
Edited by:
Kumar Vishal

MODERN PROGRAMMING TOOLS &
TECHNIQUES-III

Edited By
Kumar Vishal

Printed by
EXCEL BOOKS PRIVATE LIMITED

A-45, Naraina, Phase-I,
New Delhi-110028

for
Lovely Professional University

Phagwara

SYLLABUS

Modern Programming Tools & Techniques-III

Objectives: To impart the skills needed to implement Network enabled technologies.

To enable the student to understand dot net framework classes.

To enable the student to develop multi-language support applications.

To enable the student to develop platform independent applications.

To enable the student to develop console and windows applications.

To enable the student to implementing Object oriented concepts in dot net.

To enable the student to learn file handling using dot net.

To enable the student to understand Database application development using dot net and data transmission
technology.

S.No. Description

1. Introduction: What is VB.NET, Characteristics of VB.NET, VB.NET as a language in .NET Framework.

2. Variables and Data Types: Variables and Data Types. Decision Making and Looping: If, If else if. While, do while,
for loop, Declaring Arrays. System. Array class.

3. Built-in Functions: String Class, Conversion functions, other Miscellaneous Functions, Subroutines and
Functions.

4. Classes & Object in VB.NET: Using Classes, object, methods. Constructors. Creating Properties and indexers.
Using Inheritance in classes.

5. Namespaces: Meaning and its working. Using System Namespace and Object class. Exception Handling: Using
Try and Catch blocks, The Finally Section.

6. Using System. Collections: Array List, Stack, Queue, Sorted List etc.

7. Windows Programming: Using Controls- textboxes, listbox, buttons, datetime picker, comboboxes etc.

8. Common Dialog Boxes: OpenFileDialog, SaveFileDialog, ColorDialog, MessageBox Class and DialogResult Class.

9. File Input/Output: Working with Files and Directories. System.IO.

10. ADO.NET: Accesing Database with ADO.NET. Executing Insertion, deletion, updation and select command with
databases. XML Basics: What is XML? Data Representation through XML. Working with XMLReader and
XMLWriter Classes.

CONTENT

Unit 1: Introduction to Visual Basic

Kumar Vishal, Lovely Professional University

1

Unit 2: Variables and Data Types

Kumar Vishal, Lovely Professional University

24

Unit 3: Decision Making and Looping

Kumar Vishal, Lovely Professional University

40

Unit 4: Array

Kumar Vishal, Lovely Professional University

55

Unit 5: Built-in Functions

Kumar Vishal, Lovely Professional University

71

Unit 6: Classes and Object in VB.NET

Kumar Vishal, Lovely Professional University

86

Unit 7: Namespaces

Kumar Vishal, Lovely Professional University

103

Unit 8; Exception Handling

Sarabjit Kumar, Lovely Professional University

129

Unit 9: Using System.Collections

Sarabjit Kumar, Lovely Professional University

140

Unit 10: Windows Programming

Sarabjit Kumar, Lovely Professional University

157

Unit 11: Common Dialog Boxes

Sarabjit Kumar, Lovely Professional University

186

Unit 12: File Input/Output

Sarabjit Kumar, Lovely Professional University

203

Unit 13: ADO.NET

Kumar Vishal, Lovely Professional University

230

Unit 14: XML

Kumar Vishal, Lovely Professional University

258

LOVELY PROFESSIONAL UNIVERSITY 1

Unit 1: Introduction to Visual Basic

NotesUnit 1: Introduction to Visual Basic

CONTENTS

Objectives

Introduction

1.1 Elements of Visual Basic

1.1.1 Visual Element

1.1.2 Language Element

1.2 Object-oriented Programming in VB.NET

1.2.1 Encapsulation

1.2.2 Polymorphism

1.2.3 Inheritance

1.3 Visual Basic.NET

1.3.1 Common Language Runtime

1.3.2 Managed Execution

1.3.3 Microsoft Intermediate Language (MSIL)

1.3.4 Just-In-Time Compiler

1.3.5 Executing Code

1.3.6 Assemblies

1.3.7 Assembly Manifest

1.3.8 An End to DLL Hell

1.3.9 Global Assembly Cache (GAC)

1.4 The Common Type System

1.4.1 Classes

1.4.2 Interfaces

1.4.3 Value Types

1.4.4 Delegates

1.5 Features of VB.NET

1.6 .NET Framework

1.6.1 Visual Basic in .NET Framework

1.7 VB.NET as a Language in .NET Framework

1.7.1 Source Files

1.7.2 Identifiers

1.7.3 Keywords

Contd...

Kumar Vishal, Lovely Professional University

2 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes 1.7.4 Literals

1.7.5 Types

1.8 Summary

1.9 Keywords

1.10 Review Questions

1.11 Further Readings

Objectives

After studying this unit, you will be able to:

� Discuss visual basic elements

� Explain object-oriented programming in VB.NET

� Understand visual basic.net framework

� Discuss common type system

� Elaborate VB.NET features

� Explain .NET framework

� Understand VB.NET as a language in .NET framework

Introduction

Computer programming, often shortened to programming, scripting, or coding is the process
of designing, writing, testing, debugging, and maintaining the source code of computer programs.
This source code is written in one or more programming languages such as C++, C#, Java,
Python, Smalltalk, etc. The purpose of programming is to create a set of instructions that
computers use to perform specific operations or to exhibit desired behaviors. The process of
writing source code often requires expertise in many different subjects, including knowledge of
the application domain, specialized algorithms and formal logic. Within software engineering,
programming is regarded as one phase in a software development process.

Visual basic is a high level programming language developed from the earlier DOS version
called BASIC. Visual Basic .NET is the latest technology introduced by Microsoft with tons of
new features including the .NET framework. Educational institutes, Universities and Software
Development companies have migrated to VB.NET now but Visual Basic 6 is still widely learned
and taught. Learning Visual Basic 6 is quite easier than other programming languages such as
C++, C#, Java etc. This is because Visual Basic enables you to work in a graphical user interface
where you can just drag and drop controls that you want to work with where you have to write
bunches of code to create in C++ or C# or even in Java. If you are new to programming and want
to start it in the smoothest and easiest way, then you should start it with Visual Basic.

Sometime in the July 2000, Microsoft announced a whole new software development framework
for Windows called .NET in the Professional Developer Conference (PDC). Microsoft also released
PDC version of the software for the developers to test. After initial testing and feedback Beta 1
of .NET was announced. Beta 1 of the .NET itself got lot of attention from the developer
community. When Microsoft announced Beta 2, it incorporated many changes suggested by the
community and internals into the software. The overall ‘Beta’ phase lasted for more than 1 ½
years. Finally, in March 2002 Microsoft released final version of the .NET framework. One thing
to be noted here is the change in approach of Microsoft while releasing this new platform.

LOVELY PROFESSIONAL UNIVERSITY 3

Unit 1: Introduction to Visual Basic

NotesUnlike other software where generally only a handful people are involved in beta testing, .NET
was thrown open to community for testing in its every pre-release version. This is one of the
reasons why it created so many waves of excitement within the community and industry as
well. Microsoft has put in great efforts in this new platform. In fact Microsoft says that its future
depends on success of .NET. The development of .NET is such an important event that Microsoft
considers it equivalent to transition from DOS to Windows. All the future development –
including new and version upgrades of existing products – will revolve around .NET. So, if you
want to be at the forefront of Microsoft Technologies, you should be knowing .NET.

1.1 Elements of Visual Basic

The two basic elements of Visual Basic are the GUI and the code associated with the application
that makes it respond to events occurred as a result of a user action.

1.1.1 Visual Element

IDE is a term commonly used in the programming world to describe the interface and
environment that we use to create our applications. It is called integrated because we can access
virtually all of the development tools that we need from one screen called an interface. The IDE
is also commonly referred to as the design environment, or the program.

The Visual Basic IDE is made up of a number of components:

� Menu Bar

� Tool Bar

� Project Explorer

� Properties Window

� Form Layout Window

� Toolbox

� Form Designer

� Object Browser

Figure 1.1: VB Startup Window

Source: http://visualbasic.freetutes.com/learn-vb6/lesson1.html

4 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes 1.1.2 Language Element

Microsoft Visual Basic code is written in units called procedures. A procedure contains a series
of Visual Basic statements that perform an operation or calculate a value. An event procedure is
a procedure that runs in response to an event initiated by the user or program code, or triggered
by the system. Its syntax is,

Private Sub button1_Click()

//code

End Sub

Self Assessment

Fill in the blanks:

1. The purpose of programming is to create a set of that computers use to
perform specific operations or to exhibit desired behaviors.

2. A contains a series of Visual Basic statements that perform an operation or
calculate a value.

1.2 Object-oriented Programming in VB.NET

Before moving to the language syntax, let’s formally define the key OO concepts and terms that
will be used in this unit beginning with encapsulation, polymorphism, and inheritance.

1.2.1 Encapsulation

Encapsulation means that an object can hide its internal data structures from consumers of the
object. Therefore, all of the object’s internal data is manipulated through members (methods,
properties, events, fields) of the object, rather than through direct references.

The primary benefits of encapsulation are maintainability and reusability. Code that takes
advantage of encapsulation is more maintainable because consumers of the code work with the
object through its public members. With a fully encapsulated object, for example, code outside
the object cannot directly change a variable declared inside the object. By shutting off this direct
access, fewer bugs are introduced because consumers of the object cannot inadvertently change
the state of an object at run-time.

Abstracting the internal data of the object from consumers also leads to greater reusability. This
follows because encapsulation leads to fewer dependencies between the consumer and the class
and fewer dependencies is a prerequisite for creating reusable software.

1.2.2 Polymorphism

The second characteristic of OO systems is polymorphism. This concept is defined as the ability
to write code that treats objects as if they were the same when in fact they are different. In other
words, polymorphism allows you to write code that is generic across a set of objects that
provide the same public members. Underneath the covers, each object might be implemented
differently. However, as far as the consumer is concerned, each object looks the same and can be
treated as such. In VB.NET, polymorphism can be created using both classes and interfaces.

The benefits of polymorphism revolve around the central fact that consumers of objects do not
have to be aware of how the object performs its work, only that it does so through a specific set
of members. This makes writing code that uses objects simpler by allowing the code to treat the

LOVELY PROFESSIONAL UNIVERSITY 5

Unit 1: Introduction to Visual Basic

Notesobject as if it were a black box, which leads to increased maintainability. Along the same lines,
polymorphism allows you to write less code because each individual object does not have to be
dealt with separately. Finally, polymorphism lends itself to writing code that can be reused
because it will not be specific to a particular object.

1.2.3 Inheritance

The final OO concept is inheritance. Inheritance allows objects to share their interfaces (the
definition of their members) and/or implementation in a hierarchy. For example, Tyrannosaurus
and Velociraptor objects might be derived or inherited from a more generic Theropod object.
All three objects share a basic set of members and, possibly, behaviors, such as carnivorousness,
although the descendant objects might also include additional members or override members
of Theropod. Inheritance allows objects to become more specific further down the hierarchy by
adding additional members. In a nutshell, inheritance allows objects to reuse features (either
their definition or their code) of other objects to which they are naturally related. The primary
benefit of inheritance is, thus, reuse.

Obviously, inheritance and polymorphism are closely related, and, in fact, inheritance is what
makes polymorphism possible in OO designs. It is always the case that objects that are in an
inheritance relationship can be treated polymorphically. For example, if the Velociraptor object
is inherited from the Theropod object, any consumer that is designed to work with Theropod
objects will also work with Velociraptor objects.

VB.NET developers can benefit from inheritance in two ways: through interface inheritance and
implementation inheritance. Interface inheritance allows only the definition of the object to be
reused, whereas implementation inheritance allows the actual code written for the ancestor
object (and its ancestors all the way down the line) to be reused.

Note If developers wanted to use a form of implementation inheritance in previous
versions of VB, they had to design classes to take advantage of the concepts of containment
and delegation. Basically, these concepts mean that a class accessible by a consumer will
contain a private instance of a second class and delegate its services to the consumer
through its own interface. Containment and delegation are familiar terms (along with
aggregation) to COM programmers.

Self Assessment

Fill in the blanks:

3. means that an object can hide its internal data structures from consumers of
the object.

4. allows you to write code that is generic across a set of objects that provide
the same public members.

5. allows objects to share their interfaces (the definition of their members)
and/or implementation in a hierarchy.

1.3 Visual Basic .NET

Visual Basic .NET is an Object-oriented programming language designed by Microsoft. With the
word “Basic” being in the name of the language, you can already see that this is a language for

6 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes beginners. There are people who criticize VB.NET because of the simplicity of the syntax, but
VB.NET has the ability to create very powerful and sophisticated applications. VB.NET is a great
place to start because of how easy and straight forward it is. The syntax is easy and you will not
find yourself writing hundreds of lines of code as there are many shortcuts that make coding so
much easier in this language.

Let’s take a look at the VB.NET syntax. The purpose of typing code is to instruct the application
what to do. It’s not as easy as typing “Hey application, multiply 5 by 83 but it’s pretty darn close!
If you wanted to tell your application to show a Message Box telling you that
HowToStartProgramming.com is awesome, this would be the code you would use:

MessageBox.Show(“HowToStartProgramming.com is awesome”)

Microsoft Visual Basic .NET is a programming environment used to create Graphical User
Interface (GUI) applications for the Microsoft Windows family of operating systems. It usually
ships in two types, either by itself or as part of Microsoft Visual Studio .NET. To use the lessons
on this site, you must have installed either Microsoft Visual Basic .NET 2003 or Microsoft Visual
Studio .NET 2003. After installing Microsoft Visual Studio .NET 2003, to use the programming
environment, you must first open it. To do that, you would click Start -> (All) Programs ->
Microsoft Visual Studio .NET 2003 -> Microsoft Visual Studio .NET 2003.

In the early days of Microsoft DOS, there was a language called Basic. It provided a simplified
and easy way to create small applications using words very close to the English language. Since
the language was easy, it became popular with the help of Microsoft operating systems gaining
ground. To continue this tendency and provide more support for Basic, Microsoft used that
language as the platform to create Graphical User Interface (GUI) applications. Once again, this
move was welcomed and the language became the widely accepted Visual Basic. The Microsoft
Visual Basic programming environment became very popular for its ease of use and it was a
candidate for serious productive applications. Because Visual Basic was not tied to the operating
systems low-level operations, its programmers had to use library calls to access functions of the
Win32 Application Programming Interface (API), the library that “defines” Microsoft Windows.
This also accentuated the difference with other programming environments like Microsoft
Visual C++ or other libraries like Microsoft Foundation Class (MFC). In fact, although Microsoft
shipped Visual Studio 6 that combined various programming environments with different
languages (Visual Basic, C++, ASP, Win32, etc), the only real thing they had in common was that
they shipped in the same box (and the same DVD). To unify the various languages or programming
environments that Microsoft had developed for many years, the company created a new library
aside from Win32. This was the birth of the .NET Framework. This library is used by, or shared
among, different programming languages or environments so that programmers can benefit
from a better collaboration. Now it is possible for people who “speak”, that is, people who
program in, different languages to work on the same project with less regard for compatibility
issues. This is because (most of) the functions, classes, and resources, are used in conceptually the
same way in the different languages. Microsoft Visual Basic .NET is Microsoft’s implementation
of the .NET Framework for Visual Basic programmers. Although Visual Basic .NET is a “child”
of Visual Basic 6.0, there are many differences that can be interpreted as a complete shift, with a
lot of improvements. Because of these differences, many already Visual Basic 6.0 programmers
resisted the move to this new environment (there were also many other considerations) but
those programmers are catching up.

1.3.1 Common Language Runtime

The CLR is the execution engine for the .NET Framework. This runtime manages all code
compiled with VB.NET. In fact, code compiled to run under .NET is called managed code to
distinguish it from code running outside of the framework. Besides being responsible for

LOVELY PROFESSIONAL UNIVERSITY 7

Unit 1: Introduction to Visual Basic

Notesapplication loading and execution, the CLR provides services that will benefit component
developers:

� Invocation and termination of threads and processes

� Object lifetime and memory management

� Cross-language integration

� Code access and role-based security

� Exception handling (even across languages)

� Deployment and versioning

� Interoperation between managed and unmanaged code

� Debugging and profiling support (even across languages)

Runtimes are nothing new. Visual Basic has always had some form of a runtime. Visual C++ has
a runtime called MSVCRT.DLL. Perl, Python, and SmallTalk also use runtimes. The difference
between these runtimes and the CLR is that the CLR is designed to work with multiple
programming languages. Every language whose compiler targets the .NET Framework benefits
from the services of the CLR as much as any other language..NET is also similar to Java. Java
uses a runtime called the Java Virtual Machine. It can run only with Java code, so it has the same
limitations as the other languages. Another distinction is that the JVM is an interpreter. Although
all languages in the .NET environment are initially compiled to a CPU independent language
called Intermediate Language (which is analogous to Java byte code), IL is not interpreted at
runtime like Java. When code is initially executed, one of several just-in-time (JIT) compilers
translate the IL to native code on a method-by-method basis. Cross-language integration is one
of the major benefits provided by the CLR. If a colleague has written a base class in C#, you can
define a class in VB.NET that derives from it. This is known as cross-language inheritance. Also,
objects written in different languages can easily interoperate. The two parts of the CLR that
make this interoperation possible are the Common Type System and the Common Language
Specification. The Common Language Runtime (CLR) is the virtual machine component of
Microsoft’s .NET framework and is responsible for managing the execution of .NET programs.
In a process known as Just-in-time compilation, the compiled code is converted into machine
instructions that, in turn, are executed by the computer’s CPU. The CLR provides additional
services including memory management, type safety and exception handling. All programs
written for the .NET framework, regardless of programming language, are executed by the
CLR. It provides exception handling, garbage collection and thread management. CLR is common
to all versions of the .NET framework. The CLR is Microsoft’s implementation of the Common
Language Infrastructure (CLI) standard.

The Common Type System (CTS) defines rules that a language must adhere to in order to
participate in the .NET Framework. It also defines a set of common types and operations that
exist across most programming languages and specifies how these types are used and managed
within the CLR, how objects expose their functionality and how they interoperate. The CTS
forms the foundation that enables cross-language integration within .NET.

The Common Language Specification (CLS) is a subset of the CTS that describes the basic qualities
used by a wide variety of languages. Components that use only the features of the CLS are said
to be CLS-compliant. As a result, these components are guaranteed to be accessible from any
other programming language that targets .NET. Because VB.NET is a CLS-compliant language,
any class, object, or component that you build will be available from any other CLS-compliant
programming language in .NET.

8 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Figure 1.2: CLR

Source: http://dotnetslackers.com/articles/sql/Introduction-to-CLR-Database-Objects.aspx

1.3.2 Managed Execution

The .NET CLR provides a common context within which all .NET applications execute, regardless
of the language in which they are written. CLR is responsible for handling every aspects of the
managed code such as memory and resource management, secure environment to run in, garbage
collection , access to the operating systems services etc. Code that targets the CLR is commonly
known as managed code. The managed execution process includes the following steps:

1. Choosing a proper compiler

2. Generating MSIL code

3. Compiling MSIL to CPU specific native code using JIT

4. Executing the processor specific code.

Every constructs (such as class, struct, etc.) in every .NET languages must compile to CLR
compatible types to qualify as .NET managed code. You can choose compilers such as Visual
Basic, C#, Visual C++, JScript, or one of many third-party compilers like Eiffel, Perl, or COBOL
compiler. CLR supports a wide variety of data types and language features. It is not mandatory
to include all the CLR features in every .NET enabled languages, but the exposed language
features should be compatible with the standard .NET frame work. If your component is targeted
to use by components written in other .NET languages, your component’s exported types must
expose only language features that are included in the Common Language Specification (CLS).

1.3.3 Microsoft Intermediate Language (MSIL)

MSIL Code Generation is the first level of .NET compilation in which the high-level compiled in
to a language called Intermediate Language (IL). The IL code look more like machine code than

LOVELY PROFESSIONAL UNIVERSITY 9

Unit 1: Introduction to Visual Basic

Noteshigh-level language, but the IL does contain some abstract concepts such as base classes and
exception handling, which is why the language is called intermediate. MSIL includes instructions
for loading, storing, initializing, and calling methods on objects, as well as instructions for
arithmetic and logical operations, control flow, direct memory access, exception handling, and
other operations. When a compiler produces MSIL, it also produces metadata. Metadata describes
the types in your code, including the definition of each type, the signatures of each type’s
members, the members that your code references, and other data that the runtime uses at
execution time.

1.3.4 Just-In-Time Compiler

CPU-independent MSIL code can be efficiently converted to native code using Just-in-Time (JIT)
compiler, only when that portion of IL code is required for execution. JIT generated machine
code is CPU-specific code that runs on the same computer architecture as the JIT compiler and it
takes advantage of the added instruction sets offered by each CPU type.

1.3.5 Executing Code

When CLR executes a .NET method for the first time, it generates a processor specific native code
from MSIL using the JIT compiler. The next time the method is run, the existing JIT-compiled
native code is run. The process of JIT-compiling and then executing the code is repeated until
execution is complete. CLR provides myriad set of services to managed components like garbage
collection, versioning, interoperability with unmanaged code, etc.

1.3.6 Assemblies

An assembly is a collection of types and resources that forms a logical unit of functionality. All
types in the .NET Framework must exist in assemblies; the common language runtime does not
support types outside of assemblies. Each time you create a Microsoft Windows® Application,
Windows Service, Class Library, or other application with Visual Basic .NET, you’re building a
single assembly. Each assembly is stored as an .exe or .dll file.

Note Although it’s technically possible to create assemblies that span multiple files, you’re
not likely to use this technology in most situations.

The .NET Framework uses assemblies as the fundamental unit for several purposes:

� Security

� Type Identity

� Reference Scope

� Versioning

� Deployment

1.3.7 Assembly Manifest

Every assembly contains an assembly manifest, a set of metadata with information about the
assembly. The assembly manifest contains these items:

� The assembly name and version

� The culture or language the assembly supports (not required in all assemblies)

10 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes � The public key for any strong name assigned to the assembly (not required in all assemblies)

� A list of files in the assembly with hash information

� Information on exported types

� Information on referenced assemblies

In addition, you can add other information to the manifest by using assembly attributes. Assembly
attributes are declared inside of a file in an assembly, and are text strings that describe the
assembly. For example, you can set a friendly name for an assembly with the AssemblyTitle
attribute:

<Assembly: AssemblyTitle(“Test Project”)>

Figure 1.3: Assembly Manifest

Source: http://msdn.microsoft.com/en-IN/library/ms973843.aspx

1.3.8 An End to DLL Hell

DLL hell is a common term for various problems associated with the use of dynamic link
libraries (DLLs) or DLL files. A DLL file is a resource within the Windows operating system that
contains code and data related to the functionality of one or more applications. These files,
which may have the file extension .dll or other file extensions, have been a major building block
for the Windows operating system and Windows programs since the early MS-DOS versions of
Microsoft’s computer technology. Successive versions of Windows have illustrated certain
problems with the use of DLL files for many different programs. From a customer perspective,
the most common versioning problem is what we call DLL Hell. Simply stated, DLL Hell refers
to the set of problems caused when multiple applications attempt to share a common component
like a Dynamic-Link Library (DLL) or a Component Object Model (COM) class. In the most
typical case, one application will install a new version of the shared component that is not
backward compatible with the version already on the machine. Although the application that
has just been installed works fine, existing applications that depended on a previous version of
the shared component might no longer work. In some cases, the cause of the problem is even
more subtle. For example, consider the scenario where a user downloads a Microsoft ActiveX
control as a side effect of visiting some Websites. When the control is downloaded it will replace
any existing versions of the control that were present on the machine. If an application that has
been installed on the machine happens to use this control, it too might potentially stop working.
In many cases there is a significant delay before a user discovers that an application has stopped
working. As a result, it is often difficult to remember when a change was made to the machine

LOVELY PROFESSIONAL UNIVERSITY 11

Unit 1: Introduction to Visual Basic

Notesthat could have affected the application. A user may remember installing something a week
ago, but there is no obvious correlation between that installation and the behavior they are now
seeing. To make matters worse, there are few diagnostic tools available today to help the user
(or the support person who is helping them) determine what is wrong. The reason for these
issues is that version information about the different components of an application aren’t recorded
or enforced by the system. Also, changes made to the system on behalf of one application will
typically affect all applications on the machine–building an application today that is completely
isolated from changes is not easy. One reason why it’s hard to build an isolated application is
that the current run-time environment typically allows the installation of only a single version
of a component or an application. This restriction means that component authors must write
their code in a way that remains backward compatible, otherwise they risk breaking existing
applications when they install a new component. In practice, writing code that is forever backward
compatible is extremely difficult, if not impossible. In .NET, the notion of side-by-side is core to
the versioning story. Side-by-side is the ability to install and run multiple versions of the same
component on the machine at the same time. With components that support side-by-side, authors
aren’t necessarily tied to maintaining strict backward compatibility because different applications
are free to use different versions of a shared component.

1.3.9 Global Assembly Cache (GAC)

Each computer where the common language runtime is installed has a machine-wide code cache
called the global assembly cache. The global assembly cache stores assemblies specifically
designated to be shared by several applications on the computer. You should share assemblies
by installing them into the global assembly cache only when you need to. As a general guideline,
keep assembly dependencies private, and locate assemblies in the application directory unless
sharing an assembly is explicitly required. In addition, it is not necessary to install assemblies
into the global assembly cache to make them accessible to COM interop or unmanaged code.

Note There are scenarios where you explicitly do not want to install an assembly into the
global assembly cache. If you place one of the assemblies that make up an application in
the global assembly cache, you can no longer replicate or install the application by using
the xcopy command to copy the application directory. You must move the assembly in the
global assembly cache as well.

There are several ways to deploy an assembly into the global assembly cache:

� Use an installer designed to work with the global assembly cache. This is the preferred
option for installing assemblies into the global assembly cache.

� Use a developer tool called the Global Assembly Cache tool (Gacutil.exe), provided by the
.NET Framework SDK.

� Use Windows Explorer to drag assemblies into the cache.

Note In deployment scenarios, use Windows Installer 2.0 to install assemblies into the
global assembly cache. Use Windows Explorer or the Global Assembly Cache tool only in
development scenarios, because they do not provide assembly reference counting and
other features provided when using the Windows Installer.

Administrators often protect the WINNT directory using an Access Control List (ACL) to control
write and execute access. Because the global assembly cache is installed in the WINNT directory,

12 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes it inherits that directory’s ACL. It is recommended that only users with Administrator privileges
be allowed to delete files from the global assembly cache. Assemblies deployed in the global
assembly cache must have a strong name. When an assembly is added to the global assembly
cache, integrity checks are performed on all files that make up the assembly. The cache performs
these integrity checks to ensure that an assembly has not been tampered with, for example,
when a file has changed but the manifest does not reflect the change.

Self Assessment

True or False:

6. The CTS is the execution engine for the .NET Framework.

7. The code compiled to run under .NET is called unmanaged code.

8. MSIL Code Generation is the first level of .NET compilation in which the high-level
compiled in to a language called intermediate language (IL).

9. CPU-independent MSIL code can be efficiently converted to native code using an
interpreter.

1.4 The Common Type System

The Common Type System defines how data types are declared, used, and managed in the
runtime, and is also an important part of the runtime’s support for the Cross Language Integration.
The common type system performs the following functions:

� Establishes a framework that enables cross-language integration, type safety, and high
performance code execution.

� Provides an object-oriented model that supports the complete implementation of many
programming languages.

� Defines rules that languages must follow, which helps ensure that objects written in
different languages can interact with each other.

The Common Type System can be divided into two general categories of types–Reference type
and Value type each of which is further divided into subcategories.

Figure 1.4: CTS

Source: http://msdn.microsoft.com/en-us/library/ms973862.aspx

LOVELY PROFESSIONAL UNIVERSITY 13

Unit 1: Introduction to Visual Basic

Notes1.4.1 Classes

Class defines the operations an object can perform (methods, events, or properties) and defines
a value that holds the state of the object (fields). Although a class generally includes both
definition and implementation, it can have one or more members that have no implementation.
An instance of a class is an object. You access an object’s functionality by calling its methods and
accessing its properties, events, and fields.

The Table 1.1 provides a description of some of the characteristics that the runtime allows a class
to have. (Additional characteristics that are available through Attribute classes are not included
in this list.) Your language might not make all these characteristics available.

Table 1.1: Characteristics of a Class

Characteristic Description

Sealed Specifies that another type cannot be derived from this type.

Implements Indicates that the class uses one or more interfaces by providing implementations
of interface members.

Abstract Specifies that you cannot create an instance of the class. To use it, you must
derive another class from it.

Inherits Indicates that instances of the class can be used anywhere the base class is
specified. A derived class that inherits from a base class can use the
implementation of any virtual methods provided by the base class, or derived
class can override them with its own implementation.

Exported or
not exported

Indicates whether a class is visible outside the assembly in which it is defined.
Applies only to top-level classes.

Source: http://msdn.microsoft.com/en-us/library/2s9w552e%28v=vs.71%29.aspx

Nested classes also have member characteristics. Class members that have no implementation
are abstract members. A class that has one or more abstract members is itself abstract; new
instances of it cannot be created. Some languages that target the runtime allow you to mark a
class as abstract even if none of its members are abstract. You can use an abstract class when
you need to encapsulate a basic set of functionality that derived classes can inherit or override
when appropriate. Classes that are not abstract are referred to as concrete classes. A class can
implement any number of interfaces, but it can inherit from only one base class. All classes
must have at least one constructor, which initializes new instances of the class. Each language
that supports the runtime provides a way to indicate that a class or class member has specific
characteristics. When you use the syntax required by your language, the language ensures that
the characteristics of the class and its members are stored (as metadata) along with the
implementation of the class.

1.4.2 Interfaces

An interface is basically a class definition. It itself cannot be instantiated, rather it is implemented
by other classes. Interfaces can be defined and implemented in VB6 albeit with some workarounds
and limitations. For example, in VB6 you cannot use one variable alone to access the methods of
the interface and of the implementing class–you have to declare two variables, one as the
interface and the other as the implementing class and point both of them to the same instance.
VB.NET has a different and more straightforward implementation of interfaces. Like classes,
interfaces can be declared in any class file and are declared with a Interface End Interface statement
block:

14 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes

Example:

Interface IAudit

Public orderID as long

Public Function Log (Msg as String)

End Interface

1.4.3 Value Types

The common type system supports two general categories of types:

Value types: They directly contain their data, and instances of value types are either allocated on
the stack or allocated in line in a structure. Value types can be built-in (implemented by the
runtime), user-defined, or enumerations.

Reference types : They store a reference to the value’s memory address, and are allocated on the
heap. Reference types can be self-describing types, pointer types, or interface types. The type of
a reference type can be determined from values of self-describing types. Self-describing types
are further split into arrays and class types. The class types are user-defined classes, boxed value
types, and delegates.

Example:

Imports System

Class Class1

Public Value As Integer = 0

End Class ‘Class1

Class Test

Shared Sub Main()

Dim val1 As Integer = 0

Dim val2 As Integer = val1

val2 = 123

Dim ref1 As New Class1()

Dim ref2 As Class1 = ref1

ref2.Value = 123

Console.WriteLine(“Values: {0}, {1}”, val1, val2)

Console.WriteLine(“Refs: {0}, {1}”, ref1.Value, ref2.Value)

End Sub ‘Main

End Class ‘Test

Output:

Values: 0, 123

Refs: 123, 123

1.4.4 Delegates

The runtime supports reference types called delegates that serve a purpose similar to that of
function pointers in C++. Unlike function pointers, a delegate instance is independent of the
classes of the methods it encapsulates; all that matters is that those methods be compatible with
the delegate’s type. Also, while function pointers can only reference static functions, a delegate
can reference both static and instance methods. Delegates are mainly used for event handlers

LOVELY PROFESSIONAL UNIVERSITY 15

Unit 1: Introduction to Visual Basic

Notesand callback functions in the .NET Framework. All delegates inherit from System.Delegate, and
have an invocation list, which is a linked list of methods that are executed when the delegate is
invoked. The resulting delegate can reference any method with a matching signature. The
return value is not defined for a delegate that has a return type and contains more than one
method in its invocation list. You can use the delegate’s Combine and Remove methods to add
and remove methods to its invocation list. To call the delegate, use the Invoke method, or the
BeginInvoke and EndInvoke methods to call the delegate asynchronously. The implementations
of the delegate class are provided by the runtime, not by user code.

Self Assessment

True or False:

10. An interface is basically a class definition which cannot be instantiated.

11. Value types are allocated on the heap.

1.5 Features of VB.NET

Visual Basic .NET (VB.NET) is an object-oriented computer programming language implemented
on the .NET Framework. Although it is an evolution of classic Visual Basic language, it is not
backwards-compatible with VB6, and any code written in the old version does not compile
under VB.NET. Like all other .NET languages, VB.NET has complete support for object-oriented
concepts. Everything in VB.NET is an object, including all of the primitive types (Short, Integer,
Long, String, Boolean, etc.) and user defined types, events, and even assemblies. All objects
inherits from the base class Object. VB.NET is implemented of Microsoft’s .NET framework.
Therefore it has full access all the libraries in the .Net Framework. It’s also possible to run
VB.NET programs on Mono, the open-source alternative to .NET, not only under Windows, but
even Linux or Mac OSX.

The following reasons make VB.Net a widely used professional language:

� Modern, general purpose.

� Object-oriented.

� Component-oriented.

� Easy to learn.

� Structured language.

� It produces efficient programs.

� It can be compiled on a variety of computer platforms.

� Part of .Net Framework.

VB.NET has numerous strong programming features that make it endearing to multitude of
programmers worldwide. Let us mention some of these features:

� Boolean Conditions

� Automatic Garbage Collection

� Standard Library

� Assembly Versioning

� Properties and Events

16 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes � Delegates and Events Management

� Easy to use Generics

� Indexers

� Conditional Compilation

� Simple Multithreading

1.6 .NET Framework

The .NET Framework (pronounced dot net) is a software framework developed by Microsoft that
runs primarily on Microsoft Windows. It includes a large library and provides language
interoperability (each language can use code written in other languages) across several
programming languages. Programs written for the .NET Framework execute in a software
environment (as contrasted to hardware environment), known as the Common Language
Runtime (CLR), an application virtual machine that provides services such as security, memory
management, and exception handling. The class library and the CLR together constitute the
.NET Framework. The .NET Framework’s Base Class Library provides user interface, data access,
database connectivity, cryptography, web application development, numeric algorithms, and
network communications. Programmers produce software by combining their own source code
with the .NET Framework and other libraries. The .NET Framework is intended to be used by
most new applications created for the Windows platform. Microsoft also produces an integrated
development environment largely for .NET software called Visual Studio.

1.6.1 Visual Basic in .NET Framework

Visual Basic .NET is designed around the .NET Framework, which provides enhanced security,
memory management, versioning, and deployment support. The .NET Framework also enables
interoperability between objects you create with any .NET programming language. This means
you can create objects with Visual Basic .NET that are easy to use from other .NET languages, and
you can use objects from other .NET languages just like you use objects created with Visual Basic
.NET.

1.7 VB.NET as a Language in .NET Framework

We will now discuss the features of VB.NET as a language and its basic constructs.

1.7.1 Source Files

The files of a VB.NET project are stored with a .vb extension. If we include Visual Basic .NET code
in ASP.NET web page files, then we keep the extension as .aspx, Source file is any collection of
computer instructions written using some human-readable computer language, usually as text.
The source code of a program is specially designed to facilitate the work of computer
programmers, who specify the actions to be performed by a computer mostly by writing source
code. Visual Studio .NET source files are kept in the Solution Explorer window, and all source is
included from these files when the solution is built.

1.7.2 Identifiers

An identifier is a name. Visual Basic .NET identifiers conform to the Unicode Standard Annex 15
with one exception: identifiers may begin with an underscore (connector) character. If an identifier

LOVELY PROFESSIONAL UNIVERSITY 17

Unit 1: Introduction to Visual Basic

Notesbegins with an underscore, it must contain at least one other valid identifier character to
disambiguate it from a line continuation. Regular identifiers may not match keywords, but
escaped identifiers can. An escaped identifier is an identifier delimited by square brackets. Escaped
identifiers follow the same rules as regular identifiers except that they may match keywords
and may not have type characters.

This example defines a class named class with a shared method named shared that takes a
parameter named boolean and then calls the method.

Imports System

Class [class]

Shared Sub [shared](ByVal [boolean] As Boolean)

If [boolean] Then

Console.WriteLine(“true”)

Else

Console.WriteLine(“false”)

End If

End Sub

End Class

Module [module]

Sub Main()

[class].[shared](True)

End Sub

End Module

Identifiers are case insensitive, so two identifiers are considered to be the same identifier if they
differ only in case.

Note The Unicode Standard one-to-one case mappings are used when comparing
identifiers, and any locale-specific case mappings are ignored.

1.7.3 Keywords

A keyword is a word that has special meaning in a language construct. All keywords are reserved
by the language and may not be used as identifiers unless the identifiers are escaped.

Note EndIf, GoSub, Let, Variant, and Wend are retained as keywords, although they are
no longer used in Visual Basic .NET.

Its syntax is,

Keyword ::= < member of keyword table >

18 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes A list of common keywords is summarized in the Table 1.2.

Table 1.2: Keywords of VB.NET

AddHandler AddressOf Alias And

AndAlso Ansi As Assembly

Auto Booleam ByRef Byte

ByVal Call Case Catch

CBool CByte CChar CDate

CDbl CDec Char CInt

Class CLng CObj Const

CShort CSng CStr CType

Date Decimal Declare Default

Delegate Dim DirectCast Do

Double Each Else Elself

End EndIf Enum Erase

Error Event Exit False

Finally For Friend Function

Get GetType GoSub GoTo

Handles If Implements Imports

In Inherits Integer Interface

Is Let Lib Like

Long Loop Me Mod

Module MustInherit MustOverride MyBase

MyClass Namespace New Next

Not Nothing NotInheritable NotOverridable

Object On Option Optional

Or OrElse Overloads Overridable

Overrides ParamArray Preserve Private

Property Protected Public RaiseEvent

ReadOnly ReDim REM RemoveHandler

Resume Return Select Set

Shadows Shared Short Single

Static Step Stop String

Structure Sub SyncLock Then

Throw To True Try

Source: http://msdn.microsoft.com/en-IN/library/aa711646%28v=vs.71%29.aspx

1.7.4 Literals

A literal is a textual representation of a particular value of a type. Literal types include Boolean,
integer, floating point, string, character, and date.

Literal ::=

BooleanLiteral |

LOVELY PROFESSIONAL UNIVERSITY 19

Unit 1: Introduction to Visual Basic

NotesIntegerLiteral |

FloatingPointLiteral |

StringLiteral |

CharacterLiteral |

DateLiteral |

Nothing

Boolean Literals: True and False are literals of the Boolean type that map to the true and false
state, respectively.

BooleanLiteral ::= True | False

Integer Literals: Integer literals can be decimal (base 10), hexadecimal (base 16), or octal (base 8).
A decimal integer literal is a string of decimal digits (0-9). A hexadecimal literal is & H followed
by a string of hexadecimal digits (0-9, A-F). An octal literal is & O followed by a string of octal
digits (0-7). Decimal literals directly represent the decimal value of the integral literal, whereas
octal and hexadecimal literals represent the binary value of the integer literal (thus, &H8000S is
–32768, not an overflow error). The type of a literal is determined by its value or by the following
type character. If no type character is specified, values in the range of the Integer type are typed
as Integer; values outside the range for Integer are typed as Long. If an integer literal’s type is of
insufficient size to hold the integer literal, a compile-time error results.

Floating-point Literals: A floating-point literal is an integer literal followed by an optional
decimal point (the ASCII period character) and mantissa, and an optional base 10 exponent. By
default, a floating-point literal is of type Double. If the Single, Double, or Decimal type character
is specified, the literal is of that type. If a floating-point literal’s type is of insufficient size to hold
the floating-point literal, a compile-time error results.

String Literals: A string literal is a sequence of zero or more Unicode characters beginning and
ending with an ASCII double-quote character, a Unicode left double-quote character, or a Unicode
right double-quote character. Within a string, a sequence of two double-quote characters is an
escape sequence representing a double quote in the string. A string constant is of the String type.

Character Literals: A character literal represents a single Unicode character of the Char type.
Two double-quote characters is an escape sequence representing the double-quote character.

Example:

Module Test

Sub Main()

‘ This prints out: a.

Console.WriteLine(“a”c)

‘ This prints out: “.

Console.WriteLine(“”””c)

End Sub

End Module

Date Literals: A date literal represents a particular moment in time expressed as a value of the
Date type. The literal may specify both a date and a time, just a date, or just a time. If the date
value is omitted, then January 1 of the year 1 in the Gregorian calendar is assumed. If the time
value is omitted, then 12:00:00 AM is assumed. To avoid problems with interpreting the year
value in a date value, the year value cannot be two digits. When expressing a date in the first
century AD/CE, leading zeros must be specified. A time value may be specified either using a
24-hour value or a 12-hour value; time values that omit an AM or PM are assumed to be 24-hour
values. If a time value omits the minutes, the literal 0 is used by default. If a time value omits the

20 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes seconds, the literal 0 is used by default. If both minutes and second are omitted, then AM or PM
must be specified. If the date value specified is outside the range of the Date type, a compile-time
error occurs.

Nothing: Nothing is a special literal; it does not have a type and is convertible to all types in the
type system. When converted to a particular type, it is the equivalent of the default value of that
type.

Nothing ::= Nothing

1.7.5 Types

Arrays: An array stores a fixed-size sequential collection of elements of the same type. An array
is used to store a collection of data, but it is often more useful to think of an array as a collection
of variables of the same type. All arrays consist of contiguous memory locations. The lowest
address corresponds to the first element and the highest address to the last element.

To declare an array in VB.NET, you use the Dim statement.

Example:

Dim intData(30) ‘ an array of 31 elements

Dim strData(20) As String ‘ an array of 21 strings

Dim twoDarray(10, 20) As Integer ‘a two dimensional array of integers

Dim ranges(10, 100) ‘a two dimensional array

Collections: Collection classes are specialized classes for data storage and retrieval. These classes
provide support for stacks, queues, lists, and hash tables. Most collection classes implement the
same interfaces. Collection classes serve various purposes, such as allocating memory
dynamically to elements and accessing a list of items on the basis of an index etc. These classes
create collections of objects of the Object class, which is the base class for all data types.

Example:

ArrayList class represents an ordered collection of an object that can be indexed individually.

�
Case Study Very Busy (VB) Mail Order

If you don’t have the time to look for all those hard-to-find items, tell us what you’re
looking for. We’ll send you a catalog from the appropriate company or order for you.
We can place an order and ship it to you. We also help with shopping for gifts; your

order can be gift wrapped and sent anywhere you wish.

The company title will be shortened to VB Mail Order. Include this name on the title bar
of the first form of each project that you create for this case study.

Your first job is to create a project for VB Mail Order that will display the typical shipping
times from some of our most popular catalogs. When a customer makes an order from us,
we order the products from the manufacturer. Once the products are received in our
warehouse it takes one day to gift-wrap (if necessary), box up the product and ship it.

Contd...

LOVELY PROFESSIONAL UNIVERSITY 21

Unit 1: Introduction to Visual Basic

NotesWe can send our products to the customer via Ship-It Ground (five day) or, for an extra $10,
Express Overnight (next day).

Include a button for each catalog. When the user clicks on the button for a catalog, display
the shipping time in a label. Also include an identifying label “Time Until at Customer:”.

Be sure to include a button for Exit.

Include a label at the bottom of the form that holds “Programmed by “ and your name.

Test Data

Table 1

Catalog Label Text

Odds and Ends

Ships each week on Tuesday and takes three days to arrive. If the
customer orders on Wednesday for ground shipping then the order
will arrive in 16 days (the maximum amount of time). If the customer
orders on Tuesday for express shipping then the order will arrive in
six days (the minimum amount of time).

Camping Needs

They will ship directly to the customer in two days so, if the customer
orders by Ship-It, then the order will arrive in seven days. If the order
is shipped via Express Overnight then the order will be there in three
days.

The Outlet

Ships everyday of the week and arrives at our warehouse in two days
(three days total). If the customer chooses ground shipping, their
package will arrive in eight days. By express the package will get
there in four days.

Questions

1. Study and analyse the case.

2. Write down the case facts.

3. What do you infer from it?

Source: http://highered.mcgraw-hill.com/sites/dl/free/0072459034/47748/bradley_ch01.pdf

Self Assessment

Fill in the blanks:

12. classes are specialized classes for data storage and retrieval.

13. An is a name.

14. A is a word that has special meaning in a language construct.

15. A is a textual representation of a particular value of a type.

1.8 Summary

� Computer programming, often shortened to programming, scripting, or coding is the
process of designing, writing, testing, debugging, and maintaining the source code of
computer programs.

� The two basic elements of Visual Basic are the GUI and the code associated with the
application that makes it respond to events occurred as a result of a user action.

� IDE is a term commonly used in the programming world to describe the interface and
environment that we use to create our applications.

22 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes � A procedure contains a series of Visual Basic statements that perform an operation or
calculate a value.

� Encapsulation means that an object can hide its internal data structures from consumers of
the object.

� Polymorphism allows you to write code that is generic across a set of objects that provide
the same public members.

� Inheritance allows objects to share their interfaces (the definition of their members) and/
or implementation in a hierarchy.

� Visual Basic .NET is an Object-oriented programming language designed by Microsoft.

� The CLR is the execution engine for the .NET Framework.

� Code compiled to run under .NET is called managed code to distinguish it from code
running outside of the framework.

� The Common Language Specification (CLS) is a subset of the CTS that describes the basic
qualities used by a wide variety of languages.

� MSIL Code Generation is the first level of .NET compilation in which the high-level
compiled in to a language called intermediate language (IL).

� CPU-independent MSIL code can be efficiently converted to native code using Just-in-Time
(JIT) compiler.

� An assembly is a collection of types and resources that forms a logical unit of functionality.

� A DLL file is a resource within the Windows operating system that contains code and data
related to the functionality of one or more applications.

� The global assembly cache stores assemblies specifically designated to be shared by several
applications on the computer.

� The Common Type System defines how data types are declared, used, and managed in the
runtime, and is also an important part of the runtime’s support for the Cross Language
Integration.

1.9 Keywords

Assembly: It is a collection of types and resources that forms a logical unit of functionality.

CLR: It is the execution engine for the .NET Framework.

Common Language Specification: It is a subset of the CTS that describes the basic qualities used
by a wide variety of languages.

Encapsulation: It means that an object can hide its internal data structures from consumers of the
object.

IDE: It is a term commonly used in the programming world to describe the interface and
environment that we use to create our applications.

Inheritance: It allows objects to share their interfaces (the definition of their members) and/or
implementation in a hierarchy.

Polymorphism: It allows you to write code that is generic across a set of objects that provide the
same public members.

Procedure: It contains a series of Visual Basic statements that perform an operation or calculate
a value.

LOVELY PROFESSIONAL UNIVERSITY 23

Unit 1: Introduction to Visual Basic

Notes1.10 Review Questions

1. What are the two major features of Visual basic?

2. How can we say that VB.NET is object-oriented?

3. Write a short note on CLR.

4. What is managed code?

5. Why is JIT needed?

6. What do you mean by MSIL?

7. Explain the concept of assemblies.

8. What is CTS?

9. Differentiate between value and reference types.

10. Explain the different kinds of literals.

Answers: Self Assessment

1. Instructions 2. Procedure

3. Encapsulation 4. Polymorphism

5. Inheritance 6. False

7. False 8. True

9. False 10. True

11. False 12. Collection

13. Identifier 14. Keyword

15. Literal

1.11 Further Readings

Books Beginning Vb.Net 2003, Willis.

Building Distributed Applications with Visual Basic.NET, Dan Fox, Sams.

Object-oriented Programming with Visual Basic.Net, Hamilton.

Programming Visual Basic .NET, J. Liberty.

VB .NET Language in a Nutshell, Steven Roman, Ron Petrusha, Paul Lomax.

Visual Basic.NET Black Book, Steven Holzner.

Online links http://www.visualbasicbooks.com/progVB6samplepg6.html

http://howtostartprogramming.com/vb-net/

http://www.homeandlearn.co.uk/net/nets1p1.html

http://www.jblearning.com/samples/0763724785/ch02_bronson.pdf

http://vb.net-informations.com/framework/framework_tutorials.htm

24 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Unit 2: Variables and Data Types

CONTENTS

Objectives

Introduction

2.1 Variables

2.1.1 Variable Scope and Lifetime

2.1.2 Variables of Built-in Objects

2.2 Operators

2.2.1 Mathematical Expressions

2.2.2 Event-driven Programming

2.2.3 Relational Operators

2.3 Data Types

2.3.1 Comments on Data Types

2.4 Summary

2.5 Keywords

2.6 Review Questions

2.7 Further Readings

Objectives

After studying this unit, you will be able to:

� Explain the operators available

� Understand the concept of variables

Introduction

In order to store values temporarily we make use of variables. Variables have a name that helps
to refer to it and a data type that determines the kind of data the variable can store. Constants are
used when we need the values to remain constant throughout the execution of an application.
Using constants can make your code more readable by providing meaningful names instead of
numbers. Data types control the internal storage of data in Visual Basic. By default, Visual Basic
uses the Variant data type.

We will now discuss each of them in detail.

2.1 Variables

Variables are used to temporarily store values during the execution of an application. Variables
have a name and a type. You can think of a variable as a placeholder in memory for an unknown
value.

Kumar Vishal, Lovely Professional University

LOVELY PROFESSIONAL UNIVERSITY 25

Unit 2: Variables and Data Types

Notes

Example: Imagine you are creating a program for a fruit stand to track the sales of
apples. You don’t know the price of an apple or the quantity sold until the sale actually occurs.
You can use two variables to hold the unknown values — let’s name them ApplePrice and
ApplesSold. Each time the program is run, the user supplies the values for the two variables. To
calculate the total sales and display it in a Textbox named txtSales, your code would look like
this:

txtSales.txt = ApplePrice * ApplesSold

The expression returns a different total each time, depending on what values the user provides.
The variables allow you to make a calculation without having to know in advance what the
actual inputs are.

In this example, the data type of ApplePrice is Currency; the data type of ApplesSold is an
integer. Variables can represent many other values as well: text values, dates, various numeric
types, even objects.

You use assignment statements to perform calculations and assign the result to a variable:

ApplesSold = 10 // The value 10 is passed to the variable.

ApplesSold = ApplesSold + 1 // The variable is incremented.

Note The equal sign in this example is an assignment operator, not an equality operator;
the value (10) is being assigned to the variable (ApplesSold).

You declare a variable with the Dim statement, supplying a name for the variable:

Dim variablename [As type]

Variables declared with the Dim statement within a procedure exist only as long as the procedure
is executing. When the procedure finishes, the value of the variable disappears. In addition, the
value of a variable in a procedure is local to that procedure — that is, you can’t access a variable
in one procedure from another procedure. These characteristics allow you to use the same
variable names in different procedures without worrying about conflicts or accidental changes.

A variable name:

� Must begin with a letter.

� Can’t contain an embedded period or embedded type-declaration character.

� Must not exceed 255 characters.

� Must be unique within the same scope, which is the range from which the variable can be
referenced — a procedure, a form, and so on.

The optional As type clause in the Dim statement allows you to define the data type or object
type of the variable you are declaring. Data types define the type of information the variable
stores. Some examples of data types include String, Integer, and Currency. Variables can also
contain objects from Visual Basic or other applications. Examples of Visual Basic object types, or
classes, include Object, Form1, and TextBox.

There are other ways to declare variables:

� Declaring a variable in the Declarations section of a form, standard, or class module,
rather than within a procedure, makes the variable available to all the procedures in the
module.

26 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes � Declaring a variable using the Public keyword makes it available throughout your
application.

� Declaring a local variable using the Static keyword preserves its value even when a
procedure ends.

In VB. NET you don’t have to declare a variable before using it. For example, you could write a
function where you don’t need to declare TempVal before using it:

Function SafeSqr(num)

TempVal = Abs(num)

SafeSqr = Sqr(TempVal)

End Function

Visual Basic automatically creates a variable with that name, which you can use as if you had
explicitly declared it. While this is convenient, it can lead to subtle errors in your code if you
misspell a variable name. For example, suppose that this was the function you wrote:

Function SafeSqr(num)

TempVal = Abs(num)

SafeSqr = Sqr(TemVal)

End Function

At first glance, this looks the same. But because the TempVal variable was misspelled on the
next-to-last line, this function will always return zero. When Visual Basic encounters a new
name, it can’t determine whether you actually meant to implicitly declare a new variable or you
just misspelled an existing variable name, so it creates a new variable with that name.

To avoid the problem of misnaming variables, you can stipulate that Visual Basic always
warn you whenever it encounters a name not declared explicitly as a variable. To explicitly
declare variables, place this statement in the Declarations section of a class, form, or standard
module:

Option Explicit

or

From the Tools menu, choose Options, click the Editor tab and check the Require Variable
Declaration option. This automatically inserts the Option Explicit statement in any new modules,
but not in modules already created; therefore, you must manually add Option Explicit to any
existing modules within a project.

Had this statement been in effect for the form or standard module containing the SafeSqr function,
Visual Basic would have recognized TempVal and TemVal as undeclared variables and generated
errors for both of them. You could then explicitly declare TempVal:

Function SafeSqr(num)

Dim TempVal

TempVal = Abs(num)

SafeSqr = Sqr(TemVal)

End Function

Now you’d understand the problem immediately because Visual Basic would display an error
message for the incorrectly spelled TemVal. Because the Option Explicit statement helps you
catch these kinds of errors, it’s a good idea to use it with all your code.

LOVELY PROFESSIONAL UNIVERSITY 27

Unit 2: Variables and Data Types

Notes

Note The Option Explicit statement operates on a per-module basis; it must be placed in
the Declarations section of every form, standard, and class module for which you want
Visual Basic to enforce explicit variable declarations.

If you select Require Variable Declaration, Visual Basic inserts Option Explicit in all subsequent
form, standard, and class modules, but does not add it to existing code. You must manually add
Option Explicit to any existing modules within a project.

2.1.1 Variable Scope and Lifetime

The scope of a variable, sometimes referred to as accessibility of a variable, refers to where the
variable can be read from and/or written to, and the variable’s lifetime, or how long it stays in
memory. The scope of a procedure or method refers to where a procedure can be called from or
under what context you are allowed to call a method.

Let’s take a quick look at the terms that you will need to know.

Table 2.1: Some Important Terms

Term Used with… Visibility

Public Variables/Properties/Methods/Types Anywhere in or outside of a project

Private Variables/Properties/Methods/Types Only in the block where defined

Protected Variables/Properties/Methods Can be used in the class where
defined. Can be used within any
inherited class.

Friend Variables/Properties/Methods Can only be assessed by code in the
same project/assembly.

ProtectedFriend Variables/Properties/Methods Combination of Protected and Friend

Source: http://msdn.microsoft.com/en-us/library/ms973875.aspx

The scope of a variable defines which parts of your code are aware of its existence. When you
declare a variable within a procedure, only code within that procedure can access or change the
value of that variable; it has a scope that is local to that procedure. Sometimes, however, you
need to use a variable with a broader scope, such as one whose value is available to all the
procedures within the same module, or even to all the procedures in your entire application.
Visual Basic allows you to specify the scope of a variable when you declare it.

Depending on how it is declared, a variable is scoped as either a procedure-level (local) or
module-level variable.

Table 2.2: Scope of a Variable

Scope Private Public

Procedure-level Variables are private to the
procedure in which they appear.

Not applicable. You cannot declare public
variables within a procedure.

Module-level Variables are private to the module
in which they appear.

Variables are available to all modules.

Source: http://msdn.microsoft.com/en-us/library/aa231205%28v=vs.60%29.aspx

28 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Procedure-level Variables: They are recognized only in the procedure in which they’re declared.
These are also known as local variables. You declare them with the Dim or Static keywords.

Example:

Dim intTemp as Integer

or

Static intPermanent as Integer

Values in local variables declared with Static exist the entire time your application is running
while variables declared with Dim exist only as long as the procedure is executing.

Local variables are a good choice for any kind of temporary calculation. For example, you can
create a dozen different procedures containing a variable called intTemp. As long as each intTemp
is declared as a local variable, each procedure recognizes only its own version of intTemp. Any
one procedure can alter the value in its local intTemp without affecting intTemp variables in
other procedures.

Variables Used within a Module: By default, a module-level variable is available to all the
procedures in that module, but not to code in other modules. You create module-level variables
by declaring them with the Private keyword in the Declarations section at the top of the module.

Example:

Private intTemp as Integer

At the module level, there is no difference between Private and Dim, but Private is preferred
because it readily contrasts with Public and makes your code easier to understand.

Variables Used by all Modules: To make a module-level variable available to other modules, use
the Public keyword to declare the variable. The values in public variables are available to all
procedures in your application. Like all module-level variables, public variables are declared in
the Declarations section at the top of the module.

Example:

Public intTemp as Integer

Note You can’t declare public variables within a procedure, only within the Declarations
section of a module.

The lifetime of a declared element is the period of time during which it is available for use.
Variables are the only elements that have lifetime. For this purpose, the compiler treats procedure
parameters and function returns as special cases of variables. The lifetime of a variable represents
the period of time during which it can hold a value. Its value can change over its lifetime, but it
always holds some value. A member variable (declared at module level, outside any procedure)
typically has the same lifetime as the element in which it is declared. A non-shared variable
declared in a class or structure exists as a separate copy for each instance of the class or structure
in which it is declared. Each such variable has the same lifetime as its instance. However,
a Shared variable has only a single lifetime, which lasts for the entire time your application is

LOVELY PROFESSIONAL UNIVERSITY 29

Unit 2: Variables and Data Types

Notesrunning. A local variable (declared inside a procedure) exists only while the procedure in which
it is declared is running. This applies also to that procedure’s parameters and to any function
return. However, if that procedure calls other procedures, the local variables retain their values
while the called procedures are running.

A local variable’s lifetime begins when control enters the procedure in which it is declared.
Every local variable is initialized to the default value for its data type as soon as the procedure
begins running. When the procedure encounters a Dim statement that specifies initial values, it
sets those variables to those values, even if your code had already assigned other values to them.
Each member of a structure variable is initialized as if it were a separate variable. Similarly,
each element of an array variable is initialized individually. Variables declared within a block
inside a procedure (such as a For loop) are initialized on entry to the procedure. These
initialisations take effect whether or not your code ever executes the block.

2.1.2 Variables of Built-in Objects

We can also define a variable of the type object. Let us discuss how.

The Object data type can point to data of any data type, including any object instance your
application recognizes. Use Object when you do not know at compile time what data type the
variable might point to. The default value of Object is Nothing (a null reference). You can assign
a variable, constant, or expression of any data type to an Object variable. To determine the data
type an Object variable currently refers to, you can use the GetTypeCode method of the
System.Type class.

Example:

Dim myObject As Object

‘ Suppose myObject has now had something assigned to it.

Dim datTyp As Integer

datTyp = Type.GetTypeCode(myObject.GetType())

The Object data type is a reference type. However, Visual Basic treats an Object variable as
a value type when it refers to data of a value type. Whatever data type it refers to, an Object
variable does not contain the data value itself, but rather a pointer to the value. It always
uses four bytes in computer memory, but this does not include the storage for the data
representing the value of the variable. Because of the code that uses the pointer to locate the
data, Object variables holding value types are slightly slower to access than explicitly typed
variables.

Application Object: It is used to refer to an application. Its syntax is,

Dim app_1 As Application

Example: To declare a variable that refers to a Microsoft Access database, the above
declaration would be made as,

Dim app_1 As Access.Application

Database Object: It allows you to get a reference to the database you are using.

Example:

Dim curDatabase As Database

30 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Self Assessment

Fill in the blanks:

1. are used to temporarily store values during the execution of an application.

2. Variables have a and a

3. Variables declared with the statement within a procedure exist only as long
as the procedure is executing.

4. The of a variable defines which parts of your code are aware of its existence.

5. are recognized only in the procedure in which they’re declared.

6. To make a -level variable available to other modules, use the Public keyword
to declare the variable.

2.2 Operators

We will now discuss the various kinds of operators available in VB.NET.

2.2.1 Mathematical Expressions

Some of the mathematical operators used in VB.NET are summarized in Table 2.3.

Table 2.3: Mathematical Operators

Operator Description

^ Raises one operand to the power of another

+ Adds two operands

– Subtracts second operand from the first

* Multiply both operands

/ Divide one operand by another and returns a floating point result

\ Divide one operand by another and returns an integer result

MOD Modulus Operator and remainder of after an integer division

Source: http://www.tutorialspoint.com/vb.net/vb.net_operators.htm

Operator precedence determines the grouping of terms in an expression. This affects how an
expression is evaluated. Certain operators have higher precedence than others; for example, the
multiplication operator has higher precedence than the addition operator:

Example: x = 7 + 3 * 2; Here x is assigned 13, not 20 because operator * has higher
precedence than + so it first get multiplied with 3*2 and then adds into 7.

Here operators with the highest precedence appear at the top of the table, those with the lowest
appear at the bottom. Within an expression, higher precedence operators will be evaluated first.

Table 2.4: Operator Precedence

Operator Precedence

Await Highest

Exponentiation (^)

Unary identity and negation (+, –)

Contd...

LOVELY PROFESSIONAL UNIVERSITY 31

Unit 2: Variables and Data Types

NotesMultiplication and floating-point divisioin (*, /)

Integer division (\)

Modulus arithmetic (Mod)

Addition and subtraction (+, –)

Arithmetic bit shift (<<, >>)

All comparison operators (=, <>, <, <=, >, >=, Is, IsNot, Like, TypeOf…Is)

Negation (Not)

Conjunction (And, AndAlso)

Inclusive disjunction (Or, OrElse)

Exclusive disjunction (Xor) Lowest

Source: http://www.tutorialspoint.com/vb.net/vb.net_operators.htm

2.2.2 Event-driven Programming

An event is a signal that informs an application that something important has occurred.

For example, when a user clicks a control on a form, the form can raise a Click event and call a
procedure that handles the event. Events also allow separate tasks to communicate. For example,
that your application performs a sort task separately from the main application. If a user cancels
the sort, your application can send a cancel event instructing the sort process to stop.

Figure 2.1: Events

Source: http://www.homeandlearn.co.uk/net/nets10p3.html

2.2.3 Relational Operators

The relational operators compare values to one other. The comparison operators are =, <>, <, >, <=,
and >=. All of the relational operators result in a Boolean value.

The relational operators have the following general meaning:

� The = operator tests whether the two operands are equal.

� The <> operator tests whether the two operands are not equal.

� The < operator tests whether the first operand is less than the second operand.

� The > operator tests whether the first operand is greater than the second operand.

� The <= operator tests whether the first operand is less than or equal to the second operand.

� The >= operator tests whether the first operand is greater than or equal to the second
operand.

32 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Logical Operators

The And, Not, Or, and Xor operators, which are called the logical operators, are evaluated as
follows:

� For the Boolean type:

� A logical And operation is performed on its two operands.

� A logical Not operation is performed on its operand.

� A logical Or operation is performed on its two operands.

� A logical exclusive-Or operation is performed on its two operands.

� For Byte, Short, Integer, Long, and all enumerated types, the specified operation is
performed on each bit of the binary representation of the two operand(s):

� And: The result bit is 1 if both bits are 1; otherwise the result bit is 0.

� Not: The result bit is 1 if the bit is 0; otherwise the result bit is 1.

� Or: The result bit is 1 if either bit is 1; otherwise the result bit is 0.

� Xor: The result bit is 1 if either bit is 1 but not both bits; otherwise the result bit is 0
(that is, 1 Xor 0 = 1, 1 Xor 1 = 0).

No overflows are possible from these operations. The enumerated type operators do the bitwise
operation on the underlying type of the enumerated type, but the return value is the enumerated
type.

Self Assessment

True or False:

7. Operator precedence determines the grouping of terms in an expression.

8. An action is a signal that informs an application that something important has occurred.

9. The mathematical operators compare values to one other.

10. The And, Not, Or, and Xor operators are called the mathematical operators.

2.3 Data Types

A data type is a class that is primarily used just to hold data. This is different from most other
classes since they’re primarily intended to ‘do something’, like access a database or format a
page for example.

Table 2.5: Data Types

Data Type # of Bytes Values

Boolean 1 True or False

Byte 1 Unsigned

Char 2 Unicode character

Single 4 32-bit Floating Point Number

Double 8 64-bit Floating Point Number

Integer 4 32-bit Signed Integer

Contd...

LOVELY PROFESSIONAL UNIVERSITY 33

Unit 2: Variables and Data Types

NotesInt16 2 16-bit Signed Integer

Int32 4 32-bit Signed Integer

Int64 8 64-bit Signed Integer

Long 8 64-bit Signed Integer

SByte 1 8-bit Signed Integer

Short 2 16-bit Signed Integer

UShort 2 16-bit Unsigned Integer

UInt16 2 16-bit Unsigned Integer

UInt32 4 32-bit Unsigned Integer

UInt64 8 64-bit Unsigned Integer

DateTime 8 Date and time of day

Decimal 16 Decimal number

Source: http://www.codeguru.com/vb/article.php/c18901/VBNET-Data-Types.htm

To specify the type for a variable we write,

Dim VariableName As DataType

Example:

Dim a As Boolean;

2.3.1 Comments on Data Types

Integer: It holds signed 32-bit (4-byte) integers ranging in value from -2,147,483,648 through
2,147,483,647. The Integer data type provides optimal performance on a 32-bit processor. The
other integral types are slower to load and store from and to memory. The default value of
Integer is 0.

Example:

Dim k As Integer

‘ The following statement causes an error because the value is too large.

k = 2147483648

‘ The following statement sets k to 6.

k = CInt(5.9)

Byte: It holds unsigned 8-bit (1-byte) integers ranging in value from 0 through 255. Use the Byte
data type to contain binary data. The default value of Byte is 0.

String: Holds sequences of unsigned 16-bit (2-byte) code points ranging in value from 0 through
65535. Each code point, or character code, represents a single Unicode character. A string can
contain from 0 to approximately 2 billion (2 ^ 31) Unicode characters. Use the String data type to
hold multiple characters without the array management overhead of Char(), an array of Char
elements. The default value of String is Nothing (a null reference). Note that this is not the same
as the empty string (value “”).

Long: Holds signed 64-bit (8-byte) integers ranging in value from -9,223,372,036,854,775,808
through 9,223,372,036,854,775,807 (9.2...E+18). Use the Long data type to contain integer numbers
that are too large to fit in the Integer data type. The default value of Long is 0.

34 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Single: It holds signed IEEE 32-bit (4-byte) single-precision floating-point numbers ranging in
value from -3.4028235E+38 through -1.401298E-45 for negative values and from 1.401298E-45
through 3.4028235E+38 for positive values. Single-precision numbers store an approximation of
a real number.

Double: Holds signed IEEE 64-bit (8-byte) double-precision floating-point numbers ranging in
value from -1.79769313486231570E+308 through -4.94065645841246544E-324 for negative values
and from 4.94065645841246544E-324 through 1.79769313486231570E+308 for positive values.
Double-precision numbers store an approximation of a real number. The Double data type
provides the greatest and smallest possible magnitudes for a number. The default value of
Double is 0.

Boolean: It holds values that can be only True or False. The keywords True and False correspond
to the two states of Boolean variables. Use the Boolean data type to contain two-state values such
as true/false, yes/no, or on/off. The default value of Boolean is False. When Visual Basic converts
numeric data type values to Boolean, 0 becomes False and all other values become True. When
Visual Basic converts Boolean values to numeric types, False becomes 0 and True becomes -1.

!
Caution Negative Numbers. Boolean is not a numeric type and cannot represent a negative
value. In any case, you should not use Boolean to hold numeric values.

Example:

In the following example, runningVB is a Boolean variable, which stores a simple yes/no
setting.

Dim runningVB As Boolean

‘ Check to see if program is running on Visual Basic engine.

If scriptEngine = “VB” Then

runningVB = True

End If

Date: It holds IEEE 64-bit (8-byte) values that represent dates ranging from January 1 of the year
0001 through December 31 of the year 9999, and times from 12:00:00 AM (midnight) through
11:59:59.9999999 PM. Each increment represents 100 nanoseconds of elapsed time since the
beginning of January 1 of the year 1 in the Gregorian calendar. The maximum value represents
100 nanoseconds before the beginning of January 1 of the year 10000.

Example:

Dim someDateAndTime As Date = #8/13/2002 12:14 PM#

Object: It holds 32-bit (4-byte) addresses that refer to objects. You can assign any reference type
(string, array, class, or interface) to an Object variable. An Object variable can also refer to data
of any value type (numeric, Boolean, Char, Date, structure, or enumeration).

Variant: The type of each element in a message is fixed and defined by the information in the
component library. Because mainframe programs do not support the Variant data type, you
must fix the type of each parameter at design time in Transaction Integrator (TI) Project. Microsoft
Visual Basic Scripting Edition (VBScript), which is often used to create Active Server Pages (ASP)
in Web-based applications, supports only the Variant data type. It does not accept declared
variables. As a result, if your COM+ client application calls a TI Automation server and passes

LOVELY PROFESSIONAL UNIVERSITY 35

Unit 2: Variables and Data Types

Notesparameters with Variant data types, the TI run-time environment forces each Variant data type
into the type for each parameter as defined in the TI component library. The Variant data type is
not supported in Visual Basic .NET. Visual Basic .NET supports defining data types as objects,
and then casting the objects as data types. TI does not support variables defined as objects cast to
data types. All method parameters must be defined initially as data types, not objects.

Example:

 Variant named A can be explicitly declared as shown in either of these two examples:

Dim A

Dim A as Variant

Constants: They are declared using the keyword Const. Once declared, the value of these constants
cannot be altered at run time.

Syntax:

 [Private | Public | Friend | Protected Friend]

 Const constName As datatype = value

In the above syntax, the Public or Private can be used according to the scope of usage. The Value
specifies the unchangeable value for the constant specified using the name constName.

Example:

Public Class Form1

Public Const PI As Double = 3.14159

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

Dim r, a As Single

r = Val(TextBox1.Text)

a = PI * r * r

TextBox2.Text = a

End Sub

End Class

�
Case Study Successful Migration of ERP-System with 650,000

Lines of Code from VB6 to .NET

Client Challenge

An Austrian manufacturing company with worldwide market presence relies on a highly
optimized, in-house developed ERP-system based on Microsoft Basic Version 6 (VB6),
consisting of 33 applications, covering almost all business processes.

Since April 2008 applications developed with the VB6 Integrated Development
Environment (IDE) are no longer supported by Microsoft. In addition, the VB6.0 runtime
will not be guaranteed after 2011. Therefore the following options were considered:

� Rewrite the system manually in Visual Basic .NET.

� Migrate the systems to .NET and improve the quality through refactoring.

� Find a package to replace the systems and undertake the required systems integration.

Contd...

36 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes The results of an extensive technical and commercial evaluation by SIS Datenverarbeitung
GmbH showed a .NET migration to be the superior choice for the following reasons:

� Protection of extensive investment in highly optimized systems.

� Functional equivalence (1:1) of migrated applications.

� Short timeframe: full port within 12 months or less.

� Reduced risks and costs of migration vs. other options.

Chosen Approach

To facilitate a migration automated to the greatest possible extent SIS conducted an
inventory of the existing code-base, identifying critical and “difficult” functions.

During the software evaluation phase SIS run a 25K prototype through all the conversion
programs. It took 2.5 hours to get a compile-able and run-able VB.NET project with VB
Migration Partner, and 13 hours with its closest competitor. The reduced effort, the ability
to use programs and support for the convert-test-fix were the main reasons for choosing
Code Architects’ software.

After successful migration of the prototype the actual migration was performed as follows:

� Assurance of functional equivalence through detailed inventory of existing functions.

� Detailed migration-plan: tasks, restrictions, risk-analysis.

� Validation of tools, processes, results and cost.

� Migration infrastructure with multiple code-path: reference-, development-, test-
and production-system.

� Configuration Management tool to track status of code.

� Extensive checklists for manual optimization during migration.

� Knowledge-base for future maintenance-guidelines.

� 5-step quality assurance:

� 100%-code-Review, checks and refactoring of migrated code.

� Unit-tests.

� Function- and performance-tests.

� Integration and trial-runs.

� Performance profiling to validate performance after migration.

Benefits

The selected conversion software allowed to successfully migrating 650,000 lines of code
within 6 months with a total effort of 18 man-months, excluding code review and
refactoring. Another set of 300,000 lines of code will be migrated within three months.

Since the core applications of the ERP-System are mission critical to the client’s operation,
highest priority was assigned to achieve functional equivalence of the migrated systems:
all functional changes were avoided to ensure that the old and new systems function
identically.

VB Migration Partner’s support library ensured that all VB-related methods and controls
work identically in the converted VB.NET application, whereas its code generation engine
prevented subtle behavioral differences from being accidentally introduced.

Contd...

LOVELY PROFESSIONAL UNIVERSITY 37

Unit 2: Variables and Data Types

NotesChanges to “look and feel” and data-structures were also avoided to minimize education
and training of users (approximately 350). Improved performance and software-quality
was achieved through extensive refactoring.

Quote from the Customer

VB Migration Partner from Code Architects delivered fewer compilation and runtime
errors than all its competitors. Its migration programs and the convert-test-fix methodology
proved to be powerful and flexible enough to handle a large VB6 application (650K lines
of code) with ease, the documentation is excellent, and Code Architects’ tech support has
always been very responsive.

Questions

1. Study and analyse the case.

2. Write down the case facts.

3. What do you infer from it?
Source: http://www.vbmigration.com/casestudies/sis.aspx

Self Assessment

Fill in the blanks:

11. A is a class that is primarily used just to hold data.

12. Boolean stores and

13. holds sequences of unsigned 16-bit (2-byte) code points ranging in value
from 0 through 65535.

14. holds 32-bit (4-byte) addresses that refer to objects.

15. are declared using the keyword Const.

2.4 Summary

� Variables are used to temporarily store values during the execution of an application.
Variables have a name and a type.

� Variables declared with the Dim statement within a procedure exist only as long as the
procedure is executing.

� In VB. NET you don’t have to declare a variable before using it.

� The scope of a variable defines which parts of your code are aware of its existence.

� Procedure-level variables are recognized only in the procedure in which they’re declared.

� To make a module-level variable available to other modules, use the Public keyword to
declare the variable.

� Variable of Type Object Holds 32-bit (4-byte) addresses that refer to objects. The Object
data type is a reference type.

� The Application Object is used to refer to an application.

� The Database Object allows you to get a reference to the database you are using.

� Operator precedence determines the grouping of terms in an expression.

38 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes � An event is a signal that informs an application that something important has occurred.

� The relational operators compare values to one other.

� The And, Not, Or, and Xor operators are called the logical operators.

� A data type is a class that is primarily used just to hold data.

2.5 Keywords

Application Object: It is used to refer to an application.

Database Object: It allows you to get a reference to the database you are using.

Event: It is a signal that informs an application that something important has occurred.

Object: It holds 32-bit (4-byte) addresses that refer to objects.

Operator Precedence: It determines the grouping of terms in an expression.

Procedure-level Variables: They are recognized only in the procedure in which they’re declared.

Scope: It defines which parts of your code are aware of its existence.

Variables: They are used to temporarily store values during the execution of an application.

2.6 Review Questions

1. Define a variable.

2. What do you mean by explicitly declaring a variable?

3. Explain scope of a variable.

4. Write a short note on variable lifetime.

5. Explain all built-in objects in VB.NET with examples.

6. Why do we need operators?

7. Is VB.NET event driven?

8. Explain the mathematical operators with suitable examples.

9. What do you mean my operator precedence?

10. List all major data types used in VB.NET.

Answers: Self Assessment

1. Variables 2. Name, type

3. Dim 4. Scope

5. Procedure-level variables 6. Module

7. True 8. False

9. False 10. False

11. Data type 12. True, False

13. String 14. Object

15. Constants

LOVELY PROFESSIONAL UNIVERSITY 39

Unit 2: Variables and Data Types

Notes2.7 Further Readings

Books Beginning Vb.Net 2003, Willis.

Building Distributed Applications with Visual Basic.NET, Dan Fox, Sams.

Object-oriented Programming with Visual Basic.Net, Hamilton.

Programming Visual Basic .NET, J. Liberty.

VB .NET Language in a Nutshell, Steven Roman, Ron Petrusha, Paul Lomax.

Visual Basic.NET Black Book, Steven Holzner.

Online links http://vb.net-informations.com/language/vb.net_data_types.htm http://
www.tutorialspoint.com/vb.net/vb.net_operators.htm

http://www.homeandlearn.co.uk/net/nets1p23.html http://www.jblearning.
com/samples/0763724785/ch02_bronson.pdf

40 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Unit 3: Decision Making and Looping

CONTENTS

Objectives

Introduction

3.1 Looping

3.2 If Statement

3.3 If-Else Statement

3.3.1 Select Case

3.4 While Statement

3.5 Do-While Statement

3.5.1 Do Until Loop

3.6 For Statement

3.7 Summary

3.8 Keywords

3.9 Review Questions

3.10 Further Readings

Objectives

After studying this unit, you will be able to:

� Explain the concept of Looping in VB.NET

� Discuss IF statement and IF-Else statement

� Discuss While and Do-While statement

� Discuss For statement

Introduction

Visual Basic.NET loop structures allow you to run one or more lines of code repetitively. You
can repeat the statements in a loop structure until a condition is True, until a condition is False,
a specified number of times, or once for each element in a collection. The following illustration
shows a loop structure that runs a set of statements until a condition becomes true. Running a set
of statements until a condition becomes true.

Figure 3.1: Decision Structure

Source: http://msdn.microsoft.com/en-us/library/ezk76t25.aspx

Kumar Vishal, Lovely Professional University

LOVELY PROFESSIONAL UNIVERSITY 41

Unit 3: Decision Making and Looping

Notes3.1 Looping

A loop executes statements repeatedly. It often has an upper and lower bound. The For-loop
proceeds through a range of values. A step indicates the progression. Other loops, such as While,
continue until a condition is met. There may be a situation when you need to execute a block of
code several number of times. In general statements are executed sequentially: The first statement
in a function is executed first, followed by the second, and so on. Programming languages
provide various control structures that allow for more complicated execution paths. Here are
the looping constructs in the VB.NET language. The For Each construct is probably the least
error-prone but is not always available. We also show examples of the For-loop construct
directly on this page.

� For Each

� While

� Do While

� Do Until

Self Assessment

Fill in the blanks:

1. Visual Basic.NET allow you to run one or more lines of code repetitively.

2. You can repeat the statements in a structure.

3.2 If Statement

It conditionally executes a group of statements, depending on the value of an expression. Its
syntax is,

If condition [Then]

[statements]

[ElseIf elseifcondition [Then]

[elseifstatements]]

[Else

[elsestatements]]

End If

-or-

If condition Then [statements] [Else [elsestatements]]

where,

condition: Required. Expression. Must evaluate to True or False, or to a data type that is implicitly
convertible to Boolean.

Then: Required in the single-line form, optional in the multiple-line form.

Statements : Optional. One or more statements following If...Then that are executed if condition
evaluates to True.

Elseifcondition: Required if ElseIf is present. Expression. Must evaluate to True or False, or to a
data type that is implicitly convertible to Boolean.

42 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes elseifstatements: Optional. One or more statements following ElseIf...Then that are executed if
elseifcondition evaluates to True.

elsestatements: Optional. One or more statements that are executed if no previous condition or
elseifcondition expression evaluates to True.

End If: Terminates the If...Then...Else block.

It is possible to have multiple statements executed as the result of an If...Then decision. All
statements must be on the same line and be separated by colons.

Example:

If A > 10 Then A = A + 1 : B = B + A : C = C + B

In the multiple-line form, the If statement must be the only statement on the first line.

Example:

Dim num1 As Integer

Dim num2 As Integer

num1 = 39

num2 = 40

If num1 > num2 Then

MsgBox (“num1 is greater”)

Else

MsgBox (“num2 is greater”)

End If

Self Assessment

True or False:

3. Condition in an If statement is an optional one.

4. Then is required in the multi-line form of an If statement.

5. End If terminates the If...Then...Else block.

3.3 If-Else Statement

You can use the single-line form for short, simple tests. However, the multiple-line form provides
more structure and flexibility than the single-line form and is usually easier to read, maintain,
and debug. When a multiple-line If...Then...Else is encountered, condition is tested. If condition
is True, the statements following Then are executed. If condition is False, each ElseIf statement
is evaluated in order. When a True elseifcondition is found, the statements immediately following
the associated Then are executed. If no elseifcondition evaluates to True, or if there are no ElseIf
statements, the statements following Else are executed. After executing the statements following
Then, ElseIf, or Else, execution continues with the statement following End If. In the multiple-
line form, the If statement must be the only statement on the first line. The ElseIf, Else, and End
If statements can be preceded only by a line label. The multiple-line If...Then...Else block must
end with an End If statement.

LOVELY PROFESSIONAL UNIVERSITY 43

Unit 3: Decision Making and Looping

NotesTo determine whether or not an If statement introduces a multiple-line form, examine what
follows the Then keyword. If anything other than a comment appears after Then in the same
statement, the statement is treated as a single-line If statement. If Then is absent, it must be the
beginning of a multiple-line If...Then...Else. The ElseIf and Else clauses are both optional. You
can have as many ElseIf clauses as you want in a multiple-line If...Then...Else, but none can
appear after an Else clause. Multiple-line forms can be nested within one another.

Example:

Dim number, digits As Integer

Dim myString As String

number = 53

If number < 10 Then

digits = 1

ElseIf number < 100 Then

digits = 2

Else

digits = 3

End If

If digits = 1 Then myString = “One” Else myString = “More than one”

In the preceding example, the ElseIf condition evaluates to True, and digits is assigned a value of
2. The last statement then assigns a value of “More than one” to myString.

3.3.1 Select Case

It runs one of several groups of statements, depending on the value of an expression. Its syntax
is,

Select [Case] testexpression

[Case expressionlist

[statements]]

[Case Else

[elsestatements]]

End Select

where,

testexpression: Required. Expression. Must evaluate to one of the elementary data types (Boolean,
Byte, Char, Date, Double, Decimal, Integer, Long, Object, SByte, Short, Single, String, UInteger,
ULong, and UShort).

Expressionlist: Required in a Case statement. List of expression clauses representing match
values for testexpression. Multiple expression clauses are separated by commas. Each clause can
take one of the following forms:

� expression1 To expression2

� [Is] comparison operator expression

� expression

44 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Use the To keyword to specify the boundaries of a range of match values for testexpression. The
value of expression1 must be less than or equal to the value of expression2.

Use the Is keyword with a comparison operator (=, <>, <, <=, >, or >=) to specify a restriction on
the match values for testexpression. If the Is keyword is not supplied, it is automatically inserted
before comparison operator.

The form specifying only expression is treated as a special case of the Is form where comparison
operator is the equal sign (=). This form is evaluated as testexpression = expression.

The expressions in expressionlist can be of any data type, provided they are implicitly convertible
to the type of testexpression and the appropriate comparison operator is valid for the two types
it is being used with.

Statements: Optional. One or more statements following Case that run if testexpression matches
any clause in expressionlist.

elsestatements : Optional. One or more statements following Case Else that run if testexpression
does not match any clause in the expressionlist of any of the Case statements.

End Select : Terminates the definition of the Select...Case construction.

If testexpression matches any Case expressionlist clause, the statements following that Case
statement run up to the next Case, Case Else, or End Select statement. Control then passes to the
statement following End Select. If testexpression matches an expressionlist clause in more than
one Case clause, only the statements following the first match run. The Case Else statement is
used to introduce the elsestatements to run if no match is found between the testexpression and
an expressionlist clause in any of the other Case statements. Although not required, it is a good
idea to have a Case Else statement in your Select Case construction to handle unforeseen
testexpression values. If no Case expressionlist clause matches testexpression and there is no
Case Else statement, control passes to the statement following End Select. You can use multiple
expressions or ranges in each Case clause. For example, the following line is valid.

Case 1 To 4, 7 To 9, 11, 13, Is > maxNumber

Note The Is keyword used in the Case and Case Else statements is not the same as the Is
Operator (Visual Basic), which is used for object reference comparison.

You can specify ranges and multiple expressions for character strings. In the following example,
Case matches any string that is exactly equal to “apples”, has a value between “nuts” and “soup”
in alphabetical order, or contains the exact same value as the current value of testItem.

Case “apples”, “nuts” To “soup”, testItem

The setting of Option Compare can affect string comparisons. Under Option Compare Text, the
strings “Apples” and “apples” compare as equal, but under Option Compare Binary, they do
not.

Note A Case statement with multiple clauses can exhibit behavior known as short-
circuiting. Visual Basic.NET evaluates the clauses from left to right, and if one produces a
match with testexpression, the remaining clauses are not evaluated. Short-circuiting can
improve performance, but it can produce unexpected results if you are expecting every
expression in expressionlist to be evaluated.

LOVELY PROFESSIONAL UNIVERSITY 45

Unit 3: Decision Making and Looping

NotesIf the code within a Case or Case Else statement block does not need to run any more of the
statements in the block, it can exit the block by using the Exit Select statement. This transfers
control immediately to the statement following End Select.

Select Case constructions can be nested. Each nested Select Case construction must have a matching
End Select statement and must be completely contained within a single Case or Case Else
statement block of the outer Select Case construction within which it is nested.

Example:

Select Case agerange

Case 16 To 21

MsgBox “Still Young”

Case 50 To 64

MsgBox “Start Lying”

End Select

Self Assessment

True or False:

6. Select Case runs one of several groups of statements, depending on the value of an
expression.

7. You cannot specify ranges and multiple expressions for character strings in Select Case.

3.4 While Statement

It executes a series of statements as long as a given condition is True. The syntax for this loop
construct is:

While condition

[statements]

[Continue While]

[statements]

[Exit While]

[statements]

End While

Here statement(s) may be a single statement or a block of statements. The condition may be any
expression, and true is logical true. The loop iterates while the condition is true.

When the condition becomes false, program control passes to the line immediately following
the loop. Here key point of the While loop is that the loop might not ever run. When the
condition is tested and the result is false, the loop body will be skipped and the first statement
after the while loop will be executed.

Example:

 Sub Main()

 Dim a As Integer = 10

 ‘ while loop execution ‘

 While a < 20

 Console.WriteLine(“value of a: {0}”, a)

 a = a + 1

 End While

46 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Console.ReadLine()

 End Sub

Output:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

Exit While

The Exit statement transfers the control from a procedure or block immediately to the statement
following the procedure call or the block definition. It terminates the loop, procedure, try block
or the select block from where it is called. If you are using nested loops (i.e., one loop inside
another loop), the Exit statement will stop the execution of the innermost loop and start executing
the next line of code after the block.

The syntax for the Exit statement is:

Exit { While }

Example:

Sub Main()

‘ local variable definition

Dim a As Integer = 10

‘ while loop execution ‘

While (a < 20)

Console.WriteLine(“value of a: {0}”, a)

a = a + 1

End While

Console.ReadLine()

End Sub

Output:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

Self Assessment

Fill in the blanks:

8. When the condition becomes, program control passes to the line immediately.

9. The statement transfers the control from a procedure or block immediately
to the statement following the procedure call or the block definition.

10. If you are using nested loops the Exit statement will stop the execution of the loop.

LOVELY PROFESSIONAL UNIVERSITY 47

Unit 3: Decision Making and Looping

Notes3.5 Do-While Statement

It repeats the enclosed block of statements while a Boolean condition is True or until the condition
becomes True. It could be terminated at any time with the Exit Do statement. The syntax for this
loop construct is:

Do

[statements]

[Continue Do]

[statements]

[Exit Do]

[statements]

Loop { While | Until } condition

Figure 3.2: Do Loop

Source: http://www.tutorialspoint.com/vb.net/vb.net_do_loops.htm

Example:

Sub Main()

‘ local variable definition

Dim a As Integer = 10

‘do loop execution

Do

Console.WriteLine(“value of a: {0}”, a)

a = a + 1

Loop While (a < 20)

Console.ReadLine()

End Sub

Output:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

48 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes 3.5.1 Do Until Loop

Do Loop Until Statement executes a set of statements until a condition becomes false, this is an
infinite loop might have to terminated using Ctrl + Break. Its syntax is,

Do

[Statements]

Loop Until [Condition]

In the above syntax the Statements are executed until the Condition becomes false.

Example:

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

Dim X As String

Do

X$ = InputBox$(“Correct Password Please”)

Loop Until X$ = “Ranger”

End Sub

In the above Do Until Loop example, a input box is displayed until the correct password is typed.

Example:

Self Assessment

True or False:

11. Do-While Statement repeats the enclosed block of statements while a Boolean condition is
False

12. Do-While Statement could be terminated at any time with the Exit Do statement

3.6 For Statement

For next loop statement executes a set of statements repeatedly in a loop for the given initial,
final value range with the specified step by step increment or decrement value.

Its syntax is,

For counter = start To end [Step]

[Statement]

Next [counter]

In the above syntax the Counter is range of values specified using the Start, End parameters. The
Step specifies step increment or decrement value of the counter for which the statements are
executed.

Example:

Private Sub Form1_Load(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles MyBase.Load

Dim i As Integer

Dim j As Integer

LOVELY PROFESSIONAL UNIVERSITY 49

Unit 3: Decision Making and Looping

Notesj = 0

For i = 1 To 10 Step 1

j = j + 1

MsgBox (“Value of j is::” & j)

Next i

End Sub

In the above For Next Loop example the counter value of i is set to be in the range of 1 to 10 and
is incremented by 1. The value of j is increased by 1 for 10 times as the loop is repeated.

Step Argument

The Step keyword is used near the end of the For-statement and it is the delta each loop iteration
will have. If you want to decrement by n each time, you can use -n. If you want to increment by
n, use n.

Counter Argument

In executing a For. . .Next loop, Visual Basic does the following:

1. Sets counter equal to start.

2. Tests to see whether counter is greater than end. If so, it exits the loop without executing
the statements in the loop’s body, not even once. If increment is negative, Visual Basic
tests to see whether counter is less than end. If it is, it exits the loop.

3. Executes the statements in the block.

4. Increases counter by the amount specified with the increment argument, following the
Step keyword. If the increment argument isn’t specified, counter is increased by 1. If Step
is a negative value, counter is decreased accordingly.

5. Continues with step 3.

Nesting Loops

VB.NET allows using one loop inside another loop. Following section shows few examples to
illustrate the concept. The syntax for a nested For loop statement in VB.NET is as follows:

For counter1 [As datatype1] = start1 To end1 [Step step1]

For counter2 [As datatype2] = start2 To end2 [Step step2]

...

Next [counter2]

Next [counter 1]

Example:

 Dim i, j As Integer // local variable definition

 For i = 2 To 100

 For j = 2 To i

 If ((i Mod j) = 0) Then

 Exit For

End If

Next j

If (j > (i \ j)) Then

50 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Console.WriteLine(“{0} is prime”, i)

End If

Next i

Console.ReadLine()

Output:

2 is prime

3 is prime

5 is prime

7 is prime

11 is prime

13 is prime

17 is prime

19 is prime

23 is prime

29 is prime

31 is prime

37 is prime

41 is prime

43 is prime

47 is prime

53 is prime

59 is prime

61 is prime

67 is prime

71 is prime

73 is prime

79 is prime

83 is prime

89 is prime

97 is prime

Exit For

We can exit a loop explicitly using the exit statement.

Example:

Dim valExit = 0

For Each

For Each

If condition Then

valExit = 1

Exit For

End If

Next

If valExit = 1 Then

Exit For

End If

Next

LOVELY PROFESSIONAL UNIVERSITY 51

Unit 3: Decision Making and Looping

Notes

�
Case Study .NET History

The Microsoft .NET is a new internet technology or rather strategy introduced by
Microsoft. .NET was originally known as the NGWS (Next Generation Windows
Services) which was said to be an Internet based platform of Next Generation

Windows Services. Before the official announcement of .NET, NGWS was the term used to
describe the above phrase.

The .NET Framework was first released in beta in November 2000 and development
continues today. Each version of the framework has betas, final versions, service packs,
and patches associated with it.

Table 1

Version Version
Number

Release
Date

Visual Studio Default in Windows

1.0 1.0.3705.0 02/13/2002 VisualStudio.NET

1.1 1.1.4322.573 04/24/2003 Visual Studio .NET
2003

Windows Server 2003

2.0 2.0.50727.42 11/07/2005 Visual Studio 2005

3.0 3.0.4506.30 11/06/2006 Windows Vista,
Windows Server 2008

3.5 3.5.21022.8 11/19/2007 Visual Studio 2008 Windows 7, Windows
Server 2008 R2

4.0 4.0.30319.1 04/12/2010 Visual Studio 2010

.NET Framework Advantages

The .NET Framework offers a number of advantages to developers. The following
paragraphs describe them in detail.

Consistent Programming Model

Different programming languages have different approaches for doing a task. For example,
accessing data with a VB 6.0 application and a VC++ application is totally different. When
using different programming languages to do a task, a disparity exists among the approach
developers use to perform the task. The difference in techniques comes from how different
languages interact with the underlying system that applications rely on.

With .NET, for example, accessing data with a VB .NET and a C# .NET looks very similar
apart from slight syntactical differences. Both the programs need to import the System.
Data namespace, both the programs establish a connection with the database and both the
programs run a query and display the data on a data grid. The VB 6.0 and VC++ example
mentioned in the first paragraph explains that there is more than one way to do a particular
task within the same language. The .NET example explains that there’s a unified means of
accomplishing the same task by using the .NET Class Library, a key component of the
.NET Framework.

The functionality that the .NET Class Library provides is available to all .NET languages
resulting in a consistent object model regardless of the programming language the
developer uses.

Contd...

52 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Direct Support for Security

Developing an application that resides on a local machine and uses local resources is easy.
In this scenario, security isn’t an issue as all the resources are available and accessed
locally. Consider an application that accesses data on a remote machine or has to perform
a privileged task on behalf of a non-privileged user. In this scenario security is much more
important as the application is accessing data from a remote machine.

With .NET, the Framework enables the developer and the system administrator to specify
method level security. It uses industry-standard protocols such as TCP/IP, XML, SOAP
and HTTP to facilitate distributed application communications. This makes distributed
computing more secure because .NET developers cooperate with network security devices
instead of working around their security limitations.

Simplified Development Efforts

Let’s take a look at this with Web applications. With classic ASP, when a developer needs
to present data from a database in a Web page, he is required to write the application logic
(code) and presentation logic (design) in the same file. He was required to mix the ASP
code with the HTML code to get the desired result.

ASP.NET and the .NET Framework simplify development by separating the application
logic and presentation logic making it easier to maintain the code. You write the design
code (presentation logic) and the actual code (application logic) separately eliminating
the need to mix HTML code with ASP code. ASP.NET can also handle the details of
maintaining the state of the controls, such as contents in a textbox, between calls to the
same ASP.NET page.

Another advantage of creating applications is debugging. Visual Studio .NET and other
third party providers provide several debugging tools that simplify application
development. The .NET Framework simplifies debugging with support for Runtime
diagnostics. Runtime diagnostics helps you to track down bugs and also helps you to
determine how well an application performs. The .NET Framework provides three types
of Runtime diagnostics: Event Logging, Performance Counters and Tracing.

Easy Application Deployment and Maintenance

The .NET Framework makes it easy to deploy applications. In the most common form, to
install an application, all you need to do is copy the application along with the components
it requires into a directory on the target computer. The .NET Framework handles the
details of locating and loading the components an application needs, even if several
versions of the same application exist on the target computer. The .NET Framework
ensures that all the components the application depends on are available on the computer
before the application begins to execute.

Questions

1. Study and analyse the case.

2. Write down the case facts.

3. What do you infer from it?
Source: http://dotnet.etisbew.com/dotnet-history.html

LOVELY PROFESSIONAL UNIVERSITY 53

Unit 3: Decision Making and Looping

NotesSelf Assessment

Fill in the blanks:

13. VB.NET allows using one loop inside another loop and this is called of
loops.

14. For loop statement executes a set of statements repeatedly in a loop.

15. We can exit a loop explicitly using the statement.

3.7 Summary

� Visual Basic.NET loop structures allow you to run one or more lines of code repetitively.

� You can repeat the statements in a loop structure until a condition is True, until a condition
is False, a specified number of times, or once for each element in a collection.

� Select Case runs one of several groups of statements, depending on the value of an
expression.

� While Statement executes a series of statements as long as a given condition is True.

� The Exit statement transfers the control from a procedure or block immediately to the
statement following the procedure call or the block definition.

� If you are using nested loops (i.e., one loop inside another loop), the Exit statement will
stop the execution of the innermost loop and start executing the next line of code after the
block.

� Do-While Statement repeats the enclosed block of statements while a Boolean condition is
True.

� Do Loop Until Statement executes a set of statements until a condition becomes false.

� For next loop statement executes a set of statements repeatedly in a loop.

� The Step keyword is used near the end of the For-statement and it is the delta each loop
iteration will have.

� VB.NET allows using one loop inside another loop.

3.8 Keywords

Do Loop Until Statement: It executes a set of statements until a condition becomes false.

Do-While Statement: It repeats the enclosed block of statements while a Boolean condition is
True.

Exit statement: It transfers the control from a procedure or block immediately to the statement
following the procedure call or the block definition.

For next loop statement: It executes a set of statements repeatedly in a loop.

Loop structures: They allow you to run one or more lines of code repetitively.

Nesting: VB.NET allows using one loop inside another loop.

Select Case: It runs one of several groups of statements, depending on the value of an expression.

Step keyword: It is used near the end of the For-statement and it is the delta each loop iteration
will have.

While Statement: It executes a series of statements as long as a given condition is True.

54 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes 3.9 Review Questions

1. What is a loop?

2. Why do we need loops?

3. Write a note on if statement with an example.

4. Compare if and if-elseif constructs.

5. Explain the working of while loop.

6. Differentiate between while and do while loops.

7. Why do we use the exit keyword?

8. What is the syntax of the for next loop?

9. Why is a counter used in the for next loop?

10. What do you mean by nesting of loops?

Answers: Self Assessment

1. Loop structures 2. Loop

3. False 4. False

5. True 6. True

7. False 8. False

9. Exit 10. Innermost

11. False 12. True

13. Nesting 14. Next

15. Exit

3.10 Further Readings

Books Beginning Vb.Net 2003, Willis.

Object-oriented Programming with Visual Basic.Net, Hamilton.

Programming Visual Basic .NET, J. Liberty.

Visual Basic.NET Black Book, Steven Holzner.

Online links http://msdn.microsoft.com/en-US/library/zh1f56zs%28v=vs.80%29.aspx

http://www.tutorialspoint.com/vb.net/vb.net_loops.htm

http://www.informit.com/library/content.aspx?b=Net_2003_21days
&seqNum=97

http://www.jblearning.com/samples/0763724785/ch02_bronson.pdf

LOVELY PROFESSIONAL UNIVERSITY 55

Unit 4: Array

NotesUnit 4: Array

CONTENTS

Objectives

Introduction

4.1 Types of Arrays

4.1.1 Fixed-Size Arrays

4.1.2 Dynamic Arrays

4.2 Split Function

4.3 Join Function

4.4 Adding New Elements

4.4.1 Erasing an Array

4.5 Multidimensional Arrays

4.6 System. Array Class

4.7 Retrieving the Contents of an Array

4.8 Summary

4.9 Keywords

4.10 Review Questions

4.11 Further Readings

Objectives

After studying this unit, you will be able to:

� Understand arrays and its types

� Define the split function

� Discuss the join function

� Explain multidimensional arrays

� Discuss system. array class

Introduction

An array stores a fixed-size sequential collection of elements of the same type. An array is used
to store a collection of data, but it is often more useful to think of an array as a collection of
variables of the same type. All arrays consist of contiguous memory locations. The lowest
address corresponds to the first element and the highest address to the last element.

Figure 4.1: Array

Source: http://www.tutorialspoint.com/vb.net/vb.net_arrays.htm

Kumar Vishal, Lovely Professional University

56 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes To declare an array in VB.NET, you use the Dim statement.

Example:

Dim intData(30) // an array of 31 elements

Dim strData(20) As String // an array of 21 strings

Dim twoDarray(10, 20) As Integer // a two dimensional array of integers

Dim ranges(10, 100) // a two dimensional array

You can also initialize the array elements while declaring the array.

Example:

Dim intData() As Integer = {12, 16, 20, 24, 28, 32}

Dim names() As String = {“Karthik”, “Sandhya”, _

“Shivangi”, “Ashwitha”, “Somnath”}

Dim miscData() As Object = {“Hello World”, 12d, 16ui, “A”c}

The elements in an array can be stored and accessed by using the index of the array.

Example:

Sub Main()

Dim n(10) As Integer // n is an array of 11 integers

Dim i, j As Integer

For i = 0 To 10 // initialize elements of array n

n(i) = i + 100 // set element at location i to i + 100

Next i

For j = 0 To 10 // output each array element’s value

Console.WriteLine(“Element({0}) = {1}”, j, n(j))

Next j

Console.ReadKey()

End Sub

Output:

Element(0) = 100

Element(1) = 101

Element(2) = 102

Element(3) = 103

Element(4) = 104

Element(5) = 105

Element(6) = 106

Element(7) = 107

Element(8) = 108

Element(9) = 109

Element(10) = 110

4.1 Types of Arrays

There are two major types of arrays. Let us discuss them in detail.

LOVELY PROFESSIONAL UNIVERSITY 57

Unit 4: Array

Notes4.1.1 Fixed-Size Arrays

An array is declared by simply using parenthesis to indicate that a variable has an index. For
example, Dim StringArray() is syntactically correct (although at least the size of the array will
eventually have to be supplied).

A collection is typically an instance of a class and has to be declared with the New keyword to
create the instance. Elements are added and deleted using methods. This code shows the difference.

Dim StringArray()

ReDim StringArray(10)

StringArray(0) = “ABCDEF”

Dim ListCollection As New List(Of String)

ListCollection.Add(“ABCDEF”)

ListCollection.Remove(“ABCDEF”)

4.1.2 Dynamic Arrays

Dynamic arrays are arrays that can be dimensioned and re-dimensioned as par the need of the
program. You can declare a dynamic array using the ReDim statement.

Syntax for ReDim statement:

ReDim [Preserve] arrayname(subscripts)

Where,

� The Preserve keyword helps to preserve the data in an existing array, when you resize it.

� arrayname is the name of the array to re-dimension

� subscripts specifies the new dimension.

Example:

Sub Main()

Dim marks() As Integer

ReDim marks(2)

marks(0) = 85

marks(1) = 75

marks(2) = 90

ReDim Preserve marks(10)

marks(3) = 80

marks(4) = 76

marks(5) = 92

marks(6) = 99

marks(7) = 79

marks(8) = 75

For i = 0 To 10

Console.WriteLine(i & vbTab & marks(i))

Next i

Console.ReadKey()

End Sub

Output:

0 85

1 75

58 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes 2 90

3 80

4 76

5 92

6 99

7 79

8 75

9 0

10 0

Self Assessment

Fill in the blanks:

1. An stores a fixed-size sequential collection of elements of the same type.

2. All arrays consist of memory locations.

3. To declare an array in VB.Net, you use the statement.

4. A is typically an instance of a class and has to be declared with the New
keyword to create the instance.

4.2 Split Function

The string split function returns array of strings which are the splits of the given string it is
delimited by the given System.Char array

Public Function Split (ByVal ParamArray separator () As Char) As String ()

Parameters:

Separator - the given delimiter

Returns:

An array of Strings delimited by one or more characters in separator

Public Class Form1

Private Sub Button1_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles Button1.Click

Dim str As String

Dim strArr() As String

Dim count As Integer

str = “God is great”

strArr = str.Split(“ “)

For count = 0 To strArr.Length - 1

MsgBox(strArr(count))

Next

End Sub

End Class

When you run this code, you will get “God” “is” “great” in separate messagebox.

LOVELY PROFESSIONAL UNIVERSITY 59

Unit 4: Array

NotesSelf Assessment

True or False:

5. The string split function returns a single string.

6. The split function output is delimited by one or more characters in separator.

4.3 Join Function

The Join method is used when you want to join the elements of an array back together again.

Example:

Dim LineOfText As String

Dim i As Integer

Dim aryTextFile(3) As String

aryTextFile(0) = “UserName1”

aryTextFile(1) = “Password1”

aryTextFile(2) = “UserName2”

aryTextFile(3) = “Password2”

LineOfText = String.Join(“-”, aryTextFile)

MsgBox(LineOfText)

The line that joins each element in the array is this:

LineOfText = String.Join(“-”, aryTextFile)

Note If you have an older version of the VB.NET software, use LineOfText.Join instead of
String.Join.

In between the round brackets of Join(), you first type what you want to use as a separator. Here,
we’re using an hyphen as a separator. Next, you put the name of your array. Again the round
brackets from the array have gone missing.

When the line executes, the variable LineOfText will hold the following:

“UserName1-Password1-UserName2-Password2”

Once you have the array elements joined together, you could then write the line back to your
text file. Split and Join can be very useful indeed. Especially when you’re working with text files.

Self Assessment

True or False:

7. The split method is used when you want to join the elements of an array back together
again.

8. Once you have the array elements joined together, you could then write the line back to
your text file.

60 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes 4.4 Adding New Elements

To add new elements in an array and preserving the old values use ReDim with Preserve
keyword. ReDim in loop is advisable when you have no idea about the size and came to know
for increasing the Array size one by one.

Example:
Dim TeamIndex(), i As Integer

For i = 0 to 100

 ReDim Preserve TeamIndex(i)

 TeamIndex(i) = <some value>

Next

If you to declare the size of array at later in code in shot then use

 ReDim TeamIndex(100)

So the code will be :

Dim TeamIndex(), i As Integer

ReDim TeamIndex(100)

For i = 0 to 100

 TeamIndex(i) = <some value>

Next

You can Use the ArrayList to use Add/Remove the values more dynamically.

 Sub Main()

 Dim list As New ArrayList // Create an ArrayList and add three strings to

it

 list.Add(“Dot”)

 list.Add(“Net”)

 list.Add(“Perls”)

 list.RemoveAt(1) // Remove a string.

 ‘ Insert a string.

 list.Insert(0, “Carrot”)

 list.RemoveRange(0, 2) // Remove a range.

 Dim str As String // Remove a range

 For Each str In list

Console.WriteLine(str)

 Next

 End Sub

4.4.1 Erasing an Array

Erase statement is used to release array variables and deallocate the memory used for their
elements. Its syntax is,

Erase arraylist

Where arraylist is a required parameter It is a list of array variables to be erased. It consists of
multiple variables are separated by commas.

LOVELY PROFESSIONAL UNIVERSITY 61

Unit 4: Array

NotesThe Erase statement can appear only at procedure level. This means you can release arrays
inside a procedure but not at class or module level. The Erase statement is equivalent to assigning
Nothing to each array variable.

Example:

The following example uses the Erase statement to clear two arrays and free their memory (1000
and 100 storage elements, respectively). The ReDim statement then assigns a new array instance
to the three-dimensional array.

Dim threeDimArray(9, 9, 9), twoDimArray(9, 9) As Integer

Erase threeDimArray, twoDimArray

ReDim threeDimArray(4, 4, 9)

Self Assessment

Fill in the blanks:

9. To add new elements in an array use statement.

10. To preserve the old values use keyword with Redim statement.

11. statement is used to release array variables and deallocate the memory used
for their elements.

4.5 Multidimensional Arrays

One-dimensional arrays, such as those presented so far, are good for storing long sequences of
one-dimensional data (such as names or temperatures). But how would you store a list of cities
and their average temperatures in an array? Or names and scores; years and profits; or data with
more than two dimensions, such as products, prices, and units in stock? In some situations, you
will want to store sequences of multidimensional data. You can store the same data more
conveniently in an array of as many dimensions as needed.

Figure 4.2 shows two one-dimensional arrays — one of them with city names, the other with
temperatures. The name of the third city would be City(2), and its temperature would be
Temperature(2).

Figure 4.2: Two One-dimensional Arrays and the Equivalent Two-dimensional Array

Source: http://visualbasic.w3computing.com/vb2008/2/vb-multidimensional-arrays.php

A two-dimensional array has two indices: The first identifies the row (the order of the city in the
array), and the second identifies the column (city or temperature). To access the name and
temperature of the third city in the two-dimensional array, use the following indices:

62 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes

Example:

Temperatures(2, 0) ‘ is the third city’s name

Temperatures(2, 1) ‘ is the third city’s average temperature

The benefit of using multidimensional arrays is that they’re conceptually easier to manage.
Suppose that you’re writing a game and want to track the positions of certain pieces on a board.
Each square on the board is identified by two numbers: its horizontal and vertical coordinates.
The obvious structure for tracking the board’s squares is a two-dimensional array, in which the
first index corresponds to the row number, and the second corresponds to the column number.

Example:

Dim Board(9, 9) As Integer

When a piece is moved from the square in the first row and first column to the square in the third
row and fifth column, you assign the value 0 to the element that corresponds to the initial
position:

Board(0, 0) = 0

And you assign 1 to the square to which it was moved to indicate the new state of the board:

Board(2, 4) = 1

To find out whether a piece is on the top-left square, you’d use the following statement:

Example:

If Board(0, 0) = 1 Then

{ piece found}

Else

{ empty square}

End If

This notation can be extended to more than two dimensions. The following statement creates an
array with 1,000 elements (10 by 10 by 10):

Dim Matrix(9, 9, 9)

You can think of a three-dimensional array as a cube made up of overlaid two-dimensional
arrays, such as the one shown in Figure 4.3.

Figure 4.3: Pictorial Representations of One-, Two-, and Three-dimensional Arrays

Source: http://visualbasic.w3computing.com/vb2008/2/vb-multidimensional-arrays.php

LOVELY PROFESSIONAL UNIVERSITY 63

Unit 4: Array

NotesIt is possible to initialize a multidimensional array with a single statement, just as you do with
a one-dimensional array. You must insert enough commas in the parentheses following the
array name to indicate the array’s rank. The following statements initialize a two-dimensional
array and then print a couple of its elements:

Example:

Dim a(,) As Integer = {{10, 20, 30}, {11, 21, 31}, {12, 22, 32}}

Console.WriteLine(a(0, 1)) ‘ will print 20

Console.WriteLine(a(2, 2)) ‘ will print 32

You should break the line that initializes the dimensions of the array into multiple lines to make
your code easier to read. Just insert the line continuation character at the end of each continued
line:

Example:

Dim a(,) As Integer = {{10, 20, 30},

{11, 21, 31},

{12, 22, 32}}

If the array has more than one dimension, you can find out the number of dimensions with the
Array.Rank property. Let’s say you have declared an array for storing names and salaries by
using the following statements:

Dim Employees(1,99) As Employee

To find out the number of dimensions, use the following statement:

Employees.Rank

When using the Length property to find out the number of elements in a multidimensional
array, you will get back the total number of elements in the array (2 × 100 for our example). To
find out the number of elements in a specific dimension, use the GetLength method, passing as
an argument a specific dimension. The following expressions will return the number of elements
in the two dimensions of the array:

Example:

Debug.WriteLine(Employees.GetLength(0))

2

Debug.WriteLine(Employees.GetLength(1))

100

Because the index of the first array element is zero, the index of the last element is the length of
the array minus 1. Let’s say you have declared an array with the following statement to store
player statistics for 15 players, and there are five values per player:

Dim Statistics(14, 4) As Integer

Example:

The following statements will return the highlighted values shown beneath them:

Debug.WriteLine(Statistics.Rank)

2 // dimensions in array

Debug.WriteLine(Statistics.Length)

64 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes 75 // total elements in array

Debug.WriteLine(Statistics.GetLength(0))

15 // elements in first dimension

Debug.WriteLine(Statistics.GetLength(1))

5 // elements in second dimension

Debug.WriteLine(Statistics.GetUpperBound(0))

14 // last index in the first dimension

Debug.WriteLine(Statistics.GetUpperBound(1))

4 // last index in the second dimension

Self Assessment

Fill in the blanks:

12. A two-dimensional array has indices.

13. When using the property to find out the number of elements in a
multidimensional array, you will get back the total number of elements in the array.

4.6 System. Array Class

Provides methods for creating, manipulating, searching, and sorting arrays, thereby serving as
the base class for all arrays in the common language runtime.

Example:

‘Declaration

<SerializableAttribute> _

<ComVisibleAttribute(True)> _

Public MustInherit Class Array _

Implements ICloneable, IList, ICollection, IEnumerable, _

IStructuralComparable, IStructuralEquatable

Table 4.1: Properties Array Class

Source: http://msdn.microsoft.com/en-us/library/system.array.aspx

LOVELY PROFESSIONAL UNIVERSITY 65

Unit 4: Array

NotesLet us discuss one of the methods of the System.Array class.
Array.CreateInstance Method (Type, Int32)

Creates a one-dimensional Array of the specified Type and length, with

zero-based indexing.

Syntax:

Public Shared Function CreateInstance (elementType As Type, length As

Integer) As Array

Parameters:

elementType - The Type of the Array to create.

Length - The size of the Array to create.

Example:

The following code example shows how to create and initialize a one-dimensional Array.
Imports System

Public Class SamplesArray

 Public Shared Sub Main()

 //Creates and initializes a one-dimensional Array of type Int32.

 Dim my1DArray As Array = Array.CreateInstance(GetType(Int32), 5)

 Dim i As Integer

 For i = my1DArray.GetLowerBound(0) To my1DArray.GetUpperBound(0)

 my1DArray.SetValue(i + 1, i)

 Next i

 // Displays the values of the Array.

 Console.WriteLine(“The one-dimensional Array contains the “ _

 + “following values:”)

 PrintValues(my1DArray)

 End Sub

 Public Shared Sub PrintValues(myArr As Array)

 Dim myEnumerator As System.Collections.IEnumerator = _

 myArr.GetEnumerator()

 Dim i As Integer = 0

 Dim cols As Integer = myArr.GetLength((myArr.Rank - 1))

 While myEnumerator.MoveNext()

 If i < cols Then

 i += 1

 Else

 Console.WriteLine()

 i = 1

 End If

 Console.Write(ControlChars.Tab + “{0}”, myEnumerator.Current)

 End While

 Console.WriteLine()

 End Sub

End Class

66 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Output:

The one-dimensional Array contains the following values:

1 2 3 4 5

4.7 Retrieving the Contents of an Array

Accessing an element in an array is similar to assigning a value to an array element. All that is
required is the array name and the index of the element to be accessed. The following code
excerpt displays MessageBoxes containing the string value the first and seconds elements in the
strColors array:

Dim strColors(5) As String = {“Red”, “Green”, “Blue”, “Indigo”, “Violet”,

“Yellow” }

MessageBox.Show(strColors(0))

MessageBox.Show(strColors(1))

A For loop can also be used to iterate through each element of an array:

Example:

Dim strColors(5) As String = {“Red”, “Green”, “Blue”, “Indigo”, “Violet”,

“Yellow” }

Dim intCount As Integer

For intCount = 0 To 10

 MessageBox.Show(strColors(intCount))

Next intCount

When you use a For...Next loop to iterate through an array, you may be inclined to hard code the
starting and ending counter values. For instance, suppose you created the following array:

Example:

MusicGenres = Array(“Blues”, “Classic Rock”, “Country”,

“Dance”, “Disco”, “Funk”, “Grunge”, “Hip -Hop”,

“Jazz”, “Metal”, “New Age”, “Oldies”, “Other”)

you might think to loop through the array like so

For x = 0 To 12

 Debug.Print MusicGenres(x)

Next x

However, because you may want to add more items to the array at a later time, it’s best to use the
LBound() and UBound() functions to delimit the counter’s boundaries, as in

For x = LBound(MusicGenres) To UBound(MusicGenres)

Debug.Print MusicGenres(x)

Next x

This way, no matter how many times you add items to the array, you won’t need to modify the
For...Next loop at all.

LOVELY PROFESSIONAL UNIVERSITY 67

Unit 4: Array

Notes

Note You don’t need to subtract 1 from the UBound() value because the function returns
the array’s largest available subscript NOT the number of items in the array.

�
Case Study Array Class

Pointer-based arrays have a number of problems. For example, a program can easily
“walk off” either end of an array, because C++ does not check whether subscripts
fall outside the range of an array (the programmer can still do this explicitly though).

Arrays of size n must number their elements 0, ..., n 1; alternate subscript ranges are not
allowed. An entire non-char array cannot be input or output at once; each array element
must be read or written individually. Two arrays cannot be meaningfully compared with
equality operators or relational operators (because the array names are simply pointers to
where the arrays begin in memory and, of course, two arrays will always be at different
memory locations). When an array is passed to a general-purpose function designed to
handle arrays of any size, the size of the array must be passed as an additional argument.
One array cannot be assigned to another with the assignment operator(s) (because array
names are constant pointers and a constant pointer cannot be used on the left side of an
assignment operator). These and other capabilities certainly seem like “naturals” for
dealing with arrays, but pointer-based arrays do not provide such capabilities. However,
C++ does provide the means to implement such array capabilities through the use of
classes and operator overloading.

In this example, we create a powerful array class that performs range checking to ensure
that subscripts remain within the bounds of the Array. The class allows one array object to
be assigned to another with the assignment operator. Objects of the Array class know their
size, so the size does not need to be passed separately as an argument when passing an
Array to a function. Entire Arrays can be input or output with the stream extraction and
stream insertion operators, respectively. Array comparisons can be made with the equality
operators == and !=.

This example will sharpen your appreciation of data abstraction. You will probably want
to suggest other enhancements to this Array class. Class development is an interesting,
creative and intellectually challenging activity, always with the goal of “crafting valuable
classes.”

1 Array.h

2 // Array class for storing arrays of integers.

3 #ifndef ARRAY_H

4 #define ARRAY_H

5

6 #include <iostream>

7 using std::ostream;

8 using std::istream;

9

Contd...

68 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes 10 class Array

11 {

12 friend ostream &operator<<(ostream &, const Array &);

13 friend istream &operator>>(istream &, Array &);

14 public:

15 Array(int = 10); // default constructor

16 Array(const Array &); // copy constructor

17 ~Array(); // destructor

18 int getSize() const; // return size

19

20 const Array &operator=(const Array &); // assignment operator

21 bool operator==(const Array &) const; // equality operator

22

23 // inequality operator; returns opposite of == operator

24 bool operator!=(const Array &right) const

25 {

26 return ! (*this == right); // invokes Array::operator==

27 } // end function operator!=

28

29 // subscript operator for non-const objects returns modifiable

lvalue

30 int &operator[](int);

31

32 // subscript operator for const objects returns rvalue

33 int operator[](int) const;

34 private:

35 int size; // pointer-based array size

36 int *ptr; // pointer to first element of pointer-based array

37 }; // end class Array

38

39 #endif

Questions

1. Study and analyse the case.

2. Write down the case facts.

3. What do you infer from it?
Source: http://net.pku.edu.cn/~course/cs101/2007/resource/CppHowToProgram/5e/html/ch11lev1sec8.html

Self Assessment

True or False:

14. To access an array element we need the array name and the index of the element.

15. UBound() returns the number of items in the array.

4.8 Summary

� An array stores a fixed-size sequential collection of elements of the same type.

� All arrays consist of contiguous memory locations.

� The lowest address corresponds to the first element and the highest address to the last
element.

LOVELY PROFESSIONAL UNIVERSITY 69

Unit 4: Array

Notes� To declare an array in VB.NET, you use the Dim statement.

� An array is declared by simply using parenthesis to indicate that a variable has an index.

� A collection is typically an instance of a class and has to be declared with the New keyword
to create the instance.

� You can declare a dynamic array using the ReDim statement.

� The Preserve keyword helps to preserve the data in an existing array, when you resize it.

� The string split function returns array of strings which are the splits of the given string it
is delimited by the given System.Char array.

� The Join method is used when you want to join the elements of an array back together
again.

� Erase statement is used to release array variables and deallocate the memory used for
their elements.

� System. Array Class provides methods for creating, manipulating, searching, and sorting
arrays.

4.9 Keywords

Array: It stores a fixed-size sequential collection of elements of the same type.

Collection: It is typically an instance of a class and has to be declared with the New keyword to
create the instance.

Dim: It is used to declare an array in VB.NET.

Erase Statement: It is used to release array variables and deallocate the memory used for their
elements.

Join(): It is used when you want to join the elements of an array back together again.

Preserve: It helps to preserve the data in an existing array, when you resize it.

ReDim: You can declare a dynamic array using this statement.

Split(): It returns array of strings which are the splits of the given string it is delimited by the
given System.Char array.

4.10 Review Questions

1. What is an array?

2. Why do we need an array?

3. Write a note on fixed size arrays.

4. Differentiate between fixed and dynamic size arrays

5. Why do we use ReDim?

6. Explain the split() function with an example.

7. What is the purpose of using the join() function?

8. What do you mean by multidimensional arrays?

9. Explain the System.Array class.

10. Why do we use the erase statement?

70 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Answers: Self Assessment

1. Array 2. Contiguous

3. Dim 4. Collection

5. False 6. True

7. False 8. True

9. ReDim 10. Preserve

11. Erase 12. Two

13. Length 14. True

15. False

4.11 Further Readings

Books Learning Visual Basic .NET, Jesse Liberty, O'Reilly Media, Inc.

Object-oriented Programming with Visual Basic.Net, Hamilton.

Programming Visual Basic .NET, J. Liberty.

VB .NET Language in a Nutshell, Steven Roman, Ron Petrusha, Paul Lomax.

Online links http://patorjk.com/programming/tutorials/vbarrays.htm

http://msdn.microsoft.com/en-IN/library/5c1seyzc%28v=vs.71%29.aspx

http://www.jblearning.com/samples/0763724785/ch02_bronson.pdf

http://vb.net-informations.com/framework/framework_tutorials.htm

LOVELY PROFESSIONAL UNIVERSITY 71

Unit 5: Built-in Functions

NotesUnit 5: Built-in Functions

CONTENTS

Objectives

Introduction

5.1 Visual Basic .NET Functions

5.1.1 MsgBox() Function

5.1.2 InputBox() Function

5.2 String Class

5.2.1 Creating an Object from a Class

5.3 Conversion Functions

5.3.1 Type Conversion Functions

5.3.2 Val Function

5.4 Miscellaneous Functions

5.5 Subroutines and Functions

5.5.1 Subroutine

5.5.2 Functions

5.6 Summary

5.7 Keywords

5.8 Review Questions

5.9 Further Readings

Objectives

After studying this unit, you will be able to:

� Discuss the built-in functions

� Explain string class

� Understand the conversion functions

� Discuss miscellaneous functions

� Explain the types subroutines and functions

Introduction

A procedure is referred to as built-in if it shipped with its programming language. To make
your job a little easier, VB.NET comes equipped with many procedures that you can use right
away in your program. Based on this, before creating your own procedure, first check whether
the functionality you are looking is already implementing in one of the available procedures
because those that ship with VB.NET are highly reliable and should be preferred. Before using
a built-in procedure, you must of course be familiar with it. This comes either by consulting the

Kumar Vishal, Lovely Professional University

72 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes documentation or by experience. This means that you must know its name, its argument(s), its
return value, and its role. The Microsoft Visual Basic (.NET) programming language provides
one of the richest set of functions of a library. In fact, it is the richest of the .NET-based languages,
giving you access to functions that are not directly available to other languages such as C# or
C++/CLI. Because there so many of those functions, we will review only the most usually used.
Eventually, when necessary, in other units, we may introduce new ones.

5.1 Visual Basic .NET Functions

A function is similar to a normal procedure but the main purpose of the function is to accept a
certain input from the user and return a value which is passed on to the main program to finish
the execution. There are two types of functions, the built-in functions (or internal functions) and
the functions created by the programmers. The general format of a function is:

FunctionName (arguments)

The arguments are values that are passed on to the function.

We are going to learn two very basic but useful internal functions of Visual basic.NET, i.e. the
MsgBox() and InputBox () functions.

5.1.1 MsgBox() Function

The objective of MsgBox is to produce a pop-up message box and prompt the user to click on a
command button before he/she can continues. This format is as follows:

yourMsg=MsgBox (Prompt, Style Value, Title)

The first argument, Prompt, will display the message in the message box. The Style Value will
determine what type of command buttons appear on the message box. The Title argument will
display the title of the message board.

Table 5.1: Styles of a Msgbox()

Style Value Name Constant Buttons Displayed

0 vbOkOnly OK button

1 vbOKCancel Ok and Cancel buttons

2 vbAbortRetryIgnore Abort, Retry and Ignore buttons

3 vbYesNoCancel Yes, No and Cancel buttons

4 vbYesNo Yes and No buttons

5 vbRetryCancel Retry and Cancel buttons

Source: http://www.vbtutor.net/lesson10.html

We can use named constant in place of integers for the second argument to make the programs
more readable.

Example:

yourMsg=MsgBox(“Click OK to Proceed”, 1, “Startup Menu”)

yourMsg=Msg(“Click OK to Proceed”. vbOkCancel,”Startup Menu”)

yourMsg is a variable that holds values that are returned by the MsgBox () function. The values
are determined by the type of buttons being clicked by the users. It has to be declared as Integer
data type in the procedure or in the general declaration section.

LOVELY PROFESSIONAL UNIVERSITY 73

Unit 5: Built-in Functions

NotesTable 5.2: Return Values of a Msgbox() Function

Value Name Constant Button Clicked

1 vbOk Ok button

2 vbCancel Cancel button

3 vbAbort Abort button

4 vbRetry Retry button

5 vbIgnore Ignore button

6 vbYes Yes button

7 vbNo No button

Source: http://www.vbtutor.net/lesson10.html

5.1.2 InputBox() Function

An InputBox() function will display a message box where the user can enter a value or a message
in the form of text. The format is:

myMessage=InputBox(Prompt, Title, default_text, x-position, y-position)

myMessage is a variant data type but typically it is declared as string, which accept the message
input by the users. The arguments are explained as follows:

� Prompt - The message displayed normally as a question asked.

� Title - The title of the Input Box.

� default-text - The default text that appears in the input field where users can use it as his
intended input or he may change to the message he wish to key in.

� x-position and y-position - the position or the coordinate of the input box.

Self Assessment

Fill in the blanks:

1. The main purpose of the is to accept a certain input from the user and return
a value which is passed on to the main program to finish the execution.

2. The objective of is to produce a pop-up message box and prompt the user to
click on a command button before he/she can continues.

3. An function will display a message box where the user can enter a value or
a message in the form of text.

5.2 String Class

In VB.Net you can use strings as array of characters, however, more common practice is to use
the String keyword to declare a string variable. The string keyword is an alias for the
System.String class.

5.2.1 Creating an Object from a Class

You can create string object using one of the following methods:

� By assigning a string literal to a String variable

� By using a String class constructor

74 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes � By using the string concatenation operator (+)

� By retrieving a property or calling a method that returns a string

� By calling a formatting method to convert a value or object to its string representation

Example:
 Sub Main()

 Dim fname, lname, fullname, greetings As String

 fname = “Abc”

 lname = “Def”

 fullname = fname + “ “ + lname

 Console.WriteLine(“Full Name: {0}”, fullname)

 Dim letters As Char() = {“H”, “e”, “l”, “l”, “o”} // Using string

constructor

 greetings = New String(letters)

 Console.WriteLine(“Greetings: {0}”, greetings)

 Dim sarray() As String = {“Hello”, “From”, “VB.NET”} // Methods returning

String

 Dim message As String = String.Join(“ “, sarray)

 Console.WriteLine(“Message: {0}”, message)

 // Formatting method to convert a value

 Dim waiting As DateTime = New DateTime(2012, 12, 12, 17, 58, 1)

 Dim chat As String = String.Format(“Message sent at {0:t} on {0:D}”,

waiting)

 Console.WriteLine(“Message: {0}”, chat)

 Console.ReadLine()

 End Sub

When the above code is compiled and executed, it produces following result:
Full Name: Abc Def

Greetings: Hello

Message: Hello From VB.NET

Message: Message sent at 5:58 PM on Sunday, May 12, 2013

5.3 Conversion Functions

VB.NET supports many inbuilt conversion functions that handle the conversion of date and
time, character strings, numbers and more. Let us discuss them in detail.

5.3.1 Type Conversion Functions

Sometimes we need to change the type of a variable as the program proceeds. Many a times the
compiler itself effects the change. In some cases, we need to explicitly effect the change. The
former type of conversion is referred to as implicit conversion. The later type is referred to as
explicit conversion. Implicit conversions happen when the change effected does not change the
value of the variable and there is no loss of data. Explicit conversions are a must when the
change is from a large type to a smaller type.

LOVELY PROFESSIONAL UNIVERSITY 75

Unit 5: Built-in Functions

NotesYou may recall that when studying data types, we saw that each had a corresponding function
used to convert a string value or an expression to that type. As a reminder, the general syntax of
the conversion functions is:

ReturnType = FunctionName(Expression)

The Expression could be of any kind. For example, it could be a string or expression that would
produce a value such as the result of a calculation. The conversion function would take such a
value, string, or expression and attempt to convert it. If the conversion is successful, the function
would return a new value that is of the type specified by the ReturnType in our syntax.

The conversion functions are as follows:

Table 5.3: Conversion Function

Function

Name Return Type Description

CBool Boolean Converts an expression into a Boolean value

CByte Byte Converts an expression into Byte number

CDate Date Converts and expression into a date or time value

CDbl Double Converts an expression into a flowing-point (decimal) number

CInt Integer Converts an expression into an integer (natural) value

CCur Currency Converts an expression into a currency (monetary) value

CLng Long Converts an expression into a long integer (a large natural) number

CSng Single Converts an expression into a flowing-point (decimal) number

CStr String Converts an expression into a string

Source: http://www.functionx.com/vbasic/Lesson27.htm

Task Use different functions in VB.Net and show their working.

5.3.2 Val Function

It returns the numbers contained in a string as a numeric value of appropriate type.

Public Overloads Function Val(ByVal InputStr As String) As Double

-or-

Public Overloads Function Val(ByVal Expression As Object) As Double

-or-

Public Overloads Function Val(ByVal Expression As Char) As Integer

The InputStr parameter is a required one. It can be any valid String expression, Object variable,
or Char value. If Expression is of type Object, its value must be convertible to String or an
ArgumentException error occurs.

The Val function stops reading the string at the first character it cannot recognize as part of a
number. Symbols and characters that are often considered parts of numeric values, such as
dollar signs and commas, are not recognized. However, the function recognizes the radix prefixes
&O (for octal) and &H (for hexadecimal). Blanks, tabs, and linefeed characters are stripped from
the argument.

76 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes The following call returns the value 1615198.

Val(“ 1615 198th Street N.E.”)

The following call returns the decimal value -1.

Val(“&HFFFF”)

Note The Val function recognizes only the period (.) as a valid decimal separator. When
different decimal separators are used, as in international applications, use CDbl or CInt
instead to convert a string to a number.

Example: The following example uses the Val function to return the numbers contained
in each string. Val stops converting at the first character that cannot be interpreted as a numeric
digit, numeric modifier, numeric punctuation, or white space.

Dim valResult As Double

‘ The following line of code sets valResult to 2457.

valResult = Val(“2457”)

‘ The following line of code sets valResult to 2457.

valResult = Val(“ 2 45 7”)

‘ The following line of code sets valResult to 24.

valResult = Val(“24 and 57”)

The Str(or Str$) Function

It is used to return string equivalent for the specified integer.

Public Shared Function Str(ByVal Number As Object) As String

In the above syntax Number specifies a valid numeric expression.

Example:

Sub Main()

 Console.WriteLine(‘String returned for 5.5 is::’ & Str(5.5))

 Console.WriteLine(‘String returned for -5.5 is::’ & Str(-5.5))

 Console.ReadLine()

End Sub

Output:

String returned for 5.5 is:: 5.5

String returned for -5.5 is::-5.5

In the above example, preceding space is left for positive characters, but a minus is displayed for
negative integers. Thus Str string function can be used.

Conversion Classes

The Convert class converts a base data type to another base data type. Its syntax is:

Public NotInheritable Class Convert

LOVELY PROFESSIONAL UNIVERSITY 77

Unit 5: Built-in Functions

NotesThe static methods of the Convert class are used to support conversion to and from the base data
types in the .NET Framework. The supported base types are Boolean, Char, SByte, Byte, Int16,
Int32, Int64, UInt16, UInt32, UInt64, Single, Double, Decimal, DateTime and String.

Example: The following example demonstrates some of the conversion methods in the
Convert class, including ToInt32, ToBoolean, and ToString.
Dim dNumber As Double

dNumber = 23.15

Try

 // Returns 23

 Dim iNumber As Integer

 iNumber = System.Convert.ToInt32(dNumber)

Catch exp As System.OverflowException

 System.Console.WriteLine(“Overflow in double to int conversion.”)

End Try

 // Returns True

Dim bNumber As Boolean

bNumber = System.Convert.ToBoolean(dNumber)

 // Returns “23.15”

Dim strNumber As String

strNumber = System.Convert.ToString(dNumber)

Try

 // Returns ‘2’

 Dim chrNumber As Char

 chrNumber = System.Convert.ToChar(strNumber.Chars(1))

Catch exp As System.ArgumentNullException

 System.Console.WriteLine(“String is null.”)

Catch exp As System.FormatException

 System.Console.WriteLine(“String length is greater than 1.”)

End Try

// System.Console.ReadLine() returns a string and it must be converted.

Dim newInteger As Integer

newInteger = 0

Try

 System.Console.WriteLine(“Enter an integer:”)

 newInteger = System.Convert.ToInt32(System.Console.ReadLine())

Catch exp As System.ArgumentNullException

 System.Console.WriteLine(“String is null.”)

Catch exp As System.FormatException

 System.Console.WriteLine(“String does not consist of an “ + _

 “optional sign followed by a series of digits.”)

Catch exp As System.OverflowException

 System.Console.WriteLine(“Overflow in string to int conversion.”)

End Try

System.Console.WriteLine(“Your integer as a double is {0}”, _

 System.Convert.ToDouble(newInteger))

78 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Self Assessment

Fill in the blanks:

4. In VB.NET you can use as array of characters.

5. Functions are used to change the type of a variable as the program proceeds.

6. conversions happen when the change effected does not change the value of
the variable and there is no loss of data.

7. conversions are a must when the change is from a large type to a smaller
type.

8. Function returns the numbers contained in a string as a numeric value of
appropriate type.

9. The Function is used to return string equivalent for the specified integer.

10. The class converts a base data type to another base data type.

5.4 Miscellaneous Functions

VB.NET also supports some miscellaneous functions like CallByName Function, Choose
Function, Command Function, CreateObject Function, etc.

5.5 Subroutines and Functions

We will now discuss the subroutines and functions one by one in detail.

5.5.1 Subroutine

A subroutine is a block of statements that carries out a well-defined task. The block of statements
is placed within a set of Sub. . .End Sub statements and can be invoked by name.

Example:

The following subroutine displays the current date in a message box and can be called by its
name, ShowDate():

Sub ShowDate()

MsgBox(Now().ToShortDateString)

End Sub

Normally, the task performed by a subroutine is more complicated than this; but even this
simple subroutine is a block of code isolated from the rest of the application. The statements in
a subroutine are executed, and when the End Sub statement is reached, control returns to the
calling program. It’s possible to exit a subroutine prematurely by using the Exit Sub statement.
All variables declared within a subroutine are local to that subroutine. When the subroutine
exits, all variables declared in it cease to exist. Most procedures also accept and act upon arguments.
The ShowDate() subroutine displays the current date in a message box. If you want to display
any other date, you have to implement it differently and add an argument to the subroutine:

Sub ShowDate(ByVal birthDate As Date)

MsgBox(birthDate.ToShortDateString)

End Sub

LOVELY PROFESSIONAL UNIVERSITY 79

Unit 5: Built-in Functions

NotesbirthDate is a variable that holds the date to be displayed; its type is Date. The ByVal keyword
means that the subroutine sees a copy of the variable, not the variable itself. What this means
practically is that the subroutine can’t change the value of the variable passed by the calling
application. To display the current date in a message box, you must call the ShowDate() subroutine
as follows from within your program:

ShowDate()

To display any other date with the second implementation of the subroutine, use a statement
like the following:

Dim myBirthDate = #2/9/1960#

ShowDate(myBirthDate)

Or, you can pass the value to be displayed directly without the use of an intermediate variable:

ShowDate(#2/9/1960#)

If you later decide to change the format of the date, there’s only one place in your code you must
edit: the statement that displays the date from within the ShowDate() subroutine.

5.5.2 Functions

A function is similar to a subroutine, but a function returns a result. Because they return values,
functions — like variables — have types. The value you pass back to the calling program from
a function is called the return value, and its type must match the type of the function. Functions
accept arguments, just like subroutines. The statements that make up a function are placed in a
set of Function…End Function statements, as shown here:

Function NextDay() As Date

Dim theNextDay As Date

theNextDay = Now.AddDays(1)

Return theNextDay

End Function

The Function keyword is followed by the function name and the As keyword that specifies its
type, similar to a variable declaration. AddDays is a method of the Date type, and it adds a
number of days to a Date value. The NextDay() function returns tomorrow’s date by adding one
day to the current date. NextDay() is a custom function, which calls the built-in AddDays method
to complete its calculations. The result of a function is returned to the calling program with the
Return statement, which is followed by the value you want to return from your function. This
value, which is usually a variable, must be of the same type as the function. In our example, the
Return statement happens to be the last statement in the function, but it could appear anywhere;
it could even appear several times in the function’s code. The first time a Return statement is
executed, the function terminates, and control is returned to the calling program. You can also
return a value to the calling routine by assigning the result to the name of the function. The
following is an alternate method of coding the NextDay() function:

Function NextDay() As Date

NextDay = Now.AddDays(1)

End Function

Notice that the result of the calculation has been assigned to the function’s name directly and
didn’t use a variable. This assignment, however, doesn’t terminate the function like the Return
statement. It sets up the function’s return value, but the function will terminate when the End
Function statement is reached, or when an Exit Function statement is encountered. Similar to
variables, a custom function has a name that must be unique in its scope (which is also true for
subroutines, of course). If you declare a function in a form, the function name must be unique in

80 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes the form. If you declare a function as Public or Friend, its name must be unique in the project.
Functions have the same scope rules as variables and can be prefixed by many of the same
keywords. In effect, you can modify the default scope of a function with the keywords Public,
Private, Protected, Friend, and Protected Friend. In addition, functions have types, just like
variables, and they’re declared with the As keyword.

Suppose that the function CountWords() counts the number of words, and the function
CountChars() counts the number of characters in a string. The average length of a word could be
calculated as follows:

Dim longString As String, avgLen As Double

longString = TextBox1.Text

avgLen = CountChars(longString) / CountWords(longString)

The first executable statement gets the text of a TextBox control and assigns it to a variable,
which is then used as an argument to the two functions.When the third statement executes,
Visual Basic first calls the functions CountChars() and CountWords() with the specified arguments,
and then divides the results they return.

You can call functions in the same way that you call subroutines, but the result won’t be stored
anywhere. For example, the function Convert() might convert the text in a text box to uppercase
and return the number of characters it converts. Normally, you’d call this function as follows:

nChars = Convert()

If you don’t care about the return value — you only want to update the text on a TextBox control
— you would call the Convert() function with the following statement:

Convert()

�
Case Study Implementing Subroutines with Arrays

Introduction

We’re going to implement a function that passes an array. This function is called findMin
which finds the minimum value in an array.

findMin

Here’s a simple C function that finds the minimum value of an array of n values passed in,
and returns it.

 int min = arr[0] ;

 int i ;

 for (i = 0 ; i < n ; i++)

 {

 if (arr[i] < min)

 min = arr[i] ;

 }

 return min ;

}

Arrays are really just pointers, and in MIPS, pointers are 32 bits (at least, MIPS R2000/
R3000—later MIPS CPUs use 64 bits of addresses). Thus, we can pass the pointers using the
argument registers since those registers can store 32 bits.

Contd...

LOVELY PROFESSIONAL UNIVERSITY 81

Unit 5: Built-in Functions

NotesIt’s often quite convenient that registers store the same number of bits as addresses.

Implementation

Here’s the implementation in MIPS. We assume arr is stored in $a0 and n is stored in $a1.
We use $t0 to store min and $t1 to store i. Notice this is a leaf procedure. So, we won’t use
the stack. Also notice that loading a word at the address stored in $a0 access arr[0].

findMin: lw $t0, 0($a0) # min = arr[0]

 li $t1, 0 # i = 0

LOOP: bge $t1, $a1, END # branch ! (i < n)

 add $t2, $t1, $t1 # t2 = 2 * i

 add $t2, $t2, $t2 # t2 = 4 * i

 add $t2, $t2, $a0 # t2 = arr + (4 * i)

 lw $t3, 0($t2) # t3 = arr[i]

 bge $t3, $t0, INCR # branch ! (arr[i] < min)

 move $t0, $t3 # min = arr[i]

INCR: addi $t1, $t1, 1 # i++

 j LOOP # back to top of loop

END: move $v0, $t0 # retval = min

 jr $ra # return

The awkward part is computing the address of the array element. Recall that & arr[i] is arr
+ (sizeof(int) * i) where we assume sizeof(int) is 4 bytes. Thus, we must compute 4 * i.
There are two ways to do this. Multiply by 4 (which involves some complications of its
own) or add the number to itself twice (which seems awkward).

Also notice where the branch statement for the if-statement goes. If the condition is false,
it jumps to the increment.

Making the Call

How do we call findMin? If arr is a label which is conveniently declared in the data
segment, then all we do is something like:

 la $a0, arr # set arg 0

 li $a1, 10 # set arg 1

 jal findMin

 move $t0, $v0 # save return value to $t0

findMin, version 2

This is the “same” function as before, at least, in the purpose of the function. It finds the
minimum value in an array and returns it.

 int min = * arr ;

 int i ;

 for (i = 0 ; i < n ; i++)

 {

 if (*arr < min)

 min = * arr ;

 arr++ ; // POINTER ARITHMETIC: Move arr forward 1 element

 }

 return min ;

}

Contd...

82 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes The difference in this version is that we treat the arr as a pointer variable, and move the
pointer forward one element at a time.

In the first version, findMin, we did not alter arr’s value. Instead, each iteration, we
computed the offset from the start of the array to element i of the array. We summed the
offset and arr and storing the sum into a temporary register. Then, we loaded the array
element from the address stored in this temporary register.

As you can see, the first version is more complicated to explain and implement in MIPS,
even though it’s somewhat easier to understand the array version than the pointer version
(because most people understand arrays better than pointers, even though, in C, the two
are related to one another).

Implementation

Here’s the implementation in MIPS. We assume arr is stored in $a0 and n is stored in $a1.
We use $t0 to store min. This version is somewhat simpler because we modify arr, which
we did not do before, and we do not need to do the more difficult computations of
addresses as in the previous version.

findMinTwo: lw $t0, 0($a0) # min = arr[0]

 li $t1, 0 # i = 0

LOOP: bge $t1, $a1, END # branch ! (i < n)

 lw $t2, 0($a0) # t2 = * arr

 bge $t2, $t0, INCR # branch ! (*arr < min)

 move $t0, $t2 # min = * arr

INCR: addi $a0, $a0, 4 # Move arr forward 1 element

 addi $t1, $t1, 1 # i++

 j LOOP # back to top of loop

END: move $v0, $t0 # retval = min

 jr $ra # return

This code is shorter and more efficient than the array version. This is one reason why a
good knowledge of pointers can help you write more efficient code. However, realize the
tradeoffs between efficent code, and code that’s easy to follow and maintain.

Summary

Implementing a function with an array is the first time we’ve actually used an address
from memory and used the lw instruction. While compilers allow us to access the ith
element of an array conveniently (via pointer arithmetic), we don’t get such conveniences
in assembly language. We have to compute the offset explicitly as in findMin.

If you don’t mind moving the pointer (which you can do, if it’s passed as a parameter),
then you can avoid computing the offset, as in findMinTwo.

Questions

1. Study and analyse the case.

2. Write down the case facts.

3. What do you infer from it?
Source: http://www.cs.umd.edu/class/sum2003/cmsc311/Notes/Mips/case_arr.html

LOVELY PROFESSIONAL UNIVERSITY 83

Unit 5: Built-in Functions

NotesSelf Assessment

True or False:

11. A subroutine is a block of statements that carries out a well-defined task.

12. A function is placed within a set of Sub…End Sub statements.

13. Subroutine cannot be invoked by name.

14. A function does not returns a result.

15. You can call functions in the same way that you call subroutines, but the result won’t be
stored anywhere.

5.6 Summary

� A procedure is referred to as “built-in” if it shipped with its programming language.

� A function is similar to a normal procedure but the main purpose of the function is to
accept a certain input from the user and return a value which is passed on to the main
program to finish the execution.

� The objective of MsgBox is to produce a pop-up message box and prompt the user to click
on a command button before he/she can continues.

� An InputBox() function will display a message box where the user can enter a value or a
message in the form of text.

� In VB.Net you can use strings as array of characters.

� Type Conversion Functions are used to change the type of a variable as the program
proceeds.

� Implicit conversions happen when the change effected does not change the value of the
variable and there is no loss of data.

� Explicit conversions are a must when the change is from a large type to a smaller type.

� Val Function returns the numbers contained in a string as a numeric value of appropriate
type.

� The Str(or Str$) Function is used to return string equivalent for the specified integer.

� The Convert class converts a base data type to another base data type.

� A function is similar to a subroutine, but a function returns a result.

5.7 Keywords

Convert class: It converts a base data type to another base data type.

Explicit conversions: They are a must when the change is from a large type to a smaller type.

Implicit conversions: They happen when the change effected does not change the value of the
variable and there is no loss of data.

InputBox() : It will display a message box where the user can enter a value or a message in the
form of text.

MsgBox: It is used to produce a pop-up message box and prompt the user to click on a command
button before he/she can continues.

84 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Procedure: It is referred to as “built-in” if it shipped with its programming language.

Str(or Str$) Function: It is used to return string equivalent for the specified integer.

Strings: It is an array of characters.

Type Conversion Functions: They are used to change the type of a variable as the program
proceeds.

Val Function: It returns the numbers contained in a string as a numeric value of appropriate
type.

5.8 Review Questions

1. What is a procedure?

2. Explain the MsgBox() function with an example.

3. Differentiate between a msgbox and an inputbox.

4. Why do we need a String class?

5. How do we create an object from a String class?

6. List some types of conversion functions with examples.

7. Write a note on Val function.

8. What is Convert class?

9. What is a subroutine?

10. Differentiate between a subroutine and a function.

Answers: Self Assessment

1. Function 2. Msgbox

3. InputBox 4. Strings

5. Type Conversion 6. Implicit

7. Explicit 8. Val

9. Str 10. Convert

11. True 12. False

13. False 14. False

15. True

5.9 Further Readings

Books Object-oriented Programming with Visual Basic.Net, Hamilton.

Programming Visual Basic .NET, J. Liberty.

Visual Basic .NET, Shirish Chavan, Pearson Education India.

Visual Basic.NET Black Book, Steven Holzner.

LOVELY PROFESSIONAL UNIVERSITY 85

Unit 5: Built-in Functions

Notes

Online links http://uet.vnu.edu.vn/tltk/Learning/File_PDF/CacHamTrongVB.NET.pdf

http://www.yevol.com/en/visualbasic/Lesson08.htm

http://visualbasic.w3computing.com/vb2008/3/vb-built-in-functions.php

http://msdn.microsoft.com/en-us/library/k7beh1x9%28v=vs.80%29.aspx

86 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Unit 6: Classes and Object in VB.NET

CONTENTS

Objectives

Introduction

6.1 Using Classes, Object and Methods

6.1.1 Class

6.1.2 Creating an Object from a Class

6.1.3 Create a Method

6.2 Constructor

6.3 Creating Properties and Indexers

6.3.1 Creating Properties

6.3.2 Creating Indexer

6.4 Using Inheritance in Classes

6.4.1 Importing in Class

6.5 Summary

6.6 Keywords

6.7 Review Questions

6.8 Further Readings

Objectives

After studying this unit, you will be able to:

� Understand classes, objects and methods

� Explain constructors

� Discuss the properties and indexers

� Elaborate the concept of inheritance

Introduction

The original versions of Microsoft Visual Basic provided a mechanism for defining data
structures in a user-defined type (UDT). A UDT encapsulates the data, but not the processing
associated with that data. Processing was defined in global standard modules, often called
BAS modules because of their .bas extension. The release of Visual Basic 4 dawned a new age
for Visual Basic developers. Visual Basic took its first steps toward becoming an object-oriented
programming (OOP) language by providing object-oriented features such as class modules. A
class module defines data as properties and the processing associated with that data as methods.
By defining a class for each business entity, encapsulating data in properties and processing in
methods, Visual Basic developers had object-based development. As Visual Basic evolved
from version 4 to version 6, Visual Basic developers expanded their knowledge of OO to
include component-based development (CBD) techniques. With CBD, Visual Basic developers

Kumar Vishal, Lovely Professional University

LOVELY PROFESSIONAL UNIVERSITY 87

Unit 6: Classes and Object in VB.NET

Notescould build complete three-tiered applications for Microsoft Windows® and the Web. This
type of development was so common that Microsoft provided a design pattern known as the
Microsoft DNA architecture. Visual Basic .NET provides another leap in Visual Basic
development capabilities and features and provides for true object-oriented programming, as
detailed in this article.

For a programming language to be a true OOP language, the language must meet the following
criteria:

� Abstraction: Abstraction manages the complexities of a business problem by allowing
you to identify a set of objects involved with that business problem.

� Encapsulation: Encapsulation hides the internal implementation of an abstraction within
the particular object.

� Polymorphism: Polymorphism provides for multiple implementations of the same method.
For example, different objects can have a Save method, each of which perform different
processing.

� Inheritance: The excitement of Visual Basic .NET lies in inheritance. Visual Basic 5
introduced the concept of interface inheritance, which allows you to reuse the interface of
a class, but not its implementation. Visual Basic .NET provides for true implementation
inheritance whereby you can reuse the implementation of a class.

6.1 Using Classes, Object and Methods

Visual Basic .NET is not Visual Basic 6 with inheritance tacked onto it. Rather, Visual Basic .NET
has been entirely rewritten to be fully object-oriented. In fact, everything in Visual Basic .NET
can be treated as an object. Yes, even your strings and integers can be accessed as objects in
Visual Basic .NET.

To demonstrate this, start a new Visual Basic .NET console application project. In the Main
subroutine, enter this code:

Dim i As Integer

MsgBox(i.MinValue)

The first hint that your integer is treated as an object is the list of properties and methods that
appear when you type the dot after the i. Select one of the properties, such as the MinValue
shown in this example. Then run the application and you will get a message box containing the
value of the selected integer property.

6.1.1 Class

The basic purpose of a class has not changed in Visual Basic .NET. You still create classes for your
business objects and for any supporting objects that you may need for your application. The
primary changes from Visual Basic 6 to Visual Basic .NET involve syntax and some new features.

In Visual Basic 6, you create a class by creating a class module: one class, one class module. This
is no longer the case in Visual Basic .NET. You can create any number of classes within a single
code file. You can even create classes within classes. But let’s start out with a simple example.

Adding a class to a Visual Basic .NET project is very similar to Visual Basic 6. However, instead
of getting an empty code file, your class will appear with the following code:

Public Class CCustomer

End Class

88 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes

Note The current Microsoft convention is to define the class names without a prefix.
Following that convention, this class name would be Customer instead of CCustomer.
While this convention is more user-friendly when creating objects using retail products
such as Microsoft Word and Excel, maintenance and support of enterprise systems can
benefit from the additional information that a prefix provides.

If you want to add a second class to the same file, just add another class statement:

Public Class CCustomer

End Class

Public Class CContact

End Class

Note Normally, a class should be defined in its own code file. Only put classes together
if they are tightly coupled. For example, invoice and invoice line item could be two classes
within one code file because you would normally never use invoice line item without
invoice. If you would use customer contacts (CContact) separate from customers then the
CContact class should be separate from the CCustomer class.

Create a Class

To create a class in VB.NET, follow the steps below:

� Start a new VB.NET project

� Add a Textbox to your form, and leave it on the default Name, TextBox1

� Change the Text Property to ts1 4jh (make sure the letters are lowercase and not upper,
because our object will convert it.)

� Add a Button to your form

Once you have a new form with a Textbox and a Button on it, you need to add a Class. This is
quite easy. It’s just like adding a Module. In fact, they look exactly the same.

� So from the VB menu bar, click on Project

� From the drop down menu, click Add Class

� You’ll get this dialogue box popping up in version 2008:

Figure 6.1: Add New Item

Source: http://www.homeandlearn.co.uk/net/nets11p2.html

LOVELY PROFESSIONAL UNIVERSITY 89

Unit 6: Classes and Object in VB.NET

NotesThe Class Template on the right will already be selected. The thing you need to change is the
Name at the bottom. The default Name is Class1.vb. This is not terribly descriptive, and you’ll
have great problems working out what this class does, a few months down the line.

Change the Name from Class1.vb to ConvertPostcode.vb. Then click the Open button.

When the code window for the class opens up, it will look like this:

Figure 6.2: Code Window

Source: http://www.homeandlearn.co.uk/net/nets11p2.html

As you can see, there’s not a great deal to look at! All we have is the Public Class … End Class
code stub. The name of our Class is also there. But the code is in a separate window, and has a tab
all to itself. It’s this tab full of code that you reuse and turn into an object.

What we have to do now is add the code that does the work - converts our postcode. But we can’t
just write this:

Dim ConvertPostcode As String

ConvertPostcode = StrConv(TextBox1.Text, VbStrConv.UpperCase)

TextBox1.Text = ConvertPostcode

That would be all right for the button on our Form. But it’s not all right for our Class. When
you’re designing a Class, your code has to go inside of things like Functions and Subs. When you
set up a Function or Sub, you’re actually creating Methods for your objects A Method is code that
actually does something, that performs an action. Converts a postcode in our case.

6.1.2 Creating an Object from a Class

In order to use a class, you first need to create an object from the class. In Visual Basic 6, the
recommended syntax for creating an object from a class is:

Private m_oCustomer as CCustomer

Set m_oCustomer = New CCustomer

This syntax is almost identical in Visual Basic .NET. Since everything is basically an object in
Visual Basic .NET, there is no need for two different types of assignment, so there is no longer a
need for the Set keyword:

Private m_oCustomer as CCustomer

m_oCustomer = New CCustomer()

Notice the parenthesis when creating the object. If you defined a parameterized constructor for
the class, you can pass the parameter(s) to the constructor within the parentheses:

m_oCustomer = New CCustomer(“Acme Corporation”)

With Visual Basic .NET, you can combine the object variable declaration and the object creation
using the New keyword:

Private m_oCustomer As CCustomer = New CCustomer()

The object is created when this declaration is executed. The shorthand form of this syntax is:

Private m_oCustomer As New CCustomer()

90 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes If you need to pass parameters, this syntax becomes:

Private m_oCustomer As New CCustomer(“Acme Corporation”)

You cannot put a Try... Catch block for error handling around a module-level declaration. This
restriction makes this style of object creation less useful. In production-quality applications, you
may want to stick to the tried and true approach of first declaring the module-level variable and
then creating an instance with the New keyword in order to support full-featured error handling.

In the declarations section:

Private m_oCustomer as CCustomer

Within a routine:

Try

 m_oCustomer = New CCustomer()

Catch e As Exception

 Debug.WriteLine(e.Message)

End Try

Continuing with the example, select your favorite style of object creation and add it to the Sub
Main.

When you have finished using an object, you can call the object’s Dispose method to free the
resources used by the object, assuming that a Dispose method was implemented for the object.
You can then set the object variable to Nothing:

m_oCustomer.Dispose()

m_oCustomer = Nothing

The object is then destroyed when the garbage collector detects that the object is no longer used.

Tip Unlike Visual Basic 6, an object in .NET is not destroyed the moment that the object variable
is set to Nothing. Rather, it will be destroyed when the garbage collector detects and destroys it.
The garbage collector will destroy an orphaned object, whether or not you set the object variable
to Nothing.

At this point, you should be able to execute the sample application and see the debug messages
appear in the Output window.

6.1.3 Create a Method

You can also then add properties or methods to the class. As with Visual Basic 6, you normally
define a property by declaring a private variable and public Property procedures. In Visual
Basic .NET, you would define a Name property as follows:

 Private m_sName As String

 Property Name() As String

 Get

 Return m_sName

 End Get

 Set(ByVal Value As String)

 m_sName = Value

 End Set

 End Property

There are only two types of Property procedures in Visual Basic .NET, Get and Set. The Get
procedure retrieves the property value from the class and the Set procedure assigns the property.
Visual Basic 6 provided a property Let statement that handled intrinsic data types while the Set

LOVELY PROFESSIONAL UNIVERSITY 91

Unit 6: Classes and Object in VB.NET

Notesstatement worked with objects. Now that everything in Visual Basic .NET is basically an object,
there is no need for the Let statement. Notice that the syntax for a property procedure is also
changed. Both the Get and Set are contained within one property statement. No more possibility
of a mismatch in data types between property Get and Set. This makes these statements easier to
maintain. In a three-tiered or N-tiered application, your classes may be stateless, meaning that
they have no properties. This provides more efficient use of your classes within middle-tier
components.

The syntax for a simple method is nearly identical to prior versions of Visual Basic. The only
difference you may notice is the Return keyword. You can use Return to return a value from a
function instead of using the function name. The following example demonstrates a simple
method:

 Public Function SayHello() As String

 If Name <> “” Then

 Return “Hello “ & Name

 Else

 Return “Hello World”

 End If

 End Function

Self Assessment

Fill in the blanks:

1. manages the complexities of a business problem by allowing you to identify
a set of objects involved with that business problem.

2. hides the internal implementation of an abstraction within the particular
object.

3. provides for multiple implementations of the same method.

4. allows you to reuse the interface of a class, but not its implementation.

5. In order to use a class, you first need to create an from the class..

6.2 Constructor

In Visual Basic 6, when you create an instance of a class the Initialize event is generated. You can
put code into the Initialize event to initialize the object. For example, you may want to define
default object data, open database connections, or create related objects. However, you cannot
pass anything to the Initialize event. This makes it difficult to initialize the object with specific
parameters.

Visual Basic .NET introduces true constructors that are executed whenever a new instance of the
class is created. These constructors are defined with a subroutine named New.

 Public Sub New()

 ‘ Perform initialization

 Debug.WriteLine(“I am alive”)

 End Sub

You can pass data to a constructor for more flexibility and power in initializing the object.
Constructors with parameters are called parameterized constructors. For example:

 Public Sub New(ByVal sName As String)

 ‘ Assign the name

92 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Name = sName

 ‘Other initialization

 Debug.WriteLine(Name & “ is alive”)

 End Sub

In this example, the customer name is passed in to the constructor. That name is then used to
initialize the Name property defined with the Property procedure.

Both of these constructors can be define for one class. Actually, any number of constructors
can be defined for a class as long as they each have different parameters. This feature is
called overloading. The appropriate constructor is called based on the data passed to the
constructor. You do not have to define a constructor. If you don’t create one, a default
constructor is used.

Shared Constructors

Shared constructors are used to initialize the shared variables of a type. Shared variables are
created using the Shared keyword and store values that can be shared by all the instances of a
class. Shared constructors have an implicit public access. A shared constructor will not run more
than once during a single execution of a program.

The following example is an illustration of the shared constructor.

Public Class class1

Shared x As Integer

Shared Sub New()

 x=0

End Sub

End Class

We can increment the value of a shared variable in an instance constructor to keep track of the
number of instances created in a class. The following code illustrates the use of a shared variable
within an instance constructor.

Sub New

x=x+1

MessageBox.Show(“Number of instances are:” &i)

End Sub

To test how shared constructor works, create a form and name it as Form1 and place a button
Button1.

Public Class Form1

Inherits System.windows.Forms.Form

Private Sub Button1_Click(ByVal sender As System.Object, Byval e As System.EvenArgs) Handles
Button1.Click

Dim c1 As class1 = New class1

Dim c2 As class1 = New class1

End Sub

End Class

The above code illustrates the use of a shared variable within an instance constructor to keep
track of the number of instances of a class.

LOVELY PROFESSIONAL UNIVERSITY 93

Unit 6: Classes and Object in VB.NET

NotesInstance Constructor

Instance constructors are used to initialize variables that are declared with Dim, Public, Private,
Friend, Protected, and Protected Friend keywords. Write the following code in the class module.

Public Class ItemClass

 Private ItemCode As String

 Private ItemName As String

 Private ItemDescription As String

 Private ItemCategory As String

 Private ItemPrice As Single

 Private ItemUnit As String

 Public Sub New(ByVal Category As string)

ItemCategory = Category

 End Sub

End Class

In the Instance Constructor, the statement, ItemCategory = Category assigns Item Category to
class variable ItemCategory.

To test how Instance constructor works, create a form and name it as Form1 and place a button
Button1.
Public Class Form1

Inherits System.windows.Forms.Form

Private Sub Button1_Click(ByVal sender As System.Object, Byval e As

System.EvenArgs) Handles Button1.Click

Dim objItem As New ItemClass(“I”)

End Sub

End Class

This is how we can instantiate the Item class which in turn calls the instance constructor.

Self Assessment

True or False:

6. Constructors that are executed whenever a new instance of the class is created.

7. True constructors are defined with a subroutine named New.

8. If you don’t create one, no constructor is used.

9. Instance constructors are used to initialize the shared variables of a type.

6.3 Creating Properties and Indexers

In VB.NET, properties are nothing but natural extension of data fields. They are usually known
as ‘smart fields’ in VB.NET community. We know that data encapsulation and hiding are the two
fundamental characteristics of any object oriented programming language. In VB.NET, data
encapsulation is possible through either classes or structures. By using various access modifiers
like private, public, protected, internal etc. it is possible to control the accessibility of the class
members. Usually inside a class, we declare a data field as private and will provide a set of
public SET and GET methods to access the data fields. This is a good programming practice, since
the data fields are not directly accessible outside the class. We must use the set/get methods to
access the data fields.

94 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Indexers, another nifty feature of VB.NET, are similar to the overloaded [] (array subscript)
operator in C++. An indexer allows you to access a class instance in terms of a member array. An
indexer declaration may include a set of attributes; a new modifier; a valid combination of the
public, private, protected, and internal access modifiers; and one of the virtual, override, or
abstract modifiers.

6.3.1 Creating Properties

You can add your own Properties to your Class. A Property, remember, is something that
changes or sets a value. Examples are, setting the Text in a textbox, changing the background
colour of a Form, and setting a Button to be Enabled. You can Get values from a Property or Set
them. So for a Textbox, you can Set the text to appear in the textbox, or you can Get what text is
inside of the textbox. You use these same words, Get and Set, when you’re creating your own
Properties.

Example:

Follow the steps given below to create a property:

� Add a Picture Box control to your Form

� Set the SizeMode Property of the Picture box to StretchImage

� Click on the Image Property, and add the planet.jpg image that you downloaded above

� Add two textboxes to the form. Change the Name of the first one to txtHeight, and the
second one to txtWidth. Enter 300 as a the text for both textboxes

� Add two labels to the form. Set the Text of the first one to Height, and the second one to
Width. Move them next to the textboxes

� Add a new button to your form. Set the Text property to “Change Height and Width”

What we’ll do is to give our object the capability of setting a Height and Width property. When
the object has done its work, the height and width of the picture box will change to the values
from the textboxes. Off we go then.

VB needs to know that you want to set up a Property for your Class. The way you do this is type
“Public Property … End Property”.

Access the code for your Class. Type a few lines of space between the End Sub of your
DoMessageBox Method, and the line that reads “End Class”. On a new line, type the following:

Public Property ChangeHeight() As Integer

ChangeHeight is the name of our property, and it’s something we made up ourselves. After a
pair of round brackets, you add the type of value that will be returned (Just like a function).
Here, we want to return an Integer value.

When you press the return key after typing that line, VB finishes off the rest of the code stub for
you:

Public Property ChangeHeight() As Integer

Get

End Get

Set(ByVal Value As Integer)

End Set

End Property

LOVELY PROFESSIONAL UNIVERSITY 95

Unit 6: Classes and Object in VB.NET

NotesBefore the code is explained, add a new variable right at the top of your code, just below “Public
Class changeHeightWidth”. Add this:

Private intHeight As Integer

The Private word means that only code inside of the Class can see this variable. You can’t access
this code directly from a button on a Form, for example. The reason the variable is right at the
top is so that other chunks of code can see and use it. But your coding window should now look
something like this next image:

Figure 6.3: Code Window

Source: http://www.homeandlearn.co.uk/net/nets11p2.html

With the Get and Set parts, the Property stub is this:

Public Property PropertyName() As VariableType

End Property

The reason the Get and Set are there is so that you can Set a value for your property, and get a
value back out.

To Set a value, the code inside of Property is this:

Set(ByVal Value As Integer)

End Set

The Set word is followed by a pair of round brackets. Inside of the round brackets is ByVal Value
As Integer. The is just like a Sub, when you hand over a value to it. The name of the variable,
Value, is a default name. You can change this to anything you like. The type of variable, As
Integer, is also a default. You don’t have to pass numbers to you property. If you want your
Property to handle text you might have something like this:

Set(ByVal MyText As String)

But you couldn’t do this:

Set(ByVal Value As Integer, ByVal MyString As String)

In other words, you can’t pass two values to your property. You can only pass one value.

96 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes But we want to pass a number to our property. For us, this value will come from the textbox on
the form. Whatever number is inside of the textbox will get handed over to our Property.

Set(ByVal Value As Integer)

But we need to use this value being handed over. We can assign it to that variable we set up at the
top of the Class. So add this to your code (The new line is in bold):

Set(ByVal Value As Integer)

intHeight = Value

End Set

Whenever our Property is called into action, we’re setting a Value, and then handing that value
to a variable called intHeight. This is known as Writing to a Property.

To read from a Property, you use Get. This will Get a value back out of your Property. The code
stub is this:

Get

End Get

You don’t need any round brackets for the Get part. You’re just fetching something to be read.

Add the line in bold text to your Get statement.

Get

ChangeHeight = intHeight

End Get

All you’re doing here is returning a value, just like you do with a function. You’re handing a value
to whatever name you called your property. We called ours ChangeHeight. It’s an Integer. So we
can pass whatever value was stored inside of intHeight over to the variable called ChangeHeight:

ChangeHeight = intHeight

You can also use the Return keyword. Like this:

Get

Return intHeight

End Get

6.3.2 Creating Indexer

An indexer declaration specifies the element type of the indexer introduced by the declaration.
Unless the indexer is an explicit interface member implementation, the type is followed by the
keyword this. For an explicit interface member implementation, the type is followed by an
interface type, a period (.), and the keyword this. Unlike other members, indexers do not have
user defined names. The formal parameter list of an indexer corresponds to that of a method,
with two differences: at least one parameter must be specified, and the ref and out parameter
modifiers are not permitted. The accessors specify the executable statements associated with
reading and writing indexer elements. Even though the syntax for accessing an indexer element
is the same as that for an array element, an indexer element is not classified as a variable. Thus,
it is not possible to pass an indexer element as a ref or out parameter. It is an error for an indexer
accessor to declare a local variable with the same name as an indexer parameter. With these
differences in mind, all rules defined in apply to indexer accessors as well as property accessors.

Indexers and properties, although very similar in concept, differ in the following ways:

� A property is identified by its name whereas an indexer is identified by its signature.

� A property is accessed through a simple-name or a member-access whereas an indexer
element is accessed through an element-access.

LOVELY PROFESSIONAL UNIVERSITY 97

Unit 6: Classes and Object in VB.NET

Notes� A property can be a static member whereas an indexer is always an instance member.

� A get accessor of a property corresponds to a method with no parameters whereas a get
accessor of an indexer corresponds to a method with the same formal parameter list as the
indexer.

� A set accessor of a property corresponds to a method with a single parameter named value
whereas a set accessor of an indexer corresponds to a method with the same formal
parameter list as the indexer, plus an additional parameter named value.

Example:

Option Strict On

 Imports System

 Public Class MyItemList

 Private strings(255) As String

 Private ctr As Integer = 0

 Public Sub New(ByVal ParamArray initialStrings() As String)

 Dim s As String

 For Each s In initialStrings

 strings(ctr) = s

 ctr += 1

 Next

 End Sub

 Public Sub Add(ByVal theString As String)

 If ctr >= Strings.Length Then

 Else

 Strings(ctr) = theString

 ctr += 1

 End If

 End Sub

 Default Public Property Item(ByVal index As Integer) As String

 Get

 If index < 0 Or index >= strings.Length Then

 Else

 Return strings(index)

 End If

 End Get

 Set(ByVal Value As String)

 If index >= ctr Then

 Else

 strings(index) = Value

 End If

 End Set

 End Property

 Public Function Count() As Integer

 Return ctr

98 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes End Function

 End Class

 Public Class Tester

 Public Shared Sub Main()

 Dim lbt As New MyItemList(“Hello”, “World”)

 Dim i As Integer

 Console.WriteLine(“After creation...”)

 For i = 0 To lbt.Count - 1

 Console.WriteLine(“lbt({0}): {1}”, i, lbt(i))

 Next

 lbt.Add(“W”)

 lbt.Add(“I”)

 lbt.Add(“J”)

 lbt.Add(“t”)

 Console.WriteLine(“After adding strings...”)

 For i = 0 To lbt.Count - 1

 Console.WriteLine(“lbt({0}): {1}”, i, lbt(i))

 Next

 Dim subst As String = “e”

 lbt(1) = subst

 Console.WriteLine(“After editing strings...”)

 For i = 0 To lbt.Count - 1

 Console.WriteLine(“lbt({0}): {1}”, i, lbt(i))

 Next

 End Sub

 End Class

Figure 6.4: Output of the Code Above

Source: http://www.java2s.com/Tutorial/VB/0120__Class-Module/DefineIndexerforyourownclass.htm

LOVELY PROFESSIONAL UNIVERSITY 99

Unit 6: Classes and Object in VB.NET

NotesSelf Assessment

Fill in the blanks:

10. are nothing but natural extension of data fields.

11. An allows you to access a class instance in terms of a member array.

12. For an explicit interface member implementation, the type is followed by an interface
type, a period (.), and the keyword

6.4 Using Inheritance in Classes

One of the key features of Object-oriented Programming (OOP) languages is inheritance.
Inheritance is the ability to use all of the functionality of an existing class, and extend those
capabilities without re-writing the original class. Prior to the availability of Microsoft Visual
Basic .NET, Visual Basic programmers did not have this capability. In Visual Basic .NET, you are
able to inherit from classes that ship in the Microsoft .NET Framework, as well as from classes
that you create. In this document, you will learn how to use inheritance, and see how it can
significantly cut down your programming time.

A new class that is created by inheritance is sometimes called a child class or a subclass. The class
you originally inherited from is called the base class, parent class, or the superclass. In some OOP
languages, a base class may inherit from more than one base class. This means that if you had a
Person class and a Car class, a Driver class might inherit all of the properties and methods from
each of these two classes. In the .NET world, only single inheritance is allowed, so each subclass
will have only one base class.

There are three types of inheritance that .NET supports: implementation, interface, and visual.
Implementation inheritance refers to the ability to use a base class’s properties and methods
with no additional coding. Interface inheritance refers to the ability to use just the names of the
properties and methods, but the child class must provide the implementation. Visual inheritance
refers to the ability for a child form (class) to use the base forms (class) visual representation as
well as the implemented code.

A class in .NET may inherit from a class that has already inherited from another class. In
addition you may use an interface or even multiple interfaces within a class.

Inheritance is desirable because you want to avoid writing the same code over and over again.
If you have two separate classes, and each one has to implement a FirstName and LastName
property, you are going to have duplicate code. If you wish to change the implementation of one
of these properties, you need to find all classes that have implemented these properties to make
the changes. Not only is this time-consuming, but you also increase the risk of introducing bugs
in the various classes. One thing to remember when you are considering using inheritance is
that the relationship between the two classes should be an “is a” type of relationship. For
example, an Employee is a Person, and a Manager is a Person, so these two classes can inherit
from the Person class. But you should not have a Leg class inherit from a Person class as a Leg is
not a person.

6.4.1 Importing in Class

Inheritance in VB.net is method by which the properties of the base classes are added to the
derived classes. In Vb.net the keyword Inherits is used in the derived class to specify its base
class. The MustInherit keyword is used to specify that class can be used only as a base class,
NotInheritable is used to specify that a class cannot be inherited.

100 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes

Example:

 Module Module1

 Public Class s1

 Public a As Integer = 5

 Public Function val() As Integer

 Return a

 End Function

 End Class

 Public Class s2

 Inherits s1

 Public c As Integer = 20

 Public Function add() As Integer

 Return c + a

 End Function

 End Class

 Sub Main()

 Dim res As New s2

 System.Console.WriteLine(“Final Value is::”)

 System.Console.WriteLine(res.add())

 Console.Read()

 End Sub

End Module

Output:

Final Value is: 25

In the above example the value of a is inherited to from base class s1 to the derived class s2.
Using the instance res of class s2 the values of ‘a’ as well as ‘c’ is added to give the result.

Self Assessment

True or False:

13. There are three types of inheritance that .NET supports: implementation, interface, and
visual.

14. A new class that is created by inheritance is called a superclass.

15. The class you originally inherited from is called the subclass.

6.5 Summary

� Abstraction manages the complexities of a business problem by allowing you to identify
a set of objects involved with that business problem.

� Encapsulation hides the internal implementation of an abstraction within the particular
object.

� Polymorphism provides for multiple implementations of the same method.

LOVELY PROFESSIONAL UNIVERSITY 101

Unit 6: Classes and Object in VB.NET

Notes� Inheritance allows you to reuse the interface of a class, but not its implementation.

� A Method is code that actually does something, that performs an action.

� In order to use a class, you first need to create an object from the class.

� Get procedure retrieves the property value from the class and the Set procedure assigns
the property.

� Visual Basic .NET introduces true constructors that are executed whenever a new instance
of the class is created.

� Constructors with parameters are called parameterized constructors.

� Shared constructors are used to initialize the shared variables of a type.

� Instance constructors are used to initialize variables that are declared with Dim, Public,
Private, Friend, Protected, and Protected Friend keywords.

� An indexer allows you to access a class instance in terms of a member array.

� There are three types of inheritance that .NET supports: implementation, interface, and
visual

6.6 Keywords

Abstraction: It manages the complexities of a business problem by allowing you to identify a
set of objects involved with that business problem.

Encapsulation: It hides the internal implementation of an abstraction within the particular
object.

Indexer: It allows you to access a class instance in terms of a member array.

Inheritance: It allows you to reuse the interface of a class, but not its implementation.

Instance constructors: They are used to initialize variables that are declared with Dim, Public,
Private, Friend, Protected, and Protected Friend keywords.

Method: It is code that actually does something, that performs an action.

Polymorphism: It provides for multiple implementations of the same method.

Shared constructors: They are used to initialize the shared variables of a type.

6.7 Review Questions

1. What is object-oriented programming?

2. Give the steps to create a class.

3. Explain the methods in VB.NET.

4. What are constructors?

5. Differentiate between shared and instance constructors.

6. Explain the concept of properties in VB.Net.

7. What are the major differences between indexer and properties?

8. What is inheritance?

102 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes 9. Explain the method to inherit a child class from a base class.

10. Does VB.NET support multiple inheritance?

Answers: Self Assessment

1. Abstraction 2. Encapsulation

3. Polymorphism 4. Inheritance

5. Objects 6. True

7. True 8. False

9. False 10. Properties

11. Indexer 12. This

13. True 14. False

15. False

6.8 Further Readings

Books Beginning Vb.Net 2003, Willis.

Building Distributed Applications with Visual Basic.NET, Dan Fox, Sams.

Object-oriented Programming with Visual Basic.Net, Hamilton.

Visual Basic.NET Black Book, Steven Holzner.

Online links http://msdn.microsoft.com/en-us/library/ms973814.aspx

http://www.hscripts.com/tutorials/vbnet/inheritance.html http://www.
vkinfotek.com/oops/inheritance-visual-basic-net.html http://www.home
andlearn.co.uk/net/nets1p1.html

LOVELY PROFESSIONAL UNIVERSITY 103

Unit 7: Namespaces

NotesUnit 7: Namespaces

CONTENTS

Objectives

Introduction

7.1 Namespaces – Meaning and Its Working

7.1.1 Some Namespaces and Their Use

7.1.2 Declaring a Namespace

7.1.3 Accessing Members of a Namespace

7.1.4 Nesting a Namespace

7.1.5 Aliases of the Namespaces

7.1.6 Assemblies

7.2 Object and Class

7.3 Creating Your First Class Library

7.3.1 Adding a “Souped-Up” Class

7.3.2 Creating Properties

7.3.3 Building a Test Client

7.3.4 Read-only and Write-only Properties

7.3.5 Parameterized Properties

7.3.6 Default Properties

7.3.7 Constructors in Your Classes

7.3.8 Classes without Constructors

7.3.9 Adding Methods to Classes

7.3.10 Adding Events

7.4 Creation of Namespaces

7.4.1 Creating Your Own Namespaces

7.5 Summary

7.6 Keywords

7.7 Review Questions

7.8 Further Readings

Objectives

After studying this unit, you will be able to:

 Explain the meaning and working of Namespaces

 Describe the object and class

Kumar Vishal, Lovely Professional University

104 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes � Understand the creating your first class library

� Define namespaces

Introduction

Namespaces help you to create logical groups of related classes and interfaces. Namespaces
allow us to organize Classes so that they can be easily accessed in other applications. Namespaces
enable us to avoid any naming conflicts between classes that have the same name. We can use
two classes with the same name in an application provided they belong to different namespaces.

7.1 Namespaces – Meaning and Its Working

Namespace is logical division of class, structure and interface or way to organize your Visual
Basic .NET code is through the use of namespaces. They are a way of grouping type names and
reducing the chance of name collisions. The namespace with all the built-in functionality comes
under System namespace. All other namespaces comes under this System namespace.

Figure 7.1: Concept of Namespaces

Source: http://www.vkinfotek.com/namespace.html

LOVELY PROFESSIONAL UNIVERSITY 105

Unit 7: Namespaces

Notes

Example: We create a new class named TextBox to accept only an integer type of value.
However, if we want to use the VB.Net TextBox control in the same project, there will be a
conflict in the name. When we create a Namespace, we will be able to easily distinguish between
the Class TextBox created by us and the one provided by VB.Net.

Every project in Visual Basic.Net has a root namespace, which is set in the Property page of the
project. When we create a project, by default, the name of the root namespace for the project is set
to the name of the new project. For example, the root namespace for a project named MyProject
is MyProject. Usually, when we create a project, we would like to give it a name which we like.
So, we need to change the MyProject to the name which we wish. We will name the project as
Acct1. We can also organize classes using the Namespace keyword.

Example: You can create a user-defined namespace called EmpNamespace in the project
called Acct1 and place the class EmpClass within the EmpNamespace block.

Namespace EmpNamespace

Class EmpClass

End Class

End Namespace

The fully qualified or proper usage of the class EmpClass will be:

Acct1.EmpNamespace.EmpClass

The .Net framework uses a dot(.) as a delimiter between classes and

namespaces.

After we have created a Namespace, we will use the Namespace explicitly through direct
addressing or implicitly through the Imports statement. Direct addressing involves directly
accessing any class in the namespace by providing the fully qualified name.

Example of using fully qualified name is given below:

Microsoft.VisualBasic.MsgBox(“Using Fully Qualified Name”)

If we want to make all the classes in a given namespace available without the need to type the
entire namespace each time, you can use the Imports statement. An example of using the Imports
statement is given below:
Imports Microsoft.VisualBasic

...

MsgBox(“Using Imports Statement”)

Similarly, in the example we have chosen:

Imports Acct1.EmpNameSpace

Namespaces are of two types, Local and Global. Local Namespaces are

accessible only to the applications to which they belong. Global

Namespaces are accessible from all applications.

7.1.1 Some Namespaces and Their Use

We will just name a few System namespaces and discuss their basic function.

106 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes System: The System namespace contains fundamental classes and base classes that define
commonly-used value and reference data types, events and event handlers, interfaces, attributes,
and processing exceptions.

System.Data: The System.Data namespace provides access to classes that represent the ADO.NET
architecture. ADO.NET lets you build components that efficiently manage data from multiple
data sources. In a disconnected scenario such as the Internet, ADO.NET provides the tools to
request, update, and reconcile data in multiple tier systems. The ADO.NET architecture is also
implemented in client applications, such as Windows Forms, or HTML pages created by ASP.NET.

System.Collections: The System.Collections namespace contains interfaces and classes that define
various collections of objects, such as lists, queues, bit arrays, hashtables and dictionaries.

System.Drawing: The System.Drawing namespace provides access to GDI+ basic graphics
functionality. More advanced functionality is provided in the System.Drawing.Drawing2D,
System.Drawing.Imaging, and System.Drawing.Text namespaces. The Graphics class provides
methods for drawing to the display device. Classes such as Rectangle and Point encapsulate
GDI+ primitives. The Pen class is used to draw lines and curves, while classes derived from the
abstract class Brush are used to fill the interiors of shapes.

System.Globalization: The System.Globalization namespace contains classes that define culture-
related information, including language, country/region, calendars in use, format patterns for
dates, currency, and numbers, and sort order for strings. These classes are useful for writing
globalized (internationalized) applications. Classes such as StringInfo and TextInfo provide
advanced globalization functionalities, including surrogate support and text element processing.

System.IO : The System.IO namespaces contain types that support input and output, including
the ability to read and write data to streams either synchronously or asynchronously, to compress
data in streams, to create and use isolated stores, to map files to an application’s logical address
space, to store multiple data objects in a single container, to communicate using anonymous or
named pipes, to implement custom logging, and to handle the flow of data to and from serial
ports.

System.Web: The System.Web namespaces contain types that enable browser/server
communication. Child namespaces include types that support ASP.NET forms authentication,
application services, data caching on the server, ASP.NET application configuration, dynamic
data, HTTP handlers, JSON serialization, incorporating AJAX functionality into ASP.NET,
ASP.NET security, and web services.

Figure 7.2: Namespace Hierarchy

Source: http://msdn.microsoft.com/en-us/library/ms973231.aspx

7.1.2 Declaring a Namespace

In VB.NET we declare a namespace as shown below:

� imports system;

� imports system.Data;

LOVELY PROFESSIONAL UNIVERSITY 107

Unit 7: Namespaces

Notes

Example:

namespace ExampleNamespace

{

class TestExample

 {

public void ShowMessage()

{

Console.WriteLine(“This is the TestExample namespace!”);

}

 }

}

Using namespaces, we can establish security, version, reference, and deployment boundaries by
using namespaces Because of grouping of namespaces we can create hierarchy which is easy to
identify classes by fully qualified names.

7.1.3 Accessing Members of a Namespace

To access members of a namespace use the dot(.) operator. We can access variable, procedure,
classes of a Namespace.

Example:

Let us explain the process to access a member using an example.
Imports Microsoft.VisualBasic

Namespace Namespace1

 Public Class Class1

 Public Sub MsgBox2()

 MsgBox(“You have accessed the Namespace correctly.”)

 End Sub

 End Class

End Namespace

In order to access the sub we will need to import the namespace. Now, we will declare the Class
variable as class Class1 inside the Page_Load sub. Then we will call the MsgBox2 sub so that the
user will be sent a message box when the page is first loaded. Below is an example.
Imports Namespace1

Partial Class _Default Inherits System.Web.UI.Page

 Protected Sub Page_Load(ByVal Src As Object, ByVal E As EventArgs)

Handles MyBase.Load

 Dim theClass = New Class1

 theClass.MsgBox2()

 End Sub

End Class

Namespaces can hold several different elements such as classes, structures, interfaces,
enumerations, and other namespaces. These will all be referenced with the same format as
directed above.

7.1.4 Nesting a Namespace

You can declare one namespace within another. There is no strict limit to the levels of nesting
you can declare, but remember that when other code accesses the elements declared in the

108 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes innermost namespace, it must use a qualification string that contains all the namespace names in
the nesting hierarchy. All namespace names in your project are based on a root namespace.
Visual Studio assigns your project name as the default root namespace for all code in your
project.

For example, if your project is named Payroll, its programming elements belong to namespace
Payroll. If you declare Namespace funding, the full name of that namespace is Payroll.funding.

If you want to specify an existing namespace in a Namespace statement, such as in the generic
list class example, you can set your root namespace to a null value. To do this, click Project
Properties from the Project menu and then clear the Root namespace entry so that the box is
empty. If you did not do this in the generic list class example, the Visual Basic compiler would
take System.Collections.Generic as a new namespace within project Payroll, with the full name
of Payroll.System.Collections.Generic.

Example:

The following example declares two namespaces, one nested in the other.

Namespace n1

 Namespace n2

 Class a

 ‘ Insert class definition.

 End Class

 End Namespace

End Namespace

The following example declares multiple nested namespaces on a single line, and it is equivalent
to the previous example:

Namespace n1.n2

 Class a

 ‘ Insert class definition.

 End Class

End Namespace

The following example accesses the class defined in the previous examples:

Dim instance As New n1.n2.a

The following example defines the skeleton of a new generic list class and adds it to the
System.Collections.Generic namespace:

Namespace System.Collections.Generic

 Class specialSortedList(Of T)

 Inherits List(Of T)

 ‘ Insert code to define the special generic list class.

 End Class

End Namespace

7.1.5 Aliases of the Namespaces

Aliases enables type names to be referenced without namespace qualification. Its syntax is,

Imports [aliasname =] namespace

-or-

Imports [aliasname =] namespace.element

LOVELY PROFESSIONAL UNIVERSITY 109

Unit 7: Namespaces

NotesWhere,

Aliasname: It is an optional parameter. An import alias or name by which code can refer to
namespace instead of the full qualification string.

Namespace: It is a required parameter. The fully qualified name of the namespace being imported.
Can be a string of namespaces nested to any level.

Element: It is an optional parameter. The name of a programming element declared in the
namespace. Can be any container element.

An import alias defines the alias for a namespace or type. Import aliases are useful when you
need to use items with the same name that are declared in one or more namespaces. You should
not declare a member at module level with the same name as aliasname. If you do, the Visual
Basic compiler uses aliasname only for the declared member and no longer recognizes it as an
import alias. Although the syntax used for declaring an import alias is like that used for importing
an XML namespace prefix, the results are different. An import alias can be used as an expression
in your code, whereas an XML namespace prefix can be used only in XML literals or XML axis
properties as the prefix for a qualified element or attribute name. If you supply element, it must
represent a container element, that is, a programming element that can contain other elements.
Container elements include classes, structures, modules, interfaces, and enumerations. The scope
of the elements made available by an Imports statement depends on whether you specify element.
If you specify only namespace, all uniquely named members of that namespace, and members
of container elements within that namespace, are available without qualification. If you specify
both namespace and element, only the members of that element are available without
qualification.

Example: The following example includes Imports statements that create aliases for the
referenced types. Aliases are used to specify the types.

Imports strbld = System.Text.StringBuilder

Imports dirinf = System.IO.DirectoryInfo

Public Function GetFolders() As String

 Dim sb As New strbld

 Dim dInfo As New dirinf(“c:\”)

 For Each dir As dirinf In dInfo.GetDirectories()

 sb.Append(dir.Name)

 sb.Append(ControlChars.CrLf)

 Next

 Return sb.ToString

End Function

7.1.6 Assemblies

An assembly is a collection of types and resources that forms a logical unit of functionality. All
types in the .NET Framework must exist in assemblies; the common language runtime does not
support types outside of assemblies. Each time you create a Microsoft Windows Application,
Windows Service, Class Library, or other application with Visual Basic .NET, you’re building a
single assembly. Each assembly is stored as an .exe or .dll file.

110 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes

Note Although it’s technically possible to create assemblies that span multiple files,
you’re not likely to use this technology in most situations.

The .NET Framework uses assemblies as the fundamental unit for several purposes:

� Security

� Type Identity

� Reference Scope

� Versioning

� Deployment

Every assembly contains an assembly manifest, a set of metadata with information about the
assembly. The assembly manifest contains these items:

� The assembly name and version

� The culture or language the assembly supports (not required in all assemblies)

� The public key for any strong name assigned to the assembly (not required in all assemblies)

� A list of files in the assembly with hash information

� Information on exported types

� Information on referenced assemblies

In addition, you can add other information to the manifest by using assembly attributes. Assembly
attributes are declared inside of a file in an assembly, and are text strings that describe the
assembly.

Example: You can set a friendly name for an assembly with the AssemblyTitle attribute:

<Assembly: AssemblyTitle(“Test Project”)>

Self Assessment

Fill in the blanks:

1. allow us to organize Classes so that they can be easily accessed in other
applications.

2. addressing involves directly accessing any class in the namespace by
providing the fully qualified name.

3. Namespaces are accessible only to the applications to which they belong.

4. Namespaces are accessible from all applications.

5. All other namespaces comes under this namespace.

6. To access members of a namespace use the operator.

7. enables type names to be referenced without namespace qualification.

8. An is a collection of types and resources that forms a logical unit of
functionality.

LOVELY PROFESSIONAL UNIVERSITY 111

Unit 7: Namespaces

Notes7.2 Object and Class

We will now discuss a little about the basic concepts used in VB.NET.

Classes and Objects

In VB.NET, a class is a collection of properties and methods. If you look right at the top of the
code window for a Form, you’ll see:

Public Class Form1

The word “Public” means that other code can see it. Form1 is the name of the Class

If you look at the bottom of the coding window, you’ll see End Class, signifying the end of the
code for the Class. When you place a Button or a textbox on the Form, you’re really adding it to
the Form Class. When you start the Form, VB does something called instantiation. This basically
means that your Form is being turned into an Object, and all the things needed for the creation
of the Form are being set up for you (Your controls are being added, variables are being set up
an initialised, etc.).

And that’s the basic difference between a Class and an Object: A Class is the code itself; the code
becomes an Object when you start using it.

Properties

In VB.NET, properties are nothing but natural extension of data fields. They are usually known
as ‘smart fields’ in VB.NET community. We know that data encapsulation and hiding are the two
fundamental characteristics of any object oriented programming language. In VB.NET, data
encapsulation is possible through either classes or structures. By using various access modifiers
like private, public, protected, internal, etc. it is possible to control the accessibility of the class
members. Usually inside a class, we declare a data field as private and will provide a set of
public SET and GET methods to access the data fields. This is a good programming practice, since
the data fields are not directly accessible outside the class. We must use the set/get methods to
access the data fields.

Methods

A method created in a Class is nothing more than a Function or a Sub. A member function of a
class is a function that has its definition or its prototype within the class definition like any other
variable. It operates on any object of the class of which it is a member, and has access to all the
members of a class for that object. Member variables are attributes of an object (from design
perspective) and they are kept private to implement encapsulation. These variables can only be
accessed using the public member functions.

Events

An event is a message sent by an object announcing that something has happened. Events are
implemented using delegates, a form of object-oriented function pointer that allows a function
to be invoked indirectly by way of a reference to the function.

112 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Self Assessment

True or False:

9. A member function of a class is a function that has its definition or its prototype outside
the class definition.

10. Member variables are attributes of an object and they are kept private to implement
encapsulation.

12. An action is a message sent by an object announcing that something has happened.

7.3 Creating Your First Class Library

Let us see the process to create a class library.

Step 1: Create a new project but instead of selecting Windows Forms Application, you want to
select Class Library as shown below.

Figure 7.3: Creating a Class Library

Source: http://www.shotdev.com/aspnet/vbnet-component/vbnet-create-class-library-dll/

Step 2: You will be presented with

Public Class Class1

End Class

Let us change the class name to MyFunctions.

LOVELY PROFESSIONAL UNIVERSITY 113

Unit 7: Namespaces

NotesFigure 7.4: Adding to a Class Library

Source: http://www.shotdev.com/aspnet/vbnet-component/vbnet-create-class-library-dll/

Step 3: We will program a simple Math function, which will use 2 textboxes that I will have in
my application, and add the 2 numbers together and then display the result in a label.

Public Class MyFunctions

Public Function AddMyValues(ByVal Value1 As Double, ByVal Value2 As

Double)

Dim Result As Double

Result = Value1 + Value2

Return Result

End Function

End Class

We created a Function called AddMyValues with ByVal Value1 as Double which will be the
holder for the value being passed from textbox 1, and the same for Value2 which would hold the
value being passed from textbox 2.

Step 4: Save the project, and then build it just like for an application. Now go to the projects Bin/
Debug directory and you will find a DLL that you have just created.

Step 5: Now let us create an application to use it. Create a new application like you would
normally do and create a form similar to the one shown. Now, we will leave the default names
for the textboxes, but we have changed the name of the Label to lblResult and the name of the
button to btnAdd.

Step 6: Now you will have to add a reference to your newly created DLL, To do that, choose
Project -> Add Reference, and browse to where your DLL is located, select it and click ok.

114 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Figure 7.5: Adding Reference

Source: http://www.shotdev.com/aspnet/vbnet-component/vbnet-create-class-library-dll/

Step 7: Now let us do some coding. First you need to import it as you would with others. So,
above Public Class Form1 type Imports and a list should show up, and select your DLL. Imports
Abc

Step 8: Now in the Button_Click event, we added this line Dim Add As New Abc.MyFunctions.
A name Add is declared for MyFunctions in DLL. Thus, we don’t have to type
Abc.MyFunctions.AddMyValues, instead we can just use Add.AddMyValues.

Now we will use that variable to call the required function on the DLL that I want to use. The
whole code is shown below. Study it and you will see how Add is used. Also look back at the
DLL code at the start to fully understand it.

Imports Abc

Public Class Form1

Private Sub btnAdd_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles btnAdd.Click

Dim Add As New Abc.MyFunctions

lblResult.Text = Add.AddMyValues(CDbl(TextBox1.Text),

CDbl(TextBox2.Text)).ToString

End Sub

End Class

Step 9: Now the code is done, save the project and then run the application. Enter 2 numbers and
then press the button and the result – which was done in the DLL will be displayed in your result
label.

LOVELY PROFESSIONAL UNIVERSITY 115

Unit 7: Namespaces

Notes7.3.1 Adding a “Souped-Up” Class

Classes are the heart and soul of an object-oriented language. You will find yourself using
classes whenever you write even the simplest of programs in Visual Basic .NET. The Microsoft
.NET Framework makes extensive use of classes, and so should you. Below are some common
uses of classes:

� Wrapping up the representation and set of operations you perform on a database table, for
example adding, editing, deleting, and retrieving data.

� Wrapping up the set of operations and data for dealing with text files such as reading,
writing, and indexing the lines of text within the file.

� Wrapping up all global variables in a program into properties within a class. This can help
with keeping track of the amount of “free-floating” globals that somehow seem to work
their way into many programs.

Let’s create a class representing a line of text. To do this, you create a property to return the line
of text and a read-only property that returns the length of the text. You will also create a method
that returns the first word in the line. As you perform all of these steps, you will learn the correct
way to create a class. You will build a form like the one shown below to test the Line class as you
build it.

Figure 7.6: Adding a Class

Source: http://msdn.microsoft.com/en-us/library/ms973814.aspx

To add the class follow the steps below:

1. Open the Add New Item dialog box by clicking Project and then clicking Add Class.

2. Set the Name property to Line and click OK.

3. You will now see a new file appear in your project and a code window within the Visual
Studio .NET environment. In the Code window, there will be some code that looks like
this:

Public Class Line

 End Class

All of the properties and methods that you create for this class must be entered between these
lines of code.

7.3.2 Creating Properties

To create a property within a class, you can either create a field (i.e.. a Public variable), or you can
create a Private variable and expose the Private variable using a Property statement. There are
several reasons why you want to only expose properties through a Property statement.

� You can create a read-only or write-only property, as opposed to a Public variable, which
will always be read-write.

116 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes � You can add error handling within a Property statement to check for invalid values being
set. You can’t check for invalid values when setting a Public variable because there is no
code that runs in response to setting a Public variable.

� You can expose calculated values as properties even if they are not stored as actual data
within the class. An example of this is a Length property. You probably don’t want to store
the length of a line of text, as it could change.

You will now create two properties named Line and Length for the Line class. You will first
create a private variable to hold the line of data that you store within the class. Next, you will
create the Property statements for these two new properties. Modify the class in your project so
it looks like the code shown below:

Public Class Line

 Private mstrLine As String

 Property Line() As String

 Get

 Return mstrLine

 End Get

 Set(ByVal Value As String)

 mstrLine = Value

 End Set

 End Property

 ReadOnly Property Length() As Integer

 Get

 Return mstrLine.Length

 End Get

 End Property

End Class

7.3.3 Building a Test Client

We now need to test this class. We need to see how to call this class in a client application. From
the File menu, choose New and then Project. This time, add a Windows Application. After you
click the OK button, the new project is loaded into the Solution Explorer.

7.3.4 Read-only and Write-only Properties

In the code above, you also created a read only property by using the ReadOnly keyword in
front of the Property statement. When you use this keyword, Visual Studio .NET adds a Get…End
Get block to the Property statement. In fact, if you try to add a Set…End Set block, you will
receive a compiler error. If you wanted to create a read-only property in Visual Basic 6.0, you did
not create the Property Let procedure, but no error was generated if you left it off. You just were
unable to set the property at run time. In the project you have created, you have one class and
one form. You will now write code in the form that creates a new Line object, places a line of text
into the Line property of your object, and then places the length of the line into the Text property
of the txtLength text box on your form.

1. In the Solution Explorer window, double-click the frmLineTest form to bring up the form
in design mode.

LOVELY PROFESSIONAL UNIVERSITY 117

Unit 7: Namespaces

Notes2. Double-click the Display Length button. Visual Basic .NET creates a btnDisplay_Click
event procedure for you in the code behind this form. All you need to do is fill in the lines
of code shown below, in the body of the procedure.

Private Sub btnDisplay_Click(_

 ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles btnDisplay.Click

 Dim oLine As Line

 oLine = New Line()

 oLine.Line = txtLine.Text

 txtLength.Text = oLine.Length.ToString()

End Sub

Within this event procedure, you create a variable named oLine by using the Dim statement.
This variable is defined as a reference to a Line class. You actually create the new object reference
by using the New keyword, as shown in the next line after the Dim statement. The New keyword
must be followed by the name of the class you wish to instantiate. Another difference between
Visual Basic .NET and Visual Basic 6.0 is that you no longer use the Set keyword when creating
a new object.

In Visual Basic .NET, you are allowed to combine these two lines into one, as shown in the code
below:

Dim oLine As Line = New Line()

Or

Dim oLine as New Line()

Visual Basic .NET (and all .NET languages) allow you to declare and initialize any variable on
the same line. In Visual Basic 6.0, you were unable to do this, as the Dim statement was not an
executable line of code. In Visual Basic .NET, Dim is an executable line of code so this syntax is
perfectly legal.

Now let’s examine the next two lines of this event procedure:

oLine.Line = txtLine.Text

txtLength.Text = CStr(oLine.Length)

The first line sets the Line property in your object to be equal to the value contained in the Text
property of the txtLine text box on the form. This passes the data in the Text property to the
Value variable in the Set…End Set block in the Line object.

Now you are ready to report back the length of the string contained in the txtLine text box.
Remember, you set the value of this text box equal to the string “The rain in Spain stays mainly
in the plain.” This is the value that is contained in the mstrLine variable within your object. You
can invoke the Length property on your Line object and it will return the length of this particular
string. Because the Length property is an Integer value, you need to convert that value to a string
before you can place it into the Text property of the txtLength text box. You accomplish this by
applying the ToString method to the Length property.

A write-only property is one that defines a Set…End Set block and no Get…End Get block. You
are allowed to place data into this property only at run time, but are unable to retrieve data from
this property. If you wanted to extend this Line class to be able to read the line of text in from a
file on disk, you might pass the file name to this class. You could accomplish this by using a
write-only property. Here is an example of what a write-only property might look like.

118 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes WriteOnly Property FileName() As String

 Set(ByVal Value As String)

 mstrFileName = Value

 End Set

End Property

This syntax is again different from Visual Basic 6.0 in that you use the WriteOnly keyword as a
prefix to the Property statement. Visual Studio .NET creates the Set…End Set block for you
automatically. If you try to add a Get…End Get block, the compiler will give you an error.

7.3.5 Parameterized Properties

It is also called as Property arrays. Since properties with parameters can also be used to store
multiple values. If you want to have a look or feel the multiple properties, here is the example,
consider the HashTable which contains the Item property. If you can observe it very closely you
get a clear picture of what is parameterised property and how it can be used.

7.3.6 Default Properties

A property that accepts arguments can be declared as the default property for a class. A default
property is the property that Microsoft Visual Basic .NET will use when no specific property has
been named for an object. Default properties are useful because they allow you to make your
source code more compact by omitting frequently used property names.

The best candidates for default properties are those properties that accept parameters and that
you think will be used the most often. For example, the Item property is a good choice for the
default property of a collection class because it is used frequently.

The following rules apply to default properties:

� A type can have only one default property, including properties inherited from a base
class. There is one exception to this rule. A default property defined in a base class can be
shadowed by another default property in a derived class.

� If a default property from a base class is shadowed by a non-default property in a derived
class, the default property is still accessible using default property syntax.

� A default property may not be Shared or Private.

� If an overloaded property is a default property, all overloaded properties with that same
name must also specify Default.

� Default properties must accept at least one argument.

7.3.7 Constructors in Your Classes

Constructors used in a class are member functions to initialize or set the objects of a class in
VB.net. They don’t return any value and are defined in a Sub with a keyword New. Multiple
constructors can be created in class with any access specifies, by default constructors are of Public
access type.

Example:

 Public Class Sample

 Private a As Integer

 Public Sub New(ByVal setval As Integer)

LOVELY PROFESSIONAL UNIVERSITY 119

Unit 7: Namespaces

Notes a = setval

 End Sub

 Public Function disp()

 Return a

 End Function

 End Class

 Sub Main()

 Dim d As New Sample(5)

 Console.WriteLine(“Value of a is initialized to:”)

 Console.WriteLine(d.disp())

 Console.Read()

 End Sub

Ouput:

Value of a is initialized to:

5

In the above example, using the Constructor declared within the sub procedure New the value
of a is set to 5.

7.3.8 Classes without Constructors

To create a new class we use the Class...End Class block. Whether or not a class has constructors
or implements System.ComponentModel.Component, the class can still have properties and
methods, and can be created just like any other class.

7.3.9 Adding Methods to Classes

A method in a class can be a procedure that performs some sort of operation on the data within
the class. Or a method could be a function that performs some operation on the data, and returns
that data back from the class. To be able to call a method from an instance of this class, the
method must be declared Public. If a method is declared Private, only other methods within the
class can call that method. Creating a method in Visual Basic .NET is exactly the same as in
Visual Basic 6.0. Let’s create a method in the Line class that breaks up the line of text passed into
the class into each separate word. This method is a function that returns the first word contained
in the line of text you pass in. If you used the string that was given to you when creating the
form, the line of text will be “The rain in Spain stays mainly in the plain.” In this case, the first
word returned will be “The.”

Open the Line.vb class in design mode.

Just below your Property statements, create the following method:

Public Function GetWord() As String

 Dim astrWords() As String

 astrWords = Split(mstrLine, “ “)

 Return astrWords(0)

End Function

120 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes 7.3.10 Adding Events

.NET lets you add and remove Event Handlers dynamically on the fly. Your code can start and
stop handling events at any time during program execution. Also, you can tie the same code
(event handler) to multiple events similar to the Handles clause in VB.NET. The VB.NET
AddHandler and RemoveHandler statements allow this behavior. Both statements take two
arguments: the name of the event to handle and the name of the procedure that will handle the
event.

Public Class MyClass

 Public Event MyEvent // Declare the event to be raised.

 Sub RaiseMyEvent()

 RaiseEvent MyEvent // Method to raise the event.

 End Sub

 End Class

 Public Class Test

 Sub TestEvent()

 Dim myobj As New MyClass() // Create the object that raises

the event you want to handle.

 AddHandler myobj.myEvent, AddressOf MyEventHandler // Associate

the code to be executed (event handler) with the event.

 myObj.RaiseMyEvent() // Tell the object to raise the event. It will be

handled by sub MyEventHandler.

RemoveHandler myobj.myEvent, AddressOf MyEventHandler // Dis-associate

the handler from the event.

 myObj.RaiseEvent() // Tell the object to raise the event. It will

NOT be handled by sub MyEventHandler.

 End Sub

 Sub MyEventHandler()

 MsgBox(“I caught the event!”) // Code to be executed when the

event is raised.

 End Sub

 End Class

Self Assessment

Fill in the blanks:

12. Read only property by using the keyword in front of the Property statement.

13. used in a class are member functions to initialize or set the objects of a class.

LOVELY PROFESSIONAL UNIVERSITY 121

Unit 7: Namespaces

Notes7.4 Creation of Namespaces

Namespaces allow you to create a system to organize your code. A good way to organize your
namespaces is via a hierarchical system. You put the more general names at the top of the
hierarchy and get more specific as you go down. This hierarchical system can be represented by
nested namespaces. By placing code in different sub-namespaces, you can keep your code
organized.

7.4.1 Creating Your Own Namespaces

A namespace designates a collection of programming elements, organized and classed for grouping
operations and easy access. At the namespace level, the programming elements include:

� Classes of objects [...];

� Structures [...];

� Modules [...];

� Interfaces [...];

� Delegates [...];

� Enumeration [...];

� Other namespaces.

Namespaces can be organized, aggregated into an assembly [...]. An assembly can contain multiple
namespaces, which can contain other namespaces.

By default, the executable file created with Visual Studio environment contains a namespace
with a name identical to that of project. More assemblies can use the same namespace.

Explicit definition of a namespace is done in VB.NET with specifications Namespace and End
Namespace. It considers an application of type Console Application. It defines the namespace
ProiectNou that contains:

� A namespace called Formular1;

� A class called GrupOp which contains two methods: Adun and Imp.

The namespace Formular1 contains the class GrupOp with an event two methods: Dif and Prod. It
notes the presence of two classes of objects with the same name GrupOp, but included in different
namespaces: ProiectNou, respectively Formular1. The namespace ProiectNou is defined on the
same level as the procedure Main is defined.

Namespace ProiectNou

 Namespace Formular1

 Class GrupOp

 Public Event CalculOp(ByVal x As Integer, ByVal y As Integer)

 Public Function Dif(ByVal a As Integer, ByVal b As Integer)_

As Integer

 Return a - b

 End Function

 Public Function Prod(ByVal a As Integer, ByVal b As Integer)_

As Long

122 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Return a * b

 End Function

 End Class

 End Namespace

 Class GrupOp

 Public Function Adun(ByVal a As Integer, ByVal b As Integer)_

As Integer

 Return a + b

 End Function

 Public Function Imp(ByVal a As Integer, ByVal b As Integer)_

As Double

 Return a / b

 End Function

 End Class

End Namespace

Module Module1

 Sub Main()

 Dim calc As NameSpaceApp.ProiectNou.GrupOp

 calc = New NameSpaceApp.ProiectNou.GrupOp

 MsgBox(“4+6=” & calc.Adun(4, 6))

 Dim calcNou As NameSpaceApp.ProiectNou.Formular1.GrupOp

 calcNou = New NameSpaceApp.ProiectNou.Formular1.GrupOp

 MsgBox(“4*6=” & calcNou.Prod(4, 6))

 End Sub

End Module

In the procedure Main, it is noted that to define a variable of type GrupOp it has to specify the
complete path to the class GrupOp by expressions NameSpaceApp.ProiectNou.GrupOp and
NameSpaceApp.ProiectNou.Formular1.GrupOp. Otherwise, the application cannot be compiled
because it does not “know” where to extract the definition of the class GrupOp from.
NameSpaceApp is namespace at project level created by Visual Studio environment.
Referring of a programming item in VB.NET source code is done by specification Imports.
Referring the programming elements is done starting with the namespace with the highest
level of aggregation and it provides the paths of subcollections included in namespace by using
operator.

Imports NameSpaceApp.ProiectNou.Formular1

Thus, it accesses the programming element GrupOp included in Formular1, which it is included
in the namespace ProiectNou. The namespace ProiectNou is defined in the namepsace at the
application level, called with the same name like the project NameSpaceApp.
The complete referring of the list of items in the programming elements included in namespaces,
avoids conflict by their given identical names.

For ease of operation with elements of namespace, it can assign an alias to refer a program
element included in a namespace. Alias allows direct reference to this element.

Imports GrupOperatii = NameSpaceApp.ProiectNou.Formular

LOVELY PROFESSIONAL UNIVERSITY 123

Unit 7: Namespaces

NotesIf the first example, namespace was defined in the same file with VB.NET source code module
that has been used elements defined in ProiectNou. If ProiectNou namespace is defined in another
source file included in the project NameSpaceApp, then before developing the module Module1 it
should be included specifications Imports, as it follows:

Imports G1 = NameSpaceApp.ProiectNou

Imports G2 = NameSpaceApp.ProiectNou.Formular1

Module Module1

 Sub Main()

 Dim calc As G1.GrupOp

 calc = New G1.GrupOp

 MsgBox(“4+6=” & calc.Adun(4, 6))

 Dim calcNou As G2.GrupOp

 calcNou = New G2.GrupOp

 MsgBox(“4*6=” & calcNou.Prod(4, 6))

 End Sub

End Module

The namespace ProiectNou has the same definition, but included in another source file in the
application NameSpaceApp. In a namespace, the following programming elements cannot be
defined: properties [...], procedures [...], variables [...] and events [...]. These elements are defined
in source code containers: modules, structures and classes.

�
Case Study Using the .NET Framework Queue Class in VB.NET

Thread Safety

Only the following methods are safe for multithreaded operations: BeginPeek,
BeginReceive, EndPeek, EndReceive, GetAllMessages, Peek, and Receive.

Remarks

Message Queuing technology allows applications running at different times to
communicate across heterogeneous networks and systems which might be temporarily
offline. Applications send, receive, or peek (read without removing) messages from queues.
Message Queuing is an optional component of Windows 2000 and Windows NT, and must
be installed separately.

The MessageQueue class is a wrapper around Message Queuing. There are multiple versions
of Message Queuing, and using the MessageQueue class can result in slightly different
behavior, depending on the Operating System you are using. For information about
specific features of each version of Message Queuing, see the topic “What’s New in Message
Queuing” in the Platform SDK in MSDN.

The MessageQueue class provides a reference to a Message Queuing queue. You can specify
a path in the MessageQueue constructor to connect to an existing resource, or you can
create a new queue on the server. Before you can call Send, Peek, or Receive, you must

Contd...

124 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes associate the new instance of the MessageQueue class with an existing queue. At that
point, you can manipulate the queue properties such as Category and Label.

The MessageQueue class supports two types of message retrieval: synchronous and
asynchronous. The synchronous methods, Peek and Receive, cause the process thread to
wait a specified time interval for a new message to arrive in the queue. The asynchronous
methods, BeginPeek and BeginReceive, allow the main application tasks to continue in a
separate thread until a message arrives in the queue. These methods work by using callback
objects and state objects to communicate information between threads.

When you create a new instance of the MessageQueue class, you are not creating a new
Message Queuing queue. Instead, you can use the Create, Delete, and Purge methods to
manage queues on the server.

Unlike Purge, Create and Delete are static (Shared in Visual Basic) members, so you can
call them without creating a new instance of the MessageQueue class.

You can set the MessageQueue object’s Path property with one of three names: the friendly
name, the FormatName, or the Label. The friendly name, which is defined by the queue’s
MachineName and QueueName properties, is MachineName\ QueueName for a public queue,
and MachineName\ Private$\ QueueName for a private queue. The FormatName property
allows offline access to message queues. Lastly, you can use the queue’s Label property to
set the queue’s Path.

For a list of initial property values for an instance of MessageQueue, see the MessageQueue
constructor.

Using the Message Queue

Create an instance of the class MessageQueue. Before you can create it, you need to import
a reference of the class:

Imports System.Messaging

 ‘’ Creating Instance of Message Queue

‘’ We have passed in the path Of the Queue

‘’ the path declared is a private queue path

Private WithEvents myQueue As New MessageQueue(“.\private$\myQueue”)

‘’ You can define the path later on also

Private WithEvents myQueue As New MessageQueue()

‘’ then in the form load or any other event define the path

‘’ the path declared is a private queue path

myQueue.Path = “”.\private$\myQueue”

We have declared the message queue with an event because we are going to use some of
the events available with the class.

Now, let’s see how to send a message to the queue:

To send a message to the message queue, you can either create a message using the
Message class or by directly sending a string:

‘ sending by creating a message variable

Dim msg As New Message

Contd...

LOVELY PROFESSIONAL UNIVERSITY 125

Unit 7: Namespaces

Notes‘ it is the label of the message

msg.Label = “Example”

‘ it is the body of the message

msg.Body = “This message is send as an example”

myQueue.Send(msg)

‘ Send msg with creating a message variable

myQueue.Send(“Example”,”This message is send as an example”)

There are some other ways to send messages to the queue. I found these

methods over the MSDN. I found some of them very useful.

‘ References public queues.

Public Sub SendPublic()

 ‘ the path is of public queue

 Dim myQueue As New MessageQueue(“.\myQueue”)

 myQueue.Send(“Public queue by path name.”)

 Return

End Sub ‘SendPublic

‘ References private queues.

Public Sub SendPrivate()

 Dim myQueue As New MessageQueue(“.\Private$\myQueue”)

 myQueue.Send(“Private queue by path name.”)

 Return

End Sub ‘SendPrivate

‘ References queues by label.

 Public Sub SendByLabel()

 Dim myQueue As New MessageQueue(“Label:TheLabel”)

 myQueue.Send(“Queue by label.”)

 Return

End Sub ‘SendByLabel

‘ References queues by format name.

Public Sub SendByFormatName()

 Dim myQueue As New _

 MessageQueue(“FormatName:Public=5A5F7535-AE9A-41d4-935C-

845C2AFF7112”)

 myQueue.Send(“Queue by format name.”)

 Return

End Sub ‘SendByFormatName

Now, let’s see how to receive message from the queue:

By using the method Receive, we can receive the first message in the queue, removing it
from the queue:
‘ using the receive method

myQueue.Receive()

But there is a catch: we have to store the message we received in a Message variable.
‘ saving message from the queue in our temp message variable

Dim tempMsg as New Message

tempMsg = myQueue.Receive()

Contd...

126 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes If you wish to check the message before removing it, you can use the Peek method:
‘ using the peek method

Dim tempMSg as New Message

tempMsg = MyQueue.Peek()

‘ Check if the message is ours

If tempMsg.Label = “Example” Then

 ‘ we got the message

 ‘ so we remove it from the Queue

 myQueue.Receive()

End If

Points of Interest

The MessageQueue is useful when there are a couple of applications that share data between
them.

Questions

1. Study and analyse the case.

2. Write down the case facts.

3. What do you infer from it?
Source: http://www.codeproject.com/Articles/23883/Using-MessageQueue-in-the-NET-Framework-2-0

Self Assessment

True or False:

14. Namespaces allow you to create a system to organize your code.

15. An assembly cannot contain multiple namespaces.

7.5 Summary

� Namespaces help you to create logical groups of related classes and interfaces.

� Namespaces enable us to avoid any naming conflicts between classes that have the same
name.

� Every project in Visual Basic.Net has a root namespace, which is set in the Property page
of the project.

� Direct addressing involves directly accessing any class in the namespace by providing the
fully qualified name.

� Local Namespaces are accessible only to the applications to which they belong.

� Global Namespaces are accessible from all applications.

� All other namespaces comes under the System namespace.

� To access members of a namespace use the dot(.) operator.

� Aliases enables type names to be referenced without namespace qualification.

� An assembly is a collection of types and resources that forms a logical unit of functionality.

� A member function of a class is a function that has its definition or its prototype within the
class definition like any other variable.

LOVELY PROFESSIONAL UNIVERSITY 127

Unit 7: Namespaces

Notes� Member variables are attributes of an object (from design perspective) and they are kept
private to implement encapsulation.

� Event is a message sent by an object announcing that something has happened.

� A property that accepts arguments can be declared as the default property for a class.

� Constructors used in a class are member functions to initialize or set the objects of a class.

7.6 Keywords

Aliases: They enables type names to be referenced without namespace qualification.

Assembly: It is a collection of types and resources that forms a logical unit of functionality.

Direct addressing: It involves directly accessing any class in the namespace by providing the
fully qualified name.

Global Namespaces: They are accessible from all applications.

Local Namespaces: They are accessible only to the applications to which they belong.

Member function: It is a function that has its definition or its prototype within the class definition
like any other variable.

Member variables: They are attributes of an object (from design perspective) and they are kept
private to implement encapsulation.

Namespaces: They help you to create logical groups of related classes and interfaces.

7.7 Review Questions

1. What is a namespace?

2. Why do we need namespaces?

3. Can we create nested namespaces? If yes, how?

4. How to create an alias?

5. What are assemblies?

6. Why do we need objects?

7. Can we have default constructors?

8. Differentiate between read-only and write-only properties.

9. Give an example to show the process to create a class library.

10. What is an event?

Answers: Self Assessment

1. Namespace 2. Direct

3. Local 4. Global

5. System 6. Dot

7. Alias 8. Assembly

9. False 10. True

128 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes 11. False 12. Constructors

13. ReadOnly 14. True

15. False

7.8 Further Readings

Books Building Distributed Applications with Visual Basic.NET, Dan Fox, Sams.

Object-oriented Programming with Visual Basic.Net, Hamilton.

Programming Visual Basic .NET, J. Liberty.

VB .NET Language in a Nutshell, Steven Roman, Ron Petrusha, Paul Lomax.

Online links http://www.shotdev.com/aspnet/vbnet-component/vbnet-create-class-library-
dll/ http://pietschsoft.com/post/2007/11/26/NET-How-to-Alias-Namespaces-
and-Data-Types.aspx

http://www.dotnetheaven.com/article/namespaces-and-assemblies-in-vb.net

http://msdn.microsoft.com/en-us/magazine/cc164108.aspx

http://www.dreamincode.net/forums/topic/121314-creating-a-dll-and-using-it-
in-your-application/

LOVELY PROFESSIONAL UNIVERSITY 129

Unit 8: Exception Handling

NotesUnit 8: Exception Handling

CONTENTS

Objectives

Introduction

8.1 Concept of Exception Handling

8.1.1 Try Catch and Finally Keywords

8.1.2 Giving the User Information about an Exception

8.1.3 Catching Only Certain Exceptions

8.1.4 Try-Catch Statement

8.1.5 Catch Blocks Using Try

8.2 The Finally Section

8.3 Summary

8.4 Keywords

8.5 Review Questions

8.6 Further Readings

Objectives

After studying this unit, you will be able to:

� Explain the using try and catch blocks for exception handling

� Define the try finally section

Introduction

An exception is a problem that arises during the execution of a program. An exception is a
response to an exceptional circumstance that arises while a program is running, such as an
attempt to divide by zero.

Exceptions provide a way to transfer control from one part of a program to another. VB.Net
exception handling is built upon four keywords: Try, Catch, Finally and Throw.

� Try: A Try block identifies a block of code for which particular exceptions will be activated.
It’s followed by one or more Catch blocks.

� Catch: A program catches an exception with an exception handler at the place in a program
where you want to handle the problem. The Catch keyword indicates the catching of an
exception.

� Finally: The Finally block is used to execute a given set of statements, whether an exception
is thrown or not thrown. For example, if you open a file, it must be closed whether an
exception is raised or not.

� Throw: A program throws an exception when a problem shows up. This is done using a
Throw keyword.

Sarabjit Kumar, Lovely Professional University

130 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Assuming a block will raise and exception, a method catches an exception using a combination
of the Try and Catch keywords. A Try/Catch block is placed around the code that might generate
an exception. Code within a Try/Catch block is referred to as protected code, and the syntax for
using Try/Catch looks like the following:

Try

 [tryStatements]

 [Exit Try]

[Catch [exception [As type]] [When expression]

 [catchStatements]

 [Exit Try]]

[Catch ...]

[Finally

 [finallyStatements]]

End Try

You can list down multiple catch statements to catch different type of exceptions in case your try
block raises more than one exception in different situations.

8.1 Concept of Exception Handling

Only perfect programmers create perfect code from the beginning. The rest must address
imperfections along the way to developing a successful application. Luckily for us MicrosoftVisual
Basic .NET offers two ways of handling exceptions.

� Unstructured, follows the exception-handling conventions of earlier versions of Visual
Basic.

� Structured, handles exceptions in ways that resemble exception handling in Microsoft
Visual C# and Microsoft Visual C++.

The terms, error and exception, are often used interchangeably. In fact, an error, which is an
event that happens during the execution of code, interrupts or disrupts the code’s normal flow
and creates an exception object. When an error interrupts the flow, the program tries to find an
exception handler — a block of code that tells it how to react — that will help it resume the flow.
In other words, an error is the event; an exception is the object that the event creates. Programmers
use the phrase “throwing an exception” to mean that the method in question encountered an
error and reacted by creating an exception object that contains information about the error and
when/where it occurred. Factors that cause errors and subsequent exceptions include user error,
resource failures, and failures of programming logic. Such errors are related to how the code
undertakes a specific task; they are not related to the purpose of the task. Exception handling
means interpreting and reacting to the exceptions created by errors.

Example: When your application asks the user to input a telephone number, the following
assumptions come into play:

� The user will input a number rather than characters.

� The number will have a certain format.

� The user will not input a null string.

� The user has a single telephone number.

User input might violate any or all of these assumptions. Robust code requires adequate exception
handling, which allows your application to recover gracefully from such a violation.

LOVELY PROFESSIONAL UNIVERSITY 131

Unit 8: Exception Handling

NotesUnless you can guarantee that a method will never throw an exception under any circumstances,
allow for informative exception handling. Exception handling should be meaningful. Beyond
stating that something went wrong, messages resulting from exception handling should indicate
why and where it went wrong. An uninformative message along the lines of “An error has
occurred” only frustrates the user.

8.1.1 Try Catch and Finally Keywords

Try...Catch...Finally control structures test a piece of code and direct how the application should
handle various categories of error. Each of the structure’s three constituent parts plays a specific
role in this process.

� The Try statement provides the code that is being tested for exceptions.

� Catch clauses identify blocks of code that are associated with specific exceptions. A Catch
When block directs the code to execute under specific circumstances. A Catch without a
When clause reacts to any exception. Therefore, your code might hold a series of specific
Catch...When statements, each reacting to a specific type of exception, followed by a
general Catch block that reacts to any exceptions that have not been intercepted by the
preceding Catch...When clauses.

� The Finally statement contains code that executes regardless of whether or not an exception
occurs within the Try block. A Finally statement will execute even after an Exit Try or Exit
Sub. This code often performs clean-up tasks, such as closing files or clearing buffers.

8.1.2 Giving the User Information about an Exception

In exception handling, errors are dealt with in the Catch section. To do this, on the right side of
Catch, declare a variable of the type of exception you want to deal with. By default, an exception
is first of type Exception. Based on this, a typical formula to implement exception handling is:

Try

Catch ex As Exception

End Try

When an exception occurs in the Try section, code compilation is transferred to the Catch section.
If you declare the exception as an Exception type, this class will identify the error. One of the
properties of the Exception class is called Message. This property contains a string that describes
the type of error that occurred. You can then use this message to display an error message if you
want.

Example:
Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

 Dim Number As Double

 Dim Twice As Double

 Try

 Number = Me.TextBox1.Text

 Twice = Number * 2

 Me.TextBox2.Text = Twice

 Catch ex As Exception

132 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes MsgBox(ex.Message)

 End Try

 End Sub

Figure 8.1: Output of the Code Above

Source: http://www.functionx.com/vbnet/topics/exceptions.htm

8.1.3 Catching Only Certain Exceptions

Exception filters allow you to specify a conditional clause for each catch block. Instead of a catch
block handling all exceptions of a specific type, they allow us to write catch blocks that handle
exceptions of a specific type (or all exceptions) only when a certain condition is true. For
example, consider the following Visual Basic .NET code:

Try

 ‘ do something that could throw an exception

Catch e As FileNotFoundException When MyFilterMethod(e)

 Console.WriteLine(“first”)

Catch e As FileNotFoundException When MyFilterMethod2(e)

 Console.WriteLine(“second”)

Catch e As FileNotFoundException When MyFilterMethod3(e)

 Console.WriteLine(“third”)

Catch e As DivideByZeroException

 Console.WriteLine(“fourth”)

End Try

“first” is only going to be written to the console if the try block throws a FileNotFoundException
and if the MyFilterMethod returns true when passed the exception. “second” is only going to be
written to the console if the try block throws a FileNotFoundException and if the MyFilterMethod2
returns true when pass the exception. etc.

8.1.4 Try-Catch Statement

Exception class represents errors that occur during application execution. This class is the base
class for all exceptions. When an error occurs, either the system or the currently executing
application reports it by throwing an exception containing information about the error. Once
thrown, an exception is handled by the application or by the default exception handler.
The common language runtime provides an exception handling model that is based on the

LOVELY PROFESSIONAL UNIVERSITY 133

Unit 8: Exception Handling

Notesrepresentation of exceptions as objects, and the separation of program code and exception handling
code into try blocks and catch blocks, respectively. There can be one or more catch blocks, each
designed to handle a particular type of exception, or one block designed to catch a more specific
exception than another block. If an application handles exceptions that occur during the execution
of a block of application code, the code must be placed within a try statement. Application code
within a try statement is a try block. Application code that handles exceptions thrown by a try
block is placed within a catch statement, and is called a catch block. Zero or more catch blocks are
associated with a try block, and each catch block includes a type filter that determines the types
of exceptions it handles. When an exception occurs in a try block, the system searches the
associated catch blocks in the order they appear in application code, until it locates a catch block
that handles the exception. A catch block handles an exception of type T if the type filter of the
catch block specifies T or any type that T derives from. The system stops searching after it finds
the first catch block that handles the exception. For this reason, in application code, a catch block
that handles a type must be specified before a catch block that handles its base types, as
demonstrated in the example that follows this section. A catch block that handles System.Exception
is specified last. If none of the catch blocks associated with the current try block handle the
exception, and the current try block is nested within other try blocks in the current call, the catch
blocks associated with the next enclosing try block are searched. If no catch block for the exception
is found, the system searches previous nesting levels in the current call. If no catch block for the
exception is found in the current call, the exception is passed up the call stack, and the previous
stack frame is searched for a catch block that handles the exception. The search of the call stack
continues until the exception is handled or until no more frames exist on the call stack. If the top
of the call stack is reached without finding a catch block that handles the exception, the default
exception handler handles it and the application terminates.

Example:

Imports System

Class ExceptionTestClass

 Public Shared Sub Main()

 Dim x As Integer = 0

 Try

 Dim y As Integer = 100 / x

 Catch e As ArithmeticException

 Console.WriteLine(“ArithmeticException Handler: {0}”, e.ToString())

 Catch e As Exception

 Console.WriteLine(“Generic Exception Handler: {0}”, e.ToString())

 End Try

 End Sub ‘Main

End Class ‘ExceptionTestClass

Output:

ArithmeticException Handler: System.OverflowException: Arithmetic operation

resulted in an overflow. at ExceptionTestClass.Main()

8.1.5 Catch Blocks Using Try

No matter what kind of Exception is thrown, they all inherit from the System.Exception class.
When an Exception is thrown by the .NET Framework, it automatically looks for the first Catch
block (contained in a Try... Catch... block) in the stack. If the stack does not contain any Catches,
an Unhandled Exception occurred. This will give your end-user a prompt saying that an Unhandled
Exception occurred and that they can continue and ignore the error or quit the application.

134 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes What happens next is a mystery. In the best case, your application is closed either way. As a
developer, you generally do not want users to see such a message. Therefore, it is important to
always implement error handling in your code by using Try... Catch... blocks. In some cases, you
might want to handle certain Exceptions differently than others. The following example provides
an explanation of multiple Catches in a single Try... Catch... block. For the example, let’s just say
we are trying to open a file on the users’ computer. Anything could happen. Maybe the directory
of the file you are trying to open does not exist, maybe the file does not exist, maybe the user has
no rights to open the file or maybe something completely unexpected occurs.

Example:

Private Sub btnMultipleCatches_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnMultipleCatches.Click

 Try

 ‘ Some code here...

 ‘ Let’s say we’re trying to open a file here.

 ‘ Oops! An error occurs!

 Dim rand As New Random

 If rand.Next(2) = 1 Then

 Throw New IO.FileNotFoundException_

(“The file you are trying to open was not found.”)

 Else

 Throw New System.Exception(“An unknown error occurred.”)

 End If

 ‘ Some more code here...

 Catch dirEx As IO.DirectoryNotFoundException

 ‘ Handle the specific DirectoryNotFoundException here.

 MessageBox.Show(dirEx.Message, “Directory not found”, _

MessageBoxButtons.OK, MessageBoxIcon.Error)

 Catch fileEx As IO.FileNotFoundException

 ‘ Handle the specific FileNotFoundException here.

 MessageBox.Show(fileEx.Message, “File not found”, _

MessageBoxButtons.OK, MessageBoxIcon.Error)

 Catch ioEx As IO.IOException

 ‘ Handle other non-specific IO Exceptions here.

 MessageBox.Show(ioEx.Message, “IO exception”, _

MessageBoxButtons.OK, MessageBoxIcon.Error)

 Catch ex As Exception

 ‘ Handle any other non-IO Exception here.

 MessageBox.Show(ex.Message, “Unknown exception”, _

MessageBoxButtons.OK, MessageBoxIcon.Error)

 End Try

 End Sub

Note How an Exception is generated using the Random class. 50% of the time, we will get
a FileNotFoundException and 50% of the time, we will get a non-specific Exception.
At this point, you might want to uncheck the checkbox you checked at the beginning of
this article by using Control + Alt + E and press the ‘Multiple catches’ button a couple of
times to see how it can show two different MessageBoxes (either the “File not found” or
the “Unknown exception” MessageBoxes).

LOVELY PROFESSIONAL UNIVERSITY 135

Unit 8: Exception Handling

NotesIf the Exception is thrown, it will look at the first Catch block that it can use. In this case, for the
FileNotFoundException this is the Catch fileEx As IO.FileNotFoundException. Notice that the
FileNotFoundException skips the Catch dirEx As IO.DirectoryNotFoundException block, because
it is no DirectoryNotFoundException. Also, if the fileEx has been handled in the fileEx block, it
will not step into the ioEx or the ex block anymore.

Both the FileNotFoundException and the DirectoryNotFoundException inherit from the
IOException. This means that if I had put the Catch ioEx As IO.IOException block above the other
two Catch blocks, the FileNotFoundException and the DirectoryNotFoundException would
never jump in their respective Catch blocks!

When handling Exceptions of multiple types, you must first specify the most specific Exception
block. The general Catch ex as Exception should always be on the bottom of the hierarchy
because every Exception can jump into this block, preventing them from jumping into more
specific Catch blocks after that.

Self Assessment

Fill in the blanks:

1. An is a problem that arises during the execution of a program.

2. A block identifies a block of code for which particular exceptions will be
activated.

3. A program catches an exception with an exception handler at the block.

4. The block is used to execute a given set of statements, whether an exception
is thrown or not thrown.

5. A program throws an exception when a problem shows up using the
keyword.

6. exception handling follows the exception-handling conventions of earlier
versions of Visual Basic.

7. exception handling handles exceptions in ways that resemble exception
handling in Microsoft Visual C# and Microsoft Visual C++.

8. is an event that happens during the execution of code, interrupts or disrupts
the code’s normal flow and creates an exception object.

9. Exception allow you to specify a conditional clause for each catch block.

10. class represents errors that occur during application execution.

11. A catch block that handles is specified last.

8.2 The Finally Section

When an exception occurs, execution stops and control is given to the closest exception handler.
This often means that lines of code you expect to always be called are not executed. Some
resource cleanup, such as closing a file, must always be executed even if an exception is thrown.
To accomplish this, you can use a finally block. A finally block is always executed, regardless of
whether an exception is thrown. The following code example uses a try/catch block to catch an
ArgumentOutOfRangeException. The Main method creates two arrays and attempts to copy one
to the other. The action generates an ArgumentOutOfRangeException and the error is written to
the console. The finally block executes regardless of the outcome of the copy action.

136 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes

Example:

Imports System

Class ArgumentOutOfRangeExample

 Public Shared Sub Main()

 Dim array1 As Integer() = {0, 0}

 Dim array2 As Integer() = {0, 0}

 Try

 Array.Copy(array1, array2, - 1)

 Catch e As ArgumentOutOfRangeException

 Console.WriteLine(“Error: {0}”, e)

 Finally

 Console.WriteLine(“This statement is always executed.”)

 End Try

 End Sub ‘Main

End Class ‘ArgumentOutOfRangeExample

�
Case Study Handling Errors in eScript

Requirements

� On Service Agreement list applet we have a button ‘move to batch’

� User can select all contracts, or 1 or more contracts using CTRL button, and move
these to his batch for executing renewals.

� User should not be able to add same contract twice in renewal batch for this ‘User
key’ has been used and if user tries to do this he will get “Record with same values
already exists” error

� In eScript code I want to ignore or suppress this particular error and if this comes it
should execute the code for next error.

This is absolute wrong way to do this requirement even if you can do it. What you should
be doing is to do write your script in such a way that this error doesn’t come at all and
there are several easy ways to ensure this.

Here is the approach that should be used to accomplish the requirement

Solution

In the Applet server Script write the code to implement following logic.

var isRecord = BC.FirstSelected();

while(isRecord)

{

 Call a workflow and pass the field values that are part of user

key

 isRecord = BC.NextSelected();

}

Contd...

LOVELY PROFESSIONAL UNIVERSITY 137

Unit 8: Exception Handling

NotesIn the Workflow we would query for the record with the values that are passed.
If record is found then go to End step otherwise call the Business Service to create a new
record or may be use Insert step and avoid all scripting all together.

The decision to use Insert Step or BS will depend on how complex the logic is to create the
record.

If it is simple insertion then pass the values of the required field in the workflow and use
it in insert step but if certain kind of data manipulation or validations are required then
you can use a BS to do your job.

Questions

1. Study and analyse the case.

2. Write down the case facts.

3. What do you infer from it?

Source: http://siebelunleashed.com/handling-errors-in-escript-case-study-2/?tip=1

Self Assessment

True or False:

12. When an exception occurs, execution stops and control is given to the closest exception
handler.

13. A finally block is executed when called explicitly.

14. The lines of code of you expect to always be called are not executed if finally is called in
between the program execution.

15. Some resource cleanup, such as closing a file, must never be executed till explicitly required.

8.3 Summary

� An exception is a problem that arises during the execution of a program.

� A Try block identifies a block of code for which particular exceptions will be activated.

� A program catches an exception with an exception handler at the place in a program where
you want to handle the problem.

� The Finally block is used to execute a given set of statements, whether an exception is
thrown or not thrown.

� A program throws an exception when a problem shows up.

� Unstructured Exception handling, follows the exception-handling conventions of earlier
versions of Visual Basic.

� Structured Exception handling, handles exceptions in ways that resemble exception handling
in Microsoft Visual C# and Microsoft Visual C++.

� Error is an event that happens during the execution of code, interrupts or disrupts the
code’s normal flow and creates an exception object.

� Exception filters allow you to specify a conditional clause for each catch block.

� Exception class represents errors that occur during application execution.

� A catch block that handles System.Exception is specified last.

138 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes 8.4 Keywords

Catch block: A program catches an exception with an exception handler at the place in a program
where you want to handle the problem.

Error: It is an event that happens during the execution of code, interrupts or disrupts the code’s
normal flow and creates an exception object.

Exception: It is a problem that arises during the execution of a program.

Finally block: It is used to execute a given set of statements, whether an exception is thrown or
not thrown.

Structured Exception handling: It handles exceptions in ways that resemble exception handling
in Microsoft Visual C# and Microsoft Visual C++.

Throw: A program throws an exception when a problem shows up.

Try block: It identifies a block of code for which particular exceptions will be activated.

Unstructured Exception handling: It follows the exception-handling conventions of earlier
versions of Visual Basic.

8.5 Review Questions

1. What is exception handling?

2. Why do we need to handle exceptions?

3. What is the difference between error and exception?

4. Write a short note on try block.

5. Why do we need the catch block?

6. Explain the process of giving the user information about an exception.

7. What are exception filters?

8. Which is the parent class of all exceptions?

9. Give an example to show the use of try..catch..finally blocks.

10. Explain finally block.

Answers: Self Assessment

1. Exception 2. Try

3. Catch 4. Finally

5. Throw 6. Unstructured

7. Structured 8. Error

9. Filter 10. Exception

11. System.Exception 12. True

13. False 14. True

15. False

LOVELY PROFESSIONAL UNIVERSITY 139

Unit 8: Exception Handling

Notes8.6 Further Readings

Books Beginning Vb.Net 2003, Willis.

Object-oriented Programming with Visual Basic.Net, Hamilton.

Programming Visual Basic .NET, J. Liberty.

Visual Basic.NET Black Book, Steven Holzner.

Online links http://www.vijaymukhi.com/documents/books/vbnet/chap7.htm

http://www.homeandlearn.co.uk/net/nets5p4.html

http://visualbasic.about.com/od/usingvbnet/a/ExHndl_2.htm

http://www.codeproject.com/Articles/9538/Exception-Handling-Best-Practices-
in-NET

140 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Unit 9: Using System.Collections

CONTENTS

Objectives

Introduction

9.1 ArrayList

9.1.1 Use of ArrayList

9.1.2 Properties and Methods Used in ArrayList

9.2 HashTable

9.3 Stack

9.3.1 Common Functions

9.3.2 Implementation

9.3.3 Usage Scenarios

9.4 Queue

9.4.1 Common Functions

9.4.2 Use of Queue

9.5 SortedList

9.5.1 Advantages and Disadvantages of Using a SortedList

9.6 BitArray

9.7 BitVector32

9.8 Summary

9.9 Keywords

9.10 Review Questions

9.11 Further Readings

Objectives

After studying this unit, you will be able to:

� Explain system.collections namespace

� Understand the arraylist class and its uses

� Discuss the advantages and disadvantages of a sorted list

� Explain LIFO and FIFO

Introduction

Collection classes are specialized classes for data storage and retrieval. These classes provide
support for stacks, queues, lists, and hash tables. Most collection classes implement the same
interfaces. Collection classes serve various purposes, such as allocating memory dynamically to
elements and accessing a list of items on the basis of an index, etc.

Sarabjit Kumar, Lovely Professional University

LOVELY PROFESSIONAL UNIVERSITY 141

Unit 9: Using System.Collections

NotesThe System Namespace is contained in the file System.DLL, this Namespace is the root of the
.NET Framework. It contains all the primitives: Byte, Short, Integer, Boolean, Date types and
Arrays. It contains classes that can be used for data type conversion, mathematics, application
environment management mathematics, and supervision of applications. The System Namespace
also contains an object called the Array. An array can be like this:

Dim Array_Example() as Integer = {22, 46, 67}

In this case, the size of the Array is 3 because it contains three values. If you want to get access to
the values, you need to start from 0. That being said, Array_Example(0) would have a value of 22
whereas Array_Example(2) would have a value of 67. The System.Collections Namespace has
several Classes that allow you to manipulate Arrays. Classes like Comparer, which compares
two objects for equivalence, and Hashtable which represents a collection of key/value pairs.
The System.Collections namespace contains interfaces and classes that define various collections
of objects, such as lists, queues, bit arrays, hash tables and dictionaries.

Figure 9.1: System Namespace Hierarchy

Source: http://foxcentral.net/microsoft/netforvfpdevelopers_chapter06.htm

9.1 ArrayList

The ArrayList class is an object-oriented array that can be dynamically resized at runtime. This
is particularly useful where an array’s dimensions cannot be changed. The ArrayList contains a
variety of methods you use to manipulate array elements. ArrayList is a collection from a
standard System.Collections namespace. It is a dynamic array. It provides random access to its
elements. An ArrayList automatically expands as data is added. Unlike arrays, an ArrayList can
hold data of multiple data types. Elements in the ArrayList are accessed via an integer index.
Indexes are zero based. Indexing of elements and insertion and deletion at the end of the ArrayList
takes constant time. Inserting or deleting an element in the middle of the dynamic array is more
costly. It takes linear time.

9.1.1 Use of ArrayList

To add elements to an ArrayList, you use the Add method, specifying the item to be added. You
can also use the Insert method to insert an element at a specified index.

Dim ArryList As New ArrayList()

ArryList.Add(“Moe”)

142 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes ArryList.Add(“Larry”)

ArryList.Add(“Curly”)

ArryList.Insert(2, “Bob”)

This code produces elements in the following order:
Moe

Larry

Curly

Bob

You use the Remove method or the RemoveAt (specifying the index of the element to be
removed) methods to remove elements from an ArrayList.
ArryList.Remove(“Bob”)

ArryList.RemoveAt(2)

This code produces elements in the following order:
Moe

Larry

You can access an element (get its value or set its value) at a specified index.
ArryList(1) = “Shemp”

This code sets the ArrayList elements to the following:
Moe

Shemp

9.1.2 Properties and Methods Used in ArrayList

We will summarize the properties used in ArrayList via the table below.

Table 9.1: Properties of ArrayList Class

Name Description

Capacity Gets or sets the number of elements that the ArrayList can contain.

Count Gets the number of elements actually contained in the ArrayList.

IsFixedSize Gets a value indicating whether the ArrayList has a fixed size.

IsReadOnly Gets a value indicating whether the ArrayList is read-only.

IsSynchronized Gets a value indicating whether access to the ArrayList is synchronized (thread
safe).

Item Gets or sets the elements at the specified index.

SyncRoot Gets an object that can be used to synchronize access to the ArrayList.

Source: http://msdn.microsoft.com/en-us/library/vstudio/system.collections.arraylist%28v=vs.100%29.aspx

Some common methods are:

1. Public Overridable Function Add (value As Object) As Integer: Adds an object to the end of
the ArrayList.

2. Public Overridable Sub AddRange (c As ICollection): Adds the elements of an ICollection
to the end of the ArrayList.

3. Public Overridable Sub Clear: Removes all elements from the ArrayList.

4. Public Overridable Function Contains (item As Object) As Boolean: Determines whether
an element is in the ArrayList.

LOVELY PROFESSIONAL UNIVERSITY 143

Unit 9: Using System.Collections

Notes5. Public Overridable Function GetRange (index As Integer, count As Integer) As ArrayList:
Returns an ArrayList which represents a subset of the elements in the source ArrayList.

6. Public Overridable Function IndexOf (value As Object) As Integer: Returns the zero-based
index of the first occurrence of a value in the ArrayList or in a portion of it.

7. Public Overridable Sub Insert (index As Integer, value As Object): Inserts an element into
the ArrayList at the specified index.

8. Public Overridable Sub InsertRange (index As Integer, c As ICollection): Inserts the elements
of a collection into the ArrayList at the specified index.

9. Public Overridable Sub Remove (obj As Object): Removes the first occurrence of a specific
object from the ArrayList.

10. Public Overridable Sub RemoveAt (index As Integer): Removes the element at the specified
index of the ArrayList.

11. Public Overridable Sub RemoveRange (index As Integer, count As Integer): Removes a
range of elements from the ArrayList.

12. Public Overridable Sub Reverse: Reverses the order of the elements in the ArrayList.

13. Public Overridable Sub SetRange (index As Integer, c As ICollection): Copies the elements
of a collection over a range of elements in the ArrayList.

14. Public Overridable Sub Sort: Sorts the elements in the ArrayList.

15. Public Overridable Sub TrimToSize: Sets the capacity to the actual number of elements in
the ArrayList.

Self Assessment

True or False:

1. ArrayList is a dynamic array.

2. An ArrayList size doesn’t alter when we add content to it.

3. ArrayList cannot hold data of multiple data.

9.2 HashTable

The Hashtable class represents a collection of key-and-value pairs that are organized based on the
hash code of the key. It uses the key to access the elements in the collection. A hash table is used
when you need to access elements by using key, and you can identify a useful key value. Each item
in the hash table has a key/value pair. The key is used to access the items in the collection.

Table 9.2: Properties of HashTable Class

Property Description

Count Gets the number of key-and-value pairs contained in the Hashtable.

IsFixedSize Gets a value indicating whether the Hashtable has a fixed size.

IsReadOnly Gets a value indicating whether the Hashtable is read-only.

Item Gets or sets the value associated with the specified key.

Key Gets an Icollection containing the keys in the Hashtable.

Values Gets an Icollection containing the values in the Hashtable.

Source: http://www.tutorialspoint.com/vb.net/vb.net_hashtable.htm

144 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Table 9.3: Methods of HashTable Class

S.No. Method Name and Purpose

1. Public Overridable Sub Add (key As Object, value As Object)
Adds an elements with the specified key and value into the Hashtable.

2. Public Overridable Sub Clear
Removes all elements from the Hashtable.

3. Public Overridable Function ContainsKey (key As Object) As Boolean
Determines whether the Hashtable contains a specific key.

4. Public Overridable Function ContainsValue (value As Object) As Boolean
Determines whether the Hashtable contains a specific value.

5. Public Override Sub Remove (key As Object)
Removes the element with the specified key from the Hashtable.

Source: http://www.tutorialspoint.com/vb.net/vb.net_hashtable.htm

Example:
 Sub Main()

 Dim ht As Hashtable = New Hashtable()

 Dim k As String

 ht.Add(“001”, “Zara Ali”)

 ht.Add(“002”, “Abida Rehman”)

 ht.Add(“003”, “Joe Holzner”)

 ht.Add(“004”, “Mausam Benazir Nur”)

 ht.Add(“005”, “M. Amlan”)

 ht.Add(“006”, “M. Arif”)

 ht.Add(“007”, “Ritesh Saikia”)

 If (ht.ContainsValue(“Nuha Ali”)) Then

 Console.WriteLine(“This student name is already in the list”)

 Else

 ht.Add(“008”, “Nuha Ali”)

 End If

 ‘ Get a collection of the keys.

 Dim key As ICollection = ht.Keys

 For Each k In key

 Console.WriteLine(“ {0} : {1}”, k, ht(k))

 Next k

 Console.ReadKey()

 End Sub

When the above code is compiled and executed, it produces following result:
006: M. Arif

007: Ritesh Saikia

008: Nuha Ali

003: Joe Holzner

002: Abida Rehman

004: Mausam Banazir Nur

001: Zara Ali

005: M. Amlan

LOVELY PROFESSIONAL UNIVERSITY 145

Unit 9: Using System.Collections

NotesSelf Assessment

Fill in the blanks:

4. The class represents a collection of key-and-value pairs that are organized
based on the hash code of the key.

5. To remove elements from a HashTable use the method.

9.3 Stack

It represents a last-in, first-out collection of object. It is used when you need a last-in, first-out
access of items. When you add an item in the list, it is called pushing the item and when you
remove it, it is called popping the item.

9.3.1 Common Functions

The common functions used in stack are summarized in Table 9.4.

Table 9.4: Methods of Stack Class

S.No. Method Name and Purpose

1. Public Override Sub Clear
Removes all elements from the Stack.

2. Public Overridable Function Contains (obj As Object) As Boolean
Determines whether as elements in the Stack.

3. Public Overridable Function Peek As Object
Returns the object at the top of the Stack without removing it.

4. Public Overridable Function Pop As Object
Removes and returns the object at the top of the Stack.

5. Public Overridable Sub Push (obj As Object)

Inserts an object at the top of the Stack.

6. Public Overridable Function ToArray As Object()
Copies the Stack to a new array.

Source: http://www.tutorialspoint.com/vb.net/vb.net_stack.htm

9.3.2 Implementation

The following example demonstrates use of Stack:

 Sub Main()

 Dim st As Stack = New Stack()

 st.Push(“A”)

 st.Push(“M”)

 st.Push(“G”)

 st.Push(“W”)

 Console.WriteLine(“Current stack: “)

 Dim c As Char

 For Each c In st

 Console.Write(c + “ “)

 Next c

 Console.WriteLine()

146 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes st.Push(“V”)

 st.Push(“H”)

 Console.WriteLine(“The next poppable value in stack: {0}”, st.Peek())

 Console.WriteLine(“Current stack: “)

 For Each c In st

 Console.Write(c + “ “)

 Next c

 Console.WriteLine()

 Console.WriteLine(“Removing values “)

 st.Pop()

 st.Pop()

 st.Pop()

 Console.WriteLine(“Current stack: “)

 For Each c In st

 Console.Write(c + “ “)

 Next c

 Console.ReadKey()

 End Sub

When the above code is compiled and executed, it produces following result:
Current stack:

W G M A

The next poppable value in stack: H

Current stack:

H V W G M A

Removing values

Current stack:

G M A

9.3.3 Usage Scenarios

There are many uses of a stack. Some of them can be used to evaluate expressions like Postfix to
Prefix etc.

Self Assessment

True or False:

6. Stack follows FIFO mechanism.

7. When you add an item in the stack list, it is called pushing the item.

9.4 Queue

A queue is a First-In-First-Out (FIFO) data structure. The first element added to the queue will be
the first one to be removed. Queues may be used to process messages as they appear or serve
customers as they come. The first customer which comes should be served first.

9.4.1 Common Functions

We will now summarize the commonly used methods in queues in Table 9.5.

LOVELY PROFESSIONAL UNIVERSITY 147

Unit 9: Using System.Collections

NotesTable 9.5: Methods of Queue Class

Name Description

Clear Removes all objects from the Queue.

Clone Creates a shallow copy of the Queue.

Contains Determines whether an element is in the Queue.

CopyTo Copies the Queue elements to an existing one-dimensional Array, starting at
the specified array index.

Dequeue Removes and returns the object at the beginning of the Queue.

Enqueue Adds an object to the end of the Queue.

Equals(Object) Determines whether the specified object is equal to the current object.
(Inherited from Object.)

GetEnumerator Returns and enumerator that iterates through the Queue.

GetHashCode Serves as a hash function for a particular type. (Inherited from Object.)

GetType Gets the Type of the current instance. (Inherited from Object.)

MemberwiseClone Creates a shallow copy of the current Object. (Inherited from Object.)

Source: http://msdn.microsoft.com/en-us/library/system.collections.queue.aspx

9.4.2 Use of Queue

We will now discuss the implementation of a queue with an example.
Imports System.Windows.Forms

Module Module1

 Sub Main()

 Dim nameQueue As New Queue(Of String)

 nameQueue.Enqueue(“10”)

 nameQueue.Enqueue(“20”)

 nameQueue.Enqueue(“30”)

 Dim nameQueueString As String = “”

 Do While nameQueue.Count > 0

 nameQueueString &= nameQueue.Dequeue & vbCrLf

 Loop

 MessageBox.Show(nameQueueString, “Queue”)

 Console.ReadLine()

 End Sub

End Module

Figure 9.2: Output of the Code Above

Source: http://www.dotnetheaven.com/article/queues-and-stacks-using-vb.net

148 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Self Assessment

Fill in the blanks:

8. A queue is a data structure.

9. is the process of adding items to a queue.

9.5 SortedList

The SortedList class represents a collection of key-and-value pairs that are sorted by the keys
and are accessible by key and by index. A sorted list is a combination of an array and a hash
table. It contains a list of items that can be accessed using a key or an index. If you access items
using an index, it is an ArrayList, and if you access items using a key, it is a Hashtable. The
collection of items is always sorted by the key value.

Example:

Public Shared Sub Main()

 ‘ Creates and initializes a new SortedList.

 Dim mySL As New SortedList()

 mySL.Add(“Third”, “!”)

 mySL.Add(“Second”, “World”)

 mySL.Add(“First”, “Hello”)

 ‘ Displays the properties and values of the SortedList.

 Console.WriteLine(“mySL”)

 Console.WriteLine(“ Count: {0}”, mySL.Count)

 Console.WriteLine(“ Capacity: {0}”, mySL.Capacity)

 Console.WriteLine(“ Keys and Values:”)

 PrintKeysAndValues(mySL)

 End Sub

 Public Shared Sub PrintKeysAndValues(myList As SortedList)

 Console.WriteLine(ControlChars.Tab & “-KEY-” & ControlChars.Tab &

_

 “-VALUE-”)

 Dim i As Integer

 For i = 0 To myList.Count - 1

 Console.WriteLine(ControlChars.Tab & “{0}:” & ControlChars.Tab

& _

 “{1}”, myList.GetKey(i), myList.GetByIndex(i))

 Next i

 Console.WriteLine()

 End Sub

Output:

mySL

LOVELY PROFESSIONAL UNIVERSITY 149

Unit 9: Using System.Collections

NotesCount: 3

Capacity: 16

Keys and Values:

-KEY- -VALUE-

First: Hello

Second: World

Third: !

9.5.1 Advantages and Disadvantages of Using a SortedList

System.Collections.SortedList type is a key-based dictionary type that allows you to store items
in an ordered manner. This is advantageous whenever you need to be able to store sorted data
without going through a separate routine of sorting the contents of a collection. The convenience
of a SortedList comes at the price of slower additions and removals of items to the list. A
SortedList utilizes two arrays internally: one array stores keys, while another stores the data or
object reference.

When you work with SortedLists in VB.NET, keep in mind that objects are sorted based on the
key value and not an object itself; therefore, the key needs to be a type that supports
IComparable–either an integer or a string. Otherwise, you have to create a custom IComparer as
an argument to the SortedList when defining the SortedList.

Self Assessment

Fill in the blanks:

10. The SortedList class represents a collection of key-and-value pairs that are sorted by the
........................ and are accessible by key and by index.

11. A SortedList utilizes two arrays internally: one array stores keys, while another stores the
........................ or reference.

9.6 BitArray

The BitArray class manages a compact array of bit values, which are represented as Booleans,
where true indicates that the bit is on (1) and false indicates the bit is off (0). It is used when you
need to store the bits but do not know the number of bits in advance. You can access items from
the BitArray collection by using an integer index, which starts from zero.

Some of the common properties are shown in Table 9.6:

Table 9.6: Properties of BitArray Class

Property Description

Count Gets the number of elements contained in the BitArray.

IsReadOnly Gets a value indicating whether the BitArray is read-only.

Item Gets or sets the value of the bit at a specific position in the BitArray.

Length Gets or sets the number of elements in the BitArray.

Source: http://www.tutorialspoint.com/vb.net/vb.net_bitarray.htm

150 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes The list of common methods used in the BitArray class is given below.

Table 9.7: Methods of BitArray Class

S.No. Method Name and Purpose

1. Public Function And (value As BitArray) As BitArray
Performs the bitwise AND operation on the elements in the current BitArray against the
corresponding elements in the Specified BitArray.

2. Public Function Get (Index As Integer) As Boolean
Gets the value on the bit at a specific position in the BitArray.

3. Public Function Not As BitArray
Inverts all the bit values in the current BitArray, so that elements set to true are changed to
false, and elements set to false are changed to true.

4. Public Function Or (value As BitArray) As BitArray
Performs the bitwise OR operation on the elements in the current BitArray against the
corresponding elements in the specified BitArray.

5. Public Sub Set (Index As Integer, value As Boolean)
Sets the bit at a specific position in the BitArray to the specified value.

6. Public Sub SetAll (value As Boolean)
Sets all bits in the BitArray to the specified value.

Source: http://www.tutorialspoint.com/vb.net/vb.net_bitarray.htm

Example:

Sub Main()

 ‘creating two bit arrays of size 8

 Dim ba1 As BitArray = New BitArray(8)

 Dim ba2 As BitArray = New BitArray(8)

 Dim a() As Byte = {60}

 Dim b() As Byte = {13}

 ‘storing the values 60, and 13 into the bit arrays

 ba1 = New BitArray(a)

 ba2 = New BitArray(b)

 ‘content of ba1

 Console.WriteLine(“Bit array ba1: 60”)

 Dim i As Integer

 For i = 0 To ba1.Count

 Console.Write(“{0 } “, ba1(i))

 Next i

 Console.WriteLine()

 ‘content of ba2

 Console.WriteLine(“Bit array ba2: 13”)

 For i = 0 To ba2.Count

 Console.Write(“{0 } “, ba2(i))

 Next i

 Console.WriteLine()

 Dim ba3 As BitArray = New BitArray(8)

 ba3 = ba1.And(ba2)

 ‘content of ba3

 Console.WriteLine(“Bit array ba3 after AND operation: 12”)

 For i = 0 To ba3.Count

 Console.Write(“{0 } “, ba3(i))

LOVELY PROFESSIONAL UNIVERSITY 151

Unit 9: Using System.Collections

Notes Next i

 Console.WriteLine()

 ba3 = ba1.Or(ba2)

 ‘content of ba3

 Console.WriteLine(“Bit array ba3 after OR operation: 61”)

 For i = 0 To ba3.Count

 Console.Write(“{0 } “, ba3(i))

 Next i

 Console.WriteLine()

 Console.ReadKey()

 End Sub

Self Assessment

True or False:

12. The BitArray class manages a compact array of bit values, which are represented as Booleans.

13. You can access items from the BitArray collection by using an integer index, which starts
from one.

9.7 BitVector32

The BitVector32 structure is in the System.Collections.Specialized namespace. Essentially, it is
a single array (vector) of 32 bits, where a value of one corresponds to true (on) and a value of
zero is false (off). By default, when creating a new BitVector32 object, you will start with all of
the bits turned off. As an alternative, you can pass a parameter into the constructor to turn on
some of the bits. If you want all of the bits turned on, pass the value of -1, which is the bitwise
complement to zero.

Example:

Imports System

Imports System.Collections.Specialized

Public Class SamplesBitVector32

 Public Shared Sub Main()

 ‘ Creates and initializes a BitVector32 with all bit flags set to

FALSE.

 Dim myBV As New BitVector32(0)

 ‘ Creates masks to isolate each of the first five bit flags.

 Dim myBit1 As Integer = BitVector32.CreateMask()

 Dim myBit2 As Integer = BitVector32.CreateMask(myBit1)

 Dim myBit3 As Integer = BitVector32.CreateMask(myBit2)

 Dim myBit4 As Integer = BitVector32.CreateMask(myBit3)

 Dim myBit5 As Integer = BitVector32.CreateMask(myBit4)

 ‘ Sets the alternating bits to TRUE.

 Console.WriteLine(“Setting alternating bits to TRUE:”)

 Console.WriteLine(“ Initial: {0}”, myBV.ToString())

152 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes myBV(myBit1) = True

 Console.WriteLine(“ myBit1 = TRUE: {0}”, myBV.ToString())

 myBV(myBit3) = True

 Console.WriteLine(“ myBit3 = TRUE: {0}”, myBV.ToString())

 myBV(myBit5) = True

 Console.WriteLine(“ myBit5 = TRUE: {0}”, myBV.ToString())

 End Sub ‘Main

End Class ‘SamplesBitVector32

Output:

Setting alternating bits to TRUE:

Initial: BitVector32{00000000000000000000000000000000}

myBit1 = TRUE: BitVector32{00000000000000000000000000000001}

myBit3 = TRUE: BitVector32{00000000000000000000000000000101}

myBit5 = TRUE: BitVector32{00000000000000000000000000010101}

�
Case Study Stack Overflow

Situation

Two prominent bloggers in the world of software development wanted to create a Question
and Answer Web site that would provide a central repository for accumulating
programming wisdom as developers posted questions and their peers posted replies.

Jeff Atwood, developer and author of the popular programming and human factors blog
Coding Horror; and Joel Spolsky, developer and the author of the software development
blog Joel on Software, and founder of Fog Creek Software, envisioned their Web site as a
community-run organization similar to Wikipedia. The two also saw the site as
incorporating aspects of blogging as well as community voting in the spirit of the Digg
and Reddit social news Web sites in which the prominence of information is based upon
user ranking of its relevance.

The mission of the site was summed up in a blog entry by Atwood that reads: “None of Us
is as Dumb as All of Us.”

Atwood and Spolsky wanted to create a site that behind the scenes was simple and fast,
with code that was lean and scalable. They were dissatisfied with traditional Web
development approaches that used an abstraction layer and that embedded code on Web
pages to preserve view states. In addition to potentially slowing response rates, they were
concerned that storing code on pages could adversely impact search engine optimization
because view state information at the top of a page could potentially lessen the relevance
a search engine accords to the actual page content found lower on the page.

The two developers wanted to create their new solution using a Model-View-Controller
(MVC) approach, which simplifies application programming. MVC architecture, first
described by Trygve Reekskaug in 1979, uses a design pattern based upon a model
which provides a data representation relevant to the needs of the application; a view, or
interface, for interacting with the data model; and a controller for mediating between
the view and the model objects. The three together are sometimes referred to as a triplet,

Contd...

LOVELY PROFESSIONAL UNIVERSITY 153

Unit 9: Using System.Collections

Notesand MVC-based applications can be assembled as a series of triplets, each independent
of the other.

The two wanted to create their site using the Microsoft Application Platform, but needed an
MVC solution. “We were definitely sticking with the Microsoft stack because we like the
Microsoft stack,” Atwood says. “We are big fans of the language C#. Historically C# has
evolved rapidly, and in ways that we like. To stay within C# we were preparing to create our
own MVC implementation, but then we heard about the beta version of the Microsoft ASP.NET
MVC Framework.”

Solution

Atwood and Spolsky created their new site–Stack Overflow–using the ASP.NET MVC
Framework, the Visual Studio 2008 development system, and the Microsoft .NET
Framework 3.5, which are all part of the Microsoft Web Platform. The site, which was
created within two months, proved popular and was able to scale to support what turned
out to be rapid growth.

“Stack Overflow has grown incredibly fast,” Spolsky says. “After a year in business, it gets
over a million page views most weekdays and currently stands as the 817th largest site on
the Internet, according to Quantcast. It reaches 5.2 million people a month.” At last count
the site hosted 500,000 questions along with the related answers and discussions, ranked
according to what the community felt were the best responses.

The two have repurposed the same code to broaden the scope beyond programmers,
launching sister sites including Server Fault, for system administrators, and Super User,
for computer “power users.”

A spin off of the software, called StackExchange, has been released by Fog Creek Software
to allow third parties to build Stack-Overflow communities around other topics. “You can
use the same software to create a Q&A site about anything,” Atwood says. “Someone
could create a Stack Overflow Q&A community for airplanes, or stamp collecting, geology,
or any other area of interest.”

Stack Overflow was created using the Microsoft Web Platform, which in addition to
development tools includes the Windows Server 2008 operating system, Internet
Information Services (IIS) 7, and Microsoft SQL Server 2008 database software.

The basic elements of Stack Overflow include:

� Load Balancing. Users entering the stackoverflow.com site are first handled by a
load balancer, which assigns a user to one of several Web servers according to IP
address. Users continue to be assigned to the same server for as long as they have the
same IP address. Stack Overflow uses the open-source HAProxy for this load
balancing.

� Presentation. Customers browse pages served by Windows Server 2008 Standard,
through IIS 7.5. The Web servers are computers with Xeon quad core CPUs and
8 gigabytes (GB) RAM. When a user submits a question or an answer, their
information is written to the database using the lightweight LINQ to SQL database
abstraction layer.

� Database. The database is hosted on a dedicated server with 2 Intel Xeon quad core
CPUs and 48 GB of RAM, and runs Microsoft SQL Server 2008 Enterprise. Stack
Overflow takes advantage of the Online Indexing feature, introduced with SQL
Server 2008 Enterprise, which enables table re-indexing while the database continues
to run.

Contd...

154 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes “We designed this to be a next generation Q&A site,” Atwood says. “We tried to combine
aspects of Wikis, in that everybody can edit everything once the system learns to trust
them. Voting, as with DIGG and REDDIT, are an important component. Stack Overflow
has a reputation system which comes out of the voting, so as other people vote your
content up that increases your reputation score and it unlocks different abilities on the site
as the system learns to trust you. It has elements of blogging in that there is a strong sense
of ownership. When you create a question you are the owner of that question and you
have special privileges as you curate that question. And, like a blog, people can post
comments. We wanted to synthesize the best of what we saw in all of these types of
communities and bring them all together into one simple site.”

Questions

1. Study and analyse the case.

2. Write down the case facts.

3. What do you infer from it?
Source: http://www.microsoft.com/india/casestudies/microsoft-visual-studio-2008/stack-overflow/developers-see-faster-web-coding-better-
performance-with-model-view-controller/4000006676

Self Assessment

Fill in the blanks:

14. The BitVector32 structure is in the namespace.

15. By default, when creating a new BitVector32 object, you will start with all of the bits
turned

9.8 Summary

� Collection classes are specialized classes for data storage and retrieval.

� The System Namespace is contained in the file System.DLL, this Namespace is the root of
the .NET Framework.

� The ArrayList class is an object-oriented array that can be dynamically resized at runtime.

� ArrayList is a dynamic array that automatically expands as data is added.

� The Hashtable class represents a collection of key-and-value pairs that are organized
based on the hash code of the key.

� Stack represents a last-in, first-out collection of object.

� When you add an item in the list, it is called pushing the item and when you remove it, it
is called popping the item.

� A queue is a First-In-First-Out (FIFO) data structure.

� The SortedList class represents a collection of key-and-value pairs that are sorted by the
keys and are accessible by key and by index.

� The BitArray class manages a compact array of bit values, which are represented as
Booleans.

� The BitVector32 structure is in the System.Collections.Specialized namespace.

� By default, when creating a new BitVector32 object, you will start with all of the bits
turned off.

LOVELY PROFESSIONAL UNIVERSITY 155

Unit 9: Using System.Collections

Notes9.9 Keywords

ArrayList Class: It is an object-oriented array that can be dynamically resized at runtime.

BitArray Class: It manages a compact array of bit values, which are represented as Booleans.

Collection Classes: They are specialized classes for data storage and retrieval.

Hashtable Class: It represents a collection of key-and-value pairs that are organized based on
the hash code of the key.

Queue: It is a First-In-First-Out (FIFO) data structure.

SortedList Class: It represents a collection of key-and-value pairs that are sorted by the keys and
are accessible by key and by index.

Stack: It represents a last-in, first-out collection of object.

System.DLL: This Namespace is the root of the .NET Framework.

9.10 Review Questions

1. What is an ArrayList?

2. Explain the use of ArrayList.

3. List the common properties and methods used in ArrayList.

4. Write a note on HashTable.

5. What is the basic use of a Stack.

6. List the common functions of a stack.

7. What mechanism does a Queue use to add or delete an element?

8. Explain the concept of a SortedList.

9. List the advantages and disadvantages of using a SortedList.

10. Differentiate between an Array and a BitArray.

Answers: Self Assessment

1. True 2. False

3. False 4. HashTable

5. Clear 6. False

7. True 8. LIFO

9. Enqueue 10. Keys

11. Data , Object 12. True

13. False 14. System.Collections.Specialized

15. Off

156 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes 9.11 Further Readings

Books Beginning Vb.Net 2003, Willis.

Object-oriented Programming with Visual Basic.Net, Hamilton.

Programming Visual Basic .NET, J. Liberty.

Visual Basic.NET Black Book, Steven Holzner.

Online links http://www.functionx.com/vb/collections/introduction.htm

http://msdn.microsoft.com/en-us/library/system.collections.aspx

http://net.blogs.webucator.com/2010/12/01/net-framework-using-the-
bitvector32-structure/

http://www.tutorialspoint.com/vb.net/vb.net_queue.htm

LOVELY PROFESSIONAL UNIVERSITY 157

Unit 10: Windows Programming

NotesUnit 10: Windows Programming

CONTENTS

Objectives

Introduction

10.1 Controls

10.1.1 Control Tab Order

10.2 Button Control

10.2.1 Button Event

10.2.2 Working with Buttons

10.3 TextBox Control

10.4 RichTextBox

10.5 Label and LinkLabel

10.5.1 Label

10.5.2 LinkLabel

10.6 CheckBox

10.7 ListBox

10.7.1 Properties of the ListBox

10.8 ComboBox

10.8.1 Properties of the ComboBox

10.9 TreeView

10.9.1 Properties of TreeView

10.10 CheckedListBox

10.11 Panel, GroupBox and PictureBox

10.11.1 Panel

10.11.2 GroupBox Control

10.11.3 PictureBox Control

10.12 ToolTip and ErrorProvider Component

10.12.1 ToolTip

10.12.2 ErrorProvider Component

10.13 Status Bar

10.14 RadioButton

10.15 Summary

10.16 Keywords

10.17 Review Questions

10.18 Further Readings

Sarabjit Kumar, Lovely Professional University

158 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Objectives

After studying this unit, you will be able to:

� Understand textboxes and rich textboxes

� Explain box property

� Discuss date time picker

� Explain comboboxes

� Understand button creation

� Describe rich textboxes

Introduction

Windows Forms is a framework located in the System.Windows.Forms.dll assembly for building
Windows applications in .NET based on a Graphical User Interface (GUI). Any language
that supports the Common Language Runtime (CLR) can use Windows Forms. If you
have programmed in Visual Basic (VB), you are probably familiar with forms. In VB, all windows
are forms. Controls are placed on forms to develop GUI applications. Visual C++ developers
will more likely be familiar with windows and dialogs rather than forms (CWnd and CDialog
in Microsoft Foundation Classes [MFC]). The Microsoft .NET Framework is designed to remedy
this “forms versus windows” situation. All windows are forms, including dialog boxes. From
all of this synergy, Microsoft coined the term Windows form. Now developers using any
.NET-supported language have access to the same windowing classes, whether they work with
C#, VB, C++, or any other .NET-compliant language. This language independence has been
extended to support many more languages, including COBOL. In addition to the preceding, the
main benefits of Windows Forms are its ease of use, the standardization of the control hierarchy,
and that it allows for Rapid Application Development (RAD). Changing the colors and fonts of
controls using MFC or Win32 can be a real headache. The .NET Framework has taken care of
most such problems and inconveniences.

In addition, Windows Forms applications provide the following:

� Simple and flexible property support

� Common control support, including support for font and color dialogs

� Support for Web Services

� Data-aware controls using ADO.NET

� ActiveX support

� GDI+ (Graphical Device Interface +), a better and richer graphics library, which supports
alpha blending, texture brushes, advanced transformations, and rich text

� Metadata support

10.1 Controls

The Control Class defines the base class for controls, which are components with visual
representation.

LOVELY PROFESSIONAL UNIVERSITY 159

Unit 10: Windows Programming

NotesSyntax:

<ClassInterfaceAttribute(ClassInterfaceType.AutoDispatch)> _

<ComVisibleAttribute(True)> _

Public Class Control _

Inherits Component _

Implements IDropTarget, ISynchronizeInvoke, IWin32Window,

IBindableComponent, _

IComponent, IDisposable

To create your own control class, inherit from the UserControl, Control classes, or from the
other Windows Forms provided controls. The Control class implements very basic functionality
required by classes that display information to the user. It handles user input through the
keyboard and pointing devices. It handles message routing and security. It defines the bounds of
a control (its position and size), although it does not implement painting. It provides a window
handle (hWnd). Windows Forms controls use ambient properties so child controls can appear
like their surrounding environment. An ambient property is a control property that, if not set,
is retrieved from the parent control. If the control does not have a Parent, and the property is not
set, the control attempts to determine the value of the ambient property through the Site property.
If the control is not sited, if the site does not support ambient properties, or if the property is not
set on the AmbientProperties, the control uses its own default values. Typically, an ambient
property represents a characteristic of a control, such as BackColour, that is communicated to a
child control. For example, a Button will have the same BackColor as its parent Form by default.
Ambient properties provided by the Control class include: Cursor, Font, BackColor, ForeColor,
and RightToLeft.

10.1.1 Control Tab Order

Using the Tab key we can move focus from one control to other. We can also customize this tab
order. For this we make use of the Tab Index property. If two controls have same value of the
TabIndex then the focus first goes to the control that is closest to the front of the form. From the
GUI the Tab Index from the View menu enables us to do the same action.

Self Assessment

True or False:

1. Windows Forms is a framework located in the System.Windows.Forms.dll assembly.

2. The FormControl Class defines the base class for controls.

3. Tab property is set so that we can move focus from one control to other.

10.2 Button Control

The Button control represents a standard Windows button. It is generally used to generate a
Click event by providing a handler for the Click event.

Example:

We can create a label by dragging a Button control from the Toolbox and dropping it on the
form.

160 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Figure 10.1: Button Control

Source: http://www.tutorialspoint.com/vb.net/vb.net_button.htm

The following are some of the commonly used properties of the Button control:

Table 10.1: Properties of Button

S.No. Property Description

1. AutoSizeMode Gets or sets the mode by which the Button automatically resizes
itself.

2. BackColor Gets or sets the background color of the control.

3. BackgroundImage Gets or sets the background image displayed in the control.

4. DialogResult Gets or sets a value that is returned to the parent form when the
button is clicked. This is used while creating dialog boxes.

5. ForeColor Gets or sets the foreground color of the control.

6. Image Gets or sets the image that is displayed on a button control.

7. Location Gets or sets the coordination of the upper-left corner of the control
relative to the upper-left corner of its container.

8. TabIndex Gets or sets the tab order of the control within container.

9. Text Gets or sets the text associated with this control.

Source: http://www.tutorialspoint.com/vb.net/vb.net_button.htm

The following are some of the commonly used methods of the Button control:

Table 10.2: Methods of Button

S.No. Method Name and Description

1. GetPreferredSize
Retrieves the size of a rectangular area in which a control can be fitted.

2. NotifyDefault
Notifies the Buttom whether it is the default button so that it can adjust its appearance
accordingly.

3. Select
Activates the control.

4. ToString
Returns a String containing the name of the Component, if any. This method should not
be overridden.

Source: http://www.tutorialspoint.com/vb.net/vb.net_button.htm

LOVELY PROFESSIONAL UNIVERSITY 161

Unit 10: Windows Programming

NotesThe following are some of the commonly used events of the Button control:

Table 10.3: Events of Button

S.No. Event Description

1. Click Occurs when the control is clicked.

2. DoubleClick Occur when the user double-clicks the Button control.

3. GotFocus Occurs when the control receives focus.

4. TabIndexChanged Occur when the TabIndex Property value changes.

5. TextChanged Occurs when the Text property value changes.

6. Validated Occurs when the control is finished validating.

Source: http://www.tutorialspoint.com/vb.net/vb.net_button.htm

10.2.1 Button Event

Click event is the default event of a button. When a Button is clicked it responds with the Click
Event.

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e

As_System.EventArgs) Handles Button1.Click

// Code

End Sub

10.2.2 Working with Buttons

We can set properties of a button. Let us show this with an example.
Public Class Form1

 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load

 ‘ Set the caption bar text of the form.

 Me.Text = “abt.com”

 btnImage.Visible = False

 End Sub

 Private Sub btnMoto_Click(sender As Object, e As EventArgs) Handles

btnMoto.Click

 btnImage.Visible = False

 Label1.Text = “Simple Easy Learning”

 End Sub

 Private Sub btnExit_Click(sender As Object, e As EventArgs) Handles

btnExit.Click

 Application.Exit()

 End Sub

 Private Sub btnLogo_Click(sender As Object, e As EventArgs) Handles

btnLogo.Click

 Label1.Visible = False

 btnImage.Visible = True

 End Sub

End Class

162 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Self Assessment

Fill in the blanks:

4. method of a button is used to activate a control.

5. event is the default event of a button.

10.3 TextBox Control

The TextBox control in Visual Basic 6.0 is replaced by the Windows Forms TextBox control in
Visual Basic .NET. The names of some properties, methods, events, and constants are different,
and in some cases there are differences in behavior. The following tables list Visual Basic 6.0
properties, methods, and events and their Visual Basic .NET equivalents. Where applicable,
constants are indented beneath the property or method. All Visual Basic .NET constants map to
the System.Windows.Forms namespace unless otherwise noted. Text box controls allow entering
text on a form at runtime. By default, it takes a single line of text, however, you can make it
accept multiple texts and even add scroll bars to it.

Example: Let’s create a text box by dragging a TextBox control from the Toolbox and
dropping it on the form.

Figure 10.2: TextBox Control

Source: http://www.tutorialspoint.com/vb.net/vb.net_textbox.htm

The following are some of the commonly used properties of the TextBox control:

Table 10.4: TextBox Properties

AutoCompleteSource Gets or sets a value specifying the source of complete strings used for
automatic completion.

CharacterCasing Gets or sets whether the TextBox control modifies the case of characters as
they are typed.

Font Gets or sets the font of the text displayed by the control.

FontHeight Gets or sets the height of the font of the control.

Forecolor Gets or sets the foreground color of the control.

Contd...

LOVELY PROFESSIONAL UNIVERSITY 163

Unit 10: Windows Programming

NotesLines Gets or sets the lines of text in a text box control.

Multiline Gets or sets a value indicating whether this is a multiline TextBox control.

PasswordChar Gets or sets the character used to mask characters of a password in a
single-line TextBox control.

ReadOnly Gets or sets a value indicating whether text in the text box is read-only.

ScrollBars Gets or sets which scroll bars should appear in a multiline TextBox control.
This property has values:
� None
� Horizontal
� Vertical
� Both

TabIndex Gets or sets the tab order of the control within its container.

Text Gets or sets the current text in the TextBox.

TextAlign Gets or sets how text is aligned in a TextBox control. This property has
values:
� Left
� Right
� Center

TextLength Gets the length of text in the control.

WordWrap Indicates whether a multiline text box control automatically wraps words
to the beginning of the next line when necessary.

Source: http://www.tutorialspoint.com/vb.net/vb.net_textbox.htm

The following are some of the commonly used methods of the TextBox control:

Table 10.5: TextBox Methods

S.No. Method Name and Description

1. AppendText
Appends text to the current text of a textbox.

2. Clear
Clears all text from the textbox control.

3. Copy
Copies the current selection in the textbox to the Clipboard.

4. Cut
Moves the current selection in the textbox to the Clipboard.

5. Paste
Replaces the current selection in the textbox with the contents of the Clipboard.

6. Paste(String)
Sets the selected to the specified text without clearing the undo buffer.

7. ResetText
Resets the Text property to its default value.

8. ToString
Returns a string that represents the TextBoxBase control.

9. Undo
Undoes the last edit operation in the textbox.

Source: http://www.tutorialspoint.com/vb.net/vb.net_textbox.htm

164 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes The following are some of the commonly used events of the Text control:

Table 10.6: TextBox Events

S.No. Event Description

1. Click Occurs when the control is clicked.

2. DoubleClick Occurs when the control is double-clicked.

3. TextAlighChanged Occurs when the TextAlign property value changes.

Source: http://www.tutorialspoint.com/vb.net/vb.net_textbox.htm

Example:

Public Class Form1

 Private Sub Form1_Load(sender As Object, e As EventArgs) _

 Handles MyBase.Load

 ‘ Set the caption bar text of the form.

 Me.Text = “tutorialspont.com”

 End Sub

 Private Sub btnMessage_Click(sender As Object, e As EventArgs) _

 Handles btnMessage.Click

 MessageBox.Show(“Thank you “ + txtName.Text + “ from “ + txtOrg.Text)

 End Sub

End Class

Self Assessment

Fill in the blanks:

6. All Visual Basic .NET constants map to the namespace unless otherwise
noted.

7. TextAlign can take up three values: , or

10.4 RichTextBox

A RichTextBox control is an advanced text box that provides text editing and advanced formatting
features including loading Rich Text Format (RTF) files.

We can create a RichTextBox control using a Forms designer at design-time or using the
RichTextBox class in code at run-time. To create a RichTextBox control at design-time, you
simply drag and drop a RichTextBox control from Toolbox onto a Form in Visual Studio. Once
a RichTextBox is added to a Form, you can move it around and resize it using mouse and set its
properties and events. Creating a RichTextBox control at run-time is merely a work of creating
an instance of RichTextBox class, set its properties and add RichTextBox class to the Form controls.

First step to create a dynamic RichTextBox is to create an instance of RichTextBox class. The
following code snippet creates a RichTextBox control object.

Dim dynamicRichTextBox As New RichTextBox()

In the next step, you may set properties of a RichTextBox control. The following code snippet
sets size, location, background color, foreground color, Text, Name, and Font properties of a
RichTextBox.

LOVELY PROFESSIONAL UNIVERSITY 165

Unit 10: Windows Programming

NotesdynamicRichTextBox.Location = New Point(20, 20)

dynamicRichTextBox.Width = 300

dynamicRichTextBox.Height = 200

‘ Set background and foreground

dynamicRichTextBox.BackColor = Color.Red

dynamicRichTextBox.ForeColor = Color.Blue

dynamicRichTextBox.Text = “I am Dynamic RichTextBox”

dynamicRichTextBox.Name = “DynamicRichTextBox”

dynamicRichTextBox.Font = New Font(“Georgia”, 16)

Once a RichTextBox control is ready with its properties, next step is to add the RichTextBox
control to the Form. To do so, we use Form.Controls.Add method. The following code snippet
adds a RichTextBox control to the current Form.

Controls.Add(dynamicRichTextBox)

RichTextBox control looks like Figure below.

Figure 10.3: RichTextBox Control

Source: http://www.dotnetheaven.com/article/richtextbox-control-in-vb.net

Self Assessment

True or False:

8. A RichTextBox control is an advanced text box that provides text editing and advanced
formatting features including loading Rich Text Format (RTF) files.

9. Creating a RichTextBox control at run-time is done by creating an instance of Control
class.

10.5 Label and LinkLabel

We will now discuss two controls that are used for data display in a VB.NET form.

10.5.1 Label

Microsoft Visual Studio .NET controls are the graphical tools you use to build the user interface
of a VB.Net program. Labels are one of the most frequently used Visual Basic control. A Label
control lets you place descriptive text, where the text does not need to be changed by the user.
The Label class is defined in the System.Windows.Forms namespace.

166 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Figure 10.4: Label Control

Source: http://vb.net-informations.com/gui/vb.net-label.htm

Add a Label control to the form. Click Label in the Toolbox and drag it over the forms Designer
and drop it in the desired location.

If you want to change the display text of the Label, you have to set a new text to the Text property
of Label.

Label1.Text = “This is my first Label”

You can load Image in Label control, if you want to load an Image in the Label control you can
code like this

Label1.Image = Image.FromFile(“C:\testimage.jpg”)

The following source code shows how to set some properties of the Label through coding.

Example:

Public Class Form1

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

 Label1.Text = “This is my first Label”

 Label1.BorderStyle = BorderStyle.FixedSingle

 Label1.TextAlign = ContentAlignment.MiddleCenter

 End Sub

End Class

10.5.2 LinkLabel

The VB.NET LinkLabel control is similar to the label control, with the exception of hyperlinks.
The LinkLabel control can display single or multiple hyperlinks. When the user clicks a hyperlink,
the process can be started in the event.

Namespace: System::Windows::Forms

System.Windows.Forms (in system.windows.forms.dll)

Creating an new VB.NET Windows forms LinkLabel.
Dim linklabel As New LinkLabel

Assigning a AutoSize Value to the LinkLabel Control.
linklabel.AutoSize = False

Docking the VB.NET LinkLabel Control.
linklabel.Dock = DockStyle.Top

Assigning a text value to the VB.NET LinkLabel control.
linklabel.Text = “Link to Web Site”

Adding a VB.NET LinkLabel control to the form.
Me.Controls.Add(linklabel)

LOVELY PROFESSIONAL UNIVERSITY 167

Unit 10: Windows Programming

NotesCreating a LinkClicked Event for the VB.NET LinkLabel control.
AddHandler linklabel.LinkClicked, AddressOf LinkLabel_LinkClicked

Responding to the VB.NET LinkLabel LinkClicked event.
Private Sub LinkLabel_LinkClicked(ByVal sender As Object, ByVal e As

LinkLabelLinkClickedEventArgs)

MessageBox.Show(“Link Clicked”)

End Sub

Figure 10.5: LinkLabel Control

Source: http://www.speakcomputers.com/Windows-Forms-Programming/VB/LinkLabel.aspx

Self Assessment

Fill in the blanks:

10. A control lets you place descriptive text, where the text does not need to be
changed by the user.

11. The control can display single or multiple hyperlinks.

10.6 CheckBox

CheckBoxes allow the user to make multiple selections from a number of options. You can click
a checkBox to select it and click it again to deselect it.

Figure 10.6: CheckBox Control

Source: http://www.speakcomputers.com/Windows-Forms-Programming/VB/LinkLabel.aspx

168 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes CheckBoxes come with a caption, which you can set in the Text property.

CheckBox1.Text = “Net-informations.com”

You can use the CheckBox control ThreeState property to direct the control to return the Checked,
Unchecked, and Indeterminate values. You need to set the check box ThreeState property to True
to indicate that you want it to support three states.

CheckBox1.ThreeState = True

To apply the same property settings to multiple CheckBox controls, use the Style property. The
following VB.Net program shows how to find a checkbox is selected or not.

Example:

Public Class Form1

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

Dim msg As String = “”

If CheckBox1.Checked = True Then

msg = “net-informations.com”

End If

If CheckBox2.Checked = True Then

msg = msg & “ vb.net-informations.com”

End If

If CheckBox3.Checked = True Then

msg = msg & “ csharp.net-informations.com”

End If

If msg.Length > 0 Then

MsgBox(msg & “ selected “)

Else

MsgBox(“No checkbox selected”)

End If

CheckBox1.ThreeState = True

End Sub

End Class

Self Assessment

True or False:

12. CheckBoxes allow the user to make single selection from a number of options.

13. You need to set the checkbox ThreeState property to Tree to indicate that you want to
support threestates.

LOVELY PROFESSIONAL UNIVERSITY 169

Unit 10: Windows Programming

Notes10.7 ListBox

The ListBox control displays a list of items from which we can make a selection. We can select
one or more than one of the items from the list.

Drag and drop ListBox from toolbox on the window Form.

Figure 10.7: ListBox Control

Source: http://www.mindstick.com/Articles/35d84ede-e970-4c74-98db-a64b64d3265f/?ListBox%20Control%20in%20VB.Net

Public Class Form8

 Private Sub Form8_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

 ‘Item is added in ListBox

 ListBox1.Items.Add(“C#”)

 ListBox1.Items.Add(“J#”)

 ListBox1.Items.Add(“VB”)

 ListBox1.Items.Add(“Java”)

 End Sub

 Private Sub ListBox1_SelectedIndexChanged(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles ListBox1.SelectedIndexChanged

 ‘selected option will show in Label using the selected item property

 Label2.Text = “Selected Language is “ + ListBox1.SelectedItem

 End Sub

End Class

In above code Item is added dynamically so all Items in ListBox1 will show at run time.

Figure 10.8: Output of the Code Above

Source: http://www.mindstick.com/Articles/35d84ede-e970-4c74-98db-a64b64d3265f/?ListBox%20Control%20in%20VB.Net

170 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes When you select given option then SelectedIndexChanged event will fire and selected Item will
show in the Label.

Figure 10.9: Output of the Code Above

Source: http://www.mindstick.com/Articles/35d84ede-e970-4c74-98db-a64b64d3265f/?ListBox%20Control%20in%20VB.Net

10.7.1 Properties of the ListBox

The properties of a ListBox are summarized in Table 10.7.

Table 10.7: ListBox Properties

S.No. Event Description

1. AllowSelection Gets a value indicating whether the ListBox currently enables
selection of list items.

2. BorderStyle Gets or sets the type of border drawn around the list box.

3. ColumnWidth Gets of sets the width of columns in a multicolumn list box.

4. HorizontalExtent Gets or sets the horizontal scrolling area of a list box.

5. HorizontalScrollBar Gets or sets the value indicating whether a horizontal scrollbar is
displayed in the list box.

6. ItemHeight Gets or sets the height of an item in the list box.

7. Items Gets the items of the list box.

8. MultiColumn Gets or sets a value indicating whether the list box supports
multiple columns.

9. ScrollAlwaysVisible Gets or sets a value indicating whether the vertical scroll bar is
shown at all times.

10. SelectedIndex Gets or sets the zero-based index of the currently selected item in
a list box.

11. SelectedIndices Gets or sets the zero-based index of the currently selected item in
a list box.

12. SelectedItem Gets or sets the currently selected item in the list box.

13. SelectedItems Get a collection containing the currently selected items in the list
box.

14. SelectedValue Gets or sets the value of the member property specified by the
ValueMember property.

Source: http://www.tutorialspoint.com/vb.net/vb.net_listbox.htm

LOVELY PROFESSIONAL UNIVERSITY 171

Unit 10: Windows Programming

NotesSelf Assessment

Fill in the blanks:

14. The control displays a list of items from which we can make a selection.

15. When you select given option then event will fire and selected Item will
show in the Label.

10.8 ComboBox

The ComboBox control is used to display a drop-down list of various items. It is a combination
of a text box in which the user enters an item and a drop-down list from which the user selects an
item.

You can populate the list box items either from the properties window or at runtime. To add
items to a ListBox, select the ListBox control and get to the properties window, for the properties
of this control. Click the ellipses (...) button next to the Items property. This opens the String
Collection Editor dialog box, where you can enter the values one at a line.

10.8.1 Properties of the ComboBox

The following are some of the commonly used properties of the ComboBox control:

Table 10.8: ComboBox Properties

S.No. Property Description

1. AllowSelection Gets a value indicating whether the list enables selection
of list items.

2. AutoCompleteCustomSource Gets or sets custom
System.Collections.Specialized.StringCollection to use
when the AutoCompleteSourceproperty is set to
CustomSource.

3. AutoCompleteMode Gets or sets an option that controls how automatic
completion works for the ComboBox.

4. AutoCompleteSource Gets or sets a value specifying the source of complete
strings used for automatic completion.

5. DataBindings Gets the data bindings for the control.

6. DataManager Gets the CurrencyManager associated with this control.

7. DataSource Gets or sets the data source for this ComboBox.

8. DropDownHeight Gets or sets the height in pixels of the drop-down portion
of the ComboBox.

9. DropDownStyle Gets or sets a value specifying the style of the combo box.

10. DropDownWidth Gets or sets the width of the drop-down portion of a
combo box.

11. DroppedDown Gets or sets a value indicating whether the combo box is
displaying its drop-down portion.

12. FlatStyle Gets or sets the appearance of the ComboBox.

13. ItemHeight Gets or sets the height of an item in the combo box.

14. Items Gets an object representing the collection of the item
contained in this combo box

Contd...

172 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes 15. MaxDropDownItems Gets or sets the maximum number of items to be
displayed in the drop-down part of the combo box.

16. MaxLength Gets or sets the maximum number of characters a user
can enter in the editable area of the combo box.

Source: http://www.tutorialspoint.com/vb.net/vb.net_combobox.htm

10.9 TreeView

TreeView control is used to display hierarchical tree like information such as a directory hierarchy.
The top level in a tree view are root nodes that can be expanded or collapsed if the nodes have
child nodes.

The user can expand the TreeNode by clicking the plus sign (+) button, if one is displayed next
to the TreeNode, or you can expand the TreeNode by calling the TreeNode.Expand method.
When a parent node is expanded, its child nodes are visible. You can also navigate through tree
views with various properties: FirstNode, LastNode, NextNode, PrevNode, NextVisibleNode,
PrevVisibleNode.

The fullpath method of treeview control provides the path from root node to the selected node.

TreeView1.SelectedNode.FullPath

Treenodes can optionally display check boxes. To display the check boxes, set the CheckBoxes
property of the TreeView to true.

TreeView1.CheckBoxes = True

Example:
Public Class Form1

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

Dim tNode As TreeNode

tNode = TreeView1.Nodes.Add(“Websites”)

TreeView1.Nodes(0).Nodes.Add(“Net-informations.com”)

TreeView1.Nodes(0).Nodes(0).Nodes.Add(“CLR”)

TreeView1.Nodes(0).Nodes.Add(“Vb.net-informations.com”)

TreeView1.Nodes(0).Nodes(1).Nodes.Add(“String Tutorial”)

TreeView1.Nodes(0).Nodes(1).Nodes.Add(“Excel Tutorial”)

TreeView1.Nodes(0).Nodes.Add(“Csharp.net-informations.com”)

TreeView1.Nodes(0).Nodes(2).Nodes.Add(“ADO.NET”)

TreeView1.Nodes(0).Nodes(2).Nodes(0).Nodes.Add(“Dataset”)

End Sub

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

MsgBox(TreeView1.SelectedNode.FullPath)

End Sub

End Class

LOVELY PROFESSIONAL UNIVERSITY 173

Unit 10: Windows Programming

Notes10.9.1 Properties of TreeView

Some of the properties of a TreeView are given below.

Table 10.9: TreeView Properties

S.No. Property Description

1. BackColor Gets or sets the background color for the control.

2. BackgroundImage Gets or set the background image for the TreeView
control.

3. BackgroundImageLayout Gets or sets the layout of the background image for the
TreeView control.

4. BorderStyle Gets or sets the border style of the tree view control.

5. CheckBoxes Gets or sets a value indicating whether check boxes are
displayed next to the tree nodes in the tree view control.

6. DataBindings Gets the data bindings for the control.

7. Font Gets or sets the font of the text displayed by the control.

8. FontHeight Gets or sets the height of the font of the control.

9. ForeColor The current foreground color for this control, which is the
color the control uses to draw its text.

10. ItemHeight Gets or sets the height of each tree nodes in the tree view
control.

11. Nodes Gets the collection of tree nodes that are assigned to the
tree view control.

12. PathSeparator Gets or sets the delimiter string that the tree nodes path
uses.

13. RightToLeftLayout Gets or sets a value that indicates whether the TreeView
should be laid out from right-to-left.

14. Scrollable Gets or sets a value indicating whether the tree view
control displays scroll bars when they are needed.

15. SelectedImageIndex Gets or sets the image list index value of the image that is
displayed when a tree node is selected.

16. SelectedImageKey Gets or sets the key of the default image shown when a
TreeNode is in a selected state.

17. SelectedNode Gets or sets the tree node that is currently selected in the
tree view control.

Source: http://www.tutorialspoint.com/vb.net/vb.net_treeview.htm

10.10 CheckedListBox

A CheckedListBox control is a ListBox control with CheckBox displayed in the left side where
user can select a single or multiple items. We can create a CheckedListBox control using a Forms
designer at design-time or using the CheckedListBox class in code at run-time (also known as
dynamically).

To create a CheckedListBox control at design-time, you simply drag and drop a CheckedListBox
control from Toolbox to a Form in Visual Studio. After you drag and drop a CheckedListBox on
a Form, the CheckedListBox looks like Figure 10.10. Once a CheckedListBox is on the Form, you
can move it around and resize it using mouse and set its properties and events.

174 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Figure 10.10: CheckedListBox

Source: http://www.dotnetheaven.com/article/checkedlistbox-in-vb.net

Creating a CheckedListBox control at run-time is merely a work of creating an instance of
CheckedListBox class, set its properties and adds CheckedListBox class to the Form controls.

First step to create a dynamic CheckedListBox is to create an instance of CheckedListBox class.
The following code snippet creates a CheckedListBox control object.

CheckedListBox1 = New CheckedListBox()

In the next step, you may set properties of a CheckedListBox control. The following code snippet
sets location, width, height, background color, foreground color, Text, Name, and Font properties
of a CheckedListBox.

CheckedListBox1.Location = New System.Drawing.Point(12, 12)

CheckedListBox1.Name = “CheckedListBox1”

CheckedListBox1.Size = New System.Drawing.Size(245, 169)

CheckedListBox1.BackColor = System.Drawing.Color.Orange

CheckedListBox1.ForeColor = System.Drawing.Color.Black

CheckedListBox1.FormattingEnabled = True

 Once a CheckedListBox control is ready with its properties, next step is to add the CheckedListBox
control to the Form. To do so, we use Form.Controls.Add method. The following code snippet
adds a CheckedListBox control to the current Form.

 Controls.Add(CheckedListBox1)

Some of its properties include,

Figure 10.11: CheckedListBox Properties

Source: http://www.dotnetheaven.com/article/checkedlistbox-in-vb.net

LOVELY PROFESSIONAL UNIVERSITY 175

Unit 10: Windows Programming

Notes10.11 Panel, GroupBox and PictureBox

We will now discuss each of them individually in detail.

10.11.1 Panel

The Panel control is a container control that is used to host a group of similar child controls. One
of the major uses has been found for a Panel control when you have to show and hide a group of
controls. Instead of show and hide individual controls, you can simply hide and show a single
Panel and all child controls.

We can create a Panel control using the Forms designer at design-time or using the Panel class
in code at run-time.

� Design-time: To create a Panel control at design-time, you simply drag and drop a Panel
control from Toolbox to a Form in Visual Studio. Once a Panel is on the Form, you can
move it around and resize it using mouse and set its properties and events.

� Run-time: Creating a Panel control at run-time is merely a work of creating an instance of
Panel class, set its properties and adds Panel class to the Form controls.

First step to create a dynamic Panel is to create an instance of Panel class. The following code
snippet creates a Panel control object.

Dim dynamicPanel As New Panel()

In the next step, you may set properties of a Panel control. The following code snippet sets
location, size and Name properties of a Panel.

dynamicPanel.Location = New System.Drawing.Point(26, 12)

dynamicPanel.Name = “Panel1”

dynamicPanel.Size = New System.Drawing.Size(228, 200)

dynamicPanel.BackColor = Color.LightBlue

Once the Panel control is ready with its properties, the next step is to add the Panel to a Form. To
do so, we use Form.Controls.Add method that adds Panel control to the Form controls and
displays on the Form based on the location and size of the control. The following code snippet
adds a Panel control to the current Form.

Controls.Add(dynamicPanel)

Setting Panel Properties

After you place a Panel control on a Form, the next step is to set its properties.

The easiest way to set properties is from the Properties Window. You can open Properties
window by pressing F4 or right click on a control and select Properties menu item.

Adding Controls to a Panel

You can add controls to a Panel by dragging and dropping control to the Panel. We can add
controls to a Panel at run-time by using its Add method. The following code snippet creates a
Panel, creates a TextBox and a CheckBox and adds these two controls to a Panel.

Private Sub CreateButton_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles CreateButton.Click

 Dim dynamicPanel As New Panel()

 dynamicPanel.Location = New System.Drawing.Point(26, 12)

176 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes dynamicPanel.Name = “Panel1”

 dynamicPanel.Size = New System.Drawing.Size(228, 200)

 dynamicPanel.BackColor = Color.LightBlue

 Dim textBox1 As New TextBox()

 textBox1.Location = New Point(10, 10)

 textBox1.Text = “I am a TextBox5”

 textBox1.Size = New Size(200, 30)

 Dim checkBox1 As New CheckBox()

 checkBox1.Location = New Point(10, 50)

 checkBox1.Text = “Check Me”

 checkBox1.Size = New Size(200, 30)

 dynamicPanel.Controls.Add(textBox1)

 dynamicPanel.Controls.Add(checkBox1)

 Controls.Add(dynamicPanel)

 End Sub

Show and Hide a Panel

Applications where you want to show and hide a group of controls on a Form based on some
condition. That is where a Panel is useful. Instead of show and hide individual controls, we can
group controls that we want to show and hide and place them on two different Panels and show
and hide the Panels. To show and hide a Panel, we use Visible property.

dynamicPanel.Visible = False

10.11.2 GroupBox Control

GroupBox is a container of other control. It displays a frame around a group of controls. When
you move the GroupBox control, all of its contained will also move.

Drag and drop GroupBox control from toolbox on the window Form. When you drag and drop
group box, it has a border by default, and its caption is set to the name of the control. You can
change its caption. GroupBox is a container of other control.

GroupBox Properties

The following are the properties of GroupBox:

� AutoSize: Gets or sets a value that indicates whether the GroupBox resizes based on its
contents.

� BackColor: Gets or sets the background color for the control.

� ForeColor: Change ForeColor of all control in side GroupBox

You can change ForeColor of all control in side GroupBox at a time.

Code should be written inside Form Load so that when Form run then code (for changing Fore
Color) will be executed.

Example:

Private Sub Form24_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

 ‘Change Fore color of all control in side GroupBox

 GroupBox1.ForeColor = Color.Blue

 End Sub

Forecolor of all control in side GroupBox will be changed when Application run.

LOVELY PROFESSIONAL UNIVERSITY 177

Unit 10: Windows Programming

Notes10.11.3 PictureBox Control

PictureBox control is used to display image. The images displayed can be any format like
Bitmap, JPEG, and GIF, PNG or any other image format files. The PictureBox control is based on
the Control class.

Drag and drop the PictureBox control from toolbox on the Window Form.

Figure 10.12: PictureBox Properties

Source: http://www.mindstick.com/Articles/510a9eaa-1901-4c19-b2e1-e21f0176a5e3/?PictureBox%20Control%20in%20VB.Net

Code:

Public Class Form13

Private Sub Form13_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

 ‘show image in PictureBox

 PictureBox1.Image = Image.FromFile(“C:\Pictures\Sample Pictures\image1.png”)

 End Sub

End Class

FromFile method is used to find the image.

Run the Project

Image will show in PictureBox when application run.

Figure 10.13: PictureBox

Source: http://www.mindstick.com/Articles/510a9eaa-1901-4c19-b2e1-e21f0176a5e3/?PictureBox%20Control%20in%20VB.Net

178 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Size Mode property of PictureBox: Set the Image size mode by default it set to Normal.

Private Sub Form13_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

 ‘set sizemode to CenterImage

 PictureBox1.SizeMode = PictureBoxSizeMode.CenterImage

 End Sub

Centre image will show in PictureBox.

Figure 10.14: Output of the Code Above

Source: http://www.mindstick.com/Articles/510a9eaa-1901-4c19-b2e1-e21f0176a5e3/?PictureBox%20Control%20in%20VB.Net

10.12 ToolTip and Error Provider Component

Now we will discuss the two very useful controls in VB.NET.

10.12.1 ToolTip

ToolTip makes interfaces more intuitive. We add the ToolTip control to a Windows Forms
application, which provides useful contextual hints to the client. We use the Visual Studio
designer to easily add ToolTips.

Figure 10.15: ToolTip

Source: http://www.dotnetperls.com/tooltip

Setting a ToolTip

To set the tooltip we use the SetToolTip() method.

Example:
Me.tipExample1.SetToolTip(Me.lblInput, “This is a label for the input

field”)

LOVELY PROFESSIONAL UNIVERSITY 179

Unit 10: Windows Programming

NotesMe.tipExample1.SetToolTip(Me.txtInput, “Please enter your first name”)

Me.tipExample1.SetToolTip(Me.btnExecute, “Clicking this button generates a

message for you”)

 or to create a new line in the tooltip:

Me.tipExample1.SetToolTip(Me.Button1, “Foo” & ControlChars.NewLine & “Bar”)

10.12.2 ErrorProvider Component

Suppose you want to give your users a clue that their input is wrong somehow, but you don’t
want to display a whole popup window like a MessageBox. Windows Forms gives you the
answer with the ErrorProvider component. In VB.old, a MessageBox was about all you had.
ErrorProvider is way more cool.

There are three good reasons for using ErrorProvider instead of popping up a MessageBox.

1. A MessageBox interrupts the flow of the program and you have to click a button to get out
of it again.

2. You can’t show visually where the error actually is.

3. You can’t show multiple errors.

ErrorProvider has a lot of flexibility. For example, when the DataSource property is set, the
ErrorProvider component can display error messages for a dataset. To demonstrated some of
the flexibility in the example code here, we changed the Icon property from the default.

To use ErrorProvider, drag it from the ToolBox onto your form. It shows up in the component
tray at the bottom of the designer window since it doesn’t have a visual presence on the form.
(In other words, it’s like the Timer control.) Then, when you want to display the error icon, just
call the SetError method. When the SetError method is called, ErrorProvider displays an icon
(the default is the red exclamation point in a circle) and will also display ToolTip text for the
error.

Displaying an Error

Here’s an example of code that uses ErrorProvider. This code displays four different icons that
insult the user’s choice of fonts (no matter what is selected):

 Private Sub Form1_Load(...

 For Each ff In _

 System.Drawing.FontFamily.Families

 availableFonts.Items.Add(ff.Name)

 Next

 End Sub

 Private Sub availableFonts_SelectedIndexChanged(...

 DisplayErrorProvider(sender)

 errCount += 1

 End Sub

 Private Sub DisplayErrorProvider(ByVal sender As Object)

 Select Case errCount

 Case 0

 ErrorProvider1.SetError(_

 sender, “What a dumb font!” & _

 vbCrLf & “I don’t know whether” & _

180 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes vbCrLf & “to laugh or cry.”)

 ErrorProvider1.Icon = _

 New Icon(“C:\f1.ico”)

 Case 1

 ErrorProvider1.SetError(_

 sender, “You did it again!” & _

 vbCrLf & “I’ll laugh it off this time!”)

 ErrorProvider1.Icon = _

 New Icon(“C:\f2.ico”)

 Case 2

 ErrorProvider1.SetError(_

 sender, “You gotta cut this out!” & _

 vbCrLf & “I’m getting mad now!”)

 ErrorProvider1.Icon = _

 New Icon(“C:\f3.ico”)

 Case Else

 ErrorProvider1.SetError(_

 sender, “This is a lost cause!” & _

 vbCrLf & “You’re hopeless.”)

 ErrorProvider1.Icon = _

 New Icon(“C:\f4.ico”)

 End Select

 End Sub

10.13 StatusBar

StatusBar control is not available in Toolbox of Visual Studio 2010. StatusStrip control replaces
StatusBar in Visual Studio 2010. But for backward compatibility support, StatusBar class is
available in Windows Forms.

A StatusBar control is a combination of StatusBar panels where each panel can be used to display
different information. For example, one panel can display current application status and other
can display date and other information and so on. A typical StatusBar sits at the bottom of a
form.

StatusBar class represents a StatusBar.

Dim mainStatusBar As New StatusBar()

A StatusBar is a combination of StatusBar panels. StatusBarPanel class represents a StatusBar
panel. The following code snippet creates two panels and adds them to the StatusBar.

Dim statusPanel As New StatusBarPanel()

Dim datetimePanel As New StatusBarPanel()

statusPanel.BorderStyle = StatusBarPanelBorderStyle.Sunken

statusPanel.Text = “Application started. No action yet.”

statusPanel.ToolTipText = “Last Activity”

statusPanel.AutoSize = StatusBarPanelAutoSize.Spring

mainStatusBar.Panels.Add(statusPanel)

datetimePanel.BorderStyle = StatusBarPanelBorderStyle.Raised

datetimePanel.ToolTipText = “DateTime: “ + System.DateTime.Today.ToString()

datetimePanel.Text = System.DateTime.Today.ToLongDateString()

datetimePanel.AutoSize = StatusBarPanelAutoSize.Contents

mainStatusBar.Panels.Add(datetimePanel)

LOVELY PROFESSIONAL UNIVERSITY 181

Unit 10: Windows Programming

NotesNow, make sure ShowPanels property is true.

mainStatusBar.ShowPanels = True

In the end, we add StatusBar to the Form.

Controls.Add(mainStatusBar)

Now let’s create a Windows Forms application with a few controls on it. We are going to show
current activity and date on the status bar. The Form looks like following.

Figure 10.16: Status Bar

Source: http://www.dotnetheaven.com/article/statusbar-control-in-vb-.net

10.14 RadioButton

A radio button or option button is a type of graphical user interface element that allows the user
to choose only one of a predefined set of options. When a user clicks on a radio button, it
becomes checked, and all other radio buttons with same group become unchecked. The radio
button and the check box are used for different functions. Use a radio button when you want the
user to choose only one option. When you want the user to choose all appropriate options, use
a check box. Like check boxes, radio buttons support a Checked property that indicates whether
the radio button is selected.

Example:

Public Class Form1

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

 RadioButton1.Checked = True

 End Sub

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

 If RadioButton1.Checked = True Then

 MsgBox(“You are selected Red !! “)

 Exit Sub

 ElseIf RadioButton2.Checked = True Then

182 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes MsgBox(“You are selected Blue !! “)

 Exit Sub

 Else

 MsgBox(“You are selected Green !! “)

 Exit Sub

 End If

 End Sub

End Class

�
Case Study .NET Memory Leak: The Event Handlers that Made

the Memory Baloon

It always feels like issues come in clusters. One week we get tones of cache related
cases, next week everyone is stuck in some lock and so on. Lately I have had a number
of issues where there were memory leaks related to event handlers.

Problem Description

We have a pretty easy to repro memory leak, even with very few users memory grows at
a high rate and the memory is never released.

The usual suspects are eliminated, i.e. we know that the application doesn’t cache much or
store much or anything in session scope, and from performance monitor we can see that as
private bytes grow, most or all of this growth is in the .net heaps (if private bytes grow by
100 MB, # bytes in all heaps also grow by about 100 MB).

Gathering Data

Since we can tell with !dumpheap – state exactly what objects are on the managed heap, the
natural path to take here is to take two dumps as the memory grows and compare and see
what types of objects increase the most.

Preferably to make the problem more visible, a stress test is nice so that the leaking
objects stand out more. For example if we leak one dataset per pageview, and you see one
dataset in the dump it doesn’t really stand out, but perhaps 10.000 would.

When you take the first dump (adplus –hang –pn w3wp.exe), do this after loading all
relevant pages at least once so that all assemblies and dlls are loaded. After this, stress the
application, and get another dump.

Debugging

As usual I have simplified the scenario a bit, but the debugging techniques stay the same.

I have a simple page, hardly any code in it at all, stressed it for just 14 seconds using ACT
(got ~7000 page hits) and the memory grew by an amazing 64 MB. Of course I would
recommend that you stress more thank 14 seconds, but in this case it was enough to give
me a pretty good leak.

We can see how much memory was used by the process in the two instances by just
looking at the size of the dump files. The first dump was at 65 MB and the second at 129 MB.

!eeheap –gc gives us information about the size of the managed heap along with some
segment information etc. The first dump showed that we used 5 MB of .net heap, and the

Contd...

LOVELY PROFESSIONAL UNIVERSITY 183

Unit 10: Windows Programming

Notessecond shows that this has grown to 73,004,928 bytes (~69 MB), so an increase of 64 MB
which matches the problem statement, that “all” our memory increase is on the .net heap.

A Short Discussion on Event Handlers

An event is really a linked list of event handlers as you can see from dumping out the
eventhandlers above (each node contains the target, method and a prev pointer).

When you do += new EventHandler on the event it doesn’t really matter if this particular
function has been added as a listener before, it will get added once per +=.

When the event is raised we go through the linked list, item by item and call all the
methods (event handlers) added to this list, this is why the event handlers are still called
even when the pages are no longer running as long as they are alive (rooted), and they
will be alive as long as they are hooked up. So they will get called until the eventhandler
is unhooked with a -= new EventHandler.

In VB.Net you hook up events with AddHandler or with the Handles keyword, both hook
up the events the same way. The equivalent to the -= new EventHandler… in vb.net, is
RemoveHandler.

The moral of the story here is: be very careful if you are hooking up event handlers to
objects that have a longer lifespan than the page.

Questions

1. Study and analyse the case.

2. Write down the case facts.

3. What do you infer from it?

Source: http://blogs.msdn.com/b/tess/archive/2006/01/23/net-memory-leak-case-study-the-event-handlers-that-made-the-memory-
baloon.aspx

Self Assessment

Fill in the blanks:

16. A control is a ListBox control with CheckBox displayed in the left side where
user can select a single or multiple items.

17. A button is a type of graphical user interface element that allows the user to
choose only one of a predefined set of options.

10.15 Summary

� Windows Forms is a framework located in the System.Windows.Forms.dll assembly.

� The Control Class defines the base class for controls.

� Tab Index property is set so that we can move focus from one control to other.

� Click event is the default event of a button.

� All Visual Basic .NET constants map to the System.Windows.Forms namespace unless
otherwise noted.

� A RichTextBox control is an advanced text box that provides text editing and advanced
formatting features including loading rich text format (RTF) files.

184 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes � Creating a RichTextBox control at run-time is merely a work of creating an instance of
RichTextBox class.

� A Label control lets you place descriptive text , where the text does not need to be changed
by the user.

� The Label class is defined in the System.Windows.Forms namespace.

� The LinkLabel control can display single or multiple hyperlinks.

� CheckBoxes allow the user to make multiple selections from a number of options.

� To apply the same property settings to multiple CheckBox controls, use the Style property.

� The ListBox control displays a list of items from which we can make a selection.

� When you select given option then SelectedIndexChanged event will fire and selected
Item will show in the Label.

� The ComboBox control is used to display a drop-down list of various items.

� TreeView control is used to display hierarchical tree like information such as a directory
hierarchy.

� A CheckedListBox control is a ListBox control with CheckBox displayed in the left side
where user can select a single or multiple items.

� A radio button or option button is a type of graphical user interface element that allows
the user to choose only one of a predefined set of options.

10.16 Keywords

CheckBoxes: They allow the user to make multiple selections from a number of options.

Control Class: It defines the base class for controls.

Label control: It lets you place descriptive text , where the text does not need to be changed by
the user.

LinkLabel control: It can display single or multiple hyperlinks.

ListBox control: It displays a list of items from which we can make a selection.

RichTextBox control: It is an advanced text box that provides text editing and advanced formatting
features including loading rich text format (RTF) files.

Tab Index property: It is set so that we can move focus from one control to other.

Windows Forms: It is a framework located in the System.Windows.Forms.dll assembly.

10.17 Review Questions

1. What are Windows Controls?

2. Explain the Control Tab Order concept.

3. Write a short note on Button Control.

4. Which is the default Button Event?

5. Explain the TextBox Control and list its properties.

6. Differentiate between TextBox and RichTextBox.

LOVELY PROFESSIONAL UNIVERSITY 185

Unit 10: Windows Programming

Notes7. What are the major differences between Label and Link Label?

8. Explain the use of TreeView control.

9. Write the code to set the ToolTip.

10. What are radio buttons? How are they different from checkboxes?

Answers: Self Assessment

1. True 2. False

3. False 4. Select

5. Click 6. System.Windows.Forms

7. Left, Right, Center 8. True

9. False 10. Label

11. LinkLabel 12. False

13. True 14. ListBox

15. SelectedIndexChanged 16. CheckedListBox

17. Radio

10.18 Further Readings

Books Beginning Vb.Net 2003, Willis.

Object-oriented Programming with Visual Basic.Net, Hamilton.

Programming Visual Basic .NET, J. Liberty.

Visual Basic.NET Black Book, Steven Holzner.

Online links http://www.dotnetheaven.com/article/groupbox-control-in-vb.net

http://www.mindstick.com/Articles/cae0875c-08cb-4094-aeda-676bcb5b450b/
?GroupBox%20Control%20in%20VB.Net

ht tp ://www. java2s .com/Code/VBAPI/System.Windows.Forms/
GroupBoxControlsAddRange.htm

http://www.tutorialspoint.com/vb.net/vb.net_basic_controls.htm

186 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Unit 11: Common Dialog Boxes

CONTENTS

Objectives

Introduction

11.1 Common Dialog Boxes

11.1.1 Using a Common Dialog Box

11.1.2 Common Dialog Box Library

11.1.3 Common Dialog Control

11.2 OpenFileDialog

11.2.1 OpenFileDialog Box Creation

11.2.2 Characteristics of an OpenFileDialog Box

11.3 SaveFileDialog

11.3.1 Creating a SaveFileDialog

11.4 Color Dialog Box

11.4.1 Making a Color Dialog Box Available

11.5 MessageBox Class

11.5.1 MessageBox() Function

11.5.2 Input Box() Function

11.6 Dialog Result Class

11.6.1 Dialog Result Values

11.7 Summary

11.8 Keywords

11.9 Review Questions

11.10 Further Readings

Objectives

After studying this unit, you will be able to:

� Explain common dialog boxes

� Discuss the common dialog control

� Define save file dialog box

� Understand the color dialog box

� Describe the possible dialog result values

Sarabjit Kumar, Lovely Professional University

LOVELY PROFESSIONAL UNIVERSITY 187

Unit 11: Common Dialog Boxes

NotesIntroduction

Standalone applications typically have a main window that both displays the main data over
which the application operates and exposes the functionality to process that data through User
Interface (UI) mechanisms like menu bars, tool bars, and status bars. A non-trivial application
may also display additional windows to do the following:

� Display specific information to users.

� Gather information from users.

� Both display and gather information.

These types of windows are known as dialog boxes, and there are two types: modal and modeless.

A modal dialog box is displayed by a function when the function needs additional data from a
user to continue. Because the function depends on the modal dialog box to gather data, the
modal dialog box also prevents a user from activating other windows in the application while
it remains open. In most cases, a modal dialog box allows a user to signal when they have
finished with the modal dialog box by pressing either an OK or Cancel button. Pressing the OK
button indicates that a user has entered data and wants the function to continue processing with
that data. Pressing the Cancel button indicates that a user wants to stop the function from
executing altogether. The most common examples of modal dialog boxes are shown to open,
save, and print data.

A modeless dialog box, on the other hand, does not prevent a user from activating other windows
while it is open. For example, if a user wants to find occurrences of a particular word in a
document, a main window will often open a dialog box to ask a user what word they are looking
for. Since finding a word doesn’t prevent a user from editing the document, however, the dialog
box doesn’t need to be modal. A modeless dialog box at least provides a Close button to close
the dialog box, and may provide additional buttons to execute specific functions, such as a Find
Next button to find the next word that matches the find criteria of a word search.

Windows Presentation Foundation (WPF) allows you to create several types of dialog boxes,
including message boxes, common dialog boxes, and custom dialog boxes.

11.1 Common Dialog Boxes

There are many built-in dialog boxes to be used in Windows forms for various tasks like
opening and saving files, printing a page, providing choices for colors, fonts, page set up etc. to
the user of an application. These built-in dialog boxes reduce the developer’s time and work
load. All of these dialog box control classes inherit from the CommonDialog class and override
the RunDialog() function of the base class to create the specific dialog box. The RunDialog()
function is automatically invoked when a user of a dialog box calls its ShowDialog() function. The
ShowDialog method is used to display all the dialog box controls at run time. It returns a value
of the type of DialogResult enumeration. The values of DialogResult enumeration are:

� Abort: returns DialogResult.Abort value, when user clicks an Abort button.

� Cancel: returns DialogResult.Cancel, when user clicks a Cancel button.

� Ignore: returns DialogResult.Ignore, when user clicks an Ignore button.

� No: returns DialogResult.No, when user clicks a No button.

� None: returns nothing and the dialog box continues running.

� OK: returns DialogResult.OK, when user clicks an OK button.

188 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes � Retry: returns DialogResult.Retry, when user clicks an Retry button.

� Yes: returns DialogResult.Yes, when user clicks an Yes button.

The following diagram shows the common dialog class inheritance:

Figure 11.1: Common Dialog Boxes

Source: http://www.tutorialspoint.com/vb.net/vb.net_dialog_boxes.htm

All these above mentioned classes have corresponding controls that could be added from the
Toolbox during design time. You can include relevant functionality of these classes to your
application, either by instantiating the class programmatically or by using relevant controls.
When you double click any of the dialog controls in the toolbox or drag the control onto the
form, it appears in the Component tray at the bottom of the Windows Forms Designer, they do
not directly show up on the form.

11.1.1 Using a Common Dialog Box

To use the Common Dialog Control, you need to place it on your form in the same way as you
would place other controls on your form–by double-clicking on the control’s tool in the toolbox.
You do not need to worry about the size of the control or its position on the form, as it will not
be visible when your project is executing. You only need to have one common dialog control on
your form, regardless of how many different types of dialog boxes you want to use.

Your form will look like this when the Common Dialog Control has been added to it:

Figure 11.2: Common Dialog Box

Source: http://toolboxes.flexiblelearning.net.au/demosites/series2/210v2/reslib/01/uid_advcontrolvb2.html

11.1.2 Common Dialog Box Library

The Common Dialog Box Library contains a set of dialog boxes for performing common
application tasks, such as opening files, choosing color values, and printing documents.

LOVELY PROFESSIONAL UNIVERSITY 189

Unit 11: Common Dialog Boxes

NotesThe common dialog boxes allow you to implement a consistent approach to your application’s
user interface. This reduces the amount of effort that users spend in learning user interface
behavior for your application.

Note Starting with Windows Vista, the Open and Save As common dialog boxes have
been superseded by the Common Item Dialog. We recommended that you use the Common
Item Dialog API instead of these dialog boxes from the Common Dialog Box Library.

The Common Dialog Box Library provides a creation function and a structure for each type of
common dialog box. To use a common dialog box in its simplest form, you call its creation function
and specify a pointer to a structure that contains initial values and option flags. After initializing the
dialog box, the dialog box procedure uses the structure to return information about the user input.
You can also customize a common dialog box to suit the needs of your application.

Table 11.1 provides a brief description of the different types of common dialog boxes, and shows
the function and structure used with each type.

Table 11.1: Types of a Dialog Box

Color Displays available colors and optionally lets the user create custom colors. The user can
select a basic or custom color. Use the ChooseColor function and CHOOSECOLOR
structure.

Find Displays a dialog box in which the user can type the string to find. The user can also
specify search options, such as the search direction and whether the search is case
sensitive. Use the FindText function and FINDREPLACE structure.

Font Displays a dialog box in which the user can select a font family and associated font style,
point sizes, and other font attributes such as font color, underline, or strikethrough. Use
the ChooseFont function and CHOOSEFONT structure.

Open Displays a dialog box in which the user can type or select the name of a file or shell
name-space object to open. The dialog box includes lists of drives, directories, and shell
name-space extensions that enable the user to browse the shell name space. It also
includes a list of file name extensions that enables the user to filter the file names
displayed. Use the GetOpenFileName function and OPENFILENAME structure.

Page
Setup

Displays the current page configuration. The user can select page configuration options,
such as paper orientation, size, source, and margins. Use the PageSetupDlg function and
PAGESETUPDLG structure

Print Displays information about the installed printer and its configuration. The user can
select print job options, such as the range of pages to print and the number of copies,
and start the printing process. Use the PrintDlg function and PRINTDLG structure. For
more information, see Print Dialog Box.
To display a Print property sheet rather than a Print dialog box, use the PrintDlgEx
function with the PRINTDLGEX structure. The General page of the property sheet is
similar to the Print dialog box. The property sheet can have additional application-
specific and driver-specific property pages following the General page.

Replace Displays a dialog box in which the user can type the string to find and the replacement
string. The user can specify search options, such as whether the search is case sensitive,
and replacement options, such as the scope of replacement. Use the ReplaceText
function and FINDREPLACE structure.

Save As Displays a dialog box in which the user can type or select the name with which to save a
file or shell name-space object. The dialog box includes lists of drives, directories, and
shell name-space extensions that enable the user to browse the shell name space. It also
includes a list of file name extensions that enables the user to filter the file names
displayed. Use the GetSaveFileName function and OPENFILENAME structure.

Source: http://msdn.microsoft.com/en-us/library/windows/desktop/ms646954%28v=vs.85%29.aspx

190 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes 11.1.3 Common Dialog Control

To display any of the common dialog boxes from within your application, you must first add an
instance of the appropriate control to your project. Then you must set some basic properties of
the control through the Properties window. Most applications set the control’s properties from
within the code because common dialogs interact closely with the application. When you call
the Color common dialog, for example, you should preselect a color from within your application
and make it the default selection on the control. When prompting the user for the color of the
text, the default selection should be the current setting of the control’s ForeColor property.
Likewise, the Save dialog box must suggest a filename when it first pops up (or the file’s
extension, at least).

To display a common dialog box from within your code, you simply call the control’s ShowDialog
method, which is common for all controls. Note that all common dialog controls can be displayed
only modally and they don’t expose a Show method. As soon as you call the ShowDialog
method, the corresponding dialog box appears onscreen, and the execution of the program is
suspended until the box is closed. Using the Open, Save, and FolderBrowser dialog boxes, users
can traverse the entire structure of their drives and locate the desired filename or folder. When
the user clicks the Open or Save button, the dialog box closes and the program’s execution
resumes. The code should read the name of the file selected by the user through the FileName
property and use it to open the file or store the current document there. The folder selected in the
FolderBrowserDialog control is returned to the application through the SelectedPath property.

Example: Here is the sequence of statements used to invoke the Open common dialog
and retrieve the selected filename:

If OpenFileDialog1.ShowDialog = Windows.Forms.DialogResult.OK Then

fileName = OpenFileDialog1.FileName

’ Statements to open the selected file

End If

The ShowDialog method returns a value indicating how the dialog box was closed. You should
read this value from within your code and ignore the settings of the dialog box if the operation
was cancelled. The variable fileName in the preceding code segment is the full pathname of the
file selected by the user.

Example: You can also set the FileName property to a filename, which will be displayed
when the Open dialog box is first opened:

OpenFileDialog1.FileName = “C:\WorkFiles\Documents\Document1.doc”

If OpenFileDialog1.ShowDialog = Windows.Forms.DialogResult.OK Then

fileName = OpenFileDialog1.FileName

’ Statements to open the selected file

End If

Similarly, you can invoke the Color dialog box and read the value of the selected color by using
the following statements:

ColorDialog1.Color = TextBox1.BackColor

If ColorDialog1.ShowDialog = DialogResult.OK Then

TextBox1.BackColor = ColorDialog1.Color

End If

The ShowDialog method is common to all controls. The Title property is also common to all
controls and it’s the string displayed in the title bar of the dialog box. The default title is the

LOVELY PROFESSIONAL UNIVERSITY 191

Unit 11: Common Dialog Boxes

Notesname of the dialog box (for example, Open, Color, and so on), but you can adjust it from within
your code with a statement such as the following:

ColorDialog1.Title = “Select Drawing Color”

Self Assessment

Fill in the blanks:

1. A dialog box is displayed by a function when the function needs additional
data from a user to continue.

2. The dialog box control classes inherit from the CommonDialog class and override the
........................ function of the base class.

3. The method is used to display all the dialog box controls at run time.

4. The Library provides a creation function and a structure for each type of
common dialog box.

11.2 OpenFileDialog

The OpenFileDialog control prompts the user to open a file and allows the user to select a file to
open. The user can check if the file exists and then open it. The OpenFileDialog control class
inherits from the abstract class FileDialog. If the ShowReadOnly property is set to True, then a
read-only check box appears in the dialog box. You can also set the ReadOnlyChecked property
to True, so that the read-only check box appears checked.

Following is the OpenFileDialog box:

Figure 11.3: OpenFileDialog

Source: http://www.tutorialspoint.com/vb.net/vb.net_openfile_dialog.htm

11.2.1 OpenFileDialog Box Creation

To create an OpenFileDialog box:
Imports System

Imports System.Collections

Imports System.ComponentModel

192 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Imports System.Windows.Forms

Imports System.Data

Imports System.Configuration

Imports System.Resources

Imports System.Drawing

Imports System.Drawing.Drawing2D

Imports System.IO

Imports System.Drawing.Printing

Public Class MainClass

 Shared Sub Main()

 ‘Declare a OpenFileDialog object

 Dim objOpenFileDialog As New OpenFileDialog

 ‘Set the Open dialog properties

 With objOpenFileDialog

 .Filter = “Text files (*.txt)|*.txt|All files (*.*)|*.*”

 .FilterIndex = 1

 .Title = “Demo Open File Dialog”

 End With

 ‘Show the Open dialog and if the user clicks the Open button,

 ‘load the file

 If objOpenFileDialog.ShowDialog = Windows.Forms.DialogResult.OK

Then

 Dim allText As String

 Try

 ‘Read the contents of the file

 allText = My.Computer.FileSystem.ReadAllText(_

 objOpenFileDialog.FileName)

 ‘Display the file contents in the TextBox

 System.Console.WriteLine(allText)

 Catch fileException As Exception

 Throw fileException

 End Try

 End If

 ‘Clean up

 objOpenFileDialog.Dispose()

 objOpenFileDialog = Nothing

 End Sub

End Class

11.2.2 Characteristics of an OpenFileDialog Box

A characteristic of dialog boxes is that they provide an OK and a Cancel button. The OK button
tells the application that you’re finished using the dialog box, and the application can process
the information in it. The Cancel button tells the application that it should ignore the information
in the dialog box and cancel the current operation. As you will see, dialog boxes allow you to
quickly find out which buttons were clicked to close them, so that your application can take a

LOVELY PROFESSIONAL UNIVERSITY 193

Unit 11: Common Dialog Boxes

Notesdifferent action in each case. In short, the difference between forms and dialog boxes is artificial.
If it were really important to distinguish between the two, they’d be implemented as two
different objects–but they’re the same object. So, without any further introduction, let’s look at
how to create and use dialog boxes. To create a dialog box, start with a Windows form, set its
FormBorderStyle property to Fixed-Dialog, and set the ControlBox, MinimizeBox, and
MaximizeBox properties to False. Then add the necessary controls on the form and code the
appropriate events, as you would do with a regular Windows form.

Self Assessment

True or False:

5. The OpenFileDialog control class inherits from the abstract class FileDialog

6. A characteristic of dialog boxes is that they provide an Save and a Cancel button

11.3 SaveFileDialog

The SaveFileDialog control prompts the user to select a location for saving a file and allows the
user to specify the name of the file to save data. The SaveFileDialog control class inherits from
the abstract class FileDialog.

Figure 11.4: SaveFileDialog

Source: http://www.tutorialspoint.com/vb.net/vb.net_savefile_dialog.htm

11.3.1 Creating a SaveFileDialog

To make a Save As dialog box available to your .NET Framework application, on the Toolbox,
you can click the SaveFileDialog button and click the form. To programmatically provide this
dialog box, you can declare a SaveFileDialog variable and initialize it using the class default
constructor as follows:

Dim sfd As SaveFileDialog

Public Sub New()

 MyBase.New()

194 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes ‘This call is required by the Windows Form Designer.

 InitializeComponent()

 sfd = New SaveFileDialog

End Sub

The SaveFileDialog class inherits from the FileDialog class from which it gets most of its
characteristics and behaviors.

Self Assessment

Fill in the blanks:

7. The control prompts the user to select a location for saving a file and allows
the user to specify the name of the file to save data.

8. The SaveFileDialog control class inherits from the abstract class

11.4 Color Dialog Box

Displays a modal dialog box that allows the user to choose a specific color value. The user can
choose a color from either a set of basic or custom color palettes. Alternatively, the user can
generate a color value by modifying the RGB or hue, saturation, luminosity (HSL) color values
of the dialog box user interface. The Color dialog box returns the RGB value of the color selected
by the user.

You create and display a Color dialog box by initializing a CHOOSECOLOR structure and
passing the structure to the ChooseColor function. By setting different parameter values for the
CHOOSECOLOR structure, you can affect how the Color dialog box appears. For example, you
can display either a full or partial user interface version of the dialog box.

Figure 11.5: Color Dialog Box

Source: http://msdn.microsoft.com/en-us/library/windows/desktop/ms646375%28v=vs.85%29.aspx

11.4.1 Making a Color Dialog Box Available

The user can choose a color from either a set of basic or custom color palettes. You can invite a
color dialog box by calling ShowDialog() method.
Dim dlg As New ColorDialog

dlg.ShowDialog()

LOVELY PROFESSIONAL UNIVERSITY 195

Unit 11: Common Dialog Boxes

NotesThe Color dialog box has a full version and a partial version of the user interface. The full
version includes the basic controls and has additional controls that allow the user to create
custom colors. The partial version has controls that display the basic and custom color palettes
from which the user can select a color value. The system stores internal colors as 32-bit RGB
values that have the following hexadecimal form: 0x00bbggrr.

The following Vb.Net program invites a color dialog box and retrieve the selected color to a
string.

Public Class Form1

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

Dim dlg As New ColorDialog

dlg.ShowDialog()

If dlg.ShowDialog = Windows.Forms.DialogResult.OK Then

Dim str As String

str = dlg.Color.Name

MsgBox(str)

End If

End Sub

End Class

Self Assessment

True or False:

9. The Color Dialog Box displays a modeless dialog box that allows the user to choose a
specific color.

10. You create and display a Color dialog box by initializing a CHOOSECOLOR structure and
passing the structure to the ChooseColor function.

11.5 MessageBox Class

Displays a message box that can contain text, buttons, and symbols that inform and instruct the
user. Any public static (Shared in Visual Basic) members of this type are thread safe. Any
instance members are not guaranteed to be thread safe. You cannot create a new instance of the
MessageBox class. To display a message box, call the static (Shared in Visual Basic) method
MessageBox.Show. The title, message, buttons, and icons displayed in the message box are
determined by parameters that you pass to this method.

Example:

Protected Sub button1_Click(sender As Object, e As System.EventArgs)

 If textBox1.Text = “” Then

 MessageBox.Show(“You must enter a name.”, “Name Entry Error”, _

 MessageBoxButtons.OK, MessageBoxIcon.Exclamation)

 Else

 ‘ Code to act on the data entered would go here.

 End If

End Sub

196 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes 11.5.1 MessageBox() Function

A message box is a special dialog box used to display a piece of information to the user. As
opposed to a regular form, the user cannot type anything in the dialog box. To support message
boxes, the Visual Basic language provides a function named MsgBox. To support message boxes,
the .NET Framework provides a class named.

To display a simple message box, you can use the MsgBox() function with the following formula:

MsgBox(Message)
Inside the parentheses, pass a string.

Example:

Private Sub btnMessage_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles btnMessage.Click
 MsgBox(“Welcome to Microsoft Visual Basic”)
End Sub

Output:

Figure 11.6: Output of the Above

Besides displaying a message, a message box can be used to let the user make a decision by
clicking a button and, depending on the button the user would have clicked, the message box
would return a value. To be able to return a value, the MsgBox() function is declared as follows:

Public Shared Function MsgBox (_
Prompt As Object, _
<OptionalAttribute> Optional Buttons As MsgBoxStyle = MsgBoxStyle.OkOnly,

_
<OptionalAttribute> Optional Title As Object = Nothing _

) As MsgBoxResult

The value returned by a message box corresponds to a button the user would have clicked (on
the message box). The return value of the MsgBox() function is based on the MsgBoxResult
enumeration. The buttons and the returned values are as follows:

Table 11.2: Types of Button

Source: http://www.functionx.com/vb/functions/msgbox.htm

LOVELY PROFESSIONAL UNIVERSITY 197

Unit 11: Common Dialog Boxes

Notes11.5.2 Input Box() Function

Displays a prompt in a dialog box, waits for the user to input text or click a button, and then
returns a string containing the contents of the text box.

Public Function InputBox(_

 ByVal Prompt As String, _

 Optional ByVal Title As String = “”, _

 Optional ByVal DefaultResponse As String = “”, _

 Optional ByVal XPos As Integer = -1, _

 Optional ByVal YPos As Integer = -1 _

) As String

Prompt - Required. String expression displayed as the message in the dialog box. The maximum
length of Prompt is approximately 1024 characters, depending on the width of the characters
used. If Prompt consists of more than one line, you can separate the lines using a carriage return
character (Chr(13)), a linefeed character (Chr(10)), or a carriage return–linefeed character
combination (Chr(13) & Chr(10)) between each line.

Title - Optional. String expression displayed in the title bar of the dialog box. If you omit Title,
the application name is placed in the title bar.

DefaultResponse - Optional. String expression displayed in the text box as the default response
if no other input is provided. If you omit DefaultResponse, the displayed text box is empty.

XPos - Optional. Numeric expression that specifies, in twips, the distance of the left edge of the
dialog box from the left edge of the screen. If you omit XPos, the dialog box is centered
horizontally.

YPos- Optional. Numeric expression that specifies, in twips, the distance of the upper edge of the
dialog box from the top of the screen. If you omit YPos, the dialog box is positioned vertically
approximately one-third of the way down the screen.

To specify more than the first argument, you must use the InputBox function in an expression.
If you omit any positional arguments, you must retain the corresponding comma delimiter.

Note The InputBox function requires UIPermission at the SafeTopLevelWindows level,
which may affect its execution in partial trust situations.

Example: This example shows various ways to use the InputBox function to prompt the
user to enter a value. If the x and y positions are omitted, the dialog box is automatically
centered for the respective axes. The variable MyValue contains the value entered by the user if
the user clicks OK or presses the ENTER key. If the user clicks Cancel, a zero-length string is
returned.
Dim message, title, defaultValue As String

Dim myValue As Object

message = “Enter a value between 1 and 3” ‘ Set prompt.

title = “InputBox Demo” ‘ Set title.

DefaultValue = “1” ‘ Set default value.

‘ Display message, title, and default value.

myValue = InputBox(message, title, defaultValue)

198 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes ‘ Display dialog box at position 100, 100.

myValue = InputBox(message, title, defaultValue, 100, 100)

11.6 Dialog Result Class

It defines constants that represent common results returned from dialog boxes.
Enum

 |

 +—DialogResult

Syntax:

public class DialogResult

extends Enum

If you assign a DialogResult value to the dialogResult property of a Button control, clicking the
button closes the parent form and sets the form’s dialogResult property to that value (if the form
was displayed using the showDialog method).

11.6.1 Dialog Result Values

The DialogResult enum specifies identifiers to indicate the return value of a dialog box. Here are
the possible values for DialogResult:

Table 11.3: DialogResult Values

Member Name Description

None Nothing is returned from the dialog box. This means that the modal dialog
continuous running.

OK The dialog box return value is OK (usually sent from a button labeled OK).

Cancel This dialog box return value is Cancel (usually sent from a button labeled cancel).

Abort This dialog box return value is Abort (usually sent from a button labeled Abort).

Retry This dialog box return value is Retry (usually sent from a button labeled Retry).

Ignore The dialog box return value is Ignore (usually sent from a button labeled Ignore).

Yes The dialog box return value is Yes (usually sent from a button labeled Yes).

No The dialog box return value is No (usually sent from a button labeled No).

Source: http://msdn.microsoft.com/en-us/library/system.windows.forms.dialogresult.aspx

�
Case Study Migration from VB6 to .NET

Abstract

The client is a US-based consulting company, holding a group of experienced developers
who have worked for decades of years.

The client asked us to bring enhancements and modifications to the former VB6 application
using .NET for their Securities client.

Situation

� The client possessed a legacy application developed with VB6. But it was hard for
them to find resources within their organization specializing in VB6, thus it would

Contd...

LOVELY PROFESSIONAL UNIVERSITY 199

Unit 11: Common Dialog Boxes

Notesnot be cost-effective if the maintenance was carried out through the former
architecture.

� As the former specification was missing, it is not very easy to understand the
requirements just by analyzing the code.

� We were required to not only upgrade the code, but also transfer the database from
Access being used to Microsoft SQL Server 2005. The legatary database was poorly
designed without essential constraints, leading to many tables containing similar
but inconsistent data in the database.

Solution

Technology required:

� .NET Framework 2.0

� Smart Client Software Factory

� NHibernate 1.2

� DevExpress 7.2

� Crystal Report

Because the client would like to rewrite the application with .NET solution, considering
the scalability and a more reasonable architecture of the system, we adopted Smart Client
Software Factory to create the framework of the whole system. Meanwhile, NHibernate
was adopted as Data Access Layer, which not only speeded up the development progress,
but also made the code clearer and more legible. In addition, DevExpress was utilized as
the main controls of presentation tier which gave the application a modern, professional
and easy-to-use look.

Figure 1

� Sufficient and effective communication was essential for this project as the
specification was missing. In order to ensure our work right, periodical products
were submitted to the client for confirmation, such as Model Design, Prototype and

Contd...

200 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes etc. We also discussed the specific and complex issues with the clients via Skype
meeting frequently.

� We redesigned the database in SQL Server 2005 based on the business requirement.
We merged all the similar but inconsistent data into one to ensure the data unique
before importing data to our new database.

Benefits to the Client

Client has the following benefits:

� The new version of application can now meet all the requirements of the client,
including the new features.

� The new system is established with excellent extensibility and maintainability. The
client is now able to add new functions by himself with ease in future.

� The new application is easier to use, and has fantastic face.

� The client updated the system in scheduled time.

Questions

1. Study and analyse the case.

2. Write down the case facts.

3. What do you infer from it?

Source: http://www.novasoftware.com/Case_Studies/Cases/Migration_from_VB6_to_dot_NET.aspx

Self Assessment

Fill in the blanks:

11. Class displays a message box that can contain text, buttons, and symbols
that inform and instruct the user.

12. A is a special dialog box used to display a piece of information to the user.

13. The return value of the MsgBox() function is based on the enumeration.

14. defines constants that represent common results returned from dialog boxes.

15. The DialogResult specifies identifiers to indicate the return value of a dialog
box.

11.7 Summary

� A modal dialog box is displayed by a function when the function needs additional data
from a user to continue.

� A modeless dialog box, on the other hand, does not prevent a user from activating other
windows while it is open.

� The dialog box control classes inherit from the CommonDialog class and override the
RunDialog() function of the base class.

� The RunDialog() function is automatically invoked when a user of a dialog box calls its
ShowDialog() function.

� The ShowDialog method is used to display all the dialog box controls at run time.

LOVELY PROFESSIONAL UNIVERSITY 201

Unit 11: Common Dialog Boxes

Notes� The Common Dialog Box Library provides a creation function and a structure for each
type of common dialog box.

� The OpenFileDialog control prompts the user to open a file and allows the user to select a
file to open.

� The OpenFileDialog control class inherits from the abstract class FileDialog.

� A characteristic of dialog boxes is that they provide an OK and a Cancel button.

� The SaveFileDialog control prompts the user to select a location for saving a file and
allows the user to specify the name of the file to save data.

� The Color Dialog Box displays a modal dialog box that allows the user to choose a specific
color.

� Message Box Class displays a message box that can contain text, buttons, and symbols that
inform and instruct the user.

� Dialog Result Class defines constants that represent common results returned from dialog
boxes.

11.8 Keywords

Color Dialog Box: It displays a modal dialog box that allows the user to choose a specific color.

Common Dialog Box Library: It provides a creation function and a structure for each type of
common dialog box.

Dialog Result Class: It defines constants that represent common results returned from dialog
boxes.

Message Box Class: It displays a message box that can contain text, buttons, and symbols that
inform and instruct the user.

Modal dialog box: It is displayed by a function when the function needs additional data from a
user to continue.

Modeless dialog box: It does not prevent a user from activating other windows while it is open.

OpenFileDialog control: It prompts the user to open a file and allows the user to select a file to
open.

RunDialog() function: It is automatically invoked when a user of a dialog box calls its
ShowDialog() function.

SaveFileDialog control: It prompts the user to select a location for saving a file and allows the
user to specify the name of the file to save data.

ShowDialog method: It is used to display all the dialog box controls at run time.

11.9 Review Questions

1. What are Common Dialog Boxes?

2. Differentiate between modal and modeless dialog boxes.

3. How to use a Common Dialog Box?

4. Write a note on Common Dialog Box Library.

5. Explain the Common Dialog Control with example.

202 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes 6. Why do we use OpenFileDialog?

7. Explain the SaveFileDialog.

8. Why do we use the ColorDialog Box?

9. Write a small note on MessageBox Class.

10. Explain the use of Dialog Result Class with a suitable example.

Answers: Self Assessment

1. Modal 2. RunDialog

3. ShowDialog 4. CommonDialogBox

5. True 6. False

7. SaveFileDialog 8. FileDialog

9. False 10. True

11. MessageBox 12. MessageBox()

13. MsgBoxResult 14. DialogResult Class

15. Enum

11.10 Further Readings

Books Building Distributed Applications with Visual Basic.NET, Dan Fox, Sams.

Object-oriented Programming with Visual Basic.Net, Hamilton.

Programming Visual Basic .NET, J. Liberty.

VB .NET Language in a Nutshell, Steven Roman, Ron Petrusha, Paul Lomax.

Online links http://www.exforsys.com/tutorials/vb.net-2005/dialog-boxes-in-visual-
basic-.net-2005.html

http://msdn.microsoft.com/en-us/library/aa969773.aspx

http://vbadud.blogspot.in/2007/06/visual-basic-common-dialog.html

http://www.functionx.com/vbnet/controls/colordialog.htm

http://www.homeandlearn.co.uk/net/nets4p6.html

LOVELY PROFESSIONAL UNIVERSITY 203

Unit 12: File Input/Output

NotesUnit 12: File Input/Output

CONTENTS

Objectives

Introduction

12.1 Working with Files

12.1.1 File Class

12.1.2 Path

12.1.3 File Enumerations

12.1.4 Basic File Class Operations

12.2 Working with Directory

12.2.1 Using the Classic File System Object

12.2.2 Notify Filters

12.2.3 Streams

12.2.4 FileStream

12.2.5 BufferedStream

12.2.6 NetworkStream

12.2.7 CryptoStream

12.2.8 MemoryStream

12.2.9 Readers and Writers

12.3 System.IO Operations

12.4 Summary

12.5 Keywords

12.6 Review Questions

12.7 Further Readings

Objectives

After studying this unit, you will be able to:

� Understand working with files

� Discuss the working with directory

� Explain the system.IO operations

Introduction

When you first start learning VB.NET, one of the first things you may notice is the absence of
“traditional” file I/O support in .NET. Microsoft has replaced the classic IO operations by stream
operations. A stream is a simple concept that originated in the Unix world. You can think of

Sarabjit Kumar, Lovely Professional University

204 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes stream as a channel through which data flows from your application to a sequential data store
(such as a file, a string, a byte array, or another stream), or vice versa. To understand why the
traditional file I/O operations were replaced by streams, you must consider that not all data
reside in files. Modern applications acquire data from many different data stores, including
files, in-memory buffers and the Internet. The stream analogy enables applications to access all
these data stores with the same programming model. There’s no need to learn how to use
Sockets to access a file on a remote Web server. You can establish a stream between your
application and a remote resource and read the bytes as the server sends them. A stream
encapsulates all the operations you can perform against a data store. The big advantage is that
after you learn how to deal with streams for one data source, you can apply the same techniques
to widely differing data sources.

The Stream class is abstract; you can’t declare a new instance of type Stream in your code. There
are five classes in the .NET Framework that derive from the Stream class. These are:

� FileStream: Supports sequential and random access to files.

� MemoryStream: Supports sequential and random access to memory buffers.

� NetworkStream: Supports sequential access to Internet resources. The NetworkStream
resides in the System.Net.Sockets namespace.

� CryptoStream: Supports data encryption and decryption. The CryptoStream resides in the
System.Security.Cryptography namespace.

� BufferedStream: Supports buffered access to stream that do not support buffering on their
own.

Not all streams support exactly the same operations. A stream for reading a local file, for
example, can report the length of the file and the current position in the file, with the Length and
Position properties, respectively. You can jump to any location in the file with the Seek method.
In contrast, a stream for reading a remote file doesn’t support those features. But the stream
classes help you differentiate Streams programmatically, by providing CanSeek, CanRead and
CanWrite properties. Despite some data-store-dependent differences, the basic methods of all
Stream classes let you write data to or read data from the underlying data store.

12.1 Working with Files

A file is a collection of data stored in a disk with a specific name and a directory path. When a file
is opened for reading or writing, it becomes a stream. The stream is basically the sequence of
bytes passing through the communication path. There are two main streams: the input stream
and the output stream. The input stream is used for reading data from file (read operation) and
the output stream is used for writing into the file (write operation).

12.1.1 File Class

It provides static methods for the creation, copying, deletion, moving, and opening of files, and
aids in the creation of FileStream objects.
Syntax:

<ComVisibleAttribute(True)> _

Public NotInheritable Class File

Use the File class for typical operations such as copying, moving, renaming, creating, opening,
deleting, and appending to files. You can also use the File class to get and set file attributes or
DateTime information related to the creation, access, and writing of a file. Many of the File
methods return other I/O types when you create or open files. You can use these other types to

LOVELY PROFESSIONAL UNIVERSITY 205

Unit 12: File Input/Output

Notesfurther manipulate a file. Because all File methods are static, it might be more efficient to use a
File method rather than a corresponding FileInfo instance method if you want to perform only
one action. All File methods require the path to the file that you are manipulating. The static
methods of the File class perform security checks on all methods. If you are going to reuse an
object several times, consider using the corresponding instance method of FileInfo instead,
because the security check will not always be necessary. By default, full read/write access to new
files is granted to all users.

Table 12.1 describes the enumerations that are used to customize the behavior of various File
methods.

Table 12.1: Enum Used in File Method

Enumeration Description

FileAccess Specifies read and write access to a file.

FileShare Specifies the level of access permitted for a file that is already in use.

FileMode Specifies whether the contents of an existing file are preserved or overwritten, and
whether requests to create an existing file cause an exception.

Source: http://msdn.microsoft.com/en-us/library/system.io.file.aspx

12.1.2 Path

In members that accept a path as an input string, that path must be well-formed or an exception
is raised. For example, if a path is fully qualified but begins with a space, the path is not trimmed
in methods of the class. Therefore, the path is malformed and an exception is raised. Similarly,
a path or a combination of paths cannot be fully qualified twice. For example, “c:\temp
c:\windows” also raises an exception in most cases. Ensure that your paths are well-formed
when using methods that accept a path string. In members that accept a path, the path can refer
to a file or just a directory. The specified path can also refer to a relative path or a Universal
Naming Convention (UNC) path for a server and share name.

Example: All the following are acceptable paths:

� “c:\\MyDir\\MyFile.txt” in C#, or “c:\MyDir\MyFile.txt” in Visual Basic.

� “c:\\MyDir” in C#, or “c:\MyDir” in Visual Basic.

� “MyDir\\MySubdir” in C#, or “MyDir\MySubDir” in Visual Basic.

� “\\\\MyServer\\MyShare” in C#, or “\\MyServer\MyShare” in Visual Basic.

VB.NET provides effective ways of dealing with filenames and paths by using System.IO
namespace . The Path Class performs operations on String instances that contain file or directory
path information. Path Class returns a string that can contain absolute or relative location
information.

The following are the some important operations in VB.Net Path Class:

� GetDirectoryName - Returns the directory information for the specified path string.

� GetExtension - Returns the extension of the specified path string.

� GetFileName - Returns the file name and extension of the specified path string.

� GetFileNameWithoutExtension - Returns the file name of the specified path string without
the extension.

� GetFullPath - Returns the absolute path for the specified path string.

206 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes

Example:

Imports System.IO

Public Class Form1

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

Dim tmpPath As String

Dim rootPath As String

Dim filename As String

Dim extension As String

Dim directory As String

Dim fullPath As String

Dim filenameWithoutExtension As String

tmpPath = “c:\\windows\\inf\\wvmic.inf”

rootPath = Path.GetPathRoot(tmpPath)

filename = Path.GetFileName(tmpPath)

extension = Path.GetExtension(tmpPath)

directory = Path.GetDirectoryName(tmpPath)

filenameWithoutExtension = Path.GetFileNameWithoutExtension(tmpPath)

fullPath = Path.GetFullPath(tmpPath)

MsgBox(directory)

End Sub

End Class

12.1.3 File Enumerations

An Enum type stores special values. These are named constants. With an Enum type we can
remove magic constants throughout our program. And this improves code clarity. It makes the
program easier to maintain. We will be discussing certain enums that deal with files in VB.NET.

FileAccess

In order to perform an operation on a file, you must specify to the operating system how to
proceed. One of the options you have is to indicate the type of access that will be granted on the
file. This access is specified using the FileAccess enumerator. The members of the FileAccess
enumerator are:

� FileAccess.Write: New data can be written to the file

� FileAccess.Read: Existing data can be read from the file

� FileAccess.ReadWrite: Existing data can be read from the file and new data be written to
the file

FileAttributes

It provides attributes for files and directories.This enumeration has a FlagsAttribute attribute
that allows a bitwise combination of its member values.

LOVELY PROFESSIONAL UNIVERSITY 207

Unit 12: File Input/Output

NotesSyntax:

<SerializableAttribute> _

<FlagsAttribute> _

<ComVisibleAttribute(True)> _

Public Enumeration FileAttributes

Some members of the FileAttributes enum are:

Table 12.2: Members of the FileAttributes Enum

Member name Description

ReadOnly The file is read-only.

Hidden The file is hidden, and thus is not included in an ordinary directory listing.

System The file is a system file. That is, the file is part of the operating system or is used
exclusively by the operating system.

Directory The file is a directory.

Archive The file is a candidate for backup or removal.

Device Reserved for future use.

Normal The file is a standard file that has no special attributes. The attribute is valid only
if it is used alone.

Temporary The file is a temporary. A temporary file contains data is needed while an
application is executing but is not needed after the application is finished. File
systems try to keep all the data in memory for quicker access rather than
flushing the data back to ass storage. A temporary file should be deleted by the
application as soon as it is no longer needed.

SparseFile The file is sparse file. Sparse files are typically larger files whose data consists of
mostly zeros.

ReparsePoint The file contains a reparse point, which is a block of user-defined data associated
with a file or a directory.

Source: http://msdn.microsoft.com/en-us/library/system.io.fileattributes.aspx

Example:

The following example shows how to retrieve the attributes for a file and check if the file is read-
only.

Imports System.IO

Imports System.Text

Module Module1

 Sub Main()

 Dim attributes = File.GetAttributes(“c:/Temp/testfile.txt”)

 If ((attributes And FileAttributes.ReadOnly) =

FileAttributes.ReadOnly) Then

 Console.WriteLine(“read-only file”)

 Else

 Console.WriteLine(“not read-only file”)

 End If

 End Sub

End Module

FileMode

It specifies how the operating system should open a file.

208 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Syntax:

<SerializableAttribute> _

<ComVisibleAttribute(True)> _

Public Enumeration FileMode

Some of the members are:

Table 12.3: Members of the FileMode Enum

Member name Description

CreateNew Specifies that the operating system should create a new file. This requires
FileIOPermissionAccess.Write permission. If the file already exists, and
IOException exception is thrown.

Create Specifies that the operating system should create a new file. If the file already
exists, it will be overwritten. This requires FileIOPermissionAccess.Write
permission. FileMode.Create is equivalent to requesting that if the file does not
exist, use CreateNew; otherwise, use Truncate. If the file already exists but is a
hidden file, an UnauthorizedAccessException exception is thrown.

Open Specifies that the operating system should open an existing file. The ability to
open the file is dependent on the value specified by the FileAccess enumeration.
A System.IO.FileNotFoundException exception is thrown if the file does not
exist.

OpenOrCreate Specifies that the operating system should open a file if it exists; otherwise, a
new file should be created. If the file is opened with FileAccess.Read,
FileIOPermissionAccess.Read permission is required. If the file access is
FileAccess.Write, FileIOPermissionAccess.Write permission is required. If the
file is opened with FileAccess.ReadWrite, both FileIOPermissionAccess.Read
and FileIOPermissionAccess.Write permission are required.

Truncate Specifies that the operating system should open an existing file. When the file is
opened, it should be truncated so that its size is zero bytes. This requires
FileIOPermissionAccess.Write permission. Attempts to read from a file opened
with FileMode.Truncate cause an ArguentException exception.

Append Opens the file if it exists and seeks to the end of the file, or creates a new file.
This requires FileIOPermissionAccess.Append permission. FileMode.Append
can be used only in conjunction file with FileAccess.Write. Trying to seek a
position before the end of the file throws an IOException exception, and any
attempt to read fails and throws a NotSupportException exception.

Source: http://msdn.microsoft.com/en-us/library/system.io.filemode.aspx

A FileMode parameter is specified in many of the constructors for FileStream,
IsolatedStorageFileStream, and in the Open methods of File and FileInfo to control how a file is
opened. FileMode parameters control whether a file is overwritten, created, opened, or some
combination thereof. Use Open to open an existing file. To append to a file, use Append. To
truncate a file or create a file if it doesn’t exist, use Create.

Example: The following FileStream constructor opens an existing file (FileMode.Open).
Dim s2 As New FileStream(name, FileMode.Open, FileAccess.Read, FileShare.Read)

FileShare

FileShare enumerators have the following members:

� Inheritable: It allows a file handle to pass inheritance to the child processes

� None: It declines sharing of the current file

LOVELY PROFESSIONAL UNIVERSITY 209

Unit 12: File Input/Output

Notes� Read: It allows opening the file for reading

� ReadWrite: It allows opening the file for reading and writing

� Write: It allows opening the file for writing

A typical use of this enumeration is to define whether two processes can simultaneously read
from the same file. For example, if a file is opened and Read is specified, other users can open the
file for reading but not for writing. A FileShare parameter is specified in some of the constructors
for FileStream, IsolatedStorageFileStream, and in some of the Open methods of File and FileInfo
to control how a file is opened.

Example: The following FileStream constructor opens an existing file and grants read-
only access to other users (Read).

Dim s2 As New FileStream(name, FileMode.Open, FileAccess.Read, FileShare.Read)

12.1.4 Basic File Class Operations

Some of the operations possible with files in VB.NET are discussed below.

How to Create a File

The File class can be used to create a new file. To support this operation, the File class is equipped
with the Create() method that is overloaded with two versions as follows:

Public Shared Function Create(path As String) As FileStream

Public Shared Function Create(path As String, bufferSize As Integer) As

FileStream

In both cases, the File.Create() method returns a Stream value, which is a FileStream value. As
the File.Create() method indicates, it takes the name or path of the file as argument. If you know
or want to specify the size, in bytes, of the file, you can use the second version.

To provide the same operation of creating a file, you can use the Open() method of the File class.
It is overloaded in three versions as follows:

Public Shared Function Open (_

path As String, _

mode As FileMode _

) As FileStream

Public Shared Function Open (_

path As String, _

mode As FileMode, _

access As FileAccess _

) As FileStream

Public Shared Function Open (_

path As String, _

mode As FileMode, _

access As FileAccess, _

share As FileShare _

) As FileStream

210 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes How to Copy a File

You can also copy a file that you’ve created. This time, we don’t need the StreamWriter or
StreamReader of System.IO. We need the File object:

System.IO.File

This just means “System.IO has an object called File. Use this File object”.

File has it’s own properties and methods you can use. One of these is Copy. Here’s some code
that makes a copy of our test file.

Dim FileToCopy As String

Dim NewCopy As String

FileToCopy = “C:\Users\Owner\Documents\test.txt”

NewCopy = “C:\Users\Owner\Documents\NewTest.txt”

If System.IO.File.Exists(FileToCopy) = True Then

System.IO.File.Copy(FileToCopy, NewCopy)

MsgBox(“File Copied”)

End If

The file we want to copy is called “test.txt”. We’ve put this inside of a string variable called
FileToCopy. The name of the new file we want to create, and its location, are assigned to a
variable called NewCopy.

Next, we have to check to see if the file we’re trying to copy exists. Only if it does should we go
ahead and copy it. You’ve met this code before. Inside of the If Statement, we have this:

System.IO.File.Copy(FileToCopy, NewCopy)

We use the Copy method of System.IO.File. In between the round brackets, you first type the
name of the file you want to copy. After a comma, you then type the name of the new file and its
new location.

How to Delete a File

Deleting a file is quite simple – but dangerous! So be very careful when you’re trying out this
code. Make sure the file you’re going to delete is not needed – you won’t be able to restore it
from the recycle bin!

To delete a file from your computer, you use the Delete method of System.IO.

Example:

Dim FileToDelete As String

FileToDelete = “C:\Users\Owner\Documents\testDelete.txt”

If System.IO.File.Exists(FileToDelete) = True Then

System.IO.File.Delete(FileToDelete)

MsgBox(“File Deleted”)

End If

First, we’ve set up a string variable called FileToDelete. We’ve then assigned the name of a file
to this variable - “C:\testDelete.txt”. (We created this file first, and made sure that it was safe to
junk it!)

Next, we test to see if the File Exists. In the IF Statement, we then had this:

System.IO.File.Delete(FileToDelete)

LOVELY PROFESSIONAL UNIVERSITY 211

Unit 12: File Input/Output

NotesAfter selecting the Delete method, you type the name of the file you want to get rid of. This goes
between a pair of round brackets.

Getting and Setting File Attributes and Access Information on Files

The System.IO namespaces contain types that support input and output, including the ability to
read and write data to streams either synchronously or asynchronously.

FileInfo Class Provides instance methods for the creation, copying, deletion, moving, and opening
of files. FileSystemInfo.Attributes property is used to gets or sets the attributes for the current
file or directory.

 _file.Attributes = IO.FileAttributes.ReadOnly

Example: The following vb.net program shows how to set read-only and hidden property
to a file.

Public Class Form1

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

Try

Dim _file As IO.FileInfo =

My.Computer.FileSystem.GetFileInfo(“c:\test.txt”)

_file.Attributes = IO.FileAttributes.ReadOnly

_file.Attributes = IO.FileAttributes.Hidden

Catch ex As System.IO.FileNotFoundException

MsgBox(ex.ToString())

End Try

End Sub

End Class

Moving Files Around

You move a file in a similar manner as you did to Copying a File – specify a source file and a new
destination for it. This time, we use the Move method of System.IO.File.

Example:

Dim FileToMove As String

Dim MoveLocation As String

FileToMove = “C:\Users\Owner\Documents\test.txt”

MoveLocation = “C:\Users\Owner\Documents\TestFolder\test.txt”

If System.IO.File.Exists(FileToMove) = True Then

System.IO.File.Move(FileToMove, MoveLocation)

MsgBox(“File Moved”)

End If

The above code assumes that you have created a folder on your hard drive called “TestFolder”:

MoveLocation = “C:\Users\Owner\Documents\TestFolder\test.txt”

The file called test.txt will then be moved inside of this new location. You can give it a new
name, if you want. In which case, just change the name of the file when you’re moving it:

MoveLocation =”C:\Users\Owner\Documents\TestFolder\NewName.txt”

212 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Again though, the thing to type in the round brackets of the method is first the Source file, then
the Destination.

System.IO.File.Move(FileToMove, MoveLocation)

Self Assessment

Fill in the blanks:

1. The Stream class is type of class.

2. class supports sequential and random access to files.

3. A is a collection of data stored in a disk with a specific name and a directory
pat.

4. The is basically the sequence of bytes passing through the communication
path.

5. Class provides static methods for the creation, copying, deletion, moving,
and opening of files, and aids in the creation of FileStream objects.

6. The Class performs operations on String instances that contain file or directory
path information.

12.2 Working with Directory

Using Directory class, we can create, delete, move, etc. operations in VB.NET. Because of the
static nature of Directory class, we do not have to instantiate the class. We can call the methods
in the class directly from the Directory class.

Table 12.4: Static Methods of Directory Class

Directory Class
(static methods)

DirectoryInfo Class Use

CreateDirectory Create Create a directory.

Delete Delete Delete a directory.

Exists Exists (property) Check whether a directory exists.
Note: The Directory class implements a method
Exists while the DirectoryInfo class implements
Exists as a property.

Move MoveTo Move a directory to the destination path.

GetDirectories GetDirectories Get subdirectories within a directory.

GetLogicalDrives Root (property) Get the root of a directory.
Note: DirectoryInfo class implements Root as a
property.

GetParent Parent (property) Get the parent directory.
Note: DirectoryInfo class implements Parent as a
property.

Source: http://www.dotnetheaven.com/article/directory-and-directoryinfo-classes-in-vb.net

Like the FileInfo class, the DirectoryInfo class also has a single constructor that takes either the
full path or relative path to the directory as the input parameter:
Dim d1 As New DirectoryInfo(“c:\temp”) //Make a directory object

LOVELY PROFESSIONAL UNIVERSITY 213

Unit 12: File Input/Output

NotesSome important properties of the DirectoryInfo class, such as CreationTime, Exists, FullName,
LastAccessTime, LastWriteTime, Name, Parent, and Root, work as their names suggest. For
example, CreationTime shows the creation time of the directory. FullName is the full qualified
path of the directory, while Name is just the relative folder name without the path (e.g., a
directory with the FullName of c:\My Project\test would have a Name of test).

FileInfo Class

The FileInfo class is derived from the FileSystemInfo class. It has properties and instance methods
for creating, copying, deleting, moving, and opening of files, and helps in the creation of
FileStream objects. This class cannot be inherited. Following are some commonly used properties
of the FileInfo class:

� Attributes: Gets the attributes for the current file.

� CreationTime: Gets the creation time of the current file.

� Directory: Gets an instance of the directory which the file belongs to.

� Exists: Gets a Boolean value indicating whether the file exists.

� Extension: Gets the string representing the file extension.

� FullName: Gets the full path of the file.

� LastAccessTime: Gets the time the current file was last accessed.

� LastWriteTime: Gets the time of the last written activity of the file.

� Length: Gets the size, in bytes, of the current file.

� Name: Gets the name of the file.

Following are some commonly used methods of the FileInfo class:

� Public Function AppendText As StreamWriter: Creates a StreamWriter that appends text
to the file represented by this instance of the FileInfo.

� Public Function Create As FileStream: Creates a file.

� Public Overrides Sub Delete: Deletes a file permanently.

� Public Sub MoveTo (destFileName As String): Moves a specified file to a new location,
providing the option to specify a new file name.

� Public Function Open (mode As FileMode) As FileStream: Opens a file in the specified
mode.

� Public Function Open (mode As FileMode, access As FileAccess) As FileStream: Opens a file
in the specified mode with read, write, or read/write access.

� Public Function Open (mode As FileMode, access As FileAccess, share As FileShare) As
FileStream: Opens a file in the specified mode with read, write, or read/write access and
the specified sharing option.

� Public Function OpenRead As FileStream: Creates a read-only FileStream.

� Public Function OpenWrite As FileStream: Creates a write-only FileStream.

DirectoryInfo

The DirectoryInfo class is derived from the FileSystemInfo class. It has various methods for
creating, moving, and browsing through directories and subdirectories. This class cannot be
inherited.

214 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Following are some commonly used properties of the DirectoryInfo class:

� Attributes: Gets the attributes for the current file or directory.

� CreationTime: Gets the creation time of the current file or directory.

� Exists: Gets a Boolean value indicating whether the directory exists.

� Extension: Gets the string representing the file extension.

� FullName: Gets the full path of the directory or file.

� LastAccessTime: Gets the time the current file or directory was last accessed.

� Name: Gets the name of this DirectoryInfo instance.

Following are some commonly used methods of the DirectoryInfo class:

� Public Sub Create: Creates a directory.

� Public Function CreateSubdirectory (path As String) As DirectoryInfo: Creates a
subdirectory or subdirectories on the specified path. The specified path can be relative to
this instance of the DirectoryInfo class.

� Public Overrides Sub Delete: Deletes this DirectoryInfo if it is empty.

� Public Function GetDirectories As DirectoryInfo() : Returns the subdirectories of the current
directory.

� Public Function GetFiles As FileInfo(): Returns a file list from the current directory.

12.2.1 Using the Classic File System Object

The File System Object (FSO) enables you to manipulate the files, folders and drives as well as
read and write to sequential files. Before using the FSO, you have to add the “Microsoft Scripting
Runtime Library” to the current project by selecting “Project”, “References” from the menu bar.
Alternatively you can use the CreateObject function to create the reference at run-time.

There are five types of File System Object:

1. File

2. Folder

3. Drive

4. TextStream

5. Random Access Files

The FileSystemObject is used to manipulate the files, folders and directories. The following is a
list of some of the methods available to the FileSystemObject.

File System Object Methods:

Table 12.5: FSO Methods

Method Description

CopyFile Used to copy an existing file.

CopyFolder Used to copy an existing folder.

CreateFolder Used to create a folder.

Contd...

LOVELY PROFESSIONAL UNIVERSITY 215

Unit 12: File Input/Output

NotesCreateTextFile Used to create a text file.

DeleteFile Used to delete a file.

DeleteFolder Used to delete a folder

DriveExists Used to determine whether a drive exists.

FileExists Used to determine whether a file exists.

FolderExists Used to determine whether a folder exists.

GetAbsolutePathName Used to return the full path name.

GetDrive Used to return a specified drive.

GetDriveName Used to return a specified drive name.

GetFile Used to return a specified file.

GetFileName Used to return the file name.

GetFolder Used to return a specified folder.

GetParentFolderName Used to return the name of the parent folder.

GetTempName Used to create and return a string representing a file name.

MoveFolder Used to move a folder.

OpenTextFile Used to open an existing text file.

Source: http://www.virtualsplat.com/tips/visual-basic-fso.asp

FSO Folder Object

The following uses some of the FSO Folder’s properties to display information about a folder.

Example:

Private Sub displayFolderInfo(ByVal folderName As String)

 Dim fso As New FileSystemObject

 Dim folderSpec As Folder

 Dim strInfo As String

 Set folderSpec = fso.GetFolder(folderName)

 strInfo = folderSpec.Name & vbCrLf

 strInfo = strInfo & “Created: “

 strInfo = strInfo & folderSpec.DateCreated & vbCrLf

 strInfo = strInfo & “Size: “

 strInfo = strInfo & folderSpec.Size

 MsgBox strInfo, vbInformation, “Folder Information”

 Set folderSpec = Nothing

End Sub

The Copy, CreateTextFile, Delete, and Move methods are available for the FSO Folder object.

FSO Drive Object

The following example iterates through the Drives collection and writes the drive name for each
drive found.

Example:
Dim fso As New FileSystemObject

Dim connectedDrives As drives, drv As Drive

Dim strInfo As String, driveName As String

216 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Set connectedDrives = fso.drives

On Error Resume Next

For Each drv In connectedDrives

 strInfo = strInfo & drv.DriveLetter & “: “

 ‘ Check if the drive is shared

 If drv.DriveType = 3 Then

 driveName = drv.ShareName

 Else

 driveName = drv.VolumeName

 End If

 strInfo = strInfo & driveName

 strInfo = strInfo & “ Free space: “ & drv.FreeSpace

 If drv.IsReady Then

 strInfo = strInfo & “ ready” & vbCrLf

 Else

 strInfo = strInfo & “ not ready” & vbCrLf

 End If

 Next drv

MsgBox strInfo, vbInformation, “Connected Drives”

Set connectedDrives = Nothing

Set fso = Nothing

FSO TextStream Object

The FSO TextStream object is used to read and write to sequential text files.

Random Access Files: VB.NET uses fixed length records in order to implement random access
files. Data may be inserted into the file without destroying any other data in the file. Data may
also be amended or deleted without having to rewrite the entire file, which is the case with
sequential files.

12.2.2 Notify Filters

It specifies changes to watch for in a file or folder. This enumeration has a FlagsAttribute
attribute that allows a bitwise combination of its member values.

Syntax:

<FlagsAttribute> _

Public Enumeration NotifyFilters

Members:

� FileName: The name of the file.

� DirectoryName: The name of the directory.

� Attributes: The attributes of the file or folder.

� Size: The size of the file or folder.

� LastWrite: The date the file or folder last had anything written to it.

� LastAccess: The date the file or folder was last opened.

� CreationTime: The time the file or folder was created.

� Security: The security settings of the file or folder.

LOVELY PROFESSIONAL UNIVERSITY 217

Unit 12: File Input/Output

NotesYou can combine the members of this enumeration to watch for more than one kind of change.
For example, you can watch for changes in the size of a file or folder, and for changes in security
settings. This raises an event anytime there is a change in size or security settings of a file or
folder.

Example: The following example creates a FileSystemWatcher to watch the directory
that is specified at runtime. The component is set to watch for any changes in LastWrite and
LastAccess time, the creation, deletion, or renaming of text files in the directory. If a file is
changed, created, or deleted, the path to the file prints to the console. When a file is renamed, the
old and new paths print to the console.

Imports System

Imports System.IO

Imports Microsoft.VisualBasic

Imports System.Security.Permissions

Public Class Watcher

 Public Shared Sub Main()

 Run()

 End Sub

 <PermissionSet(SecurityAction.Demand, Name:=”FullTrust”)> _

 Private Shared Sub Run

 Dim args() As String = System.Environment.GetCommandLineArgs()

 ‘ If a directory is not specified, exit the program.

 If args.Length <> 2 Then

 ‘ Display the proper way to call the program.

 Console.WriteLine(“Usage: Watcher.exe (directory)”)

 Return

 End If

 ‘ Create a new FileSystemWatcher and set its properties.

 Dim watcher As New FileSystemWatcher()

 watcher.Path = args(1)

 ‘ Watch for changes in LastAccess and LastWrite times, and

 ‘ the renaming of files or directories.

 watcher.NotifyFilter = (NotifyFilters.LastAccess Or

NotifyFilters.LastWrite Or NotifyFilters.FileName Or

NotifyFilters.DirectoryName)

 ‘ Only watch text files.

 watcher.Filter = “*.txt”

 ‘ Add event handlers.

 AddHandler watcher.Changed, AddressOf OnChanged

 AddHandler watcher.Created, AddressOf OnChanged

 AddHandler watcher.Deleted, AddressOf OnChanged

 AddHandler watcher.Renamed, AddressOf OnRenamed

218 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes ‘ Begin watching.

 watcher.EnableRaisingEvents = True

 ‘ Wait for the user to quit the program.

 Console.WriteLine(“Press ‘q’ to quit the sample.”)

 While Chr(Console.Read()) <> “q”c

 End While

 End Sub

 ‘ Define the event handlers.

 Private Shared Sub OnChanged(source As Object, e As FileSystemEventArgs)

 ‘ Specify what is done when a file is changed, created, or deleted.

 Console.WriteLine(“File: “ & e.FullPath & “ “ & e.ChangeType)

 End Sub

 Private Shared Sub OnRenamed(source As Object, e As RenamedEventArgs)

 ‘ Specify what is done when a file is renamed.

 Console.WriteLine(“File: {0} renamed to {1}”, e.OldFullPath,

e.FullPath)

 End Sub

End Class

12.2.3 Streams

Stream is a sequence of bytes, so the details of writing and reading data can be abstracted. For
example, you can write a generic piece of code that writes an XML document to a stream. Then
you can use that code in an application to write the XML document to several different types of
streams, such as an in-memory buffer, a file, or even a network connection. While a stream
object works at the byte level, it’s fortunate that programmers aren’t typically required to write
and read data on a byte-by-byte basis. Imagine how hard it would be to take the data associated
with a high-level document, such as an invoice, and transform it into a byte array. While that
sounds like a challenging task, it would be even more difficult to write the code to reassemble
the invoice from the byte array when it’s time to present this data to the user.

The .NET Framework Class Library includes several complementary pairs of reader and writer
objects that improve the usefulness and ease of use of streams. The Figure 12.1 illustrates the
typical relationship between writer objects, stream objects, and reader objects.

Figure 12.1: Reader and Writer Objects

Source: http://msdn.microsoft.com/en-us/magazine/cc163710.aspx

To write data into a stream in an efficient manner, create a writer object and initialize it so it is
associated with a target stream object. A writer object exposes high-level methods (such as
WriteLine) that allow you to think in terms of high-level data structures (such as strings) instead
of concerning yourself with the nitty-gritty details of actually writing bytes. Behind the scenes,
the writer object does the work of crunching the data into a byte array and writing it into the
target stream. When it’s time to retrieve the data, you simply call high-level methods on the

LOVELY PROFESSIONAL UNIVERSITY 219

Unit 12: File Input/Output

Notesreader object (for example, ReadLine). The reader object responds by fetching bytes from the
stream and reassembling the data back into its original form. Before looking at any code, let’s
discuss where stream objects come from. The .NET Framework Class Library contains a Stream
class in the System.IO namespace. The Stream class itself is an abstract class (a MustInherit class),
meaning it cannot be directly instantiated to create an object. Its sole purpose is to serve as a base
class for other Stream-derived classes. Actual stream objects must be instantiated from creatable
classes that inherit either directly or indirectly from the Stream class. A key point is that the
Stream class has been designed to provide a common implementation and a standard
programming contract for every stream object. The .NET Framework provides several concrete
implementations of the Stream class, a subset of which are shown in the Figure 12.2. As you can
see, each of these Stream classes inherits from the Stream class and extends it to provide a unique
implementation of a stream.

Figure 12.2: Inheriting from the Stream Class

Source: http://msdn.microsoft.com/en-us/magazine/cc163710.aspx

Example: You can use the MemoryStream class to create stream objects to store and
retrieve data from an in-memory buffer. You can use the FileStream class to create stream
objects to read or write data in a file on the local file system. You can also use stream objects
created from one of the network stream classes to read or write the body of a network message.

‘*** create memory stream object

Dim stream1 As Stream = New MemoryStream(4)

‘*** write data to stream

stream1.WriteByte(2)

stream1.WriteByte(4)

stream1.WriteByte(6)

stream1.WriteByte(8)

‘*** clear stream buffer (if it has one)

stream1.Flush()

‘*** read data from stream

220 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes stream1.Position = 0

Dim result As Integer

result = stream1.ReadByte()

Do While result <> -1

 Console.WriteLine(result)

 result = stream1.ReadByte()

Loop

‘*** close stream as soon as work is complete

stream1.Close()

12.2.4 FileStream

The System.IO namespace is contain file handling in visual basic with a class library that supports
string, character and file manipulation, these classes perform creating, copying, moving, and
deleting files operation’s with the help of properties, methods and events. Since both strings and
numeric data types are supported, they also allow us to incorporate data types in files. The most
commonly used classes are FileStream, BinaryReader, BinaryWriter, StreamReader and
StreamWriter.

Here we discuss about the FileStream Class.

Nine overloaded constructors help you gain finer control over the file states. The constructor
most commonly used, shown in below example, helps set the various access permissions and
creation states on the file through the use of the FileMode, FileAccess, and FileShare enumerations.

FileStream Constructor

Dim fs As New FileStream(“file.doc”, FileMode.Create, FileAccess.Write)

FileMode Enumeration

The FileMode enumeration helps you the set the mode in which you want to open the file. You
can use these modes to set your file up for appending or overwriting or initial creation, as
detailed in the Table 12.6.

Table 12.6: Enumeration FileMode

Enumeration Use

Append Opens a file, If it exists, and seeks to the end of file; if file does not exist,
creates a new file.

Create Creates a new file, overwriting the previous file, if it exists

CreateNew Creates a new file

Open Opens an existing file

OpenOrCreate Opens the file, if it exists, or creates a new one

Truncate Opens an existing file and truncates its size to zero bytes.

Source: http://www.dotnetheaven.com/article/filestream-in-vb.net

Note The Append mode can only be used when FileAccess.Write permission is set.

LOVELY PROFESSIONAL UNIVERSITY 221

Unit 12: File Input/Output

NotesFileAccess Enumeration

With the FileAccess enumerations described in Table 12.7, you can set the mode of access to a
file. It’s never good to authorize more access than needed-or less access than needed, for that
matter. Choose Read when you intend to read from a file and Write when you write to a file.
Remember, though, that if you specify Read access and later try to write to the file, an exception
will be raised. The same applies when you specify Write access and try to read the file later.

Table 12.7: Enumeration FileAccess

Enumeration Use

Read Allows you to only read from the file

ReadWrite Allows you to read and write to a file

Write Allows you to only write to a file

Source: http://www.dotnetheaven.com/article/filestream-in-vb.net

FileShare Enumeration

The FileShare enumeration, detailed in Table 12.8, is very important if you wish to share your
file with other processes. For example, suppose you have an XML file acting as a database file for
an ASP.NET application. If you don’t specify the FileAccess enumeration, only one user can read
from the XML database file at a time; other concurrent users encounter an error when accessing
the database because the FileShare.None enumeration is implemented by default.

Table 12.8: Enumeration FileShare

Enumeration Use

None Gains exclusive access to the file; no other process can access the file until
it is closed the reopened

Read Allows subsequent opening of the file but the read-only purpose

ReadWrite Allows subsequent opening of file for reading and writing

Write Allows subsequent opening of file for write-only purposes

Source: http://www.dotnetheaven.com/article/filestream-in-vb.net

The short example given below demonstrates how you can work with the FileStream class.

Drag a Button and a RichTextBox control onto the form. Use the following code:

Example:

 Imports System.IO

 Imports System.Windows.Forms.Form

 Public Class Form1

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal

e As System.EventArgs) Handles MyBase.Load

 End Sub

 Private Sub Button1_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles Button1.Click

 Dim FileS As New FileStream(“file.doc”, FileMode.Create,

FileAccess.Write)

 ‘declaring a FileStream and creating a document file

222 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes named file with

 ‘access mode of writing

 Dim a As New StreamWriter(FileS)

 ‘creating a new StreamWriter and passing the filestream

object fs as argument

 a.WriteLine(“This is an example of FileStream in VB

.NET.”)

 ‘writing text to the newly created file

 a.Close()

 ‘closing the file

 FileS = New FileStream(“file.doc”, FileMode.Open,

FileAccess.Read)

 ‘declaring a FileStream to open the file named file.doc

with access mode of reading

 Dim i As New StreamReader(FileS)

 ‘creating a new StreamReader and passing the filestream

object fs as argument

 i.BaseStream.Seek(0, SeekOrigin.Begin)

 ‘Seek method is used to move the cursor to different

positions in a file, in this code, to

 ‘the beginning

 While i.Peek() > -1

 ‘peek method of StreamReader object tells how much

more data is left in the file

 RichTextBox1.Text &= i.ReadLine()

 ‘displaying text from doc file in the RichTextBox

 End While

 i.Close()

 End Sub

 End Class

Output:

Figure 12.3: Output of the Code Above

Source: http://www.dotnetheaven.com/article/filestream-in-vb.net

12.2.5 BufferedStream

The BufferedStream class also extends the Stream class. Buffers, or cached blocks of data in
memory, provide speed and stability to the process of reading or writing because they prevent

LOVELY PROFESSIONAL UNIVERSITY 223

Unit 12: File Input/Output

Notesnumerous calls to the operating system. Buffered streams are used in conjunction with other
streams to provide better read/write performance. The BufferedStream class can be used to
either read data or write data but it cannot be used to perform both read and write operations
together. The class has been optimized so that it maintains a suitable buffer at all times. When a
buffer is not required, instead of slowing down the process, the class does not allocate any space
in memory. File streams are already buffered and therefore a buffered stream is generally used
to buffer network streams used in networking applications.

12.2.6 NetworkStream

The NetworkStream class provides methods for sending and receiving data over Stream sockets
in blocking mode. You can use the NetworkStream class for both synchronous and asynchronous
data transfer. To create a NetworkStream, you must provide a connected Socket. You can also
specify what FileAccess permission the NetworkStream has over the provided Socket. By default,
closing the NetworkStream does not close the provided Socket. If you want the NetworkStream
to have permission to close the provided Socket, you must specify true for the value of the owns
Socket parameter. Use the Write and Read methods for simple single thread synchronous blocking
I/O. If you want to process your I/O using separate threads, consider using the BeginWrite and
EndWrite methods, or the BeginRead and EndRead methods for communication.

The NetworkStream does not support random access to the network data stream. The value of
the CanSeek property, which indicates whether the stream supports seeking, is always false;
reading the Position property, reading the Length property, or calling the Seek method will
throw a NotSupportedException.Read and write operations can be performed simultaneously
on an instance of the NetworkStream class without the need for synchronization. As long as
there is one unique thread for the write operations and one unique thread for the read operations,
there will be no cross-interference between read and write threads and no synchronization is
required.

12.2.7 CryptoStream

The common language runtime uses a stream-oriented design for cryptography. The core of this
design is CryptoStream. Any cryptographic objects that implement CryptoStream can be chained
together with any objects that implement Stream, so the streamed output from one object can be
fed into the input of another object. The intermediate result (the output from the first object)
does not need to be stored separately.

12.2.8 MemoryStream

A Memory Stream is created from an array of unsigned bytes rather than from a file or other
stream. Memory streams are used as temporary, in-memory storage (temporary buffers) in lieu
of creating temporary files. This stream is highly optimized for speed since the data is stored in
memory and the processor can easily access it. Memory streams should be used to store frequently
accessed data. The Read and Write methods of the MemoryStream class read and write from an
internal buffer that is created when the memory stream is created.

12.2.9 Readers and Writers

To be able to open a file and read the data from a storage unit of a computer, such as a hard drive
and able to save the data into the storage unit are important functions of a computer program.
In fact, the ability to store, retrieve and modify data makes a computer a powerful tool in
database management.

224 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Reading a Text File: Using text file is an easy way to manage data, although it is not as sophisticated
as full fledged database management software such as SQL Server, Microsoft Access and Oracle.
VB.NET allows the user to create a text file, save the text file as well as read the text file.

Reading and writing to a text file in VB2008 required the use of the StreamReader class and the
StreamWriter class respectively. StreamReader is a tool that enables the streaming of data by
moving it from one location to another so that it can be read by the user. For example, it allows
the user to read a text file that is stored in a hard drive. On the other hand, the StreamWriter class
is a tool that can write data input by the use to a storage device such as the hard drive. In order
to read a file from the hard disk or any storage device, we need to use the StreamReader class. To
achieve that, first of all we need to include the following statement in the program code:

Imports System.IO

This line has to precede the whole program code as it is higher in hierarchy than the StreamReader
Class. In Fact, this is the concept of object oriented programming where StreamReader is part of
the namespace System.IO . It has to be put on top of the whole program (i.e. above the Public
Class Form 1 statement). The word import means we import the namesapce System.IO into the
program. Once we have done that , we can declare a variable of the streamReader data type with
the following statement:

Dim FileReader As StreamReader

If we don’t include the Imports System.IO, we have to use the statement

Dim FileReader As IO.StreamReader

Each time we want to use the StreamReader class.

Now, start a new project and name it in whatever name you wish. Now, insert the OpenFileDialog
control into the form because we will use it to read the file from the storage device. The default
name of the OpenFileDialog control is OpenFileDialog1, you can use this name or you can
rename it with a more meaningful name. The OpenFileDialog control will return a DialogResult
value which can determine whether the user clicks the OK button or Cancel button . We will also
insert a command button and change its displayed text to ‘Open’. It will be used by the user to
open and read a certain text file. The following statement will accomplish the task above.

Example:

Dim results As DialogResult

results = OpenFileDialog1.ShowDialog

If results = DialogResult.OK Then

‘Code to be executed if OK button was clicked

Else

‘Code to be executed if Cancel button was clicked

End If

End Sub

Next, we insert a textbox and set its Multiline property to true. It is used for displaying the text
from a text file. In order to read the text file, we need to create a new instant of the streamReader
and connect it to a text file with the following statement:

FileReader = New StreamReader(OpenFileDialog1.FileName)

In addition, we need to use the ReadToEnd method to read the entire text of a text file. The syntax
is:

 TextBox1.Text = FileReader.ReadToEnd()

LOVELY PROFESSIONAL UNIVERSITY 225

Unit 12: File Input/Output

Notes

Example:

Lastly, we need to close the file by using the Close() method. The entire code is shown in the box
below:

Imports System.IO

Public Class Form1

Private Sub BtnOpen_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles BtnOpen.Click

Dim FileReader As StreamReader

Dim results As DialogResult

results = OpenFileDialog1.ShowDialog

If results = DialogResult.OK Then

FileReader = New StreamReader(OpenFileDialog1.FileName)

TextBox1.Text = FileReader.ReadToEnd()

FileReader.Close()

End If

End Sub

Writing a text file: It means storing the text entered by the user via a textbox into a storage
device such as a hard drive. It also means saving the file. To accomplish this task, we need to
deploy the StreamWriter Class. You also need to insert the SaveFileDialog control into the form
as it is used to save the data into the storage unit like a hard drive. The default bame for the
SaveFileDialog control is SaveFileDialog1. The Code is basically the same as the code for reading
the file, you just change the StreamReader to StreamWriter, and the method from ReadToEnd to
Write.

Example:

Imports System.IO

Public Class Form1

Private Sub BtnSave_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs)

Dim FileWriter As StreamWriter

Dim results As DialogResult

results = SaveFileDialog1.ShowDialog

If results = DialogResult.OK Then

FileWriter = New StreamWriter(SaveFileDialog1.FileName, False)

FileWriter.Write(TextBox1.Text)

FileWriter.Close()

End If

End Sub

Self Assessment

True or False:

7. Directory class needs to be instantiated to be used.

8. DirectoryInfo class also has multiple constructors.

9. The FileInfo class is derived from the FileSystemInfo class.

10. The FileInfo class can be inherited.

226 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes 11. VB.NET uses variable length records in order to implement random access files.

12. Notify Filters specifies changes to watch for in a file or folder.

12.3 System.IO Operations

The System.IO Namespace is one of the greatest time-savers in the .NET Framework. Not only
is it a big time-saver, but it removes a lot of the nitty-gritty “bit-fiddling” involved with
working with files, filenames, paths, etc.

To parse paths, filenames, and extensions in any version of VB prior to the advent of the .NET
Framework was always a pain. Not only was it time-consuming, but it was fraught with errors.
Dim TestPath As String

 Dim nPos As Integer

 Dim sFileName As String

 Dim sFullPath As String

 Dim sExt As String

 TestPath = “C:\TESTPATH\TESTPATH2\FILENAME.TXT”

Example:

Here we extract only the path from a string which includes a path and a filename.
sFullPath = Path.GetDirectoryName(TestPath)

MsgBox(sFullPath)

Next, let us retrieve just the file extension from a path and filename.
sExt = Path.GetExtension(TestPath)

MsgBox(sExt)

Now, let us get the filename only from the path and filename.
 sFileName = Path.GetFileNameWithoutExtension(TestPath)

 MsgBox(sFileName)

To get the root directory from a path, then
 sRoot = Mid(TestPath, 1, InStr(TestPath, “\”))

 MsgBox(sRoot)

 ‘ get the root directory

sRoot = Path.GetPathRoot(TestPath)

MsgBox(sRoot)

�
Case Study IO Virtualisation Technology Overview

The Atlantis Approach to IO Virtualisation

Atlantis ILIO is an IO virtualisation technology for VDI that front ends a traditional SAN/
NAS storage system to enable high performance IO, storage optimization/consolidation
and virtual desktop image composition.

Extracting IO State and Creating Flocks™

Flocks (File and Block IO) are Atlantis Computing patent pending format of virtualised
data storage that merges file and block data into a component. Flocks are block devices

Contd...

LOVELY PROFESSIONAL UNIVERSITY 227

Unit 12: File Input/Output

Noteswith semantic knowledge of their contents. Flocks are aggregated and composited to
form dynamic volumes that host NTFS and Unix filesystems. The benefit of storing data in
flocks is that a common set of OS and application components can be used to create
desktops and servers that are fully customisable (including allowing users to install
applications) yet allow the underlying common OS and applications to be centrally changed
(without the limitations suffered by traditional block based Copy on Write approaches
like linked clones) or resource intensive instance-based file system based copy on write
and kernel installed read write redirection approaches which do not guarantee application
compatibility.

Real Time In-line De-duplication of Storage Objects

Traditional de-duplication is applied to a volume after duplicated data has been committed
to it. Traditional de-duplication processes a volume by calculating a unique check sum for
each block of data based on its contents and then sharing references to a single block
wherever blocks have the same checksum. De-duplication has been used with virtualisation
as a means to reduce the physical storage requirements for virtual machine images where
the image content is highly repetitious. ILIO real time de-duplication works by marking
and identifying duplicate objects as they are virtualised into flocks before data is committed
to the storage volume. As a result the de-duplication process is more efficient and processes
data in real time rather than as a post process. In practice this means that if two users on a
VDI desktop pool install the same application, only one physical copy of the application
is stored.

Using a Single Common Image of Operating System and Applications

ILIO allows the use of a single common physical copy of an operating system or application
to be used across all virtual desktops instances. In practice this means that in a 10,000
instance Virtual Desktop implementation, there is just one copy of the OS and applications
and all the 10,000 instances share the same base image. This typically results in a 20x
storage reduction.

Caching Frequently Used IO’s and Offloading the Backend SAN/NAS

Latency between SAN/NAS storage and VDI servers is a critical parameter in determining
overall performance for a VDI deployment. As discussed previously, VDI is IO intensive
and needs low latencies coupled with large throughput to work well. On loaded SAN/
NAS systems latencies increase into the 10s of milliseconds and this can have negative
consequences on user experience in the case of virtual desktops. ILIO allows frequently
accessed and common IO to be cached close to the server. This serves two important
purposes:

SAN/NAS Offload

ILIO can offload up to 95% of the IO on homogenous image deployment (as is the case with
VDI where most OS and application components are shared). This means that a SAN/NAS
system is no longer overwhelmed by many desktops making IO requests.

IO Acceleration

Atlantis ILIO allows important classes of IO such as Operating system virtual memory
page files and application swap files to be served from cache thus dramatically improving
the performance of IO intensive virtual workloads like virtual desktops.

Questions

1. Study and analyse the case.

2. Write down the case facts.

3. What do you infer from it?

Source: http://www.atlantiscomputing.com/technology/io-virtualization-overview/

228 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Self Assessment

Fill in the blanks:

13. To get the file extension from a path and filename we use the method.

14. To get the filename only from the path and filename we use the method.

15. To get the root directory use the method.

12.4 Summary

� The Stream class is abstract; you can’t declare a new instance of type Stream in your code.

� There are five classes in the .NET Framework that derive from the Stream class. These
are:FileStream, MemoryStream, NetworkStream Namespace, CryptoStream and
BufferedStream.

� A file is a collection of data stored in a disk with a specific name and a directory path.

� The stream is basically the sequence of bytes passing through the communication path.

� The File Class provides static methods for the creation, copying, deletion, moving, and
opening of files, and aids in the creation of FileStream objects.

� The Path Class performs operations on String instances that contain file or directory path
information.

� DirectoryInfo class also has a single constructor that takes either the full path or relative
path to the directory as the input parameter.

� The FileInfo class is derived from the FileSystemInfo class and it cant be inherited.

� The File System Object (FSO) enables you to manipulate the files, folders and drives as
well as read and write to sequential files.

� VB.NET uses fixed length records in order to implement random access files.

� Notify Filters specifies changes to watch for in a file or folder.

12.5 Keywords

BufferedStream: Supports buffered access to stream that do not support buffering on their own.

CryptoStream: Supports data encryption and decryption.

File: It is a collection of data stored in a disk with a specific name and a directory pat.

File Class: It provides static methods for the creation, copying, deletion, moving, and opening of
files, and aids in the creation of FileStream objects.

FileStream: Supports sequential and random access to files.

MemoryStream: Supports sequential and random access to memory buffers.

NetworkStream: Supports sequential access to Internet resources.

Stream: It is basically the sequence of bytes passing through the communication path.

12.6 Review Questions

1. Differentiate between a file and directory.

2. What is a stream?

3. Explain the two types of stream.

LOVELY PROFESSIONAL UNIVERSITY 229

Unit 12: File Input/Output

Notes4. What is the File Class?

5. Write a short note on the Basic File Class Operations.

6. What is a File System Object?

7. Explain Notify Filters with suitable examples.

8. Write a small note on the different types of streams.

9. Give the code to read and write in a text file.

10. Write a note on System.IO namespace.

Answers: Self Assessment

1. Absract 2. FileStream

3. File 4. Stream

5. File 6. Path

7. False 8. False

9. True 10. False

11. False 12. True

13. GetExtension 14. GetFileNameWithoutExtension

15. GetPathRoot

12.7 Further Readings

Books Building Distributed Applications with Visual Basic.NET, Dan Fox, Sams.

Object-oriented Programming with Visual Basic.Net, Hamilton.

Programming Visual Basic .NET, J. Liberty.

VB .NET Language in a Nutshell, Steven Roman, Ron Petrusha, Paul Lomax.

Online links http://www.java2s.com/Tutorial/VB/0240__StreamFile/
FileCreationLastWriteandLastAccesstime.htm

http://www.devx.com/dotnet/Article/6971/0/page/2

http://www.techrepublic.com/article/working-with-net-files-via-the-path-
class/6178071

http://www.yevol.com/en/vb/applicationdesign/Lesson38.htm

230 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Unit 13: ADO.NET

CONTENTS

Objectives

Introduction

13.1 Accessing Database with ADO.NET

13.1.1 To Create the Database in MS Access

13.1.2 Display the Database Records

13.1.3 To Configure the Database

13.1.4 To Create the DataGrid Edit Column

13.1.5 DataGrid Operations

13.1.6 To Add a Record to the DataGrid

13.1.7 Edit and Update Records

13.1.8 Delete Data in Gridview

13.2 Executing Insertion

13.2.1 Inserting Data Using ADO.NET

13.3 Executing Deletion

13.3.1 Deleting Data Using ADO.NET

13.4 Executing Updation

13.4.1 Updating Data Using ADO.NET

13.5 Select Command with Databases

13.6 Summary

13.7 Keywords

13.8 Review Questions

13.9 Further Readings

Objectives

After studying this unit, you will be able to:

� Explain database access using ADO.NET

� Understand insertion process

� Elaborate the execution, deletion and updation of data

� Discuss the select command with databases

Introduction

ADO.NET provides consistent access to data sources such as Microsoft SQL Server, as well as data
sources exposed through OLE DB and XML. Data-sharing consumer applications can use ADO.NET

Kumar Vishal, Lovely Professional University

LOVELY PROFESSIONAL UNIVERSITY 231

Unit 13: ADO.NET

Notesto connect to these data sources and retrieve, manipulate, and update data. ADO.NET cleanly
factors data access from data manipulation into discrete components that can be used separately
or in tandem. ADO.NET includes .NET Framework data providers for connecting to a database,
executing commands, and retrieving results. Those results are either processed directly, or
placed in an ADO.NET DataSet object in order to be exposed to the user in an ad-hoc manner,
combined with data from multiple sources, or remoted between tiers. The ADO.NET DataSet
object can also be used independently of a .NET Framework data provider to manage data local
to the application or sourced from XML. The ADO.NET classes are found in System.Data.dll, and
are integrated with the XML classes found in System.Xml.dll. When compiling code that uses the
System.Data namespace, reference both System.Data.dll and System.Xml.dll. ADO.NET provides
functionality to developers writing managed code similar to the functionality provided to
native COM developers by ADO.

Figure 13.1: ADO.NET Object Model

Source: http://www.codeproject.com/Articles/8477/Using-ADO-NET-for-beginners

13.1 Accessing Database with ADO.NET

ADO.NET is the new database technology of the .NET (Dot Net) platform, and it builds on
Microsoft ActiveX Data Objects (ADO).ADO is a language-neutral object model that is the
keystone of Microsoft’s Universal Data Access strategy.ADO.NET is an integral part of the .NET
Compact Framework, providing access to relational data, XML documents, and application
data. ADO.NET supports a variety of development needs. You can create database-client
applications and middle-tier business objects used by applications, tools, languages or Internet
browsers. ADO.NET defines DataSet and DataTable objects which are optimized for moving
disconnected sets of data across intranets and Internets, including through firewalls. It also
includes the traditional Connection and Command objects, as well as an object called a DataReader
that resembles a forward-only, read-only ADO recordset. If you create a new application, your
application requires some form of data access most of the time. ADO.NET provides data access
services in the Microsoft .NET platform.

You can use ADO.NET to access data by using the new .NET Framework data providers which
are:

� Data Provider for SQL Server (System.Data.SqlClient).

� Data Provider for OLEDB (System.Data.OleDb).

232 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes � Data Provider for ODBC (System.Data.Odbc).

� Data Provider for Oracle (System.Data.OracleClient).

ADO.NET is a set of classes that expose data access services to the .NET developer. The ADO.NET
classes are found in System.Data.dll and are integrated with the XML classes in System.Xml.dll.

There are two central components of ADO.NET classes: the DataSet, and the .NET Framework
Data Provider.

Data Provider is a set of components including:

� Connection object (SqlConnection, OleDbConnection, OdbcConnection, OracleConnection)

� Command object (SqlCommand, OleDbCommand, OdbcCommand, OracleCommand)

� DataReader object (SqlDataReader, OleDbDataReader, OdbcDataReader, OracleDataReader)

� DataAdapter object (SqlDataAdapter, OleDbDataAdapter, OdbcDataAdapter,
OracleDataAdapter).

DataSet object represents a disconnected cache of data which is made up of DataTables and
DataRelations that represent the result of the command.

13.1.1 To Create the Database in MS Access

Follow the steps below to create a database in MS Access.

1. You may notice that, whenever you start Microsoft Access, you will see the screen and you
can simply select “Blank Database”.

2. If you already have Access open, you can go to the “File” menu and click on “New
Database”

3. Choose “Blank Database”. (Skip this step if you already chose “Blank Database” at step
one). You also have the ability to choose from a template, but we’ll just use a blank
database.

4. Choose a location to save the database.

5. Once you’ve completed the above tasks, you should see a blank database.

6. We know this database is blank because it doesn’t have any tables. If it did, you would see
these tables in the middle pane of the table tab. Now that we have our blank database, we
can start adding some tables.

13.1.2 Display the Database Records

OLE DB is a specification for wrapping data sources in a COM-based API so that data sources can
be accessed in a polymorphic way. The concept is the same as ADO.NET’s concept of managed
providers. OLE DB predates ADO.NET and will eventually be superseded by it. However, over
the years, OLE DB providers have been written for many data sources, including Oracle, Microsoft
Access, Microsoft Exchange, and others, whereas currently only one product–SQL Server–is
natively supported by an ADO.NET managed provider. To provide immediate support in
ADO.NET for a wide range of data sources, Microsoft has supplied an ADO.NET managed
provider for OLE DB. That means that ADO.NET can work with any data source for which there
is an OLE DB data provider. Furthermore, because there is an OLE DB provider that wraps ODBC
(an even older data-access technology), ADO.NET can work with virtually all legacy data,
regardless of the source.

LOVELY PROFESSIONAL UNIVERSITY 233

Unit 13: ADO.NET

NotesConnecting to an OLE DB data source is similar to connecting to SQL Server, with a few differences:
the OleDbConnection class (from the System.Data.OleDb namespace) is used instead of the
SqlConnection class, and the connection string is slightly different. When using the
OleDbConnection class, the connection string must specify the OLE DB provider that is to be
used as well as additional information that tells the OLE DB provider where the actual data is.
For example, the following code opens a connection to the Northwind sample database in
Microsoft Access:

‘ Open a connection to the database.

Dim strConnection As String = _

 “Provider=Microsoft.Jet.OLEDB.4.0;Data Source=” _

 & “C:\Program Files\Microsoft Office\Office\Samples\Northwind.mdb”

Dim cn As OleDbConnection = New OleDbConnection(strConnection)

cn.Open()

Similarly, this code opens a connection to an Oracle database:

‘ Open a connection to the database.

Dim strConnection As String = _

 “Provider=MSDAORA.1;User ID=MyID;Password=MyPassword;” _

 & “Data Source=MyDatabaseService.MyDomain.com”

Dim cn As OleDbConnection = New OleDbConnection(strConnection)

cn.Open()

The values of each setting in the connection string, and even the set of settings that are allowed
in the connection string, are dependent on the specific OLE DB provider being used. Refer to the
documentation for the specific OLE DB provider for more information.

Table 13.1 shows the provider names for several of the most common OLE DB providers.

Table 13.1: Common OLE DB Provider Names

Data source OLE DB provider name

Microsoft Access Microsoft.Jet.OLEDB.4.0

Microsoft Indexing Service MSIDXS.1

Microsoft SQL Server SQLOLEDB.1

Oracle MSDAORA.1

Source: http://oreilly.com/catalog/progvbdotnet/chapter/ch08.html

The DataSet class is ADO.NET’s highly flexible, general-purpose mechanism for reading and
updating data. Example below shows how to issue a SQL SELECT statement against the SQL
Server Northwind sample database to retrieve and display the names of companies located in
London.

Example: Retrieving data from SQL Server using a SQL SELECT statement

‘ Open a connection to the database.

Dim strConnection As String = _

 “Data Source=localhost; Initial Catalog=Northwind;” _

 & “Integrated Security=True”

Dim cn As SqlConnection = New SqlConnection(strConnection)

cn.Open()

‘ Set up a data set command object.

234 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Dim strSelect As String = “SELECT * FROM Customers WHERE City = ‘London’”

Dim dscmd As New SqlDataAdapter(strSelect, cn)

‘ Load a data set.

Dim ds As New DataSet()

dscmd.Fill(ds, “LondonCustomers”)

‘ Close the connection.

cn.Close()

‘ Do something with the data set.

Dim dt As DataTable = ds.Tables.Item(“LondonCustomers”)

Dim rowCustomer As DataRow

For Each rowCustomer In dt.Rows

 Console.WriteLine(rowCustomer.Item(“CompanyName”))

Next

The code above performs the following steps to obtain data from the database:

1. Opens a connection to the database using a SqlConnection object.

2. Instantiates an object of type SqlDataAdapter in preparation for filling a DataSet object. A
SQL SELECT command string and a Connection object are passed to the SqlDataAdapter
object’s constructor.

3. Instantiates an object of type DataSet and fills it by calling the SqlDataAdapter object’s Fill
method.

Figure 13.2: Output of the Code Above

Source: http://oreilly.com/catalog/progvbdotnet/chapter/ch08.html

13.1.3 To Configure the Database

To get started running the ‘unit test’ you should configure the database connection string. The
listing in DataQuickStart.GenericTemplate.ExampleTests.xml is shown below:

<objects xmlns=”http://www.springframework.net”

 xmlns:db=”http://www.springframework.net/database”>

 <db:provider id=”dbProvider”

 provider=”SqlServer-1.1"
 connectionString=”Data

Source=(local);Database=Northwind;User
ID=springqa;Password=springqa;Trusted_Connection=False”/>

 <! — other definitions not shown

</objects>

LOVELY PROFESSIONAL UNIVERSITY 235

Unit 13: ADO.NET

NotesYou should change the value of the provider element to correspond to you database and the
connection string as appropriate. Please refer to the documentation on the DbProvider abstraction
for details particular to your database configuration. You should also install the Northwind
database, which is available for SqlServer 2005 from this download location. The minimal
schema to support other database providers may be supported in the future.

13.1.4 To Create the DataGrid Edit Column

Websites often display thousands of data in a GridView in ASP.Net. Usually admin can view the
registered users on the website, but when an admin wants to edit or delete any fraud or duplicate
or damaged data from the table there is a method in GridView to edit, delete and update.

Source Code:

<%@ Page Language=”C#” AutoEventWireup=”true”

CodeFile=”Default.aspx.cs” Inherits=”_Default” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN” “http://

www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >

<head id=”Head1" runat=”server”>

 <title>Untitled Page</title>

 <style type=”text/css”>

.Gridview

{

font-family:Verdana;

font-size:10pt;

font-weight:normal;

color:black;

}

</style>

<script type=”text/javascript”>

</script>

</head>

<body>

 <form id=”form1" runat=”server”>

<div>

 <asp:GridView ID=”GridView1" runat=”server”

AutoGenerateColumns=”false” DataKeyNames=”id”

OnPageIndexChanging=”GridView1_PageIndexChanging”

OnRowCancelingEdit=”GridView1_RowCancelingEdit”

OnRowDeleting=”GridView1_RowDeleting”

OnRowEditing=”GridView1_RowEditing”

OnRowUpdating=”GridView1_RowUpdating”>

 <Columns>

 <asp:BoundField DataField=”id” HeaderText=”S.No.” />

 <asp:BoundField DataField=”name” HeaderText=”Name” />

 <asp:BoundField DataField=”address” HeaderText=”address” />

 <asp:BoundField DataField=”country” HeaderText=”Country” />

236 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes <asp:CommandField ShowEditButton=”true” />

 <asp:CommandField ShowDeleteButton=”true” />

 </Columns>

 </asp:GridView>

 </div>

<div>

<asp:Label ID=”lblresult” runat=”server”></asp:Label>

</div>

 </form>

</body>

</html>

Design:

The design part will look as in the following image:

Figure 13.3: Design View

S.No. Name Address Country

Databound Databound Databound Databound Edit Delete

Databound Databound Databound Databound Edit Delete

Databound Databound Databound Databound Edit Delete

Databound Databound Databound Databound Edit Delete

Databound Databound Databound Databound Edit Delete

Source: http://www.c-sharpcorner.com/UploadFile/9f0ae2/gridview-edit-delete-and-update-in-Asp-Net/

Code behind:

using System;

using System.Configuration;

using System.Data;

using System.Data.SqlClient;

using System.Drawing;

using System.Linq;

using System.Web;

using System.Web.Security;

using System.Web.UI;

using System.Web.UI.HtmlControls;

using System.Web.UI.WebControls;

using System.Web.UI.WebControls.WebParts;

using System.Xml.Linq;

public partial class _Default : System.Web.UI.Page

{

 private SqlConnection conn = new SqlConnection(“Data

Source=NEHASHAMA;Integrated Security=true;Initial Catalog=rp”);

 protected void Page_Load(object sender, EventArgs e)

 {

 if (!IsPostBack)

 {

 gvbind();

LOVELY PROFESSIONAL UNIVERSITY 237

Unit 13: ADO.NET

Notes }

 }

 protected void gvbind()

 {

 conn.Open();

 SqlCommand cmd = new SqlCommand(“Select * from detail”,

conn);

 SqlDataAdapter da = new SqlDataAdapter(cmd);

 DataSet ds = new DataSet();

 da.Fill(ds);

 conn.Close();

 if (ds.Tables[0].Rows.Count > 0)

 {

 GridView1.DataSource = ds;

 GridView1.DataBind();

 }

 else

 {

 ds.Tables[0].Rows.Add(ds.Tables[0].NewRow());

 GridView1.DataSource = ds;

 GridView1.DataBind();

 int columncount = GridView1.Rows[0].Cells.Count;

 GridView1.Rows[0].Cells.Clear();

 GridView1.Rows[0].Cells.Add(new TableCell());

 GridView1.Rows[0].Cells[0].ColumnSpan = columncount;

 GridView1.Rows[0].Cells[0].Text = “No Records Found”;

 }

 }

 protected void GridView1_RowDeleting(object sender,

GridViewDeleteEventArgs e)

 {

 GridViewRow row = (GridViewRow)GridView1.Rows[e.RowIndex];

 Label lbldeleteid = (Label)row.FindControl(“lblID”);

 conn.Open();

 SqlCommand cmd = new SqlCommand(“delete FROM detail where

id=’”+Convert.ToInt32(GridView1.DataKeys[e.RowIndex].Value.ToString())+”’”,

conn);

 cmd.ExecuteNonQuery();

 conn.Close();

 gvbind();

 }

 protected void GridView1_RowEditing(object sender,

GridViewEditEventArgs e)

 {

 GridView1.EditIndex = e.NewEditIndex;

 gvbind();

 }

 protected void GridView1_RowUpdating(object sender,

GridViewUpdateEventArgs e)

238 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes {

 int userid =

Convert.ToInt32(GridView1.DataKeys[e.RowIndex].Value.ToString());

 GridViewRow row = (GridViewRow)GridView1.Rows[e.RowIndex];

 Label lblID = (Label)row.FindControl(“lblID”);

 //TextBox txtname=(TextBox)gr.cell[].control[];

 TextBox textName = (TextBox)row.Cells[0].Controls[0];

 TextBox textadd = (TextBox)row.Cells[1].Controls[0];

 TextBox textc = (TextBox)row.Cells[2].Controls[0];

 //TextBox textadd = (TextBox)row.FindControl(“txtadd”);

 //TextBox textc = (TextBox)row.FindControl(“txtc”);

 GridView1.EditIndex = -1;

 conn.Open();

 //SqlCommand cmd = new SqlCommand(“SELECT * FROM detail”,

conn);

 SqlCommand cmd = new SqlCommand(“update detail set

name=’”+textName.Text+”’,address=’”+textadd.Text+”’,country=’”+textc.Text+”’where

id=’”+userid+”’”,conn);

 cmd.ExecuteNonQuery();

 conn.Close();

 gvbind();

 //GridView1.DataBind();

 }

 protected void GridView1_PageIndexChanging(object sender,

GridViewPageEventArgs e)

 {

 GridView1.PageIndex = e.NewPageIndex;

 gvbind();

 }

 protected void GridView1_RowCancelingEdit(object sender,

GridViewCancelEditEventArgs e)

 {

 GridView1.EditIndex = -1;

 gvbind();

 }

}

Save all or press “Ctrl+S” and hit “F5” to run the page, the page will look as in the following

image:

Figure 13.4: Design View

S.No. Name Address Country

1 1 fgdf Anneesfff Edit Delete

Source: http://www.c-sharpcorner.com/UploadFile/9f0ae2/gridview-edit-delete-and-update-in-Asp-Net/

Click on “Edit the GridView”, it will display Textboxes in each cell as in the following image:

Figure 13.5: Design View

S.No. Name Address Country

1 1 fgdf Anneesfff Update Candel

Source: http://www.c-sharpcorner.com/UploadFile/9f0ae2/gridview-edit-delete-and-update-in-Ap-Net/

LOVELY PROFESSIONAL UNIVERSITY 239

Unit 13: ADO.NET

NotesEdit the value(s) here and click on the Update link, it will update all the data or to remove it click
on the “Delete” link above the image shown.

Note One note will be helpful for you, while describing Columns in GridView if you are
using a boundfield then create objects of the control using cells[index] in the rowupdateing
event of GridView, but if you are using controls itself like Label or textboxes etc then use
Fincontrol(“stringid”).

13.1.5 DataGrid Operations

We explain various operations in the gridview using one example.

STEP 1: Creating a DataBase Table

Here we will use an existing database, say. SampleDB, which has Customers Table and basically
contains the following field columns:

CustomerID – PK

CompanyName

ContactName

ContactTitle

Address

Country

STEP 2: Setting Up the Connection String

 <connectionStrings>

 <add name=”DBConnection” connectionString=”Data

Source=.\SQLEXPRESS;AttachDbFilename=|DataDirectory|\SampleDB.mdf;Integrated

Security=True;User Instance=True” providerName=”System.Data.SqlClient”/>

 </connectionStrings>

STEP 3: Setting up the GUI

Just for the simplicity, we set up the GUI like this:

<html xmlns=”http://www.w3.org/1999/xhtml” >

<head runat=”server”>

 <title>GridView Data Manipulation</title>

</head>

<body>

 <form id=”form1" runat=”server”>

 <div>

 <table cellpadding=”0" cellspacing=”0">

 <tr>

 <td style=”width: 100px; height: 19px;”>

 Company ID</td>

 <td style=”width: 100px; height: 19px;”>

 Company</td>

 <td style=”width: 100px; height: 19px;”>

 Name</td>

240 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes <td style=”width: 100px; height: 19px;”>

 Title</td>

 <td style=”width: 100px; height: 19px;”>

 Address</td>

 <td style=”width: 100px; height: 19px;”>

 Country</td>

 </tr>

 <tr>

 <td style=”width: 100px”>

 <asp:TextBox ID=”TextBox1" runat=”server”/></td>

 <td style=”width: 100px”>

 <asp:TextBox ID=”TextBox2" runat=”server”/></td>

 <td style=”width: 100px”>

 <asp:TextBox ID=”TextBox3" runat=”server”/></td>

 <td style=”width: 100px”>

 <asp:TextBox ID=”TextBox4" runat=”server”/></td>

 <td style=”width: 100px”>

 <asp:TextBox ID=”TextBox5" runat=”server”/></td>

 <td style=”width: 100px”>

 <asp:TextBox ID=”TextBox6" runat=”server”/></td>

 <td style=”width: 100px”>

 <asp:Button ID=”Button1" runat=”server”

 Text=”Add New”

 OnClick=”Button1_Click” />

 </td>

 </tr>

 </table>

 <asp:GridView ID=”GridView1" runat=”server”

 AutoGenerateColumns=”false”

 ShowFooter=”true”>

 <Columns>

 <asp:BoundField DataField=”CustomerID”

 HeaderText=”ID” ReadOnly=”true”/>

 <asp:BoundField DataField=”CompanyName”

 HeaderText=”Company”/>

 <asp:BoundField DataField=”ContactName” HeaderText=”Name”/>

 <asp:BoundField DataField=”ContactTitle”

 HeaderText=”Title” />

 <asp:BoundField DataField=”Address” HeaderText=”Address”/>

 <asp:BoundField DataField=”Country” HeaderText=”Country”/>

 </Columns>

 </asp:GridView>

 </div>

 </form>

</body>

</html>

Note We have set the CustomerID field to ReadOnly so that the field cannot be edited.

LOVELY PROFESSIONAL UNIVERSITY 241

Unit 13: ADO.NET

NotesSTEP 4: Binding GridView with Data

The details about “Binding GridView with Data” are discussed in the previous example. Here
are the code blocks for binding the GridView.

public partial class _Default : System.Web.UI.Page

{

 protected void Page_Load(object sender, EventArgs e)

 {

 if (!IsPostBack)

 {

 BindGridView();

 }

 }

 private string GetConnectionString()

 {

 System.Configuration.ConfigurationManager.ConnectionStrings[“DBConnection”].

 ConnectionString;

 }

 #region Bind GridView

 private void BindGridView()

 {

 DataTable dt = new DataTable();

 SqlConnection connection = new SqlConnection(GetConnectionString());

 try

 {

 connection.Open();

 string sqlStatement = “SELECT Top(10)* FROM Customers”;

 SqlCommand cmd = new SqlCommand(sqlStatement, connection);

 SqlDataAdapter sqlDa = new SqlDataAdapter(cmd);

 sqlDa.Fill(dt);

 if (dt.Rows.Count > 0)

 {

 GridView1.DataSource = dt;

 GridView1.DataBind();

 }

 }

 catch (System.Data.SqlClient.SqlException ex)

 {

 string msg = “Fetch Error:”;

 msg += ex.Message;

 throw new Exception(msg);

 }

 finally

 {

 connection.Close();

 }

 }

 #endregion

}

242 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Now, we already know how to bind our GridView with data from database. So let’s proceed on
adding a new data in GridView.

13.1.6 To Add a Record to the DataGrid

As you have noticed in STEP 2, we have added six TextBox and a Button in the web form in order
for us to type the information there and Insert them to the database. Now let’s create a method
for executing the Update or Insert.

Here are the code blocks for our Insert and Update method in the code behind:

#region Insert New or Update Record

 private void UpdateOrAddNewRecord(string ID, string Company, string

Name, string Title, string Address, string Country, bool isUpdate)

 {

 SqlConnection connection = new SqlConnection(GetConnectionString());

 string sqlStatement = string.Empty;

 if (!isUpdate)

 {

 sqlStatement = “INSERT INTO Customers”+

“(CustomerID,CompanyName,ContactName,ContactTitle,Address,Country)” +

“VALUES

(@CustomerID,@CompanyName,@ContactName,@ContactTitle,@Address,@Country)”;

 }

 else

 {

 sqlStatement = “UPDATE Customers” +

 “SET CompanyName = @CompanyName,

 ContactName = @ContactName,” +

 “ContactTitle = @ContactTitle,Address =

 @Address,Country = @Country” +

 “WHERE CustomerID = @CustomerID,”;

 }

 try

 {

 connection.Open();

 SqlCommand cmd = new SqlCommand(sqlStatement, connection);

 cmd.Parameters.AddWithValue(“@CustomerID”, ID);

 cmd.Parameters.AddWithValue(“@CompanyName”, Company);

 cmd.Parameters.AddWithValue(“@ContactName”, Name);

 cmd.Parameters.AddWithValue(“@ContactTitle”, Title);

 cmd.Parameters.AddWithValue(“@Address”, Address);

 cmd.Parameters.AddWithValue(“@Country”, Country);

 cmd.CommandType = CommandType.Text;

 cmd.ExecuteNonQuery();

 }

 catch (System.Data.SqlClient.SqlException ex)

 {

 string msg = “Insert/Update Error:”;

 msg += ex.Message;

 throw new Exception(msg);

LOVELY PROFESSIONAL UNIVERSITY 243

Unit 13: ADO.NET

Notes }

 finally

 {

 connection.Close();

 }

 }

 #endregion

The UpdateOrAddNewRecord is a method that takes seven parameters. Six of those paramaters
basically comes from the TextBox values that were entered in the page. The last parameter is a
boolean value which tells the method whether to execute an Insert (false) or Update (true).
Default is true.

Here’s the code block for calling the method UpdateOrAddNewRecord on Button_Click event
and pass the corresponding parameters needed:
 protected void Button1_Click(object sender, EventArgs e)

 {

 UpdateOrAddNewRecord(TextBox1.Text, TextBox2.Text,

TextBox3.Text, TextBox4.Text, TextBox5.Text, TextBox6.Text, false);

 //Re Bind GridView to reflect changes made

 BindGridView();

 }

As you can see from above, We have called the BindGridView() method again in order to reflect
the changes made and display the new added data in the GridView. See output below:

Figure 13.6: Design View

Source: http://geekswithblogs.net/dotNETvinz/archive/2009/02/22/gridview-insert-edit-update-and-delete—the-ado.net-way.aspx

13.1.7 Edit and Update Records

One of the good things about GridView is that it provides a built-in CommandField Buttons
which allows us to perform certain actions like editing, updating, deleting and selecting of
GridView data.

244 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes To add those command fields mentioned in the GridView you can follow these few steps below:

1. Switch to Design View

2. Right Click on the GridView and Select —> Show Smart Tag —> Add New Columns

3. On the List Select CommandField

4. Check Delete and Edit/Update options then OK

As you can see the Edit and Delete CommandField are automatically added in the last column of
GridView. Now we can start to write our codes for editing and updating the information in the
GridView.

In-order to perform Edit and Update in GridView we need to use three events (GridView_
RowEditing, GridView_RowCancelingEdit , GridView_RowUpdating). For those who do not
know on how to generate Events in GridView you can follow the steps mentioned below:

1. Switch to Design View in Visual Studio Designer

2. Click on the GridView

3. Navigate to the GridView Property Pane and then SWITCH to Event Properties

4. From there you would be able to find the list of events including those three events
mentioned above

5. Double Click on that to generate the Event handler for you

6. Then write the codes there

 Here’s the code for each events:

protected void GridView1_RowEditing(object sender, GridViewEditEventArgs

e)

{

 GridView1.EditIndex = e.NewEditIndex; // turn to edit mode

 BindGridView(); // Rebind GridView to show the data in edit mode

}

protected void GridView1_RowCancelingEdit(object sender,

GridViewCancelEditEventArgs e)

{

 GridView1.EditIndex = -1; //switch back to default mode

 BindGridView(); // Rebind GridView to show the data in default

mode

}

protected void GridView1_RowUpdating(object sender,

GridViewUpdateEventArgs e)

{

 //Accessing Edited values from the GridView

 string id = GridView1.Rows[e.RowIndex].Cells[0].Text; //ID

 string company =

((TextBox)GridView1.Rows[e.RowIndex].Cells[1].Controls[0]).Text; //

Company

 string name =

((TextBox)GridView1.Rows[e.RowIndex].Cells[2].Controls[0]).Text; //Name

 string title =

LOVELY PROFESSIONAL UNIVERSITY 245

Unit 13: ADO.NET

Notes((TextBox)GridView1.Rows[e.RowIndex].Cells[3].Controls[0]).Text; //Title

 string address =

((TextBox)GridView1.Rows[e.RowIndex].Cells[4].Controls[0]).Text; //

Address

 string country =

((TextBox)GridView1.Rows[e.RowIndex].Cells[5].Controls[0]).Text; //

Country

 UpdateOrAddNewRecord(id,company,name,title,address,country,true);

// call update method

 GridView1.EditIndex = -1;

 BindGridView(); // Rebind GridView to reflect changes made

}

13.1.8 Delete Data in Gridview

Since we are using the Built-in Delete CommandField Button in GridView, we can use the
GridView_RowDeleting event to delete specific row in GridView.

Here’s the code block for the Delete method:

#region Delete Record

 private void DeleteRecord(string ID)

 {

 SqlConnection connection = new SqlConnection(GetConnectionString());

 string sqlStatement = “DELETE FROM Customers WHERE CustomerID =

@CustomerID”;

 try

 {

 connection.Open();

 SqlCommand cmd = new SqlCommand(sqlStatement, connection);

 cmd.Parameters.AddWithValue(“@CustomerID”, ID);

 cmd.CommandType = CommandType.Text;

 cmd.ExecuteNonQuery();

 }

 catch (System.Data.SqlClient.SqlException ex)

 {

 string msg = “Deletion Error:”;

 msg += ex.Message;

 throw new Exception(msg);

 }

 finally

 {

 connection.Close();

 }

 }

#endregion

Here’s the code block for calling the delete method at RowDeleting event

protected void GridView1_RowDeleting(object sender, GridViewDeleteEventArgs

e)

{

246 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes string id = GridView1.Rows[e.RowIndex].Cells[0].Text; get the id of the

selected row

 DeleteRecord(id);//call delete method

 BindGridView();//rebind grid to reflect changes made

}

Self Assessment

Fill in the blanks:

1. provides consistent access to data sources.

2. The ADO.NET object can also be used independently of a .NET Framework
data provider to manage data local to the application or sourced from XML.

3. ADO is a -neutral object model.

4. ADO.NET is a architecture.

5. that resembles a forward-only, read-only ADO recordset.

6. ADO.NET classes are found in

7. represent the result of the command.

13.2 Executing Insertion

We have already discussed data insertion through ADO.NET in the section above.

13.2.1 Inserting Data Using ADO.NET

SqlDataAdapter.InsertCommand Property is used to insert data using ADO.NET.

Syntax: Public Property InsertCommand As SqlCommand

During Update, if this property is not set and primary key information is present in the DataSet,
the InsertCommand can be generated automatically if you set the SelectCommand property and
use the SqlCommandBuilder. Then, any additional commands that you do not set are generated
by the SqlCommandBuilder. This generation logic requires key column information to be
present in the DataSet. When InsertCommand is assigned to a previously created SqlCommand,
the SqlCommand is not cloned. The InsertCommand maintains a reference to the previously
created SqlCommand object. If execution of this command returns rows, these rows can be
added to the DataSet depending on how you set the UpdatedRowSource property of the
SqlCommand object.

For every column that you propagate to the data source on Update, a parameter should be added
to InsertCommand, UpdateCommand, or DeleteCommand. The SourceColumn property of the
parameter should be set to the name of the column. This indicates that the value of the parameter
is not set manually, but is taken from the particular column in the currently processed row.

Example: The following example creates a SqlDataAdapter and sets the SelectCommand,
InsertCommand, UpdateCommand, and DeleteCommand properties. It assumes you have
already created a SqlConnection object.

Public Function CreateCustomerAdapter(_

 ByVal connection As SqlConnection) As SqlDataAdapter

LOVELY PROFESSIONAL UNIVERSITY 247

Unit 13: ADO.NET

Notes
 Dim adapter As SqlDataAdapter = New SqlDataAdapter()

 ‘ Create the SelectCommand.

 Dim command As SqlCommand = New SqlCommand(_

 “SELECT * FROM Customers “ & _

 “WHERE Country = @Country AND City = @City”, connection)

 ‘ Add the parameters for the SelectCommand.

 command.Parameters.Add(“@Country”, SqlDbType.NVarChar, 15)

 command.Parameters.Add(“@City”, SqlDbType.NVarChar, 15)

 adapter.SelectCommand = command

 ‘ Create the InsertCommand.

 command = New SqlCommand(_

 “INSERT INTO Customers (CustomerID, CompanyName) “ & _

 “VALUES (@CustomerID, @CompanyName)”, connection)

 ‘ Add the parameters for the InsertCommand.

 command.Parameters.Add(“@CustomerID”, SqlDbType.NChar, 5, “CustomerID”)

 command.Parameters.Add(“@CompanyName”, SqlDbType.NVarChar, 40,

“CompanyName”)

 adapter.InsertCommand = command

 ‘ Create the UpdateCommand.

 command = New SqlCommand(_

 “UPDATE Customers SET CustomerID = @CustomerID, CompanyName =

@CompanyName “ & _

 “WHERE CustomerID = @oldCustomerID”, connection)

 ‘ Add the parameters for the UpdateCommand.

 command.Parameters.Add(“@CustomerID”, SqlDbType.NChar, 5, “CustomerID”)

 command.Parameters.Add(“@CompanyName”, SqlDbType.NVarChar, 40,

“CompanyName”)

 Dim parameter As SqlParameter = command.Parameters.Add(_

 “@oldCustomerID”, SqlDbType.NChar, 5, “CustomerID”)

 parameter.SourceVersion = DataRowVersion.Original

 adapter.UpdateCommand = command

 ‘ Create the DeleteCommand.

 command = New SqlCommand(_

 “DELETE FROM Customers WHERE CustomerID = @CustomerID”, connection)

 ‘ Add the parameters for the DeleteCommand.

 command.Parameters.Add(_

 “@CustomerID”, SqlDbType.NChar, 5, “CustomerID”)

 parameter.SourceVersion = DataRowVersion.Original

 adapter.DeleteCommand = command

248 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Return adapter

End Function

Self Assessment

True or False:

8. InsertCommand can be generated automatically if you set the SelectCommand property
and use the SqlCommandBuilder.

9. When InsertCommand is assigned to a previously created SqlCommand, the SqlCommand
is cloned.

13.3 Executing Deletion

Deleting a data in database can be possible with using DELETE command.

13.3.1 Deleting Data Using ADO.NET

Here we see how to use ADO.NET to connect to a SQL Server database, count the records and
delete the records from the database. We create a table in SQL Server database which has the
name emp3 and using count statement to count the row and delete command delete the records
from table.

Creating Connection Object

To create a connection we pass the connection string as a parameter in connection object.

Dim str As String = “Data Source=.;uid=sa;pwd=123;database=master”

Dim con As New SqlConnection(str)

Count Rows in a Table

To count all the rows of the table we use the following statement.

select count(*) from emp3

Delete Command

The delete command is used to delete the record from database has the below command:

delete from emp3 where firstname=’rahul’ AND lastname=’kumar’

Now we create a database table and insert some values in this table. Table looks like this.

Figure 13.7: Database Table

Source: http://www.dotnetheaven.com/article/ado.net-delete-command-in-vb.net

LOVELY PROFESSIONAL UNIVERSITY 249

Unit 13: ADO.NET

Notes

Example:

The below example defines the count command and delete command.

Imports System.Data.SqlClient

Module Module1

 Sub Main()

 Dim str As String = “Data

Source=.;uid=sa;pwd=123;database=master”

 Dim con As New SqlConnection(str)

 Try

 con.Open()

 Dim com As New SqlCommand(“select count(*) from emp3”, con)

 Console.WriteLine(“Number of row in table:=” &

com.ExecuteScalar())

 com.CommandText = “delete from emp3 where firstname=’rahul’

AND lastname=’kumar’”

 Console.WriteLine(“Executing {0}”, com.CommandText)

 Console.WriteLine(“Number of rows affected in table : {0}”,

com.ExecuteNonQuery())

 con.Close()

 Catch ex As Exception

 Console.WriteLine(“can not delete record”)

 End Try

 End Sub

End Module

Output:

Figure 13.8: Output of the Code Above

Source: http://www.dotnetheaven.com/article/ado.net-delete-command-in-vb.net

Now open the database and test it.

Self Assessment

True or False:

10. Deleting a data in database can be possible with using DELETE command.

11. To create a connection we pass the command object as a parameter in connection object

250 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes 13.4 Executing Updation

The updation of data is done by UPDATE command.

13.4.1 Updating Data Using ADO.NET

We use the SqlDataAdapter.UpdateCommand Property to update data.

Syntax:

Public Property UpdateCommand As SqlCommand

During Update, if this property is not set and primary key information is present in the DataSet,
the UpdateCommand can be generated automatically if you set the SelectCommand property
and use the SqlCommandBuilder. Then, any additional commands that you do not set are
generated by the SqlCommandBuilder. This generation logic requires key column information
to be present in the DataSet.When UpdateCommand is assigned to a previously created
SqlCommand, the SqlCommand is not cloned. The UpdateCommand maintains a reference to
the previously created SqlCommand object.

Note If execution of this command returns rows, the updated rows may be merged with
the DataSet depending on how you set the UpdatedRowSource property of the
SqlCommand object.

For every column that you propagate to the data source on Update, a parameter should be added
to InsertCommand, UpdateCommand, or DeleteCommand.

The SourceColumn property of the parameter should be set to the name of the column. This
indicates that the value of the parameter is not set manually, but taken from the particular
column in the currently processed row.

Example: This example creates a SqlDataAdapter and sets the SelectCommand,
InsertCommand, UpdateCommand and DeleteCommand properties. It assumes you have already
created a SqlConnection object.

Public Function CreateCustomerAdapter(_

 ByVal connection As SqlConnection) As SqlDataAdapter

 Dim adapter As SqlDataAdapter = New SqlDataAdapter()

 ‘ Create the SelectCommand.

 Dim command As SqlCommand = New SqlCommand(_

 “SELECT * FROM Customers “ & _

 “WHERE Country = @Country AND City = @City”, connection)

 ‘ Add the parameters for the SelectCommand.

 command.Parameters.Add(“@Country”, SqlDbType.NVarChar, 15)

 command.Parameters.Add(“@City”, SqlDbType.NVarChar, 15)

 adapter.SelectCommand = command

 ‘ Create the InsertCommand.

LOVELY PROFESSIONAL UNIVERSITY 251

Unit 13: ADO.NET

Notes command = New SqlCommand(_

 “INSERT INTO Customers (CustomerID, CompanyName) “ & _

 “VALUES (@CustomerID, @CompanyName)”, connection)

 ‘ Add the parameters for the InsertCommand.

 command.Parameters.Add(“@CustomerID”, SqlDbType.NChar, 5, “CustomerID”)

 command.Parameters.Add(“@CompanyName”, SqlDbType.NVarChar, 40,

“CompanyName”)

 adapter.InsertCommand = command

 ‘ Create the UpdateCommand.

 command = New SqlCommand(_

 “UPDATE Customers SET CustomerID = @CustomerID, CompanyName =

@CompanyName “ & _

 “WHERE CustomerID = @oldCustomerID”, connection)

 ‘ Add the parameters for the UpdateCommand.

 command.Parameters.Add(“@CustomerID”, SqlDbType.NChar, 5, “CustomerID”)

 command.Parameters.Add(“@CompanyName”, SqlDbType.NVarChar, 40,

“CompanyName”)

 Dim parameter As SqlParameter = command.Parameters.Add(_

 “@oldCustomerID”, SqlDbType.NChar, 5, “CustomerID”)

 parameter.SourceVersion = DataRowVersion.Original

 adapter.UpdateCommand = command

 ‘ Create the DeleteCommand.

 command = New SqlCommand(_

 “DELETE FROM Customers WHERE CustomerID = @CustomerID”, connection)

 ‘ Add the parameters for the DeleteCommand.

 command.Parameters.Add(_

 “@CustomerID”, SqlDbType.NChar, 5, “CustomerID”)

 parameter.SourceVersion = DataRowVersion.Original

 adapter.DeleteCommand = command

 Return adapter

End Function

Self Assessment

Fill in the blanks:

12. The updation of data is done by command.

13. UpdateCommand can be generated automatically if you set the SelectCommand property
and use the

252 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes 13.5 Select Command with Databases

The select operator can be used, among other things, to display a value. The select keyword uses
the following syntax:

SELECT What

Based on this, to use it, where it is needed, type select followed by a number, a word, a string, or
an expression. the item to display follows some of the same rules as print. One of the differences
between print and select is that:

� Print is mostly used for testing a simple value, a string, or an expression. Therefore, it
displays its results in a regular white window under a tab labeled messages. Print can be
used with only one value.

� Select is the most regularly used SQL operator. We will see that it is used to retrieve
records from a table. For this reason, select displays its results in an organized window
made of categories called columns, under a tab labeled results. Select can be used with
more than one value.

When you create a select statement, what is on the right side of select must be a value. Here is an
example:
select 226.75;

Based on this definition, instead of just being a value, the thing on the right side of select must
be able to produce a value. As we will see in the next sections, you can create algebraic operations
on the right side of select. Unlike print, select can be used to display more than one value. The
values must be separated by commas. Here is an example:
select n’hourly salary’, 24.85

Because we mentioned that the thing on the right side must produce a result, you can as well use
another select statement that it itself evaluates to a result. to distinguish the select sections, the
second one should be included in parentheses. Here is an example:

select (select 448.25);

go

When one select statement is created after another, the second is referred to as nested.

Just as you can nest one select statement inside of another, you can also nest one statement in
another statement that itself is nested. Here is an example:

SELECT (SELECT (SELECT 1350.75));

GO

SELECT This AS That

In the above introductions, we used either PRINT or SELECT to display something in the query
window. One of the characteristics of SELECT is that it can segment its result in different
sections. SELECT represents each value in a section called a column. Each column is represented
with a name also called a caption. By default, the caption displays as “(No column name)”. If you
want to use your own caption, on the right side of an expression, type the AS keyword followed
by the desired caption. The item on the right side of the AS keyword must be considered as one
word. Here is an example:
SELECT 24.85 AS HourlySalary;

LOVELY PROFESSIONAL UNIVERSITY 253

Unit 13: ADO.NET

NotesThis would produce:

Figure 13.9: Output of the Select Statement

Source: http://www.functionx.com/vcsharp/adonet/select.htm

You can also include the item on the right side of AS in single-quotes. Here is an example:
SELECT 24.85 AS ‘HourlySalary’;

If the item on the right side of AS is in different words, you should include it in single-quotes or
put them in inside of an opening square bracket “[“ and a closing square bracket “]”. Here is an
example:
SELECT 24.85 AS ‘Hourly Salary’;

If you create different sections, separated by a comma, you can follow each with AS and a
caption. Here is an example:
SELECT N’James Knight’ As FullName, 20.48 AS Salary;

This would produce:

Figure 13.10: Output of the Select Statement

Source: http://www.functionx.com/vcsharp/adonet/select.htm

254 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes The above statement could also be written as follows:
SELECT N’James Knight’ As [Full Name], 20.48 AS [Hourly Salary];

�
Case Study Open Investor Relationship Management System

The Challenge

DataArt has developed an Open Investor Relationship Management System for a New
York-based asset management firm. The system provides classic CRM functions as well as
features specific to the operations of a financial services company.
The following functional areas are supported by the system:

� Contact management

� Investment tracking

� Fund performance management

� Front-office research support

� Investor reporting

Solution

The system is entirely web-based, built on Microsoft’s .NET technology platform. It is
implemented in classic 3-tier architecture, providing good support for scalability and
maintainability. SQL Server 2000 is used as the data storage layer, which communicates
with the Data Management and Business Logic layers through ADO.NET. The data
Management and Business Logic layers are organized as a set of Class Libraries written in
C#, operating under the control of Application Server (IIS+.NET Framework). The top
level, the User Interface, is based on the Microsoft IE 6.0/HTML/JavaScript platform to
combine mobility gained through fully web-based interface with the advanced controls
and user interaction methods provided by the IE 6.0 environment. Communication between
the User Interface and Application Server is organized in two ways:

� Standard HTTP form-based data exchange is based on request-response roundtrips

� A Web Services-based protocol, utilizing IE’s Web Services scenarios (.HTC behavior
script). This options eliminates extra roundtrips to the server and thus intensifies
the user experience The system maintains Web Services-based interfaces with a
number of external systems, including the corporate website and the Microsoft
Exchange server.

The .NET framework has brought a number of important technological benefits to the
solution:

� Web Server Controls are used to increase reusability of the code

� Built-in support for caching is utilized extensively to minimize system response
times and optimize load

� The .NET-based system proves to be exceptionally reliable and robust. Throughout
a series of intensive tests, the number of system failures, memory leaks and the like
appeared to be drastically less than in systems built on older platforms. Within this
system, only ‘safe’ code is used, which has become possible only in the .NET
environment

Contd...

LOVELY PROFESSIONAL UNIVERSITY 255

Unit 13: ADO.NET

Notes� .NET’s control over Impersonation allows the system to utilize different approaches
for secure access rights control. For example, application-level access rights are used
for normal user operations, while object-based restrictions, previously only typical
for thick client architectures, are used for system administration tasks.

Tools and Technologies

MS SQL Server, ASP.NET, C#, XML, Microsoft HTC, Web Services

Questions

1. Study and analyse the case.

2. Write down the case facts.

3. What do you infer from it?

Source: http://www.russoft.org/success/?story=143

Self Assessment

True or False:

14. Select can be used with only one value.

15. Print displays its results in an organized window made of categories called columns.

13.6 Summary

� ADO.NET provides consistent access to data sources.

� The ADO.NET DataSet object can also be used independently of a .NET Framework data
provider to manage data local to the application or sourced from XML.

� ADO is a language-neutral object model.

� ADO.NET defines DataSet and DataTable objects which are optimized for moving
disconnected sets of data across intranets and Internet.

� DataReader that resembles a forward-only, read-only ADO recordset.

� ADO.NET classes are found in System.Data.dll and are integrated with the XML classes in
System.Xml.dll.

� DataSet object represents a disconnected cache of data which is made up of DataTables.

� DataRelations that represent the result of the command.

� InsertCommand can be generated automatically if you set the SelectCommand property
and use the SqlCommandBuilder.

� When InsertCommand is assigned to a previously created SqlCommand, the SqlCommand
is not cloned.

� Deleting a data in database can be possible with using DELETE command.

� To create a connection we pass the connection string as a parameter in connection object.

� The updation of data is done by UPDATE command.

� UpdateCommand can be generated automatically if you set the SelectCommand property
and use the SqlCommandBuilder.

256 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes � The select operator can be used, among other things, to display a value.

� Print can be used with only one value.

� Select displays its results in an organized window made of categories called columns.

13.7 Keywords

ADO.NET DataSet object: It can also be used independently of a .NET Framework data provider
to manage data local to the application or sourced from XML

ADO.NET: It provides consistent access to data sources

DataReader: It resembles a forward-only, read-only ADO recordset.

DataRelations: It represent the result of the command.

DataSet object: It represents a disconnected cache of data which is made up of DataTables

Delete command: It is used to delete data from a database through ADO.NET.

InsertCommand: It is used to insert data to a database through ADO.NET

UpdateCommand: It is used to update data from a database through ADO.NET.

13.8 Review Questions

1. What is ADO.NET?

2. Why do we use ADO.NET?

3. How do we access a database with ADO.NET?

4. Give the steps to display the Database Records using ADO.NET.

5. What do you mean by Configuring of the Database?

6. With the help of an example show how to Create the DataGrid Edit Column.

7. How do you Edit the DataGrid?

8. Write the code to update the DataGrid.

9. Explain the steps to delete data from the DataGrid.

10. Write short note on Insert, Select, Delete and Update commands.

Answers: Self Assessment

1. ADO.NET 2. DataSet

3. Language 4. Disconnected

5. DataReader 6. System.Data,dll

7. DataRelations 8. True

9. False 10. True

11. False 12. Update

13. SQLCommandBuilder 14. False

15. False

LOVELY PROFESSIONAL UNIVERSITY 257

Unit 13: ADO.NET

Notes13.9 Further Readings

Books Beginning Vb.Net 2003, Willis.

Building Distributed Applications with Visual Basic.NET, Dan Fox, Sams.

Object-oriented Programming with Visual Basic.Net, Hamilton.

VB .NET Language in a Nutshell, Steven Roman, Ron Petrusha, Paul Lomax.

Online links http://msdn.microsoft.com/en-us/library/ms971485.aspx

http://www.4guysfromrolla.com/webtech/chapters/ASPNET/ch06.html

http://springframework.net/doc-latest/reference/html/data-quickstart.html

http://www.functionx.com/vcsharp/adonet/select.htm

258 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Unit 14: XML

CONTENTS

Objectives

Introduction

14.1 Representation of the XML

14.1.1 XML Schemas

14.1.2 Document Type Definition (DTD)

14.1.3 Characteristics of XML

14.2 Data Representation through XML

14.3 XML Reader and XML Writer Classes

14.3.1 XML Reader Classes

14.3.2 XML Writer Classes

14.3.3 XML–Advantages and Disadvantages

14.4 Summary

14.5 Keywords

14.6 Review Questions

14.7 Further Readings

Objectives

After studying this unit, you will be able to:

� Describe XML representation

� Explain data representation through XML

� Understand working with XML Reader and XML Writer Classes

� Discuss the advantages and disadvantages of XML

Introduction

Extensible Markup Language (XML) is a markup language that defines a set of rules for encoding
documents in a format that is both human-readable and machine-readable. It is defined in the
XML 1.0 Specification produced by the W3C, and several other related specifications, all gratis
open standards.

XML has been widely adopted since its creation and with good reason. Some of the key features
and benefits of XML include:

� Easy data exchange: One of the great things about XML is that it can allow easy sharing of
data between different applications – even if these applications are written in different
languages and reside on different platforms.

� Self-describing data: When you look at an XML document, it is very easy to figure out
what’s going on.

Kumar Vishal, Lovely Professional University

LOVELY PROFESSIONAL UNIVERSITY 259

Unit 14: XML

Notes� Create your own languages: XML allows you to specify your own markup language for
your own specific purpose. Some existing XML based languages include Banking Industry
Technology Secretariat (BITS), Bank Internet Payment System (BIPS), Financial Exchange
(IFX) and many more.

The basic difference between HTML and XML is that HTML was designed to display data and to
focus on how data looks while XML is designed to describe data and to focus on what data is.

14.1 Representation of the XML

XML has a variety of uses for Web, e-business, and portable applications. The following are
some of the many applications for which XML is useful:

� Web publishing: XML allows you to create interactive pages, allows the customer to
customize those pages, and makes creating e-commerce applications more intuitive. With
XML, you store the data once and then render that content for different viewers or devices
based on style sheet processing using an Extensible Style Language (XSL)/XSL
Transformation (XSLT) processor.

� Web searching and automating Web tasks: XML defines the type of information contained
in a document, making it easier to return useful results when searching the Web.

Example: Using HTML to search for books authored by Tom Brown is likely to return
instances of the term ‘brown’ outside of the context of author. Using XML restricts the search to
the correct context (for example, the information contained in the <author> tag) and returns
only the information that you want. By using XML, Web agents and robots (programs that
automate Web searches or other tasks) are more efficient and produce more useful results.

� General applications: XML provides a standard method to access information, making it
easier for applications and devices of all kinds to use, store, transmit, and display data.

� e-business applications: XML implementations make Electronic Data Interchange (EDI)
more accessible for information interchange, business-to-business transactions, and
business-to-consumer transactions.

� Metadata applications: XML makes it easier to express metadata in a portable, reusable
format.

� Pervasive computing: XML provides portable and structured information types for display
on pervasive (wireless) computing devices such as Personal Digital Assistants (PDAs),
cellular phones, and others.

Example: WML (Wireless Markup Language) and VoiceXML are currently evolving
standards for describing visual and speech-driven wireless device interfaces.

A small example just to show what an XML file looks like is given below:

<?xml version=”1.0" encoding=”UTF-8"?>

<tutorials>

 <tutorial>

 <name>XML Tutorial</name>

 <url>http://www.abc.com</url>

 </tutorial>

 <tutorial>

 <name>HTML Tutorial</name>

260 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes <url>http://www.abc.com</url>

 </tutorial>

</tutorials>

14.1.1 XML Schemas

Technically, a schema is an abstract collection of metadata, consisting of a set of schema
components: chiefly element and attribute declarations and complex and simple type definitions.
These components are usually created by processing a collection of schema documents, which
contain the source language definitions of these components. In popular usage, however, a
schema document is often referred to as a schema. Schema documents are organized by
namespace: all the named schema components belong to a target namespace, and the target
namespace is a property of the schema document as a whole. A schema document may include
other schema documents for the same namespace, and may import schema documents for a
different namespace. When an instance document is validated against a schema (a process known
as assessment), the schema to be used for validation can either be supplied as a parameter to the
validation engine, or it can be referenced directly from the instance document using two special
attributes, xsi:schemaLocation and xsi:noNamespaceSchemaLocation. XML Schema Documents
usually have the filename extension “.xsd”. A unique Internet Media Type is not yet registered
for XSDs, so “application/xml” or “text/xml” should be used, as per RFC 3023.

The main components of a schema are:

� Element declarations, which define properties of elements. These include the element
name and target namespace. An important property is the type of the element, which
constrains what attributes and children the element can have. In XSD 1.1, the type of the
element may be conditional on the values of its attributes. An element may belong to a
substitution group; if element E is in the substitution group of element H, then wherever
the schema permits H to appear, E may appear in its place. Elements may have integrity
constraints: uniqueness constraints determining that particular values must be unique
within the subtree rooted at an element, and referential constraints determining that
values must match the identifier of some other element. Element declarations may be
global or local, allowing the same name to be used for unrelated elements in different
parts of an instance document.

� Attribute declarations, which define properties of attributes. Again the properties include
the attribute name and target namespace. The attribute type constrains the values that the
attribute may take. An attribute declaration may also include a default value or a fixed
value (which is then the only value the attribute may take.)

� Simple and complex types.

� Model group and attribute group definitions. These are essentially macros: named groups
of elements and attributes that can be reused in many different type definitions.

� An attribute use represents the relationship of a complex type and an attribute declaration,
and indicates whether the attribute is mandatory or optional when it is used in that type.

� An element particle similarly represents the relationship of a complex type and an element
declaration, and indicates the minimum and maximum number of times the element may
appear in the content. As well as element particles, content models can include model
group particles, which act like non-terminals in a grammar: they define the choice and
repetition units within the sequence of permitted elements. In addition, wildcard particles
are allowed, which permit a set of different elements (perhaps any element provided it is
in a certain namespace).

LOVELY PROFESSIONAL UNIVERSITY 261

Unit 14: XML

NotesOther more specialized components include annotations, assertions, notations, and the schema
component which contains information about the schema as a whole.

Complex types describe the permitted content of an element, including its element and text
children and its attributes. A complex type definition consists of a set of attribute uses and a
content model. Varieties of content model include element-only content, in which no text may
appear (other than whitespace, or text enclosed by a child element); simple content, in which text
is allowed but child elements are not; empty content, in which neither text nor child elements
are allowed; and mixed content, which permits both elements and text to appear. A complex
type can be derived from another complex type by restriction (disallowing some elements,
attributes, or values that the base type permits) or by extension (allowing additional attributes
and elements to appear). In XSD 1.1, a complex type may be constrained by assertions–XPath 2.0
expressions evaluated against the content that must evaluate to true. Simple types (also called
data types) constrain the textual values that may appear in an element or attribute. This is one of
the more significant ways in which XML Schema differs from DTDs. For example, an attribute
might be constrained to hold only a valid date or a decimal number. XSD provides a set of 19
primitive data types (anyURI, base64Binary, boolean, date, dateTime, decimal, double, duration,
float, hexBinary, gDay, gMonth, gMonthDay, gYear, gYearMonth, NOTATION, QName, string,
and time). It allows new data types to be constructed from these primitives by three mechanisms:

� restriction (reducing the set of permitted values),

� list (allowing a sequence of values), and

� union (allowing a choice of values from several types).

Twenty-five derived types are defined within the specification itself, and further derived types
can be defined by users in their own schemas.

The mechanisms available for restricting data types include the ability to specify minimum and
maximum values, regular expressions, constraints on the length of strings, and constraints on
the number of digits in decimal values. XSD 1.1 again adds assertions, the ability to specify an
arbitrary constraint by means of an XPath 2.0 expression.

14.1.2 Document Type Definition (DTD)

A Document Type Definition (DTD) is a set of markup declarations that define a document type
for an SGML-family markup language (SGML, XML, HTML). A DTD uses a terse formal syntax
that declares precisely which elements and references may appear where in the document of the
particular type, and what the elements’ contents and attributes are. A DTD can also declare
entities which may be used in the instance document. XML uses a subset of SGML DTD.A DTD is
associated with an XML or SGML document by means of a Document Type Declaration. The
Document Type Declaration appears in the syntactic fragment doctypedecl near the start of an
XML document. The declaration establishes that the document is an instance of the type defined
by the referenced DTD.

DTDs make two sorts of declaration:

� An optional external subset

� An optional internal subset

The declarations in the internal subset form part of the Document Type Declaration in the
document itself. The declarations in the external subset are located in a separate text file. The
external subset may be referenced via a public identifier and/or a system identifier. Programs
for reading documents may not be required to read the external subset.

262 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes

Note Any valid SGML or XML document that references an external subset in its DTD, or
whose body contains references to parsed external entities declared in its DTD (including
those declared within its internal subset), may only be partially parsed but cannot be fully
validated by validating SGML or XML parsers in their standalone mode (this means that
these validating parsers will not attempt to retrieve these external entities, and their
replacement text will not be accessible).

The purpose of a DTD is to define the legal building blocks of an XML document. It defines the
document structure with a list of legal elements. A DTD can be declared inline in the XML
document, or as an external reference. XML provides an application independent way of sharing
data. With a DTD, the application can use a standard DTD to verify that data that the user
supplies is valid. A “Valid” XML document is a “Well Formed” XML document which conforms
to the rules of a Document Type Definition (DTD).

Example: A drive resource containing a device property and a partitions property
represented as a nested resource. A partitions resource containing multiple instances of the
partition property represented as a nested resource. A partition resource containing a size property
and a mount property.

Below is the XML for an example node view profile for the above tree which includes a DTD
which validates it.

<?xml version=”1.0"?>

<!DOCTYPE profile [

<!ELEMENT profile (install)>

<!ELEMENT install (partitioning)>

<!ELEMENT partitioning (drive+)>

<!ELEMENT drive (device,partitions)>

<!ELEMENT device (#PCDATA)>

<!ELEMENT partitions (partition*)>

<!ELEMENT partition (size,mount)>

<!ELEMENT size (#PCDATA)>

<!ELEMENT mount (#PCDATA)>

]>

<profile>

.....

 <install>

 <partitioning config:type=”list”>

 <drive>

 <device>

 /dev/hda

 </device>

 <partitions>

 <partition>

 <size>1000mb</size>

 <mount>/</mount>

 </partition>

 <partition>

 <size>250mb</size>

 <mount>/tmp</mount>

 </partition>

LOVELY PROFESSIONAL UNIVERSITY 263

Unit 14: XML

Notes </partitions>

 </drive>

 </partitioning>

 </install>

.....

</profile>

Datatypes: We will now discuss the basic types supported by XML.

Figure 14.1: Datatypes in XML

Source: http://msdn.microsoft.com/en-us/library/ms256131.aspx

� Primitive data types: The following section lists primitive XML schema data types, facets
that can be applied to the data type, and a description of the data type. Facets can only
appear once in a type definition except for enumeration and pattern facets. Enumeration
and pattern facets can have multiple entries and are grouped together.

Example:

string - Represents character strings.

boolean - Represents Boolean values, which are either true or false.

decimal - Represents arbitrary precision numbers.

float - Represents single-precision 32-bit floating-point numbers.

double - Represents double-precision 64-bit floating-point numbers.

264 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes duration - Represents a duration of time.

dateTime - Represents a specific instance of time.

time - Represents an instance of time that recurs every day. The pattern for time is hh:mm:ss.sss
with optional time zone indicator.

Date - Represents a calendar date. The pattern for date is CCYY-MM-DD with optional time
zone indicator as allowed for dateTime.

anyURI - Represents a URI as defined by RFC 2396. An anyURI value can be absolute or relative,
and may have an optional fragment identifier.

� Derived data types: The following section illustrates the derived XML schema data types,
facets that can be applied to the derived data type, and a description of the derived data
type.

Example:

token - Represents tokenized strings. This data type is derived from normalizedString.

language - Represents natural language identifiers (defined by RFC 1766). This data type is
derived from token.

IDREFS - Represents the IDREFS attribute type. Contains a set of values of type IDREF.

ENTITIES - Represents the ENTITIES attribute type. Contains a set of values of type ENTITY.

Name - Represents names in XML. A Name is a token that begins with a letter, underscore, or
colon and continues with name characters (letters, digits, and other characters). This data type is
derived from token.

ID - Represents the ID attribute type defined in the XML 1.0 Recommendation. The ID must be
a no-colon-name (NCName) and must be unique within an XML document. This data type is
derived from NCName.

ENTITY - Represents the ENTITY attribute type in XML 1.0 Recommendation. This is a reference
to an unparsed entity with a name that matches the specified name. An ENTITY must be an
NCName and must be declared in the schema as an unparsed entity name. This data type is
derived from NCName.

integer - Represents a sequence of decimal digits with an optional leading sign (+ or -). This data
type is derived from decimal.

long - Represents an integer with a minimum value of -9223372036854775808 and maximum of
9223372036854775807. This data type is derived from integer.

short - Represents an integer with a minimum value of -32768 and maximum of 32767. This data
type is derived from int.

byte - Represents an integer with a minimum value of -128 and maximum of 127. This data type
is derived from short.

14.1.3 Characteristics of XML

XML has a number of important characteristics. Some of them are given below:

� XML is a structured format: Which means that we can define exactly how the data is to be
arranged, organized and expressed within the file. When we are given a file, we can
validate that it conforms to a specific structure, prior to importing the data. As we know

LOVELY PROFESSIONAL UNIVERSITY 265

Unit 14: XML

Notesthe structure of the file in advance, we know what it contains and how to process each
item. Prior to XML, the only structure in a text file was positional – we knew the bit of text
after the fourth comma should be a date of birth – and we had no way to validate whether
it was a date of birth, or even a date, or whether it was in day/month/year or month/day/
year order.

� XML is a described format: Which means that within the text file, every item of data has a
name that is both human- and machine-readable as well as being uniquely identifiable.
We can open these files, read their contents and understand the data they contain, without
having to refer back to another document to find out what the text after the fourth comma
represents (and was that comma a separator, or part of the text of the second item?).
Similarly, we can edit these documents with a fairly high level of confidence that we’re
making the correct changes.

� XML can easily describe hierarchical data and the relationships between data.
If we want to import and export a list of authors, with their names, addresses and the
books they’ve written, deciding on a reasonable format for a csv file is by no means
straightforward. Using XML, we can define what an Author item is and that it has a name,
address and multiple Book items. We can also define what a Book item it is and that it has
a title, a publisher and an ISBN. The hierarchy and relationships are a natural consequence
of the definition.

� XML can be validated: Which means we can provide a second XML file – an XML Schema
Definition file – that describes exactly how the XML data file should be structured. Before
processing an XML file, we can compare it with the schema to ensure it conforms to the
structure we expect to receive.

� XML is a discoverable format: Which means programs (including Excel 2003/2007/2010/
2013) can parse an XML data file and infer the structure and relationships between the
items. This means we can read an XML file, infer its structure and generate new XML data
files that conform to the same structure, with a high degree of confidence the new XML
data files will pass validation.

� XML is a strongly-typed format: Which means the schema definition file specifies the
data type of each element. When importing the data, the application can check the schema
definition to identify the data type to import it as. We no longer run the risk of the product
code 01-03 being imported as a date.

� XML is a global format: There is only one way to express a number in an XML file (with
US number formats) and only one way to express a date. We no longer have to check
whether a csv file was created with US or French settings and adjust our processing of it
accordingly.

� XML is a standard format: The way in which the content of an XML file is defined has been
specified by the World Wide Web Consortium (W3C). This allows applications (including
Excel 2003/2007/2010/2013) to read, understand and validate the structure of an XML file
and create files that conform to the specified structure. It also allows different applications
to read, write, understand and validate the same XML files, allowing us to share data
between applications in an extremely robust manner.

Self Assessment

Fill in the blanks:

1. is a markup language that defines a set of rules for encoding documents
schema is an abstract collection of metadata.

266 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes 2. Schema documents are organized by

3. XML Schema Documents usually have the filename extension

4. declarations, which define properties of elements.

5. declarations, which define properties of attributes

6. derived types are defined within the specification itself.

7. The purpose of a is to define the legal building blocks of an XML document.
It defines the document structure with a list of legal elements.

14.2 Data Representation through XML

XML documents form a tree structure that starts at “the root” and branches to “the leaves”.

Example:

XML documents use a self-describing and simple syntax:
<?xml version=”1.0" encoding=”ISO-8859-1"?>

<note>

 <to>Tove</to>

 <from>Jani</from>

 <heading>Reminder</heading>

 <body>Don’t forget me this weekend!</body>

</note>

The first line is the XML declaration. It defines the XML version (1.0) and the encoding used (ISO-
8859-1 = Latin-1/West European character set).

The next line describes the root element of the document (like saying: “this document is a note”):
<note>

The next 4 lines describe 4 child elements of the root (to, from, heading, and body):
<to>Tove</to>

<from>Jani</from>

<heading>Reminder</heading>

<body>Don’t forget me this weekend!</body>

And finally the last line defines the end of the root element:
</note>

You can assume, from this example, that the XML document contains a note to Tove from Jani.

XML documents must contain a root element. This element is “the parent” of all other elements.
The elements in an XML document form a document tree. The tree starts at the root and branches
to the lowest level of the tree.

All elements can have sub elements (child elements):
<root>

 <child>

 <subchild>.....</subchild>

 </child>

</root>

The terms parent, child, and sibling are used to describe the relationships between elements.
Parent elements have children. Children on the same level are called siblings (brothers or
sisters).

LOVELY PROFESSIONAL UNIVERSITY 267

Unit 14: XML

NotesAll elements can have text content and attributes (just like in HTML).

Example:

Figure 14.2: XML Tree Structure

Source: http://www.w3schools.com/xml/xml_tree.asp

The image above represents one book in the XML below:

<bookstore>

 <book category=”COOKING”>

 <title lang=”en”>Everyday Italian</title>

 <author>Giada De Laurentiis</author>

 <year>2005</year>

 <price>30.00</price>

 </book>

 <book category=”CHILDREN”>

 <title lang=”en”>Harry Potter</title>

 <author>J K. Rowling</author>

 <year>2005</year>

 <price>29.99</price>

 </book>

 <book category=”WEB”>

 <title lang=”en”>Learning XML</title>

 <author>Erik T. Ray</author>

 <year>2003</year>

 <price>39.95</price>

 </book>

</bookstore>

The root element in the example is <bookstore>. All <book> elements in the document are
contained within <bookstore>.
The <book> element has 4 children: <title>,< author>, <year>, <price>.

Some characters have a special meaning in XML.

268 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Entity Reference: If you place a character like “<“ inside an XML element, it will generate an
error because the parser interprets it as the start of a new element. This will generate an XML
error:
<message>if salary < 1000 then</message>

To avoid this error, replace the “<“ character with an entity reference:

<message>if salary < 1000 then</message>

There are 5 predefined entity references in XML:

< < less than

> > greater than

& & ampersand

' ' apostrophe

" " quotation mark

Note Only the characters “<“ and “&” are strictly illegal in XML. The greater than character
is legal, but it is a good habit to replace it.

Comments in XML: The syntax for writing comments in XML is similar to that of HTML.
<!— This is a comment —>

XML Elements: An XML element is everything from (including) the element’s start tag to
(including) the element’s end tag.

An element can contain:

� other elements

� text

� attributes

� or a mix of all of the above...
<bookstore>

 <book category=”CHILDREN”>

 <title>Harry Potter</title>

 <author>J K. Rowling</author>

 <year>2005</year>

 <price>29.99</price>

 </book>

 <book category=”WEB”>

 <title>Learning XML</title>

 <author>Erik T. Ray</author>

 <year>2003</year>

 <price>39.95</price>

 </book>

</bookstore>

In the example above, <bookstore> and <book> have element contents, because they contain
other elements. <book> also has an attribute (category=”CHILDREN”). <title>, <author>, <year>,
and <price> have text content because they contain text.

LOVELY PROFESSIONAL UNIVERSITY 269

Unit 14: XML

NotesXML Attributes: XML elements can have attributes, just like HTML.Attributes provide additional
information about an element. In HTML, attributes provide additional information about
elements:

Attributes often provide information that is not a part of the data. In the example below, the file
type is irrelevant to the data, but can be important to the software that wants to manipulate the
element:
<file type=”gif”>computer.gif</file>

Self Assessment

Fill in the blanks:

8. XML documents form a tree structure that starts at the and branches to the
leaves.

9. An XML is everything from (including) the element’s start tag to (including)
the element’s end tag.

10. XML provide additional information about an element.

14.3 XML Reader and XML Writer Classes

XML reader and XML writer are defining below:

14.3.1 XML Reader Classes

They represent a reader that provides fast, non-cached, forward-only access to XML data.
XmlReader provides forward-only, read-only access to a stream of XML data. The current node
refers to the node on which the reader is positioned. The reader is advanced using any of the read
methods and properties reflect the value of the current node. XmlReader conforms to the W3C
Extensible Markup Language (XML) 1.0 and the Namespaces in XML recommendations and is
implemented in the following classes:

Table 14.1: XML Classes

Class Description

XmlTextReader Fastest implementation of XmlReader. It checks for well-formed XML,
but does not support data validation. This reader cannot expand
general entities and does not support default attributes.

XmlvalidatingReader Implementation of XmlReader that can validate data using DTDs or
schemas. This reader can also expand general entities and supports
default attributes.

XmlNodeReader Implementation of XmlReader that reads XML data from an
XmlNode.

Source: http://msdn.microsoft.com/en-us/library/system.xml.xmlreader%28v=vs.71%29.aspx

To read strongly typed data, use the XmlConvert class. For example, the following C# code
reads in data and converts it from a String to a Double.
Double price = XmlConvert.ToDouble(reader.Value);

XmlReader throws an XmlException on XML parse errors. After an exception is thrown the state
of the reader is not predictable. For example, the reported node type may be different than the
actual node type of the current node.

270 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes 14.3.2 XML Writer Classes

It represents a writer that provides a fast, non-cached, forward-only means of generating streams
or files containing XML data.
Syntax: Public MustInherit Class XmlWriter _

Implements IDisposable

XmlWriter is the constructor that initializes a new instance of the XmlWriter class.

Some properties of the XMLWriter class are:

Table 14.2: XMLWriter Class Properties

Name Description

Setting Get the XmlWriterSettings object used to create this XmlWriter instance.

WriteState When overridden in a derived class, gets the state of the writer.

XmlLang When overridden in a derived class, gets the current xml:lang scope.

XmlSpace When overridden in a derived class, gets an XmlSpace representing the
current xml:space scope.

Source: http://msdn.microsoft.com/en-us/library/system.xml.xmlwriter.aspx

The XmlWriter class supports the W3C Extensible Markup Language (XML) 1.0 and the
Namespaces in XML recommendations.

Note Although the Microsoft .NET Framework includes the XmlTextWriter class, which
is an implementation of the XmlWriter class, in the 2.0 release, it is recommended that you
use the Create method to create new XmlWriter objects. The Create method allows you to
specify the features to support on the created XmlWriter object, and it also allows you to
take full advantage of the new features introduced in the 2.0 release.

When you use the XmlWriter methods to output XML, the elements and attributes will not be
written until you call the Close method. For example, if you are using the XmlWriter to populate
an XmlDocument, until you close the XmlWriter, you will not be able to observe the written
elements and attributes in the target document.

The following items are things to consider when working with the XmlWriter class.

� Exceptions thrown by the XmlWriter can disclose path information that you do not want
bubbled up to the application. Your applications must catch exceptions and process them
appropriately.

� The XmlWriter does not validate any data that is passed to the WriteDocType or WriteRaw
methods. You should not pass arbitrary data to these methods.

Example:

The following example code shows how to use the asynchronous API to generate XML.

async Task TestWriter(Stream stream)

{

 XmlWriterSettings settings = new XmlWriterSettings();

 settings.Async = true;

LOVELY PROFESSIONAL UNIVERSITY 271

Unit 14: XML

Notes using (XmlWriter writer = XmlWriter.Create(stream, settings)) {

 await writer.WriteStartElementAsync(“pf”, “root”, “http://ns”);

 await writer.WriteStartElementAsync(null, “sub”, null);

 await writer.WriteAttributeStringAsync(null, “att”, null, “val”);

 await writer.WriteStringAsync(“text”);

 await writer.WriteEndElementAsync();

 await writer.WriteProcessingInstructionAsync(“pName”, “pValue”);

 await writer.WriteCommentAsync(“cValue”);

 await writer.WriteCDataAsync(“cdata value”);

 await writer.WriteEndElementAsync();

 await writer.FlushAsync();

 }

}

14.3.3 XML–Advantages and Disadvantages

Using XML to exchange information offers many benefits. Advantages of XML include the
following:

� Simplicity: Information coded in XML is easy to read and understand, plus it can be
processed easily by computers.

� Openness: XML is a W3C standard, endorsed by software industry market leaders.

� Extensibility: There is no fixed set of tags.New tags can be created as they are needed.

� Self-description: XML documents can be stored without [schemas] because they contain
meta data; any XML tag can possess an unlimited number of attributes such as author or
version.

� Contains machine-readable context information: Tags, attributes and element structure
provide context information ... opening up new possibilities for highly efficient search
engines, intelligent data mining, agents, etc.

� Separates content from presentation: XML tags describe meaning not presentation.

The look and feel of an XML document can be controlled by XSL stylesheets, allowing the look
of a document (or of a complete Web site) to be changed without touching the content of the
document.

Multiple views or presentations of the same content are easily rendered.

� Supports multilingual documents and Unicode: This is important for the
internationalization of applications.

� Facilitates the comparison and aggregation of data: The tree structure of XML documents
allows documents to be compared and aggregated efficiently element by element.

� Can embed multiple data types: XML documents can contain any possible data type —
from multimedia data (image, sound, video) to active components (Java applets, ActiveX).

� Can embed existing data: Mapping existing data structures like file systems or relational
databases to XML is simple....

� Provides a “one-server view” for distributed data: XML documents can consist of nested
elements that are distributed over multiple remote servers. XML is currently the most
sophisticated format for distributed data — the World Wide Web can be seen as one huge
XML database.

� Rapid adoption by industry: Software AG, IBM, Sun, Microsoft, Netscape, DataChannel,
SAP .

272 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Everything has pros and cons. Some of the problems are:

� XML syntax is redundant or large relative to binary representations of similar data.

� The redundancy may affect application efficiency through higher storage, transmission
and processing costs.

� XML syntax is too verbose relative to other alternative ‘text-based’ data transmission
formats.

� No intrinsic data type support: XML provides no specific notion of “integer”, “string”,
“boolean”, “date”, and so on.

� The hierarchical model for representation is limited in comparison to the relational model
or an object oriented graph.

� Expressing overlapping (non-hierarchical) node relationships requires extra effort.

� XML namespaces are problematic to use and namespace support can be difficult to correctly
implement in an XML parser.

� XML is commonly depicted as “self-documenting” but this depiction ignores critical
ambiguities.

�
Case Study Scheduled Data Exchange

Overview

The accounting and IT teams at Altova designed and developed a system that performs
automated currency exchange rate updates to the company’s internal business management
application. This system works behind the scenes, ensuring that all pricing information
remains current for both the Euro and the US Dollar.

Altova software tools are designed to solve real-world business challenges, and therefore,
projects such as this are generally done in-house, without requiring external services.

This project was assigned to an IT manager who worked with Altova tools and XML
technology, as well as with built-in Microsoft® Windows functionality and the Foreign
Currency Exchange Rates & Indexes Table embedded within the company’s SAP Business
One Enterprise Resource Planning (ERP) system.

The Challenge

Altova needed to build and deploy a simple, lightweight application whereby its back-
end, SAP system would be automatically updated daily with the most current exchange
rate information for US Dollars (USD) and Euros (EURO). The application was to be created
and implemented by an Altova IT manager using Altova software tools. This way we
would not only avoid troubling our own software developers (who were busy working
on enhancements for our line of application development and data management tools)
and save the cost of using third-party services, but would also demonstrate the versatility
and ease of use of our tools to power users.

This project required the use of several different components, some pre-existing, and
some that needed to be created by the IT manager:

Contd...

LOVELY PROFESSIONAL UNIVERSITY 273

Unit 14: XML

NotesExisting Components

These components are mentioned below:

� XML document — The European Central Bank (ECB), which is responsible for
regulating international currency exchange, maintains a publicly available XML
document that it updates daily to provide current exchange rates. This file can be
viewed at: http://www.ecb.int/stats/eurofxref/eurofxref-hist.xml

� Database table — The Foreign Currency Exchange Rates & Indexes Table within our
SAP system enables the storage of current data from different currencies, based on
exchange rates.

� Altova XMLSpy® — XMLSpy is the industry leading XML editor and was used in
this case to generate an XML Schema based on the XML instance document mentioned
above.

� Microsoft Scheduler — The Scheduled Tasks feature of the Windows operating system
gives users the ability to schedule recurring processes for any installed or accessible
software application.

� Altova MapForce® graphical user interface (GUI) — MapForce is an application
that can be used for mapping to and from a wide variety of data formats. It provides
a visual data mapping interface, which allows the user to perform complex
transformations using simple drag-and-drop functionality — without writing any
code.

� MapForce Engine & command line interface (CLI) — The MapForce Engine can be
used within custom-built data integration applications and has the ability to execute
automated mappings. The MapForce CLI launches the MapForce Engine, which in
this application is called by the Scheduled Task to execute an XML to database insert.

Using these available components, the IT manager set about developing a straightforward
system whereby internal pricing information would be automatically updated by
referencing an external resource (the ECB XML document).

The Solution

To complete this task, the IT manager devised a method for a variety of different
components to interact remotely on a regularly scheduled basis.

Created Components

These components are mentioned below:

� XML Schema definition (XSD) — XML Schema is the W3C recommended language
for describing the structure of an XML document. In this case, a schema for the ECB’s
XML document was automatically generated using Altova XMLSpy.

� MapForce design (.mfd) file — A MapForce design file defines a data integration
process that can be represented visually and is used to generate and/or execute
complex data transformations.

� Windows Scheduled Task file (.job) — A Scheduled Task is a simple way to run any
script, program, or document at a pre-determined time and/or frequency.

In order to update the SAP database table with the constantly changing information from
the ECB XML document, a simple mapping was created using the MapForce GUI. The

Contd...

274 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes mapping would take the data from the XML file and simply transform it to the database
format for use by the SAP system.

Altova MapForce utilizes an XSD to create a structural tree diagram of an XML instance for
mapping purposes. The XSD is essentially a bare bones representation of the XML document
structure without the associated content, and MapForce uses it as a sort of stub file or table
of contents to map the elements of the XML file.

The ECB XML file is not supported by an XSD, and, in order to reap the benefits that
MapForce offers, one needed to be created so that its components could be mapped to the
database. XMLSpy offers the capability to infer and automatically generate an XML Schema
from an XML instance document, and this was an ideal feature for this project because it
only took a couple of seconds to use.

Questions

1. Study and analyse the case.

2. Write down the case facts.

3. What do you infer from it?
Source: http://www.altova.com/exchange_ratecasestudy.html

Self Assessment

True or False:

11. XML Reader Classes represent a reader that provides slow access to XML data.

12. To read strongly typed data, use the XmlConvert class.

13. XmlReader throws an ReadException on XML parse errors.

14. XML Writer Classes represents a writer that provides a cached means of generating streams
or files containing XML data.

15. XMLReader and XMLWriter classes are forward only.

14.4 Summary

� Extensible Markup Language (XML) is a markup language that defines a set of rules for
encoding documents.

� Schema is an abstract collection of metadata, consisting of a set of schema components.

� Schema documents are organized by namespace.

� XML Schema Documents usually have the filename extension “.xsd”.

� Element declarations, which define properties of elements.

� Attribute declarations define properties of attributes.

� Twenty-five derived types are defined within the specification itself.

� The purpose of a DTD is to define the legal building blocks of an XML document. It defines
the document structure with a list of legal elements.

� XML documents form a tree structure that starts at “the root” and branches to “the leaves”.

� XML Elements: An XML element is everything from (including) the element’s start tag to
(including) the element’s end tag.

LOVELY PROFESSIONAL UNIVERSITY 275

Unit 14: XML

Notes� XML Attributes: XML elements can have attributes, just like HTML.Attributes provide
additional information about an element.

� XML Reader Classes represent a reader that provides fast, non-cached, forward-only access
to XML data.

� To read strongly typed data, use the XmlConvert class.

� XmlReader throws an XmlException on XML parse errors.

� XML Writer Classes represents a writer that provides a fast, non-cached, forward-only
means of generating streams or files containing XML data.

14.5 Keywords

Attribute declarations: They define properties of attributes.

DTD: It defines the legal building blocks of an XML document.

Element declarations: They define properties of elements.

Extensible Markup Language (XML): It is a markup language that defines a set of rules for
encoding documents.

Schema: It is an abstract collection of metadata, consisting of a set of schema components.

XML Attributes: XML elements can have attributes, just like HTML. Attributes provide additional
information about an element.

XML Elements: An XML element is everything from (including) the element’s start tag to
(including) the element’s end tag.

XML Reader Classes: They represent a reader that provides fast, non-cached, forward-only
access to XML data.

XML Writer Classes: They represents a writer that provides a fast, non-cached, forward-only
means of generating streams or files containing XML data.

14.6 Review Questions

1. Define XML.

2. What is XML Schemas?

3. Write a short note on Document Type Definition (DTD).

4. List the characteristics of XML.

5. How do you represent Data through XML?

6. Differentiate between HTML and XML.

7. Explain the XML Reader Classes.

8. Why do we need the XML Writer Classes?

9. What are the advantages of XML?

10. List the disadvantages of XML.

276 LOVELY PROFESSIONAL UNIVERSITY

Modern Programming Tools & Techniques-III

Notes Answers: Self Assessment

1. XML 2. Namespaces

3. .xsd 4. Element

5. Attribute 6. 25

7. DTD 8. Root

9. Element 10. Attribute

11. False 12. True

13. False 14. False

15. True

14.7 Further Readings

Books Beginning Vb.Net 2003, Willis.

Building Distributed Applications with Visual Basic.NET, Dan Fox, Sams.

Object-oriented Programming with Visual Basic.Net, Hamilton.

Programming Visual Basic .NET, J. Liberty.

VB .NET Language in a Nutshell, Steven Roman, Ron Petrusha, Paul Lomax.

Visual Basic.NET Black Book, Steven Holzner.

Online links http://pic.dhe.ibm.com/infocenter/iseries/v6r1m0/index.jsp?topic=/rzamj/
rzamjintrouses.htm

http://www.codeproject.com/Articles/20113/XML-for-Beginners

http://www.w3schools.com/xml/

http://www.exforsys.com/tutorials/xml/xml-advantages.html

Jalandhar-Delhi G.T. Road (NH-1)
Phagwara, Punjab (India)-144411
For Enquiry: +91-1824-521360
Fax.: +91-1824-506111
Email: odl@lpu.co.in

LOVELY PROFESSIONAL UNIVERSITY

	00 Cotnents.pdf
	Unit 01.pdf
	Unit 02.pdf
	Unit 03.pdf
	Unit 04.pdf
	Unit 05.pdf
	Unit 06.pdf
	Unit 07.pdf
	Unit 08.pdf
	Unit 09.pdf
	Unit 10.pdf
	Unit 11.pdf
	Unit 12.pdf
	Unit 13.pdf
	Unit 14.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

