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Dr. Preety Kalra, Lovely Professional University Unit 01: Introduction and initial value problem Notes

Unit 01: Introduction and initial value problem
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Expected Learning Outcomes

After studying this unit, you will be able to

e understand about the different types of differential equations.
¢ analyze in the form of an explicit form, preferably in the form of elementary functions.
e find the qualitative property of the differential equation.

e understand the need of an initial value problem.

Introduction

Most dynamical systems-physical, social, biological, and engineering-are are often conveniently
expressed in differential equations. Such equations can provide insight into a system's behaviour if
they represent the various important factors governing the system. For instance, when a system is
known to perform efficiently over a certain range of input, the solution of the differential equation
governing the system over the interval is an important consideration in understanding its behavior.

This unit introduces the basic concept to define all kinds of differential equations, which can further
help study the more behavior or different type of differential equations.

1.1 Notation and definition

In our discussion, the independent variable is always treated as real and is denoted by t. Further,
the dependent variables, u for scalar equations and x for the vector-valued equations, as also all the
functions are assumed to be real. However, the theory developed in this chapter can, with minor
modifications, be extended to the complex case.

Let R be the set of all real numbers, and I be an open interval on the real line R, that is, I =
{t:teR,r; <t <1}, where rjand r, are any two fixed points in R. Also, let R™ denote the real n
dimensional Euclidean space with elements x = (t,X1,X, ... wov..., Xp) OF (&, X).

We shall often use R instead of R!. Let B be a domain, i.e. an open-connected set in R™*!, and
C[B,R™] be a class of functions defined and continuous on B, taking values in R™.

When f is a member of this class, we shall write feC[B, R"].

Definition 1.1.1 An ordinary differential equation of the n-th order and of form
F(tu,u,u”, e, u®) =0 (1.1.1)
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where u(® is the nth derivative of the unknown functions u with respect to t and F is defined in
some subset of R™*2, expressed relation between the (n + 2)- variables t,u,u’,u”, .....u™ - Because of
its implicit nature, (1.1.1) may represent a collection of differential equations.

@ Example 1.1.2: The implicit equation u’® — 3t?u’? + 3uuw’ = 0 leads to three equations,
1 1
namely, ' = 0,u’ = (3t + (9t2 — 12w)2)/2, v’ = (3t? — (9t? — 12u)2)/2.

To avoid ambiguity the implicit equation (1.1.1) may exhibit, we shall assume that this equation is
solvable for u"; then, it can be written in the form u" =
g(tu, uw,u”, ..., u(® D) (1.1.2)

where g is a given function defined on B.

Ei’ If g is linear in u,u’,u”, ..........,u""1, then the differential equation (1.1.1) is called linear;
— otherwise, it is referred to as nonlinear.

Definition 1.1.3 A function ¢(t) is called a solution of (1.1.2) onry <t < ry if @(t) is defined and n-
times differentiable onr; <t < r, and satisfies

O" (®) = g(t9(V), (), Q" (V) oo, @ V), te(ry, ).

E] Example 1.1.4: The functions u,;(t) =t? and u,(t) = % are the solution of the differential
equation u” = 2u/t?t > 0. Similarly, the functions u;(t) = 1,u,(t) = costt and us(t) =
sint are the solutions of u” 4+ u’ = 0 for all ¢.

= The aim of the study of an ordinary differential equation is to find an explicit form,
preferably in the form of elementary functions. In the absence of an explicit form, one
needs to study the behavior of solutions by available analytical methods.

& Before looking for a solution or any qualitative properties, we want to know the class or
group in which the equations belong to.
Classification based on the dependent variable: linear or nonlinear

Classification based on condition: Initial value problem or boundary value problem

Initial value problem
We begin with the first-order scalar differential equations of the form
u' = g(t,u), (1.1.3)

Where g is a real-valued continuous function on I x R. Equation (1.1.3) is termed linear if the
function g(t, u) is linear in u; otherwise, it is called nonlinear.

We shall deal first with the elementary properties of the solutions of (1.1.3).

Definition 1.1.5: (General solution) A solution of a differential equation is said to be a general
solution if it includes all the solutions of the differential equation.

In order to gain familiarity with differential equations and their solution, we start with linear
equations of the form

u' =a(t)u+ b(t), (1.1.4)

Where a(t) and b(t) are continuous on /.

Example 1.1.6: As a special case of (1.1.4), consider the equation
u' = tu + 2t. (1.1.5)

It can be easily verified that the function u(t) = cet*/2 — 2, (1.1.6)

Where c is an arbitrary constant, satisfy (1.1.5) for al t in R. Since all the solutions of (1.1.5) can be
obtained from (1.1.6) by assigning suitable values to ¢, (1.1.6) is the general solution of (1.1.5).
Further, for each fixed value of ¢, (1.1.6) represents a curve in the (t,u)-plane and, if c is arbitrary, it
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Unit 01: Introduction and initial value problem

represents infinitely many curves. The totality of these curves is known as a one-parameter family
of curves and c is the parameter of this family. Such curves are also called the integral curves of
(1.1.5).

oM  For most problems is science and engineering, we are interested not in a general solution
®& but only in a particular solution satisfying a given initial condition. Determining a
particular solution is equivalent to picking out a specific integral curve from the one-
parameter family. This can be achieved by prescribing an initial condition, namely, at some

t = t, the solution u(t) must have a pre-assigned value u,, that is

u(ty) = ug. (1.1.7)
A differential equation equipped with an initial condition is said to form an initial value problem.
For example, (1.1.3) with the initial condition (1.1.7) is an initial value problem.

In the next, we shall confine our study to initial value problems.

Definition 1.1.7: A real-valued function u(t)define on I is said to be a solution of the initial value
problem (1.1.3), (1.1.7) on I if

@ u'(t)exists for t € [;

(if) u(ty) = uy, ty € I;

(iii) The points (t,u(t))l X R,t € I; and
(iv) u'(t) =g(tu),tel

It should be noted that nonlinear differential equations differ linear from ones. For instance, there
are several methods are available to solve the linear differential equations, but no such methods are
available for nonlinear differential equations., in particular, determining their explicit solution is
usually very difficult, if not impossible. Consequently, the methods that yield approximate solution
or qualitative information about the solution of nonlinear equations are very useful. Further, the
concept of general solution for linear equations differs from that for nonlinear equations. More
precisely, a (first order) linear equations has only one general solution where as a nonlinear have a
general solution as well as singular solutions.

1.2 System of differential equations

We shall consider a system of first-order differential equations of the form

x1 = f1(t, %1, %2, . oo Xn)
Xy = fo(t, X1, Xg) o een s Xy)
(1.2.1)
Xp = fu(t, X1, Xg, e v, X)
Where are fy,f,, ......., f given functions in some domain B of (n + 1) — dimensional Euclidean
space R™" and xy, %3, ... .. X are n- unknown functions.
Definition 1.2.1 A set of n-functions ¢4, @y, ... ..., ¢, defined on I is said to be a solution of (1.2.1) on

1if, fort €1,

@1(8), P5(), v v . @ (£) exists;
the point (¢t, @1 (t), 2(t), ... ... , Pn(t)) remains in B; and

(p{(t) = fl(t! gol(t)! P2 (t)' """ ’Qon(t))' i= 1:2r e, N

Geometrically, this amount to saying that a solution of (1.1.2) is a curve in the (n+1)-dimensional
region B with each point p on the curve and has the coordinates(t, ¢, (t), ¢, (t), ... ... , Pn (1)), where
@;(t)is the i th component of the tangent vector to the curve in the direction x;. When n = 1, this
interpretation is clear, and thus the curve in B defined by any solution of (1.2.1) is again a solution
curve.

An n th order differential equation of the form (1.1.2) may also be treated as a system of the type
(1.2.1). To see this, let

LOVELY PROFESSIONAL UNIVERSITY
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U=uU U = Uy, u™ D =un,

Then, (1.1.2) is equivalent to

up = gt uqg, Uy, v e, Up).

This set of equations is indeed of the form (1.2.1).

Example 1.2.2.: In particular, consider the second-order differential equation
u' +u? =gt u), (1.2.2)

where g is a given function. Setting u = uy,u’ = u,, we have the system
Uy = up, uy = —us + g(t, uy). (1.2.3)
This is a special case of (1.2.3) with n=2, f; (t,uy,u;) = up, and fo(t, uy, uy) = —u + g(t, uy).

It can be easily verified that (1.2.2) and (1.2.3) are equivalent. For this, let ¢ be a solution of (1.2.2)
onl. Then, u; = @(t),u; = ¢'(t) is a solution of (1.2.3) on I since

u]’. = (p’ = Uy,
up = " = -9+ g(t,0) = —ui + g(t,wy).

Conversely, let (¢4, ¢,) be a solution of (1.2.3) on I. Then u; = ¢, (t), that is the first component, is a
solution on (1.2.2) on I since

u" =91 = (p1) = @3 = =05 + g(t,0)) = —uj + g(t,wy).
Vector-matrix notation

A system of equations of the form (1.2.1) can always be written as a single vector-valued equation
by introducing the n-dimensional column vector

X1

X2
x=|.|=col(xy,x3 ... %y).

xn

Let x(t)be the vector-valued function defined by

x(t) = col(x,(£), %3 (£), e, xn ().

Similarly, let f be the vector-valued function given by

fi(t, X1, X2, ey X))
) = [ J2(BF0 X2 ) | 2 ol (8 2), fo(6,2), o, ().

(e, xl,xz., e Xp)
Then, (1.2.1) can be expressed as
x" = f(t, x). (1.2.4)
By a solution of (1.2.4) on I we mean a vector valued function ¢ with components @4, @5, ... ... , On
which satisfies
(to®) = (t, 910, 2(), s e e, (1)) € B, tel
o' = f(t.0®), tel

Equation (1.2.4) is usually referred to as a nonautonomous differential system. A differential system
of the form

x'= f(x), (1.2.5)

In which the right-hand side does not involve the independent variable ¢, is said to be autonomous.
An important feature of (1.2.5) is that if ¢(t) is a solution of (1.2.5) onr; < t <1y, then @(t —t;) is a
solution on ty + 1, <t < ty + r,. Further, it is sometimes convenient to represent the solutions of
(1.2.5) in the (t,x) — space as curves in the x-space with t as a curve parameter. Such curve are
called trajectories and the space that contains these is known as the phase space of (1.2.5).

LOVELY PROFESSIONAL UNIVERSITY
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Linear case

Consider a system of first-order linear differential equations of the form x;=
a11(t)x1+. e taqn (t)xn + bl (t)

X3 = g1 (E)x1 4. . Fa2, (E)xn + by (2)

Xy = Ap ()X 4. oo F a0 (O xp + by (1)
or x;= Yi=1a;()x; + bi(t), i=12,.... ,n, (1.2.6)
where a;;(t), i,j =1,2,3,....,n,b;(t),i = 1,2, ..., n, are real-valued functions defined on I, and x(t) =

(1 (1), e e n ey x5 (1)) is an unknown i-dimensional vector-valued function. Let A(t) = (ai | (t)) be
n X n matrix and B(t) be an n-vector (b1 (t), b,(t), ... ...., by (t)). Then, (1.2.6) can be written as

x' = A(t)x + B(t). (1.2.7)

This is a particular case of (1.2.6) with f(t,x) = A(t)x + B(t), A(t)x being the usual matrix-vector
product. Equation (1.2.7) is referred to as a non-homogeneous linear differential system, but when
B(t) = 0, it is called a homogeneous linear system.

An important special case of (1.2.7) is the n-th order linear differential equation
u® 4+ a, (Ou™ D 4+ 4 aq, (HDu = b(0). (1.2.8)
This is of the type (1.2.6). To see this, let

u=u,u =uy, ., u® D =y,
Then, (1.2.8) is equivalent to

U =uyy, =12, ,n—1,

Uy = —ap(O — Gy (Ot — - = a3 (Dt + b(D).

When n=3, (1.2.8) takes the form (1.2.7) with

Uy 0 1 0 0
x=[uz, A(t):[ 0 0 1 ] B(g:[o]_
Us —az(t) —ax(t) —a1(®) b(t)
Summary
+  The implicit and explicit form of first-order to higher-order differential equations are
defined.

*  All the types of differential equations with examples are explained.

+  Different kinds of solutions are elaborated.

*  Discussion on the need of an initial value problem was done.

*  System of first-order differential equations are explained

*  Conversions relations from nth order differential equation to a system of first-order
differential equations are derived.

Keywords

*  Implicit form

»  Explicit form

*  General higher order differential equation
*  Initial value problem

*  System of first-order differential equations

*  Conversion from higher order to system of first order
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Self-assessment

nage
111

Choose the most suitable answer from the options given with each question.

Question 1: The solution of differential equation which includes all the solutions is called
(a)Arbitrary solution

(b) General solution

(c) Singular solution

(d) Particular solution

Question 2: The differential equation '= f (t,u),u(t,) =u, where f(t,u)= A(t)x

represent as

(a) Autonomous and homogenous
(b) Autonomous and non-homogenous
(c) Nonautonomous and homogenous
(d) Nonautonomous and non-homogenous
uestion 3: - ' Dy™My =0, T . ™.
Q F = U u u™) =0js an implicit equation where Y7 is the n-th

m
order derivatives with respect to t then Y7 can be expressed explicit as

()u(”)=g(u,u', .......... ,u™™)
a

®) u™ =g@u,u’, ... )
()u(“’ =g(t,u,u’,.......... ,u( Dy
c

(d) none of these

u, (t)y =1-—t

uestion 4 . .
Q The solution of equation

u'=(—t+ (> +4u)?)/2, u(2)=-1 is
(a)General solution

(b) Particular solution

(c) Singular solution

(d) None of these

Question 5: u'=(—t+ (> +4u)?)/2, u(@)=-1

For differential equation the function

2

t .
u, (1) = 4 I

(a) General solution
(b) Particular solution
(c) Singular solution
(d) None of these
Question 6: The initial value problem
dZu du . - du o
?—ZHJru =t+1 u@® =1, (dtjt:1 = 2.
reduces to the system of the differential equation of
(a) first-order linear homogeneous

(b) first-order linear non-homogeneous

(c) first-order nonlinear homogeneous

LOVELY PROFESSIONAL UNIVERSITY
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(d) first-order nonlinear non-homogeneous

Question 7: The first order linear system in the vector-matrix form of the following initial value
problem represents as

2
d g+2d—u—8u=e‘; u(o) =1, [d—uj =—4.
dt dt dt ).,

(@) asquare matrix of order 2

(b) arectangular matrix of order 2 X 3
(c) asquare matrix of order 3X2

(d) asquare matrix of order 3

Question 8: The mt order linear differential equation in u can be written as a system of linear
equations in y by using

(a) y: = yi+1
®) yi.=v
© yi=y,
(d) yi, =VYia
Answers:
1 b 2 c 3 ¢ 4 b
5 ¢ 6 b 7 a 8 a

Review Questions

Q1.Write the following scalar differential equations in the vector matrix form:
u”+2u”+3u’+ 7usinht =0

Q2. Write the following scalar differential equations in the vector matrix form:

"

u® +u”cost—u”+usint=0

Q3. Reduce the following differential equation in vector matrix form:

e'y"—ty"+y —e'y=0y(-1) =1 y'(-1)=0, y'(-1) =1.

Q4. Reduce the following differential equation in vector matrix form:

3y" +2y"—4y' +5y —t> +16t =0, y(7z) = -1, y'(7) = —2,y"(x) = —3.

Q5. Express the following system of scalar differential equation in the vector matrix form
X"=2x"+5y+4, y'=—x"-2y, x(0) =0, x’(0) =0, y(0) =1.

Further Readings

Earl A Coddinton and Norman Levinson (2017). Theory of Ordinary Differential Equations,
Mc Graw Hill.

P. Hartman (1964), Ordinary Differential equations, Johan Wiley.

Shair Ahmad and Rama Mohan Rao (2014), Theory of ordinary Differential Equations, East
West Press Private Limited.

https:/ /onlinecourses.nptel.ac.in/noc21_ma09/preview
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Unit 02: Existence and uniqueness

CONTENTS

Expected Learning Outcomes

Introduction
21 Initial value problem for first-order linear differential equation
22 Initial value problems for first-order non-linear differential equation

Existence in the large and uniqueness of the solutions with examples
Summary

Keywords

Self-assessment

Review Questions

Further Readings

Expected Learning Outcomes

After studying this unit, you will be able to

e identify the concept of initial value problem to find the solution.

e understand the continuity concept through Lipschitz condition

e  know about the Picard’s approximation of solutions

e apply basic theorems on the convergence of solutions of initial value problems.

e find the condition of existence and uniqueness of solution for an IVP

Introduction

A scientist and an engineer can use differential equations in his work more confidently if he is
conversant with the theory of existence, uniqueness, and continuation of solutions. Similarly, a
mathematician who is familiar with these properties of solutions is better equipped to develop
further mathematical methods for examining the behavior of solutions of differential equations.

This unit introduces the existence, uniqueness, and continuation of solutions. Besides the classical
methods, fixed-point techniques are employed in proving some of the existence and uniqueness of
theorems.

a The questions that now arise are: Does there exist a solution to the initial value problem
[ ]

20 of the form (1.1.3), (1.1.7)? If yes, is the solution unique? The answers to these questions
- are provided by the existence and uniqueness theorems.

2.1 Initial value problem for first-order linear differential equation

We now state a fundamental theorem giving sufficient conditions for the existence and uniqueness
of solutions of initial value problems for first-order linear differential equations.

Theorem 2.1.1: Let a(t) and b(t) be continues on the intervals I and let t, € I. Then, there exists a
unique solution u(t) to the initial value problem (1.1.4), (1.1.7) i.e. u’ = a(t)u + b(t), u(ty) = up onl.

Proof Let u(t) be a function defined by

u(t) = K(t) [c + ftto b(s) exp (— f:o a(‘L’)d‘L’) ds], (2.1.1)

8 LOVELY PROFESSIONAL UNIVERSITY

Notes



Notes

Theory of differential equations

where K(t) = exp [ff0 a(s)ds]

and c is an arbitrary constant. Since a(t) is continuous on I,
t

exp [fto a(s)ds]

is a nonzero differentiable function on I. Thus, the equation u’ = a(t)u + b(t), can be written as

[u exp (— ftto a(s)ds)]l = b(t) exp [— ftto a(s)ds]. (21.2)
Since b(t) and

exp I—fa(s)ds

are continuous, the right-hand side of equation (2.1.2) is integrable; hence, equation (2.1.1) follows.
The existence of a solution u(t) of (1.1.3) can be verified by substituting (2.1.1) in (1.1.3). Finally, the
initial condition (1.1.7) determines the constant ¢ uniquely.

Remark 2.1.2 The fundamental theorem guarantees not only the existence of a unique
I:') solution of the given initial value problem but also the validity of this solution on the
whole interval Iwhere the function a(t) and b(t) are continuous.

The example that follows illustrates another important feature of initial value problems for linear
equations.

@ Example 2.1.3: let us consider the initial value problem

w'=-7+2,t>0, (2.1.3)
u(l) =2 (2.1.4)

and look for a solution in the interval containing t=1. Now, since the coefficients in equation (2.1.3)
are continuous, except at t=0, theorem (2.1.1) guarantees the existence of a unique solution of (2.1.3)
(2.1.4) at least in the interval0 < t < oo. The general solution of (2.1.3) is u(t) = t + c¢/t, where c is an
arbitrary constant. Thus, the solution of the initial value problem (2.1.3) (2.1.4) is u(t) =t + 1/t. It
should be noted that this solution becomes infinite as t — 0. This is not unusual since t = 0 is a point
discontinuity of a(t). On the other hand, if we slightly change the initial condition to u(t) = t and it
behaves properly as t — 0.

We thus conclude that the solutions of the initial value problem (1.1.3), (1.1.7) are not
necessarily discontinuous, i.e., they do not necessarily break down, at those points where
the functions a(t) and b(t) are discontinuous. But if at all the solutions break down, this

=/  wouldbe only at those points where a(t) and b(t) are discontinuous and not at the points
where these functions are continuous. Therefore, the qualitative behavior of the solutions
can be assessed to a certain extent by a mere identification of the point of discontinuity, if
any, of a(t) and b(t).

2.2 Initial value problems for first-order non-linear differential equation

It should be noted that the linear value problem (1.1.4), (1.1.7) has s unique solution on the whole
interval |t — ty| < a where the functions a(t) and b(t) are continuous whereas the nonlinear initial
value problem (1.1.3), (1.1.7) has a unique solution only in the interval |t — ty| < h. In other words,
there is no apparent relationship between the region where the function g(t, u) is continuous and the
interval of existence of the solution. This is illustrated by the well-known example that follows.

[VE_] Example 2.2.1: the function u(t) = 1/1 _ ¢ is the solution of the non-linear initial value
problem u’ = uy,u(0) = 1.

Obviously, the solution becomes infinite at t = 1, and hence is valid for —oo0 < t < 1. Thus the right-
hand side of the differential equation does not indicate the interval of existence of the solution.

LOVELY PROFESSIONAL UNIVERSITY 9
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Notes
Further, if we modify the initial condition to u(0) = 2, then the solution is u(t) = 2 / 1 _ o4 thatis, the

solution becomes infinite at t = 3. Therefore, the points of discontinuity of the solution may move
about depending upon the initial condition. This behavior of the solutions of nonlinear initial value
problems is also peculiar.

We now state a theorem giving sufficient conditions for the existence and uniqueness of solutions of
initial value problems for first-order non-linear differential equations.

Theorem 2.2.2: If g(t,u)and Z—Z are continuous functions of t and u in the regionR(a, b): [t — t,| <

a,|lu—ug| £b,a>0,b >0, then there exists a unique solution u(t) to the initial value problem
(1.3.1), (1.3.7) on some interval |t — to| < h < a.

Before proving Theorem 2.2.2, we give certain facts which we shall use subsequently.

Lemma 2.2.3: If a function g (t, u) is continuous in R(a, b), then the initial value problem (1.1.3), (1.1.7)
is equivalent to the integral equation

u(t) = up + fttog(s,u(s))ds fortin |t —ty| < a. (2.2.1)

Proof: If u(t) isa solution of (1.1.3) i.e. u’ = g(t,u) satisfying (1.1.7) i.e. u(t,) = u,, then by integrating
(1.1.3) between the limits t, and t, we obtain (2.3.1). Conversely, let u(t) be a solution of (2.2.1). By
setting. t = ¢, in (2.3.1), we obtain u(t,) = u,. Further, since g(t, u) is continuous, the right-hand side
of (2.2.1) is differentiable; hence, by differentiating (2.2.1), we get u’ = g(t, u(t)).

Definition 2.2.4: A real-valued continuous function u(t) defined on the interval |t — ty| < a if the
points (t,u(t)) € R(a, b) for all t in |t — to| < a and in u(¢) satisfies (2.2.1) on [t — ¢ty < a.

Definition 2.2.5: If g(t, u(t)) is continuous in the closed, bounded region R(a, b), then g is bounded
there. That is, there exists a positive number M such that |g(t,u)| < M for (t,u) € R(a, b).

Now, let h = min (a, b/M) and consider the interval J: [t — t,| < h and a smaller rectangle D: [t — t,] <
h,lu —u| <b.

Lipschitz conditions

Lemma 2.2.6: If g—i is continuous in D, then there exists a positive constant K such that

lg(t,u) — gt ux)| < Kluy —uyl, (tuy), (t,uy) €D. (2.2.2)
Proof: Assume that (u; > u,). From the mean value theorem, it follows that
dg(t,u")
gtw) —g(tuz) = T(lh —Uup),

Where u* lies in the interval u, < u* < u;. Taking absolute value on both sides of the equation, we
have

ag(tu*)
19t u) = g(t )| = 2222 oy = ).

Since @ is continuous, and hence bounded, in If D, there exists a positive number K such that

u
|M| < K. Thus,
u
lg(t,u1) = g(t,ux)| < K uy —up| for (¢,uy), (¢, uz) € D.
Definition 2.2.7: A function g satisfying inequality (2.2.2) for all (t,uy), (t, u,) in the region, D is said

to satisfy a Lipschitz condition in D, and K is called the Lipschitz constant.

@ Example 2.2.8: The function g(t,u) = tu? satisfies a Lipschitz condition on the rectangle
R given by |t| < 1, |u| < 1 with Lipschitz constant 2, since, for all (t,u) in R, we have

2
‘—g = 2t||ul? < 2.
u

Whereas, g does not satisfy a Lipschitz condition on the strip [¢] < 1, |u| < oo.

. F)
For this case |£| = 2|t]|ul? - was |u| < oo.
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From this example, we observe that the satisfaction of the Lipschitz condition depends not only on
the rule of the function but also on the domain where it is defined.

2
@ Example 2.2.9: The function g(t,u) = us does not satisfy a Lipschitz condition on the
rectangle R, given by [t| < 1, [u| < 1.

Since for all (t,u)in R, we have

b 2| %
|—g =—|u 3l >oasu — 0.
ou 3

iz Exercise 1

Q1. By computing appropriate Lipschitz constants, show that the following functions satisfy
Lipschitz condition on the sets D indicated:

(@ gtw)=4t2+ul,onD:|t|<1,|ul <1
() g(t,u) =t?cos?u+ usin®t,onD:|t] <1, |u| < oo.

(© gtw= t3e7t onD:|t| <1, |ul <wandonD:0 <t < a,|u| < . (here a>0 is a constant)
Q2. Show that the following functions do not satisfy the Lipschitz condition in the region indicated
g y p g

a) g(t,w) =50%/. g0,u)=00onD:|t] <1,lul < .
t
t
(b) g(tu) = %,g(t, 0) =0,onD:|t]| <2, ul < %

It is integrating to know that if g—i is continuous in D, then g satisfies the Lipschitz
condition in D, but the converse is not true. That is, there are certain function g satisfies

& the Lipschitz condition in a region but do not have continuous partial derivatives with
respect to u in that region. For example, the function g(t,u) = t|u| satisfies the Lipschitz
condition in a region containing (0,0), but its partial derivatives with respect to u does not
exist foru = 0.

Successive approximation or method of iteration or Picard’s method

In what follows, we introduce a technique, called the method of successive approximation (also known
as the method of iteration or Picard’s method), which is helpful in constructing a solution of the integral
equation (2.2.1). This method requires a sequence of functions defined as

up(t) = uq
w (0 =up+ [} g(s,up(s))ds
(2.2.3)

Un(6) = g + [ 9(5,n-1(s))dls

Where the functions , uy(t), uy(t), ... ...., u, (t) are the successive approximation to a solution of (2.2.1).,
and thus to a solution of the initial value problem (1.1.3), (1.1.7).

E] Example 2.2.10: Consider the IVP u’ = u?,u(0) = 1. The equation is equivalent to integral
equationu(t) =1+ f:o s2ds.

The first approximation is uy(t) = 1. Now
w () =1+ ftiug(s)ds =1+ fot lds =1+t¢,
3
w(®) =1+ [ (1+)%ds =1+ [[(A1+5)ds =1+t +t2+7,
t5 e 7

=1+ (1+s+ 2+f)2d Sttt 2+ 3+ el Y
Us - to s*Ss 3 5= 3 3 9 63
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U, (t), n=0,1,2,....are polynomials.

Observe that the IVP can be solved explicitly by the method of separation of variables. Here

u(t) = L is a solution existing on —co < t < 1.
1-t

E] Example 2.2.11: Compute the first five approximations of IVP

u’ =tu, u(0) =1 and find the limit of the successive approximations.

In this problem, the initial point is ty = 0, the initial value u, = 1, and the rule of the function g is
g(t,u) = tu. Hence the integral equation corresponding to this IVP is given by

t

u=1+fsuds.
0

Therefore, the successive approximations of this problem are defined by
ug(0) =1, w1 () =1+ fot su,(s)ds, k=0,1,2, .........
Putting k=0,1,2,...... , in the preceding relations, we obtain

u(t) =1+ fotsuo(s)ds =1+ fotsds =1 +§

2 2 4 2 2y 2
uz(t)z1+f0tsu1(s)ds=1+f0ts(1+%)ds=1+%+%=1+%+%(%)

t
2

t
(t)—1+f d —1+f e g B A (E) L (EY
Ust) = Sua(s)ds = sA++glas=1+5+0(7) *31(3
0 0

In general, for k=0,1,2,...... , it can be established by mathematical induction that u; (t) is given by

21 (t2\? 1 (x2\"

We may recognize uy (t) as the kth partial sum for the series expansion of the function

tZ
u(t) =ez

We know that this series converges for all real t. This means that
tZ
up(t) > u(t) =ez ask - oo.

Also, it is easy to see that the function
t2
u(t) = e is a solution to the given IVP.

Exercise 2

Q1. Compute the first three successive approximations for the solution of the following equations

6 u'=tu w0 =1  (i)v =u/1+t%, u0)=1;
(ii) u' =e% u(0) =0;

We will now prove that the sequence of functions {u, (t)} defined by (2.2.3) converges on ] to a limit
function u(t) which represents a solution of (2.2.1). To do this, we need the result that follows.

Lemma 2.2.12: Assume that g satisfy is continuous on D. Then, the successive approximations
{u,(t)} defined by (2.2.3) exist as continuous functions on J and (t, Uy (t)) € D for t € ] given by
[t — to| < h = min (a,b/M).

Proof: Let t € J. Since uy(t) = uy, it is obvious that u,(t) exists and is continuous on J. In view of
(2.2.3) and the continuity of g on D, it follows that all the successive approximations

uy (t), uy (1), .. won oo, Uy (t) exist and are continuous on J. We now show that (t,u,(t)) € D.Fore€J,
we have

12 LOVELY PROFESSIONAL UNIVERSITY
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Notes . .
lug () —uol = |u0 + ftog(s,uo(s))ds - u0| < ft0|g(s,u(s))|ds

<SM|t—ty| <Mh<bh.
The remaining proof runs by induction. Let us assume, for t € J, that
lug () —uogl <b, k=123,..... n—1.

This implies (t,u,-1(t)) € D, and hence | g(t, un_l(t))| < M. Therefore, for t € J, we obtain

t t
[un (t) — uol = |u0 + ftog(s,un_l(s))ds - u0| < ft0|g(5,un_1(s))|ds
SM|t—tyl <Mh<bh,

b
|t = tol <27

that is,
(t,u,(t)) €D fort €].

Hence (t,u,(t)) willbe in D if [t — to| < aand [t — to| < %., that is, if

[t —tyl < h =mi ( b)
ol <h=min{a )
Remark 2.2.13: In proving Lemma 2.2.11, a somewhat stronger result, namely,
lun () —uol < M [t —tol,

has been obtained. Geometrically, this means that the graph of each function u, (t) lies in two
triangular regions.

Picard’s existence theorem

In the course of proving the Theorem 2.2.2, we actually need the Lipschitz condition on g
=/  and not the strong property, that is, the continuity of Z_Z' Therefore, the condition of
Theorem 2.2.2 can be relaxed as follows.

Theorem 2.2.14: If g(t, u) is a continuous function of t and u in a closed, bounded region R(a, b) and
satisfies the Lipschitz condition in R, then there exists a unique solution u(t) to the initial value
problem (1.1.3), (1.1.7) defined on the interval J.

Proof: To establish the convergence of the sequence of functions {u, (t)}, we shall estimate the
difference between the successive approximations. Let ¢ lie in the interval [ty, t, + h].

Set v,(t) = (un(t) - un_l(t)).
For t € [ty, ty + h], we have Lemma 2.2.12,
[v1 ()] = |ug (8) = upl < M(t — to) and (t,uo(1)), (t, us(t)) € D.
Since g satisfy the Lipschitz condition in D, it follows that
w2 (O = ez () — w (O] = [ [9(5,1()) = g s, uo(s))]ds]
< J¢ |9 (s, ur()) = g(s,uo(s))|ds
< Kftilul(s) —ug(s)lds = Kf;lvl(s)lds

(t=ty)*

< Kftto(s — to)ds = KM=

Similarly,

t—to)?
lvs(0)] < KZM%
A simple induction argument shows that, in general, for t € [to, to + h],

lom(@®)] < Km M ED =12, n, (2.2.4)

m
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To see this, assume, for t € [tg, ty + h], that
_ (t—to)™ 1
Ivm—l(t)| < K™ ZMﬁ,m = 1,2, e, 1L

Then, for t € [ty, ty + h], we have
(O] = [un () = un 1O = |[} [9(5,un-1()) = 95, tn_2(5))] |
< Jp9(s tn1()) = (5, un—2 ()]s
<K f, Tun1() = un_o(9)lds = K [ [vp_1(s)lds

< Mg [P

= gn-1py &t
ty (n—1)! ds =K M n

This establishes relation (2.2.4). The proof for t € [ty — h, t,] is similar to that for t € [ty, to + h].
Hence, for t € J, we have

[t=to|™
n!

va(0)] < Kn im0l < pgent D (2.2.5)
Now, consider an infinite series of the form

Uy +v.() + v () + oo U (B) + o (2.2.6)
The nth partial sum of this series is u, (t), that is,

Up(t) = ug + Xneq Um(t). (2.2.7)
Therefore, the sequence { u, (t)} converges if and only if (2.2.6) also converges.

From inequality (2.3.5), we have

Km-1ipm

Up + Xm=1lvm(O] Sup +MEZ_, (2.3.8)

m!

It follows from the ration test that the series on the right-hand side of (2.2.8) converges, and hence,
by the comparison test, series (2.2.6) also converges (in fact, uniformly), on the interval J. Let the
sum of series (2.2.6) be u(t). The relation (2.2.7) gives

rlll_r& u™(t) = u(t).
Finally, we show that the limit function u(t) satisfies (2.2.1). Since
Un(8) = g + ;- 95, Un-1(s))ds.
It follows that
u(t) =ug + T%l_r)rolo f:og(s, Up—1(s))ds.
From the uniform convergence of u,(t) to u(t) and continuity of the function g(t, u), we obtain
u(t) = up + f:og(s,u(s))ds.
This completes the proof of the existence of the solution u(t).

In order to ensure that this solution of the initial value problem (1.1.3), (1.1.7). Then, the
nonnegative function w(t) = |u(t) — v(t)| satisfies w(t,) = 0, and

t t
w(t) < f |g(s,u(s)) - g(s,v(s))|ds <K f w(s)ds
to to

or% [e"((t‘to) f:ow(s)ds] <0.

Integrating this inequality from ¢, to t, we obtain w(t) < 0.

This is incompatible with w(t) = 0 unless w(t) = 0 on].
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2.3 Existence in the large and uniqueness of the solutions with examples

E] Example 2.2.15: consider the IVP v’ = u? + cos? t,u(0) = 0. We try to determine the
largest interval of existence of its solution. Let R be the rectangle containing (0,0)

1
R:{(t,u);0<t<alul<ba= E'b > 0.}
Clearly, |g(t,w)| = [u? + cos?t| <1+ b% =M.
The function g(t,u) = u® + cos? t satisfies Lipschitz condition on R, Since |Z—Z| =|2u| < 2b =K.

We find that u(t) exists for 0 <t < h = min (a, Lz)
1+b

b
1+b?

Observe that the maximum values of is % Hence h = %, i.e. u(t) exists on the interval 0 < t < %

@ Example 2.2.16: Consider the IVP v’ = u?,u(0) = 2. Let R be the rectangle

R:A(t,uw);lt| <alu—2]<b,a>0,b>0}
InR,|g(t,w)| = |t?] < (b + 2)? = M and the interval of existence of a solution is |t| < h, where h =
1

) = %. Hence the solution of the IVP exists on the t-interval —% <t< 5

. b
min (a, m

However, we observe that this IVP can be explicitly solved. Its solution is u(t) = ﬁ

We find that u(t) exists on —o0 < t < % This interval of existence is much larger than that obtained
by the application of Picard’s method.

@ Example 2.2.17: Consider the IVP v’ = t(1 4+ u), u(0) = —1. Let R be the rectangle
R:A{(t,w);|tl<a,Jlu+1| <b,a>0,b>0}
InR|g(t,w)| = [t(1 +uw)| < a(b + 2) = M and the interval of existence of a solution is

[t| < h, where h = min (a, ﬁ). Hence the solution of the IVP exists on the t-interval
[t] < h.
However, we observe that this IVP can be explicitly solved. Its solution is u(t) = —1

which is independent of ¢.

We find that u(t) exists on |t| < h.

(7] The Picard’s theorem assumes the Lipschitz condition. Can drop this condition?

®  The answer is no. The following examples illustrate this point.
Example 2.2.18: In the case of IVP

2u _
U = T,t >0;u(0)=0
0,t=0.
Here g(t,u) = 2u/t does not satisfy Lipschitz condition in any closed rectangle containing (0,0).
The method of successive approximations shows that u,(t) = 0 forn = 0,1,2, .....

Hence u(t) = lim u,(t) = 0. Yet the given equation possesses another solution u(t) = t2existing on
n—-oo
t>0.

@ Example 2.2.19: In the case of IVP
3
u' = 4us,u(0) =0,t =0,

3
Again g(t,u) = 4us fails to satisfy Lipschitz condition. Each successive approximation u,(t) = 0
and hence u(t) = 0 on [0, c].
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We observe that u(t) = t* is yet another solution of the given IVP. In fact,

0,0<t<c;
—o)tc<t< oo

u(£) = {(t

For each real value of c is a solution of the given IVP. Thus, we get uncountable solutions to the
IVP.

Summary

e The concept of the initial value problem to find the solutions are discussed.
e  Lipschitz condition is derived and elaborated with suitable examples.
e Determine the Picard’s approximation of solutions and examples are solved.
e The convergence of solutions of initial value problems was discussed.

e The condition of existence and uniqueness of solution on an IVP is derived with examples.

Keywords

e Linear first-order differential equation

e Non-Linear first-order differential equation
e Lipschitz condition

e  Picard’s approximation

e  Existence and uniqueness of a solution

Self-assessment

Choose the most suitable answer from the options given with each question.

Q1. The solution y(x) of the initial value problem y'— f (x, y), y(x,) = y, exists if

a) f(X,y)isbounded and continuous in a closed region
) f(x.y) is bounded only
) f (X, y) is continuous only in a closed region

d) None of the above

=3

g

Q2. The solution y(x) of an initial value problem y'= f (X, y), y(X,) = Y, unique if

a) F (X, ¥) is continuous in R

=3

) f (X, y) satisfy the Lipschitz condition in R

)

) f (X, y) is continuous and satisfy the Lipschitz condition in R
d) None of the above

Q3. For the initial value problem y'= /| y|, y(0) = 0 over the rectangle |x|<1, |y|<1

a) At least one solution exists for all x in (-1,1)
b) Only one solution exists for all x in (-1,1)

c¢) No solution exists for all x in (-1,1)

d) One solution exists over R

Q4. For the initial value problem y'=y,y(0) =1, R:|x|<1, |y—-1|<1

a) A solution exists and unique in at least |x|<1/2

=3

) A solution exists and unique in at least |x|<1/2

0

) A solution exists and unique in at least |x|>1/2

&

A solution exists and unique in at least |x|>1/2
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Q5.1f f(x, y)and Sf be continuous in close region R, then initial value problem

oy
y'= f(X,¥),y(X,) = y,has

a) A unique solution in [x¢-h, xo+h) where h is a positive number
b) A unique solution in [xo-h, xo+h] where h is a positive number
¢) A unique solution in (x¢-h, xo+h] where h is a positive number

d) A unique solution in (xo-h, Xxo+h) where h is a positive number
Q6. A real value function u(t) € | be the solution of IVP u'= f (t,u), u(t,) = u, if
a) u(t)exitsfor L€l
b) the points tu(®) el =R
c) Both (i) and (ii)
d) None of these

Q7.1f 06g / ou is continuous in ‘t _to‘ <a,
that

u—uq|<b, then there exists a positive constant K such

lg(t,u) —g(t,u,) = Klu, —uy|
b |g(t,ul)—g(t,u2)$K|u1—u2|
9 lg(t,u) —g(t,u, ) < Klu, —u,|
5 19U~ gt u) > Klu, —u,|
Q8. The value of Lipschitz constant of initial value problem u'=t?u+u?, u(0) =1onR:|t|<2,
|u-2|<2is
a)l2 (b) 10 (©)8 (d) 14

Q9. The maximum value of g of initial value problem u'=t?u+u?, u(0) =1onR:|t|<2, |u-2|<
2is.

(a) 23 (b) 32 (c)10 (d)8
Q10 The value of Lipschitz condition on rectangle R  indicated for
(%) = (x+x) St Rot—1= L x =1
2 2
a) 3/2
b) %
¢ 5/2
d 2

Q11. Using Picard’s approximation method, the first iterates of the initial value problem
y'=y+y* y(0)=1is

(@ 1+ 2t

(b) 1— 2t

(© 1+t

(d)1-t

Q12. Using Picard’s approximation method first iterates of the initial value problem
y'=1+y? y(0)=0

(@ 1+t

(b) 1—t
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(€t
(d)y1—2t

Q13. The first approximate solution of IVP y'= x + y, y(0) =1 by using Picard’s iteration method

18

(a) y, =1+ X+ x?
(b) y, =1+ x—x2
2

© —1-x- 2
Y1 >

2

(d) y1=1+x+x?

Q14. The first Picard solution of IVP y'= x—y, y(0) =1is

(a) y, =1— X+ x?
(b) Yy =1-x—x?

2

X
© yl=1—x+7

2
(d) =1+x——
Y1 >

Q15. The function 9 (€ W) =t1U | gatisfies Lipschitz condition in region containing (0,0) but

(a) Partial derivative of 9w =tlul st for ¥ = 0
(b) Partial derivative of 9t W) =t1U 1 y5es not exist for ¥ = 0
(c) Partial derivative of gt uw) =tul st for U < R
(d) None of these
Answers:

1 a 6 c 11 a

2 c 7 b 12 c

3 a 8 a 13 d

4 b 9 b 14 c

5 b 10 a 15 b

Review Questions

1 Apply the method of iteration to the initial value problem u'=t? + u?, u(0) =1and

compute the first two approximations.
2. Show that the function f (t,y) =t% + y?, defined in the rectangle R qti=a,lyl=<b

satisfies the Lipschitz condition. Find the Lipschitz constant.
3. Show that the function f (t, y) = y?2, defined in the rectangle R :|t|<a,|y|=b

satisfies the Lipschitz condition. Find the Lipschitz constant.
4. Show that the function f (t, y) satisfies the Lipschitz condition on region R indicated and

find the Lipschitz constant
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10.

11.

f(t,y)=tsiny+ycost; R:|t|<a,|y|<b, where a and b are real positive

constants.
Show that the function f (t, x) satisfies the Lipschitz condition on rectangle R indicated

and find the Lipschitz constant

f(,x) =e'Sinx; R:|t|<1,|x|< 27,

f(t,x) =t?cos® x+ xsin?t; R:|t|<1,]|X|< o
The function f is given by < ¥) = x* 1yl

(@) Show that function f satisfies a Lipschitz condition on rectangle |x|<1, |y|<1.

of

(Ef) Show that 5 does not exist at (x,0) if x #0.

Study the existence uniqueness of solutions of the following initial value problem
Yy =@+2x+3y)/(2+x*+y?),y(0)=0, R:|x[=2,|y|=1.

where a and b are real positive constants.
Show that the function f (t, x) satisfies the Lipschitz condition on region R indicated and

find the Lipschitz constant f (t,x) =1+ 3tx?; R:|t|<a,| y|<b,

satisfies the Lipschitz condition on

Show that the function 3x3et
f(t, x) = .
1+ x

strips_ ;| t]< a,| x |< co and find the Lipschitz constant

+ 2t? cos x

Show that the existence of a solution for the initial value problem X = —x/t+2, t > 0;
x(@) = 2.

Study the existence of solutions to the initial value problem

y'=2x? +3y?, y(0) =1over therectangle |x|<1, |y-1|<1.
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Objectives

After studying this unit, you will be able to

e identify the concept of existence only but not uniqueness.

¢ understand the concept of existence in a large interval.

e know about the Asscoli-Arzela theorem.

e apply basic theorems on the convergence of solutions of initial value problems.

e find the condition of existence and uniqueness of solution on an IVP in a large interval.

Introduction

The theorem 2.2.14 is a local existence theorem, that is, it asserts the existence of a unique solution
only on a sufficiently small interval|t — ty| < h. Also, its proof demands the Lipschitz condition on
g even when only the existence of solutions without uniqueness is required. However, if g does not
satisfy the Lipschitz condition, it would still be possible to obtain the existence of solutions without
uniqueness as shown by the results that follow.

oM  The Lipschitz condition is a sufficient, but not a necessary, condition for the uniqueness of

= solutions. For example, u(t) = 01is the unique solution of the real-valued scalar dlfferentlal

equation u’ —tus passing through the point (0,0). Obviously g(t,u) = —tu3 does not
satisfy the Lipschitz condition at any point where u=0.

3.1 Existence theorem

It is also not possible to prove the theorem for existence only not uniqueness by the method of
iteration or Picard’s method as the successive approximations may not converge.

& This is probably so because the continuity of g alone is not sufficient for the convergence of
the approximations, as indicated by the familiar example as follows

E] Example 3.1.1:Consider a function g defined on the region D; = —c0o <t < 1,—c0 <u < ©
by

(0 for—ow<t<0,—0o<u<oo
!2t for0<t<1l-oco<u<0
9(tu) = 26— for0<t<1,0<u<t?
-2t foro<t<1lt’<u<owm
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The function g is continuous and bounded by 2, on D;. Further, the successive approximations to
the solution u of u’ = g(t, u) through the initial point (0,0), for 0 < t < 1, are given by

up(t) =0,
U1 (B) = t2%, k=12,
Ug () = =%, k=120
Thus, the successive approximations alternate between t?and —t2, and hence do not converge.

Since the function g in an example, 3.1.1 guarantees the existence of a solution through the point
(0,0).

Moreover, as g is monotonically non-increasing in u for each fixed t yields the uniqueness of the
solution starting at (0,0) and proceeding to the right of the origin. However, it is clear that the
method of iteration cannot be used to obtain this solution as the successive approximations do not
converge. This illustrates that the continuity of g plus the uniqueness do not imply the convergence
of the successive approximations. On the other hand, it is also true that the convergence of the
successive approximations does not imply uniqueness, as the following example shows.

E] Example 3.1.2:consider the initial value problem

3
u' =4us, u(0)=0. (3.1.1)

Here, the successive approximations are all zero functions, and hence converge to the identically

zero solution, i.e. u(t) = 0. The function u(t) = t* is also a solution of (3.1.1). Thus, this problem

does not have a unique solution. Of course, this fact does not contradict Theorem (2.2.2) since Z—i =
1

3u"s is not continuous or even defined at any point where u = 0. Also, we can see that g does not

satisfy the Lipschitz condition when u = 0. Thus, Theorem (2.2.14) to this initial value problem

since g is continuous in the whole (¢, u) —plane.

Ei’ Remark 3.1.3:The problem of uniqueness and convergence of successive approximations
are logically independent. Nevertheless, the hypotheses of Theorem (2.2.2) are sufficient
for proving this convergence.

To prove the next theorem, we need the concept of the equicontinuous family of functions.

Definition 3.1.4:A family of functions F ={f}defined on a real interval I issaid to be
equicontinuous on [if, for any given & > 0, there exists a § = §(¢) > 0 independent of f € F and
also of t, t; € I such that |f(¢t) — f(t,)| < € whenever |t — t;| < §.

Ei,* Remarks 3.1.5:In the view of definition 3.1.4, it is true that

() Any subset of an equicontinuous family is also equicontinuous;
(if) Each member of an equicontinuous family is a continuous function;
(iii) A family of differentiable functions is equicontinuous at every point of the interval [ if

their derivatives are uniformly bounded on I (follow from the mean value theorem).

Another important property of equicontinuous functions can be expressed as in the following
lemma.

Ascoli-Arzela Theorem

Lemma 3.1.6: If F be a family of function bounded and equicontinuous at every point of an interval
I. Then, every sequence of functions {f,;} in F contains a subsequence uniformly convergent on
every compact subinterval of I.

Proof: Let I = [a, b] c R be a closed and bounded interval. If F is an infinite set of function f:I - R

Which is uniformly bounded and equicontinuous, then there is a sequence f, of the element of F
such that f,converges uniformly on I.
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Fix an enumeration {x;};cy of rational number in /. Since F is uniformly bounded, the set of points
{f (x)}fer is bounded, and hence by the Bolzano-Weierstrass theorem, there is a sequence {f; }

of distinct functions in F such that {f, (x;)} converges. Repeating the same argument for the
sequence of points {f,, (x,)}, there is a subsequence {f;,,} of {f;,} such that {f;,, (x;)} converges.

By induction, this process can be continued forever, and so there is a chain of sub-sequences {f;, } 2
{fnz} 2. such that for each k=123, ...., the sub-sequence {f,} converges at

O NUPRIO S

Now from the diagonal subsequence {f} whose m‘term f,, is the m‘"term in the m*sequence
{fn,.}- By construction, f;, converges at every rational point of I. Therefore, given any € > 0 and
rational x, in I, there is an integers N = N (€, x;) such that

G = fn G <, mom =N,

Since the family F equicontinuous for the fixed € and for every x € I, there is an open interval U,
containing x such that

|[f(s) = fF(®)I <§ ,forall f € Fand all s,t in I such that s, t € U,.

The collection interval Uy, x € I forms an open cover ofl. Since I is compact bt Heine-Borel Theorem,
this covering admits a finite sub covers Uy, Uy, ... ...., U;. There exists an integer k such that open each
interval U;, 1 < j < J, contains a rational x;, with1 <k < K.

Finally, for any t € I, there are j and k so that t and x;belong to the same interval U;. For this choice
of k,

/(@ = fin (O] = Ifaey = fa(ie) + o (i) = fin Gicd + fin Crie) = fin (0]

< faw — Gl + 1O = fin G| + 1fin Oeie) — frn (D]

< § + g + g =eforalln,m>N = max(N(el,xl),N(el,xz), ..N(El,xk)).
Consequently sequence, {f;,,} converges t continuous functions. This claim the proof.
Peano’s Existence Theorem

Theorem 3.1.7:Let the function g(t,u) be continuous and bounded in the strip S:t, <t <ty +
a, lul < co. Then, the initial value problem u’ = g(t,u),u(ty) = uy, has at least one solution u(t)
defined on the interval [t, t, + a].

Proof: We define a sequence of functions {u, (t)} by
U (t) =uy for to<t<ty+ % (3.1.2a)

Un(r) = Uo + f:o_zg(s,un(s))ds for to + % St<ty+ @ K=123,cnc.,n—1). (3.1.2b)

Clearly, equation(3.1.2a) defines the function u,(t) on the interval [to, to +%]; equation (3.1.2b)
3a

defines the function w, (t)first on the interval [to + %, to + z;a], then on the interval [to + z;a, to+—|

and so on. Since g is bounded on the strip, there exists a positive number M such that
lgit,w)| <M for (t,u)e€S.
Therefore, from the relations (3.1.2), we have for t,t; € [ty to + al,
[un (£) — un(t)] < M|t — t4].
Thus, the sequence{u,, (t)} is equicontinuous on the interval [ty, to + a].
Now, since u, (t) = u, in the interval [tq, ty + %], it is clearly bounded on this interval. Also, for t €
(to + %, to + a], we obtain
8
lun(O1 < gl + [ g(s,1a())] ds
a
< |ugl +M(t—t0—;) < |upl + Ma.

This implies the uniform boundedness of the sequence {u, (t)} on the interval [¢ty, t, + a].
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Hence, the application of Lemma 3.1.6 shows that the sequence {u,(t)} contains a subsequence
{un, (£)} which converges uniformly on the interval [to,t, + a] to a continuous function u(t). We
shall now show that the limit function u(t) satisfies the integral equation

u(t) =uy + f:og(s,u(s)) ds fort in |t — ty| < a.
Letk - ooin

Uy, () = up + f:o g (s, Uy, (s)) ds — ftt_nig (s, Uy, (s)) ds.

Then, for the first integral on the right- hand side of this relation, we can proceed to the limit under
the integral sign since g is continuous and the convergence is uniform; the second integral tens to
zero since it does not exceed Ma/n;, in absolute value. Thus, we obtain

u(t) =uy + fttog(s,u(s)) ds, tE€ [ty to+al.

Ei/‘ Remarks 3.1.8:The continuity of g alone is sufficient in Theorem 3.1.7 if we replace S by
- closed, bounded region Ry:ty <t <ty + a, |[u —up| < b.

Corollary 3.1.9:If, in addition to the assumptions of Theorem 3.1.7, g is monotonically non-
increasing in u for each fixed t on S, then the initial value problem u' = g(t,u),u(ty) = ugy, has a
unique solution on the interval [ty, ty + a].

Proof: Let u(t) and v(t) be any two solutions of the initial value problem u’ = g(t,u), u(ty) = u, in
the interval [¢y, ty + a]. We claim that

u(t) = v(t) on [tg, to + al.

Suppose this is not true. Then, there exists a t; € [¢tg, to + a) such that

ut)=v()onty <t<t;

and, for some a > 0,

u(®) >v)ont; <t<t;+a<ty,+a. (3.1.3)
Since g is monotonically non-increasing in u for each fixed ¢, it follows that g(t, v(t)) > g(t, u(t)).
Further, since both u(t) and v(t) are the solutions of u' = g(t, u), u(ty) = uy, we have

v'(t) = u'(t) on [ty, ty + al.

Therefore, the function w(t) = v(t) — u(t) has a nonnegative derivative on [t;, t, + a].

That is,

w'(t) =v'(t) —u'(t) = 0.

By integrating this relation between t; and t, we get w(t) = w(t;) = 0 which implies v(t) = u(t).

This contradicts (3.1.3). Hence, u(t) = v(t) on [to, to + a].

Summary

e The concept existence of solution of aninitial value problem in the large interval is
discussed.

e  Ascoli and Arzela lemma is derived

e The convergence of solutions of initial value problems was discussed.

e The condition of existence and uniqueness in a large interval of solution on an IVP is

derived with examples.

Keywords

e  Existence of a solution in large interval

e Ascoli-Arzela Lemma
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e  Peano’s Existence theorem

¢ Condition of uniqueness in the large interval

Self-Assessment

Choose the most suitable answer from the options given with each question.

oNnwp

N

W onNn=w >

ON = >

The initial value problem U +u® =0, u(0) =Opge

One solution

More than one solution
No real solution

None of these

The function f(t,u) be bounded and continuous in the strip S *to =t =Tto + &,| U |< <. Then
u'=f(t,u), u(ty) =u,
Ivp

. has at most one solution in [to, to+a]

has at least one solution in [to, to+al].

. only one solution in [to, to+a].
. No solution in [t, to+a].

u'= f(t,u), uty) = u, Sty <t<t,+a,|ul<o
The IVP defined in the strip has a
unique solution. If

. f(t,u) is monotonically non-increasing in u

f(t,u) is monotonically increasing in u

(
. f(t,u) is non-increasing in u
. f(t,u) is increasing in u.

4. A family of uniformly bounded and equicontinuous functions on B has a uniformly convergent

SN %>

subsequence then

B is a closed set

B is a compact set

A subset of B is compact
None of these

5. Every sequence of an equicontinuous and bounded family of function has a

oS0 w

convergent sequence in the whole defined interval
convergent subsequence in the given interval
convergent subsequence in the subinterval

None of these

6.Which one is true?

o0 w»

7.

A.
B.
C.

Any subset of an equicontinuous family is also equicontinuous.
Each member of an equicontinuous family is a continuous function.
A family of differentiable functions is equicontinuous

All of above

Peano’s existence theorem shows the

Local existence on a sufficiently small interval.
Local existence on a sufficiently large interval
Global existence on a Large interval

24 LOVELY PROFESSIONAL UNIVERSITY

Notes



Notes

Theory of differential equations

D. None of these

o . . . . u'=g(tu)is
8. The continuity of g alone in the differential equation 9w
A. not sufficient for the convergence of the approximations.

B. the sufficient for the convergence of the approximations.

C. the necessary condition for the convergence of the approximations.
D. None of these

Answers for Self Assessment

Review Questions

Q1. Consider the IVP x'(t) = 1%, x(0)=0,t=0,
+ X

X| < oo

Show that IVP has a unique non-local solution on (0, «).
Solve the above equation by the method of separation of variables and them show that the solution

x(t), with x(0) =0 satisfies 1/3x3(t) + x(t) —t =0,t > 0.

Q2. Study that the IVP _Cosy.

1_12° Y(0) = ¥o,lt[<1,]| ¥, [< %, has a solution.

yl
Q3. Establish that the solution of IVPs x'(t) =e " cosx, x(0) =0,|t[>0,| X|< oo, exists
non-locally and uniquely.

Q4.1f g(t,u) be continuous function and bounded in the strip S : t, <t<t,+a,|u|< oo, then
the initial value problem u'(t) = g(t,u),u(t o) =u, has at least one solution u(t) defined on the

interval [t 0.1, +al.

Q5. If in a compact x-set B, = R", let {f. ()}, n=12,........ , be a uniformly bounded and
equicontinuous sequence of functions. Then prove that there exists a subsequence £ f_(x)},

uniformly convergent on B o-
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Shair Ahmad and Rama Mohan Rao (2014), Theory of Ordinary Differential Equations, East
West Press Private Limited.
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McGraw Hill Education (India) Private Limited.
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Objectives

After studying this unit, you will be able to

e identify the concept of initial value problem to the system of differential equations.
e understand the continuity concept through Lipschitz condition

e apply basic theorems on the convergence of solutions.

e find the condition of existence and uniqueness of solution.

e drive the Picard’s Lindelof and Peano’s existence theorem.

Introduction

We shall now extend the results of a differential equation to system of differential equations with
initial conditions. It should be noted that, because of the equivalence of a single scalar differential
equation of the n-th order and a system of n first order differential equations, the results we
establish also hold for the n-th order scalar differential equation and, in general, for a system of
differential equations of any order.

4.1 The System of Differential Equations

Let us consider an initial value problem for the system of differential equations

x; = fi(t, xg, X2, oo . 2 Xn), Xi(to) = Xio,
where i = 1,2, ...., n. In vector notation, these equations can be written as
x'=f(tx), x(t) = xo, (4.1.1)
where x = (X1, %3, e e, X0), £ = (fi, for e e es f)s

and xg = (X10, X20,-+--Xno)
are vectors in R™. We shall assume that f € C[Q, R™], where Q is an open (t, x) —set of R"*1,

A solution x(t) of the initial value problem (4.1.1) is a differentiable function of t such that, for a
t —interval Jcontainingty, x(ty) = xo, (t,x(t)) € Q, and

x' = f(t, x(t)).

It is easy to verify that the differentiable function x(t) is a solution of (4.1.1) on J if and only if it is a
solution of the Volterra integral equation
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x(t) = xo + f:o £(s,x(s))ds, tej. (4.1.2)

Definition 4.1.1:If f(t, x) is continuously differentiable with respect to t and the components of x in

Q, then we write f € C1(Q). Suppose there exists a positive constant L such that g(i =

Xi

1,2, .....,n)satisfy
||§—£|| <L for (t,x) € Q. (4.1.3)

We should note that inequality (4.1.3) is automatically satisfied if f € C*(B,), where Byis any closed,
bounded set in R™**1. By applying the mean value theorem to each variable separately and then
using (4.1.3), we get

It %) = f(& Il < Llix = yllfor (¢, x), (t, ) € Q. (4.14)
An alternative proof that gives result (4.1.4) follows. We define a function G by
G(o) = f(t,y+0(x —y)), 0<o<1

Then, it is clear that

£t ) = f(t.y) = G() = G(0) = , G'(o)do.
Let f,, = :—)’;(i =123, ...,n).

From the chain rule, it follows that

G'(0)=fr,(t,y+0o(x =)0 —y) + fr,(Ly+a(x =) (x2 = ¥2) + -+ oo+ fr, (LY +
cr(x _y))(xn _yn)-

Using estimate (4.1.3), we have

If e, %) = FE I < [IG @lldo
< L(lxy =yl + [z —yal + oo+l — )
= Lllx — yll.

A function f satisfying an inequality of the form (4.1.4) for (t,x), (t,y) € Q is said to satisfy
the Lipschitz condition in Q with the Lipschitz constantL.

However, a functionf satisfying (4.1.4) need not belong to the class €1, and all the remarks made on
the scalar function g for a differential equation are valid for the vector valued functionf.

We shall now give the various types of existence proofs for the initial value problem (4.1.1). to
begin with, we state a fundamental results.

__/* Remarks 4.1.2:The proof of the Theorem 4.1.4 is similar to that of Theorem 2.2.14, except

— that the absolute value is replaced by norm of the vector-valued function x € R™. However,
for the sake of completeness, we shall give the proof of this theorem. The norm ||. || can be
any convenient norm in R™, not necessarily norm or the Euclidean norm.

= Remarks 4.1.3:In view of the proofs of Lemma 2.2.12 and Theorem 2.2.14 the choice of a =
min (a, b/M) is natural.

4.2 Picard-Lindel of Theorem

Theorem 4.1.4:If f(t,x) is continuous on By:ty <t <ty +a,llx — x|l < by, where a and b are
positive real numbers, satisfies the Lipschitz condition (4.1.4) in B,. Let

M= (tr;l)ae)lgollf(t,x)ll, a = min (a, b/M).

Then, the initial value problem (4.1.1) has a unique solution x(t) on [ty, to] = a.
Proof: Define a sequence of functions
xo(t) = x_0,

() = x0 + f:of(s, xp-1(8))ds, k =1,2,3, ... . ,n, (4.1.5)
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For ty <t <ty = a. Since f(t, x(t)) is continuous on [ty ty+ a], it is clear that the functions
xo(), %1(t), v vev e, X (t) are defined and continuous on [ty,t, + a]. Obviously, (t, xo(t)) € By.
Therefore, we have

Iz () = xoll < M(t —ty) < Ma <b,

and hence (t,x, (t)) € B,. Further, it can be easily shown, by induction, that
Il (£) — xoll < b, and therefore (¢, x(t)) € By, k = 2,3, e cee .,

Set

2n (8) = X (8) — xp_1 (D).

Since f satisfies the Lipschitz condition (4.1.4) in By, it follows that

lz;(OI < f;”f(s,xl(s)) —f(s,x0(s))|lds < L fttollxl(s) — xo(s)|l ds
<L [ M(s — to)ds = Ly &

A simple induction argument, for t € [ty, t, + a],yields

_ k
lze (ol s MU =12, n, (4.1.6)

To prove this, assume, for t € [ty, ty + ], that

_p (t=tp)k 1
lze—1 (Il < ML¥ Zﬁ, k=23, ......, 1.

Then, for t € [t,, t, + a], we obtain
Iza (@I < S5 [1£ (5 %n-1()) = (5, %n-2(5)) | ds
< L fy 1xn-1(8) = xn2 ()l ds = L [ 1z0-1 ()]l ds

_1 t (s—to)™ ! =1y E=t)"
<L M fto (n—ol)! ds =1L" MT!O'

This establishes inequality (4.1.6). Now, consider the infinite series

Xo + Yiz1 2k (). 4.1.7)
The n-th partial sum of this series is x,, (t), that is,

X (8) = Xo + Xje=1 2k (D).

Therefore, the sequence {x,(t)} converges if and only if series (4.1.7) does so. In the view of (4.1.6),
it follows series (1.4.7) is uniformly convergent on [ty, to + @].

Let the sum of series (4.1.7) be x(t). Thus, we have
lim x,(t) = x(t).
n—-oo

From the uniform convergence of x,(t) to x(t) and the continuity of the function f(t,x) on B,, it
follows that f(t, x,(t)) — f(t,x(t)) uniformly on [to, ty + a] as n — oo. Therefore, the term-by-term
integration is valid for the integrals in (4.1.5) and yields

x(t) = x9 + fttof(s,x(s))ds.

Hence, x(t) is a solution of (4.1.1). in order to prove the uniqueness, let y(t) be any other solution of
(4.1.1) on [ty, ty + a]. Then, we have

y(t) = x + f:o f(s,y(s))ds.
Therefore, the nonnegative function z(t) = ||x(t) — y(t)|| satisfies z(t,) = 0, and

z(t) < f;”f(s,x(s)) = f(s,y()|ds < Lfttoz(s) ds.

This implies z(t) < 0 which is incompatible with z(t) = 0 unless z(t) = 0.

E/* Remarks 4.1.5: A simple induction argument using (4.1.5), for t € [t,, ty + ], yields
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MLi(t_tO)Hl

TSI i=012.....,n

llx:(0) =yl <

Since x(t) = y(t), this inequality gives an estimate of the error of approximation

MLM(t—to)™+L

I, () — x(D|| < on [to, to + al.

(n+1)!
) In the theorem that we now give, we shall drop the assumption of the Lipschitz condition
= and the assertion of uniqueness. To prove such an existence theorem as similar done

earlier in previous unit, we need the generalization of Lemma 3.1.6 whose lengthy and
intricate proof is omitted.

4.3 Peano’s Existence Theorem (Vector Case)

Theorem 4.1.6:Let f € C[By, R™], where B, is the set {(t,x) € Q:ty < t <ty + a,|lx — x|l < b}, and
let ||f (t,x)Il < M on By. Then, the initial value problem (4.1.1) possesses at least one solution x(t) on

. b
to <t <ty + a, where a = min (a, ﬁ)'

Proof: Let x((t) be a continuously differentiable function on [ty — 1, to], 7 > 0, satisfying x,(to) =
X0, %(8) = f(t,%0(8)), llxo(t) = xoll < b, and llxq(¢) < M.

For 0 < € < 1, we define a function x.(t) o [ty — 1, ty + a] by

xo(t) on  [to —n,to]

xe(t) = Xo + fttof(s,xe(s —e)ds’

(4.1.8)

It should be observed that relations (1.4.8) define x.(t) as a C* —function on[ty — 7, ty + ], a_1 =
min (@, €), and on this interval

lIx(£) — xo0ll < b. (4.1.9)

If a; < @, we can use (4.1.8) to extend x.(t) as a C! —function over the interval [ty — 1, to + @], a; =
min(a, 2¢€), such that inequality (1.4.9) holds. By continuing this process, we can definex.(t) as a
C! —function over the interval [ty — 1, o + ] so as to satisfy (4.1.9) on the same interval. Moreover,

[[xcI < M on [ty —n,t0 + al,

And hence the sequence {x.(t)}, 0 <e <7, forms a family of equicontinuous and uniformly
bounded functions. Thus, the application of Lemma 3.2.6 shows the existence of sequence {¢,} as
n - oo, and

lim x. (t) = x(t)
n-oo 1
Exists uniformly on [ty — 7, t, + @]. Since this convergence is uniform, the continuity of fon B,

Implies that f(t, x., (t — €,)) converges uniformly to f(t,x(t)) as n — . Hence, the term by term
integration of (4.1.8) with € = €, yields

x(£) = xo + fy f(5,x(s)) ds.
This shows that x(t) is a solution of (4.1.1).

4.4 Extension theorem

Theorem 4.1.8 is analogous to the theorems on the continuation of solutions given in previous
chapters. To prove these results, the next lemma is needed.

Lemma 4.1.7: Let f € C[Q,R"] and x(t) be a solution of (4.1.1) on the interval [ty, ty + a),a < oo.

Assume that there is a sequence {t;} such that t;, — t; + aask — oo and that 1 = l}im x(ty) exists. If
—00

f(t, x) is bounded on the intersection of Q and a neighbourhood of (t, + a, 1), then
lim x(t) =A. (4.1.10)

t-tota

If, in addition, f(ty,+ a,A) is defined such that f(t,x) is continuous at (t, + a, 1), then x(t) €
C[to, to + a] and x(t) is a solution of (4.1.1) on [to, to + a].

Proof: Let € > 0 be sufficiently small. Consider the set

Bi={(t,x) eQ:0<ty+a—t<elx—A] <€}
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ChooseM = M(¢g) > 1 so large that [|f (t, x)|| < M for (t,x) € wNB;. For k sufficiently large, if
O0<ty+a—t,< j and ||x(t;) — Al < %, we claim that
[lx(@®) —x(t )l < M(ty +a—t,) <e/2fort, <t <ty+a. (4.1.11)
Suppose this is not true. Then, there exists the smallest t; € (t,t, + a) such that
llxx(t1) — x ()l = M(to + a — t). (4.1.12)
Since t; is the smallest, we have
[lx(®) —x(E)Il < M(tg +a—t,) <e/2fort, <t <t.
It follows therefore that
lx(®) = All < llx(®) = x(@l + [lx(tx) = Al

S§+§=Efortk <t <t
This implies ||[x' ()|l < M fort, <t < t;.
Thus, we obtain

lx(t) = x(t)ll < Mty — t) < M(to + a — ty).

But this contradicts relations (4.1.12). Hence, inequality (4.1.11) holds, and this in turn implies limit
(4.1.10). The second part of the lemma follows from the fact that
x'(t) = f(t,x(t)) S fto+adast->ty+a.

Theorem 4.1.8:Assume that f € C[Q,R"] and that x(t) is a solution of (4.1.1) on ty <t <ty + by.
Then, x(t) can be extended as a solution of (4.1.1) to the boundary of Q.
Proof: Let Q;, Q3, Qj, .... ... be the open sets of Q such that Q = UQ,, the closures Q;,Q;,Q5, ... ...

are compact, and Q, © Q,,;. Then, it follows that there exists an ¢, > 0 such that, if (¢, x,) € Q,
all the solutions of (4.1.1) exists onty <t <ty + &,. Now, select an integers n;so large that (to +
by, x(ty + bo)) € (_Zm. Then, the solution x(t) can be extended over an interval [ty + by, ty + by +
&y,]. Similarly, if (to + by + &, 1,x(to + by + &, 1)) € Q,,, the solution x(t) can be extended over an
interval [t + by, to + by + 2¢,,].

We repeat this argument until the solution x(t) is extended over the interval[ty, ty + b;], where b; =
by + Nlenl' N; being an integers > 1, such that (to + by, x(ty + bl)) ¢ f_ln .- Again, select a sufficiently
large integer 7, such that (ty + by, x(tg + b;)) € Qy,. Then, an argument similar to the just given
leads us to conclude that the solution x(t) can be extended over the interval [ty,ty + b,], where,
b, = by + N,€;, N, being an integers > 1such that(to + by, x(ty + bz)) ¢ (_1,,2. Proceeding in this
way, we obtain a sequence of integers 17, <1, <73 < -+ ... and real numbers by < b; < b, < ---..50
that x(t) has a continuation over [ty, ty + b], where b = ]lim by such that (t + by, x(to + by)) € Qp,.-

—00

Thus, the sequence {(to + by, x(ty + bk))} is either unbounded or has a limit point on the boundary
of Q. If it is unbounded, then our assertion follows immediately. If it has a limit point on the
boundary of Q, then by the lemma 4.1.7, we can conclude that the solution x(t) tends to the
boundary of Q as t = ty + b.

Summary

e The system of first order differential equations is defined.

e The concept of the initial value problem to the system of differential equations is
discussed.

e  Lipschitz condition is elaborated.

e The convergence of solutions system of initial value problems was discussed.

e The condition of existence and uniqueness of solution on system of IVP is derived with

examples.

Keywords

e Linear first-order system of differential equation

e Non-Linear first-order system of differential equation
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e Lipschitz condition
e  Existence and uniqueness of a solution
e  Picard’s-Lindel of theorem

e  Peano’s existence theorem

Self-assessment

1. The Volterra integral equation is

a) x(t) =xo— f} fls,x(s))ds, tE]

b) x(t) =xo + ffo f(s,x(s))ds, te]

o x(®) = f(s,x())ds, te]

d) None of these

2. The system of first order initial value problem is defined as x' = f(t, x), x(to) =
xo, where x, f, xo are vectors in R™.

a) Homogeneous

RS

Non-homogeneous

¢) Autonomous

d) None of these

3. If f(t,x) € C1(Q) is continuously differentiable in Q, then there exists a positive constant L
such that

a) ||§—£|| < Lfor (t,x) € Q

b || < tortx) € @
C) ”:—;” = Lfor (t,x) € Q
d) None of these

4. The Lipschitz condition for the system of differentiable equations is defined as
a) If(e,x) = fE& Il < Lllx =yl

b) 1If (&%) = fFE& Il = Llix =yl

9 lIftx) = fEt.»l < Llix -yl

d) None of these

'= = to<t< — <
5. The solution of X f(t,X), X(tO) XO, By it st <ty +a,|[X—X, [|[<b

exists and unique in [to. 1, + ]

| f(t,x)], «=min(a,b/M)

implies

M = min
a) (t,x)eBy

M = max || f (t,x)|, «=max(a,b/M)
b) (t.X)<Bo

M = max | f (t,x)|, & =min(a,b/M)

C) (t,x)eBgy

M = (m§>éo|| f (t,x)|, « =min(a,b)

6. The absolute value replaced with norm values in the theorem is

a) Picrad’s theorem
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veoz

ROBRSRC RS

ROBNERRC R

ROBNERRC R

Picard’s Lindel of theorem
Peanos’s theorem

None of these

The Lipschitz condition is a
Necessary condition
Sufficient condition

Both necessary and sufficient

None of these
x'= T (t, x), xX(ty) = X,
The system of equations given by , on

By ity =t =ty +a,|| Xx— X, ”Sbhas

A unique solution

At least one solution

Many solutions

None of these

The  solution x(t) of an IVP
t,<t<t,+b,, fe(R")
The solution can extended to the boundary of the € .

X'(t) = f(t,x), x(t;) = X,

on

The solution can extended anywhere in £
The solution cannot be extended to the boundary on £

The solution will not remain same.

The TVP u'= f (t,u), u(ty) =u

Then every solution existing on I,

The inequality u(t) < r(t) holds for tin I
The inequality u(t) >r(t) holds for tin I
The inequality u(t) > r(t) holds for tin I
The inequality u(t) < r(t) holds for tin I

© has a maximal solution r(t) on the interval L.

. The vpY = TG, U) =Uo Gefined in S:t, <t <t, +a,|ul|<oo

has unique solution. If

f(t, u) is monotonically non increasing in u
f(t, u) is monotonically increasing in u

f(t, u) is non increasing in u

f(t, u) is increasing in u

: <t<
The function f(t,u) be bounded and continuous in Sitp =t=t, +aful<oe.

Then IVP u'= f (t,u), u(ty) =ug

has at most one solution in [to, to+a]

has at least one solution in [to, to+a]

only one solution in [to, to+a]

No solution in [to, to+a]

A family of uniformly bounded and equicontinuous function on B has uniformly
convergent subsequence then

B is a closed set

B is a compact set
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c) A subset of B is compact
d) None of these

Answer of Self-Assessment

1 B 2 B 3 B 4 C 5 C
6 B 7 A 8 A 9 A 10 D
1 A 12 B 13 C

Review Questions

Q1. Establish that the solution ofthe following IVPs exists non-locally and uniquely.

, sin
X(t):1+t)2/' XO=1 1120

y'(t) =e'cosx, y(0) =0

x| < o0,| y |< oo.

X'= f (t,x), xX(t,) =X

and that *(is a solution of systems of equations

°’on L =t=<t, +b, Then, x(t) can be extended as a solution of
X'=T(tX), X(t) = X, to the boundary of Q,

L..J Further Readings

Earl A Coddinton and Norman Levinson (2017). Theory of Ordinary Differential Equations,
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P. Hartman (1964), Ordinary Differential equations, Johan Wiley.

Shair Ahmad and Rama Mohan Rao (2014), Theory of Ordinary Differential Equations, East
West Press Private Limited.

S G Deo, V Lakshmikantham and V Raghvendra (2013), Ordinary Differential Equations,
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Unit 05: Differential Inequality
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Keywords

SelfAssessment

Answers for Self Assessment
Review Questions

Further Readings

Objective

After studying this unit, you will be able to

e identify the concept of need of differential inequality.
¢ understand the concept of upper solution and lower solution.
¢ know about the maximal and minimal solution.

e apply basic theorems on existence of solutions of differential inequality.

Introduction

The differential inequality occupies a very privileged position in the theory of differential
equations. In recent years, these inequalities have been greatly enriched by the recognition of their
potential and intrinsic worth in many applications of the applied sciences. The theory of such
inequalities depends essentially upon the integration of differential inequalities which is usually
known as the general comparison principle. In this section, we shall introduce some basic
inequalities of this type along with their applications.

5.1 Differential Inequalities

A function u(t) is said to be a solution of the differential inequality

u'(t) > g(t,u) or u'(t) = g(t,uw)

on aninterval [ if it is differentiable and satisfies

u'(8) > g(t,u(0) or u'(0) = g(t,u(t)),

Respectively, for every t in I. For example, the function u(t) = tant is a solution of the differential

inequality u'(t) > u? on the interval (—g,g) since u/(t) =1 =tan?t.

5.2 Dini’s Derivation

In the view of the application of the inequalities, it would be useful in the foregoing definitions are
extended. For any scalar functionu(t), the upper and lower-right derivative, D*u and D uare
defined by
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u(t+h) —u(t))

+ o
D*u(t) = hh_)r(r)l+ sup( o

T . u(t+h)—u(t)
Dyu(t) = lim, inf (=)
Similarly, the upper- and lower-left derivative of u(t), D~u(t) and D_u(t), are given by

D-u(t) = }}i_)rng sup (—u(Hh}z_u(t))

u(t+h)—u(t))

D_u(t) = }}i_)rgl+ sup( o

These derivatives are usually referred to as Dini’s derivatives.

A A function u(t) is said to be a solution of, let us say, the differential inequality D*u(t) >
- g(t,u(®)) for every t in I. When D*u(t) = D,u(t), the right-hand derivative of u(t) exists
and is often denoted by u’(t) represents the left-hand derivative of u(t).

Consider the initial value problem

u'(t) = g(t,u), ulte) = uy, (5.1.1)
Where g € C[Q, R],Q being an open set in R?. Let J; = [to, to+ a),a > 0.

5.3 Upper and Lower function

The following results shows that any solution of (5.1.1) can be bracketed between the lower and
upper functions of this initial value problem.

Definition 5.2.1: A real valued function v(t) which has continuous first derivative on the interval I
is aid to be a lower solution of IVP (5.1.1) if for all tin/, the following relations hold:

v’ < g(t,v); v(ty) < ug

A real valued function w(t) which has continuous first derivative on the interval [ is aid to be a
upper solution of IVP (5.1.1) if for all t inI, the following relations hold:

w' = g(t,w); w(ty) = u,

Definition 5.2.2: A function v € C[J;, R] is said to be an upper [or lower] function with respect to
(5.1.1) if vi(t) exists and satisfies the differential inequality vi(t) > g(t, v(¢)) [or vi(t) <
g(t,v(®)] on Jy.

We shall now derive some basic results for differential inequalities.

Theorem 5.2.3: Let v,w € C[J;,R] and satisfy the inequalities

D_v(t) < g(t,v(t)), (5.2.1)
D_w(t) > g(t,w(t)) (5.2.2)
with (¢, v(®)), (t,w(t)) € Q for t € J;. Then,

v(ty) < w(te) (5.2.3)
implies

v(t) <w(t),t €. (5.2.4)

Proof: We claim that inequality (5.2.4) holds. Suppose it does not. Then, there exists a t; > ty such
that

v(t) = w(ty), (5.2.5)

v(t) <w(t), t € [to,t1). (5.2.6)

For a sufficiently small h < 0, it follows, from the relations (1.5.6) and (1.5.7), that

D_v(ty) > D_w(ty) (5.2.7)

Since v(t; + h) < w(ty + h). Therefore, from inequalities (5.2.1), (5.2.2), and (5.2.7), we obtain
9(t,v(t) > g(t, w(t)).

This contradicts (5.1.6). Hence, our claim is true. Thus, (5.2.4) holdson J;.
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E/’ Remarks 5.2.4: Assertion (5.2.4) is true even if wereplace " <" by " = "in (5.2.1) and (5.2.2),
— respectively.

E] Example 5.2.5: For the IVP v’ = uZ;u(0) = uy = —1

the function v and w defined by

v(t) = —ti—l and w(t) == — 2(;1) are lower and upper solutions, respectively, on —co < x < oo.
For, in this case, wehave g(t,u) = u?,ty = 0,uy = —1, and

o2 4
v_(t+1)2 t+1)2

=12 =g(t,v),v(0) =-2< -1 =1y,

And

1

[
T 2(t41)2 7 4(t+1)2

=w?2=gw,t),w(0) = —i > —1 = u,.

Also, for any n > 1, it is easy to see that the functions v, and w,, defined on —oo0 <t < oo by

1
n(t+1)

() = —% and wy, (t) = —

are lower and upper solutions, respectively, of the given IVP. Because we have
, n n?

S D S+

v2 = g(t,v),v,(0) = —n < -1 =1,

And

1
n(t+1)2 = n2(t+1)2

wy =

= Wr% =g(t,Wn),Wn(0) = _i >-—1= Ug.

Theorem 5.2.6:_Let v(t) and w(t), respectively, be the lower and upper functions with respect to
(5.1.1) on J;. Let u(t) be any solution of (5.1.1) such that

v(ty) = uy = w(to). (5.2.8)
Then, the inequality

v(t) <u(t) <w(t) on (tg, to + @) (5.2.9)
holds.

Proof: We shall first prove the right half of assertion (5.2.9). Set m(t) = w(t) —u(t). Then, from
conditions (5.2.8), it is clear that m (ty) > 0. This implies that m(t) is increasing to the right of t, in
a sufficiently small interval[ty, to 4+ 6]. Therefore, we have u(ty +8) < w(ty+ 6). Since w(t)is the
upper function and u(t) is any solution of (5.1.1), it follows, from definition 5.1.1, that, for t €
[to + 6,t0 = a],

W (® = g(tu®), wi® > g(t,w®).

Thus, the application of Theorem 5.1.2 yields
u(t) <w(t) for t € (to,to = a).

The proof for the left half of (5.2.6) is similar.

@ Example 5.2.7: Consider the initial value problem

u' =u?—t, u(0) =1. (5.2.10)

It should be noted that, in (5.2.10), the differential equation (a special case of the Riccati equation) is
not integrable in elementary terms. However, we observe that

u—t<u?—tandu?>u?—tforallt >0 and |ul >1.

Therefore by solving the initial value problem v’ =v —t, v(0) = 1,we obtain a lower function

v(t) =1+t with respect to (5.2.10) and, from the initial value problem w' = w?,w(0) = 1, we get
1

an upper function w(t) = P t # 1, with respect to (5.2.10). Hence, we have
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1
1+t <u(t) <1—_t for t €(0,1),

where u(t) is the solution of (5.2.10).

Corollary 5.2.8: Let gy, g, € C[Q, R] and satisfy the inequality
91t ug) < g(t,uy) for (t,uq),(t,u,) € Q.

If uy (t) and u,(t) are, respectively, the solutions of

u; = g;(t, u;),i = 1,2, existing on the interval J; such that u; (¢y) < u,(to), then the inequality u, (t) <
u,(t) holds on J;.

The proof for this corollary is similar to that for Theorem 5.2.6.

5.4 Maximal and Minimal Solution

We shall now use Theorem 5.2.3 to prove a result on the existence of the maximal solution of (5.1.1),
the hypothesis being a in Theorem 3.1.7.

Definition 5.3.1: Let r(t) be any solution of (5.1.1) on the intervall. Then, r(t) is said to be the
maximal solution of (5.1.1) if, for every solution u(t) of (5.1.1) existing on I, the inequality u(t) <
r(t) holds for t € 1.

Definition 5.3.2: Let p(t) be any solution of (5.1.1) on the interval I. Then, p(t) is said to be the
minimal solution of (5.1.1) if, for every solution u(t) of (5.1.1) existing on I, the inequality p(t) <
u(t) holds for t € I.

= Remarks 5.3.3: The maximal solution r(t) and minimal solution p(t), if they exists, are
unique.

Theorem 5.3.4: Let g(t,u) be continuous in a closed, bounded region R(a,b):to<t<ty+
a,lu — ugl < b. Then, there exists a maximal solution and a minimal solution of (5.1.1) on [ty to + al
for some positive a.

Proof: We shall first prove the existence of the maximal solution. Let € > 0 be given such that 0 <
€ < b/2.Since g is continuous in R(a, b), there exists a positive constant M such that

lg(t,w)| < M for (t,u) € R(a, b).

Consider the initial value problem

u' =ge(tw), uc(to) =uo+e (5.3.1)
Where
getw) =gt,u)+e (5.3.2)

Clearly, the function g.(t,u) is defined and continuous in the closed, bounded region
R(a, b, e):to<t<ty+alu—uy—el Sg.

Moreover, we have R(a,b,€) < R(a,b) and

gt W] < M+ gfor (t,u) € R(a,b,¢).

Therefore, from Peano’s Existence Theoremn = 1, it follows that (5.1.1) has a solution u.(t) on the
).
Let €; and €; such that 0 < €, < € < €. Then, from (5.3.1) and the relation (5.3.2), we have

ue, (to) < ue, (to),

. . b
interval [ty, ty + @], where @ = min(a, PV

ug, (=g (t.uez (t)) + €,

ug, (t) > g(t, Ue, (t)) + €.
The application of Theorem 5.2.3 yields

ue, (£) < ug, (t) for t € [to, to+ a].
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From the hypothesis, it follows (see Theorem 3.1.7) that the family of functions u.(t) is
equicontinuous and uniformly bounded on [ty,t, +a]. Hence, by Lemma 3.1.6, there exists a
decreasing sequence {€,}such thate, —» 0 asn - o and

lim u,, (t)
n—oo
exists uniformly in t € [ty,ty + a]; we denote this limiting value by r(t). Obviously, r(ty) = u,.

Also, the uniform continuity of g and
t

ue, () =ug+ e, + fg(s, Uy (s))ds

to

yields r(t) as a solution of (5.2.3). Finally, we show that the solution r(t) is the maximal solution of
(5.1.1). To do this, let u(t) be any solution of (5.1.1) existing on the interval [¢o, ty + a]. Then,

u(ty) = ug < ug+ € = uc(ty).

Further, for t € [ty, ty + a], we have

u'(t) < g(t,u(t)) +eul(t) = g(t,u(t)) + e
By remarks 5.2.4, we have

u(t) <u®)fort €[ty to + a].

Since the maximal solution is unique, it is clear that u.(t) tends to r(t) uniformly in t € [to,t, + @]
as € = 0. A similar argument holds for the minimal solution.

Summary

e The concept differential inequality is discussed.

¢ Dini’s derivatives are derived.

¢  The upper and lower function elaborated with examples.

e The existence of solution of differential inequalities proved.

¢  The condition of existence and uniqueness of maximal and minimal solution is derived.

Keywords

¢ Differential inequality
e Dini’s derivative
e  Upper and lower function

e  Minimal and maximal solution

Self Assessment

1. The upper-right Dini’s derivative is given by

D u(t) = Ji@S“p(WJ

D-ut) = hIirI)1sup[u(t+ h) — u(t)j

B.

D+u(t)=h|ir51inf(“(t h) - u(t)j
C.

D_u(t) = lim inf[u(t+h)+u(t)]
D.
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u(t)=tant u>uon(—=z/2,7/2)
If is a solution of then

u'(t)=tant
u'(t)=1+tant
u'(t)=1-tant
None of these

The solution of Initial value problem U'=U — t,u(0) =1llies in

1

1+t<u(t) <—
) Tt
1+t<u(t)<i
T 1t

1

l+t<u(t) <—
t) 11

1
1+t<u(t) <-—
=1

The upper solution for initial value problem y = y? —t?, y(0)=1

1
t R
Y <=

1
)< —
y) <1

1
1) < —
y(® 1+t

1
)< —
y(® 1+t

The lower solution of IVP u=u 2, U(O) =—1is
2

t+1
-2
t-1

-2

t+1

1
2(t—1)
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SIS I

10.

The upper solution of IVP y = yz, y(0)=-1is
1
2(x+1)

_ -1
2(x+1)
-2

X+1

1
2(x-1)

The Lower-left Dini’s derivative is given by

D u(t) = Ji”(ls“p(w}

D u(t) = h||rp sup(wj
D.u(t) = hlirglinf(wj

D_u(t) = lim inf(wj

The IVP has a minimal solution r(t) on the intervalI. Then every solution existing on I,

The inequality u(t) < r(t) holds for t in I

The inequality u(t) >r(t) holds for t in I

The inequality u(t) > r(t) holds for tin I
(t) <

The inequality u(t) < r(t) holds for tin I

Which of the following relation is true
D u(t) > D u(t)

D*u(t) = D u(t)
D u(t) < D u(t)

D u(t) < D u(t)

If D_v(t) < g(t,v(t)), D_w(t) > g(t.w(t)) and v(t,) < w(t,)

v(t) < w(t)
v(t) > w(t)
v(t) < w(t)

v(t) = w(t)

implies
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11. For initial value problem there exist a
A. Only maximal solution

B. Only minimal solution

C. Maximal and minimal solution

D

None of these

12. Let V(t) and W(t), respectively be the lower and upper functions and u(t) be the
solution of with respectto U = g(t,u), u(t,) =U,, where g e C[Q, R], € beingan
open set in R2such that v(t,) = u, = w(t,). Then

A. inequality V(D) <u(®) =w(t) on (.1, +a) holds.

B. inequality V(D) <u(t) <w(t) on (to,t, +a) holds.

C. inequality V(D) = u(t) <w(t) on (to.t, +a) holds.

D. inequality v(t) <u(t) =w(t) on (t,,1, +a) holds.

13. The IVP has a maximal solution r(t) on the interval I. Then every solution existing on I,
The inequality u(t) < r(t) holds for tin I

The inequality u(t) >r(t) holds for t in I

The inequality u(t) > r(t) holds for tin I

The inequality u(t) < r(t) holds for t in I

N e >

Answers for Self Assessment

1 A 2 B 3 C 4. A 5 C
6 B 7. D 8 B 9. B 10. C
11. C 12. D 13. D

Review Questions

1. Define external solutions of initial value problem.

2. If U(t) be thesolution of initial value problem u=u’- t, U(0) =1, then prove that
1
inequality 1+t < u(t) < ﬁ ,t €(0,2) holds.

3. 1f V,W e C[J,, R] and satisfy the inequalities
D_v(t) < g(t,v(t)), D_w(t) > g(t, w(t)), with (t, V(1) (t, W(t)) € Qfor t € J;.
Then prove that V(to) < W(to) implies V(t) < W(t), te ‘]1'

4. Find lower and upper solution of IVP u=u’- t,u(0)=1
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https:/ /www.youtube.com/watch?v=ur-D_izdCmM

42 LOVELY PROFESSIONAL UNIVERSITY

Notes


https://www.sciencedirect.com/topics/engineering/differential-inequality
https://www.youtube.com/watch?v=ur-D_izdCmM

Dr. Preety Kalra, Lovely Professional University Unit 06: Integral Inequality

Unit 06: Integral Inequality

CONTENTS

Objectives
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6.1 Gronwall-Reid-Bellman Inequality
Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives

After studying this unit, you will be able to

e identify the concept of need of integral inequality.
¢ understand the concept of Gronwall-Reid-Bellman inequality.
e  know the properties of integral inequality.

e apply basic theorems on existence of solutions of integral inequality.

Introduction

We shall now give some of the important results involving the integral inequalities that are useful
in studying the qualitative properties of solutions of ordinary differential equations.

6.1 Gronwall-Reid-Bellman Inequality

Theorem 6.1.1: Let ¢ be a non-negative constant and let u and v be nonnegative continuous
functions on some interval t, < t < t, + a satisfying

ult) <c+ fttou(s)v(s)ds, t € [to, to + al. 6.1.1)
Then, the inequality
u(t) < cexp fttu v(s)ds, tE€ [to,to + alholds. 6.1.2)

Proof: Let w(t) = ¢ + fttu u(s)v(s)ds.

Clearly, w(ty) = c. Then, by the hypothesis, u(t) < w(t).Sinceu(t) and v(t) are nonnegative
continuous functions, it follows that

w'(t) = u(®)v(t) < w@)v(t), tE€ [ty ty+al.

Multiplying this inequality by exp (— ftto v(s)ds) , we obtain

%[W(t) exp(— f:ﬂ v(s)ds)]| <0

Integrating this inequality from t, to t, we get

t
w(t) exp(— | v(s)ds) —w(ty) <0.

to
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Since u(t) < w(t) and w(ty) = ¢, we have

t
u(t) < cexp [f v(s)ds], t € [to, to + al.
to

Ei,* The generalization of Theorem 6.1.1 which we shall now give are useful in applications.

Theorem 6.1.2: Let u and v be nonnegative continuous functions on some interval t, < ¢t < t, + a.
Also, let the function f(t) be positive, continuous, and monotonically non-decreasing on t, < t <
to + a and satisfy the in-equality

u(®) < f(t) + f;u(s)v(s)ds, t € [to, to + al. (6.1.3)

Then, we have

u(t) < f(t)exp | v(s)ds, tE€ [ty to+ al

Proof: Since f(t) is positive, from (6.1.3), it follows that

u(t) ftu(s)v(s)
—= <1+ | ——=ds, tE€E]|tyty+al
f© N0 oo
Further, since f is monotonically non decreasing, we have L <L and hence

f@® = f)

u(t) t u(s)v(s)
wo
7o =1t Tre ds

u(®)

Thus, by setting K(t) = 0

and applying Theorem 6.1.1, we get
t
K(t) < exp [f v(s)ds,

to

And hence

u(t) < f(t)exp [ftv(s)ds, t € [to, to + al.
to

Theorem 6.1.3: Let f(t) be a continuous function and v(t) a nonnegative continuous function on
the interval t, < t <ty + a.If continuous function u(t) has the property

u() < f(0) + f;u(s)v(s)ds for tE€ [ty to+al, (6.1.4)
then
u(®) < f(e) + f:of(s)v(s) exp [fstv(r)dr] ds for tE€ [ty ty+ al. (6.1.5)

t

Proof: Put w(t) = fov(s)u(s)ds.

t
Then, w is differentiable and
w'® —p(Ow(t) < FOV(L).

If we now put
t
K(t) = w(t) exp [—j v(s)ds],
to

Then the forgoing inequality is equivalent to

t

K'(t) < f(®)v(t)exp [—f v(1)dr].

to

LOVELY PROFESSIONAL UNIVERSITY



Unit 06: Integral Inequality

Since K(ty) =0, on integrating this inequality between
toand t, we get

K(t) < tf(s)v(s) exp[— fsv(r)d'r] ds,
to ¢

o

That is, by the definition of K(t),
t t
w(t) < f f(s)v(s) exp[f v(r)dr] ds.
ty s

Since u(t) < f(t) + w(t), the result follows.

Theorem 6.1.4: Assume that

(@) g(t,u) is continuous in the region ty <t <ty + a, |u| < oo;

(ii) g(t,u) is non-decreasing in u for each fixed t;

(iii) The maximal solution r(t) of (5.1.1) exists on the interval t, < t < ty + a; and

(iv) m(t) is a continuous function satisfying the integral inequality
m(t) < m(ty) + fttog(s,m(s))ds, t € [to, to + al. (6.1.6)
Then, the inequality
m(t) < r(t),t € [ty ty + al, holds. (6.1.7)

Proof: Let v(t) be a function defined by the right-hand side of (6.1.6). That is,
t
v(t) = m(ty) + f g(s,m(s))ds.
to

Then, we have
m(t) < v(t),
v'(t) = g(t,m(t)). (6.1.8)
From the non-decreasing property on g, it follows that
v'(t) < g(t,v(t)), tE [ty ty+al
Thus, from the comparison principle implies
v(t) < r(t)fort € [ty, ty + al.
Hence, (6.1.7) follows from inequality (6.1.8).

Corollary 6.1.5: Let m(t) and v(t) be nonnegative continuous functionsonty < t <ty +a.Letg €
C[R*,R*],g(0) =0,g(w) >0 for u>0,g(u) be non-decreasing in u, and k be a non-negative
constant. Then, if inequality

m(t) <k + f:o v(s)g(m(s))ds, t€ [ty to+al, 6.1.9)

holds, the inequality

m(t) <w™? [W(k) + ftv(s)ds] for tE [ty ty+al
¢

0
Remain valid as long as

t

w(k) +j v(s)ds

to

1

Lies in the domain of the definition of w™", where the function w, is given by

u
dr
ww) = | —=,e>0,
w=]35
€
w~being the inverse mapping of w.

Proof: Denoting the right-hand side of (6.1.9) by n(t), we have m(t) < n(t). Since g is an increasing
function of u and v is a non-negative function, we have
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g(m@®)v(t)

<
gm®) v(®-

Butn'(t) = g(m(t))v(t). Hence, by the definition of w, we have

L w(n(®) < v(o).

Integrating this inequality between tyand t, we get

t

w(r/(t)) <w(k)+ fv(s)ds.

to
Since w1 is also is an increasing function, we finally have

t

n< wiwk) + fv(s)ds].

to

Corollary 6.1.6: let the assumption of Theorem 6.1.4 be satisfied, except for (6.1.6) which is
replaced by

t

m(®) < () + f g(s,m(s))ds, ¢ € [to,to +al,

a

Where f is continuous on [ty, ty + a]. Then, (6.1.7) takes the form
m(t) < f(t)+r(), tE/[tyty+al
wherer(t) is the maximal solution of
u' = g(t, f(t) +w), u(ty) =0,

existing on [ty, t + al.

Summary

e  The concept of the integral differential equations is discussed.
e  The Gronwall-Reid-Bellman inequality is derived.
e The properties of integral equation were discussed.

e The condition of existence of solution of integral equation is elaborated.

Keywords

e Integral equations
¢ Integro-differential equations
¢  Gronwall-Reid-Bellman inequality

e  Properties of solutions

Self Assessment

The basic condition for the Gronwall-Reid-Bellman inequality that
The functions must be nonnegative on closed interval
The function must be continuous on closed interval

The function must be nonnegative continuous on closed interval

oNnwp

None of these
2. The integral inequality helps to understand the of solution of ordinary

differential equations.

A. Qualitative property
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N

N wp o

Quantitative property
Both Qualitative and quantitative

None of these

Let c be a nonnegative constant and let u and v be nonnegative functions on some interval
t, <t <t, +asatisfyingu(t) <c + IU(S)V(S)dS, te[ty,t,+al. Then following
inequality holds f

u(t) < cjv(s)ds, teft, t,+al

)

u(t) < cj'u(s)ds, t e[ty t,+al

to

u(t) < cexp{j.v(s)ds}, t e[ty t,+al

to

u(t) < cexpj'u(s)v(s)ds, te[t, t,+al

f

Let f (t) be a continuous function and v(t) be a nonnegative continous functions on the
interval. If U(t) has the propertyu(t) < f(t)+ IU(S)V(S)dS, te[t,,t,+al. Then
following inequality holds )

u(t) < f(t)+j f(s)v(s)exp j‘v(r)dr ds, te[ty,ty,+a]
u(t) < f(t)+j‘f(s)v(s)exp j‘v(r)dr ds, te[ty,ty,+a]

to

u(t) > f(t)+'t|' f (s)v(s)exp, jv(r)dr ds, te[ty,ty+a]

u(t) < f(t)—j f (s)v(s)exp| jv(r)dr ds, te[t,,t,+al

The qualitative property discussed for first integral inequality is named as
Grownall-Reid-Bellman inequality

Dini’s inequality

Volterra inequality

None of these
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6. Letuand v be nonnegative continuous functions on some interval {; <t <t; +a. Also,
let the function f(t) be positivetcontinuous, and monotonically non decreasing and satisfy
the inequality U(t) < f(t)+ J. u(s)v(s)ds, t e[t,,t,+a]. Then following inequality
holds to

t
u(t) < f(t) j v(s)ds, t e[t,.t,+al]
A b

u(t) < cj.u(s)ds, t e[t, t,+al
B. fo

u(t) < f(t) exp{jv(s)ds}, telt, t,+al
C. to

u(t) < cexpju(s)v(s)ds, t e[t t,+al
D. to

Answers for Self Assessment:

1. C 2. A 3. C 4. A 5. A

Review Questions

1. If £(t) be a continuous function and v(t) a nonnegative continuous function on the interval

to< t <to+a. If a continuous function u(t) has property

ut) < f(t)+_t[u(s)v(s)ds for te[t,,t, +a],

o

then

u(t) < f(t)+.|t.f(s)v(s)exp[jv(r)dr]ds for tel[t,.t, +al.

to s

2. Ifu(t) and v(t) be nonnegative continuous function on some interval to< t <to+a. Also, let
the function f(t) be positive, continuous, and monotonically non decreasing on to< t <to+a
and satisfy the inequality If a continuous function u(t) has property

ut) < f(t)+ ju(s)v(s)ds for teft,,t, +al,

to

then, prove that

u(t) < f(t) exp[jv(s)ds] for te[t,,t, +al.

19
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Unit 07: More Theorem of Integral Inequality

CONTENTS

Objectives

Introduction

7.1 Kameke’s Convergence Theorem
7.2 Kneser’s Theorem: (statement only)
7.3 Theorem of Wintner

Summary

Keywords

Self-assessment

Answer for Self Assessment

Review Questions

Further Readings

Objectives

After studying this unit, you will be able to

e identify the concept of integral inequality in uniqueness.
e understand the concept of convergence theorem

e know about the uniqueness of solutions

e apply basic theorems on the convergence of solutions.

e find the condition of existence and uniqueness of maximal solution.

Introduction

One of the principal objectives in studying the differential and integral inequalities is to prove the
uniqueness theorems. A solution of the differential equation in (7.1.4) continuously depends upon
the initial conditions and we find that the initial value problem has at most one solution. An
important and useful technique giving the uniqueness of solutions follows.

7.1 Kameke’s Convergence Theorem

Theorem 7.1.1: Let g(t,u), g(t,0) = 0, be a non-negative continuous scalar function defined on
Ry:tg<t<ty+a0<u<?2b.

Assume that the only solution of

u' =g(t,u) (7.1.1)

on any interval (to, to + €], € > 0, satisfying

u(t) - 0,

L0 as to to+0 (7.1.2)
t—to

isu(t) = 0. Further, let f(t,x) be a continuous vector-valued function defined on R:t, <t <ty +
a, ||x — xol| < b satisfying

[lf(t, %) — ft, 2D < g, Nl — x20), (& xq), (&, x2) €R (7.1.3)
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whenever t(t,0) => t,. Then, the initial value problem
x'=ftx), x(to) =xp to€J, (7.1.4)
Has at most one solution on [ty, ty + €].

Proof: Suppose x;(t) and x,(t) are any two distinct solutions of (7.1.4) on ty <t <ty + € for some
€ > 0. Let m(t) = |[x,(t) — x2(¢)||. Clearly. m(t,) = m'(t,) = 0. Without any loss of generality, we
can assume that m(ty, + €) # 0. Then, we have 0 < m(t, + €) < 2b. Using inequality (7.1.3), we
obtain

m'(t) < g(t, m(©)), t€ (to,to +€). (7.1.5)

Let p(t) be the minimal solution of the initial value problem u' = g(t,u), u(ty +€) = m(ty +€), on
(to, to + €].From (7.1.5) and from the differential inequality, we conclude that

m(t) = p(t), tE€ (toto+el (7.1.6)
Since g(t,0) = 0, it follows, from inequality (7.1.5), that
t
p(t) = 0, O) -0 as t->t,+0.
t—t,

Therefore, from the hypothesis on equation (7.1.1), it is clear that p(t) = 0. This contradicts our
supposition because p(t, + €) = m(t, + €) # 0. Hence, the assertion of the theorem follows.

Corollary 7.1.2: (Nagumo’s criterion): The assertion of Theorem 7.1.1 still holds if condition (7.1.2)
is replaced by

1f(t, x) — F(&,x)l < _letl—:zll’ (t,x1), (t, x,) € R, whenever t > t,.
—to

7.2 Kneser’s Theorem: (statement only)

Let £(t,y) € C onarectangle R: |t — to| < a,|y — yo| < b and

lft,y)| < M;a =Min {a,%} on R and ty < c <ty + a. Finally, let S. be the set of points ¢, for
which there is a solution y = ¢(t) of y' = f(t,y), y(ty) = yo on [ty, c] such that ¢(c) = ¢, i.e. P, €
S means that ¢, is a point reached at t = ¢ by some solution of I.V.P. then S, is a continuum i.e. a
closed connected set.

Ei/‘ This theorem is about the case of non-unique solutions of initial value problems.

7.3 Theorem of Wintner

Let F(t,y) be continuous on [tg,t, + a],y = 0 and let the maximal solution of ¥y’ = F(t,y); y(to) =
Yo = 0 exists on [ty, ty + a ].

Let F(t,y) = w(y) where w(y) is positive continuous function on y > 0 such that

© dy _
Lywiy = (7.3.1)

Let f(t, z) be continuous on the strip t, < t < t, + a, where z is arbitrary vector function and satisfy
If (&, 2)] < F(t,]z]) (7.3.2)
(where | | denotes the norm of the functions).

Then the maximal interval of existence of solutions of

7' = f(t,2); 2(to) = 2 (7.3.3)
Where |z,| < v, is [to, to + al.
Proof: From (7.3.2) we have |z'(t)| < F (¢, |z(t)]) (7.3.4)
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On any interval on which z(t) exists.

We know that if ¢y, (t) be maximal solution of y' = F(t,y); y(ty) = ¥

andz = z(t) be a C! vector values function on [t,, t, + a] such that
lz(t)| < pu(0); (¢, |2(0) €D

and|z' ()| < F(t, |z(O)])

on any interval [ty, ty + a] on which z(t) exists then

[2(O)] < m (D) (7.3.5)

holds on any common interval of existence of ¢ (t) and z(t).
[Also we know that if z = z(t) is a solution of differential equation

Y =F(ty);y(t) =y,20

On the right maximal interval / and F(t,z) be continuous on a strip t, <t <ty +a and it is
arbitrary then

either/ = [t, to + a] or] = [ty, 6)
whered < t, + a and|z(t)| > 0 ast - ty + a] (7.3.6)

To prove this theorem it has to be shown that the function F(t,y) = w(y) satisfies the condition of
maximal solution of

Y =w®)y(te) =y020 (7.3.7)
exists on ] = [ty, to + a] by virtue of (7.3.1).

Since w(y) > 0, so (7.3.7) implies for any solution y = y(t)

Lty _ y@® ady
t—ty= fto o ds = fy(tu) o) (7.3.8)

By taking dy = Z—}S’,ds =y'ds
Note that w > 0 implies that y'(t) > 0 and y(t) > 0 for t > t,.

By result (7.3.6), the solution y(t) can fail to exists on [ty, ty + a] only if it exists on some interval
[to,8),6 <ty + a and satisfies y(t) - 0 ast — 6.

By virtue of (7.3.8) as t = 6,

—to = lim [P© & oAy _ i
§ =t = lim fyo e fyo et using (7.3.1),

which is contradiction for left side tends to § — t, and right side tends to .
Hence y(t) does not exists on [t,§),8 < t, + a.
Thus y(t) must exists on [t, t, + a].

= The maximal interval of existence of solution of (7.3.3) is [t,, t, + al.

Summary

e The concept of integral inequality in uniqueness is discussed.
¢  The concept of convergence theorem elaborated.

e know about the theorem of non- uniqueness of solutions.

e Kameke's convergence theorem derived.

¢  The theorem of Wintner for maximal interval is proved.
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Keywords

Integral inequality
Convergence
Uniqueness

Kameke’s convergence
Kneser’s theorem

Theorem of Wintner

Self-assessment

oNwp

O

2 OO0 W E @

SN = »

Kamke's convergence theorem holds good

for two different solutions
at least one solution
at most one solution

none of these

If g(t,u), g(t,0) =0vbe

Ry to<t<t;+a,0<u<2Dthen the

a continuous scalar function on

u(t)=0 be only solution of

u'= g(t,u)on (to,to + 5],8 > OSatisfying

u(t)

u(t) »0,—= —»>0as t—>t,+0

t

u(t)
u(t)—>0,tth

0

u(t) — 0, t“ ©

0

u(t) — 0, “t(t)

(o]

The continuum set is always
A Closed connected set

A Open connected set

A Semi open connected set

A Semi closed connected set

The S be the set of points ¢,
f(t,9),y(to) = yoon [to, c] then
S, is a continuum

S is a continuous

S¢ is a continuum and continuous

None of these

—>0as t—>t,+0

—>0ast—>t; +0

—0O0as t —>t, +0

for which there is a solution y = ¢(t)of IVP y' =
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The maximal interval of existence to an IVP in closed, bounded domain is given by
Kneser’s theorem
Kamekeconvergence theorem

Thorem of Wintner

ONwp o

None of theses

The assumption for the Wintner theorem is
The minimal solution exists
The maximal solution exists

Both maximal and minimal solution exits

9N wp e

None of these

The assumption for the Wintner theorem with existence of maximal solution is
The IVP is continuous non-autonomous
The IVP is continuous autonomous

The IVP is non-continuous autonomous

ON®p N

None of these

*

Let U (t,u)be continuous for t, <t<t,+a,u=0 and let the maximal solution of

U'=U (t,u), where u > 0, exist on [t,,t, +a], Let U(t,u) =y (u)is a positive,

continuous function on u > 0 such that _[du /y(u) =oo- Let f (t,y)be continuous on

ty St<ty+aand| f(t,y) [<U(t|y])-

A. Then minimal interval of existence of solution of Y'= f(t, y), y(to) = Y, where

| Yo < Uo.

B. Then maximal interval of existence of solution of Y'= f(t, )/), y(to) = Y, where
| Yo < Uo.

C. Then maximal interval of existence of solution of Y'= f(t, y), y(to) = Y, where
| Yo < Uo.

D. None of these

Answer for Self Assessment

Review Questions

1. If g(t,u), g(t,0) = 0, be a non-negative continuous scalar function defined on
Ro:t0<tSt0+a,0SuS2b.
Assume that the only solution of

u’ = g(t,w)on any interval (t,, to + €], € > 0, satisfying
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u(t)

u(t)—)O— -0 as t->ty+0
to

isu(t) = 0. Further, let f(t,x) be a continuous vector-valued function defined on R:ty <t < t, +

a,|lx — xol| < b satisfying||f (¢, x1) — f (&, x )|l < ===

|X1 Xz”

(t,xq),(t,x;) € R, whenevert > t,
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Objectives

After studying this unit, you will be able to

e identify the concept of system of linear differential equation.

¢ understand the properties of homogeneous linear system.

e  know about the fundamental systems of solution.

e apply basic theorems to solve the linear system of differential equation.

e find the condition of uniqueness of solution for linear homogeneous and non-

homogeneous system of differential equations.

Introduction

In this chapter, we shall study the various properties of the solutions of linear systems. The results
we obtain will often provide a background for treating non-linear systems in subsequent chapters.

8.1 Linear System of Differential Equation

Consider the n-dimensional first order systems of linear equations

XL{ = Z;lzl a,:j(t)Xj + bi(t), i= 1,2,3, PP (A (811)
Where x(t) = (x1(t), x2(t), ... ..... x5 (¢)) is an unknown vector function and a;;(t) and b;(t),i,j =
1,2,3........,n, are given continuous functions on r; <t < ;. It can be written in the vector-matrix
form as

x' = A(t)x + B(t), (8.1.2)
Where A(t) is the n X n matrix (a;;(t)) and B(t) is the n — vector (by(t), b,(t), ... ... ..... by (t)). For

the existence and uniqueness of the solutions of (8.1.2) see chapter 4.
Superposition principle

An important feature of linear systems of the type (8.1.2) is that their solutions can be linearly
superposed to obtain new solutions. More specifically, let x; () be a solution of (8.1.2) when B(t) =
B;(t), and let x,(t) be a solution of this system when B(t) = B,(t). If ¢; and c, are given scalars,
then x(t) = c;x(t) + c,x(t) is a solution of (8.1.2) when B(t) = ¢, B, (t) + ¢, B,(t). To see this,
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x'() = cx1 (1) + cx5(t)
= c1(OA®)x, (1) + B1(1)) + c2 () (A(0)x2(2) + B2 (1))
= A()(c1x1(t) + c2x2(t)) + c1 B4 (t) + 2 B1(t)
= A(t)x(t) + B(t).
In particular, if both x4 (t) and x; (t) are the solutions of the linear homogeneous system
x' = A(t)x, (8.1.3)

thenc; x (t) + c;x,(t) is also a solution of (8.1.3). Further, if x;(t) is a solution of (8.1.2),
then x,(t) is a solution of (8.1.2) if and only if x;(t) — x,(t) is a solution of (8.1.3). This important
property of the linear superposition principle may be stated in a more abstract way as follows.
Suppose the vector function B(t) in (8.1.2) is allowed to vary over a linear space L of functions.
Also, assume that, for each B(t) in L, system (8.1.2) has a unique solutionx(t). Then, the set Yof the
solutions of (8.1.2) form a linear space.

8.2 Properties of Linear Homogeneous Systems

We shall now consider the fundamental properties of the solutions of the first order linear
homogeneous system

x' = A(t)x, (8.14)
Where ,x(t) = (x1(t), x5 (t), .. ... x,(t)) is an unknown n dimensional vector function and

A(t) = (a;;(t))is an nxn continuous matrix on r; <t <r,. Equation (8.1.4) is called linear
homogeneous because any linear combination of the solutions of (8.1.4) is also a solution of (8.1.4).
More specifically, let

$;(0) = (01 (0, by oo b (), =123,

Be the solutions of (8.1.4) and let ¢;(j = 1,2,........,n) be the arbitrary constants. Also, let
d) = Xjo1¢id(0).
Then,

¢'(t) = Xjo1 i ().

Since ¢;(t) are the solutions of (8.1.4), we have

@' (t) = Xj=1 AW (D).

From the properties of matrix-vector multiplication, it follows that
¢'(t) = A(®) Yo G¢;(1) = At)o(D).

This implies that ¢ (t)also is a solution of (8.1.4).

Ei/‘ It should be noted that ¢(t) = 0,t € (1,73), is a solution of (8.1.4); in fact it is the only
- solution satisfying ¢ (ty) = 0 for t € (ry,1;), as the following results shows.

Lemma 8.1.1: Let ¢y € (17, 73) and ¢(t)be a solution of (8.1.4); in fact, it is the only solution satisfying
¢(ty) = Ofor t € (14, 13), as the following results shows.
Proof: The function x(t) = 0,t € (ry,13), satisfies (8.1.4) together with the initial condition x(t,) =

¢ (t) since all the solutions are defined onr; < t < r;.

Example 8.1.2:The vector differential equation corresponding to a linear homogeneous
system

d

%= 7x1 — X + 6x3

L2 = —10x; + 4x, — 121 (8.1.5)
d

fz _le‘l'.xz — X3
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is

dx 7 -1 6

Z=[-10 4 12|x (8.1.6)
-2 1 -1

Where

X = [xl X X3]T
The column vector function
o3t
P(t) = [—2e3
—e3t

is a solution of the vector differential equation (8.1.5) on every interval r; <t <rmas u=
¢ (t)satisfies (8.1.6) identically onry <t <1, i.e.

3e3t 7 -1 6 363t
—6e3t|=]|-10 4 12||—6e3t
—3e3t -2 1 —1ll-3e%
= x, = e3t,x, = —2e3t, x; = —e3t (8.1.7)

Simultaneously satisfy all the three equations of the system (8.1.6) for r; < t < r,. So we call (8.1.7) a
solution of the system (8.1.6).

We now introduce the concept of linear independence of a set of scalar or vector-valued functions.

Definition 8.1.3: A set of vector-valued functions v, (t), v,(t), ... ..... v, (t) is linearly independent on
an interval I (where these functions are defined) if and only if there exists no constants
€1, Cgy wer wue+ ., Cp, DOt All zero, such that

n

Zcivi(t)EO on .

i=1
A set of vector- valued functions is linearly dependent on I if it is not linearly independent on /.
Example 8.1.4 (i) The set of scalar functions e', e, sint,cost is linearly independent on
—00 <t < oo,
(ii) The set of n-dimensional unit vectors
e =(00,.....01,0,....0), j=12,0er,m.
is linearly independent in the space R™.
(iii) The set of vector-valued function v, (t) = (1,0,0), v,(t) = (t2, €%, 0),v3(t) = (t%,e7¢,0)
is linearly independent on —co < t < oo.
(iv) The set of scalar functions 1, t, 2t is linear dependent on —oo < t < co.

(v) The set of vectors v; = (1,2,3), v, = (2,3,5),v3 = (2,3,7), vy = (0,8, —20) is linearly dependent in
the space R3.

Theorem 8.1.5: If ¢, (¢t), ... ... ,Pn(t), 1 <t <1y, is a set of linearly independent solutions of (8.1.4),
then linear combination

n

> 68©

=
never vanishesonr, <t <mnrunlessc; =¢, =+ ....= ¢, = 0.
Proof: Let ¢(t) = Xj-; ¢j;(t).

Then, from the linearity of the homogeneous differential equation (8.1.4), ¢(t) is a solution of
(8.1.4). If ¢(ty) =0 for some t, € (r1,7;) and cjare not all zero, then, by Lemma 8.1.1, ¢(t) is
identically zero. This is a contradiction. Hence, the linear combination never vanishes on r; < t <
.
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Definition 8.1.6:A set ¢1(t), p,(t), ... (t), 13 <t <1y, 0f the solutions of (8.1.4) is called a
fundamental system of solutions of (8.1.4) if the set is linearly independent on (71, 13).

= Remark 8.1.7: Any solution of (8.1.4) can be expressed in terms of a fundamental systems
of solutions of (8.1.4). Thus, the problem of finding any solution of (8.1.4) entails finding
n linearly independent solutions of (8.1.4). Evidently then, for determining the behavior
of any solution of (8.1.4), we need only the properties of a fundamental system of
solutions of (8.1.4).

Theorem 8.1.8: A fundamental system of solutions of (8.1.4) exists.

Proof: Let ¢ (t), ... ....., ¢, (t) be the solutions of (8.1.4) defined on the interval r; < t < r, with the
initial conditions

oi(te) =e, j=123, ... ,n,

For t, € (1, 1,), where e, e,, ... .... e, are the n-dimensional unit vectors. These solutions are distinct
since they satisfy distinct initial conditions. We claim that the solutions are linearly independent on
(r1,72). Suppose this is not true. Then, there eist some constants ¢;(j = 1,2,3, ....... ,n), not all zero,
such that

d(t) = Yjo1d;) =0 on (r,13).

Thus, we have

n n
d(ty) = Z cid;(to) = Z ciej = (C1,C2y v vnnenyCn) = 0
=1 =1
This implies ¢; = ¢, = ---..= ¢, = 0. But this is a contradiction. Therefore, ¢;(t), ........, d,(t) are

linearly independent. Since these are the solutions of (8.1.4), they form a fundamental system of
solutions of (8.1.4).

Corollary 8.1.9:Every solution of (8.1.4) can be expressed as a linear combination of the elements of
a fundamental system of solutions of (8.1.4).

Proof: Let x(t) be a solution of (8.14) defined for 1 <t <r, such that x(t)) =x =
(X10) X205 ++s e s Xpo), to € (11, 72), Also, let ¢ (t), ... ... ... ¢, (t) be a fundamental system of solutions
of (8.1.4) satisfying ¢;(to) = ¢;(j = 1,2, ... ... ,n). Set

P (6) = Xj=1%j09;(0).

Clearly, ¢(t) is a solution of (8.1.4) and, moreover,
o(ty) = Z}lzlxjoej = (X109, X20) v+ eve - - Xng) = Xg-

Since the solutions of (8.1.4) are unique, it follows that
o) =x(t)forr, <t <m,.

= Remarks 8.1.10:The foregoing results shows that the space X of all the solutions of (8.1.4)
is linear and has the dimension n.

We now introduce the n x n matrix ®(t) whose j — th column is ¢;(t) = (¢4, ... . ,®nj) such that

@j(to) = e, that is,
<¢11 © - P (t))
o(t) = : ).
b1 @ - ¢nn(t)
Obviously, ®(t,) = I is the identity matrix.

Definition 8.1.11: Let ¢;(t), ¢2(t),.......,P,(t) be the solution of (8.1.4), where ¢;(t) =
(d)lj(t), ...... ,gbm-(t)). Then, the scalar function W(t) = det®(t)is called the Wroskian of
1(0), e eee, P (0).

Definition8.1.12: If ¢, (t), ¢, (t), ... ... , P (t) is a fundamental system of solutions of (8.1.4), then ®(t)
is called the fundamental matrix of (8.1.4).

Corollary 8.1.13: The fundamental matrix ®(t) is the solution of the matrix differential equation
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D' (t) = At)D(t) (8.1.8)

and satisfy ®(ty) = I. Further, the solution x(t) of (8.1.4), we have qb]'- (t) = A(t)¢;(t). This implies
that ®(t) satisfies the equation @' = A(t)D. Let x5 = (x40, X320, --- - ,Xno)- Then, by Corollary 8.1.1,
we have

x(t) = Xi_1x500;(0).

Hence, using matrix- vector multiplication, we get

x(t) = ©(t)x,.

The following result expression a relation between the Wronskian W (t) and matrix A(t).
8.3 Abel-Liouville Formula

Theorem 8.1.14:Let ®(t) be a fundamental matrix of (8.1.4) and let ty € (ry,73).Then, W(t) =
W (t,) exp [ftto Tr A(s)ds] for t € (r,1y).

Proof: Since ®(t) is a fundamental matrix of (8.1.4), it satisfies the matrix differential equation @' =
A(t)D(t). Therefore, we have

n

(l);} = Z aik(t)q.’)k]—(t), l,j = 1,2, e, N,

k=1

Where @(t) = (¢;;(t))and A(t) = (a;;(t)). We now consider the derivative formula

Bl oo e DL e Dl [P v e e DL e e Pl
W,(t) — ¢:21 --------- ¢62] e ..---¢2:n + ¢:21 e owas -u(p:zj e -u-.¢2:n +

¢n1 ¢.nj¢nn ‘ (;bnl ¢;nj¢nn

(D11 v vee B e D]
; L SR 619)
 bmbube
Set
PR YR
D)= |l e Bl
b
Hence it follows that
) Bt e e e N ST nd)ln
R ) ST SRR PR, I
k=1 . k=1 . . k=1
Bt e e e e

In this determinant, multiplying the first row by a;;, the second by a;;, and so on, except the i-th
row, and subtracting their sum from the i-th row, we get

Yi(t) = a;W(t).

This relation is true for i = 1,2, ... ... ..., n. Therefore, from (8.1.9), we obtain
n
W©) =) a@OW .
i=1
This implies

W'(t) = (Tr (AW (¢).

Integrating this equation between tyand t, we have

t

W(t) = W(ty) exp[ Tr A(s)ds] for t € (r,m).

to
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In particular, if A(t) = A is a constant matrix, then the foregoing results shows that

W(t) = W(ty) exp[(t —ty)Tr A] fort € (r,1).

Ei/’ Remarks 8.1.15: Since exp [ ftto Tr A(s)ds] never vanishes, Theorem 8.1.14 implies that if
W(ty) = 0 for some t, € (r1,1,), then W(t) = 0 forall t € (ry,13).

We now prove a general result which characterizes a fundamental system of solution of (8.1.4).

Theorem 8.1.16: A necessary and sufficient condition for a matrix solution ®(t)of (8.1.8) to be a
fundamental matrix of (8.1.4) is

W(t) # Ofor t € (1, 13).

Proof: Suppose ®(t)is a fundamental matrix of (8.1.4) with the column vectors ¢, (t), ... ....., P, (t),
and let ¢(t) be any solution of (8.1.4). Then, there exist constants ¢;(j = 1,2, .....,n), not all zero,
such that

¢(t) = o(t)c.

For anyt € (r1,1;), this relation represents a system of n linear algebraic equations in the n-
unknown ¢y, ¢y, ... ... ...., ¢, and has a unique solution. This implies that the determinant of ®(t) is
not equal to zero. Therefore, W(t) # 0. Conversely, if W(t) # Ofor r; <t <r,, then the column
vectors @ (t), ......., Pp(t) of ®(t) are linearly independent for r; <t <r,. Since these are the

solutions of (8.1.4), they form a fundamental system of solutions.

Remarks 8.1.17:The determinant of a matrix of column vectors may be identically zero on an
interval I = (ry,1,) even when these vectors are linearly independent on I. For example, suppose
the matrix ®(t) is defined by

1 t2 t*
dt)=[0 et etlfortel
0 0 0

Here, it is clear that det ®(t) = 0 on [; also, the column vectors of ®(t) are linearly independent on
1. Since this is not true of column vectors that are the solutions of (8.1.4), the assertion of Theorem
8.1.16 is not contradicted.

@ Example 8.1.18: Consider the homogeneous linear vector differential equation

. 7 -1 6

o= [—10 4 12] u (8.1.6)
-2 1 -1

Where

X = [X1 Xy X3]T
on every interval n<t<r;.

Solution: It is easy to verify that the vector functions ¢4 (t), ¢,(t) and ¢3(t) defined by

o2t 23t 3e5t
$1(0) = |—e?t|; ¢2(8) = |—-2e3|; $1() = |—6e5"
—e?t —e3t —2e5t
are all solutions of the given homogeneous linear vector differential equation and
et o3t 305t
W(h1, P2, P3)(t) = |—e2t —2e3t —peSt| = —e'% % Ofor all real t € [ry, 1,].
—e?t  _g3t  _ppst

The solutions defined by ¢4, ¢, and ¢3 of our equation are linearly independent on every real
interval [ry, 15].

Therefore, the fundamental matrix of the given linear vector differential equation is
[ e2t e3t 3 eSt ]

_eZt _Ze3t _6eSt

2t _g3t  _9p5t
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Theorem 8.1.19:_The unique solution ¢ of the homogeneous linear vector differential equation
(8.1.4) that satisfies the initial condition ¢ (ty) = x¢, to € (r1,73), can be expressed in the form

$(&) = P(O)P (t0)xo
Where &(t) is an arbitrary fundamental matrix of differential equation (8.1.4).

Proof: Let ®(t) is an arbitrary fundamental matrix of differential equation (8.1.4) and ¢(t) be any
solution of (8.1.4) be any solution of (8.1.4) then there exists a constant vector ¢ such that ¢(t) = ®c.

The initial condition ¢ (tp) = x, we get x5 = ®(t)c.

The determinant | (t)[is the Wronskian of n linearly independent solutions of (8.1.4) and constitute
the individual columns of fundamental matrix®(t). As the n columns of &(t) are linearly
independent, we have ®(ty) # 0 and so ®(t,) is a non-singular and its inverse matrix ®~1(t)
exists. Thus we find

D 1(t)xg = P L(tg)P(tg)c =Ic =¢
Putting this value of c ing(t) = ®c, we get

d(t) = P(E)DP (L) xo.

@ Example 8.1.20: Find the unique solution of the differential equation

a 7 -1 6 X1
x'=2=[-10 4 —12|xwherex =[x,
-2 1 -1 X3
-1
that satisfy the initial condition $(0) =%, = | 4 |.
2

Solution: According to theorem 8.1.19, we know that the required solution is given by ¢(t) =
D () P1(tg)x, where ®(t) is a fundamental matrix of given differential equation. In example 8.1.18,
we have shown

ezt e3t 3e5t
D(t) = |—e2t —2e3t —pet
_e2t  _g3t  _pp5t

is a fundamental matrix. After performing the required calculations, we find

Ze—Zt e—Zt 0
O7L(t) = |—4e~3t —e3t _3p73t
e—St 0 e—St
2 1 0
Which gives ®71(0) = (-4 -1 -3|.
1 0 1

Making use of ¢(t) = @)D~ 1(ty)x,, we follow

eZt e3t 365t 2 1 0 _1
O(t) =|—e2t —2e3t —peSt||-4 -1 -3|| 4
1 0 1

—82t _e3t _zeSt 2
eZt e3t 3€5t 2 2e2t _ 6eSt + 3est
= _eZt _2e3t _6eSt —6| = —2€2t + 1Ze3t _ 6eSt
_eZt _e3t _ZeSt 1 _2e2t + 6eSt _ 2e5t

x; = 2e%t — 6e3t + 3¢5
Xy = —2e%t + 12e3t — 6e>
X3 = —2e?" + 6e3t — 2e5¢

which is the required solution of given differential equation.

62 LOVELY PROFESSIONAL UNIVERSITY



Notes

Theory of Differential Equation

8.4 Non-Homogeneous System of Differnetial Equation

Consider a differential system of the form
x' = A(t)x + B(t), (8.2.1)

Where x is ann —vector, A(t) is an n X n continuous matrix on r; < t < 1,, and B(t) a continuous
n —vector onr; <t < r,. System (8.2.1) is called the inhomogeneous (or non-homogeneous) linear
system of n — th order.

If the elements of A(t) and B(t) are continuous or just measurable and majorized by integrable
functions on 1y < t < 13, then there exists a unique solution ¢ of (8.2.1) satisfying ¢ (t,) = x,, where
to € (r1,mz)and |Ixo |l < co.

) If a fundamental matrix @ of (8.2.1) is known, then the solution of (8.2.1) can be

- calculated by using a simple formula which we shall now derive

If a fundamental matrix @ of (8.2.1) is known, then the solution of (8.2.1) can be calculated by using
a simple formula which we shall now derive

Variation of Constants Formula

Theorem 8.2.1:The solution x(t) of (8.2.1) satisfying x(ty) = x¢, to € (11,13),is given by
m0=¢@%+ﬁpam*@w@w&ﬁ<t<m (8.2.2)
where®(t) is a fundamental matrix of (8.1.4) satisfying ®(t,) = I.

Proof: We know that the solution y(t) of (8.1.4) with y(ty) = x, can be written as y(t) = ®(t)x,. The
method we apply in our proof entails considering the constant vectors c as a function or parameter
on (ry,77) and determining c (if it exists) so that the function

x(t) = @(O)c(t),
Where c(t) = (¢;(£), c5(£), v vvr v cp (1)), c(to) = X0,
is a solution of (8.2.1). Let
x(t) = P(O)c(t), c(to) = xo,
be a solution (8.2.1). Then,
x'(t) = ®'(t)c(t) + D)’ (b).
Since x(t) is a solution of (8.2.1) and ®(t) satisfies (8.1.8), we have
A®)x(t) + B(t) = A[®)P(t)c(t) + P(t)c'(t)
or
B(t) = o(t)c'(v).
Because ®is a fundamental matrix of (8.1.4), its inverse exists, and hence
c'(t) = @7 (OB(L), c(to) = xo.

Therefore, the solution of this equation is

t
c(t) = xq +f ®1(s)B(s)ds, 1 <t<my,
to

Which implies

¢
x(t) = ®(t)xo + f D()PL(s)B(s)ds, 1, <t <y

to

= Remarks 8.2.2: The use of (8.2.2) for obtaining the explicit solutions of (8.2.1) when n > 3 is
— very limited. This is because (8.2.2) involves the fundamental matrix ® and its inverse
@1, Even when n = 3, finding the fundamental matrix ®(t) may turn out to be difficult, if
not impossible. However, the importance of (8.2.2) should be clear from the fact that
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knowledge of the properties of the fundamental matrix ®(t) and the behavior of B(t) are
sufficient for deriving considerable information about the solution x(t) of (8.2.1).

Lemma 8.2.3: If ®(t) is a fundamental matrix of

x' = Ax, (8.2.3)
Where x € R™, A is an n X n constant matrix, and ®(0) = I, then

d(t)P(a) = P(t — a) (8.2.4)
for every a.

Proof: For a real number a, let Q;(t) = ®(t)®!(a). Since ®(t) satisfies @' = AP, Q, (t) also satisfies
it, the initial condition being Q; (@) = I. Similarly, Q,(t) = ®(t — ) satisfies

Q) =0(0) =1
And also
Q5(t) = AD(t — a) = AQ, (D).
Hence, from uniqueness, we must have Q,(t) = Q,(t).
In view of Lemma 8.2.3, representation (8.2.2) for the solutions of
x' = Ax + B(t), (8.2.5)

Where A = (al—]—) is a constant matrix and B(t) is continuous on r; <t <71,, where ®(t) is a
fundamental matrix of (8.2.3) satisfying

Theorem 8.2.4: The solutionx(t) of equation (8.2.5) satisfying x(0) = x, forry, <t <ryis
t
x(t) = ®(t)xy + f O(t —s)B(s)ds,r; <t <y,
0

where®(t) is a fundamental matrix of (8.2.3) with ®(0) = I.
Proof: Same as Theorem 8.2.1 with Lemma 8.2.3.

Lemma 8.2.5: If ®(t) is a fundamental matrix of (8.1.4) satisfying (8.1.8) with ®(t,) # I, then any
solution x(t) of (8.1.4) satisfying x(to) = xo, 11 < t < 1y, can be written as

x(t) = @) P (t)x,andQ(t) = P()P () is a fundamental matrix of (8.1.4) satisfying Q(t,) = I.

Proof: For the fundamental matrix ®(t), the solution x(t) of (8.1.4) can be written as x(t) = ®(t)c
for some constant vector c. Therefore, x(t,) = ®(ty)c. Since @ is the fundamental matrix, its inverse
exists, and hence ¢ = ®71(¢y)x,. We now prove that Q(t) is a fundamental matrix of (8.1.4). As we
know, det(Q(t)) # 0 for r; <t < rysince det(P(t)) # 0. Hence, the column of Q(t) are linearly
independent. Since the column vectors of Q(t) are the solutions of (8.1.4), Q(t) is a fundamental
matrix of (8.1.4) with Q(t,) = I.

@ Example 8.2.5: Find the solution of the non-homogeneous differential equation

=elg Fleef s

— 5t
Solution: Here A(t) = [g 13] and B(t) = [e4 ] and the corresponding homogeneous differential
equation is
dx 6 -3
'— =
T E
Whose two simultaneous differential equations arex; = 6x; — 3x; x5 = 2x; + x5.

On solving them, we find
3c
X, = —=e* + c,e3t = 3ke™ + c,e3t

Xy = cre*t + c,e3t = 3ke*t + c,e3t (¢ = 2k)
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- e [xl] B [Bke“ + cye3t
X2 2ke*t + cyelt

= 6,0 = 33 ]ande, 0 = %]

Ze4t

Which constitute a fundamental set of solutions of homogeneous differential equation. Thus
fundamental matrix ®(t) is given by

3e4t e3t
M) = | a egt] (8.2.6)

We know that any solution of our non-homogeneous differential equation is given by
$o(t) = @(0) tCD‘l(s)B(s)ds
to
for any real number t,. For convenience, let t, = 0, then
Po(t) = @(t) t’il)_l (s)B(s)ds
to

where®(t) is given by (8.2.6) and

s =[]

_ [ et _ets
Now &~ 1(s) = [_26_35 36_351

_ 3e4f e3f t e—4S _e—4—5‘ eSS
Hence ¢o (1) = 2e*t e3f] Jo [—Ze‘35 36‘35] [ 4 ]ds

_ 3ett e3t] ft[ S _ 4o—4s ]ds
2et @3] ), 1—2e%5 4+ 12738
Je4t e3t] et +e—4t —2
2et e3t]|-2e2 —4e 3t 15

—6e%t + 5e3t + 25t — 1]
—4e*t 4 5e3t 4 g5t — 2

x; = —6e*t + 53 +2e% — 1,x, = —4e*" + 53¢ + e — 2which is required solution of given
system of non-homogeneous differential equation. Obviously, we follow

_[~6+5+2—1]_ 0] _
po@= [T, 1511l =lol=0

Further, we observe that this solution can also be expressed in the form
$o(t) = —2¢1(t) + 5¢2(t) + o (t)

5t _
Wheregg(t) = 285t 21] is a solution of given non homogeneous differential equation.
e5t —

Summary

e The properties of system of linear homogeneous and non-homogeneous differential
equations are discussed.

¢ Fundamental solution is derived and elaborated with suitable examples.

e  The Abel-Liouville formula is derived to find the Wronskian.

e The variation of constant formula was discussed to solve homogeneous linear system of
differential equation.

e The condition of uniqueness of solution of boundary value problem with an example.
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Linear non- homogeneous first order system
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Abel-Liouville formula

Variation of constant formula

Self Assessment

1.

SN = >

90w p

@ 9N

The linear homogenous system X' =A(t)X, where X =(X,(t),.......... X, (), is an
unknown n-dimensional vector function and At) = (a_ij ®) n matrix on r, <t <r,
.Then

Any Linear combination of the solution is also a solution.

All the solutions are linearly independent.

Both (a) and (b).

None of these.
Let t, € (1,r,) and @(t) be the solution of linear homogenous system X' =A(t)X, is
satisfying @(t;) =0 . Then,

(1),
¢(t)
¢(t)

s identically zero on rn<t<r,.

is identically zero on R.

n<t<r,.
never zero on

None of these.

A set of vector- valued functions vy (t), v3(t), .......v,(¢) is linearly independent on an
interval I if and only if

There exists constant not all zero

There exists constant all zero to vanish the linear combination

There exists no constant not all zero to vanish the linear combination

None of these

The set of scalar functions 1, ¢, 2t is

Linearly dependent

Linearly independent

Completely constant

None of these

A set of solutions of linear homogenous system x' = A(t)X is called Fundamental system
if
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The set is linearly dependent.
The set is linearly independent.
The set contains zero solution.

The set is empty.

Every solution of linear homogeneous system can be expressed as
Linear combination of the elements of a fundamental system of solutions
Linear combination of another solution

Zero solution

None of these

If 91 (1), P (D), ... ... ¢n(t), 11 < t <1y, is alinearly independent solutions, then
The linear combination vanishes

The linear combination never vanishes

It is constant every where

None of these

@D (t) be the fundamental matrix of linear homogenous system X’ = A(t) X, on
I, <1 < r, .Then the scalar function VW (t) be the Wronskian defined as

W (t) = —det @' (t)
W (t) = D' (t)
W (t) = det d(t)

W (t) = D (1)

If @ be a fundamental matrix of the homogenous linear vector differential equation

% = A(t)X where X = (X, (t), X, (t),......X,, (t))is n-dimensional vector function and

dt

A(t) = (aj(t)) is a continuous square matrix of order n on r1<t<r; .Cis any constant non-

singular matrix then

®DC is also fundamental matrix
® 'C is also fundamental matrix
®C is also fundamental matrix

® 1C !is also fundamental matrix

. The fundamental matrix ¢(t) for the linear homogenous system satisfies ¢(ty) = I, then

the solution x(t) can be written as
x(t) = p() " 'xo

x(t) = ¢(t)xo

x7H(t) = p()xo

None of these
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14.

90w p

. The formula W (t) = W(t_0)exp [ftto TrA(s)ds] is known as

Variation of constant
Abel-Liouville formula
Periodic formula

None of these

. The necessary and sufficient condition for fundamental matrix is

w()=0
wi)#0
W (t) = constant

None of these

x(t)is the solution of linear inhomogeneous system x’'=A(t)x+ B(t) and
X(ty) = X,on r, <t, <r,.dD(t) be the fundamental matrix then

x(t) = D' (t)x, + j d(t)B(s)ds
X(t) = d(t)x, + j(b(t)(b’l(s)B(s)ds
X(t) = d(t)x, + _t[CD(t)CI)‘l (t)B(s)ds

X(t) = D(1)x, + [ D(t)B(s)ds

A fundamental matrix of linear homogenous system —y = A(t) Y with constant
coefficients is given by CD(t) = etA, |t |< 90 and the solution @ of above equation with
initial condition (p(to) =Y, (| to |< OO,| Yo <© |) is given by

o(t) =y, e” (|t, [< )
o(t) = -y, e (|, |< )
o(t) = -y, e (|t [< )

() = Yo" (It, <o)

. If ¢(¢) is a fundamental matrix of x'(t) = A(t)x(t), and ¢$(0) = I, then

PP (@) = p(t + )
P~ (@) = p(ta)
pM)p~H(a) = p(t —a)

None of these

68 LOVELY PROFESSIONAL UNIVERSITY

Notes



Notes

Theory of Differential Equation

18.
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X(t) = D' (t)x, + j ®(t)B(s)ds

. The formula is named as

Abel-Liouville formula
Variation of constant formula
Wronskian formula

None of these

1 2
. The solution of linear homogeneous system of first order y’ = |: Yis

3 2
y, =ce” +c,e™y, =3ce” +c,e™

_ -t 4t _ -t 4t
y,=Ce —cC,e",y,=2ce" +cC,e

y, =2ce* +ce’,y, =3ce" —ce’

-3t
’

y, =3ce" —c,e™,y,=2ce" +3c,e”™

The eigen values corresponding to linear non homogeneous differential system

L 6 _3 + e5t

y = 5 1 Yy 4 are
3,4
3,4

3,-4
-3,-4

. The eigen values corresponding to linear non homogeneous differential system

, 3 _ . 2e2t

y = 4 _ Yy 9 are
1,2
1,2

1,1
-1,2

1 1

-1 8
. The fundamental matrix corresponding to linear homogeneous y' = { Yis

et e—3t
Q(t) = |:_ 2et e—3t:|
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_e—t e3t
M= | La
e 3e” |
_e—t 3t
PO=|
[— 467 2%
20= o

The characteristic roots corresponding to linear homogeneous differential system

1 -1 -1
y': 1 3 1 Y are
-3 1 -1
2,3,-2
2,2,3
1,23
1,-2,3

5 -2
. The solution of linear homogeneous system of first order y’ = |: Yis

4 -1
y,=Ce +ce 7y, =-2ce +ce
Yy =Ce " —C,e”,y, =2ce” +Ce’
Y, =ce' +c,e”,y, = 2ce' +c,e”

-3t -3t
)

y,=Ce ' —c,e,y,=2ce" —c,e

Answers for Self Assessment

1. C
6. A
11. B
16. B
21. A

2. A 3. C 4. A 5. B
7. B 8. C 9. A 10. B
12. B 13. B 14. D 15. C
17. C 18. A 19. C 20. D
22. C
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Review Questions

Find the solution of the following non-homogeneous systems:

Log=ly Gl

at 2
2 w=ly e+l
S S PR L FTORI RN
i oL Yer Plie =[]

L.'J Further Readings

Earl A Coddinton and Norman Levinson (2017). Theory of Ordinary Differential Equations,
Mc Graw Hill.

P. Hartman (1964), Ordinary Differential equations, Johan Wiley.

Shair Ahmad and Rama Mohan Rao (2014), Theory of Ordinary Differential Equations, East
West Press Private Limited.

S G Deo, V Lakshmikantham and V Raghvendra (2013), Ordinary Differential Equations,
McGraw Hill Education (India) Private Limited.

https:/ /onlinecourses.nptel.ac.in/noc21_ma09/preview
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Objectives

After studying this unit, you will be able to

e identify the concept of periodic linear system of differential equation.

¢ understand the more properties of fundamental matrix of homogeneous linear system.
e  know about the Floquet’s theorem for periodic linear differential system.

e apply basic theorems to adjoint of the linear system of differential equation.

e find the condition of adjoint for linear homogeneous system of differential equations.

Introduction

In this chapter, we will learn about the more properties of linear homogenous differential systems
like periodic and adjoint system which helps to understand some dynamical behavior of delay
differential and impulsive differential equations

9.1 Periodic Linear Systems

Consider the linear homogeneous system

x' = A(t)x, (9.1.1)
Where A(t) is an n X n continuous matrix on the interval —co < t < oo and

At + w) = A(t) (9.1.2)

for some constant w # 0. Then, (9.1.2) is called periodic system, and w is the period of A. A basic
results of periodic system is the representation of a fundamental matrix as the product of a periodic
matrix (with the same period as that of the fundamental matrix) and a solution matrix of a system
with constant coefficients.

Theorem 9.1.1: If @ is a fundamental matrix of (9.1.1) and C is any constant nonsingular matrix,
then ®Calso is a fundamental matrix of(9.1.1). Moreover, every fundamental matrix of (9.1.1) is of
the form ®C for some constant nonsingular matrix C.

Proof: If ®(t) is a fundamental matrix of (9.1.1), then it follows that
P'()IC=AR)P)C, 1 <t <y,
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that is
(@()0) = AD(P(H)O),
And hence ®(t)C is a solution of ®'(t) = A(t)P(t). (9.1.3)
Since det(®C) = det(®) det (C) # 0,
It is clear that ®C is a fundamental matrix of (9.1.1).

Conversely, if ®; and ®, are the fundamental matrices of (9.1.1), then ®, = &, for some constant
nonsingular matrix of C.

To show this, let ®71®, = . Then, we have ®, = ®;1. Differentiating both sides of this equations,
we get ®; = O ' + P,
Using (9.1.3), we obtain A®, = &3’ + Ad por 1" =0,

Thus, 1’ = 0, rendering ¥ = C a constant matrix; further, C is nonsingular since ®; and @, are
nonsingular.

= Remarks 9.1.2: If only ®, is required to be solution of (9.1.2), thenC need to be non
singular. Further, if @ is a fundamental matrix of (9.1.1) and C any constant nonsingular
matrix, then C® is not, in general, a fundamental matrix of (9.1.1). Moreover, two
different homogeneous systems cannot have the same fundamental matrix. Hence, ®
determines A uniquely, although the converse is not true.

9.2 Floquet’s Theorem

Theorem 9.1.3: If @ is a fundamental matrix of (9.1.1), then so is 1, where
Yt) =0t +w), —o<t< oo,

Corresponding to every such @, there exist a periodic nonsingular matrix P with the period w and a
constant matrix R such that

®(t) = P(t)etR. (9.1.4)
Proof: Since ® is a fundamental matrix of (9.1.1), we have &' (t) = A(t)P(t).

From the relation (9.1.2), it follows that

P)=d'(t+w)=At+ )Pt + w) = AR)DP(t + w).

Thus, ¥ is a solution matrix of (9.1.1); it is also a fundamental matrix of (9.1.1) since det((t)) =
det (®(t + w)) # 0for —oo < t < oo. Therefore, there exists a constant nonsingular matrix C (see
Theorem (9.1.1) such that

D(t+w) =2()C (9.1.5)
and there exists also a constant matrix R such that
C = e“R, (9.1.6)
From relation (9.1.5) and (9.1.6), we obtain
D(t + w) = d(t)e®k. (91.7)
Let P(t) be a matrix defined by the relation
P(t) = ®(t)e 'R, (9.1.8)
Then, we have

P(t+w) = O(t + w)e”E+OIR = p(t)e®Re~t+@IR = ¢(t)e~tR = P(t)
Since ®(t) and e~*F are nonsingular for —0 < t < o, s0 to0 isP(t).
Ei/‘ Remarks 9.1.4: The practical utility of the Theorem 9.1.3 is that the fundamental matrix

@(t) of (9.1.1) can be determined over the entire interval —co < t < oo once ®(t) is given
over an interval of length w(i.e.0 < t < w).
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To justify the foregoing statement, we proceed as follows. From (9.1.5), we know C = ®~1(0)®(w),
and hence R = (log C)/w. Thus, (9.1.8) gives P(t) over the interval 0 < t < w. Since P(t) is periodic
with the period w, it can be determined over the interval—co < t < co. Hence, we derive the result
from (9.1.4).

= Remarks 9.1.5: If ®; is another fundamental matrix of (9.1.1) where (9.1.2) holds, then
- ® = @, M for some constant nonsingular matrix M.

Adjoint Systems

If @ is a fundamental matrix of (9.1.1), then @@~ = [ yields
(@) = - 10/ == —d 1 4DD ! = —d~14
or
(@77) = —AToT ™,
Therefore, ®T " is a fundamental matrix of the system
x' = -AT(t)x, (9.1.9)
And the matrix equation
X'=-AT()X, te(r,1n), (9.1.10)

is called the adjoint system to (9.1.3). This relationship is symmetric in the sense that (9.1.1) and
(9.1.3) are the adjoint systems to (9.1.6), respectively, and vice versa.

Theorem 9.1.6: If @ is a fundamental matrix of (9.1.1), then v is a fundamental matrix of its adjoint
system (9.1.9) if and only if

YTd=C, (9.1.11)

Where C is a constant nonsingular matrix.

Proof: If ® is a fundamental matrix of (9.1.1), and ¥ is a fundamental matrix of (9.1.9), then
Yy=oT'D

for some constant nonsingular matrix D (see Theorem 9.1.1) since ™" is a fundamental matrix of
(9.1.9). Therefore, ®Tip = D, and hence " ® = C, where C = DT.

To prove the converse, let ®be a fundamental matrix of (9.1.1) satisfying (9.1.11). Then, we have
YT =CoLie =T (7.
Hence, by Theorem 9.1.1, 3 is a fundamental matrix of the adjoint system (9.1.9).

=4 Remarks 9.1.7: If A =—AT, then &T" being a fundamental matrix of (9.1.9) is a
= fundamental matrix of (9.1.1) too.

In view of the forgoing statement and Theorem 9.1.1,

»=a"C,

that is,

oTd =, (9.1.12)

Where C is a constant nonsingular matrix. Equation (9.1.12) implies, in particular, that the Euclidean
length of any solution vector ¢ of (9.1.1) is constant.

Summary

e The more properties of fundamental matrix of system of linear homogeneous differential
equations are discussed.

e  Periodic linear system is elaborated and Floquet’s theorem for periodic system is derived.
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The adjoint of system of linear homogeneous differential equation is explained.

The relation between the fundamental matrix of it’s adjoint system is derived.

Keywords

Linear homogeneous first order system
Properties of fundamental matrix
Periodic linear system

Floquet’s theorem

Adjoint system

Self Assessment
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The linear homogeneous system x' = A(t)x is called periodic with period w then
A(t/w) = A(t)

A(t+ w) = A(t)

A(tw) = A(t)

None of these

The periodic fundamental matrix represented as
Abel-Liouville theorem

Floquet’s theorem

Fundamental theorem

None of these

The fundamental matrix for the periodic systems is the product of a periodic matrix and
the solution of system of matrix with variable coefficients.

the solution of system of matrix with constant coefficients.

the solution of system of matrix with zero coefficients.

none of these.

d
If @ is a fundamental matrix of the periodic system d—i/ = A(t) y with A(t + a)) = A(t)

then

D) =- P(t)e‘R , Where P is periodic nonsingular matrix with period @ .
dt)=P (t)e“R , where P is periodic nonsingular matrix with period @ .
D(t) = P(t)etR y where P is periodic nonsingular matrix with period @ .

None of these

The adjoint for the linear homogeneous system X'= A(t) X

' is given by
X" =— A(t)x
X' =A" (t)x
X' =— AT (t)x

None of these
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If A = —AT, then
pp" =—C

pPpT =C
p=¢"C

None on these

oNwp o

N

If ®be the fundamental matrix of linear homogenous system X' ZA(t)X, on

L <t<r,, then ¥ is fundamental matrix of its adjoint and C is a constant non-singular

matrix if and only if
w ®=C

w' =CO

y' =-Cd

v ®=-C

S N % »

*®

If @ be a fundamental matrix of the homogenous linear vector differential equation

dx
E = A(t)Xwhere X = (X, (t), X, (t),......X, (t))is n-dimensional vector function and

A(t) = (aj(t)) is a continuous square matrix of order n on ri<t<r; .Cis any constant non-
singular matrix then

®C is also fundamental matrix.
=1~ . .
@ "C is also fundamental matrix.

-1, .
®C s also fundamental matrix.

SN = >

-1~-1. .
@ "C 7 is also fundamental matrix.

Answers for self Assessment

Review Questions

Find the adjoint of the following homogeneous linear systems:

ST

e

S BT

dc

4. %=[__112 1]x
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Objective
After studying this unit, you will be able to

e identify the concept of an autonomous system of differential equations.

e understand the stability analysis using Liapunov's second method.

e  know about the Liapunov function for autonomous function.
Apply definite properties of functions and connect with the Liapunov function.
determine the stability behavior of solutions of linear and non-linear systems.

Introduction

In the previous unit, we analyzed the stability behavior of solutions of linear and weakly nonlinear
systems, using the techniques of the variation of constant formula and integral inequalities. As a
result, this analysis was conformed to a small neighborhood of the operating point, i.e., to stability
in the small or local stability. Further, the techniques used require, in the case of linear systems,
some explicit knowledge of solutions and, in the case of weakly nonlinear systems, a complete
grasp of the solutions on the corresponding linear systems. These curbs apparently limit the
applications of the techniques when investigating the stability behaviour of a physical system.

In this chapter, we shall introduce a completely different technique, known as Liapunov’s second
method, to determine the stability behaviour of solutions of linear and non-linear systems. The major
advantage of this method is that stability in the large can be obtained without any prior knowledge
of solutions. Although AM. Liapunov, who introduced this method in 1892, used it only to
establish simple stability theorems; his basic ideas have during the last 40 years been extensively
exploited and effectively applied to entirely new problems in physics and engineering. Today, this
method is widely recognized as an excellent tool not only in the study of differential equations but
also in the theory of control systems, dynamical systems, systems with time lag, power system
analysis, time varying nonlinear feedback systems, and so on. Its chief characteristic is the
construction of a scalar function, namely, the Liapunov function. Unfortunately, it is sometimes very
difficult to find a proper Liapunov function for a given system. However, we shall indicate through
examples and remarks, the limitations of this method, particularly in constructing a Liapunov
function. Because the method yields stability information directly, i.e., without solving the
differential equation, it is also known as Liapunov’s direct method. In this chapter, we shall merely
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emphasize the basic ideas of the method and its applications to stability criteria of solutions of
ordinary differential equations.

10.1 Autonomous systems

In this section, we shall consider an autonomous differential system of the form
x' = f(x), (10.1.1)

Where f € C[R", R™]. Assume that f is smooth enough to ensure the existence and uniqueness of
the solutions of (10.1.1). Let £(0) = 0 and f(x) # 0 for x # 0 in some neighbourhood of the origin so
that (10.1.1) admits the so-called zero solution (x = 0) and the origin is an isolated critical point of
(10.1.2).

Let 2 be an open set in R™ containing the origin. Suppose V (x) is a scalar continuous function (that
is, a real-valued continuous function in the variables x4, x;, X3, ... ...., X, ) defined on . For the sake
of easy geometrical interpretation, we shall use the Euclidean norm

lx]|2 = xZ + x5 + - ... + x2
in our discussion. For convenience, we shall drop the subscript e.

The theory developed here is equally valid for the norm of a vector function x € R™ defined by
llxll = iy il

and call it the norm of x.

Definition 10.1.1:_A scalar function V(x) is said to be positive definite on the set 22 if and only if
V(0)=0andV(x) >0forx # 0and x € Q.

Definition 10.1.2:_A scalar function V (x) is called to be positive semi definite on the set 2 when V has
the positive sign throughout (2, except at certain points (including the origin) where it is zero.

Definition 10.1.3:_A scalar function V(x) is called to be negative definite (negative semi definite) on
the set 2 if and only if —V (x) is positive definite (positive semi definite) on £.

@ Example 10.1.4 : The function is

@) V(xq, x5, %3) = x7 + x2 + x2 is positive definite on R3;
2
(ii) V(xy,x) = xfﬁ + xZ is positive definite on R?;
1
(iii) V(x1,%2,x3) = x2 + (x5 + x3)? is positive semi definite because it vanishes not only at
the origin but also on the line x, = —x3,x; = 0;
(iv) V(x1,%3,%3) = x? + x3 is positive definite in the plane, and positive semi definite on

R? since it vanishes on the x5 axis;
(v) V(xy,x;) = x2 4+ x% — (xf +x3) is positive definite in the interior of the unit circle,
clearly, V = [|x||? — [lx||* lIx]| < 1;

(vi) V(xy,x;) = xi + x3 is positive definite since V > %r“, where r = (x% + x2)1/2.

10.2 Quadratic forms
LetV(x) = x"Bx = X1 bijxix; (10.1.2)

be a quadratic form with the symmetric matrix B = (bi ]-), that is, b;; = by;.

To test the positive definiteness of V(x) in (10.1.2), we can apply the Sylvester criterion which
asserts that a necessary and sufficient condition for V(x) in (10.1.2) to be positive definite is that
determinants of all the successive principal minors of the asymmetric matrix B = (b;;) be positive,
that is,

b1 >0, |byq bip bpq b_22 | >
0,........,|b11 b12 e e -"-bln b21 b22 e .......bzn. . .- . 'bTLI bTLZ
>(0.
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The derivative of V with respect to (10.1.10 is scalar product
V*(x) = grad V(x). f(x)
= %fl(x);—;fz(x) + .--.....+;7"nfn(x) (10.1.3)

It should be noted that if x = x(t) is any solution of (10.1.1),then by the chain rule and from (10.1.3),
we can obtain

Sv(x®) = :—;x{(tﬁ ........... Z—Zx,'l(t)
=X :—,‘;ﬁ(X(t)) = V" (x(1). (10.1.4)

Here, dV (x(t))/dt can be computed directly from (10.1.1).

E/' Remarks 10.1.5: If there exists a positive definite scalar function V(x) such that V*(x) <
- 0 [i.e. negative definite or derivative (10.13) w.r.t (10.1.1) is non-positive] then the zero
solution (10.1.1) is stable.

@ Example 10.1.6 : (i) Consider the two-dimensional system

x] = =Xy + x,(r? — x¥ — x2), (10.1.5)
x5 =% + x,(r? — x% — x3).

Choose a positive definite function V (x4, x;) = % (x# + x3) on R2. A simple computation gives
V*(xy, x2) = —(xf +x3)(xf + x5 —12).

Obviously, V* is negative definite when r =0, and hence the zero solution of (10.1.5) is
asymptotically stable. On the other hand, when r # 0,V* is positive definite in the region x? + x% <
2. Therefore, the zero solution of (10.1.5) is unstable.

(ii) Consider the two-dimensional system

x; = x +x,(xF + x3)V2 (2} + x3 — 1)?, (10.1.6)

1
xp = —x1 + x,(x% + x2)2(x? + x2 — 1)2.

3
Select a positive definite function V(x;,x,) = (x + x2)2 on R?. The derivative of V along the
solutions of (10.1.6) is given by

V*(xq, 22) = 30} +x5)2(xf + x5 — 12

Clearly, V* is positive definite on R?, and hence the zero solution of (10.1.6) is asymptotically
unstable.

(iii) Consider the system

X{ = —X1 + X3, (10.1.7)
Xy = —Xy — X1 X.
Choose a positive definite function V (x1, x,) = xZ + xZ on R2. Then, we have V* = —2V; integrating

this equation, we obtain

V(21 (£), x2(8)) = V(1(0), x,(0) e ~2¢.

Therefore, the zero solution of (10.1.7) is exponentially asymptotically stable.
(iv) Consider the two-dimensional system

x; = —6x, — %xlxzz, (10.1.8)

1
x5 = 4x4 — <X
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Select a positive definite function V(x,x,) = 2x? + 3x on R%. Then, we have V*(xy,x,) = —x%(1 +
x?) is negative semi-definite (i.e. it vanishes on the x;-axis) on R?. Therefore, the zero solution of
(10.1.8) is exponentially stable.

(v) Consider the second order differential equation
u" + cu' +sinsinu =0,

where ¢ is a positive constant, Set u = x; and u’ = x,. Then, this equation is equivalent to the
system

X1 = Xy, Xy = —sinsinx; — cx, .
Now, select a scalar function

1 1 3\ 1 1
V(xy, %) = 3 (\/Exl +%x2) + E<x12 +§x§)

This is clearly positive definite on R?. After a little computation, we obtain
2
V*(x1, %) = —(x2 + x2) — (x4 + sz)(sin sin x; — x4).

It is easy to verify that V* is negative definite in a sufficiently small neighbourhood of the origin.
Hence, the zero solution of the given equation is asymptotically stable.

(vii) For the system
x;=3x,+x3, xp=—4x, +x3,

Select a scalar function V (x;,x,) = 4x? — 3x3. Then, V, together with its first partial derivatives, is
continuous, V(0,0) = 0, and V has positive as well as negative values in any neighbourhood of the
origin. Further,

V*(xq, x2) = 24(x2 + x2) + (8x1x2 — 6x3x,).

Here, if |x;]| and |x,| are sufficiently small, then the definiteness of V* depends upon the first term
within parentheses on the right-hand side. Since V*(0,0) = 0,V* is positive definite in a small
neighbourhood of the origin. Therefore, the critical point (0,0) of the given system is unstable.

= Remarks 10.1.7: In (i)-(vi) of example Example (10.1.6), we picked up the Liapunov
functions arbitrarily. Once a Liapunov function has been found in some region around
the origin, it becomes possible to test the stability or asymptotic stability or instability of
the zero solution of a given system. The failure to find such a Liapunov function does not
of course mean that the stability cannot be determined. An important question therefore
is the procedure to be adopted in selecting or constructing a Liapunov function. Though,
in general, no satisfactory technique that provides the answer is known, particularly for
nonlinear non autonomous systems, we shall nevertheless consider some of the methods
applicable to linear systems and nonlinear autonomous systems.

10.3 Krasovskii’s Method

Consider an autonomous differential system of the form

x' = f(x) (10.1.9)
Where f:R™ - R™, f(0) = 0, f(x) # 0 for x # 0 in some neighbourhood of the origin, and f(x) is
differentiable with respect to x;(i = 1,2, ...... ... , ). The real symmetric n X n matrix B = (b;;) is said

to be positive definite if and only if the quadratic form x"Bx is positive definite. It is well known
(see the Sylvester criterion) that the real symmetric n X n matrix B = (b;;) is positive definite if and
only if

det det B; =det det (byq b1z w oo ibin by bpp e by :
: : bnl bnz .bn3 ) > 0, _] = 1,2,... e,
where det det B;(j = 1,2,....,n) are the principal minors of det det B. The real symmetric n X n

matrix B is called negative definite if and only if —B is positive definite.

The Jacobian matrix of (10.1.9) is given by
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joo=U (L VR ok ok
0x 0x; 0x, 0x, 0x; 0x, 0x,
:Qﬁﬁﬁ.muﬁﬁ)
" 0xq 0xy 0x,

Define a matrix M(x) = JT(x) + J(x), where JT is the transpose of J. A suitable Liapunov function
for (10.1.9) is V(x) = fT(x)f (x). Clearly V is positive definite in some neighbourhood of the origin.
If the matrix M(x) is negative definite in some neighbourhood of the origin, then the zero solution
of (10.1.9) is asymptotically stable. It should be observed that

ar _ ofdx _
2t = axar = ).
Then,
V@) =TT =TT+ T = fTUT + DS = fTMS.

If M(x) is negative definite in some neighbourhood of the origin, then V* too is so, and hence the
zero solution of (10.1.9) is asymptotically stable.
@ Example 10.1.7 : Determine the stability of the zero solution of

xi=—x - -,

Xp =X; — X — X3,

For this system,
x=0x) f=0Hrf)

where f; == —x; —x, —x} and f, = x; — x, — x3.
Therefore,

Jx)= (-1-3x2 =11 —1-3x%),
and hence
M) = (=2 —6x200 —2 — 6x2).
Since M(x) is negative definite for all x € R?, Krasovskii’s method ensures that the zero solution of

the given system is asymptotically stable.

= Remarks 10.1.8: Krasovskii's method guarantees the asymptotic stability of the zero
- solution of a given system if M(x) is negative definite, but does not lead to any answer
when M(x) is not negative definite.

E/‘ Remarks 10.1.9: The negative definiteness of M(x) requires that this matrix have nonzero
- elements on its main diagonal.

The application of Krasovskii’s method fails if f;(x) does not involve x;. For example, the
o  method does not cover the n-th order (n > 2) differential equation

u®™ + g(u,u’, "._'u(n—1)) —0

104 Construction of A Liapunov Function for Linear Systems with
constant Coefficients

The method we now give is very helpful when studying the stability of perturbed linear systems.

Consider the differential system

x' = Ax, (10.2.1)
Where x is an n —vector and A is a real n X n constant matrix. Let the characteristic roots of A be
distinct; we shall denote the real characteristic roots by 4;, 45, ... ... , A and the complex characteristic
roots by uy, Uy, ... ..... Uy, such that

U = Uj—q, =24, ... .. ,m,

where r+m =n. Define the real numbers @, and p, such that u,_; = ay_1 +ifx_1 k=
2,4, ........,m. We now find a non-singular constant matrix T ~*AT is of the form
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TUAT = (1,0 ~ 0 0 ... w0002, o B -
By a; B - Bz a;
0

To do this, consider the transformation x = Ty. Now, (10.2.1) reduces to

y' =Dy (10.2.2)
where D = T7!AT. For system (10.2.2) to be asymptotically stable, we require all the diagonal
elements of D to be negative. Select a Liapunov function

V() = (v, By), (10.2.3)
where (,) is the usual inner product and B a real n X n constant symmetric matrix. Then,
V*(y) = (v',By) + (v,By') = (Dy, By) + (y, BDy)
= (y,(D"B + BD)y), (10.2.4)
where DTis the transpose of D. In order to ensure that V* is negative definite, we require
V') =-y») =21 ¥, (10.2.5)

where y; are the components of y. To see this compatibility of relations (10.2.4) and (10.2.5), we
assume that the condition

DTB+BD = —I, (10.2.6)

where [ is the identity matrix, holds. After a little computation, the matrix equation (10.2.6) yields

B = ( ! 0 00
\ 20
! 0 0
1 1
23 2,
0
1 )
2(11

Let us assume that the matrix A is stable so that all 4; and a; are negative, and hence all the
diagonal elements of B positive. Then, from (10.2.3), it follows that V is positive definite. In fact,
V(y) takes the form

1 1

1 1
V) = =55 ¥F =2 = = )P —

2 2 —_— e
20 21, 22, re1 F Vi) =

2a1

@ Example 10.1.7 : Construct a Liapunov function for the three-dimensional system
x' = Ax,
where
A=(010001-12 —20 —9)

The characteristic equation det det (A—Al) =0 has the roots 4; = —1,4, = —2,and A3 = —6.
Then, it follows that

V,=(1-11), V,=(1 —24), V,=(1 —636).
Therefore,
T=(111-1 -2 —61436)
It can be easily shown that
T-1AT =(-1000 —2 014 —6).

The transformation x = Ty reduces the given system to y’ = Dy,
(10.2.7) where D =T 'AT.
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To find a Liapunov function for system (10.2.7), we look for a matrix B such that DB + BD = —I.
After a simple computation, we get

B = <1 000 ! 000 ! )
2 4 12/
Thus, the Liapunov function for (10.2.7) is

1 1 1
Vy = (v,By) = ;yi +5¥3 + ;7%

To get a Liapunov function for given system, we transform the variable y back into the variable x.

Summary

The definite properties of function are discussed.
Stability analysis using Liapunov's second method is elaborated with the help of
examples.

e The construction of Liapunov’s function is discussed and suitable examples are solved.

e  Determine the stability behavior of solutions of linear and non-linear systems.

Keywords

e Autonomous linear system
e Liapunov function

e  Stability

e Liapunov second method

e Krasovskii’'s method

Self Assessment

=

The differential system of the form x’ = f(x) where f € C[R™,R"] is
An Autonomous system
Non Autonomous system

Non homogeneous system

SN = »

None of these

The differential system of the form x’ = f(x) where f € C[R™, R™] has
Number of critical point
An isolated critical point on origin

No critical point on origin

ONwp

None of these

2

V (X1 X, X3) = X7 + X5 + X3

The function
Positive definite on R3.
Negative definite on R3.
Both (a) and (b)

None of these

oONw e

N 2
The function v (Xl’ X2 X3) =X + (X2 + XS) is

Positive definite
Negative definite

Positive semi definite

oONw e

Negative semi definite.

5. The V(x) be a Liapunov function if V(x) is positive definite and V*(x) is negative definite

where

84 LOVELY PROFESSIONAL UNIVERSITY

Notes



Notes Theory of Differential Equations

A. V*(x) =grad V(x)/ f(x)

B. V*(x) =grad V(x). f(x)

C. V*x)=-grad V(x). f(x)

D. V*(x)=-grad V(x)/ f(x)

6. A scalar function V(x) is positive definite on the set Q if and only if

A V(X)) =0 for xesQ
B. V(X)) =0 forxe
c. V(0)=0andV(x)<0 for x=0and xeQ

p. V(O)=0andV(x)>0 for x=0and xeQ

X = AX

7. 1f Dis diagonalizable form for linear homogeneous system , then Liapunov

function is

A V) =0.BY) ypere D'B =—1
B VIV =(Y,BY) \pere BD = —1
c. V¥ =(Y.BY) yhere D'B+BD =—1I

V(YY) =(Y:BY) yhere DB+ BD =1

D.
3x7 + X5 + 4x2
8.  The function X 2 3 is
A. positive definite
B. negative definite
C. semi positive definite
D. semi negative definite
X, = —X, + X2,
9. For the system of differential equation Xy = =Xy — X1 X,
A. The zero solution is asymptotically unstable
B. The zero solution is asymptotically stable
C. The zero solution is neither stable nor unstable
D. None of these
: 3
X, =3X, + X5,
: 3
10. For the system of differential equation X2 = =4, + X

The zero solution is asymptotically unstable
The zero solution is asymptotically stable

The zero solution is neither stable nor unstable

oSN = »

None of these
' 2
X, =—6X, — XX, /4,
11. The two dimensional system X, = 4X1 — X, /6

A. The zero solution is unstable
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B. The zero solution is stable
C. The zero solution is neither stable nor unstable
D. None of these

' 2
X, =—6X, — X X, /4,

X, = 4%, —X, /6

12. The Liapunov function for the is

A V(xy,x) =x+x2

B. V(xy,x5) = 2x% + 3x2

C. V(xy,xp) =x? + 2x2

D. None of these
Answers for Self Assessment
1. A 2. B 3. A 4. C 5. B
6. D 7. C 8. A 9. B 10. B

11. B 12. B

Review Questions

1. Construct a Liapunov function for the three-dimensional system
x' = Ax,
where, A=(010001 -8 —14 —7).
2. Construct a Liapunov function for the three-dimensional system
x' = Ax,
where, A=(010001 —6 —11 —6).
3. Use Karsovskii's method to determine the asymptotic stability of the zero solution of
X1 =-x

Xy =X, — X, — X3.
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Objectives
After studying this unit, you will be able to

e identify the concept of second order linear differential equation.

¢ understand about the adjoint and self adjoint equation.

e  know about the conversion of differential equation into self adjoint form.
e apply the Abel’s formula to know the behaviour of solutions.

e  determine solutions of linear differential equation using Abel’s formula.

Introduction

In the previous chapters, we discussed in detail the qualitative behavior of solutions of general
linear and non-linear differential systems. We shall now confirm ourselves to second order
differential equations which fid ample applications in many scientific investigations of practical
importance. In particular, we shall concentrate on general second order differential equations of the

type

r@®x") +p®Ox =0 (11.0.1)
x"+g(,x)x"+h(x) =e() =0 (11.0.2)

It should be observed that both (11.0.1) and (11.0.2) are time varying; however, the former is linear
and the latter nonlinear. Such equations are frequently encountered as mathematical models of
most dynamic processes in electromechanical systems. Since these equations are only of the second
order, we would naturally be inclined to compute their solutions explicitly or numerically.
However, as we know from practice, there are very few such equations, e.g. linear equations with
constant coefficients, for which this can be effectively done. In most instances, this can be
accomplished only under very restrictive conditions. The problem therefore is to find those
techniques that will be used in obtaining some qualitative information about the elusive solutions
of the equations of the type (11.0.1) and (11.0.2).

11.1 Linear Differential Equations

By a linear differential equation of order n, we shall mean an equation of the form
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(e (t)

where a,(t) # 0. Of these, second order linear differential equations are of special theoretical and
practical interest.

X4 a1(t) tan 1(t) + a,()x = f(t) (11.1.1)

atn dgn-1

The general second order linear differential equation is

ao(t)%+ al(t)Z—’t‘+ e tay(Ox = (O (11.1.2)
orag(®x" +a,()x" + .......+a,()x = f(t)

(prime “denote the differentiation with respect to ‘t’)

in which aq(t) # 0 and ay(t), a;(t), a,(t) are real functions of t alone. Without any loss of
generality, we may assume that the leading coefficient a,(t) to be 1 since this can always be
accomplished by division. It should be noted that most of the ideas and procedures we discuss can
be generalized at once to linear equations of higher order with no change in the underlying
principle. Just to attain as much simplicity as possible, without distorting the main ideas, we prefer
to limit ourselves to second order equation like

ag(®)x" + a;(O)x" + ay(t)x = f(t) (11.1.3)

We further restrict ourselves for detailed consideration of actual methods for solving (11.1.3) and
assume ourselves that equation (11.1.3) really has a solution.

11.2 Adjoint Equation
Consider the second order homogeneous linear differential equation

ag(®)x" +a;()x" +a,(t)x =0 (11.2.1)

in which ay(t)x"” # 0, a,(t)and a,(t) are continuous functions of t and a, (t) is differentiable on a <
t<bh.

The adjoint equation to (11.2.1) is

(ao(®)x)" = (a1()x)" + a,(t)x = 0

Orao(t)x" + 2a5()x’ + ag (t)x—ai()x —a (O)x" + a,()x =0

ao(t)x" + [2a5(t) — a1 (®O)]x" + [ag (t) — a1 (t) + a,(®)]x =0 (11.2.2)

Ei‘ 11.2.1: It should be noted the adjoint equation of the adjoint equation (11.2.2) is always the
original equation (11.2.1) itself.

@ 11.2.2: Find the adjoint equation to each of the following equations:

(@) t%x" +3tx'+3x=0
(b) t+Dx"+t3x"+x=0
(€) %" +7tx'+8x=0
Solution: For equation (a), we have a,(t) = t%;a,(t) = 3t; a,(t) = 3
ay(t) = 2¢, ag (1) = 2,a;(6) = 3
Therefore, required adjoint equation to (a) becomes

t2x" +[4t —3t]lx' +[2—3+3]x =0
t2x" +tx' +2x=0

For equation (b), we have ay(t) = 2t + 1;a,(t) = t%;a,(t) = 1
ay(t) =2, ay () = 0,a;(t) = 3t?
Therefore, required adjoint equation to (b) becomes

Rt+Dx" +[4—¢t3]x"+[1-3t3]x=0

For equation (c), we have ay(t) = t%a,(t) = 7t; a,(t) = 8

as(t) =2t, a5 (t) =2,a1(t) =7
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Therefore, required adjoint equation to (b) becomes

t?x" —3tx' +3x=0

11.3 Self Adjoint Equation

The second order homogeneous linear differential equation (11.2.1) i.e.

as(®)x" +a;()x"+a,()x =0
is called self-adjoint if it is identical with its adjoint equation (11.2.2) i.e.
aoc®)x" + [2a5(t) — ay (O)]x" + [ag () —ai(t) + a,(®)]x =0
Here we observe that if a, (t) = ay(t) then a(t) = ag (¢).

As a result of which equation (11.2.2) becomes identically (11.2.1). Hence we are in position to
define the self-adjoint equation in other way as given below.

The differential equation (11.2.1) i.e.,
ag(®)x" +a;()x"+a,(t)x =0

is said to be in self adjoint form if a,(t) = ay(t) and in that case equation (11.2.1) may be written in
a particular form

(ag(®)x") +a,(t)x =0 (11.3.1)
Theorem 11.3.1: Consider a second order linear differential equation (11.2.1) i.e.
ag®)x" +a;()x"+a,()x =0
where (i) a,(t) has a continuous second order derivative, ay(t) # 0
(ii) a4 (t) has a continuous first order derivative
and (iii) a,(t) has a continuouson a < t < b.
The necessary and sufficient condition for (11.2.1) to be self-adjoint equation is that
a(t) =ap(t)on a<t<b.
Proof: First we suppose that condition a, (t) = ag(t) is true for equation (11.2.1)
a;(¢) = ap(t) = ai(t) = ag(t)
Making these substitutions in (11.2.2), we get
ag(x" +[2a,(t) — a1 (O]x" + [a1 () — a1 (6) + ax(D)]x = 0

Or
ag(®)x" + a;()x" + a,()x =0

which is equation (11.2.1).
= Equation (11.2.1) and (11.2.2) are identical.
= Equation (11.2.1) is self adjoint.
Conversely, we suppose that equation (11.2.1) is elf adjoint.
i.e. Equation (11.2.1) and (11.2.2) are identical
Equating the coefficient of x" and x in (11.2.1) and (11.2.2), we get
2a5(t) = a1 (t) = a1 (t); ag () — a1 () + az(t) = ax(t)
Out of them, second relation is a'y(t) = aj(t)
which on integration gives
ay(t) = ay(t) + ¢ [cis arbitrary constant]

The constant ¢ vanishes on account of the first of these two relations. Hence ay(t) = a,(t) which
completes the proof.

@ 11.3.2:_Prove that the Legendre’s equation
(1—tH)x" = 2tx" + n(n + 1)x = 0 is self adjoint.
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Solution: Here ay(t) = (1 — t?), a,(t) = —2t, a,(t) =n(n+1)
and we observe that aj(t) = —2t = a,(t).
= Legendre’s Equation is self adjoint and can also be written in the form

[(1=tHxT +nn+1x=0.

E] 11.3.3:_ Check the self adjoint character of the following equations
(@) t3x" +3t2x"+x=0
(b) sintx" +costx’ +2x = 0.
(c) Solution: Equation (a) ag(t) = t3 = af(t) = 3t? = a,(t)
and for equation (b) ao(t) = sint = ay(t) = cost =a,(t)
Equations (a) and (b) are self adjoint.

Theorem 11.3.4: Let the coefficientay(t), a; (t) and a,(t) appearing in the differential equation
(11.2.1) ie.

ag()x" +a;()x" +a,()x =0

are continuous on a <t < b and ay(t) # 0 on a < t < b then this equation can be transformed into
the equivalent self-adjoint equation

S[r®x'1+p()x =0 (1132)

ona <t < bwhere

_ I _ (20
r(t) = e’ 200 and p(¢) = (ao (t)) r(t) (11.3.3)
By multiplication throughout by the factor
a1 ()
[ efao(t)dt.

ao(t)

Proof: In order to get the form (11.3.2) of equation (11.2.1) we have to multiply equation (11.2.1)
throughout by a suitable factor H(t) obtained by a quadrature.

Consider the function H(t) determined by the equation

L layOHO] = ay(OHE)
ao(OH'(t) + agH () = a; (DH(t)
Division throughout by a,(t)H(t) gives
H® _ ah(®) | e
H(t) ao(t)  ao(t)

which on integration gives

a;(t)

PRGNS

log H(t) = —logay(t) +j

a1
so that H(t) = aL(t) Jaoe™
0

Now multiplying the equation (11.2.1) by H(t), we follow

a1 (t) t a1(t) t a1 (t)
efao(t)dtx” + —al( )efao(t)dt "+ —a2( )efao(f)dtx =0

ag(t) ao(t)

le_(‘)dt _ (ay(®
o®" and p(t) = (ao(t)

r(t)=e )r(t)

we get

d , _
ZIrOx] +p©x =0
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Thus from (11.3.2) of equation (11.2.1) (in which r(t)>0) is extremely useful and plays a central role
in the calculus of variations. It arises very frequently in mechanics. In order to study the behaviour
of the solutions of the linear differential equation of the second order, we shall take of this form
throughout the present chapter.

We shall be concerned, henceforth, with equation (11.3.2) where r(t) > 0 and r(t) and p(t) are
continuous on some interval (a, b). The theorem and the proofs which follow will not require the
existence of the derivative of r(t).

E] 11.3.4:_ Transform each of the following equations into an equivalent self adjoint equation

(@) t3x" +tx'+x=0
(b) f(®)x" +g(t)x" =0
(€) t%x" —2tx'+2x=0

Solution: For equation (a), we have ao(t) = t2,a,(t) = t,a,(t) =1

a®,
fﬂo(f) t

t
eft_zdt = =

Multiplication factor = ﬁe LSt tizemgt = t—lzt = %
Multiplying the equation (a) by % on any interval a < t < b, excluding the point t = 0,
we get tx"” +x' + = x—O

This equation is self-adjoint equation and may be written in the form

[tx'] + %x =0.

For equation (b), we have ay(t) = f(t),a,(t) = g(t),a,(t) =0

ltipli ‘ f‘ll(f)d f‘g(t)d
Multi ti tor = ——e” ao(® ®
ultiplication factor = —=—e f(t)
a0,
Multiplying the equation (b) by ) eJ70™ on any interval a < t < b, we get

90 e,
elret x gg? el x' = 0.

This equation is self-adjoint equation and may be written in the form
LIGH !
[ o f % x’] =0.

For equation (c), we have ao(t) = t2,a,(t) = —2t,a,(t) = 2

a1(t) —2t -2
T . dt = 1 (==
Multiplication factor = Ll eldt = L J7at
ao(t) T t2
=Lp-2loge =11 _ 1
g2 T t2e2 T g4l

Multiplying the equation (b) bytl4 on any interval a < t < b, excluding the point t = 0, we get

1 . 2 2
t—zx —t—sx +t—4—0.

This equation is self-adjoint equation and may be written in the form

()T + ()= =o

114 Abel’s Formula

Theorem 11.4.1: If u(t) and v(t) are any two solutions of self adjoint equation (11.3.2) then

r(®)[u®)v'(t) —u'(®)v(t)] = k, a constant (11.4.1)
Proof: Since u(t) and v(t) are solutions of equation (11.3.2), we have

[r@®u @®)] + p®)u(t) =0 (11.4.2)
and
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[r@v' @] +p)v() =0 (11.4.3)
Multiplying (11.4.2) by —v(t), (11.4.1) by u(t) and then adding, we get

u@O[r@®v' O] —v@OrOw ()] =0
which on integration by parts under limits a to t, gives
r@®)[u@®)v'(t) —u' @®vt)] = r(a)[ul(a)v’'(a) — u'(a)v(a)] (11.4.4)
= The right hand member of (11.4.4) is constant

r(®)[u®)v'(t) —u'(t)v(t)] = k, a constant

Ei/ 11.4.2: Formula (11.4.1), known as Abel’s formula, is useful in finding all solutions of a
- linear differential equation of order two, when one of its solutions is known. The same is
proved in the following theorem.

oM  The expression inside the bracket of left hand side is nothing but the Wronskian W of two
- solutions of u(t) and v(t) of equation (11.3.2)

u(t) v(t)
u'(t) v'(t)

It means that the constant k appearing in Abel’s formula is zero if and only if the two
solutions u(t) and v(t) of equation (11.3.2) are linearly dependent.

ie. W= |

Theorem 11.4.2: Let u(t) be a solution of a linear differential equation of order two represented in
self adjoint form (11.3.2) i.e.

[r®Ou' @] +p@u(t) =0

Where r(t) # 0 and p are continuous functions on an interval /. Then a second linearly independent
solution v(t) of equation (11.3.2) is given by

dt
v(t) =u(®) [ TOWwE)

Proof: Since u(t) #0 is a solution of equation (11.3.2), there exists a second order linearly
independent solution v(t) of equation (11.3.2), satisfying Abel’s formula (11.4.1) such that, for all

tinl

This is linear differential equation of order one in v. Solving this equation, we obtain

v(t) = u(t) [

dt
HGUAGY

Summary

e The second order linear differential equation and its behaviour is discussed.

¢  The adjoint and self adjoint equations are elaborated with the help of examples.

e  The conversion of differential equation into self adjoint form is derived and examples are
solved.

e Determined the Abel’s formula for self adjoint equation solutions and linear dependent or
independent behaviour of solution is also discussed.

Keywords

e Linear differential equation

e Second order differential equation

e Adjoint equation

e  Self adjoint equation

e Abel formula

e Linear dependent and independent solutions
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Self Assessment

1.

= oNnw >

S 0 F »

@

Onwp o on @ >

SN o

> N

The equation t?X” —2tx’+2X =0 reduces into an equivalent self adjoint
equation as

t2x" —4tx' +2x =0
2t7°X" — 4t 73X +t'x =0
272X+ 2t —t™*x =0
2t72X" + 4t 73X -2t *x =0

The adjoint of the differential equation t°x” +3tx’ +3x =0 is

X" +tx’ +3x=0
t’x” —tx —3x=0
t?’X” +tx’ +5x =0
t’x” +2tx’+3x =0

The coefficients a, (t), a, (t) & a, (t) appearing in the differential equation

a, tx + a,l(t)x' +a,(t)Xx =0are  continuous  on a<t<band

a,(t)#0on ast=< D then this equation can be transformed into the equivalent

self-adjoint equation by multiplying
a (1) d
e 2 (t)

ay (1)
a, (1) ef a (O
a, (1)
4 (t)d

. a2 (t) ej ag (t) !
a, (1)

- a, (1) dt
e Ao (t)

Which of the following is second order linear differential equation?

u"+gt)u'+f (t)u® = h(t)
(p®u’)+q(t)u = h(t)
(p(®u)+q(t)u = h(t)

None of these

The equation ag(f)u’” + a,()u’' + a,(t)u = 0 is self adjoint if
ag(t) = —a(t)

ao(t) = a.(t)

ao(t) = ‘11’(15)

None of these

The adjoint of the equation ag(H)u" + a;(H)u’ + a;(H)u =0 is
[ao(®u]"+[a;(®u]’ + az (Hu =0

[ao(®u]"~ [a;(Du] —a, Du=10

[ao(®u]"— [a1(®Ou] + az (Du =0

None of these

Every homogeneous second order linear differential equation can be reduced to
Adjoint form
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B.

C.
D.
8.

>

°Un W

9NwEp

9SN=E >

ON=E»2

SN % »

oNwp g

Self-adjoint form
Both adjoint and self adjoint form
None of these

2
The equation t“X" +tX"+ X = 0 reduces into an equivalent self adjoint equation as

(tx')’—%‘x =0

(tx')’+%x =0
(tx'") ' +tx=0

None of these

If u and v be any two solutions of a self adjoint equation of order two of the form
[r(@u'] + p(®)u = 0, where r(t) # 0 and p, r’ are continuous functions. Then
rOu@v' () —v(Ou'()] =0

r®u@v' () —v(u'(O)] = k

r®u@v' (@) + v(®u' ()] = -k

None of these

. If u and v be any two solutions of a self adjoint equation of order two of the form

[r(®u']) + p()u=0, where r(t)#0 and p,r' are continuous functions. Then
r@®[u®)v'(t) —v®)u'(t)] = k is known as

Ricatti formula

Variational formula

Abel’s formula

None of these

. If the formula r(t) [u(t)v'(t) — v(t)u'(t)] = k then the u and v be

Linear independent
Linear dependent
Constant

None of these

. If u; be the one solution of second order linear differential equation in self adjoint form

[r(®u']" + p()u = 0. Then another solution
dt
up =~y [ rOUE ()
= dt
Uz = r(Oui(t)
—u | dt
Uz = r(Ou?(t)

None of these

If in the formula (&) [u(t)v'(t) — v(t)u'(t)] = k, k = 0 then the u and v be
Linear independent

Linear dependent

Constant

None of these

Answer for Self Assessment

1 B
6 C
11. A

94

2 C 3 B 4. B 5 B
7 C 8 B 9. B 10. C
12. C 13. B
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Review Questions

LU

WWW

1. Show that every homogeneous linear differential equation of order two can be
reduced to self-adjoint form.
2. Reduce the following equation to self adjoint form:
@) tx" —x'+t2x=0
(ii) x"=3x"+2x=0
(iif) t2x" +tx' + (t2 —n?x =0
(iv) A-tHx" = 2tx' + (M +n)x =0
Further Reading

e Earl A Coddinton and Norman Levinson (2017). Theory of Ordinary Differential
Equations, Mc Graw Hill.

e  P.Hartman (1964), Ordinary Differential equations, Johan Wiley.

e Shair Ahmad and Rama Mohan Rao (2014), Theory of Ordinary Differential
Equations, East West Press Private Limited.

e S G Deo, V Lakshmikantham and V Raghvendra (2013), Ordinary Differential
Equations, McGraw Hill Education (India) Private Limited.

e  https://nptel.ac.in/courses/111/108 /111108081 /

e  https://onlinecourses.nptel.ac.in/noc21_ma09/preview

e https://infocobuild.com/education/audio-video-
courses/mathematics/OrdinaryPartialDifferentialEquations-IIT-
Roorkee/lecture-01.html
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Unit 12: The Sturmian Theory

CONTENTS
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121 Sturm Separation Theorem
12.2 Sturm Comparison Theorem
Summary

Keywords

Self Assessment

Answers for Self Assessment
Review Questions

Further Readings

Objective:
After studying this unit, you will be able to

e identify the concept of common zero of solutions of second order linear differential
equations.

e understand about the Sturm separation and comparison theorem

e know about the separation of zeros of solutions of self adjoint equation.

e  determine the comparison of solutions of two self adjoint equations.

Introduction

In this chapter, more theory related to the solution of second order self adjoint equation of the form
d !
Zr@Ox1+p)x =0 (12.0.1)

will be discussed and more properties of solutions will be determined.

12.1 Sturm Separation Theorem

Lemma 12.1.1: If the two solutions u(t) and v(t) have common zero, they are linearly dependent.
Conversely, if u(t) and v(t) are linearly dependent solutions, neither identically zero, and if one of
them vanishes at t = t,, so does other.

Proof: First, we assume that t = t, is the common zero of two solutions u(t) and v(t) i.e. u(ty,) =0,
U(to) =0.

In accordance with Abel’s formula, we have

r(O)[u®)v'(t) —u'(®)v(t)] = k, a constant.

Replacing t by t in this formula, we follow k = 0.

= Two solutions u(t) and v(t) are linearly dependent.

Conversely, we assume that the two solutions u(t) and v(t) are linearly dependent.

= There exist constants ¢;and ¢, (not both zero) such that
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cu(t) + cv(t) =0.

As neither u(t) nor v(t) is identically zero, we follow that both ¢; and c, are different from zero.
Hence if u(ty) = 0 then v(ty,) =0

And if v(ty) = 0 then u(ty) = 0.

i.e. u(t) and v(t) have a common zero.

Theorem 12.1.2: If u(t) and v(t) are linearly independent solutions of equation (12.0.1) i.e.
% [r(®)x'] + p(t)x = 0, then between two consecutive zeros of u(t) there will be precisely one zero
of v(t).

Proof: let us suppose that the two consecutive zeros of the solution of u(t) are t =ty and t = t;(ty <
t1), whose existence is being supposed by the theorem. Without any loss of generality, we may
assume that

u(t) > 0intherangety <t <t;

and u'(ty) > 0and u'(t;) < 0.

u(t) > 0 in the range ty <t <t; = The graph of the curve x = u(t) in the range t, < t < t; lies
above the t-axis.

u'(ty) > 0 = The tangent to the curve x = u(t) at t = t, makes an angle which is less than %n with
the positive direction of the t-axis.

u'(t;) < 0 = The tangent to the curve x = u(t) at t = t; makes an angle which is greater than %n
with the positive direction of the t-axis.

Two solutions u(t) and v(t) are given to be linearly independent.
= They cannot have a common zero. As u(ty)=0 we follow v(t,) # 0.

We may assume v(t,) > 0 without any loss to generality. v(t,) > 0 without any loss to generality.
v(ty) > 0 means that the graph of the curve x = v(t) at t, is above t-axis.

Taking t = t, in Abel’s formula, we get

r(to) [u(to)v' (to) — u'(£)v(to)] = k, a constant

k <0,7(ty) > 0,u(ty) =0,u'(ty) > 0,v(ty) > 0.
r(t)[ut)v'(t) — ' (t)v(e)] <0

v(ty) < 0as r(ty) > 0,u(t) =0,u'(t) <O0.

Now v(ty) > 0 and v(t;) < 0 and v(t) is continuous functions.
= v(t) must have at least one zero in between t; and t;.

Further, there cannot, however, be more than zero because the argument above, with the roles of
u(t) and v(t) reserved, shows that between two consecutive zeros of v(t) there must be at least one
zero of u(t). It completes the proof.
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@ Example 12.1.3: Show that the differential equation x" + x = 0 has common zeros and no
others zero.

Solution: Given differential equation x"* + x = 0 which of the form

d
SO+ pOx = 0
Herer(t) = 1, p(t) = 1 onevery interval a < t < b.
The linearly dependent solutions A sint and B sinsint have the common zeros t = tnm(n =

0,1,2, .......) and no other zeros.

@ Example 12.1.4: Use the Sturm separation theorem to show that between any two
consecutive zeros of Here sin sin 2t +cos cos 2t there is precisely one zero of
sin sin 2t —cos cos 2t .
Solution: Let u(t) =sin sin 2t +cos cos 2t and v(t) =sin sin 2t —cos cos 2t
Differentiating twice, we get
u''(t) = —4(sin sin 2t +cos cos 2t ) = —4(u(t))
and v"'(t) = —4(sin sin 2t —cos cos 2t ) = —4(v(t)).
This shows that u(t) and v(t) are the solutions of
x"+4x=0
Which is a self adjoint equation.
Further, the Wronksian of these functions is
W (sin sin 2t +cos cos 2t, sin2t —cos cos 2t) =
= |sin sin 2t +cos cos 2t sin sin 2t —cos cos 2t 2t — 2t 2 cos cos 2t + 2 sin sin 2t |
=22t + 22t + 22t + 22t — (2sin2tcos 2t — 22t — 22t + 2 sin sin 2t cos 2t)
2t
20)=4+#0
Hence the two solutions are linearly independent.

Therefore, u(t) and v(t) defined earlier satisfy the conditions of Sturm’s separation theorem is
precisely one zero of sinsin 2t —cos cos 2t between two consecutive zeros of the function
sin sin 2t +cos cos 2t .

@ Examplel 2.1.5: Show that the roots of the equation x” + x = 0 form separation for one
another.
Solution: The roots of the real solution are
u(t) = sint
v(t) = cost
More generally, the roots of any two real solutions are
u(t) = Asint + B cost t
v(t) = Csint + Dcos t
u'(t) = Acos t — Bsint
v'(t) = C cost— D sint
Separate one another provided that W (t) of u(t) and v(t)does not vanish
ie.uv' —u'v+0

or AC sint cos t — AD sin®t + BC cos?t — BD sint cos cos t — AC sint cos cos t + BC sin®*t — DAt +
DB sint cos cos t
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AD — BC # 0.

This is merely the condition that these two solutions are linearly independent.

12.2 Sturm Comparison Theorem

o9  The Sturm Comparison Theorem, which follows, compares the rates of oscillation of the

®&  solutions of two equations.

[r@®x'T +p®)x =0 (12.2.1)
[r®z'] +p1()z =0 (122.2)
where r(t) > 0; r(t), p(t) and p,(t) are continuouson a <t < b and

p(t) > p(t)

with strict inequality holding for at least one point of the interval.

Theorem 12.2.1: If the solution x(t) of equation (12.2.1) has consecutive zeros at, t = ty and t =
t1(to < t1), a solution, z(t) of equation (12.2.2) which vanishes at t = t;, will vanish again on the
interval t, < t < t;.

Proof: Without any loss of generality, we may assume x(t) > 0 on the interval t, <t < t;

and x'(ty) > 0,x'(t;) < 0and z'(ty) > 0.

X-axis

x=x(t)

As x(t) and z(t) are solutions of equation (12.2.1) and (12.2.2) respectively, we have

[r(OxT +p®)x =0 (12.2.3)
and [r(t)z']' + p1()z =0 (12.2.4)
Multiplying (12.2.3) by —z(t) and (12.2.4) by x(t) and then adding, we get
x@Or®z' ()] — zOr(©x" (O] + {p1(6) — p(E)}x(O)z(t) = 0 (12.2.5)
Integration of the identity (12.2.5) over the interval ty < t < t;, gives

[r(O&(O2' ) - *' Oz(ONE + jt " I - pO©O0de = 0

ty

r®{x(t)z' (t1) — x'(t)z(¢)} + f [p1(®) = p(O]x(D)z(D)dt = 0
t

x'(t)z(t)r(t) = fttol [p1(®) —p(®)]x(t)z(t)dt, as x(t;) =0 (12.2.6)

If we suppose z(t) > 0 on ty < t < t; then the left hand member of (12.2.6) is negative and the right
hand member of (12.2.6) is positive which is absurd.

= z(t) will not remain +ve on the whole interval t, <t < t;.

= z(t) will vanish somewhere within this interval t, < t < t;.
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We further notice that x(t) again vanishes at t =t, > t; and if z(t) is the second solution of
equation (12.2.4) such that

z1(t) =0and z;(t;) > 0

then z; (t) will have a zero t; on t; < t <'t,

Now, using Sturm Separation Theorem, we follow
Z(t)hasazeroont; <t <ts

ie.Z(t) hasazeroont; <t <tz <t,

ie. Z(t) hasazeroont; <t < t, which completes the proof.

@ Example: 12.2.2: Verify the Sturm’s comparison theorem for the differential equations
x"+A?’x=0and x" + B?x =0

Where A and B are constants such that B > A.

Solutions: Let us take
u(t) = Sin At and v(t) =sin sin Bt
which are the solutions of the given equations.

The two consecutive zeros of u(t) = Sin At are u(t) = % and @,n =0,+1,%+2,.....

. A .
In particular for n = 0,0 and — are the two consecutive zeros.

(n+Dm

Now, the zero of v(t) = Sin Bt are %ﬂ and Al)n, and forn =0,+1,+2,....... And for n = 0, the two

consecutive zeros are 0 and %.
Both these solutions have one of their zero at x = 0.
The next zero of v(t) =sin sin Bt is at %.
. B_A 7w _m
Since B > A, therefore— > =or—- < -.
" m B A
Hence the next zero of v(t) =sin sin Bt is before the next zero of u(t) =sin sin At .

@ Example: 12.2.3: Consider the equation x” + q(t)x = 0 where q(¢t) > 0ona <t < b.

2.2
Let q,, denote the minimum value of q(t) on a <t < b. Show that if g, > (ll;——Z)Z' then

every real solution of the given equation has at least k zeros on a < t < b where

k= () Vam

222
Solution: Consider the differential equation x" + (:—2)2 x = 0 which has a solution
X =sin sin ka"ax (12.2.7)
The zeros of this solution are at x = % = %(b —a),n=0,+1,+2,.....

In particular they are x = O,% (b—a),n=0,%+1,42,.....
which are k + 1 in number in the interval a < t < b.
Now, consider the differential equation
x"+qt)x=0

Since q,,, is the minimum value of q(t), therefore

k?m?

Am () > Gm > =0 (12.2.8)

Hence by Sturm’s comparison theorem, the zeros of the solution of (12.2.8) are at least one between
the consecutive zeros of the solution of (12.2.1).
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Hence in the interval a <t < b, the numbers of zeros of the solution of (12.2.8) are at least k in
number.

Summary
e The zeros of solutions of self adjoint equation is discussed.
The condition for common zeros of linearly dependent and independent is derived
e The separation of zeros of solutions of self adjoint equation is derived and examples are
solved.
e The comparison theorem proved for two self adjoint equations and elaborated with

examples.

Keywords

e  Zeros of solution
e  Sturm separation
e  Sturm comparison
e  Abel’s formula

e Linear dependent and independent solutions

Self Assessment

Choose the most suitable answer from the options given with each question.

’
1. For any two linearly independent solution of equation (r )y ) +p()y=0 , then

between any two consecutive zeros

A. There is precisely one zero
B. There is no zero
C. There are number of zeros
D. There is one zero
1/2 ')
t=e®,u=t"“z u'+q(tu=0

2. By change of variables , the equation

transform to

d?z i 1]

e —t? q(t ~a z=0, where t=¢°

S
A. L .

d?z i 1 ]

e +12 q(t)—4t2 z=0, where t=¢®
B. L .

d?z i 1]

e +1° q(t)+4t2 z=0, where t=e¢e°

D. None of these

3. The Lagrange integral identity of pair of equations (pu)+qu=f, (pv)+qv=g is

[p(uv-u'v)], = 't[(gu + fv)ds
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[p(uv+u'v)], = j(gu — fv)ds
[p(uv+u'v)], = .t[(gu + fv)ds

o)l = [ (gu— fds

If two solution have common zero, then solutions are
Linearly dependent

Linearly independent

Constant

None of these

The differential equation y"” +y = 0 has
The non-common zero

The common zero and no other zero
The constant zero

None of these

The roots of the equation y"' +y = 0 form
Separation from one another

Non separation from one another

Linear dependent

None of these

The two consecutive zeros of sin 2x + cos2x separated by
Precisely two zero of sin 2x — cos2x.

Precisely no zero of sin 2x — cos2x.

Precisely one zero of sin 2x — cos2x.

None of these

For any two linearly dependent nontrivial solutions of equation, if one of them vanishes,
then

Other also vanish

Other is non-vanish

Non constant

None of these

The solution of two equations [r(t)x']’ +p(t)x =0 and [r(t)z]' + p;(t)z =0 where
r(t), p(t) and p;(t) are continuous on [a, b] then the inequality one point of the interval
hold

p1(t) <p(t)

p1(8) < p(®)

p1(8) > p(t)

p.(t) = p(t)
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. The solution x(t) of equations [r(t)x']" + p(t)x = 0 has consecutive zeros att =ty and t =

t;, a solution z(t) of equations [r(t)z']’ + p;(t)z = 0 which vanishes t = t,,
It will not vanishes againon ty <t < t;

It will vanishes again on t = t;

It will vanishes againon ty < t < t;.

None of these

. The equations x” + A?x = 0 and x” + B%x = 0 where A and B are constants such that B >

A verify the

Sturm separation theorem
Sturm comparison theorem
Sturm Liouville problem

None of these

. The y and z are nontrivial solutions of x2y" + xy’ + (x? — 1)y = 0 and x%z" + xz’ + x%z =

0, respectively, such that both vanish at x =1

The solution x(t) will vanish faster than 1

The solution z(t) will vanish faster than 1

The solution x(t) and z(t) will vanish faster than 1

None of these

. The equations y" +y =0 and z"" —z = 0 for t > 0 hold that

Between two consecutive zero of z(t), there is a zero of y(t).
Between two consecutive zero of y(t), there is a zero of z(t).
Zero of x(t) and y(t) are common.

None of these

. The equations x"" + x = 0 and y" + 4y = 0 hold that

Between two consecutive zero of y(t), there is a zero of x(t).
Between two consecutive zero of x(t), there is a zero of y(t).
Zero of x(t) and y(t) are common.

None of these.

. The Sturm’s comparison theorem asserts is that if a solution of the first differential

equation has a certain property P then

The solutions of the second differential equation do not have the same or some related
property.

The solution of the second differential equation is not comparable.

The solution of the second differential equation has the same or some related property P.

None of these

Answers for Self Assessment

1 A
6 A
11. B

2 B 3 D 4. A 5 B
7 D 8 A 9. D 10. C
12. B 13. A 14. B 15. C
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Review Questions

1.

Show that between any pair of consecutive zero of sin t, there is exactly one zero of sin t +
coscost.

Show that between any pair of consecutive zero of sin (log log t ), there is exactly one zero
of cos cos (log log t) .

Let 7(t) be a continuous function (for t = 0) such that r(t) > m? > 0, where m is an

integer. Consider the equations x” + m?x = 0,t > 0

y'+r@)y=0,t>0.

If y(t) is any solution of the second equation, prove that y(t) must vanish in any interval
of length m/m.

L!.J Further Readings

WWW|

Earl A Coddinton and Norman Levinson (2017). Theory of Ordinary Differential Equations,
Mc Graw Hill.

P. Hartman (1964), Ordinary Differential equations, Johan Wiley.

Shair Ahmad and Rama Mohan Rao (2014), Theory of Ordinary Differential Equations, East
West Press Private Limited.

S G Deo, V Lakshmikantham and V Raghvendra (2013), Ordinary Differential Equations,
McGraw Hill Education (India) Private Limited.

https:/ /onlinecourses.nptel.ac.in/noc21 _ma(09/preview

https:/ /infocobuild.com/education/audio-video-
courses/mathematics/OrdinaryPartialDifferentialEquations-IIT-Roorkee /lecture-
01.html
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Unit 13: Sturm Boundary Value Problem
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Summary
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Answers for Self Assessment
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Further Readings

Objective:
After studying this unit, you will be able to
e  identify the concept of boundary value problem
e understand about the Sturm problems
e  know about the eigen values and eigen functions.
e determine about the trivial and nontrivial of solutions

e  apply the oscillatory theory to the zero of solutions

Introduction

In this chapter, we shall consider boundary value problems. For the sake of convenience, we recall
the definition of boundary value problem.

Consider a linear differential of order n of the form
L(x) = ap(0)x® + a,(O)x™D + - a, (£)x = b(x) (13.0.1)

wherea,(t) # 0,ay, ... ... a, and b are real or complex-valued continuous functions defined on an
interval I = [c,d].

A boundary condition is a condition imposed on the solutions of equation (13.0.1) at two or more
points of the interval I. The points of I (denoted by tg, ty, ... ... ) where the conditions are imposed,
are known as boundary points and the value of x,x" ......., x(*"Dat the boundary points are known
as boundary values.

A differential equation with some boundary conditions is known as boundary value problem
(denoted in short by BVP).

There are several forms of boundary conditions. We define some important forms of boundary
conditions for equation (13.0.1).

For equation (13.0.1), the boundary conditions of the form
x(c) = x(d), x'(¢) = x'(d), e cer.., V() = y®-D(q)
Are called periodic boundary conditions stated at x = cand x = d.

13.1 Sturm-Lioville’s Problem

Now consider a differential equation of the type
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[r@®x'] + {p(©) + A4q(O)}x = 0 (13.1.1)

in which r(t) > 0 and p(t) > 0 and r(t), p(t), q(t) are continuous real functions of t ona <t <b
and the constant A is the parameter independent of t.

This equation is called Sturm-Liouville’s Equation.

Equation (13.1.1) is considered on a closed interval a <t <b and subject to the boundary
conditions (at the end points) by

a;x(a) +ayx'(a)=0 (13.1.2a)
bix(b) + byx'(b) =0 (13.1.2b)

wherea,, a,, b; and b, are constants and neither a;,a, are both zero nor b;,b, are both =zero
together. The problem of finding the solution of (13.1.1) subject to the boundary conditions (13.1.2a)
and (13.1.2b) is called Sturm Liouville’s Boundary Value Problem. The trivial solution x = 0, for
every value of parameter A,is of no practical use. The nontrivial solutions of Sturm Liouville’s
boundary value problem are called characteristic functions(or eigen functions) and all the value of 1
for which such solutions exist are called characteristic values(or eigen values) of the problem.

E/* It should be noted that the Sturm Liouville’s problem are linear boundary value problems
— of order 2. A boundary value problem of order 2 is said to be non linear boundary value
problem of order 2 if the differential equation is non-linear.

E] The boundary value problem x" 4+ |x|=0;x(0) =0=x(7);0 <t <m is nonlinear
boundary value problem of order 2. Here the non linearity in this equation is due to

f@) = Ixl.

E] Example 13.1.1: Find the eigen values and the corresponding eigen functions of X" +
AX = 0 when X(0) = 0and X'(L) = 0.
Solution: The given equation is X" + X =0 (13.1.3)
And the boundary conditions are X(0) = 0and X'(L) = 0.
CaselIl =0
Equation (13.1.3) becomesX" = 0 which gives X(t) = At + B = X'(t)=A.
Using boundary conditions 0 = X(0) =B;0=X'(L) =A=>A=B =0.
~X({t) =0 = 1=0 gives the trivial solution.
= Jis not the eigen value and there is no eigen function corresponding to 4 = 0.
Case II1 = —vesay 2 = —u? (u # 0).
In this case equation (13.1.3) becomes X" — u?X = 0.
= X(t) = AeHt + Be™Ht
and X'(t) = Auett — Bue™#¢,
Using boundary conditions, we follow
0=X(0)=A+Band 0 = X'(L) = Auett — Bue ML,
> A+B=00rB=-A>Au(e*t +e#)=0 ~A=0,B=0.
It again gives the trivial solution X(t) = 0.
There is no eigen function when 1 < 0.
Case III1 = +vesay A = u? (u # 0).
In this case equation (13.1.3) becomes X" + u?X = 0 whose solution is
X(t) =Acosut+Bsinut = X'(t) = —Ausin ut + By cos ut.
Using initial conditions, we get 0 = X(0) = A;0 = X'(L) = Bucos uL
= A = 0and = Bcos uL = 0.
= Either A=0,B = 0orA = 0,cosuL =0
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A = 0, B = Othere exist no eigen function.
Let us deal with the subcase B # 0 which gives
cos uL = OorulL = %(Zn - Dm

2n-1)n

orp = —— forn=1,2,3,.....
Using A = 0, solution becomes X (t) = Bsin % t
OrX(t) = sin &0, (Taking B=1) forn = 1,2,3, .....

2L

are eigen functions and the corresponding eigen values are

_(@n-1)*n?

— 2
A=u 417

wheren = 1,2,3, ... ...
Example 13.1.2: Find the eigen values and the corresponding eigen functions of X" +
AX = 0 when X’(0) = 0and X'(L) = 0.

Solution: Sturm Liouville’s Problem is to solve X" + AX = 0 ....(13.1.4)
when boundary conditions are X'(0) = 0 and X'(L) = 0.
CaseI1 =0
Equation (13.1.4) becomes X" = 0 which gives X(t) = At+ B = X'(t)=A.
Using boundary conditions 0 = X'(0) = 4; and B is arbitrary.
Taking B = 1 we get
~ X(t) = 1 which is the nontrivial solution.
= X(t) = 1 is an eigen function and 1 = 0 is the eigen value.
Case Il 2 = —vesay 1 = —p? (u # 0).
In this case equation (13.1.4) becomes X" — u2X = 0.

= X(t) = Ae#t + Be™#
and henceX'(t) = Aue#t — Bue™Ht,
Using boundary conditions, we follow
0=X'(0)=A—Band 0 = X'(L) = Aue": — Bue "L
= A = BandAu(ett —e#)=0 ~A=0asu#0.
A = (Ogives B = 0.
~ X(t) = 0 which is trivial solution .
Case III1 = +vesay A = p? (u # 0).
In this case equation (13.1.4) becomes X" + p?X = 0 whose solution is

X(t) =Acosut+Bsinut = X'(t) = —Apusin ut + By cos ut.

Using boundary conditions, we get 0 = X'(0) = Bu; 0 = X'(L) = —AusinuL + Bu cos uL
= B = Oasu # 0and = Asin uL = 0.
=B =0 and EitherA=0orsinuL =0
A=0,B=00rB =0,sinuL =0.
A =0,B = 0givesX(t) = 0 is the trivial solution.
andB = 0,sinuL = 0 gives uL = nm forn = 1,2,3, .....

Ais arbitrary, let A = 1.
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~X(@) = cosnL—ntforn =1,23,...

are eigen functions and the corresponding eigen values are

n?m?
2="—Aforn=123,...

A=u 7

E] Example 13.1.3: Find all the eigen values and eigen functions of the Sturm Lioville’s
problem ofX" + AX = 0 with X(0) + X'(0) = 0 and X(1) + X'(1) = 0.

Solution: Given X" + 1X =0 (13.1.5)

With the boundary conditions are

X(0) +X'(0)=0 (13.1.6)

and X(1) + X'(1) = 0. (13.1.7)

Case IWhenA = 0, our equation (13.1.5) becomes X" = 0 whose solution is given by X(t) = At + B
and hence X'(t) =4 = X))+ X'(t)=A+ At + B.

Using boundary conditions (13.1.6), we find
0=X0)+X'(0)=A+B=> A+B=0.
Using boundary conditions (13.1.7), we find
0=X(1)+X'(1)=2A+B= 24+B=0.

Now A+B=0;, = 244+ B =0 gives > A=B =0 and solution becomes X(t) =0, the trivial
solution = A = 0 is not the eigen value.

Case I When! < 0, let A = —u? where u # 0.

In this case, our equation (13.1.5) becomes X" — u?X = 0 whose solution is given by X(t) = Ae#* +
Be "t and hence X'(t) = Aue*t —Bue ™ = X(t) = X'(t) = A(1 + wett + B(1 — p)e M,

Using boundary conditions (13.1.6), we find

0=X(0)+X'(0)=A0+w+BA—-p (13.1.8)
And using boundary conditions (13.1.7), we find

0=X(D+X'(1D)=A0+we*+BA —pe* (13.1.9)
For nontrivial solution of (13.1.8) and (13.1.9), we have

1+u 1—u
T +wet (1 —we*
u = 1gives2A = 0 (from (13.1.8)) -~ A = 0 while B is arbitrary.

=0=>0+wA-wleH—-—er)=0>u=1,-1.

= Solution becomes X (t) = Be — t which is eigen corresponding to eigen value 2 = —p? = —1.

u=1givesB =0 (from (13.1.8)) while A is arbitrary and X(t) = Ae™' is eigen function and
corresponding eigen value is A = —p? = —(—1)? = —1.

Hence, taking 4 = B = 1,we follow X(t) = e™* is an eigen function and corresponding eigen values
is -1.

Case ITIA > 0, let A = y>where u # 0.
In this case equation (13.1.5) becomes X" + u2X = 0 whose solution is given by
X(t) = Acosut + Bsin ut and hence X'(t) = —Au sin ut + By cos ut
=>X(@t)+X'(t) = (A + Bu)cosut + (B — Aw) sin ut
Boundary condition (13.1.6) gives
0=X0)+X'(0)=A+Bu (13.1.10)
Boundary condition (13.1.7) gives
0=X(1)+X'(1))=(A+Bu)cosu+ (B—Au)sinu (13.1.11)
From (13.1.10) A = —Bp using it in (13.1.11), we get
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B(1+u?)siny =0 or Bsinu = O0as u> + 1 # 0.

=> B =0orSiny =0= B =0gives A = 0 (from (13.1.6)).

A = B = Ogives the trivial solution y(x) = 0

sinu = Ogivesy = nm forn = 1,2,3, ... ...

A = —Bu = A = —Bnmand hence X(t) = —Bnm cos nit + B sinnmt
orx(t) = B(sinnmt — nw cosnmt) forn = 1,2,3, ... ....

Taking B = 1, Eigen function are

X(t) = sinnnt — nm cosnutforn = 1,2,3, ... ....

and the corresponding eigen value are

A =pu? =n?n?forn = 1,2,3, ... ...

13.2 Oscillation Theory

When the solution of the differential equation cannot be found explicitly, we have to resort to the
study of qualitative properties of its solutions. One such qualitative property, which has wide
applications, is the oscillation of solutions.

In this chapter, we shall study the oscillation properties of solutions of linear differential equations
of order two, but the theory developed hold good for linear differential equation of order higher
than two. Since every linear differential equation of order two can be put in self -adjoint form, it
suffices to study the oscillation properties of solution of self-adjoint linear differential equations of
order two of the form

[r(OxT +p®)x =0 (13.2.1)

Where r,r'and p are continuous functions and r(t) > 0 on the interval I = [0, ). We observe that
identically zero function x(t) = Oon I, is solution of equation (13.2.1). This solution is known as
trivial (or zero) solution and any other solution x(t) # 0 is known as nontrivial solution of equation
(13.2.1). In this chapter, a solution x of a equation (13.2.1) means a nontrivial solution, unless it is
mentioned otherwise.

A point t* = 0 is called a zero of solution x(t) of equation (13.2.1) if x(t*) = 0. A solution of
equation (13.2.1) is called an oscillation (or oscillatory) if it has infinitely many zero in the interval
[0, 00 ). Equation (13.2.1) is called oscillatory, if every solution of it is an oscillation.

@ Example 13.2.1:The functions x, (t) = sint and x,(t) = cost are non trivial solution of

x" 4+ x = 0, which vanish infinitely often on the interval[0, ©). Hence, sint and cost are
oscillations of x"" +x = 0. Since any solution of x" +x =0 is a linear combination of
sintand cost, all the solutions of x"" + x = 0 vanishes infinitely often on the interval
[0, ). Hence, of x"" + x = 0 is oscillation on the interval [0, o).

13.3 Number of Zeros in a Finite Interval

Theorem 13.3.1: If a solutionxof equation (13.2.1) vanishes infinitely often on I, then thee exists a
finite subinterval of I, on which x vanishes identically.

Proof: Let x be solution of (13.2.1) with infinitely many zeros in I. By Bolzano-Weierstrass theorem,
there is a limit point t* in I for the set of zero of x. Since t*is a limit point for the set of zeros of x,
there is a sequence {t,,} of zero of x such that t,, — t*. This means that, for given € > 0, we can find
an N such thatn > N = |t, — t*| < €. That s, for all n > N, we have

tr—e<t,<t"+e.
This shows that there is a finite subinterval of I containing infinitely many zeros of x.
Further, since x is continuous function of t, we must have
tlLr? x(t) = x(t")
Hence, if t — t* through the sequence {t,} of zeros of x, we must have

x(t*)=tllrg x(t,) =0
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This shows that t*is a zero of x. That is, any limit point of set of zeros of x is a zero of x. Since each
point in the interval (x* — &,x* + ¢€) is a limit point for the set of zeros of x we must have x(t) = 0,
identically on (x* — &,x* + ¢€). This shows that there is a finite subinterval of I on which x vanishes
identically.

= Remarks 13.3.2: A consequence of Theorem 13.3.1 is that any finite subinterval of I
contains at most a finite number of zeros of a solution x of equation (13.2.1) unless x(t) =
0, identically on that subinterval of I.

. Remarks 13.3.3: If a solution x of equation (13.2.1) has infinitely many zeros in I and if nth
=#  derivative x™ of x exists and continuous on I, then there is a point t*in I satisfying

x®) =0,k=012,.....,n
Proof: Let x be a solution of equation (13.2.1) with infinitely many zeros in I. Let t* be a limit point

for the set of zeros of x. Let {t,} be a sequence of zeros of x such that t, — t*. Since x is continuous
on Iwe must have

th_)r{l x(t) = x(t").
Letting t — t* through the sequence {t,,} of zeros of x, we find that
x(t*) = tln‘? x(t,) =0

Again, since x’ is continuous on I, we have

x(t,) — x(t* 0—-0
x'(t*) = lim (tn) ) = =
thot* ty, — t* t, —t*

In the same way;, it can be shown that
x®) =0,k=012,......,10
Theorem 13.3.4: The zeros of any nontrivial solution of equation (13.2.1) are isolated.

Proof: Let x be a nontrivial solution of equation (13.2.1). Let t = t, be a zero of x, that is, x(ty) = 0.
Then x'(t) # 0 on the interval (ty — ¢ty +¢) for some & > 0, otherwise, x(t) =0 on [0,»), a
contradiction to the fact that x is a nontrivial solution of equation (13.2.1).

There arise two cases:
CaseI x'(ty) >0

Since x' is continuous and positive at t = t,, it follow that the function x is strictly increasing in
some neighbourhood of t,, which means that t = t,, is the only zero of x in that neighborhood.
This shows that t = t, is an isolated zero of x.

CaseII x'(t;) <0

Since x' is continuous and negative at t = t,, it follow that the function x is strictly decreasing in
some neighbourhood of t,, which means that t = ty, is the only zero of x in that neighborhood.
This shows that t = t, is an isolated zero of x.

Summary

e  The Sturm boundary value problem discussed.

e The eigen value and eigen function are determined for boundary value problem.
e The zeros of solutions of self adjoint equation is discussed.

e The trivial and nontrivial solutions are explained.

The oscillatory behaviour of second order differential equation elaborated with examples.

Keywords

¢ Boundary value problem

e  Zeros of solution
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Sturm BVP
Eigenvalue
Eigen functions

Oscillatory behaviour

Self Assessment

1.

A.

o

B SN w

90w p

o

SN = >

u=sin(n+21t fU'+Au =0, u(0) =u(z) =0

be the solution o

_ 2
/’t_(n+1) forn=0,1,2.......
_ 2
;L—(n_l) forn=0,1,2.......
A=N+D) 00

The eigen value of X"+AX =0, X (O) = X'(L) =0 are
(2n-1D*z* /417, where n=123,.....

(2n+1)°7% /417, where n=123,......

(n-1D)*7z% /417, where n=123,....
None of these

The non-trivial solutions of Sturm Liouville Boundary Value Problem are called
Particular function

General function

Eigen function

None of these

The value of the parameter for which the function exists as solution of boundary value
problem is called

Constant value

Particular value

Eigen value

None of these

A boundary value problem of order of 2 is said to be non-linear if the differential equation
is

Linear

Non-linear

Constant

None of these

The eigen function for the boundary value problem

X"+AX =0, X'(0) = X'(L) =0 is
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A.

o

ONwp @

ONn®p o

SN = »

SN = »

X(t):cosnT”t for n=123,..........
X(t)=sinnT7zt for n=123,..........

X(t):cosechﬁt for n=123,..........

None of these

The eigen function for the boundary value
X'"4+AX =0, X'(0) = X'(L)=0is

n
X)) = cosTﬂt for n=123,..........

X (t) =sin nT”t for n=12_3,..........

X(t):cosech”t for n=123,..........

None of these

The zeros of any nontrivial solution of equation [r(x)y']" + p(x)y = 0 are
Isolated

Non-isolated

Constant

None of these

The solution y(x) # 0 of [r(x)y']’ + p(x)y = 0 is known as
Trivial solution

Non trivial solution

Constant

None of these

. A solution of equation [r(x)y']’ + p(x)y = 0 is called oscillatory if

It has infinitely many zeros
It has finitely many zeros
No zero

None of these

. The solution y(x) of [r(x)y']’ + p(x)y = 0 vanishes infinitely often on I, then

There exists finite subinterval on which y vanishes identically
There exists infinite subinterval on which y vanishes identically
No subinterval on which y vanishes identically

None of these
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12. The non-trivial solution of x” + ¢(t)x = 0 are oscillatory if
A. ¢(t) < m*forallt.
B. ¢(t) = m*forallt.
C. ¢(t) =m? = Oforall t.
D

None of these

13. The equation x” +x = 0 is
A. Oscillatory

B. Non -oscillatory
C. Nonlinear
D

None of these

14. The equation x" —9x = 0 is
A. Oscillatory
B. Linear

C. Nonlinear
D

None of these

15. A point t = t* = 0 is called zero of a solution x of the equation x" = f(t,x,x"), t = 0 if
A x(t) <0
B. x(t*)>0
C. x(tH =0
D

None of these

Answers for Self Assessment

1 A 2 A 3 C 4 C 5 B
6 A 7 A 8 A 9 B 10. A
11. A 12. B 13. A 14. B 15. C

Review Questions

1. Consider the equation x” + Ax = 0,0 < x < m.
Find the eigenvalues and eigenfunctions in the following form
(@) x'(0) =x'(m) =0.
(ii) x(0) = x(m) = 0.
(iii) x(0)=x"(m)=0
(iv) x'(0) =x(m) =0
2. Prove that the non-trivial solution of x" +[1=f(t)]x =0, wheretli_)rg f®)=0 are
oscillatory.
3. If tll—»n;) a(t) = comonotonically, then prove that all the non-trivial solution of x"” + a(t)x = 0

are oscillatory.
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Unit 14: Non Oscillatory and Principal Solution
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Objective

After studying this unit, you will be able to

¢  identify the concept of non-oscillatory solutions.
¢ understand about zeros of solutions.
¢ know about the disconjugate property.

e  determine about principal solutions of non -oscillatory equations.

Introduction

In this chapter, more behavior about the oscillatory and non-oscillatory equations with principal
solutions will be discussed.

14.1 Non-Oscillatory Equations

Anequation x” +a(t)x =0 (14.1.1)

Where a(t) is a real valued continuous function on t, <t < oo, is called non oscillatory if all the
nontrivial solutions of (14.1.1) has at most a finite number of zeros on ty, < t < c. On other hand, if
all the non-trivial solutions of (14.1.1) have an infinite number of zeros on ty < t < oo. In this case,
the non-trivial solutions are called oscillatory solutions.

The differential equationx’’ —x"" +11x' — 4x = 0 is non-oscillatory because its one non
trivial solution e has no zero in any interval t, < t < co.

Theorem 14.1.1: let x(t) be a solution of (14.1.1) existing on (0, ). If a(t) < Oon (0, ), then x(t)
has at most one zero.

Proof: Let t, be a zero of x(t). It is clear that x'(ty) is not zero for x(t) # 0. Without loss of
generality it may be assumed that x'(ty) > 0 so that x(t) is positive in some interval to right of t,.
Now a(t) < 0 implies that x"’ is positive on the same interval in which in turn implies that x’ is an
increasing function, and so, x does not vanish to right of ty. A similar argument shows that x hasno
zero to the left of t,. Thus x has at most one zero.
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= Remark: 14.1.2: Theorem 14.1.1 can also be seen as a corollary of Sturm’s Comparison
theorem. Consider the equation x" = 0. It is known that any nonzero constant function
x(t) = k is a solution. Thus, if this equation is compared with the Equation (14.1.1)
(observed that all the hypothesis of Sturm Comparison theorem are satisfied) then x(t)
vanishes at most once, for otherwise x(t) vanishes twice and x(t) necessarily vanishes at
least once by Sturm Comparison theorem. So x(t) canot have more than one zero.

o From Theorem 14.1.1 the question arises, if a(t) > 0 on (0, ) is the equation (14.1.1)

o oscillatory?

Theorem 14.1.3: Let a(t) be continuous and positive on (0, ) with

I a(s)ds = oo. (14.1.2)
Also assume that x(t) is any solution of (14.1.1) existing for(t) = 0. Then, x(t) has infinite zeros in
(0,0).

Proof: Assume, on the contrary, that x(t) has only a finite number of zeros in (0, ). Then there
exists a point ty > 1 such that x(t) does not vanish on [tg, ).

Without loss of generality it can be assumed that x(¢) > 0 forall t > ¢,. Thus,

x'(t) -
0

v(t) = +m,t =

is well defined. It now follow that
v'(t) = —a(t) — v2(¢).
Integration of the aboveleads to
t t
v(t) — v(ty) = —f a(s)ds —f v2(s)ds.
to to

The condition (14.1.2) now implies that there exists two constants A and T such that v(t) < A(< 0) if
t = T since v2(¢) is always non-negative and

t

v(t) < v(ty) — | als)ds.
to

This means that x'(t) is negative for large t. Let T > t, be so large that x'(T) < 0. Then on
[T, o], notice that x(t) > 0,x'(t) < 0 and x"'(t) < 0. But

t
J- x"(s)ds = x'(t) — x'(T).
T

Integrating once again it is seen that
x(t) —x(T) =x'"(T)&-T),t =T = t,. (14.1.3)

Since x'(T) is negative, the right hand side of (14.1.3) tens to —oo ans t — oo while the left hand side
of (14.1.3) either tends to finite limit (because x (t) is finite) or tends to 4o (in case x(t) — o0, as t -
o). Thus, in either case a contradiction is reached. So the assumption that x(t) has a finite number
of zero in (0, ) is false. Hence x(t) has finite number of zeros in (0, ), which completes the proof.

Theorem 14.1.4: If all non-trivial solutions of (14.1.1) are oscillatory and b(t) is continuous with
b(t) > a(t) onty < t < oo, then all the nontrivial solutions of

y'+b)y =0 (14.1.4)
are oscillatory. On the other hand if some of the trivial solutions of (14.1.4) are non-oscillatory and
b(t) = a(t), then some non-trivial solutions of (14.1.1) must be non-oscillatory.

Proof: Let x(t) and y(t) be non-trivial solution of (14.1.1) and (14.1.4) respectively. Also suppose
x(t) is an oscillatory solution of (14.1.1) and t;and t, be any two consecutive zeros of x(t), then by
Sturm Comparison theorem there exists one zero t; on y(t) between tjand t,. Also x(t) is an
oscillatory solution of (14.1.1).
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= x(t)has infinite number of zeros on ty <t < co. These two assertion implies that y(t) has
infinitely many zero on t, <t < co.Hence y(t) is oscillatory solution of (14.1.4) while x(t) and y(t)
are arbitrary solutions of (14.1.1) and (14.1.4) respectively. This proves the first part of the theorem.

For the second part, let y(t) is non-oscillatory solution of (14.1.1), then y(t) has finite number of
zeros on tyg<t<oo. But by Sturm Comparison theorem, we know that between any two
consecutive zeros of x(t) there exists a zero of y(t). This implies that x(t) has finite number of zero
on tg <t < oo ie. x(t) is non-oscillatory solution of (14.1.1). This proves the second part of the
theorem.

Example14.1.5: Show that non trivial solution of x” + [1 + f(¢)]x = 0, where tlirrcl)0 f =0
are oscillatory or non-oscillatory.
Proof: Given tlim f(@®) = 0 this implies that for sufficiently large t,, we have
lf(O] < eforallt > t,
S>—ce<ft)<e>1—-e<f()< 1+¢
Choose ¢ = é, wegetl+f(t) = % forallt > t_0.
Note that all the solutions of the differential equation x" + %x = 0 be oscillatory.

Thus by special case of Strum Comparison theorem, all the nontrivial solutions of x" 4 [1+
f(®©]x = 0 must be oscillatory.

14.2 Number of zeros

Now we discuss the problems to determine the number of zero of a nontrivial solution of the
general second order differential equation

[p@®Ox']+qOx=0 (14.2.1)

Where p(t) and g(t)are continuous functions on some interval [a,b].

14.3 Prufer’s transformation

Theorem 14.2.1: Let x(t) be a non-trivial solution of the general second order differential equation
(14.2.1) on [a, b]. If we use the transformation

2 — 42 2,12 — -1*
pe =x%+p°x'4;¢ =tan o~ (14.2.2)

Then the equation (14.2.1) reduces to

¢ = (t)cos 2¢ + q(t) sin? ¢ (14.2.3)
p'=— (q( t) — E)p sing cos¢ (14.2.4)
Proof: By simplifying relation (14.2.2), we get
p? =x%+x?%cot’?’¢p = x =psin¢p (14.2.5)
and
px’' = xcot ¢ = px’' = pcos¢ (14.2.6)
Now differentiating (14.2.2) with respect t, we get

= 1 px?—x(x) px"?-xq)x

142" (px')? (px')? + x2

(px')?

12 _q(t)x? .
= ’”‘P# Using (14.2.1) and (14.2.2)
(t) —cos? ¢ + q(t) sin? ¢, Using (14.2.5) and (14.2.6)

1 [Zxx +2px’ (px") ]

andp’ = Nraroa [ p(t)cos ¢ — p cospq(t) x]usmg (14.2.1) and (14.2.6)
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1

m) p sing cos¢

=—(q(t)—

Hence the result gets proved.

Theorem 14.2.2: Suppose in differential equation (14.2.1),p(t) > 0 andgq(t) are continuous on [a, b]
and x(t) is a non-trivial solution of (14.2.1). Also let x(t) has exactly n zero at

t=1t1,tp, e ,tn Where t; < ty < t3 wwee e < tpon [a,b].

If ¢(t) is a function defined by (14.2.1), then

>kn if ty <t<b
<kmifa<t<t

bt = ko and $(0) {

Proof: If t = t,t5, .. v ... ,ty are the zeros of x(t), then from ¢ = tan™?! ﬁ

It follows that

¢ () = 0 (mod matt =t (k =1,2,3, oo e ., ).
Thus for these values of t, we have
o
¢ = s >0 (14.2.7)

From continuity of ¢(t), equation (14.2.7) implies that ¢(t) is increasing in some neighbourhood of
the points t = t, (k= 1,2,3, .......,n).

Henceif ¢ (t*) = nn for some t* € [a,b], it follows that ¢ (t) = nr forall t € (t*, b].

Also if ¢(t*) < nm, then ¢(t) < nm for all t € [a, t*). This proves the theorem.

14.4 Principal solutions

A homogeneous, linear second order equation with real-valued coefficient functions defined on an
interval ] is said to be oscillatory on J if one (and/or every) real-valued solution (#0) has infinitely
many zeros on ]J. Conversely, when every solution (#0) has at most a finite number of zeros on J, it
is said to be non-oscillatory on J. In the latter case, the equation is said to be disconjugate on J if
every solution ((#0)) has at most one zero on J. If (t = w) is a (possibly infinite) endpoint of ] which
does not belong to (t = w) , then the equation is said to be oscillatory at (t = w) if one (and/or
every) real-valued solution (#0) has an infinite sequence of zeros if one (and/or every) real-valued
solution (#0) has infinitely many zeros on J. Conversely, when every solution (#0) has at most a
finite number of zeros on J, it is said to be non-oscillatory on J. In the latter case, the equation is said
to be disconjugate on J if every solution (#0) has at most one zero on J. If (t = w) is a (possibly
infinite) endpoint of ] which does not belong to ], then the equation is said to be oscillatory at (t =
w) if one (and/or every) real-valued solution (#0) has an infinite sequence of zeros clustering at t =
w. Otherwise it is called non-oscillatory att = w.

Theorem14.3.1: Let p(t)> 0, q(t) be real-valued, continuous functions on a t-interval J. Then
[p@®x']"+qOx=0 (14.3.1)

is disconjugate on J if and only if, for every pair of distinct pointsty, t; € Jand arbitrary numbers
Uy, U, there exists a unique solution u = u*(t)of of (14.3.1) satisfying

u*(t) = wpandu*(t,) = uy; (14.3.2)

or, equivalently, if and only if every pair of linearly independent solutions u(t)&v(t)of (14.3.1)
satisfy

u(ty)v(ty) —ult)v(ty) #0 (14.3.3)
for distinct points t;,t, € J.

Proof: Let u(t), v(t)be a pair of linearly independent solutions of (14.3.1). Then any solution u*(t))
is of the form u* = c;u(t) + c,u(t).This solution satisfies (14.3.2) if and only if

ciu(ty) + cov(ty) = uy, crulty) + cpv(ty) = u,.

These linear equations for ¢;,c;have a solution for all u, u,if and only if (14.3..3) holds. In addition,
they have a solution for all u, u,if and only if the only solution of

LOVELY PROFESSIONAL UNIVERSITY



Unit 14: Non Oscillatory and Principal Solution

cu(ty) + cov(ty) = 0, cqu(ty) + cpv(ty) =0
is ¢1,=c, = 0; i.e,, if and only if the only solution u*(t) of (14.3.1) with two zeros t = t;, t,is u*(t) =
0.

Definition 14.3.2: Let p(t) > 0, q(t) be real-valued and continuous on an interval J. Then(14.3.1) is
non- oscillatory on J if and only if every pair of linearly independent solutions u(t) and v(t) of
(14.3.1) satisfy

f—dt < oo
p@ (Jul? + lvl?)

Furthermore, (14.3.1) is disconjugate on J if and only if

jb dt
lel . () (W? + v?) <m

for every pair of real-valued solutions u(t), v(t) satisfyingp(u'v— uv’) # Oand every interval
[a,b] cJ.

If J is a half-open interval, say = a<t< w(< w) and (14.3.1) is non-oscillatory at t = w, then
(14.3.1) hasreal-valued solutions u(t) for which fooo dt/pu? is convergent and solutions for which it is
divergent. The latter type of solution will be called a principal solution of (14.3.1) att = w.

Theorem 14.3.3: Let p(t) > 0, q(t) be real-valued and continuous on an interval ] = a < t < w(< w).
And such that (14.3.1) is non- oscillatory at t = w.then there exists a real-valued solution u = uy (t)
of (14.3.1)which is uniquely determined up to a constant factor by any one of the following
conditions in which u; () (0 denotes an arbitrary real-valued solution linearly independentof uy(t):

(@) U, Uy satisfy

80, dast - 1434

wo > last oo (14.3.4)
(ii) U, Uy satisfy

dat b at

fp(t)ug(t) < oo and|c| fa DD (14.3.5)
(iii) if aT € ] exceeds the largest zero, if any, ofug (t)and ifu; (T) # 0 thenu, (t) has no zero

on T <t < w according as

Y Yoot s Yo (14.3.6)

Uy Up U Uo

holds att = T; in particular (14.3.6) holds for all t € ] near w.

It is understood that in (14.3.4) and (14.3.5) only t-values exceeding the largest zeros, if any,uy, uy
are considered. A solution uy(t) satisfying one (and/or) all of the conditions (i), (i), (iii) will be
called a principal solution of (14.3.1) (at t = w ). A solution u(t) linearly independent of u,(t) will be
termed a nonprincipal solution of (6.1) (att = w). In view of (14.3.4), (14.3.5), the terms "principal" and
"nonprincipal" might well be replaced by "small" and "large." The expressions "small," "large" will
not be used in this context because of the relative nature of these terms. Consider, e.g., the.
equations u" —u =0, u"=0and atu" + % =0 for t = 1. Examples of principal and nonprincipal

solutions at att = co for the first equation are u = etand u = et; for the second, u =1 and u =t; for

the third u = traandu = t2 logt. The proof of (ii) will lead to the following;:

Corollary 14.3.4: Assume the conditions of Theorem 14.3.2. Letu = u(t) # 0 be any real-valued
solution of (14.3.1) and let t = T exceed its last zero. Then

t d
u’l(t) = u(t) f’[‘ p(S):Z(S)

(14.3.7)
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is a nonprincipal solution of (14.3.1)on T <t < w . If, in addition, u(t) is anonprincipal solution of
(14.3.1), then

ds
p(s)uz(s)

uo(t) = u(®) J;° (14.3.8)

is a principal solution on T < t < w.

Proof of Theorem 14.3.3 and Corollary 14.3.4

On (i).Let u(t), v(t) be a pair of real-valued linearly independent solutions of (14.3.1) such that
pwv—uv')=c#0. (14.3.9)

If Texceeds the largest zero, if any, of v(t), then (14.3.9) is equivalent to

u ! c
(;) = 0, (14.3.10)
for T <t < w. Hence u/v is monotone on this t-range and so
iy 20
C= ll_l)’[(}) s (14.3.11)

Exists if C = +o0 = is allowed.

It will be shown that u, v can be chosen so that C = 0in (14.3.11). If thisis granted and if u(t) is
calledu,(t), then (i) holds. In fact, a solutionu, (t)is linearly independent of u,(t) if and only if it is
of the form u,; (t) = cou(t) + c;v(t)and ¢; # 0 in which case, C =0 implies that [C; + 0(D)]v(t) =
cou(t) + civ(t) thus uy(t) = 0(uy) as t - w.

If C = + o in (14.3.11) and if u,v are interchanged, then (14.3.11) holdswith C=0.If |C| < oo and if
u(t) — Cv(t) is renamed u(t), then (14.3.9)still holds and (14.3.11) holds with C = 0. This proves (i).

On (ii).Note that (14.3.10), (14.3.11) give

c u(t) J;w ds

=20 T pevie)

Whether or not |C|=oor |C| <oco.If u, vis a pair ug, u;, so thatC =0, then first part of (14.3.5)
holds. If u, v is a pair ug, uy, so thatC = oo, then second part of (14.3.5) holds.

On Corollary 14.3.4: Note that if u(t) is a solution of (14.3.1) and u(t)# 0forT <t < w, then (14.3.7)
defines a solution u, (t) linearly independent ofand that the same is true of (14.3.6) when the
integral is convergent.

On (iif). Since uy(t), u; (t)can be replaced by —ug(t), —u, (t)respectively, without affecting the zeros
of uy (t)or the inequalities (14.3.6), it can be supposed that

uy(t) > 0forT < t < w and u, () > 0. (14.3.12)
Multiplying (14.3.6) by uo(T)uy(T) > 0 shows that the case (14.3.9), where (u, v) = (u1, v1) holds
with ¢ <0 or ¢ > 0 according as (14.3.6) holds.

Hence % — too as t - ooaccording as (14.3.6) holds. Since u; (T)/uy(T) >0 and, by the Sturm

Uo
separation theorem, u; has at most one zero on T <t < w, the statement concerning the zeros of
won T < t < w follows.

It remains to show that property (iii) is characteristic of a principal solution; i.e., if uq(t)has the
property (iii) for every solution u,(t)linearly independent of uy(t), thenuy(t) is a principal
solution. In particular (14.3.6) holds for t(€ J)near w. Consequently |uq(t)| < const. |u,(t)| for t -
w.This is a contradiction if uy(t)is not a principal solution and u, (¢t)is chosen to be a principal
solution.

Summary

e  The behaviour ofnon-oscillatory solutions arediscussed.
e  The zeros of the solutions are determined with the help of Puffer’s transformation.

e The relation between the zeros of solution and oscillatory behaviour.
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o  The discongugate properties are explained.
e The Principal solutions of non-oscillatory equation elaborated with the help of derived

results.

Keywords

e  Zeros of solution

¢ Non oscillatory equation
e Oscillatory equation

e Discongugate

e Principal solutions

Self Assessment

The differential equation x’"" —x"" + 11x' — 4x = 0 is
Oscillatory equation

Non-oscillatory equation

Non-linear equation

None of these

SEeE S

The differential equation x’" —9x = 0 is
Oscillatory equation

Non-oscillatory equation

Non-linear equation

None of these

SEeI-ES

The differential equation x"" +4x = 0 is
Linear equation

Non-oscillatory equation

Non-linear equation

None of these

SEeE S

o

If some of trivial solution of x” 4+ a(t)x = 0 are non-oscillatory and b(t) = a(t), then

some non-trivial solutions of x"" + b(t) x = 0 must be
Oscillatory equation

Non-oscillatory equation

Non-linear equation

None of these

on Wy

Which of the following is non-oscillatory equation?
x'"+etx=0

X"+ (t+eHx=0

x"—(t—sint)x =0,t =0

None of these

oNw» o

If q(t) < 0 and u(t) is a non-trivial solution of equation u'"’ (t) + q(®)u(t) = 0 then
u(t) hasat most one zero

u(t) has at least one zero

u(t) has more one zero

None of these

ONw o

N

If some of non-trivial solution of x" +a(t)x = 0 are oscillatory and b(t) = a(t), then

some non-trivial solutions of x'" + b(t) x = 0 must be
Oscillatory equation
Non-oscillatory equation

© >
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C. Non-linear equation
D. None of these

8. The non-trivial solution of the differential equation x" + k(t)x = 0 can vanish more than

once in the interval [a,b] if

A k() =0
B. k(®)=<0
C. k@®=0
D. None of these
9. The Euler equation x"’ + f—zx = 0 is non -oscillatory if
A k<3
i
B. k==
1
C. k= Z
D. None of these
10. The equation x" — L x= 0, t>1is
logt
A. Oscillatory equation
B. Non-oscillatory equation
C. Linear equation
D. None of these
11. The equation is called disconjugate if
A. Every solution (# 0) has atleast one zero.
B. Every solution (# 0) has at most one zero.
C. Every solution (# 0) has no zero.
D. None of these
12. The non-oscillatory equation is known as
A. Conjugate
B. Disconjugate
C. Stable
D. None of these

13. The equation (p(t)u')'+ q()u = 0 is discojugate if for every pair of distinct point tq,¢;

has
A. Every pair of linearly independent solution
B. Every pair of linearly dependent solution
C. Every pair of constant solution
D. None of these
14. A pair of solutions u and v on distinct point ¢4, t;are L.Iif
A u(t)v(ty) +v(tul(t) #0
B. u(ty)v(ty) —v(t)u(ty) =0
C. u(t)v(ty) —v(t)u(t;) # 0
D. None of these
15. The non-oscillatory divergent solution is called
A. Non principal solution
B. Principal solution
C. Permanent solution
D. None of these
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Unit 14: Non Oscillatory and Principal Solution

Answers for Self Assessment

1 B 2 B 3 A 4 B 5 C
6 A 7. A 8 B 9 A 10. B
11. B 12. A 13. C 14. B 15. B

Review Questions

1. Checkfor the following equations are oscillatory and non-oscillatory :

(i) tx' +3=0

(ii) x"+x"/t+x=0

(i) tx"" + (1 —t)x' 4+ nx = 0,n is a constant (Laguerre’s equation)
(iv) x'"— 2tx' 4+ 2nx = 0,n is a constant (Hermite’s equation)

) tx" + (2n — 1x' + tx = 0,n is a constant

(vi) t2x" + ktx' + nx = 0, k,n, are constants.

L.!] Further Readings

1. Earl A Coddinton and Norman Levinson (2017).Theory of Ordinary Differential
Equations, McGraw Hill.

2.P. Hartman (1964), Ordinary Differential equations, Johan Wiley.

3. Shair Ahmad and Rama Mohan Rao (2014), Theory of Ordinary Differential Equations,
East West Press Private Limited.

4.5 G Deo, V Lakshmikantham and V Raghvendra (2013), Ordinary Differential Equations,
McGraw Hill Education (India) Private Limited.
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WWW

https:/ /onlinecourses.nptel.ac.in/noc21_ma09/preview

https:/ /infocobuild.com/education/audio-video-
courses/ mathematics/OrdinaryPartialDifferentialEquations-IIT-Roorkee/lecture-01.html
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