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Expected Learning Outcomes 

After studying this unit, you will be able to 

• understand the binary operations on sets  

• analyze different algebraic structures like groups and subgroups 

• understand properties of cosets and normal subgroups 

• state and prove Lagrange’s theorem 

• find the order of any element of a group 

• define cyclic group and create quotient group/ factor group for a given group G 

• define homomorphism from a group G to some group G’ 

• observe the isomorphisms between groups 

• important results based on isomorphism 

Introduction 

The theory of groups is one of the oldest branches of abstract algebra. It has many applications in 
mathematics and other sciences. Group theory has helped in developing physics, chemistry, and 
computer science. Its roots go back to the work of the eighteenth-century mathematicians Lagrange, 
Ruffini, and Galois. 

In this unit, we will study group theory in detail. We surge fine groups, subgroups and give some 
examples. After that, we study the properties of cosets leading to the normal subgroups, the order of 
an element and related properties, group homomorphisms, isomorphisms, etc. Group theory is very 
vast and cannot be limited to one unit. However, this unit provides us the sufficient basic knowledge 
about group theory, which is needed in understanding the consequent units. 

1.1 Definition of Group and Subgroup 

Binary operations on a set 

Definition 1.1.1 Let S be a non-empty set. A function 𝑓: 𝑆 × 𝑆 → 𝑆 i.e., ∀ 𝑎, 𝑏 ∈ 𝑆, 𝑓(𝑎, 𝑏) ∈ 𝑆  then this 
is called binary composition. In other words, ∗ is called a binary composition on a set 𝑆 if ∗ (𝑎, 𝑏) ∈
𝑆 ∀ 𝑎, 𝑏 ∈ 𝑆. We will write ∗ (𝑎, 𝑏) as 𝑎 ∗ 𝑏. Therefore, a binary operation associates every pair of 
elements of set S to a unique element in set S.  
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Example 1.1.2:  Since addition, subtraction, and multiplication of two integers is an integer, 
therefore, the operations addition, subtraction, and multiplication are all binary operations 
on S. 

 

Example 1.1.3: Let X be a non-empty set and F(X) be the family of all functions from X to 
itself, the composition of functions is a binary composition on F(X). 

Now we see examples where a composition is not binary on a set S 
 

 

Example 1.1.4: Subtraction is not a binary composition on set N of Natural numbers. 2 
and 3 are both natural numbers but 2 − 3 =  −1 is not a natural number. 
 

 

Example 1.1.5: Division is not a binary composition on set Z of Integers. 1 and 2 are both 

integers but 
1

2
  is not an integer. 

Next, we define some properties of Binary compositions 

Let ∗ be a binary composition on a non-empty set S. Then  

Closure: ∗ is closed on S, if 𝑎 ∗ 𝑏 ∈ 𝑆 ∀ 𝑎, 𝑏 ∈ 𝑆 

All the binary compositions by definition, satisfy this property 

Associative: ∗ is associative on S, if 𝑎 ∗ (𝑏 ∗ 𝑐) = (𝑎 ∗ 𝑏) ∗ 𝑐 ∀ 𝑎, 𝑏, 𝑐 ∈ 𝑆 

 

A binary composition may or may not be associative. Here are examples to explain this 

 

 

Example 1.1.6:  Consider the set of integers Z, we know that addition is binary 
composition on Z and (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐) for all integers 𝑎, 𝑏, 𝑐. Addition is 
associative binary composition on Z. 

 

Example 1.1.7: Consider the set of integers Z, we know that subtraction of two integers 

is again an integer so it is binary composition on Z. However, for 3, 4, 5 ∈ 𝑍,  

(3 − 4) − 5 =  −1 − 5 = −6 

3 − (4 − 5) = 3 − (−1) = 4 

Therefore, (3 − 4) − 5 ≠ 3 − (4 − 5) 

Hence, subtraction is not associative on Z. 

Existence of Identity: Let there exists an element 𝑒 ∈ 𝑆, such that 𝑎 ∗ 𝑒 = 𝑎 = 𝑒 ∗ 𝑎 ∀ 𝑎 ∈ 𝑆, then S is 

said to have an identity element with respect to composition ∗ . 

Identity may or may not exist for a binary composition on a set. Following are examples 

 

 
Example 1.1.8:  Consider the set of integers Z, we know that addition is binary composition 

on Z. Note that 0 ∈ 𝑍 and 𝑎 + 0 = 𝑎 = 0 + 𝑎 ∀ 𝑎 ∈ 𝑍. 

 

Example 1.1.9: Consider the set of integers Z, we know that subtraction of two integers is 

again an integer so it is binary composition on Z. However, there does not exist any 𝑒 ∈ 𝑍 

such that 

𝑎 − 𝑒 = 𝑎 = 𝑒 − 𝑎 

Hence, the identity element does not exist under subtraction. 

 

Note    0 ∈ 𝑍 such that 𝑎 − 0 = 𝑎 for all integers 𝑎 but it does not satisfy the second part.     
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Existence of Inverse: Let 𝑎 ∈ 𝑆, where 𝑆 is the set with identity, if there exists an element 𝑏 ∈ 𝑆 such 

that 𝑎 ∗ 𝑏 = 𝑒 = 𝑏 ∗ 𝑎 then we say that inverse of element 𝑎 exists in S and  𝑏 is said to be inverse of 

𝑎. Note that 𝑒 ∈ 𝑆 is its own inverse. In this case, two cases are possible 

Case I: There are some elements in 𝑺 that are invertible but some are not invertible. 

 

Example 1.1.10: Consider the set of integers Z. Then multiplication is a binary operation on 
Z with identity element 1. Then in Z, under multiplication, only two elements 1 and -1 have 
inverse in Z but all other integers are not invertible in Z. For example, 2 ∈ 𝑍 but its 

multiplicative inverse 
1

2
∉ 𝑍. 

Case II: All elements in the set have inverse in S 

 
Example 1.1.11: Consider the set of integers Z. Then addition is a binary operation on Z 

with identity element 0 and ∀ 𝑎 ∈ 𝑍, ∃ − 𝑎 ∈ 𝑍 such that 𝑎 + (−𝑎) = 0 = (−𝑎) + 𝑎. 

Commutative: If 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 ∀ 𝑎, 𝑏 ∈ 𝑆 then the composition ∗ is called commutative. A set may or 

may not be commutative under a binary operation. 

 
Example 1.1.12:  Consider the set of integers Z, under the binary composition of 

addition. Then 𝑎 + 𝑏 = 𝑏 + 𝑎 ∀ 𝑎, 𝑏 ∈ 𝑍 this implies that Z is commutative under 

addition.  

 

Example 1.1.13: Consider the set of integers Z, under the binary composition of 

subtraction. Then 𝑎 − 𝑏 ≠ 𝑏 − 𝑎 in general. Hence it is not commutative. 

Now let’s see some more examples 

 
Example 1.1.14: Let Q denotes the set of rational numbers. Define an operation ∗ on Q as 

𝑎 ∗ 𝑏 = 𝑎 + 𝑏 − 𝑎𝑏 ∀ 𝑎, 𝑏 ∈ Q. Then check that the set Q satisfies which of the above-

mentioned properties. 

Solution: Set Q and the given composition is 𝑎 ∗ 𝑏 = 𝑎 + 𝑏 − 𝑎𝑏 

Closure: Clearly, addition, multiplication, and product of two rational numbers is again a rational 

number so 𝑎 + 𝑏 − 𝑎𝑏 ∈ Q ∀ 𝑎, 𝑏 ∈ Q. That is, ∗ is a binary composition on Q. 

Associative: Let 𝑎, 𝑏, 𝑐 ∈ Q. Then 

𝑎 ∗ (𝑏 ∗ 𝑐) = 𝑎 ∗ (𝑏 + 𝑐 − 𝑏𝑐) 

 
= 𝑎 + (𝑏 + 𝑐 − 𝑏𝑐) − 𝑎(𝑏 + 𝑐 − 𝑏𝑐) 

 
= 𝑎 + 𝑏 + 𝑐 − 𝑏𝑐 − 𝑎𝑏 − 𝑎𝑐 + 𝑎𝑏𝑐 

= (𝑎 + 𝑏 − 𝑎𝑏) + 𝑐 − (𝑎 + 𝑏 − 𝑎𝑏)𝑐 

 
= (𝑎 ∗ 𝑏) ∗ 𝑐 

Hence, Q is associative under ∗. 

Existence of Identity: 0 ∈ Q and for any 𝑎 ∈ Q  

𝑎 ∗ 0 = 𝑎 + 0 − 𝑎. 0 = 𝑎 + 0 − 0 = 𝑎 

Also,  

0 ∗ 𝑎 = 0 + 𝑎 − 0 ⋅ 𝑎 = 0 + 𝑎 − 0 = 𝑎 

Therefore, 0 is the identity element of Q under the composition ∗. 

Existence of Inverse: For 𝑎 ∈ Q, 𝑎 ≠ 1, 

Consider   
𝑎

𝑎−1
∈ Q    

Then  

𝑎 ∗
𝑎

𝑎 − 1
= 𝑎 +

𝑎

𝑎 − 1
− 𝑎 ⋅

𝑎

𝑎 − 1
=  

𝑎2 − 𝑎 + 𝑎 − 𝑎2

𝑎 − 1
= 0 
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and 

 

𝑎

𝑎 − 1
∗ 𝑎 =

𝑎

𝑎 − 1
+ 𝑎 −

𝑎

𝑎 − 1
⋅ 𝑎 =

𝑎 + 𝑎2 − 𝑎 − 𝑎2

𝑎 − 1
= 0 

 

 

Therefore, ∀𝑎 ∈ 𝑄, 𝑎 ≠ 1,
𝑎

𝑎−1
∈ 𝑄 so, inverse exists for all 𝑎 ≠ 1. 

 

But for 𝑎 = 1,  

 

𝑎 ∗ 𝑏 = 0 

 ⇔ 𝑎 + 𝑏 − 𝑎𝑏 = 0 

⇔ 1 + 𝑏 − 𝑏 = 0 

⇔ 1 = 0 

which is absurd. Therefore, inverse of 1 does not exist. 

Commutative: For 𝑎, 𝑏 ∈ 𝑄 

𝑎𝑏 = 𝑏𝑎 

and  

𝑎 + 𝑏 = 𝑏 + 𝑎 

This implies  

𝑎 + 𝑏 − 𝑎𝑏 = 𝑏 + 𝑎 − 𝑏𝑎 

which gives  

𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 

Therefore, it is commutative on Q. 

Now, we are in a position to define some algebraic structures based on these properties of a binary 

operation. 

 
We can talk about the inverse of an element in a set only if identity element exists. 

Otherwise, inverse is not even defined.  

Group 

Monoid:  Monoid is any non-empty set with binary composition ∗.  

Semi-group: A non-empty set S with a binary composition ∗ is called a semi-group if S is associative 

under the composition ∗. 

 
Note: Every Semi-group is clearly a monoid but a monoid may not be a semi-group. For 

example, the set of integers Z under the binary composition of subtraction of integers is 

monoid but not semi-group as it is not associative. 

Quasi-group:  A semi-group is called Quasi group if it contains an identity element under the 

composition.  

 
Note: Every Quasi-group is Semi-group but the converse is not true. For example, the 

set of even integers is semi-group under the composition of multiplication of integers 

but the identity element 1 does not belong to this set. Hence it is not a Quasi-group. 
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The smallest set satisfying all the above-mentioned properties under addition is {0} and 

under multiplication is {1}. 

Definition 1.1.15 Group: A Quasi-group is called a group if all the elements of the set have inverse 

in the set.  

In other words, a group can be defined as 

A non-empty set G with a binary composition ∗ is called a group if it satisfies the following axioms 

(i) (𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐)  for all 𝑎, 𝑏, 𝑐 ∈ 𝐺. 

(ii) There exists an element 𝑒 ∈ 𝐺 such that 𝑎 ∗ 𝑒 = 𝑎 = 𝑒 ∗ 𝑎 for all 𝑎 ∈ 𝐺. 

(iii) For each 𝑎 ∈ 𝐺, there exists 𝑏 ∈ 𝐺 such that 𝑎 ∗ 𝑏 = 𝑒 = 𝑏 ∗ 𝑎. 

Let us see some examples of Groups 

 

Example 1.1.16: As seen earlier, the set of integers satisfies all these properties under the 
operation of addition, and hence (Z, +) is a group. 

 

Example 1.1.17: The set of all non-zero rational numbers (𝑄∗) form a group under 
multiplication. 

Proof:  

Closure: Multiplication of two non-zero rational numbers is a rational number so it is closed. 

Associative: Clearly, 𝑎 ⋅ (𝑏 ⋅ 𝑐) = (𝑎 ⋅ 𝑏) ⋅ 𝑐 for all 𝑎, 𝑏, 𝑐 ∈ 𝑄∗. 

Identity: 1 ∈ 𝑄∗ such that 𝑎 ⋅ 1 = 𝑎 = 1 ⋅ 𝑎 for all 𝑎 ∈ 𝑄∗. 

Inverse: ∀ 𝑎 ∈ 𝑄∗,
1

𝑎
∈ 𝑄∗ and 𝑎 ⋅

1

𝑎
= 1 =

1

𝑎
⋅ 𝑎 

Therefore, 𝑸∗ is a group. 

 

Example 1.1.18: The set S of all square matrices of order 2 with entries from the set of real 
numbers is a group under the composition of the addition of matrices. 

Proof:  

Closure: Addition of two square matrices of order 2 with entries from the set of real numbers is again 
a matrix of order 2 with entries from the set of real numbers therefore, S is closed. 

Associative:  By definition of matrix addition and associativity in the set of real numbers under 
addition, we can observe that associativity holds. 

Identity: Let 𝑂 = [
0 0
0 0

] .  Then O is a square matrix of order 2 with all the entries 0 hence 𝑂 ∈ 𝑆 and 

∀𝐴 ∈ 𝑆, 𝐴 + 0 = 𝐴 = 0 + 𝐴. 

Inverse: For each 𝐴 ∈ 𝑆, there exist −𝐴 ∈ 𝑆 and 𝐴 + (−𝐴) = 0 = (−𝐴) + 𝐴. 

Therefore, S is a group under the composition of addition of matrices. 

Definition 1.1.19: A group G under the composition ∗ is called a commutative group or abelian group 
if 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 ∀𝑎, 𝑏 ∈ 𝐺. For example, set of integers under addition. 

Notation: From this point onwards, group G with composition ∗ will be denoted as (G, ∗). Generally, 
we will assume that ∗ is multiplication and we will simply write (𝐺,∗) as G. We will denote 𝑎 ∗ 𝑏 as 
𝑎𝑏 for the sake of convenience. 

Definition 1.1.20: A group G is called a finite group if it contains finite number of distinct elements, 
otherwise it is called an infinite group. 

Definition 1.1.21: The number of distinct elements in a finite group G is called the order of the group. 
It is denoted as O(G). If G is infinite then we say that order G is infinite.  
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Example 1.1.22:  The set 𝐺 = {1, −1, ⅈ, −ⅈ} is a finite group with 4 elements under the 
composition of multiplication of complex numbers. 

Proof:  

Closure:  For any elements 𝑎, 𝑏 ∈ 𝐺, 𝑎. 𝑏 ∈ 𝐺.  

Associative: Associativity is due to the associativity of multiplication in complex numbers. 

Identity: 1 ∈ 𝐺 such that 𝑎. 1 = 𝑎 ∀ 𝑎 ∈ 𝐺. 

Inverse: Inverse of 1 is 1, -1 is -1, ⅈ is −ⅈ and of −ⅈ is ⅈ. So, the inverse of each element of G is in G. 

Therefore, G is a group with 4 elements, and hence G is a finite group.  

 

Example 1.1.23: The sets (Z, +), (Q, +), (R, +), (Q*, ∙), etc. are examples of infinite groups. 

 

Note: The fact that a group must contain an identity element and it is always a non-
empty set implies that the smallest possible group is {e}. That is the minimum order of 
a group is 1. 

Definition 1.1.24: Let 𝑆 be a non-empty set. For 𝑎, 𝑏, 𝑐 ∈ 𝑆, if 𝑎𝑏 = 𝑎𝑐 implies 𝑏 = 𝑐, then we say left 
cancellation law holds in 𝑆. Similarly, if 𝑏𝑎 = 𝑐𝑎 implies 𝑏 = 𝑐, then we say the right cancellation law 
holds in 𝑆. 

Theorem 1.1.25: Let 𝐺 be a group. Then both the cancellation laws hold in 𝐺. 

Proof: 

Let 𝐺 be a group and 𝑎, 𝑏, 𝑐 ∈ 𝐺 

Let 𝑎𝑏 = 𝑎𝑐 … … … … … ... (1) 

Since 𝑎 ∈ 𝐺, therefore, 𝑎−1 ∈ 𝐺 

Pre-multiplying both sides of (1) with 𝑎−1 

We get, 𝑎−1(𝑎𝑏) = 𝑎−1(𝑎𝑐) ⇒ 𝑏 = 𝑐. 

Similarly, we can see that the right cancellation law holds in 𝐺. 

Subgroup 

We have seen that set of integers Z, set of real numbers R, set of complex numbers C are all groups 

under addition. Also 𝑍 ⊂ 𝑅 ⊂ 𝐶. Based on this, we define a subgroup 

Definition 1.1.26: Let G be a group then a non-empty subset H of G is called a subgroup of G if it is 

itself a group under the same composition as G. For example, (Z, +) is a subgroup of (R, +); (R, +) is 

a subgroup of (C, +).  

Trivial and Non-trivial Subgroups: A group G having at least two elements has at least two 

subgroups {e} and G. These are called trivial or improper subgroups. Any other subgroup is called 

non-trivial or proper subgroups. 

Theorem 1.1.27: A non-empty subset 𝐻 of 𝐺 is a subgroup of 𝐺 if and only if 𝑎𝑏−1 ∈ 𝐻 ∀ 𝑎, 𝑏 ∈ 𝐻. 

Proof:  

Let 𝐻 be a subgroup of 𝐺. Then 𝐻 is a group under the same composition as G. For 𝑏 ∈ 𝐻, 𝑏−1 ∈ 𝐻 

and therefore, ∀𝑎, 𝑏 ∈ 𝐻, 𝑎𝑏−1 ∈ 𝐻. 

Conversely, let 𝑎𝑏−1 ∈ 𝐻 ∀ 𝑎, 𝑏 ∈ 𝐻 

Since 𝐻 is non-empty. There exist some 𝑎 ∈ 𝐻 then by given condition 𝑎𝑎−1 ∈ 𝐻 ⇒ ⅇ ∈ 𝑯 

Again, for 𝑒, 𝑎 ∈ 𝐻 ⇒ 𝑒𝑎−1 ∈ 𝐻 ⇒ 𝒂−𝟏 ∈ 𝑯 for all 𝑎 ∈ 𝐻.  

Consider 𝑎, 𝑏 ∈ 𝐻, 𝑏−1 ∈ 𝐻 ⇒ 𝑎(𝑏−1)−1 ∈ 𝐻 ⇒ 𝒂𝒃 ∈ 𝑯 

For 𝑎, 𝑏, 𝑐 ∈ 𝐻, since 𝐻 ⊆ 𝐺 and 𝐺 is a group, therefore, 𝑎(𝑏𝑐) = (𝑎𝑏)𝑐 

Therefore, 𝐻 is a subgroup of 𝐺. 

6
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Example 1.1.28: Let G be the set of square matrices of order 2 over the field of real numbers. 

Then G is a group under the addition of matrices. Let H= {[
𝑎 𝑏
𝑐 0

]| 𝑎, 𝑏, 𝑐 ∈ 𝑅} then H is a 

subgroup of G. 

Proof: Clearly, H is a non-empty subset of G. 

Let [
𝑎1 𝑏1

𝑐1 0
] , [

𝑎2 𝑏2

𝑐2 0
] ∈ H.  

Then [
𝑎1 𝑏1

𝑐1 0
] − [

𝑎2 𝑏2

𝑐2 0
] = [

𝑎1 − 𝑎2 𝑏1 − 𝑏2

𝑐1 − 𝑐2 0
] ∈ H 

Therefore, H is a subgroup of G. 

 

Example 1.1.29: Let G = 𝐶∗ be the set of non-zero complex numbers. G is a group under the 
multiplication of complex numbers. Then 𝐻= {𝑧 ∈ 𝐶∗||𝑧| = 1} is a subgroup of G. 

Proof: 1 ∈ 𝐻 therefore, 𝐻 is non-empty. 

Then for 𝑎, 𝑏 ∈ 𝐻 

|𝑎𝑏−1| = |𝑎||𝑏|−1 = 1 

Therefore, 𝑎𝑏−1 ∈ 𝐻. 

Then 𝐻 is a subgroup of G. 

Theorem 1.1.30: Subgroup of an abelian group is abelian. 

Proof: 

Let G be an abelian group and H be a subgroup of G. 

For 𝑎, 𝑏 ∈ H. Since H ⊆ G, therefore 𝑎, 𝑏 ∈ G 

G is abelian so, 𝑎𝑏 = 𝑏𝑎 

H is abelian. 

 

Task: For the following binary operations defined on the set of real numbers R, determine 
whether they are 

(1) Commutative 

(2) Associative  

or not.  

(ⅈ) 𝑥 ⊕ 𝑦 = 𝑥 + 𝑦 − 5 

(ⅈⅈ) 𝑥 ∗ 𝑦 = 2(𝑥 + 𝑦) 

(ⅈⅈⅈ) 𝑥∆𝑦 =
𝑥 − 𝑦

2
 

For all 𝑥, 𝑦 ∈ 𝑅 

1.2 Normal Subgroups and Cosets 

Coset 

Definition 1.2.1: Let 𝐻 be a subgroup of 𝐺. Then ∀ 𝑎 ∈ 𝐺, the set 𝑎𝐻 = {𝑎ℎ|ℎ ∈ 𝐻} is a subset of 𝐺. 𝑎𝐻 

is called left coset of 𝐻 in 𝐺. Similarly, the set 𝐻𝑎 = {ℎ𝑎|ℎ ∈ 𝐻} is the right coset of 𝐻 in 𝐺. Left coset 

and right coset may or may not be equal. 

An example where a left coset is not equal to right coset 
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Example 1.2.2: Let G be the set of invertible matrices of order 2. Then G is a group under 

the composition of multiplication of matrices. Let H be the set of invertible diagonal 

matrices. Then for 𝐴 given by 

 

𝐴 =  [
1 2
3 4

] 

 

𝐴𝐻 = {[
1 2
3 4

] 𝐵| 𝐵 ∈ 𝐻} = {[
1 2
3 4

] [
𝑎 0
0 𝑏

] |𝑎, 𝑏 ∈ 𝑅} =  {[
𝑎 2𝑏

3𝑎 4𝑏
] |𝑎, 𝑏 ∈ 𝑅} 

 

𝐻𝐴 = {𝐵 [
1 2
3 4

]| 𝐵 ∈ 𝐻} = {[
𝑎 0
0 𝑏

] [
1 2
3 4

] |𝑎, 𝑏 ∈ 𝑅} =  {[
𝑎 2𝑎

3𝑏 4𝑏
] |𝑎, 𝑏 ∈ 𝑅} 

 

Then [
1 4
3 8

] ∈ 𝐴𝐻 but [
1 4
3 8

] ∉ 𝐴𝐻. 

 

 
Note:  

1. For a subgroup 𝐻 of an abelian group G, right cosets are the same as left cosets.  

2. For 𝑒 ∈ G, 𝐻𝑒 = 𝐻 = 𝑒𝐻 therefore, in any group G and its subgroup 𝐻, one left as well 

as right coset of 𝐻 in G is 𝐻 itself. 

Theorem 1.2.3: Let 𝐻 be a subgroup of a group G. For 𝑎, 𝑏 ∈ 𝐺,   

1) 𝑎 ∈ 𝐻 ⇔ 𝐻𝑎 = 𝐻 

2) 𝐻𝑎 = 𝐻𝑏 ⇔ 𝑎𝑏−1 ∈ 𝐻 

3) 𝐻𝑎 = 𝐻𝑏 𝑜𝑟 𝐻𝑎 ⋂𝐻𝑏 = 𝜙 

 

Proof: 

1) Let 𝑎 ∈ 𝐻 

𝐻𝑎 = {ℎ𝑎|ℎ ∈ 𝐻} 

Since 𝐻 is a subgroup of 𝐺 so it is closed. Therefore,  ℎ ∈ 𝐻 and 𝑎 ∈ 𝐻 ⇒ ℎ𝑎 ∈ 𝐻 ⇒ 𝑯𝒂 ⊆ 𝑯. 

Also, for ℎ ∈ 𝐻, 𝑎 ∈ 𝐻 ⇒ 𝑎−1 ∈ 𝐻.  

This implies ℎ𝑎−1 ∈ 𝐻 ⇒ (ℎ𝑎−1)𝑎 ∈ 𝐻𝑎 ⇒ ℎ ∈ 𝐻𝑎 ⇒ 𝑯 ⊆ 𝑯𝒂 

Therefore, 𝑯𝒂 =  𝑯. 

Conversely, let 𝐻𝑎 = 𝐻 

𝑒 ∈ 𝐻 ⇒ 𝑒𝑎 ∈ 𝐻𝑎 ⇒ 𝑎 ∈ 𝐻𝑎 = 𝐻. 

2) 𝐻𝑎 = 𝐻𝑏 ⇔ 𝐻𝑎𝑏−1 = 𝐻 

⇔ 𝑎𝑏−1 ∈ 𝐻 (Using (1)). 

3) For 𝑎, 𝑏 ∈ 𝐺. 

Let 𝐻𝑎 ∩ 𝐻𝑏 ≠ 𝜙. 

Then there exists some element 𝑥 ∈ 𝐻𝑎 ∩ 𝐻𝑏 

⇒ 𝑥 ∈ 𝐻𝑎 and 𝑥 ∈ 𝐻𝑏 

⇒ 𝑥𝑎−1 ∈ 𝐻 and 𝑥𝑏−1 ∈ 𝐻 (Using (2)) 

⇒  (𝑥𝑎−1)−1(𝑥𝑏−1) ∈ 𝐻 (For 𝑥, 𝑦 ∈ 𝐻 ⇒ 𝑥−1𝑦 ∈ 𝐻) 

⇒ (𝑎𝑥−1)(𝑥𝑏−1) ∈ 𝐻 ⇒ 𝑎𝑏−1 ∈ 𝐻. 

⇒ 𝐻𝑎 = 𝐻𝑏 (Using (2)). 

That proves that either 𝐻𝑎 = 𝐻𝑏 𝑜𝑟 𝐻𝑎 ∩ 𝐻𝑏 = 𝜙. 

 
Note:  Only one of the distinct right cosets of a subgroup 𝐻 in a group 𝐺 is a subgroup. 

 

If possible, let two distinct right cosets 𝐻𝑎 and 𝐻𝑏 are sub-groups then  

𝑒 ∈ 𝐻𝑎 ∩ 𝐻𝑏 ⇒ 𝐻𝑎 = 𝐻𝑏 (Using (3)). 
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So, we arrive at a contradiction. That is, there is only one right coset which is subgroup also. That 

right coset is H. 

Let 𝐻 be a subgroup of a group 𝐺. Define a relation on elements of 𝐺. For two elements 𝑎, 𝑏 ∈ 𝐺, 𝑎 is 

related to 𝑏 if and only if 𝑎𝑏−1 ∈ 𝐻.  We denote it as 𝑎 ~ 𝑏. 

Theorem 1.2.4: The relation defined above is an equivalence relation on 𝐺. 

Proof: 

By definition, two elements 𝑎, 𝑏 ∈ 𝐺, 𝑎~ 𝑏 if and only if 𝑎𝑏−1 ∈ 𝐻 

Reflexive: Since 𝐻 is a subgroup of 𝐺. 

Therefore, 𝑒 ∈ 𝐻 

That is, 𝑒 = 𝑎𝑎−1 ∈ 𝐻 ∀ 𝑎 ∈ 𝐺 

𝑎~ 𝑎 for all 𝑎 ∈ 𝐺.   

Symmetric: For 𝑎, 𝑏 ∈ 𝐺, let 𝑎~ 𝑏 

⇒ 𝑎𝑏−1 ∈ 𝐻. 

Since 𝐻 is a subgroup of 𝐺. 

⇒ (𝑎𝑏−1)−1 ∈ 𝐻 ⇒ 𝑏𝑎−1 ∈ 𝐻, 

⇒  𝑏~𝑎. 

Transitive: For 𝑎, 𝑏, 𝑐 ∈ 𝐺 

Let 𝑎~𝑏, 𝑏~𝑐 

⇒ 𝑎𝑏−1 ∈ 𝐻, 𝑏𝑐−1 ∈ 𝐻. 

𝐻 is a subgroup of 𝐺 and hence it is closed 

⇒  (𝑎𝑏−1)(𝑏𝑐−1) = 𝑎𝑐−1 ∈ 𝐻. 

⇒  𝑎~𝑐. 

Therefore, the relation ~ is an equivalence relation on 𝐺. 

Remark 1: Equivalence Class for some element 𝑎 ∈ 𝐺 is 𝐻𝑎. 

Proof: Let 𝐶(𝑎) denote the equivalence class of 𝑎 ∈ 𝐺.  

Then 𝑏 ∈ 𝐶(𝑎) ⇔ 𝑏~𝑎 ⇔ 𝑎𝑏−1 ∈ 𝐻 ⇔ 𝐻𝑎 = 𝐻𝑏. 

This implies that 𝐶(𝑎) = 𝐻𝑎. 

With the help of this result, we can find the order of a finite group 𝐺 in terms of the order of a 

subgroup 𝐻 and the number of right (left) cosets of 𝐻 in 𝐺. 

Remark 2: Let 𝑥 ∈ 𝐺 and 𝐶(𝑥) be the class containing 𝑥. Then for any 𝑦 ∈ 𝐺, we have seen that 𝐶(𝑥) =

𝐶(𝑦) or 𝐶(𝑥) ∩ 𝐶(𝑦) = 𝜙, which implies that  

 

𝐺 = ⋃ 𝐶(𝑥)

𝑥∈𝐺

=  ⋃ 𝐻𝑥

𝑥∈𝐺

 

 

Remark 3: Let 𝐺 be a finite group and 𝐻 be a subgroup of 𝐺. Then the number of right (left) cosets of 

𝐻  in 𝐺 is finite. 

Proof: If possible, let the number of right cosets of 𝐻 in 𝐺 is infinite. 

Since   

𝐺 =  ⋃ 𝐻𝑥

𝑥∈𝐺

 

This implies  

𝑂(𝐺) = 𝑂 (⋃ 𝐻𝑥

𝑥∈𝐺

) 

 

Using the fact that for 𝑥, 𝑦 ∈ 𝐺, either 𝐻𝑥 = 𝐻𝑦 or 𝐻𝑥 ∩ 𝐻𝑦 = 𝜙, we see that 
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𝑂(𝐺) = ∑ 𝑂(𝐻𝑥)

𝑥∈𝐺

 

Since 𝑥 ∈ 𝐻𝑥, therefore, 𝑂(𝐻𝑥) ≥ 1 for all 𝑥 ∈ 𝐺. 

Also, the number of right cosets of 𝐻 in 𝐺 is infinite, that gives 𝑂(𝐺) is infinite. 

This contradicts the fact that 𝐺 is a finite group. Therefore, our assumption was wrong.  

That is, the number of right cosets of 𝐻 in 𝐺 is finite. 

Theorem 1.2.5 (Lagrange’s Theorem): Let 𝐻 be a subgroup of a finite group 𝐺. Then order of 𝐻 

divides order of group 𝐺. 

Proof:  Let 𝐻 be a subgroup of 𝐺 and  𝐻𝑎1, 𝐻𝑎2, … , 𝐻𝑎𝑡 be all the right cosets of 𝐻 in 𝐺. 

Then  

𝐺 = ⋃ 𝐻𝑎𝑖

𝑡

𝑖=1

 

 

⇒ 𝑂(𝐺) = 0 (⋃ 𝐻𝑎𝑖

𝑡

𝑖=1

) = ∑ 𝑂

𝑡

𝑖=1

(𝐻𝑎𝑖) … . (1) 

Claim: 𝑶(𝑯𝒙) = 𝑶(𝑯) ∀ 𝒙 ∈ 𝑮 

 

𝐻𝑥 = {ℎ𝑥|ℎ ∈ 𝐻} 

Let 𝐻 = {𝑥1, 𝑥2, … , 𝑥𝑛}. Then  

𝐻𝑥 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛} 

Then  

𝑥𝑥𝑖 = 𝑥𝑥𝑗  

Because cancellation laws hold in the group 

⇔ 𝑥𝑖 = 𝑥𝑗  

This implies 𝑂(𝐻𝑥) = 𝑂(𝐻). 

From (1) 

𝑂(𝐺) =  ∑ 0

𝑡

𝑖=1

(𝐻) = 𝑡𝑂(𝐻) 

 

Since 𝑡 is the number of right cosets of 𝐻 in 𝐺. That is, 𝑡 ∈ 𝑍 

This implies, 𝑂(𝐻) divides 𝑂(𝐺). 

Definition 1.2.6: Let 𝐺 be a finite group and 𝐻 be a subgroup of 𝐺. Then the number of right cosets 

of 𝐻 in 𝐺 is finite and number of right cosets of 𝐻 in 𝐺 is the index of 𝐻 in 𝐺. It is denoted as [𝐺: 𝐻]. 

 
Example 1.2.7: Let 𝐺 = {1, −1, ⅈ, −ⅈ}. Then 𝐺 is a finite group under the composition of 

multiplication of complex numbers. Then 𝐻 = {1, −1} is a subgroup of 𝐺. Then verify 

Lagrange’s theorem for 𝐺 and subgroup 𝐻. 

Solution: 

Let 𝐻𝑥 be right coset of 𝐻 in 𝐺 for 𝑥 ∈ 𝐺. 

For 𝑥 = 1, 𝐻(1) = 𝐻 

For 𝑥 = −1, 𝐻(−1) = {1(−1), (−1)(−1)} = {−1, 1} = 𝐻 

For 𝑥 = ⅈ, 𝐻ⅈ = {1(ⅈ), (−1)(ⅈ)} = {ⅈ, −ⅈ} 

For 𝑥 =  −ⅈ, 𝐻(−ⅈ) = {1(−ⅈ), (−1)(−ⅈ)} = {−ⅈ, ⅈ} 

So, there are only two distinct right cosets of 𝐻 in 𝐺, 𝐻, and 𝐻ⅈ. 

𝑂(𝐺) = 4 = 2 × 2 = [𝐺: 𝐻]𝑂(𝐻). 
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Note: If 𝐺 is a group under the composition of addition then for any subgroup 𝐻 of 𝐺 

and an element 𝑎 ∈ 𝐺, the right coset of 𝐻 in 𝐺 is defined as 𝐻 + 𝑎 = {ℎ + 𝑎|ℎ ∈ 𝐻}. 

Similarly, left coset of 𝐻 in 𝐺 is defined as 𝑎 + 𝐻 = {𝑎 + ℎ|ℎ ∈ 𝐻}.   

Normal Subgroup 

Definition 1.2.8: A subgroup 𝐻 of a group 𝐺 is such that 𝐻𝑎 = 𝑎𝐻 ∀ 𝑎 ∈ 𝐺, then 𝐻 is a normal 
subgroup of 𝐺. Clearly, every subgroup of an abelian group is a normal subgroup.  

Theorem 1.2.9: 𝐻 is a normal subgroup of 𝐺 if and only if 𝑔−1 ℎ𝑔 ∈  𝐻 for all 𝑔 ∈  𝐺, ℎ ∈  𝐻. 

Proof:  

Let 𝐻 is a normal subgroup of 𝐺. 

For 𝑔 ∈ 𝐺, ℎ ∈ 𝐻 

ℎ𝑔 ∈ 𝐻𝑔 = 𝑔𝐻 (𝐻 is normal subgroup of 𝐺) 

⇒  𝑔−1ℎ𝑔 ∈ 𝐻. 

Conversely, Let  𝑔−1ℎ𝑔 ∈ 𝐻 ∀𝑔 ∈ 𝐺, ℎ ∈ 𝐻 

 𝑔−1ℎ𝑔 ∈ 𝐻 ⇒ ℎ𝑔 ∈ 𝑔𝐻 ∀ ℎ ∈ 𝐻, 𝑔 ∈ 𝐺 

⇒ 𝐻𝑔 ⊆ 𝑔𝐻. 

Also, 𝑔−1ℎ𝑔 ∈ 𝐻 ⇒ 𝑔−1ℎ𝑔 = ℎ1 for some ℎ1 ∈ 𝐻 

⇒ 𝑔ℎ1 = ℎ𝑔 which implies that 𝑔𝐻 ⊆ 𝐻𝑔. 

Therefore, 𝐻𝑔 = 𝑔𝐻. 

Definition 1.2.10: Let 𝐺 be a group. Then the centre of group 𝐺 is defined as the set {𝑥 ∈ 𝐺|𝑥𝑦 =

𝑦𝑥 ∀ 𝑦 ∈ 𝐺} and it is denoted as 𝑍(𝐺). Clearly, when 𝐺 is abelian then 𝐺 = 𝑍(𝐺). 

Theorem 1.2.11: For any group 𝐺, the centre of group 𝐺 is a normal subgroup of 𝐺. 

Proof: 

𝑍(𝐺) = {𝑥 ∈ 𝐺|𝑥𝑦 = 𝑦𝑥 ∀ 𝑦 ∈ 𝐺} 

Let 𝑒 ∈ 𝐺 be the identity element of group 𝐺. 

That is 𝑒𝑦 = 𝑦 = 𝑦𝑒 ∀ 𝑦 ∈ 𝐺 ⇒ 𝑒 ∈ 𝑍(𝐺) ⇒ 𝒁(𝑮) ≠ 𝝓  

Clearly 𝑍(𝐺) ⊆ 𝐺. 

Let 𝑎, 𝑏 ∈ 𝑍(𝐺) ⇒ 𝑎𝑦 = 𝑦𝑎, 𝑏𝑦 = 𝑦𝑏 ∀ 𝑦 ∈ 𝐺 

For 𝑦 ∈ 𝐺, 𝑏𝑦 =   𝑦𝑏 ⇒ 𝑏−1(𝑏𝑦)𝑏−1 = 𝑏−1(𝑦𝑏)𝑏−1 ⇒ 𝑦𝑏−1 = 𝑏−1𝑦 

Now for any 𝑦 ∈ 𝐺, 𝑎𝑏−1𝑦 = 𝑎𝑦𝑏−1 = 𝑦𝑎𝑏−1 ⇒ 𝑎𝑏−1 ∈ 𝑍(𝐺). 

Hence, 𝒁(𝑮) is a subgroup of 𝑮. 

Now, we prove that  𝑍(𝐺) is a normal subgroup of 𝐺. 

Let 𝑔 ∈ 𝐺, 𝑎 ∈ 𝑍(𝐺) then 𝑔𝑎 = 𝑎𝑔 

Then for any 𝑦 ∈ 𝐺, 

𝑦(𝑔−1𝑎𝑔) = 𝑦(𝑔−1𝑔𝑎) = 𝑦𝑎 = 𝑎𝑦 (𝑎𝑠 𝑎 ∈ 𝑍(𝐺)) = (𝑔−1𝑔)(𝑎𝑦) = (𝑔−1𝑎𝑔)𝑦 

Thus, 𝑔−1𝑎𝑔 ∈ 𝑍(𝐺) 

Hence, 𝑍(𝐺) is a normal subgroup of 𝐺. 

Theorem 1.2.12: Let 𝐺 be a group and 𝐻 is a subgroup of 𝐺 such that [𝐺: 𝐻] = 2, then 𝐻 is a normal 
subgroup of 𝐺. 

Proof: 

Let 𝐻 be a subgroup of 𝐺 with [𝐺: 𝐻] = 2. 

Then the number of distinct right cosets of 𝐻 in 𝐺 is 2. 
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Let 𝐻 and 𝐻𝑎 be those two right cosets such that 𝐻 ≠ 𝐻𝑎. 

Also, 𝐺 = 𝐻 ∪ 𝐻𝑎, 𝐻 ∩ 𝐻𝑎 = 𝜙  

Similarly, there are only two left cosets of 𝐻 in 𝐺 is 2. 

Let 𝐻 and 𝑎𝐻 be those two left cosets of 𝐻 in G 

That implies, 𝐺 = 𝐻 ∪ 𝑎𝐻, 𝐻 ∩ 𝑎𝐻 = 𝜙 

That is, 𝐻 ∪ 𝐻𝑎 = 𝑎𝐻 ∪ 𝐻 

Let 𝑥 ∈ 𝐻𝑎 ⊆ 𝐻 ∪ 𝐻𝑎 = 𝑎𝐻 ∪ 𝐻 

This implies 𝑥 ∈ 𝑎𝐻 or 𝑥 ∈ 𝐻 

But 𝑥 ∉ 𝐻 

Therefore, 𝑥 ∈ 𝑎𝐻 

That is, 𝐻𝑎 ⊆ 𝑎𝐻 

Similarly, 𝑎𝐻 ⊆ 𝐻𝑎 

That is 𝐻𝑎 = 𝑎𝐻 

𝐻 is a normal subgroup of 𝐺. 

 

Task: Write Z as union of disjoint cosets of 5Z. 

For any subgroup 𝐻 of a group 𝐺 and any element 𝑥 ∈ 𝐺, prove that 𝑂(𝐻𝑥) = 𝑂(𝐻). 

1.3 Order of elements and Factor Group:  

Order of an element 

Definition 1.3.1: Let 𝐺 be a group and 𝑎 ∈ 𝐺, the least positive integer 𝑛 for which 𝑎𝑛 = 𝑒, is called 
the order of 𝑎 and we write 𝑂(𝑎) = 𝑛. If there exists no such positive integer for which 𝑎𝑛 = 𝑒 then 
we say that order of the element is infinite. 

In case, 𝐺 is a group under addition and 𝑎 ∈ 𝐺, 𝑂(𝑎) is defined to be the least positive integer such 
that 𝑛𝑎 = 𝑒. 

For example, consider the group 𝐺 = {1, −1, ⅈ, −ⅈ} under the composition of multiplication of 
complex numbers. Then 𝐺 has identity element 1.  

Since 11 = 1, therefore 𝑂(1) = 1   

(−1)2 = 1 ⇒ 𝑂(−1) = 2. 

(ⅈ)4 = 1 and (ⅈ)𝑛 ≠ 1 for any 𝑛 < 4 ⇒ 𝑂(ⅈ) = 4. 

(−ⅈ)4 = 1 and (−ⅈ)𝑛 ≠ 1 for any 𝑛 < 4 ⇒ 𝑂(−ⅈ) = 4. 

Another example, consider (Z, +), then 2 ∈ 𝑍, and there does not exist any positive integer 𝑛 such that 
2𝑛 = 0. 

Theorem 1.3.2: Let 𝐺 be a group and 𝑎 ∈ 𝐺 be an element. Then the set 𝑆 = {𝑎𝑛|𝑛 ∈ 𝑍} is a subgroup 
of 𝐺. 

Proof: 

Since 𝑎 ∈ 𝐺, 𝑎 = 𝑎1 ∈ 𝑆 ⇒ 𝑆 ≠ 𝜙 

Let 𝑥, 𝑦 ∈ 𝑆 ⇒ ∃ 𝑡, 𝑟 ∈ 𝑍 such that 𝑥 = 𝑎𝑡, 𝑦 = 𝑎𝑟 ⇒ 𝑥𝑦−1 = 𝑎𝑡𝑎−𝑟 = 𝑎𝑡−𝑟 ∈ 𝑆. 

Therefore, 𝑆 is a subgroup of 𝐺. 

𝑆 is called subgroup of 𝑮 generated by 𝒂 and we write 𝑆 = < 𝑎 >. 

Definition 1.3.3: A group 𝐺 is called cyclic group if there exists some element 𝑎 ∈ 𝐺 such that 𝐺 is 
generated by 𝑎. That is, 𝐺 = < 𝑎 > and 𝑎 is called generator of group 𝐺. 

For example, 

The group 𝐺 = {1, −1, ⅈ, −ⅈ} is a cyclic group generated by ⅈ because 𝐺 = {ⅈ, ⅈ2, ⅈ3, ⅈ4} = {ⅈ, −1, −ⅈ, 1}. 
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Note: Generator of a cyclic group is not unique. For example, 𝐺 = < ⅈ > = < −ⅈ >. 

Theorem 1.3.4: Let 𝐺 = < 𝑎 > be a cyclic group generated by 𝑎. Then 𝑂(𝐺) = 𝑂(𝑎). 

Proof: Case I: If 𝑶(𝒂) is finite. 

Let 𝑂(𝑎) =  𝑛,  

Since 𝑎 ∈ 𝐺, therefore, 𝑎, 𝑎2, 𝑎3, … , 𝑎𝑛−1, 𝑎𝑛 = 𝑒 ∈ 𝐺 

Let 𝑏 ∈ 𝐺 =< 𝑎 > 

Therefore, there exist 𝑡 ∈ 𝑍, such that 𝑏 = 𝑎𝑡 

Divide 𝑡 by 𝑛, we get unique integers 𝑞, 𝑟 such that 𝑡 = 𝑛𝑞 + 𝑟; 𝑟 = 0 or 0 < 𝑟 < 𝑛 

Then 𝑎𝑡 = 𝑎𝑛𝑞+𝑟 = 𝑎𝑛𝑞𝑎𝑟 = 𝑎𝑟 (Since 𝑂(𝑎) = 𝑛, therefore 𝑎𝑛𝑞 = (𝑎𝑛)𝑞 = 𝑒) 

Thus 𝑏 ∈ 𝐺 then 𝑏 = 𝑎𝑟 for some 0 ≤ 𝑟 < 𝑛 

That is, 𝐺 = {𝑎, 𝑎2, 𝑎3, … , 𝑎𝑛−1, 𝑎𝑛 = 𝑒} 

This implies 𝑂(𝐺) = 𝑛 = 𝑂(𝑎). 

 Case II: If 𝑶(𝒂) is infinite. 

If possible, let 𝑂(𝐺) is finite. 

Since 𝑎, 𝑎2, 𝑎3, … … ∈ 𝐺 

𝑂(𝐺) is finite. Therefore, there exist 𝑠, 𝑡 ∈ 𝑍 such that 𝑎𝑠 = 𝑎𝑡 ⇒ 𝑎𝑟−𝑠 = 𝑒 ⇒ 𝑜(𝑎) ≤ 𝑟 − 𝑠 ⇒ 𝑂(𝑎) is 
finite. So, we arrive at a contradiction. 

Hence 𝑂(𝐺) is infinite. 

Therefore, in both cases, 𝑂(𝐺) = 𝑂(𝑎). 

Theorem 1.3.5: Every cyclic group is abelian. 

Proof: 

Let 𝐺 = < 𝑎 >  is a cyclic group. 

Let 𝑏, 𝑐 ∈ 𝐺, then there exist 𝑡, 𝑟 ∈ 𝑍 such that 𝑏 = 𝑎𝑡, 𝑐 = 𝑎𝑟 . 

Then 𝑏𝑐 = 𝑎𝑡𝑎𝑟 = 𝑎𝑡+𝑟 = 𝑎𝑟+𝑡 = 𝑎𝑟𝑎𝑡 = 𝑐𝑏 

This implies, 𝐺 is abelian. 

However, the converse is not true. That is, an abelian group may not be a cyclic group. 

For example, consider Klein’s 4- Group 𝐺 = {𝑒, 𝑎, 𝑏, 𝑎𝑏} such that 𝑎2 = 𝑏2 = 𝑒, 𝑎𝑏 = 𝑏𝑎. Then 𝐺 is an 
abelian group. If possible, let 𝐺 be a cyclic group. Then there exists 𝑥 ∈ 𝐺 such that 𝑂(𝐺) = 𝑂(𝑥). 

Consider elements in 𝐺, 

𝑎2 = 𝑒 ⇒ 𝑂(𝑎) = 2. 

𝑏2 = 𝑒 ⇒ 𝑂(𝑏) = 2. 

(𝑎𝑏)2 = 𝑎𝑏𝑎𝑏 = 𝑎𝑎𝑏𝑏 = 𝑎2𝑏2 = 𝑒 ⇒ 𝑂(𝑎𝑏) = 2. 

Therefore, there does not exist any 𝑥 ∈ 𝐺 such that 𝑂(𝑥) = 4. That is 𝑂(𝑥) ≠ 𝑂(𝐺) for any 𝑥 ∈ 𝐺. 

Hence 𝐺 is not a cyclic group. 

Theorem 1.3.6: Let 𝐺 be a finite group then 𝑎𝑂(𝐺) = 𝑒 ∀ 𝑎 ∈ 𝐺. 

Proof: 

Let 𝑎 ∈ 𝐺, 

Then 𝐻 = {𝑎, 𝑎2, 𝑎3, … … }  ⊆ 𝐺 

That is, 𝐻 = < 𝑎 > is a subgroup of 𝐺. 

This implies, 𝑂(𝐻) = 𝑂(𝑎) 
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By Lagrange’s theorem, 𝑂(𝐻) divides 𝑂(𝐺). 

There exists some integer 𝑡, 𝑂(𝐺) = 𝑂(𝐻)𝑡 

Consider 𝑎𝑂(𝐺) = 𝑎𝑂(𝐻)𝑡 = (𝑎𝑂(𝐻))
𝑡

= (𝑎𝑂(𝑎))
𝑡

= 𝑒𝑡 = 𝑒. 

Which completes the proof. 

Theorem 1.3.7: Let 𝐺 be a group. Let 𝑎 ∈ 𝐺, 𝑎𝑘 = 𝑒 if and only if 𝑂(𝑎) divides 𝑘. 

Proof: 

Let 𝑎𝑘 = 𝑒 and let 𝑂(𝑎) = 𝑛 

Divide 𝑘 by 𝑛, there exists unique 𝑞, 𝑟 ∈ 𝑍 such that  

𝑘 = 𝑛𝑞 + 𝑟;   𝑟 = 0 or 0 < 𝑟 < 𝑛 

𝑎𝑘 = 𝑎𝑛𝑞+𝑟 = 𝑎𝑛𝑞𝑎𝑟 = (𝑎𝑛)𝑞𝑎𝑟 = 𝑒 ⋅ 𝑎𝑟 = 𝑎𝑟   

If 𝑟 ≠ 0, then 𝑎𝑟 = 𝑎𝑘 = 𝑒 and 0 < 𝑟 < 𝑛 which contradicts the fact that 𝑂(𝑎) = 𝑛. 

Therefore, 𝑟 = 0 ⇒ 𝑘 = 𝑛𝑞 ⇒ 𝑛 divides 𝑘. 

Conversely, 

Let 𝑘 divides 𝑛, therefore, there exists some integer 𝑞 such that 𝑘 = 𝑛𝑞 

Then 𝑎𝑘 = 𝑎𝑛𝑞 = (𝑎𝑛)𝑞 = 𝑒𝑞 = 𝑒. 

Theorem 1.3.8: Let 𝐺 be a group and 𝑎 ∈ 𝐺 be any element. Let 𝑂(𝑎) = 𝑛 and 𝑂(𝑎𝑘) = 𝑚 then 𝑚 =
𝑛

𝑑
, 

where 𝑑 = 𝐻𝐶𝐹(𝑘, 𝑛).  

Proof: 

Given that 𝑑 = 𝐻𝐶𝐹(𝑘, 𝑛) 

This implies 𝑑 divides 𝑘 and 𝑛 both 

There exist integers 𝑘1, 𝑛1 such that 𝑘 = 𝑑𝑘1, 𝑛 = 𝑑𝑛1; 𝐻𝐶𝐹(𝑘1, 𝑛1) = 1. 

Since 𝑂(𝑎) = 𝑛 ⇒ 𝑎𝑛 = 𝑒 ⇒ 𝑎𝑑𝑛1 = 𝑒 ⇒ 𝑎𝑑𝑛1𝑘1 = 𝑒 ⇒ 𝑎𝑘𝑛1 = 𝑒 ⇒ (𝑎𝑘)𝑛1 = 𝑒 ⇒ 𝒎 divides 𝒏𝟏. 

Again 𝑜(𝑎𝑘) = 𝑚 ⇒ 𝑎𝑘𝑚 = 𝑒 ⇒ 𝑛 divides 𝑘𝑚 ⇒ 𝑑𝑛1 divides 𝑑𝑘1𝑚 ⇒ 𝑛1 divides 𝑘1𝑚. 

Since 𝐻𝐶𝐹(𝑛1, 𝑘1) = 1 ⇒ 𝒏𝟏 divides 𝒎. 

Since 𝑛1 and 𝑚 are both positive integers, therefore, 𝑚 = 𝑛1 =
𝑛

𝑑
. 

Factor Groups 

Theorem 1.3.9: Let 𝐺 be a group and 𝐻 be a normal subgroup of 𝐺. Let 𝑆 be the collection of all the 
right cosets of 𝐻 in 𝐺. Then 𝑆 is a group of 𝐺 under the composition 𝐻𝑎𝐻𝑏 = 𝐻𝑎𝑏 ∀ 𝑎, 𝑏 ∈ 𝐺. 
Proof: 
 
Closure: For 𝑎, 𝑏 ∈ 𝐺 ⇒ 𝑎𝑏 ∈ 𝐺 ⇒ 𝐻𝑎𝑏 is a right coset of 𝐻 in 𝐺. Therefore, 𝐻𝑎𝑏 ∈ 𝑆.  
Associative: For 𝑎, 𝑏, 𝑐 ∈ 𝐺, 𝐻𝑎(𝐻𝑏𝐻𝑐) = 𝐻𝑎(𝐻𝑏𝑐) = 𝐻𝑎(𝑏𝑐) = 𝐻(𝑎𝑏)𝑐 = (𝐻𝑎𝐻𝑏)𝐻𝑐. 
Identity: For 𝑎 ∈ 𝐺, 𝐻𝑎𝐻𝑒 = 𝐻𝑎𝑒 = 𝐻𝑎 = 𝐻𝑒𝑎 = 𝐻𝑒𝐻𝑎 
Therefore, 𝐻𝑒 = 𝐻 is the identity element of 𝑆. 
Inverse: For 𝑎 ∈ 𝐺, 𝑎−1 ∈ 𝐺 that is for each 𝐻𝑎 ∈ 𝑆, 𝐻𝑎−1 ∈ 𝑆 such that  
 

𝐻𝑎𝐻𝑎−1 = 𝐻𝑎𝑎−1 = 𝐻𝑒 = 𝐻 
Similarly,  
 

𝐻𝑎−1𝐻𝑎 = 𝐻𝑎−1𝑎 = 𝐻𝑒 = 𝐻 
That is inverse of 𝐻𝑎 is 𝐻𝑎−1. 
Definition 1.3.10: Let 𝐺 be a group and 𝐻 be a normal subgroup of 𝐺. The set 𝑆 = {𝐻𝑎|𝑎 ∈ 𝐺} 
consisting of all right cosets of 𝐻 in 𝐺 is a group under the composition 𝐻𝑎𝐻𝑏 = 𝐻𝑎𝑏 ∀ 𝑎, 𝑏 ∈ 𝐺. It is 
called quotient group and is denoted as 𝐺/𝐻. Order of quotient group 𝐺/𝐻 is number of elements in 

𝐺/𝐻 that is number of right cosets of 𝐻 in 𝐺 = [𝐺: 𝐻] =
𝑂(𝐺)

𝑂(𝐻)
. 

Remark 4: 𝑮/𝑯 is a quotient group then 𝑯 is a normal subgroup. 
Proof: 
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𝐺/𝐻 is a group then for 𝑎, 𝑎−1 ∈ 𝐺, 
𝑒𝑎𝐻𝑎−1 ⊆ 𝐻𝑎𝐻𝑎−1 = 𝐻𝑎𝑎−1 = 𝐻 

 
𝑎𝐻𝑎−1 = 𝐻 ⇒ 𝑎𝐻 = 𝐻𝑎 

𝐻 is a normal subgroup of 𝐺. 
 

 

Task: Consider the group 𝐺 of all diagonal matrices of order 2 under the composition of 
addition of matrices. Then prove that every subgroup of 𝐻 is normal subgroup of 𝐺. 

1.4 Group Homomorphisms 

Definition 1.4.1: Let (𝐺,∗) and (𝐺′ , 𝑜) be two groups. Then a function 𝑓: (𝐺,∗) → (𝐺′ , 𝑜) is called a 
homomorphism if ∀ 𝑎, 𝑏 ∈ 𝐺, 𝑓(𝑎 ∗ 𝑏) = 𝑓(𝑎)𝑜𝑓(𝑏). For convenience, we write 𝑓 is a homomorphism 
from 𝐺 to 𝐺′. 
 

 

Example 1.4.2: Let 𝐺 be the group of integers under addition and 𝐺′ = {2𝑛|𝑛 ∈ 𝑍}, the group 
under multiplication. Define 𝑓: 𝐺 → 𝐺′ as 𝑓(𝑛) = 2𝑛. Then 𝑓 is a group homomorphism. 

Proof: 
For 𝑛, 𝑚 ∈ 𝑍 

𝑓(𝑛 + 𝑚) = 2𝑛+𝑚 = 2𝑛2𝑚 = 𝑓(𝑛)𝑓(𝑚) 
This proves that 𝑓 is a group homomorphism. 

Properties of Homomorphism 

Let 𝒇 is a homomorphism from 𝑮 to 𝑮′ . 
 

1) Let ⅇ and ⅇ′ be the identity elements of 𝑮 and 𝑮′ respectively. Then 𝒇(ⅇ) = ⅇ′. 
Proof: 
For 𝑎 ∈ 𝐺, 
 

𝑓(𝑎𝑒) = 𝑓(𝑎)𝑓(𝑒) 
⇒ 𝑓(𝑎) = 𝑓(𝑎)𝑓(𝑒) 

⇒ 𝑓(𝑎)𝑒′ = 𝑓(𝑎)𝑓(𝑒) 
                                                 ⇒ 𝑒′ = 𝑓(𝑒) (By cancellation law in group 𝐺′) 
 

2) For 𝒙 ∈ 𝑮, 𝒇(𝒙−𝟏) = (𝒇(𝒙))
−𝟏

 

Proof: 
For 𝑥 ∈ 𝐺,  

𝑓(𝑥𝑥−1) = 𝑓(𝑒) = 𝑒′ 
Also,  

𝑓(𝑥−1𝑥) = 𝑓(𝑒) = 𝑒′ 
That is, 

𝑓(𝑥𝑥−1) = 𝑒′ = 𝑓(𝑥−1𝑥) 
⇒ 𝑓(𝑥)𝑓(𝑥−1) = 𝑒′ = 𝑓(𝑥−1)𝑓(𝑥) 

⇒ 𝑓(𝑥−1) = (𝑓(𝑥))
−1

 

 
Definition 1.4.3: A homomorphism 𝑓 from a group 𝐺 to a group 𝐺′ is called a monomorphism if 𝑓 is 
a one-one function. 
 

 

Example 1.4.4: Let 𝐺 = 𝐺′ = 𝑍 be the group of integers under addition. Define 𝑓: 𝐺 → 𝐺′ be 
defined as 𝑓(𝑥) = 2𝑥. Then 𝑓 is a monomorphism. 

Proof: 
For 𝑥, 𝑦 ∈ 𝐺, 𝑓(𝑥 + 𝑦) = 2(𝑥 + 𝑦) = 2𝑥 + 2𝑦 = 𝑓(𝑥) + 𝑓(𝑦) 
This proves that 𝑓 is a homomorphism. 
Again, for 𝑥, 𝑦 ∈ 𝐺 

𝑓(𝑥) = 𝑓(𝑦) ⇒ 2𝑥 = 2𝑦 ⇒ 𝑥 = 𝑦 
This proves that 𝑓 is one-one and hence it is a monomorphism. 
 
Definition 1.4.5: A homomorphism 𝑓 from a group 𝐺 to a group 𝐺′ is called an epimorphism if 𝑓 is 
onto function. 
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Example 1.4.6: Let 𝐺 be a group of invertible matrices of order 2 over the field of real 
numbers and 𝐺′ be the set of non-zero real numbers. Then 𝐺 is a group under multiplication 
of matrices and 𝐺′ be the group under the multiplication of real numbers. Define 𝑓: 𝐺 → 𝐺′ 
as 𝑓(𝐴) = det 𝐴. 

 
Proof: 
For 𝐴, 𝐵 ∈ 𝐺, 𝑓(𝐴𝐵) = det 𝐴𝐵 = det 𝐴 det 𝐵 = 𝑓(𝐴)𝑓(𝐵) 
This proves that 𝑓 is a homomorphism. 

Again, for any non-zero real number 𝑛, there exists matrix 𝐴 =  [
𝑛 0
0 1

] ∈ 𝐺 such that 𝑓(𝐴) = 𝑛.  

This implies that 𝑓 is an epimorphism. 
Definition 1.4.7: A homomorphism 𝑓 from a group 𝐺 to a group 𝐺′ is called an endomorphism if 𝐺 =

𝐺′. The function defined in example 10 is an endomorphism. 
Definition 1.4.8: Let 𝐺 and 𝐺′ be two groups. Let 𝑓: 𝐺 → 𝐺′ be a homomorphism. Then Kernel of 
homomorphism 𝑓 is defined as the set 𝐾𝑒𝑟 𝑓 = {𝑥 ∈ 𝐺|𝑓(𝑥) = 𝑒′}. 
 

 

Example 1.4.9: Let 𝐺 = 𝐺′ = 𝑍 be the group of integers under addition. Define 𝑓: 𝐺 → 𝐺′ 
be defined as 𝑓(𝑥) = 2𝑥. Find Kernel 𝑓. 

Solution:  𝐾𝑒𝑟 𝑓 = {𝑥 ∈ 𝐺|𝑓(𝑥) = 0} = {𝑥 ∈ 𝐺|2𝑥 = 0} = {0}. 
Theorem 1.4.10: Let 𝑓: 𝐺 → 𝐺′ be a homomorphism. Then Kernel 𝑓 is a normal subgroup of 𝐺. 
Proof: 
Since 𝑓(𝑒) = 𝑒′. That is, 𝑒 ∈ 𝐾𝑒𝑟 𝑓 ⇒ 𝑲ⅇ𝒓 𝒇 ≠ 𝝓. 
Let 𝑎, 𝑏 ∈ 𝐾𝑒𝑟 𝑓 ⇒ 𝑓(𝑎) = 𝑒′ and 𝑓(𝑏) = 𝑒′. 

Consider 𝑓(𝑎𝑏−1) = 𝑓(𝑎)𝑓(𝑏−1) = 𝑓(𝑎) (𝑓(𝑏))
−1

= 𝑒′𝑒′−1 = 𝑒′ 

This implies 𝑎𝑏−1 ∈ 𝐾𝑒𝑟 𝑓 
Hence 𝑲ⅇ𝒓 𝒇 is a subgroup of 𝑮. 
Let 𝑔 ∈ 𝐺, 𝑎 ∈ 𝐾𝑒𝑟 𝑓 so that 𝑓(𝑎) = 𝑒′. 

Consider 𝑓(𝑔𝑎𝑔−1) = 𝑓(𝑔)𝑓(𝑎)𝑓(𝑔−1) = 𝑓(𝑔) 𝑒′(𝑓(𝑔))
−1

= 𝑒′ 

Therefore, 𝑔𝑎𝑔−1 ∈ 𝐾𝑒𝑟 𝑓 
This implies, 𝑲ⅇ𝒓 𝒇 is a normal subgroup of 𝑮. 

Theorem 1.4.11: Let 𝑓: 𝐺 → 𝐺′ be a homomorphism. Then Kernel 𝑓 = {𝑒} if and only if 𝑓 is one-one. 
Proof: 
Let 𝑓: 𝐺 → 𝐺′ be a homomorphism. 
Let 𝐾𝑒𝑟 𝑓 = {𝑒} 
For 𝑥, 𝑦 ∈ 𝐺,  such that  
𝑓(𝑥) = 𝑓(𝑦) 

⇒ 𝑓(𝑥)(𝑓(𝑦))
−1

= 𝑒′ 

⇒ 𝑓(𝑥𝑦−1) = 𝑒′ 
⇒ 𝑥𝑦−1 ∈ 𝐾𝑒𝑟 𝑓 = {𝑒} 
⇒ 𝑥𝑦−1 = 𝑒 
⇒ 𝑥 = 𝑦 
⇒ 𝑓 is a one-one function. 
Conversely, let 𝑓 is a one-one function. 
Let 𝑥 ∈ 𝐾𝑒𝑟 𝑓 
This implies 𝑓(𝑥) = 𝑒′ 
But 𝑓(𝑒) = 𝑒′ 
Given that 𝑓 is one-one. 
⇒ 𝑥 = 𝑒 ⇒ 𝐾𝑒𝑟 𝑓 = {𝑒}. 
Definition 1.4.12: Let 𝑓: 𝐺 → 𝐺′ be a homomorphism. Then the set 𝑅 = {𝑓(𝑥)|𝑥 ∈ 𝐺} is called range 
set of homomorphism 𝑓. 
Theorem 1.4.13: Range set 𝑅 of homomorphism  𝑓: 𝐺 → 𝐺′ is a subgroup of 𝐺′ . 
Proof: 
Since 𝑓(𝑒) = 𝑒′ 
Therefore, 𝑒 ∈ 𝑅 ⇒ 𝑹 ≠ 𝝓 

Let 𝑥, 𝑦 ∈ 𝑅 therefore, there exists, 𝑥1, 𝑦1 ∈ 𝐺 such that  
𝑓(𝑥1) = 𝑥 and 𝑓(𝑦1) = 𝑦 

𝑓(𝑥1𝑦1
−1) = 𝑓(𝑥1)𝑓(𝑦1)−1 = 𝑥𝑦−1 

This implies that 𝑥𝑦−1 ∈ 𝑅 

16

Advanced Abstract Algebra - I  



Unit 01: Review of Groups  

 LOVELY PROFESSIONAL UNIVERSITY  

Notes 

Hence, 𝑅 is a subgroup of 𝐺′. 
Definition 1.4.14: A homomorphism 𝑓 from a group 𝐺 to a group 𝐺′ is called an isomorphism if 𝑓 is 
one-one and onto function. 

 

Example 1.4.15: Let 𝐺 = 𝑍 and 𝐺′ = 2𝑍, the function 𝑓: 𝐺 → 𝐺′ defined as 𝑓(𝑥) = 2𝑥 is 
one-one, onto, and homomorphism. Then 𝑓 is an isomorphism. 

Solution: 
For 𝑥, 𝑦 ∈ 𝐺, 𝑓(𝑥 + 𝑦) = 2(𝑥 + 𝑦) = 2𝑥 + 2𝑦 = 𝑓(𝑥) + 𝑓(𝑦) 
This proves that 𝑓 is a homomorphism. 
Again, for 𝑥, 𝑦 ∈ 𝐺 

𝑓(𝑥) = 𝑓(𝑦) ⇒ 2𝑥 = 2𝑦 ⇒ 𝑥 = 𝑦 
This implies 𝑓 is one-one. 
Also ∀ 𝑥 ∈ 2𝑍, 𝑥 = 2𝑦 for some 𝑦 ∈ 𝑍 

𝑓(𝑦) = 2𝑦 = 𝑥 
This implies 𝑓 is onto. 
Hence 𝑓: 𝐺 → 𝐺′ is an isomorphism. 
Definition 1.4.16: An isomorphism 𝑓 from a group 𝐺 to a group 𝐺′ is called an automorphism if 𝐺 =
𝐺′. For example, 𝑓: 𝑍 → 𝑍 defined as 𝑓(𝑥) = 𝑥 is a trivial automorphism. 
 

 

Example 1.4.17: Let 𝐺 be a group. For 𝑔 ∈ 𝐺, define 𝑓𝑔: 𝐺 → 𝐺 as 𝑓𝑔(𝑎) = 𝑔−1𝑎𝑔. Then 𝑓𝑔 

is an automorphism. 

Solution:  
The function 𝑓𝑔: 𝐺 → 𝐺 is defined as 𝑓𝑔(𝑎) = 𝑔−1𝑎𝑔. 

For 𝑎, 𝑏 ∈ 𝐺, 𝑓𝑔(𝑎𝑏) = 𝑔−1(𝑎𝑏)𝑔 = (𝑔−1𝑎𝑔)(𝑔−1𝑏𝑔) =  𝑓𝑔(𝑎) 𝑓𝑔(𝑏) 

This implies, 𝒇𝒈 is a homomorphism. 

For 𝑎, 𝑏 ∈ 𝐺, 𝑓𝑔(𝑎) = 𝑓𝑔(𝑏) 

⇒ 𝑔−1𝑎𝑔 = 𝑔−1𝑏𝑔 
⇒ 𝑎 = 𝑏 (Using cancellation laws) 
Therefore, 𝒇𝒈 is one-one. 

For 𝑎 ∈ 𝐺, since 𝑔 ∈ 𝐺 
Since 𝐺 is closed, therefore, 𝑔𝑎𝑔−1 ∈ 𝐺 and G 
𝑓𝑔(𝑔𝑎𝑔−1) = 𝑔−1(𝑔𝑎𝑔−1)𝑔 = 𝑎 

This implies, 𝒇𝒈 is onto. 

Hence 𝒇𝒈 is an automorphism. 

Definition 1.4.18: Let 𝐺 be a group. For 𝑔 ∈ 𝐺, define 𝑓𝑔: 𝐺 → 𝐺 as 𝑓𝑔(𝑎) = 𝑔−1𝑎𝑔. Then 𝑓𝑔 is an 

automorphism and it is called an inner automorphism. 
Theorem 1.4.19 (Fundamental Theorem of Homomorphism): Let 𝐺 and 𝐺′ be two groups and 𝑓: 𝐺 →
𝐺′ be an onto homomorphism. Then 𝐺′ is isomorphic to a quotient group of 𝐺. 
Proof: 
The function  𝑓: 𝐺 → 𝐺′ is an onto homomorphism. Let 𝐾𝑒𝑟 𝑓 = 𝐻. 
Define a map 𝑔: 𝐺/𝐻 → 𝐺′ as 𝑔(𝐻𝑎) = 𝑓(𝑎). 
Then 𝐻𝑎 = 𝐻𝑏  
⇔ 𝑎𝑏−1 ∈ 𝐻=𝐾𝑒𝑟 𝑓 
⇔ 𝑓(𝑎𝑏−1) = 𝑒′ 

⇔ 𝑓(𝑎)(𝑓(𝑏))
−1

= 𝑒′ 

⇔ 𝑓(𝑎) = 𝑓(𝑏) 
⇔ 𝑔(𝐻𝑎) = 𝑔(𝐻𝑏) 
Therefore, 𝒈 is well defined and one-one. 
Let 𝑏 ∈ 𝐺′ 
Since 𝑓: 𝐺 → 𝐺′ is onto 
There exists some 𝑎 ∈ 𝐺 such that 𝑓(𝑎) = 𝑏 
This implies 𝑔(𝐻𝑎) = 𝑓(𝑎) = 𝑏 
Hence 𝒈 is onto. 

Let 𝐻𝑎, 𝐻𝑏 ∈ 𝐺/𝐻 
Then 𝑔(𝐻𝑎𝐻𝑏) = 𝑔(𝐻𝑎𝑏) = 𝑓(𝑎𝑏) = 𝑓(𝑎)𝑓(𝑏) = 𝑔(𝐻𝑎)𝑔(𝐻𝑏) 
Thus, 𝒈 is homomorphism. 
This implies 𝑮/𝑲ⅇ𝒓 𝒇 ≅ 𝑮′. 

As applications to this theorem, we have the following results. 
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Theorem 1.4.20 (First theorem of Isomorphism): Let 𝑓 be a homomorphism of a group 𝐺 onto a 

group 𝐺′ and 𝐻 =  𝐾𝑒𝑟 𝑓, 𝐾′ is a normal subgroup of 𝐺′ and 𝐾 = {𝑥 ∈ 𝐺|𝑓(𝑥) ∈ 𝐾′}. Then 𝐾 is a normal 

subgroup of 𝐺 containing 𝐻 and 𝐺/𝐾 ≅ 𝐺′/𝐾′. 

Proof: 

Define function 𝑔: 𝐺 → 𝐺′/𝐾′ as 𝑔(𝑥) = 𝐾′𝑓(𝑥) ∀ 𝑥 ∈ 𝐺. 

For 𝑥, 𝑦 ∈ 𝐺, 𝑔(𝑥𝑦) = 𝐾′𝑓(𝑥𝑦) = 𝐾′𝑓(𝑥)𝑓(𝑦) = (𝐾′𝑓(𝑥))(𝐾′𝑓(𝑦)) =  𝑔(𝑥) 𝑔(𝑦). 

This implies, 𝒈 is homomorphism. 

For 𝐾′𝑦 ∈ 𝐺′/𝐾′ ; 𝑦 ∈ 𝐺′ 

The function 𝑓: 𝐺 → 𝐺′ is onto 

Therefore, there exist 𝑥 ∈ 𝐺 such that 𝑓(𝑥) = 𝑦 

Consider 𝑔(𝑥) = 𝐾′𝑓(𝑥) = 𝐾′𝑦 

Thus 𝒈 is onto. 

By Fundamental theorem of Homomorphism, 𝑮/𝑲ⅇ𝒓 𝒈 ≅ 𝑮′/𝑲′ 

𝑲ⅇ𝒓 𝒈 = {𝒙 ∈ 𝑮|𝒈(𝒙) = 𝑲′} 

 
= {𝑥 ∈ 𝐺|𝐾′𝑓(𝑥) = 𝐾′} 

 
= {𝑥 ∈ 𝐺|𝑓(𝑥) ∈ 𝐾′} 

 
= 𝐾 

Hence 𝐺/𝐾 ≅ 𝐺′/𝐾′ 

Theorem 1.4.21 (Second theorem of Isomorphism): Let H be a normal subgroup of a group 𝐺 and 𝐾 

is any subgroup of 𝐺.  Then 𝐾/(𝐻 ∩ 𝐾) ≅ 𝐻𝐾/𝐻. 

Proof: 

Since 𝐻 is a normal subgroup of 𝐺, 𝐻𝐾 = 𝐾𝐻. Consequently, 𝐻𝐾 is a subgroup of 𝐺 and thus 𝐻 is a 

normal subgroup of 𝐻𝐾. Therefore, 𝐻𝐾/𝐻 is defined. 

Define 𝑓: 𝐾 → 𝐻𝐾/𝐻 by 𝑓(𝑘) = 𝐻𝑘 

For 𝑘1, 𝑘2 ∈ 𝐾  

𝑓(𝑘1𝑘2) = 𝐻𝑘1𝑘2 = (𝐻𝑘1)(𝐻𝑘2) = 𝑓(𝑘1)𝑓(𝑘2) 

This implies 𝑓 is homomorphism. 

Let 𝐻𝑎 ∈ 𝐻𝐾/𝐻 

⇒ 𝑎 ∈ 𝐻𝐾 ⇒ 𝑎 = ℎ𝑘 for ℎ ∈ 𝐻, 𝑘 ∈ 𝐾 

Consider 𝑓(𝑘) = 𝐻𝑘 = 𝐻ℎ𝑘 = 𝐻𝑎 

Hence 𝑓 is onto. 

By Fundamental theorem of homomorphism 𝑲/𝑲ⅇ𝒓 𝒇 ≅ 𝑯𝑲/𝑯 

𝑲ⅇ𝒓 𝒇 = {𝒙 ∈ 𝑲|𝒇(𝒙) = 𝑯} 

             = {𝑥 ∈ 𝐾|𝐻𝑥 = 𝐻} 

           = {𝑥 ∈ 𝐾|𝑥 ∈ 𝐻} = 𝐻 ∩ 𝐾 

This implies, 𝐾/𝐻 ∩ 𝐾 ≅ 𝐻𝐾/𝐻. 

Theorem 1.4.22 (Freshmen’s theorem): Let H and 𝐾 be two normal subgroups of a group 𝐺 such that 

𝐻 ⊂ 𝐾.  Then 𝐾/𝐻 is a normal subgroup of 𝐺/𝐻 and  

𝐺/𝐾 ≅  

𝐺
𝐻
𝐾
𝐻

  

Proof: 

Let 𝐻𝑘 ∈ 𝐾/𝐻 and 𝐻𝑔 ∈ 𝐺/𝐻 

Consider (𝐻𝑔)−1(𝐻𝑘)(𝐻𝑔) = 𝐻𝑔−1𝑘𝑔 

Since 𝐾 is a normal subgroup of 𝐺 therefore, 𝑔−1𝑘𝑔 ∈ 𝐾 ∀ 𝑔 ∈ 𝐺, 𝑘 ∈ 𝐾 
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Therefore 𝐻𝑔−1𝑘𝑔 ∈ 𝐾/𝐻 

That proves that 𝑲/𝑯 is a normal subgroup of 𝑮/𝑯. 

Define 𝑓: 𝐺 → 𝐺/𝐻 defined by 𝑓(𝑥) = 𝐻𝑥 then 𝑓 is onto homomorphism. 

Consider 𝑓−1(𝐾/𝐻) = {𝑥 ∈ 𝐺|𝐻𝑥 ∈ 𝐾/𝐻} = 𝐾. 

By the first theorem of isomorphism, we get the desired result. 

 

 
Task: Show that identity map defined on any group 𝐺 is automorphism on 𝐺 

Show that zero map defined on a group 𝐺 is always a homomorphism but not 

isomorphism. 

 

1.5 Permutation Groups and groups of integers modulo n 

The Permutation / Symmetric Group 

Theorem 1.5.1: Let 𝑆 be a non-empty set. Then the collection 𝐺 of all invertible functions from 𝑆 to 

itself is a group under the composition of composite maps.  

Proof: 

Closure: For 𝑓, 𝑔 ∈ 𝐺 

𝑓 and 𝑔 are invertible functions from set 𝑆 to itself. 

Then by definition of the composite map, 𝒇 ∘ 𝒈 is a function from 𝑺 to itself. 

Consider  𝑓 ∘ 𝑔(𝑥) = 𝑓 ∘ 𝑔(𝑦) for some 𝑥, 𝑦 ∈ 𝑆 

This implies 𝑓(𝑔(𝑥)) = 𝑓(𝑔(𝑦)) 

Since 𝑓 is one-one 𝑔(𝑥) = 𝑔(𝑦) 

Also, 𝑔 is one-one 𝑥 = 𝑦 

This implies, 𝒇 ∘ 𝒈 is one-one 

Let 𝑥 ∈ 𝑆, since 𝑓: 𝑆 → 𝑆 is onto 

Therefore, there exists 𝑦 ∈ 𝑆 such that 𝑓(𝑦) = 𝑥 

Also, 𝑔: 𝑆 → 𝑆 is onto 

Therefore, there exists 𝑧 ∈ 𝑆 such that 𝑔(𝑧) = 𝑦 

That is 𝑓(𝑔(𝑧)) = 𝑓(𝑦) = 𝑥 

Hence, 𝒇 ∘ 𝒈 is onto. 

This implies 𝒇 ∘ 𝒈 ∈ 𝑮. 

Associativity holds trivially as the composite map composition is associative. 

Identity of the set 𝐺 is given by the identity map on set 𝑆. 

Inverse For each function 𝑓 on 𝑆, since 𝑓 is invertible. Therefore, for every 𝑥 ∈ 𝑆, there exists an 

element 𝑦 ∈ 𝑆 such that 𝑓(𝑦) = 𝑥. Define a map 𝑔: 𝑆 → 𝑆 as 𝑔(𝑥) = 𝑦 if and only if 𝑓(𝑦) = 𝑥.  

Then 𝑔 = 𝑓−1 is one-one and onto function from 𝑆 to itself. 

That proves that 𝐺 is a group. 

Now, we proceed to the concept of symmetric groups as under. 

Let 𝑆 be a finite set having 𝑛 elements. Then the corresponding group 𝐺 as defined above is called 

the symmetric group on 𝑛 symbols and it is denoted as 𝑆𝑛. Any function in 𝑆𝑛 is called a permutation.  

Number of Permutations on 𝒏 symbols 

Let 𝑆 = {1, 2, … , 𝑛} and 𝑓 be any permutation on 𝑆. Then 𝑓(1) has 𝑛 choices. Once 𝑓(1) is fixed 𝑓(2) 

now has 𝑛 − 1 choices and so on we get that total choices of function 𝑓 are 𝑛(𝑛 − 1)(𝑛 − 2) … 1 = 𝑛! 

Therefore, the number of permutations on a set of 𝑛 symbols is 𝑛!. So, 𝑂(𝑆𝑛) = 𝑛!. 

Representation of a permutation 
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Let 𝑓 ∈ 𝑆𝑛. 𝑓 can be represented in two different ways. 

Method I: Two-row representation 

 

𝑓 =  (
1 2 3

𝑓(1) 𝑓(2) 𝑓(3)
… …

𝑛
𝑓(𝑛)) 

For example, Let 𝑛 = 4 

Let 𝑓 be a permutation on 𝑆4, given by 𝑓(1) = 3, 𝑓(2) = 1, 𝑓(3) = 4, 𝑓(4) = 2 

Then 𝑓 is represented as a two-row form 

𝑓 =  (
1 2
3 1

3 4
4 2

) 

 

Method II: One-row representation 

In one row representation, a permutation is written as (1 𝑓(1) … … ) 

For example, let 𝑓 be a permutation on 𝑆4, given by 𝑓(1) = 3, 𝑓(2) = 1, 𝑓(3) = 4, 𝑓(4) = 2 

Then 𝑓 is represented as a one-row form (1 3 4 2) 

In one row representation, fixed elements are not explicitly included 

For example, let 𝑓 be a permutation on 𝑆4, given by 𝑓(1) = 3, 𝑓(2) = 2, 𝑓(3) = 4, 𝑓(4) = 1 

Then 𝑓 is represented as a one-row form (1 3 4). 

Definition 1.5.2: In one-row representation, 𝑓 = (ⅈ1 ⅈ2 ⅈ3 … … ⅈ𝑘) where 𝑓(ⅈ1) = ⅈ2, 𝑓(ⅈ2) =

ⅈ3, … , 𝑓(ⅈ𝑘−1) = ⅈ𝑘 , 𝑓(ⅈ𝑘) = ⅈ1 is called a cycle and the number of distinct terms in a cycle is called the 

length of the cycle. 

Definition 1.5.3: A cycle of length 2 is called a transposition. 

Every permutation can be expressed as a product of either even or odd number of transpositions. 

The permutation which can be expressed as even (odd) number of transpositions is called even (odd) 

permutation.  

 

 
Example 1.5.4: The permutation 𝐼 is an even permutation. 

Proof: 

For 𝐼 ∈ 𝑆𝑛, 

For any two symbols 𝑛, 𝑚 such that 𝑛 ≠ 𝑚 

Let 𝑓 be any permutation 𝑓 =  (𝑛 𝑚), 𝑓(𝑝) = 𝑝 for every 𝑝 ≠ 𝑛, 𝑚 

Then 𝑓𝑜𝑓(𝑛) = 𝑓(𝑓(𝑛)) = 𝑓(𝑚) = 𝑛 

𝑓𝑜𝑓(𝑚) = 𝑓(𝑓(𝑚)) = 𝑓(𝑛) = 𝑚. 

For 𝑝 ≠ 𝑛, 𝑚 ; 𝑓𝑜𝑓(𝑝) = 𝑓(𝑓(𝑝)) = 𝑓(𝑝) = 𝑝. 

That is, 𝑓𝑜𝑓 = 𝐼. 

𝐼 = 𝑓𝑜𝑓 = (𝑛 𝑚)(𝑛 𝑚) i.e., the product of an even number of transpositions. 

Therefore, 𝐼 is an even permutation. 

Definition 1.5.5:  Half of the permutations in 𝑆𝑛 are even and the other half are odd permutations. If 

we collect all the odd permutations then since 𝐼 is an even permutation, therefore, 𝐼 does not belong 

to the set of odd permutations therefore, it is not a group. 

Definition 1.5.6: Set of all even permutations forms a group under the composition of composite 

maps. This group is called the Alternating group. We denote this group on 𝑛 symbol by 𝐴𝑛 and  

𝑂(𝐴𝑛) =
𝑛!

2
. 

Group of integers under addition modulo 𝒏 

Consider the set of integers 𝑍 and 𝑛 ∈ 𝑁. Let us define the relation of congruence on 𝑍 by 𝑎 is 
congruent to 𝑏 modulo 𝑛 if and only if 𝑛 divides 𝑎 − 𝑏  and we denote it as 𝑎 ≡ 𝑏. For example, 4  1 
(mod 3), since 3 divides 4 − 1. It can be seen easily that  
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≡ is an equivalence relation, and hence partitions 𝑍 into disjoint equivalence classes called 
congruence classes modulo 𝑛. We denote the class containing 𝑟 by �̅�.  

Thus �̅� = {𝑚 ∈ 𝑍| 𝑚 ≡ 𝑟(𝑚𝑜𝑑 𝑛)} 

So, an integer 𝑚 belongs to �̅�  for some 𝑟,  0 ≤ 𝑟 < 𝑛, iff 𝑛 divides 𝑟 − 𝑚, i.e., if and only if 𝑟 − 𝑚 =
𝑛𝑘 for some 𝑘 ∈  𝑍. 

�̅� = {𝑟 + 𝑘𝑛|𝑘 ∈ 𝑍} 

Now, if 𝑚 ≥  𝑛, then the division algorithm says that 𝑚 =  𝑛𝑞 +  𝑟 for some 𝑞, 𝑟 ∈  𝑍, 0 ≤  𝑟 <  𝑛. 
That is, 𝑚 ≡  𝑟 (𝑚𝑜𝑑 𝑛), for some 𝑟 =  0, 1, . . . , 𝑛 − 1. Therefore, all the congruence classes modulo 𝑛 

are 0̅, 1̅, … … 𝑛 − 1̅̅ ̅̅ ̅̅ ̅. Let 𝑍𝑛 = {0̅, 1̅, … … 𝑛 − 1̅̅ ̅̅ ̅̅ ̅}. We define the composition on 𝑍𝑛 as �̅� + �̅� =

𝑎 + 𝑏̅̅ ̅̅ ̅̅ ̅ ∀ �̅�, �̅� ∈ 𝑍𝑛. 

Theorem 1.5.7: 𝑍𝑛 is a group under the composition defined as �̅� + �̅� = 𝑎 + 𝑏̅̅ ̅̅ ̅̅ ̅ ∀  �̅�, �̅� ∈ 𝑍𝑛 .          

Proof:  

Closure: For �̅�, �̅� ∈ 𝑍𝑛 

Then �̅� + �̅� = 𝑎 + 𝑏̅̅ ̅̅ ̅̅ ̅ 

Case I: If 𝑎 + 𝑏 < 𝑛 

Then clearly 𝑎 + 𝑏̅̅ ̅̅ ̅̅ ̅ ∈ 𝑍𝑛 

Case II: If 𝑎 + 𝑏 ≥ 𝑛 

Divide 𝑎 + 𝑏 by 𝑛, there exist unique integers 𝑞, 𝑟 such that 

𝑎 + 𝑏 = 𝑛𝑞 + 𝑟 where 0 ≤ 𝑟 ≤ 𝑛 

This implies  

𝑎 + 𝑏 − 𝑟 = 𝑛𝑞 

That is 𝑛 divides 𝑎 + 𝑏 − 𝑟 

𝑎 + 𝑏 ≡ 𝑟(𝑚𝑜𝑑 𝑛) 

𝑎 + 𝑏̅̅ ̅̅ ̅̅ ̅ =  �̅� ∈ 𝑍𝑛 

Therefore, 𝑍𝑛 is closed under this composition. 

Associative: 

For �̅�, �̅�, 𝑐̅ ∈ 𝑍𝑛 

�̅� + (�̅� + 𝑐̅) =  �̅� + 𝑏 + 𝑐̅̅ ̅̅ ̅̅ ̅ =  𝑎 + (𝑏 + 𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) =  (𝑎 + 𝑏) + 𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  (𝐼𝑛𝑡𝑒𝑔𝑒𝑟𝑠 𝑎𝑟𝑒 𝑎𝑠𝑠𝑜𝑐ⅈ𝑎𝑡ⅈ𝑣𝑒 𝑢𝑛𝑑𝑒𝑟 𝑎𝑑𝑑ⅈ𝑡ⅈ𝑜𝑛) 

          = 𝑎 + 𝑏̅̅ ̅̅ ̅̅ ̅ + 𝑐̅ = (�̅� + �̅�) + 𝑐̅ 

Therefore, 𝑍𝑛 is associative. 

Existence of Identity: For �̅� ∈ 𝑍𝑛,  �̅� ∈ 𝑍𝑛 such that 

�̅� + 0̅ = 𝑎 + 0̅̅ ̅̅ ̅̅ ̅ = �̅� = 0 + 𝑎̅̅ ̅̅ ̅̅ ̅ = 0̅ + �̅� 

That is, 𝑍𝑛 has an identity element. 

Existence of Inverse: For �̅� ∈ 𝑍𝑛,  

We know that 0 ≤ 𝑎 < 𝑛 so that 0 ≤ 𝑛 − 𝑎 < 𝑛; 𝑛 − 𝑎̅̅ ̅̅ ̅̅ ̅ ∈ 𝑍𝑛 

Also, �̅� + 𝑛 − 𝑎̅̅ ̅̅ ̅̅ ̅ = 𝑎 + 𝑛 − 𝑎̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = �̅� = 0̅ and 𝑛 − 𝑎̅̅ ̅̅ ̅̅ ̅ + �̅� = 𝑛 − 𝑎 + 𝑎̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = �̅� = 0̅. 

Inverse exists for each element of 𝑍𝑛. 

Therefore, 𝑍𝑛 is a group under the composition addition modulo 𝑛. 

Remark 5: 𝑍𝑛 is not a group under multiplication modulo 𝑛. 

Consider, 𝑛 = 6; 2,̅  3̅ ∈ 𝑆6 both are non-zero but 2̅ ⋅ 3̅ = 6̅ = 0̅ so 𝑆6 is not a group under 
multiplication modulo 𝑛. 
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Task: Prove that 𝑍5 − {0} is a group under multiplication modulo 5. 

Summary 

• A binary operation is defined and its types are explained  

• Groups and subgroups are defined and elaborated with the help of examples 

• Coset and its properties are discussed 

• Lagrange’s Theorem is stated and proved 

• The order of an element is defined and related theorems are proved 

• Cyclic groups are defined and for a given group G, construction of a quotient group is done 

• A homomorphism from a group G to some group G’ is explained  

• Isomorphic groups and their properties are discussed 

Keywords  

• Binary operations on a set 

• Semi-group 

• Group 

• Cyclic group 

• Homomorphisms 

• Order of element of a group 

Self-assessment  

Choose the most suitable answer from the options given with each question. 

 

Question 1: Which of the following algebraic structures is NOT a semi-group? 

A: (Q, +) 

B: (Q, ∙ ) 

C: (Z, +) 

D: (Z, −) 

 

Question 2: Which of the following is not a binary operation on Z? 

A: Addition 

B: Multiplication 

C: Division 

D: Subtraction 

 

Question 3: A monoid is called a group if 

A: it satisfies the associative property 

B: it has an identity element 

C: inverse of each element exists 

D: all above should exist 

Question 4:  Let 𝑮 be a group of order 𝒏 and 𝒂 ∈ 𝑮. Then 

A: 𝑂(𝑎) = 𝑛 

B: 𝑂(𝑎) < 𝑛 

C: 𝑂(𝑎) is a multiple of 𝑛 

D: 𝑂(𝑎) is a divisor of 𝑛 

Question 5:  Let 𝑮 be a cyclic group of order 𝒏 and 𝑮 = < 𝒂 >. Then 

A: 𝑂(𝑎) = 𝑛 

B: 𝑂(𝑎) < 𝑛 
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C: 𝑂(𝑎) > 𝑛 

D: 𝑂(𝑎) is a proper divisor of 𝑛 

Question 6: True/False Number of generators of a cyclic group is unique 

A: True 

B: False 

Question 7: Let 𝑮 be a group. Let 𝒂 ∈ 𝑮 such that 𝑶(𝒂) = 𝟓. Then 𝑶(𝒂𝟑) is ……. 

A: 2 

B: 3 

C: 4 

D: 5  

Question 8: Let 𝑮  be a group and 𝒂 ∈ 𝑮 such that 𝑶(𝒂) = 𝟑𝟐. Then 𝒂𝟏𝟎𝟎 is ……. 

A: 𝑎4 

B: 𝑎3 

C: 𝑎2 

D: 𝑎 

Question 9: Let 𝑮 be a group of order 30. Then 𝑮 can not have an element of order 

A: 2 

B: 3 

C: 7 

D: 6  

Question 10: Let 𝒁(𝑮) denote the center of group 𝑮. Then 𝒁(𝑮) is 

A: a subgroup of 𝐺 but not a normal subgroup of 𝐺. 

B: a normal subgroup of 𝐺. 

C: a cyclic subgroup of 𝐺. 

D: is non-abelian. 

Question 11: Consider the group G of all integers then which of the following is an automorphism 
on 𝑮. 

A: 𝑓(𝑥) = 𝑥 + 1 

B: 𝑓(𝑥) = 𝑥2 

C: 𝑓(𝑥) = 3 

D: 𝑓(𝑥) = 2𝑥 

Answers:  

1 D 2 C 3 D 

4 D 5 A 6 B 

7 D 8 A 9 C 

10 B 11 D   
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Review Questions 

1) Consider the set S = {1, 𝜔, 𝜔2} consisting of cube roots of unity. Prove that it is a finite group under 

the composition of multiplication of complex numbers. 

2) Let 𝑄+ denotes the set of positive rational numbers. Define ∗ on 𝑄+ as 𝑎 ∗ 𝑏 =
𝑎𝑏

3
 for all 𝑎, 𝑏 ∈ 𝑄+. 

Verify that (𝑄+,∗) is an abelian group. 

3) Give an example of a non-abelian group. 

4) Determine which of the following systems are groups. Give reasons why the remaining are not 

groups 

(i) The set G of all non-singular matrices of order 𝑛 over complex numbers under matrix multiplication 

(ii) Set of Natural numbers under addition 

(iii) Set of real numbers under multiplication 

(iv) S= {[
𝑎 𝑎
𝑎 𝑎

] |𝑎 ∈ 𝑅} under the multiplication of matrices 

                                 Also, check which of the above are abelian groups? 

5) Prove that the identity element of a group is always unique. 

6) Calculate ( 1 3)(1 2) in 𝑆3. 

7) Obtain the left and right cosets of 𝐻 = < (1 2) > in 𝑆3. Show that 𝐻𝑥 ≠ 𝑥𝐻 for some 𝑥 ∈ 𝑆3. 

8) Find the order of the following elements  

a) (1 2) ∈ 𝑆3 

b) 𝐼 ∈ 𝑆4 

c) 3̅ ∈ 𝑍4 

d) 1 ∈ 𝑅, 𝑅 denotes the set of real numbers 

9) Prove that if 𝐻 and 𝐾 are normal subgroups of 𝐺, then prove that 𝐻𝐾 is a normal subgroup of 𝐺. 

10) Let 𝑓: 𝑍 → 𝑍 be defined as 𝑓(𝑥) = 2𝑥. Then check whether 𝑓 is homomorphism or not. If yes, find Ker 

𝑓 and Im 𝑓. 

Further Readings 

 

Basic abstract algebra by P. B. Bhattacharya, S. K. Jain, S. R. Nagpal, Cambridge university 
press 

Topics in algebra by I.N. Hartstein, Wiley 

Abstract algebra by David S Dummit and Richard M Foote, Wiley 

 

           https://onlinecourses.nptel.ac.in/noc20_ma29/preview 

           https://nptel.ac.in/courses/111/105/111105112/# 
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Unit 02: Solvable Groups 

CONTENTS 

Expected Learning Outcomes 

Introduction 

2.1 Subnormal Series and Factor Groups 

2.2 Solvable Groups 

2.3 Composition Series 

2.4 Jordan Holder Theorem 

2.5 Nilpotent Groups 

Summary 

Keywords 

Self-assessment 

Review Questions 

 Further Readings 

 

Expected Learning Outcomes 

After studying this unit, you will be able to 

• define and form a subnormal series and check if a subnormal series is solvable or not 

• check whether a group is solvable or not 

• define proper normal subgroups and understand composition series 

• understand isomorphic composition series 

• state and prove Jordan Holder Theorem  

• define nilpotent group and normal series for a group 

• understand nilpotent groups through examples 

• relate nilpotent groups with solvable groups 

 

Introduction 

The word solvable comes from the solvability of polynomials. In terms of solvable groups, more 

specifically in the field of group theory, a solvable group or soluble group is a group that can be 

constructed from abelian groups using extensions. Equivalently, a solvable group is a group 

whose derived series terminates in the trivial subgroup.  

2.1 Subnormal Series and Factor Groups 

Definition 2.1.1: (Subnormal Series) Let 𝐺 be a group. Then a decreasing series 𝐺 = 𝐺0 ⊇ 𝐺1 ⊇ 𝐺2 ⊇

⋯  ⊇ 𝐺𝑛 = {𝑒} is called a subnormal series if 𝐺𝑖+1 is a normal subgroup of 𝐺𝑖 for every 𝑖. Since, 𝐺𝑖+1 is 

a normal subgroup of 𝐺𝑖 for every 𝑖 therefore, 𝐺𝑖/𝐺𝑖+1 is a group and it is called a factor group. We 

write the subnormal series as {𝐺 = 𝐺0, 𝐺1, 𝐺2, … , 𝐺𝑛} in set form. 

 

 

Example 2.1.2:  Let 𝐺 = {1, −1, 𝑖, −𝑖, 𝑗, −𝑗, 𝑘, −𝑘} then 𝐺 is a group under the composition 
of the cross product of vectors. Then 𝐺 has a subnormal series. 
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Solution:  
Consider 𝐺 = {1, −1, 𝑖, −𝑖, 𝑗, −𝑗, 𝑘, −𝑘}, 𝐺1 = {1, −1, 𝑖, −𝑖}, 𝐺2 = {1, −1}, 𝐺3 = {1} 
Then 𝐺 = 𝐺0 ⊇ 𝐺1 ⊇ 𝐺2 ⊇ 𝐺3 = {1} is a decreasing series of subgroups of 𝐺. Also,  

[𝐺: 𝐺1] =
𝑂(𝐺)

𝑂(𝐺1)
=

8

4
= 2 

[𝐺1: 𝐺2] =
𝑂(𝐺1)

𝑂(𝐺2)
=

4

2
= 2 

[𝐺2: 𝐺3] =
𝑂(𝐺2)

𝑂(𝐺3)
=

2

1
= 2 

This implies, 𝐺1 is a normal subgroup of 𝐺, 𝐺2 is a normal subgroup of 𝐺1,

𝐺3 is a normal subgroup of 𝐺2 (Refer to Theorem 1.5.5 for explanation) Therefore, the series is 
subnormal.  
 
The next example shows that the subnormal series is not unique. 
 

 

Example 2.1.3: Let 𝐺 = {1, −1, 𝑖, −𝑖, 𝑗, −𝑗, 𝑘, −𝑘} then 𝐺 is a group under the composition of 
the cross product of vectors. Then 𝐺 has two distinct subnormal series. 

Solution:  
One subnormal series of group 𝐺 is given in Example 2.1.2. 
Let us consider the series 

𝐺 = 𝐻0 ⊇ 𝐻1  ⊇ 𝐻2 ⊇ 𝐻3 = {1} 
where 𝐻1 = {1, −1, 𝑗, −𝑗} and 𝐻2 = {1, −1} 
Then with the same reasoning as given in Example 2.1.2, this is a subnormal series.  
Therefore, subnormal series may not be unique. 
 
Definition 2.1.4: Let 𝐺 be a group and 𝑀 = {𝐺 = 𝐺0, 𝐺1, 𝐺2, … , 𝐺𝑛} and 𝑁 = {𝐺 = 𝐻0, 𝐻1, 𝐻2, … , 𝐻𝑚} be 
two subnormal series of 𝐺. Then 𝑁 is called refinement of 𝑀 if 𝑀 ⊆ 𝑁. For example, in Example 2.1.2, 
we can consider, 𝑀 = {𝐺0, 𝐺2, 𝐺3} and 𝑁 = {𝐺0, 𝐺1, 𝐺2, 𝐺3} then clearly, 𝑁 is a refinement of 𝑀. 
 
Length of Subnormal Series: If in a subnormal series, 𝐺𝑖 = 𝐺𝑖+1 for some 𝑖 then the subnormal series 
is called redundant otherwise it is called irredundant. Removing all the 𝐺𝑖+1, for which 𝐺𝑖 = 𝐺𝑖+1, the 
number of subgroups left in the series is called the length of subnormal series. For example, the 
subnormal series given in Example 2.1.2 is 4. 
 

 

Task: 

Let a group 𝐺 has a subnormal series. Then observe that every subgroup of 𝐺 has at least 
one subnormal series. 

2.2 Solvable Groups 

 
Definition 2.2.1: Let 𝐺 be a group and 𝐺 = 𝐺0 ⊇ 𝐺1 ⊇ ⋯ ⊇ 𝐺𝑛 = {𝑒} be a subnormal series of 𝐺 such 
that 𝐺𝑖/𝐺𝑖+1 is abelian for all 𝑖, then this series is called solvable series and 𝐺 is called solvable group. 
 

 

Example 2.2.2: Any abelian group is solvable. 

Solution: 
Let 𝐺 be an abelian group. Then the series 𝐺 ⊇ {𝑒} is the series and 𝐺/{𝑒} ≅ 𝐺, as 𝐺 is abelian therefore, 
𝐺/{𝑒} is abelian. Hence 𝐺 is solvable. 
 

 

Example 2.2.3: The permutation group on 3 symbols 𝑆3 is solvable. 

Solution: 
The group 𝑆3 = {𝐼, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}. 
Consider 𝐴3 = {𝐼, (1 2 3), (1 3 2)} 
𝐻 = {𝐼}. 
Clearly, 𝑆3 ⊇ 𝐴3 ⊇ 𝐻 = {𝐼} 
Also, [𝑆3: 𝐴3] = 𝑂(𝑆3)/𝑂(𝐴3) = 6/3 = 2. 
Therefore, 𝑆3/𝐴3 is abelian  
Similarly, 𝐴3/𝐻 is abelian 
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Therefore, 𝑆3 is solvable. 
 
Theorem 2.2.4: Subgroup of a solvable group is solvable. 
Proof: 
Let 𝐺 be a solvable group and 

𝐺 = 𝐺0 ⊇ 𝐺1 ⊇ 𝐺2 ⊇ ⋯ ⊇ 𝐺𝑛 = {𝑒} … … … … . (1) 
be a solvable series for 𝐺. 
   
Consider any subgroup 𝐻 of 𝐺 and  
 

𝐻 = 𝐺 ∩ 𝐻 = 𝐺0 ∩ 𝐻 ⊇ 𝐺1 ∩ 𝐻 ⊇ 𝐺2 ∩ 𝐻 ⊇ ⋯ ⊇ 𝐺𝑛 ∩ 𝐻 = {𝑒} … … … … . (2) 
We claim that (2) is solvable series for 𝐻. 

Series (1) represents solvable series for 𝐺. 𝐺𝑖+1 is a normal subgroup of 𝐺𝑖 for all 𝑖. This implies 𝐺𝑖+1 ∩
𝐻 is a normal subgroup of 𝐺𝑖 ∩ 𝐻. 

Let 𝐺𝑖 ∩ 𝐻 = 𝐻𝑖 

Again, 𝐺𝑖/𝐺𝑖+1 is abelian for all 𝑖. 

Define 𝑓: 𝐻𝑖 → 𝐺𝑖/𝐺𝑖+1 as 

𝑓(𝑥) = 𝐺𝑖+1𝑥 for all 𝑥 ∈ 𝐻𝑖 

𝒇 is homomorphism: 

For 𝑥, 𝑦 ∈ 𝐻𝑖 

𝑓(𝑥𝑦) = 𝐺𝑖+1𝑥𝑦 = 𝐺𝑖+1𝑥 𝐺𝑖+1𝑦 = 𝑓(𝑥)𝑓(𝑦) 

Therefore, 𝑓 is a homomorphism. 

Kernel 𝒇 

Let 𝑥 ∈ 𝐾𝑒𝑟 𝑓 ⊂ 𝐻𝑖 
𝑥 ∈ 𝐻𝑖 and 𝑓(𝑥) = 𝐺𝑖+1 
𝐺𝑖+1𝑥 = 𝐺𝑖+1 ⇒ 𝑥 ∈ 𝐺𝑖+1 ⇒ 𝑥 ∈ 𝐺𝑖+1 ∩ 𝐻 = 𝐻𝑖+1. 
𝐾𝑒𝑟 𝑓 ⊆ 𝐻𝑖+1. 
 
Let 𝑥 ∈ 𝐻𝑖+1 = 𝐺𝑖+1 ∩ 𝐻 
𝑥 ∈ 𝐺𝑖+1 ⇒ 𝐺𝑖+1𝑥 = 𝐺𝑖+1 ⇒ 𝑓(𝑥) = 𝐺𝑖+1 ⇒ 𝑥 ∈ 𝐾𝑒𝑟 𝑓. 
Therefore, 𝐻𝑖+1 ⊆ 𝐾𝑒𝑟 𝑓 
Hence 𝐾𝑒𝑟 𝑓 = 𝐻𝑖+1 
 
By the fundamental theorem of homomorphism 

𝐻𝑖

𝐻𝑖+1
≅ 𝑓(𝐻𝑖) 

and 𝑓(𝐻𝑖) is a subgroup of 𝐺𝑖/𝐺𝑖+1. 

Since 
𝐺𝑖

𝐺𝑖+1
 is abelian for all 𝑖 and subgroup of an abelian group is abelian. That is, 𝑓(𝐻𝑖) is abelian and 

being isomorphic to 𝑓(𝐻𝑖), the factor group 𝐻𝑖/𝐻𝑖+1 is abelian for all 𝑖.  
Hence every factor group in series (2) is abelian and series (2) is solvable series for 𝐻. 
Therefore, every subgroup of a solvable group is solvable. 
 
Theorem 2.2.5: Let 𝐻 be a normal subgroup of 𝐺. If 𝐺 is solvable then 𝐺/𝐻 is solvable. 
Proof: 

Let 𝐺 be a solvable group and 
𝐺 = 𝐺0 ⊇ 𝐺1 ⊇ 𝐺2 ⊇ ⋯ ⊇ 𝐺𝑛 = {𝑒} … … … … . (1) 

be a solvable series for 𝐺. 
Consider the series  

𝐺

𝐻
=

𝐺0

𝐻
⊇

𝐺1𝐻

𝐻
⊇

𝐺2𝐻

𝐻
⊇ ⋯ ⊇

𝐺𝑛𝐻

𝐻
= 𝐻 … … … … . . (2) 

We claim that the series (2) is solvable series for 𝐺/𝐻. 
Since 𝐺𝑖+1 is a normal subgroup of 𝐺𝑖 for all 𝑖. 
Let 𝑥 ∈ 𝐺𝑖𝐻 ⇒ 𝑥 = 𝑔ℎ; 𝑔 ∈ 𝐺𝑖 , ℎ ∈ 𝐻 
Then 𝑥𝐺𝑖+1𝐻 = 𝑔ℎ𝐺𝑖+1𝐻 = 𝑔ℎ𝐻𝐺𝑖+1 = 𝑔𝐻𝐺𝑖+1 = 𝑔𝐺𝑖+1𝐻 = 𝐺𝑖+1𝑔𝐻 = 𝐺𝑖+1𝑔ℎ𝐻 = 𝐺𝑖+1𝐻𝑔ℎ =
𝐺𝑖+1𝐻𝑥. 
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𝑥𝐺𝑖+1𝐻 = 𝐺𝑖+1𝐻𝑥 for all 𝑥 ∈ 𝐺𝑖𝐻. 
This implies that 𝐺𝑖+1𝐻  is a normal subgroup of 𝐺𝑖𝐻. 
Using Theorem 1.8.22, we get that 

𝐺𝑖𝐻

𝐺𝑖+1𝐻
≅

𝐺𝑖𝐻
𝐻

𝐺𝑖+1𝐻
𝐻

 

Now define a function 𝑓: 𝐺𝑖 →
𝐺𝑖𝐻

𝐺𝑖+1𝐻
 as 𝑓(𝑥) = 𝐺𝑖+1𝐻𝑥 for all 𝑥 ∈ 𝐺𝑖 . 

 
Then 𝑓 is a homomorphism. 
For all 𝑦 ∈ 𝐺𝑖𝐻, 𝑦 = 𝑔ℎ; 𝑔 ∈ 𝐺𝑖 , ℎ ∈ 𝐻 

𝐺𝑖+1𝐻𝑦 = 𝐺𝑖+1𝐻ℎ𝑔 = 𝐺𝑖+1𝐻𝑔 = 𝑓(𝑔) 
Therefore, 𝑓 is onto. 
Let 𝑥 ∈ 𝐺𝑖+1 ⇒ 𝑓(𝑥) = 𝐺𝑖+1𝐻𝑥 = 𝐺𝑖+1𝑥𝐻 = 𝐺𝑖+1𝐻 (Since 𝐻 is a normal subgroup of 𝐺, 𝐻𝑥 = 𝑥𝐻 ∀ 𝑥 ∈
𝐺 
So, 𝑓(𝑥) is the identity element of the codomain set. 
This proves that 𝐺𝑖+1 ⊆ 𝐾𝑒𝑟 𝑓 
Define a function  

𝑓̅: 
𝐺𝑖

𝐺𝑖+1
→

𝐺𝑖𝐻

𝐺𝑖+1𝐻
 

 as 

𝑓̅(𝐺𝑖+1𝑥) = 𝐺𝑖+1𝐻𝑥 

𝑓 ̅is homomorphism and onto. Thus 
𝐺𝑖𝐻

𝐺𝑖+1𝐻
 is a homomorphic image of abelian group 

𝐺𝑖

𝐺𝑖+1
. This proves 

that 𝐺/𝐻 is solvable. Hence quotient group of a solvable group is solvable. 
 
Theorem 2.2.6: Let 𝐻 be a normal subgroup of 𝐺. If both 𝐻 and 𝐺/𝐻 are solvable then 𝐺 is solvable. 
Proof: 
Given that 𝐺/𝐻 is a solvable group. 

Let 
𝐺

𝐻
=

𝐺0

𝐻
⊇

𝐺1

𝐻
⊇

𝐺2

𝐻
⊇ ⋯ ⊇

𝐺𝑡

𝐻
= {𝐻} is the solvable series for 

𝐺

𝐻
. 

This implies that 
𝐺𝑖+1

𝐻
 is a normal subgroup of 

𝐺𝑖

𝐻
 and 

𝐺𝑖/𝐻

𝐺𝑖+1/𝐻
 is abelian for all 𝑖. 

Again, 
𝐺𝑖+1

𝐻
 is a normal subgroup of 

𝐺𝑖

𝐻
 implies 𝐺𝑖+1 is a normal subgroup of 𝐺𝑖 containing 𝐻. 

Also,  

𝐺𝑖

𝐺𝑖+1
≅

𝐺𝑖
𝐻

𝐺𝑖+1

𝐻

 

Therefore, 
𝐺𝑖

𝐺𝑖+1
 is abelian for every 𝑖. 

That is 𝐺 = 𝐺0 ⊇ 𝐺1 ⊇ 𝐺2 ⊇ ⋯ ⊇ 𝐺𝑡 = 𝐻 is such that 
𝐺𝑖 

𝐺𝑖+1
 is abelian for all 𝑖. 

Given that 𝐻 is solvable. 
Let 𝐻 = 𝐻0 ⊇ 𝐻1 ⊇ ⋯ ⊇ 𝐻𝑛 = {𝑒} is a solvable series for 𝐻. 
Consider  

𝐺 = 𝐺0 ⊇ 𝐺1 ⊇ 𝐺2 ⊇ ⋯ ⊇ 𝐺𝑡 = 𝐻 = 𝐻0 ⊇ 𝐻1 ⊇ ⋯ ⊇ 𝐻𝑛 = {𝑒} 
Then it is clearly a solvable series for 𝐺. Therefore, 𝐺 is solvable. 
 
Definition 2.2.7: Let 𝐺1, 𝐺2, … , 𝐺𝑛 be 𝑛 groups with their respective compositions ∗1,∗2, … ,∗𝑛. Then 
𝐺 = 𝐺1 × 𝐺2 × … × 𝐺𝑛 is called the direct product of 𝐺1, 𝐺2, … , 𝐺𝑛. Any 𝑥 ∈ 𝐺; 𝑥 = (𝑥1, 𝑥2, … 𝑥𝑛); 𝑥𝑖 ∈ 𝐺𝑖. 
Then 𝐺 is a group under the composition 

(𝑥1, 𝑥2, … , 𝑥𝑛) ∗ (𝑦1, 𝑦2, … , 𝑦𝑛) = (𝑥1 ∗1 𝑦1, 𝑥2 ∗2 𝑦2, … , 𝑥𝑛 ∗𝑛 𝑦𝑛) 
For example, let 𝐺1 = (𝑍, +), 𝐺2 = (𝐺, ×) where 𝐺 = {2𝑛|𝑛 ∈ 𝑍} 
Then 𝐺 = 𝐺1 × 𝐺2 = {(𝑥, 𝑦)|𝑥 ∈ 𝑍, 𝑦 ∈ 𝐺} 

(𝑥1, 𝑥2) ∗ (𝑦1, 𝑦2) = (𝑥1 + 𝑦1, 𝑥2𝑦2) 
Identity of 𝐺 is (0, 1). 
 
Theorem 2.2.8: Let 𝐻 and 𝐾 be two subgroups of a group 𝐺 and 𝐺 = 𝐻 × 𝐾. Then 𝐺 is solvable if and 
only if 𝐻 and 𝐾 are solvable. 
Proof: 

Let 𝐺 is solvable group. 𝐻 × {𝑒} is a subgroup of 𝐺. 
 

𝐻 × {𝑒} = {(ℎ, 𝑒)|ℎ ∈ 𝐻} 
 
Since 𝐺 is solvable and a subgroup of a solvable group is solvable. Therefore, 𝐻 × {𝑒} is solvable. 
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Define a function 𝑓: 𝐻 → 𝐻 × {𝑒} as 
𝑓(ℎ) = (ℎ, 𝑒) 

Then for ℎ1, ℎ2 ∈ 𝐻,  
 

𝑓(ℎ1ℎ2) = (ℎ1ℎ2, 𝑒) = (ℎ1, 𝑒)(ℎ2, 𝑒) = 𝑓(ℎ1)𝑓(ℎ2) 
So, 𝒇 is a homomorphism. 
 
For ℎ1, ℎ2 ∈ 𝐻,  

𝑓(ℎ1) = 𝑓(ℎ2) 
⇒ (ℎ1, 𝑒) = (ℎ2, 𝑒) 

⇒ ℎ1 = ℎ2 
Hence 𝒇 is one-one. 

For all (ℎ, 𝑒) ∈ 𝐻 × {𝑒}, ℎ ∈ 𝐻 such that 𝑓(ℎ) = (ℎ, 𝑒) 
Thus, 𝒇 is onto. 

Therefore, 𝐻 ≅ 𝐻 × {𝑒}. 
So, being isomorphic to solvable group 𝐻 × {𝑒}, 𝐻 is solvable. 
Similarly, 𝐾 is solvable. 
Conversely, 

Let 𝐻 and 𝐾 are solvable groups. 
Then as proved 𝐻 × {𝑒} ≅ 𝐻 so. 𝐻 × {𝑒} is solvable. 
𝐻 × {𝑒} is a normal subgroup of 𝐺. 
Also, 𝐺/𝐻 × {𝑒} ≅ 𝐾, which is solvable 
Using Theorem 2.2.6, 𝐺 is solvable. 
 
Definition 2.2.9: Let 𝑝 be a prime number. Then a group 𝐺 is called 𝑝-group if and only if 𝑂(𝑎) =

𝑝𝑘; 𝑘 ∈ 𝑍 ∀ 𝑎 ∈ 𝐺. In this case, 𝑂(𝐺) = 𝑝𝑛 for some integer 𝑛. For example, 𝐺 = {1, −1, 𝑖, −𝑖} is a group 
under the multiplication of complex numbers. Order of 1 is 1 that is 20, 𝑡ℎ𝑒 order of −1 is 2 that is 
21, 𝑡ℎ𝑒 order of 𝑖 and −𝑖 is 4 that is 22. The order of group 𝐺 is 4 that is 22. Hence 𝐺  is a 2-group. 
 
Theorem 2.2.10: Every 𝑝-group is solvable. 
Proof: 

Let 𝐺 be a 𝑝 −group of order 𝑝𝑛 for some integer 𝑛. 
For 𝑛 = 1, 𝐺 is a group of prime order 𝑝. 
Since every group of prime order is cyclic and hence abelian. 
By Theorem 2.2.2, 𝐺 is solvable. 
Let the result is true for all groups 𝐺′ such that 𝑂(𝐺′) = 𝑝𝑚 < 𝑂(𝐺); 𝑂(𝐺) = 𝑝𝑛 
Consider 𝑍(𝐺), the center of group 𝐺 
Since 𝑂(𝐺) = 𝑝𝑛, therefore, 𝑍(𝐺) ≠ {𝑒} 

So, 𝑍(𝐺) is a subgroup of 𝐺, 𝑂(𝑍(𝐺)) < 𝑂(𝐺) 

By Lagrange’s theorem, 𝑂(𝑍(𝐺)) divides 𝑂(𝐺). 

So, 𝑂(𝑍(𝐺)) = 𝑝𝑚, 1 < 𝑚 ≤ 𝑛 

𝑂 (
𝐺

𝑍(𝐺)
) =

𝑝𝑛

𝑝𝑚 = 𝑝𝑛−𝑚 ; 𝑛 − 𝑚 < 𝑛 

By the induction hypothesis, 
𝐺

𝑍(𝐺)
 is solvable. Also, 𝑍(𝐺) is solvable. 

Using Theorem 2.2.6, 𝐺 is a solvable group. Hence every 𝑝 −group is solvable. 
 
Definition 2.2.11: For elements 𝑎, 𝑏 in a group 𝐺. The element 𝑎−1𝑏−1𝑎𝑏 ∈ 𝐺 is called commutator of 
𝒂, 𝒃. We denote it as [𝑎, 𝑏]. The subgroup of 𝐺 generated by all commutator elements is called 
commutator/derived subgroup of 𝐺 and it is denoted as 𝐺′. It can be easily seen that 𝐺′ is a normal 
subgroup of 𝐺.  
 

 

Note: If 𝐺 is abelian then 𝑎𝑏 = 𝑏𝑎 for all 𝑎, 𝑏 ∈ 𝐺 
Hence 𝑎−1𝑏−1𝑎𝑏 = 𝑒 ∀ 𝑎, 𝑏 ∈ 𝐺 
That is 𝐺′ = {𝑒} 

Definition 2.2.12: Denote 𝐺 as 𝐺(0), 𝐺′ as 𝐺(1), (𝐺′)′as 𝐺(2) so on then 𝐺(𝑛) is called 𝑛𝑡ℎ commutator 
subgroup of 𝐺. 
 
Theorem 2.2.13: For any normal subgroup 𝐻 of 𝐺, 𝐺/𝐻 is an abelian group if and only if 𝐺′ ⊆ 𝐻. 
Proof: 
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Let 𝐺/𝐻 is abelian group. 
This implies 𝐻𝑎𝐻𝑏 = 𝐻𝑏𝐻𝑎 ∀ 𝑎, 𝑏 ∈ 𝐺 
⇒ 𝐻𝑎𝑏 = 𝐻𝑏𝑎 ⇒ 𝑎−1𝑏−1𝑎𝑏 ∈ 𝐻 (Using Theorem 1.4.3) 
Hence 𝐺′ ⊆ 𝐻. 
Conversely, Let 𝐺′ ⊆ 𝐻 
⇒ 𝑎−1𝑏−1𝑎𝑏 ∈ 𝐻 ∀ 𝑎, 𝑏 ∈ 𝐺, 
⇒ 𝐻𝑎𝑏 = 𝐻𝑏𝑎 ∀ 𝑎, 𝑏 ∈ 𝐺, 
⇒ 𝐺/𝐻 is abelian. 
 

 

Note: In particular, since 𝐺′ ⊆ 𝐺′ and hence 𝐺/𝐺′ is always abelian. 

Theorem 2.2.14: A group 𝐺 is solvable if and only if 𝐺(𝑛) = {𝑒} for some non-negative integer 𝑛. 
Proof: 

Let 𝐺 be a solvable group. 
Let 𝐺 = 𝐺0 ⊇ 𝐺1 ⊇ 𝐺2 ⊇ ⋯ ⊇ 𝐺𝑛 = {𝑒} be solvable series for 𝐺. 

Claim: 𝐺(𝑘) ⊆ 𝐺𝑘 for all 𝑘 ∈ 𝑁 
We will prove this result by using the principle of mathematical induction 

For 𝑘 = 0, 𝐺(𝑘) = 𝐺(0) = 𝐺 = 𝐺0 = 𝐺𝑘 
So, the result is true for 𝑘 = 0. 

Let the result is true for 𝑘 i.e., 𝐺(𝑘) ⊆   𝐺𝑘 
Now, 𝐺𝑘/𝐺(𝑘+1) is abelian this implies, 𝐺𝑘

′ ⊆ 𝐺𝑘+1 

Also, 𝐺(𝑘+1) = (𝐺(𝑘))′ ⊆ 𝐺𝑘′ ⊆ 𝐺𝑘+1 

Thus, 𝐺(𝑘+1) ⊆ 𝐺𝑘+1 

Therefore, by the induction hypothesis,  𝐺(𝑘) ⊆ 𝐺𝑘 for all 𝑘 = 0, 1,2, … 

𝐺(𝑛) ⊆ 𝐺𝑛 = {𝑒} 

Thus 𝐺(𝑛) = {𝑒}. 
Conversely, 

let  𝐺(𝑛) = {𝑒} 

then 𝐺 = 𝐺(0) ⊇ 𝐺(1) ⊇ 𝐺(2) ⊇ ⋯ ⊇ 𝐺(𝑛) = {𝑒} is subnormal series for 𝐺 such that 𝐺(𝑖)/𝐺(𝑖+1) is 
abelian. 
Therefore, 𝐺 is a solvable group. 
 
Theorem 2.2.15: 𝑆𝑛 is solvable for 𝑛 ≤ 4 and 𝑆𝑛 is not solvable for 𝑛 > 4. 
Proof: 

𝑆2 = {𝐼, (1 2)} being abelian is a solvable group. 
Form Theorem 2.2.3, 𝑆3 is a solvable group. 
Consider the series 𝑆4 ⊇ 𝐴4 ⊇ 𝑉4 ⊇ 𝐴 ⊇ {𝐼},  
where 𝑉4 = {𝐼, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}, 𝐴 = {𝐼, ( 1 2)(3 4)} 

[𝑆4: 𝐴4] = 2, [𝐴4: 𝑉4] = 3, [𝑉4: 𝐴] = 2, [𝐴: {𝐼}] = 2. 
This implies that all the factor groups are abelian. 
Hence 𝑆4 is a solvable group. 
For 𝑛 > 4, 
𝐴𝑛 is a simple non-commutative group, so 𝐴𝑛

′ ≠ {𝐼}. 
However, 𝐴𝑛 is simple, so its only normal subgroups are 𝐴𝑛 and {𝐼}. 

Consequently, 𝐴𝑛
′ = 𝐴𝑛 ⇒ 𝐴𝑛

(2)
= (𝐴𝑛

′ )′ = 𝐴𝑛 . 

In general, 𝐴𝑛
(𝑘)

= 𝐴𝑛 for all positive integers 𝑘, thus 𝐴𝑛
(𝑘)

≠ {𝑒} for all 𝑘. 
Hence, 𝐴𝑛 is not solvable. 
Since subgroup of a solvable group is solvable and a subgroup 𝐴𝑛 is not solvable, therefore, 𝑆𝑛 is not 
solvable. 
 

 

Task:  
1) Prove that every group 𝐺 of order 𝑝𝑞𝑟, 𝑝, 𝑞, 𝑟 are distinct primes is always solvable. 
Discuss the case if 𝑝, 𝑞, 𝑟 are not distinct. 
2) Let 𝐺 be a group with 𝑂(𝐺) = 𝑝2𝑞; 𝑝, 𝑞 are distinct primes. Then prove that 𝐺 has at least 
one solvable series.  
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2.3 Composition Series 

 

In a group 𝐺, the relation of normal subgroups that is, two subgroups 𝐻 and 𝐾 are related 
if and only if 𝐻 is a normal subgroup of 𝐾, is not a transitive relation. 

Definition 2.3.1: Let 𝐺 be a group. Then a normal subgroup 𝐻 of 𝐺 is called maximal normal 
subgroup if there does not exist any 𝐾 of 𝐺 such that 𝐻 ⊂ 𝐾 ⊂ 𝐺; 𝐻 ≠ 𝐾, 𝐾 ≠ 𝐺. 
For example, let 𝐺 = {1, −1, 𝑖, −𝑖}, 𝐻 = {1, −1} 

𝑂 (
𝐺

𝐻
) =

𝑂(𝐺)

𝑂(𝐻)
= 2 

Let 𝐾 be a normal subgroup of 𝐺 such that 𝐻 ⊂ 𝐾 ⊂ 𝐺; 𝐻 ≠ 𝐾, 𝐾 ≠ 𝐺 

⇒
𝑂(𝐺)

𝑂(𝐻)
>

𝑂(𝐺)

𝑂(𝐾)
 

That is, 
𝑂(𝐺)

𝑂(𝐾)
= 1, which is possible only if 𝐺 = 𝐾 but 𝐺 ≠ 𝐾. 

So, our supposition was wrong. 
That is such a normal subgroup 𝐾 does not exist. 
Hence, 𝐻 is the maximal normal subgroup of 𝐺. 
 
Theorem 2.3.2: 𝐻 is a maximal normal subgroup of 𝐺 if and only if 𝐺/𝐻 is simple. 
Proof:  
Any subgroup 𝐾/𝐻 of 𝐺/𝐻 is such that 𝐾 is a subgroup of 𝐺 containing 𝐻. Similarly, any normal 
subgroup 𝐾/𝐻 of 𝐺/𝐻 is such that 𝐾 is a normal subgroup of 𝐺 containing 𝐻. 𝐻 is a maximal normal 
subgroup of 𝐺 implies there does not exist any normal subgroup 𝐾 other than 𝐻 such that 𝐻 ⊂ 𝐾. 
There does not exist any proper normal subgroup of 𝐺/𝐻 this implies 𝐺/𝐻 is simple. 
Conversely, let 𝐺/𝐻 is simple. 
Let there exists some normal subgroup 𝐾 of 𝐺 such that 𝐻 ⊂ 𝐾 ⊂ 𝐺; 𝐾 ≠ 𝐻, 𝐾 ≠ 𝐺. 
This implies that 𝐾/𝐻 is a proper normal subgroup of 𝐺/𝐻 which is a contradiction to the fact that 
𝐺/𝐻 is simple. 
Therefore, 𝐻 is the maximal normal subgroup of 𝐺.     
 
Definition 2.3.3: A group is called a simple group if it has no proper normal subgroup or in other 
words, a simple group has only trivial normal subgroups that are {e} and itself. 
 
Theorem 2.3.4: Every group of prime order is simple. 
Proof: 
Let 𝐺 be a group of order 𝑝; where 𝑝 is a prime number. 
Let 𝐻 be a normal subgroup of 𝐺. Then by Lagrange’s theorem 
Order of 𝐻 divides the order of 𝐺. 
That is 𝑂(𝐺) = 𝑡𝑂(𝐻) for some integer 𝑡. 
Since 𝑂(𝐺) is a prime number, therefore, 𝑡 = 1 or 𝑡 = 𝑝 
If 𝑡 = 1, 𝑂(𝐺) = 𝑂(𝐻), 𝐻 = 𝐺,  
If 𝑡 = 𝑝, 𝑂(𝐻) = 1, 𝐻 = {𝑒}. 
So, there are only two normal subgroups of 𝐺, {𝑒} and 𝐺. 
Hence, 𝐺 is simple. 
 
Definition 2.3.5: Let 𝐺 be a group and 𝐺 = 𝐺0 ⊇ 𝐺1 ⊇ ⋯ ⊇ 𝐺𝑛 = {𝑒} be a subnormal series of 𝐺 such 
that 𝐺𝑖/𝐺𝑖+1 is simple for all 𝑖, then this series is called composition series. This implies 𝐺𝑖+1 is a 
maximal normal subgroup of 𝐺𝑖. 
 

 
Example 2.3.6: Let 𝐺 = < 𝑎 > is a cyclic group of order 24.  

Consider 𝐺 = < 𝑎 > ⊇ < 𝑎2 > ⊇ < 𝑎6 > ⊇ < 𝑎12 > = {𝑒} 

[< 𝑎 >: < 𝑎2 >] = 2, [< 𝑎2 >∶< 𝑎6 >] = 3, [< 𝑎6 >: < 𝑎12 >] = 2, [< 𝑎12 >: {𝑒}] = 2. 

All the indices are prime numbers hence all the factor groups are simple. 

Therefore, the series is composition series. 

 

Definition 2.3.7: Let 𝐺 be a group then two composition series  

𝐺 = 𝐺0 ⊇ 𝐺1 ⊇ 𝐺2 ⊇ ⋯ ⊇ 𝐺𝑛 = {𝑒} 
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and  

𝐺 = 𝐻0 ⊇ 𝐻1 ⊇ 𝐻2 ⊇ ⋯ ⊇ 𝐻𝑚 = {𝑒} 

are called equivalent series if 𝑛 = 𝑚 and  
𝐺𝑖

𝐺𝑖+1
≅

𝐻𝜋(𝑖)

𝐻𝜋(𝑖)+1
 

where 𝜋 is a permutation on {1, 2, 3, … , 𝑛}. 

 

For example,  

𝐺 = < 𝑎 > ⊇ < 𝑎2 > ⊇ < 𝑎6 > ⊇ < 𝑎12 > = {𝑒} … (1) 

and  

𝐺 = < 𝑎 > ⊇ < 𝑎2 > ⊇ < 𝑎6 > ⊇ < 𝑎12 > = {𝑒} … (2) 

 

Factor groups of (1) are < 𝑎 > / < 𝑎2 > , < 𝑎2 > / < 𝑎6 >, < 𝑎6 > / < 𝑎12 >, < 𝑎12 > / {𝑒}. 

Factor groups of (2) are < 𝑎 > / < 𝑎3 > , < 𝑎3 > / < 𝑎6 >, < 𝑎6 > / < 𝑎12 >, < 𝑎12 > / {𝑒}. 

< 𝑎 > / < 𝑎2 > ≅ < 𝑎3 > / < 𝑎6 >, < 𝑎2 > / < 𝑎6 >≅< 𝑎 > / < 𝑎3 >, the rest two factor 

groups are the same. 

Hence (1) and (2) are isomorphic subnormal series. 

 

Theorem 2.3.8: Every finite group with at least two elements has at least one composition 

series. 

Proof: 

Let 𝑂(𝐺) = 𝑛 

Let 𝑛 = 2, 𝐺 = {𝑒, 𝑎}, 𝑎 ≠ 𝑒 

Then 𝐺 ⊇ {𝑒} is the only possible composition series and hence the result is true for 𝑛 = 2. 

Let 𝑛 > 2, 

If 𝐺 is simple then 𝐺 has only one normal subgroup {𝑒} other than 𝐺. Then  𝐺 ⊇ {𝑒} is the 

composition series and hence the result is true in this case. 

If 𝐺 is not simple then 𝐺 will have at least one proper normal subgroup. Let 𝑀 be the proper 

normal subgroup with maximum elements. 𝑀 is maximal normal subgroup this implies 𝐺/𝑀 

is simple; 𝑀 ⊂ 𝐺. Now if 𝑀 is simple then 𝐺 ⊃ 𝑀 ⊃ {𝑒} is the required series. 

If not, then there exists some 𝑀1 such that 𝑀 ⊃ 𝑀1 ⊃ {𝑒} 

Continuing so on, if 𝑀1 is simple then  𝐺 ⊃ 𝑀 ⊃ 𝑀1 ⊃ {𝑒} is the composition series. 

If not, we get some 𝑀2 and so on  

We get 𝐺 ⊃ 𝑀 ⊃ 𝑀1 ⊃ 𝑀2 ⊃ ⋯ ⊃ {𝑒} a composition series for 𝐺. 

Hence 𝐺 has a composition series. 

 

 
Task:  

1) Prove that a field has only one composition series. 

2) Prove that a division ring has a unique composition series. 

2.4 Jordan Holder Theorem 

Theorem 2.4.1: Let 𝐻 and 𝐾 be two subgroups of a group 𝐺 such that 𝑘𝐻 =  𝐻𝑘 for all 𝑘 ∈ 𝐾. 
Then 𝐻𝐾 is a subgroup of 𝐺, 𝐻 is a normal subgroup of 𝐻𝐾, 𝐻 ∩  𝐾 is a normal subgroup of 
𝐾 and  

𝐻𝐾/𝐻 ≅ 𝐾/𝐻 ∩ 𝐾  

Proof: 

Define a function 𝑓: 𝐾 → 𝐻𝐾 ∕ 𝐻 as 𝑓(𝑘) = 𝐻𝑘 ∀ 𝑘 ∈ 𝐾. 
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For 𝑘1, 𝑘2 ∈ 𝐾, 𝑓(𝑘1𝑘2) = 𝐻𝑘1𝑘2 = (𝐻𝑘1)(𝐻𝑘2) = 𝑓(𝑘1)𝑓(𝑘2). 

That is, 𝒇 is a homomorphism. 

∀ 𝐻𝑥 ∈ 𝐻𝐾 𝐻⁄ , 𝑥 ∈  𝐻𝐾; 𝑥 = ℎ𝑘 for some ℎ ∈ 𝐻, 𝑘 ∈ 𝐾 

Then 𝐻𝑥 = 𝐻ℎ𝑘 = 𝐻𝑘 = 𝑓(𝑘) which proves that 𝒇 is onto. 

𝐾𝑒𝑟 𝑓 = {𝑘 ∈ 𝐾|𝑓(𝑘) = 𝐻} 

        = {𝑘 ∈ 𝐾|𝐻𝑘 = 𝐻} 

    = {𝑘 ∈ 𝐾|𝑘 ∈ 𝐻} 

= 𝐻 ∩ 𝐾 

By Fundamental Theorem of Homomorphism, 

𝐾/𝐻 ∩ 𝐾 ≅ 𝐻𝐾/𝐻 

Equivalently,  

𝐻𝐾/𝐻 ≅ 𝐾/𝐻 ∩ 𝐾 

and 𝐻 ∩ 𝐾 being Kernel of a homomorphism is a normal subgroup of 𝐾. 

Theorem 2.4.2: (Zassenhaus) Let 𝐵 and 𝐶 be two subgroups of a group 𝐺. 𝐵0 and 𝐶0 be normal 
subgroups of 𝐵 and 𝐶 respectively, then 

𝐵0(𝐵 ∩ 𝐶)

𝐵0(𝐵 ∩ 𝐶0)
≅

𝐶0(𝐶 ∩ 𝐵)

𝐶0(𝐶 ∩ 𝐵0)
 

Proof: 

Let 𝐾 = 𝐵 ∩ 𝐶, 𝐻 = 𝐵0(𝐵 ∩ 𝐶0) 

Since 𝐵0 is a normal subgroup of 𝐵. 

𝑏𝐵0 = 𝐵0𝑏 ∀ 𝑏 ∈ 𝐵 

In particular since 𝐾 ⊆ 𝐵 

𝑘𝐵0 = 𝐵0𝑘 ∀ 𝑘 ∈ 𝐾 

Also, 𝐶0 is a normal subgroup of 𝐶. 

𝐵 ∩ 𝐶0 is a normal subgroup of 𝐵 ∩ 𝐶 = 𝐾. 

𝑘(𝐵 ∩ 𝐶0) = (𝐵 ∩ 𝐶0)𝑘 ∀ 𝑘 ∈ 𝐾 

Hence 𝐻𝑘 =  𝐵0(𝐵 ∩ 𝐶0)𝑘 = 𝐵0𝑘(𝐵 ∩ 𝐶0) =  𝑘𝐵0(𝐵 ∩ 𝐶0) = 𝑘𝐻 ∀ 𝑘 ∈ 𝐾 

Therefore, using Theorem 2.4.1,  

𝐻𝐾

𝐻
≅

𝐾

𝐻 ∩ 𝐾
… (1) 

Now 𝐻𝐾 =  𝐵0(𝐵 ∩ 𝐶0)(𝐵 ∩ 𝐶) = 𝐵0(𝐵 ∩ 𝐶) (𝐵 ∩ 𝐶0 is a normal subgroup of 𝐵 ∩ 𝐶) 

Further 𝑦 ∈ 𝐻 ∩ 𝐾 ⇒ 𝑦 ∈ 𝐻 , 𝑦 ∈ 𝐾 

⇒ 𝑦 = 𝑏0𝑏; 𝑏0 ∈ 𝐵0, 𝑏 ∈ 𝐵 ∩ 𝐶0 and 𝑦 = 𝑑; 𝑑 ∈ 𝐵 ∩ 𝐶 

⇒  𝑏0𝑏 = 𝑑 ⇒ 𝑏0 = 𝑑𝑏−1 ∈ 𝐵0 ∩ 𝐶 =  𝐶 ∩ 𝐵0 

Therefore, 𝑦 = 𝑏0𝑏 ∈ (𝐶 ∩ 𝐵0)(𝐵 ∩ 𝐶0) 

This implies 𝐻 ∩ 𝐾 ⊆ (𝐶 ∩ 𝐵0)(𝐵 ∩ 𝐶0)  ⊆ 𝐵 ∩ 𝐶 = 𝐾 

Also, 𝐶 ∩ 𝐵0 ⊆ 𝐵0 

⇒  (𝐶 ∩ 𝐵0)(𝐵 ∩ 𝐶0) ⊆ 𝐵0(𝐵 ∩ 𝐶0) = 𝐻 

Therefore, (𝐶 ∩ 𝐵0)(𝐵 ∩ 𝐶0) ⊆ 𝐻 ∩ 𝐾 

𝐻 ∩ 𝐾 = (𝐵 ∩ 𝐶0)(𝐶 ∩ 𝐵0) and 𝐻𝐾 = 𝐵0(𝐵 ∩ 𝐶) 

From (1),  
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𝐵0(𝐵 ∩ 𝐶)

𝐵0(𝐵 ∩ 𝐶0)
≅

𝐵 ∩ 𝐶

(𝐶 ∩ 𝐵0)(𝐵 ∩ 𝐶0)
… (2) 

Interchanging the roles of 𝐵 and 𝐶, we get 

𝐶0(𝐶 ∩ 𝐵)

𝐶0(𝐶 ∩ 𝐵0)
≅

𝐶 ∩ 𝐵

(𝐵 ∩ 𝐶0)(𝐶 ∩ 𝐵0)
… (3) 

Since 𝐵 ∩ 𝐶0 is a normal subgroup of 𝐵 ∩ 𝐶 and 𝐶 ∩ 𝐵0 ⊆ 𝐵 ∩ 𝐶 

Therefore, (𝐵 ∩ 𝐶0)(𝐶 ∩ 𝐵0) = (𝐶 ∩ 𝐵0)(𝐵 ∩ 𝐶0) 

Also, 𝐵 ∩ 𝐶 = 𝐶 ∩ 𝐵 

From (2) and (3), we get that  

𝐵0(𝐵 ∩ 𝐶)

𝐵0(𝐵 ∩ 𝐶0)
≅

𝐶0(𝐶 ∩ 𝐵)

𝐶0(𝐶 ∩ 𝐵0)
 

Theorem 2.4.3: (Schreier’s Refinement theorem) Any two subnormal series of a group 𝐺 have 
equivalent refinements. 

Proof: 

Let 𝐺 be a group and two subnormal series are given by 

𝐺 = 𝐺0 ⊇ 𝐺1 ⊇ 𝐺2 ⊇ ⋯ ⊇ 𝐺𝑠 = {𝑒} … (1) 

and 

𝐺 = 𝐻0 ⊇ 𝐻1 ⊇ 𝐻2 ⊇ ⋯ ⊇ 𝐻𝑡 = {𝑒} … (2) 

That is 𝐺𝑖+1 is a normal subgroup of 𝐺𝑖 for all 𝑖. Similarly, 𝐻𝑖+1 is a normal subgroup of 𝐻𝑖 for 
all 𝑖. 

we get,  

𝐺𝑖,𝑗 = 𝐺𝑖+1(𝐺𝑖 ∩ 𝐻𝑗), 𝑖 = 0,1,2, … , 𝑠 − 1; 𝑗 = 0, 1, 2, … , 𝑡 … (3) 

𝐻𝑘,𝑙 = 𝐻𝑘+1(𝐻𝑘 ∩ 𝐺𝑙), 𝑘 = 0, 1, … , 𝑡 − 1; 𝑙 = 0, 1, 2, … , 𝑠 … (4) 

are subgroups of 𝐺. 

Now  𝐻𝑗+1 is a normal subgroup of 𝐻𝑗 implies that 𝐺𝑖,𝑗+1 is a normal subgroup of 𝐺𝑖,𝑗. Similarly, 

𝐻𝑘,𝑙+1 is a normal subgroup of 𝐻𝑘,𝑙. 

Since 𝐻𝑡 = {𝑒} and 𝐻0 = 𝐺, we have 

𝐺𝑖,𝑡 = 𝐺𝑖+1(𝐺𝑖 ∩ 𝐻𝑡) = 𝐺𝑖+1{𝑒} = 𝐺𝑖+1 … (5) 

Also,  

𝐺𝑖,0 = 𝐺𝑖+1(𝐺𝑖 ∩ 𝐻0) = 𝐺𝑖+1(𝐺𝑖 ∩ 𝐺) = 𝐺𝑖+1𝐺𝑖 = 𝐺𝑖 … (6) 

Thus, 𝐺𝑖,𝑡 = 𝐺𝑖+1 = 𝐺𝑖+1,0 ∀ 𝑖 = 0, 1, 2, … , 𝑠 − 1 

Similarly, 𝐻𝑘,𝑠 = 𝐻𝑘+1 = 𝐻𝑘+1,0 ∀ 𝑘 = 0, 1, 2, … , 𝑡 − 1 

Consider two series 

𝐺 = 𝐺0 = 𝐺0,0 ⊇ 𝐺0,1 ⊇ 𝐺0,2 ⊇ ⋯ ⊇ 𝐺0,𝑡(= 𝐺1 = 𝐺1,0) ⊇ 𝐺1,1 ⊇ 𝐺1,2 ⊇ ⋯ ⊇ 𝐺1,𝑡  (= 𝐺2 = 𝐺2,0)

⊇ ⋯ ⊇ 𝐺𝑠−1,0 ⊇ 𝐺𝑠−1,1 ⊇ ⋯ ⊇ 𝐺𝑠−1,𝑡 = 𝐺𝑠 = {𝑒} … (7)   

and  

𝐺 = 𝐻0 = 𝐻0,0 ⊇ 𝐻0,1 ⊇ 𝐻0,2 ⊇ ⋯ ⊇ 𝐻0,𝑠(= 𝐻1 = 𝐻1,0) ⊇ 𝐻1,1 ⊇ 𝐻1,2 ⊇ ⋯ ⊇ 𝐻1,𝑡  (= 𝐻2 = 𝐻2,0)

⊇ ⋯ ⊇ 𝐻𝑡−1,0 ⊇ 𝐻𝑡−1,1 ⊇ ⋯ ⊇ 𝐻𝑡−1,𝑠 = 𝐻𝑡 = {𝑒} … (8) 

Both (7) and (8) have the same number of terms i.e.; 𝑡𝑠 + 1. 

Clearly, 𝐺0 occurs in (7) and for each 𝑚 = 1, 2, … , 𝑠, as 𝐺𝑚 = 𝐺𝑚−1,𝑡 by (5), we see that each 𝐺𝑚 

occurs in (7). Thus (7) is a refinement of (1). Similarly, (8) is a refinement of (2). 

By Zassenhaus theorem, 

𝐺𝑟,𝑠

𝐺𝑟,𝑠+1
=

𝐺𝑟+1(𝐺𝑟 ∩ 𝐻𝑠)

𝐺𝑟+1(𝐺𝑟 ∩ 𝐻𝑠+1)
≅

𝐻𝑠+1(𝐻𝑠 ∩ 𝐺𝑟)

𝐻𝑠+1(𝐻𝑠 ∩ 𝐺𝑟+1)
=

𝐻𝑠,𝑟

𝐻𝑠,𝑟+1
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for all 𝑟 = 0, 1, 2, … , 𝑠 − 1 and 𝑠 = 0, 1, 2, … . , 𝑡 − 1. 

Thus (7) and (8) are equivalent. 

Theorem 2.4.4: Every simple abelian group is of prime order. 

Proof: 

Let 𝐺 is simple abelian group. This implies that 𝐺 has only two normal subgroups 𝐺 and {𝑒}. 

Since 𝐺 is abelian so every subgroup of 𝐺 is a normal subgroup of 𝐺. 

That is, 𝐺 has only two subgroups 𝐺 and {𝑒}. 

Let 𝑎 ∈ 𝐺, 𝑎 ≠ 𝑒 

Then 𝐻 = < 𝑎 >  is a subgroup of 𝐺. 

This implies, 𝐻 = {𝑒} 𝑜𝑟 𝐺 

Since 𝑎 ≠ 𝑒, 𝐻 ≠ {𝑒} 

Thus 𝐻 = 𝐺 

That is, 𝐺 = 𝐻 = < 𝑎 > 

The group 𝐺 =< 𝑎 > is cyclic. 

Consider 𝐾 = < 𝑎2 > 

Again 𝐾 = {𝑒} 𝑜𝑟 𝐾 = 𝐺 

If 𝐾 = {𝑒} ⇒ 𝑎2 = 𝑒 ⇒ 𝑂(𝑎) = 2 and 𝑂(𝐺) = 2 that is, a prime number. 

If 𝐾 = 𝐺 ⇒ < 𝑎2 > = < 𝑎 >⇒ 𝑎 ∈ < 𝑎2 > ⇒ 𝑎 = 𝑎2𝑖 for some 𝑖 ∈ 𝑍 

⇒ 𝑎2𝑖−1 = 𝑒 ⇒ 𝑂(𝑎) ≤ 2𝑖 − 1 that is 𝑂(𝑎) and hence 𝑂(𝐺) is finite. 

If 𝑂(𝐺) = 𝑟𝑠; 𝑟, 𝑠 ∈ 𝑍, 𝑟, 𝑠 > 0 

then, 𝐺 has at least one subgroup of order 𝑟. 

Since 𝐺 is simple, 𝑟 = 1 or 𝑟 = 𝑂(𝐺) 

That is, any divisor of 𝑂(𝐺) is either 1 or 𝑂(𝐺). 

Hence 𝑂(𝐺) is a prime number. 

 

Theorem 2.4.5: A commutative group with a composition series cannot be infinite. 

Proof: 

Let 𝐺 be a commutative group. 

Let 𝐺 = 𝐺0 ⊇ 𝐺1 ⊇ 𝐺2 ⊇ ⋯ ⊇ 𝐺𝑛 = {𝑒} be a composition series of 𝐺. 

Then 𝐺𝑛−1 ∕ 𝐺𝑛 is simple. 

Also, 𝐺𝑛−1/𝐺𝑛 = 𝐺𝑛−1 ∕ {𝑒} ≅ 𝐺𝑛−1 is simple. 

Also, being a subgroup of commutative group 𝐺𝑛−1 is abelian 

Thus, 𝐺𝑛−1 is a simple abelian group. 

By Theorem 2.4.4, 𝑂(𝐺𝑛−1) is a prime number. 

Let 𝑂(𝐺𝑛−1) = 𝑝𝑛−1 

Further 𝐺𝑛−2 𝐺𝑛−1⁄  is simple and abelian. 

So, 𝑂 (
𝐺𝑛−2

𝐺𝑛−1
)  = 𝑝𝑛−2; a prime 

so that 

𝑂(𝐺𝑛−2) =
0(𝐺𝑛−2)

0(𝐺𝑛−1)
𝑂(𝐺𝑛−1) = 𝑂 (

𝐺𝑛−2

𝐺𝑛−1
)  𝑂(𝐺𝑛−1) = 𝑝𝑛−2𝑝𝑛−1 
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Continuing so on, 

We see that 𝑂(𝐺) = 𝑝0𝑝1𝑝2 … 𝑝𝑛−1 that is, a product of finite number of prime numbers hence 
𝐺 is a finite group.  

 A field with characteristic 0 is always infinite and commutative. Hence it does not have 
a composition series. 

Theorem 2.4.6: A composition series of a group 𝐺 cannot have a proper refinement. 

Proof: 

Let 𝐺 = 𝐺0 ⊇ 𝐺1 ⊇ 𝐺2 ⊇ ⋯ ⊇ 𝐺𝑛 = {𝑒} … (1) is a composition series for 𝐺. Suppose 𝐺 = 𝐻0 ⊇
𝐻1 ⊇ 𝐻2 ⊇ ⋯ ⊇ 𝐻𝑚 = {𝑒} be a refinement of (1). 

If it is proper refinement then for some 1 ≤ 𝑗 ≤ 𝑚, 𝐻𝑗 ≠ 𝐺𝑖 for any 𝑖. 

⇒ 𝐺𝑖 ⊃ 𝐻𝑗 ⊃ 𝐺𝑖+1 for some 𝑖. 

Choose 𝑗 such that 𝐻𝑗−1 ⊄ 𝐺𝑖 ⇒ 𝐺𝑖+1 ⊂ 𝐻𝑗 ⊂ 𝐺𝑖 ⊂ 𝐻𝑗−1 

As 𝐻𝑗 is a normal subgroup of 𝐻𝑗−1, this implies that 𝐻𝑗 is a normal subgroup of 𝐺𝑖. 

Therefore, 
𝐻𝑗

𝐺𝑖+1
 is a proper normal subgroup of 

𝐺𝑖

𝐺𝑖+1
 but 

𝐺𝑖

𝐺𝑖+1
 is simple. 

So, we arrive at a contradiction. This proves that a composition series has no proper 
refinement. 

Theorem 2.4.7: (Jordan Holder Theorem): If a group 𝐺 has a composition series, then all its 
composition series are equivalent. 

Proof: 

Let 𝐺 has two composition series (A) and (B). 

By Schreier’s Refinement theorem, (A) and (B) have some proper refinements (C) and (D) such 
that (C) is isomorphic to (D). 

Since a composition series has no proper refinement, therefore, (C)= (A) and (D)= (B), this 
proves that (A) and (B) are isomorphic series. 

 

From Jordan Holder Theorem, it is clear that an infinite group having a composition 
series cannot be commutative. 

 

Task: 

1) Show that if 𝑁 is a normal subgroup of 𝐺 and 𝐺 has a composition series then 𝑁 
has a composition series. 

2) Show that a field with characteristic 0 has no composition series. 

2.5 Nilpotent Groups 

 

Example 2.5.1: Let 𝐺 be a group and 𝐻 and 𝐾 be two subgroups of 𝐺 such that 𝐻 is a normal 
subgroup of 𝐺 and 𝐾 is a normal subgroup of 𝐻 then 𝐾 need not be a normal subgroup of 
𝐺. 

Let 𝐺 = 𝐴4 that is an alternating group on 4 symbols 

𝑉4 = {𝐼, ( 1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}, 𝐻 = {𝐼, (1 2)(3 4)} 

[𝐺: 𝑉4] =
𝑂(𝐺)

𝑂(𝑉4)
=

4!

2 × 4
= 3 

[𝑉4: 𝐻] =
𝑂(𝑉4)

𝑂(𝐻)
=

4

2
= 2 

This implies that 𝑉4 is a normal subgroup of 𝐴4 and 𝐻 is a normal subgroup of 𝑉4. 

Consider (1 2 3) ∈ 𝐴4, (1 2)(3 4) ∈ 𝐻 
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(1 2 3)(1 2)(3 4) = (1 3 4) 

but  

(1 2)(3 4)(1 2 3) = (2 4 3) 

Thus 

(1 2 3)(1 2)(3 4) ≠ (1 2)(3 4)(1 2 3) 

This implies that 𝐻 is not a normal subgroup of 𝑉4. 

Definition 2.5.2: Let 𝐺 be a group and 𝐺 = 𝐺0 ⊇ 𝐺1 ⊇ 𝐺2 ⊇ ⋯ ⊇ 𝐺𝑛 = {𝑒} be a series such that 
each 𝐺𝑖 is a normal subgroup of 𝐺 for all 𝑖. 

It is subnormal series for which 𝐺𝑖 is not only a normal subgroup of 𝐺𝑖−1 but also of 𝐺. 

Definition 2.5.3: Let 𝐺 be a group. Define  

𝑍0(𝐺) = {𝑒} 

𝑍1(𝐺)  = {𝑥 ∈ 𝐺|𝑥−1 𝑦−1𝑥𝑦 ∈ 𝑍0(𝐺) ∀ 𝑦 ∈ 𝐺} 

          = {𝑥 ∈ 𝐺|𝑥−1𝑦−1𝑥𝑦 = 𝑒 ∀ 𝑦 ∈ 𝐺} 

= {𝑥 ∈ 𝐺|𝑥𝑦 = 𝑦𝑥 ∀ 𝑦 ∈ 𝐺} 

Therefore, 𝑍1(𝐺) = 𝑍(𝐺) 

Similarly, 𝑍𝑚+1(𝐺) =  {𝑥 ∈ 𝐺|𝑥−1𝑦−1𝑥𝑦 ∈ 𝑍𝑚(𝐺) ∀ 𝑦 ∈ 𝐺} 

This series is known as the upper central series. 

Remark 1: Sequence {𝒁𝒏(𝑮)} is increasing. 

Proof:  

We use the principle of mathematical induction to prove this  

For 𝑛 = 0, 𝑍0(𝐺) = {𝑒}, 𝑍1(𝐺) = 𝑍(𝐺) 

Clearly, 𝑍0(𝐺) ⊂ 𝑍1(𝐺) 

Let the result is true for some 𝑚, 𝑍𝑚(𝐺)  ⊂ 𝑍𝑚+1(𝐺) 

If possible, let 𝑍𝑚+1(𝐺) ⊄ 𝑍𝑚+2(𝐺) 

⇒  ∃ 𝑥 ∈ 𝑍𝑚+1(𝐺) such that 𝑥 ∉ 𝑍𝑚+2(𝐺) 

Since  𝑥 ∈ 𝑍𝑚+1(𝐺)  ⇒ 𝑥−1𝑦−1𝑥𝑦 ∈ 𝑍𝑚(𝐺) ∀ 𝑦 ∈ 𝐺 

and 𝑥 ∉ 𝑍𝑚+2(𝐺)  ⇒ 𝑥−1𝑦−1𝑥𝑦 ∉ 𝑍𝑚+1(𝐺) for at least one 𝑦 ∈ 𝐺 

but by the induction hypothesis, 

𝑍𝑚(𝐺) ⊂ 𝑍𝑚+1(𝐺) 

⇒ 𝑥−1𝑦−1𝑥𝑦 ∈ 𝑍𝑚+1(𝐺) 

So, we arrive at a contradiction 

Hence 𝑍𝑚+1(𝐺) ⊂ 𝑍𝑚+2(𝐺) 

Remark 2: (𝒁𝒎+𝟏(𝑮))
′

⊂ 𝒁𝒎(𝑮) ∀ 𝒎 

Proof: 

𝑍𝑚+1(𝐺) = {𝑥 ∈ 𝐺|𝑥−1𝑦−1𝑥𝑦 ∈ 𝑍𝑚(𝐺) ∀ 𝑦 ∈ 𝐺} 

For all 𝑥 ∈ 𝑍𝑚+1(𝐺) 

𝑥−1𝑦−1𝑥𝑦 ∈ 𝑍𝑚(𝐺) ∀ 𝑦 ∈ 𝐺 

So, every commutator is in 𝑍𝑚(𝐺). 

⇒  (𝑍𝑚+1(𝐺))
′

⊂ 𝑍𝑚(𝐺) 

Definition 2.5.4: A group 𝐺 is said to be nilpotent if there exists a normal series 𝐺 = 𝐺0 ⊇ 𝐺1 ⊇

𝐺2 ⊇ ⋯ ⊇ 𝐺𝑛 = {𝑒} such that 
𝐺𝑖

𝐺𝑖+1
⊆ 𝑍 (

𝐺𝑖

𝐺𝑖+1
) 

37



Advanced Abstract Algebra-I  

 LOVELY PROFESSIONAL UNIVERSITY  

Notes 

Or, in the increasing series 

𝑍0(𝐺) ⊆ 𝑍1(𝐺) ⊆ ⋯ 

there exists 𝑚 ∈ 𝑁 such that 𝑍𝑚(𝐺) = 𝐺. 

 

Example 2.5.5: Every abelian group is nilpotent. 

Proof: 

For abelian group 𝐺, 𝐺 = 𝑍(𝐺) = 𝑍1(𝐺) 

So, the upper central series is terminating at 𝑚 = 1. 

Hence 𝐺 is nilpotent. 

 

Example 2.5.6: Every cyclic group is nilpotent. 

Proof: 

Every cyclic group is abelian and from example 2.5.5, every abelian group is nilpotent. Hence 
every cyclic group is nilpotent. 

 

Example 2.5.7: Every 𝑝-group is nilpotent. 

Proof:   

Let 𝐺 be a 𝑝-group. This implies 𝑂(𝐺) = 𝑝𝑛; 𝑛 ∈ 𝑁 

For 𝑛 = 1, 

𝑂(𝐺) = 𝑝; a prime number 

Therefore, 𝐺 is a group of prime order hence 𝐺 is cyclic. 

By Example 2.5.6, 𝐺 is nilpotent. 

Thus, the result is true for 𝑛 = 1. 

For 𝑛 > 1, 𝑍(𝐺) ≠ {𝑒} 

⇒ 𝑍(𝐺) is a proper subgroup of 𝐺. 

By Lagrange’s theorem, 𝑂(𝑍(𝐺)) divides 𝑂(𝐺) = 𝑝𝑛 

⇒ 𝑂(𝑍(𝐺)) = 𝑝𝑘; 1 ≤ 𝑘 ≤ 𝑚 

⇒ 𝑂 (
𝐺

𝑍(𝐺)
) = 𝑝𝑛−𝑘 = 𝑝𝑟; 𝑟 < 𝑛 

⇒ 𝐺/𝑍(𝐺) has a non-trivial centre. 

⇒ 𝑍 (
𝐺

𝑍(𝐺)
) ≠ {𝑍(𝐺)} 

⇒ 𝑂(𝑍(𝐺)) = 𝑂(𝑍1(𝐺)) < 𝑂(𝑍2(𝐺)) 

𝑍1(𝐺) ⊂ 𝑍2(𝐺) ⊂ ⋯ ⊂ 𝐺 

Continuing so on, we get some 𝑘 ∈ 𝑍 

𝑂(𝑍𝑘(𝐺)) = 𝑝𝑛;  𝑘 ≤ 𝑛 

𝑂(𝑍𝑘(𝐺)) = 𝑂(𝐺) 

This implies, 𝐺 is nilpotent. 

Theorem 2.5.7: Subgroup and homomorphic image of a group is nilpotent 

Proof: 

Let 𝐺 is a nilpotent group. Therefore, there exists series  
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𝑍0(𝐺) ⊆ 𝑍1(𝐺) ⊆ 𝑍2(𝐺) ⊆ ⋯ ⊆ 𝑍𝑚(𝐺) = 𝐺 

Let 𝐻 be a subgroup of 𝐺. 

Then since 𝐻 ∩ 𝑍(𝐺) ⊂ 𝑍(𝐻). 

For all 𝑥 ∈ 𝑍2(𝐺), 𝑦 ∈ 𝐺, 𝑥𝑦𝑥−1𝑦−1 ∈ 𝑍1(𝐺) 

Hence, for all 𝑥 ∈ 𝐻 ∩ 𝑍2(𝐺), 𝑦 ∈ 𝐻, 𝑥𝑦𝑥−1𝑦−1 ∈ 𝐻 ∩ 𝑍1(𝐺). 

Therefore, 𝐻 ∩ 𝑍2(𝐺) ⊂ 𝑍2(𝐻). 

By repeating the argument, we see that 𝐻 ∩ 𝑍𝑖(𝐺) ⊂ 𝑍𝑖(𝐻), 1 ≤ 𝑖 ≤ 𝑚 

Hence 𝐻 = 𝐻 ∩ 𝐺 = 𝐻 ∩ 𝑍𝑚(𝐺) ⊂ 𝑍𝑚(𝐻). 

Hence 𝐻 is nilpotent. 

Let 𝜙: 𝐺 → 𝐻 be an onto homomorphism. Then  

𝜙(𝑥𝑦𝑥−1𝑦−1) = 𝜙(𝑥)𝜙(𝑦)(𝜙(𝑥))−1(𝜙(𝑦))−1 for all 𝑥, 𝑦 ∈ 𝐺 

Hence  

𝜙(𝑥)𝜙(𝑦)(𝜙(𝑥))−1(𝜙(𝑦))−1 ∈ 𝜙(𝑍(𝐺)) ⊂ 𝑍(𝐻) 

Because 𝜙 is onto, therefore, 𝜙(𝑥) ∈ 𝑍2(𝐻). Therefore, 𝜙(𝑍2(𝐺)) ⊂ 𝑍2(𝐻). 

Continuing the process, we get  

𝜙(𝑍𝑖(𝐺)) ⊂ 𝑍𝑖(𝐻); 𝑖 = 1, 2, 3, … , 𝑚 

Hence, 𝐻 = 𝜙(𝐺) = 𝜙(𝑍𝑚(𝐺)) ⊂ 𝑍𝑚(𝐻) 

Therefore, 𝐻 is nilpotent. 

Theorem 2.5.8: Every nilpotent group is solvable. The converse is not true. 

Proof: 

Let 𝐺 be a nilpotent group. Then there exists a normal series 

𝐺 = 𝐺0 ⊇ 𝐺1 ⊇ 𝐺2 ⊇ ⋯ ⊇ 𝐺𝑛 = {𝑒} 

such that  

𝐺𝑖

𝐺𝑖+1
⊂ 𝑍 (

𝐺

𝐺𝑖+1
)  

That is, 𝐺𝑖/𝐺𝑖+1 is a subgroup of 𝑍 (
𝐺

𝐺𝑖+1
) i.e., an abelian group 

Therefore, 𝐺𝑖/𝐺𝑖+1 is abelian and every normal series is a subnormal series. 

This implies that 𝐺 is solvable. 

The converse part is not true 

Consider symmetric group 𝑆3 and alternating group 𝐴3 

Since 𝐴3 is a normal subgroup of 𝑆3 of index 2 and {𝐼} is a normal subgroup of 𝐴3 with index 
3 

So, we have a solvable series  

𝑆3 ⊇ 𝐴3 ⊇ {𝐼} 

Then the series is having abelian factor groups. Hence 𝑆3 is a solvable group. 

However, 𝑆3 is not nilpotent as 𝑍𝑚(𝑆3) = {𝐼} for all 𝑚. 

That is in the upper central series, there does not exist any 𝑍𝑚(𝑆3) such that 𝑍𝑚(𝑆3) ≠ 𝑆3. 

This is 𝑆3 is not nilpotent group. 

 

Task: 

Prove that a subgroup and homomorphic image of a nilpotent group are nilpotent. 
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Determine a composition series of 𝐴𝑛; 𝑛 ≠ 4. 

Summary 

• Subnormal series is defined and condition for a subnormal series to be solvable or not is 

discussed 

• Method to check whether a group is solvable or not is elaborated with the help of examples 

• Results about the cartesian product of solvable groups and p-groups are proved 

• Proper normal subgroups and composition series are defined and elaborated with the help 

of examples. 

• The concept of isomorphic series is studied 

• Jordan Holder Theorem is proved. 

• Nilpotent group and normal series are defined 

• The relation of nilpotent groups with solvable groups is explained. 

Keywords  

• Subnormal Series 

• Composition Series  

• Jordan Holder Theorem 

• Nilpotent Groups 

• Isomorphic composition series 

 

Self-assessment  

Choose the most suitable answer from the options given with each question. 

 

Question 1: Which of the following statements is NOT true? 

A: Every 𝑝 −group is solvable 

B: Every abelian group is solvable 

C: Every solvable group is abelian 

D: Every cyclic group is solvable 

Question 2: Necessary and sufficient condition for a subnormal series to be a composition series 
is  

A: Each of the subgroups in this series is simple 

B: Each of its factor group is abelian 

C: The number of factor groups in the series is a prime number 

D: Each of its factor group is simple 

Question 3: The number of composition series for the group of rational numbers is 

A: 0 

B: 1 

C: Infinite 

D: 2 

Question 4:  A subgroup of a solvable group is 

A: always a normal subgroup 

B: never a normal subgroup 

C: always a solvable group 

D: never a solvable group 

Question 5:  An abelian group is 

A: Always solvable and has a composition series 

B: Always solvable but never has a composition series 

C: Never solvable 
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D: May or may not be solvable 

Question 6:  𝑺𝒏 is not solvable then 𝒏 is 

A: 2 

B: 3 

C: 4 

D: 5 

Question 7: A finite group has 2 composition series then both are 

A: Same 

B: Isomorphic 

C: Redundant 

D: Non-isomorphic 

Question 8: Let G be a group. Then for two subgroup H and K of G 

A: H is a normal subgroup of G and K is any subgroup of H then K is a normal subgroup of G 

B: H is a normal subgroup of G and K is a normal subgroup of H then K is a normal subgroup of G 

C: H and K are any subgroups of G then HK is a subgroup of G 

D: H and K are normal subgroups of G then HK is a subgroup of G 

Question 9: Let G be a commutative group with a composition series then 

A: G is always infinite 

B: G is always finite 

C: G may or may not be finite 

D: G is always a group with 2 elements 

Question 10:  Let 𝑮(𝒏) denote the nth commutator of a group G. Then G is solvable if and only if  

A: 𝐺(𝑛) = 𝐺 for some 𝑛 

B: 𝐺(𝑛) = 𝜙 for some 𝑛 

C: 𝐺(𝑛) = {𝑒} for some 𝑛 

D: 𝐺(𝑛) = 𝐺′ for some 𝑛 

Question 11: Let 𝑮 be a group of order 𝒑𝒒 where 𝒑 and 𝒒 are distinct prime numbers. Then  

A: 𝐺 has a normal series of its subgroups but it is not a solvable group 

B: 𝐺 is a solvable group. 

C: 𝐺 is always a non-abelian group. 

D: 𝐺 has a composition series of its subgroups but it is not a solvable group. 

Question 12: Let 𝑺𝟑 be the symmetric group of degree 𝟑. Then the series 𝑰 ⊆ 𝑨𝟑 ⊆ 𝑺𝟑 is 

A: It is a subnormal but not a normal series 

B: It is a normal series. 

C: It is a composition series but not a normal series 

D: It is a normal series but not a composition series 

Question 13: Statement I: Every composition series has a proper refinement. 

Statement II: Homomorphic image of a solvable group is solvable. 

A: Statement I is true but II is false. 

B: Statement I and II both are false. 
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C: Statement II is true but I is false. 

D: Statement I and II both are true. 

Question 14: True/False Let 𝑶(𝑮) = 𝟑𝟓. Then 𝑮 is a solvable group. 

A: True 

B: False 

Question 15: A group of order 𝟑𝟎 is solvable group. 

A: True 

B: False 

Answers: 

1) C 2) D 3) B 4) C 5) A 

6) D 7) B 8) D 9) B 10) A 

11) B 12) B 13) C 14) A 15) A 

Review Questions 

1) Determine the composition series for 𝐴𝑛 (𝑛 ≠ 4). 

2) Prove that a finite 𝑝 −group (𝑝 is a prime number) is cyclic if and only if it has only one 

composition series. 

3) Let 𝐺 and 𝐻 are solvable groups. Show that 𝐺 × 𝐻 is solvable. 

4) Prove that the cartesian product of two nilpotent groups is nilpotent. 

5) Prove that 𝑆𝑛 is not solvable for 𝑛 ≥ 3. 

6) Prove that every group of order 𝑝𝑞𝑟;  𝑝, 𝑞, 𝑟 are prime numbers, is solvable. 

Further Readings 

 

Basic abstract algebra by P. B. Bhattacharya, S. K. Jain, S. R. Nagpal, Cambridge 
university press 

Topics in algebra by I.N. Hartstein, Wiley 

Abstract algebra by David S Dummit and Richard M Foote, Wiley 

 

https://onlinecourses.nptel.ac.in/noc20_ma29/preview 

https://nptel.ac.in/courses/111/105/111105112/# 
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Unit 3: Basic Theory of Field Extension 

CONTENTS 

Expected Learning Outcomes 

Introduction 

Summary 

Keywords 

Self-assessment 

Review Questions 

Further Readings 

Expected Learning Outcomes 

After studying this unit, you will be able to 

● define rings, fields, and related algebraic structures 

● understand field as a vector space 

● define field extension, its degree, and basis 

● define monic and minimal polynomial 

● understand the concept of algebraic extension 

● find algebraic closure of a field  

● find the multiplicity of a root of a polynomial 

● understand factor theorem 

● analyze that the maximum number of roots of a polynomial over any field cannot 

exceed its degree 

● state and prove Kronecker’s result  

Introduction 

In this unit, we will introduce you to the field extensions and subfields. We will use irreducible 
polynomials for obtaining field extensions of a field 𝐹 from 𝐹[𝑥]. We will also show you that every 
field is a field extension of 𝑄 or 𝑍, for some prime 𝑝. Because of this, we call 𝑄 and the 𝑍𝑝 as prime 

fields. We will discuss these fields briefly. Finally, we will look at finite fields. These fields were 
introduced by the young French mathematician Evariste Galois while he was exploring number 
theory. We will discuss some properties of finite fields which will show us how to classify them. 
Before reading this unit, we suggest that you go through the definitions of irreducibility. 

3.1 Fields and Subfields 

Throughout this chapter 𝑅 denotes the set of real numbers, 𝐶 denotes the set of complex numbers 
and 𝑄 denotes the set of rational numbers. 

We start this section by defining rings. 

Definition 3.1.1: A non-empty set 𝑅, with two binary compositions, called addition (+) and multiplication 
(.) is called a ring if 

(𝑖) 𝑅 is an abelian group under addition 

(𝑖𝑖) 𝑅 is a semi-group under multiplication 

(𝑖𝑖𝑖) For 𝑎, 𝑏, 𝑐 ∈ 𝑅 

𝑎 ⋅ (𝑏 + 𝑐) = 𝑎 ⋅ 𝑏 + 𝑎 ⋅ 𝑐 

(𝑎 + 𝑏) ⋅ 𝑐 = 𝑎 ⋅ 𝑐 + 𝑏 ⋅ 𝑐 
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Clearly, (𝑅, +,⋅) is an abelian group under addition implies that under addition 𝑅 is closed, associative, 
has an identity element called zero, each element of 𝑅 has an additive inverse in R and it is abelian. 

(𝑅,⋅) is closed and associative. Further multiplication is distributive over addition. 

 

Example 3.1.2: The set of integers 𝑍 under the compositions of usual addition and 
multiplication is a ring. 

 

Example 3.1.3: The set of square matrices of order 2 with all entries from real numbers is a 
ring under the matrix addition and matrix multiplication. 

Note that a ring is closed and associative under the multiplication but it may or may not have a 
multiplicative identity. For example, ring if integers 𝑍 has multiplicative identity 1 but the ring of 
even integers does not contain identity element under multiplication. 

Definition 3.1.4: A ring containing its multiplicative identity is called a ring with unity and the 
multiplicative identity of the ring is called unity of ring. Unity of a ring is generally denoted as 1. 

Theorem 3.1.5: Let 𝑅 be a ring with unity such that 1 = 0. Then 𝑅 = {0}.  

Proof: Let 𝑟 ∈ 𝑅 and 1 = 0 

Then 𝑟 = 𝑟 ⋅ 1 = 𝑟 ⋅ 0 = 0 

Therefore, 𝑅 = {0}. 

Let 𝑅 be a ring with unity. Then 𝑎 ∈ 𝑅 is called a unit if there exists an element 𝑏 ∈ 𝑅 such that 𝑎𝑏 =
1 = 𝑏𝑎. 

 

A ring with unity has at least one unit that is its unity as it is its own inverse. 

0 is an element in every ring with unity which is never a unit. 

There are rings in which every non-zero element is a unit, for example, the ring of rational 
numbers under usual addition and multiplication of rational numbers. 

Some rings are such that a few elements are units but not all are units for example, in the ring 
of integers Z, only 1 and −1 are units. No other integer is a unit. 

Definition 3.1.6: A ring is called a division ring if it is with unity and all of its non-zero elements are 
units. For example, the ring of rational numbers, the ring of real numbers, etc. 𝑍 is not a division ring 
because elements other than 1 and −1 are not units. 

Definition 3.1.7: A commutative division ring is called a field.  

Clearly, 𝐹 is a field then 𝐹 is an additive abelian group. 𝐹 − {0} is a commutative group under 
multiplication. Multiplication is distributive over addition. 

Definition 3.1.8: Let 𝑅 be a ring. An element 𝑎 ∈ 𝑅 is said to be zero divisor if there exists 𝑏 ∈ 𝑅 such 
that 𝑎 ⋅ 𝑏 = 0. If 𝑎 and 𝑏 are both non-zero but 𝑎 ⋅ 𝑏 = 0 then 𝑎 and 𝑏 are called proper zero divisors. 
A ring that has proper zero divisors is called a ring with zero divisors. 

For example, consider the ring 𝑀 of square matrices of order 2 then 𝑀 is a ring under the usual matrix 
addition and multiplication.  
Consider, the matrices [1 0 0 0 ], [0 0 0 1 ] ∈ 𝑀 
Then both the matrices are non-zero. However, [1 0 0 0 ][0 0 0 1 ] = [0 0 0 0 ] 
Therefore, both the matrices are proper zero-divisors of 𝑀 and hence 𝑀 is called a ring with proper 
zero divisors.  

  
Definition 3.1.9: A commutative ring 𝑅 with unity and without zero divisors is called an Integral domain. 
Clearly, the set of integers Z is an integral domain. 

 

 
1) Every field is an Integral domain. 

Let 𝐹 be a field. Then by definition 𝐹 is commutative and a ring with unity. 

Let 𝑎, 𝑏 ∈ 𝐹 such that 𝑎 ⋅ 𝑏 = 0 

If 𝑎 ≠ 0, then 𝑎−1 ∈ 𝐹 

𝑎 ⋅ 𝑏 = 0 ⇒ 𝑎−1 ⋅ (𝑎 ⋅ 𝑏) = 𝑎−1 ⋅ 0 ⇒ 𝑏 = 0 

which implies that 𝑎 or 𝑏 is equal to 0. Hence 𝐹 is without zero divisors. 
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Hence 𝐹 is an Integral domain. 

2) Not every Integral domain is a field 

For example, the ring of integers is an Integral domain but not a field. 

Definition 3.1.10: Let 𝑉 be a non-empty set defined over a field 𝐹. Then 𝑉 together with two 
compositions called addition (+ defined on 𝑉) and a scalar multiplication 𝑉 × 𝐹 → 𝑉 such that to each 
pair (𝑥, 𝛼) ∈ 𝑉 × 𝐹 it assigns a unique element 𝛼𝑥 ∈ 𝑉, is called a vector space if it satisfies the 
following axioms 

(𝑖) (𝑉, +) is an abelian group 

(𝑖𝑖) (𝛼 + 𝛽)𝑥 = 𝛼𝑥 + 𝛽𝑥 ∀ 𝛼, 𝛽 ∈ 𝐹, 𝑥 ∈ 𝑉 

(𝑖𝑖𝑖) (𝑥 + 𝑦)𝛼 = 𝑥𝛼 + 𝑦𝛼 ∀ 𝛼 ∈ 𝐹, 𝑥, 𝑦 ∈ 𝑉 

(𝑖𝑣)(𝛼𝛽)𝑥 = 𝛼(𝛽𝑥) = (𝛼𝑥)𝛽 ∀ 𝛼, 𝛽 ∈ 𝐹, 𝑥 ∈ 𝑉 

(𝑣) 1𝑥 = 𝑥 ∀ 𝑥 ∈ 𝑉 

For example, set of square matrices of order 2 with entries from the field of real numbers is a vector 
space under the usual matrix addition and scalar multiplication. 

 

 

1) Every field is a vector space over itself 

2) Since every vector space has a basis, therefore, every field also has a basis. 

Definition 3.1.11: A non-empty subset S of a field F is called a subfield if it is a field under the induced 
compositions. 

Theorem 3.1.12: A non-empty subset 𝑆 containing at least two elements of a field 𝐹 is a subfield of 𝐹 
if and only if 𝑎 − 𝑏 ∈ 𝑆 ∀ 𝑎, 𝑏 ∈ 𝑆 and 𝑎𝑏−1 ∈ 𝑆 ∀ 𝑎 ∈ 𝑆, 𝑏 ∈ 𝑆 − {0}. 

Proof: Let 𝑆 be a subfield of 𝐹. 

Then 𝑆 is a field under the induced compositions. 

This implies  

𝑎 − 𝑏 ∈ 𝑆 ∀ 𝑎, 𝑏 ∈ 𝑆, and 𝑎𝑏−1 ∈ 𝑆 ∀ 𝑎 ∈ 𝑆, 𝑏 ∈ 𝑆 − {0} 

Conversely, given that 𝑎 − 𝑏 ∈ 𝑆 ∀ 𝑎, 𝑏 ∈ 𝑆  

which implies that (𝑆, +) is a group. 

Also, 𝑎𝑏−1 ∈ 𝑆 ∀ 𝑎 ∈ 𝑆, 𝑏 ∈ 𝑆 − {0} implies that 𝑆 − {0} is a group under multiplication. 

Distributive properties hold since 𝑆 ⊆ 𝐹 and 𝐹 is a field. 

Hence 𝑆 is a subfield of 𝐹.  

Theorem 3.1.13: Intersection of two subfields of a field F is again a subfield. 

Proof: Let 𝑆1 and 𝑆2 are two subfields of a field 𝐹. 

Let 𝑆 = 𝑆1 ∩ 𝑆2 

Since 𝑆1 and 𝑆2 are subfields of field 𝐹. Therefore 0, 1 ∈ 𝑆1, 𝑆2 

That is, 0, 1 ∈ 𝑆1 ∩ 𝑆2 = 𝑆 

For 𝑎, 𝑏 ∈ 𝑆 

That is, 𝑎, 𝑏 ∈ 𝑆1 ∩ 𝑆2 

⇒ 𝑎, 𝑏 ∈ 𝑆1and 𝑎, 𝑏 ∈ 𝑆2 

Since 𝑆1 and 𝑆2 are subfields of 𝐹. 

⇒ 𝑎 − 𝑏 ∈ 𝑆1 and 𝑎 − 𝑏 ∈ 𝑆2 

⇒ 𝑎 − 𝑏 ∈ 𝑆1 ∩ 𝑆2 = 𝑆 

Again, for 𝑎 ∈ 𝑆, 𝑏 ∈ 𝑆 − {0} 
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⇒ 𝑎 ∈ 𝑆1, 𝑏 ∈ 𝑆1 − {0} since 𝑆1 is a subfield therefore, 𝑎𝑏−1 ∈ 𝑆1 

and 𝑎 ∈ 𝑆2, 𝑏 ∈ 𝑆2 − {0} since 𝑆2 is a subfield therefore, 𝑎𝑏−1 ∈ 𝑆2 

⇒ 𝑎𝑏−1 ∈ 𝑆1 ∩ 𝑆2 = 𝑆 

Hence 𝑆 is a subfield of 𝐹. 

Corollary 3.1.14: Intersection of any non-empty family of subfields of a field 𝐹 is a subfield of 𝐹. 

Definition 3.1.15: Let 𝑆 be the family of all the subfields of field 𝐹. Then ⋂𝑆𝛼; 𝑆𝛼 ∈ 𝑆 is again a 
subfield of 𝑆 and this is the smallest subfield contained in field 𝐹. The smallest subfield is called the 
prime subfield for example the field of rational numbers is a prime subfield of the field of real 
numbers. 

Definition 3.1.16: A field that does not contain any other field, is called a prime field for example 
field of rational numbers is a prime field. The field of real numbers contains the field of rational 
numbers hence; field of real numbers is not a prime field. 

Definition 3.1.17: Let R be an integral domain with unity element 𝑒. If there exists some 𝑛 ∈ 𝑁 for 
which 𝑛𝑒 = 0, then the smallest such number is called characteristic of R. If such a natural number 
does not exist, that is, 𝑛𝑒 ≠ 0 for every natural number 𝑛, then we say characteristic R is zero. The 
characteristic of ring R is denoted as Ch. R. 

Theorem 3.1.18: The characteristic of an integral domain is either 0 or a prime number. 

Proof: Let 𝑅 be an integral domain with unity 𝑒. 

Let Ch. 𝑅 = 𝑛 ≠ 0 

If possible, let 𝑛 is a composite number. 

Then 𝑛 = 𝑟𝑠; 1 < 𝑟, 𝑠 < 𝑛 

Since Ch.𝑅 = 𝑛 

⇒ 𝑛𝑒 = 0 

⇒ (𝑟𝑠)𝑒 = 0 

⇒ (𝑟𝑒)(𝑠𝑒) = 0 

⇒ 𝑟𝑒 = 0 or 𝑠𝑒 = 0 (𝑅 𝑖𝑠 integral domain and hence without zero divisors) 

But 𝑟, 𝑠 < 𝑛 

and 𝑛, by the definition of the characteristic of a field, is the smallest positive integer for which 𝑛𝑒 =
0 

Therefore, 𝑟𝑒, 𝑛𝑒 are both non-zero. 

So, we arrive at a contradiction. 

Hence our supposition was wrong. 

That is, 𝑛 is a prime number. 

Therefore, Ch. 𝑅 is either 0 or a prime number. 

 

Note: Since every field is an integral domain, therefore, characteristic of a field is also 
either 0 or a prime number. 

 

Task: Prove that the following are the subfields of the field of real numbers? 

(a) {𝑎 + 𝑏√2|𝑎, 𝑏 ∈ 𝑄} 

(b) {𝑎 + √5
3

𝑏 + (√5
3

)
2

𝑐|𝑎, 𝑏, 𝑐 ∈ 𝑄} 

3.2 Basic Theory of Field Extension 

A field extension of a field 𝐹 is a pair (𝐾, 𝜎), where 𝐾 is a field containing 𝐹 and 𝜎 is a monomorphism 
of 𝐹 into 𝐾. For example, let 𝐹 be a subfield of 𝐾 then 𝜎 given be 𝑖 that is 𝑖(𝑥) = 𝑥 ∀ 𝑥 ∈ 𝐹 is a 
monomorphism of 𝐹 into 𝐾. Thus, for every subfield 𝐹 of a field 𝐾, 𝐾 is a field extension of 𝐹. 

Symbolically, if 𝐾 is a field extension of field 𝐹. then symbolically we write it as 
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𝐾 

 

𝐹 

  

 

Note:  

1. Let 𝐾 is a field extension of a field 𝐹. Then (𝐾, +) is an abelian group. Define 

𝜎: 𝐾 × 𝐹 → 𝐾 as (𝑥, 𝛼) ↦ 𝛼𝑥. Then 𝐾 can be treated as a vector space over the field 

𝐹. For example, the field of complex numbers is a field extension of the field of 

real numbers and hence the field of complex numbers can be treated as a vector 

space over the field of real numbers.  

2. Since every finitely generated vector space has a basis and from 1) we can 

conclude that every field extension 𝐾 over  𝐹 has a basis over 𝐹.   

Definition 3.2.1: Let 𝐾 is a field extension of field 𝐹, that is, 𝐾 is vector space over 𝐹 then basis of 𝐾 
over 𝐹 is called the basis of field extension and number of elements in the basis is called the dimension 
of 𝐾 over 𝐹 or degree of extension of 𝐾 over 𝐹, and it is denoted as [𝐾: 𝐹]. For example, the set {1, 𝑖} 
is a basis of field extension 𝐶 over 𝑅 and dimension of 𝐶 over 𝑅 is 2 that is [𝐶: 𝑅] = 2. 

Definition 3.2.2: Let 𝐾 is a field extension of field 𝐹 then [𝐾: 𝐹] is defined. 𝐾 is called a finite extension 
of field 𝐹 if [𝐾: 𝐹] is finite. We call it infinite if [𝐾: 𝐹] is infinite. 

Now we give examples of finite and infinite field extensions 

 

Example 3.2.3: Let 𝐹 = 𝑄 be the field of rational numbers and 𝐾 = 𝑄(√2) = {𝑎 +

𝑏√2|𝑎, 𝑏 ∈ 𝑄}  

Consider 𝑆 = {1, √2} 

Every element of 𝐾 can be written as 𝑎 + 𝑏√2; 𝑎, 𝑏 ∈ 𝑄. 

That means 𝑆 spans 𝐾 over 𝐹. 

Also, 𝑆 is linearly independent. Therefore, 𝑆 is the basis of 𝐾 over 𝐹. Hence [𝐾: 𝐹] = 2 i.e., degree of 
𝐾 over 𝐹 is 2 that is finite. 𝐾 is a finite extension of 𝐹. 

 

 

Example 3.2.4: Consider an indeterminate 𝑥 over a field 𝐹. Let 𝐾 be the field of quotients 
of 𝐹[𝑥]. Then for 𝛼0, 𝛼1, 𝛼2′ … , 𝛼𝑛 ∈ 𝐹 

𝛼0 + 𝛼1𝑥 + 𝛼2𝑥2 + ⋯ + 𝛼𝑛𝑥𝑛 = 0 implies that 𝛼𝑖 = 0 ∀ 𝑖  

⇒ {1, 𝑥, 𝑥2, … … } is a linearly independent subset of 𝐾, which is an infinite set. 

Hence, [𝐾: 𝐹] is infinite. 

Theorem 3.2.5: Let 𝐾 is a finite extension of 𝐹 and 𝐿 is a finite extension of 𝐾 then 𝐿 is a finite extension 
of 𝐹 and [𝐿: 𝐹] = [𝐿: 𝐾][𝐾: 𝐹]. 

Proof: Let [𝐾: 𝐹] = 𝑛 and [𝐿: 𝐾] =  𝑚 

Then there exist bases {𝑥1, 𝑥2, … , 𝑥𝑛} of 𝐾 over 𝐹 and {𝑦1, 𝑦2, … , 𝑦𝑛} of 𝐿 over 𝐾. 

Consider 𝑠 = {𝑥𝑖𝑦𝑗|1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚} 

Claim: 𝑆 is the basis of 𝐿 over 𝐹. 

To prove that 𝑆 is linearly independent 

Let 𝛼𝑖𝑗 ∈ 𝐹 such that  

∑

𝑖,𝑗

𝛼𝑖𝑗𝑥𝑖𝑦𝑗 = 0 
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⇒ ∑

𝑚

𝑗=1

(∑

𝑛

𝑖=1

𝛼𝑖𝑗𝑥𝑖) 𝑦𝑗 = 0 

Since 𝑦1, 𝑦2, … , 𝑦𝑛 are linearly independent. 

⇒ ∑

𝑛

𝑖=1

𝛼𝑖𝑗𝑥𝑖 = 0 ∀ 1 ≤ 𝑗 ≤ 𝑚 

Also, 𝑥1, 𝑥2,…, 𝑥𝑛 are linearly independent 

⇒ 𝛼𝑖𝑗 = 0∀1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚 

This implies 𝑆 is a linearly independent set. 

Next, we prove that 𝑆 spans 𝐿 over 𝐹  

Let 𝑥 ∈ 𝐿 

{𝑦1, 𝑦2, … , 𝑦𝑚} is a basis of 𝐿 over 𝐾. 

This implies there exist 𝑎1, 𝑎2,⋯, 𝑎𝑚 ∈ 𝐾 such that 𝑥 = ∑𝑗=𝐽 𝑎𝑗𝑦𝑗 … … (1) 

Now 𝑎𝑗 ∈ 𝐾 ∀ 𝑗 and {𝑥1, 𝑥2, … , 𝑥𝑛} is a basis of 𝐾 over 𝐹, there exist 𝛼𝑖𝑗 ∈ 𝐹 such that 

𝑎𝑗 = ∑

𝑛

𝑖=1

𝛼𝑖𝑗𝑥𝑖  

Put in (1) 

𝑥 = ∑

𝑚

𝑗=𝑗

∑

𝑛

𝑖=1

𝛼𝑖𝑗𝑥𝑖𝑦𝑗  

Therefore, 𝑆 spans 𝐿 over 𝐹. 

𝑆 is the basis of 𝐿 over 𝐹. [𝐿: 𝐹] = number of elements in 𝑆 = 𝑛𝑚 = [𝐿: 𝐾][𝐾: 𝐹] 

Definition 3.2.6: Let 𝑆 be a non-empty subset of a field 𝐹 then 𝐾 is called a subfield generated by 𝑆 if 

(i) 𝐾 is a field containing 𝑆. 

(ii) If there exists a field 𝐾′ containing 𝑆 then 𝐾 ⊂ 𝐾′ 

In other words, 𝐾 is the smallest subfield of 𝐹 containing 𝑆. 

 

If 𝑆 is finite. Let 𝑆 =  {𝑎1, 𝑎2, … , 𝑎𝑛}. Then we write 𝐾 = 𝐹(𝑎1, 𝑎2,…, 𝑎𝑛). If 𝑆 is infinite then we denote 

𝐾 = 𝐹(𝑆). If 𝑆 = {𝑎} is a singleton set then 𝐾 = 𝐹(𝑎). 

Definition 3.2.7: Let 𝐾 = 𝐹(𝑎) be an extension of 𝐹 generated by elements of 𝐹 and singleton set {𝑎}. 

Then 𝐾 is called a simple extension of 𝐹. For example, the extension 𝑄(√2) is a simple extension of 

𝑄. 

Note that 𝐹(𝑎) is the subfield of 𝐾 generated by {𝑎} over 𝐹 where 𝑎 ∈ 𝐾. Then for 𝛼0, 𝛼1, ⋯ , 𝛼𝑛 ∈ 𝐹 

𝛼0 + 𝛼, 𝑎 + 𝛼2𝑎2 + ⋯ + 𝛼𝑛𝑎𝑛 ∈ 𝐹(𝑎) 

This implies 

𝐹[𝑎] ⊆ 𝐹(𝑎) ⋯ (1) 

Let 𝑇 be the field of quotients of 𝐹[𝑎] 

From (1) 

𝑇 ⊆ 𝐹(𝑎) 

Also 𝐹 ⊂ 𝑇and 𝑎 ∈ 𝑇 ⇒ 𝐹(𝑎) ⊂ ⊤ 

This implies 𝑇 = 𝐹(𝑎) 

Similarly, if we take 𝑆 containing more than one element then 𝐹(𝑆) is the field of quotients of subring 
of 𝐾 generated by 𝐹 ∪ 𝑆. 
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Task: 1) Find the degree of extension and basis of 𝑄(√3 + 𝑖) over 𝑄. 

2) Give an example of a field that has no proper field extension. 

3.3 Algebraic Extension and Minimal Polynomial 

Definition 3.3.1: (Roots of a polynomial) Let 𝐹 is a field and 𝐾 is a field extension of 𝐹. Then for 
𝑓(𝑥) ∈ 𝐹[𝑥], 𝑎 ∈ 𝐾 is called a root or zero of 𝑓(𝑥) if 𝑓(𝑎) = 0. For example,  𝐶 is a field extension of 

𝑅. Then 𝑖 = √−1 ∈ 𝐶 is a root of the polynomial 𝑥2 + 1 over 𝑅. 

Definition 3.3.2: (Algebraic element over a field) Let 𝐹 is a field and 𝐾 is a field extension of 𝐹. Then 
𝑎 ∈ 𝐾 is called an algebraic element over the field 𝐹 if there exists some non-zero polynomial 𝑓(𝑥) ∈

𝐹[𝑥] such that 𝑎 is the root of 𝑓(𝑥). For example, 𝐶 is a field extension of 𝑅. Consider 𝑖 = √−1 ∈ 𝐶, 
then 𝑖 being the root of the polynomial 𝑥2 + 1 over 𝑅 is an algebraic element over 𝑅. 

 

Note 1) 𝐹 ⊆ 𝐾, any 𝑎 ∈ 𝐾, if 𝑎 ∈ 𝐹 then the polynomial 𝑥 − 𝑎 ∈ 𝐹[𝑥] such that 𝑎 is a root 
of this polynomial. Hence every element of 𝐹 is algebraic over 𝐹. 

2)  Let 𝑎 ∈ 𝐾 such that 𝑎 ∉ 𝐹 then 𝑎 may or may not be algebraic over 𝐹. for example, let 

𝐹 = 𝑄 and 𝐾 = 𝑅 then √2 ∉ 𝑄 but it is a root of the polynomial 𝑥2 − 2 ∈ 𝑄[𝑥] and hence 

√2 is algebraic over 𝑄. 

Consider 𝜋 ∈ 𝑅, 𝜋 is not algebraic over 𝑅. 

Definition 3.3.3 (Algebraic extension of a field): A filed extension 𝐾 of a field 𝐹 is called an algebraic 
extension if every element of 𝐾 is algebraic over 𝐹. For example, 𝐶 is an algebraic extension of 𝑅. 

Theorem 3.3.4: Let 𝐹 be a field and 𝐾 be a field extension of 𝐹.  Let 𝑎 ∈ 𝐾 is a root of polynomial 𝑓(𝑥) 
over F such that 𝑓(0) ≠ 0. Then 𝑓 is non-constant polynomial. 

Proof: Let 𝑓(𝑥) = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥2 + ⋯ + 𝛼𝑛𝑥𝑛. 

Given that 𝑓(0) ≠ 0 ⇒ 𝛼0 ≠ 0 

If possible let 𝑓 is a constant polynomial. That is, 𝑑𝑒𝑔 𝑑𝑒𝑔 (𝑓) = 0 . 

Then 𝑓(𝑥) = 𝛼0 ∀ 𝑥 

In particular, 𝑓(𝑎) = 𝛼0 ≠ 0 

which is in contradiction to the fact that 𝑎 is the root of 𝑓(𝑥). 

Therefore, our assumption was wrong. That is 𝑓 is not a constant polynomial. 

Definition 3.3.5: (Monic Polynomial) Let 𝐹 be a field. A polynomial 𝑓(𝑥) ∈ 𝐹[𝑥] is called a monic 
polynomial if the coefficient of the highest power of 𝑥 is the unity of field 𝐹. For example, Let 𝐹 = 𝑅 

then polynomial 𝑥2 + 1 is monic polynomial. Another example, consider the field 𝑍7 then 8𝑥5 +

2𝑥3 + 3 is a monic polynomial as 8 ≡ 1 in 𝑍7. 

Theorem 3.3.6: Let 𝐾 is a field extension of 𝐹. If an element 𝑎 ∈ 𝐾 is algebraic over F, then there exists 
a unique monic polynomial 𝑝(𝑥) of a positive degree over F, such that  

(𝑖) 𝑝(𝑎) = 0  

(𝑖𝑖) If any 𝑓(𝑥) ∈ 𝐹(𝑥) such that 𝑓(𝑎) = 0 then 𝑝(𝑥) divides 𝑓(𝑥). 

Proof: Since 𝑎 ∈ 𝐾 is algebraic over 𝐹, therefore there exists some non-zero polynomial 𝑓(𝑥) ∈ 𝐹[𝑥] 
such that 𝑓(𝑎) = 0. 

Let 𝑓(𝑥) = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥2 + ⋯ + 𝛼𝑛𝑥𝑛 is a polynomial of least degree 𝑛 such that 𝑓(𝑎) = 0. 

Degree 𝑓(𝑥) = 𝑛, ⇒ 𝛼𝑛 ≠ 0 

That is, 𝛼𝑛 is a non-zero element of field 𝐹 and hence 𝛼𝑛
−1 ∈ 𝐹. 

Let  

𝑝(𝑥) = 𝛼𝑛
−1𝑓(𝑥) 

= 𝛼𝑛
−1(𝛼0 + 𝛼1𝑥 + 𝛼2𝑥2 + ⋯ + 𝛼𝑛𝑥𝑛) 

= 𝛼𝑛
−1𝛼0 + 𝛼𝑛

−1𝛼1𝑥 + 𝛼𝑛
−1𝛼2𝑥2 + ⋯ + 𝑥𝑛 
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Thus 𝑝(𝑥) is a monic polynomial with degree 𝑛 that is the same as degree 𝑓(𝑥). 

Also, 𝑝(𝑎) = 𝛼𝑛
−1𝑓(𝑎) = 𝛼𝑛

−1 ⋅ 0 = 0 

That is, 𝑎 is a root of 𝑝(𝑥). 

From Theorem 3.3.4, we get that 𝑝(𝑥) is non-constant polynomial. 

Therefore, 𝑑𝑒𝑔 𝑑𝑒𝑔 𝑝(𝑥) >   0 

Let 𝑓(𝑥) be any other polynomial such that 𝑓(𝑎) = 0, 𝑓(𝑥) ∈ 𝐹[𝑥] 

Divide 𝑓(𝑥) by 𝑝(𝑥), by division algorithm of polynomials, there exists 𝑞(𝑥), 𝑟(𝑥) ∈ 𝐹[𝑥] such that  

𝑓(𝑥) = 𝑞(𝑥)𝑝(𝑥) + 𝑟(𝑥);  𝑟(𝑥) = 0 or 𝑑𝑒𝑔 𝑑𝑒𝑔 𝑟(𝑥)  <𝑑𝑒𝑔 𝑑𝑒𝑔 𝑝(𝑥)  

Put 𝑥 = 𝑎, 𝑓(𝑎) = 𝑞(𝑎)𝑝(𝑎) + 𝑟(𝑎) 

Since 𝑓(𝑎) = 𝑝(𝑎) = 0, therefore, we get 𝑟(𝑎) = 0. 

If 𝑟(𝑥) ≠ 0 then 𝑑𝑒𝑔 𝑑𝑒𝑔 𝑟(𝑥)  <𝑑𝑒𝑔 𝑑𝑒𝑔 𝑝(𝑥)  and 𝑟(𝑎) = 0 is a contradiction to the choice of 𝑝(𝑥) as 
a polynomial of least degree with 𝑎 as a root. Therefore, 𝑟(𝑥) = 0. 

That is, 𝑓(𝑥) = 𝑞(𝑥)𝑝(𝑥) 

𝑝(𝑥) divides 𝑓(𝑥) which proves part (𝑖𝑖). 

For the uniqueness of part (𝑖) let 𝑓(𝑥) is another monic polynomial such that 𝑓(𝑎) = 0 and with least 
degree so that 𝑑𝑒𝑔 𝑑𝑒𝑔 𝑝(𝑥) =𝑑𝑒𝑔 𝑑𝑒𝑔 𝑓(𝑥) = 𝑛 .   

Then by part (𝑖𝑖) 𝑓(𝑥) 𝑎𝑛𝑑 𝑝(𝑥) divide each other that is, 𝑓(𝑥) = 𝑐𝑝(𝑥), 𝑐 ∈ 𝐹 

Using this and the fact that 𝑓(𝑥) and 𝑝(𝑥) are both monic, comparing the leading coefficients on both 
sides we get that 𝑐 = 1 

That is 𝑓(𝑥) = 𝑝(𝑥) 

which completes the proof of part (𝑖). 

Definition 3.3.7: (Minimal Polynomial) Let 𝐾 be a field extension of a field 𝐹. Let 𝑎 ∈ 𝐾 be an 
algebraic element over 𝐹. Then a non-zero polynomial 𝑝(𝑥) ∈ 𝐹[𝑥] is called minimal polynomial of 𝑎 
over 𝐹 if  

(𝑖) 𝑝(𝑥) is monic 

(𝑖𝑖) 𝑝(𝑎) = 0 

(𝑖𝑖𝑖) 𝑝(𝑥) is the polynomial with the least degree such that it is monic and 𝑎 is a root of 𝑝(𝑥) 

For example, let 𝐹 =  𝑅, 𝐾 = 𝐶 

Then minimal polynomial of 𝑖 ∈ 𝐾 is 𝑥2 + 1 

 

Note: 

1) Theorem 3.3.6 ensures that minimal polynomial exists for every algebraic element of 𝐾 
over 𝐹 and it is unique. 

2) Let 𝑝(𝑥) be a minimal polynomial of some 𝑎 ∈ 𝐾 over the field 𝐹. Then 𝑎 is a root of any 
polynomial which is multiple of 𝑝(𝑥).  In other words, if 𝑓(𝑥) is a polynomial over 𝐹 such 
that 𝑓(𝑎) = 0 then either 𝑓(𝑥) is itself a minimal polynomial of 𝑎 over 𝐹 or a multiple of a 
minimal polynomial of 𝑎 over 𝐹. 

3) A polynomial 𝑓(𝑥) ∈ 𝐹[𝑥] is called reducible polynomial if 𝑓(𝑥) =

𝑔(𝑥)ℎ(𝑥); 𝑔(𝑥), ℎ(𝑥) ∈ 𝐹[𝑥] and both 𝑔(𝑥) and ℎ(𝑥) are of a positive degree. If  𝑓(𝑥) is a 
monic polynomial over 𝐹 such that 𝑓(𝑎) = 0 and it is not a minimal polynomial of 𝑎 ∈ 𝐾. 
Let 𝑝(𝑥) ∈ 𝐹[𝑥] is minimal polynomial of 𝑎, then 𝑝(𝑥) divides 𝑓(𝑥). That means, 𝑓(𝑥) =
𝑝(𝑥)𝑞(𝑥) for some 𝑞(𝑥) ∈ 𝐹[𝑥]. 𝑝(𝑥) being minimal polynomial is of positive degree. If 
possible, let 𝑑𝑒𝑔 𝑑𝑒𝑔 𝑞(𝑥) = 0 , then 𝑞(𝑥) = 𝑐 ∈ 𝐹 this implies, 𝑑𝑒𝑔 𝑑𝑒𝑔 𝑝(𝑥) =

𝑑𝑒𝑔 𝑑𝑒𝑔 𝑓(𝑥)   and since 𝑓(𝑥) is monic therefore by the uniqueness of minimal polynomial 
𝑓(𝑥) = 𝑝(𝑥) which is a contradiction to the fact that 𝑓(𝑥) is not a minimal polynomial over 
𝐹. So, our supposition was wrong. That is, 𝑑𝑒𝑔 𝑑𝑒𝑔 𝑞(𝑥) > 0  and hence 𝑓(𝑥) is reducible 
polynomial. That is, a non-zero monic polynomial 𝑓(𝑥) ∈ 𝐹[𝑥] for which 𝑓(𝑎) = 0 for 
some 𝑎 ∈ 𝐾, is either minimal polynomial for 𝑎 or it is reducible. 
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4) We can observe that irreducible polynomial over the field 𝐹 having a root 𝑎 ∈ 𝐾 is 
always a minimal polynomial of 𝑎 over 𝐹. 

 
Example 3.3.8:  Consider the polynomial 𝑓(𝑥) = 𝑥2 + 𝑥 + 1 ∈ 𝑄[𝑥] then 𝜔 =

−1±√3𝑖

2
∈ 𝐶 is 

a root of 𝑓(𝑥). Now 𝜔 ∉ 𝑄 hence the degree of its minimal polynomial is at least 2 and 𝑓(𝑥) is a 
polynomial of degree 2 with 𝜔 as a root this implies that 𝑓(𝑥) is minimal polynomial of 𝜔 over 𝑄. 

 

Task: 1) Find the minimal polynomial of √5 over 𝑄. 

2) If an element 𝑎 ∈ 𝐾 has minimal polynomial 𝑓(𝑥) over some field 𝐹 then 
𝑑𝑒𝑔 𝑑𝑒𝑔 𝑓(𝑥)  = 1 if and only if 𝑎 ∈ 𝐹. 

3.4 Algebraic and Finite Extensions 

Theorem 3.4.1: An element 𝑎 of 𝐾 is algebraic over 𝐹 if and only if [𝐹(𝑎): 𝐹] is finite. 

Proof: Suppose [𝐹(𝑎): 𝐹] is finite. 

Number of elements in the basis of 𝐹(𝑎) over the field 𝐹 is finite. Let [𝐹(𝑎): 𝐹] = 𝑛. 

Let 𝑇 = {1, 𝑎, 𝑎2, … , 𝑎𝑛}. Then 𝑆 contains 𝑛 + 1 elements which are more than 𝑛. Hence, 𝑆 is linearly 
dependent. There exists 𝛼0, 𝛼1, 𝛼2, … , 𝛼𝑛 ∈ 𝐹 (not all zero) such that 

𝛼0 ⋅ 1 + 𝛼1 ⋅ 𝑎 + 𝛼2 ⋅ 𝑎2 + ⋯ + 𝛼𝑛𝑎𝑛 = 0 

Let 𝑓(𝑥) = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥2 + ⋯ + 𝛼𝑛𝑥𝑛. Then 𝑓(𝑥) ∈ 𝐹[𝑥] such that 𝑓(𝑎) = 0 

This implies that 𝑎 is an algebraic element over the field 𝐹. 

Conversely, let 𝑎 is the algebraic element over the field 𝐹 and 𝑝(𝑥) is minimal polynomial of 𝑎 over 
𝐹 of degree 𝑛. 

Claim: 𝐹[𝑎] is a field. 

We know that 𝐹[𝑎] is a ring with unity. To prove that it is a field it is sufficient to prove that every 
non-zero element of 𝐹[𝑥] is a unit. 

Let 0 ≠ 𝑓(𝑎) ∈ 𝐹[𝑎] 

This implies that 𝑝(𝑥) does not divide 𝑓(𝑥). 

So, we can choose 𝐴(𝑥), 𝐵(𝑥) ∈ 𝐹[𝑥] such that 𝑝(𝑥)𝐴(𝑥) + 𝑓(𝑥)𝐵(𝑥) = 1 

In particular, for 𝑥 = 𝑎,  

𝑝(𝑎)𝐴(𝑎) + 𝑓(𝑎)𝐵(𝑎) = 1 … (1) 

Using the fact that 𝑝(𝑥) is minimal polynomial for 𝑎, we get that 𝑝(𝑎) = 0 

Hence, (1) becomes 𝑓(𝑎)𝐵(𝑎) = 1 = 𝐵(𝑎)𝑓(𝑎) 

⇒ 𝐵(𝑎) = (𝑓(𝑎))
−1

∈ 𝐹[𝑎] 

That is, 𝑓(𝑎) is a unit in 𝐹[𝑎]. 

Hence, 𝐹[𝑎] is a field. 

However, 𝐹(𝑎) is the field of quotients of 𝐹[𝑎] 

We get, 𝐹(𝑎) = 𝐹[𝑎] 

Consider 𝑆 = {1, 𝑎, 𝑎2, … , 𝑎𝑛−1}. Now we prove that 𝑆 is a basis of [𝐹(𝑎): 𝐹]. 

If possible, let 𝛼0, 𝛼1, … , 𝛼𝑛−1 ∈ 𝐹 such that 𝛼0 ⋅ 1 + 𝛼1 ⋅ 𝑎 + ⋯ + 𝛼𝑛−1𝑎𝑛−1 = 0. 

Consider, 𝑓(𝑥) = 𝛼0 + 𝛼1𝑥 + ⋯ + 𝛼𝑛−1𝑥𝑛−1 ∈ 𝐹[𝑥]; 𝑓(𝑎) = 0 

𝑑𝑒𝑔 𝑑𝑒𝑔 𝑓(𝑥) = 𝑛 − 1 <𝑑𝑒𝑔 𝑑𝑒𝑔 𝑝(𝑥)   

So, we arrive at a contradiction unless 𝛼𝑖 = 0 ∀ 𝑖 

which proves that 𝑆 is linearly independent. 

Let 𝑓(𝑎) =  𝛽0 + 𝛽1𝑎 + ⋯ + 𝛽𝑚𝑎𝑚 ∈ 𝐹[𝑎] = 𝐹(𝑎) 
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Then 𝑓(𝑥) = 𝛽0 + 𝛽1𝑥 + ⋯ + 𝛽𝑚𝑥𝑚 

Divide 𝑓(𝑥) by 𝑝(𝑥), by division algorithm of polynomials, there exist unique polynomials 
𝑞(𝑥), 𝑟(𝑥) ∈ 𝐹[𝑥] such that 𝑓(𝑥) = 𝑞(𝑥)𝑝(𝑥) + 𝑟(𝑥);  𝑟(𝑥) = 0 or 𝑑𝑒𝑔 𝑑𝑒𝑔 𝑟(𝑥) <𝑑𝑒𝑔 𝑑𝑒𝑔 𝑝(𝑥) .  

At 𝑥 = 𝑎, 𝑓(𝑎) = 𝑞(𝑎)𝑝(𝑎) + 𝑟(𝑎) ⇒ 𝑓(𝑎) = 𝑟(𝑎) 

Either 𝑟(𝑥) = 0 or 𝑑𝑒𝑔 𝑑𝑒𝑔 𝑟(𝑥) <𝑑𝑒𝑔 𝑑𝑒𝑔 𝑝(𝑥)   

⇒ 𝑟(𝑥) = 𝛿0 + 𝛿1𝑥 + ⋯ ⊢ 𝛿𝑛−1𝑥𝑛−1; 𝛿𝑖 ∈ 𝐹 

𝑓(𝑎) = 𝑟(𝑎) = 𝛿0 + 𝛿1𝑎 + ⋯ + 𝛿𝑛−1𝑎𝑛−1 ∈ 𝐿(𝑆) 

That is, 𝑆 spans 𝐹(𝑎) 

Hence, 𝑆 is the basis of 𝐹(𝑎) over 𝐹. [𝐹(𝑎): 𝐹] = number of elements in set 𝑆 = 𝑛 i.e.; finite. 

Theorem 3.4.2: Every finite extension of a field is an algebraic extension. 

Proof: 

Let 𝐾 be a finite extension of a field 𝐹; [𝐾: 𝐹] = 𝑛 

Let 𝑎 ∈ 𝐾 be an arbitrary element of 𝐾. 

Then 𝐹(𝑎) is a subfield of 𝐾. 

That is, [𝐹(𝑎): 𝐹] divides [𝐾: 𝐹] = 𝑛 

This implies, [𝐹(𝑎): 𝐹] ≤ 𝑛 

So, [𝐹(𝑎): 𝐹] is finite. By Theorem 3.4.1, we get that 𝑎 is an algebraic element over 𝐹. This proves that 
every element of 𝐾 is algebraic over 𝐹. Hence, 𝐾 is an algebraic extension of 𝐹. 

Remark: Let 𝐹, 𝐹1 and 𝐾 be fields such that 𝐹 ⊆ 𝐹1 ⊆ 𝐾. Let 𝑎 ∈ 𝐾 be algebraic element over 𝐹 then 
[𝐹1(𝑎): 𝐹1] ≤ [𝐹(𝑎): 𝐹]. 

Proof: 

Let [𝐹1(𝑎): 𝐹1] = 𝑚 

That is, the degree of the minimal polynomial 𝑝1(𝑥) of 𝑎 over 𝐹1 is 𝑚. 

Similarly, let [𝐹(𝑎): 𝐹] = 𝑛 

That is, degree of minimal polynomial 𝑝(𝑥) of 𝑎 over 𝐹 is 𝑛. 

Since 𝑝(𝑥) is minimal polynomial of 𝑎 over 𝐹, therefore, 𝑝(𝑎) = 0 

Also, 𝐹 ⊆ 𝐹1; 𝑝(𝑎) = 0 where 𝑝(𝑥) can be considered as a polynomial over 𝐹1. 

Therefore, 𝑝1(𝑥) divides 𝑝(𝑥) 

⇒𝑑𝑒𝑔 𝑑𝑒𝑔 𝑝1(𝑥)  ≤𝑑𝑒𝑔 𝑑𝑒𝑔 𝑝(𝑥)  

⇒ 𝑚 ≤ 𝑛 that is, [𝐹1(𝑎): 𝐹1] ≤ [𝐹(𝑎): 𝐹] 

Theorem 3.4.3: Let 𝐿 is an algebraic extension of 𝐾 and 𝐾 is an algebraic extension of 𝐹 then 𝐿 is an 
algebraic extension of 𝐹. 

Proof: Since 𝐿 is an algebraic extension of 𝐾, for 𝑎 ∈ 𝐿, 𝑎 is an algebraic element over 𝐾. 

Let 𝑝(𝑥) = 𝛼0 + 𝛼1𝑥 + ⋯ + 𝛼𝑛−1𝑥𝑛−1 + 𝑥𝑛 is minimal polynomial of 𝑎 over 𝐾 of degree 𝑛; 𝛼𝑖 ∈
𝑘 ∀ 0 ≤ 𝑖 ≤ 𝑛 − 1 that is, 𝑝(𝑎) = 0. 

𝐾 is also an algebraic extension of 𝐹.  

Define a chain  

𝐹0 = 𝐹 

𝐹1 = 𝐹0(𝛼0) 

𝐹2 = 𝐹1(𝛼1) = 𝐹0(𝛼0, 𝛼1) 

⋮ 

⋮ 

𝐹𝑛 = 𝐹𝑛−1(𝛼𝑛−1) = 𝐹0(𝛼0, 𝛼1, … , 𝛼𝑛−1) 
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Clearly, 𝐹0 ⊆ 𝐹1 ⊆ 𝐹2 ⊆ ⋯ ⊆ 𝐹𝑛 

Since each 𝛼𝑖 is algebraic over 𝐹 and over 𝐹𝑖−1, so by the remark, 

[𝐹𝑖: 𝐹𝑖−1] = [𝐹𝑖−1(𝛼𝑖−1): 𝐹𝑖−1] ≤  [𝐹(𝛼𝑖−1): 𝐹] 

That is, [𝐹𝑖: 𝐹𝑖−1] is finite for every 𝑖. 

Also,  

[𝐹𝑛: 𝐹] = [𝐹𝑛: 𝐹𝑛−1][𝐹𝑛−1: 𝐹𝑛−2] ⋯ [𝐹1: 𝐹] 

That is a finite product of finite positive integers. Hence, [𝐹𝑛: 𝐹] is finite. 

Also, 𝛼𝑖 ∈ 𝐹𝑛 ∀ 𝑖 

⇒ 𝑎 is algebraic over 𝐹𝑛 

Therefore, [𝐹𝑛(𝑎): 𝐹𝑛] is finite. 

Also, [𝐹𝑛(𝑎): 𝐹] = [𝐹𝑛(𝑎): 𝐹𝑛][𝐹𝑛: 𝐹] 

This implies, [𝐹𝑛(𝑎): 𝐹] is finite. 

That means, 𝐹𝑛(𝑎) is algebraic extension of 𝐹. 

⇒ 𝑎 is algebraic over 𝐹 as 𝑎 ∈ 𝐹𝑛(𝑎) 

⇒ 𝐿 is algebraic extension of 𝐹. 

Theorem 3.4.4: The set 𝑆 of all those elements of 𝐾, which are algebraic over 𝐹, is a subfield of 𝐾 
containing 𝐹 such that no element 𝑎 of 𝐾 which is not in 𝑆 is algebraic over 𝑆.   

Proof: For 𝛼 ∈ 𝐹, 𝑥 − 𝛼 is a minimal polynomial of 𝛼 over 𝐹. 

𝛼 is algebraic over 𝐹 

⇒ 𝛼 ∈ 𝑆;  𝐹 ⊆ 𝑆. 

Let 𝑎, 𝑏 ∈ 𝑆 

⇒ 𝑎 and 𝑏 are algebraic elements of 𝐾 over 𝐹. 

⇒ [𝐹(𝑎): 𝐹] and [𝐹(𝑏): 𝐹] are both finite. 

Since 𝑏 is algebraic over 𝐹 

⇒ 𝑏 is algebraic over 𝐹(𝑎) 

⇒ [𝐹(𝑎)(𝑏): 𝐹(𝑎)] is finite. 

⇒ [𝐹(𝑎, 𝑏): 𝐹(𝑎)] is finite. 

Now, 𝑎, 𝑏 ∈ 𝐹(𝑎, 𝑏) and 𝐹(𝑎, 𝑏) is a field. 

⇒ 𝑎 − 𝑏, 𝑎𝑏−1 ∈ 𝐹(𝑎, 𝑏) 

Also, [𝐹(𝑎, 𝑏): 𝐹] = [𝐹(𝑎, 𝑏): 𝐹(𝑎)][𝐹(𝑎): 𝐹] is finite hence, 𝐹(𝑎, 𝑏) is algebraic over 𝐹 implies 𝑎 −

𝑏, 𝑎𝑏−1 both are algebraic over 𝐹. 

𝑎 − 𝑏, 𝑎𝑏−1 ∈ 𝑆 

⇒ 𝑆 is a subfield of 𝐾. 

If in the above discussion, we replace 𝐹 by 𝑆, then the set 𝑆1 which contains all those elements of 𝐾 
which are algebraic over 𝑆 form a subfield of 𝐾 containing 𝑆. Thus 𝑆1 is an algebraic extension of 𝑆 
and 𝑆 is an algebraic extension of 𝐹. So, 𝑆1 is an algebraic extension of 𝐹 (By Theorem 3.4.3). 
Consequently, 𝑆1 ⊆ 𝑆 and hence, 𝑆 = 𝑆1. If any 𝑎 ∈ 𝐾 is algebraic over 𝑆 then by definition of 𝑆1, 𝑎 ∈
𝑆1. So, 𝑎 ∈ 𝑆 as 𝑆1 = 𝑆. Hence, no element of 𝐾 not in 𝑆 is algebraic over 𝑆. 

 

1) Let 𝐾 be a field extension of field 𝐹. Then for 𝑎, 𝑏 ∈ 𝐾, if 𝑎, 𝑏 are algebraic over 𝐹 then 

𝑎 ± 𝑏, 𝑎𝑏 are algebraic over 𝐹. Moreover, if 𝑏 ≠ 0, 𝑎𝑏−1 is algebraic over 𝐹. 

2) 𝑆 defined above is the largest possible algebraic extension of 𝐹 in 𝐾, 𝑆 is algebraically 

closed with respect to 𝐾, 𝑆 is also called algebraic closure of 𝐹 relative to 𝐾. 
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1) Prove that 𝑅 is not an algebraic extension over 𝑄. 

2) Find algebraic extensions of 𝑄 and 𝑅. Observe that the two are the same.  

3.5 Factor Theorem 

 

A polynomial of degree 𝑛 over a field 𝐹 cannot have more than 𝑛 roots in any field 
extension of 𝐹 

Theorem 3.5.1: (Factor Theorem): Any element 𝑎 ∈ 𝐾 is a root of a polynomial 𝑓(𝑥) over 𝐹 of positive 
degree if and only if 𝑥 − 𝑎 divides 𝑓(𝑥) in 𝐾[𝑥]. 

Proof: 

Let 𝑥 − 𝑎 divides 𝑓(𝑥) in 𝐾[𝑥].  

This implies, there exists 𝑔(𝑥) ∈ 𝐾[𝑥] such that 𝑓(𝑥) = (𝑥 − 𝑎)𝑔(𝑥) 

At 𝑥 = 𝑎, 𝑓(𝑎) = (𝑎 − 𝑎)𝑔(𝑎) = 0 

This implies that 𝑎 is a root of 𝑓(𝑥). 

Conversely, let 𝑎 is a root of 𝑓(𝑥) in 𝐾. 

Divide 𝑓(𝑥) by 𝑥 − 𝑎, there exist 𝑞(𝑥), 𝑟(𝑥) ∈ 𝐾[𝑥] such that 𝑓(𝑥) = (𝑥 − 𝑎)𝑞(𝑥) + 𝑟(𝑥) … (1) where 
𝑟(𝑥) = 0;  𝑑𝑒𝑔 𝑟(𝑥) <𝑑𝑒𝑔 𝑑𝑒𝑔  (𝑥 − 𝑎)  = 1. 

This implies, 𝑟(𝑥) = 𝑐 ; where 𝑐 is an element of 𝐾. 

Put 𝑥 = 𝑎 in (1) 

𝑓(𝑎) = (𝑎 − 𝑎)𝑞(𝑎) + 𝑟(𝑎) = 𝑟(𝑎) 

This implies, 𝑟(𝑎) = 0 

But 𝑟(𝑥) = 𝑐 ∀ 𝑥 

This implies, 𝑟(𝑥) = 0 ∀ 𝑥 

Put in (1) 

We get, 𝑓(𝑥) = (𝑥 − 𝑎)𝑞(𝑥) 

This implies, 𝑥 − 𝑎 divides 𝑓(𝑥). 

Multiplicity of a root: Let 𝑓(𝑥) ∈ 𝐹[𝑥] be a non-zero polynomial then if 𝑓(𝑥) has a root 𝑥 = 𝑎, then 
the number of times it is appearing as a root of 𝑓(𝑥) is called multiplicity of 𝑎. 

For example, let 𝐹 = 𝐶, 𝑓(𝑥) = (𝑥 + 1)2(𝑥2 + 1) then 𝑓(𝑥) has four roots −1, −1, 𝑖, −𝑖. Therefore, −1 
is a root of 𝑓(𝑥) with multiplicity 2 whereas, 𝑖 and −𝑖 are roots with multiplicity 1. 

Theorem 3.5.2: Let 𝑎 is a root of 𝑓(𝑥) of multiplicity 𝑚 then 𝑓(𝑥) =  (𝑥 − 𝑎)𝑚𝑔(𝑥) such that 𝑔(𝑎) is 
non-zero. 

Proof: Let 𝑎 be a root of 𝑓(𝑥) of multiplicity 𝑚. This implies, (𝑥 − 𝑎)𝑚 divides 𝑓(𝑥) but (𝑥 − 𝑎)𝑚+1 
does not divide 𝑓(𝑥). 

Since, (𝑥 − 𝑎)𝑚 divides 𝑓(𝑥) 

Therefore, there exists 𝑔(𝑥) ∈ 𝐹[𝑥] such that 𝑓(𝑥) = (𝑥 − 𝑎)𝑚𝑔(𝑥) … (1)  

If possible, let 𝑔(𝑎) = 0 

This implies that 𝑥 − 𝑎 divides 𝑔(𝑥) 

or, 𝑔(𝑥) = (𝑥 − 𝑎)ℎ(𝑥); ℎ(𝑥) ∈ 𝐹[𝑥] 

From (1), 𝑓(𝑥) = (𝑥 − 𝑎)𝑚(𝑥 − 𝑎)ℎ(𝑥) =  (𝑥 − 𝑎)𝑚+1ℎ(𝑥) 

which is in contradiction to the choice of 𝑚. So, our supposition was wrong. That is, 𝑔(𝑎) ≠ 0. 

Theorem 3.5.3: A polynomial of degree 𝑛, where 𝑛 is positive, over a field 𝐹 cannot have more than 
𝑛 roots in any field extension of 𝐹. 

Proof: Let 𝑓(𝑥) be a polynomial of degree 𝑛. We will prove this result using the principle of 
mathematical induction on 𝑛. 
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For 𝑛 = 1 

Let 𝑓(𝑥) = 𝛼𝑥 + 𝛽;  𝛼, 𝛽 ∈ 𝐹 

Since 𝑑𝑒𝑔 𝑑𝑒𝑔 𝑓(𝑥) = 1 ⇒ 𝛼 ≠ 0  

Therefore, 𝛼−1 ∈ 𝐹 

Consider 𝑥 = −𝛼−1𝛽 ∈ 𝐹 

𝑓(−𝛼−1𝛽) = 𝛼(−𝛼−1𝛽) + 𝛽 = 0 

Therefore, the result is true for all polynomials with degree < 𝑛; 𝑛 ≥ 1 

For 𝑛; let 𝑓(𝑥) be a polynomial of degree 𝑛. 

Let 𝐾 is any extension of 𝐹. 

If 𝑓(𝑥) has no root in 𝐾 then we are through. 

If 𝑓(𝑥) has at least one root 𝑎 in 𝐾 that is, 𝑓(𝑥) = (𝑥 − 𝑎)𝑚𝑔(𝑥);  𝑔(𝑎) ≠ 0; 𝑚 ≥ 1 

𝑑𝑒𝑔 𝑑𝑒𝑔 𝑔(𝑥) = 𝑛 − 𝑚 < 𝑛  

By the induction hypothesis, 𝑔(𝑥) has at the most 𝑛 − 𝑚 roots in 𝐾. 

Therefore, 𝑓(𝑥) has maximum 𝑛 − 𝑚 + 𝑚 = 𝑛 roots in 𝐾. 

So, any polynomial of degree 𝑛 can have maximum 𝑛 roots in any field extension of 𝐹. 

 

Task: 1) Give an example of a polynomial over a field 𝐹 with a positive degree but no root. 

2) Give an example of a polynomial over a field 𝐹 with a degree more than 1 but only one 
root.  

 

3.6 Kronecker’s Result 

Theorem 3.6.1: (Kronecker’s result) If 𝑝(𝑥) is an irreducible polynomial over a field 𝐹 then there 
exists an extension 𝐸 of 𝐹 such that [𝐸: 𝐹] =  𝑑𝑒𝑔 𝑝(𝑥) and 𝑝(𝑥) has a root in 𝐸. 

Proof: 𝑝(𝑥) is irreducible polynomial. 

This implies that < 𝑝(𝑥) > is a maximal ideal of 𝐹[𝑥]. 

𝐹[𝑥] is integral domain 

Therefore, 
𝐹[𝑥]

<𝑝(𝑥)
> is a field. 

Let 𝐸 =
𝐹[𝑥]

<𝑝(𝑥)
> 

𝐹 ⊆ 𝐹[𝑥] ⊆ 𝐸 ⇒ 𝐹 ⊆ 𝐸 

Define 𝜎: 𝐹 → 𝐸 =
𝐹[𝑥]

<𝑝(𝑥)
> as 𝜎(𝛼) = 𝛼+< 𝑝(𝑥) >  ∀ 𝛼 ∈ 𝐹 

Let 𝛼, 𝛽 ∈ 𝐹 

𝜎(𝛼 + 𝛽) = (𝛼 + 𝛽)+< 𝑝(𝑥) > = (𝛼+< 𝑝(𝑥) >) + (𝛽+< 𝑝(𝑥) >) =  𝜎(𝛼) + 𝜎(𝛽) 

 𝜎(𝛼𝛽) = 𝛼𝛽+< 𝑝(𝑥) >= (𝛼+< 𝑝(𝑥) >)(𝛽+< 𝑝(𝑥) >) = 𝜎(𝛼)𝜎(𝛽) 

Hence, 𝜎 is a homomorphism. 

Let 𝛼 ∈𝑘𝑒𝑟 𝑘𝑒𝑟 𝜎  

⇒ 𝛼 ∈ 𝐹; 𝜎(𝛼) =< 𝑝(𝑥) > 

⇒ 𝛼+< 𝑝(𝑥) ≥< 𝑝(𝑥) > 

⇒ 𝛼 ∈< 𝑝(𝑥) > 

That is, 𝑘𝑒𝑟 𝑘𝑒𝑟 𝜎 = {< 𝑝(𝑥) >} 

This implies, 𝜎 is one-one. 

Therefore, 𝜎: 𝐹 → 𝐸 is a monomorphism and 𝐹 ⊆ 𝐸 

55



LOVELY PROFESSIONAL UNIVERSITY 

⇒ 𝐸 is a field extension of 𝐹. 

Let 𝑝(𝑥) = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥2 + ⋯ + 𝛼𝑛𝑥𝑛 

Now, 𝑝(𝑥) ∈ < 𝑝(𝑥) > 

⇒ 𝑝(𝑥)+< 𝑝(𝑥) > = < 𝑝(𝑥) > 

Now,  < 𝑝(𝑥) > = 𝑝(𝑥)+< 𝑝(𝑥) > 

= (𝛼0 + 𝛼1𝑥 + ⋯ + 𝛼𝑛𝑥𝑛)+< 𝑝(𝑥) > 

= 𝛼0 + 𝑎1(𝑥+ < 𝑝(𝑥) >) + ⋯ + 𝛼𝑛(𝑥𝑛+ < 𝑝(𝑥) >) 

= 𝛼0 + 𝛼1(𝑥) + ⋯ + 𝛼𝑛(𝑥)
𝑛

;  𝑥 = 𝑥+< 𝑝(𝑥) > = 𝑝(𝑥) 

That is, 𝑝(𝑥) =< 𝑝(𝑥) > 

𝑥 ∈ 𝐸 is a root of 𝑝(𝑥). 

Claim: {1, 𝑥, 𝑥2, … , 𝑥𝑛−1} is a basis for [𝐸: 𝐹] 

𝐸 =
𝐹[𝑥]

< 𝑝(𝑥)
> 

Let 𝑓(𝑥)+< 𝑝(𝑥) >∈ 𝐸 

Now, divide 𝑓(𝑥) by 𝑝(𝑥), there exist unique 𝑞(𝑥) and 𝑟(𝑥) such that 𝑓(𝑥) = 𝑝(𝑥)𝑞(𝑥) + 𝑟(𝑥) … (1) 
where 𝑟(𝑥) = 0 or 𝑑𝑒𝑔 𝑑𝑒𝑔 𝑟(𝑥) <𝑑𝑒𝑔 𝑑𝑒𝑔 𝑝(𝑥) = 𝑛   

Then 𝑟(𝑥) = 𝛽0 + 𝛽1𝑥 + ⋯ 𝛽𝑛−1𝑥𝑛−1; 𝛽𝑖 ∈ 𝐹 

𝑓(𝑥) = 𝑝(𝑥)𝑞(𝑥) + 𝑟(𝑥) 

⇒ 𝑓(𝑥) = 𝑝(𝜋)𝑞(𝑥) + 𝑟(𝑥) =< 𝑝(𝑥) > 𝑞(𝑥) + 𝑟(𝑥) 

⇒ 𝑓(𝑥) = 𝑟(𝑥) in 𝐸 

⇒ 𝑓(𝑥)+< 𝑝(𝑥) ≥ 𝛽0 + 𝛽1𝑥 + ⋯ + 𝛽𝑛−1𝑥𝑛−1 

Therefore, {1, 𝑥, 𝑥2, … , 𝑥𝑛−1} generates 𝐸 over 𝐹. 

Let 𝛾0, 𝛾1, … , 𝛾𝑛−1 ∈ 𝐹 such that  

𝛾0 + 𝛾1𝑥 + 𝛾2𝑥2 + ⋯ + 𝛾𝑛−1𝑥𝑛−1 =< 𝑝(𝑥) > 

⇒ 𝛾0 + 𝛾1(𝑥+< 𝑝(𝑥) >) + 𝛾2(𝑥+< 𝑝(𝑥) >)2 + ⋯ + 𝛾𝑛−1(𝑥+< 𝑝(𝑥) >)𝑛−1 =< 𝑝(𝑥) > 

⇒ 𝛾0 + 𝛾1𝑥 + 𝛾2𝑥2 + ⋯ + 𝛾𝑛−1𝑥𝑛−1+< 𝑝(𝑥) > = < 𝑝(𝑥) > 

⇒ 𝛾0 + 𝛾1𝑥 + 𝛾2𝑥2 + ⋯ + 𝛾𝑛−1𝑥𝑛−1 ∈ < 𝑝(𝑥) > 

⇒ 𝛾0 + 𝛾1𝑥 + 𝛾2𝑥2 + ⋯ + 𝛾𝑛−1𝑥𝑛−1 = 𝑝(𝑥)𝑔(𝑥); 𝑔(𝑥) ∈ 𝐹[𝑥] 

That is, 𝑑𝑒𝑔 𝑑𝑒𝑔 (𝑝(𝑥)𝑔(𝑥))  = 𝑛 − 1 

⇒𝑑𝑒𝑔 𝑑𝑒𝑔 𝑝(𝑥)  +𝑑𝑒𝑔 𝑑𝑒𝑔 𝑔(𝑥)  = 𝑛 − 1 

But 𝑑𝑒𝑔 𝑑𝑒𝑔 𝑝(𝑥)  = 𝑛 and 𝑑𝑒𝑔 𝑑𝑒𝑔 𝑔(𝑥)  ≥ 0 

⇒𝑑𝑒𝑔 𝑑𝑒𝑔 𝑝(𝑥)  +𝑑𝑒𝑔 𝑑𝑒𝑔 𝑔(𝑥)  ≥ 𝑛 

⇒  𝑛 − 1 ≥ 𝑛 which is absurd unless 𝛾𝑖 = 0 ∀ 𝑖 

⇒ {1, 𝑥, 𝑥2, … , 𝑥𝑛−1} is linearly independent. 

Therefore, [𝐸: 𝐹] = 𝑛 =𝑑𝑒𝑔 𝑑𝑒𝑔 𝑝(𝑥)  

Theorem 3.6.2: If 𝑓(𝑥) is any polynomial over a field 𝐹 with a positive degree n then there exists an 
extension 𝐸 of 𝐹 such that 𝑓(𝑥) has 𝑛 roots in 𝐸 and [𝐸: 𝐹] is maximum 𝑛! 

Proof: We prove this result by the principle of mathematical induction 

For 𝑛 = 1 

Consider 𝑓(𝑥) = 𝛼𝑥 + 𝛽;  𝛼 ≠ 0, 𝛼, 𝛽 ∈ 𝐹 

Since 𝛼 ≠ 0, 𝛼−1 ∈ 𝐹 
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Therefore, −𝛼−1𝛽 ∈ 𝐹 

and 𝑓(−𝛼−1𝛽) = 𝛼(−𝛼−1𝛽) + 𝛽 = 0 

Therefore 𝐸 = 𝐹. 

So, the result is true for 𝑛 = 1. 

Let the result be true for all polynomials with a degree less than 𝑛. 

Let 𝑓(𝑥) be the polynomial with degree 𝑛. 

Let 𝑝(𝑥) be the irreducible polynomial such that 𝑝(𝑥) divides 𝑓(𝑥) in 𝐹[𝑥]. 

So, by Theorem 3.6.1, there exists a field extension 𝐸′ of 𝐹 such that 𝑝(𝑥) has a root 𝑎 in 𝐸′ and 
[𝐸′: 𝐹] =𝑑𝑒𝑔 𝑑𝑒𝑔 𝑝(𝑥) ≤ 𝑛  

Now, 𝑎 is the root of 𝑝(𝑥) and hence of 𝑓(𝑥). 

Therefore, 𝑓(𝑥) = (𝑥 − 𝑎)𝑔(𝑥) 

So that 𝑑𝑒𝑔 𝑑𝑒𝑔 𝑔(𝑥)  = 𝑛 − 1 < 𝑛 

By the induction hypothesis, 𝑔(𝑥) has 𝑛 − 1 roots in some extension 𝐸 of 𝐸′ 

Therefore, 𝑓(𝑥) has 𝑛 − 1 roots in extension 𝐸 of 𝐸′; [[𝐸: 𝐸′] ≤ (𝑛 − 1)! 

That is, 𝐸 has 𝑛 roots of 𝑓(𝑥) and [𝐸: 𝐹] = [𝐸: 𝐸′][𝐸′: 𝐹] ≤ 𝑛 ⋅ (𝑛 − 1)! = 𝑛! 

 

Task: 1) Find the field 𝐸 containing all the roots of polynomial 𝑥2 + 𝑥 + 1 ∈ 𝑄[𝑥]. 

2) Find the field 𝐸 containing all the roots of polynomial 𝑥3 + 3 ∈ 𝑄[𝑥]. 

3) Prove that the field 𝐸 containing all the roots of 𝑥2 + 1 ∈ 𝑅[𝑥] is 𝐶. 

Summary 

● The algebraic structures rings and fields are defined. 

● A field extension is defined and analyzed as a vector space. Further degree and basis of 

this extension are discussed.  

● Monic and Minimal polynomials are defined and related results are discussed. 

● Multiplicity of a root of a polynomial is defined and the Factor theorem is proved. 

● It is proved that any field extension 𝐸 of 𝐹 contains at the most 𝑛 roots of polynomial 

𝑓(𝑥); where 𝑓(𝑥) is polynomial over 𝐹 and 𝑑𝑒𝑔 𝑑𝑒𝑔 𝑓(𝑥) = 𝑛 .  

Keywords  

● Fields 

● Field Extensions 

● Algebraic Extension 

● Minimal Polynomial 

● Finite Extension 

● Factor Theorem 

● Kronecker’s result 

Self-assessment  

Choose the most suitable answer from the options given with each question. 

 

Question 1: Which of the following is NOT a field? 

A: The ring of integers 

B: The ring of real numbers 

C: The ring of rational numbers 

D: The ring of complex numbers 
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Question 2: Choose the correct statement 

A: Every field is an integral domain 

B: Every integral domain is a field 

C: Every division ring is a field 

D: Every commutative ring is a field 

  

Question 3: Units of the ring 𝑍4 are 

A: 1 

B: 3 

C: 1, 3 

D: 1, 2, 3 

Question 4: Degree of extension of 𝑄(√3) over 𝑄 is 

A: 1 

B: 2 

C: 3 

D: Infinite  

Question 5:  Degree of extension of 𝑄(√2, √3) over 𝑄 is 

A: 2 

B: 3 

C: 6 

D: 1 

Question 6:  Which of the following is an algebraic extension of the field of rational numbers? 

A: 𝑅 

B: 𝐶 

C: Both 𝑅 and 𝐶 

D: None of 𝑅 and 𝐶 

Question 7: Degree of the minimal polynomial of 𝑥 = 𝑖 ∈ 𝐶 over 𝑅 is 

A: 1 

B: 2 

C: 3 

D: 4 

Question 8: Degree of the minimal polynomial of 𝜔 = √1
3

, 𝜔 ≠ 1 over the field of real numbers is 

A: 4 

B: 3 

C: 2 

D: 1 

Question 9: True/ False Let 𝐾 be a field extension of a field 𝐹.Then minimal polynomial of an 
element 𝑎 ∈ 𝐾 is unique. 

A: True 

B: False 

Question 10: Consider the polynomial 𝑓(𝑥) = (𝑥3 − 1)(𝑥2 − 1) ∈ 𝑅[𝑥]. Then multiplicity of 1 as a 
root of 𝑓(𝑥) is 

A: 2 
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B: 3 

C: 4 

D: 5 

Question 11: Let 𝐾 be a field extension of a field 𝐹. Then 

Statement I: [𝐾: 𝐹] = 1 

Statement II: 𝐾 = 𝐹 

A: Both the statements are equivalent. 

B: Statement I is necessary for II but not sufficient. 

C: Statement I is sufficient for II but not necessary 

D: Both the statements are independent. 

Question 12: Basis of 𝐶 over 𝑅 is 

A: {1, 𝑖, −1} 

B:  {1, 𝑖, −𝑖} 

C: {1, 𝑖} 

D: {1, −1, 𝑖, −𝑖} 

Question 13: Let 𝐾 is a finite extension of 𝐹 and 𝐿 is a finite extension of 𝐾 such that [𝐾: 𝐹] = 2 and 
[𝐿: 𝐾] = 3. Then [𝐿: 𝐹] is 

A: 2 

B: 6 

C: 3 

D: Infinite 

Question 14: Which of the following is a simple extension of 𝑄 

A: 𝑄(√2, 2) 

B: 𝑄(√3, 𝑖) 

C: 𝑅 

D: 𝐶 

Question 15: Which of the following is not an algebraic extension of 𝑄? 

A: 𝑄(√2) 

B: 𝑄(√3, 𝑖) 

C: 𝑅 

D: 𝐶 

Question 16: Which of the following is a monic polynomial over 𝑍11? 

A: (4𝑥2 + 3𝑥 + 1)(3𝑥2 + 4𝑥 + 1) 

B: (2𝑥 + 5)(5𝑥 + 1) 

C: (𝑥3 + 3𝑥2 + 1)(2𝑥 + 5) 

D: (7𝑥2 + 3)(𝑥2 + 1) 

Question 17: Minimal polynomial of 1 + 𝑖 over the field of real numbers is 

A: 𝑥2 + 2𝑥 + 1 

B: 𝑥2 − 2𝑥 + 1 

C: 𝑥2 − 2𝑥 − 2 

D: 𝑥2 − 2𝑥 + 2 
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Question 18: Minimal polynomial of an element 𝑎 ∈ 𝐹 over 𝐹  

A: always exists and is of degree 1 

B: May or may not exist 

C: Never exists 

D: Always exists and is of degree 2 

Question 19: Minimal polynomial of 𝜔 =
1+√3𝑖

2
 over the field of real numbers is 

A: 𝑥2 + 𝑥 + 1 

B: 𝑥2 − 𝑥 + 1 

C: 𝑥3 − 1 

D: 𝑥3 + 1 

Question 20: Which of these is not algebraic over 𝑄? 

A: 𝜋 

B: √5 

C: 𝑖 

D: 𝜔 

Answers:  

1) A 2) A 3) C 4) B 5) C 

6) B 7) B 8) C 9) A 10) A 

11) A 12) C 13) B 14) C 15) A 

16) A 17) D 18) A 19) A 20) A 

Review Questions 

1) Let 𝐾 be a field extension of 𝐹.  Prove that [𝐾: 𝐹] = 1 if and only if 𝐾 = 𝐹. 

2) Find a basis and degree of 𝑄(√2, √3) over 𝑄. 

3) Prove that a cubic polynomial over a field F is reducible over F if and only if it has a root in 

F. 

4) Prove that 𝐹(√2 + √3) = 𝐹(√2, √3) 

5) Find the smallest extension of 𝑄 having a root of 𝑥4 − 2 ∈ 𝑄[𝑥]. 

6) Find the smallest extension of 𝑄 having a root of 𝑥2 + 4 ∈ 𝑄[𝑥]. 

7) Prove that √𝑝 is algebraic over 𝑄 where 𝑝 is a prime number. 

8) Determine the minimal polynomial of √2 + 5 over 𝑄. 

9) Let 𝑓(𝑥) ∈ 𝐹[𝑥] has a root 𝑎 of multiplicity 2. Then prove that 𝑎 is a root of derivative of 

𝑓(𝑥). 

Further Readings 

 
Basic abstract algebra by P. B. Bhattacharya, S. K. Jain, S. R. Nagpal, Cambridge university 
press 

Topics in algebra by I.N. Hartstein, Wiley 

Abstract algebra by David S Dummit and Richard M Foote, Wiley 

 

https://onlinecourses.nptel.ac.in/noc20_ma29/preview 

https://nptel.ac.in/courses/111/105/111105112/# 
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4.2 Degree of Extension of Splitting Fields 
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4.4 Separable and Inseparable Extensions 

Summary 
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Further Readings 

Objectives 

After studying this unit, you will be able to 

• define and find the splitting field of a polynomial of degree 𝑛 over some field F 

• prove that two splitting fields of a polynomial are isomorphic 

• find basis and degree of extension of splitting field of a polynomial over a field 

• define conjugate elements and algebraically closed fields with example 

• find the degree of the minimal polynomial of an algebraic element over some field 

• relate the concept of differentiability with multiple roots 

• define separable/inseparable polynomials, elements, and extensions over a field F 

• prove that any algebraic extension of a finite field F is a separable extension. 

Introduction 

Let 𝐹 be a field and 𝑓(𝑥) is a polynomial of degree 𝑛 ≥ 1 over the field 𝐹. Then in this unit, we will 
observe that in any field extension 𝐾 of 𝐹, 𝑓(𝑥) can have maximum 𝑛 roots. Further, we will see that 
there will be a field 𝐸 called splitting field of polynomial 𝑓(𝑥) containing exactly 𝑛 roots, i.e., all the 
roots. Further, we will see that two splitting fields of a polynomial are isomorphic.  

The minimal polynomial will be defined corresponding to an algebraic element 𝑎 of 𝐾 over 𝐹. 
Algebraic and separable extensions will be defined and explained. 

4.1 Splitting Fields 

Definition 4.1.1:Let 𝐹 be a field and 𝑓(𝑥) ∈ 𝐹[𝑥] is of degree 𝑛 ≥ 1. Then a field 𝐸 is called splitting 
field of 𝑓(𝑥) if  

1. 𝑓(𝑥) can be factorized into 𝑛 linear factors over 𝐸. 

2. There does not exist any field 𝐸′ such that 𝑓(𝑥) can be factorized into 𝑛 linear factors in 𝐸′ 

and 𝐸′ ⊂ 𝐸. 

 

For example, consider 𝑓(𝑥) = 𝑥2 − 2 ∈ ℚ[𝑥] 
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Then 𝑓(𝑥) = 𝑥2 − 2 = (𝑥 − √2)(𝑥 + √2) has two roots √2, −√2 neither of which is a rational 

number. 

Consider ℚ(√2) = {𝑎 + 𝑏√2|𝑎, 𝑏 ∈ ℚ} 

Then ℚ(√2) contains both the roots of 𝑓(𝑥). 

That is, 𝑓(𝑥) is factorized in 2 linear factors over ℚ. 

Note that, the field of real numbers ℝ also contains both the roots of 𝑓(𝑥). However, ℝ is not the 

smallest such field as ℚ(√2) is properly contained in ℝ. 

However, if there exists some field extension 𝐾 of ℚ containing both the roots of 𝑓(𝑥) and contained 

in ℚ(√2). 

Since 𝐾 contains both the roots of 𝑓(𝑥) this implies √2 ∈ 𝐾. Also, 𝑄 ⊆ 𝐾, ⇒ ℚ(√2) ⊆ 𝐾 

which implies that 𝐾 = ℚ(√2). 

That is, ℚ(√2) is the smallest field extension of ℚ containing all the roots of 𝑓(𝑥), hence ℚ(√2) is 

the splitting field of 𝑓(𝑥). 

The next theorem ensures the existence of a splitting field. 

Theorem 4.1.2:If 𝑓(𝑥) is any polynomial over a field 𝐹 with a positive degree then there exists an 
extension 𝐸 of 𝐹 such that 𝑓(𝑥) has 𝑛 roots in 𝐸 and [𝐸: 𝐹] is maximum 𝑛! 

Proof: 

We prove this result by the principle of mathematical induction 

For 𝑛 = 1 

Consider 𝑓(𝑥) = 𝛼𝑥 + 𝛽;  𝛼 ≠ 0, 𝛼, 𝛽 ∈ 𝐹 

Since 𝛼 ≠ 0, 𝛼−1 ∈ 𝐹 

Therefore, −𝛼−1𝛽 ∈ 𝐹 

and 𝑓(−𝛼−1𝛽) = 𝛼(−𝛼−1𝛽) + 𝛽 = 0 

Therefore 𝐸 = 𝐹. 

So, the result is true for 𝑛 = 1. 

Let the result be true for all polynomials with degree less than 𝑛. 

Let 𝑓(𝑥) be the polynomial with degree 𝑛. 

Let 𝑝(𝑥) be the irreducible polynomial such that 𝑝(𝑥) divides 𝑓(𝑥) in 𝐹[𝑥]. 

So, by Theorem 3.6.1, there exists a field extension 𝐸′ of 𝐹 such that 𝑝(𝑥) has a root 𝑎 in 𝐸′ and 
[𝐸′: 𝐹] = deg 𝑝(𝑥) ≤ 𝑛 

Now, 𝑎 is root of 𝑝(𝑥) and hence of 𝑓(𝑥). 

Therefore, 𝑓(𝑥) = (𝑥 − 𝑎)𝑔(𝑥) 

So that deg 𝑔(𝑥) = 𝑛 − 1 < 𝑛 

By the induction hypothesis, 𝑔(𝑥) has 𝑛 − 1 roots in some extension 𝐸 of 𝐸′ 

Therefore, 𝑓(𝑥) has 𝑛 − 1 roots in extension 𝐸 of 𝐸′; [[𝐸: 𝐸′] ≤ (𝑛 − 1)! 

That is, 𝐸 has 𝑛 roots of 𝑓(𝑥) and [𝐸: 𝐹] = [𝐸: 𝐸′][𝐸′: 𝐹] ≤ 𝑛 ⋅ (𝑛 − 1)! = 𝑛! 

From the above theorem, it is evident that any polynomial over a field 𝐹 has some splitting field 𝐸 
with [𝐸: 𝐹} ≤ 𝑛!. 

Remark: An isomorphism 𝜎 between two fields 𝐹 and 𝐹′ can be extended to an isomorphism 
between their quotient fields as follows 

𝜎: 𝐹 → 𝐹′ is an isomorphism. Let us consider 𝐹[𝑥] and 𝐹′[𝑡]. 

Define 𝜂: 𝐹[𝑥] → 𝐹′[𝑡] as 

𝜂(𝑓(𝑥)) = 𝜂(𝛼0 + 𝛼1𝑥 + ⋯ + 𝛼𝑛𝑥𝑛) 
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= 𝜎(𝛼0) + 𝜎(𝛼1)𝑡 + ⋯ + 𝜎(𝛼𝑛)𝑡𝑛 

𝛼𝑖 ∈ 𝐹 ∀ ⅈ  ⇒ 𝜎(𝛼𝑖) ∈ 𝐹′ 

𝜂: 𝐹[𝑥] → 𝐹′[𝑡] is an isomorphism. 

Let 𝑝(𝑥) be an irreducible polynomial over the field 𝐹. Let us denote 𝜂(𝑝(𝑥)) = 𝑝′(𝑡) and 𝜎(𝛼) =

𝛼′ ∀ 𝛼 ∈ 𝐹. 

Claim:𝒑′(𝒕) is an irreducible polynomial of 𝑭′[𝒕]. 

Let there exist polynomials 𝑟′(𝑡), 𝑠′(𝑡) ∈ 𝐹′[𝑡] such that  

𝑝′(𝑡) = 𝑟′(𝑡)𝑠′(𝑡) 

Now, 𝜂: 𝐹[𝑥] → 𝐹′[𝑡] is an isomorphism. 

That is, there exist 𝑟(𝑥), 𝑠(𝑥) ∈ 𝐹[𝑥] such that  

𝜂(𝑟(𝑥)) = 𝑟′(𝑡) 

and  

𝜂(𝑠(𝑥)) = 𝑠′(𝑡) 

Consider 𝑝′(𝑡) = 𝑟′(𝑡)𝑠′(𝑡) 

⇒ 𝜂(𝑝(𝑥)) = 𝜂(𝑟(𝑥))𝜂(𝑠(𝑥)) = 𝜂(𝑟(𝑥)𝑠(𝑥)) 

⇒ 𝑝(𝑥) = 𝑟(𝑥)𝑠(𝑥) 

Since 𝑝(𝑥) is an irreducible polynomial over 𝐹, therefore, either deg 𝑟(𝑥) = 0 or deg 𝑠 (𝑥) = 0. 

Also, 𝜂 being isomorphism preserves degree, that is,  

𝑟′(𝑡) or 𝑠′(𝑡) is constant polynomial. 

This implies, 𝑝′(𝑡) is irreducible polynomial in 𝐹′[𝑡]. 

< 𝑝(𝑥) > and < 𝑝′(𝑡) > are both maximal ideals of 𝐹[𝑥] and 𝐹′[𝑡] respectively. 

We know that for a ring 𝑅 and an ideal 𝐼 of 𝑅, 𝑅/𝐼 is a field if 𝐼 is a maximal ideal of 𝑅. 

Therefore, 𝐹[𝑥] < 𝑝(𝑥)⁄ > and 𝐹′[𝑡] < 𝑝′(𝑡)⁄ > are both fields. 

We define a map 

𝜇: 𝐹[𝑥] < 𝑝(𝑥) >⁄ → 𝐹′[𝑡] < 𝑝′(𝑡)⁄ > 

as 

𝜇(𝑓(𝑥)+< 𝑝(𝑥) >) = 𝑓′(𝑡) + < 𝑝′(𝑡) >  ∀ 𝑓(𝑥) ∈ 𝐹[𝑥] 

then 𝜇 is the desired isomorphism between 𝐹[𝑥] < 𝑝(𝑥)⁄ > and 𝐹′[𝑡] < 𝑝′(𝑡)⁄ >. 

Theorem 4.1.3: Let 𝑝(𝑥) be an irreducible polynomial in 𝐹[𝑥]and 𝑝’(𝑡) the corresponding 
polynomial in 𝐹’(𝑡). Suppose 𝑢 and 𝑣 are the roots of 𝑝(𝑥) and 𝑝’(𝑡) in some field extensions 𝐸 and 
𝐸’ of 𝐹 and 𝐹’ respectively, then there exists an isomorphism 𝜇 of 𝐹[𝑢] onto 𝐹’[𝑣] such that 𝜇(𝛼) =

𝛼′ for all 𝛼 ∈ 𝐹 and 𝜇(𝑢) = 𝑣. 

Proof: Define 𝜎: 𝐹[𝑥] → 𝐹[𝑢] as 𝜎(𝑓(𝑥)) = 𝑓(𝑢) ∀ 𝑓(𝑥) ∈ 𝐹[𝑥] 

Then 𝜎  is onto homomorphism. 

Let 𝑓(𝑥) ∈ ker 𝜎 

⇒ 𝑓(𝑢) = 0 

⇒ 𝑝(𝑥) divides 𝑓(𝑥) 

⇒ ker 𝜎 =< 𝑝(𝑥) > 

By the Fundamental theorem of Homomorphism, 

𝐹[𝑥] < 𝑝(𝑥)⁄ >≅ 𝐹[𝑢] = 𝐹(𝑢) 

Since 𝑢 is algebraic over 𝐹, therefore, 𝐹[𝑢] = 𝐹(𝑢). 

𝐹[𝑥] < 𝑝(𝑥)⁄ > ≅ 𝐹(𝑢) 
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𝐹′[𝑡] < 𝑝′(𝑡)⁄ >≅ 𝐹′(𝑣) 

There exist functions 𝜎1 ∶ 𝐹[𝑥] < 𝑝(𝑥)⁄ >→ 𝐹(𝑢) as 𝜎1(𝑓(𝑥)+< 𝑝(𝑥) >) = 𝑓(𝑢) 

and 

𝜎2: 𝐹′[𝑡] < 𝑝′(𝑡)⁄ >→ 𝐹′(𝑣)as 𝜎2(𝑓′(𝑡) +< 𝑝′(𝑡) >) = 𝑓′(𝑣) 

By remark, there exists a map 𝜂: 𝐹[𝑥] < 𝑝(𝑥) >⁄ → 𝐹′[𝑡] < 𝑝′(𝑡)⁄ > as 

𝜂(𝑓(𝑥)+< 𝑝(𝑥) >) = 𝑓′(𝑡) +< 𝑝′(𝑡) > 

Also,  

𝜎1(𝑓(𝑥)+< 𝑝(𝑥) >) = 𝑓(𝑢) 

𝜎2(𝑓′(𝑡) +< 𝑝′(𝑡) >) = 𝑓′(𝑣). . . (1) 

 

If 𝑓(𝑥) = 𝑥, 𝑓′(𝑡) = 𝑡 

𝜎1(𝑥+< 𝑝(𝑥) >) = 𝑢 

𝜎2(𝑡 +< 𝑝′(𝑡) >) = 𝑣 

𝜂(𝑥+< 𝑝(𝑥) >) = 𝑡 +< 𝑝′(𝑡) > 

Let 𝜇 = 𝜎2𝜂𝜎1
−1 

If 𝑓(𝑥) = 𝛼, 𝑓′(𝑡) = 𝛼′ 

Then  

𝜇(𝛼) = 𝜎2𝜂𝜎1
−1(𝛼) 

= 𝜎2𝜂(𝛼+< 𝑝(𝑥) >) 

= 𝜎2(𝛼′ +< 𝑝′(𝑡) >) 

= 𝛼′ 

Again,  

𝜇(𝑢) = 𝜎2𝜂𝜎1
−1(𝑢) 

= 𝜎2𝜂(𝑥+< 𝑝(𝑥) >) 

= 𝜎2(𝑡 +< 𝑝′(𝑡) >) 

= 𝑣 

𝜇: 𝐹[𝑢] → 𝐹′(𝑣) is an isomorphism such that 𝜇(𝑢) = 𝜈 and 𝜇(𝛼) = 𝛼′ ∀ 𝛼 ∈ 𝐹. 

 

Note: Taking 𝐹 = 𝐹′, 𝜂 as identity map, 𝑢 = 𝛼, 𝑣 = 𝛽, we get an important result . Let 𝐹 ⊂
 𝐾 be two fields. If 𝛼,  𝛽 ∈ 𝐾 have same minimal polynomial p(x) over 𝐹, then there exists 
an isomorphism 𝜇 of 𝐹(𝛼) onto 𝐹(𝛽) such that 𝜇(𝛼) = 𝛽 and 𝜇(𝑎) = 𝑎 for all 𝑎 ∈ 𝐹. 

 

Theorem 4.1.4:Let 𝐹 ≅ 𝐹′ and let 𝑓(𝑥) be any polynomial of degree ≥ 1 over 𝐹 and 𝑓′(𝑡) be the 
corresponding polynomial over 𝐹′. If 𝐸 and 𝐸′ are splitting fields of 𝑓(𝑥) and 𝑓′(𝑡) over 𝐹 and 𝐹′ 
respectively, then there exists an isomorphism 𝜙 of 𝐸 onto 𝐸′ such that 𝜙(𝛼) = 𝛼′∀ 𝛼 ∈ 𝐹. 

Proof: 

Let deg 𝑓(𝑥) = 𝑛 

We know that in this case [𝐸: 𝐹] ≤ 𝑛!, that is finite. 

We apply the Principle of Mathematical Induction on [𝐸: 𝐹]. 
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Let [𝐸: 𝐹] = 1 

This implies, 𝐸 = 𝐹 

That is all 𝑛 roots of 𝑓(𝑥) are in 𝐹, further 

𝑓(𝑥) = 𝛼(𝑥 − 𝑎1)(𝑥 − 𝑎2) … ⋅ (𝑥 − 𝑎𝑛) for some 0 ≠ 𝛼 ∈ 𝐹 

so that 𝑓′(𝑡) = 𝛼′(𝑡 − 𝑎1
′ )(𝑡 − 𝑎2

′ ) ⋯ (𝑡 − 𝑎𝑛
′ ) and 𝑎1

′ , 𝑎2,…
′ , 𝑎𝑛

′ ∈ 𝐹′ 

this Implies 𝐸′ = 𝐹′ 

Then 𝛹 can be taken as isomorphism from 𝐹 onto 𝐹′. 

Therefore, the result holds for [𝐸: 𝐹] = 1. 

Let [𝐸: 𝐹] > 1. 

Let result holds for all splitting fields 𝐸 over any field 𝐹 of degree less than [𝐸: 𝐹]. 

Since [𝐸: 𝐹] > 1 

Therefore, at least one root 𝑢 of 𝑓(𝑥) is not in 𝐹. 

Let 𝑝(𝑥) be the minimal polynomial of 𝑢 over 𝐹 then deg 𝑝(𝑥) > 1. Let 𝑝′(𝑡) be the corresponding 
polynomial over 𝐹′. 

Then by definition of minimal polynomial, 𝑝(𝑥) is irreducible and hence 𝑝′(𝑡) is irreducible. 

As 𝑝(𝑥) divides 𝑓(𝑥) 

This implies that there exists some 𝑞(𝑥) ∈ 𝐹[𝑥] such that 𝑓(𝑥) = 𝑝(𝑥)𝑞(𝑥) 

⇒ 𝑓′(𝑡) = 𝑝′(𝑡)𝑞′(𝑡) 

Let 𝑣 be a root of 𝑝′(𝑡) in 𝐸′. 

There exists an isomorphism 𝜃: 𝐹[𝑢] → 𝐹′[𝑣] in which 𝜃(𝛼) = 𝜎(𝛼) = 𝛼′ ∀ 𝛼 ∈ 𝐹 and 𝜃(𝑢) = 𝜈. 

Now, 𝑓(𝑥) = (𝑥 − 𝑢)𝑓1(𝑥) and 𝑓′(𝑡) = (𝑡 − 𝜈)𝑔1(𝑡) for some 𝑓1(𝑥) ∈ 𝐹(𝑢)[𝑥] and 𝑔1(𝑡) ∈ 𝐹′(𝜈)[𝑡] 

If 𝜌1 denotes the isomorphism of 𝐹(𝑢)[𝑥] onto 𝐹′(𝜈)[𝑡] such that 𝜌1 is an extension of 𝜃 and 𝜃1(𝑥) =

𝑡 then 𝑓′(𝑡) = 𝜃1(𝑓(𝑥)) =  𝜃1((𝑥 − 𝑢)𝑓1(𝑥)) =  (𝑡 − 𝜈)𝜃1(𝑓1(𝑥)) 

This implies, 𝜃1(𝑓1(𝑥)) = 𝑔1(𝑡) as 𝑓′(𝑡) = (𝑡 − 𝜈)𝑔1(𝑡) 

Further, as 𝐸 contains all the 𝑛 roots of 𝑓(𝑥), 𝐸 contains all 𝑛 − 1 roots of 𝑓1(𝑥). 

If 𝐸1 is the splitting field of 𝑓1(𝑥) over 𝐹[𝑢] contained in 𝐸, then 𝐸1 contains not only roots of 
𝑓1(𝑥)but also 𝑢. 

𝐸1 contains all the roots of 𝑓(𝑥) so, by definition of the splitting field, we get that 𝐸 ⊆ 𝐸1 ⇒ 𝐸 = 𝐸1. 

Therefore, 𝐸 is splitting field of 𝑓1(𝑥) over 𝐹(𝑢). Similarly, 𝐸′ is the splitting field of 𝑔1(𝑡) over 
𝐹′(𝑣). 

Now, [𝐸: 𝐹] = [𝐸: 𝐹(𝑢)][𝐹(𝑢): 𝐹] but [𝐹(𝑢): 𝐹] = deg 𝑝(𝑥) > 1 

⇒ [𝐸: 𝐹(𝑢)] < [𝐸: 𝐹] 

Hence by the induction hypothesis, there exists an isomorphism 𝜓 of 𝐸 onto 𝐸′ which extends the 
isomorphism. 

𝜃: 𝐹(𝑢) → 𝐹′(𝜈). However, 𝜃 extends 𝜎, hence 𝜓(𝛼) = 𝜃(𝛼) = 𝛼′ ∀ 𝛼 ∈ 𝐹. 

Corollary:In particular, taking 𝐹 = 𝐹′ and 𝜎 as identity map, we can conclude that if 𝑓(𝑥) is a 
polynomial of positive degree over a field 𝐹 with two splitting fields 𝐸 and 𝐸′ then 𝐸 ≅ 𝐸′. 
Moreover, if 𝜓: 𝐸 → 𝐸′ is the isomorphism then 𝜓(𝛼) = 𝛼 ∀ 𝛼 ∈ 𝐹. 

 
Task: Find the splitting field of polynomial 𝑓(𝑥) = (𝑥 − √2)

2
 over the field of complex 

numbers and real numbers. 
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4.2 Degree of Extension of Splitting Fields 

Theorem 4.2.1:Let 𝐹 ⊆  𝐾 be a field extension. Let 𝑎, 𝑏 ∈  𝐾 be algebraic over 𝐹 of degrees 𝑚 and 𝑛 
respectively where 𝑚 and 𝑛 are relatively prime positive integers. Then 𝐹(𝑎, 𝑏) is a field extension 
of 𝐹 of degree 𝑚𝑛. 

Proof: 

An element 𝑎 ∈ 𝐾is algebraic over 𝐹 of degree 𝑚. That is, [𝐹(𝑎): 𝐹] = 𝑚. 

Similarly, 𝑏 ∈ 𝐾 is algebraic over 𝐹 of degree 𝑛. That is, [𝐹(𝑏): 𝐹] = 𝑛. 

Let 𝑝(𝑥) and 𝑞(𝑥) be the minimal polynomial of 𝑏 over 𝐹 and 𝐹(𝑎) respectively. 

This implies, deg 𝑝(𝑥) = 𝑛, 𝑝(𝑥) ∈ 𝐹[𝑥], 𝐹 ⊂ 𝐹(𝑎) 

⇒ deg 𝑞(𝑥) ≤ deg 𝑝(𝑥) = 𝑛 

⇒ [𝐹(𝑎)(𝑏): 𝐹(𝑎)] ≤ 𝑛 

⇒ [𝐹(𝑎, 𝑏): 𝐹(𝑎)] ≤ 𝑛 

Now, [𝐹(𝑎, 𝑏): 𝐹] = [𝐹(𝑎, 𝑏): 𝐹(𝑎)][𝐹(𝑎): 𝐹] ≤ 𝑛𝑚 … (1) 

Again, [𝐹(𝑎, 𝑏): 𝐹] = [𝐹(𝑎, 𝑏): 𝐹(𝑎)][𝐹(𝑎): 𝐹] 

[𝐹(𝑎): 𝐹] divides [𝐹(𝑎, 𝑏): 𝐹] 

⇒ 𝑚 divides [𝐹(𝑎, 𝑏): 𝐹] 

Similarly, 𝑛 divides [𝐹(𝑎, 𝑏): 𝐹]. 

⇒ 𝑚𝑛 ≤ [𝐹(𝑎, 𝑏): 𝐹] … (2) 

From (1) and (2) 

[𝐹(𝑎, 𝑏): 𝐹] = 𝑚𝑛 

Theorem 4.2.2:An element 𝑎 ∈ 𝐾 is algebraic over the field 𝐹 of odd degree then 𝐹(𝑎) = 𝐹(𝑎2). 

Proof: 

𝑎2 ∈ 𝐹(𝑎) 

⇒ 𝐹(𝑎2) ⊂ 𝐹(𝑎) ⋯ (1) 

Let [𝐹(𝑎): 𝐹] = 2𝑛 + 1; 𝑛 ∈ ℤ 

Let 𝑝(𝑥) = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥2 + ⋯ + 𝛼2𝑛𝑥2𝑛 + 𝑥2𝑛+1 is the minimal polynomial of 𝑎 over 𝐹. 

Putting 𝑥 = 𝑎, 𝑝(𝑎) = 0 we get 

𝑝(𝑎) = 𝛼0 + 𝛼1𝑎 + ⋯ + 𝛼2𝑛𝑎2𝑛 + 𝑎2𝑛+1 

0 = 𝛼0 + 𝛼1𝑎 + ⋯ + 𝛼2𝑛𝑎2𝑛 + 𝑎2𝑛+1 

 = (𝛼0 + 𝛼2𝑎2 + ⋯ + 𝛼2𝑛𝑎2𝑛) + (𝛼1𝑎 + 𝛼3𝑎3 + ⋯ + 𝑎2𝑛+1) 

 = (𝛼0 + 𝛼2𝑎2 + ⋯ + 𝛼2𝑛𝑎2𝑛) + 𝑎(𝛼1 + 𝛼3𝑎2 + ⋯ + 𝑎2𝑛) 

  

Since [𝐹(𝑎): 𝐹] = 2𝑛 + 1 and 𝛼1 + 𝛼3𝑥2 + ⋯ + 𝑥2𝑛 is of degree 2𝑛 which is less than 2𝑛 + 1. 

Therefore, 𝛼1 + 𝛼3𝑎2 + ⋯ + 𝑎2𝑛 ≠ 0 

Let 𝛽 = 𝛼1 + 𝛼3𝑎2 + ⋯ + 𝑎2𝑛 ≠ 0 

⇒ 𝛽−1 ∈ 𝐹 

From (1) 

0 = (𝛼0 + 𝛼2𝑎2 + ⋯ + 𝛼2𝑛𝑎2𝑛) + 𝑎𝛽 

0 = (𝛼0 + 𝛼2𝑎2 + ⋯ + 𝛼2𝑛𝑎2𝑛)𝛽−1 + 𝑎 

or 
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𝑎 = −(𝛼0 + 𝛼2𝑎2 + ⋯ 𝛼2𝑛𝑎2𝑛)𝛽−1 ∈ 𝐹(𝑎2) 

⇒ 𝐹(𝑎) ⊆ 𝐹(𝑎2) 

Also, 𝐹(𝑎2) ⊆ 𝐹(𝑎) 

Therefore, 𝐹(𝑎) = 𝐹(𝑎2) 

 

Example 4.2.3:Let 𝐸 is the splitting field of the polynomial 𝑥5 − 3𝑥3 + 𝑥2 − 3 over ℚ. 
Find 𝐸 and [𝐸: ℚ]. 

Solution: 

Let 𝑓(𝑥) = 𝑥5 − 3𝑥3 + 𝑥2 − 3 

Putting 𝑓(𝑥) = 0 

𝑥5 − 3𝑥3 + 𝑥2 − 3 = 0 

𝑥3(𝑥2 − 3) + 1(𝑥2 − 3) = 0 

(𝑥3 + 1)(𝑥2 − 3) = 0 

𝑥 =
1 ± √3ⅈ

2
 , −1, ±√3 

Let 𝐸 = ℚ(√3, ⅈ) 

Then all the roots of 𝑓(𝑥) are in 𝐸. 

That is 𝐸 contains a splitting field of 𝑓(𝑥). 

Let 𝐾 is splitting field of 𝑓(𝑥). Then 𝐾 ⊆ 𝐸. 

Also, 𝐾 is a field extension of ℚ. K contains √3 and 
1+√3𝑖

2
, which implies that ℚ(√3, ⅈ) ⊆ 𝐾 

This implies. 𝐾 = 𝐸 

That is, 𝐸 is required splitting field of 𝑓(𝑥). 

Now, we find [𝐸: 𝐹] 

√3 ∉ ℚ ⇒ [ℚ(√3): ℚ] ≥ 2 

Also, the polynomial 𝑥2 − 3 is the monic polynomial with √3 as a root. 

This implies, [ℚ(√3): ℚ] ≤ 2 

That is, [ℚ(√3): ℚ] = 2 … (1) 

Clearly, ⅈ ∉ ℚ(√3) 

[ℚ(√3, ⅈ): ℚ(√3)] ≥ 2 

Also, the polynomial 𝑥2 + 1 ∈ ℚ(√3)[𝑥]is a monic polynomial with ⅈ as a root. 

[ℚ(√3, ⅈ): ℚ(√3)] ≤ 2 

That is,  

[ℚ(√3, ⅈ): ℚ(√3)] = 2 

We know that 

[𝐹(𝑎, 𝑏): 𝐹] = [𝐹(𝑎, 𝑏): 𝐹(𝑎)][𝐹(𝑎): 𝐹] 

That is,  

[ℚ(√3, ⅈ): ℚ] = [𝑄(√3, ⅈ): ℚ(√3)][ℚ(√3): ℚ] = 2 × 2 = 4 

Therefore, [𝐸: ℚ] = 4. 

 

Example 4.2.4:Let 𝐸 is the splitting field of the polynomial 𝑥𝑝 − 1 over ℚ, where 𝑝 is a 
prime number. Find 𝐸 and [𝐸: ℚ]. 
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Solution: 

Let 𝑓(𝑥) = 𝑥𝑝 − 1 

To find the roots of 𝑓(𝑥), put 𝑓(𝑥) = 0 

𝑥𝑝 − 1 = 0 

⇒ 𝑥𝑝 = 1 

⇒ 𝑥 = (1)1 𝑝⁄  

 
= (cos 2𝑛𝜋 + ⅈ𝑠ⅈ𝑛 2𝑛𝜋)

1

𝑝 

 
= ⅇ

2𝑛𝜋ⅈ

𝑝 ; 𝑛 = 0, 1, 2, … , 𝑝 − 1 

 

Let 𝜉 = ⅇ
2𝜋ⅈ

𝑝  

𝑥 = 1, 𝜉, 𝜉2, … , 𝜉𝑝−1 are roots of 𝑓(𝑥). 

Consider 𝐸 = ℚ(𝜉); then 𝐸 is splitting field of 𝑓(𝑥). 

Again, 𝑥𝑝 − 1 = (𝑥 − 1)(𝑥𝑝−1 + 𝑥𝑝−2 + ⋯ + 𝑥 + 1) 

⇒
𝑥𝑝 − 1

𝑥 − 1
= 𝑥𝑝−1 + ⋯ + 𝑥 + 1 = 𝑓(𝑥) 

𝑓(𝑥) has roots 𝜉, 𝜉2, … , 𝜉𝑝−1 and by Eisenstein’s criteria, 𝑓(𝑥)is an irreducible polynomial over ℚ. 

Therefore, 𝑓(𝑥) is the minimal polynomial of 𝜉 over ℚ of degree 𝑝 − 1. 

So, [ℚ(𝜉): ℚ] = 𝑝 − 1. 

Definition 4.2.5: (Algebraically Closed Fields) Let 𝐹 be a field. Then 𝐹 is called algebraically closed 
if every non-zero, non-constant polynomial has all the roots in 𝐹. For example, 𝑥2 + 1 ∈ ℝ[𝑥] but its 
roots ⅈ, −ⅈ ∉ ℝ hence ℝ is not algebraically closed. The field ℂ is algebraically closed. 

Theorem 4.2.6:Algebraically closed fields are never finite fields. 

Proof:Let 𝐹 be an algebraically closed field. 

Suppose 𝐹 = {𝑎1, 𝑎2, … , 𝑎𝑛} is finite. 

Consider 𝑓(𝑥) = 1 + (𝑥 − 𝑎1)(𝑥 − 𝑎2) ⋯ (𝑥 − 𝑎𝑛) ∈ 𝐹[𝑥] 

For 1 ≤ ⅈ ≤ 𝑛;  𝑓(𝑎𝑖) = 1 ≠ 0 

Therefore, we arrive at a contradiction. So, 𝐹 is never finite. 

 

Example 4.2.7:√2 + √5
3

is algebraic over ℚ of degree 6. 

Solution: 

Let 𝛼 = √2 + √5
3

 

⇒ 𝛼 − √2 = √5
3

 

⇒ 𝛼3 − 2√2 − 3𝛼 √2
2

+ 6𝛼 = 5 

⇒ 𝛼3 + 6𝛼 − 5 = √2(2 + 3𝛼2) 

⇒ 𝛼6 + 36𝛼2 + 25 + 12𝛼4 − 60𝛼 − 10𝛼3 = 8 + 18𝛼4 + 24𝛼2 

⇒ 𝛼6 − 6𝛼4 − 10𝛼3 + 12𝛼2 − 60𝛼 + 17 = 0 

So, 𝑓(𝑥) = 𝑥6 − 6𝑥4 − 10𝑥3 + 12𝑥2 − 60𝑥 + 17 ∈ ℚ[𝑥] such that 𝑓(𝛼) = 0 

Therefore, 𝛼 is algebraic over 𝐹. 

Claim:ℚ(𝜶) = ℚ(√𝟐, √𝟓
𝟑

) 

𝛼 = √2 + √5
3

∈ ℚ(√2, √5
3

) 

68



Unit 04: Splitting Fields  

 LOVELY PROFESSIONAL UNIVERSITY  

Notes 
⇒ ℚ(𝛼) ⊆ ℚ(√2, √5

3
) 

Again, 𝛼 = √2 + √5
3

 

𝛼 ∈ ℚ(𝛼) 

⇒ √2 + √5
3

∈ ℚ(𝛼) 

⇒ 2 + √2
3

5 + 2√2√5
3

∈ ℚ(𝛼) 

⇒ √25
3

+ 2√2√5
3

∈ ℚ(𝛼) 

⇒ √5
3

(√5
3

+ 2√2) ∈ ℚ(𝛼) 

⇒ √5
3

(√5
3

+ √2 + √2) ∈ ℚ(𝛼) 

⇒ √5
3

(√2 + 𝛼) ∈ ℚ(𝛼) 

⇒ 5(2√2 + 𝛼3 + 6𝛼 + √2
3

𝛼2) ∈ ℚ(𝛼) 

⇒ 2√2 + 3√2𝛼2 ∈ ℚ(𝛼) 

⇒ √2(2 + 3𝛼2) ∈ ℚ(𝛼) 

⇒ √2 ∈ ℚ(𝛼) 

Also 𝛼 ∈ ℚ(𝛼) 

⇒ 𝛼 − √2 ∈ ℚ(𝛼) 

⇒ √5
3

∈ ℚ(𝛼) 

⇒ ℚ(√2, √5
3

) ⊆ ℚ(𝛼) 

⇒ ℚ(√2, √5
3

) = ℚ(𝛼) 

Now we find [ℚ(𝛼): ℚ] 

Since 𝑄(𝛼) = ℚ(√2, √5
3

) 

Consider the polynomial 𝑥3 − 5 ∈ ℚ[𝑥] 

This polynomial is monic over ℚ, having √5
3

 as a root and by Eisenstein criteria, it is irreducible. 

Therefore, it is minimal polynomial of √5
3

 over ℚ. 

Hence, [ℚ(√5
3

): ℚ] = 3 

Since √2 ∉ ℚ(√5
3

) 

Therefore, [ℚ(√2, √5
3

): 𝑄(√5
3

)] ≥ 2 

Also, 𝑥2 − 2 is the monic polynomial with √2 as a root. 

This implies, [ℚ(√2, √5
3

): ℚ(√5)3 ] ≤ 2 

Therefore, [ℚ(√2, √5
3

): ℚ(√5
3

)] = 2. 

Hence, [ℚ(𝛼): ℚ] = [ℚ(√2, √5
3

): ℚ] = [ℚ(√2, √5
3

): ℚ(√5
3

)][ℚ(√5
3

): ℚ] = 2 × 3 = 6. 

 

Task: Find the degree of extension of 𝐸 over 𝐹 = ℚ where 𝐸 is the splitting field of the 

polynomial (𝑥 − √2)(𝑥 − √3) over 𝐹. 

 

4.3 Separable Polynomials 

Definition 4.3.1: (Derivative of a polynomial over a field 𝑭) Let 𝑓(𝑥) = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥2 + ⋯ +
𝛼𝑛𝑥𝑛 ∈ 𝐹[𝑥] be a polynomial of degree 𝑛 over a field 𝐹. 

That is, 𝛼𝑖 ∈ 𝐹 ∀ 0 ≤ ⅈ ≤ 𝑛 

If deg 𝑓(𝑥) = 𝑛 ⇒ 𝛼𝑛 ≠ 0 

𝑓′(𝑥) = 𝛼1 + 2𝛼2𝑥 + ⋯ + 𝑛𝛼𝑛𝑥𝑛−1 is derivative of 𝑓(𝑥) with respect to 𝑥. 
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Note: In general, if deg 𝑓(𝑥) = 𝑛, then deg 𝑓′(𝑥) = 𝑛 − 1 but over a field, this is not true. 
Over a field, deg 𝑓′ (𝑥) ≤ 𝑛 − 1. For example, consider the field 𝐹 = 𝑍7 and 𝑓(𝑥) = 2𝑥7 +

3𝑥5 + 1 ∈ 𝐹[𝑥] is a polynomial of degree 7. However, it's derivative 𝑓′(𝑥) = 14𝑥6 +
15𝑥4 = 𝑥4 in 𝑍7 is of degree 4. However, if the field is of characteristic 0 then deg 𝑓′(𝑥) =
deg 𝑓(𝑥) − 1 . 

Rest properties are the same. That is for 𝑓(𝑥), 𝑔(𝑥) ∈ 𝐹[𝑥] and 𝛼 ∈ 𝐹 

1) (𝑓(𝑥) + 𝑔(𝑥))
′

= (𝑓(𝑥))
′

+ (𝑔(𝑥))
′
 

2) (𝛼𝑓(𝑥))
′

= 𝛼𝑓′(𝑥) 

3) (𝑓(𝑥)𝑔(𝑥))
′

= 𝑓(𝑥)(𝑔(𝑥))
′

+ (𝑓(𝑥))
′
𝑔(𝑥) 

Lemma 4.3.2:Let 𝑓(𝑥) ∈ 𝐹[𝑥] be a non-constant polynomial, then an element 𝛼 of a field extension 𝐾 
of 𝐹 is multiple roots of 𝑓(𝑥) if and only if 𝛼 is a common root of 𝑓(𝑥) and 𝑓′(𝑥). 

Proof: 

Let 𝛼 ∈ 𝐾 is a multiple root of 𝑓(𝑥). 

Let 𝑓(𝑥) = (𝑥 − 𝛼)𝑚𝑔(𝑥);  𝑚 > 1, 𝑔(𝛼) ≠ 0 

Differentiating both sides with respect to 𝑥, we get, 

𝑓′(𝑥) = (𝑥 − 𝛼)𝑚𝑔′(𝑥) + 𝑚(𝑥 − 𝛼)𝑚−1𝑔(𝑥) 

At 𝑥 = 𝛼, 

𝑓′(𝛼) = 0 + 𝑚(0)𝑔(𝛼) = 0 

This implies that 𝛼 is a common root of 𝑓(𝑥) and 𝑓′(𝑥). 

Conversely, let 𝛼 is a common root of 𝑓(𝑥) and 𝑓′(𝑥). 

That is, 𝑓(𝛼) = 0 

and  

𝑓′(𝛼) = 0 … (1) 

Suppose 𝛼 is a root of 𝑓(𝑥) with multiplicity 1. 

That is, 𝑓(𝑥) = (𝑥 − 𝛼)𝑔(𝑥);  𝑔(𝛼) ≠ 0 

Differentiating both sides with respect to 𝑥, we get, 

𝑓′(𝑥) = (𝑥 − 𝛼)𝑔′(𝑥) + 𝑔(𝑥) 

At 𝑥 = 𝛼, 

𝑓′(𝛼) = 0 + 𝑔(𝛼) 

That is,  

𝑓′(𝛼) = 𝑔(𝛼) ≠ 0 

𝛼 is not a root of 𝑓′(𝑥). So, we arrive at a contradiction. 

Therefore, our supposition was wrong. 

𝛼 is a multiple root of 𝑓(𝑥). 

Theorem 4.3.3:Let 𝑓(𝑥) be an irreducible polynomial over 𝐹. Then 𝑓(𝑥) has a multiple root in some 
field extension if and only if 𝑓′(𝑥) = 0. 

Proof: Let 𝑓(𝑥) has a multiple root 𝛼 in some field extension 𝐾 of 𝐹. Also 𝑓(𝑥) is irreducible 
polynomial. 

This implies 𝑓(𝑥) is the minimal polynomial of 𝛼 in 𝐹. 

So, if there exists any polynomial 𝑔(𝑥) ∈ 𝐹[𝑥] such that 𝑔(𝛼) = 0 then 𝑓(𝑥) divides 𝑔(𝑥) ⋯ (1) 

Since 𝛼 is a multiple root of 𝑓(𝑥) in 𝐾. 

This implies, 𝑓′(𝛼) = 0 

By (1), 𝑓(𝑥) divides 𝑓′(𝑥) 
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This implies, deg 𝑓(𝑥) ≤ deg 𝑓′(𝑥) which is not possible unless 𝑓′(𝑥) = 0. 

⇒ 𝑓′(𝑥) = 0 

Conversely, 𝑓(𝑥) is an irreducible polynomial over 𝐹. 

Let 𝐾 be the splitting field of 𝑓(𝑥). Let 𝛼 ∈ 𝐾 be a root of 𝑓(𝑥) ⇒ 𝑓(𝛼) = 0 

Also, 𝑓′(𝑥) = 0 ∀ 𝑥 

In particular, 𝑓′(𝛼) = 0 

That is, 𝛼 is a common root of 𝑓(𝑥) and 𝑓′(𝑥).  

So, 𝛼 is a multiple root of 𝑓(𝑥) in a field extension 𝐾 of 𝐹.  

Theorem 4.3.4:No irreducible polynomial over a field of characteristic zero has a multiple root in 
any field extension. 

Proof: Let 𝑓(𝑥) ∈ 𝐹[𝑥] is an irreducible polynomial with some multipleroot where 𝐹 is a field of 
characteristic 0. 

This implies 𝑓′(𝑥) = 0 ∀ 𝑥. 

But we know that if deg 𝑓 (𝑥) = 𝑛and 𝐹 is a field of characteristic 0 then deg 𝑓′(𝑥) = 𝑛 − 1 

That is, 𝑓′(𝑥) ≠ 0 

So, we arrive at a contradiction. 

Hence, no such polynomial exists. 

 

Example 4.3.5:The polynomial 𝑥2 − 𝑡 in 𝐹 = 𝑍2(𝑡) is irreducible over 𝐹 having a 
multiple root in some field extension of 𝐹. Moreover,𝑓′(𝑥) = 0. 

Solution:𝑓(𝑥) = 𝑥2 − 𝑡 ∈ 𝑍2[𝑡] is irreducible over 𝐹. 

Let 𝐾 be the splitting field of 𝑓(𝑥) and 𝑓(𝑥) has roots 𝛼 and 𝛽. 

𝑥2 − 𝑡 = (𝑥 − 𝛼)(𝑥 − 𝛽) 

⇒ 𝑥2 − 𝑡 = 𝑥2 − (𝛼 + 𝛽)𝑥 + 𝛼𝛽 

⇒ 0 = −(𝛼 + 𝛽) 

⇒ 𝛼 = −𝛽 

Also, 𝛽 ∈ 𝑍2 

⇒ 2𝛽 = 0 

⇒ 𝛽 + 𝛽 = 0 

⇒ 𝛽 = −𝛽 

⇒ 𝛼 = 𝛽 

Therefore, 𝑓(𝑥) has a multiple root in 𝐾. 

𝑓′(𝑥) = 2𝑥 = 0 in 𝐹. 

Definition 4.3.6: (Separable and Inseparable Irreducible Polynomials)Let 𝐹 be a field and 𝑓(𝑥) ∈
𝐹[𝑥] is an irreducible polynomial. Then 𝑓(𝑥) is called separable polynomial if 𝑓(𝑥) has all the roots 
distinct in its splitting field otherwise, it is called an inseparable polynomial. For example, 𝑥2 + 1 ∈

ℝ[𝑥]is a separable polynomial. The polynomial𝑥2 + 𝑥 + 1 ∈ ℚ[𝑥] is a separable polynomial. 

Theorem 4.3.7:An irreducible polynomial 𝑓(𝑥) is separable if and only if 𝑓′(𝑥) ≠ 0. 

Proof: The polynomial 𝑓(𝑥) is a separable irreducible polynomial 

⇔ 𝑓(𝑥) is irreducible and in any field extension of 𝐹, 𝑓(𝑥) has all roots distinct. 

⇔ 𝑓(𝑥) is an irreducible polynomial having no multiple roots. 

⇔ 𝑓′(𝑥) ≠ 0. 

 

Every non-zero polynomial over a field of characteristic zero is separable. If the 
characteristic is non-zero then an irreducible polynomial may exist which is inseparable 
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Definition 4.3.8: (Separable and Inseparable Polynomials)For a general polynomial 𝑓(𝑥) is any 
polynomial then 𝑓(𝑥) is called separable polynomial if all its irreducible factors are separable. In 
case, the irreducible factors of 𝑓(𝑥) are not separable, then 𝑓(𝑥) is called inseparable polynomial 
over the field 𝐹. 

For example, 𝑓(𝑥) = (𝑥 − 1)2(𝑥2 + 1) ∈ ℚ[𝑥] has irreducible factors 𝑥 − 1, 𝑥2 + 1 and both are 
separable polynomials and hence 𝑓(𝑥) is separable polynomial. 

 

A reducible separable polynomial may have multiple roots but an irreducible separable 
polynomial never has a multiple root. 

 

Theorem 4.3.9:An irreducible polynomial 𝑓(𝑥) over a field 𝐹 of characteristic 𝑝> 0 is inseparable if 
and only if 𝑓(𝑥) ∈ 𝐹[𝑥𝑝] 

Proof: Let 𝑓(𝑥) = 𝛼0 + 𝛼1𝑥 + ⋯ + 𝛼𝑛𝑥𝑛 be an irreducible polynomial over the field 𝐹. Now 
characteristic 𝐹 ≠ 0 and 𝑓(𝑥) is inseparable. 

This implies, 𝑓′(𝑥) = 0 

⇒ 𝛼1 + 2𝛼2𝑥 + 3𝛼3𝑥2 + ⋯ + 𝑛𝛼𝑛𝑥𝑛−1 = 0 

⇒ 𝑘𝛼𝑘 = 0 ∀ 𝑘 

⇒ 𝑘 = 0 or 𝛼𝑘 = 0 

Since characteristic 𝐹 = 𝑝 

⇒ 𝑝 divides 𝑘 or 𝛼𝑘 = 0 

⇒ 𝑓(𝑥) = 𝛼0 + 𝛼𝑝𝑥𝑝 + 𝛼2𝑝𝑥2𝑝 + ⋯ + 𝛼𝑚𝑝𝑥𝑚𝑝 ∈ 𝐹[𝑥𝑝] 

Conversely, let 𝑓(𝑥) ∈ 𝐹[𝑥𝑝] 

⇒ 𝑓(𝑥) = 𝛼0 + 𝛼1𝑥𝑝 + 𝛼2𝑥2𝑝 + ⋯ + 𝛼𝑚𝑥𝑚𝑝 

⇒ 𝑓′(𝑥) = 𝑝𝛼1𝑥𝑝−1 + 2𝑝𝛼2𝑥2𝑝−1 + ⋯ + 𝑚𝑝𝛼𝑚𝑥𝑚𝑝−1 

Since characteristic 𝐹 = 𝑝 

⇒ 𝑝𝑥 = 0 ∀ 𝑥 ∈ 𝐹 

⇒ 𝑝𝛼𝑖 = 0 ∀ ⅈ 

⇒ 𝑓′(𝑥) = 0 

⇒ 𝑓(𝑥) is inseparable polynomial. 

 

Task: Which of the following polynomials are separable over ℚ? 

a) 𝑓(𝑥) = 𝑥2 − 2 

b) 𝑓(𝑥) = (𝑥 − 2)2(𝑥 − 3) 

 

4.4 Separable and Inseparable Extensions 

Definition 4.4.1:(Separable Element)Let 𝐹 ⊆ 𝐾 be any field extension. An algebraic element 𝑎 ∈

𝐾is called a separable element if its minimal polynomial over 𝐹 is separable. 

For example, ⅈ ∈ ℂ has minimal polynomial 𝑥2 + 1 ∈ ℚ[𝑥] which is a separable polynomial and 
hence ⅈ is a separable element over ℚ. 

Definition 4.4.2: (Separable Extension) Let 𝐹 ⊆ 𝐾 be an algebraic extension. If ∀ 𝑎 ∈ 𝐾, 𝑎 is a 
separable element over 𝐹 then 𝐾 is called a separable extension of 𝐹. 

 

Example 4.4.3: Infinite field with finite characteristic may be inseparable. 

Solution:𝑭 = 𝒁𝟐[𝒕]is an infinite field with finite characteristic. 
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Consider 𝑓(𝑥) = 𝑥2 − 𝑡 ∈ 𝑍2[𝑡] is an irreducible polynomial over 𝐹. 

and by Example 4.3.5, 𝑓(𝑥) has a multiple root in 𝐾 and hence it is inseparable. 

Theorem 4.4.4: Let 𝐷 be an integral domain of characteristic 𝑝, a prime number. Then 
(ⅈ) The mapping 𝜎: 𝐷 → 𝐷 such that 𝜎(𝑎) = 𝑎𝑝 for 𝑎 ∈ 𝐷 is a monomorphism. 

(ⅈⅈ) For any positive integer 𝑛, the mapping 𝜎𝑛: 𝐷 → 𝐷 such that 𝜎𝑛(𝑎) = 𝑎𝑝𝑛
 for 𝑎 ∈

𝐷 is a monomorphism 

Proof: Let 𝑎, 𝑏 ∈ 𝐷 

𝜎(𝑎 + 𝑏) = (𝑎 + 𝑏)𝑝 

 = 𝑎𝑝 + (
𝑝
1

) 𝑎𝑝−1𝑏 + (
𝑝
2

) 𝑎𝑝−2𝑏2 + ⋯ + 𝑏𝑝 

We know that 𝑝 divides (
𝑝
𝑟

) ∀ 1 ≤ 𝑟 ≤ 𝑝 − 1 

Since characteristic 𝐹 = 𝑝 

Therefore, (
𝑝
𝑟

) = 0 ∀ 1 ≤ 𝑟 ≤ 𝑝 − 1 

(𝑎 + 𝑏)𝑝 = 𝑎𝑝 + 𝑏𝑝 

⇒ 𝜎(𝑎 + 𝑏) = 𝜎(𝑎) + 𝜎(𝑏) 

Again,  

𝜎(𝑎𝑏) = (𝑎𝑏)𝑝 

 = 𝑎𝑝𝑏𝑝 

 = 𝜎(𝑎)𝜎(𝑏) 

Therefore, 𝜎 is a homomorphism. 

Let 𝑎 ∈ ker 𝜎 

⇒ 𝜎(𝑎) = 0 

⇒ 𝑎𝑝 = 0 

⇒ 𝑎 = 0 

⇒ ker 𝜎 = {0} 

Therefore, 𝜎 is one- one. 

Hence, 𝜎 is a monomorphism. 

(ii) 𝜎𝑛: 𝐷 → 𝐷 is defined as 𝜎𝑛(𝑎) = 𝑎𝑝𝑛
 ∀ 𝑎 ∈ 𝐷 

Clearly, 𝜎𝑛 = 𝜎 ∘ 𝜎 ∘ … ∘ 𝜎 

Since 𝜎 is a monomorphism. 

⇒ 𝜎𝑛 is a monomorphism on 𝐷. 

Theorem 4.4.5:If 𝐹 is a finite field with characteristic 𝑝 then 𝑎 → 𝑎𝑝 is an automorphism on 𝐹. 

Proof: From Theorem 4.4.4, the function 𝜎(𝑎) = 𝑎𝑝 is a monomorphism. 

⇒ 𝜎: 𝐹 → 𝐹 is one-one and 𝐹 is finite. 

We know that if 𝑆 is a finite set then a function 𝑓: 𝑆 → 𝑆 is one-one if and only if it is onto. 

Therefore, 𝜎 is onto and hence it is an automorphism. 

Theorem 4.4.6:Any algebraic extension of a finite field 𝐹 is a separable extension. 

Proof: Let 𝐹 be a finite field. 

Let 𝐾 be an algebraic extension of 𝐹. 

Let 𝑓(𝑥) be an irreducible polynomial over 𝐹. 
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Suppose 𝑓(𝑥) is separable. 

⇒ 𝑓(𝑥) ∈ 𝐹[𝑥𝑝] 

⇒ 𝑓(𝑥) = 𝛼0 + 𝛼1𝑥𝑝 + 𝛼2𝑥2𝑝 + ⋯ + 𝛼𝑚𝑥𝑚𝑝 

Now, 𝛼𝑖 ∈ 𝐹 ∀ ⅈ 

⇒ 𝜎: 𝐹 → 𝐹 as 𝜎(𝑎) = 𝑎𝑝 is an automorphism. 

This implies, 𝜎 is onto. 

There exist some 𝛽𝑖 ∈ 𝐹 such that 𝜎(𝛽𝑖) = 𝛼𝑖 

That is, 𝛽𝑖
𝑝

= 𝛼𝑖 

𝑓(𝑥) = 𝛼0 + 𝛼1𝑥𝑝 + ⋯ + 𝛼𝑚𝑥𝑚𝑝 

 = 𝛽0
𝑝

+ 𝛽1
𝑝

𝑥𝑝 + ⋯ 𝛽𝑚
𝑝

𝑥𝑚𝑝 

 = (𝛽0 + 𝛽1𝑥 + ⋯ + 𝛽𝑚𝑥𝑚)𝑝 

This implies, 𝑓(𝑥) = (𝑔(𝑥))
𝑝
where 𝑔(𝑥) ∈ 𝐹[𝑥]. 

Thus 𝑓(𝑥) is reducible over 𝐹. 

So, we arrive at a contradiction. 

Therefore, 𝑓(𝑥) is separable. 

So, this is a separable extension. 

 

Task: Which of the following is separable element over ℚ ? 

a) ⅈ ∈ ℂ 

b) √2 ∈ ℝ 

c) 𝜋 ∈ ℝ 

d) 3 ∈ ℚ 

 

Summary 

• The splitting field of a polynomial of degree 𝑛 over some field F is defined and explained 
with the help of examples. 

• Isomorphism of two splitting fields of a polynomial is explained. 

• Basis and degree of extension of splitting field of a polynomial over a field are defined. 

• Algebraically closed fields are explained with examples. 

• The degree of the minimal polynomial of an algebraic element over some field is defined. 

• The concept of differentiability is related to multiple roots.  

• Separable/inseparable polynomials, elements, and extensions over a field F are explained. 

Keywords 

• Splitting field of a polynomial  

• Isomorphism of splitting fields 

• Basis and degree of extension of splitting field 

• Algebraically closed fields 

• The minimal polynomial of an algebraic element 

• Degree of the minimal polynomial 

• Separable/inseparable polynomials, elements and extensions 
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Self-Assessment 

Choose the most suitable answer from the options given with each question. 

 

Question 1: Let 𝒇(𝒙) be a polynomial of degree 𝒏 over a field 𝑭. Then the number of roots of 𝒇(𝒙) 
in 𝑭 are 

A: Exactly 𝑛 

B: Maximum 𝑛 

C: Minimum 𝑛 

D: Maximum 𝑛 − 1 

Question 2: Let 𝒇(𝒙) =  𝒙𝒈(𝒙) be a polynomial over a field 𝑭. Then 𝒇(𝒙) has a minimum … 
number of roots in 𝑭. 

A: 0 

B: 1 

C: 2 

D: 3 

Question 3: Splitting field of the polynomial 𝒙𝟐 + 𝒙 + 𝟏 ∈ ℚ[𝒙] is 

A: ℂ 

B: ℚ(√3) 

C: ℚ(√3, ⅈ) 

D: ℚ(𝜔) 

Question 4: Let 𝒇(𝒙) be a polynomial of degree 𝟒 over a field 𝑭 and 𝑬 be the splitting field of 
𝒇(𝒙) over 𝑭. Then degree [𝑬: 𝑭] is maximum 

A: 2 

B: 4 

C: 12 

D: 24 

Question 5: Let 𝒇(𝒙) be a polynomial of degree 1 over a field F and 𝑬 is splitting field of 𝒇(𝒙) 
then  

A: 𝐸 = 𝐹 

B: [𝐸: 𝐹] = 1 

C: 𝐹 contains all the roots of 𝑓(𝑥) 

D: All the options are correct 

Question 6: True/False: Every isomorphism between two fields can be extended to an 
isomorphism between their quotient fields 

A: True 

B: False 

Question 7: Consider √𝟓, ⅈ ∈ ℂ. Then  

A: Both are algebraic over ℝ 

B: Only √5 is algebraic over ℝ 

C: Only ⅈ is algebraic over ℝ 

D: Both are not algebraic over ℝ 

Question 8: Consider 𝝅ⅈ ∈ ℂ, Then 

A: it is algebraic over both ℚ and ℝ 
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B: it is algebraic over ℚ but not over ℝ 

C:  it is algebraic over ℝ but not over ℚ 

D: it is algebraic neither over ℚ nor over ℝ 

Question 9: Degree of extension of [ℚ(√𝟑, ⅈ)] over ℚ is 

A: 1 

B: 2 

C: 4 

D: 8 

Question 10: For any element 𝒂 ∈ 𝑲 is algebraic over 𝑭 then the necessary condition for 𝑭(𝒂) =

𝑭(𝒂𝟐) is that minimal polynomial of 𝒂 over 𝑭 has degree 𝒏 where 𝒏 is  

A: odd  

B: Even 

C: prime number 

D: perfect square 

Question 11: Splitting field of the polynomial 𝒙𝟒 − 𝟏 ∈ ℚ is 

A:  ℂ 

B: ℚ(√3) 

C: ℚ(√3, ⅈ) 

D: ℝ 

Question 12: Which of the following is an algebraically closed field? 

A: ℤ7 

B: ℚ 

C: ℝ 

D: ℂ 

Question 13: Statement I: Algebraically closed fields are always infinite. 

Statement II: All infinite fields are algebraically closed 

A: Statement I is true but II is false 

B: Statement II is true but I is false 

C: Statement I and II both are false 

D: Statement I and II both are true 

Question 14: Let 𝑲 =  ℚ(√𝟐, √𝟔) and 𝑭 = ℚ be two fields. Then [𝑲: 𝑭] is 

A: 2 

B: 6 

C: 3 

D: 4 

Question 15: Which of the following statements is correct? 

A: [ℚ(√2): ℚ] = 2 

B: [ℚ(√2, √3): ℚ] = 2 

C: [ℚ(√2, √3): ℚ(√2 + √3)] = 2 

D: None of above 

Question 16: If √𝒂 + √𝒃 ≠ 𝟎 where 𝒂, 𝒃 > 0, 𝑎, 𝑏 ∈ ℚ then [ℚ(√𝒂 + √𝒃): ℚ(√𝒂, √𝒃)] is equal to 
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A: 1 

B: 2 

C: 4 

D: 3 

Question 17: Let 𝒂 be a root of 𝒇(𝒙) ∈ 𝑭[𝒙] such that 𝒇′(𝒂) = 𝟎. Then 𝒂 is a root with multiplicity  

A: 1 

B: >1 

C: < 2 

D: ≥ 1 

Question 18: Let 𝒇(𝒙) ∈ 𝑭[𝒙] be a non-constant polynomial with degree 𝒏. If characteristic 𝑭 ≠ 𝟎, 
then the degree of 𝒇′(𝒙) is 

A: = 𝑛 

B: ≤ 𝑛 

C: = 𝑛 − 1 

D: ≤ 𝑛 − 1 

Question 19: Let 𝒇(𝒙) ∈ 𝑭[𝒙] be a non-constant polynomial with degree 𝒏. If characteristic 𝑭 = 𝟎, 
then the degree of 𝒇′(𝒙) is 

A: = 𝑛 

B: ≤ 𝑛 

C: = 𝑛 − 1 

D: ≤ 𝑛 − 1 

Question 20: Let 𝒇(𝒙) = 𝒄 be a constant polynomial over the field of rational numbers. Then the 
number of roots of 𝒇(𝒙) is 

A: 0 

B: Infinite 

C: 0 or infinite 

D: Non-zero and finite 

 

Answers for Self Assessment 

 

1) B 2) B 3) D 4) D 5) D 

6) A 7) A 8) D 9) C 10) A 

11) D 12) D 13) A 14) D 15) A 

16) A 17) B 18) D 19) C 20) C 

Review Questions 

1) Find the splitting field over ℚ for the polynomial 𝑥4 + 4. 

2) Let 𝑝 be a prime number. Find the splitting field for 𝑥𝑝 − 1 over ℚ and ℝ. 

3) Find the splitting field for 𝑥3 + 𝑥 + 1 over ℤ2. 

4) Find the degree of the splitting field over ℤ2 for the polynomial (𝑥3 + 𝑥 + 1)(𝑥2 + 𝑥 + 1). 

5) Find the degree [𝐹: ℚ], where 𝐹 is the splitting field of the polynomial 𝑥3 − 11 over the field of 
rational numbers. 
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6) Determine the splitting field over ℚ for 𝑥3 + 2. 

7) Determine the splitting field over ℚ for 𝑥4 + 𝑥 + 2. 

8) Determine the splitting field over ℤ7 for 𝑥6 − 1. 

9) Determine the splitting field over ℤ7 for 𝑥5 − 1. 

Further Readings 

 

Basic abstract algebra by P. B. Bhattacharya, S. K. Jain, S. R. Nagpal,Cambridge university 
press 

Topics in algebra by I.N. Hartstein, Wiley 

Abstract algebra by David S Dummit and Richard M Foote, Wiley 

 

https://onlinecourses.nptel.ac.in/noc20_ma29/preview 

https://nptel.ac.in/courses/111/105/111105112/# 
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Unit 05: Normal Extension 

 

CONTENTS 

Objectives: 

Introduction 

5.1 Normal Extension 

5.2 Perfect Fields 

5.3 Finite Fields 

5.4 Multiplicative Group of Finite Fields 

5.5 Steinitz Theorem 

Summary 

Keywords 

Self-assessment 

Answers for Self Assessment 

Review Questions 

Further Readings 

Objectives: 

After studying this unit, you will be able to 

• define normal extensions and relate normal extension with splitting fields 

• define perfect field and relate it to separable extensions 

• prove Lagrange’s theorem for primitive elements 

• prove that a prime field is isomorphic either to ℚ or some 𝑍/𝑝𝑍, where 𝑝 is a prime 

number 

• find the relation between the number of elements and characteristic of a field 

• understand multiplicative groups of finite fields 

• understand the relation between separable and simple extensions  

• prove that finite separable field extension of a field 𝐹 is a simple extension 

Introduction 

In this unit, an important field extension called normal extension will be studied. Some results 

about perfect fields and separable extensions will be done. Further, the relationship between 

separable, simple, and normal extensions will be discussed. 

5.1 Normal Extension 

Let 𝐹 be a field and 𝐾 be an algebraic extension of 𝐹 then if for irreducible polynomial 𝑝(𝑥) over 𝐹 

having a root in 𝐾, 𝑝(𝑥) has all the roots in 𝐾 then 𝐾 is called normal extension. 

 

  

𝐾 is an algebraic extension of 𝐹 means ∀ 𝛼 ∈ 𝐾, there exists a minimal polynomial 𝑝(𝑥) 

of 𝛼 over 𝐹. By definition of normal extension,𝐾 is normal extension if and only if 𝐾 

contains a splitting field of 𝑝(𝑥). 
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Definition 5.1.1: (Conjugate Elements) Let 𝐹 ⊆ 𝐾 be such that 𝐾 is a field extension of 𝐹 then for 

𝛼, 𝛽 ∈ 𝐾, if 𝛼, 𝛽 have same minimal polynomial over 𝐹 then they are called conjugate elements. 

 

𝐹 = ℚ, 𝐾 = ℝ, √2, −√2 have same minimal polynomial 𝑥2 − 2 over 𝐹 and hence they 

are conjugates. 

Theorem 5.1.2:If 𝐾 is a field extension of field 𝐹 such that [𝐾: 𝐹] = 2, then 𝐾 is a normal extension. 

Proof: Let 𝐾 is a field extension of 𝐹 such that [𝐾: 𝐹] = 2. 

Let 𝑝(𝑥) be an irreducible polynomial having one root 𝛼 ∈ 𝐾. 

Then consider 𝐹(𝛼); 

𝐹 ⊆ 𝐹(𝛼) ⊆ 𝐾 

This implies that [𝐹(𝛼): 𝐹] divides [𝐾: 𝐹]. 

But [𝐾: 𝐹] = 2 

This implies that [𝐹(𝛼): 𝐹] = 1 or 2 

⇒ deg 𝑝(𝑥) = 1 or 2 

In case, deg 𝑝(𝑥) = 1, 𝑝(𝑥) has only one root 𝛼 ∈ 𝐾. 

In case, deg 𝑝(𝑥) = 2 

𝑝(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐;  𝑎, 𝑏, 𝑐 ∈ 𝐹, 𝑎 ≠ 0 

If 𝑝(𝑥) has two roots 𝛼, 𝛽 

𝛼 + 𝛽 = −
𝑏

𝑎
 

⇒ 𝛽 = −
𝑏

𝑎
− 𝛼 = −𝑏𝑎−1 − 𝛼 

Since 𝑏, 𝑎−1, 𝛼 ∈ 𝐾, therefore, 𝛽 ∈ 𝐾. 

In both cases, all roots of 𝑝(𝑥) are in 𝐾. 

Therefore, 𝐾 is a normal extension of 𝐹. 

Theorem 5.1.3:Let 𝐾 be a finite algebraic extension of a field 𝐹. Then 𝐾 is a normal extension of the 

field𝐹 if and only if 𝐾 is the splitting field over 𝐹 of some non-zero polynomial over 𝐹. 

Proof: Let 𝐾 be a finite algebraic extension of 𝐹. 

𝐾 = 𝐹(𝑎1, 𝑎2, … , 𝑎𝑛) 

Let 𝐾 is a normal extension of 𝐹. 

Therefore, every 𝑎𝑖 has a minimal polynomial 𝑓𝑖(𝑥) over 𝐹. 

Consider 𝑓(𝑥) = 𝑓1 (𝑥)𝑓2(𝑥) … 𝑓𝑛(𝑥) 

One root 𝑎𝑖 of 𝑓𝑖(𝑥) is in 𝐾 and 𝐾 is a normal extension. 

⇒ All roots of 𝑓𝑖(𝑥) are in 𝐾 

⇒All roots of 𝑓(𝑥) are in 𝐾 

That is, splitting field of 𝑓(𝑥) ⊆ 𝐾 

𝐾 = 𝐹(𝑎1, 𝑎2, … , 𝑎𝑛) is generated by elements of 𝐹 and roots of polynomial 𝑓(𝑥)  

⇒ 𝐾 is contained in splitting field of 𝑓(𝑥). 

Conversely, let 𝐾 be a splitting field of some polynomial 𝑓(𝑥) over 𝐹. 

Let 𝑎1, 𝑎2, … , 𝑎𝑛 be the roots of 𝑓(𝑥)  in 𝐾 then 𝐾 = 𝐹(𝑎1, 𝑎2, … , 𝑎𝑛). 

Let 𝑝(𝑥)be an irreducible polynomial over 𝐹 having a root 𝛽 ∈ 𝐾. 

𝑝(𝑥) ∈ 𝐹[𝑥] ⊆ 𝐾[𝑥] 

Let 𝐿 be the splitting field of 𝑝(𝑥) over 𝐾. 
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Claim: 𝑲 = 𝑳 

Clearly, 𝐾 ⊆ 𝐿 

Let 𝛽′ is a root of 𝑝(𝑥) such that 𝛽′ ∉ 𝐾 

By choice of 𝛽′; 𝛽′ ∈ 𝐿 

𝛽 and 𝛽′ being roots of the same minimal polynomial are conjugates. 

There exists some 𝐹 − isomorphism 𝜎: 𝐹(𝛽) → 𝐹(𝛽′) such that 𝜎(𝛽) = 𝛽′ and 𝜎(𝛼) = 𝛼 ∀ 𝛼 ∈ 𝐹 

Now 𝐹 ⊆ 𝐹(𝛽) ⊆ 𝐾 i.e., 𝐾 is splitting field of 𝑓(𝑥)  over 𝐹(𝛽). 

Further 𝐾(𝛽′) = 𝐹(𝑎1, 𝑎2, … , 𝑎𝑛, 𝛽′) = 𝐹(𝛽′)(𝑎1, 𝑎2, … , 𝑎𝑛) 

⇒ 𝐾(𝛽′) is the splitting field of 𝑓(𝑥) over 𝐹(𝛽′). 

Therefore, there exists an isomorphism 𝜏 of 𝐾 onto 𝐾(𝛽′) such that 𝜎(𝑥) = 𝜏(𝑥) ∀ 𝑥 ∈ 𝐹(𝛽) . 

Since 𝜎 is 𝐹 −isomorphism, therefore, 𝜏 is 𝐹 − isomorphism. 

Let 𝑓(𝑥) = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥2 + ⋯ + 𝛼𝑛𝑥𝑛; 𝛼𝑛 ≠ 0, 𝛼𝑖 ∈ 𝐹 ∀ ⅈ 

Since 𝑎1, 𝑎2, … , 𝑎𝑛 are roots of 𝑓(𝑥) . 

Therefore, 𝑓(𝑥) = 𝛼𝑛(𝑥 − 𝑎1)(𝑥 − 𝑎2) ⋯ (𝑥 − 𝑎𝑛) ⋯ (1) 

Then 𝜏 can be extended to 𝜏′, the isomorphism of 𝐾[𝑥] onto 𝐾(𝛽′)[𝑥]. 

Now, 

𝜏′(𝑓(𝑥)) = 𝜏′(𝛼0) + 𝜏′(𝛼1)𝑥 + ⋯ + 𝜏′(𝛼𝑛)𝑥𝑛 

= 𝛼0 + 𝛼1 𝑥 + 𝛼2𝑥2 + ⋯ + 𝛼𝑛𝑥𝑛 

Since 𝜏′(𝛼𝑖) = 𝜏(𝛼𝑖) = 𝜎(𝛼𝑖) = 𝛼𝑖  ∀ ⅈ  

This gives, 𝜏′(𝑓(𝑥)) = 𝑓(𝑥) 

Also, 𝜏′(𝑓(𝑥)) = 𝛼𝑛(𝑥 − 𝜏(𝑎1))(𝑥 − 𝜏(𝑎2))⋯ (𝑥 − 𝜏(𝑎𝑛)) 

Hence 𝑓(𝑥) = 𝛼𝑛(𝑥 − 𝜏(𝑎1))(𝑥 − 𝜏(𝑎2))… (𝑥 − 𝜏(𝑎𝑛))… (2) 

From (1) and (2) we get that 

{𝜏(𝑎1), 𝜏(𝑎2), … , 𝜏(𝑎𝑛)} = {𝑎1, 𝑎2, … , 𝑎𝑛} 

That is, 𝐹(𝑎1, 𝑎2, … , 𝑎𝑛) = 𝐹(𝜏(𝑎1), 𝜏(𝑎2), … , 𝜏(𝑎𝑛)) 

However,  

𝐾(𝛽′) = 𝜏(𝐾) = 𝜏(𝐹(𝑎1, 𝑎2, … , 𝑎𝑛)) 

= 𝐹(𝜏(𝑎1), 𝜏(𝑎2), … , 𝜏(𝑎𝑛)) 

= 𝐹(𝑎1, 𝑎2, … , 𝑎𝑛) = 𝐾 

This implies, 𝛽′ ∈ 𝐾  

So, we arrive at a contradiction i.e., 𝑝(𝑥) splits completely over 𝐾 

⇒ 𝐾 is a normal extension of 𝐹. 

Theorem 5.1.4:Let 𝐾 be a finite normal extension of 𝐹. If 𝐸 is any subfield of 𝐾 containing 𝐹 then 𝐾 

is also a normal extension of 𝐸. 

Proof: 𝐾 is a finite normal extension of 𝐹. 

So, there exists some polynomial 𝑓(𝑥) ∈ 𝐹[𝑥] such that 𝐾 is splitting field of 𝑓(𝑥). 

Now, 𝐹 ⊆ 𝐸 ⊆ 𝐾  

⇒ 𝑓(𝑥) ∈ 𝐹[𝑥] ⊂ 𝐸[𝑥] i.e., 𝐾 is splitting field of 𝑓(𝑥) over 𝐸. 

⇒ 𝐾 is a normal extension of 𝐸. 

Theorem 5.1.5:Let 𝐾 be a finite normal extension of a field 𝐹. If 𝛼1, 𝛼2 ∈ 𝐾  are conjugates over 𝐹 

then there exists an 𝐹 − isomorphism 𝜎 on 𝐾 such that 𝜎(𝛼1 ) = 𝛼2. 
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Proof: 𝐾 is a finite normal extension of 𝐹. 

Since 𝛼1, 𝛼2 ∈ 𝐾  are conjugates over 𝐹. 

This implies, there exists an 𝐹 − isomorphism 𝜏: 𝐹(𝛼1 ) → 𝐹(𝛼2) such that 𝜏(𝛼1) = 𝛼2, 𝜏(𝛼) = 𝛼 ∀ 𝛼 ∈

𝐹. 

Also, 𝐹 ⊆ 𝐹(𝛼1 ), 𝐹 ⊆ 𝐹(𝛼2) 

Since 𝛼1  and 𝛼2 are having the same minimal polynomial over 𝐹. 

Let 𝑝(𝑥) be that minimal polynomial. 

𝑝(𝑥) ∈ 𝐹[𝑥] ⊆ 𝐹(𝛼)[𝑥] ⊆ 𝐹(𝛽)[𝑥] 

In that case, 𝜏 can be extended to an 𝐹 − isomorphism 𝜎 on 𝐾 such that 𝜏(𝛼1) = 𝜎(𝛼1) = 𝛼2 

Theorem 5.1.6:Let 𝐹 ⊆ 𝐾 ⊆ 𝐿 such that 𝐾 is a finite normal extension of 𝐹 and 𝐿 is a finite normal 

extension of 𝐾. Then 𝐿 need not be a normal extension of 𝐹. 

Proof: Let 𝐹 = ℚ, 𝐾 = ℚ(√2), 𝐿 = ℚ(√2
4 ) 

Then 𝑥2 − 2 is minimal polynomial of √2 over 𝐹; [𝐾: 𝐹] = 2 

⇒ 𝐾 is a normal extension over 𝐹. 

Similarly, 𝑥2 − √2 is minimal polynomial of √2
4

 over 𝐾. 

[𝐿: 𝐾] = 2 

So, 𝐿is a normal extension of 𝐾. 

Again 𝐹 = ℚ, 𝐿 = ℚ(√2
4 ) 

The minimal polynomial of √2
4

 over 𝐹 is 𝑓(𝑥) = 𝑥4 − 2. Only roots of 𝑓(𝑥)  that belong to 𝐿 are √2
4

 

and −√2
4

. The other two roots are √2
4

ⅈ, −√2
4

ⅈ ∉ 𝐿. Hence 𝐿 is not a normal extension over 𝐹. 

 

Task:  

1) Find a normal extension of ℝ with the degree of extension 2. 

2) Give an example of a normal extension 𝐹 ⊆ 𝐾 such that [𝐾: 𝐹] > 2. 

 

5.2 Perfect Fields 

Definition 5.2.1:(Perfect Field)Let 𝐹 be a field. Then 𝐹 is called a perfect field if every finite 

extension of 𝐹 is separable. 

Recall that 𝐹 ⊆ 𝐾 is a finite extension if [𝐾: 𝐹] is finite. It is called a separable extension if ∀ 𝑎 ∈ 𝐾, 𝑎 

is a separable element over 𝐹. 

Theorem 5.2.2:Any algebraic field extension of a perfect field is a separable extension. 

Proof:Let 𝐹 ⊆ 𝐾 be an algebraic field extension. 

Let 𝐹 be a perfect field. 

Let 𝑎 ∈ 𝐾; 𝑎 is algebraic element over 𝐹. 

⇒ [𝐹(𝑎): 𝐹] is finite. 

⇒ 𝑎 is separable over 𝐹. 

⇒ 𝐾 is a separable extension. 

Theorem 5.2.3:Let 𝐹 be a field of characteristic 𝑝 ≠ 0, and 𝐾 be a field extension of 𝐹. Then an 

element 𝑎 ∈ 𝐾 algebraic over 𝐹 is separable over 𝐹 if and only if 𝐹(𝑎𝑝) = 𝐹(𝑎) 

Proof:Let 𝑎 ∈ 𝐾 be an algebraic element over 𝐹 such that it is separable over 𝐹. 

Since 𝑎 is separable over 𝐹, this implies, minimal polynomial 𝑓(𝑥) of 𝑎 over 𝐹 is separable. 

Let 𝑓(𝑥) = 𝛼0 + 𝛼1𝑥 + ⋯ + 𝛼𝑛−1𝑥𝑛−1 + 𝑥𝑛 be the minimal polynomial of 𝑎 over 𝐹 so that [𝐹(𝑎): 𝐹] =

𝑛. 
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Consider 𝑔(𝑥) = 𝛼0
𝑝

+ 𝛼1
𝑝

𝑥 + ⋯ + 𝛼𝑛−1
𝑝

𝑥𝑛−1 + 𝑥𝑛 

⇒ 𝑔(𝑥𝑝) = 𝛼0
𝑝

+ 𝛼1
𝑝

𝑥𝑝 + ⋯ + 𝑥𝑛𝑝. 

Since characteristic 𝐹 = 𝑝 

⇒ 𝑔(𝑥𝑝) = (𝛼0 + 𝛼1𝑥 + ⋯ + 𝑥𝑛)𝑝 = (𝑓(𝑥))
𝑝
 

Claim:𝒈(𝒙) is minimal polynomial of 𝒂𝒑  over 𝑭 

Clearly, 𝑔(𝑥) is monic polynomial  

𝑔(𝑥𝑝) = (𝑓(𝑥))
𝑝
 

So that 𝑔(𝑎𝑝) = (𝑓(𝑎))
𝑝

= 0 

⇒ 𝑎𝑝 is a root of 𝑔(𝑥) 

Let there exists ℎ(𝑥) ∈ 𝐹[𝑥] such that ℎ(𝑥) divides 𝑔(𝑥) 

⇒ ℎ(𝑥𝑝) divides 𝑔(𝑥𝑝) 

Consider 𝑔(𝑥𝑝) = (𝑓(𝑥))
𝑝
 

⇒ ℎ(𝑥𝑝) divides (𝑓(𝑥))
𝑝

 

⇒ ℎ(𝑥𝑝) = (𝑓(𝑥))
𝑘

; 0 ≤ 𝑘 ≤ 𝑝 

Differentiating both sides with respect to 𝑥, we get 

ℎ′(𝑥𝑝)𝑝𝑥𝑝−1 = 𝑘(𝑓(𝑥))
𝑘−1

𝑓′(𝑥) 

Since ℎ(𝑥𝑝) ∈ 𝐹[𝑥𝑝] ⇒ ℎ(𝑥𝑝) is inseparable ⇒ ℎ′(𝑥𝑝) = 0 

⇒ 𝑘(𝑓(𝑥))
𝑘−1

𝑓′(𝑥) = 0 

⇒ 𝑘 = 0 or 𝑘 = 𝑝 

If 𝑘 = 0, ℎ(𝑥𝑝) = (𝑓(𝑥))
0

= 1 

If 𝑘 = 𝑝, ℎ(𝑥𝑝) = (𝑓(𝑥))
𝑝

= 𝑔(𝑥𝑝) 

⇒ ℎ(𝑥) = 𝑔(𝑥) 

So, ℎ(𝑥) divides 𝑔(𝑥) in 𝐹[𝑥] ⇒ ℎ(𝑥) = 1 or 𝑔(𝑥). 

⇒ 𝑔(𝑥) is irreducible polynomial. 

⇒ 𝑔(𝑥) is the minimal polynomial of 𝑎𝑝 over 𝐹 

⇒ [𝐹(𝑎𝑝): 𝐹] = deg 𝑔(𝑥) = 𝑛 = [𝐹(𝑎): 𝐹] 

𝑎𝑝 ∈ 𝐹(𝑎) ⇒ 𝐹(𝑎𝑝) ⊆ 𝐹(𝑎) 

⇒ 𝐹(𝑎𝑝) = 𝐹(𝑎) 

Conversely, let 𝐹(𝑎𝑝) = 𝐹(𝑎) 

Let 𝑎 is not separable over 𝐹 

This implies that the minimal polynomial 𝑓(𝑥)of 𝑎 over 𝐹 is not separable  

⇒ 𝑓(𝑥) ∈ 𝐹[𝑥𝑝] 

⇒  𝑓(𝑥) = 𝑔(𝑥𝑝) 

⇒ deg 𝑓(𝑥) = deg 𝑔(𝑥𝑝) 

Let deg 𝑓(𝑥) = 𝑛 and deg 𝑔(𝑥) = 𝑚 

𝑚 = 𝑛 𝑝⁄  

Since 𝑝 > 1 ⇒ 𝑚 < 𝑛 … (1) 

Also, 𝑓(𝑥) = 𝑔(𝑥𝑝) 

Since 𝑓(𝑎) = 0 ⇒ 𝑔(𝑎𝑝) = 0 
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That is, 𝑔(𝑥) has a root 𝑎𝑝. 

This implies, the minimal polynomial of 𝑎𝑝 divides 𝑔(𝑥). 

⇒ [𝐹(𝑎𝑝): 𝐹] ≤ 𝑚 

⇒ [𝐹(𝑎): 𝐹] = [𝐹(𝑎): 𝐹(𝑎𝑝)][𝐹(𝑎𝑝): 𝐹] 

⇒ 𝑛 ≤ 𝑚 which is a contradiction to (1) 

This implies, 𝑎 is separable over 𝐹. 

Theorem 5.2.4:Let 𝐹 be a field of characteristic 𝑝 ≠ 0, and 𝐾 be a field extension of 𝐹. If 𝑎 ∈ 𝐾 is 

separable over 𝐹, then 𝐹(𝑎) is a separable field extension of 𝐹. 

Proof: Let 𝑏 ∈ 𝐹(𝑎) 

As 𝑎 is algebraic over 𝐹 ⇒ [𝐹(𝑎): 𝐹] is finite. 

Let [𝐹(𝑏): 𝐹] = 𝑚,  

[𝐹(𝑎): 𝐹(𝑏)] = 𝑛, 

[𝐹(𝑎): 𝐹(𝑏𝑝)] = 𝑞, 

and [𝐹(𝑏𝑝): 𝐹] = 𝑠 

then 

𝑛𝑚 = [𝐹(𝑎) : 𝐹(𝑏)][𝐹(𝑏): 𝐹] 

= [𝐹(𝑎) : 𝐹] 

= [𝐹(𝑎) : 𝐹(𝑏𝑝)][𝐹(𝑏𝑝): 𝐹] 

= 𝑞𝑠 

 

Again, 𝑏𝑝 ∈ 𝐹(𝑏) 

⇒ 𝐹(𝑏𝑝) ⊆ 𝐹(𝑏) 

Therefore, 𝐹(𝑏𝑝) is a subfield of 𝐹(𝑏). 

⇒ [𝐹(𝑏𝑝): 𝐹] ≤ [𝐹(𝑏): 𝐹] 

⇒ 𝑠 ≤ 𝑚 

But 𝑛𝑚 = 𝑞𝑠 ⇒ 𝑛 ≤ 𝑞 

Let 𝑓(𝑥) = 𝛼0 + 𝛼1𝑥 + ⋯ + 𝑥𝑛 be the minimal polynomial of 𝑎 over 𝐹(𝑏). 

As {1, 𝑏, 𝑏2, … , 𝑏𝑚−1} is a basis of 𝐹(𝑏) over 𝐹; 

For each 0 ≤ ⅈ ≤ 𝑛 − 1, 

𝛼𝑖 = 𝜆𝑖,0 + 𝜆𝑖,1𝑏 + ⋯ + 𝜆𝑖,𝑚−1𝑏𝑚−1 with 𝜆𝑖,𝑗 ∈ 𝐹 ∀ 0 ≤ 𝑗 ≤ 𝑚 − 1 

Further, 𝑓(𝑥)  is minimal polynomial of 𝑎 over 𝐹(𝑏) ⇒ 𝑓(𝑎) = 0. 

⇒ 𝑎𝑝 is a root of 𝑔(𝑥) where 𝑔(𝑥) = 𝛼0
𝑝

+ 𝛼1
𝑝

𝑥 + ⋯ + 𝑥𝑛 

For each ⅈ, 0 ≤ ⅈ ≤ 𝑛 − 1, 

𝛼𝑖
𝑝
 

 

= (𝜆𝑖,0 + 𝜆𝑖,1𝑏 + ⋯ + 𝜆𝑖,𝑚−1𝑏𝑚−1)
𝑝
 

= 𝜆𝑖,0
𝑝

+ 𝜆𝑖,1
𝑝

𝑏𝑝 + ⋯ + 𝜆𝑖,𝑚−1
𝑝

𝑏(𝑚−1)𝑝 

∈ 𝐹(𝑏𝑝) 

Since each 𝛼𝑖
𝑝

∈ 𝐹(𝑏𝑝) 

⇒ 𝑔(𝑥) ∈ 𝐹(𝑏𝑝)[𝑥] and 𝑔(𝑎𝑝) = 0 

⇒ [𝐹(𝑏𝑝)(𝑎𝑝): 𝐹(𝑏𝑝)] ≤ 𝑛 
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But 𝑎 is separable over 𝐹 

⇒ 𝐹(𝑎𝑝) = 𝐹(𝑎) 

So, [𝐹(𝑎): 𝐹(𝑏𝑝)] ≤ 𝑛  

⇒ 𝑞 ≤ 𝑛 

This implies, 𝑞 = 𝑛 

⇒ [𝐹(𝑎): 𝐹(𝑏𝑝)] = [𝐹(𝑎): 𝐹(𝑏)] 

⇒ 𝐹(𝑏𝑝) = 𝐹(𝑏) 

⇒ 𝑏 is separable over 𝐹. 

This implies that every element of 𝐹(𝑎) is separable over 𝐹. 

⇒ 𝐹(𝑎) is a separable extension of 𝐹. 

Definition 5.2.5: (Primitive Element and Simple Extension):Let 𝐾 = 𝐹(𝑎) be an extension of 𝐹 
generated by elements of 𝐹 and singleton set {𝑎}. Then 𝐾 is called a simple extension of 𝐹 and 𝑎 is 

called primitive element over the field 𝐹.   

 

The extension ℚ(√2) is a simple extension of 𝑄  and √2 is a primitive element. 

Theorem 5.2.6: (Lagrange’s Theorem of Primitive Elements): Let 𝐹 be an infinite field and 𝐸 be 
some field extension of 𝐹. Let 𝑎, 𝑏 ∈  𝐸 be algebraic over 𝐹 such that they are separable over 𝐹. Then 

there exists 𝑐 in 𝐾 such that 𝑓(𝑐) =  𝐹(𝑎, 𝑏) and 𝑐 =  𝑎 + 𝛼𝑏 for some 𝛼 ∈ 𝐹. 

Proof: Let 𝑓(𝑥) and 𝑔(𝑥) be minimal polynomials over 𝐹 of 𝑎 and 𝑏 respectively. 

Let deg 𝑓(𝑥) = 𝑚 and deg 𝑔(𝑥) = 𝑛. 

Let 𝐾 be the splitting field of 𝑓(𝑥)𝑔(𝑥) over 𝐸. 

Then 𝑎, 𝑏 ∈ 𝐾 

Clearly, 𝐾 contains a splitting field of 𝑓(𝑥) and one of 𝑔(𝑥). 

Since 𝑎 and 𝑏 are separable over 𝐹. 

⇒ 𝑓(𝑥) has 𝑚 distinct roots 𝑎 = 𝑎1, 𝑎2,… , 𝑎𝑚 in 𝐾 and 𝑔(𝑥) has 𝑛 distinct roots 𝑏 = 𝑏1, 𝑏2,…, 𝑏𝑛 in 𝐾. 

For 2 ≤ ⅈ ≤ 𝑚, 2 ≤ 𝑗 ≤ 𝑛 

Define  

𝜆𝑖𝑗 =
𝑎𝑖 − 𝑎

𝑏 − 𝑏𝑗
∈ 𝐾 

𝜆𝑖𝑗 are finite in number but 𝐾 is infinite. Therefore, we can choose 𝛼(≠ 0) ∈ 𝐹 such that 𝛼 ≠

𝜆𝑖𝑗∀ ⅈ, 𝑗 ≥ 2. 

Then 𝛼(𝑏 − 𝑏𝑗) ≠ 𝑎𝑖 − 𝑎 ∀ ⅈ, 𝑗 ≥ 2 

That is, 𝑎𝑖 + 𝛼𝑏𝑗 ≠ 𝑎 + 𝛼𝑏 

Now put 𝑐 = 𝑎 + 𝛼𝑏 ∈ 𝐹(𝑎, 𝑏)  

Therefore, 𝐹(𝑐) ⊆ 𝐹(𝑎, 𝑏) 

Since 𝑐 ∈ 𝐹(𝑐)  

and 𝑓(𝑥) ∈ 𝐹[𝑥] ⊆ 𝐾[𝑥] 

⇒ ℎ(𝑥) = 𝑓(𝑐 − 𝛼𝑥) ∈ 𝐾[𝑥] 

Further deg ℎ(𝑥) = deg 𝑓(𝑥) = 𝑚 

Now ℎ(𝑏) = 𝑓(𝑐 − 𝛼𝑏) = 𝑓(𝑎) = 0 

Suppose for some 𝑗 ≥ 2, ℎ(𝑏𝑗) = 0 

⇒ 𝑓(𝑐 − 𝛼𝑏𝑗) = 0 
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⇒ 𝑐 − 𝛼𝑏𝑗 = 𝑎𝑖 for some ⅈ 

Since only roots of 𝑓(𝑥) are𝑎 = 𝑎1, 𝑎2, … , 𝑎𝑚 

If ⅈ = 1, 𝑎𝑖 = 𝑎1 = 𝑎 

⇒ 𝑐 = 𝑎 + 𝛼𝑏𝑗 

= 𝑎 + 𝛼𝑏 

⇒ 𝑏 = 𝑏𝑗 

But 𝑗 ≥ 2 and 𝑏 ≠ 𝑏𝑗 for 𝑗 ≥ 2 

This is not possible. 

So, ⅈ ≥ 2, 𝛼𝑏 + 𝑎 = 𝛼𝑏𝑗 + 𝑎𝑖  which is again not possible. 

Hence, ℎ(𝑏𝑗) ≠ 0 

For 𝑗 ≥ 2, 𝑥 − 𝑏𝑗 does not divide ℎ(𝑥). 

Now 𝑥 − 𝑏 is a factor of ℎ(𝑥) over 𝐾. 

As 𝑏 is a root of 𝑔(𝑥) in 𝐾. 

𝑥 − 𝑏 is a common factor of ℎ(𝑥) and 𝑔(𝑥). 

Claim: 𝒙 − 𝒃 = 𝑯𝑪𝑭(𝒉(𝒙), 𝒈(𝒙)) 

As 𝑔(𝑥) has no multiple roots, therefore, (𝑥 − 𝑏) 2 does not divide 𝑔(𝑥). 

Since 𝑔(𝑥) = (𝑥 − 𝑏)(𝑥 − 𝑏2)(𝑥 − 𝑏3) … (𝑥 − 𝑏𝑛) 

and each 𝑥 − 𝑏𝑗 does not divide ℎ(𝑥) for 𝑗 ≥ 2. 

Therefore, 𝑥 − 𝑏 = 𝐻𝐶𝐹(ℎ(𝑥), 𝑔(𝑥)). 

Now, ℎ(𝑥) ∈ 𝐹(𝑐)[𝑥]  as 𝑐 ∈ 𝐹(𝑐), 𝛼 ∈ 𝐹 

Also, 𝑔(𝑥) ∈ 𝐹(𝑐)[𝑥] 

Let 𝑔1(𝑥) be the minimal polynomial of 𝑏 over 𝐹(𝑐). Then 𝑔1(𝑥) divides 𝑔(𝑥) and ℎ(𝑥) both over 

the field 𝐹(𝑐) and hence over 𝐾. 

So, 𝑔1(𝑥) divides 𝑥 − 𝑏 over 𝐾. 

Since deg 𝑔1(𝑥) > 0 and 𝑔1(𝑥) is monic, therefore, 𝑥 − 𝑏 = 𝑔1(𝑥) ∈ 𝐹(𝑐)[𝑥]  

⇒ 𝑏 ∈ 𝐹(𝑐) 

⇒ 𝑎 = 𝑐 − 𝛼𝑏 ∈ 𝐹(𝑐) 

⇒ 𝐹(𝑎, 𝑏) ⊆ 𝐹(𝑐) 

⇒ 𝐹(𝑐) = 𝐹(𝑎, 𝑏). 

 

Task:  

Find a primitive element in the following fields over ℚ 

a) ℚ(√2, √3) 

b) ℚ(𝜔, √2) 

 

5.3 Finite Fields 

Theorem 5.3.1:Any prime field is either isomorphic to the field of rational numbers or to the field of 

integers modulo some prime number. 

Proof: Let 𝐹 be a prime field and 𝑒 is the identity of 𝐹. 

Let 𝑓: ℤ → 𝐹 as 𝑓(𝑛) = 𝑛𝑒 ∀ 𝑛 ∈ ℤ 
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Ker 𝑓 is a subgroup of ℤ. Also, Ker 𝑓 is an ideal of ℤ. 

ℤ is a principal ideal domain. 

Let ker 𝑓 =< 𝑞 > ; 𝑞 ∈ ℤ 

Case I:𝒒 = 𝟎 

Ker 𝑓 =< 0 > 

⇒ ker 𝑓 = {0} 

⇒ 𝑓 is monomorphism from ℤ → 𝐹 

or, 𝑓 is an isomorphism from ℤ → 𝑓(ℤ); where 𝑓(ℤ) ⊆ 𝐹. 

⇒ ℤ ≅ 𝑓(ℤ) 

Let ℚ′ be the field of quotient of 𝑓(ℤ) 

This implies, ℚ′ = 𝐹 

Field of quotients of ℤ ≅ ℚ′  

That is, ℚ ≅ ℚ′ = 𝐹 

⇒ 𝐹 ≅ ℚ 

Case II: 𝑞 ≠ 0 

Ker 𝑓 = < 𝑞 > 

Assume that 𝑞 = 𝑟𝑠 ;  1 < 𝑟, 𝑠 < 𝑞 

Then 𝑓(𝑞) = 𝑓(𝑟𝑠)  

That is, 0 = (𝑟𝑠)𝑒 

⇒ (𝑟𝑒)(𝑠𝑒) = 0 

⇒ 𝑟𝑒 = 0 or 𝑠𝑒 = 0 

⇒ 𝑟 ∈ ker 𝑓 =< 𝑞 >or 𝑠 ∈ ker 𝑓 =< 𝑞 > 

⇒ 𝑞 divides either 𝑟 or 𝑠 

⇒ 𝑞 ≤ 𝑟 or 𝑞 ≤ 𝑠 

We arrive at a contradiction. Hence our supposition was wrong. That is, 𝑞 is a prime number. 

Also, by the fundamental theorem of homomorphism, 

ℤ
< 𝑞 >⁄ ≅ 𝑓(ℤ) 

Since 𝑞 is a prime element of a principal ideal domain ℤ 

This implies, < 𝑞 > is an irreducible ideal. 

⇒ ℤ < 𝑞⁄ > is a field. 

⇒ 𝑓(ℤ) is a field contained in 𝐹 but 𝐹 is a prime field. 

𝐹 = 𝑓(ℤ) ≅ ℤ
< 𝑞 >⁄  

Theorem 5.3.2:Let 𝐹 be a field with 𝑞 elements. Then characteristic 𝐹 = 𝑝 where 𝑝 is a prime 

number and 𝑞 = 𝑝𝑛. 

Proof: Let 𝐹 be a field having 𝑞elements. Then 𝑒,2𝑒,3𝑒, … , (𝑞 + 1)𝑒 are not all distinct. 

Otherwise, let 𝑘𝑒 = 𝑙𝑒;  1 ≤ 𝑘, 𝑙 ≤ 𝑞 

⇒ (𝑘 − 𝑙)𝑒 = 0 

There exist some finite number 𝑝 such that 𝑝 is the smallest positive integer for which 𝑝𝑒 = 0. 

Characteristic 𝐹 = 𝑝, 𝑝 is a prime number. 

Let 𝑃 be the prime field of 𝐹. 

𝑃 ≅ 𝑍 < 𝑝⁄ > having 𝑝 elements. Thus, 𝑃 has 𝑝 elements. 
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Therefore, [𝐹: 𝑃] is finite. 

Let [𝐹: 𝑃] = 𝑛 

Let {𝛼1, 𝛼2,⋯ , 𝛼𝑛} is a basis of 𝐹 over 𝑃. 

⇒ ∀ 𝑎 ∈ 𝐹, 𝑎 = 𝜆1𝛼1 + 𝜆2𝑎2 + ⋯ + 𝜆𝑛𝑎𝑛; 𝜆𝑖 ∈ 𝑃 

For each 𝜆𝑖 , we have 𝑝 choices. This implies, 𝑎 has 𝑝𝑛 choices. 

⇒ 𝑂(𝐹) = 𝑝𝑛 

Theorem 5.3.3:Let 𝐹 be a finite field with 𝑞 elements, then 𝐹 is the splitting field of 𝑥𝑞 − 𝑥 over its 

prime subfield. 

Proof:𝑂(𝐹) = 𝑞 

Let 0 ≠ 𝑎 ∈ 𝐹, we know that 𝐹 − {0}  is a multiplicative group of order 𝑞 − 1. 

Therefore, 𝑂(𝑎) divides 𝑂(𝐺). 

⇒ 𝑎𝑞−1 = 𝑒 

⇒ 𝑎𝑞 = 𝑎 ∀ 0 ≠ 𝑎 ∈ 𝐹 

If 𝑎 = 0, 0𝑞 = 0 

Therefore, ∀𝑎 ∈ 𝐹, 𝑎𝑞 = 𝑎 

That is, 𝑎 is a root of 𝑥𝑞 − 𝑥. 

𝐹 is contained in the splitting field of 𝑥𝑞 − 𝑥. 

Let 𝑃 be the prime field then we know that 𝑥𝑞 − 𝑥 has at most 𝑞 roots in any field extension. 

Thus, 𝐹 contains all the roots of 𝑥𝑞 − 𝑥. 

This implies, 𝐹 is the splitting field of 𝑥𝑞 − 𝑥. 

Theorem 5.3.4: (E. H. Moore) For every prime number 𝑝 and 𝑛 ∈ ℕ, there exist a field having 𝑝𝑛 

elements. 

Proof:Consider 𝑓(𝑥) = 𝑥𝑝𝑛
− 𝑥. 

Then 𝑓(𝑥) ∈ ℤ𝑝[𝑥] 

Let 𝐾 be the splitting field of 𝑓(𝑥) over ℤ𝑝. 

Claim: 𝑲 is a field having 𝒑𝒏 elements. 

Now, 𝑓′(𝑥) = 𝑝𝑛𝑥𝑝𝑛−1 − 1 = −1 ≠ 0. 

Therefore, 𝑓(𝑥) is separable polynomial. 

⇒ 𝑓(𝑥) has no multiple roots in 𝐾. 

Thus, there are 𝑝𝑛distinct roots of 𝑓(𝑥)  in 𝐾. 

Let 𝐿 be the set of all roots of 𝑓(𝑥) in 𝐾. 

⇒ 𝐿 ⊆ 𝐾 and 𝐿 has 𝑝𝑛 elements. 

Clearly, 0,1 ∈ 𝐿 

Consider 𝑎, 𝑏 ∈ 𝐿 

⇒ 𝑎𝑝𝑛
= 𝑎, 𝑏𝑝𝑛

= 𝑏 

Therefore, there exists 𝜂: 𝐾 → 𝐾 such that 𝜂(𝑐) = 𝑐𝑝𝑛
 ∀ 𝑐 ∈ 𝐾, is a monomorphism. 

𝜂(𝑎 − 𝑏) = 𝜂(𝑎) − 𝜂(𝑏) 

⇒ (𝑎 − 𝑏) 𝑝𝑛
= 𝑎𝑝𝑛

− 𝑏𝑝𝑛
= 𝑎 − 𝑏 

⇒ 𝑎 − 𝑏 ∈ 𝐿 

Suppose 𝑏 ≠ 0 

Then 
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𝜂(𝑎𝑏−1) = 𝜂(𝑎)(𝜂(𝑏))
−1

 

= 𝑎𝑝𝑛
(𝑏𝑝𝑛

)
−1

 

= 𝑎𝑏−1 

⇒ 𝑎𝑏−1 ∈ 𝐿 

⇒ 𝐿 is a subfield of 𝐾. 

Also, 𝐿 contains all the roots of 𝑓(𝑥). 

⇒ 𝐿 is splitting field of 𝑓(𝑥). 

⇒ 𝐿 = 𝐾; 𝐾 contains 𝑝𝑛 elements. 

 

Task:  

Prove that the order of a finite field is never divisible by two distinct prime numbers. 

Prove that a field with infinite characteristic is always isomorphic to the field of 

rational numbers. 

 

5.4 Multiplicative Group of Finite Fields 

Theorem 5.4.1: Finite fields having the same number of elements are isomorphic. 

Proof: Let 𝐾1  and 𝐾2 be two finite fields such that 𝑂(𝐾1 ) = 𝑞 = 𝑂(𝐾2). 

Then by Theorem 5.3.2, 𝑞 = 𝑝𝑛 for some prime number 𝑝  and thus 𝑂(𝐾1 ) = 𝑝𝑛 = 𝑂(𝐾2). 

Let 𝑃1 and 𝑃2 be the prime subfields of 𝐾1  and 𝐾2 respectively. 

Then 

𝑃1 ≅ ℤ < 𝑝⁄ > 

and  

𝑃2 ≅ ℤ < 𝑝⁄ > 

This implies, 𝑃1 ≅ 𝑃2 

Now by Theorem 5.3.3, 𝐾1  is the splitting field of 𝑥𝑞 − 𝑥 over 𝑃1 and 𝐾2 is the splitting field of 𝑦𝑞 −

𝑦 over 𝑃2. 

Hence these are splitting fields of the same polynomial. Therefore, 𝐾1 ≅ 𝐾2 . 

Theorem 5.4.2:A field is finite if and only if its multiplicative group is cyclic. 

Proof: Let 𝐹 be a finite field. Let 𝑂(𝐹) = 𝑞. 

Consider𝐹 − {0};  𝑂(𝐹 − {0}) = 𝑞 − 1. 

Let 𝑆 = {𝑛| 0(𝑎) = 𝑛, 𝑎 ∈ 𝐹 − {0}} 

Then 𝑆 has some maximum element say 𝑛, 𝑛 is called exponent of 𝐹 − {0}. 

That is, 𝑛 = 0(𝑎) for some 𝑎 ∈ 𝐹 − {0} = 𝐺. 

This implies, 0(𝑎) divides 𝑂(𝐺). 

⇒ 𝑛 divides 𝑞 − 1. 

⇒ 𝑛 ≤ 𝑞 − 1 

Also, 𝑥𝑛 − 𝑥 has at the most 𝑛 roots in any field extension of 𝐹. 

⇒ 𝑞 − 1 ≤ 𝑛 

⇒ 𝑛 = 𝑞 − 1 

⇒ 0(𝑎) = 𝑞 − 1 = 0(𝐺) 
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⇒ 𝐺 =< 𝑎 > is cyclic. 

Conversely,let 𝐺 = 𝐹 − {0}, 𝐺 =< 𝑎 > for some 𝑎 ∈ 𝐺  be a cyclic group. 

Case I:If 𝑎 = 1 

Then 𝐺 = < 1 >= {1} 

⇒ 𝑂(𝐺) = 1  and hence 𝑂(𝐹) = 2 

Hence, 𝐹 is finite. 

Case II:If 𝑎 ≠ 1 

Subcase I: If characteristic 𝐹 = 𝟎 

For 0 ≠ 𝑎 ∈ 𝐺 

1, −1 ∈ 𝐺 =< 𝑎 > 

There exist some 𝑛 ∈ ℤ such that −1 = 𝑎𝑛 

⇒ 1 = 𝑎2𝑛 

⇒ 𝑜(𝑎) ≤ 2𝑛 and hence 0(𝐺) ≤ 2𝑛  

So, 𝑂(𝐺) is finite this implies, 𝑂(𝐹) is finite but a field with characteristic 0 is never finite. This case 

is not possible. 

Subcase II:Characteristic 𝐹 = 𝑝; 𝑝 is a prime number. 

The prime field 𝑃 of 𝐹 being isomorphic to ℤ𝑝 has 𝑝 elements. 

Since 𝑎 ≠ 1 

⇒ 𝑎 − 1 ≠ 0 

⇒ 𝑎 − 1 ∈ 𝐺 =< 𝑎 > 

⇒ 𝑎 − 1 = 𝑎𝑛; 𝑛 ∈ ℤ 

Thus, 𝑎 satisfies 𝑥𝑛 − 𝑥 + 1 ∈ 𝐹[𝑥] 

⇒ 𝑎 is algebraic over 𝑃. 

Therefore, [𝑃(𝑎): 𝑃] = 𝑟 for some 𝑟 ∈ ℕ. 

As 𝑃 has 𝑝 elements, therefore, 𝑃(𝑎) has 𝑝𝑟 elements. 

Now 0 ∈ 𝑃(𝑎) and every non-zero element of 𝐹, being the power of 𝑎 also belong to 𝑃(𝑎). 

⇒ 𝐹 ⊆ 𝑃(𝑎) 

But 𝑃(𝑎) ⊆ 𝐹 

⇒ 𝐹 = 𝑃(𝑎) and 𝐹 is finite. 

Theorem 5.4.3:Let two elements 𝑎, 𝑏 in a field extension 𝐾 of a field 𝐹 be separable over 𝐹. Then 

𝐹(𝑎, 𝑏) is a simple, separable extension of 𝐹. 

Proof:If 𝐹 is finite then 𝐹(𝑎, 𝑏) is also finite. 

𝐹(𝑎, 𝑏) = {𝛼 + 𝛽𝑎 + 𝛾𝑏|𝛼, 𝛽, 𝛾 ∈ 𝐹}. 

⇒ 𝐹(𝑎, 𝑏) − {0} is cyclic. 

There exists 𝑐 such that 𝐹(𝑎, 𝑏) − {0} =< 𝑐 > 

⇒ 𝐹(𝑎, 𝑏) = 𝐹(𝑐); a simple extension. 

If 𝐹 is infinite then 𝐹(𝑎, 𝑏) = 𝐹(𝑐);  𝑐 = 𝑎 + 𝜆𝑏; 𝜆 ∈ 𝐹 that is, a simple extension. 

If characteristic 𝐹 = 0 

⇒ 𝐹(𝑎, 𝑏) is a separable extension. 

If characteristic 𝐹 = 𝑝, 𝑝 is a prime number. 

Let [𝐹(𝑐): 𝐹] = 𝑚 

90



Unit 05: Normal Extension  

 LOVELY PROFESSIONAL UNIVERSITY  

Notes 

Basis of 𝐹(𝑐) over 𝐹 is {1, 𝑐, 𝑐2, … , 𝑐𝑚−1}. 

Let 𝑎, 𝑏 ∈ 𝐹(𝑐) 

Then 

𝑎 = 𝛼0 + 𝛼1 𝑐 + ⋯ + 𝛼𝑚−1𝑐𝑚−1 

and  

𝑏 = 𝛽0 + 𝛽1𝑐 + ⋯ + 𝛽𝑚−1𝑐𝑚−1 

𝛼𝑖 , 𝛽𝑖 ∈ 𝐹 ∀ ⅈ 

Since characteristic 𝐹 = 𝑝 

So that,  

𝑎𝑝 = (𝛼0 + 𝛼1 𝑐 + ⋯ + 𝛼𝑚−1𝑐𝑚−1)𝑝 

= 𝛼0
𝑝

+ 𝛼1
𝑝

𝑐𝑝 + ⋯ + 𝛼𝑚−1
𝑝

𝑐(𝑚−1)𝑝 

∈ 𝐹(𝑐𝑝) 

 

Similarly, 𝑏𝑝 ∈ 𝐹(𝑐𝑝) 

Since 𝑎, 𝑏 are separable over 𝐹 

So, 𝐹(𝑎𝑝) = 𝐹(𝑎)  and 𝐹(𝑏𝑝) = 𝐹(𝑏) 

𝐹(𝑎) = 𝐹(𝑎𝑝) ⊆ 𝐹(𝑐𝑝) 

𝐹(𝑏) ⊆ 𝐹(𝑐𝑝) 

That is, 𝐹(𝑎, 𝑏) ⊆ 𝐹(𝑐𝑝) or 𝐹(𝑐) ⊆ 𝐹(𝑐𝑝) 

Also, 𝑐𝑝 ∈ 𝐹(𝑐) 

⇒ 𝐹(𝑐𝑝) ⊆ 𝐹(𝑐) 

⇒ 𝐹(𝑐𝑝) = 𝐹(𝑐) 

⇒ 𝑐 is separable over 𝐹. 

𝐹(𝑎, 𝑏) = 𝐹(𝑐) is a separable extension over 𝐹. 

 

Task: 

Prove that for any prime 𝑝, 𝑍𝑝 is a field whose multiplicative group is cyclic with 𝑝 − 1 

generators. 

 

5.5 Steinitz Theorem 

Theorem 5.5.1:Let 𝐾 be a field extension of a field 𝐹. Then the set 𝐿 = {𝑎 ∈ 𝐾|𝑎 is separable over 𝐹} 

is a subfield of 𝐾 containing 𝐹. 

Proof:Let 𝑐 ∈ 𝐹 

Then 𝑥 − 𝑐 is a polynomial over 𝐹 such that it is a minimal polynomial of 𝑐 over 𝐹. 

Therefore, the minimal polynomial of 𝑐 over 𝐹 is separable. 

∀𝑐 ∈ 𝐹, 𝑐 ∈ 𝐿 ⇒ 𝐹 ⊆ 𝐿 

0, 1 ∈ 𝐿 

⇒ 𝐿 ≠ 𝜙 

For 𝑎, 𝑏 ∈ 𝐿 

𝑎 and 𝑏 are separable elements over 𝐹. 

Hence, 𝐹(𝑎, 𝑏) is separable extension of 𝐹. 
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𝑎, 𝑏 ∈ 𝐿 and 𝐹(𝑎, 𝑏) is a field. 

⇒ 𝑎 − 𝑏 ∈ 𝐹(𝑎, 𝑏) and 𝑎𝑏−1 ∈ 𝐹(𝑎, 𝑏); 𝑏 ≠ 0 

⇒ 𝑎 − 𝑏, 𝑎𝑏−1 are both separable over 𝐹. 

⇒ 𝑎 − 𝑏, 𝑎𝑏−1 ∈ 𝐿 

⇒ 𝐿 is a subfield of 𝐾. 

Theorem 5.5.2: Any finite separable field extension of a field 𝐹 is a simple extension. 

Proof:Let 𝐹 be a field and 𝐾 = 𝐹(𝑎1, 𝑎2, … , 𝑎𝑛) be a finite separable extension of 𝐹. 

For 𝑛 = 2, 𝐾 = 𝐹(𝑎1, 𝑎2)be a finite separable extension of 𝐹 then there exists 𝑐 ∈ 𝐾 such that 𝐾 =

𝐹(𝑐) 

That is 𝐾 is a simple extension. 

Let us assume that if 𝐾 = 𝐹(𝑎1, 𝑎2, … , 𝑎𝑛−1) is finite separable extension then ∃ 𝑐 ∈ 𝐾 such that 𝐾 =

𝐹(𝑐). 

Now let 

𝐾1 = 𝐹(𝑎1, 𝑎2, … , 𝑎𝑛) 

Then 

𝐾1  = 𝐹(𝑎1, 𝑎2, … , 𝑎𝑛) 

= 𝐾(𝑎𝑛) 

= 𝐹(𝑐, 𝑎𝑛) 

= 𝐹(𝑑);  𝑑 ∈ 𝐾1  

That is, 𝐾1  is a simple extension. So, by Principle of Mathematical Induction, If𝐾 is a finite separable 

extension of a field 𝐹 then 𝐾 is simple. 

Theorem 5.5.3:(Steinitz Theorem) If 𝐾 is a finite extension of 𝐹 then 𝐾 is a simple extension of 𝐹 if 

and only if there are only a finite number of subfields of 𝐾 containing 𝐹. 

Proof:Suppose 𝐾 is a finite extension of 𝐹 such that 𝐾 is a simple extension. 

So, there exist 𝑐 ∈ 𝐾 such that 𝐾 = 𝐹(𝑐) 

Let 𝑓(𝑥) ∈ 𝐹[𝑥] such that 𝑓(𝑥) is minimal polynomial of 𝑐 over 𝐹. 

Now 𝐹 ⊆ 𝐾 and let 𝐿 be a subfield of 𝐾 containing 𝐹. 

Again, 𝐹 ⊆ 𝐿 ⊆ 𝐾 

So, 𝑓(𝑥) ∈ 𝐹[𝑥] ⊆ 𝐿[𝑥]  

𝑐 ∈ 𝐾, let 𝑔(𝑥) = 𝛼0 + 𝛼1 𝑥 + ⋯ + 𝛼𝑚−1𝑥𝑚−1 + 𝑥𝑚be the minimal polynomial of 𝑐 over 𝐿. 

Since 𝑓(𝑥) ∈ 𝐿[𝑥] such that 𝑓(𝑐) = 0 

This implies, 𝑔(𝑥) divides 𝑓(𝑥)  in 𝐿[𝑥] and hence in 𝐾[𝑥]. 

Now, let 𝐿0 = 𝐹(𝛼0, 𝛼1, … , 𝛼𝑚−1) 

Then 𝐹 ⊆ 𝐿 

Also, 𝛼0, 𝛼1, … , 𝛼𝑚−1 ∈ 𝐿 

⇒ 𝐿0 ⊆ 𝐿 

and 𝑔(𝑥) is an irreducible polynomial over 𝐿 such that 𝑔(𝑐) = 0 

⇒ 𝑔(𝑥) is an irreducible polynomial over 𝐿0 such that 𝑔(𝑐) = 0. 

⇒ 𝑔(𝑥) is minimal polynomial of 𝑐 over 𝐿0. 

Again 𝐾 = 𝐹(𝑐) ⊆ 𝐿(𝑐); 𝐾 ⊆ 𝐿(𝑐) 

Also, 𝐿 ⊆ 𝐾, 𝑐 ∈ 𝐾 ⇒ 𝐿(𝑐) ⊆ 𝐾 
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⇒ 𝐾 = 𝐿(𝑐) 

Similarly, 𝐾 = 𝐿0(𝑐) and deg 𝑔(𝑥) = 𝑚 

⇒ [𝐾: 𝐿] = 𝑚 = [𝐾: 𝐿0] 

⇒ 𝐿 = 𝐿0 = 𝐹(𝛼0, 𝛼1, … , 𝛼𝑚−1) 

Therefore, any subfield of 𝐾 containing 𝐹 is 𝐹(𝛽0, 𝛽1 , … , 𝛽𝑚−1) such that the polynomial 𝛽0 + 𝛽1 𝑥 +

⋯ + 𝛽𝑚−1𝑥𝑚−1 + 𝑥𝑚 divides 𝑓(𝑥) and monic polynomial dividing 𝑓(𝑥) will be finite in number. 

⇒The number of subfields of 𝐾 containing 𝐹 is finite. 

Conversely, let the number of subfields of 𝐾 containing 𝐹 is finite. 

Case I:If 𝑭 is finite 

Then 𝐾 is also a finite field. 

⇒ 𝐾 − {0} is a cyclic group. 

So, there exists 𝑐 ∈ 𝐾 − {0} such that 𝐾 − {0} = < 𝑐 > or 𝐾 = 𝐹(𝑐) i.e., a simple extension. 

Case II: If 𝑭 is infinite 

For some 𝑎 ∈ 𝐾, 

Consider 𝐹(𝑎) is a subfield of 𝐾containing 𝐹. 

We can choose 𝑏 ∈ 𝐾 such that [𝐹(𝑏): 𝐹] = 𝑛 and [𝐹(𝑎) : 𝐹] ≤ 𝑛 ∀ 𝑎 ∈ 𝐾. 

Claim: 𝑲 = 𝑭(𝒃) 

If possible, let 𝐾 ≠ 𝐹(𝑏) 

There exist 𝑐 ∈ 𝐾 such that 𝑐 ∉ 𝐹(𝑏) 

By the hypothesis of the set of fields 𝐹(𝑐𝑑 + 𝑏); 𝑑 ∈ 𝐹  is finite. 

As 𝐹 is infinite, therefore, there exist 𝑟, 𝑠 ∈ 𝐹 such that 𝐹(𝑐𝑟 + 𝑏) = 𝐹(𝑐𝑠 + 𝑏) 

Let 𝑧 = 𝑐𝑟 + 𝑏 

⇒ 𝐹(𝑧) = 𝐹(𝑐𝑠 + 𝑏) 

⇒ 𝑐𝑟 + 𝑏, 𝑐𝑠 + 𝑏 ∈ 𝐹(𝑧) 

Consider 𝑐(𝑟 − 𝑠) = (𝑐𝑟 + 𝑏) − (𝑐𝑠 + 𝑏) ∈ 𝐹(𝑧) 

𝑟 ≠ 𝑠 ⇒ 𝑐 ∈ 𝐹(𝑧) 

Further 𝑏 = (𝑐𝑟 + 𝑏) − 𝑐𝑟 ∈ 𝐹(𝑧) 

⇒ 𝐹(𝑏) ⊆ 𝐹(𝑧) 

But 𝑐 ∈ 𝐹(𝑧), 𝑐 ∉ 𝐹(𝑏) 

⇒ 𝐹(𝑏) ≠ 𝐹(𝑧) 

⇒ [𝐹(𝑧): 𝐹(𝑏)] > 1 

But [𝐹(𝑧): 𝐹] = [𝐹(𝑧): 𝐹(𝑏)][𝐹(𝑏): 𝐹] > 1 ⋅ 𝑛 = 𝑛 

So, we arrive at a contradiction to the choice of 𝑛. 

Therefore, 𝐾 = 𝐹(𝑏); 𝑏 ∈ 𝐾 is a simple extension. 

Summary 

• Normal extensions and relation of normal extension with splitting fields are discussed 

• The perfect field is defined and related to the separable extensions 

• Lagrange’s theorem for primitive elements is proved 

• It is proved that a prime field is isomorphic either to ℚ or some 𝑍/𝑝𝑍, where 𝑝 is a prime 

number 

• The number of elements and characteristic of a field are related 
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• Multiplicative groups of finite fields are studied 

Keywords 

• Normal extension 

• Perfect Fields 

• Lagrange’s theorem 

• Finite fields 

• Separable extension 

• Simple extension 

Self-assessment 

 

Question 1: Let 𝒇(𝒙) be an irreducible polynomial of degree 𝒏 over the field 𝑭 having a root in the 

normal extension 𝑲 of 𝑭, then 

A: 𝐾 contains only one root of 𝑓(𝑥) 

B: 𝐾 contains at the most 𝑛 roots of 𝑓(𝑥)  

C: 𝐾 contains 𝑛 − 1 roots of 𝑓(𝑥) 

D: 𝐾 contains all the 𝑛 roots of 𝑓(𝑥)  

 

Question 2: Let 𝑲 is an algebraic normal extension of 𝑭. Let 𝜶 ∈ 𝑲 and 𝒑(𝒙) is minimal polynomial of 

𝜶 over 𝑭. Then  

A: 𝐾 is the splitting field of 𝑝(𝑥) 

B: 𝐾 contains a splitting field of 𝑝(𝑥) 

C: 𝐾 is contained in some splitting field of 𝑝(𝑥) 

D: 𝐾 = 𝐹 

 

Question 3: Let ℝ ⊆ ℂ be the field. Then conjugate element(s) of 𝒊 ∈ ℂ over ℝ are 

A: ⅈ 

B: ⅈ, −ⅈ, 1, −1 

C: ⅈ, −ⅈ 

D: −ⅈ 

 

Question 4: Let ℝ ⊆ ℂ be the field. Then conjugate element(s) of 𝝎 =
𝟏+√𝟑𝒊

𝟐
∈ ℂ over ℝ are 

A: 𝜔 

B: 𝜔, 𝜔2, 1 

C: ω, ω2 

D: 𝜔2, 1 

 

Question 5: Let 𝑲 be a field extension of 𝑭 such that [𝑲: 𝑭] = 𝟐. Then 𝑲 is 

A: Always a normal extension of 𝐹 

B: Never a normal extension of 𝐹 

C: May or may not be a normal extension of 𝐹 

D: Never a simple extension of 𝐹 

Question 6: Let 𝑭 be a field. Then 𝑭 is called a perfect field if 
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A: Every extension of 𝐹 is separable 

B: Every finite extension of 𝐹 is separable 

C: There exists some finite separable extension of 𝐹 

D: Every infinite extension of 𝐹 is separable 

 

Question 7: Let 𝑲 is a finite simple extension of a field 𝑭 then the number of subfields of 𝑲 containing 𝑭 

are 

A: One 

B: Two 

C: Finite 

D: Infinite 

 

Question 8: Let 𝑭 = 𝒁𝟑  and 𝑲 be a field extension of 𝑭. Then an element 𝒂 ∈ 𝑲 is separable over 𝑭 if 
and only if 

A: 𝐹(𝑎3) = 𝐹(𝑎) 

B: 𝐹(𝑎2) = 𝐹(𝑎) 

C: 𝐹(𝑎6) = 𝐹(𝑎) 

D: 𝐹(𝑎2) = 𝐹(𝑎3) 

 

Question 9: Let 𝑭 = 𝒁𝟕  and 𝑲 is a field extension of 𝑭. Then for a separable element 𝒂 over 𝑭, 𝑭(𝒂) is 

A: Simple but not separable extension 

B: Neither simple nor separable 

C: Separable but not simple 

D: Simple as well as separable 

 

Question 10: The primitive root of the field ℚ(√𝟐, ⅈ) over ℚ is 

A: √2ⅈ 

B: √2 + ⅈ 

C: −√2ⅈ 

D: √2 

 

Question 11: The field of quotients of ℤ is 

A: ℤ 

B: ℚ 

C: ℝ 

D: ℂ 

 

Question 12: A prime field is isomorphic to ℤ ⟨𝒒⟩⁄  then 𝒒 is 

A: A prime number 

B: A prime number or 0 

C: A composite number 

D: A composite number or 0 
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Question 13: Which of the following is not an order of a finite field? 

A: 125 

B: 49 

C: 1331 

D: 46 

 

Question 14: Let 𝑭 be a field of characteristic 5. Then the number of elements in 𝑭 are 

A: 5 

B: 25 

C: 5𝑛; 𝑛 ∈ ℕ 

D: 120 

 

Question 15: Let 𝑭 be a field with 125 elements. 𝑭 is splitting field of the polynomial 𝒙𝒒 − 𝒙 over its 

prime subfield then 𝒒 = 

A: 1 

B: 5 

C: 25 

D: 125 

 

Question 16: Let 𝑭𝟏 and 𝑭𝟐 are two fields with the same number of elements. Then 

A: 𝐹1 = 𝐹2  

B: 𝐹1  is a proper field extension of 𝐹2 

C: 𝐹2 is a proper field extension of 𝐹1  

D: 𝐹1 ≅ 𝐹2  

 

Question 17: Let 𝑭 be a field with 49 elements. Then its multiplicative group is 

A: Not abelian 

B: Abelian but not cyclic 

C: Cyclic 

D: Infinite group 

 

Question 18: Multiplicative group of a field 𝑭 is cyclic then 

A: 𝐹 is finite 

B: 𝐹 is infinite 

C: 𝐹 ≅  ℚ 

D: 𝐶ℎ. 𝐹 = 0 

 

Question 19: For two elements 𝒂, 𝒃 in a field extension 𝑲 of a field 𝑭 be separable over 𝑭.  Then 𝑭(𝒂, 𝒃) 

is  

A: Simple but not separable 

B: Separable but not simple 

C: Simple and separable 
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D: Neither simple nor separable 

 

Question 20: The set of all separable elements of a field 𝑲 over 𝑭 is 

A: A subfield of 𝐹 

B: A subfield of 𝐾 containing 𝐹 

C: A field extension of 𝐾 

D: Not a field 

 

Answers for Self Assessment 

1. D 2. B 3. C 4. C 5. A 

6. B 7. C 8. B 9. D 10. B 

11. B 12. B 13. D 14. C 15. D 

16. D 17. C 18. A 19. C 20 B 

 

Review Questions 

1) Prove or disprove: ℚ ⊆ ℚ(√2) is a normal extension.  

2) Let 𝐾 be any algebraic field extension of 𝐹. If 𝐹1 and 𝐹2are two non-empty subfields of 𝐾 

containing 𝐹, such that each 𝐹𝑖  is a normal extension of 𝐹. Show that 𝐹1 ∩ 𝐹2 is a normal 

extension of 𝐹. 

3) Find a primitive element in the following fields over ℚ 

a) ℚ(√2, √5
3 ) 

b) ℚ(√−3, √2) 

4) Prove that any field which is either of characteristic zero or is finite is a perfect field. 

5) Let 𝑎, 𝑏 ∈ 𝐾, an extension of 𝐹, be algebraic over 𝐹. If one of 𝑎 or 𝑏 is separable over 𝐹, 

prove that 𝐹(𝑎, 𝑏) is a simple extension of 𝐹. 

 

 

Further Readings 

• Basic abstract algebra by P. B. Bhattacharya, S. K. Jain, S. R. 

Nagpal,Cambridge universitypress 

• Topics in algebra by I.N. Hartstein, Wiley 

• Abstract algebra by David S Dummit and Richard M Foote, 

Wiley 

 

 

Web Links 

https://onlinecourses.nptel.ac.in/noc20_ma29/preview 

https://nptel.ac.in/courses/111/105/111105112/# 
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Unit 06: Introduction to Galois Theory 

CONTENTS 

Objectives 

Introduction 

6.1 Automorphism Groups 

6.2 Fixed Field 

6.3 Artin Theorem 

6.4 Introduction to Galois Theory 

Summary 

Keywords 

Self Assessment 

Answers for Self Assessment 

Review Questions 

Further Readings 

Objectives 

After studying this unit, you will be able to 

• understand monomorphisms of some field E to some field K  

• define fixed field and F- automorphisms 

• prove that 𝜎(𝑎) is conjugate of 𝑎 over F for every F-automorphism 𝜎 

• analyze results about fixed fields with the help of examples 

• state and prove Artin’s theorem and understand some consequences of Artin’s theorem 

• define Galois extension and elaborate it with example 

• relate normal and Galois extensions 

Introduction 

This unit provides a basic theory of Galois groups and extensions. In this unit, we will study 
monomorphisms between the fields. Fixed fields and F-automorphisms will be studied. It will be 
followed by Artin’s theorem which relates fixed fields and degree of extension. Further Galois field 
will be defined and related to normal extensions. 

6.1 Automorphism Groups 

Linear Dependence/ Independence of Monomorphism: Let 𝐸 be any set and 𝐾 be any field. 

Let 𝑆(𝐸, 𝐾) be the set of all the mappings from 𝐸 to 𝐾. Then 𝑆(𝐸, 𝐾)is a vector space over 𝐾 under 
the compositions 

(𝜙1 + 𝜙2)(𝑥) = 𝜙1(𝑥) + 𝜙2(𝑥) 

(𝛼𝜙1)(𝑥) = 𝛼𝜙1(𝑥);  𝑥 ∈ 𝐸, 𝛼 ∈ 𝐾 

Let 𝜙1, 𝜙2, … , 𝜙𝑛 ∈ 𝑆(𝐸, 𝐾) then we call 𝜙1, 𝜙2, … , 𝜙𝑛 linearly independent if 

𝛼1𝜙1 + 𝛼2𝜙2 + ⋯ + 𝛼𝑛𝜙𝑛 = 0̅ where 0̅is the zero-map defined as �̅�(𝑥) = 0 ∀ 𝑥 ∈ 𝐸 

For 𝑥 ∈ 𝐸, 

(𝛼1𝜙1 + 𝛼2𝜙2 + ⋯ + 𝛼𝑛𝜙𝑛)(𝑥) = 0 

⇒ 𝛼1𝜙1(𝑥) + 𝛼2𝜙2(𝑥) + ⋯ + 𝛼𝑛𝜙𝑛(𝑥) = 0 

⇒ 𝛼𝑖 = 0 ∀ 1 ≤ ⅈ ≤ 𝑛 
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Theorem 6.1.1: Let 𝐸 and 𝐾 be any two fields. If 𝜎1, 𝜎2, … , 𝜎𝑛 are any 𝑛 distinct monomorphisms of 𝐸 
into 𝐾, then they are linearly independent over 𝐾. 

Proof: Let 𝑆 = {𝜎1, 𝜎2, … , 𝜎𝑛} is the set of 𝑛 distinct monomorphisms from 𝐸 to 𝐾. 

For 𝑛 = 1, 𝑆 = {𝜎1}, 𝜎1 is monomorphism 

If for some 𝛼 ∈ 𝐾, 𝛼𝜎1 = 0̅ 

⇒ 𝛼𝜎1(𝑥) = 0 ∀ 𝑥 ∈ 𝐸 

⇒ 𝛼(𝜎1(𝑥)) = 0 ∀ 𝑥 ∈ 𝐸 

⇒ 𝛼 = 0 

⇒ 𝑆 is linearly independent in this case. 

Let the result is true for 𝑆 consisting of 𝑛 − 1 monomorphisms. 

For 𝑛, let 𝛼1𝜎1 + 𝛼2𝜎2 + ⋯ + 𝛼𝑛𝜎𝑛 = �̅�; 𝛼𝑖 ∈ 𝐾 ∀ ⅈ 

⇒ (𝛼1𝜎1 + 𝛼2𝜎2 + ⋯ + 𝛼𝑛𝜎𝑛)(𝑥) = 0 ∀ 𝑥 ∈ 𝐸 

If 𝛼𝑛 = 0 ⇒ 𝛼1𝜎1 + 𝛼2𝜎2 + ⋯ + 𝛼𝑛−1𝜎𝑛−1 = 0̅ 

By the induction hypothesis, {𝜎1, 𝜎2, … , 𝜎𝑛−1} is linearly independent. 

⇒ 𝛼𝑖 = 0 ∀ 1 ≤ ⅈ ≤ 𝑛 − 1 

Also, 𝛼𝑛 = 0 

⇒ 𝛼𝑖 = 0 ∀ 1 ≤ ⅈ ≤ 𝑛 

If 𝛼𝑛 ≠ 0 

Then 𝛼𝑛
−1 ∈ 𝐾 

⇒ 𝛼𝑛
−1(𝛼, 𝜎1 + 𝛼2𝜎2 + ⋯ + 𝛼𝑛𝜎𝑛) =  �̅� 

⇒ 𝛼𝑛
−1𝛼1𝜎1 + 𝛼𝑛

−1𝛼2𝜎2 + ⋯ + 𝜎𝑛 =  �̅� 

⇒ 𝛽1𝜎1 + 𝛽2𝜎2 + ⋯ + 𝜎𝑛 = �̅� … (1) ; 𝛽𝑖 = 𝛼𝑛
−1𝛼𝑖  ∀ 1 ≤ ⅈ ≤ 𝑛 − 1. 

𝜎1 ≠ 𝜎𝑛 

𝜎1(𝑥) ≠ 𝜎𝑛(𝑥1) for at least one 𝑥1 ∈ 𝐸 

From (1) 

𝛽1𝜎1(𝑥1𝑥) + 𝛽2𝜎2(𝑥1𝑥) + ⋯ + 𝜎𝑛(𝑥1𝑥) = 0 

⇒ 𝛽1𝜎1(𝑥1)𝜎1(𝑥) + 𝛽2𝜎2(𝑥1)𝜎2(𝑥) + ⋯ + 𝜎𝑛(𝑥1)𝜎𝑛(𝑥) = 0 

⇒ 𝛽1

𝜎1(𝑥1)

𝜎𝑛(𝑥1)
𝜎1(𝑥) + 𝛽2

𝜎2(𝑥1)

𝜎𝑛(𝑥1)
𝜎2(𝑥) + ⋯ + 𝛽𝑛−1

𝜎𝑛−1(𝑥1)

𝜎𝑛(𝑥1)
𝜎𝑛−1(𝑥) + 𝜎𝑛(𝑥) = 0 … (2) 

From (1) 

𝛽1𝜎1 + 𝛽2𝜎2 + ⋯ + 𝛽𝑛−1𝜎𝑛−1 + 𝜎𝑛 = 0 

⇒ (𝛽1𝜎1 + 𝛽2𝜎2 + ⋯ + 𝛽𝑛−1𝜎𝑛−1 + 𝜎𝑛)(𝑥) = 0 

⇒ 𝛽1𝜎1(𝑥) + 𝛽2𝜎2(𝑥) + ⋯ + 𝛽𝑛−1𝜎𝑛−1(𝑥) + 𝜎𝑛(𝑥) = 0 … (3) 

From (2) 

∑ 𝛽𝑖

𝜎𝑖(𝑥1)

𝜎𝑛(𝑥1)
𝜎𝑖(𝑥)

𝑛−1

𝑖=1

+ 𝜎𝑛(𝑥) = 0 

From (3) 

∑ 𝛽𝑖𝜎𝑖(𝑥)

𝑛−1

𝑖=1

+ 𝜎𝑛(𝑥) = 0 

(3) − (2) 

∑ 𝛽𝑖

𝑛−1

𝑖=1

(
𝜎𝑖(𝑥1)

𝜎𝑛(𝑥1)
− 1) 𝜎𝑖(𝑥) = 0 
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which is a linear combination of 𝜎1, 𝜎2, … , 𝜎𝑛−1. 

By the induction hypothesis, 

𝛽𝑖 (
𝜎𝑖(𝑥1)

𝜎𝑛(𝑥1)
− 1) = 0 … (4) 

Consider, ⅈ = 1, 

𝛽𝑖 (
𝜎𝑖(𝑥1)

𝜎𝑛(𝑥1)
− 1) ≠ 0 

Because 𝜎1(𝑥1) ≠ 𝜎𝑛(𝑥1) 

Also, 𝛽1 ≠ 0 

So, we arrive at a contradiction. 

Our supposition was wrong. 

Therefore, 𝛼𝑛 = 0 

This implies 𝛼𝑖 = 0 ∀ 1 ≤ ⅈ ≤ 𝑛 

⇒ {𝜎1, 𝜎2, … , 𝜎𝑛} is always linearly independent. 

Theorem 6.1.2: Any set of automorphism of 𝐾 is linearly independent over 𝐾. 

Proof:𝐸 and 𝐾 are two fields. 

Consider 𝑆 = {𝜎1, 𝜎2, … , 𝜎𝑛} such that 𝜎𝑖: 𝐸 → 𝐾 is a monomorphism then this set is always linearly 
independent. 

Let 𝐸 = 𝐾 and consider the set of automorphisms on 𝐸 then this set being subset of the set of 
monomorphisms is a linearly independent set. 

Theorem 6.1.3: The set of all automorphisms of a field form a group under the resultant 
composition. 

Proof: Let 𝐾 be a field. 

Let 𝑆 be the set of all automorphisms on 𝐾. 

Let 𝜎1, 𝜎2 ∈ 𝑆 

⇒ 𝜎1and 𝜎2 both are one-one, onto, homomorphism from 𝐾 to itself. 

⇒ 𝜎10𝜎2 is again one-one, onto, homomorphism from 𝐾 to itself. 

Define 𝜂: 𝐾 → 𝐾 as 𝜂(𝑦) = 𝑥 ⇔ 𝜎(𝑥) = 𝑦 

Again, for 𝑥1, 𝑥2 ∈ 𝐾,  

𝜎(𝑥1 + 𝑥2) = 𝜎(𝑥1) + 𝜎(𝑥2) 

⇒ 𝜎(𝑥1 + 𝑥2) = 𝑦1 + 𝑦2 

⇒ 𝜂(𝑦1 + 𝑦2) = 𝑥1 + 𝑥2 = 𝜂(𝑦1) + 𝜂(𝑦2) 

⇒ 𝜂 ∈ 𝑆 and 𝜂 = 𝜎−1 

Therefore, 𝜎−1 exists for all 𝜎 ∈ 𝑆 

So, 𝑆 is a group under the resultant composition. 

 

:By taking different examples observe that set of all automorphisms on a field 𝐾 is not a 
group under the composition of  

a) Sum of automorphisms 

b) Product of automorphisms 

c) Subtraction of automorphisms 
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6.2 Fixed Field 

Definition 6.2.1: Let 𝐾 be a field extension of a field 𝐹. Let 𝜎 be any automorphism on 𝐾. Then 𝜎 is 
called 𝐹 −automorphism if 𝜎(𝑎) = 𝑎 ∀ 𝑎 ∈ 𝐹. 

For example, let 𝜎 = 𝐼: 𝐾 → 𝐾 be identity map then 𝜎(𝑥) = 𝑥 ∀ 𝑥 ∈ 𝐾. 

Since 𝐹 ⊆ 𝐾, 𝜎(𝑥) = 𝑥 ∀ 𝑥 ∈ 𝐹 

Therefore, 𝐼 map is 𝐹 −automorphism. 

Theorem 6.2.2: Set of all 𝐹 −automorphisms of 𝐾 is a subgroup of the group of all automorphisms 
on 𝐾. 

Proof:Let 𝑆 be the set of all 𝐹 −automorphisms of 𝐾 over 𝐹 then 𝐼 is an 𝐹 −automorphism. 

This implies, 𝑆 ≠ 𝜙 

Let 𝜎1, 𝜎2 ∈ 𝑆 

𝜎1(𝑥) = 𝑥 ∀ 𝑥 ∈ 𝐹 

and  

𝜎2(𝑥) = 𝑥 ∀ 𝑥 ∈ 𝐹 

⇒ 𝜎2
−1(𝑥) = 𝑥 ∀ 𝑥 ∈ 𝐹 

Now consider 𝑥 ∈ 𝐹 

𝜎1𝜎2
−1(𝑥) = 𝜎1(𝑥) = 𝑥  

Therefore, 𝜎1𝜎2
−1 ∈ 𝑆 

That is, 𝑆 is a subgroup of 𝐴𝑢𝑡(𝐾) or 𝐺. 

Definition 6.2.3:(Galois Group) Let 𝐾 be a field extension of a field 𝐹. Then 𝑆 =
{𝜎|𝜎 ∈ 𝐴𝑢𝑡(𝑘);  𝜎(𝑥) = 𝑥 ∀ 𝑥 ∈ 𝐹} is a subgroup of 𝐴𝑢𝑡(𝐾) and hence 𝑆 is itself a group under the 
composition of composite maps. The group 𝑆 is known as the Galois group. We denote it as 𝐺(𝐾, 𝐹). 

Theorem 6.2.4: Let 𝐾be any field extension of 𝐹 and 𝑎 ∈ 𝐾 be algebraic over 𝐹. Then for every 𝐹 − 
automorphism 𝜎 of 𝐾, 𝜎(𝑎) is conjugate to 𝑎 over 𝐹. 

Proof:Since 𝑎 ∈ 𝐾 is algebraic over 𝐹. 

Let 𝑝(𝑥) = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥2 + ⋯ + 𝛼𝑛−1𝑥𝑛−1 + 𝑥𝑛 is the minimal polynomial of 𝑎 over 𝐹. 

Put 𝑥 = 𝑎, 𝑝(𝑎) = 0 

⇒ 𝛼0 + 𝛼1𝑎 + 𝛼2𝑎2 + ⋯ + 𝛼𝑛−1𝑎𝑛−1 + 𝑎𝑛 = 0 

⇒ 𝜎(𝛼0 + 𝛼1𝑎 + 𝛼2𝑎2 + ⋯ + 𝛼𝑛−1𝑎𝑛−1 + 𝑎𝑛) = 0 

⇒ 𝜎(𝛼0) + 𝜎(𝛼1)𝜎(𝑎) + 𝜎(𝛼2)𝜎(𝑎2) + ⋯ + 𝜎(𝛼𝑛−1)𝜎(𝑎𝑛−1) + 𝜎(𝑎𝑛) = 0 

Now 𝜎 is 𝐹 −homomorphism. 

𝛼𝑖 ∈ 𝐹 ∀ 0 ≤ ⅈ ≤ 𝑛 − 1 

𝜎(𝛼𝑖) = 𝛼𝑖  ∀ 0 ≤ ⅈ ≤ 𝑛 − 1 

𝜎(𝑎𝑘) = (𝜎(𝑎))
𝑘
 

⇒ 𝛼0 + 𝑎1𝜎(𝑎) + ⋯ + 𝛼𝑛−1(𝜎(𝑎))
𝑛−1

+ (𝜎(𝑎))
𝑛

= 0 

which proves that 𝜎(𝑎) is a root of the minimal polynomial of 𝑎. 

Therefore, 𝑎 and 𝜎(𝑎) are having the same minimal polynomial. 

⇒ 𝑎 and 𝜎(𝑎) are conjugates over 𝐹. 

Theorem 6.2.5: Let 𝐾 be a finitely generated field extension of 𝐹 such that {𝑎1,  𝑎2,  … ,  𝑎𝑛} be the set 
of generators of 𝐾 over 𝐹 i.e., 𝐾 =  𝐹(𝑎1,  𝑎2,  … ,  𝑎𝑛) then any 𝐹 − automorphism 𝜎 on 𝐾 is 
determined by {𝜎(𝑎1),  𝜎(𝑎2), … ,  𝜎(𝑎𝑛)}. 

Proof: 𝐾 =  𝐹(𝑎1,  𝑎2,  … ,  𝑎𝑛). 

For 𝑎 ∈ 𝐾,  

𝑎 = 𝛼0 + 𝛼1𝑎1 + 𝛼2𝑎2 + ⋯ + 𝛼𝑛𝑎𝑛; 𝛼𝑖 ∈ 𝐹 ∀ ⅈ 
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Then  

𝜎(𝑎) = 𝜎(𝛼0 + 𝛼1𝑎1 + 𝛼2𝑎2 + ⋯ + 𝛼𝑛𝑎𝑛) 

= 𝜎(𝛼0) + 𝜎(𝛼1)𝜎(𝑎1) + 𝜎(𝛼2)𝜎(𝑎2) + ⋯ + 𝜎(𝛼𝑛)𝜎(𝑎𝑛) 

𝛼𝑖 ∈ 𝐹 ∀ ⅈ and 𝜎 is 𝐹 −automorphism 

⇒ 𝜎(𝛼𝑖) = 𝛼𝑖  ∀ ⅈ 

Then  

𝜎(𝑎) = 𝛼0 + 𝛼1𝜎(𝑎1) + 𝛼2𝜎(𝑎2) + ⋯ + 𝛼𝑛𝜎(𝑎𝑛) 

Thus, any 𝐹 − automorphism 𝜎 on 𝐾 is determined by {𝜎(𝑎1),  𝜎(𝑎2), … ,  𝜎(𝑎𝑛)}. 

Theorem 6.2.6: Let 𝐺be a group of automorphisms of a field 𝐾. Then the set 𝐹𝑜 = {𝑥 ∈ 𝐾|𝜎(𝑥) =
𝑥 ∀ 𝜎 ∈ 𝐺} is a subfield of 𝐾. 

Proof: Since 𝐺 is a group of automorphisms of a field 𝐾. 

∀ 𝜎 ∈ 𝐺, 

𝜎(0) = 0, 𝜎(1) = 1 

⇒ 0,1 ∈ 𝐹0 

⇒ 𝐹0 ≠ ∅ 

Let 𝑥, 𝑦 ∈ 𝐹0 

⇒ 𝜎(𝑥) = 𝑥 ∀ 𝜎 ∈ 𝐺 and 𝜎(𝑦) = 𝑦 ∀ 𝜎 ∈ 𝐺 

Also, 𝜎(𝑥 − 𝑦) = 𝜎(𝑥) − 𝜎(𝑦) = 𝑥 − 𝑦 

⇒ 𝑥 − 𝑦 ∈ 𝐹0 ∀ 𝑥, 𝑦 ∈ 𝐹0 

Again 𝑥 ∈ 𝐹0, 0 ≠ 𝑦 ∈ 𝐹0 

0 ≠ 𝑦 ∈ 𝐾 ⇒ 𝑦−1 ∈ 𝐾 

𝜎(𝑦−1) = (𝜎(𝑦))
−1

= 𝑦−1 

⇒ 𝑦−1 ∈ 𝐹0 

Consider 𝜎(𝑥𝑦−1) = 𝜎(𝑥)𝜎(𝑦−1) = 𝑥𝑦−1 

⇒ 𝑥𝑦−1 ∈ 𝐹0 

⇒ 𝐹0 is a field contained in 𝐾. 

 

1) Prime field is contained in 𝐹0. 

Proof: Prime field is the smallest subfield contained in 𝐾. 

Prime field 𝑃 is the intersection of all subfields of 𝐾. 

𝐹0 is a subfield of 𝐾. 

𝑃 ⊆ 𝐹0 = {𝑥 ∈ 𝐾|𝜎(𝑥) = 𝑥 ∀ 𝜎 ∈ 𝐺} 

⇒ ∀ 𝜎 ∈ 𝐺, 𝑥 ∈ 𝑃, 𝜎(𝑥) = 𝑥 

 2) Every member of 𝐺can be regarded as 𝐹0 −automorphism on 𝐺. 

Let 𝜎 ∈ 𝐺 

𝐹0 = {𝑥 ∈ 𝐾|𝜎(𝑥) = 𝑥 ∀ 𝜎 ∈ 𝐺} 

For 𝜎 ∈ 𝐺, 𝑥 ∈ 𝐹0 

𝜎(𝑥) = 𝑥 

Therefore, 𝜎 can be treated as 𝐹0 −automorphism on 𝐺. 

 

Theorem 6.2.7: If 𝐾 is a field extension of a field 𝐹 and 𝐺 is a group of 𝐹 −automorphisms of 𝐾 then 
𝐹 ⊆ 𝐹0. 
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Proof:𝐺 is a group of 𝐹 − automorphisms of 𝐾. 

This implies every automorphism 𝜎 is 𝐹 −automorphism. 

⇒ 𝜎(𝑥) = 𝑥 ∀ 𝑥 ∈ 𝐹, 𝜎 ∈ 𝐺 

⇒ 𝑥 ∈ 𝐹0 ∀ 𝑥 ∈ 𝐹 

⇒ 𝐹 ⊆ 𝐹0 

6.2.8: 𝐾 = 𝑄(√2)then 𝐴𝑢𝑡(𝐾) consists of two automorphisms and its fixed field is ℚ. 

Solution: Let 𝐹 = ℚ, 𝐾 = ℚ(√2) 

Let 𝜎 be any 𝐹 −automorphism 

𝐵 = {1, √2} is a basis of 𝐾 over 𝐹. 

𝜎(𝑥) = 𝑥 ∀ 𝑥 ∈ 𝐹 

For 𝑥 ∈ 𝐾, 𝑥 = 𝛼1 + √2𝛼2; 𝛼1, 𝛼2 ∈ 𝐹 

Then  

𝜎(𝑥) = 𝜎(𝛼1) + 𝜎(√2)𝜎(𝛼2) 

= 𝛼1 + 𝜎(√2)𝛼2 

Now 𝜎(√2) is a conjugate of √2 

⇒ 𝜎(√2) = ±√2 

Case I: 𝝈 (√𝟐) = √𝟐 

𝜎(𝑥) = 𝛼1 + √2𝛼2 = 𝑥 

⇒ 𝜎 = 𝐼 

Case II: 𝝈(√𝟐) = −√𝟐 

𝜎(𝑥) = 𝛼1 − √2𝛼2 

So, we get two isomorphisms {𝐼, 𝜎};  𝜎(𝑎 + 𝑏√2) = 𝑎 − 𝑏√2 

𝐹0 = {𝑥 ∈ 𝑘|𝜎(𝑥) = 𝑥 ∀ 𝑥 ∈ 𝐹} 

Let 𝑎 + 𝑏√2 ∈ 𝐹0 

Then  

𝐼(𝑎 + 𝑏√2) = 𝑎 + 𝑏√2 

and  

𝜎(𝑎 + 𝑏√2) = 𝑎 + 𝑏√2 

⇒ 𝑎 − 𝑏√2 = 𝑎 + 𝑏√2 

⇒ 𝑏 = 0 

Therefore, 𝐹0 = {𝑎|𝑎 ∈ ℚ} = ℚ. 

 

1) Let  𝐾 = 𝑄(√5)then find the order of group 𝐴𝑢𝑡(𝐾) and its fixed field. 

2) Let  𝐾 = 𝑄(√3ⅈ)then find the order of group 𝐴𝑢𝑡(𝐾) and its fixed field. 

6.3 Artin Theorem 

Theorem 6.3.1: (Artin)Let 𝐺 be a finite group of automorphisms of a field 𝐾; 𝐹0 the fixed field under 
𝐺. Then the degree of 𝐾 over 𝐹0 is equal to the order of the group 𝐺. 

Proof:𝐺 = 𝐴𝑢𝑡(𝐾) and 𝐹0 = {𝑥 ∈ 𝐾|𝜎(𝑥) = 𝑥 ∀ 𝑥 ∈ 𝐺} 

Let [𝐾: 𝐹0] = 𝑚 and 0(𝐺) = 𝑛 

Let 𝐺 = {𝜎1, 𝜎2, … , 𝜎𝑛} 
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Let 𝐵 = {𝑥1, 𝑥2, … , 𝑥𝑚} is a basis of 𝐾 over 𝐹0. 

Let 𝑚 < 𝑛 

Consider 𝑚 linear homogeneous equations in 𝑛 unknowns given by 

𝜎1(𝑥𝑗)𝑢1 + 𝜎2(𝑥𝑗)𝑢2 + ⋯ + 𝜎𝑛(𝑥𝑗)𝑢𝑛 = 0 … (1) 

Since 𝑚 < 𝑛 that is, the system of equations has at least one non-trivial solution. Let {𝑦1, 𝑦2, … , 𝑦𝑛} is 
that solution. 

𝜎1(𝑥𝑗)𝑦1 + 𝜎2(𝑥𝑗)𝑦2 + ⋯ + 𝜎𝑛(𝑥𝑗)𝑦𝑛 = 0 … (2) 

Now, ∀ 𝑥 ∈ 𝐾 

𝑥 = 𝛼1𝑥1 + 𝛼2𝑥2 + ⋯ + 𝛼𝑚𝑥𝑚; 𝛼𝑖 ∈ 𝐹0 

In (2), multiply 𝑗𝑡ℎ equation by 𝛼𝑗  

 

𝛼𝑗𝜎1(𝑥𝑗)𝑦1 + 𝛼𝑗𝜎2(𝑥𝑗)𝑦2 + ⋯ + 𝛼𝑗𝜎𝑛(𝑥𝑗)𝑦𝑛 = 0 

Since 𝜎𝑗(𝛼𝑖) = 𝛼𝑖  ∀ ⅈ, 𝑗 

Therefore,  

𝜎1(𝛼𝑗𝑥𝑗)𝑦1 + 𝜎2(𝛼𝑗𝑥𝑗)𝑦2 + ⋯ + 𝜎𝑛(𝛼𝑗𝑥𝑗)𝑦𝑛 = 0 

Adding these equations, we get, 

𝜎1(𝑥)𝑦1 + 𝜎2(𝑥)𝑦2 + ⋯ + 𝜎𝑛(𝑥)𝑦𝑛 = 0 

⇒ 𝑦1𝜎1 + 𝑦2𝜎2 + ⋯ + 𝑦𝑛𝜎𝑛 = 0̅ 

Since 𝜎1, 𝜎2, … , 𝜎𝑛 ∈ 𝐴𝑢𝑡(𝐾) therefore, {𝜎1, σ2, … , 𝜎𝑛}is always linearly independent. 

⇒ 𝑦𝑖 = 0 ∀ ⅈ 

But {𝑦1, 𝑦2, … , 𝑦𝑛}is a system of non-trivial solution. This implies, 𝑦𝑖 ≠ 0 for some ⅈ. 

Thus, we arrive at a contradiction. 

So, 𝑚 is not less than 𝑛. 

⇒ 𝑚 ≥ 𝑛 

Assume that 𝑚 > 𝑛 

⇒ 𝑚 ≥ 𝑛 + 1 

Since a subset of a linearly independent set is linearly independent. 

Hence, {𝑥1, 𝑥2, … , 𝑥𝑛+1} is a linearly independent subset of 𝐾 over 𝐹0. 

Consider 𝑛 + 1 equations in 𝑚 unknowns, 

𝜎𝑗(𝑥1)𝑢1 + 𝜎𝑗(𝑥2)𝑢2 + ⋯ + 𝜎𝑗(𝑥𝑚)𝑢𝑚 = 0 … (3) 

Let (𝑧1, 𝑧2, … , 𝑧𝑚) be that non-trivial solution such that 𝑟 is the minimum number of non-zero 
components in (𝑧1, 𝑧2, … , 𝑧𝑚). 

Rearranging we can take 

𝑧𝑖 = 0 ∀ ⅈ > 𝑟 

From (3) we have, 

𝜎𝑗(𝑥1)𝑧1 + 𝜎𝑗(𝑥2)𝑧2 + ⋯ + 𝜎𝑗(𝑥𝑟)𝑧𝑟 = 0 … (4) 

𝑧𝑟 ≠ 0; 𝑧𝑟
−1 exists. 

𝜎𝑗(𝑥1)
𝑧1

𝑧𝑟
+ 𝜎𝑗(𝑥2)

𝑧2

𝑧𝑟
+ ⋯ + 𝜎𝑗(𝑥𝑟)

𝑧𝑟

𝑧𝑟
= 0 

Put  

𝑧𝑖

𝑧𝑟
= 𝑧𝑖

′ 

𝜎𝑗(𝑥1)𝑧1
′ + 𝜎𝑗(𝑥2)𝑧2

′ + ⋯ + 𝜎𝑗(𝑥𝑟−1)𝑧′
𝑟−1 + 𝜎𝑗(𝑥𝑟) = 0 … (5) 

104



Advanced Abstract Algebra-I  

 LOVELY PROFESSIONAL UNIVERSITY  

Notes 

If 𝑟 = 1, from (5) we get, 

𝜎𝑗(𝑥𝑟) = 0 

which is not possible. Hence, 𝑟 ≠ 1. 

Also, if 𝑧1
′ , 𝑧2

′ , … , 𝑧𝑟−1
′ ∈ 𝐹0 

Since 𝜎(𝛼) = 𝛼 ∀ 𝛼 ∈ 𝐺 

Therefore, 𝜎(𝑧𝑖
′) = 𝑧𝑖

′ ∀ 𝜎 ∈ 𝐺 

From (5), 𝜎𝑗(𝑥1)𝑧1
′ + 𝜎𝑗(𝑥2)𝑧2

′ + ⋯ + 𝜎𝑗(𝑥𝑟) = 0 

Taking 𝜎𝑗 = 𝐼 

𝑥1𝑧1
′ + 𝑥2𝑧2

′ + ⋯ + 𝑥𝑟𝑧𝑟
′ = 0 

If 𝑧𝑖
′ ∈ 𝐹0 

{𝑥1, 𝑥2, … , 𝑥𝑟} being a subset of 𝐵 is linearly independent. 

⇒ 𝑧1
′ , 𝑧2

′ , … , 𝑧𝑟
′  may not all belong to 𝐹0. 

That is, there exist ⅈ such that 𝑧𝑖
′ ∉ 𝐹0 

Without loss of generality, we may take ⅈ = 1 

⇒ 𝑧1
′ ∈ 𝐹0 

𝜎𝑖(𝑧1
′ ) ≠ 𝑧1

′  for some 𝜎𝑖 ∈ 𝐺 

Apply 𝜎𝑖 to (5), we get, 

𝜎𝑖(𝜎𝑗(𝑥1)𝑧1
′ ) + 𝜎𝑖(𝜎𝑗(𝑥2)𝑧2

′ ) + ⋯ + 𝜎𝑖(𝜎𝑗(𝑥𝑟−1)𝑧𝑟−1
′ ) + 𝜎𝑖 (𝜎𝑗(𝑥𝑟)) = 0 … (6) 

Also, 𝜎𝑖𝐺 = 𝐺 and 𝜎𝑖𝜎𝑗 = 𝜎𝑗. 

𝜎𝑗(𝑥1)𝑧1
′ + 𝜎𝑗(𝑥2)𝑧2

′ + ⋯ + 𝜎𝑗(𝑥𝑟−1)𝑧𝑟−1
′ + 𝜎𝑗(𝑥𝑟) = 0 … (7) 

Subtracting (7) from (6) 

𝜎𝑗(𝑥1)(𝑧′
1 − 𝜎𝑖(𝑧1

′ )) + 𝜎𝑗(𝑥2)(𝑧′
2 − 𝜎𝑖(𝑧2

′ )) + ⋯ + 𝜎𝑗(𝑥𝑟−1)(𝑧′
𝑟−1 − 𝜎𝑖(𝑧𝑟−1

′ )) = 0 

 

Put 𝑡𝑘 = 𝑧𝑘
′ − 𝜎𝑖(𝑧𝑘

′ ) ∀ 1 ≤ 𝑘 ≤ 𝑟 

𝜎𝑗(𝑥1)(𝑡1) + 𝜎𝑗(𝑥2)(𝑡2) + ⋯ + 𝜎𝑗(𝑥𝑚)𝑡𝑚 = 0 

by allowing 𝑡𝑖 = 0 ∀ ⅈ ≥ 𝑟 

𝜎𝑖(𝑧1
′ ) ≠ 𝑧1

′  

⇒ 𝑡1 ≠ 0 

{𝑡1, 𝑡2, … , 𝑡𝑚} is a non-trivial solution of (3) having 𝑟 − 1 non-zero entries. 

So, we arrive at a contradiction. 

Our supposition was wrong. 

⇒ 𝑚 = 𝑛 

That is, 𝑂(𝐺) = [𝐾: 𝐹0]. 

Note: In the first part of the proof, [𝐾: 𝐹0] ≥ 𝑂(𝐺) without using that 𝑂(𝐺) is finite. 

This implies that if [𝐾: 𝐹0] = 𝑚 is finite then 𝑂(𝐺) is the number of automorphisms on 𝐾 is also 
finite. 

Note: 𝐹 ⊆ 𝐹0 

⇒ [𝐾: 𝐹] ≤ [𝐾: 𝐹0] = 𝑂(𝐺) 

6.4 Introduction to Galois Theory 

Definition 6.4.1: A finite extension 𝐾 of a field 𝐹 is called Galois extension if 𝐹 is fixed subfield of 𝐾 
under the group 𝐺(𝐾, 𝐹). 
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Theorem 6.4.2: Let 𝐾 = 𝐹(𝛼) be a simple finite separable extension of 𝐹. Then 𝐾 is the splitting field 
of the minimal polynomial of 𝛼 over 𝐹 if and only if 𝐹 is the fixed field under the group of all 
𝐹 −automorphisms of 𝐾. 

Proof: Let 𝑓(𝑥) be the minimal polynomial of 𝛼 over 𝐹. Let deg 𝑓(𝑥) = 𝑚. 

Therefore, [𝐾: 𝐹] = 𝑚 

Let 𝛼 = 𝛼1, 𝛼2,…, 𝛼𝑟 be the distinct conjugates of 𝛼. 

𝛼𝑖 is a root of 𝑓(𝑥) ∀ 1 ≤ ⅈ ≤ 𝑟 

⇒ 𝐾 = 𝐹(𝛼𝑖) 

There exist an 𝐹 −automorphism 𝜎𝑖 on 𝐾 such that 𝜎𝑖(𝛼1) = 𝛼𝑖 

Since 𝛼1 is a generator of a field extension. That is, it is uniquely determined. Therefore, 𝜎𝑖 is 
uniquely determined. 

Again, for any 𝐹 −automorphism 𝜎 of 𝐾, 𝜎(𝛼1) = 𝛼𝑖 for some ⅈ. 

Therefore, 𝜎 = 𝜎𝑖 

Hence 𝐺(𝐾, 𝐹) consists of 𝜎1, 𝜎2, … , 𝜎𝑟. 

That is, 𝑜(𝐺(𝐾, 𝐹)) = 𝑟 

⇒ [𝐾: 𝐹0] = 𝑟 

𝐹 = 𝐹0 

⇔ [𝐾: 𝐹] = [𝐾: 𝐹0] 

⇔  𝑚 = 𝑟 

Hence 𝐹 is a fixed field under 𝐺 if and only if 𝑓(𝑥) has all 𝑚 roots in 𝐾 that is, if and only if 𝐾 is 
splitting field of 𝑓(𝑥) over 𝐹. 

Let 𝑓(𝑥) = 𝑥𝑝−1 + 𝑥𝑝−2 + ⋯ + 𝑥 + 1, where 𝑝 is any prime number. Find the group of all 
automorphisms of splitting field of 𝑓(𝑥). 

Solution: 

𝑓(𝑥) 
=

𝑥𝑝 − 1

𝑥 − 1
 

𝑓(𝑥 + 1) 
=

(𝑥 + 1)𝑝 − 1

𝑥 + 1 − 1
 

=
(𝑥 + 1)𝑝 − 1

𝑥
 

=
((

𝑝
0

) + (
𝑝
1

) 𝑥 + (
𝑝
2

) 𝑥2 + ⋯ + (
𝑝

𝑝 − 1) 𝑥𝑝−1 + (
𝑝
𝑝) 𝑥𝑝) − 1

𝑥
 

= (
𝑝
1

) + (
𝑝
2

) 𝑥 + ⋯ + (
𝑝

𝑝 − 1) 𝑥𝑝−2 + 𝑥𝑝−1 

Since 𝑝 divides (
𝑝
𝑟

) ∀ 1 ≤ 𝑟 ≤ 𝑝 − 1 

𝑝 divides all the coefficients of this polynomial except the leading coefficient. 

Also, 𝑝2 does not divide (
𝑝
1

) = 𝑝 

By Eisenstein criteria, 𝑓(𝑥 + 1) is an irreducible polynomial over ℚ. 

Hence, 𝑓(𝑥) is an irreducible polynomial over ℚ. 

𝑓(𝑥) = 𝑥𝑝−1 + 𝑥𝑝−2 + ⋯ + 𝑥 + 1 

=
𝑥𝑝 − 1

𝑥 − 1
 

106



Advanced Abstract Algebra-I  

 LOVELY PROFESSIONAL UNIVERSITY  

Notes 

That is, 𝑥𝑝 − 1 = (𝑥 − 1)𝑓(𝑥) 

Therefore, roots of 𝑓(𝑥) are roots of 𝑥𝑝 − 1 except 1 but roots of 𝑥𝑝 − 1 are 𝑛 −th roots of unity. 

Except 1, all the roots of 𝑥𝑝 − 1 are given by 𝜉, 𝜉2, … , 𝜉𝑝−1 where 𝜉 = ⅇ
2𝜋ⅈ

𝑝  

Therefore, 𝐾 = ℚ(𝜉) is the splitting field of 𝑓(𝑥). 

Thus, the fixed field of group 𝐺 of all ℚ −automorphisms of 𝐾 is ℚ. 

⇒ ℚ is a fixed field under the group of all automorphisms of 𝐾. 

⇒ 𝐾 is Galois extension of ℚ. 

Let 𝑓(𝑥) = (𝑥2 + 3)(𝑥3 − 2). Find the group of all automorphisms of splitting field of 𝑓(𝑥). 

Solution:𝑓(𝑥) = (𝑥2 + 3)(𝑥3 − 2) 

Roots of 𝑓(𝑥) are ±√3ⅈ, √2
3

, √2
3

𝜔, √2
3

𝜔2;  𝜔 =
−1±√3𝑖

2
 

Note. that 𝐾 = ℚ(√3ⅈ, √2
3

) contains all the roots of 𝑓(𝑥). 

Also, if 𝐿 is splitting field of 𝑓(𝑥) then 𝐾 ⊆ 𝐿 hence, 𝐾 is splitting field of 𝑓(𝑥). 

By Eisenstein criteria, 𝑥3 − 2 is an irreducible polynomial over ℚ. 

Also, it is monic with √2
3

 as a root. 

Hence, it is minimal polynomial of √2
3

 over ℚ. 

⇒ [ℚ(√2
3

): ℚ] = 3. 

Since √3ⅈ ∉ ℚ(√2
3

) 

Therefore, [ℚ(√2
3

, √3ⅈ): ℚ(√2
3

)] ≥ 2 

Also, 𝑥2 + 3  is a polynomial of degree 2 over ℚ(√2
3

) with √3ⅈ as a root. 

⇒ [ℚ(√2
3

, √3ⅈ): ℚ(√2
3

)] ≤ 2 

⇒ [ℚ(√2
3

, √3ⅈ): ℚ(√2
3

)] = 2 

This implies 

[K: ℚ] = [ℚ(√2
3

, √3ⅈ): ℚ] = [ℚ(√2
3

, √3ⅈ): ℚ(√2
3

)][ℚ(√2
3

): ℚ] 

= 3 × 2 

= 6 

If 𝐺 is a group of all ℚ −automorphisms of 𝐾 then 

𝑂(𝐺) ≤ [𝐾: ℚ] = 6 

Claim: 𝒙𝟑 − 𝟐 is irreducible over 𝑭 = ℚ(√𝟑ⅈ) 

If possible, suppose 𝑥3 − 2 is not irreducible over 𝐹 = ℚ(√3ⅈ) 

This implies, there exist at least one root 𝛽 of 𝑥3 − 2 in 𝐹 

Then 

𝛽 ∈ 𝐹 

ℚ(𝛽) ⊆ ℚ(√3ⅈ) 

⇒ [ℚ(𝛽): ℚ] divides [ℚ(√3ⅈ): ℚ] 

⇒ 3 divides 2, which is absurd. 

Therefore, 𝑥3 − 2 is irreducible over 𝐹 = ℚ(√3ⅈ). 

𝐾 = ℚ(√3ⅈ, √2
3

) = 𝐹(√2
3

) is a simple extension of 𝐹 and 𝐾 is splitting field of 𝑥3 − 2 over 𝐹 which is 

minimal polynomial of √2
3

. 
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Thus, the group 𝐺1, of all 𝐹 −automorphisms of 𝐾 is such that 𝐹 is fixed under 𝐺1. 

Therefore, 3 = [𝐾: 𝐹] = 𝑂(𝐺1) 

But, 𝐺1 is a subgroup of 𝐺.  This implies 3 divides 𝑂(𝐺). 

Similarly, by taking 𝐹1 = ℚ(√2
3

) and 𝐾 = 𝐹1(√3ⅈ) 

We get that, 2 divides 𝑂(𝐺). 

Combining both, we see that 6 divides 𝑂(𝐺). 

⇒ 6 ≤ 𝑂(𝐺) 

Therefore, 𝑂(𝐺) = 6 = [𝐾: ℚ] 

Hence, ℚ is a fixed field under 𝐺 and 𝐾 over ℚ is Galois extension. 

Theorem 6.4.4: Let 𝐾 be a finite, separable field extension of a field 𝐹. Then 𝐾 is the normal 
extension of 𝐹 if and only if the fixed field under the Galois group 𝐺(𝐾, 𝐹) is 𝐹 itself. In case,𝐾 is 
normal extension of 𝐹, [𝐾: 𝐹] =  𝑂(𝐺(𝐾, 𝐹)). 

Proof: Since 𝐾 is a finite separable extension of 𝐹. Hence, it is a simple extension. 

Let 𝐾 = 𝐹(𝛼) for some 𝛼 ∈ 𝐾. 

Let 𝐾 be the normal extension of 𝐹. 

Therefore, every irreducible polynomial having a root in 𝐾, has all roots in 𝐾. 

If 𝐾′ is splitting field of the minimal polynomial of 𝛼 over 𝐹 then 𝐾′ ⊆ 𝐾. 

Also. 𝛼 ∈ 𝐾′ 

⇒ 𝐹(𝛼) ⊂ 𝐾′ 

⇒ 𝐾 ⊆ 𝐾′ 

Hence, 𝐾 = 𝐾′ 

⇒ 𝐹 is a fixed field under 𝐺(𝐾, 𝐹). 

Conversely, let 𝐹 be the fixed field under 𝐺(𝐾, 𝐹). 

⇒ 𝐾 is the splitting field of the minimal polynomial of 𝛼 over 𝐹. 

⇒ 𝐾 is a normal extension of 𝐹. 

⇒ [𝐾: 𝐹] = 𝑂(𝐺(𝐾, 𝐹)) 

Summary 

• Monomorphisms between two fields are defined and it is proved that the set consisting of 
the monomorphisms is linearly independent. 

• Fixed field and F- automorphisms are defined. 

• For every F-automorphism 𝜎, 𝜎(𝑎) and 𝑎 are related. 

• Results about fixed fields are analyzed with the help of examples. 

• Artin’s theorem and its consequences are studied. 

• Galois extensionis defined and elaborated with the help of examples. 

• Normal and Galois extensions are related. 

Keywords 

• Monomorphisms between the fields 

• Fixed field 

• F - automorphism 

• Artin’s theorem 

• Galois extension 
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Self Assessment 

1: The set of all automorphisms of a field  

A: Is a group 

B: Is an abelian group 

C: Is a cyclic group 

D: Is a finite group 

 

2: The set of all automorphisms on a field is a group under the composition of 

A: Addition of functions 

B: Composite functions 

C: Multiplication of functions 

D: Subtraction of functions 

 

3: Let 𝐾 be a field. Which of the following statement is correct? 

A: Every set of Monomorphisms from 𝐾 to 𝐾 is linearly independent 

B: Every set of Monomorphisms from 𝐾 to 𝐾 is linearly independent 

C: Every set of Monomorphisms from 𝐾 to 𝐾 is linearly independent 

D: All the options are correct 

 

4: Any set of automorphisms of 𝐾 is 

A: Always linearly independent over 𝐾 

B: Always linearly dependent 

C: May or may not be linearly independent 

D: Never linearly independent 

 

5: Let 𝐾 be a field extension of a field 𝐹. Let 𝜎 be any automorphism on 𝐾. Then 𝜎 is 
𝐹 −automorphism if and only if  

A: 𝜎(𝑥) = 𝑂 ∀ 𝑥 ∈ 𝐹 

B: 𝜎(𝑥) = 1 ∀ 𝑥 ∈ 𝐹 

C: 𝜎(𝑥) = 𝑥 ∀ 𝑥 ∈ 𝐹 

D: 𝜎(𝑥) = 𝑥 ∀ 𝑥 ∈ 𝐾 

 

6: Let 𝐾 = ℚ(√2). Then the fixed field under 𝐴𝑢𝑡 (𝐾);  𝑎 group of all ℚ −automorphisms on 𝐾 is 

A: ℚ(√2) 

B: ℚ 

C: ℝ − ℚ 

D: ℤ 

 

7: Consider the field extension ℝ ⊆ ℂ. Then for every ℝ − automorphism 𝜎 of ℂ, 𝜎(ⅈ) is 

A: ⅈ 

B: −ⅈ 
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C:  1 

D: ⅈ𝑜𝑟 − ⅈ 

 

8: Let ℚ(√2, √3) be a field extension of ℚ. Then any 𝐹 −automorphism 𝜎 on ℚ(√2) is determined 

by 

A: 𝜎(√2) 

B: 𝜎(√3) 

C: 𝜎(√2), 𝜎(√3) 

D: 𝜎(√6) 

 

9: Let 𝐹 ⊆ 𝐾 be a field extension. Then for 𝐹0 = {𝑥 ∈ 𝐾|𝜎(𝑥) = 𝑥 ∀ 𝜎 ∈ 𝐺} 

A: Prime subfield of 𝐾 is contained in 𝐹0. 

B: 𝐹0 is a subfield of 𝐾. 

C: 𝐹 ⊆ 𝐹0 

D: All options are correct 

 

10: Let 𝐺 be a finite group of automorphisms of a field 𝐾; 𝐹0 the fixed field under 𝐺. Then the 
degree of 𝐾 over 𝐹0 is 

A: > 𝑂(𝐺) 

B: < 𝑂(𝐺) 

C: = 𝑂(𝐺) 

D: ≤ 𝑂(𝐺) 

 

11: Let 𝐺 be the group of automorphisms of a field 𝐾; 𝐹0 the fixed field under 𝐺. Then 𝑂(𝐺) 

A: ≤ [𝐾: 𝐹] 

B: ≥ [𝐾: 𝐹] 

C: > [𝐾: 𝐹] 

D: = [𝐾: 𝐹] 

 

12: A system of 𝑚 linear homogeneous equations in 𝑛 unknowns where 𝑚 < 𝑛 has 

A: A unique solution 

B: Infinitely many solutions 

C: No solutions 

D: Two solutions 

 

13: Let 𝐺 be the group of automorphisms of a field 𝐾; 𝐹0 the fixed field under 𝐺 such that [𝐾: 𝐹0] is 
finite then [𝐾: 𝐹] 

A: Is always finite 

B: Is zero 

C: Is never finite 

D: May be finite or infinite 
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14: Let 𝐺 be a finite group of automorphisms of a field 𝐾; 𝐹0 the fixed field under 𝐺. Then the 
degree of 𝐾 over 𝐹0 is 

A: > 𝑂(𝐺) 

B: < 𝑂(𝐺) 

C: = 𝑂(𝐺) 

D: ≤ 𝑂(𝐺) 

 

15: Let 𝐺 be the group of automorphisms of a field 𝐾; 𝐹0 the fixed field under 𝐺. Then 𝑂(𝐺) 

A: ≤ [𝐾: 𝐹] 

B: ≥ [𝐾: 𝐹] 

C: > [𝐾: 𝐹] 

D: = [𝐾: 𝐹] 

 

16: A system of 𝑚 linear homogeneous equations in 𝑛 unknowns where 𝑚 < 𝑛 has 

A: A unique solution 

B: Infinitely many solutions 

C: No solutions 

D: Two solutions 

 

17: Let 𝐺 be the group of automorphisms of a field 𝐾; 𝐹0 the fixed field under 𝐺 such that [𝐾: 𝐹0] is 
finite then [𝐾: 𝐹] 

A: Is always finite 

B: Is zero 

C: Is never finite 

D: May be finite or infinite 

Answers for Self Assessment 

1. A 2. B 3. D 4. A 5. C 

6. B 7. D 8. C 9. D 10. C 

11. B 12. B 13. D 14. C 15. B 

16. B 17. A       

Review Questions 

1) Let 𝐾 = ℚ(√2
3

). Prove that 𝐴𝑢𝑡 (𝐾) = {𝐼}. 

2) Let 𝐾 = 𝐹(𝑎)be a simple algebraic extension of degree 𝑛 of a field 𝐹 of characteristic zero. 

Show that number of conjugates of 𝑎 in 𝐾 divides [𝐾: 𝐹]. 

3) Show that identity automorphism is the only automorphism of a field having 𝑝 elements, 

where 𝑝 is a prime number. 

4) Let 𝐾 = ℚ(ⅈ). Find the set of all the automorphisms on 𝐾. 

5) Prove that the set of automorphisms on a field 𝐾 is always linearly independent. 
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Further Readings  

 

Basic abstract algebra by P. B. Bhattacharya, S. K. Jain, S. R. Nagpal,Cambridge 

universitypress 

Topics in algebra by I.N. Hartstein, Wiley 

Abstract algebra by David S Dummit and Richard M Foote, Wiley 

 
https://onlinecourses.nptel.ac.in/noc20_ma29/preview 

https://nptel.ac.in/courses/111/105/111105112/# 
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Unit 7: Fundamental Theorem of Galois Theory 

CONTENTS 

Objective 

Introduction 

7.1 Fundamental Theorem of Galois Theory 

7.2 Applications of Fundamental Theorem of Galois Theory 

Summary 

Keywords 

Self Assessment 

Answers for Self Assessment 

Review Questions 

Further Readings 

Objective 

After studying this unit, you will be able to 

• state and prove the Fundamental Theorem of Galois theory 

• understand important results based on the theorem 

• understand Fundamental theorem of Galois theory with the help of examples 

• observe the 1-1 correspondence between the family of subfields of 𝐾 containing 𝐹 and the 
family of all subgroups of 𝐺(𝐾,  𝐹) 

Introduction 

In this unit, we will study the important result given by the Fundamental Theorem of Galois 
theory. Further, we will study its applications. 

7.1 Fundamental Theorem of Galois Theory 

Theorem 7.1.1: (Fundamental Theorem of Galois Theory): Let 𝐾 be a finite, normal, separable field 
extension of a field 𝐹 and let 𝐺(𝐾,  𝐹) be the Galois group of 𝐾 over 𝐹. Then the correspondence 
𝐸 ⇔  𝐺(𝐾,  𝐸) where 𝐸 is a subfield of 𝐾 containing 𝐹 is 1-1 between the family of subfields of 𝐾 
containing 𝐹 and the family of all subgroups of 𝐺(𝐾,  𝐹), satisfying the following conditions 

Given any subfield 𝐸 of 𝐾 containing 𝐹 and subgroup 𝐻 of 𝐺(𝐾,  𝐹) 

1. 𝐸 = 𝐾𝐺(𝐾, 𝐸) 

2. 𝐻 = 𝐺(𝐾,  𝐾𝐻) 

3. [𝐾: 𝐸] = 𝑂(𝐺(𝐾,  𝐸)] and [𝐸: 𝐹] is the index of 𝐺(𝐾,  𝐸) in 𝐺(𝐾,  𝐹) 

4. 𝐸 is a normal extension of F if and only if 𝐺(𝐾,  𝐸) is a normal subgroup of 𝐺(𝐾,  𝐹) 

5. When 𝐸 is a normal extension of 𝐹,  then 𝐺(𝐸,  𝐹) is isomorphic to 
𝐺(𝐾, 𝐹)

𝐺(𝐾, 𝐸)
. 

Proof: Since 𝐾 is a finite, normal, separable extension of 𝐹 and 𝐹 ⊆ 𝐸 ⊆ 𝐾 

Again, 𝐾 is a finite, normal, separable extension of 𝐸 

⇒ 𝐸 = 𝐾𝐺(𝐾,𝐸) 

𝐾𝐻 = {𝑥 ∈ 𝐾|𝜎(𝑥) = 𝑥 ∀ 𝜎 ∈ 𝐻} 

Each 𝜎 ∈ 𝐻 is a 𝐾𝐻 automorphism of 𝐾. 

⇒ 𝐻 ⊆ 𝐺(𝐾, 𝐾𝐻) 
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Also,  

𝑂(𝐻) = [𝐾: 𝐾𝐻] 

So, 𝐾 is a normal extension of 𝐾𝐻. 

𝐾𝐻 is a fixed field under 𝐺(𝐾, 𝐾𝐻) 

[𝐾: 𝐾𝐻] = 𝑂(𝐺(𝐾, 𝐾𝐻)) 

⇒ 𝑂(𝐻) = 𝑂(𝐺(𝐾, 𝐾𝐻)) 

⇒ 𝐻 = 𝐺(𝐾, 𝐾𝐻) 

Now, 𝐾 is a normal separable extension of 𝐸 

[𝐾: 𝐸] = 𝑂(𝐺(𝐾, 𝐸)) 

and  

[𝐾: 𝐹] = [𝐾: 𝐸][𝐸: 𝐹] 

This implies, 

𝑂(𝐺(𝐾, 𝐹)) = [𝐾: 𝐸][𝐸: 𝐹] 

That is,  

𝑂(𝐺(𝐾, 𝐹)) = 𝑂(𝐺(𝐾, 𝐸))[𝐸: 𝐹] 

⇒ [𝐸: 𝐹] =
𝑂(𝐺(𝐾, 𝐹))

𝑂(𝐺(𝐾, 𝐸))
 

Which is the index of 𝐺(𝐾, 𝐹) in 𝐺(𝐾, 𝐸). 

Let 𝐸 be the normal extension of 𝐹. 

Consider 𝑎 ∈ 𝐸, then the splitting field of the minimal polynomial of 𝑎 over 𝐹 is contained in 𝐸. 

Since for any 𝜎 ∈ 𝐺(𝐾, 𝐹) 

𝜎(𝑎) is a conjugate of 𝑎 

Therefore, 𝜎(𝑎) ∈ 𝐸 

Thus, for any 𝜂 ∈ 𝐺(𝐾, 𝐸) 

𝜂(𝜎(𝑎)) = 𝜎(𝑎) 

⇒ 𝜎−1𝜂𝜎(𝑎) = 𝑎 

⇒ 𝜎−1𝜂𝜎 ∈ 𝐺(𝐾, 𝐸) 

So, 𝐺(𝐾, 𝐸)is a normal subgroup of 𝐺(𝐾, 𝐹). 

Conversely, let 𝐺(𝐾, 𝐸)is a normal subgroup of 𝐺(𝐾, 𝐹) 

Let 𝑎 ∈ 𝐸. As 𝐾 is a normal extension of 𝐹, 𝐾 contains a splitting field say 𝐿 of the minimal 
polynomial 𝑝(𝑥) of 𝑎 over 𝐹. 

Consider any root 𝑏 of 𝑝(𝑥) in 𝐿. Then 𝑏 is a conjugate of 𝑎 over 𝐹. Therefore, there exists an 
𝐹 −automorphism 𝜎 of 𝐾 such that 𝜎(𝑎) = 𝑏. 

For any 𝜂 ∈ 𝐺(𝐾, 𝐸) 

𝜎−1𝜂𝜎 ∈ 𝐺(𝐾, 𝐸) 

⇒ 𝜎−1𝜂𝜎(𝑎) = 𝑎 

⇒ 𝜂𝜎(𝑎) = 𝜎(𝑎) ∀ 𝜂 ∈ 𝐺(𝐾, 𝐸) 

However, 𝐸 is fixed field under 𝐺(𝐾, 𝐸) 

⇒ 𝑏 = 𝜎(𝑎) ∈ 𝐸 

⇒ 𝐿 ⊆ 𝐸 

⇒ 𝐸 is a normal extension of 𝐹. 

Let 𝐸 is a normal extension of 𝐹 

114



Unit 07: Fundamental Theorem of Galois Theory  

 LOVELY PROFESSIONAL UNIVERSITY  

Notes 

⇒ 𝐸 = 𝐹(𝑎); 𝑎 ∈ 𝐸 

For any 𝜎 ∈ 𝐺(𝐾, 𝐹) 

Let 𝜎𝐸 denote the restriction of 𝜎 to 𝐸 

Since 𝜎(𝑎) ∈ 𝐸 

⇒ 𝜎(𝐸) ⊆ 𝐸. 

As [𝜎(𝐸): 𝐹] = [𝐸: 𝐹] 

⇒ 𝜎(𝐸) = 𝐸 

Hence, 𝜎𝐸 is an 𝐹 −automorphism of 𝐹 and so 

𝜎𝐸 ∈ 𝐺(𝐸, 𝐹) 

Define a map  

𝜆: 𝐺(𝐾, 𝐹) → 𝐺(𝐸, 𝐹) as 

𝜆(𝜎) = 𝜎𝐸  ∀ 𝜎 ∈ 𝐺(𝐾, 𝐹) 

For 𝜎, 𝜂 ∈ 𝐺(𝐾, 𝐹) 

𝜆(𝜎𝜂) = (𝜎𝜂)𝐸 

= 𝜎𝐸𝜂𝐸 

= 𝜆(𝜎)𝜆(𝜂) 

Therefore, 𝜆 is a homomorphism. 

Given any 𝛾 ∈ 𝐺(𝐸, 𝐹) 

Now 𝛾(𝑎) is a conjugate of 𝑎 over 𝐹. 

Therefore, there exists an 𝐹 − automorphism 𝜎 of 𝐾 such that 𝜎(𝑎) = 𝛾(𝑎). 

Also, 𝛾 and 𝜎 are both 𝐹 − automorphisms. 

𝜎(𝑥) = 𝑟(𝑥) ∀ 𝑥 ∈ 𝐹(𝑎) = 𝐸. 

⇒ 𝛾 = 𝜎𝐸 = 𝜆(𝜎) 

Thus, 𝜆 is onto homomorphism. 

By the Fundamental theorem of Homomorphism, 

𝐺(𝐸, 𝐹) ≅ 𝐺(𝐾, 𝐹) ker 𝜆⁄ … (1) 

Consider 𝜎 ∈ ker 𝜆 

⇔ 𝜎𝐸 is identity map on 𝐸. 

⇔ 𝜎(𝑥) = 𝑥 ∀ 𝑥 ∈ 𝐸 

⇔ 𝜎 ∈ 𝐺(𝐾, 𝐸) 

So, ker 𝜆 = 𝐺(𝐾, 𝐸) 

From (1), 

𝐺(𝐸, 𝐹) ≅ 𝐺(𝐾, 𝐹) ∕ 𝐺(𝐾, 𝐸) 

 

:(1) Number of subfields of 𝐾 containing 𝐹 is finite and, is equal to the number of 
subgroups of 𝐺(𝐾, 𝐹). 

(2) Since every subgroup of an abelian group is abelian, therefore, 𝐺(𝐾, 𝐹) is abelian. So, 
every subfield 𝐸 of 𝐾 containing 𝐹 is a normal extension of 𝐹. 

Consider 𝑓(𝑥) = 𝑥𝑝−1 + 𝑥𝑝−2 + ⋯ + 𝑥 + 1 has roots 𝜉, 𝜉2, … , 𝜉𝑝−1 where 𝜉 = ⅇ
2𝜋ⅈ

𝑝  

Let 𝜉 = 𝑎 = ⅇ
2𝜋ⅈ

𝑝  

Then for 𝜎, 𝜂 ∈ 𝐺(𝐾, 𝐹); 𝐹 = ℚ, 𝐾 = 𝐹(𝑎) 
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𝜎(𝑎) = 𝑎𝑖 , 𝜂(𝑎) = 𝑎𝑗 for some 𝑖, 𝑗 

𝜂(𝜎(𝑎)) = 𝜂(𝑎𝑖) = 𝑎𝑖𝑗 

𝜎(𝜂(𝑎)) = 𝜎(𝑎𝑗) = 𝑎𝑖𝑗 

Therefore, 𝜂𝜎 = 𝜎𝜂 

This implies, 𝐺(𝐾, 𝐹) is an abelian group. 

 

7.2 Applications of Fundamental Theorem of Galois Theory 

 

Galois group 𝐺(𝐾,  𝐹) of 𝑓(𝑥) = 𝑥4 − 5𝑥2 + 6 ∈ ℚ[𝑥] is isomorphic to Klein’s 4 
group. Illustration of 1-1 correspondence between the family of subfields of 𝐾 
containing 𝐹 and the family of all subgroups of 𝐺(𝐾,  𝐹) where 𝐾 is splitting 
field of 𝑓(𝑥) over ℚ and 𝐹 = ℚ. 

Solution:  

𝑓(𝑥) = 𝑥4 − 5𝑥2 + 6 

= 𝑥4 − 3𝑥2 − 2𝑥2 + 6 

= 𝑥2(𝑥2 − 3) − 2(𝑥2 − 3) 

= (𝑥2 − 2)(𝑥2 − 3) 

So, 𝑓(𝑥) has 4 roots given by ±√2, ±√3 

Consider 𝐾 = ℚ(√2, √3) 

𝐾 is consisting of all the roots of 𝑓(𝑥). 𝐾 is the splitting field of 𝑓(𝑥). 

Claim: {𝟏, √𝟐, √𝟑, √𝟔} is a basis of 𝑲 over ℚ and [𝑲: ℚ] = 𝟒 

𝐾 is splitting field of a non-zero polynomial 

⇒ 𝐾 is a normal extension of ℚ. Also, 𝐾 is a separable extension of 𝐹. 

Consider 𝐾 = ℚ(√2, √3) 

We know that 𝑥2 − 2 is the minimal polynomial of √2 over ℚ. 

Hence, [ℚ(√2): ℚ] = 2 

Again if √3 ∈ ℚ(√2) 

⇒ √3 = 𝑎 + 𝑏√2;  𝑎, 𝑏 ∈ ℚ 

Squaring both sides, we get, 

3 = 𝑎2 + 2𝑏2 + 2√2𝑎𝑏 

⇒ (𝑎2 + 2𝑏2 − 3) ⋅ 1 + 2𝑎𝑏(√2) = 0 

Since the set {1, √2} is linearly independent. 

⇒ 2𝑎𝑏 = 0 

⇒ 𝑎 or 𝑏 is 0 

If 𝑎 = 0, √3 = 𝑏√2; 𝑏 ∈ ℚ 

⇒ 3 = 2𝑏2 

⇒ 3 is a multiple of 2, which is absurd. 

If 𝑏 = 0, √3 = 𝑎; 𝑎 ∈ ℚ 

which is not possible. 

So, our supposition was wrong. 

√3 ∉ ℚ(√2) 
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[ℚ(√2, √3): ℚ(√2)] ≥ 2 

Again, 𝑥2 − 3 is a polynomial over ℚ(√2) having a root √3. 

[ℚ(√2, √3): ℚ(√2)] ≤ 2 

This implies, [ℚ(√2, √3): ℚ(√2)] = 2 

[𝐾: ℚ] = [𝐾: ℚ(√2)][ℚ(√2): ℚ] 

= 2 × 2 

= 4 

So, {1, √2, √3, √6} is a basis of 𝐾 over 𝐹. 

𝐺(𝐾, 𝐹) ≅ 𝐾4 or it is a cyclic group. 

𝐾 = ℚ(√2, √3) has two proper normal subgroups namely ℚ(√2), ℚ(√3). 

𝐺(𝐾, 𝐹) has two proper normal subgroups. 

[𝐾: ℚ(√2)] = 2, [𝐾: ℚ(√3)] = 2 

If 𝐺(𝐾, 𝐹) is a cyclic group of order 4 then 𝐺(𝐾, 𝐹) cannot have a proper subgroup of order 2. 

Hence, 𝐺(𝐾, 𝐹) ≅ 𝐾4 

Consider 𝑥2 − 2 is an irreducible monic polynomial over ℚ and hence over ℚ(√3). 

Therefore, there exist, 𝜎1, 𝜎2 ∈ 𝐺 (𝐾, ℚ(√3)) such that 𝜎1(√2) = √2, 𝜎2(√2) = −√2 

Similarly, there exist 𝜎3, 𝜎4 such that 𝜎3(√3) = √3, 𝜎4(√3) = −√3 

We have four automorphisms 𝜂1, 𝜂2, 𝑛3, 𝜂4 in 𝐺(𝐾, ℚ) such that 

𝜂1(√2) = √2 𝜂1(√3) = √3 

𝜂2(√2) = −√2 𝜂2(√3) = √3 

𝜂3(√2) = √2 𝜂3(√3) = −√3 

𝜂4(√2) = −√2 𝜂4(√3) = −√3 

Also, {1, √2, √3, √6} is a basis of 𝐾 over ℚ. 

For all 𝑎 ∈ 𝐾, ∃ 𝛼0, 𝛼13𝛼2, 𝛼3 ∈ ℚ such that  

𝑎 = 𝛼1 ⋅ 1 + 𝛼2√2 + 𝛼3√3 + 𝛼4√6 

𝜂𝑖(𝑎) = 𝛼1 + 𝛼2𝜂𝑖(√2) + 𝛼3𝑛𝑖(√3) + 𝛼4𝑛𝑖(√6) 

𝜂2
2(√2) = 𝜂2 (𝜂2(√2)) = 𝜂2(−√2) = −𝜂2(√2) = −(−√2) = √2 

𝜂2
2(√3) = 𝜂2 (𝜂2(√3)) = √3 

So, 𝜂2
2 = 𝐼, 𝜂3

2 = 𝐼, 𝑛1 = 𝐼, 𝜂4
2 = 𝐼 

Therefore, 𝐺(𝐾, 𝐹) has 3 subgroups {𝐼, 𝜂2}, {𝐼, 𝜂3}, {𝐼, 𝜂4}. 

Let 𝐻1 = {𝐼, 𝜂2}, 𝐻2 = {𝐼, 𝜂3}, 𝐻3 = {𝐼, 𝜂4} 

Let 𝐾𝐻1
 is fixed field of 𝐻1. 

𝐾𝐻1
= {𝑥 ∈ 𝐾|𝜎(𝑥) = 𝑥 ∀ 𝜎 ∈ 𝐻1} 

Let 𝑥 ∈ ℚ(√2), 𝑥 = 𝛼 + 𝛽√2 

𝐼(𝑥) = 𝑥 

𝜂2(𝛼 + 𝛽√2) = 𝛼 + 𝛽𝜂2(√2) 
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⇒ 𝛼 + 𝛽√2 = 𝛼 − 𝛽√2 

⇒ 𝛽 = 0 

Let 𝑥 ∈ ℚ(√3) 

⇒ 𝑥 = 𝛼 + 𝛽√3 

𝜂1(𝑥) = 𝑥 

𝜂2(𝑥) = 𝜂2(𝛼 + 𝛽√3) = 𝛼 + 𝛽√3 = 𝑥 

Thus, ℚ(√3) ⊆ 𝐾𝐻1
 

Also, for 𝑥 ∈ 𝐾𝐻1
 

⇒ 𝑥 ∈ 𝐾, 𝜎(𝑥) = 𝑥 ∀ 𝜎 ∈ 𝐻1 

𝜂2(𝑥) = 𝑥 

⇒ 𝜂2(𝛼 + 𝛽√2 + 𝛾√3 + 𝛿√6) = 𝛼 + 𝛽√2 + 𝛾√3 + 𝛿√6 

⇒ 𝛼 − 𝛽√2 + 𝛾√3 − 𝛿√6 = 𝛼 + 𝛽√2 + 𝛾√3 + 𝛿√6 

⇒ 𝛽 = 𝛿 = 0 

Therefore, 2 = 𝛼 + 𝛾√3 ∈ ℚ(√3) 

𝐾𝐻1
= ℚ(√3) 

𝐾𝐻2
= ℚ(√2) 

and  

𝑘𝐻3
= ℚ(√6) 

 

Find the Galois group 𝐺(𝐾,  𝐹) of 𝑓(𝑥) = 𝑥4 − 2 ∈ ℚ[𝑥]. Illustrate of 1-1 
correspondence between the family of subfields of 𝐾 containing 𝐹 and the 
family of all subgroups of 𝐺(𝐾,  𝐹) where 𝐾 is splitting field of 𝑓(𝑥) over ℚ and 
𝐹 = ℚ. 

Solution:𝑓(𝑥) = 𝑥4 − 2 

Roots of 𝑓(𝑥) are given by √2
4

, −√2
4

, √2
4

𝑖, −√2
4

𝑖 

Let √2
4

= 𝛼 

So, roots are 𝛼, −𝛼, 𝛼𝑖, −𝛼𝑖 

The splitting field 𝐾 of 𝑓(𝑥) = ℚ(𝛼, 𝑖) 

𝛼 = √2
4

 has minimal polynomial 𝑥4 − 2 over ℚ. 

Then [ℚ(𝛼): ℚ] = 4. 

Then {1, 𝛼, 𝛼2, 𝛼3} is a basis of ℚ(𝛼) over ℚ. 

If 𝑖 ∈ ℚ(𝛼) 

⇒ 𝑖 = 𝑎 + 𝑏𝛼 + 𝑐𝛼2 + ⅆ𝛼3, 𝑎, 𝑏, 𝑐, ⅆ ∈ ℚ 

which is not possible. 

Therefore, 𝑖 ∉ ℚ(𝛼) 

[ℚ(𝛼, 𝑖): ℚ(𝛼)] ≥ 2 

But 𝑥2 + 1 is the polynomial over ℚ(𝛼) having root 𝑖. 

⇒ [ℚ(𝛼, 𝑖): ℚ(𝛼)] ≤ 2 

Hence 

⇒ [ℚ(𝛼, 𝑖): ℚ(𝛼)] = 2 

Therefore,  

[𝐾: ℚ] = [𝐾: ℚ(𝛼)][ℚ(𝛼): ℚ] = 4 × 2 = 8 
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So, {1, 𝛼, 𝛼2 , 𝛼3 , 𝑖𝛼, 𝑖𝛼2, 𝑖𝛼3, 𝑖} is a basis of 𝐾 over ℚ. 

For all 𝑎 ∈ 𝐾 

𝑎 = 𝛼1 ⋅ 1 + 𝛼2 ⋅ 𝛼 + 𝛼3 ⋅ 𝛼2 + 𝛼4 ⋅ 𝛼3 + 𝛼5(𝑖) + 𝛼6(𝑖𝛼) + 𝛼7(𝑖𝛼2) + 𝛼8(𝑖𝛼3), 𝛼𝑖 ∈ ℚ 

Now for any 𝜎 ∈ 𝐺(𝐾, ℚ) 

𝜎(𝑎) = 𝛼1 + 𝛼2𝜎(𝛼) + 𝛼3(𝜎(𝛼))
2

+ 𝛼4(𝜎(𝛼))
3

+ 𝛼5(𝜎(𝑖)) + 𝛼6𝜎(𝑖)𝜎(𝛼) + 𝛼7 (𝜎(𝑖)(𝜎(𝛼))
2

)

+ 𝛼8𝜎(𝑖)(𝜎(𝛼))
3
 

𝜎 depends only on 𝜎(𝑖) and 𝜎(𝛼) 

𝜎(𝑖) is a conjugate to 𝑖, 𝜎(𝑖) = ±𝑖 

Similarly, 𝜎(𝛼) = 𝛼, −𝛼, 𝛼𝑖, −𝛼𝑖 

So, we get 

𝜎1(𝛼) = 𝛼 

𝜎2(𝛼) = 𝑖𝛼 

𝜎3(𝛼) = −𝛼 

𝜎4(𝛼) = −𝑖𝛼 

𝜎5(𝛼) = 𝛼 

𝜎6(𝛼) = 𝑖𝛼 

𝜎7(𝛼) = −𝛼 

𝜎8(𝛼) = −𝑖𝛼 

𝜎1(𝑖) = 𝑖 

𝜎2(𝑖) = 𝑖 

𝜎3(𝑖) = 𝑖 

𝜎4(𝑖) = 𝑖 

𝜎5(𝑖) = −𝑖 

𝜎6(𝑖) = −𝑖 

𝜎7(𝑖) = −𝑖 

𝜎8(𝛼) = −𝑖 

 

Then 

𝜎2
2(𝛼) = −𝛼 = 𝜎3(𝛼) 𝜎2

2(𝑖) = 𝜎3(𝑖) 

This implies, 𝜎2
2 = 𝜎3 

Similarly, 𝜎3
2 = 𝜎4 

𝜎2
4 = 𝐼 

𝜎6 = 𝜎2𝜎5 

𝜎8 = 𝜎2
3𝜎5 

𝜎5
2 = 𝐼 

𝜎7 = 𝜎2
2𝜎5 

 

If 𝜎2 = 𝜎 and 𝜎5 = 𝜂 

Then  

𝜎3 = 𝜎2 𝜎4 = 𝜎3 

𝜎6 = 𝜎𝜂 𝜎7 = 𝜎2𝜂 

𝜎8 = 𝜎3𝜂 𝜂𝜎 = 𝜎3𝜂 

So, 𝐺 has 4 proper normal subgroups given by 

𝑁1 

𝑁2 

𝑁3 

𝑁4 

= {𝐼, 𝜎𝜂, 𝜎2, 𝜎3𝜂} 

= {𝐼, 𝜎, 𝜎2, 𝜎3} 

= {𝐼, 𝜂, 𝜎2, 𝜎2𝜂} 

= {𝐼, 𝜎2} 

and 4 non-normal subgroups 
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𝐻1 

𝐻2 

𝐻3 

𝐻4 

= {𝐼, 𝜎3𝜂} 

= {𝐼, 𝜎2𝜂} 

= {𝐼, 𝜎𝜂} 

= {𝐼, 𝜂} 

𝜎(𝑎) = 𝛼1 + 𝛼2𝜎(𝛼) + 𝛼3(𝜎(𝛼))
2

+ 𝛼4(𝜎(𝛼))
3

+ 𝛼5𝜎(𝑖) + 𝛼6𝜎(𝑖)𝜎(𝛼) + 𝛼7𝜎(𝑖)(𝜎(𝛼))
2

+ 𝛼8𝜎(𝑖)(𝜎(𝛼))
3
 

Then  

𝑥 ∈ 𝐾𝑁4
 

⇔ 𝜎2(𝑥) = 𝑥 

⇔ 𝛼2 = 𝛼𝑢 = 𝛼6 = 𝛼8 = 0 

⇔ 𝑥 = 𝛼1 + 𝛼3𝛼2 + 𝛼5𝑖 + 𝛼7𝑖𝛼2 

⇔ 𝐾𝑁4
= ℚ(√2, 𝑖) 

Similarly,  

𝐾𝑁3
 

𝐾𝑁1
 

𝐾𝑁2
 

𝐾𝐻1
 

𝐾𝐻2
 

𝐾𝐻3
 

𝐾𝐻4
 

= ℚ(√2) 

= ℚ(√2𝑖) 

= ℚ(𝑖) 

= ℚ((1 − 𝑖)𝛼) 

= ℚ((1 + 𝑖)𝛼) 

= ℚ(𝛼) 

= ℚ(𝛼);  𝛼 = √2
4

 

Summary 

• The Fundamental Theorem of Galois theory is proved. 

• Important results based on the theorem are discussed. 

• The Fundamental Theorem of Galois theory is explained with the help of examples. 

• 1-1 correspondence between the family of subfields of 𝐾 containing 𝐹 and the family of all 
subgroups of 𝐺(𝐾,  𝐹) is established. 

Keywords 

• Galois theory  

• Fundamental Theorem of Galois Theory 

• Applications of Fundamental theorem of Galois theory  

Self Assessment 

1: Let 𝐾 be a finite, normal, separable field extension of a field 𝐹 and let 𝐺(𝐾,  𝐹) be the Galois group 
of 𝐾 over 𝐹. Let 𝑛 be the number of subfields of 𝐾 containing 𝐹 and 𝑚 be the number of subgroups 
of 𝐺(𝐾, 𝐹). Then 

A. A: 𝑚 = 𝑛 

B. B: 𝑚 < 𝑛 

C. C: 𝑚 > 𝑛 

D. D: 𝑚 ≥ 𝑛 
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2: Let 𝐾 be a finite, normal, separable field extension of a field 𝐹 and let 𝐺(𝐾,  𝐹) be the Galois group 
of 𝐾 over 𝐹. Let 𝐸 be a subfield of 𝐾 containing 𝐹 and 𝐻 is a subgroup of 𝐺(𝐾, 𝐹) then 

A: 𝐸 = 𝐾𝐺(𝐾,𝐹) 

B: 𝐸 = 𝐺(𝐾, 𝐸) 

C: 𝐸 = 𝐺(𝐾, 𝐹) 

D: 𝐸 = 𝐾𝐺(𝐾,𝐸) 

 

3: Let 𝐾 be a finite, normal, separable field extension of a field 𝐹 and let 𝐺(𝐾,  𝐹) be the Galois group 
of 𝐾 over 𝐹. Let 𝐸 be a subfield of 𝐾 containing 𝐹 and 𝐻 is a subgroup of 𝐺(𝐾, 𝐹) then 

A: 𝐻 = 𝐺(𝐾, 𝐻) 

B: 𝐻 = 𝐺(𝐾, 𝐾𝐻) 

C: 𝐻 = 𝐺(𝐾, 𝐸) 

D: 𝐻 = 𝐺(𝐾, 𝐹) 

 

4: Let 𝐾 be a finite, normal, separable field extension of a field 𝐹 and let 𝐺(𝐾,  𝐹) be the Galois group 
of 𝐾 over 𝐹. Let 𝐸 be a subfield of 𝐾 containing 𝐹 and 𝐻 is a subgroup of 𝐺(𝐾, 𝐹) then E is a normal 
extension of 𝐹 

A: If and only if 𝐺(𝐾, 𝐸) is a normal subgroup of 𝐺(𝐾, 𝐹) 

B: If and only if 𝐺(𝐾, 𝐸) is an abelian subgroup of 𝐺(𝐾, 𝐹) 

C: If and only if 𝐺(𝐾, 𝐸) is a cyclic subgroup of 𝐺(𝐾, 𝐹) 

D: If and only if 𝐺(𝐾, 𝐸) is a subgroup of 𝐺(𝐾, 𝐹) 

 

5: Let 𝐾 be a finite, normal, separable field extension of a field 𝐹 and let 𝐺(𝐾,  𝐹) be the Galois group 
of 𝐾 over 𝐹. Let 𝐸 is a normal extension of 𝐹, then  

A: 𝐺(𝐸, 𝐹) =
𝐺(𝐾,𝐹)

𝐺(𝐾,𝐸)
 

B: 𝐺(𝐸, 𝐹) is a subgroup of 
𝐺(𝐾,𝐹)

𝐺(𝐾,𝐸)
 

C: 𝐺(𝐸, 𝐹) contains 
𝐺(𝐾,𝐹)

𝐺(𝐾,𝐸)
 

D: 𝐺(𝐸, 𝐹) ≅
𝐺(𝐾,𝐹)

𝐺(𝐾,𝐸)
 

 

6: True/ False Every subfield 𝐸 of 𝐾 containing 𝐹 is a normal extension of 𝐹. 

A: True 

B: False 

 

7: Every subgroup of an abelian group is 

A: Abelian and normal 

B: Abelian but not normal 

C: Normal but not abelian 

D: Neither normal nor abelian 

 

8: Let 𝑓(𝑥) = 𝑥2 + 𝑥 + 1 ∈ ℚ[𝑥] and 𝐾 = ℚ(𝜔) where 𝜔 =
1+√3𝑖

2
. Then for 𝜎, 𝜂 ∈ 𝐺(𝐾, ℚ) 

A: 𝜎 and 𝜂 never commute 
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B: 𝜎 and 𝜂 may or may not commute 

C: 𝜎 and 𝜂 are identical 

D: 𝜎 and 𝜂 always commute 

 

9: Galois group 𝐺(𝐾, 𝐹) of 𝑓(𝑥) = 𝑥4 − 7𝑥2 + 8 ∈ ℚ[𝑥] is 

A: Infinite 

B: Finite 

C: Non-abelian 

D: Cyclic 

 

10: Let 𝑓(𝑥) = (𝑥2 − 2)(𝑥2 − 3) ∈ ℚ[𝑥]. Then Galois group of 𝑓(𝑥) contains  

A: 1 element 

B: 2 elements 

C: 4 elements 

D: 6 elements 

 

11: Let 𝐹 = ℚ. Then for any 𝜎 ∈ 𝐺(𝐾, 𝐹) where 𝐺(𝐾, 𝐹) is Galois group of polynomials 𝑥2 − 2 ∈

ℚ[𝑥], 𝜎(√2) = 

A: √2 

B: −√2 

C: 2, √2 

D: √2, −√2 

 

12: Let 𝐹 = ℚ. Then for any 𝜎 ∈ 𝐺(𝐾, 𝐹) where 𝐺(𝐾, 𝐹) is Galois group of polynomials 𝑥2 + 4 ∈
ℚ[𝑥], 𝜎(2𝑖) = 

A: 2, −2 

B: 2𝑖, −2𝑖 

C: 2, −2, 2𝑖, −2𝑖 

D: −2𝑖 

 

13: Let 𝐹 = ℚ. Then for any 𝜎 ∈ 𝐺(𝐾, 𝐹) where 𝐺(𝐾, 𝐹) is Galois group of polynomials 𝑥3 − 1 ∈
ℚ[𝑥], 𝜎(𝜔) = 

A: 1, 𝜔, 𝜔2 

B: 1, 𝜔 

C: 1, 𝜔2 

D: 𝜔, 𝜔2 

 

14: Let  𝐹 = ℚ. Then for any 𝐺(𝐾, 𝐹) where 𝐺(𝐾, 𝐹) is Galois group of polynomials 𝑥2 + 1 ∈ ℚ[𝑥] 
consists of two elements {𝐼, 𝜎},  then for any 𝑎 + 𝑏𝑖 ∈ 𝐾; 𝜎(𝑎 + 𝑏𝑖) =……… 

A: 𝑎 − 𝑏ⅈ 

B: 𝑎 + 𝑏𝑖 

C: −𝑎 + 𝑏𝑖 
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D: −𝑎 − 𝑏𝑖 

 

15: Let 𝑓(𝑥) = 𝑥4 − 5𝑥2 + 6 ∈ ℚ[𝑥]. Then the number of proper subgroups of 𝐺(𝐾, 𝐹) is 

A: 1 

B: 2 

C: 3 

D: 4 

 

Answers for Self Assessment 

1. A 2. D 3. B 4. A 5. D 

6. A 7. A 8. D 9. B 10. C 

11. D 12. B 13. D 14. A 15. C 

Review Questions 

1) Find the Galois group 𝐺(𝐾,  𝐹) of 𝑓(𝑥) = 𝑥2 − 2 ∈ ℚ[𝑥]. Illustrate of 1-1 correspondence 

between the family of subfields of 𝐾 containing 𝐹 and the family of all subgroups of 

𝐺(𝐾,  𝐹) where 𝐾 is splitting field of 𝑓(𝑥) over ℚ and 𝐹 = ℚ. 

2) Find the Galois group 𝐺(𝐾,  𝐹) of 𝑓(𝑥) = 𝑥4 − 2𝑥2 + 1 ∈ ℚ[𝑥]. Illustrate of 1-1 

correspondence between the family of subfields of 𝐾 containing 𝐹 and the family of all 

subgroups of 𝐺(𝐾,  𝐹) where 𝐾 is splitting field of 𝑓(𝑥) over ℚ and 𝐹 = ℚ. 

3) Find the Galois group 𝐺(𝐾,  𝐹) of 𝑓(𝑥) = 𝑥3 − 2 ∈ ℚ[𝑥]. Illustrate of 1-1 correspondence 

between the family of subfields of 𝐾 containing 𝐹 and the family of all subgroups of 

𝐺(𝐾,  𝐹) where 𝐾 is splitting field of 𝑓(𝑥) over ℚ and 𝐹 = ℚ. 

Further Readings 

 

Basic abstract algebra by P. B. Bhattacharya, S. K. Jain, S. R. Nagpal,Cambridge 

universitypress 

Topics in algebra by I.N. Hartstein, Wiley 

Abstract algebra by David S Dummit and Richard M Foote, Wiley 

 
https://onlinecourses.nptel.ac.in/noc20_ma29/preview 

https://nptel.ac.in/courses/111/105/111105112/# 
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Unit 08: Galois Group of Polynomials 

CONTENTS 

Objective 

Introduction 

8.1 Galois Group of Polynomials 

Summary 

Keywords 

Self-assessment 

Answers for Self Assessment 

Review Questions 

Further Readings 

Objective 

After studying this unit, you will be able to 

• define Galois group of polynomials 

• find Galois group of polynomials 

• find the degree of extension of Galois group of polynomials 

Introduction 

In this unit, we will define the Galois group of polynomials, how to find the Galois group of 
polynomials, degree of extension of the Galois group of polynomials. We will understand the 
concept with the help of various examples. 

8.1 Galois Group of Polynomials 

Definition 8.1.1:  Let 𝐹 be a field. Let 𝑝(𝑥) be any non-zero polynomial over the field 𝐹 and 𝐸 is the 
splitting field of 𝑝(𝑥) over 𝐹. The group of all 𝐹 −automorphisms of 𝐸 is called Galois group of 𝑝(𝑥) 
over 𝐹. 

 

Let 𝒇(𝒙) = 𝒙𝟒 − 𝒙𝟐 + 𝟏 ∈ ℚ[𝒙]. Find Galois group of 𝑓(𝑥). 

Solution: 

𝑓(𝑥) = 𝑥4 − 𝑥2 + 1 

= (𝑥2 − √3𝑥 + 1)(𝑥2 + √3𝑥 + 1) 

𝑓(𝑥) has 4 roots given by  

√3 + ⅈ

2
,
√3 − ⅈ

2
,
−√3 + ⅈ

2
,
−√3 − ⅈ

2
 

 

Splitting field 𝐾 of 𝑓(𝑥) is ℚ(√3, ⅈ). 

Consider 𝐵 = {1, √3, ⅈ, √3ⅈ} 

 

Let 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℚ such that 

𝑎 ⋅ 1 + 𝑏√3 + 𝑐 ⋅ ⅈ + 𝑑√3ⅈ = 0 

124

Isha Garg, Lovely Professional University



Advanced Abstract Algebra-I  

 LOVELY PROFESSIONAL UNIVERSITY  

Notes 

⇒ 𝑎 + 𝑏√3 = 0 

and  

𝑐 + 𝑑√3 = 0 

 

Since {1, √3} is linearly independent over ℚ therefore, 𝑎 = 𝑏 = 𝑐 = 𝑑 = 0 

⇒ 𝑩 is linearly independent. 

 

Also, for all 𝛼 ∈ 𝐾 = ℚ(√3, ⅈ) 

𝛼 = 𝑎𝑘 + 𝑏√3 + 𝑐 ⋅ ⅈ + 𝑑√3ⅈ;  𝑘 ∈ ℚ 

⇒ 𝛼 = 𝑑′ ⋅ 1 + 𝑏√3 + 𝑐 ⋅ ⅈ + 𝑑√3ⅈ;  𝑑′ = 𝑎𝑘 ∈ ℚ 

That is,  

𝛼 ∈ 𝐿(𝐵) 

⇒ 𝑲 = 𝑳(𝑩) 

 

𝐵 is the basis of 𝐾 over 𝐹 having 4 elements. 

Let 𝜎 ∈ 𝐺(𝐾, 𝐹), 𝐹 = ℚ 

Then 𝜎(𝑎) = 𝑎 ∀ 𝑎 ∈ ℚ 

For any 𝑥 ∈ 𝐾 

𝑥 = 𝛼0 ⋅ 1 + 𝛼1 ⋅ √3 + 𝛼2ⅈ + 𝛼3 ⋅ √3ⅈ 

⇒ 𝜎(𝑥) = 𝛼0 + 𝛼1𝜎(√3) + 𝛼2𝜎(ⅈ) + 𝛼3𝜎(√3)𝜎(ⅈ) 

 

Since 𝜎(𝑎) is a conjugate of 𝑎, therefore, 𝜎(√3) = ±√3, 𝜎(ⅈ) = ±ⅈ 

Thus 𝐺(𝐾, 𝐹) = {𝜎1, 𝜎2, 𝜎3, 𝜎4} such that  

𝜎1 = 𝐼 

𝜎2(√3) = √3, 𝜎2(ⅈ) = −ⅈ 

𝜎3(√3) = −√3, 𝜎3(ⅈ) = ⅈ 

𝜎4(√3) = −√3, 𝜎4(ⅈ) = −ⅈ 

 

Let 𝑓(𝑥) = 𝑥3 − 2 ∈ ℚ[𝑥]. Find the Galois group of 𝑓(𝑥). 

 

Solution: 

Let 𝑓(𝑥) = 𝑥3 − 2 

Roots of 𝑓(𝑥) = √2
3

, √2
3

𝜔 ⋅ √2
3

𝜔2 

 

Splitting field 𝐾 of 𝑓(𝑥) = ℚ(√2
3

, 𝜔) 

 

𝑥2 + 𝑥 + 1 is the monic irreducible polynomial over ℚ having root 𝜔. 

⇒ [ℚ(𝜔): ℚ] = 2 

 

Again, 𝑥3 − 2 is the minimal polynomial of √2
3

 over ℚ(𝜔). 
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⇒ [ℚ(𝜔, √2
3

): ℚ(𝜔)] = 3 

 

Therefore, [𝐾: ℚ] = [ℚ(𝜔, √2
3

): ℚ(𝜔)][ℚ(𝜔): ℚ] = 3 × 2 = 6 

 

𝐾 is generated by {1, √2
3

, (√2
3

)
2

, √2
3

𝜔, √2
3

𝜔2, 𝜔} 

So, 𝐺(𝐾, ℚ) = {𝜎1, 𝜎2, 𝜎3, 𝜎4, 𝜎5, 𝜎6} 

𝜎1(√2
3

) = √2
3

 𝜎1(𝜔) = 𝜔 

𝜎2(√2
3

) = √2
3

𝜔 𝜎2(𝜔) = 𝜔 

𝜎3(√2
3

) = √2
3

𝜔2 𝜎3(𝜔) = 𝜔 

𝜎4(√2
3

) = √2
3

 𝜎4(𝜔) = 𝜔2 

𝜎5(√2
3

) = √2
3

𝜔 𝜎5(𝜔) = 𝜔2 

𝜎6(√2
3

) = √2
3

𝜔2 𝜎6(𝜔) = 𝜔2 

 

 

Let 𝐹 be a field such that characteristic 𝐹 is not equal to 2. If 𝑓(𝑥) = 𝑥2 − 𝑎 be an 
irreducible polynomial over 𝐹, then the order of Galois group of 𝑓(𝑥) is 2. 

 

Solution: 

Given 𝑓(𝑥) = 𝑥2 − 𝑎 

Let 𝛼 be a root of 𝑓(𝑥) in some field extension 𝐾 

⇒ 𝛼2 − 𝑎 = 0 

⇒ (−𝛼)2 − 𝑎 = 0 

⇒ −𝛼 is also a root of 𝑓(𝑥) in 𝐾. 

So, splitting field of 𝑓(𝑥) = 𝐹(𝛼) 

 

That is, splitting field 𝐾 of 𝑓(𝑥) over 𝐹 is a finite, separable, and normal extension of 𝐹. 

[𝐾: 𝐹] = 2 

Characteristic 𝐹 ≠ 2 

⇒ 𝛼 ≠ −𝛼 

𝑓(𝑥) has two distinct roots 𝛼 and −𝛼. 

Therefore, the Galois group of 𝑓(𝑥) is 𝐺(𝐾, 𝐹) = {𝜎1, 𝜎2} where 𝜎1 = 𝐼 and 𝜎2(𝛼) = −𝛼. 

 

 

If 𝑓(𝑥) is a polynomial over 𝐹 such that 𝑓(𝑥) has 𝑟 distinct roots then Galois group 
𝐺(𝐾, 𝐹) of 𝑓(𝑥) is a subgroup of 𝑆𝑟 . 

 

Solution: 

Let 𝑓(𝑥) = 𝛼0 + 𝑥1𝑥 + ⋯ + 𝛼𝑛𝑥𝑛 ∈ 𝐹[𝑥] be such that 𝑓(𝑥) has 𝑟 distinct roots 𝑎1, 𝑎2, … , 𝑎𝑟 ∈ 𝐾. 

Then  
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𝛼0 + 𝛼1𝑎𝑖 + 𝛼2𝑎𝑖
2 + ⋯ + 𝛼𝑛𝑎𝑖

𝑛 = 0 for all 1 ≤ ⅈ ≤ 𝑟 

Now for 𝜎 ∈ 𝐺(𝐾, 𝐹) 

𝛼0 + 𝛼1𝜎(𝑎𝑖) + 𝛼2(𝜎(𝑎𝑖))
2

+ ⋯ + 𝛼𝑛(𝜎(𝑎𝑖))
𝑛

= 0 

⇒ 𝜎(𝑎𝑖) is a root of 𝑓(𝑥). 

Also, 𝑎𝑖 ≠ 𝑎𝑗 

⇒ 𝜎(𝑎𝑖) ≠ 𝜎(𝑎𝑗) 

Therefore, 𝜎(𝑎1), 𝜎(𝑎2), … , 𝜎(𝑎𝑟) are 𝑟 distinct roots of 𝑓(𝑥). 

That is, {𝜎(𝑎1), 𝜎(𝑎2), … , 𝜎(𝑎𝑟)} = {𝑎1, 𝑎2, … , 𝑎𝑟} 

⇒ 𝜎(𝑎𝑖) = 𝑎𝑗  for some 1 ≤ 𝑗 ≤ 𝑟 

If 𝜎(𝑎𝑖) = 𝑎𝑗  then 𝜎(𝑎𝑘) ≠ 𝑎𝑗 for any 𝑘 ≠ ⅈ 

⇒ 𝜙𝜎(𝑎𝑖) = 𝜎(𝑎𝑖). 

⇒ 𝜙𝜎 ∈ 𝑆𝑟. 

Define a function 𝑓: 𝐺(𝐾, 𝐹) → 𝑆𝑟 as 𝑓(𝜎) = 𝜙𝜎  

𝒇 is homomorphism 

For 𝜎, 𝜂 ∈ 𝐺(𝐾, 𝐹) 

𝜙𝜎𝜂(𝑎𝑖) = (𝜎𝜂)(𝑎𝑖) 

= 𝜎(𝜂(𝑎𝑖)) 

= 𝜙𝜎(𝜂(𝑎𝑖)) 

= 𝜙𝜎 ∘ 𝜙𝜂(𝑎𝑖) 

So, 𝑓 is a homomorphism. 

𝒇 is one-one 

Let 𝜙𝜎 = 𝜙𝜂 

⇒ 𝜎(𝑎𝑖) = 𝜂(𝑎𝑖) 

⇒ 𝜎 = 𝜂 

This implies, 𝑓 is one-one. 

So, 𝑓: 𝐺(𝐾, 𝐹) → 𝑆𝑟 is one-one and homomorphism. 

𝑓(𝐺(𝐾, 𝐹)) ⊆ 𝑆𝑟 and is an embedding of 𝐺(𝐾, 𝐹) in 𝑆𝑟 but 𝑓(𝐺(𝐾, 𝐹)) is a subgroup of 𝑆𝑟. 

⇒ 𝐺(𝐾, 𝐹) is isomorphic to a subgroup of 𝑆𝑟 . 

 

 

Let 𝐹 be a field such that Ch 𝐹 is not equal to 2, 3. Let 𝑓(𝑥) = 𝑥3 + 𝑏𝑥 + 𝑐 be a separable 
polynomial over 𝐹, if 𝑓(𝑥) is irreducible, then the Galois group of 𝑓(𝑥) is of order 3 or 6. 
Also Galois group of 𝑓(𝑥) is 𝑆3 if and only if ∆= −4𝑏3 − 27𝑐2 is not a square in 𝐹. 

Solution:  

Let 𝑓(𝑥) has a root 𝛼 ∈ 𝐹 

⇒ 𝑓(𝑥) = (𝑥 − 𝛼)𝑔(𝑥);  𝑔(𝑥) ∈ 𝐹[𝑥] then if 𝑔(𝑥) has a root in 𝐹, this implies, 𝑓(𝑥) has all the roots in 
𝐹. 

Therefore, 𝐹 is splitting field of 𝑓(𝑥). Hence, [𝐾: 𝐹] = 1. 

If 𝑔(𝑥) has no root in 𝐹, 𝑔(𝑥) is irreducible over 𝐹 and 𝐾 is splitting field of 𝑓(𝑥). 

[𝐾: 𝐹] = 2 ⇒ 𝑂(𝐺(𝐾, 𝐹)) = 2. 

If 𝑓(𝑥) is irreducible over 𝐹 then 𝑂(𝐺(𝐾, 𝐹)) ≠ 1 𝑜𝑟 2 
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Also, 𝐺(𝐾, 𝐹)is a subgroup of 𝑆3. 

𝑂(𝐺(𝐾, 𝐹)) = 3 𝑜𝑟 6 

Let 𝛼, 𝛽, 𝛾 be distinct roots of 𝑓(𝑥) in 𝐾. 

Let 𝛿 = (𝛼 − 𝛽)(𝛽 − 𝛾)(𝛾 − 𝛿) 

𝛥 = 𝛿2 = −4𝑏3 − 27𝑐2 

Then for 𝜎 ∈ 𝐺(𝐾, 𝐹) 

𝜎(𝛿) = ±𝛿 

⇒ 𝜎(𝛥) 

 

= (𝜎(𝛿))
2
 

= (±𝛿)2 

= 𝛿2 

= 𝛥 

⇒ 𝛥 belongs to the fixed field of 𝐺 ⇒ 𝛥 ∈ 𝐹. 

Now, 𝛿 ∈ 𝐹 

⇒ 𝜎(𝛿) = 𝛿 ∀ 𝜎 ∈ 𝐺(𝐾, 𝐹) 

⇒ 𝜎 cannot be an odd permutation. 

⇒ 𝜎 ∈ 𝐴3 

Again, 𝜎 ∈ 𝐴3 

⇒ 𝜎(𝛿) = 𝛿 

Therefore, 𝐺(𝐾, 𝐹) = 𝐴3 if and only if 𝛿 ∈ 𝐹 

If and only if 𝑥2 − 𝛥 is irreducible over 𝐹 

If and only if 𝛥 ≠ 𝑥2 for any 𝑥 ∈ 𝐹 

⇒ 𝛥 is not a square in 𝐹 

 

 

 

Let 𝑓(𝑥) = 𝑥3 − 10 ∈ ℚ(√3ⅈ). Find the order of the Galois group of its splitting field. 

 

Solution: 

Since 𝑓(𝑥) hasno roots in 𝐹. 

Therefore, 𝑓(𝑥) is an irreducible polynomial over 𝐹. 

So, Galois group of 𝑓(𝑥) is of order 3 or 6. 

𝛥 = −4(0)3 − 27(−10)2 = −2700 = (30√3ⅈ)
2
 

Hence, 0(𝐺(𝐾, 𝐹)) = 3. 

 

Summary 

• Galois group of a polynomial is defined. 

• The method to find the Galois group of polynomials is explained with examples. 

• The degree of extension of the Galois group of polynomials is defined and explained. 
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Keywords 

• Galois group 

• Galois group of a polynomial 

• Degree of extension of a Galois group 

 

Self-assessment 

 
 1: Let 𝒑(𝒙) be a non-zero polynomial over a field 𝑭 and 𝑬 be the splitting field of 𝒑(𝒙). Then 

Galois group of 𝒑(𝒙) is 
 
A: Group of all monomorphisms on 𝐸 
B: Group of all automorphisms on E 
C: Group of all 𝐹 − automorphisms on 𝐸 
D: Group of all homomorphisms on 𝐸 
 
2: Let 𝒑(𝒙) be a non-zero constant polynomial. Then  
 

A: Splitting field of 𝑝(𝑥) = 𝐹 
B: Galois group of 𝑝(𝑥) is a singleton set 
C: Galois group of 𝑝(𝑥) contains at least one non-identity automorphism. 
D: None of the above is true 
 
3: Let 𝒑(𝒙) be a polynomial of degree 1. Then 
 
A: Splitting field of 𝑝(𝑥) = 𝐹 
B: Galois group of 𝑝(𝑥) is a singleton set 
C: Galois group of 𝑝(𝑥) contains only identity automorphism. 
D: All above are true 
 

4: Let 𝒑(𝒙) = 𝒙𝟐 + 𝟒𝒙 + 𝟒 ∈ ℚ[𝒙]. Then  
 
A: Splitting field of 𝑝(𝑥) is ℚ 
B: 𝑝(𝑥) is reducible over ℚ 
C: 𝑝(𝑥) has no repeated roots 
D: Splitting field of 𝑝(𝑥) is a proper extension of ℚ 
 

5: Let 𝒑(𝒙) be a polynomial of degree 3 over ℝ. Then 

A: 𝑝(𝑥) is always irreducible over ℝ 

B: 𝑝(𝑥) may or may not be reducible over ℝ 

C: 𝑝(𝑥) is always reducible over ℝ 

D: 𝑝(𝑥) has exactly one complex root 
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6: Minimum number of elements in the Galois group of a polynomial of degree 𝒏 ≥ 𝟏 is 

A: 0 

B: 1 

C: 2 

D: 3 

7: Let 𝒇(𝒙) =  𝒙𝟒 − 𝟑𝒙𝟐 + 𝟏 ∈ ℚ[𝒙]. Then Galois group of 𝒇(𝒙) contains  

A: Only identity element 

B: Exactly one non-identity element 

C: At least one non-identity element 

D: At the most one non-identity element 

8: Let 𝒇(𝒙) = 𝒙𝟒 − 𝟐 ∈ ℚ[𝒙]. Then splitting field of 𝒇(𝒙) is 

A: ℚ(√2, ⅈ) 

B: ℚ(2, ⅈ) 

C: ℚ(±2ⅈ) 

D: ℚ(±ⅈ) 

9: Let 𝒇(𝒙) = 𝒙𝟑 − 𝟏 ∈ ℚ[𝒙]. Then Galois group of 𝒇(𝒙) contains …... number of elements 

A: 0 

B: 1 

C: 2 

D: 3 

10: Let 𝒇(𝒙) = 𝒙𝟒 − 𝟐𝒙𝟐 + 𝟏 ∈ ℚ[𝒙]. Then the number of roots of 𝒇(𝒙) in ℚ is 

A: 1 

B: 2 

C: 3 

D: 4 

11: Let 𝒇(𝒙) = 𝒙𝟐 − 𝟓𝟓 ∈ ℚ[𝒙]. Then the order of the Galois group of 𝒇(𝒙) is 

A: 0 

B: 1 

C: 2 

D: 3  
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12: Galois group of a polynomial over a field 𝑭 is  

A: Always unique 

B: May or may not be unique 

C: Never unique 

D: Always infinite 

13: Let 𝒇(𝒙) = (𝒙𝟐 − 𝟐)(𝒙𝟐 − 𝟑)(𝒙 + 𝟏)𝟐 ∈ ℚ[𝒙] is a polynomial. Then Galois group 𝑮(𝑲, ℚ) of 

𝒇(𝒙) is a subgroup of  

A: 𝑆4 

B: 𝑆5 

C: 𝑆6 

D: 𝑆7 

14: Let 𝒇(𝒙) = 𝒙𝟑 − 𝟑 ∈ ℚ[𝒙]. Then 𝑶(𝑮(𝑲, 𝑭)) = 

A: 1 

B: 3 

C: 6 

D: 18 

15: Let 𝒇(𝒙) = 𝒙𝟑 − 𝟏𝟎 ∈ ℚ[𝒙]. Then 𝑶(𝑮(𝑲, 𝑭)) = 

A: 1 

B: 3 

C: 6 

D: 18 

 

Answers for Self Assessment 

1. C 2. D 3. D 4. A 5. C 

6. B 7. B 8. A 9. C 10. D 

11. C 12. A 13. B 14. C 15. B 

 

Review Questions 

1) Let 𝑓(𝑥) = 𝑥4 + 2𝑥2 + 1 ∈ ℚ[𝑥]. Find Galois group of 𝑓(𝑥). 

2) Let 𝑓(𝑥) = 𝑥3 − 12 ∈ ℚ[𝑥]. Find the Galois group of 𝑓(𝑥). 

3) Let 𝐹 = ℚ and𝑓(𝑥) = 𝑥2 − 11then find the order of Galois group of 𝑓(𝑥). 

4) If 𝑓(𝑥) = 𝑥3 − 3𝑥2 + 2𝑥 is a polynomial over 𝐹 = ℚ  then prove that Galois group 𝐺(𝐾, 𝐹) 

of 𝑓(𝑥) is a subgroup of 𝑆3. 

5) Let 𝑓(𝑥) = 𝑥3 − 10 ∈ ℚ(√3ⅈ). Find the order of the Galois group of its splitting field. 
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  Further Readings 

1) Basic abstract algebra by P. B. Bhattacharya, S. K. Jain, S. R. Nagpal,Cambridge universitypress 

2) Topics in algebra by I.N. Hartstein, Wiley 

3) Abstract algebra by David S Dummit and Richard M Foote, Wiley 

  Web Links 

https://onlinecourses.nptel.ac.in/noc20_ma29/preview 

https://nptel.ac.in/courses/111/105/111105112/# 
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Unit 09: Cyclotomic and Abelian Extensions 

CONTENTS 

Objective 

Introduction 

9.1 Cyclotomic Polynomials and Extensions 

9.2 Abelian Extension 

Summary 

Keywords 

Self Assessment 

Answers for Self Assessment 

Review Questions 

Further Readings 

Objective 

After studying this unit, you will be able to 

• define cyclotomic polynomials and extensions 

• express cyclotomic polynomials explicitly 

• prove that cyclotomic polynomials are irreducible over ℚ 

• define abelian field extension 

• prove that the splitting field K of 𝑥𝑛 − 𝛼 for 𝛼 ∈ 𝐹 is an abelian extension 

 

Introduction 

In this unit, we will define cyclotomic polynomials and extensions. We will express these 
extensions and prove that the cyclotomic polynomials are irreducible over the field of rational 
numbers. Further, we will study abelian extensions. 

 

9.1 Cyclotomic Polynomials and Extensions 

Definition 9.1.1: Let 𝐹 be any field. Then the roots of polynomial 𝑥𝑛 − 1 ∈ 𝐹[𝑥] are called 𝑛 −

𝑡ℎ roots of unity. For example, 𝑛 = 2, 𝑥2 − 1 ∈ ℚ[𝑥] has 2 roots 1 and −1. For 𝑛 = 3, 𝑥3 − 1has 3 

roots 1, 𝜔, 𝜔2;  𝜔 =
1±√3ⅈ

2
. For 𝑛 = 4, roots are 1, −1, ⅈ, −ⅈ. 

Theorem 9.1.2: The 𝑛 − 𝑡ℎ roots of unity form a cyclic group under multiplication. 

Proof: Let 𝐺 be the set of 𝑛 − 𝑡ℎ roots of unity. 

𝐺 = {𝑎|𝑎𝑛 = 1} 

Then 1𝑛 = 1 implies 1 ∈ 𝐺 

⇒ 𝐺 ≠ 𝜙 

Also, if 𝐾 is splitting field of 𝑥𝑛 − 1 then 𝐺 ⊆ 𝐾. 

Let 𝑎, 𝑏 ∈ 𝐺 

𝑎𝑛 = 1, 𝑏𝑛 = 1 

Consider  

(𝑎𝑏−1)𝑛 = 𝑎𝑛𝑏−𝑛 
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 = (1)(1) 

= 1 

Therefore, 𝑎𝑏−1 ∈ 𝐺 ∀ 𝑎, 𝑏 ∈ 𝐺 

Thus, 𝐺 is a subgroup of the multiplicative group of 𝐾, hence 𝐺 is a group. 

Let exponent of 𝐺 = 𝑚 

⇒ 𝑚 ≤ 𝑛 … (1) 

Also, there exists 𝑎 ∈ 𝐺 such that 𝑎𝑚 = 1 

For all 𝑏 ∈ 𝐺, 𝑏𝑚 = 1 

⇒ 𝑥𝑚 − 1 = 0 has at least 𝑛 roots. 

Therefore, 𝑛 ≤ 𝑚 … (2) 

From (1) and (2), we get, 

𝑛 = 𝑚 

So, there exist 𝑎 ∈ 𝐺 such that 𝑎𝑛 = 1 

⇒ 0(𝑎) = 0(𝐺) 

Hence, 𝐺 = < 𝑎 > is the cyclic group. 

 

Definition 9.1.3: (Primitive nth root of unity): Let 𝜉 be the generator of nth root of unity. Then 𝜉 is 
called the primitive nth root of unity. 

 
1. If 𝜉 is a generator of 𝐺 then 𝜉𝑘 is also a generator of 𝐺 for all 𝑘 ∈ ℕ such that 

𝑘 < 𝑛 and 𝐺𝐶𝐷 (𝑘, 𝑛) = 1. Hence 𝐺 has 𝜙(𝑛) number of generators. In other 

words, for all 𝑛, there are 𝜙(𝑛) primitive 𝑛𝑡ℎ roots of unity. 

2. If a field 𝐹 has a primitive 𝑛𝑡ℎ root of unity 𝜉 

𝜉 ∈ 𝐹 

⇒ 𝜉𝑘 ∈ 𝐹 ∀ 𝑘 

For all 𝑥 ∈ 𝐺 =< 𝜉 > 

𝑥 = 𝜉𝑚; 𝑚 ∈ ℤ 

⇒ 𝑥 ∈ 𝐹 

⇒ 𝐹 contains all 𝑛𝑡ℎ roots of unity. 

3. If 𝜉 is a generator of 𝐺 then 𝜉𝑘 is also a generator of 𝐺 for all 𝑘 ∈ ℕ such that 

𝑘 < 𝑛 and 𝐺𝐶𝐷 (𝑘, 𝑛) = 1. Hence 𝐺 has 𝜙(𝑛) number of generators. In other 

words, for all 𝑛, there are 𝜙(𝑛) primitive 𝑛𝑡ℎ roots of unity. 

4. If a field 𝐹 has a primitive 𝑛𝑡ℎ root of unity 𝜉 

𝜉 ∈ 𝐹 

⇒ 𝜉𝑘 ∈ 𝐹 ∀ 𝑘 

For all 𝑥 ∈ 𝐺 =< 𝜉 > 

𝑥 = 𝜉𝑚; 𝑚 ∈ ℤ 

⇒ 𝑥 ∈ 𝐹 

⇒ 𝐹 contains all 𝑛𝑡ℎ roots of unity. 

 

Definition 9.1.4: (𝒏𝒕𝒉 cyclotomic polynomial): Let 𝜔 be the primitive 𝑛𝑡ℎ root of unity. Let 𝑆 be the 
collection of all such 𝜔. then 

𝜙𝑛(𝑥) = ∏(𝑥 − 𝜔)

𝜔∈𝑆

 

is called 𝑛𝑡ℎ cyclotomic polynomial. 
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For 𝑛 = 2, 𝜔 = −1, 𝜙2(𝑥) = 𝑥 + 1 

For 𝑛 = 3, 𝜔 = 𝜔, 𝜔2, 𝜙3(𝑥) = (𝑥 − 𝜔)(𝑥 − 𝜔2) = 𝑥2 + 𝑥 + 1 

 

Theorem 9.1.5: 

𝒙𝒏 − 𝟏 = ∏ 𝝓𝒅(𝒙)

𝒅|𝒏

, 𝟏 ≤ 𝒅 ≤ 𝒏 

Proof: Let 𝛼ⅈ is the 𝑛𝑡ℎ root of unity for 1 ≤ ⅈ ≤ 𝑛 

Then 𝑥𝑛 − 1 = (𝑥 − 𝛼1)(𝑥 − 𝛼2) ⋯ (𝑥 − 𝛼𝑛) 

Let us re-arrange 𝛼ⅈ
′𝑠 such that we put together those 𝛼ⅈ

′𝑠 whose orders are the same. 

Since 𝐺 is cyclic, therefore, there are 𝛼ⅈ
′𝑠 for each divisor 𝑑 of 𝑛. 

Let 𝑃 is the product of all (𝑥 − 𝛼ⅈ), factors of 𝑥𝑛 − 1 such that 𝑂(𝛼ⅈ) = 𝑑, 𝑑|𝑛 

Claim:𝑷 = 𝝓𝒅(𝒙) 

Let 𝛼 is 𝑑𝑡ℎ root of unity. 

𝛼𝑑 = 1 

Since 𝑑|𝑛, 𝑛 = 𝑑𝑛1; 𝑛1 ∈ ℤ 

𝛼𝑛 = 𝛼𝑑𝑛1 = (𝛼𝑑)𝑛1 = 1 

⇒ 𝛼 is 𝑛𝑡ℎ root of unity. 

In particular, primitive 𝑑𝑡ℎ root of unity is 𝑛𝑡ℎ roots of unity 

Therefore, each of the primitive 𝑑𝑡ℎ roots of unity must give rise to a factor in 𝑃. 

𝑃 = 𝜙𝑑(𝑥) 

⇒ 𝑥𝑛 − 1 = ∏ 𝜙𝑑(𝑥)

𝑑|𝑛

;  1 ≤ 𝑑 ≤ 𝑛 

Determination of 𝝓𝟏(𝒙), 𝝓𝟐(𝒙), … 

𝑥𝑛 − 1 = ∏ 𝜙𝑑(𝑥)

𝑑|𝑛

 

For 𝑛 = 1 

𝑥 − 1 = 𝜙1(𝑥) 

For 𝑛 = 2 

𝑥2 − 1 = 𝜙1(𝑥)𝜙2(𝑥) 

= (𝑥 − 1)𝜙2(𝑥) 

This implies, 𝑥 + 1 = 𝜙2(𝑥) 

For 𝑛 = 3 

𝑥3 − 1 = 𝜙1(𝑥)𝜙3(𝑥) 

= (𝑥 − 1)𝜙3(𝑥) 

This implies, 𝜙3(𝑥) = 𝑥2 + 𝑥 + 1 

For 𝑛 = 4 

𝑥4 − 1 = ∏ 𝜙𝑑(𝑥)

𝑑|4

 

= 𝜙1(𝑥)𝜙2(𝑥)𝜙4(𝑥) 

= (𝑥 − 1)(𝑥 + 1)𝜙4(𝑥) 
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(𝑥2 − 1)(𝑥2 + 1) = (𝑥2 − 1)𝜙4(𝑥) 

⇒ 𝜙4(𝑥) = 𝑥2 + 1 

………… 

 

Theorem 9.1.6: 𝝓𝒏(𝒙) ∈ ℤ[𝒙] 

Proof: We will use the Principle of Mathematical Induction on 𝑛 

For 𝑛 = 1,  

𝜙1(𝑥) = 𝑥 − 1 ∈ ℤ[𝑥] 

Therefore, the result is true for 𝑛 = 1 

Let the result is true for some 1 ≤ 𝑚 < 𝑛, 𝑛 > 1 

By the result,  

𝑥𝑛 − 1 = ∏ 𝜙𝑑(𝑥)

𝑑|𝑛

;  1 ≤ 𝑑 ≤ 𝑛 

𝑥𝑛 − 1 = 𝑞(𝑥)𝜙𝑛(𝑥);  𝑞(𝑥) = ∏ 𝜙𝑑(𝑥)

𝑑ln

;  1 ≤ 𝑑 < 𝑛 

By the Induction hypothesis, 

𝜙𝑑(𝑥) ∈ ℤ[𝑥] ∀ 𝑑 < 𝑛 

⇒ 𝑞(𝑥) ∈ ℤ[𝑥] 

Since 𝑞(𝑥) is monic polynomial in ℤ[𝑥] 

By division algorithm, there exist 𝑟(𝑥), 𝑠(𝑥) ∈ ℤ[𝑥] such that 

𝑥𝑛 − 1 = 𝑞(𝑥)𝑟(𝑥) + 𝑠(𝑥);  𝑠(𝑥) = 0 𝑜𝑟 deg 𝑠 (𝑥) < deg 𝑞(𝑥) 

As ℤ ⊆ ℚ(𝜉) 

𝜉 is primitive 𝑛𝑡ℎ root of unity 

⇒ 𝑥𝑛 − 1 = 𝑞(𝑥)𝑟(𝑥) + 𝑠(𝑥) ∈ ℚ(𝜉)[𝑥] 

But in ℚ(𝜉)[𝑥] 

𝑥𝑛 − 1 = 𝑞(𝑥)𝜙𝑛(𝑥) 

By uniqueness of quotient and remainder, 

𝑟(𝑥) = 𝜙𝑛(𝑥), 𝑠(𝑥) = 0 

Since 𝑟(𝑥) ∈ ℤ[𝑥] 

𝑟(𝑥) = 𝜙𝑛(𝑥) 

Thus, 𝜙𝑛(𝑥) ∈ ℤ[𝑥] 

 

Corollary 9.1.7: 𝜙𝑛(𝑥) ∈ ℤ[𝑥] 

Also, ℤ ⊆ ℚ 

𝜙𝑛(𝑥) can also be treated as a polynomial over ℚ. 

 

Theorem 9.1.8: 𝜙𝑛(𝑥)is irreducible over ℚ. 

Proof: First we prove that 𝜙𝑛(𝑥) is irreducible over ℤ. 

Let ℎ(𝑥) be an irreducible polynomial in ℤ[𝑥] such that 

𝜙𝑛(𝑥) = ℎ(𝑥)𝑔(𝑥); 𝑔(𝑥) ∈ ℤ[𝑥] 

Since 𝜙𝑛 is monic. Therefore, we can choose 𝑔(𝑥), ℎ(𝑥) as monic polynomials 
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Now any root of ℎ(𝑥) is a root of 𝜙𝑛(𝑥) that is, primitive 𝑛𝑡ℎroot of unity 

Let 𝜉 be the primitive 𝑛𝑡ℎ root of unity so that ℎ(𝜉) = 0 

Let 𝑝 be a prime number such that 𝑝 < 𝑛 and 𝑝 ∤ 𝑛 

 

Claim: 𝝃𝒑 is a root of 𝒉(𝒙) 

Assume that ℎ(𝜉𝑝) ≠ 0 

⇒ 𝑔(𝜉𝑝) = 0 

⇒ 𝜉𝑝 is a root of 𝑔(𝑥). 

⇒ 𝜉 is a root of 𝑔(𝑥𝑝) 

But ℎ(𝑥)is an irreducible monic polynomial satisfied by 𝜉 so, it is a minimal polynomial of 𝜉 over ℚ. 

Hence, ℎ(𝑥) divides 𝑔(𝑥𝑝) in ℚ[𝑥] 

⇒ 𝑔(𝑥𝑝) = ℎ(𝑥)𝑙(𝑥); 𝑙(𝑥) ∈ ℚ[𝑥] 

Since 𝑔(𝑥𝑝), ℎ(𝑥) ∈ ℤ[𝑥] 

⇒ 𝑙(𝑥) ∈ ℤ[𝑥] 

Now, 𝑥𝑛 − 1 = 𝑞(𝑥)𝜙𝑛(𝑥) where 𝑞(𝑥) = ∏ 𝜙𝑑(𝑥)𝑑|𝑛 ;  1 ≤ 𝑑 ≤ 𝑛 

⇒ 𝑥𝑛 − 1 = 𝑞(𝑥)ℎ(𝑥)𝑔(𝑥) 

Now define,  

𝜃: ℤ → ℤ ⟨𝑝⟩⁄  by 𝜃(𝑛) = 𝑛 + ⟨𝑝⟩ = �̅� 

𝜃 is onto homomorphism 

Therefore, 𝜃 induces an onto homomorphism. 𝜓: ℤ[𝑥] → ℤ ∕ ⟨𝑝⟩[𝑥] given by 

𝜓 (∑ 𝛼ⅈ𝑥ⅈ

𝑡

ⅈ=1

) = ∑ 𝛼�̅�𝑥
ⅈ

𝑡

ⅈ=1

 

Let 𝑓(𝑥) = ∑ 𝛼ⅈ𝑥ⅈ𝑡

ⅈ=1
 

and 𝑓(̅𝑥) = ∑ 𝛼�̅�𝑥
ⅈ𝑡

ⅈ=1
 

𝜓(𝑥𝑛 − 1) = 𝜓(𝑞(𝑥)ℎ(𝑥)𝑔(𝑥)) 

⇒ 𝑥𝑛 − 1̅ = �̅�(𝑥)ℎ̅(𝑥)�̅�(𝑥) ⋯ (1) 

Let 𝑔(𝑥) = 𝛽0 + 𝛽1𝑥 + ⋯ + 𝛽𝑟𝑥𝑟 

By Fermat’s theorem, 

For 𝑎 ∈ ℤ, �̅�𝑝 = �̅� 

⇒ �̅�(𝑥𝑝) = (�̅�0 + �̅�1𝑥𝑝 + ⋯ + �̅�𝑟𝑥𝑟𝑝) 

= �̅�0
𝑝

+ �̅�1
𝑝

𝑥𝑝 + ⋯ + �̅�𝑟
𝑝

𝑥𝑟𝑝 

= (�̅�(𝑥))
𝑝

 

 

Now, 𝑔(𝑥𝑝) = ℎ(𝑥)𝑙(𝑥) 

⇒ �̅�(𝑥𝑝) = ℎ̅(𝑥)𝑙(̅𝑥) 

⇒ (�̅�(𝑥))
𝑝

= ℎ̅(𝑥)𝑙(̅𝑥) 

If ⅈ(̅𝑥) is irreducible factor of ℎ̅(𝑥) in ℤ ⟨𝑝⟩⁄ [𝑥]. 

⇒ ⅈ(̅𝑥) |(�̅�(𝑥))𝑝 in ℤ ⟨𝑝⟩⁄ [𝑥] 

⇒ ⅈ(̅𝑥)|�̅�(𝑥) in ℤ ⟨𝑝⟩⁄ [𝑥]. 
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Using (1) 

(ⅈ(̅𝑥))
2

| 𝑥𝑛 − 1 ̅in ℤ ⟨𝑝⟩⁄ [𝑥]. 

Consequently, 𝑥𝑛 − 1̅ has multiple roots in ℤ ⟨𝑝⟩⁄  

But 𝑓(𝑥) = 𝑥𝑛 − 1̅ 

⇒ (𝑓(̅𝑥))
′

= 𝑛𝑥𝑛−1 ≠ 0 as 𝑝 ∤ 𝑛 which is a contradiction 

⇒ 𝜉𝑝 is a root of ℎ(𝑥). 

Let 𝑎 be any root of 𝜙𝑛(𝑥) 

⇒ 𝑎 is primitive 𝑛𝑡ℎ root of unity. 

Since 𝜉 is also a primitive 𝑛𝑡ℎ root of unity. 

⇒ 𝑎 = 𝜉𝑘 for some 𝑘 ∈ ℕ 

Let 𝑘 = 𝑝1𝑝2 … 𝑝𝑠;  𝑝ⅈ
′𝑠 are all prime numbers such that 𝑝ⅈ < 𝑛∀ ⅈ 

None of the 𝑝ⅈ is a factor of 𝑛, otherwise, 𝐺𝐶𝐷(𝑘, 𝑛) ≠ 1 

𝑝ⅈ|𝑛 Since 𝑝ⅈ|𝑘 

Therefore, 𝑝ⅈ|𝐺𝐶𝐷(𝑘, 𝑛), that is, 𝑝ⅈ|1 but 𝑝ⅈ is a prime number. 

So, 𝑝ⅈ ∤ 𝑛 for any ⅈ 

That is, 𝑎 = 𝜉𝑘 cannot be primitive 𝑛𝑡ℎ root of unity. 

By successive application of what we did, 𝜉𝑝1 , 𝜉𝑝1𝑝2 , … , 𝜉𝑝1𝑝2…𝑝𝑠 = 𝑎 are roots of ℎ(𝑥). 

⇒ Every root of 𝜙𝑛(𝑥) is a root of ℎ(𝑥). 

⇒ 𝜙𝑛(𝑥) = ℎ(𝑥). 

Since ℎ(𝑥) is irreducible, therefore, 𝜙𝑛(𝑥) is an irreducible polynomial over ℤ, hence over ℚ. 

 

Corollary 9.1.9: Degree of splitting field of 𝑥𝑛 − 1 over ℚ is 𝜙(𝑛). 

Let 𝐾 be the splitting field of 𝑥𝑛 − 1 over ℚ, then if 𝜉 is primitive 𝑛𝑡ℎ root then 𝐾 = ℚ(𝜉). 

Note:𝐾 defined above is called a cyclotomic extension of ℚ. 

 
1) Find the primitive 5th root of unity. 

2) For a prime number 𝑝, find the primitive 𝑝 − 𝑡ℎ roots. 

9.2 Abelian Extension 

Theorem 9.2.1: Any finite subgroup of the multiplicative group of a field is cyclic and hence a 
multiplicative group of a Galois field is cyclic. 

Proof: Let 𝐹 be any field and 𝑆 be a finite subgroup of 𝐹 − {0}. 

Now, 𝑆 is finite. Therefore, we can choose 𝑦 ∈ 𝑆 such that 𝑂(𝑦) ≥ 𝑂(𝑧) ∀ 𝑧 ∈ 𝑆 

Let 𝑂(𝑦) = 𝑛 

For 𝑧 ∈ 𝑆, 𝑂(𝑦) is a multiple of 𝑂(𝑧). 

𝑂(𝑧)|𝑂(𝑦) ∀ 𝑧 ∈ 𝑆 

Therefore,  

𝑧𝑛 = ⅇ ∀ 𝑧 ∈ 𝑆 

That is, every element in 𝑆 is a root of the polynomial 𝑥𝑛 − ⅇ and 𝑆 contains elements of type 

ⅇ, 𝑦, 𝑦2, …, as 𝑦 ∈ 𝑆. 

For all 𝑧 ∈ 𝑆, 𝑧 is a root of 𝑥𝑛 − ⅇ over 𝐹 but 𝑥𝑛 − ⅇ can have maximum 𝑛 number of roots. 

Therefore, 𝑂(𝑆) ≤ 𝑛 
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Also, 𝑂(𝑦) = 𝑛 

So, ⅇ, 𝑦, 𝑦2, … , 𝑦𝑛−1 are all distinct elements in 𝑆. 

𝑆 = {ⅇ, 𝑦, 𝑦2, … , 𝑦𝑛−1} = < 𝑦 > is a cyclic group. 

Since Galois field is always finite. 

Therefore, its multiplicative group is always finite and hence cyclic. 

 

Theorem 9.2.2: If 𝐾 is splitting field of 𝑓(𝑥) = 𝑥𝑛 − ⅇ over some field 𝐹 of characteristic 𝑝 such that 
𝑝 does not divide 𝑛, then 𝐾 contains 𝑛 distinct roots of 𝑓(𝑥). 

Proof:𝑓(𝑥) = 𝑥𝑛 − ⅇ 

⇒ 𝑓′(𝑥) = 𝑛𝑥𝑛−1 

Therefore, 𝑓′(𝑥) = 0 if and only if 𝑛 = 0 or 𝑝|𝑛 or 𝑥 = 0 

But 𝑛 ≠ 0 and 𝑝 ∤ 𝑛 ⇒ 𝑓′(𝑥) = 0 only if 𝑥 = 0. 

So, 𝑓′(𝑥) ≠ 0 

⇒ 𝑓(𝑥) has no multiple roots in any field extension of 𝐹. 

Also, splitting field of 𝑓(𝑥) contains all the roots of 𝑓(𝑥). 

Since deg 𝑓(𝑥) = 𝑛and all roots are distinct, therefore, 𝐾 contains 𝑛 distinct roots of 𝑓(𝑥). 

 

Theorem 9.2.3: Let 𝐹 be a field of characteristic zero and 𝐾 be the splitting field of polynomial 𝑥𝑛 −
ⅇ  over 𝐹, then the set of all roots of 𝑓(𝑥) form a cyclic group of order 𝑛 with respect to 
multiplication. 

Proof: Let 𝑓(𝑥) = 𝑥𝑛 − ⅇ 

𝐾 is splitting field of 𝑓(𝑥). 

Let 𝑆 be the set of all roots of 𝑓(𝑥). 

Since ⅇ𝑛 − ⅇ = 0, therefore, ⅇ ∈ 𝑆. 

⇒ 𝑆 ≠ 𝜙 

Also, for 𝑎, 𝑏 ∈ 𝑆 

𝑎𝑛 = ⅇ, 𝑏𝑛 = ⅇ 

Consider  

(𝑎𝑏−1)𝑛 = 𝑎𝑛(𝑏−1)𝑛 

= 𝑎𝑛(𝑏𝑛)−1 

= ⅇ ⋅ ⅇ−1 

= ⅇ 

Thus, 𝑆 is a subgroup of the multiplicative group of 𝐾 and 𝑆 is finite. 

This implies 𝑆 is a cyclic group. 

 

Theorem 9.2.4: Let 𝐹 be a field of characteristic zero and 𝐾 be the splitting field of polynomial 𝑥𝑛 −
ⅇ  over 𝐹, the Galois group 𝐺(𝐾, 𝐹) is isomorphic to a subgroup of the residue class group 𝑀 of 
integers relatively prime to 𝑛. Consequently, 𝐺(𝐾, 𝐹) is cyclic. 

Proof: Let 𝐺(𝐾, 𝐹) be the Galois group of 𝐾 over 𝐹 and we have proved that the set 𝑆 = {𝑎|𝑎𝑛 = ⅇ} 
is a cyclic group. Let 𝑆 = < 𝜃 > 

Then𝜃𝑛 = ⅇ, i.e., 𝜃 is a root of 𝑥𝑛 = ⅇ then all other roots of this polynomial are of the form 𝜃ⅈ; ⅈ ∈ ℤ 
and splitting field of 𝑥𝑛 − ⅇ is 𝐹(𝜃) = 𝐾. 

Let 𝜎 ∈ 𝐺(𝐾, 𝐹) 
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Then for 𝜉𝑛 = ⅇ, 

ⅇ = 𝜎(ⅇ) 

= 𝜎(𝜉𝑛) 

= (𝜎(𝜉))
𝑛

 

So, (𝜎(𝜉))
𝑛

= ⅇ 

That is, 𝜎(𝜉) is also a root of 𝑥𝑛 − ⅇ if 𝜉 is a root of 𝑥𝑛 − ⅇ. 

Now, 𝜃 is a root of 𝑥𝑛 − ⅇ ⇒ 𝜎(𝜃) ∈ 𝑆 = < 𝜃 >. 

⇒  ∃ 𝑡 ∈ ℤ such that 𝜎(𝜃) = 𝜃𝑡 

Now, 𝜎(𝜃) = 𝜃𝑡 ; 𝑡 ∈ ℤ such that 𝐺𝐶𝐷 (𝑛, 𝑡) = 1 

Let 𝑡̅ be the residue class modulo 𝑛 in which 𝑡 belongs. Then 𝑡̅ ∈ 𝑀. 

Define a map 𝑔: 𝐺(𝐾, 𝐹) → 𝑀 as 𝑔(𝜎) = 𝑡̅; 𝜎(𝜃) = 𝜃𝑡 

𝒈 is well defined: 

Let 𝜎(𝜃) = 𝜃𝑢 

Also, 𝜎(𝜃) = 𝜃𝑡 

⇒  𝜃𝑡 = 𝜃𝑢 

⇒ 𝜃𝑡−𝑢 = ⅇ 

But the order of 𝜃 = 𝑛 

⇒ 𝑛|𝑡 − 𝑢 

⇒  𝑡̅ = �̅� 

⇒  𝑔(𝜎) is unique. 

Hence, 𝑔 is well defined. 

𝒈 is homomorphism 

Let 𝜎, 𝜂 ∈ 𝐺(𝐾, 𝐹) such that 𝑔(𝜎) = 𝑡1̅;  𝜎(𝜃) = 𝜃𝑡1 

and  

𝑔(𝜂) = 𝑡2̅; 𝜂(𝜃) = 𝜃𝑡2 

Then  

𝜎𝜂(𝜃) = 𝜎(𝜃𝑡2) 

= (𝜃𝑡2)𝑡1 

= 𝜃𝑡2𝑡1 

Also,  

𝑔(𝜎𝜂) = 𝑡2𝑡1̅̅ ̅̅ ̅ 

= 𝑡1𝑡2̅̅ ̅̅ ̅ 

= 𝑡1̅𝑡2̅ 

= 𝑔(𝜎)𝑔(𝜂) 

𝒈 is one-one 

Let 𝜎 ∈ 0 

⇒ 𝑔(𝜎) = 1̅ 

⇒ 𝜎(𝜃) = 𝜃′ = 𝜃 

𝜎 is identity on 𝐹(𝜃) = 𝐾 

⇒ 𝜎 = 𝐼 
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So, ker 𝑔 = {𝐼} 

⇒ 𝑔 is one-one. 

Since both 𝐺(𝐾, 𝐹) and 𝑀 are consisting of 𝑛 elements. Then 𝑔 is one-one and hence 𝑔 is onto. 

Therefore, 𝑔: 𝐺(𝐾, 𝐹) → 𝑀 is one-one, onto and homomorphism. 

Hence, 𝑔: 𝐺(𝐾, 𝐹) → 𝑀 is an isomorphism. 

⇒  𝐺(𝐾, 𝐹) ≅ 𝑀 

 

Theorem 9.2.5: If 𝐹 is a field with ch. 0 such that it contains a primitive 𝑛𝑡ℎ root of unity then for 
any 0 ≠ 𝛼 ∈ 𝐹, the splitting field 𝐿 of 𝑥𝑛 − 𝛼 over 𝐹 is 𝐹(𝑎) where 𝑎 is the arbitrary root of 𝑥𝑛 − 𝛼. 
Further 𝐺(𝐿, 𝐹) is abelian. 

Proof: 𝑎is a root of 𝑥𝑛 − 𝛼. 

Also, let 𝜃 be a primitive 𝑛𝑡ℎ root of unity then we know that all the 𝑛𝑡ℎ roots of unity are 
represented as 𝜃, 𝜃2, 𝜃3, … , 𝜃𝑛 = ⅇ. 

Consider  

(𝜃𝑎)𝑛 − 𝛼 = 𝜃𝑛𝑎𝑛 − 𝛼 

= ⅇ ⋅ 𝛼 − 𝛼 

= 𝛼 − 𝛼 

= 0 

Thus, 𝜃𝑎 is a root of 𝑥𝑛 − 𝛼. 

Moreover, 𝜃𝑎, 𝜃2𝑎, 𝜃3𝑎, … , 𝜃𝑛−1𝑎, 𝑎 are all roots of 𝑥𝑛 − 𝛼 over 𝐹. 

Let 𝐾 be any field containing a splitting field of 𝑥𝑛 − 𝛼 over 𝐹 ⇒ 𝑎 ∈ 𝐾. 

Also, 𝑎, 𝜃𝑎, 𝜃2𝑎, … , 𝜃𝑛−1𝑎 ∈ 𝐾. 

If 𝐿 is splitting field of 𝑥𝑛 − 𝛼 

⇒ 𝑎, 𝜃𝑎, 𝜃2𝑎, … , 𝜃𝑛−1𝑎 ∈ 𝐿 

⇒ 𝐹(𝜃, 𝑎) ⊆ 𝐿 

But 𝐿 = 𝐹(𝑎, 𝜃𝑎, 𝜃2𝑎, … , 𝜃𝑛−1𝑎) ⊆ 𝐹(𝜃, 𝑎) 

Hence, 𝐿 = 𝐹(𝜃, 𝑎) 

If 𝜃 is that primitive root in 𝐹 such that 𝐹(𝜃) = 𝐹 

⇒ 𝐹(𝜃, 𝑎) = 𝐹(𝑎) 

⇒ 𝐿 = 𝐹(𝑎) 

Let 𝜎, 𝜂 ∈ 𝐺(𝐿, 𝐹) 

𝜎(𝑎), 𝜂(𝑎) both are roots of 𝑥𝑛 − 𝛼. 

𝜎(𝑎) = 𝜃ⅈ𝑎 

and  

𝜂(𝑎) = 𝜃𝑗𝑎 

Then  

𝜎𝜂(𝑎) = 𝜎(𝜃𝑗𝑎) 

= 𝜃ⅈ(𝜃𝑗𝑎) 

= 𝜃ⅈ+𝑗(𝑎) 

𝜂𝜎(𝑎) = 𝜂(𝜃ⅈ𝑎) 

= 𝜃𝑗(𝜃ⅈ𝑎) 
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= 𝜃𝑗+ⅈ(𝑎) 

= 𝜎𝜂(𝑎) 

Hence 𝜂𝜎 = 𝜎𝜂 ∀ 𝜎, 𝜂 ∈ 𝐺(𝐿, 𝐹) 

Therefore, 𝐺(𝐿, 𝐹) is an abelian group. 

 

Definition 9.2.6: (Abelian Field Extension): Let 𝐹 ⊆ 𝐾 be a field extension such that 𝐺(𝐾, 𝐹) is an 
abelian group then this extension is called abelian field extension. For example, 𝐾 is splitting field 
of 𝑥𝑛 − ⅇ ∈ 𝐹[𝑥] such that 𝐹 contains a primitive 𝑛𝑡ℎ root of unity then 𝐺(𝐾, 𝐹) is abelian and hence 
it is an abelian field extension. 

 

Summary 

• Cyclotomic polynomials and extensions are defined. 

• Cyclotomic polynomials are explained. 

• It has been observed that Cyclotomic polynomials are irreducible over ℚ 

• Abelian field extensions are defined. 

 

Keywords 

• Cyclotomic polynomial 

• Cyclotomic extensions 

• The primitive 𝑛 − 𝑡ℎ root of unity 

• Abelian field extension 

• Irreducibility of Cyclotomic polynomial 

 

Self Assessment 

1: The set of 4th roots of unity over the field ℚ are given by 

A: {1, −1} 

B: {1, −1, ⅈ} 

C: {1, ⅈ} 

D: {1, −1, ⅈ, −ⅈ} 

 

Question 2: The 𝑛 − 𝑡ℎ roots of unity  

A: Does not form a group 

B: Form a cyclic group under multiplication 

C: Form a group under addition 

D: Form a non-abelian group under multiplication 

 

3: If the set {𝑎|𝑎𝑛 = 1} contains 2 elements. Then  

A: 𝑛 = 2 

B: 𝑛 > 2 

C: 𝑛 < 2 

D: 𝑛 = 3 
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4: If 𝑛 is even positive integer then the set of 𝑛𝑡ℎ root of unity contains exactly ……  real numbers 

A: 0 

B: 1 

C: 2 

D: 4 

 

5: If 𝑛 is an odd positive integer then the set of 𝑛𝑡ℎ root of unity contains exactly ……  complex 
(non-real) numbers 

A: 0 

B: 1 

C: 2 

D: 4 

 

6: Exponent of a group 𝐺 is 

A: The highest positive integer 𝑚 such that 𝑎𝑚 = ⅇ 

B: The least positive integer 𝑚 such that 𝑎𝑚 = ⅇ 

C: Order of the group 𝐺 

D: 𝑛 − 1; where 𝑛 is the order of group 𝐺. 

 

7: The exponent of a cyclic group 𝐺 is 

A: ≤ 𝑂(𝐺) 

B: < 𝑂(𝐺) 

C: > 𝑂(𝐺) 

D: = 𝑂(𝐺) 

8: Primitive root(s) of 𝑛𝑡ℎ root of unity  

A: Is unique always 

B: Unique only if 𝑛 = 2 

C: Is 𝜙(𝑛) in number 

D: All options are correct 

 

9: The number of primitive 16th root of unity is 

A: 2 

B: 4 

C: 6 

D: 8 

 

10: Number of primitive 𝑝𝑡ℎ roots of unity, where 𝑝 is any prime, is 

A: 𝑝 

B: 𝑝 − 1 

C: 𝑝 − 2 

D: 2𝑝 
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11: Multiplicative group of a Galois group is always 

A: Infinite 

B: Non-abelian 

C: Cyclic 

D: Abelian but not cyclic 

 

12: Let 𝐾 is the splitting field of 𝑓(𝑥) = 𝑥7 − 1 ∈ ℤ5[𝑥] then 𝐾 

A: Contains 7 distinct roots of 𝑓(𝑥) 

B: Contains at least one root with a multiplicity greater than 1 

C: Contains at least two roots with multiplicity greater than 1 

D: Contains all the roots with multiplicity greater than 1 

 

13: Let 𝐾 is the splitting field of the polynomial 𝑥9 − 1 ∈ ℚ[𝑥]. Then the Galois group 𝐺(𝐾, 𝐹) 

A: Is isomorphic to a subgroup of the residue class group 𝑀 of integers relatively prime to 9 

B: 𝐺(𝐾, 𝐹) is abelian 

C: 𝐺(𝐾, 𝐹) is cyclic 

D: All options are correct 

 

14: Let 𝐾 is the splitting field of the polynomial 𝑥24 − 1 ∈ ℚ[𝑥]. Then the Galois group 𝐺(𝐾, 𝐹) 

A: Is isomorphic to a subgroup of the residue class group 𝑀 of integers relatively prime to 6 

B: Is isomorphic to a subgroup of the residue class group 𝑀 of integers relatively prime to 12 

C: Is isomorphic to a subgroup of the residue class group 𝑀 of integers relatively prime to 18 

D: Is isomorphic to a subgroup of the residue class group 𝑀 of integers relatively prime to 24 

 

15: Let 𝐹 is a field with ch. 0 such that it contains a primitive 𝑛𝑡ℎ root of unity then for any 0 ≠ 𝛼 ∈

𝐹, the splitting field 𝐿 of 𝑥𝑛 − 𝛼 over 𝐹 is a simple extension 

A: True 

B: False 

 

Answers for Self Assessment 

1. D 2. B 3. A 4. C 5. B 

6. A 7. D 8. D 9. D 10. B 

11. C 12. A 13. D 14. D 15. A 

Review Questions 

1) Check that 
−1+√3ⅈ

2
 is a primitive cube root of unity and cos

6𝜋

5
+ ⅈ sin

6𝜋

5
 is the primitive 5th 

root of unity. 

2) Prove that the 7th roots of unity form a cyclic group under multiplication. 
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3) Prove  

𝒙𝒏 − 𝟏 = ∏ 𝝓𝒅(𝒙)

𝒅|𝒏

, 𝟏 ≤ 𝒅 ≤ 𝒏 

for 𝑛 = 4. 

4) Prove/Disprove: Multiplicative group of a Galois field is cyclic. 

 

   Further Readings 

1) Basic abstract algebra by P. B. Bhattacharya, S. K. Jain, S. R. Nagpal,Cambridge 

universitypress 

2) Topics in algebra by I.N. Hartstein, Wiley 

3) Abstract algebra by David S Dummit and Richard M Foote, Wiley 

 

 Web Links 

https://onlinecourses.nptel.ac.in/noc20_ma29/preview 

https://nptel.ac.in/courses/111/105/111105112/# 
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Unit 10: Fundamental Theorem of Algebra and Composite 
Extension 

CONTENTS 

Objective 

Introduction 

10.1 Basics of Fundamental theorem of algebra 

10.2 Fundamental theorem of algebra 

10.3 Composite Field Extension 

Summary 

Keywords 

Self-assessment 

Answers for Self Assessment 

Review Questions 

Further Readings 

Objective 

After studying this unit, you will be able to 

• understand the theory of roots of polynomials 

• prove that the square root of every complex number exists in the field of complex numbers 

• state and prove the fundamental theorem of algebra  

• understand the importance of the theorem  

• define composite extension   

• understand results about composite Galois extension 

 

Introduction 

In this unit, we will first understand the theory of the roots of polynomials. Then we will state and 
prove the fundamental theorem of algebra. Composite extension of field will be defined and 
explained. 

 

10.1 Basics of Fundamental theorem of algebra 

Theorem 10.1.1: Intermediate Value Theorem: Let 𝑓(𝑥) be a continuous, real-valued function 
defined on a closed interval [𝑎, 𝑏] such that 𝑓(𝑎) < 0 and 𝑓(𝑏) > 0 then there exists at least one 𝑐 ∈

(𝑎, 𝑏) such that 𝑓(𝑐) = 0. Moreover, for any real number 𝑏, √𝑏 is always a complex number. If 𝑏 ≥
0, 𝑏 ∈ ℝ. 

For example, let 𝑓(𝑥) = 𝑥2 − 2 ∈ ℚ[𝑥] 

Then 𝑓(1) = 12 − 2 = 1 − 2 = −1 < 0 

and 𝑓(2) = 22 − 2 = 4 − 2 = 2 > 0 

So, 𝑓(1) < 0, 𝑓(2) > 0 but there does not exist any 𝑥 ∈ ℚ, 𝑥 ∈ (1, 2) and 𝑓(𝑥) = 0 but if we consider 

𝑓(𝑥) over the field of real numbers then there exists √2 ∈ ℝ, 𝑓(√2) = 0 and √2 ∈ (1,2).  

Theorem 10.1.2: Every polynomial 𝑓(𝑥) ∈ ℝ[𝑥] of odd degree has at least one real root. 

Proof: Let 𝑓(𝑥) be a polynomial over ℝ with odd degree 𝑛. 
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Without loss of generality, we may assume that 𝑓(𝑥) is a monic polynomial. 

Let 𝑓(𝑥) = 𝑥𝑛 + 𝑎1𝑥𝑛−1 + ⋯ + 𝑎𝑛−1𝑥 + 𝑎𝑛;  𝑎𝑖 ∈ ℝ, 1 ≤ ⅈ ≤ 𝑛 

Choose 𝑐 > 1 and  

𝑐 > ∑|𝑎𝑖|

𝑛

𝑙̇=1

 

Consider  

|∑ 𝑎𝑖𝑐𝑛−𝑖

𝑛

𝑖=1

| ≤ ∑|𝑎𝑖𝑐𝑛−𝑖|

𝑛

𝑖=𝐽

 

≤ ∑|𝑎𝑖|𝑐𝑛−𝑖

𝑛

𝑖=1

 

Also,  

𝑐 > 1 

⇒ 𝑐 ≤ 𝑐𝑖 ;  1 ≤ ⅈ ≤ 𝑛 

⇒
1

𝑐𝑖
≤

1

𝑐
 

⇒ 𝑐−𝑖 ≤ 𝑐−1 

⇒ 𝑐𝑛−𝑖 ≤ 𝑐𝑛−1  ∀ 1 ≤ ⅈ ≤ 𝑛 

Therefore, we have 

|∑ 𝑎𝑖𝑐𝑛−𝑖

𝑖=1

| ≤ ∑|𝑎𝑖|𝑐𝑛−1

𝑛

𝑖=1

 

= 𝑐𝑛−1 ∑|𝑎𝑖|

𝑛

𝑖=1

… (1) 

 

Again, 

𝑓(𝑥) = 𝑥𝑛 + 𝑎1𝑥𝑛−1 + ⋯ + 𝑎𝑛−1𝑥 + 𝑎𝑛 

= 𝑥𝑛 + ∑ 𝑎𝑖𝑥𝑛−𝑖

𝑛

𝑖=1

 

 
𝑓(𝑐) = 𝑐𝑛 + ∑ 𝑎𝑖𝑐𝑛−𝑖

𝑛

𝑖=1

 

         ≥  𝑐𝑛 − |∑ 𝑎𝑖𝑐𝑛−𝑖

𝑛

𝑖=1

| … … (2) 

From (1) 

|∑ 𝑎𝑖𝑐𝑛−𝑖

𝑛

𝑖=1

| 

 

≤ 𝑐𝑛−1 ∑|𝑎𝑖|

𝑛

1=1

 

⇒ − |∑ 𝑎𝑖𝑐𝑛−𝑖

𝑛

𝑖=1

| ≥  −𝑐𝑛−1 ∑|𝑎𝑖|

𝑛

𝑖=𝑗
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⇒ 𝑐𝑛 − |∑ 𝑎𝑖𝑐𝑛−𝑖

𝑛

𝑖=1

| ≥  𝑐𝑛 − 𝑐𝑛−1 ∑|𝑎𝑖|

𝑛

𝑖=1

 

From (2) 

𝑓(𝑐) ≥ 𝑐𝑛 − |∑ 𝑎𝑖𝑐𝑛−𝑖

𝑛

𝑙̇=1

| 

 

≥  𝑐𝑛 − 𝑐𝑛−1 ∑|𝑎𝑖|

𝑛

𝑖=𝐽

 

 

= 𝑐𝑛 (1 −
∑ |𝑎𝑖|𝑛

𝑖=1

𝑐
) … (3) 

Since  

𝑐 > ∑|𝑎𝑖|

𝑛

𝑖=1

 

 

⇒
∑ |𝑎𝑖|𝑛

𝑖=1

𝑐
< 1 

⇒  1 −
∑ |𝑎𝑖|𝑛

𝑖=1

𝑐
> 0 

Also, 𝑐 > 1, 𝑐𝑛 > 1 > 0 

⇒ 𝑐𝑛 (1 −
∑ |𝑎𝑖|𝑛

𝑖=1

𝑐
) > 0 

From (3) 

𝑓(𝑐) > 0 

Again,  

𝑓(−𝑥) = (−𝑥)𝑛 + 𝑎1(−𝑥)𝑛−1 + ⋯ + 𝑎𝑛−1(−𝑥) + 𝑎𝑛 

Since 𝑛 is odd 

 = −𝑥𝑛 + 𝑎1𝑥𝑛−1 + ⋯ − 𝑎𝑛−1𝑥 + 𝑎𝑛 

= −𝑔(𝑥) 

where 𝑔(𝑥) is a monic polynomial given by 

𝑔(𝑥) = 𝑥𝑛 − 𝑎1𝑥𝑛−1 + ⋯ + (−𝑎𝑛−1𝑥) + 𝑎𝑛 

Also, 

𝑓(𝑐) > 0 

⇒ 𝑓(−(−𝑐)) > 0 

⇒ −𝑔(−𝑐) > 0 

⇒ 𝑔(−𝑐) < 0 

and  

𝑔(𝑐) > 0 
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By intermediate value theorem, there exists 𝑏 ∈ (−𝑐, 𝑐) such that 𝑓(𝑏) = 0 

Therefore, 𝑓 has a root in the interval (−𝑐, 𝑐) that is, 𝑓 has at least one real root. 

 

Theorem 10.1.3: Any quadratic equation over ℂ has a root in ℂ. 

Proof: Quadratic equation over the field of complex numbers is given by 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 where 
𝑎, 𝑏, 𝑐 ∈ ℂ. 

We know that roots of 𝑓(𝑥) are given by  

−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
 

That is,  

−
𝑏

2𝑎
±

√𝑏2 − 4𝑎𝑐

2𝑎
 

= −
𝑏

2𝑎
±

√𝐷

2𝑎
;  𝐷 = 𝑏2 − 4𝑎𝑐 

Claim: ∀ 𝑫 ∈ ℂ, √𝑫 ∈ ℂ 

Since 𝐷 ∈ ℂ 

Let 𝐷 = 𝑢 + ⅈ𝑣 

Let 𝐷 = 𝐸2;  𝐸 = 𝛼 + ⅈ𝛽 

𝑢 + ⅈ𝑣 = (𝛼 + ⅈ𝛽)2 

= 𝛼2 − 𝛽2 + 2ⅈ𝛼𝛽 

Comparing real and imaginary parts 

𝑢 = 𝛼2 − 𝛽2, 𝑣 = 2𝛼𝛽 

Consider 

4𝛼4 − 4𝛼2𝑢 − 𝑣2 = 4𝛼4 − 4𝛼2(𝛼2 − 𝛽2) − (2𝛼𝛽)2 

= 4𝛼4 − 4𝛼4 + 4𝛼2𝛽2 − 4𝛼2𝛽2 

= 0 

Therefore, 

4𝛼4 − 4𝛼2𝑢 − 𝑣2 = 0 

𝛼2 =
4𝑢 ± √16𝑢2 + 16𝑣2

8
 

           =
1

2
(𝑢 + √𝑢2 + 𝑣2) ∈ ℝ 

As 𝛼2 > 0 ⇒ 𝛼 ∈ ℝ 

⇒ 𝛽 =
𝑣

2𝛼
∈ ℝ 

⇒ √𝐷 ∈ ℂ 

⇒ 𝛼 + ⅈ𝛽 ∈ ℂ 

Therefore, we can observe that 
−𝑏±√𝐷

2𝑎
∈ ℂ 

Remark: Given 𝑧 = 𝑢 + ⅈ𝑣 ; 𝑢, 𝑣 ∈ ℝ 

𝑧̅ = 𝑢 − ⅈ𝑣 is called conjugate of 𝑧 and |𝑧| = √𝑢2 + 𝑣2 is called modulus of 𝑧. 

𝑧𝑧̅ = (𝑢 + ⅈ𝑣)(𝑢 − ⅈ𝑣) 

= 𝑢2 + 𝑣2 
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= |𝑧|2 > 0 

𝑧𝑧̅ = 0 ⇔ 𝑢2 + 𝑣2 = 0 

⇔ 𝑢 = 𝑣 = 0 

⇔ 𝑧 = 0 

Consider 𝑓(𝑥) = 𝛼0 + 𝛼1𝑥 + ⋯ + 𝛼𝑛𝑥𝑛 ∈ ℂ[𝑥] 

Then conjugate of 𝑓(𝑥) is defined as 

𝑓(̅𝑥) = 𝛼0̅̅ ̅ + 𝛼1̅̅ ̅𝑥 + ⋯ + 𝛼𝑛̅̅̅̅ 𝑥𝑛 ∈ ℂ[𝑥] 

Remark: If 𝑧 = 𝛼 + ⅈ𝛽 ∈ ℂ 

𝑧̅ = 𝛼 − ⅈ𝛽 

⇒ 𝑧 + 𝑧̅ = 2𝛼 ∈ ℝ 

and  

𝑧 − 𝑧̅ = 2ⅈ𝛽 is always a purely imaginary number. 

 

Let 𝑓(𝑥) = 𝛼0 + 𝛼1𝑥 + ⋯ + 𝛼𝑛𝑥𝑛 

⇒ 𝑓(̅𝑥) = 𝛼0̅̅ ̅ + �̅�1𝑥 + ⋯ + �̅�𝑛𝑥𝑛 

⇒ 𝑓(𝑥) + 𝑓(̅𝑥) = (𝛼0 + 𝛼0̅̅ ̅) + (𝛼1 + �̅�1)𝑥 + ⋯ + (𝛼𝑛 + �̅�𝑛)𝑥𝑛 ∈ ℝ[𝑥] 

For any 𝑧 ∈ ℂ, 𝑓(𝑧)̅̅ ̅̅ ̅̅ = 𝑓(̅𝑧̅) 

 

Theorem 10.1.4: For any non-constant polynomial 𝑓(𝑥) ∈ ℂ[𝑥], the polynomial 𝑔(𝑥) = 𝑓(𝑥)𝑓̅(𝑥) has 
a root in ℂ if and only if 𝑓(𝑥) has a root in ℂ. 

Proof: For any non-zero polynomial 𝑓(𝑥) ∈ ℂ[𝑥], the polynomial 𝑔(𝑥) = 𝑓(𝑥)𝑓̅(𝑥) has a root in ℂ 

if and only if there exists 𝑑 ∈ ℂ such that 𝑔(𝑑) = 0 

⇔ 𝑓(𝑑)𝑓(̅𝑑) = 0 

⇔ 𝑓(𝑑) = 0 or 𝑓̅(𝑑) = 0 

If 𝑓(𝑑) = 0 ⇒ 𝑑 is a root of 𝑓(𝑥) 

If 𝑓(̅𝑑) = 0 

⇒ 𝑓(̅𝑑) = 𝑓(̅𝑑)̅̅ ̅̅ ̅̅ = 0̅ = 0 

⇒ 𝑓(�̅�) = 0 

⇒ �̅� is a root of 𝑓(𝑥). 

Conversely, let 𝑓(𝑥) has a root 𝑧 ∈ ℂ 

That is, 𝑓(𝑧) = 0 

𝑔(𝑧) = 𝑓(𝑧)𝑓(̅𝑧) = 0. 𝑓̅(𝑧) = 0 

⇒ 𝑧 is a root of 𝑔(𝑧). 

Hence, 𝑔(𝑧) = 𝑓(𝑧)𝑓(̅𝑧) has a root in ℂ if and only if 𝑓(𝑧) has a root in ℂ. 

 

Theorem 10.1.5: For any non-constant polynomial 𝑓(𝑥) ∈ ℂ[𝑥],  the polynomial 𝑔(𝑥) = 𝑓(𝑥)𝑓(̅𝑥) ∈
ℝ[𝑥] 

Proof: Let 𝑓(𝑥) = 𝛼0 + 𝛼1𝑥 + 𝛼2𝑥2 + ⋯ + 𝛼𝑛𝑥𝑛 be a polynomial of degree 𝑛 over ℂ, then 

𝑓(̅𝑥) = 𝛼0̅̅ ̅ + 𝛼1̅̅ ̅𝑥 + 𝛼2̅̅ ̅𝑥2 + ⋯ + 𝛼𝑛̅̅̅̅ 𝑥𝑛 

⇒ 𝑓(𝑥)𝑓(̅𝑥) = (𝛼0 + 𝛼1𝑥 + ⋯ + 𝛼𝑛𝑥𝑛)(𝛼0̅̅ ̅ + 𝛼1̅̅ ̅𝑥 + ⋯ + 𝛼𝑛̅̅̅̅ 𝑥𝑛) 

= 𝛼0𝛼0̅̅ ̅ + (𝛼0𝛼1̅̅ ̅ + 𝛼1�̅�0)𝑥 + (𝛼0�̅�2 + 𝛼, 𝛼1̅̅ ̅ + 𝛼2𝛼0̅̅ ̅)𝑥2 + ⋯ + 𝛼𝑛𝛼𝑛̅̅̅̅ 𝑥2𝑛 ⋯ (1) 
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Also, 

𝛼0𝛼0̅̅ ̅ = |𝛼0̅̅ ̅|2 ∈ ℝ 

𝛼0𝛼1̅̅ ̅ + 𝛼1𝛼0̅̅ ̅ = 𝛼0�̅�1 + 𝛼0𝛼1̅̅ ̅̅̅ ̅̅ ̅̅  

= |𝛼0𝛼1̅̅ ̅|2 ∈ ℝ 

𝛼0𝛼2̅̅ ̅ + 𝛼1𝛼1̅̅ ̅ + 𝛼2𝛼0̅̅ ̅ = (𝛼0𝛼2̅̅ ̅ + 𝛼0𝛼2̅̅ ̅̅̅ ̅̅ ̅̅ ̅) + |𝛼1|2 

= |𝛼0𝛼2̅̅ ̅|2 + |𝛼1|2 ∈ ℝ 

 

Continuing so on, we get all the coefficients of 𝑓(𝑥)𝑓̅(𝑥) are from ℝ and hence 𝑓(𝑥)𝑓(̅𝑥) ∈ ℝ[𝑥]. 

10.2 Fundamental theorem of algebra 

Theorem 10.2.1 (Fundamental Theorem of Algebra): Every polynomial 𝑓(𝑥) ∈ ℂ[𝑥] with a positive 
degree has all the roots in ℂ. 

Proof: Let 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + ⋯ + 𝑎𝑛𝑥𝑛 ∈ ℂ[𝑥] such that deg 𝑓(𝑥) = 𝑛 ≥ 1 

For 𝑛 = 1 

𝑓(𝑥) = 𝑎0 + 𝑎1𝑥, 𝑎1 ≠ 0, 𝑎1 ∈ ℂ 

Then 𝑥 = 𝑎1
−1𝑎0 ∈ ℂ is a root of 𝑎0 + 𝑎1𝑥. Therefore, 𝑎0 + 𝑎1𝑥 has all the roots in ℂ. 

For 𝑛 > 1 

Let 𝑔(𝑥) = (𝑥2 + 1)𝑓(𝑥)𝑓(̅𝑥) is a polynomial over the field of real numbers. 

That is, 𝑔(𝑥) ∈ ℝ[𝑥] 

Let 𝐸 be the splitting field of 𝑔(𝑥) over ℝ. 

Also, ℝ ⊆ ℂ = ℝ(ⅈ) ⊆ 𝐸 

𝐴𝑠, 𝐸 is the splitting field of 𝑔(𝑥) over ℝ. Therefore, ℝ ⊆ 𝐸. 

Also, ⅈ is the root of 𝑔(𝑥). ⅈ belong to the splitting field of 𝑔(𝑥) that is 𝐸. 

Claim: There does not exist a subfield 𝑲 of 𝑬 containing ℂ such that [𝑲: ℂ] = 𝟐. 

Hence 𝐾 is a finite, separable extension of ℂ. Therefore, 𝐾 is a simple extension of ℂ. So, there exists 
𝛼 ∈ 𝐾 such that 𝐾 = ℂ(𝛼). 

If 𝑝(𝑥) ∈ ℂ[𝑥] is minimal polynomial of 𝛼 over ℂ then deg 𝑝(𝑥) = [𝐾: ℂ] = 2. 

Suppose 𝑝(𝑥) = 𝑥2 + 2𝑎𝑥 + 𝑏;  𝑎, 𝑏 ∈ ℂ 

Then  

𝑝(𝑥) = (𝑥 + 𝑎)2 − (𝑎2 − 𝑏) 

= (𝑥 + 𝑎 − √𝑎2 − 𝑏) (𝑥 + 𝑎 + √𝑎2 − 𝑏) 

Since 𝑎, 𝑏 ∈ ℂ 

⇒ 𝑎2 − 𝑏 ∈ ℂ ⇒ √𝑎2 − 𝑏 ∈ ℂ 

Again, ±√𝑎2 − 𝑏, 𝑎, 1 ∈ ℂ 

 

 

 

1) Find the value of √4 + 5ⅈ. 

2) Prove that a polynomial of degree 3 over the field of real numbers has  

at leastone real root. 
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So, 𝑥 + 𝑎 + √𝑎2 − 𝑏, 𝑥 + 𝑎 − √𝑎2 − 𝑏 ∈ ℂ[𝑥] 

⇒ 𝑝(𝑥) is a reducible polynomial over ℂ but 𝑝(𝑥) is a minimal polynomial and hence irreducible 
over ℂ. 

Therefore, our supposition was wrong and hence the claim is established. 

Let 𝐺 = 𝐺(𝐸, ℝ) be the Galois group of 𝑔(𝑥) over ℝ. 

Let 𝑂(𝐺) = 2𝑚𝑞, 𝑞 is odd integer. 

If 𝑚 = 0 ⇒ 𝑂(𝐺) = 𝑞 is odd but 𝐺 = 𝐺(𝐸, ℝ) 

𝑂(𝐺) 

 

= [𝐸: ℝ] 

= [𝐸: ℂ][ℂ: ℝ];  ℂ = ℝ(ⅈ) 

= 2[𝐸: ℂ] 

This implies, 𝑂(𝐺) is even. 

So, we arrive at a contradiction. 

Hence 𝑚 ≠ 0. 

2 divides 𝑂(𝐺) ⇒ 𝑂(𝐺) = 2𝑚𝑞; 𝑞 is odd. 

Let 𝐻 be the Sylow 2- subgroup of 𝐺 and 𝑂(𝐻) = 2𝑚 

Let 𝐿 be the corresponding subfield of 𝐸. 

Moreover, 𝑂(𝐻) = [𝐸: 𝐿] 

Therefore, [𝐸: 𝐿] = 2𝑚 

Consider [𝐸: ℝ] = 2𝑚𝑞 

⇒ [𝐸: 𝐿][𝐿: ℝ] = 2𝑚𝑞 

⇒ 2𝑚[𝐿: ℝ] = 2𝑚 

⇒ [𝐿: ℝ] = 𝑞 

𝐿 is a finite, separable extension of ℝ. Therefore, there exists 𝛽 ∈ 𝐿 such that 𝐿 = 𝑅(𝛽). 

The minimal polynomial 𝑞(𝑥) of ℝ(𝛽) over ℝ is of degree 𝑞 and 𝑞 is odd. 

⇒ 𝑞(𝑥) has at least one real root 

⇒ ∃ some 𝛾 ∈ ℝ such that 𝑞(𝛾) = 0. 

𝑞(𝑥) = (𝑥 − 𝛾)𝑞1(𝑥),  𝑞1(𝑥) ∈ ℝ[𝑥] that is, 𝑞(𝑥) is a reducible polynomial over ℝ but 𝑞(𝑥) being 
minimal polynomial is irreducible. 

So, we arrive at a contradiction unless 𝑞 = 1. 

[𝐸: ℝ] = 2𝑚 

⇒ [𝐸: ℂ][ℂ: ℝ] = 2𝑚 

⇒ [𝐸: ℂ] =
2𝑚

2
= 2𝑚−1 

Then the subgroup 𝐺(𝐸, ℂ) of 𝐺(𝐸, ℝ) is of order 2𝑚−1. 

If 𝑚 > 1, let 𝐻′ be the subgroup of 𝐸 containing ℂ. 

⇒ [𝐸: 𝐿′] = 2𝑚−2 

[𝐸: ℂ] = 2𝑚−1, [𝐸: 𝐿′] = 2𝑚−2 

⇒ [𝐸: 𝐿′][𝐿′: ℂ] = [𝐸: ℂ] 

⇒ 2𝑚−2[𝐿′: ℂ] = 2𝑚−1 

⇒ [𝐿′: ℂ] = 2 

So, we arrive at a contradiction to the claim we established. 

Therefore, 𝑚 = 1 
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and [𝐸: ℝ] = 2𝑚 = 2 = [ℂ: ℝ] 

⇒ ℂ ⊆ 𝐸 ⇒ ℂ = 𝐸 

So, ℂ itself is splitting field of 𝑔(𝑥) = (𝑥2 + 1)𝑓(𝑥)𝑓(̅𝑥) 

Therefore, ℂ is the splitting field of 𝑓(𝑥). 

Such fields 𝐹; all the roots of polynomials 𝑓(𝑥) ∈ 𝐹[𝑥] are in 𝐹, are called algebraically closed. 

Let 𝐹 = ℝ, then 𝑥2 + 1 has both roots ±ⅈ ∉ ℝ, ℝ is not algebraically closed. 

 

10.3 Composite Field Extension 

Definition 10.3.1 (Composite Extension): Let 𝐾1 and 𝐾2 are two extensions of a field 𝐹 both 
contained in some field extension �̅� of 𝐹 then the composite extension of 𝐾1 and 𝐾2 is denoted as 
𝐾1𝐾2 and 𝐾1𝐾2 is the smallest field extension of 𝐹 such that it is generated by 𝐹 and 𝐾1 ∪ 𝐾2 that is, 

𝐾1𝐾2 = 𝐹(𝐾1⋃𝐾2) = 𝐾2𝐾1 

For field extension 𝐹 ⊆ 𝐾 ⊆ 𝐿 

𝐿 

 

𝐾 

 

𝐹 

Composite field extension is given by 

�̅� 

 

𝐾1𝐾2 

 

𝐾1 ∩ 𝐾2 

 

𝐹 

Result: Let 𝐾1 be Galois extension of 𝐹 and 𝐾2 be a finite extension of 𝐹 then 𝐾1𝐾2 is Galois extension 
of 𝐾2 and 𝐺(K1K2,  K2) is isomorphic to a subgroup of 𝐺(𝐾1,  𝐹). 

Proof:𝐾1 is a finite, separable extension of field 𝐹 and hence 𝐾1 is a simple extension of 𝐹. 

So, there exists some 𝑎 ∈ 𝐾1 such that 𝐾1 = 𝐹(𝑎). 

Let 𝑝(𝑥) be the minimal polynomial of 𝑎 over 𝐹. 

𝑎 ∈ 𝐾1 is a root of 𝑝(𝑥) ∈ 𝐹[𝑥] and 𝐹 ⊆ 𝐾1 is a normal extension. 

Thus, 𝑝(𝑥) has all the roots in 𝐾1 = 𝐹(𝑎) ⊆ 𝐾2(𝑎) 

Therefore, 𝐾2(𝑎) is the splitting field of 𝑝(𝑥) over 𝐾2 and  

𝐾2(𝑎) = 𝐾2(𝐹(𝑎))(𝐹 ⊆ 𝐾2) 

= 𝐾2𝐾1 

= 𝐾1𝐾2 
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⇒ 𝐾1𝐾2 is the splitting field of 𝑝(𝑥) over 𝐾2 

⇒  𝐾1𝐾2 is a normal extension of 𝐾2 

Again, 𝑝(𝑥) has distinct roots as 𝐾1 is a separable extension of 𝐹. 

⇒  𝐾1𝐾2 is a Galois extension of 𝐾2. 

Define 𝜃: 𝐺(𝐾1𝐾2, 𝐾2) → 𝐺(𝐾, 𝐹) by 𝜃(𝜎) = 𝜎|𝐾1 where 𝜎|𝐾1 denotes the restriction of 𝜎 on 𝐾1. 

𝜽 is a homomorphism 

For 𝜎, 𝜂 ∈ 𝐺(𝐾1𝐾2, 𝐾2) 

𝜃(𝜎𝜂) = 𝜎𝜂|𝐾1 

= (𝜎|𝐾1)(𝜂|𝐾1) 

= 𝜃(𝜎)𝜃(𝜂) 

Therefore, 𝜃 is a homomorphism. 

𝜽 is one-one 

Let 𝜎 ∈ ker 𝜃 

⇔ 𝜃(𝜎) = 𝐼 where 𝐼: 𝐾1 → 𝐾1 is the identity map. 

⇔ 𝜎(𝑥) = 𝑥 ∀ 𝑥 ∈ 𝐾1 and by definition of 𝐺(𝐾1, 𝐹),  we have 𝜎(𝑥) = 𝑥 ∀ 𝑥 ∈ 𝐹 

The domain of 𝜃 is 𝐺(𝐾1𝐾2, 𝐾2) and identity of 𝐷 is 𝜎 such that 𝜎(𝑥) = 𝑥 ∀ 𝑥 ∈ 𝐾1𝐾2 but by 
definition of 𝐺(𝐾1𝐾2, 𝐾2);  𝜎(𝑥) = 𝑥 ∀ 𝑥 ∈ 𝐾2. 

In particular, 𝜎 ∈ ker 𝜃 

⇔ 𝜎(𝑥) = 𝑥 ∀ 𝑥 ∈ 𝐾1 

For some 𝑥 ∈ 𝐾1𝐾2 

𝜎(𝑥) = 𝜎(𝑘1𝑘2); 𝑘1 ∈ 𝐾1,  𝑘2 ∈ 𝐾2 

= 𝜎(𝑘1)𝜎(𝑘2) 

= 𝑘1𝑘2 

= 𝑥 

Therefore, 𝜎 is identity map on 𝐾1𝐾2. 

Thus, ker 𝜃 = {𝐼} 

Hence, 𝜃 is one-one. 

By Fundamental Theorem of Homomorphism 

𝐺(𝐾1𝐾2, 𝐾2) ≅ 𝑓 (𝐺(𝐾1𝐾2, 𝐾2)) 

Therefore, 𝑓 (𝐺(𝐾1𝐾2, 𝐾2)) is a subgroup of codomain 𝐺(𝐾, 𝐹). 

⇒ 𝐺(𝐾1𝐾2, 𝐾2) is isomorphic to a subgroup of 𝐺(𝐾1, 𝐹). 

Theorem 10.3.2: Let 𝐾1 be a Galois extension of 𝐹 and 𝐾2 be any finite extension of 𝐹. Then 
[𝐾1𝐾2: 𝐾2] divides [𝐾1: 𝐹]. 

Proof:𝐾1 is a Galois extension of 𝐹 and 𝐾2 is any finite extension of 𝐹 

In this case, 𝐺(𝐾1𝐾2, 𝐾2) is isomorphic to a subgroup of 𝐺(𝐾1, 𝐹). 

⇒ 𝑂(𝐺(𝐾1𝐾2, 𝐾2)) divides 𝑂(𝐺(𝐾1, 𝐹)) … … (1) 

Since 𝐾1 is Galois extension of 𝐹 therefore, 𝐾1𝐾2 is also a Galois extension of 𝐾2. 

By the Fundamental theorem of Galois extension, 

𝑂(𝐺(𝐾1𝐾2, 𝐾2)) = [𝐾1𝐾2: 𝐾2]  and 𝑂(𝐺(𝐾1, 𝐹)) = [𝐾1: 𝐹] … … (2) 

Using (1) and (2), we have, [𝐾1𝐾2: 𝐾2] divides [𝐾1: 𝐹]. 
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If 𝐾1is not Galois extension of 𝐹 then [𝐾1𝐾2: 𝐾2] need not divide [𝐾1: 𝐹]. 

Solution: Consider 𝐾1 = ℚ(√2
3

𝜔), 𝐹 = ℚ 

𝜔 is the primitive cube root of unity 

Consider 𝑥3 − 2 ∈ ℚ[𝑥] then roots of 𝑥3 − 2 are √2
3

, √2
3

𝜔, √2
3

𝜔2. 

Now √2
3

𝜔 ∈ 𝐾1 

If possible, let √2
3

𝜔2 ∈ 𝐾1 

⇒ 𝜔 ∈ 𝐾1 

⇒ 𝐾1 = 𝐹(√2
3

, 𝜔) and [𝐾1: 𝐹] = 6 

If 𝐾1 = ℚ(√2
3

, 𝜔) 

𝑓(𝑥) = 𝑥3 − 2, by Eisenstein criteria is an irreducible monic polynomial over ℚ having a root √2
3

. 

Therefore, 𝑥3 − 2 is minimal polynomial of √2
3

 over ℚ. 

Thus, [ℚ(√2
3

): ℚ] = 3 

If possible, let 𝜔 ∈ ℚ(√2
3

) 

⇒ 𝜔 = 𝛼 + 𝛽 √2
3

 ;  𝛼, 𝛽 ∈ ℚ 

⇒ 𝜔 − 𝛽 √2
3

= 𝛼 

⇒ 𝜔3 − 2𝛽3 − 3𝜔2𝛽 √2
3

+ 3√4
3

𝛽𝜔 = 𝛼3 

⇒ 1 − 2𝛽3 − 𝛼3 = √2
3

(3𝜔2𝛽 − 3√2
3

𝜔𝛽) 

⇒ 1 − 2𝛽3 − 𝛼3 = 3√2
3

𝜔𝛽(𝜔 − 1) 

⇒ 𝜔 ∉ ℚ(√2
3

) 

So, [ℚ(√2
3

, 𝜔): ℚ(√2
3

)] ≥ 2 

But 𝑥2 + 𝑥 + 1 is a monic polynomial over ℚ(√2
3

) having a root 𝜔. 

[ℚ(√2
3

, 𝜔): ℚ(√2
3

)] ≤ 2 

⇒ [ℚ(√2
3

, 𝜔): ℚ(√2
3

)] = 2 

Therefore, [ℚ(√2
3

, 𝜔): ℚ] =  [ℚ(√2
3

, 𝜔): ℚ(√2
3

)][ℚ(√2
3

): ℚ] = 2 × 3 = 6 

But 𝑥3 − 2 is an irreducible polynomial of degree 3 over ℚ and hence it is minimal polynomial of 

√2
3

𝜔 over ℚ. 

Therefore, [𝐾1: ℚ] = 3 ≠ 6 

Thus, we arrive at a contradiction. 

There exists a polynomial 𝑥3 − 2 ∈ ℚ[𝑥] such that it has one root √2
3

𝜔 ∈ 𝐾1 but not all the roots are 
in 𝐾1. 

Therefore, 𝐾1 is not a normal extension of 𝐹 and hence not a Galois extension either. 

Also, [𝐾1: ℚ] = 3 

Let 𝐾2 = ℚ(√2
3

) then 𝐾2 is a finite extension of ℚ. 

𝐾1𝐾2 = ℚ(√2
3

𝜔)ℚ(√2
3

) = ℚ(√2
3

, 𝜔) 

[𝐾1𝐾2: 𝐾2] = 2 

𝑥2 + √2
3

𝑥 + √2
3

 is the minimal polynomial of √2
3

𝜔 over 𝐾2. 

2 does not divide 3 

That is, [𝐾1𝐾2: 𝐾2] need not divide [𝐾1: 𝐹]. 
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Summary 

• The theory of roots of polynomials is discussed. 

• The square root of every complex number exists in the field of complex numbers is proved. 

• The Fundamental Theorem of Algebra is proved. 

• The importance of the Fundamental Theorem of Algebra is discussed. 

• The composite extension is defined. 

• Composite Galois extension is explained with the help of an example.  

Keywords 

• Roots of polynomial 

• Fundamental Theorem of Algebra 

• Composite Galois Extension 

 

Self Assessment 

1: For every real number 𝑏, √𝑏 is 

A: A real number 

 B: A rational number 

C: A complex number 

 D: A purely imaginary number 

 

2: Let 𝑓(𝑥) is a polynomial of degree 3 over ℝ then 

A: 𝑓(𝑥) has no real root 

B: 𝑓(𝑥) has exactly one real root 

C: 𝑓(𝑥) has at least one real root 

D: 𝑓(𝑥) has at least one positive real root. 

 

3: Let 𝑓(𝑥) is a polynomial of degree 10 over ℝ such that 𝑓(𝑥) has at least one real root. Then  

A: 𝑓(𝑥) has 3 real roots 

B: 𝑓(𝑥) has 2 real roots 

C: 𝑓(𝑥) has an even number of real roots 

D: 𝑓(𝑥) has an odd number of real roots. 

 

4: √9 + 40ⅈ = 

A: 5 + 4ⅈ 

B: 5 − 4ⅈ 

C: 4 + 5ⅈ 

D: 4 − 5ⅈ 

 

5: Square of a purely imaginary number is 

A: Always real and positive 
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B: Always real and negative 

C: Never a real number 

D: May or may not be real 

 

6: For 𝑓(𝑥) ∈ ℂ[𝑥], then 𝑔(𝑥) = 𝑓(𝑥) + 𝑓̅(𝑥) 

A: has all roots real 

B: has all roots imaginary 

C: has all coefficients real 

D: has all the coefficients purely imaginary 

 

7: For 𝑓(𝑥) ∈ ℂ[𝑥], then 𝑔(𝑥) = 𝑓(𝑥)𝑓(̅𝑥) 

A: has all roots real 

B: has all coefficients real 

C: has all roots imaginary 

D: has all the coefficients purely imaginary 

 

8: All the roots of a polynomial 𝑓(𝑥) ∈ ℂ[𝑥] are 

A: Real 

B: Purely imaginary 

C: Complex 

D: Zero 

 

9: [ℝ(ⅈ): ℝ] = 

A: 1 

B: 2 

C: 3 

D: 4 

 

10: Composite extension of field extensions 𝐾1 and 𝐾2 of a field 𝐹is 

A: Generated by 𝐹 

B: Generated by 𝐾1 ∪ 𝐾2 

C: Generated by 𝐹 and 𝐾1 ∪ 𝐾2 

D: Generated by 𝐾1𝐾2 

 

11: Let 𝐾1 is Galois extension of 𝐹 and 𝐾2 is a finite extension of 𝐹 then 𝐾1𝐾2 is 

A: Galois extension of 𝐾1 

B: Galois extension of 𝐾2 

C: Galois extension of 𝐾1𝐾2 

D: Galois extension of 𝐾1 ∪ 𝐾2 

 

12: Galois extension of a field 𝐹 is 
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A: Finite 

B: Separable 

C: Simple 

D: All are correct 

 

13: Let 𝐾1 is Galois extension of 𝐹 and 𝐾2 be any finite extension of 𝐹. Then 

A: [𝐾1𝐾2: 𝐾2] ≤ [𝐾1: 𝐹] 

B: [𝐾1𝐾2: 𝐾2] ≥ [𝐾1: 𝐹] 

C: [𝐾1𝐾2: 𝐾2] = [𝐾1: 𝐹] 

D: [𝐾1𝐾2: 𝐾2] > [𝐾1: 𝐹] 

 

14: Let 𝐾1 = ℚ(√2
3

𝜔) and 𝐹 = ℚ then [𝐾1: 𝐹] = 

A: 2 

B: 3 

C: 4 

D: 6 

 

15: Let 𝐾1 =  ℚ(√2
3

𝜔)and 𝐾2 = ℚ(√2
3

) then [𝐾1𝐾2: 𝐾2] 

A: 1 

B: 2 

C: 3 

D: 4 

 

Answers for Self Assessment 

1. C 2. C 3. C 4. A 5. B 

6. C 7. B 8. C 9. B 10. C 

11. B 12. D 13. A 14. B 15. D 

 

Review Questions 

1) In ℚ(√2) express the following elements as polynomials in √2 

a) 
1

2+√2
 

b) 
3+√2

5+√8
 

2) Show that if a polynomial 𝑓(𝑥) over the field of real numbers has a root 𝑎 + ⅈ𝑏 then 𝑎 − ⅈ𝑏 

is also a root of 𝑓(𝑥). 

3) Let 𝐾1 be a Galois extension of 𝐹 and 𝐾2 be any finite extension of 𝐹. Then prove that [𝐾1: 𝐹]is 

a multiple of [𝐾1𝐾2: 𝐾2]. 

4) Give an example of a polynomial over the field of real numbers with exactly two real and 

two complex roots. 

158



Advanced Abstract Algebra –I  

 LOVELY PROFESSIONAL UNIVERSITY  

Notes 

5) Give an example of a polynomial over the field of real numbers with exactly two purely 

imaginary roots. 

 
Further Readings 

Basic abstract algebra by P. B. Bhattacharya, S. K. Jain, S. R. Nagpal,Cambridge 
universitypress 

Topics in algebra by I.N. Hartstein, Wiley 

Abstract algebra by David S Dummit and Richard M Foote, Wiley 

 
Web Links 

https://onlinecourses.nptel.ac.in/noc20_ma29/preview 

https://nptel.ac.in/courses/111/105/111105112/# 
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Unit 11: Normal Closure of an Algebraic Extension 

CONTENTS 

Objective 

Introduction 

11.1 Definition and Examples 

Summary 

Keywords 

Self Assessment 

Answers for Self Assessment 

Review Questions 

Further Readings 

Objective 

After studying this unit, you will be able to 

• define normal closure of a field extension 

• understand normal closure with the help of examples 

 

Introduction 

In this unit, we will define the normal closure of a field extension and understand it with the help 
of various examples. 

 

11.1 Definition and Examples 

Definition 11.1.1: Let 𝐾 is a field and 𝐿 is an algebraic extension of 𝐾 then there is some algebraic 
extension 𝑀 of 𝐿 such that 𝑀 is a normal extension of 𝐾 and up to isomorphism there is only one 
such extension which is minimal. The only subfield of 𝑀 which contains 𝐿 and which is a normal 
extension of 𝐾 is 𝑀 itself. This extension is called normal closure of algebraic extension 𝐿 of 𝐾. 

 

 

: Let 𝑓(𝑥) = 𝑥2 − 2 ∈ ℚ[𝑥] then splitting field of 𝑓(𝑥) is ℚ(√2). Then its normal closure is 

ℝ. 

 

: Let 𝑓(𝑥) = (𝑥2 − 2)(𝑥2 − 3) then roots of 𝑓(𝑥) are ±√2, ±√3. 

Consider ℚ ⊆ ℚ(√2, √3) is a field extension such that ℚ(√2, √3) is the splitting field of 𝑓(𝑥). 

ℚ(√2) is a field extension of ℚ and √2 ∉ ℚ. 

Therefore,  

[ℚ(√2): ℚ] ≥ 2 

Also, 𝑥2 − 2 is the polynomial over ℚ having root √2that is,  

[ℚ(√2): ℚ] ≤ 2 

We can conclude that  

[ℚ(√2): ℚ] = 2 … (1) 
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Now √3 ∉ ℚ(√2) 

Otherwise 

If √3 ∈ ℚ(√2) 

√3 = 𝑝 + 𝑞√2; 𝑝, 𝑞 ∈ ℚ 

⇒ 3 = 𝑝2 + 2𝑞2 − 2√2𝑝𝑞 

⇒ 3 − 𝑝2 − 2𝑞2 = −2√2𝑝𝑞 

This is not possible as the left side is a rational number and the right side is purely irrational.  

This implies, √3 ∉ ℚ(√2) 

⇒ [ℚ(√3, √2): ℚ(√2)] ≥ 2 

Again, 𝑥2 − 3 is the polynomial over ℚ(√2) having a root √3. 

⇒ [ℚ(√3, √2): ℚ(√2)] ≤ 2 

This implies,  

[ℚ(√3, √2): ℚ(√2)] = 2 

Hence  

[ℚ(√3, √2): ℚ] =  [ℚ(√3, √2): ℚ(√2)][ℚ(√2): ℚ] 

= 2 × 2 

= 4 

Then we have three extensions 

ℚ ⊆ ℚ(√2) ⊆ ℚ(√2, √3) 

ℚ ⊆ ℚ(√3) ⊆ ℚ(√2, √3) 

ℚ ⊆ ℚ(√6) ⊆ ℚ(√2, √3) 

Note that each of the three ℚ(√2), ℚ(√3), ℚ(√6)is having the same degree of extension over ℚ 

 

 

:Let 𝑓(𝑥) = 𝑥3 − 2 ∈ ℚ[𝑥] then its roots are √2
3

, √2
3

𝜔, √2
3

𝜔2where 

𝜔 =
−1+√3ⅈ

2
 and 𝜔2 =

−1−√3ⅈ

2
 

ℚ(√2
3

, 𝜔) and ℚ(√2
3

, √3ⅈ) both can be treated as splitting fields of 𝑓(𝑥). 

Consider the field ℚ(√2
3

, √3ⅈ) 

Then 𝑥3 − 2 is an irreducible polynomial over ℚ, it is monic and having √2
3

 as a root. 

Therefore, the minimal polynomial of √2
3

 is a divisor of 𝑥3 − 2. But the polynomial 𝑥3 − 2 is 
irreducible over ℚ. Hence, it cannot have a proper factor. Therefore, 𝑥3 − 2 is the minimal 

polynomial of √2
3

 over ℚ. 

⇒ [ℚ(√2
3

): ℚ] = 3 

Again √3ⅈ ∉ ℚ(√2
3

) 

Therefore,  

[ℚ(√2
3

, √3ⅈ): ℚ(√2
3

)] ≥ 2 

Also, 𝑥2 + 3is an irreducible polynomial over ℚ, it is monic and having √3ⅈ as a root. 
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Hence, 

[ℚ(√2
3

, √3ⅈ): ℚ(√2
3

)] ≤ 2 

This implies, 

[ℚ(√2
3

, √3ⅈ): ℚ(√2
3

)] = 2 

So, 

[ℚ(√2
3

, √3ⅈ): ℚ] = [ℚ(√2
3

, √3ⅈ): ℚ(√2
3

)][ℚ(√2
3

): ℚ] 

= 3 × 2 

= 6 

It can be in the following four ways 

ℚ ⊆ ℚ(√3ⅈ) ⊆ ℚ(√2
3

, √3ⅈ) 

ℚ ⊆ ℚ(𝜃1) ⊆ ℚ(√2
3

, √3ⅈ) 

ℚ ⊆ ℚ(𝜃2) ⊆ ℚ(√2
3

, √3ⅈ) 

and  

ℚ ⊆ ℚ(𝜃3) ⊆ ℚ(√2
3

, √3ⅈ) 

Where  𝜃1 = √2
3

, 

𝜃2 = √2
3

𝜔  and 

𝜃3 = √2
3

𝜔2. 

 

 

 

 

 

 

 

 

 

 

 

:  

1) For any field 𝐹 if 𝑓(𝑥) is a polynomial over the field 𝐹 then there exists an 

extension 𝐾 of 𝐹 such that 𝑓(𝑥) splits completely in 𝐾 which proves that a normal 

closure of an algebraic extension always exists. 

2) If 𝐾 is an algebraic extension of 𝐹 which is splitting field over 𝐹 for a collection of 

polynomials 𝑓(𝑥) ∈ 𝐹[𝑥] then it is normal closure of 𝐹. 

3) If 𝑓(𝑥) ∈ 𝐹[𝑥] and 𝑓(𝑥) is of degree 𝑛 then adjoining one root of 𝑓(𝑥) to 𝐹 

generates an extension 𝐹1 of degree at the most 𝑛. This implies 𝑓(𝑥) has a root 𝛼 in 

any field extension 𝐹1 of 𝐹. Then  

𝐹1 = 𝐹(𝛼) 

Then 𝛼 is a root of 𝑓(𝑥). Further, if 𝑓(𝑥) is the minimal polynomial of 𝛼 over 

𝐹, then  

[𝐹(𝛼): 𝐹] = 𝑛 

But if it is not, then 

[𝐹(𝛼): 𝐹] < 𝑛 

In general, we can say 

[𝐹(𝛼): 𝐹] ≤ 𝑛 … (1) 

Now in 𝐹1, 

𝑓(𝑥) = (𝑥 − 𝛼)𝑓1(𝑥) 

⇒ deg 𝑓(𝑥) = deg(𝑥 − 𝛼) + deg 𝑓1(𝑥) 

⇒ deg 𝑓(𝑥) = 1 + deg 𝑓1(𝑥) 

⇒ deg 𝑓1(𝑥) = 𝑛 − 1 

For a root 𝛽 of 𝑓1(𝑥), in the same way, we can find 𝐹2 = 𝐹1(𝛽) 
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and 

[𝐹2: 𝐹1] ≤ 𝑛 − 1 ⋯ (2) 

Continuing so on… 

If 𝐾 is the splitting field of 𝑓(𝑥). 

[𝐾: 𝐹] = [𝐾: 𝐹𝑛] ⋅ ⋯ [𝐹2: 𝐹1][𝐹1: 𝐹] 

≤ 1 × 2 × 3 × ⋯ × 𝑛 − 1 × 𝑛 

= 𝑛! (From (1) and (2)) 
 

 

Summary 

• The normal closure of a field extension is defined. 

• Normal closure is explained with the help of examples 

 

Keywords 

• Field extension 

• Splitting field 

• Normal closure of a field extension 

 

Self Assessment 

 

1: Let L be an algebraic extension of the field 𝐾. Then 𝑀 is called normal closure of this algebraic 
extension if 

A: 𝑀 is a subfield of 𝐿 containing 𝐾 

B: 𝑀 is a subfield of 𝐾 

C: 𝑀 is any field extension of 𝐿 

D: 𝑀 is the unique (up to isomorphism) field extension of 𝐿 such that it is a normal extension of 𝐾. 

 

2: Let 𝐾 ⊆ 𝐿 be an algebraic extension such that 𝑀 is the normal closure of this extension. Let 𝑓(𝑥) ∈

𝐾[𝑥] be a polynomial of degree 3 having at least one root in 𝑀. Then 𝑀 contains …. number of roots 
of 𝑓(𝑥) 

A: 0 

B: 1 

C: 2 

D: 3 

 

3: Let 𝐾 ⊆ 𝐿 be an algebraic extension such that 𝑀 is the normal closure of this extension. Then the 
number of fields 𝑁 properly contained in 𝑀 such that 𝑁 is a normal extension of 𝐾 is 

A: 0 

B: 1 

C: 2 

D: 3   

 

4: Splitting field of 𝑓(𝑥) = 𝑥2 + 3 ∈ ℚ[𝑥] is 
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A: ℚ(√3) 

B: ℚ(ⅈ) 

C: ℚ(√3, ⅈ) 

D: ℂ 

 

5: Consider 𝑓(𝑥) = (𝑥2 − 5)(𝑥2 − 3) ∈ ℚ[𝑥]. Then splitting field 𝐾 of 𝑓(𝑥) and [𝐾: ℚ] is 

A: 𝐾 =  ℚ(√5, √3) and [𝐾: ℚ] = 4 

B: 𝐾 =  ℚ(√5, √3) and [𝐾: ℚ] = 6 

C: 𝐾 =  ℚ (√5) and [𝐾: ℚ] = 2 

D: 𝐾 =  ℚ(√3) and [𝐾: ℚ] = 2 

 

6: Let 𝐹 ⊆ 𝐾 be a field extension then  

A: [𝐾: 𝐹] = 1 if and only if 𝐾 = 𝐹 

B: [𝐾: 𝐹] > 1 if and only if 𝐾 ≠ 𝐹 

C: 𝑎 ∈ 𝐹 if and only if 𝐹(𝑎) = 𝐹 

D: All the options are correct 

 

7: Let 𝐹 ⊆ 𝐾 be a field extension and 𝑓(𝑥) ∈ 𝐹[𝑥] is a polynomial such that 𝑓(𝑎) = 0 for some 𝑎 ∈ 𝐾 
and 𝑝(𝑥) is the minimal polynomial of 𝑎 over 𝐹 then 

A: 𝑓(𝑥) = 𝑝(𝑥) 

B: 𝑓(𝑥) divides 𝑝(𝑥) 

C: 𝑝(𝑥) divides 𝑓(𝑥) 

D: 𝑝(𝑥) is never equal to 𝑓(𝑥) 

 

8: Degree of extension [ℚ(𝜔): ℚ] where 𝜔 =
1+√3ⅈ

2
 is 

A: 1 

B: 2 

C: 3 

D: 4 

 

9: A normal closure of an algebraic extension  

A: may not exist 

B: always exists and is unique 

C: always exists but not unique 

D: always exists but may or may not be unique 

 

10: Normal closure of ℚ ⊆ ℝ is 

A: ℚ(√2, √3) 

B: ℚ(√2, ⅈ) 

C: ℂ 

D: ℚ(ⅈ) 
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11: Let 𝐹 ⊆ 𝐾 is a field extension then for 𝑎, 𝑏 ∈ 𝐾,  

𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 𝐼:  [𝐹(𝑎): 𝐹] = [𝐹(𝑏): 𝐹] 

𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 𝐼𝐼: 𝑎 = 𝑏 

A: Statement I implies II 

B: Statement II implies I 

C: Statement I and II are equivalent 

D: Statement I is always true for any 𝑎, 𝑏 ∈ 𝐾 

12: Which of the following is true? 

A: [ℚ(√2): ℚ] = [ℚ(√2
3

): ℚ] 

B: [ℚ(ⅈ): ℚ] = [ℂ: ℝ] 

C: [ℚ(√5): ℚ] = 5 

D: [ℂ: ℝ] = ∞ 

 

13: Let 𝐹 ⊆ 𝐾 be a field extension and 𝑓(𝑥) ∈ 𝐹[𝑥] is a polynomial of degree 4 such that 𝑓(𝑎) = 0 for 
some 𝑎 ∈ 𝐾. Then the degree of the minimal polynomial of 𝑎 over 𝐹 is 

A: = 4 

B: < 4 

C: ≤ 4 

D: > 4 

 

14: Splitting field of 𝑓(𝑥) = 𝑥2 + 1 ∈ ℚ[𝑥] is 

A: ℚ 

B: ℚ(ⅈ) 

C: ℝ 

D: ℂ 

 

15: Splitting field of 𝑓(𝑥) = 𝑥2 + 1 ∈ ℝ[𝑥] is 

A: ℚ 

B: ℚ(ⅈ) 

C: ℝ 

D: ℂ 

 

Answers for Self Assessment 

1. D 2. D 3. A 4. C 5. A 

6. D 7. C 8. B 9. B 10. C 

11. B 12. B 13. C 14. B 15. D 
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Review Questions 

1) Find the normal closure of splitting field of the polynomial 𝑓(𝑥) = 𝑥2 − 3 ∈ ℚ[𝑥]. 

2) Find the normal closure of splitting field of the polynomial𝑓(𝑥) = (𝑥2 − 5)(𝑥2 − 7) ∈ ℚ[𝑥]. 

 

Further Readings 

 

Basic abstract algebra by P. B. Bhattacharya, S. K. Jain, S. R. Nagpal,Cambridge 

universitypress 

Topics in algebra by I.N. Hartstein, Wiley 

Abstract algebra by David S Dummit and Richard M Foote, Wiley 

 

https://onlinecourses.nptel.ac.in/noc20_ma29/preview 

https://nptel.ac.in/courses/111/105/111105112/# 
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Unit 12: Radical Extensions 

CONTENTS 

Objective 

Introduction 

12.1 Radical Extension 

12.2 Radical extension and Galois group 

12.3 Solution of polynomial equation by radicals 

Summary 

Keywords 

Self Assessment 

Answers for Self Assessment 

Review Questions 

Further Readings 

Objective 

After studying this unit, you will be able to 

• define radical and simple radical extension   

• understand results about radical and simple radical extensions 

• relate Galois radical extensions to its Galois group 

• find radical extension corresponding to a Galois extension 

• define polynomials solvable by radicals 

• understand important results about polynomials solvable by radicals 

• relate the concept to the symmetric group  

 

Introduction 

In this unit, radical and simple radical extensions are defined. Some important results about these 
extensions are discussed. The Galois radical extension is related to its Galois group. Further, 
polynomials solvable by radicals are defined and explained with the help of examples. A 
symmetric group is defined. 

 

12.1 Radical Extension 

Definition 12.1.1 (Simple Radical Extension): Let 𝐹 be a field. A finite field extension 𝐾 of 𝐹 is 
called a simple radical extension if 𝐾 = 𝐹(𝛼);  𝛼 ∈ 𝐾 such that 𝛼𝑛 ∈ 𝐹 for some 𝑛 ∈ ℤ. If 
characteristic 𝐹 = 𝑝 then 𝐺𝐶𝐷 (𝑝, 𝑛) = 1. 

 

: Let 𝐹 = ℝ is the field of real numbers then ℂ = ℝ(ⅈ); ⅈ2 = −1 ∈ ℝ. Hence ℂ over ℝ is a 
simple radical extension. 

Definition 12.1.2 (Radical Extension): A field extension 𝐾of a field 𝐹 is said to be a radical 
extension if there exist subfields 𝐾𝑖 of 𝐾 containing 𝐹(1 ≤ ⅈ ≤ 𝑚) such that  

𝐹 = 𝐾0 ⊆ 𝐾1 ⊆ 𝐾2 ⊆ ⋯ ⊆ 𝐾𝑚 = 𝐾 

such that 𝐾𝑖+1 = 𝐾𝑖(𝛼𝑖); 𝛼𝑖 ∈ 𝐾𝑖+1 and 𝛼𝑖
𝑚𝑖 ∈ 𝐾𝑖 ;  𝑚𝑖 ∈ ℤ. 

That is, each 𝐾𝑖+1 is a simple radical extension of 𝐾𝑖 . 
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Theorem 12.1.3: A simple radical and a radical extension are always separable extensions. 

Proof: We will consider two cases: 

Case I:Let 𝐾 is a simple radical extension of field 𝐹. 

⇒ 𝐾 = 𝐹(𝛼) for some 𝛼 ∈ 𝐾 such that 𝛼𝑛 ∈ 𝐹 for some natural number 𝑛. 

⇒ 𝛼 is a root of the polynomial 𝑥𝑛 − 𝛽 ∈ 𝐹[𝑥];  𝛽 = 𝛼𝑛 ∈ 𝐹 

Let 𝑓(𝑥) = 𝑥𝑛 − 𝛽 

⇒ 𝑓′(𝑥) = 𝑛𝑥𝑛−1. 

Now either characteristic 𝐹 = 0 or 𝑝 and 𝐺𝐶𝐷(𝑛, 𝑝) = 1 

This implies, 𝑝 does not divide 𝑛. 

⇒ 𝑓′(𝑥) ≠ 0 

⇒ 𝑓(𝑥) has no repeated roots in any field extension of 𝐹. 

This implies, the minimal polynomial of 𝛼 over 𝐹 divides 𝑓(𝑥). 

⇒ 𝐾 is a separable extension over 𝐹. 

Case II: Let 𝐾 is a radical extension of 𝐹. 

⇒ There exist 𝐾𝑖;  0 ≤ ⅈ ≤ 𝑚 such that  

𝐹 = 𝐾0 ⊆ 𝐾1 ⊆ 𝐾2 ⊆ ⋯ ⊆ 𝐾𝑚 = 𝐾 where 𝑘𝑖+1 = 𝑘𝑖(𝛽𝑖); 𝛽𝑖
𝑚𝑖 ∈ 𝐾𝑖 ;  1 ≤ ⅈ ≤ 𝑚 

By case I, 𝐾𝑖+1 is a separable extension of 𝐾𝑖 for every ⅈ. 

𝐾𝑖+1 = 𝐾𝑖(𝛽𝑖) 

𝐾𝑖+2 = 𝐾𝑖+1(𝛽𝑖+1) 

= 𝐾𝑖(𝛽𝑖 , 𝛽𝑖+1) 

Since 𝐾𝑖+1 is separable over 𝐾𝑖 and 𝐾𝑖+2 is separable over 𝐾𝑖+1 and both 𝛽𝑖  and 𝛽𝑖+1 are separable 
over 𝐹. 

⇒ 𝐾𝑖+2 = 𝐾𝑖(𝛾𝑖) is a separable extension. 

Continuing so on, we get that 𝐾𝑖 is a separable extension of 𝐹∀ 0 ≤ ⅈ ≤ 𝑚. 

⇒ 𝐾 is a separable extension of 𝐹. 

 

Theorem 12.1.4: Let 𝐾 is a radical extension of 𝐿 and 𝐿 is a radical extension of 𝐹 then 𝐾 is a radical 
extension of  𝐹. 

Proof: Since 𝐾 is a radical extension of 𝐿. 

This implies there exist subfields 𝐾𝑖 of 𝐾 containing 𝐹 such that 

𝐿 = 𝐾0 ⊆ 𝐾1 ⊆ 𝐾2 ⊆ ⋯ ⊆ 𝐾𝑟 = 𝐾 … … (1) 

such that 

𝐾𝑖+1 = 𝐾𝑖(𝛼𝑖); 𝛼𝑖 ∈ 𝐾𝑖+1;  𝛼𝑖
𝑛𝑖 ∈ 𝐾𝑖;  𝑛𝑖 ≥ 1 

Moreover, if characteristic 𝐿 = 𝑝 > 0 then 𝐺𝐶𝐷 (𝑝, 𝑛𝑖) = 1 ∀ 0 ≤ ⅈ ≤ 𝑚. 

Again, 𝐿 is a radical extension of 𝐹, there exist subfields 𝐿𝑖 of 𝐿 such that 

𝐹 = 𝐿0 ⊆ 𝐿1 ⊆ 𝐿2 ⊆ ⋯ ⊆ 𝐿𝑠 = 𝐿 … … (2) 

such that 

𝐿𝑗+1 = 𝐿𝑗(𝛽𝑗); 𝛽𝑗 ∈ 𝐿𝑗+1;  𝛽
𝑗

𝑚𝑗 ∈ 𝐿𝑗;  𝑚𝑗 ≥ 1 

if characteristic 𝐿 = 𝑝 > 0 then 𝐺𝐶𝐷 (𝑝, 𝑚𝑗) = 1 ∀ 0 ≤ 𝑗 ≤ 𝑚. 

From (1) and (2) 
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𝐹 = 𝐿0 ⊆ 𝐿1 ⊆ 𝐿2 ⊆ ⋯ ⊆ 𝐿𝑠 = 𝐿 = 𝐾0 ⊆ 𝐾1 ⊆ 𝐾2 ⊆ ⋯ ⊆ 𝐾𝑟 = 𝐾 

and this series satisfies all the axioms of being a radical extension. 

Therefore, 𝐾 is a radical extension of the field 𝐹. 

 

Theorem 12.1.5: Composite extension of two radical extensions is a radical extension of 𝐹. 

Proof: Let 𝐾1 and 𝐾2 be two radical extensions of a field 𝐹. 

Since 𝐾2 is a radical extension of 𝐹 therefore, there exist subfields 𝑁𝑖 of 𝐾2 such that  

𝐹 = 𝑁0 ⊆ 𝑁1 ⊆ 𝑁2 ⊆ ⋯ ⊆ 𝑁𝑚 = 𝐾2 

Where 𝑁𝑖+1 = 𝑁𝑖(𝛼𝑖); 𝛼𝑖
𝑛𝑖 ∈ 𝑁𝑖; 𝑛𝑖 ≥ 1 

Consider the series  

𝐾1 = 𝐾1𝐹 = 𝐾1𝑁0 ⊆ 𝐾1𝑁1 ⊆ ⋯ ⊆ 𝐾1𝑁𝑚 = 𝐾1𝐾2 

Note that  

𝐾1𝑁𝑖+1 = 𝐾1𝑁𝑖(𝛼𝑖) 

Since 𝛼𝑖
𝑛𝑖 ∈ 𝑁𝑖 and 𝑁𝑖 ⊆ 𝐾1𝑁𝑖. This implies 𝛼𝑖

𝑛𝑖 ∈ 𝐾1𝑁𝑖 

⇒ 𝐾1𝐾2 has the subfields such that 𝐾1𝑁𝑖+1 is a simple radical extension of 𝐾1𝑁𝑖  ∀ ⅈ. 

Also, 𝐾1𝑁𝑚 = 𝐾1𝐾2 

Thus,  

𝐾1 = 𝐾1𝐹 = 𝐾1𝑁0 ⊆ 𝐾1𝑁1 ⊆ ⋯ ⊆ 𝐾1𝑁𝑚 = 𝐾1𝐾2 is a series of subfields of 𝐾1𝐾2 such that 𝐾1𝑁𝑖+1 is a 
simple radical extension of 𝐾1𝑁𝑖 . 

 

Theorem 12.1.6: Let 𝐾be a radical extension of 𝐹 then there exists a field 𝐾 ⊆ 𝐿 such that 𝐿 is a 
radical Galois extension of 𝐹. 

Proof: Let 𝐾 be a radical extension of 𝐹 such that [𝐾: 𝐹] = 𝑛 

We will prove this result by using the Principle of Mathematical Induction on 𝑛 

For 𝒏 = 𝟏 

We have [𝐾: 𝐹] = 1 

⇒ 𝐾 = 𝐹 

We can take 𝐿 = 𝐹. Hence, we are thorough in this case. 

For 𝑛 = 1, the result is true. 

Let us suppose that the result is true for field extension of degree less than 𝑛. 

Since 𝐾 is a radical extension of 𝐹, there exists a radical extension 𝐾1 of 𝐹 such that 𝐾 is a simple 
radical extension of 𝐹. 

⇒ 𝐾 = 𝐾1(𝛼), 𝛼𝑚 = 𝛽 ∈ 𝐾1 

Therefore, [𝐾1: 𝐹] < [𝐾: 𝐹] = 𝑛 

By the induction hypothesis, there exists a Galois radical extension 𝐿1 of 𝐹 such that 𝐾1 ⊆ 𝐿1. 

Let 𝐺 = 𝐺(𝐿1, 𝐹) 

and  

𝑓(𝑥) = ∏(𝑥𝑚 − 𝜎(𝛽))

𝜎∈𝐺

 

Then ∀ 𝜏 ∈ 𝐺 

𝜏(𝑓(𝑥)) = 𝜏 (∏(𝑥𝑚 − 𝜎(𝛽))

𝜎∈𝐺

) 
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= (∏ 𝜏(𝑥𝑚 − 𝜎(𝛽))

𝜎∈𝐺

) 

 
= (∏ (𝑥𝑚 − 𝜏(𝜎(𝛽)))

𝜎∈𝐺

) 

 
= (∏ (𝑥𝑚 − (𝜎(𝛽)))

𝜎∈𝐺

) 

 = 𝑓(𝑥) 

Therefore, 𝜏(𝑓(𝑥)) = 𝑓(𝑥) 

𝑓(𝑥) ∈ 𝐹[𝑥] ⊆ 𝐿1[𝑥] 

Let 𝐿 be the splitting field of 𝑓(𝑥) over 𝐿1. 

Since for each 𝜎, splitting field of 𝑥𝑚 − 𝜎(𝛽) ∈ 𝐿1[𝑥] is a radical extension of 𝐿1. 

Note that 𝛽 = 𝛼𝑚 ⇒ 𝜎(𝛽) = (𝜎(𝛼))
𝑚

 

Therefore, splitting field 𝐿 of 𝑓(𝑥) is also a radical extension of 𝐿1. 

𝐴𝑙𝑠𝑜, 𝐿1 is a radical extension of 𝐹 implies 𝐿 is a radical extension of 𝐹. 

Now, 𝐿1 is the splitting field of some polynomial 𝑔(𝑥) ∈ 𝐹[𝑥]. 

Also, 𝐿 is the splitting field of some polynomial 𝑓(𝑥) ∈ 𝐿1[𝑥]this implies, 𝐿 is the splitting field of 
polynomial 𝑓(𝑥)𝑔(𝑥) ∈ 𝐹[𝑥]. Hence, 𝐿 is a normal and Galois extension of 𝐹. 

Also, 𝐿 contains all the roots of 𝑓(𝑥), therefore, 𝐾1 ⊆ 𝐿1 can be extended to an 𝐹 − isomorphism of 
𝐾 = 𝐾1(𝛼) into 𝐿. 

Therefore, 𝐿 is Galois radical extension of  𝐹 such that𝐾 ⊆ 𝐿. 

 

 

 1) Give an example of a field 𝐹 having two different simple radical extensions with 
the same degree of extension. 

2) Give an example of a field 𝐹 having two different simple radical extensions with 

different degrees of extension. 

 

12.2 Radical extension and Galois group 

Theorem 12.2.1: Let 𝐾 is Galois radical extension of 𝐹. Then 𝐺(𝐾, 𝐹) is a solvable group. 

Proof: Since 𝐾 is a radical extension of 𝐹, there exist subfields 

𝐹 = 𝐾0 ⊆ 𝐾1 ⊆ 𝐾2 ⊆ ⋯ ⊆ 𝐾𝑚 = 𝐾 

Such that 𝐾𝑖+1 = 𝐾𝑖(𝛼𝑖); 𝛼𝑖
𝑛𝑖 = 𝛽𝑖 ∈ 𝐾𝑖 , 𝐺𝐶𝐷(𝑛𝑖 , 𝑝) = 1 ∀ 1 ≤ ⅈ ≤ 𝑚 

Let 𝑛 = 𝑛1𝑛2 … 𝑛𝑚−1 

Claim:𝑮𝑪𝑫(𝒏, 𝒑) = 𝟏 

Let 𝑑 =  𝐺𝐶𝐷(𝑛, 𝑝) 

⇒ 𝑑|𝑛 and 𝑑|𝑝 

⇒ 𝑑|𝑛1𝑛2 … 𝑛𝑚. 

If 𝑑 > 1 then there exists a prime number 𝑑1 such that 𝑑1|𝑑 

⇒ 𝑑1|𝑛1𝑛2 … 𝑛𝑚 

⇒ 𝑑|𝑛𝑖 for at least one 1 ≤ ⅈ ≤ 𝑚 
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Also, 𝑑1|𝑝 

Therefore, 𝑑1|𝐺𝐶𝐷(𝑛𝑖 , 𝑝) = 1 

⇒ 𝑑1|1 Which is contradictory to the fact that 𝑑1 is a prime number. 

So, our assumption was wrong. 

⇒ 𝑑 = 1 

Hence the claim is established. 

Again as 𝐾 is Galois extension of 𝐹, therefore, 𝐾 is splitting field of separable polynomial 𝑓(𝑥) ∈
𝐹[𝑥]. 

Let 𝐾 ⊆ 𝐿 is the splitting field of 𝜙(𝑥) = (𝑥𝑛 − 1)𝑓(𝑥) ∈ 𝐹[𝑥]. 

Then 𝐿 is a splitting field of 𝜙(𝑥) over 𝐾. 𝜙(𝑥) is a separable polynomial over 𝐹. 

This implies that 𝐿 is a separable extension of 𝐾. 

Also, 𝐾 is a separable extension of 𝐹. 

Hence, 𝐿 is a separable extension of 𝐹. 

This further implies that 𝐿 is a Galois extension of 𝐹. 

Let 𝐿′ be the subfield of 𝐿 generated by 𝐹 and roots of polynomial 𝑥𝑛 − 1. 

Let 𝐿𝑖 be the subfield of 𝐿 generated by 𝐿′ and 𝐾𝑖;  0 ≤ ⅈ ≤ 𝑚 

Then 𝐿0 = 𝐿′𝐹 = 𝐿′ 

and 𝐿𝑚 = 𝐿′𝐾𝑚 = 𝐿′𝐾 = 𝐿 

Note that  

𝐿𝑖+1 

 

= 𝐿′𝐾𝑖+1 

= 𝐿′𝐾𝑖(𝛼𝑖) 

= 𝐿𝑖(𝛼𝑖);  0 ≤ ⅈ ≤ 𝑚 − 1 

Since 𝐿′ contains all the 𝑛 − 𝑡ℎ roots of unity, therefore, it contains all the 𝑛𝑖 − 𝑡ℎ roots of unity. 

This is due to the fact that for any 𝑎 such that 𝑎 is the 𝑛𝑖 − 𝑡ℎ root of unity that is 𝑎𝑛𝑖 = 1 

⇒ (𝑎𝑛𝑖)𝑛1𝑛2…𝑛𝑖−1𝑛𝑖+1…𝑛𝑚 = 1 

⇒ 𝑎𝑛 = 1 

This implies, 𝑎 is 𝑛 − 𝑡ℎ root of unity. 

Therefore, 𝐿𝑖+1 is a cyclic extension of 𝐿𝑖  ∀ 0 ≤ ⅈ ≤ 𝑚 − 1 … (1) 

Claim: 𝑮 = 𝑮(𝑳, 𝑭) is solvable. 

Let 𝐺𝑖 be the subgroups of 𝐺 having 𝐿𝑖 as fixed fields ∀ 0 ≤ ⅈ ≤ 𝑚. 

Then 

𝐺0 = 𝐺(𝐿, 𝐿′) ⊇ 𝐺1 ⊇ ⋯ ⊇ 𝐺𝑚 = {ⅇ} … (2) 

𝐺𝑖 = 𝐺(𝐿, 𝐿𝑖) ∀ 1 ≤ ⅈ ≤ 𝑚 − 1 

𝐺𝑚 = 𝐺(𝐿, 𝐿𝑚) = 𝐺(𝐿, 𝐿) 

Since 𝐿𝑖+1 is a cyclic and hence normal extension of 𝐿𝑖 , therefore, 𝐺𝑖+1 is a normal subgroup of 𝐺𝑖 
and 

𝐺𝑖 𝐺𝑖+1⁄ ≅ 𝐺(𝐿𝑖+1, 𝐿𝑖) 

⇒ 𝐺𝑖 ∕ 𝐺𝑖+1 is cyclic and hence abelian. 

(2) is a subnormal series with abelian factor groups. 

⇒ 𝐺0 = 𝐺(𝐿, 𝐿′) is a solvable group. Now 𝐺(𝐿′, 𝐹) is abelian as it is isomorphic to a subgroup of the 

multiplicative group of   ℤ 𝑛ℤ⁄ . 

⇒ 𝐺(𝐿′, 𝐹) is a solvable group. 
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Also,  

𝐺(𝐿, 𝐹) 𝐺(𝐿, 𝐿′)⁄ ≅ 𝐺(𝐿′, 𝐹) 

Thus, 𝐺(𝐿, 𝐹) is solvable. 

Again, 

𝐺(𝐾, 𝐹) ≅ 𝐺(𝐿, 𝐹) 𝐺(𝐿, 𝐾)⁄  

Therefore, 𝐺(𝐾, 𝐹) is also a solvable group. 

Theorem 12.2.2: Let 𝐾 be a Galois extension of 𝐹 of degree 𝑛 such that 𝑛 and 𝑝 are coprime. If 𝐺 =
 𝐺(𝐾, 𝐹) is a solvable group, then there exists a radical extension 𝐿 of 𝐹 such that 𝐾 ⊆  𝐿. 

Proof: We prove this result by using the Principle of Mathematical Induction on 𝑛. 

For 𝑛 = 1, 

Taking 𝐾 = 𝐹 = 𝐿, we get that the result is true for 𝑛 = 1. 

Let 𝑛 > 1 

𝐺 = 𝐺(𝐾, 𝐹) is solvable and we know that a finite group is solvable if and only if for each 
composition series of 𝐺, the factor groups are cyclic of prime order. Therefore, there exists a normal 
subgroup 𝐺1 of 𝐺 such that 𝐺/𝐺1 is cyclic and  

𝑂 (
𝐺

𝐺1
) = 𝑚 

Where 𝑚 is a prime number. 

Let 𝐾1 be the fixed field of 𝐺1. Then by the Fundamental Theorem of Galois theory, 𝐾1 is Galois 
extension of 𝐹 and  

𝐺(𝐾1 , 𝐹) ≅ 𝐺(𝐾, 𝐹) ∕ 𝐺(𝐾, 𝐾1) 

That is,  

𝐺(𝐾1, 𝐹) ≅ 𝐺 𝐺1⁄  

Therefore,  

𝑂(𝐺(𝐾1, 𝐹)) = 𝑚 

Let 𝐿1 be the splitting field of 𝑥𝑚 − 1 ∈ 𝐾[𝑥]. 

Since 𝑚|𝑛, 𝑥𝑚 − 1 is a separable polynomial.  

Also, 𝐾 is a Galois extension of 𝐹. Therefore, 𝐾 is the splitting field of 𝑓(𝑥) ∈ 𝐹[𝑥]. 

⇒ 𝐿1 is the splitting field of 𝑓(𝑥)(𝑥𝑚 − 1) ∈ 𝐹[𝑥] and both 𝑓(𝑥) and 𝑥𝑚 − 1 are separable 
polynomials. 

⇒ 𝐿1 is a Galois extension of 𝐹. 

Now,  

𝐹 ⊆ 𝐹(𝜔) ⊆ 𝐾1(𝜔) ⊆ 𝐾(𝜔) = 𝐿1 

where 𝜔 is the 𝑚 − 𝑡ℎ root of unity and 𝐿1 is a Galois extension of 𝐹. 

⇒ 𝐿1 is Galois extension of 𝐾1(𝜔). 

𝐺(𝐿1, 𝐾1(𝜔)) = 𝐺(𝐾(𝜔), 𝐾1(𝜔)) is isomorphic to a subgroup of 𝐺(𝐾, 𝐾1). 

Also, 𝐺 is solvable and 𝐺(𝐾, 𝐾1) is a normal subgroup of 𝐺. 

Therefore, 𝐺(𝐾, 𝐾1) is solvable and hence 𝐺(𝐿1, 𝐾1(𝜔)) is solvable. 

Also, 𝑂(𝐺(𝐿, 𝐾1(𝜔)) ≤ 𝑂(𝐺) 

By the Induction hypothesis, there exists a radical extension 𝐿 of 𝐾1(𝜔) such that 𝐿1 ⊆ 𝐿 … (1) 

Now, 𝐾1(𝜔) is a simple radical extension of 𝐹(𝜔) and 𝐹(𝜔) is a simple radical extension of 𝐹 … (2) 

From (1) and (2) 

𝐿 is a radical extension of 𝐹 such that 𝐾 (⊆ 𝐿1) ⊆ 𝐿. 
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12.3 Solution of polynomial equation by radicals 

Definition 12.3.1 (Polynomials solvable by radicals): Let 𝑓(𝑥) ∈ 𝐹[𝑥]. Then 𝑓(𝑥) is said to be 
solvable by radicals if its splitting field is a subfield of some radical extension of 𝐹. 

Remark 12.3.2: A polynomial 𝑓(𝑥) is solvable by radicals if and only if every irreducible factor of 
𝑓(𝑥) is solvable by radicals. 

Solution: It is sufficient to prove the result by taking two irreducible factors. 

Let 𝑓(𝑥) = 𝑓1(𝑥)𝑓2(𝑥) where 𝑓1(𝑥), 𝑓2(𝑥) are irreducible factors of 𝑓(𝑥). 

If 𝑓(𝑥) is solvable by radicals then splitting field of 𝑓(𝑥) lies in a radical extension 𝐿 of 𝐹. 

Therefore, all the roots of 𝑓(𝑥) are in 𝐿. 

This implies, all the roots of 𝑓1(𝑥) and 𝑓2(𝑥) lie in 𝐿. 

So, splitting field of  𝑓1(𝑥) and 𝑓2(𝑥) are contained in radical extension 𝐿 of 𝐹. 

Hence. 𝑓1(𝑥) and 𝑓2(𝑥)are solvable by radicals. 

Conversely, let 𝐹(𝛼1, 𝛼2, … , 𝛼𝑛) and 𝐹(𝛽1 , 𝛽2, … , 𝛽𝑛) be two splitting fields of 𝑓1(𝑥) and 𝑓2(𝑥) 
respectively. So, there exist 𝐿1 and 𝐿2, the radical extensions of 𝐹 such that 

𝐾1 = 𝐹(𝛼1, 𝛼2, … , 𝛼𝑛) ⊆ 𝐿1 

and  

𝐾2 = 𝐹(𝛽1 , 𝛽2 , … , 𝛽𝑛) ⊆ 𝐿2 

This implies, 𝐾1𝐾2 ⊆ 𝐿1𝐿2 

𝐿1𝐿2 being the composite extension is again a radical extension. 

Also, if 𝐾 is splitting field of 𝑓(𝑥) then  

𝐾 ⊆ 𝐾1𝐾2 ⊆ 𝐿1𝐿2 

Hence, 𝑓(𝑥) is solvable by radicals. 

 

Theorem 12.3.3: Let 𝑓(𝑥) ∈ 𝐹[𝑥], 𝐾 is the splitting field of 𝑓(𝑥) such that [𝐾: 𝐹] = 𝑛 and 𝐺𝐶𝐷(𝑛, 𝑝) =
1 where 𝑝 = 𝑐ℎ𝑎𝑟 (𝐹). Then 𝐾 is Galois extension of 𝐹. Also, 𝐺(𝐾, 𝐹) is solvable if and only if 𝑓(𝑥) is 
solvable by radicals. 

Proof: Let 𝑎 ∈ 𝐾 and 𝑔(𝑥) is the minimal polynomial of 𝑎 over 𝐹. 

Let [𝐹(𝑎): 𝐹] = 𝑚 

Also, 𝐹 ⊂ 𝐹(𝑎) ⊂ 𝐾 

This implies, [𝐹(𝑎): 𝐹] divides [𝐾: 𝐹]that is, 𝑚 divides 𝑛. 

Since 𝐺𝐶𝐷(𝑛, 𝑝) = 1 

⇒ 𝐺𝐶𝐷(𝑚, 𝑝) = 1 

⇒ 𝑝 does not divide 𝑚. 

Also, deg 𝑔(𝑥) = 𝑚, this implies that 𝑔′(𝑥) ≠ 0. 

Hence, 𝑔(𝑥) is a separable polynomial over 𝐹. 

⇒ 𝑎 is a separable element over 𝐹. 

⇒ 𝐾 is a separable extension of 𝐹. 

Also, 𝐾 is splitting field of 𝑔(𝑥) over 𝐹. 

⇒ 𝐾 is a normal extension of 𝐹 and hence Galois extension of 𝐹. 

Let 𝐺(𝐾, 𝐹) be a solvable group then there exists a radical extension 𝐿 of 𝐹 such that 𝐾 ⊆ 𝐿. 

⇒ 𝑓(𝑥) is solvable by radicals. 
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Conversely, let 𝑓(𝑥) is solvable by radicals. 

Therefore, there exists a radical extension 𝐿 of 𝐹 such that 𝐾 ⊆ 𝐿. 

So, there exists a radical Galois extension 𝐿1 such that 𝐿 ⊆ 𝐿1. 

Since 𝐾 is also Galois extension of 𝐹, therefore, 𝐺(𝐿1, 𝐾) is a normal subgroup of 𝐺(𝐿1, 𝐹) and  

𝐺(𝐾, 𝐹) ≅ 𝐺(𝐿1, 𝐹) ∕ 𝐺(𝐿1, 𝐾) 

Now, 𝐺(𝐿1, 𝐹) is solvable and hence 𝐺(𝐾, 𝐹) is solvable. 

 

 

: When characteristic 𝐹 = 𝑝 > 0 then we are taking the condition that 𝐺𝐶𝐷(𝑛, 𝑝) = 1 
but when characteristic 𝐹 = 𝑝 = 0 then we can trivially assume that 𝐺𝐶𝐷 (𝑛, 𝑝) = 1 
that is, all the results are true for Characteristic 𝐹 = 0 also. 

Theorem 12.3.4: Let characteristic 𝐹 = 𝑝 such that 𝑝 ≠ 2, 3 and 𝑓(𝑥) ∈ 𝐹[𝑥] with deg 𝑓(𝑥) ≤ 4. Then 
𝑓(𝑥) is solvable by radicals. 

Proof: As a polynomial 𝑓(𝑥) is solvable by radicals if and only if its irreducible factors are all 
solvable by radicals, therefore, we may assume that 𝑓(𝑥) is an irreducible polynomial. 

Claim:𝑮𝑪𝑫(𝟒!, 𝒑) = 𝟏. 

Let 𝐺𝐶𝐷 (4!, 𝑝) = 𝑑 

⇒ 𝑑|4! and 𝑑|𝑝 

Since 𝑑|𝑝, and 𝑝 is a prime number then 𝑑 = 1 or 𝑝 

Also, 𝑑|4! and prime divisors of 4! are 2 or 3. Since 𝑝 ≠ 2,3, therefore, 𝑑 = 1. 

Hence, 𝐺𝐶𝐷(4!, 𝑝) = 1 

Let 𝐾 be the splitting field of 𝑓(𝑥) and [𝐾: 𝐹] = 𝑚 so that [𝐾: 𝐹] = 𝑚 ≤ 4 and 𝑚|4! 

Now 𝐺𝐶𝐷 (𝑚, 𝑝) = 1 

Therefore, 𝐾 is Galois extension of 𝐹. 

Thus 𝑓(𝑥) is separable polynomial. Also, 𝐺(𝐾, 𝐹) is isomorphic to a subgroup of 𝑆𝑛;  𝑛 ≤ 4. 

Since 𝑆𝑛 is solvable for all 𝑛 ≤ 4, therefore, 𝐺(𝐾, 𝐹) is solvable. 

This proves that 𝑓(𝑥) is solvable by radicals. 

Theorem 12.3.5: Let 𝑓(𝑥) ∈ ℚ[𝑥]be an irreducible polynomial of degree 𝑝; 𝑝 is a prime number. If 
𝑓(𝑥) has exactly two non-real roots over ℂ, then the Galois group of 𝑓(𝑥) is 𝑆𝑝. 

Proof:Let 𝐾 be the splitting field of 𝑓(𝑥) ∈ ℚ[𝑥]. 

Characteristic ℚ = 0 

If 𝛼 ∈ 𝐾 is a root of 𝑓(𝑥) then [ℚ(𝛼): ℚ] = deg 𝑓(𝑥) = 𝑝. 

Also, [𝐾: ℚ] = [𝐾: ℚ(𝛼)][ℚ(𝛼): ℚ] 

This implies, [ℚ(𝛼): ℚ] divides [𝐾: ℚ]. 

⇒ 𝑝 divides [𝐾: ℚ]. 

Again, 𝑂(𝐺(𝐾, ℚ)) = [𝐾: ℚ] implies that 𝑝 divides 0(𝐺(𝐾, ℚ)). 

By Cauchy’s theorem, 𝐺 = 𝐺(𝐾, ℚ) has at least one element say 𝜎 of order 𝑝. 

Since deg 𝑓(𝑥) = 𝑝 

Therefore, 𝐺 is isomorphic to a subgroup of 𝑆𝑝. As 𝜎 ∈ 𝐺 and 0(𝜎) = 𝑝 

That is, 𝜎 is a 𝑝 −cycle. 

Claim: 𝑮 contains a transposition. 

Given that 𝑓(𝑥) has exactly two complex roots. 

Let 𝛼1 and 𝛼2 be two non-real roots of 𝑓(𝑥). 
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⇒ 𝛼1 and 𝛼2 are conjugates to each other. 

Let 𝜏 ∈ 𝐺(𝐾, ℚ)such that 𝜏(𝛼1) = 𝛼2. Since 𝜏 is one-one and it takes every element to its conjugate. 
Therefore,  𝜏(𝛼2) = 𝛼1.  

All other roots are fixed under 𝜏. Thus 𝜏 can be associated with a transposition (1 2) ∈ 𝐺. 

Since 𝐺 contains a transposition. Hence, 𝐺 is isomorphic to 𝑆𝑝. 

 

Summary 

• Radical and simple radical extensionsare defined. 

• Results about radical and simple radical extensions are proved. 

• Galois radical extensions are related to its Galois group. 

• Polynomials solvable by radicals are defined. 

• Important results about polynomials solvable by radicals are explained. 

• The concept of a symmetric group is described. 

Keywords 

• Radical extension 

• Simple radical extension 

• Galois radical extension 

• Polynomials solvable by radicals 

• Symmetric group 

 

Self Assessment 

1: A field extension 𝐹 ⊆ 𝐾 is called simple radical extension if 

A: 𝐾 = 𝐹(𝛼) for some 𝛼 ∈ 𝐾 

B: 𝐾 = 𝐹(𝛼) for some 𝛼 ∈ 𝐹 

C: 𝐾 = 𝐹(𝛼) for some 𝛼 ∈ 𝐾 such that 𝛼𝑛 ∈ 𝐹 for some integer 𝑛 

D: None of the options is correct 

 

2: Which of the following is a simple radical extension of ℚ? 

A: ℝ 

B: ℂ 

C: ℚ(ⅈ) 

D: ℤ 

 

3: The field extension ℚ ⊆ ℚ(√2) is 

A: Simple but not simple radical 

B: Simple radical but not simple 

C: Neither simple radical nor simple 

D: Both simple and simple radical 

4: Composite of two radical extensions is again a radical extension. 

A: True 

B: False 
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5: Every radical extension 𝐹 ⊆ 𝐾 gives rise to a radical Galois extension 𝐾 ⊆ 𝐿 

A: True 

B: False 

 

6: Let 𝐾 be a Galois radical extension of 𝐹 then 

A: 𝐾 is simple extension of 𝐹 

B: 𝐾 is contained in a simple extension of 𝐹 

C: 𝐾 contains a simple extension of 𝐹 which is not radical 

D: 𝐾 contains a simple radical extension 

 

7: Let 𝐹 ⊆ 𝐾1 ⊆ 𝐾2 ⊆ 𝐾 be a radical extension such that 𝐾1 = 𝐹(𝛼), 𝐾2 = 𝐾1
(𝛽), 𝐾 = 𝐾2(𝛾) then  

A: There exists some positive integer 𝑛, such that 𝛼𝑛 ∈ 𝐹 

B: There exists some positive integer 𝑛, such that 𝛽𝑛 ∈ 𝐹 

C: There exists some positive integer 𝑛, such that 𝛾𝑛 ∈ 𝐹 

D: All options are correct 

 

8: Let 𝐾 be a Galois radical extension of 𝐹. Then 

A: 𝐹 ⊆ 𝐾1 ⊆ 𝐾2 ⊆ ⋯ ⊆ 𝐾𝑚 = 𝐾 where each 𝐾ⅈ is a simple extension of 𝐾ⅈ−1. 

B: 𝐹 ⊆ 𝐾1 ⊆ 𝐾2 ⊆ ⋯ ⊆ 𝐾𝑚 = 𝐾 where each 𝐾ⅈ is a radical extension of 𝐾ⅈ−1. 

C: 𝐹 ⊆ 𝐾1 ⊆ 𝐾2 ⊆ ⋯ ⊆ 𝐾𝑚 = 𝐾 where each 𝐾ⅈ is a simple radical extension of 𝐾ⅈ−1. 

D: 𝐹 ⊆ 𝐾1 ⊆ 𝐾2 ⊆ ⋯ ⊆ 𝐾𝑚 = 𝐾 where each 𝐾ⅈ is a separable extension of 𝐾ⅈ−1. 

 

9: Any 25th root of unity is also a 𝑛𝑡ℎ root of unity, if and only if, 

A: 𝑛 is any multiple of 25 

B: 𝑛 is any divisor of 25 

C: 𝑛 = 5 

D: 𝑛 = 10 

 

10: True/False Let 𝐾 be a Galois extension of 𝐹 of degree 𝑛 such that 𝑛 and 𝑝 are coprime. If 𝐺 =

 𝐺(𝐾, 𝐹) is a solvable group, then there exists a radical extension 𝐿 of 𝐹 such that 𝐾 ⊆  𝐿. 

A: True 

B: False 

 

11: Let 𝑓(𝑥) be a polynomial over a field 𝐹. Then its splitting field is  

A: a radical extension of 𝐹 

B: a simple radical extension of 𝐹 

C: a subfield of some radical extension of 𝐹 

D: a subfield of some simple radical extension of 𝐹 

 

12: Let 𝑓(𝑥) = 𝑔(𝑥)ℎ(𝑥); 𝑔(𝑥), ℎ(𝑥) ∈ 𝐹[𝑥]. Let 𝐾 be the splitting field of 𝑓(𝑥) and 𝐿 be the splitting 
field of 𝑔(𝑥). Then 𝐾 = 𝐿 if  
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A: ℎ(𝑥) is a constant polynomial 

B: ℎ(𝑥) and 𝑔(𝑥) have same roots  

C: All the roots of ℎ(𝑥) are roots of 𝑔(𝑥) also 

D: All options are correct 

 

13: Let characteristic of a field 𝐹 = 5 and 𝑓(𝑥) is a polynomial over 𝐹. Let 𝐾 be the splitting field of 
𝑓(𝑥) such that [𝐾: 𝐹] = 3. Then 𝐺(𝐾, 𝐹) is solvable if and only if 

A: 𝑓(𝑥) is reducible over 𝐹 

B: 𝑓(𝑥) is solvable by radicals 

C: 𝑓(𝑥) is irreducible over 𝐹 

D: 𝑓(𝑥) has multiple roots in 𝐾 

 

14: Let 𝐹 ⊆ 𝐾 be a field extension. Let 𝑎 ∈ 𝐾 be an element such that 𝑎 ∉ 𝐹. If [𝐾: 𝐹] = 𝑛 and 
[𝐹(𝑎): 𝐹] = 𝑚, then 

A: 𝑛 is a divisor of 𝑚 

B: 𝑚 is a divisor of 𝑛 

C: 𝑛 = 𝑚 

D: 𝑚 > 𝑛 

 

15: Let characteristic 𝐹 = 5 and 𝑓(𝑥) ∈ 𝐹[𝑥] is a polynomial of degree 4. Then 

A: 𝑓(𝑥) is always solvable by radicals 

B: 𝑓(𝑥) is not solvable by radicals 

C: 𝑓(𝑥) may or may not be solvable by radicals 

D: 𝑓(𝑥) is always irreducible 

 

Answers for Self Assessment  

1. C 2. B 3. D 4. A 5. A 

6. D 7. D 8. C 9. A 10. A 

11. C 12. D 13. B 14. B 15. A 

 

Review Questions 

1) Let 𝐹 be any field and let 𝐹(𝑥, 𝑦, 𝑧) be the field of rational functions in 3 indeterminates. 

Let 𝑆 be the field of symmetric functions. Find [𝐹(𝑥, 𝑦, 𝑧): 𝑆]. 

2) Prove that every polynomial over a field 𝐹 with degree less than or equal to 4 is always 

solvable by radicals. 

3) Prove that the polynomial 𝑓(𝑥) = 𝑥8 + 𝑥6 + 𝑥4 + 𝑥2 + 1 ∈ ℚ[𝑥] is solvable by radicals. 

4) Let 𝑓(𝑥) ∈ ℚ[𝑥] be an irreducible polynomial of degree 7. If 𝑓(𝑥) has exactly two non-real 

roots over ℂ, then find the Galois group of 𝑓(𝑥). 
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Unit 13: Insolvability of the general equation of degree 5 by 
radicals 

CONTENTS 

Objective 

Introduction 

13.1 Insolvability of the general equation of degree 5 by radicals 

Summary 

Keywords 

Self Assessment 

Answers for Self Assessment 

Review Questions 

Further Readings 

Objective 

After studying this unit, you will be able to 

• observe that an equation of degree 2, 3, or 4 are always solvable by radicals over Q 

• analyze that the equation with order more than 4 may not be solvable by radicals with the 
help of various examples  

Introduction 

In this unit, we will discuss that a polynomial of degree 4 or less is always solvable by radicals but a 
polynomial with a degree more than 4 may not be solvable by radicals. With the help of examples, 
we will prove these statements. 

 

13.1 Insolvability of the general equation of degree 5 by radicals 

Theorem 13.1.1: Any quadratic equation over ℚ is solvable by radicals. 

Proof: Let 𝑓(𝑥) = 𝑥2 + 𝑎𝑥 + 𝑏 be a quadratic equation over ℚ. 

Now 𝑎, 𝑏 ∈ ℚ 

Then roots of the polynomial 𝑓(𝑥) are given by 

𝛼 =
−𝑎 + √𝑎2 − 4𝑏

2
 

and  

𝛽 =
−𝑎 − √𝑎2 − 4𝑏

2
 

Now for rational numbers 𝑎 and 𝑏,  

Either 𝑎2 − 4𝑏 ≥ 0 or 𝑎2 − 4𝑏 < 0 

If 𝑎2 − 4𝑏 ≥ 0, then both the roots 𝛼 and 𝛽 of 𝑓(𝑥) are rational numbers hence the splitting field of 
𝑓(𝑥) is ℚ. 

If 𝑎2 − 4𝑏 < 0, then 𝑓(𝑥) = (𝑥 − 𝛼)(𝑥 − 𝛽) is irreducible over ℚ but both the irreducible factors of 
𝑓(𝑥) are solvable by radicals. 

That is, if √𝑎2 − 4𝑏 ∉ ℚ 

Then let 𝑐 = √𝑎2 − 4𝑏 
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Consider 𝐾 = ℚ(𝑐), then 𝐾 is a proper extension of ℚ and it is a simple extension. Moreover, 

𝑐2 = 𝑎2 − 4𝑏 ∈ ℚ 

Thus, 𝐾 is a simple radical extension of ℚ and hence 𝑓(𝑥) is solvable by radicals. 

 

Theorem 13.1.2: Any cubic equation over Q is solvable by radicals. 

Proof: Let 𝑓(𝑥) = 𝑥3 + 3𝑎𝑥2 + 3𝑏𝑥 + 𝑐 ∈ ℚ[𝑥] is a cubic polynomial. 

Put 𝑥 = 𝑧 − 𝑎 

Then  

𝑔(𝑧) = (𝑧 − 𝑎)3 + 3𝑎(𝑧 − 𝑎)2 + 3𝑏(𝑧 − 𝑎) + 𝑐 

= 𝑧3 − 𝑎3 − 3𝑧2𝑎 + 3𝑎2𝑧 + 3𝑎𝑧2 + 3𝑎3 − 6𝑎2𝑧 + 3𝑏𝑧 − 3𝑏𝑎 + 𝑐 

= 𝑧3 + (−3𝑎2𝑧 + 3𝑏𝑧) + 3𝑎3 − 𝑎3 − 3𝑏𝑎 + 𝑐 

= 𝑧3 + 3𝑟𝑧 + 𝑠 

where 𝑟 = 𝑏 − 𝑎2, 

𝑠 = 2𝑎3 − 3𝑎𝑏 + 𝑐. 

Since 𝑎, 𝑏, 𝑐 ∈ ℚ ⇒ 𝑟, 𝑠 ∈ ℚ 

Hence, 𝑔(𝑧) ∈ ℚ[𝑥] 

Also, 𝑓(𝑥) has same splitting field as 𝑔(𝑥). 

By knowing the roots of 𝑓(𝑥), we get the roots of 𝑔(𝑥) and vice versa. 

Put 𝑧 = 𝑝 + 𝑞 

𝑧3 = 𝑝3 + 𝑞3 + 3𝑝𝑞(𝑝 + 𝑞) 

= 𝑝3 + 𝑞3 + 3𝑝𝑞𝑧 

This implies,  

𝑧3 − 3𝑝𝑞𝑧 − (𝑝3 + 𝑞3) = 0 

That is, 

𝑝𝑞 = −𝑟 

𝑝3 + 𝑞3 = −𝑠 

and  

𝑝3𝑞3 = −𝑟3;  

A quadratic equation with roots 𝑝3, 𝑞3 is given by 𝑦2 + 𝑠𝑦 − 𝑟3 

So, we can take 

𝑝3 = −
𝑠

2
+ √𝑟3 +

𝑠

2
 

and  

𝑞3 = −
𝑠

2
− √𝑟3 +

𝑠

2
 

Therefore,  

𝑝 = (−
𝑠

2
+ √𝑟3 +

𝑠

2
)

1

2

 

So, three roots of 𝑔(𝑧) are𝑝 + 𝑞, 𝑝𝜔 + 𝑞𝜔2 and 𝑝𝜔2 + 𝑞𝜔; 𝜔 = √1
3

 is the imaginary cube root of 
unity. 

Consider 
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𝛼1 = √𝑟3 +
𝑠

2
, 

𝛼2 = (−
𝑆

2
+ 𝛼1)

1

3

 

and  

𝛼3 = √−3 

Set 

𝐹0 = ℚ 

𝐹1 = 𝐹0(𝛼1) 

𝐹2 = 𝐹1(𝛼2) 

and  

𝐹3 = 𝐹2(𝛼3) 

Note that 𝐹0 ⊆ 𝐹1 ⊆ 𝐹2 ⊆ 𝐹3 

Also, 

𝛼1
2 = 𝑟3 +

𝑠

2
∈ ℚ = 𝐹0 

So, 𝐹1 is a simple radical extension of 𝐹0. 

𝛼2
3 = 𝛼1 −

𝑠

2
∈ 𝐹1 

So, 𝐹2 is a simple radical extension of 𝐹1. 

𝛼3
2 = −3 ∈ 𝐹0 ⊆ 𝐹2 

So, 𝐹3 is a simple radical extension of 𝐹2. 

Therefore, 𝐹3 is a radical extension of ℚ. 

As 𝐹3  contains all the roots of 𝑓(𝑥) that is, 𝐹3 contains a splitting field of 𝑓(𝑥). 

Hence, any cubic equation over ℚ is solvable by radicals. 

 

Theorem 13.1.3: Any quartic equation over 𝐹 is solvable by radicals. 

Proof: Let 𝑓(𝑥) = 𝑎0𝑥𝑢 + 𝑎1𝑥3 + 𝑎2𝑥2 + 𝑎3𝑥 + 𝑎4; 𝑎0 ≠ 0 be any quartic equation over 𝐹. 

Let 𝐸 be its splitting field over 𝐹 and 𝛼1, 𝛼2, 𝛼3, 𝛼4 be four roots of 𝑓(𝑥). 

Then  

𝐸 = 𝐹(𝛼1, 𝛼2, 𝛼3, 𝛼4) 

Now for any 𝜎 ∈ 𝐺(𝐸, 𝐹) 

𝜎(𝛼𝑖) is a root of 𝑝(𝑥) ∀ⅈ. 

Therefore, 𝜎 induces a permutation of set 𝑋 = {𝛼1, 𝛼2, 𝛼3, 𝛼4}. 

Now, 𝑂(𝑋) ≤ 4 

Let 𝑂(𝑋) = 𝑚 ≤ 4 

The group 𝐴(𝑋) of all the permutations on 𝑋 is isomorphic to 𝑆𝑚. 

Since 𝑆1, 𝑆2, 𝑆3, 𝑆4 are all solvable groups hence 𝐴(𝑋) is solvable. 

Define 

𝑓: 𝐺(𝐸, 𝐹) → 𝐴(𝑋) 

by  

𝑓(𝜎) = 𝜎|𝑋 (Restriction of 𝜎 on 𝑋) 

Then 𝑓 is monomorphism and hence 
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𝐺(𝐸, 𝐹) ≅ Im 𝑓 

𝐼𝑚 (𝑓) is a subgroup of solvable group 𝐴(𝑋). Since subgroup of a solvable group is always solvable, 
therefore, 𝐺(𝐸, 𝐹) is a solvable group. 

This implies, 𝑓(𝑥) is solvable by radicals. 

 

 

: The polynomial 𝑥7 − 10𝑥5 + 15𝑥 + 5 is not solvable by radicals. 

Solution: By Eisenstein Criteria of irreducible polynomials, taking 𝑝 = 5, we get that 𝑓(𝑥) = 𝑥7 −

10𝑥5 + 15𝑥 + 5 is an irreducible polynomial over ℚ. 

Also, by Descartes’s rule of signs 

Number of positive real roots of 𝑓(𝑥) ≤ Number of changes in sign of 𝑓(𝑥) 

= 2 

Also,  

𝑓(−𝑥) 

 

= (−𝑥)7 − 10(−𝑥)5 + 15(−𝑥) + 5 

= −𝑥7 + 10𝑥5 − 15𝑥 + 5 

Again, by Descartes’s rule of signs 

Number of negative real roots of 𝑓(𝑥) ≤ Number of changes in sign of 𝑓(−𝑥) 

= 3 

Therefore, the number of real roots of 𝑓(𝑥) ≤ 5. 

Again, 

𝑓(−4) < 0, 𝑓(−3) > 0 

𝑓(−2) > 0, 𝑓(−1) < 0 

𝑓(−1) < 0, 𝑓(0) > 0 

𝑓(1) > 0, 𝑓(2) < 0 

𝑓(3) < 0, 𝑓(4) > 0 

By Intermediate Value Theorem, 𝑓(𝑥) has exactly five real roots in intervals (−4, −3), (−2, −1),
(−1, 0), (1, 2) and (3, 4). 

Therefore, 𝑓(𝑥) has exactly two non-real roots. 

Galois group of 𝑓(𝑥) is 𝑆7 but 𝑆7 is not a solvable group. 

Hence, 𝑓(𝑥) is not solvable by radicals. 

Theorem 13.1.5: The polynomial 𝑥5 − 6𝑥 + 3 is not solvable by radicals. 

Solution: Taking 𝑝 = 3, and using Eisenstein criteria, we see that 𝑓(𝑥) = 𝑥5 − 6𝑥 + 3 is irreducible 
over ℚ and hence it has no root in ℚ. 

Also,  𝑓′(𝑥) = 0 

⇒ 5𝑥4 − 6 = 0 

⇒ 𝑥2 = √
6

5
 

⇒ 𝑥 = ± (
6

5
)

1

4

 

So, 𝑓′(𝑥) = 0 at 𝑥 = ± (
6

5
)

1

4
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Possible maxima or minima of 𝑓(𝑥) is at ± (
6

5
)

1

4
 only. 

𝑓(−∞) = −∞ 

𝑓 (− (
6

5
)

1

4

) = (−
6

5
)

5

4

− 6 (− (
6

5
)

1

4

) + 3 > 0 

𝑓 ((
6

5
)

1

4

) = (
6

5
)

5

4

− 6 ((
6

5
)

1

4

) + 3 < 0 

and  

𝑓(∞) = ∞ 

Therefore, 𝑓(𝑥) has exactly three real roots in each of the intervals 

(−∞, − (
6

5
)

1

4

) , (− (
6

5
)

1

4

, (
6

5
)

1

4

) , ((
6

5
)

1

4

, ∞) 

So, 𝑓(𝑥) is not solvable by radicals. 

 

 

Every irreducible polynomial over ℝ and ℂ is solvable. 

Let 𝑓(𝑥) be an irreducible polynomial over ℝ. 

Then 𝑓(𝑥) ∈ ℝ[𝑥] ⊆ ℂ[𝑥] 

but ℂ is algebraically closed. 

Therefore, the splitting field of 𝑓(𝑥) is ℂ. 

Since [ℂ: ℝ] = 2, 𝑂(𝐺(𝑓(𝑥), ℝ)) = 2 

So, Galois group of 𝑓(𝑥) is 𝑆2. 

𝑆2 is solvable implies 𝑓(𝑥) is solvable by radicals. 

Also, over ℂ, every polynomial is reducible in linear factors and hence solvable by radicals. 

 

 

The polynomial 𝑥2 + 𝑥 + 1 is solvable by radicals over 𝑍2. 

Solution: Since 02 + 0 + 1 = 1 ≠ 0 in ℤ2 

12 + 1 + 1 = 3 = 1 ≠ 0 in ℤ2. 

Therefore, 𝑓(𝑥) = 𝑥2 + 𝑥 + 1 is irreducible over ℤ2. 

Let 𝛼 be any root of 𝑥2 + 𝑥 + 1 in some field extension of ℤ2, then 𝛼2 + 𝛼 + 1 = 0. 

⇒ 𝛼3 + 𝛼2 + 𝛼 = 0 

⇒ 𝛼3 − 1 = 0 

⇒ 𝛼3 = 1 in ℤ2 

⇒ 𝛼3 ∈ ℤ2 

Therefore, ℤ2(𝛼) is a field extension of ℤ2, which is a simple extension and contains roots of 𝑥2 +
𝑥 + 1. Also, it is a simple radical extension of ℤ2. Hence, this polynomial is solvable by radicals. 

 

 

Let characteristic 𝐹 = 0. The polynomial 𝑓(𝑥) = 𝑎𝑥8 + 𝑏𝑥6 + 𝑐𝑥4 + ⅆ𝑥2 + ⅇ ∈ 𝐹[𝑥] is 
solvable by radicals. 

Solution:𝑓(𝑥) = 𝑎𝑥8 + 𝑏𝑥6 + 𝑐𝑥4 + ⅆ𝑥2 + ⅇ 
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Let 𝑥2 = 𝑦 

𝑔(𝑦) = 𝑎𝑦4 + 𝑏𝑦3 + 𝑐𝑦2 + ⅆ𝑦 + ⅇ is a quartic polynomial over 𝐹. 

Since every quartic polynomial is solvable by radicals, therefore, 𝑔(𝑦) is solvable by radicals over 𝐹. 

Let 𝐾 be the splitting field of 𝑔(𝑦) over 𝐹 then there exists a radical extension 𝐿 of 𝐹 such that 𝐾 ⊆ 𝐿. 

In 𝐿, 𝑔(𝑦) = 𝑎(𝑦 − 𝛼1)(𝑦 − 𝛼2)(𝑦 − 𝛼3)(𝑦 − 𝛼4) where 𝛼1, 𝛼2, 𝛼3, 𝛼4 are roots of 𝑔(𝑦) so, 
𝛼1, 𝛼2, 𝛼3, 𝛼4 ∈ 𝐿. 

𝑓(𝑥) = 𝑎(𝑥2 − 𝛼1)(𝑥2 − 𝛼2)(𝑥2 − 𝛼3)(𝑥2 − 𝛼4) in 𝐿 

The splitting field of 𝑓(𝑥) is 𝐿(√𝛼1, √𝛼2, √𝛼3, √𝛼4) and (√𝛼𝑖)
2

∈ 𝐿 

Therefore, each 𝑥2 − 𝛼𝑖 is solvable by radicals over 𝐿 

So, 𝑓(𝑥) is solvable by radicals over 𝐿. 

This implies that 𝑓(𝑥) is solvable by radicals over 𝐹 

 

Summary 

• Apolynomial of degrees 2, 3, or 4 are always solvable by radicals over Q is proved. 

• A polynomial with order more than 4 may not be solvable by radicals is explained with 
the help of various examples 

 

Keywords 

• Field extensions 

• Radical extension 

• Solvability of polynomials by radicals 

 

Self Assessment 

1: Choose the incorrect statement 

A: Any quadratic equation over ℚ is solvable by radicals 

B: Any cubic equation over ℚ is solvable by radicals 

C: Any quartic equation over ℚ is solvable by radicals 

D: Any equation over ℚ is solvable by radicals 

 

2: Let 𝑓(𝑥) be a quadratic polynomial over ℚ, then roots of 𝑓(𝑥) are 

A: Both rational numbers 

B: Both complex numbers 

C: Either both complex or rational numbers 

D: One complex number and another rational number 

 

3: Let 𝑓(𝑥) = 𝑥2 + 𝑎𝑥 + 𝑏 ∈ ℚ[𝑥] have both roots real and distinct. Then  

A: 𝑎2 > 4𝑏 

B: 𝑎2 < 4𝑏 

C: 𝑎2 ≥ 4𝑏 

D: 𝑎2 = 4𝑏 
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4: Any cubic equation over the field of rational numbers  

A: Has at least one rational root 

B: Has at the most two complex roots 

C: Is always solvable by radicals 

D: All options are correct 

 

5: Let 𝑓(𝑥) is a monic polynomial with integral coefficients. Then by Descartes’ rule of sign number 
of positive real roots of 𝑓(𝑥) 

A: = Number of changes in sign of 𝑓(𝑥) 

B: ≤ Number of changes in sign of 𝑓(𝑥) 

C: > Number of changes in sign of 𝑓(𝑥) 

D: < Number of changes in sign of 𝑓(𝑥) 

 

6: Let 𝑓(𝑥) = 𝑥5 − 5𝑥4 + 10𝑥3 + 5𝑥2 + 2𝑥 − 1 then by Descartes’ rule of sign number of positive real 
roots of 𝑓(𝑥) is 

A: = 3 

B: ≤ 3 

C: ≥ 3 

D: < 3 

 

7: Let 𝑓(𝑥) = 𝑥5 − 5𝑥4 + 10𝑥3 − 5𝑥2 + 2𝑥 − 1 then by Descartes’ rule of sign number of negative 
real roots of 𝑓(𝑥) is 

A: 0 

B: 1 

C: 2 

D: 3 

 

8: A polynomial having a root in the field of rational numbers is  

A: Always reducible over ℚ 

B: Never reducible over ℚ 

C: Completely splits into linear factors over ℚ 

D: Completely splits into linear factors over ℝ 

 

9: Let 𝑓(𝑥) be a polynomial over ℚ such that 𝑓(𝑎) is maxima and 𝑓(𝑏) is minima of 𝑓(𝑥). Then  

A: 𝑓(𝑎) < 𝑓(𝑏) 

B: 𝑓(𝑎) < 0 and 𝑓(𝑏) > 0 

C: 𝑓′(𝑎) > 0 and 𝑓′(𝑏) < 0 

D: 𝑓′(𝑎) = 𝑓′(𝑏) = 0 

 

10: Let 𝑓(𝑥) be a polynomial of degree 7 over the field of rational numbers. Then  

A: 𝑓(𝑥) is always solvable by radicals over ℚ. 

B:𝑓(𝑥) has no real root 
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C: 𝑓(𝑥) is always solvable over ℂ 

D: None of the above is correct 

 

11: Let 𝑓(𝑥) be a polynomial of degree 7 over the field of real numbers. Then  

A: The order of Galois field of 𝑓(𝑥) is 2 and it is always solvable by radicals 

B: Order of Galois field of 𝑓(𝑥) is greater than 2 and it is always solvable by radicals 

C: Order of Galois field of 𝑓(𝑥) is greater than 4 and it is not solvable by radicals 

D: Order of Galois field of 𝑓(𝑥) is 7 and it is not solvable by radicals 

 

12:  The polynomial 𝑥2 + 𝑥 + 1 is  

A: Solvable by radicals over ℚ 

B: Solvable by radicals over ℂ 

C: Solvable by radicals over ℤ2 

D: All options are correct 

 

13: A polynomial 𝑥𝑛 − 1 ∈ ℚ[𝑥] ; 𝑛 is any natural number, is 

A: Never reducible over ℚ 

B: Has no root in ℚ 

C: Is always solvable by radicals 

D: Is solvable by radicals only if 𝑛 ≤ 4 

 

14: Splitting field of a polynomial 𝑥𝑛 − 1 ∈ ℚ[𝑥] ; 𝑛 is any natural number is 

A: Always algebraic over ℚ 

B: Always solvable by radicals over ℚ 

C: Having a splitting field which is a simple extension of ℚ 

D: All the options are correct 

 

15: Let 𝑓(𝑥) = 𝑥8 + 𝑥4 + 𝑥2 + 1 ∈ ℚ[𝑥]. Then  

A: 𝑓(𝑥) is solvable by radicals 

B: 𝑓(𝑥) is not solvable by radicals 

C: 𝑓(𝑥) splits completely into linear factors over ℚ 

D: 𝑓(𝑥) splits completely into linear factors over ℝ 
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Answers for Self Assessment 

1. D 2. C 3. A 4. D 5. B 

6. B 7. A 8. A 9. D 10. C 

11. A 12. D 13. C 14. D 15. A 

 

Review Questions 

1) Prove that every polynomial over a field 𝐹 with degree 2 is always solvable by radicals. 

2) Prove that the polynomial 𝑓(𝑥) = 𝑥6 + 𝑥4 + 𝑥2 + 1 ∈ ℚ[𝑥] is solvable by radicals. 

3) Let 𝑓(𝑥) ∈ ℚ[𝑥] be an irreducible polynomial of degree 5. If 𝑓(𝑥) has exactly two non-real 

roots over ℂ, then find the Galois group of 𝑓(𝑥). 

 

  Further Readings 

1) Basic abstract algebra by P. B. Bhattacharya, S. K. Jain, S. R. Nagpal,Cambridge 

universitypress 

2) Topics in algebra by I.N. Hartstein, Wiley 

3) Abstract algebra by David S Dummit and Richard M Foote, Wiley 

 

 Web Links 

https://onlinecourses.nptel.ac.in/noc20_ma29/preview 

https://nptel.ac.in/courses/111/105/111105112/# 
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Unit 14: Symmetric Functions and Cyclic Extensions 

CONTENTS 

Objective 

Introduction 

14.1 Symmetric Functions 

14.2 Cyclic Extension 

Summary 

Keywords 

Self Assessment 

Answers for Self Assessment 

Review Questions 

Further Readings 

Objective 

After studying this unit, you will be able to 

• define symmetric functions on n variables 

• understand symmetric functions with the help of examples 

• state and prove Abel’s theorem 

• define cyclic extensions 

• relate cyclic and normal extension 

• understand results about cyclic extensions 

 

Introduction 

In this unit, we will define symmetric functions on n variables and understand them with the help 
of examples. Further, we will state and prove Abel’s theorem. The cyclic extension is defined and 
related to normal extensions. 

 

14.1 Symmetric Functions 

Let 𝐹 be a field and 𝑦1, 𝑦2, … , 𝑦𝑛 be 𝑛 indeterminates. Let 𝐹(𝑦1, 𝑦2, … , 𝑦𝑛) be the field of rational 
functions over 𝐹. Corresponding to any 𝜎 ∈ 𝑆𝑛, define �̅�: 𝐹(𝑦1, 𝑦2, … , 𝑦𝑛) → 𝐹(𝑦1, 𝑦2, … , 𝑦𝑛) by 

�̅� (
𝑓(𝑦1, 𝑦2, … , 𝑦𝑛)

𝑔(𝑦1, 𝑦2, … , 𝑦𝑛)
) =  

𝑓(𝑦𝜎(1), 𝑦𝜎(2), … , 𝑦𝜎(𝑛))

𝑔(𝑦𝜎(1), 𝑦𝜎(2), … , 𝑦𝜎(𝑛))
 

where 𝑓(𝑦1, 𝑦2, … , 𝑦𝑛), 𝑔(𝑦1, 𝑦2, … , 𝑦𝑛) ∈ 𝐹(𝑦1, 𝑦2, … , 𝑦𝑛) and 𝑔(𝑦1, 𝑦2, … , 𝑦𝑛) ≠ 0. 

Then �̅� is an automorphism of 𝐹(𝑦1, 𝑦2, … , 𝑦𝑛) which keeps elements of 𝐹 fixed. 

𝑓(𝑦1, 𝑦2, … , 𝑦𝑛)

𝑔(𝑦1, 𝑦2, … , 𝑦𝑛)
∈ 𝐹(𝑦1, 𝑦2, … , 𝑦𝑛) 

is called symmetric function in 𝑛 indeterminates 𝑦1, 𝑦2, … , 𝑦𝑛 over 𝐹 if it is fixed by all 𝜎 ∈ 𝑆𝑛. 

Generic Polynomial 

Let  
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𝑓(𝑥) = ∏(𝑥 − 𝑦𝑙)

𝑛

𝑙=1

∈ 𝐹(𝑦1, 𝑦2, … , 𝑦𝑛)[𝑥] 

Then the mapping 𝐹(𝑦1, 𝑦2, … , 𝑦𝑛)[𝑥] → 𝐹(𝑦1, 𝑦2, … , 𝑦𝑛)[𝑥] induced by each �̅� ∈ 𝑆�̅� keeps 𝑓(𝑥) fixed. 

Hence, if 𝑓(𝑥) = 𝑥𝑛 + 𝑎1𝑥𝑛−1 + ⋯ + 𝑎𝑛 then (−1)ⅈ𝑎ⅈ , coefficient of 𝑥𝑛−ⅈ in 𝑓(−𝑥) are called 
elementary symmetric function and are denoted by 𝑠ⅈ . 

 

Hence,  

𝑠1 = 𝑦1 + 𝑦2 + ⋯ + 𝑦𝑛 

𝑠2 = 𝑦1𝑦2 + 𝑦1𝑦3 + ⋯ + 𝑦1𝑦𝑛 + 𝑦2𝑦3 + ⋯ + 𝑦2𝑦𝑛 + ⋯ + 𝑦𝑛−1𝑦𝑛 =  ∑ 𝑦ⅈ𝑦𝑗

ⅈ<𝑗

 

⋮ 

𝑠𝑛 = 𝑦1𝑦2 ⋯ 𝑦𝑛 

For 𝑛 = 3, 

𝑠1 = 𝑦1 + 𝑦2 + 𝑦3 

𝑠2 = 𝑦1𝑦2 + 𝑦1𝑦3 + 𝑦2𝑦3 

𝑠3 = 𝑦1𝑦2𝑦3 

𝑓(𝑥) = 𝑥𝑛 − 𝑠1𝑥𝑛−1 + 𝑠2𝑥𝑛−2 + ⋯ + (−1)𝑛𝑠𝑛 is 𝑛 − 𝑡ℎ generic polynomial. 

 

Theorem 14.1.1: Every symmetric function in 𝑦1,  𝑦2,  … , 𝑦𝑛 over field 𝐹 is a rational function of the 
elementary symmetric functions 𝑠1,  𝑠2,  … ,  𝑠𝑛. Also 𝐹(𝑦1,  𝑦2,  … , 𝑦𝑛) is a finite normal extension of 
𝐹(𝑠1,  𝑠2,  … , 𝑠𝑛) of degree 𝑛!and the Galois group of this extension is isomorphic to 𝑆𝑛.   

Proof: Let 𝑆𝑛
̅̅ ̅ be the group of all automorphisms �̅� of 𝐹(𝑦1,  𝑦2,  … , 𝑦𝑛) corresponding to 𝜎 ∈ 𝑆𝑛 so 

that 𝑆𝑛
̅̅ ̅ ≅ 𝑆𝑛. 

Let 𝐸 =  𝐹(𝑠1,  𝑠2,  … , 𝑠𝑛) and 𝐾 be the subfield of 𝐹(𝑦1,  𝑦2,  … , 𝑦𝑛) which is a fixed field of 𝑆𝑛
̅̅ ̅ , this 

implies 𝐸 ⊆ 𝐾 … (1). 

Also, 𝐹(𝑦1,  𝑦2,  … , 𝑦𝑛) is the splitting field of  

𝑓(𝑥) = ∏(𝑥 − 𝑦ⅈ)

𝑛

ⅈ=1

 

of degree 𝑛 over 𝐸. 

Therefore, [𝐹(𝑦1,  𝑦2,  … , 𝑦𝑛) ∶ 𝐸] ≤ 𝑛! … … (2) 

and [𝐹(𝑦1,  𝑦2,  … , 𝑦𝑛) ∶ 𝐾] ≥ 𝑂(𝑆𝑛
̅̅ ̅) = 𝑂(𝑆𝑛) = 𝑛! … … (3) 

𝐹𝑟𝑜𝑚 (1), (2) and (3), we get that 𝐸 = 𝐾. 

Therefore, every symmetric function can be expressed as a rational function of elementary 
symmetric functions. Now, 𝑓(𝑥)is a separable polynomial over 𝐸 and 𝐹(𝑦1,  𝑦2,  … , 𝑦𝑛) is its splitting 
field. Hence 𝐹(𝑦1,  𝑦2,  … , 𝑦𝑛) is a finite separable extension of 𝐸 and hence 

[𝐹(𝑦1,  𝑦2,  … , 𝑦𝑛) ∶ 𝐸] = 𝑂(𝐺(𝐹(𝑦1,  𝑦2,  … , 𝑦𝑛)), 𝐸) … … (4) 

⇒  𝑂(𝐺(𝐹(𝑦1,  𝑦2,  … , 𝑦𝑛)), 𝐸) =  [𝐹(𝑦1,  𝑦2,  … , 𝑦𝑛) ∶ 𝐸] = 𝑛! (𝐵𝑦 (3)) 

⇒ (𝐺(𝐹(𝑦1,  𝑦2,  … , 𝑦𝑛)), 𝐸) ≅ 𝑆𝑛 as 𝐺(𝐹(𝑦1,  𝑦2,  … , 𝑦𝑛) is embedded in 𝑆𝑛. 

 

Theorem 14.1.2: (Abel’s Theorem): The generic polynomial of degree 𝑛 ≥ 5 over a field 𝐹 is not 
solvable by radicals where characteristic 𝐹 = 0. 

Proof: The 𝑛 − 𝑡ℎ generic polynomial over a field 𝐹 is 

𝑓(𝑥) = 𝑥𝑛 − 𝑠1𝑥𝑛−1 + ⋯ + (−1)𝑛𝑠𝑛 

Its Galois group over 𝐹(𝑠1, 𝑠2, … , 𝑠𝑛) is 𝑆𝑛 and 𝑆𝑛 is not solvable for 𝑛 ≥ 5. 
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This implies 𝑓(𝑥) is not solvable by radicals for 𝑛 ≥ 5. 

 

: Express the symmetric polynomials as rational functions of the elementary symmetric 
functions 

(𝑖) 𝑥1
2 + 𝑥2

2 + 𝑥3
2 

(𝑖𝑖) 𝑥1
3 + 𝑥2

3 + 𝑥3
3 

(𝑖𝑖𝑖)(𝑥1 − 𝑥2)2(𝑥2 − 𝑥3)2(𝑥3 − 𝑥1)2 

Solution: For 𝑛 = 3 

𝑠1 = 𝑥1 + 𝑥2 + 𝑥3 

𝑠2 = 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3 

𝑠3 = 𝑥1𝑥2𝑥3 

(𝑖)𝑠1 = 𝑥1 + 𝑥2 + 𝑥3 

Squaring both sides, we get, 

𝑠1
2 = (𝑥1 + 𝑥2 + 𝑥3)2 

= 𝑥1
2 + 𝑥2

2 + 𝑥3
2 + 2𝑥1𝑥2 + 2𝑥, 𝑥3 + 2𝑥2𝑥3 

= 𝑥1
2 + 𝑥2

2 + 𝑥3
2 + 2(𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3) 

= 𝑥1
2 + 𝑥2

2 + 𝑥3
2 + 2𝑠2 

 

𝑥1
2 + 𝑥2

2 + 𝑥3
2 = 𝑠1

2 − 2𝑠2 

 

(𝑖𝑖)𝑠1 = 𝑥1 + 𝑥2 + 𝑥3 

Cubing both sides, 

𝑠1
3 = (𝑥1 + 𝑥2 + 𝑥3)3 

= (𝑥1 + 𝑥2)3 + 𝑥3
3 + 3(𝑥, +𝑥2)2𝑥3 + 3𝑥3

2(𝑥1 + 𝑥2) 

= 𝑥1
3 + 𝑥2

3 + 3𝑥1𝑥2(𝑥1 + 𝑥2) + 𝑥3
2 + 3𝑥3(𝑥1

2 + 𝑥2
2 + 2𝑥1𝑥2) + 3𝑥1𝑥2

2 + 3𝑥2
3 

= 𝑥1
3 + 𝑥2

3 + 𝑥3
3 + 6𝑥1𝑥2𝑥3 + 3𝑥1

2𝑥2 + 3𝑥1𝑥2
2 + 3𝑥1

2𝑥3 + 3𝑥2
2𝑥3 + 3𝑥2

2𝑥1 + 3𝑥3
2𝑥2 

= 𝑥1
3 + 𝑥2

3 + 𝑥3
3 + 3𝑠1𝑠2 − 3𝑠3 

This implies, 

𝑥1
3 + 𝑥2

3 + 𝑥3
3 = 𝑠1

3 − 3𝑠1𝑠2 + 3𝑠3 

 

(𝑖𝑖𝑖) The equation whose roots are 𝑥1, 𝑥2 and 𝑥3 is 

𝑥3 − 𝑠1𝑥2 + 𝑠2𝑥 − 𝑠3 = 0 … (1) 

Let  

ℎ =
𝑠𝑢𝑚 𝑜𝑓 𝑟𝑜𝑜𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑜𝑜𝑡𝑠
=

𝑠1

3
 

and  

𝑦 = 𝑥 − ℎ = 𝑥 −
𝑠1

3
 

Then (1) implies, 𝑦3 + 3𝛼𝑦 + 𝛽 = 0 … … (2),  where,  

𝛼 =
−𝑠1

2

3
+ 𝑠2 

190



Advanced Abstract Algebra I  

 LOVELY PROFESSIONAL UNIVERSITY  

Notes 

and  

𝛽 = −𝑠3 −
2𝑠1

3

27
+

𝑠1𝑠2

3
 

Now roots of (2) are  

𝑦1 = 𝑥1 −
𝑠1

3
, 

𝑦2 = 𝑥2 −
𝑠1

3
, 

 

and  

𝑦3 = 𝑥3 −
𝑠1

3
 

Thus, 

(𝑦1 − 𝑦2)2 = (𝑦1 + 𝑦2)2 − 4𝑦1𝑦2 

Also,  

𝑦1 + 𝑦2 + 𝑦3 = 0 

So, we get,  

(𝑦1 − 𝑦2)2 = 𝑦3
2 −

4𝛽

𝑦3
 

Taking 𝑧 = 𝑦2 −
4𝛽

𝑦
, we get, 𝑦3 − 𝑧𝑦 − 4𝛽 = 0 … (3) 

Subtracting (2) from (3), we get, 

(3𝛼 + 𝑧)𝑦 = 3𝛽 

⇒ 𝑦 =
3𝛽

3𝛼 + 𝑧
 

Put in equation (2), 

(
3𝛽

3𝛼 + 𝑧
)

3

+ 3𝛼 (
3𝛽

3𝛼 + 𝑧
) + 𝛽 = 0 

⇒ (3𝛼 + 𝑧)3 + 9𝛼(𝑧 + 3𝛼)2 + 27𝛽2 = 0 

⇒ 𝑧3 + 18𝛼𝑧2 + 81𝛼2𝑧 + 27 − (𝛽2 + 4𝛼3) = 0 … … (4) 

Therefore,  

(𝑥1 − 𝑥2)2(𝑥2 − 𝑥3)2(𝑥3 − 𝑥1)2 

 

= (𝑦1 − 𝑦2)2(𝑦2 − 𝑦3)2(𝑦3 − 𝑦1)2 

= Product of roots of (4) 

= −27 (𝛽2 + 4𝛼3) 

14.2 Cyclic Extension 

Definition 14.2.1: A Galois extension 𝐾 of 𝐹 is said to be a cyclic extension if 𝐺(𝐾, 𝐹) is a cyclic 
group.  

 

: If 𝜔 is a primitive 𝑝 − 𝑡ℎ root of unity where 𝑝 is a prime number, then ℚ(𝜔) is a cyclic 
extension of ℚ. 

Proof:ℤ ∕ 𝑝ℤ is a finite field with 𝑝 elements. 

Therefore, its multiplicative group (ℤ 𝑝ℤ⁄ )∗ is cyclic. 

⇒ 𝐺(ℚ(𝜔), ℚ) is cyclic. 

Also, ℚ(𝜔) is Galois extension of ℚ. Hence, ℚ(𝜔) is a cyclic extension of ℚ. 
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Theorem 14.2.3: Let 𝐹 be a finite field and 𝐾 be a finite extension of 𝐹 then 𝐾 is a cyclic extension of 
𝐹. 

Proof: Because 𝐹 is a finite field, therefore, 𝑂(𝐹) = 𝑝𝑛 for some prime number 𝑝 and natural 
number 𝑛. 

Let [𝐾: 𝐹] = 𝑚 

Then 𝐾 is splitting field of 𝑓(𝑥) = 𝑥𝑝𝑚𝑛
− 𝑥 ∈ ℤ𝑝[𝑥] 

Also, 𝑓′(𝑥) = 𝑝𝑚𝑛𝑥𝑝𝑚𝑛−1 − 1 = −1 ≠ 0 

Thus, 𝑓(𝑥) is a separable polynomial. 

Also, 𝐾 is a Galois extension of 𝐹. 

Now, let 𝐺 = 𝐺(𝐾, 𝐹) so that 𝑜(𝐺) = [𝐾: 𝐹] = 𝑚 

Define 𝜎: 𝐾 → 𝐾 by 𝜎(𝑎) = 𝑎𝑝𝑛
 ∀ 𝑎 ∈ 𝐾 

Then 𝜎 is a homomorphism and one-one. 

𝜎: 𝐾 → 𝐾 and 𝐾 is finite. This implies that 𝜎 is onto. 

Thus, 𝜎 is an automorphism on 𝐾. Further, 𝑎𝑝𝑛
= 𝑎 ∀ 𝑎 ∈ 𝐹 

⇒ 𝜎(𝑎) = 𝑎 ∀ 𝑎 ∈ 𝐹 

Therefore, 𝜎 ∈ 𝐺 

Now let 𝑂(𝜎) = 𝑟 

⇒ 𝜎𝑟 = 𝐼 

⇒ 𝜎𝑟(𝑐) = 𝑐 ∀ 𝑐 ∈ 𝐾 

⇒ (𝜎(𝑐))
𝑟

= 𝑐 ∀ 𝑐 ∈ 𝐾 

⇒ (𝑐𝑝𝑛
)

𝑟
= 𝑐 

⇒ 𝑐𝑞𝑟
= 𝑐 ∀ 𝑐 ∈ 𝐾; 𝑞 = 𝑝𝑛 

⇒ 𝑐𝑞𝑟−1 = 1 ∀ 𝑐 ∈ 𝐾 

⇒ 𝑞𝑟 − 1 ≥ 𝑞𝑚 − 1 (Because 𝑂(𝐾) = 𝑝𝑚𝑛 = 𝑞𝑚; 𝑂(𝐾∗) = 𝑞𝑚 − 1) 

⇒ 𝑟 ≥ 𝑚 

But 𝑟 ≤ 𝑚 

⇒ 𝑟 = 𝑚 

Therefore, 𝑂(𝜎) = 𝑚 = 𝑂(𝐺) 

⇒ 𝐺 = ⟨𝜎⟩is a cyclic group. 

⇒ 𝐾 is a cyclic extension of 𝐹. 

 

Theorem 14.2.3: Let 𝐾 be a cyclic extension of 𝐹 and 𝐿 be a field such that 𝐹 ⊆ 𝐿 ⊆   𝐾. Then 𝐾 is a 
cyclic extension of 𝐿. Further, if 𝐿 is a normal extension of 𝐹 then 𝐿 is a cyclic extension of 𝐹. 

Proof: Since 𝐾 is a cyclic extension of 𝐹 therefore, 𝐺(𝐾, 𝐹) is a cyclic group. 

Now, 𝐾 is a Galois cyclic extension of 𝐿 as 𝐾 is a Galois extension of 𝐹. 

Also, 𝐺(𝐾, 𝐿) being a subgroup of 𝐺(𝐾, 𝐹) is cyclic. 

⇒ 𝐾 is a cyclic extension of 𝐿. 

Now, if 𝐿 is a normal extension of 𝐹 then it is Galois extension and  

𝐺(𝐿, 𝐹) ≅ 𝐺(𝐾, 𝐹) ∕ 𝐺(𝐾, 𝐿) 

Therefore, 𝐿 is Galois extension of 𝐹 and 𝐺(𝐿, 𝐹) is cyclic group, being quotient group of a cyclic 
group 𝐺(𝐾, 𝐹). 
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Hence, 𝐿 is a cyclic extension of 𝐹. 

 

Theorem 14.2.4: Let 𝐾 be a cyclic extension of 𝐹. There is a unique field 𝐿 such that 𝐹 ⊆ 𝐿 ⊆ 𝐾 and 
[𝐿: 𝐹] =  𝑑 for each divisor 𝑑 of 𝑛 =  [𝐾: 𝐹]. 

Proof:𝐾 is a cyclic extension of 𝐹 of degree 𝑛. Therefore, 𝐺(𝐾, 𝐹) is a cyclic group of order 𝑛. 

For each 𝑑|𝑛, there exists a unique subgroup 𝐻 of order 
𝑛

𝑑
= 𝑑′ 

Let 𝐿 be the fixed field of 𝐻. Then [𝐾: 𝐿] = 𝑑′ 

Hence,  

[𝐿: 𝐹] = [𝐾: 𝐹] [𝐾: 𝐿]⁄  

=
𝑛

𝑑′ 

= 𝑑 

 

Theorem 14.2.5: Let 𝐸 be a normal extension of a field 𝐹 of degree 𝑛 and 𝐹 contains a primitive 𝑛𝑡ℎ 
root of unity. Then the Galois group 𝐺(𝐸, 𝐹) is cyclic if and only if there exists an element𝑏 in 𝐹 
such that 𝑥𝑛 − 𝑏 is an irreducible polynomial over 𝐹 and 𝐸 is its splitting field. 

Proof:Let for some positive integer 𝑛 and some 𝑏 ∈ 𝐹, 𝑥𝑛 − 𝑏 is an irreducible polynomial over 𝐹 
and let 𝐸 is the splitting field of 𝑥𝑛 − 𝑏 over 𝐹. 

⇒ 𝐸 = 𝐹(𝑐) where 𝑐 is a root of 𝑥𝑛 − 𝑏. 

[𝐸: 𝐹] = 𝑛 ⇒ 𝑂(𝐺(𝐸, 𝐹)) = 𝑛 

Now, let 𝜉 be a primitive 𝑛𝑡ℎ root of unity in 𝐹. Then since 𝐹 contains a primitive root of unity so it 
contains all the roots 𝑐, 𝜉𝑐, 𝜉2𝑐, … , 𝜉𝑛−1𝑐 of 𝑥𝑛 − 𝑏. 

Since 𝑐 and 𝜉𝑐 are conjugates over 𝐹, there exists an 𝐹 −automorphism 𝜎 of 𝐹(𝑐) onto 𝐹(𝜉𝑐) such 
that 𝜎(𝑐) = 𝜉𝑐. 

However, 𝐸 = 𝐹(𝑐) = 𝐹(𝜉𝑐) 

So, 𝜎 is an 𝐹 − automorphism of 𝐹. 

Therefore, 𝜎 ∈ 𝐺(𝐸, 𝐹) 

Now,  

𝜎2(𝑐) = 𝜎(𝜎(𝑐)) 

= 𝜎(𝜉𝑐) 

= 𝜉(𝜎(𝑐)) 

= 𝜉2𝑐 

∀ 𝑘 ∈ ℕ, 𝜎𝑘(𝑐) = 𝜉𝑘𝑐 

As 𝜉𝑛 = 1 and 𝑐, 𝜉𝑐, 𝜉2𝑐, … , 𝜉𝑛−1𝑐 are all distinct. Thus, we get 𝐼, 𝜎, 𝜎2, … , 𝜎𝑛−1 are all 𝑛 distinct 
elements of 𝐺(𝐸, 𝐹). 

 

𝐺(𝐸, 𝐹) =< 𝜎 > is a cyclic group of order 𝑛. 

Conversely,let 𝐺(𝐸, 𝐹) is a cyclic group of order 𝑛 and its elements are 𝐼, 𝜎, 𝜎2, … , 𝜎𝑛−1 . 

{𝐼, 𝜎, 𝜎2, … , 𝜎𝑛−1} is linearly independent set over 𝐹. 

Let 𝜉 be a primitive 𝑛𝑡ℎ root of unity in 𝐹. 

Then 𝜉 ≠ 0 
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𝐼 + 𝜉−1𝜎 + 𝜉−2𝜎2 + ⋯ + +𝜉−𝑛+1𝜎𝑛−1 is a non-zero endomorphism of 𝐸 as a vector space over 𝐹. 

Thus, for 𝑎 ∈ 𝐸, 

𝑐 = 𝐼(𝑎) + 𝜉−1𝜎(𝑎) + 𝜉−2𝜎2(𝑎) + ⋯ + +𝜉−𝑛+1𝜎𝑛−1(𝑎) ≠ 0 

Now 

𝜎(𝑐) = 𝜎(𝑎) + 𝜉−1𝜎2(𝑎) + 𝜉−2𝜎3(𝑎) + ⋯ + +𝜉−𝑛+1𝜎𝑛(𝑎) 

= 𝜉(𝜉−1𝜎(𝑎) + 𝜉−2𝜎2(𝑎) + ⋯ + 𝐼(𝑎)) 

= 𝜉𝑐 since 𝜎𝑛 = 𝐼, 𝜉𝑛 = 1 

In general, 

𝜎𝑘(𝑐) = 𝜉𝑘(𝑐) ∀ 𝑘 

𝜎𝑘(𝑐𝑛) = (𝜎𝑘(𝑐))
𝑛

 

= 𝜉𝑘𝑛(𝑐𝑛) 

= 𝑐𝑛  ∀ 𝑘 

So, 𝑐𝑛 is in the fixed field under 𝐺(𝐸, 𝐾). 

However, 𝐹 is the fixed field under 𝐺(𝐸, 𝐹) so 𝑐𝑛 ∈ 𝐹. 

But 𝑏 = 𝑐𝑛 

Therefore, 𝑥𝑛 − 𝑏 is a polynomial over 𝐹 whose roots are 𝑐, 𝜉𝑐, 𝜉2𝑐, … , 𝜉𝑛−1𝑐.  

Also, 𝜎𝑘(𝑐) = 𝜉𝑘(𝑐) 

⇒ 𝑐, 𝜉𝑐, 𝜉2𝑐, … , 𝜉𝑛−1𝑐 are conjugates in 𝐹. 

The minimal polynomial 𝑓(𝑥) of 𝑐 over 𝐹 is at least of degree 𝑛. 

As 𝑓(𝑥) divides 𝑥𝑛 − 𝑏 

⇒ 𝑓(𝑥) = 𝑥𝑛 − 𝑏 

So, it is itself a minimal polynomial of 𝑐. 

Therefore, 𝑥𝑛 − 𝑏 is irreducible polynomial over 𝐹. 

Now,[𝐹(𝑐): 𝐹] = 𝑛 

[𝐸: 𝐹] = 𝑛, 𝐹(𝑐) ⊆ 𝐸 

⇒ 𝐹(𝑐) = 𝐸 

𝐸 is the splitting field of 𝑥𝑛 − 𝑏 over 𝐹 and 𝑥𝑛 − 𝑏 is an irreducible polynomial over 𝐹. 

Summary 

• Symmetric functions on n variables are defined. 

• Symmetric functions are explained with the help of examples. 

• Abel’s theorem is proved. 

• Cyclic extensions are defined. 

• Cyclic and normal extensions are related. 

• Results about cyclic extensions are explained. 

 

Keywords 

• Symmetric Functions 

• Abel’s theorem 

• Cyclic extensions 
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Self Assessment 

1: A symmetric function in 𝑛 indeterminates over a field 𝐹 is fixed under 

A: at least one 𝜎 ∈ 𝑆𝑛 

B: Exactly one 𝜎 ∈ 𝑆𝑛 

C: At the most one 𝜎 ∈ 𝑆𝑛 

D: All the 𝜎 ∈ 𝑆𝑛 

 

2: Let 𝑓(𝑥) = 𝑥𝑛 + 𝑎1𝑥𝑛−1 + ⋯ + 𝑎𝑛, then the corresponding generic polynomial is 

A: 𝑡𝑛 − 𝑎1𝑡𝑛−1 + ⋯ + 𝑎𝑛 

B: 𝑡𝑛 + 𝑎1𝑡𝑛−1 + ⋯ + 𝑎𝑛 

C: 𝑡𝑛 − 𝑎1𝑡𝑛−1 + ⋯ + (−1)𝑛𝑎𝑛 

D: 𝑡𝑛 − 𝑎1𝑡𝑛−1 + ⋯ − 𝑎𝑛 

 

3: The generic polynomial of degree 7 over ℚ is 

A: Always solvable by radicals 

B: Never solvable by radicals 

C: May or may not be solvable by radicals 

D: Has no real roots 

 

4: Every symmetric function in 𝑛 variables over a field 𝐹 is a rational function of the …… number of 
elementary symmetric functions 

A: 𝑛 

B: 𝑛 − 1 

C: 𝑛! 

D: 𝑛/2  

 

5: The elementary symmetric function corresponding to the symmetric polynomial 𝑥1
2 + 𝑥2

2 + 𝑥3
2 is 

A: 𝑆1
2 + 2𝑆2 

B: 𝑆1
2 − 2𝑆2 

C: 𝑆1 + 2𝑆2
2 

D: 𝑆1 − 2𝑆2
2 

 

6: The elementary symmetric function corresponding to the symmetric polynomial 𝑥1𝑥2𝑥3 is 

A: S1S2S3 

B: S1
2S2

2S3
2 

C: S1S2 

D: S3 

 

7: The elementary symmetric function corresponding to the symmetric polynomial 𝑥1
3 + 𝑥2

3 + 𝑥3
3 is 
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A: 𝑆1
3 + 2𝑆1𝑆2 + 3𝑆3 

B: 𝑆1
3 − 2𝑆1𝑆2 − 3𝑆3 

C: 𝑆1
3 − 2𝑆1𝑆2 + 3𝑆3 

D: 𝑆1
3 + 2𝑆1𝑆2 − 3𝑆3 

 

8: The elementary symmetric function corresponding to the symmetric polynomial (𝑥1 − 𝑥2)2 is 

A: 𝑆1
2 + 4𝑆2 

B: 𝑆1
2 − 4𝑆2 

C: 𝑆1 + 4𝑆2
2 

D: 𝑆1 − 4𝑆2
2 

 

9: If 𝜔 is primitive 5th root of unity then ℚ(𝜔) is 

A: Cyclic extension of ℚ 

B: Abelian but not a cyclic extension of ℚ 

C: Extension with an infinite degree 

D: Inseparable extension 

 

10: Multiplicative group of the field ℤ ∕ 𝑝ℤ is 

A: Finite but not cyclic 

B: Infinite and cyclic 

C: Finite and cyclic 

D: Infinite but not cyclic 

 

11: Finite extension of a finite field is 

A: Always cyclic 

B: Abelian but not cyclic 

C: Never abelian 

D: Never cyclic 

 

12: The order of a field is always 

A: Divisible by at least two distinct prime numbers 

B: Divisible by a single prime number only 

C: Is a prime number  

D: Is a composite number  

 

13: Let 𝐹 be a field such that 𝑂(𝐹) = 27. Let 𝐾 be a field extension of 𝐹 such that [𝐾: 𝐹] = 4. Then 𝐾 
is splitting field of  

A: 𝑓(𝑥) = 𝑥312
− 𝑥 ∈ ℤ3[𝑥] 

B: 𝑓(𝑥) = 𝑥34
− 𝑥 ∈ ℤ3[𝑥] 

C: 𝑓(𝑥) = 𝑥33
− 𝑥 ∈ ℤ3[𝑥] 
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D: 𝑓(𝑥) = 𝑥27 − 𝑥 ∈ ℤ3[𝑥] 

 

14: The polynomial 𝑓(𝑥) = 𝑥5𝑛
− 𝑥 ∈ ℤ5[𝑥] is 

A: Always separable polynomial 

B: Separable polynomial only if 𝑛 > 2 

C: Separable polynomial only if 𝑛 > 3 

D: Separable polynomial only if 𝑛 > 4 

 

15:Let 𝐹 ⊆ 𝐿 ⊆ 𝐾 is field extension such that 𝐾 is a cyclic extension of 𝐹. Then 

A: 𝐾 is a cyclic extension of 𝐿 

B: 𝐾 is abelian but not a cyclic extension of 𝐿 

C: 𝐾 is not an abelian extension of 𝐿 

D: 𝐿 is a cyclic extension of 𝐹 

 

Answers for Self Assessment 

1. B 2. C 3. B 4. A 5. B 

6. D 7. C 8. B 9. A 10. C 

11. A 12. B 13. A 14. A 15. A 

 

Review Questions 

1) Prove that every symmetric function in 𝑛 variables over field 𝐹 is a rational function of the 

elementary symmetric functions 𝑛 variables. 

2) Prove that the generic polynomial of degree 7 over a field of rational numbers is not 

solvable by radicals. 

3) Prove that ℚ(𝑖) is a cyclic extension of ℚ. 

4) Prove that finite extension of a finite field is always a cyclic extension. 

 

    Further Readings 

1) Basic abstract algebra by P. B. Bhattacharya, S. K. Jain, S. R. Nagpal,Cambridge 

universitypress 

2) Topics in algebra by I.N. Hartstein, Wiley 

3) Abstract algebra by David S Dummit and Richard M Foote, Wiley 

  Web Links 

https://onlin ecourses.nptel.ac.in/noc20_ma29/preview 

https://nptel.ac.in/courses/111/105/111105112/# 
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