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Expected Learning Outcomes 

After studying this unit, you will be able to 

• understand about the different types of differential equations. 

• analyze in the form of an explicit form, preferably in the form of elementary functions. 

• find the qualitative property of the differential equation. 

•  understand the need of an initial value problem.  

 

Introduction 

Most dynamical systems-physical, social, biological, and engineering-are are often conveniently 
expressed in differential equations. Such equations can provide insight into a system's behaviour if 
they represent the various important factors governing the system. For instance, when a system is 
known to perform efficiently over a certain range of input, the solution of the differential equation 
governing the system over the interval is an important consideration in understanding its behavior.  

This unit introduces the basic concept to define all kinds of differential equations, which can further 
help study the more behavior or different type of differential equations.  

 

1.1 Notation and definition 

In our discussion, the independent variable is always treated as real and is denoted by t. Further, 
the dependent variables, u for scalar equations and x for the vector-valued equations, as also all the 
functions are assumed to be real. However, the theory developed in this chapter can, with minor 
modifications, be extended to the complex case. 

Let R be the set of all real numbers, and I be an open interval on the real line R, that is, 𝐼 =
{𝑡: 𝑡𝜖𝑅, 𝑟1 < 𝑡 < 𝑟2}, where 𝑟1and 𝑟2 are any two fixed points in 𝑅. Also, let 𝑅𝑛 denote the real 𝑛 
dimensional Euclidean space with elements x =  (t, x1 , x2, … … . . . . , xn) or (t, x). 

We shall often use 𝑅 instead of 𝑅1.  Let 𝐵 be a domain, i.e. an open-connected set in 𝑅𝑛+1, and 
𝐶[𝐵, 𝑅𝑛] be a class of functions defined and continuous on B, taking values in 𝑅𝑛.  

When 𝑓 is a member of this class, we shall write 𝑓𝜖𝐶[𝐵, 𝑅𝑛]. 

Definition 1.1.1 An ordinary differential equation of the n-th order and of form 

F(t, u, u’, u’’, … … … . , u(n)) = 0       (1.1.1) 
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where u(n) is the nth derivative of the unknown functions 𝑢 with respect to 𝑡 and 𝐹 is defined in 

some subset of 𝑅𝑛+2, expressed relation between the (𝑛 + 2)- variables t, u, u’, u’’, … . . u(n) . Because of 
its implicit nature, (1.1.1) may represent a collection of differential equations.  

 

Example 1.1.2: The implicit equation u’3 −  3t2u’2 + 3uu’ = 0  leads to three equations, 

namely, u’ = 0, u’ =  (3t2 + (9 t2 − 12u)
1

2)/2, u’ =  (3t2 − (9 t2 − 12u)
1

2)/2. 

To avoid ambiguity the implicit equation (1.1.1) may exhibit, we shall assume that this equation is 
solvable for un; then, it can be written in the form    un =

 g(t, u, u’, u’’, … … … . . , u(n−1))      (1.1.2) 

where 𝑔 is a given function defined on 𝐵.  

 

If 𝑔 is linear in u, u’, u’’, … … … . , un−1,  then the differential equation (1.1.1) is called linear; 
otherwise, it is referred to as nonlinear. 

Definition 1.1.3 A function φ(t)  is called a solution of (1.1.2) on r1 < t < r2 if φ(t)  is defined and n-
times differentiable on r1 < t < r2  and satisfies  

φn (t) =  g(t, φ(t), φ’(t), φ’’(t), … … … . . , φn−1 (t)),      𝑡𝜖(𝑟1, 𝑟2). 

 
Example 1.1.4: The functions u1(t)  = t2 and u2(t) =

1

t
  are the solution of the differential 

equation u’’ = 2u/t2, t > 0. Similarly, the functions u1(t)  = 1, u2(t)  = cost t  and u3(t)  =
sint are the solutions of u’’’ + u’ = 0  for all 𝑡. 

 

The aim of the study of an ordinary differential equation is to find an explicit form, 
preferably in the form of elementary functions. In the absence of an explicit form, one 
needs to study the behavior of solutions by available analytical methods.  

 

Before looking for a solution or any qualitative properties, we want to know the class or 
group in which the equations belong to.  

Classification based on the dependent variable: linear or nonlinear 

Classification based on condition: Initial value problem or boundary value problem 

Initial value problem  

We begin with the first-order scalar differential equations of the form 

𝑢′ = 𝑔(𝑡, 𝑢),         (1.1.3) 

Where 𝑔 is a real-valued continuous function on 𝐼 × 𝑅. Equation (1.1.3) is termed linear if the 
function 𝑔(𝑡, 𝑢) is linear in u; otherwise, it is called nonlinear.  

We shall deal first with the elementary properties of the solutions of (1.1.3). 

Definition 1.1.5: (General solution) A solution of a differential equation is said to be a general 
solution if it includes all the solutions of the differential equation. 

In order to gain familiarity with differential equations and their solution, we start with linear 
equations of the form 

𝑢′ = 𝑎(𝑡)𝑢 + 𝑏(𝑡),         (1.1.4) 

Where 𝑎(𝑡) and 𝑏(𝑡) are continuous on 𝐼.  

 

Example 1.1.6: As a special case of (1.1.4), consider the equation  

𝑢′ = 𝑡𝑢 + 2𝑡.        (1.1.5) 

It can be easily verified that the function 𝑢(𝑡) = 𝑐𝑒𝑡2/2 − 2,    (1.1.6) 

Where c is an arbitrary constant, satisfy (1.1.5) for al 𝑡 in 𝑅. Since all the solutions of (1.1.5) can be 
obtained from (1.1.6) by assigning suitable values to 𝑐, (1.1.6) is the general solution of (1.1.5). 
Further, for each fixed value of  𝑐, (1.1.6) represents a curve in the (t,u)-plane and, if 𝑐 is arbitrary, it 
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represents infinitely many curves. The totality of these curves is known as a one-parameter family 
of curves and c is the parameter of this family. Such curves are also called the integral curves of 
(1.1.5). 

 

For most problems is science and engineering, we are interested not in a general solution 
but only in a particular solution satisfying a given initial condition. Determining a 
particular solution is equivalent to picking out a specific integral curve from the one-
parameter family. This can be achieved by prescribing an initial condition, namely, at some 
𝑡 = 𝑡0 the solution 𝑢(𝑡) must have a pre-assigned value 𝑢0, that is  

𝑢(𝑡0) = 𝑢0.         (1.1.7) 

A differential equation equipped with an initial condition is said to form an initial value problem. 
For example, (1.1.3) with the initial condition (1.1.7) is an initial value problem. 

In the next, we shall confine our study to initial value problems. 

Definition 1.1.7:  A real-valued function 𝑢(𝑡)define on 𝐼 is said to be a solution of the initial value 
problem (1.1.3), (1.1.7) on 𝐼 if 

(i) 𝑢′(𝑡)exists for 𝑡 ∈ 𝐼; 

(ii) 𝑢(𝑡0) = 𝑢0, 𝑡0 ∈ 𝐼; 

(iii) The points (𝑡, 𝑢(𝑡))𝐼 × 𝑅, 𝑡 ∈ 𝐼; and 

(iv) 𝑢′(𝑡) = 𝑔(𝑡, 𝑢), 𝑡 ∈ 𝐼. 

It should be noted that nonlinear differential equations differ linear from ones. For instance, there 
are several methods are available to solve the linear differential equations, but no such methods are 
available for nonlinear differential equations., in particular, determining their explicit solution is 
usually very difficult, if not impossible. Consequently, the methods that yield approximate solution 
or qualitative information about the solution of nonlinear equations are very useful. Further, the 
concept of general solution for linear equations differs from that for nonlinear equations. More 
precisely, a (first order) linear equations has only one general solution where as a nonlinear have a 
general solution as well as singular solutions. 

1.2  System of differential equations  

We shall consider a system of first-order differential equations of the form 

 𝑥1
′ = 𝑓1(𝑡, 𝑥1, 𝑥2, … … 𝑥𝑛)  

𝑥2
′ = 𝑓2(𝑡, 𝑥1, 𝑥2, … … . , 𝑥𝑛) 

. 

.          (1.2.1) 

𝑥𝑛
′ = 𝑓𝑛(𝑡, 𝑥1, 𝑥2, … … . , 𝑥𝑛) 

Where are f1, f2, … … ., fn given functions in some domain 𝐵 of (𝑛 + 1) − dimensional Euclidean 

space 𝑅𝑛+1 and 𝑥1, 𝑥2, … … 𝑥𝑛  are n- unknown functions.  

Definition 1.2.1 A set of n-functions 𝜑1, 𝜑2, … … . , 𝜑𝑛 defined on 𝐼 is said to be a solution of (1.2.1) on 

𝐼 if, for 𝑡 ∈ 𝐼,  

𝜑1
, (𝑡), 𝜑2

′ (𝑡), … … … 𝜑𝑛
′ (𝑡)  exists; 

the point (𝑡, 𝜑1(𝑡), 𝜑2(𝑡), … … , 𝜑𝑛(𝑡)) remains in 𝐵; and  

𝜑𝑖
′(𝑡) = 𝑓𝑖(𝑡, 𝜑1(𝑡), 𝜑2(𝑡), … … , 𝜑𝑛(𝑡)),     𝑖 = 1,2, … . , 𝑛 

Geometrically, this amount to saying that a solution of (1.1.2) is a curve in the (n+1)-dimensional 
region B with each point p on the curve and has the coordinates(𝑡, 𝜑1(𝑡), 𝜑2(𝑡), … … , 𝜑𝑛(𝑡)), where 
𝜑𝑖

′(𝑡)is the 𝑖 𝑡ℎ  component of the tangent vector to the curve in the direction 𝑥𝑖. When 𝑛 = 1, this 
interpretation is clear, and thus the curve in B defined by any solution of (1.2.1) is again a solution 
curve. 

An 𝑛 𝑡ℎ order differential equation of the form (1.1.2) may also be treated as a system of the type 
(1.2.1). To see this, let 
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𝑢 = 𝑢1, 𝑢′ = 𝑢2, … … . . , 𝑢(𝑛−1) = 𝑢_𝑛 . 

Then, (1.1.2) is equivalent to  

 𝑢𝑖
′ =  𝑢𝑖+1, 𝑖 = 1,2, … … , 𝑛 − 1, 

 𝑢𝑛
′ = 𝑔(𝑡, 𝑢1, 𝑢2, … . . , 𝑢𝑛).  

This set of equations is indeed of the form (1.2.1).  

 

Example 1.2.2.: In particular, consider the second-order differential equation 

 𝑢′′ + 𝑢′2 = 𝑔(𝑡, 𝑢),                                                                                          (1.2.2) 

where 𝑔 is a given function. Setting 𝑢 = 𝑢1, 𝑢′ = 𝑢2,  we have the system  

 𝑢1
′ = 𝑢2, 𝑢2

′ = −𝑢2
2 + 𝑔(𝑡, 𝑢1).       (1.2.3) 

This is a special case of (1.2.3) with n=2, 𝑓1(𝑡, 𝑢1, 𝑢2) = 𝑢2, and 𝑓2(𝑡, 𝑢1, 𝑢2) = −𝑢2
2 + 𝑔(𝑡, 𝑢1). 

It can be easily verified that (1.2.2) and (1.2.3) are equivalent. For this, let  𝜑 be a solution of (1.2.2) 
on 𝐼. Then, 𝑢1 =  𝜑(𝑡), 𝑢2 =  𝜑′(𝑡) is a solution of (1.2.3) on 𝐼 since  

  𝑢1
′ =  𝜑′ = 𝑢2, 

𝑢2
′ =  𝜑′′ = −𝜑′2 + 𝑔(𝑡, 𝜑) = −𝑢2

2 + 𝑔(𝑡, 𝑢1). 

Conversely, let (𝜑1, 𝜑2) be a solution of (1.2.3) on 𝐼. Then 𝑢1 =  𝜑1(𝑡), that is the first component, is a 
solution on (1.2.2) on 𝐼 since  

𝑢′′ = 𝜑1
′′ = (𝜑1

′ )′ = 𝜑2
′ = −𝜑2

2 + 𝑔(𝑡, 𝜑1) = −𝑢2
2 + 𝑔(𝑡, 𝑢1). 

 Vector-matrix notation 

A system of equations of the form (1.2.1) can always be written as a single vector-valued equation 
by introducing the n-dimensional column vector   

𝑥 = [

𝑥1

𝑥2

⋮
𝑥𝑛

] = 𝑐𝑜𝑙(𝑥1, 𝑥2, … . . 𝑥𝑛). 

Let 𝑥(𝑡)be the vector-valued function defined by  

𝑥(𝑡) = 𝑐𝑜𝑙(𝑥1(𝑡), 𝑥2(𝑡), … . . , 𝑥𝑛(𝑡)). 

Similarly, let 𝑓 be the vector-valued function given by 

𝑓(𝑡, 𝑥) = [

𝑓1(𝑡, 𝑥1, 𝑥2, … . . , 𝑥𝑛)

𝑓2(𝑡, 𝑥1, 𝑥2, … … . 𝑥𝑛)
⋮

𝑓𝑛(𝑡, 𝑥1, 𝑥2, … … . . 𝑥𝑛)

] = 𝑐𝑜𝑙(𝑓1(𝑡, 𝑥), 𝑓2(𝑡, 𝑥), … … … . . , 𝑓𝑛(𝑡, 𝑥)). 

Then, (1.2.1) can be expressed as  

𝑥′ = 𝑓(𝑡, 𝑥).         (1.2.4) 

By a solution of (1.2.4) on 𝐼 we mean a vector valued function 𝜑 with components 𝜑1, 𝜑2, … … , 𝜑𝑛 

which satisfies 

(𝑡, 𝜑(𝑡)) = (𝑡, 𝜑1(𝑡), 𝜑2(𝑡), … … … … , 𝜑𝑛(𝑡)) ∈ 𝐵,             𝑡 ∈ 𝐼 

𝜑′(𝑡) = 𝑓(𝑡, 𝜑(𝑡)),                                                                      𝑡 ∈ 𝐼. 

Equation (1.2.4) is usually referred to as a nonautonomous differential system. A differential system 
of the form  

𝑥′ = 𝑓(𝑥),         (1.2.5) 

In which the right-hand side does not involve the independent variable 𝑡, is said to be autonomous. 
An important feature of (1.2.5) is that if 𝜑(𝑡) is a solution of (1.2.5) on 𝑟1 < 𝑡 < 𝑟2, then 𝜑(𝑡 − 𝑡0) is a 
solution on 𝑡0 + 𝑟1 < 𝑡 < 𝑡0 + 𝑟2. Further, it is sometimes convenient to represent the solutions of 
(1.2.5) in the (𝑡, 𝑥) − space as curves in the x-space with t as a curve parameter. Such curve are 
called trajectories and the space that contains these is known as the phase space of (1.2.5). 
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Linear case 

Consider a system of first-order linear differential equations of the form 𝑥1
′ =

𝑎11(𝑡)𝑥1+. . … . +𝑎1𝑛(𝑡)𝑥𝑛 + 𝑏1(𝑡) 

𝑥2
′ = 𝑎21(𝑡)𝑥1+. . … . +𝑎2𝑛(𝑡)𝑥𝑛 + 𝑏2(𝑡)  

. 

 . 

 𝑥𝑛
′ = 𝑎𝑛1(𝑡)𝑥1+. . … . +𝑎𝑛𝑛(𝑡)𝑥𝑛 + 𝑏𝑛(𝑡) 

or   𝑥𝑖
′ =  ∑ 𝑎𝑖𝑗(𝑡)𝑥𝑗 + 𝑏𝑖(𝑡),            𝑖 = 1,2, … … , 𝑛,𝑛

𝑗=1      (1.2.6) 

where 𝑎𝑖𝑗(𝑡), 𝑖, 𝑗 = 1,2,3, … . . , 𝑛, 𝑏𝑖(𝑡), 𝑖 = 1,2, … , 𝑛, are real-valued functions defined on I, and 𝑥(𝑡) =

(𝑥1(𝑡), … … . . , 𝑥𝑛(𝑡)) is an unknown i-dimensional vector-valued function. Let 𝐴(𝑡) = (𝑎𝑖𝑗(𝑡)) be 

𝑛 × 𝑛 matrix and B(t) be an n-vector (𝑏1(𝑡), 𝑏2(𝑡), … … . , 𝑏𝑛(𝑡)).  Then, (1.2.6) can be written as  

𝑥′ = 𝐴(𝑡)𝑥 + 𝐵(𝑡).         (1.2.7) 

This is a particular case of (1.2.6) with 𝑓(𝑡, 𝑥) = 𝐴(𝑡)𝑥 + 𝐵(𝑡), 𝐴(𝑡)𝑥 being the usual matrix-vector 
product. Equation (1.2.7) is referred to as a non-homogeneous linear differential system, but when 
𝐵(𝑡) = 0, it is called a homogeneous linear system. 

An important special case of (1.2.7) is the n-th order linear differential equation 

𝑢(𝑛) + 𝑎1(𝑡)𝑢(𝑛−1) + ⋯ + 𝑎𝑛(𝑡)𝑢 = 𝑏(𝑡).      (1.2.8) 

This is of the type (1.2.6). To see this, let 

𝑢 = 𝑢1, 𝑢′ = 𝑢2, … , 𝑢(𝑛−1) = 𝑢𝑛. 

Then, (1.2.8) is equivalent to  

𝑢𝑖
′ = 𝑢𝑖+1,      𝑖 = 1,2, … … . , 𝑛 − 1, 

𝑢𝑛
′ = −𝑎𝑛(𝑡)𝑢1 − 𝑎𝑛−1(𝑡)𝑢2 − ⋯ − −𝑎1(𝑡)𝑢𝑛 + 𝑏(𝑡). 

When n=3, (1.2.8) takes the form (1.2.7) with 

𝑥 = [

𝑢1

𝑢2

𝑢3

] ,     𝐴(𝑡) = [
0 1 0
0 0 1

−𝑎3(𝑡) −𝑎2(𝑡) −𝑎1(𝑡)
]            𝐵(𝑡) =  [

0
0

𝑏(𝑡)
]. 

 

Summary 

• The implicit and explicit form of first-order to higher-order differential equations are 

defined. 

• All the types of differential equations with examples are explained. 

• Different kinds of solutions are elaborated.  

• Discussion on the need of an initial value problem was done. 

• System of first-order differential equations are explained 

• Conversions relations from nth order differential equation to a system of first-order 

differential equations are derived.  

Keywords 

• Implicit form  

• Explicit form 

• General higher order differential equation 

• Initial value problem 

• System of first-order differential equations 

• Conversion from higher order to system of first order 
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Self-assessment  

Choose the most suitable answer from the options given with each question. 

Question 1: The solution of differential equation which includes all the solutions is called 

(a)Arbitrary solution  

(b) General solution   

(c) Singular solution    

(d) Particular solution 

 

Question 2: The differential equation  
00 )(),,(' utuutfu ==  

where xtAutf )(),( =
 

represent as  

(a) Autonomous and homogenous 

(b) Autonomous and non-homogenous 

(c) Nonautonomous and homogenous 

(d) Nonautonomous and non-homogenous 

Question 3: 
If

0).,,.........',,( )()1( == − nn uuuutF is an implicit equation where
)(nu

 
is the n-th 

order derivatives with respect to t then 
)(nu

 
can be expressed explicit  as 

(a)
).,,.........',( )1()( −= nn uuugu

  

(b) 
......),.........',()( uugu n =

  

(c) 
).,,.........',,( )1()( −= nn uuutgu

  
(d) none of these 

Question 4 
The solution 

ttu −= 1)(1

 of equation 
1)2(,2/))4((' 2/12 −=++−= uuttu

 is 

(a)General solution   

(b) Particular solution    

(c) Singular solution
 
   

(d) None of these 

Question 5: 
For differential equation 

1)2(,2/))4((' 2/12 −=++−= uuttu
the function 

4
)(

2

2

t
tu −=  is  

(a) General solution   

(b) Particular solution    

(c) Singular solution
 
   

(d) None of these
 

Question 6: The initial value problem  

.2,1)1(;12
1

2

2

=







=+=+−

=tdt

du
utu

dt

du

dt

ud

 

reduces to the system of the differential equation of  

(a)  first-order linear homogeneous 

(b) first-order linear non-homogeneous 

(c) first-order nonlinear homogeneous 
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(d) first-order nonlinear non-homogeneous 

Question 7: The first order linear system in the vector-matrix form of the following initial value 
problem represents as 

.4,1)0(;82
0

2

2

−=







==−+

=t

t

dt

du
ueu

dt

du

dt

ud

 

(a) a square matrix of order 2 

(b) a rectangular matrix of order 2 X 3 

(c) a square matrix of order 3X2 

(d) a square matrix of order 3 

Question 8: The mth order linear differential equation in u can be written as a system of linear 
equations in y by using 

(a) 
1+= ii yy  

(b) 
ii yy =

+1
 

(c) 
ii yy =  

(d) 1−= ii yy
 

Answers:  

1 b 2 c 3 c 4 b 

5 c 6 b 7 a 8 a 

Review Questions 

Q1.Write the following scalar differential equations in the vector matrix form: 

0sinh732 =+++ tuuuu

 
Q2. Write the following scalar differential equations in the vector matrix form: 

0sincos)4( =+−+ tuutuu  

Q3. Reduce the following differential equation in vector matrix form: 

.1)1(,0)1(,1)1(;0 =−=−=−=−+− yyyyeyytye tt

 
Q4. Reduce the following differential equation in vector matrix form: 

.3)(,2)(,1)(,0165423 2 −=−=−==+−+−+  yyyttyyyy  

Q5. Express the following system of scalar differential equation in the vector matrix form 

.1)0(,0)0(,0)0(,2,452 ===−−=++= yxxyxyyxx  

 
Further Readings 

Earl A Coddinton and Norman Levinson (2017). Theory of Ordinary Differential Equations, 
Mc Graw  Hill.  

P. Hartman (1964), Ordinary Differential equations, Johan Wiley. 

Shair Ahmad and Rama Mohan Rao (2014), Theory of ordinary Differential Equations, East 
West Press Private Limited. 

 

https://onlinecourses.nptel.ac.in/noc21_ma09/preview 
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Unit 02: Existence and uniqueness 

CONTENTS 

Expected Learning Outcomes 

Introduction 

2.1 Initial value problem for first-order linear differential equation 

2.2 Initial value problems for first-order non-linear differential equation 

Existence in the large and uniqueness of the solutions with examples 

Summary 

Keywords 

Self-assessment 

Review Questions 

Further Readings 

 

Expected Learning Outcomes 

After studying this unit, you will be able to 

• identify the concept of initial value problem to find the solution. 

• understand the continuity concept through Lipschitz condition 

• know about the Picard’s approximation of solutions 

• apply basic theorems on the convergence of solutions of initial value problems.  

• find the condition of existence and uniqueness of solution for an IVP 

 

Introduction 

A scientist and an engineer can use differential equations in his work more confidently if he is 
conversant with the theory of existence, uniqueness, and continuation of solutions. Similarly, a 
mathematician who is familiar with these properties of solutions is better equipped to develop 
further mathematical methods for examining the behavior of solutions of differential equations. 

This unit introduces the existence, uniqueness, and continuation of solutions. Besides the classical 
methods, fixed-point techniques are employed in proving some of the existence and uniqueness of 
theorems.  

 

The questions that now arise are: Does there exist a solution to the initial value problem 
of the form (1.1.3), (1.1.7)? If yes, is the solution unique? The answers to these questions 
are provided by the existence and uniqueness theorems. 

2.1 Initial value problem for first-order linear differential equation 

We now state a fundamental theorem giving sufficient conditions for the existence and uniqueness 
of solutions of initial value problems for first-order linear differential equations. 

Theorem 2.1.1:  Let 𝑎(𝑡) and 𝑏(𝑡) be continues on the intervals 𝐼 and let 𝑡0 ∈ 𝐼. Then, there exists a 
unique solution 𝑢(𝑡) to the initial value problem (1.1.4), (1.1.7) i.e. 𝑢′ = 𝑎(𝑡)𝑢 + 𝑏(𝑡), 𝑢(𝑡0) = 𝑢0 on 𝐼. 

Proof Let u(t) be a function defined by  

𝑢(𝑡) = 𝐾(𝑡) [𝑐 + ∫ 𝑏(𝑠) exp (−∫ 𝑎(𝜏)𝑑𝜏
𝑠

𝑡0
)

𝑡

𝑡0
𝑑𝑠],     (2.1.1) 

8

Dr. Preety Kalra, Lovely Professional University



Theory of differential equations  

 LOVELY PROFESSIONAL UNIVERSITY   

Notes 
where 𝐾(𝑡) = exp⁡[∫ 𝑎(𝑠)𝑑𝑠

𝑡

𝑡0
] 

and 𝑐 is an arbitrary constant. Since 𝑎(𝑡) is continuous on 𝐼, 

exp⁡[∫ 𝑎(𝑠)𝑑𝑠
𝑡

𝑡0
]  

is a nonzero differentiable function on 𝐼. Thus, the equation 𝑢′ = 𝑎(𝑡)𝑢 + 𝑏(𝑡), can be written as  

[𝑢⁡𝑒𝑥𝑝 (−∫ 𝑎(𝑠)𝑑𝑠
𝑡

𝑡0
)]

′
= 𝑏(𝑡) exp [−∫ 𝑎(𝑠)𝑑𝑠

𝑡

𝑡0
].     (2.1.2) 

Since b(t) and  

exp [− ∫𝑎(𝑠)𝑑𝑠

𝑡

𝑡0

] 

are continuous, the right-hand side of equation (2.1.2) is integrable; hence, equation (2.1.1) follows. 
The existence of a solution 𝑢(𝑡) of (1.1.3) can be verified by substituting (2.1.1) in (1.1.3). Finally, the 
initial condition (1.1.7) determines the constant 𝑐 uniquely. 

 

Remark 2.1.2 The fundamental theorem guarantees not only the existence of a unique 
solution of the given initial value problem but also the validity of this solution on the 
whole interval 𝐼where the function 𝑎(𝑡) and 𝑏(𝑡) are continuous. 

The example that follows illustrates another important feature of initial value problems for linear 
equations. 

 
Example 2.1.3: let us consider the initial value problem  

𝑢′ = −
𝑢

𝑡
+ 2, 𝑡 > 0,       (2.1.3) 

𝑢(1) = 2         (2.1.4) 

and look for a solution in the interval containing t=1. Now, since the coefficients in equation (2.1.3) 
are continuous, except at t=0, theorem (2.1.1) guarantees the existence of a unique solution of (2.1.3) 
(2.1.4) at least in the interval0 < 𝑡 < ∞. The general solution of (2.1.3) is 𝑢(𝑡) = 𝑡 + 𝑐/𝑡, where 𝑐 is an 
arbitrary constant. Thus, the solution of the initial value problem (2.1.3) (2.1.4) is 𝑢(𝑡) = 𝑡 + 1/𝑡. It 
should be noted that this solution becomes infinite as 𝑡 → 0. This is not unusual since 𝑡 = 0 is a point 
discontinuity of⁡𝑎(𝑡). On the other hand, if we slightly change the initial condition to 𝑢(𝑡) = 𝑡 and it 
behaves properly as 𝑡 → 0. 

 

We thus conclude that the solutions of the initial value problem (1.1.3), (1.1.7) are not 
necessarily discontinuous, i.e., they do not necessarily break down, at those points where 
the functions 𝑎(𝑡) and 𝑏(𝑡) are discontinuous. But if at all the solutions break down, this 
would be only at those points where 𝑎(𝑡) and 𝑏(𝑡) are discontinuous and not at the points 
where these functions are continuous. Therefore, the qualitative behavior of the solutions 
can be assessed to a certain extent by a mere identification of the point of discontinuity, if 
any, of 𝑎(𝑡) and 𝑏(𝑡). 

2.2 Initial value problems for first-order non-linear differential equation 

It should be noted that the linear value problem (1.1.4), (1.1.7) has s unique solution on the whole 
interval |𝑡 − 𝑡0| ≤ 𝑎 where the functions 𝑎(𝑡)⁡and 𝑏(𝑡) are continuous whereas the nonlinear initial 
value problem (1.1.3), (1.1.7) has a unique solution only in the interval |𝑡 − 𝑡0| ≤ ℎ. In other words, 
there is no apparent relationship between the region where the function 𝑔(𝑡, 𝑢) is continuous and the 
interval of existence of the solution. This is illustrated by the well-known example that follows. 

 

Example 2.2.1: the function 𝑢(𝑡) = 1
1 − 𝑡⁄  is the solution of the non-linear initial value 

problem  𝑢′ = 𝑢2, 𝑢(0) = 1. 

Obviously, the solution becomes infinite at 𝑡 = 1,⁡and hence is valid for −∞ < 𝑡 < 1. Thus the right-
hand side of the differential equation does not indicate the interval of existence of the solution. 
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Further, if we modify the initial condition to 𝑢(0) = 2, then the solution is 𝑢(𝑡) = 2

1 − 2𝑡⁄ , that is, the 

solution becomes infinite at 𝑡 = 1

2
. Therefore, the points of discontinuity of the solution may move 

about depending upon the initial condition. This behavior of the solutions of nonlinear initial value 
problems is also peculiar. 

We now state a theorem giving sufficient conditions for the existence and uniqueness of solutions of 
initial value problems for first-order non-linear differential equations. 

Theorem 2.2.2:  If 𝑔(𝑡, 𝑢)and 
𝜕𝑔

𝜕𝑢
 are continuous functions of 𝑡 and 𝑢 in the region𝑅(𝑎, 𝑏): |𝑡 − 𝑡0| ≤

𝑎, |𝑢 − 𝑢0| ≤ 𝑏, 𝑎 > 0, 𝑏 > 0, then there exists a unique solution 𝑢(𝑡) to the initial value problem 
(1.3.1), (1.3.7) on some interval |𝑡 − 𝑡0| ≤ ℎ ≤ 𝑎. 

Before proving Theorem 2.2.2, we give certain facts which we shall use subsequently. 

Lemma 2.2.3: If a function 𝑔(𝑡, 𝑢) is continuous in 𝑅(𝑎, 𝑏), then the initial value problem (1.1.3), (1.1.7) 
is equivalent to the integral equation 

𝑢(𝑡) = 𝑢0 + ∫ 𝑔(𝑠, 𝑢(𝑠))𝑑𝑠⁡
𝑡

𝑡0
 for 𝑡⁡𝑖𝑛⁡|𝑡 − 𝑡0| ≤ 𝑎.     (2.2.1) 

Proof: If 𝑢(𝑡) is a solution of (1.1.3) i.e. 𝑢′ = 𝑔(𝑡, 𝑢)  satisfying (1.1.7) i.e. 𝑢(𝑡0) = 𝑢0, then by integrating 
(1.1.3) between the limits 𝑡0 and 𝑡, we obtain (2.3.1). Conversely, let 𝑢(𝑡) be a solution of (2.2.1). By 
setting. 𝑡 = 𝑡0 in (2.3.1), we obtain 𝑢(𝑡0) = 𝑢0. Further, since 𝑔(𝑡, 𝑢) is continuous, the right-hand side 

of (2.2.1) is differentiable; hence, by differentiating (2.2.1), we get  𝑢′ = 𝑔(𝑡, 𝑢(𝑡)). 

Definition 2.2.4: A real-valued continuous function 𝑢(𝑡) defined on the interval |𝑡 − 𝑡0| ≤ 𝑎 if the 

points (𝑡, 𝑢(𝑡)) ∈ 𝑅(𝑎, 𝑏) for all 𝑡 in |𝑡 − 𝑡0| ≤ 𝑎 and in 𝑢(𝑡) satisfies (2.2.1) on  |𝑡 − 𝑡0| ≤ 𝑎 . 

Definition 2.2.5: If 𝑔(𝑡, 𝑢(𝑡)) is continuous in the closed, bounded region 𝑅(𝑎, 𝑏),⁡then 𝑔 is bounded 

there. That is, there exists a positive number 𝑀 such that |𝑔(𝑡, 𝑢)| ≤ 𝑀 for (𝑡, 𝑢) ∈ 𝑅(𝑎, 𝑏). 

Now, let ℎ = min⁡(𝑎, 𝑏/𝑀) and consider the interval 𝐽: |𝑡 − 𝑡0| ≤ ℎ and a smaller rectangle D: |𝑡 − 𝑡0| ≤
ℎ, |𝑢 − 𝑢0| ≤ 𝑏. 

Lipschitz conditions 

Lemma 2.2.6: If  
𝜕𝑔

𝜕𝑢
 is continuous in 𝐷, then there exists a positive constant 𝐾 such that  

|𝑔(𝑡, 𝑢1) − 𝑔(𝑡, 𝑢2)| ≤ 𝐾|𝑢1 − 𝑢2|,⁡⁡⁡⁡(𝑡, 𝑢1), (𝑡, 𝑢2) ∈ 𝐷.⁡     (2.2.2) 

Proof: Assume that (𝑢1 > 𝑢2). From the mean value theorem, it follows that  

𝑔(𝑡, 𝑢1) − 𝑔(𝑡, 𝑢2) = ⁡
𝜕𝑔(𝑡, 𝑢∗)

𝜕𝑢
(𝑢1 − 𝑢2), 

Where 𝑢∗ lies in the interval 𝑢2 < 𝑢∗ < 𝑢1. Taking absolute value on both sides of the equation, we 
have  

|𝑔(𝑡, 𝑢1) − 𝑔(𝑡, 𝑢2)| = |
𝜕𝑔(𝑡,𝑢∗)

𝜕𝑢
| ⁡|𝑢1 − 𝑢2|. 

Since  
𝜕𝑔(𝑡,𝑢)

𝜕𝑢
 is continuous, and hence bounded, in If 𝐷,⁡there exists a positive number 𝐾 such that 

|
𝜕𝑔(𝑡,𝑢∗)

𝜕𝑢
| ≤ 𝐾. Thus,  

|𝑔(𝑡, 𝑢1) − 𝑔(𝑡, 𝑢2)| ≤ 𝐾⁡|𝑢1 − 𝑢2| for⁡(𝑡, 𝑢1), (𝑡, 𝑢2) ∈ 𝐷. 

Definition 2.2.7: A function 𝑔 satisfying inequality (2.2.2) for all (𝑡, 𝑢1), (𝑡, 𝑢2)⁡in the region, 𝐷 is said 
to satisfy a Lipschitz condition in 𝐷, and 𝐾 is called the Lipschitz constant. 

 

Example 2.2.8: The function 𝑔(𝑡, 𝑢) = 𝑡𝑢2 satisfies a Lipschitz condition on the rectangle 
𝑅 given  by |𝑡| ≤ 1, |𝑢| ≤ 1 with Lipschitz constant 2, since, for all (𝑡, 𝑢) in R, we have  

|
𝜕𝑔

𝜕𝑢
| = 2|𝑡||𝑢|2 ≤ 2. 

Whereas, 𝑔 does not satisfy a Lipschitz condition on the strip |𝑡| ≤ 1, |𝑢| ≤ ⁡∞. 

For this case |
𝜕𝑔

𝜕𝑢
| = 2|𝑡||𝑢|2 → ∞ as |𝑢| ≤ ⁡∞. 
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From this example, we observe that the satisfaction of the Lipschitz condition depends not only on 
the rule of the function but also on the domain where it is defined. 

 

Example 2.2.9: The function 𝑔(𝑡, 𝑢) = 𝑢
2

3 does not satisfy a Lipschitz condition on the 
rectangle R, given by |𝑡| ≤ 1, |𝑢| ≤ 1. 

Since for all (𝑡, 𝑢)in R, we have  

|
𝜕𝑔

𝜕𝑢
| =

2

3
|𝑢−

1

3| → ∞ as 𝑢 → 0. 

 
Exercise 1 

Q1. By computing appropriate Lipschitz constants, show that the following functions satisfy 
Lipschitz condition on the sets 𝐷 indicated: 

(a) 𝑔(𝑡, 𝑢) = 4𝑡2 + 𝑢2, on 𝐷: |𝑡| ≤ 1, |𝑢| ≤ 1. 

(b) 𝑔(𝑡, 𝑢) = 𝑡2 cos2 𝑢 +⁡𝑢⁡𝑠𝑖𝑛2𝑡, on 𝐷: |𝑡| ≤ 1, |𝑢| < ∞. 

(c) 𝑔(𝑡, 𝑢) = 𝑡3𝑒−𝑡𝑢
2
, on 𝐷: |𝑡| ≤ 1, |𝑢| < ∞ and on 𝐷: 0 ≤ 𝑡 ≤ 𝑎, |𝑢| < ∞. (here a>0 is a constant) 

Q2. Show that the following functions do not satisfy the Lipschitz condition in the region indicated  

(a) 𝑔(𝑡, 𝑢) =, sin 𝑢 𝑡⁄ , 𝑔(0, 𝑢) = 0 on 𝐷: |𝑡| ≤ 1, |𝑢| < ∞. 

(b) 𝑔(𝑡, 𝑢) =
𝑒𝑡

𝑢2
, 𝑔(𝑡, 0) = 0,on 𝐷: |𝑡| ≤ 2, |𝑢| ≤

1

2
. 

 

It is integrating to know that if  
𝜕𝑔

𝜕𝑢
 is continuous in 𝐷, then 𝑔⁡satisfies the Lipschitz 

condition in 𝐷, but the converse is not true. That is, there are certain function 𝑔⁡satisfies 
the Lipschitz condition in a region but do not have continuous partial derivatives with 
respect to 𝑢⁡in that region. For example, the function 𝑔(𝑡, 𝑢) = 𝑡|𝑢| satisfies the Lipschitz 
condition in a region containing (0,0), but its partial derivatives with respect to 𝑢 does not 
exist for 𝑢 = 0. 

Successive approximation or method of iteration or Picard’s method 

In what follows, we introduce a technique, called the method of successive approximation (also known 
as the method of iteration or Picard’s method), which is helpful in constructing a solution of the integral 
equation (2.2.1). This method requires a sequence of functions defined as  

𝑢0(𝑡) = 𝑢0  

𝑢1(⁡𝑡) = 𝑢0 +⁡∫ 𝑔(𝑠, 𝑢0(𝑠))𝑑𝑠
𝑡

𝑡0
  

.          (2.2.3) 

. 

𝑢𝑛(⁡𝑡) = 𝑢0 +⁡∫ 𝑔(𝑠, 𝑢𝑛−1(𝑠))𝑑𝑠
𝑡

𝑡0
  

Where the functions , 𝑢0(𝑡), 𝑢1(𝑡),…… . , 𝑢𝑛(𝑡) are the successive approximation to a solution of (2.2.1)., 
and thus to a solution of the initial value problem (1.1.3), (1.1.7). 

 

Example 2.2.10: Consider the IVP 𝑢′ = 𝑢2, 𝑢(0) = 1. The equation is equivalent to integral 

equation 𝑢(𝑡) = 1 + ∫ 𝑠2𝑑𝑠
𝑡

𝑡0
. 

The first approximation is ⁡𝑢0(𝑡) = 1. Now 

𝑢1(𝑡) = 1 + ∫ 𝑢0
2(𝑠)𝑑𝑠

𝑡

𝑡0
= 1 + ∫ 1𝑑𝑠

𝑡

0
= 1 + 𝑡, 

𝑢2(𝑡) = 1 + ∫ (1 + 𝑠)2𝑑𝑠
𝑡

𝑡0
= 1 + ∫ (1 + 𝑠)2𝑑𝑠

𝑡

0
= 1 + 𝑡 + 𝑡2 +

𝑡3

3
,  

𝑢3(𝑡) = 1 + ∫ (1 + 𝑠 + 𝑠2 +
𝑠3

3
)
2

𝑑𝑠
𝑡

𝑡0
= 1 + 𝑡 + 𝑡2 + 𝑡3 +

2𝑡4

3
+

𝑡5

3
+

𝑡6

9
+

𝑡7

63
.  
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All  
𝑢𝑛(𝑡), n=0,1,2,….are polynomials. 

Observe that the IVP can be solved explicitly by the method of separation of variables. Here 

𝑢(𝑡) =
1

1−𝑡
 is a solution existing on −∞ < 𝑡 < 1. 

 

Example 2.2.11: Compute the first five approximations of IVP  

𝑢′ = 𝑡𝑢⁡, 𝑢(0) = 1⁡ and find the limit of the successive approximations. 

In this problem, the initial point is 𝑡0 = 0, the initial value 𝑢0 = 1, and the rule of the function g is 
𝑔(𝑡, 𝑢) = 𝑡𝑢. Hence the integral equation corresponding to this IVP is given by 

𝑢 = 1 + ∫𝑠𝑢𝑑𝑠

𝑡

0

. 

Therefore, the successive approximations of this problem are defined by  

𝑢0(0) = 1, 𝑢𝑘+1(𝑡) = 1 + ∫ 𝑠𝑢𝑘(𝑠)𝑑𝑠,
𝑡

0
⁡𝑘 = 0,1,2, ……… 

Putting k=0,1,2,……, in the preceding relations, we obtain 

𝑢1(𝑡) = 1 + ∫ 𝑠𝑢0(𝑠)𝑑𝑠
𝑡

0
= 1 + ∫ 𝑠𝑑𝑠

𝑡

0
= 1 +

𝑡2

2
  

𝑢2(𝑡) = 1 + ∫ 𝑠𝑢1(𝑠)𝑑𝑠
𝑡

0
= 1 + ∫ 𝑠(1 +

𝑠2

2
)𝑑𝑠

𝑡

0
= 1 +

𝑡2

2
+

𝑡4

8
= 1 +

𝑡2

2
+

1

2!⁡
(
𝑡2

2
)
2

  

𝑢3(𝑡) = 1 + ∫𝑠𝑢2(𝑠)𝑑𝑠

𝑡

0

= 1 + ∫𝑠(1 +
𝑠2

2
+
𝑠4

8
)𝑑𝑠

𝑡

0

= 1 +
𝑡2

2
+

1

2!⁡
(
𝑡2

2
)

2

+
1

3!
(
𝑥2

2
)

3

 

In general, for k=0,1,2,……, it can be established by mathematical induction that 𝑢𝑘(𝑡) is given by  

𝑢𝑘(𝑡) = 1 +
𝑡2

2
+

1

2!⁡
(
𝑡2

2
)

2

+⋯…… . . +
1

𝑘!
(
𝑥2

2
)

𝑘

 

We may recognize 𝑢𝑘(𝑡) as the kth partial sum for the series expansion of the function  

𝑢(𝑡) = 𝑒
𝑡2

2  

We know that this series converges for all real 𝑡. This means that  

𝑢𝑘(𝑡) → 𝑢(𝑡) = 𝑒
𝑡2

2  as 𝑘 → ∞. 

Also, it is easy to see that the function   

𝑢(𝑡) = 𝑒
𝑡2

2  is a solution to the given IVP. 

 
Exercise 2 

Q1. Compute the first three successive approximations for the solution of the following equations 

(i) 𝑢′ = 𝑡𝑢, 𝑢(0) = 1; (iii) 𝑢′ = 𝑢 1 + 𝑡2⁄ ⁡, 𝑢(0) = 1; 

(ii) 𝑢′ = 𝑒𝑢 , 𝑢(0) = 0; 

We will now prove that the sequence of functions ⁡{𝑢𝑛(𝑡)} defined by (2.2.3) converges on J to a limit 
function 𝑢(𝑡) which represents a solution of (2.2.1). To do this, we need the result that follows. 

Lemma 2.2.12: Assume that 𝑔 satisfy is continuous on D. Then, the successive approximations 

⁡{𝑢𝑛(𝑡)} defined by (2.2.3) exist as continuous functions on ⁡𝐽 and ⁡(𝑡, 𝑢𝑛(𝑡)) ∈ 𝐷 for 𝑡 ∈ 𝐽 given by 
|𝑡 − 𝑡0| ≤ ℎ = min⁡(𝑎, 𝑏/𝑀). 

Proof: Let 𝑡 ∈ 𝐽. Since 𝑢0(𝑡) = 𝑢0,⁡it is obvious that 𝑢0(𝑡) exists and is continuous on ⁡𝐽. In view of 
(2.2.3) and the continuity of 𝑔 on D, it follows that all the successive approximations 
𝑢1(𝑡), 𝑢2(𝑡), . . …… . , 𝑢𝑛(𝑡) exist and are continuous on 𝐽. We now show that (𝑡, 𝑢𝑛(𝑡)) ∈ 𝐷. For ∈ 𝐽 , 
we have 
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|𝑢1(𝑡) − 𝑢0| = ⁡ |𝑢0 +⁡∫ 𝑔(𝑠, 𝑢0(𝑠))𝑑𝑠

𝑡

𝑡0
⁡− ⁡𝑢0| ≤ ⁡∫ |𝑔(𝑠, 𝑢(𝑠))|𝑑𝑠

𝑡

𝑡0
  

  ≤ 𝑀⁡|𝑡 − 𝑡0| ≤ 𝑀ℎ ≤ 𝑏.  

The remaining proof runs by induction. Let us assume, for 𝑡 ∈ 𝐽,⁡that  

|𝑢𝑘(𝑡) − 𝑢0| ≤ 𝑏,⁡⁡⁡⁡𝑘 = 1,2,3, …… , 𝑛 − 1. 

This implies⁡(𝑡, 𝑢𝑛−1(𝑡)) ∈ 𝐷, and hence |𝑔(𝑡, 𝑢𝑛−1(𝑡))| ≤ 𝑀. Therefore, for 𝑡 ∈ 𝐽, we obtain  

|𝑢𝑛(𝑡) − 𝑢0| = ⁡ |𝑢0 +⁡∫ 𝑔(𝑠, 𝑢𝑛−1(𝑠))𝑑𝑠
𝑡

𝑡0
⁡− ⁡𝑢0| ≤ ⁡∫ |𝑔(𝑠, 𝑢𝑛−1(𝑠))|𝑑𝑠

𝑡

𝑡0
  

  ≤ 𝑀⁡|𝑡 − 𝑡0| ≤ 𝑀ℎ ≤ 𝑏,  

|𝑡 − 𝑡0| ≤
𝑏

𝑀
, 

that is, 

(𝑡, 𝑢𝑛(𝑡)) ∈ 𝐷 for 𝑡 ∈ 𝐽. 

Hence (𝑡, 𝑢𝑛(𝑡)) will be in D if |𝑡 − 𝑡0| ≤ 𝑎 and |𝑡 − 𝑡0| ≤
𝑏

𝑀
., that is, if  

|𝑡 − 𝑡0| ≤ ℎ = min (𝑎,
𝑏

𝑀
). 

Remark 2.2.13:  In proving Lemma 2.2.11, a somewhat stronger result, namely,  

    |𝑢𝑛(𝑡) − 𝑢0| ≤ 𝑀⁡|𝑡 − 𝑡0|,  

has been obtained. Geometrically, this means that the graph of each function 𝑢𝑛(𝑡) lies in two 
triangular regions. 

Picard’s existence theorem 

 

In the course of proving the Theorem 2.2.2, we actually need the Lipschitz condition on 𝑔 

and not the strong property, that is, the continuity of 
𝜕𝑔

𝜕𝑢
. Therefore, the condition of 

Theorem 2.2.2 can be relaxed as follows. 

Theorem 2.2.14: If 𝑔(𝑡, 𝑢) is a continuous function of 𝑡 and 𝑢 in a closed, bounded region 𝑅(𝑎, 𝑏) and 
satisfies the Lipschitz condition in 𝑅, then there exists a unique solution 𝑢(𝑡) to the initial value 
problem (1.1.3), (1.1.7) defined on the interval 𝐽.  

Proof: To establish the convergence of the sequence of functions {𝑢𝑛(𝑡)}, we shall estimate the 
difference between the successive approximations. Let 𝑡 lie in the interval [𝑡0, 𝑡0 + ℎ]. 

Set 𝑣𝑛(𝑡) = (𝑢𝑛(𝑡) − 𝑢𝑛−1(𝑡)). 

For 𝑡 ∈ [𝑡0, 𝑡0 + ℎ], we have Lemma 2.2.12,  

|𝑣1(𝑡)| = |𝑢1(𝑡) − 𝑢0| ≤ 𝑀(𝑡 − 𝑡0)  and (𝑡, 𝑢0(𝑡)), (𝑡, 𝑢1(𝑡)) ∈ 𝐷. 

Since 𝑔 satisfy the Lipschitz condition in 𝐷, it follows that  

|𝑣2(𝑡)| = |𝑢2(𝑡) − 𝑢1(𝑡)| = ⁡ |∫ [𝑔(𝑠, 𝑢1(𝑠)) − 𝑔(𝑠, 𝑢0(𝑠))]𝑑𝑠
𝑡

𝑡0
|  

   ≤ ∫ |𝑔(𝑠, 𝑢1(𝑠)) − 𝑔(𝑠, 𝑢0(𝑠))|𝑑𝑠
𝑡

𝑡0
 

   ≤ 𝐾∫ |𝑢1(𝑠) − 𝑢0(𝑠)|𝑑𝑠
𝑡

𝑡0
= 𝐾∫ |𝑣1(𝑠)|𝑑𝑠

𝑡

𝑡0
 

   ≤ ⁡𝐾 ∫ (𝑠 − 𝑡0)𝑑𝑠
𝑡

𝑡0
= 𝐾𝑀

(𝑡−𝑡0)
2

2!
 

 Similarly,  

|𝑣3(𝑡)| ≤ ⁡𝐾2𝑀
(𝑡 − 𝑡0)

3

3!
 

A simple induction argument shows that, in general, for 𝑡 ∈ [𝑡0, 𝑡0 + ℎ], 

|𝑣𝑚(𝑡)| ≤ ⁡𝐾𝑚−1𝑀
(𝑡−𝑡0)

𝑚

𝑚!
, 𝑚 = 1,2, …… . . , 𝑛.    (2.2.4) 
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To see this, assume, for 𝑡 ∈ [𝑡0, 𝑡0 + ℎ],⁡that  

|𝑣𝑚−1(𝑡)| ≤ ⁡𝐾𝑚−2𝑀
(𝑡−𝑡0)

𝑚−1

(𝑚−1)!
, 𝑚 = 1,2,…… . . , 𝑛. 

Then, for 𝑡 ∈ [𝑡0, 𝑡0 + ℎ], we have 

|𝑣𝑛(𝑡)| = |𝑢𝑛(𝑡) − 𝑢𝑛−1(𝑡)| = ⁡ |∫ [𝑔(𝑠, 𝑢𝑛−1(𝑠)) − 𝑔(𝑠, 𝑢𝑛−2(𝑠))]𝑑𝑠
𝑡

𝑡0
|  

   ≤ ∫ |𝑔(𝑠, 𝑢𝑛−1(𝑠)) − 𝑔(𝑠, 𝑢𝑛−2(𝑠))|𝑑𝑠
𝑡

𝑡0
 

   ≤ 𝐾 ∫ |𝑢𝑛−1(𝑠) − 𝑢𝑛−2(𝑠)|𝑑𝑠
𝑡

𝑡0
= 𝐾∫ |𝑣𝑛−1(𝑠)|𝑑𝑠

𝑡

𝑡0
 

   ≤ 𝑀⁡𝐾𝑛−1 ∫
(𝑠−𝑡0)

𝑛−1

(𝑛−1)!
𝑑𝑠

𝑡

𝑡0
= 𝐾𝑛−1𝑀

(𝑡−𝑡0)
𝑛

𝑛!
. 

This establishes relation (2.2.4). The proof for 𝑡 ∈ [𝑡0 − ℎ, 𝑡0] is similar to that for 𝑡 ∈ [𝑡0, 𝑡0 + ℎ]. 
Hence, for 𝑡 ∈ 𝐽,⁡we have 

|𝑣𝑛(𝑡)| ≤ ⁡𝐾𝑛−1𝑀
|𝑡−𝑡0|

𝑛

𝑛!
≤ 𝑀𝐾𝑛−1 ℎ𝑛

𝑛!
.      (2.2.5) 

Now, consider an infinite series of the form 

𝑢0 + 𝑣1(𝑡) + 𝑣2(𝑡⁡) + ⋯… . . +𝑣𝑛(𝑡) + ⋯….     (2.2.6) 

The nth partial sum of this series is 𝑢𝑛(𝑡), that is,  

𝑢𝑛(𝑡) = 𝑢0 +⁡∑ 𝑣𝑚(𝑡).
∞
𝑚=1        (2.2.7) 

Therefore, the sequence { 𝑢𝑛(𝑡)} converges if and only if (2.2.6) also converges. 

From inequality (2.3.5), we have 

𝑢0 +⁡∑ |𝑣𝑚(𝑡)|
∞
𝑚=1 ⁡≤ 𝑢0 +𝑀∑

𝐾𝑚−1ℎ𝑚

𝑚!
∞
𝑚=1       (2.3.8) 

It follows from the ration test that the series on the right-hand side of (2.2.8) converges, and hence, 
by the comparison test, series (2.2.6) also converges (in fact, uniformly), on the interval 𝐽. Let the 
sum of series (2.2.6) be 𝑢(𝑡). The relation (2.2.7) gives 

lim
𝑛→∞

𝑢𝑛(𝑡) = 𝑢(𝑡). 

Finally, we show that the limit function 𝑢(𝑡) satisfies (2.2.1). Since 

𝑢𝑛(⁡𝑡) = 𝑢0 +⁡∫ 𝑔(𝑠, 𝑢𝑛−1(𝑠))𝑑𝑠
𝑡

𝑡0
. 

It follows that 

 𝑢(⁡𝑡) = 𝑢0 +⁡ lim
𝑛→∞

∫ 𝑔(𝑠, 𝑢𝑛−1(𝑠))𝑑𝑠
𝑡

𝑡0
. 

From the uniform convergence of 𝑢𝑛(𝑡) to 𝑢(𝑡) and continuity of the function 𝑔(𝑡, 𝑢),⁡we obtain 

𝑢(𝑡) = 𝑢0 +⁡∫ 𝑔(𝑠, 𝑢(𝑠))𝑑𝑠
𝑡

𝑡0
. 

This completes the proof of the existence of the solution 𝑢(𝑡).  

In order to ensure that this solution of the initial value problem (1.1.3),  (1.1.7). Then, the 
nonnegative function 𝑤(𝑡) = |𝑢(𝑡) − 𝑣(𝑡)| satisfies 𝑤(𝑡0) = 0,⁡and 

𝑤(𝑡) ≤ ⁡∫ |𝑔(𝑠, 𝑢(𝑠)) − 𝑔(𝑠, 𝑣(𝑠))|𝑑𝑠
𝑡

𝑡0

≤ 𝐾⁡∫ 𝑤(𝑠)𝑑𝑠
𝑡

𝑡0

 

or 
𝑑

𝑑𝑡
[𝑒−𝐾(𝑡−𝑡0) ⁡∫ 𝑤(𝑠)𝑑𝑠

𝑡

𝑡0
] ≤ 0.⁡ 

Integrating this inequality from 𝑡0 to 𝑡, we obtain 𝑤(𝑡) ≤ 0. 

This is incompatible with 𝑤(𝑡) ≥ 0 unless 𝑤(𝑡) = 0 on 𝐽. 
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2.3 Existence in the large and uniqueness of the solutions with examples 

 

Example 2.2.15: consider the IVP 𝑢′ = 𝑢2 + cos2 𝑡, 𝑢(0) = 0. We try to determine the 
largest interval of existence of its solution. Let R be the rectangle containing (0,0)  

𝑅: {(𝑡, 𝑢); 0 ≤ 𝑡 ≤ 𝑎, |𝑢| ≤ 𝑏, 𝑎 ≥
1

2
, 𝑏 > 0. } 

Clearly, |𝑔(𝑡, 𝑢)| = |𝑢2 + cos2 𝑡| ≤ 1 + 𝑏2 = 𝑀. 

The function 𝑔(𝑡, 𝑢) = 𝑢2 + cos2 𝑡 satisfies Lipschitz condition on R, Since |
𝜕𝑔

𝜕𝑢
| = |2𝑢| ≤ 2𝑏 = 𝐾. 

We find that 𝑢(𝑡) exists for 0 ≤ 𝑡 ≤ ℎ = 𝑚𝑖𝑛 (𝑎,
𝑏

1+𝑏2
). 

Observe that the maximum values of 
𝑏

1+𝑏2
 is 

1

2
. Hence ℎ =

1

2
, i.e. 𝑢(𝑡) exists on the interval 0 ≤ 𝑡 ≤

1

2
. 

 
Example 2.2.16: Consider the IVP 𝑢′ = 𝑢2, 𝑢(0) = 2. Let 𝑅 be the rectangle 

𝑅: {(𝑡, 𝑢); |𝑡| < 𝑎, |𝑢 − 2| ≤ 𝑏, 𝑎 > 0, 𝑏 > 0}. 

In 𝑅, |𝑔(𝑡, 𝑢)| = |𝑡2| ≤ (𝑏 + 2)2 = 𝑀 and the interval of existence of a solution is |𝑡| ≤ ℎ, where ℎ =

min (𝑎,
𝑏

(𝑏+2)2
) =

1

8
. Hence the solution of the IVP exists on the t-interval −

1

8
≤ 𝑡 ≤

1

8
. 

However, we observe that this IVP can be explicitly solved. Its solution is 𝑢(𝑡) =
2

1−2𝑡
. 

We find that 𝑢(𝑡) exists on −∞ < 𝑡 <
1

2
. This interval of existence is much larger than that obtained 

by the application of Picard’s method. 

 

Example 2.2.17: Consider the IVP 𝑢′ = 𝑡(1 + 𝑢), 𝑢(0) = −1. Let 𝑅 be the rectangle 

𝑅: {(𝑡, 𝑢); |𝑡| < 𝑎, |𝑢 + 1| ≤ 𝑏, 𝑎 > 0, 𝑏 > 0}. 

In 𝑅⁡|𝑔(𝑡, 𝑢)| = |𝑡(1 + 𝑢)| ≤ 𝑎(𝑏 + 2) = 𝑀⁡and the interval of existence of a solution is 

|𝑡| ≤ ℎ, where ℎ = min (𝑎,
𝑏

𝑎(𝑏+2)
). Hence the solution of the IVP exists on the t-interval 

|t|⁡≤ ℎ. 

However, we observe that this IVP can be explicitly solved. Its solution is 𝑢(𝑡) = −1⁡ 
which is independent of 𝑡. 

We find that 𝑢(𝑡) exists on |𝑡| ≤ ℎ.  

 

The Picard’s theorem assumes the Lipschitz condition. Can drop this condition?  

The answer is no. The following examples illustrate this point. 

Example 2.2.18:  In the case of IVP 

𝑢′ = {
2𝑢

𝑡
, 𝑡 > 0; 𝑢(0) = 0

0, 𝑡 = 0.
 

Here 𝑔(𝑡, 𝑢) = 2𝑢/𝑡 does not satisfy Lipschitz condition in any closed rectangle containing (0,0). 

The method of successive approximations shows that 𝑢𝑛(𝑡) = 0 for 𝑛 = 0,1,2,… .. 

Hence 𝑢(𝑡) = ⁡ lim
𝑛→∞

𝑢𝑛(𝑡) = 0. Yet the given equation possesses another solution 𝑢(𝑡) = 𝑡2existing on 

𝑡 > 0. 

 
Example 2.2.19: In the case of IVP  

𝑢′ = 4𝑢
3
4, 𝑢(0) = 0, 𝑡 ≥ 0, 

Again 𝑔(𝑡, 𝑢) = 4𝑢
3

4 fails to satisfy Lipschitz condition. Each successive approximation 𝑢𝑛(𝑡) = 0 
and hence 𝑢(𝑡) = 0 on [0,∞]. 
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We observe that 𝑢(𝑡) = 𝑡4 is yet another solution of the given IVP. In fact, 

𝑢𝑐(𝑡) = {
0, 0 ≤ 𝑡 ≤ 𝑐;

(𝑡 − 𝑐)4, 𝑐 ≤ 𝑡 < ∞;
 

For each real value of 𝑐 is a solution of the given IVP. Thus, we get uncountable solutions to the 
IVP. 

Summary 

• The concept of the initial value problem to find the solutions are discussed. 

•  Lipschitz condition is derived and elaborated with suitable examples. 

• Determine the Picard’s approximation of solutions and examples are solved. 

• The convergence of solutions of initial value problems was discussed.  

• The condition of existence and uniqueness of solution on an IVP is derived with examples. 

Keywords 

• Linear first-order differential equation  

• Non-Linear first-order differential equation 

• Lipschitz condition 

• Picard’s approximation 

• Existence and uniqueness of a solution 

 

Self-assessment  

Choose the most suitable answer from the options given with each question. 

Q1. The solution y(x) of the initial value problem
00 )(),,(' yxyyxfy == exists if 

a) ),( yxf is bounded and continuous in a closed region 

b)   ),( yxf is bounded only 

c) ),( yxf is continuous only in a closed region 

d) None of the above 

Q2. The solution y(x) of an initial value problem
00 )(),,(' yxyyxfy == unique if 

a) ),( yxf is continuous in R   

b) ),( yxf satisfy the Lipschitz condition in R 

c) ),( yxf is continuous and satisfy the Lipschitz condition in R 

d) None of the above 

Q3. For the initial value problem 0)0(,||' == yyy over the rectangle |x|<1, |y|<1 

a) At least one solution exists for all x in (-1,1) 

b) Only one solution exists for all x in (-1,1) 

c) No solution exists for all x in (-1,1) 

d) One solution exists over R 

Q4. For the initial value problem 1|1|,1|:|,1)0(,' −== yxRyyy  

a) A solution exists and unique in at least |x|<1/2 

b) A solution exists and unique in at least |x|<1/2 

c) A solution exists and unique in at least |x|>1/2 

d) A solution exists and unique in at least |x|>1/2  
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Q5. If ),( yxf and 

y

f



 be continuous in close region R, then initial value problem 

00 )(),,(' yxyyxfy == has 

a) A unique solution in [x0-h, x0+h) where h is a positive number 

b) A unique solution in [x0-h, x0+h] where h is a positive number 

c) A unique solution in (x0-h, x0+h] where h is a positive number 

d) A unique solution in (x0-h, x0+h) where h is a positive number 

Q6. A real value function Itu )(  be the solution of IVP 
00 )(),,(' utuutfu ==  if  

a) u’(t) exits for It
    

 

b) the points RItut ))(,(  

c) Both (i) and (ii) 

d) None of these 

Q7. If ug  /
 
is continuous in buuatt −− 00 , , then there exists a positive constant K such 

that  

a) 
( ) 2121 ,),( uuKutgutg −−

 

b) 
( ) 2121 ,),( uuKutgutg −−

 

c) 
( ) 2121 ,),( uuKutgutg −−

 

d) 
( ) 2121 ,),( uuKutgutg −−

 

Q8. The value of Lipschitz constant of initial value problem 1)0(,' 22 =+= uuutu on R:|t|< 2, 

|u-2|< 2 is  

a)12   (b) 10   (c) 8  (d) 14 

Q9. The maximum value of g of initial value problem 1)0(,' 22 =+= uuutu on R:|t|< 2, |u-2|< 

2 is.  

(a) 23  (b) 32   (c) 10  (d)8 

Q10. 
The value of Lipschitz condition on rectangle R indicated for 

1||,
2

1
|1:|;

2

cos
)(),( 2 −+= xtR

t
xxxtf

 

a) 3/2 

b) ½ 

c) 5/2 

d) 2 

Q11. Using Picard’s approximation method, the first iterates of the initial value problem  

 1)0(,2 =+= yyyy is 

(a) t21+  

(b) t21−  

(c) t+1  

(d) t−1  

Q12. Using Picard’s approximation method first iterates of the initial value problem  

 0)0(,1 2 =+= yyy  is 

(a) t+1  

(b) t−1  
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(c) t  

(d) t21−  

Q13. The first approximate solution of IVP 1)0(,' =+= yyxy by using Picard’s iteration method 

is 

(a) 2

1 1 xxy ++=  

(b) 2

1 1 xxy −+=  

(c) 
2

1
2

1

x
xy −−=  

(d) 
2

1
2

1

x
xy ++=  

Q14. The first Picard solution of IVP 1)0(,' =−= yyxy  is 

(a) 2

1 1 xxy +−=  

(b) 2

1 1 xxy −−=  

(c) 
2

1
2

1

x
xy +−=  

(d) 
2

1
2

1

x
xy −+=  

Q15. The function ||),( ututg = satisfies Lipschitz condition in region containing (0,0) but 

(a) Partial derivative of 
||),( ututg =
exist for 

0=u
  

(b) Partial derivative of 
||),( ututg =
does not exist for 

0=u
 

(c) Partial derivative of ||),( ututg = exist for 
Ru

 

(d) None of these 

 

Answers:  

1 a 6 c 11 a 

2 c  7 b 12 c 

3 a 8 a 13 d 

4 b 9 b 14 c 

5 b 10 a 15 b 

 

Review Questions 

1. 
Apply the method of iteration to the initial value problem 1)0(,' 22 =+= uutu and 

compute the first two approximations.
 

2. Show that the function ,),( 22 ytytf +=  defined in the rectangle byatR  ||,|:|

satisfies the Lipschitz condition. Find the Lipschitz constant. 

3. Show that the function ,),( 2yytf =  defined in the rectangle byatR  ||,|:|

satisfies the Lipschitz condition. Find the Lipschitz constant. 

4. Show that the function ),( ytf satisfies the Lipschitz condition on region R indicated and 

find the Lipschitz constant 
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,||,|:|;cossin),( byatRtyytytf +=  where a and b are real positive 

constants. 

5. Show that the function ),( xtf  satisfies the Lipschitz condition on rectangle R indicated 

and find the Lipschitz constant  

,2||,1|:|;),( = xtRSinxextf t  

+= ||,1|:|;sincos),( 222 xtRtxxtxtf  
6. 

The function f is given by ||),( 2 yxyxf =  

(i) 
Show that function f satisfies a Lipschitz condition on rectangle |x|<1, |y|<1. 

 

(ii) 
Show that y

f




does not exist at (x,0) if x ≠0.

 

7. Study the existence uniqueness of solutions of the following initial value problem

.1||,2|:|,0)0(),2/()321( 22' =++++= yxRyyxyxy      

where a and b are real positive constants. 

8. Show that the function ),( xtf  satisfies the Lipschitz condition on region R indicated and 

find the Lipschitz constant ,||,|:|;31),( 2 byatRtxxtf +=  

9. Show that the function 
xt

x

ex
xtf

t

cos2
1

3
),( 2

2

3

+
+

=
 satisfies the Lipschitz condition on 

strip  ||,|:| xatSa
 and find the Lipschitz constant  

10. Show that the existence of a solution for the initial value problem 

.2)1(

;0,2/'

=

+−=

x

ttxx

  

11. Study the existence of solutions to the initial value problem 

1)0(,32' 22 =+= yyxy over the rectangle |x|<1, |y-1|<1.  

 

 
Further Readings 

Earl A Coddinton and Norman Levinson (2017). Theory of Ordinary Differential Equations, 
Mc Graw  Hill.  

P. Hartman (1964), Ordinary Differential equations, Johan Wiley. 

 Shair Ahmad and Rama Mohan Rao (2014), Theory of Ordinary Differential Equations, East 
West Press Private Limited. 

S G Deo, V Lakshmikantham and V Raghvendra (2013), Ordinary Differential Equations, 
McGraw Hill Education (India) Private Limited. 

 
1 https://onlinecourses.nptel.ac.in/noc21_ma09/preview           

2 https://infocobuild.com/education/audio-video-

courses/mathematics/OrdinaryPartialDifferentialEquations-IIT-Roorkee/lecture-

01.html 
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Objectives 

After studying this unit, you will be able to 

• identify the concept of existence only but not uniqueness. 

• understand the concept of existence in a large interval. 

• know about the Asscoli-Arzela theorem. 

• apply basic theorems on the convergence of solutions of initial value problems. 

• find the condition of existence and uniqueness of solution on an IVP in a large interval. 

 

Introduction 

The theorem 2.2.14 is a local existence theorem, that is, it asserts the existence of a unique solution 
only on a sufficiently small interval|𝑡 − 𝑡0| ≤ ℎ. Also, its proof demands the Lipschitz condition on 
𝑔 even when only the existence of solutions without uniqueness is required. However, if 𝑔 does not 
satisfy the Lipschitz condition, it would still be possible to obtain the existence of solutions without 
uniqueness as shown by the results that follow.  

 

The Lipschitz condition is a sufficient, but not a necessary, condition for the uniqueness of 
solutions. For example, 𝑢(𝑡) ≡ 0 is the unique solution of the real-valued scalar differential 

equation 𝑢′ = −𝑡𝑢
1

3 passing through the point (0,0). Obviously 𝑔(𝑡, 𝑢) = −𝑡𝑢
1

3 does not 
satisfy the Lipschitz condition at any point where u=0. 

3.1 Existence theorem 

It is also not possible to prove the theorem for existence only not uniqueness by the method of 
iteration or Picard’s method as the successive approximations may not converge.  

 

This is probably so because the continuity of 𝑔 alone is not sufficient for the convergence of 
the approximations, as indicated by the familiar example as follows 

 

Example 3.1.1:Consider a function 𝑔 defined on the region 𝐷1 =  −∞ < 𝑡 ≤ 1,−∞ < 𝑢 < ∞ 
by 

𝑔(𝑡, 𝑢) =

{
 
 

 
 
0        𝑓𝑜𝑟 −∞ < 𝑡 ≤ 0,−∞ < 𝑢 < ∞
2𝑡             𝑓𝑜𝑟 0 ≤ 𝑡 ≤ 1,−∞ < 𝑢 < 0

2𝑡 −
4𝑢

𝑡
    𝑓𝑜𝑟 0 < 𝑡 ≤ 1, 0 ≤ 𝑢 < 𝑡2

−2𝑡          𝑓𝑜𝑟  0 < 𝑡 ≤ 1, 𝑡2 < 𝑢 < ∞
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The function 𝑔 is continuous and bounded by 2, on 𝐷1. Further, the successive approximations to 
the solution 𝑢 of 𝑢′ = 𝑔(𝑡, 𝑢) through the initial point (0,0), for 0 ≤ 𝑡 ≤ 1, are given by 

𝑢0(𝑡) = 0,  

𝑢2𝑘−1(𝑡) = 𝑡
2,       𝑘 = 1,2, ………,  

𝑢2𝑘(𝑡) = −𝑡
2,       𝑘 = 1,2,………. 

Thus, the successive approximations alternate between 𝑡2and −𝑡2, and hence do not converge. 

Since the function 𝑔 in an example, 3.1.1 guarantees the existence of a solution through the point 
(0,0). 

Moreover, as 𝑔 is monotonically non-increasing in 𝑢 for each fixed 𝑡 yields the uniqueness of the 
solution starting at (0,0) and proceeding to the right of the origin. However, it is clear that the 
method of iteration cannot be used to obtain this solution as the successive approximations do not 
converge. This illustrates that the continuity of 𝑔 plus the uniqueness do not imply the convergence 
of the successive approximations. On the other hand, it is also true that the convergence of the 
successive approximations does not imply uniqueness, as the following example shows. 

 

Example 3.1.2:consider the initial value problem 

𝑢′ = 4𝑢
3

4,     𝑢(0) = 0.        (3.1.1) 

Here, the successive approximations are all zero functions, and hence converge to the identically 
zero solution, i.e.  𝑢(𝑡) ≡ 0. The function 𝑢(𝑡) = 𝑡4 is also a solution of (3.1.1). Thus, this problem 

does not have a unique solution. Of course, this fact does not contradict Theorem (2.2.2) since 
𝜕𝑔

𝜕𝑢
=

3𝑢−
1

4 is not continuous or even defined at any point where 𝑢 = 0. Also, we can see that 𝑔 does not 
satisfy the Lipschitz condition when 𝑢 = 0. Thus, Theorem (2.2.14) to this initial value problem 
since 𝑔 is continuous in the whole (𝑡, 𝑢) −plane. 

 

Remark 3.1.3:The problem of uniqueness and convergence of successive approximations 
are logically independent. Nevertheless, the hypotheses of Theorem (2.2.2) are sufficient 
for proving this convergence. 

To prove the next theorem, we need the concept of the equicontinuous family of functions.  

Definition 3.1.4:A family of functions 𝐹 = {𝑓}defined on a real interval 𝐼 issaid to be 
equicontinuous on 𝐼if, for any given 𝜀 > 0, there exists a 𝛿 = 𝛿(𝜀) > 0 independent of 𝑓 ∈ 𝐹 and 
also of 𝑡, 𝑡1 ∈ 𝐼 such that |𝑓(𝑡) − 𝑓(𝑡1)| < 𝜀 whenever |𝑡 − 𝑡1| < 𝛿. 

 

Remarks 3.1.5:In the view of definition 3.1.4, it is true that 

(i) Any subset of an equicontinuous family is also equicontinuous; 

(ii) Each member of an equicontinuous family is a continuous function; 

(iii) A family of differentiable functions is equicontinuous at every point of the interval 𝐼 if 

their derivatives are uniformly bounded on 𝐼 (follow from the mean value theorem). 

Another important property of equicontinuous functions can be expressed as in the following 
lemma.  

Ascoli-Arzela Theorem 

Lemma 3.1.6: If F be a family of function bounded and equicontinuous at every point of an interval 
I. Then, every sequence of functions {𝑓𝑛} in 𝐹 contains a subsequence uniformly convergent on 
every compact subinterval of 𝐼. 

Proof: Let 𝐼 = [𝑎, 𝑏] ⊂ 𝑅 be a closed and bounded interval. If 𝐹 is an infinite set of function 𝑓: 𝐼 → 𝑅 

Which is uniformly bounded and equicontinuous, then there is a sequence 𝑓𝑛 of the element of 𝐹 
such that 𝑓𝑛converges uniformly on I. 
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Fix an enumeration {𝑥𝑖}𝑖∈𝑁 of rational number in 𝐼. Since 𝐹 is uniformly bounded, the set of points 
{𝑓(𝑥𝑖)}𝑓∈𝐹 is bounded, and hence by the Bolzano-Weierstrass theorem, there is a sequence {𝑓𝑛1} 

of distinct functions in 𝐹 such that {𝑓𝑛1(𝑥1)} converges. Repeating the same argument for the 

sequence of points {𝑓𝑛2(𝑥2)}, there is a subsequence {𝑓𝑛2} of {𝑓𝑛1} such that {𝑓𝑛2(𝑥2)} converges. 

By induction, this process can be continued forever, and so there is a chain of sub-sequences {𝑓𝑛1} ⊇

{𝑓𝑛2} ⊇…… such that for each 𝑘 = 1,2,3,…… ., the sub-sequence {𝑓𝑛𝑘} converges at 

𝑥𝑛1 , 𝑥𝑛2 , ……… . . , 𝑥𝑛𝑘 .  

Now from the diagonal subsequence {𝑓} whose 𝑚𝑡ℎterm 𝑓𝑚 is the 𝑚𝑡ℎterm in the 𝑚𝑡ℎsequence 
{𝑓𝑛𝑚}. By construction, 𝑓𝑚 converges at every rational point of 𝐼. Therefore, given any 𝜖 > 0 and 

rational 𝑥𝑘 in 𝐼, there is an integers 𝑁 = 𝑁(𝜖, 𝑥𝑘) such that 

|𝑓𝑛(𝑥𝑘) − 𝑓𝑚(𝑥𝑘)| <
𝜖

3
,   𝑛,𝑚 ≥ 𝑁. 

Since the family 𝐹 equicontinuous for the fixed 𝜖 and for every 𝑥 ∈ 𝐼, there is an open interval 𝑈𝑥 
containing 𝑥 such that  

|𝑓(𝑠) − 𝑓(𝑡)| <
𝜖

3
 , for all 𝑓 ∈ 𝐹 and all 𝑠, 𝑡 in 𝐼 such that 𝑠, 𝑡 ∈ 𝑈𝑥. 

The collection interval 𝑈𝑥, 𝑥 ∈ 𝐼 forms an open cover ofI. Since I is compact bt Heine-Borel Theorem, 
this covering admits a finite sub covers 𝑈1, 𝑈2, …… . , 𝑈𝑗 . There exists an integer 𝑘 such that open each 

interval 𝑈𝑗 , 1 ≤ 𝑗 ≤ 𝐽, contains a rational 𝑥𝑘 with 1 ≤ 𝑘 ≤ 𝐾. 

Finally, for any 𝑡 ∈ 𝐼, there are 𝑗 and 𝑘 so that 𝑡 and 𝑥𝑘belong to the same interval 𝑈𝑗 . For this choice 

of 𝑘,  

|𝑓𝑛(𝑡) − 𝑓𝑚(𝑡)| = |𝑓𝑛(𝑡) − 𝑓𝑛(𝑥𝑘) + 𝑓𝑛(𝑥𝑘) − 𝑓𝑚(𝑥𝑘) + 𝑓𝑚(𝑥𝑘) − 𝑓𝑚(𝑡)|  

  ≤ |𝑓𝑛(𝑡) − 𝑓𝑛(𝑥𝑘)| + |𝑓𝑛(𝑥𝑘) − 𝑓𝑚(𝑥𝑘)| + |𝑓𝑚(𝑥𝑘) − 𝑓𝑚(𝑡)| 

  ≤
𝜖

3
+
𝜖

3
+
𝜖

3
= 𝜖 for all 𝑛,𝑚 > 𝑁 = max(𝑁(𝜖1, 𝑥1), 𝑁(𝜖1, 𝑥2), …… . . 𝑁(𝜖1, 𝑥𝑘)). 

Consequently sequence, {𝑓𝑛} converges t continuous functions. This claim the proof.  

Peano’s Existence Theorem 

Theorem 3.1.7:Let the function 𝑔(𝑡, 𝑢) be continuous and bounded in the strip 𝑆: 𝑡0 ≤ 𝑡 ≤ 𝑡0 +
𝑎, |𝑢| < ∞. Then, the initial value problem 𝑢′ = 𝑔(𝑡, 𝑢), 𝑢(𝑡0) = 𝑢0, has at least one solution 𝑢(𝑡) 
defined on the interval [𝑡0, 𝑡0 + 𝛼]. 

Proof: We define a sequence of functions {𝑢𝑛(𝑡)} by 

𝑢𝑛(𝑡) = 𝑢0   𝑓𝑜𝑟   𝑡0 ≤ 𝑡 ≤ 𝑡0 +
𝑎

𝑛
,       (3.1.2a) 

𝑢𝑛(𝑡) = 𝑢0 + ∫ 𝑔(𝑠, 𝑢𝑛(𝑠))𝑑𝑠  𝑓𝑜𝑟  𝑡0 +
𝐾𝑎

𝑛

𝑡−
𝑎

𝑛
𝑡0

≤ 𝑡 ≤ 𝑡0 +
(𝐾+1)𝑎

𝑛
 (𝐾 = 1,2,3,……… . , 𝑛 − 1). (3.1.2b) 

Clearly, equation(3.1.2a) defines the function 𝑢𝑛(𝑡) on the interval [𝑡0, 𝑡0 +
𝑎

𝑛
] ; equation (3.1.2b) 

defines the function 𝑢𝑛(𝑡)first on the interval [𝑡0 +
𝑎

𝑛
, 𝑡0 +

2𝑎

𝑛
], then on the interval [𝑡0 +

2𝑎

𝑛
, 𝑡0 +

3𝑎

𝑛
], 

and so on. Since 𝑔 is bounded on the strip, there exists a positive number 𝑀 such that  

|𝑔(𝑡, 𝑢)| ≤ 𝑀   𝑓𝑜𝑟   (𝑡, 𝑢) ∈ 𝑆.  

Therefore, from the relations (3.1.2), we have for 𝑡, 𝑡1 ∈ [𝑡0, 𝑡0 + 𝑎], 

|𝑢𝑛(𝑡) − 𝑢𝑛(𝑡1)| ≤ 𝑀|𝑡 − 𝑡1|.  

Thus, the sequence{𝑢𝑛(𝑡)} is equicontinuous on the interval [𝑡0, 𝑡0 + 𝑎]. 

Now, since 𝑢𝑛(𝑡) = 𝑢0 in the interval [𝑡0, 𝑡0 +
𝑎

𝑛
], it is clearly bounded on this interval. Also, for 𝑡 ∈

(𝑡0 +
𝑎

𝑛
, 𝑡0 + 𝑎], we obtain  

|𝑢𝑛(𝑡)| ≤ |𝑢0| + ∫ |𝑔(𝑠, 𝑢𝑛(𝑠))|
𝑡−

𝑎

𝑛
𝑡0

𝑑𝑠  

 ≤ |𝑢0| + 𝑀 (𝑡 − 𝑡0 −
𝑎

𝑛
) ≤ |𝑢0| + 𝑀𝑎. 

This implies the uniform boundedness of the sequence {𝑢𝑛(𝑡)} on the interval [𝑡0, 𝑡0 + 𝑎]. 
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Hence, the application of Lemma 3.1.6 shows that the sequence {𝑢𝑛(𝑡)} contains a subsequence 
{𝑢𝑛𝑘(𝑡)} which converges uniformly on the interval [𝑡0, 𝑡0 + 𝑎] to a continuous function 𝑢(𝑡). We 

shall now show that the limit function 𝑢(𝑡) satisfies the integral equation 

𝑢(𝑡) = 𝑢0 + ∫ 𝑔(𝑠, 𝑢(𝑠))
𝑡

𝑡0
𝑑𝑠 for 𝑡  in |𝑡 − 𝑡0| ≤ 𝑎. 

Let 𝑘 → ∞ in  

𝑢𝑛𝑘(𝑡) = 𝑢0 + ∫ 𝑔 (𝑠, 𝑢𝑛𝑘(𝑠))𝑑𝑠 −
𝑡

𝑡0
∫ 𝑔 (𝑠, 𝑢𝑛𝑘(𝑠))
𝑡

𝑡−
𝑎

𝑛𝑘

𝑑𝑠. 

Then, for the first integral on the right- hand side of this relation, we can proceed to the limit under 
the integral sign since 𝑔 is continuous and the convergence is uniform; the second integral tens to 
zero since it does not exceed 𝑀𝑎/𝑛𝑘 in absolute value. Thus, we obtain 

𝑢(𝑡) = 𝑢0 + ∫ 𝑔(𝑠, 𝑢(𝑠))
𝑡

𝑡0
𝑑𝑠,    𝑡 ∈ [𝑡0, 𝑡0 + 𝑎]. 

 

Remarks 3.1.8:The continuity of 𝑔 alone is sufficient in Theorem 3.1.7 if we replace 𝑆 by 
closed, bounded region 𝑅1: 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑎, |𝑢 − 𝑢0| ≤ 𝑏. 

Corollary 3.1.9:If, in addition to the assumptions of Theorem 3.1.7, 𝑔 is monotonically non-
increasing in 𝑢 for each fixed 𝑡 on 𝑆, then the initial value problem 𝑢′ = 𝑔(𝑡, 𝑢), 𝑢(𝑡0) = 𝑢0, has a 
unique solution on the interval [𝑡0, 𝑡0 + 𝑎]. 

Proof: Let 𝑢(𝑡) and 𝑣(𝑡) be any two solutions of the initial value problem 𝑢′ = 𝑔(𝑡, 𝑢), 𝑢(𝑡0) = 𝑢0, in 
the interval [𝑡0, 𝑡0 + 𝑎]. We claim that  

𝑢(𝑡) ≡ 𝑣(𝑡) on [𝑡0, 𝑡0 + 𝑎]. 

Suppose this is not true. Then, there exists a 𝑡1 ∈ [𝑡0, 𝑡0 + 𝑎) such that  

𝑢(𝑡) ≡ 𝑣(𝑡) on 𝑡0 ≤ 𝑡 ≤ 𝑡1 

and, for some 𝛼 > 0, 

𝑢(𝑡) > 𝑣(𝑡) on 𝑡1 < 𝑡 < 𝑡1 + 𝛼 ≤ 𝑡0 + 𝑎.      (3.1.3) 

Since 𝑔 is monotonically non-increasing in 𝑢 for each fixed 𝑡, it follows that 𝑔(𝑡, 𝑣(𝑡)) ≥ 𝑔(𝑡, 𝑢(𝑡)). 

Further, since both 𝑢(𝑡) and 𝑣(𝑡) are the solutions of 𝑢′ = 𝑔(𝑡, 𝑢), 𝑢(𝑡0) = 𝑢0, we have 

𝑣′(𝑡) ≥ 𝑢′(𝑡) on [𝑡1, 𝑡0 + 𝛼]. 

Therefore, the function 𝑤(𝑡) = 𝑣(𝑡) − 𝑢(𝑡) has a nonnegative derivative on [𝑡1, 𝑡0 + 𝛼]. 

That is, 

𝑤′(𝑡) = 𝑣′(𝑡) − 𝑢′(𝑡) ≥ 0. 

By integrating this relation between 𝑡1 and 𝑡, we get 𝑤(𝑡) ≥ 𝑤(𝑡1) = 0 which implies 𝑣(𝑡) ≥ 𝑢(𝑡). 

This contradicts (3.1.3). Hence, 𝑢(𝑡) ≡ 𝑣(𝑡) on [𝑡0, 𝑡0 + 𝑎]. 

 

Summary 

• The concept existence of solution of aninitial value problem in the large interval is 

discussed. 

• Ascoli and Arzela lemma is derived 

• The convergence of solutions of initial value problems was discussed. 

• The condition of existence and uniqueness in a large interval of solution on an IVP is 

derived with examples. 

Keywords 

• Existence of a solution in large interval 

• Ascoli-Arzela Lemma 

23



Unit 03: Peano's Existence Theorem  

 LOVELY PROFESSIONAL UNIVERSITY  

Notes 

• Peano’s Existence theorem  

• Condition of uniqueness in the large interval  

Self-Assessment 

Choose the most suitable answer from the options given with each question. 

1. The initial value problem 0)0(,022 ==+ uuu has 

A. One solution 

B. More than one solution 

C. No real solution 

D. None of these 

2.  The function f(t,u) be bounded and continuous in the strip .||,: 00 + uatttS Then 

IVP 
00 )(),,(' utuutfu ==

 

A. has at most one solution in [t0, t0+a] 

B. has at least one solution in [t0, t0+a]. 

C. only one solution in [t0, t0+a]. 

D. No solution in [t0, t0+a]. 

3. The IVP
00 )(),,(' utuutfu ==

 defined in the strip
+ ||,: 00 uatttS

 has a 
unique solution. If 

A. f(t,u) is monotonically non-increasing in u 

B. f(t,u) is monotonically increasing in u 

C. f(t,u) is non-increasing in u 

D. f(t,u) is increasing in u. 

4. A family of uniformly bounded and equicontinuous functions on B has a uniformly convergent 
subsequence then  

A. B is a closed set 

B. B is a compact set 

C. A subset of B is compact 

D. None of these 

 

5. Every sequence of an equicontinuous and bounded family of function has a 

A. convergent sequence in the whole defined interval  

B. convergent subsequence in the given interval 

C. convergent subsequence in the subinterval 

D. None of these 

6.Which one is true? 

A. Any subset of an equicontinuous family is also equicontinuous. 

B. Each member of an equicontinuous family is a continuous function. 

C. A family of differentiable functions is equicontinuous 

D. All of above 

7.  Peano’s existence theorem shows the  

A. Local existence on a sufficiently small interval. 

B. Local existence on a sufficiently large interval 

C. Global existence on a Large interval 
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D. None of these 

8. The continuity of g alone in the differential equation 
𝑢′ = 𝑔(𝑡, 𝑢) is  

A. not sufficient for the convergence of the approximations. 

B. the sufficient for the convergence of the approximations. 

C. the necessary condition for the convergence of the approximations. 

D. None of these 

Answers for Self Assessment 

1. C 2. B 3. A 4. C 5. C 

6. D 7. C 8. A     

 

Review Questions 

Q1.  Consider the IVP  .,0,0)0(,
1

1
)(

2
=

+
= xtx

x
tx  

Show that IVP has a unique non-local solution on (0, ∞). 

Solve the above equation by the method of separation of variables and them show that the solution 
x(t), with x(0) =0 satisfies .0,0)()(3/1 3 =−+ tttxtx  

Q2.   Study that the IVP ,||,1||,)0(;
1

cos
002

=
−

= ytyy
t

y
y has a solution. 

Q3.  Establish that the solution of  IVPs ,||,0||,0)0(,cos)( == − xtxxetx t   exists 

non-locally and uniquely. 

Q4. If ),( utg  be continuous function and bounded in the strip ,||,: 00 + uatttS then 

the initial value problem 
00 )(),,()(' utuutgtu == has at least one solution u(t) defined on the 

interval ].,[ 00 att +  

Q5.  If in a compact x-set ,0

nRB  let )},({ xfn
n=1,2,........., be a uniformly bounded and 

equicontinuous sequence of functions. Then prove that there exists a subsequence )},({ xf
kn

uniformly convergent on .0B  

 Further Readings 

Earl A Coddinton and Norman Levinson (2017). Theory of Ordinary Differential Equations, 
Mc Graw  Hill.  

P. Hartman (1964), Ordinary Differential equations, Johan Wiley. 

Shair Ahmad and Rama Mohan Rao (2014), Theory of Ordinary Differential Equations, East 
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Objectives 

After studying this unit, you will be able to 

• identify the concept of initial value problem to the system of differential equations. 

• understand the continuity concept through Lipschitz condition 

• apply basic theorems on the convergence of solutions. 

• find the condition of existence and uniqueness of solution. 

• drive the Picard’s Lindelof and Peano’s existence theorem. 

 

Introduction 

We shall now extend the results of a differential equation to system of differential equations with 
initial conditions. It should be noted that, because of the equivalence of a single scalar differential 
equation of the n-th order and a system of n first order differential equations, the results we 
establish also hold for the n-th order scalar differential equation and, in general, for a system of 
differential equations of any order. 

4.1 The System of Differential Equations 

Let us consider an initial value problem for the system of differential equations 

𝑥𝑖
′ = 𝑓𝑖(𝑡, 𝑥1, 𝑥2, … … , 𝑥𝑛), 𝑥𝑖(𝑡0) = 𝑥𝑖0, 

where 𝑖 = 1,2, … . , 𝑛. In vector notation, these equations can be written as 

𝑥′ = 𝑓(𝑡, 𝑥),     𝑥(𝑡0) = 𝑥0,        (4.1.1) 

where 𝑥 = (𝑥1, 𝑥2, … … . , 𝑥𝑛), 𝑓 = (𝑓1, 𝑓2, … … . , 𝑓𝑛), 

 and 𝑥0 = (𝑥10, 𝑥20,……,𝑥𝑛0) 

are vectors in 𝑅𝑛. We shall assume that  𝑓 ∈ 𝐶[Ω, 𝑅𝑛], where Ω is an open (𝑡, 𝑥) −set of 𝑅𝑛+1. 

A solution 𝑥(𝑡) of the initial value problem (4.1.1) is a differentiable function of 𝑡 such that, for a 

𝑡 −interval 𝐽containing𝑡0, 𝑥(𝑡0) = 𝑥0, (𝑡, 𝑥(𝑡)) ∈ Ω, and  

𝑥′ = 𝑓(𝑡, 𝑥(𝑡)).  

It is easy to verify that the differentiable function 𝑥(𝑡) is a solution of (4.1.1) on 𝐽 if and only if it is a 
solution of the Volterra integral equation 
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𝑥(𝑡) = 𝑥0 + ∫ 𝑓(𝑠, 𝑥(𝑠))𝑑𝑠,
𝑡

𝑡0
        𝑡 ∈ 𝐽.      (4.1.2) 

Definition 4.1.1:If 𝑓(𝑡, 𝑥) is continuously differentiable with respect to 𝑡 and the components of 𝑥 in 

Ω, then we write 𝑓 ∈ 𝐶1(Ω). Suppose there exists a positive constant 𝐿 such that 
𝜕𝑓

𝜕𝑥𝑖
(𝑖 =

1,2, … . . , 𝑛)satisfy  

‖
𝜕𝑓

𝜕𝑥𝑖
‖ ≤ 𝐿  for (𝑡, 𝑥) ∈ Ω.        (4.1.3) 

We should note that inequality (4.1.3) is automatically satisfied if 𝑓 ∈ 𝐶1(𝐵0), where 𝐵0is any closed, 
bounded set in 𝑅𝑛+1. By applying the mean value theorem to each variable separately and then 
using (4.1.3), we get  

‖𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)‖ ≤ 𝐿‖𝑥 − 𝑦‖for (𝑡, 𝑥), (𝑡, 𝑦) ∈ Ω.     (4.1.4) 

An alternative proof that gives result (4.1.4) follows. We define a function 𝐺 by  

𝐺(𝜎) = 𝑓(𝑡, 𝑦 + 𝜎(𝑥 − 𝑦)),     0 ≤ 𝜎 ≤ 1. 

Then, it is clear that 

𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦) = 𝐺(1) − 𝐺(0) =  ∫ 𝐺′(𝜎)𝑑𝜎
1

0
. 

Let 𝑓𝑥𝑖
=

𝜕𝑓

𝜕𝑥𝑖
(𝑖 = 1,2,3, … . , 𝑛). 

From the chain rule, it follows that  

𝐺′(𝜎) = 𝑓𝑥1
(𝑡, 𝑦 + 𝜎(𝑥 − 𝑦))(𝑥1 − 𝑦1) +  𝑓𝑥2

(𝑡, 𝑦 + 𝜎(𝑥 − 𝑦))(𝑥2 − 𝑦2) + ⋯ … … … . . . +𝑓𝑥𝑛
(𝑡, 𝑦 +

𝜎(𝑥 − 𝑦))(𝑥𝑛 − 𝑦𝑛). 

Using estimate (4.1.3), we have 

‖𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)‖ ≤  ∫ ‖𝐺′(𝜎)‖𝑑𝜎
1

0
  

  ≤ 𝐿(|𝑥1 − 𝑦1| + |𝑥2 − 𝑦2| + ⋯ … . . +|𝑥𝑛 − 𝑦𝑛|) 

  = 𝐿‖𝑥 − 𝑦‖. 

A function 𝑓 satisfying an inequality of the form (4.1.4) for (𝑡, 𝑥), (𝑡, 𝑦) ∈ Ω is said to satisfy 
the Lipschitz condition in Ω with the Lipschitz constant𝐿. 

However, a function𝑓 satisfying (4.1.4) need not belong to the class 𝐶1, and all the remarks made on 
the scalar function 𝑔 for a differential equation are valid for the vector valued function𝑓. 

We shall now give the various types of existence proofs for the initial value problem (4.1.1). to 
begin with, we state a fundamental results. 

 

Remarks 4.1.2:The proof of the Theorem 4.1.4 is similar to that of Theorem 2.2.14, except 
that the absolute value is replaced by norm of the vector-valued function 𝑥 ∈ 𝑅𝑛. However, 
for the sake of completeness, we shall give the proof of this theorem. The norm ‖. ‖ can be 
any convenient norm in 𝑅𝑛, not necessarily norm or the Euclidean norm. 

 

Remarks 4.1.3:In view of the proofs of Lemma 2.2.12 and Theorem 2.2.14 the choice of 𝛼 =
min (𝑎, 𝑏 𝑀)⁄  is natural. 

4.2 Picard-Lindel of Theorem 

Theorem 4.1.4:If 𝑓(𝑡, 𝑥) is continuous on 𝐵0: 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑎, ‖𝑥 − 𝑥0‖ ≤ 𝑏0, where 𝑎 and 𝑏 are 
positive real numbers, satisfies the Lipschitz condition (4.1.4) in 𝐵0. Let  

𝑀 = max
(𝑡,𝑥)∈𝐵0

‖𝑓(𝑡, 𝑥)‖,    𝛼 = min (𝑎, 𝑏 𝑀)⁄ . 

Then, the initial value problem (4.1.1) has a unique solution 𝑥(𝑡) on [𝑡0, 𝑡0] = 𝛼. 

Proof: Define a sequence of functions  

𝑥0(𝑡) = 𝑥_0, 

𝑥𝑘(𝑡) = 𝑥0 + ∫ 𝑓(𝑠, 𝑥𝑘−1(𝑠))𝑑𝑠,
𝑡

𝑡0
 𝑘 = 1,2,3, … … … , 𝑛,   (4.1.5) 
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For 𝑡0 ≤ 𝑡 ≤ 𝑡0 = 𝛼. Since 𝑓(𝑡, 𝑥(𝑡)) is continuous on [𝑡0, 𝑡0 + 𝛼],  it is clear that the functions 

𝑥0(𝑡), 𝑥1(𝑡), … … … . , 𝑥𝑛(𝑡) are defined and continuous on [𝑡0, 𝑡0 + 𝛼]. Obviously, (𝑡, 𝑥0(𝑡)) ∈ 𝐵0. 

Therefore, we have  

‖𝑥1(𝑡) − 𝑥0‖ ≤ 𝑀(𝑡 − 𝑡0) ≤ 𝑀𝛼 ≤ 𝑏, 

and hence (𝑡, 𝑥1(𝑡)) ∈ 𝐵0. Further, it can be easily shown, by induction, that  

‖𝑥𝑘(𝑡) − 𝑥0‖ ≤ 𝑏, and therefore (𝑡, 𝑥𝑘(𝑡)) ∈ 𝐵0, 𝑘 = 2,3, … … … . , 𝑛. 

Set 

𝑧𝑛(𝑡) = 𝑥𝑛(𝑡) − 𝑥𝑛−1(𝑡). 

Since 𝑓 satisfies the Lipschitz condition (4.1.4) in 𝐵0, it follows that 

 

‖𝑧2(𝑡)‖ ≤ ∫ ‖𝑓(𝑠, 𝑥1(𝑠)) − 𝑓(𝑠, 𝑥0(𝑠))‖𝑑𝑠
𝑡

𝑡0
≤ 𝐿 ∫ ‖𝑥1(𝑠) − 𝑥0(𝑠)‖

𝑡

𝑡0
𝑑𝑠  

 ≤ 𝐿 ∫ 𝑀(𝑠 − 𝑡0)𝑑𝑠 = 𝐿𝑀
(𝑡−𝑡0)2

2!

𝑡

𝑡0
.  

A simple induction argument, for 𝑡 ∈ [𝑡0, 𝑡0 + 𝛼],yields 

‖𝑧𝑘(𝑡)‖ ≤  𝑀𝐿𝑘−1 (𝑡−𝑡0)𝑘

𝑘!
,     𝑘 = 1,2, … … . . , 𝑛.      (4.1.6) 

To prove this, assume, for 𝑡 ∈ [𝑡0, 𝑡0 + 𝛼], 𝑡ℎ𝑎𝑡 

‖𝑧𝑘−1(𝑡)‖ ≤  𝑀𝐿𝑘−2 (𝑡−𝑡0)𝑘−1

(𝑘−1)!
,     𝑘 = 2,3, … … . . , 𝑛.  

Then, for 𝑡 ∈ [𝑡0, 𝑡0 + 𝛼], we obtain 

‖𝑧𝑛(𝑡)‖ ≤ ∫ ‖𝑓(𝑠, 𝑥𝑛−1(𝑠)) − 𝑓(𝑠, 𝑥𝑛−2(𝑠))‖𝑑𝑠
𝑡

𝑡0
  

 ≤ 𝐿 ∫ ‖𝑥𝑛−1(𝑠) − 𝑥𝑛−2(𝑠)‖
𝑡

𝑡0
𝑑𝑠 = 𝐿 ∫ ‖𝑧𝑛−1(𝑠)‖

𝑡

𝑡0
𝑑𝑠 

≤ 𝐿𝑛−1𝑀 ∫
(𝑠−𝑡0)𝑛−1

(𝑛−1)!
𝑑𝑠 = 𝐿𝑛−1𝑀

(𝑡−𝑡0)𝑛

𝑛!

𝑡

𝑡0
. 

This establishes inequality  (4.1.6). Now, consider the infinite series  

𝑥0 +  ∑ 𝑧𝑘(𝑡)∞
𝑘=1 .         (4.1.7) 

The n-th partial sum of this series is 𝑥𝑛(𝑡), that is, 

𝑥𝑛(𝑡) = 𝑥0 + ∑ 𝑧𝑘(𝑡)𝑛
𝑘=1 . 

Therefore, the sequence {𝑥𝑛(𝑡)} converges if and only if series (4.1.7) does so. In the view of (4.1.6), 
it follows series (1.4.7) is uniformly convergent on [𝑡0, 𝑡0 + 𝛼].  

Let the sum of series (4.1.7) be 𝑥(𝑡). Thus, we have 

lim
𝑛→∞

𝑥𝑛(𝑡) = 𝑥(𝑡). 

From the uniform convergence of 𝑥𝑛(𝑡) to 𝑥(𝑡) and the continuity of the function 𝑓(𝑡, 𝑥) on 𝐵0, it 
follows that 𝑓(𝑡, 𝑥𝑛(𝑡)) → 𝑓(𝑡, 𝑥(𝑡)) uniformly on [𝑡0, 𝑡0 + 𝛼] as 𝑛 → ∞. Therefore, the term-by-term 
integration is valid for the integrals in (4.1.5) and yields 

𝑥(𝑡) = 𝑥0 + ∫ 𝑓(𝑠, 𝑥(𝑠))𝑑𝑠
𝑡

𝑡0
.  

Hence, 𝑥(𝑡) is a solution of (4.1.1). in order to prove the uniqueness, let 𝑦(𝑡) be any other solution of 
(4.1.1) on [𝑡0, 𝑡0 + 𝛼]. Then, we have 

𝑦(𝑡) = 𝑥0 + ∫ 𝑓(𝑠, 𝑦(𝑠))𝑑𝑠
𝑡

𝑡0
.  

Therefore, the nonnegative function 𝑧(𝑡) = ‖𝑥(𝑡) − 𝑦(𝑡)‖ satisfies 𝑧(𝑡0) = 0, and 

𝑧(𝑡) ≤  ∫ ‖𝑓(𝑠, 𝑥(𝑠)) − 𝑓(𝑠, 𝑦(𝑠))‖
𝑡

𝑡0
𝑑𝑠 ≤ 𝐿 ∫ 𝑧(𝑠)

𝑡

𝑡0
𝑑𝑠. 

This implies 𝑧(𝑡) ≤ 0 which is incompatible with 𝑧(𝑡) ≥ 0 unless 𝑧(𝑡) ≡ 0. 

 

Remarks 4.1.5: A simple induction argument using (4.1.5), for 𝑡 ∈ [𝑡0, 𝑡0 + 𝛼], yields 
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‖𝑥𝑖(𝑡) − 𝑦(𝑡)‖ ≤
𝑀𝐿𝑖(𝑡−𝑡0)𝑖+1

(𝑖+1)!
,     𝑖 = 0,1,2, … … … . , 𝑛.  

Since 𝑥(𝑡) ≡ 𝑦(𝑡), this inequality gives an estimate of the error of approximation 

 

‖𝑥𝑛(𝑡) − 𝑥(𝑡)‖ ≤
𝑀𝐿𝑛(𝑡−𝑡0)𝑛+1

(𝑛+1)!
 on [𝑡0, 𝑡0 + 𝛼]. 

 

In the theorem that we now give, we shall drop the assumption of the Lipschitz condition 
and the assertion of uniqueness. To prove such an existence theorem as similar done 
earlier in previous unit, we need the generalization of Lemma 3.1.6 whose lengthy and 
intricate proof is omitted. 

4.3 Peano’s Existence Theorem (Vector Case) 

Theorem 4.1.6:Let 𝑓 ∈ 𝐶[𝐵0, 𝑅𝑛], where 𝐵0 is the set {(𝑡, 𝑥) ∈ Ω: t0 ≤ 𝑡 ≤ 𝑡0 + 𝑎, ‖𝑥 − 𝑥0‖ ≤ 𝑏}, and 
let ‖𝑓(𝑡, 𝑥)‖ ≤ 𝑀 on 𝐵0. Then, the initial value problem (4.1.1) possesses at least one solution 𝑥(𝑡) on 

t0 ≤ 𝑡 ≤ 𝑡0 + 𝛼, where α = min (a,
b

M
). 

Proof: Let x0(𝑡) be a continuously differentiable function on [t0 − 𝜂, 𝑡0], 𝜂 > 0, satisfying 𝑥0(𝑡0) =

𝑥0, 𝑥0
′ (𝑡) = 𝑓(𝑡, 𝑥0(𝑡)), ‖𝑥0(𝑡) − 𝑥0‖ ≤ 𝑏, and ‖𝑥0

′ (𝑡) ≤ 𝑀‖.  

For 0 < 𝜖 ≤ 𝜂, we define a function 𝑥𝜖(𝑡) o [t0 − 𝜂, 𝑡0 + 𝛼] by  

𝑥𝜖(𝑡) = [
𝑥0(𝑡)   𝑜𝑛     [𝑡0 − 𝜂, 𝑡0]

𝑥0 + ∫ 𝑓(𝑠, 𝑥𝜖(𝑠 − 𝜖))𝑑𝑠
𝑡

𝑡0

.       (4.1.8) 

It should be observed that relations (1.4.8) define 𝑥𝜖(𝑡) as a C1 −function on[t0 − 𝜂, 𝑡0 + 𝛼1], 𝛼_1 =
min  (𝛼, 𝜖), and on this interval 

‖xϵ(𝑡) − 𝑥0‖ ≤ 𝑏.         (4.1.9) 

If α1 < 𝛼, we can use (4.1.8) to extend xϵ(𝑡) as a C1 −function over the interval [t0 − 𝜂, 𝑡0 + 𝛼2], 𝛼2 =
min(𝛼, 2𝜖), such that inequality (1.4.9) holds. By continuing this process, we can definexϵ(𝑡) as a 

C1 −function over the interval [t0 − 𝜂, 𝑡0 + 𝛼] so as to satisfy (4.1.9) on the same interval. Moreover,  

‖xϵ
′ (𝑡)‖ ≤ 𝑀 𝑜𝑛 [𝑡0 − 𝜂, 𝑡0 + 𝛼], 

And hence the sequence {xϵ(𝑡)}, 0 < 𝜖 ≤ 𝜂, forms a family of equicontinuous and uniformly 
bounded functions. Thus, the application of Lemma 3.2.6 shows the existence of sequence {𝜖𝑛} as 
n → ∞, and  

lim
𝑛→∞

𝑥ϵn
(𝑡) = 𝑥(𝑡) 

Exists uniformly on [t0 − 𝜂, 𝑡0 + 𝛼]. Since this convergence is uniform, the continuity of 𝑓on 𝐵0 

Implies that 𝑓(𝑡, 𝑥𝜖𝑛
(𝑡 − 𝜖𝑛)) converges uniformly to 𝑓(𝑡, 𝑥(𝑡)) as 𝑛 → ∞. Hence, the term by term 

integration of (4.1.8) with 𝜖 = 𝜖𝑛 yields 

𝑥(𝑡) = 𝑥0 + ∫ 𝑓(𝑠, 𝑥(𝑠))
𝑡

𝑡0
𝑑𝑠. 

This shows that 𝑥(𝑡) is a solution of (4.1.1). 

4.4 Extension theorem 

Theorem 4.1.8 is analogous to the theorems on the continuation of solutions given in previous 
chapters. To prove these results, the next lemma is needed. 

Lemma 4.1.7: Let 𝑓 ∈ 𝐶[Ω, Rn] and 𝑥(𝑡) be a solution of (4.1.1) on the interval [𝑡0, 𝑡0 + 𝑎), 𝑎 < ∞. 

Assume that there is a sequence {𝑡𝑘} such that 𝑡𝑘 → 𝑡0 + 𝑎 𝑎𝑠 𝑘 → ∞ and that 𝜆 = lim
𝑘→∞

𝑥(𝑡𝑘) exists. If 

𝑓(𝑡, 𝑥) is bounded on the intersection of Ω and a neighbourhood of (𝑡0 + 𝑎, 𝜆), then  

lim
𝑡→𝑡0+𝑎

𝑥(𝑡) = 𝜆.        (4.1.10) 

If, in addition, 𝑓(𝑡0 + 𝑎, 𝜆) is defined such that 𝑓(𝑡, 𝑥) is continuous at (𝑡0 + 𝑎, 𝜆), then 𝑥(𝑡) ∈

𝐶1[𝑡0, 𝑡0 + 𝑎] and 𝑥(𝑡) is a solution of (4.1.1) on [𝑡0, 𝑡0 + 𝑎]. 

Proof: Let 𝜀 > 0 be sufficiently small. Consider the set  

𝐵1 = {(𝑡, 𝑥) ∈ Ω: 0 ≤ 𝑡0 + 𝑎 − 𝑡 ≤ 𝜖, ‖𝑥 − 𝜆‖ ≤ 𝜖}. 
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Choose𝑀 = 𝑀(𝜀) > 1 so large that ‖𝑓(𝑡, 𝑥)‖ ≤ 𝑀 for (𝑡, 𝑥) ∈ 𝜔⋂𝐵1. For 𝑘 sufficiently large, if  

0 < 𝑡0 + 𝑎 − 𝑡𝑘 ≤
𝜖

2𝑀
 and ‖𝑥(𝑡𝑘) − 𝜆‖ ≤

𝜖

2
, we claim that  

‖𝑥(𝑡) − 𝑥(𝑡𝑘)‖ < 𝑀(𝑡0 + 𝑎 − 𝑡𝑘) ≤ 𝜖/2 for 𝑡𝑘 ≤ 𝑡 < 𝑡0 + 𝑎.     (4.1.11) 

Suppose this is not true. Then, there exists the smallest 𝑡1 ∈ (𝑡𝑘 , 𝑡0 + 𝑎) such that 

‖𝑥(𝑡1) − 𝑥(𝑡𝑘)‖ = 𝑀(𝑡0 + 𝑎 − 𝑡𝑘).       (4.1.12) 

Since 𝑡1 is the smallest, we have  

‖𝑥(𝑡) − 𝑥(𝑡𝑘)‖ < 𝑀(𝑡0 + 𝑎 − 𝑡𝑘) ≤ 𝜖/2 for 𝑡𝑘 ≤ 𝑡 < 𝑡1. 

It follows therefore that  

‖𝑥(𝑡) − 𝜆‖ ≤  ‖𝑥(𝑡) − 𝑥(𝑡𝑘)‖ + ‖𝑥(𝑡𝑘) − 𝜆 ‖  

 ≤
𝜖

2
+

𝜖

2
= 𝜖 for 𝑡𝑘 ≤ 𝑡 < 𝑡1. 

This implies ‖𝑥′(𝑡)‖ ≤ 𝑀 for 𝑡𝑘 ≤ 𝑡 ≤ 𝑡1. 

Thus, we obtain  

‖𝑥(𝑡1) − 𝑥(𝑡𝑘)‖ ≤ 𝑀(𝑡1 − 𝑡𝑘) < 𝑀(𝑡0 + 𝑎 − 𝑡𝑘). 

But this contradicts relations (4.1.12). Hence, inequality (4.1.11) holds, and this in turn implies limit 
(4.1.10). The second part of the lemma follows from the fact that  

𝑥′(𝑡) = 𝑓(𝑡, 𝑥(𝑡)) → 𝑓(𝑡0 + 𝑎, 𝜆) 𝑎𝑠  𝑡 → 𝑡0 + 𝑎. 

Theorem 4.1.8:Assume that 𝑓 ∈ 𝐶[Ω, 𝑅𝑛] and that 𝑥(𝑡) is a solution of (4.1.1) on 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑏0. 
Then, 𝑥(𝑡) can be extended as a solution of (4.1.1) to the boundary of Ω. 

Proof: Let Ω1, Ω2, Ω3, … . … .. be the open sets of Ω such that Ω =  ⋃Ω𝑛, the closures Ω̅1, Ω̅2, Ω̅3, … … 

are compact, and  Ω̅𝑛 ⊂ Ω𝑛+1. Then, it follows that there exists an 𝜖𝑛 > 0 such that, if  (𝑡0, 𝑥0) ∈ Ω̅𝑛, 

all the solutions of (4.1.1) exists on𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝜀𝑛. Now, select an integers 𝜂1so large that (𝑡0 +

𝑏0, 𝑥(𝑡0 + 𝑏0)) ∈ Ω̅𝜂1
. Then, the solution  𝑥(𝑡) can be extended over an interval [𝑡0 + 𝑏0, 𝑡0 + 𝑏0 +

𝜀𝜂1
]. Similarly, if (𝑡0 + 𝑏0 + 𝜀𝜂1

, 𝑥(𝑡0 + 𝑏0 + 𝜀𝜂1
)) ∈ Ω̅𝜂1

, the solution  𝑥(𝑡) can be extended over an 

interval  [𝑡0 + 𝑏0, 𝑡0 + 𝑏0 + 2𝜀𝜂1
].  

We repeat this argument until the solution 𝑥(𝑡) is extended over the interval[𝑡0, 𝑡0 + 𝑏1], where 𝑏1 =

𝑏0 + 𝑁1𝜖𝜂1
, 𝑁1 being an integers ≥ 1, such that (𝑡0 + 𝑏1, 𝑥(𝑡0 + 𝑏1)) ∉ Ω̅𝜂1

. Again, select a sufficiently 

large integer 𝜂2 such that (𝑡0 + 𝑏1, 𝑥(𝑡0 + 𝑏1)) ∈ Ω̅𝜂2
. Then, an argument similar to the just given 

leads us to conclude that the solution 𝑥(𝑡) can be extended over the interval [𝑡0, 𝑡0 + 𝑏2], where, 

𝑏2 = 𝑏1 + 𝑁2𝜖𝜂2,𝑁2 𝑏eing an integers ≥ 1 such that(𝑡0 + 𝑏2, 𝑥(𝑡0 + 𝑏2)) ∉ Ω̅𝜂2
. Proceeding in this 

way, we obtain a sequence of integers 𝜂1 < 𝜂2 < 𝜂3 < ⋯ … and real numbers 𝑏0 < 𝑏1 < 𝑏2 < ⋯ ..so 

that 𝑥(𝑡) has a continuation over [𝑡0, 𝑡0 + 𝑏], where 𝑏 = lim
𝑘→∞

𝑏𝑘 such that (𝑡0 + 𝑏𝑘 , 𝑥(𝑡0 + 𝑏𝑘)) ∈ Ω̅𝜂𝑘
. 

Thus, the sequence {(𝑡0 + 𝑏𝑘 , 𝑥(𝑡0 + 𝑏𝑘))} is either unbounded or has a limit point on the boundary 

of Ω. If it is unbounded, then our assertion follows immediately. If it has a limit point on the 
boundary of Ω, then by the lemma 4.1.7, we can conclude that the solution 𝑥(𝑡) tends to the 
boundary of Ω as 𝑡 → 𝑡0 + 𝑏. 

Summary 

• The system of first order differential equations is defined. 

• The concept of the initial value problem to the system of differential equations is 

discussed. 

•  Lipschitz condition is elaborated. 

• The convergence of solutions system of initial value problems was discussed. 

• The condition of existence and uniqueness of solution on system of IVP is derived with 

examples. 

Keywords 

• Linear first-order system of differential equation  

• Non-Linear first-order system of differential equation 
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• Lipschitz condition 

• Existence and uniqueness of a solution 

• Picard’s-Lindel of theorem 

• Peano’s existence theorem 

Self-assessment 

1. The Volterra integral equation is  

a) 𝑥(𝑡) = 𝑥0 − ∫ 𝑓(𝑠, 𝑥(𝑠))
𝑡

𝑡0
𝑑𝑠,   𝑡 ∈ 𝐽  

b) 𝑥(𝑡) = 𝑥0 + ∫ 𝑓(𝑠, 𝑥(𝑠))
𝑡

𝑡0
𝑑𝑠,   𝑡 ∈ 𝐽  

c) 𝑥(𝑡) = ∫ 𝑓(𝑠, 𝑥(𝑠))
𝑡

𝑡0
𝑑𝑠,   𝑡 ∈ 𝐽  

d) None of these 

2. The system of first order_________ initial value problem is defined as 𝒙′ = 𝒇(𝒕, 𝒙), 𝒙(𝒕𝟎) =

𝒙𝟎, where 𝒙, 𝒇, 𝒙𝟎 are vectors in 𝑹𝒏. 

a) Homogeneous  

b) Non-homogeneous  

c) Autonomous 

d) None of these 

3. If 𝒇(𝒕, 𝒙) ∈ 𝑪𝟏(𝛀) is continuously differentiable in 𝛀, then there exists a positive constant 𝑳 

such that 

a) ‖
𝜕𝑓

𝜕𝑥𝑖
‖ < 𝐿for (𝑡, 𝑥) ∈ Ω 

b) ‖
𝝏𝒇

𝝏𝒙𝒊
‖ ≤ 𝑳for(𝒕, 𝒙) ∈ 𝛀 

c) ‖
𝜕𝑓

𝜕𝑥𝑖
‖ = 𝐿for (𝑡, 𝑥) ∈ Ω 

d) None of these 

4. The Lipschitz condition for the system of differentiable equations is defined as 

a) ‖𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)‖ < 𝐿‖𝑥 − 𝑦‖  

b) ‖𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)‖ = 𝐿‖𝑥 − 𝑦‖  

c) ‖𝒇(𝒕, 𝒙) − 𝒇(𝒕, 𝒚)‖ ≤ 𝑳‖𝒙 − 𝒚‖  

d) None of these 

 

5.  The solution of 00 )(),,(' xtxxtfx ==
,

bxxatttB −+ ||||,: 0000  

exists and unique in 
],[ 00 +tt

implies 

a) 
)/,min(,),(min

0),(
MbaxtfM

Bxt
==




 

b) 
)/,max(,),(max

0),(
MbaxtfM

Bxt
==




 

c) 
)/,min(,),(max

0),(
MbaxtfM

Bxt
==




 

d) 

),min(,),(max
0),(

baxtfM
Bxt

==




 

 

6. The absolute value replaced with norm values in the theorem is 

a) Picrad’s theorem 
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b) Picard’s Lindel of theorem 

c) Peanos’s theorem 

d) None of these 

7. The Lipschitz condition is a  

a) Necessary condition 

b) Sufficient condition 

c) Both necessary and sufficient 

d) None of these 

8. 
The system of equations given by 

00 )(),,(' xtxxtfx ==
, on

bxxatttB −+ ||||,: 0000 has 

a) A unique solution  

b) At least one solution 

c) Many solutions 

d) None of these 

9. The solution x(t) of an IVP 00 )(),,()( xtxxtftx ==
 on 

),(,000

nRfbttt +  

a) The solution can extended to the boundary of the  . 

b) The solution can extended anywhere in  . 

c) The solution cannot be extended to the boundary on  . 

d) The solution will not remain same. 

 

10. The IVP 00 )(),,(' utuutfu ==
 has a maximal solution r(t) on the interval I. 

Then every solution existing on I,  

a) The inequality u(t) < r(t) holds for t in I 

b) The inequality u(t) >r(t) holds for t in I 

c) The inequality u(t) > r(t) holds for t in I 

d) The inequality u(t) < r(t) holds for t in I 

 

11. The IVP 00 )(),,(' utuutfu ==
 defined in + ||,: 00 uatttS  

has unique solution. If 

a) f(t, u) is monotonically non increasing in u 

b) f(t, u) is monotonically increasing in u 

c) f(t, u) is non increasing in u 

d) f(t, u) is increasing in u 

12. The function f(t,u) be bounded and continuous in  
.||,: 00 + uatttS

Then IVP 00 )(),,(' utuutfu ==
 

a) has at most one solution in [t0, t0+a] 

b) has at least one solution in [t0, t0+a] 

c) only one solution in [t0, t0+a] 

d) No solution in [t0, t0+a] 

13. A family of uniformly bounded and equicontinuous function on B has uniformly  

convergent subsequence then  

a) B is a closed set 

b) B is a compact set 
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c) A subset of B is compact 

d) None of these 

 

 

Answer of Self-Assessment 

 

1 B 2 B 3 B 4 C 5 C 

6 B 7 A 8 A 9 A 10 D 

11 A 12 B 13 C     

 

Review Questions 

Q1. Establish that the solution ofthe following IVPs exists non-locally and uniquely. 

.||,,0||

0)0(,cos)(

1)0(,
1

sin
)(

2 








==

=
+

=

−

yxt

yxety

x
t

y
tx

t

 

Q2.If ],[ nRCf   and that )(tx is a solution of systems of equations 

,)(),,(' 00 xtxxtfx == on 000 bttt +
Then, )(tx can be extended as a solution of 

,)(),,(' 00 xtxxtfx ==
 to the boundary of  .  
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5.4 Maximal and Minimal Solution 

Summary 

Keywords 
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Answers for Self Assessment 

Review Questions 

Further Readings 

Objective 

After studying this unit, you will be able to 

• identify the concept of need of differential inequality. 

• understand the concept of upper solution and lower solution. 

• know about the maximal and minimal solution. 

• apply basic theorems on existence of solutions of differential inequality. 

 

Introduction 

The differential inequality occupies a very privileged position in the theory of differential 

equations. In recent years, these inequalities have been greatly enriched by the recognition of their 
potential and intrinsic worth in many applications of the applied sciences. The theory of such 

inequalities depends essentially upon the integration of differential inequalities which is usually 

known as the general comparison principle. In this section, we shall introduce some basic 

inequalities of this type along with their applications. 

 

5.1 Differential Inequalities 

A function 𝑢(𝑡) is said to be a solution of the differential inequality  

𝑢′(𝑡) > 𝑔(𝑡, 𝑢) or 𝑢′(𝑡) ≥ 𝑔(𝑡, 𝑢) 

on an interval 𝐼 if it is differentiable and satisfies   

𝑢′(𝑡) > 𝑔(𝑡, 𝑢(𝑡)) or 𝑢′(𝑡) ≥ 𝑔(𝑡, 𝑢(𝑡)) , 

Respectively, for every 𝑡 in 𝐼. For example, the function 𝑢(𝑡) = tan 𝑡 is a solution of the differential 

inequality 𝑢′(𝑡) > 𝑢2 on the interval (−
𝜋

2
,

𝜋

2
) since  𝑢′(𝑡) = 1 = tan2 𝑡. 

5.2 Dini’s Derivation 

In the view of the application of the inequalities, it would be useful in the foregoing definitions are 
extended. For any scalar function𝑢(𝑡), the upper and lower-right derivative, 𝐷+𝑢 and 𝐷+𝑢 are 

defined by  
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𝐷+𝑢(𝑡) = lim
ℎ→0+

𝑠𝑢𝑝 (
𝑢(𝑡+ℎ)−𝑢(𝑡)

ℎ
),  

𝐷+𝑢(𝑡) = lim
ℎ→0+

𝑖𝑛𝑓 (
𝑢(𝑡+ℎ)−𝑢(𝑡)

ℎ
)  

Similarly, the upper- and lower-left derivative of 𝑢(𝑡), 𝐷−𝑢(𝑡) and  𝐷−𝑢(𝑡), are given by 

𝐷−𝑢(𝑡) = lim
ℎ→0+

𝑠𝑢𝑝 (
𝑢(𝑡+ℎ)−𝑢(𝑡)

ℎ
)  

𝐷−𝑢(𝑡) = lim
ℎ→0+

𝑠𝑢𝑝 (
𝑢(𝑡+ℎ)−𝑢(𝑡)

ℎ
)  

These derivatives are usually referred to as Dini’s derivatives. 

 

A function 𝑢(𝑡) is said to be a solution of, let us say, the differential inequality 𝐷+𝑢(𝑡) >

𝑔(𝑡, 𝑢(𝑡)) for every 𝑡 in 𝐼. When 𝐷+𝑢(𝑡) = 𝐷+𝑢(𝑡), the right-hand derivative of 𝑢(𝑡) exists 

and is often denoted by 𝑢′(𝑡) represents the left-hand derivative of 𝑢(𝑡). 

Consider the initial value problem 

𝑢′(𝑡) = 𝑔(𝑡, 𝑢), 𝑢(𝑡0) = 𝑢0,        (5.1.1) 

Where 𝑔 ∈ 𝐶[Ω, 𝑅], Ω being an open set in 𝑅2. Let 𝐽1 = [𝑡0, 𝑡0 + 𝑎), 𝑎 > 0. 

 

5.3 Upper and Lower function 

The following results shows that any solution of (5.1.1) can be bracketed between the lower and 

upper functions of this initial value problem. 

Definition 5.2.1: A real valued function 𝑣(𝑡) which has continuous first derivative on the interval 𝐼 

is aid to be a lower solution of IVP (5.1.1) if for all 𝑡 in𝐼, the following relations hold:  

𝑣′ ≤ 𝑔(𝑡, 𝑣); 𝑣(𝑡0) ≤ 𝑢0 

A real valued function 𝑤(𝑡) which has continuous first derivative on the interval 𝐼 is aid to be a 

upper solution of IVP (5.1.1) if for all 𝑡 in𝐼, the following relations hold:  

𝑤′ ≥  𝑔(𝑡, 𝑤); 𝑤(𝑡0) ≥ 𝑢0 

Definition 5.2.2: A function 𝑣 ∈ 𝐶[𝐽1, 𝑅] is said to be an upper [or lower] function with respect to 
(5.1.1) if 𝑣+

′ (𝑡) exists and satisfies the differential inequality 𝑣+
′ (𝑡) > 𝑔(𝑡, 𝑣(𝑡)) [or 𝑣+

′ (𝑡) <

𝑔(𝑡, 𝑣(𝑡))] on 𝐽1. 

We shall now derive some basic results for differential inequalities. 

Theorem 5.2.3: Let 𝑣, 𝑤 ∈ 𝐶[𝐽1 , 𝑅] and satisfy the inequalities 

𝐷−𝑣(𝑡) ≤ 𝑔(𝑡, 𝑣(𝑡)),        (5.2.1) 

𝐷−𝑤(𝑡) > 𝑔(𝑡, 𝑤(𝑡))        (5.2.2) 

with (𝑡, 𝑣(𝑡)), (𝑡, 𝑤(𝑡)) ∈ Ω for 𝑡 ∈ 𝐽1. Then,  

𝑣(𝑡0) < 𝑤(𝑡0)         (5.2.3) 

implies 

𝑣(𝑡) < 𝑤(𝑡), 𝑡 ∈ 𝐽1.        (5.2.4) 

Proof: We claim that inequality (5.2.4) holds. Suppose it does not. Then, there exists a 𝑡1 > 𝑡0 such 

that  

𝑣(𝑡1) = 𝑤(𝑡1),         (5.2.5) 

𝑣(𝑡) < 𝑤(𝑡), 𝑡 ∈ [𝑡0, 𝑡1).        (5.2.6) 

For a sufficiently small ℎ < 0, it follows, from the relations (1.5.6) and (1.5.7), that  

𝐷−𝑣(𝑡1) > 𝐷−𝑤(𝑡1)        (5.2.7)  

Since 𝑣(𝑡1 + ℎ) < 𝑤(𝑡1 + ℎ). Therefore, from inequalities (5.2.1), (5.2.2), and (5.2.7), we obtain 

𝑔(𝑡1, 𝑣(𝑡1)) > 𝑔(𝑡1, 𝑤(𝑡1)). 

This contradicts (5.1.6). Hence, our claim is true. Thus, (5.2.4) holds on  𝐽1. 
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Remarks 5.2.4: Assertion (5.2.4) is true even if we replace " ≤ " by " ≥ " in (5.2.1) and (5.2.2), 

respectively. 

 

Example 5.2.5: For the IVP 𝑢′ = 𝑢2; 𝑢(0) = 𝑢0 = −1 

the function 𝑣 and 𝑤 defined by  

𝑣(𝑡) = −
2

𝑡+1
  and 𝑤(𝑡) == −

1

2(𝑡+1)
 are lower and upper solutions, respectively, on −∞ < 𝑥 < ∞. 

For, in this case, we have 𝑔(𝑡, 𝑢) = 𝑢2, 𝑡0 = 0, 𝑢0 = −1, and  

𝑣′ =
2

(𝑡 + 1)2 <
4

(𝑡 + 1) 2 = 𝑣2 = 𝑔(𝑡, 𝑣), 𝑣(0) = −2 < −1 = 𝑢0 

And  

𝑤′ =
1

2(𝑡+1)2
>

1

4(𝑡+1)2
= 𝑤2 = 𝑔(𝑤, 𝑡), 𝑤(0) = −

1

2
> −1 = 𝑢0. 

Also, for any 𝑛 > 1, it is easy to see that the functions 𝑣𝑛 and 𝑤𝑛 defined on −∞ < 𝑡 < ∞ by 

𝑣𝑛(𝑡) = −
𝑛

𝑡+1
 and 𝑤𝑛(𝑡) = −

1

𝑛(𝑡+1)
 

are lower and upper solutions, respectively, of the given IVP. Because we have  

𝑣𝑛
′ =

𝑛

(𝑡 + 1)2 <
𝑛2

(𝑡 + 1) 2 = 𝑣𝑛
2 = 𝑔(𝑡, 𝑣𝑛), 𝑣𝑛(0) = −𝑛 < −1 = 𝑢0 

And  

𝑤𝑛
′ =

1

𝑛(𝑡+1)2
>

1

𝑛2 (𝑡+1)2
= 𝑤𝑛

2 = 𝑔(𝑡, 𝑤𝑛), 𝑤𝑛(0) = −
1

𝑛
> −1 = 𝑢0. 

Theorem 5.2.6: Let 𝑣(𝑡) and 𝑤(𝑡), respectively, be the lower and upper functions with respect to 

(5.1.1) on 𝐽1. Let 𝑢(𝑡) be any solution of (5.1.1) such that  

𝑣(𝑡0) = 𝑢0 = 𝑤(𝑡0).        (5.2.8) 

Then, the inequality 

𝑣(𝑡) < 𝑢(𝑡) < 𝑤(𝑡) on (𝑡0, 𝑡0 + 𝑎)       (5.2.9) 

holds. 

Proof: We shall first prove the right half of assertion (5.2.9). Set 𝑚(𝑡) = 𝑤(𝑡) − 𝑢(𝑡). Then, from 

conditions (5.2.8), it is clear that 𝑚+
′ (𝑡0) > 0. This implies that 𝑚(𝑡) is increasing to the right of 𝑡0 in 

a sufficiently small interval[𝑡0, 𝑡0 + 𝛿]. Therefore, we have 𝑢(𝑡0 + 𝛿) < 𝑤(𝑡0 + 𝛿). Since 𝑤(𝑡)is the 
upper function and 𝑢(𝑡) is any solution of (5.1.1), it follows, from definition 5.1.1, that, for 𝑡 ∈
[𝑡0 + 𝛿, 𝑡0 = 𝑎], 

𝑢′(𝑡) = 𝑔(𝑡, 𝑢(𝑡)),   𝑤+
′ (𝑡) > 𝑔(𝑡, 𝑤(𝑡)). 

Thus, the application of Theorem 5.1.2 yields 

𝑢(𝑡) < 𝑤(𝑡) for 𝑡 ∈ (𝑡0, 𝑡0 = 𝑎). 

The proof for the left half of (5.2.6) is similar. 

 

Example 5.2.7: Consider the initial value problem 

𝑢′ = 𝑢2 − 𝑡,   𝑢(0) = 1.        (5.2.10) 

It should be noted that, in (5.2.10), the differential equation (a special case of the Riccati equation) is 

not integrable in elementary terms. However, we observe that 

𝑢 − 𝑡 ≤ 𝑢2 − 𝑡 and 𝑢2 ≥ 𝑢2 − 𝑡 for all 𝑡 ≥ 0  and |𝑢| ≥ 1. 

Therefore by solving the initial value problem 𝑣′ = 𝑣 − 𝑡, 𝑣(0) = 1, we obtain a lower function 

𝑣(𝑡) = 1 + 𝑡 with respect to (5.2.10) and, from the initial value problem 𝑤′ = 𝑤2, 𝑤(0) = 1, we get 

an upper function 𝑤(𝑡) =
1

1−𝑡
, 𝑡 ≠ 1, with respect to (5.2.10). Hence, we have 
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1 + 𝑡 < 𝑢(𝑡) <
1

1 − 𝑡
  𝑓𝑜𝑟  𝑡 ∈ (0,1), 

where u(t) is the solution of (5.2.10). 

Corollary 5.2.8: Let 𝑔1, 𝑔2 ∈ 𝐶[Ω, 𝑅] and satisfy the inequality  

𝑔1(𝑡, 𝑢1) < 𝑔(𝑡, 𝑢2) for (𝑡, 𝑢1), (𝑡, 𝑢2) ∈ Ω. 

If 𝑢1(𝑡) and 𝑢2(𝑡) are, respectively, the solutions of  

𝑢𝑖
′ = 𝑔𝑖(𝑡, 𝑢𝑖), 𝑖 = 1,2, existing on the interval 𝐽1 such that 𝑢1(𝑡0) < 𝑢2(𝑡0), then the inequality 𝑢1(𝑡) <

𝑢2(𝑡) holds on 𝐽1 . 

The proof for this corollary is similar to that for Theorem 5.2.6. 

 

5.4 Maximal and Minimal Solution 

We shall now use Theorem 5.2.3 to prove a result on the existence of the maximal solution of (5.1.1), 

the hypothesis being a in Theorem 3.1.7. 

Definition 5.3.1: Let  𝑟(𝑡) be any solution of (5.1.1) on the interval𝐼. Then, 𝑟(𝑡) is said to be the 
maximal solution of (5.1.1) if, for every solution 𝑢(𝑡) of (5.1.1) existing on 𝐼, the inequality 𝑢(𝑡) ≤

𝑟(𝑡) holds for 𝑡 ∈ 𝐼. 

Definition 5.3.2:  Let  𝜌(𝑡) be any solution of (5.1.1) on the interval 𝐼. Then, 𝜌(𝑡) is said to be the 

minimal solution of (5.1.1) if, for every solution 𝑢(𝑡) of (5.1.1) existing on 𝐼, the inequality 𝜌(𝑡) ≤

𝑢(𝑡) holds for 𝑡 ∈ 𝐼. 

 

Remarks 5.3.3: The maximal solution 𝑟(𝑡) and minimal solution 𝜌(𝑡), if they exists, are 

unique. 

Theorem 5.3.4: Let 𝑔(𝑡, 𝑢) be continuous in a closed, bounded region 𝑅(𝑎, 𝑏): 𝑡0 ≤ 𝑡 ≤ 𝑡0 +
𝑎, |𝑢 − 𝑢0| ≤ 𝑏. Then, there exists a maximal solution and a minimal solution of (5.1.1) on [𝑡0, 𝑡0 + 𝛼] 

for some positive 𝛼. 

Proof: We shall first prove the existence of the maximal solution. Let 𝜖 > 0 be given such that 0 <

𝜖 ≤ 𝑏/2. Since 𝑔 is continuous in 𝑅(𝑎, 𝑏), there exists a positive constant M such that  

|𝑔(𝑡, 𝑢)| ≤ 𝑀 for (𝑡, 𝑢) ∈ 𝑅(𝑎, 𝑏). 

Consider the initial value problem 

𝑢′ = 𝑔𝜖(𝑡, 𝑢),      𝑢𝜖(𝑡0) = 𝑢0 + 𝜖,       (5.3.1) 

Where 

𝑔𝜖(𝑡, 𝑢) = 𝑔(𝑡, 𝑢) + 𝜖.        (5.3.2) 

Clearly, the function 𝑔𝜖(𝑡, 𝑢)  is defined and continuous in the closed, bounded region  

𝑅(𝑎, 𝑏, 𝜖): 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑎, |𝑢 − 𝑢0 − 𝜖| ≤
𝑏

2
. 

Moreover, we have 𝑅(𝑎, 𝑏, 𝜖) ⊂ 𝑅(𝑎, 𝑏) and  

|𝑔𝜖(𝑡, 𝑢)| ≤ 𝑀 +
𝑏

2
 for (𝑡, 𝑢) ∈ 𝑅(𝑎, 𝑏, 𝜖). 

Therefore, from Peano’s Existence Theorem𝑛 = 1, it follows that (5.1.1) has a solution 𝑢𝜖(𝑡) on the 

interval [𝑡0, 𝑡0 + 𝛼], where 𝛼 = min(𝑎,
𝑏

2𝑀+𝑏
).  

Let 𝜖1  and 𝜖2 such that 0 < 𝜖2 < 𝜖1 ≤ 𝜖. Then, from (5.3.1) and the relation (5.3.2), we have  

𝑢𝜖2
(𝑡0) < 𝑢𝜖1

(𝑡0), 

𝑢𝜖2
′ (𝑡) = 𝑔 (𝑡, 𝑢𝜖2

(𝑡)) + 𝜖2, 

𝑢𝜖1

′ (𝑡) > 𝑔 (𝑡, 𝑢𝜖1
(𝑡)) + 𝜖1. 

The application of Theorem 5.2.3 yields  

𝑢𝜖2
(𝑡) < 𝑢𝜖1

(𝑡) for 𝑡 ∈ [𝑡0, 𝑡0 + 𝛼]. 
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From the hypothesis, it follows (see Theorem 3.1.7) that the family of functions 𝑢𝜖(𝑡)  is 

equicontinuous and uniformly bounded on [𝑡0, 𝑡0 + 𝛼].  Hence, by Lemma 3.1.6, there exists a 

decreasing sequence {𝜖𝑛}such that 𝜖𝑛 → 0 as 𝑛 → ∞ and  

 lim
𝑛→∞

𝑢𝜖𝑛
(𝑡)  

exists uniformly in 𝑡 ∈ [𝑡0, 𝑡0 + 𝛼]; we denote this limiting value by 𝑟(𝑡). Obviously, 𝑟(𝑡0) = 𝑢0. 

Also, the uniform continuity of 𝑔 and  

𝑢𝜖𝑛
(𝑡) = 𝑢0 + 𝜖𝑛 +  ∫ 𝑔(𝑠, 𝑢𝑛(𝑠))𝑑𝑠

𝑡

𝑡0

 

yields 𝑟(𝑡) as a solution of (5.2.3). Finally, we show that the solution 𝑟(𝑡) is the maximal solution of 

(5.1.1). To do this, let 𝑢(𝑡) be any solution of (5.1.1) existing on the interval [𝑡0, 𝑡0 + 𝛼]. Then,  

𝑢(𝑡0) = 𝑢0 < 𝑢0 + 𝜖 = 𝑢𝜖(𝑡0). 

Further, for 𝑡 ∈ [𝑡0, 𝑡0 + 𝛼], we have  

𝑢′(𝑡) < 𝑔(𝑡, 𝑢(𝑡)) + 𝜖, 𝑢 𝜖
′ (𝑡) = 𝑔(𝑡, 𝑢(𝑡)) + 𝜖. 

By remarks 5.2.4, we have 

𝑢(𝑡) < 𝑢𝜖(𝑡)for 𝑡 ∈ [𝑡0, 𝑡0 + 𝛼]. 

Since the maximal solution is unique, it is clear that 𝑢𝜖(𝑡) tends to 𝑟(𝑡) uniformly in 𝑡 ∈ [𝑡0, 𝑡0 + 𝛼] 

as 𝜖 → 0. A similar argument holds for the minimal solution. 

 

Summary 

• The concept differential inequality is discussed. 

• Dini’s derivatives are derived. 

• The upper and lower function elaborated with examples. 

• The existence of solution of differential inequalities proved. 

• The condition of existence and uniqueness of maximal and minimal solution is derived. 

 

Keywords 

• Differential inequality 

• Dini’s derivative 

• Upper and lower function  

• Minimal and maximal solution 

SelfAssessment 

1. The upper-right Dini’s derivative is given by 

A. 








 −+
=

+→

+

h

tuhtu
tuD

h

)()(
suplim)(

0

 

B. 







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−
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suplim)(

0

 

C. 





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 −−
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D. 



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

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+→
−
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)()(
inflim)(

0
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2. If 
ttu tan)( =

is a solution of 
)2/,2/(' 2 − onuu

then 

A. 
ttu tan)(' =

 

B. 
ttu tan1)(' +=

 

C. 
ttu tan1)(' −=

 

D. None of these 

3. The solution of Initial value problem 1)0(,' 2 =−= utuu lies in  

A. t
tut

−
+

1

1
)(1

 

B. t
tut

−
+

1

1
)(1

 

C. t
tut

−
+

1

1
)(1

 

D. t
tut

−
+

1

1
)(1

 

 

4. 
The upper solution for initial value problem 1)0(,22' =−= ytyy  

A. t
ty

−


1

1
)(

 

B. t
ty

−


1

1
)(

 

C. t
ty

+


1

1
)(

 

D. t
ty

+


1

1
)(

 

 

5. The lower solution of IVP 1)0(,2' −== uuu  is  

A. 1

2

+t  

B. 1

2

−

−

t  

C. 1

2

+

−

t  

D. )1(2

1

−t  
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6. The upper solution of IVP 1)0(,2' −== yyy  is  

A. 
)1(2

1

+x
 

B. )1(2

1

+

−

x  

C. 1

2

+

−

x  

D. )1(2

1

−x  

 

7. The Lower-left Dini’s derivative is given by 

A. 








 −+
=

+→

+

h

tuhtu
tuD

h

)()(
suplim)(

0

 

B. 








 −+
=

−→

−

h

tuhtu
tuD

h

)()(
suplim)(

0

 

C. 








 −−
=

+→
+

h

tuhtu
tuD

h

)()(
inflim)(

0

 

D. 








 −+
=

−→
−

h

tuhtu
tuD

h

)()(
inflim)(

0

 

 

8. The IVP has a minimal solution r(t) on the interval I. Then every solution existing on I,  

A. The inequality u(t) < r(t) holds for t in I 

B. The inequality u(t) >r(t) holds for t in I 

C. The inequality u(t) > r(t) holds for t in I 

D. The inequality u(t) < r(t) holds for t in I 

 

9. Which of the following relation is true 

A. 
)()( tuDtuD −+ 

 

B. 
)()( tuDtuD −+ 

 

C. 
)()( tuDtuD −+ 

 

D. )()( tuDtuD −+   

10. If 
)()())(.()()),(,()( 00 twtvandtwtgtwDtvtgtvD  −− implies 

A. 
)()( twtv 

 

B. 
)()( twtv 

 

C. 
)()( twtv 

 

D. 
)()( twtv 
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11. For initial value problem there exist a  

A. Only maximal solution 

B. Only minimal solution 

C. Maximal and minimal solution 

D. None of these 

 

12. Let  )(tv and )(tw , respectively be the lower and upper functions and u(t) be the 

solution of  with respect to ,)(),,( 00

' utuutgu ==  where ],,[ RCg   being an 

open set in R2 such that ).()( 000 twutv == Then  

A. inequality 
),()()()( 00 attontwtutv +

holds. 

B. inequality 
),()()()( 00 attontwtutv +

holds. 

C. inequality 
),()()()( 00 attontwtutv +

holds. 

D. inequality 
),()()()( 00 attontwtutv +

holds.  

13. The IVP has a maximal solution r(t) on the interval I. Then every solution existing on I,  

A. The inequality u(t) < r(t) holds for t in I 

B. The inequality u(t) >r(t) holds for t in I 

C. The inequality u(t) > r(t) holds for t in I 

D. The inequality u(t) < r(t) holds for t in I 

 

Answers for Self Assessment 

1. A 2. B 3. C 4. A 5. C 

6. B 7. D 8. B 9. B 10. C 

11. C 12. D 13. D     

 

Review Questions 

1. Define external solutions of initial value problem. 

2. If )(tu  be the solution of initial value problem 1)0(,2' =−= utuu , then prove that 

inequality )1,0(,
1

1
)(1 

−
+ t

t
tut  holds. 

3. If ],[, 1 RJCwv  and satisfy the inequalities 

)),(,()()),(,()( twtgtwDtvtgtvD  −− with ))(,()),(,( twttvt for .1Jt

Then prove that )()( 00 twtv  implies .),()( 1Jttwtv   

4. Find lower and upper solution of IVP 1)0(,2' =−= utuu
.
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3. Shair Ahmad and Rama Mohan Rao (2014), Theory of Ordinary Differential Equations, 
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42

https://www.sciencedirect.com/topics/engineering/differential-inequality
https://www.youtube.com/watch?v=ur-D_izdCmM


Unit 06: Integral Inequality  

 LOVELY PROFESSIONAL UNIVERSITY  

Notes 

Unit 06: Integral Inequality 

CONTENTS 

Objectives 

Introduction 

6.1 Gronwall-Reid-Bellman Inequality 
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Further Readings 

Objectives 

After studying this unit, you will be able to 

• identify the concept of need of integral inequality. 

• understand the concept of Gronwall-Reid-Bellman inequality. 

• know the properties of integral inequality. 

• apply basic theorems on existence of solutions of integral inequality. 

 

Introduction 

We shall now give some of the important results involving the integral inequalities that are useful 
in studying the qualitative properties of solutions of ordinary differential equations. 

 

6.1 Gronwall-Reid-Bellman Inequality 

Theorem 6.1.1: Let c be a non-negative constant and let u and v be nonnegative continuous 

functions on some interval 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑎 satisfying 

𝑢(𝑡) ≤ 𝑐 + ∫ 𝑢(𝑠)𝑣(𝑠)𝑑𝑠,      𝑡 ∈ [𝑡0, 𝑡0 + 𝑎].
𝑡

𝑡0
      (6.1.1) 

Then, the inequality  

𝑢(𝑡) ≤ 𝑐 exp ∫ 𝑣(𝑠)𝑑𝑠,      𝑡 ∈ [𝑡0, 𝑡0 + 𝑎],
𝑡

𝑡0
holds.     (6.1.2) 

Proof: Let 𝑤(𝑡) = 𝑐 + ∫ 𝑢(𝑠)𝑣(𝑠)𝑑𝑠.  
𝑡

𝑡0
 

Clearly, 𝑤(𝑡0) = 𝑐. Then, by the hypothesis, 𝑢(𝑡) ≤ 𝑤(𝑡).Since𝑢(𝑡) and 𝑣(𝑡) are nonnegative 
continuous functions, it follows that  

𝑤′(𝑡) = 𝑢(𝑡)𝑣(𝑡) ≤ 𝑤(𝑡)𝑣(𝑡),     𝑡 ∈ [𝑡0, 𝑡0 + 𝑎].  

Multiplying this inequality by exp (− ∫ 𝑣(𝑠)𝑑𝑠
𝑡

𝑡0
) , we obtain 

𝑑

𝑑𝑡
[𝑤(𝑡) exp(− ∫ 𝑣(𝑠)𝑑𝑠)] ≤ 0

𝑡

𝑡0
  

Integrating this inequality from 𝑡0 to 𝑡, we get 

𝑤(𝑡) exp(− ∫ 𝑣(𝑠)𝑑𝑠) − 𝑤(𝑡0) ≤ 0.
𝑡

𝑡0
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Since 𝑢(𝑡) ≤ 𝑤(𝑡) and 𝑤(𝑡0) = 𝑐, we have  

𝑢(𝑡) ≤ 𝑐 exp [∫ 𝑣(𝑠)𝑑𝑠
𝑡

𝑡0

] ,    𝑡 ∈ [𝑡0, 𝑡0 + 𝑎]. 

 

The generalization of Theorem 6.1.1 which we shall now give are useful in applications. 

 

Theorem 6.1.2: Let 𝑢 and 𝑣 be nonnegative continuous functions on some interval 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑎. 

Also, let the function 𝑓(𝑡) be positive, continuous, and monotonically non-decreasing on 𝑡0 ≤ 𝑡 ≤
𝑡0 + 𝑎 and satisfy the in-equality  

𝑢(𝑡) ≤ 𝑓(𝑡) + ∫ 𝑢(𝑠)𝑣(𝑠)𝑑𝑠,      𝑡 ∈ [𝑡0, 𝑡0 + 𝑎].
𝑡

𝑡0
     (6.1.3) 

Then, we have  

𝑢(𝑡) ≤ 𝑓(𝑡)𝑒𝑥𝑝 ∫ 𝑣(𝑠)𝑑𝑠,      𝑡 ∈ [𝑡0, 𝑡0 + 𝑎].
𝑡

𝑡0

 

Proof: Since 𝑓(𝑡) is positive, from (6.1.3), it follows that  

𝑢(𝑡)

𝑓(𝑡)
≤ 1 + ∫

𝑢(𝑠)𝑣(𝑠)

𝑓(𝑡)
𝑑𝑠,      𝑡 ∈ [𝑡0, 𝑡0 + 𝑎].

𝑡

𝑡0

 

Further, since f is monotonically non decreasing, we have 
1

𝑓(𝑡)
≤

1

𝑓(𝑠)
, and hence 

𝑢(𝑡)

𝑓(𝑡)
≤ 1 + ∫

𝑢(𝑠)𝑣(𝑠)

𝑓(𝑠)
𝑑𝑠

𝑡

𝑡0
. 

Thus, by setting 𝐾(𝑡) =  
𝑢(𝑡)

𝑓(𝑡)
 and applying Theorem 6.1.1, we get  

𝐾(𝑡) ≤ exp [∫ 𝑣(𝑠)𝑑𝑠,
𝑡

𝑡0

 

And hence 

 

𝑢(𝑡) ≤ 𝑓(𝑡)exp [∫ 𝑣(𝑠)𝑑𝑠,
𝑡

𝑡0

     𝑡 ∈ [𝑡0, 𝑡0 + 𝑎]. 

Theorem 6.1.3: Let 𝑓(𝑡) be a continuous function and 𝑣(𝑡) a nonnegative continuous function on 

the interval 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑎.If continuous function 𝑢(𝑡) has the property 

𝑢(𝑡) ≤ 𝑓(𝑡) + ∫ 𝑢(𝑠)𝑣(𝑠)𝑑𝑠    𝑓𝑜𝑟   𝑡 ∈ [𝑡0, 𝑡0 + 𝑎],
𝑡

𝑡0
     (6.1.4) 

then 

𝑢(𝑡) ≤ 𝑓(𝑡) + ∫ 𝑓(𝑠)𝑣(𝑠) exp [∫ 𝑣(𝜏)𝑑𝜏
𝑡

𝑠
] 𝑑𝑠    𝑓𝑜𝑟   𝑡 ∈ [𝑡0, 𝑡0 + 𝑎].

𝑡

𝑡0
   (6.1.5) 

Proof:  Put 𝑤(𝑡) = ∫ 𝑣(𝑠)𝑢(𝑠)𝑑𝑠.
𝑡

𝑡0
 

Then, 𝑤 is differentiable and  

𝑤′(𝑡) − 𝑣(𝑡)𝑤(𝑡) ≤ 𝑓(𝑡)𝑣(𝑡). 

If we now put  

𝐾(𝑡) = 𝑤(𝑡) exp [− ∫ 𝑣(𝑠)𝑑𝑠
𝑡

𝑡0

] , 

Then the forgoing inequality is equivalent to  

𝐾′(𝑡) ≤ 𝑓(𝑡)𝑣(𝑡)exp [− ∫ 𝑣(𝜏)𝑑𝜏].   
𝑡

𝑡0
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Since 𝐾(𝑡0) = 0, on integrating this inequality between  
𝑡0and 𝑡, we get 

𝐾(𝑡) ≤ ∫ 𝑓(𝑠)𝑣(𝑠) exp[− ∫ 𝑣(𝜏)𝑑𝜏]
𝑠

𝑡0

𝑑𝑠,
𝑡

𝑡0

 

That is, by the definition of 𝐾(𝑡), 

𝑤(𝑡) ≤ ∫ 𝑓(𝑠)𝑣(𝑠) exp[∫ 𝑣(𝜏)𝑑𝜏
𝑡

𝑠

] 𝑑𝑠.
𝑡

𝑡0

 

Since 𝑢(𝑡) ≤ 𝑓(𝑡) + 𝑤(𝑡), the result follows. 

Theorem 6.1.4: Assume that 

(i) 𝑔(𝑡, 𝑢) is continuous in the region 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑎, |𝑢| < ∞; 

(ii) 𝑔(𝑡, 𝑢) is non-decreasing in 𝑢 for each fixed 𝑡; 

(iii) The maximal solution 𝑟(𝑡) of (5.1.1) exists on the interval 𝑡0 ≤ 𝑡 < 𝑡0 + 𝑎; and 

(iv) 𝑚(𝑡) is a continuous function satisfying the integral inequality  

𝑚(𝑡) ≤ 𝑚(𝑡0) + ∫ 𝑔(𝑠, 𝑚(𝑠))𝑑𝑠,    𝑡 ∈ [𝑡0, 𝑡0 + 𝑎].
𝑡

𝑡0
    (6.1.6) 

Then, the inequality  

𝑚(𝑡) ≤ 𝑟(𝑡), 𝑡 ∈ [𝑡0, 𝑡0 + 𝑎], holds.        (6.1.7) 

Proof: Let 𝑣(𝑡) be a function defined by the right-hand side of (6.1.6). That is, 

𝑣(𝑡) = 𝑚(𝑡0) + ∫ 𝑔(𝑠, 𝑚(𝑠))𝑑𝑠.
𝑡

𝑡0

 

Then, we have  

𝑚(𝑡) ≤ 𝑣(𝑡), 

𝑣′(𝑡) = 𝑔(𝑡, 𝑚(𝑡)).        (6.1.8) 

From the non-decreasing property on 𝑔, it follows that  

𝑣′(𝑡) ≤ 𝑔(𝑡, 𝑣(𝑡)),     𝑡 ∈ [𝑡0, 𝑡0 + 𝑎]. 

Thus, from the comparison principle implies  

𝑣(𝑡) ≤ 𝑟(𝑡)for𝑡 ∈ [𝑡0, 𝑡0 + 𝑎]. 

Hence, (6.1.7) follows from inequality (6.1.8).     

Corollary 6.1.5: Let 𝑚(𝑡) and 𝑣(𝑡) be nonnegative continuous functions on 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑎. Let 𝑔 ∈

𝐶[𝑅+, 𝑅+], 𝑔(0) = 0, 𝑔(𝑢) > 0  𝑓𝑜𝑟  𝑢 > 0, 𝑔(𝑢) be non-decreasing in 𝑢, and 𝑘 be a non-negative 
constant. Then, if inequality  

𝑚(𝑡) ≤ 𝑘 + ∫ 𝑣(𝑠)𝑔(𝑚(𝑠))
𝑡

𝑡0
𝑑𝑠,   𝑡 ∈ [𝑡0, 𝑡0 + 𝑎],     (6.1.9) 

holds, the inequality  

𝑚(𝑡) ≤ 𝑤−1 [𝑤(𝑘) + ∫ 𝑣(𝑠)𝑑𝑠
𝑡

𝑡0

]     𝑓𝑜𝑟    𝑡 ∈ [𝑡0, 𝑡0 + 𝑎] 

Remain valid as long as 

𝑤(𝑘) + ∫ 𝑣(𝑠)𝑑𝑠
𝑡

𝑡0

 

Lies in the domain of the definition of 𝑤−1, where the function 𝑤, is given by  

𝑤(𝑢) = ∫
𝑑𝜏

𝑔(𝜏)

𝑢

𝜖

, 𝜖 > 0,  

𝑤−1being the inverse mapping of 𝑤. 

Proof: Denoting the right-hand side of (6.1.9) by 𝜂(𝑡), we have 𝑚(𝑡) ≤ 𝜂(𝑡). Since 𝑔 is an increasing 
function of 𝑢 and 𝑣 is a non-negative function, we have  
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𝑔(𝑚(𝑡))𝑣(𝑡)

𝑔(𝜂(𝑡))
≤ 𝑣(𝑡). 

But 𝜂′(𝑡) = 𝑔(𝑚(𝑡))𝑣(𝑡).  Hence, by the definition of 𝑤, we have  

𝑑

𝑑𝑡
𝑤(𝜂(𝑡)) ≤ 𝑣(𝑡). 

Integrating this inequality between 𝑡0and 𝑡, we get 

𝑤(𝜂(𝑡)) ≤ 𝑤(𝑘) + ∫ 𝑣(𝑠)𝑑𝑠

𝑡

𝑡0

. 

Since 𝑤−1 is also is an increasing function, we finally have 

𝜂 ≤  𝑤−1[𝑤(𝑘) + ∫ 𝑣(𝑠)𝑑𝑠].

𝑡

𝑡0

 

Corollary 6.1.6: let the assumption of Theorem 6.1.4 be satisfied, except for (6.1.6) which is 

replaced by  

𝑚(𝑡) ≤ 𝑓(𝑡) + ∫ 𝑔(𝑠, 𝑚(𝑠))𝑑𝑠,      𝑡 ∈ [𝑡0, 𝑡0 + 𝑎],

𝑡

𝑎

 

Where 𝑓 is continuous on [𝑡0, 𝑡0 + 𝑎]. Then, (6.1.7) takes the form 

𝑚(𝑡) ≤ 𝑓(𝑡) + 𝑟(𝑡),     𝑡 ∈ [𝑡0, 𝑡0 + 𝑎], 

where𝑟(𝑡) is the maximal solution of  

𝑢′ = 𝑔(𝑡, 𝑓(𝑡) + 𝑢),   𝑢(𝑡0) = 0, 

existing on [𝑡0, 𝑡0 + 𝑎]. 

 

Summary 

• The concept of the integral differential equations is discussed. 

• The Gronwall-Reid-Bellman inequality is derived. 

• The properties of integral equation were discussed. 

• The condition of existence of solution of integral equation is elaborated. 

Keywords 

• Integral equations 

• Integro-differential equations 

• Gronwall-Reid-Bellman inequality 

• Properties of solutions  

 

Self Assessment 

1. The basic condition for the Gronwall-Reid-Bellman inequality that  

A. The functions must be nonnegative on closed interval 

B. The function must be continuous on closed interval 

C. The function must be nonnegative continuous on closed interval 

D. None of these 

 

2. The integral inequality helps to understand the _________of solution of ordinary 

differential equations. 

A. Qualitative property 

46



Unit 06: Integral Inequality  

 LOVELY PROFESSIONAL UNIVERSITY  

Notes 

B. Quantitative property 

C. Both Qualitative and quantitative 

D. None of these   

 

3. Let c be a nonnegative constant and let u and v be nonnegative functions on some interval 

attt + 00 satisfying  ++

t

t

atttdssvsuctu

0

],[,)()()( 00
. Then following 

inequality holds 

A. 

 +

t

t

atttdssvctu

0

],[,)()( 00

 

B. 

 +

t

t

atttdssuctu

0

],[,)()( 00

 

C. 

 +

t

t

atttdssvctu

0

],[},)(exp{)( 00

 

D. 

 +

t

t

atttdssvsuctu

0

],[,)()(exp)( 00

 

 

4. Let )(tf  be a continuous function and v(t) be a nonnegative continous functions on the 

interval. If )(tu has the property  ++

t

t

atttdssvsutftu

0

],[,)()()()( 00 . Then 

following inequality holds 

A. 

  +







+

t

t

t

s

atttdsdvsvsftftu

0

],[,)(exp)()()()( 00

 

B. 

  +







+

t

t

t

s

atttdsdvsvsftftu

0

],[,)(exp)()()()( 00

 

C. 

  +







+

t

t

t

s

atttdsdvsvsftftu

0

],[,)(exp)()()()( 00

 

D. 

  +







−

t

t

t

s

atttdsdvsvsftftu

0

],[,)(exp)()()()( 00

 

 

5. The qualitative property discussed for first integral inequality is  named as 

A. Grownall-Reid-Bellman inequality 

B. Dini’s inequality 

C. Volterra inequality  

D. None of these 
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6. Let u and v be nonnegative continuous functions on some interval attt + 00 . Also, 

let the function 𝒇(𝒕) be positive, continuous, and monotonically non decreasing and satisfy 

the inequality  ++

t

t

atttdssvsutftu

0

],[,)()()()( 00
. Then following inequality 

holds 

A. 

 +

t

t

atttdssvtftu

0

],[,)()()( 00

 

B. 

 +

t

t

atttdssuctu

0

],[,)()( 00

 

C. 

 +

t

t

atttdssvtftu

0

],[},)(exp{)()( 00

 

D. 

 +

t

t

atttdssvsuctu

0

],[,)()(exp)( 00

 

Answers for Self Assessment: 

1. C 2. A 3. C 4. A 5. A 

6. C         

 

Review Questions 

1. If f(t) be a continuous function and v(t) a nonnegative continuous function on the interval 

t0< t <t0+a. If a continuous function u(t) has property  

].,[])(exp[)()()()(

],,[)()()()(

00

00

0

0

atttfordsdvsvsftftu

then

atttfordssvsutftu

t

t

t

s

t

t

++

++

 





 

 

2. If u(t) and v(t) be nonnegative continuous function on some interval t0< t <t0+a. Also, let 

the function f(t) be positive, continuous, and monotonically non decreasing on t0< t <t0+a 

and satisfy the inequality If a continuous function u(t) has property 

 

].,[])(exp[)()(

,

],,[)()()()(

00

00

0

0

atttfordssvtftu

thatprovethen

atttfordssvsutftu

t

t

t

t

+

++




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Unit 07: More Theorem of Integral Inequality  

CONTENTS 

Objectives 

Introduction 

7.1 Kameke’s Convergence Theorem 

7.2 Kneser’s Theorem: (statement only) 

7.3 Theorem of Wintner 

Summary 

Keywords 

Self-assessment 

Answer for Self Assessment 

Review Questions 

Further Readings 

Objectives 

After studying this unit, you will be able to 

• identify the concept of integral inequality in uniqueness. 

• understand the concept of convergence theorem 

• know about the uniqueness of solutions 

• apply basic theorems on the convergence of solutions. 

• find the condition of existence and uniqueness of maximal solution. 

 

Introduction 

One of the principal objectives in studying the differential and integral inequalities is to prove the 
uniqueness theorems. A solution of the differential equation in (7.1.4) continuously depends upon 
the initial conditions and we find that the initial value problem has at most one solution. An 
important and useful technique giving the uniqueness of solutions follows. 

 

7.1 Kameke’s Convergence Theorem  

Theorem 7.1.1: Let 𝑔(𝑡, 𝑢), 𝑔(𝑡, 0) = 0, be a non-negative continuous scalar function defined on  

𝑅0: 𝑡0 < 𝑡 ≤ 𝑡0 + 𝑎, 0 ≤ 𝑢 ≤ 2𝑏. 

Assume that the only solution of  

𝑢′ = 𝑔(𝑡, 𝑢)         (7.1.1) 

on any interval (𝑡0, 𝑡0 + 𝜖], 𝜖 > 0, satisfying 

𝑢(𝑡) → 0,
𝑢(𝑡)

𝑡−𝑡0
→ 0       𝑎𝑠        𝑡 → 𝑡0 + 0      (7.1.2) 

 

is𝑢(𝑡) ≡ 0. Further, let 𝑓(𝑡, 𝑥) be a continuous vector-valued function defined on 𝑅: 𝑡0 ≤ 𝑡 ≤ 𝑡0 +

𝑎, ||𝑥 − 𝑥0|| ≤ 𝑏 satisfying 

‖𝑓(𝑡, 𝑥1) − 𝑓(𝑡, 𝑥2)‖ ≤ 𝑔(𝑡, ‖𝑥1 − 𝑥2‖),      (𝑡, 𝑥1), (𝑡, 𝑥2) ∈ 𝑅    (7.1.3) 
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whenever 𝑡(𝑡, 0) => 𝑡0. Then, the initial value problem 

𝑥′ = 𝑓(𝑡, 𝑥),     𝑥(𝑡0) = 𝑥0,    𝑡0 ∈ 𝐽,       (7.1.4) 

Has at most one solution on [𝑡0, 𝑡0 + 𝜖]. 

Proof: Suppose 𝑥1(𝑡) and 𝑥2(𝑡) are any two distinct solutions of  (7.1.4) on 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝜖 for some 
𝜖 > 0. Let 𝑚(𝑡) = ‖𝑥1(𝑡) − 𝑥2(𝑡)‖. Clearly. 𝑚(𝑡0) = 𝑚′(𝑡0) = 0. Without any loss of generality, we 
can assume that 𝑚(𝑡0 + 𝜖) ≠ 0. Then, we have 0 < 𝑚(𝑡0 + 𝜖) < 2𝑏. Using inequality (7.1.3), we 
obtain  

𝑚′(𝑡) ≤ 𝑔(𝑡, 𝑚(𝑡)),   𝑡 ∈ (𝑡0, 𝑡0 + 𝜖).       (7.1.5) 

Let 𝜌(𝑡) be the minimal solution of the initial value problem 𝑢′ = 𝑔(𝑡, 𝑢), 𝑢(𝑡0 + 𝜖) = 𝑚(𝑡0 + 𝜖), on 
(𝑡0, 𝑡0 + 𝜖].From (7.1.5) and from the differential inequality, we conclude that  

𝑚(𝑡) ≥ 𝜌(𝑡),     𝑡 ∈ (𝑡0, 𝑡0 + 𝜖]       (7.1.6) 

Since 𝑔(𝑡, 0) ≡ 0, it follows, from inequality (7.1.5), that 

𝜌(𝑡) → 0,
𝜌(𝑡)

𝑡 − 𝑡0
→ 0    𝑎𝑠    𝑡 → 𝑡0 + 0.   

Therefore, from the hypothesis on equation (7.1.1), it is clear that 𝜌(𝑡) ≡ 0. This contradicts our 
supposition because 𝜌(𝑡0 + 𝜖) = 𝑚(𝑡0 + 𝜖) ≠ 0. Hence, the assertion of the theorem follows. 

 

Corollary 7.1.2: (Nagumo’s criterion): The assertion of Theorem 7.1.1 still holds if condition (7.1.2) 
is replaced by  

‖𝑓(𝑡, 𝑥1) − 𝑓(𝑡, 𝑥2)‖ ≤
‖𝑥1−𝑥2‖

𝑡−𝑡0
,   (𝑡, 𝑥1), (𝑡, 𝑥2) ∈ 𝑅, whenever 𝑡 > 𝑡0.   

 

7.2 Kneser’s Theorem: (statement only)  

Let 𝑓(𝑡, 𝑦) ∈ 𝐶 on a rectangle 𝑅: |𝑡 − 𝑡0| ≤ 𝑎, |𝑦 − 𝑦0| ≤ 𝑏 and  

|𝑓(𝑡, 𝑦)| ≤ 𝑀; 𝛼 = 𝑀𝑖𝑛 {𝑎,
𝑏

𝑀
} on R and 𝑡0 < 𝑐 ≤ 𝑡0 + 𝛼. Finally, let 𝑆𝑐 be the set of points 𝜙𝑐 for 

which there is a solution 𝑦 = 𝜙(𝑡) of 𝑦′ = 𝑓(𝑡, 𝑦), 𝑦(𝑡0) = 𝑦0 𝑜𝑛 [𝑡0, 𝑐] such that 𝜙(𝑐) = 𝜙𝑐 i.e. 𝜙𝑐 ∈
𝑆𝑐 means that 𝜙𝑐 is a point reached at 𝑡 = 𝑐 by some solution of 𝐼. 𝑉. 𝑃. then 𝑆𝑐 is a continuum i.e. a 
closed connected set.  

 

This theorem is about the case of non-unique solutions of initial value problems.  

 

7.3 Theorem of Wintner 

Let 𝐹(𝑡, 𝑦) be continuous on [𝑡0, 𝑡0 + 𝑎], 𝑦 ≥ 0 and let the maximal solution of 𝑦′ = 𝐹(𝑡, 𝑦); 𝑦(𝑡0) =
𝑦0 ≥ 0 exists on [𝑡0, 𝑡0 + 𝑎 ]. 

Let 𝐹(𝑡, 𝑦) = 𝑤(𝑦) where 𝑤(𝑦) is positive continuous function on 𝑦 ≥ 0 such that  

∫
𝑑𝑦

𝑤(𝑦)
= ∞

∞

𝑦0
         (7.3.1) 

Let 𝑓(𝑡, 𝑧) be continuous on the strip 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑎, where 𝑧 is arbitrary vector function and satisfy  

|𝑓(𝑡, 𝑧)| ≤ 𝐹(𝑡, |𝑧|)        (7.3.2) 

( where || denotes the norm of the functions). 

Then the maximal interval of existence of solutions of 

𝑧′ = 𝑓(𝑡, 𝑧); 𝑧(𝑡0) = 𝑧0        (7.3.3) 

Where |𝑧0| ≤ 𝑦0 is [𝑡0, 𝑡0 + 𝑎]. 

Proof: From (7.3.2) we have |𝑧′(𝑡)| ≤ 𝐹(𝑡, |𝑧(𝑡)|)     (7.3.4) 
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On any interval on which 𝑧(𝑡) exists. 

We know that if 𝜙𝑀(𝑡) be maximal solution of 𝑦′ = 𝐹(𝑡, 𝑦); 𝑦(𝑡0) = 𝑦0 

and𝑧 = 𝑧(𝑡) be a 𝐶1 vector values function on [𝑡0, 𝑡0 + 𝑎] such that  

|𝑧(𝑡0)| ≤ 𝜙𝑀(𝑡); (𝑡, |𝑧(𝑡)| ∈ 𝐷 

and|𝑧′(𝑡)| ≤ 𝐹(𝑡, |𝑧(𝑡)|) 

on any interval [𝑡0, 𝑡0 + 𝑎] on which 𝑧(𝑡) exists then  

|𝑧(𝑡)| ≤ 𝜙𝑀(𝑡)         (7.3.5) 
holds on any common interval of existence of 𝜙𝑀(𝑡) and z(t). 

[Also we know that if 𝑧 = 𝑧(𝑡) is a solution of differential equation 

𝑦′ = 𝐹(𝑡, 𝑦); 𝑦(𝑡0) = 𝑦0 ≥ 0 

On the right maximal interval 𝐽 and 𝐹(𝑡, 𝑧) be continuous on a strip 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑎 and it is 
arbitrary then 

either𝐽 = [𝑡0, 𝑡0 + 𝑎]   or 𝐽 = [𝑡0, 𝛿) 

where𝛿 ≤ 𝑡0 + 𝑎  and|𝑧(𝑡)| → ∞ as 𝑡 → 𝑡0 + 𝑎]     (7.3.6) 

To prove this theorem it has to be shown that the function 𝐹(𝑡, 𝑦) = 𝑤(𝑦) satisfies the condition of 
maximal solution of  

𝑦′ = 𝑤(𝑦); 𝑦(𝑡0) = 𝑦0 ≥ 0        (7.3.7)  

exists on 𝐽 = [𝑡0, 𝑡0 + 𝑎] by virtue of (7.3.1). 

Since 𝑤(𝑦) > 0 , so (7.3.7) implies for any solution 𝑦 = 𝑦(𝑡) 

𝑡 − 𝑡0 = ∫
𝑦′(𝑠)

𝑤(𝑦(𝑠)
𝑑𝑠

𝑡

𝑡0
= ∫

𝑑𝑦

𝑤(𝑦)

𝑦(𝑡)

𝑦(𝑡0)
       (7.3.8) 

By taking 𝑑𝑦 =
𝑑𝑦

𝑑𝑠
, 𝑑𝑠 = 𝑦′𝑑𝑠 

Note that 𝑤 > 0 implies that 𝑦′(𝑡) > 0 and 𝑦(𝑡) > 0 for 𝑡 > 𝑡0. 

By result (7.3.6), the solution 𝑦(𝑡) can fail to exists on [𝑡0, 𝑡0 + 𝑎] only if it exists on some interval 
[𝑡0, 𝛿), 𝛿 ≤ 𝑡0 + 𝑎 and satisfies 𝑦(𝑡) → ∞ as 𝑡 → 𝛿. 

By virtue of (7.3.8) as 𝑡 → 𝛿, 

𝛿 − 𝑡0 = lim
𝑡→𝛿

∫
𝑑𝑦

𝑤(𝑦)
= ∫

𝑑𝑦

𝑤(𝑦)
= ∞

∞

𝑦0

𝑦(𝑡)

𝑦0
, using  (7.3.1), 

which is contradiction for left side tends to 𝛿 − 𝑡0 and right side tends to ∞. 

Hence 𝑦(𝑡) does not exists on [𝑡, 𝛿), 𝛿 ≤ 𝑡0 + 𝑎. 

Thus 𝑦(𝑡) must exists on [𝑡0, 𝑡0 + 𝑎]. 

⇒ The maximal interval of existence of solution of (7.3.3) is [𝑡0, 𝑡0 + 𝑎]. 

 

Summary 

 

• The concept of integral inequality in uniqueness is discussed. 

• The concept of convergence theorem elaborated. 

• know about the theorem of non- uniqueness of solutions.  

• Kameke’s convergence theorem derived.  

• The theorem of Wintner for maximal interval is proved. 
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Self-assessment 

1. Kamke’s convergence theorem holds good  

A. for two different solutions 

B. at least one solution 

C. at most one solution 

D. none of these 

 

2. If 0)0,(),,( =tgutg be a continuous scalar function on 
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−
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3. The continuum set is always 

A. A Closed connected set 

B. A Open connected set 

C. A Semi open connected set 

D. A Semi closed connected set 

 

4. The 𝑺𝒄be the set of points 𝝓𝒄  for which there is a solution 𝒚 = 𝝓(𝒕)of IVP 𝒚′ =

𝒇(𝒕, 𝒚), 𝒚(𝒕𝟎) = 𝒚𝟎𝒐𝒏 [𝒕𝟎, 𝒄] then 

A. 𝑆𝑐 is a continuum 

B. 𝑆𝑐 is a continuous  

C. 𝑆𝑐 is a continuum and continuous  

D. None of these 
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5. The maximal interval of existence to an IVP in closed, bounded domain is given by 

A. Kneser’s theorem 

B. Kamekeconvergence theorem 

C. Thorem of Wintner 

D. None of theses 

 

6. The assumption for the Wintner theorem is  

A. The minimal solution exists 

B. The maximal solution exists  

C. Both maximal and minimal solution exits 

D. None of these 

 

7. The assumption for the Wintner theorem with existence of maximal solution is 

A. The IVP is continuous non-autonomous  

B. The IVP is continuous autonomous  

C. The IVP is non-continuous autonomous 

D. None of these 

 

8. Let ),( utU be continuous for 0,00 + uattt  and let the maximal solution of 

),,(' utUU = where ],[,0 00 attonexistu + , Let )(),( uutU = is a positive, 

continuous function on u > 0 such that =


)(/ udu  . Let ),( ytf be continuous on  

,00 attt + and |)|,(|),(| ytUytf  . 

A. Then minimal interval of existence of solution of 00 )(),,(' ytyytfy == where 

00 || uy  . 

B. Then maximal interval of existence of solution of 00 )(),,(' ytyytfy == where 

00 || uy  . 

C. Then maximal interval of existence of solution of 00 )(),,(' ytyytfy == where 

00 || uy  . 

D. None of these 

 

Answer for Self Assessment 

1. C 2. C 3. A 4. A 5. C 

6. B 7. B 8. B     

 

Review Questions 

1. If 𝑔(𝑡, 𝑢), 𝑔(𝑡, 0) = 0, be a non-negative continuous scalar function defined on  

𝑅0: 𝑡0 < 𝑡 ≤ 𝑡0 + 𝑎, 0 ≤ 𝑢 ≤ 2𝑏. 

Assume that the only solution of  

𝑢′ = 𝑔(𝑡, 𝑢)on any interval (𝑡0, 𝑡0 + 𝜖], 𝜖 > 0, satisfying 

54



Theory of Differential Equations  

 LOVELY PROFESSIONAL UNIVERSITY   

Notes 

𝑢(𝑡) → 0,
𝑢(𝑡)

𝑡 − 𝑡0
→ 0       𝑎𝑠        𝑡 → 𝑡0 + 0 

is𝑢(𝑡) ≡ 0. Further, let 𝑓(𝑡, 𝑥) be a continuous vector-valued function defined on 𝑅: 𝑡0 ≤ 𝑡 ≤ 𝑡0 +

𝑎, ||𝑥 − 𝑥0|| ≤ 𝑏 satisfying‖𝑓(𝑡, 𝑥1) − 𝑓(𝑡, 𝑥2)‖ ≤
‖𝑥1−𝑥2‖

𝑡−𝑡0
,   (𝑡, 𝑥1), (𝑡, 𝑥2) ∈ 𝑅 , whenever 𝑡 > 𝑡0 
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Objectives 

After studying this unit, you will be able to 

• identify the concept of system of linear differential equation. 

• understand the properties of homogeneous linear system. 

• know about the fundamental systems of solution. 

• apply basic theorems to solve the linear system of differential equation. 

• find the condition of uniqueness of solution for linear homogeneous and non-

homogeneous system of differential equations. 

Introduction 

In this chapter, we shall study the various properties of the solutions of linear systems. The results 
we obtain will often provide a background for treating non-linear systems in subsequent chapters. 

 

8.1 Linear System of Differential Equation 

Consider the n-dimensional first order systems of linear equations 

𝑥𝑖
′ = ∑ 𝑎𝑖𝑗(𝑡)𝑥𝑗 + 𝑏𝑖(𝑡), 𝑖 = 1,2,3, … … … , 𝑛.𝑛

𝑗=1       (8.1.1) 

Where 𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡), … … . . 𝑥𝑛(𝑡)) is an unknown vector function and 𝑎𝑖𝑗(𝑡) and 𝑏𝑖(𝑡), 𝑖, 𝑗 =

1,2,3 … … . . , 𝑛, are given continuous functions on 𝑟1 < 𝑡 < 𝑟2. It can be written in  the vector-matrix 
form as  

𝑥′ = 𝐴(𝑡)𝑥 + 𝐵(𝑡),         (8.1.2) 

Where 𝐴(𝑡) is the 𝑛 × 𝑛 matrix (𝑎𝑖𝑗(𝑡)) and 𝐵(𝑡) is the 𝑛 − vector (𝑏1(𝑡), 𝑏2(𝑡), … … … . . 𝑏𝑛(𝑡)).  𝐹or 

the existence and uniqueness of the solutions of (8.1.2) see chapter 4. 

Superposition principle 

An important feature of linear systems of the type (8.1.2) is that their solutions can be linearly 
superposed to obtain new solutions. More specifically, let 𝑥1(𝑡) be a solution of (8.1.2) when 𝐵(𝑡) =

𝐵1(𝑡), and let 𝑥2(𝑡) be a solution of this system when 𝐵(𝑡) = 𝐵2(𝑡). If 𝑐1 and 𝑐2 are given scalars, 
then 𝑥(𝑡) = 𝑐1𝑥(𝑡) + 𝑐2𝑥(𝑡) is a solution of (8.1.2) when 𝐵(𝑡) = 𝑐1𝐵1(𝑡) + 𝑐2𝐵2(𝑡). To see this, 
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𝑥′(𝑡) = 𝑐1𝑥1
′ (𝑡) + 𝑐2𝑥2

′ (𝑡)  

= 𝑐1(𝑡)(𝐴(𝑡)𝑥1(𝑡) + 𝐵1(𝑡)) + 𝑐2(𝑡)(𝐴(𝑡)𝑥2(𝑡) + 𝐵2(𝑡))  

= 𝐴(𝑡)(𝑐1𝑥1(𝑡) + 𝑐2𝑥2(𝑡)) + 𝑐1𝐵1(𝑡) + 𝑐2𝐵2(𝑡) 

  = 𝐴(𝑡)𝑥(𝑡) + 𝐵(𝑡). 

In particular, if both 𝑥1(𝑡) and 𝑥2(𝑡) are the solutions of the linear homogeneous system 

𝑥′ = 𝐴(𝑡)𝑥,        (8.1.3) 

then𝑐1𝑥1(𝑡) + 𝑐2𝑥2(𝑡) is also a solution of (8.1.3). Further, if 𝑥1(𝑡) is a solution of (8.1.2), 
then 𝑥2(𝑡) is a solution of (8.1.2) if and only if 𝑥1(𝑡) − 𝑥2(𝑡) is a solution of (8.1.3). This important 
property of the linear superposition principle may be stated in a more abstract way as follows. 
Suppose the vector function 𝐵(𝑡) in (8.1.2) is allowed to vary over a linear space L of functions. 
Also, assume that, for each 𝐵(𝑡) in 𝐿, system (8.1.2) has a unique solution𝑥(𝑡). Then, the set 𝑌of the 
solutions of (8.1.2) form a linear space. 

8.2 Properties of Linear Homogeneous Systems 

We shall now consider the fundamental properties of the solutions of the first order linear 
homogeneous system  

𝑥′ = 𝐴(𝑡)𝑥,         (8.1.4) 

Where ,𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡), … … . 𝑥𝑛(𝑡)) is an unknown n dimensional vector function and   

𝐴(𝑡) = (𝑎𝑖𝑗(𝑡))is an 𝑛 × 𝑛 continuous matrix on 𝑟1 < 𝑡 < 𝑟2. Equation (8.1.4) is called linear 

homogeneous because any linear combination of the solutions of (8.1.4) is also a solution of (8.1.4). 
More specifically, let  

𝜙𝑗(𝑡) = (𝜙1𝑗(𝑡), 𝜙2𝑗 , … … … 𝜙𝑛𝑗 (𝑡)) ,        𝑗 = 1,2,3, … … . . , 𝑛, 

Be the solutions of (8.1.4) and let 𝑐𝑗(𝑗 = 1,2, … … . . , 𝑛) be the arbitrary constants. Also, let  

𝜙(𝑡) =  ∑ 𝑐𝑗𝜙𝑗(𝑡)𝑛
𝑗=1 . 

Then, 

𝜙′(𝑡) =  ∑ 𝑐𝑗𝜙𝑗
′(𝑡)𝑛

𝑗=1 . 

Since 𝜙𝑗(𝑡) are the solutions of (8.1.4), we have  

𝜙′(𝑡) =  ∑ 𝑐𝑗𝐴(𝑡)𝜙𝑗(𝑡)𝑛
𝑗=1 . 

From the properties of matrix-vector multiplication, it follows that  

𝜙′(𝑡) =  𝐴(𝑡) ∑ 𝑐𝑗𝜙𝑗(𝑡)𝑛
𝑗=1 =  𝐴(𝑡)𝜙(𝑡). 

This implies that 𝜙(𝑡)also is a solution of (8.1.4). 

 

It should be noted that 𝜙(𝑡) = 0, 𝑡 ∈ (𝑟1, 𝑟2), is a solution of (8.1.4); in fact it is the only 
solution satisfying 𝜙(𝑡0) = 0 for 𝑡 ∈ (𝑟1, 𝑟2), as the following results shows. 

Lemma 8.1.1: Let 𝑡0 ∈ (𝑟1, 𝑟2) and 𝜙(𝑡)be a solution of (8.1.4); in fact, it is the only solution satisfying 
𝜙(𝑡0) = 0for 𝑡 ∈ (𝑟1, 𝑟2), as the following results shows. 

Proof: The function  𝑥(𝑡) = 0, 𝑡 ∈ (𝑟1, 𝑟2), satisfies (8.1.4) together with the initial condition 𝑥(𝑡0) ≡
𝜙(𝑡) since all the solutions are defined on 𝑟1 < 𝑡 < 𝑟2. 

 

Example 8.1.2:The vector differential equation corresponding to a linear homogeneous 
system  

 

𝑑𝑥1

𝑑𝑡
= 7𝑥1 − 𝑥2 + 6𝑥3  

𝑑𝑥2

𝑑𝑡
= −10𝑥1 + 4𝑥2 − 12𝑥3       (8.1.5) 

𝑑𝑥3

𝑑𝑡
= −2𝑥1 + 𝑥2 − 𝑥3  
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is 

𝑑𝑥

𝑑𝑡
= [

7 −1 6
−10 4 12
−2 1 −1

] 𝑥       (8.1.6) 

Where  
𝑥 = [𝑥1 𝑥2 𝑥3]𝑇 

The column vector function  

𝜙(𝑡) = [
𝑒3𝑡

−2𝑒3𝑡

−𝑒3𝑡

] 

is a solution of the vector differential equation (8.1.5) on every interval 𝑟1 < 𝑡 < 𝑟2as 𝑢 =
𝜙(𝑡)satisfies (8.1.6) identically on 𝑟1 < 𝑡 < 𝑟2 i.e. 

[
3𝑒3𝑡

−6𝑒3𝑡

−3𝑒3𝑡

] = [
7 −1 6

−10 4 12
−2 1 −1

] [
3𝑒3𝑡

−6𝑒3𝑡

−3𝑒3𝑡

] 

⇒                   𝑥1 = 𝑒3𝑡 , 𝑥2 = −2𝑒3𝑡, 𝑥3 = −𝑒3𝑡     (8.1.7) 

Simultaneously satisfy all the three equations of the system (8.1.6) for 𝑟1 < 𝑡 < 𝑟2. So we call (8.1.7) a 
solution of the system (8.1.6). 

 We now introduce the concept of linear independence of a set of scalar or vector-valued functions. 

Definition 8.1.3: A set of vector-valued functions 𝑣1(𝑡), 𝑣2(𝑡), … … . . 𝑣𝑛(𝑡) is linearly independent on 
an interval I (where these functions are defined) if and only if there exists no constants 
𝑐1, 𝑐2, … … . . , 𝑐𝑛 , not all zero, such that  

∑ 𝑐𝑖𝑣𝑖(𝑡) ≡ 0    𝑜𝑛     𝐼.

𝑛

𝑖=1

 

A set of vector- valued functions is linearly dependent on 𝐼 if it is not linearly independent on 𝐼. 

 

Example 8.1.4 (i) The set of scalar functions 𝑒𝑡, 𝑒−𝑡, 𝑠𝑖𝑛 𝑡, cos 𝑡 is linearly independent on 
−∞ < 𝑡 < ∞. 

(ii) The set of n-dimensional unit vectors  

𝑒𝑗 = (0,0, … … ,0,1,0, … … . ,0),         𝑗 = 1,2, … … … . , 𝑛. 

is linearly independent in the space 𝑅𝑛. 

(iii) The set of vector-valued function 𝑣1(𝑡) = (1,0,0), 𝑣2(𝑡) = (𝑡2, 𝑒𝑡, 0), 𝑣3(𝑡) = (𝑡4, 𝑒−𝑡 , 0) 

is linearly independent on −∞ < 𝑡 < ∞. 

(iv) The set of scalar functions 1, 𝑡, 2𝑡 is linear dependent on −∞ < 𝑡 < ∞. 

(v) The set of vectors 𝑣1 = (1,2,3), 𝑣2 = (2,3,5), 𝑣3 = (2,3,7), 𝑣4 = (0,8, −20) is linearly dependent in 

the space 𝑅3. 

Theorem 8.1.5: If 𝜙1(𝑡), … … , 𝜙𝑛(𝑡), 𝑟1 < 𝑡 < 𝑟2, is a set of linearly independent solutions of (8.1.4), 
then linear combination  

∑ 𝑐𝑗𝜙𝑗(𝑡)

𝑛

𝑗=1

 

never vanishes on 𝑟1 < 𝑡 < 𝑟2unless 𝑐1 = 𝑐2 = ⋯ … . = 𝑐𝑛 = 0. 

Proof: Let  𝜙(𝑡) = ∑ 𝑐𝑗𝜙𝑗(𝑡)𝑛
𝑗=1 . 

Then, from the linearity of the homogeneous differential equation (8.1.4), 𝜙(𝑡) is a solution of 
(8.1.4). If 𝜙(𝑡0) = 0 for some 𝑡0 ∈ (𝑟1, 𝑟2) and 𝑐𝑗are not all zero, then, by Lemma 8.1.1, 𝜙(𝑡) is 

identically zero. This is a contradiction. Hence, the linear combination never vanishes on 𝑟1 < 𝑡 <
𝑟2. 
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Definition 8.1.6:A set 𝜙1(𝑡), 𝜙2(𝑡), … … . 𝜙𝑛(𝑡), 𝑟1 < 𝑡 < 𝑟2, of the solutions of (8.1.4) is called a 
fundamental system of solutions of (8.1.4) if the set is linearly independent on (𝑟1, 𝑟2). 

 

Remark 8.1.7: Any solution of (8.1.4) can be expressed in terms of a fundamental systems 
of solutions of (8.1.4). Thus, the problem of finding any solution of (8.1.4) entails finding 
𝑛 linearly independent solutions of (8.1.4). Evidently then, for determining the behavior 
of any solution of (8.1.4), we need only the properties of a fundamental system of 
solutions of (8.1.4). 

Theorem 8.1.8: A fundamental system of solutions of (8.1.4) exists. 

Proof: Let 𝜙1(𝑡), … … . . , 𝜙𝑛(𝑡) be the solutions of (8.1.4) defined on the interval 𝑟1 < 𝑡 < 𝑟2 with the 
initial conditions 

𝜙𝑗(𝑡0) = 𝑒𝑗 ,   𝑗 = 1,2,3, … … , 𝑛, 

For 𝑡0 ∈ (𝑟1, 𝑟2), where 𝑒1, 𝑒2, … … . 𝑒𝑛 are the n-dimensional unit vectors. These solutions are distinct 
since they satisfy distinct initial conditions. We claim that the solutions are linearly independent on 
(𝑟1, 𝑟2). Suppose this is not true. Then, there eist some constants 𝑐𝑗(𝑗 = 1,2,3, … … , 𝑛), not all zero, 

such that 

𝜙(𝑡) =  ∑ 𝑐𝑗𝜙𝑗(𝑡) ≡ 0𝑛
𝑗=1    𝑜𝑛   (𝑟1, 𝑟2). 

Thus, we have 

𝜙(𝑡0) = ∑ 𝑐𝑗𝜙𝑗(𝑡0) = ∑ 𝑐𝑗𝑒𝑗 = (𝑐1, 𝑐2, … … . . , 𝑐𝑛) = 0

𝑛

𝑗=1

𝑛

𝑗=1

 

This implies  𝑐1 = 𝑐2 = ⋯ . . = 𝑐𝑛 = 0. But this is a contradiction. Therefore, 𝜙1(𝑡), … … . . , 𝜙𝑛(𝑡) are 
linearly independent. Since these are the solutions of (8.1.4), they form a fundamental system of 
solutions of (8.1.4). 

Corollary 8.1.9:Every solution of (8.1.4) can be expressed as a linear combination of the elements of 
a fundamental system of solutions of (8.1.4). 

Proof: Let 𝑥(𝑡) be a solution of (8.1.4) defined for 𝑟1 < 𝑡 < 𝑟2 such that 𝑥(𝑡0) = 𝑥0 =
(𝑥10, 𝑥20, … … . , 𝑥𝑛0), 𝑡0 ∈ (𝑟1, 𝑟2), Also, let 𝜙1(𝑡), … … … . 𝜙𝑛(𝑡) be a fundamental system of solutions 
of (8.1.4) satisfying 𝜙𝑗(𝑡0) = 𝑒𝑗(𝑗 = 1,2, … … , 𝑛). Set  

𝜙(𝑡) = ∑ 𝑥𝑗0𝜙𝑗(𝑡)𝑛
𝑗=1 . 

Clearly, 𝜙(𝑡) is a solution of (8.1.4) and, moreover,  

𝜙(𝑡0) =  ∑ 𝑥𝑗0𝑒𝑗 = (𝑥10, 𝑥20, … … . . 𝑥𝑛0) = 𝑥0
𝑛
𝑗=1 . 

Since the solutions of (8.1.4) are unique, it follows that  

𝜙(𝑡) ≡ 𝑥(𝑡)for 𝑟1 < 𝑡 < 𝑟2. 

 

Remarks 8.1.10:The foregoing results shows that the space 𝑋 of all the solutions of (8.1.4) 
is linear and has the dimension n. 

We now introduce the 𝑛 × 𝑛 matrix Φ(𝑡) whose 𝑗 − 𝑡ℎ column is 𝜙𝑗(𝑡) = (𝜙1𝑗 , … … , 𝜙𝑛𝑗) such that 

𝜙𝑗(𝑡0) = 𝑒𝑗 , that is,  

Φ(𝑡) =  (
𝜙11(𝑡) ⋯ 𝜙1𝑛 (𝑡)

⋮ ⋱ ⋮
𝜙𝑛1(𝑡) ⋯ 𝜙𝑛𝑛(𝑡)

). 

Obviously, Φ(𝑡0) = 𝐼 is the identity matrix. 

Definition 8.1.11: Let 𝜙1(𝑡), 𝜙2(𝑡), … … . , 𝜙𝑛(𝑡) be the solution of (8.1.4), where 𝜙𝑗(𝑡) =

(𝜙1𝑗(𝑡), … … , 𝜙𝑛𝑗(𝑡)). Then, the scalar function 𝑊(𝑡) = det Φ(𝑡)is called the Wroskian of 

𝜙1(𝑡), … … . . , 𝜙𝑛(𝑡). 

Definition8.1.12: If 𝜙1(𝑡), 𝜙2(𝑡), … … , 𝜙𝑛(𝑡) is a fundamental system of solutions of (8.1.4), then Φ(𝑡) 
is called the fundamental matrix of (8.1.4). 

Corollary 8.1.13: The fundamental matrix Φ(𝑡) is the solution of the matrix differential equation  
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Φ′(𝑡) = 𝐴(𝑡)Φ(𝑡)         (8.1.8) 

and satisfy Φ(𝑡0) = 𝐼. Further, the solution 𝑥(𝑡) of (8.1.4), we have 𝜙𝑗
′(𝑡) = 𝐴(𝑡)𝜙𝑗(𝑡). This implies 

that Φ(𝑡) satisfies the equation  Φ′ = 𝐴(𝑡)Φ. Let 𝑥0 = (𝑥10, 𝑥20, … … , 𝑥𝑛0). Then, by Corollary 8.1.1, 
we have 

𝑥(𝑡) =  ∑ 𝑥𝑗0𝜙𝑗(𝑡)𝑛
𝑗=1 . 

Hence, using matrix- vector multiplication, we get 

𝑥(𝑡) = Φ(𝑡)𝑥0. 

The following result expression a relation between the Wronskian 𝑊(𝑡) and matrix 𝐴(𝑡). 

8.3 Abel-Liouville Formula 

Theorem 8.1.14:Let Φ(𝑡) be a fundamental matrix of (8.1.4) and let 𝑡0 ∈ (𝑟1, 𝑟2).Then, 𝑊(𝑡) =

𝑊(𝑡0) exp [∫ 𝑇𝑟 𝐴(𝑠)𝑑𝑠
𝑡

𝑡0
] 𝑓𝑜𝑟  𝑡 ∈ (𝑟1, 𝑟2). 

Proof: Since Φ(𝑡) is a fundamental matrix of (8.1.4), it satisfies the matrix differential equation Φ′ =
𝐴(𝑡)Φ(𝑡). Therefore, we have  

𝜙𝑖𝑗
′ = ∑ 𝑎𝑖𝑘(𝑡)𝜙𝑘𝑗(𝑡),      𝑖, 𝑗 = 1,2, … … . , 𝑛,

𝑛

𝑘=1

 

Where Φ(𝑡) = (𝜙𝑖𝑗(𝑡))and 𝐴(𝑡) = (𝑎𝑖𝑗(𝑡)). We now consider the derivative formula 

𝑊′(𝑡) =   ||

𝜙11
′ … … … 𝜙1𝑗

′ … … . . 𝜙1𝑛
′

𝜙21 … … … 𝜙2𝑗 … … . . 𝜙2𝑛

⋮                  ⋮                    ⋮
𝜙𝑛1𝜙𝑛𝑗𝜙𝑛𝑛

||+||

𝜙11
′ … … … 𝜙1𝑗

′ … … . . 𝜙1𝑛
′

𝜙21 … … … 𝜙2𝑗 … … . . 𝜙2𝑛

⋮                  ⋮                    ⋮
𝜙𝑛1𝜙𝑛𝑗𝜙𝑛𝑛

||    +

                          … . … … … … … … … … … . . . . +          ||

𝜙11
′ … … … 𝜙1𝑗

′ … … . . 𝜙1𝑛
′

𝜙21 … … … 𝜙2𝑗 … … . . 𝜙2𝑛

⋮                  ⋮                    ⋮
𝜙𝑛1𝜙𝑛𝑗𝜙𝑛𝑛

||   (8.1.9) 

Set  

𝜓𝑖(𝑡) = ||

𝜙11 … … . . 𝜙1𝑗 … . … . . 𝜙1𝑛

𝜙𝑖1 
′ . .  … … 𝜙𝑖𝑗

′ … … . . . . 𝜙𝑖𝑛
′

⋮                  ⋮                    ⋮
𝜙𝑛1 … … . . 𝜙𝑛𝑗 … … …  𝜙𝑛𝑛

|| 

Hence it follows that  

𝜓𝑖(𝑡) =
|

|

𝜙11 … … . … … … … . . … … . . 𝜙1𝑗 … … … . … … . . . … . . 𝜙1𝑛

∑ 𝑎𝑖𝑘𝜙𝑘1

𝑛

𝑘=1

. .  … … … … . ∑ 𝑎𝑖𝑘  𝜙𝑘𝑗

𝑛

𝑘=1

… … … … … . . ∑ 𝑎𝑖𝑘𝜙𝑘𝑛

𝑛

𝑘=1

⋮                  ⋮                    ⋮
𝜙𝑛1 … … … … … … … … … … . . 𝜙𝑛𝑗 … … … … … … … … …  𝜙𝑛𝑛

|

|
 

In this determinant, multiplying the first row by 𝑎𝑖1,  the second by 𝑎𝑖2, and so on, except the i-th 
row, and subtracting their sum from the i-th row, we get  

𝜓𝑖(𝑡) = 𝑎𝑖𝑖𝑊(𝑡). 

This relation is true for 𝑖 = 1,2, … … … . , 𝑛. Therefore, from (8.1.9), we obtain 

𝑊′(𝑡) = ∑ 𝑎𝑖𝑖(𝑡)𝑊(𝑡)

𝑛

𝑖=1

. 

This implies 

𝑊′(𝑡) = (𝑇𝑟 (𝐴(𝑡))𝑊(𝑡). 

Integrating this equation between 𝑡0and 𝑡, we have  

𝑊(𝑡) = 𝑊(𝑡0) exp [∫ 𝑇𝑟 𝐴(𝑠)𝑑𝑠
𝑡

𝑡0

]    𝑓𝑜𝑟   𝑡 ∈ (𝑟1, 𝑟2). 
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In particular, if 𝐴(𝑡) = 𝐴 is a constant matrix, then the foregoing results shows that  

𝑊(𝑡) = 𝑊(𝑡0) exp[(𝑡 − 𝑡0)𝑇𝑟 𝐴]     𝑓𝑜𝑟 𝑡 ∈ (𝑟1, 𝑟2). 

 
Remarks 8.1.15: Since exp [∫ 𝑇𝑟 𝐴(𝑠)𝑑𝑠

𝑡

𝑡0
] never vanishes, Theorem 8.1.14 implies that if 

𝑊(𝑡0) = 0 for some 𝑡0 ∈ (𝑟1, 𝑟2), then 𝑊(𝑡) = 0  for all 𝑡 ∈ (𝑟1, 𝑟2). 

We now prove a general result which characterizes a fundamental system of solution of (8.1.4). 

Theorem 8.1.16: A necessary and sufficient condition for a matrix solution Φ(𝑡)of (8.1.8) to be a 
fundamental matrix of (8.1.4) is  

𝑊(𝑡) ≠ 0for  𝑡 ∈ (𝑟1, 𝑟2). 

Proof: Suppose Φ(𝑡)is a fundamental matrix of (8.1.4) with the column vectors 𝜙1(𝑡), … … . . , 𝜙𝑛(𝑡), 
and let 𝜙(𝑡) be any solution of (8.1.4). Then, there exist constants 𝑐𝑗(𝑗 = 1,2, … . . , 𝑛), not all zero, 

such that  

𝜙(𝑡) = Φ(𝑡)𝑐. 

For any𝑡 ∈ (𝑟1, 𝑟2), this relation represents a system of n linear algebraic equations in the n-
unknown 𝑐1 , 𝑐2 , … … … . , 𝑐𝑛 and has a unique solution. This implies that the determinant of Φ(𝑡) is 
not equal to zero. Therefore, 𝑊(𝑡) ≠ 0. Conversely, if 𝑊(𝑡) ≠ 0for 𝑟1 < 𝑡 < 𝑟2, then the column 
vectors 𝜙1(𝑡), … … . . , 𝜙𝑛(𝑡) of Φ(𝑡) are linearly independent for 𝑟1 < 𝑡 < 𝑟2. Since these are the 
solutions of (8.1.4), they form a fundamental system of solutions. 

Remarks 8.1.17:The determinant of a matrix of column vectors may be identically zero on an 
interval 𝐼 = (𝑟1, 𝑟2) even when these vectors are linearly independent on 𝐼. For example, suppose 
the matrix Φ(𝑡) is defined by  

Φ(𝑡) =  (
1 𝑡2 𝑡4

0 𝑒𝑡 𝑒−𝑡

0 0 0 

)for 𝑡 ∈ 𝐼. 

Here, it is clear that det Φ(𝑡) = 0 on 𝐼; also, the column vectors of Φ(𝑡) are linearly independent on 
𝐼. Since this is not true of column vectors that are the solutions of (8.1.4), the assertion of Theorem 
8.1.16 is not contradicted.  

 

Example 8.1.18: Consider the homogeneous linear vector differential equation  

 

𝑑𝑥

𝑑𝑡
= [

7 −1 6
−10 4 12
−2 1 −1

] 𝑢       (8.1.6) 

Where  
𝑥 = [𝑥1 𝑥2 𝑥3]𝑇 

on every interval 𝑟1 < 𝑡 < 𝑟2. 

Solution: It is easy to verify that the vector functions 𝜙1(𝑡),  𝜙2(𝑡) 𝑎𝑛𝑑 𝜙3(𝑡) defined by  

𝜙1(𝑡) =  [
𝑒2𝑡

−𝑒2𝑡

−𝑒2𝑡

] ;  𝜙2(𝑡) =  [
𝑒3𝑡

−2𝑒3𝑡

−𝑒3𝑡

] ; 𝜙1(𝑡) =  [
3𝑒5𝑡

−6𝑒5𝑡

−2𝑒5𝑡

] 

are all solutions of the given homogeneous linear vector differential equation and  

𝑊(𝜙1, 𝜙2, 𝜙3)(𝑡) =  |
𝑒2𝑡 𝑒3𝑡 3𝑒5𝑡

−𝑒2𝑡 −2𝑒3𝑡 −6𝑒5𝑡

−𝑒2𝑡 −𝑒3𝑡 −2𝑒5𝑡

| = −𝑒10𝑡 ≠ 0for all real 𝑡 ∈ [𝑟1, 𝑟2]. 

The solutions defined by 𝜙1, 𝜙2 𝑎𝑛𝑑 𝜙3 of our equation are linearly independent on every real 
interval [𝑟1, 𝑟2]. 

Therefore, the fundamental matrix of the given linear vector differential equation is  

[
𝑒2𝑡 𝑒3𝑡 3𝑒5𝑡

−𝑒2𝑡 −2𝑒3𝑡 −6𝑒5𝑡

−𝑒2𝑡 −𝑒3𝑡 −2𝑒5𝑡

]. 
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Theorem 8.1.19: The unique solution 𝜙 of the homogeneous linear vector differential equation 
(8.1.4) that satisfies the initial condition 𝜙(𝑡0) = 𝑥0, 𝑡0 ∈ (𝑟1, 𝑟2), can be expressed in  the form  

𝜙(𝑡) = Φ(𝑡)Φ−1(𝑡0)𝑥0 

Where Φ(𝑡) is an arbitrary fundamental matrix of differential equation (8.1.4). 

Proof: Let Φ(𝑡) is an arbitrary fundamental matrix of differential equation (8.1.4) and 𝜙(𝑡) be any 
solution of (8.1.4) be any solution of (8.1.4) then there exists a constant vector 𝑐 such that 𝜙(𝑡) = Φ𝑐. 

The initial condition 𝜙(𝑡0) = 𝑥0 we get 𝑥0 = Φ(𝑡0)𝑐. 

The determinant |Φ(𝑡)|is the Wronskian of 𝑛 linearly independent solutions of (8.1.4) and constitute 
the individual columns of fundamental matrixΦ(𝑡). As the n columns of  Φ(𝑡) are linearly 
independent, we have Φ(𝑡0) ≠ 0 and so Φ(𝑡0) is a non-singular and its inverse matrix Φ−1(𝑡0) 
exists. Thus we find  

Φ−1(𝑡0)𝑥0 = Φ−1(𝑡0)Φ(𝑡0)𝑐 = 𝐼𝑐 = 𝑐 

Putting this value of c in𝜙(𝑡) = Φ𝑐, we get 

𝜙(𝑡) = Φ(𝑡)Φ−1(𝑡0)𝑥0. 

 

Example 8.1.20: Find the unique solution of the differential equation  

x′ =
𝑑𝑥

𝑑𝑡
= [

7 −1 6
−10 4 −12
−2 1 −1

] 𝑥where x = [

𝑥1

𝑥2

𝑥3

] 

that satisfy the initial condition ϕ(0) = x0 = [
−1
4
2

]. 

Solution: According to theorem 8.1.19, we know that the required solution is given by ϕ(t) =

Φ(t)Φ−1(𝑡0)𝑥0 where Φ(t) is a fundamental matrix of given differential equation. In example 8.1.18, 
we have shown  

Φ(𝑡) = [
𝑒2𝑡 𝑒3𝑡 3𝑒5𝑡

−𝑒2𝑡 −2𝑒3𝑡 −6𝑒5𝑡

−𝑒2𝑡 −𝑒3𝑡 −2𝑒5𝑡

] 

is a fundamental matrix. After performing the required calculations, we find 

Φ−1(𝑡) = [
2𝑒−2𝑡 𝑒−2𝑡 0

−4𝑒−3𝑡 −𝑒−3𝑡 −3𝑒−3𝑡

𝑒−5𝑡 0 𝑒−5𝑡

] 

Which gives  Φ−1(0) = [
2 1 0

−4 −1 −3
1 0 1

]. 

Making use of ϕ(t) = Φ(t)Φ−1(𝑡0)𝑥0, we follow 

 

ϕ(𝑡) = [
𝑒2𝑡 𝑒3𝑡 3𝑒5𝑡

−𝑒2𝑡 −2𝑒3𝑡 −6𝑒5𝑡

−𝑒2𝑡 −𝑒3𝑡 −2𝑒5𝑡

] [
2 1 0

−4 −1 −3
1 0 1

] [
−1
4
2

] 

= [
𝑒2𝑡 𝑒3𝑡 3𝑒5𝑡

−𝑒2𝑡 −2𝑒3𝑡 −6𝑒5𝑡

−𝑒2𝑡 −𝑒3𝑡 −2𝑒5𝑡

] [
2

−6
1

] = [
2𝑒2𝑡 − 6𝑒3𝑡 + 3𝑒5𝑡

−2𝑒2𝑡 + 12𝑒3𝑡 − 6𝑒5𝑡

−2𝑒2𝑡 + 6𝑒3𝑡 − 2𝑒5𝑡

] 

    𝑥1 = 2𝑒2𝑡 − 6𝑒3𝑡 + 3𝑒5𝑡 

𝑥2 = −2𝑒2𝑡 + 12𝑒3𝑡 − 6𝑒5𝑡 

𝑥3 = −2𝑒2𝑡 + 6𝑒3𝑡 − 2𝑒5𝑡 

which is the required solution of given differential equation. 
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8.4 Non-Homogeneous System of Differnetial Equation 

Consider a differential system of the form 

𝑥′ = 𝐴(𝑡)𝑥 + 𝐵(𝑡),        (8.2.1) 

Where 𝑥 is an𝑛 −vector, 𝐴(𝑡) is an 𝑛 × 𝑛 continuous matrix on 𝑟1 < 𝑡 < 𝑟2, and 𝐵(𝑡) a continuous 
𝑛 − 𝑣𝑒𝑐𝑡𝑜𝑟 on 𝑟1 < 𝑡 < 𝑟2.  System (8.2.1) is called the inhomogeneous (or non-homogeneous) linear 
system of   𝑛 − 𝑡ℎ order. 

If the elements of  𝐴(𝑡) and  B(t) are continuous or just measurable and majorized by integrable 
functions on 𝑟1 < 𝑡 < 𝑟2, then there exists a unique solution 𝜙 of (8.2.1) satisfying 𝜙(𝑡0) = 𝑥0, where 
𝑡0 ∈ (𝑟1, 𝑟2)and ‖𝑥0‖ < ∞. 

 

If a fundamental matrix Φ of (8.2.1) is known, then the solution of (8.2.1) can be 
calculated by using a simple formula which we shall now derive  

If a fundamental matrix Φ of (8.2.1) is known, then the solution of (8.2.1) can be calculated by using 
a simple formula which we shall now derive  

 

Variation of Constants Formula 

Theorem 8.2.1:The solution 𝑥(𝑡) of (8.2.1) satisfying 𝑥(𝑡0) = 𝑥0, 𝑡0 ∈ (𝑟1, 𝑟2),is given by  

𝑥(𝑡) = Φ(𝑡)𝑥0 + ∫ Φ(𝑡)Φ−1(𝑠)𝐵(𝑠)𝑑𝑠, 𝑟1 < 𝑡 < 𝑟2,
𝑡

𝑡0
     (8.2.2) 

whereΦ(𝑡) is a fundamental matrix of (8.1.4) satisfying Φ(𝑡0) = 𝐼. 

Proof: We know that the solution 𝑦(𝑡) of (8.1.4) with 𝑦(𝑡0) = 𝑥0 can be written as 𝑦(𝑡) = Φ(𝑡)𝑥0. The 
method we apply in our proof entails considering the constant vectors 𝑐 as a function or parameter 
on (𝑟1, 𝑟2) and determining 𝑐 (if it exists) so that the function  

𝑥(𝑡) = Φ(𝑡)𝑐(𝑡), 

 Where 𝑐(𝑡) = (𝑐1(𝑡), 𝑐2(𝑡), … … … 𝑐𝑛(𝑡)), 𝑐(𝑡0) = 𝑥0, 

is a solution of (8.2.1). Let  

𝑥(𝑡) = Φ(𝑡)𝑐(𝑡), 𝑐(𝑡0) = 𝑥0, 

be a solution (8.2.1). Then,  

𝑥′(𝑡) = Φ′(𝑡)𝑐(𝑡) + Φ(𝑡)𝑐′(𝑡). 

Since 𝑥(𝑡) is a solution of (8.2.1) and Φ(𝑡) satisfies (8.1.8), we have  

𝐴(𝑡)𝑥(𝑡) + 𝐵(𝑡) = 𝐴(𝑡)Φ(𝑡)𝑐(𝑡) + Φ(𝑡)𝑐′(𝑡) 

or 

𝐵(𝑡) = Φ(𝑡)𝑐′(𝑡). 

Because Φis a fundamental matrix of (8.1.4), its inverse exists, and hence  

𝑐′(𝑡) = Φ−1(𝑡)𝐵(𝑡), 𝑐(𝑡0) = 𝑥0. 

Therefore, the solution of this equation is  

𝑐(𝑡) = 𝑥0 + ∫ Φ−1(𝑠)𝐵(𝑠)𝑑𝑠,    𝑟1 < 𝑡 < 𝑟2,
𝑡

𝑡0

 

Which  implies 

𝑥(𝑡) = Φ(𝑡)𝑥0 + ∫ Φ(𝑡)Φ−1(𝑠)𝐵(𝑠)𝑑𝑠,   𝑟1 < 𝑡 < 𝑟2.
𝑡

𝑡0

 

 

Remarks 8.2.2: The use of (8.2.2) for obtaining the explicit solutions of (8.2.1) when 𝑛 > 3 is 
very limited. This is because (8.2.2) involves the fundamental matrix Φ and its inverse 
Φ−1. Even when 𝑛 = 3, finding the fundamental matrix Φ(𝑡) may turn out to be difficult, if 
not impossible. However, the importance of (8.2.2) should be clear from the fact that 

63



Unit 08: Linear Systems  

 LOVELY PROFESSIONAL UNIVERSITY  

Notes 

knowledge of the properties of the fundamental matrix Φ(𝑡) and the behavior of 𝐵(𝑡) are 
sufficient for deriving considerable information about the solution 𝑥(𝑡) of (8.2.1). 

Lemma 8.2.3: If Φ(𝑡) is a fundamental matrix of  

𝑥′ = 𝐴𝑥,           (8.2.3) 

Where  𝑥 ∈ 𝑅𝑛, 𝐴 is an 𝑛 × 𝑛 constant matrix, and Φ(0) = 𝐼, then  

Φ(𝑡)Φ−1(𝛼) = Φ(𝑡 − 𝛼)        (8.2.4) 
for every 𝛼. 

Proof: For a real number 𝛼, let Ω1(𝑡) = Φ(𝑡)Φ−1(𝛼). Since Φ(𝑡) satisfies Φ′ = 𝐴Φ, Ω1(𝑡) also satisfies 
it, the initial condition being Ω1(𝛼) = 𝐼. Similarly, Ω2(𝑡) = Φ(𝑡 − 𝛼) satisfies 

Ω2(𝛼) = Φ(0) = 𝐼 

And also 

Ω2
′ (𝑡) = 𝐴Φ(𝑡 − 𝛼) = 𝐴Ω2(𝑡). 

Hence, from uniqueness, we must have Ω2(𝑡) ≡ Ω1(𝑡). 

In view of Lemma 8.2.3, representation (8.2.2) for the solutions of  

𝑥′ = 𝐴𝑥 + 𝐵(𝑡),          (8.2.5) 

Where 𝐴 = (𝑎𝑖𝑗) is a constant matrix and 𝐵(𝑡) is continuous on 𝑟1 < 𝑡 < 𝑟2, where Φ(𝑡) is a 

fundamental matrix of (8.2.3) satisfying   

Theorem 8.2.4: The solution𝑥(𝑡) of equation (8.2.5) satisfying 𝑥(0) = 𝑥0 for 𝑟1 < 𝑡 < 𝑟2 is  

𝑥(𝑡) = Φ(𝑡)𝑥0 + ∫ Φ(𝑡 − 𝑠)𝐵(𝑠)𝑑𝑠,
𝑡

0

𝑟1 < 𝑡 < 𝑟2, 

whereΦ(𝑡) is a fundamental matrix of (8.2.3) with Φ(0) = 𝐼. 

Proof: Same as Theorem 8.2.1 with Lemma 8.2.3. 

Lemma 8.2.5: If Φ(𝑡) is a fundamental matrix of (8.1.4) satisfying (8.1.8) with Φ(𝑡0) ≠ 𝐼, then any 
solution 𝑥(𝑡) of (8.1.4) satisfying 𝑥(𝑡0) = 𝑥0, 𝑟1 < 𝑡 < 𝑟2, can be written as 

𝑥(𝑡) = Φ(𝑡)Φ−1(𝑡0)𝑥0,andΩ(𝑡) = Φ(𝑡)Φ−1(𝑡0) is a fundamental matrix of (8.1.4) satisfying Ω(𝑡0) = 𝐼. 

Proof: For the fundamental matrix Φ(𝑡), the solution 𝑥(𝑡) of (8.1.4) can be written as 𝑥(𝑡) = Φ(𝑡)𝑐 
for some constant vector c. Therefore, 𝑥(𝑡0) = Φ(𝑡0)𝑐. Since Φ is the fundamental matrix, its inverse 
exists, and hence 𝑐 = Φ−1(𝑡0)𝑥0. We now prove that Ω(𝑡) is a fundamental matrix of (8.1.4). As we 
know, det(Ω(𝑡)) ≠ 0 for 𝑟1 < 𝑡 < 𝑟2since det(Φ(𝑡)) ≠ 0. Hence, the column of Ω(𝑡) are linearly 
independent. Since the column vectors of Ω(𝑡) are the solutions of (8.1.4), Ω(𝑡) is a fundamental 
matrix of (8.1.4) with  Ω(𝑡0) = 𝐼. 

 

Example 8.2.5: Find the solution of the non-homogeneous differential equation 

 

𝑥′ =
𝑑𝑥

𝑑𝑡
= [

6 −3
2 1

] 𝑥 + [𝑒5𝑡

4
]where 𝑥 = [

𝑥1

𝑥2
]. 

Solution: Here 𝐴(𝑡) =  [
6 −3
2 1

] and 𝐵(𝑡) = [𝑒5𝑡

4
] and the corresponding homogeneous differential 

equation is  

𝑥′ =
𝑑𝑥

𝑑𝑡
= [

6 −3
2 1

] 𝑥 

Whose two simultaneous differential equations are𝑥1
′ = 6𝑥1 − 3𝑥2; 𝑥2

′ = 2𝑥1 + 𝑥2. 

On solving them, we find 

𝑥1 =
3𝑐1

2
𝑒4𝑡 + 𝑐2𝑒3𝑡 = 3𝑘𝑒4𝑡 + 𝑐2𝑒3𝑡  

𝑥2 = 𝑐1𝑒4𝑡 + 𝑐2𝑒3𝑡 = 3𝑘𝑒4𝑡 + 𝑐2𝑒3𝑡    (𝑐1 = 2𝑘) 
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⇒              𝑥 = [
𝑥1

𝑥2
] = [

3𝑘𝑒4𝑡 + 𝑐2𝑒3𝑡

2𝑘𝑒4𝑡 + 𝑐2𝑒3𝑡] 

⇒ 𝜙1(𝑡) =  [3𝑒4𝑡

2𝑒4𝑡]and𝜙2(𝑡) =  [𝑒3𝑡

𝑒3𝑡] 

Which constitute a fundamental set of solutions of homogeneous differential equation. Thus 
fundamental matrix Φ(𝑡) is given by 

 

Φ(𝑡) = [3𝑒4𝑡 𝑒3𝑡

2𝑒4𝑡 𝑒3𝑡]        (8.2.6) 

We know that any solution of our non-homogeneous differential equation is given by    

𝜙0(𝑡) = Φ(𝑡) ∫ Φ−1(𝑠)𝐵(𝑠)𝑑𝑠
𝑡

𝑡0

 

for any real number 𝑡0. For convenience, let 𝑡0 = 0, then 

𝜙0(𝑡) = Φ(𝑡) ∫ Φ−1(𝑠)𝐵(𝑠)𝑑𝑠
𝑡

𝑡0

 

whereΦ(𝑡) is given by (8.2.6) and  

𝐵(𝑠) = [𝑒5𝑠

4
] 

Now Φ−1(𝑠) =  [ 𝑒−4𝑠 −𝑒−4𝑠

−2𝑒−3𝑠 3𝑒−3𝑠 ] 

Hence 𝜙0(𝑡) = [3𝑒4𝑡 𝑒3𝑡

2𝑒4𝑡 𝑒3𝑡] ∫ [ 𝑒−4𝑠 −𝑒−4𝑠

−2𝑒−3𝑠 3𝑒−3𝑠 ]
𝑡

0
[𝑒5𝑠

4
] 𝑑𝑠 

= [3𝑒4𝑡 𝑒3𝑡

2𝑒4𝑡 𝑒3𝑡] ∫ [ 𝑒𝑠 − 4𝑒−4𝑠

−2𝑒2𝑠 + 12𝑒−3𝑠]
𝑡

0

𝑑𝑠 

[3𝑒4𝑡 𝑒3𝑡

2𝑒4𝑡 𝑒3𝑡] [ 𝑒𝑡 + 𝑒−4𝑡 − 2
−2𝑒2𝑡 − 4𝑒−3𝑡 + 5

] 

[−6𝑒4𝑡 + 5𝑒3𝑡 + 2𝑒5𝑡 − 1
−4𝑒4𝑡 + 5𝑒3𝑡 + 𝑒5𝑡 − 2

] 

𝑥1 =  −6𝑒4𝑡 + 5𝑒3𝑡 + 2𝑒5𝑡 − 1, 𝑥2 = −4𝑒4𝑡 + 5𝑒3𝑡 + 𝑒5𝑡 − 2which is required solution of given 
system of non-homogeneous differential equation. Obviously, we follow 

𝜙0(0) =  [
−6 + 5 + 2 − 1
−4 + 5 + 1 − 2

] = [
0
0

] = 𝒐 

Further, we observe that this solution can also be expressed in the form   

𝜙0(𝑡) =  −2𝜙1(𝑡) + 5𝜙2(𝑡) + 𝜙0
∗(𝑡) 

Where𝜙0
∗(𝑡) = [2𝑒5𝑡 − 1

𝑒5𝑡 − 2
] is a solution of given non homogeneous differential equation. 

 

Summary 

• The properties of system of linear homogeneous and non-homogeneous differential 

equations are discussed.  

• Fundamental solution is derived and elaborated with suitable examples. 

• The Abel-Liouville formula is derived to find the Wronskian.  

• The variation of constant formula was discussed to solve homogeneous linear system of 

differential equation. 

• The condition of uniqueness of solution of boundary value problem with an example. 
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Keywords 

• Linear homogeneous first order system 

• Linear non- homogeneous first order system 

• Wronskian 

• Fundamental matrix  

• Abel-Liouville formula  

• Variation of constant formula 

 

Self Assessment 

1. The linear homogenous system ,)( xtAx = where )),(..,),........(( 1 txtxx n=  is an 

unknown n-dimensional vector function and 
nnij tatA = ))(()( matrix on 

21 rtr 

.Then 

A. Any Linear combination of the solution is also a solution. 

B. All the solutions are linearly independent. 

C. Both (a) and (b). 

D. None of these. 

 

2. 
Let ),( 210 rrt  and )(t  be the solution of linear homogenous system ,)( xtAx =  is 

satisfying 0)( 0 =t  . Then, 
 

A. 
)(t

is identically zero on 
.21 rtr 
 

B. 
)(t

is identically zero on R . 

C. 
)(t

never zero on 
.21 rtr 
 

D. None of these. 

3. A set of vector- valued functions 𝒗𝟏(𝒕), 𝒗𝟐(𝒕), … … . 𝒗𝒏(𝒕) is linearly independent on an 

interval I if and only if 

A. There exists constant not all zero  

B. There exists constant all zero to vanish the linear combination 

C. There exists no constant not all zero to vanish the linear combination 

D. None of these 

 

4. The set of scalar functions 1, 𝑡, 2𝑡 is 

A. Linearly dependent 

B. Linearly independent 

C. Completely constant 

D. None of these 

5. A set of solutions of linear homogenous system xtAx )(=  is called Fundamental system 

if  
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A. The set is linearly dependent. 

B. The set is linearly independent. 

C. The set contains zero solution. 

D. The set is empty. 

 

6. Every solution of linear homogeneous system can be expressed as  

A. Linear combination of the elements of a fundamental system of solutions 

B. Linear combination of another solution 

C. Zero solution 

D. None of these  

 

7. If 𝝓𝟏(𝒕), 𝝓𝟐(𝒕), … … 𝝓𝒏(𝒕), 𝒓𝟏 < 𝑡 < 𝒓𝟐, is a linearly independent solutions, then 

A. The linear combination vanishes 

B. The linear combination never vanishes 

C. It is constant every where 

D. None of these  

 

8. )(t be the fundamental matrix of linear homogenous system ,)( xtAx =  on 

21 rtr  .Then the scalar function )(tW  be the Wronskian defined as  

 

A. 
)('det)( ttW −=

 

B. 
)(')( ttW =

 

C. 
)(det)( ttW =

 

D. 
)()(' ttW =

 

 

9. If  be a fundamental matrix of the homogenous linear vector differential equation 

xtA
dt

dx
)(= where ))(),......(),(( 21 txtxtxx n= is  n-dimensional vector function and 

A(t) = (aij(t)) is a continuous square matrix of order n on r1<t<r2 . C  is any constant non-

singular matrix then  

A. C is also fundamental matrix  

B. C1− is also fundamental matrix 

C. 1−C is also fundamental matrix 

D. 11 −− C is also fundamental matrix 

 

10. The fundamental matrix 𝝓(𝒕) for the linear homogenous system satisfies 𝝓(𝒕𝟎) = 𝑰, then 

the solution 𝒙(𝒕) can be written as 

A. 𝑥(𝑡) = 𝜙(𝑡)−1𝑥0  

B. 𝑥(𝑡) = 𝜙(𝑡)𝑥0  

C. 𝑥−1(𝑡) = 𝜙(𝑡)𝑥0  

D. None of these 
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11. The formula 𝑊(𝑡) = 𝑊(𝑡_0)𝑒𝑥𝑝 [∫ 𝑇𝑟𝐴(𝑠)𝑑𝑠
𝑡

𝑡0
] is known as 

A. Variation of constant  

B. Abel-Liouville formula 

C. Periodic formula 

D. None of these 

12. The necessary and sufficient condition for fundamental matrix is  

A. 𝑊(𝑡) = 0  

B. 𝑊(𝑡) ≠ 0  

C. 𝑊(𝑡) = constant  

D. None of these  

 

13. )(tx is the solution of linear inhomogeneous system )()( tBxtAx +=  and 

00 )( xtx = on 
201 rtr  . )(t be the fundamental matrix then 

A. 
+= dssBtxttx )()()(')( 0

 

B. 


−+=

t

t

dssBstxttx

0

)()()()()( 1

0

 

C. 


−+=

t

t

dssBttxttx

0

)()()()()( 1

0

 

D. 
+= dssBtxttx )()()()( 0

 

 

14. A fundamental matrix of linear homogenous system ytA
dt

dy
)(= with constant 

coefficients is given by  = ||,)( tet tA
and the solution  of above equation with 

initial condition |)|,|(|)( 0000 = ytyt is given by  

A. 
)|(|)( 00 = teyt tA

 

B. 
)|(|)( 0

)(

0
0 −=

+
teyt

Att
 

C. 
)|(|)( 0

)(

0
0 −=
−

teyt
Att

 

D. 
)|(|)( 0

)(

0
0 =

−
teyt

Att
 

 

15. If 𝝓(𝒕) is a fundamental matrix of 𝒙′(𝒕) = 𝑨(𝒕)𝒙(𝒕), and 𝝓(𝟎) = 𝑰, then 

A. 𝜙(𝑡)𝜙−1(𝛼) = 𝜙(𝑡 + 𝛼)  

B. 𝜙(𝑡)𝜙−1(𝛼) = 𝜙(𝑡𝛼)  

C. 𝜙(𝑡)𝜙−1(𝛼) = 𝜙(𝑡 − 𝛼)  

D. None of these 
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16. The formula 
+= dssBtxttx )()()(')( 0

is named as 

A. Abel-Liouville formula 

B. Variation of constant formula 

C. Wronskian formula 

D. None of these 

17. The solution of linear homogeneous system of first order yy 







=

23

21
is 

A. 
tttt ececyececy 3

2

4

12

3

2

4

11 3, −− +=+=
 

B. 
tttt ececyececy 4

212

4

211 2, +=−= −−

 

C. 
tttt ececyececy −− −=+= 2

4

122

4

11 3,2
 

D. 
tttt ececyececy 3

212

3

211 32,3 −−−− +=−=
 

 

18. The eigen values corresponding to linear non homogeneous differential system 









+







 −
=

412

36 5te
yy  are 

A. 3,4 

B. -3,4 

C. 3,-4 

D. -3,-4 

 

19. The eigen values corresponding to linear non homogeneous differential system 










−
+









−

−
=

2

2

14

13 2te
yy   are 

A. 1,2 

B. 1,-2 

C. 1,1 

D. -1,2 

20. The fundamental matrix corresponding to linear homogeneous yy 






−
=

11

81
is 

A. 










−
=

−

−

tt

tt

ee

ee
t

3

3

2
)(
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B. 









=

−

−

tt

tt

ee

ee
t

3

3

3
)(

 

C. 









=

−

−

tt

tt

ee

ee
t

3

3

)(

 

D. 








−
=

−

−

tt

tt

ee

ee
t

33

33 24
)(

 

 

21.  The characteristic roots corresponding to linear  homogeneous differential system 

yy

















−−

−−

=

113

131

111

  are 

A. 2,3,-2 

B. 2,2,3 

C. 1,2,3 

D. 1,-2,3 

22. The solution of linear homogeneous system of first order yy 








−

−
=

14

25
is 

A. 
tttt ececyececy 3

212

3

211 2, −− +−=+=
 

B. 
tttt ececyececy 3

212

3

211 2, +=−= −−

 

C. 
tttt ececyececy 3

212

3

211 2, +=+=
 

D. 
tttt ececyececy 3

212

3

211 2, −−−− −=−=
 

 

Answers for Self Assessment 

1. C 2. A 3. C 4. A 5. B 

6. A 7. B 8. C 9. A 10. B 

11. B 12. B 13. B 14. D 15. C 

16. B 17. C 18. A 19. C 20. D 

21. A 22. C       
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Review Questions 

Find the solution of the following non-homogeneous systems: 

1. 
𝑑𝑥

𝑑𝑡
= [

1 2
3 2

] 𝑥 + [2𝑒2𝑡

−2
] 

2. 
𝑑𝑥

𝑑𝑡
= [

3 1
4 1

] 𝑥 + [
−2 sin 𝑡
6 cos 𝑡

] 

3. 
𝑑𝑥

𝑑𝑡
= [

−10 6
−12 7

] 𝑥 + [10𝑒−3𝑡

18𝑒−3𝑡] ; 𝜙(0) = [
1

−2
] 

4. 
𝑑𝑥

𝑑𝑡
= [

−1 1
−12 6

] 𝑥 + [3𝑒4𝑡

8𝑒4𝑡] ; 𝜙(0) = [
2
4

] 

 
Further Readings 

Earl A Coddinton and Norman Levinson (2017). Theory of Ordinary Differential Equations, 
Mc Graw  Hill.  

P. Hartman (1964), Ordinary Differential equations, Johan Wiley. 

Shair Ahmad and Rama Mohan Rao (2014), Theory of Ordinary Differential Equations, East 
West Press Private Limited. 

S G Deo, V Lakshmikantham and V Raghvendra (2013), Ordinary Differential Equations, 
McGraw Hill Education (India) Private Limited. 

 

https://onlinecourses.nptel.ac.in/noc21_ma09/preview 

https://infocobuild.com/education/audio-video-
courses/mathematics/OrdinaryPartialDifferentialEquations-IIT-Roorkee/lecture-
01.html 
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Objectives 

After studying this unit, you will be able to 

• identify the concept of periodic linear system of differential equation. 

• understand the more properties of fundamental matrix of homogeneous linear system. 

• know about the Floquet’s theorem for periodic linear differential system. 

• apply basic theorems to adjoint of the linear system of differential equation. 

• find the condition of adjoint for linear homogeneous system of differential equations. 

 

Introduction 

In this chapter, we will learn about the more properties of linear homogenous differential systems 
like periodic and adjoint system which helps to understand some dynamical behavior of delay 
differential and impulsive differential equations  

 

9.1 Periodic Linear Systems 

Consider the linear homogeneous system  

𝑥′ = 𝐴(𝑡)𝑥,         (9.1.1) 

Where 𝐴(𝑡) is an 𝑛 × 𝑛 continuous matrix on the interval −∞ < 𝑡 < ∞ and  

𝐴(𝑡 + 𝜔) = 𝐴(𝑡)         (9.1.2) 

for some constant 𝜔 ≠ 0. Then, (9.1.2) is called periodic system, and 𝜔 is the period of 𝐴. A basic 
results of periodic system is the representation of a fundamental matrix as the product of a periodic 
matrix (with the same period as that of the fundamental matrix) and a solution matrix of a system 
with constant coefficients. 

Theorem 9.1.1: If Φ is a fundamental matrix of (9.1.1) and 𝐶 is any constant nonsingular matrix, 
then Φ𝐶also is a fundamental matrix of(9.1.1). Moreover, every fundamental matrix of (9.1.1) is of 
the form Φ𝐶 for some constant nonsingular matrix 𝐶. 

Proof: If Φ(𝑡) is a fundamental matrix of (9.1.1), then it follows that  

Φ′(𝑡)𝐶 = 𝐴(𝑡)Φ(𝑡)𝐶,    𝑟1 < 𝑡 < 𝑟2, 
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that is  

(Φ(𝑡)𝐶)′ = 𝐴(𝑡)(Φ(𝑡)𝐶), 

And hence Φ(𝑡)𝐶 is a solution of Φ′(𝑡) = 𝐴(𝑡)Φ(𝑡).     (9.1.3) 

Since det(Φ𝐶) = det(Φ) det (𝐶) ≠ 0,  

It is clear that Φ𝐶 is a fundamental matrix of (9.1.1).  

Conversely, if Φ1 and Φ2 are the fundamental matrices of (9.1.1), then Φ2 = Φ1𝐶 for some constant 
nonsingular matrix of 𝐶.  

To show this, let Φ1
−1Φ2 = 𝜓. Then, we have Φ2 = Φ1𝜓. Differentiating both sides of this  equations, 

we get Φ2
′ = Φ1𝜓′ + Φ1

′ 𝜓. 

Using (9.1.3), we obtain 𝐴Φ2 = Φ1𝜓′ + 𝐴Φ1𝜓or Φ1𝜓′ = 0, 

Thus, 𝜓′ = 0, rendering 𝜓 = 𝐶 a constant matrix; further, 𝐶 is nonsingular since Φ1 and Φ2 are 
nonsingular. 

 

Remarks 9.1.2: If only Φ2 is required to be solution of (9.1.2), then𝐶 need to be non 
singular. Further, if Φ is a fundamental matrix of (9.1.1) and 𝐶 any constant nonsingular 
matrix, then 𝐶Φ is not, in general, a fundamental matrix of (9.1.1). Moreover, two 
different homogeneous systems cannot have the same fundamental matrix. Hence, Φ 
determines 𝐴 uniquely, although the converse is not true. 

 

9.2 Floquet’s Theorem 

Theorem 9.1.3: If Φ is a fundamental matrix of (9.1.1), then so is 𝜓, where 

𝜓(𝑡) = Φ(𝑡 + 𝜔), −∞ < 𝑡 < ∞. 

Corresponding to every such Φ, there exist a periodic nonsingular matrix 𝑃 with the period 𝜔 and a 
constant matrix 𝑅 such that  

Φ(𝑡) = 𝑃(𝑡)𝑒𝑡𝑅.         (9.1.4) 

Proof: Since Φ is a fundamental matrix of (9.1.1), we have Φ′(𝑡) = 𝐴(𝑡)Φ(𝑡). 

From the relation (9.1.2), it follows that 

ψ′(𝑡) = Φ′(𝑡 + 𝜔) = 𝐴(𝑡 + 𝜔)Φ(𝑡 + 𝜔) = 𝐴(𝑡)Φ(𝑡 + 𝜔). 

Thus, 𝜓 is a solution matrix of (9.1.1); it is also a fundamental matrix of (9.1.1) since det(𝜓(𝑡)) =

det (Φ(𝑡 + 𝜔)) ≠ 0for −∞ < 𝑡 < ∞. Therefore, there exists a constant nonsingular matrix 𝐶 (see 
Theorem (9.1.1) such that  

Φ(𝑡 + 𝜔) = Φ(𝑡)𝐶         (9.1.5) 

and there exists also a constant matrix 𝑅 such that  

𝐶 = 𝑒𝜔𝑅.          (9.1.6) 

From relation (9.1.5) and (9.1.6), we obtain 

Φ(𝑡 + 𝜔) = Φ(𝑡)𝑒𝜔𝑅.        (9.1.7) 

Let 𝑃(𝑡) be a matrix defined by the relation  

𝑃(𝑡) = Φ(𝑡)𝑒−𝑡𝑅.         (9.1.8) 

Then, we have  

𝑃(𝑡 + 𝜔) = Φ(𝑡 + 𝜔)𝑒−(𝑡+𝜔)𝑅 =  Φ(𝑡)𝑒𝜔𝑅𝑒−(𝑡+𝜔)𝑅 = Φ(𝑡)𝑒−𝑡𝑅 = 𝑃(𝑡) 

Since Φ(𝑡) and 𝑒−𝑡𝑅 are nonsingular for −∞ < 𝑡 < ∞, so too is𝑃(𝑡). 

 

Remarks 9.1.4: The practical utility of the Theorem 9.1.3 is that the fundamental matrix 
Φ(𝑡) of (9.1.1) can be determined over the entire interval −∞ < 𝑡 < ∞ once Φ(𝑡) is given 
over an interval of length 𝜔(𝑖. 𝑒. 0 ≤ 𝑡 ≤ 𝜔). 
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To justify the foregoing statement, we proceed as follows. From (9.1.5), we know 𝐶 = Φ−1(0)Φ(𝜔), 
and hence 𝑅 = (log 𝐶)/𝜔. Thus, (9.1. 8) gives 𝑃(𝑡) over the interval 0 ≤ 𝑡 ≤ 𝜔. Since 𝑃(𝑡) is periodic 
with the period 𝜔, it can be determined over the interval−∞ < 𝑡 < ∞. Hence, we derive the result 
from (9.1.4). 

 

Remarks 9.1.5: If Φ1 is another fundamental matrix of (9.1.1) where (9.1.2) holds, then 
Φ = Φ1𝑀 for some constant nonsingular matrix 𝑀. 

 

Adjoint Systems 

If Φ is a fundamental matrix of (9.1.1), then ΦΦ−1 = 𝐼 yields 

(Φ−1)′ = −Φ−1Φ′Φ−1 == −Φ−1𝐴ΦΦ−1 = −Φ−1𝐴 

or 

(Φ𝑇−1
)

′
= −𝐴𝑇Φ𝑇−1

. 

Therefore, Φ𝑇−1
 is a fundamental matrix of the system 

𝑥′ = −𝐴𝑇(𝑡)𝑥,      (9.1.9) 

And the matrix equation 

𝑋′ = −𝐴𝑇(𝑡)𝑋,       𝑡 ∈ (𝑟1, 𝑟2),    (9.1.10) 

is called the adjoint system to (9.1.3). This relationship is symmetric in the sense that (9.1.1) and 
(9.1.3) are the adjoint systems to (9.1.6), respectively, and vice versa. 

Theorem 9.1.6: If Φ is a fundamental matrix of (9.1.1), then 𝜓 is a fundamental matrix of its adjoint 
system (9.1.9) if and only if  

𝜓𝑇Φ = C ,         (9.1.11) 

Where 𝐶 is a constant nonsingular matrix. 

Proof: If Φ is a fundamental matrix of (9.1.1), and 𝜓 is a fundamental matrix of (9.1.9), then  

ψ = ΦT−1
𝐷 

for some constant nonsingular matrix 𝐷 (see Theorem 9.1.1) since ΦT−1
 is a fundamental matrix of 

(9.1.9). Therefore, ΦT𝜓 = 𝐷, and hence 𝜓𝑇Φ = C, where 𝐶 = 𝐷𝑇 .  

To prove the converse, let Φbe a fundamental matrix of (9.1.1) satisfying (9.1.11). Then, we have    

ψT = CΦ−1,i.e.  𝜓 = ΦT−1
𝐶𝑇. 

Hence, by Theorem 9.1.1, 𝜓 is a fundamental matrix of the adjoint system (9.1.9). 

 

Remarks 9.1.7: If A = −AT, then ΦT−1
 being a fundamental matrix of (9.1.9) is a 

fundamental matrix of (9.1.1) too. 

In view of the forgoing statement and Theorem 9.1.1, 

Φ = ΦT−1
𝐶, 

that is,  

Φ𝑇Φ = 𝐶,          (9.1.12) 

Where C is a constant nonsingular matrix. Equation (9.1.12) implies, in particular, that the Euclidean 
length of any solution vector ϕ of (9.1.1) is constant. 

Summary 

• The more properties of fundamental matrix of system of linear homogeneous differential 

equations are discussed.  

• Periodic linear system is elaborated and Floquet’s theorem for periodic system is derived. 
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• The adjoint of system of linear homogeneous differential equation is explained. 

• The relation between the fundamental matrix of it’s adjoint system is derived. 

Keywords 

• Linear homogeneous first order system 

• Properties of fundamental matrix 

• Periodic linear system 

• Floquet’s theorem 

• Adjoint system 

Self Assessment 

1. The linear homogeneous system 𝑥′ = 𝐴(𝑡)𝑥 is called periodic with period 𝝎 then 

A. 𝐴(𝑡/𝜔) = 𝐴(𝑡)  

B. 𝐴(𝑡 + 𝜔) = 𝐴(𝑡)  

C. 𝐴(𝑡𝜔) = 𝐴(𝑡)  

D. None of these 

 

2. The periodic fundamental matrix represented as 

A. Abel-Liouville theorem 

B. Floquet’s theorem 

C. Fundamental theorem 

D. None of these 

 

3. The fundamental matrix for the periodic systems is the product of a periodic matrix and  

A. the solution of system of matrix with variable coefficients. 

B. the solution of system of matrix with constant coefficients. 

C. the solution of system of matrix with zero coefficients. 

D. none of these. 

 

4. If  is a fundamental matrix of the periodic system ytA
dt

dy
)(= with )()( tAtA =+

then  

A. ,)()( tRetPt −= where P is periodic nonsingular matrix with period  . 

B. ,)()( tRetPt −= where P is periodic nonsingular matrix with period  . 

C. ,)()( tRetPt = where P is periodic nonsingular matrix with period  . 

D. None of these 

 

5. 
The adjoint for the linear homogeneous system ,)( xtAx =

is given by 

A. 
xtAx )(−=

 

B. 
xtAx Y )(=

 

C. 
xtAx T )(−=

 

D. None of these 
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6. If 𝑨 = −𝑨𝑻, then  

A. 𝜙𝜙𝑇 = −𝐶  

B. 𝜙𝜙𝑇 = 𝐶  

C. 𝜙 = 𝜙𝑇𝐶  

D. None on these 

 

7. If  be the fundamental matrix of linear homogenous system ,)( xtAx =  on 

,21 rtr  then   is fundamental matrix of its adjoint and C is a constant non-singular 

matrix if and only if  

A. 
CT =

 

B. 
= CT

 

C. 
−= CT

 

D. 
CT −=

 
 

8. If  be a fundamental matrix of the homogenous linear vector differential equation 

xtA
dt

dx
)(= where ))(),......(),(( 21 txtxtxx n= is  n-dimensional vector function and 

A(t) = (aij(t)) is a continuous square matrix of order n on r1<t<r2 .C  is any constant non-

singular matrix then  

A. C is also fundamental matrix. 

B. C1− is also fundamental matrix. 

C. 
1−C is also fundamental matrix. 

D. 
11 −− C is also fundamental matrix. 

 

Answers for self Assessment 

1. B 2. B 3. B 4. B 5. C 

6. B 7. A 8. A     

 

Review Questions 

Find the adjoint of the  following homogeneous linear systems: 

1. 
𝑑𝑥

𝑑𝑡
= [

1 2
3 2

] 𝑥 

2. 
𝑑𝑥

𝑑𝑡
= [

3 1
4 1

] 𝑥 

3. 
𝑑𝑥

𝑑𝑡
= [

−10 6
−12 7

] 𝑥 

4. 
𝑑𝑥

𝑑𝑡
= [

−1 1
−12 6

] 𝑥 
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Further Readings 

Earl A Coddinton and Norman Levinson (2017). Theory of Ordinary Differential Equations, 
Mc Graw  Hill.  

P. Hartman (1964), Ordinary Differential equations, Johan Wiley. 

Shair Ahmad and Rama Mohan Rao (2014), Theory of Ordinary Differential Equations, East 
West Press Private Limited. 

S G Deo, V Lakshmikantham and V Raghvendra (2013), Ordinary Differential Equations, 
McGraw Hill Education (India) Private Limited. 
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10.4 Construction of A Liapunov Function for Linear Systems with constant Coefficients 

Summary 
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Further Readings 

Objective 

After studying this unit, you will be able to 

● identify the concept of an autonomous system of differential equations. 

● understand the stability analysis using Liapunov's second method. 

● know about the Liapunov function for autonomous function. 

● Apply definite properties of functions and connect with the Liapunov function. 

● determine the stability behavior of solutions of linear and non-linear systems. 

 

Introduction 

In the previous unit, we analyzed the stability behavior of solutions of linear and weakly nonlinear 
systems, using the techniques of the variation of constant formula and integral inequalities. As a 
result, this analysis was conformed to a small neighborhood of the operating point, i.e., to stability 
in the small or local stability. Further, the techniques used require, in the case of linear systems, 
some explicit knowledge of solutions and, in the case of weakly nonlinear systems, a complete 
grasp of the solutions on the corresponding linear systems. These curbs apparently limit the 
applications of the techniques when investigating the stability behaviour of a physical system. 

In this chapter, we shall introduce a completely different technique, known as Liapunov’s second 
method, to determine the stability behaviour of solutions of linear and non-linear systems. The major 
advantage of this method is that stability in the large can be obtained without any prior knowledge 
of solutions. Although A.M. Liapunov, who introduced this method in 1892, used it only to 
establish simple stability theorems; his basic ideas have during the last 40 years been extensively 
exploited and effectively applied to entirely new problems in physics and engineering. Today, this 
method is widely recognized as an excellent tool not only in the study of differential equations but 
also in the theory of control systems, dynamical systems, systems with time lag, power system 
analysis, time varying nonlinear feedback systems, and so on. Its chief characteristic is the 
construction of a scalar function, namely, the Liapunov function. Unfortunately, it is sometimes very 
difficult to find a proper Liapunov function for a given system. However, we shall indicate through 
examples and remarks, the limitations of this method, particularly in constructing a Liapunov 
function. Because the method yields stability information directly, i.e., without solving the 
differential equation, it is also known as Liapunov’s direct method.  In this chapter, we shall merely 
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emphasize the basic ideas of the method and its applications to stability criteria of solutions of 
ordinary differential equations.  

 

10.1 Autonomous systems 

In this section, we shall consider an autonomous differential system of the form  

𝑥′ = 𝑓(𝑥),          (10.1.1) 

Where  𝑓 ∈ 𝐶[𝑅𝑛, 𝑅𝑛]. Assume that 𝑓 is smooth enough to ensure the existence and uniqueness of 
the solutions of (10.1.1). Let 𝑓(0) = 0 and 𝑓(𝑥) ≠ 0 for 𝑥 ≠ 0 in some neighbourhood of the origin so 
that (10.1.1) admits the so-called zero solution (𝑥 ≡ 0) and the origin is an isolated critical point of 
(10.1.1). 

Let 𝛺 be an open set in 𝑅𝑛 containing the origin. Suppose 𝑉(𝑥) is a scalar continuous function (that 
is, a real-valued continuous function in the variables 𝑥1, 𝑥2, 𝑥3, … … . , 𝑥𝑛) defined on 𝛺. For the sake 
of easy geometrical interpretation, we shall use the Euclidean norm 

‖𝑥‖𝑒
2 = 𝑥1

2 + 𝑥2
2 + ⋯ … … + 𝑥𝑛

2 

in our discussion. For convenience, we shall drop the subscript e. 

The theory developed here is equally valid for the norm of a vector function 𝑥 ∈ 𝑅𝑛 defined by 
‖𝑥‖ =  ∑𝑛

𝑖=1 |𝑥𝑖| 

and call it the norm of 𝑥. 

Definition 10.1.1: A scalar function 𝑉(𝑥) is said to be positive definite on the set 𝛺 if and only if 
𝑉(0) = 0 and 𝑉(𝑥) > 0 for 𝑥 ≠ 0 and 𝑥 ∈ 𝛺.  

Definition 10.1.2: A scalar function 𝑉(𝑥) is called to be positive semi definite on the set 𝛺 when 𝑉 has 
the positive sign throughout 𝛺, except at certain points (including the origin) where it is zero. 

Definition 10.1.3: A scalar function 𝑉(𝑥) is called to be negative definite (negative semi definite) on 
the set 𝛺 if and only if −𝑉(𝑥) is positive definite (positive semi definite) on 𝛺.  

 

Example 10.1.4 : The function is  

(i) 𝑉(𝑥1, 𝑥2, 𝑥3) = 𝑥1
2 + 𝑥2

2 + 𝑥3
2 is positive definite on 𝑅3; 

(ii) 𝑉(𝑥1, 𝑥2) =
𝑥1

2

𝑥1
4+1

+ 𝑥2
2  is positive definite on 𝑅2; 

(iii) 𝑉(𝑥1, 𝑥2, 𝑥3) = 𝑥1
2 + (𝑥2 + 𝑥3)2  is positive semi definite because it vanishes not only at 

the origin but also on the line 𝑥2 = −𝑥3, 𝑥1 = 0; 

(iv) 𝑉(𝑥1, 𝑥2, 𝑥3) = 𝑥1
2 + 𝑥2

2 is positive definite in the plane, and positive semi definite on 

𝑅3 since it vanishes on the 𝑥3 axis; 

(v) 𝑉(𝑥1, 𝑥2) = 𝑥1
2 + 𝑥2

2 − (𝑥1
4 + 𝑥2

4) is positive definite in the interior of the unit circle, 

clearly, 𝑉 ≥  ‖𝑥‖2 − ‖𝑥‖4, ‖𝑥‖ < 1; 

(vi) 𝑉(𝑥1, 𝑥2) = 𝑥1
4 + 𝑥2

4 is positive definite since 𝑉 ≥
1

2
𝑟4, where 𝑟 = (𝑥1

2 + 𝑥2
2)1/2 . 

 

10.2 Quadratic forms   

Let 𝑉(𝑥) = 𝑥𝑇𝐵𝑥 = ∑𝑛
𝑖,𝑗=1 𝑏𝑖𝑗𝑥𝑖𝑥𝑗            (10.1.2) 

be a quadratic form with the symmetric matrix 𝐵 = (𝑏𝑖𝑗), that is, 𝑏𝑖𝑗 = 𝑏𝑗𝑖. 

To test the positive definiteness of 𝑉(𝑥) in (10.1.2), we can apply the Sylvester criterion which 
asserts that a necessary and sufficient condition for 𝑉(𝑥) in (10.1.2)  to be positive definite is that 
determinants of all the successive principal minors of the asymmetric matrix 𝐵 = (𝑏𝑖𝑗) be positive, 

that is,  

𝑏11 > 0, |𝑏11 𝑏12 𝑏21 𝑏_22 | >
0, … … . . , |𝑏11 𝑏12  … … … . 𝑏1𝑛  𝑏21     𝑏22 … … … . 𝑏2𝑛 .              .                    . .              .                     . 𝑏𝑛1          𝑏𝑛2            𝑏𝑛𝑛   | 
>0. 
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The derivative of 𝑉 with respect to (10.1.10 is scalar product  

𝑉∗(𝑥) = 𝑔𝑟𝑎𝑑 𝑉(𝑥). 𝑓(𝑥)  

=
𝜕𝑉

𝜕𝑥1
𝑓1(𝑥)

𝜕𝑉

𝜕𝑥2
𝑓2(𝑥) + ⋯ … . . +

𝜕𝑉

𝜕𝑥𝑛
𝑓𝑛(𝑥)      (10.1.3) 

It should be noted that if 𝑥 = 𝑥(𝑡) is any solution of (10.1.1),then by the chain rule and from (10.1.3), 
we can obtain  

𝑑

𝑑𝑡
𝑉(𝑥(𝑡)) =

𝜕𝑉

𝜕𝑥1
𝑥1

′ (𝑡)+……….. 
𝜕𝑉

𝜕𝑛
𝑥𝑛

′ (𝑡) 

= ∑𝑛
𝑖=1

𝜕𝑉

𝜕𝑥𝑖
𝑓𝑖(𝑥(𝑡)) = 𝑉∗(𝑥(𝑡)).       (10.1.4) 

Here, 𝑑𝑉(𝑥(𝑡))/𝑑𝑡 can be computed directly from (10.1.1). 

 

Remarks 10.1.5:  If there exists a positive definite scalar function 𝑉(𝑥) such that 𝑉∗(𝑥) ≤
0 [i.e. negative definite or derivative (10.13) w.r.t (10.1.1) is non-positive] then the zero 
solution (10.1.1) is stable. 

 

 

Example 10.1.6 :  (i) Consider the two-dimensional system 

𝑥1
′ = −𝑥2 + 𝑥1(𝑟2 − 𝑥1

2 − 𝑥2
2),       (10.1.5) 

𝑥2
′ = 𝑥1 + 𝑥2(𝑟2 − 𝑥1

2 − 𝑥2
2).         

Choose a positive definite function 𝑉(𝑥1, 𝑥2) =
1

2
(𝑥1

2 + 𝑥2
2) on 𝑅2. A simple computation gives 

 𝑉∗(𝑥1, 𝑥2) = −(𝑥1
2 + 𝑥2

2)(𝑥1
2 + 𝑥2

2 − 𝑟2). 

Obviously, 𝑉∗ is negative definite when 𝑟 = 0, and hence the zero solution of (10.1.5) is 

asymptotically stable. On the other hand, when 𝑟 ≠ 0, 𝑉∗ is positive definite in the region 𝑥1
2 + 𝑥2

2 <

𝑟2. Therefore, the zero solution of (10.1.5) is unstable. 

(ii) Consider the two-dimensional system 

𝑥1
′ = 𝑥2 + 𝑥1(𝑥1

2 + 𝑥2
2)1/2(𝑥1

2 + 𝑥2
2 − 1)2,      (10.1.6) 

𝑥2
′ = −𝑥1 + 𝑥2(𝑥1

2 + 𝑥2
2)

1

2(𝑥1
2 + 𝑥2

2 − 1)2.       
  

 Select a positive definite function 𝑉(𝑥1, 𝑥2) = (𝑥1
2 + 𝑥2

2)
3

2 on 𝑅2. The derivative of 𝑉 along the 
solutions of (10.1.6) is given by 

 𝑉∗(𝑥1, 𝑥2) = 3(𝑥1
2 + 𝑥2

2)2(𝑥1
2 + 𝑥2

2 − 1)2. 

Clearly, 𝑉∗ is positive definite on 𝑅2, and hence the zero solution of (10.1.6) is asymptotically 
unstable. 

(iii) Consider the system  

𝑥1
′ = −𝑥1 + 𝑥2

2,         (10.1.7) 

𝑥2
′ = −𝑥2 − 𝑥1𝑥2.  

Choose a positive definite function 𝑉(𝑥1, 𝑥2) = 𝑥1
2 + 𝑥2

2 on 𝑅2. Then, we have 𝑉∗ = −2𝑉; integrating 
this equation, we obtain  

𝑉(𝑥1(𝑡), 𝑥2(𝑡)) = 𝑉(𝑥1(0), 𝑥2(0))𝑒−2𝑡.  

Therefore, the zero solution of (10.1.7) is exponentially asymptotically stable. 

(iv) Consider the two-dimensional system  

𝑥1
′ = −6𝑥2 −

1

4
𝑥1𝑥2

2,        (10.1.8) 

𝑥2
′ = 4𝑥1 −

1

6
𝑥2.  
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Select a positive definite function 𝑉(𝑥1, 𝑥2) = 2𝑥1
2 + 3𝑥2

2 on 𝑅2. Then, we have 𝑉∗(𝑥1, 𝑥2) = −𝑥2
2(1 +

𝑥1
2) is negative semi-definite (i.e. it vanishes on the 𝑥1-axis) on 𝑅2. Therefore, the zero solution of 

(10.1.8) is exponentially stable. 

(v) Consider the second order differential equation  

𝑢′′ + 𝑐𝑢′ +𝑠𝑖𝑛 𝑠𝑖𝑛 𝑢 = 0,  

where 𝑐 is a positive constant, Set 𝑢 = 𝑥1 and 𝑢′ = 𝑥2. Then, this equation is equivalent to the 
system 

𝑥1
′ = 𝑥2,         𝑥2

′ = − 𝑠𝑖𝑛 𝑠𝑖𝑛 𝑥1 − 𝑐𝑥2 . 

Now, select a scalar function 

𝑉(𝑥1, 𝑥2) =
1

2
 (√𝑐𝑥1 +

1

√𝑐
𝑥2)

2

+
1

𝑐
(𝑥1

2 +
1

2
𝑥2

2). 

This is clearly positive definite on 𝑅2. After a little computation, we obtain  

𝑉∗(𝑥1, 𝑥2) = −(𝑥1
2 + 𝑥2

2) − (𝑥1 +
2

𝑐
𝑥2)(𝑠𝑖𝑛 𝑠𝑖𝑛 𝑥1 − 𝑥1).  

It is easy to verify that 𝑉∗ is negative definite in a sufficiently small neighbourhood of the origin. 
Hence, the zero solution of the given equation is asymptotically stable. 

(vii) For the system  

𝑥1
′ = 3𝑥1 + 𝑥2

3,        𝑥2
′ = −4𝑥2 + 𝑥1

3, 

Select a scalar function 𝑉(𝑥1, 𝑥2) = 4𝑥1
2 − 3𝑥2

2. Then, 𝑉, together with its first partial derivatives, is 
continuous, 𝑉(0,0) = 0, and 𝑉 has positive as well as negative values in any neighbourhood of the 
origin. Further,  

𝑉∗(𝑥1, 𝑥2) = 24(𝑥1
2 + 𝑥2

2) + (8𝑥1𝑥2
2 − 6𝑥1

3𝑥2). 

Here, if |𝑥1| and |𝑥2| are sufficiently small, then the definiteness of 𝑉∗ depends upon the first term 
within parentheses on the right-hand side. Since 𝑉∗(0,0) = 0, 𝑉∗ is positive definite in a small 
neighbourhood of the origin. Therefore, the critical point (0,0) of the given system is unstable. 

 

Remarks 10.1.7: In (i)-(vi) of example Example (10.1.6), we picked up the Liapunov 
functions arbitrarily. Once a Liapunov function has been found in some region around 
the origin, it becomes possible to test the stability or asymptotic stability or instability of 
the zero solution of a given system. The failure to find such a Liapunov function does not 
of course mean that the stability cannot be determined. An important question therefore 
is the procedure to be adopted in selecting or constructing a Liapunov function. Though, 
in general, no satisfactory technique that provides the answer is known, particularly for 
nonlinear non autonomous systems, we shall nevertheless consider some of the methods 
applicable to linear systems and nonlinear autonomous systems. 

 

10.3 Krasovskii’s Method 

Consider an autonomous differential system of the form  

𝑥′ = 𝑓(𝑥)         (10.1.9) 

Where 𝑓: 𝑅𝑛 → 𝑅𝑛 , 𝑓(0) = 0, 𝑓(𝑥) ≠ 0 for 𝑥 ≠ 0 in some neighbourhood of the origin, and  𝑓(𝑥) is 
differentiable with respect to 𝑥𝑖(𝑖 = 1,2, … … … , 𝑛). The real symmetric 𝑛 × 𝑛 matrix 𝐵 = (𝑏𝑖𝑗) is said 

to be positive definite if and only if the quadratic form 𝑥𝑇𝐵𝑥  is positive  definite. It is well known 
(see the Sylvester criterion) that the real symmetric 𝑛 × 𝑛 matrix 𝐵 = (𝑏𝑖𝑗) is positive definite if and 

only if   

𝑑𝑒𝑡 𝑑𝑒𝑡 𝐵𝑗 =𝑑𝑒𝑡 𝑑𝑒𝑡 (𝑏11 𝑏12  … … … … 𝑏1𝑛  𝑏21       𝑏22 … … … . . 𝑏2𝑛                                            ⋮              

⋮                  ⋮                                           𝑏𝑛1       𝑏𝑛2 … . … …  . 𝑏𝑛3      )   > 0,   𝑗 = 1,2, … … . . , 𝑛 

where 𝑑𝑒𝑡 𝑑𝑒𝑡 𝐵𝑗(𝑗 = 1,2, … . , 𝑛)  are the principal minors of 𝑑𝑒𝑡 𝑑𝑒𝑡 𝐵 . The real symmetric 𝑛 × 𝑛 

matrix 𝐵 is called negative definite if and only if −𝐵 is positive definite. 

The Jacobian matrix of (10.1.9) is given by  
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𝐽(𝑥) =
𝜕𝑓

𝜕𝑥
= (

𝜕𝑓1

𝜕𝑥1
 
𝜕𝑓1

𝜕𝑥2
    ⋯ ⋯   

𝜕𝑓1

𝜕𝑥𝑛
  

𝜕𝑓2

𝜕𝑥1
 
𝜕𝑓2

𝜕𝑥2
    ⋯ ⋯   

𝜕𝑓2

𝜕𝑥𝑛
                                           ⋮         ⋮                         

⋮  
𝜕𝑓𝑛

𝜕𝑥1
 
𝜕𝑓𝑛

𝜕𝑥2
    ⋯ ⋯   

𝜕𝑓𝑛

𝜕𝑥𝑛
    ) 

Define a matrix 𝑀(𝑥) = 𝐽𝑇(𝑥) + 𝐽(𝑥), where 𝐽𝑇 is the transpose of 𝐽. A suitable Liapunov function 
for (10.1.9) is 𝑉(𝑥) = 𝑓𝑇(𝑥)𝑓(𝑥). Clearly 𝑉 is positive definite in some neighbourhood of the origin. 
If the matrix 𝑀(𝑥) is negative definite in some neighbourhood of the origin, then the zero solution 
of (10.1.9) is asymptotically stable. It should be observed that  

𝑑𝑓

𝑑𝑡
=

𝜕𝑓

𝜕𝑥

𝑑𝑥

𝑑𝑡
= 𝐽(𝑥)𝑓(𝑥). 

Then,  

𝑉∗(𝑥) = 𝑓′𝑇𝑓 + 𝑓𝑇𝑓′ = 𝑓𝑇𝐽𝑇𝑓 + 𝑓𝑇𝐽𝑓 = 𝑓𝑇(𝐽𝑇 + 𝐽)𝑓 = 𝑓𝑇𝑀𝑓. 

If 𝑀(𝑥) is negative definite in some neighbourhood of the origin, then 𝑉∗ too is so, and hence the 
zero solution of (10.1.9) is asymptotically stable. 

 

Example 10.1.7 :  Determine the stability of the zero solution of  

 𝑥1
′ = −𝑥1 − 𝑥2 − 𝑥1

3,    

𝑥2
′ = 𝑥1 − 𝑥2 − 𝑥2

3. 

For this system, 

𝑥 = (𝑥1 𝑥2 ),      𝑓 = (𝑓1 𝑓2 ),  

where 𝑓1 = = −𝑥1 − 𝑥2 − 𝑥1
3 and 𝑓2 = 𝑥1 − 𝑥2 − 𝑥2

3. 

Therefore,  

𝐽(𝑥) =  (−1 − 3𝑥1
2  − 1 1 − 1 − 3𝑥2

2 ), 

and hence  

𝑀(𝑥) =  (−2 − 6𝑥1
2 0 0 − 2 − 6𝑥2

2 ). 

Since 𝑀(𝑥) is negative definite for all 𝑥 ∈ 𝑅2, Krasovskii’s method ensures that the zero solution of 
the given system is asymptotically stable. 

 

Remarks 10.1.8: Krasovskii’s method guarantees the asymptotic stability of the zero 
solution of a given system if 𝑀(𝑥) is negative definite, but does not lead to any answer 
when 𝑀(𝑥) is not negative definite. 

 

Remarks 10.1.9: The negative definiteness of 𝑀(𝑥) requires that this matrix have nonzero 
elements on its main diagonal. 

   

 

The application of Krasovskii’s method fails if 𝑓𝑖(𝑥) does not involve 𝑥𝑖. For example, the 
method does not cover the n-th order (𝑛 ≥ 2) differential equation 

𝑢(𝑛) + 𝑔(𝑢, 𝑢′, … … . , 𝑢(𝑛−1)) = 0. 

10.4 Construction of A Liapunov Function for Linear Systems with 
constant Coefficients 

The method we now give is very helpful when studying the stability of perturbed linear systems. 

Consider the differential system 

𝑥′ = 𝐴𝑥,           (10.2.1) 

Where 𝑥 is an 𝑛 −vector and A is a real 𝑛 × 𝑛 constant matrix. Let the characteristic roots of 𝐴 be 
distinct; we shall denote the real characteristic roots by 𝜆1, 𝜆2, … … , 𝜆𝑟 and the complex characteristic 
roots by 𝑢1, 𝑢2, … … . . 𝑢𝑚, such that  

𝑢𝑖 =  𝑢𝑖−1,    𝑖 = 2,4, … … … , 𝑚,  

where 𝑟 + 𝑚 = 𝑛. Define the real numbers 𝛼𝑘 and 𝛽𝑘 such that 𝑢𝑘−1 = 𝛼𝑘−1 + 𝑖𝛽𝑘−1, 𝑘 =

2,4, … … . . , 𝑚. We now find a non-singular constant matrix 𝑇−1𝐴𝑇 is of the form  
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𝑇−1𝐴𝑇 = (𝜆1 0  ⋯    0    0     … …   ⋯    0 0 0 𝜆2                                                  ⋱                              𝛼1   𝛽1         −
𝛽1  𝛼1                            𝛼2  𝛽2                     − 𝛽2 𝛼2                                                                        ⋱
      0                                              ) . 

To do this, consider the transformation  𝑥 = 𝑇𝑦. Now, (10.2.1) reduces to  

𝑦′ = 𝐷𝑦          (10.2.2) 
where 𝐷 = 𝑇−1𝐴𝑇. For system (10.2.2) to be asymptotically stable, we require all the diagonal 
elements of D to be negative. Select a Liapunov function  

𝑉(𝑦) = (𝑦, 𝐵𝑦),         (10.2.3) 

where (,) is the usual inner product and 𝐵 a real 𝑛 × 𝑛 constant symmetric matrix. Then,  

𝑉∗(𝑦) = (𝑦′, 𝐵𝑦) + (𝑦, 𝐵𝑦′) = (𝐷𝑦, 𝐵𝑦) + (𝑦, 𝐵𝐷𝑦) 

   = (𝑦, (𝐷𝑇𝐵 + 𝐵𝐷)𝑦),     (10.2.4) 

where 𝐷𝑇is the transpose of D. In order to ensure that 𝑉∗ is negative definite, we require 

𝑉∗(𝑦) = −(𝑦, 𝑦) = − ∑𝑛
𝑗=1 𝑦𝑗

2,       (10.2.5) 

where 𝑦𝑗  are the components of y. To see this compatibility of relations (10.2.4) and (10.2.5), we 

assume that the condition  

𝐷𝑇𝐵 + 𝐵𝐷 = −𝐼,          (10.2.6) 

where 𝐼 is the identity matrix, holds. After a little computation, the matrix equation (10.2.6) yields 

 

𝐵 = (−
1

2𝜆1
            0                                                                    0 0     

−
1

2𝜆2
                                                                       0             0       

−
1

2𝜆3
                                                         ⋱                      −

1

2𝜆𝑟
                                         

⋱             0                                                     

−
1

2𝛼1
                                                                                              ⋱     ) 

 

Let us assume that the matrix A is stable so that all 𝜆𝑖 and 𝛼𝑖 are negative, and hence all the 
diagonal elements of 𝐵 positive. Then, from (10.2.3), it follows that 𝑉 is positive definite. In fact, 
𝑉(𝑦) takes the form 

𝑉(𝑦) = −
1

2𝜆1
𝑦1

2 −
1

2𝜆2
𝑦2

2 − ⋯ … … . −
1

2𝜆𝑟
𝑦𝑟

2 −
1

2𝛼1

(𝑦𝑟+1 
2 + 𝑦𝑟+2

2 ) − ⋯ … … 

 

Example 10.1.7 :  Construct a Liapunov function for the three-dimensional system 

𝑥′ = 𝐴𝑥, 

where 

𝐴 = (0 1 0 0 0 1 − 12 − 20 − 9 ) 

  The characteristic equation 𝑑𝑒𝑡 𝑑𝑒𝑡 (𝐴 − 𝜆𝐼) = 0  has the roots 𝜆1 = −1, 𝜆2 = −2, 𝑎𝑛𝑑 𝜆3 = −6. 
Then, it follows that  

 

𝑉1 = (1 − 1 1 ),   𝑉2 = (1 − 2 4 ),      𝑉1 = (1 − 6 36 ).  

Therefore,  

𝑇 = (1 1 1 − 1  − 2  − 6 1 4 36 ) 

It can be easily shown that 

𝑇−1𝐴𝑇 = (−1 0 0 0  − 2  0 1 4 − 6 ). 

The transformation  𝑥 = 𝑇𝑦 reduces the given system to 𝑦′ = 𝐷𝑦,     
      (10.2.7) where  𝐷 = 𝑇−1𝐴 𝑇.   
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To find a Liapunov function for system (10.2.7), we look for a matrix B such that 𝐷𝑇𝐵 + 𝐵𝐷 = −𝐼. 
After a simple computation, we get  

𝐵 = (
1

2
 0 0 0  

1

4
  0 0 0 

1

12
 ). 

Thus, the Liapunov function for (10.2.7) is  

𝑉𝑦 = (𝑦, 𝐵𝑦) =
1

2
𝑦1

2 +
1

4
𝑦2

2 +
1

12
𝑦3

2. 

To get a Liapunov function for given system, we transform the variable y back into the variable  𝑥. 

Summary 

● The definite properties of function are discussed.  

● Stability analysis using Liapunov's second method is elaborated with the help of 

examples.  

● The construction of Liapunov’s function is discussed and suitable examples are solved. 

● Determine the stability behavior of solutions of linear and non-linear systems. 

Keywords 

● Autonomous linear system 

● Liapunov function 

● Stability  

● Liapunov second method 

● Krasovskii’s method  

Self Assessment  

1. The differential system of the form 𝑥′ = 𝑓(𝑥) where 𝑓 ∈ 𝐶[𝑅𝑛, 𝑅𝑛] is  

A. An Autonomous system 

B. Non Autonomous system  

C. Non homogeneous system 

D. None of these 

 

2. The differential system of the form 𝑥′ = 𝑓(𝑥) where 𝑓 ∈ 𝐶[𝑅𝑛, 𝑅𝑛] has  

A. Number of critical point 

B. An isolated critical point on origin 

C. No critical point on origin 

D. None of these 

 

3. The function 
2

3

2

2

2

1321 ),,( xxxxxxV ++=
is 

A. Positive definite on R3. 

B. Negative definite on R3. 

C. Both (a) and (b) 

D. None of these 

 

4. The function 

2

32

2

1321 )(),,( xxxxxxV ++=
is 

A. Positive definite  

B. Negative definite  

C. Positive semi definite  

D. Negative semi definite. 

 

5. The V(x) be a Liapunov function if V(x) is positive definite and V*(x) is negative definite 

where 
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A. V*(x) = grad V(x)/ f(x) 

B. V*(x) = grad V(x). f(x) 

C. V*(x) = -grad V(x). f(x) 

D. V*(x) = -grad V(x)/ f(x)  

 

6. A scalar function )(xV  is positive definite on the set Ω if and only if  

A.  xforxV 0)(  

B.  xforxV 0)(  

C. = xandxforxVandV 00)(0)0(  

D. = xandxforxVandV 00)(0)0(  

7. If D is diagonalizable form for linear homogeneous system
Axx ='

, then Liapunov 

function is  

A. ),()( ByyyV = where  IBDT −=  

B. ),()( ByyyV =
where IBD −=  

C. ),()( ByyyV = where IBDBDT −=+  

D. ),()( ByyyV = where IBDBDT =+  

8. The function 

2

3

2

2

2

1 43 xxx ++
 is  

A. positive definite  

B. negative definite 

C. semi positive definite  

D. semi negative definite 

9. For the system of differential equation 212

'

2

2

21

'

1 ,

xxxx

xxx

−−=

+−=

 

A. The zero solution is asymptotically unstable 

B. The zero solution is asymptotically stable 

C. The zero solution is neither stable nor unstable 

D. None of these 

10.  For the system of differential equation 
3

12

'

2

3

21

'

1

4

,3

xxx

xxx

+−=

+=

 

A. The zero solution is asymptotically unstable 

B. The zero solution is asymptotically stable 

C. The zero solution is neither stable nor unstable 

D. None of these 

11. The two dimensional system 6/4

,4/6

21

'

2

2

212

'

1

xxx

xxxx

−=

−−=

 

A. The zero solution is unstable 
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B. The zero solution is stable 

C. The zero solution is neither stable nor unstable 

D. None of these 

12.  The Liapunov function for the 6/4

,4/6

21

'

2

2

212

'

1

xxx

xxxx

−=

−−=

is 

A. 𝑉(𝑥1, 𝑥2) = 𝑥1
2 + 𝑥2

2  

B. 𝑉(𝑥1, 𝑥2) = 2𝑥1
2 + 3𝑥2

2  

C. 𝑉(𝑥1, 𝑥2) = 𝑥1
2 + 2𝑥2

2  

D. 𝑁𝑜𝑛𝑒 𝑜𝑓 𝑡ℎ𝑒𝑠𝑒  

Answers for  Self Assessment 

1. A 2. B 3. A 4. C 5. B 

6. D 7. C 8. A 9. B 10. B 

11. B 12. B       

Review Questions 

1. Construct a Liapunov function for the three-dimensional system 

𝑥′ = 𝐴𝑥, 

where, 𝐴 = (0 1 0 0 0 1 − 8 − 14 − 7 ). 

2. Construct a Liapunov function for the three-dimensional system 

𝑥′ = 𝐴𝑥, 

where, 𝐴 = (0 1 0 0 0 1 − 6 − 11 − 6 ). 

3. Use Karsovskii’s method to determine the asymptotic stability of the zero solution of 

 𝑥1
′ = −𝑥1 

𝑥2
′ = 𝑥1 − 𝑥2 − 𝑥2

3. 

 

 
Further Readings 

Earl A Coddinton and Norman Levinson (2017). Theory of Ordinary Differential Equations, 
Mc Graw  Hill.  

P. Hartman (1964), Ordinary Differential equations, Johan Wiley. 

Shair Ahmad and Rama Mohan Rao (2014), Theory of Ordinary Differential Equations, East 
West Press Private Limited. 

S G Deo, V Lakshmikantham and V Raghvendra (2013), Ordinary Differential Equations, 
McGraw Hill Education (India) Private Limited. 

 

https://onlinecourses.nptel.ac.in/noc21_ma09/preview 

https://infocobuild.com/education/audio-video-
courses/mathematics/OrdinaryPartialDifferentialEquations-IIT-Roorkee/lecture-
01.html 
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Objectives  

After studying this unit, you will be able to 

• identify the concept of second order linear differential equation. 

• understand about the adjoint and self adjoint equation. 

• know about the conversion of differential equation into self adjoint form. 

• apply the Abel’s formula to know the behaviour of solutions. 

• determine solutions of linear differential equation using Abel’s formula. 

 

Introduction 

In the previous chapters, we discussed in detail the qualitative behavior of solutions of general 
linear and non-linear differential systems. We shall now confirm ourselves to second order 
differential equations which fid ample applications in many scientific investigations of practical 
importance. In particular, we shall concentrate on general second order differential equations of the 
type 

(𝑟(𝑡)𝑥′)′ + 𝑝(𝑡)𝑥 = 0        (11.0.1) 
𝑥′′ + 𝑔(𝑥, 𝑥′)𝑥′ + ℎ(𝑥) = 𝑒(𝑡) = 0       (11.0.2) 

It should be observed that both (11.0.1) and (11.0.2) are time varying; however, the former is linear 
and the latter nonlinear. Such equations are frequently encountered as mathematical models of 
most dynamic processes in electromechanical systems. Since these equations are only of the second 
order, we would naturally be inclined to compute their solutions explicitly or numerically. 
However, as we know from practice, there are very few such equations, e.g. linear equations with 
constant coefficients, for which this can be effectively done. In most instances, this can be 
accomplished only under very restrictive conditions. The problem therefore is to find those 
techniques that will be used in obtaining some qualitative information about the elusive solutions 
of the equations of the type (11.0.1) and (11.0.2).  

 

11.1 Linear Differential Equations 

By a linear differential equation of order n, we shall mean an equation of the form 
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𝑎0(𝑡)
𝑑𝑛𝑥

𝑑𝑡𝑛
+ 𝑎1(𝑡)

𝑑𝑛−1𝑥

𝑑𝑡𝑛−1
+ … … … . . +𝑎𝑛−1(𝑡)

𝑑𝑥

𝑑𝑡
+ 𝑎𝑛(𝑡)𝑥 = 𝑓(𝑡)    (11.1.1) 

where 𝑎0(𝑡) ≠ 0. Of these, second order linear differential equations are of special theoretical and 
practical interest.  

The general second order linear differential equation is  

𝑎0(𝑡)
𝑑2𝑥

𝑑𝑡2 + 𝑎1(𝑡)
𝑑𝑥

𝑑𝑡
+ … … . +𝑎2(𝑡)𝑥 = 𝑓(𝑡)      (11.1.2) 

or 𝑎0(𝑡)𝑥′′ + 𝑎1(𝑡)𝑥′ + … … . +𝑎2(𝑡)𝑥 = 𝑓(𝑡) 

(prime ‘denote the differentiation with respect to ‘t’) 

in which 𝑎0(𝑡) ≠ 0 and 𝑎0(𝑡),  𝑎1(𝑡),  𝑎2(𝑡) are real functions of 𝑡 alone. Without any loss of 
generality, we may assume that the leading coefficient 𝑎0(𝑡) to be 1 since this can always be 
accomplished by division. It should be noted that most of the ideas and procedures we discuss can 
be generalized at once to linear equations of higher order with no change in the underlying 
principle. Just to attain as much simplicity as possible, without distorting the main ideas, we prefer 
to limit ourselves to second order equation like 

𝑎0(𝑡)𝑥′′ + 𝑎1(𝑡)𝑥′ + 𝑎2(𝑡)𝑥 = 𝑓(𝑡)       (11.1.3) 

We further restrict ourselves for detailed consideration of actual methods for solving (11.1.3) and 
assume ourselves that equation (11.1.3) really has a solution.  

 

11.2 Adjoint Equation 

Consider the second order homogeneous linear differential equation 

𝑎0(𝑡)𝑥′′ + 𝑎1(𝑡)𝑥′ + 𝑎2(𝑡)𝑥 = 0       (11.2.1) 

in which 𝑎0(𝑡)𝑥′′ ≠ 0, 𝑎1(𝑡)𝑎𝑛𝑑 𝑎2(𝑡) are continuous functions of 𝑡 and 𝑎1(𝑡) is differentiable on 𝑎 ≤
𝑡 ≤ 𝑏. 

The adjoint equation to (11.2.1) is  

(𝑎0(𝑡)𝑥)′′ − (𝑎1(𝑡)𝑥)′ + 𝑎2(𝑡)𝑥 = 0  

Or 𝑎0(𝑡)𝑥′′ + 2𝑎0
′ (𝑡)𝑥′ + 𝑎0

′′(𝑡)𝑥−𝑎1
′ (𝑡)𝑥 − 𝑎1(𝑡)𝑥′ + 𝑎2(𝑡)𝑥 = 0 

𝑎0(𝑡)𝑥′′ + [2𝑎0
′ (𝑡) − 𝑎1(𝑡)]𝑥′ + [𝑎0

′′(𝑡) − 𝑎1
′ (𝑡) + 𝑎2(𝑡)]𝑥 = 0    (11.2.2) 

 

11.2.1: It should be noted the adjoint equation of the adjoint equation (11.2.2) is always the 
original equation (11.2.1) itself. 

 

11.2.2: Find the adjoint equation to each of the following equations: 

(a) 𝑡2𝑥′′ + 3𝑡𝑥′ + 3𝑥 = 0 
(b) (2𝑡 + 1)𝑥′′ + 𝑡3𝑥′ + 𝑥 = 0 
(c) 𝑡2𝑥′′ + 7𝑡𝑥′ + 8𝑥 = 0 

Solution: For equation (a), we have 𝑎0(𝑡) = 𝑡2; 𝑎1(𝑡) = 3𝑡; 𝑎2(𝑡) = 3 

𝑎0
′ (𝑡) = 2𝑡,  𝑎0

′′(𝑡) = 2, 𝑎1
′ (𝑡) = 3 

Therefore, required adjoint equation to (a) becomes 

𝑡2𝑥′′ + [4𝑡 − 3𝑡]𝑥′ + [2 − 3 + 3]𝑥 = 0 
𝑡2𝑥′′ + 𝑡𝑥′ + 2𝑥 = 0 

For equation (b), we have 𝑎0(𝑡) = 2𝑡 + 1; 𝑎1(𝑡) = 𝑡3; 𝑎2(𝑡) = 1 

𝑎0
′ (𝑡) = 2,  𝑎0

′′(𝑡) = 0, 𝑎1
′ (𝑡) = 3𝑡2 

Therefore, required adjoint equation to (b) becomes 

(2𝑡 + 1)𝑥′′ + [4 − 𝑡3]𝑥′ + [1 − 3𝑡2]𝑥 = 0 
 

For equation (c), we have 𝑎0(𝑡) = 𝑡2; 𝑎1(𝑡) = 7𝑡; 𝑎2(𝑡) = 8 

𝑎0
′ (𝑡) = 2𝑡,  𝑎0

′′(𝑡) = 2, 𝑎1
′ (𝑡) = 7 
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Therefore, required adjoint equation to (b) becomes 

𝑡2𝑥′′ − 3𝑡𝑥′ + 3𝑥 = 0 
 

11.3 Self Adjoint Equation 

The second order homogeneous linear differential equation (11.2.1) i.e. 

𝑎0(𝑡)𝑥′′ + 𝑎1(𝑡)𝑥′+𝑎2(𝑡)𝑥 = 0 

is called self-adjoint if it is identical with its adjoint equation (11.2.2) i.e. 

𝑎0(𝑡)𝑥′′ + [2𝑎0
′ (𝑡) − 𝑎1(𝑡)]𝑥′ + [𝑎0

′′(𝑡) − 𝑎1
′ (𝑡) + 𝑎2(𝑡)]𝑥 = 0 

Here we observe that if 𝑎1(𝑡) = 𝑎0
′ (𝑡) then 𝑎1

′ (𝑡) = 𝑎0
′′(𝑡). 

As a result of which equation (11.2.2) becomes identically (11.2.1). Hence we are in position to 
define the self-adjoint equation in other way as given below. 

The differential equation (11.2.1) i.e.,  

𝑎0(𝑡)𝑥′′ + 𝑎1(𝑡)𝑥′+𝑎2(𝑡)𝑥 = 0 

is said to be in self adjoint form if 𝑎1(𝑡) = 𝑎0
′ (𝑡) and in that case equation (11.2.1) may be written in 

a particular form 

(𝑎0(𝑡)𝑥′)′+𝑎2(𝑡)𝑥 = 0        (11.3.1) 

Theorem 11.3.1: Consider a second order linear differential equation (11.2.1) i.e.  

𝑎0(𝑡)𝑥′′ + 𝑎1(𝑡)𝑥′+𝑎2(𝑡)𝑥 = 0 

where (i) 𝑎0(𝑡) has a continuous second order derivative, 𝑎0(𝑡) ≠ 0 

(ii) 𝑎1(𝑡) has a continuous first order derivative 

and (iii) 𝑎2(𝑡) has a continuous on 𝑎 ≤ 𝑡 ≤ 𝑏. 

The necessary and sufficient condition for (11.2.1) to be self-adjoint equation is that 

𝑎1(𝑡) = 𝑎0
′ (𝑡) 𝑜𝑛  𝑎 ≤ 𝑡 ≤ 𝑏. 

Proof: First we suppose that condition 𝑎1(𝑡) = 𝑎0
′ (𝑡) is true for equation (11.2.1) 

𝑎1(𝑡) = 𝑎0
′ (𝑡)   ⇒ 𝑎1

′ (𝑡) = 𝑎0
′′(𝑡) 

Making these substitutions in (11.2.2), we get 

𝑎0(𝑡)𝑥′′ + [2𝑎1(𝑡) − 𝑎1(𝑡)]𝑥′ + [𝑎1
′ (𝑡) − 𝑎1

′ (𝑡) + 𝑎2(𝑡)]𝑥 = 0 

Or  
𝑎0(𝑡)𝑥′′ + 𝑎1(𝑡)𝑥′ + 𝑎2(𝑡)𝑥 = 0 

which is equation (11.2.1). 

⇒ Equation (11.2.1) and (11.2.2) are identical. 

⇒ Equation (11.2.1) is self adjoint. 

Conversely, we suppose that equation (11.2.1) is elf adjoint. 

i.e. Equation (11.2.1) and (11.2.2) are identical 

Equating the coefficient of 𝑥′ and 𝑥 in (11.2.1) and (11.2.2), we get  

2𝑎0
′ (𝑡) − 𝑎1(𝑡) = 𝑎1(𝑡);   𝑎0

′′(𝑡) − 𝑎1
′ (𝑡) + 𝑎2(𝑡) = 𝑎2(𝑡) 

Out of them, second relation is 𝑎′0
′ (𝑡) = 𝑎1

′ (𝑡)  

which on integration gives 

𝑎0
′ (𝑡) = 𝑎1(𝑡) + 𝑐   [c is arbitrary constant] 

The constant c vanishes on account of the first of these two relations. Hence 𝑎0
′ (𝑡) = 𝑎1(𝑡) which 

completes the proof. 

 

11.3.2:  Prove that the Legendre’s equation 

(1 − 𝑡2)𝑥′′ − 2𝑡𝑥′ + 𝑛(𝑛 + 1)𝑥 = 0 is self adjoint. 
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Solution: Here 𝑎0(𝑡) = (1 − 𝑡2),  𝑎1(𝑡) = −2𝑡, 𝑎2(𝑡) = 𝑛(𝑛 + 1) 

and we observe that 𝑎0
′ (𝑡) = −2𝑡 = 𝑎1(𝑡). 

⇒ Legendre’s Equation is self adjoint and can also be written in the form 

[(1 − 𝑡2)𝑥′]′ + 𝑛(𝑛 + 1)𝑥 = 0. 

 

11.3.3:  Check the self adjoint character of the following equations  

(a) 𝑡3𝑥′′ + 3𝑡2𝑥′ + 𝑥 = 0  
(b) 𝑠𝑖𝑛𝑡 𝑥′′ + cos 𝑡 𝑥′ + 2𝑥 = 0. 

(c) Solution: Equation (a) 𝑎0(𝑡) = 𝑡3 ⇒ 𝑎0
′ (𝑡) = 3𝑡2 = 𝑎1(𝑡) 

and for equation (b) 𝑎0(𝑡) = sin 𝑡 ⇒ 𝑎0
′ (𝑡) = cos 𝑡 = 𝑎1(𝑡) 

Equations (a) and (b) are self adjoint. 

Theorem 11.3.4: Let the coefficient𝑎0(𝑡), 𝑎1(𝑡) and 𝑎2(𝑡) appearing in the differential equation 
(11.2.1) i.e. 

𝑎0(𝑡)𝑥′′ + 𝑎1(𝑡)𝑥′ + 𝑎2(𝑡)𝑥 = 0 

are continuous on 𝑎 ≤ 𝑡 ≤ 𝑏 and 𝑎0(𝑡) ≠ 0 on 𝑎 ≤ 𝑡 ≤ 𝑏 then this equation can be transformed into 
the equivalent self-adjoint equation 

𝑑

𝑑𝑥
[𝑟(𝑡)𝑥′] + 𝑝(𝑡)𝑥 = 0        (11.3.2) 

on 𝑎 ≤ 𝑡 ≤ 𝑏 where 

 𝑟(𝑡) = 𝑒
∫

𝑎1(𝑡)

𝑎0(𝑡)
𝑑𝑡

 and 𝑝(𝑡) =  (
𝑎2(𝑡)

𝑎0(𝑡)
) 𝑟(𝑡)         (11.3.3) 

By multiplication throughout by the factor 

1

𝑎0(𝑡)
𝑒

∫
𝑎1(𝑡)

𝑎0(𝑡)
𝑑𝑡

. 

Proof: In order to get the form (11.3.2) of equation (11.2.1) we have to multiply equation (11.2.1) 
throughout by a suitable factor 𝐻(𝑡) obtained by a quadrature. 

Consider the function 𝐻(𝑡) determined by the equation 

𝑑

𝑑𝑡
[𝑎0(𝑡)𝐻(𝑡)] = 𝑎1(𝑡)𝐻(𝑡) 

𝑎0(𝑡)𝐻′(𝑡) + 𝑎0
′ 𝐻(𝑡) = 𝑎1(𝑡)𝐻(𝑡) 

Division throughout by 𝑎0(𝑡)𝐻(𝑡) gives 

𝐻′(𝑡)

𝐻(𝑡)
= −

𝑎0
′ (𝑡)

𝑎0(𝑡)
+

𝑎1(𝑡)

𝑎0(𝑡)
 

which on integration gives 

log 𝐻(𝑡) = − log 𝑎0(𝑡) + ∫
𝑎1(𝑡)

𝑎0(𝑡)
𝑑𝑡 

so that H(t) = 
1

𝑎0(𝑡)
𝑒

∫
𝑎1(𝑡)

𝑎0(𝑡)
𝑑𝑡

 

Now multiplying the equation (11.2.1) by 𝐻(𝑡), we follow 

𝑒
∫

𝑎1(𝑡)
𝑎0(𝑡)

𝑑𝑡
𝑥′′ +

𝑎1(𝑡)

𝑎0(𝑡)
𝑒

∫
𝑎1(𝑡)
𝑎0(𝑡)

𝑑𝑡
𝑥′ +

𝑎2(𝑡)

𝑎0(𝑡)
𝑒

∫
𝑎1(𝑡)
𝑎0(𝑡)

𝑑𝑡
𝑥 = 0 

 

𝑟(𝑡) = 𝑒
∫

𝑎1(𝑡)

𝑎0(𝑡)
𝑑𝑡

 and 𝑝(𝑡) =  (
𝑎2(𝑡)

𝑎0(𝑡)
) 𝑟(𝑡)    

we get 

𝑑

𝑑𝑡
[𝑟(𝑡)𝑥′] + 𝑝(𝑡)𝑥 = 0 
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Thus from (11.3.2) of equation (11.2.1) (in which r(t)>0) is extremely useful and plays a central role 
in the calculus of variations. It arises very frequently in mechanics. In order to study the behaviour 
of the solutions of the linear differential equation of the second order, we shall take of this form 
throughout the present chapter.  

We shall be concerned, henceforth, with equation (11.3.2) where 𝑟(𝑡) > 0 and 𝑟(𝑡) and p(𝑡) are 
continuous on some interval (𝑎, 𝑏). The theorem and the proofs which follow will not require the 
existence of the derivative of 𝑟(𝑡). 

 

11.3.4:  Transform each of the following equations into an equivalent self adjoint equation  

(a) 𝑡2𝑥′′ + 𝑡𝑥′ + 𝑥 = 0  
(b) 𝑓(𝑡)𝑥′′ + 𝑔(𝑡)𝑥′ = 0 
(c) 𝑡2𝑥′′ − 2𝑡𝑥′ + 2𝑥 = 0  

Solution: For equation (a), we have 𝑎0(𝑡) = 𝑡2, 𝑎1(𝑡) = 𝑡, 𝑎2(𝑡) = 1 

Multiplication factor = 
1

𝑎0(𝑡)
𝑒

∫
𝑎1(𝑡)

𝑎0(𝑡)
𝑑𝑡

=
1

𝑡2
𝑒∫

𝑡

𝑡2𝑑𝑡 =
1

𝑡2
𝑒∫

1

𝑡
𝑑𝑡 =

1

𝑡2
𝑒log 𝑡 =

1

𝑡2
𝑡 =

1

𝑡
. 

Multiplying the equation (a) by 
1

𝑡
 on any interval 𝑎 ≤ 𝑡 ≤ 𝑏, excluding the point 𝑡 = 0, 

we get  𝑡𝑥′′ + 𝑥′ +
1

𝑡
𝑥 = 0. 

This equation is self-adjoint equation and may be written in the form 

[𝑡𝑥′]′ +
1

𝑡
𝑥 = 0. 

For equation (b), we have 𝑎0(𝑡) = 𝑓(𝑡), 𝑎1(𝑡) = 𝑔(𝑡), 𝑎2(𝑡) = 0 

Multiplication factor = 
1

𝑎0(𝑡)
𝑒

∫
𝑎1(𝑡)

𝑎0(𝑡)
𝑑𝑡

=
1

𝑓(𝑡)
𝑒

∫
𝑔(𝑡)

𝑓(𝑡)
𝑑𝑡 

. 

Multiplying the equation (b) by 
1

𝑓(𝑡)
𝑒

∫
𝑔(𝑡)

𝑓(𝑡)
𝑑𝑡 

 on any interval 𝑎 ≤ 𝑡 ≤ 𝑏, we get 

 

𝑒
∫

𝑔(𝑡)

𝑓(𝑡)
𝑑𝑡 

𝑥′′ +
𝑔(𝑡)

𝑓(𝑡)
𝑒

∫
𝑔(𝑡)

𝑓(𝑡)
𝑑𝑡 

𝑥′ = 0. 

This equation is self-adjoint equation and may be written in the form 

[𝑒
∫

𝑔(𝑡)

𝑓(𝑡)
𝑑𝑡 

. 𝑥′]
′

= 0. 

For equation (c), we have 𝑎0(𝑡) = 𝑡2, 𝑎1(𝑡) = −2𝑡, 𝑎2(𝑡) = 2 

Multiplication factor = 
1

𝑎0(𝑡)
𝑒

∫
𝑎1(𝑡)

𝑎0(𝑡)
𝑑𝑡

=
1

𝑡2 𝑒∫
−2𝑡

𝑡2 𝑑𝑡 =
1

𝑡2 𝑒∫
−2

𝑡
𝑑𝑡  

=
1

𝑡2
𝑒−2 log 𝑡 =

1

𝑡2

1

𝑡2
=

1

𝑡4
.  

Multiplying the equation (b) by
1

𝑡4 on any interval 𝑎 ≤ 𝑡 ≤ 𝑏, excluding the point 𝑡 = 0, we get 

1

𝑡2 𝑥′′ −
2

𝑡3 𝑥′ +
2

𝑡4 = 0. 

This equation is self-adjoint equation and may be written in the form 

[(
1

𝑡2
) . 𝑥′]

′
+ (

2

𝑡4
) 𝑥 = 0. 

 

11.4 Abel’s Formula 

Theorem 11.4.1: If 𝑢(𝑡) and 𝑣(𝑡) are any two solutions of self adjoint equation (11.3.2) then 

𝑟(𝑡)[𝑢(𝑡)𝑣′(𝑡) − 𝑢′(𝑡)𝑣(𝑡)] ≡ 𝑘, 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡      (11.4.1) 

Proof: Since 𝑢(𝑡) and 𝑣(𝑡) are solutions of equation (11.3.2), we have 

[𝑟(𝑡)𝑢′(𝑡)]′ + 𝑝(𝑡)𝑢(𝑡) =0        (11.4.2) 

and 
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 [𝑟(𝑡)𝑣′(𝑡)]′ + 𝑝(𝑡)𝑣(𝑡) = 0        (11.4.3) 

Multiplying (11.4.2) by −𝑣(𝑡), (11.4.1) by 𝑢(𝑡) and then adding, we get 

𝑢(𝑡)[𝑟(𝑡)𝑣′(𝑡)]′ − 𝑣(𝑡)[𝑟(𝑡)𝑢′(𝑡)]′ = 0 

which on integration by parts under limits 𝑎 𝑡𝑜 𝑡, gives 

𝑟(𝑡)[𝑢(𝑡)𝑣′(𝑡) − 𝑢′(𝑡)𝑣(𝑡)] ≡ 𝑟(𝑎)[𝑢(𝑎)𝑣′(𝑎) − 𝑢′(𝑎)𝑣(𝑎)]    (11.4.4) 

⇒  The right hand member of (11.4.4) is constant 

𝑟(𝑡)[𝑢(𝑡)𝑣′(𝑡) − 𝑢′(𝑡)𝑣(𝑡)] ≡ 𝑘, a constant        

 

11.4.2: Formula (11.4.1), known as Abel’s formula, is useful in finding all solutions of a 
linear differential equation of order two, when one of its solutions is known. The same is 
proved in the following theorem.  

 

The expression inside the bracket of left hand side is nothing but the Wronskian 𝑊 of two 
solutions of 𝑢(𝑡) and 𝑣(𝑡) of equation (11.3.2) 

i.e.  𝑊 = |
𝑢(𝑡) 𝑣(𝑡)

𝑢′(𝑡) 𝑣′(𝑡)
|  

It means that the constant 𝑘 appearing in Abel’s formula is zero if and only if the two 
solutions 𝑢(𝑡) and 𝑣(𝑡) of equation (11.3.2) are linearly dependent. 

Theorem 11.4.2:  Let 𝑢(𝑡) be a solution of a linear differential equation of order two represented in 
self adjoint form (11.3.2) i.e. 

[𝑟(𝑡)𝑢′(𝑡)]′ + 𝑝(𝑡)𝑢(𝑡) =0  

Where 𝑟(𝑡) ≠ 0 and 𝑝 are continuous functions on an interval 𝐼. Then a second linearly independent 
solution 𝑣(𝑡) of equation (11.3.2) is given by 

𝑣(𝑡) = 𝑢(𝑡) ∫
𝑑𝑡

𝑟(𝑡)𝑢1
2(𝑡)

. 

Proof: Since 𝑢(𝑡) ≠ 0 is a solution of equation (11.3.2), there exists a second order linearly 
independent solution 𝑣(𝑡) of equation (11.3.2), satisfying Abel’s formula (11.4.1) such that, for all  

𝑡 in 𝐼 

𝑟[𝑢𝑣′ − 𝑢′𝑣] ≡ 1 

𝑣′ −
𝑢′

𝑢
𝑣 =

1

𝑟𝑢
 

This is linear differential equation of order one in 𝑣. Solving this equation, we obtain  

𝑣(𝑡) = 𝑢(𝑡) ∫
𝑑𝑡

𝑟(𝑡)𝑢1
2(𝑡)

. 

 

Summary 

• The second order linear differential equation and its behaviour is discussed.  
• The adjoint and self adjoint equations are elaborated with the help of examples.  

• The conversion of differential equation into self adjoint form is derived and examples are 
solved. 

• Determined the Abel’s formula for self adjoint equation solutions and linear dependent or 
independent behaviour of solution is also discussed. 

 

Keywords 

• Linear differential equation 

• Second order differential equation 

• Adjoint equation 

• Self adjoint equation 

• Abel formula 

• Linear dependent and independent solutions 
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Self Assessment  

1. The equation 0222 =+− xxtxt  reduces into an equivalent self adjoint 

equation as 

A. 0242 =+−− xxtxt  

B. 042 432 =+− −−− xtxtxt  

C. 022 432 =−+ −−− xtxtxt  

D. 0242 432 =−+ −−− xtxtxt  

 

2. The adjoint of the differential equation 0332 =++ xxtxt is 

A. 032 =++ xxtxt  

B. 03'2 =−− xtxxt  

C. 052 =++ xxtxt  

D. 0322 =++ xxtxt  
 

3. The coefficients )(&)(),( 210 tatata appearing in the differential equation

0)()()( 2

'

1

''

0 =++ xtaxtaxta are continuous on bta  and 

0)(0 ta on bta  then this equation can be transformed into the equivalent 

self-adjoint equation by multiplying 

A. 
dt

ta

ta

e


)(

)(

0

1

 

B. 
dt

ta

ta

e
ta

ta 
)(

)(

0

2 0

1

)(

)(
 

C. 

dt
ta

ta

e
ta

ta 

−
)(

)(

0

2 0

1

)(

)(
 

D. 
dt

ta

ta

e
−

)(

)(

0

1

 

 
4. Which of the following is second order linear differential equation? 

A. 
)()(')('' 2 thutfutgu =++

 

B. 
)()()'')(( thutqutp =+

 

C. 
)()()')(( thutqutp =+

 
D. None of these 

 

5. The equation 𝒂𝟎(𝒕)𝒖′′ + 𝒂𝟏(𝒕)𝒖′ + 𝒂𝟐(𝒕)𝒖 = 𝟎 is self adjoint if 
A. 𝑎0

′ (𝑡) = −𝑎1(𝑡)  
B. 𝑎0

′ (𝑡) = 𝑎1(𝑡)  
C. 𝑎0(𝑡) = 𝑎1′(𝑡)  
D. None of these 

 
6. The adjoint of the equation 𝒂𝟎(𝒕)𝒖′′ + 𝒂𝟏(𝒕)𝒖′ + 𝒂𝟐(𝒕)𝒖 = 𝟎 is  
A. [a0(𝒕)u]′′+[𝒂𝟏(𝒕)𝑢]′ + 𝑎2 (𝑡)𝑢 = 0  
B. [a0(𝒕)u]′′− [𝒂𝟏(𝒕)𝑢]′ − 𝑎2 (𝑡)𝑢 = 0  
C. [a0(𝒕)u]′′− [𝒂𝟏(𝒕)𝑢]′ + 𝑎2 (𝑡)𝑢 = 0  
D. None of these 

 
7. Every homogeneous second order linear differential equation can be reduced to  
A. Adjoint form 
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B. Self-adjoint form 
C. Both adjoint and self adjoint form 
D. None of these 

8. The equation 02 =++ xxtxt  reduces into an equivalent self adjoint equation as 

A. 

0
1

)'( =− x
t

tx
 

B. 
0

1
)'( =+ x

t
tx

 

C. 
0)'( =+ txtx

 
D. None of these 
9. If u and v be any two solutions of a self adjoint equation of order two of the form 

[𝒓(𝒕)𝒖′]′ + 𝒑(𝒕)𝒖 = 𝟎, where 𝒓(𝒕) ≠ 𝟎 and 𝒑, 𝒓′ are continuous functions. Then  
A. 𝑟(𝑡)[𝑢(𝑡)𝑣′(𝑡) − 𝑣(𝑡)𝑢′(𝑡)] = 0  
B. 𝑟(𝑡)[𝑢(𝑡)𝑣′(𝑡) − 𝑣(𝑡)𝑢′(𝑡)] = 𝑘  
C. 𝑟(𝑡)[𝑢(𝑡)𝑣′(𝑡) + 𝑣(𝑡)𝑢′(𝑡)] = −𝑘  
D. None of these 

 
10. If u and v be any two solutions of a self adjoint equation of order two of the form 

[𝒓(𝒕)𝒖′]′ + 𝒑(𝒕)𝒖 = 𝟎, where 𝒓(𝒕) ≠ 𝟎 and 𝒑, 𝒓′ are continuous functions. Then 
𝒓(𝒕)[𝒖(𝒕)𝒗′(𝒕) − 𝒗(𝒕)𝒖′(𝒕)] = 𝒌 is known as 

A. Ricatti formula 
B. Variational formula 
C. Abel’s formula 
D. None of these 

 
11. If the formula 𝒓(𝒕)[𝒖(𝒕)𝒗′(𝒕) − 𝒗(𝒕)𝒖′(𝒕)] = 𝒌 then the u and v be 
A. Linear independent 
B. Linear dependent 
C. Constant 
D. None of these 

 

12. If u1 be the one solution of second order linear differential equation in self adjoint form 
[𝒓(𝒕)𝒖′]′ + 𝒑(𝒕)𝒖 = 𝟎. Then another solution 

A. 𝑢2 = −𝑢1 ∫
𝑑𝑡

𝑟(𝑡)𝑢1
2(𝑡)

  

B. 𝑢2 = ∫
𝑑𝑡

𝑟(𝑡)𝑢1
2(𝑡)

  

C. 𝑢2 = 𝑢1 ∫
𝑑𝑡

𝑟(𝑡)𝑢1
2(𝑡)

  

D. None of these 

 

13. If in the formula 𝒓(𝒕)[𝒖(𝒕)𝒗′(𝒕) − 𝒗(𝒕)𝒖′(𝒕)] = 𝒌, 𝒌 = 𝟎 then the u and v be 
A. Linear independent 
B. Linear dependent 
C. Constant 
D. None of these 

 

Answer for Self Assessment 

1. B 2. C 3. B 4. B 5. B 

6. C 7. C 8. B 9. B 10. C 

11. A 12. C 13. B     
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Review Questions 

1. Show that every homogeneous linear differential equation of order two can be 
reduced to self-adjoint form. 

2. Reduce the following equation to self adjoint form: 
(i) 𝑡𝑥′′ − 𝑥′ + 𝑡2𝑥 = 0  
(ii) 𝑥′′ − 3𝑥′ + 2𝑥 = 0  
(iii) 𝑡2𝑥′′ + 𝑡𝑥′ + (𝑡2 − 𝑛2)𝑥 = 0  
(iv) (1 − 𝑡2)𝑥′′ − 2𝑡𝑥′ + (𝑛2 + 𝑛)𝑥 = 0  

 

 
Further Reading 

• Earl A Coddinton and Norman Levinson (2017). Theory of Ordinary Differential 
Equations, Mc Graw Hill.  

• P. Hartman (1964), Ordinary Differential equations, Johan Wiley. 

• Shair Ahmad and Rama Mohan Rao (2014), Theory of Ordinary Differential 
Equations, East West Press Private Limited. 

• S G Deo, V Lakshmikantham and V Raghvendra (2013), Ordinary Differential 
Equations, McGraw Hill Education (India) Private Limited. 

 

• https://nptel.ac.in/courses/111/108/111108081/  

• https://onlinecourses.nptel.ac.in/noc21_ma09/preview           

• https://infocobuild.com/education/audio-video-
courses/mathematics/OrdinaryPartialDifferentialEquations-IIT-
Roorkee/lecture-01.html 
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Unit 12: The Sturmian Theory 

CONTENTS 

Objective 
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12.1 Sturm Separation Theorem 

12.2 Sturm Comparison Theorem 

Summary 

Keywords 

Self Assessment 

Answers for Self Assessment 

Review Questions 

Further Readings 

Objective: 

After studying this unit, you will be able to 

● identify the concept of common zero of solutions of second order linear differential 

equations. 

● understand about the Sturm separation and comparison theorem 

● know about the separation of zeros of solutions of self adjoint equation. 

● determine the comparison of solutions of two self adjoint equations. 

 

Introduction 

In this chapter, more theory related to the solution of second order self adjoint equation of the form  

𝑑

𝑑𝑡
[𝑟(𝑡)𝑥′] + 𝑝(𝑡)𝑥 = 0         (12.0.1)  

will be discussed and more properties of solutions will be determined. 

 

12.1 Sturm Separation Theorem 

Lemma 12.1.1: If the two solutions 𝑢(𝑡) and 𝑣(𝑡) have common zero, they are linearly dependent. 
Conversely, if 𝑢(𝑡) and 𝑣(𝑡) are linearly dependent solutions, neither identically zero, and if one of 
them vanishes at 𝑡 = 𝑡0, so does other. 

Proof: First, we assume that 𝑡 = 𝑡0 is the common zero of two solutions 𝑢(𝑡) and 𝑣(𝑡) i.e. 𝑢(𝑡0) = 0, 
𝑣(𝑡0) = 0. 

In accordance with Abel’s formula, we have  

𝑟(𝑡)[𝑢(𝑡)𝑣′(𝑡) − 𝑢′(𝑡)𝑣(𝑡)] ≡ 𝑘, 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

Replacing 𝑡 by 𝑡0 in this formula, we follow 𝑘 = 0. 

⟹ Two solutions 𝑢(𝑡) and 𝑣(𝑡) are linearly dependent. 

Conversely, we assume that the two solutions 𝑢(𝑡) and 𝑣(𝑡) are linearly dependent. 

⟹ There exist constants 𝑐1and 𝑐2 (not both zero) such that  
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𝑐1𝑢(𝑡) + 𝑐2𝑣(𝑡) = 0. 

As neither 𝑢(𝑡) nor 𝑣(𝑡) is identically zero, we follow that both 𝑐1 and 𝑐2 are different from zero. 

Hence if 𝑢(𝑡0) = 0  then 𝑣(𝑡0) = 0 

And if 𝑣(𝑡0) = 0 then 𝑢(𝑡0) = 0. 

i.e. 𝑢(𝑡) and 𝑣(𝑡) have a common zero. 

Theorem 12.1.2: If 𝑢(𝑡) and 𝑣(𝑡) are linearly independent solutions of equation (12.0.1) i.e. 
𝑑

𝑑𝑡
[𝑟(𝑡)𝑥′] + 𝑝(𝑡)𝑥 = 0, then between two consecutive zeros of 𝑢(𝑡) there will be precisely one zero 

of 𝑣(𝑡). 

Proof: let us suppose that the two consecutive zeros of the solution of u(t) are 𝑡 = 𝑡0 and 𝑡 = 𝑡1(𝑡0 <
𝑡1), whose existence is being supposed by the theorem. Without any loss of generality, we may 
assume that 

𝑢(𝑡) > 0 in the range 𝑡0 < 𝑡 < 𝑡1 

and  𝑢′(𝑡0) > 0 and 𝑢′(𝑡1) < 0. 

 

𝑢(𝑡) > 0 in the range 𝑡0 < 𝑡 < 𝑡1  ⇒  The graph of the curve 𝑥 = 𝑢(𝑡) in the range 𝑡0 < 𝑡 < 𝑡1 lies 
above the t-axis. 

𝑢′(𝑡0) > 0 ⇒ The tangent to the curve 𝑥 = 𝑢(𝑡) at 𝑡 = 𝑡0 makes an angle which is less than 
1

2
𝜋 with 

the positive direction of the t-axis. 

𝑢′(𝑡1) < 0 ⇒ The tangent to the curve 𝑥 = 𝑢(𝑡) at 𝑡 = 𝑡1 makes an angle which is greater than 
1

2
𝜋 

with the positive direction of the t-axis. 

Two solutions 𝑢(𝑡) and 𝑣(𝑡) are given to be linearly independent. 

⇒ They cannot have a common zero. As 𝑢(𝑡0)=0 we follow 𝑣(𝑡0) ≠ 0. 

We may assume 𝑣(𝑡0) > 0 without any loss to generality. 𝑣(𝑡0) > 0 without any loss to generality. 
𝑣(𝑡0) > 0 means that the graph of the curve 𝑥 = 𝑣(𝑡) at 𝑡0 is above 𝑡-axis. 

Taking 𝑡 = 𝑡0 in Abel’s formula, we get 

𝑟(𝑡0)[𝑢(𝑡0)𝑣′(𝑡0) − 𝑢′(𝑡0)𝑣(𝑡0)] = 𝑘, a constant 

𝑘 < 0, 𝑟(𝑡0) > 0, 𝑢(𝑡0) = 0, 𝑢′(𝑡0) > 0, 𝑣(𝑡0) > 0. 

𝑟(𝑡1)[𝑢(𝑡1)𝑣′(𝑡1) − 𝑢′(𝑡1)𝑣(𝑡1)] < 0  

𝑣(𝑡1) < 0 as  𝑟(𝑡0) > 0, 𝑢1(𝑡`) = 0, 𝑢′(𝑡1) < 0 . 

Now 𝑣(𝑡0) > 0  and 𝑣(𝑡1) < 0 and 𝑣(𝑡) is continuous functions. 

⇒  𝑣(𝑡) must have at least one zero in between 𝑡0 and 𝑡1. 

Further, there cannot, however, be more than zero because the argument above, with the roles of 
𝑢(𝑡) and 𝑣(𝑡) reserved, shows that between two consecutive zeros of 𝑣(𝑡) there must be at least one 
zero of 𝑢(𝑡). It completes the proof. 
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Example 12.1.3: Show that the differential equation 𝑥′′ + 𝑥 = 0 has common zeros and no 
others zero. 

Solution:  Given differential equation 𝑥′′ + 𝑥 = 0 which of the form 

𝑑

𝑑𝑡
[𝑟(𝑡)𝑥′] + 𝑝(𝑡)𝑥 = 0 

Here 𝑟(𝑡) = 1, 𝑝(𝑡) = 1 on every interval 𝑎 ≤ 𝑡 ≤ 𝑏. 

The linearly dependent solutions 𝐴 𝑠𝑖𝑛𝑡 and 𝐵 𝑠𝑖𝑛 𝑠𝑖𝑛 𝑡  have the common zeros 𝑡 = ±𝑛𝜋(𝑛 =
0,1,2, … … . ) and no other zeros. 

 

Example 12.1.4: Use the Sturm separation theorem to show that between any two 
consecutive zeros of Here 𝑠𝑖𝑛 𝑠𝑖𝑛 2𝑡 +𝑐𝑜𝑠 𝑐𝑜𝑠 2𝑡   there is precisely one zero of 
𝑠𝑖𝑛 𝑠𝑖𝑛 2𝑡 −𝑐𝑜𝑠 𝑐𝑜𝑠 2𝑡   . 

Solution: Let 𝑢(𝑡) =𝑠𝑖𝑛 𝑠𝑖𝑛 2𝑡 +𝑐𝑜𝑠 𝑐𝑜𝑠 2𝑡   and 𝑣(𝑡) =𝑠𝑖𝑛 𝑠𝑖𝑛 2𝑡 −𝑐𝑜𝑠 𝑐𝑜𝑠 2𝑡    

Differentiating twice, we get 

𝑢′′(𝑡) = −4(𝑠𝑖𝑛 𝑠𝑖𝑛 2𝑡 +𝑐𝑜𝑠 𝑐𝑜𝑠 2𝑡   ) = −4(𝑢(𝑡)) 

and 𝑣′′(𝑡) = −4(𝑠𝑖𝑛 𝑠𝑖𝑛 2𝑡 −𝑐𝑜𝑠 𝑐𝑜𝑠 2𝑡   ) = −4(𝑣(𝑡)). 

This shows that 𝑢(𝑡) and 𝑣(𝑡) are the solutions of  

𝑥′′ + 4𝑥 = 0 

Which is a self adjoint equation. 

Further, the Wronksian of these functions is  

𝑊(𝑠𝑖𝑛 𝑠𝑖𝑛 2𝑡 +𝑐𝑜𝑠 𝑐𝑜𝑠 2𝑡, 𝑠𝑖𝑛2𝑡 −𝑐𝑜𝑠 𝑐𝑜𝑠 2𝑡) =    

= |𝑠𝑖𝑛 𝑠𝑖𝑛 2𝑡 +𝑐𝑜𝑠 𝑐𝑜𝑠 2𝑡   𝑠𝑖𝑛 𝑠𝑖𝑛 2𝑡 −𝑐𝑜𝑠 𝑐𝑜𝑠 2𝑡   2𝑡 − 2𝑡   2 𝑐𝑜𝑠 𝑐𝑜𝑠 2𝑡 + 2 𝑠𝑖𝑛 𝑠𝑖𝑛 2𝑡  | 

= 22𝑡 + 22𝑡 + 22𝑡 + 22𝑡 − (2𝑠𝑖𝑛2𝑡𝑐𝑜𝑠 2𝑡 − 22𝑡 − 22𝑡 + 2 𝑠𝑖𝑛 𝑠𝑖𝑛 2𝑡 𝑐𝑜𝑠 2𝑡)     

 2𝑡  

 2𝑡 ) = 4 ≠ 0 

Hence the two solutions are linearly independent. 

Therefore, 𝑢(𝑡) and 𝑣(𝑡) defined earlier satisfy the conditions of Sturm’s separation theorem is 
precisely one zero of 𝑠𝑖𝑛 𝑠𝑖𝑛 2𝑡 −𝑐𝑜𝑠 𝑐𝑜𝑠 2𝑡   between two consecutive zeros of the function 
𝑠𝑖𝑛 𝑠𝑖𝑛 2𝑡 +𝑐𝑜𝑠 𝑐𝑜𝑠 2𝑡  . 

 

Example1 2.1.5: Show that the roots of the equation 𝑥′′ + 𝑥 = 0 form separation for one 
another. 

Solution: The roots of the real solution are 

𝑢(𝑡) = 𝑠𝑖𝑛𝑡 

𝑣(𝑡) = 𝑐𝑜𝑠𝑡 

More generally, the roots of any two real solutions are 

𝑢(𝑡) = 𝐴 𝑠𝑖𝑛𝑡 + 𝐵 𝑐𝑜𝑠𝑡 𝑡 

𝑣(𝑡) = 𝐶𝑠𝑖𝑛𝑡 + 𝐷𝑐𝑜𝑠 𝑡 

𝑢′(𝑡) = 𝐴𝑐𝑜𝑠 𝑡 − 𝐵𝑠𝑖𝑛𝑡 

𝑣′(𝑡) = 𝐶 𝑐𝑜𝑠 𝑡 − 𝐷 𝑠𝑖𝑛𝑡 

Separate one another provided that 𝑊(𝑡) of 𝑢(𝑡) and 𝑣(𝑡)does not vanish 

i.e. 𝑢𝑣′ − 𝑢′𝑣 ≠ 0 

or 𝐴𝐶 𝑠𝑖𝑛𝑡 𝑐𝑜𝑠 𝑡 − 𝐴𝐷 𝑠𝑖𝑛2𝑡 + 𝐵𝐶 𝑐𝑜𝑠2𝑡 − 𝐵𝐷 𝑠𝑖𝑛𝑡 𝑐𝑜𝑠 𝑐𝑜𝑠 𝑡 − 𝐴𝐶 𝑠𝑖𝑛𝑡 𝑐𝑜𝑠 𝑐𝑜𝑠 𝑡 + 𝐵𝐶 𝑠𝑖𝑛2𝑡 − 𝐷𝐴𝑡 +
𝐷𝐵 𝑠𝑖𝑛𝑡 𝑐𝑜𝑠 𝑐𝑜𝑠 𝑡     
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𝐴𝐷 − 𝐵𝐶 ≠ 0. 

This is merely the condition that these two solutions are linearly independent. 

 

12.2 Sturm Comparison Theorem 

 

The Sturm Comparison Theorem, which follows, compares the rates of oscillation of the 
solutions of two equations. 

[𝑟(𝑡)𝑥′]′ + 𝑝(𝑡)𝑥 = 0        (12.2.1) 

[𝑟(𝑡)𝑧′]′ + 𝑝1(𝑡)𝑧 = 0        (12.2.2) 

where 𝑟(𝑡) > 0; 𝑟(𝑡),  𝑝(𝑡) and 𝑝1(𝑡) are continuous on 𝑎 ≤ 𝑡 ≤ 𝑏 and  

 𝑝1(𝑡) >  𝑝(𝑡)  

with strict inequality holding for at least one point of the interval. 

Theorem 12.2.1:  If the solution  𝑥(𝑡) of equation (12.2.1) has consecutive zeros at, 𝑡 = 𝑡0 and  𝑡 =
𝑡1(𝑡0 < 𝑡1), a solution,  𝑧(𝑡) of equation (12.2.2) which vanishes at 𝑡 = 𝑡0, will vanish again on the 
interval 𝑡0 < 𝑡 < 𝑡1. 

Proof: Without any loss of generality, we may assume 𝑥(𝑡) > 0 on the interval 𝑡0 < 𝑡 < 𝑡1 

and 𝑥′(𝑡0) > 0, 𝑥′(𝑡1) < 0 and 𝑧′(𝑡0) > 0. 

 

As 𝑥(𝑡) and 𝑧(𝑡) are solutions of equation (12.2.1) and (12.2.2) respectively, we have  

[𝑟(𝑡)𝑥′]′ + 𝑝(𝑡)𝑥 = 0        (12.2.3) 

and [𝑟(𝑡)𝑧′]′ + 𝑝1(𝑡)𝑧 = 0        (12.2.4) 

Multiplying (12.2.3) by −𝑧(𝑡) and (12.2.4) by 𝑥(𝑡) and then adding, we get 

𝑥(𝑡)[𝑟(𝑡)𝑧′(𝑡)]′ − 𝑧(𝑡)[𝑟(𝑡)𝑥′(𝑡)]′ + {𝑝1(𝑡) − 𝑝(𝑡)}𝑥(𝑡)𝑧(𝑡) = 0      (12.2.5) 

Integration of the identity (12.2.5) over the interval 𝑡0 ≤ 𝑡 ≤ 𝑡1, gives 

[𝑟(𝑡){𝑥(𝑡)𝑧′(𝑡) − 𝑥′(𝑡)𝑧(𝑡)}]𝑡0

𝑡1 + ∫
𝑡1

𝑡0

[𝑝1(𝑡) − 𝑝(𝑡)]𝑥(𝑡)𝑧(𝑡)𝑑𝑡 ≡  0 

𝑟(𝑡){𝑥(𝑡1)𝑧′(𝑡1) − 𝑥′(𝑡1)𝑧(𝑡1)} + ∫
𝑡1

𝑡0

[𝑝1(𝑡) − 𝑝(𝑡)]𝑥(𝑡)𝑧(𝑡)𝑑𝑡 ≡  0 

𝑥′(𝑡1)𝑧(𝑡1)𝑟(𝑡) = ∫
𝑡1

𝑡0
[𝑝1(𝑡) − 𝑝(𝑡)]𝑥(𝑡)𝑧(𝑡)𝑑𝑡, as 𝑥(𝑡1) = 0    (12.2.6) 

If we suppose 𝑧(𝑡) > 0 on 𝑡0 < 𝑡 < 𝑡1 then the left hand member of (12.2.6) is negative and the right 
hand member of (12.2.6) is positive which is absurd. 

⇒  𝑧(𝑡) will not remain +𝑣𝑒 on the whole interval 𝑡0 < 𝑡 < 𝑡1. 

⇒  𝑧(𝑡) will vanish somewhere within this interval 𝑡0 < 𝑡 < 𝑡1. 
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We further notice that 𝑥(𝑡) again vanishes at 𝑡 = 𝑡2 > 𝑡1 and if 𝑧1(𝑡) is the second solution of 
equation (12.2.4) such that  

𝑧1(𝑡1) = 0 and 𝑧1
′ (𝑡1) > 0 

then 𝑧1(𝑡) will have a zero 𝑡3 on 𝑡1 < 𝑡 < 𝑡2 

Now, using Sturm Separation Theorem, we follow 

𝑍(𝑡) has a zero on 𝑡1 < 𝑡 < 𝑡3 

i.e. 𝑍(𝑡) has a zero on 𝑡1 < 𝑡 < 𝑡3 < 𝑡2 

i.e. 𝑍(𝑡) has a zero on 𝑡1 < 𝑡 < 𝑡2 which completes the proof. 

 

Example: 12.2.2: Verify the Sturm’s comparison theorem for the differential equations 

𝑥′′ + 𝐴2𝑥 = 0 and 𝑥′′ + 𝐵2𝑥 = 0 

Where A and B are constants such that 𝐵 > 𝐴. 

Solutions: Let us take 

𝑢(𝑡) = 𝑆𝑖𝑛 𝐴𝑡  and 𝑣(𝑡) =𝑠𝑖𝑛 𝑠𝑖𝑛 𝐵𝑡  

which are the solutions of the given equations. 

The two consecutive zeros of 𝑢(𝑡) = 𝑆𝑖𝑛 𝐴𝑡  are 𝑢(𝑡) =
𝑛𝜋

𝐴
 and 

(𝑛+1)𝜋

𝐴
, 𝑛 = 0, ±1, ±2, … …. 

In particular for 𝑛 = 0,0 and 
𝜋

𝐴
 are the two consecutive zeros. 

Now, the zero of 𝑣(𝑡) = 𝑆𝑖𝑛 𝐵𝑡 are 
𝑛𝜋

𝐴
 and 

(𝑛+1)𝜋

𝐴
, and for 𝑛 = 0, ±1, ±2, … …. And for 𝑛 = 0, the two 

consecutive zeros are 0 and 
𝜋

𝐵
. 

Both these solutions have one of their zero at 𝑥 = 0. 

The next zero of 𝑣(𝑡) =𝑠𝑖𝑛 𝑠𝑖𝑛 𝐵𝑡  is at 
𝜋

𝐵
. 

Since 𝐵 > 𝐴, therefore 
𝐵

𝜋
>

𝐴

𝜋
 or 

𝜋

𝐵
<

𝜋

𝐴
. 

Hence the next zero of 𝑣(𝑡) =𝑠𝑖𝑛 𝑠𝑖𝑛 𝐵𝑡  is before the next zero of 𝑢(𝑡) =𝑠𝑖𝑛 𝑠𝑖𝑛 𝐴𝑡 . 

 

Example: 12.2.3: Consider the equation 𝑥′′ + 𝑞(𝑡)𝑥 = 0 where 𝑞(𝑡) > 0 on 𝑎 ≤ 𝑡 ≤ 𝑏. 

Let 𝑞𝑚 denote the minimum value of 𝑞(𝑡) on 𝑎 ≤ 𝑡 ≤ 𝑏. Show that if 𝑞𝑚 >
𝑘2𝜋2

(𝑏−𝑎)2
,  then 

every real solution of the given equation has at least 𝑘 zeros on 𝑎 ≤ 𝑡 ≤ 𝑏 where 

𝑘 = (
𝑏−𝑎

𝜋
) √𝑞𝑚.    

Solution: Consider the differential equation 𝑥′′ +
𝑘2𝜋2

(𝑏−𝑎)2 𝑥 = 0 which has a solution 

𝑥 =𝑠𝑖𝑛 𝑠𝑖𝑛 
𝑘𝜋

𝑏−𝑎
𝑥          (12.2.7) 

The zeros of this solution are at 𝑥 =
𝑛𝜋(𝑏−𝑎)

𝑘𝜋
=

𝑛

𝑘
(𝑏 − 𝑎), 𝑛 = 0, ±1, ±2, … … .. 

In particular they are 𝑥 = 0,
1

𝑘
(𝑏 − 𝑎), 𝑛 = 0, ±1, ±2, … .. 

which are 𝑘 + 1 in number in the interval 𝑎 < 𝑡 < 𝑏. 

Now, consider the differential equation  

𝑥′′ + 𝑞(𝑡)𝑥 = 0     

Since 𝑞𝑚 is the minimum value of 𝑞(𝑡), therefore 

𝑞𝑚(𝑡) > 𝑞𝑚 >
𝑘2𝜋2

(𝑏−𝑎)2        (12.2.8) 

Hence by Sturm’s comparison theorem, the zeros of the solution of (12.2.8) are at least one between 
the consecutive zeros of the solution of (12.2.1). 
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Hence in the interval 𝑎 ≤ 𝑡 ≤ 𝑏, the numbers of zeros of the solution of (12.2.8) are at least 𝑘 in 
number. 

 

Summary 

● The zeros of solutions of self adjoint equation is discussed.  

● The condition for common zeros of linearly dependent and independent is derived  

● The separation of zeros of solutions of self adjoint equation is derived and examples are 

solved. 

● The comparison theorem proved for two self adjoint equations and elaborated with 

examples. 

 

Keywords 

● Zeros of solution 

● Sturm separation 

● Sturm comparison 

● Abel’s formula 

● Linear dependent and independent solutions 

 

Self Assessment  

Choose the most suitable answer from the options given with each question. 

1. For any two linearly independent  solution of equation 
( ) 0)()( =+


 yxpyxr , then 

between any two consecutive zeros  

A. There is precisely one zero  

B. There is no zero  

C. There are number of zeros  

D. There is one zero  

 

2. By change of variables ztuet s 2/1, == , the equation 0)('' =+ utqu  

transform to  

A. 

setwherez
t

tqt
ds

zd
==








−− ,0

4

1
)(

2

2

2

2

 

B. 

setwherez
t

tqt
ds

zd
==








−+ ,0

4

1
)(

2

2

2

2

 

C. 

setwherez
t

tqt
ds

zd
==








++ ,0

4

1
)(

2

2

2

2

  

D. None of these 

3. The Lagrange integral identity of pair of equations gqvpvfqupu =+=+ )''(,)''( is 

A. 

 +=−

t

a

t

a dsfvguvuuvp )()]''([
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B. 

 −=+

t

a

t

a dsfvguvuuvp )()]''([

 

C. 

 +=+

t

a

t

a dsfvguvuuvp )()]''([

 

D. 

 −=−

t

a

t

a dsfvguvuuvp )()]''([

 

4. If two solution have common zero, then solutions are 

A. Linearly dependent 

B. Linearly independent 

C. Constant 

D. None of these 

 

5. The differential equation 𝑦′′ + 𝑦 = 0 has  

A. The non-common zero 

B. The common zero and no other zero 

C. The constant zero 

D. None of these 

 

6. The roots of the equation 𝑦′′ + 𝑦 = 0 form  

A. Separation from one another 

B. Non separation from one another 

C. Linear dependent 

D. None of these 

 

7. The two consecutive zeros of 𝑠𝑖𝑛 2𝑥 + 𝑐𝑜𝑠2𝑥 separated by 

A. Precisely two zero of 𝑠𝑖𝑛 2𝑥 − 𝑐𝑜𝑠2𝑥. 

B. Precisely no zero of 𝑠𝑖𝑛 2𝑥 − 𝑐𝑜𝑠2𝑥. 

C. Precisely one zero of 𝑠𝑖𝑛 2𝑥 − 𝑐𝑜𝑠2𝑥. 

D. None of these 

 

8. For any two linearly dependent nontrivial solutions of equation, if one of them vanishes, 

then 

A. Other also vanish 

B. Other is non-vanish 

C. Non constant 

D. None of these 

 

9. The  solution of two equations [𝑟(𝑡)𝑥′]′ + 𝑝(𝑡)𝑥 = 0 and [𝑟(𝑡)𝑧]′ + 𝑝1(𝑡)𝑧 = 0 where 

𝑟(𝑡), 𝑝(𝑡) 𝑎𝑛𝑑 𝑝1(𝑡) are continuous on [a, b] then the inequality one point of the interval 

hold 

A. 𝑝1(𝑡) < 𝑝(𝑡)  

B. 𝑝1(𝑡) ≤ 𝑝(𝑡)  

C. 𝑝1(𝑡) > 𝑝(𝑡)  

D. 𝑝1(𝑡) ≥ 𝑝(𝑡)  
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10. The  solution 𝑥(𝑡) of equations [𝑟(𝑡)𝑥′]′ + 𝑝(𝑡)𝑥 = 0 has consecutive zeros at 𝑡 = 𝑡0 and 𝑡 =

𝑡1, a solution 𝑧(𝑡) of equations [𝑟(𝑡)𝑧′]′ + 𝑝1(𝑡)𝑧 = 0 which vanishes 𝑡 = 𝑡0, 

A. It will not vanishes again on 𝑡0 < 𝑡 < 𝑡1 

B. It will vanishes again on 𝑡 = 𝑡1 

C. It will vanishes again on 𝑡0 < 𝑡 < 𝑡1. 

D. None of these 

 

11. The equations 𝑥′′ + 𝐴2𝑥 = 0 and 𝑥′′ + 𝐵2𝑥 = 0 where A and B are constants such that 𝐵 >

𝐴 verify the  

A. Sturm separation theorem 

B. Sturm comparison theorem 

C. Sturm Liouville problem 

D. None of these 

 

12. The 𝑦 and 𝑧 are nontrivial solutions of 𝑥2𝑦′′ + 𝑥𝑦′ + (𝑥2 − 1)𝑦 = 0 and 𝑥2𝑧′′ + 𝑥𝑧′ + 𝑥2𝑧 =

0, respectively, such that both vanish at 𝑥 = 1  

A. The solution 𝑥(𝑡) will vanish faster than 1 

B. The solution 𝑧(𝑡) will vanish faster than 1 

C. The solution 𝑥(𝑡) and 𝑧(𝑡) will vanish faster than 1 

D. None of these 

 

13. The equations  𝑦′′ + 𝑦 = 0  and 𝑧′′ − 𝑧 = 0 for 𝑡 ≥ 0 hold that  

A. Between two consecutive zero of 𝑧(𝑡), there is a zero of y(t). 

B. Between two consecutive zero of 𝑦(𝑡), there is a zero of z(t). 

C. Zero of 𝑥(𝑡) and 𝑦(𝑡) are common. 

D. None of these 

 

14. The equations 𝑥′′ + 𝑥 = 0 and 𝑦′′ + 4𝑦 = 0 hold that  

A. Between two consecutive zero of 𝑦(𝑡), there is a zero of x(t). 

B. Between two consecutive zero of 𝑥(𝑡), there is a zero of y(t). 

C. Zero of 𝑥(𝑡) and 𝑦(𝑡) are common. 

D. None of these. 

 

15. The Sturm’s comparison theorem asserts is that if a solution of the first differential 

equation has a certain property P then  

A. The solutions of the second differential equation do not have the same or some related 

property. 

B. The solution of the second differential equation is not comparable. 

C. The solution of the second differential equation has the same or some related property  P. 

D. None of these 

 

Answers for Self Assessment 

1. A 2. B 3. D 4. A 5. B 

6. A 7. D 8. A 9. D 10. C 

11. B 12. B 13. A 14. B 15. C 
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Review Questions 

1. Show that between any pair of consecutive zero of 𝑠𝑖𝑛 𝑡, there is exactly one zero of 𝑠𝑖𝑛 𝑡 +

𝑐𝑜𝑠 𝑐𝑜𝑠 𝑡 . 

2. Show that between any pair of consecutive zero of 𝑠𝑖𝑛 (𝑙𝑜𝑔 𝑙𝑜𝑔 𝑡 ), there is exactly one zero 

of 𝑐𝑜𝑠 𝑐𝑜𝑠 (𝑙𝑜𝑔 𝑙𝑜𝑔 𝑡)  . 

3. Let 𝑟(𝑡) be a continuous function (for 𝑡 ≥ 0) such that 𝑟(𝑡) > 𝑚2 > 0, where m is an 

integer. Consider the equations 𝑥′′ + 𝑚2𝑥 = 0, 𝑡 > 0 

𝑦′′ + 𝑟(𝑡)𝑦 = 0, 𝑡 > 0. 

If 𝑦(𝑡) is any solution of the second equation, prove that 𝑦(𝑡) must vanish in any interval 
of length 𝜋/𝑚. 

 

 
Further Readings 

Earl A Coddinton and Norman Levinson (2017). Theory of Ordinary Differential Equations, 
Mc Graw  Hill.  

P. Hartman (1964), Ordinary Differential equations, Johan Wiley. 

Shair Ahmad and Rama Mohan Rao (2014), Theory of Ordinary Differential Equations, East 
West Press Private Limited. 

S G Deo, V Lakshmikantham and V Raghvendra (2013), Ordinary Differential Equations, 
McGraw Hill Education (India) Private Limited. 
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After studying this unit, you will be able to 

• identify the concept of boundary value problem 

• understand about the Sturm problems 

• know about the eigen values and eigen functions. 

• determine about the trivial and nontrivial of solutions 

• apply the oscillatory theory to the zero of solutions 

 

Introduction 

In this chapter, we shall consider boundary value problems. For the sake of convenience, we recall 
the definition of boundary value problem. 

Consider a linear differential of order n of the form  

𝐿(𝑥) = 𝑎0(𝑡)𝑥(𝑛) + 𝑎1(𝑡)𝑥(𝑛−1) + ⋯ . . 𝑎𝑛(𝑡)𝑥 = 𝑏(𝑥)     (13.0.1) 

where𝑎0(𝑡) ≠ 0, 𝑎1, … … 𝑎𝑛 and 𝑏 are real or complex-valued continuous functions defined on an 
interval 𝐼 = [𝑐, 𝑑]. 

A boundary condition is a condition imposed on the solutions of equation (13.0.1) at two or more 
points of the interval 𝐼. The points of 𝐼 (denoted by 𝑡0, 𝑡1, … … ) where the conditions are imposed, 

are known as boundary points and the value of 𝑥, 𝑥′ … … . , 𝑥(𝑛−1)at the boundary points are known 
as boundary values.  

A differential equation with some boundary conditions is known as boundary value problem 
(denoted in short by BVP).  

There are several forms of boundary conditions. We define some important forms of boundary 
conditions for  equation (13.0.1). 

For equation (13.0.1), the boundary conditions of the form  

𝑥(𝑐) = 𝑥(𝑑), 𝑥′(𝑐) = 𝑥′(𝑑), … … . . , 𝑥(𝑛−1)(𝑐) = 𝑦(𝑛−1)(𝑑) 

Are called periodic boundary conditions stated at 𝑥 = 𝑐and 𝑥 = 𝑑. 

13.1 Sturm-Lioville’s Problem 

Now consider a differential equation of the type 
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[𝑟(𝑡)𝑥′]′ + {𝑝(𝑡) + 𝜆𝑞(𝑡)}𝑥 = 0       (13.1.1) 

in which 𝑟(𝑡) > 0 and 𝑝(𝑡) > 0 and 𝑟(𝑡), 𝑝(𝑡), 𝑞(𝑡) are continuous real functions of 𝑡 on 𝑎 ≤ 𝑡 ≤ 𝑏 
and the constant 𝜆 is the parameter independent of 𝑡. 

This equation is called Sturm-Liouville’s Equation. 

Equation (13.1.1) is considered on a closed interval 𝑎 ≤ 𝑡 ≤ 𝑏 and subject to the boundary 
conditions (at the end points) by 

𝑎1𝑥(𝑎) + 𝑎2𝑥′(𝑎) = 0        (13.1.2a) 

𝑏1𝑥(𝑏) + 𝑏2𝑥′(𝑏) = 0        (13.1.2b) 

where𝑎1, 𝑎2, 𝑏1 and 𝑏2 are constants and neither 𝑎1, 𝑎2 are both zero nor 𝑏1, 𝑏2 are both zero 
together. The problem of finding the solution of (13.1.1) subject to the boundary conditions (13.1.2a) 
and (13.1.2b) is called Sturm Liouville’s Boundary Value Problem. The trivial solution  𝑥 = 0, for 
every value of parameter 𝜆,is of no practical use. The nontrivial solutions of Sturm Liouville’s 
boundary value problem are called characteristic functions(or eigen functions) and all the value of 𝜆 
for which such solutions exist are called characteristic values(or eigen values) of the problem. 

 

It should be noted that the Sturm Liouville’s problem are linear boundary value problems 
of order 2. A boundary value problem of order 2 is said to be non linear boundary value 
problem of order 2 if the differential equation is non-linear. 

 
The boundary value problem 𝑥′′ + |𝑥| = 0; 𝑥(0) = 0 = 𝑥(𝜋); 0 ≤ 𝑡 ≤ 𝜋 is nonlinear 
boundary value problem of order 2. Here the non linearity in this equation is due to 
𝑓(𝑥) = |𝑥|. 

 
Example 13.1.1: Find the eigen values and the corresponding eigen functions of 𝑋′′ +
𝜆𝑋 = 0 when 𝑋(0) = 0and 𝑋′(𝐿) = 0. 

Solution: The given equation is 𝑋′′ + 𝜆𝑋 = 0      (13.1.3) 

And the boundary conditions are 𝑋(0) = 0and 𝑋′(𝐿) = 0. 

Case I𝜆 = 0 

Equation (13.1.3) becomes𝑋′′ = 0 which gives 𝑋(𝑡) = 𝐴𝑡 + 𝐵   ⇒  𝑋′(𝑡)=A . 

Using boundary conditions 0 = 𝑋(0) = 𝐵; 0 = 𝑋′(𝐿) = 𝐴 ⇒ 𝐴 = 𝐵 = 0. 

∴ 𝑋(𝑡) = 0   ⇒ 𝜆 = 0  gives the trivial solution. 

⇒ 𝜆is not the eigen value and there is no eigen function corresponding to 𝜆 = 0. 

Case II𝜆 = −𝑣𝑒say 𝜆 = −𝜇2 (𝜇 ≠ 0). 

In this case equation (13.1.3) becomes 𝑋′′ − 𝜇2𝑋 = 0. 

⇒ 𝑋(𝑡) = 𝐴𝑒𝜇𝑡 + 𝐵𝑒−𝜇𝑡 

and 𝑋′(𝑡) = 𝐴𝜇𝑒𝜇𝑡 − 𝐵𝜇𝑒−𝜇𝑡. 

Using boundary conditions, we follow 

0 = 𝑋(0) = 𝐴 + 𝐵and 0 = 𝑋′(𝐿) = 𝐴𝜇𝑒𝜇𝐿 − 𝐵𝜇𝑒−𝜇𝐿. 

⇒ 𝐴 + 𝐵 = 0or𝐵 = −𝐴 ⇒ 𝐴𝜇(𝑒𝜇𝐿 + 𝑒−𝜇𝐿) = 0 ∴ 𝐴 = 0, 𝐵 = 0 . 

It again gives the trivial solution 𝑋(𝑡) = 0 . 

There is no eigen function when 𝜆 < 0. 

Case III𝜆 = +𝑣𝑒say 𝜆 = 𝜇2 (𝜇 ≠ 0). 

In this case equation (13.1.3) becomes 𝑋′′ + 𝜇2𝑋 = 0 whose solution is  

𝑋(𝑡) = 𝐴 𝑐𝑜𝑠 𝜇𝑡 + 𝐵 sin 𝜇𝑡    ⇒ 𝑋′(𝑡) = −𝐴𝜇 sin 𝜇𝑡 + 𝐵𝜇 cos 𝜇𝑡. 

Using initial conditions, we get 0 = 𝑋(0) = 𝐴; 0 = 𝑋′(𝐿) = 𝐵𝜇 cos 𝜇𝐿 

⇒ 𝐴 = 0and ⇒ 𝐵𝑐𝑜𝑠 𝜇𝐿 = 0. 

⇒ 𝐸𝑖𝑡ℎ𝑒𝑟 𝐴 = 0, 𝐵 = 0or𝐴 = 0, cos 𝜇𝐿 = 0 
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𝐴 = 0, 𝐵 = 0there exist no eigen function. 

Let us deal with the subcase 𝐵 ≠ 0 which gives 

cos 𝜇𝐿 = 0or𝜇𝐿 =
1

2
(2𝑛 − 1)𝜋 

or𝜇 =
(2𝑛−1)𝜋

2𝐿
 for 𝑛 = 1,2,3, … .. 

Using 𝐴 = 0, solution becomes 𝑋(𝑡) = 𝐵𝑠𝑖𝑛
(2𝑛−1)𝜋

2𝐿
𝑡 

Or 𝑋(𝑡) = 𝑠𝑖𝑛
(2𝑛−1)𝜋

2𝐿
𝑡 (Taking B=1) for 𝑛 = 1,2,3, … .. 

are eigen functions and the corresponding eigen values are 

 

𝜆 = 𝜇2 =
(2𝑛 − 1)2𝜋2

4𝐿2  

where𝑛 = 1,2,3, … … 

 
Example 13.1.2: Find the eigen values and the corresponding eigen functions of 𝑋′′ +
𝜆𝑋 = 0 when 𝑋′(0) = 0and 𝑋′(𝐿) = 0. 

Solution: Sturm Liouville’s Problem is to solve 𝑋′′ + 𝜆𝑋 = 0   …..(13.1.4) 

when boundary conditions are 𝑋′(0) = 0 and 𝑋′(𝐿) = 0. 

Case I𝜆 = 0 

Equation (13.1.4) becomes  𝑋′′ = 0 which gives 𝑋(𝑡) = 𝐴𝑡 + 𝐵   ⇒  𝑋′(𝑡)=A . 

Using boundary conditions 0 = 𝑋′(0) = 𝐴;  𝑎𝑛𝑑 𝐵 is arbitrary. 

Taking 𝐵 = 1 we get  

∴ 𝑋(𝑡) = 1  which is the nontrivial solution. 

⇒ 𝑋(𝑡) = 1  is an eigen function and 𝜆 = 0  is the eigen value. 

Case II 𝜆 = −𝑣𝑒say 𝜆 = −𝜇2 (𝜇 ≠ 0). 

In this case equation (13.1.4) becomes 𝑋′′ − 𝜇2𝑋 = 0. 

⇒ 𝑋(𝑡) = 𝐴𝑒𝜇𝑡 + 𝐵𝑒−𝜇𝑡 

and  hence𝑋′(𝑡) = 𝐴𝜇𝑒𝜇𝑡 − 𝐵𝜇𝑒−𝜇𝑡. 

Using boundary conditions, we follow 

0 = 𝑋′(0) = 𝐴 − 𝐵and 0 = 𝑋′(𝐿) = 𝐴𝜇𝑒𝜇𝐿 − 𝐵𝜇𝑒−𝜇𝐿. 

⇒ 𝐴 = 𝐵and𝐴𝜇(𝑒𝜇𝐿 − 𝑒−𝜇𝐿) = 0 ∴ 𝐴 = 0 𝑎𝑠 𝜇 ≠ 0. 

𝐴 = 0gives  𝐵 = 0. 

∴ 𝑋(𝑡) = 0 which is trivial solution . 

Case III𝜆 = +𝑣𝑒say 𝜆 = 𝜇2 (𝜇 ≠ 0). 

In this case equation (13.1.4) becomes 𝑋′′ + 𝜇2𝑋 = 0 whose solution is  

𝑋(𝑡) = 𝐴 𝑐𝑜𝑠 𝜇𝑡 + 𝐵 sin 𝜇𝑡    ⇒ 𝑋′(𝑡) = −𝐴𝜇 sin 𝜇𝑡 + 𝐵𝜇 cos 𝜇𝑡. 

Using boundary conditions, we get 0 = 𝑋′(0) = 𝐵𝜇;  0 = 𝑋′(𝐿) = −𝐴𝜇 sin 𝜇𝐿 + 𝐵𝜇 cos 𝜇𝐿 

⇒ 𝐵 = 0as𝜇 ≠ 0and ⇒ 𝐴𝑠𝑖𝑛 𝜇𝐿 = 0. 

⇒ 𝐵 = 0    𝑎𝑛𝑑     𝐸𝑖𝑡ℎ𝑒𝑟 𝐴 = 0 orsin 𝜇𝐿 = 0 

 𝐴 = 0, 𝐵 = 0 or𝐵 = 0, sin 𝜇𝐿 = 0. 

𝐴 = 0, 𝐵 = 0 gives𝑋(𝑡) = 0 is the trivial solution. 

and𝐵 = 0, sin 𝜇𝐿 = 0 gives 𝜇𝐿 = 𝑛𝜋 for 𝑛 = 1,2,3, … .. 

𝐴is arbitrary, let 𝐴 = 1.  
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∴ 𝑋(𝑡) = 𝑐𝑜𝑠
𝑛𝜋

𝐿
𝑡for𝑛 = 1,2,3, … .. 

are eigen functions and the corresponding eigen values are 

𝜆 = 𝜇2 =
𝑛2𝜋2

𝐿2
for𝑛 = 1,2,3, … .. 

 
Example 13.1.3: Find all the eigen values and eigen functions of the Sturm Lioville’s 
problem  of𝑋′′ + 𝜆𝑋 = 0 with 𝑋(0) + 𝑋′(0) = 0 and 𝑋(1) + 𝑋′(1) = 0. 

Solution: Given 𝑋′′ + 𝜆𝑋 = 0        (13.1.5) 

With the boundary conditions are  

𝑋(0) + 𝑋′(0) = 0         (13.1.6) 

and 𝑋(1) + 𝑋′(1) = 0.        (13.1.7) 

Case IWhen𝜆 = 0, our equation (13.1.5) becomes 𝑋′′ = 0 whose solution is given by 𝑋(𝑡) = 𝐴𝑡 + 𝐵 
and hence 𝑋′(𝑡) = 𝐴  ⇒        𝑋(𝑡) + 𝑋′(𝑡) = 𝐴 + 𝐴𝑡 + 𝐵. 

Using boundary conditions (13.1.6), we find 

0 = 𝑋(0) + 𝑋′(0) = 𝐴 + 𝐵 ⇒   𝐴 + 𝐵 = 0. 

Using boundary conditions (13.1.7), we find 

0 = 𝑋(1) + 𝑋′(1) = 2𝐴 + 𝐵 ⇒   2𝐴 + 𝐵 = 0. 

Now 𝐴 + 𝐵 = 0; ⇒   2𝐴 + 𝐵 = 0 gives ⇒   𝐴 = 𝐵 = 0 and solution becomes 𝑋(𝑡) = 0, the trivial 
solution ⇒ 𝜆 = 0 is not the eigen value. 

Case II   When𝜆 < 0, let 𝜆 = −𝜇2 where 𝜇 ≠ 0.  

In this case, our equation (13.1.5) becomes 𝑋′′ − 𝜇2𝑋 = 0 whose solution is given by 𝑋(𝑡) = 𝐴𝑒𝜇𝑡 +
𝐵𝑒−𝜇𝑡 and hence 𝑋′(𝑡) = 𝐴𝜇𝑒𝜇𝑡 − 𝐵𝜇𝑒−𝜇𝑡  ⇒        𝑋(𝑡) = 𝑋′(𝑡) = 𝐴(1 + 𝜇)𝑒𝜇𝑡 + 𝐵(1 − 𝜇)𝑒−𝜇𝑡. 

Using boundary conditions (13.1.6), we find 

0 = 𝑋(0) + 𝑋′(0) = 𝐴(1 + 𝜇) + 𝐵(1 − 𝜇)      (13.1.8) 

And using boundary conditions (13.1.7), we find 

0 = 𝑋(1) + 𝑋′(1) = 𝐴(1 + 𝜇)𝑒𝜇 + 𝐵(1 − 𝜇)𝑒−𝜇     (13.1.9) 

For nontrivial solution of (13.1.8) and (13.1.9), we have 

 

|
1 + 𝜇 1 − 𝜇

(1 + 𝜇)𝑒𝜇 (1 − 𝜇)𝑒−𝜇| = 0 ⇒ (1 + 𝜇)(1 − 𝜇)(𝑒−𝜇 − 𝑒𝜇) = 0 ⇒ 𝜇 = 1, −1. 

𝜇 = 1gives2𝐴 = 0 (𝑓𝑟𝑜𝑚 (13.1.8)) ∴ 𝐴 = 0 while 𝐵 is arbitrary. 

∴ Solution becomes 𝑋(𝑡) = 𝐵𝑒 − 𝑡 which is eigen corresponding to eigen value 𝜆 = −𝜇2 = −1. 

𝜇 = 1gives𝐵 = 0 (𝑓𝑟𝑜𝑚 (13.1.8)) while A is arbitrary and 𝑋(𝑡) = 𝐴𝑒−𝑡 is eigen function and 

corresponding eigen value is 𝜆 = −𝜇2 = −(−1)2 = −1. 

Hence, taking 𝐴 = 𝐵 = 1,we follow 𝑋(𝑡) = 𝑒−𝑡 is an eigen function and corresponding eigen values 
is -1. 

Case III𝜆 > 0, let 𝜆 = 𝜇2where 𝜇 ≠ 0. 

In this case equation (13.1.5) becomes 𝑋′′ + 𝜇2𝑋 = 0 whose solution is given by 

𝑋(𝑡) = 𝐴 cos 𝜇𝑡 + 𝐵𝑠𝑖𝑛 𝜇𝑡 and hence 𝑋′(𝑡) = −𝐴𝜇 sin 𝜇𝑡 + 𝐵𝜇 cos 𝜇𝑡 

⇒ 𝑋(𝑡) + 𝑋′(𝑡) = (𝐴 + 𝐵𝜇)𝑐𝑜𝑠𝜇𝑡 + (𝐵 − 𝐴𝜇) sin 𝜇𝑡 

Boundary condition (13.1.6) gives 

0 = 𝑋(0) + 𝑋′(0) = 𝐴 + 𝐵𝜇        (13.1.10) 

Boundary condition (13.1.7) gives 

0 = 𝑋(1) + 𝑋′(1) = (𝐴 + 𝐵𝜇) cos 𝜇 + (𝐵 − 𝐴𝜇) sin 𝜇     (13.1.11) 

From (13.1.10) 𝐴 = −𝐵𝜇 using it in (13.1.11), we get  
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𝐵(1 + 𝜇2) sin 𝜇 = 0  𝑜𝑟 𝐵𝑠𝑖𝑛 𝜇 = 0as 𝜇2 + 1 ≠ 0. 

⇒ 𝐵 = 0 or𝑆𝑖𝑛 𝜇 = 0 ⇒ 𝐵 = 0 gives 𝐴 = 0 (from (13.1.6)).  

𝐴 = 𝐵 = 0gives the trivial solution 𝑦(𝑥) = 0 

sin 𝜇 = 0gives𝜇 = 𝑛𝜋  for 𝑛 = 1,2,3, … …. 

𝐴 = −𝐵𝜇 ⇒ 𝐴 = −𝐵𝑛𝜋and hence 𝑋(𝑡) = −𝐵𝑛𝜋 cos 𝑛𝜋𝑡 + 𝐵 sin 𝑛𝜋𝑡 

or𝑥(𝑡) = 𝐵(sin 𝑛𝜋𝑡 − 𝑛𝜋 cos 𝑛𝜋𝑡) for 𝑛 = 1,2,3, … …. 

Taking 𝐵 = 1, Eigen function are 

𝑋(𝑡) = sin 𝑛𝜋𝑡 − 𝑛𝜋 cos 𝑛𝜋𝑡for𝑛 = 1,2,3, … …. 

and the corresponding eigen value are 

𝜆 = 𝜇2 = 𝑛2𝜋2for𝑛 = 1,2,3, … …. 

 

13.2 Oscillation Theory 

When the solution of the differential equation cannot be found explicitly, we have to resort to the 
study of qualitative properties of its solutions. One such qualitative property, which has wide 
applications, is the oscillation of solutions. 

In this chapter, we shall study the oscillation properties of solutions of linear differential equations  
of order two, but the theory developed hold good for linear differential equation of order higher 
than two. Since every linear differential equation of order two can be put in self –adjoint form, it 
suffices to study the oscillation properties of solution of self-adjoint linear differential equations of 
order two of the form  

[𝑟(𝑡)𝑥′]′ + 𝑝(𝑡)𝑥 = 0        (13.2.1) 

Where 𝑟, 𝑟′and 𝑝 are continuous functions and 𝑟(𝑡) > 0 on the interval 𝐼 = [0, ∞). We observe that 
identically zero function 𝑥(𝑡) ≡ 0on 𝐼, is solution of equation (13.2.1). This solution is known as 
trivial (or zero) solution and any other solution 𝑥(𝑡) ≠ 0 is known as nontrivial solution of equation 
(13.2.1). In this chapter, a solution 𝑥 of a equation (13.2.1) means a nontrivial solution, unless it is 
mentioned otherwise.  

A point 𝑡∗ ≥ 0 is called a zero of solution 𝑥(𝑡) of equation (13.2.1) if 𝑥(𝑡∗) = 0. A solution of 
equation (13.2.1) is called an oscillation (or oscillatory) if it has infinitely many zero in the interval 
[0, ∞ ). Equation (13.2.1) is called oscillatory, if every solution of it is an oscillation.  

 
Example 13.2.1:The functions 𝑥1(𝑡) = 𝑠𝑖𝑛𝑡 and 𝑥2(𝑡) = 𝑐𝑜𝑠𝑡 are non trivial solution of  

𝑥′′ + 𝑥 = 0, which vanish infinitely often on the interval[0, ∞). Hence, 𝑠𝑖𝑛𝑡 and 𝑐𝑜𝑠𝑡 are 
oscillations of 𝑥′′ + 𝑥 = 0. Since any solution of 𝑥′′ + 𝑥 = 0 is a linear combination of 
𝑠𝑖𝑛𝑡and 𝑐𝑜𝑠𝑡, all the solutions of 𝑥′′ + 𝑥 = 0 vanishes infinitely often on the interval 
[0, ∞). Hence, of 𝑥′′ + 𝑥 = 0 is oscillation on the interval [0, ∞). 

13.3 Number of Zeros in a Finite Interval 

Theorem 13.3.1: If a solution𝑥of equation (13.2.1) vanishes infinitely often on 𝐼, then thee exists a 
finite subinterval of 𝐼, on which 𝑥 vanishes identically. 

Proof: Let 𝑥 be solution of (13.2.1) with infinitely many zeros in 𝐼. By Bolzano-Weierstrass theorem, 
there is a limit point 𝑡∗ in 𝐼 for the set of zero of 𝑥. Since 𝑡∗is a limit point for the set of zeros of 𝑥, 
there is a sequence {𝑡𝑛} of zero of 𝑥 such that 𝑡𝑛 → 𝑡∗. This means that, for given 𝜀 > 0,  we can find 
an N such that 𝑛 > 𝑁 ⇒ |𝑡𝑛 − 𝑡∗| < 𝜀. That is, for all 𝑛 > 𝑁, we have 

𝑡∗ − 𝜀 < 𝑡𝑛 < 𝑡∗ + 𝜀. 

This shows that there is a finite subinterval of 𝐼 containing infinitely many zeros of 𝑥. 

Further, since 𝑥 is continuous function of 𝑡, we must have  

lim
𝑡→𝑡∗

𝑥(𝑡) = 𝑥(𝑡∗) 

Hence, if t → t∗ through the sequence {tn} of zeros of x, we must have 

𝑥(𝑡∗)= lim
𝑡→𝑡∗

𝑥(𝑡𝑛) = 0 
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This shows that t∗is a zero of x. That is, any limit point of set of zeros of x is a zero of x. Since each 
point in the interval (x∗ − 𝜀, x∗ + 𝜀) is a limit point for the set of zeros of x we must have x(t) ≡ 0, 
identically on (x∗ − 𝜀, x∗ + 𝜀). This shows that there is a finite subinterval of 𝐼 on which 𝑥 vanishes 
identically. 

 

 

 

Remarks 13.3.2: A consequence of Theorem 13.3.1 is that any finite subinterval of 𝐼 
contains at most a finite number of zeros of a solution 𝑥 of equation (13.2.1) unless 𝑥(𝑡) ≡
0, identically on that subinterval of 𝐼. 

Remarks 13.3.3: If a solution x of equation (13.2.1) has infinitely many zeros in 𝐼 and if nth 

derivative x(n) of x exists and continuous on 𝐼, then there is a point 𝑡∗in 𝐼 satisfying  

x(k)(t∗) = 0, 𝑘 = 0,1,2, … … . , 𝑛. 

Proof: Let x be a solution of equation (13.2.1) with infinitely many zeros in 𝐼. Let 𝑡∗ be a limit point 
for the set of zeros of x. Let {tn} be a sequence of zeros of x such that tn → 𝑡∗. Since x is continuous 
on 𝐼we must have  

lim
𝑡→𝑡∗

𝑥(𝑡) = 𝑥(𝑡∗). 

Letting t → 𝑡∗ through the sequence {tn} of zeros of x, we find that  

𝑥(𝑡∗) = lim
𝑡→𝑡∗

𝑥(𝑡𝑛) = 0 

Again, since 𝑥′ is continuous on 𝐼, we have 

𝑥′(𝑡∗) = lim
𝑡𝑛→𝑡∗

𝑥(𝑡𝑛) − 𝑥(𝑡∗)

𝑡𝑛 − 𝑡∗ =
0 − 0

𝑡𝑛 − 𝑡∗ = 0. 

 

In the same way, it can be shown that  

x(k)(t∗) = 0, 𝑘 = 0,1,2, … … . , 𝑛. 

Theorem 13.3.4: The zeros of any nontrivial solution of equation (13.2.1) are isolated.  

Proof: Let x be a nontrivial solution of equation (13.2.1). Let t = t0 be a zero of 𝑥, that is, 𝑥(𝑡0) = 0. 
Then 𝑥′(𝑡) ≠ 0 on the interval (𝑡0 − 𝜀, 𝑡0 + 𝜀) for some 𝜀 > 0, otherwise, 𝑥(𝑡) = 0 on [0, ∞), a 
contradiction to the fact that 𝑥 is a nontrivial solution of equation (13.2.1). 

There arise two cases: 

Case I  𝑥′(𝑡0) > 0 

Since 𝑥′ is continuous and positive at 𝑡 = 𝑡0, it follow that the function  𝑥 is strictly increasing in 
some neighbourhood of 𝑡0, which means that  𝑡 = 𝑡0, is the only zero of 𝑥 in that neighborhood. 
This shows that 𝑡 = 𝑡0 is an isolated zero of 𝑥. 

Case II  𝑥′(𝑡0) < 0 

Since 𝑥′ is continuous and negative at 𝑡 = 𝑡0, it follow that the function  𝑥 is strictly decreasing in 
some neighbourhood of 𝑡0, which means that  𝑡 = 𝑡0, is the only zero of 𝑥 in that neighborhood. 
This shows that 𝑡 = 𝑡0 is an isolated zero of 𝑥. 

 

Summary 

• The Sturm boundary value problem discussed. 

• The eigen value and eigen function are determined for boundary value problem. 

• The zeros of solutions of self adjoint equation is discussed.  

• The trivial and nontrivial solutions are explained. 

The oscillatory behaviour of second order differential equation elaborated with examples.  

Keywords 

• Boundary value problem 

• Zeros of solution 
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Self Assessment 

1. 
tnu )1sin( +=

 be the solution of 
0)()0(,0'' ===+  uuuu

if  

A. 
2)1( += n

for n = 0, 1, 2……. 

B. 
2)1( −= n

for n = 0, 1, 2……. 

C. 
)1( += n

for n = 0, 1, 2……. 

D. 
)1( −= n

for n = 0, 1, 2……. 

 

2. The eigen value of 0)(')0(,0'' ===+ LXXXX   are 

A. 
,......3,2,1,4/)12( 222 =− nwhereLn 

 

B. 
,......3,2,1,4/)12( 222 =+ nwhereLn 

 

C. 
,......3,2,1,4/)1( 222 =− nwhereLn 

 

D. None of these 

3. The non-trivial solutions of Sturm Liouville Boundary Value Problem are called 

A. Particular function 

B. General function 

C. Eigen function 

D. None of these 

 

4. The value of the parameter for which the function exists as solution of boundary value 

problem is called 

A. Constant value 

B. Particular value 

C. Eigen value 

D. None of these 

 

5. A boundary value problem of order of 2 is said to be non-linear if the differential equation 

is 

A. Linear 

B. Non-linear 

C. Constant 

D. None of these 

 

6. The eigen function for the boundary value problem 

0)(')0(,0'' ===+ LXXXX   is 
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A. 

.,.........3,2,1cos)( == nfort
L

n
tX



 

B. 

.,.........3,2,1sin)( == nfort
L

n
tX



 

C. 

.,.........3,2,1cos)( == nfort
L

n
ectX



 

D. None of these 

 

7. The eigen function for the boundary value problem 

0)(')0(,0'' ===+ LXXXX   is 

A. 
.,.........3,2,1cos)( == nfort

L

n
tX



 

B. 
.,.........3,2,1sin)( == nfort

L

n
tX



 

C. 

.,.........3,2,1cos)( == nfort
L

n
ectX



 

D. None of these 

8. The zeros of any nontrivial solution of equation [𝒓(𝒙)𝒚′]′ + 𝒑(𝒙)𝒚 = 𝟎 are 

A. Isolated  

B. Non-isolated 

C. Constant 

D. None of these 

 

9. The solution  𝒚(𝒙) ≠ 𝟎 of [𝒓(𝒙)𝒚′]′ + 𝒑(𝒙)𝒚 = 𝟎 is known as  

A. Trivial solution 

B. Non trivial solution 

C. Constant  

D. None of these 

 

10. A solution of equation [𝒓(𝒙)𝒚′]′ + 𝒑(𝒙)𝒚 = 𝟎 is called oscillatory if  

A. It has infinitely many zeros  

B. It has finitely many zeros 

C. No zero 

D. None of these 

 

11. The solution  𝒚(𝒙) of [𝒓(𝒙)𝒚′]′ + 𝒑(𝒙)𝒚 = 𝟎 vanishes infinitely often on I, then  

A. There exists finite subinterval on which y vanishes identically 

B. There exists infinite subinterval on which y vanishes identically  

C. No subinterval on which y vanishes identically 

D. None of these 
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12. The non-trivial solution of 𝒙′′ + 𝝓(𝒕)𝒙 = 𝟎 are oscillatory if 

A. 𝜙(𝑡) ≤ 𝑚2for all t. 

B. 𝜙(𝑡) ≥ 𝑚2for all t. 

C. 𝜙(𝑡) = 𝑚2 = 0for all t. 

D. None of these 

 

13. The equation 𝒙′′ + 𝒙 = 𝟎 is  

A. Oscillatory 

B. Non –oscillatory 

C. Nonlinear 

D. None of these 

 

14. The equation 𝒙′′ − 𝟗𝒙 = 𝟎 is  

A. Oscillatory 

B. Linear 

C. Nonlinear 

D. None of these 

 

15. A point 𝒕 = 𝒕∗ ≥ 𝟎 is called zero of a solution 𝒙 of the equation 𝒙′′ = 𝒇(𝒕, 𝒙, 𝒙′), 𝒕 ≥ 𝟎 if  

A. 𝑥(𝑡∗) < 0  

B. 𝑥(𝑡∗) > 0  

C. 𝑥(𝑡∗) = 0  

D. None of these  

 

Answers for  Self Assessment 

1. A 2. A 3. C 4. C 5. B 

6. A 7. A 8. A 9. B 10. A 

11. A 12. B 13. A 14. B 15. C 

 

Review Questions 

1. Consider the equation 𝑥′′ + 𝜆𝑥 = 0, 0 ≤ 𝑥 ≤ 𝜋. 

Find the eigenvalues and eigenfunctions in the following form 

(i) 𝑥′(0) = 𝑥′(𝜋) = 0. 

(ii) 𝑥(0) = 𝑥(𝜋) = 0. 

(iii) 𝑥(0) = 𝑥′(𝜋) = 0 

(iv) 𝑥′(0) = 𝑥(𝜋) = 0  

2. Prove that the non-trivial solution of 𝑥′′ + [1 = 𝑓(𝑡)]𝑥 = 0, where lim
𝑡→∞

𝑓(𝑡) = 0 are 

oscillatory. 

3. If lim
𝑡→∞

𝑎(𝑡) = ∞monotonically, then prove that all the non-trivial solution of 𝑥′′ + 𝑎(𝑡)𝑥 = 0 

are oscillatory. 
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Objective  

After studying this unit, you will be able to 

• identify the concept of non-oscillatory solutions.  

• understand about zeros of solutions. 

• know about the disconjugate property. 

• determine about principal solutions of non –oscillatory equations. 

 

Introduction 

In this chapter, more behavior about the oscillatory and non-oscillatory equations with principal 

solutions will be discussed.  

 

14.1 Non-Oscillatory Equations 

An equation 𝑥′′ + 𝑎(𝑡)𝑥 = 0       (14.1.1) 

Where 𝑎(𝑡) is a real valued continuous function on 𝑡0 ≤ 𝑡 < ∞, is called non oscillatory if all the 
nontrivial solutions of (14.1.1) has at most a finite number of zeros on 𝑡0 ≤ 𝑡 < ∞. On other hand, if 

all the non-trivial solutions of (14.1.1) have an infinite number of zeros on 𝑡0 ≤ 𝑡 < ∞. In this case, 

the non-trivial solutions are called oscillatory solutions. 

 

The differential equation𝑥′′′ − 𝑥′′ + 11𝑥′ − 4𝑥 = 0 is non-oscillatory because its one non 

trivial solution 𝑒𝑡 has no zero in any interval 𝑡0 ≤ 𝑡 < ∞. 

Theorem 14.1.1: let 𝑥(𝑡) be a solution of (14.1.1) existing on (0, ∞). If 𝑎(𝑡) < 0on (0, ∞), then 𝑥(𝑡) 

has at most one zero. 

Proof: Let 𝑡0 be a zero of 𝑥(𝑡). It is clear that 𝑥′(𝑡0) is not zero for 𝑥(𝑡) ≠ 0. Without loss of 
generality it may be assumed that 𝑥′(𝑡0) > 0 so that 𝑥(𝑡) is positive in some interval to right of 𝑡0. 

Now 𝑎(𝑡) < 0 implies that 𝑥′′ is positive on the same interval in which in turn implies that 𝑥′ is an 

increasing function, and so, 𝑥 does not vanish to right of 𝑡0. A similar argument shows that 𝑥 has no 

zero to the left of 𝑡0. Thus 𝑥 has at most one zero. 

115

Dr. Preety Kalra, Lovely Professional University



Theory of Differential Equations  

 LOVELY PROFESSIONAL UNIVERSITY   

Notes 

 

Remark: 14.1.2: Theorem 14.1.1 can also be seen as a corollary of Sturm’s Comparison 

theorem. Consider the equation 𝑥′′ = 0. It is known that any nonzero constant function 

𝑥(𝑡) = 𝑘 is a solution. Thus, if this equation is compared with the Equation (14.1.1) 
(observed that all the hypothesis of Sturm Comparison theorem are satisfied) then 𝑥(𝑡) 

vanishes at most once, for otherwise 𝑥(𝑡) vanishes twice and 𝑥(𝑡) necessarily vanishes at 

least once by Sturm Comparison theorem. So 𝑥(𝑡) canot have more than one zero. 

 

From Theorem 14.1.1 the question arises, if 𝑎(𝑡) > 0 on (0, ∞) is the equation (14.1.1) 

oscillatory? 

Theorem 14.1.3: Let 𝑎(𝑡) be continuous and positive on (0, ∞) with  

∫ 𝑎(𝑠)𝑑𝑠
∞

1 = ∞.         (14.1.2) 

Also assume that 𝑥(𝑡) is any solution of (14.1.1) existing for(𝑡) ≥ 0. Then, 𝑥(𝑡) has infinite zeros in 
(0, ∞). 

Proof: Assume, on the contrary, that 𝑥(𝑡) has only a finite number of zeros in (0, ∞). Then there 

exists a point 𝑡0 > 1 such that 𝑥(𝑡) does not vanish on [𝑡0, ∞). 

 

Without loss of generality it can be assumed that 𝑥(𝑡) > 0 for all 𝑡 ≥ 𝑡0. Thus,  

𝑣(𝑡) = +
𝑥′(𝑡)

𝑥(𝑡)
, 𝑡 ≥ 𝑡0 

is well defined. It now follow that  

𝑣′(𝑡) = −𝑎(𝑡) − 𝑣2(𝑡). 

Integration of the above leads to  

𝑣(𝑡) − 𝑣(𝑡0) = − ∫ 𝑎(𝑠)
𝑡

𝑡0

𝑑𝑠 − ∫ 𝑣2(𝑠)𝑑𝑠
𝑡

𝑡0

. 

The condition (14.1.2) now implies that there exists two constants 𝐴 𝑎𝑛𝑑 𝑇 such that 𝑣(𝑡) < 𝐴(< 0) if 

𝑡 ≥ 𝑇 since 𝑣2(𝑡) is always non-negative and 

𝑣(𝑡) < 𝑣(𝑡0) − ∫ 𝑎(𝑠)𝑑𝑠.
𝑡

𝑡0

 

This means that 𝑥′(𝑡) is negative for large t. Let 𝑇 ≥ 𝑡0 be so large that 𝑥′(𝑇) < 0. Then on 
[𝑇, ∞], notice that 𝑥(𝑡) > 0, 𝑥′(𝑡) < 0 and 𝑥′′(𝑡) < 0. But  

∫ 𝑥′′(𝑠)𝑑𝑠 = 𝑥′(𝑡) − 𝑥′(𝑇).
𝑡

𝑇
 

Integrating once again it is seen that  

𝑥(𝑡) − 𝑥(𝑇) = 𝑥′(𝑇)(𝑡 − 𝑇), 𝑡 ≥ 𝑇 ≥ 𝑡0.      (14.1.3) 

Since 𝑥′(𝑇) is negative, the right hand side of (14.1.3) tens to −∞ ans 𝑡 → ∞ while the left hand side 

of (14.1.3) either tends to finite limit (because 𝑥(𝑡) is finite) or tends to +∞ (in case 𝑥(𝑡) → ∞, as 𝑡 →
∞). Thus, in either case a contradiction is reached. So the assumption that 𝑥(𝑡) has a finite number 

of zero in (0, ∞) is false. Hence 𝑥(𝑡) has finite number of zeros in (0, ∞), which completes the proof. 

Theorem 14.1.4: If all non-trivial solutions of (14.1.1) are oscillatory and 𝑏(𝑡) is continuous with 

𝑏(𝑡) > 𝑎(𝑡) on 𝑡0 ≤ 𝑡 < ∞, then all the nontrivial solutions of  

𝑦′′ + 𝑏(𝑡)𝑦 = 0         (14.1.4) 

are oscillatory. On the other hand if some of the trivial solutions of (14.1.4) are non-oscillatory and   

𝑏(𝑡) ≥ 𝑎(𝑡), then some non-trivial solutions of (14.1.1) must be non-oscillatory. 

Proof: Let 𝑥(𝑡) and 𝑦(𝑡) be non-trivial solution of (14.1.1) and (14.1.4) respectively. Also suppose 
𝑥(𝑡) is an oscillatory solution of (14.1.1) and 𝑡1and 𝑡2 be any two consecutive zeros of  𝑥(𝑡), then by 

Sturm Comparison theorem there exists one zero 𝑡3 on y(t) between 𝑡1and 𝑡2. Also 𝑥(𝑡) is an 

oscillatory solution of (14.1.1). 
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⇒ 𝑥(𝑡)has infinite number of zeros on 𝑡0 ≤ 𝑡 < ∞. These two assertion implies that 𝑦(𝑡) has 

infinitely many zero on 𝑡0 ≤ 𝑡 < ∞.Hence 𝑦(𝑡) is oscillatory solution of (14.1.4) while 𝑥(𝑡) and 𝑦(𝑡) 

are arbitrary solutions of (14.1.1) and (14.1.4) respectively. This proves the first part of the theorem. 

For the second part, let 𝑦(𝑡) is non-oscillatory solution of (14.1.1), then 𝑦(𝑡) has finite number of 

zeros on 𝑡0 ≤ 𝑡 < ∞. But by Sturm Comparison theorem, we know that between any two 
consecutive zeros of 𝑥(𝑡) there exists a zero of 𝑦(𝑡). This implies that 𝑥(𝑡) has finite number of zero 

on 𝑡0 ≤ 𝑡 < ∞ i.e. 𝑥(𝑡) is non-oscillatory solution of (14.1.1). This proves the second part of the 

theorem.  

 

Example14.1.5: Show that non trivial solution of 𝑥′′ + [1 + 𝑓(𝑡)]𝑥 = 0, where lim
𝑡⟶∞

𝑓(𝑡) = 0 

are oscillatory or non-oscillatory. 

Proof: Given lim
𝑡⟶∞

𝑓(𝑡) = 0 this implies that for sufficiently large 𝑡0, we have  

|𝑓(𝑡)| ≤  𝜀 for all 𝑡 ≥ 𝑡0 

⇒ −𝜀 ≤ 𝑓(𝑡) ≤  𝜀 ⇒ 1 − 𝜀 ≤ 𝑓(𝑡) ≤  1 + 𝜀  

Choose  𝜀 =
1

2
, we get 1 + 𝑓(𝑡) ≥

1

2
  for all 𝑡 ≥ 𝑡_0. 

Note that all the solutions of the differential equation 𝑥′′ +
1

2
𝑥 = 0 be oscillatory. 

Thus by special case of Strum Comparison theorem, all the nontrivial solutions of 𝑥′′ + [1 +

𝑓(𝑡)]𝑥 = 0 must be oscillatory. 

 

14.2 Number of zeros 

Now we discuss the problems to determine the number of zero of a nontrivial solution of the 

general second order differential equation 

[𝑝(𝑡)𝑥′]′ + 𝑞(𝑡)𝑥 = 0        (14.2.1) 

Where 𝑝(𝑡) and 𝑞(𝑡)are continuous functions on some interval [a,b]. 

 

14.3 Prufer’s transformation 

Theorem 14.2.1: Let 𝑥(𝑡) be a non-trivial solution of the general second order differential equation 

(14.2.1) on [𝑎, 𝑏]. If we use the transformation  

𝜌2 = 𝑥2 + 𝑝2𝑥′2;𝜙 = tan−1 𝑥

𝑝𝑥′
       (14.2.2)  

Then the equation (14.2.1) reduces to  

𝜙′ =
1

𝑝(𝑡)
cos2 𝜙 + 𝑞(𝑡) sin2 𝜙       (14.2.3) 

𝜌′ = − (𝑞(𝑡) −
1

𝑝(𝑡)
)𝜌 𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙       (14.2.4) 

Proof: By simplifying relation (14.2.2), we get 

𝜌2 = 𝑥2 + 𝑥2 cot2 𝜙 ⟹ 𝑥 = 𝜌 sin 𝜙       (14.2.5) 

and 

𝑝𝑥′ = 𝑥𝑐𝑜𝑡 𝜙 ⟹ 𝑝𝑥′ = 𝜌 cos𝜙       (14.2.6) 

Now differentiating (14.2.2) with respect t, we get 

𝜙′ =
1

1 +
𝑥2

(𝑝𝑥′ )2

.
𝑝𝑥′2 − 𝑥(𝑝𝑥′)′

(𝑝𝑥′)2 =
𝑝𝑥′2 − 𝑥𝑞(𝑡)𝑥

(𝑝𝑥′)2 + 𝑥2  

=
𝑝𝑥′2 −𝑞(𝑡)𝑥2

𝜌2
, Using (14.2.1) and (14.2.2) 

=
1

𝑝(𝑡)
cos2 𝜙 + 𝑞(𝑡) sin2 𝜙, Using (14.2.5) and (14.2.6) 

and𝜌′ =
1

2

[2𝑥𝑥′ +2𝑝𝑥′ (𝑝𝑥′)′]

√𝑥2 +𝑝2𝑥′2
=

1

𝜌
[𝑥

𝜌

𝑝(𝑡)
cos 𝜙 − 𝜌 cos𝜙𝑞(𝑡) 𝑥]using (14.2.1) and (14.2.6) 

117



Theory of Differential Equations  

 LOVELY PROFESSIONAL UNIVERSITY   

Notes 

 

= − (𝑞(𝑡) −
1

𝑝(𝑡)
) 𝜌 𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙 

Hence the result gets proved. 

Theorem 14.2.2: Suppose in differential equation (14.2.1),𝑝(𝑡) > 0 and𝑞(𝑡) are continuous on [𝑎, 𝑏] 

and 𝑥(𝑡) is a non-trivial solution of (14.2.1). Also let 𝑥(𝑡) has exactly n zero at 

𝑡 = 𝑡1, 𝑡2, … … … , 𝑡𝑛 Where 𝑡1 < 𝑡2 < 𝑡3  … … … < 𝑡𝑛 on [a,b]. 

If 𝜙(𝑡) is a function defined by (14.2.1), then  

𝜙(𝑡𝑘) = 𝑘𝜋 and 𝜙(𝑡) {
> 𝑘𝜋  𝑖𝑓  𝑡𝑘 < 𝑡 ≤ 𝑏

< 𝑘𝜋  𝑖𝑓  𝑎 < 𝑡 ≤ 𝑡𝑘
 

Proof: If 𝑡 = 𝑡1 , 𝑡2, … … … , 𝑡𝑛 are the zeros of 𝑥(𝑡), then from 𝜙 = tan−1 𝑥

𝑝𝑥′
 

It follows that  

𝜙(𝑡) = 0 (𝑚𝑜𝑑 𝜋)at𝑡 = 𝑡𝑘(𝑘 = 1,2,3, … … … . . , 𝑛). 

Thus for these values of t, we have  

𝜙′ =
1

𝑝(𝑡)
> 0         (14.2.7) 

From continuity of 𝜙(𝑡), equation (14.2.7) implies that 𝜙(𝑡) is increasing in some neighbourhood of 

the points 𝑡 = 𝑡𝑘(𝑘 = 1,2,3, … … . , 𝑛). 

Hence if 𝜙(𝑡∗) ≥ 𝑛𝜋 for some 𝑡∗ ∈ [𝑎, 𝑏], it follows that 𝜙(𝑡) ≥ 𝑛𝜋 for all 𝑡 ∈ (𝑡∗, 𝑏]. 

Also if 𝜙(𝑡∗) ≤ 𝑛𝜋, then 𝜙(𝑡) ≤ 𝑛𝜋 for all 𝑡 ∈ [𝑎, 𝑡∗). This proves the theorem. 

 

14.4 Principal solutions 

A homogeneous, linear second order equation with real-valued coefficient functions defined on an 

interval J is said to be oscillatory on J if one (and/or every) real-valued solution (≠0) has infinitely 
many zeros on J. Conversely, when every solution (≠0)  has at most a finite number of zeros on J, it 

is said to be non-oscillatory on J. In the latter case, the equation is said to be disconjugate on J if 

every solution ((≠0)) has at most one zero on J. If (𝑡 = 𝜔)  is a (possibly infinite) endpoint of J which 
does not belong to (𝑡 = 𝜔)  , then the equation is said to be oscillatory at (𝑡 = 𝜔) if one (and/or 

every) real-valued solution (≠0) has an infinite sequence of zeros if one (and/or every) real-valued 

solution (≠0) has infinitely many zeros on J. Conversely, when every solution (≠0) has at most a 
finite number of zeros on J, it is said to be non-oscillatory on J. In the latter case, the equation is said 

to be disconjugate on J if every solution (≠0) has at most one zero on J. If (𝑡 = 𝜔)  is a (possibly 
infinite) endpoint of J which does not belong to J, then the equation is said to be oscillatory at (𝑡 =

𝜔)  if one (and/or every) real-valued solution (≠0) has an infinite sequence of zeros clustering at 𝑡 =

𝜔. Otherwise it is called non-oscillatory at 𝑡 = 𝜔. 

Theorem14.3.1: Let p(t)> 0, q(t) be real-valued, continuous functions on a t-interval J. Then 

[𝑝(𝑡)𝑥′]′ + 𝑞(𝑡)𝑥 = 0        (14.3.1) 

is disconjugate on J if and only if, for every pair of distinct points𝑡1, 𝑡2 ∈ 𝐽and arbitrary numbers 

𝑢1, 𝑢2 there exists a unique solution 𝑢 = 𝑢∗ (𝑡)𝑜𝑓 of (14.3.1) satisfying  

𝑢∗(𝑡1) = 𝑢1and𝑢∗(𝑡2) = 𝑢2;       (14.3.2) 

or, equivalently, if and only if every pair of linearly independent solutions 𝑢(𝑡)& 𝑣(𝑡)of (14.3.1) 

satisfy  

𝑢(𝑡1)𝑣(𝑡2) − 𝑢(𝑡2)𝑣(𝑡1) ≠ 0       (14.3.3) 

for distinct points 𝑡1 , 𝑡2 ∈ 𝐽. 

Proof: Let 𝑢(𝑡), 𝑣(𝑡)be a pair of linearly independent solutions of (14.3.1). Then any solution 𝑢∗(𝑡)) 

is of the form 𝑢∗ = 𝑐1 𝑢(𝑡) + 𝑐2𝑢(𝑡).This solution satisfies (14.3.2) if and only if 

𝑐1𝑢(𝑡1 ) + 𝑐2𝑣(𝑡1) = 𝑢1, 𝑐1𝑢(𝑡2) + 𝑐2𝑣(𝑡2) = 𝑢2. 

These linear equations for 𝑐1 , 𝑐2have a solution for all 𝑢, 𝑢2if and only if (14.3..3) holds. In addition, 

they have a solution for all 𝑢, 𝑢2if and only if the only solution of   
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𝑐1𝑢(𝑡1) + 𝑐2𝑣(𝑡1) = 0, 𝑐1𝑢(𝑡2) + 𝑐2𝑣(𝑡2) = 0 

is  𝑐1, = 𝑐2 = 0; i.e., if and only if the only solution u*(t) of (14.3.1) with two zeros 𝑡 = 𝑡1, 𝑡2is u*(t) = 

0. 

Definition 14.3.2: Let p(t) > 0, q(t) be real-valued and continuous on an interval J. Then(14.3.1) is 

non- oscillatory on J if and only if every pair of linearly independent solutions u(t) and v(t) of 

(14.3.1) satisfy 

∫
𝑑𝑡

𝑝(𝑡)(|𝑢|2 + |𝑣|2)
< ∞  

Furthermore, (14.3.1) is disconjugate on J if and only if 

 

|𝑐| ∫
𝑑𝑡

𝑝(𝑡)(𝑢2 + 𝑣2)
< 𝜋

𝑏

𝑎
 

 

for every pair of real-valued solutions u(t), v(t) satisfyingp(u′v —  uv′)  ≠ 0and every interval 
[𝑎, 𝑏] ⊂ 𝐽. 

If J is a half-open interval, say J = a ≤ t < 𝜔(≤ ω) and (14.3.1) is non-oscillatory at t = ω, then 

(14.3.1) has real-valued solutions u(t) for which∫ 𝑑𝑡/𝑝𝑢2∞

0  is convergent and solutions for which it is 

divergent. The latter type of solution will be called a principal solution of (14.3.1) at t = ω. 

Theorem 14.3.3: Let p(t) > 0, q(t) be real-valued and continuous on an interval J = a ≤ t < 𝜔(≤ ω). 

And such that (14.3.1) is non- oscillatory at  t = ω.then there exists a real-valued solution u = u0 (t) 

of (14.3.1)which is uniquely determined up to a constant factor by any  one of the following 
conditions in which u1 (𝑡)(0 denotes an arbitrary real-valued solution linearly independentof u0(t):  

 
(i) u0, u1  satisfy  

u0 (t)

u1(𝑡)
→ 0ast → ω       (14.3.4)  

(ii) u0, u1  satisfy  

∫
𝑑𝑡

𝑝(𝑡)𝑢0
2(𝑡)

< ∞ and|𝑐| ∫
𝑑𝑡

𝑝(𝑡)𝑢1
2(𝑡)

< ∞
𝑏

𝑎      (14.3.5) 

(iii) if  a𝑇 ∈ 𝐽 exceeds the largest zero, if any, ofu0 (t)and ifu1(T) ≠ 0 thenu1 (t) has no zero 

on T < 𝑡 < 𝜔  according as 

u1
′

𝑢1

<
𝑢0

′

𝑢0

or
u1

′

𝑢1

>
𝑢0

′

𝑢0

       (14.3.6) 

holds at 𝑡 = 𝑇; in particular (14.3.6) holds for all t ∈ J near 𝜔. 

It is understood that in (14.3.4) and (14.3.5) only t-values exceeding the largest zeros, if any,u0, 𝑢1 

are considered. A solution u0(𝑡) satisfying one (and/or) all of the conditions (i), (ii), (iii) will be 

called a principal solution of (14.3.1) (at t = ω ). A solution u(t) linearly independent of 𝑢0(𝑡) will be 
termed a nonprincipal solution of (6.1) (at t = ω). In view of (14.3.4), (14.3.5), the terms "principal" and 

"nonprincipal" might well be replaced by "small" and "large." The expressions "small," "large" will 

not be used in this context because of the relative nature of these terms. Consider, e.g., the. 

equations u" — u = 0, u" = 0 and at 𝑢′′ +
𝑢

4𝑡2
= 0 𝑓𝑜𝑟 𝑡 ≥ 1 . Examples of principal and nonprincipal 

solutions at att = ∞ for the first equation are u = e-tand u = et; for the second, u =1 and u = t; for 

the third  𝑢 = 𝑡
1

2and 𝑢 = 𝑡
1

2 log𝑡.  The proof of (ii) will lead to the following: 

Corollary 14.3.4: Assume the conditions of Theorem 14.3.2. Let𝑢 = 𝑢(𝑡) ≠ 0 be any real-valued 

solution of (14.3.1) and let t = T exceed its last zero. Then 

𝑢1(𝑡) = 𝑢(𝑡) ∫
𝑑𝑠

𝑝(𝑠)𝑢2(𝑠)

𝑡

𝑇         (14.3.7) 
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is a nonprincipal solution of (14.3.1) on  T ≤ t < 𝜔 . If, in addition, u(t) is anonprincipal solution of 

(14.3.1), then 

 

𝑢0(𝑡) = 𝑢(𝑡)  ∫
𝑑𝑠

𝑝(𝑠)𝑢2(𝑠)

𝜔

𝑡         (14.3.8) 

 

is a principal solution on T ≤ t < 𝜔. 

Proof of Theorem 14.3.3 and Corollary 14.3.4 

On (i).Let u(t), v(t) be a pair of real-valued linearly independent solutions of (14.3.1) such that 

𝑝(𝑢′𝑣 − 𝑢𝑣′) = 𝑐 ≠ 0.        (14.3.9) 

If 𝑇exceeds the largest zero, if any, of v(t), then (14.3.9) is equivalent to 

(
𝑢

𝑣
)

′

=
𝑐

𝑝𝑣2
≠ 0,          (14.3.10) 

for T ≤ t < 𝜔. Hence u/v is monotone on this t-range and so 

𝐶 = lim
𝑡→𝜔

𝑢(𝑡)

𝑣(𝑡)
         (14.3.11) 

Exists if 𝐶 = ±∞ =  is allowed. 

It will be shown that u, v can be chosen so that C = 0 in (14.3.11). If thisis granted and if u(t) is 
called𝑢0(𝑡), then (i) holds. In fact, a solution𝑢1(𝑡)is linearly independent of 𝑢0(𝑡) if and only if it is 

of the form 𝑢1(𝑡) = 𝑐0𝑢0(𝑡) + 𝑐1𝑣(𝑡)and 𝑐1 ≠ 0 in which case, C =0 implies that [𝐶1 + 𝑂(1)]𝑣(𝑡)  =

𝑐0𝑢(𝑡) + 𝑐1𝑣(𝑡) thus 𝑢0(𝑡) = 𝑂(𝑢1 ) as 𝑡 → 𝜔. 
If 𝐶 = ± ∞ in (14.3.11) and if u,v are interchanged, then (14.3.11) holdswith C = 0. If |𝐶| <  ∞ and if 

u(t) — Cv(t) is renamed u(t), then (14.3.9)still holds and (14.3.11) holds with C = 0. This proves (i). 

On (ii).Note that (14.3.10), (14.3.11) give 

 

𝐶 =
𝑢(𝑡)

𝑣(𝑡)
+ 𝑐 ∫

𝑑𝑠

𝑝(𝑠)𝑣2(𝑠)

∞

𝑇
 

Whether or not |C|= ∞ or |C| < ∞. If u, v is a pair 𝑢0, 𝑢1, so thatC = 0, then first part of (14.3.5)  
holds. If u, v is a pair 𝑢0, 𝑢1, so thatC = ±∞, then second part of (14.3.5)  holds. 

 

On Corollary 14.3.4: Note that if u(t) is a solution of (14.3.1) and u(t)≠ 0forT ≤ t < 𝜔, then (14.3.7) 
defines a solution 𝑢1(𝑡) linearly independent ofand that the same is true of (14.3.6) when the 

integral is convergent. 

On (iii). Since 𝑢0(𝑡), 𝑢1(𝑡)can be replaced by −𝑢0(𝑡), −𝑢1 (𝑡)respectively, without affecting the zeros 

of 𝑢1(𝑡)or the inequalities (14.3.6), it can be supposed that  

𝑢0(𝑡) > 0forT ≤ t < 𝜔 and 𝑢1 (𝑡) > 0.      (14.3.12) 

Multiplying (14.3.6) by 𝑢0(𝑇)𝑢1(𝑇) > 0 shows that the case (14.3.9), where (u, v) = (u1, v1) holds 

with c < 0 or c > 0 according as (14.3.6) holds.  

Hence 
𝑢1(𝑇)

𝑢0(𝑇)
→ ±∞ as 𝑡 → ∞according as (14.3.6) holds. Since 𝑢1(𝑇)/𝑢0(𝑇) >0 and, by the Sturm 

separation theorem, 𝑢1 has at most one zero on T < 𝑡 < 𝜔, the statement concerning the zeros of 

 𝑢1on T < 𝑡 < 𝜔  follows. 

It remains to show that property (iii) is characteristic of a principal solution; i.e., if  𝑢0(𝑡)has the 

property (iii) for every solution  𝑢1(𝑡)linearly independent of  𝑢0(𝑡), then 𝑢0(𝑡) is a principal 
solution. In particular (14.3.6) holds for 𝑡(∈ 𝐽)near 𝜔. Consequently  |𝑢0(𝑡)| ≤ 𝑐𝑜𝑛𝑠𝑡. |𝑢1(𝑡)| for 𝑡 →

𝜔.This is a contradiction if  𝑢0(𝑡)is not a principal solution and  𝑢1(𝑡)is chosen to be a principal 

solution. 

 

Summary 

• The behaviour ofnon-oscillatory solutions arediscussed. 

• The zeros of the solutions are determined with the help of Puffer’s transformation. 

• The relation between the zeros of solution and oscillatory behaviour. 
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Keywords 
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Self Assessment 

1. The differential equation 𝒙′′′ − 𝒙′′ + 𝟏𝟏𝒙′ − 𝟒𝒙 = 𝟎 is  

A. Oscillatory equation 

B. Non-oscillatory equation 
C. Non-linear equation 

D. None of these 

 

2. The differential equation 𝒙′′ − 𝟗𝒙 = 𝟎 is  

A. Oscillatory equation 
B. Non-oscillatory equation 

C. Non-linear equation 

D. None of these 

 

3. The differential equation 𝒙′′ + 𝟒𝒙 = 𝟎 is  

A. Linear equation 

B. Non-oscillatory equation 
C. Non-linear equation 

D. None of these 

 

4. If some of trivial solution of 𝒙′′ + 𝒂(𝒕)𝒙 = 𝟎 are non-oscillatory and 𝒃(𝒕) ≥ 𝒂(𝒕),  then 

some non-trivial solutions of 𝒙′′ + 𝒃(𝒕)𝒙 = 𝟎 must be  

A. Oscillatory equation 
B. Non-oscillatory equation 

C. Non-linear equation 

D. None of these 

 

5. Which of the following is non-oscillatory equation? 

A. 𝒙′′ + et𝒙 = 0  
B. 𝑥′′ + (t + e−2t)𝑥 = 0  
C. 𝑥′′ − (t − sint)𝑥 = 0, t ≥ 0   
D. None of these 

 

6. If 𝒒(𝒕) < 0  and 𝒖(𝒕) is a non-trivial solution of equation 𝒖′′(𝒕) + 𝒒(𝒕)𝒖(𝒕) = 𝟎 then 

A. 𝑢(𝑡) has at most one zero 

B. 𝒖(𝒕) has at least one zero 

C. 𝒖(𝒕) has more one zero 
D. None of these 

 

7. If some of non-trivial solution of 𝒙′′ + 𝒂(𝒕)𝒙 = 𝟎 are oscillatory and 𝒃(𝒕) ≥ 𝒂(𝒕),  then 

some non-trivial solutions of 𝒙′′ + 𝒃(𝒕)𝒙 = 𝟎 must be  

A. Oscillatory equation 

B. Non-oscillatory equation 
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C. Non-linear equation 

D. None of these 

 

8. The non-trivial solution of the differential equation 𝒙′′ + 𝒌(𝒕)𝒙 = 𝟎 can vanish more than 

once in the interval [a,b] if 

A. 𝑘(𝑡) ≥ 0  

B. 𝑘(𝑡) ≤ 0  

C. 𝑘(𝑡) = 0  

D. None of these   

   

9. The Euler equation 𝒙′′ +
𝒌

𝒕𝟐
𝒙 = 𝟎 is non –oscillatory if  

A. 𝑘 ≤
1

4
  

B. 𝑘 ≥
1

4
  

C. 𝑘 =
1

4
  

D. None of these 
 

10. The equation 𝒙′′ −
𝒕

𝒍𝒐𝒈𝒕
𝒙 = 𝟎,   𝒕 ≥ 𝟏 is 

A. Oscillatory equation 

B. Non-oscillatory equation 

C. Linear equation 
D. None of these 

 

11. The equation is called disconjugate if 

A. Every solution (≠ 0) has at least one zero. 

B. Every solution (≠ 0) has at most one zero. 
C. Every solution (≠ 0) has no zero. 

D. None of these 

 

12. The non-oscillatory equation is known as 

A. Conjugate 
B. Disconjugate 

C. Stable 

D. None of these 

 

13. The equation (𝒑(𝒕)𝒖′)′ + 𝒒(𝒕)𝒖 = 𝟎 is discojugate if for every pair of distinct point 𝒕𝟏 , 𝒕𝟐 

has  

A. Every pair of linearly independent solution 

B. Every pair of linearly dependent solution 
C. Every pair of constant solution 

D. None of these 

 

14. A pair of solutions 𝒖 𝒂𝒏𝒅 𝒗  on distinct point 𝒕𝟏 , 𝒕𝟐are L.I if   

A. 𝑢(𝑡1)𝑣(𝑡2) + 𝑣(𝑡1)𝑢(𝑡2) ≠ 0  
B. 𝑢(𝑡1)𝑣(𝑡2) − 𝑣(𝑡1)𝑢(𝑡2) = 0  
C. 𝑢(𝑡1)𝑣(𝑡2) − 𝑣(𝑡1)𝑢(𝑡2) ≠ 0  
D. None of these 

 

15. The non-oscillatory divergent solution is called 

A. Non principal solution  
B. Principal solution   

C. Permanent solution 

D. None of these 
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Answers for Self Assessment 

1. B 2. B 3. A 4. B 5. C 

6. A 7. A 8. B 9. A 10. B 

11. B 12. A 13. C 14. B 15. B 

 

Review Questions 

1. Check for the following equations are oscillatory and non-oscillatory : 

 

(i) 𝑡𝑥′ +
𝑥

𝑡
= 0 

(ii) 𝑥′′ + 𝑥′/𝑡 + 𝑥 = 0 

(iii) 𝑡𝑥′′ + (1 − 𝑡)𝑥′ + 𝑛𝑥 = 0, 𝑛 is a constant (Laguerre’s equation) 

(iv) 𝑥′′ − 2𝑡𝑥′ + 2𝑛𝑥 = 0, 𝑛 is a constant (Hermite’s equation) 

(v) 𝑡𝑥′′ + (2𝑛 − 1)𝑥′ + 𝑡𝑥 = 0, 𝑛 is a constant 

(vi) 𝑡2𝑥′′ + 𝑘𝑡𝑥′ + 𝑛𝑥 = 0, 𝑘, 𝑛, are constants. 

 

 

Further Readings 

1. Earl A Coddinton and Norman Levinson (2017).Theory of Ordinary Differential 

Equations, McGraw  Hill.  

2. P. Hartman (1964), Ordinary Differential equations, Johan Wiley. 

3. Shair Ahmad and Rama Mohan Rao (2014), Theory of Ordinary Differential Equations, 

East West Press Private Limited. 

4. S G Deo, V Lakshmikantham and V Raghvendra (2013), Ordinary Differential Equations, 

McGraw Hill Education (India) Private Limited. 
 

 
https://nptel.ac.in/courses/111/108/111108081/ 

https://onlinecourses.nptel.ac.in/noc21_ma09/preview 

https://infocobuild.com/education/audio-video-

courses/mathematics/OrdinaryPartialDifferentialEquations-IIT-Roorkee/lecture-01.html 
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