Artificial Intelligence
DCAP506

Edited by:
Parminder Kaur

OVELY
ROFESSIONAL
NIVERSITY

2>, IMOVELY
% [RJROFESSIONAL
7 [EINIVERSITY

ARTIFICIAL INTELLIGENCE
Edited By
Parminder Kaur

Printed by
EXCEL BOOKS PRIVATE LIMITED
A-45, Naraina, Phase-I,
New Delhi-110028
for
Lovely Professional University
Phagwara

SYLLABUS

Artificial Intelligence

Objectives: To enable the student to understand technicalities of intelligence, capturing and generating knowledge,
knowledge representation methodologies, Natural language processing. Student will also learn Fuzzy Logic with their
applications and an Artificial intelligence language Prolog.

Sr. No. Description
1. Introduction and Overview: Meaning of Al, The AI Problems, Task Domains, Al Technique, Criteria for
Success
2. Problems, Problem Spaces & Search: Defining The Problem as a State Space Search, Production Systems -

BFS, DFS, Heuristic Search, Problem & Production System Characteristics, Issues in the Design of Search
Programs, Common Al Problems

3. Heuristic Search Techniques: Generate & Test, Hill Climbing, Best First Search, Constraint Satisfaction,
Means-End Analysis

4. Knowledge Representation: General Concepts of Knowledge, Approaches of Knowledge Representation,
Predicate Logic to Represent Knowledge, Resolution, Unification algorithm

5. Knowledge Representation using Rules: Procedural vs Declarative Knowledge, Logic Programming,
Forward vs Backward Reasoning, Matching & Control Knowledge

6. Symbolic Reasoning Under Uncertainty: Nonmonotonic Reasoning

Statistical Reasoning: Probability & Bayes Theorem, Certainty Factors and Rule Based Systems, Bayesian
N/W, Fuzzy Logic and applications

7. Weak Slot and Filler Structures: Semantic Nets, Frames

Strong Slot and Filler Structures: Conceptual Dependency, Scripts

8. Natural Language Processing: Introduction, Steps, Syntactic Processing, Semantic Analysis, Discourse &
Pragmatic Processing, Spell Checking

9. Learning: Meaning, Rote Learning, Learning by taking Advice, Learning from examples, Explanation-Based
learning, Expert Systems & Its Architecture, Speech Recognition

10. Prolog: Introduction, Converting English to Prolog Facts and Rules, Goals, Prolog Terminology, Variables,

Control Structures, Arithmetic operators, Matching, Backtracking, Lists, Input/Output and Streams

Unit 1:

Unit 2:

Unit 3:

Unit 4:

Unit 5:

Unit 6:

Unit 7:

Unit 8;

Unit 9:

Unit 10:

Unit 11;

Unit 12;

Unit 13:

Unit 14:

CONTENT

Introduction and Overview
Parminder Kaur, Lovely Professional University

Problems, Problem Spaces and Search
Parminder Kaur, Lovely Professional University

Common Al Problems
Parminder Kaur, Lovely Professional University

Heuristic Search Techniques
Manish Kumar, Lovely Professional University

Knowledge Representation
Parminder Kaur, Lovely Professional University

Knowledge Representation using Rules
Parminder Kaur, Lovely Professional University

Symbolic Reasoning under Uncertainty
Parminder Kaur, Lovely Professional University

Statistical Reasoning
Dinesh Kumar, Lovely Professional University

Weak Slot and Filler Structures
Dinesh Kumar, Lovely Professional University

Strong Slot and Filler Structures
Dinesh Kumar, Lovely Professional University

Natural Language Processing
Dinesh Kumar, Lovely Professional University

Learning
Parminder Kaur, Lovely Professional University

Expert Systems and its Architecture
Parminder Kaur, Lovely Professional University

Prolog
Dinesh Kumar, Lovely Professional University

15

31

44

61

79

90

100

113

127

139

158

172

193

Parminder Kaur, Lovely Professional University

Unit 1: Introduction and Overview

Unit 1: Introduction and Overview

Notes

CONTENTS

Objectives

Introduction

1.1

Overview

1.1.1 History of Al

1.2 Meaning of Artificial Intelligence (Al)
121 What is Intelligence?
1.2.2 Some Short Definitions of Al
1.3 Al Problems and Task Domains
131 Al Problems
1.3.2 Task Domains
1.4 AlTechnique
1.5 Criteria for Success
1.6 Summary
1.7 Keywords
1.8 Review Questions
1.9 Further Readings
Objectives

After studying this unit, you will be able to:

o Get the introduction and overview of artificial intelligence
o Discuss the meaning of artificial intelligence

° Recognize the Al problems

o Discuss the task domains and Al technique

° Discuss the criteria for success

Introduction

Artificial Intelligence (AI) is the area of computer science focusing on creating machines that can
engage on behaviors that humans consider intelligent. The ability to create intelligent machines
has intrigued humans since ancient times, and today with the advent of the computer and
50 years of research into Al programming techniques, the dream of smart machines is becoming
areality. Researchers are creating systems which can mimic human thought, understand speech,
beat the best human chess player, and countless other feats never before possible. Find out how
the military is applying Al logic to its hi-tech systems, and how in the near future Artificial

Intelligence may impact our lives. Look at The History of Artificial Intelligence.

LOVELY PROFESSIONAL UNIVERSITY

Artificial Intelligence

Notes

1.1 Overview

1.1.1 History of Al

Evidence of Artificial Intelligence folklore can be traced back to ancient Egypt, but with the
development of the electronic computer in 1941, the technology finally became available to
create machine intelligence. The term artificial intelligence was first coined in 1956, at the
Dartmouth conference, and since then Artificial Intelligence has expanded because of the theories
and principles developed by its dedicated researchers. Through its short modern history,
advancement in the fields of Al have been slower than first estimated, progress continues to be
made. From its birth 4 decades ago, there have been a variety of Al programs, and they have
impacted other technological advancements.

Figure 1.1: History of Al

The birth of Al

Al-based hardwars zells

First Electronic Start of DoD's Advanced §425 million to companies
computer Dartmecuth Research Projects Al syst cats
conference : - Al sysiem Dedis
First Experf System human chessmaster
l 1941 1949 1956 1958 1943 1968 1970 1972 1986 T‘?’?TI

First commercial,

| Mi rccw'clr\d program,

Lisp languoge
developed

SHRDLU created

I
Al military systems
used effectively in

stored program DESERT STORM
computer X) PROLOG languags
Logic Theorist developed revealed
The Era of the Computer

In 1941 an invention revolutionized every aspect of the storage and processing of information.
That invention, developed in both the US and Germany was the electronic computer. The first
computers required large, separate air-conditioned rooms, and were a programmer’s nightmare,
involving the separate configuration of thousands of wires to even get a program running.

The 1949 innovation, the stored program computer, made the job of entering a program easier,
and advancements in computer theory lead to computer science, and eventually Artificial
intelligence.

AN

Caution With the invention of an electronic means of processing data, came a medium that
made Al possible.

Figure 1.2: Old Era of Computer

T

LOVELY PROFESSIONAL UNIVERSITY

Unit 1: Introduction and Overview

The Beginnings of Al Notes
Although the computer provided the technology necessary for Al, it was not
until the early 1950’s that the link between human intelligence and machines
was really observed. Norbert Wiener was one of the first Americans to make
observations on the principle of feedback theory.

& /
Norbert Wiener
' Example: The most familiar example of feedback theory is the thermostat. It controls the

temperature of an environment by gathering the actual temperature of the house, comparing it
to the desired temperature, and responding by turning the heat up or down.

What was so important about his research into feedback loops was that Wiener theorized that all
intelligent behavior were the result of feedback mechanisms that could possibly be simulated
by machines. This discovery influenced much of early development of AL In late 1955, Newell
and Simon developed The Logic Theorist, considered by many to be the first Al program. The
program, representing each problem as a tree model, would attempt to solve it by selecting the
branch that would most likely result in the correct conclusion. The impact that the logic theorist
made on both the public and the field of Al has made it a crucial stepping stone in developing the
Al field.

In 1956 John McCarthy regarded as the father of Al, organized a conference to
draw the talent and expertise of others interested in machine intelligence for a
month of brainstorming. He invited them to Vermont for “The Dartmouth
summer research project on artificial intelligence.” From that point on, because
of McCarthy, the field would be known as Artificial intelligence. Although not a
huge success, the Dartmouth conference did bring together the founders in Al,)
and served to lay the groundwork for the future of Al research. John McCarthy

Knowledge Expansion

In the seven years after the conference, Al began to pick up momentum. Although the field was
still undefined, ideas formed at the conference were re-examined, and built upon. Centers for Al
research began forming at Carnegie Mellon and MIT, and a new challenge was faced: further
research was placed upon creating systems that could efficiently solve problems, by limiting the
search, such as the Logic Theorist. And second, making systems that could learn by themselves.

In 1957, the first version of a new program The General Problem Solver (GPS) was tested. The

program developed by the same pair which developed the Logic Theorist. The GPS was an

extension of Wiener’s feedback principle, and was capable of solving a greater extent of common

sense problems. A couple of years after the GPS, IBM contracted a team to research artificial

intelligence. Herbert Gelerneter spent three years working on a program for solving geometry

theorems. While more programs were being produced, McCarthy was busy developing a major

breakthrough in Al history. In 1958 McCarthy announced his new development; the LISP language,
which is still used today. LISP stands for LISt Processing, and was soon adopted as the language

of choice among most Al developers.

Figure 1.3: Department of Defense Advance Research Project

nBIBﬂSGAﬂUHHL‘Bﬂ HBSEHIE" PlﬂiECIS AQBHCU

LOVELY PROFESSIONAL UNIVERSITY 3

Artificial Intelligence

Notes

In 1963 MIT received a 2.2 million dollar grant from the United States government to be used in
researching Machine-Aided Cognition (artificial intelligence). The grant by the Department of
Defense’s Advanced Research Projects Agency (ARPA), to ensure that the US would stay ahead of
the Soviet Union in technological advancements. The project served to increase the pace of
development in Al research, by drawing computer scientists from around the world, and continues
funding.

Multitude of Programs

The next few years showed a multitude of programs, one notably was SHRDLU. SHRDLU was
part of the micro-worlds project, which consisted of research and programming in small worlds
(such as with a limited number of geometric shapes). The MIT researchers headed by Marvin
Minsky, demonstrated that when confined to a small subject matter, computer programs could
solve spatial problems and logic problems. Other programs which appeared during the late
1960’s were STUDENT, which could solve algebra story problems, and SIR which could understand
simple English sentences. The result of these programs was a refinement in language
comprehension and logic.

Another advancement in the 1970’s was the advent of the expert system. Expert systems predict
the probability of a solution under set conditions.

Example: Because of the large storage capacity of computers at the time, expert systems
had the potential to interpret statistics, to formulate rules. And the applications in the market
place were extensive, and over the course of ten years, expert systems had been introduced to
forecast the stock market, aiding doctors with the ability to diagnose disease, and instruct
miners to promising mineral locations. This was made possible because of the systems ability to
store conditional rules, and a storage of information.

During the 1970’s, many new methods in the development of Al were tested, notably Minsky’s
frames theory. Also David Marr proposed new theories about machine vision, for instance, how
it would be possible to distinguish an image based on the shading of an image, basic information
on shapes, color, edges, and texture. With analysis of this information, frames of what an image
might be could then be referenced. Another development during this time was the PROLOGUE
language. The language was proposed for 1972.

During the 1980’s AI was moving at a faster pace, and further into the corporate sector. In 1986,
US sales of Al-related hardware and software surged to $425 million. Expert systems in particular
demand because of their efficiency. Companies such as Digital Electronics were using XCON, an
expert system designed to program the large VAX computers. DuPont, General Motors, and
Boeing relied heavily on expert systems Indeed to keep up with the demand for the computer
experts, companies such as Teknowledge and Intellicorp specializing in creating software to aid
in producing expert systems formed. Other expert systems were designed to find and correct
flaws in existing expert systems.

Transition from Lab to Life

The impact of the computer technology, Al included was felt. No longer was the computer
technology just part of a select few researchers in laboratories. The personal computer made its
debut along with many technological magazines. Such foundations as the American Association
for Artificial Intelligence also started. There was also, with the demand for Al development, a
push for researchers to join private companies. 150 companies such as DEC which employed its
Al research group of 700 personnel, spend $1 billion on internal Al groups. Other fields of Al
also made there way into the marketplace during the 1980’s. One in particular was the machine

LOVELY PROFESSIONAL UNIVERSITY

Unit 1: Introduction and Overview

vision field. The work by Minsky and Marr were now the foundation for the cameras and Notes
computers on assembly lines, performing quality control. Although crude, these systems could
distinguish differences shapes in objects using black and white differences. By 1985 over a
hundred companies offered machine vision systems in the US, and sales totaled $80 million. The
1980’s were not totally good for the Al industry. In 1986-87 the demand in Al systems decreased,
and the industry lost almost a half of a billion dollars. Companies such as Teknowledge and
Intellicorp together lost more than $6 million, about a third of there total earnings. The large
losses convinced many research leaders to cut back funding. Another disappointment was the so
called “smart truck” financed by the Defense Advanced Research Projects Agency. The projects
goal was to develop a robot that could perform many battlefield tasks. In 1989, due to project
setbacks and unlikely success, the Pentagon cut funding for the project.

Despite these discouraging events, Al slowly recovered. New technology in Japan was being
developed. Fuzzy logic, first pioneered in the US has the unique ability to make decisions under
uncertain conditions. Also neural networks were being reconsidered as possible ways of
achieving Artificial Intelligence. The 1980’s introduced to its place in the corporate marketplace,
and showed the technology had real life uses, ensuring it would be a key in the 21st century.

Al Put to the Test

The military put Al based hardware to the test of war during Desert Storm. Al-based technologies
were used in missile systems, heads-up-displays, and other advancements. Al has also made the
transition to the home. With the popularity of the Al computer growing, the interest of the
public has also grown. Applications for the Apple Macintosh and IBM compatible computer,
such as voice and character recognition have become available. Also Al technology has made
steadying camcorders simple using fuzzy logic. With a greater demand for Al-related technology,
new advancements are becoming available. Inevitably Artificial Intelligence has, and will
continue to affecting our lives.

Figure 1.4: Al in Test

As a result of research done by Willi Bruns Artificial Intelligence (Al) using computer programs
has the ability to solve complex problems of the real world with logical calculus and not with
functional analysis. The Al is engaged in the development of computer programs to make
computers more “intelligent”. Its research has two aims:

1. To make machines and calculating processes more user-friendly and
2. To analyze intelligent behavior.

Al methods try to copy human behavior, that is they attempt to recreate human errors and
experiences to produce logical conclusions. Another difference to normal programs is the fact
that they do use less functions, compared to the classical numerical mathematics, but much more

LOVELY PROFESSIONAL UNIVERSITY 5

Artificial Intelligence

Notes

text, symbols and logical calculus. Therefore, Al can be used for solving problems which do not
have exact solutions or where solutions can be only gained with an enormous effort, whereby it
can happen that false answers are tolerated which happens with human problem solving,.

Another fundamental indication of the Al is the heuristic search. Generally in Al empiric rules
exist, called heuristics, to shorten the search as the number of possible solutions for complex
problems can be very high. Another aspect is the fact that traditional computer programs in
contrast to Al programs are very difficult to modify, because both the control and the expert
knowledge are integrated in the same system. Modifications made in a part of the program have
to be carefully examined on their influence and consequences in other parts of the program.

=7|

Notes Al programs, expert knowledge is used overlapping, between intelligence and
knowledge, where no correlation exists, it must be possible to use the knowledge for the

search. In this case it is common to divide the knowledge from the mechanism controlling
the search to make sure that modifications of the knowledge only require modifications
of the knowledge base.

2
Task Discuss the various advancements occurred during the evolution of artificial
intelligence.

Self Assessment

Fill in the blanks:

1. In1956 ... regarded as the father of Al, organized a conference to draw the
talent and expertise of others interested in machine intelligence for a month of
brainstorming.

2. In1957, the first version of a new programcccc.ccc...... was tested.

3. Generally in Al empiric rules exist, called , to shorten the search as the

number of possible solutions for complex problems can be very high.

1.2 Meaning of Artificial Intelligence (AI)

Artificial Intelligence (Al) is usually defined as the science of making computers do things that
require intelligence when done by humans. Al has had some success in limited, or simplified,
domains. However, the five decades since the inception of Al have brought only very slow
progress, and early optimism concerning the attainment of human-level intelligence has given
way to an appreciation of the profound difficulty of the problem.

1.2.1 What is Intelligence?

Quite simple human behaviour can be intelligent yet quite complex behaviour performed by
insects is unintelligent. What is the difference? Consider the behavior of the digger wasp, Sphex
ichneumoneus. When the female wasp brings food to her burrow, she deposits it on the threshold,
goes inside the burrow to check for intruders, and then if the coast is clear carries in the food. The
unintelligent nature of the wasp’s behavior is revealed if the watching experimenter moves the
food a few inches while the wasp is inside the burrow checking. On emerging, the wasp repeats
the whole procedure: she carries the food to the threshold once again, goes in to look around,

LOVELY PROFESSIONAL UNIVERSITY

Unit 1: Introduction and Overview

and emerges. She can be made to repeat this cycle of behavior upwards of forty times in Notes
succession. Intelligence - conspicuously absent in the case of Sphex - is the ability to adapt one’s

behavior to fit new circumstances. Research in Al has focused chiefly on the following

components of intelligence: learning, reasoning, problem-solving, perception, and language-

understanding.

AN

Caution Mainstream thinking in psychology regards human intelligence not as a single
ability or cognitive process but rather as an array of separate components.

1.2.2 Some Short Definitions of Al

There are following definition which describes the term Artificial Intelligence:

o The branch of computer science that deal with writing computer programs that can solve
problems creatively.

o Artificial Intelligence (AI) is both the intelligence of machines and the branch of computer
science which aims to create it.

o Artificial Intelligence is a series of albums by Warp Records released in the early 1990s to
exhibit the capabilities and sounds of electronic music. Warp described the new (post-rave
electronic) music as “electronic listening music” to clarify that it was meant more for the
mind than the body.

o The history of artificial intelligence begins in antiquity, with myths, stories and rumors of
beings built by craftsman and endowed with intelligence and consciousness.

o Intelligence exhibited by an artificial (non-natural, man-made) entity; The branch of
computer science dealing with the reproduction or mimicking of human-level thought in
computers; The essential quality of a machine which thinks in a manner similar to or on
the same general level as a human being

o This refers to an algorithm or set of algorithms that can make decisions in a logical way.
For example, the Al routine for a bad guy in a game.

o Occurs when analysis and the search for truth takes precedence over the creative and
human activities of a job. People who practice artificial intelligence behave with so much
thinking and analysis that the feeling, intuition, and art of making decisions are sacrificed.

o Research into spacecraft autonomy, emerging properties of complex systems, automated
system design and in general on the applications of the methods developed by the Al
community to problems related to space system.

o Tools that exhibit human intelligence and behavior including self-learning robots, expert
systems, and voice recognition, natural and automated translation.

o Information processing by mimicking or simulation of the cerebral, nervous or cognitive
processes.
o Applies to a computer system that is able to operate in a manner similar to that of human

intelligence; that is, it can understand natural language and is capable of solving problems,
learning, adapting, recognizing, classifying, self-improvement, and reasoning.

o The branch of computer science that attempts to program computers to respond as if
they were thinking - capable of reasoning, adapting to new situations, and learning new
skills.

LOVELY PROFESSIONAL UNIVERSITY 7

Artificial Intelligence

Notes

A generic term commonly used to indicate the inclusion in software of some type of
automated application of rules, the results of which give the appearance of “intelligence”
on the part of the computer.

The development of computers that ‘think” and respond like humans.

Computational techniques to automate tasks that require human intelligence and the
ability to reason.

A branch of information science aiming at computational models of human cognition,
such as expert systems.

An algorithm by which the computer gives the illusion of thinking like a human. Also, the
action of a character in a game as it reacts to other objects in the game.

The discipline of building special computer systems that can perform complex activities
usually only performed by humans.

The concept of making computers do tasks once considered to require thinking.
Al makes computers play chess and recognize handwriting and speech. Return to the
top.

A branch of computer science whose goal is the design of machines that have attributes
associated with human intelligence, such as learning, reasoning, vision, understanding
speech, and, ultimately, consciousness.

Field of study concerned with producing computer programs capable of learning and
processing their own ‘thoughts’.

A growing set of computer problem-solving techniques being developed to imitate human
thought or decision making processes.

Default behavior of units, programmed into the game, to give basic reactions and
potentially to simulate a confrontation with another player.

It is the study and design of intelligent agents, where an intelligent agent is a system that
perceives its environment and takes actions which maximize its chances of success.

An assembler is a program that takes basic computer instructions and converts them into
a pattern of bits (binary digits).
The automation of human cognitive skills through rules and such things as recognizing

speech or visual images, solving problems, or making medical diagnoses.

The ability of a machine system such as the ASAP software to perceive anticipated or
unanticipated new conditions, decide what actions must be performed under the conditions,
and plan the actions accordingly.

A set of code or algorithms designed to simulate the actions of an intelligent being - such
as a human or animal (Tamagochi)

A broad term describing the field of developing computer programs to simulate human
thought processes and behaviors.

Self Assessment

Fill in the blanks:

......................... is usually defined as the science of making computers do things that require
intelligence when done by humans.

LOVELY PROFESSIONAL UNIVERSITY

Unit 1: Introduction and Overview

5. in Al has focused chiefly on the following components of intelligence: Notes
learning, reasoning, problem-solving, perception, and language-understanding.

6. A generic term commonly used to indicate the inclusion in software of some type of
automated application of rules, the results of which give the appearance of “......................... "
on the part of the computer.

1.3 Al Problems and Task Domains

1.3.1 Al Problems

When learning the usual range of tasks that we might look forward to an “intelligent entity” to
perform, we require to take into account both “commonplace” tasks in addition to expert tasks.

Example: The commonplace tasks comprise:

o Identifying people, objects.

o Communicating (via natural language).

o Finding the way around obstructions on the streets.

These tasks are performed by matter of routinely by people and some other animals. Specialist
tasks comprise:

o Medical diagnosis.
o Mathematical problem solving
o Playing games such as chess

?

Did u know? These tasks cannot be performed by all people, and can only be carried out by
skilled experts.

Now, which of these tasks are simple and which ones are tough? Evidently tasks of the first type
are simple for humans to carry out, and approximately all are able to perform them. The second
range of tasks needs skill development and/or intelligence and only some expert scan execute
them well.

|

Notes Though, when we see what computer systems have been able to attain to date, we
observe that their accomplishments comprise performing complicated tasks such as medical

diagnosis, carrying out symbolic integration, proving theorems and playing chess.

Alternatively, it has proved to be very firm to make computer systems achieve many routine
tasks that all humans and many animals can do.

'i Example: Examples of such tasks comprise navigating our route without running into
things, catching prey and averting predators.

Humans and animals are also competent of interpreting multifaceted sensory information. We
are able to identify objects and people from the visual picture that we obtain. We are also able
to carry out compound social functions.

LOVELY PROFESSIONAL UNIVERSITY 9

Artificial Intelligence

10

Notes

Intelligent Behaviour

This leads us to the question of what represents intelligent behaviour. Some of these tasks and
applications are:

° Perception including image recognition and computer vision

) Reasoning

[Learning

° Understanding language including natural language processing, speech processing
) Solving problems

) Robotics.

1.3.2 Task Domains

Task Domains include:

) Formal tasks (matematika, games)
° Mundane task (perception, robotics, natural language, common sense, reasoning)
° Expert tasks (financial analysis, medical diagnostics, engineering, scientific analysis, dll)

Self Assessment

Fill in the blanks:

7. When learning the usual range of tasks that we might look forward to an “intelligent
entity” to perform, we require to take into account both “commonplace” tasks in addition
0 i tasks.

8. tasks are performed by matter of routinely by people and some other
animals.

1.4 AI Technique

As there are many diverse artificial intelligence techniques that have been generated, with new
ways being produced, a few forms of Artificial Intelligence (Al) have turn out to be more and
more well-liked. Some of the most general techniques comprise the use of neural networks and
the expansion of expert systems. These dissimilar artificial intelligence techniques can be accessed
to build up dissimilar forms of Al typically depending on the amount of “thinking” the program
can really do, and these are called as either “strong AI” or “weak AL”

Artificial intelligence techniques are the ways that can be used to generate and produce computer
programs generally observed as forms of artificial intelligence. Usually, artificial intelligence
points to a program that is able to imitate or re-create the consideration processes illustrated by
the human brain. This typically comprises solving problems, making observations or obtaining
input for utilization in analysis or problem solving, and the aptitude to classify and identify
dissimilar objects and the properties of those objects.

There are many dissimilar artificial intelligence methods that can be used by an Al programmer,
though two of the most general are neural networks and expert systems. Neural networks are
computer programs intended about the cognitive processes utilized by the human brain. Basically,
a neural network includes layers of categorization and ways by which objects can be recognized

LOVELY PROFESSIONAL UNIVERSITY

Unit 1: Introduction and Overview

and categorized. This is analogous to the idea of plan in human cognition, which permits people Notes
to recognize objects based on properties of those objects. New information offered to the neural

network can then be analyzed and recognized based on formerly inputted criteria, permitting

the system to “learn” new categories and recognize known or unknown objects.

Expert systems are artificial intelligence techniques constructed around logic and “if /then”
statements. This typically includes a great deal of information that is “taught” to the computer
system, which then makes the system an expert in a specific field. When new input is commenced
in, such as a request for processing financial reports, the expert system can examine the
information by means of these if/then statements to restrict the output response.

These different artificial intelligence techniques can be utilized to build up systems that are
considered either “strong AI” or “weak AL” Strong Al systems are those that most completely
look for to emulate human thought and cognitive potentials through a broad range of functions.
Artificial intelligence techniques that build up weak Al systems are narrower in focus, and look
for to imitate only a single function or facet of human intelligence.

l?

Did u know? Strong Al systems can examine new information and offer output that
potentially goes beyond the limitations of input data.

2

Task Tllustrate the function of neural networks.

Self Assessment

Fill in the blanks:

9. are the ways that can be used to generate and produce computer programs
generally observed as forms of artificial intelligence.

100 are computer programs intended about the cognitive processes utilized by
the human brain.

11 are artificial intelligence techniques constructed around logic and “if / then”

120 systems are those that most completely look for to emulate human thought
and cognitive potentials through a broad range of functions.

13. Artificial intelligence techniques that build up ... systems are narrower in
focus, and look for to imitate only a single function or facet of human intelligence.

1.5 Criteria for Success

Criteria for success includes:

° Long-term: Turing Test (for Weak Al)

<

& As suggested by Alan Turing (1950), if a computer can make people believe it is
human (i.e., intelligent) by means of an unobstructed conversation, then it is
intelligent.

3
<

Turing forecasted fully intelligent machines by 2000, not even close

3
<

Loebner Prize competition, tremendously controversial

LOVELY PROFESSIONAL UNIVERSITY 11

Artificial Intelligence

12

Notes

Short-term: More modest success in restricted domains

3
<

Performance equal or better than humans, game playing (Deep Blue), expert systems
(MYCIN)

3
<

Real-world expediency $$%e.g., expert systems (XCON, Prospector), fuzzy logic
(cruise control)

Self Assessment

Fill in the blanks:

14. The long-term criteria includeccccc.c.cc..... Test performed for Weak AL

15. In short-term criteria, performance is equal or better than

1.6 Summary

° Artificial Intelligence (Al) is usually defined as the science of making computers do things
that require intelligence when done by humans.

° The term artificial intelligence was first coined in 1956, at the Dartmouth conference, and
since then Artificial Intelligence has expanded because of the theories and principles
developed by its dedicated researchers.

° Al-based technologies were used in missile systems, heads-up-displays, and other
advancements.

° Research in Al has focused chiefly on the following components of intelligence: learning,
reasoning, problem-solving, perception, and language-understanding.

° Artificial Intelligence (AI) is both the intelligence of machines and the branch of computer
science which aims to create it.

° When learning the usual range of tasks that we might look forward to an “intelligent
entity” to perform, we require to take into account both “commonplace” tasks in addition
to expert tasks.

° Some of the most general techniques comprise the use of neural networks and the expansion
of expert systems.

° Artificial intelligence techniques are the ways that can be used to generate and produce
computer programs generally observed as forms of artificial intelligence.

° Strong Al systems are those that most completely look for to emulate human thought and
cognitive potentials through a broad range of functions.

° Artificial intelligence techniques that build up weak Al systems are narrower in focus, and

look for to imitate only a single function or facet of human intelligence.

1.7 Keywords

Al Technique: Artificial intelligence techniques are the ways that can be used to generate and
produce computer programs generally observed as forms of artificial intelligence.

Artificial Intelligence (Al): Artificial Intelligence (Al) is usually defined as the science of making
computers do things that require intelligence when done by humans.

LOVELY PROFESSIONAL UNIVERSITY

Unit 1: Introduction and Overview

Strong Al Systems: Strong Al systems are those that most completely look for to emulate Notes
human thought and cognitive potentials through a broad range of functions.

Weak Al Systems: Artificial intelligence techniques that build up weak Al systems are narrower
in focus, and look for to imitate only a single function or facet of human intelligence.

1.8 Review Questions

Elucidate in detail the overview of artificial intelligence.

Make distinction between human and computer intelligence.

Ilustrate the concept of Al Problems.

Describe the tasks and applications associated with intelligent behavior.

Nlustrate the concept of task domain.

SRR T M e

What are artificial intelligence techniques? How are they used to generate and produce
computer programs?

N

Make distinction between “strong AI” and “weak AI”.
8. What does long-term and short-term criteria mean?
9. Write a short note on the evolution of Al

10. When the PROLOGUE language came in existence?

Answers: Self Assessment

1. John McCarthy 2. The General Problem Solver (GPS)
3. heuristics 4. Artificial Intelligence (AI)

5. Research 6. intelligence

7. expert 8. Common-place

9. Artificial intelligence techniques 10. Neural networks

11. Expert systems 12. Strong Al

13. weak AI 14. Turing

15. humans

1.9 Further Readings

&

Books Antonelli, D. 1983. The application of artificial intelligence to a maintenance and diagnostic
information system (MDIS). Proceedings of the Joint Services Workshop on Artificial
Intelligence in Maintenance. Boulder, CO.

Boose, J.H. 1984. Personal construct theory and the transfer of human expertise.
Proceedings of the National Conference on Artificial Intelligence (AAAI-84),
p- 27-33, Austin, Texas.

Boose,].H. 1985. A knowledge acquisition program for expert systems based on personal
construct psychology. International Journal of Man-Machine Studies, 23, 495-525.

LOVELY PROFESSIONAL UNIVERSITY 13

Artificial Intelligence

Notes Boose, J.H. 1986a. Expertise Transfer for Expert System Design, New York; Elsevier.

Boose,].H. 1986b. Rapid acquisition and combination of knowledge from multiple experts
in the same domain. Future Computing Systems Journal, 1, 191-216.

Boose,].H. 1988. Uses of repertory grid-centered knowledge acquisition tools for knowledge-
based systems. International Journal of Man-Machine Studies, 29, 287-310.

Boose,].H. 1989. A survey of knowledge acquisition techniques and tools. Knowledge
acquisition: An international journal of knowledge acquisition for knowledge-
based systems, in press. Vol. 1, No. 1.

Boose,].H., and Bradshaw,].M. 1987b. AQUINAS: A knowledge acquisition workbench
for building knowledge based systems. Proceedings of the First European Workshop
on Knowledge Acquisition for Knowledge-Based Systems (pp. A6.1-6). Reading
University.

Boose,].H., Bradshaw, J.M., Shema, D.B. 1988. Recent progress in Aquinas: A
knowledge acquisition workbench. Proceedings of the Second European Knowledge
Acquisition Workshop (EKAW-88). p. 2.1-15, Bonn.

Bradshaw, J. 1988. Shared causal knowledge as a basis for communication between expert
and knowledge acquisition system. Proceedings of the Second European Knowledge
Acquisition Workshop (EKAW-88) pp. 12.1-6.

Bradshaw, J.M. 1988. Strategies for selecting and interviewing experts. Boeing
Computer Services Technical report in preparation.

Bradshaw,].M. and Boose,].H. 1989. Decision analytic techniques for knowledge
acquisition: Combining situation and preference models using Aquinas. Special issue on
the 2nd Knowledge Acquisition for Knowledge-Based Systems Workshop, 1987,
International Journal of Man- Machine Studies. in press.

Clancey. W. 1986. Heuristic classification. In J. Kowalik (Ed.). Knowledge-based
problem solving. New York: Prentice-Hall.

Davis, R., and Lenat, D.B. 1982. Knowledge-based systems in artificial intelligence.
New York: McGraw-Hill.

DeJong, K. 1987. Knowledge acquisition for fault isolation expert systems. Special issue
on the 1 AAA1 Knowledge Acquisition for Knowledge-Based Systems Workshop,
1986, Part 4, International/ Journal of Man-Machine Studies, Vol. 27, No. 2.

v

Online link aima.cs.berkeley.edu/

14 LOVELY PROFESSIONAL UNIVERSITY

Parminder Kaur, Lovely Professional University

Unit 2: Problems, Problem Spaces and Search

Unit 2: Problems, Problem Spaces and Search

CONTENTS
Objectives
Introduction
21 Defining the Problem as a State Space Search
2.2 Production System
221 Classes of Production Systems
222 Advantages of Production Systems
223 Disadvantages of Production Systems
224 Partially Commutative Production System
2.3 Breadth-first Search
231 How does it Work?
232 Features
233 Applications
24 Depth-first Search
241 Vertex Orderings
242 Applications
2.5 Heuristic Search
2.6 Problem & Production System Characteristics and Design of Search Programs Issues
2.6.1 Problem Characteristics
2.6.2 Production System Characteristics
2.6.3 Issues in the Design of Search Programs
2.7 Summary
2.8 Keywords
2.9 Review Questions

2.10 Further Readings

Objectives

After studying this unit, you will be able to:

Understand the problem as a state space search

Illustrate the concept of production systems

Discuss the Breadth-first search, Depth-first search, and Heuristic search
Identify the problem & production system characteristics

Understand the Issues in the design of search programs

LOVELY PROFESSIONAL UNIVERSITY

Notes

15

Artificial Intelligence

Notes Introduction

Problems have the general form given such-and-such data, find x. A huge variety of types of
problem is addressed in Al. Some examples are: finding winning moves in board games;
identifying people from their photographs; and planning series of movements that enable a
robot to carry out a given task. In this unit, you will understand various concepts of problems,
problem spaces & search.

2.1 Defining the Problem as a State Space Search

The steps that are needed to make a system to work out a particular problem are:

1. Problem Definition that must include precise specifications of what the initial situation
will be as well as what final situations constitute acceptable solutions to the problem.

2. Problem Analysis, this can have immense impact on the appropriateness of varies possible
techniques for solving the problem.

3. Selection of the best technique(s) for solving the particular problem.

The thought of State Space Search is broadly used in Artificial Intelligence. The plan is that a
problem can be solved by probing the steps which might be taken for the solution. Every action
takes the solver to a novel state.

' Example: The typical example is of the Farmer who is required to transport a Chicken,
a Fox and some Grain across a river separately. The Fox will eat the Chicken if left unconfirmed.
Similarly the Chicken will eat the Grain.

Here, the State is illustrated by the positions of the Farmer, Chicken, Fox and Grain. The solver
can move among States by making a legal move (which does not consequence in something
being eaten). Non-legal moves are not valued analyzing.

The clarification to such a problem is a record of linked States leading from the Initial State to the
Goal State. This may be found either by beginning at the Initial State and functioning towards
the Goal state or vice-versa.

The necessary State can be functioned towards by either:
o Depth-First Search: Discovering each strand of a State Space in turn.

o Breadth-First Search: Discovering every link encountered, analyzing the state space a
level at a time.

These techniques usually use lists of:
o Closed States: States whose links have all been discovered.
o Open States: States which have been came across, but have not been fully explored.

Supremely, these lists will also be used to avert endless loops.

Example: Take into account the problem of “Playing Chess”. To construct a program
that could play chess, we have to identify the beginning position of the chess board, the rules
that describe legal moves. And the board position that symbolize a win. The objective of the
winning the game, if possible, must be made unambiguous.

The beginning position can be illustrated by an 8 x 8 array square in which every element square
(xy), (x ranging from 1 to 8 & y varying from 1 to 8) illustrates the board position of a suitable

16 LOVELY PROFESSIONAL UNIVERSITY

Unit 2: Problems, Problem Spaces and Search

chess coin, the goal is any board position in which the challenger does not have a legal move and Notes
his or her “king” is under attack. The legal moves offer the way of receiving from initial state of
final state.

The legal moves can be illustrated as a set of rules including two parts: A left side that provides
the current position and the right side that illustrates the change to be made to the board
position.

Current Position:

While pawn at square (5, 2), and Square (5, 3) is empty, and Square (5, 4) is empty.
Changing Board Position:

Move pawn from Square (5, 2) to Square (5, 4).

The existing position of a coin on the board is its state and the set of all possible states is state
space. One or more states where the problem finishes is final state or goal state.

The state space illustration forms the foundation of most of the AI methods. It permits for a
formal definition of the problem as the requirement to exchange some given situation into
some preferred situation by means of a set of allowable operations. It allows the problem to be
solved with the assistance of known techniques and control approaches to move via the problem
space until goal state is located.

Therefore problem as State space search can be recapitulated as:

° Formulate a problem as a state space search by displaying the legal problem states, the
legal operators, and the initial and goal states.

o A state is defined by the measurement of the values of all attributes of interest in the world.

o An operator modifies one state into the other; it has a precondition which is the value of
certain attributes previous to the application of the operator, and a set of effects, which are
the attributes changed by the operator.

) The initial state is where you begin.

2

Task Make distinction between closed states and open states.

Self Assessment

Fill in the blanks:

1. The thought ofcccccoovviiinin Search is that a problem can be solved by probing the
steps which might be taken for the solution.

2. are the States whose links have all been discovered.

3. A is defined by the measurement of the values of all attributes of interest

in the world.

2.2 Production System

A Knowledge demonstration formalism comprises collections of condition-action rules
(Production Rules or Operators), a database which is customized in harmony with the rules, and a
Production System Interpreter which manages the operation of the rulesi.e. The ‘control mechanism’
of a Production System, formatting the order in which Production Rules are fired.

LOVELY PROFESSIONAL UNIVERSITY 17

Artificial Intelligence

Notes A system that utilizes this form of knowledge representation is known as a production system.

A production system includes rules and factors. Knowledge is programmed in a declarative
from which includes a set of rules of the form

Situation — — — — — — action

Situation that implies action.

Example: TF the initial state is a goal state THEN quit.
The main components of an Al production system are:

i. A global database

ii. A set of production rules and

iii. A control system

The objective database is the central data structure utilized by an Al production system. The
production rules function on the global database. Every rule has a requirement that is either
pleased or not by the database. If the requirement is pleased, the rule can be applied. Application
of the rule alters the database.

|

Notes The control system selects which relevant rule should be applied and ceases
calculation when a termination condition on the database is pleased. If numerous rules are

to fire simultaneously, the control system resolves the disagreements.

2.2.1 Classes of Production Systems

A monotonic production system
A non monotonic production system

A partially commutative production system

L e

A commutative production system.
2.2.2 Advantages of Production Systems

1. Production systems offer an exceptional tool for structuring Al programs.

2. Production Systems are extremely modular since the individual rules can be added, removed
or modified independently.

3. The production rules are articulated in a natural form, so the statements enclosed in the
knowledge base should the recording of an expert thinking out loud.

2.2.3 Disadvantages of Production Systems

One significant difficulty is the fact that it may be very hard to analyze the flow of control inside

a production system since the individual rules don’t call each other.

Production systems depict the operations that can be carried out in a search for a solution to the
problem.

18 LOVELY PROFESSIONAL UNIVERSITY

Unit 2: Problems, Problem Spaces and Search

Monotonic production system: A system in which the application of a rule never averts the later Notes
application of another rule, that could have also been applied at the time the first rule was chosen.

2.2.4 Partially Commutative Production System

A production system in which the application of a specific sequence of rules transforms state X
into state Y, then any permutation of those rules that is permissible also converts state X into
state Y.

Theorem proving falls under monotonic partially communicative system. Blocks world and 8
puzzle problems such as chemical analysis and synthesis come under monotonic, not partially
commutative systems. Playing the game of bridge comes under non monotonic, not partially
commutative system.

For any problem, numerous production systems exist. Some will be competent than others.
However it may appear that there is no association among kinds of problems and kinds of
production systems, in practice there is a definite relationship.

Partially commutative, monotonic production systems are functional for solving ignorable
problems. These systems are significant for man accomplishment standpoint since they can be
executed without the ability to back off to earlier states, when it is exposed that an incorrect path
was followed. Such systems augment the efficiency as it is not essential to keep track of the
changes done in the search process.

Monotonic partially commutative systems are functional for problems in which alterations take
place but can be upturned and in which the order of operation is not decisive (ex: 8 puzzle
problem).

Production systems that are not partially commutative are functional for many problems in
which permanent alterations happen, such as chemical analysis.

l?

Did u know? When dealing with partially commutative production system, the order in
which operations are performed is very significant and therefore correct decisions have to
be made at the first time itself.

Self Assessment

Fill in the blanks:

4. Asystem that utilizes this form of knowledge representationis knownasa..........cccccccoeueeunve. .
5. Partially commutative, monotonic production systems are functional for solving
.................................... problems.

2.3 Breadth-first Search

In graph theory, breadth-first search (BES) is a graph search algorithm that starts at the root
node and discovers all the adjacent nodes. Then for each of those adjoining nodes, it discovers
their unknown neighbor nodes, and so on, until it finds the objective.

2.3.1 How does it Work?

BFS is an uninformed search technique that intends to enlarge and scrutinize all nodes of a graph
or amalgamation of sequences by methodically penetrating via every solution. Alternatively, it

LOVELY PROFESSIONAL UNIVERSITY 19

Artificial Intelligence

20

Notes

comprehensively looks for the whole graph or sequence without considering the goal until it
locates it. It does not make use of a heuristic algorithm.

From the position of the algorithm, all child nodes attained by increasing a node are added to a
FIFO (i.e., First In, First Out) queue. In usual implementations, nodes that have not yet been
scrutinized for their neighbors are positioned in some container (like a queue or linked list)
known as “open” and then once inspected are positioned in the container “closed”.

' Example: An Example Map of Germany with some Associations among Cities.

Algorithm (Informal)
1. Enqueue the root node.
2. Dequeue a node and examine it.

(i) If the element wanted is found in this node, suspend the search and return a result.
(ii) orelse enqueue any successors (the direct child nodes) that have not yet been exposed.

3. If the queue is empty, every node on the graph has been scrutinized - quit the search and
return “not found”.

4. Repeat from Step 2.

A

Caution Using a stack rather than a queue would turn this algorithm into a depth-first
search.

2.3.2 Features

Space Complexity

As all of the nodes of a level must be accumulated until their child nodes in the next level have
been produced, the space complexity is comparative to the number of nodes at the deepest level.

LOVELY PROFESSIONAL UNIVERSITY

Unit 2: Problems, Problem Spaces and Search

Provided a branching factor b and graph depth d the asymptotic space complexity is the number Notes
of nodes at the deepest level, O(bd). When the number of vertices and edges in the graph are

recognized ahead of time, the space complexity can also be articulated as O(|E| + | V|) where

| E | is the cardinality of the set of edges (the number of edges), and | V| is the cardinality of the

set of vertices. In the worst case the graph has a depth of 1 and all vertices must be amassed.

=7|

Notes As it is exponential in the depth of the graph, breadth-first search is often
unreasonable for large problems on systems with bounded space.

Time Complexity

Since in the worst case breadth-first search has to regard all paths to all probable nodes the time
complexity of breadth-first searchis 1 + b + b* + b® + . . . +b® which is O(bd). The time complexity
can also be articulated as O(|E| + | V|) as every vertex and every edge will be discovered in the
worst case.

Completeness

Breadth-first search is complete. This shows that if there is a solution, breadth-first search will
find it in spite of the type of graph. Though, if the graph is infinite and there is no solution
breadth-first hunt will depart.

Proof of Completeness

If the shallowest objective node is at some restricted depth say d, breadth-first search will sooner
or later find it after increasing all shallower nodes (given that the branching factor b is finite).
Optimality

For unit-step cost, breadth-first search is best possible. Usually breadth-first search is not best
possible as it always returns the consequence with the fewest edges among the start node and
the goal node. If the graph is a weighted graph, and as a result has costs connected with each step,
a goal next to the beginning does not have to be the cheapest objective obtainable. This problem
is solved by enhancing breadth-first search to uniform-cost search which considers the path
costs. Nonetheless, if the graph is not weighted, and consequently all step costs are equal,
breadth-first search will discover the nearest and the finest solution.

Bias towards Nodes of High Degree

It has been empirically noticed (and analytically exposed for random graphs) that incomplete
breadth-first search is prejudiced towards nodes of high degree. This makes a breadth-first
search model of a graph very tricky to understand.

' Example: For example, a breadth-first sample of 1 million nodes in Facebook (less than
1% of the complete graph) overvalues the average node degree by 240%.

2.3.3 Applications

Breadth-first search can be utilized to explain many problems in graph theory, for instance:
o Locating all nodes within one connected component

o Copying Collection, Cheney’s algorithm

LOVELY PROFESSIONAL UNIVERSITY 21

Artificial Intelligence

Notes) Locating the shortest path among two nodes u and v

) Testing a graph for bipartiteness

) (Reverse) Cuthill-McKee mesh numbering
° Ford-Fulkerson method for calculating the maximum flow in a flow network
° Serialization/Deserialization of a binary tree vs serialization in sorted order, permits the

tree to be reconstructed in a competent manner.
Finding Connected Components

The set of nodes reached by a BFS (breadth-first search) form the associated component enclosing
the starting node.

Testing Bipartiteness

BFS can be utilized to test bipartiteness, by beginning the hunt at any vertex and providing
alternating labels to the vertices visited all through the search. That is, provide label 0 to the
beginning vertex, 1 to all its neighbours, 0 to those neighbours, and so on. If at any step a vertex
has (visited) neighbours with the same label as itself, then the graph is not bipartite. If the search
ends without such a circumstance occurring, then the graph is bipartite.

Self Assessment

Fill in the blanks:

6. Ingraphtheory, ..o, is a graph search algorithm that starts at the root node
and discovers all the adjacent nodes.

7. From the position of the algorithm, all child nodes attained by increasing a node are
added toacccoevvviuririinnnnnn queue.

8. BFS can be utilized to testcccccooevuiiiiinns , by beginning the hunt at any vertex and

providing alternating labels to the vertices visited all through the search.

2.4 Depth-first Search

Depth-first Search (DFS) is an algorithm for navigating or looking for a tree, tree structure, or
graph. One begins at the root (choosing some node as the root in the graph case) and discovers
as far as possible with each branch before backtracking.

Officially, DFS is an uninformed search that advances by increasing the first child node of the
search tree that occurs and therefore going deeper and deeper until a purpose node is found, or
until it reaches a node that has no children. Then the search backtracks, recurring to the most
recent node it hasn’t completed exploring. In a non-recursive accomplishment, all freshly extended
nodes are added to a stack for exploration.

The time and space analysis of DFS varies as per its application area. In hypothetical computer
science, DFS is usually used to navigate a complete graph, and takes time O(| V| + |E|), linear
in the size of the graph. In these applications it also utilizes space O(|V|) in the worst case to
accumulate the stack of vertices on the current search path in addition to the set of already-
visited vertices. Consequently, in this setting, the time and space bounds are the comparable as
for breadth first search and the option of which of these two algorithms to use depends less on
their complexity and more on the dissimilar properties of the vertex orderings the two algorithms
generate.

22 LOVELY PROFESSIONAL UNIVERSITY

Unit 2: Problems, Problem Spaces and Search

For applications of DFS to search problems in artificial intelligence, though, the graph to be Notes
searched is frequently either excessively large to visit in its entirety or even infinite, and DFS
may undergo from non-termination when the length of a path in the search tree is infinite.
Consequently, the search is only performed to a restricted depth, and because of restricted
memory accessibility one naturally does not use data structures that keep track of the set of all
formerly visited vertices. Here, the time is still linear in the number of extended vertices and
edges (even though this number is not similar as the size of the complete graph since some
vertices may be searched more than once and others not at all) but the space complexity of this
alternative of DFS is only comparative to the depth limit, much slighter than the space required
for searching to the similar depth using breadth-first search. For such applications, DFS also
provides itself much better to heuristic methods of selecting a likely-looking branch. When a
suitable depth limit is not recognized a priori, iterative deepening depth-first search applies
DEFS frequently with a sequence of rising limits; in the artificial intelligence mode of analysis,
with a branching factor superior than one, iterative deepening enhances the running time by
only a constant factor over the case in which the accurate depth limit is recognized due to the
geometric growth of the number of nodes for each level.

2.4.1 Vertex Orderings

It is also probable to utilize the depth-first search to linearly order the vertices of the original
graph (or tree). There are three general methods of performing this:

° A preordering is a list of the vertices so that they were first visited by the depth-first search
algorithm. This is a compact and usual manner of illustrating the development of the
search. A preordering of an expression tree is the expression in Polish notation.

° A postordering is a list of the vertices so that they were last visited by the algorithm. A
postordering of an expression tree is the expression in reverse Polish notation.

° A reverse postordering is the reverse of a postordering, which is defined a list of the
vertices in the conflicting order of their previous visit. When probing a tree, reverse
postordering is similar as preordering, but generally they are dissimilar when looking
for a graph.

2

Task Make distinction between preordering and postordering.

2.4.2 Applications

Algorithms that utilize depth-first search as a building block comprise:

° Locating connected components.

) Topological sorting.

) Finding 2-(edge or vertex)-connected components.
° Locating strongly connected components.

° Planarity Testing

° Solving puzzles with only one solution, like mazes. (DFS can be adapted to discover all
solutions to a maze by only involving nodes on the present path in the visited set.)

° bi connectivity.

LOVELY PROFESSIONAL UNIVERSITY 23

Artificial Intelligence

Notes Self Assessment

Fill in the blanks:
9. is an algorithm for navigating or looking for a tree, tree structure, or graph.

10, A is a list of the vertices so that they were first visited by the depth-
first search algorithm.

11. A reverse postordering is the reverse of a postordering, which is defined a list of the
vertices in the ..., order of their previous visit.

2.5 Heuristic Search

Due to the momentary situation changes and new possibilities arising for further decisions
during the problem solving, new ramifications are needed. For this reason, problem solving the
Al is best represented with the help of a tree. It starts with a beginning condition and after each
decision follows a ramification. The final number of ramifications at the end of a tree can be very
high, if many steps are necessary for solving the problem. Therefore, empiric rules, so called
heuristics, were developed to facilitate the search for the most likely ramifications and also to
limit them.

Heuristic Search resolve multifaceted problems competently, it is essential to negotiate the
needs of the movability and systematically. A control structure has to be constructed that no
longer assures the best solution, but that will almost always discover a very superior answer.
Such a method is said to be heuristic (rule of thumb). A heuristic search enhances competently
the search process, but sacrifices the claims of wholeness. But they perk up the class of the paths
that are discovered.

AN

Caution Using good heuristics we can obtain good solutions to tough problems, like the
traveling salesman problem.

Self Assessment

Fill in the blank:

120 A e search enhances competently the search process, but sacrifices the
claims of wholeness.

2.6 Problem & Production System Characteristics and Design of

Search Programs Issues

2.6.1 Problem Characteristics

Heuristic search is an extremely common method pertinent to a large class of problem. It
involves numerous techniques. In order to select a appropriate method, it is essential to examine
the problem concerning the following deliberations.

1. Is the problem decomposable?

A very great and compound problem can be simply solved if it can be wrecked into
smaller problems and recursion could be used. Presume that we want to solve.

24 LOVELY PROFESSIONAL UNIVERSITY

Unit 2: Problems, Problem Spaces and Search

+” x2 + 3x+sin2x cos 2x dx Notes

This can be performed by dividing it into three lesser problems and solving each by
applying particular rules. Adding the results the whole solution is attained.

2. Can solution steps be ignored or undone?

Problem occurs under three classes ignorable, recoverable and irrecoverable. This
categorization is pertaining to the steps of the solution to a problem.

' Example: Consider theorem proving. We may later discover that it is of no aid. We can
still continue further, as nothing is lost by this outmoded step. This is an example of ignorable
solutions steps.

Now consider the 8 puzzle problem tray and arranged in particular order. While moving from
the begin state towards objective state, we may make some dull move and consider theorem
proving. We may carry on by first proving lemma. But we may backtrack and untie
the unnecessary move. This only includes additional steps and the explanation steps are
recoverable.

Finally consider the game of chess. If a wrong move is done, it can neither be ignored nor be
recovered. The thing to do is to make the best utilization of present situation and proceed. This
is an example of an irrecoverable solution steps.

1. Ignorable problems Ex: theorem proving
(i) In which solution steps can be ignored.
2. Recoverable problems Ex: 8 puzzle
(i) In which solution steps can be undone
3. Irrecoverable problems Ex: Chess
(i) In which solution steps can’t be undone
A knowledge of these will assist in identifying the control structure.
3. Is the Universal Predictable?

Problems can be categorized into those with firm result (eight puzzle and water jug
problems) and those with unsure result (playing cards) in certain outcome problems,
planning could be made to produce a sequence of operators that assures to lead to a
solution. Planning assists to evade unwanted solution steps. For unsure result problems,
planning can at best produce a sequence of operators that has a good likelihood of
approaching to a solution. The uncertain result problems do not assures a solution and it
is frequently very expensive as the number of solution and it is frequently very expensive
as the number of solution paths to be discovered enhances exponentially with the
number of points at which the result can not be predicted. Therefore one of the hardest
types of problems to resolve is the irrecoverable, uncertain outcome problems (Ex: Playing
cards).

4. Is good solution absolute or relative ? (Is the solution a state or a path?)

There are two groups of problems. In one, like the water jug and 8 puzzle problems, we
are content with the solution, unaware of the solution path taken, while in the other group
not just any solution is suitable. We want the finest, like that of traveling sales man
problem, where it is the shortest path. In any path problems, by heuristic methods we get
hold of a solution and we do not discover alternatives.

LOVELY PROFESSIONAL UNIVERSITY 25

Artificial Intelligence

26

Notes

5.

l?

Did u know? For the best-path problems all probable paths are discovered by means of a
comprehensive search until the best path is attained.

The knowledge base consistent?

In some problems the knowledge base is reliable and in some it is not.

' Example: Consider the case when a Boolean expression is assessed. The knowledge base
now includes theorems and laws of Boolean Algebra which are forever true. In contrast consider
a knowledge base that includes facts regarding production and cost. These keep ranging with

time.

Thus many reasoning schemes that function well in consistent domains are not suitable in
conflicting domains.

'i Example: Boolean expression evaluation.

6.

What is the role of Knowledge?

However one could have limitless computing power, the size of the knowledge base
obtainable for solving the problem does matter in reaching at a good solution.

Take for example the game of playing chess, just the rues for identifying legal moves and
some easy control mechanism is sufficient to arrive at a solution. But additional knowledge
about good strategy and tactics could aid to restrain the search and accelerate the
implementation of the program. The solution would then be realistic.

Consider the case of guessing the political trend. This would need a massive amount of
knowledge even to be able to identify a solution, leave alone the best.

' Example: Playing chess 2. News paper understanding

7.

Does the task requires interaction with the person?
The problems can again be classified under two heads.

(i) Solitary in which the computer will be specified a problem explanation and will
create an answer, with no in-between communication and with he demand for a
clarification of the reasoning process. Simple theorem proving occurs under this
group provided the basic rules and laws, the theorem could be proved, if one occurs.

' Example: Theorem proving (give basic rules & laws to computer)

(ii) Conversational, in which there will be in-between communication among a person
and the computer, wither to give additional aid to the computer or to give additional
informed information to the user, or both problems like medical diagnosis comes
under this group, where people will be unwilling to recognize the decision of the
program, if they can not follow its reasoning.

' Example: Problems such as medical diagnosis.

8.

Problem Classification: Definite problems are inspected from the point of view, the task
here is scrutinize an input and decide which of a set of recognized classes.

LOVELY PROFESSIONAL UNIVERSITY

Unit 2: Problems, Problem Spaces and Search

% Notes
' Example: Problems like medical diagnosis, engineering design.

2.6.2 Production System Characteristics
1. Can production systems, such as problems, be illustrated by a set of traits that shed some

light on how they can simply be implemented?

2. If so, what relationships are there among problem types and the kinds of production
systems best matched to solving the problems?

(i) Classes of Production systems:

(@) Monotonic Production System: The application of a rule by no means averts
the later application of another rule that could also have been functional at the
time the first rule was chosen.

(b) Non-monotonic Production system

(c) Partially commutative Production system: Property that if application of a
specific sequence of rules converts state x to state y, then permutation of those
rules permissible, also converts state x into state y.

(d) Commutative Production system
2.6.3 Issues in the Design of Search Programs

1. The direction in which to carry out the search (forward versus backward reasoning)
2. How to choose applicable rules (Matching)

3. How to symbolize every node of the hunt process (knowledge demonstration problem)
Self Assessment

Fill in the blanks:

13. A very great and compound problem can be simply solved if it can be wrecked into
smaller problems andcccccccocuvinirucnnc. could be used.

14, is the application of a rule by no means averts the later application of
another rule that could also have been functional at the time the first rule was chosen.

15. The problem is said to beccccceeciniicnnn when the computer will be specified a
problem explanation and will create an answer, with no in-between communication and
with he demand for a clarification of the reasoning process.

2.7 Summary

o Problems have the general form given such-and-such data, find x.

o The thought of State Space Search is broadly used in Artificial Intelligence. The plan is that
a problem can be solved by probing the steps which might be taken for the solution.

o The state space illustration permits for a formal definition of the problem as the
requirement to exchange some given situation into some preferred situation by means of
a set of allowable operations.

LOVELY PROFESSIONAL UNIVERSITY 27

Artificial Intelligence

Notes) A system that utilizes this form of knowledge representation is known as a production
system.
° A production system includes rules and factors. Knowledge is programmed in a declarative

from which includes a set of rules of the form.

° A production system in which the application of a specific sequence of rules transforms
state X into state Y, then any permutation of those rules that is permissible also converts
state x into state Y.

° In graph theory, breadth-first search (BFS) is a graph search algorithm that starts at the
root node and discovers all the adjacent nodes.

° Depth-first search (DFS) is an algorithm for navigating or looking for a tree, tree structure,
or graph.
° Heuristic Search resolve multifaceted problems competently, it is essential to negotiate

the needs of the movability and systematically.

2.8 Keywords

Breadth-first Search (BFS): In graph theory, breadth-first search (BFS) is a graph search algorithm
that starts at the root node and discovers all the adjacent nodes.

Depth-first Search (DFS): 1t is an algorithm for navigating or looking for a tree, tree structure,
or graph.

Heuristic Search: It resolve multifaceted problems competently, it is essential to negotiate the
needs of the movability and systematically.

Production System: A system that utilizes this form of knowledge representation is known as a
production system.

State Space Search: In this, the plan is that a problem can be solved by probing the steps which
might be taken for the solution.

2.9 Review Questions

How do you define a problem as a State space search? Illustrate.
Explain the concept of production system with example.

Elucidate various classes of production systems.

What are the advantages and disadvantages of production system?
Describe the working of Breadth-first search with example.
Explain the features and applications of Breadth-first search.

What is Depth First Search? Illustrate its working with example.

How do you linearly order the vertices of the original graph (or tree)? Discuss the methods.

© ® N @ ok Lo

Nlustrate how does heuristic search resolves multifaceted problems.

=
S

Enlighten the various characteristics of Problem & Production system.

28 LOVELY PROFESSIONAL UNIVERSITY

Unit 2: Problems, Problem Spaces and Search

Answers: Self Assessment Notes
1 State Space 2. Closed State

3 state 4. production system

5. ignorable 6. breadth-first search (BFS)

7 FIFO (i.e., First In, First Out) 8. bipartiteness

9 Depth-first search (DFS) 10. preordering

11. conflicting 12. heuristic

13. recursion 14. Monotonic Production System

15. Solitary

2.10 Further Readings

N

Books Antonelli, D. 1983. The application of artificial intelligence to a maintenance and diagnostic
information system (MDIS). Proceedings of the Joint Services Workshop on Artificial
Intelligence in Maintenance. Boulder, CO.

Boose, J.H. 1984. Personal construct theory and the transfer of human expertise.
Proceedings of the National Conference on Artificial Intelligence (AAAI-84),
p- 27-33, Austin, Texas.

Boose,].H. 1985. A knowledge acquisition program for expert systems based on personal
construct psychology. International Journal of Man-Machine Studies, 23, 495-525.

Boose,].H. 1986a. Expertise Transfer for Expert System Design, New York; Elsevier.

Boose,].H. 1986b. Rapid acquisition and combination of knowledge from multiple experts
in the same domain. Future Computing Systems Journal, 1, 191-216.

Boose,].H. 1988. Uses of repertory grid-centered knowledge acquisition tools for knowledge-
based systems. International Journal of Man-Machine Studies, 29, 287-310.

Boose,].H. 1989. A survey of knowledge acquisition techniques and tools. Knowledge
acquisition: An international journal of knowledge acquisition for knowledge-
based systems, in press. Vol. 1, No. 1.

Boose,].H., and Bradshaw, J.M. 1987b. AQUINAS: A knowledge acquisition workbench
for building knowledge based systems. Proceedings of the First European Workshop
on Knowledge Acquisition for Knowledge-Based Systems (pp. A6.1-6). Reading
University.

Boose, J.H., Bradshaw,].M., Shema, D.B. 1988. Recent progress in Aquinas: A
knowledge acquisition workbench. Proceedings of the Second European Knowledge
Acquisition Workshop (EKAW-88). p. 2.1-15, Bonn.

Bradshaw, J. 1988. Shared causal knowledge as a basis for communication between expert
and knowledge acquisition system. Proceedings of the Second European Knowledge
Acquisition Workshop (EKAW-88) pp. 12.1-6.

LOVELY PROFESSIONAL UNIVERSITY 29

Artificial Intelligence

Notes

AN

Y.L,

Online link

30

Bradshaw, J.M. 1988. Strategies for selecting and interviewing experts. Boeing
Computer Services Technical report in preparation.

Bradshaw,].M. and Boose,].H. 1989. Decision analytic techniques for knowledge
acquisition: Combining situation and preference models using Aquinas. Special issue on
the 2nd Knowledge Acquisition for Knowledge-Based Systems Workshop, 1987,
International Journal of Man- Machine Studies. in press.

Clancey. W. 1986. Heuristic classification. In J. Kowalik (Ed.). Knowledge-based
problem solving. New York: Prentice-Hall.

Davis, R., and Lenat, D.B. 1982. Knowledge-based systems in artificial intelligence.
New York: McGraw-Hill.

DeJong, K. 1987. Knowledge acquisition for fault isolation expert systems. Special issue
on the 1 AAA1 Knowledge Acquisition for Knowledge-Based Systems Workshop,
1986, Part 4, International/ Journal of Man-Machine Studies, Vol. 27, No. 2.

intelligence.worldofcomputing.net/ai.../ ai-search-techniques.html

LOVELY PROFESSIONAL UNIVERSITY

Parminder Kaur, Lovely Professional University Unit 3: Common Al Problems

Unit 3: Common Al Problems Notes

CONTENTS
Objectives
Introduction
3.1 Water Jug Problem
3.2 8 Puzzle Problem
3.3 Frame Problem
331 Problems Related to the Frame Problem
3.4 Epistemological Problems
3.5 Summary
3.6 Keywords
3.7 Review Questions

3.8 Further Readings

Objectives

After studying this unit, you will be able to:

o Understand the concept of water jug problem

o Illustrate the concept of 8 puzzle problem

° Discuss the frame problem and problems relate to frame problem
o Understand the epistemological problems

Introduction

There are various problems concerning artificial intelligence. In this unit, we will discuss Water
Jug problem, 8 puzzle problem, frame problem, and Epistemological problems. You will also
understand the problems related to frame problem.

3.1 Water Jug Problem

Statement: We are provided with 2 jugs, a 4-litre one and a 3-litre one. Neither contains any
gauging markers on it. There is a pump that can be accessed to fill the jugs with water. How can
we obtain precisely 2-litre of water in to the 4-litre jugs?

Solution:
The state space for this problem can be defined as
{@,7)i=0,1,2,3,4j=0,1,2,3}

‘i’ shows the number of litres of water in the 4-litre jug and ’j’ shows the number of litres of water
in the 3-litre jug. The preliminary state is (0, 0) that is no water on every jug. The objective state
is to obtain (2, n) for any value of 'n’.

LOVELY PROFESSIONAL UNIVERSITY 31

Artificial Intelligence

Notes

32

To resolve this we have to build some suppositions not stated in the problem. They are:

1.
2.
3.
4.

The different operators (Production Rules) that are obtainable to solve this problem may be

We can fill a jug from the pump.

We can pour water out of a jug to the ground.

We can pour water from one jug to another.

There is no measuring device available.

declared as given in the following Table.

Table 3.1
Rule No. Production Rule Action
1. 1)) — @j)ifi<4. Fill the 4-liter jug, if 4-liter jug is not full.
2. (i) — @, 3)ifj<3. Fill the 3-liter jug, if 3-liter jug is not full.
(ij) — d-sj)ifi>0. Pour some water out of the ground, if 4-liter jug is
not empty.
4. (i,j) — (,j-s)ifj>0. Pour some water out the 3-liter jug, if 3-liter jug is
not empty.
5. @i,j) — (o,j)ifj>0. Empty the 4-liter jug on the ground, if 4-liter jug
is not empty.
6. @i,j) — @, 0)ifj>0. Empty the 3-liter jug on the ground, if 3-liter jug
is not empty.
7. ij)— @ j-@4-D)if[i+j) Pour water from the 30-liter jug into the 4-liter jug
<=4&j<0. until the 4-liter jug is full, if the combined content
is > = 4 and 3-liter jug is not empty.
8. (i) — @,(3-j),3)if i+j)>= | Pour water from the 4-liter into the 3-liter jug
3&i>o. until the 3-liter jug is full, if the combined content
is > = 3 and 4-liter jug is not empty.
9. (ij) — @@+j0)ifi+j)>=4 Pour all the water from the 3-liter jug into the
andi>0. 4-liter jug if the jug, combined content is < =4 and
3-liter jug is not empty.
10. @j) — O i+jif(i+j)<=3 Pour all the water from the 4-liter jug into the

andi>0.

3-liter jug, if the combined content is < = 3 and
4-liter jug is not empty.

For the water jug problem, there are several sequence of operators that will solve the problem,

let us see of them.

Solution 1:
Table 3.2
Liters in the 4-liter jug Liters in the 3-liter jug Rule applied
0 0
4 0 1
1 3 8
1 0
0 1 10
4 1
2 3 8

LOVELY PROFESSIONAL UNIVERSITY

Unit 3: Common Al Problems

Solution 2: Notes
Table 3.3
Liters in the 4-liter jug Liters in the 3-liter jug Rule applied

0 0

0 3 2
3 0 9
3 3 2
4 2 7
0 2 5
2 0 9

Solution 3:
Table 3.4
Liters in the 4-liter jug Liters in the 3-liter jug Rule applied

0 0

4 0 1
1 3 8
0 3 5
3 0 9
3 3 2
4 2 7
0 2 5
2 0 9

Figures gives comparative study of the above 3 different solutions.

In the comparison of 3 solutions, we see that, when there is no limit for water prevails then
solution 1 is the most efficient. When water is limited then solution 2 is the best suited. In no
way, solution 3 is good, Because it requires 8 steps to solution and wastes 5 liters of water.

Self Assessment

Fill in the blanks:
1. Inc problem, neither jug contains any gauging markers on it.

2. Thereisa ... that can be accessed to fill the jugs with water.

3.2 8 Puzzle Problem

The 8 puzzle comprises eight numbered, changeable tiles set in a 3 x 3 frame. One cell of the
frame is at all times empty therefore making it probable to move a nearby numbered tile into
the unfilled cell. Such a puzzle is demonstrated in following diagram.

LOVELY PROFESSIONAL UNIVERSITY 33

Artificial Intelligence

34

Notes

Figure 3.1
1123 218
8 4|e—1|6] 4
7161|5 7 5
Goal Initial

The program is to modify the initial configuration into the objective configuration. A solution
to the problem is a suitable sequence of moves, like “move tiles 5 to the right, move tile 7 to the
left, move tile 6 to the down, etc”.

AN

Caution To solve a problem by means of a production system, we must state the global
database the rules, and the control strategy.

For the 8 puzzle problem that communicate to these three components. These rudiments are the
problem states, moves and goal. Here each tile configuration is a state. The set of all configuration
in the space of problem declares or the problem space, there are only 3,62,880 different
configurations of the 8 tiles and blank space. Once the problem states have been theoretically
identified, we must build a computer representation, or description of them . This description is
then accessed as the database of a production system. For the 8-puzzle, a straight forward
description is a 3 x 3 array of matrix of numbers. The preliminary global database is this
explanation of the initial problem state.

l?

Did u know? Practically any type of data structure can be accessed to describe states.

A move converts one problem state into another state. The 8-puzzle is suitably interpreted as
having the following for moves. Move bare space (blank) to the left, move blank up, move
blank to the right and move blank down,. These moves are represented by production rules that
function on the state descriptions in the suitable way.

The rules each have prerequisites that must be contented by a state description in order for them
to be valid to that state description. Therefore the precondition for the rule connected with
“move blank up” is derived from the necessity that the blank space must not already be in the
top row.

The problem goal condition generates the basis for the termination condition of the production
system. The control strategy repeatedly use rules to affirm descriptions until a explanation of a
goal state is produced. It also keep track of rules that have been applied so that it can compose
them into sequence displaying the problem solution. A solution to the 8-puzzle problem is
specified in the Figure 3.2.

' Example: Depth-First Search traversal for 8-puzzle problem is displayed in Figure 3.2.

LOVELY PROFESSIONAL UNIVERSITY

Unit 3: Common Al Problems

Figure 3.2 Notes
21813
1|6 |4] Start
7 5
21813
1 4
71615
2 3
11814
71615
3
1 4
7 5

=
N NN AN
w

4
7 5
1 3
8 4 | Goal
7165
Self Assessment
Fill in the blanks:
3. The comprises eight numbered, changeable tiles set in a 3 x 3 frame.
4. The program is to modify the initial configuration into the
configuration.
5. To solve a problem by means of accccevuvriuiiiinnnnnns system, we must state the global
database the rules, and the control strategy.
6. The problem goal condition generates the basis for thecccoceuviiiinn. condition of

the production system.

3.3 Frame Problem

In the restricted planet of a robot, surroundings are not static. Many changeable forces or actions
can cause alterations or modifications to it. The problem of forcing a robot to acclimatize to
these changes is the foundation of the frame problem in artificial intelligence. Information in
the knowledge base and the robot’s conclusions unite to form the input for what the robot’s
succeeding action should be. A good assortment from its details can be made by disposing or
ignoring inappropriate facts and ridding of results that could have negative side effects.

A robot must bring in facts that are pertinent to a particular moment. Specifically, a robot will
inspect its current situation, and then observe the facts that will be beneficial to selecting its
subsequent action. The robot should also investigate for any changeable facts. It then inspects
these facts to verify if any of them have been altered during a preceding examination.

LOVELY PROFESSIONAL UNIVERSITY 35

Artificial Intelligence

Notes There are two fundamental types of change:
) Relevant Change: examine the changes made by an action
° Irrelevant Change: do not examine facts that are not related to the task at hand
Facts may be examined utilizing two levels:

o Semantic Level: This level interprets what type of information is being inspected. Solutions
should become understandable by the suppositions of how an object should behave.
There are believers in a wholly semantic approach who consider that accurate information
can be reached by means of meaning. However, this hypothesis has yet to be confirmed.

o Syntactic Level: This level just decides in which format the information should be examined.
That is, it generates solutions depending on the structure and patterns of facts.

When examining the facts, numerous problems can happen:

o At times an implication can be missed.
o Considering all facts and all their succeeding side effects is time-consuming.
° Some facts are needlessly inspected when they are unneeded.

2

Task Make distinction between semantic level and syntactic level.

3.3.1 Problems Related to the Frame Problem

The Qualification Problem

The Qualification Problem was initiated by John McCarthy. It recommends that one is never
totally positive if a particular rule will work. It also proposes that the robot does not essentially
know which rules to disregard in a specified situation. Modifications in the environment can
“confuse” the robot as certain rules will turn out to be obsolete and new rules will be essential
before they exist.

The Representational Problen

The Representational Problem is the complexity of developing truths concerning the current
environment. For instance, how can one program the thoughts of up and down? These are
relative to each other, and can not be just described by direction. To incompletely correct this
problem, successor-state axioms are accessed. These axioms demonstrate all the true and false
potentials of a rule.

The Inferential Problem

Difficulty with inspecting the methods by which the world is reviewed is the Inferential Problem.
There are two types of purposes. The General Purpose is to check the complete world of things
that are changeable. The particular Purpose is to only examine actions that can amend over a
little area of environments.

The Ramification Problem

This problem illustrates how an action can cause deviations inside its environment.

36 LOVELY PROFESSIONAL UNIVERSITY

Unit 3: Common Al Problems

Notes

Example: A robotic arm has been provided the task of picking up a brick and positioning
it on its side in a dissimilar location. If the brick has been knocked over, what can the robot
perform to correct the problem? Will it still recognize which side should be facing up without
the aptitude of human sight? Should these deviations be inspected individually every time an
action has taken place?

The Predictive Problem

The Predictive Problem concerns with the advantages of predictions. Specifically, it is uncertain
if a specified prediction will cause a positive change in the surroundings.

l"

Did u know? 1f the variation will not be positive, “either the laws or explanation of the
provided condition must be imperfect.”

2

Task Make distinction between the Representational Problem and the Inferential Problem.

Self Assessment

Fill in the blanks:

7. The problem of forcing a robot to acclimatize to these changes is the foundation of the
.................................. problem in artificial intelligence.

8. level interprets what type of information is being inspected.
9. level just decides in which format the information should be examined.
10. The..iiicciin problem recommends that one is never totally positive if a particular

rule will work.

11. The General Purpose ofccccovvveereninenne problem is to check the complete world of
things that are changeable.

12, The i, problem illustrates how an action can cause deviations inside its
environment.

3.4 Epistemological Problems

The epistemological portion of Al studies what types of facts regarding the world are accessible
to a viewer with specified opportunities to scrutinize, how these facts can be symbolized in the
memory of a computer, and what rules allow legitimate conclusions to be drawn from these
facts. It leaves away the heuristic problems of how to search spaces of probabilities and how to
match patterns.

Considering epistemological problems independently has the following benefits:

1. Thesame problems of what information is obtainable to an spectator and what conclusions
can be taken out from information arise in association with a variety of problem solving
tasks.

2. A single solution of the epistemological problems can assist a wide variety of heuristic

strategies to a problem.

LOVELY PROFESSIONAL UNIVERSITY 37

Artificial Intelligence

Notes 3. Alis avery complicated scientific problem, so there are huge advantages in locating parts
of the problem that can be separated out and separately attacked.

4. Itis quite hard to formalize the facts of general knowledge. Current programs that influence
facts in some of the domains are restricted to special cases and don’t concern the difficulties
that must be conquer to attain very intelligent behavior.

We will converse what facts a person or robot must consider in order to attain a goal by some
approach of action. We will ignore the question of how these facts are displayed, e.g., whether
they are demonstrated by program. We begin with great generality, so there are many problems.
We get successively simpler problems by presuming that the difficulties we have acknowledged
don’t take place until we obtain to a class of problems we believe we can solve.

1. We start by enquiring whether solving the problem needs the cooperation of other people
or overcoming their opposition. If either is true, there are two subcases. In the first subcase,
the other people’s wishes and goals must be considered, and the actions they will take in
specified conditions predicted on the supposition that they will attempt to attain their
goals, which may have to be exposed. The problem is even more hard if bargaining is
concerned, because then the problems and indeterminacies of game theory are pertinent.
Even if bargaining is not concerned, the robot still must “put himself in the position of the
other people with whom he communicates”.

AN

Caution Facts such as a person wanting a thing or a person hating another must be illustrated.

The second subcase builds the assumption that the other people can be considered as
machines with recognized input-output behavior. This is frequently a good assumption,
e.g., one considers that a clerk in a store will sell the goods in exchange for their price and
that a professor will allocate a grade in accordance with the quality of the work completed.
Neither the goals of the clerk or the professor need be considered; either might well
regard an effort to access them to optimize the communication as an incursion of privacy.

In such conditions, man generally prefers to be treated as a machine. Let us now presume
that either other people are not concerned in the problem or that the information obtainable
regarding their actions takes the form of input-output relations and does not entail
understanding their goals.

2. The second question is whether the strategy includes the acquisition of knowledge. Even
if we can regard other people as machines, we still may have to reason regarding what
they know. Therefore an airline clerk knows what airplanes fly from here to there and
when, even though he will tell you when asked without your having to motivate him.
One must also take into account information in books and in tables. The latter information
is illustrated by other information.

3. The second subcase of knowledge is according to whether the information obtained can be
simply plugged into a program or whether it enters in a more complex manner. Therefore,
if the robot must telephone someone, its program can just dial the number received, but it
might have to ask a question, “How can I get in touch with Mike?” and reason concerning
how to access the resulting information in combination with other information. The
common distinction may be according to whether new sentences are produced or whether
values are just allocated to variables.

' Example: An example valued considering is that a sophisticated air traveler rarely enquires
how he will obtain from the arriving flight to the departing flight at an airport where he must

38 LOVELY PROFESSIONAL UNIVERSITY

Unit 3: Common Al Problems

alter planes. He is certain that the information will be obtainable in a form he can appreciate at Notes
the time he will require it.

=7|

Notes If the strategy is personified in a program that branches on an environmental state
or reads a numerical parameter from the environment, we can observe it as acquiring

knowledge, but this is perceptibly an easier case than those we have conversed.

4. A problem is more hard if it includes concurrent events and actions. To me this appears to
be the most hard unsolved epistemological problem for AI—how to articulate rules that
provide the effects of actions and events when they take place concurrently. We may
compare this with the sequential case regarded in (McCarthy and Hayes 1969). In the
sequential case we can write S” = result (e, s) (1) where s’ is the circumstance that results
when event e appears in situation s. The effects of e can be illustrated by sentences relating
s’, e and s. One can effort a similar formalism providing a partial situation that results from
an event in another incomplete situation, but it is hard to view how to apply this to cases
in which other events may influence with the incidence.

When events are synchronized, it is generally essential to consider time as continuous. We
have events such as raining until the reservoir overflows and questions like Where was his train
when we wanted to call him?

Computer science has lately begun to formalize parallel procedures so that it is at times
possible to confirm that a system of parallel processes will fulfill its specifications. Though,
the knowledge obtainable to a robot of the other processes going on in the world will not
often take the form of a Petri net or any of the other formalisms accessed in engineering or
computer science.

Actually, anyone who desires to prove correct an airline reservation system or an air
traffic control system must access information regarding the behavior of the external
world that is less particular than a program. Nonetheless, the formalisms for expressing
details regarding parallel and indeterminate programs offer a start for axiomatizing
concurrent action.

5. A robot must be able to state knowledge regarding space, and the locations, shapes and
layouts of objects in space. Present programs considers only very special cases. Typically
locations are discrete—block A may be on block B but the formalisms do not permit
anything to be said regarding where\ on block B it is, and what shape space is left on block
B for positioning other blocks or whether block A could be shifted to project out a bit in
order to place another block. Some are more sophisticated, but the objects must have
simple geometric shapes. A formalism competent of representing the geometric
information people get from seeing and managing objects has not, to my knowledge,
been approached.

The complexity in expressing such facts is symbolized by the limitations of English in
articulating human visual knowledge. We can portray usual geometric shapes exactly in
English (fortified by mathematics), but the information we access for identifying another
person’s face cannot normally be transmitted in words. We can respond to more questions
in the occurrence of a scene than we can from memory.

6. Therelation among three dimensional objects and their two dimensional retinal or camera
images is typically untreated. Dissimilar to some philosophical positions, the three
dimensional object is regarded by our minds as different from its appearances. People

LOVELY PROFESSIONAL UNIVERSITY 39

Artificial Intelligence

40

Notes

blind from birth can still converse in the similar language as sighted people concerning

three dimensional objects.

=7

Notes We require a formalism that regards three dimensional objects as instances of
patterns and their two dimensional appearances as projections of these patterns altered by

lighting and occlusion.

10.

Objects can be prepared by shaping materials and by merging other objects. They can also
be taken distant, cut apart or destroyed in various manners. What people recognize about
the relations among materials and objects remains to be illustrated.

Modal concepts such as event el caused event e2 and person e can do action a are required.
(McCarthy and Hayes 1969) considers ability as a function of a person’s position in a
fundamental system and not at all as a function of his interior structure. This still appears
correct, but that action is only metaphysically adequate, since it doesn’t give for expressing
the information about capability that people really have.

Assume now that the problem can be formalized in terms of a single state that is altered by
events. In appealing cases, the set of components of the state relies on the problem, but
general knowledge is generally expressed in terms of the effect of an action on one or a
few components of the state. Though, it cannot always be presumed that the other
components are unaltered, especially since the state can be illustrated in a variety of
co-ordinate systems and the meaning of changing a single co-ordinate relies on the
co-ordinate system. The problem of showing information regarding what remains
unchanged by an event was known as the frame problem in (McCarthy and Hayes 1969).
Minsky consequently confused matters by means of the word “frame” for patterns into
which situations may fit. (His hypothesis appears to have been that almost all conditions
encountered in human problem solving fit into a small number of previously recognized
patterns of situation and goal. I consider this as unlikely in difficult problems).

The frame problem may be a sub case of what we consider the qualification problem, and a good
solution of the qualification problem may solve the frame problem also. In the missionaries
and cannibals problem, a boat holding two people is declared to be obtainable. In the
declaration of the problem, nothing is said regarding how boats are used to cross rivers,
so obviously this information must come from general knowledge, and a computer
program capable of solving the problem from an English description or from a conversion
of this description into logic must have the necessary common knowledge. The simplest
statement regarding the use of boats says something like, “If a boat is at one point on the shore
of a body of water, and a set of things enter the boat, and the boat is propelled to the another point on
the shore, and the things exit the boat, then they will be at the second point on the shore”. Though,
this statement is too rigid to be true, since anyone will admit that if the boat is a rowboat
and has a leak or no oars, the action may not attain its desired result. One might try
altering the familiar knowledge statement regarding boats, but this encounters difficulties
when a critic asks for a qualification that the vertical exhaust stack of a diesel boat must not
be struck square by a cow turd dropped by a passing hawk or some other event that no-
one has earlier thought of. We require to be able to say that the boat can be accessed as a
vehicle for crossing a body of water unless something averts it. Though, as we are not
willing to set the limits of in advance possible situations that may avert the use of the boat,
there is still a problem of confirming or at least conjecturing that nothing averts the use of
the boat. The decline of the frame problem to the qualification problem has not been fully
executed, however.

LOVELY PROFESSIONAL UNIVERSITY

Unit 3: Common Al Problems

Self Assessment Notes

Fill in the blanks:

13. The i, portion of Al studies what types of facts regarding the world are
accessible to a viewer with specified opportunities to scrutinize.

14. Epistemological problems leave away theccc.ccccoeeeinne. problems of how to search
spaces of probabilities and how to match patterns.

15. The problem of showing information regarding what remains unchanged by an
............................... was known as the frame problem.

3.5 Summary

° In water jug problems, neither jug contains any gauging markers on it. There is a pump
that can be accessed to fill the jugs with water

° The 8 puzzle comprises eight numbered, changeable tiles set in a 3 x 3 frame.

° One cell of the frame is at all times empty therefore making it probable to move a nearby
numbered tile into the unfilled cell.

° To solve 8 puzzle problem by means of a production system, we must state the global
database the rules, and the control strategy.

° Many changeable forces or actions can cause alterations or modifications to it. The problem
of forcing a robot to acclimatize to these changes is the foundation of the frame problem
in artificial intelligence.

° Semantic Level interprets what type of information is being inspected.
° Syntactic Level just decides in which format the information should be examined.
° The epistemological portion of Al studies what types of facts regarding the world are

accessible to a viewer with specified opportunities to scrutinize, how these facts can be
symbolized in the memory of a computer, and what rules allow legitimate conclusions to
be drawn from these facts.

3.6 Keywords

Semantic Level: Semantic Level interprets what type of information is being inspected.
Syntactic Level: Syntactic Level just decides in which format the information should be examined.
Water Jug Problem: In water jug problems, neither jug contains any gauging markers on it.

There is a pump that can be accessed to fill the jugs with water.

3.7 Review Questions

1. What is 8 puzzle problem? Illustrate with example.

2. You have a two-gallon jug and a one-gallon jug; neither have any measuring marks
on them at all. Initially both are empty. How do you get exactly one gallon into the
two-gallon jug?

3. Suppose that you are given ‘n’ red and ‘n” blue water jugs, all of different shapes and sizes.
All red jugs hold different amounts of water, as do the blue ones. For every red jug, there

LOVELY PROFESSIONAL UNIVERSITY 41

Artificial Intelligence

Notes

42

o ® N

is a blue jug that holds the same amount of water and vice versa. How can you find the
grouping of the jugs into pairs of red and blue jugs that hold the same amount of water, in
the minimum number of comparisons?

Two friends who have an eight-quart jug of water wish to share it evenly. They also have
two empty jars, one holding five quarts, the other three. How can they each measure
exactly 4 quarts of water?

Show that the 8-puzzle states are divided into two disjoint sets, such that no state in one set
can be transformed into a state in the other set by any number of moves. Devise a procedure
that will tell you which class a given state is in, and explain why this is a good thing to
have for generating random states.

What is frame problem? Illustrate the concept.

Ilustrate the fundamental types of changes that occur in frame problem.
Discuss the various problems that can take place in case of frame problem.
What are Epistemological problems in artificial intelligence? Explain.

Explain the facts a person or robot must consider in order to attain a goal by some approach
of action.

Answers: Self Assessment

1. waterjug 2. pump
3. 8puzzle 4. objective
5. production 6. termination
7. frame 8. Semantic
9. Syntactic 10. Qualification
11. inferential 12. Ramification
13. epistemological 14. heuristic
15. event
3.8 Further Readings
N
Books Antonelli, D. 1983. The application of artificial intelligence to a maintenance and diagnostic

information system (MDIS). Proceedings of the Joint Services Workshop on Artificial
Intelligence in Maintenance. Boulder, CO.

Boose, J.H. 1984. Personal construct theory and the transfer of human expertise.
Proceedings of the National Conference on Artificial Intelligence (AAAI-84),
p- 27-33, Austin, Texas.

Boose,].H. 1985. A knowledge acquisition program for expert systems based on personal
construct psychology. International Journal of Man-Machine Studies, 23, 495-525.

Boose, J.H. 1986a. Expertise Transfer for Expert System Design, New York; Elsevier.

Boose,].H. 1986b. Rapid acquisition and combination of knowledge from multiple experts
in the same domain. Future Computing Systems Journal, 1, 191-216.

LOVELY PROFESSIONAL UNIVERSITY

Unit 3: Common Al Problems

Boose,].H. 1988. Uses of repertory grid-centered knowledge acquisition tools for knowledge- Notes
based systems. International Journal of Man-Machine Studies, 29, 287-310.

Boose,].H. 1989. A survey of knowledge acquisition techniques and tools. Knowledge
acquisition: An international journal of knowledge acquisition for knowledge-
based systems, in press. Vol. 1, No. 1.

Boose,].H., and Bradshaw,].M. 1987b. AQUINAS: A knowledge acquisition workbench
for building knowledge based systems. Proceedings of the First European Workshop
on Knowledge Acquisition for Knowledge-Based Systems (pp. A6.1-6). Reading
University.

Boose, J.H., Bradshaw, J.M., Shema, D.B. 1988. Recent progress in Aquinas: A
knowledge acquisition workbench. Proceedings of the Second European Knowledge
Acquisition Workshop (EKAW-88). p. 2.1-15, Bonn.

Bradshaw, J. 1988. Shared causal knowledge as a basis for communication between expert
and knowledge acquisition system. Proceedings of the Second European Knowledge
Acquisition Workshop (EKAW-88) pp. 12.1-6.

Bradshaw, J.M. 1988. Strategies for selecting and interviewing experts. Boeing
Computer Services Technical report in preparation.

Bradshaw,].M. and Boose,].H. 1989. Decision analytic techniques for knowledge
acquisition: Combining situation and preference models using Aquinas. Special issue on
the 2nd Knowledge Acquisition for Knowledge-Based Systems Workshop, 1987,
International Journal of Man- Machine Studies. in press.

Clancey. W. 1986. Heuristic classification. In J. Kowalik (Ed.). Knowledge-based
problem solving. New York: Prentice-Hall.

Davis, R., and Lenat, D.B. 1982. Knowledge-based systems in artificial intelligence.
New York: McGraw-Hill.

DeJong, K. 1987. Knowledge acquisition for fault isolation expert systems. Special issue
on the 1 AAA1 Knowledge Acquisition for Knowledge-Based Systems Workshop,
1986, Part 4, International/ Journal of Man-Machine Studies, Vol. 27, No. 2.

Online link www.cogsci.ecs.soton.ac.uk/cgi/psyc/ ptopic?topic=frame-problem

LOVELY PROFESSIONAL UNIVERSITY 43

Artificial Intelligence

Manish Kumar, Lovely Professional University

44

Unit 4: Heuristic Search Techniques

CONTENTS
Objectives
Introduction
41 Heuristic Search Techniques
42 Generate and Test
43 Hill Climbing
44 Best First Search
441 Best First Search Algorithm
442 The A* Algorithm
443 Greedy Best-first Search (GBFS)
45 Constraint Satisfaction
4.6 Means-ends Analysis
47 Summary
48 Keywords

49 Review Questions

410 Further Readings

Objectives

After studying this unit, you will be able to:
o Understand the various heuristic search techniques
° Discuss the generate and test, hill climbing, best first search

° Discuss the constraint satisfaction and mean-end analysis
Introduction

Most of the problems are too multifaceted to be solvable by straight techniques. They have to be
solved only by appropriate heuristic search techniques. However the heuristic techniques can
be illustrated separately, they are domain particular. They are known as “ Weak Methods”, as
they are susceptible to combinatorial explosion. Nonetheless, they give the frame work into
which domain specific knowledge can be positioned.

Each search process can be observed as a traversal of a directed graph, in which the nodes
symbolize problem states and the arcs stand for relationships among states. The search process
must locate a path through this graph, beginning at an initial state and ending in one or more
final states. The issues discussed in the unit have to be considered before performing a search.

4.1 Heuristic Search Techniques

Heuristic techniques are known as weak methods, as they are susceptible to combinatorial
explosion. Still these techniques persist to offer framework into which domain specific knowledge

LOVELY PROFESSIONAL UNIVERSITY

Unit 4: Heuristic Search Techniques

can be positioned, either by hand or as a consequence of learning. The following are some Notes
common purpose control approaches (frequently known as weak methods).

° Generate-and-test

° Hill climbing

° Best First Search (A* search)

° Constraint satisfaction

) Means-ends analysis

A heuristic process, or heuristic, is defined as enclosing the following properties:
1. It will typically locate good, although not essential optimum solutions.

2. ltis quicker and easier to execute than any recognized exact algorithm (one which guarantees
an optimum solution).

Usually, heuristic search perk up the excellence of the path that are exported. By means of good
heuristics we can expect to acquire good solutions to tough problems like the traveling salesman
problem in less than exponential time. There are a number of good common purpose heuristics
that are valuable in a broad variety of problems. It is also probable to create special purpose
heuristics to resolve specific problems.

Self Assessment

Fill in the blanks:

1. Heuristic techniques are known ascccceccccuvenccucunenne. methods, as they are susceptible
to combinatorial explosion.

2. e techniques give the frame work into which domain specific
knowledge can be positioned.

4.2 Generate and Test

This is the easiest search strategy. It comprises the following steps:

1. Producing a possible solution for some problems; this means generating a particular
point in the problem space. For others it may be creating a path from a start state.

2. Test to observe if this is really a solution by comparing the chosen point at the end point
of the chosen path to the set of acceptable goal states.

3. If a solution has been found, quit or else return to step 1.

The generate and Test algorithm is a depth first search practice since complete possible solutions
are produced before test. This shows that executed states are likely to emerge frequently in a
tree; it can be implemented on a search graph instead of a tree.

Self Assessment

Fill in the blanks:

3. The i algorithm is a depth first search practice since complete possible
solutions are produced before test.

LOVELY PROFESSIONAL UNIVERSITY 45

Artificial Intelligence

Notes 4. Producing a possible solution for some problems; this means generating a particular
pointin the ..o .

4.3 Hill Climbing

This is a selection of depth-first (generate and test) search. A feedback is utilized here to decide
on the course of movement in the search space. In the depth-first search, the test function will just
accept or reject a solution. But in hill climbing the test function is offered with a heuristic
function which offers an estimate of how close a known state is to goal state. The hill climbing
test process is as follows:

1. Generally he first proposed solution as performed in depth-first procedure. Observe if it
is a solution. If so quit, else continue.

2. From this solution produce new set of solutions use, some application rules
3. For every element of this set
(i) Apply test function. It is a solution quit.

(ii) Moreover observe whether it is closer to the goal state than the solution already
produced. If yes, keep in mind it else discard it.

4. Take the best element so far produced and use it as the next proposed solution.

This step matches up to move through the problem space in the direction towards the
objective state.

5. Go back to step 2.

At times this procedure may approach to a position, which is not a solution, but from which
there is no move that enhances things. This will occur if we have reached one of the following
three states:

(@) A “local maximum” which is a state improved than all its neighbors, but is not better than
some other states farther away. Local maxim sometimes appears with in sight of a solution.
In such cases they are known as “Foothills”.

(b) A “plateau” which is a flat area of the search space, in which adjacent states have the
similar value. On a plateau, it is not probable to verify the best direction in which to move
by making local comparisons.

(c) A’ridge” whichis an area in the search that is superior than the surrounding areas, but can
not be looked in a simple move.

To conquer these problems we can:

(@) Back track to some previous nodes and try a different direction. This is a fine manner of
dealing with local maxim.

(b) Make a big jump in some course to a new area in the search. This can be produced by
applying two more rules of the similar rule several times, before testing. This is a good
approach is dealing with plate and ridges.

Example: A search algorithm that tries to locate a route that diminishes the number of
connections utilize the heuristic that the longer the span of the flight, the greater the probability
that it takes the traveler nearer to the target. Thus, the number of connections is diminished. This
is an example of hill climbing in the language of Artificial Intelligence.

46 LOVELY PROFESSIONAL UNIVERSITY

Unit 4: Heuristic Search Techniques

Notes
)]

Notes Hill climbing turns out to be incompetent in large problem spaces, and when
combinatorial explosion appears. But it is a functional when combined with other methods.

2

Task Tllustrate the problems that occur in hill climbing technique.

Self Assessment

Fill in the blanks:

5. IN e, the test function is offered with a heuristic function which offers an
estimate of how close a known state is to goal state.

6. A7 " which is a flat area of the search space, in which adjacent states have

7. A ” which is an area in the search that is superior than the surrounding
areas, but can not be looked in a simple move.

4.4 Best First Search

The general strategy of heuristic search is best-first search (BeFS)
° a node is chosen for expansion based on an evaluation function, f(n).

o expand the node with the lowest “evaluation” - the one that “appears” to be best as per the
evaluation function

° algorithm uses a heuristic function, h(n):

h(n) = estimated cost of cheapest path from node n to a goal node.

AN

Caution Evaluation gauges the distance to the goal.
Best First Search is a amalgamation of depth first and breadth first searches.

Depth first is good since a solution can be located without calculating all nodes and breadth first
is good since it does not get trapped in dead ends. The best first search permits us to switch
among paths thus gaining the advantage of both approaches. At every step the most promising
node is selected. If one of the nodes selected produces nodes that are less promising it is probable
to select another at the similar level and in effect the search alters from depth to breadth. If on
analysis these are no better then this beforehand unexpanded node and branch is not forgotten
and the search technique reverts to the descendants of the first option and proceeds, backtracking
as it were.

This process is very alike to steepest ascent, but in hill climbing once a move is selected and the
others are rejected the others are not at all reconsidered even as in best first they are saved to
allow revisits if an impasse appears on the evident best path. Also the best obtainable state is
chosen in best first even its value is inferior than the value of the node just discovered while in
hill climbing the progress stops if there are no healthier successor nodes. The best first search
algorithm will engross an OR graph which averts the problem of node duplication and presumes
that every node has a parent link to provide the best node from which it came and a link to all

LOVELY PROFESSIONAL UNIVERSITY 47

Artificial Intelligence

Notes its successors. In this method if a better node is located this path can be propagated down to the
successors. This method of using an OR graph needs 2 lists of nodes

OPEN is a precedence queue of nodes that have been evaluated by the heuristic function but
which have not yet been extended into successors. The most capable nodes are at the front.
CLOSED are nodes that have already been produced and these nodes must be amassed since a
graph is being used in partiality to a tree.

Heuristics so as to discover the most promising nodes a heuristic function is required known as
f’ where f’ is an rough calculation to find is made up of two parts g and h” where g is the cost of
going from the first state to the current node; g is considered merely in this context to be the
number of arcs navigated each of which is considered as being of unit weight. h’ is an estimate
of the initial cost of obtaining from the current node to the goal state. The function f’ is the
estimated value or estimate of obtaining from the initial state to the objective state. Both g and
h" are positive valued variables. Best First The Best First algorithm is an easy form of the
A* algorithm. From A* we note down that f' = g+h” where g is assess of the time taken to go from
the initial node to the current node and h’ is an estimate of the time taken to solution from the
current node. Therefore f’ is an estimate of how long it takes to go from the original node to the
solution.

l?

Did u know? As a support we take the time to go from one node to the subsequent one to
be a constant at 1.

Example: Here is an example for best-first search in the figure given below. Visualize
trying to arrive at a state that is shown below the spiral tube. If the initial state begins inside of
the opening at the top of the tube, the search will move in the region of the spiral rather than
leaving the tube and looking directly for the goal.

48 LOVELY PROFESSIONAL UNIVERSITY

Unit 4: Heuristic Search Techniques

4.4.1 Best First Search Algorithm Notes
1. Begin with OPEN holding the initial state

2. Choose the best node on OPEN

3. Produce its successors

4. For each successor Do

(i) If it has not been produced before evaluate it add it to OPEN and record its parent

(ii) If it has been produced before change the parent if this new path is better and in that
case update the cost of obtaining to any successor nodes

5. If a goal is located or no more nodes left in OPEN, quit, else return to 2.

Figure 4.1

3
’%I\1 STEP 1

STEP 2

STEP 3

STEP 4

All figures indicate “cost” of move

4.4.2 The A* Algorithm

Best first search is a simplified A*.
1. Begin with OPEN holding the initial nodes.
2. Choose the BEST node on OPEN such that f = g + h’ is minimal.

LOVELY PROFESSIONAL UNIVERSITY 49

Artificial Intelligence

Notes 3. If BEST is goal node quit and return the path from initial to BEST Otherwise

4. Eradicate BEST from OPEN and all of BEST’s children, labelling each with its path from
initial node.

A*Search
) Minimizes whole estimated solution cost
° Measures nodes by combining g(n) - the cost to reach node n -, and h(n) - the cost to get

from node n to the goal, thus
f(n) = g(n) + h(n) = estimated cost of the cheapest solution through n.

A* is most constructive if h(n) is an admissible heuristic - that is, h(n) never overrates the cost to
reach the goal.

Disadvantages of A*

° Although usually better than the uninformed searches, the computation time of A* is too
large

° As it keeps all generated nodes in memory, A* usually runs out of space

° Not practical for numerous large-scale problems.

Example: Eight puzzle Example: The heuristic of number of tiles out-of-position is definitely
less than the definite number of moves to the goal state. So this heuristic (united with best-first
search) is a permissible algorithm. So is the heuristic sum of the distances of out-of position tiles,
since it too undervalues the definite number of moves needed to arrive at a goal state.

2

Task Discuss how A* Search is performed.

4.4.3 Greedy Best-first Search (GBFS)

o Develop node closest to the goal; choose path with lowest h(n)

o Evaluate nodes by using heuristic function - that is, f(n) = h(n).

Example: Make use of straight-line distance heuristic, hSLD.

In the example, the path A-S-F-B (found by GBEFS) is longer than the path

A-S-R-P-B by 32km!!

In going from I to F, the heuristic proposes that N be expanded first, but it is a dead end!!

Worst-case time and space complexity is O(bm), where m is the maximum depth of the search
space.

The option of the heuristic is important.

50 LOVELY PROFESSIONAL UNIVERSITY

Unit 4: Heuristic Search Techniques

Notes
)]

Notes

1. Like DFS, GBFS follows a single path to the objective, but “backtracks” when it hits
adead end.

2. Like DFS it is not most favorable and it is incomplete.

Self Assessment

Fill in the blanks:
8 e is a amalgamation of depth first and breadth first searches.

0 e is a precedence queue of nodes that have been evaluated by the
heuristic function but which have not yet been extended into successors.

10, are nodes that have already been produced and these nodes must
be amassed since a graph is being used in partiality to a tree.

11. The Best First algorithm is an easy form of thec...cccccccveeccnenee algorithm.

4.5 Constraint Satisfaction

Many troubles in Al can be regarded as problems of constraint satisfaction, where the goal state
pleases a specified set of constraint.

AN

Caution Constraint satisfaction problems can be solved by means of any of the search
approaches.

The common form of the constraint satisfaction procedure is as follows:

Until a whole solution is located or until all paths have led to lead ends, do

1. Choose an unexpanded node of the search graph.

2. Apply the constraint inference rules to the chosen node to generate all possible new
constraints.

3. If the set of constraints encloses a contradiction, then report that this path is a dead end.

4. If the set of constraints illustrates a total solution then report success.

5. If neither a constraint nor a complete solution has been located then apply the rules to

produce new partial solutions. Insert these partial solutions into the search graph.

' Example: Consider the crypt arithmetic problems.
SEND

LOVELY PROFESSIONAL UNIVERSITY 51

Artificial Intelligence

Notes Allocate decimal digit to all the letters in such a manner that the answer to the problem is correct
to the same letter appears more than once, it must be allocated the same digit each time. No two
different letters may be allocated the same digit. Consider the below given crypt arithmetic
problem.

SEND
+MORE

Constraints:

1. No two digit can be allocated to same letter.

Only single digit number can be allocate to a letter.
No two letters can be allocated same digit.

Assumption can be prepared at different levels such that they do not oppose each other.

S

The problem can be divided into secured constraints. A constraint satisfaction strategy
may be used.

6. Any of search techniques may be utilized.
7. Backtracking may be performed as applicable us applied search techniques.
8. Rule of arithmetic may be followed.

Initial state of problem.

D=7
E=?
Y=7?
N=?
R=7?
O0=?
S=7?
M=?
Cl=7
c2=7

C1, C2, C3 stands for the carry variables respectively.

Goal State: The digits to the letters must be allocated in such a manner so that the sum is satisfied.
Solution Process:

We are following the depth-first technique to solve the problem.

1. Initial guess m=1 since the sum of two single digits can generate at most a carry ‘1".

2. When n=1 0=0 or 1 since the largest single digit number added to m=1 can produce the
sum of either 0 or 1 depend on the carry obtained from the carry sum. By this we say that
0=0 because m is already 1 hence we cannot assign same digit another letter (rule no.)

3. Wehave m=1 and 0=0 to get 0=0 we have s=8 or 9, again based on the carry obtained from
the earlier sum.

52 LOVELY PROFESSIONAL UNIVERSITY

Unit 4: Heuristic Search Techniques

The similar process can be repeated further. The problem has to be composed into different
constraints. And each constraints is to be satisfied by guessing the likely digits that the letters
can be assumed that the initial supposition has been already made . Rest of the process is being
revealed in the form of a tree, by means of depth-first search for the clear understandability of
the solution process.

Step -1 M=1 S=8or9
OO0
Laie
E(2) +Q(0)+C2(1 Ko): N
If C2=1 IrC2=0
E(2RO(0)+C2(1)=N(3} E2)+O(0)>C2(0)~N(2Yx

Contradiction (Rule 3)

N{3)+*R+CI(] or 0)=E(2)
/I(I‘Cl=l \II’CI'O

R=8)
/ $=9.C370 l\wmul

DE2)~Y DE2)~Y
D=7 (1o generate a carry)
X Contradiction(Rule 3)
D4 D=3 D=7
Pl
Solution not (To Satisfy Y should
Satisfied generate carry)

Contradiction for value of (0 Comes
X

After Step 1 we derive are more conclusion that Y contradiction should generate a Carry. That is
D+2>9

Step -2 Mw1

/ 0=0 Or $78,8%9 C3=1,C3=0

Let E=3

E(3):O(0)+C2(1 or 0)=M
C2-1 \ €240
E(3)«O(0)+C2(1 y=N(4) EG YO0y C2(0)=N(3)
X
Contradiction
N{@yR+CI(1 or 0)~E(3)
/Ci=1 \ C1=0
R78 (
Fses
Contraction (Y should generate carry in that case Cl

D+E(3)=y cannot be equal do 0)

D > 6 (Controduction)

After Step 2, we found that C1 cannot be Zero, Since Y has to a carry to satisfy goal state. From
this step onwards, no need to branch for C1 = 0.

LOVELY PROFESSIONAL UNIVERSITY

Notes

53

Artificial Intelligence

Notes Step -3

M=l 5=%,C3=1,5=9,C3=0
~1 o= |
Lzt E-5
-
EiSFOHC2(1 or 01=N
K
~2m1 \C2-0
E{S OO+ O] 1 =M06) E(S N0 C 0N 3)

NIENRACA() or 0)=E(5)

“ Cl=1
r;.;a;ﬁ//};w.u_‘l FE{5)

y
(L]
/5

Dl'ilﬂ{i Y

R

D=5 =6 D=7
D3)+EL S =Y i) n:o{ﬁ]-al-.‘{:a:'f(l I D{THE(E=YIZ)

Coeatradiction Conadiction

We have assigned digit to every letter in accordance with the constraints and production rules.

Now by backtracking, we find the different digits assigned to different letters and hence reach
the solution state.

Solution State:

Y=2
D=7
5=9
R=8
N=6
E=5
0=0
M=1
Cl=1
C2=0
C3=0

c3(0) C2(1) C1(1)
S9) EG) N@) D@
+M(1) O0) R®) EO)

M) O@©) N@© EG) Y@

54 LOVELY PROFESSIONAL UNIVERSITY

Unit 4: Heuristic Search Techniques

% Notes
' Example: Given Problem:

CROSS
+ROADS

Constraints & Production Rules:
Same rules as used for the previous problem.

Initial State of Problem:

c=?
R=7?
D=?
A=?
0=7?
N=?
G=?
S=7?
E=?
Cl=7
c2=7
C3=7
C4=7
Goal State:

The Digits to the Letters should be allocated in such a way. So that, the sum is satisfied.
Solution Process:

Again, I am following depth-first search technique to solve the problem.

1. Initial Guess, D=1. Since the sum of two single digits can, at most, generate a carry ‘1".

2. Now, we begin guessing the digits and try to solve the problem. The supposing and the
consequent effect of it is exposed in the form of a tree below.

LOVELY PROFESSIONAL UNIVERSITY 55

Artificial Intelligence

56

Notes

LetS=2
S(2) 1 S(2) = R(4)
D=1
I
8(2) + D(1) = E(3)

| -~

Let A=5 LefA=6
/ \
\'\
0+ AS)=G O+A6)~ G
//" N
0>9 0>8
Contradiction 0=9

I
O(9) + A(6) = G(5)
C3=l1
C3(1) + R(4) + O(9) = N(4)
Contradiction

After the Step 1, w see that the initial guess is not correct. Because all the guesses following that
have been checked, which has lead to the contradiction. Thus we move to second step with the
change in the initial guess.

Step -2
LetS=3

S(3) + S(3) = R(6)

D=1
5(3)»/1)(1) = E(4)
LetO=2

A+t O(Z)I— 2

LetA=S$

A(3) +0(2)=G(7)
R(6) = OX2) = N(8)

C +R(p) =/
(]ﬁ) \(5)\
C:q

At Step (2) we have allocated a single digit to every letter in accordance with the constraints and
production rules.

Now by backtracking, we discover the different digits allocated to dissimilar letters and therefore
reach the solution state.

Solution State:

Cc=9
N=8
G=7
A=5
O0=2

LOVELY PROFESSIONAL UNIVERSITY

Unit 4: Heuristic Search Techniques

E=4 Notes
D=1

R=6

S=3

C1=0

C2=0

C3=0

C4=0

C4(0) C3 C2(0) C1(0)
CIR(6) O(2) S(3) S(3)

+R6 O(2) A(5) D(1) S(3)

D(1) A(5) N(8) G(7) E(4) R(6)

Self Assessment

Fill in the blanks:

12. Many troubles in Al can be regarded as problems ofc.cccoevrrnnnen. where the goal
state pleases a specified set of constraint.

13. Constraint satisfaction problems can be solved by means of any of theccccccooverrenne.
approaches.

4.6 Means-ends Analysis

Many of the search strategies either reason forward of backward however, frequently a mixture
o the two directions is suitable. Such assorted strategy would make it probable to solve the
major parts of problem first and solve the lesser problems occur when combining them together.
Such a technique is known as “Means-ends Analysis”.

The problem space of means-ends analysis has an early state and one or more objective state, a
set of operate with a set of preconditions their application and difference functions that calculates
the difference among two state a(i) and s(j).

l?

Did u know? The means-ends analysis process centers about locating the difference among
current state and goal state.

A problem is solved by means of means-ends analysis by:

1. Calculating the current state s1 to a target state s2 and computing their difference D12.
2. Satisfy the preconditions for some suggested operator op is selected, then to reduce the
difference D12.

3. The operator OP is applied if probable. If not the present state is solved a goal is formed
and means- ends analysis is applied recursively to decrease the sub goal.

4. If the sub goal is solved state is reinstated and work resumed on the original problem.
(The first Al program to use means-ends analysis was the GPS General problem solver)

Means-ends analysis is functional for many human planning activities.

LOVELY PROFESSIONAL UNIVERSITY 57

Artificial Intelligence

Notes

' Example: Take the example of planning for an office worker. Let we have a different
table of three rules:

1. If in out current state we are starving, and in our objective state we are not starving, then
either the “visit hotel” or “visit Canteen “ operator is suggested.

2. If our current state we do not have money, and if in your goal state we have money, then
the “Visit our bank” operator or the “Visit secretary” operator is suggested.

3. If our current state we do not identify where something is needed in our target state we do

voou

recognize, then either the “visit office enquiry”, “visit secretary” or “visit co worker “
operator is suggested.

Self Assessment

Fill in the blanks:

14. The i process centers about locating the difference among current state
and goal state.

15. Means- ends analysis is functional for manyccccceeeeceene activities.

4.7 Summary

o Heuristic techniques are known as weak methods, as they are susceptible to combinatorial
explosion.

o The generate and Test algorithm is a depth first search practice since complete possible

solutions are produced before test.

o In hill climbing technique, a feedback is utilized here to decide on the course of movement
in the search space. In the depth-first search, the test function will just accept or reject a
solution.

o Best First Search is a amalgamation of depth first and breadth first searches.

o Greedy best-first Search (GBFS) develop node closest to the goal; choose path with lowest
h(n) and evaluate nodes by using heuristic function - that is, f(n) = h(n).

o Many troubles in Al can be regarded as problems of constraint satisfaction, where the goal
state pleases a specified set of constraint.

o The means-ends analysis process centers about locating the difference among current state
and goal state.

o Means-ends analysis is functional for many human planning activities.

4.8 Keywords

Best First Search: Best First Search is a amalgamation of depth first and breadth first searches.

Constraint Satisfaction: Many troubles in Al can be regarded as problems of constraint
satisfaction, where the goal state pleases a specified set of constraint.

Generate and Test Algorithm: It is a depth first search practice since complete possible solutions
are produced before test.

58 LOVELY PROFESSIONAL UNIVERSITY

Unit 4: Heuristic Search Techniques

Greedy Best-first Search (GBES): Develop node closest to the goal; choose path with lowest h(n) Notes
and evaluate nodes by using heuristic function - that is, f(n) = h(n).

Heuristic Techniques: Heuristic techniques are known as weak methods, as they are susceptible
to combinatorial explosion.

Hill Climbing Technique: In this, a feedback is utilized here to decide on the course of movement
in the search space. In the depth-first search, the test function will just accept or reject a solution.

Means-ends Analysis: This process centers about locating the difference among current state and
goal state.

4.9 Review Questions

1. What are Heuristic techniques? Illustrate why the Heuristic techniques are considered as
weak methods.

Enlighten various properties of heuristic process.

Explain the steps used in Generate and Test technique.

Depict the working of Hill Climbing technique.

Best First Search is a amalgamation of depth first and breadth first searches. Comment.
Make distinction between A* Algorithm and Greedy Best-first Search (GBFS) algorithm.
Ilustrate the process of solving constraint satisfaction problems.

Explain the functioning of Means-ends Analysis technique with examples.

© ® N @ o DN

Discuss the steps used in solving Means-ends Analysis problem.

=
S

Explain the advantages and disadvantage of A* algorithm.

Answers: Self Assessment

1 weak 2. Heuristic

3. generate and Test 4. problem space

5. hill climbing 6. plateau

7. ridge 8. Best First Search

9. OPEN 10. CLOSED

11. A* 12. constraint satisfaction
13. search 14. means-ends analysis

15. human planning

410 Further Readings

N

Books Antonelli, D. 1983. The application of artificial intelligence to a maintenance and diagnostic
information system (MDIS). Proceedings of the Joint Services Workshop on Artificial
Intelligence in Maintenance. Boulder, CO.

LOVELY PROFESSIONAL UNIVERSITY 59

Artificial Intelligence

Notes Boose, J.H. 1984. Personal construct theory and the transfer of human expertise.
Proceedings of the National Conference on Artificial Intelligence (AAAI-84),
p- 27-33, Austin, Texas.

Boose,].H. 1985. A knowledge acquisition program for expert systems based on personal
construct psychology. International Journal of Man-Machine Studies, 23, 495-525.

Boose, J.H. 1986a. Expertise Transfer for Expert System Design, New York; Elsevier.

Boose,].H. 1986b. Rapid acquisition and combination of knowledge from multiple experts
in the same domain. Future Computing Systems Journal, 1, 191-216.

Boose,].H. 1988. Uses of repertory grid-centered knowledge acquisition tools for knowledge-
based systems. International Journal of Man-Machine Studies, 29, 287-310.

Boose,].H. 1989. A survey of knowledge acquisition techniques and tools. Knowledge
acquisition: An international journal of knowledge acquisition for knowledge-
based systems, in press. Vol. 1, No. 1.

Boose,].H., and Bradshaw,].M. 1987b. AQUINAS: A knowledge acquisition workbench
for building knowledge based systems. Proceedings of the First European Workshop
on Knowledge Acquisition for Knowledge-Based Systems (pp. A6.1-6). Reading
University.

Boose, J.H., Bradshaw, J.M., Shema, D.B. 1988. Recent progress in Aquinas: A
knowledge acquisition workbench. Proceedings of the Second European Knowledge
Acquisition Workshop (EKAW-88). p. 2.1-15, Bonn.

Bradshaw, J. 1988. Shared causal knowledge as a basis for communication between expert
and knowledge acquisition system. Proceedings of the Second European Knowledge
Acquisition Workshop (EKAW-88) pp. 12.1-6.

Bradshaw, J.M. 1988. Strategies for selecting and interviewing experts. Boeing
Computer Services Technical report in preparation.

Bradshaw,].M. and Boose,].H. 1989. Decision analytic techniques for knowledge
acquisition: Combining situation and preference models using Aquinas. Special issue on
the 2nd Knowledge Acquisition for Knowledge-Based Systems Workshop, 1987,
International Journal of Man- Machine Studies. in press.

Clancey. W. 1986. Heuristic classification. In J. Kowalik (Ed.). Knowledge-based
problem solving. New York: Prentice-Hall.

Davis, R., and Lenat, D.B. 1982. Knowledge-based systems in artificial intelligence.
New York: McGraw-Hill.

DeJong, K. 1987. Knowledge acquisition for fault isolation expert systems. Special issue
on the 1* AAA1 Knowledge Acquisition for Knowledge-Based Systems Workshop,
1986, Part 4, International/ Journal of Man-Machine Studies, Vol. 27, No. 2.

v

Online link krchowdhary.com/ai/heuristic-serch.pdf

60 LOVELY PROFESSIONAL UNIVERSITY

Parminder Kaur, Lovely Professional University Unit 5: Knowledge Representation

Unit 5: Knowledge Representation Notes

CONTENTS
Objectives
Introduction
51 General Concepts of Knowledge
511 Explicit Knowledge
512 Tactic Knowledge
513 Knowledge Representation
514 Trends in Knowledge Engineering
515 Knowledge Acquisition: State-of-the-Art
52 Approaches of Knowledge Representation
521 Frames
522 Rules
523 Semantics
5.3 Predicate Logic to Represent Knowledge
531 Isa and Instance Relationships
54 Resolution
541 Normal Forms
542 Resolution Rule of Inference
543 Applying Resolution
5.5 Unification Algorithm
551 Diversity of Commonsense Thinking
5.6 Summary
5.7 Keywords

5.8 Review Questions

59 Further Readings

Objectives

After studying this unit, you will be able to:

o Understand the general concepts of knowledge

o Discuss the approaches of knowledge representation

o Understand the use of predicate logic to represent knowledge
° Discuss the resolution

o Illustrate the unification algorithm

LOVELY PROFESSIONAL UNIVERSITY 61

Artificial Intelligence

Notes Introduction

In today’s new age economy, knowledge and information are the most important factors in the
long-term success of both an individual and an organization. Knowledge is information extracted,
filtered or formatted in some way. Knowledge and knowledge management have emerged as a
vital component for many organizations. In fact, knowledge may soon be the only source of
competitive advantage for an organization. All too often one part of an organization repeats the
work of another part simply because it is impossible to keep track of, and makes use of knowledge
in other parts.

5.1 General Concepts of Knowledge

Knowledge management is a critical component of an organizations success. Knowledge assets
are the knowledge that an organization owns or needs to own, to achieve its goals.

Every company’s knowledge requirements are a unique combination of knowledge strategy,
tools and technologies, processes and procedures. Knowledge management technologies capture
this intangible element in an organization and make it universally available. This approach has
come to be known as knowledge management: the practice of capturing and organizing
information to make it more accessible and valuable to those who need it.

With the impact of globalization, the Internet, and the rapid evolution of technology, managing
knowledge for competitive advantage has become more important than ever. Knowledge
management is therefore an “essential ingredient of success” for all organizations.

Knowledge can be divided into two types, Tacit knowledge and Explicit knowledge. Tacit
knowledge is implicit, whereas Explicit knowledge is rule-based knowledge that is used to
match actions to situations by invoking appropriate rules. An organization promotes the learning
of Tacit knowledge to increase the skills and creative capacities of its employees and takes
advantage of Explicit knowledge to maximize efficiency.

AN

Caution To manage knowledge it must first of all be captured or acquired in some useful
form.

5.1.1 Explicit Knowledge

Knowledge that can be more easily attained and is often expressed or documented in a formal,
systematic manner - frequently in words and numbers.

' Example: Include Management Directives, Executive Orders, policy manuals, and
reference guides.

o Explicit knowledge is used in the design of routines, standard operation procedures,
and the structure of data records. These forms of knowledge can be found in any
organization.

o It allows an organization to enjoy a certain level of operational efficiency and control.

o Explicit knowledge promotes equable, consistent organizational responses.

62 LOVELY PROFESSIONAL UNIVERSITY

Unit 5: Knowledge Representation

5.1.2 Tactic Knowledge Notes

Knowledge that can also be attained, but is not as easily transferred. Tacit knowledge can be
attained through dialogue, job shadowing, storytelling, and sharing of best practices and lessons
learned. It usually is rooted in an individual’s experiences, intuition, insight, judgment,
and knowledge of organizational values. Individuals with tacit knowledge are usually
considered to be experts within their organizations and frequently sought out for guidance and
input.

° Tacit knowledge includes hands-on skills, best practices, special know-how, and intuitions.

Personal knowledge that is difficult to articulate.

° Tacit knowledge in an organization ensures task effectiveness. It also provides for a kind
of creative vitality - intuition and spontaneous insight can often tackle tough problems
that would otherwise be difficult to solve.

° Traditionally the transfer of Tacit knowledge is through shared experience, through
apprenticeship and job training.

° Tacit knowledge is cultivated in an organizational culture that motivates through shared
vision and common purpose.

An organization must adopt a holistic approach to knowledge management that successfully
combines Tacit and Explicit knowledge at all levels of the organization.

=7

Notes Personal knowledge is leveraged with Explicit knowledge for the design and
development of innovative products, services and processes.

5.1.3 Knowledge Representation

This part depicts the way to show knowledge, for easy understanding we will take the help of
knowledge acquisition.

Knowledge Acquisition in Context: Knowledge-based System Technologies

Knowledge acquisition can be considered as one further technology contributing to the
development of knowledge-based Systems (KBS).

Knowledge Support System
At the top of the hierarchy are experimental systems integrating knowledge acquisition and
performance tools in systems designed to support knowledge base updating and extension as
part of ongoing applications.

Knowledge Acquisition Tools

At the next level are the tools for automating knowledge engineering for KBS, through automatic
interview procedures, modeling expert behavior, and analysis of knowledge in textual form.

LOVELY PROFESSIONAL UNIVERSITY 63

Artificial Intelligence

Notes Knowledge-based System Support Environment

At the third level of the hierarchy is the equivalent of the Application Programming Support
Environment (APSE) in conventional systems, with facilities for editing, displaying, debugging,
and validating the knowledge base.

Knowledge-based System Shell

At the fourth level of the hierarchy is the knowledge-based system shell as a run-time
environment that elicits problem-specific information from the user, provides advice based on
its knowledge base, and explains that advice in as much detail as required.

Shell Development Language

At the fifth level of the hierarchy is the language in which the knowledge-based system shell is
written, generally a special-purpose environment for coping with knowledge representation
and inference.

Implementation Language

At the sixth level of the hierarchy is the implementation language which actually interfaces
to the computer. This tended to be Lisp in the early days of KBS, but as speed and space
efficiency have become significant and knowledge representation has become better understood,
other languages that support dynamic data structures such as C and Pascal have become
widely used.

Operating System

At the seventh level of the hierarchy is the operating system within which the implementation
runs. This needs to provide good interfaces to other programs, large databases and
communications.

Machine Architecture

At the lowest level of the hierarchy is the machine on which the KBS runs. In theory, system
developers should not need to know about the lower levels of the hierarchy machine architectures,
operating systems, and implementation languages are remote from knowledge processing. In
practice, these lower levels are the foundations on which systems are built, and any defects in
them can undermine the functionality of the upper levels.

5.1.4 Trends in Knowledge Engineering

The basic model for knowledge engineering has been that the knowledge engineer mediates
between the expert and knowledge base, eliciting knowledge from the expert, modeling and
encoding it for the knowledge base, and refining it in collaboration with the expert to achieve
acceptable performance. Figure 5.1 shows this basic model with manual acquisition of knowledge
from an expert followed by interactive application of the knowledge with multiple clients
through an expert system shell.

64 LOVELY PROFESSIONAL UNIVERSITY

Unit 5: Knowledge Representation

Notes

Figure 5.1: Basic Model of Manual Knowledge Acquisition

Elicit

Manual

Knowledge Acquisition

Engineer

Encode

Knowledge
Base

Knowledge
-Based System
Shell

Interactive
Application

5.1.5 Knowledge Acquisition: State-of-the-Art

This basic model has been greatly extended by the introduction of interactive knowledge
acquisition and encoding tools allowing the expert to enter knowledge directly to the system
without an intermediary. Such tools can greatly reduce the need for the knowledge engineer to
act as an intermediary, but, in most applications, they leave a substantial role for the knowledge
engineer.

As shown in Figure 5.2, knowledge engineers may:

o Adpvise the expert on the process of interactive knowledge elicitation.

o Manage the interactive knowledge acquisition tools, setting them up appropriately.
o Edit the partially encoded knowledge base in collaboration with the expert.

o Manage the knowledge encoding tools, setting them up appropriately.

o Edit the encoded knowledge base in collaboration with the expert.
o Validate the application of the knowledge base in collaboration with the expert.
o Train the clients in the effective use of the knowledge base in collaboration with the expert

by developing operational and training procedures.

LOVELY PROFESSIONAL UNIVERSITY 65

Artificial Intelligence

Notes

66

Figure 5.2: Knowledge Engineers’ Roles in Interactive
Computer-based Knowledge Acquisition

Knowledge
Acquisition

Knowledge
Base

Knowledge Knowledge

Engineer y '\ Engineer

Computer
Knowledge
Base

Validate g, g § Validate

This use of interactive computer-based elicitation can be combined with manual elicitation and
with the use of the interactive tools by the knowledge engineer rather than, or in addition to, the
expert. The knowledge engineer can:

° Directly elicit knowledge from the expert.
° Use the interactive elicitation tools to enter knowledge into the knowledge base.

Figure 5.2 shows multiple knowledge engineers since the tasks above may require the effort of
more than one person, and some specialization may be appropriate. Multiple experts are also
shown since it is rare for one person to have all the knowledge required, and, even if this were
so, comparative elicitation form multiple experts is itself a valuable knowledge elicitation
technique.

Figure 5.2 also shows the complexity of the knowledge engineer’s role and some of the support
tools required. Figure 5.3 groups the support tools for editing, display, encoding, and validation
of the knowledge bases into a Knowledge-Based System Support Environment and combines
the various forms of knowledge bases together. It shows the overall structure of a

LOVELY PROFESSIONAL UNIVERSITY

Unit 5: Knowledge Representation

knowledge-based system as a central knowledge base interacting through the knowledge Notes

acquisition tools, the expert system support environment, and expert system shell, with a user
community of experts, knowledge engineers, and clients.

Figure 5.3: Major Components of a Knowledge-based System

Experts

&
Knowledge
User Engineers
Community

Knowledge-Based
System

Knowledge
Engineers

Knowledge
Acquisition
System

Knowledge-
Based System
Support
Environment,

Knowledge
Base

Experts ov'vledge
& Engineers
Clients &
Cilents

2

Task Discuss the concept of knowledge acquisition.

Self Assessment

Fill in the blanks:

L knowledge is rule-based knowledge that is used to match actions to
situations by invoking appropriate rules.

2. knowledge can be attained through dialogue, job shadowing, storytelling,
and sharing of best practices and lessons learned.

3.

Knowledge acquisition can be considered as one of the technology contributing to the
development ofccccccceeevennne .

LOVELY PROFESSIONAL UNIVERSITY 67

Artificial Intelligence

Notes 5.2 Approaches of Knowledge Representation

Knowledge representation is an area in artificial intelligence that is concerned with how to
formally “think”, that is, how to use a symbol system to represent “a domain of discourse” - that
which can be talked about, along with functions that may or may not be within the domain of
discourse that allow inference (formalized reasoning) about the objects within the domain of
discourse to occur. Generally speaking, some kind of logic is used both to supply a formal
semantics of how reasoning functions apply to symbols in the domain of discourse, as well as to
supply (depending on the particulars of the logic), operators such as quantifiers, modal operators,
etc. that, along with an interpretation theory, give meaning to the sentences in the logic.

When we design a knowledge representation (and a knowledge representation system to interpret
sentences in the logic in order to derive inferences from them) we have to make trades across a
number of design spaces, described in the following sections. The single most important decision
to be made, however is the expressivity of the KR. The more expressive, the easier (and more
compact) it is to “say something”. However, more expressive languages are harder to
automatically derive inferences from.

' Example: An example of a less expressive KR would be propositional logic. An example
of a more expressive KR would be autoepistemic temporal modal logic.

Less expressive KRs may be both complete and consistent (formally less expressive than set
theory). More expressive KRs may be neither complete nor consistent.

The key problem is to find a KR (and a supporting reasoning system) that can make the inferences
your application needs in time, that is, within the resource constraints appropriate to the problem
at hand. This tension between the kinds of inferences an application “needs” and what counts as
“in time” along with the cost to generate the representation itself makes knowledge
representation engineering interesting. There are representation techniques such as frames,
rules and semantic networks which have originated from theories of human information
processing.

l"

Did u know? The fundamental goal of knowledge representation is to represent knowledge
in a manner as to facilitate inferencing (i.e. drawing conclusions) from knowledge.

5.2.1 Frames

Frames were proposed by Marvin Minsky in his 1974 article “A Framework for Representing
Knowledge.” A frame is an artificial intelligence data structure used to divide knowledge into
substructures by representing “stereotyped situations.” Frames are connected together to form
a complete idea.

Frame Structure

The frame contains information on how to use the frame, what to expect next, and what to do
when these expectations are not met. Some information in the frame is generally unchanged
while other information, stored in “terminals,” usually change.

l?

Did u know? Different frames may share the same terminals.

68 LOVELY PROFESSIONAL UNIVERSITY

Unit 5: Knowledge Representation

A frame’s terminals are already filled with default values, which is based on how the human Notes
mind works.

' Example: When a person is told “a boy kicks a ball,” most people will be able to visualize
a particular ball (such as a familiar soccer ball) rather than imagining some abstract ball with no
attributes.

5.2.2 Rules

If-then rules, which are arguably the most common form of knowledge representation in Artificial
Intelligence, are ambiguous. They can be interpreted both as logic programs having the form if
conditions then conclusions and as production rules having the form if conditions then do
actions. The relationship between these different kinds of rules has received little attention in
the Al literature; and, when it has, different authors have reached entirely different conclusions.

Some authors, such as Russell and Norvig in their textbook Introduction to Artificial Intelligence,
view production rules as just logical implications used to reason forward, while Herbert Simon
in the MIT Encyclopedia of Cognitive Science views the logic programming language Prolog as
one of many production system languages. On the other hand, Thagard in his Introduction to
Cognitive Science denies any relationship between logic and production rules at all.

5.2.3 Semantics

A semantic network is a network which represents semantic relations between the concepts.
This is often used as a form of knowledge representation. It is a directed or undirected graph
consisting of vertices, which represent concepts, and edges.

'i Example: An example of a semantic network is WordNet, a lexical database of English.
It groups English words into sets of synonyms called synsets, provides short, general definitions,
and records the various semantic relations between these synonym sets.

Some of the most common semantic relations defined are meronymy (A is part of B, i.e. B has A
as a part of itself), holonymy (B is part of A, i.e. A has B as a part of itself), hyponymy
(or troponymy) (A is subordinate of B; A is kind of B), hypernymy (A is superordinate of B),
synonymy (A denotes the same as B) and antonymy (A denotes the opposite of B). WordNet
properties have been studied from a network theory perspective and compared to other semantic
networks created from Roget’s Thesaurus and word association tasks respectively yielding the
three of them a small world structure.

It is also possible to represent logical descriptions using semantic networks such as the existential
Graphs of Charles Sanders Peirce or the related Conceptual Graphs of John F. Sowa. These have
expressive power equal to or exceeding standard first-order predicate logic. Unlike WordNet or
other lexical or browsing networks, semantic networks using these can be used for reliable
automated logical deduction. Some automated reasoners exploit the graph-theoretic features of
the networks during processing.

Self Assessment

Fill in the blanks:

4. is an area in artificial intelligence that is concerned with how to formally
“think”, that is, how to use a symbol system to represent “a domain of discourse”

LOVELY PROFESSIONAL UNIVERSITY 69

Artificial Intelligence

Notes

70

5. A is an artificial intelligence data structure used to divide knowledge into
substructures by representing “stereotyped situations.”

6. The frame containsccceueueeee. on how to use the frame, what to expect next, and what
to do when these expectations are not met.

7. rules, which are arguably the most common form of knowledge
representation in Artificial Intelligence, are ambiguous.

8. A network is a network which represents semantic relations between the
concepts. This is often used as a form of knowledge representation.

5.3 Predicate Logic to Represent Knowledge

Here we will emphasize main ethics enclosed in knowledge representation. Particularly predicate
logic will be met in other knowledge representation systems and analysis ways.

The following standard logic symbols are used generally:

For all v
There exists 3
Implies -
Not -
Or Y
And A

Now we provide an example of how predicate logic is accessed to represent knowledge. There
are other methods but this form is well-liked.

' Example: Consider the following;:

o Sachin is a mega star.

o Mega stars are rich.

o Rich people have speedy cars.
o Fast cars take a lot of petrol.

and strive to sketch the conclusion: Sachin’s car takes a lot of petrol.

Thus we can convert Sachin is a mega star into: mega_star(sachin) and Mega stars are rich into: ¥V m:
mega_star(m) — rich(m)

Rich people contain fast cars, the third axiom is more complicated:

° Is cars a relation and so car(c,m) says that case c is m’s car. OR

) Is cars a function? Thus we may have car_of(m).

Consider that cars is a relation then axiom 3 may be written: v c,m: car(c,m) A rich(m) fast(c).

The fourth axiom is a common statement regarding fast cars. Suppose consume(c) signify that car
c takes a lot of petrol. So we may write: v c: [fast(c) A3 m:car(c,m) — consume(c) .

Is this enough? no! — Does sachin have a car? We want the car_of function after all (and addition
to car): v c:car(car_of(m),m). The effect of applying car_ofto m is m’s car. The concluding set of

LOVELY PROFESSIONAL UNIVERSITY

Unit 5: Knowledge Representation

predicates is: mega_star(sachin) v m: mega_star(m) — rich(m) v c:car(car_of(m),m). v c,m: car(c,m) A Notes
rich(m) — fast(c). v c: [fast(c) A3 m:car(c,m) — consume(c)]. Provided this we could conclude:
consume(car_of(sachin)).

5.3.1 Isa and Instance Relationships

Two traits isa and instance play an imperative role in many facets of knowledge representation.
The cause for this is that they maintain property inheritance.

isa

— used to demonstrate class inclusion, such as isa(mega_star,rich).

instance

— used to demonstrate class membership, such as instance (prince,mega_star).

Thus, now it should be easy to observe how to represent these in predicate logic.

Isa is used to demonstrate class inclusion, such as isa(mega_star,rich).

Instance is used to demonstrate class membership, such as instance (prince,mega_star).
Self Assessment

Fill in the blanks:
9. Predicate logic contains various standard logic symbols to representcccccucuucce. .
10. Isais used to demonstrate classcccccccoerunncne .

11. Instance is used to demonstrate classcccueune.e. .

5.4 Resolution

This is another type of proof system based on refutation. Better suited to computer
implementation than systems of axioms and rules (can give correct answers). Generalizes to
first order logic. This is the basis of Prologs inference method.

AN

Caution To apply resolution, all formulae in the knowledge base and the query must be in
clausal form (c.f. Prolog clauses).

5.4.1 Normal Forms
A literal is a propositional letter or the negation of a propositional letter and a clause is a
disjunction of literals.

Conjunctive Normal Form (CNF): a conjunction of clauses, e.g., (P v Q v =R) A (=S v —R).

Disjunctive Normal Form (DNF): a disjunction of conjunctions of literals, e.g., (=P A =Q A =R) v

Every propositional logic formula can be converted to CNF and DNF.
Conversion to Conjunctive Normal Form

Eliminate <>« rewriting P <3<>Qas (P > Q) A (Q —» P)

LOVELY PROFESSIONAL UNIVERSITY 71

Artificial Intelligence

Notes Eliminate — rewriting P ->— Qas =P v Q
Use DeMorgans laws to push — inwards:
rewrite = (P A Q) as =P v Q
rewrite = (PAQ)as P v —Q
Eliminate double negations: rewrite — P as P
Use the distributive laws to get CNF:
rewrite (P AQ) vRas (PvR) A (QVR)
rewrite (Pv Q) ARas (PAR) v (QAR)

Example:

- (P - (QAR))
—(=PVv(QAR))
——=PA -(QVR)
——=PA(=QA=R)
PA(=Qv=R)

Two clauses: P, = Q v =R

5.4.2 Resolution Rule of Inference

Figure 5.4: Resolution Rule

Ay B - BvC

1 ,

Ay C

where B is a propositional letter and A and C are clauses (possibly empty) A(“C is the resolvent of
the two clauses.

72 LOVELY PROFESSIONAL UNIVERSITY

Unit 5: Knowledge Representation

Resolution Rule: Key Idea Notes

1 Consider AvBand ~Bv C
(a) if Bis True, — B is False and truth of second formula depends only on C
(b) if B is False, truth of first formula depends only on A
2. Only one of B, = B is True, so if both A v Band = B v C are True, either A or Cis
True, ie, A v Cis True
Hence the resolution rule is sound.
=
Task Make distinction between Conjunctive Normal Form (CNF) and Disjunctive Normal
Form (DNF).

5.4.3 Applying Resolution

1. The resolution rule is sound (resolving entailed by two parent clauses)
2. How can we use the resolution rule?
(@) Convert knowledge base into clausal form
(b) Repeatedly apply resolution rule to the resulting clauses
(c) A query A follows from the knowledge base if and only if each of the clauses in the
CNF of A can be derived using resolution.

Self Assessment

Fill in the blanks:
120 A is a propositional letter or the negation of a propositional letter.

13. Resolution is considered as a basis ofc..cccceuune. method.

5.5 Unification Algorithm

In Artificial Intelligence there is the question whether we should pursue “unified architectures
of cognition”. Those of us who build Al systems know that some amount of unification happens
automatically as a consequence of trying to simplify what we are building by making the
components general and reusable through building libraries, languages, and architectures. And
clearly that there has to be something better than Lisp!

Our feeling is that a total unification is not possible, but there is a strong reason why people
believe it is. To put it simply, everyone has a different idea of what it means to be intelligent,
that is, they have different beliefs about what kinds of problems are interesting or hard. This set
of “interesting problems” is usually far smaller than the set of problems people actually solve,
and so as a consequence unification may be possible for that small set. But when applied to
problems outside that set, the unification begins to break down and a great deal of additional
machinery is needed, defeating the original simplification.

LOVELY PROFESSIONAL UNIVERSITY 73

Artificial Intelligence

74

Notes

|

Notes In other words, trying to unify Al is fruitless because every problem and domain
has enough of its own character that any Al system that purports to be general in fact
requires a significant amount of additional code and modification to get it to actually
work in that domain. Anyone who doesn’t believe this should try working in another
domain!

5.5.1 Diversity of Commonsense Thinking

When we finally build a human-level commonsense thinking machine, it will be composed of
at least dozens and possibly hundreds of distinct subsystems with rather different architectures,
because it will be the union of a large number of architectures written by a large number of
people, each with a different idea of what it means to be intelligent. So perhaps the question we
should be asking is not

How do you unify all of Al into one cognitive architecture?

But rather

How do you get several cognitive architectures to work together?

How can we make different architectures work together without unifying them?

Perhaps you can do this without much trouble, if the individual architectures are skilled at
figuring out how to use new kinds of resources. The brain’s walking agency might exploit its
vision agency to see if there are slippery things on the ground, and the vision agency might
exploit the walking agency to get the robot around an obstacle to see its goal more clearly. But
is this so different from the walking agency needing to figure out how to servo its joints to help
it go forward, or the vision agency to figure out how to apply its filters and visual routines to
segment an object? The skills that any smart Al system needs to manage and figure itself out
may well be enough to let it exploit outside resources as well. Over time, a very tight integration
may be achieved, where the vision agency may move the body and head for virtually every task
it performs, and vice-versa. In order to achieve this level of cooperation and coordination, what
is needed is less a common substrate on which to communicate, and more a large ensemble of
“social”, “team” and “exploitation” skills that allow specific sets of agents to cooperate with one
another or exploit one another without slowing things down or drawing too many resources.
There is a general mechanism for this — except maybe for a few features like those in Soar, such
as the B-brain facility that detects different kinds of impasses. But even there, the facility is
useless without the programmer providing some ways to deal with those impasses.

We should have diversity at the highest level, at the level of the cognitive architecture itself. As
a practical matter, this is an alternative to the Soar approach, where you are expected to write all
of the different problem solvers you need in the Soar language. Soar or any such substrate is
well suited for every different kind of problem. That is why the robot people use consumption-
like languages, the vision people have their probabilistic frameworks, etc. It doesn’t mean that
those methods are sufficient, but it shows how hard it is to get people to agree on a language or
representation. And in fact, software engineers have given up on unification. These days, large
programs are written in many different languages, and linked using “interface definition
languages”, which amount to abstract descriptions of the data structures each language uses.
Because every language uses integers, floats, arrays, and records, they can talk. And because any
Al system will need to use situations, events, objects, properties, relations, and other basic
representations, they will be able to talk as well. Chances are, half a billion years of evolution
didn’t produce a brain that could be effectively expressed as a small set of simple agencies built

LOVELY PROFESSIONAL UNIVERSITY

Unit 5: Knowledge Representation

on a simple substrate. Perhaps we could invent such a system, but maybe we should wait until Notes
we’ve got something that works before we try to simplify it that much.

Self Assessment

Fill in the blanks:

14. When applied to problems outside the specified set, theccccccceuee begins to break
down and a great deal of additional machinery is needed, defeating the original
simplification.

15. These days, large programs are written in many different languages, and linked using
........................... languages”.

5.6 Summary

° Knowledge management is a critical component of an organizations success. Knowledge
assets are the knowledge that an organization owns or needs to own, to achieve its goals.

° Explicit knowledge is used in the design of routines, standard operation procedures, and
the structure of data records.

° Tacit knowledge can be attained through dialogue, job shadowing, storytelling, and sharing
of best practices and lessons learned.

° Knowledge representation is an area in artificial intelligence that is concerned with how
to formally “think”, that is, how to use a symbol system to represent “a domain of
discourse”.

° Knowledge acquisition can be considered as one of the technologies contributing to the

development of knowledge-based Systems (KBS).

° A semantic network is a network which represents semantic relations between the concepts.
This is often used as a form of knowledge representation.

° Resolution is another type of proof system based on refutation which is better suited to
computer implementation than systems of axioms and rules.

° Trying to unify Al is fruitless because every problem and domain has enough of its own
character that any Al system that purports to be general in fact requires a significant
amount of additional code and modification to get it to actually work in that domain.

5.7 Keywords

Explicit Knowledge: Knowledge that can be more easily attained and is often expressed or
documented in a formal, systematic manner.

Frame: A frame is an artificial intelligence data structure used to divide knowledge into
substructures by representing “stereotyped situations.”

Knowledge Acquisition: Knowledge acquisition can be considered as one of the technologies
contributing to the development of knowledge-based Systems (KBS).

Knowledge Representation: It is an area in artificial intelligence that is concerned with how to
formally “think”, that is, how to use a symbol system to represent “a domain of discourse”.

Knowledge: Knowledge is information extracted, filtered or formatted in some way.

LOVELY PROFESSIONAL UNIVERSITY 75

Artificial Intelligence

Notes Semantic Network: A semantic network is a network which represents semantic relations between
the concepts. This is often used as a form of knowledge representation.

Tactic Knowledge: Knowledge that can also be attained, but is not as easily transferred.

5.8 Review Questions

Make distinction between explicit knowledge and tactic knowledge.
Describe the meaning of knowledge representation in clausal form.
Explain the approaches of knowledge representation.

1.

2

3

4. Explain the concept of semantic network with examples.

5 Illustrate how do you use Predicate Logic to represent knowledge.
6

What is knowledge acquisition? Discus how Knowledge acquisition is considered as one
of the technology contributing to the development of knowledge-based Systems (KBS).

7. Using the vocabulary (i.e. predicate symbols, constants, and function symbols) express the
following sentences in clausal form:

a) Xisamother of Y if X is female and X is a parent of Y.
b) Xis a father of Y if X is a male parent of Y.

(

(

() XishumanifY is a parent of X and Y is human.

(d) Anindividual is human if his or her mother is human and his or her father is human.
(

e) If a person is human then his (or her) mother is human or his (or her) father is
human.

(f) No one is his or her own parent.

8. Assume the following facts:
(@) Robin only likes easy courses.
(b) Computing courses are hard.
(c) All courses in Sociology are easy.
(d) “Society is evil” is a sociology course.

Represent these facts in predicate logic and answer the question. What course would
Robin like?

9. What is resolution? Illustrate the concept of applying resolution.

10. Explain the working of unification algorithm.

Answers: Self Assessment

1 Explicit 2. Tacit

3. knowledge-based Systems (KBS) 4. Knowledge Representation
5. Frame 6. Information

7. If-then 8. Semantic

9. Knowledge 10. Inclusion

76 LOVELY PROFESSIONAL UNIVERSITY

Unit 5: Knowledge Representation

11. Membership 12. Literal Notes
13. Prologs Inference 14. Unification

15. Interface Definition

5.9 Further Readings

N

Books Antonelli, D. 1983. The application of artificial intelligence to a maintenance and diagnostic
information system (MDIS). Proceedings of the Joint Services Workshop on Artificial
Intelligence in Maintenance. Boulder, CO.

Boose, J.H. 1984. Personal construct theory and the transfer of human expertise.
Proceedings of the National Conference on Artificial Intelligence (AAAI-84),
p- 27-33, Austin, Texas.

Boose,].H. 1985. A knowledge acquisition program for expert systems based on personal
construct psychology. International Journal of Man-Machine Studies, 23, 495-525.

Boose, J.H. 1986a. Expertise Transfer for Expert System Design, New York; Elsevier.

Boose,].H. 1986b. Rapid acquisition and combination of knowledge from multiple experts
in the same domain. Future Computing Systems Journal, 1, 191-216.

Boose, J.H. 1988. Uses of repertory grid-centered knowledge acquisition tools for knowledge-
based systems. International Journal of Man-Machine Studies, 29, 287-310.

Boose,].H. 1989. A survey of knowledge acquisition techniques and tools. Knowledge
acquisition: An international journal of knowledge acquisition for knowledge-
based systems, in press. Vol. 1, No. 1.

Boose,].H., and Bradshaw, .M. 1987b. AQUINAS: A knowledge acquisition workbench
for building knowledge based systems. Proceedings of the First European Workshop
on Knowledge Acquisition for Knowledge-Based Systems (pp. A6.1-6). Reading
University.

Boose, J.H., Bradshaw, J.M., Shema, D.B. 1988. Recent progress in Aquinas: A
knowledge acquisition workbench. Proceedings of the Second European Knowledge
Acquisition Workshop (EKAW-88). p. 2.1-15, Bonn.

Bradshaw, J. 1988. Shared causal knowledge as a basis for communication between expert
and knowledge acquisition system. Proceedings of the Second European Knowledge
Acquisition Workshop (EKAW-88) pp. 12.1-6.

Bradshaw, J.M. 1988. Strategies for selecting and interviewing experts. Boeing
Computer Services Technical report in preparation.

Bradshaw,].M. and Boose,].H. 1989. Decision analytic techniques for knowledge
acquisition: Combining situation and preference models using Aquinas. Special issue on
the 2nd Knowledge Acquisition for Knowledge-Based Systems Workshop, 1987,
International Journal of Man- Machine Studies. in press.

Clancey. W. 1986. Heuristic classification. In J. Kowalik (Ed.). Knowledge-based
problem solving. New York: Prentice-Hall.

Davis, R., and Lenat, D.B. 1982. Knowledge-based systems in artificial intelligence.
New York: McGraw-Hill.

LOVELY PROFESSIONAL UNIVERSITY 77

Artificial Intelligence

Notes

AN

Y.L,

Online link

78

DeJong, K. 1987. Knowledge acquisition for fault isolation expert systems. Special issue
on the 1 AAA1 Knowledge Acquisition for Knowledge-Based Systems Workshop,
1986, Part 4, International/ Journal of Man-Machine Studies, Vol. 27, No. 2.

www.dave-reed.com/csc550.F04/ Lectures/representation.pdf

LOVELY PROFESSIONAL UNIVERSITY

Parminder Kaur, Lovely Professional University

Unit 6: Knowledge Representation using Rules

Unit 6: Knowledge Representation using Rules Notes

CONTENTS

Objectives

Introduction

6.1 Procedural vs Declarative Knowledge
6.1.1 Representing How to Use Knowledge

6.2 Logic Programming

6.3 Forward vs Backward Reasoning

6.4 Matching and Control Knowledge
6.4.1 Matching
6.4.2 Control Knowledge

6.5 Summary

6.6 Keywords

6.7 Review Questions

6.8 Further Readings

Objectives

After studying this unit, you will be able to:

o Understand the procedural and declarative knowledge
o [lustrate the logic programming

o Compare the forward and backward reasoning

o Understand the matching and control knowledge
Introduction

In this unit, you will understand various concepts of knowledge representation using rules. You
will discuss procedural knowledge and declarative knowledge. Logic programming contain
three major classes of application which are discussed in the unit. You will illustrate the
comparison between Forward and Backward Reasoning. The concept of matching control

knowledge is also discussed.

6.1 Procedural vs Declarative Knowledge

Declarative Knowledge Representation

In Declarative knowledge representation, knowledge is signified as static collection of details
which are influenced by common procedures. Here the details are required to be accumulated
only one and they can be utilized in any number of manners. Details can be easily added to

declarative systems without altering the common procedures.

LOVELY PROFESSIONAL UNIVERSITY 79

Artificial Intelligence

Notes ° Static representation — knowledge regarding objects, events, etc., and their relationships
and states specified.

° Needs a program to recognize what to do with knowledge and how to perform it.
Procedural Representation

In Procedural representation, knowledge is signified as procedures.

' Example: Default reasoning and probabilistic reasoning are examples of procedural
techniques.

Here, heuristic knowledge of “How to do things efficiently “can be simply signified.

o Control information essential to use the knowledge is entrenched in the knowledge itself.
For example, how to discover relevant facts, make inferences etc.

o Needs an interpreter to follow instructions provided in knowledge.

Example: Let us assume what knowledge an alphabetical sorter would want:
o Implicit knowledge that A occurs before B efc.
o This is simple really integer comparison of (ASCII) codes for A, B.

@ All programs enclose procedural knowledge of this sort.

o The procedural information here is that knowledge of how to alphabetise is signified explicitly
in the alphabetization procedure.

@ A declarative system might have to have explicit details such as A occurs before B, B
comes before C etc.

6.1.1 Representing How to Use Knowledge

We discuss below the need to represent how to control the processing:
Direction

o Specify the direction an allegation could be used. For example, to verify something can fly
show it is a bird. fly(x) — bird(x).

Knowledge to Achieve Goal

o Identify what knowledge might be required to attain a specific goal.

'i Example: To prove something is a bird attempting using two facts has_wings and
has_feathers to demonstrate it.

Actually most of the knowledge representations utilize an amalgamation of both. Most of the
knowledge representation structures have been generated to manage programs that control
natural language input. There are numerous types of schemas that have proved functional in Al
programs. They comprise:

(i) Frames: Used to explain a compilation of attributes that a specified object possesses (e.g.:
depiction of a chair).

(ii) Scripts: Used to illustrate general sequence of events (e.g.:- a restaurant scene).

80 LOVELY PROFESSIONAL UNIVERSITY

Unit 6: Knowledge Representation using Rules

(iii) Stereotypes: Used to depict traits of people. Notes

(iv) Rulemodels: Used to illustrate general features shared between a set of rules in a production
system.

Frames and scripts are used very broadly in various Al programs. Before choosing any
particular knowledge representation structure, the following concerns have to be
considered.

(i) The basis properties of objects, if any, which are general to each problem domain
must be identified and managed suitably.

(ii) The whole knowledge should be signified as a good set of primitives.

(iii) Mechanisms must be developed to access appropriate parts in a huge knowledge
base.

Task Tlustrate the use of frames and scripts.

Self Assessment

Fill in the blanks:

L In s representation, knowledge is signified as static collection of
details which are influenced by common procedures.

2. Details can be easily added toccccccvvviiirininnininnnn. systems without altering the common
procedures.

3. In Procedural representation, knowledge is signified asccoeovuvrririnincnnnnn. .

4. Most of the knowledge representation structures have been generated to manage programs

that control ..o .
5. are used to illustrate general sequence of events.
6. models are used to illustrate general features shared between a

set of rules in a production system.

6.2 Logic Programming

Logic programming contain three major classes of application: as a general-purpose programming
language, a database language, and a knowledge representation language in Al. As a
programming language, it can signify and calculate any assessable function. As a database
language, it simplifies relational databases, to comprise general clauses as well as facts. And as
a knowledge representation language it is a non-monotonic logic, which can be utilized for
default reasoning. Its most renowned execution is the programming language Prolog, which
mingles pure logic programming with a number of contaminated traits.

Besides the utilization of logic programming as a normative model of problem solving
(Kowalski, 1974/79), Stenning and van Lambalgen (2004, 2005, 2008) have examined its use as a
descriptive model of human reasoning.

Logic programs (also known as normal logic programs) are sets of conditionals of the form:

If Bl and ... and Bn then H

LOVELY PROFESSIONAL UNIVERSITY 81

Artificial Intelligence

Notes where the conclusion H is an atomic formula and the conditions Bi are literals, which are either
atomic formulas or the negations of atomic formulas. All variables are implicitly generally
quantified in front of the conditional. Conditionals in logic programs are also known as clauses.
Horn clauses are the particular case where all of the conditions are atomic formulae. Details are
the special case where n = 0 (there are no conditions) and there are no variables. At times clauses
that are not facts are also known as rules, inviting confusion with production rules.

Goals (or queries) are combination of literals, syntactically just like the conditions of clauses.

Though, all variables are unreservedly existentially quantified, and the purpose of the goal is to
discover an instantiation of the variables that makes the objective hold.

' Example: Consider the three sentences:

If you contain the bus fare and you catch a bus and not something goes wrong with the bus
voyage, then you will go home for the weekend. ‘If you have the bus fare and you catch a bus’,
‘then you will go home for the weekend’; “You have the bus fare” are a clause, a Horn clause, and
a fact correspondingly.

Observe that the second sentence can be considered as an imprecise version of the first sentence.
Observe too that the first two clauses both express “strong” domain-specific knowledge, instead
of the kind of weak knowledge that would be essential for general-purpose planning.

The sentence you will go home for the weekend is a simple, atomic goal.

Backward reasoning (from conclusions to conditions) considers conditionals as objective-
reduction procedures: to show/solve H, show/solve Bl Bn.

For instance, backward reasoning turns the conditionals:

If you study late in the library then you will finish the essay.

If you have the bus fare and you catch a bus, then you will go home for the weekend into the procedures:
To complete the essay, study late in the library.

To go home for the weekend, verify that you have the bus fare, and catch a bus.

Since conditionals in normal logic programming are utilized only backwards, they are usually
written backwards:

HifBl....Bn

So that backward reasoning is correspondent to “forward chaining” in the direction in which the
conditional is written. The Prolog syntax for clauses:

H:-B1,...,Bn

is intentionally ambiguous, so that clauses can be read either declaratively as conditionals
written backwards or procedurally as goal-reduction procedures implemented forwards.

While positive, atomic goals and sub-goals are resolved by backward reasoning, negative goals
and sub-goals of the form not G, where G is an atomic sentence, are resolved by negation as
failure: not G succeeds if and only if backward reasoning with the sub-goal G does not succeed.

Negation as failure makes logic programming a non-monotonic logic.

' Example: Given only the clauses:

An object is red if the object appears red and not the object is illuminated by a red light.

82 LOVELY PROFESSIONAL UNIVERSITY

Unit 6: Knowledge Representation using Rules

The apple appears red. Then the consequence: Notes

The apple is red follows as a goal, since there is no clause whose conclusion matches the sub-goal
the apple is enlightened by a red light, and thus the two conditions for the only clause that can
be utilized in solving the goal both hold. Though, provided the additional clause the apple is
illuminated by a red light, the sub-goal now accomplish something and the top-level goal now
fails, non-monotonically withdrawing the consequence the apple is red. Though, the consequence
not the apple is red now succeeds instead.

Goals and conditions of clauses can be generalized from conjunctions of literals to arbitrary
formulae of first-order logic. The simplest manner to perform so is to use auxiliary predicates
and clauses (Lloyd and Topor, 1984).

' Example: The goal:

Demonstrate that for all exams, if the exam is a final exam, then you can revise for the exam in
the library can be converted into the normal logic programming form:

Demonstrate that not the library is useless; the library is futile if the exam is a final exam and not
you can study for the exam in the library.

AN

Caution The conversion applies in logic programming only when the conditional is inferred
as a goal, and not when it is inferred as a clause.

The computational benefit of the conversion is that it decreases the problem of identifying
whether a random sentence of first-order logic holds with respect to a specified logic program
to the two simple inference rules of backward reasoning and negation as breakdown alone.

|

Notes Horn clauses are named after the logician Alfred Horn, who studied some of their
model-theoretic properties.

Comparison between Backward and Forward reasoning is discussed below.
Self Assessment

Fill in the blanks:

7. contains three major classes of application: as a general-purpose
programming language, a database language, and a knowledge representation language
in AL

8. As a database language, logic programming simplifiescccecu. databases, to

comprise general clauses as well as facts.
9. Conditionals in logic programs are also known asccccccceoevuuee. .

100 are the particular case where all of the conditions are atomic formulae.

6.3 Forward vs Backward Reasoning

A search procedure must locate a path among initial and goal states. There are two directions in
which a search process could progress.

LOVELY PROFESSIONAL UNIVERSITY 83

Artificial Intelligence

Notes 1. Reason forward from the initial states: Being formed the root of the search tree. General
the next level of the tree by locating all the rules whose left sides go with the root node,
and use their right sides to produce the siblings. Repeat the process until a configuration
that goes with the goal state is produced.

2. Reason forward from the goal state(s): Start building a search tree starting with the goal
configuration(s) at the root. Produce the next level of the tree by locating all the rules
whose right sides go with the root node. Use the left sides of the rules to produce the new
nodes. Persist until a node that goes with the begin state is produced.

l?

Did u know? The method of chaining backward from the preferred final state is known as
goal directed reasoning or back tracing.

Assortment of forward reasoning or backward reasoning is based on which direction provides
less branching factor and justifies its reasoning process to the consumer. Most of the search
methods can be utilized to search either forward or backward.

i)

Notes One exception is the means-ends analysis technique which continues by decreasing
differences among current and goal states, at times reasoning forward and at times
backward.

The following are the factors which find out the option of direction for a specific problem:

1. Are there more possible start states on goal states? We would like to shift from the smaller
set of states to the bigger set of states.

2. Inwhich direction is the branching factor (that is, their average number of nodes that can
be reached directly from a single node) greater ? we would like to carry on in the direction
with the lower branching factor.

3. Will the program be inquired to validate its reasoning process to a user? If so, it is imperative
to continue in the direction that matches more closely with the way the user will think.

4. What type of event is going to generate a problem-solving episode? If it is the arrival of a
new factor, forward reasoning makes sends. If it is a query to which a response is preferred,
backward reasoning is more normal.

Self Assessment

Fill in the blanks:
11. A search procedure must locate a path among initial andcccccceen states.

12. The method of chaining backward from the preferred final state is knownas............c.ccccce.. .

6.4 Matching and Control Knowledge

6.4.1 Matching

How to take out from the whole collection of rules that can be applied at a specified point?

84 LOVELY PROFESSIONAL UNIVERSITY

Unit 6: Knowledge Representation using Rules

Matching among current state and the precondition of the rules is discussed as below.

Indexing

3
<

A large number of rules = too sluggish to locate a rule

3
<

Indexing: Use the existing state as an index into rules and choose the matching ones
instantly

3
<

Only functions when preconditions of rules match accurately

3
<

Only functions when preconditions of rules match exact board configuration

3
<

It’s not forever apparent whether a rule’s preconditions are pleased by a specific
state

3
<

There’s a swapping among the ease of writing rules (high-level descriptions) and
the ease of the matching process

Matching with variables

& Generality in the statements of the rules: Require a search process to determine a match
among a particular state and the preconditions of a specified rule.

Backward-chaining systems

“ One-one matching algorithm
. Unification procedure + Depth-first backtracking to select individual rules
¢+ Forward-chaining systems

* Many-many matching algorithm: RETE

Approximate matching

& Rules should be applied if their preconditions roughly match the present situation

' Example: A speech-understanding program

Rules: An explanation of a physical waveform to phones (a, e, ...)

Physical signal: differences in the way individuals speak, result of background
noise, etc.

Conflict resolution:
@ Preferences dependent on rules:

. Specificity of rules

. Physical order of rules

@ Preferences dependent on objects:
. Importance of objects
. Position of objects

@ Preferences dependent on states:
L4 Assessment of states

LOVELY PROFESSIONAL UNIVERSITY

Notes

85

Artificial Intelligence

Notes 6.4.2 Control Knowledge

An algorithm comprises: logic component, that mentions the knowledge to be utilized in solving
problems, and manage component, that identifies the problem-solving approaches by means of
which that knowledge is utilized.

Therefore, Algorithm = Logic + Control. The logic component identifies the meaning of the
algorithm while the control component only affects its competence. An algorithm may be
formulated in dissimilar manners, generating similar behavior. One formulation, may have a
apparent statement in logic component but utilize a complicated problem solving strategy in
the control component. The other formulation may have a complex logic component but utilize
a simple problem-solving approach. The competence of an algorithm can frequently be improved
by enhancing the control component without altering the logic of the algorithm and thus without
altering the meaning of the algorithm.

The approach in databases is towards the division of logic and control. The programming
languages these days do not differentiate between them.

Computer programs will be more frequently accurate, more simply enhanced, and more readily
adapted to new troubles when programming languages divide logic and control, and when
execution mechanisms offer more powerful problem-solving amenities of the type given by
intelligent theorem-proving systems.

l?

Did u know? The programmer mentions both logic and control in a single language.

AN

Caution The execution mechanism utilizes only the most rudimentary problem-solving
capabilities.

2

Task Discuss how to improve the competence of an algorithm.

Self Assessment

Fill in the blanks:

13, The ., component identifies the meaning of the algorithm while
the control component only affects its competence.

14, The e of an algorithm can frequently be improved by enhancing
the control component without altering the logic of the algorithm and thus without altering
the meaning of the algorithm.

15. The approach in ..., is towards the division of logic and control.
6.5 Summary
° In Declarative knowledge representation, knowledge is signified as static collection of

details which are influenced by common procedures.

86 LOVELY PROFESSIONAL UNIVERSITY

Unit 6: Knowledge Representation using Rules

° Details can be easily added to declarative systems without altering the common procedures. Notes

° In Procedural representation, knowledge is signified as procedures. Default reasoning
and probabilistic reasoning are examples of procedural techniques.

° In Procedural representation, heuristic knowledge of “How to do things efficiently “can
be simply signified.

° Most of the knowledge representation structures have been generated to manage programs
that control natural language input.

° Logic programming contain three major classes of application: as a general-purpose
programming language, a database language, and a knowledge representation language
in AL

° Assortment of forward reasoning or backward reasoning is based on which direction

provides less branching factor and justifies its reasoning process to the consumer.

° The logic component identifies the meaning of the algorithm while the control component
only affects its competence.

6.6 Keywords

Declarative Knowledge Representation: In Declarative knowledge representation, knowledge
is signified as static collection of details which are influenced by common procedures.

Frames: Used to explain a compilation of attributes that a specified object possesses (For example,
depiction of a chair).

Procedural Representation: In Procedural representation, knowledge is signified as procedures.

Scripts: Scripts are used to illustrate general sequence of events (For example, a restaurant
scene).

Stereotypes: Stereotypes are used to depict traits of people.

6.7 Review Questions

1. Make distinction between Declarative knowledge representation and procedural
knowledge representation.

What does static representation signify? Discuss.

Ilustrate the concept of Procedural and Declarative Knowledge with the help of example.
Explicate the process of using knowledge.

Elucidate the different types of schemas that have proved functional in AI programs.
Describe the major classes of application used in logic programming.

Illustrate the concept of logic programing by means of an example.

Make distinction between Forward vs Backward Reasoning. Give examples.

o ® N @ ok DN

Mlustrate the factors which find out the option of direction for a specific problem.

=
S

Ilustrate the use of logic component that is used in an algorithm.

LOVELY PROFESSIONAL UNIVERSITY 87

Artificial Intelligence

88

Notes

Answers: Self Assessment

1. Declarative Knowledge 2. Declarative

3. Procedures 4. Natural Language Input
5. Scripts 6. Rule

7. Logic Programming 8. Relational

9. Clauses 10. Horn clauses

11. Goal 12. Back tracing

13. Logic 14. Competence

15. Databases

6.8 Further Readings

N

Books

Antonelli, D. 1983. The application of artificial intelligence to a maintenance and diagnostic
information system (MDIS). Proceedings of the Joint Services Workshop on Artificial
Intelligence in Maintenance. Boulder, CO.

Boose, J.H. 1984. Personal construct theory and the transfer of human expertise.
Proceedings of the National Conference on Artificial Intelligence (AAAI-84),
p- 27-33, Austin, Texas.

Boose,].H. 1985. A knowledge acquisition program for expert systems based on personal
construct psychology. International Journal of Man-Machine Studies, 23, 495-525.

Boose, J.H. 1986a. Expertise Transfer for Expert System Design, New York; Elsevier.

Boose,].H. 1986b. Rapid acquisition and combination of knowledge from multiple experts
in the same domain. Future Computing Systems Journal, 1, 191-216.

Boose,].H. 1988. Uses of repertory grid-centered knowledge acquisition tools for knowledge-
based systems. International Journal of Man-Machine Studies, 29, 287-310.

Boose,].H. 1989. A survey of knowledge acquisition techniques and tools. Knowledge
acquisition: An international journal of knowledge acquisition for knowledge-
based systems, in press. Vol. 1, No. 1.

Boose,].H., and Bradshaw, .M. 1987b. AQUINAS: A knowledge acquisition workbench
for building knowledge based systems. Proceedings of the First European Workshop
on Knowledge Acquisition for Knowledge-Based Systems (pp. A6.1-6). Reading
University.

Boose, J.H., Bradshaw, J.M., Shema, D.B. 1988. Recent progress in Aquinas: A
knowledge acquisition workbench. Proceedings of the Second European Knowledge
Acquisition Workshop (EKAW-88). p. 2.1-15, Bonn.

Bradshaw, J. 1988. Shared causal knowledge as a basis for communication between expert
and knowledge acquisition system. Proceedings of the Second European Knowledge
Acquisition Workshop (EKAW-88) pp. 12.1-6.

Bradshaw, J.M. 1988. Strategies for selecting and interviewing experts. Boeing
Computer Services Technical report in preparation.

LOVELY PROFESSIONAL UNIVERSITY

Unit 6: Knowledge Representation using Rules

Bradshaw,].M. and Boose,].H. 1989. Decision analytic techniques for knowledge Notes
acquisition: Combining situation and preference models using Aquinas. Special issue on

the 2nd Knowledge Acquisition for Knowledge-Based Systems Workshop, 1987,

International Journal of Man- Machine Studies. in press.

Clancey. W. 1986. Heuristic classification. In J. Kowalik (Ed.). Knowledge-based
problem solving. New York: Prentice-Hall.

Davis, R., and Lenat, D.B. 1982. Knowledge-based systems in artificial intelligence.
New York: McGraw-Hill.

DeJong, K. 1987. Knowledge acquisition for fault isolation expert systems. Special issue
on the 1 AAA1 Knowledge Acquisition for Knowledge-Based Systems Workshop,
1986, Part 4, International/ Journal of Man-Machine Studies, Vol. 27, No. 2.

v

Online link www.dave-reed.com/ csc550.F04 / Lectures/ representation.pdf

LOVELY PROFESSIONAL UNIVERSITY 89

Artificial Intelligence

Parminder Kaur, Lovely Professional University

90

Notes

Unit 7: Symbolic Reasoning under Uncertainty

7.1
7.2
7.3
7.4
7.5

7.6
7.7
7.8
7.9

CONTENTS
Objectives

Introduction

How can we reason?

Uncertain Reasoning

Non-Monotonic Reasoning

Default Reasoning

Circumscription

751 Implementations: Truth Maintenance Systems
Summary

Keywords

Review Questions

Further Readings

Objectives

After
[]
[]

studying this unit, you will be able to:
Understand the concepts of non-monotonic reasoning
Discuss the default reasoning

[ustrate the concept of circumscription

Introduction

When we need any knowledge system to accomplish something it has not been clearly
informed how to do, it must reason. The system must work out what it requires to recognize

from

what it already be familiar with. We have observed easy instance of reasoning or

sketching inferences already. For example, if we are familiar with: Robins are birds. All birds
have wings. Then if we inquire: Do robins have wings? Some reasoning has to go on respond to
the question.

7.1 How can we Reason?

To some extent this will be based on the knowledge representation selected. Although a good
knowledge representation system has to permit easy, normal and believable reasoning. We
have discussed below very wide techniques of how we may reason.

1.

Formal reasoning: It implies to basic rules of inference along with logic knowledge
representations.

Procedural reasoning: Procedural reasoning uses procedures that state how fo possibly solve
(sub) problems.

LOVELY PROFESSIONAL UNIVERSITY

Unit 7: Symbolic Reasoning under Uncertainty

3. Reasoning by analogy: Humans are good at this, more complicated for Al systems. E.g. If Notes
we are inquired Can robins fly? The system may reason that robins are like sparrows and it
knows sparrows can fly .

4. Generalization and abstraction: Again humans are efficient at this. This is fundamentally
obtaining towards learning and understanding techniques.

5. Meta-level reasoning: Once again utilizes knowledge regarding what you know and
possibly ordering it in some type of significance.

2

Task Tllustrate the concept of reasoning by analogy.

Self Assessment

Fill in the blanks:

I reasoning implies to basic rules of inference along with logic knowledge
representations.

20 e reasoning uses procedures that state how to possibly solve (sub) problems.

7.2 Uncertain Reasoning

Regrettably the world is an uncertain place. Any Al system that looks for a model and reasoning
in such a world must be able to deal with this.

Particularly it must be able to contract with:

° Incompleteness — compensate for be deficiency of knowledge.

° Inconsistencies — resolve indistinctness and contradictions.

° Change — it must be able to modernize its world knowledge base over time.
—]]

Notes Obviously so as to deal with this, some decision that is made are more possible to
be true (or false) than others and we must bring in techniques that can manage with this
uncertainty.

There are three fundamental methods that can do this:
° Symbolic methods.
° Statistical methods.

. Fuzzy logic methods.
Self Assessment

Fill in the blank:

3. lead to compensate for deficiency of knowledge.

LOVELY PROFESSIONAL UNIVERSITY 91

Artificial Intelligence

Notes 7.3 Non-Monotonic Reasoning

In monotonic reasoning if we expand at set of axioms we cannot withdraw any present
declarations or axioms.

'i Example: Predicate logic and the conclusions we execute on it is an example of monotonic
reasoning.

Humans do not hold to this monotonic structure when reasoning:
o We are required to jump to conclusions so as to plan and, more fundamentally, survive.

@ We cannot expect all potential results of our plan.

AN

Caution We must make suppositions regarding things we do not purposely recognize
about.

7.4 Default Reasoning

This is a very general from of non-monotonic reasoning. Here we want to sketch conclusion based
on what is most probable to be correct.

We will converse about two strategies to do this:
o Non-Monotonic logic.

o Default logic.

AN

Caution Do not get puzzled regarding the label Non-Monotonic and Default being useful to
reasoning and a specific logic.

l?

:
Did u know? Non-Monotonic reasoning is common depiction of a class of reasoning.

Non-Monotonic logic is a particular theory. The same is considered for Default reasoning and
Default logic.

Non-Monotonic Logic

This is fundamentally an extension of first-order predicate logic to comprise a modal operator, M.
The reason of this is to permit for steadiness.

Example:

vx: plays_instrument(x) AM improvises(x) — jazz_musician(x)

specifies that for all x, x plays an instrument and if the truth that x can manage is reliable with all
other knowledge then we can conclude that x is a jazz musician.

Now we will define consistency:

92 LOVELY PROFESSIONAL UNIVERSITY

Unit 7: Symbolic Reasoning under Uncertainty

One general solution (consistent with PROLOG notation) is to demonstrate that fact P is accurate Notes
effort to prove —P. If we do not succeed we may say that P is consistent (because —P is false).

However assume the well-known set of assertions connecting to President Nixon.
vx: Republican(x) AM— Pacifist(x) — -Pacifist(x)

vx: Quaker(x) AM Pacifist(x) Pacifist(x)

Now this specifies that Quakers is apt to be pacifists and Republicans tend not to be.
But Nixon was both a Quaker and a Republican and thus we could assert:
Quaker(Nixon)

Republican(Nixon)

This now leads to our total knowledge turning out to be inconsistent.
Default Logic

Default logic brings in a new inference rule:

A-B
C

which specifies if A is deducible and it is consistent to presume B then conclude C.

|

Notes Now this is alike to Non-monotonic logic but there are a number of distinctions:

o New inference rules are utilized for calculating the set of probable extensions. So, in
the Nixon example above Default logic can assist both assertions as is does not say
anything regarding how to select between them — it will rely on the inference
being made.

o In Default logic any non-monotonic expressions are rules of inference rather than

expressions.

Self Assessment

Fill in the blanks:

4. In reasoning if we expand at set of axioms we cannot withdraw any
present declarations or axioms.

5 Inii reasoning, wewant to sketch conclusion based on what is most probable
to be correct.

6. Non-Monotonic reasoning is common depiction of a class ofc.ccccccccurunee. .

7. e is fundamentally an extension of first-order predicate logic to comprise
a modal operator, M.

8. Default logic brings in a new inference rule:cceceeuenes which specifies if A is
deducible and it is consistent to presume B then conclude C.

9. and the conclusions we execute on it is an example of monotonic reasoning.

LOVELY PROFESSIONAL UNIVERSITY 93

Artificial Intelligence

Notes 7.5 Circumscription

Circumscription is a rule of speculation that permits you to come to the conclusion that the objects
you can demonstrate that posses some property, p, are actually all the objects that posses that

property.

Circumscription can also deal with default reasoning.
Assume we know: bird(tweety)

vx: penguin(x) bird(x)

vx: penguin(x) flies(x)

and we desire to insert the truth that naturally, birds fly.
In circumscription this phrase would be specified as:
A bird will fly if it is not abnormal

and can therefore be represented by:

vx: bird(x) A— abnormal(x) — flies(x).

Though, this is not enough, we cannot conclude
flies(tweety)

as we cannot prove

abnormal(tweety).

This is where we pertain circumscription and, in this case, we will suppose that those things that are
exposed to be abnormal are the only things to be abnormal

So we can rewrite our default rule as:

wx: bird(x) A— flies(x) — abnormal(x)

and add the following

wx: abnormal(x)

as there is nothing that cannot be exposed to be abnormal.
If we now insert the truth:

penguin(tweety)

Evidently we can prove

abnormal(tweety).

If we circumscribe abnormal now we would adjoin the sentence,
a penguin (tweety) is the abnormal thing:

vx: abnormal(x) — penguin(x).

l?

Did u know? The difference between Default logic and circumscription:

Defaults are sentences in language itself, not supplementary inference rules.

94 LOVELY PROFESSIONAL UNIVERSITY

Unit 7: Symbolic Reasoning under Uncertainty

7.5.1 Implementations: Truth Maintenance Systems Notes

A multiplicity of Truth Maintenance Systems (TMS) have been generated as a means of executing
Non-Monotonic Reasoning Systems.

Fundamentally Truth Maintenance Systems (TMSs):

All do some kind of dependency directed backtracking

Assertions are connected through a network of dependency.

Justification-based Truth Maintenance Systems (JTMS)

This is a simple TMS such that it does not recognize anything regarding the structure of the
assertions themselves.

Every supported belief (assertion) in has a explanation.

Each justification consists of two parts:

& An IN-List — which supports beliefs held.

& An OUT-List — which supports beliefs not held.

An assertion is associated to its justification via an arrow.

One assertion can feed a different explanation thus building the network.
Assertions may be labelled with a belief status.

An assertion is valid if every declaration in the IN-List is supposed and none in the OUT-
List are believed.

An declaration is non-monotonic is the OUT-List is not empty or if any declaration in the
IN-List is non-monotonic.

Figure 7.1: A JTMS Assertion
+ IN-List
- OUT-List
David Mellor’s Adultery I Supported belief
Justification
+ -
Mistress’s Claim “Ugly” Appearance
Tbry MP

Logic-based Truth Maintenance Systems (LTMS)

Logic-based Truth Maintenance Systems (LTMS) is similar to JTMS except:

Nodes (assertions) presume no relationships between them except ones overtly specified
in justifications.

LOVELY PROFESSIONAL UNIVERSITY 95

Artificial Intelligence

Notes ° JTMS can symbolize P and P concurrently. An LTMS would throw a challenge here.

) If this happens network has to be reconstructed.
Assumption-based Truth Maintenance Systems (ATMS)

° JTMS and LTMS follow a single line of reasoning at a time and backtrack (dependency-
directed) when required — depth first search.

° ATMS sustain alternative paths in parallel — breadth-first search

° Backtracking is averted at the cost of sustaining numerous contexts.
° On the other hand as reasoning continues, disagreements occur and the ATMS can be
pruned

& Just find assertion with no suitable justification.

2
Task Make distinction between Justification-based Truth Maintenance Systems (JTMS)
and Logic-based Truth Maintenance Systems (LTMS).

Self Assessment

Fill in the blanks:

10, e is a rule of speculation that permits you to come to the conclusion that
the objects you can demonstrate that posses some property, p, are actually all the objects
that posses that property.

11 Inii, , assertions are connected through a network of dependency.

120 is a simple TMS such that it does not recognize anything regarding the
structure of the assertions themselves.

13, e is similar to JTMS except nodes (assertions) presume no relationships
between them except ones overtly specified in justifications.

14. JTMS and LTMS follow accccceevvviiinnnen. line of reasoning at a time and backtrack
(dependency-directed) when required — depth first search.

15, e sustain alternative paths in parallel — breadth-first search.

7.6 Summary

° When we need any knowledge system to accomplish something it has not been clearly

informed how to do, it must reason.

° In monotonic reasoning if we expand at set of axioms we cannot withdraw any present
declarations or axioms.

° Default reasoning is a very general from of non-monotonic reasoning where we want to
sketch conclusion based on what is most probable to be correct.

° Non-Monotonic reasoning is common depiction of a class of reasoning.

° Non-Monotonic Logic is fundamentally an extension of first-order predicate logic to
comprise a modal operator, M.

96 LOVELY PROFESSIONAL UNIVERSITY

Unit 7: Symbolic Reasoning under Uncertainty

° In Default logic any non-monotonic expressions are rules of inference rather than Notes
expressions.
° Circumscription is a rule of speculation that permits you to come to the conclusion that

the objects you can demonstrate that posses some property, p, are actually all the objects
that posses that property.

° A multiplicity of Truth Maintenance Systems (TMS) have been generated as a means of
executing Non-Monotonic Reasoning Systems.

7.7 Keywords

Circumscription: Circumscription is a rule of speculation that permits you to come to the
conclusion that the objects you can demonstrate that posses some property, p, are actually all the
objects that posses that property.

Default Logic: In Default logic any non-monotonic expressions are rules of inference rather than
expressions.

Default Reasoning: Default reasoning is a very general from of non-monotonic reasoning where
we want to sketch conclusion based on what is most probable to be correct.

Monotonic Reasoning: In monotonic reasoning if we expand at set of axioms we cannot
withdraw any present declarations or axioms.

Non-Monotonic Logic: Non-Monotonic Logic is fundamentally an extension of first-order
predicate logic to comprise a modal operator, M.

7.8 Review Questions

Make distinction between formal reasoning and procedural reasoning.
Discuss the factors with which Uncertain Reasoning deals with.

What is Non-Monotonic Reasoning? Give examples.

Identify the approaches used to perform default reasoning.

What is default logic?

What does Circumscription signify? Illustrate.

Ilustrate how Circumscription deals with default reasoning.

What are Truth Maintenance Systems (TMSs)? Explicate its various types.

. ® N @ ok L

Consider the problem of deciding which clothes to wear using knowledge such as:
(@) Wear casual clothes unless they are not clean or important meeting occurs today.
(b) Wear a Sweater if it is cold.
(c) The winter is usually cold.
(d) Wear shorts if it's warm.
(e) The summer is usually warm.
(i) Construct a JTMS network to symbolize these facts.
(ii) Try to solve the problem In winter do I wear shorts?

(iii) Answer the question What shall I wear today (You may assume that the system
knows the time of year).

LOVELY PROFESSIONAL UNIVERSITY 97

Artificial Intelligence

98

Notes

10. Create as JTMS and ATMS to represent the following;:

(@) If you have spots and a temperature you have measles.

(b) If you have a liquid nose then unless it is hay fever season you have a cold.

Answers: Self Assessment

1. Formal 2. Procedural

3. Incompleteness 4. monotonic

5. Default 6. reasoning

7. Non-Monotonic Logic 8. %

9. Predicate logic 10. Circumscription

11. Truth Maintenance Systems (TMSs)

12. Justification-Based Truth Maintenance Systems (JTMS)

13. Logic-Based Truth Maintenance Systems (LTMS)

14. Single

15. Assumption-Based Truth Maintenance Systems (ATMS)

7.9 Further Readings

N

Books

Antonelli, D. 1983. The application of artificial intelligence to a maintenance and diagnostic
information system (MDIS). Proceedings of the Joint Services Workshop on Artificial
Intelligence in Maintenance. Boulder, CO.

Boose, J.H. 1984. Personal construct theory and the transfer of human expertise.
Proceedings of the National Conference on Artificial Intelligence (AAAI-84),
p- 27-33, Austin, Texas.

Boose,].H. 1985. A knowledge acquisition program for expert systems based on personal
construct psychology. International Journal of Man-Machine Studies, 23, 495-525.

Boose, J.H. 1986a. Expertise Transfer for Expert System Design, New York; Elsevier.

Boose,].H. 1986b. Rapid acquisition and combination of knowledge from multiple experts
in the same domain. Future Computing Systems Journal, 1, 191-216.

Boose,].H. 1988. Uses of repertory grid-centered knowledge acquisition tools for knowledge-
based systems. International Journal of Man-Machine Studies, 29, 287-310.

Boose,].H. 1989. A survey of knowledge acquisition techniques and tools. Knowledge
acquisition: An international journal of knowledge acquisition for knowledge-
based systems, in press. Vol. 1, No. 1.

Boose,].H., and Bradshaw, .M. 1987b. AQUINAS: A knowledge acquisition workbench
for building knowledge based systems. Proceedings of the First European Workshop
on Knowledge Acquisition for Knowledge-Based Systems (pp. A6.1-6). Reading
University.

LOVELY PROFESSIONAL UNIVERSITY

Unit 7: Symbolic Reasoning under Uncertainty

Boose, J.H., Bradshaw,].M., Shema, D.B. 1988. Recent progress in Aquinas: A Notes
knowledge acquisition workbench. Proceedings of the Second European Knowledge
Acquisition Workshop (EKAW-88). p. 2.1-15, Bonn.

Bradshaw, J. 1988. Shared causal knowledge as a basis for communication between expert
and knowledge acquisition system. Proceedings of the Second European Knowledge
Acquisition Workshop (EKAW-88) pp. 12.1-6.

Bradshaw, J.M. 1988. Strategies for selecting and interviewing experts. Boeing
Computer Services Technical report in preparation.

Bradshaw,].M. and Boose,].H. 1989. Decision analytic techniques for knowledge
acquisition: Combining situation and preference models using Aquinas. Special issue on
the 2nd Knowledge Acquisition for Knowledge-Based Systems Workshop, 1987,
International Journal of Man- Machine Studies. in press.

Clancey. W. 1986. Heuristic classification. In J. Kowalik (Ed.). Knowledge-based
problem solving. New York: Prentice-Hall.

Davis, R., and Lenat, D.B. 1982. Knowledge-based systems in artificial intelligence.
New York: McGraw-Hill.

DeJong, K. 1987. Knowledge acquisition for fault isolation expert systems. Special issue
on the 1 AAA1 Knowledge Acquisition for Knowledge-Based Systems Workshop,
1986, Part 4, International/ Journal of Man-Machine Studies, Vol. 27, No. 2.

Online link Www.springer.com

LOVELY PROFESSIONAL UNIVERSITY 99

Artificial Intelligence

Dinesh Kumar, Lovely Professional University

100

Notes

Unit 8: Statistical Reasoning

CONTENTS
Objectives
Introduction
8.1 Probability and Bayes Theorem
8.1.1 Probability
8.12 Bayes Theorem
8.2 Certainty Factors and Rule Based Systems
821 Reasoning with Certainty Factors
8.22 Overcoming the Bayes Rule Shortcomings
8.3 Bayesian Networks
8.3.1 Implementation
8.3.2 Reasoning in Bayesian Nets
8.4 Fuzzy Logic
8.4.1 Fuzzy Set Theory
8.5 Summary
8.6 Keywords
8.7 Review Questions

8.8 Further Readings

Objectives

After studying this unit, you will be able to:

o Understand the probability & Bayes theorem

o Discuss the certainty factors and rule based systems
o [lustrate the Bayesian network

o Understand the fuzzy logic and applications
Introduction

The (Symbolic) methods fundamentally symbolize uncertainty principle as being True, False,
or Neither True nor False. Some methods also had problems with Incomplete Knowledge and

Contradictions in the knowledge.

Statistical methods give a method for showing principles that are not certain (or uncertain) but
for which there may be some assisting (or contradictory) confirmation. Statistical methods
propose benefits in two wide scenarios: The first one is Genuine Randomness where card games
are a good instance. We may not be competent to forecast any outcomes with certainty but we
have knowledge regarding the possibility of certain items (such as like being dealt an ace) and
we can exploit this. The second one is Exceptions. Symbolic methods can symbolize this. However,

LOVELY PROFESSIONAL UNIVERSITY

Unit 8: Statistical Reasoning

if the number of exceptions is huge such system is apt to break down many common sense and Notes
expert reasoning tasks for instance. Statistical techniques can summarize huge exceptions without
resorting enumeration.

8.1 Probability and Bayes Theorem

8.1.1 Probability

The fundamental approach statistical methods approve to deal with uncertainty is through the
axioms of probability:

° Probabilities are (real) numbers in the range 0 to 1.

° A probability of P(A) = 0 symbolizes total uncertainty in A, P(A) = 1 total certainty and
values in among some degree of (un)certainty.

° Probabilities can be computed in a number of manners.
Probability = (number of desired outcomes)/(total number of outcomes)

So specified a pack of playing cards the probability of being dealt an ace from a full usual deck
is 4 (the number of aces)/52 (number of cards in deck) which is 1/13. Likewise the likelihood of
being dealt a spade suit is 13/52 =1/4.

!
If you have a option of number of items k from a set of items # then the C} = ﬁ formula
I(n—

is applied to discover the number of methods of making this option. (! = factorial).

643!

Thus the possibility of winning the national lottery (choosing 6 from 49) is = 13,983,816

to 1.

=7

Notes Conditional probability, P(A | B), signifies the probability of event A specified that
we know event B has appeared.

2

Task Tllustrate the concept of probability.

8.1.2 Bayes Theorem

This specifies:

P(E|H,)P(H,)
> P(E|H,)P(H,)

P(H, /E) =

This signifies that specified some evidence E then probability that hypothesis H, is true is equal
to the proportion of the probability that E will be true specified H; times the a priori evidence on
the probability of H, and the sum of the probability of E over the set of all hypotheses times the
probability of these hypotheses.

LOVELY PROFESSIONAL UNIVERSITY 101

Artificial Intelligence

Notes Therefore to find if we scrutinize medical evidence to analyze an illness. We must know all the
preceding probabilities to locate symptom and also the probability of having an illness
depending on certain symptoms being observed.

AN

Caution The set of all hypotheses must be mutually exclusive and comprehensive.

l"

Did u know? Bayesian statistics occurs at the heart of many statistical reasoning systems.
How is Bayes theorem exploited?
) The key is to invent problem properly:

P(A | B) specifies the probability of A specified only B’s evidence. If there is other relevant
evidence then it must also be taken into account.

Herein occurs a problem:

° All events must be mutually exclusive. However in actual world problems events are not
normally unrelated.

'i Example: In detecting measles, the indications of spots and a fever are associated. This
signifies that computing the conditional probabilities gets multifaceted.

Usually if a prior evidence, p and some new inspection, N then computing

P(p|N,H)
P(H|N,p) = P(H|N) PN
1 P(p[N)
increases exponentially for huge sets of p
o All events must be exhaustive. This signifies that to work out all probabilities the set of

possible events must be closed.

AN

Caution If new information occurs the set must be formed afresh and all probabilities
recalculated.

So Simple Bayes rule-based systems are not appropriate for uncertain reasoning.

) Knowledge acquisition is very rigid.

° Too many probabilities required — too large a storage space.
) Calculation time is too large.

° Updating new information is hard and time consuming,.

° Exceptions such as “none of the above” cannot be represented.
) Humans are not very good probability estimators.

However, Bayesian statistics still offer the core to reasoning in most of the uncertain reasoning
systems with appropriate enhancement to conquer the above problems.

102 LOVELY PROFESSIONAL UNIVERSITY

Unit 8: Statistical Reasoning

We will gaze at wide categories: Notes
° Certainty factors,
° Bayesian networks.

2

Task Discuss the problems occurring in bayes theorem.

Self Assessment

Fill in the blanks:

1 methods give a method for showing principles that are not certain (or
uncertain) but for which there may be some assisting (or contradictory) confirmation.

20 e are (real) numbers in the range 0 to 1.

3. probability, P(A |B), signifies the probability of event A specified that we
know event B has appeared.

4. Thesetofall ... must be mutually exclusive and comprehensive.

5. Ploiics) specifies the probability of A specified only B’s evidence.

6. Probability = (number of desired outcomes) / (.....ccccocevueuune.)

8.2 Certainty Factors and Rule Based Systems

This strategy has been recommended by Shortliffe and Buchanan and utilized in their famous
medical diagnosis MYCIN system.

MYCIN is fundamentally and expert system. Here we only focus on the probabilistic reasoning
aspects of MYCIN.

) MYCIN signifies knowledge as a set of rules.
) Related with each rule is a certainty factor

° A certainty factor depends on measures of belief B and disbelief D of an hypothesis H,
given evidence E as below:

1
B(H, |E) TP P if P(H;)=1 otherwise
(1-P(H,))P(H, | E)

1
D(H, |E) =ql@mnlPELEPULI - f p(H,)= 0 otherwise
1 P(H,))P(H, |E) ‘

where P(H)) is the standard probability.
° The certainty factor C of some hypothesis H, given evidence E is defined as:

C(H, | E) = B(H,| E) - D(H, |)

LOVELY PROFESSIONAL UNIVERSITY 103

Artificial Intelligence

Notes 8.2.1 Reasoning with Certainty Factors
° Rules articulated as if evidence list E, E, then there is indicative evidence with probability,
p for symptom H..
° MYCIN accesses rules to reason backward to clinical data evidence from its aim of

forecasting a disease-causing organism.
° Certainty factors primarily supplied by experts changed as per the previous formulae.
° How do we perform reasoning when numerous rules are chained together?

Measures of belief and disbelief given numerous observations are computed as follows:

B(H, |E,,E,) = {g(H,|E1)+B(H‘|E2)(1—B(H‘|E1) if D(H, |E,) =1 otherwise
D(H, |E) = {%(H”ElhD(H‘|E2)+D(H1\E1)) if B(H, |E,) =1 otherwise

° How about our belief regarding several hypotheses taken jointly? Measures of belief
given numerous hypotheses and to be shared logically are computed as follows:

B(H, AH, |E) = min(B(H, |E),B(H, | E)
B(H, vH, |E) = max(B(H, | E),B(H, |E)

Disbelief is computed similarly.
8.2.2 Overcoming the Bayes Rule Shortcomings
Certainty Factors do hold on to the rules of Bayesian statistics, but it can symbolize tractable
knowledge systems:

° Individual rules give belief in an hypotheses — fundamentally a conditional probability.

° The formulae for amalgamation of evidence/hypotheses fundamentally assume that all
rules are sovereign ruling out the requirement for joint probabilities.

° The load of assuring independence is positioned on the rule writer.
Self Assessment

Fill in the blanks:

7. MYCIN signifies knowledge as a set of

8. MYCIN accesses rules to reason backward to clinical data evidence from its aim of
forecasting acccceune. causing organism.
9. Theload of assuringcccceo.... is positioned on the rule writer.

8.3 Bayesian Networks

These are also known as Belief Networks or Probabilistic Inference Networks primarily generated by
Pear] (1988).

The fundamental idea is:

° Knowledge in the world is modular — many events are conditionally sovereign of most
other events.

104 LOVELY PROFESSIONAL UNIVERSITY

Unit 8: Statistical Reasoning

Adopt a model that can utilize a more local depiction to permit interactions among events
that only affect each other.

Some events may only be unidirectional others may be bidirectional — make a difference
between these in model.

Events may be fundamental and so get chained jointly in a network.

8.3.1 Implementation

A Bayesian Network is define as a directed acyclic graph:

A graph where the directions are links which specify dependencies that appears between
nodes.

Nodes symbolize propositions regarding events or events themselves.

Conditional probabilities measure the power of dependencies.

' Example: Let us see the following example:

The probability, P(3,) that my car won’t begin.
If my car won’t begin then it is possible that
@ The battery is flat or

% The staring motor is broken.

To decide whether to fix the car myself or send it to the garage the following decision is made:

If the headlights do not function then the battery is apt to be flat so i fix it myself.
If the beginning motor is faulty then send car to garage.

If battery and beginning motor both gone send car to garage.

The network to symbolize this is as follows:

Figure 8.1: A Simple Bayesian Network

Car wont start

(Headlights not on)

f Battery flat)

(Replace batter}D (Both wont work)

Send car to garage

Starting motor
defective

8.3.2 Reasoning in Bayesian Nets

Probabilities in links follow typical conditional probability axioms.

Thus follow links in attaining hypothesis and update beliefs consequently.

LOVELY PROFESSIONAL UNIVERSITY

Notes

105

Artificial Intelligence

106

Notes

° A few broad classes of algorithms have bee used to assist with this:
& Pearls’s message passing method.
& Clique triangulation.
& Stochastic methods.

< Basically they all take advantage of clusters in the network and use their limits on
the influence to constrain the search through net.

& They also ensure that probabilities are updated correctly.

Notes As information is local information can be willingly added and removed with
minimum result on the entire network. ONLY affected nodes require updating.

' Example: Here we portray a practical example from research based here in Cardiff.

We have utilized Bayesian Nets in a Computer Vision application. Here we try to portray the
Bayesian reasoning behind the process.

The objective is to execute a task known as data fusion to attain a segmentation — an explanation of
an object (observed from a set of images) detailing its surface properties. In the instance given
here we contract with a simple cube. So the final explanation will hopefully list its edges and its
faces and how they are associated together.

The input to the fusion process is three preprocessing stages that have removed out edge information
and planar surface information from 2D grey scale (monochrome) images and 3D range data.

So from these three pre-processes we have a record of all lines, curved or straight, a list of all line
intersections (two or three line intersections) and a record of all the surface equations extracted
from both image types. We can now construct the network from these lists of features. As
discussed above, we hypothesize regarding extracted surfaces intersecting. For us to assess these
hypotheses we require to have evidence to sustain or contradict them. The evidence that we use
is :

o Straight lines extracted from light image.
o Curves extracted from light image.
o ‘Areas of uncertainty’ extracted from depth map.

The two lines lists are produced as discussed above. The areas of uncertainty are found when we
are trying to locate the surface equations of every surface type. Errors are set up in the depth map
where the mask to locate the common surface shape overlaps two or more surfaces, the error
tends to be enlarged thus, providing us a clue that a surface intersection appears in that general
area. So we are using confirmation from more than one source of data.

We continue by taking each of the surfaces in the surface list and a node is produced to represent
it. We then take a pair of surfaces and try to intersect them. If they are perhaps intersecting then
a ‘feature group’ node is produced referencing the surfaces and associated to the children surface
nodes. This process is repetitive for each pair surfaces that we have removed. We now would
like to connect a conditional probability to each of our new nodes. So we now know the surfaces
that could possibly interact in the object. We now connect a probability to these connections. We
do this by locating the equation of intersection, this will be a three dimensional line for two

LOVELY PROFESSIONAL UNIVERSITY

Unit 8: Statistical Reasoning

planes or an ellipse for a plane and a sphere, and project this onto our focal plane. Now we have Notes
our hypothesized intersections in the same dimension as our extracted lines from the beginning

stage. So we now locate, for every intersecting line a closest match line from our line list. Once

we have located the closest matching line we produce a probability from the error. So a line that

closely matches our intersection line then we have a high probability while two surfaces that

don’t intersect in the object are unlikely to correspond with a line from the line list thus providing

us a low probability. The line that is found is also verified to see if it appears in an area of

uncertainty. If it does then that is another strong evidence that the line that we have found is

really where surfaces are attached.

So once we have produced this network with all the essential links etc. any more information
that is given to the system can be added and the network will broadcast this information
throughout the network in the form of probability updating. So for example say a new image
was offered from say a colour image and this image increased the possibility of some edges and
corners being present in the image then this would increase the probability of those traits that
are linked to those edges and corners which would propagate all through the network.
Figure 8.2 displays us a simple example of the network that would be produced from the input
data of edges and planar faces of the cube. As can be observed, the feature group nodes can
symbolize groups that vary from single features like line segments, surfaces or corners or the
whole object is represented in the lower nodes which involves three surfaces, three line segments,
three crosses and one corner.

Figure 8.2: A Bayesian Network for Segmentation of a Cube

| NN SN
|

3 J
~ et

Y

]

Y

LOVELY PROFESSIONAL UNIVERSITY 107

<Q
<

L=

Artificial Intelligence

108

Notes

Self Assessment

Fill in the blanks:

10, e networks are also known as Belief Networks or Probabilistic Inference
Networks primarily generated by Pearl (1988).

11. A Bayesian Network is define as accccc.c....... acyclic graph.

12. Conditional probabilities measure the power ofc......... .

8.4 Fuzzy Logic

Fuzzy logic is a completely diverse approach to symbolizing uncertainty:

° It concentrates on ambiguities in illustrating events rather than uncertainty regarding the
incidence of an event.

) Modifies the definitions of set theory and logic to permit this.

° Traditional set theory defines set memberships as a boolean predicate.
8.4.1 Fuzzy Set Theory

° Fuzzy set theory defines set membership as a possibility distribution.

The general rule for this can displayed as:
£:10,1]" —[0,1]
where n some number of possibilities.

l?

Did u know? Fuzzy set theory mainly specifies that we can take n possible events and use f
to produce as single possible outcome.

° Once set membership has been redefined we can build up new logics depending on
combining of sets etc. and reason efficiently.

Self Assessment

Fill in the blanks:

13, concentrates on ambiguities in illustrating events rather than uncertainty
regarding the incidence of an event.

14. Fuzzy set theory defines set membership as accccecuue. .

15. Fuzzy set theory mainly specifies that we can take n possible events and use f to produce
as single possible

8.5 Summary

° Statistical methods give a method for showing principles that are not certain (or uncertain)
but for which there may be some assisting (or contradictory) confirmation.

LOVELY PROFESSIONAL UNIVERSITY

Unit 8: Statistical Reasoning

° Conditional probability, P(A |B), signifies the probability of event A specified that we Notes
know event B has appeared.

P(E[H,)P(H,)
2 PEIHOP(H,)
evidence E then probability that hypothesis is true is equal to the proportion of the

probability that E will be true specified H, times the a priori evidence on the probability
of H,and the sum of the probability of E over the set of all hypotheses times the probability

o Bayes Theorem, that is P(H,|E)=

signifies that specified some

of these hypotheses.
° Bayesian statistics lounge at the heart of many statistical reasoning systems.
° Bayesian networks are also known as Belief Networks or Probabilistic Inference Networks

primarily generated by Pearl (1988).

° Certainty Factors do hold on to the rules of Bayesian statistics, but it can symbolize
tractable knowledge systems.

° Fuzzy logic concentrates on ambiguities in illustrating events rather than uncertainty
regarding the incidence of an event.

° Fuzzy set theory defines set membership as a possibility distribution.

8.6 Keywords

Bayesian networks: Bayesian networks are also known as Belief Networks or Probabilistic
Inference Networks primarily generated by Pearl (1988).

Fuzzy Logic: Fuzzy logic concentrates on ambiguities in illustrating events rather than uncertainty
regarding the incidence of an event.

Fuzzy Set: Fuzzy set theory defines set membership as a possibility distribution.

Probabilities: Probabilities are (real) numbers in the range 0 to 1.

8.7 Review Questions

1. What is Bayes Theorem? Also illustrate Bayes rule-based systems.
2. Enlighten the probabilistic reasoning aspects of MYCIN.

3. Given that the first card dealt from a pack of cards was ace what is the probability that the
next card will be an ace?

4. What are Bayesian networks? Illustrate the concept of implementation with example.
5. Given that
(@) the probability that it will rain in Cardiff tomorrow is 0.8

(b) the probability that there are Sea Gulls on Roath Park lake given that it will rain
tomorrow is 0.1

(c) the probability that there are Sea Gulls on Roath Park lake given that it will not rain
tomorrow is 0.05

What is the probability that it will rain tomorrow provided that there a Sea Gulls on Roath
Park lake?

LOVELY PROFESSIONAL UNIVERSITY 109

Artificial Intelligence

Notes 6. Initially, I gaze out of the window and saw at the clouds on the horizon. I conclude that I
consider there is a 0.6 chance of rain. Half an hour later I make the same observation and
now consider there is a 0.4 chance of rain.

(@) What are my primary disbelief and certainty factors that it will rain?

(b) What are the new estimates of belief, disbelief and certainty factors based on both
observations?

I then catch a climate forecast states that there 50am. What is my belief, disbelief and
certainty factors depending on my observations and the weather forecast?

7. Peter, Paul and Mary are 3 suspects in a murder case. Only one of them committed the
crime. There is some evidence that provides equal support for the murderer being male or
female. There is also evidence that Peter was has an alibi for the time of the killing.

(@) Combine the information above and represent it in the Dempster-Shafer formalism.
(b) Calculate the Belief and Plausibility for each suspect.
8. Consider the following facts:
(@) Isaw my cat in the living room 3 hours ago.
(b) Two hours ago my door blew open.

(c) Three quarters of the time my door blows open my cat runs outside through the
door.

(d) Onhour ago I thought I heard a cat-noise in my living. Assume I was half certain.

(e) Inany one hour period the probability that the cat will leave the room is 0.2. There
is also a 0.2 probability that he may enter the room.

What is the Certainty that the cat is in my living room? Use Bayesian networks to answer
this.

9. Design a Bayesian network for each of the following problems:
(@) Choosing a menu for a dinner party.
(b) Planning a holiday.

(c) Selecting final year computer science options based on second and first year
prerequisites.

10. Describe how Fuzzy Logic is used in representing uncertainty.

Answers: Self Assessment

1. Statistical 2. Probabilities

3. Conditional 4. hypotheses

5. A|B 6. total number of outcomes
7. rules 8. disease

9. independence 10. Bayesian

11. directed 12. dependencies

110 LOVELY PROFESSIONAL UNIVERSITY

Unit 8: Statistical Reasoning

13. Fuzzy Logic 14. possibility distribution Notes

15. outcome

8.8 Further Readings

N

Books Antonelli, D. 1983. The application of artificial intelligence to a maintenance and diagnostic
information system (MDIS). Proceedings of the Joint Services Workshop on Artificial
Intelligence in Maintenance. Boulder, CO.

Boose, J.H. 1984. Personal construct theory and the transfer of human expertise.
Proceedings of the National Conference on Artificial Intelligence (AAAI-84),
p- 27-33, Austin, Texas.

Boose,].H. 1985. A knowledge acquisition program for expert systems based on personal
construct psychology. International Journal of Man-Machine Studies, 23, 495-525.

Boose, J.H. 1986a. Expertise Transfer for Expert System Design, New York; Elsevier.

Boose,].H. 1986b. Rapid acquisition and combination of knowledge from multiple experts
in the same domain. Future Computing Systems Journal, 1, 191-216.

Boose, J.H. 1988. Uses of repertory grid-centered knowledge acquisition tools for knowledge-
based systems. International Journal of Man-Machine Studies, 29, 287-310.

Boose,].H. 1989. A survey of knowledge acquisition techniques and tools. Knowledge
acquisition: An international journal of knowledge acquisition for knowledge-
based systems, in press. Vol. 1, No. 1.

Boose,].H., and Bradshaw, .M. 1987b. AQUINAS: A knowledge acquisition workbench
for building knowledge based systems. Proceedings of the First European Workshop
on Knowledge Acquisition for Knowledge-Based Systems (pp. A6.1-6). Reading
University.

Boose, J.H., Bradshaw, J.M., Shema, D.B. 1988. Recent progress in Aquinas: A
knowledge acquisition workbench. Proceedings of the Second European Knowledge
Acquisition Workshop (EKAW-88). p. 2.1-15, Bonn.

Bradshaw, J. 1988. Shared causal knowledge as a basis for communication between expert
and knowledge acquisition system. Proceedings of the Second European Knowledge
Acquisition Workshop (EKAW-88) pp. 12.1-6.

Bradshaw, J.M. 1988. Strategies for selecting and interviewing experts. Boeing
Computer Services Technical report in preparation.

Bradshaw,].M. and Boose,].H. 1989. Decision analytic techniques for knowledge
acquisition: Combining situation and preference models using Aquinas. Special issue on
the 2nd Knowledge Acquisition for Knowledge-Based Systems Workshop, 1987,
International Journal of Man- Machine Studies. in press.

Clancey. W. 1986. Heuristic classification. In J. Kowalik (Ed.). Knowledge-based
problem solving. New York: Prentice-Hall.

Davis, R., and Lenat, D.B. 1982. Knowledge-based systems in artificial intelligence.
New York: McGraw-Hill.

LOVELY PROFESSIONAL UNIVERSITY 111

Artificial Intelligence

Notes DeJong, K. 1987. Knowledge acquisition for fault isolation expert systems. Special issue
on the 1* AAA1 Knowledge Acquisition for Knowledge-Based Systems Workshop,
1986, Part 4, International/ Journal of Man-Machine Studies, Vol. 27, No. 2.

A
4

Online link www.springer.com

112 LOVELY PROFESSIONAL UNIVERSITY

Dinesh Kumar, Lovely Professional University

Unit 9: Weak Slot and Filler Structures

Unit 9: Weak Slot and Filler Structures

Notes

CONTENTS
Objectives
Introduction

9.1 Semantic Nets

9.2 Frames

9.3 Summary
94 Keywords

9.5 Review Questions

9.6 Further Readings

9.22 Interpreting Frames

911 Representation in a Semantic Net
912 Inference in a Semantic Net

9.1.3 Extending Semantic Nets

9.21 Frame Knowledge Representation

Objectives

After studying this unit, you will be able to:

o Understand the concept of weak slot and filler structures
o Discuss the concept of semantic nets

° Describe the frames

Introduction

Weak Slot and Filler Structures facilitates attribute values to be improved speedily where

declarations are indexed by the entities and binary predicates are indexed by first argument. E.g.

team (Mike-Hall, Cardiff). Properties of relations are simple to illustrate. It permits ease of

deliberation as it embraces features of object-oriented programming. It is so called for the

reason that:

o A slot is an attribute value pair in its simplest outline.

o A filler is a value that a slot can take — could be a numeric, string (or any data type) value

or a pointer to a different slot.

o A weak slot and filler structure does not consider the content of the representation.

We will consider here two types:
o Semantic Nets.

° Frames.

LOVELY PROFESSIONAL UNIVERSITY

113

Artificial Intelligence

Notes 9.1 Semantic Nets

The main thought is that:
° The meaning of a notion occurs from its relationship to other notions, and that,

° The information is accumulated by interconnecting nodes with labeled arcs.
9.1.1 Representation in a Semantic Net

The physical attributes of a person can be displayed as in Figure 9.1.

Figure 9.1: A Semantic Network

Black/Blue

These values can also be displayed in logic as: isa(person, mammal), instance(Mike-Hall, person)
team(Mike-Hall, Cardiff)

Remember that isa and instance symbolize inheritance and are well-liked in many knowledge
representation systems. But we have a difficulty: How we can have more than 2 place predicates in
semantic nets?

' Example: score(Cardiff, Llanelli, 23-6) Solution:

o Produce new nodes to symbolize new objects either contained or alluded to in the
knowledge, game and fixture in the existing example.

o Relate information to nodes and fill up slots (Figure 9.2).

Figure 9.2: A Semantic Network for n-Place Predicate

game
4
sa
away_team score

home_team

Cardiff

114 LOVELY PROFESSIONAL UNIVERSITY

Unit 9: Weak Slot and Filler Structures

As a more multifaceted instance consider the sentence: John gave Mary the book. Here we have Notes
numerous facets of an event.

Figure 9.3: A Semantic Network for a Sentence

gave book

nstance nstance

agent okject
John - eyentl — | boOOkEY

receiver

Mary

g

Task Discuss the use of semantic net with example.

9.1.2 Inference in a Semantic Net

Fundamental inference method: follow links between nodes.
Two methods to perform this:
o Intersection search

@ The view that spreading activation out of two nodes and locating their intersection
locates relationships between objects. This is attained by allocating a particular tag
to every visited node.

@ Many benefits including entity-dependent organization and fast parallel
implementation. However very structured questions necessitate highly structured
networks.

° Inheritance
@ The isa and instance representation offer a method to implement this.
l?

Did u know? Inheritance also offers a means of dealing with default reasoning.

' Example: We could represent:

] Emus are birds.
] Usually birds fly and have wings.

) Emus run.

LOVELY PROFESSIONAL UNIVERSITY 115

Artificial Intelligence

Notes in the following Semantic net:
Figure 9.4: A Semantic Network for a Default Reasoning
fly
action

has_part :

bird ——————— | WINgs

nstance

action

erm ——— nn

In creating certain inferences we will also necessitate to differentiate between the link that defines a
new entity and holds its value and the other type of link that associates two current entities. Consider the
example displayed where the height of two people is portrayed and we also desire to contrast
them.

We require extra nodes for the notion in addition to its value.

Figure 9.5: Two Heights

Dave Steve
height height
¥ ¥
160 158

Special procedures are required to process these nodes, but without this dissimilarity the analysis
would be very restricted.

Figure 9.6: Comparison of Two Heights

Dave Steve
height height
¥ greater-than Y
H, o H,
value
Y
160

9.1.3 Extending Semantic Nets

Here we will take into account some extensions to Semantic nets that conquer some problems or
enlarge their appearance of knowledge.

116 LOVELY PROFESSIONAL UNIVERSITY

Unit 9: Weak Slot and Filler Structures

Partitioned Networks Partitioned Semantic Networks permit for: Notes
° Propositions to be made without assurance to truth.
) Expressions to be measured.

?

Did u know? Basic idea: Break network into spaces which comprise groups of nodes and arcs and
consider each space as a node.

Consider the following: Symon thinks that the earth is flat. We can predetermine the proposition
the earth is flat in a space and inside it have nodes and arcs to symbolize the fact (Figure 9.7).
We can the have nodes and arcs to relate this space the rest of the network to signify Symon’s
belief.

Figure 9.7: Partitioned Network
believes
4
nstance
agent
Andrew o eventl
olject
A
spacel
earth flat
limmnce mstance i
objectl - propl
has_property

Now consider the measured expression: Every parent loves their child To symbolize this we:

) Produce a general statement, GS, special class.
) Make node g an instance of GS.
) Every element contains at least 2 attributes:

& a form that specifies which relation is being emphasized.

& one or more forall (y) or exists (3) connections — these symbolize universally
quantifiable variables in such statements e.g. x, y in yx: parent(x) —3y:child(y) A
loves(x,y)

Now we have to create two spaces one for each x,y.

=7|

Notes We can articulate variables as existentially qualified variables and articulate the event
of love having an agent p and receiver b for each parent p which could abridge the network.

Also If we modify the sentence to Every parent loves child then the node of the object being acted
on (the child) occurs outside the form of the common statement. Thus it is not observed as an

LOVELY PROFESSIONAL UNIVERSITY 117

Artificial Intelligence

118

Notes

existentially measured variable whose value may rely on the agent. So we could create a
partitioned network as in Figure 9.8.

Figure 9.8: Partitioned Network
mstance
G8 =
4
nstance
gsl
parent child loves
\ﬁ’\m i i i
Jorm
gse -
nstance nstance
Jorall 4 : o2 —— A
exists
receiver
spacel
instance
agent
- pl il
space 1
Self Assessment
Fill in the blanks:
A e is an attribute value pair in its simplest outline.
A is a value that a slot can take — could be a numeric, string (or any data

type) value or a pointer to a different slot.
A weak slot and filler structure does not consider the..............c.ccccccco... of the representation.

In i method, the view that spreading activation out of two nodes and locating
their intersection locates relationships between objects.

............................. Semantic Networks permit for propositions to be made without assurance

............................. Structures facilitates attribute values to be improved speedily where
declarations are indexed by the entities and binary predicates are indexed by first argument.

9.2 Frames

Frames can also be considered as an expansion to Semantic nets. Certainly it is not apparent
where the difference among a semantic net and a frame ends. Semantic nets initially we used to
symbolize labeled connections among objects. As tasks became more multifaceted the
representation requires to be more structured. A frame is a compilation of attributes or slots and
related values that portray some actual world entity. Frames on their own are not mainly useful

LOVELY PROFESSIONAL UNIVERSITY

Unit 9: Weak Slot and Filler Structures

but frame systems are a powerful manner of encoding information to sustain reasoning. Set

Notes

theory offers a good foundation for understanding frame systems. Every frame symbolizes:

° a class (set), or

) an instance (an element of a class).

AN

Caution The more structured the system it turns out to be more useful to use frames.

g

Task Tllustrate the use of Partitioned Semantic Networks.

9.2.1 Frame Knowledge Representation

Take the example first discussed in Semantics Nets.

Figure 9.9: A Simple Frame System

Back
isa:
Cardinality:
Tries:
Mike-Hall
instance:
Height:
Position:

Team:

Team-Colours:

Person
isa:
Cardinality:
Adult-Male
isa:
Cardinality:
Rugby-Player
isa:
Cardinality:
Height:
Weight :
Position:
Team:

Mammal

Person

Adult-Male

Team-Colours:

Rugby-Player

Back

6-0

Centre
Cardiff-RFC

Black/Blue

LOVELY PROFESSIONAL UNIVERSITY

Contd...

119

Artificial Intelligence

120

Notes

Rugby-Team
isa: Team
Cardinality:
Team-size: 15
Coach:
Cardiff-RFC
instance: Rugby-Team
Team-size: 15
Coach: Terry Holmes
Players: {Robert-Howley, Gwyn-Jdones, ...}

Here the frames Person, Adult-Male, Rugby-Player and Rugby-Team are all classes and the frames
Robert-Howley and Cardiff-RFC are instances.

) The isa relation is actually the subset relation.

° The isa attribute possesses a transitivity property. This shows: Robert-Howley is a Back
and a Back is a Rugby-Player who in turn is an Adult-Male and also a Person.

° Both isa and instance have inverses which are known as subclasses or all instances.

° There are attributes that are connected with the class or set such as cardinality and on
the other hand there are attributes that are owned by every member of the class or
set.

Distinction between Sets and Instances

It is significant that this difference is evidently understood.

Cardiff-RFC can be considered of as a set of players or as an instance of a Rugby-Team.
If Cardiff-RFC were a class then

) its instances would be players

° it could not be a subclass of Rugby-Team or else its elements would be members of Rugby-
Team which we do not desire.

Rather we make it a subclass of Rugby-Player and this permits the players to inherit the accurate
properties facilitating us to allow the Cardiff-RFC to inherit information regarding teams.

This means that Cardiff-RFC is an instance of Rugby-Team.

But there is a difficulty here:

[A class is a set and its elements contain properties.
) We wish to use inheritance to confer values on its members.
° But there are properties that the set or class itself has like the manager of a team.

LOVELY PROFESSIONAL UNIVERSITY

Unit 9: Weak Slot and Filler Structures

This is why we require to observe Cardiff-RFC as a subset of one class players and an instance of

teams.

A metaclass is a particular class whose elements are themselves classes.

Now consider our rugby teams as:

Figure 9.10: A Metaclass Frame System

Notes

Class
instance:
ETIeN

Ca;ﬂinality:

Team
instance:
880!
Cardinality:

Team-Size:

Rughby-Team
180!
Cardinality:
Team-stze: 15
Coach:

Cardiff-RFC
instance:
Team-size:
Coach:

Robert- Howley
instance:
Height:
Position:
Team:
Team-Colours:

Class
Class

Class
Class

{ The number of teams }

i5

Team
{ The number of teams }

Rugby-Team
15
Terry Holmces

Back

6-0

Scrum Half
Cardiff- RFC
Black/Blue

The fundamental metaclass is Class, and this permits us to

° define classes which are instances of other classes, and (thus)

o inherit properties from this class.

Inheritance of default values appears when one element or class is an instance of a class.

Slots as Objects

How can we to symbolize the following properties in frames?

o Attributes like weight, age be attached and make sense.
o Constraints on values like age being less than a hundred
° Default values

LOVELY PROFESSIONAL UNIVERSITY

121

Artificial Intelligence

Notes ° Rules for inheritance of values like children inheriting parent’s names
) Rules for computing values
. Many values for a slot.

A slot is a relation that maps from its domain of classes to its range of values.
A relation is a set of ordered pairs so one relation is a subset of another.
As slot is a set the set of all slots can be symbolize by a metaclass known as Slot, say.
Consider the following:
SLOT
isa: Class
instance: Class
domain:
range:
range-constraint:
definition:
default:
to-compute:
single-valued:
Coach
instance: SLOT
domain: Rugby-Team
range: Person
range-constraint: Az (experience x.manager)
default:
single-valued: TRUE
Colour
instance: SLOT
domain: Physical-Object
range: Colour-Set
single-valued: FALSE
Team-Colours
instance: SLOT
isa: Colour
domain: team-player
range: Colour-Set
range-constraint: not Pink

single-valued: FALSE

122 LOVELY PROFESSIONAL UNIVERSITY

Unit 9: Weak Slot and Filler Structures

Position Notes
instance: SLOT
domain: Rugby-Player
range: { Back, Forward, Reserve }
to-compute: Az x.position
single-valued: TRUE

The following points are to be noticed.:

Instances of SLOT are slots
Related with SLOT are attributes that every instance will inherit.
Every slot has a domain and range.

Range is divided into two parts one the class of the elements and the other is a restraint
which is a logical expression if absent it is taken to be true.

The to-compute attribute includes a procedure to calculate its value. E.g. in Position where
we make use of the dot notation to allocate values to the slot of a frame.

Transfers through lists other slots from which values can be derived from inheritance.

AN

Caution 1f there is a value for default then it must be passed on unless an instance has its
own value

9.2.2 Interpreting Frames

A frame system interpreter must be competent of the following so as to exploit the frame slot
demonstration:

Steadiness checking — when a slot value is added to the frame depending on the domain
attribute and that the value is legal using range and range constraints.

Broadcast of definition values along isa and instance links.
Inheritance of default values along isa and instance links.
Calculation of value of slot as required.

Verifying that only correct number of values calculated.

Self Assessment

Fill in the blanks:

7.
8.

10.
11.

Frames can also be considered as an expansion tocccccccveueee. .

A s is a compilation of attributes or slots and related values that portray
some actual world entity.

Frames on their own are not mainly useful but frame systems are a powerful manner of

encodingccocveeccueune. to sustain reasoning.
The morecccceveicucenenne. the system it turns out to be more useful to use frames.
A is a set and its elements contain properties.

LOVELY PROFESSIONAL UNIVERSITY 123

Artificial Intelligence

Notes 120 A is a particular class whose elements are themselves classes.
13, A s is a set of ordered pairs so one relation is a subset of another.
14, e of default values appears when one element or class is an instance of a
class

15. Every slot has a domainandc.ccccooeuue.. .

9.3 Summary

° Weak Slot and Filler Structures facilitates attribute values to be improved speedily where
declarations are indexed by the entities and binary predicates are indexed by first argument.

° Weak Slot and Filler Structure permits ease of deliberation as it embraces features of
object oriented programming.

° In semantic nets, The information is accumulated by interconnecting nodes with labeled
arcs.
° The view that spreading activation out of two nodes and locating their intersection locates

relationships between objects.

° Partitioned Semantic Networks permit for propositions to be made without assurance to
truth and expressions to be measured.

° Basic idea of extended semantic net is to break network into spaces which comprise groups
of nodes and arcs and consider each space as a node.

° A frame is a compilation of attributes or slots and related values that portray some actual
world entity.

° Frames on their own are not mainly useful but frame systems are a powerful manner of
encoding information to sustain reasoning.

9.4 Keywords

Filler: A filler is a value that a slot can take — could be a numeric, string (or any data type) value
or a pointer to a different slot.

Frame: A frame is a compilation of attributes or slots and related values that portray some actual
world entity.

Slot: A slot is an attribute value pair in its simplest outline.

9.5 Review Questions

1. Construct Semantic Net representations of the following;:
(@) Dave is Welsh, Dave is a Lecturer.
(b) Paul lent his new Frank Zappa CD to his best friend.
2. Represent the following in partitioned semantic networks:
(@) Every player kicked a ball.
(b) All players like the referee.

(©) Andrew believes that there is a fish with lungs.

124 LOVELY PROFESSIONAL UNIVERSITY

Unit 9: Weak Slot and Filler Structures

3. Pick a problem area and represent the knowledge in frame based system. Notes
4. Devise algorithms that enable reasoning with frames. Discuss how:

(@) Inference through inheritance can be achieved.

(b) Matching can be achieved.
5. What are the benefits of a frame based knowledge representation?

6. What problems do you predict that a frame based knowledge representation having?
Give examples of knowledge hard to symbolize in a frame. How could some difficulties
be conquer?

7. What programming languages would be matched to put into practice a semantic network
and frames?

8. Weak Slot and Filler Structures permits ease of deliberation as it embraces features of
object oriented programming. Comment.

9. Illustrate the inference methods used in semantic nets.

10. Make distinction between sets and instances with examples.

Answers: Self Assessment

1. Slot 2. Filler

3. Content 4. Intersection Search
5. Partitioned 6. Weak Slot and Filler
7. Semantic Nets 8. Frame

9. Information 10. Structured

11. Class 12. Metaclass

13. Relation 14. Inheritance

15. Range

9.6 Further Readings

N

Books Antonelli, D. 1983. The application of artificial intelligence to a maintenance and diagnostic
information system (MDIS). Proceedings of the Joint Services Workshop on Artificial
Intelligence in Maintenance. Boulder, CO.

Boose, J.H. 1984. Personal construct theory and the transfer of human expertise.
Proceedings of the National Conference on Artificial Intelligence (AAAI-84),
p- 27-33, Austin, Texas.

Boose,].H. 1985. A knowledge acquisition program for expert systems based on personal
construct psychology. International Journal of Man-Machine Studies, 23, 495-525.

Boose, J.H. 1986a. Expertise Transfer for Expert System Design, New York; Elsevier.

Boose,].H. 1986b. Rapid acquisition and combination of knowledge from multiple experts
in the same domain. Future Computing Systems Journal, 1, 191-216.

LOVELY PROFESSIONAL UNIVERSITY 125

Artificial Intelligence

Notes Boose,].H. 1988. Uses of repertory grid-centered knowledge acquisition tools for knowledge-
based systems. International Journal of Man-Machine Studies, 29, 287-310.

Boose,].H. 1989. A survey of knowledge acquisition techniques and tools. Knowledge
acquisition: An international journal of knowledge acquisition for knowledge-
based systems, in press. Vol. 1, No. 1.

Boose,].H., and Bradshaw,].M. 1987b. AQUINAS: A knowledge acquisition workbench
for building knowledge based systems. Proceedings of the First European Workshop
on Knowledge Acquisition for Knowledge-Based Systems (pp. A6.1-6). Reading
University.

Boose,].H., Bradshaw,].M., Shema, D.B. 1988. Recent progress in Aquinas: A
knowledge acquisition workbench. Proceedings of the Second European Knowledge
Acquisition Workshop (EKAW-88). p. 2.1-15, Bonn.

Bradshaw, J. 1988. Shared causal knowledge as a basis for communication between expert
and knowledge acquisition system. Proceedings of the Second European Knowledge
Acquisition Workshop (EKAW-88) pp. 12.1-6.

Bradshaw, J.M. 1988. Strategies for selecting and interviewing experts. Boeing
Computer Services Technical report in preparation.

Bradshaw,].M. and Boose,].H. 1989. Decision analytic techniques for knowledge
acquisition: Combining situation and preference models using Aquinas. Special issue on
the 2nd Knowledge Acquisition for Knowledge-Based Systems Workshop, 1987,
International Journal of Man- Machine Studies. in press.

Clancey. W. 1986. Heuristic classification. In J. Kowalik (Ed.). Knowledge-based
problem solving. New York: Prentice-Hall.

Davis, R., and Lenat, D.B. 1982. Knowledge-based systems in artificial intelligence.
New York: McGraw-Hill.

DeJong, K. 1987. Knowledge acquisition for fault isolation expert systems. Special issue
on the 1** AAA1 Knowledge Acquisition for Knowledge-Based Systems Workshop,
1986, Part 4, International/ Journal of Man-Machine Studies, Vol. 27, No. 2.

Online link www.compmathsjournal.com/fulltext/v2i3/2.3.6.pdf

126 LOVELY PROFESSIONAL UNIVERSITY

Dinesh Kumar, Lovely Professional University Unit 10: Strong Slot and Filler Structures

Unit 10: Strong Slot and Filler Structures Notes

CONTENTS

Objectives

Introduction

10.1 Conceptual Dependency (CD)
10.1.1 Benefits of CD
10.1.2 Limitations of CD
10.1.3 Applications of CD

10.2 Scripts
10.21 Advantages of Scripts
10.2.2 Disadvantages

10.3 Summary

104 Keywords

10.5 Review Questions

10.6 Further Readings

Objectives

After studying this unit, you will be able to:
o Understand the concepts of strong slot and filler structures
o Discuss the Conceptual Dependency (CD)

o Illustrate the use of scripts
Introduction

Strong Slot and Filler Structures usually symbolize links among objects according to more firm
rules, particular notions of what types of object and associations among them are given, and
symbolize knowledge regarding common situations. In this unit, you will understand the concept
of conceptual dependency and scripts.

10.1 Conceptual Dependency (CD)

Conceptual Dependency initially generated to symbolize knowledge attained from natural
language input.

Conceptual Dependency demonstration is utilized in natural language processing so as to
represent them earning of the sentences in such a manner that inference we can be made from
the sentences. It is autonomous of the language in which the sentences were initially stated.

l?

Did u know? CD representations of a sentence is constructed out of primitives, which are
not words belonging to the language but are abstract, these primitives are united to form
the meanings of the words.

LOVELY PROFESSIONAL UNIVERSITY 127

Artificial Intelligence

Notes The objectives of this theory are:
° To aid in the sketching of inference from sentences.
° To be autonomous of the words utilized in the original input.

AN

Caution For any 2 (or more) sentences that are equal in meaning there should be only one
depiction of that meaning.

It has been utilized by many programs that indicate to recognize English (MARGIE, SAM, PAM).
CD developed by Schank et al..

CD offers:

o a structure into which nodes displaying information can be positioned
o a particular set of primitives

o at a specified level of granularity.

Sentences are displayed as a series of diagrams portraying actions by means of both abstract and
real physical situations.

o The agent and the objects are displayed

o The actions are constructed from a set of primitive acts which can be customized by tense.

=7|

Notes Conceptual dependency theory was dependent on two suppositions:

1. If two sentences have the similar meaning, they should be displayed the same,
irrespective of the specific words used.

2. Information unreservedly specified in the sentence should be displayed overtly.
That is, any information which can be inferred from what is overtly specified should
be involved in the representation.

' Example: Primitive Acts are:

ATRANS

— Transfer of an intangible relationship. E.g. give.
PTRANS

— Transfer of the physical position of an object. E.g. go.
PROPEL

— Application of a physical force to an object. E.g. push.
MTRANS

— Transfer of mental information. E.g. tell.
MBUILD

— Build new information from old. E.g. decide.

128 LOVELY PROFESSIONAL UNIVERSITY

Unit 10: Strong Slot and Filler Structures

SPEAK Notes
— Make a sound. E.g. say.
ATTEND
— Concentrate a sense on a stimulus. E.g. listen, watch.
MOVE
— Movement of a body part by owner. E.g. punch, kick.
GRASP
— Actor grasping an object. E.g. clutch.
INGEST
— Actor ingesting an object. E.g. eat.
EXPEL
— Actor getting clear of an object from body.

Six ancient conceptual categories offer building blocks which are the set of permissible dependencies
in the concepts in a sentence:

PP

— Real world objects.
ACT

— Real world actions.
PA

— Attributes of objects.
AA

— Attributes of actions.
T

— Times.
LOC

— Locations.

How do we bond these things together?

' Example: Take the example as below:
John provides Mary a book

John & ATRANS & Book &

o Arrows specify the direction of dependency. Letters above specify some relationships:
o

— object.

LOVELY PROFESSIONAL UNIVERSITY 129

Artificial Intelligence

Notes R
— recipient-donor.
I
— instrument e.g. eat with a spoon.
D
— destination e.g. going home.
° Double arrows (&) designate two-way links among the actor (PP) and action (ACT).
) The actions are constructed from the set of primitive acts.
& These can be customized by tense etc.

The use of tense and mood in illustrating events is tremendously significant and schank introduced
the following modifiers:

p

— past

f

— future
t

— transition

— start transition

— finished transition
— continuing

— interrogative

/

— negative

delta

— timeless

c

— conditional

the absence of any modifier points to the present tense.
So the past tense of the above example:
John gave Mary a book becomes:

. 5 . from Mary
John & ATRANS <—— Book <—

t—0> John

130 LOVELY PROFESSIONAL UNIVERSITY

Unit 10: Strong Slot and Filler Structures

The < has an object (actor), PP and action, ACT. L.e. PP < ACT. The triple arrow (<) is also a two Notes
link but among an object, PP, and its attribute, PA. i.e., PP < PA.

It symbolizes isa type dependencies. E.g.

Dave < lecturer Dave is a lecturer.

l?

Did u know? Primitive states are used to depict many state descriptions like height, health,
mental state, physical state.

There are many more physical states than primitive actions. They utilize a numeric scale.

' Example: John height(+10) John is the tallest John height(< average) John is short Frank
Zappa health(-10) Frank Zappa is dead Dave mental_state(-10) Dave is sad Vase physical_state(-10)
The vase is broken

You can also identify things like the time of occurrence in the relationship.

' Example: John gave Mary the book yesterday

from

yesterday ——» Mary
John < ATRANS & Book &
p t—0> John

' Example: Now let us consider a more intricate sentence: As smoking can kill you, I stopped
Let us have a look at how we symbolize the inference that smoking can kill:

° Use the view of one to apply the knowledge to.
° Use the primitive act of INGESTing smoke from a cigarette to one.

° Killing is a changeover from being alive to dead. We use triple arrows to designate a
transition from one state to another.

° Have a conditional, c causality link. The triple arrow represents dependency of one concept
on another.
from one

one & INGEST <£ Book &

t—0> cigarette

from 1 ealth (-10)

one €¢—

L5 health (¢-10)

To add the fact that I stopped smoking

o Use alike rules to imply that I smoke cigarettes.
o The qualification linked to this dependency represents that the instance Ingesting smoke
has stopped.

LOVELY PROFESSIONAL UNIVERSITY 131

Artificial Intelligence

Notes

132

from
—— one

one & INGEST & Smoke &

t—0> cigarette

. o . from I
c|le——7 <4—— Smoke ¢«—
INGEST L0, cigarette
ﬂb dead
one <4—]
t_o’ alive

2

Task Construct CD representation of the following: Drinking cocktail makes you drunk.

10.1.1 Benefits of CD

) Using these primitives includes fewer inference rules.
) Many inference rules are already displayed in CD structure.
° The holes in the initial structure aid to concentrate on the points still to be recognized.

10.1.2 Limitations of CD

° Knowledge must be converted into quite low level primitives.

) Impossible or hard to locate correct set of primitives.

) A lot of inference may still be needed.

° Representations can be multifaceted even for comparatively simple actions.
Consider

Dave bet Frank five pounds that Wales would win the Rugby World Cup .

Complex representations require a lot of storage.
10.1.3 Applications of CD

MARGIE (Meaning Analysis, Response Generation and Inference on English) — model natural
language understanding,.

SAM (Script Applier Mechanism) — Scripts to recognize stories.

PAM (Plan Applier Mechanism) — Scripts to recognize stories.

Schank et al. developed all of the above.
Self Assessment

Fill in the blanks:

I initially generated to symbolize knowledge attained from natural language

LOVELY PROFESSIONAL UNIVERSITY

Unit 10: Strong Slot and Filler Structures

2. CD representations of a sentence is constructed out of , which are not words Notes
belonging to the language but are abstract, these primitives are united to form the meanings
of the words.

3. For any 2 (or more) sentences that are equal in meaning there should be onlyccc.c........
depiction of that meaning.

4. Sentences are displayed as a series ofcc.......... portraying actions by means of both
abstract and real physical situations.

5. Primitive Actccccoevviernnnns defines movement of a body part by owner.

6. Primitive Actcccceceveennne defines Application of a physical force to an object.

7. MARGIE (Meaning Analysis, Response Generation and Inference on English) is used to
model ..o .

10.2 Scripts

A script is a structure that recommends a set of conditions which could be projected to follow on
from one another.

It is alike to a thought sequence or a sequence of situations which could be anticipated.
It could be measured to comprise of a number of slots or frames but with more specialized roles.

Scripts are useful because:

) Events tend to happen in known runs or patterns.

° Causal relationships among events exist.

° Entry conditions exist which permit an event to happen.

° Prerequisites occur upon events taking place. E.g. when a student develops through a

degree scheme or when a buyer buys a house.
The components of a script comprise:
Entry Conditions

— These must be pleased before events in the script can take place.
Results

— Conditions that will be true after events in script take place.

Props
— Slots displaying objects included in events.
Roles
— Persons involved in the events.
Track
— Dissimilarities on the script. Different tracks may share components of the same script.
Scenes

— The sequence of events that take place. Events are displayed in conceptual dependency
form.

LOVELY PROFESSIONAL UNIVERSITY 133

Artificial Intelligence

Notes Scripts are functional in illustrating certain situations like robbing a bank. This might engage:
° Getting a gun.
° Hold up a bank.
° Escape with the money.

Here the Props might be

° Gun, G.

° Loot, L.

° Bag, B

° Get away car, C.

Figure 10.1: Simplified Bank Robbing Script

Script: ROEEERY Track: Successfil Snatch
Props: Roles:
G = Gun, F = Robber
L =Loot M = Cashieg
B= Bag, O = Bank Manager,
C = Getaway car. P = Policeman.
Entry Conditions': Resuits:
R is poor. R has more roney.
R is destitute. O is angry.
M is in a state of shock.
Pis shot.
Scene 1. Geting a gun

R PTRANS R into Gun Shop
R MBUILD R choice of G

R MTRANS choice.

R ATRANS buys G

(20 to scene 2)

Scene Z Holding up the bank

R PTRANE R into bank

RATTEND eyes M, Oand P

E MOVE R to M position
RGRASPG

RMOVE G to point to M

R MTRANS "Give me the money or ELSE" to M
PMTRANS "Hold it Hands Up"to R
R PROPELshoots G

PINGEST bullet from G

M ATRANS Lto M

M ATRANS Lputs in bag, B

M PTRANS exit

O ATRANS raises the alarm

(20 to scene 3)

Scene 3: The getaway

M PTRANS C

134 LOVELY PROFESSIONAL UNIVERSITY

Unit 10: Strong Slot and Filler Structures

The Roles might be: Notes
) Robber, S.

° Cashier, M.

[Bank Manager, O.

o Policeman, P.

The Entry Conditions might be:

) S is poor.

) S is destitute.

The Results might be:

° S has more money.

[O is angry.

) M is in a state of shock.

) P is shot.

There are 3 scenes: obtaining the gun, robbing the bank and the getaway.

The full Script could be illustrated in Figure 10.1.

AN

Caution If a specific script is to be applied it must be triggered and the activating is based
on its significance.

|

Notes Some more points to be noticed on Scripts:
1. If a topic is mentioned in passing then a pointer to that script could be held.
2. If the topic is significant then the script should be opened.

3. The danger lies in having too many lively scripts much as one might have too many
windows open on the screen or too many recursive calls in a program.

4. Provided events follow a recognized trail we can use scripts to signify the actions
included and use them to answer thorough questions.

5. Different trails may be permitted for dissimilar outcomes of Scripts (e.g. The bank
robbery goes wrong).

2

Task Tllustrate the functions of script.

10.2.1 Advantages of Scripts

o Aptitude to predict events.

o A single rational interpretation may be build up from a compilation of interpretations.

LOVELY PROFESSIONAL UNIVERSITY 135

Artificial Intelligence

136

Notes

10.2.2 Disadvantages

Less common than frames.

May not be appropriate to symbolize all kinds of knowledge.

Self Assessment

Fill in the blanks:

10.

11.
12.

13.
14.
15.

A i is a structure that recommends a set of conditions which could be projected
to follow on from one another.

Script is alike to a thought sequence or a sequence of which could be anticipated.
Script could be measured to comprise of a number of but with more specialized
roles.

.................... component define the slots displaying objects included in events.

If a specific script is to be applied it must be triggered and the is based on its
significance.

Different trails may be permitted for dissimilar of Scripts.
Scenes define the sequence of that take place.

Different tracks may share components of the script.

10.3 Summary

Conceptual Dependency initially generated to symbolize knowledge attained from natural
language input.

For any 2 (or more) sentences that are equal in meaning there should be only one depiction
of that meaning.

CD offers a structure into which nodes displaying information can be positioned.

Sentences are displayed as a series of diagrams portraying actions by means of both
abstract and real physical situations.

A script is a structure that recommends a set of conditions which could be projected to
follow on from one another.

It is alike to a thought sequence or a sequence of situations which could be anticipated.

It could be measured to comprise of a number of slots or frames but with more specialized
roles.

If a specific script is to be applied it must be triggered and the activating is based on its
significance.

10.4 Keywords

Conceptual Dependency: Conceptual Dependency initially generated to symbolize knowledge
attained from natural language input.

Script: A script is a structure that recommends a set of conditions which could be projected to
follow on from one another.

LOVELY PROFESSIONAL UNIVERSITY

Unit 10: Strong Slot and Filler Structures

10.5 Review Questions Notes
1. Illustrate the concept of conceptual dependency with example.

2. Explain the various objectives of conceptual dependency.

3. What are scripts? Illustrate the uses of scripts.

4. Discuss the advantages and disadvantages of conceptual dependency.

5. Construct CD representation of the following:

a) Johny request Mary for a pencil.
b) Jimmy stirred his coffee with a spoon.
c) David took the book off Jimmy.
d) On my way home, I stopped to fill my car with petrol.
e) Iheard strange music in the woods.
f) Johny killed Mary by choking her.
6. Try capturing the differences between the following in CD:
(@) Johny slapped David, Johny punched David.
(b) Sue likes Prince, Sue adores Prince.
7. Rewrite the script specified in the unit so that the Bank robbery goes wrong.

8. Write a script to permit for both outcome of the Bank robbery: Getaway and going wrong
and getting caught.

9. Write a script for enrolling as a student.

10. Find out how MARGIE, SAM and PAM are executed.

Answers: Self Assessment

1. Conceptual Dependency 2. Primitives

3. One 4. Diagrams

5. MOVE 6. PROPEL

7. Natural Language Understanding 8. Script

9. Situations 10. Slots or Frames
11. Props 12. Activating

13. Outcomes 14. Events

15. Same

10.6 Further Readings

N

Books Antonelli, D. 1983. The application of artificial intelligence to a maintenance and diagnostic
information system (MDIS). Proceedings of the Joint Services Workshop on Artificial
Intelligence in Maintenance. Boulder, CO.

LOVELY PROFESSIONAL UNIVERSITY 137

Artificial Intelligence

Notes Boose, J.H. 1984. Personal construct theory and the transfer of human expertise.
Proceedings of the National Conference on Artificial Intelligence (AAAI-84),
p- 27-33, Austin, Texas.

Boose,].H. 1985. A knowledge acquisition program for expert systems based on personal
construct psychology. International Journal of Man-Machine Studies, 23, 495-525.

Boose, J.H. 1986a. Expertise Transfer for Expert System Design, New York; Elsevier.

Boose,].H. 1986b. Rapid acquisition and combination of knowledge from multiple experts
in the same domain. Future Computing Systems Journal, 1, 191-216.

Boose,].H. 1988. Uses of repertory grid-centered knowledge acquisition tools for knowledge-
based systems. International Journal of Man-Machine Studies, 29, 287-310.

Boose,].H. 1989. A survey of knowledge acquisition techniques and tools. Knowledge
acquisition: An international journal of knowledge acquisition for knowledge-
based systems, in press. Vol. 1, No. 1.

Boose,].H., and Bradshaw,].M. 1987b. AQUINAS: A knowledge acquisition workbench
for building knowledge based systems. Proceedings of the First European Workshop
on Knowledge Acquisition for Knowledge-Based Systems (pp. A6.1-6). Reading
University.

Boose, J.H., Bradshaw, J.M., Shema, D.B. 1988. Recent progress in Aquinas: A
knowledge acquisition workbench. Proceedings of the Second European Knowledge
Acquisition Workshop (EKAW-88). p. 2.1-15, Bonn.

Bradshaw, J. 1988. Shared causal knowledge as a basis for communication between expert
and knowledge acquisition system. Proceedings of the Second European Knowledge
Acquisition Workshop (EKAW-88) pp. 12.1-6.

Bradshaw, J.M. 1988. Strategies for selecting and interviewing experts. Boeing
Computer Services Technical report in preparation.

Bradshaw,].M. and Boose,].H. 1989. Decision analytic techniques for knowledge
acquisition: Combining situation and preference models using Aquinas. Special issue on
the 2nd Knowledge Acquisition for Knowledge-Based Systems Workshop, 1987,
International Journal of Man- Machine Studies. in press.

Clancey. W. 1986. Heuristic classification. In J. Kowalik (Ed.). Knowledge-based
problem solving. New York: Prentice-Hall.

Davis, R., and Lenat, D.B. 1982. Knowledge-based systems in artificial intelligence.
New York: McGraw-Hill.

DeJong, K. 1987. Knowledge acquisition for fault isolation expert systems. Special issue
on the 1* AAA1 Knowledge Acquisition for Knowledge-Based Systems Workshop,
1986, Part 4, International/ Journal of Man-Machine Studies, Vol. 27, No. 2.

v

Online link www.compmathsjournal.com/fulltext/v2i3/2.3.6.pdf

138 LOVELY PROFESSIONAL UNIVERSITY

Dinesh Kumar, Lovely Professional University

Unit 11: Natural Language Processing

Unit 11: Natural Language Processing

CONTENTS
Objectives
Introduction
11.1 Natural Language Processing - Overview
11.1.1 Evaluation in NLP
11.1.2 Tasks and Limitations of NLP
11.1.3 Sub-problems of NLP
11.2 Steps in Natural Language Processing
11.21 Morphological Analysis
11.2.2 Syntactic Processing
11.2.3 Semantic Analysis
11.2.4 Discourse and Pragmatic Processing
11.3 Spell Checking
11.4 Summary
11.5 Keywords

11.6 Review Questions

11.7 Further Readings

Objectives

After studying this unit, you will be able to:
o Understand the concept of natural language processing
o Identify the steps in natural language processing

o Discuss the spell checking

Introduction

Natural language processing is a field of computer science concerned with the interactions
between computers and human (natural) languages. Natural language generation systems convert
information from computer databases into readable human language. Natural language
understanding systems convert samples of human language into more formal representations
that are easier for computer programs to manipulate. Many problems within NLP apply to both
generation and understanding; for example, a computer must be able to model morphology
(the structure of words) in order to understand an English sentence, but a model of morphology
is also needed for producing a grammatically correct English sentence. NLP has significant
overlap with the field of computational linguistics, and is often considered a sub-field of artificial
intelligence. The term natural language is used to distinguish human languages (such as Spanish,
Swahili or Swedish) from formal or computer languages (such as C++, Java or LISP). Although
NLP may encompass both text and speech, work on speech processing has evolved into a separate

LOVELY PROFESSIONAL UNIVERSITY

Notes

139

Artificial Intelligence

Notes field. The Redmond-based Natural Language Processing group is focused on developing efficient
algorithms to process texts and to make their information accessible to computer applications.
Since text can contain information at many different granularities, from simple word or token-
based representations, to rich hierarchical syntactic representations, to high-level logical
representations across document collections, the group seeks to work at the right level of analysis
for the application concerned.

11.1 Natural Language Processing - Overview

The goal of the Natural Language Processing (NLP) group is to design and build software that
will analyze, understand, and generate languages that humans use naturally, so that eventually
you will be able to address your computer as though you were addressing another person.

This goal is not easy to reach. “Understanding” language means, among other things, knowing
what concepts a word or phrase stands for and knowing how to link those concepts together in
a meaningful way. It's ironic that natural language, the symbol system that is easiest for humans
to learn and use, is hardest for a computer to master. Long after machines have proven capable
of inverting large matrices with speed and grace, they still fail to master the basics of our spoken
and written languages.

The challenges we face stem from the highly ambiguous nature of natural language.

As an English speaker you effortlessly understand a sentence like “Flying planes can be
dangerous”. Yet this sentence presents difficulties to a software program that lacks both your
knowledge of the world and your experience with linguistic structures. Is the more plausible
interpretation that the pilot is at risk, or that the danger is to people on the ground? Should “can”
be analyzed as a verb or as a noun? Which of the many possible meanings of “plane” is relevant?
Depending on context, “plane” could refer to, among other things, an airplane, a geometric
object, or a woodworking tool. How much and what sort of context needs to be brought to bear
on these questions in order to adequately disambiguate the sentence?

We address these problems using a mix of knowledge-engineered and statistical/machine-
learning techniques to disambiguate and respond to natural language input. Our work has
implications for applications like text critiquing, information retrieval, question answering,
summarization, gaming, and translation. The grammar checkers in Office for English, French,
German, and Spanish are outgrowths of our research; Encarta uses our technology to retrieve
answers to user questions; Intellishrink uses natural language technology to compress cellphone
messages; Microsoft Product Support uses our machine translation software to translate the
Microsoft Knowledge Base into other languages. As our work evolves, we expect it to enable
any area where human users can benefit by communicating with their computers in a natural
way.

11.1.1 Evaluation in NLP

The first evaluation campaign on written texts seems to be a campaign dedicated to message
understanding in 1987 (Pallet 1998). Then, the Parseval / GEIG project compared phrase-structure
grammars (Black 1991). A series of campaigns within Tipster project were realized on tasks like
summarization, translation and searching (Hirshman 1998). In 1994, in Germany, the
Morpholympics compared German taggers. Then, the Senseval and Romanseval campaigns
were conducted with the objectives of semantic disambiguation. In 1996, the Sparkle campaign
compared syntactic parsers in four different languages (English, French, German and Italian).

In France, the Grace project compared a set of 21 taggers for French in 1997 (Adda 1999). In 2004,
during the Technolangue/Easy project, 13 parsers for French were compared. Large-scale

140 LOVELY PROFESSIONAL UNIVERSITY

Unit 11: Natural Language Processing

evaluation of dependency parsers were performed in the context of the CoNLL shared tasks in Notes
2006 and 2007. In Italy, the evalita campaign was conducted in 2007 to compare various tools for
Italian evalita web site. In France, within the ANR-Passage project (end of 2007), 10 parsers for
French were compared passage web site. Adda G., Mariani J., Paroubek P., Rajman M. 1999
L’action GRACE d’évaluation de I'assignation des parties du discours pour le francais. Langues
vol-2 Black E., Abney S., Flickinger D., Gdaniec C., Grishman R., Harrison P., Hindle D., Ingria
R., Jelinek F., Klavans J., Liberman M., Marcus M., Reukos S., Santoni B., Strzalkowski T. 1991 A
procedure for quantitatively comparing the syntactic coverage of English grammars. DARPA
Speech and Natural Language Workshop Hirshman L. 1998 Language understanding evaluation:
lessons learned from MUC and ATIS. LREC Granada Pallet D.S. 1998 The NIST role in automatic
speech recognition benchmark tests.

11.1.2 Tasks and Limitations of NLP

In theory, natural-language processing is a very attractive method of human-computer interaction.
Early systems such as SHRDLU, working in restricted “blocks worlds” with restricted
vocabularies, worked extremely well, leading researchers to excessive optimism, which was
soon lost when the systems were extended to more realistic situations with real-world ambiguity
and complexity. Natural-language understanding is sometimes referred to as an Al-complete
problem, because natural-language recognition seems to require extensive knowledge about
the outside world and the ability to manipulate it. The definition of “understanding” is one of
the major problems in natural-language processing.

11.1.3 Sub-problems of NLP

Speech Segmentation

In most spoken languages, the sounds representing successive letters blend into each other, so
the conversion of the analog signal to discrete characters can be a very difficult process. Also, in
natural speech there are hardly any pauses between successive words; the location of those
boundaries usually must take into account grammatical and semantic constraints, as well as the
context.

Text Segmentation

Some written languages like Chinese, Japanese and Thai do not have single-word boundaries
either, so any significant text parsing usually requires the identification of word boundaries,
which is often a non-trivial task.

Part-of-speech Tagging

Word sense disambiguation: Many words have more than one meaning; we have to select the
meaning which makes the most sense in context.

Syntactic Ambiguity
The grammar for natural languages is ambiguous, i.e. there are often multiple possible parse
trees for a given sentence. Choosing the most appropriate one usually requires semantic and

contextual information. Specific problem components of syntactic ambiguity include sentence
boundary disambiguation.

LOVELY PROFESSIONAL UNIVERSITY 141

Artificial Intelligence

142

Notes

Imperfect or Irregular Input

Foreign or regional accents and vocal impediments in speech; typing or grammatical errors,
OCR errors in texts.

Speech Acts and Plans

A sentence can often be considered an action by the speaker. The sentence structure alone may
not contain enough information to define this action. For instance, a question is actually the
speaker requesting some sort of response from the listener. The desired response may be verbal,
physical, or some combination.

Example: “Can you pass the class?” is a request for a simple yes-or-no answer, while
“Can you pass the salt?” is requesting a physical action to be performed. It is not appropriate to
respond with “Yes, I can pass the salt,” without the accompanying action (although “No” or “I
can’t reach the salt” would explain a lack of action).

2

Task What are the disadvantages and problems of NLP? Discuss briefly.

Self Assessment

Fill in the blanks:

L e is a field of computer science concerned with the interactions between
computers and human (natural) languages.

2. ” language means, among other things, knowing what concepts a word
or phrase stands for and knowing how to link those concepts together in a meaningful
way.

3. Specific problem components ofccccccceueueuenenee ambiguity include sentence boundary
disambiguation.

4. A, can often be considered an action by the speaker.

5. The goal of the Natural Language Processing (NLP) group is to design and build
.............................. that will analyze, understand, and generate languages that humans use
naturally.

11.2 Steps in Natural Language Processing

The steps in Natural Language Processing are as follows:

1. Morphological Analysis: Individual worlds are scrutinized into their components and
non word tokens, like punctuation are alienated from the words.

2. Syntactic Analysis: Linear sequences of words are malformed into structures that illustrate
how the words associate to each other. Some word sequences may be discarded if they
disobey the languages rules for how words may be united.

3. Semantic Analysis: The structures generated by the syntactic analyzer are allocated
meanings.

LOVELY PROFESSIONAL UNIVERSITY

Unit 11: Natural Language Processing

4. Discourse Integration: The meaning of an individual sentences may rely on the sentences Notes
that head it and may affect the meanings of the sentence (may rely on the sentences that
come first) that chase it.

5. Pragmatic Analysis: The structure displaying what was said is reinterpreted to verify that
what was in fact meant.

' Example: The sentence “Do you know what time it is?” should be deduced as a request
to be informed the time.

These steps are discussed in detail as below.
11.2.1 Morphological Analysis

As a problem structuring and problem solving technique, morphological analysis was designed
for multi-dimensional, non-quantifiable problems where causal modeling and simulation do
not function well or at all. Zwicky developed this approach to address seemingly non-reducible
complexity. Using the technique of Cross Consistency Assessment (CCA) (Ritchey, 2002), the
system however does allow for reduction, not by reducing the number of variables involved,
but by reducing the number of possible solutions through the elimination of the illogical
solution combinations in a grid box. From Wikipedia, the free encyclopedia.

What is “Morphological Analyzer” and How it Related to Search Engines?

A morphological analyzer is a program for analyzing the morphology of an input word, the
analyzer including a recognition engine, identifying suffixes and finding a stem within the input
word algorithms. Morphological analyzers are using lexicon/thesaurus, keep/stop lists, and
indexing engines for their process. Google using morphological analysis across all its products.

Example: Broad Match: This is the default option. If you include general keyword or
keyword phrases - such as tennis shoes - in your keyword list, your ads will appear when a
user’s query contains tennis and shoes, in any order, and possibly along with other terms. Your
ads will also automatically show for expanded matches, including plurals and relevant variations.
Because broad matches are sometimes less targeted than exact or phrase matches, you should
create keyword phrases containing at least two descriptive words each.

11.2.2 Syntactic Processing

This level concentrates on scrutinizing the words in a sentence so as to reveal the grammatical
arrangement of the sentence. This needs both a grammar and a parser. The output of this level
of processing is a (perhaps delinearized) demonstration of the sentence that discloses the structural
dependency relationships among the words. There are numerous grammars that can be utilized,
and which will, in turn, impact the choice of a parser. Not all NLP applications require a full
parse of sentences, thus the remaining challenges in parsing of prepositional phrase attachment
and conjunction scoping no longer stymie those applications for which phrasal and clausal
dependencies are adequate.

AN

Caution Syntax transmits meaning in most languages since order and dependency
contribute to meaning.

LOVELY PROFESSIONAL UNIVERSITY 143

Artificial Intelligence

Notes

' Example: The two sentences: ‘“The dog followed the cat” and “The cat followed the dog’
varies only in terms of syntax, yet transmit quite diverse meanings.

11.2.3 Semantic Analysis

The development of object-oriented software starts from requirements expressed commonly as
Use Cases. The requirements are then converted into a conceptual or analysis model. Analysis is
a fundamental stage because the conceptual model can be shown to satisfy the requirements and
becomes the skeleton on which the complete system is built. Most of the use of software patterns
until now has been at the design stage and they are applied to provide extensibility and flexibility.

However, design patterns don’t help avoid analysis errors or make analysis easier. Analysis
patterns can contribute more to reusability and software quality than the other varieties. Also,
their use contributes to simplifying the development of the analysis model. In particular, a new
type of analysis pattern is proposed, called a Semantic Analysis Pattern (SAP), which is in
essence a mini application, realizing a few Use Cases or a small set of requirements. Using SAPs,
a methodology is developed to build the conceptual model in a systematic way. No good design
or correct implementation is possible without good analysis; the best C++ or Java programmers
cannot make up for conceptual errors.

AN

Caution The correction of analysis errors becomes very expensive when these errors are
caught in the code.

It is therefore surprising how poorly understood is this stage and how current industrial practice
and publications show a large number of analysis errors. We have found that industrial software
developers usually have trouble with analysis. What are worse, even serious journals and
conferences publish papers or tutorials that contain clear analysis errors.

A possible improvement to this situation may come from the use of patterns. A pattern is a
recurring combination of meaningful units that occurs in some context. Patterns have been used
in building construction, enterprise management, and in several other fields. Their use in software
is becoming very important because of their value for reusability and quality; they distill the
knowledge and experience of many designers. Most of the use of patterns until now has been at
the design stage. However, design patterns don’t help to avoid analysis errors or to make
analysis easier. We believe that we need analysis patterns to improve the quality of analysis and
they can contribute more to reusability and software quality than the other varieties. We also
intend to show that their use contributes to simplifying the development of the application
analysis model. In particular, we propose a new type of analysis pattern, called a Semantic
Analysis Pattern (SAP), which is in essence a mini application, realizing a few Use Cases or a
small set of requirements. Using SAPs we develop a methodology to build the conceptual
model in a systematic way. We use UML (Unified Modeling Language), as a language to describe
our examples.

Analysis Patterns and their Use

The value of analysis is played down in practice. The majorities of the papers published about
object-oriented design as well as the majority of textbooks concentrate on implementation.
Books on Java, C++, and other languages outnumber by far the books on object-oriented
analysis/design (OOA/OOD). On top of that, most books on OOA/OOD present very simple
examples. To make things worse, professional programmers need to implement as soon as
possible, there is pressure to show running code and they may skip the analysis stage altogether.

144 LOVELY PROFESSIONAL UNIVERSITY

Unit 11: Natural Language Processing

What is deceiving is that software may appear to work properly but may have errors, not be Notes
reusable or extensible, be unnecessarily complex. In fact, most of the software built without

some model exhibits some or all of these defects. Most schools emphasize algorithms, not the

development of software systems. There is a large literature on methods of system development

that although oriented to other disciplines, is very applicable to software, but rarely used (In

fact, design patterns originated from ideas about buildings).

=7|

Notes Some people believe that with components we don’t need to understand what is
inside each component. The result of all this is that analysis is skipped or done poorly.

We need to look for ways to make analysis more precise and easier for developers.

The use of patterns is a promising avenue. A Semantic Analysis Pattern is a pattern that describes
a small set of coherent Use Cases that together describe a basic generic application.

l"

Did u know? The Use Cases are selected in such a way that the application can fit a variety
of situations.

Semantic Analysis Patterns differ from design patterns in the following ways:

° Design patterns are closer to implementation, they focus on typical design aspects, e.g.,
user interfaces, creation of objects, basic structural properties.

° Design patterns apply to any application; for instance, all applications have user interfaces,
they all need to create objects.

° Design patterns intend to increase the flexibility of a model by decoupling some aspects of
aclass.

An instance of a SAP is produced in the usual way: Use Cases, class and dynamic diagrams, etc.
We select the Use Cases in such a way that they leave out aspects which may not be transportable
to other applications. We can then generalize the original pattern by abstracting its components
and later we derive new patterns from the abstract pattern by specializing it (Figure 11.1). We
can also use analogy to directly apply the original pattern to a different situation.

Figure 11.1: Pattern Generation

Abstract
Application A Pattermn o
R Application B
bl ~
absiraction _ specialization
Ta
analogy
pl p2

LOVELY PROFESSIONAL UNIVERSITY 145

Artificial Intelligence

Notes We develop first a pattern from some basic use cases. We then use analogy to apply it to a
different situation, then we generalize it and finally we produce another pattern for another
application specializing the abstract pattern. We then show how to use these patterns in building
conceptual models.

Example: Consider a design for a computer repair shop. The specifications for this
application are: A computer repair shop fixes broken computers. The shop is part of a chain of
similar shops. Customers bring computers to the shop for repair and a reception technician
makes an estimate. If the customer agrees, the computer is assigned for repair to some repair
technician, who keeps a Repair Event document. All the Repair Event documents for a computer
are collected in its repair log. A repair event may be suspended because of a lack of parts or other
reasons.

These requirements correspond to two basic Use Cases:
o Get an estimate for a repair
° Repair a computer

A class diagram for this system is shown in Figure 11.2, while Figure 11.3 shows a state diagram
for Repair Event. Figure 11.4 shows a sequence diagram for assigning the repair of some computer
to a technician. The class diagram reflects the facts that a computer can be estimated at different
shops in the chain and that one of these estimates may become an actual repair. A computer that
has been repaired at least once has a repair log that collects all its repair events. The collection of
repair shops is described by the repair shops chain.

Figure 11.2: Class Diagram for the Computer Repair Shop

ConpShopClain Enployee
name 1 Fonamne
#| empNumber
WorksAt T

|R:cq)’(ionchhnicimJ | Repair Tecliician I

* 1
CampRepairShayj : :
namne
locationt
ResponsibleFor
* 1
E3
. 1 : * " ChageOf
Estimate RepairEvent | o
nuunber “*1 munber
date <.-S.l.d.)§°..' o date A
1 1
Customer Computer natrlog
p— ResponsibleFor B 1 1 =5
senal# startDate
address 1 * | manufacturer crciDate

146 LOVELY PROFESSIONAL UNIVERSITY

Unit 11: Natural Language Processing

Notes

Figure 11.3: State Diagram for Repair Event

Estimare. sendToRepair :createRepairEvent

Q\

AssignRepair [assigned]
Technician L

[nRepar Svspended

! suspend

esuoe

[completed]

Comoleted pickup V timeont” addTcLog

Figure 11.4: Sequence Diagram for Assigning Repair Jobs to Technicians

Estimate aRepairEvent aTechnician aReparrLog aCustomer

! create 4

5 o)

aManager

assignTech {aTechmifian)
]’ assignToRepair
InRepair
suspend
Suspendad
InRepair ich
release
) addTol.og

LOVELY PROFESSIONAL UNIVERSITY 147

Artificial Intelligence

Notes 11.2.4 Discourse and Pragmatic Processing

In the recent decades, the need for an ability to treat discourse dependent factors such as anaphora
resolution has increased in the field of NLP. This calls for a greater understanding of intersentential
dependencies, in terms of how the discourse structure is built both in written narrative discourse
and spoken dialogue. In the Survey of the State of the Art in Human Language Technology
Barbara Grosz (1997) formulates two core questions in research on discourse: (1) What information
is contained in extended sequences of utterances that goes beyond the meaning of the individual
utterances? and (2) How does the context in which an utterance is used affect the meaning of the
individual utterances, or parts of them? The first question thus concerns the issue of inferences,
associations and implicit information, which in different ways can be derived from the utterances,
and from combinations of utterances. Attempts to formalize these relations have been made in
the extensive research on discourse relations (e.g. Hobbs, 1985, Mann & Thompson, 1988, Asher,
1993). Also the issue of knowledge representation is relevant here. The second question concerns
the fuzzier field of domain dependence, i.e. what information is relevant for the specific discourse
setting, what might be presupposed and what kind of conventions are to be applied in the
specific discourse. Also the question of cognitive processing of discourse as well as the situation
setting is relevant here.

When it comes to spoken discourses, there is a need to connect international features with
discourse factors is present in e.g. automatic summarization of spoken language, or in spoken
dialogue systems. The international features are affecting the discourse in dimensions as e.g.
discourse segmenting (prosodic phrasing) and the assignment of discourse relations, such as e.g.
contrast. Also salience, of focality, is affected by the prosody.

This will give an overview of factors relevant in discourse processing. These phenomena include
the concept of salience/focus, anaphora resolution, cohesion, coherence discourse relations and
discourse segments.

What is Discourse?

The term discourse includes both spoken and written forms, as well as both monologue and
dialogue, i.e. “discourse” is taken to be the most super ordinate term. The difference between a
discourse and an arbitrary collection of utterances lies in the phenomenon of coherence.
A discourse is any stretch of coherent utterances.

This means that the utterances together constitute an intentionally meaningful message. The
establishing of coherence can be made in many ways, but the result is always some kind of
relations between items on different levels in the discourse.

=7|

Notes However, to assume relations in discourse implies also to assume units between
which these relations holds, and this leads us in to the field of discourse segmenting and
the (hierarchical) discourse structure.

Discourse Specific Issues

Some discourse specific issues are discussed as below:

1. Focus: The first phenomenon to discuss in trying to get hold of coherence in discourse is
focus. Focus is often mentioned feature in research on discourse. The notion of focus is
used for a number of aspects of salience or importance, and the most general description

148 LOVELY PROFESSIONAL UNIVERSITY

Unit 11: Natural Language Processing

is “the most important element”. An important question, which complicates the picture, is Notes
then: important for whom/what? I.e. important to e.g. the speaker, the listener, the global
message or the local utterance? Thus, focus is a concept simple to understand, but it is
hopelessly difficult to pin down exactly. In this paper the term is used in the meaning
salience or focus of attention. If it is used in some other meaning, this is indicated in the
text. For a survey of the different uses of the term focus, see Gundel (1995). The feature
focus is connected to cognitive processing, memory representation and linguistic
representation, in that a more activated/Given/accessible concept is represented by a
more reduced linguistic sign (Ariel, 1990, Gundel, Hedberg & Zacharski, 1993). Of course
focus is also connected to the syntax of the utterance and the semantics (e.g. Sidner, 1983)
as well as the prosody (Bruce, 1998, van Donzel, 1999). Van Donzel made extensive
investigations on basis of Princes (1983) Given - New taxonomy, and her findings confirms
the picture that Given elements are also acoustically more reduced than New elements.
Thus, the intonation plays a great part for the information structure in spoken language,
however, it is also possible to do without it, as in written language. Ability to predict
focus should improve the assignment of prosodic features in speech synthesis, however,
the task seems to be very difficult, (if not impossible) Bolinger (1972), and the result in
synthesis are also today limited. Focality is further an often used feature in anaphora
resolution.

Anaphora Resolution: Very closely connected to the research on focus and also to the
research on discourse coherence is the research on anaphora resolution. This because
anaphora is affected by focality and further context dependent. This means that anaphoric
expressions are representing referents in focus, and they are at the same time establishing
links back to the preceding context (the antecedent).

Traditionally, the concept of anaphora was limited to co-referent NPs, this means that the
only antecedents we have to keep available in the discourse record are the NP objects.
However, this approach becomes to narrow if one want to give account for more complex,
or implicit kind of anaphora, such as situation anaphora, abstract object anaphora or
associative anaphora (e.g. Webber, 1990, Fraurud, 1992, Asher, 1993, Dahl & Hellman,
1995), or connected phenomena treated as anaphora such as presuppositions (van der
Sandt, 1992) and referent coercion (e.g. Dahl & Hellman, 1995).

It is clear, that to refer back to those more abstract or implicit objects, it is not enough to
just keep NP objects available in the discourse record. Rather it is needed a discourse
record with information about e.g. situations and associative connections (semantically
related items). It is also worth noticing that while co-referent NP anaphora has a clearly
anaphoric identity, the abstract object anaphora and the associative anaphora might be
more easily understood as discourse relations, e.g. rhetorical relations (Mann & Thompson,
1988) or coherence relations (Hobbs, 1995). There is a large body of work on automatic
anaphora resolution, however, often it is delimited to resolution of NP anaphora. Sidner
(1983) makes explicitly use of the concept of focus, for resolving anaphora, i.e. her anaphora
resolution algorithm is in the first step predicting focus, and in the second step choosing
the antecedent on basis of the focus ranking. The use of Centering Theory (Grosz, Joshi &
Weinstein, 1995) as an algorithm for anaphora resolution works in the same way, i.e. (a)
predict focus, (b) choose antecedents from the ranked elements. Eckert and Strube (1998)
has used the Centering theory algorithm, extended with speech act tagging, to develop an
algorithm for resolution of abstract object anaphora in dialogue. Also Harabagiu (1999)
have done work on automatic co-reference resolution.

To investigate anaphora might be viewed as a way to investigate the “symptom” of
coherence in discourse.

LOVELY PROFESSIONAL UNIVERSITY 149

Artificial Intelligence

Notes 3. Cohesion and Coherence: Coherence is what makes a collections of sentences/ utterances a
discourse, but what exactly is it? Coherence might be defined as implicit relations between
different parts of the discourse. Coherence is closely connected to the concept of cohesion,
which means explicit markers of relations between different parts of the discourse.

'i Example: Coherence is in many cases established with cohesive devices, examples of
such cohesive devices is e.g. discourse markers or anaphoric pronouns. E.g. Harabagiu (1999)
stresses the importance of cohesive devices for coherence in discourse.

Discourse markers, or cue phrases, are said to indicate discourse relations, but they are
also said to have the function of marking out discourse boundaries, i.e. to perform discourse
segmenting.

'i Example: Some discourse markers are: “but”, “anyway”, “okay” etc.

Research aiming to give account for coherence in discourse has been conducted by e.g.
Grosz & Sidner (1986), who have developed a discourse theory, which gives account for
coherence on a global level of discourse, but with a limited inventory of discourse relations.
The discourse relations by Grozs & Sidner (1986) are rather solely structure indicating
(i.e. mother-daughter relation or sister relation).

l?

Did u know? Discourse markers are primary seen as segmenting devices, and the specific
relational information is not stressed.

Grosz, Joshi & Weinstein (1995) have with CT developed a way to give account for the
degree of coherence in a discourse. Their approach to coherence is based on anaphoric
relations, and does not pose any extra meaning in the relations between utterances.

The CT has been suggested many modifications, e.g. by 1998, Strube & Hahn, (1998, change
of ranking criteria), Walker (1997, change of discourse segmenting), Passonneau, (1993,
adding a more hierarchical structure), Beaver, (2000, rewriting CT in Optimality theory).
Also evaluations have been made, e.g. by Byron & Stent (1998), Poesio et al. (2000), Tetrault,
(forthc).

4. Discourse Relations: Discourse markers are often seen as establishing a relation between
parts of the discourse, e.g. the discourse marker “but” can establish the relation contrast
between two utterances or discourse segments. In this case we can see the relation as
marked on the surface level. The relation “contrast” can furthermore be signaled
prosodically.

The role of the meaning by discourse relations might be more stressed than by e.g. Grosz
& Sidner (1986). In this case the discourse relations can be described as inferences drawn on
basis of what is said in the discourse. The inferences thus enriches the discourse meaning,
and might also function as a glue between utterances/segments, and the inferences then
contributes to the meaning of the message, and not just to the structure. The inferences can
be drawn on basis of adjacency, but are still mainly semantic to their nature, i.e. they are
not dependent on the adjacency in the same way as the surface signaled discourse relations
are. In the case of inferences, the inference machinery, as well as the knowledge
representation is of course crucial.

There have been many attempts to give account for coherence in discourse, in terms of
discourse relations, e.g. by Hobbs (1985) and by Mann & Thompson (1988). Specially
Hobbs have been interested in how to compute the discourse relations, on basis of what

150 LOVELY PROFESSIONAL UNIVERSITY

Unit 11: Natural Language Processing

inference machinery and what knowledge representation to use. Mann and Thompson has Notes
focused more on the meaning of the relations, and has a more surface based approach (i.e.

discourse markers). The treatment of discourse relations has also been integrated in DRT

(Asher, 1993). Asher has used an inventory of discourse relations, much inspired by Mann

& Thompson. Multiple functions by discourse markers have been investigated by e.g.

Hovy (1997), but it is in place to note, that the issue of multiple discourse relations, still is

an open question.

One weakness of the above mentioned approaches to discourse relations is that no
distinction is made concerning on what kind of basis, or from what knowledge sources,
the inferences are drawn. How can we make distinctions between inferences on basis of
what source of knowledge they are computed from? Is the inference based fully on the
semantic content in the utterance, is it based on world/domain knowledge, or is it based
on socio-cultural knowledge. Of course these sources of knowledge might blend, but it is
still the authors feeling, that different kind of knowledge should be separated or at least
marked out in the knowledge representation, as is the attempt by e.g. Sanders et al. (1992).
The inferences, or discourse relations, always holds between parts of the discourse. These
parts are often called discourse segments, but the criteria and strategies in discourse
segmenting is not very well established. However, the discourse segmenting is crucial in
establishing discourse relations, and also in the description of coherence.

Discourse Segments

As mentioned, one way to perform discourse segmenting is on basis of cue phrases. In written
language one can also make use of punctuation and in spoken language the prosodic phrasing.

To establish boundaries implies to make up groupings in between those boundaries.

It is worth to stress that the discourse boundaries do not have to be absolute, i.e. perhaps the
boundary is rather a field than a specific point, and it should also be pointed out that discourse
boundaries might be a function of the grouping. As mentioned earlier, discourse markers have
the double function of dividing parts of the discourse, and at the same time connect those parts
with some discourse or coherence relation. This is quite similar to the role of prosody; Prosody
might also be regarded as a segmenting device, but this segmenting function is double, in that
what defines a boundary also defines a non-boundary. It is an open issue whether we primarily
shall focus on the boundary fields, or on the non boundary-fields. Polanyi (1988) builds discourse
segments on basis of meaning clusters, i.e. she starts on phrase level and merges phrases which
are semantically close to each other into a larger unit. The boundaries then become a result,
when two segments cannot be merged, because they are not semantically close enough. This
kind of discourse segments might thus be described as clusters of meaning. A similar approach
is taken by Hearst (1997), who bases discourse segmenting on term repetition. The parallel to
the prosodic grouping of speech can be made, where the prosodic boundary is not a feature of its
own, but rather a result of the complete prosodic utterance contour. Bruce 1998 stresses this
double function for prosody: Prosody has the function of both boundaries marking and grouping.

However, the textual surface approach with punctuation and cue phrases is more widely
investigated in discourse segmenting, e.g. by Oberlander & Moore (1999), Albritton & Moore
(1999), Flammia (1998). The base for discourse segments are further often claimed to be intention
based (Grosz and Sidner, 1986), or information based (Mann & Thompson, 1988). The difference
lies in whether the segmenting is made on basis of the intentions behind the message, or the
information conveyed in the message. The intentions based approach is quite closely related to
speech act theory and dialogue coding, as described by Carletta et al. (1997). Intentions based
discourse segments and information based discourse segments have traditionally been viewed

LOVELY PROFESSIONAL UNIVERSITY 151

Artificial Intelligence

Notes as incompatible approaches, but Moser and Moore (1996), as well as Marcu, (1997) have suggested
that this is not the case.

Now briefly mention some NLP-methods used for discourse processing.
Methods

The primary problem with the methods, is (at least in the authors eyes) not what method to
choose, but what unit to manipulate with; What features, and in what relation to each other?

In discourse processing a mixture of NLP-methods can be used. This because in performing
discourse processing, one need the whole arsenal of tools for the lower levels, e.g. tagging,
parsing. The really difficult problem with discourse processing is to isolate the relevant features,
and to make use of them in an efficient way, i.e. what kind of information is relevant to tag, what
information is relevant to store, and what kinds of information is needed in different applications?
How to categorise, how to remember, and what perspective to take. Technically we are free to
choose any method that we might use for e.g. PoS - tagging, but we must first isolate what kind
of units or categories that is relevant to mark up. This means that for a certain application, it
might be the case that there is no need to give account for the full complexity in discourse
processing, but a shallow analysis would do. In another application, a more fine grained analysis
might be needed. Finite state methods have been used for discourse processing in terms of
information extraction (Hobbs et al. 1997). The system FASTUS uses a cascaded non-deterministic
finite-state automaton. The system is in five steps extracting (1) names and fixed expressions,
(2) basic noun groups, verb groups prepositions and other particles, (3) complex noun groups
and verb groups, (4) corresponding event structures, (5) distinct event structures that describe
the same event are detected and merged. The “lean” finite-state method was claimed to be very
successful for the task, as compared to the more complicated TACITUS system (Hobbs et al., 1993),
which included representation of discourse relations, based on abductive inferences.

'i Example: FASTUS seems to be an example of a successful limitation of steps to carry out
of discourse processing in the task of information extraction.

Statistical methods for anaphora resolution have been reported by Mitkov & Schmidt (1996). The
strategy used was an Uncertainty Reasoning approach, i.e. a scoring system was used, and in the
end the candidate with the highest score was chosen. This strategy performed slightly worse,
than one based on constraints and preferences, i.e. a more rule-based approach (Mitkov and
Schmidt, 1996). Machine learning has been used for discourse segmenting by Passonneau & Litman
(1997). On basis of human discourse segmenting the machine learning algorithm was trained.
The results gave about the same accuracy as human annotators.

Applications

In this step the second question posed by Barbara Grosz (1997) becomes important, i.e. how to
generally understand the issue of adoption? This issue is less investigated than the issues addressed
earlier, try to avoid this field as much as possible.

1. Natural Language Understanding: In the NLU system TACITUS Hobbs et al. (1993) have
made use of coherence relation, in aim to get a full representation of the message. The
system is to a certain extent based on coherence relations, as described by Hobbs (1985),
but the inference machinery is based on abduction. The knowledge base is an important
factor.

2. Automatic Summarization: Automatic text summarization is an application where
discourse understanding is crucial, i.e. it is important to be able to extract what is central

152 LOVELY PROFESSIONAL UNIVERSITY

Unit 11: Natural Language Processing

to the message. Summarization systems have been developed by e.g. Marcu, (1997). The Notes
approach was to parse the discourse relations (rhetorical relations, Mann & Thompson,
1988), and on basis of the parse be able to choose what discourse segments were most
relevant. The approach relied to a large extent on surface cues, such as discourse markers.

3. Natural Language Generation: Marcu, 1997, also tested rhetorical relations for Natural
Language Generation (NLG). On basis of rhetorical relations the ordering preferences of
discourse segments was scored. The higher the score, the more likely that the discourse
structure was coherent. Kibble & Power (1999) uses Centering theory for planning the
most coherent stretch of utterances. These brief examples are of course just a very limited
sample of applications which uses some kind of discourse related information. Still I will
finish here and make some concluding remarks, and connect to my own dissertation
subject.

2

Task Tllustrate the term “discourse”.

Self Assessment

Fill in the blanks:

6. In. Analysis, Individual worlds are scrutinized into their components and
non word tokens, like punctuation are alienated from the words.

7. IMu, , Linear sequences of words are malformed into structures that illustrate
how the words associate to each other.

8. concentrates on scrutinizing the words in a sentence so as to reveal the
grammatical arrangement of the sentence.

9. Design patterns intend to increase the flexibility of a model byccccccevrvninneee. some
aspects of a class.

10. The termccocoovevivivvennnene includes both spoken and written forms, as well as both
monologue and dialogue.

11 e is what makes a collections of sentences/ utterances a discourse.

11.3 Spell Checking

The goal of spell checking is the detection and rectification of typographic and orthographic
faults in the text at the level of word incidence measured out of its perspective.

No one can write without any faults. Even people well familiar with the rules of language can,
just by misfortune, press a wrong key on the keyboard (maybe adjoining to the correct one) or
miss out a letter. Moreover, when typing, one at times does not harmonize correctly the
movements of the hands and fingers. All such errors are known as typos, or typographic errors.
Alternatively, some people do not recognize the correct spelling of some words, particularly in
a foreign language. Such errors are known as spelling errors.

Initially, a spell checker simply detects the strings that are not accurate words in a specified
natural language. It is believed that most of the orthographic or typographic errors lead to
strings that are impracticable as separate words in this language. Identifying the errors that
exchange by accident one word into another obtainable word, like English ‘then” into ‘than” or
Spanish ‘czar” into ‘Caesar’, considers a task which needs much more influential tools.

LOVELY PROFESSIONAL UNIVERSITY 153

Artificial Intelligence

Notes After such impracticable string has been identified and highlighted by the program, the user can
correct this string in any preferable way — manually or with the help of the program.

'E Example: If we try to insert into any English text the strings 3*groop, *greit, or
*misanderstand, the spell checker will detect the error and stop at this string, emphasizing it for
the user. Corresponding examples in Spanish can be * cai, * systema, *nesecitar.

The functions of a spell checker can be more adaptable. The program can also suggest a set of
accessible words, which are alike enough to the specified corrupted word, and the user can then
select one of them as the correct edition of the word, without retyping it in the line. In the
preceding examples, Microsoft Word’s spell checker provides, as possible candidates for
substitution of the string cai6, the existing Spanish words revealed in Figure 11.5. Mostly,
especially for long strings, a spell checker provides only one or two candidates (or none).

' Example: For the string* systema it provides only the correct Spanish word
sistema.

The programs that carry out operations of both types are known as orthographic correctors,
while in English they are generally known as spellcheckers. In daily practice, spell checkers are
measured as very cooperative and are used by millions of users all through the world. The
majority of modern text editors are supplied now with incorporated spell checkers.

Microsoft Word uses many spellcheckers, a particular one for each natural language used in the
text.

Figure 11.5

Ortografia: Espanol B3

No se encontio: [caio

Cambiar por:

Sugerencias: Ignorar ||| Ianorar todo |
Cambiar ||| Cambiar todo |
Agregar || Sugerir I
Agregar palabras a: [PERSONAL.DIC >

Autocorregir... ” Opciones... ” Deshacer ” Cancelar Il Ayuda]

The amount of linguistic information required for spell checkers is much superior than for
hyphenation. A straightforward but very resource-consuming strategy operates with a list, or a
dictionary, of all applicable words in a particular language. It is required to have also a criterion
of resemblance of words, and some suppositions regarding the most general typographic and
spelling errors. A deeper penetration into the correction problems needs a detailed knowledge
of morphology, as it assists the creation of a more dense dictionary has a convenient size.

Spell checkers have been obtainable for more than 20 years, but some relatively apparent tasks
of rectification of words, even taken separately, have not been yet solved.

154 LOVELY PROFESSIONAL UNIVERSITY

Unit 11: Natural Language Processing

Notes

Example: To put a particular example, let us take the ungrammatical string * teached in
an English text. None of the spell checkers we have attempted recommended the correct form
taught. In a corresponding wayi, if a foreigner inserts into a Spanish text such strings as * muestrar
or * disponido, the Spanish spellcheckers we have attempted did not provide the forms mostrar
and dispuesto as probable corrections.

Self Assessment

Fill in the blanks:

12. The goal ofcccccoiiiiiinnn. is the detection and rectification of typographic and
orthographic faults in the text at the level of word incidence measured out of its perspective.

13. Some people do not recognize the correct spelling of some words, particularly in a foreign
language. Such errors are known asccccecccucuvuaee .

14. The amount of linguistic information required for spell checkers is much superior than for

15. Initially, a spell checker simply detects the strings that are not accurate words in a specified
.............................. language.

11.4 Summary

o Natural language processing is a field of computer science concerned with the interactions
between computers and human (natural) languages.

o The goal of the Natural Language Processing (NLP) group is to design and build software
that will analyze, understand, and generate languages that humans use naturally, so that
eventually you will be able to address your computer as though you were addressing
another person.

o In Syntactic Analysis, Linear sequences of words are malformed into structures that
illustrate how the words associate to each other.

o Syntactic Processing concentrates on scrutinizing the words in a sentence so as to reveal
the grammatical arrangement of the sentence. This needs both a grammar and a parser.

o The development of object-oriented software starts from requirements expressed
commonly as Use Cases.

o The term discourse includes both spoken and written forms, as well as both monologue
and dialogue, i.e. “discourse” is taken to be the most super ordinate term.

o Coherence might be defined as implicit relations between different parts of the discourse.
Coherence is closely connected to the concept of cohesion, which means explicit markers
of relations between different parts of the discourse.

o The goal of spell checking is the detection and rectification of typographic and orthographic
faults in the text at the level of word incidence measured out of its perspective.

11.5 Keywords

Discourse: The term discourse includes both spoken and written forms, as well as both monologue
and dialogue, i.e. “discourse” is taken to be the most super ordinate term.

LOVELY PROFESSIONAL UNIVERSITY 155

Artificial Intelligence

Notes Natural Language Processing: Natural language processing is a field of computer science
concerned with the interactions between computers and human (natural) languages.

Pragmatic Analysis: The structure displaying what was said is reinterpreted to verify that what
was in fact meant.

Spell Checking: The goal of spell checking is the detection and rectification of typographic and
orthographic faults in the text at the level of word incidence measured out of its perspective.

11.6 Review Questions

What is Natural Language Processing? Illustrate the concept of evaluation in NLP.
Elucidate the sub-problems used in NLP.

1
2
3. Explain the steps followed in Natural Language Processing.
4 What are the Major tasks in NLP? Illustrate.

5

Syntactic Processing concentrates on scrutinizing the words in a sentence so as to reveal
the grammatical arrangement of the sentence. Comment.

How does analysis pattern differ from design patterns. Exemplify.
Explain the process of Discourse and Pragmatic Processing in NLP.

Ilustrate the process of performing spell checking.

o ® N

What are the various specific issues concerning Discourse? Explicate.

10. INluminate some NLP-methods used for discourse processing.

Answers: Self Assessment

1. Natural Language Processing 2. Understanding

3. Syntactic 4. Sentence

5. Software 6. Morphological

7. Syntactic Analysis 8. Syntactic Processing
9. Decoupling 10. Discourse

11. Coherence 12. Spell Checking

13. Spelling Errors 14. Hyphenation

15. Natural

11.7 Further Readings

N

Books Arsanjani, A., Service provider: A Domain Pattern and its Business Framework
Implementation, Procs. of PloP’99.

Booch, G., Rumbaugh, J., Jacobson, 1.: The Unified Modeling Language User Guide,
Addison-Wesley 1998.

Braga, R.T.V., Germano, F.S.R., Masiero, P.C.: A Confederation of Patterns for Resource
Management, Procs. of PLoP’98.

156 LOVELY PROFESSIONAL UNIVERSITY

Unit 11: Natural Language Processing

Braga, R.T.V., Germano, F.S.R., Masiero, P.C.: A pattern language for Business Notes
Resource management, Procs. of PloP’99.

Coad, P.: Object Models - Strategies, Patterns and Applications (2nd. Edition), Prentice-
Hall 1997.

Fernandez, E. B., Stock manager: An Analysis Pattern for Inventories, Procs. of PloP
2000.

Fernandez, E.B, Yuan, X.: An Analysis Pattern for Reservation and Use of Entities,
Procs. Of PLoP99 , http:/ /st-www.cs.uiuc.edu/~plop/ plop99.

Fernandez, E.B., Good Analysis as the basis for Good Design and Implementation, Report
TRCSE-97-45, Dept. of Computer Science and Eng., Florida Atlantic University,
September 1997. Presented at OOPSLAE97.

Fernandez, E.B., Hawkins, J.: “Determining role rights from use cases”, Procs. 2nd
ACM Workshop on Role-Based Access Control, 1997, 121-125.

Fernandez, E.B.: “Building systems using analysis patterns”, Procs. 3rd Int. Soft.
Architecture Workshop (ISAW3), Orlando, FL , November 1998, 37-40.

v 4,

Online link www.pcai.com/web/ai_info/natural_lang_proc.html

LOVELY PROFESSIONAL UNIVERSITY 157

Artificial Intelligence Parminder Kaur, Lovely Professional University

Notes Unit 12: Learning

CONTENTS
Objectives
Introduction
121 Meaning of Learning
122 Rote Learning
123 Learning by Taking Advice
124 Learning from Examples
1241 Induction
125 Explanation-based Learning
12.6 Learning by Parameter Adjustment
12.7 Learning with Macro-operators
12.8 Learning by Chunking
129 Discovery-based Learning
1210 Learning by Correcting Mistakes
12.11 Learning by Recording Cases
12.12 Learning by Managing Multiple Models
1213 Summary
12.14 Keywords
12.15 Review Questions

12.16 Further Readings

Objectives

After studying this unit, you will be able to:

o Understand the meaning of learning

° [llustrate the rote learning

° Discuss the learning from examples

o Understand the explanation based learning, etc.
Introduction

Learning is defined as modifications in the system that are adaptive in the sense that they
facilitate the system to do the similar task or tasks taken from the similar population more
competently and more successfully the next time.

158 LOVELY PROFESSIONAL UNIVERSITY

Unit 12: Learning

Learning includes a broad range of phenomenon: Notes
° Skill refinement: Practice makes abilities perk up. More you play, better you obtain
° Knowledge acquisition: Knowledge is usually attained via experience

12.1 Meaning of Learning

Learning is distinguished into a number of different forms. The simplest is learning by trial-
and-error. For example, a simple program for solving mate-in-one chess problems might try
out moves at random until one is found that achieves mate. The program remembers the
successful move and next time the computer is given the same problem it is able to produce the
answer immediately. The simple memorizing of individual items - solutions to problems,
words of vocabulary, etc. - is known as rote learning.

Rote learning is relatively easy to implement on a computer. More challenging is the problem
of implementing what is called generalization. Learning that involves generalization leaves the
learner able to perform better in situations not previously encountered. A program that learns
past tenses of regular English verbs by rote will not be able to produce the past tense of e.g.
“jump” until presented at least once with “jumped”, whereas a program that is able to generalize
from examples can learn the “add-ed” rule, and so form the past tense of “jump” in the absence
of any previous encounter with this verb. Sophisticated modern techniques enable programs to
generalize complex rules from data.

Self Assessment

Fill in the blanks:

I is defined as modifications in the system that are adaptive in the sense that
they facilitate the system to do the similar task or tasks taken from the similar population
more competently and more successfully the next time.

2. Learning thatinvolvesccccco....... leaves the learner able to perform better in situations
not previously encountered.

12.2 Rote Learning

Rote learning is the fundamental learning activity. It is also known as memorization since the
knowledge, without any alteration is, just copied into the knowledge base. As calculated values
are accumulated, this technique can save a important amount of time.

Rote learning method can also be utilized in multifaceted learning systems provided sophisticated
techniques are engaged to use the accumulated values faster and there is a simplification to keep
the number of amassed information down to a handy level.

' Example: Checkers-playing program accesses this technique to study the board positions
it assesses in its look-ahead hunt.

' Example: A simple example of rote learning is caching
o Amass computed values (or large piece of data)

o Recall this information when needed by computation.

LOVELY PROFESSIONAL UNIVERSITY 159

Artificial Intelligence

Notes) Important time savings can be attained.
° Many Al programs (in addition to more general ones) have used caching very successfully.
=7|

Notes Memorization is a key requirement for learning;

o It is a fundamental requirement for any intelligent program — is it a separate
learning process?

o Memorization can be a multifaceted subject — how best to amass knowledge?

Rote learning is basically a straightforward process. However it does demonstrate some issues
that are pertinent to more intricate learning issues.

° Organization

@ access of the accumulated value must be quicker than it would be to recompute it.
Methods like hashing, indexing and sorting can be engaged to enable this.

@ E.g. Samuel’s program indexed board positions by observing the number of pieces.
. Generalisation
@ The number of potentially accumulated objects can be very huge. We may require to

simplify some information to make the problem controllable.

' Example: E.g. Samuel’s program accumulated game positions only for white to move.
Also rotations along diagonals are united.

o Stability of the Environment

@ Rote learning is not very efficient in a speedily varying environment. If the
environment does modify then we must identify and record exactly what has altered
the frame problem.

Self Assessment

Fill in the blanks:

3. is also known as memorization since the knowledge, without any alteration
is, just copied into the knowledge base.

4. is a key requirement for learning.

12.3 Learning by Taking Advice

This is a straightforward form of learning. Assume a programmer writes a set of directions to
instruct the computer what to accomplish, the programmer is a educator and the computer is a
learner. Once learned (i.e. programmed), the system will be in a situation to perform new
things.

The advice may come from many sources: human experts, internet to name a few. This type of
learning requires more inference than rote learning. The knowledge must be transformed into
an operational form before stored in the knowledge base. Moreover the reliability of the source
of knowledge should be considered.

160 LOVELY PROFESSIONAL UNIVERSITY

Unit 12: Learning

i Notes

Caution The system must guarantee that the new knowledge is differing with the offered
knowledge.

Example: FOO (First Operational Operationaliser) is a learning system which is accessed
to learn the game of Hearts. It transforms the advice which is in the form of principles, problems,
and methods into efficient executable (LISP) procedures (or knowledge). Now this knowledge is
prepared to apply.

Self Assessment

Fill in the blank:

5. The knowledge must be transformed into an form before stored in the
knowledge base.

12.4 Learning from Examples

As humans, we can learn by being informed. For intelligent agents, we are interested in learning
by example, or else, we are back to programming yet again.

12.4.1 Induction

Classification is the procedure of allocating, to a specific input, the name of a class to which it
associates. The classes from which the classification process can select can be illustrated in a
variety of manners. Their definition will rely on the use to which they are put. Classification is
an imperative component of many problem solving duties. Before classification can be achieved,
the classes it will utilize must be defined:

o Separate a set of traits that are pertinent to the task domain. Define every class by a
weighted sum of values of these traits.

'i Example: Task is weather prediction, the parameters can be measurements such as rainfall,
location of cold fronts etc.

° Separate a set of traits that are pertinent to the task domain. Define every class as a
structure composed of these traits. Ex: classifying animals, diverse traits can be such things
as color, length of neck etc.

l?

Did u know? The thought of generating a classification program that can develop its own
class definitions is known as concept learning or induction.

Winston’s Learning Program

) It is an early structural concept learning program.

° This program functions in a simple blocks world domain.

° Its objective was to build representations of the definitions of concepts in blocks
domain.

LOVELY PROFESSIONAL UNIVERSITY 161

Artificial Intelligence

Notes %
' Example: It learned the concepts House, Tent and Arch.

o A near miss is an object that is not a case of the concept in query but that is very alike to
such instances.

Basic Approach of Winston’s Prograin

1. Start with a structural description of one recognized instance of the concept. Call that
description the concept definition.

2. Inspect descriptions of other recognized instances of the concepts. Generalize the definition
to include them.

3. Inspect the descriptions of near misses of the concept. Restrict the definition to exclude
these.

Version Spaces

o The objective of version spaces is to generate a description that is reliable with all positive

examples but no negative examples in the training set.
o This is another strategy to concept learning.

o Version spaces function by sustaining a set of possible descriptions and evolving that set
as new examples and near misses are displayed.

o The version space is just a set of descriptions, so an early idea is to maintain an explicit list
of those descriptions.

o Version space includes two subsets of the concept space.

o One subset known as G includes most general descriptions reliable with the training
examples The other subset includes the most particular descriptions reliable with the
training examples.

o The algorithm for narrowing the version space is known as the Candidate elimination
algorithm.

Algorithm: Candidate Elimination

o Given: A demonstration language and a set of positive and negative examples articulated
in that language.

o Compute: A concept description that is reliable with all the positive examples and none of
the negative examples.

1. Initialize G to enclose one element.
2. Initialize S to enclose one element: the first positive element.
3. Acceptnew training example. If it is a positive example, first remove from G any descriptions

that do not cover the example. Then modernize the set S to enclose most particular set of
descriptions in the version space that cover the example and the current elements of the
S set. Inverse actions for negative example.

4. If S and G are both singleton sets, then if they are indistinguishable, output their values
and halt.

162 LOVELY PROFESSIONAL UNIVERSITY

Unit 12: Learning

Decision Trees Notes
) This is a third strategy to concept learning.
° To categorize a specific input, we begin at the top of the tree and reply questions until we

reach a leaf, where the specification is stored.

) ID3 is a program example for Decision Trees.

° ID3 utilizes iterative method to construct decision trees, favoring simple trees over
complex ones, on the theory that simple trees are more precise classifiers of future
inputs.

° It starts by selecting a random subset of the training examples.

) This subset is known as the window.

° The algorithm constructs a decision tree that accurately categorizes all examples in the
window.

2

Task Tllustrate the steps used in Winston’s Program.

Self Assessment

Fill in the blanks:

6. The thought of generating a classification program that can develop its own class definitions
isknown asccceeennas .

7. The objective ofccccceuvvinnes is to generate a description that is reliable with all positive
examples but no negative examples in the training set.

12.5 Explanation-based Learning

An Explanation-based Learning (EBL) system accepts an example (i.e. a training example)
and illustrates what it learns from the example. The EBL system takes only the pertinent
features of the training. This clarification is converted into specific form that a problem solving
program can understand. The explanation is generalized so that it can be utilized to solve other
problems.

PRODIGY is a system that incorporates problem solving, planning, and learning methods in a
single design. It was formerly envisioned by Jaime Carbonell and Steven Minton, as an Al
system to test and build up ideas on the role that machine learning plays in planning and
problem solving. PRODIGY utilizes the EBL to obtain control rules.

The EBL module utilizes the results from the problem-solving trace (i.e. Steps in solving
problems) that were produced by the central problem solver (a search engine that searches over
a problem space). It builds explanations by means of an axiomatized theory that illustrates both
the domain and the architecture of the problem solver. The results are then converted as control
rules and added to the knowledge base. The control knowledge that comprises control rules is
utilized to direct the search process efficiently.

LOVELY PROFESSIONAL UNIVERSITY 163

Artificial Intelligence

Notes Self Assessment

Fill in the blanks:

8 AN system accepts an example (i.e. a training example) and illustrates what
it learns from the example.

9. is a system that incorporates problem solving, planning, and learning
methods in a single design.

12.6 Learning by Parameter Adjustment

Here the learning system depends on evaluation procedure that merges information from
numerous sources into a single summary static.

' Example: The factors like demand and production capacity may be merged into a single
score to signify the likelihood for increase of production. But it is hard to know a priori how
much weight should be associated to each factor.

The accurate weight can be located by taking some approximation of the correct settings and
then permit the program alter its settings based on its experience. This type of learning systems
is functional when little knowledge is obtainable.

' Example: In game programs, the factors like piece benefit and mobility are merged into
a score to decide whether a specific board position is desirable. This single score is nothing but
a knowledge which the program collected through calculation.

Self Assessment

Fill in the blank:

10. In case of learning by.........ccccccureee. , learning system depends on evaluation procedure
that merges information from numerous sources into a single summary static.

12.7 Learning with Macro-operators

Series of actions that can be considered as a whole are known as macro-operators. Once a
problem is solved, the learning component takes the calculated plan and accumulates it as a
macro-operator. The requirements are the initial conditions of the problem just solved, and its
post conditions matches to the goal just attained.

The problem solver competently accesses the knowledge base it gained from its preceding
experiences. By generalizing macro-operators the problem solver can even crack diverse
problems.

AN

Caution Generalization is performed by substituting all the constants in the macro-operators
with variables.

' Example: The STRIPS, is a planning algorithm that engaged macro-operators in it’s
learning segment. It constructs a macro operator MACROP, that comprises preconditions,

164 LOVELY PROFESSIONAL UNIVERSITY

Unit 12: Learning

post-conditions and the series of actions. The macro operator will be accessed in the upcoming Notes
operation.

Self Assessment

Fill in the blanks:
11. Series of actions that can be considered as a whole are known ascccocu....... .
12. Generalization is performed by substituting all the in the macro-operators

with variables.

12.8 Learning by Chunking

Chunking is comparable to learning by means of macro-operators. Usually, it is accessed by
problem solver systems that utilize production systems.

A production system comprise of a set of rules that are in if-then outline. That is specified a
specific situation, what are the actions to be achieved.

' Example: If it is raining then take umbrella.

Production system also comprises knowledge base, control strategy and a rule applier. To solve
a problem, a system will contrast the present condition with the left hand side of the rules.
If there is a match then the system will achieve the actions illustrated in the right hand side of the
corresponding rule.

Problem solvers explain problems by applying the rules. Some of these rules may be more
functional than others and the results are accumulated as a chunk. Chunking can be utilized to
study common search control knowledge. Numerous chunks may encode a single macro-operator
and one chunk may contribute in a number of macro sequences. Chunks learned in the starting
of problem solving, may be used in the afterward stage. The system maintains the chunk to
utilize it in solving other problems.

Soar is a common cognitive architecture for producing intelligent systems. Soar needs knowledge
to solve several problems. It obtains knowledge by means of chunking mechanism. The system
learns reflexively when impasses have been resolved. An impasse occurs when the system does
not have enough knowledge. Thus, Soar selects a new problem space (set of states and the
operators that influence the states) in an offer to resolve the standoff. While resolving the
impasse, the individual steps of the task plan are collected into bigger steps called chunks. The
chunks reduce the problem space search and so augment the efficiency of achieving the task.

In Soar, the knowledge is accumulated in long-term memory. Soar utilizes the chunking
mechanism to generate productions that are accumulated in long-term memory. A chunk is
nothing but a great production that does the work of the whole sequence of smaller ones. The
productions have a set of conditions or patterns to be matched to functioning memory which
comprise of existing goals, problem spaces, states and operators and a set of actions to carry out
when the production fires. Chunks are generalized before accumulating. When the same impasse
appears again, the chunks so gathered can be utilized to resolve it.

Self Assessment

Fill in the blanks:

13, A s system comprise of a set of rules that are in if-then outline.

LOVELY PROFESSIONAL UNIVERSITY 165

Artificial Intelligence

Notes 14, A is nothing but a great production that does the work of the whole sequence
of smaller ones.

12.9 Discovery-based Learning

Discovery is a limited form of learning. The knowledge acquisition is performed without
obtaining any support from an educator. Discovery Learning is an inquiry-dependent learning
method.

In discovery learning, the learner utilizes his own experience and prior knowledge to learn the
truths that are to be studied. The learner builds his own knowledge by researching with a
domain, and inferring rules from the outcomes of these experiments. In addition to domain
information the learner require some support in selecting and interpreting the information to
construct his knowledge base.

A cluster is a compilation of objects which are alike in some manner. Clustering groups data
items into resemblance classes. The properties of these classes can then be utilized to understand
problem traits or to discover similar groups of data items. Clustering can be defined as the
process of decreasing a huge set of unlabeled data to controllable piles involving similar items.
The similarity measures rely on the assumptions and preferred handling one brings to the data.

Clustering starts by doing trait withdrawal on data items and compute the values of the selected
feature set. Then the clustering model chooses and compares two sets of data items and outputs
the similarity measure among them. Clustering algorithms that utilize specific similarity
measures as subroutines are engaged to construct clusters.

The clustering algorithms are usually classified as Exclusive Clustering, Overlapping Clustering,
Hierarchical Clustering and Probabilistic Clustering. The collection of clustering algorithms
depends on different criteria like time and space complexity. The outcomes are verified to
observe if they meet the standard or else some or all of the above steps have to be frequent.

Some applications of clustering are data compression, hypothesis generation and hypothesis
testing. The theoretical clustering system accepts a set of object descriptions in the form of
events, observations, facts and then generates a classification method over the observations.

|

Notes COBWEB is an incremental abstract clustering system. It incrementally adds the
objects into a categorization tree. The striking trait of incremental systems is that the
knowledge is modernized with every new observation. In COBWEB system, learning is
incremental and the knowledge it learned in the form of classification trees raise the
inference capabilities.

2

Task Tlustrate the concept of clustering system.

Self Assessment

Fill in the blanks:

15, IMeie learning, the learner utilizes his own experience and prior knowledge to
learn the truths that are to be studied.

166 LOVELY PROFESSIONAL UNIVERSITY

Unit 12: Learning

16, starts by doing trait withdrawal on data items and compute the values of Notes
the selected feature set.

12.10 Learning by Correcting Mistakes

When learning new things, there is a likelihood that the learning system may make errors.
Similar to human beings, learning system can correct itself by determining reasons for its
breakdown, isolate it, elucidate how the particular supposition causes failure, and alters its
knowledge base.

'E Example: When playing chess a learning system may make an incorrect move and
finishes up with failure. Now the learning system considers the reasons for the breakdown and
corrects its knowledge base. So when it plays again it will not replicate the similar mistake.

In his work, Active Learning with Multiple Views, Ion Muslea has utilized this technique to
label the data. He produces a technique called Co-EMT which is a amalgamation of two techniques:
Co-testing and Co-EM. The Co-testing technique communicates with the user to label the data.
If it does any mistake in labeling, it learns from the mistakes and enhances. After learning, the
system labels the unlabeled data removed from a source proficiently.

l?

Did u know? The labeled data comprises what is known as knowledge.
Self Assessment

Fill in the blank:

17. When learning new things, there is a likelihood that the learning system may make

12.11 Learning by Recording Cases

A program that learns by recording cases usually use constancy heuristic. As per constancy
heuristic, a property of something can be estimated by locating the most similar cases from a
specified set of cases.

Example: A computer is given the images of different types of insects, birds, and animals.
If the computer is asked to recognize a living thing which is not in the recorded list, it will
contrast the specified image with already recorded ones, and will at least tell whether the
specified image is insect, bird or animal.

Learning by recoding cases method is chiefly used in natural language learning tasks.

For the period of the training phase, a set of cases that illustrate vagueness resolution episodes
for a specific problem in text analysis is gathered. Every case includes a set of traits or attribute-
value pairs that instruct the context in which the vagueness was encountered.

Furthermore, every case is annotated with solution traits that enlighten how the ambiguity was
resolved in the present example. The cases which are formed are then accumulated in a case base.
Once the training is over, the system can make use of the case base to resolve ambiguities in new
sentences. This manner, the system obtains the linguistic knowledge.

LOVELY PROFESSIONAL UNIVERSITY 167

Artificial Intelligence

168

Notes

Self Assessment

Fill in the blank:

18. Learning by recoding cases method is chiefly used inccc......... learning tasks.

12.12 Learning by Managing Multiple Models

Learning can be performed by handling a set of common models and a set of particular models
kept in a version space. A version space is nothing but a demonstration that is used to get
pertinent information from a set of learning examples.

A version space portrayal includes two trees which harmonize to each other: one symbolize
general model and the other symbolize specific model. Both positive and negative examples are
used to get the two set of models converge on one just-right model. That is, positive examples
simplify specific models and negative examples specialize common models. Eventually, a correct
model that matches only the observed positive examples is attained. Query By Committee
(QBC) is an algorithm which executes this technique so as to obtain knowledge.

Self Assessment

Fill in the blanks:

19. Thatis, .cccoevvviiiinee. examples simplify specific models and negative examples specialize
common models.

20. A version space portrayal includes two...........ccccc.c....... which harmonize to each other: one
symbolize general model and the other symbolize specific model.

12.13 Summary

° Learning is distinguished into a number of different forms. The simplest is learning by
trial-and-error.

° Rote learning is the fundamental learning activity which is also known as memorization
since the knowledge, without any alteration is, just copied into the knowledge base.

° Learning by taking advice is a straightforward form of learning where knowledge must
be transformed into an operational form before stored in the knowledge base.

° Classification is the procedure of allocating, to a specific input, the name of a class to
which it associates.

° The thought of generating a classification program that can develop its own class definitions
is known as concept learning or induction.

° Winston’s Learning Program is an early structural concept learning program which
functions in a simple blocks world domain.

° The objective of version spaces is to generate a description that is reliable with all positive
examples but no negative examples in the training set.

° In case of decision tree, to categorize a specific input, we begin at the top of the tree and
reply questions until we reach a leaf, where the specification is stored.

° An Explanation-based Learning (EBL) system accepts an example (i.e. a training example)
and illustrates what it learns from the example.

LOVELY PROFESSIONAL UNIVERSITY

Unit 12: Learning

° In discovery learning, the learner utilizes his own experience and prior knowledge to Notes
learn the truths that are to be studied.

12.14 Keywords

Classification: It is the procedure of allocating, to a specific input, the name of a class to which
it associates.

Explanation-based Learning (EBL): An Explanation-based Learning (EBL) system accepts an
example (i.e. a training example) and illustrates what it learns from the example.

Induction: The thought of generating a classification program that can develop its own class
definitions is known as concept learning or induction.

Learning: Learning is defined as modifications in the system that are adaptive in the sense that
they facilitate the system to do the similar task or tasks taken from the similar population more
competently and more successfully the next time.

Rote Learning: Rote learning is the fundamental learning activity which is also known as
memorization since the knowledge, without any alteration is, just copied into the knowledge
base.

Winston’s Learning Program: It is an early structural concept learning program which functions
in a simple blocks world domain.

12.15 Review Questions

What is rote learning? Illustrate with example.
Enlighten some issues that are relevant to more complex learning issues.

Discuss the process of Learning by taking Advice. Give example.

1

2

3

4. Explicate the process of induction with example.

5 What is Winston’s Learning Program? Illustrate the basic approach of Winston’s Program.
6 What is the main goal of version spaces? Explain with the help of algorithm.

7

To categorize a specific input, we begin at the top of the tree and reply questions until we
reach a leaf, where the specification is stored. Comment.

®

Describe the concept of Explanation-based Learning (EBL).
9. Make distinction between learning with macro-operators and learning by chunking.

10. What is a cluster? Illustrate the process of beginning clustering.

Answers: Self Assessment

1. Learning 2. Generalization

3. Rote Learning 4. Memorization

5. Operational 6. Concept Learning or Induction

7. Version Spaces 8. Explanation-based Learning (EBL)
9. PRODIGY 10. Parameter Adjustment

11. Macro-operators 12. Constants

LOVELY PROFESSIONAL UNIVERSITY 169

Artificial Intelligence

170

Notes

13. Production 14. Chunk
15. Discovery 16. Clustering
17. Errors 18. Natural Language

19. DPositive

20. Trees

12.16 Further Readings

N

Books

Antonelli, D. 1983. The application of artificial intelligence to a maintenance and diagnostic
information system (MDIS). Proceedings of the Joint Services Workshop on Artificial
Intelligence in Maintenance. Boulder, CO.

Boose, J.H. 1984. Personal construct theory and the transfer of human expertise.
Proceedings of the National Conference on Artificial Intelligence (AAAI-84),
p- 27-33, Austin, Texas.

Boose,].H. 1985. A knowledge acquisition program for expert systems based on personal
construct psychology. International Journal of Man-Machine Studies, 23, 495-525.

Boose, J.H. 1986a. Expertise Transfer for Expert System Design, New York; Elsevier.

Boose,].H. 1986b. Rapid acquisition and combination of knowledge from multiple experts
in the same domain. Future Computing Systems Journal, 1, 191-216.

Boose, J.H. 1988. Uses of repertory grid-centered knowledge acquisition tools for knowledge-
based systems. International Journal of Man-Machine Studies, 29, 287-310.

Boose,].H. 1989. A survey of knowledge acquisition techniques and tools. Knowledge
acquisition: An international journal of knowledge acquisition for knowledge-
based systems, in press. Vol. 1, No. 1.

Boose,].H., and Bradshaw, .M. 1987b. AQUINAS: A knowledge acquisition workbench
for building knowledge based systems. Proceedings of the First European Workshop
on Knowledge Acquisition for Knowledge-Based Systems (pp. A6.1-6). Reading
University.

Boose, J.H., Bradshaw, J.M., Shema, D.B. 1988. Recent progress in Aquinas: A
knowledge acquisition workbench. Proceedings of the Second European Knowledge
Acquisition Workshop (EKAW-88). p. 2.1-15, Bonn.

Bradshaw, J. 1988. Shared causal knowledge as a basis for communication between expert
and knowledge acquisition system. Proceedings of the Second European Knowledge
Acquisition Workshop (EKAW-88) pp. 12.1-6.

Bradshaw, J.M. 1988. Strategies for selecting and interviewing experts. Boeing
Computer Services Technical report in preparation.

Bradshaw,].M. and Boose,].H. 1989. Decision analytic techniques for knowledge
acquisition: Combining situation and preference models using Aquinas. Special issue on
the 2nd Knowledge Acquisition for Knowledge-Based Systems Workshop, 1987,
International Journal of Man- Machine Studies. in press.

Clancey. W. 1986. Heuristic classification. In J. Kowalik (Ed.). Knowledge-based
problem solving. New York: Prentice-Hall.

LOVELY PROFESSIONAL UNIVERSITY

Unit 12: Learning

Davis, R., and Lenat, D.B. 1982. Knowledge-based systems in artificial intelligence. Notes
New York: McGraw-Hill.

DeJong, K. 1987. Knowledge acquisition for fault isolation expert systems. Special issue
on the 1 AAA1 Knowledge Acquisition for Knowledge-Based Systems Workshop,
1986, Part 4, International/ Journal of Man-Machine Studies, Vol. 27, No. 2.

Online link Www.springer.com

LOVELY PROFESSIONAL UNIVERSITY 171

Artificial Intelligence

Parminder Kaur, Lovely Professional University

172

Notes

Unit 13: Expert Systems and its Architecture

CONTENTS
Objectives

Introduction

13.1

13.2

13.3

13.4
13.5

13.6
13.7

13.8

Part of Expert System

13.1.1 Main ES Components

General Concepts and Characteristics of ES

13.21 Chaining

13.2.2 Certainty Factors

Expert System Architecture

13.3.1 End User

13.3.2 Explanation System (Another Part of Expert System)
13.3.3 Expert Systems versus Problem-solving Systems
13.3.4 Procedure Node Interface

13.3.5 User Interface

Application of Expert System

Advantages and Disadvantages

13.5.1 Advantages

13.5.2 Disadvantages

Types of Problems Solved by Expert Systems

ES-Shells

13.7.1 Shells

13.7.2 Expert System Programming Environments
13.7.3 Advantages and Disadvantages of Expert System Shells
Dealing with Uncertainty

13.8.1 Domain Knowledge Representation

13.8.2 User Knowledge Representation

13.8.3 Knowledge Determination and Updating

13.8.4 Model Initialization

13.8.5 Model Updating

13.8.6 Knowledge Value Propagation

13.8.7 Qualitative and Quantitative Analysis

Contd...

LOVELY PROFESSIONAL UNIVERSITY

Unit 13: Expert Systems and its Architecture

13.9 Speech Recognition Notes
1310 Summary
13.11 Keywords
13.12 Review Questions

13.13 Further Readings

Objectives

After studying this unit, you will be able to:

) Understand the concept of expert system
) Discuss the components of expert system
) Mlustrate the characteristics of ES

) Understand the expert system architecture
) Discuss the applications of expert system

) Explain the concept of ES shells

° Understand the concept of dealing with uncertainty
Introduction

An expert system is software that attempts to reproduce the performance of one or more human
experts, most commonly in a specific problem domain, and is a traditional application and/or
subfield of artificial intelligence. A wide variety of methods can be used to simulate the
performance of the expert however common to most or all are (1) the creation of a so-called
“knowledge base” which uses some knowledge representation formalism to capture the Subject
Matter Experts (SME) knowledge and (2) a process of gathering that knowledge from the SME
and codifying it according to the formalism, which is called knowledge engineering. Expert
systems may or may not have learning components but a third common element is that once the
system is developed it is proven by being placed in the same real world problem solving
situation as the human SME, typically as an aid to human workers or a supplement to some
information system. As a premiere application of computing and artificial intelligence, the
topic of expert systems has many points of contact with general systems theory, operations
research, business process reengineering and various topics in applied mathematics and
management science.

13.1 Part of Expert System

13.1.1 Main ES Components

° Knowledge base
& contains essential information about the problem domain
& often represented as facts and rules

) Inference engine

& mechanism to derive new knowledge from the knowledge base and the

LOVELY PROFESSIONAL UNIVERSITY 173

Artificial Intelligence

Notes

174

& information provided by the user
& often based on the use of rules

° User interface
& interaction with end users

& development and maintenance of the knowledge base

Figure 13.1: Parts of Expert System
User Eoonlodue Bage
User Expertise Interface SREORE RRek
Facts / Information
o
L n
m Expertise
Developer
Self Assessment
Fill in the blanks:
1. AN e is software that attempts to reproduce the performance of one or more

human experts, most commonly in a specific problem domain, and is a traditional
application and/or subfield of artificial intelligence.

2. Knowledge base contains essential information about the problem

13.2 General Concepts and Characteristics of ES

There are the following parts of Expert System:
13.2.1 Chaining

There are two main methods of reasoning when using inference rules: backward chaining and
forward chaining. Forward chaining starts with the data available and uses the inference rules to
conclude more data until a desired goal is reached. An inference engine using forward chaining
searches the inference rules until it finds one in which the if-clause is known to be true. It then
concludes the then-clause and adds this information to its data. It would continue to do this until
a goal is reached. Because the data available determines which inference rules are used, this
method is also called data driven. Backward chaining starts with a list of goals and works
backwards to see if there is data which will allow it to conclude any of these goals. An inference
engine using backward chaining would search the inference rules until it finds one which has a

LOVELY PROFESSIONAL UNIVERSITY

Unit 13: Expert Systems and its Architecture

then-clause that matches a desired goal. If the if-clause of that inference rule is not known to be Notes
true, then it is added to the list of goals.

' Example: Suppose a rulebase contains:
(1) If Fritz is green then Fritz is a frog.
(2) If Fritz is a frog then Fritz hops.

Suppose a goal is to conclude that Fritz hops. The rulebase would be searched and rule (2) would
be selected because its conclusion (the then clause) matches the goal. It is not known that Fritz is
a frog, so this “if” statement is added to the goal list. The rulebase is again searched and this time
rule (1) is selected because its then clause matches the new goal just added to the list. This time,
the if-clause (Fritz is green) is known to be true and the goal that Fritz hops is concluded. Because
the list of goals determines which rules are selected and used, this method is called goal driven.

[

Task Make distinction between backward chaining and forward chaining.

13.2.2 Certainty Factors

One advantage of expert systems over traditional methods of programming is that they allow
the use of “confidences” (or “certainty factors”). When a human reasons he does not always
conclude things with 100% confidence. He might say, “If Fritz is green, then he is probably a
frog” (after all, he might be a chameleon). This type of reasoning can be imitated by using
numeric values called confidences.

Example: If it is known that Fritz is green, it might be concluded with 0.85 confidence
that he is a frog; or, if it is known that he is a frog, it might be concluded with 0.95 confidence that
he hops. These numbers are similar in nature to probabilities, but they are not the same. They
are meant to imitate the confidences humans use in reasoning rather than to follow the
mathematical definitions used in calculating probabilities.

Self Assessment

Fill in the blanks:

3. chaining starts with the data available and uses the inference rules to conclude
more data until a desired goal is reached.

4 chaining starts with a list of goals and works backwards to see if there is data
which will allow it to conclude any of these goals.

13.3 Expert System Architecture

Figure 13.2 shows the most important modules that make up a rule-based expert system. The
user interacts with the system through a user interface which may use menus, natural language or
any other style of interaction). Then an inference engine is used to reason with both the expert
knowledge (extracted from our friendly expert) and data specific to the particular problem
being solved. The expert knowledge will typically be in the form of a set of IF-THEN rules. The
case specific data includes both data provided by the user and partial conclusions (along with

LOVELY PROFESSIONAL UNIVERSITY 175

Artificial Intelligence

176

Notes

certainty measures) based on this data. In a simple forward chaining rule-based system the case
specific data will be the elements in working memory.

Figure 13.2: Important Module of ES

Expert System Shell

H 1
H i
i
i Explanation N
1 g System ‘: Case-specific
H
<> J: data
i >
i User VY Inference M
E Interface [V 7 engine PN
H <>
1
1 i Knowledge
H o a| Knowledge > base
H Base editor !
H 1
! 1

Almost all expert systems also have an explanation subsystem, which allows the program to
explain its reasoning to the user. Some systems also have a knowledge base editor which help
the expert or knowledge engineer to easily update and check the knowledge base.

One important feature of expert systems is the way they (usually) separate domain specific
knowledge from more general purpose reasoning and representation techniques. The general
purpose bit (in the dotted box in the figure) is referred to as an expert system shell. As we see in the
Figure 13.2, the shell will provide the inference engine (and knowledge representation scheme),
a user interface, an explanation system and sometimes a knowledge base editor. Given a new
kind of problem to solve (say, car design), we can usually find a shell that provides the right sort
of support for that problem, so all we need to do is provide the expert knowledge. There are
numerous commercial expert system shells, each one appropriate for a slightly different range
of problems.

l"

Did u know? Expert systems work in industry includes both writing expert system shells
and writing expert systems using shells.

|

Notes Using shells to write expert systems generally greatly reduces the cost and time of
development (compared with writing the expert system from scratch).

The following general points about expert systems and their architecture have been illustrated:

1. The sequence of steps taken to reach a conclusion is dynamically synthesized with each
new case. It is not explicitly programmed when the system is built.

2. Expert systems can process multiple values for any problem parameter. This permits
more than one line of reasoning to be pursued and the results of incomplete (not fully
determined) reasoning to be presented.

3. Problem solving is accomplished by applying specific knowledge rather than specific
technique. This is a key idea in expert systems technology. It reflects the belief that human
experts do not process their knowledge differently from others, but they do possess different
knowledge. With this philosophy, when one finds that their expert system does not produce
the desired results, work begins to expand the knowledge base, not to reprogram the
procedures.

LOVELY PROFESSIONAL UNIVERSITY

Unit 13: Expert Systems and its Architecture

There are various expert systems in which a rulebase and an inference engine cooperate to Notes
simulate the reasoning process that a human expert pursues in analyzing a problem and arriving

at a conclusion. In these systems, in order to simulate the human reasoning process, a vast

amount of knowledge needed to be stored in the knowledge base. Generally, the knowledge

base of such an expert system consisted of a relatively large number of “if then” type of statements

that were interrelated in a manner that, in theory at least, resembled the sequence of mental

steps that were involved in the human reasoning process.

Because of the need for large storage capacities and related programs to store the rulebase, most
expert systems have, in the past, been run only on large information handling systems. Recently,
the storage capacity of personal computers has increased to a point where it is becoming possible
to consider running some types of simple expert systems on personal computers.

In some applications of expert systems, the nature of the application and the amount of stored
information necessary to simulate the human reasoning process for that application is just too
vast to store in the active memory of a computer. In other applications of expert systems, the
nature of the application is such that not all of the information is always needed in the reasoning
process.

'E Example: An example of this latter type application would be the use of an expert system
to diagnose a data processing system comprising many separate components, some of which are
optional.

When that type of expert system employs a single integrated rulebase to diagnose the minimum
system configuration of the data processing system, much of the rulebase is not required since
many of the components which are optional units of the system will not be present in the
system. Nevertheless, earlier expert systems require the entire rulebase to be stored since all the
rules were, in effect, chained or linked together by the structure of the rulebase.

When the rulebase is segmented, preferably into contextual segments or units, it is then possible
to eliminate portions of the Rulebase containing data or knowledge that is not needed in a
particular application. The segmenting of the rulebase also allows the expert system to be run
with systems or on systems having much smaller memory capacities than was possible with
earlier arrangements since each segment of the rulebase can be paged into and out of the system
as needed. The segmenting of the rulebase into contextual segments requires that the expert
system manage various intersegment relationships as segments are paged into and out of memory
during execution of the program. Since the system permits a rulebase segment to be called and
executed at any time during the processing of the first rulebase, provision must be made to store
the data that has been accumulated up to that point so that at some time later in the process,
when the system returns to the first segment, it can proceed from the last point or rule node that
was processed. Also, provision must be made so that data that has been collected by the system
up to that point can be passed to the second segment of the rulebase after it has been paged into
the system and data collected during the processing of the second segment can be passed to the
first segment when the system returns to complete processing that segment. The user interface
and the procedure interface are two important functions in the information collection process.

13.3.1 End User

The end-user usually sees an expert system through an interactive dialog,

Examples:

Q. Do you know which restaurant you want to go to?

LOVELY PROFESSIONAL UNIVERSITY 177

Artificial Intelligence

Notes A.No
Q. Is there any kind of food you would particularly like?
A.No
Q. Do you like spicy food?
A.No
Q. Do you usually drink wine with meals?
A.Yes
Q. When you drink wine, is it French wine?
A.Yes

As can be seen from this dialog, the system is leading the user through a set of questions, the
purpose of which is to determine a suitable set of restaurants to recommend. This dialog begins
with the system asking if the user already knows the restaurant choice (a common feature of
expert systems) and immediately illustrates a characteristic of expert systems; users may choose
not to respond to any question.

In expert systems, dialogs are not pre-planned. There is no fixed control structure. Dialogs are
synthesized from the current information and the contents of the knowledge base. Because of
this, not being able to supply the answer to a particular question does not stop the consultation.

13.3.2 Explanation System (Another Part of Expert System)

Another major distinction between expert systems and traditional systems is illustrated by the
following answer given by the system when the user answers a question with another question,
“Why”, as occurred in the above example. The answer is:

A.Tam trying to determine the type of restaurant to suggest. So far Chinese is not a likely choice.
It is possible that French is a likely choice. I know that if the diner is a wine drinker, and the
preferred wine is French, then there is strong evidence that the restaurant choice should include
French. It is very difficult to implement a general explanation system (answering questions like
“Why” and “How”) in a traditional computer program. An expert system can generate an
explanation by retracing the steps of its reasoning. The response of the expert system to the
question WHY is an exposure of the underlying knowledge structure. It is a rule; a set of
antecedent conditions which, if true, allow the assertion of a consequent. The rule references
values, and tests them against various constraints or asserts constraints onto them. This, in fact,
is a significant part of the knowledge structure. There are values, which may be associated with
some organizing entity.

' Example: The individual diner is an entity with various attributes (values) including
whether they drink wine and the kind of wine.

There are also rules, which associate the currently known values of some attributes with assertions
that can be made about other attributes. It is the orderly processing of these rules that dictates
the dialog itself.

13.3.3 Expert Systems versus Problem-solving Systems

The principal distinction between expert systems and traditional problem solving programs is
the way in which the problem related expertise is coded. In traditional applications, problem

178 LOVELY PROFESSIONAL UNIVERSITY

Unit 13: Expert Systems and its Architecture

expertise is encoded in both program and data structures. In the expert system approach all of Notes
the problem related expertise is encoded in data structures only; none is in programs. This
organization has several benefits.

An example may help contrast the traditional problem solving program with the expert system
approach.

Example: The example is the problem of tax advice. In the traditional approach data
structures describe the taxpayer and tax tables, and a program in which there are statements
representing an expert tax consultant’s knowledge, such as statements which relate information
about the taxpayer to tax table choices. It is this representation of the tax expert’s knowledge that
is difficult for the tax expert to understand or modify. In the expert system approach, the
information about taxpayers and tax computations is again found in data structures, but now the
knowledge describing the relationships between them is encoded in data structures as well. The
programs of an expert system are independent of the problem domain (taxes) and serve to
process the data structures without regard to the nature of the problem area they describe. For
example, there are programs to acquire the described data values through user interaction,
programs to represent and process special organizations of description, and programs to process
the declarations that represent semantic relationships within the problem domain and an
algorithm to control the processing sequence and focus.

The general architecture of an expert system involves two principal components: a problem
dependent set of data declarations called the knowledge base or rule base, and a problem
independent (although highly data structure dependent) program which is called the inference
engine.

Individuals Involved with Expert Systems

There are generally three individuals having an interaction with expert systems. Primary among
these is the end-user; the individual who uses the system for its problem solving assistance. In
the building and maintenance of the system there are two other roles: the problem domain
expert who builds and supplies the knowledge base providing the domain expertise, and a
knowledge engineer who assists the experts in determining the representation of their
knowledge, enters this knowledge into an explanation module and who defines the inference
technique required to obtain useful problem solving activity. Usually, the knowledge engineer
will represent the problem solving activity in the form of rules which is referred to as a
rule-based expert system. When these rules are created from the domain expertise, the knowledge
base stores the rules of the expert system.

Inference Rule

An understanding of the “inference rule” concept is important to understand expert systems. An
inference rule is a statement that has two parts, an if-clause and a then-clause. This rule is what
gives expert systems the ability to find solutions to diagnostic and prescriptive problems.

'i Example: An example of an inference rule is: If the restaurant choice includes French,
and the occasion is romantic, then the restaurant choice is definitely Paul Bocuse.

An expert system’s rulebase is made up of many such inference rules. They are entered as
separate rules and it is the inference engine that uses them together to draw conclusions. Because
each rule is a unit, rules may be deleted or added without affecting other rules (though it should
affect which conclusions are reached). One advantage of inference rules over traditional
programming is that inference rules use reasoning which more closely resemble human

LOVELY PROFESSIONAL UNIVERSITY 179

Artificial Intelligence

Notes reasoning. Thus, when a conclusion is drawn, it is possible to understand how this conclusion
was reached. Furthermore, because the expert system uses knowledge in a form similar to the
expert, it may be easier to retrieve this information from the expert.

13.3.4 Procedure Node Interface

The function of the procedure node interface is to receive information from the procedures
coordinator and create the appropriate procedure call. The ability to call a procedure and receive
information from that procedure can be viewed as simply a generalization of input from the
external world. While in some earlier expert system external information has been obtained,
that information was obtained only in a predetermined manner so only certain information
could actually be acquired. This expert system, disclosed in the cross-referenced application,
through the knowledge base, is permitted to invoke any procedure allowed on its host system.
This makes the expert system useful in a much wider class of knowledge domains than if it had
no external access or only limited external access.

In the area of machine diagnostics using expert systems, particularly self-diagnostic applications,
itis not possible to conclude the current state of “health” of a machine without some information.
The best source of information is the machine itself, for it contains much detailed information
that could not reasonably be provided by the operator. The knowledge that is represented in the
system appears in the rulebase. In the rulebase described in the cross-referenced applications,
there are basically four different types of objects, with associated information present.

1. Classes: These are questions asked to the user.

2. Parameters: A parameter is a place holder for a character string which may be a variable
that can be inserted into a class question at the point in the question where the parameter
is positioned.

3. Procedures: These are definitions of calls to external procedures.

4. Rule Nodes: The inferencing in the system is done by a tree structure which indicates the
rules or logic which mimics human reasoning. The nodes of these trees are called rule
nodes. There are several different types of rule nodes.

The rulebase comprises a forest of many trees. The top node of the tree is called the goal node,
in that it contains the conclusion. Each tree in the forest has a different goal node. The leaves of
the tree are also referred to as rule nodes, or one of the types of rule nodes. A leaf may be an
evidence node, an external node, or a reference node.

An evidence node functions to obtain information from the operator by asking a specific question.
In responding to a question presented by an evidence node, the operator is generally instructed
to answer “yes” or “no” represented by numeric values 1 and 0 or provide a value of between
0 and 1, represented by a “maybe.” Questions which require a response from the operator other
than yes or no or a value between 0 and 1 are handled in a different manner. A leaf that is an
external node indicates that data will be used which was obtained from a procedure call.

A reference node functions to refer to another tree or subtree. A tree may also contain intermediate
or minor nodes between the goal node and the leaf node. An intermediate node can represent
logical operations like And or Or. The inference logic has two functions. It selects a tree to trace
and then it traces that tree. Once a tree has been selected, that tree is traced, depth-first, left to
right. The word “tracing” refers to the action the system takes as it traverses the tree, asking
classes (questions), calling procedures, and calculating confidences as it proceeds.

As explained in the cross-referenced applications, the selection of a tree depends on the ordering
of the trees. The original ordering of the trees is the order in which they appear in the rulebase.
This order can be changed, however, by assigning an evidence node an attribute “initial” which

180 LOVELY PROFESSIONAL UNIVERSITY

Unit 13: Expert Systems and its Architecture

is described in detail in these applications. The first action taken is to obtain values for all Notes
evidence nodes which have been assigned an “initial” attribute. Using only the answers to these

initial evidences, the rules are ordered so that the most likely to succeed is evaluated first. The

trees can be further reordered since they are constantly being updated as a selected tree is being

traced.

It has been found that the type of information that is solicited by the system from the user by
means of questions or classes should be tailored to the level of knowledge of the user. In many
applications, the group of prospective uses is nicely defined and the knowledge level can be
estimated so that the questions can be presented at a level which corresponds generally to the
average user. However, in other applications, knowledge of the specific domain of the expert
system might vary considerably among the group of prospective users.

One application where this is particularly true involves the use of an expert system, operating in
a self-diagnostic mode on a personal computer to assist the operator of the personal computer to
diagnose the cause of a fault or error in either the hardware or software. In general, asking the
operator for information is the most straightforward way for the expert system to gather
information assuming, of course, that the information is or should be within the operator’s
understanding.

Example: In diagnosing a personal computer, the expert system must know the major
functional components of the system. It could ask the operator, for instance, if the display is a
monochrome or color display. The operator should, in all probability, be able to provide the
correct answer 100% of the time. The expert system could, on the other hand, cause a test unit to
be run to determine the type of display. The accuracy of the data collected by either approach in
this instance probably would not be that different so the knowledge engineer could employ
either approach without affecting the accuracy of the diagnosis.

However, in many instances, because of the nature of the information being solicited, it is better
to obtain the information from the system rather than asking the operator, because the accuracy
of the data supplied by the operator is so low that the system could not effectively process it to
a meaningful conclusion.

In many situations the information is already in the system, in a form of which permits the
correct answer to a question to be obtained through a process of inductive or deductive reasoning.
The data previously collected by the system could be answers provided by the user to less
complex questions that were asked for a different reason or results returned from test units that
were previously run.

[

Task Tllustrate the concept of Procedure Node Interface.

13.3.5 User Interface

The function of the user interface is to present questions and information to the user and supply
the user’s responses to the inference engine. Some responses are restricted to a set of possible
legal answers, others are not. The user interface checks all responses to insure that they are of the
correct data type. Any responses that are restricted to a legal set of answers are compared against
these legal answers. Whenever the user enters an illegal answer, the user interface informs the
user that his answer was invalid and prompts him to correct it.

LOVELY PROFESSIONAL UNIVERSITY 181

Artificial Intelligence

182

Notes

AN

Caution Any values entered by the user must be received and interpreted by the user
interface.

Self Assessment

Fill in the blanks:
5. The e usually sees an expert system through an interactive dialog.

6. AN i, is a statement that has two parts, an if-clause and a then-clause.

13.4 Application of Expert System

Expert systems are designed and created to facilitate tasks in the fields of accounting, medicine,
process control, financial service, production, human resources etc. Indeed, the foundation of a
successful expert system depends on a series of technical procedures and development that may
be designed by certain technicians and related experts.

Example: A good example of application of expert systems in banking area is expert
systems for mortgages. Loan departments are interested in expert systems for mortgages because
of the growing cost of labour which makes the handling and acceptance of relatively small loans
less profitable.

They also see in the application of expert systems a possibility for standardized, efficient handling
of mortgage loan, and appreciate that for the acceptance of mortgages there are hard and fast
rules which do not always exist with other types of loans. While expert systems have distinguished
themselves in Al research in finding practical application, their application has been limited.
Expert systems are notoriously narrow in their domain of knowledge - as an amusing example,
a researcher used the “skin disease” expert system to diagnose his rust bucket car as likely to
have developed measles and the systems were thus prone to making errors that humans would
easily spot. Additionally, once some of the mystique had worn off, most programmers realized
that simple expert systems were essentially just slightly more elaborate versions of the decision
logic they had already been using.

Therefore, some of the techniques of expert systems can now be found in most complex programs
without any fuss about them.

'i Example: An example, and a good demonstration of the limitations of, an expert system
used by many people is the Microsoft Windows operating system troubleshooting software
located in the “help” section in the taskbar menu.

Obtaining expert/technical operating system support is often difficult for individuals not closely
involved with the development of the operating system. Microsoft has designed their expert
system to provide solutions, advice, and suggestions to common errors encountered throughout
using the operating systems.

Example: For example, the computer baseball games Earl Weaver Baseball and Tony La
Russa Baseball each had highly detailed simulations of the game strategies of those two baseball
managers. When a human played the game against the computer, the computer queried the Earl
Weaver or Tony La Russa Expert System for a decision on what strategy to follow. Even those

LOVELY PROFESSIONAL UNIVERSITY

Unit 13: Expert Systems and its Architecture

choices where some randomness was part of the natural system (such as when to throw a Notes
surprise pitch-out to try to trick a runner trying to steal a base) were decided based on probabilities
supplied by Weaver or La Russa.

Today we would simply say that “the game’s Al provided the opposing manager’s strategy.”
Self Assessment

Fill in the blank:

7. Microsoft has designed their expert system to provide solutions, advice, and suggestions
to common errors encountered throughout using the

13.5 Advantages and Disadvantages

13.5.1 Advantages

° Provides consistent answers for repetitive decisions, processes and tasks
[Holds and maintains significant levels of information

° Encourages organizations to clarify the logic of their decision-making

° Never “forgets” to ask a question, as a human might

13.5.2 Disadvantages

° Lacks common sense needed in some decision making

° Cannot make creative responses as human expert would in unusual circumstances
° Domain experts not always able to explain their logic and reasoning

° Errors may occur in the knowledge base, and lead to wrong decisions

° Cannot adapt to changing environments, unless knowledge base is changed

Self Assessment

Fill in the blanks:
8. Expert system encourages organizations to clarify the logic of their

9. Expert System lacksccccceuennn needed in some decision making.

13.6 Types of Problems Solved by Expert Systems

Expert systems are most valuable to organizations that have a high-level of know-how experience
and expertise that cannot be easily transferred to other members. They are designed to carry the
intelligence and information found in the intellect of experts and provide this knowledge to
other members of the organization for problem-solving purposes. Typically, the problems to
be solved are of the sort that would normally be tackled by a medical or other professional. Real
experts in the problem domain (which will typically be very narrow, for instance “diagnosing
skin conditions in human teenagers”) are asked to provide “rules of thumb” on how they
evaluate the problems, either explicitly with the aid of experienced systems developers, or
sometimes implicitly, by getting such experts to evaluate test cases and using computer programs

LOVELY PROFESSIONAL UNIVERSITY 183

Artificial Intelligence

Notes to examine the test data and (in a strictly limited manner) derive rules from that. Generally,
expert systems are used for problems for which there is no single “correct” solution which can
be encoded in a conventional algorithm. One would not write an expert system to find shortest
paths through graphs, or sort data, as there are simply easier ways to do these tasks. Simple
systems use simple true/false logic to evaluate data. More sophisticated systems are capable of
performing at least some evaluation, taking into account real-world uncertainties, using such
methods as fuzzy logic. Such sophistication is difficult to develop and still highly imperfect.

Self Assessment

Fill in the blanks:

10. Typically, thecccccceunees to be solved are of the sort that would normally be tackled by
a medical or other professional.

11. Generally, expert systems are used for problems for which there is no single “correct”
solution which can be encoded in a algorithm.

13.7 ES-Shells

A shell is a complete development environment for building and maintaining knowledge-
based applications. It provides a step-by-step methodology for a knowledge engineer that
allows the domain experts themselves to be directly involved in structuring and encoding the
knowledge. Many commercial shells are available. The ES shell is a command line interpreter
developed by Byron Rakitzis and Paul Haahr, that uses a scripting language similar to the RC
shell of the Plan 9 operating system. It is intended to provide a fully functional programming
language as a Unix shell. The bulk of es” development occurred in the early 1990s. A paper on an
early version of the ES shell was presented at the Winter 1993 USENIX conference in San Diego.
A patched version of es-0.9-betal which includes job control features, a precompiled binary,
additional documentation, a basic emacs editing mode and other contributed programs is
available: es-0.9-betaljob-control.tar.bz2. Expert Systems Shells include Software Development
Packages such as:

) Corvd (Exsys) InstantTea

° K-Vision

° KnowledgePro

If one wishes to build an expert system, one has several choices of software tool:
(1) Conventional programming languages (e.g. Pascal, C++, Java)

(2) Artificial intelligence programming languages (particularly LISP and Prolog)
(3) Expert system shells

) The first choice is almost certainly a bad idea.

° Conventional programming languages are not designed for this sort of job, and too much
work is required to make the program perform in the way required.

° However, if it is important to have highly efficient software, this might be a suitable
choice.

) Choice (2) has the advantage:

A flexible system can be built, accurately reflecting the peculiarities of the knowledge domain
and system task.

184 LOVELY PROFESSIONAL UNIVERSITY

Unit 13: Expert Systems and its Architecture

Choice (2) has the disadvantages: Programming skills in these languages are not common. It Notes
may be necessary to hire specialist programmers, or retrain the programming staff.

Programming the system will always be a larger (and hence longer and more expensive) task
than using a shell. Choice (3) has been the most frequent choice for commercial systems in recent
years. You will remember that an expert system shell is a ready-made expert system, with the
knowledge base missing, together with instructions for building a knowledge base in the
customer’s chosen domain.

I Figure 13.3: Idea of ES Shell I

User Inference Knowledgebase
Interface Engine on blood

Figure 13.4: Idea of ES Shell 2
User Inference Knowledgebase
Interface Engine on skin diseases

Some organisations avoid using shells for building complete expert systems; but even they
frequently use them for:

13.7.1 Shells

° Training

o Building prototypes

13.7.2 Expert System Programming Environments

1. Some people make a distinction between ES shells and ES programming environments

(or “hybrid systems”). For instance, Efraim Turban does in his book (Turban, 1992).

2. Historically, this has been important because, in the 1980s, most expert systems projects in
the UK used shells, and most expert systems projects in the USA used environments.

3. Environments were so called because they provided several different forms of knowledge
representation, for instance,

(@ rules
(b) metarules
(c) frames
(d) semantic nets
4. Several different forms of inference, e.g.
(a) forward chaining
(b) backward chaining
(c) Dbidirectional chaining

(d) non-monotonic reasoning

LOVELY PROFESSIONAL UNIVERSITY 185

Artificial Intelligence

Notes 5. They needed more powerful hardware than a microcomputer - usually, a workstation.
Historically, ES shells have been more constrained, perhaps offering only a single kind of
knowledge representation. They would usually be designed to run on a PC.

6. However, in recent years, ES shells have become more sophisticated, and added multiple
forms of knowledge representation and of inference strategy. PCs have become more
powerful, and PC versions of ES environment software have been released.

=7|

Notes 1t is probably not useful to make the distinction any more. One could simply speak
of “simple shells” and “sophisticated shells”.

13.7.3 Advantages and Disadvantages of Expert System Shells

Advantages
The programming effort that has gone into building the user interface and inference engine is
reused:

1. Thelevel of programming skill needed to produce the finished system is much lower than
it would be if the system was programmed from scratch using a language.

2. This means that, if an appropriate shell is chosen, the project can be completed faster, and
cheaper.

Disadvantages

1. ES tools are “end-user tools”. Compared with systems programmed from a language,

such software packages tend to produce systems that have:
(@) poor documentation

(b) weak security

() difficult maintenance problems

2. If the shell is a poor match for the type of knowledge in the domain concerned, it is liable
to produce a system which simply doesn’t correspond to the expertise of the original
domain expert.

3. In an attempt to model a non-standard piece of reasoning, the system builders by side.
Such a “system” is bound to be unsatisfactory, and to lead to problems of use, maintenance
and training.

Self Assessment

Fill in the blanks:

120 A is a complete development environment for building and maintaining
knowledge-based applications.

13. The i is a command line interpreter developed by Byron Rakitzis and
Paul Haahr, that uses a scripting language similar to the rc shell of the Plan 9 operating
system.

186 LOVELY PROFESSIONAL UNIVERSITY

Unit 13: Expert Systems and its Architecture

13.8 Dealing with Uncertainty Notes

The description of knowledge is quite vague and imprecise, and includes a great deal of
Uncertainty. There are many mathematical theories for expressing uncertainty and which could
be used to deal with the uncertainty in the description of the user knowledge. We decided to use
fuzzy set theory (Zadeh, 1965): the user model representation is based on fuzzy sets and model
updating on fuzzy rules (Kavcic, 2001).

13.8.1 Domain Knowledge Representation

There are two types of relations between domain concepts. The essential prerequisite relation
can exist between two concepts only to some extend; therefore we describe it as a fuzzy relation
(Kavcic, 2001). The supportive prerequisite relation is always fully present (if it is present at all)
and is therefore described as a normal crisp relation. Since the essential prerequisite relation is
defined as a fuzzy relation, the domain concept graph is also a fuzzy structure.

13.8.2 User Knowledge Representation

The domain knowledge representation is also used for describing user knowledge, which is a
subset of the domain knowledge. An overlay over the domain model is used, so the user model
can be regarded as a sub graph of the domain concept graph. Each concept of the sub graph has
some additional properties attached, which explain the user knowledge of this concept: a triple
of membership functions for three fuzzy sets of unknown, known and learned concepts. As a
result, a fuzzy graph with fuzzy relations and fuzzy nodes is a base for user knowledge
representation (Kavcic, 2001).

13.8.3 Knowledge Determination and Updating

The user knowledge of domain concepts changes (increases) during the interaction with the
system. Consequently, the user model also changes to reflect the current user understanding of
the teaching domain. The main principle for gathering information about the user knowledge is
checking tests results and analyzing learning units that the user visits. If the user knowledge
changes through user actions, it always increases. Even when the user performs poorly, it never
decreases.

13.8.4 Model Initialization

The user model is initialized using the results of a quick pre-test, which each new user is
required to solve. During this initialization, each domain concept becomes either fully learned
or remains completely unknown.

13.8.5 Model Updating

The most significant changes in user knowledge of the domain can be recorded when the user
answers the test questions corresponding to a certain learning unit. Tests are used for checking
how well a particular concept is learned and a set of corresponding test questions is provided for
each learning unit. After the user successfully solves the test on one domain concept, the
membership value for a set of learned concepts is increased for this concept, regardless of the
previous knowledge level of this particular concept. If the test questions are not answered
satisfactory, the value does not change. We also update the user model after each visit of a
learning unit; especially first visits of units and visits of still not learned units have the biggest

LOVELY PROFESSIONAL UNIVERSITY 187

Artificial Intelligence

188

Notes

influence to the user knowledge. In this case, the value of membership function for a set of
known concepts is increased for the concept that is explained in the unit. This can be applied only
to still unknown concepts, for which the value of membership function for a set of unknown
concepts is greater than zero.

l?

Did u know? The actual increase in value also depends on the values of all prerequisite
concepts.

13.8.6 Knowledge Value Propagation

Because the domain concepts are interrelated, we can also infer knowledge values of some
concepts. This way, the knowledge of essential prerequisite concepts is inferred on the basis of
demonstrated concept knowledge. After every change of concept knowledge values, an inferring
mechanism (knowledge value propagation) is triggered that updates the values of all essential
prerequisite concepts. This propagation algorithm is based on six fuzzy rules and works
recursively on all essential prerequisite concepts, until it reaches the basic concepts that have no
prerequisites. This way, the changes of one concept values are reflected in values of all concepts
that are essential prerequisites to this concept. Its difficult to understand the uncertainty in ES for
this we take the help from the result of analysis in this field. For this we will see the following
analysis.

13.8.7 Qualitative and Quantitative Analysis

Qualitative analysis can be defined as identifying qualitative structures, identifying the states of
those qualitative structures, and the pattern of changes (transformations) in those states.
Quantitative methods can sometimes be used to aid this process, but usually qualitative methods
are exclusively used for the analysis of qualitative data and structures for which quantities
proper are difficult to define. Thom (1975) argues that all quantitative analysis assumes a firm
qualitative foundation. Before they measure, people must agree that there is something to be
measured, and that is a qualitative judgment.

AN

Caution People must agree that the measure (metric) they use is appropriate, and applicable
to other phenomena.

Example: As an example consider per capita income. It is apparently easy enough to
agree on the structure, but the metric is another issue. If currency is used as a metric, a poor
family in the United States would be a wealthy one in Pakistan. The metric can be further
adjusted by considering cost of living, but an acceptable level of living in the United States is not
equivalent to one in Pakistan. The problem is not difficult to understand qualitatively: there are
different standards in the two places. The two countries’ per capita income can be compared
quantitatively, but the interpretation of the comparison is qualitative. The quantitative analysis
is more difficult to reconcile, and indeed is undecidable without reference to qualitative structures
in the two societies.

In most cases quantitative analysis depends on continuity. To quantify a phenomenon
meaningfully it is usually necessary to assume that the relation between phenomena and metric
can be described by a continuous function, since a primary goal of quantification is to provide
a basis for comparison. For phenomena where the analytic focus is on states this is often

LOVELY PROFESSIONAL UNIVERSITY

Unit 13: Expert Systems and its Architecture

misleading or impossible. In most social phenomena there is no continuous function that can Notes
adequately describe the important qualitative relationships.

Example: As an example consider income and education. These are variables that are
often given a quantitative definition in social research. They are relatively easy to define, and
people generally measure income in currency, education in years. But they often assume linearity
and usually there will be a good correlation between them. But it will not be a perfect correlation,
as one unit change in the independent variable will not result in some regular linear unit change
in the dependent variable. Now this is not terribly shocking, since people do not expect that all
the variation in one variable is to be explained by the other, but there is benefit in understanding
the relationship between the variables by breaking the relationship into stages, and examining
the conditions for moving from one stage to the next. For instance, in the USA 11 years of
education is minimally better than 10 years, but 12 years is far better than 11. This is because of
the local structure of American education: 11 years is pregraduation, and 12 years is post-
graduation. The graduating student has a qualitatively changed educational status, the pre-
graduating student has not significantly changed status. This type of analysis helps to give a
better account of interactions.

Self Assessment

Fill in the blanks:

14. The description of knowledge is quite vague and imprecise, and includes a great deal of

15, can be defined as identifying qualitative structures, identifying the states of
those qualitative structures, and the pattern of changes (transformations) in those states.

13.9 Speech Recognition

Automatic speech recognition is the course by which a computer plots an auditory speech signal
to text. Automatic speech perceptive is the process by which a computer plots an auditory speech
signal to some form of conceptual meaning of the speech. Speech synthesis is the job of converting
written input to spoken output. The input can either be offered in a graphemic/orthographic or
a phonemic script, based on its source. As a result of its reliance on phonology, linguistics, signal
processing, statistics, computer science, acoustics, connectionist networks, psychology and other
fields, there are numerous technologies included in speech technology.

Self Assessment

Fill in the blanks:

16. Automaticcccceccuenee. perceptive is the process by which a computer plots an auditory
speech signal to some form of conceptual meaning of the speech.

17 e is the job of converting written input to spoken output.

13.10 Summary

o An expert system is software that attempts to reproduce the performance of one or more
human experts, most commonly in a specific problem domain, and is a traditional
application and/or subfield of artificial intelligence.

LOVELY PROFESSIONAL UNIVERSITY 189

Artificial Intelligence

Notes ° Forward chaining starts with the data available and uses the inference rules to conclude
more data until a desired goal is reached.

° Backward chaining starts with a list of goals and works backwards to see if there is data
which will allow it to conclude any of these goals.

° The user interacts with the system through a user interface which may use menus, natural
language or any other style of interaction).

° The end-user usually sees an expert system through an interactive dialog.

° The general architecture of an expert system involves two principal components: a problem
dependent set of data declarations called the knowledge base or rule base, and a problem
independent (although highly data structure dependent) program which is called the
inference engine.

° An inference rule is a statement that has two parts, an if-clause and a then-clause.

° The function of the procedure node interface is to receive information from the procedures
coordinator and create the appropriate procedure call.

° The function of the user interface is to present questions and information to the user and
supply the user’s responses to the inference engine.

° A shell is a complete development environment for building and maintaining knowledge-
based applications.

13.11 Keywords

Backward Chaining: Backward Chaining starts with a list of goals and works backwards to see
if there is data which will allow it to conclude any of these goals.

End User: The end-user usually sees an expert system through an interactive dialog.

Expert System: An expert system is software that attempts to reproduce the performance of one
or more human experts, most commonly in a specific problem domain, and is a traditional
application and/or subfield of artificial intelligence.

Forward Chaining: Forward chaining starts with the data available and uses the inference rules
to conclude more data until a desired goal is reached.

Inference Rule: An inference rule is a statement that has two parts, an if-clause and a then-clause.

Shell: A shell is a complete development environment for building and maintaining knowledge-
based applications.

User Interface: The user interacts with the system through a user interface which may use menus,
natural language or any other style of interaction.

13.12 Review Questions

What is Expert System? Illustrate the main components of expert system.
Explain the concept of chaining in expert system.
What is the important module of ES?

Make distinction between Procedure Node Interface and User Interface.

A

Make distinction between expert systems and problem solving system.

190 LOVELY PROFESSIONAL UNIVERSITY

Unit 13: Expert Systems and its Architecture

Explain the general architecture of an expert system. Notes
What do you understand by Dealing with uncertainty?

What is ES Shell? Identify the advantages and disadvantages of Expert System Shells.

o ® N

Explain the applications of Expert system.

10. Describe the concept of Programming Environments of expert system.

Answers: Self Assessment

1. Expert System 2. Domain

3. Forward 4. Backward

5. End-user 6. Inference Rule

7. Operating Systems 8. Decision-making
9. Common Sense 10. Problems

11. Conventional 12. Shell

13. Es Shell 14. Uncertainty

15. Qualitative Analysis 16. Speech

17. Speech Synthesis

13.13 Further Readings

N

Books Antonelli, D. 1983. The application of artificial intelligence to a maintenance and diagnostic
information system (MDIS). Proceedings of the Joint Services Workshop on Artificial
Intelligence in Maintenance. Boulder, CO.

Boose, J.H. 1984. Personal construct theory and the transfer of human expertise.
Proceedings of the National Conference on Artificial Intelligence (AAAI-84),
p- 27-33, Austin, Texas.

Boose,].H. 1985. A knowledge acquisition program for expert systems based on personal
construct psychology. International Journal of Man-Machine Studies, 23, 495-525.

Boose, J.H. 1986a. Expertise Transfer for Expert System Design, New York; Elsevier.

Boose,].H. 1986b. Rapid acquisition and combination of knowledge from multiple experts
in the same domain. Future Computing Systems Journal, 1, 191-216.

Boose,].H. 1988. Uses of repertory grid-centered knowledge acquisition tools for knowledge-
based systems. International Journal of Man-Machine Studies, 29, 287-310.

Boose,].H. 1989. A survey of knowledge acquisition techniques and tools. Knowledge
acquisition: An international journal of knowledge acquisition for knowledge-
based systems, in press. Vol. 1, No. 1.

Boose,].H., and Bradshaw, .M. 1987b. AQUINAS: A knowledge acquisition workbench
for building knowledge based systems. Proceedings of the First European Workshop
on Knowledge Acquisition for Knowledge-Based Systems (pp. A6.1-6). Reading
University.

LOVELY PROFESSIONAL UNIVERSITY 191

Artificial Intelligence

Notes Boose,].H., Bradshaw, J.M., Shema, D.B. 1988. Recent progress in Aquinas: A
knowledge acquisition workbench. Proceedings of the Second European Knowledge
Acquisition Workshop (EKAW-88). p. 2.1-15, Bonn.

Bradshaw, J. 1988. Shared causal knowledge as a basis for communication between expert
and knowledge acquisition system. Proceedings of the Second European Knowledge
Acquisition Workshop (EKAW-88) pp. 12.1-6.

Bradshaw, J.M. 1988. Strategies for selecting and interviewing experts. Boeing
Computer Services Technical report in preparation.

Bradshaw,].M. and Boose,].H. 1989. Decision analytic techniques for knowledge
acquisition: Combining situation and preference models using Aquinas. Special issue on
the 2nd Knowledge Acquisition for Knowledge-Based Systems Workshop, 1987,
International Journal of Man- Machine Studies. in press.

Clancey. W. 1986. Heuristic classification. In J. Kowalik (Ed.). Knowledge-based
problem solving. New York: Prentice-Hall.

Davis, R., and Lenat, D.B. 1982. Knowledge-based systems in artificial intelligence.
New York: McGraw-Hill.

DeJong, K. 1987. Knowledge acquisition for fault isolation expert systems. Special issue
on the 1 AAA1 Knowledge Acquisition for Knowledge-Based Systems Workshop,
1986, Part 4, International/ Journal of Man-Machine Studies, Vol. 27, No. 2.

Online link onlinemca.com/ .../ artificialintelligence/architecture_of_expert_system...

192 LOVELY PROFESSIONAL UNIVERSITY

Dinesh Kumar, Lovely Professional University Unit 14: Prolog

Unit 14: Prolog Notes

CONTENTS
Objectives
Introduction
141 Al Programming Languages
14.1.1 Al Language Prolog
14.2 Converting English to Prolog Facts and Rules
14.21 Facts
14.2.2 Rules
14.2.3 Conversion from English to Prolog Facts and Rules
143 Goals
144 Prolog Terminology
144.1 Atom
14.4.2 Numbers
14.4.3 Variables
14.4.4 Compound Term
14.5 Control Structures
14.5.1 Conjunction, Disjunction, Fail and True
1452 Cuts
14.5.3 If-then-else
14.5.4 Variable Goals and Calls
14.5.5 Repeat
14.5.6 Once
14.5.7 Negation
14.6 Arithmetic Operators
14.7 Matching
14.8 Backtracking
149 Lists
14.10 Input/Output and Streams
14.10.1 Input/Output using Current Streams
14.10.2 Explicitly Specifying Streams for Input/Output
1411 Summary
1412 Keywords Dinesh Kumar, Lovely Professional University

14.13 Review Questions

14.14 Further Readings

LOVELY PROFESSIONAL UNIVERSITY 193

Artificial Intelligence

194

Notes

Objectives

After studying this unit, you will be able to:

° Understand the concerting English to prolog facts

° Discuss the goals execution and prolog terminology

° Nlustrate the variables, control structures and arithmetic operators
° Understand the concept of matching, backtracking and lists

) Discuss the input/output and streams

Introduction

Programming Languages in Artificial Intelligence (AI) are the major tool for exploring and
building computer programs that can be used to simulate intelligent processes such as learning,
reasoning and understanding symbolic information in context. Although in the early days of
computer language design the primarily use of computers was for performing calculations with
numbers, it was also found out quite soon that strings of bits could represent not only numbers
but also features of arbitrary objects. Operations on such features or symbols could be used to
represent rules for creating, relating or manipulating symbols. This led to the notion of symbolic
computation as an appropriate means for defining algorithms that processed information of
any type, and thus could be used for simulating human intelligence. Soon it turned out that
programming with symbols required a higher level of abstraction than was possible with those
programming languages which were designed especially for number processing, e.g., Fortran.

14.1 Al Programming Languages

In AL the automation or programming of all aspects of human cognition is considered from its
foundations in cognitive science through approaches to symbolic and subsymbolic Al, natural
language processing, computer vision, and evolutionary or adaptive systems. It is inherent to
this very complex problem domain that in the initial phase of programming a specific Al
problem, it can only be specified poorly. Only through interactive and incremental refinement
does more precise specification become possible. This is also due to the fact that typical Al
problems tend to be very domain specific, therefore heuristic strategies have to be developed
empirically through generate-and-test approaches (also known as rapid proto-typing). In this
way, Al programming notably differs from standard software engineering approaches where
programming usually starts from a detailed formal specification. In Al programming, the
implementation effort is actually part of the problem specification process.

Due to the “fuzzy” nature of many Al problems, Al programming benefits considerably if the
programming language frees the Al programmer from the constraints of too many technical
constructions (e.g., low-level construction of new data types, manual allocation of memory).
Rather, a declarative programming style is more convenient using built-in high-level data
structures (e.g., lists or trees) and operations (e.g., pattern matching) so that symbolic computation
is supported on a much more abstract level than would be possible with standard imperative
languages, such as Fortran, Pascal or C. Of course, this sort of abstraction does not come for free,
since compilation of Al programs on standard Von Neumann computers cannot be done as
efficiently as for imperative languages. However, once a certain Al problem is understood
(at least partially), it is possible to reformulate it in form of detailed specifications as the basis
for re-implementation using an imperative language. From the requirements of symbolic
computation and Al programming, two new basic programming paradigms emerged as

LOVELY PROFESSIONAL UNIVERSITY

Unit 14: Prolog

alternatives to the imperative style: the functional and the logical programming style. Both are Notes
based on mathematical formalisms, namely recursive function theory and formal logic. The
first practical and still most widely used Al programming language is the functional language
Lisp developed by John McCarthy in the late 1950s. Lisp is based on mathematical function
theory and the lambda abstraction. A number of important and influential Al applications have
been written in Lisp so we will describe this programming language in some detail in this
article. During the early 1970s, a new programming paradigm appeared, namely logic
programming on the basis of predicate calculus. The first and still most important logic
programming language is Prolog, developed by Alain Colmerauer, Robert Kowalski and
Phillippe Roussel. Problems in Prolog are stated as facts, axioms and logical rules for deducing
new facts. Prolog is mathematically founded on predicate calculus and the theoretical results
obtained in the area of automatic theorem proving in the late 1960s.

14.1.1 AI Language Prolog

Prolog is a logical and a declarative programming language. The name itself, Prolog, is short for
PROgramming in LOGic. Prolog’s heritage includes the research on theorem provers and other
automated deduction systems developed in the 1960s and 1970s. The inference mechanism of
Prolog is based upon Robinson’s resolution principle (1965) together with mechanisms for
extracting answers proposed by Green (1968). These ideas came together forcefully with the
advent of linear resolution procedures. Explicit goal-directed linear resolution procedures, such
as those of Kowalski and Kuehner (1971) and Kowalski (1974), gave impetus to the development
of a general purpose logic programming system. The “first” Prolog was “Marseille Prolog”
based on work by Colmerauer (1970). The first detailed description of the Prolog language was
the manual for the Marseille Prolog interpreter (Roussel, 1975).

The other major influence on the nature of this first Prolog was that it was designed to facilitate
natural language processing. Prolog is the major example of a fourth generation programming
language supporting the declarative programming paradigm. The Japanese Fifth-Generation
Computer Project, announced in 1981, adopted Prolog as a development language, and thereby
focused considerable attention on the language and its capabilities.

Properties of Prolog as a Programming language:

) There are no explicit types or classes in this

) They are rule-based, founded on first-order logic

. There is high expressibility: functionality per program line
° Interactive, experimental programming

Background for Prolog

Prolog can be understand as PROgramming in LOGic:

) Syntax: subset of 1.-order logic
° Declarative semantics: Logical consequence
° Procedural semantics: Resolution, proof rule with unification; Robinson, 1965

° A. Colmerauer & co. (Marseille), ca. 1970: “Prolog” D.H.D. Warren: Efficient compiler,
abstract machine , WAM %o, 1975,

° Language made known by R. Kowalski “Logic for Problem solving”, 1979.

LOVELY PROFESSIONAL UNIVERSITY 195

Artificial Intelligence

Notes

196

In Prolog program is a description of data

parent(pam, bob). % Pam is a parent of Bob

parent(tom, bob).

parent(tom, liz).

parent(bob, ann).

parent(bob, pat).
(

parent(pat, jim)

Figure 14.1: Program in Prolog

(pam) Crom)

N

Basic Notions

There are following notions present in prolog;:
° Predicates: parent
- describes a relation
- defined by facts, rules, collectively called clauses
) Constant (symbol)s: tom, bob, x, y
° Variables: X, Y, Tom
° Atoms (simple goals): parent (A, a)
° Queries....

l?

Did u know? In Prolog literature, constants are called atoms.

Self Assessment

Fill in the blanks:
1. Prolog is a logical and a declarative language.

2. Prologisbased upon...................... principle (1965) together with mechanisms for extracting
answers proposed by Green (1968).

LOVELY PROFESSIONAL UNIVERSITY

Unit 14: Prolog

14.2 Converting English to Prolog Facts and Rules Notes

14.2.1 Facts

In ProLog, facts describe the relationships between different objects and are independent of
each other. Facts are also called ground clauses and are the basis to derive further
information.

You can declare facts using predicates or functions. Predicates can take a number of arguments,
which are enclosed within parentheses and are separated from each other by commas. The
number of arguments that a predicate takes is known as its arity.

' Example: The ProLog statement for the fact that NeoRage is an employee is:
employee(neorage).

In the above example, employee is the predicate and NeoRage is a data object and an argument
to the predicate. The “arity” of the predicate is one because it has only one argument.

In the following ProLog statement, the arity of the predicate is two because it has two arguments
for the fact that Sam is the father of Jack:

father(sam, jack).

In the above example, father is the predicate and Sam and Jack are the two arguments. ProLog
evaluates facts from left to right so the above statement cannot be interpreted in reverse order
and mean that Jack is the father of Sam.

|

Notes A fact begins with a lowercase letter and a statement ends with a period. All data
objects, such as sam and jack, are atoms and cannot begin with an uppercase.

14.2.2 Rules

In ProLog, rules are used in the process of decision-making and can deduce new facts from
existing ones.

Example: Suppose there are two facts such as: trope likes mary bob likes sam
The rule says:

jim likes X if bob likes X.

Prolog can deduce that:

jim likes sam (jim lives in San Fran lol)

You can give a ProLog program a goal that is a problem it needs to find a solution for.
' Example: find every person who likes sam: ProLog will use its deductive ability to find

all solutions to the problem.

A rule consists of two parts: a conditional part, if, and a conclusion or action part, then.

LOVELY PROFESSIONAL UNIVERSITY 197

Artificial Intelligence

Notes The if and then parts of a rule are separated by the: symbol, referred to as the infix operator. The
conditional part of the rule is written on the right of the infix operator and conclusion part on its
left. A rule can be declared with a condition. For example, you can declare that if the weather is
sunny, the day is to be selected for a picnic. The ProLog statement for declaring this rule and its
condition is:

picnic(day) :- weather(day,sunny).

14.2.3 Conversion from English to Prolog Facts and Rules

The following program includes a number of predicates that portray a family’s genealogical
relations.

female(amy).

female(merry).

male(john).
male(bruce).

male(ogden).

parentof(amy,merry).

parentof(amy,john).
parentof(amy,bruce).
parentof(ogden,merry).

parentof(ogden,john).

parentof(ogden,bruce).
The above program includes the three straightforward predicates: female; male; and parentof.
They are parameterized with what are known as ‘atoms.” There are other family relations which
could also be defined as facts, but this is a deadly process. Presuming customary marriage and
child-bearing practices, we could define some rules which would reduce the tediousness of
determining and listing all the probable family relations.

'i Example: Suppose you are required to know if merry had any siblings, the first question
you must request is “what does it mean to be a sibling?” To be someone’s sibling you must have
the same parent. This last sentence can be written in Prolog as

siblingof(X,Y) :-
parentof(Z,X),
parentof(Z,Y).

A conversion of the above Prolog rule into English would be “X is the sibling of Y given that Z
is a parent of X, and Z is a parent of Y.” X, Y, and Z are variables. This rule though, also defines
a child to be its own sibling. To correct this we must add that X and Y are not similar. The exact
version is:

siblingof(X,Y) :-

198 LOVELY PROFESSIONAL UNIVERSITY

Unit 14: Prolog

parentof(Z,X),

parentof(Z,Y),

XY.
The relation brotherof is alike but adds the condition that X must be a male.
brotherof(X,Y) :-

parentof(Z,X),

male(X),

parentof(Z,Y),

XY.

Self Assessment

Fill in the blanks:

3. InProlog,ccccocevnunnnes describe the relationships between different objects and are
independent of each other.

4. InProLog, ..ccccoovenienenee are used in the process of decision-making and can deduce new
facts from existing ones.

14.3 Goals

Proposing a query means demanding Prolog to attempt to prove that the statement(s) implied
by the query can be prepared true given the right variable instantiations are prepared. The
search for such a proof is generally pointed to as goal execution. Every predicate in the query
comprises a (sub)goal, which Prolog attempts to please one after the other. If variables are
shared among numerous subgoals their instantiations have to be similar throughout the whole
expression.

If a goal goes with the head of a rule, the particular variable instantiations are made within the
rule’s body, which then turns out to be the new goal to be satisfied. If the body includes numerous
predicates the goal is again split into subgoals to be executed in turn.

Alternatively, the head of a rule is measured provably true, if the conjunction of all its body
predicates are provably true. If a goal goes with a fact in our program the proof for that goal is
absolute and the variable instantiations made throughout matching are conversed back to the
surface.

|

Notes The order in which facts and rules emerge in our program is significant here.
Prolog will for all time attempt to match its existing goal with the first possible fact or
rule-head it can find.

If the principal function of a goal is an incorporated predicate the connected action is executed
whilst the goal is being satisfied.

' Example: As far as goal execution is regarded the predicate write ("Hello World!") will
just succeed, but simultaneously it will also print the words Hello World! on the screen.

LOVELY PROFESSIONAL UNIVERSITY

Notes

199

Artificial Intelligence

Notes The incorporated predicate true will always do well (without any further side-effects), while fail
will at all times fail. At times there is more than one method of satisfying the existing goal.
Prolog selects the first option (as determined by the order of clauses in a program), but the fact
that there are choices is recorded. If at some point Prolog fails to confirm a certain subgoal, the
system can go back and attempt a substitute way of executing the earlier goal. This process is
called backtracking. We shall demonstrate the process of goal execution by using the following
well-known argument:

All men are mortal.
Socrates is a man.
Hence, Socrates is mortal.

In Prolog terms, the first statement shows a rule: X is mortal, if X is a man (for all X). The second
one comprises a fact: Socrates is a man. This can be executed in Prolog as below:

mortal(X) :- man(X).
man(socrates).

Note that X is a variable, while socrates is an atom. The conclusion of the argument, “Socrates is
mortal”, can be displayed via the predicate mortal(socrates). After having conferred with the
above program we can propose this predicate to Prolog as a query, which will cause the following
reaction:

?- mortal(socrates).
Yes

Prolog consents with our own rational reasoning, which is nice. But how did it reach to its
conclusion? Let’s follow the goal execution step by step.

1. The query mortal(socrates) is made the initial goal.

2. Scanning via the clauses of our program, Prolog attempts to match mortal(socrates) with
the first probable fact or head of rule. It finds mortal(X), the head of the first (and only)
rule. When matching the two terms the instantiation X = socrates requires to be made.

3. The variable instantiation is extended to the body of the rule, i.e. man(X) turns out to be
man(socrates).

4. The newly instantiated body turns out to be our new goal: man(socrates).

5. Prolog implements the new goal by again attempting to match it with a rule-head or a

fact. Clearly, the goal man(socrates) matches the fact man(socrates), since they are identical.
This means the current goal succeeds.

6. This, again, means that also the initial goal succeeds.
Self Assessment

Fill in the blank:

5. Proposing acccceeeenrnnn. means demanding Prolog to attempt to prove that the
statement(s) implied by the query can be prepared true given the right variable
instantiations are prepared.

200 LOVELY PROFESSIONAL UNIVERSITY

Unit 14: Prolog

14.4 Prolog Terminology Notes

Prolog’s single data type is the term. Terms are either atoms, numbers, variables or compound terms.
14.4.1 Atom

An atom is a general-purpose name with no inherent meaning. It is composed of a sequence of
characters that is parsed by the Prolog reader as a single unit. Atoms are usually bare words in
Prolog code, written with no special syntax. However, atoms containing spaces or certain other
special characters must be surrounded by single quotes. Atoms beginning with a capital letter
must also be quoted, to distinguish them from variables. The empty list, written [], is also an
atom.

' Example: Other examples of atoms include x, blue, Taco, and some atom.

An atom is a data object in ProLog and is also used as a name of an individual or a predicate. An
atom is a word-like entity and has the following characteristics:

° It begins with a lowercase letter and contains letters, digits, and an underscore.
o It can be enclosed in single quotes that contain any character, such as a space.
o It does not have a length limit.

Example: Some examples of atoms are:

sam: An atom with only alphabet characters

a_long word: An atom with embedded underscores

‘New Jersey”: An atom enclosed in parentheses because it contains an embedded space
13$$56: An atom starting with digits

Use atoms to construct more complex entities, such as structures and lists
14.4.2 Numbers

Numbers can be floats or integers. Many Prolog implementations also provide unbounded
integers and rational numbers. All standard ProLog implementations have numbers that are
positive, negative, or floating-point integers. Some implementations handle the exponential
format.

The knowledge base in ProLog is written in free format because there is no on the number of
free spaces that a program can have. A new line is allowed at any point in the program but there
are two restrictions: the atom or variable name cannot have embedded spaces and there cannot
be anything between the function and the opening parentheses.

Listing 1 shows a ProLog program that has a knowledge base of facts and rules related to
hardware equipments:

Listing 1: Identifying Hardware Equipment
/* Program to identify hardware */
/* Rule to check for hardware */

hardware(X) :- equipment(X).

LOVELY PROFESSIONAL UNIVERSITY 201

Artificial Intelligence

Notes /* An item qualifies to be a hardware if it qualified to be an equipment */
/*List of facts */
equipment(mouse).
equipment(keyboard).
equipment(modem).

7

equipment(‘web camera’).
equipment(monitor).
equipment(‘hard disk’).

/* End of program */
14.4.3 Variables

Variables are denoted by a string consisting of letters, numbers and underscore characters, and
beginning with an upper-case letter or underscore. Variables closely resemble variables in logic
in that they are placeholders for arbitrary terms. A variable can become instantiated (bound to
equal a specific term) via unification. A single underscore (_) denotes an anonymous variable
and means “any term”. Unlike other variables, the underscore does not represent the same
value everywhere it occurs within a predicate definition. A variable name contains letters,
digits, and underscores. It begins with a capital letter or an underscore mark.

Example: Some examples of variables are Result, _total, and _a123.
There are two types of variables:

° Free variable: A variable whose value is unknown to the Prolog program
) Bound variable: A variable whose value is set

To understand the different variable types, consider the example of the following set of
facts:

likes(trope, reading).

likes(bb, swimming).

likes(trope, football).

likes(Saj, reading).

Consider that the rule for deducing from the above facts is:
likes(X, reading) and likes(X, football).

ProLog searches from left to right, so the first subgoal is:
likes(X, reading)

In the above statement of subgoal the first argument is X, which is a free variable and the value
in second argument is reading. ProLog attempts to satisfy the subgoal with facts that contain
reading as the second argument. In the example the match found is:

likes(trope, reading).

The X variable is now bound to the value, trope; the ProLog execution then shifts to the next
subgoal, which is:

likes(trope, swimming).

The above statement shows that the variable X has been substituted with the value, trope.

202 LOVELY PROFESSIONAL UNIVERSITY

Unit 14: Prolog

14.4.4 Compound Term Notes

A compound term is composed of an atom called a functor and a number of “arguments”, which
are again terms. Compound terms are ordinarily written as a function followed by a comma-
separated list of argument terms, which is contained in parentheses. The number of arguments
is called the term’s arity. An atom can be regarded as a compound term with arity zero.

' Example: Examples of compound terms are truck_year (‘Mazda’, 1986) and Person_Friends’
(zelda,[tom,jim]).

Compound terms with functors that are declared as operators can be written in prefix or infix
notation.

' Example: The terms -(z), +(a,b) and =(X,Y) can also be written as -z, a+ band X =Y,
respectively.

Users can declare arbitrary functors as operators with different precedences to allow for
domain-specific notations. The notation f/n is commonly used to denote a term with function
f and arity n.

Special cases of compound terms:

o Lists are defined inductively: The atom [] is a list. A compound term with functor . (dot)
and arity 2, whose second argument is a list, is itself a list. There exists special syntax for
denoting lists: .(A, B) is equivalent to [A | B].

o Strings: A sequence of characters surrounded by quotes is equivalent to a list of (numeric)
character codes, generally in the local character encoding or Unicode if the system supports
Unicode.

2

Task Make distinction between numbers, atoms and variables.

Self Assessment

Fill in the blanks:

6. e is composed of a sequence of characters that is parsed by the Prolog reader as
a single unit.

7. A is composed of an atom called a functor and a number of “arguments”,
which are again terms.

14.5 Control Structures

14.5.1 Conjunction, Disjunction, Fail and True

As in practically all Prologs, the comma (,) means “and,” the semicolon (;) means “or,” fail
always fails, and true always succeeds with no other action.

LOVELY PROFESSIONAL UNIVERSITY 203

Artificial Intelligence

Notes 14.5.2 Cuts

The cut (!) functions in the conventional manner. When implemented, it succeeds and
throws away all backtrack points among itself and its CUTPARENT. Usually, the cutparent
is the query that caused execution to enter the existing clause. Though, if the cut is in
an environment that is OPAQUE TO CUTS, the cutparent is the commencement of that
environment.

' Example: Examples of surroundings that are opaque to cuts are:
The argument of the negation operator (\+).

The argument of call, which can certainly be a compound goal, such as call((this,!,
that)).

_ The left-hand argument of *->" (see below).

The objectives that are arguments of once, catch, findall, bagof, and setof (and, usually, any other
goals that are arguments of predicates).

14.5.3 If-then-else

The “if-then-else” build (Goall -> Goal2 ; Goal3) tries to implement Goall, and, if
successful, proceeds to Goal2; or else, it proceeds to Goal3. The semicolon and Goal3 can be
omitted.

Observe that:

Only the first solution to Goall is established; any backtrack points produced while
executing Goall are thrown away.

If Goall succeeds, execution proceeds to Goal2, and then:

If Goal2 fails, the whole construct fails.

- If Goal2 succeeds, the whole construct succeeds.

- If Goal2 has multiple solutions, the whole construct has multiple solutions.

If Goall fails, execution proceeds to Goal3, and then:

If Goal3 fails, the whole construct fails.

- If Goal3 succeeds, the whole construct succeeds.

- If Goal3 has multiple solutions, the whole construct has multiple solutions.

If Goall fails and there is no Goal3, the whole construct fails.

Either Goal2 or Goal3 will be executed, but not both (not even upon backtracking).

If Goall contains a cut, that cut only has scope over Goall, not the whole clause. That is,
Goall is opaque to cuts.

The whole if-then-else structure has numerous solutions if Goall succeeds and Goal2 has
multiple solutions, or if Goall fails and Goal3 has multiple solutions. That is, backtrack
points in Goal2 and Goal3 behave normally.

Cuts in Goal2 and Goal3 have scope over the entire clause (i.e., behave normally).

204 LOVELY PROFESSIONAL UNIVERSITY

Unit 14: Prolog

Notes
)]

Notes Observe that the semicolon in Goall -> Goal2 ; Goal3 is not the normal disjunction
operator; if it were, you would be capable to obtain solutions to Goall -> Goal2 and then,
upon backtracking, also obtain solutions to Goal3. But this never happens. Rather, -> and;
have to be interpreted as a unit.

AN

Caution We do not suggest mixing cuts with if-then or if-then-else structures.

14.5.4 Variable Goals and Calls

Variables can be utilized as goals. A term G which is a variable appearing representing a goal is
transformed to the goal call(G). Note that call is not clear to cuts.

14.5.5 Repeat

The predicate repeat functions in the traditional manner, i.e., whenever backtracking reaches it,
execution continues forward again via the same clauses as if another substitute had been found.

14.5.6 Once

The query once(Goal) locates exactly one solution to Goal. It is comparable to call((Goal,!)) and
is opaque to cuts.

14.5.7 Negation

The negation predicate is written \+ and is obscure to cuts. That is, \+ Goal is like call(Goal)
apart from its success or failure is the opposite.

Note that extra parentheses are needed around compound goals (e.g., \ + (this, that)).
Self Assessment

Fill in the blanks:

8. The predicate....................... functions in the traditional manner, i.e., whenever backtracking
reaches it, execution continues forward again via the same clauses as if another substitute
had been found.

9. Thequery.....eee. locates exactly one solution to Goal. It is comparable to call((Goal,!))

and is opaque to cuts.

14.6 Arithmetic Operators

Prolog has the usual range of Arithmetic Operators (+, -, =, * ..)

Prolog must be able to manage arithmetic in order to be a functional general
purpose programming language. Though, arithmetic does not fit well into the logical plan of
things.

LOVELY PROFESSIONAL UNIVERSITY 205

Artificial Intelligence

206

Notes

Specifically, the thought of evaluating an arithmetic expression is in difference to the straight
pattern matching we have observed so far. For this reason, Prolog offers the incorporated
predicate ‘is” that assesses arithmetic expressions. Its syntax calls for the utilization of operators.

X is <arithmetic expression>
The variable X is fixed to the value of the arithmetic expression. On backtracking it is unallocated.

The arithmetic expression appears like an arithmetic expression in any other programming
language.

Here is how to make use of Prolog as a calculator.
?-Xis2+2.

X=4

?-Xis3*4+2.

X=14

Parentheses clarify precedence.

?-Xis3* (4 +2).

X=18

?-Xis(8/4)/2.

X=1

In addition to “is,” Prolog offers a number of operators that contrast two numbers. These comprise
‘greater than’, ‘less than’, “greater or equal than’, and ‘less or equal than.” They perform more
logically, and succeed or fail as per whether the contrast is true or false.

Notice the order of the symbols in the greater or equal than and less than or equal operators.
They are particularly constructed not to appear like an arrow, so that you can use arrow symbols
in your programs without confusion.

X>Y
X<Y
X>=Y

X=<Y

Example: Here are a few examples of their use.
?-4>3.

yes

?-4<3.

no

?-Xis2+2,X>3.

X=4

LOVELY PROFESSIONAL UNIVERSITY

Unit 14: Prolog

?-Xis2+2,3>=X. Notes

no

?-3+4 > 3*2.

yes

They can be used in rules also.

'E Example: Here are two example predicates. One transforms centigrade temperatures to
Fahrenheit, the other verifies if a temperature is below freezing.

c_to_f(CF) :-
FisC*9/5+32.

freezing(F) :-
F=<32.

Here are some examples of their use.
?- c_to_£(100,X).
X=212

yes

?- freezing(15).
yes

?- freezing(45).

no
Self Assessment

Fill in the blank:

10. Prolog must be able to manage arithmetic in order to be a general purpose
programming language.

14.7 Matching

Two terms are defined to match if they are either indistinguishable or if they can be made
indistinguishable by variable instantiation. Instantiating a variable means allocating it a xed
value. Two free variables also match, since they could be instantiated with the similar ground
term.

LOVELY PROFESSIONAL UNIVERSITY 207

Artificial Intelligence

208

Notes

l?

Did u know? The similar variable has to be instantiated with the similar value all through
an expression. The only exception to this rule is the unidentified variable _, which is
measured to be unique whenever it appears.

Example: We provide some examples. The terms is_bigger(X, dog) and
is_bigger(elephant, dog) match, since the variable X can be instantiated with the atom elephant.
We could check this in the Prolog interpreter by submitting the equivalent query to which
Prolog would respond by listing the suitable variable instantiations:

?- is_bigger(X, dog) = is_bigger(elephant, dog).
X = elephant
Yes

The following is an example for a query that doesn’t succeed, because X cannot match with 1 and
2 at the same time.

?2-p(X,2,2)=p(1 Y, X).
No

If, however, rather than X we use the anonymous variable _, matching is possible, since every
occurrence of _ represents a different variable. All through matching Y is instantiated with 2:

-p(L2,2)=p1Y,).

Y=2

Yes

Another example for matching;:

?-f(a, g(X, Y)) =£(X, Z), Z = g(W, h(X)).
X=a

Y =h(a)

Z = g(a, ha))

W=a

Yes

Until now so good but what happens, if matching is probable even though no specific variable
instantiation has to be imposed. Consider the following query:

?- X = my_functor(Y).
X = my_functor(_G177)
Y=_G177

Yes

In this example matching succeeds, since X could be a compound term with the function
my_function and a non-specified single argument. Y could be any valid Prolog term, but it has

LOVELY PROFESSIONAL UNIVERSITY

Unit 14: Prolog

to be the similar term as the argument inside X. In Prolog’s output this is indicated through the Notes
use of the variable _G177. This variable has been produced by Prolog during execution time. Its
particular name, _G177 here, may be different each time the query is submitted.

Self Assessment

Fill in the blanks:

11. Two terms are defined to if they are either indistinguishable or if they can be
made indistinguishable by variable instantiation.

12. The similar variable has to be instantiated with the similar all through an
expression.

14.8 Backtracking

The backtracking predicate provides an alternative path for a program when the current path
fails.

The response to a query is generated after executing and evaluating various conditional
statements in the program. During execution, the control goes to the first conditional statement
and tests it with a variable. If the condition is FALSE, the execution moves back and tries to
prove the condition with another variable. This looping back to the previous statement is called
backtracking.

Listing 3 shows a sample ProLog program that uses the backtracking predicate:
Listing 3: Program with Backtracking

/* The program specifies that the weather can be sunny on Friday, Saturday, or Sunday and the
weekend is on Saturday and Sunday.*/

/* Facts */

weather(friday, sunny).

weather(saturday, sunny).

weather(sunday, sunny).

weekend(saturday).

weekend(sunday).

/* The rule states that outings are possible on weekends, when the weather is sunny */
/* Write is a built-in predicate to display on screen */
outing(Day) :- weather(Day, sunny),

weekend(Day),

write(Day),

nl.

/* End of Program */

Backtracking allows Prolog to find all alternative solutions to a given query.

LOVELY PROFESSIONAL UNIVERSITY 209

Artificial Intelligence

Notes Self Assessment

Fill in the blanks:

13. The .. predicate provides an alternative path for a program when the current
path fails.
14. Backtracking allows Prolog to nd all solutions to a given query.

14.9 Lists

A list is an ordered sequence of zero or more terms that has the following characteristics:
° It is written between square brackets and separated by commas.

° Every nonempty list is divided into a head and tail using the pipe (|) symbol. The tail of
a list is always a list and the head of a list is an element.

° An empty list is written as [] and does not have a term.

The size of the list is not declared and can be increased or decreased dynamically within the
program.

Each element in the list is accompanied by a pointer, which indicates the location of the next
element in the list.

' Example: Some examples of list are [jack, jill, jim], [1,2,3,5], [(a, sublist, in, list), main,
list], and [a | [b,c,d]].

Self Assessment

Fill in the blanks:
15, A is an ordered sequence of zero or more terms.

16. Each element in the list is accompanied by a , which indicates the location of
the next element in the list.

14.10 Input/Output and Streams

Two groups of input/output predicates are obtainable for input and output: that is, those which
refer completely to a current stream, and those which need the stream to be explicitly specified.

Current Streams

There is one current input stream, one current output stream and one current error stream at any
specified time. At system startup these are the typical streams. If necessary, you can alter this
default setting. You should redefine a current stream only if you desire to consequently use it
frequently for input or output. The input/output predicates in this group implicitly address the
current streams, because a stream is not explicitly specified.

Explicitly Specified Stream

The specified stream must already be present when the equivalent predicate is called. If the
stream is a file, it must be open for reading or writing.

210 LOVELY PROFESSIONAL UNIVERSITY

Unit 14: Prolog

In Prolog, streams for input and output are pointed to by alias names or via a system-defined Notes
terms which the Prolog system supplies with the predicateopen/3/4. The alias names are atoms.

The following table offers an outline of the streams which can be addressed. For addressing,

either the device name or the alias name can be used. The device name, or driver name, is used

only on opening a stream. The alias name displays a logical reference to a stream and discovers

a link among a stream and a name. The name is liberally selectable.

Stream Alias name
Standard input user_input
Standard output user_output
Standard error output user_error
Keyboard keyboard
Screen screen

The following defaults are fixed for the three standard streams:

Stream Default

Standard input Keyboard

Standard output Screen or window in which Prolog was started

Standard error output Screen or window in which Prolog was started and error message
window

You can also redefine the typical streams when calling Prolog.

Example: The file goals.pro is presumed to enclose the following goals:
Yis3 +4.

append(A, B, [a,b,c,d]).

atom(A).

If you then call Prolog and state the file as the input stream, these goals are developed
sequentially. The following output occurs on the screen:

$ prolog < goals.pro

Y =7
yes
A=l

B = [a,b,c,d]
yes

no

$
When the end of the file is reached, Prolog is finished.

You can utilize the predicate stream_copy/2 to modify the standard stream assignments
throughout a Prolog session.

LOVELY PROFESSIONAL UNIVERSITY 211

Artificial Intelligence

Notes 14.10.1 Input/Output using Current Streams

Input/output predicates in which no stream is mentioned address the current streams. The
predicate listing/0/1 also sends its outputs to the existing output stream. The Prolog system
concerns error messages on the existing error stream.

When the Prolog system is begin, the corresponding standard streams are first opened, i.e.

Stream Alias Default

Current input current_input user_input (standard input)
Current output current_output user_output (standard output)
Current error output current_error user_error (standard error output)

You can point to the current streams by their alias names in input/output predicates which need
a stream to be mentioned.

You can query or modify the settings for the current streams with the following predicates:
Predicate Purpose

current_input(?Stream) Query current input stream

set_input(@Stream) Set current input stream

see(@Stream) Set and if required, open current input stream

seeing(?Streamn) Query current input stream

seen Reset current input stream to user_input and if required, close the first
stream

current_output(?Stream) Query current output stream

set_output(@Stream) Set current output stream

tell(@Stream) Set and if required, open current output stream

telling(?Stream) Query current output stream

told Reset current output stream to user_output and if required, close the

first stream
current_error(?Stream) Query current error stream
set_error(@Stream) Set current error stream
error_tell(@Stream) Set and if required, open current error stream
error_telling(?Stream) Query current error stream

error_told Reset current error stream to user_error and if required, close the first
stream

When you announce a file as the current input/output stream, you should primarily open it
with the predicate open/3/4 and then describe it as the current input/ output stream with one of
the above predicates. If you desire to state a pipe as the current input/output stream, you should
first produce it with unix_make_pipe/1 and open it with open/3/4. Then you define the pipe as
the existing input/output stream.

With the following predicates, input is utilizing the current input stream and output is utilizing
the current output stream.

212 LOVELY PROFESSIONAL UNIVERSITY

Unit 14: Prolog

Predicate
get_byte(?ByteCode)
get_char(?Char)
get_code(?CharCode)
get_until(+SearchChar, ?Text, ?EndChar)
nl

print(@Term)
put_byte(+ByteCode)
put_char(+Char)
put_code(+CharCode)
read(?Term)
read_term(?Term, +Options)
skip_line

write(@Term)

write_canonical(@Term)

write_formatted(+Format, @TermList)
write_term(@Term, @Options)

writeq(@Term)

Purpose Notes
Read a byte

Read a character

Read a character

Read up to a specified character
Write new line

Write a term

Write a byte

Write a character

Write a character

Read a term

Read a term with control options
Skip input line

Write a term

Write a term in normal structure representation
and in single quotes

Write terms with formatting
Write a term using operator notation

Write a term in single quotes, using operator
notation

14.10.2 Explicitly Specifying Streams for Input/Output

Input and output can be executed also from and to an explicitly specified stream. It is not
required to redefine current streams only for a single input or output operation. Rather, a
predicate with an extra argument for the stream can be utilized.

If you desire to implement the input/output from or to a stream, you must first open this stream
previous to the first read or write operation. If the stream is to be a pipe, you should first create
it with the predicate unix_make_pipe(-Pipename). Pipename is produced by the Prolog system

when the pipe is generated.

pipe by calling
open(pipe(Pipename), read, Y)

open(pipe(Pipename), write, Y)

Open for file by calling

Reading open(file(Filename), read, X)

Writing open(file(Filename), write, X)
Appending open(file(Filename), append, X) —

Icmi [t]13cmYou can also open a stream (typically a file) by calling see/1, tell/1 or error_

tell /1.

Icmi [t]13cmFile names which enclose special or Prolog-specific characters, or which start with
an uppercase letter, must be contained in single quotes.

lcmi [t]13cmYou can open a stream either for reading or for writing, but not for both concurrently.

LOVELY PROFESSIONAL UNIVERSITY

213

Artificial Intelligence

Notes The following predicates need the input/output stream to be specified explicitly. The stream is
addressed by a name (alias name or term of open/3/4). You can also address the standard

streams by their synonyms.
Predicate

get_byte(@Stream, ?ByteCode)
get_char(@Stream, ?Char)
get_code(@Stream, ?CharCode)
get_until(@Stream,
+SearchChar, ?Text, ?EndChar)
nl(@Stream)

print(@Stream, @Term)
put_byte(@Stream, +ByteCode)
put_char(@Stream, +Char)
put_code(@Stream, CharCode)
read(@Stream, ?Term)
read_term(@Stream, ?Term, @Options)
skip_line(@Stream)
write(@Stream, @Term)

write_canonical(@Stream, @Term)

write_formatted(@Stream,

+Format, @TermList)

Purpose
Read a byte
Read a character

Read a character

Read up to a specific character
Write new line

Write a term

Write a byte

Write a character

Write a character

Read a term

Read a term with control options
Skip input line

Write a term

Write a term in normal structure representation and

in single quotes

Write terms with formatting

write_term(@Stream, @Term, @Options) Write a term using operator notation

writeq(@Stream, @Term) Write a term in single quotes, using operator notation

Icmi [t]13cmKeyboard inputs are usually buffered one line at a time and are passed to
the Prolog system when is pressed. Output to files and pipes is usually also buffered. If
necessary, you can clear the output buffers with flush_output/0/1. You can manage buffering
with open/3/4.

You can utilize the predicate close/1 to close any stream despite the standard streams. Should
you effort to close a standard stream with close/1, it will have no result.

The predicate reset_streams/0 reinstates the defaults for the standard streams

2
Task Make distinction between Input/output using current streams and explicitly
specified streams.

Self Assessment

Fill in the blanks:

17. Input/output predicates in which no stream is mentioned address the
streams.

214 LOVELY PROFESSIONAL UNIVERSITY

Unit 14: Prolog

18. Youshould...................... a current stream only if you desire to consequently use it frequently Notes
for input or output.

14.11 Summary

° Prolog is a logical and a declarative programming language. The name itself, Prolog, is
short for PROgramming in LOGic.

° In ProLog, facts describe the relationships between different objects and are independent
of each other.

° In ProLog, rules are used in the process of decision-making and can deduce new facts from
existing ones.

° Proposing a query means demanding Prolog to attempt to prove that the statement(s)
implied by the query can be prepared true given the right variable instantiations are
prepared.

° An atom is a general-purpose name with no inherent meaning. It is composed of a sequence

of characters that is parsed by the Prolog reader as a single unit.

° Variables are denoted by a string consisting of letters, numbers and underscore characters,
and beginning with an uppercase letter or underscore.

° A compound term is composed of an atom called a functor and a number of “arguments”,
which are again terms.

° The predicate repeat functions in the traditional manner, i.e.,, whenever backtracking
reaches it, execution continues forward again via the same clauses as if another substitute
had been found.

° Two terms are defined to match if they are either indistinguishable or if they can be made

indistinguishable by variable instantiation.

° The backtracking predicate provides an alternative path for a program when the current
path fails.

14.12 Keywords

Atom: An atom is a general-purpose name with no inherent meaning. It is composed of a
sequence of characters that is parsed by the Prolog reader as a single unit.

Backtracking: The backtracking predicate provides an alternative path for a program when the
current path fails.

Compound Term: A compound term is composed of an atom called a functor and a number of
"arguments", which are again terms.

Facts: In ProLog, facts describe the relationships between different objects and are independent
of each other.

Matching: Two terms are defined to match if they are either indistinguishable or if they can be
made indistinguishable by variable instantiation.

Prolog: Prolog is a logical and a declarative programming language. The name itself, Prolog, is
short for PROgramming in LOGic.

Repeat: The predicate repeat functions in the traditional manner, i.e.,, whenever backtracking
reaches it, execution continues forward again via the same clauses as if another substitute had
been found.

LOVELY PROFESSIONAL UNIVERSITY 215

Artificial Intelligence

Notes Rules: In ProLog, rules are used in the process of decision-making and can deduce new facts from
existing ones.

Variable: Variables are denoted by a string consisting of letters, numbers and underscore
characters, and beginning with an uppercase letter or underscore.

14.13 Review Questions

What is Prolog? Illustrate the Properties of Prolog as a Programming language.
Enlighten how a prolog is considered as an Al Programming Language.
Ilustrate the process of Converting English to Prolog Facts and Rules.

Elucidate the process of achieving goal execution.

1.

2

3

4

5. Describe various terms related to prolog.

6 Demonstrate the working of If-then-else loop.

7 Make distinguish between repeat and once predicate.
8

Describe the concept of matching two terms if they are either identical or if they can be
made identical by variable instantiation. Give example.

9. Ilustrate the function of backtracking predicate with examples.

10. Explain the concept of Input/Output and Streams with examples.

Answers: Self Assessment

1 Programming 2. Robinson’s Resolution
3 Facts 4. Rules

5. Query 6. Atom

7 Compound Term 8. Repeat

9 Once 10. Functional

11. Match 12. Value

13. Backtracking 14. Alternative

15. List 16. Pointer

17. Current 18. Redefine

14.14 Further Readings

N

Books Antonelli, D. 1983. The application of artificial intelligence to a maintenance and diagnostic
information system (MDIS). Proceedings of the Joint Services Workshop on Artificial
Intelligence in Maintenance. Boulder, CO.

Boose, J.H. 1984. Personal construct theory and the transfer of human expertise.
Proceedings of the National Conference on Artificial Intelligence (AAAI-84),
p- 27-33, Austin, Texas.

216 LOVELY PROFESSIONAL UNIVERSITY

Unit 14: Prolog

Boose,].H. 1985. A knowledge acquisition program for expert systems based on personal Notes
construct psychology. International Journal of Man-Machine Studies, 23, 495-525.

Boose, J.H. 1986a. Expertise Transfer for Expert System Design, New York; Elsevier.

Boose,].H. 1986b. Rapid acquisition and combination of knowledge from multiple experts
in the same domain. Future Computing Systems Journal, 1, 191-216.

Boose,].H. 1988. Uses of repertory grid-centered knowledge acquisition tools for knowledge-
based systems. International Journal of Man-Machine Studies, 29, 287-310.

Boose,].H. 1989. A survey of knowledge acquisition techniques and tools. Knowledge
acquisition: An international journal of knowledge acquisition for knowledge-
based systems, in press. Vol. 1, No. 1.

Boose,].H., and Bradshaw,].M. 1987b. AQUINAS: A knowledge acquisition workbench
for building knowledge based systems. Proceedings of the First European Workshop
on Knowledge Acquisition for Knowledge-Based Systems (pp. A6.1-6). Reading
University.

Boose, J.H., Bradshaw, J.M., Shema, D.B. 1988. Recent progress in Aquinas: A
knowledge acquisition workbench. Proceedings of the Second European Knowledge
Acquisition Workshop (EKAW-88). p. 2.1-15, Bonn.

Bradshaw, J. 1988. Shared causal knowledge as a basis for communication between expert
and knowledge acquisition system. Proceedings of the Second European Knowledge
Acquisition Workshop (EKAW-88) pp. 12.1-6.

Bradshaw, J.M. 1988. Strategies for selecting and interviewing experts. Boeing
Computer Services Technical report in preparation.

Bradshaw,].M. and Boose,].H. 1989. Decision analytic techniques for knowledge
acquisition: Combining situation and preference models using Aquinas. Special issue on
the 2nd Knowledge Acquisition for Knowledge-Based Systems Workshop, 1987,
International Journal of Man- Machine Studies. in press.

Clancey. W. 1986. Heuristic classification. In J. Kowalik (Ed.). Knowledge-based
problem solving. New York: Prentice-Hall.

Davis, R., and Lenat, D.B. 1982. Knowledge-based systems in artificial intelligence.
New York: McGraw-Hill.

DeJong, K. 1987. Knowledge acquisition for fault isolation expert systems. Special issue
on the 1 AAA1 Knowledge Acquisition for Knowledge-Based Systems Workshop,
1986, Part 4, International/ Journal of Man-Machine Studies, Vol. 27, No. 2.

AN

Y.L,

Online link www.solanum.org/ prolog.htm

LOVELY PROFESSIONAL UNIVERSITY 217

Jalandhar-Delhi G.T. Road (NH-1)
Phagwara, Punjab (India)-144411
For Enquiry: +91-1824-521360
Fax.: +91-1824-506111

LOVELY PROFESSIONAL UNIVERSITY T S E s
Email: odi@Ilpu.co.in

9

	c.pdf
	1.pdf
	2.pdf
	3.pdf
	4.pdf
	5.pdf
	6.pdf
	7.pdf
	8.pdf
	9.pdf
	10.pdf
	11.pdf
	12.pdf
	13.pdf
	14.pdf

