R) is given by u*(E) = Inf{¥s- u(Ex) :E,€Rn=12 . ,EC U:=1 E,} then

A p(E) = w(E)
B. w(E) > p(E)
C. p(E) <u(E)
D. none of these

L ovely Professional University



Unit 09: Abstract Measure Spaces

5) Let 4 be a measure on a ring R and #(R)be the Hereditarys — ring. If the set function p’
defined on x(R) is given by

w(E)=Inf{ys u(En):E,eRn=12. EC U:=1 E,} then p*(E) is an outer measure on
»(R).

A. True
B. False

6) Let #(R)is the Hereditaryo — ring then

#(R)={E:E € J._, En En € R}.

A. True
B. False

7) Let u* be an outer measure on #(R). Then E € »#(R) is u° — measurable if for each A € x(R),
we have " (A) = ' (AN E) + u'(ANnE°).

A. True
B. False

8) A measure g on R is complete if whenever E € R,F € E, and u(E) > 0 then F € R,

A. True
B. False

9) A measure u on R is o —finite if, for every set E € R, we have E = U;., E, for some sequence
{E,,} such that E,, € R and u(E,,) = oo for each n.

A. True
B. False

10) Let * be an outer measure on #(R) and let S* denote the class of #° — measurable sets which
forms a o —ring then p" restricted to S* need not be a complete measure.

A. True
B. False

11) If p is a ¢ —finite measure on R then the extension ji of p to §* is also ¢ —finite.

A. True
B. False

12) If f is measurable and both [ f*du and [ f~dp are finite then f is necessarily integrable.

A. True
B. False

13) Consider the following statements:

(I) If {E,} be an infinite decreasing sequence of measurable sets such that wu(E;) < oo then
#(N7=y Be) = lim p(Ey).

L ovely Professional University

137

Notes



Notes

Real Analysis 11

(IT) If {E,,} be an infinite increasing sequence of measurable sets then u(Us-1 Ey) = lim u(E,).

A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct
D. both (I) and (II) are incorrect

14) Consider the following statements:

(I)A measurable function f is integrable if and only if f | is integrable.

(IDS fdu = [ frdu— [ f~du, provided at least one of the integrals on RHS is finite.
A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct
D. both (I) and (II) are incorrect

15) Consider the following statements:
(I)Let f be integrable then [ |fldu = |[ fdu|.
(IDIf f = g a.e., then f fdu < [ gdu.

A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct
D. both (I) and (II) are incorrect

16) Let ¢ be a simple function whose canonical representation is given as
b =2 axa then f ¢pdu = ¥y agu(A;).

A. True
B. False

17) Consider the following statements:

(), fdu # [ fxzdp

(I1) If f is continuous and g is measurable then f ¢ g need not be measurable.
A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct
D. both (I) and (II) are incorrect
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Answers for Self Assessment

1. B 2. C 3. B 4. A 5. A
6. A 7. A 8. B 9. B 10. B
1. A 12. A 13. C 14. C 15. A
16. A 17. D

Review Questions

1) Let{E;} be a sequence of measurable sets. We have
i) If E-] c Ez c E"J, innp then #(Ule Enj — ]Il’n,u(En‘J
ii) If E; 2E;2E;...and u(E,) < oo then u(5- Ey) = lim pu(E,).

2)If f;is measurable,i=1, 2, ..., then SUPy<j<n fi» iNfi<i<n fi, SUP fr, Inf £y, limsup f,, liminf f;, are also
measurable.

3) The measurability of f is equivalent to

DVa{xaf(x)=a}€e s

Ve, {x:flx) <a} §

i) ve,{x: f(x) <a} S

4) If f is measurable then {x: f (x) = @} is measurable for each extended real number a.

5) Constant functions are measurable.

6) x. is measurable ifend only if A € §

7) Let f be a continuous function and g is a measurable function then f ¢ g is measurable.

8) If ¢ € R and f, g are measurable functions then cf, f + g,g — f, fg are measurable.

[Y]] Further Readings
Measure theory and integration by G DE BARRA, NewAgelnternational.
Real Analysis by H LRoyden and P M Fitzpatrick, Pearson.

Lebesgue Measure and Integration by P K Jain, V P Gupta and Pankaj Jain, New Age
International.

Graduate Texts in Mathematics, Measure Integration and Real Analysis, Sheldon Axler,
Springer.

An Introduction to Measure and Integration, I K Rana.

Web Links
https:/ /nptel.ac.in/courses/111/101/111101100/

https:/ /www.youtube.com/watch?v=xUMRSOtM654 &list=PL_alTI5CCIRGKYvo8XNFT
K9zkjMbYTEwWS

https:/ /www.youtube.com/watch?v=YIrx8 W5nyq8&t=29s
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Objectives

After studying this unit, students will be able to:

definenormed linear space
understandL? spaces
explain LP —norm
determinel® —norm

explain theorems related to LP —spaces

Introduction

In this unit, we discuss an important construction of function spaces which is useful in many
branches of analysis. We will study about LP spaces; their construction and properties. These
spaces form an important class of Banach spaces in functional analysis.

10.1 The LP Spaces

Normed Linear Space: Let X be a linear space over a field of real or complex. A norm on X is a real-
valued function, (denoted asff - ||) on X which has the following properties:

i) [[x]l = 0,x € X.
if) lxl=0 & x=0v¥x€ X
iif) lx + yll < lIxll + Iyl vx,y € X
iv) |lax|| = |e|||x]], ¥x € X and & € R(or C)
A linear space X, equipped with the norm || - || on it is called a normed linear space or simply a

normed space. It is denoted by (X, || * ||) or simply by X.

Metric Space: Let X be a non-empty set. A function d:X x X — R is said to be metric ifand only if
d satisfies the following properties:

i) dlx,y) =z 0vx,yeX

if) dx,y)=0e=x=y, Vx,yeX

iii) dx,y) =d(y,x),Vx,y€X

iv) d(x,z) <d(x,y) +d(y,2),¥x,v,z€ X

If d is a metric on X, then the (X, d) is called metric space.
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Anorm || - || en linear space X defines a metric d on X given by d(x,y) = ||x — y||.
i) Letx,yEX=>x—-veEX

S llx=yll=0 2dxy)=0

ii) di,y) =0
elx-yl=o0
ex—y=0
Sx=y

iii) d(x,y) = llx—yll

= Iy — )l
= lly — Il
=d(y.x)

iv) d(x,z) = |lx —zll

=llx—y+y—zl

=lx-»+ -2l
< llx =yl +lly -zl
=dly) +d(,2)
Thus (X, d) is a metric space.
Here the metric d is known as the metric induced by the norm.

Definition: A sequence {x,} in a normed linear space X is said to converge to an element x € X if
given an € > 0, there is a positive integer N such that

llx, — x|l < e,vn=N.

Definition: A sequence {x,} in a normed linear space X is a Cauchy sequence if given an € > 0,
there is a positive integer N such that

[l = x|l < €, ¥n,m = N,

=~ Notes: In a normed linear space, every convergent sequence is a Cauchy sequence but
= converse may not be true.

Definition: A normed linear space is said to be complete if every Cauchy sequence in it is
convergent.

Definition: A complete normed linear space is called a Banach Space.
Definition: A series Y7 U, in normed linear space X is said to be convergent to u if u € X and

limy,, e Sn = U, where

In this case, we write

E/' Notes: The series Zmﬂ_’ ... . said tobe absolutely convergent if

o0
Dl < o.
n=1

=+ Notes: A normed linear space . i complete ifand only ifevery absolutely convergent

= series is convergent. =

Definition: If (X,S,p) is a measure space and p > 0, we define LP(X, u)orL?(u), to be the class of
measurable functions {f: [|f|” du < 0} with the convention that any two functions equal a.e.
specify the same element of LP ().
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= Notes: The elements of the space —Z)%)t functions but classes of functions such

that in each class any two functions ‘are equal almost everywhere.Any two functions
equal @.€e- haye the same integrals over each set of S-

VTV TuaTicrion:
e i tegrals owve

Ei/' Notes: We will write " "is mbasurable and
=t e L (u) then f

[P du< o

| *du
_/' Notes: On the real line, if = (a,n) Jand i 15 Lebesgue measure, we will write ,,
. & L aa, b
for the corresponding space. .

Definition: Let f € LP(a, b), then the L? —norm of f, dencted as||f||,, is given by

vawﬁ

Theorem 10.1: Let f, g € LP (1) and let a, b be constants; then af + bg € LP (u).
Proof: Since f, g € LP(u) therefore

flflpdu<m

and

[1g1P du < oo
Consider |f +g|? < [|f] +|g]]?
< [2max{|f], [g]}]?
= 2P max{|f|?,|g|"}
< 2P[IfIF + | gI?]

nfw+9st2HUP+MP]

=2 [IfIP+27 [lgl” < o
= f+g€lPQ) (1)

Now, flaf|p2f|ﬂ 1 1£12

=|a|”flf|p<oo

= af € 1P () (2
From (1) and (2), we get
af +bg € LP () .
This completes the proof.
Definition: If (X, 5, ) is a measure space, we define L (i) to be the class of measurable functions
{f: esssup|f| < oo},
L® —norm of f € L= (u) is denoted by||f||., and is defined as || f||., = ess sup|f].
Theorem 10.2: Show that L* () is a vector space over the real numbers.
Proof: Let f,g € L™ (i) and a,b € R
=esssup|f| < oo .. (D

and

= esssup|g| < o )

Now,
esssuplaf + bg| < esssuplaf| + ess sup|bg|
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= |alesssup|f| + |b| esssup|g| < oo

>af +bg € L®(w)

= L™ (u) is a vector space over the reals.

This completes the proof.

Theorem 10.3: Show that if u(x) < 0 and 0 <p < g < co then

L) € 1P ()
Proof: Case I For g << « let f € L9(u)
:>J’lf|‘i'<oo - (D)
and
[fIP<1+|flfor0<p<g< - (2)
> jl]'lp <
= f € LP(u)

= L9(u) € LP(u)
Case IL: Forg = oo. Let f € 19(u) i.e. f € L™ (1)
= esssuplf| < eo.

Now

|f] < esssup|f] a.e.

= |f19 < [esssup|f]]P a.e.

=>J'If|p <o

= felP(w
Thus L9(u) € LP(u) whenever0 < p < g < 0.
This completes the proof.

Theorem10.4:Let p >0 and f € LP(u), f =0 and let f, =min(f,n). Showthat f, € LP(u) and

lim[|f = full, = 0.

Proof:To prove this theorem we will use Lebesgue dominated convergence theorem which states
that let {f,,} be a sequence of measurable functions such that |f,| < g, g is an integrable function and

lim f, = f a.e, Then f is integrable and

im [ o du= [ 7wt

Since0 < f,, < f

>0<fP <P,

Now,fELp(p)ﬁJ’fpd,ucoo

= [ au<os fer@
Also, 0 f—fu s f
= 0 < (f — f,)P < fP,is an integrable function
and limy e, fr = limyoe min(f,n) = f
= tm [~ P du=0
= lim||f = full, = 0.

This completes the proof.
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Theorem10.5: Let 1 < p < 0. Suppose {},} is a sequence in L (i) that converges a.e. to f € LP(u)
then f;, — f in LP(u) ifand only if

tim [ al? du= [1£1P d
Proof: For each n, we have

[l = WF ] < NF = Flls
Hence if f; — f inL?(u), then

tim [ 1l? du= [I£1P du
Assume

tim [ 1 du = (1717 du
Define ¥(t) = |t|? for all t then 1} is convex and thus

w(a;b)sw&l);w{b)

Jforall a,b

Hence

P+|blP ja—b)P
OSlaI |b] _Iaz I forall a, b,

=

Therefore, for each n, a non-negative measurable function h,, is defined by

[P +If@P 1m0 = FEIP

> forallx e E

ha(x) =

Since h,, - |f|?, - we inter from Fatou’s Lemma that
J'IJFIp du < liminf U hy d,u]
— Tt inf[U’ Jﬁ:(x)lp; lFGIP  fulx) *f(-r)lp}du]

2

— P
= i du—timun [ | 2020
Thus
— P
J’Iﬂpdﬂgflﬂpdﬂ—limsupu M du]
- P
IimsupU ﬁ‘@z_f(g d.u]g{]

limfifn—ﬂpdu:o

L.efo— finlP(n)
This completes the proof.

Summary

Let X be a linear space over a field of real or complex. A norm on X is a real-valued
function, (denoted as || - || ) on X which has the following properties:

iy lx|l=0xeX.

i) lx]|=0=x=0VxeX

iii) lx+yll < llxll + llyll, vx,y € X

iv) llax|| = |alllx|l,¥x € X and a € R(or C)

A linear space X, equipped with the norm || - Il on it is called a normed linear space or

simply a normed space. It is denoted by (X, || * II) or simply by X.
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ii)
iii)

iv)

Let X be a non-empty set. A function d:X x X = R is said to be metric if and only if
d satisfies the following properties:
dix,y)=20v¥x,yeX
dx,y) =0 x=y, Vx,yeX
d(x,y) =d(y,x),¥x,y€X
d(x,z) <d(x,yv) +d(y,z),¥x,v,z€ X
If d is a metric onX, then the (X, d) is called metric space.
A sequence {x,} in a normed linear space X is a Cauchy sequence if given an ¢ > 0, there is

a positive integer N such that

llxy, — x ]l < €, %n,m =N.

A normed linear space is said to be complete if every Cauchy sequence in it is convergent.
A complete normed linear spagce is called a Banach Space.

If (X,S,p) is a measure space and p > 0, we define L?(X,u)orL?(u), to be the class of
measurable functions {f: [|f|P du < 0} with the convention that any two functions equal
a. e, specify the same element of LP ().

Let f € LP(a, b), then the L? —norm of f, denoted as||f||,, is given by

[[1r1e d#]%.

If (X, S, 1) is a measure space, we define L” (i) to be the class of measurable functions
{f:esssup|f| < oo},

L® —norm of f € L®(u) is denoted by ||f||s and is defined as llIf||, = esssup|f]|.
A sequence {x,,} in a normed linear space X is said to converge to an element x € X if given

an € > 0, there is a positive integer N such that

llx, —x|]| < €,vn = N.

A sequence {x,} in a normed linear space X is a Cauchy sequence if given an ¢ > 0, there is

a positive integer N such that

llxy, — x ]l < €, %n,m =N.

In a normed linear space, every convergent sequence is a Cauchy sequence but converse
may not be true.

A series ¥, i, in normed linear space X is said to be convergent to u if u € X and
lim,, o Sn = u, wheres,, = Uy +u, + - + u,,. In this case, we writeu = ¥ 5 Uy,

The series Y 51 Uy, is said to be absolutely convergent if Y i llu,]| < oo.

A normed linear space X is complete if and only if every absolutely convergent series is
convergent.

The elements of the space LP (1) are not functions but classes of functions such that in each
class any two functions are equal almost everywhere. Any two functions equal a.e. have
the same integrals over each set of S.

We will write f € LF (u),then f is measurable and []f|? du < oo.

On the real line, if X = (a,b) and p is Lebesgue measure, we will write LP(a, b) for the
corresponding space,

Let f,g € LP(u) and let a, b be constants; then af + bg € LP(u).

L® (u) is a vector space over the real numbers.

If u(x) < ooand 0 <p < g < o then L9(y) S LP(u).

Letp >0and f € LP(y), f = 0and let f, = min(f,n) thenf, € LP(u) and limllf — £,]l, = 0.
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Let 1< p < . Suppose {f;,} is a sequence in LP(u) that converges a.e. to f € LP (i) then
frn = f inLP(p) if and only if

i [ 1P du = 1717 du

Keywords
Normed Linear Space: Let X be a linear space over a field of real or complex. A norm on X is a real-
valued function, (denoted as || - Il ) on X which has the following properties:
i) x|l = 0,x € X.
if) x| =0 ®x=0vVxeX
iii) x + vl < llx]| + Iyl vx,v € X
iv) lax|| = |al|llx]], ¥x € X and a € R(or C)
A linear space X, equipped with the norm Il - Il on it is called a normed linear space or simply a

normed space. It is denoted by (X, || - II) or simply by X.

Metric Space: Let X be a non-empty set. A function d: X x X — R is said to be metric if and only if
d satisfies the following properties:

i) dlx,y) =z 0vx,yeX

if) dx,y)=0e=x=y, Vx,yeX

iii) dix,y) =d(y,x),vVx,y€X

iv) d(x,z) <d(x,y) +d(y,z),vx,y,z€ X

If d is a metric onX, then the (X, d) is called metric space.

Cauchy sequence: A sequence {x,} in a normed linear space X is a Cauchy sequence if given an
€ > 0, there is a positive integer N such that

llx,, = x|l < €, 9n,m =N,

Complete normed linear space: A normed linear space is said to be complete if every Cauchy
sequence in it is convergent.

Banach space: A complete normed linear space is called a Banach Space.

L? space: If (X.5,u) is a measure space and p >0, we define LP(X,u)orLP(u), to be the class of
measurable functions {f: [|f|P du < =} with the convention that any two functions equal a.e.
specify the same element of LP (u).

L? — norm: Let f € LP(a, b), then the L? —norm of f, denoted asli f]|,, is given by

vawﬁ

L* — space: If (X, S, i) is a measure space, we define L (1) to be the class of measurable functions

{f:esssup|f| < e}
L® —norm: L” —norm of f € L% () is denoted by lif ||, and is defined as lIf||, = esssup|f|.

Self Assessment

1) In a normed linear space, every convergent sequence is a Cauchy sequence.

A. True
B. False

2) In a normed linear space, every Cauchy sequence is a convergent sequence.

A. True
B. False
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3) A normed linear space is complete if every Cauchy sequence in it is convergent.

A. True
B. False

4) Consider the following statements:
(I) A complete normed linear space is known as Banach space.

(II) In a complete normed linear space every Cauchy sequence is convergent.

only (I) is correct
only (II) is correct
both (
(

I) and (II) are correct
both (I) and (II) are incorrect

9N = >

5) Consider the following statements:

(I) A normed linear space is complete if every absolutely convergent series is convergent.
(II) In a complete normed linear space every absolutely convergent series is convergent.
A. only (I) is correct

B. only (II) is correct

(

(
C. both (I) and (II) are correct
D. both (I) and (II) are incorrect

6) Iflly =

A. JIfIPdy

B. [iflPdu]”
C. fifrdu]”
D. (JIf1%du]”

7) LP () is a vector space over the reals.

A. True
B. False

8)L™ (1) need not be a vector space over the reals.

A. True
B. False

9 Iflle =
ess sup|f|
ess inf| f|
suplf]
inflf]

90w p
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10) Consider the following statements:

(D If u(X) < wand 0 < p < g < oo then LI(u) S LP(u).
(ID If u(X) < w0and 0 <p < g = o then L9 {u) € LP ().
(I) If p(X) <o and 0 < p < g < oo then LP(u) € L9(p).
A. only (I) is correct

B. only (IIl) is correct

C. both (I) and (II) are correct
D. both (I) and (III) are incorrect

11) If f € LP(u) then [ |f|Pdu < oo.

A. True
B. False

12) If f € L* (i) then esssup|f| =0

A. True
B. False

13) Let p > O and f € LP(u) where f = 0 and let f;, = min(f,n) then f,, € L? ().

A. True
B. False

14) Let p > O and f € LP(y) where f = 0 and let f;, = min(f,n)thenlim Il f — £, = 0.

A. True
B. False

15) Let 1 < p < wand {f,} is a sequence in LP(u) that converges a.e. to f € LP(u).Consider the

following statements:

() fo = f inLP() if lim] | fa|Pdu < [ |fIPdp.
imf |fulPdp = [ |fIPdu) if £, > f in P ().
only (I) is correct

only (II) is correct

both (I) and (II) are correct
both (I) and (II) are incorrect

9N = >

Answers for Self Assessment

11.

A 2 B 3 A 4 C 5 C
C 7 A 8 B 9 A 10. C
A 12. B 13. A 14. A 15. B
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Review Questions

1) Show that LP () is a vector space over the real numbers.

2) Show that in a normed linear space, every convergent sequence is a Cauchy sequence.

4)If f € L' (u) and g € L*(u), then prove that fg € L' (1) and || fgll; < Il 1l glle-

)
)
3) Let N be a normed linear space and let x,y € N, Then prove that |||x]| — [lyll| < |lx— y||.
)
5) Show that IIf + glle < IIfll + llglle.

L..J Further Readings
Measure theory and integration by G DE BARRA, New Agelnternational.
Real Analysis by H LRoyden and P M Fitzpatrick, Pearson.

Lebesgue Measure and Integration by P K Jain, V P Gupta and Pankaj Jain, New Age
International.

An Introduction to Measure and Integration, I K Rana.

@ Web Links

https:/ /nptel.ac.in/courses/111/105/111105037 /

https:/ /www.youtube.com/watch?v=R]hX7]JereNI
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Objectives

After studying this unit, students will be able to:

define convex function

understandproperties of convex functions
provide examplesof convex functions
demonstrate theorems related to convex functions

explain Jensen’s inequality

Introduction

This unit covers the basic theory of convex functions.These functions appear in many problems in
pure and applied mathematics. The theory of convex functions is part of the general subject of
convexity since a convex function is one whose epigraph is a convex set. Here, we study the basic
properties, proofs of important theorems, and some examples of convex functions.

11.1 Convex Functions

Definition: A function i defined on (a, b} is convex if for any non-negative numbers A, #t such that
A+ pu=1andx,ysuchthata <x <y < b, we have

p(Ax +py) < AP() +p ().
= Notes: The endpoints { (_L take values —oo, +o respectively.

5 OO0, TO0 TESPEeCiIvVeLy.
= Notes:The s¢__1ent joining the points _ " lies below
= the graph of -I‘f‘" X (x. W ix))andy = (v, 10(¥)) never

@v Notes: If, for all positive numy__ . PR Ly RO
WAx +py) < A0 +pp &),
then ¥ 15 said to be strictly convex.
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aid toben_, ; int convex on (a, b) if for oy o,

|_:fi Notes: A function
= Fias
3 1
(P22) s55@ +570).

Theorem 10.1: Let i be convex on (a,b) anda < s <t < u < b then
Wis, ) < s, u) < i u),

where 1(a, b) is defined as
b)) —
Do b < PP —v@
b-a
Further, show that if 1 is strictly convex, equality will not occur.

Proof: First of all, we will show that (s, t) < (s, u).

Since a<s<t<u<b
>s<t<u

>0<t—s<u-—s

t—s%
=>0< 2]
u-s

So, let 1 = — (D)

.‘.'uzl—ﬁ
t—s
u—=s

_W—3 )
s = «(2)
{Ax 4+ (1 = D)y: 1 € [0,1]}represents the line segment joining the points x and y.

Therefore, for any point ¢ such that s < t < u, we have
t=As+(1-2u

=As+pu vA+pu=1

¢ ('t_s) (”_t) 3){by(Dand(2)
= — '
= s+ u—~su (3){by(1)an }
which is not true.
Again, consider
t=Au+pus

_(t—S) +(u—t) 4

= u—su u—~ss .. (4)
which is true.
Now

t Wo—1L
«(5)

= 90 < (=) v + (- )¥©
= (= PO < (€= NP +up(s) = ¢ P(s) + s Y(6) — s P(s))
= (= PO < (£ =W + @ = () = (€ = (s)
= (=) (O - () < (¢ - W - h(s)]
_ PO -96) _ Y@ — )

t—s u—=s

=(s,t) < Ps,u) . (6)
If o is strictly convex then equality will not occur in (5) and so not in (6).
Next, we will show that (s, u) < ¥ (t, w).
Since
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s<t<u
> —s>—t>—-u
Su—s>u—t>0

u—t

= i .. (7D

u—=s
p:l—,{

= ..(8)
Now
t=As + uu
u—t t—=5
= (=) + G=5)
Uu=—=s u=-—5

u—t t—s

= Y(t) < (E) P(s) + (m) ()
= (u— () < (u—p(s) + e plu) — s plw) + [up) —u )]
= w—9) (P -v@) < u-(s) - Yl

Y(t) =) P(s) =)
= <

-t - U—s
- P(w) —1(s) YW -v©®
U—g - u—t

= is,u) < Pu, o).
This completes the proof.

Theorem 11.2: A differentiable function i is convex on (a,b) if and only if 1’ is a monotone
increasing function. If 1’ exists on (a, b) then 1 is convex if and only if 4" = 0 on (a, b).

Proof: Suppose i is differentiable and convex and let

a<s<t<u<v<h,

then for s < t < u, wehave ii(s, t) < (s, u) < ¥(t, u) (D
and for t < u < v, we have (t, ) < Y(t,v) < P(u,v) «(2)
From (1) and (2),

Pis, ) < Pplu,v)
P(t) —(s) _Pw) —pw)
= <

t—=s i T—u
N Y(t) —P(s) » Yw) —(v) -G
t—s u—v

Let t —» s and u = v then (3) =
h'(s) =Y'(v) Vs<vwv
= 'is monotone increasing.
If 4" exists, it is never negative.
>y9" =0

Converse: Here we will show that ifi’ is monotone increasing then ¥ is convex. Also, if "' = 0
then 1 is convex. “

Letx < yin(a,b)and 0 < ¢ < 1and
z=cx+(1=-c)y, =x<z<y . (4)
= P(z) =¢lex + (1 - c)y)
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We will show that
Y(z) < cp(x) + (1 — iy (y)
i.e P(2) S cp(x) + (1 —)Pp) + [ Y(2) — cp(2)]
i.e. c[px) =]+ A - Y ) =y(2)] =0 - (5)
Now, by the mean value theorem, 3 8; € (x,z) such that
Y'(6)) = ___ub(zz — f(x] ..(6)
And 3 8; € (z,¥) such that
ooy YO) —Y(2)
W'(0) =  y—z o (7)
(6) = P(x) —(2) = (x — 2)y'(6,) - (8)
M) =y~ = - 2)Y'(02) -~ (9)

Using (8) and (9) in (5), we get
[l =29 (8] + (1 - Iy ~ 2y’ (8,)]
=cP'B)lx —cx — (1 =)yl + (1 =)' (82)[y — cx — (1 = c)y]
=cyP'(B)[A - )lx =]+ A~ )Y’ (B)c y ~x)
=c(1-a@ -0 E,) -9 (6,)] =0
v 0< ¢ < 1x<y,y'is monotone increasing, 8, < 6,

Thus 1P is convex if ¥’ is monotone increasing. Now if ¢ = 0 then 1’ is monotone increasing and
hence 1 is convex.

This completes the proof.

prool

[VE_] Example: . ,__rictly convex on R.
E Example: ., convex on (0,c0)for = 1.

@ Example: — .,_ itrictly convex on (0,)for 0 < < 1.

@ Example: ) ly convex on (0,1).
x log x i=s strict

Theorem 11.3: Every function convex on an open interval is continuous.
Proof: Let f is convex on (a, b) and let [¢, d] < (a, b).

Choose ¢; and dy suchthata < ¢ <c<d<d; <b

If x, v € [c,d] with x < y, then, for x < y < d < d;, we have

- d) — d)—f(d
i 110 FIB 1) JUES T,

y-x — d-y
For ¢y < ¢ <x <y, wehave
f(?:i‘(ca)Sf(xi:,::(c}gf(}’):f(x,‘! -
1 y—x

:f(c)—f(cllSf(y)—f(x)gf(dl)—f{d)
C—C y—x d, —d

Thus, the set

[M:c Sx<y£d}
y—x
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is bounded.

Therefore, for all x,y € [c,d],x < y,3 a positive real number M, such that

|f(3’):£(x) 2N

¥

€
= |f(y) = f(x)| £ M|y — x| < e whenever|y — x| <E= )
= f is uniformly continuous on [¢,d]
= f is continuous on [, d]
~ f is continuous on(a, b).

This completes the proof.

s Notes: If in the definition of a convex function, the open interval is not specified then the
above theorem would not hold.

e.g. 1 = 0on[0,1], Y(l) = 1.

Here 1 is convex but not continuous.

11.2 Jensen’s Inequality

Theorem 11.4 (Jensen’s Inequality)
Let (X, S, 1) be a measure space with p(X) = 1. If 1 is convex on (a, b),

— < a < b < wand f is a measurable function, a < f(x) < b for all x, then

w([rau)s [wera

Proof: Since f is measurable, a < f(x) < b, u(x) =1

= f is integrable.

Putt=[fdu
Since
a<flx)<b
:J’adﬁ<ffd,u<fbd,u

sa<t<bh
Now, a<s<t<u<b=(st) <i(s,u) <p(tu)

where ¥1(q, b) = w.

Let
b sup POV
xelary E—X
Therefore,
t)— (s
w <p,s€(at)
= P(s) = yt) + B(s —t),5 € (a,t) (D
Also,
u) — it
f= w,u € (t,b)
= ) =Pt) + flu—-1), u €[t h) - (2)
For a € (a,b),
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Pla) =z Y(t) + fla —t).
Put a = f(x) € (a,b)to get, for each x,

Y(f) 2 PO + B X)) — ) - (3)
Since f is measurable and 1 is continuous
= 1) o f is measurable.

Now, since RHS of expression (3) is integrable.
ftﬁ; o f du exists.

{~ if g is measurable and g > h € L(X, ) then | gdu exists.}
Now integrating both sides of relation (3), using the fact that u(X) =1 and ¢t = [ f du, we get

[w(reo) duz ([ £ au)
iew([ran)s [wordu

This completes the proof.

Summary

A function ¥ defined on (a, b) is convex if for any non-negative numbers A, 4 such that

A+ pu=1andx, ysuchthata < x <y < b, we have
YAx +py) < 29X) +pPp(y).
The endpoints a, b can take values —w, +o0 respectively.

The segment joining the points X = (x, lp(x))and}’ = (y, lp(y)) never lies below the graph

of .
If, for all positive numbers 4, 4 such that

A+p=190x+uy) <Aypk) +u ),
then 1 is said to be strictly convex.

A function f is said to be midpoint convex on (a, b) if for x,y € (a, b),

x+y 1 1
f(552) 256 +5£0).

Let 1 be convexon (a,b) and a < s < t <u < b then (s, t) < Y(s,u) < P(t,w),
where i)(a, b) is defined as

Y(b) —(a)

b—a

Pla,b) =

Further, if i is strictly convex, equality will not occur.

A differentiable function ) is convex on (a, b) if and only if 1’ is a monotone increasing

function. If 1" exists on (a, b) then ¥ is convex if and only if ¥" > 0 on (a, b).
e* is strictly convex on R.
x%is convex on (0, oo)for e = 1.

—x%is strictly convex on (0, o0)for 0 < & < 1.
x log x is strictly convex on (0,1).

Every function convex on an open interval is continuous.

Jensen’s inequality: Let (X,5,4) be a measure space with u(X) = 1. If ¢ is convex on

(a,b),—o < a < b < o and f is a measurable function, a < f(x) < b forall x, then

w([rau)s [poran
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Keywords

Convex function: A function 1 defined on (a,b) is convex if for any non-negative numbers 4, i
such that A + g = 1 and x, y such thata < x < y < b, we have

YAx +uy) < AP x) + pyp(y).
Strictly convex functions: If, for all positive number’s 4, u suchthat 1+ p =1,
YAx +uy) <A +pp (),

then i is said to be strictly convex.

Midpoint convex function: A function f is said to be midpoint convex on (a, b) if for x, y € (a, b),

x+y 1 1
r(52) <5/ +55 0.

Jensen’s Inequality 11.4: Let (X, S, 1) be a measure space with u(X) = 1. If i is convex on (a, b),

—w < a < b < wand f is a measurable function, a < f(x) < b for all x, then

w([ran)s [wordu

Self Assessment

1) Let a function ) be defined on an open interval (a, b) and if for any non-negative numbers

A, piwhere 1+ u =1 and x, y such that a<x<y<b, we have {(Ax + py) < Aip(x) + up(y)then
Y isa

simple function

step function

convex function

SN = »

none of these

2) Let i be a convex function then the line segment joining the points X = (x,(x)) and
Y=9u)

never lies above the graph of 1

lies below the graph of i

always lies below the graph of 1

SN = »

none of these

3) Let 1 be convex on (a, b) and a<s<t<u<b then

A Y(s, ) < Yis,u) < YP(Lu)
B. (s, t)2p(s,u) = Pt w)
C. (s, t)=y(s,w) = P(tw)

D. none of these

4)The function f is said to be midpoint convex if

+ 1 1
A f(52) =5r@+ 57
1
B f(55) <370 +370)

2
1 1
¢ (55) 25700+ 516
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D. none of these

5) The function ) is said to be strictly convex if, for all positive numbers A, # such that A + p = 1,
we have

A P(dx + py) = Ap(x) + wh(y)
B. p(Ax + uy) > WP (x) + pmp(y)
Cop(Ax +py) < Wp(x) + p(y)

D. none of these

6){Ax + (1 — D)y: 4 € [0,1]} represents

A. circle
B. parabola
C. line segment

D. anellipse

7) Consider the following statements
(I) xlogx is strictly concave on (0, 1).

(I) xlogx is not strictly convex on (0, 1). Then

A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct
D. both (I) and (II) are incorrect

8) Consider the following statements
(D — x% is strictly concave on (0, «) for 0 < & < 1.

(II) —x* is not strictly convex on (0, ) for 0 < & < 1. Then

A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct
D. both (I) and (II) are incorrect

9) Consider the following statements
(Dx* is not concave on (0, «) for a = 1.

(I)x* is convex on (0, «) for @ = 1.Then

A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct
D. both (I) and (II) are incorrect
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10)e* is strictly convex on R.

A. True
B. False

11) A differentiable function s is convex on (a, b) if and only if

A. ' is monotonically decreasing function
B. ' is step function

C. /' is simple function

D

. Y’ is monotonically increasing function

12) Let y"exists on (a, b). Consider the following statements
(D ¥ is convex on (a, b) if y" = 0 on(a, b).
(IDy'" = 0 on (a, b) if Y is convex on (a, b). Then

A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct
D. both (I) and (II) are incorrect

13) Consider the following statements:
(I)Every function convex on an open interval is continuous.

(IT)Every function convex on a half — open interval is continuous.Then

A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct
D. both (I) and (II) are incorrect

14)Let the function i be defined by i = 1 on [0, 2) and (2) = 2. Consider the following
statements:

(I) ¥ is convex.

(IT) 4 is continuous.

A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct
D. both (I) and (II) are incorrect

15) Let (X, S, u) be a measure space with p(X) = 1.If 1 is convex on an open and bounded
interval (a, b) and f is a measurable function such that a < f(x) < bvxthen [ o f du <

Y(J fdu).

A. True
B. False
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1 1 x+y . .
16) Ifif(x) + 5 >f (T) then fis said to midpoint convex.
A. True
B. False

17) Constant functions are convex.

A. True
B. False

Answers for Self Assessment

1 C 2 B 3 A 4 B 5 C
6 C 7 D 8 D 9 C 10. A
11. D 12. C 13. A 14. A 15. B
16. A 17. A

Review Questions

Determine whether the following functions are convex or not on R.

[]]] Further Readings
Measure theory and integration by G DE BARRA, New Agelnternational.
Real Analysis by H LRoyden and P M Fitzpatrick, Pearson.

Lebesgue Measure and Integration by P K Jain, V P Gupta and Pankaj Jain, New Age
International.

Graduate Texts in Mathematics, Measure Integration and Real Analysis, Sheldon Axler,
Springer.

An Introduction to Measure and Integration, I K Rana.

@ Web Links

https:/ /nptel.ac.in/courses/111/101/111101100/

https:/ /www.youtube.com/watch?v=xUMRSOtM654 &list=PL_alTI5CCIRGKYvo8XNFT
K9zkjMbYTEwWS

https:/ /www.youtube.com/watch?v=YIrx8 W5nyq8&t=29s
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Obijectives
After studying this unit, students will be able to:

define conjugate exponents
demonstrate the inequality of Holder
explainthe inequality of Minkowski
demonstratecompleteness of LP space

understand completeness of L™ space

Introduction

The Minkowski’s Inequality [If+gll, < Il fll, + 1l gll, also called triangle inequality holds for
1 <p < oo.Thus for 1 < p < oo, the [P —spaces are examples of normed linear spaces which are also
complete under the metric ||f — gll,, the metric induced by the norm. Such normed linear spaces
are called Banach spaces. Holder’s inequality is used to prove Minkowski’s inequality.

In this unit, we prove the inequalities of Holder and Minkowski and the completeness of L? spaces.

12.1 The Inequality of Holder

Definition: Let p and g be two real numbers, p, g > 1. The conjugate of a number p is the number
q= ﬁ, which is the unigue number for which

11
—+-=1
P q

Here, p and q are known as conjugate exponents.
Ei/’ Notes: The conjugate of 1 is oo.

Ei,' Notes: The conjugate of o is 1.
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1 1
Theorem 12.1: Leta > 0,b > 0,;+{—?—= Lp>1qg>1.
Show that

Proof: Since e* is strictly convex.
1 1
. e;lag a+(—rlag b
P
a b
— + p—
B q

1 1
—loga+—logh
= gf THq%

I
= eloglan < 24

P
1 a b
= arbt € —+—.
p q

This completes the proof.
Theorem 12.2: (Holder’s Inequality)

11
Letl<p<owl<g< oo,;+t—?—= landlet f € LP(u)and g € L9(u).

Then fg € L'(u) and

o e

[irat du < ([1r17 au)

ie lfglly Il flipll gllg
Proof:If a > 0,bh > 0, then
b
q
Il /Il =0orll gll; =0then fg =0a.e.

N

s |
arbt < —+

=R

Therefore (1) is trivial.

If | fll, > 0 and]|l gll; > Othen in expression (2) we write

g7
(rilp)°
and
_lgl?
~ (llgllg)*
to get

‘e e q (_: 1
i gl [ _1_If]

a

=

b

q

1 1
< _eloga +_,E,Iagb

b
<—+-

q

(fqgwdu)‘l'

lgl®

(en,)°

Wl )] =2 ) a(igl,)

(D)

- (2)

Right hand side of expression (3) is integrable as f € LP(u)and g € L9(u).

So fg € L' ().

Now on integrating both sides of relation (3), we get

[Ifglde _1[If1” du  1[lg|" du

A gle = 2 (1 £1L,)" (1l glly)®
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[ifgldu _1(IA11,)"  1(lglly)"
ST, =2 (L) 2l gly)”

J Jlrglde 11
AL alle =7 " q

=1

= flfgl de <l flipll gl = lIfgll < I Flloll gllg

This completes the proof.

Ei/' Notes: If © =" 2 Holder's inequality is known as Cauchy Schwartz inequality.
- fal ==

12.2 The Inequality of Minkowski
Theorem 12.3 (The Inequality of Minkowski)

Let1 <p <oandf,g € L¥(u); then

1

(flf +glP dJu)p < UI}‘Ip dﬁ)” 4 (fls;lp du)”
e lIf+allp <Nl fll, + 11 gllp
Proof: Case I forp = 1.

We have
If +gl <Ifl +1gl

= [ir +gtde< [ir1au+ i1 du

=> If+glli =l flli+ 1l gl
Caselllf 1 <p < o

Consider
flf +glP du = flf +gP|f + gldu

< j [1f + glP=1{If1 + 1g1] dp

= [ir + gt dus 17117 + gl du+ [1gl + g~ d (D)
Let 1 < g < oo be such that

1 1

—yo=1

P q

=>p+q=pq

>pg—q=p

=qp-1=p -(2)

o [ir+gle=veau = [ir +glP au
<w = f,gelP(u)=f+gelP(y)
= flf+9l‘p‘1)q dp < oo

= |f+ g7t € 9().
Now, since f,g € LP(u) and |f + g|"~* € L9(u) therefore by Holder'sinequality, we have

f FIIF + gIP=t dpt < I NCE + @)1,

and
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fmuf+gW”dpgnmumf+gW*nq

J'lf||f +glP 1 du < IIfIIpUIf+gl(?"”‘? ci,uL]‘_lr

E
= £l f + gllp)e
Similarly, we have
P
waf+gW*duSHMbmf+gM%

A (1) =

flf +gl? du < |IFll(IIf + ,gllp]E +lgll, (If + g[ip)g

07+ gll,” < [l + Mgl JlIf + gllp]e

mf+gmﬂ”55uﬂb+nmm
Wf+gll, U Fll, + 1 gll,

gqp-1)=p
P
p—1==
q
P
—=—=1
P™q

This completes the proof.

Ei,‘ Notes: For 0 < < 1, Minkowski’s inequality does not hold.
- »

12.3 Completeness of LP Spaces

Theorem 12.4: (Completeness of L? Spaces)

Show that LP spaces are complete, 1 < p < oo

Or

Every Cauchy sequence in LP — spaces converges to some element in LP — spaces, 1 < p < oo,
Proof: Let < f;, > be a Cauchy sequence in L7 (u).

Therefore, for given € > 0, a positive integer N such that

N = full, <€, ¥mn=N
l
[V =] < -
Taking € = é, we can find a positive integer n; such that

1
W = fallp <5 mnzm

Taking € = 21—2,112 > ny such that

1
"fm “fn”p<? ' m,nznz.

1
Fore = o5 ke > M- such that
1
"fm _J'cn”p < 2_;; s ML= N

1
W = Faull, < 5 Ne)
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Let
k
G :z[f;ﬂm _ﬁlal'
i=1
g = lim gi
o
= Z[ﬁnﬂ & f;lr_l - (3)
i=1
Now

lgell, <1 (@)

Now we apply Fatou’s Lemmato the sequence of non-negative functions{g} }, to get
p ;
(1 gl,)" = [ 1im g du

<lim ian'ggj dp
<1
g isfinit« a.e.

Thusg

fac* i ¢ o)

is absolutely convergent a.e.

Let
o
P fa, +z(fﬂi+1 — fa,) »wherz it converges otherwise
i=1
0, otherwise
Since
k=1
fm +Z(fﬂi+1 _an,') = fnk
i=1
lim fo, = fae. . (8)

From (1), we havellf,, — full, <€ vanm =N
So, by Fatou’s Lemma, for each m > N,
flf — finlP dpt < lim mfflfui — fnl it
<eP
If —full,<e m>N .. (6)
Alsollfll, = If = fin + finlln
S Uf = fallp + Wfmllp < 0o {by (6)}
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feLr
This completes the proof.
Theorem12.5: Show that L% space is a complete space.
Or
Let < f, > be a sequence in L” (¢) such that
I — finllee = 0a@sm,n — oo,

then there exists a function f such that

i o = f ace,
fer®u)

and lim Ify = flle = 0.
Proof: L% (1) is a class of measurable functions {f: ess sup|f| < e} and Il f||, = ess sup|f|.

Here we use the fact that “A function is greater than its essential supremum only on a set of
measure zero.

Define
An,m = {I: Ifn(x) —fm(x)l > "fn _fnT.llOG}
By ={x:|f ()] > I fallos }

IfE = (U Aﬁlm) U (CJ Bk),

n=Em k=1
then u(E) =0
On E*:
|fa = finl S Wfa = fnllw = Dasmn > 0

Therefore on E€, {f,(x)} is a Cauchy sequence for each x, with limit f(x) (say) and we define f
arbitrarily on E.

So

lim f,=fae

n—m
Given € > 0,4 N such that

Ifn— finlleo < €forn,m >N
So for x € E®

[ () = fin CO1 < s = fimlleo < 0,
Letting n — o0, we get
1fG) — fu(x)| <€
Ifl € finl +t€a.e

and hence f € L= (u).
Also lIf — fulls S €
This completes the proaf.

Summary

Let p and q be two real numbers, p, g > 1. The conjugate of a number p is the number

q= p:, which is the unique number for which %) + é =1

The conjugate of 1 is eo.
The conjugate of oo is 1.
Leta>0,b > o,§+é= 1,p>1,q > Lthen
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e* is a strictly convex function,
letl<p<omwl<g< w,%-i-é: landlet f € LP(u)and g € L9(p).
Then fg € L'(u) and

fifgl dp < Ulﬂp dn)’% U’Igl“r du)%r

e llfgly =l fllpllgllg -
If p = q = 2Holder’s inequality is known as Cauchy Schwartz inequality.
Letl<p <ocoand f,g € L?(u); then

(fir+at du)% <([ire da)‘l’ +([1ar du)ﬁ

ie If +gllp < Fll, +1gll,
For 0 < p < 1, Minkowski's inequality does not hold.
LP? spaces are complete, 1 < p < co.
Every Cauchy sequence in LP — spaces converges to some element in LP — spaces,
l1<p<oo
L* space is a complete space.
Let < f;, > be a sequence in L* (i) such that
f = finlloo = 0 @s M, 11 > o0,
then there exists a function f such that

lim f, =fae,feL”(®)

and lim [1fy ~ fllo» = 0.

A function is greater than its essential supremum only on a set of measure zero.

Keywords

Conjugate exponents: Let p and q be two real numbers, p,q > 1. The conjugate of a number p is the
number q = %, which is the unique number for which%) +$ =1

Here, p and ¢ are known as conjugate exponents.
1 1
Holder's Inequality: Let 1 <p < 0,1 < g < DO,;+ - = landlet f € LP(u)and g € L9(u).

Then fg € L'(u) and

[iratan=(fire d#)’i’ ([1ate du)‘_l'
i.e. Ifgls <1l Flll gl

Cauchy Schwarz inequality: If p = q = 2 Holder’s inequality is known as Cauchy Schwartz
inequality.

The Inequality of Minkowski: Let 1 < p < w and f, g € LP(u); then

1

(fir+ar wf < (Jurre au) + (1ot au)
i.e. If +gll, < fll, + 1 gll,.

Completeness of LP Spaces: LP spaces are complete, 1 <p < o ie,, every Cauchy sequence in LP —
spaces converges to some element in LP — spaces, 1 < p < oo,
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Completeness of L Space: L* space is a complete space i.e., let < f;, > be a sequence in L* (1) such
that

E, — finllw = Dasm,n — oo,

then there exists a function f such that

gi_r&,ﬁi-——fa,e.,
ferw

and lim [[fy, = flls = 0.

Self Assessment

1) Let p > 1 be a real number. The conjugate of a number p is the number given by

A.p/2
B.p/p—1
C.p/p—2

D. none of these

2) If p and ¢ are conjugate exponents then

Ap+g=1

B.p+g>1

Cl4+l=1
P q

D. none of these

3)The conjugate of 1 is 1.

A. True
B. False

4) The conjugate of o is oo,

A. True
B. False

5) If p and q are conjugate exporents and a > 0,b > 0 then

A. a¥/Pbl/a < ap + bq

P pa
B. al/Ppiia < ¥ +,£1_
p o q

/9 pifq
C. al/Ppl/a < o a4 b___
q

. aiopiia <24 2
P q

6) (1i 2 b)<“+b
ex —oga — 10 — =
P p # q # P q
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A. True
B. False

7) If p and g are conjugate exponents then lifg|l; < If1l51lgllg, this is known as

A. Minkowski’s Inequality
B. Holder’s Inequality
C. Jensen’s Inequality

D. noune of these

8) lifglly = lIfllzllglly, this is known as

A. Minkowski’s Inequality
B. Jensen’s Inequality
C. Cauchy-Schwarz Inequality

D. none of these

9) Consider the following statements

@ If + gl = UFI0+ gl

DIf +gllg < Wfllg +Ngllg.q > L. Then
A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct

D. both (I) and (IT) are incorrect

10) If + gll, = Ufll, + Ngllp,p = 1 this is known as

A. Jensen’s Inequality

B. Holder’s Inequality

C. Cauchy-Schwarz Inequality
D. Minkowski’s Inequality

11) Consider the following statements

(I) For 1 < p < oo, the LP —spaces are normed linear spaces.
(INFor 0 < p < 1,the LP — spaces are normed linear spaces.Then
A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct

D. both (I} and (II) are incorrect
12)1f +glle = Iflleo + gl

A. True
B. False
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13) Ifglly = lIfhillglle

A. True
B. False

14) Consider the following statements
(Iy LP spaces are complete, 1 < p < oo,

(I)L* space is complete. Then

only (I) is correct

only (II) is correct

both (I) and (II) are correct
both (I) and (II) are incorrect

90w p

15) Every Cauchy sequence in LP space may or may not converge to some element in L? space,
l1<p<oo.

A. True
B. False

16) A function is greater than its essential supremum only on a set of measure zero.

A. True
B. False

17) L* () is a class of measurable functions {f: ess sup |f| < oo}.

A. True
B. False

Answers for Self Assessment

1. B 2. C 3. B 4. B 5. D
6 A 7 B 8 C 9 C 10. D
11. A 12. A 13. A 14. C 15. B
16. A 17. A

Review Questions

1) Prove that IP —spaces are normed linear spaces for 1 < p < o,
Jletl<p<ol<g< oo,%)+$ = 1andlet f € I?(x)and g € L2(n).

Then fg € L'(u) and

flfgldﬂé\]flflzdﬂ\“iglzdﬂ
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3)Ifp+q=npqf €LP g€ L% Show thatif 0 < p < 1 then

[irgtan>([irr ) ( [1ate du)‘l*

4)For nonnegative real numbers a, b and 0 < ¢ < 1, prove that
a’™b'" <ta+ (1 —t)b
5) For nonnegative real numbers a,b and 0 < t < 1, prove that

(=)

1/t

} 1/t 1/t
Sz(a +b )

[Y]] Further Readings
Measure theory and integration by G DE BARRA, New Agelnternational.
Real Analysis by H LRoyden and P M Fitzpatrick, Pearson.

Lebesgue Measure and Integration by P K Jain, V P Gupta and Pankaj Jain, New Age
International.

An Introduction to Measure and Integration, I K Rana.

Web Links
https:/ /nptel.ac.in/courses/111/105/111105037 /
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Unit 13: Convergence in Measure and Almost Uniform
Convergence
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13.1 Convergence in Measure

132  Almost Uniform Convergence
Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives

After studying this unit, students will be able to:

defineconvergence in measure

demonstrate algebra of functions in convergence in measure

explain almost uniform convergence

define Cauchy sequence in measure

understand the relationship among convergence a.e., convergence in measure and almost

uniform convergence

Introduction

We have already met uniform convergence, convergence a.e. and convergence in LP —spaces. In this
unit, we investigate other forms of convergence of measurable functions viz. convergence in
measure, almost uniform convergence. We also discuss relation among convergence a.e.,
convergence in measure and almost uniform convergence. The notion of convergence in measure is
of particular relevance to the theory of probability where it is often referred to as convergence in
probability.

13.1 Convergence in Measure

Let {f,} be a sequence of measurable functions on E and f a measurable function on E for which f
and each f;, is finite a.e. on E. The {f,}is said to converge in measure on E to f provided for each
>0,

Jim mix € E:|fo(x) = f(x)| 2 €} =0

m
We write f, = fon E.

Theorem 13.1: Let f;, 3 f andg, Eg on E then

i) fotgm—=f+g
ii) cfaScf,c€R
i) St
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. e m S
iv) i =>f
T
V) Ifal = 1£1
Proof:
T m
i) Since f,, — f and g, — g, therefore for given € > 0,
€
r}i_r)l;lmm{xe!;":l}‘;l(x)—,"(x)lZE}'—O . (D
and
. €
%ﬂm{x&&lgn(x)—g(x)l25}20 - (2)
Now,

(€ B+ 92000 = (f + ()| 2 €)
e {x € B:lfa(0) = f0I] 2 5} U fx € B:lgn00) — 9001 = 5}
=>mix € E:|(f, + g)x) — (f + 9)(x)] = €}
< mfx € E: /00— f@)] 2} +m{x € B: g0 — g0l 2 5}
= lim mix € E:|(f +g)W) ~ f+ @2 e}=0  (by(1),(2))
= fatgns f+a
ii) If ¢ = 0,the result is obvious.

m
Let ¢ # 0 since f,, — f, therefore for given e > 0,

. ; _ £y _
r!1_r>1|;|c11rn[xEE.lf;l(x) f(x]le}—O «(3)
Now,
fr € E:l(eh) () ~ e 2 €} = {x € E: |50~ f)] 2]
= mix € B: |(cf)(x) — (€N ()| 2 €} = mfx € B: Ifu(0) ~ fG)] 2 l—l}
= lim m{x € E:|(cfu) () = (cH@)| 2 €} =0 (by(3))
= cfnfi cf.
iii) Since f, 5 f therefore for given e > 0,
r!l_l;l;la mi{x € E:|f,(x) — f(x)| =€}=0 w(®
Now,
I =TI < 1fa = £l
s xEEL ) - T ze}c{x e Elfy — fl 2 €}
sSmixe i) =) ze}<mixeE:|f,—fl = e}
:r!i_fl;lam{xEE:l,ﬁf(x)—f“fx)[2£}=O (by(®))
> Ot
iv) Since,
o —fl1=1fa—f

s xEBIf) -z c{xeE - flzé
smixeb:|ff(x)—f (x| ze}<mixeE:|f,—f| =€}

Slimpemx EE |7 (x) - fF (x)| =€}=0
> frof-
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V) Since,
[Vl = 1A1 < 1fe— £1
cAxe BNl -IfllzelcixeElfi—fl=e)
:m{xEE:Ilfﬂ = lf]| = 6} sm{x€E:|f, —fl =€}
lim, .m{x € E: |fi(x)—f(x)|=€}=0
= Ifal SIf-
This completes the proof.
Theorem 13.2: If m(E) < ooandf, 3 fodn 5 g
then
)y RSP
ii) fagn = f9
Proof: i) Since f, 3 fs0limit function f is finite valued a. e.
Therefore, for given € > 0, aset A and k > 0 such that
mA) < gand Ifl <kond®  ..(1)
Now, consider

Es = {x:|f,(x) = f(X)| = 6}

Es = {x:|fu(x) — f(0)] < 8} -~ (2)
On (AU E)® = A°n E§,

12 = F2l=1Un + DG~ DI
=fa+2f = fllfa — f1
<fa = FI+ 2171005 = F1]

<[5 +2k][5] < €,
for an appropriate § > 0.

Also m(Eg) < g for all large values of n.
€ €
- m(AU Es) €< m(A) + m(Es) <E+E= €
Thus, for large values of n,
mix€E: |7~ 2z} <e
RSP
m m
ii) Since f, = f,g.— ¢
m m
ﬁn +gn—) f+93“dfn—gn** f—g
m m
(it anz - (f+ g)aand(ﬁl . gn)z — (f S 9)2
- ™
(ﬁt"'gnj'z_(fn _gnjz_’(f +Q)2_(f_g)2

n
4fngn 2 4fg
m
fngn=fg.
This completes the proof.
@,‘ Notes: The condition o in the above theorem is necessary.

FOALON s ) S i Hhe abkd de |

@ Example: Let - . » a sequence of positive reals such that
) = x and M (x) — e, {eN} i
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lim=_ £, Oand _, o) then show that —
" r

—__Jes not converge to i sure.
A4 e o et

Solution: Here,

mfx € E: |fo(x)gn(x) — F(x)g (I 2 €}

=mix € E:|(cu)(x) |IZ €} = c0 vn.
Hence f,, g, does not converge to fg in measure.
Theorem 13.3: Let f;, 3 fonEand g = fa.e.onkE. Then f, 5 gonk,
Proof: Sinceg = f a.e.
~mix €E: f(x) # g(x)} =0 - (1)
Also, fu 2 f therefore for given € > 0,
Jim mix € E:|fo(x) — f(x)} 2 €} =0 - ()
Now
{x € E:|fnlx) —g(x)| Z €}
Clxe B f(x) # g}V {x € E:|fa(x) — fx)] 2 €}
mix € E: |f(x) — glx)| = €}
smix € E: f(x) # g(x)}+ mx € E: [[,(x) — f(x)| = €}

lim mfx € E:|fy () - g0l 2} =0 fuS g.

This completes the proof.

Theorem 13.4: If f;, i f on E, then limit function f is unique a.e.on E.

Proof: If possible, let g be anather function such that f, 5 g then for given € > 0,

lim m {x € B: 1,00 = f(0)] 2 5} =0 -
and
?Ei_l)gom {x e E:lf(x) — glx)| = g} =0 (2
If =gl =1 - f) + (fa ~ 9|
<l —fl+1f—gl

e E:|f(x) - g)| 2 €}
c {xe i@ - r@l 25} u{r e B0 - 9@l 2 2}
mi{x € E:|f(x) — g(x)| = €}
sm{xeBlf() - f@l 23} +m{r e Bl - g 2 5}
lim m{x € E:|f() ~ g()| 2 €} =0
f=gaeonk.

This completes the proof.

Theorem13.5: Let {f,} be a sequence of measurable functions which converges to f a.e.on E with
m
m(E) < o then f;, = f onE.

Proof: For every n € N and € > 0, consider the sets
Su(e) = {x € E:|fn(x) = F (0] 2 €]
Since sequence {f;, }is a sequence of measurable functions which converges to f a.e.onE.

Therefore, for given § >0, a measurable set A € E with m(4) < § and a positive integer N such
that

|fnlx) — fx)| <e,yn=N,and x€E—-A
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S.(e)t Avnz=N
= m(Sp(e)) < m(4)
<§,vn=N
mix € E:|f,(x) — f(x)| =€} <8, yn=N
m
f— fonE.
This completes the proof.

Cauchy Sequence in Measure: A sequence {f,} of measurable functions is said to be a Cauchy
sequence in measure or fundamental in measure if for any € > 0,

im m{x: | () = fn () 2 €} =0
Or

A sequence {f;,,} of measurable function on E is said to be Cauchy in measure if for given 5 > 0 and
€ > 0, there is an index N such that foralln,p = N,

m{x:lfn(x) —fp(x)| = r}} <e.
Theorem 13.6: If a sequence {f;,} s f, then it is a Cauchy sequence in measure.

Proof: Since {f;,} i f therefore for every € > 0, we have

Jim mfx:|f, () = F@] 25} =0 ()
Now
|00 — £ = |[fa) = FCO] + [ ) = £,
< 1@ - FOI + |G - F)|
Therefore,

{x: Iﬁﬂ(x) —f;,(x)l = e]
< {x:1h@ - f@I 2 5} ufup - F@) 2 5}
mx: |00 = (0] 2 e} < m{x: |0 - F0I = g} +m{x:|f00 - F@0)] 2 ;}
HEE‘W m{x: |}§1(x) —fp(x)| = E} =0

{f.}is Cauchy sequence in measure.

This completes the proof.

13.2 Almost Uniform Convergence

Let {f,} be a sequence of measurable functions and let f be a measurable function then we say that
fn = f almost uniformly if for any € > 0, a set E withm(E) < € and f;, = f uniformly on E*,

We write

hofau

Ei/ Task: Uniform convergence u.c. uuplies almost uniform convergence.

Theorem 13.7: If f;, = f a. . then f; i £

Proof: Suppose f, 5 f is not true, then 3 positive numbers e ad § such that
mix: [f () = f(x)| 2 €} > 6 - (1)
for infinitely many n.

But since f, = f a.u. therefore a set E with m(E) < & such that f;, — f uniformly on E€, we get a
contradiction.
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This completes the proof.

Theorem 13.8: If {f,} is a Cauchy sequence in measure, then there exists a measurable function f
such that f, 3 I

Proof: Since{f;} is a Cauchy sequence in measure, therefore 3n; € N such that
1
m |00 - ] 23} <5 vnp 2
Similarly, n, >n, such
1
m[x: [£: () — (0] = 22} <5z Vnpzm,
Continuing like this, we get a strictly increasing sequence {n,.} of positive integers such that

1
m [0 ~ o] 2 3] <35 mp = >

Define
1
Ey = [x: |f;1k (x) - f;lk-n (x)l —k}
Let
o <
x e (U E!)
i=k
x & U El'
i=x
x & Eifforanyi =k
|1, () = fnpy ()| < 2{, izk.

Then for v > s = k, we have

Y () = fos )

i=s+1

|fn,_(x) - fn_.‘.(x)l =

< Z Vo) = fro, )]

i=s+1

< Z Vi) = fo, ()]

i=s+1

oo (=
1
|fnr—fn_~_| <i—;f0r?’>s >kand x€ (UEE) .

i=k

om e
The sequence < f,, > is a uniformly Cauchy sequence in (U EL-)

i=k
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i 1
’”(UEE)<2:¢——1’

i=k
Thus, the sequence < f, > is an almost unitormly Cauchy sequence converging to some
measurable function f.

m{r: Ifnk(ﬂ —f(r)l = ;} —0Nask = o
Now
o = £1 = U = fruaed + [fone = £
= |fn _fnk| + |fnk _JF |
Therefore, for each € > 0, we have
{x:fal0) = fF] =2 €}
{rlh® - @l 25 v fx @ - F@] 22}
m{x: |f(x) = f(0)] = €}
< m{x: |fn(x) —fm‘(x)l = ;} +m {x: |f;1k(x) —f(x)| > ;}
Since < f;, > is a Cauchy sequence in measure
m {x: lﬁu(x) - fnk(x)l = %}
is arbitrary small if n and n;, are suffisiently large.
mixlifu() = f(x)| =€}~ 0asn— o
o= f

This completes the proof.

Summary
Let {f} be a sequence of measurable functions on E and f a measurable function on FE for
which f and each f, is finite a.e. on E. The {f,} is said to converge in measure on E to f

provided for each € > 0,
lim m{x € E:|fo(x) = f(x)| 2 €} =0

m
We write f;, = fon E.

¥ m
Let f;, = f andg, = g on E then
a. futgm—f+g
m
b. cfi—=cficeR

T
e

c. fat-ft
d fr=f
AR
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Ifm(E) < oo andfnﬁ f,gnzl» g then
mo_
. Ry
2. fagn— fa

Here, the condition m(E) < o0 is necessary.

Let f,,(x) = x and g,,(x) = ¢y, {c,}is a sequence of positive reals such that
limy 0 ¢y = 0 and E = (0, ) then f, g,, does not converge to fg in measure.
Let fﬂﬁ fonEand g =fa.e.on E.Thenfnﬂ gonk.
If f, 5 fonkE, then limit function f is unique a.e. onE.
Let {f,} be a sequence of measurable functions which converges to f a.e.onE with
m(E) < oo then f;, % fonkE.
A sequence {f,} of measurable functions is said to be a Cauchy sequence in measure or
fundamental in measure if for any € > 0,
M m{x .00 = fu @) 2 €} = 0
Or a sequence {f;,} of measurable function on E is said to be Cauchy in measure if for

givenn > 0 and € > O, there is an index N such that for all n,p = N,
mlx: |[fu(0) - S| 21} < &

If a sequence {f,} 2 f, then it is a Cauchy sequence in measure.

Let {f,} be a sequence of measurable functions and let f be a measurable function then we
say that f; = f almost uniformly if for any € >0, a set E with m(E)<e and f, = f
uniformly on E°. We writef, = f a.u.

Uniform convergence a. e. implies almost uniform convergence.

If £, = f a.u then f, ﬁf.

If f.}is a Cauchy sequence in measure, then there exists a measurable function f such that

5T

Keywords

Convergence in Measure:

Let {f,.} be a sequence of measurable functions on E and f a measurable function on E for which f
and each f;, is finite a.e. on E. The {f,} is said to converge in measure on E to f provided for each
e >0,

r}i{l;larn{xe E:|fa(x)—f(x)| =€} =0.

.
We write f, lf onk.

Cauchy Sequence in Measure: A sequence {f;} of measurable functions is said to be a Cauchy
sequence in measure or fundamental in measure if for any € > 0,

lim mix () = fr ()] 2 €} = 0

Or

A sequence {f;,} of measurable function on E is said to be Cauchy in measure if for given n > 0 and
€ > 0, there is an index N such that forall m,p = N,

m{x: |[fu(x) = fp(0)| 27} < €.
Almost Uniform Convergence:

Let {f,} be a sequence of measurable functions and let f be a measurable function then we say that
fn = f almost uniformly if for any € > 0, a set E with m(E) < € and f,; = f uniformly on E*,

We write

o= fau
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Self Assessment

1) A sequence {f;,} of measurable functions is said to converge in measure to a measurable
function f on a set E if for given >0, lim,,_,m{x € E:|f,(x) — f(x)| > e} 20

A. True
B. False

2) Consider the following statements
Ol = F 1< 1fi = fl.
()|1fal = 11| = Ifu = f1.Then

A. only (I) is correct

B. only (II) is correct
C. both (I) and (II) are correct
D. both (I) and (II) are incorrect

3) Consider the following statements
(DLet f, 5 f onE then cf, — cf only for ¢ > 0.

(IDLet £, Eq;fon E then f;" TU”butf,{ » f~. Then

only (I) is correct

only (II) is correct

both (I) and (II) are correct
both (I) and (II) are incorrect

9N = >

4) Consider the following statements
(D) Let £, 5 fon E then || 5 If].
m m T
(IDLet f, = fon E then f; — f~butfy" + f*. Then

A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct
D. both (I) and (II) are incorrect

5) Consider the following statements
(DLetf;, i f on E then ¢f , i cf force R
(IDLet £, r—nefon E then f;" T>f+and e E;f". Then

A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct
D. both (I) and (II) are incorrect

6)Consider the following statements:
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()Let £, 55 f onE then £2 5 2 on E only if m(E) < o.

(I) m(E) < oo is the necessary condition in the following result. Let f;, 5 fonEthen f2 i f?onE.
Then

only (I) is correct
only (II) is correct

both (I) and (II) are correct
both (I) and (I1) are incorrect

9N = >

7) Let f,,(x) and g,,(x) be defined on E = (0,0)such thatf,,(x) = x and g, (x) = by, b, € N for
each n where lim,, o b, = 0 then f,,gn il>fg onkE.

A. True
B. False

8) Consider the following statements:

(D) Let f;, 2}“ onEand g = f a.e.onE. Then fnﬁg onkE.

(I) If f; converges to f in measure on E then limit function f need not be unique. Then

only (I) is correct

only (II) is correct

both (I) and (II) are correct
both (I) and (II) are incorrect

90w p

9) Consider the following statements:

() A sequence f;, of measurable functions is said to be a Cauchy sequence in measure if for
q |
given i > 0 and <> 0, there is an index N such that for all

np = N,m{x: |f,(0) - f,(0)| =0} < .
(II) A sequence{ f;, } of measurable functions is said to be a Cauchy sequence in measure if for
any € > 0, limy. ,_ o m{x:|f;,(x) = frn(x)| = €} = 0.Then
only (I) is correct
only (II) is correct
both (I) and (II) are correct
both (I) and (II) are incorrect

90w p

10) Uniform convergence a.e. implies almost uniform convergence.

A. True
B. False

11) If f, — fa.u, then f,, - f in measure.
A. True

B. False

12) If f, = f a.u., then it is not necessary that f;, — fa.e.

A. True

L ovely Professional University
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B. False

13) Consider the following statements:

(1) If {f,} is a sequence of measurable functions which is fundamental in measure, then there
exists a measurable function f such that f;; — f in measure.

(ID) If £, = f a.u., then f;, = fa.e. Then
A. only (I) is correct
B. only (II) is correct

C. both (I) and (II) are correct
D. both (I) and (II) are incorrect

14) If a sequence {f,} converges in measure to f, then it is a Cauchy sequence in measure.

A. True
B. False

15) Let {f,} be a sequence of measurable functions. If for any e > 0, there exists a set E with
m(E) < € and f;, — f uniformly on E€ then f, — f almost uniformly.

A. True
B. False

16) A sequence{ f;, } of measurable functions is said to be a Cauchy sequence in measure if for
any € > 0, limy. _ o mix: | f,(x) = frn(x)| = €} = 0.

A. True
B. False

17)If f, = f a.u., then f, need not to converge to f a.e.

A. True
B. False

18) Let {f,,} be a sequence of measurable functions. If for any e > 0, there exists a set E with
m(E) > € and f;, — f uniformly on E€ then f, — f almost uniformly.

A. True
B. False

Answers for Self Assessment

11.

16.

B 2. A 3. D 4. A 5. C
C 7. B 8. A 9. C 10. A
A 12. B 13. C 14. A 15. B
A 17. B 18. B
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Review Questions

1)Show that the condition m(E) <  is necessary for the result f, i ffe i P2

2) Show that the condition m(E) < o is necessary for the result f; i fr Gn 2 g = fudn 5 fa.

3) If f; — fiin measure and alsof; — f;in measure then show that f; = f, a.e.

4) Show that uniform convergence a. e, implies almost uniform convergence.

m
5)Let f, = f where f and each f, are measurable functions. Then there exists a subsequence {n;}
such that £, - f a.e.

L

Further Readings

Measure theory and integration by G DE BARRA, New Agelnternational.
Real Analysis by H LRoyden and P M Fitzpatrick, Pearson.

Lebesgue Measure and Integration by P K Jain, V P Gupta and Pankaj Jain, New Age
International.

Graduate Texts in Mathematics, Measure Integration and Real Analysis, Sheldon Axler,
Springer.

An Introduction to Measure and Integration, I K Rana.

Web Links
https:/ /nptel.ac.in/courses/111/101/111101100/

https:/ /www.youtube.com/watch?v=xUMRSOtM654 &list=PL_alTI5CCIRGKYvo8XNFT
K9zkjMbYTEwWS

https:/ /www.youtube.com/watch?v=YIrx8 W5nyq8&t=29s
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Unit 14: Egoroff's Theorem, Lusin's Theorem, F. Riesz’s Theorem

Dr. Monika Arora, Lovely Professional University

Unit 14: Egoroff’s Theorem, Lusin’s Theorem, F. Riesz’s Theorem

CONTENTS

Objectives

Introduction

141  Egoroff's Theorem
14.2 Lusin’s Theorem
14.3 F. Riesz’s Theorem
Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives

After studying this unit, students will be able to:

understand Egoroff’s theorem
explain the proof of Egoroff’s theorem
demonstrate Lusin’s theorem
understand proof of Lusin’s theorem

explain F. Riesz’s theorem and its proof

Introduction

The main aim of this unit is to analyze the convergence of sequences of measurable functions. In
this context, we will discuss three important theorems viz. Egoroff’s theorem, Lusin’s theorem, and
F. Riesz's theorem.

14.1 Egoroff’s Theorem

Lemma 14.1: Let E be a measurable set of finite measure and {f,(x)} be a sequence of measurable
functions defined on E such that f, —» f on E. Then for given € > 0 and § > 0,3 a measurable
setd € E withm(4) < § and a positive integer N such that

(X)) = f(x) <e¥n=N,vx€EE — A
Proof: Let
G ={x:|fulx) — f(x)| = e},vn €N

Since {f,(x)} is a sequence of measurable functions, therefore lim,_ fr{x) = f(x) is also a
measurable function.

= (3, is measurable Vn € N.

Let

L ovely Professional University 183



Notes

Real Analysis IT

Then {E}} is a sequence of measurable sets such that

Eyiq € Egand m(Ey) < oo, Vk €N

ﬁEk =¢
fe=1

If possible, let
o0
X E ﬂ Ek
fe=1
= x € E,, Yk €N
=]
= x€E U Gn,Vk EN
n=k
= Vi € N,3n = k such thatx € G,
= vk € N,3In = k such that|f;,(x) — f(x)| = €
= fu + f,which is a contradiction.
Therefore
o
ﬂ Ex=¢
fe=1
Therefore

EI_I;I; ?H(E;() =m (ﬂ Ep()

k=1

=m(¢)

=90
i.e. lim m(Ey) =0

= V4 > 0,3 a positive N such that m(E,) < §,¥n = N,

LetEy = A

= A is a measurable subset of E with m(A4) < &

and
xeE—-A
S>xgA
=>x & Ey

(e
>x € U Gy
n=N

= x & Gy foranyn = N
> |flx) = flx)| <e,vn=N
Hence for given € > 0 and § > 0,3 a measurable set A € E with m(4) < § and a positive integer N
such that
[fulx) = flx)| <evVn=N,vx € E - A

This completes the proof.

s Notes: Let F be a measurable : h fir 2asure and ra  Jquer _
9 7 weh i, . {110 seq we o
measurable functions such that f, = f a.e.on E., 2n for given € ZSoand 50,3, <

such that m(A) < § and a positive integer N for which
[fp—fl<ewnz=Nangyx€E— A

184 L ovely Professional University



Unit 14: Egoroff's Theorem, Lusin's Theorem, F. Riesz’s Theorem

Theorem 14.2: (Egoroff’s Theorem)

Assume E has a finite measure. Let {f,} be a sequence of measurable functions on E that converges
a.e. on E to be the function f. Then for each € > 0,3 a measurable set A € E for which f, = f
uniformly on 4 and m(E — 4) <e.

Proof:Here we use the theorem “Assume E has a finite measure. Let {f;} be a sequence of
measurable functions on E that converges a.e. on E to f. Then for each 7 >0 and § >0,3 a
measurable set A € E and an index N for which

i —Fl<n¥n=Nondandm(E —4) <&"

For each natural number n, Let 4,, be a measurable subset of E, and N(n) and index which satisfy
the conclusion of the above mention result with above mention result with

€ 1
6:—— d = —
and n =

21’1
. €
i.e. m(E—A4,) < 7 (D
and
1
lfi=f1< ;onAnfor allk = N(n) - (2)
Define
o
A= ﬂAn.
n=1

By De Morgan'’s identities, the countable subadditivity of measure and (1), we get

m(E—-A) =m (U(E = An))

n=1

2]

= Z m(E — A,,)
n=1
o0
<2
n=1

| m

o E

o]

We claim that f, = f uniformly on A.
Let € > 0, choose an index ny such that nl < € then by (2)
1
Ifi — fl < = ond, for k = N(ng).
0

1
However, 4 © Anoandjn— <E.
0

“fie = fl <eonAfork = N(ng).
Thus f,, — f uniformly on A and m(E — A) < e.
This completes the proof.

14.2 Lusin’s Theorem

Theorem 14.3: (Lusin’s Theorem)

Let f be a measurable function defined on E. Then for given £ > 0, there is closed set F € E and a
continuous function g on R such that

m(E—-F)<eandf =gonF.

Ei,’ Notes: Tietze Extension Theorem:

F then 1

T F = R i . .
! here is a continuous

Let 7 P© @ “losed subset of R. If 5 continuous on
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functi(;mg_ — R such that

e I
Proof: Case I:f is a simple function.

Let

7
JF = Z Qi XEgr
i=1

Where
Ei={x € E: f(x) = a;}
are pairwise disjoint measurable sets.

Let

n
Enyy =E - U E;
=1

i

so that E,,;; is measurable and

Since E; is measurable, 1 < i <n + 1.

Therefore, for given € > 0,3 closed set F; C E;,1 <i<n+1

such that
(E; — F, < 1
ml Ly i) < o 1 ( )
Let
41

Then Fis closed, F € Eand

m(E — F) :m[UEi—P[jF}]

i=1 i=1

n+1
U(E; Fa)]
n+1 -
=;m—m

1
€

n+1
1

=m

2

b7

<

.
n

€
5L n+1)
=€
i.ee m(E—F)<e
F,'s are disjoint closed sets and f takes constant values a; on each F;.
Therefore f is continuous on F.
Case II:f is any measurable function on E.

Here we use the theorem “If f is a measurable function defined on E then 3 a sequence {s,} of
simple functions such that

Sy = fonE"
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We can find a sequence {f;,} of simple functions such that f;, = f onE,

By case I, for each n and given € > 0,3 a closed set A, € E such that
€
21‘1+1

m(E — A4,) <

and f;, is continuous on 4,,.

Let

fe3
A= A
n=1
Then each f, is continuous on 4 and

i) =m[s—ﬂm An]

n=1

(-

n=1

i m(E — 4;)

=m

I

i.e.m(E — A) 4% - (2)
Corresponding to each positive integer k, define
Bp=An{x:k—-1<|x| <k} VkEN

Each By, is measurable and

@0
A= UBk
k=1

Now, as f;, = f on each By, so by Egoroff's theorem, for given € > 0,3 a measurable set C; € By,
such that

€
m(Bk == CkJ < 2;(—+2
and f;, — f uniformly on Cj.

Also corresponding to each measurable set €y, there exists a closed set F, such that

€
m(Ck = Ff() = ‘Zm.

Therefore,3 a closed set F;, € By, such that
m(By. — F,) =m[(By — C) U (C = Fi)]
{~ F € G € By}

= m(By — Cx) + m(Cy. — F.)

£ €
< 2k+2 * 2}z+2
_ €
= okt
; €
l.e. ?n(Bk_Fk)‘qF (3)

and f;, = f uniformly on Fy,,Vk € N.

Hence f is continuous on F;, ¥k € N

=0
F= UFk
k=1
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As
FkQB;(Q{x:k—lslxi Sk}.VkEN
Therefore

el
F:UF"(

fe=1

is closed and f is continuous on F.

Also
m(E—F)=m(E—-A)+m{A-F)
A, S EVn

> (anck

and
F, € B,
= UFR ;UBk
=2 FCA

~FECACE.
Now,

i §+ m(A—F) {by(2)}

k=1 k=1
e
=—+m [U(Bk - F)
k=1

ie=1
_E,€
273TE
ie. m(E-F) <e

f is continuous on closed set F € E and m(E — F) < e.

This completes the proof.

14.3 E.Riesz’s Theorem
Theorem 14.4: (F. Riesz Theorem)

Let {f;,} be a sequence of measurable functions such that f; 4 f onE. Then 3 a subsequence {fy }
that converges to f a.e.onE.

Proof: Consider two sequences {€,} and {6,} of positive real numbers such that €, > 0 asn =
and

20

0, < ©

=1

Since f, ﬂf onk.

188 Lovely Professional University



Unit 14: Egoroff's Theorem, Lusin's Theorem, F. Riesz’s Theorem

Therefore, for given € > 0 and § > 0,3n, € N such that
ml{x € E:|fn(x) — f(x)| = €}l < 8, ¥n =n, (D
By using (1), we form a strictly increasing sequence < iy, 2> of positive integers as follows:
For €; > 0 andd; > 0, there existsn, € N such that
m|{x € E: lf;h(x) - f@)| = &}] <8y >ny
Also, there exists n, € N such that

m[[x eE: |fn2 (x) —f(x)l = 52}] < 6, VN, > 1y
and so on.
In general, we get the number n; € N such that
m[[x EE: |fnk(x) —-,f(x)l > Ek}] < O Yy > Ny
Now we will prove that subsequences < f, > converges to f a.e.onE.

Let

ac=| e Elh @ -r@l el ken @
i=f

and

fe:)
A= ﬂAk
k=1

Then < A, > is monotonically decreasing sequence of measurable sets and m(4;) < oo.

We have the result “If{E,;} be monotonically decreasing sequence of measurable sets i.e.Enq €

E,,, ¥n such that m(E;) < co then
m (ﬂ E;) = Tim m(Ey)"

Therefore

sl = (ﬂ Ak) = lim m(Ay) (3

But

Therefore m(A) = 0.
Now we claim that < f,, > convergesto f on E — 4.
For this let
xgEE—A
Xy €A

o0
ﬁxoemﬂk
k=1

xg € atleastoned,,

» Xg & Ay, for some positive integerk,

Xp & U[x € E:|fn,(x) - f(x)| = &}

i=iy
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x0 € f{x € E: |, () — fOO)| = &}, Vi ko

|fue(xo) — f(x0)| < €11 i = ko
Bute; - Oasi = o.
Therefore,
lim £, (x) = f (xo)
fa, > fOnE—-A
fn, = fa.e.onE.

This completes the proof.

Summary

Let E be a measurable set of finite measure and {f,(x)} be a sequence of measurable
functions defined on E such that f, = f on E. Then for given ¢ >0 and § >0, a
measurable set A € E with m(4) < § and a positive integer N such that
(X)) — f(X)| <evn=N,VxEE - A
Let E be a measurable set with finite measure and {f,,} be a sequence of measurable
functions such that f, —» f a.e.on E. Then for given € >0andd >0, A CE such that
m(4) < 6 and a positive integer N for which
Ifi—fl<ewn=Nand xek - A
Egoroff’s Theorem:Assume E has a finite measure. Let {f,} be a sequence of measurable
functions on E that converges a.e. on E to be the function f. Then for each € >0, a
measurable set A € E for which f;, = f uniformly on 4 and m(E — 4) < e.
Lusin’s Theorem: Let f be a measurable function defined on E. Then for given € > 0, there
is closed set F € E and a continuous function g on R such that
m(E—F)<eandf=gonF.
Tietze Extension Theorem:Let F be a closed subset of R. If f/:F = R is continuous on F
then there is a continuous function g: R = R such that f = gon F.
If f is a measurable function defined on E then 3 a sequence {s,,} of simple functions such
that
Sp—= fonk
F. Riesz Theorem: Let {f,} be a sequence of measurable functions such that f, = fonE,
Then 3 a subsequence {f,, } that converges to f a.e.onE.

If {E,} be monotonically decreasing sequence of measurable sets i.e.E,:q € Ep, V0 such

that m(E;) < oo then
m (ﬂ E;) = lim m(E,).

Keywords

Egoroff’s Theorem: Assume £ has a finite measure. Let {f;,} be a sequence of measurable functions
on E that converges a.e. on E to be the function f. Then for each € > 0, a measurable set 4 € E for
which f, = f uniformly on A and m(E — 4) < e,

Lusin’s Theorem: Let f be a measurable function defined on E. Then for given € > 0, there is closed
set F € E and a continuous function g on R such that

m(E—-F)<eand f=gonF.
Tietze Extension Theorem:

Let F be a closed subset of R. If f:F — R is continuous on F then there is a continuous function
g: R - Rsuchthat f = gonF.
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F. Riesz Theorem: Let {f;,} be a sequence of measurable functions such that f, A fonE. Then a
subsequence {f;, } that converges to f a.e.onE

Self Assessment

T)LetA = {x € E:lim;,_ o frn(x) # f(x)} and lim,,_ o, fn(x) = f(x) a.e.onE then

m(A) >0
m(A) =0
m(A) = o

none of these

9N = >

2) Let m(E) < oo, Let {f;,} be a sequence of measurable functions on E that converges a.e. on E to
the real-valued function f. Then for each € > 0, there exists a measurable set A € E for which
fn = f uniformly on A4 and m(E — A) < e. This is known as

Lusin’s theorem
Egoroff’s Theorem

Riesz’s Theorem

9N = >

Tietze Extension Theorem

3) Consider the following statements:

() Let m(E) < . Let {f;} be a sequence of measurable functions on E such that f, = f onE,
Then for given € > 0 and § > 0, there exists a measurable set 4 € E with m(4) < § anda
positive integer N such that [f,,(x) — F(x)| < e¥n = N,vx € E — A

(I1) Let m(E) < oo. Let {f,} be a sequence of measurable functions on E such that £, = f a.e. on
E. Then for given € > 0 and & > 0, there exists a measurable set A € F with m(4) < § and a
positive integer N such that |f,(x) — f(x)| <eVn=N,Vx €E - A

only (I) is correct

only (II) is correct

both (I) and (II) are correct
both (1) and (1I) are incorrect

4) m(UAn) = E m(Ay).

n

9N = >

A. True
B. False

1 1
5)25—5
T

A. True
B. False

6) Let f be a measurable function defined on a set E. Then for given € > 0, there is a closed set
F € E and a continuous function g on R such that m(E — F) < e and f = g on F. This is
known as

A. Lusin’s theorem
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B. Egoroff’s Theorem
C. Riesz’s Theorem

D. Tietze Extension Theorem

7) Let F be a closed subset of R. If f: F — R is continuous on F then there is a continuous
function g: R - R such that f = g on F. This is known as

Lusin’s theorem

Egoroff’s Theorem

Riesz’s Theorem

90w p

Tietze Extension Theorem

8) If f is a measurable function defined on E, then there exists a sequence {s,,} of simple
functions such that s,, = f on E.

A. True
B. False

9) Let f be a simple function. Suppose ay, az, ..., a, are distinctand E; = {x € E: f(x) = a;} are
pairwise disjoint measurable sets. Then f = }I, a;xz; is the canonical representation of f.

A. True
B. False

10) Let F;, 1 < i < n, be closed, then F = UYL, F; is also closed.

A. True
B. False

11) Let {f,,} be a sequence of measurable functions such that f;, i f on E. Then there exists a
subsequence {fy, } that converges to f a.e. on E. This is known as

A. Lusin’s theorem
B. Egoroff’s Theorem
C. Riesz’s Theorem

D. Tietze Extension Theorem

12) Let {f;,} be a sequence of measurable functions such that f, 5 f on E. Then there exists a NO
subsequence {f,, } that converges to f a.e. on E.

A. True
B. False

13) If {E,} be a monotenically decreasing sequence of measurable sets such that m(E;) < oo then
m(NEyp) = limy,_ o, m(Ey).

A. True
B. False

14) Consider the following statements:
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() Let x € N, A, = x is not contained in at least one Ay.

(IT) Let x € N7, Aj, = x is contained in at most one Ay

A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct
D. both (I and (1) are incorrect

15) Let f,, = f onE — A and m(A) = 0. Then f;, — f a.e. on E.

A. True
B. False

Answers for Self Assessment

1 B 2 B 3 C 4 A 5 B
6 A 7 D 8 A 9 A 10. A
11. C 12. B 13. A 14. A 15. A

Review Questions

1) Let E be a measurable set with finite measure and {f;} be a sequence of measurable functions
such that f, = f a.e.on E. Then for given £ > 0 and § > 0,34 € E such that m(4) < § and a positive
integer N for which |f, — f| <e,yn = NandVx € E — A.

2)If f is a measurable function defined on E then a sequence {s,} of simple functions such that
Sy = fonE,

3) If {E,} be monotonically decreasing sequence of measurable sets i.e.E,.q € E,, ¥n such that
m(E;) < oo then m(N E,) = lim,,_ o, m(E,,).

4) Let f be a simple function defined on E. Then for given € > 0, there is closed set F € E and a
continuous function g on R such that

m(E~-F)<eaxdf=gonF.

5)Assume E has a finite measure. Let {f,} be a sequence of measurable functions on E that
converges d.e. on E to f. Then for each > 0 and § > 0,3 a measurable set 4 € E and an index N
for which

lfu —fl <m,¥n =N ondand m(E — A) < 6.

L...J Further Readings
Measure theory and integration by G DE BARRA, New Agelnternational.
Real Analysis by H LRoyden and P M Fitzpatrick, Pearson.

Lebesgue Measure and Integration by P K Jain, V P Gupta and Pankaj Jain, New Age
International.

Graduate Texts in Mathematics, Measure Integration and Real Analysis, Sheldon Axler,
Springer.

An Introduction to Measure and Integration, I K Rana.
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@ Web Links

https:/ /nptel.ac.in/courses/111/101/111101100/

https:/ /www.youtube.com/watch?v=xUMRSOtM654 &list=PL_alTI5CCIRGKYvo8XNFT
K9zkjMbYTEwWS

https:/ /www.youtube.com/watch?v=YIrx8W5nyq8&t=29s
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