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Monika Arora, Lovely Professional University Unit 01: The Riemann-Stieltjes Integral

Unit 01: The Riemann-Stieltjes integral
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Objectives

After studying this unit, students will be able to:

define upper and lower Riemann-Stieltjes integral

describe the condition of Riemann-Stieltjes integrability in terms of upper and lower
Riemann-Stieltjes integral

establish relation between Riemann-Stieltjes integral and Riemann integral

define necessary and sufficient condition for Riemann-Stieltjes integrability

understand theorems related to Riemann-Stieltjes integrability

Introduction

Riemann-Stieltjes integral is the generalization of Riemann integral. It is based on the definition of
Riemann integral. For the sake of convenience, we are giving the definition and preliminaries of
Riemann integral.

1.1 Definition and Existence of the Integral

Definition: Let f: [a. b] —+ & be a bounded function and

P ={a=xp ¥, Lo, T}

be the partition of [a, b] such that xp = x; = x; = = 1.

If P and P" be the partition of the interval [a, b] such that P* = P then P" is known as the refinement

of P,

If F, U P, = P then P is the common refinement for F; and F.

We write

my = inff(x)x_, =x < x,

My =supflx),x_, = x = x4,
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Real Analysis 1

m = fix) = M,x € [a, b].and
Avi=x —x_,

= Ax; = 0

= } Ax=Av +An + -+ Ax,

n

=L

=in X

Thus, we get,

n
;.‘lrl-:b—ﬁ

Put
n
LiP.fi= Z m;Ax;,
i=1
n
U(E.f) = Z.’-ﬁ‘,-.{l.r,-.
=1
and finally

b
inf U(P. f) :f flxidx
E .

b
supLiP.f) = Jr flx)dx
B a
If
b ]
J Flaide = Jr flx)dx
E a
Then f is Riemann integrable and we write f € R and the common value is written as

b
Jr Flxydx .
a
Now,
mem; =M =4
n 1

il 1
= Z mdx; = Z mdx = Z Mpdx; = Z;’-f.ﬂx,-
i=1

=1 =1 =1
n n
=m Z Ax; <L(P.fI< UMR.f) =M Z Ax;
i=1 i=1

=m(b —a) SL(P,f) <UP.f) < M(b —a)

Thus, the numbers L{P, f} and IF(P. f} form a bounded set which shows that upper and lower

integrals are defined for every bounded functionf. Under what circumstances these two integrals
are equal? This is a delicate issue. Instead of handling it separately for Riemann integral, we will
consider now the more general case.

LOVELY PROFESSIONAL UNIVERSITY



Unit 01: The Riemann-Stieltjes Integral

1.2 The Riemann -Stieltjes Integral

Let fi[a.b]—=R be a bounded function and & is a monotonically increasing function.

Corresponding to the partition P = {a = xg x}, ¥z, .. 3} Of [, b] such that xp = x; = x, = = =3,
we define

Ag; = alxg) — ez _y ) Wi

= Ag; = 0 as @ is monctenically increasing.

Now

n
Zrz,- = Aoy +Aw, + o+ Ay,
=1

=la(x,) —wlxg)] +[e(x) —alx )] + -+ [olx,) —alx,_,)]
=iz, — alxy)
=a(b)— ala).

Further, we put

n

LiP, f.a) = Z mde;, m; =inf fx), x_, =x = x;
=1
n

Ule foa) = zj'd,-ﬁcr,-,!-f,- =sup flx), x_,; = x = x

i=1

= L(P, f.a) = U(P, f.a).
We define,

]
suplLi(P,f.a) = f Fele
P a

::f fda = L(P, f.a)

and

B
inf U(P. f. o) = f fea
£ a

B
:>Jr fe = U(P, f.a)
Q

Nowr,

m=m; =M =M

n

il n n
= Z mda; = Z mda; = Z Mida; = z MAw;
i=1 i=1 1

i=1 =
! 1
= mz.ﬂa,- SL{P.f.a) S UP foa) <M Z.ﬂrz,-
i=1 i=1

= me(b) —ala)] = L(P, fia) = U(P. f.a = Mla(b) — ala)].
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Real Analysis 1

Now if

[ raa= [ taa

then we denote their common value by
b
f fde
aQ
or

Jraf{xjdcr{xj.

This is the Riemann-Stieltjes integral or simply the Stieltjes integral. Here we say that f is integrable

with respect to @, in the Riemann sense and write, f € R{x].

E/. If @(x) = x then Riemann -Stieltjes integral becomes Riemann integral. Or we can say
that Riemann integral is the special case of Riemann -Stieltjes integral.

Theorem 1.2.1:If P* is a refinement of P then
(HU(P". f.a) V(P f.a)

(if)L(P, foe) < L(P", f.a).

Proof: Let F = {:R = X Xy Xpees X X ...,xﬂ}

v

and P* = {& = 2, 2y, Xgy e o p Vo X onns 2y |
m; = i.l']ffl:_-.‘ti:l, Xy =x= Xp
M; =supf(x), x_; Sx=x;
W, and w, be the supremum and infimum of f{x).x € [xj_y.¥]

WL and w;, be the supremum and infimum of f(x).x € [¥.%]

Since sup4 = sup B and inf 4 = inf 8 whenever 4 C B.

Here we have,
[x_i'—l-’ }r] c [xj-_J_,x_i-] and
Lv. :(:_i-] = [:(:_i-_ 1 x_i']

Therefore W) = M;, W, = M;, and w, =m Wy 2 (1)

_i._J- n
Since U(P".f.a) = Z,-.f,-.ﬁu,- + Wy [e(y) — a(x_,)] + W2 [a(x;) — a(y)] + Z M;Aa;
=1 i=j+1
j-1 n
UR fa) = Z;’-f,-ﬂu,- + M;Aa; + E MiAoy
=1 i=j+1

S UREY foa) — U(R.foa) = W]_[rzlf}r:l - cr[:x_i-_L:I] + 05 [crI::c_i-:l - crlf}f)] — MjAg;

= Mia(x) — (- )] - Mide; {by(1)}

LOVELY PROFESSIONAL UNIVERSITY



Unit 01: The Riemann-Stieltjes Integral

= '-i‘_iuiw_i- - J'-:'_i-&nf_i-
=0
= U(P".f.a) —U(P.f.a) =0

UP"f.a) = U, f.a)
This completes the proof of the first part.

Now we consider,

LiF*, foe) —L(E f.a) = wl[aff}f:l - nf[:xj-_L:I] + W [n:rl:::cj-:l — crlf}fjl] — mgda;

= mj-[cr{}rj - :r[x_i-_L:I + cr[xj-] —aly)] - m; Aa;

= mj-ﬁnf_i- - m_i-ﬂ o
=0
= L(F"f.a) —L(P.f.a) =0

= L(P.f.a) < L(F", f.a).

This completes the proof of the second part.
B B
Cor1: Jr fe = f fda
a a

Proof: Let F* = F, U B,
LiP.f.e) =L(P".f,a) =U(P"f. &) <U(P, f.0)
= LB .f.e) = DB, f o)

Keeping £ fixed and taking supremum over all partitions F;, we get

Jr;fdnf = U fom)

Now by taking infimum over all partitionsE, , we get
b B
= f fde = f fea.
a a
b
Cor2: LiP.f.a) < f fde and
a

U f. ) :_=~Jr fde

Also, we have

Jr;fdnf = f:fdnf

Therefore,

LR f.a) = f:fd::: = J(:f da = U(P, f.a)

LOVELY PROFESSIONAL UNIVERSITY
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Real Analysis 1

b b b
If f e Ria) thenf fde = f fda = Jr fda
Q a aQ
So
b
LiP.f.x) = f Fde = U(P,f. )
a
Cor 3:If f € R(x) on [a, b] and m, M are the lower and upper bounds of f defined on [a. k] then

mla(b) — a(a@)] < f fda < Mla(b) - a(a)]
Since,

mle(b) —a(a)] <L(P.f.a) < UP.f,e) = Ma(b) —alal]

and

L(R.f.a) = J( fda = U(R f.a)
amfe(h) —ela)] = LB f.a) = f fda = U(P, f.a) = M[a(b) —ala)]

= mle(b)— ala)] = Jrﬂfdcr = M[a(h) —aia)].

Theorem 1.2.2: Let f and & be bounded functions on [a, &] and @ be monotonically increasing on
[a,B]. Then feRi{a) if and only if for every £:= 0, there exists a partition of [, b]such that
UP f.a) — LiP, f.a) <&

Proof: Suppose f € Ria).
b b b
f fr:’:r:f fde =J fda
E a a

Let £z 0'be any number.

B
Since inf U(P,f.a) = f foe
B a

]
E
= f fde +5 iz not the lower bound of this set.
2 2

So there exists a partition P, of [a. k] such that

B E
UlR.f.a) = L fda +3
g =
:-J( fa'cr+; w fER(w)
a 2

b €
~UR, fa) = -J( fde+< (1)
a 2

Further,

LOVELY PROFESSIONAL UNIVERSITY



Unit 01: The Riemann-Stieltjes Integral

b
supLiP, f.a) = Jr fda
B g

b
E
:Jr fee — 5 tan not be the upper bound of this set.
a 2

* there exists a partition £ of [, &] such that

B £

L':B-_;f; ﬂ':' :‘f fdﬂ'—;

a 2
g =
:;-J( fedea < LB f. &) +<
a 2

g =
::f fda < L(P, f.) +5 (2]
“ 2

LetP=F UR

Now,

UP. f.a) = U(R.f.a)
. F da+o hy(1)
<] fda+s thy(1)
. E E | ;
< L(B,f.a) +to+s {hy(20

< L({P,f,@)+E as P is the refinement of B
= U(P.f.a) — L(P.f.a) <&,

Conversely, let F(P, f.a) — L(P, f.a) <€

We also have

LiPf.o) = ff do < J(:f do = U(P,f, o)

= f:fd:z - f:fd:z < U(P.f, @) — L(P.f.a)

1 b
:;DEJ fr:’:r—f fde =€
a 2

= f:fdnf = Jr;fdnf

= f € Rix)

This completes the proof.

Cor: If U(P, f.) — L(P, f.a) =& for some partition F then this result holds for every refinement P*

of P,
Proof: We have,

LOVELY PROFESSIONAL UNIVERSITY
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Real Analysis 1

UP"f.a) = U(P, f.a)

and
LP, fux) = L(P, f.a)

= —L(F" f.a) = —L(P.f.a)

Therefore,
UE", f.a) — L'(P, foa) = U(B f.o) —L{P.f.a)

=E
Thus, we get
UiR foa) — L"P.f.a) <€
Theorem 1.2.3: If f is a constant function defined by f{x) = k ¥x € [a.b] and & is monotonically
increasing function on [a, b] then _I-j fda exists and is equal to k[e(b) — ai(b]].
Proof: Let P ={a = Xy X}, X2, Xy = b} be the partition of [a, b] such that xp = x; = xz = - = x,,
my =inff(x),x_,=x=x,
M, =supflx).x_,=x<x
Since fix) =k ¥x € [a.b].

Therefore, m; = M; = k vi

n

MNow U(P f.a) = ZM,- Ag;
i=1

= kz&af[
=1
=k[a(b) — ala)]

n

and L(P,f,a) = z m; A;

i=1
= kz;‘lﬂ'l‘
i=1
=k[a(b)— alal]
Jr fdoe =supL(P, f.a)
2 P
=sup kla(b) —alal]
p
= k[a(b) —alal]
j fda = inf U(P.f. a)
2 P

=inf k[a(b) — ala)]
.

LOVELY PROFESSIONAL UNIVERSITY
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= kla(b) — a(al]
Thus, we get

Jrafr:’:r = fafdnr = k[a(b) — a(a)]

b
= f fda =k[a(b) —al(a)]
a
This completes the proof.

Theorem 1.2.4: IfUU(P, f,a) — L(P, f.a) <€ for a partition P of [a, k] and if 5; and t; are arbitrary

points of[x;_,,x;] then

n
DIf(s) - Fe)l A <e.
i=1

Proof: Let my; = inffix).x;_, = x = x;,
My=supflx),x_, =x=x

Sinces;.t; € [x;_y. %;]

Therefore,
fls, fles) € ImgM;]

= |fls) — fledl = M; —m;

:’ Z'f (s) — f(t:)|Ae; < Z'f*"ff —my)da;

il n

= Z MiAa; — z m A

=L =1
=U(P.f.a) —L(P,f, &)
=<E
Thus, we get
n
Z| Flso - feo)l de; <e.
=1
This completes the proof.

Theorem 1.2.5: If f € R{&) on [a. b] then for everye:= [, there exists a partition

P ={a = x5 %, %o, e, Xy = b} Of [@, B] such that

; Fle)he; — L fda

Proof: Since f € R{a)on [a. b], therefore for given £:= [, there exists a partition P of [a. b] such that

<E,t; € [x_ . 2]

UP f.a) — L(P f.a) <E.

Letmy; = inff(x),x_, =x = x;,

LOVELY PROFESSIONAL UNIVERSITY 9
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My=supflx),x_, =x=x
Sincet; € [x_ . x;]
= flt;) € [my M;]

= m; = flt) = M;

n

il n
= Z myda; < Z Fltpde; = Z M;Ao;
i=1 i=1 ]

=1

LP.foa) < Z fle)de; SUCR.foa) (1)
i=1

We also have,

LRf.a) = fﬂfdr:r = U(R.f.x) (2

Thus, using relations (1) and (2), we get

; Fle) e, — L fda

<&

< U(P,f.a) —L(P,f,a)

Thus, we get

;— fleda; — .L fda

This completes the proof.

<E,t; € [x_ . 2]

Theorem1.2.6: If f is a continuous function on [, k] then f € R{a), & is monotonically increasing

function on [a, b].

Proof: Let £ > 0 and choose 1 == 0 such that [a(b) — a{a)]y < &

Since f is continuous on [, &] therefore f is uniformly continuous on [a, b].
For above 1ij == 0, there exitz § = 0such that |f{x) — f{vi| = n whenever |x —y| =&, vxv e [a b]
Consider partition P of [a. b] such that ||F]| =&

= Ay = 4, Wi

Pl = Max{Ax, Ax,, ..., Ax,}

[ is continuous on [a, b)), therefore f is bounded and attains its bound on [a, &].
Therefore, there existnumberse;, d; € [x;_,.%;] such that f{ec;) = m; = inf f(x)
F(d) = M; = sup f(x)

M; —m; = |M; —my

= If(dp) — Flel

<7

vldi— el = | — x| = 8

LOVELY PROFESSIONAL UNIVERSITY



Unit 01: The Riemann-Stieltjes Integral

Thus|d; —ci| = &= [fld]) - ficdl =n

il il
UlPR. f.a) — L(R f.a) = ZM,-L‘L&,- —Z m; Ao
i=1 i=1
n
= Z('M,- — my) Ao
i=1

=nla(b) —ala)] <e¢
=U(P.fie) —LiP,fa) <¢

= f e Ria)

This completes the proof.

Theorem1.2.7: If { is monotonic on [a, b] and & is continuous and monotonically increasing then

[ e Rig).
Proof: Since & is a continuous and monotonically increasing function.
= for every positive integerr, we can find a partition P such that

w(b) —al(a)

A =
1]

i=12..m
Define
my=inf fx), x_,=x=x
=flxy)
M =supfix), 5, =x=<x;
= fix).
Now,

n

U(P, f.a) —L(P.f.a) = Z('M,- —m;) A

=1

n
wi(bl—aia)
=— } (M;—my)
illl ;—

7]
B — ala)
=—&'I: ) i“ m:aflzi.f':.-ﬁ:' —f('I|'—L:I:|
’ i=1

= 20D (5 4) - fiw)

n
= gwhenn— oo

= UP.foa) — LiP.f.a) = = fER(m)

LOVELY PROFESSIONAL UNIVERSITY
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&

Jrf do = fﬂ'_rjcrri'_rj dx
a z
E/’ If f is continuous on [0,1] where n is a positive integer then
T
Jrfi'.r:l dlx] = f1)+ f2)+ -+ fin).
)

@ Example: If f(x) = x“and a(x) = x*then evaluate

b
ffdﬂ'.ﬂ:ﬂ.b:l.
a

/]
Soluticn: Jr fda
i

@ Example: Evaluate
2

[+ atwa -0

]

Solution: We have
3

[ x awa -2

V]

LOVELY PROFESSIONAL UNIVERSITY



Unit 01: The Riemann-Stieltjes Integral

@ Example: Evaluate
2

f e¥ dix —[x]}

o

Solution: We have

i

J e¥ dix —[x]}

o

3 2

=f§r d:c—JrEI d[x]
B B

=[e*]E — (e +e*+ &%)

= —1—pg—g"—g*

=—(l+e+e7)

@ Example: Evaluate
6

f{xf + ¥} (I3 -
o

Solution: We have

3-x =]

[}
f{xf +[}d(|3-x[)=
o

x)

3—x if3-—x=0ie x=3
—(3—x) if3-

y=<0ie.x>3

3

&
f{x: +EDdE -1+ f{x: +[x]} d(x—3)
o g

]

3
=- f{x: + [x]} dx + f{x: + [=]} dx

Ds 3 ! B &
:—[J rdr+ E:‘[[:4:]|:.'::;l+ Jx' dx + E![::;] dx

3 1 2 5 . . 5
_ ;Lf 2 dx + J[x]dx+ LJr[x]dx+ :f[x] n’xl +J:¢' r:’x+![:r]dx +i([x]dx

+ E‘f[:c] dx

- 3
@ Example: Evaluate

f sinx dcos x)

3 B
+3+4+5=63

i

+1+2]+

]

LOVELY PROFESSIONAL UNIVERSITY

13

Notes



Real Analysis 1

Solution: We have,

f sinx dicos x)

:—f sin” x dx

[ —r
]

-

|

[=]

ral 3

=

3]

£

Theorem1.2.8: Let f € R{a) on [a.b] andm =< fx) = M .¥ x € [o, b]l.Letd: [m, M] = R be

continuous function. Then k = & = f € Ri{ajon[a, b].

Proof: Let £ == 0 be given. As$iscontinuous in [m, M] therefore g is uniformly continuous in [m. M].
So for given £ == 0,3 § = 0 such that

|®${s) —®(t)| <€ v¥ste[mM] whenever|s —t| <4  ..(1)

We assume § = €.

Since f £ R{a) on[a, b].

~for givend” = 0,3 a partition

P ={a = x5 %%, .55 = b} of [, b] such that

U(B f.a) — L(P, f.a) < &° (2}
Let

my = inf{f (x): x € [x_p %3]}
M; = sup{f(x):x € [x;_p, %]}
mi = inflh(x):x € [, %]
M =sup{hix):x € [x;_ %]}
Divide the numbers i = 1,2,..., n into two classes A and B where
A={i:M; —m; < Gland B = {i: M; —m; = &}

swhenie dandx_ ;= x<v= x,wehave

LOVELY PROFESSIONAL UNIVERSITY
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Ifix) —fly)l =M —my; < 8
= |#(f(x)) - #(fy)| <e by @)
= |Rix) —h{y)| <€
=M —mi| <&

ie.M; —m;<ewhenied

Z{M,-' —my ) Aa; = Z £ Am;

124 124

=€ Z:_‘mf,-

124

=¢e[alb) —ala)]

i. E.Z{M,—' —mpde; < e [alb)— ala)]

=
Now
& z.d @; = Z{M,- —m;)Aa;
IEE A

= Z{M,- — my; ) Aa;
-

=UR.f.a)—L(P.f.a)

= §°(Using (2))

Z.{Iw,- <f<e ..(4)

IER
Also, for i € B, we have
M{ —mj = |M{ —mj|

= | M|+ |mil

1™

E+k=2k ..(5)
Where k = sup|®(t)|, m=t=<M

S UR ha) — LR ko) = Z{.’-ﬁ‘,-’ —mi)Adm;
-

= Z[,'-:’,-' —mj)Aa; + Z{.’n’,-' — mj)da;

=ry =
< ela(b) — a(a)] + 2ke (by(3).(4).(51)
=[ab)—ale)+ 2kle= ¢

= U{P,h,a) —L(P,ha) < ¢

= h € Ri{x) onfa, b].

This completes the proof.

LOVELY PROFESSIONAL UNIVERSITY 15
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Cor: If f € R(w) on [, b] then f* € R(a) and |f| € R(a).
Let #(t) =t~ so that & is continuous on [m. M] then % = f € R{a) on [a, b].
Now
(®eflix) = @l:fl:'_r:lzl
=[f(0T

= f* eR{a)on [a.b].
Again let,

&(t) = |t] so that & is continuous on [m, M] then & = f € R(x) on [a, b].
Now
(®ofli(x) = w:[:[f('_rj] =|fix)]|

5 |fl € Rim)on [a. b].

Summary

e Let fi[a.b] = R be a bounded function and @ is a monotonically increasing function.
Corresponding to the partition F={g = xpx;, %, .5} of [a, b] such that
Xp =% xS =x,, we define A = aix;) — alx;_, ) ¥i.Further, we put
L(BE.f.a) = X, mpde; . m; = inf f(x), x;_, = x = x;and
UlP foo) =X M da; M = sup fx), 5o, = 1 = 3,

e We define, sup,L(F.f.a) = [ fda and infpUE.f.a) = [ fda  Iff fda = |° fda,
then we denote their common value by _I': fda .This is the Riemann-Stieltjes integral or

simply the Stieltjes integral. Here we say that f is integrable with respect to @, in the

Riemann sense and write, f € Ria].

e If @ix) = x then Riemann -Stieltjes integral becomes Riemann integral. Or we can say that
Riemann integral is the special case of Riemann -Stieltjes integral.

e If F"is arefinement of F then
(UPT, foa) <= U(R f.a)
(EL(P, fom) = L(P", f.a).
o [Pfde <[’ fda
o If feR(m)then L(P.f.a) = _I':'fdr:r ZUP.f.a)
e If f € Ria) on [a, b] and m, M are the lower and upper bounds of f defined on [ &] then
]
me(b) — ala)] = ( fde = Me(b) —aa)]
e Let f and @ be bounded functions on [, b] and @ be monotonically increasing on [a, b].
Then f & R(a) if and only if for every £:= 0, there exists a partition of [a.h] such that
U(P f.a) — L(P, f.a) <€
e If f is a continuous function on [a. k] then f € (). is monotonically increasing function

on [a, b].

o If f € Ria) on [&, b] then for every £:= 0, there exists a partition

LOVELY PROFESSIONAL UNIVERSITY



Unit 01: The Riemann-Stieltjes Integral

P ={a= % Xy, Xo, .. X, = b} of [@. b] such that [EL, flz)de; — _I':fduf <EL; E [1_p.x]

o IfU{P f.w) — L(P f.a) <& for a partition F of [a k] and if 5; and t; are arbitrary points of
[t x;] then BF || s — fie)| Ae; =€

e If f is monotonic on [&,b] and @ is continuous and monotonically increasing then
feRa.

. _[:lf do = _I': flx)e'(x) dx

) If. [ is continuous on [0,1] where n is a positive integer then
[ Feodid = F) + F(2)+ -+ fom.

o LetfeR{a) on[ab]landm = f(x) =M ,¥ x  [a b]. Let ¥: [m, M] — R be continuous
function. Then i = & = f € Rix)on[a,b].

Keywords

Partition of an interval: By a partition P of [z, 5] we mean a finite set of points g, %y, %n, e, Xy

wherea = xp = x; =%, = - = x,= b,

Refinement of a partition: If P and P" be the partition of the interval [a, b] such that P* = F then P*
is known as the refinement of F,

Upper Riemann-Stieltjes
Integral:inf, (P, f.a) = _I'lfI fda, UP, foe) = B0 M Ae; M; = sup flx), x_, = x <%,
Lower Riemann-Stieltjes

Integral:supz L(P, f.a) = _I': fde, L{P,f.e) =¥, mihe;, m; = inf f{x), 5, =x = x;.

Riemann-Stieltjes Integral: If_l-lfI fde = _|-: fda, then we denote their common value by _I-: fde

or_I-l_.'E:I fix)da(x). This is the Riemann-Stieltjes integral or simply the Stieltjes integral. Here we say

that f is integrable with respect to @, in the Riemann sense and write, f € R{r].

Necessary and sufficient condition: Let f and @ be bounded functions on [&,b] and @ be
monotonically increasing on [a k], Then f € R{x) if and only if for every £ 0, there exists a

partition of [a, b] such that ' (B, f,&) — L(P, f,a) <&,

Self-Assessment

Let f be a real-valued bounded function defined on [a, b] and let & be a real-valued
monotonically increasing function defined on [a, b]. Further, let Ag; = aix;) — @iz,
Suppose P ={f = Xp Xy XXy =08} be the vpartition of [a, b] and
m; = inf{fix):x € [x_, %]}, M; = sup{f(x):x € [x;_, x7]}, m = inf{f{x):x € [a. b1},
M =sup{fix):x € [a.b]}.

1) Consider the following statements:

(I) If P” be the refinement of the partition P then P — P".

(II) If P = F, U B, then P is the common refinement of P, and P

A. only (I) is correct

LOVELY PROFESSIONAL UNIVERSITY
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B. only (II) is correct
C. both (I) and (II) are correct

D. both (I) and (I) are incorrect

2) Riemann-Stieltjes integral becomes Riemann integral if:

A alx) =x°
B. wix) =2x

C. wi(x)l=x
D. none of these

n

A. wla)—alb)
B. a(b)—ala)

C. mia)+ alh)

D. none of these

4) Select the correct option:

1 il
a) LiP, f.a) = Z m; Awpand U(P, f. o) = Z;’-fm:r,-
i=1 i=1
1 n
by LR, f.a) = Z m Aggand DR, f.a) = ZM A
i=1 i=1
n n
e) L(P.f.a) = Z m; Aggand U, f,a) = ZM,- A;
i=1 i=1
1l 1l
d) LiP, f.a) = ZM,- Mg and U(P, fa) = Z m; A
i=1 i=1

5) L(P, f.a) = U(P,f.a)
A. True
B. False

6) Select the correct option:
A mp=m=M =B

B. m=m;=M =)
C.my=m=M=M

D.om=Mj=m=]

7) Select the correct option:

LOVELY PROFESSIONAL UNIVERSITY
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a) meib)—ale)] = LB f.a) = UP.fa) = Ma(b) — ala)]
bymafa) — w(b)] = L(P, f.a) = U(P, f.a) = M[a{a) — a(b]]

¢) mla(b) — al(a)] = U(P, f.a) = L(P.f.a) = M[a(b) — a(a)]

d) none of these
8) Select the correct option:

B B
@) f Fe = LglefP, foa)and ffduf =suplUi(P,f.a)
B
a a

B B
b f fda =sup L(P.f, &) and f fda =mfL(P. f.a)
]
a a

b b

c) f fde = SL;[J LiP.f. &) and Jrfdnf = 'mPfU{P,f,aj
a

a

d) f fde =L(P.f.a) and -J(fdnf =U(P.f.a)

9) Consider the following statements:
B B
[I)denfl_‘ ffdnf
a a

(1) If f € R{a) on [a, b] then f* £ R{&) on [a, b]. Then
A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct

D. both (

. both (I) and (II) are incorrect

10) If f is Riemann-Stieltjes integral then

B

fda = f fda

a

@)

([ L

b) ffdnf < ffn’nr

B

c) ffdr:r = Jrfdaf

d) none of these

LOVELY PROFESSIONAL UNIVERSITY 19
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11) For the refinement F*of P, select the correct option:

a)U(P, f.o) = U(P", foa) and L(P, f.a) = L(F". f.a)
by U(B f.a) = U(PF", f.a) and L'(P.f.a) = L(P, f.a)

c)U(F", f.a) = U(P f.a) and L(P, f.a) = L(P", f.a)

dyU(F", foa) = U(P,f,a) and L'(P, f,a) = L(P.f. a)

12) Select the correct option:

AL(P. foa) < f fda and U(R.f. @) < Jrfdnr

bIL(P.f. o) = ffcfrrsmd UB.f.a) = ff,m

b b

c) L(P.f.a) £ffdwmdU{P,f,a}E ffdnr

a a

dy L(P. fia) = ffd:rand U(B. f.a) = f fda

13) Select the correct option:

a) L{P, f,a) = ffdaf;i[.ffp,ﬂq:, = ffdﬂ,

b b

b) L(P.f. &) < ffdrrf_iffdaff_iU{P,f,cr}

a a

B b
c) LP.f.a) = ffdcr‘_:ffdcri U(P.f.a)

d) none of these

14) For f € R{, select the correct option:

a) L(P,f.a) = ffn’uf‘_i U(P.f.a)
b) U(P,f.a) < ffd:r < L(P.f.a)

cjffn’ufii L(P.f.a)y = U(P.f.a)
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d) None of these

15) For f € R{z) on [a, b], select the correct option:
]
a) me(b) —ala)] = f fda = Me(b) —ala)]

a
]

by mla(a) — a(b)] = ffdnf = M[a(b) — ala)]
a

b
c) me(b) —ala)] = Jrfdnf = Meia)— a(b]]

a

d) None of these

-

]

1a) Iff fda = inf{U(P, f, &): P is the partition of [a.b]} and
a
b
Jr fda = sup{L(P, f,a): P is partition of [a.b]}.
a
Then consider the following statements:

(I) For given i == 0, there exists a partition P, of [a, b] such that U{F,,f, &) = _I'fI fda +1.

. - b
(I) For given 17 == 0, there exists a partition P, of [a, b] such that LiF.. f.a) = | fda —1.

A. only (I) is correct

(
B. only (II) is correct
C. both (I) and (II) are correct
D. both (I) and (II) are incorrect

17) Select the correct option.

n
@) Z('M,- —my)Aa; = (P, f,a) — L(P, f.a)
i=1

by } (M; —mp)Ae; = Li{P, f.a)

n

=1

Tl
c) Z(H,- —m;)da; = U(P, f.a)
=L

d) None of these

18) Consider the following statements:
(I) If f is continuous on [a, b] then f € R({&) on [a, b].

(I) If f is continuous on [a, b] then f is bounded and attains its bounds on
[a, b]. Then

A. only (I) is correct
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B. only (II) is correct
C. both (I) and (II) are correct
D. both (I) and (I) are incorrect

20) | sinxd{cosx) =

bjg
_—3m
€)—
d 0

Eljf[.r] dix®) =

o

0
1
2
3

90w »

22) f 2 d(|x]*) =
-1

A. 71/8

B. 177/8

C. 711/8

D. 771/8

23) Consider the following statements:

(I) If a function is uniformly continuous then it must be continuous on any given interval.

(I) If f is continuous on any finite closed interval then the function f doesn't need to be
uniformly continuous on that interval.

A. only (I) is correct
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B. only (II) is correct

C. both (I) and (II) are correct
D. both (I) and (II) are incorrect

24) Consider the following statements:

(I) If f € R{z) on [a, b] then for given 1 = 0, U(P, f.a) — L(P, f.&) =1.

(In

n
Ag; =ala) —a(b)

=1

only (I) is correct

only (II) is correct

S N F »

both (I) and (II) are correct

both (I) and (II) are incorrect

Answers for Self Assessment

1. C 2. C 3.
6. B 7. A 8.
11. C 12. C 13.
l6. C 17. A 18.
21. D 22. D 23.

Review Questions

1) Evaluate:

cosxd(sinx).

2) Evaluate:

A%

fte o= 29
o

3) Evaluate:

I =

H I.lﬁ!.
1% =

[l
[

Jr [x]d{e*).[. ]denctes greaterinteger function.

4) Evaluate:

4
f xd[x], [. ]denctes greater integer functicn.
o

5) Evaluate:

B

C

14.

19.

24.

5 B
10. C
15. A
20. A

LOVELY PROFESSIONAL UNIVERSITY
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f ride, alx) = {5 f

o

LI

Www

Further Readings

Walter Rudin, Principles of Mathematical Analysis (3¢ edition), McGraw-Hill International
Publishers.

T. M. Apostol, Mathematical Analysis (2nd edition).
S.C. Malik, Mathematical Analysis.

Shanti Narayan, Elements of Real Analysis

Web Links

https:/ /nptel.ac.in/courses/111/105/111105069/

https:/ /www.youtube.com/watch?v=D0O0Dzz07DNI

https:/ /www.youtube.com/watch?v=YLB1wLkPbel
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Objectives

After studying this unit, students will be able to:

¢ understand various properties of Riemann-Stieltjes integral

e  define the relation of linearity in terms of Riemann-Stieltjes integral

e  establish the relation of monotonicity in terms of Riemann-Stieltjes integral
e  describe Riemann-Stieltjes sum

e  express Riemann-Stieltjes integral in terms of Riemann-Stieltjes sum

Introduction

In the last unit, the concept of Riemann-Stieltjes integral has been discussed in detail with the proof
of the related theorems. In this unit, we discuss the properties of Riemann-Stieltjes integral and
their proof.

2.1 Properties of Riemann Stieltjes Integral

Theorem 2.1.1: Iff € R(a)on [a, b] and ¢ € R then cf € R(a)on [a, b] and

Lbcfdazc Lbfda

Proof: Case 1: For ¢ = 0,the result is obvious.
Let
M;(cf) = Sup(cf), x € [x;—1, %]
m(cf) = Inf(cf), x € [xi-1, xi]
M;(cf) = ¢ Mi(f)
m;(cf) = cm;(f)
Case 2:1fc > 0
Consider

U(P,cf,a) — L(P,cf,a)

= ; M;(cf)Aa; — ; m;(cf)Aa;

LOVELY PROFESSIONAL UNIVERSITY
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n n

= > cMi(HHAa; — ) cmi(f)Aa;
1 2.

i=1

=c [Z[Mi(f) - mi(f)]Aai]
=1

=c[UP,f,a) — L, f, a)]

=ce=¢€'(say)

=>cf € R(a)

b b b
:>fcfda=fcfda=fcfda
Now,

b
fcf da = sup L(P, cf,a)
P

a

=supcL(P,f,a)
P
=csupL(P,f,a)
P

Thus, we get,

b b
fcfdachfda

b

=>fbcfda=cjfda

a

Case 3:Ifc< 0
HereM;(cf) = ¢ m;(f)andm;(cf) = ¢ M;(f)
Consider,

UP,cf,a) — L(P,cf,a)

- E[Mi(cf) —m;(cf)] Aa;

i=1
= Z[C m;(f) — ¢ M;(f)] Aa;
i=1

n

=—c Z(Mi -my) Aa;
=1

=—c[UP,f,a) = L(P,f,a)]
=—ce=¢€'(say) >0

= U(P,cf,a) —L(P,cf,a) <€’

= cf € R(a).

Since,

b

fcfda

a

=sup L(P, cf,a)
P

=supcU(P,f,a)
P
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= c}ianf UP,f,a)

b b
:>fcfda=cffda
Since cf € R(a)andf € R(a)

b b
=>fcfda=cffda.

This completes the proof.
Theorem 2.1.2: If fi, f, € R(a) on [a, b] then f; + f, € R(a) on [a, b] and

b b b
[+ rda=[fda+ | fda

Proof: Let € > 0 be givenand let f = f; + f,.
Since f;, f>» € R(a) on [a, b]

+ 3 partitions P; and P, for f; and f, respectively such that

U(Pl'flla) - L(Pl'fl' (Z) <§

€
U(PZ'fZ'a) _L(PZ'fZ'a) < E
LetP =P, UP,

Therefore,

U(P,f1,a) - L(P'flfa) <§

U, for0) = L(P frs @) < 5

Let m;, M;, mj, M{andm;’, M;'be the supremum and infimum of f,fiandf, on [x;_4, x;] respectively.

Thenm; = m; + m;' and M; < M; + M;’.

n n n n n n

> Z m; Aa; = Z m; Aa; + Z m; Aaiandz M; Aa; < Z M| Aa; + Z M| Aa;
i=1 i=1 i=1 i=1 i=1 i=1

> L, f,a) = LP, fi,a) + L(P, fr,@)and U(P, f,a) S U(P, f1,a) + U(P, 5, @)

= —L(P,f,a) < —-L(P,f1,a) — L(P, fr,@)and U(P, f,a) < U(P, fi,a) + U(P, 5, @)

= UP,f,a) = L(P,f,a) SU(P,f1,a) — L(P, f1,a) + U(P, fo,a) — L(P, f, )
€ €

< E+ 7= €.

Thus, we get

UP,f,a) —L(P,f,a) <€
= f eR(a)
i.e. f1 +f2 € :R(Ol)

Now we will show that
b b b
[+ ryda=[ fda+ | fda
a a a

Sincef € R(a), therefore

b b
ffda=ffda

Since,

LOVELY PROFESSIONAL UNIVERSITY
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b

ffda <U(Pf,a)

SUPfr, ) +U(P, f,a)
€
2
=LP, fi,a) +L(P,f,a) + €

€
<L(P,f1,a)+ +L(P,f2,a)+z

b b
Sfflda+ff2da+e
a

a

b b b
=>ffda<ff1da+ffzda+€
a a a

b b b
= ffdaﬁfflda+ff2da. (D

Now, since f, fi, f» € R(a).
“ —f,—fu—f2 € R(a)

b b b
= [-rdas [-firda+ [ 1) da
L, )
:—ffdas—fflda—ffzda

b b b
:ffdaszlda+ff2da - (2)

From (1) and (2), we get

b b b
ffda=ff1da+ff2da.

This completes the proof.
Theorem2.1.3: If f € R(a) on [a, b] then f? € R(a) on [a, b].
Proof: Since f € R(a) on [a, b]
= f is bounded on [a, b]
= 30 < k € R suchthat|f(x)| <k Vx € [a,b].
If f € R(a) on [a, b] then for given € > 0,3 P of [a, b] such that
UP,f,0) = LP.f.0) < 5
Let m;, M;and mj, M; be the bounds of f andf?respectively on [x;_1, x;].
Now let ty, t, € [x;_1, X;]-
Then
If2(t) — f2()] = If (t) — fFEDIf(t1) + F(E)]
= |f2(t) — 2] S [F D]+ IFENf (8 — f(E)]

< (k+0)If(t) — f(&)

=2k |f(t1) — f(&2)]
This relation must hold for m;, M; andm;, M;.
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n n
> Z(M; —mDAa; < Z 2k(M; — m;))Ae
i=1 i=1

= UP,f%a)—L(P,f%,a) <2k [U(P,f,a) — L(P,f,a)]

<= ok=
2k 7€

Thus, we get,

UP,f%a)—L(P,f%a)<e

= f? € R(a).

This completes the proof.
Theorem 2.1.4: If f € R(a)on[a, b]land g € R(a)on[a, b]then fg € R(a)on[a, b].
Proof:Since f € R(a), g € R(a)
“f+9f—9€R@
=>(f+9%(f -9?eR@
>(f+9°- F-9?eR@
= 4fg € R(a)

= (419 € R@)

= fg € R(a)on [a, b]

This completes the proof.

Theorem 2.1.5: If f € R(a)on [a, b] then |f| € R(a)on [a, b] and

b
J-fda

Proof: Since f € R(a)on [a, b] therefore for given € > 0,3 partitionof [a, b] such that
UP,f,a) - L(P,f,a) <e

b
< [Ifida

Let m;, M;andm;, M;be the supremum and infimum of f and |f|respectively on [x;_q, x;] .
Now let ty,t, € [x;_1, x;].

s IFED = IF @] < If (80) = F(E ey
=M —m; <M; —m

n
= Z(Mi’ —mpAa; < Z(Mi —m;)Aq;
=1 '

=1
=>UP,Ifl,a) - L, Ifl,a) <U(P,f,a) = L(P,f,@)
<e€
Thus, we get
UP,Ifl,a) = L(P,Ifla) <€
= |f| € R(a)onla, b].
Next, we show that

b

dea

a

b
< [If1da

Since f € R(a)
& —f € R(a) and|f| € R(a)
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b

b b
> ffda,f—fda andflflda exists.
a a

a

Now,

—f <Ifland f <|f]

b b b b
:f—fdagflfldaandffdaéf|f|da

b b b b
> —ffdasflfldaandffdaﬁf|f|da

b

= Max {—ffda,ffda}sflﬂda

b a
ffda

This completes the proof.

=

b
< [If1da

Theorem 2.1.6: If f € R(a)on [a,b] and a < ¢ < b then f € R(a)on [a,c] and f € R(a)on [c, b] and
b c b
ffda=ffda+ffda

= for given € > 0, 3 partition of [a, b] such that
UP,f,a) —L(P,f,a) <€

Proof:f € R(a)on[a, b].

Let P* = P U {c}.
Then P~ is the refinement of P.
=>UP"f,a) - L(P*,f,a) <€ (1)
Let P; and P, be the set of points of P*which constitute the partitions for [a, c] and [c, b]
U, f,a) + U(Py, f,@) = UP", f,a)  ..(2)
L(Pi,f,a) + L(P,, f,a) = L(P*, f,a) - (3)
From (2) and (3)
[UPy, f,@) = L(Py, f, )] + [U(Py, f,a) = L(Py, f,@)] = U(P", f,a) — L(P", f, @)
<Ee€
S [UP, f,a) —L(Py, f,a)]+ [UP,, f,a) — L(P,, f,a)] <€
2> UP,f,a) —L(Py, f,a) <eand U(P,, f,a) — L(P,, f,a) < €
= f € R(a)on[a,cland f € R(a)on [c,b].
NowU(Py, f,a) + U(P,, f, @) = U(P*, f, )

b
= U, f,a) + U(Py, f,a) 2 f fda

Keeping P,, taking infimum over all P;, we get

ffda+U(P2,f,a)2ffda

Taking infimum over all P, and using the fact that f € R(a)on [a, c], andf € R(a)on [c, b], we get
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= ffda+ffda2ffda . (®)

Now consider,

L(Pyf,a) + L(Py f,a) = L(P", f,a)
b
< ffda
b

ﬁffdaH(Pz.f.a) < ffda

a

:ffda+ffda£ffda ..(5)

From (4) and (5), we get

ffda+ffda=ffda

This completes the proof.

Theorem 2.1.7: If f € R(a,) and f € R(a;) then f € R(a; + a;) and

b b b
[ ra@ +a = | rda+ [ rday

Proof: For given € > 0,3 P;andP, such that

UPLfia) ~LPLfia) <5 (D)
and

UPy fraz) = L(Py, f,a3) < % e
Let P = P, U P,, then

U fa) - LP.fra) <5 (3)
and

UP, f,ap) — L(P, f, ay) < ; (4

Leta = a; + a5.

Then

n
U(P,f, a) = Z M,:A(Zi
i=1

Ingilingl

1l
-

M;[a(x;) — a(xi—1)]
M;[(ay + o) (x;) — (g + az)(x;-1)]

> U, £,0) = D Ml (1) + (%) = (i) = (i)
i=1
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= D Milay () — @ G + ) Myl () = o)
i=1 i=1

U@, f,a)=UP,f,a,) +UP,f,ay) ..(5)

Similarly, we get
L(P,f,a) = L(P,f,a) + L(P,f, ;)  ..(6)

From (5) and (6), we get
UP,f,a) —L(P,f,a) = [UP,f,a1) = L(P, f,a)] + [U(P, f,az) — L(P, f, a2)
<sts=e
= UP,f,a) —L(P,f,a) <e
= f e R(a)
i.e. feR(a; + ay).

Next, we show that

b b b
[ ra+a)= [ raa + [ raa,

Since

b
ffdaf <U(Pf,a)

<L(P,f,a)+e€
=L, foa) +L(P,f,a;) +€ {by(6)}
b b
ijda1+dea2+e

b b b
:ffda<ffda1+ffdaz+e

b b b
=>dea£ffda1+jfdaz - (7)
b
ffdaZL(P,f,a)
>U(P,f,a) —€

=UP.f,a)) +UP,f,ax) — € {by(5)}

b b
ijda1+jfda2—e
a a
b b

:ffdaszda1+ffda2 ..(8)

a a

From (7) and (8) we get
b b b
ffda=ffda1+ffda2

b b b
:ffd(a1+a2)=ffda1+ffda2
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This completes the proof.

Theorem 2.1.8: If f € R(a) on [a, b] and ¢ > 0 be any real number then f € R(car) and

b b
ffd(ca)=cffda
a a

Proof: Since f € R(a) on [a, b] therefore for given € > 0,3 P of [a, b] such that

UP, f,) — L(P. f, ) <§ (D)

A(ca;) = (ca)x; — (ca)x;—q
= ca(x;) — ca(x;-1)
= cla(x) — a(x;-1)]
= Alca;) = ¢ Ay)

Now,

n
U, f,ca) = Z M;A(ca;)
i=1
n
= Z Mi C A(Zi
i=1
n
=cC Z Ml-Aai
i=1

=>UP,f,ca)=cU(P,f,a)
Similarly, we get
L(P,f,ca) =cL(P,f,a)
~UP,f,ca) —L(P,f,ca)
=cUP,f,a)—cL(P,f,a)
=c[UP,f,a) — L(P,f, )]
<c(§)=e
Thus, we get
UP,f,ca) —L(P,f,ca) <e
= f € R(ca).

Next, we show that
b b
ffd(ca)=cffda
a a
Since

b b
ffd(ca) = ffd(ca)

= ir11)f U, f,ca)
= iI;fc UP,f,a)

=cir}gf UP,f,a)
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b b
> ffd(ca)= cffda

This completes the proof.
Theorem 2.1.9: If f € R(a) on [a, b] and f(x) = 0,Vx € [a,b] then

b
ffdaZO
a

Proof: Let

m= inf f(x)andM = sup f(x)
x€la,b] x€[a,b]

b
- mla(b) — a(a)] < f fda < Mla®) —a(@]  ..(1)

Since f(x) = 0,Vx € [a, b]
~mM = 0.
Also a(b) — a(a) = 0 as a is increasing

~ ma(b) —a(a)] =0

= ffda >0 {by(1)}

This completes the proof.
Theorem 2.1.10: If f; € R(a) on [a,b] and f, € R(a) on [a,b] and f; < f,,Vx € [a, b] then

b b
ffldasffzda

Proof: Since f; < f,Vx € [a, b]

=>f,—f1 =0 Vx € [ab]

= fb(fz_ﬂ)dazo
ba b

:ffzda—jfldazo
ab ab

=> ffzdaszlda

b b
i.e. Jfldasjfzda.
a a

This completes the proof.

Theorem 2.1.11: Suppose f is bounded on [a, b], f has only finitely many points of discontinuity on
[a,b] and a is monotonically increasing function continuous at all those points where f is
continuous then f € R(a) on [a, b].

Proof: Let € > 0 be given and let E = {yy,y5,...,¥,} be an ordered set of finite number of points at
which f is discontinuous in [a, b].

Since E is finite and « is continuous at every point of E. Therefore, we can cover E by finitely many
disjoint intervals [u;, v;] € [a, b] and place these intervals in such a way that every point of E lies in
the interior of some [u;, v;] such that
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€

p
Z[a(vi) —a(u)] < 201=m) - (1D
=

where m, M are infimum and supremum of f on [a, b].
Let m;, M; be the infimum and supremum of f on [u;, v;] (i = 1,2,...,p) then
ms<m; <M; <M ."(2)

>Mi—m;<M-m, i=12,.,p

P 4
= Z(Mi —m)Aa; < Z(M —m)Aq;
i=1 i=1

=M —m) Zp: Aa;
i=1

<M-m) M) {by (1)}
p
= Z(Ml - ‘mi)Aai _% (3)
i=1

If we remove the segments (u;, v;)from [a, b], then remaining (p + 1) subintervals of [a, b] are
[a, w;], [vy,uz), [ve, us), ..., [vp, b]

Since f is continuous on each of above (p + 1) sub intervals and a is monotonically increasing.

~ f € R(a)on each these (p + 1) sub intervals.

= 3 Partitions Py, P, ..., P,4q of above (p + 1) sub intervals such that

U, f,a) — LB, f,a) < =12,..,p+1 .. (4)

€
2(p+ 1)’
Now we form a partition P of [a, b] as follows:

Each u; occurs in P, each v; occurs in P, no point of any segment (u;, v;) occurs in P i.e.
P ={a,...,uq, V1, .., Uz, Vg, e, Up, U, oo, B}

Then

p+1

p
U, f,0) = ) Milaw) - a(u)] + ) U f,0)
i=1 r=1

and

p+1

p
LP£,0) = ) mila(v) = a@d] + ) LB f,0)
i=1 r=1

p+1

p
U(Prf! (Z) - L(Prf! (Z) = Z(Ml - mi)[a(vi) - a(ui)] + Z[U(P‘r'lfr a) - L(Pr,f, a)]
i=1 r=1

p+1

P
€
<D M= mlat) —a)l + ) semos by @)
i=1 r=1
p+1
€ €
<§+2(p+1)21=€
r=1
Thus, we get
UP,f,a) —L(P,f,a) <€
= f € R(a)on [a, b]
This completes the proof.
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Example: Let a be monotonically increasing function defined on [a,b] which is
continuous at x’ € [a, b], and let f be a function defined on [a, b] by

0;x #x',
1;x=x".

f =
Then f € R(a) on [a, b] and f:f da =0.

Solution: Since f is discontinuous at x = x’ and @ is continuous at x'. Therefore, by using the
preceding theorem we get f € R(a) on [a, b].

n
We have L(P,f,a) = Z m; Aa;, m; = inf f(x)
= x€[xi—1,%;]

Here m; = 0 Vi,
= L(P,f,a) =0
= supL(P,f,a) =0
P

This completes the proof.

Unit Step Function: The unit step function [ is defined by

(0 if x<0,
I(X)‘{1 if x>0.

Theorem 2.1.12: If a < s < b, f is bounded on [a, b], f is continuous at s,and a(x) = I(x — s), then
b

ffda = f(s).

a
Proof: Since
a(x) =1(x—5s)
_{0ifx—s$0=> X<s > x<x
T l1lifx—=s>0=>x>5s > x>x

{Oifoxl
1if x> x;

Let P = {a = x¢,x; =5, X3, %3 = b} be the partition of [a, b], m;, M; be the infimum and supremum
of f(x), xi-1 <x<x;i=1,2,3

Then

n
U(P,f,a) = ZMl Aai
i=1

3
= Z M,: A(li
i=1

= M;Aa; + MyAa, + M3Aas
= My[a(x;) — a(xo)] + Mp[a(x;) — aCe)] + Ms[a(xs) — a(x,)]
By using definition of a(x), we get
UP,f,a) = M,.

Similarly, we get

LOVELY PROFESSIONAL UNIVERSITY



Unit 02: Properties of the Riemann- Stieljes Integral

L(P,f,a) =m,
Since f is continuous at s, a < s < b therefore M, — f(s),m, > f(s)asx, > s

~infU(P, f,a) = sup L(P, f,a) = f(s)

b

:ffda=ffda=f(s)

a

b
:ffdazf(s).

This completes the proof.

Theorem 2.1.13: Let f be a continuous function on [a, b] and

o)

a(x) = Z cpl(x —5s,),cp =0,Vn,

n=1
where Y77, cpis convergent and{s,} is the sequence of distinct points in (a, b) then

b oS

[raa=3 e

2 n=1
Proof: We have

0ifx—5s,<0ie x<s,
lifx—s,>0i.e x>s,

_{0 if x <sp,
Tif x> s,

> I(x—s,)<1

I1(x —sp,) z{

S l(x—sy) <cp
Since Y.;-1 ¢, is convergent
=~ by comparison test a(x) = Y51 ¢, [(x —s,)is convergent Vx € [a, b].
Now letxy, x, € [a, b]such that x; < x,, then

I(xl - Sn) < I(xz - Sn)

o

= Z cn I(x; —5sp) < Z cn 1(xy —sp)
n=1

n=1
= a(x;) < alxy).
Thus a is monotonically increasing function on [a, b].

Let € > 0 be given.Since Y., ¢, is convergent,so we can choose n € N such that

<€ - (1)
n=m+1
Let
m
@) = ) e 166 =5
n=1
and

Q= ) e 10—y
n=m+1

So
a(x) = a;(x) + az(x)

lL.e.a=a,+a,
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Then

b b b
ffda=ffda1+ffda2.

We know if f is continuous at s and a(x) = I(x — s) then fab fda = f(s).

Therefore,
b b m
fda; = fd[ Cn I(x—sn)]

Jrae=Jra,

b m

= [ fda = e s

a n=1

Now
a,(b) — ay(a) = cn I(b—sy)— cn I(a—sy)
= Z Cn {by definition of I(x — s,)}
n=m+1
= az(b) —az(a) <e {by(1)}

Since f is continuous on [a, b].
= f is bounded on [a, b].
Therefore 30 < k € R such that
[f(x)| < k,Vx € [a,b]

b
ffdaz

< ke.

b b
ffda—ffdal

b
[rae=3 e s

- < kla,(b) — ay(a)]

Since a = @, + a,, therefore,

= < ke

= < ke

n=1

Letting m — oo, we get

[ee)

b
[raa=3 e reo

n=1
This completes the proof.
Theorem 2.1.14: (Change of Variable)

Let @ be strictly increasing continuous function that maps [4, B] onto [a, b], @ is monotonically
increasing on [a, b], f € R(a)on [a, b]. Define B, g on [4, B] such that

B =a(®(), g =f(»))

b B
[raa=gas
a A

Then g € R(B)and
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Proof: ®: [A, B] - [a, b] is strictly increasing, continuous and onto.

~ @ is one-one and onto

= & is invertible.

Therefore, corresponding to each partition

P ={a = xg, x4, x5, ..., x, = b}of[a, b], there existspartition Q = {A = yg, ¥4, ..., yn = B}of[A, B] such
that ®~1(x;) = y;, Vi.

Let m;, M; be the infimum and supremum of f respectively on [x;_1,x;] and let m;, M; be the
infimum and supremum of g respectively on [y;_4,¥;].

Now,
m; =inf{ g(¥) : ¥ € [yi-1, v}
= inf{ f(®()) : ¥ € [yi-1, 7]}
= inf{ f(x) © x € [xi—g, X}
>m; =m;

Similarly, we can get M; = M;.

Now,

L(®,g.0) = ) m8f,
i=1

3

= > m[BOy) — B(i—1)]

i

1l
=

m; [a(@ ) — a(@(yi-1))]

I
NGE

1l
=

m; [a(x;) — a(x;_1)]

DM 5

...
1l
[y

m; A(li

= L(P,g,8) =LPfa).
Similarly, we can get U(®, g, ) = U(P,f, ).
Thus
sup L(Q.g.B) = sup L(P, f, a)andinfU(Q, g, f) = inf U(P. f, @)

B b b B b b
:Ajgdﬁ=ﬂjfda=!fdaand Afydli’=affda=lfda

B B b
=Jgdﬁ=lgdﬁ=lfda

B b
=>g€R(B)and | gdB = | fda
Joe-]

This completes the proof.

Theorem 2.1.15: Let f be a bounded function on [a, b], a is monotonically increasing function on
[a, b] such that a’ is R-integrableon [a, b]. Then f is Riemann Stieltjes integrable if and only if fa'is
R-integrable and
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b b
ffdasz(x)a’(x) dx.

Proof: Let € > 0 be given.
Since a' is R-integrable therefore 3 partition P of [a, b] such that
UP,a")—L(P,a")<e
a is derivable in[a, b]
= a is derivable in[x;_4, x;]
So, by mean value theorem, for t; € [x;_1,x;],i = 1,2, ...,n, we have
a(x;) —alx;—1) _

Xi — Xj—1

Aai ,
Ax, a'(ty)

= Aa; = a'(t;) Ax; - (1)
Since f is bounded on [a, b], ~ 3 0 < k € R such that
[f()| < k,Vx € [a,b]. - (2)

a'(ty),

Let M; = supa’(x),x € [x;_1,x;], m; = infa’(x),x € [x;_1, %]

Let s;, t; € [xi_1, x;].

Therefore,
[a'(sp) —a'(t)] Ax; < ) [M; —m;] Ax;
Z[a’(si) &' (t)] bx; < UP,a') — L(P,a’) < ¢
i=1
= ) [a'(s) —a'(t)]Ax; < e . (3)
2
Now,

Zf(si) Aa; — Z f(sp) a'(sy) Ax;
= =

= zn: f(s)) a'(t;) Ax; — zn: f(sa'(sp) Ax; {by(1)}
= =
_IS F(s) [/ (8) — o' (s9)] Ax;
=
< ilf(si)l la’(t;) — a' (s Ax;
=
< i kla'(t) — a'(s)] Ax; {by(2)}
=
= k;la’(ti) — &' (s)l Ax;
> if(si) da; — if(si) a'(s) dx;| < ke - (4) {by(3)}
= =

> ;f(si) Aa; < ; F(s) ' (s)Bx; + ke €
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= f(si)Aai<U(P,fa’)+k5
)

=>UP,f,a) <UP,fa')+ke .. (5)

Again from (4), we have

fls)a'(s)Mx;< ) f(sp)Aa; +ke
2 2

<U(P,f,a) + ke
=> UP,fa')<UP,f,a) +ke ..(6)
From (5) and (6), we get
|UP, f,a) —U(P, fa")| < ke (7

As U(P,a') — L(P,a") < € remains true if P is replaced by any refinement. Hence (7) also remains
true. We conclude that

b b
ffda—ff(x)a’(x) dx| < ke.

a

But € is arbitrary. Hence
b b
ffda = J-f(x) a'(x) dx .. (8)
a a
Similarly
b b
dea = ff(x) a'(x) dx (9
a a
From (8) and (9), we get f is Riemann Stieltjes integrable if and only iffa’ is R-integrable and then

b b
dea = ff(x) a’(x) dx.

This completes the proof.

Example: Let

1if
FO={ 1y er . gon 0l

Show that f is not Riemann integrable.

Solution: Let P = {xq, X1, X3, ..., X, = 1}, be the partition of[a, b], m; = inf f (x), M; = sup f(x),x €
[xi-1, ;]

& m; =—1andM; = 1.

Now
n
L(P,f) = Zmi Ax;
i=1
n
=-1 ZAX,:
i=1
=-1 [xn - xO]
=-1[1-0]=-1
and

LOVELY PROFESSIONAL UNIVERSITY

M

Notes



Notes

42

Real Analysis 1

i=1
n
=1 ZAXL'
i=1
=1 [xn - xO]
=1[1-0]=1
~supL(P,f) =-1
P
b
= ffdx =-1 and
a
infU(P,f) =1
P
b
> ffdx =1
a
Thus, we get
b b
ffdx * ffdx
a a
f is not integrable.
E] Example: Let
_ lif x€Q
f() ‘{—1ifxeR—@°n[0’1] :

Show that | f | is Riemann integrable.

Solution: Let P = {x,, x4, X3, ..., X, = 1} be the partition of [a, b],
m; = inf|f|,x € [x;_1,x;], M; = sup|f]|,x € [x;_1, x;]

>m=1M =1

n
SUPIFD = ) M by,
i=1
n
=1

l
Similarly, L(P, |f]) = 1.

So, we have

sup (L(P, IfD) = 1, inf (U(P. IfD) = 1

b b
= [ir1ax = [1f1x

= |fl € R on[a,b].

2.2 Riemann Stieltjes Sum:

Let f be a bounded real function on [a, b], @ be monotonically increasing function defined on [a, b].

Let P ={a=xg,xq,..,x,} be the partition of [a,b].The Riemann Stieltjessum is denoted by
S(P, f,@)and is defined as
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n
Zf(ti)Aai'ti € [xi—1, %]
=1

i.e. S(P,f,a) = Zf(ti)ﬁaz,tz € [xi—1,x]

where m; = inf f(x),x € [x;_1, x;], M; = sup f(x),x € [x;_1,x;]

Then
m; < f(ti) < M, t; € [x;-1, %]

n n n

> Z m; Aa; < Zf(ti)Aai < Z M; Aa;
i=1 i=1 i=1

= LP,f,a) <SP, f,a) <UP,f,a).

@ S(P,f,a) = Aas||P|| - 0 if for given € > 0,35 > 0 such that
[S(P, f, @) — A| < €, with||P]| < 6.

Theorem 2.2.1: If”})iﬁnoS(P, f,a)exists as |[|P|| - 0 then f € R(a) on [a, b] and

b

"}’lﬁn S(P,f,a) = ffda.

a

Proof: Since ||lle S(P,f,a) exists so ||11”m S(P,f,a) = A (say)

= for given € > 0, 36 > 0 such that

ISP, f, ) — A] < ZwithllPII <6 (D)
:~A—%<S(P,f,a)<A+% -~ (2)
Leta(b) —a(a) =k
m; = inff(x),x € [x;_q, %], M; = sup f(x),x € [x;_1, x;].

~ 3 s, t; € [x;_1, x;]such thatM; — % < f(t)andm; + % > f(s;)
=>M; < f(t) + % and - (3)
€
m; > f(s;) I - (4)

Consider

UP,f,a) = L(P,f,a) = ) MiAa; — ida;
a a Zl a lzzlm a
<D (ree) +7) b - ZmAal by

i=1

<Zn:(f(t)+ ) Aa; —

i=1

M=
\H

w
v
|

e Aal {by(4)}

n n n
€ €
- Z F(tDa; + Z a7 A= ) fsDa+ )
i=1 i=1 =1 =1

=S, f,0) +2 (o ZAai—S(P,f,a)
1

i=

...
1l
_

= 5. £, + (57) [a®) = (@] = S(P, £, )

=S, f,a)+ E - S(P.f,a)
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=[S f,0) Al + 5+ [A=S(P.f, @)
€ € € _ by(1
<ztotz=e {by(1)}

Thus, we get,
UP,f,a) —L(P,f,a) <€
= f € R(a)on[a, b].

Now we show that
b
HR, S fr @) = ffd“
a
As f € R(a)onla, b] therefore
UP,f,@) — L(P, f,a) < Z . (5)

Also, we have

b
L(P,f,a) < ffda < U f,a)

b
> L(P,f,a) < ffda <UP,f,a) < L(P, f,a) +Z - (6)

Also
L(P.f,a) < S(P.f, @) <U(P,f,a) < L(P, f,a) +Z (D

Now

b
A—ffda = A—S(P,f,a)+S(P,f,a)—L(P,f,a)+L(P,f,a)—jfda

b
<|A=SP.f. @) + ISP, f, @) — L(P, f,a)| + L(p,f,a)—ffda

3e

<§+§+%=T<e {by (1), (6), (7}

b b
> A—ffda <e> A=ffda
a a

b
= ||}JI|EOS(P‘f’ a) = ffda
a

This completes the proof.

Theorem 2.2.2.: If f is continuous on [a, b] and « has a continuous derivative on [a, b] then

b b
ffda=Jfa'dx

Proof: Since f is continuous on [a, b] and a has a continuous derivative on [a, b] therefore both
b b, , .
J, fdaand [ fa'dx exists.

Let P = {a = x¢, X4, ..., X, = b} be the partition of [a, b].
Since a has continuous derivative on [a, b]

= a has continuous derivative on [x;_4, x;]so by mean value theorem, we have
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Now

a(x;) —a(x;—1)

=a'(t;), Vi
Xi = Xij-1 @ (t), Vi
Aai
=a'(t;
=5 =@
= Aa; = a'(t;)Ax; -1

SP,f,a) = Zf(ti)Aai
i=1
= Z FltDa' (t)Dx; {by(1)}
i=1

= > (Faehx,
i=1

=5(P, fa’)

iime S fr@) = lim S, fa’)

b b
:ffda=ffa’dx

a

This completes the proof.

Summary

Iff € R(a)on [a, b] and ¢ € R then c¢f € R(a)on [a, b]and f; cfda=c f:fda.

If fi,f, €R(@) on [ab] then f, +f, € R(a) on [a,b] and [} (f, +f)da= [ f,da+
f:fz da

If f € R(a) on [a, b] then f2? € R(a) on [a, b].

If f € R(a)on[a, bland g € R(a)on[a, b]then fg € R(a)on[a, b].

If f € R(a)on [a, b] then |f| € R(a)on [a,b] and |f7 da| < [7If | da.

If f € R(a)on [a,b] and a < ¢ < b then f € R(a)on [a,c] and f € R(a)on [c, b] and
f:fda=facfda+fcbfda.

If f € R(ay) and f € R(a) then f € R(ay + ap) and [ fd(ay + @) = [* fday + [ f da,.
If f€R(a) on [a,b] and ¢ >0 be any real number then f € R(ca) and f:fd(ca) =
cf;f da.

If f € R(a) on [a,b] and f(x) = 0,Vx € [a, b] thenf:f da = 0.

If f eR(@) on [a,b] and f, € R(a) on [a,b] and f; < f,,Vx € [a,b] then fab fida <
I? f, da.

Suppose f is bounded on [a, b], f has only finitely many points of discontinuity on [a, b]

and a is monotonically increasing function continuous at all those points where f is

continuous then f € R(a) on [a, b].
If a<s<b,f is bounded on [a,b], f is continuous at s,and a(x) =I1(x—s),

thenf:f da = f(s).
Let f be a continuous function on [a, b] and a(x) = Yo cpl(x —s,), ¢, = 0,Vn,

where Y571 c,is convergent and {s,} is the sequence of distinct points in (a, b) then
b

o]

[ rda=3 re.

a n=1
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Let @ be strictly increasing continuous function that maps [4,B] onto [a,b],a is
monotonically increasing on [a, b], f € R(a)on [a, b]. Define B, g on [4, B] such that

B = a(®()), 9O) = F(®()). Then g € R(B)and [} f da = [,/ g dB.

Let f be a bounded function on [a, b], @ is monotonically increasing function on [a, b] such
that a’ is R-integrable on [a, b]. Then f is Riemann Stieltjes integrable if and only if fa'is R-
integrable and f; fda= f; f(x) a'(x) dx.

If||1l:i||moS(P‘f' a)exists as ||P|| = 0 then f € R(«) on [a, b] and ||11>i|fno S, f,a) = fffda.

If f is continuous on [a,b] and a has a continuous derivative on [a, b] then f: fda =

f; fa' dx.

Keywords

Riemann Stieltjes Sum: Let f be a bounded real function on [a, b], @ be monotonically increasing
function defined on [a, b].Let P = {a = xg, x4, ..., x,} be the partition of [a, b]. The Riemann Stieltjes
sum is denoted by S(P, f, @) and is defined as

n
Zf(ti)Aairti € [xi—1, %]
=

i.e. S(P,f, (Z) = Zf(ti)Aaf,- ,ti € [x,-_l,xi].
i=1

Unit Step Function: The unit step function ! is defined by

_ (0 if x<0,
I(X)_{1 if x>0.

Self-Assessment

1) Consider the following statements:

(DIf f € R(a) on [a, b] and c is any constant, then cf € R(a) on [a, b].

(I) If f € R(a) on [a, b] and c is any constatnt, then f: cfda =c fab fda only if ¢>0.

A.

B. only
C.
D. both

only (I) is correct

P

1I) is correct

both (I) and (II) are correct

P

I) and (II) are incorrect

LetP = {a = xy, X1, X3, ..., X, = b}be any partition of [a, b] and let m;, M;, m;, M; be bounds of f

and cf in [x;_1,x;],i = 1,2,...,n. Then select the correct option in Q (2-5).

, _ femy,c <0
2)m; = {ch-,c >0
True
False

,_ [ cM;,c>0
3)M; = {cmi,c <0
True
False
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cL(P,f,a),c>0

4)L(P,cf,a) = {cU(P,f: a),c<0

A. True
B. False

cL(P,f,a),c>0

5ﬂKRdﬁ0=LU@jﬂLC<0

A. True
B. False

6) Consider the following statements:

Q) ffda S.Lblflda.

b b b
(IDMax {—J-fda,ffda}SL If| da.

only (I) is correct

only (II) is correct

both (I) and (II) are correct
both (I) and (II) are incorrect

SN = »

7 If@—fB) < [If @] = If D)

A. True
B. False

8) Consider the following statements:
(D) feER(@) =>—f € R(a).

(I) f € R(a) # If| € R().

A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct
D. both (I) and (II) are incorrect

9) —f <Ifland f = |f]

A. True
B. False

10) For @ = a; + a;, consider the following statements:
() UP,f, @) =U(P,f,a) + U(P, f,az)
(D L(P, f,a) <L(P,f,a1) + L(P,f, a3)

A. only (I) is correct

LOVELY PROFESSIONAL UNIVERSITY

47

Notes



Notes

48

Real Analysis 1

B. only (II) is correct
C. both (I) and (I) are correct
D. both (I) and (II) are incorrect

11) Consider the following statements:
(D If f € R(ay), f € R(az)on [a, b] thenf & R(a; + a3)
(IN) If f € R(a1), f € R(az)on [a, b] then

fa fd(e +a) < f () + f fa(a)

only (I) is correct

only (II) is correct

both (I) and (II) are correct
both (I) and (II) are incorrect

9N F »

12) Let I be a unit step function then select the INCORRECT option.

A. 1(0)=0
B. I(1)=1
C. 1(2)=2
D. none of these

13) Let I be a unit step function then
-1Lx<s
A I(x—s)=% 0,x=s
1L,x>s

0,x<s

B. I(x—s)={1x>s

0,x<s
1,x=>s

D. I(x—s)=1Vx

C. I(x—s)={

14) If f is continuous on [a, b] and « is monotonically increasing in [a, b] then f € R(a) on [a, b].

A. True
B. False

15) Consider the following statements:

(DLet 0 < a,, < by, then }, a,, is convergent if ), b, is convergent.
(II)Let 0 < a,, < b, then X, b, is divergent if }’ a,, is divergent.
only (I) is correct

only (II) is correct

both (I) and (II) are correct
both (I) and (II) are incorrect

SN = >

16) If f is continuous on [a, b] then there exists a positive real number k such that |f(x)| <

k,Vx € [a, b].

A. True
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B. False

17) Consider the following statements:

(I) Let f: A — Bthen for f to be invertible it must be one-one and onto.
(IT) Let f: A — B, if f is one-one and onto then it is invertible.

A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct
D. both (I) and (II) are incorrect

18) If f is a bounded function on [a, b], f is continuous at s € (a,b) and a(x) = I(x —s) then

select the INCORRECT option.

b

A.f fda = f(s)
b

B. f fda = £(s)

b
C.f fda = f(s)

D .All are incorrect

19) Consider the following statements:
(I) Every bounded function is integrable.

(I) If |f| is integrable then f must be integrable.

A. only (I) is correct
B. only (
C. both (
D. both (I

IT) is correct

I) and (II) are correct
) and (II) are incorrect

20) If f is Riemann integrable on [a, b] then for given €> 0,L(P, f)+€> U(P, f)

A. True
B. False

21) Select the correct option:

A L(P,f,a) U, f,a) <S(P,f, @)
B. L(P,f,a) <S(P,f,a) <U(P,f, @)
C. UPf,a) <SP f,a)<L(Pf a)
D. UP,f,a) <L(P,f,a) <S(P,f,a)

22) The Riemann-Stieltjes sum S(P, f, a) = X7-, f(t)Aa;, t; € [x;-1 x;]

A. True
B. False
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Answers for Self Assessment

1. A 2. B 3. A 4. A 5. B
6. C 7. B 8. A 9. B 10. A
11. D 12. C 13. B 14. A 15. C
16. A 17. C 18. D 19. D 20. A
21. B 22. A

Review Questions

1) Show with the help of an example that every bounded function need not be integrable.

2) Show with the help of an example that if |f| is integrable then it is not necessary thatf is
integrable.

3) Evaluate:
3
f(xz + 1)d[x].
0
4) Evaluate:
1
J. xd(e?¥).
0

5) Evaluate:

~

[x]dx?,[.]denotes greater integer function.

O'\‘N

L!.J Further Readings

Walter Rudin, Principles of Mathematical Analysis (3¢ edition), McGraw-Hill International
Publishers.

T. M. Apostol, Mathematical Analysis (2nd edition).
S.C. Malik, Mathematical Analysis.

Shanti Narayan, Elements of Real Analysis

Web Links
https:/ /nptel.ac.in/courses/111/105/111105069/

(WWW|

https:/ /www.youtube.com/watch?v=DO0Dzz07DNI

https:/ /www.youtube.com/watch?v=YLB1wLkPbel
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Unit 03: The fundamental theorem of calculus and mean value theorems for the Riemann-Stieltjes
integral

Monika Arora, Lovely Professional University

Unit 03: The fundamental theorem of calculus and mean value
theorems for the Riemann-Stieltjes integral

CONTENTS

Objectives

Introduction

3.1 Fundamental Theorem of Calculus

3.2 First Mean Value Theorem for Riemann-Stieltjes Integral
3.3 Second Mean Value Theorem for Riemann-Stieltjes Integral
Summary

Keywords

Self-Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives

After studying this unit, students will be able to:

e  discuss fundamental theorem of calculus
e  establish the relationship between differentiation and integration
e  describe the first mean value theorem

e explain the second mean value theorem

Introduction

Differentiation and integration are related to each other in the sense that they are inverse operations
of each other. This fact is established with the help of the fundamental theorem of calculus. In
various problems, we can see the occurrence of integrals but there are very few cases in which
integral valueis explicitly obtained. However, it is often sufficient to have an estimated value of the
integral rather than its exact value. The mean value theorems here are especially useful in making
such estimates.

3.1 Fundamental Theorem of Calculus

Statement: If f is Riemann integrable on [a, b] and if there is a differentiable function F on [a, b]
such that F’' = f then

b
ff(x)dx = F(b) — F(a).

Proof: Since f is Riemann integrable on [a, b]. Therefore, for given €> 0, there exists a partition
P =[a = x¢,Xx1,X3,..., Xn = b]of [a, b] such that
UP,f,a) —L(P,f,a) <€ ...(1)
Since F is differentiable on [a, b].
= F is differentiable on [x;_,x;],i = 1,2, ...,n.

= F is continuous on [x;_4,x;],i = 1,2, ..., n.
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By Lagrange mean value theorem, there exists c; € (x;_1,x;) such that

F(x;)— F(xi—1)
Xi— Xi—1

= F(x;) — F(xi_1) = F'(c;)Ax;

= F(x) = F(xi—1) = f(c)Ax;
“F =f

= F(x)— F(xiog) = f(c)Ax;

= F(x) = F(xi—1) = f(c)Ax;

=F'(c;)

= ;[F(xi) — F(xi)] = ;ﬂcimi

= F(b) ~ F(b) = ) f(c)bx,
i=1

=>Fb) -Fb) =SSP, ..(2)
We know that

LP,f)<SP.f) <UPf)
and
b

Lp.n < [ f@ax<ue.n

a

b
=ls@.n - [ fwa <ue.p -1

<e by(D)

b
= |[ reax-F®) - F@l| < by

But € is arbitrarily small, so let €- 0, we get

b
jf(x)dx = F(b) — F(a).
a

This completes the proof.

E] Example3.1.1: Evaluate the integral:
2
f|x2 +2x — 3ldx
0

Solution: Let

2
1=[|x2+2x—3|dx
0

We have
x?2+2x=-3)=(x+3)(x—1
Therefore,

—(x2+2x—-3),0<x<1

2 _ =
lx? + 2x - 3] {(x2+2x—3),1SxS2
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integral

2
=>I=f|x2+2x—3|dx

=f|xz+2x—3|dx+f|x2+2x—3|dx
1

=f—(x2+2x—3)dx+f(x2+2x—3)dx
0 1

x3 P
—[—-i— 2—396] +[—+x2—3x]
3 e

=4

2

1

E] Example 3.1.1: Evaluate the integral:
3

f [x]dx

0

Solution: We have

dx

Il
OS
Q..
=
+
\;N
Q..
=
+
N'\‘w

v Evaluate:

Evaluate:

T

1
f|5x—3|dx
0

3.2 First Mean Value Theorem for Riemann-Stieltjes Integral

Statement: Assume that a is monotonically increasing and let f € R(a) on [a, b]. Let M and m
denote respectively, the supremum and infimum of the set {f (x):x € [a, b]}. Then there exists a real
number c satisfying m < ¢ < M such that

b

ff(x)da(x) = cjda

a
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b
i.e. ff(x)da(x) = c[a(b) — a(a)]

In particular, if f is continuous on [a, b] then ¢ = f(x,) for some x4 in [a, b].

Proof: First of all we will show thatif f € R(a) on [a, b], then

b
mla(b) — a(a)] < ffda <M[a(b) — a(a)]

where m and M are the bounds of f on [a, b].

Since f € R(a) on [a, b], therefore

b b b
ffda=ffda=ffda.

a
Let P =[a = x¢,X1,X3,..., X, = b] be any partition of [a, b] and m;, M; be bounds of f in [x;_1,x;].

Then

n n
S mZAai <L(P,f,a) < UP,f,a) < MZAai
i=1 i=1

s> mlab) —a(@] < LPP,f,a) <UP, f,a) <M[a(b) —ala)] ..(1)

Also, we know

b b
L(P,f.a)SffdanfdaSU(P,f,a)

Since f € R(a), therefore
b

L(P,f,a) sffda <UP f,a) ..(2)

Using (1) and (2), we get
b
= mla(b) —a(@] <L, f,a) < ffda <UP, f,a) <M[alb) — a(a)]

= mla(b) — a(a)] < fbfda <Mla(b) —a(a)].
Now we have a
= mla(b) — a(a@)] < fbfda <Mla(b) — a(@)].
Therefore, there exists ¢ € [m, M] such that a
b
ffda = cla(®) — a(a)].

When f is continuous on [a, b], it takes all values between m and M over the interval [a, b].
Since ¢ € [m, M], therefore thereexists some x, € [a,b] such that ¢ = f(x,).

Therefore,
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b
ff(x)da(x) = f(xg)[a(b) — al(a)].

This completes the proof.

3.3 Second Mean Value Theorem for Riemann-Stieltjes Integral

Statement: Assume that a is continuous and that f is monotonically increasing on [a, b]. Then there
exists a point x in [a, b] such that

b
ff(X)da(x) = f(@)[alxy) — a(@] + fF(B)[a(b) — alxo)].

b Xo b
i.e. ff(x)da(x) =f(a)f da(x) + f(b) jda(x)

Proof: Given « is continuous and f is monotonically increasing on [a, b].
= a ER(f)on][a,b].
= f € R(a) on[a, b]

and
b

b
| et = )a® - f@a@ - [ a@afw ..

a
Since a is continuous on [a, b].

Therefore, by the First mean value theorem, there exists x € [a, b] such that

b

[ awar@ = elrm) - f@1 @)

Therefore, from (1) and (2) we get,

b
jf(x)da(x) = f(@[alxy) — a(@] + fFB) [a(b) — alxy)].

b Xo b
i.e. ff(x)da(x) = f(a)f da(x) + f(b) fda(x)
This completes the proof.

Summary

e Fundamental Theorem of Calculus: If f is Riemann integrable on [a, b] and if there is a

differentiable function F on [a, b] such that F’ = f then
b
f f(x)dx = F(b) — F(a).
a
e  First Mean Value Theorem for Riemann-Stieltjes Integral: Assume that a is monotonically
increasing and let f € R(a) on [a, b]. Let M and m denote respectively, the supremum and

infimum of the set {f(x):x € [a, b]}. Then there exists a real number ¢ satisfying m < ¢ <

M such that

b b
ff(x)da(x) = Cfda
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b
i.e. ff(x)da(x) = c[a(b) — a(a)]

e Second Mean Value Theorem for Riemann-Stieltjes Integral: Assume that « is continuous

and that f is monotonically increasing on [a, b]. Then there exists a point x in [a, b] such

that
b
ff(X)da(x) =f@lalxo) — a(@] + f(B)[a(b) — alxo)]-
b %o b
i.e. ff(x)da(x) =f(a)f da(x) + f(b) fda(x)
Keywords

Fundamental Theorem of Calculus: If f is Riemann integrable on [a, b] and if there is a
differentiable function F on [a, b] such that F' = f then | : fx)dx = F(b) — F(a).
First Mean Value Theorem for Riemann-Stieltjes Integral: Assume that a is monotonically

increasing and let f € R(a) on [a, b]. Let M and m denote respectively, the supremum and infimum
of the set {f(x):x € [a,b]}. Then there exists a real number c satisfying m <c¢ <M such that

f:f(x)da(x) = cf:da

Second Mean Value Theorem for Riemann-Stieltjes Integral: Assume that « is continuous and
that f is monotonically increasing on [a, b]. Then there exists a point x, in [a, b] such that

I f@dato = f(@) [;" da(x) + fb) [, dax)

Self-Assessment

Let g be a real-valued bounded function defined on [s, t] and let a be a real-valued monotonically
increasing function defined on [s, t]. Further, let

Aay = a(yy) — a(ykx—1). Suppose P* = {s = yo,y1, ¥2, ..., ¥p = t} be the partition of [s, t] and
my. = inf{lg®):y € [y yel},

My = sup{g():y € [yi-1,yil}

m=inf{lg():y € [s,tl},

M = sup{g(y):y € [s, t]}.

Then select the correct option in Q (1-10).

p
1) ;[am) — a(y_)] = als) — a(t)

A. True
B. False

2)L(P*, g, @) = Xjo_; My Aty
A. True

B. False

3)U(P*,g,a) = Xh_, My Day,
A. True

B. False

4)U(P*, g,a) = L(P*g,a)

LOVELY PROFESSIONAL UNIVERSITY



Unit 03: The fundamental theorem of calculus and mean value theorems for the Riemann-Stieltjes
integral

A. True
B. False

S)m,<m<m, <M

A. True

B. False

6)mla(t) —a(s)] < L(P*,g,a) SUP* g,a) < M[a(t) — a(s)]
A. True

B. False

t T t
7) If g € R(@) then f:gda = fs gda but fstgda F fs gda

A. True
B. False

8)L(P",9,0) < 5 gda <U(P*,g,0) < L gda

A. True

B. False

9)If g € R(a) thenm[a(s) — a(t)] = f:gda > MJa(s) — a(t)]

A. True

a. False

10) If g € R(a) then L(P*,g, @) < [, gda < U(P*,g,a)

A. True

B. False

11) Let f be a function defined on [a, b] such that f is continuous on [a, b] and f is differentiable in
(a, b), then % is the value of the derivative of f at some point in (a, b).

A. True

B. False

12)If f € R(a) then for given €> 0, U(P, f,a) — L(P, f, @) <€ but the converse does not hold good.

A. True

B. False

13) If f is continuous on [a, b] and « is monotonically increasing function on [a, b] then there exists
¢ € [a, b] such that f;fda = f(&)[ala) — ab)].

A. True

B. False

14) If f is continuous on [a, b] and « is monotonically increasing function on [a, b] then there exists

b

¢ € [a, b] such that [, fda = f(a)[a(§) + ala)] + f(b) [a(b) + a(&)].

A. True

B. False

15) Let f be a Riemann integrable on [a, b]. If there is a differentiable function g on [a, b] such that

b

g' = f then [, fdx = g(b) — g(a).

A. True
B. False
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Answers for Self Assessment

1 B 2 B 3 A 4 A 5 B
6 A 7 B 8 B 9 A 10. A
11. A 12. B 13. B 14. B 15. A

Review Questions

1) Evaluate:

1
fl f)dx,

where
1-2x,x<0
f@) _{1+2x,x20

2) Evaluate:
4

ff(x)dx,
1
where
_(2x+8, 1<x<2
f(x)_{6x, 2< x<4
3)Evaluate:
4
[0+ -2l + 1~ 3Dax
1
4)Evaluate:

4
f(|x— 1+ lx— 2 + lx — 3Ddx
1

5) Evaluate:

Ct—r
w
N
;Y
a3

6) Evaluate:

f log tanx dx
0

[Y]] Further Readings

Walter Rudin, Principles of Mathematical Analysis (3+d edition), McGraw-Hill International
Publishers.

T. M. Apostol, Mathematical Analysis (2nd edition).
S.C. Malik, Mathematical Analysis.

Shanti Narayan, Elements of Real Analysis
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integral
@ Web Links

https:/ /nptel.ac.in/courses/111/105/111105069/
https:/ /www.youtube.com/watch?v=0OR27vg-i]S8
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Unit 04: Integration and Differentiation

CONTENTS

Objectives

Introduction

4.1 Integration and Differentiation
Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives

After studying this unit, students will be able to:

e establish therelationship between differentiation and integration
¢ understand theorem on differentiation and integration
e describe integration by parts

e solve integrals using integration by parts

Introduction

In the previous unit, we have established the relationship between differentiation and integration
withthe fact that, if f is Riemann integrable on [a, b] and if thereis a differentiable function F on [a,

b] such that F' = f then [ ; f(x)dx = F(b) — F(a), known as the fundamental theorem of calculus.
In this unit, we shall show more results exhibiting the relation between differentiation and
integration.

4.1 Integration and Differentiation

Theorem 4.1.1: Suppose f is a Rieman integrable function on [a, b] i.e.,f € Ron [a, b].

Fora <x < b, put

F(x) =ff(t)dt.

Then F is continuous on [a, b]; furthermore, if f is continuous at a point x4 of [a, b], then F is
differentiable at x, and

F'(xq) = f (xo).

Proof: Since f € R on [a, b].

= f is bounded on [a, b].

Therefore, there exists a positive real number M such that
lf(®] <MVt € [a,b]

Leta <x <y < b, then

y x
IFo) @)l = |[ f@de- [ @
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= fyf(t)dt+ff(t)dt

y
= J’ f@®)dt

y
Sflf(t)ldt

y
SMfldt
x

= M[t]}
=My —x)
<€

€
whenever y —x < vl 6.

Thus,
[F(y) — F(x)| <€ whenever |y — x| < 6,vx,y € [a, b].
= F is uniformly continuous on [a, b].
= F is continuous on [a, b].
Now suppose f is continuous at xg.
Therefore, for given €> 0 there exists § > 0 such that
If Go) = f(xo)l <€
whenever |x — x| < 8.
Ifa<xo<x<b,
then consider

F(x) = F(xg)
X —Xp

‘F(x) = F(x¢) = (x = x0)f (x0)

X —Xo

- f(xo)‘ =

ﬁ f f(t)dt—f f@®de - f flxo)dt

ff(t)dt+ ff(t)dt— ff(xo)dt

~Tx—xol x|

j f©dt - f Feodt

“Tx —xol xI

X

1
~ = J e - s

Xo

. x
< mxflf(t) —f(Xo)ldt

X
: .f
<—— | edt
[ — xo
Xo
€ [x — xo]

B |X—X0|

LOVELY PROFESSIONAL UNIVERSITY 61



Unit 04: Integration and Differentiation

Thus, we have

F(x) —F(xgo)

P — f(xo)| <€ whenever 0 < |x —x,l < &
— X

= lim w = f(x0)

X=X X — Xg
= F'(xq) = f(xg).
This completes the proof.
Theorem 4.1.2: (Integration by parts)
Let F and G be differentiable functions on [a, b] such that
=f€eR

and

G'=g€eRr
then

b

fF(x)g(x)dx =Fb)G) — F(a)G(a) —ff(x)G(x)dx.

a

Proof: We have
[F)GM)] = F'(x)G(x) + F(x)G'(x)
= f0)G(x) +F(x)g(x)

Therefore, by the fundamental theorem of calculus, we get

Jr®660 + Fgear = Fo)6®) - F@ 6@

b

b
:>ff(x)G(x)dx+fF(x)g(x)dx=F(b)G(b) —F(a)G(a)

a

= fF(x)g(x)dx =Fb)Gb) — Fla)G(a) — f )G (x)dx.

This completes the proof.

@ Example 4.1.3: Evaluate the integral:

T
6

j(Z + 3x2%) cos
0

Solution: We have,

T

6

J-(Z + 3x2) cos 3x dx
0

On integrating by parts, we get

[(2 + 3x2) ] f6 sin 3x

3xdx
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i /6 6

2 + 3x2 "
= gsin 3x - fosin 3xdx

BE o %)

i [ . 6

(2 +3x2) . /e —xcos 3x\e — cos3x
= |————sin 3x -2 [ ] - dx

| 3 1o 3 0 3

0

[(2 4+ 3x2) | 17¢ (—xcos 3xTs 1 ) z
- 3 2 [ ] + = [sin 3x]°
= 3 sin x_0 3 . g [sin 3x15

1
= —-— 2
36(1'[ +16).

E] Example 4.1.4: Evaluate the integral:

2

1=bf e*sin (%%—;—C)dx

Solution: We have,

2m
I = f X oi E+ f d
) e*sin (4 2) x
On integrating by parts, we get
I= [sin (g +§)e"]:n - %f e*cos (% +;) dx
0

2

>1= [sin(%+§)e"]zn —% [cos(%+§) ex]zn+%f e*sin (%+;) dx
0

=1 = [sin (%+g)e ] [[cos(% )ex]2n+%1]
1 21
=>I+ZI=[sin(Z ) ]o [cos( ) ]0
5 21 1 2
ZI = [sin (g+)—26)e"]0 —E[[Cos(%+;) ex]o ]
5 (e?™+ 1)
cd T T
=>1=—\/?§(€2”+1)-

E] Example 4.1.5: Evaluate the integral:

1
f xe + sin —) dx.
0

Solution: We have,

1
f xe* + sm—) dx
0

1
. TX
xexdx+fsmrdx
0

=>1=

O\H
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4
4 2V2
Lr—14d 22
n
?z]  Evaluate theintegral:
— 1
f xe*dx
0
e Evaluate the integral:
2
f x% cos 2x dx
0
Summary

e Suppose f is a Rieman integrable function on [a, b] i.e., f € R on [a, b].

Fora <x < b, put

F(x) =ff(t)dt.

Then F is continuous on [a, b]; furthermore, if f is continuous at a point x of [a, b], then F
is differentiable at x4, and

F'(xg) = f(xo).

e Integration by parts: Let F and G be differentiable functions on [a, b] such that

F'=feR
and
G'=g€eRr
then
b b
fF(x)g(x)dx =F(b)G() —F(a)G(a) — f ()G (x)dx.
Keywords

Integration by parts: Let F and G be differentiable functions on [a, b] such that

F'=f€eRand (G’ =g € R then
b

b
J-F(x)g(x)dx =Fb)G(B) —F(a)G(a) — f ()G (x)dx.

a

Self Assessment

1)If f is Riemann integrable on [a, b] then f is bounded.

A. True
B. False
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2) Let f:[a, b] — R. If there exists a positive real number k such that |f(t)| < k, then f is said to be
bounded above but not bounded below.

A. True

B. False

3)If g(x) = [, f()dt then |g(y) — g ()| = |f F(B)at].

A. True
B. False

4)dex|2f|f|dx

A. True

B. False
5) Let f:[a, b] - R. If for every €> 0 there exists § > 0 such that |f(x) — f(»)| <€ vx,y € [a,b] for
which |y — x| < § then f is said to be uniformly continuous.

A. True

B. False
6) Let f be a continuous mapping of a compact metric space X into a metric space Y. Then f is
uniformly continuous on X.

A. True

B. False

7) Let f:[a, b] = R. Then f is said to be continuous at x, if for every €> 0 there exists a § > 0 such
that |[f(x) — f(x)| >€ Vx € [a, b] for which |x — x| < §.

A. True

B. False
8) Let f:[a,b] » R. Then f(x) — q as x - p if for at least one €> 0 there exists a § > 0 such that
[f(x) —ql <€ Vx € [a,b] for which 0 < |x —p| < §.

A. True

B. False

9) Select the correct option.

A @) f'(c) = lim 2SO

DC XC
B. b)f'(c)= T%rrol fjf")f:@
C. o f(=lim&7e
X—00 X—=Cc
D. d) None of these

10) Suppose F and G are differentiable functions on [a, b], F' = f, and G’ = g, where f,g are
Riemann integrable functions. Then

A [PF@g@dx = F(D)G®B) +F(@)G(a) + [, F()G(x)dx.

B. [UFG)g()dx = F(@G(b) + F(b)G(a) + [, Fx)G(x)dx.

C. [PF@g)dx = F(@)G(b) — F(b)G(a) — [2 FO)G(x)dx.

D. [JF(x)g()dx = F(b)G(b) — F(a)G(a) — J. f(x)G(x)dx.
11) Let f be a Riemann integrable on [a, b]. If there is a differentiable function F on [a, b] such that
F' = f then [} fdx = F(b) + F(a).

A. True
B. False
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2
12)fxcosx =
0

Ll SN RS
|
[N

9N ® >

N

1

13)! (erx + sin?) dx =

A --1
4

B g -2

C 1-2v2

T

D. None of these

1
14)! (xex + cos%) dx =

BN 3N Y

=

oONF >
£
N

3

T

15)fx2 cosxdx =
0

-1

NI = NI

O N F »

None of these

e
!
16) f 09% iy =
1

X

A.

= N

B
C. e
D. None of these

Answers for Self Assessment

1. A 2. B 3. A 4. B 5. A
6. A 7. B 8. B 9. A 10. D
11. B 12. C 13. D 14. D 15. D
16. A
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Review Questions

1) Evaluate the integral:

j xsinx dx.

0
2) Evaluate the integral:

J- cos2x log sinx dx.
3) Evaluate the integral:
[ logx
pw; dx
0

4) Evaluate the integral:

f x?sinx dx

0

5) Evaluate the integral:

2

x%cos x dx

O 1a

6) Evaluate the integral:

e

eX
J’T(l + xlogx) dx
1

7) Evaluate the integral:

x—1 N
(xz )e dx

H\m

Further Readings

Walter Rudin, Principles of Mathematical Analysis (3rd edition), McGraw-Hill

International Publishers.

T. M. Apostol, Mathematical Analysis (2nd edition).
S.C. Malik, Mathematical Analysis.

Shanti Narayan, Elements of Real Analysis

Web Links
https:/ /nptel.ac.in/courses/111/105/111105069/
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Unit 05: Integration of Vector Valued Functions and Rectifiable Curves
Monika Arora, Lovely Professional University

Unit 05: Integration of Vector-Valued Functions and
Rectifiable Curves

CONTENTS

Objectives

Introduction

5.1 Integration of Vector-Valued Functions
52 Rectifiable Curves

Self-Assessment

Answer: Self-Assessment

Summary

Keywords

Review Questions

Further Readings

Objectives

After studying this unit, students will be able to:

e understand the integration of vector-valued functions

e define curves in R¥

e define the concept of a closed curve in reference to curves in R*
e demonstrate the concept of arc in R¥

e  describe rectifiable curves

Introduction

In the previous units, we have discussed Riemann-Stieltjes integral and its properties for a real-
valued function. In this unit, we are going to study the Riemann-Stieltjes integral of a vector-valued
function.

We will also learn the concepts of curve and arc in R¥ to understand the rectifiable curves.

5.1 Integration of Vector-Valued Functions

Definition 5.1.1: R-S Integral of a Vector-Valued Function: Let f;, f; ..., f be real-valued functions
defined on [a, b] and let f: [a, b] - R¥ be a vector-valued function defined as

fO) = (A, (0, ., fi () -

If a: [a, b] - R is a monotonically increasing function; then we say f € R(a) on [a, b] if and only if
each f; € R(a) on [a, b] fori = 1,2,3, ..., k and in that case

b b b b
ffda= fflda,ffzda,-u,ffkda
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2%  Most of the results which hold for real-valued functions f3, f3, -+, fi also, hold for vector-
valued function f; we can apply the earlier results to each coordinate.

Theorem 5.1.2: Let f: [a, b] - R¥ be a function and f € R(«), where a:[a, b] > R is a monotonically
increasing function. Then |f| € R(a) and

b b
ffda sf|f|da.

Proof: Let f = (f1, f2, ..., fi) so that

fl= 2+ + o+ f

Since f € R(a) on [a, b], therefore each of f; € R(«) and hence f? € R(«) on [a, b]
= f{ +f7 + - fii €R(a)on]a, b].

Also, as x? is continuous functions of x, the square root function (the inverse of square function) is
continuous on [0, M] VM € R, therefore the composite function of f2 + f2 + --- f? and the square root
function, i.e., |f| also € R(a) on [a, b].

Now,
Let y=uLy2 Y

where
b
Vi = J-ft da
a
Then
b
y= f fda
a
and

By Schwarz inequality, we have

K 2k k
PRZCIIEDRIDN(IO)S
i=1 i=1 i=1

k
> > A© < lIF©
i=1
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k b
Y 3ifi© |da < [WllF©)da
i=1 a

b
=yl f IF(O)] da

b
vz <yl j If] da
a

[Using (1)]

b
>yl < flﬂda

a
[ for y=0, the theorem holds trivially]

b b

= ffda Sflflda.

a

@ Example 5.1.3: Evaluate the integral:

J-(secz t,Int)dt

Solution:
f(secz t,Int)dt = (f sec? tdt,Jlnt dt)
Now,

f sec? tdt = tant + ¢;
and

1
flntdt =tlnt— [ (?)tdt
=tlnt—t+c,

Therefore,

f(secz t,Int)dt = (tant+ ¢y, tInt —t +c,)
= f(secz t,Int)dt = (tant,tInt —t) + (¢q,¢5)

@ Example 5.1.4: Evaluate the integral:

j (%,41:3,\/?) dt
[t ([

Solution:

Now,
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1
f?dt =Int+cy,
f4t3dt =tt+c
and
23
fﬁdt =3t7+c
Therefore,
1 3 4 2.3
f (?,41? ,\/E)dt = (lnt+ oL tt + oy zt2 + 03)
1 23
= f (?,4t3,\/f> dt = (ln t, t4,§t2> + (¢4, €3, €3)
Evaluate the integral:
— 11
J-(ﬁ't?'f)df

Evaluate the integral:

(sint, 2cost, 1) dt

e ——uwia

5.2 Rectifiable Curves

Definition 5.2.1: Curve in R*: A continuous function y: [a, b] - R¥ is called a curve in R¥ on [a, b].

If y(a)= y(b), then y is said to be a closed curve.
Definition 5.2.2: Arc in R*: If y: [a, b] » R¥ is a 1-1 function, then y is called an arc.
Definition: 5.2.3: Length of a Curve: Let P = {a = x¢, X1, X,, ..., X, = b} be a partition of [a, b].

Let A(P,y)= X ly(x;) — y(x;—1)], i-e., the sum of distances between points y(x;_;) and y(xi), so that
A(P,y) is a length of a polygonal path with vertices y(xo), ¥(X1),..., ¥(Xn)-

As we go on refining P, the polygon approaches the range of y more and more closely, so that length
of y may be defined as

A (V) =sup A(P,v)
P

Definition 5.2.4: Rectifiable Curve: If A (y) < oo, theny is said to be a rectifiable curve.

Theorem 5.2.5: If ¥ : [a, b] — R¥ is a curve such that ¥’ is continuous on [a, b], then y is rectifiable
and

b
AQY) = f ' (O] dt

Proof. Let P = {a = x¢, x1, X3, ..., X, = b} be a partition of [a, b].

Then
X
e —vei ) =|[ v (t)dt‘
Xi
< f [v'(®)|dt
Xi-1

Puttingi=1, 2, ..., n and adding, we get,
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L b
D) ~ v < [ I ©lde
i=1 a

b
A(P,v) < J- v'(@®)ldt vP

b
=> AW)=sup A(P,y) sf ly" (©)]dt.
P

a

To prove the opposite inequality, let € > 0 be given.

Since y' is continuous on [a, b], therefore y’ is uniformly continuous on [a, b]

=~ For given € > 0 there exist § > 0 such that

|¥'(s)-y'(t)| < € whenever |s-t|< 4.

Let P = {a = xg, X1, X, ..., X, = b} be a partition of [a, b] with || P [I< §.

Then |y'(t)-y'(x;) | < eforx;_ <t <x;
SO Dl <@ -y ()l <e
=Sy OI <yl + €

Xi
> J- v (©)ldt < |v'(x;)|Ax;+€ Ax;
Xi-1

+€ Axi

| Y WO + v ) — VOl

Xi X
< f v'(t)dt| + f [v'(x) = v'(B)]dt| +€ Ax;
Xi-1 Xi—q
Xi
<l -y G-l + J € dt| +€ Ax;
Xi-1

< vlx) —v (o)l + +€ Ax;

Xi
f €dt
Xi-1

= |v(x;) — v (-] + €lx; — x4 | +€ Ax;

= [v(x;) — v (x;-1)| + 2€Ax;

Putting i = 1, 2,3, ...,n and adding, we have

b n
v (@©ldt < ) |v(x;) —v (xi-1)| + 2e(b — a)
Jrrasd, :
b
i.e. f [v'(®)|dt <A (P,v) + 2e(b—a) VP

b
> j [v'(t)ldt < sup A(P,v) + 2e(b — a)

a P

=AW) +2e(b—a)

b
> j [v'(®)ldt <A (v) - (2)
From (1) and (2), we get

b

>AW) = f [v'(t)|dt <

= v is rectifiable.

72 LOVELY PROFESSIONAL UNIVERSITY

Notes



Real Analysis 1

Notes
@ Example 5.2.6: If v: [0, 2] - R? is defined by v(t) = (cost, sint), show that v is rectifiable
and find its length.

Solution: We have, v: [0, 2] - R? defined by
v(t) = (cost, sint)

= v'(t) = (—sint, cost)

which is continuous in [0,27].

=~ v is rectifiable, and its length is given as

27
A W) =f [v'(t)|dt
0

21
- f v'()ldt
0

= fzn\/(—sint)z + (cost)?dt
0

21
= f \/sin? t + cos?t dt
0

2m
[T
0

=2r

Self-Assessment

) AW) =

(@) sup A(P,v)
P

(b) igf A(P,v)

(@A (P,V)

(d) none of these

2) State true or false:

If y: [a, b] = R¥ is a function, then ¥ is called an arc.
3) State true or false:

If A(y) = o, then y is said to be a rectifiable curve.
4) State true or false:

A continuous function y: [a, b] —» R¥ is called a curve in R¥ on [a, b].
5) State true or false:

If y(a)= y(b), then y is said to be a closed curve.

6) State true or false:

If A(y) < o, then y is said to be a rectifiable curve.

7) Choose the correct option:

b b
@|[ fda| < [Ir1da
®) ffda Zflflda

©|[ fda =f|f|da

(d) none of these.
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8) State true or false:
Let f: [a, b] = R¥ be a vector-valued function defined as f(x) = ( f1(x), f200), .., fr (x)) and

if a:[a,b] = R is a monotonically increasing function then f is Riemann-Stieltjes integrable with
respect to « if at most one f; € R(a) on [a, b] fori =1,2,3, ..., k.

9) State True or false:

Let f:[a, b] - R¥ be a vector-valued function defined as f(x) = (fi(x), fo(x), ..., fi (x)).If a:[a, b] =
R is a monotonically increasing function then

b b b b
ffda= fflda+ff2da+-~+ffkda :
a a a a

10) State true or false:

Let f: [a, b] = R¥ be a vector-valued function defined as f(x) = ( f1(x), f200), ., fr (x)) and

if a:[a,b] = R is a monotonically increasing function then f is Riemann-Stieltjes integrable with
respect to « if at least one f; € R(a) on [a, b] fori =1,2,3, ..., k.

11) Choose the correct option:

Let f = (f1, f2, -, fi) then
@Ifl = (2 + fF ++ £2)
(b)|f| = f12 +f22 + +fk2

OIfl = /ff +fE At R

(d) none of these

12)State true or false:
Let f: [a, b] » R¥ be a vector-valued function defined as f(x) = ( f1(x), f200), .., fr (x)) and

if a:[a,b] = R is a monotonically increasing function then f is Riemann-Stieltjes integrable with
respect to a if each f; € R(a) on [a, b] fori =1,2,3, ..., k.

13) State True or false:

Let f: [a, b] » R¥ be a vector-valued function defined as f(x) = (fl ), (), e, fre (x)). If a:[a, b] —»
R is a monotonically increasing function then

b b b b
ffda= fflda,ffzda,---,jfkda .

14) State true or false:
Let y be a curve such that y’ is continuous on [a, b], then y is non-rectifiable curve.
15)State true or false:

If y : [a, b] — R¥ is a curve such that ¥’ is continuous on [a, b] then

b
Am<ﬁﬂmm

16) State true or false:

If y : [a, b] — R¥ is a curve such that ¥’ is continuous on [a, b] then

b
Am=ﬁﬂmm
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Answer: Self-Assessment

1 a 5 True 9 False 13 True

2 False 6 True 10 False 14 False

3 False 7 a 11 ¢ 15 False

4 True 8 False 12  True 16 True
Summary

e Letf,,fs .., fx be real-valued functions defined on [a, b] and let f: [a, b] - R¥ be a vector-
valued function defined as f(x) = ( f1(x), f200), .’ [ (x)) .

e If a:[a,b] = R is a monotonically increasing function; then we say f € R(a) on [a, b] if and
only if each f; € R(a) on [a, b] for i = 1,2,3, ...,k and in that case

b b b b
ffda= fflda,ffzda,---,ffkda .

e A continuous function y: [a, b] —» R¥ is called a curve in R¥ on [a, b].

o Ify(a)=y(b), theny is said to be a closed curve.

e Ify:[a, b] » R¥is a 1-1 function, then y is called an arc.

e LetP ={a=xgxy,%, .., X, = b} be a partition of [a, b]. Let A(P, y)= =, |y (x;) —y(xi—1)],
i.e., the sum of distances between points y(xi.1) and y(xi), so that A(P,y) is a length of a
polygonal path with vertices y(xo), y(X1),..., ¥(Xn)-

As we go on refining P, the polygon approaches the range of y more and more closely, so

that length of y may be defined as
A () =sup A(P,v)
P

e IfA(y) < oo, theny is said to be a rectifiable curve.

Keywords

Curve in R¥: A continuous function y: [a, b] > R is called a curve in R¥ on [a, b]. If y(a)= y(b), then
y is said to be a closed curve.

Arcin Rk: If y: [a, b] = R¥ is a 1-1 function, then ¥ is called an arc.
Length of a Curve: Let P = {a = xq, x1, X, ..., X, = b} be a partition of [a, b].

Rectifiable Curve: If A (y) < oo, then y is said to be a rectifiable curve.

Review Questions

1)Find the integral:

(2cost, sin 2t) dt.

O —

2) Evaluate the integral:

f(4c052t,4tef2, 2t + 3t2) dt.
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3) Find R(0) if: Notes

R'(t) = (1+2t,2¢%),  R(0) = (1,3).

4) Find R(0) if:

R'(t) = (sin%,cos %), R(m) = (%,%)

5) Compute the integral:
R
14+¢2"14+¢2) 7

Further Readings

Walter Rudin, Principles of Mathematical Analysis (31 edition), McGraw-Hill

I! !J International Publishers.

T. M. Apostol, Mathematical Analysis (2nd edition).
S.C. Malik, Mathematical Analysis.

https:/ /nptel.ac.in/courses/111/106/111106053 /
G https:/ /nptel.ac.in/courses/111/101/111101134/
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Unit 06: Pointwise and Uniform Convergence

CONTENTS

Objectives

Introduction

6.1 Pointwise and Uniform Convergence of Sequence and Series of Functions
Self-Assessment

Answer: Self-Assessment

Summary

Keywords

Review Questions

Further Readings

Objectives
After studying this unit, students will be able to:

e define sequence and series of real-valued functions

¢ understand the pointwise convergence of sequence and series of functions
e  define the uniform convergence of sequence and series of functions

e differentiate between pointwise convergence and uniform convergence

e demonstrate the effect of uniform convergence on the limit function

Introduction

Sequence of real-valued functions: Let X be a metric space and E € X. Let f, be a real-valued
function defined on E for each n € N. Then, {fi,f, f3, .., fn, ... } is called a sequence of real-valued
functions on E. It is denoted by {f,,} or (f,).

e.g., If f,, is a real-valued function defined by

then

cosx cos2x cos3x }

U fo far o frr o} 2{ 2 "z 32
is a sequence of real valued functions on [0, 1].
Series of real-valued functions: If {f, } is a sequence of real-valued functions defined on a set E, then
h+ftfattfut-
is called a series of real-valued functions defined on E. Itis denoted by X2, f,

e.g., If the sequence ={f; } is defined by
fn(x) =

cosnx

i

x €ER,

then the series is

D h=fithtfotetfuto
n=1
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Real Analysis I

cost+cos3x+ +Cosnx

V2 V3 Vn

6.1 Pointwise and Uniform Convergence of Sequence and Series of
Functions

= cosx +

Definition 6.1.1: Pointwise Convergence: Let X be a metric spaceand E € X. Let f;, (x) be a sequence
of functions defined on E. Then to each point a € E, there corresponds a sequence of numbers {f, (a)}

with terms f; (@), f>(a), f3(a), ...

Further, let the sequence of numbers {f,(a)} converges to f(a) (say). In this way, let the sequences

(@3, {f,(D)}, {fn(©)}, ... at the points a, b, c, ... of Econverge to f(a), f(b), f (¢), ...respectively ie., all
the sequences of numbers {f;,(x)} converge Vx € E. Then we can define a function f (x) with domain

E and range {f (@), f(b), f (c), ... } such that
fx) = 7lli_r)r(lmfn(x) Vx EE

In this case, we say {f, (x)} converges to f pointwise on E and f is called the pointwise limit function
of sequence {f;, (x)}.

Thus, a sequence {f,} of functions defined on E is said to converge pointwise to a function f on E

if for given €> 0 and for all x € E, there exists a positive integer m (depending upon € and x) such
that

[falx)— fx) < € yn =m.
Further, let X_, u,,(x) be a series of functions defined on E.
Letfi = ul‘ fz =U + uZ,-“, fn =1U; +u2 + e Up.

Then the sequence{f,(x)} is the sequence of partial sums of the series X5, u, (x). If the sequence {f,,}
converges pointwise to the function f on E, the series 2 up(x) is said to converge pointwise to f
on E. The limit function f of {f; } is called the pointwise sum or simply the sum of the series Yu, and
we write

Z up(x) = f(x), Vx €E.
n=1
Definition 6.1.2: Uniform Convergence: A sequence of functions {f,(x)} is said to converge

uniformly to a function f (x) on E if for given €> 0 and for all x € E, there exists a positive integer m
(depending upon € only) such that |f,,(x) — f(x)| < e Vvn=m

Here, the function f is called the uniform limit function of sequence {f;, (x)}.

[e4)

Similarly, the series X, u,(x) converges uniformly on E if the sequence {f;(x)} of partial sums
defined by

n

Fol) = 1) + 0200 + - F n () = D i)

i=1

converges uniformly on E.

_/‘ Uniform convergence of {f,(x)} on E implies pointwise convergence but not vice versa.
However non-pointwise convergence of {fu(x)}onE implies non-uniform convergence of

{f(x)} onE.

o# If a sequence is uniformly convergent, then the uniform limit function is the same as the
&  pointwise limit function.

Definition 6.1.3 Pointwise Bounded Sequence: Let {f;,} be a sequence of functions defined on a set
E. The sequence {f;,} is said to be pointwise bounded on E if the sequence {f;} is bounded for every
x € E.ie, {f,} is pointwise bounded if there exists a finite valued function ¢ defined on E such that

/)| < ¢p(x) vx EE n€N.

Definition 6.1.4: Uniformly Bounded Sequence: A sequence of functions {f,,} defined on a set E is
said to be uniformly bounded on E if there exists 0 < M € R such that |f,(x)| < MVx € E,n € N.
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@ Example 6.1.5: By definition show that sequence of functions {f,,(x)}, where f,, (x) = % ,X €
[0,1] converges uniformly to 0.

Solution: We have, f;, (x) = %

Therefore,

f) = lim f (x)

=lim —
n—-o N

Let €> 0be given, then

n

1
=n>g,05xn51,\7’n

Therefore, if m is a positive integer greater than é , then
() — fF()| <€ VYn = mand Vv x € [0,1]
Hence {f,,} converges uniformly to 0.

nx .
—— ,x ER is not
1+n2x?

Example 6.1.6: Show that the sequence {f,(x)}, where f,(x) =

uniformly convergent in any interval that contains zero.

Solution: We have, f(x) = 11117210 [ ()

= lim /2
n-oo 1+n2x2
=0,x€ER
Let €> 0be given, then

Ifu() — fFO)| <€
nx
= |1 + n2x2| <€

1+V1—4€?

>n>
2lx| €

Now when x — 0,n — oo, therefore it is not possible to choose positive integer m such that
lf,(0) = F()| <evn =mand Vx € [0, 1].

Hence {f,(x)} is not uniformly convergent in any interval that contains zero.

Example 6.1.7: Show that the sequence {f,} defined on [0, 1] by f,(x) = x™ is uniformly
convergent on [0, k], (k<1) and only pointwise convergenton [0, 1].
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Solution: Here, the limit function f is given by
— ] n
f0) = limx

_{ 0;0<x<1
- Lx=1

Now let €> 0 be given, then
Ifn(x) = fF0)| <€

= |x" - 0| <€

1\" 1
= log (;) > logE

Now, when x — 1, thenn — o, so that it is not possible to find a positive integer m such that
() — fF(x)| <€ ¥vn = mand V x € [0,1].
Hence {f;,} is not uniformly convergentin [0, 1] and x = 1 is a point of non-uniform convergence.

However, if we consider the interval 0 < x < k, where 0 < k < 1, we see that the maximum value of

logz . log= . o log=
ﬁ is ﬁ , so that if we choose a positive integer m > EE , then we have
x k k

[f,(0) = fF(x)| <€ Yn = mand V x € [0,k].

Hence {f,} converges uniformly on [0, k].

Example 6.1.8: Test the sequence {f,} for uniform convergence, where f,(x) = L xe

x+n
[0,a]

Solution: We have, f,(x) = ﬁ,x € [0,q].

Therefore,

f&x) = fliggofn(x)

=lim
n-ox +n

Let €> 0be given, then
G — fOOl <€

=>| —0|<€
x+n

1
>x+n>-—
€
1
>n>——x
€

1 . . . L1 . .
Now - —x decreases as x increases and its maximum value is . Therefore, if we choose a positive

integer m greater than é ,then we have |f,(x) — f(x)| <€ Yn=mand Vx € [0, al.

Hence {f;,,} converges uniformly on [0, a]

E] Example 6.1.9: Discuss the uniform convergence of the series in [0,1]:
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nx (n— Dx
1+n%2x2 14 (n—1)32x?
n=1

Solution: Let the given series be X.;°_; u,,(x), so that

X
w0 =1 5e =0
2x X
w0 =177 " T .2
3x 2x
u3(x) =

1+4+32x2 1+ 2%x2

nx (n—-1Dx
14+ n%2x2 1+ (n—1)2x2

up(x) =

Therefore,
fo() = u () +up(x) + -+ +up(x)
. onx
T 1 +n2x2
Now sequence {f,,(x)} does not converge uniformly on [0,1]. (See Example 2)

Therefore, series Y u, (x) does not converge on [0, 1].

E] Example 6.1.10:Show that x = 0 is a point of non-uniform convergence of the series:

2 2

UL S—
1+x2 (1+x2)2

x2

Solution: We have,

2 2 2

x N x N x
1+x%2 (1+4x2)? (1 +x2)n-1

() =x2+

which forms a G.P.

Therefore,

Now,
f(x) = lim f,(x)
n—-oo
_ {1 +x%2,x#0
0, x=0
Let €> 0 be given, then for x # 0, we have
/() = fFO)] <€

I

—W—(l +x2)| <e

:>|1+x2

1
(n—1Dlog(1 +x2) > logg
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1
logE
s>n>14+——=e—
n= +log(1+x2)

This shows thatif x - 0, thenn — o, so that x = 0 isa point of non-uniform convergence of {f;,} and
hence of the given series.

7=] Prove that the series of functions

X X X
x>
T+l I D@D DGy T x 20

is convergent on [0,0) but the convergence is not uniform on [0, ).

Theorem 6.1.11: (Cauchy Criterion for Uniform Convergence of a Sequence)

The sequence of functions {f;,(x)} defined on E converges uniformly on E if and only if for every €>
0, there exists a positive integer t such that

lfi(X) — ()| <€ Yn,m>t,Vx €E.
Proof: Let {f,(x)} converges uniformly to f(x) onE.

Then for given €> 0 and for all x € E, there exists a positive integer t such that
€
I, () = FOI <5 vnxt
Therefore form > t,n=>t,Vx € E,

|fn(x) _fm(x)l = |fn(x) —f)+fx) _fm(x)l
S () = FOI + 1 () = F O

<E+E—E
2 2

Conversely, let |f,,(x) — fn(x)| <€ Yn,m = t,vx € E.

Therefore, by Cauchy general principle of convergence of the sequence of real numbers, {f, (x)}
converges to a limit f(x) (say) for each x € E.

Thus, the sequence {f, (x)} converges pointwise to f (x). Now we shall prove that this convergence
is uniform.

Since for given €> 0 and for all x € E, there exists a positive integer t such that
£ () — ()| <€ VYn=>t
Now, fixing n and letting m — oo, we get
lfo(x) — f(x)| <€ vn=t,vx €E
= {f,(x)} converges uniformly to f on E.
Another form of Cauchy Criteria:

The sequence of functions {f,,(x)} defined on E converges uniformly on E if and only if for every €>
0, there exists a positive integer t such that

|fn+p(x) —fn(x)| <€ Yn=t,p€EN,Vx €E.
Theorem 6.1.12: (Cauchy Criterion for Uniform Convergence of a Series)

o

A series of functions X7, u,(x) defined on E converges uniformly on E if and only if for given €> 0
and Vx € E, there exists a positive integer t such that

|un+1 () + upy (X)) + -+ Upyp (x)l <evn=tpeN

Proof: Let {f;(x)} be the sequence of partial sums of the series X5, u,(x) defined by f,(x) =
PRIRTHEDN

Now X%, up (x) converges uniformly on E if and only if {f,(x)} converges uniformly on E, i.e., if and
only if for every €> 0, there exists a positive integer t such that | Jaap () — fn(x)| <EVRZ=tpE
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N,Vx € E. (by Cauchy criterion for uniform convergence of the sequence of functions), i.e., if and only
if

[ts1 () + Unga () + - + Unip (x)| <evn=t,peNvVx€E.
Theorem 6.1.13: (Mn-Test)
Let {f,(x)} be a sequence of functions on E such that f(x)=1limf,(x)Vx €E and M, =
ilelglfn(x) — f()|, then {f,,(x)} - f(x) uniformly on E if and only if M, 7:)?)oas n - oo,
Proof: Let {f;(x)} » f(x) uniformly on E, then for given €> 0, there exists a positive integer m
(independent of x) such that
lf,(0) — f(x)| <€ Yn=m,vx €EE
>M,<€EVn=m
= |M, 0|l <€ vn=m

>M,->0asn— o
Conversely, let M,, » 0 as n — oo. Therefore, for given €> 0, there exists a positive integer m such
that

M, — 0l <€ Vn=m

>M,<€EVn=m
= (0 —f(x)| <€ Yn=>=m,Vx€E
~ {fu()} = f(x) uniformly on E.
Theorem 6.1.14: (Weierstrass M-Test)

The series X1, u, (x) converges uniformly onaset E C R if there exists a convergenceseries Y5 My,
of non-negative real numbers such that lu,(x)| < M, vn €N, vx € E.

Proof: Since X.3°_, M, is convergent, therefore by Cauchy criterion for convergence of a series of real
numbers, for given €> 0, there exists a positive integer m such that

[Mys1 () + Myyp () + 4 My, ()| <€ VR 2m,pe N
= Mpyq (0 + My (X) + o+ My (x) <€EVRZ2m,pEN
Now,
|un+1 () +upg2() + -+ Un+p (x)l < |unsr O+ [Una2 ()| + -+ [Unsp €3]]
< Mpyy () + Myyp () + -+ 4+ Mpyyy ()
<evn=m,p €N, Vx €E

Therefore, by Cauchy criteria for uniform convergence of series of functions, the series Yo U, (x)
converges uniformly on E.

Example 6.1.15: Show that the sequence {f,,(x)}, where f,(x) =nx(1 —x)™ does not
converge uniformly on [0, 1].

Solution: Here,
f(x) = lim f,(x)
n—oo
= limnx(1—x)"

n—oo

=0
Therefore, f(x) = 0 Vx € [0,1].
Now,

M,, = sup {If,(x) = Fx)|:x € [0, 1]}
= sup{nx(1 —x)™:x € [0,1]}

o )6-2) (s
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( 1)” 1
=|(1——) »>— asn—- o
n e

i.e., M,, does not converge to0asn — oo.

Hence by M,,-test {f;;} does not converge uniformly on [0,1].

Example 6.1.16: Show that the sequence {f;, (x)}, where f,(x) =

uniformly on [0, 1].

Solution: Here,
f) = ,iifiof"(x)
= lim o
now 1+ n?x?
=0
~ f(x) = 0vx € [0,1].

Now,

M, = sup {|f,(x) — F()|:x € [0,1]}
nx
= sup{|m|:x € [O, 1]}
. @)
14 n2 (ﬁlz)

1
2
Therefore, M,, does not convergetoO0asn — oo .

Hence by M, -test {f,;} does not converge uniformly on [0,1].

nx

1+n2x2’

does not converge

Example 6.1.17: Show that the sequence {f,(x)}, where f,(x) = nxe ™ x € R , does not

converge uniformly on R

Solution: Here,
f(x) = lim f,,(x)
n— oo

. - 2
= lim nxe ™™
n—oo

=0
L f(x)=0vx €R
Now,
My, = sup {|f,(x) — F()]:x € R}
= sup {nlxle ™™ :x € R}
1
= n\/—r_le (n)

n
=— >0 asn — w
e

Therefore, M,, does not convergetoOasn — oo .

Hence by M,,-test {f;,} does not converge uniformly on R.

Example 6.1.18: Show that the series whose sum to n terms is f,(x) =

converge uniformly on [0, 1].

LOVELY PROFESSIONAL UNIVERSITY
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Solution: Here,

f(x) = lim f;,(x)

~ f(x) = 0vx € [0,1].
Now,

M, = sup {If,(x) — F()|:x € [0,1]}

n?x

= sup {mlx € [O, 1]}
1
() 1 1
> — i\~ 3 (Takmgx= F)
1+n4(n7;)

Therefore, M,, does not convergeto 0asn — oo .

Hence by M, -test {f;;} does not converge uniformly on [0, 1].

@ Example 6.1.19: Test for uniform convergence of the series:

[e<)

2n2x?  2(n —1)%x?
en?x? - e(n—1)2x? X ER

n=1

Solution: Let the given series be 25> ; u,,(x), so that

x2
-0

e*

u(x) =

@ 2.2%2x%  2x?
Uz\X) = 242 2
eZ b2 eX

2n%x2  2(n—1)%x2

up(x) = P N R e
Therefore,
fo () = uy () +up(x) + - +uy(x)
_ 2n*x?
- eTlZXZ )
~ f(x) = limfp (%)
n—-oo
. 2n%x?
= lim —=
n-oo gnX
=0.
“f(x) =0Vx €R.
Now,

My = sup {If,(x) — f()|:x € R}

2n2x?
= sup W:x ER
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Zn( ) 2 ) 1

>—F=-, (takmgx =—>

e n

Therefore, M,, does not convergetoOasn — oo .
Hence by M, -test {f;;} does not converge uniformly on R.
@ Example 6.1.20:Show that the series
X, 22x x )\, 3%x 2%x N
14+x%2 \1423x2 14x2 14+ 3%x2 14 23x2

does not converge uniformly on [0, 1].

Solution: Let the given series be X5, u,(x), so that

x
w () = 1+ x?
22x x
u2 () = 1+ 23x2 1+ x?
32x 22x
uz(x) =

1+33%2 1+ 23?2

) = n2x (n—1)2%x
WX = g2 1+ (n—1)3x2
Therefore,
fo(0) = uy () +up(x) + -+ up(x)
_ n%x
T 14 n3x?%
o ) = limfp(x)
n—-oo
e n?x
T Al T+ nox2
= 0.
“f(x)=0vVx eR
Now,

M, = sup {lfn(x) - f(x)| x € [0, 1]}

n2x
= Sup m:x (S [0, 1]

= taking x =
™) < 3

n
n
:—2 —ooasn— o

Therefore, M,, does not convergetoOasn — oo .

Hence by M,,-test {f;;} does not converge uniformly on [0, 1].

[oe]

@ Example 6.1.21:Show that the series Z 1+;2X converges uniformly on [1, ).
n=1

1

Solution: Let the given series be Yo u, (x), so that u, (x) = Py
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Then

1
<— ,Vx € [1, ).
n

Let M), = niz so that Xy M, = Zn=1nl_2 is convergent by p-test.
~ by Weierstrass M-test, the given series converges uniformly on [1, o).

@ Example 6.2.22:Show thatif 0 < r < 1, then X%, r"cosnx is uniformly convergent on R.

Solution: Let the given series be X5, u,, (x), where u, (x) = r*cosnx.
Then
[u, )| = lr*cosnx|
< r™cosnx|
<r*vxe R

and Xy M, =X, r™ is a geometric series with common ratio r (0 < r < 1), therefore it is
convergent.

Hence by Weierstrass M-test, the given series is uniformly convergent on R.

E] Example 6.1.23:Show that the series Z:zl n2x™ is uniformly convergentin [-a,a], 0 <a <
1.

Solution: Let the given series be X0 u,,(x), where u, (x) = n?x™.

Then
lu, () = In?x™|
< n?|x"
< n?a" = M, (say)
Now
M, n2a™
Mpy  (n+1)2a%*1
(59 3
“\n+1/ a
_[1 1 ]21
B n+1l a
== asn-o o
a
Therefore,
My,
>las0<ax<l1
Mn+1

which shows X5 M,, is convergent (by ratio test).

Hence by Weierstrass M-test, the given series is uniformly convergent.

Example 6.1.24: Show that the sequence {f;(x)}, where f,(x) = x""1(1 —x), converges
uniformly on [0, 1].

Solution: Here,
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Notes f(x) = lim f,(x)

= 7lli_r>r;ox"‘1(1 —x)
=0
“ f(x) = 0Vx € [0,1].
Now,
My = sup {If,(x) — fF(O1:x € [0, 1]}
=sup {x*1(1 —x):x € [0,1]}

Lety =x™1(1 —x) = x™ 1 —x™

Then
d
é =n—-1)x"2% —nx"!

and

dy

—~ =0

dx

n—1
=>x=0or
Now,
dZ
d_x}zl =(n—-Dx"3(n -2 —nx)
and
d?y n—1
W<Oatx—T
s yis maximumatx=n%1
and
M, = Maxy
1\" 1711
=(1——) (1——) — —=0asn— o
n n/ n

Hence by M, -test {f;;} does not converge uniformly on [0,1].

X

Show that the sequence of functions {f, (x)}, where f,,(x) = G

is uniformly

TS

convergent for x = 0.

Show thatif 0 < r < 1, then Xj_, rsina™x is uniformly convergent on R.

TS

Theorem 6.1.25: (Abel’s Test):

Let (i) the series of functions 2.5, u, (x) be uniformly convergent on [a, b] and
(i) the sequence of functions {v,} be monotonic for every x belongs to [a, b] and uniformly
bounded on [a, b],

then the series u; (x) vy (x) + uy () v, (x) + uz(x)v3(x) + -+-is uniformly convergent on [a, b].

Proof: Since the sequence {v,} is uniformly bounded on [a, b], therefore there exists a real number B
such that |v,(x)| < B forall x € [a, b] and for all n € N.

(o)

Let us choose €> 0. Since the series anlun(x) is uniformly convergent on [a, b], therefore there
exists a natural number k such that for all x € [a, b],

€

|un+1 (1) + upyp () + -+ Untp (x)l < 3B

vn>kpeN

Next, we put

Rup () = Upiq () + Upy () + -+ Un+p (x)
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Then,

|un+1(x)17n+1(x) + Upy2 (V42 (X) + o+ Upyp DV 4 (x)l
= |Rn,1(x)vn+1(x) + {Rn,Z - Rn,l(x)}vn+2 () + -+ {Rn,p () - Rn,p—l(x)}vn+p(x)|

= |Rn,1 (O {vn+1(0) = V2 (0} + Ry @) {Vn42(x) = vpyp ()} + -+ + Rn,p—l(x) {Un+p—1(x) ~Un4p (x)
+ Rn,p (x)vn+p (x)l

< |Rn,1(x)| |Un+1(x) - vn+2(x)| + |Rn,2(x)| |Un+2(x) — Vp3()] + -+ |Rn,p—1(x)| |Un+p—1(x)
- 17n+p(x)| + |Rn,p(x)| |Vn+p(x)|

€
< 3B [|vn+1(x) — Vi O+ + |vn+p_1(x) - vn+p(x)| + |vn+p(x)|] foralln=k,p=123,..
Since {v,} is monotonic for every x € [a, b], therefore
V41 (G0) = Va2 G| + v 2(60) — vy (1 - + |Vn+p—1(x) ~ Vn+p (x)l
= |Vn+1(x) — Un+p (x)l
= |Un+1(x)| + |Vn+p(x)|
Therefore,

|un+1(x)vn+1(x) + U2 (OVp (1) + - + Un+p vy, +p (x)l

€ €
— —B= > =
<3BZB+3BB € foralln>=kp=123,

Thus, for all x € [a,b] we have,
[tt41 GOV 11 () + Uiy ()2 () + -+ + Uy (V4 (0] <€ foralln=k,p =1,23, ...
uy () vy () +up, () vy (%) + uz () v3(x) + -+-is uniformly convergent on [a, b].
Theorem 6.1.26: (Dirichlet’s Test):
Let (i) the sequence of partial sums {s,} of the series of functions u; (x) + u,(x) + uz(x) -+ be
uniformly bounded on [a, b],
(ii) the sequence of functions {v,,} be monotonic for every x € [a, b],
(iif) the sequence {v,,} be uniformly convergent to 0 on [a, b],
then the series u; (x) vy (x) + u () v, (x) + uz(x)v3(x) + -+-is uniformly convergent on [a, b].

Proof: Since the sequence {s,,} is uniformly bounded on {a, b}, therefore there exists a positive real
number B such that forall x € [a, b], |s,,(x)| < B vn € N.

Let us choose €> 0. Since the sequence {v,,} converges uniformly to 0 on [a, b], therefore there exists
a natural number k such that for all x € [a, b],

€
— > k.
[, (x) 1 < = k

Now,
Un 1 (V41 (0) + Un2 (D vy () + - + Un+p () Un+p ()
= {Sn+1 - Sn(x)}vn+1(x) + {Sn+2 - Sn+1(x)}vn+2 (x) +eet {Sn+p - Sn+p—1(x)}vn+p (x)

= Sp41 (D) {1 () — vy (D} + -+ 5n+p—1(x){vn+p—1(x) ~ Un+p (x)} + Snap (X)Un+p €3]
= 5p(0)vn41 ()

Therefore, for all x € [a, b],
|un+1 (V11 () + Upy 2 (OVp 2 () + - + Un+p vy +p (x)l

< |Sn+1(x)||vn+1(x) - Un+2(x)| +-+ |Sn+p—1(x)||vn+p—1(x) - Vn+p(x)| + |Sn+p(x)||vn+p(x)|
+ Isn vy 41 (O

< B[|vn+1(x) - 17n+2(x)| + |Vn+2(x) - Un+3(x)| et |Vn+p—1(x) - Un+p(x)| + |vn+p(x)| + |Un+1(x)|]

Since {v,} is monotonic for every x € [a, b], therefore,
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|Un+1(x) - vn+2(x)| + |Vn+2(x) - vn+3(x)| et |vn+p—1(x) - vn+p(x)|
= |”n+1(x) - Un+p(x)|

< Ivn+1(x)| + |Un+p(x)|

€

_— > = -
< 2B foralln = k,p =123,
Therefore, for all x € [a, b],

|un+1(x)vn+1(x) + Un2 (V2 () + - + Un+p (x)vn+p(x)|
<EZB+B[E+E =€ liln>kp=123
3B a5t agl= foralln=>kp=123,..

= uy )y (1) + u (v, (x) + uz(X)v3(x) + s uniformly convergent on [a, b].

D" i uniformly convergenton [0, 1].

[V;—] Example 6.1.27: Prove that the series Z

n=1
. . o ® (=pn? (-pr1
Solution: The given series is Z 1Tx” = 2= un (), (1), where u, (x) ==—— and v, (x) =
n=
x™.
1
Leta, = -

Then a, > 0Vvn

and

=n(n+ 1)
<0Vn

Therefore, {a,} is monotonically decreasing sequence.

. lim1
Also, lima, =2*-=0
n—oo n

o

= by Leibnitz test, the series X7°_; u, (x) is convergent.
Since each u,(x) is independent of x, therefore X7, u,, (x) is uniformly convergenton [0, 1].

Now,

Vna1 (X) — v,(2)
= xntl _ 41

=x"(x—1)<0 vx €[0,1]

= Upi (X)) < v () vx € [0,1].
Therefore, the sequence {v,(x)} is monotonically decreasing Vx € [0, 1].
Alsolv,(x)| = |x*| <1 vn € Nand vx € [0,1]
ie., {v,(x)} is uniformly bounded on [0,1].

Hence by Abel's test, the series Z %x” =21 U ()1, (x) is uniformly convergent on [0, 1].

n=1
@ Example 6.1.28:Show that the series Z (;:r):: is uniformly convergent for all values of
n=1
x.
Solution: The given series is Z (;1);_1 =2 U (D), (x), where u, (x) = (=1)™ ! and v, (x) =
n=1

1
n+x?’
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n

Let f(x) = z u; (x)

i=1

= i(‘l) -
i=1

=1-14+1-14--+ (D1

{ 1 ifnisodd
0 ifniseven

=) <1vx € Randvn €N

= X uy(x) is uniformly bounded on R.

>0Vx ER

Now v, (x) =
n () n +x?

1
<
n+1+x% n+x?

Since

Therefore, v,,41(x) < v, (x) Vn and x € R.

i.e., the sequence {v,(x)} is monotonically decreasing Vx € R.
Now we will show that {v, (x)} is uniformly convergent on R.
For this let

v(x) = Limwy (%)

1
= lim 5
n-oon + x
=0 VxeR
1

v () =1, ()| = —

Lety =

Y a2

d —2x
Then &

dx (n+x2?)?
For maxima or minima, we put

dy

dx_O

—2x 0
=5 —=
(n +x2)2
>x=0
dy . oy dy . .
When x < 0, == is positive and when x > 0, == is negative.
dx dx
= y is maximum at x = 0 and maximum value of y = %
o My = sup {lv,(x) —v(x)|:x € R}
=—->0asn - .
n
= {v,(x)} is uniformly converges to 0 on R, by M,, —test.

Thus {v,(x)} is monotonic decreasing sequence converging uniformly to 0 for all x € R.

(_1)1’171

n+x?

Hence by Dirichlet’s test, the series X5, u, (x)v, (x) = Z is uniformly convergent for all
=1

values of x.
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Notes
© (—D"(P+n)

— converges uniformly in every

@ Example 6.1.29: Prove that the series Z
n=1
bounded interval, but does not converge absolutely for any value of x.

(D 4n)

— on [a, b].

Solution: Consider the given series Z

n=1
Let u,(x) = (1) " and v, (x) = % ,X € [a,b].

n

Let f,() = ) (@)

i=1

=§:(—1)i
i=1

=-14+1-1+14+-+(CD"

_{ -1 ifnisodd
"l 0 ifniseven

= |f,(x)| <1vx €[a,bland vn € N
= Y1 Up () is uniformly bounded on [a, b].

x2+n
Now, v, (x) = — > 0Vx € [a, b]

d n%(1) — (x? +n)2n
and Evn(x) = "
2x* +
—( ad 3 n)<0\7’x€[a,b]
n

~ {v,(x)} is monotonically decreasing sequence Vx € [a,b].

Now we will show that {v, (x)} is uniformly convergenton [a, b].

For this let
v(x) = limv,(x)
n—oo
 x%2+n
= lim
n-o N
=0Vx € [a,b]
x2+n
= Vnsr () ()] = —3
2+n

vx € [a, b],where k = max{lal, |b|}

nZ
» My, = sup {lv,(x) —v(x)|:x € [a, b]}

k?+n
2

n
> M, > 0asn - o,

= {v, (%)} is uniformly converges to 0 on [a, b], by M, —test.

Thus {v, (x)} is monotonic decreasing sequence converging uniformly to 0 for all x € [a, b].

o _1\n (42
Hence by Dirichlet’s test, the series 2o, u, (x)v, (x) = Z CVME +n) is uniformly convergent on

n=1 n?
[a, b].

Now we consider
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[oe]

Z ‘(—1)"(x2+n)
nZ

n=1

[oe]

(x2+n)

n2

n=1

= W@ (@)
n=1

(x2+n)

wy (x) = 2

[ee)
i.e, wy(x) > % x € Rand Z % is divergent by p-test. Therefore, by comparison test, X5, wy, (x)
n=1

is also divergent for all x.

Hence the given series is not absolutely convergent for any value of x.

@ Example 6.1.30: Show that the series Z % converges uniformly in (0, 27).
n=1

[oe]
. . . 1
Solution: The given series is Z COS% = 2% Uy () v, (x), where u, (x) = cosnx and v, (x) = =.
n=1

n

Let f(x) = Z u; (x)

i=1

= cosx +cos 2x + cos3x + -+ + cosnx
cos (x+ nx) sinE
_ 2 2

2
Therefore,

x +nx\ . nx
cos (“5) sin 7'

smx |
2
|cos (x +nx)| |sinﬂ
_ 2 2
- |sin E|
2
1
<
|sin£|
2
[cosec]
= |cosec—
2

< k,forsome k € R
= {f,(x) is uniformly bounded on (0, 2).

Also {v,(x)} = {i} is monotonic decreasing sequence converging uniformly to 0 for all x € (0, 2r).

Hence by Dirichlet’s test, the series X u, (v, (x) = Z comnx

—— converges uniformly in (0, 2m).
n=1
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sin2x  sin3x

Prove that the series sin x + —— + + -++is uniformly convergent on any closed

TS

interval [a, b] contained in the open interval (0, 27).

Prove that the series ¥,(—1) "x"(1 — x) converges uniformly on [0, 1] but the series
Yx™(1 — x) is not uniformly convergent on [0, 1].

FITSY

Self-Assessment

State true or false for f,(x) = x» forx € [0,1].

1)7L1.i_)1}.3fn(x) exists forallx € [0,1].

2)7L1.i_)1?1.3fn(x) defines a continuous function

3){ f.} converges uniformly on [0,1].

4) %Lrgfn(x) =O0forall x € [0,1].

State true or false for f,(x) = (2 —x)"forx € [1,2] and let f(x) = %i_)r:gfn ).

S)r[l,i_)rgfn(x) = Oexistsforallx € [1,2]

6) f(x) is a continuous function

7){ f,.} is not uniformly convergent on [1,2].

1
forn € N,x € R.
1+n2x?

State true or false for f,(x) =

8){ f,.} converges pointwise on [0,1] to a continuous function.

9){ f,} converges uniformly on [0,1].

10){ f,,} converges uniformly on [%,1].

1D)Let {f;,(x)} = {tan='nx}. Consider the following statements:
(D{f,.} converges pointwise on [0,00] .
(2){f,.} converges uniformly on [a,®], a > 0. Then

a)only (1) is correct

b)only (2) is correct
¢)both (1) and (2) are correct

d)both (1) and (2) are incorrect

12)Let f,(x) = xx: Consider the following statements:

(D{ f.} converges uniformly on [0, o).
(2) {fn} converges uniformly on [0,a], a > 0. Then

a)only (1) is correct

b)only (2) is correct

c)both (1) and (2) are correct

d)both (1) and (2) are incorrect

State true or false for f,(x) = x™ forx € [0,1].

13)%imfn (x)defines a continuous function forall x € [0,1].

14){ f,} is uniformly convergent on [0,k], k < 1
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15){ f,} is uniformly convergent on [0,1]

nx
16)Let f,(x) = 1T 22 forn € N, x € R. Consider the following statements:

(D{f,} converges pointwise on [0,1] to a continuous function.

(2) {fu} converges uniformly on [0,1]. Then
a)only (1) is correct

b)only (2) is correct
c)both (1) and (2) are correct
d)both (1) and (2) are incorrect

17) Consider the following statements:

1) ag+ a; + a, + ...be a convergent series of real numbers then the series ag+ a;x + ax?+ ..

uniformly convergent on [0, 1].

2) a; +a, + az + --be a convergent series of real numbers then the series a; + % + % +---is

uniformly convergent on [0, ). Then
a)only (1) is correct

b)only (2) is correct
¢)both (1) and (2) are correct
d)both (1) and (2) are incorrect

18) Consider the following statements:
e—ZX e—3x e—4X

1) The series e ™* — + -++is uniformly convergent on [0, 1].

2 3

_1)n—1,n
2) The series ), (nngx)

a)only (1) is correct

is not uniformly convergent on [0, 1].

b)only (2) is correct
c)both (1) and (2) are correct
d)both (1) and (2) are incorrect

19)State true or false:

sinnx
27’.

The series Xo_, fn (x) =250, is uniformly convergent on [0, 1].
20)State true or false:

The series X5, fr (x) =250, m is uniformly convergent on [0, 1].

Answer: Self-Assessment

1 True 6 False 11 c 16 a

2 False 7 True 12 b 17 C

3 False 8 False 13 False 18 a

4 False 9 False 14 True 19 True

5 False 10 True 15 False 20 False
Summary

.is

e Let X be a metric space and E € X. Let f, be a real-valued function defined on E for each

n € N. Then, {fy, f2,f3, -, fn, - } is called a sequence of real-valued functions on E. It is

LOVELY PROFESSIONAL UNIVERSITY

95

Notes



Notes

96

Real Analysis I

denoted by {f,} or {f,,). If {f,} is a sequence of real-valued functions defined on a set E, then
fitfo+fz+ -+ f+--is called a series of real-valued functions defined on E. It is
denoted by X3, f,.

A sequence {f,,} of functions defined on E is said to converge pointwise to a function f on E
if for given €> 0 and for all x € E, there exists a positive integer m (depending upon € and
x) such that |f,(x) — f(x)| <€ vn =m.

A sequence of functions {f;, (x)} is said to converge uniformly to a function f(x) on E if for
given €> 0 and for all x € E, there exists a positive integer m (depending upon € only) such
that [f,(x) — f(x)| <e Yn=m.

{fn} is pointwise bounded if there exists a finite valued function ¢ defined on E such that
/()| < ¢p(x) vx EE n€N.

A sequence of functions {f;;} defined on a set E is said to be uniformly bounded on E if there
exists 0 < M € R such that |f,(x)| < MVx € E,n € N.

The sequence of functions {f;,(x)} defined on E converges uniformly on E if and only if for
every €> 0, there exists a positive integer ¢ such that |f; (x) — fi,(x)| <€ VYn,m > t,vx €E.
A series of functions X, u,(x) defined on E converges uniformly on E if and only if for

given €> 0 and Vx € E, there exists a positive integer t such that

[ths1 () + tpgp (X) + -+ Unsp (x)| <evn=tpeN.

Let {f,(x)} be a sequence of functions on E such that f(x) = llm fn(x) vx € E and M,, =
suplfn (x) — f(x)|, then {f,(x)} - f (x) uniformly on E if and only 1f M, — 0asn — oo.

The series X, u,(x) converges uniformly on a set E € R if there exists a convergent series
X% M, of non-negative real numbers such that |u,(x)| <M, vn € N, vx € E.

Let the series of functions Z _ 1 Up () be uniformly convergent on [a, b] and the sequence of
functions {v,} be monotonic for every x belongs to [a, b] and uniformly bounded on [a, b],
then the series u; (x) vy (x) + u; () v, (x) + uz(x) v3(x) + --is uniformly convergent on [a, b].
Let the sequence of partial sums {s,} of the series of functions u; (x) + u,(x) +usz(x) -+ be
uniformly bounded on [a, b], the sequence of functions {v,,} be monotonic for every x €
[a, b], the sequence {v,,} be uniformly convergent to 0 on [a, b], then the series u; (x)v; (x) +

Uz (v (x) + u3(x)vz(x) + --is uniformly convergent on [a, b].

Keywords

Pointwise Convergence: A sequence {f,} of functions defined on E is said to converge pointwise to
a function f on E if for given €> 0 and for all x € E, there exists a positive integer m (depending upon
€ and x) such that |f,(x) — f(x)| < € Yn = m.

Uniform Convergence: A sequence of functions {f;, (x)} is said to converge uniformly to a function
f(x) on E if for given €> 0 and for all x € E, there exists a positive integer m (depending upon €
only) such that |f,,(x) — f(x)| <€ vn =m.

Pointwise Bounded Sequence: {f,} is pointwise bounded if there exists a finite valued function ¢
defined on E such that |f;, (x)| < ¢(x) Vx € E n € N.

Uniformly Bounded Sequence: A sequence of functions {f;} defined ona set E is said to be uniformly
bounded on E if there exists 0 < M € R such that |f;,(x)| < MVx € E,;n € N.

Review Questions

. x*
Prove that the series x* + — +

2) Prove that the series Y, = +1n4 =z

3) Prove that the series ¥, +i2x2

x*
1+x+  (14x%)2

+ -, x € [0,1] is not uniformly convergenton [0,1].

is uniformly convergent for all real x.

is uniformly convergent for all real x.
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Notes

e~2x e—4x e~ 6k
+ —
22-1  42-1 6%-1

5) Show that the series (1 —x) + x(1 — x) + x2(1 — x) + ---is not uniformly convergent on [0, 1].

4) Show that the series 1 —

+ ---converges uniformly for all x > 0.

6) A sequence of functions {f, } is defined on [0,1] by f,,(x) =1 — %, x € [0,1]. Show thatthe sequence
{f,} is uniformly convergenton [0, 1].

7) Prove that the sequence of functions {f,}, where f, (x) = % , X € [0,2] is not uniformly convergent

on [0, 2].

8)Let g be continuous on [0,1]and f,(x) = g(x)x™ x € [0,1]. Prove that the sequence {f,,} is uniformly
convergenton [0, 1] if and only if g(1) = 0.

9) A sequence of functions {f;,} is defined on Rby f,(x) = % .x € R. Prove that the convergence of the

sequence {f,} is not uniform on [0, ©); but the convergence is uniform on [0, a] if a > 0.

10)A sequence of functions {f,} is defined on [0, 1] by f, (x) = ﬁ x € [0, 1].Show that the sequence

{fn} converges uniformly on [0, 1].

Further Readings

Walter Rudin, Principles of Mathematical Analysis (3rd edition), McGraw-Hill
International Publishers.
L!'_J T. M. Apostol, Mathematical Analysis (2nd edition).
S.C. Malik, Mathematical Analysis.
S KMappa, Introduction to Real Analysis (8t edition).

https:/ /nptel.ac.in/courses/111/106 /111106053 /
https:/ /nptel.ac.in/courses/111/101/111101134/
https://doi.org/10.1007/978-1-4419-1296-1 11
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Unit 07: Uniform Convergence and Continuity

CONTENTS

Objectives

Introduction

7.1 Uniform Convergence and Continuity
Self-Assessment

Answers: Self-Assessment

Summary

Keywords

Review Questions

Further Readings

Objectives
After studying this unit, students will be able to:

e understand explicitly the concept of uniform convergence of sequence and series of
functions

e able to check the uniform convergence using continuity of the limit function

¢ identify that uniform convergence preserves continuity

e demonstrate the effect of uniform convergence on the limit function

Introduction

In the previous unit, we have studied the concepts of pointwise convergence and uniform
convergence of sequence and series of functions. Uniform convergence of {f;} on E implies pointwise
convergence but not vice versa. However non-pointwise convergence of {f;} on E implies non-
uniform convergence of {f,} on E. If a sequence is uniformly convergent, then the uniform limit
function is the same as the pointwise limit function. Thus, uniform convergence is a stronger concept
than pointwise convergence. In this unit we will discuss that uniform convergence preserves
continuity.

7.1 Uniform Convergence and Continuity

Theorem 7.1.1: Let {f;,(x) } be a sequence of continuous functions defined on a compact set K. If {f;,}
converges pointwise to a continuous function f on K and f,, (x) = f,41(x)Vx EK andn=1,2,3,..,
then {f,} converges uniformly to f on K.

Proof: Letg, =f, — f.
Since f,, = f pointwise, therefore g, = 0 pointwise.
Also, wehave
[ = frya ()
Sh—fZfa—f
= gn 2 gn+1
Since f and f;, are continuous, therefore g, is also continuous.
Now we will prove that g,, = 0 uniformly on K.

Let €> 0 be given.
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Let K, = {x € k: g,,(x) = €}
= gn'[€ =)

Since [€, ) is closed and g, is a continuous function, therefore K,, = g;1[€, ) is a closed subset of
K. But K is compact.

=each K, is compact. .. (@)

Now,
X € K1

= gne1(x) 2€
= gn(x) 2 gns1(x) 2 €
=> x €K,

kn+1 c ann (2)

Now we show that ﬂ K, = ¢.

n=1

If possible,let x € ﬂ K,

n=1
>x€K,vVn
= gn(x) =€ vn

= lim g,(x) =€
n—oo

= 0 =€, which is not true

ﬁ Kn=6...(3)
n=1

From (1), (2), and (3), there exists m € N such that K,,, = ¢ because if {K,} is a sequence of non-empty
compact sets such that K1 € K,,n=1,2,3, ..,

then n K, #¢
n=1

>K,=¢pVn=m

= gn(x) <€ Vn=m,Vx € K

= |gn(x) —0l <€ Vn=m,vx €K
= gn — 0 uniformly on K.

= f, = f uniformly on K.

& The condition of compactness of K in the above theorem cannot be dropped.

Counter-Example: Let f,(x) = ﬁ, 0<x<1

= each f,(x) is continuous in (0, 1) and lim f,(x) =0
n—oo
Here wesee, fui1 < funVx,n=1,2,3, ..

Now,
|fu(x) — 0] <€

= <€e
nx+1

1
>nx+1>-—
€
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>n>— (— - 1)
x \e
—ooasx -0
Therefore, it is not possible to find m € N such that |f,(x) — 0l <€,vn =m.
= {f,(x)} does not converge uniformly on (0, 1).

Theorem 7.1.2: Let (X, d) be a metric space and E € X. Let a sequence of functions {f, (x)} converges
uniformly to f(x) on E and ¢ be a limit point of E such that iirrclfn(x) =A,,n=12,3,..Then{4,}is

convergent and i%f(x) = #ZgoA"'

Proof: Since f, = f uniformly on E, therefore by Cauchy’s criterion, for given €> 0, there exists a
positive integer t such that

If,(x) = f,(x)| <€ vn,m > t,Vx €E.

Letting x — ¢, we get

A, — Apl <€ Ynm=>t

= {A,} is a Cauchy sequence in R and hence is convergent.

Let {A,} > Aasn - .

Now we shall prove that limf(x) = A.
xX=C

Since the sequence {f,,} converges uniformly to f(x) on E, therefore for given €> 0, there exists n; €
N such that | £, (x) — F(x)| <§ vnzn  ..(1)

Also, %L@A" =A.

« for given €> 0, there exists n, € N such that |4, — Al < S vn=n, .(2)

Let p = max{n,, n,}.

Then from (1) and (2), we have

|fn(x)—f(x)|<§and |An—A|<§ vazp ..(3)

Again since limf; (x) = Ay, therefore for given €> 0, there exists § > 0 such that
xX—-C

€
If, () — Anl <3,0< lx—cl<8,x€E ..(4)

Therefore, using (3) and (4), we have
G —Al =1f () + fu(0) = () + Ay — An — Al

<100 = FO + 14, — Al + I, (0) — 4,

< € +_E.+ €
3 3 3
=€ 0<lx—cl<6x€E

= il_?;};l flx)=A

limf(x) = limA,.

X—C n-—-oo

Corollary: Let X7, u,(x) be a series of functions defined on E € X such that iin}un(x) exists for all

n € N, where c is a limit point of E. If the series X.5°_; u,, (x) converges uniformly on E, then

[oe] [o0]

lim ) u,(x) = Z lim uy, (x).
X—C = X—>C

n= n=1
Proof: Let f,(x) = uy (x) +uy(x) + -+ uy, ().

Since the series X, u, (x) converges uniformly on E, therefore f;, > f uniformly on E where f(x) =
% ;?: 1Un (x).
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slim ) up(x) =lim f(x)
X—C nzzl X—-C

=t fim 0

- tim tim /)

n
= lim lim [z ui(x)]
n-—-oo X—C

i=1

= lim lim u; (x)
n—-oo xX—C
i=1

= E lim u; (x)
AE
i=1

i.e., limz up(x) = ZIim u; (x)
x-c { x—>C
n=1 i=1
Theorem 7.1.3: Let {f;,} be a sequence of functions which converges uniformly to f on E. If each f;, is
continuous on E, then f is also continuous on E.
Or

If {f,} is a sequence of continuous functions of E such that f;, — f uniformly on E, then f is
continuous on E.

Proof: Let €> 0 be given.

Since {f, } converges uniformly to f on E, therefore there exists m € N such that
€
|fn(x)—f(x)|<§ vn>=m, Vx €E. (D)
Let a be any point of E, then from (1), in particular, we have

lfi(@ — f(a)l <§ vn=m. . (2)

Since f,, is continuous on E for each n € N, therefore f,, is continuous ata € E.

-~ there exists § > 0 such that
€
I£.C0) = fu(@)] <3 lx —al <& (3

Now,
If@) = f@)| = If () = £ + £ @) = fu(@) + fu(@) = f(@)
<1f ) = L+ /) = fr@ +1f(@) - f(@)]
€ E € _
< § + § + § =€
Thus, for given €> 0, there exists § > 0 such that [f(x) — f(a)| <€, |x —al <§.
= f(x) is continuous at a.

But a is an arbitrary point of E.

Hence f (x) is continuous on E.
& If the convergence is only pointwise then the above result may not hold.

Counter-Example: Let f, (x) = x™,x € [0, 1].
Then,
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f) = lim f,(x)

_{O;OSx<1
U Lx=1

is not continuous at x = 1 but each f, (x) is continuous at x = 1 as {f,} is not uniformly convergent

on [0, 1].

Ei/ The converse of the above theorem is not true, thatis, a sequence of continuous functions

may converge to a continuous function although the convergence is not uniform.

Counter-Example: Let
x

n
fn(x) = H—T

,X€ER
x2

Then,
fGo) = lim f,(x)
=0vx €eR
= f(x) is continuous on R
Also, each f, (x) is continuous on R but f, (x) does not converge uniformly in any interval that

contains zero.

. Let X7, un(x) be aseries of real-valued continuous functions which converges
=1 uniformly to f(x) on E, then f(x) is also continuous on E, that is, the sum function of a
uniformly convergent series of continuous functions is continuous.

Example 7.1.4: Test the uniform convergence for the series {f,, (x)} where

8 1

] = 1+ nx

<1

) =

Solution: Let

£GO = lim fu®)

nl—IEo1+nx
{O, 0<x<1
1, x=0

= f is discontinuous at x = 0 and hence f is discontinuous on [0, 1].

Now we see {f,(x)} is a sequence of continuous functions and its limit function f (x) is
discontinuous on [0, 1].

Therefore, sequence {f,,(x)} is not uniformly convergent on [0, 1]. {see Example 2 of Unit 06}

@ Example 7.1.5: Examine the series X5, x e~ for uniform convergence near x = 0.

Solution: We have,

fn(x) =x+xe *+ xe‘zx + -+ xe—(n—l)x

which forms a G.P.
Therefore,
x[1 —e ]
fa () = 1 _e~x
Now,

f(x) = lim fn (0

_ {x/(l —e X),x#0
U o, x=0
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Notes x
 mfe) = lim o=
=l
=1
and
f(0) =0

= limf(x) # f(0)
x-0
= f(x) is discontinuous at x = 0

Therefore, the series is not uniformly convergent in any interval which includes 0.

E] Example 7.1.6: Show that the series:
x* x*
et ¢! +x4)2+m

is not uniformly convergentin [0, 1].

4

X

Solution: The given series is:

o
4

x
Z up(x), where u,(x) = W
n=J
Now,
. x* x* x*
RG) =t e T @y
x* [1 - ﬁ_l ]
_ (1 +xH)n
= —1 — 1
1+x*
x4 [1 - ﬁ_l ]
1 +xHn
1+x*
1 n
= 4 -
d+x )[1 (1 +x4) ]
Therefore,
fG) = limfy
={1+x4, 0<x<1
0, x=0
Now,
; _ i 4
limf(x) = lim(1 +x*)
=1
and,
f) =0
Therefore,

limf(x) # f(0)
x—-0
= f(x) is discontinuous at x = 0

Hence the series is not uniformly convergent in any interval which includes [0, 1].

LOVELY PROFESSIONAL UNIVERSITY 103



Unit 07: Uniform Convergence and Continuity

Notes
Self-Assessment

n
DFor f,(y) = Tr):zyz for n€ N,y € R, select the correct statements:

(a){f,} converges pointwise on [0,1] to a continuous function.

(b){f,} converges uniformly on [0,1].
2) State true or false: Let f,,(x) = x"/n for x € [0,1], then Limf, (x) defines a continuous function.
n—oo

3) Let {f,,} be the sequence of real-valued continuous functions and let f (x) = kirgfn(x). Select the
correct statements:

(@)If f, = f uniformly then f is continuous.

(b)If f is continuous then f;; converges uniformly.

4) State true or false:

Let f(y) = (2 —y)"*forye [1,2].Letf(y) = YI;i_r)gfn(y) then f(y) is a continuous function.

5) State true or false:

Let f(s) = ﬁ forn € N, s € R, then { f,} converges pointwise on [0,1] to a continuous function.
6) State true or false:

Let f,(x) = x™ for x € [0,1],then %imfn(x) defines a continuous function for all x € [0,1].

7)Select the correct statement:

¢ e—Zt e

(a)The series e ™" ——

-3t —4t

3 + -++is uniformly convergent on [0, 1].

-2t -3t —4t

e

2 3

e

(b) The series e~* — + -++is only pointwise convergent on [0, 1].

8) State true or false:

sinnt
27[

The series X5_ f () =Zri_4 is not uniformly convergent on [0, 1].

9) State true or false:

The series X5, fr () =X, m is uniformly convergent on [0, 1].

10) State true or false:

(—1)n1xn
n(1+xn)

The series Y, is uniformly convergent on [0, 1].

11) Select the correct statement:

(@) to+t; +t, + ...be a convergent series of real numbers then the series to+ tyx + t,x2 + ...is
uniformly convergent on [0, 1].

(b) to + t; + ty +...be a convergent series of real numbers then the series ty + t;x + t,x% + ...need
not be uniformly convergent on [0, 1].

12) Select the correct statement:

. . b, b . .
(@)by + by + bs + ---be a convergent series of real numbers then the series by + —2 + = + ---is uniformly
2% 3%

convergent on [0, o).

(b)by + b, + b3 + ---be a convergent series of real numbers then the series b; + % + % + --+is only

pointwise convergent on [0, ).

13)State true or false:
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Let f,(x) = x™,then { f,,} is uniformly convergent on [0,k], k < 1
14) State true or false:

Let f,(x) = (2 —x)"forx € [1,2] and let f (x) = Limf;,(x), then {f,}isnotuniformly convergenton
n-—oo

[1,2].

15) State true or false:

(1 —x) +x(1 —x) +x2(1 — x) + --is uniformly convergenton [0, 1].

Answers: Self-Assessment

1 a 6 False 11 a

2 False 7 a 12 a

3 a 8 False 13 True

4  False 9 True 14 True

5  False 10  True 15  False
Summary

o Let {f,(x)} be a sequence of continuous functions defined on a compact set K. If {f,(x)}
converges pointwise to a continuous function f on K and f; (x) = f,41(x)Vx €K and n =

1,2,3, .., then {f;,(x)} converges uniformly to f on K.
e Let (X,d) be a metric space and E S X. Let a sequence of functions {f,,(x)} converges
uniformly to f(x) on E and ¢ be a limit point of E such that iinclfn(x) =A,,n=12,3,..Then

{4} is convergent and lirrclf(x) = limA,.
X n—oo
o Let X%, u,(x)be aseries of functions defined on E € X such that limu, (x) exists for alln €
X—=C

N, where c is a limit point of E. If the series fo;lun (x) converges uniformly on E, then

lim Z up(x) = Z lim u,, ().
X—=C X—C
n=1 n=1
e If {f,} is a sequence of continuous functions of E such that f; — f uniformly on E, then f is

continuous on E.

e The sum function of a uniformly convergent series of continuous functions is continuous.

Keywords

Uniform convergence: A sequence of functions {f,, (x)} is said to converge uniformly to a function
f(x) on E if for given €> 0 and for all x € E, there exists a positive integer m (depending upon €
only) such that |f,(x) — f(x)| <€ vn =m.

Uniform convergence preserves continuity: If {f,} is a sequence of continuous functions of E such
that f, = f uniformly on E, then f is continuous on E.

Review Questions

[oe]

1)Test the continuity of the sum function of the series z Also, comment on the uniform

n=1 n(1+nx2)’
convergence of the given series.

2) For f,(x) =nx(1 —x)™0 < x <1, check the continuity of limit function. Also, test the uniform
convergence of the given sequence.

3) Show that the sum function of the series

Z( e (h-Dx >
1+n2x2 1+ (n—1)32x2
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is continuous for all x although zero is a point of non-uniform convergence of the series.

4) Let the sequence {f,,(x)} defined on [0, 1] by f;,(x) = x™. Check the continuity of its limit function
and uniform convergence of the given sequence.

5) Test the continuity of the sum function and uniform convergence of the series for which
x2 [1 - —2—1 ]
(T +x2)"
ful) = ——— 2=
=15

6) Let f,(x) = tan"!nx,x € [0,1]. Prove that the sequence of functions {f,;} is not uniformly
convergenton [0, 1].

7) Prove that the sequence of functions {f,} where f, (x) = % ,x € [0,2]is not uniformly convergent

xn
on [0, 2].

Further Readings

Walter Rudin, Principles of Mathematical Analysis (3t¢ edition), McGraw-Hill
International Publishers.
l!!] T. M. Apostol, Mathematical Analysis (2nd edition).
S.C. Malik, Mathematical Analysis.
S K Mappa, Introduction to Real Analysis (8t edition).

https:/ /nptel.ac.in/courses/111/106/111106053/
https:/ /nptel.ac.in/courses/111/101/111101134/
https://doi.org/10.1007/978-1-4419-1296-1_11
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Unit 08: Uniform Convergence and Integration

CONTENTS

Objectives

Introduction

8.1 Uniform Convergence and Integration
Summary

Self-Assessment

Answer for Self-Assessment

Keywords

Review Questions

Further Readings

Objectives

After studying this unit, students will be able to:

e understand explicitly the concept of uniformconvergence of sequence and series of
functions

e discuss the uniform convergence and integration

e identify that uniform convergence preserves term by term integration of the series of
functions

e demonstrate the effect of uniform convergence on the integration of limit function

Introduction

In the previous unit, we have studied the concept of uniform convergence and continuity of
sequence and series of functions. We have studied that if {f;,} is a sequence of continuous functions
of E such that f;, = f uniformly on E, then f is continuous on E.In this unit, we will discuss uniform
convergence and integration.We will study that uniform convergence of series is only a sufficient
condition but not a necessary condition for term-by-term integration.

8.1 Uniform Convergence and Integration

Theorem 8.1.1: Let @ be monotonically increasing on [a, b], f, € R(a) on [a, b], n=1, 2, 3...and {f,,}
converges uniformly to f on [a, b]. Then f € R(a) on [a, b] and

b b
f fda= lim f frda.
a n=0 Jg
b b
i.e.f lim f,, da = lim f foda.
a Nn—oo n—-oo a

Proof: Let M, = sup |f,(x) — f(x)l
asxs<b

Thenlf,(x) — f(x)| <M,
S fulx) =My < f(x) < folx) + My,

b b b b b b
:ffnda—Mnf daSJ- fdanfdanfnda+Mnf da
a a 2 a a a
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b b b
fdasffdasffnda+Mn[a(b)—a(a)] e

a

b
= [ fuda= Myla) - (@) <

T

b b
:>0Sf fda—J fda < 2M,[a(b) —a(a)]

Now, as {f,} converges uniformly to f on [a, b] so by Weierstrass M,, test M, » 0 asn — oo

f:fda=ijda

= f € R(a)on[a, b].

Now from (1), we have

b b b
=>f £, dat— My [a(b) — a(a)] sf fda sf £, da+ My [a(b) — a(a)]

Lbfda—fabfnda

= < Myla(b) — ala)]

b b
f fda= limf frda
a n-0Jg

[+ M, - 0asn — oo]

Cor. (Term by Term Integration)

If u, € R(a) on [a, b] for all n and if X, u,(x) converges uniformly to f(x) on [a, b], then f€

R(a) on [a, b] and
fbfda=§fbunda

n=1

Proof: Let
fu() =u () +up(x) + -+ + up(x)
Since u,(x) € R(a) on [a,b],n €N
Therefore f,(x) € R(a) on [a,b],n € N
Also, Xy_; up (x) converges uniformly to f(x) on [a, b]
Therefore, f, — f uniformly on [a, b].

~ by above theorem, f € R(a) and

p[2 b
j Zun(x) da=f fda
a n=1 a
b
=lim | f,da
n—-oo a

= }li_lfgofb [i ui(x)] da
¢ =1

nob
= lim Zf u;(x)da
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® b
= Z f u,()da
n=1 a

E] Example8.1.2:Examine for term-by-term integration of the series the sum of whose first n
terms is n?x(1 —x)™"; 0< x < 1.

Solution: We have,
i) =n?2x(1—-x)" 0<x< 1
Let
f) = lim f,(x)
For0<x <1,

flx) = rlll—r& n2x(1 —x)"

i n?x
= e Q-—x)
- 2nx
= now —(1 —x) ™og (1 — x)
- 2x
= noe (1 — 0" [log(L — D)2
— i 2x(1 —x)"
" noe[log(T — )2
=0

Also, whenx = 0or 1, then f,(x) = 0
~f(x) =0vx €[0,1]

Therefore,

folf(x)dx = J:de =0 -~ (D

Now,
1 1
ffn(x)dx =fn2x(1 — x)"dx
0 0
1

= f n?(1—x)[1 -1 —x)]"dx

0

o [ e = [ fla -
0 0

1

=fn2(1 —x)x"dx

0

1
= n? f(x” —x™ D) dx
0

1
5 xn+1 xn+2
=n
0

n+l n+2

—nZ( 11 )
T \n4+1 n+2
n2

Tm+Dmn+2)
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0 , n?
:‘moffn(x)dx—mm

=1 (2
From (1) and (2), we get

1
1
%ﬂooff”(x)dx;t fo fl)dx.

Therefore, term by term integration of given series is not justified.

Example8.1.3:Examine for term-by-term integration of the series the sum of whose first n
terms is nxe ™% 0 < x < 1.

Solution: Let

@) = lim f,(2)

nx

= lim 5
"1 +nx? +%+-~

=0
Thus
f(x) =0vx €[0,1]

1
= | f()dx =0
|

and
1

1
Ojfn(x)dx = fnxe‘"xzdx

0

_1 -n
=5[1-e™]
1

1 1
~ lim ffn () dx # f lim f, (x)dx.
n—oo n—-oo
0 0
Hence term by term integration on the interval [0, 1] is not justified here.

@ Example 8.1.4:Examine for term-by-term integration of the series

x
S X osest
2 USXS
nzl(n+x)

Solution: Let

[ee)

2.4= 2, Gy

n=1
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x
(n+x2)2

where u,(x) =

Therefore,

_ (n+x?)?—4x*(n+x?)

un (%) (n+ x2)*

_ n—3x2

T+
Now,

up(x) =0

>n-3x2=0

=>x=\/§
[':xz—\/ge[O,l]]

(n + x2)3(—6x) — (n — 3x2)3(n + x2)?(2x)
(n +x2)¢

Now,

uy (x) =

_ —6x(n+x?) — 6x(n — 3x?)
- (n+ x?)*

" n
un<0atx=\/%

Now,

. . n
= U, i1s maximum at x = \/;

and maximum value of u, (x) is

n
3 3v3
T 2 16n3/2
(n 4 g) 16n
3
3V3
= lu, ()| < 3
16n:

1

<— = M,(say)vx € [0,1],

3

nz

and X2, M, =X, % is convergent by p-test.
n2

- by Weierstrass M-test, the given series is uniformly convergenton [0, 1].

Hence it can be integrated term by term.

E] Example 8.1.5:Show that

1,0 ®
Oj(z z—2>dx - Z nz(n1+ 1)

n=1 n=1

Solution: Let

=5

n

| =

1
<=,0<x<1
n

= (ol =

N

n
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1.
and X, — is convergent.

~ by Weierstrass M-test, the given series is uniformly convergent on [0, 1].

1

- [(E)ee= 5 e

0 n=1

T

integrals same?

Summary

Let f,(x) = n?x(1 —x?)",x € [0,1]. Then find 7llm;o folfn(x) and folf(x). Are both the

e Let @ be monotonically increasing on [a, b], f, € R(a) on [a, b], n=1, 2, 3,... and {f,,}

converges uniformly to f on [a, b]. Then f € R(a) on [a, b] and

b ) b
[, f da= 1im [} f.da.

b b
i e.f lim f, da = lim f fada.
q No® n-o J,

e Let a be monotonically increasing on [a, b], u, € R(a) on [a, b] for all n and if X5, u, (x)

converges uniformly to f(x) on [a, b], then f € R(a) on[a, b] and

b w b
fa fda= Zn=1fa up,da

b [ © b
L.e.fa [;un(x)] da = ;L u,(x)da.

Self-Assessment

1) Select the correct answer:

The sequence of functions f,(x) = nx(1 — x2)*,x € [0, 1]. Then

1 1
a) lim, A fa=3
1 1
i [ -3
1 1
CW&LH=Z

1
dmgﬁﬁ=o
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Lt fu(x) = Lo [nPxe "
statement.
a) X1 fu(x) can be integrated term by term.

b) X, fn(x)is not uniformly convergent.
1

[ee) [ee] 1
c)fon(x) dx ifon(x)dx
1 T 0

0

d)none of these

3) Select the correct answer:

For eachn > 2, let

1
n2x ; 0<x<-—
n
1 2
ful@) ={ —n?2x+2n;, —<x<=
n n
2
kO: —<x<1
n

then

a)the sequence {f; }is uniformly convergent

b) the sequence {f,}is only pointwise convergent

c) the sequence {f;, }is neither pointwise nor uniformly convergent

d) the sequence {f,}is uniformly convergent but not pointwise.

4) State true or false:

The sequence of functions f, (x) = nx(1 — x?)*,x € [0, 1]. Then 111111(}0 fol fulx) # folf(x)

5) State true or false:
The sequence of functions f,(x) = nx(1 — x2)",x € [0, 1]. Then folf = é

6) State true or false:

The sequence of functions f,(x) = n?x(1 — x2)™,x € [0, 1]. Then %1_1;1(}0 fol fu(x) # folf(x)

nx
1+nx’

7) Let fp(x) = x € [0, 1], then

a

b

) the sequence {f;,}is uniformly convergent
) the sequence {f,}is only pointwise convergent
c) the sequence {f;, }is neither pointwise nor uniformly convergent

d) the sequence {f; }is uniformly convergent but not pointwise.

8)Let f,(x) = nx(1 —x)™,x € [0,1], Then:

1 1
(@) lim fo fol) < fo lim f, (x)

1 1
e, [ 46 # [ im A
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1 1
CIEN WASES W AS

1 1
@lim [ h = [ im Ao

9) The sequence of functions f;, (x) = n?x(1 —x?)",x € [0, 1], then
a) the sequence {f; }is uniformly convergent

b) the sequence {f,}is only pointwise convergent

¢) the sequence {f; }is neither pointwise nor uniformly convergent

d) the sequence {f; }is uniformly convergent but not pointwise.

10) State true or false:

Let the sequence of functions f, (x) = %, x € [0,1]. Then {f,,} converges uniformly on [0, 1]

11) Let f,,(x) = n?x(1 — x?)™,x € [0, 1]. Choose the INCORRECT statement.
a) {f,} converges pointwise on [0, 1]

b) {f,} converges uniformly on [0, 1]
Q) lim [y fuGO # Jy £(x)

d) none of these

12. Consider the following statements:
(I) Term by term integration for the series of functions implies uniform convergence.
(I) Uniform convergence of the series of functions implies term by term integration.
a) only (I) is correct
b) only (II) is correct
¢) both (I) and (II) are correct
d) both (I) and (II) are incorrect

nx

13. Let the sequence of functions f,(x) = Py~

,x € [0,1]. Let }llngo fn = f. Choose the INCORRECT
statement.

@ tim [ 160 = e

b) {fn} converges pointwise to some function f on [0, 1]

1 1
o im [ 60 # [ 7o

d) f, does not converge uniformly on [0, 1]
14) State true or false:

—n2

The series 2%, [n2xe "?x2 — (n — 1)2xe~(=D***| x € [0, 1]is uniformly convergent.

15) Let Y5>, u, (x) be the series of functions which is uniformly convergent. Then select the correct
option:
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1 1

@ i [ 60 < [ 1m0
1 1

&, [ 46 # [ hm f
1 1

@pm [ A= m A0

1 1
@lm [ 560 =[ 1m £

nx ___(lx e [0,1] . Then for XPf,(x), choose the INCORRECT

1+n2x2  1+(n-1)2x2 ’

16. Let f,(x) =

statement.

a) X3 fn (x)can be integrated term by term

b) i <f01fn(x)dx> = Jol (i fn(x)) dx

¢) 2L fo(x)is not uniformly convergent on [0, 1]

d) none of these

Answer for Self-Assessment

1. A 2. A 3. B 4. True 5. False
6. False 7. B 8. D 9. B 10. False
11. B 12. B 13. C 14. False 15. D
16. D

Keywords

Integration for sequence: Let a be monotonically increasing on [a, b], f, € R(a) on [a, b], n=1, 2,
3,...and {f,;} converges uniformly to f on [a, b]. Then f € R(a) on [a, b] and f:f da = Tllim fffnda.

Integration for series:If u, € R(a) on [a, b] for all n and if X5, u,, (x) converges uniformly to f (x)
on [a, b], then f € R(a) on [a, b] and f;f da = fo:lfabunda

Review Questions

1) Test for uniform convergence and term by term integration of the series

x
2m,0 <x<1.
n=1

2) Show that
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3) Show that the series for which f;, (x) = ﬁ can be integrated term by term on [0, 1], although it is
not uniformly convergent on [0, 1].

4)Show that the series
i [ nx (n—1x
L 1+n%x2 1+ (n—1)%x?

can be integrated term by term on [0, 1], although it is not uniformly convergent on [0, 1].

5) Show that the series for which f;, (x) = nx(1 —x)" can be integrated term by term on [0, 1].

Further Readings

L!.J Walter Rudin, Principles of Mathematical Analysis (3¢ edition), McGraw-Hill
International Publishers.

T. M. Apostol, Mathematical Analysis (2nd edition).
S.C. Malik, Mathematical Analysis.

S KMappa, Introduction to Real Analysis (8t edition).

Web Links
https:/ /nptel.ac.in/courses/111/106 /111106053 /
https:/ /nptel.ac.in/courses/111/101/111101134/

WWW|

https://doi.org/10.1007/978-1-4419-1296-1 11
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Unit 09: Uniform Convergence and Differentiation

Monika Arora, Lovely Professional University

Unit 09: Uniform Convergence and Differentiation

Objectives

Introduction

9.1 Uniform Convergence and Differentiation
Self-Assessment

Answer: Self-Assessment

Summary

Keywords

Objectives

After studying this unit, students will be able to:

¢ understand explicitly the concept of uniform convergence of sequence and series of functions
e discuss the uniform convergence and differentiation
¢ identify the concept of term-by-term differentiation of the series of functions

e demonstrate the sufficient condition for term-by-term differentiation.

Introduction

In the last two units, we have studied the concept of uniform convergence and continuity and
uniform convergence and integration of sequence and series of functions. We have studied that if
{f.} is a sequence of continuous functions of E such that f;, - f uniformly on E, then f is
continuous on E. Also we have discussed that uniform convergence of series is only a sufficient
condition but not a necessary condition for term-by-term integration. In this unit, we will discuss
uniform convergence and differentiation. We will study the sufficient condition for term-by-term
differentiation.

9.1 Uniform Convergence and Differentiation

Theorem 9.1.1: Let {f,;} be a sequence of real valued functions defined on [a, b] such that
(I) f,is differentiable on [a, b], n=1,2,3, ...
(I) The sequence {f, (d)} converges for some point d of [a, b]
() The sequence {f, } converges uniformly on [a, b].
Then the sequence {f, } converges uniformly to a differentiable function f and
lmfie)=f',a<x<b
b lim - [,00] = = lim £, (9], vx € [0, ]
Proof: Let €> 0 be given.

Then by convergence of {f,,(d)} and by uniform convergence of {f,;} on [a, b], there exists a positive
integer m such that for alln = m,p > m we have

@ = fp(@)] <5 ()

and

€
IfA(x)—fp’(x)|<m,anSb (2)

Applying the mean value theorem to the function f;, — f;, for any two points x and y of [a, b], we
have
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[fn(x) - fp(x)] - [fn(.V) - fp(}’)] =(x— Y)[fr{(() _fpl(()];
where { € (x,y).

Now forn = m,p 2 mand x,y € [a, b], we have

200 = () = fu ) + o] = Ix = ¥ £ () = £5(D)]

|2x(1:i]|a§ [using (2)]...(3)
€ 4
<5 (4)

Therefore, for all n,p = m and x,y € [a, b], we have
|fn(x) - fp(x)l = |fn(x) - fp(x) - fn(d) + fp(d) +fn(d) - f%;(d)l
<) = () = (@D + @] + [fa(d) — f,(D)]

<€+€—E
2 2

= {f,,} converges uniformly to some function f (say) on [a, b].
i.e.limf,(x) = f(x),Vx € [a, b]
n—oo
Further, fix a point x in [a, b] and define

Fn(y) — fn(y) - fn(x)'

F(y):%x, as<ys<by#+x ..(5)
Then,
f]ingn(Y) zéﬁfn(y})]:fl(x)
=f(x),n=123,.. .. (6)
Now for n = m,p = m, we have
fu ) — fu(x) _fp(y) _fp(x)l
y—x y—x
() = () — () + (%)
y—x
fo () = () = fu ) + /()
x=y

[P = B, =

€

< m [using (3)]

= {F,} converges uniformly on [a, b], y # x.

Since {f,,} converges uniformly to f, therefore from (5), we have

Ai_r,rolan(Y) = Tlim M

—00 X

) -G

D

=F() - (7)
= {E,(y)} converges uniformly to F(y) fora <y < b,y # x

Therefore,

lim F(y) =lim lim E,(y)
yox y-X n—0
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= lim lim F,(y)
n—0 y—x
= lim F o) = lim f;(x) [using (6)]
= lim M = lim f,;(x)
yox y—x n-oo

= £'() = lim £(),x € [a,b]

= dd_x | tim )] = ,{ijgg% [f, ()], x € [a, b].

Cor. (Term by Term Differentiation)

Let Y- un(x) be a series of real valued differentiable functions on [a, b] such that Y5 u,(d)
converges for some point d of [a, b] and Y5, u; (x) converges uniformly on [a, b]. Then the series
Yim=1 Uy (x) converges uniformly on [a, b] to a differentiable function f and

n
/@) = lim Y un(),a<x<b.

o d
L€ ax

Proof: Let

1

i un(x)) - z [+ ).
n=1

n=1

fa () = ur (X)) +up(x) + -+ up(x)

Then

fo () = uy(x) +up(x) + o+ up(x)

Therefore, by above theorem we have,

= f1() = lim £(x)

(o) n

d , )

B im0 = fm ) )
n=1 m=1

= i up (x)
n=1

-
n=1

Theorem 9.1.2: Let {f;,} be a sequence of real valued functions defined on [a, b] such that

(D) f, is differentiable on [a, b], n=1, 2, 3, ...

(IT) The sequence {f,,} converges to f on [a, b].

(IIT) The sequence {f, } converges uniformly on [a, b] to g(x).

(IV) Each f; is continuous on [a, b].

Then

gx)=f'(x),a<x<bh

i.e. lim f;(x) = f'(x),a < x < b.
n—oo

Proof: Since {f,} is a uniformly convergent sequence of continuous functions, therefore g is

continuous on [a, b].

Also {f,} converges uniformly to g on [a, x], where x € [a, b].

Therefore,
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iirgffg(t)dtz fg(t)dt (D)

Now, using fundamental theorem of calculus, we have

f f1(0dt = £, — fu(@)

Also,

lim f,(x) = f()
and

limfu (@) = f(a)

Therefore from (1), we have
X
fx)—f(a) = fg(t)dt Va<x<bh
a

= 16 = 9x)
ie.f'(x) = limf{Go)

Cor. (Term by term differentiation)
Let Yo, u,, (x) be a series of functions on [a, b] such that

I.  u,(x) is differentiable on [a, b], n=1, 2, 3, ...

II. The series Y- u, (x) converges to f on [a, b].
II.  The series X5 up(x) converges uniformly on [a, b] to g.
IV. Each uy, is continuous on [a, b].
Then

fl(x) =gx),a<x<bh

i.e.%(Z un(x)> = Zu;(x),a <x<b.

n=1 n=1

& The uniform convergence of {f,} is only a sufficient condition, but not necessary for the
validity of the result g(x) = f'(x).

Counter-Example: Let

fulx) = Zinzlog(l +n*x?),x €[0,1].
Then
fx) = ii@f"(x)

_ log(1 +n*x?)
nl—zga 2n?
i 4n3x?
i 4n(1 + n*x?2)

2nx?

= lim——
n-oo 4n3x?
=0

Thus f(x) = 0,x € [0,1].
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And
900 = lim f(x)
_ ( 1 ) 2n*x
s 2n2) 1 + n*x?
_ n%x
i 1+ n*x?
=0
Thus
flx) =g
i.e.f'(x) = limf,(x)
n—-oo
Now,
n?x
IfnC) =gl =155 il
Therefore,

M, = sup |f(x) — g(x)|
x€[0,1]

n?x
1+ n*x?

sup
x€[0,1]

1
[taking x = F]

=> M, »0asn - oin|0,1].

Thus by M,,-test {f, } does not converge uniformly to g on [0, 1].

Let the sequence of function {f, (x)} be given where,

T

x
1+ nx?

fa(x) =

Check whether rllmgo fn(x) = f'(x) or not.

Self-Assessment

cos2x | cos2x
22 32

1) The series: cosx +
a) True

b) False

+ -+- is uniformly convergent Vx € R

2) Consider the following statements:

(I) The series Y51 ( is uniformly convergent in (0, ).

)

x
n(n+1)

(II) The series Y-y ( ) is uniformly convergent in (0, k), k > 0. Then

a) only (I) is correct

b) only (II) is correct

¢) both (I) and (II) are correct
d) both (I) and (II) are incorrect

3) Consider the following statements:
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. 1,
(I) The series Y4 — Is convergent.

. 1 2 3 L
(II) The series o T G T 2 0 is uniformly convergent.

a) only (I) is correct

b) only (II) is correct

¢) both (I) and (II) are correct
d) both (I) and (II) are incorrect

4) If series Y- u, converges absolutely, then the series Y;—; u, cos nx is uniformly convergent
Vx € R

a) True
b) False

5) If series Y,-;u, converges absolutely, then the series };_; u, sin nx need not be uniformly
convergent Vx € R.

a) True
b) False

6) Consider the following statements:

2 2
(I) The series Y54 % is uniformly convergent for x € [0, 1] only.

2 2
(I1) The series Ym-q % is uniformly convergent Vx € R.

a) only (I) is correct

b) only (II) is correct

¢) both (I) and (II) are correct
d) both (I) and (II) are incorrect

7) Consider the following statements:

. in (x*+n?x) . .
(I) The series Y51 % is uniformly convergent for x € [0, 1].

. sin (x2+n?x) . .
(IT) The series Yp-y iz 8 uniformly convergent Vx € R.

a) only (I) is correct

b) only (II) is correct

¢) both (I) and (II) are correct
d) both (I) and (II) are incorrect

8)Consider the following statements:
(I) The series Y54 rlnw is uniformly convergent Vx € R.
(II) The series Yn-y m can be differentiated term by term.

a) only (I) is correct

b) only (II) is correct

¢) both (I) and (II) are correct
d) both (I) and (II) are incorrect
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9) Select the correct option for f,(x) = ﬁ ,x €[0,1].

a) the sequence {f,,} is uniformly convergent and converges to 1
b) the sequence {f,,} is only pointwise convergent
c) the sequence {f;,} is neither pointwise nor uniformly convergent

d) the sequence {f,} is uniformly convergent and converges to 0

10) Consider the following statements for Y5, u,(x) = Xy, m ,X ER

(I) The series is uniformly convergent for all p € R.
(II) The series is uniformly convergent for p > 1.

a) only (I) is correct

b) only (II) is correct

¢) both (I) and (II) are correct

d) both (I) and (II) are incorrect

11) Consider the following statements:

sin nx
n3

(I) The series Y51

is uniformly convergent for every x.

sinnx
n3

(I) The series Y54 can be differentiated term by term.
a) only (I) is correct

b) only (II) is correct

¢) both (I) and (II) are correct

d) both (I) and (II) are incorrect

12)Consider the following statements:

. cosnx . .
(I) The series Yo —— is uniformly convergent for every x.

(I) The series Yp-4 w;n = cannot be differentiated term by term.

a) only (I) is correct

b) only (II) is correct

¢) both (I) and (II) are correct
d) both (I) and (II) are incorrect

13) Consider the following statements:

sin nx
ns

(I) The series Y51 is uniformly convergent for every x.

cos nx
n7

(I) The series Yo is not uniformly convergent for every x.
a) only (I) is correct

b) only (II) is correct

c) both (I) and (II) are correct

d) both (I) and (II) are incorrect
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14) Consider the following statements:
(I) The series Y51 m is uniformly convergent for every x.
(IT) The series Yy rjﬁxz can be differentiated term by term.

a) only (I) is correct

b) only (II) is correct

¢) both (I) and (II) are correct
d) both (I) and (II) are incorrect

1

15) Consider the following statements for the series Yn-q U, (x) ==y oo

1
n2(1+nx2)2

(D) Xr=run(x) = = 2x X7,
(II) ¥y-1 up, is uniformly convergent for every x.

a) only (I) is correct

b) only (II) is correct

¢) both (I) and (II) are correct

d) both (I) and (II) are incorrect

16) The series Y-y m, p > 1 can be differentiated term by term if ¢ > 3p — 2

a) True

b) False

Answer: Self-Assessment

1 a 5 b 9 d 13 a
2 b 6 b 10 b 14 c
3 C 7 C 11 C 15 C
4 a 8 c 12 a 16 b
Summary

e Let {f,} be a sequence of real valued functions defined on [a, b] such that f, is differentiable on
[a, b], n=1,2,3, ..., the sequence {f;,(d)} converges for some point d of [a, b], and the sequence
{fa} converges uniformly on [a, b], then the sequence {f,} converges uniformly to a
differentiable function f and

lm 00 =f(Wa<x<b
e lim = [,00] = | lim £, (0] v € [a, ]

o Let X7 ; u,(x) be a series of real valued differentiable functions on [a, b] such that Y5> ; u,(d)
converges for some point d of [a, b] and Y.;_; up(x) converges uniformly on [a, b]. Then the

series Y51 U, (x) converges uniformly on [a, b] to a differentiable function f and

n
f'G) = lim Z W (x),a <x<b.
m=1
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i e%(Z un(x)) = z [;—xun(x)].
n=1

e Let {f,} be a sequence of real valued functions defined on [a, b] such that f;, is differentiable on
[a, b], n=1, 2, 3, ..., the sequence {f;;} converges to f on [a, b], the sequence {f,} converges
uniformly on [a, b] to g(x) and each f; is continuous on [a, b]. then

gx)=f'(x),a<x<bh
i.e.ii_r){)lof,{(x) =f'(x),a<x<bh.

o Let Y, u,(x) be a series of functions on [a, b] such that u, (x) is differentiable on [a, b], n=1, 2,
3, ..., the series Y7_; u, (x) converges to f on [a, b], the series }.;_; u; (x) converges uniformly
on [a, b] to g, each uy, is continuous on [a, b], then

f'(x)=gx),a<x<bh

i. e.%(z un(x)> = Zu;(x),a <x<bh.

n=1 n=1
e The uniform convergence of {f,} is only a sufficient condition, but not necessary for the
validity of the result g(x) = f'(x).
Keywords

Differentiation for sequence: Let {f,,} be a sequence of real valued functions defined on [a, b] such
that f, is differentiable on [a, b], n=1,2,3, ..., the sequence {f, (d)} converges for some point d of [a,
b], and the sequence {f, } converges uniformly on [a, b], then the sequence {f,} converges uniformly
to a differentiable function f and

ggofr{(X) =f'(x),asx<bh

Differentiation for series: Let Y, ; u,,(x) be a series of real valued differentiable functions on [a, b]
such that }7°_; u,(d) converges for some point d of [a, b] and Y5, uy (x) converges uniformly on [a,
b]. Then the series Y5, u, (x) converges uniformly on [a, b] to a differentiable function f and

%(i un(x>> = z [j—xun(x)].
n=1

1) Find for what values of p, the series

Review Questions

[oe]
>
nP + ndx?

n=1

is uniformly convergent for all real x. Also find the relation between p and g for which the given
series can be differentiated term by term.

2) Only the uniform convergence of the series of functions f; (x) + f,(x) + f3(x) + --- on [a, b] is not
sufficient to ensure validity of term-by-term differentiation of the series on [a, b]. Give an example
in support of this argument.

3) If the series of functions

i) + 00 + f3(0) + -

be convergent, then the uniform convergence of the series

1)+ ')+ f3'(x) + -

is only a sufficient but not a necessary condition for the validity of term-by-term differentiation of
the series

[0 + f(0) + f5(x) + -
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Show this with the help of the following example.
Let the series be

i) + (0 + f3(0) + -+, x €[0,1]

such that
sp(x) = f1(0) + f2(0) + f3(0) + -+ + fr(x)

_log (1 +n%x?)

= T,X € [0, 1]
4) Let

nx (n—1x
() = 1+n2x2 1+ (n— 1)2x2'x €[0,1].

Show thatatx =0,

d d

=D ) # ) fa).

5) Let s,,(x) be the sum function for the series

Z 1
n3 + n*x?

Verify that s'(x) is obtained by term-by-term differentiation.

Further Readings

L!'J Walter Rudin, Principles of Mathematical Analysis (314 edition), McGraw-Hill
International Publishers.
T. M. Apostol, Mathematical Analysis (2nd edition).
S.C. Malik, Mathematical Analysis.
S K Mappa, Introduction to Real Analysis (8th edition).

https:/ /nptel.ac.in/courses/111/106/111106053 /
https:/ /nptel.ac.in/courses/111/101/111101134/
https://doi.org/10.1007/978-1-4419-1296-1_11
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Unit 10: The Weierstrass Approximation Theorem and
Equicontinuous Families of Functions

CONTENTS

Objectives

Introduction

10.1 The Weierstrass Approximation Theorem
102 Equicontinuous Families of Functions
10.3 Supremum Norm of a Function
Summary

Keywords

Self Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives

After studying this unit, students will be able to:
e  describe Weierstrass approximation theorem
e understand equicontinuous families of functions
o define properties of equicontinuous families of functions
e  explain the supremum norm of a function

Introduction

This unit explains Weierstrass approximation theorem and equicontinuous families of functions.

10.1 The Weierstrass Approximation Theorem

Bernstein Polynomial: For every non-negative integer n and any function f:[0,1] = R, we define
Bernstein Polynomial as

n

B =) £ () o)

r=0

where

Prr(x) = C(n,)x" (1 = x)"".

Lemma 10.1.1: For every non-negative integer n and x € [0, 1],

©) @ =1
=0
@) pur) = nx.

(iii) r(r — Dpp(x) = n(n — 1«2
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(@)) (0 = 1)ppy(0) = nx(1 = ).

r=0

Proof: (i) Consider
n
> pw®
r=0

= Z Cn,rx"(1—x) "
=0
=[x+ @ —-x)]"
=1.

(ii) Consider

n

> e

r=0

= Z rC(n,r)x"(1 —x)""
r=0

= Z ncn—1,r—Dx"(1—x)""

r=1

{rCnr) =nCn 1,7 — 1)}

n
= nxz C(n -1,r— 1)xr—1(1 _ x)n—r
r=1

n
= nxz: Cn—1,r—1Dx"™1(1 —x)»1-0-D
r=1

=nx[x+ (1 —x)]*?
= nx.
(iii) Consider

n

> 1= Do)

=0
= Z r(r—1)CMn,rx"(1 —x)" "
r=0

n

n!
= Z T'(T - 1)mxr(1 - X)n_r
=0
B . nn—Dn-2)! nery
_Z (r—Z)!(n—r)!x(l_x)

n
=n(n - 1)x? Z Cn—2,r—2)x"2(1—x)""
r=2

n
=n(n — 1)x? Z Cln—2,1r—2)x""2(1—x)"2(-2

r=2

=nn - Dx?[x + (1 —x)]"?

=n(n— 1)x2

(iv) Consider
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n

Z (nx — r)zpnr )

r=0

n
= Z (n%x?% — 2nrx + 1)y, (%)
r=0

n

= Z (n?x% + (1 = 2nx)r +r(r — 1))pp (%)
=0

n

=) @+ ) A= 200p @) + ) Tl Dpe(®)
r=0 r=0

=0

=22 Y P @+ A=2m0) py @+ Y T = D)
=0 r=0 r=0

=n?x%2(1) + (1 - 2nx)nx + n(n — 1)x?
=+ of (i), (i)and (iii)
=n2x2 + nx — 2n%x? + n?x? — nx?
= nx — nx?
= nx(1 — x).
Theorem 10.1.2: Weierstrass Approximation Theorem

Statement: Let f(x) be a continuous function defined on [a, b]. Then there exists a sequence of
polynomials that converges uniformly to f on [a, b].

Proof: Without loss of generality, we may assume that [a, b]=[0, 1].
We shall prove that the sequence of Bernstein Polynomials {B,,} is the required sequence.
Since f is continuous on closed interval [0, 1], it is bounded on [0, 1].

Therefore, there exists 0 < M € R such that
V@N<—W€mﬂ

Since f is continuous on the closed interval [0, 1], therefore f is uniformly continuous on [0, 1], so
that for given €> 0, there exists § > 0 such that

€
f) —fOl <5
for every x,y € [0,1] for which |x —y| < 6.
Now for every n = 1,2,3, ... and every x € [0, 1], we have

If () = By (f, )]

fG) -

f(x)z Par(3) Z =) pur ()

pnr x)

IIM:

Z {re =1 ()} pur)
Z [FG) = £ ()| par)

r=0

3

Now we divide the set {0,1, 2,3, ...,n} as a union of two disjoint sets A and B, given by
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A={r: |x—£| <6}
and
B ={r: |x—£| 26}
Therefore,
) =Ba (£01 < ) ) = ()| par)
r=0
= r@-rE)m@+ > f@=f )|
TEA TEB
<> @G+ > (il |f ()] pare
TEA TEB
= -G+ Y @@+ |f ()| pw@
TEA TEB TEB
< %ZA Pur ) + %ZR Par () + %ZE Pur (@)

€
=§'1+MZ DPnr (%)

TEB

n
[Z Pnr(x) = 1]
=0
Now for r € B, we have
r
|x - —| >4
n

)

|nx—r|
n
= (nx —1)% = 6§%n?
2
nx—r
x=r"
6°n?

(nx —r)?
= pnr(x) < anr(x)

Therefore,
€ (nx —r)?
) =By (F0l S5+ MY g ()
TEB
n
e M ,
< 7 + WZ) (nx = 1)° Py (x)

S M
SE'Fan(l —x)

[ > =) = mx(1 - x)]
r=0

_E+M L
) n62x( %)

M

<S4
T2 4né

N

[ x(1-x) < %Vx €[0,1]
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Choosing sufficiently large m such that

M €S>
4nez S =

Then for every n = m and every x € [0, 1], we have
€ E
If () = By (f, %) <7*3
=€

Hence the sequence of Bernstein Polynomial {B,,} converges uniformly to f on [0, 1].

10.2 Equicontinuous Families of Functions

Definition. Let (X, d) be a metric space. A family of complex functions F defined on a set E in X is
said to be equicontinuous on E if for given €> 0, there exists § > 0 such that

lf() = fFl <€
whenever d(x,y) < §,x EE,y EEand f € F.

5/° Every member of an equicontinuous family is uniformly continuous.

@ Example 10.2.1: Let

Show that:

2

fa(x) = x €[0,1].

x2+ (1 —nx)?’

(i) the sequence {f,} is uniformly bounded on [0, 1].
(ii) no subsequence of {f, } can converge uniformly on [0, 1].

(iii) {f,} is not equicontinuous on [0, 1].

Solution: (i) We have
x4+ (1—nx)®>=2x?vx€[0,1]

x% + (1 — nx)?

=> —_—

o > 1vx € [0,1]
Therefore,
2
Il = m
< 1vx € [0,1].

Hence the sequence {f,} is uniformly bounded on [0, 1].

(ii) Let {f,, } be any subsequence of {f, }.
Then

xZ

——,x€10,1
x2+(1—nkx)2'x [0,1]

fnk(x) =

and

x2
fu () = r{l—z&xz + (1 — nyx)?
=0,x €[0,1].

Therefore, the sequence {f,, } converges pointwise to zero in [0, 1].
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1
Now, for x = — we have
k

Therefore, for €= %and x = ni € [0, 1], we have
k

fuu ()~ o] = 1201

=1>€.

Hence, no subsequence of {f,,} can converge uniformly on [0, 1].

(iii) Let
R N
TRy TR
Then
eyl =l
SRR AR P
B 1
T n(n+1)
and
1 1
1) = @)l = | (5) = i (55|
=|1—3]
B 2
_1
T2
Now, if we choose n such that
! <6
nn+1)

then we have

/() = f(N] >€.

Hence {f,} is not equicontinuous on [0, 1].

Theorem 10.2.2: Let K be a compact subset of a metric space (X,d) and {f,} be a uniformly
convergent sequence of continuous functions defined on K. Then {f,,} is equicontinuous on K.

Proof: Let €> 0 be given.
Since {f,} converges uniformly on K.

Therefore, there exists a positive integer N such that

[fo(x) = frn ()| < § vnm=N,x €K

=>|fn(x)—fN(x)|<§Vn>N,xEK (D)

Since each f,,,n € N is continuous on compact set K.
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Therefore, each f,,n € N is uniformly continuous on K.
= f, is uniformly continuous on K for 1 <n < N.

Therefore, there exists § > 0 such that
€
() — L] < 3 whenever d(x,y) < §,x,y €K - (2)

Now for n > N, we have

1) = O = 1/ (0) = fu () + fw () = fin () + fn (1) = £ O

S 1) = @I+ 1) = O+ 1) = ()

<E+E+E—E
3 3 3

[ by (1) and (2)]

i.e.|fu(x) — fn(y)| <€ whenever d(x,y) < 6,x,y €K - (3)
Combining (2) and (3), we get
(%) — fn(¥)| <€ whenever d(x,y) < 6,x,y EK,n €N
Thus, the sequence {f,,} is equicontinuous on K.

This completes the proof.

Theorem 10.2.3: (i) Show that every uniformly convergent sequence of bounded functions is
uniformly bounded.

(i) If {f,} and {g,} are sequences of bounded functions such that these sequences converge
uniformly on a set E, prove that {f, g,} converges uniformly on E.

Proof: Let {f,,} converges uniformly to f(x) on some set E.
Then for given €= 1 and all x € E, there exists a positive integer such that
IfnG) —f)<1Vn=t
Since functions of {f;, } are bounded, therefore there exists 0 < M € R such that
[fn(x)| < M, Vn € N.
Therefore, forn > tand x € E,
/GOl = [{/n () = FOI} + {f () = fe (O} + fe ()]
S0 = FOI+1f () — £+ Ife (0l
<1+1+M,
i.e. ()| <2+ M, Vn=>tx€E.
Let
M ={My, My, .., M;_1,2 + M} .
Then for any x € E,
)| <MVneN

= {f,} is uniformly bounded.

(ii) Since {f,} and {g,} are uniformly convergent sequences of bounded functions, therefore {f,}
and {g,} are uniformly bounded.

Therefore, there exists 0 < M, L € R such that
lf(x)| <M,vn€N,x€E
and

l[gn(x)| <L,¥yn€eN,x €E.
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Let

fn = funiformly on E
and

gn = g uniformly onE.

Therefore, there exists t;, t, € N such that

o) = F) < Wn=ty,x € B

2(L+1)
and
€
[gn(x) — f(x)| < SO vn = t,,x € E.
Let
t={ty, t;}.

Then forn > t,x € E, we have

€
[fn(x) = f(0)] < m

and

€
[gn(x) = f(O)| < m

Therefore, forn > tand x € E,
/() gn(x) — fF)g ()] = {fn () gn () — f()g ()} + /() g (x) — f () g ()}
= /() {gn () — g} + g {fn(x) — fC
< 1fa(1gn () = g + g fu(x) = f ()]

(S
M L
<Mmrotza+n
<E+E_E
2 2

Thus {f,,g,,} converges uniformly on E.

This completes the proof.

10.3 Supremum Norm of a Function

Definition: Let X be a metric space and C(X) be the set of all complex-valued, continuous and
bounded functions with domain X. Then supremum norm denoted by ||f]| of f € C(X) is defined as

£l = 1f Gl
5,’ [If]l < = as f is bounded.

E,* If X is compact, then boundedness is redundant, so that C(X) consists of all complex
— continuous functions on X.

Theorem 10.3.1: C(X) is a complete metric space.
or
If C(X) =, then C(X) is a complete metric space under supremum norm.

Proof: Firstly, we show that C(X) is a metric space with the distance between f, g € C(X) defined as
If = gll-

@Nf =gl =1f(x) =gl
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>0,vf,g € C((X).

@lf-gll=0
e f)-g)l =0
Sfx)—gx)=0vxeX
o fx)=gk)vxeX
o f=g.

@ If =gl =1f(x) — g
=lg(x) = f(0)I
=g =1l

(iv)Leth=f+g

Then
[RCOI = 1f () + g0l
SO+ 1gMl
<|Ifl+ gl vx € X
Therefore,

Al < A1+ Hlgll
Le |If +gll < IIfIl +1lgll-

Thus C(X) is a metric space.
Now we show that C(X) is complete.
Let {f;,} be a Cauchy sequence in C(X).
Then for given €> 0, there exists n, € N such that
i.e. |fu — fmll <EVR,M = n,.

Therefore, by Cauchy criterion for uniform convergence, there exists a function f with domain X to
which {f,} converges uniformly.

= f is continuous.

{-- if {f,} is a sequence of continuous functions defined on E such that f, — f uniformly on E, then f
is continuous on E. }

Also, f is bounded as there exists n € N such that f, is bounded and
[f(x) — fu(®)| <1,x €X.
Thus {f,,} converges uniformly to f and f € C(X).

Hence C(X) is a complete metric space.

Summary

e Bernstein Polynomial: For every non-negative integer n and any function f: [0,1] - R, we

define Bernstein Polynomial as

n

By (f,x) = Z f (%) Pnr (%),

r=0

where

Prr(x) = C(n,r)x™ (1 — )™
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e  For every non-negative integer n and x € [0, 1],

®) P =1
r=0
() TPnr (x) = nx.
(i) r(r — Dpp(x) = n(n — 1)x2.

(@) (0 = 1)ppy () = nx(1 = ).
r=0

o  Weierstrass Approximation Theorem: Let f(x) be a continuous function defined on [a, b].
Then there exists a sequence of polynomials that converges uniformly to f on [a, b].

e Equicontinuous Families of Functions: Let (X,d) be a metric space. A family of complex
functions F defined on a set E in X is said to be equicontinuous on E if for given €> 0,
there exists § > 0 such that

lf () —fnl <€
whenever d(x,y) < §,x €EE,y € Eand f €F.

o  Every member of an equicontinuous family is uniformly continuous.

e Let K be a compact subset of a metric space (X,d) and {f,} be a uniformly convergent
sequence of continuous functions defined on K. Then {f,,} is equicontinuous on K.

e  Every uniformly convergent sequence of bounded functions is uniformly bounded.

o If {f,} and {g,} are sequences of bounded functions such that these sequences converge
uniformly on a set E, then {f,, g, } converges uniformly on E.

e  Supremum Norm of a Function: Let X be a metric space and C(X) be the set of all complex-
valued, continuous and bounded functions with domain X. Then supremum norm
denoted by ||f|| of f € C(X) is defined as

A1 = 1fCl .
o ||f|l < ooas f is bounded.
e If X is compact, then boundedness is redundant, so that C(X) consists of all complex
continuous functions on X.

e If C(X) =, then C(X) is a complete metric space under supremum norm.

Keywords

Bernstein Polynomial: For every non-negative integer n and any function f:[0,1] —» R, we define
Bernstein Polynomial as

n

Baf) =) £ () o)

r=0
where
Prr(X) =C(n,r)x" (1 —x)™T.

Weierstrass Approximation Theorem: Let f(x) be a continuous function defined on [a, b]. Then
there exists a sequence of polynomials that converges uniformly to f on [a, b].

Equicontinuous Families of Functions: Let (X, d) be a metric space. A family of complex functions
F defined on a set E in X is said to be equicontinuous on E if for given €> 0, there exists § > 0 such
that

lf() = Fl <€
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whenever d(x,y) < §,x €E,y € Eand f € F.

Supremum Norm of a Function: Let X be a metric space and C(X) be the set of all complex-valued,
continuous and bounded functions with domain X. Then supremum norm denoted by ||f|| of f €
C(X) is defined as

I/l =1l

Self Assessment

1) Let ppr(x) = n¢c,x" (1 — x)™". For every non-negative integer n and any function f:[0,1] - R,
Bernstein Polynomial B, (f, x) is defined as:

A Yrwo f (%) Pnr ()

B. Yo f()pp(x)

C Xieo fpnr(®)

D. None of these

2) For every non-negative integer n and x € [0,1], X7'-y  pnr(x) is equal to
A0

B. 1

C. 2
D. None of these

3) For every non-negative integer n and x € [0,1], X7y 7Dn-(x) is equal to

A n(n—1x
B. nx

C. n(n—1)x?
D. n’(n—1x

4) For every non-negative integer n and x € [0,1], X*_, 7(r — 1)pn(x) is equal to

A n(n—1x
B. nx

C. n(n—1)x?
D. n’(n—1)x

5) For every non-negative integer n and x € [0,1], ¥*_,  (nx — r)%p,,(x) is equal to

A n(n—1x

B. nx
C. nx(1—x)
D. n’(n—1)x

6) Consider the following statements:
(I) If f is continuous on compact set then f is uniformly continuous on the same.

(IT) There exists a sequence of polynomials which converges uniformly to f on [a, b] where f(x)
is a function defined on [a, b]. Then

A. only (I) is correct
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B. only (II) is correct
C. both (I) and (I) are correct
D. both (I) and (II) are incorrect

7) Consider the following statements:

() Every member of an equicontinuous family is continuous.

(If)Every member of an equicontinuous family is uniformly continuous.
A. only (I) is correct

B. only (II) is correct

C. both (I) and (I) are correct
D. both (I) and (II) are incorrect

8) Let K be a closed and bounded set and f is continuous on K then it is not necessary that f is
uniformly continuous on K.

A. True
B. False

9) A sequence of functions {f,} defined on a set K is said to be uniformly bounded on K if there
exists a positive real number M such that |f,, (x)| <M Vx € K,n € N.

A. True
B. False

10) Consider the following statements:
() Uniformly convergent sequence of bounded functions is uniformly bounded.

(I)Every member of an equicontinuous family is uniformly continuous.

only (I) is correct

P

only
both
both

1I) is correct

I) and (II) are correct

SN = >

I) and (II) are incorrect

IDIf {s,} and {r,} are sequences of bounded functions such that these sequences converge
uniformly on a set K then {s,7;,} may or may not be uniformly convergent on K.

A. True
B. False

12) Let f be a complex-valued, continuous and bounded function with domain X. Then [|f]| is
given as:
D)f ()l
b)If ()l

o) If ()l
d) None of these

o0 >

13) Let f be a complex-valued, continuous and bounded function with domain X, then which of
the following is INCORRECT.

A a) fIfl|> o

138 LOVELY PROFESSIONAL UNIVERSITY



Unit 10: The Weierstrass Approximation Theorem and Equicontinuous Families of Functions

B. b |Ifll < oo

A IfIl = 1f (ol
D. d) ||f]| is finite

N

14) Consider the following statements for C(X) = {f: X = C, f is continuous and bounded}.
(I) C(X) is not a complete metric space under supremum norm.

(I) Let {f,,} be a Cauchy sequence in C(X) then f, = f uniformly and f € C(X).

A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct
D. both (I) and (II) are incorrect

15) Let f, g € C(X), C(X) = {f: X - C, f is continuous and bounded}, then ||f — g|| = 0.

A. True
B. False

16) Consider the following statements for C(X) = {f: X — C, f is continuous and bounded},
() Letf,g € C(X), then|If —gll=0=f=g.
(I) Let f,g € C(X), then f = g # |If — gll = 0.

A. only (I) is correct
B. only
C. both

D. both

II) is correct

I) and (II) are correct

I) and (II) are incorrect

17) consider the following statements for C(X) = {f: X — C, f is continuous and bounded}:
(D) Let £, g € C(X), then [If]l + llgll < lIf + gl
(I) Let f, g € C(X), then|If —gll = Ilg = fIl

A. only (I) is correct
B. only (II) is correct
C. both (I) and (II) are correct
D. both (I) and (II) are incorrect

Answers for Self Assessment

11.

16.

A 2 B 3 B 4 C 5 C
A 7 C 8 B 9 A 10. C
B 12. A 13. A 14. B 15. A
A 17. B
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Review Questions

1) Let K be a compact metric space, f, € ((K) Vn € N and {f,} be pointwise bounded and
equicontinuous on K then {f,} is uniformly bounded on K.

2) Let K be a compact metric space, f, € ((K) Vn €N and {f,} be pointwise bounded and
equicontinuous on K then {f,} contains a uniformly convergent subsequence.

L...] Further Readings

Walter Rudin, Principles of Mathematical Analysis (3td edition), McGraw-Hill
International Publishers.

T. M. Apostol, Mathematical Analysis (2nd edition).

S.C. Malik, Mathematical Analysis.

Shanti Narayan, Elements of Real Analysis

Web Links

https:/ /nptel.ac.in/courses/111/106/111106053 /
https:/ /nptel.ac.in/courses/111/101 /111101134 /

WWW

LOVELY PROFESSIONAL UNIVERSITY


https://nptel.ac.in/courses/111/106/111106053/
https://nptel.ac.in/courses/111/101/111101134/

Notes

Unit 11: Power Series and Uniform Convergence, the Exponential and Logarithinic Functions, the
Trigonometric Functions

Monika Arora, Lovely Professional University

Unit 11:Power series and uniform convergence, the exponential
and logarithmic functions, the trigonometric functions
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Answers for Self Assessment
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Objectives

After studying this unit, students will be able to:

e understand the concept of power series

e define the radius of convergence of power series

e  define uniform convergence and related theorems
e  describethe exponential and logarithmic functions

e  describe the trigonometric functions.

Introduction

[oe)

A series of the forma, + a,x + ax% + = Z a,x"where ay, a4, a,, ... are real numbers, is called a
n=0
power series.

The general form of the power series is

o5}

ao+ai(x —xg) +ay(x —xp) 2+ = z an(x — x)"

n=0
This is called a power series about the point x;.

To study the nature and properties of power series we will consider the power series about 0 i.e.

series of the form Z a,x™.

n=0

It is a series of functions z fnCO, fn(x) = apx™n=012,..,x €R

n=0

Although each function in the series Z fnis defined for all real x, it is not expected that the series

n=0
[oe]

Z fa(x) = Z a,x™will converge for all real x .
n=0

n=0
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For example

x?  x3
Di1+x+ o + ETl + --- converges for all real x
2) 1+ x + x? + -+ converges only for x € (-1, 1).

3)1+x+2!'x% + 3!x3 + - converges only for x = 0.

Iz/' The power series converges for all x € R, is called everywhere convergent power series.
- Some power series converge only for x = 0, they are called nowhere convergent power
series. Some power series converge for some real x and diverge for the other.

Theorem11.1.1

oo
If a power series Z a,x™ converges for x = x;then the series converges absolutely for all real x
n=0
satisfying x| < [x].

Proof: Since the series converges for x = x;.

[oe]

> Z a,x] is convergent.

n=0
= lim a,xf =0

n—oo
= {a,x{'} is convergent.
= {a,x]'} is bounded.

- there exists a positive real number k such that = |a,x{| <k vn € N.

Now,
xn
a,x™| = |la,x —|
lane™] = lanxf] |
xn
<k|—
X1

n
is a convergent series of positive real numbers.

X1
[oe]

x

For all x satisfying |x_| <1, E
1

n=0

Therefore, by comparison test Z |a,x™|is convergent if|x| < |x].

n=0
[ee)

z a,x™ is absolutely convergentif|x| < |x].
n=0

Theorem 11.1.2

[e3)

If a power series Z a,x"diverges for x = x; then the series diverges for all real x satisfying |x| > |x].
n=0
Proof: Let the power series be convergent for x = csuch that |c| > [x,].

Since the series converges for x = ¢ and |x;| < c.

= by the previous theorem, the series would be absolutely convergent for x = x;, a contradiction to
the given condition.

[e3)

g
|:‘/i If the power series Z a,x™ be neither nowhere convergent nor everywhere convergent then

n=0
there exists a positive real number R such that the series converges absolutely for all real x

satisfying |x| < R and diverges for all x satisfying | x |> R. R is called the radius of

[oe]
convergence of power series Z a,x™.
n=0
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2%  We define R = 0 for a nowhere convergent power series and R = oo for a series that is
everywhere convergent.

Theorem 11.1.3

o3}

Let Z a,x™ be a power series with the radius of convergence R(> 0)then the series is uniformly

n=0
convergent on[—s, slwhere 0 < s < R.
Proof: Letf, (x) = a,x™,n = 0.

Since R is the radius of convergence of the power series, the series is absolutely convergent for all
real x satisfying |x| < R.

o

Since 0 < s < R, the series Z a,x™ is absolutely convergent for all x satisfying|x| < s < R.

n=0
[oe)
Therefore, the series Z |a,s™|is convergent.  ...(1)
n=0
Now, | f,(x) I=| ayx™ I<| a, | s™for all real x satisfying | x |I< s - (2)

LetM, =la, | s"VvneN ..(3)

Then Z M,is a convergent series of positive real numbers. {by(1)}

n=0

and Vn € N,| f,(x) IS M, Vx € [-s,s] ..{(by (2),(3)}

(o]

~ by Weierstrass M — test, we have, the series Z fn(x)is uniformly convergent on[—s, s].
n=0

[e5)

i. e.the series Z a,x™is uniformly convergent on[—s, s].
n=0

(o]

Cor 1:Let R(> 0)be the radius of convergence ofz a,x™,then the series is uniformly convergent

n=0
on [—R+€, R—€], where € is an arbitrarily small positive number satisfying R—€> 0.
Proof: Since R—€> 0

Lets =R—€

Then0 <s <R

= the power series is uniformly convergent on [—s, s] i.e., [-R+€,R—€].
[ee]

Cor 2. Let R(> 0)be the radius of convergence of the power series a,x™. If[a, b] be any closed
n=0

o)

interval contained in (—R, R)then the series Z a,x™ is uniformly convergent on[a, b].

n=0
Proof: Let us choose positive € such that R—€> 0 and —R < —R+€<a < b < R—€<R
Let R—€=s
Then 0 <s <R
and—-R<-s<a<b<s<R

Since the power series is uniformly convergent on [-s, s] and [a, b] © [—s, 5], therefore the power
series is uniformly convergent on [a, b].
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11.1 The radius of Convergence of the Power Series

The radius of convergence (RoC) of the power series is given by

1

— 1
lim suplay,|»

n—-oo

1

An+1

or
lim

n—oo

Aan

Example: Find of the radius of convergence of the following power series:

22x%  33x3
D x+ 20 + 3
Solution: Let
22x?
x + o

2
2)x+2—2+

3
33
Solution: Let

+ .-

x? x3 = 1
§ n — —
X+ﬁ+§+"' anx,ao—O,an—n

Now,

3D 1+x+21x2+31x3+ -

Solution: Let

+

~ lim

33x3 -
3' +... —

n

n
Z a,x",ay=0,a, = FVn €N.

n=0

An+1
an

(n+ 1!
T

n!

= lim

n—-oo n—oo

nn
(n+ 1D*(n+ 1n!
(n+ Dn'nn

)
(1+3)

n—-oo

lim
n—oo

lim
n—oo

n
n=0

1
lim |a,|» =0
n—oo

= RoC = o0

14+x+21x24+31x3 4+ ) azx™a, =n!
n n

1.3 .
X +ﬁx2 +—x3 4

Solution: We have

2

144

n=0

a
= lim "“| = lim(n+1)
n-o | a, n—-oo
= 0
~RoC=0
135 C135...2n—1)
= X
258 258...3n— 1)
n=
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1.35...(2n—1)
Letay, =0,a, =

258...3n—-1)
I et 2n+1
= lim = lim

noowo | a, n-o 3n + 2

2

3

RoC ==
5) Z Snyn
n=0

Solution: Let
Z 5nx™ = Z apx™ a, = 5"
n=0 n=0
1
= lim |ay|» =5

n—-oo

~ RoC = !

oo oL = 5

6) Z ax", a, =

Solution: We have

{ 4™if n is multiple of 4

L .
4—nlf1’l is not a multiple of 4

4if n is multiple of 4

1
lim |a,|n =141
n—>°°| nl ” if n is not a multiple of 4

1
= lim supla,|r = 4

n—-oo

'RC—1
~ Ro =3

7) szn

Solution: Let

ool
£ = ok
Xxm _ Z a,x", a, = { lifn = 2
= 0 otherwise

lifn = 2k

1
= lim |a,|» = { )
n—oo 0 otherwise

1
= lim supla,|» =1

n—oo
~RoC=1
8) Z Snyckn
n=0
Solution: Let
Z gnykn — Z anxkn
n=0 n=0

1 1
= lim (a,)k = lim (5™)kn
n—-oo n—-oo
= lim 5%
n—-oo

=5l/k
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A ROC =

hol =

o

Example 9) If RoC of the power series Z a,x"is R then find RoC of the following:

n=0
D Z aZx™
) Z ap,x*"

Solution: (1) Since RoC of the power series Z a,xmis R

n=0

RERE

~ lim a

n—-oo

|-

Now let

b, = a?

1 1
~ lim b =lim (aZ)n
n—-oo n—-oo
= lim (a2/™)?
n—oo

)

~ RoC = R?

N =

1 1
(2) lim a3 = lim a;;]
1
1\2
- (%)
_ 1
VR
~ RoC =+R.

Find the radius of convergence of the power series:

T

1 n
(—) if nis odd

Z apx™, an = 31 n

(E) if n even

11.2 The Exponential Function

. x , x? x™
The power series 1 + =4 2+ -+ —+ - (D)
is everywhere convergent for real x.
{We proceed now to examine in detail the function represented by this series.}

The function represented by the power series (1) is called the Exponential function, denoted,

provisionally, by E (x).
Thus,
B x  x? x"
E(x)_1+ﬂ+i+m+ﬁ+m - (2)
~E(0)=1 and
11 1
E(l)_1+ﬁ+§+m+ﬁ+m - (3)
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The series on the right-hand side of (3) converges to a number that lies between 2 and 3.
This number is denoted by e and is the same number as represented by
1 n
lim (1 + —)
n—oco n
ThusE(1) =e
The function E(x), defined by (2), is continuous and differentiable any number of times, for every x.

By differentiation, we get

E'(x) = E(x)
E"=E(x)
E™"(x) = E(x)

Further, we have
E(x1 + x2) = E(x1)E(x2)
This formula is called the addition formula for the exponential function.
It gives further
E(xy + x5 + x3) = E(x)E (%) E (x3)
and repetition of the process gives, for any positive integer q,
E(x1 +x, 4+ xq) = E(x)E(xy) ... E(xq) . (4)
Ifx; =x; =+ =xq = x,we get
E(gx) ={E()}?T  ..(5)
Hence, for x = 1,E(q) = {E(1)}9 = e9, for any positive integer q.
But since E(0) = 1, therefore, the above relation holds for g = 0 also.

Hence E(q) = e? holds for all integers greater than equal to zero.

Again, replacing each x by s in (5), we get

(o) 2] pao

or
E (2_)) = {E(p)}1/9 = eP/a
 E(p) = e?
Hence E(m) = e™, for all rational numbers m > 0. ..(6)

Now by addition formula, we have
EMXE(—x) =E(x—x)
=E(0)
=1
=>EMXx)+#0 Vx
Also,

1
)

= E(—p) = e7P,if p is positive and rational.
Thus relation (6) holds for all rational m.

Now we have x¥ = sup x?, where the supremum is taken over all rational p such that p < y, for any
real y and x > 1.
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If we thus define, for any real x,e* = supeP (p > x,p rational), the continuity and monotonicity
properties of E, together with (6) show that E(x) = e* for all real x.

The notation exp (x) is often used in place of e¥, especially when x is a complicated expression.
Properties of the exponential function:

e e%*iscontinuous and differentiable for all x.

o () =e

e  e*is astrictly increasing function of x and e* > 0

o ¥tV =eXeY

e e¥->+4oasx > +oande* > 0asx - —oo

. lim x™e™* = 0 for every n.
X—+00

11.3 Logarithmic Function with base e

Since the exponential function E is strictly increasing on the set R of real numbers i.e., E: R - R* is
1-1 onto, it has inverse function L or log, which is also strictly increasing and whose domain of
definition is E (R), that is, the set of all positive numbers.

Thus L is defined by

E(LO))=y.(y>0)

LE®)=x,x€eR) ..(7)
Equivalently, for any real x,
Ex)=y=L(y)=x
Or
e*=y=log,y=x ..(8)
Thus, the logarithmic function L(or log,) is defined for positive values only.

Now we have
1 1
E(—x =—=>L(—)=—x=—L
(=x) y 5 )

And
E(0)=1=L(1)=0=log,1
E()=e=>Le)=1=log.e ..(9)
Further, since E(x) - +® as x > +o
and E(x) > 0asx » —
Therefore, L(x) - +® as x > +o
and L(x) » —w asx - 0.
Writing u = E(xq),v = E(x,)
or L(u) = x4, L(v) = x, in the relation
E(x; +x2) = E()E(x2)
we get
E(x; + x3) = uv
= L(uv) =x; +x,
=Lw)+Lw)(u>0,v>0)
This shows that L has the familiar property which makes logarithms useful tools for computation.

Differentiating (7), we get
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L(E().E(x) =1

Writing E (x) = y, we get

L'(.y=1
SU) =
=y
Yd
=[S Lan
1

The relation (10) is taken as the starting point of the theory of the logarithmic and the exponential
function.

Logarithmic functions with any base:
a* =y <log,y = x.

Since y is always positive, therefore the logarithmic function, log,, is defined for positive values
only of the variable.

Evidently, we have

1
loga; =-—x=—log,y

Also,
log,1=0,
log,a =1,
logg x +logg y = loga (xy),

X
log, x —log, y = log, (;),

log, x¥ = ylog, x,
logy x.log, b = log, x,

log, a.log, b = 1.

11.4 The Trigonometric Functions

Let us define

C(x) =z [E(ix) + E(—ix)]

[~ NI

S(x) = =[E(ix) — E(—ix)]

N

i
Properties of the functions C(x), S(x):

e ((x)and S(x) coincide with the functions cos x and sin x

e ((x)and S(x) are real for real x.

e E(ix) = C(x) + iS(x). Thus C(x) and S(x) are the real and imaginary parts, respectively of

E (ix), if x is real.

e ('(x)=-S(x)andS'(x) =C(x)

e S(—x)=-S()and C(—x) = C(x)

o C(x +2x3) = C(x)C(x2) — S(x1)S(x2)

o C(xp—x2) = CO)C(xp) + S(x1)S(xz)

o S(x+x3) =S5(x)C(xz) + C(xq)S(x2)
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S — x2) = S(x)C(x2) — C(x1)S(x2)
Sl <1,IC)] <1

C(2x) = C?(x) — S?(x)

S(2x) = 25(x)C(x)

Summary

A series of the form

o)

ap+ agx + azx? + - = Z a,x"where a,, a;, a,, ... are real numbers, is called a
n=0
Power series.

The general form of the power series is

o3}

Ao+ a;(x = xp) + az(x —x0) 2 + - = Z an (x — xo)"

n=0

This is called a power series about the point x,.

The power series converges for all x € R, is called everywhere convergent power series.
Some power series converge only for x = 0, they are called nowhere convergent power

series. Some power series converge for some real x and diverge for the other.
If a power series . a,x™ converges for x = x; then the series converges absolutely for all
real x.

If a power series Yo a,x"diverges for x = x; then the series diverges for all real x

satisfying [x| > [x|

If the power series Y a,x™ be neither nowhere convergent nor everywhere convergent
then there exists a positive real number R such that the series converges absolutely for all

real xsatisfying |x| < R and diverges for all x satisfying | x |> R. R is called the radius of

(o]
convergence of power series z apx™.
n=0
We define R = 0 for a nowhere convergent power series and R = oo for a series that is
everywhere convergent.
Let Y0 a,x™ be a power series with the radius of convergence R(> 0)then the series is
uniformlyconvergent on[—s, sJwhere 0 < s < R.

The radius of convergence (RoC) of the power series is given by

1 1
. E or . An+1
llrrrllglplanln lim ==
2 n
Thepowerseries1+£+x—+---+x—+~- .. (1)
1 2 n!

is everywhere convergent for real x.The function represented by the power series (1) is

called the Exponential function, denoted, provisionally, by E (x).

Thus,
x  x? x"
E(x)=1+ﬂ+i+m+ﬁ+m - (2)
~E(0)=1 and
1 1 1
E(1)=1+ﬁ+§+m+ﬁ+m - (3)
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The series on the right-hand side of (3) converges to a number that lies between 2 and 3.
This number is denoted by e. Thus E(1) =e. The function E(x), defined by (2), is

continuous and differentiable any number of times, for every x.

e Since the exponential function E is strictly increasing on the set R of real numbers
i.e.,E:R - R" is 1-1 onto, it has inverse function L or log, which is also strictly increasing

and whose domain of definition is E(R), that is, the set of all positive numbers.Thus L is

defined by

E(L®) =y >0)
Or
L(E(x)) =x,(x €R)
e  Logarithmic functions with any base:

a*=y=log,y =x.

Since y is always positive, therefore the logarithmic function, log,, is defined for positive

values only of the variable.

e  The Trigonometric Functions

Let us define

C(x) =z [E(ix) + E(—ix)]

[~ NI

S(x) = = [E(ix) — E(—ix)]

N

i

C(x) and S(x) coincide with the functions cos x and sin x

Keywords
o
Power series: A series of the formag + a;x + ax? + -+ = Z a,x"where ay, a4, a,, ...
n=0
are real numbers, is called a power series.
oo
Power series about xy: aq + a,(x — %) + a;(x —x¢) 2 + -+ = Z an(x — xo)™

n=0
The radius of convergence (RoC) of the power series},,—, a,x™
1 1

T or

i n  lim
lim sup|a,[= lim
n—oo

An+1
an

Self Assessment

1) If ¥ a,, is convergent then

lim a, must exist and can be equal to any real positive real number.

n—co

lim a, must exist and can be equal to any real number.
n—-oo

lim a,, must exist and is equal to zero.
n-oo

SN = »

lim a, need not exists.
n—-oo
2) Consider the following statements:

(I) Every convergent sequence is bounded.

(II) Every bounded sequence is convergent.
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only (I) is correct

only (II) is correct

both (I) and (II) are correct
both (I) and (II) are incorrect

90w p

3) Consider the following statements:
(I) If a power series is everywhere convergent then its radius of convergence is one.
(I)If a power series is nowhere convergent then its radius of convergence is zero.
A. only (I) is correct

. only (II) is correct

B
C. both (I) and (I) are correct
D. both (I) and (II) are incorrect

4) Consider the following statements:

() If a power series Y a,x™ converges for x = x; then the series converges absolutely for all
real x satisfying |x| < [xq].

(II) If a power series Ym-oanx™ diverges for x = x; then the series diverges for all real x
satisfying |x| > [x4].

A. only (I) is correct

B. only (II) is correct

C. both (I) and (I) are correct
D. both (I) and (II) are incorrect

5) Ym—o x™ converges only for x € (—1,1).

A. True
B. False

6) Yo n! x™ is everywhere convergent power series.

A. True
B. False

7) Yo );—T converges only for x = 0.
A. True

B. False

. . 3" .
(o] n .
8) Radius of convergence of the power series Y., X s

A. 3/5

B. 5/3

C. o0

D. w

9) Radius of convergence of the power series Y., nf:n X2 is:
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A.1/\2

B. V2

C.2

D. %

10) Radius of convergence of the power series Y- 4n1nn m s

n = »
= N NIR

D. none of these

11) Radius of convergence of the power series Yo, 2 "x" is:

A N2

B. 1/82

C. o

D. none of these

12) Radius of convergence of the power series Y, 7"x3" is:

V7
L
¥7

(0]

O 0w >

. None of these

13) (log, x)(log, b) = log, x

A. True
B. False

14) (log, a)(logg b) = 1

A. True
B. False

15)e* =y =>log.x =y

A. True
B. False

2 3 n
1) fE(X) =1+ % + Z—I + % + -t % + --- then E(x) is continuous and only twice differentiable.

A. True
B. False

17) Consider the following statements:
(I)e* > wasx > o
(IT) e¥ > —wasx —» —o

A. only (I) is correct

B. only (II) is correct
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C. both (I) and (I) are correct
D. both (I) and (II) are incorrect

Answers for Self Assessment

1 C 2 A 3 B 4 C 5 A
6 B 7 B 8 B 9 A 10. D
11. A 12. B 13. A 14. A 15. B
16. B 17. A

Review Questions

1) Find the radius of convergence of the power series:

n
n

6—nx.

2) Find the radius of convergence of the power series:

2n
e
nc+n

3) Find the radius of convergence of the power series:

3

4) Find the radius of convergence of the power series:

Z xP,pis prime.

5) Find the radius of convergence of the power series:

anog nx™.

6) Find the radius of convergence of the power series:

em’
2
n

L!.J Further Readings
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Objectives

After studying this unit, students will be able to:

e  describe space of linear transformation

e  define differentiation in R™

e understand partial derivatives and directional derivatives
e define the concept of contraction principle

e demonstrate fixed point theorem

Introduction

We begin this unit with a discussion on linear transformation and its particular case that is a linear
operator.

Linear transformation: Let X and Y be two vector spaces over the same field F and A: X — Y. Then
A is said to be a linear transformation if

() A(xy + x5) = Axq + Axy, Yy, x5 €EX
(ii)A(cx) = cAxVx € X,c € F.

Linear Operator: A linear transformation A: X — Xis called linear operator on X.

@ A linear operator A on a finite-dimensional vector space X is 1-1, if, and only if it is onto.

E] If L(X,Y) = {AlA: X - Y is alinear transformation}thenL(X,Y) is also a vector space.

In particular, L(X) = {A]A: X — X is a linear operator on X} is a vector space.

12.1 Space of Linear Transformation on R"toR™

Norm of a Linear transformation:

Let A € L(R", R™)
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i.e. A is a linear transformation from R™ to R™.
Then norm of 4, denoted by||A|| is defined as
lAll = sup | Ax |

lx|s 1
x€RM

Theorem12.1.1: Let 4, B € L(R",R™).

Then

@ 1Ax 1< lAll 1 x | vx € R®

GD1Ax IS A1 x|Vx ER™ = |JA]l < A

DAl < e

(iv) A is a uniformly continuous mapping from R" toR™
WllA + Bl < llAll + |IBII

W)HlcAll <l c I lAll,c eR

Proof: (i) If x = 0 then | Ax |= 0 = [|A|| | x |.

So the result holds.

Now letx # 0
Then |i| =1
Ix|

= by definition of ||4||, we have

JEN RO

1
= |—Ax| < |IA]l
x|

1
= —|Ax| < ||Al|
| x|

= [Ax| < [|All 1 x |
(ii) Wehave | Ax [< A | x | Vx € R"
=] Ax |I< A, Vx € R®with [ x |1

= supl|Ax| <4
Ixl=1

= Al < A

(iii) Let {eq, e, ..., €} be the standard basis of R".
Letx = (xq,x3,...,x,) € R"such that | x I< 1
Then x = x,e; + x5, + -+ xzep, and | x; [S 1

~ Ax |=| A(xieq + xpe5 + -+ xpe) |

=| x14eq + x,4ey + -+ x4e, |
n

<D 1wl A
i=1

n
sZ|Aei|
i=1

n
= sup |Ax| SZ | Ag; | < o0
i=1

Ixls1

= [14]| < o0

(iv) Let €> 0 be given and let x,y € R"
Then | Ax — Ay |1=| A(x —y) |
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<lAllTx =yl {~AxI<|IAll | x | by part(1) }
€

<€ whenever | x -y I< ————

YIS Tar+1

€
llall+1

Thus we get, for given €> 0, there exists § =
S.

> 0 such that | Ax — Ay |[<€ whenever | x —y I<

= A:R"™ - R™ is a uniformly continuous mapping.
(V)1 (A+B)x |=| Ax + Bx |
<|Ax | +| Bx |
<Al Tx 1 +IBIl T x |
= sup | (A+B)x | < |lAll +BI|

Ixl=1
= [lA+ Bl < llAll + [I1BI|
(vi) | (cA)x |=I c(Ax) |
=lc |l Ax |
<lcllAlllx]
= sup | (cA)x | <lcl|All

Ixl<1
= |IcAll <l c | Al
Cor:IfA € L(R",R™), B € L(R™, R¥) then ||BA|| < ||B||||A]l.
Proof:| (BA)x |=| B(4x) |
<|IBIl'I Ax |
< IIBINAII T x|
= sup | (BA)x I< ||BII|IAll

xls1
= [IBAIl < IBIIlIAII.
This completes the proof.
Theorem 12.1.2: Prove that L(R"™, R™) is a metric space with metric d defined as
d(A,B) = ||A — B|| VA, B € L(R", R™).
Proof: We have
d(A,B) = ||A — B|| VA, B € L(R", R™)
(i) From the definition, we have
d(A,B) = 0 VA, B € L(R", R™)
(i) Let A, B € L(R™,R™) then d(4,B) =0
< lA-Bll=0
< [|[A-B|l | x |= 0vx € R"
| (A—-B)x |=0vx €ER"
{“(A=B)xI<|[A=-Blllx| }
< (A-B)x=0Vx€eR"
< A-B=0
< A=B
(iii) Let 4, B € L(R"™,R™)
Then
d(A,B) =|lA-BIl
=sup | (A—B)x |

Ix|=1

LOVELY PROFESSIONAL UNIVERSITY

157

Notes



Notes

158

Real Analysis 1
=sup | (B—A)x |
Ixls1
=d(B,A)

(iv) Let 4,B,C € L(R™, R™)
Then
d(4,0) = A=l
=l4-B)+ B -0l
<llA-Bll+IB-Cll
=d(4,B)+d(B,(C)
i.e.d(4,C) <d(4,B) +d(B,C)
Hence L(R", R™) is a metric space.
This completes the proof.

Theorem 12.1.3: A linear operatorT on a finite-dimensional vector space X is one to one if and only
if the range of T is all of X.

Proof: Let B = {x4, x5, ..., X, } be a basis of X.

Let R(T) be the range of T.

First of all, we will show that the set Q = {Tx;,Tx, ..., Tx,} spans R(T).
Lety € R(T)

= y = Tx for some x € X.

Since B spans X, there exist scalars ¢, ¢y, ..., ¢, such that
X = C1X1 + Cxp + -+ CpXp.

Now y =Tx
=T{c1xy + cx3 + -+ ¢}
=c1Txy + cTxy + -+ ¢, Tx,
Thus every element of R(T) is a linear combination of elements of Q.
= Set Q spans R(T).
Now R(T) = X if and only if Q is independent.
We have to prove that this happens if and only if T is 1-1.
Let Q be independent and let x be any member of X.

Since B is a basis of X.
n

X = Z c;x; for some scalarsc;, i = 1,2, ...,n, then
i=1

Tx=0
n
=>T (Z cl-xi) =
i=1
n
> Z ¢Tx; =0
i=1
=2>c¢ =c,==c¢,=0 < Qisindependent
n
>x = Z cix; =0
i=1

ThusTx=0=>x=0 ..(1)
Now,Tx =Ty
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=>Tx—-Ty=0
=>Tx—-y)=0
=x—y=0{by (1)}

>2x=y

=>Tis1-1

Conversely, let T be 1-1. Then

ar(Stan) o

i=1
n

:Zq—xi =0asTis1—-1
i=1

= ¢ =cy, = =c¢, = 0,as B is independent.

n

ZciTxi=0:c1=cz=---=cn=0.

i=1
Hence Q is independent.
This completes the proof.

Open Ball: Let (X,d) be a metric space, the open ball of radius r > 0 centered at a point a in X,
usually denoted by B.(a)or B(a;r) and is defined as

B(a;r) ={x € X:d(x,a) <r}.

Open Set:A subset E of a metric space (X,d) is open if Vx € E, there exists an open ball B(x;r) such
that B(x;r) € E.

Convex Set:A set E € R" is said to be convex if x € E,y € E = tx + (1 —t)y € E, vVt € [0,1].

The set of points (tx + (1 —t)y:t € [0,1]} is called the line segment joining the points
X, .

E] Set E is a convex set if the line segment between two points in E lies in E.

Theorem 12.1.4:Prove that open balls in R" are convex.
Proof: LetB(a; r) be the open ball and let x,y € B(a; r)then
[[x —all<rand|ly—all<r ..(0)
Consider
[[2x + (1 =Dy —all,A €[0,1].
= |lAx +y =y —al
=||Ax+y—2Ay—a+da—A1a|
=x-a)+ - -1y -all
=Ax-a)+ A -Dy -a)l
S =)l + 1A =D - a)ll
SIAHIG=a)ll+1 A =D Iy —all
=& -all+ A -l - all
<Ar+@A-Mr {by (1)}

=T
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Thus, [[Ax + (1 - Dy —all <r

= x+ (1 —-Ay€B(a;r)

= open ball B(a; r) is convex.

This completes the proof.

Theorem 12.1.5: Let Q be the set of all invertible linear operators on R™.
Then

(Dif A € Q,B € L(RMand||B — A||[]A~1]| < 1 then B € Q.

(ii)Q is an open subset of L(R™).

(iii)Mapping ¢: Q — Q defined by $p(A) = A~! VA € Q is continuous.
Proof: (i) We have ||B — A||||A7Y]| < 1.

1
Soifazmand[?: |B—=All .0

1
then B'E <1
>pf<a
sa—-£>0 - (2)
Now to prove B € (1 i.e, B is invertible, it is sufficient to show that B is 1-1.
For this, let Bx = 0,x € R™. Then
alx|l=al (A A)x |
=a| A1 (Ax) |
<allA7Hl | Ax |

= lA7M | Ax |
|42

=| Ax |

=|(A—B)x + Bx |

=|(A—-B)x | +| Bx |

<NA-B)ll x|+l Bx|
salx|<f x|+ Bx|
Salx|—plxI<IBx|

s[a—BllxI<IBx| ..(3)

Sla—-plIxI<0
2xI€0 va—->0
=>|lx =0
>x=0

ThusBx =0=>x=0

=>Bisl1-1.

=>B e

(ii)LetA € Q

1
Consider an open ball S ( A, m)

1
Claim: S ( A, —) cO.
1A=

Let
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1
BES ( A, —)
T4

1
=>d(4,B) < ——
(AB) <ip=

1
= ||B-All < ——
lA=H]

> IB-AllllA7 < 1
=>BeQ ..{bypart(i)}

Thus for all A € Q, there exists an open ballS ( A ) such that § ( ) c Q.

1
AT A
= (s an open subset of L(R™)

(iii) Let 4,B € Q
Then taking x = B~!y in
(e —B) | x I<| Bx | Vx € R™, we get
(a=B) 1B ylI<lyl
S|IB Yyl (@a—p) 'yl Vy ER"

s> sup | B lyl< (a—p)7?
lyls1

B <(@-pHT" (4D
Now, since ¢(4) = A~%, therefore
lp(B) —pDIl =1I1B~ = A7
= IB~1AA"" — B1BA"Y|
< IB7*IllA = BIl|IA~H|

1
< (a—ﬁ)‘lﬁ.;
__B
a(a —pB)
Thus||¢p(B) —d(A)|l > 0asp -0
i.e.|l[¢p(B) — (Al » 0as||[B—A|ll > 0VABEQ

-0asf -0

Hencemapping ¢: Q - Q defined by ¢p(A) = A~! VA € Q is continuous.

This completes the proof.

12.2 Differentiation in R"

Let E be an open subset of R™ and let f: E - R" be a function. If for x € E, there exists a linear
transformation A: R™ —» R™ such that

. 1 flx+h)—f(x)—Ah|
lim =
h—0 | h|

0,

Then we say f is differentiable at x and derivative of f at x is A.
ie.f'(x) =4

Let a function f maps (a,b) € R intoR™ . Then f’(x) is defined to be a vector y € R™(if there is one)
for which

hm{w_y} —0

h—0 h

This can be written as

fGx+h) = f(x) =hy +7r(h)
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r(h)
whereT —-0ash—-0
Hence every y € R™ induces a linear transformation of R intoR™ by associating to each h € R the
vector hy € R™.
This identification of R™ with L(R, R™) allows us to regard f'(x) as a member of L(R, R™).
~ f'(x): R - R™ is a linear transformation and

y | fx+h)—fG) = f'()h|
m =0
h—0 | h|

= flx+h) = fC) = f'(Oh+rh)

Q)

r
where the remainder r(h)staisfies }Lirr(l) = 0.

E] If f is differentiable at every x € E then f is said to be differentiable in E.

Theorem 12.2.1: Let E € R™ be an open set and f: E — R™. If for x € E, there exists a linear
transformation 4; and A, from R™ to R™ such that

ol fx+h)—f(x)—Ah|
lim =0

h-0 | h |

and
I fx+h)—f(x)—Ash |
lim =0
h—0 | h|

thenA1 = Az.

Proof: We have
ol fe+h)—f(x)—Ah | ol fe+h)—f(x) —Ayh |
lim =0, lim =

h—0 | hl h—0 | hl

LetB = A, — A,
Then | Bh |=| (4, — Ay)R |

=|Ath—Ayh |
=|Ath—flx+h)+fx)+flx+h)—f(x)—A4h |
SIBhISI f(x +h) — f(xX)—Ah | +] f(x + h) — f(x) — Ak |
| Bh | < |f(x+h)—f(x)—A1h|+|f(x+h)—f(x)—A2h|
[h1 — [ hl |kl

| Bh |
:m—>0a5h—>0 {by(1)}

0 ..()

Now let h # 0 be a fixed number and t be any real number then

| B(th) | | tBhI|
Ith1  Ith]
_1tllBh|
S ltllhl
_|IBhI
T Ihl
| BR| | B(th) |
le It(hl) - 0ast—>0
Thus

Bh=0VheR"
= (4, —A))h=0VheR"
=>4, —A4,=0
=>4, =4,

LOVELY PROFESSIONAL UNIVERSITY



Unit 12: Functions of Several Variables

This completes the proof.
Theorem 12.2.2: (Chain Rule)

Let E be an open subset of R®, f: E - R™, f is a differentiable function at x, € E and g: G — R* be
differentiable at f (x,), where G is an open subset of R™ containing f (E). Then the function F: E —
R¥ defined by F(x) = g( f (x)) is differentiable at x, and F'(x,) = g'( f (xo)) f'(x0).

Proof: Let f(xo) = yo, f'(x0) = 4,9'(¥o) = B.

Then
o+ h) — F(xg) = A + uhwherelim ! _ o (1)
h>0 | h |
and
9o + k) — g(yy) = Bk + vk where Il{igg)l IIJ(kkI) ! = - (2)
Let k = f(xo + h) — f(x) for given h ...(3)
Then
k1=l fxo + h) — f(xo) |
=l Ah +u(h) | {by(1)}
<I1Ah|+luh) |
<Al ThT+u) |
= <IIAII i T;hl) ') lhl . (®)
Now

| F(xg + h) — F(xy,) — BAh |
= g(f(xo + h)) - g(f(xo)) - B(4h) |
=lgyo+k)—glo) —BAN |  {by(3)}
=|Bk +v(k) —B(AR) |  {by(2)}
=| B(k — Ah) + v(k) |
= B(u(h)) +v(k) | = u(h) = f(xo +h) = f(xo) — Ak {by(1)} = k — Ah {by(3)}

<1 Bu() 1+ Tik? Uk

<tz u 1+ 55 a5 k1 vy
lu(h) | vk | lu(h) |

S{”B” 1 Tk [”A”+ A ]}'h'

—-0ash—-0

Thus
F'(x,) = BA

=9'(o)f'(x0)
=g'(f (xo))f" (x0)

This completes the proof.

12.3 Partial Derivatives and Directional Derivatives

Partial Derivatives of a Vector-Valued Function of Several Variables: LetE be an open subset of
R™ and f:E - R™ be a function. Let {e, €,, ..., e,} and {uy, u,, ..., u,,} be standard bases of R" and
R™ respectively.
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Letf(x) = (fl(x)rfz(x)r :fm(x))
= fiu + LUz + -+ frn (U, x EE

4]
Then partial derivatives of f; with respect to x; is denoted by a—f or (D;f;)(x)and is defined as
J

0fi _ i fibctte) = i)
- — = lim

dxj t-0 t

, provided this limit exists.

Theorem 12.3.1: Let E be an open subset of R" and f: E — R™ be a function that is differentiable at
x € E. Then (Df;)(x) exists forall 1 <i <m,1<j <nand

f'(x)e; = Z(Djf,-)(X)uiwhere
i=1

1<j<n,{e,ey, .., e yand {uy, u,, ..., uy, Jare standard bases of R™ and R™ respectively.
Proof: Since f is differentiable at x.
Therefore,
flx+te) — F() = f/(0)(tey) +7(te))
where,
| r(te) | _
t=0 | te; |
= fx+te) — f(x) = tf' (X)e; +7(te))

| r(te;) |
where, limg =0 “lejl=1
t—0 | t |

R limf(x + tej) —f(x)

t-0 t RARY
R }:l_r)l(l) (fl(x + tej), s frn(x + iej)) — (f1 (), ...,fm(x)) — P
= lim <f1(x + te,t-) “AG)  fmlat te,;) - fm(x)> _ e

= (D;f;) (Xexists,1 <i<mand1<j<n

and
Ge; = (D) ), s (Difin) )

=D;f)uy + -+ (Djfm)(x)um

m

= Z(Djfi)(x)ui

i=1
This completes the proof.

Cor 1: The matrix of a linear transformationf’(x): R® —» R™ withrespect to the standard bases
{e1, ez, ..., eptand{uy, uy, ..., up, } of R"andR™respectively is:

CHATC I GIAY
Fel=| & o ]

Difi)x = (Dufi) ()
Cor 2: Let h = (hq, hy, ..., hy)

= hye; + hye, + - + hye, be any vector in R™ then

Fh= Y 1> 00|
i=1|j=1
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Proof: f'(x)h = f'(x)(hie; + -+ + hye,)
= (f'(0)(hser) + (f'(x)) (haez) + -+ (f'(x)) (hnen)
=hif'(x)e; + hof (X)ez + -+ hnf'(X)en

=2,

1

hjf’(X)é’j

1 i=1

[Z (D,-fl-)(x)h,w u
=

Theorem12.3.2: Let E be an open convex subset of R" and let f: E - R™ be a differentiable function
such that ||[f'(x)|]| < MVx € E for some 0 < M € R. Then

| f(b)—f(@)I<M|b—alVabE€E.

J

Ps

Il
[y

Proof: Leta,b € E.
We define a function ¢:[0,1] = E by
¢(t) =1 —t)a+thte[01].
Since a,b € E and E is convex.
Therefore, ¢(t) € E, t € [0,1].
Let g(t) = f(¢(®),t € [0,1]
Theng'(t) = f'(¢())¢'(t)
=f(¢®)b - a)

=1g' @O 1= f(¢@®) 1 (b—a)

<|Fr@@®)1d-al

sMI(b-a)l
Ag®ISMI(b—-a)l - (1)
Since ¢ is differentiable on [0,1] and f is differentiable on E.
Therefore,g = fo¢: [0,1] = R™ is also differentiable on [0,1].

Since if f:[a, b] - R¥ be a continuous function such that f is differentiable on (a,b) then there exists
x € (a, b) such that

lfB) - f@ls®b-a)lf ()l
Thus there exists x € (0,1)such that
lg() —g@I=sA-0)1g'C) I

Now since g(1) = f(¢(1)) = f(b)
and 9(0) = f(¢(0)) = f(b)
“Lf(b) = fla) ISl g'(x) |
s f)—-f@IsMIb—al {by(1)}
This completes the proof.
Continuously Differentiable Function: Let E be an open subset of R" and f: E — R™ be a function.

Then f is said to be continuously differentiable in E if f": E — L(R", R™) is a continuous function.

@ If f: E - R™ is continuously differentiable function then we say f is (' — mapping or f €
C'(E). Thus if f € C'(E) then Va € E,€> 0, there exits § > 0 such that ||f'(x) — f'(a)|| <€
whenever | x —a |< §,x €E.
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Theorem 12.3.3:Let E be an open subset of R"andf: E - R™be a function. If f € C'(E)
Then partial derivatives D;f;(x) exists and are continuous Vx € E,1 <i<m,and1<j<n.
Proof: Let f € C'(E)

= f is differentiable in E.

= D f;(x) exists and

m
f'(x)e = Z(D,fi)(x)ui Vx€E, 1<i<mandl1<j<n. ... {by Theorem 12.3.1}

i=1
= [ Welw=D0i)  ..(D
Now, f": E - L(R™ R™) is a continuous function.
~ for given €> 0 and all x € E, there exists § > 0, such that
If'G) = fOI<€lx—yI<8y€EE ..(2)
# (D)) = (i) @) |
= [f'We] wi = [f' (e s | {by (1)}
S f'O) = F/ @) gy |
<I[f'(y) — f'(®)]e; Il u; | {by Cauchy — Schwarz Inequality}

= [f') = f(0)]e | {1y =1}
SO =l el
=f'Q) =l {~1e1=1}

i.e.l (Difi)) — (D;fi)(x) I<€ whenever | x —y <8 {by(2)}
D;f; are continuouson £, 1 <i<m,and1<j <n.

This completes the proof.
Directional Derivative: Directional derivative of f at x in the direction of unit vector u is denoted
by (D, f)(x) and is given as

_ fGx+uh)—f(x)
(Duf)(x) = lim—————

E] Example: If f: R? - R defined by
x2y
f,y) =%+ +y2’ (x,y) # (0,0)
0; (%) = (0,0)

1

Then find the directional derivative of f at (0, 0) in the direction of the vector ( ﬁ,‘/—li).

Solution: (D, f)(c) = (D fH)(x) = ;lli‘% WWhere
1 1
u= (ﬁ,ﬁ) y
¢ = (0,0)and
h h
c+uh= (ﬁ’ﬁ)

i'i — £(0,0
 (Duf)(c) = ;g%f(ﬁ ﬁ>h 0.9
1

V2
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12.4 The Contraction Principle

Fixed Point: Let X be any non-empty set andT: X — X. A point x, € X is said to be a fixed point of T
if T(xo) = Xop-

@ Example: If T: R - R defined by

x%+12
() ==
Then find fixed points of T.
Solution: We have
2412
T(x) =2
then
T(x)=x
x?+12
= =
7 x

>x2-7x+12=0
= 3 and 4 are the fixed points of T .

Contraction Mapping: Let (X, d) be a metric space. A function f:X — X is said to be a contraction
mapping if there exists a real number a with 0 < a < 1 such that

d(f(), f(») < ad(x,y) Vx,y € X.

E] Contraction map f is uniformly continuous on X.

E] Example: If f(x) =x2,0<x < %

Then show that f is a contraction mapping on [0, ﬂ

Solution:d(f (x), f(y)) = d(x?,y?)
=l x% =y |
=lx—yllx+yl
<lx=yl{lxl+lyl]

—2| I
_3 xX—y

Thus we get,

2
d(f(0, f») < 3=yl
= f is a contraction map.
Theorem 12.4.1: (Fixed Point Theorem)

Let (X, d) be a complete metric space and let ¢ be a contraction mapping on X. Then there exists one
and only one x € X such that ¢(x) = x.

Proof: Let x, be any element of X and we define a sequence {x,,} in X as follows:
Xpe1 = ¢(),n=0,1,2, ... (D
We will show that {x,,} is a Cauchy sequence.

Since ¢ is a contraction map, there exists a real number a with 0 < @ < 1 such that Vx,y € X, we

have d(gb(x),d)(y)) <ad(x,y). ..(2)

Forn =0,1,2,.., we have
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d(xni1, %) = d(P0xn), $(¥n-1)) {by(1)}
< ad(xp, Xn-1) {by(2)}
= ad(¢p(xn-1), ¢ (xn-2))
< a?d(xp_1, Xn_2)
< a™d(xq, x0)
Thus we get,
d(xp41, %) < a™d(xq, %) (3
If n, m are positive integers and m < n, it follows that
d(Xm) Xma1) + Amar, Xmaz) + -+ d(xp_q, Xn)
< a™d(xq,%0) + @™ d(xy, x0) + -+ @ d(x1,x0)  {by(3)}
=a™[1+a+a?+-+a”™1]d(xq, x0)

<a™1+a+a?+--]1d(xqg,x0)
m

= md(xyxo)

m

a
2 d(y, X)) < md(xl,xo),o <a<l1

—>0asm-
Thus {x,} is a Cauchy sequence.
Since X is complete.

~lim x, =x,x € X.

n-co
Also,¢ is a contraction map.
~ ¢ is continuous.
= $(x) = lim ¢(xy)
= rlll_{{}o Xn+1
=x
Thus we get, ¢(x) = x.
Uniqueness: Let y € X,y # x such that ¢(y) =y
Then,d(x,y) = d(¢(x), ()
Since ¢ is a contraction map.
~d(xy) < ad(x,y)
>1-a)d(xy)<0
Since0 < a < 1.
~dxy)<0
Butd(x,y) =0
This is possible only if d(x,y) = 0i.e.x =y

This completes the proof.

Summary

e LetA € L(R",R™)i.e. A is alinear transformation from R™ to R™.Then norm of A4,

denotedby [|A|| is defined as
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lAll = sup | Ax |
lx|s 1
x€RM

e LetA, B € L(R",R™).Then
@1 Ax 1< [lAllTx | vx €R™
GD)1Ax IS A1 x | Vx ER™ = |JA]l < A
@Al < oo
(iv) A is a uniformly continuous mapping from R™ toR™
A+ Bl <Al + 1Bl
@DllcAll <l c 1 lAll,c eR

e IfA€L(R™R™),B € L(R™ R¥) then ||BA|| < [|IBIllIAll.

e L(R™ R™) is a metric space with metric d defined as d(4, B) = ||A — B|| VA, B € L(R™,R™).

e  Alinear operator T on a finite-dimensional vector space X is one to one if and only if the
range of T is all of X.

e Let (X, d) be a metric space, the open ball of radius r > 0 centered at a point a in X, usually
denoted by B, (a)or B(a;r) and is definedB(a;r) = {x € X:d(x,a) < r}.

e A subset E of a metric space (X,d) is open if Vx € E, there exists an open ball B(x; r) such
that B(x;r) € E.

e AsetE € R"issaid tobe convexifx € E,y €E > tx+ (1 —t)y € E,Vt € [0,1].

e The set of points (tx + (1 — t)y: t € [0,1]} is called the line segment joining the points x, y.

e Set E is a convex set if the line segment between two points in E lies in E.

¢  Open balls in R™ are convex.

o Let Q be the set of all invertible linear operators on R™. Then
(Dif A € Q,B € L(R®and||B — A|l||]A~|| < 1then B € Q.
(ii)Q is an open subset of L(R™).
(iii)Mapping ¢: Q — Q defined by $p(A) = A~! VA € Q is continuous.

e Let E be an open subset of R™ and let f: E — R™ be a function. If for x € E, there exists a

linear transformation 4: R®™ - R™ such that
ol fx+h)—f(x)—Ah|
lim =0,
h—0 | h|

Then we say f is differentiable at x and derivative of f at x is Ai.e. f'(x) = A.

o If f is differentiable at every x € E then f is said to be differentiable in E.
e LetE € R"beanopensetand f:E — R™. If for x € E, there exists a linear transformation
A; and A, from R™ to R™ such that
N fle+h)—fx) —Ah|
lim
h—0 | h
then 4; = A,.

|f(x+h)—f(x)—A2h|=

0
[hl

= 0and lim
h—0
e Let E be an open subset of R", f: E — R™, f is a differentiable function at x, € E and
g:G - R be differentiable at f (x,), where G is an open subset of R™ containing f (E).
Then the function F: E > R¥ defined by F(x) = g(f(x)) is differentiable at x, and
F'(xo) = g'(f (o))" (xo).
e LetE be an open subset of R" and f:E —» R™ be a function. Let {e;, e, ...,e,} and
{uy, uy, ..., uy} be standard bases of R™ and R™ respectively.

Let f(x) = (10, f2(0), oo, fin(0)) = fi(wy + fo()uy + -+ + fin (D, x €E

of
Then partial derivatives of f; with respect to x; is denoted by a—f or (D;f;)(x)and is defined as
J

% _ limfi(x + tej) — fi(x)

dxj t0 t

, provided this limit exists.
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e Let E be an open subset of R" and f: E = R™ be a function that is differentiable at x € E.
Then (D;f;)(x) exists forall1 <i<m,1<j<nand

m

f'(x)e; = Z(Djﬁ-)(X)u,-where

i=1

1<j<n,{e,ey, ..., epyand {uy, uy, ..., uy, Jare standard bases of R™ and R™ respectively.
e The matrix of a linear transformationf’(x): R™ - R™ with respect to the standard bases

{e1, ez, ..., epyand{uy, uy, ..., U, } of R"andR™respectively is:

(le%)(x) (Dn_fl)x
Dufp)x -~ (Dufi) @)

e Let E be an open convex subset of R" and let f: E = R™ be a differentiable function such
that ||[f'(x)|]| < MVx € E forsome 0 < M € R. Then| f(b) — f(a) ISM |b—a|Va,b€EE.
e Let E be an open subset of R" and f:E — R™ be a function. Then f is said to be

'] =

continuously differentiable in E if f": E —» L(R", R™) is a continuous function.

e If f:E - R" is continuously differentiable function then we say f is (' — mapping or f €
C'(E). Thus if f € C'(E) then Va € E,€> 0, there exits § > 0 such that ||f'(x) — f'(a)|| <€
whenever | x —a |< §,x € E.

e Let E be an open subset ofR™andf:E — R™be a function. If f € ('(E)then partial

derivatives D;f;(x) exists and are continuous Vx EE,1<i<m,and1<j<n.
e Directional derivative of f at x in the direction of unit vector u is denoted by (D, f)(x) and

is given as (D, f)(x) = kin%w

e Let X be any non-empty set and T: X — X. A point x, € X is said to be a fixed point of T if
T(x0) = Xo-

e Let (X,d) be a metric space. A function f:X — X is said to be a contraction mapping if
there exists a real number a with 0 < a < 1 such that d(f ), f (y)) <ad(x,y) Vx,y € X.

e  Contraction map f is uniformly continuous on X.

e Let (X,d) be a complete metric space and let ¢ be a contraction mapping on X. Then there

exists one and only one x € X such that ¢(x) = x.

Keywords

Norm of a Linear transformation: Let A € L(R", R™)i.e. A is a linear transformation from R™ to R™.
Then norm of 4, denoted by [|A]| is defined as
lAll = sup | Ax |

Ix|< 1
x€RM

Open Ball: Let (X,d) be a metric space, the open ball of radius r > 0 centered at a point a in X,
usually denoted by B, (a)or B(a;r) and is defined as

B(a;r) ={x € X:d(x,a) <r}.

Open Set:A subset E of a metric space (X,d) is open if Vx € E, there exists an open ball B(x; ) such
that B(x;r) C E.

Convex Set:A set E € R" is said to be convexif x e E,y € E > tx + (1 —t)y € E, Vvt € [0,1].

Continuously Differentiable Function: Let E be an open subset of R™ and f: E — R™ be a function.
Then f is said to be continuously differentiable in E if f": E - L(R", R™) is a continuous function.

Directional Derivative:Directional derivative of f at x in the direction of unit vector u is denoted
by (D, f)(x) and is given as

Duf)x) = mw
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Fixed Point: Let X be any non-empty set and T: X — X. A point x, € X is said to be a fixed point of T

if T(XO) = Xp-

Contraction Mapping: Let (X, d) be a metric space. A function f:X — X is said to be a contraction

mapping if there exists a real number a with 0 < a < 1 such that

Self Assessment

1) Suppose T is a linear operator and is one-one on a finite-dimensional vector space then T is not

necessarily onto.

A.

B.

2) Suppose L(X) = {T|T: X — X is a linear operator}. Then L(X) is a vector space.

A.

B.

3) Let T € L(R™,R™), then

A.

B.
C.
D

True

False

True

False

ITIl = sup|Tx|
x|z1
ITIl = inf |Tx|
|lx|=1
[IT|| = inf |Tx|
|x]z1
ITIl = sup|Tx|
|x|<1

d(f(x), f(») < ad(x,y) Vx,y € X.

4) Let Ty, T, € L(R™, R™). Consider the following statements:

—~ —~

A.

5) A set E € RF is said to be convex if Ax + (1 — 1)y € E for some x € E,y € EandA € [0, 1].

A.
B.

6) Open balls are convex.

B
C.
D

DT+ T2l < 1Ty + Tl
) Tyl = clITall, c € R.

only
only
both
both

True

False

A. True

B.

False

I) is correct

II) is correct

I) and (II) are correct

I) and (II) are incorrect

7) Consider the following statements:

() Let T, € L(R™, R™)and T, € L(R™, R¥) then ||T,T, || < IT2IIIT]l.

(I If Ax + (1 — )y € E whenever x € E,y € E and 1 € [0, 1] then E is said to be convex.
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A. only (I) is correct
B. only (Il) is correct
C. Dboth (I) and (II) are correct
D. both (I) and (II) are incorrect

8) T € L(R™, R™), then

A. |Tx| < |IT|l|x| only if |x] < 1
B. |Tx| <|IT|l|x| only if [x] = 1
C. |Tx| < |IT|l|x| whenever x € R"
D

none of these

9)Suppose f is a differentiable mapping of (a,b) c R! into R™, and x € [a, b]. Consider the
following statements.

(I) f'(x) is the linear transformation of R! into R™.

| et =£ ) =f' OB _

(Il) f'(x) satisfies }ll_rg o

0

only (I) is correct

only (II) is correct

both (I) and (II) are correct
both (I) and (II) are incorrect

9N = »

10) Let f:[a,b] = R* be a continuous function such that f is differentiable on (a, b). Then there

exists x € (a, b) such that % <|f'(x)].
A. True
B. False

11) Let E be a convex set. Define ¢(1) = Aa + (1 —A)b, a € E,b € EandA € [0,1]. Then ¢(1) need
not be an element of E.

A. True
B. False

12) Let f: R? > R? be given by f(x,y) = (x2,y? + sinx). Then the derivative of f at (x,y) is the linear
transformation given by:

n ( 2x 0)
cosx 2y
B (Zx 0 )
2y cosx
2y cosx
. (Zx 0 )

D. (ZOx ci%/x)

13) LetT: R — R be a mapping defined by T(x) =

xZ—x+4
4

, then fixed points of T are:

A 1,4
B. -1,4
C. -1,4
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D. 1,4

2

= :3, then fixed points of T are:

14) LetT: R — R be a mapping defined by T(x) =

1,3
-1,-3
-1,3
1,-3

90w p

2
X *° then fixed points of T are:

15) LetT: R — R be a mapping defined by T(x) = -

2,3
-2,-3
-2,3
2,3

90w p

16) Contraction map f: X — X is uniformly continuous on X.

A. True
B. False

17 f(x) =x%,0<x < % Then f is a contraction mapping on [0,%].

A. True
B. False

Answers for Self Assessment

1. B 2. A 3. D 4. D 5. B
6. A 7. C 8. C 9. C 10. A
11. B 12. A 13. D 14. A 15. A
16. A 17. C

Review Questions

1)Let f: R? > R? be given by f(x,y) = (x2,¥? + cos x). Then find the derivative of f at (x, y)in matrix
form.

x2—

:+5, then find the fixed points of T.

2) LetT: R — R be a mapping defined by T(x) =
3) Let f(x,y)= log (cosz(exz)) + sin(x + y). Then findiif(x y)
’ ' dyox’ 77
0 0
4) Let f(x,y)=log (sin V1= xz) + sin(x + y). Then find@af(x, ¥).

. Jd 0
— ,Sinx x+y 3
5)Letf(x,y) =x + e**Y. Then find 3y axf(x, V).
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- a 0
6)Let f(x,y) = x°°° * +log(x +y).Then findagf(x, ¥).

Further Readings

L!.J Walter Rudin, Principles of Mathematical Analysis (34 edition), McGraw-Hill
International Publishers.
T. M. Apostol, Mathematical Analysis (2nd edition).
S.C. Malik, Mathematical Analysis.

Shanti Narayan, Elements of Real Analysis

https:/ /www.youtube.com/watch?v=XzaeYnZdK50
https:/ /www.youtube.com/watch?v=zvRdbPMEMUI

WWW|
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Unit 13: The Inverse Function Theoremn and the Implicit Function Theorem
Monika Arora, Lovely Professional University

Unit 13: The Inverse Function Theorem and the Implicit Function
Theorem

CONTENTS

Objectives

Introduction

13.1 The Inverse Function Theorem
13.2 Notation

Summary

Keywords

Self-Assessment

Answers for Self Assessment

Review Questions

Further Readings

Objectives

After studying this unit, students will be able to:

e Discuss inverse function theorem
e discuss elements of L(R™**™, R™)

e describe implicit function theorem

Introduction

In this chapter we will discuss Inverse Function Theorem and Implicit Function Theorem. Roughly
speaking, the inverse function theorem states that a continuously differentiable mapping f is
invertible in neighborhood of any point x at which the linear transformation f’(x) is invertible.

13.1 The Inverse Function Theorem

Theorem 13.1.1 (Inverse Function Theorem) suppose f is a (' —mapping of an open set E c R"
and f'(a) is invertible for some a € E and b = f(a). Then

(a) there exist open sets U and V in R" such thata € U,b € V,fis1-lonU and f(U) = V.
(b) if g is the inverse of f, defined in V by g(f(x)) = x,x € U then g € C'(V).
Proof: (a)We put f'(a) = A such that A c L(R") is invertible and let

1
A=— (1
20AT] @

Since f € C'(E).
= f'is continuous mapping of E into L(R").
= f'is continuousata asa € E.
Therefore, for given A > 0, there exists an open ball
U=B(an)CcE
such that
Ilf'G)—f @l <ivxeU
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= |If'(x)—All<AvxeU - (2)

[by(D)]
Now for each y € R", define a function
¢:E - R"

by

) =x+A7(y—f®) ()
Then

p(x) =x
ex+A M (y-f) =x
oA (y-f(x) =0
ey-fx =0

ey =

Thus f(x) = y if and only if x is a fixed point of ¢.... (4)

Now
¢'0) =1-A7(f')
=A1A-A7(f' ()
= AT A - f'(0)]
= ll¢'Il =147 A= f ]l
< [lA7HHA = £ ol

1
=7 l4A-f @I {by (1)}
_1 2 by (2
=™ {by (2)}
1

2

= o’ <1/2,x€U

Now,U is an open ball.
= U is an open set and hence it is convex also.

We know that if f maps a convex open set E ¢ R™ into R™, f is differentiable in E, and there is a
real number M such that |[f'(x)|| < M for every x € E then

|f(b) — f(a)l < M|b—al,a,b EE.

Therefore,

1
lp(x1) — P(x2)| < 3 | — %3], %1, %, EU . (5)
Now we show that f is one-one in U.

Let
fx1) = f(xz) =y (say)
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>y=f(), y=f(x)

= X1, X, are fixed points of ¢.

= ¢(x) = xq, P (xz) = x;

Therefore from (5), we have

1
1 — x| S§|x1 — x|

= %|x1 — x| <0
=X =X
= f is one-one in U.
Next, we put V = f(U) and choose y, € V then y, = f(x,) for some x, € U.
Since U is an open set and x, € U.
Therefore, there exists an open ball B = B(x,, ) such that xy € B(x,,7) € U.

Here we consider r so small that its closure B lies in U.

We will prove that V = f(U) is an open set and it will be so if, for each y € V, there exists an open
ball contained in V.

Lety € B(yg, Ar)
=y —yol <ar

Now,
[p(x0) — X0l = |xo + A7 (y — f(x0)) — xo]
=47 (y = f(x0))]

< 1AMy = f(xo)l
1
< (2—1) Ar
T
= . (6)
Also, for x € B, we have
lp(x) —xol = lp(x) — P (xp) + P (x0) — Xl

< | (x) — p(xo)l + 19 (x0) — xo

1 r
<§|x—x0|+5

= |p(x) — x| <7
= ¢(x) € B(xq,1)

= ¢(x) €B.

Now, B S B
= ¢(x) € Bvx € B.

= ¢: B - B is a contraction mapping.
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Since B is a closed subset of the complete metric space R" and a closed subset of complete metric
space is complete.

= B is complete.

Now fixed-point theorem states that if X is a complete metric space and if ¢ is a contraction
mapping of X into X then there exists one and only one x € X such that ¢(x) = x.

Therefore, there exists unique x € B such that ¢(x) = x.
By (4), we have x is a fixed point of ¢ if and only if f(x) = y.
Therefore,
y=f@)=yef(B cfU)=Vv

Thus,y € B(yg,Ar) > y eV
= B(yg,Ar) SV
Hence for each y, € V, there exists an open ball B(yy, Ar) such that B(y,, Ar) € V.
=V = f(U) is an open set.
This proves part (a) of the theorem.
(b) Given g:V — U is the inverse of f.
We will prove that g € C'(V)i.e. g’ is continuous on V.
LetyeV,y+kevV.
Then there exists x € U,x + h € U, so that

y=f(),y+k=f(+h).
Now by (3),

p() =x+A47(y - f(0)

Therefore,
Ppx+h) —p(x) =[x+h+A (y—fx+n))]-[x+A47(y—f0)]
=h+A Yy —flx+h) —y+fx)]
— h— AT f G+ ) — f)]
=h—A"y+k-y]
>¢x+h)—¢kx) =h—-A"'k (7
Now from (5), we have
190e0) ~ )| <512 — 32l 33,20 € U
= |p(x +h) — d(x)| S%|x+h—x|
= Ih— 471k < 3 KI{by (7))
= Ihl ~ 1471k] < 5 1]
:%lhl < |A7k|

< [lA7 k]

1

=k
lel
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). ’
NOW from (2),

1
"x) —All < =%
G = All < 2 = g

1
= If7C) —AlllATH < 5

= [If'G) —AllllA7 < 1

= f'(x) is invertible since if Q be the set of all invertible linear operators on R" and if a € Q,B €
L(R") and ||B — A||||[A7%]| < 1 then B € Q i.e. B is invertible.

Let (f’(x))_1 =T
Now,
gy +k)—gy)-Tk=x+h—x—Tk
=Ih—Tk
=TT 'h—Tk
=T(f'(x)h—Tk
=-T(k—f'()h)
=-T(f(x+h) —f(x)—f'(Dh
> gy +k)—gy) =Tkl = |-T(f(x + ) — f(x) = f' (x)h|
< NITHIf G+ h) = f(x) = £ COR
l9O+ 1) —g@) — Tkl _NITIIf & +h) = f() =~ f' (A
|kl B |kl
ITNFGe+ 1) — £ — f7(Ohl
- Alh|
If (x + 1) = f(x) = f' ()R

Now,h —» 0 as k — 0 and 7 —-0ash—-0

Therefore,
lg(y + k) — g(y) — Tk|

—-0ask—-0
k|

= g is differentiable in V and
g =T=(r®)"
-1
=g 0= (o) -
Now g:V — U is differentiable on V.

= It is continuous on V and f' is continuous mapping of U into the set (0 of all invertible elements of
L(R™) and that inversion is a continuous mapping of Q onto Q.

Therefore g € C'(V).

This completes the proof.

13.2 Notation
If x = (%9, %2, .., Xp) € R®"and y = (¥, ¥2, ..., ¥m) € R™ then the point
(x,9) = (X1, X2, v X, V1, Va2 o00r Ym) € R,
If A € L(R**™, R"), then for (h, k) € R**™,
A(h k) = A((h, 0) + (0, k))
= A(h,0) + A(0, k).

LOVELY PROFESSIONAL UNIVERSITY

179

Notes



Notes

180

Real Analysis 1

Every A € L(R™™, R") can be split into linear transformations A,: R" » R™ and 4,: R™ —» R"
defined respectively by

Ach = A(h,0),A k = A0, k) for any h € R" and k € R™.
Then 4, € L(R"),A,, € L(R™,R™) and A(h, k) = A,h + Ay k.

Theorem 13.2.1: If A € L(R™*™, R™) and A, is invertible, then there corresponds to everyk € R™,a
unique h € R™ such that A(h, k) = 0.

Proof: A(h,k) =0

= Ah+ Ayk =0

= Ach =-Ak

= h=—A4;"A,k.

Fix k. Suppose there exists hy, h, € R" such that
A(hy, k) =0and A(hy, k) =0

= A(hy, k) = A(hy, k)

= A[(hy, k) — (hy, k)] =0

= A[(hy — hy),0] =0

> Ax(hy —hy)) =0 {~A.h=A(h0)}

But 4, is invertible.

ahy—hy =0

=>hy =hy

Thus Vk € R™, there exists a unique h = —A;lAyksuch that A(h, k) = 0.

Theorem 13.2.2 (Implicit Function Theorem): Let f: E » R" be a (' —mapping, where E is an open
subset of R™*™ such that f(a, b) = 0 for some point(a, b) € E. Put A = f'(a, b) and assume that A, is
invertible. Then there exist open sets U € R™™ and W < R™ with (a,b) € U and b € W such that to
every y € W there corresponds a unique x such that (x,y) € U and f(x,y) = 0.

Further, if this x is defined to be g(y) then g is a (' — mapping of W into R", g(b) = a,f(g(¥),y) =
0,y € Wand g'(b) = —A4;"A,,.

Proof: Define F: E - R™™ by F(x,y) = (f(x,y),y),(x,y) EE (D
= F isa (' — mapping of E into R"*™ as f € C'(E).

We claim that F'(a, b) is an invertible element of L(R™*™).

Since f'(a,b) = A

~fla+hb+k)—f(ab)=A(hk)+r(hk), where r is the remainder that occurs in the definition
of f'(a,b).

= fla+hb+k)=AMNk)+r(hk)..(2)
v f(a,b) =0
Now,
F(a+hb+k)—F(ab)=(f(a+hb+k),b+k)—(f(ab)b)

= (A(h,k) +r(h,k),b + k) — (0,b)

= (A(h, k) +r(h k), k)
F(a+h,b+k)—F(ab) =(AMk),k)+ (k)0 ..(3)
= F'(a,b)(h, k) = (A(h, k), k) ..(4)

~F'(a,b)(h,k) =0
= (A(hk),k) =0
=>Ahk)=0k=0
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= A(h,0)=0,k=0
=>Ah=0

But A, is invertible.

Therefore, h = 0 and hence (h, k) = (0,0).

Thus F'(a, b) is invertible.

= by inverse function theorem, there exists open subsets U and V of R**™ such that (a, b) €
U,(0,b) € V and F is 1-1 mapping of U onto V.

Define W = {y € R™: (0,y) € V}.
Since (a,b) € U

= F(a,b) €V
= (f(a,b),b) €V
= (0,b) eV
>beW.
Also, W is open as V is open.
Now, lety e W
= (0,y) e Vand F:U - V is onto.
= there exists some (x,y) € U such that
F(x,y) = (0,y)
= (f(xy),y) = (0,5)
=fly)=0

Thus Vy € W, there exists (x,y) € U such that f(x,y) = 0.
To prove the uniqueness of x, let there exist x;, x, such that
fle,y) =0 = f(xz,y)
= F(xy,y) = (f(x, ), 5) = (0,5)
and
F(xz,y) = (f(x2,3),¥) = (0,¥)

= F(x1,y) = F(xz,5)

= (x1,y) = (x2,¥)

> X = X
Hence for all y € W, there exists a unique x such that (x,y) € U and f(x,y) = 0.
Further, let g: W — R™ be defined as g(y) = x such that f(x,y) = 0.
Since for all y € W, there exists a unique x € R™ such that f(x,y) = 0
i.e.,g(y) = x, therefore g: W — R" is a well-defined function.
Now,

Flg(),y) = (flg().y).y) = (f(x,y),y) = (0,y).

= by inverse function theorem, if G:V — U is the inverse of F: U —» V then G € C'(V).
Also, (g, y) = F71(0,) = G(0, ).
=~ g is also ' —mapping.
Here g(b) = aas f(a,b) =0,and f(g(¥),y) = f(x,y) =0Vy e W.
Now, we show that g'(b) = —A;"A,,.
Let
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@) = @), y).
Then
¢' () (k) = (g’ Dk, k)Vy € W,k € R™
and

fle) = flg.y) =0.
=~ by chain rule,
f'(eM)p'» =0
= f'(¢p(b))p' () =0,y = b
= f'(g(b),b)¢'(b) =0
= f'(a,b)¢'(b) =0 {~ g(b) = a}
= A¢'(b) =0
= A¢p'(b)k = 0Vk e R™
= A(g'(b)k, k) =0Vk € R™
= A (g'(BD)k, k) + Ay (g' (D), k) = 0 Vk € R™
= A,9'(b) + 4, =0
= A.g'(b) = -4,
= g'(b) = —A*A,.
This completes the proof.

Summary
e Suppose f is a (" —mapping of an open set E ¢ R" and f’(a) is invertible for some a € E
and b = f(a). Then
(a) There exist open sets U and V in R" such thata € U,b € V,fis1-1on U and f(U) = V.
(b) If g is the inverse of f, defined in V by g(f(x)) = x,x € U then g € C'(V).
o IfA e L(R™™ R") and 4, is invertible, then there corresponds to every k € R™, a unique
h € R™ such that A(h, k) = 0.
e Let f:E - R" be a (' —mapping, where E is an open subset of R"*™ such that f(a,b) =
0 for some point(a,b) € E. Put A = f'(a,b) and assume that A, is invertible. Then there
exist open sets U ¢ R™™ and W c R™ with (a,b) € U and b € W such that to every y € W
there corresponds a unique x such that (x,y) € U and f(x,y) = 0.
Further, if this x is defined to be g(y) then g is a (' — mapping of W into R", g(b) =
a,f(g(y),y) =0,y € Wand g'(b) = —A;"4,.

Keywords

Inverse Function Theorem

Suppose f is a (" —mapping of an open set E ¢ R™ and f'(a) is invertible for some a € E and b =
f(a). Then

(a) there exist open sets U and V in R" such thata € U,b € V,fis1-lonU and f(U) = V.
(b) if g is the inverse of f, defined in V by g(f(x)) = x,x € U then g € C'(V).

Implicit Function Theorem: Let f: E - R" be a (' —mapping, where E is an open subset of R"*™
such that f(a, b) = 0 for some point(a, b) € E. Put A = f'(a, b) and assume that A, is invertible. Then
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there exist open sets U ¢ R"*™ and W ¢ R™ with (a,b) € U and b € W such that to every y € W
there corresponds a unique x such that (x,y) € U and f(x,y) = 0. Further, if this x is defined to be
9(y) then g is a (' — mapping of W into R™, g(b) = a, f(g(»),y) = 0,y € W and g'(b) = —4;" 4,

Self-Assessment

1) Let A be an open set and xy € A. Then there exists an open ball B(x,,7) such that x, €
B(x,,7) C A.

A. True
B. False

2) Suppose f is a real function on (—oo,00). Then x is said to be fixed point of f if f(x) =
k, k is any constant.

A. True
B. False
3) Suppose B is an open ball then Ax 4+ (1 — 1)y € B whenever x € B,y € BandA € [0, 1].

A. True
B. False

4)Let X be a metric space, with metric d. If ¢ maps X into X and if there is a number ¢ > 1 such
that d(d) (x), () < cd(x,y)forall x,y € X, then ¢ is said to be a contraction of X into X.

A. True
B. False

5) Consider the following statements:
() Let A denotes the closure of A. Then 4 is closed.

(IT) Closed subset of a complete metric space is not necessarily complete.

A. only (I) is correct
B. only
C. both
D

. both

II) is correct

I) and (II) are correct

I) and (II) are incorrect

6) If X is a complete metric space, and if ¢ is a contraction of X into X, then there exists more
than one x € X such that ¢(x) = x.

A. True
B. False

7)If T € L(R",R™), then ||T|||x| < |Tx| whenever x € R™.

A. True
B. False

8) I llcirréw =0then f'(x)=T.
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A. True
B. False

9) Let T; be an invertible linear operator on R™, T, be a linear operator on R", and ||T, — Ty]| -
IT7 2l < 1 then T, is also an invertible linear operator on R™.

A. True

B. False

10) Let T € L(R™™, R"), T,h = T(h,0), and T,k = T(0,k) for any h € R™, k € R™. Consider the
following statements:

(I) T can be split into two linear transformations T, and T,,.

(II) T, € L(R™) and T,, € L(R™).

A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct
D. both (I) and (II) are incorrect

11) Consider the following statements:

() A differentiable mapping f of an open set E ¢ R" into R™ is said to be continuously
differentiable in E if f' is a continuous mapping of E into L(R", R™).

(II) Let f be a continuously differentiable mapping of an open set E € R" into R™ then for
every x € E and to every €> 0, there exists a § > 0 such that ||f'(y) — f'(x)|| <€ whenever
y € Eand |x —y| <6é.

only (I) is correct

only (II) is correct

both (I) and (II) are correct

both (I) and (II) are incorrect

SN = >

Answers for Self Assessment

1. A 2. B 3. A 4. B 5 A
6. B 7. B 8. A 9. A 10. A
11. C 12. 13. 14. 15.

Review Questions

1) Let E be an open subset of R" and f: E = R" be a (' — mapping. If f'(x) is invertible for every x €
E, then f is an open mapping i.e., f (W) is open subset of R™ for every open set W of E.

2) If A € L(R™*™, R™) and A, is invertible, then there corresponds to every k € R™, a unique h € R"
such that A(h, k) = 0.
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Further Readings

Walter Rudin, Principles of Mathematical Analysis (3¢ edition), McGraw-Hill International
Publishers.

T. M. Apostol, Mathematical Analysis (2nd edition).
S.C. Malik, Mathematical Analysis.
Shanti Narayan, Elements of Real Analysis

Web Links

i https:/ /onlinecourses.nptel.ac.in/noc21 _ma63/preview
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Unit 14: Addition and Multiplication of Series
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Objectives

After studying this unit, students will be able to:

e define addition of two convergent series

¢ understand Cauchy product of two series

e describe that Cauchy product of two convergent series may be divergent

¢ understand that Cauchy product of two divergent series may be convergent
¢ explain various theorems related to Cauchy product

Introduction

If we have given two convergent series then we can add them term by term, and the resulting series
converges to the sum of the two series. But in case of multiplication, the situation is little complex.
For this, we have to define the product. This can be done in many ways but we will concentrate
only one of them, namely “Cauchy product.”

Theorem 14.1.1: Ifz a, =4 andz b, =B
then

z a,+b,=A+B andz ca, = cA for any fixed c

n n
Proof: LetA, = Z ay, By = z by,
k=0

k=0

n
then A, + B, = Z(ak + by)
k=0

Since rlll_r& A, =A
and 111_{{)10 B, =B
Therefore, we have
Tlli_r)?o(An+Bn)=A+B
and

limcA, =cA

n—oo
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:Zan+bn=A+Banchan=cA

Thus, the two convergent series may be added term by term and the resulting series converges to
the sum of two series.

14.1 Product of Series

Definition: Given Z a, and Z b,

We put
n
Cp = Z agbn_r (n=0,12,..)
k=0

and call Z cpthe product of two given series.

IfA, = Z ag, B Z by, C Z cyand A, = A, B, - B,

k= k=0
Then we don’t have C, — AB, since C,, # A, B,.
Theorem 14.1.2: (Abel’s Theorem)

Statement: If Y7 a,and Y- byare two convergent series such that Y5 ayand Y-, b,converge to
A and B respectively. If their Cauchy product Y7, c,is convergent then Y57, c,converges to AB.

Proof: Let A, = Z ay, By Z by

k=

(o]

[oe]
Z a,and Z b,converges to A and B respectively.

~limA, =A
n—oo

and lim B, =B
n—-oo

n =) e} =) n

LetC, = Z ¢, where Z ¢y, is the Cauchy product sz apand Z by, cp = Z axbn_i -

k=0 n=0 n=0 n=0 k=0
Now Cp, =co+ci+c ++¢p
= aoby + (agh; + aiby) + -+ + (aghy + a1by_1 + -+ + aybyg)
=ag(bg+ by + -+ by)+a;(bg+by+ - +bp_q)+az(bg+ by + -+ by_p)+ -+ apby
Therefore,

Cn =5 aan + aan_l + aan_z + -+ anBO

C,=anBy+ay,_1By+ay,_ B, +--+a;B,_1 +ayB,
Here we have,
Co = aoBy
Cy =a4By + agBy
C, = ay,By +a,B; +aygB,
C,=a,By+ay,_1B; +--+ayB,.
Therefore,
Co+Ci+Cr++Cy
=(ag+a;+a;++ay)By+(ag+a;+ay+-+an1)B; +-+apB,
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= ATIBO +A7'l—1 B1 + “'+AOBTL
= C0+Cl +CZ +"'+Cn _AnBO+An—1BI +"'+AOBn
n+1 B n+1

(1)

o)

Since Z ¢, is convergent.

n=0
So let it converges to C.

Therefore, lim C,, = C and hence
n—-oo

C0+Cl+CZ+".+Cn
m =C

li .. (2
nl—>oo n+1 ( )
Further,
lim A, = A
n—-oo
and lim B, =B
n—-oo
Therefore,
A By + A,_1By+ -+ AyB
ljm 22— ottt 0" — AB ..(3)

n—oo n+1
Using relation (1), (2) and (3), we get
C=A4B

That is, the Cauchy product Z ¢, converges to AB.

n=0

This completes the proof.

Example: Show with the help of examples that
(i) Cauchy product of two convergent series may be divergent and
(if) Cauchy product of two divergent series may be convergent.

=n"
Vn+1

Solution: (i)Let a,, = b, =

Then

N o (D"

is, by Leibnitz test of alternating series, is a convergent series.

o CDE
SZVE+T Vn—k+1

n
Now Chp = Z akbn_k =
k=0

'~ (-D"
_kz:o\/k+1\/n—k+1

n

1
;m
For0 <k <mn;
k+1D)(n—k+D)=nk+1)—k(k+1)+k+1)

=nk—k*+m+1)

n? n?
p— — — — 2
—(—4+n+1> (4 nk+k>

2 2

-G -G-n

>l |=

(1)
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2

1 2
> (2
:\/(k+1)(n—k+1)>2+n @

=2
>
'C"'—Zz+n

k=0
_2(n+1)
T 24n

From (1) and (2), we get,

~ lim|c,| #0
n—-oo

Hence Z cpis divergent.

Thus Y a, and ¥, b,, are convergent series but Cauchy product Y, ¢, is divergent.

(ii) Consider the series
n

ool
Z a,,whereay =1anda, = —(§> ,NMEN
n=0
and
o 3\" 7! 1
b, ,where by = 1 and b, = <E) [2"+2n+1] ,nEN
n=0
Now,
n
lim a,, = — lim (—) =0
n—-oo n—-oo 2
Z a, is divergent.
and

3! 1
lim b, = lim (—) [2" + 2n+1] #0

n-co n-oo \2
Z b, is divergent.
n
Cn = Z An—kby

k=0
n-1

= (anbo + aobn) + Z An_iby

k=1
NG 3 n-1 i 1 n-1 3 n-k 3 k-1 . 1
=G @) @ e 2G) () (2t
k=1
3\ 3 n-1 . 1 3 n-1n-1 . 1
=-(3) *Q) (Frzm)-G) X(+z=)
k=1
B _ _ _ 1
) O
2 2 2n+1 2 2—1 4\ 1 _1
2
B 3)n+ 3)11—1 2n+ 3)11—1 1 (3)11—1 2n—i—(?’)n—l ) 1(3>n—1+(3
_(2 (2 ' (2 2ntl 2 ' 2 to2\2 2
189
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)0 w6 -3
@+ F3+G)
-() )
=)
o= 1and Y (3) isa convergent series

Hence ¥, a,, and }, b,, are divergent but }; ¢, is convergent.

@ Example: Prove that Cauchy product of two series

3+Z3n and—2+22"

is absolutely convergent although both the given series are divergent.

Solution: Given series are

Zan = 3+Z3"
n=0 n=1

where ay = 3,a,, = 3"

and
Z by = —2 + Z on
n=0 n=1
where by = —2,b,, = 2"
The series

23"=3+32+33+
and the series
ZZ"=2+22+23+

both are geometric series with common ratio greater than one and hence both are divergent.

(oo} (oo}
Z a, and Z b, are divergent series.

Let Z ¢, be the Cauchy product of the given series.

n=0
Then
¢y = aghy =3(-2) = -6

and

forn>1,c, = Z axbn_
k=0

= aobn + albn_l + et anbo
=3(2™) + 3™ 1) + 322" %) + -+ 3™(-2)
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=2n[3+
-1
3n1
=32“.(—) —2.3"
2
=23n—23"
=0VneN
A e l=I =61+ Iyl
n=0 n=1
=6+0=6.

o]

Hence Cauchy product Z cpconverges absolutely.

n=0

Theorem 14.1.5: Suppose the series

(o)

Z a, and Z b,
n=0

n=0

both converge absolutely and converge to the sums A and B respectively. Then their Cauchy

product series
(o) n
Z Cn,Cn = Z Abn-i
k=0

n=0
converge to AB.

n

n
Proof: Let A, = Z ax, B, = Z by,
k=0

k=0

n n
and a, = Zlakl, Bn = Zlbkl'
k=0 k=0

Given that the series

3}

Z anand Z b,

n=0 n=0

are two absolutely convergent series.

.'.Zlanl anlebnl
n=0 n=0

are convergent series and let the series

ZIanI andZIan
n=0 n=0

converge to a and f respectively.

We know if Y7 oa,and Y7o b, are two non-negative term series which converge to A and B
respectively, then their Cauchy product Y, ¢, converges to AB.

Now, since Y7o | a, | and Xi-o | by | are series of positive terms, therefore their product

(z||)(z|b|)

converges to af i.e., their Cauchy product ;- d,converges to aff where d,, = Xi_o | ax Il by |
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Therefore,
dp=lagll by |+l ay ll by_q | +lay by | +--+la, Il byl ...(1)

Now we shall show that the Cauchy product }.;;_ ¢, is convergent.
n
Qb
k=0

| cn 1=

=| aobn + albn_l + azbn_z + -+ anbo |
Slag I byl +lag Il by I+l a1l by_p | +--+lay Il by |
=lcn IS dy {by(1)}

[e3)

Now, since Z d, is convergent.

n=0

0o
> Z | ¢n | is convergent. {by comparison test}.

n=0
Hence the series Y- cnis convergent absolutely.

We know that an absolutely convergent series is convergent.

[oe)

Z cyis convergent.  ...(2)

n=0

Further we shall prove that Y., c,converges to AB.

[ee)

[ee]
Given Z ayconvergesto Aand ) b, convergesto B

n=0 n=0
~ lim A, =Aand lim B, =B
n—-oo n—-oo
= lim A,B, = AB
n—-oo
= for a given €> 0, there exists a positive itegerm, such that

€
|AB — A, B,| < 3 vn=m; ..(3)

[oe) [oe)
Also the series Z | a, | and Z | b, | converge to a and S respectively.

n=0 n=0

And their Cauchy product Z d,, converges to af.

n=0

n—oo

n
~ lim D, = apB, D, = Z dy
k=0
= for a given €> 0, there exists a positive integer m, such that |af — D,| < ; vnzm, ..(4)

[oe) [oe)
Since Z | a, | and Z | b, | converge to a and S respectively.

n=0 n=0

~ lim a, = a and
n—oo
lim 5, =B
n—oo

= lim a,f, = af
n—-oo

. . ) . E
-~ for a given €> 0, there exists a positive integer mg such that |a,, 8, — af| < 3 vn=mz ..(5)

n

LetC, = Z Cx

k=0

= aobo + (a0b1 + albo) + (aobz + a1b1 + azbo) + -+ (aobn + albn_l + e+ anbo)
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=ag(bg + by + -+ by) +ay(bg+ by +-+bp_q) +-+anhy ..(6)

=(apta;+-+ay)(bg+by+-+by)
=ag(bg + by + -+ by) +ay(bg + by + -+ by) + -+ ay(bg + by + -+ by) ...(7)
Now (7)-(6) gives:
ApBy—Cn = ayby + az(by_q + by) + -+ an(by + -+ by)
Similarly, by replacing each ay, by | a;, | and by, by | by |, we have
Py — Dp =l ay | |bn| + |az|(1bn1] + [Bnl) + - + |an||(bs]| + - + [by]) ... (8)
Now,
|ApBn—Cpl| = lagby + ay(by—q + by) + -+ an(by + -+ by)|
sl ay bl + laz|(1baal + 1bp]) + - + lagll(b1] + -+ [bu]) .. (9)
Choose m = Max(m,, m,, ms3)
Then relations (3), (4) and (5) hold for n = m.
“ |anBn = Dyl = |anBn + af — aB — Dyl
< lanfn — aBl + |aB — Dyl
<s+s= ZTE vaz=m {by(4),(5)}
Therefore, from (8) and (9), we have
|A,B,—Cy| < ZTE vn=>m ..(10)
Now,
|AB—C,| = |AB—A,B,, + A,B, — Cyl
<IAB—AuB, | +] ApB, — Cy |

€E 2€
<z+3 =€ vazm {by(3) (10}

3
~ lim C, = AB
n-—-oo
Z ¢, converges to AB.
n=0

Theorem 14.1.6: (Merten’s Theorem for Cauchy Product)

If(1) Z a,is absolutely convergent.

n=0

2) i a, =4
n=0

) by=B
n=0

then their Cauchy product Z ¢y is convergent and z ¢, =AB.
n=0 n=0

[oe]

Proof: Since Z a, =4

n=0

and Z b, =B
n=0
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n
~ lim A,, = Awhere4,, = Z ax

n—-oo
k=

0
n
and -~ lim B, = Bwhere B,, = Z by,
n—-oo
k=0

PutS, =B, — B
= limS,=1lm(B,—B)=0 ..(1)
n—oo n—-oo

oo n

In the Cauchy product Z Cn,Cp = Z A bi

n=0 k=0
Therefore,
Co = Aoby
¢, = aghy + a1 by
¢, = agby + a1by + azby

C3 = a0b3 + a1b2 + a2b1 + a3b0

Cp = Cp = aobn + albn_l + azbn_z + -+ anbo

n

Z cx =ag(bg+by+ - +by)+ay(bg+by+ - +by)+ -+ aybg

k=0

= Cn = aan + aan_l + aan_z + -+ anBO
n

where C,, = Z Cx
k=0

agBn—k

I
NGE

0

ay(Sp—x + B)

1]
M= 7

k

¥ Sp-k =Bn_x — B

n n
= Z akSn_k + BZ Ay
k=0 k=0

n
= Z akSn_k + BAn
k=0

0

Since lim BA,, = AB
n—-oo

Therefore, in order to prove that C,, = AB, it will be sufficient to show that
n
An = Z A Sn—k
k=0

= an_ySypconvergesto 0 asn — oo

k=0

Now, since Z a,converges absolutely.
Therefore,z | a, | converges and let it converges to k.
Further,~ lim S, =0

n—oo
~ (Sy,) converges.

We know every convergent sequence is bounded.
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= (S,,) is bounded.

=~ there exists a real number M such that | S, IS M vn ..(2)

Since lim S, = 0, therefore by the definition of convergence of sequence, for every €> 0, there exists
n—-oo

a positive integer m; such that

(S
| S, 1< % vn>m;  ...(3)

o5}

Also the series Z | ay | is convergent.

n=0

- for a given €> 0, there exists a positive integer m, such that

o

Z la, 1< — .4
n <o

n=my+1
Let m = max {my, m,}
= relation (3) and (4) hold for n > m.

Now, whenever n > 2m, we have

| An 1=

n
Z A Sn—k
k=0
n
< ) laSil
k=0

n

m
= Zlaksn—kl + Z |akSp—kl
k=0

k=m+1

A IKEVR > 2m
=2>1,>0asn—> oo
Therefore,

n
lim C, = lim (Z Sy + BAn>
n—oo n—oo
k=0

= limA, + Blim 4,
n—-oo n—oo

=0+ BA
=AB
Z cpconverges to AB.
n=0

Theorem 14.1.7:If for | x |< 1, the series

(oo}

n=0

is absolutely convergent to A(x), then show that
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(1-x)"1AK) = Z Sp,x™ where

n=0
Sp=ap+a; + -+ ap.
Deduce that

Z(n + Dx™®=(1-x)"2
n=0

o3}

Proof: The series Z ap, =1+x+x%+--

n=0

= Z x™ converges absolutely for | x [< 1
n=0

1
d has th —=1-x"1
and has the sum ——— (1-x)

Also the series Z b, = Z a,x™ is absolutely convergent to the sum A(x).

n=0 n=0

~ the Cauchy productz cnofz a, and Z b, converges absolutely for | x [< 1

n=0 n=0 n=0

and ) ¢, = (1—x)"1A(x)

n

where ¢, = Z Ap_pbr

=x"(ap +ay + -+ ay)
Thus ¢, = x™S,
where S, =ag+a; +-+ a,

~ for | x I< 1,we have

0

(1 -0 A®) = z S,

n=0
Deduction: Put @, = 1 foralln = 0 then
Sp=1+4+1+4-(n+ 1times
=n+1

n

NGE

and A(x) = ApX

n

0

xn

I
NGE

n=0

_ 1

T1-x

=(1-x"1
Q-1 -x)"1= Zx" (n+1).

n=0
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or

Z(n + D" = (1—x)2
n=0

1 1 1 (="
Example: Givenlog2 =1 —= § - Z -+ +

n+1 ’
then prove that
=~ 1 1 1 1
—1\n 2
ZJ( V' asni nztm-n3t " TTmen (82"
n=

Solution: Let

i =0
nllgon +1
1 1 1

and E_n+1:n(n+1)>0

1 1

>
n n+1

i.e.lay 1>l apyq | foralln.

~ by Leibnitz test, Z a, and Z b,are convergent series.

n=0 n=0
Let,z a, =Aand,an =B
n=0 n=0

By Abel’s theorem Z ¢, = AB, provided Z ¢y converges. ...(1)

n=0 n=0

n
Cn = Z agbn_
k=0

=5 aobn + albn_l + azbn_z + -+ anbo
" (-t 1(=1)n2 -1H"
NSV CO I TCh )

n+1 n 3 n—-1 T
=D —+i+—1 +---+—1 ] - (2)
1.(n+1) 2n 3(n-1) (n+1).1
-D*rn+2 n+2 n+2 n+2
= + +...+—]
n+2ln+1) 2.n 3(n—-1) n+1)

_ D2 1+ +1+ e ] 3
n+2 3 n+1 - (3)

Sl = 3t e

=2(n+1) 1+ + + +n_+1
(n+2) n+1

]1+++ e

_2[1— — ntll o (4)
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Now,
1+l+l+...+i
lim 2 3 TL+1=0
n-oo n+1
~ from relation (4), we get
|cpl=0asn— oo
Also | | = |—2(1+1+1++1+1) 2(1+1+1++1)
SOt I G =\ T T n+l n+2) n+2\ 273 n+1
—( 2 2 )(1+1+1+ + )+ 2
"\n+3 n+2 2 3 n+1l) (m+3)(n+2)
- 2 <1+1+1+ + )+ 2
T (m+3)(n+2) 2 3 n+1/ (n+3)(n+2)
= 2 (+1+ + )
Tm+3)m+2)\2 3 n+1
<0
:>|Cn+1 |<|Cn|
- by Leibinitz test, Z cpconverges.
n=0
So, from (1) and (2), we get
i(un[ O
4 1.(n+1) 2n 3(n-1) (n+1).1
n=
= (log2)?

':Zan:an =log2

Theorem 14.1.9: Let}, ¢, be the Cauchy product of two convergent series ¥, a,, and Y, b,,. Define

n

Sw= ) @ylbn + by + o by i)
k=1

Show that . c;, is convergent if and only if the sequence {S,,} converges to zero.

n n

n
Proof: Let A, = Z ay, By = Zbk and C, = Z Ck
k=0

k=0 k=0

[oe)

Since the series Z a, and Z b,, are convergent.

n=0 n=0
SoletZan=Aand b, =B
n=0 n=0
= lim 4, =A and lim B, =B ..(1)
n—-oo n—-oo

Now G, =cop+cy+c++cy

= agby + (agby + a;by) + -+ (aghy + ayby_1 + -+ ayby)

=ag(bg + by + -+ by) +a;(bg + by + -+ bp_g) +az(bg + by + -+ bp_3) + -+ apby
Therefore,

Cn = aan + aan_1 + aan_Z + -+ anBO (2)
n
Given S, = Z ay(by +by_1 + -+ by_gs1)
k=1

= a1bn + az(bn + bn—l) + -+ an(bn + bn_1 + -+ bl) (3)
Cp+ S, =a¢yB, + 4B, + ay,B, + -+ a,B,
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=(ap+a; +a;+-+ayB,
=A4,B, ..(4)
Suppose the sequence {S,,} converges to zero.

= lim S, =0 .. (5)

n—oo

From (4), we have
lim (C, + S,) = lim (4,,B,)
n—oo n—oo

= lim C, + lim S, = lim (4,) lim (B,)
n—-oo n—oo n—-oo n—oo

= lim ¢, = 4B {by(1),(5)}

= Cauchy product Z ¢, Is convergent and it converges to AB

n=0
Conversely, suppose Cauchy product Y.7°_, ¢, is convergent, then by Abel’s theorem

[oe]

Z ¢y =AB ..(6)

n=0

i.e. lim C, = lim (4,) lim (B,,) ...(7)
n—oo n—-oo n—-oo
From relation (4), we have

lim C, + lim S, = lim (4,) lim(B,) ..(8)
n—oo n—oo n—oo

n—oo

From relation (7) and (8), we have,

= lim S, =0

n—-oo

= {Sa) = 0

Summary

e Given) ayand), byweputc, = Yi_gaxbyp—r (n=0,12,..)
and call Z cnthe product of two given series.

e Abel’s Theorem: If }'77_y anand Y57 byare two convergent series such that Y5, a,and
Ym=o bpconverge to A and B respectively. If their Cauchy product )., c,is convergent

then X, cpconverges to AB.

e  Merten's Theorem: If };;°_ a,, is absolutely,convergent, >.>_o a, = 4 and Yo b, = B

then their Cauchy product Z ¢, is convergent and Z ¢, =AB.

e Cauchy product of two convergent seriésthay be divergent. ~ "=°

e  Cauchy product of two divergent series may be convergent.

e Suppose the series Yn-oa, and Y, b,both converge absolutely and converge to the
sums A and B respectively. Then their Cauchy product series ;.o ¢p ,Cq =
Y=o Ax by converge to AB.

e Givenlog2 = 1—%+§—%+---+%+w,then2;‘f=0(—1)”

= (log2)2.

e Let Y c, be the Cauchy product of two convergent series Y a, and Y, by,.If

1 1 1

(n+1)1 n2 (n-1)3

4t
1
1.(n+1)

Sn = Xh=1ak(by + bp_q + -+ by_g41) then X c, is convergent if and only if the sequence

{Sn} converges to zero.
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Keywords
Product of series: Given Z a, and Z b,

We put
n
Cp = Z agbn_r (n=0,1.2,..)
k=0

and call z c,the product of two given series.
Abel’s Theorem: If 377 ayand Y5, bpare two convergent series such that Y-, a,and

Y=o bpconverge to A and B respectively. If their Cauchy product Y5, c,is convergent then
Y=o Cpconverges to AB.

Merten’s Theorem:
@) Z a,is absolutely convergent.

n=0

@)Xy pa, =4
3 b, =B

then their Cauchy product Z ¢y is convergent and Z ¢, =AB.

n=0 n=0

Self Assessment

1) Let Y a, and Y, b, be two series and let ¢, = Y}i_, ay by then ¥ ¢, is the Cauchy product of
the two-given series.

A. True

B. False

2) If the series ) ay,, X, by, 2. ¢, converge to 4, B,C, and ¢, = agby, + -+ + apby then C = AB.

A. True
B. False

3) If {a, } is a sequence of real numbers and lim a,, = [ then
n-—-oo

A lim ai+az+-+an — 1
| noe + 1 + !
. a;taz+---+a
B. lim 2———2=2]
n—-oo n
C. lim a;+az+--+an — L
" noo L 2
. Qitaz+-+a
D. lim ——=1
n—oo

4) If rllim a, = aand rllim b, = b then

A. lim a1bptazbp_q+-+anby ﬂ

’ n—-oo n -
B. lim a;bp+azby_1+--+ayby
: n—oo n

C.

2
=ab

i albn + azbn_1 + et anbl
lim =
n—-oo n
D. none of these

2ab
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5) Consider the following statements:

(I) Cauchy product of two divergent series may be convergent.
(IT) Cauchy product of two convergent series may be divergent.
only (I) is correct

only (II) is correct

both (I) and (II) are correct
both (I) and (II) are incorrect

9N = »

6) Consider the following statements:
() If ¥, ay, is convergent then lim a, = 0.
n—oo

(I) If lim a,, = 0 then Y, a, is always convergent.
n—oo

A. only (I) is correct

B. only (II) is correct

C. both (I) and (II) are correct
D. both (I) and (II) are incorrect

2 n
7) Z (§> is a convergent series.

A. True
B. False

n
8) Z 5 isadivergent series.

A. True
B. False

9) If ¥ a,, converges absolutely, then ), a, converges.
A. True
B. False

10) If ¥ a,, converges but }|a,| diverges, then }’ a,, converges non-absolutely.
A. True
B. False

n

11) The series Z (
A. True

converges absolutely.

B. False

12) The series }, a, is said to converge absolutely if the series Y.|a,| converges.
A. True
B. False
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Unit 14: Addition and Multiplication of Series

n

13) Supposez a, = A,Z b, =B,c, = Z agbp_r,(n=0,1,2,...) thenz cn = AB.

A. True
B. False

14 Ltz =1 1+1 1+ +
) Le a, = 372

2
A. True
B. False
15) log2 =
2 3 4 n+1
2 3 4 n+1
co1-_1_r_.._1_
2 3 4 n+1
D. 1_l+l_l+...+(_1)n+...
2 3 4 n+1

1 B 2 A 3 D
6 A 7 A 8 A
11. A 12. A 13. B

Review Questions

k=0

="
n+1

,then Z a, is divergent series.

4. B 5. C
9. A 10. A
14. B 15. D

1) Show that the Cauchy product of the two divergent series

n=0

[oe) [oe) (o] [ee]
Z a, =2+ Z 2" and Z b, =-1+ Z 1™ is convergent.
n=1 n=0 n=1

2) Show that the Cauchy product of the convergent series

(oo}
ot ,
Z B with itself is not convergent.
n=1

3) Give example to show that Cauchy product of two divergent series may be convergent.

4) Check the convergence of the series

5) Check the convergence of the series

o
Z n
n=0

Ix™
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Notes
Real Analysis 1

l!'J Further Readings

Walter Rudin, Principles of Mathematical Analysis (3t edition), McGraw-Hill
International Publishers.

T. M. Apostol, Mathematical Analysis (2nd edition).
S.C. Malik, Mathematical Analysis.

Shanti Narayan, Elements of Real Analysis

Web Links
https:/ /nptel.ac.in/courses/111/105/111105069/

WWW |

https:/ /www.youtube.com/watch?v=mlm KcHHarU
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