
Computer Organization
and Architecture/Introduction
to Computer Organization
and Architecture
DCAP502/DCAP206

Editor
Dr. Manmohan Sharma

www.lpude.in

DIRECTORATE OF DISTANCE EDUCATION

COMPUTER ORGANIZATION AND
ARCHITECTURE/INTRODUCTION TO

COMPUTER ORGANIZATION AND
ARCHITECTURE

Edited By
Dr. Manmohan Sharma

ISBN: 978-93-87034-67-9

Printed by
EXCEL BOOKS PRIVATE LIMITED

Regd. Office: E-77, South Ext. Part-I, Delhi-110049
Corporate Office: 1E/14, Jhandewalan Extension, New Delhi-110055

 +91-8800697053, +91-011-47520129

 info@excelbooks.com/projects@excelbooks.com
internationalalliance@excelbooks.com

 www.excelbooks.com

for

Lovely Professional University
Phagwara

CONTENTS

Unit 1: Review of Basics of Digital Electronics 1
Anuj Sharma, Lovely Professional University

Unit 2: Devices Used in Digital Electronics 23
Sahil Rampal, Lovely Professional University

Unit 3: Data Representation and Data Transfer 43
Yadwinder Singh, Lovely Professional University

Unit 4: Computer Organization I 65
Avinash Bhagat, Lovely Professional University

Unit 5: Computer Organization II 81
Avinash Bhagat, Lovely Professional University

Unit 6: Control Unit 95
Pooja Gupta, Lovely Professional University

Unit 7: Central Processing Unit 111
Manmohan Sharma, Lovely Professional University

Unit 8: Addressing Modes 125
Ajay Kirani Khuswaha, Lovely Professional University

Unit 9: Computer Arithmetic I 143
Sarabjit Kumar, Lovely Professional University

Unit 10: Computer Arithmetic II 155
Avinash Bhagat, Lovely Professional University

Unit 11: Input/Output Organization 165
Ajay Kumar Bansal, Lovely Professional University

Unit 12: Memory Organization Concepts 185
Pooja Gupta, Lovely Professional University

Unit 13: Multiprocessors 205
Manmohan Sharma, Lovely Professional University

Unit 14: Introduction to Parallel Processing 229
Yadwinder Singh, Lovely Professional University

SYLLABUS

Computer Organization and Architecture/Introduction to
Computer Organization and Architecture

Objectives: The objectives of this course are:

To understand how computers are constructed out of a set of functional units

To understand how these functional units operate, interact and communicate

To understand the factors and trade-offs that affect computer performance

To understand concrete representation of data at the machine level

To understand how computations are actually performed at the machine level

To understand how problems expressed by humans are expressed as binary strings in a machine

DCAP502 COMPUTER ORGANIZATION AND ARCHITECTURE

Sr. No. Description

1. Review of Basics of Digital Electronics: Codes, logic gates, flip flops, registers, counters, multiplexer,
demultiplexer, decoder, and encoder.

2. Integers Representation: Signed Magnitude, 1s & 2s Complement) & Real numbers (Fixed point &
Floating Point representation), Register Transfer and Micro operations: Register transfer language Bus
& memory transfer, logic micro operation, shift micro operation, Arithmetic Logic Shift Unit

3. Basic Computer Organization: Instruction codes, computer instructions, timing & control, instruction
cycles

4. Memory reference instruction, Input/output & interrupts, Design of basic computer Control Unit:
Hardwired vs. micro programmed control unit, Control Memory, Address Sequencing, Micro program
Sequencer

5. Central Processing Unit: General register organization, stack organization, instruction format,
Addressing Modes Data transfer & manipulation, program control, RISC, CISC.

6. Introduction to Parallel Processing: Pipelining, Instruction pipeline, RISC Pipeline, Vector Processing

7. Computer Arithmetic: Addition, Subtraction, Multiplication & Division Algorithm(s),

Decimal arithmetic units & Operations.

8. Input-Output Organization: Peripheral devices, I/O interface, data transfer schemes, program control,
interrupt, DMA transfer, I/O Processor

9. Memory Organization Concepts: Cache & Virtual memory

10. Multiprocessors: Characteristics, Interconnection Structures, Interprocessor Communication and
synchronization

DCAP206 INTRODUCTION TO COMPUTER ORGANIZATION & ARCHITECTURE

Sr. No. Description

1. Tools for course understanding: Awareness of ISA bus interface, a popular bus architecture used in
IBM and compatible personal computer systems.

Digital Logic Circuits: Digital computers, Logic gates, Boolean Algebra, Map Simplification, Half
Adder, Full Adder, Flip flops – SR, JK, D, T, Edge triggered flip flops, Sequential Circuits

2. Digital Components: Integrated circuits, Decoders – NAND gate decoder, Encoders, Multiplexers,
Demultiplexers, Registers, Shift registers, Bidirectional Register with parallel load, Binary counters,
Memory Unit – RAM, ROM, Types of ROMs

3. Data Representation: Number systems – decimal, octal, hexadecimal, Complement – (r-1)’s
complement, r’s complement, Fixed point representation, floating point representation, Gray code,
Decimal codes, alphanumeric codes, Error detection codes

4. Register Transfer and Micro-operations: Register transfer language, Register transfer, Bus and
memory transfers – three state bus buffers, Arithmetic micro-operations – binary adder, binary adder
subtractor, binary incrementer, arithmetic circuit

5. Logic micro-operations and its hardware implementation, Shift micro-operations and hardware
implementation, Arithmetic Logic Shift unit, Hardware description languages

6. Basic Computer Organization and Design: Instruction Codes, Stored program organization,
Computer registers, Common bus system, Computer instructions, Timing and Control, Instruction
cycle, Memory reference instructions, Input output and interrupt, complete design of basic computer

7. Central Processing Unit: General register organization, control word, Stack organization, register
stack, memory stack, Instruction formats – three address, two address, one address, zero address
instructions, Addressing modes, Data transfer and manipulation, arithmetic, logical, bit
manipulation, Program control, Reduced Instruction Set Computer (RISC), CISC characteristics

8. Input-Output Organization: Input output interface, I/O bus and interface modules, I/O vs memory
bus, Isolated vs Memory mapped I/O

9. Asynchronous data transfer, handshaking, Programmed I/O, Interrupt-initiated I/O, Priority
Interrupt – Daisy chaining, parallel priority, priority encoder, interrupt cycle, DMA controller and
transfer

10. Memory Organization: Memory hierarchy, RAM, ROM chips, memory address map, Associative
memory, Cache memory, Virtual memory, Memory management hardware

1LOVELY PROFESSIONAL UNIVERSITY

Unit 1: Review of Basics of Digital Electronics

Notes

Unit 1: Review of Basics of Digital Electronics

 CONTENTS

 Objectives

 Introduction

 1.1 Codes in Digital Electronics

 1.1.1 Classification of Binary Codes

 1.2 Logic Gates

 1.3 Summary

 1.4 Keywords

 1.5 Self Assessment

 1.6 Review Questions

 1.7 Further Readings

Objectives
After studying this unit, you will be able to:

• Discuss the codes in digital electronics

• List the functions of different logic gates

• Discuss the truth table for all the logic gates

Introduction
Digital electronics is a field of computer science. It deals with devices that are used to carry out
computer applications.

In digital electronics, we use two-state or binary logic. The two logic states are “0” (low) and “1”
(high).

Computer uses binary number system for its operations. Digital electronics represents the two
binary numbers, 1 and 0, using two voltage levels in a device called a logic gate. Sometimes the
two states can also be represented using Boolean logic functions, “true” or “false” states, or using
an “on” or “off” state.

Logic gates are important components of a digital circuit. A logic gate takes two inputs and
generates a single output. In this unit we will discuss about the basic logic gates and their
corresponding truth tables.

1.1 Codes in Digital Electronics
Basically, digital data is represented, stored, and transmitted as groups of binary digits which are
called bits. The group of bits is known as binary code. Binary codes are used in computers as they
allow computers to perform complex calculations quickly and efficiently. Binary codes are used
in financial, commercial, and industrial applications. To understand how binary codes are applied
in these fields, we first have to understand the classification of binary codes.

1.1.1 Classification of Binary Codes
Binary codes can be represented as numbers and letters of the alphabets as well as many special
characters and control functions. They are classified as numeric or alphanumeric codes. Numeric
codes are used to represent numbers, whereas alphanumeric codes are used to represent alphabetic
letters and numerals.

Anuj Sharma, Lovely Professional University

2 LOVELY PROFESSIONAL UNIVERSITY

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

Notes The binary codes are classified as shown in figure 1.1.

Figure 1.1: Classification of Binary Codes

As mentioned earlier, numeric codes are used to represent numbers. The following are the numeric
codes:

1. Weighted Binary Codes: Weighted binary codes are those which follow the positional weighting
principles. In weighted codes, each position of the number represents a specific weight. For
example, in decimal code, if the number is 345, then the weight of 3 is 100, 4 is 10, and 5 is 1. In
the 8421 weighted binary code, each digit has a weight of 8, 4, 2 or 1 corresponding to its
position.

Example: The codes 8421, 2421 and 5211 are examples of weighted binary codes.
2. Non-Weighted Binary Codes: Non-weighted codes do not follow the positional weighting

principles. In non-weighted codes, each digit position within the number does not have any
fixed value.

Example:Excess-3 and Gray codes are examples of non-weighted codes. Excess-3 codes are
used to express decimal numbers. The code can be derived from the natural BCD (8421) code by
adding 3 (011 in binary) to the coded number. It is used in decimal arithmetic units. The excess-3
code of 1000 in 8421 is 1011. Gray codes represent each number in the sequence of integers {0...2^N-
1} as a binary string of length N such that the adjacent integers have Gray code representations
which differ in only one bit position.
3. Reflective Codes: A code is said to be reflective when the code for 9 is complement for the code

for 0, 8 for 1, 7 for 2, 6 for 3, and 5 for 4.

3LOVELY PROFESSIONAL UNIVERSITY

Unit 1: Review of Basics of Digital Electronics

Notes
Example: Codes 2421 and excess-3 are reflective. In code 2421: we know that the positional

weights are 2, 4, 2 and 1. The following figure shows an example of reflective code where the
complement of 8 is 1 and the complement of 7 is 2.

4. Sequential Codes: Sequential codes are codes in which the succeeding code is one binary
number greater than its preceding code. This assists in mathematical data manipulation.

Example: 8421 and excess-3 codes are sequential codes.
5. Cyclic Codes: In cyclic codes, only one bit in the code changes at a time while moving from one

number to the next. It is a non-weighted code, which means that the position of bit does not
contain any weight.

Table1.1 shows the bit patterns assigned for gray code from decimal 0 to 10.

Table 1.1: Decimal Code to Gray Code Conversion

Decimal code Gray code

0

1

2

3

4

5

6

7

8

9

10

0000

0001

0011

0010

0110

0111

0101

0100

1100

1101

1111

6. Error Detecting Codes: Whenever data is transmitted from one point to another, there is a
probability that the data may get corrupted. In order to detect these data errors, some special
codes called error detection codes are used.

4 LOVELY PROFESSIONAL UNIVERSITY

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

Notes 7. Error Correcting Codes: These codes not only detect errors in data, but also correct them
significantly. Error correction codes are a method by which a set of symbols can be represented
such that even if any 1 bit of the representation gets accidentally flipped, we can still clearly
identify the earlier symbol. Error correcting codes depend mainly on the notations and results
of linear algebra. Error correction can be done using many methods like parity checking,
Hamming codes, Single-bit Error Correction Double-bit Error Correction (SECDED), and so
on.

Notes Error correcting codes are used in memories, networking, CDROM, and so on.

Example: Error correction using parity checking is as follows:
In parity check, an extra bit is added to the binary number to make all the digits
in the binary number to sum up to an even or odd value. When the number adds
up to an even number, we call it even parity and when the number sums up to an
odd number, we call it odd parity. Consider the following two binary numbers:

1011010

1101011

Now, if we want to use even parity, we can add a parity bit to these numbers to
obtain an even number as shown below:

01011010 4

11101011 6

If we want to use odd parity, we can add a parity bit to the number as follows:

11011010 5

01101011 5

Most of the modern applications use even parity. Let us consider even parity in
our example.

The two binary numbers that need to be transmitted are:

01011010……………….The even parity

11101011……………….The even parity

Suppose during transmission the bits get changed as follows:

01111010 5

10101011 5

We can observe that the digits in the number sum up to odd numbers. Since we
are using even parity, the computer knows that there is an error in the
transmission.

8. Alphanumeric Codes: These are codes that consist of both numbers and alphabets. The most
commonly used alphanumeric codes are ASCII and EBCDIC.

(a) EBCDIC Code: EBCDIC (Extended Binary Coded Decimal Interchange) is mainly used
 with large computer systems like mainframe computers. It is an 8-bit code which
 accommodates up to 256 characters.

5LOVELY PROFESSIONAL UNIVERSITY

Unit 1: Review of Basics of Digital Electronics

Notes(b) ASCII Code: ASCII (American Standard Code for Information Interchange) has become
a standard alphanumeric code for microcomputers and computers. It is a 7-bit code,
which represents 128 different characters. These 128 characters include 52 alphabets,
which include A to Z and a to z, numbers from 0 to 9 (that is, 10 numbers), 33 special
characters and symbols, and 33 control characters.

1.2 Logic Gates

A logic gate is an electronic device that makes logical decisions based on the different combinations
of digital signals available on its inputs. A digital logic gate can have more than one input signal
but has only one digital output signal.

Integrated Circuits or ICs can be grouped together into families according to the number of
transistors or gates. Integrated circuits are categorized according to the number of logic gates or
the circuit complexities within a chip.

AND Gate

AND gate is a type of digital logic gate, which has an output that is normally at logic level “0”
and goes “HIGH” to a logic level “1” when all of its inputs are at logic level “1”. The output of
AND gate returns “LOW” when any of its inputs are at a logic level “0”.

The Boolean expression for AND gate is Q= A.B.

A simple 2-input logic AND gate can be constructed using RTL structure connected together as
shown below in figure 1.2. Both transistors, T1 and T2 must be saturated “ON” to produce an output
at Q. In the figure 1.2, we can observe that the output from T1 is the input to T2. Vcc is the input to
transistor 1 and the final output, Q=A.B, is obtained from T2.

Figure 1.2: Design of AND Gate

6 LOVELY PROFESSIONAL UNIVERSITY

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

Notes The figure 1.3 shows the truth table and symbol of AND gate.

 Figure 1.3: Logic Symbol an d Truth Table of AND
Gate

Example: Commonly available digital logic AND gate ICs are:

 TTL Logic Types

74LS08 Quad 2-input

74LS11 Triple 3-input

 74LS21 Dual 4-input

Internal structure of IC 7408

 CMOS Logic Types

CD4081 Quad 2-input

CD4073 Triple 3-input

 CD4082 Dual 4-input

Figure 1.4: Internal Structure of IC 7408

7LOVELY PROFESSIONAL UNIVERSITY

Unit 1: Review of Basics of Digital Electronics

NotesThe figure 1.4 depicts how AND gates are placed within an IC. In the figure, pin number 1, 2, 4, 5,
9, 10, 12, and 13 are the inputs to the AND gate, while 3, 6, 8, and 11 are the AND outputs. Pin
number 7 is connected to ground and pin number 14 is connected to the power supply.

OR Gate

OR gate is a type of digital logic gate which has an output that is normally at logic level ’0’, but
goes ’HIGH’ to a logic level ’1’ when any of its inputs are at logic level ’1’. The output of a logic
OR gate returns ’LOW’ again when all of its inputs are at a logic level ’0’.

The Boolean expression for OR gate is denoted as Q = A+B.

A simple 2-input logic OR gate can be constructed using RTL structure connected together as shown
in the figure 1.5 Either transistor T1 or transistor T2 must be saturated “ON” to produce an output
at Q. In the figure 1.5, we can observe that Vcc is the input to both T1 and T2. The output of T1 and
T2 constitutes the final output - Q=A+B.

Figure 1.5: Design of OR Gate

Example: Commonly available OR gate ICs are as follows:

 TTL Logic Types

74L S32 Quad 2-input

 CMOS Logic Types

CD4071 Quad 2-input

CD4075 Triple 3-input

 CD4072 Dual 4-input

8 LOVELY PROFESSIONAL UNIVERSITY

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

Notes Figure 1.6 depicts logic symbol and truth table of OR gate.

 Figure 1.6: Logic Symbol and Truth Table of OR
Gate

Figure 1.7 depicts how OR gates are placed within an IC.

Figure 1.7: Internal Structure of IC 7432

In the figure, pin number 1, 2, 4, 5, 9, 10, 12, and 13 are the inputs to the OR gate, while 3, 6, 8, and
11 are the OR outputs. Pin number 7 is connected to the ground and pin number 14 is connected
to the power supply.

NOT Gate

In digital electronics, the NOT gate is also known as inverting buffer or a digital inverter element.
A NOT gate is basically a single input device. It has an output level that is often at logic level ‘1’.
However, it goes ‘LOW’ to a logic level ‘0’ whenever the single input is at logic level ‘1’. The
output from a NOT gate returns ’HIGH’ when its input is at logic level ’0’.

The Boolean expression of NOT gate is Q=A

9LOVELY PROFESSIONAL UNIVERSITY

Unit 1: Review of Basics of Digital Electronics

NotesA simple 2-input logic NOT gate can be constructed using a RTL structure as shown in figure 1.8
with the input connected directly to the transistor base. If the transistor is saturated ’ON’, we
receive an inversed output ‘OFF’ at Q.

Figure 1.8: Design of NOT Gate

Figure 1.9 depicts the logic symbol and the truth table of a NOT gate.

Figure 1.9: Logic Symbol and Truth Table
of NOT Gate

10 LOVELY PROFESSIONAL UNIVERSITY

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

Notes NAND and NOR Gate Equivalents for NOT Gate

A NOT gate can be constructed using standard NAND and NOR gates by connecting all their
inputs together to a common input signal as shown in figure 1.10.

Figure 1.10: NAND and NOR Gate

Example: Commonly available logic NOT gate and Inverter IC’s are as follows:
 TTL Logic Types
 74LS04 Hex Inverting NOT Gate
 74LS04 Hex Inverting NOT Gate
74LS14 Hex Schmitt Inverting NOT Gate
 74LS1004 Hex Inverting Drivers

 CMOS Logic Types
 CD4009 Hex Inverting NOT Gate
 CD4069 Hex Inverting NOT Gate

The figure 1.11 depicts how NOT gates are placed within an IC.

Figure 1.11: Internal Structure of IC 7404

In the figure, pin number 1, 3, 5, 9, 11, and 13 are the inputs to the NOT gate, while 2, 4, 6, 8, 10,
and 12 are the NOT outputs. Pin number 7 is connected to ground and pin number 14 is connected
to the power supply.

Universal Gates

NAND gate and NOR gate are called universal gates because these gates can be connected together
in various combinations to form other gates like AND, OR, and NOT.

NAND Gate

NAND gate is a combination of AND gate with an inverter or NOT gate connected together in
series. NAND gate has an output that is normally at logic level ’1’ and only goes ’LOW’ to logic
level ’0’ when all of its inputs are at logic level “1”.

The Boolean expression of NAND gate is Q= A.B

11LOVELY PROFESSIONAL UNIVERSITY

Unit 1: Review of Basics of Digital Electronics

NotesA simple 2-input logic NAND gate can be constructed using RTL structure connected together as
shownin figure 1.12, with the inputs connected directly to the transistor bases. Either transistor T 1
or T2 must be cut-off ’OFF’ to receive an output at Q. Figure 1.12 depicts a design of NAND gate.
In figure 1.12, we can observe that the output of transistor T 1 is the input to transistor T2. The
output, Q = A.B is received from T1.

The figure 1.13 illustrates the logic symbol and truth table of NAND gate.

Did u know? NAND gate and NOR gate are called universal gates because these gates can be
connected together in various combinations to form other gates like AND, OR, and NOT
gates.

Figure 1.12: Design of NAND Gate

 Figure 1.13: Logic Symbol and Truth Table of
NAND Gate

12 LOVELY PROFESSIONAL UNIVERSITY

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

Notes The various logic gates formed using NAND gates are as follows:

Example: Commonly available logic NAND gate ICs are as follows:
 TTL Logic Types
74LS00 Quad 2-input
74LS10 Triple 3-input
 74LS20 Dual 4-input
74LS30 Single 8-input

 CMOS Logic Types
CD4011 Quad 2-input
CD4023 Triple 3-input
CD4012 Dual 4-input

The figure 1.14 depicts how NAND gates are placed within an IC.

Figure 1.14: Internal Structure of IC 7400

 In the figure, pin number 1, 2, 4, 5, 9, 10, 12, and 13 are the inputs to the NAND gate, while 3, 6, 8,
and 11 are the NAND outputs. Pin number 7 is connected to ground and pin number 14 is connected
to the power supply.

NOR Gate

NOR gate is a combination of OR gate with a NOT gate connected together in a series. The NOR
gate has an output that is normally at logic level ’1’ and only goes ’LOW’ to logic level ’0’ when
any of its inputs are at logic level ’1’.

The Boolean expression of NOR gate is Q= A+B

To construct a 2-input logic NOR gate, an RTL Resistor-transistor switches can be used. The RTL
must be connected together as shown in the figure 1.15 with the inputs connected directly to the
transistor bases. Both transistors, T1 and T2 must be cut-off ’OFF’ to receive an output at Q. Figure
1.15 shows the design of NOR gate.

13LOVELY PROFESSIONAL UNIVERSITY

Unit 1: Review of Basics of Digital Electronics

NotesIn figure 1.15, we can observe that Vcc is the input to both transistors T1 and T2. The output of T1
and T2 is grounded. The inputs of both T1 and T2 constitute the output, Q=A+B.

Figure 1.15: Design of NOR Gate

Figure 1.16 depicts the logic symbol and truth table of NOR gate.

Figure 1.16: Logic Symbol and Truth Table of
NOR Gate

Example: Commonly available NOR gate ICs are as follows:

 TTL Logic Types
74LS02 Quad 2-input
74LS27 Triple 3-input
74LS260 Dual 4-input

 CMOS Logic Types
 CD4001 Quad 2-input
CD4025 Triple 3-input
 CD4002 Dual 4-input

14 LOVELY PROFESSIONAL UNIVERSITY

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

Notes Figure 1.17 shows the internal structure of IC 7402.

Figure 1.17: Internal Structure of IC 7402

Figure 1.17 depicts how NOR gates are placed within an IC. In the figure 1.17, pin number 1, 2, 4,
5, 9, 10, 12, and 13 are the inputs to the NOR gate, while 3, 6, 8, and 11 are the NOR outputs. Pin
number 7 is connected to ground and pin number 14 is connected to the power supply.

Application of Universal Gates

The NAND and NOR gates can be used to construct other forms of gates. The figures 1.18(a), 1.18
(b), 1.18 (c) depict the application of these universal gates.

The various logic gates formed using NAND gates and their truth tables are as follows:

 Figure 1.18 (a): Construction of AND Gate Using
NAND Gate

15LOVELY PROFESSIONAL UNIVERSITY

Unit 1: Review of Basics of Digital Electronics

Notes
Figure 1.18 (b): Construction of NOT Gate Using NAND

Gate

Figure 1.18 (c): Construction of OR Gate Using NAND
Gate

16 LOVELY PROFESSIONAL UNIVERSITY

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

Notes NOR gates

The construction of logic gates using NOR gates and their truth tables are given in the below
figures.

 Figure 1.19 (a): Construction of OR Gate Using NOR
Gate

 Figure 1.19 (b): Construction of NOT Gate Using NOR
Gate

17LOVELY PROFESSIONAL UNIVERSITY

Unit 1: Review of Basics of Digital Electronics

Notes

Figure 1.19 (c): Construction of AND Gate Using NOR
Gate

Exclusive-OR Gate

The output of an Exclusive-OR gate goes ’HIGH’ when its two input terminals are at different
logic levels with respect to each other and they can be at logic level ’1’ or both at logic level ’0’.

The Boolean expression is Q= (A B) = A.B+A.B

One of the main disadvantages of implementing the Ex-OR function is that it contains three different
types of logic gates OR, NAND, and AND within its design.

Figure 1.20: Logic Symbol and Truth Table of
Exclusive OR Gate

18 LOVELY PROFESSIONAL UNIVERSITY

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

Notes One simpler way of producing the Ex-OR function from a single gate is to use NAND gate as
shown below.

Example: Some of the commonly available Exclusive-OR gate ICs are as follows:

 TTL Logic Types
74LS86 Quad 2-input

 CMOS Logic Types
CD4030 Quad 2-input

The figure 1.22 depicts how Ex-OR gates are placed within an IC.

Figure 1.22: Internal Structure of IC 7486

 In the figure, pin number 1, 2, 4, 5, 9, 10, 12, and 13 are the inputs to the Ex-OR gate, while 3, 6, 8,
and 11 are the Ex-OR outputs. Pin number 7 is connected to ground and pin number 14 is connected
to the power supply.

Exclusive-NOR Gate

The Exclusive-NOR gate function is a digital logic gate that is the complementary form of the
Exclusive-OR function. Normally, this function is at logic level ’1’, but it goes ’LOW’ to logic
level ’0’ whenever any of its inputs are at logic level ’1’. However, another instance where an
output ’1’ is obtained is when both of its inputs are at logic level “1”.

The Boolean expression is Q = (A B) = A.B + A.B. It can also be represented as A B

 Figure 1.21: Ex-OR Gate Equivalent Circuit using
NAND Gate

19LOVELY PROFESSIONAL UNIVERSITY

Unit 1: Review of Basics of Digital Electronics

NotesFigure 1.23 shows logic symbol and truth table of exclusive NOR gate.

Figure 1.23: Logic Symbol and Truth Table of
Exclusive NOR Gate

 The following figure depicts the Ex-NOR equivalent circuit.

Figure 1.24: Ex-NOR Gate Equivalent Circuit

One of the main disadvantages of implementing the Ex-NOR function is that it contains three
different types of logic gates which are AND, NOT, and OR gate within its basic design. One
simpler way of producing the Ex-NOR function from a single gate type is to use NAND gates as
shown in figure 1.25.

Figure 1.25: Ex-NOR Equivalent Circuit
Using NAND Gate

20 LOVELY PROFESSIONAL UNIVERSITY

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

Notes Figure 1.26 shows the internal structure of IC 74266.

Figure 1.26: Internal Structure of IC 74266

Figure 1.26 depicts how EX-NOR gates are placed within an IC. In the figure, pin number 1, 2, 4, 5,
9, 10, 12, and 13 are the inputs to the EX-NOR gate, while 3, 6, 8, and 11 are the EX-NOR outputs.
Pin number 7 is connected to ground and pin number 14 is connected to the power supply.

We can classify integrated circuits as follows:

1. Small Scale Integration (SSI): It contains up to 10 transistors or a few gates within a single
package such as AND, OR, and NOT gates.

2. Medium Scale Integration (MSI): It contains between 10 and 100 transistors or gates within a
single package and performs digital operations such as adders, decoders, counters, flip-flops,
and multiplexers.

3. Large Scale Integration (LSI): It contains between 100 and 1000 transistors or hundreds of gates
and performs specific digital operations on I/O chips, memory, arithmetic, and logic units.

4. Very-Large Scale Integration (VLSI): It contains between 1,000 and 10,000 transistors or
thousands of gates and performs computational operations such as processors, large memory
arrays, and programmable logic devices.

5. Super-Large Scale Integration (SLSI): It contains between 10,000 and 100,000 transistors within
a single package and performs computational operations like microprocessor chips, micro-
controllers, and basic calculators.

1.3 Summary
• Binary codes are classified into many forms like weighted codes, reflective codes, sequential

codes, alphanumeric codes, and so on.

• Alphanumeric codes include ASCII code and EBCDIC code.

• There are various logic gates in digital electronics like AND gate, OR gate, NOT gate, NAND
gate, NOR gate, and so on, which have their own significance in digital electronics.

• NAND gate and NOR gate are called universal gates as other basic gates can be constructed
using these gates.

21LOVELY PROFESSIONAL UNIVERSITY

Unit 1: Review of Basics of Digital Electronics

Notes1.4 Keywords

Boolean Expression: An expression that produces a Boolean value as a result.

Integrated Circuit: Complex circuits that are etched onto tiny chips of semiconductor.

Micro-controller: A computer-on-a-single integrated circuit containing a processor core, memory,
and programmable input/output peripherals.

RTL: Resistor Transistor Switches.

1.5 Self Assessment

1. State whether the following statements are true or false:

(a) Alphanumeric code is mainly used with large computer systems like mainframe
computers.

(b) The Boolean expression for NOR gate is denoted as Q = A+B.

(c) The Ex-NOR function contains three different types of logic gates which are AND, NOT
and OR gate within its basic design.

2. Fill in the blanks:

(a) Digital data is represented, stored, and transmitted as groups of binary digits which
are called ________________.

(b) In ________________ code, each decimal digit is represented by a 4-bit binary number.

(c) The Boolean expression for OR gate is denoted as ________________.

3. Select a suitable choice for every question:

(a) Gray codes are an example of which of the following codes:

(i) Weighted codes

(ii) Non-weighted codes

(iii) Reflective codes

(iv) Sequential codes

(b) Which of the following ICs contain up to 10 transistors or a few gates within a single
package such as AND, OR, and NOT gates.

(i) SSI

(ii) MSI

(iii) LSI

(iv) VLSI

1.6 Review Questions

1. “The digital logic gate is the building block from which all digital electronic circuits and
microprocessor based systems are built.” Discuss with the help of circuit diagrams.

2. “The Boolean expression for AND gate is A.B = Q.” Elaborate.

3. “NAND gate is a combination of AND gate with an inverter or NOT gate connected together
in series.” Elaborate.

Answers: Self Assessment
1. (a) False (b) False (c) True

2. (a) Bits (b) BCD (c) Q = A+B

3. (a) Non-weighted code (b) SSI

22 LOVELY PROFESSIONAL UNIVERSITY

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

Notes 1.7 Further Readings

Books Radhakrishnan, T., & Rajaraman, V. (2007). Computer Organization and Architecture.
New Delhi :Rajkamal Electric Press. Godse, A.P., & Godse D.A. (2008). Digital
Electronics, 3rd ed. Pune: Technical Publications.

Online links http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-KANPUR/esc102/
node32.html
http://www.upscale.utoronto.ca/IYearLab/digital.pdf

http://www.electronicdesignworks.com/digital_electronics/multiplexer/
multiplexer.htm

http://www.scribd.com/doc/26296603/DIGITAL-ELECTRONICS-demultiplexer

23LOVELY PROFESSIONAL UNIVERSITY

Unit 2: Devices Used in Digital Electronics

Notes
Unit 2: Devices Used in Digital Electronics

 CONTENTS

 Objectives

 Introduction

 2.1 Combinational Circuit and Sequential Circuit

 2.2 Latches and Flip-flops

 2.2.1 Latches

 2.2.2 Flip-flops

 2.3 Registers

 2.3.1 Data Register

 2.3.2 Shift Register

 2.4 Counters

 2.4.1 Synchronous Counters

 2.4.2 Asynchronous Counters

 2.5 Multiplexer

 2.6 Demultiplexer

 2.7 Decoder and Encoder

 2.7.1 Binary Decoder

 2.7.2 3 to 8 Decoder

 2.7.3 Encoder

 2.8 Summary

 2.9 Keywords

 2.10 Self Assessment

 2.11 Review Questions

 2.12 Further Readings

Objectives

After studying this unit, you will be able to:

• Differentiate between combinational and sequential circuits

• Explain latches and flip-flops

• Discuss the working of registers and counters

• Describe the functions of multiplexers and demultiplexers

• Identify the features of an encoder and a decoder

Introduction

Various devices are used in digital electronics. In the previous unit, we discussed logic gates which
are devices used to implement basic logical expressions.

Electronic gadgets, despite their complexity operate using basic rules and circuits, which are
discussed in this unit. These circuits and rules are applicable to computer organization as well.

Sahil Rampal, Lovely Professional University

24 LOVELY PROFESSIONAL UNIVERSITY

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

Notes We will also discuss about latches and flip-flops, registers, counters, multiplexer, de-multiplexer,
and encoder and decoder.

2.1 Combinational Circuit and Sequential Circuit
There are two types of circuits that can be constructed using logic gates. They are:

1. Combinational circuits

2. Sequential circuits

Combinational Circuits: A circuit in which the output/outputs depend on the present state of
combination of the logic inputs is called as combinational circuits. These circuits do not consider
past state of inputs. Logic gates are the basic building blocks of these circuits. Multiplexers,
demultiplexers are combinational circuits.

Sequential Circuits: A circuit in which the output/outputs depend on both the present state and
past state of input is called as sequential circuit. Flip-flops are the basic building block of a
sequential circuit. Sequential circuits have a memory unit which stores the past state of inputs.
Sequential circuits can be synchronous or asynchronous.

2.2 Latches and Flip-flops
Just as gates are the building blocks of combinatorial circuits, flip-flops are the building blocks of
sequential circuits. Gates are built directly from transistors and flip-flops are built from latches.

The output of latches and flip-flops depends not only on the current inputs but also on previous
inputs and outputs. One of the contrasting features between a latch and a flip-flop is that a latch
does not have a clock signal, whereas a flip-flop always has clock signals.

2.2.1 Latches
A latch is a device with exactly two stable states and these states are high-output and low-output.
A latch has a feedback path, to retain the information. Hence, latches can be memory devices and
can store one bit of data. As the name suggests, latches can be used to “latch onto” information
and store it in the required place. One of the most commonly used latches is the SR latch.

SR Latch

An SR latch is an asynchronous device. An SR latch does not depend on control signals but depends
only on the state of the S and R inputs. An SR latch can be constructed by interconnecting two
NOR gates with a cross-feedback loop. SR latches can also be formed by interconnecting NAND
gates but the inputs are swapped and negated.

A simple SR latch circuit is shown in the figure 2.1, where the inputs S and R represents ’set’ and
’reset’. The current output of a latch is dependent on the state of the latch. Thus, the output at nth

instant represented as Qn is dependent on output at (n-1)th instant represented by Qn-1.

Figure 2.1: A Latch Circuit

25LOVELY PROFESSIONAL UNIVERSITY

Unit 2: Devices Used in Digital Electronics

NotesThe table 2.1 shows the truth table for SR latch.

Table 2.1: Truth Table for SR Latch

S R Qn Qn

1 0 1 0

0 1 0 1

1 1 0 0

0 0 Qn-1 Qn-1

Similar SR latch can be constructed using NAND gates. The figure 2.2 depicts how an SR latch can
be constructed using NAND gate.

Figure 2.2: A Latch Circuit

 The table 2.2 shows the truth table for an SR latch that is constructed using NAND gate.

 Table2.2: Truth Table for SR Latch that Uses NAND
Gate

S R Qn Qn

0 1 1 0

1 0 0 1

0 0 1 1

1 1 Qn-1 Qn-1

26 LOVELY PROFESSIONAL UNIVERSITY

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

Notes This truth table shows the working of the SR latch.

Notes SR latch stores the last state of the inputs that is, it remembers which of the two inputs,
‘s’ or ‘r’, last had the value of 1.

Task Using the concept of SR latch, find out the truth table for gated SR latch.

2.2.2 Flip-flops

We know that latches are asynchronous elements, which means that the output varies when the
input changes. But most computers have synchronous elements. Synchronous elements are the
elements in which the outputs of all the sequential circuits change simultaneously according to
the clock signal.

A flip-flop is therefore a synchronous version of the latch.

Set-Reset (SR) Flip-flop

The SR flip-flop has two inputs namely, a ‘Set’ input and a ‘Reset’ input. The two outputs of SR

flip-flop are: the main output Q and its complement Q .

The figure 2.3 depicts the circuit diagram of an SR flip-flop.

Figure 2.3: An SR F lip-Flop

Clock
pulse

27LOVELY PROFESSIONAL UNIVERSITY

Unit 2: Devices Used in Digital Electronics

NotesThe truth table of SR flip flop is shown in table 2.3.

Table 2.3: Truth Table of SR Flip Flop

S R 1NQ 1NQ

0 0 Q N Q N

0 1 0 1

1 0 1 0

1 1 Indeterminate

A pair of cross-coupled NOR gates is used to represent an SR flip-flop, wherein, the output of one
gate is connected to one of the two inputs of the other gate and vice versa. The free input of one
NOR gate is ‘R’ while the free input of the other gate is ‘S’.

The input ‘R’ produces the output Q and the gate with the ‘S’ input produces the output Q

.

The logic symbol of SR flip-flop is shown in figure 2.4.

JK Flip-flop

In JK flip-flop, apart from the states of its inputs, the output is determined by its present output
state as well. In the JK flip-flop, the ‘S’ input is called the ‘J’ input and the ‘R’ input is called the ‘K’
input. The output of the JK flip-flop does not change if both ‘J’ and ‘K’ are ‘0’. However, if both
the inputs are ‘1’, then the output toggles to its complement.

 Figure 2.4: Logic Symbol of SR Flip-
Flop

S Q

R Q

28 LOVELY PROFESSIONAL UNIVERSITY

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

Notes Figure 2.5 depicts the circuit diagram of a JK flip-flop.

The truth table of JK flip-flop is shown in table 2.4.

Table 2.4: Truth Table of JK Flip-Flop

J K 1NQ
0 0 QN
0 1 0
1 0 1
1 1 Q N

The logic symbol for JK flip-flop is shown in figure 2.6.

Figure 2.6: Logic Symb ol of JK Flip-Flop

 D Flip-flop

The D flip-flop is a clocked flip-flop with a single digital input ‘D’. Every time a D flip-flop is
clocked, its output follows the state of ‘D’.

Figure 2.5: An JK Flip-Flop

29LOVELY PROFESSIONAL UNIVERSITY

Unit 2: Devices Used in Digital Electronics

NotesFigure 2.7 depicts the circuit diagram of a D flip-flop.

The truth table for D flip-flop is as shown in table 2.5.

The logic symbol for D flip-flop is shown in figure 2.8.

T Flip-flop

The T flip-flop is also known as toggle flip-flop. It is a modification of the JK flip-flop. The T flip-
flop is obtained by connecting both inputs of a JK flip-flop that is, T flip-flop is obtained by
connecting the inputs ‘J’ and ‘K’ together. When T = 0, both AND gates are disabled. Hence, there
is no change in the output. When T= 1, the output toggles.

Table 2.5: Truth Table of D Flip-Flop

CP D Qn+1

Positive 0 0

Positive 1 1

0 X Qn

Figure 2.8: Logic Symbol of D Flip-Flop

Figure 2.7: A D Flip-Flop

30 LOVELY PROFESSIONAL UNIVERSITY

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

Notes
Figure 2.9 depicts the circuit diagram of a D flip-flop.

The truth table of T flip-flop is shown in table 2.6.

The logic symbol of T flip-flop is shown in figure 2.10.

Figure 2.9: A T Flip-Flop

Table 2.6: Truth Table of T Flip-Flop

Qn T Qn+1

0 0 0

0 1 1

1 0 1

1 1 0

Figure 2.10: Logic Symbol of T Flip-Flop

31LOVELY PROFESSIONAL UNIVERSITY

Unit 2: Devices Used in Digital Electronics

Notes2.3 Registers

Flip-flops are the binary cells that are capable of storing one bit information. The group of flip-
flops can be used to store a word, which is called register. Since flip flops can store 1-bit
information, an n-bit register has a group of n flip-flops and is capable of storing binary
information containing n-bits.

2.3.1 Data Register

Data register is the simplest type of register that is used for the temporary storage of a data word.
In its simplest form, it consists of a set of n-D flip-flops, which share a common clock pulse. All
the digits that are present in the n-bit data word are connected to the data register by an n-line
data bus. The following figure depicts a four bit data register, implemented with four D flip-
flops.

Figure 2.11: 4 Bit Data Register

Since all the flip-flops change state at the same time, the data register can be called as a synchronous
device. The number of flip-flops in a register determines its total storage capacity. Therefore, when
the first clock pulse arrives, the stored binary information becomes

QAQBQCQD = ABCD

2.3.2 Shift Register

Another common form of register used in many types of logic circuits is shift register. It is a set
of flip-flops (usually D latches or S-R flip-flops) connected together in a series such that the output
of one becomes the input of the next, and so on. It is called a shift register because the data is
shifted through the register by one bit position on each clock pulse.

Let us next discuss the modes of operation of shift registers.

32 LOVELY PROFESSIONAL UNIVERSITY

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

Notes Serial-In Serial-Out Shift Register

The direction of shifting of data determines the ‘serial-in serial-out’ shift register into right shift
and left shift register. The figure 2.12 shows a ‘serial-in serial-out’ right shift register.

 Figure 2.12: Serial-in Serial-out Right Shift
Register

During the first clock pulse, the signal on the data input is latched in the first flip-flop. During the
next clock pulse, the contents of the first flip-flop are stored in the second flip-flop, and the signal
which is present at the data input is stored in the first flip-flop, and so on. Because the data is
entered one bit at a time, we call it as a serial-in shift register. If there is only one output, and
data leaves the shift register one bit at a time, then it is also a serial-out shift register.

Serial-In Parallel Out Shift Register

The ‘preset’ and ‘clear’ input commands can be provided to the flip-flops to obtain a parallel input.
The parallel loading of the flip-flop can be synchronous (that is, it occurs with the clock pulse) or
asynchronous (independent of the clock pulse), depending on the design of the shift register. The
outputs of each flip-flop produce a parallel output.

Figure 2.13: Serial-in Parallel Out Shift Register

33LOVELY PROFESSIONAL UNIVERSITY

Unit 2: Devices Used in Digital Electronics

NotesParallel In Parallel Out Shift Register

In ‘parallel in parallel out’ register there is simultaneous entry of all data bits and the bits appear
on parallel outputs simultaneously. The following figure shows a ‘parallel in parallel out’ shift
register.

Figure 2.14: Parallel In Paralle l Out Shift Register

2.4 Counters
A counter is a register which is capable of counting the number of clock pulses arriving at its
clock input. There are two types of counters namely, synchronous and asynchronous counters. As
the common clock in a synchronous counter is connected to all of the flip-flop, they are clocked
simultaneously. In asynchronous counter, the first flip-flop is clocked by the external clock pulse

and then each successive flip-flop is clocked by the Q or Q output of the previous flip-flop.

2.4.1 Synchronous Counters
Figure 2.15 depicts a synchronous counter.

Figure 2.15: Synchronous Counters

Here, the clock signal is connected in parallel to clock inputs of all the flip -flops. Initially, we
assume that QA = QB = 0. When positive edge of the first clock pulse is applied, flip-flop A will
toggle, whereas flip-flop B output will remain zero because JB = KB = 0. After first clock pulse,

34 LOVELY PROFESSIONAL UNIVERSITY

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

Notes QA = 1 and QB = 0. After second clock pulse, QA = 0 and QB = 1. After the fourth clock pulse the
counter recycles back to its original state.

2.4.2 Asynchronous Counters
An asynchronous counter consists of a series connection of complementing flip-flops, with the
output of each flip-flop connected to the clock input of the next higher order flip-flop. To obtain a
complementing flip-flop a JK flip flop can be used by connecting the J and K inputs together. The
figure 2.16 shows a 2-bit asynchronous counter using JK flip-flops.

Figure 2.16: Asynchronous Counter

2.5 Multiplexer

A multiplexer is a digital switch which allows digital information from several sources to be
routed onto a single output line. A set of selection lines control the selection of a particular input
line. Therefore, a multiplexer is a multiple-input and single-output switch. It provides the digital
equivalent of an analog selector switch.

A multiplexer is also called as data selector as it accepts many digital data inputs and selects one
of them at any given time to pass onto the output. In some cases, two or more multiplexers are
enclosed within an IC package. Figure 2.17 depicts the switching concept of a multiplexer.

 Figure 2.17: Switching Concept of a
Multiplexer

35LOVELY PROFESSIONAL UNIVERSITY

Unit 2: Devices Used in Digital Electronics

NotesFigure 2.18 depicts a 4 to 1 line multiplexer.

Figure 2.18: 4x1 Multip lexer

The truth table of a multiplexer circuit is shown in table 2.7.

Table 2.7: Truth Table of Multiplexer

S1 S0 Y
0 0 D0
0 1 D1
1 0 D2
1 1 D3

Example: 74xx151 is an 8 to 1 multiplexer which has 8 inputs and two outputs. One of the
outputs is an active high output and the other is an active low output. These circuits are used mostly
in digital systems of all types, such as data selection, data routing, operation sequencing, parallel-
to-serial conversion, waveform generation, and logic-function generation.

36 LOVELY PROFESSIONAL UNIVERSITY

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

Notes 2.6 Demultiplexer

A circuit that receives information on a single line and transmits the information on any of the 2 n

possible output lines is called as a demultiplexer. Therefore, a demultiplexer is called a single-
input multiple-output switch. The values of n selection lines control the selection of specific output
line.

A demultiplexer is shown in figure 2.19.

Figure 2.19: 1x4 Demultiplexer

 The truth table of a demultiplexer circuit is shown in table 2.8.

A demultiplexer is used extensively in clock demultiplexer, security monitoring system,
synchronous data transmission system, and so on.

2.7 Decoder and Encoder
A decoder is a multiple input, multiple output logic circuit. A decoder converts coded inputs into
coded outputs, where the input and output codes are different. Often, the input code has fewer
bits than the output code. Each input code word produces a different output code word. The
following figure shows the general structure of the decoder circuit which shows that n inputs
produce 2n possible outputs. The 2n output values are from 0 through 2n-1. Usually, a decoder is
provided with enabled inputs to activate decoded output based on data inputs. When any one
enabled input is unasserted, all outputs of decoder are disabled.

Table 2.8: Truth Table of Demultiplexer

Enable S1 S0 Din Y0 Y1 Y2 Y3
0 X X X 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0
1 0 1 0 0 0 0

1 0 1 1 0 1 0 0
1 1 0 0 0 0 0 0
1 1 0 1 0 0 1 0
1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 1

37LOVELY PROFESSIONAL UNIVERSITY

Unit 2: Devices Used in Digital Electronics

Notes2.7.1 Binary Decoder

A binary decoder is a decoder which has an n-bit binary input code and one activated output
which is selected from 2n output codes. This decoder is applicable in instances where it is necessary
to activate exactly one of 2n outputs based on an n-bit input value.

In a 2 to 4 decoder, 2 inputs are decoded into four outputs, each output representing one of the
minterms of the 2 input variables. The two inverters provide the complement of the inputs and
each one of the four AND gates generate one of the minterms.

The figure 2.20 illustrates the circuit diagram of a 2 to 4 decoder.

Table 2.9 shows the truth table for a 2 to 4 decoder.

2.7.2 3 to 8 Decoder
The 74x138 is a 3 to 8 decoder. It accepts three binary inputs, namely A, B, and C and it provides
eight individual active low outputs (Y0-Y7) when enabled. The device has three enable inputs,
that is, two active low and one active high.

Figure 2. 20: 2 to 4 Decoder Circuit Diagram

Table 2.9: Truth Table of a 2 to 4 Decoder

Inputs Outputs
EN A B Y3 Y2 Y1 Y0
0 X X 0 0 0 0
1 0 0 0 0 0 1
1 0 1 0 0 1 0
1 1 0 0 1 0 0
1 1 1 1 0 0 0

38 LOVELY PROFESSIONAL UNIVERSITY

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

Notes The figure 2.21 depicts a 3 to 8 decoder.

Figure 2.21: A 3 to 8 Decoder

 Figure 2.22 depicts the circuit diagram of a 3 to 8 decoder.

Figure 2.22: A 3 to 8 Decoder Circuit
Diagram

 Table 2.10 shows the truth table of a 3 to 8 decoder.

Table 2.10: Truth Table of a 3 to 8 Decoder

A B C D0 D1 D2 D3 D4 D 5 D6 D7
0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0 0 0 1

39LOVELY PROFESSIONAL UNIVERSITY

Unit 2: Devices Used in Digital Electronics

Notes2.7.3 Encoder

A digital circuit that performs the inverse operation of a decoder is called as an encoder. It has 2 n

input lines and n output lines. In an encoder, the output lines generate the binary code
corresponding to the input value. The figure 2.23 depicts the general structure of an encoder circuit.

Figure 2.23: An Encoder Circuit

Decimal to BCD Encoder

The decimal to BCD encoder has ten input lines and four output lines. The input for the encoder is
the decoded decimal data and encoded BCD is the output available on the four output lines. The
figure 2.24 shows the logic symbol for decimal to BCD encoder IC.

Figure 2.24: Decimal to BCD Encoder

40 LOVELY PROFESSIONAL UNIVERSITY

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

Notes Figure 2.25 depicts the decimal to BCD encoder circuit diagram.

Figure 2.25: Decimal to BCD Encoder Circuit
Diagram

Table 2.11 shows the truth table for a BCD encoder.

Table 2.11: Truth Table of a BCD Encoder

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 D C B A BCD
0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 1 1
0 1 0 0 0 0 0 0 0 0 0 1 0 2
0 0 1 0 0 0 0 0 0 0 0 1 1 3
0 0 0 1 0 0 0 0 0 0 1 0 0 4
0 0 0 0 1 0 0 0 0 0 1 0 1 5
0 0 0 0 0 1 0 0 0 0 1 1 0 6
0 0 0 0 0 0 1 0 0 0 1 1 1 7
0 0 0 0 0 0 0 1 0 1 0 0 0 8
0 0 0 0 0 0 0 0 1 1 0 0 1 9

2.8 Summary
• Binary codes are classified into many forms like weighted codes, reflective codes, sequential

codes, alphanumeric codes, and so on.

• There are various logic gates in digital electronics like AND gate, OR gate, NOT gate, NAND
gate, NOR gate, and so on which have their own significance.

• The output of latches and flip-flops depends not only on the current inputs but also on previous
inputs and outputs.

• The group of flip-flops can be used to store a word which is called a register.

41LOVELY PROFESSIONAL UNIVERSITY

Unit 2: Devices Used in Digital Electronics

Notes• A counter is a register which is capable of counting the number of clock pulses arriving at its
clock input.

• A multiplexer is a digital switch which allows digital information from several sources to be
routed onto a single output line.

• A demultiplexer is a circuit that receives information on a single line and transmits the same
information on any of the 2n possible output lines.

• A multiple input, multiple output logic circuit is called as a decoder. It converts coded inputs
into coded outputs.

• An encoder has 2n input lines and n output lines.

2.9 Keywords
Clock Pulse: A circuit in a processor that generates a regular sequence of electronic pulses used to
synchronize operations of the electronic system.

Register: An electronic component that offers a known resistance to the flow of electricity.

Switch: A device that directs incoming data from any of multiple input ports to the specific output
port.

2.10 Self Assessment
1. State whether the following statements are true or false:

(a) A decoder has 2n input lines and n output lines.

(b) In a 2 to 4 decoder, 2 inputs are decoded into four outputs, each output representing
one of the minterms of the 2 input variables.

(c) A demultiplexer is used extensively in clock multiplexer, security monitoring system,
synchronous data transmission system, and so on.

2. Fill in the blanks:

(a) The decimal to BCD encoder has ten input lines and ________________ output lines.

(b) A multiplexer is also called as ________________ as it accepts many digital data inputs
and selects one of them at any given time to pass onto the output.

(c) A counter is a ________________ which is capable of counting the number of clock pulses
arriving at its clock input.

3. Select a suitable choice for every question:

(a) Apart from the states of its inputs, the output of ________________ is determined by its
present output state as well.

(i) JK flip-flop

(ii) S-R flip-flop

(iii) D flip-flop

(iv) T flip-flop

(b) ________________ is a multiple input, multiple output logic circuit.

(i) Decoder

(ii) Encoder

(iii) Multiplexer

(iv) Demultiplexer

42

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes 2.11 Review Questions
1. “Flip-flops are built from latches.” Discuss.

2. “A pair of cross-coupled NOR gates is used to represent an S-R flip-flop.” Explain with the help
of circuit diagrams.

3. “Data register is the simplest type of register which is used for the temporary storage of a data
word.” Elaborate.

4. “Shift registers can be operated in different modes.” Discuss.

5. “Multiplexer is a multiple-input and single-output switch.” Explain with the help of circuit
diagrams.

6. “Demultiplexer is called a single-input, multiple-output switch.” Explain with the help of
circuit diagrams.

7. “In an encoder, the output lines generate the binary code corresponding to the input value.”
Elaborate.

Answers: Self Assessment

1. (a) False (b) True (c) False

2. (a) Four (b) Data selector (c) Register

3. (a) JK flip-flop (b) Decoder

2.12 Further Readings

Books Radhakrishnan, T., & Rajaraman, V. (2007). Computer Organization and Architecture.
New Delhi :Rajkamal Electric Press.
Godse, A.P., & Godse D.A. (2008). Digital Electronics, 3rd ed. Pune: Technical
 Publications.

Online links http://nptel.iitm.ac.in/courses/Webcourse-contents/IIT-KANPUR/esc102/
node32.html
http://www.upscale.utoronto.ca/IYearLab/digital.pdf

http://www.electronicdesignworks.com/digital_electronics/multiplexer/
multiplexer.htm

http://www.scribd.com/doc/26296603/DIGITAL-ELECTRONICS-demultiplexer

43

Unit 3: Data Representation and Data Transfer

LOVELY PROFESSIONAL UNIVERSITY

NotesUnit 3: Data Representation and Data Transfer

 CONTENTS

 Objectives

 Introduction

 3.1 1’s and 2’s Complement

 3.2 Fixed-Point and Floating-Point Number

 3.2.1 Decimal Fixed-Point Representation

 3.2.2 Floating-Point Representation

 3.3 Register Transfer

 3.3.1 Bus Transfer

 3.3.2 Memory Transfer

 3.4 Microoperation

 3.4.1 Logic Microoperation

 3.4.2 Shift Microoperation

 3.4.3 Arithmetic Logic Shift Unit

 3.5 Summary

 3.6 Keywords

 3.7 Self Assessment

 3.8 Review Questions

 3.9 Further Readings

Objectives
After studying this unit, you will be able to:

• Analyse 1s and 2s complement

• Discuss representation of fixed-point and floating-point numbers

• Discuss register transfer language and microoperations

Introduction
We are aware that computer organization deals with the functional units and the interconnectivity
among them by specifying the details of its architecture. These details may include instruction
set, number of bits used for the representation of different types of data (numbers, characters,
etc.), and so on. Any computer’s organization relies on the way it represents numbers, character,
and other information. This information in an organized form is referred to as data.

The information received are stored in memory or used by the CPU to perform required operations.
The information received is either data or instructions. An instruction is a command to perform a
specific type of operation and the data are the numbers or encoded characters that are represented
by signed integers 0 and 1. These signed integers are called as binary numbers. The basic arithmetic
operations such as addition, subtraction, multiplication and division can be performed using the
basic data types.

Notes Instruction set is the basic set of commands that a microprocessor understands.

Yadwinder Singh, Lovely Professional University

44

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes 3.1 1’s and 2’s Complement
In computers, binary number system is used for storing information as 0’s and 1’s.

Did u know?
 The basic unit of computer storage is a bit, which can be either 0 (off/positive) or

1 (on/negative).

1’s Complement
1’s complement is a method of representation of negative numbers in computers. A binary
number’s 1’s complement is obtained by inverting all 0s to 1s and all 1s to 0s.

Example: 0 in 8-bits is represented as 00000000 and -0 is represented in 1’s complement as
11111111.

Task Find out 1’s complement of (1001)2

2’s Complement

2’s complement is a method of representation of negative binary numbers in computers. A binary
number’s 2’s complement is obtained by adding 1 to that number’s 1’s complement.

Example: We can represent -28 in 2’s complement as follows:
1. Write 28 in binary form.
 00011100
2. Invert the digits by converting 0’s to 1’s and 1’s to 0’s.
 11100011
3. Add 1 to 11100011
The result is 11100100, which represents -28.

Task Find out 2’s complement of (1010 0011)2

Computer circuits perform different operation on binary number system. Binary operations are
the key to perform all basic arithmetic operations, such as addition, subtraction, multiplication,
and division. In these operations, the Most Significant Bit (MSB) is reserved to indicate the sign (+
or -). MSB is 0 for positive numbers and 1 for negative numbers. The rules for the binary additions
are depicted in the table 3.1.

45

Unit 3: Data Representation and Data Transfer

LOVELY PROFESSIONAL UNIVERSITY

NotesAs per the table 3.1, when two positive numbers are to be added, bit pairs are added, starting
from lower-order (right end) bits, going up to the higher-order bits. While adding 1+1, a carry is
generated.

Table 3.1: Binary Operation (Addition)

A B Sum Carry
0 0 0 0
0 1 1 0
1 0 1 0
1 1 1 1

Just like binary additions, binary subtractions also have some rules to be followed. These rules
are depicted in table 3.2.

As per table 3.2, when two positive numbers are to be subtracted, bit pairs are subtracted, starting
from lower-order (right end) bits, going up to the higher-order bits. The subtraction of binary
numbers is similar to the subtraction of decimal numbers. Just as decimal subtraction has the
concept of “borrow”, subtraction of binary numbers also has the concept of “carry”. If you have
to subtract a one from a zero, you need to “carry” from the left, just as in decimal subtraction.

Table 3.2: Binary Operation (Subtraction)

A B Diffe
rence

Carry

0 0 0 0
0 1 1 1
1 0 1 0
1 1 0 0

Did u know? Signed number representations are required to encode negative numbers in
binary number systems.

1’s Complement Addition

In 1’s complement addition, when two numbers are added, the two binary numbers may be added
including the sign bit. If there is a carry after the MSB position, it is called carry-out. In case of
signed number addition, it is called end-around-carry. In 1’s complement, the representation of
positive numbers is identical to sign magnitude system. To represent a negative number, the
convention is different and is done by bit- complementing method, meaning replacing 0 by 1 and
1 by 0.

Example: 5 is represented as 10 in bits and -5 is represented as 01

46

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes
Example: Add (1110) 2 and (1010) 2.

 1 Carry
 1 1 1 0 Decimal 1 8
+ 1 0 1 0 + Decimal 1 0
1 1 0 0 0 Decimal 2 4

Task Add 6+8 using 1’s complement.

1’s Complement Subtraction

1’s complement has two cases of subtraction. These cases are:

1. Subtraction of a smaller number from a larger number. The steps followed for subtraction are:

(a) Determine the 1’s complement of the smaller number.

(b) Add 1’s complement to the larger number.

(c) Add the carry that is obtained, to the result.

Example: Subtract (101011)2 from (111001)2.
 1 1 1 0 0 1

 + 0 1 0 1 0 0 1’s complement of 101011

 1 0 0 1 1 0 1

 + 1 Add end-round carry

 0 0 1 1 1 0 Answer

2. Subtraction of a larger number from a smaller number. The steps followed for this type of
subtraction are:

(a) Determine the 1’s complement of the larger number.

(b) Add 1’s complement to the smaller number.

(c) As the result is in 1’s complement, to obtain the required result, the answer is converted
to 1’s complement with a negative sign.

Example: Subtract (111001)2 with (101011)2.
 1 0 1 0 1 1

+ 0 0 0 1 1 0 1’s complement of 111001

 1 1 0 0 0 1 Answer in 1’s complement

- 0 0 1 1 1 0 Answer in negative

47

Unit 3: Data Representation and Data Transfer

LOVELY PROFESSIONAL UNIVERSITY

Notes

Notes 1’s complement arithmetic was common in older computers; the PDP-1, CDC 160A and
UNIVAC 1100/2200 series are some computers that used ones’-complement arithmetic.

2’s Complement Addition

When 2’s complement system is used to represent negative numbers, the addition operation is
similar to the 1’s complement system. The calculation steps that are followed to add using 2’s
complement include:

1. Representing both numbers in signed-2’s complement format.

2. Adding operands and discard carry-out of the sign bit MSB (if any).

Example:
Add 69 and 12. 1 1 Carry Row
 0000 0000 0000 0000 0000 0000 0100 0101 (69)
+ 0000 0000 0000 0000 0000 0000 0000 1100 (12)
 __
 0000 0000 0000 0000 0000 0000 0101 0001 (81)

The result obtained is automatically in signed-2’s complement form.

2’s Complement Subtraction
The following steps explain subtraction using 2’s complement.

If A and B are the numbers that are to be subtracted, A is called as minuend and B is called the
subtrahend.

1. Represent both numbers in signed-2’s complement format.

2. Obtain 2’s complement of the subtrahend B (which may be in complement form already if it is
negative).

3. Add it to A.

Example: Subtract 12 from 7.
+7 –(-12)
 0000 0111 (+7)
+ 1111 0100 (-12)

 1111 1011 (-5)

The result is automatically in signed-2’s complement form.

Notes The 2’s complement system has the following advantage: It is not required for the
addition or subtraction circuitry of the 2’s complement to examine the signs of the operands
to determine whether to perform addition or subtraction.

2’s complement has two cases of subtraction. These cases are:

1. Subtraction of a smaller number from a larger number. The subtraction steps are:

(a) The smaller number of 2’s complement is determined.

(b) The bigger number is added with 2’s complement.

(c) The carry is discarded.

48

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes
Example: Subtract (101011)2 from (111001)2.

 1 1 1 0 0 1
 + 0 1 0 1 0 1 2’s complement of 101010
 0 0 1 1 1 0 Answer

2. Subtraction of a larger number from a smaller number. The steps for this type of subtraction
are:

(a) The 2’s complement of bigger number is determined.

(b) The 2’s complement is added to the smaller number.

(c) The 2’s complement answer is prefixed with negative value to get a true value.

Example: Subtract 69 from 12
Here, 12-69 = 12+(-69)
69 in 2’s complement is 0000 0000 0000 0000 0000 0000 0100 0101
-69 would be 1111 1111 1111 1111 1111 1111 1011 1011 (converting 0’s to 1’s and 1’s
to 0’s, and adding 1)
 111 Carry Row
 0000 0000 0000 0000 0000 0000 0000 1100 (12)
+ 1111 1111 1111 1111 1111 1111 1011 1011 (-69)
__
 1111 1111 1111 1111 1111 1111 1100 0111 (-57)

Task
 Subtract 9-2 using 2’s complement.

3.2 Fixed-Point and Floating-Point Number
Fixed-points are considered as a simple and easy way to represent factorial numbers. The fixed-
point numbers use a fixed amount of bits. The term “fixed-point” refers to the decimal point of a
number. There is no separate symbol to designate where the decimal point lies. However, in
binary, bits can either be 0 or 1.

In floating-point representation, a decimal point number is multiplied by a base value and it is
scaled up with an exponent value. The usage of floating-point number is limited when compared
to fixed-point number because floating-point number carries a wide range of real numbers values.

3.2.1 Decimal Fixed-Point Representation
Fixed-point representation has a radix point called decimal point. Fixed-point numbers having
decimal points at the right end of the number are considered as integers, whereas the fixed-point
numbers having decimal points at the left end of the number are considered as fractions. In either
case, the decimal point position is fixed because the number stored in the memory is treated as an
integer or as a fraction.

The binary numbers that are unsigned are always treated as positive integers and are represented
as 0s in the MSB. As we are aware, the binary numbers that are signed differ for negative numbers
and are represented as 1s in the MSB.

49

Unit 3: Data Representation and Data Transfer

LOVELY PROFESSIONAL UNIVERSITY

NotesThe magnitude of the signed binary numbers can be represented using three approaches. They
are:

1. Sign and magnitude representation.

2. Signed 1’s complement representation.

3. Signed 2’s complement representation.

The following section deals with a brief explanation of these three approaches.

Sign and Magnitude Representation
In this approach, the leftmost bit in the number is used for indicating the sign; 0 indicates a positive
integer, and 1 indicates a negative integer. The remaining bits in the number give the magnitude
of the number.

Example: -2410 is represented as:
1001 1000

In this example, the leftmost bit 1 means negative, and the magnitude is 24.

The magnitude for both positive and negative value is same, but they differ only with their signs.

The range of values for the sign and magnitude representation is from -127 to 127.

 Figure 3.1: Representation of Sign and
Magnitude in Memory

Example: 1-sign bit and 7-bit magnitude.
01001001 = +73 0 at the LHS indicates the positive value
10010010 = - 18 1 at the LHS indicates the negative value

Signed 1’s Complement Representation

In signed 1’s complement representation, a negative value is obtained by taking the 1’s complement
of the corresponding positive number. Also, a signed 1’s complement method produces end carry
during arithmetic operation that cannot be discarded.

The range of values for the signed 1’s complement representation is from -127 to 128.

Example: Consider 8-bit numbers for 1’s complement.
 (29)10 = (00011101)2 = 000011101 1’s complement for positive value
-(29)10 = -(00011101)2 = 111100010 1’s complement for negative value

50

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes Signed 2’s Complement Representation

In signed 2’s complement representation, the 2’s complement of a number is found by first taking
the 1’s complement of that number, then incrementing the result by 1.

The range of values for the signed 2’s complement representation is from -128 to 127.

Example:
Consider 8-bit numbers for 2’s complement.
(29)10 = (00011100)2 = (000011100)2s 2’s complement for positive value
-(29)10 = -(00011100)2 =(11110010)2s 2’s complement for negative value

3.2.2 Floating-Point Representation
The floating-point representation is used to perform operations for high range values. The scientific
calculations are carried out using floating-point values. To make calculations simple, scientific
numbers are represented as follows:

The number 5,600,000 can be represented as 0.56 * 10 7

Here, 0.56 is the mantissa and 7 is the value of the exponent.

Similar to the above example, binary numbers can also be represented in the exponential form.
The representation of binary numbers in the exponential form is known as floating-point
representation. The floating-point representation divides the number in two parts, the left hand
side is a signed, fixed-point number called mantissa and the right hand side of the number is
called the exponent. The floating-point values are also assigned with a sign; 0 indicating the positive
value and 1 indicating the negative value.

General form of floating-point representation of a binary number:

 x = (x0 * 20 +x1 * 21+ x2 * 22+ ————— + b-(n-1) * 2-(n-1))

 mantissa * 2 exponent

In the above syntax, the decimal point is moved left for negative exponents of two and right for
positive exponents of two. Both the mantissa and the exponent are signed values allowing for
negative numbers and for negative exponents respectively.

Example: Convert 111101.1000110 into floating-point value.
111101.1000110 = 1.111011000110 * 2 5 converted to floating-point value.

indicates the negative sign value

In this example, the integer value is converted to floating-point value by shifting
the radix point next to the signed integer and scaling up the number to the
exponential form by multiplying the value with the base 2. The value remains
unchanged and this procedure is called the normalized method.

The floating-point numbers are of two types, which are:

1. Normalized and Un-normalized

2. Single precision and Double precision

51

Unit 3: Data Representation and Data Transfer

LOVELY PROFESSIONAL UNIVERSITY

NotesNormalized and Un-Normalized Floating-Point Numbers

In normalized floating-point representation, the most significant digit of the mantissa is non-
zero. Thus, the number is normalized only if its leftmost digit is non-zero. Normalized floating-
point numbers provide the maximum number of possible precisions for the floating-point number.

Example: The number 450 is normalized, but the number 000045 is not normalized.
 0.0035*105 is un- normalized, whereas 0.35000 * 10 3 is normalized.

Eight bit numbers are not normalized because of leading 0s. These numbers can be normalized
by shifting three places to the left to obtain 10010000 in a number.

Normalized Version representation is shown below:

Value represented = +1.0110… *26 is a normalized value

Un-normalized version representation is shown below:

Value represented = +0.0010110… * 29 is an unsigned value.

There is no implicit point to the left of the binary point.

Single Precision and Double Precision

As depicted in the figure 3.2, the 23 bit, which represents the mantissa whose most significant bit
is always equal to 1, is normalized. This bit is immediate to the left of the binary point. Hence,
the 23 bits stored in the M field represent the fractional part of the mantissa and this 32 bit
representation is called the single precision because it occupies a single 32 bit word.

Double precision floating point numbers are used to improve the accuracy and range of floating -
point numbers. The excess -1023 exponent E’ has the range 1<=E’<=2064 for normal values. Thus,
the 53-bit mantissa provides a precision equivalent to 16 decimal digits.

Figure 3.2: Single Precision Representation for 32- bit

 S E’ M

 Sign 8-bit signed exponent 23-bit mantissa

Value represented = + 1. M * 2 E’-12 7

52

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes Figure 3.3 depicts double precision representation for 64-bit.

Figure 3.3: Double Precision Representation for 64 -bit

 S E’ M

 Sign 8-bit signed exponent 23-bit mantissa

Value represented = + 1. M * 2 E’-1 023

3.3 Register Transfer
Registers refer to the storage space that holds the data and instructions. To transmit data and
instructions from one register to another register, memory to register and memory to memory,
the register transfer method is used. This register helps in the transfer of data and instructions
between memory and processors to perform the specified tasks. The transfer of data is more concise,
precise, and is provided in an organized manner. Digital logic is used to process the data. Figure
3.4 depicts the transfer of data though digital logic.

There are two types of register transfers. They are:

1. Bus transfer

2. Memory transfer

3.3.1 Bus Transfer
The most efficient way to transfer data is by using a common bus system, which is configured
using common bus registers in a multiple register. The structure of the bus consists of a set of
lines. These lines are registers of one bit each that transfer only one data at a time. The data transfer
is controlled by the control signals. Control signals determine which register is to be selected
during each register transfer. To construct a common bus system, two methods are used:

1. Using multiplexer

2. Using three states bus buffers

Figure3.4: Transfer of Data through Digital Logic

Digital Logic

Register A

Register B

53

Unit 3: Data Representation and Data Transfer

LOVELY PROFESSIONAL UNIVERSITY

NotesUsing Multiplexer

A common bus can be constructed using a multiplexer. Multiplexer helps in selecting the source
register to place the binary information on the bus. The bus register has input and output gating
controlled by control signals.

The figure 3.5 depicts the input and output gating of registers.

Figure 3.5: Input and Output Gating of Registers

In figure 3.5:

1. Ri is the register and Rin and Rout are the input and output gating signals of Ri.

2. Z is the register and Zin and Zout are the input and output gating signal of register Z.

3. Y is the register and Yin and Yout are the input and output signals of Y.

The figure 3.5 illustrates input and output gating, that is, the switches controlled by control signals.
In the figure 3.5, Rin and Rout are the input and output gating of the register Ri. When the signal
is ON, Ri is set to 1 and when the signal is OFF, Ri is set to 0.

When the input gating Rin is set to 1, the data is loaded into the register bus Ri available on the
common bus. Similarly, when Rout is set to 1, the contents of the register Ri are placed on the
data bus. Hence, they are known as input enabled and output enabled signals. The operation that
takes place within the processor is in sync with the clock pulse.

54

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes The figure 3.6 depicts a bus that uses a 4-bit multiplexer.

Figure 3.6: Bus Using 4-bit Multiplexer

Source: Computer organization and architecture by Krishnananda.
In the figure 3.6, the multiplexer with four bit register is illustrated. Each register is of four bits
from 0 to 3 and the bus carries 4*1 multiplexers with four data inputs from 0 to 3 through X0 and
X3. Here, S1 and S0 are the selection inputs for all the four multiplexers. The connection is made
from the output of the registers through the input of the multiplexers.

In the figure 3.6, the output 1 of the register A is connected to the input 0 of multiplexer 1. Thus,
the selected data is loaded into the registers and placed on the data bus to perform the
operations by using the register bus transfer. Table 3.3 depicts the register that is selected on the
basis of the two switches S0 and S1.

Table 3.3: Register Selected On the Basis of the Two
Switches S0 and S1

S0 S1 Register Selected
0 0 A
0 1 B
1 0 C
1 1 D

Three-State Buffers

Three-state buffers can also be used to construct a common bus. The buffer is a region of the
memory, which is inserted in between the other devices to prevent multiple interactions and to
match the impedance. The buffers supply additional drive and relay capabilities to the bus registers.

55

Unit 3: Data Representation and Data Transfer

LOVELY PROFESSIONAL UNIVERSITY

NotesThe three-state buffers are based on the three states, 1, 0, and the open circuit. These three states
describe that:

1. The logic 0 and 1 are the two signals equivalent to the ones in conventional gate.

2. The high impedance state means that it does not have the logic significance and the output is
disconnected. It also behaves like an open circuit.

3. These three-state gates can perform any conventional logic AND or NAND, OR or NOR, but
the most commonly used gate is the buffer gate in the bus register system.

Figure 3.7 depicts the logic symbols and the associated truth table.

Figure 3.7: Logic Symbol and Truth Table

 Logical Symbol Truth Table

En In Out
0 X Z
1 Y 0
1 1 1

Out In

En

According to figure 3.7:

1. When the output is enabled and the control input is equal to 1, the logic gate acts like buffer
with the output equal to the input.

2. When the input given is 0, the gate goes to high impedance state Z and the output is disabled.

3. The impedance in three-state buffers connects all the outputs with a wire to form a common
bus line and does not endanger the loading effect.

4. The truth table explains that when some input is given and the gate is disabled, it results in
high impedance.

5. When the gate is enabled with some input given, then the output results are not in disabled
mode.

6. When the gate is enabled with input as 1, the output is equal to 1.

3.3.2 Memory Transfer
The read operation in memory transfer is defined as the transfer of data from the address register
(AR) with the selected word M for the memory into the memory buffer register (MBR).

[AR]M MBR=Read Operation

The control signal of the read operation initiates the read operation. The read operation statement
causes the information transfer from the selected memory register M into the MBR.

The memory transfer in write operation is defined as the transfer of data from the memory buffer
register (MBR) to the address register (AR) with the selected word M for the memory.

MBR M[AR]=Write Operation.

The control signal of the write operation initiates the write operation. The write operation
statement causes the information transfer from the MBR into the selected memory register by the
address present in the memory M[AR].

To perform either read or write operation, first the memory register (M) must be selected by a
specified address.

56

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes The figure 3.8 depicts the memory transfer representation.

The figure 3.8 shows that the memory unit is used to transfer the information from the memory
address register and memory buffer register to perform read and write operations in the memory
transfer.

3.4 Microoperation
Microoperations specify the transfer of data to storage. The following sections deals with logic
microoperation, shift microoperation and arithmetic logic shift unit.

3.4.1 Logic Microoperation

The logic microoperations for the string of bits stored in registers specify the binary operations.
This logic microoperation considers each bit of register separately and treats them as binary
variables.

The two registers with exclusive-or microoperation are symbolized as:

 A : R1 R1 R2.

The control variable A =1, specifies that the microoperations are to be executed on the individual
bits.

Example: Consider registers R1 and R2 each having 4-bits binary numbers .

 1010 R1

 1100 R2

 0110 A=1

In this example, 1010 is the content of register R1, 1100 is the content of R2. After the execution
of the microoperation, the content of R1 is equal to the bit-by-bit XOR operation on pairs of
bits in R2 and the previous value of R1.

Logical symbols like OR, AND, and their complements are adopted to differentiate them from
the corresponding symbols that are used to represent Boolean functions.
The symbol ^ is used to denote AND microoperation, the symbol v is used to denote OR
microoperation, and to denote the complement of AND and OR, 1’s complement is taken with a
bar on top of the symbol that denotes the register name.
There are some applications of logic microoperations. Some of the applications of microoperations
are:
1. It manipulates a part of the memory word or individual bits stored in the registers.
2. It is used to change, delete, and insert new bit values within the memory.

Figure 3.8: Memory Transfer Representation

Memory Unit

MBR

MAR

Read

Write

57

Unit 3: Data Representation and Data Transfer

LOVELY PROFESSIONAL UNIVERSITY

Notes3. It operates on Selective Set,

 A A v B,

Example: 1010 A
1100 B
1110 A
As shown in the above example, the microoperations set a group of bit values.

In the bit register, the microoperation performs the following function:

1. It changes the values in register A to correspond to the values in register B, that is, in places
where the register B holds the value 1, the corresponding bits of ‘A’ are also changed to 1.

2. It operates on Selective � Complement,

 A � A B,

Example: 1010 A
1100 B
0110 A
In this example, microoperation complements the 1 in bit register A, where
there are corresponding 1 bits in register B. It does not affect the 0 bits in the
register.

3. It operates on Selective Clear,

A A ̂B,

Example: 1010 A

1100 B

0010 A
In this example, microoperation clears the 0 in bit register A, where there are
corresponding 1 bits in register B. It affects the 0 bits in the register.

4. Microoperation operates on Selective � Mask,

A � A ^B,

Example: 1010 A
1100 B
0010 A

It masks the group of bit values. It is same as that of selective clear, but the bits of ‘A’ are cleared
only when there are corresponding 0 bits in ‘B’.

58

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes 3.4.2 Shift Microoperation

The transfer of data is done using the shift operation. Shift Microoperation is used in logic,
arithmetic and other data processing conventions in conjunction. The content of bits from the
registers is shifted to left and right. After the bits are shifted, the flip-flops receive the information
from the serial input.

During the left shift operation, the bits are shifted to the rightmost position by the serial input
operations. During the right shift operation, the bits arte shifted to the leftmost position by the
serial input operations.

Many arithmetic operations like multiplications and divisions require shifting of the operands.
For general operands, logical shift is used, which preserves the sign of the number. The table 3.4
shows the different shift operations.

There are three different types of shift operations. They are:

1. Logical shift operation

2. Circular shift operation

3. Arithmetic shift operation

The following section deals with the explanation of each of these shift operations.

Logical Shift Operation

There are two logical shift operations Lshl for the logical left shift register and Lshr for the logical
right shift register. Logical shift instructions shift an operand by a number of bit positions specified
in the logical shift instruction.

General form of logical left shift operation

Lshl count, R

In this form of logical shift operation, the count is the immediate operand or it may be given in a
processor register. When bits are shifted left, the rightmost bit is filled with zeros. The bits shifted
from the MSB position are passed through a carry flag C and are lost. R is the processor register.

General form of logical right shift operation

 Lshr count, R

In this form of logical shift operation, the leftmost positions are filled with zeros when bits are
shifted to the right. The bits that are shifted from the MSB position and passed through a carry
flag C are lost. Involving carry flag in the shift operations helps in performing operations on
large numbers.

Table 3.4: Different Shift Opera tions

Register Description
R Lshl R Shift left register
R Lshr R Shift r ight register
R cil R Circular left shift register
R cir R Circular right shift register
R ashl R Arithmetic left shift register
R ashl R Arithmetic right shift register

59

Unit 3: Data Representation and Data Transfer

LOVELY PROFESSIONAL UNIVERSITY

NotesSuppose the register holds the value 10010100, the logical right shift operation performed on this
value fetches the result as shown in figure 3.9.

Suppose the register holds the value 01010101, the logical left shift operation performed on this
value fetches the result as shown in figure 3.10.

The figure 3.9 depicts a logical right shift by 1 bit and the figure 3.10 depicts a logical left shift by
1 bit.

3.4.3 Arithmetic Logic Shift Unit
Computer systems make use of a number of storage registers that are connected to common
operational unit. This unit is called as an arithmetic and logic unit (ALU). The contents of the
specified source register form the inputs of the ALU. The ALU performs an operation and transfers
the result to the destination register. The ALU comprises combination of circuits that transfers the
content from source register to destination register in one clock pulse period. Usually, the shift
microoperation is performed in a separate unit. However, sometimes the shift unit becomes part
of the overall unit. The arithmetic, logic, and shift circuits can be incorporated into one ALU with
common selection variable.

The figure 3.11 shows a single stage of an arithmetic logic shift unit. The subscript ‘i’ indicates a
typical stage. Ai and Bi are the two inputs assigned to arithmetic as well as logic units. A
microoperation is selected with inputs S1 and S0. Ei is the arithmetic output and Di is the logic
output. Multiplexer 4x1 chooses between arithmetic output and logic output. S 3 and S2 are the
inputs used to select data in the multiplexer. The other inputs to the multiplexer are A i-1 for the
shift-right operation and Ai+1 for the shift-left operation.

Figure 3.9: Logical Right Shift Operation

Logical Right Shift Once0 1 0 0 1 0 1 0

Figure 3.10: Logical Left Shift Operation

Logical Left Shift Once0 0 1 0 1 0 1 0 1

60

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes Figure 3.11 depicts a single stage of the arithmetic logic sift operation.

This circuit is repeated ‘n’ number of times to obtain an ‘n’ bit ALU. The output carry denoted by
C i+1 of one stage is connected to the input carry denoted by Ci of the next stage. The connection
between the output carry and the input carry happens in a sequential manner. The input carry of
the first stage is denoted by Ci and helps in selecting the variable for the arithmetic operation.

Figure 3.11: A single Stage of an Arithmetic Logic Shift
Unit

61

Unit 3: Data Representation and Data Transfer

LOVELY PROFESSIONAL UNIVERSITY

NotesThe table 3.5 gives the 14 operation of the ALU.

The first eight operations relate to arithmetic operations and are selected based on the variables
S3, S2 = 00. The next four operations relate to logical operations and are selected based on variables
S3, S2 = 01.

Notes The Input carry denoted by Ci does not have any kind of impact on the logic operations
and hence is marked as ‘don’t cares’ (X). The last two operations relate to the left shift and right
shift operations and are selected based on the variables S3, S2 = 10 and S3, S2 = 11.

3.5 Summary
• Binary numbers are used to represent the 0s and 1s information in computers.

• 1’s complement addition can be performed by adding two binary numbers including the
signed bit.

• 1’s complement subtraction has two cases; subtracting a smaller number from a larger number
and subtracting the smaller number from a larger number.

• 2’s complement addition and subtraction is similar to 1’s complement. But in 2’s complement
the numbers are represented by adding 1 to a 1’s complement number.

• Fixed-point numbers are used to represent the factorial numbers.

Table 3.5: ALU Function Table

 Select Operation

S0 S1 S2 S3 Ci Operation
Performed

Description

0

0 0 0 0 AF Transfer A

0

0 0 0 1 1AF Increment A

1

0 0 0 0 BAF Addition

1

0 0 0 1 1BAF

Add with
carry

0

1 0 0 0
BAF

Subtract with
borrow

0

1 0 0 1
1BAF

Subtraction

1

1 0 0 0 1AF Decrement A

1

1 0 0 1 AF Transfer A

0

0 1 0 x BAF AND

1

0 1 0 x BAF OR

0

1 1 0 x BAF XOR

1

1 1 0 x
AF Complement

A
x

X 0 1 x shrAF Shift right A
into F

x

X 1 1 x shlAF Shift left A into
F

62

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes • Floating-point number is used to represent a decimal point which is multiplied by a base value
and it is scaled up with some exponent value.

• There are three ways to represent the magnitude of the signed binary numbers namely, the
sign and magnitude representing, the signed and 1’s complement representation, and the
signed and 2’s complement representation.

• The term register is the storage space that holds the data and instructions within itself.

• There are two ways for register transfer namely bus transfer and memory transfer.

• Logical microoperations consider each bit of register separately and treat them as binary
variables.

3.6 Keywords
Carry Flag: A single bit in a system status (flag) register used to indicate when arithmetic carry
or borrow has been generated out of the most significant ALU bit position.

Impedance: A measure of opposition that a circuit presents to an alternating current.

Operand: The part of a computer instruction which specifies what data is to be manipulated or
operated on.

Radix Point: A symbol used in number representations to separate the integer part of the number
from the fractional part of the number.

3.7 Self Assessment
1. State whether the following statements are true or false:

(a) During the left shift operation, the bits are shifted to the leftmost position by the serial
input operations.

(b) The logical microoperations for the string of bits stored in registers specify the binary
operations.

(c) The buffers supply additional drive and relay capabilities to the bus registers.

(d) Control signals determine which register to be selected during each register transfer.

(e) Microoperation is an operation that operates on the data stored in the registers.

(f) The binary numbers that are unsigned are always treated as positive integers and are
represented as 1s in the MSB.

2. Fill in the blanks:

(a) The _____________________ is 0 for positive numbers and 1 for negative.

(b) Many arithmetic operations like multiplications and divisions require shifting of

(c) The bus can be constructed by using the _____________________ instead of using
multiplexers.

(d) The _____________________ is the one way of constructing a common bus.

(e) The _____________________ representations are used to perform operations for high
range values.

3. Select a suitable choice for every question:

(a) Which of the following is obtained by inverting all 0s to 1s and all 1s to 0s?

(i) 1’s complement

(ii) 2’s complement

(iii) 3’s complement

(iv) Factorial number

63

Unit 3: Data Representation and Data Transfer

LOVELY PROFESSIONAL UNIVERSITY

Notes(b) Which is the operation that is considered as the key to perform basic arithmetic
operations such as, addition, subtraction, multiplication and division?

(i) Decimal

(ii) Binary

(iii) Hexadecimal

(iv) Octal

(c) Which is the easy way to represent factorial numbers?

(i) Floating-point numbers

(ii) Decimal numbers

(iii) Fixed-point numbers

(iv) Overflow

(d) Which flag is used by the unsigned numbers?

(i) Carry flag

(ii) Overflow flag

(iii) Parity flag

(iv) Check flag

3.8 Review Questions:
1. “In computers, binary number system is used for storing this information as 0’s and 1’s.”

Elaborate.

2. “In 1’s complement addition, when two numbers are added, the two binary numbers may be
added including the sign bit.” Comment.

3. “The rule for the subtraction of n-bit signed integer numbers using 2’s complement is to
subtract two negative numbers, add the two negative numbers.” Justify.

4. “Overflow is defined as a result of arithmetic operations that does not fit into the given integer
size or the value that moves out-of-range.” Comment.

5. “Fixed-point representation has a radix point called decimal point’.” Justify.

6. “Three approaches can be used to represent the magnitude of the signed binary numbers.”
Comment.

7. “Just like a fixed-point representation, the floating-point also contains integers and fractions
separated by a radix point.” Justify.

8. “In normalized floating-point representation, the most significant digit of the mantissa is non-
zero.” Comment.

9. “To transmit data and instructions form one register to another register, memory to register
and memory to memory, the register transfer method is used.” Elaborate.

10. “The bus register has input and output gating controlled by control signals.” Elaborate.

11. “The three-state buffers are based on the three states, 1, 0, and the open circuit.” Elaborate.

12. “The logic microoperations for the string of bits stored in registers specify the binary operations.”
Comment.

64

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes Answers: Self Assessment

1. (a) False (b) True (c) True

(d) True (e) True (f) False

2. (a) Most Significant bit (MSB) (b) Operand (c) Three-state buffer

(d) Multiplexer (e) Floating-point

3. (a) 1’s complement (b) Binary (c) Fixed-point number

(d) Carry flag

3.9 Further Readings

Books Godse, A.P., & Godse, D.A. (2010). Computer Organization and Architecture, 1 st ed.
Pune: Technical Publications.
Rajaraman, V., & Radhakrishnan, T. (2007). Computer Organization and Architecture.
New Delhi: PHI Learning Private Limited.

Online links http://www.dspguide.com/ch28/4.htm
http://www.google.co.in
search?hl=en&biw=1024&bih=578&q=what+is+a+fkip+flop&aq=f&aqi=&aql=&oq=

65

Unit 4: Computer Organization I

LOVELY PROFESSIONAL UNIVERSITY

Notes

Unit 4: Computer Organization I

 CONTENTS

 Objectives

 Introduction

 4.1 Instruction Codes and Operands

 4.2 Computer Registers

 4.2.1 Common Bus System

 4.3 Computer Instructions

 4.3.1 Memory Reference Instruction

 4.3.2 Register Reference Instruction

 4.3.3 Input/Output Instructions

 4.4 Summary

 4.5 Keywords

 4.6 Self Assessment

 4.7 Review Questions

 4.8 Further Readings

Objectives
After studying this unit, you will be able to:

• Define instruction codes and operands

• Discuss computer registers

• Explain computer instructions

Introduction
Computer processors can be classified into various categories depending on their components
such as registers, buses, micro operations, machine instructions, and so on. These processors are
complex devices. They contain a number of registers and arithmetic units (for both integer and
floating point calculations). They can work on multiple instructions in a simultaneous manner
and speed up the execution.

The figure 4.1 depicts the components of a basic computer. In general, a computer consists of two
components , a processor and a memory. The memory has 4096 = 212 bytes in it.

Figure 4.1: Computer Components

Avinash Bhagat, Lovely Professional University

66

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes A program refers to a sequence of instructions, which are stored in the memory of a computer.
These instructions are a group of bits that enable the computer to perform a specific operation.
They are read by the Central Processing Unit (CPU) and are placed in Instruction Register (IR).
The circuitry control then converts these instructions into a sequence of micro operations that are
required for their implementation.

4.1 Instruction Codes and Operands
A computer instruction is a binary code that specifies the micro-operations in a sequence for a
computer. They are stored in the memory along with the data. Every computer has its own unique
set of instructions. They can be divided into two parts namely, Operation codes (Opcodes) and
Address. Opcodes specifies the operation for a particular instruction. An address specifies the
registers or the locations that can be used for that operation. Operands are specific parts of
computer instruction that depict what data is to be operated on.

For a basic computer, 12 bits of memory is required to specify the address as the memory contains
4096 words. The 15th bit of the instruction specifies the addressing mode (where direct addressing
corresponds to 0, indirect addressing corresponds to 1). Since the instruction format consists of 12
bits of address and 1 bit for the addressing mode, 3 bits are left for Opcodes.

Figure 4.2 gives a pictorial representation of the above said instruction format.

Figure 4.2: Instruction Format

As we can see in figure 4.2, instruction format has three parts.

Addressing Modes

Instructions generally refer to the address of a specific memory location. These are called memory
reference instructions. The way in which a target address or effective address is identified within
the instruction is called addressing mode.

The address field for an instruction can be represented in two different ways. They are:

1. Direct Addressing: It uses the address of the operand.

2. Indirect Addressing: It uses the address as pointer to operand.

The address of the operand or the target address is known as the effective address.

Effective Address (EA) – It refers to the address that can be implemented as a target address for a
branch type instruction or the address that can be used directly to access an operand for a
computation type instruction, without developing any changes.

Opcodes

An opcode is a set of bits that defines the basic operations such as add, subtract, multiply,
complement, and shift. The total number of operations supported by the computer decides the
number of bits required for the opcode. The minimum bits available to the opcode must be n for
2n operations. These operations are performed on data that is stored in processor registers or in
memory.

67

Unit 4: Computer Organization I

LOVELY PROFESSIONAL UNIVERSITY

Notes

Notes Processors have registers to hold instructions, addresses, and data. Program Counter
(PC) is the register used to store the memory address of the instruction that is to be executed
next. A PC requires 12 bits to hold the memory address.

An effective way of organizing a computer is to divide it with one processor register and one
instruction code format that has two parts. The former part of the instruction code specifies the
operation that is to be performed and the latter indicates the address for the same. It indicates the
address of the operand to the control.

Commonly, computers come with a single processor register assigned to them named,
Accumulator (AC). Operations are performed with the content in AC and the memory operand.
In case an operation in the instruction code does not require the operand from memory, the
remaining bits can be utilized for other purposes.

Example: Operations in the instruction code include clear AC, increment AC, complement
AC, and so on. These operations do not need the second part of the instruction code.

Did u know? Address bits are also used as operands in some cases.
Address

Address is defined as the location where a particular instruction is found in the memory.

Sometimes the address bits of an instruction code are used as operand and not as an address. In
such cases, the instruction has an immediate operand. If the second part has an address, the
instruction is known to have a direct address. Another possibility is, the second part having the
address of the operand. This is known as indirect address. In the instruction code, one bit is used
to indicate if direct or indirect address is implemented.

68

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes
Figure 4.3 depicts a diagram showing direct and indirect address.

 Figure 4.3: Diagram Showing Direct and Indirect
Address

(Figure a) (Figure b)

Example:
Referring to figure 4.3,
Consider Figure a,
Here,
Addressing mode is 0, which indicates direct addressing.
Operand is ADD.
Address is 300. This indicates the address of the operand.
The instruction is stored in the 22nd location. The control jumps to the 300th location
to access the operand.
Consider Figure b,
Here,
Addressing mode is 1, which indicates indirect addressing.
Operand is ADD.
Address is 200. This indicates the address of the operand. The control goes to the
address 200 to get the address of the operand. Here, the address is 1200. The
operand found in this address location is added to the data in accumulator.
Here the address of the operand is known as the effective address. In the first
figure the effective address is 300 and in the second figure it is 1200. The memory
word that contains the address of the operand in the indirect address is used as a
pointer to an array of data. The pointer is located in the processor register.

69

Unit 4: Computer Organization I

LOVELY PROFESSIONAL UNIVERSITY

Notes4.2 Computer Registers
Computer registers are high speed memory storing units. They are a part of the computer processor.
They can hold any kind of data, such as a bit sequence or an individual data. Instructions specify
registers as part of them in most cases. A register must be 32 bits in length for a 32 bit instruction
computer. Registers can be numbered depending on the processor design and language rules.

Notes If two numbers are to be added, both of them must be contained in registers and their
sum is also stored in a register. The register can also contain the address of a memory location
where the data is stored and not the data itself.

The instructions in a computer are stored in memory locations and executed one after another at
a time. It is the function of control unit to retrieve the instruction from the memory and execute
it. The control does the same for all the instructions in the memory in a serial order. A counter is
required to keep a track of the next instruction to be executed and calculate its address. In addition
to counter, a register is also required to store the instruction code after it is read by the control
from memory. Processor registers are needed for data manipulation. The figure 4.4 displays the
registers with their memories. The memory addresses are stored in a different register. These
requirements clearly state the need of registers in a computer. The figure 4.4 depicts basic registers
and memory.

Figure 4.4: Basic Registers and Memory

In figure 4.4, different registers are shown with their memory capacity.

70

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes Table 4.1 lists the registers and their functions.

Table 4.1: Registers and their Functions

Register Symbol Number of Bits Register Name Function

OUTR 8 Output register It holds output
character

INPR 8 Input register It holds input
character

PC 12 Program Counter It holds address of
instruction

AR 12 Address register It holds address for
memory

DR 16 Data register It holds memory
operand

AC 16 Accumulator It’s a processor
register

IR 16 Instruction register It holds instruction
code

TR 16 Temporary register It holds temporary
data

The explanation for each of the registers specified in figure 4.4 is as follows:

1. The data register holds the operand read from the memory.

2. The accumulator is a general purpose register used for processing.

3. The instruction register holds the read memory.

4. The temporary data used while processing is stored in the temporary register.

5. The address register holds the address of the instruction that is to be executed next from the
memory.

6. The Program Counter (PC) controls the sequence of instructions to be read. In case a branch
instruction is encountered, the sequential execution does not happen. A branch execution calls
for a transfer to an instruction that is not in sequence with the instructions in the PC. The
address of this non-consecutive instruction is passed on to the PC to replace the existing
instruction address. To read an instruction, the memory cycle is initiated again with the PC
content taken as address for memory. Next, the PC is incremented by one and the previous
order continues.

7. The input register (INPR) and output register (OUTPR) are the registers used for the I/O
operations. The INPR receives an 8 bit character from the input device, same with the OUTPR.

Example: Here is a list of registers and some of their examples:
Data register - MIX, Motorola 680*0, 68300
Accumulator - Intel 8086/80286
Address register - Motorola 680x0, 68300
Program counter - IBM 360/370, Motorola 680x0, 68300

71

Unit 4: Computer Organization I

LOVELY PROFESSIONAL UNIVERSITY

Notes4.2.1 Common Bus System
A collection of signal lines that help in the transfer of multi bit information from one system to
another is called a bus.

Figure 4.5 shows three master devices M3, M6, and M4.

The master device initiates and controls the communication. S7, S5, and S2 are the slave devices.
Slave devices respond to the commands given by master devices. If M3 wants to give a command
to S5, it must send its instruction through the bus. Then, the S5 receives the instruction and takes
action on the instruction through the bus.

A basic computer consists of eight registers, a memory unit, and a control unit. These units need
to communicate often. Bus provides the medium through which communication can take place.

Previously, wires were used to connect the outputs of each register to the input of other registers.
However now, the common bus system has replaced them making communication more efficient.
The common bus provides a path between the memory unit and the registers.

Figure 4.5: Common Bus System

72

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes In the figure 4.6, the outputs of the seven registers and memory are connected to a common bus.
S0, S1, S2 are the selection values that are connected to the bus.

The selection values determine the output that is selected for the bus lines at any given time. Each
of the output has a number along with it, which indicates the decimal equivalent of the required
binary selection.

Example: The number along the 16 bit output of common bus for DR is 3. When the
S2S1S0 = 011, the 16 bit outputs are placed on the bus lines, since it is the binary value of decimal 3.
These lines are linked with the data inputs from the registers and the memory.

 Figure 4.6: Basic Computer Registers Connected to the
Memory Unit through Common Bus

73

Unit 4: Computer Organization I

LOVELY PROFESSIONAL UNIVERSITY

NotesNow let us discuss the different registers and their functions:

1. Load (LD): During the next clock pulse transition the data from the bus is sent to the register
whose load (LD) input is enabled.

2. Memory Unit: When the write input of the memory is activated, it receives the content of the
bus. When the read input is activated, the memory places the 16 bit output onto the bus with
the selection variables being S2S1S0=111.

3. Increment (INR) and Clear (CLR): When the INR signal is enabled, the contents of the specific
register are incremented. The contents are cleared when the CLR signal is enabled.

4. Address Registers (AR): Here, the address of the memory for the next read and write operation
is specified. It receives or sends address from or to bus when selection inputs S2S1S0=001 is
applied and the load is enabled. With inputs INR and CLR, the address gets incremented or
cleared.

5. Program Counter (PC): Here, the address of the next instruction that is to be read from the
memory is stored. It receives or sends address from or to bus when selection inputs S 2S1S0=010
is applied and the load input is enabled. With inputs INR and CLR, the address gets incremented
or cleared.

6. Data Register (DR): The data register contains the data to be written into memory or data that
is to be read from the memory. It receives or sends address from or to bus when selection
inputs S2S1S0=011 is applied and the load input is enabled. With inputs INR and CLR, the
address gets incremented or cleared.

7. Accumulator (AC): Accumulators are useful in implementing the register micro operations
such as complement, shift, and so on. The results obtained are again sent to accumulator. An
accumulator stores the intermediate arithmetic and logic results. The processor register AC
receives or sends its data to the bus when the selection inputs S2S1S0=100 is applied and the load
input of DR is enabled. The contents of DR are sent via the adder/logic circuit into AC with the
load enabled. With inputs INR and CLR, the address gets incremented or cleared.

8. Instruction Registers (IR): The IR stores the copy of the instruction that the processor has to
execute. The instruction that is read from the memory is stored in the IR. It receives or sends
instruction code from or to bus when selection inputs S2S1S0=111 is applied and the load input
is enabled.

9. Temporary Register (TR): The temporary storage for variables or results is provided by the
temporary register. It receives or sends the temporary data from or to bus when selection
inputs S2S1S0=011 is applied and the load input is enabled. With inputs INR and CLR, the
address gets incremented or cleared.

10. Input Registers (INPR): It consists of 8 bits to hold the alpha numeric input information. Input
device shifts its serial information into the 8 bit register. The information is transferred to AC
via the adder/logic circuit with load enabled.

11. Output Registers (OUTPR): The information here is received from AC and transferred to the
output device.

Notes The content from any of the registers can be added to the bus and the operation can be
performed by adder/logic circuit in the same clock cycle.

74

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes
Example: Suppose two micro operations need to be executed simultaneously,

PC � AC and AC PC
These operations can be performed by placing the content of AC onto the bus
with the selection inputs S2S1S0 = 100 and enabled load (LD) of PC, placing
content from PC to AC through adder/logic circuit and enabling load input of
AC during the unchanged clock cycle.

4.3 Computer Instructions
A computer has programs stored in its RAM in the form of 1s and 0s that are interpreted by CPU
as instructions. One word of RAM contains one instruction in the machine language. These
instructions are loaded to the CPU one at a time, where it gets decoded and executed. A basic
computer has three instruction code formats, namely the memory reference instruction, the register-
reference instruction, and the input-output instruction format.

4.3.1 Memory Reference Instruction

Usually programmers write codes in assembly language which has a very close reference with
machine language. These instruction formats are known as memory reference instructions.

The different memory reference instructions are tabulated in table 4.2.

Table 4.2: Memory Reference Instructions

Opcode Instruction Function
000 LDA Load A register from memory
001 LDB Load B register from memory
010 STA Store A register in memory
011 STB Store B register in memory
100 ADDA Add A register to memory
101 SUBA Subtract A register from

memory

The memory reference instruction has a specific format. It consists of three parts as shown in
figure 4.7.

Figure 4.7: Memory Reference Instruction Format

75

Unit 4: Computer Organization I

LOVELY PROFESSIONAL UNIVERSITY

NotesIn figure 4.8, the opcode varies from 000 to 110. The first bit is the indirection bit. The memory
reference instruction is performed on the contents of the address in bits 0-11 of the instruction
word, if the indirect bit is 0.

 Figure 4.8: Memory Reference Instruction Format for
Direct Addressing

In figure 4.8, the indirection bit is given as 0 and the opcode as 000 indicating LDA. The address,
given in binary as 000000000111 is equivalent to decimal 7. This states that the Register A will be
loaded with contents of word 7 from memory. In case the indirect bit is changed to 1, the word 7
in memory would contain the address of the word that is to be loaded by Register A and not
direct content. Figure 4.8 illustrates the memory reference instruction format for direct addressing.
The 15th bit here is 0.

 Figure 4.9: Memory Reference Instruction
Format for Indirect Addressing

In figure 4.9, the indirection bit is given as 1 and the opcode as 000 indicating LDA. The address,
given in binary as 000000000111 is equivalent to decimal 7. This states that the register A will be
loaded with contents of word 7 from memory. As the indirect bit is 1, the memory contains the
address of word that is to be loaded by register A and not direct content. Figure 3.9 illustrates the
memory reference instruction format for indirect addressing. The 15th bit here is 1.

4.3.2 Register Reference Instruction
The register reference instructions use 16 bits to specify any operation. All these instructions take
1 clock cycle during execution. Figure 4.10 depicts its format.

Figure 4.10: Register Reference Instruction Format

76

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes In figure 4.10, the four leftmost bits are always 0111 which is the binary equivalent of hexadecimal
7. The opcodes and the registers that can be implemented are listed in table 4.3.

Table 4.3: Register and their Description

R1 or R2 Instruction Description
000 A General purpose register A
001 B General purpose register B
010 X Index register
011 SP Stack pointer
100 CCR Condition code register
101 SR Shift register

Table 4.4 depicts opcodes and their description.

Table 4.4 : Opcodes and their Description

Opcode Instruction Description
000 MOV Move R1 to R2
001 INC Increment
010 DEC Decrement
011 ADD Add R1 to R2
100 SUB Subtract R1 from R2
101 XOR Exclusive OR
110 CMP Complement
111 SHIFT Shift left

Other than the leftmost 4 bits, the next nine bits hold the operand and registers, and the last three
are don’t cares. Consider an instruction as shown in figure 4.11.

Figure 4. 11: Instruction

In figure 4.11, 0111 indicates that the instruction is register reference. When the processor loads
and executes the instruction, it moves the contents of Register A to Register B. A programmer
would actually write this instruction in the coding format as:

MOV A, B

This is called assembly language and is translated into machine language by an assembler. The
machine language format of this instruction is stored in a disk. The operating system then loads
it from the disk to memory and causes the CPU to execute it.

77

Unit 4: Computer Organization I

LOVELY PROFESSIONAL UNIVERSITY

Notes4.3.3 Input/Output Instructions

The I/O instructions are similar to the register reference instructions. They also use a 16-bit format
to specify an operation. The difference is that the leftmost bits here are always 1111, which is the
binary equivalent of hexadecimal F.

Types of Instructions

A basic computer must have a specific set of instructions so that it is helpful for the user to develop
the machine language programs with ease and evaluate the computable functions. Following are
the different types of instructions that a basic computer should possess:

1. Arithmetic, logical, and shift instructions.

2. Instructions for the movement of data from memory and registers.

3. Program control and status check instructions.

4. Input and output instructions.

Table 4.5 lists some of the basic computer instructions available.

Table 4.5: Basic Computer Instructions

Type of instruction Symbol Description
Arithmetic instruction ADD Add memory word to AC
Store instruction STA Store content to AC in memory
Branch instruction BUN Branch unconditionally

BSA Branch and save return address
ISZ Increment and skip if zero

Logical instruction AND AND memory word to AC
CLA Clear AC
CMA Complement AC

Check status instruction CLS Clear all status flags
Circulate instruction CIR Circulate r ight AC

CIL Circulate left AC
Increment instruction INC Increment AC
Skip instructions SPA If AC is positive, skip next instruction

SNA If AC is negative, skip next instruction
SZA If AC is zero, skip next instruction
SZE Skip instruction if E is 0
HLT Halt computer

Input/Output instruction INP Input character to AC
OUT Output character from AC
SKI Skip on input flag
SKO Skip on output flag
ION Interrupt on
IOF Interrupt off

Although the set of instructions is complete for a basic computer, it can become more efficient
only if it has a set of instructions like subtract, multiply, OR, and exclusive OR.

Did u know? 1000 gigabytes = Storing a stack of documents that is greater than 16 times the
height of New York’s empire state building.

78

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes 4.4 Summary
• The binary codes that specify the micro operations in a sequence are called computer instructions.

An instruction code format consists of addressing mode, operation codes, and address.

• For a basic computer, 12-bits of memory is required to specify the address since the memory
contains 4096 words.

• Computer registers are used to store the data. They are high speed storage areas within the
processor. Before every processing, the data must be represented in the registers.

• A basic computer consists of eight registers, a memory unit, and a control unit. These units
need to communicate often. Bus provides the medium through which communication can take
place.

• Computer instructions are programs written in the form of 0’s and 1’s as interpreted by the
CPU. The instruction codes are divided into three categories, memory reference instructions,
register reference instructions, and Input/Output instructions.

4.5 Keywords
Accumulator: A register that contains a built-in adder, which is used to add an input number to
the contents of the register.

Master Device: A device that controls one or more other devices.

RAM: Random Access Memory

4.6 Self Assessment
1. State whether the following statements are true or false:

(a) Opcodes specifies the operation for a particular instruction.

(b) Effective address cannot be implemented as a target address for a branch type instruction.

(c) Previously buses were used for connecting devices but now wires are used for the same.

2. Fill in the blanks:

(a) The main components of a computer are ____________________ and processor.

(b) ____________________ can be numbered depending on the processor design and
language rules.

(c) The minimum bits available to the opcode must be ____________________ for 2n
operations.

3. Select a suitable choice for every question:

(a) The INP instruction receives data that is sent by…………… to AC.

(i) OUTPR

(ii) INPR

(iii) DR

(iv) TR

(b) Which instruction is used to branch a part of the program?

(i) Increment if zero

(ii) Branch unconditionally

(iii) Load register

(iv) Branch and save

79

Unit 4: Computer Organization I

LOVELY PROFESSIONAL UNIVERSITY

Notes(c) When the load is …………… the content from the source register or memory can be
transferred to/from bus.

(i) Enabled

(ii) Disabled

(iii) Stored

(iv) Retrieved

(d) What is a binary code called when it specifies the micro operations in a sequence?

(i) Sequence counter

(ii) Computer instructions

(iii) Computer codes

(iv) Instruction codes

4.7 Review Questions
1. “The format of instruction code has three sections, namely addressing mode, opcode, and

address.” Explain.

2. Discuss the different computer registers and their importance.

3. “Computer buses help in the transmission of data between the components connected to it.”
Discuss.

4. “Instruction cycles are concerned with the fetch and execute cycle.” Justify.

Answers: Self Assessment

1. (a) True

(b) True

(c) False

2 (a) Memory

(b) Registers

(c) n

3. (a) INPR

(b) Branch and save

(c) Enabled

(d) Computer instructions

80

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes
4.8 Further Readings

Books Radhakrishnan, T., & Rajaraman, V. (2007). Computer Organization and Architecture.
New Delhi: Raj Kamal Electric Press.
Rauss, R. (1998). Essentials of computer science 2. USA: Research and education
association

Online links http://www.scribd.com/doc/19731285/Computer-organisation

http://cnx.org/content/m29708/latest/

81

Unit 5: Computer Organization II

LOVELY PROFESSIONAL UNIVERSITY

Notes

Unit 5: Computer Organization II
 CONTENTS

 Objectives

 Introduction

 5.1 Timing and Control

 5.2 Instruction Cycle

 5.3 Memory Reference Instructions

 5.4 Input/Output

 5.4.1 Input/Output Configuration

 5.4.2 Input/Output Instruction

 5.5 Design of a Basic Computer

 5.5.1 Control of Logic Gates

 5.5.2 Control of Registers and Memory

 5.5.3 Control of Single Flip-Flop

 5.5.4 Control of Common Bus

 5.6 Summary

 5.7 Keywords

 5.8 Self Assessment

 5.9 Review Questions

 5.10 Further Readings

Objectives
After studying this unit, you will be able to:

• Elucidate timing and control

• Explain instruction cycles

• Discuss memory reference instructions

• Discuss I/O and interrupts

• Analyze the design of basic computers

Introduction
The main function that a computer performs is to execute a program. A program involves a set of
instructions that are stored in the memory. A processor executes these instructions. Instruction
codes are used to execute an instruction. Timing and control is required to execute the instruction
codes that were discussed in the previous unit.

Instructions are executed using two cycles, which are discussed in this unit. The memory reference
instructions are also discussed here.

5.1 Timing and Control
Essentially, timing and control are used to execute the instruction codes, register and computer
instructions. In a basic computer, the timing for all the registers is controlled by a master clock

Avinash Bhagat, Lovely Professional University

82

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes generator. The signals for control are generated by a control unit. They provide control inputs for
multiplexer in common bus (we know that a bus gets inputs from multiplexer), control inputs in
processor registers and micro-operations for an accumulator. The clock pulses from the master
clock must be implemented to all the flip-flops and registers in the systems control unit. When
the register is in the disabled mode, the clock pulse remains unchanged.

The control organization can be divided into two major types, the hardwired control and the
micro programmed control. The main advantage of the hardwired control is that, it can be
optimized to a result in a fast mode of operation. It is implemented with flip flops, gates, decoders,
and other digital circuits. If a change or modification is to be done in a hard wired control, it
must be done to the wiring among various components.

On the other hand, the micro programmed control stores its control information in a control
memory. To initiate the necessary set of micro operations, the control memory is programmed.
The changes and modifications in a micro programmed control can be done by updating the micro
program in control memory.

The following section deals with the control unit. As we can see in figure 5.1, the control unit
consists of two decoders, a sequence counter, and logic gates.

Figure 5.1: Control Unit of Basic Computer

As depicted in figure 5.1, any instruction which is read from the memory is placed in the Instruction
Register (IR). Here, the IR is split into three parts, namely, I bit, opcode, and bits from 0 through
11. The opcodes are decoded with a 3 * 8 decoder whose outputs are denoted by symbols D0 through
D7. The binary value of the respective opcode is the subscripted number in the symbol. The symbol
I which is the 15th bit of the instruction is moved to a flip flop. The control logic gates have the
bits that are applied from 0 through 11. The sequence counter is 4-bit counts in binary from 0
through 15. It can be incremented or cleared synchronously. The timing signals from T 0 through
T15 are the decoded outputs of decoder.

83

Unit 5: Computer Organization II

LOVELY PROFESSIONAL UNIVERSITY

NotesA memory that is read or written is always initiated with the rising timing signal. We are aware
that a clock cycle time is greater than a memory cycle time. So when the clock goes through its
next positive transition, the memory read/written gets completed. This transition is used to load
the memory word to register. But in usual cases, the memory cycle time is longer than the processor
cycle. So, it contradicts the timing relation. Therefore, wait cycles are provided till the memory
word is made available.

Consider figure 5.2 that shows the time relation between the control signals.

Figure 5.2: Timing Diagram

In figure 5.2, the control signals are generated by the 4-bit sequence counter and a 4 * 16 decoder.
In this figure, consider at time T4, Sequence Counter (SC) is cleared to 0 if the output D3 of decoder
is active. This can be represented as:

D3T4: SC � 0

The SC gives response to the positive transition of the clock. The CLR input of the SC is active in
the beginning.

5.2 Instruction Cycle
The main execution process is done by the processor. The processing of instruction involves two
steps, instruction fetch and instruction execution. Each instruction is fetched from the memory
separately and executed. Depending on the nature of the instruction its execution may deal with a
number of operations.

An instruction cycle refers to the processing of a particular instruction. Each instruction cycle goes
through the following phases during its processing:

1. Fetching instruction from memory.

2. Decoding the instruction.

3. Reading the effective address from memory in case of indirect address.

4. Executing the instruction.

84

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes After the above four steps are completed, the control switches back to the first step and repeats
the same process for the next instruction. Hence, the cycle continues until a HALT condition is
met. Figure 5.3 depicts the phases involved in the instruction cycle.

Figure 5.3: Instruction Cycle

 As shown in figure 5.3 the halt condition occurs when the machine gets turned off, on occurrence
of errors that are unrecoverable, and so on.

Fetch Cycle

The address instruction to be executed is held in the program counter. The processor fetches the
instruction from the memory that is pointed by PC. Next, the PC is incremented to show the
address of the next instruction. This instruction is loaded on to the instruction register. The
processor reads the instruction and implements the necessary actions.

Execute Cycle

The data transfer for execution takes place in two ways:

1. Processor-memory, that is, data transfer from processor to memory or from memory to
processor.

2. Processor-Input/Output, that is, data may be transferred to or from a peripheral device by the
transfer between a processor and an I/O device.

In the execute cycle, the processor performs the necessary operations on the data, and sometimes
the control calls for the alteration in the sequence of data execution. These two cases combine and
complete the execute cycle.

85

Unit 5: Computer Organization II

LOVELY PROFESSIONAL UNIVERSITY

Notes
State Diagram for Instruction Cycle

The figure 5.4 gives a broader perspective of the instruction cycle of a basic computer, which is in
the form of a state diagram. For an instruction cycle, some of the states may be null, while others
may be visited more than once.

Figure 5.4: Instruction Cycle Sta te Diagram

Explanation for figure 5.4 is as follows:

1. Instruction Address Calculation: Here, the address of the next instruction is calculated. A fixed
number is added to the address of previous instruction.

2. Instruction Fetch: The instruction is read from its respective memory location to the processor.

3. Instruction Operation Decoding: Here, the instruction is analyzed and the type of operation to
be performed and the operand(s) to be used are determined.

4. Operand Address Calculation: The address of operand is calculated if it has a reference to an
operand in memory or is available through the Input/Output.

5. Operand Fetch: The operand is read from the memory or the I/O.

6. Data Operation: The actual operation that the instruction involves is performed.

7. Store Operands: Stores the result obtained in the memory or sends it to the I/O.

5.3 Memory Reference Instructions
The function that the microoperation intends to perform must be specified accurately. It can be
explained in a better way if we consider the register transfer notation. The memory instructions
were mentioned in the previous sections.

Now, let us study them in detail.

AND

The AND instruction performs the AND logic operation on the bit pairs from the register and the
memory word that is specified by the effective address. The result of this operation is transferred
back to the register.

86

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes
Example:

DR � M [AR]
AC � AC^DR, SC 0
The AND operation is performed on AC and DR and transferred to AC.

ADD

The ADD instruction adds the content of the memory word that is indicated by the effective address
to the value of the register. The output calculated is transferred to register and if there is a carry
left it is sent to a flip flop.

Example: DR � M [AR]
AC � AC+DR, E � Cout, SC � 0
Here, content of memory is transferred into DR, the sum is sent to AC. The
output carry Cout is transferred to Flip-flop E.

LDA

The LDA instruction transfers the memory word indicated by the effective address to the register.

Example: DR � M [AR]
AC � DR, AC � 0
The memory word is read to DR and this content is loaded to AC. It is not
directly loaded to AC due to delay reasons in the adder/logic circuit.

STA

STA stores the content of the register into the memory word that is specified by the effective
address. The output is next applied to the common bus and the data input is connected to the bus.
It requires only one micro operation.

Example: M [AR] � AC, SC � 0
Here, content of AC is stored in memory word.

BUN

The Branch Unconditionally (BUN) instruction is used to transfer the instruction that is specified
by the effective address. We know that the address of next instruction to be executed is held by
the PC and it must be incremented by one to get the address of the next instruction in the sequence.
If the control wishes to execute some other instruction which is not next in the sequence, it
implements the BUN instruction. Hence, we say that the program jumps unconditionally.

Example: PC � AR, SC � 0
Here, effective address from AR is sent to PC. SC is reset to 0. The new value of
PC is taken as the next instruction’s address.

87

Unit 5: Computer Organization II

LOVELY PROFESSIONAL UNIVERSITY

NotesBSA

The Branch and Save return Address (BSA) instruction is used to branch a part of the program
(called as subroutine or procedure). When this instruction is executed, BSA will save the address
of the next instruction from PC into a memory location that is specified by the effective address.

Example: M [AR] � PC, PC � AR + 1
PC gets address for the first instruction in subroutine as effective address
plus one.

ISZ

The Increment if Zero (ISZ) instruction increments the word specified by effective address. If the
incremented value is zero, then PC is incremented by 1. A negative value is stored in the memory
word by the programmer. At one point of time, it reaches the zero value after getting incremented
again and again. At that moment, the PC is incremented and the next instruction is skipped.

Example: DR � M [AR]
DR � DR + 1
M [AR] � DR, if (DR=0) then (PC � PC+1), SC � 0
Here, a word is read from memory to DR, next DR is incremented by 1 and
the word is saved in DR. When DR reaches 0, PC is incremented and
instruction is skipped.

The execution of these microoperations depends on the opcode values. The longest instruction
among them is the INZ. A 3-bit sequence counter is adequate. However, usually a 4 bit sequence
counter is implemented while designing a computer, to provide with additional timing signals
for other instructions to get executed.

5.4 Input/Output
The instructions and data that have to be computed must be entered into the computer through
some medium. Similarly, the results must be given to user through a medium. The Input/Output
module of the computer provides a means to interact with the outside world and equip the
operating system with the information it needs to manage the I/O activity effectively. Figure 5.5
is an illustration of input and output device. The input device here is the keyboard and the output
device is the printer.

5.4.1 Input/Output Configuration

Consider the figure 5.5 that illustrates the Input/Output configuration. The terminals here are the
keyboard and printer. They send and receive the information serially. The information is
alphanumeric and 8-bits in size. The input provided through the keyboard is sent to the input
register INPR. The data is stored in the OUTPR (output register) in the serial order for the printer.
The OUTR stores the serial information for the printer.

88

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes Figure 5.5 shows input/output configuration.

Figure 5.5: Input/ Output Configuration

As depicted in figure 5.5, the I/O registers interact serially with interfaces (keyboard, printer) and
parallels with AC. The sender interface receives information from keyboard and sends it to INPR.
The receiver interface obtains the information and transmits it to printer. The INPR holds the 8-
bit alphanumeric input information. FGI refers to 1-bit input flag which is a flip-flop. When the
input device receives any new data, the flip flop is set to 1. It is cleared to 0 when data is accepted
by output device. The difference between the timing rates of input devices and computer is
synchronized by the flag. The case is similar with the output device; the difference being the change
in direction of the data flow. The output device sets the FGO to 1 after accepting, decoding and
printing the data. FGO in the 0 mode indicates that the device is printing data.

5.4.2 Input/Output Instruction

The I/O devices are given unique addresses. The processor views the I/O operations in a similar
manner as memory operations. It issues commands that contain the address for the device.
Basically, the I/O instructions are required for the following purposes:

1. Checking flag bits.

2. Transferring data to or from AC register.

3. Controlling interrupts.

The I/O instructions have the opcode as 1111. They are identified by the control when D7 = 1 and
I=1. The operation to be performed is specified by the other remaining bits.

89

Unit 5: Computer Organization II

LOVELY PROFESSIONAL UNIVERSITY

NotesThe different I/O instructions are listed in table 5.1.

Table 5.1: I/O Instructions with their Descriptions

Symbol Description

INP The INP instruction transmits the data from the INPR to AC
which has 8 low order bits. It also clears input flag to 0.

OUT It transfers the 8 low order bits from AC into output register
OUTPR. It also clears the output flag to 0.

SKI These are the status flags. They skip the next instructions when
flag = 1, They are mainly branch instructions.

SKO

ION Enables (set) interrupt.

IOF Disables (clear) interrupt.

5.5 Design of a Basic Computer
The essential components for designing a basic computer are as follows:

1. Registers including AR, PC, AC, DR, IR, SC, TR, INPR, and OUTR.

2. Memory unit that has the capacity to hold 4096 words of 16 bits each. It is the standard component
that is available easily.

3. Flip-flops including I, S, E, R, IEN, FGI, and FGO. They can be the D or JK type, which was
discussed in the previous units.

4. Decoders (3 * 8 operation decoder and a 4 * 16 timing decoder).

5. Common bus (16-bit), it can be developed by combining sixteen 8 * 1 multiplexers.

6. Adder or logic circuit connected to AC input.

The memory unit and the decoders are components that can be obtained from any commercial
resource. A basic computer uses 9 registers generally. The flip flops belonging to two categories,
either the D or the JF type can be implemented. The 8*1 multiplexers are used to create the common
bus system.

Let us next discuss the design of the control unit.

5.5.1 Control of Logic Gates
The inputs for control logic circuit are:

1. Two decoders.

2. I flip-flop.

3. 0 - 11 bits of instruction register.

4. 0-15 bits from AC to check if A=0 and to determine the sign bit.

5. 0-15 bits from DR to check if DR=0 and the values of flip flops.

90

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes The outputs for the control logic circuit are:

1. Signals controlling register inputs.

2. Signals controlling the read/write inputs of memory.

3. Signals setting, clearing, and complementing flip flops.

4. Signals (S2, S1, S0) selecting register for the bus.

5. Signals controlling the AC adder/logic circuit.

The specification of each has already been discussed previously. (Refer figure 5.1 of control unit)

5.5.2 Control of Registers and Memory
The control inputs to registers and memory are:

1. Load (LD): When it is enabled, the content from the source register or memory can be transferred
to/from bus.

2. Increment (INR): It is used to increment the register by 1.

3. Clear (CLR): It is used to clear the register.

The figure 5.6 depicts a scenario for the control of registers and memory.

Figure 5.6: Control of Registers and Memory

 As depicted in figure 5.6, all the register transfer statements are scanned initially that change the
content of AR.

The instructions are as follows:

R’T0: AR � PC LD (AR)

Here, R is negated, added to T0, sent to a NAND gate, and loaded to AR.

R’T2: AR � IR (0-11) LD (AR)

When the clock is incremented, the negated R is added to T2, NANDed and loaded to AR.

91

Unit 5: Computer Organization II

LOVELY PROFESSIONAL UNIVERSITY

NotesD’7IT3: AR � M [AR] LD (AR)

RT0: AR � 0 CLR (AR)

D5T4: AR � AR + 1 INR (AR)

The first three statements depict the information transfer from register or memory to the AR. AR
is cleared to 0 in the fourth statement. AR is incremented in the last statement.

In total the inputs given to address register will be:

LD (AR) =R’T0+R’T2+D’7IT3

CLR (AR) =RT0

INR (AR) =D5T4

5.5.3 Control of Single Flip-Flop

The control gates associated with flip–flops are determined in the same manner as register and
memory. In some cases, there is a possibility that the IEN changes because of the instructions ION
and IOF.

Consider the following scenario:

PB7: IEN � 1 (I/O instruction)

PB6: IEN � 0 (I/O instruction)

RT2: IEN � 0 (Interrupt)

Where P = D7IT3 (I/O instruction)

As depicted in figure 5.7, IEN refers to interrupt enable flag.

For the first two inputs, the value is considered as Input/Output instruction. The third input is an
interrupt.

5.5.4 Control of Common Bus
A bus is a structure that handles the data transmission in a computer system or network. The
common bus of 16-bit is controlled by the selection inputs S 2, S1, and S0. The decimal number
shown with each bus input indicates the binary equivalent that must be applied to the selection
inputs. This is helpful while selecting the appropriate register.

Figure 5.7: Control of Single Flip Flops

92

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes Table 5.2 shows the register that is to be chosen for the particular binary numbers of selection
inputs.

Table 5.2: Selection Inputs and their Corresponding
Registers

Inputs Outputs Register
to be

selected
for bus

X1 X2 X3 X4 X5 X6 X7 S2 S1 S0

0 0 0 0 0 0 0 0 0 0 None
1 1 1 1 1 1 1 0 0 0 AR
0 0 0 0 0 0 0 0 1 0 PC
0 0 0 0 0 0 0 0 1 0 DR
0 0 0 0 0 0 0 1 0 1 AC
0 0 0 0 0 0 0 1 0 1 IR
0 0 0 0 0 1 0 1 1 0 TR
0 0 0 0 0 0 1 1 1 1 Memory

Each of the binary number is related with a Boolean variable x 1 through x7 in figure 5.8.

Figure 5.8: Encoder for Bus Selection Structure

As depicted in figure 5.8, the encoder Boolean functions are:

S0 = x1 + x3 + x5 + x7

S1 = x2 +x3 + x6 + x7

S2 = x4 + x5 + x6 + x7

The logic for each encoder input can be determined if control functions that place the corresponding
register onto the bus, are found.

5.6 Summary
• The timing and control functions are used to execute the instruction codes and registers in an

efficient manner. The control organization is divided into hardwired control and micro
programmed control.

• The instruction cycle involves the fetch and the execute cycle.

• The data transfer in execute cycle happens through processor to memory and processor to I/O
device.

93

Unit 5: Computer Organization II

LOVELY PROFESSIONAL UNIVERSITY

Notes
• The codes written in assembly language which have close reference with machine language

are known as memory reference instructions.

• The register reference instructions take only 1 clock cycle to execute. The inputs that can be
given to a register are CLR, Load, and INR.

• The I/O instructions are mainly used to check flags, transfer data, and control flags.

• The I/O module provides the interface to interact with the external environment.

• The basic components required for designing a computer are registers, flip flops, decoders, a
common bus, a memory unit, and an adder/logic circuit.

• Buses are controlled by selection inputs S2, S1, and S0. The decimals shown with bus input
represent the binary equivalent that must be applied to selection inputs.

5.7 Keywords
Decoder: A device that reverses the result of an encoder to retrieve the original information.

Flag: One or more bits that stores a binary value or code that has an assigned meaning.

Operand: Objects in an expression that are manipulated.

Sequence Counter: A counter that produces a series of code combinations separately.

5.8 Self Assessment
1. State whether the following statements are true or false:

(a) Signals provide control inputs for multiplexer in common bus.

(b) The INZ instruction increments the word specified by the target address.

(c) The execution of micro operations depends on the counter values.

2. Fill in the blanks:

(a) STA stores the content of the ___________________ into the memory word that is
specified by the effective address.

(b) FGO in the ___________________ mode indicates that the device is printing data.

(c) The instruction being read from its respective memory location to the processor is called
___________________.

3. Select a suitable choice for every question:

(a) A bus is a structure that handles the ___________________ in a computer system or
network.

(i) Communication

(ii) Data transmission

(iii) Registers

(iv) Memory unit

(b) The control gates associated with ___________________ are determined in the same
manner as register and memory.

(i) Flip-flops

(ii) Multiplexer

(iii) Decoder

(iv) Sequence control

94

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes 5.9 Review Questions
1. “The assembly language written by programmers is known as memory reference instructions.”

Elaborate.

2. “The I/O module provides an interface to the outside world to interact with the computer.”
Explain.

3. “Each binary code of register has an instruction.” Describe the same.

4. “The decimal number shown with each bus input is helpful in selecting the relevant register.”
Discuss.

5. Logic gates have a number of inputs that are manipulated to provide outputs. Explain the
various inputs and their results.

6. “Various components are required while designing a basic computer.” List the same.

7. With the help of an example explain the input output configuration of a basic computer.

8. “Sometimes the address bits of an instruction code are used as operand and not as an address.”
Justify.

Answers: Self Assessment

1. (a) True (b) True (c) False

2. (a) Register (b) Zero (c) Instruction fetch

3. (a) Data transmission (b) Flip-flops

5.10 Further Readings

Books Radhakrishnan, T., & Rajaraman, V. (2007). Computer Organization and Architecture.
New Delhi: Raj Kamal Electric Press.
Rauss, R. (1998). Essentials of computer science 2. USA: Research and education
association

Online links http://www.scribd.com/doc/19731285/Computer-organisation
http://cnx.org/content/m29708/latest/

95

Unit 6: Control Unit

LOVELY PROFESSIONAL UNIVERSITY

Notes

Unit 6: Control Unit

 CONTENTS

 Objectives

 Introduction

 6.1 Control Memory

 6.2 Hardwired Control and Micro Programmed Control Unit

 6.2.1 Micro Programmed Control

 6.2.2 Difference between Hardwired Control and Micro Programmed Control

 6.3 Address Sequencing

 6.3.1 Conditional Branching

 6.3.2 Instruction Mapping

 6.3.3 Subroutines

 6.4 Micro Program Sequencing

 6.4.1 Micro Instruction Format

 6.4.2 Symbolic Micro Instructions

 6.5 Summary

 6.6 Keywords

 6.7 Self Assessment

 6.8 Review Questions

 6.9 Further Readings

Objectives
After studying this unit, you will be able to:

• Explain control memory

• Discuss hardwired control and micro programmed control unit

• Describe address sequencing

• Elaborate on micro-program sequencing

Introduction
A control unit drives the corresponding processing hardware by generating a set of signals that
are in sync with the master clock. The two major operations performed by control unit are
instruction interpretation and instruction sequencing.

Control unit is a part of Central Processing Unit (CPU). The CPU is divided into arithmetic logic
unit and the Control unit. The control unit generates the appropriate timing and control signals
to all the operations involved with a computer. The flow of data between the processor, memory,
and other peripherals are controlled using timing signals of the control unit.

The main function of a control unit is to fetch the data from the main memory, determine the
devices and the operations involved with it, and produce control signals to execute the operations.

Pooja Gupta, Lovely Professional University

96

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes The functions of control unit are as follows:

1. It helps the computer system on the process of carrying out the stored program instructions.

2. It interacts with both the main memory and arithmetic logic unit.

3. It performs the arithmetic or logical operations.

4. It coordinates with all the activities related to the other units and the peripherals.

Did u know? The first electronic computers were developed in the mid-20th century (1940 –
1945). They were as large as the size of a room, consuming as much power as several hundred
modern PCs (Personal Computers) put together.

As discussed in the previous unit, processor contains a number of registers and special function
registers for temporary storage purposes, in addition to the arithmetic logic unit and control unit.
Program Counters (PC), Instruction Registers (IR), Memory Address Registers (MAR) and Memory
Data Register (MDR) are special function registers. Figure 6.1 depicts these special function registers.

PC is one of the main registers in the CPU. The instructions in a program must be executed in the
right order to obtain the correct results. The sequence of instructions to be executed is maintained
by the PC.

Figure 6.1: Special Function Registers of the CPU

The IR holds the instruction that is presently being executed. The timing signals generated by the
control unit are based on the content of IR. The signals help in controlling the various processing
elements that are necessary to execute the instruction.

97

Unit 6: Control Unit

LOVELY PROFESSIONAL UNIVERSITY

NotesThe function of the other registers MAR and MDR is to transfer data. The address of the main
memory to/from which data is transferred is stored in MAR. The data that is to be read/written
from the specified address to the main memory is stored in MDR.

6.1 Control Memory
A control memory is a part of the control unit. Any computer that involves micro programmed
control consists of two memories. They are the main memory and the control memory. Programs
are usually stored in the main memory by the users. Whenever the programs change, the data is
also modified in the main memory. They consist of machine instructions and data.

On the other hand, the control memory consists of micro programs that are fixed and cannot be
modified frequently. They contain micro instructions which specify the internal control signals
required to execute register micro operations. The machine instructions generate a chain of micro
instructions in control memory. Their function is to generate micro operations that can fetch
instructions from main memory, compute the effective address, execute the operation, and return
control to fetch phase and continue the cycle. The figure 6.2 represents the general configuration
of a micro programmed control organization.

Figure 6.2: Micro Programmed Control Organization

Here, the control is presumed to be a Read Only Memory (ROM), where all the control information
is stored permanently. ROM provides the address of the micro instruction. The other register,
that is, the control data register stores the micro instruction that is read from the memory. It
consists of a control word that holds one or more micro operations for the data processor. The
next address must be computed once this operation is completed. It is computed in the next address
generator. Then, it is sent to the control address register to be read. The next address generator is
also known as the micro program sequencer. Based on the inputs to a sequencer, it determines
the address of the next micro instruction. The micro instructions can be specified in number of
ways.

The main functions of a micro program sequencer are as follows:

1. Increment the control register by one.

2. Load the address from control memory to control address register.

3. Transfer external address or load an initial address to begin the start operation.

The data register is also known as pipeline register. It allows two operations to be performed at
the time. It allows performing the micro operation specified by the control word and also the
generation of the next micro instruction. A dual phase clock is required to be applied to the address
register and the data register. It is possible to apply a single phase clock to the address register
and work without the control data register.

The main advantage of using a micro programmed control is that, if the hardware configuration
is established once, no further changes can be done. However, if a different control sequence is to
be implemented, a new set of micro instructions for the system must be developed.

98

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes

Task Find out the configuration of the latest processors available in the market.

6.2 Hardwired Control and Micro Programmed Control Unit
A hardwired control is a mechanism of producing control signals using Finite State Machines
(FSM) appropriately. It is designed as a sequential logic circuit. The final circuit is constructed by
physically connecting the components such as gates, flip flops, and drums. Hence, it is named as
hardwired controller.

Figure 6.3 depicts a 2-bit sequence counter, which is used to develop control signals. The output
obtained from these signals is decoded to generate the required signals in a sequential order.

Figure 6.3: Sequentia l Counter

The hardwired control consists of combinational circuit that outputs desired controls for decoding
and encoding functions. The instruction that is loaded in the IR is decoded by the instruction
decoder. If the IR is an 8 bit register, then the instruction decoder generates 28 (256) lines. Inputs to
the encoder are given from the instruction step decoder, external inputs, and condition codes. All
these inputs are used and individual control signals are generated. The end signal is generated
after all the instructions get executed. Furthermore, it results in the resetting of the control step
counter, making it ready to generate control step for the next instruction.

The major goal of implementing the hardwired control is to minimize the cost of the circuit and
to achieve greater efficiency in the operation speed. Some of the methods that have come up for
designing the hardwired control logic are as follows:

1. Sequence Counter Method: This is the most convenient method employed to design the controller
of moderate complexity.

2. Delay Element Method: This method is dependent on the use of clocked delay elements for
generating sequence of control signals.

99

Unit 6: Control Unit

LOVELY PROFESSIONAL UNIVERSITY

Notes3. State Table Method: This method involves the traditional algorithmic approach to design the
controller using classical state table method.

When the complexity of the control function increases, it is difficult to debug the hardwired
controller.

Did u know? The concept of micro programmed control was introduced by Wikes in the year
1051. However, its actual version came into existence in the 1960s.

6.2.1 Micro Programmed Control

A control unit whose binary control values are stored as words in memory is known as a micro
programmed control unit.

A controller results in the instructions to be executed by generating a specific set of signals at
each system clock beat. Each of these output signals causes one micro operation such as register
transfer. Here, the sets of control signals are said to cause specific micro operations that can be
stored in the memory. Each bit that forms the micro instruction connects to one control signal.
When the bit is set, the control signal is active. When it is cleared the control signal becomes
inactive. These micro instructions in a sequence can be stored in the internal ’control’ memory.
Basically, the control unit of a micro program controlled computer is a computer within a computer.

The steps followed by the micro programmed control are:

1. To execute any instruction, the CPU must break it down into a set of sequential operations
(each stating a register transfer level (RTL). These set of operations are known as micro
instruction). The sequential micro operations use the control signals to execute. (These are
stored in the ROM).

2. Control signals stored in the ROM are accessed to implement the instructions on the data path.
These control signals are used to control the micro operations concerned with a micro instruction
that is to be executed at any time step.

3. The address of the micro instruction that is to be executed next is generated.

4. The previous 2 steps are repeated until all the micro instructions related to the instruction in
the set are executed.

The address that is provided to the control ROM originates from micro counter register. The micro
counter gets its inputs from a multiplexer that selects the output of an address ROM, a current
address incrementer, and address that is stored in the next-address field of current micro instruction.

The advantages of micro programmed control are:

1. More systematic design of control unit.

2. Easier to debug and modify.

3. Retains the underlying structure of control function.

4. Makes the design of control unit much simpler. Therefore, it is cheaper and less error prone.

5. Orderly and systematic design process.

6. Control function implemented in software and not hardware.

7. More flexible.

8. Complex function is carried out easily.

The disadvantages of micro programmed control are:

1. Flexibility is achieved at extra cost.

2. It is slower than hardwired control unit.

In a micro programmed control, the control memory is assumed to be ROM, where all the data is
stored permanently. The memory address of control unit denotes the address of micro instruction.

100

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes The micro instruction has a control word. The control word denotes the operations for the data
processor. After the completion of these operations the next address must be determined by the
control. The next address may be the one that is next in sequence or the one that is located
elsewhere. Due to this reason, it is required that some bits of the present micro instruction are
used in the next instruction. Another term for the next address generator is micro program
sequencer. The present address is held by the control data register until the next address is computed
and read from the memory. The data register is also called pipeline register. A two phase clock is
required for the same.

6.2.2 Difference between Hardwired Control and Micro Programmed Control

Task Study the applications of both hardwired and micro programmed controls and compare.

Refer to the link- http://www.cs.binghamton.edu/~reckert/hardwire3new.html

6.3 Address Sequencing
Micro instructions are stored in control memory in groups. These groups define routines. Each
computer instruction has its own micro program routine that is used to generate micro operations.
These micro operations are used to execute instructions. The hardware involved controls the
address sequencing of the micro instructions of the same routine. They also branch the micro
instructions.

Following are the steps that the control undergoes while executing a computer instruction:

1. When power is turned on, an address is initially loaded into the control address register. (This
is the address of the first micro instruction).

2. The control address register is incremented resulting in sequencing the fetch routine.

3. After the fetch routine, the instruction is present in the IR of the computer.

4. Next, the control memory retrieves the effective address of the operand from the routine. (The
effective address computation routine is achieved through branch micro instruction. It depends
on the status of mode bits of instruction. After its completion, the address is made available in
the address register).

5. Then, the mapping process happens from the instruction bits to a control memory address.

Table 6.1: Comparison between Hardwired and Micro
Programmed Control

Hardwired Control Micro Programmed Control

It is not possible to modify the architecture
and instruction set, once it is built.

It is possible to make modifications by
changing the micro program stored in the
control memory.

Designing of computer is complex. Designing of computer is simplified.

Architecture and instructions set is not
specified.

Architecture and instruction set is specified.

It is fa ster . It is slower comparatively.

It has a processor to generate signa ls to be
implemented in correct sequence.

It uses the micro sequencer from which
instruction bits are decoded and
implemented.

It works through the use of drums, flip flops,
flip chips, and sequential circuit.

It controls the sub devices such as ALU,
registers, buses, instruction registers.

101

Unit 6: Control Unit

LOVELY PROFESSIONAL UNIVERSITY

Notes6. Based on the opcodes of instruction the micro instructions of the processor registers are
generated. Each of these micro instructions has a separate micro program routine stored. The
instruction code bits are transformed into the address where routine is located and is called as
the mapping process. A mapping procedure converts the micro instruction into control memory
address.

7. Next, subroutines are called and procedures are returned.

8. After the completion of the routine, control address register is incremented to sequence the
instruction that is to be executed. They also depend on values of status bits in processor
registers. External registers are required by micro programs to store return address that use
subroutines. After the instruction is executed, the control returns to the fetch routine. This is
done by branching the micro instruction to the first address in the fetch routine.

Figure 6.4 depicts the block diagram of a control memory and its related hardware to help in
selecting the next micro instruction. The micro instruction present in the control memory has a
set of bits that help to initiate the micro operations in registers. They also have bits and the method
that can be used to obtain the instruction of the next address. Four different paths are displayed in
the figure from where the control address register retrieves its address. The CAR is incremented
by the incrementer and selects the next instruction. In one of the fields of the micro instruction,
the branching address can be specified to result in branching. To determine the condition of the
status bits of micro instruction, conditional branching may be used. A mapping logic circuit is
used to transfer an external address. A special register is used to store the return address, so that
whenever the micro program wants to return from subroutine, it can use the value from special
register.

6.3.1 Conditional Branching

From the figure 6.4, the flow of control is clear. The carry out of an adder, mode bits of an instruction,
Input/Output status conditions are the special bits of status conditions. Based on conditions whether
their value is 0 or 1, their information is tested and actions are initiated. These bits combine with

Figure 6.4: Selection of Address for Control Memory

102

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes the other fields of the micro instructions and control the decisions regarding the conditions in the
branch logic.

The hardware associated with branch logic can be employed in a number of ways. One of the
common ways is to test the condition, and if it is satisfied, then branch to the specified address.
Else, increment the address register. A multiplexer can be employed to work through the branch
logic.

Suppose the number of status bit conditions = 8. Out of the eight bits, three are used to specify
selection variables for multiplexer. If selected status bit = 1, multiplexer output = 1, else it would
be 0. When the MUX O/P = 1, it produces a control signal and transfers the branch address to
CAR from micro instruction. When MOX O/P = 0, the address register gets incremented.

Unconditional Branch Micro Instruction
The unconditional branch micro instruction can be achieved by transferring the branch address
from control memory to CAR. Here, the status bit at the input of MUX is fixed to 1. When there is
a reference to these status bit lines, the branch address is loaded into CAR causing the unconditional
branching.

6.3.2 Instruction Mapping

When a micro instruction specifies the branch to the first word in the control memory where the
routine for micro instruction is placed, it leads to a special type of branch. The branch has its
status bits placed in the instruction’s opcode part.

 Figure 6.5: Instruction Code to Micro Instruction
Address Mapping

As depicted in figure 6.5 the instruction format of a simple computer has an opcode of four bits.
They can specify up to 16 different instructions, if the control memory has 128 words that require
7-bit address. Each of the operations has a micro program routine that helps in executing the
instruction. A mapping process can transform a 4-bit opcode to a 7-bit address for control memory.
In this process, a 0 is placed in the most significant bit of the address, 4 opcode bits are transferred
and 2 least significant bits are cleared. This way each computer instruction has a micro program
routine that has a capacity to group 4 micro instructions.

Sometimes, a mapping function needs to use the integrated circuit called Programmable Logic
Device (PLD). It uses the AND/OR gates that consist of electrical fuses internally. They are
commonly implemented in mapping function that is expressed in terms of Boolean expressions.

6.3.3 Subroutines

Certain tasks cannot be performed by the program alone. They need additional routines known
as subroutines. Subroutines are routines that can be called within the main body of the program
at any point of time. There are cases when many programs contain identical code sections. These
code sections can be saved in subroutines and used wherever common codes are used.

103

Unit 6: Control Unit

LOVELY PROFESSIONAL UNIVERSITY

Notes
Example: The code needed to generate effective address of operand for a sequence of micro

instruction is common for all the memory reference instructions. This code can be a subroutine and
called from within other routines.
All the micro programs that implement subroutine must have extra memory space to store the
return address. The extra space is called the subroutine register. It is used to store the return address
during a subroutine call and restore during subroutine return. The incremented output must be
placed in a subroutine register from a CAR. This must be branched to the beginning of subroutine.
Now, the register becomes a means of transferring address to return to main routine. The registers
must be arranged in the LIFO (Last In First Out) stack so that it is easy to get the addresses.

6.4 Micro Program Sequencing
The micro code for the control memory must be generated by the designer once the configuration
of a computer is established. The generation of code is called micro programming.

The important points to be considered while designing the micro program sequencer are:

1. Size of micro instruction

2. Time of address generation

The micro instruction’s size must be in the least, so that the control memory required is less and
the cost is reduced. Micro instructions can be executed at a faster rate if the time to generate an
address is less. This results in increased throughput.

The disadvantage of micro program sequencing is as follows:

1. If each machine instruction has a separate micro routine, then it results in the usage of larger
areas for storage.

2. The branching requires more time for execution.

Example: Consider an instruction Add X, AR
This instruction will require four addressing modes - register, auto increment,
auto decrement, and indexing in case of indirect forms.

Computer Configuration

The micro code for the control memory is generated after the computer configuration and its
micro programmed control unit is established. The figure 6.6 displays the simple digital computer
and the way it is micro programmed. There are two memory units, the instructions and data is
stored in the main memory and the micro programs are stored in the control memory. The
processor unit consists of four registers, Program Counter (PC), Address Register (AR), Data
Register (DR), and an Accumulator (AC). The control unit contains two registers. They are Control
Address Register (CAR) and a Subroutine Register (SBR).

Did u know? Referring to a person who carried out calculations, or computations, the first use
of the word “computer” was recorded in the year 1613. This word continued with the same
meaning until the middle of the 20th century.

104

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes Figure 6.6 shows configuration of computer hardware.

Figure 6.6: Configuration of Computer Hardware

As depicted in figure 6.6, multiplexers are used to transfer information within the registers in the
processor. AR can get data from PC or DR. DR can receive data from AC, PC, or memory. PC
gets data only from PC. The data from AC and DR can undergo arithmetic and logic operations
and be placed in the AC. The DR is the source of data for memory, where the data that is read
can go to DR and no other register.

105

Unit 6: Control Unit

LOVELY PROFESSIONAL UNIVERSITY

Notes6.4.1 Micro Instruction Format

A micro instruction format consists 20 bits in total. They are divided into four parts as shown in
the figure 6.7.

Figure 6.7: Micro Instruction Code Format

3 3 3 2 2 7
F1 F2 F3 CD BR AD

 In figure 6.7:

F1, F2, F3 are the micro operation fields. They specify micro operations for the computer.

CD is the condition for branching. They select the status bit conditions.

BR is the branch field. It specifies the type of branch.

AD is the address field. It contains the address field whose length is 7 bits.

The micro operations are further divided into three fields of three bits each. These three bits can
specify seven different micro operations. In total there are 21 operations as shown in table 6.2.

As depicted in table 6.2, each micro instruction can have only three micro operations, one from
every field. If it uses less than three, it will result in more than one operation using the no
operation binary code.

Table 6.2: Symbols with the ir Binary Code for Micro
Instruction Fields

Code Micro Operation Symbol
F1 000 NOP

001 AC ? AC + DR ADD
010 AC ? 0 LRAC
01 AC ? AC + 1 INCAC
100 AC ? DR DRTAC
101 AR ? DR (0 - 10) DRTAR
1 0 AR ? PC PCTAR
111 M[AR] ? DR WRITE

F2 000 None NOP
001 AC ? AC – DR SUB
010 AC ? AC DR OR
011 AC ? AC^DR AND
100 DR ? M[AR] READ
101 DR ? AC ACTDR
110 DR ? DR + 1 IN DR
111 DR (0 - 10) ? PR PCTDR

F3 000 None NOP
001 AC ? AC DR XOR
010 AC ? AC COM
011 AC ? shl AC SHL
100 AC ? shr AC SHR
101 PC ? PC + 1 INCPC
110 PC ? AR ARTPC
111 Reserved

106

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes
Example: Consider F2 and F3 as two consecutive micro operations specified by micro

instructions. It does not describe F1.
DR � M [AR] with F2 = 100
PC � PC + 1 with F3 = 101
Here, the micro operation will be 000 100 101. The F1 field remains 000 as
nothing is specified for the same. Also, two or more conflicting micro operation
cannot be specified consecutively.

Condition Field

A condition field consists of 2 bits. They are encoded to specify four status bit conditions. As
specified in the table, the first condition is always a 1, with CD = 0. The symbol used to denote
this condition is ‘U’.

The table 6.3 depicts the different condition fields and their descriptions in a clear manner.

Table 6.3: Condition Field Symbols and Descriptions

Condition Symbol Comments

00 Always =1 U Unconditiona l branch
01 DR(15) I Indirect ad dress bit
10 AC(15) S Sign bit of AC
11 AC=0 Z Zero value in AC

As depicted in table 6.3, when the condition 00 is combined with BR (branch) field, it results in
unconditional branch operation. After the execution is read from memory the indirect bit I is
available from bit 15 of DR. The status of next bit is provided by AC sign bit. If all the bits in AC
are 1, then it is denoted as Z (its binary variable whose value is 1). The symbols U, I, S and Z are
used to denote status bits while writing micro programs.

Branch Field

The BR (branch) field consists of 2 bits. It is used by combining with the AD (address) field. The
reason for combining with AD field is to choose the address for the next micro instruction. The
table 6.4 explains the different branch fields and their functions.

Table 6.4 : Branch Field Symbols and Descriptions

BR Symbol Fu nction

00 JMP CAR ? AD, if condition = 1

CAR ? CAR + 1, if condition = 0

01 CALL CAR ? AD, SBR ? CAR + 1, if
condition = 1

CAR ? CAR + 1, if condition =0

10 RET CAR ? SBR (return from
subroutine)

11 MAP CAR (2 - 5) ? DR (11 - 4), CAR
(0, 1, 6) ? 0

107

Unit 6: Control Unit

LOVELY PROFESSIONAL UNIVERSITY

NotesAs depicted in table 6.4, when BR = 00, a JMP operation is performed and when BR = 01, a
subroutine is called. The only difference between the two instructions is that when the micro
instruction is stored, the return address is stored in the Subroutine Register (SBR). These two
operations are dependent on the CD field values. When the status bit condition of CD field is
specified as 1, the address that is next in order is transferred to CAR. Else, it gets incremented. If
the instruction wants to return from the subroutine, its BR field is specified as 10. This results in
the transfer of return address from SBR to CAR. The opcode bits of instruction can be mapped
with an address for CAR if BR field is 11. They are present in DR (11 - 14) after an instruction is
read from memory. The last two conditions in the BR fields are not dependent on the CD and AD
field values.

6.4.2 Symbolic Micro Instructions
The micro instructions can be specified by symbols. It is translated to its binary format with an
assembler. The symbols must be defined for each field in the micro instruction. Furthermore, the
users must be allowed to define their own symbolic addresses. Every line in an assembly language
defines a symbolic instruction. These instructions are split in five fields, namely, label, micro
operations, CD, BR, and AD as explained in table 6.5.

Fetch Routine

Control unit consists of 128 words, each containing 20 bits. The value of every bit must be
determined to micro program the control memory. Among the 128 words, the first 64 are reserved
for the routines of 16 instructions. The remaining 64 may be used for other purposes. The best
starting location for the fetch routine to begin is the 64th address. The micro instructions necessary
for fetch routine are:

AR � OC

DR � M [AR], PC � PC + 1

AR � DR (0-10), CAR (2 - 5) � DR (11 - 14), CAR (0, 1, 6) � 0

From PC the address is transferred to AR and read from the memory into DR. The instruction
code remains in DR as no instruction register exists. Next, the address is moved to AR, and the
control to one of the 16 routines. They take place by mapping the opcode of instruction into CAR
from DR.

Micro instructions that are located in the addresses 64, 65, and 66 are necessary for the fetch routine.
The symbolic language to describe the same is shown below:

 ORG 64

FETCH: PCTARUJMPNEXT

Field Description

Label It may be empty or specified by a symbolic address. It is ended
by a colon (:).

Micro operations It consists of one or more symbols separated by commas. But
each F field consists of only a single symbol.

CD It has one of the letters U, I ,A, or

Z.
BR It consists of one among the four symbols defined in table 6.4.

AD
It specifies the value for address field of micro instruction in any
of the following ways described below:
 - With address in symbols that appears as label.
 - With NEXT symbol that point to the next address in a
 sequence.
 - With BR field containing a Ret or a MAP symbol, the AD
 field is left empty and converted to seven zeroes by the
 assembler.

Table 6.5: Fields and their Descriptions

108

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes READ, INCPCUJMPNEXT

DRTAR UMAP

Table 6.6 depicts the results of binary translation for the assembly language.

Table 6.6: Binary Translation for Assembly Language

Binary
Address

F1 F2 F3 CD BR AD

1000000 110 000 000 00 00 1000001
1000001 000 100 101 00 00 1000010
1000010 101 101 000 00 11 0000000

Each micro instruction implements the internal register transfer operation shown by the register
transfer representation. The representation in symbols is necessary while writing micro programs
in assembly language format. The actual internal content which is stored in the control memory
is in binary representation. In normal practice, programs are written in symbolic form initially
and later converted into binary using an assembler.

6.5 Summary
• A control unit controls the data flow through the processor and coordinates the activities of the

other units that are involved with it.

• The processor consists of many registers within it. One of the main registers is Program
Counter (PC). It holds the instruction that is to be executed next in a sequence. The function of
the other registers such as MAR and MDR is to transfer data.

• Control memory is a part of control unit. It stores all the micro programs that cannot be
modified frequently. They are fixed programs.

• The data register is also known as pipeline register. It allows two operations to be performed
at a time. It allows performing the micro operation specified by the control word and also the
generation of the next micro instruction.

• The hardwired control uses the finite state machines to generate control signals.

• The hardwired control consists of physical components such as flip flops, drums, and so on.
The methods used to design the hardwired control are sequence counter, delay element, and
state table method.

• Micro programmed control is another way of generating control signals. They consist of
sequence of micro instructions that correspond to a sequence of steps in an instruction execution.

• The next address generator is called a micro program sequencer.

• Each computer instruction has its own micro program routine that is used to generate micro
operations. An address sequencer is a circuit used to generate addresses for accessing the
memory device.

• In a conditional branching the information is tested and actions are initiated based on conditions,
whether their value is 0 or 1.

• In an unconditional branching, the branch address is transferred to CAR from the control
memory.

• Instruction mapping function uses the integrated circuit called Programmable Logic Device
(PLD).

• Subroutines are the additional routines that are used by programs to perform some tasks.

• The micro programs need to be sequenced in a certain order for their smooth execution. This
is called micro program sequencing.

109

Unit 6: Control Unit

LOVELY PROFESSIONAL UNIVERSITY

Notes• A micro instruction format has 20 bits, consisting of micro operation fields, condition field,
branch filed, and the address field.

6.6 Keywords
Micro Instruction: An elementary instruction that controls the sequencing of instruction execution
and the flow of data in a processor. Execution of a machine language instruction requires the
execution of a series of micro instructions.

Micro Program: It consists of a sequence of micro instructions corresponding to the sequence of
steps in the execution of a given machine instruction.

Micro Programming: It is the method of generating control signals by setting the individual bits
in a control word of a step.

6.7 Self Assessment
1. State whether the following statements are true or false:

(a) The control memory interacts with both the main memory and the arithmetic logic
unit.

(b) ROM provides address of all the micro instructions in a control memory.

(c) When a bit is cleared the control signal becomes active.

(d) In a micro instruction format 7 bits are assigned for address field and 3 bits for the
condition field.

(e) The actual internal content which is stored in the control memory is always in binary
representation.

2. Fill in the blanks:

(a) Designing of controls is complex in ___________________.

(b) Multiplexers are used to transfer information within the ___________________ in the
processor.

(c) The best starting location for the fetch routine to begin is the ___________________
address.

(d) The unconditional branch micro instruction is achieved by transferring the
___________________ from control memory to CAR.

(e) Programs are written in symbolic form initially and later converted into binary using
a ___________________.

3. Select a suitable choice in every question:

(a) Which of the following properties of the micro instruction must be least so that it uses
less control memory space?

(i) Size (ii) Time taken (iii) Cost (iv) Steps

(b) The control unit consists of …………….. words, each containing 20 bits.

(i) 120 (ii) 168 (iii) 128 (iv) 150

(c) Which of the following methods involve the traditional algorithmic approach to design
the controller?

(i) State table method

(ii) Sequence counter method

(iii) Finite state machine method

(iv) Delay element method

110

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes (d) A condition field consists of …………….. bits. They are encoded to specify ……………..
status bit conditions.

(i) 2, 4 (ii) 3, 6 (iii) 1, 2 (iv) 2, 3

(e) What are the F1, F2 and F3 fields called?

(i) Condition fields

(ii) Branch fields

(iii) Address fields

(iv) Micro operations fields

6.8 Review Questions
1. “A control memory is a part of control unit.” Explain.
2. “The function of a control unit is to control the flow of data and coordinate with the components

involved in the process.” Elaborate.
3. A micro programmed control is easier to design a control unit. Do you agree? Justify.
4. “A computer system consists of two memory units, namely, the main memory and the control

memory.” Discuss.
5. A control has to undergo a number of steps while executing an instruction. List all the steps.
6. The special bits of status conditions involve the carry out of an adder, mode bits of an instruction,

Input/Output status conditions. Do you agree that all these conditions are required for the
proper execution of the instruction?

7. The instruction format of a simple computer has an opcode of four bits. Explain the instruction
mapping.

8. “A program alone cannot perform all the tasks. It needs some additional routines.” Explain
9. “Micro programming involves generating micro code for the control memory.” Describe.
10. “The format of micro instruction consists of 20 bits in total.” Discuss each of the fields.
11. “The branch field is assigned two bits in the micro instruction format.” Describe.
12. Micro instructions that are located in the addresses 64, 65, and 66 are necessary for the fetch

routine. Explain the fetch routine in detail.

Answers: Self Assessment

1. (a) False (b) True (c) False (d) False (e) True

2. (a) Hardwired control (b) Registers (c) 64th (d) Branch address

(e) Assembler

3. (a) Size (b) 168 (c) State table method (d) 2, 4 (e) Micro operations field

6.9 Further Readings

Books Radhakrishnan, T., & Rajaraman, V. (2007). Computer Organization and Architecture.
New Delhi: Raj Kamal Electric Press.
Godse A.P & Godse D.A. (2008). Digital Electronics, 3rd ed. Pune: Technical
Publications.

Online links http://www.ustudy.in/node/632
http://homepage3.nifty.com/alpha-1/computer/Control_E.html
http://www.slideshare.net/RRoshan/co-unit2-by-rakesh-roshan

111

Unit 7: Central Processing Unit

LOVELY PROFESSIONAL UNIVERSITY

Notes

Unit 7: Central Processing Unit

 CONTENTS

 Objectives

 Introduction

 7.1 An Overview of the CPU

 7.2 General Register Organization

 7.3 Stack Organization

 7.3.1 Register Stack

 7.3.2 Memory Stack

 7.4 Instruction Format

 7.5 Summary

 7.6 Keywords

 7.7 Self Assessment

 7.8 Review Questions

 7.9 Further Readings

Objectives

After studying this unit, you will be able to:

• Explain the functions of CPU

• Explain the general register organization

• Describe stack organization

• Discuss instruction format

Introduction
The Central Processing Unit (CPU) is the heart of a computer system. The CPU along with the
memory and the I/O sub-systems develops a powerful computer system.

Companies such as AMD, IBM, Intel, Motorola, SGI, and Sun manufacture CPUs that are used in
various kinds of computers such as desktops, mainframes, and supercomputers. A CPU comprises
thin layers of thousands of transistors. Transistors are microscopic bits of material that block
electricity at one voltage (non-conductor) and allow electricity to pass through them at different
voltage (conductor). These tiny bits of materials are the semiconductors that take two electrical
inputs and generate a different output when one or both inputs are switched on. As CPUs are
small, they are also referred to as microprocessors.

Did u know? CPU is an old term that was used for processor or multiprocessor.
Modern CPUs are called as integrated chips. It is so called because several types of components
such as execution core, Arithmetic Logic Unit (ALU), registers, instruction memory, cache memory,
and the input/output controller are integrated into a single piece of silicon.

Manmohan Sharma, Lovely Professional University

112

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes
Example: Intel makes Pentium series of processors, whereas AMD makes the Athlon and

Duron processors.

7.1 An Overview of the CPU
Central Processing Unit (CPU) is the most important unit in a computer system. It is the component
which controls all internal and external devices as well as performs arithmetic and logic operations
to execute the set of instructions stored in the computer’s memory.

A CPU comprises three major components. They are:

• Register Set

• ALU

• Control Unit (CU)

Register Set

The register set differs from one system to another. The register set comprises many registers
which include general purpose registers and special purpose registers. The general purpose
registers do not perform any specific function. They store the temporary data that is required by
a program. The special purpose registers perform specific functions for the CPU.

Example: Instruction Register (IR) is a special purpose register that stores the instruction
that is currently being executed.
ALU

The ALU performs all the arithmetic, logical, and shift operations by providing necessary circuitry
that supports these computations.

Control Unit

The control unit fetches the instructions from the main memory, decodes the instructions, and
then executes it. The control unit is discussed in detail in the units ahead.

113

Unit 7: Central Processing Unit

LOVELY PROFESSIONAL UNIVERSITY

NotesFigure 7.1 illustrates the components of the CPU.

Figure 7.1: Components of CPU

 As shown in figure 7.1, the CPU consists of the register set, ALU, and CU.

The CPU interacts with the main memory and input/output devices. The CPU reads and writes
data to and from the memory system and transfers data to and from the I/O devices.

A simple execution cycle in the CPU can be described as below:

1. The CPU fetches the instruction to be executed from the main memory and stores it in the
Instruction Register (IR).

2. The instruction is decoded.

3. The operands are fetched from the memory system and stored in the CPU registers.

4. The instructions are then executed.

5. The results are transferred from the CPU registers to the memory system.

Notes Operand is the part of a computer instruction that is manipulated and operated.
In the addition of 5 + x, ‘5’ and ‘x’ are operands and ‘+’ is the operator.

If there are more instructions to be executed, the execution cycle repeats. Any pending interrupts
are also checked during the execution cycle.

Example: The interrupts such as I/O device request, arithmetic overflow, or pages is checked
during the execution cycle.

114

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes The actions of the CPU are defined by the micro-orders issued by the control unit. The micro-
orders are the control signals, which are sent over specified control lines.

Example: Suppose you need to execute an instruction that moves the contents of register A
to register B. If both the registers are connected to data bus C, then the control unit issues a micro-
order (control signal) to register A to place its contents on the data bus C. Another micro-order is
sent to register B to read from data bus C. The control signals are activated either through hardwired
control or microprogramming.

Thus, CPU is the primary element of a computer system, which carries out each instruction of a
program to perform basic arithmetical, logical, and input/output operations.

7.2 General Register Organization
A group of flip-flops form a register. A register is a special high speed storage area in the CPU.
They comprise combinational circuits that perform data processing. The data is always represented
in a register before processing. The registers speed up the execution of programs.

Registers perform two important functions in the CPU operation. They are:

1. Providing a temporary storage area for data. This helps the currently executing programs to
have a quick access to the data, if needed.

2. Storing the status of the CPU as well as information about the currently executing program.

Example: Address of the next program instruction, signals received from the external devices
and error messages, and such other information is stored in the registers.

We know that referring to memory locations is considered difficult and time consuming. Hence,
storing the pointers, return addresses, temporary results, and program counters into the register
is more efficient than the memory. The number of registers varies from one computer system to
another.

115

Unit 7: Central Processing Unit

LOVELY PROFESSIONAL UNIVERSITY

NotesIf a CPU contains a number of registers, then a common bus is used to connect these registers. A
general organization of seven CPU registers is shown in figure 7.2.

As observed in figure 7.2, the CPU bus system is operated by the control unit. The control unit
directs the information flow through the ALU by selecting the function of the ALU as well as
components of the system.

Consider R1 R2 + R3, the following are the functions performed within the CPU:

MUX A Selector (SELA): It is used to place R2 into bus A

MUX B Selector (SELB): It is used to place R3 into bus B

ALU Operation Selector (OPR): It selects the arithmetic addition (ADD)

Decoder Destination Selector (SELD): It transfers the result into R1.

The multiplexers of 3-state gates are implemented with the buses. The state of 14 binary selection
inputs specifies the control word. The 14-bit control word specifies a micro-operation.

Figure 7.2: General Organization of Registers

116

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes The encoding of register selection fields are specified in table 7.1.

Notes 3-state gates are the types of logic gates having three states of output: high (H), low (L)
and high-impedance (Z).

Various micro-operations are performed by the ALU. Some of the operations performed by the
ALU are listed in table 7.2.

Some of the ALU micro-operations are shown in the table 7.3:

Table 7.1: Encoding of Register Selection Field

Binary Code SELA SELB SELD
000 Input Input None
001 R1 R1 R1
010 R2 R2 R2
011 R3 R3 R3
100 R4 R4 R4
101 R5 R5 R5
110 R6 R6 R6
111 R7 R7 R7

Table 7.2: Encoding of ALU Operations

OPR Select Operation Symbol
00000 Transfer A TSFA
00001 Increment A INCA
00010 Add A + B ADD
00101 Subtract A - B SUB
00110 Decrement A DECA
01000 ADD A and B AND
01010 OR A and B OR
01100 XOR A and B XOR
01110 Comple ment A COMA
10000 Shift right A SHRA
11000 Shift left A SHLA

Table 7.3: ALU Micro-Operations

Micro-operation SELA SELB SE LD OPR Control Word
R1 R2 – R3 R2 R3 R1 SUB 010 011 001 00101
R4 R4 R5 R4 R5 R4 OR 100 101 100 01010
R6 R6 + 1 R6 - R6 INCA 110 000 110 00001
R7 R1 R7 - R1 TSFA 001 000 111 00000
Output R2 R2 - None TSFA 010 000 000 00000
Output Input Input - None TSFA 000 000 000 00000
R4 shl R4 R4 - R4 SHLA 100 000 100 11000
R5 0 R5 R5 R5 XOR 101 101 101 01100

117

Unit 7: Central Processing Unit

LOVELY PROFESSIONAL UNIVERSITY

Notes
Types of Registers

There are many different types of register available in the market. Some of them are:

1. Data Register: It is used to store data.

2. Accumulator Register: It is considered as a special data register.

3. Address Register: It holds the memory address.

4. Index Register: It holds the index of the memory address.

5. Condition Register: It determines whether the instruction should be executed or not.

6. General Purpose Register: It stores data and addresses.

7. Special Purpose Register: It stores the status of the programs.

8. Floating Point Register: It is a kind of data register that stores the floating point numbers.

9. Constant Register: It stores read-only values.

General purpose registers are also called as processor registers. These processor registers provide
the fastest means to access data.

Did u know? Processor register is mostly found at the top of the memory hierarchy.

7.3 Stack Organization
Stack, also called as Last In First Out (LIFO) list, is the most useful feature in the CPU. It stores
information such that the item stored last is retrieved first. Stack is a memory unit with an address
register. This register holds the address for the stack, which is called as Stack Pointer (SP). The
stack pointer always holds the address of the item that is placed at the top of the stack.

You can insert an item into or delete an item from the stack. The insertion operation is called as
push operation and the deletion operation is called as pop operation. In a computer stack, these
operations are simulated by incrementing or decrementing the SP register.

7.3.1 Register Stack

Stack can be organized as a collection of memory words or registers. Consider a 64-word register
stack organized as shown in figure 7.3. The stack pointer register contains a binary number, which
is the address of the item present at the top of the stack. The three items A, B, and C are placed in
the stack. The item C is at the top of the stack and the stack pointer holds the address of C that is,
3. The top item is popped from the stack by reading memory word at address 3 and decrementing
the stack pointer by 1. Now, B is at the top of the stack and the SP holds the address of B that is, 2.
To insert a new word, the stack is pushed by incrementing the stack pointer by 1 and inserting a
word in that incremented location.

118

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes Figure 7.3 depicts 64-word stack.

Figure 7.3: 64-word Stack

 Here, the stack pointer contains 6 bits, since 26 = 64, and the SP cannot exceed 63 (111111 in binary)
because if 63 is incremented by 1, then the result is 0(111111 + 1= 1000000). SP holds only the six
least significant bits. If 000000 is decremented by 1 then the result is 111111. Thus, when the stack
is full, the one bit register ‘FULL’ is set to 1. If the stack is empty, then the one bit register ‘EMTY’
is set to 1. The data register DR holds the binary data which is written into or read out of the
stack.

First the SP is set to 0, EMTY is set to 1, and FULL is set to 0. Now, as the stack is not full (FULL =
0), a new item is inserted using the push operation. The push operation is performed as below:

SP SP + 1, stack pointer is incremented

K[SP] DR, place an item on the top of the stack

If (SP = 0) then (FULL 1), check if stack is full

EMTY 0, if stack is full, then mark the stack as not empty

The stack pointer is incremented by 1 and the address of the next higher word is stored in the SP.
The word from DR is inserted into the stack using the memory write operation. As per figure 5.3,
the first item is stored at address 1 and the last item is stored at address 0. If the stack pointer is at
0, then the stack is full and ‘FULL’ is set to 1. This is the condition when the SP was in location 63
and after incrementing SP , the last item is stored at address 0. Once an item is stored at address 0,
there are no more empty registers in the stack. The stack is full and the ‘EMTY’ is set to 0.

You can perform pop operation (deletion) only if the stack is not empty. To delete an item from
the stack, the following micro-operations are performed.

DR K[SP], an item is read from the top of stack

SP SP – 1, stack pointer is decremented

If(SP = 0) then (EMTY 1), check if stack is empty

FULL 0, if stack empty, then mark the stack empty

The top item from the stack is read and sent to DR and then the stack pointer is decremented. If
the stack pointer reaches 0, then the stack is empty and ‘EMTY’ is set to 1. This is the condition
when the item in location 1 is read out and the SP is decremented by 1.

119

Unit 7: Central Processing Unit

LOVELY PROFESSIONAL UNIVERSITY

Notes

Notes When the pop operation reads an item from location 0, the stack pointer is decremented
and reaches 63 (SP changes to 111111).

!
Caution

 If stack is pushed when FULL = 1 or popped when EMTY = 1, you get an erroneous

result.

7.3.2 Memory Stack
Stack can be implemented in the CPU by allotting a portion of the computer memory to a stack
operation and using a processor register as a stack pointer. In this case, it is implemented in a
random access memory attached to the CPU.

In figure 7.4, a portion of the computer memory is divided into three segments: program, data
and stack. The address of the next instruction in the program is stored in the pointer Program
Counter (PC). The Address Register (AR) points to an array of the data. SP always holds the address
of the item present at the top of the stack. The three registers that are connected to the common
bus are PC, AR, and SP. PC is used to read the instruction during fetch phase. An operand is read
during execute phase using address register. An item is pushed into or popped from the stack
using stack pointer. Figure 7.4 depicts the memory stack.

Figure 7.4: Memory Stack

In figure 7.4, the SP points to an initial value ‘2001’. Here, the stack grows with decreasing
addresses. The first item is stored at address 2000, the next item is stored at address 1999 and the
last item is stored at address 1000.

As we already know, data register is used to read an item into or from the stack. You use push
operation to insert a new item into the stack.

SP SP -1

K[SP] DR

120

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes To insert another item into the stack, the stack pointer is decremented by 1 so that it points at the
address of the next location/word. A word from DR is inserted into the top of the stack using
memory write operation.

To delete an item from the stack, you need to use the pop operation:

DR K[SP]

SP SP + 1

The top item is read into the DR and then the stack pointer is decremented to point to the next
item in the stack.

Here, two processor registers are used to check the stack limits. One processor register holds the
upper limit (1000) and the other holds the lower limit (2001). During push operation, the SP is
compared with the upper limit to check if the stack is full. During pop operation, the SP is
compared with the lower limit to check if the stack is empty.

An item in the stack is pushed or popped using two micro-operations. They are:

1. Accessing the memory through SP

2. Updating SP

A stack pointer is initially loaded with the bottom address of the stack in memory. Thereafter, SP
is automatically incremented or decremented depending on the operation performed (push or
pop). As the address is automatically updated in the stack pointer, the CPU can refer to the memory
stack without specifying the address.

7.4 Instruction Format
An instruction consists of a combination of operation codes and operands that deal with the
operation codes. Instruction format basically provides the layout of bits in an instruction. It
includes fields such as opcode, operands, and addressing mode. The instruction length is usually
kept in multiples of the character length, which is 8 bits. When the instruction length is fixed, a
number of bits are allocated to opcode, operands, and addressing modes. The bits are distributed
such that if more number of bits is allocated to the opcode field, then less number of bits are
allocated to the operands and addressing. The task of allocating bits in the instruction can be
simplified by considering the following factors:

1. Number of addressing modes

2. Number of operands

3. Number of CPU registers

4. Number of register sets

5. Number of address lines

Figure 7.5 shows the general IA-32 (Intel Architecture- 32 bits) instruction format. IA-32 is the
instruction format that is used in Intel’s most successful microprocessors. This instruction format
consists of four fields, namely opcode field, addressing mode field, displacement field, and
immediate field.

Figure 7.5: IA-32 Instruction Format

Opcode Addressing

mode
Displacement Immediate

1 or 2
bytes

1 or 2
bytes

1 or 4
bytes

1 or 4
bytes

121

Unit 7: Central Processing Unit

LOVELY PROFESSIONAL UNIVERSITY

NotesAs shown in figure 7.5, the opcode field has 1 or 2 bytes. The addressing mode field also includes
1 or 2 bytes. In the addressing mode field, an instruction needs only one byte if it uses only one
register to generate the effective address of an operand. The field that immediately follows the
addressing mode field is the displacement field. If an effective address for a memory operand is
calculated using the displacement value, then it uses either one or four bytes to encode. If an
operand is an immediate value, then it is placed in the immediate field and it occupies either one
or four bytes.

Instructions in a computer can be of different lengths with varying number of addresses. The
number of address fields in the instruction format of a computer varies according to the
organization of its registers. Based on the number of address fields the instruction can be classified
as three address instructions, two address instructions, one address instruction, and zero address
instruction.

Three Address Instructions
The general format of a three address instruction is represented as:

operation source 1, source 2, destination

ADD A, B, C

where A, B and C are the three variables that are assigned to a distinct location in the memory.
‘ADD’ is the operation that is performed on the operands. ‘A’ and ‘B’ are the source operands and
‘C’ is the destination operand.

Here, bits are required to specify the three operands. n bit is required to specify one operand (one
memory address). Similarly, 3n bits are required to specify three operands (three memory
addresses). Bits are also required to specify the ADD operation.

Two Address Instructions
The general format of a two address instruction is represented as:

operation source, destination

ADD A, B

where A and B are the two variables that are assigned to a distinct location in the memory.
‘ADD’ is the operation that is performed on the operands. This instruction adds the content of the
variables A and B and stores the result in variable B. Here, ‘A’ is the source operand and ‘B’ is
considered as both source and destination operands.

Here, bits are required to specify the two operands. n bit is required to specify one operand (one
memory address). Similarly, 2n bits are required to specify two operands (two memory addresses).
Bits are also required to specify the ADD operation.

One Address Instruction

The general format of one address instruction is represented as:

operation source

ADD A

where A is the variable that is assigned to a distinct location in the memory. ‘ADD’ is the operation
that is performed on the operand A. This instruction adds the content of the variable A into the
accumulator and stores the result in the accumulator by replacing the content of the accumulator.

Some more examples of one address instructions are:

LOAD A: The content of memory location A is stored in the accumulator.

STORE B: The content of accumulator is stored in the memory location B.

The operand in the instruction can either be the source or the destination, depending on the
instruction.

122

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes Zero Address Instructions

The locations of the operands in zero address instructions are defined implicitly. These instructions
store operands in a structure called pushdown stack.

We now know that one address instruction uses less number of bits, whereas three address
instructions are uses more number of bits. Similarly, the three address instructions require more
memory access when compared to one address instructions. Thus, three address instructions take
more time to execute instructions when compared to one address instructions.

To reduce the execution time of the instructions, it is advised to refer the operands from the
processor registers instead of referring the operands from the memory.

Lab Exercise

1. Write an assembly language program to subtract two numbers.

2. Write an assembly language program to find the average of two numbers.

7.5 Summary
• A Central Processing unit (CPU) is the main unit of a computer system.

• There are three main components of CPU, namely register set, ALU, and control unit.

• Registers are the temporary storage, which are constructed from flip-flops. They store the
status of the CPU.

• Stack is considered as a memory unit with an address register. It has a stack pointer, which
always points at the top item in the stack.

• If stack is organized as a collection of registers, then stack is considered as register stack. If
implemented in a random access memory attached to the CPU, then stack is considered as
memory stack.

• Instruction format is the layout of bits in an instruction. An instruction includes fields such as
opcode, operands, and addressing mode.

7.6 Keywords
Bus: An electrical conductor that connects all internal computer components to the CPU and the
main memory.

Displacement Value: A value added to the contents of the address register and the resulting value
is used as the address of the operand.

Immediate Field: A field that includes the address offset field for branches, load/store instructions,
and jump target fields.

Multiplexer: A device that can combine several input signals into one output.

123

Unit 7: Central Processing Unit

LOVELY PROFESSIONAL UNIVERSITY

Notes7.7 Self Assessment
1. State whether the following statements are true or false:

(a) The control unit fetches the instructions from the registers, decodes and then executes
it.

(b) The registers store the status of the CPU as well as information about the currently
executing program.

(c) Memory stack is implemented in a random access memory attached to the CPU.

2. Fill in the blanks:

(a) Pending interrupts are checked during _____________________.

(b) The CPU bus system is operated by the _____________________.

(c) Stack can be implemented in the CPU by allotting a portion of the computer memory
to a stack operation and using a ___________________ as a stack pointer.

(d) As instruction consists of a combination of _____________and operands that deal with
these operation codes.

3. Select a suitable choice for every question:

(a) The CPU reads and writes data to and from ________________and transfers data to and
from I/O devices.

(i) Memory system

(ii) Register

(iii) Control unit

(iv) Arithmetic and logic unit

(b) Constant registers is used to store _______________.

(i) Floating point numbers

(ii) Read-only values

(iii) Addresses

(iv) Programs

(c) The push and pop operations are simulated by incrementing or decrementing the
__________________ register.

(i) Accumulator

(ii) Address

(iii) Stack pointer

(iv) Index

7.8 Review Questions
1. “Central Processing Unit (CPU) is the most important unit in a computer system.” Justify.

2. “A register is a special high speed storage area in the CPU.” Justify with diagram.

3. “Stack can be implemented in the CPU by allotting a portion of the computer memory to a
stack operation and using a processor register as a stack pointer.” Explain.

4. “Instruction format basically provides the layout of bits in an instruction”. Discuss.

5. “The bits of the status register are modified according to the operations performed in the
ALU.” Discuss.

124

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes Answers: Self Assessment

1. (a) False (b) True (c) True

2. (a) Execution cycle (b) Control unit (c) Processor register (d) Operation codes

3. (a) Memory system (b) Read-only values (c) Stack pointer

7.9 Further Readings

Books Morris M. Computer System Architecture. Pearson Education.
A.P.Godse & D.A.Godse (2010). Computer Organization And Architecture. Pune:
Technical Publications.
Stallings. W (2009). Computer Organization and Architecture: Designing for
Performance. Prentice Hall.

Online links www.mans.edu.eg/faceng/english/computers/PDFS/PDF4/1.2.pdf

www.ehow.com/list_7332165_types-addressing-modes-computers.html

125

Unit 8: Addressing Modes

LOVELY PROFESSIONAL UNIVERSITY

Notes

Unit 8: Addressing Modes

 CONTENTS

 Objectives

 Introduction

 8.1 Need for Addressing Modes

 8.2 Data Transfer and Manipulation

 8.3 Program Control

 8.4 RISC and CISC

 8.4.1 RISC Instruction Set

 8.4.2 RISC Versus CISC

 8.5 Summary

 8.6 Keywords

 8.7 Self Assessment

 8.8 Review Questions

 8.9 Further Readings

Objectives
After studying this unit, you will be able to:

• List the addressing modes

• Explain data transfer and manipulation process

• Discuss program control instructions

• Differentiate between RISC and CISC architecture

Introduction
In almost all CPU designs, addressing modes are a part of the instruction set architecture. Various
addressing modes are defined in a given instruction set architecture. These addressing modes
describe the procedure by which language instructions in instruction set architecture identify the
operands of each instruction. We can specify how to calculate the effective memory address of an
operand by using addressing modes. This is done by using information held in registers and/or
constants contained within a machine instruction or elsewhere.

RISC and CISC are the two most commonly used instruction sets, which are discussed in this unit.

8.1 Need for Addressing Modes
The operands of the instructions can be located either in the main memory or the CPU registers.
If the operand is placed in the main memory, then the instruction provides the location address
in the operand field. Many methods are followed to specify the operand address. The different
methods/modes for specifying the operand address in the instructions are known as addressing
modes. The exact addressing mode used in the instruction can be specified to the control unit by
using any of the following two methods:

1. The opcode explicitly specifies the addressing mode in the instruction.

2. A separate addressing mode field is specified in the instruction.

Ajay Kirani Khuswaha, Lovely Professional University

126

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes Some of the most common addressing modes used by the computers are:

1. Direct Addressing Mode

2. Indirect Addressing Mode

3. Register Addressing Mode

4. Immediate Addressing Mode

5. Index Addressing Mode

Figure 8.1 depicts the addressing mode field.

Figure 8.1: Addressing Mode Field

 As seen in figure 8.1, the addressing mode field comprises an opcode, an addressing mode, an
operand field I, and an operand field II. The addressing mode could be any of the five addressing
modes mentioned above.

The addressing modes can be described as follows:

Direct Addressing Mode

Figure 8.2: Direct Addressing

In direct addressing mode, the operand address is explicitly specified in the instruction. This mode
can be illustrated using the below assembly language statements:

LOAD R1, A //The content of memory location A is loaded into register R1

MOV B, A //The content of memory location A is moved to memory location B

JUMP A //The program control is transferred to the instruction at memory location A

In direct addressing mode, the operand address is directly available in the instruction. Hence,
eliminating the operand address calculation step the instruction cycle time decreases. However,
the operand field in the instruction limits the number of bits for the operand address.

Notes Instruction cycle is the process in which the computer retrieves an instruction from its
memory, determines the actions, and performs those actions.

Indirect Addressing Mode
In indirect addressing mode, the address of the location ‘A’ contains address of another location
‘B’, which actually holds the operand. It is represented as below:

A = B, B = operand

127

Unit 8: Addressing Modes

LOVELY PROFESSIONAL UNIVERSITY

NotesThus, ‘A’ is considered as the pointer. By modifying the content of location ‘A’, you can change
the value of ‘B’, without changing the instruction. The below assembly language statement
illustrates this mode.

MOVE (A), R1 //The content present in the address A is loaded into the register R1.The figure 8.3
illustrates indirect addressing mode.

Figure 8.3: Indirect Addressing

 The indirect addressing mode provides flexibility in programming. You can change the address
during program run-time without altering the contents of the instruction. However, as there are
two memory accesses even for the single level indirect addressing, the instruction cycle time
increases.

Register Addressing Mode

In register addressing mode, the register holds the operand. In the instruction, the register number
that holds the operand is specified. The long programs find this mode useful as it helps to store
the intermediate results in the registers. The following assembly language statements illustrate
this mode:

ADD R1, R2 //The contents of the registers R1 and R2 are added and the result
of the addition is stored in register R1.

STORE R1, M1 //The contents of the register R1 are stored in memory address M1.

Here, the first operand uses register addressing mode and the second operand uses direct
addressing mode. The figure 8.4 depicts the register addressing mode

Figure 8.4: Register Addressing

The register addressing mode provides faster operand fetch without memory access. However,
the number of registers is limited. Hence, the programmers must effectively utilize the registers.

Immediate Addressing Mode
In immediate addressing mode, the operand is a part of the instruction. Hence, memory reference
is not required to retrieve the operand. This mode is used to define constants and set initial values
to the variable. The below assembly language statements illustrate the immediate addressing mode:

MOVE #14, R1 or MVI R1, 14 //The binary equivalent of 14 is loaded in the register R1

ADD #14, R1 //The binary equivalent of 14 and the contents of R1 are
added and the result is stored in register R1

CMP #14, R1 //The binary equivalent if 14 is compared with the contents
of R1.

The ‘#’ sign indicates that the constant following the sign is the immediate operand.

128

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes The figure 8.5 depicts the immediate addressing mode.

Figure 8.5: Immediate Addressing

 Once the instruction is fetched, the operand is also fetched in the instruction. This reduces the
instruction cycle time. However, the value of the operand is limited because this mode is limited
to the size of the address field.

Index Addressing Mode

Figure 8.6 depicts index addressing mode.

Figure 8.6: Index Addressing

The index addressing mode includes an index register which holds an offset/displacement. The
effective address of the operand is obtained by adding the offset with the contents of the registers
present in the instruction.

The start address of an array in the memory is obtained from the address field in the instruction.
The difference between the start address and the operand address provides an index value for the
operand. The index value is stored in the index register. The operands are stored in consecutive
locations in the memory. Thus, by changing the value of the index or by incrementing the index
value, you can access any operand in the array.

Some CPUs possess auto-indexing feature, which automatically increments the index registers
when an instruction with index addressing is executed.

These addressing modes provide flexibility in writing efficient programs. Addressing modes help
in reducing the instruction length by including a separate field for the address. This helps the
programmers to handle complex tasks such as loop control, program relocations, and indexing of
an array.

8.2 Data Transfer and Manipulation
Computer systems consist of a set of instructions that help the users to easily carry out their
computational tasks. The instruction set differs from one computer system to another. The
operations are represented by binary codes and the binary code assignment in the operation field
of the instruction can be different in different computers. However, the actual operations in the
instruction set are not very different from one computer system to another. The symbolic names
of the instruction (assembly language notation) may also differ from one computer to another.
An instruction usually contains opcode, addressing field, and operand field. There are different
types of opcodes and based on the type of opcode, the instructions can be classified as follows:

1. Data Transfer Instructions

2. Data Manipulation Instructions

3. Program Control Instructions

129

Unit 8: Addressing Modes

LOVELY PROFESSIONAL UNIVERSITY

NotesData transfer instructions transfer data from one location to another without causing any change
in the content present in the binary form. Data manipulation instructions perform arithmetic,
logic, and shift operations. Program control instructions provide decision making abilities and
are able to change the execution sequence. The program control instructions are explained in the
next section.

Data Transfer Instructions

Data transfer instructions move the data between memory and processor registers, processor
registers and I/O devices, and from one processor register to another. There are eight commonly
used data transfer instructions. Each instruction is represented by a mnemonic symbol. Table 8.1
shows the eight data transfer instructions and their respective mnemonic symbols.

Table 8.1: Data Transfer Instructions

Name Mnemonic Symbols

Load LD
Store ST
Move MOV
Exchange XCH
Input In
Output OUT
Push PUSH
Pop POP

The instructions can be described as follows:

1. Load: The load instruction is used to transfer data from the memory to a processor register,
which is usually an accumulator.

2. Store: The store instruction transfers data from processor registers to memory.

3. Move: The move instruction transfers data from processor register to memory or memory to
processor register or between processor registers itself.

4. Exchange: The exchange instruction swaps information either between two registers or between
a register and a memory word.

5. Input: The input instruction transfers data between processor register and input terminal.

6. Output: The output instruction transfers data between processor register and output terminal.

7. Push and Pop: The push and pop instructions transfer data between a processor register and
memory stack.

All these instructions are associated with a variety of addressing modes. Some assembly language
instructions use different mnemonic symbols just to differentiate between the different addressing
modes.

Example: The mnemonic symbols for load immediate is LDI
Thus, it is necessary to be familiar with various addressing modes and different types of
instructions to write efficient assembly language programs for a computer.

130

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes
Data Manipulation Instructions
Data manipulation instructions have computational capabilities. They perform arithmetic, logic,
and shift operations on data. There are three basic types of data manipulation instructions:

1. Arithmetic Instructions

2. Logical and Bit Manipulation Instructions

3. Shift Instructions

During execution of the instruction, each instruction goes through the fetch phase, where it reads
the binary code of the instruction from the memory. According to the rules of the instruction
addressing mode, the operands are brought in processor registers. Finally, the instruction in the
processor is executed.

Arithmetic Instructions

Arithmetic operations include addition, subtraction, multiplication and division. Some computers
provide instructions only for addition and subtraction operations, and generate multiplication
and division operations from these two operations. Each instruction is represented by a mnemonic
symbol. Table 8.2 illustrates some of the arithmetic instructions and their respective mnemonic
symbols.

Table 8.2: Arithmetic Instructions

Name Mnemonic
Increment INC
Decrement DEC
Add ADD
Subtract SUB
Multiply MUL
Divide DIV
Add with Carry ADDC
Subtract with
Borrow

SUBB

Negation NEG

The description of these instructions is as follows:

1. Increment: The increment instruction adds 1 to the value stored in register or memory word.

2. Decrement: The decrement instruction subtracts 1 from the contents stored in register or memory
word.

3. Arithmetic Instructions: The arithmetic instructions are available for different types of data
such as floating point, binary, single precision, or double precision data.

During execution of arithmetic instructions, the processor status flags or conditional codes are set
to designate the outcome of the operation.

Example: For the conditions generated as a carry or borrow, the outcome is either 0 or
negative.

A flip-flop is used to store the carry from an addition operation. The add with carry instruction
performs the addition of two numbers along with the value of carry from the previous computation.
Similarly, the subtract with borrow instruction performs the subtraction of two numbers and a
borrow if any, from the previous computation. The negation instruction represents the 2’s
complement of a number.

131

Unit 8: Addressing Modes

LOVELY PROFESSIONAL UNIVERSITY

NotesLogical and Bit Manipulation Instructions
Logical instructions carry out binary operations on the bits stored in the registers. In logical
operations, each bit of the operand is treated as a Boolean variable. Logical instructions can change
bit value, clear a group of bits, or can even insert new bit value into operands that are stored in
registers or memory words. Each logical instruction is represented by mnemonic symbols.

Notes Boolean variable is a numerical variable that can hold a single binary bit (0 or 1).

Table 8.3 illustrates some of the logical instructions andtheir respective mnemonic symbols.

Table 8.3: Logical Instructions

Name Mnemonic
Clear CLR
Complement COM
AND AND
OR OR
Exclusive-OR XOR
Clear carry CLRC
Set carry SETC
Complement
carry

COMC

Enable interrupt EI
Disable interrupt DI

 The clear instruction replaces the specific operand by 0’s. The complement instruction inverts all
the bits of the operand and produces 1’s complement. The AND, OR, and XOR instructions perform
logical operations on each bit or group of bits of the operand.
Logical instructions can also manipulate individual bits or group of bits. The bit manipulation
operation can clear a bit to 0, can set a bit to 1, or can complement a bit.
The AND instruction can clear a bit or group of bits of an operand. For Boolean variable a, the
relationship ‘ab0 = 0’ and ‘ab1 = a’ indicates that the binary variable when ANDed with 0 changes
the value to 0. However, the variable when ANDed with 1 does not change the value. Thus, bits
of an operand can be cleared by ANDing the operand with another operand that has to clear all 0
bits in its position. It is also known as mask because it masks 0s in selected bit positions of an
operand.
The OR instruction can set a bit or group of bits of an operand. For Boolean variable a, the
relationship ‘a + 1 =1’ and ‘a + 0 = a’ indicates that the binary variable when ORed with 1, changes
the value to 1. However, the variable when ORed with 0 does not change the value. Thus, OR
instruction is used to set the bits to 1 by ORing the bits of an operand with another operand that
has 1s in its bit positions.
The XOR instruction can complement bits of an operand. For Boolean variable a, the relationship
‘a + 1 = a’ and ‘a + 0 = a’ indicates that the binary variable is complemented when XORed with 1.
However, the variable does not change value when XORed with 0.
The carry bits can be cleared, set, or complemented with appropriate instructions. The bit
manipulation instructions can also enable or disable the interrupt facility, which is controlled by
the flip-flops.

Shift Instructions
Shift instruction helps to shift the bits of an operand to the right or to the left. The direction of
shift is based on specific instructions. The operand is first loaded into the accumulator and then
the shift operation is performed bit by bit.

132

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes The shift-left operation shifts the zero into low-order vacated position.

Example: Operand in Accumulator

1111 0101 1000 1011
After a shift-left operation
1 1110 1011 0001 0110 zero is shifted in

High order bit is shifted out

In shift-right operations, zeros are shifted into high-order vacated position. The bits that are shifted
can also be the original value of the sign bit as in case of arithmetic right shift or can be the bits
that are shifted out of low-order position of the accumulator-extension as in case of Rotate Right
Accumulator and Extension (RRAE). The main purpose of this RRAE is to fetch the bits from the
accumulator-extension position 15 and shift the bits back to the accumulator position 0. This ensures
that no bits are lost during the shift.

The shift operation can be ended either by decrementing the shift count to zero or by shifting the
bit value of 1 into the high-order position (bit 0) of the accumulator.

Example: Consider the below example program to add two numbers:
NAME Addition //name of the program
PAGE 52,80
TITLE 8086 assembly language program to add two numbers //Title of the
program
.model small //implies that the program is a small program
.stack 100 //memory allocation is 100
.data // data for the program
 Number1 DB 63H
 Number2 DB 2EH
 Result DW ?
.code //marks the beginning of the code
START: MOV AX, @data
 MOV DS, AX
 MOV AL, Number1
 ADD AL, Number2
 MOV AH, 00H
 ADC AH, 00H
 MOV Result, AX
 END START

133

Unit 8: Addressing Modes

LOVELY PROFESSIONAL UNIVERSITY

NotesIn the above program,
1. .model specifies the mode for assembling the program.
2. DB allocates and initializes the bytes of storage.
3. Number1 DB 63H indicates the first number storage and Number2 DB
 2EH indicates the second number storage.
4. DW allocates and initializes the words of storage.
5. Result DW indicates that double byte is reserved for the result.
6. The instructions MOV AX, @data and MOV DS, AX initialize the data
 segment.
7. MOV AL, Number1 transfers the first number to AL.
8. ADD AL, Number2 adds the second number to AL.
9. MOV AH, 00H makes Most Significant Bit of result zero.
10. ADC AH, 00H puts carry in AH.
11. MOV Result, AX copies result to the memory.

8.3 Program Control
Instructions of the computer are always stored in consecutive memory locations. These instructions
are fetched from successive memory locations for processing and executing. When an instruction
is fetched from the memory, the program counter is incremented by 1 so that it points to the
address of the next consecutive instruction in the memory. Once a data transfer and data
manipulation instruction is executed, the program control along with the program counter, which
holds the address of the next instruction to be fetched, is returned to the fetch cycle.

Data transfer and manipulation instructions specify the conditions for data processing operations,
whereas the program control instructions specify the conditions that can alter the content of the
program counter. The change in the content of program counter can cause an interrupt/break in
the instruction execution. However, the program control instructions control the flow of program
execution and are capable of branching to different program segments.

Some of the program control instructions are listed in table 8.4.

Table 8.4: Program Control Instructions

Name Mnemonic

Branch BR
Jump JMP
Skip SKP
Call CALL
Return RET
Compare (by
subtraction)

CMP

Test (by ANDing) TST

The branch is a one-address instruction. It is represented as BR ADR, where ADR is a mnemonic
for an address. The branch instruction transfers the value of ADR into the program counter. The
branch and jump instructions are interchangeably used to mean the same. However, sometimes
they denote different addressing modes.

134

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes Branch and jump instructions can be conditional or unconditional. The unconditional branch
instruction creates a branch to the specified address without any conditions.

Example: JMP Displaydiagram

The JMP instruction transfers the flow of execution, without considering the
actual condition of the flags, to the indicated operator. The above instruction
makes the control jump to the part of the code where Displaydiagram is
specified.

The conditional branch instructions such as ‘branch if positive’, or ‘branch if zero’ specify the
condition to transfer the flow of execution. When the condition is met, the branch address is loaded
in the program counter.

Figure 8.7 depicts the conditional branch instructions.

Figure 8.7: Conditional Branch

 The compare instruction performs an arithmetic subtraction. Here, the result of the operation is
not saved; instead, the status bit conditions are set. The test instruction performs the logical AND
operation on two operands and updates the status bits.

135

Unit 8: Addressing Modes

LOVELY PROFESSIONAL UNIVERSITY

NotesStatus Bit Conditions

The status register comprises the status bits. The bits of the status register are modified according
to the operations performed in the ALU. Figure 8.8 depicts a block diagram of an 8-bit ALU with
a 4-bit status register.

Figure 8.8: Status Register Bits

In figure 8.8, if the end carry C8 is 1, then carry (C) is set to 1. If C8 is 0, then C is cleared to 0.

If the highest order bit F7 is 1, then Sign (S) is set to 1. If F7 is 0, then S is set to 0.

If the output of ALU is 0, then zero (Z) is set to 1, otherwise Z is set to 0.

If XOR of the last two carries is equal to 1, then overflow (V) is set to 1, otherwise V is cleared to
0.

The result of the 8-bit ALU operation is either 127 or -127.

Z is a status bit used to indicate the result obtained after comparing A and B. Here, XOR operation
is used to compare two numbers (Z = 0 if A = B).

136

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes Conditional Branch Instruction

The conditional branch instruction checks the conditions for branching using the status bits. Some
of the commonly used conditional branch instructions are shown in table 8.5.

Table 8.5: Conditional Instructions

Mnemonic Condition Tested
Condition

BZ Branch if zero Z = 1
BNZ Branch if not zero Z = 0
BC Branch if carry C = 1
BNC Branch if no carry C = 0
BP Branch if plus S = 0
BM Branch if minus S = 1
BV Branch if overflow V = 1
BNV Branch if no overflow V = 0
Unsigned compare conditions (A – B)
BHI Branch if higher A > B
BHE Branch if higher or equal A B
BLO Branch if lower A < B
BLOE Branch if lower or equal A B
BE Branch if equal A = B
BEN Branch if not equal A B
Signed compare cond itions (A – B)
BGT Branch if greater than A > B
BGE Branch if greater or equal A B
BLT Branch if less than A < B
BLE Branch if less or equal A B
BE Branch if equal A = B
BEN Branch if not equal A B

Thus, when the status condition is true, the program control is transferred to the address specified
in the instruction, otherwise the control continues with the instructions that are in the subsequent
locations. The conditional instructions are also associated with the program control instructions
such as jump, call, or return.

The zero status bit checks if the result of the ALU is zero or not. The carry bit checks if the most
significant bit position of the ALU has a carry out. It is also used with rotate instruction to check
whether or not the bit is shifted from the end position of a register into a carry position. The sign
bit indicates the state of the most significant bit of the output from the ALU (S = 0 denotes positive
sign and S = 1 denotes negative sign). The branch if plus and branch if minus are used to check
whether the value of the most significant bit represents a sign or not. The overflow and underflow
instructions are used in conjunction with arithmetic operations performed on signed numbers.
The higher and lower words are used to denote the relations between unsigned numbers, whereas
the greater and lesser words are used to denote the relations between signed numbers.

137

Unit 8: Addressing Modes

LOVELY PROFESSIONAL UNIVERSITY

Notes
Example: Consider two numbers M = 11110000 and N = 00010100. When we perform

M - N operation, the result obtained is
M: 11110000
N: 00010100
M-N: 11011100
The compare instruction updates the status bits:
C =1: Carry out of the last stage
S = 1: Left most bit is 1
Z = 0: Last two carries are equal to 1
V = 0: Result is not equal to 0
Consider the numeric value, where M = 60 and B =10 (unsigned numbers).
Here, M > N and M N. Therefore, the instructions that will cause branch
are BHI, BHE and BNE.
If M = -8 and N = 10, then we have M < N and M N. Therefore, the
instructions that will cause branch are BLT, BLE, and BNE

8.4 RISC and CISC
The design of the instruction set for the processor is considered as an important aspect of computer
architecture. The machine language program is developed based on the instruction set chosen for
that particular computer.

Earlier, the hardware components of the computer were expensive and to minimize this expense,
the programmers started to build simple and small instructions. With the advent of integrated
circuits, the digital hardware became cheaper and the computer instructions started to increase in
number and complexity. Many computers have more than 100 instruction sets. Such computers
with large number of instructions are classified as a Complex Instruction Set Computers (CISC).

In 1980s, computer architects started to design computers with fewer instructions in order to execute
programs at a much faster rate within the CPU. Such computers with less number of instructions
are classified as a Reduced Instruction Set Computer (RISC).

Complex Instruction Set Computer (CISC)

A Complex Instruction Set Computer (CISC) comprises a complex instruction set. It incorporates
variable length instruction format. Instructions that require register operands may take only two
bytes. However, the instructions that require two memory addresses may take five bytes to include
the complete instruction code. Thus, CISC has variable length encoding of instructions and the
execution of instructions may take varying number of clock cycles. The CISC processor provides
direct manipulation of operands that are in memory.

Example: An ADD instruction will use index addressing to specify one operand in memory
and direct addressing to specify second operand in memory. This instruction would use another
memory location to store the result. Thus, this instruction would use three memory references for
execution.
Many CISC architectures read the inputs and write their outputs in the memory system instead of
a register file. As CISC architecture takes large number of addressing modes, more hardware
logic is required to implement them. This reduces the computation speed.

Basically, the CISC architecture attempts to provide a single machine instruction for the statements
that are written in a high-level language.

138

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes
Example: The IBM 370 computer uses the CISC architecture.

Reduced Instruction Set Computer (RISC)
In Reduced Instruction Set Computer (RISC) architecture, the instruction set of the computer is
simplified to reduce the execution time. RISC has a small set of instructions, which generally
include register-to-register operations. Thus, data is stored in processor registers for computations
and results of the computations are transferred to the memory using store instructions. All
operations are performed within the registers of the CPU. In RISC, all instructions have simple
register addressing and hence use less number of addressing modes.

RISC uses relatively a simple instruction format and is easy to decode. Here, the instruction length
can be fixed and aligned on word boundaries. The RISC processors have the ability to execute one
instruction per clock cycle. This is done using pipelining, which involves overlapping the fetch,
decode, and execute phases of two or three instructions.

As RISC takes relatively a large number of registers in the processor unit, it takes less time to
execute its program when compared to CISC.

Example: The Scalable Processor Architecture (SPARC) is an example of RISC architecture.

8.4.1 RISC Instruction Set
RISC instruction set includes simpler instructions with hard-wired control, large number of
registers, simpler processor pipeline and increased clock-rate. The RISC processor’s instruction
set is restricted to load and store instructions when there is an interaction between memory and
CPU. All other instructions are executed within registers without any reference to memory.

Example: Consider an example program for a RISC-type CPU, which include load and store
instructions that have one memory and one register address, and arithmetic instructions that are
specified by processor registers. The below program evaluates X = (P + Q)*(R + S)

LOAD R1 P R1 M[P]
LOAD R2 Q R2 M[Q]
LOAD R3 R R3 M[R]
LOAD R4 S R4 M[S]
ADD R1, R1, R2 R1 R1 + R2
ADD R3, R3, R4 R3 R3 + R4
MUL R1, R1, R3 R1 R1 + R3
STORE X, R1 M[X] R1
The LOAD instructions transfer the operand P, Q, R and S from memory to CPU
registers R1, R2, R3, and R4 respectively. The ADD and MUL instructions execute
the addition and multiplication operations with the data in the registers without
referring to the memory. The STORE instruction stores the result of the
computation in the memory (M[X]).

139

Unit 8: Addressing Modes

LOVELY PROFESSIONAL UNIVERSITY

Notes8.4.2 RISC Versus CISC

There are some significant differences between RISC and CISC processors. The comparison between
the common characteristics of RISC and CISC processor is shown in table 8.6:

Table 8.6: Comparison Between RISC and CISC

RISC CISC
Few instructions Many instructions
Few addressing modes. Most
instructions have register to
register addressing modes

Many addressing modes

Includes simple instructions and
takes one cycle

Includes complex instructions and
takes multiple cycles

Some of the instructions refer to
memory

Most of the instructions refer to
memory

Hardware executes the
instructions

Microprogram executes the
instructions

Fixed format instructions Variable format instructions
Easier to decode as instructions
have fixed format

Difficult to decode as instructions
have variable format

Multiple register sets are used Single register set is used
RISC is highly pipelined CISC is not pipelined or less

pipelined
Load and store functions are
separate instructions

Load and store functions are found
in a single instruction

Today, RISC and CISC architectures are becoming more alike. Many RISC chips now support
instructions of CISC chips also. Similarly, CISC chips are using many techniques associated with
RISC chips.

8.5 Summary
• Addressing modes provide different methods for specifying operand address in the instruction.

• Some of the commonly used addressing modes are direct addressing mode, indirect addressing
mode, register addressing mode, immediate addressing mode, and index addressing mode.

• Data transfer instructions help to move the data from one location to another. Data manipulation
instructions perform arithmetic, logic, and shift operations on data.

• Program control instructions specify the conditions for data processing operations.

• The Complex Instruction Set Computer (CISC) consists of many complex instruction sets.

• The Reduced Instruction Set Computer (RISC) consists of less instruction sets and executes the
instructions at a greater speed.

8.6 Keywords
Accumulator: A processor register that stores intermediate arithmetic and logic results.

Flip-flops: An electronic circuit that is interconnected to form logic gates. It changes its state when
it receives the input pulse (trigger). Hence, it is also known as bistable gate.

Microprogram: A computer program that has basic elemental commands which control the
operation of each components of a microprocessor.

Pipelining: In pipelining, while the processor is performing arithmetic operations, the computer
architecture allows the next instructions to be fetched, holding them in a buffer close to the
processor until each instruction operation can be performed.

140

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes 8.7 Self Assessment
1. State whether the following statements are true or false:

(a) The number of address fields in the instruction format of a computer varies according
to the organization of the stack.

(b) In direct addressing mode, the register holds the operand.

(c) The store instruction transfers data from processor register to memory.

(d) Data transfer and manipulation instructions specify the conditions that can alter the
content of the program counter.

(e) Complex Instruction Set Computer (CISC) incorporates variable length instruction
format.

2. Fill in the blanks:

(a) The different methods/modes for specifying the operand address in the instructions
are known as ___________________.

(b) The push and pop instructions transfer data between a processor register and
_______________.

(c) In conditional branch instruction, when the condition is met, the branch address is
loaded in the ___________________.

(d) RISC has small set of instructions, which generally include ________________ operations.

3. Select a suitable choice for every question:

(a) In register addressing mode, the register holds the ___________________

(i) Operand

(ii) Opcode

(iii) Address

(iv) Register number

(b) A flip-flop is used to store the carry from ___________________ operation.

(i) Addition

(ii) Subtraction

(iii) Comparison

(iv) Division

(c) The test instruction performs the logical ___________________ operation on two
operands and updates the status bits.

(i) SUB

(ii) OR

(iii) XOR

(iv) AND

141

Unit 8: Addressing Modes

LOVELY PROFESSIONAL UNIVERSITY

Notes
(d) The conditional branch instruction checks the conditions for branching using the

___________________.

(i) Clock cycles

(ii) Registers

(iii) Instruction codes

(iv) Status bits

Answers: Self Assessment

1. (a) False

(b) False

(c) True

(d) False

(e) True

2. (a) Addressing modes

(b) Memory stack

(c) Program counter

(d) Register-to-register

3. (a) Operand

(b) Addition

(c) AND

(d) Status bits

8.8 Review Questions
1. “In direct addressing mode, the operand address is explicitly specified in the instruction.”

Explain with examples.

2. “Data manipulation instructions have computational capabilities.” Comment.

3. “Data transfer and manipulation instructions specify the conditions for data processing
operations.” How?

4. “The conditional branch instruction checks the conditions for branching using the status bits.”
How?

5. “Complex Instruction Set Computer (CISC) comprises complex instruction set.” Justify

6. “RISC instruction set includes simpler instructions.” Explain with an example.

7. “There are some significant differences between RISC and CISC processor.” Provide the
differences.

142

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes 8.9 Further Readings

Books Morris M. Computer System Architecture. Pearson Education.
A.P.Godse & D.A.Godse (2010). Computer Organization And Architecture. Pune:
Technical Publications.
Stallings. W (2009). Computer Organization and Architecture: Designing for
Performance. Prentice Hall.

Online links www.mans.edu.eg/faceng/english/computers/PDFS/PDF4/1.2.pdf
www.ehow.com/list_7332165_types-addressing-modes-computers.html

143

Unit 9: Computer Arithmetic I

LOVELY PROFESSIONAL UNIVERSITY

Notes
Unit 9: Computer Arithmetic I

 CONTENTS

 Objectives

 Introduction

 9.1 Addition and Subtraction

 9.2 Multiplication

 9.2.1 Hardware Algorithm

 9.2.2 Booth Multiplication Algorithm

 9.3 Summary

 9.4 Keywords

 9.5 Self Assessment

 9.6 Review Questions

 9.7 Further Readings

Objectives
After studying this unit, you will be able to:

• Explain the addition of binary numbers

• Define the method to subtract binary numbers

• Describe the method of multiplying binary numbers

Introduction
Today, the knowledge on hardware and software utilization to perform computations has
improved to a great extent. Digital computer arithmetic that is used in digital computers has
emerged in two ways: one, as an aspect of logic design and the other as development of effective
algorithms to use the available hardware.

Computers carry out arithmetic instructions at the bit level. That is, they follow the binary system,
which consists of 0s and 1s. The arithmetic instructions perform arithmetic calculations and are
responsible for processing data in computers. Addition, subtraction, multiplication, and division
are the four basic arithmetic operations. These four basic operations are utilized to develop other
arithmetic functions. The addition, subtraction and multiplication operation are discussed in this
unit. This unit describes various algorithms required to perform arithmetic operations.

9.1 Addition and Subtraction
Addition of binary numbers is easy yet tedious at the same time. It is a fundamental feature of
digital computers, and hence it is important to know how to add the binary digits. Almost all the
operations of a computer depend on binary addition. Once we understand the addition of two
binary digits, it is easier to understand subtraction, multiplication, and division of binary digits.

We shall begin by adding two binary bits. As you are aware a bit can be either 0 or 1. Therefore,
we can have only four possible input combinations. The four possible input combinations and
their output are as follows:

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

Sarabjit Kumar, Lovely Professional University

144

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes 1 + 1 = 10

In the above four possibilities, we can observe that the fourth possibility results in a 2-bit output.
Table 9.1 depicts the method of handling such output.

Table 9.1: Binary Addition

Input Outp ut
P Q Carry Sum (P + Q)
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

As depicted in table 9.1, the carry digit handles the possibility of overflow. Here, overflow refers
to the extra digit that we obtain on adding 1 and 1. The overflow or carry digit is carried forward
to the next most significant digit in the operation.

We shall now look at a more complex example of adding binary digits.

Example: Add 1011011 + 100111

 1 0 1 1 0 1 1
+ 1 0 0 1 1 1

1 0 0 0 0 0 1 0
 1 1 1 1 1 1 Carry bits
In the above example:
 1 + 1 = 0 (one carry)
 1 + 1 (+ the carried digit 1) = 1 (one carry)
 0 + 1 (+ the carried digit 1) = 0 (one carry)
 1 + 0 (+ the carried digit 1) = 0 (one carry)
 1 + 0 (+ the carried digit 1) = 0 (one carry)
 0 + 1 (+ the carried digit 1) = 0 (one carry)
 1 + 0 (+ the carried digit 1) = 0 (one carry)

The last digit that is carried is placed on the left hand side of the result.
Therefore, the output is 10000010.

Notes While performing addition operations on binary numbers always start adding from
the right side and move to the left.

145

Unit 9: Computer Arithmetic I

LOVELY PROFESSIONAL UNIVERSITY

Notes

Task
 Add binary numbers 1100110 and 1110001 using the method of addition of binary

numbers.

Once we understand the concept of addition of binary numbers, it is easy to learn the subtraction
process of binary numbers. Binary numbers are subtracted by performing two’s complement on
the subtrahend. Two’s complement is done through the following steps:

1. Complement every digit. That is, change 1 to 0 and 0 to 1.

2. Add 1 to the output.

The following example illustrates the subtraction operation of binary digits using the above
mentioned steps.

Example: 11101011 - 01100110
The second value 01100110 is to be subtracted from the first value 11101011.
First apply two’s complement to the second value 01100110, i.e., follow the
two steps as shown.
Step 1: 0 1 1 0 0 1 1 0
 1 0 0 1 1 0 0 1 (change 1 to 0 and 0 to 1)
Step 2: 1 0 0 1 1 0 0 1

+1 (add 1)
 1 0 0 1 1 0 1 0 (resultant)

1
Then, add the resultant to the first value.

1 1 1 0 1 0 1 1 (first value)
+1 0 0 1 1 0 1 0 (resultant)
1 0 0 0 0 1 0 1 (output)

ignore 1 1 1 1 1 1
The output is 10000101.
Note that we have to ignore the carry bit.

We now know the process of subtracting smaller number from larger number. We shall now
examine the subtraction of a greater number from a smaller number.

The Most Significant Bit (MSB) or the leftmost bit is set to 1 to indicate a negative number. The
MSB is known as the sign bit. The remaining 7 bits are used to express the value.

The following are the steps to subtract a greater number from a smaller number:

1. Apply two’s complement to the smaller number.

2. Add the resultant value to the smaller number.

3. Change MSB to 0.

4. Apply two’s complement to the resulting number.

MSB now indicates a negative value.

146

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes We shall understand this subtraction process by considering an example.

Example: 10010101 – 10110100

Step 1: 1 0 1 1 0 1 0 0 (greater number)
0 1 0 0 1 0 1 1 (change 1 for 0 and 0 for 1)

0 1 0 0 1 0 1 1
+1 (add 1)

0 1 0 0 1 1 0 0
1 1

Step 2: 1 0 0 1 0 1 0 1 (smaller number)
+0 1 0 0 1 1 0 0 (add the resultant value to smaller number)

1 1 1 0 0 0 0 1
1 1 1

Step 3: 1 1 1 0 0 0 0 1
0 1 1 0 0 0 0 1 (change MSB bit to 0)

Step 4: 0 1 1 0 0 0 0 1
1 0 0 1 1 1 1 0 (change 1 for 0 and 0 for 1)

1 0 0 1 1 1 1 0
+1

1 0 0 1 1 1 1 1

Output = 10011111 (MSB indicates a negative value)

Task Subtract binary numbers 1111000 and 1010111.

We can represent negative fixed-point binary using the following three methods:

1. Signed-magnitude

2. Signed-1’s complement

3. Signed-2’s complement

Signed-magnitude method is used by computers to perform floating-point operations. Signed-2’s
complement method is used by most computers for arithmetic operations performed on integers.

In this section, we will develop algorithms for addition and subtraction to represent data in signed-
magnitude and signed 2’s complement methods.

The adopted representation for negative numbers relates to representation of numbers in the
register before and after executing the arithmetic operation. However, it does not mean that we
should not use complement arithmetic in intermediate steps.

Example: Employment of complement arithmetic is suitable to perform subtraction
operations with numbers in signed-magnitude representation.

Complements used in an intermediate step do not affect the fact that the representation is in signed-
magnitude. This holds true as long as the initial minuend and subtrahend and the final difference
are in signed-magnitude.

147

Unit 9: Computer Arithmetic I

LOVELY PROFESSIONAL UNIVERSITY

Notes
Performing Addition and Subtraction with Signed-Magnitude Data

Performing addition and subtraction using signed-magnitude data is relatively easy. It is essential
to understand this process to derive the hardware algorithm.

There are eight conditions to consider while adding or subtracting signed numbers. These
conditions depend on the operations performed and the sign of the numbers. Table 9.2 depicts the
algorithm for addition and subtraction. The first column in table 9.2 depicts these conditions. The
other columns of the table depict the actual operations to be performed with the magnitude of
numbers. The last column of the table is required to avoid a negative zero. This means that when
two equal numbers are subtracted, the output should not be - 0. It should always be +0.

In table 9.2, the magnitude of the two numbers is represented by P and Q.

 Table 9.2: Addition and Subtraction of Signed-
Magnitude Numbers

Operation Addition of
Magnitudes

Subtraction of Magnitudes
P>Q P<Q P=Q

(+P) + (+Q) +(P+Q)
(+P) + (-Q) +(P-Q) -(Q-P) +(P-Q)
(-P) + (+Q) -(P-Q) +(Q-P) +(P-Q)
(-P) + (-Q) -(P+Q)
(+P) - (+Q) +(P-Q) -(Q-P) +(P-Q)
(+P) - (-Q) +(P+Q)
(-P) - (+Q) -(P+Q)
(-P) - (-Q) -(P-Q) +(Q-P) +(P-Q)

In table 9.2 the addition algorithm states that:

1. When the signs of P and Q are the same, add the two magnitudes and attach the sign of P to the
output.

2. When the signs of P and Q are different, compare the magnitudes and subtract the smaller
number from the greater number.

3. The signs of the output have to be the same as P in case P > Q or the complement of the sign of
P in case P < Q.

4. When the two magnitudes are the same, subtract Q from P and change the sign of the output to
positive.

The subtraction algorithm states that:

1. When the signs of P and Q are different, add the two magnitudes and attach the signs of P to the
output.

2. When the signs of P and Q are the same, compare the magnitudes and subtract the smaller
number from the greater number.

3. The signs of the output have to be the same as P in case P > Q or the complement of the sign of
P in case P < Q.

4. When the two magnitudes are the same, subtract Q from P and change the sign of the output to
positive.

148

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes

Notes There is not much difference between addition algorithm and subtraction algorithm,
except for the sign comparison. The procedure that we need to follow for similar signs in
addition algorithm is the same as for different signs in subtraction algorithm.

Implementation of the Two Arithmetic Operations with Hardware

It is essential to store numbers in registers to implement the two arithmetic operations with
hardware. Figure 9.1 depicts a block diagram of hardware to implement the addition and
subtraction operation.

Figure 9.1: Block Diagram of Hardware

 In figure 9.1, two registers P and Q are created to hold the magnitudes of the numbers. Ps and Qs
are two flip-flops that hold the corresponding signs. A third register can be used to transfer the
output of the operation. However, a saving is achieved if the output is transferred to P and Ps.
Therefore, when P and Ps are put together and an accumulator register is formed.

Now consider the implementation of the above algorithm in the hardware. First, a parallel-adder
is required to perform the micro-operation P + Q Second, a comparator circuit is required to
identify if P > Q, P < Q or P = Q. Third, two parallel-subtractor circuits are required to perform
the micro-operation P - Q and Q - P. The sign relationship is ascertained using an exclusive OR
gate with Ps and Qs as input.

The procedure to ascertain sign relationship needs a magnitude comparator, an adder, and two
subtractors.

Notes A different procedure that needs less equipment can be used to ascertain sign
relationships.

149

Unit 9: Computer Arithmetic I

LOVELY PROFESSIONAL UNIVERSITY

NotesWe know that it is possible to perform subtraction through complement and add. We can determine
the output of a comparison from the end carry after the subtraction. When we carefully investigate
the alternatives, we can find that the utilization of two’s complement for subtraction and comparison
is an efficient method that needs only one adder and one complementer.

Subtraction is performed by adding P to the two’s complement of Q. The resultant carry is taken
to the flip-flop E where it is checked for the relative magnitudes of the two numbers P and Q.
When P and Q are added, the overflow bits are stored in the Add-Overflow Flip-flop (AVF). The
other micro-operations are rendered by the Register P. The micro-operations may be required to
specify the sequence of steps in the algorithm.

The parallel adder is used to add P and Q. The S(sum) resultant of the adder is applied to the
input of the Register P. Depending on the state of the mode control M, the complementer generates
an output Q or the complement of Q. The parallel adder comprises full-adder circuits while the
complementer comprises exclusive-OR gates. The M signal here is applied to the input carry of
the adder.

In case M = 0:

1. The resultant of Q is transferred to adder.

2. The input carry is 0.

3. The output of adder is equal to the total of P + Q.

In case M = 1:

1. The one’s complement of Q is applied to adder.

2. The input carry is 1.

3. The output S = P + Q + 1.

9.2 Multiplication
Binary multiplication is similar to decimal multiplication. The first step is to multiply each number,
and the second step is to add the values together.

The following example depicts the multiplication of binary digits.

Example: Multiply 1011 by 11

Step 1: 1 0 1 1
 X 1 1
1 0 1 1 (Multiply 1011 by 1)

 1 0 1 1 0 (Multiply 1011 by 1 by adding a 0 as a placeholder)

Step 2: 1 0 1 1
+ 1 0 1 1 0
1 0 0 0 0 1

1 1 1

Notes The sign of the product is ascertained from the signs of the multiplier and multiplicand.
If the signs of the multiplier and multiplicand are the same, the product sign is positive. If
they are different, the product sign is negative.

150

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes 9.2.1 Hardware Algorithm
An algorithm to multiply two numbers is known as the multiplication algorithm. The hardware
multiply algorithm is used in digital electronics such as computers to multiply binary digits. Figure
9.2 depicts the flowchart for hardware multiply algorithm.

Figure 9.2: Hardware Multiply Algorithm Flowchart

 In the flowchart shown in figure 9.2, the multiplicand is in Y and the multiplier is in Q. The signs
related to Y and Q are in YS and QS respectively. These signs are compared and both X and Q are
set to correspond to the sign of the product because a double length product will be stored in
registers X and Q. The registers X and E are cleared. Then, the Sequence Counter (SC) is set to a
number that is equal to the number of bits of the multiplier.

It is assumed that the operands are transferred from a memory unit to the registers having words
of n bits. One bit of the word is occupied by the sign and the magnitude comprises n - 1 bits
because the operand has to be stored with its sign.

Once the initialization is done, the low-order bit of multiplier in Qn is tested. In case the bit is 1,
the multiplicand in Y is added to the present partial product that is stored in X. In case the bit is 0,
no action is performed.

Then the EAQ register is shifted once to the right in order to form the new partial product. The
SC is decreased by 1 and its new value is checked. In case it is not equal to 0, the process is repeated
and a new partial product is formed. This process is halted when SC is equal to 0.

151

Unit 9: Computer Arithmetic I

LOVELY PROFESSIONAL UNIVERSITY

NotesThe partial product that is generated in X is shifted to Q, one bit at a time and replaces the multiplier
eventually. The final product is stored in X as well as Q. Here, X contains the MSBs and Q contains
the Least Significant Bits (LSBs).

9.2.2 Booth Multiplication Algorithm
The Booth multiplication algorithm refers to a multiplication algorithm that is used to multiply
two signed binary numbers in two’s complement. This algorithm helps in the study of computer
architecture.

Did u know? The Booth multiplication algorithm was invented by Andrew Donald Booth in
1951 while researching on crystallography at Birkbeck College in Bloomsbury, London.

Booth’s algorithm involves the addition of one of two predetermined values (A and S) to a product
(P) repeatedly, and then performing a rightward arithmetic shift on the product (P). Let us consider
the predetermined values to be A and S, and the product to be P. Consider that the multiplicand
and multiplier are m and r respectively. Let the number of bits in m and r be x and y respectively.

The Booth’s multiplication algorithm involves the following steps:

Step 1: The values of A and S and the initial value of P are determined. These values should have
a length that is equal to (x + y + 1).

1. For A, the MSB is filled with the value of m and the remaining (y+1) bits are filled with zeros.

2. For S, the MSB is filled with the value of (-m) in two’s complement notation, and the remaining
(y + 1) bits are filled with zeros.

3. For P, the MSB for x is filled with zeros. To the right of this value, the value of r is appended.
Then, the LSB is filled with a zero.

Step 2: The LSBs of P are determined.

1. In case they are 01, find the value of P + A, and ignore the overflow or carry if any.

2. In case they are 10, find the value of P + S, and ignore the overflow or carry if any.

3. In case they are 00, use P directly in the next step.

4. In case they are 11, use P directly in the next step.

Step 3: The value obtained in the second step is arithmetically shifted by one place to the right. P
is now assigned the new value.

Step 4: Step 2 and Step 3 are repeated for y number of times.

Step 5: The LSB is dropped from P, which gives the product of m and r.

Let us consider a simple example.

Example: Find the product of 3 x (-4), where m = 3, r = -4, x = 4 and y = -4.

A = 001100001
S = 110100000
P = 000011000

The loop has to be performed four times since y = 4.

P = 000011000
Here, the last two bits are 00.
Therefore, P = 000001100 after performing the arithmetic right shift.

152

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes P = 000001100
Here, the last two bits are 00.
Therefore, P = 000000110 after performing the arithmetic right shift.

P = 000000110
Here, the last two bits are 10.
Therefore, P = P + S, which is 110100110.
P = 111010011 after performing the arithmetic right shift.

P = 111010011
Here, the last two bits are 11.
Therefore, P = 111101001 after performing the arithmetic right shift.

The product is 11110100 after dropping the LSB from P.
11110100 is the binary representation of -12.

Booth’s algorithm is useful in two ways. One is for fast multiplication, that is, when there are
consecutive 0’s and 1’s in multiplier. The other is in signed multiplication.

9.3 Summary
• The addition of binary numbers is a fundamental feature of the digital computers.

• Every binary bit consists of 0s and 1s.

• In addition of binary numbers, the possibility of overflow is handled by introducing a carry
digit.

• Binary numbers are subtracted by taking the second value that needs to be subtracted and then
applying the 2’s complement.

• To subtract larger numbers from smaller numbers first apply the 2’s complement, and then
add the resultant value to the smaller number. Next change the MSB to 0 and again apply 2’s
complement. MSB would then indicate a negative value.

• Negative fixed-point binary is represented in three ways, which includes signed-magnitude,
signed-1’s complement, and signed-2’s complement.

• The binary digits have to be stored in registers to implement the two arithmetic operations
with hardware.

• The use of 2’s complement for subtraction and comparison is an efficient method requiring
only an adder and a complementer.

• The binary multiplication of digits is performed by multiplying every digit and then adding
the values together.

• In digital computers, hardware multiply algorithms can be used to multiply binary numbers.

• In Booth’s multiplication algorithm one of two predetermined values are added to a product
repeatedly and rightward arithmetic shift on the product is performed.

9.4 Keywords
Addend Digit: It is a number that is added to the augend.

Augend Digit: It is a number to which another number is added.

Registers: These are memory devices that are part of the computer memory. Registers have a
particular address and are used to hold a specific type of data.

Subroutine: It is a set sequence of steps that is part of a larger computer program.

153

Unit 9: Computer Arithmetic I

LOVELY PROFESSIONAL UNIVERSITY

Notes9.5 Self Assessment
1. State whether the following statements are true or false:

(a) The possibility of overflow is handled by introducing a carry digit in the subtraction
of binary digits.

(b) The signed-2’s complement is used by most computers when arithmetic operations are
performed with integers.

(c) The Booth’s multiplication algorithm is useful when there are consecutive 0s and 1s in
multiplier, and in signed multiplication.

2. Fill in the blanks:

(a) Binary numbers are subtracted by first taking the second value to be subtracted and
then applying the ___________________.

(b) To indicate a negative number, the ___________________ or the left side bit is set to 1.

(c) The __________________ algorithm refers to a multiplication algorithm that is used to
multiply two signed binary numbers in 2’s complement notation.

3. Select a suitable choice in every question.

(a) The two’s complement is performed by:

(i) Adding one to output and complementing every digit in turn.

(ii) Complementing every digit in turn and adding one to output.

(iii) Complementing every digit in turn.

(iv) Adding one to output

(b) Which of the following methods are used to represent negative fixed-point binary?

(i) Using signed-2’s complement

(ii) Using signed-9’s complement

(iii) Using LSB

(iv) Using MSB

(c) In order to implement the two arithmetic operations with hardware, which of the
following is essential to store numbers?

(i) Complementer

(ii) Flip-flop

(iii) Parallel Adder

(iv) Registers

9.6 Review Questions
1. “Addition of binary numbers is easy and at the same time quite tedious.” Discuss.

2. Discuss the process of subtracting smaller number from larger number.

3. Analyze the subtraction of a larger number from a smaller number.

4. Analyze the algorithms used for addition and subtraction.

5. “In order to implement the two arithmetic operations with hardware, it is essential to store the
numbers in registers.” Justify.

6. Examine the process involved in the multiplication of binary digits.

154

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes 7. “The hardware multiply algorithm is used in digital electronics such as computers to multiply
binary digits.” Explain.

8. “The Booth’s multiplication algorithm involves a few steps.” Discuss.

Answers: Self Assessment

1. (a) False (b) True (c) True

2. (a) Two’s complement (b) Most Significant Bit (MSB) (c) Booth’s multiplication

3. (a) Complementing every digit in turn and adding one to output

(b) Using signed-2’s complement (c) Registers

9.7 Further Readings

Books Swartzlander, E.; Lemonds, Carl. (2011), Computer Arithmetic: A Complete Reference,
1st ed.
Parhami, Behrooz. (2000), Computer Arithmetic: Algorithms and Hardware Designs,
Oxford University Press, New York.

Online links http://www.quadibloc.com/comp/cp02.htm

http://lapwww.epfl.ch/courses/comparith/Arithm-CRC.pdf

155

Unit 10: Computer Arithmetic II

LOVELY PROFESSIONAL UNIVERSITY

Notes
Unit 10: Computer Arithmetic II

 CONTENTS

 Objectives

 Introduction

 10.1 Division Algorithm

 10.1.1Divide Overflow

 10.1.2 Hardware Algorithm

 10.2 Decimal Arithmetic Unit

 10.2.1 BCD Adder

 10.2.2 BCD Subtraction

 10.3 Decimal Arithmetic Operation

 10.4 Summary

 10.5 Keywords

 10.6 Self Assessment

 10.7 Review Questions

 10.8 Further Readings

Objectives
After studying this unit, you will be able to:

Explain the division of binary numbers

Describe decimal arithmetic unit

Discuss decimal arithmetic operations

Introduction
The processor unit comprises an arithmetic processor to execute arithmetic operations. The designer
of the hardware should be aware of the sequence of steps that need to be followed to carry out
the arithmetic operations to provide accurate output. This sequence of steps is known as an
algorithm. This unit describes various algorithms required to perform arithmetic operations.

Division operation, decimal arithmetic unit, and decimal arithmetic operation are discussed in
this unit.

10.1 Division Algorithm
Binary division is similar to division in decimals. The process involves successive comparison,
shifting, and subtraction. Division of binary numbers is easy compared to division of decimal
numbers because the quotient is either 0 or 1. It is also not necessary to check the number of
times the dividend (partial remainder) fits into the divisor.

Avinash Bhagat, Lovely Professional University

156

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes The following example illustrates the division of binary digits.

Example: Divide 1101 by 11

 100
11) 1 1 0 1 (comparison of partial number with divisor)

1 1
 0 0 0 (shifting of divisor to right)

 0
 0 1 (subtraction from partial remainder)

 0
 1

Task
 Divide binary number 11011 by 111 using the division algorithm.

10.1.1 Divide Overflow
In a computer system the division operation can lead to a quotient with an overflow because the
registers cannot hold a number that exceeds the standard length. To understand this better, consider
a system with a standard 5-bit register. One register is used to hold the divisor and the other to
hold the dividend. In case the quotient consists of 6 bits, 5 bits of the quotient will be stored in a
5-bit register. Therefore, the overflow bit needs a flip-flop to store the sixth bit.

!
Caution

 The divide overflow condition should be avoided in normal computer operations.

This is because the quotient may be very long and hence, cannot be accommodated in the
memory unit. Hence, it is recommended to make provisions in the computer hardware or
software to ensure that such conditions are detected.

The divide overflow condition occurs in case the high-order half bits of the dividend comprises a
number that is greater than or equal to the divisor. One other point that needs to be considered in
division is that, it is advisable to avoid division by zero. The overflow condition is generally
detected when a flip-flop is set. This flip-flop is known as DVF.

There are many ways to handle the occurrence of divide overflow. Programmers are sometimes
responsible for checking whether the DVF is set after each divide command. After checking for
the DVF, programmers can branch to a subroutine. The subroutine takes the required corrective
measures to avoid the overflow.

Did u know? In a few older computers, the working of the computer used to stop on the
occurrence of a divide overflow. This condition was known as divide stop.

Stopping the operation of a computer is not recommended since it is time consuming.

Generally in most of the computers, an interrupt request is provided when a DVF is set. This
interrupt causes the computer to cancel the current program and branch to a service routine to
take the required corrective measures.

Corrective measure usually refers to removal of the program and display of an error message
stating the reason for not completing the program. It is the responsibility of the user of the program
to rescale the data or to take corrective measures.

157

Unit 10: Computer Arithmetic II

LOVELY PROFESSIONAL UNIVERSITY

Notes

Notes Use of floating point data is the best way to avoid a divide overflow.

10.1.2 Hardware Algorithm
The hardware divide algorithm can be interpreted easily with the help of a figure. Figure 10.1
illustrates the hardware divide algorithm using a flow chart.

Figure 10.1: Hardware Divide Algorithm Flowchart

In the flowchart shown in figure 10.1, the dividend is in X and Q and the divisor is in Y. The sign
of the resultant is stored in QS, which is a part of the quotient. A constant is set into the SC to
specify the number of bits in the quotient. As discussed in the multiplication algorithm, we assume
that the operands are transferred from a memory unit to registers. The memory unit comprises
words of n bits. The sign occupies one bit of the word. The magnitude comprises n - 1 bits because
it is essential to store an operand with its sign.

The testing of the divide overflow condition takes place by subtracting the divisor present in Y
from half of the bits of the dividend that is stored in X.

1. In case X Y, the DVF is set and an untimely cancellation of the operation takes place.

2. In case X < Y, the divide overflow does not occur. Therefore, the value of the dividend is
restored by adding Y to X.

The division of the magnitudes begins by transferring the dividend present in XQ to the left and
by transferring the high-order bit to E. In case the bit shifted into E is 1, EA > Y because EA

158

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes comprises a 1 followed by n - 1 bits and Y comprises only n - 1 bits. Therefore, Y is subtracted
from EA and 1 is placed in QS for the quotient bit. Because the Register X does not have the high-
order bit of the dividend, its value is EA - 2n-1. If the 2’s complement of Y is added to this value,
the output would be as follows:

(EA - 2n-1) + (2n-1 - Y) = EA - Y

In case E should remain as 1, the carry from the addition should not be transferred to E.

In case the shift left operation inserts 0 into E, the divisor is subtracted by adding its 2’s complement
value. The carry has to be transferred to E. In case E = 1, it means that X Y and as such, QS is set
to 1. In case E = 0, it means that X < Y and therefore, the original number is restored by adding Y
to X. In this case, the 0 that was inserted during shift is left in QS.

The above process is repeated with Register X, which holds the partial remainder. The quotient
magnitude is formed in Register Q and the remainder is found in Register X after n - 1 times. The
sign of the quotient in QS and the sign of remainder in XS are the same as the original sign of the
dividend.

10.2 Decimal Arithmetic Unit
Decimal arithmetic unit refers to a digital function that does decimal micro-operations. This
function adds or subtracts decimal numbers by forming 9’s or 10’s complement of the subtrahend.
This decimal arithmetic unit first accepts coded decimal numbers and then generates output in
the binary form. Since four bits are necessary to represent every coded decimal digit, a single-
stage decimal arithmetic unit comprises nine binary input variables and five binary output
variables.

Every stage has to comprise four sets of input for the augend digit, four sets of input for the
addend digit, and an input-carry. The output comprises four terminals for the sum digit and one
for the output-carry.

10.2.1 BCD Adder

BCD adder refers to a 4-bit binary adder that can add two 4-bit words of BCD format. The output
of the addition is a BCD-format 4-bit output word, which represents the decimal sum of the addend
and augend and a carry that is generated in case this sum exceeds a decimal value of 9. Therefore,
BCD adders can perform decimal addition.

Let us examine an arithmetic operation consisting of two decimal digits in BCD, along with a
possible carry from a previous stage. The output of the arithmetic operation cannot be more that
9 + 9 + 1 = 19, because no input digit exceeds 9. In case two BCD numbers are applied to a 4-bit
binary adder, the adder forms the sum in binary and gives an output ranging from 0 to 19. Here,
1 refers to an output carry.

159

Unit 10: Computer Arithmetic II

LOVELY PROFESSIONAL UNIVERSITY

NotesTable 10.1 discusses the construction of a BCD adder, wherein the binary numbers are labeled
using symbols K, Z8, Z4, Z2, and Z1.

Table 10.1: Construction of BCD Adder (Cont’d)

Sum of Binary Digits Sum of BCD Digits
K Z8 Z4 Z2 Z1 C S8 S4 S2 S1 Decimal

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 1
0 0 0 1 0 0 0 0 1 0 2
0 0 0 1 1 0 0 0 1 1 3
0 0 1 0 0 0 0 1 0 0 4
0 0 1 0 1 0 0 1 0 1 5
0 0 1 1 0 0 0 1 1 0 6
0 0 1 1 1 0 0 1 1 1 7
0 1 0 0 0 0 1 0 0 0 8
0 1 0 0 1 0 1 0 0 1 9

0 1 0 1 0 1 0 0 0 0 10
0 1 0 1 1 1 0 0 0 1 11
0 1 1 0 0 1 0 0 1 0 12
0 1 1 0 1 1 0 0 1 1 13
0 1 1 1 0 1 0 1 0 0 14
0 1 1 1 1 1 0 1 0 1 15
1 0 0 0 0 1 0 1 1 0 16
1 0 0 0 1 1 0 1 1 1 17
1 0 0 1 0 1 1 0 0 0 18
1 0 0 1 1 1 1 0 0 1 19

 In table 10.1, K is the carry. The subscripts below the letter Z represent the weights. The weights,
according to the table, are 8, 4, 2, and 1. These weights can be allotted to the four bits in BCD
code. The first column contains the binary sum as in the outputs of a 4-bit binary adder. The
second column contains of the output sum of two decimal numbers that is represented in BCD.
Now, a simple rule is essential to convert the binary numbers in the first column to the correct
BCD digit representation in the second column.

It is evident from table 10.1 that if the binary sum is less than or equal to 1001, then the
corresponding BCD number is identical and therefore, there is no need for conversion. However,
in case the binary sum is more than 1001, a non valid BCD representation is obtained. Therefore,
the binary 6 (0110) has to be added to the binary sum to convert it to the correct BCD representation
and to produce an output carry.

The decimal numbers in BCD are added by employing one 4-bit binary adder and by performing
arithmetic operation one digit at a time. To produce a binary sum, first addition is performed on
the low-order pair of BCD digits.

In case the output is equal to or greater than 1010, it can be set right by adding 0110 to the binary
sum. This would produce an output-carry automatically for the next pair of significant numbers.
Then, the subsequent high-order pair of numbers along with input-carry is added to produce their
binary sum. In case this output is greater than or equal to 1010, it is set right by adding 0110. This
process is repeated until every decimal digit is added.

The entries in table 10.1 help derive the logic circuit that detects the required corrections. When
the binary sum has an output carry K = 1, a correction is required. The other six combinations
starting from 1010 to 1111 that require corrections have a 1 in position Z8. To differentiate them
from binary 1000 and 1001, which also have a 1 in position Z8, it is specified that either Z4 or Z2
must have a 1.

160

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes The following Boolean function is used to express the condition for a correction and an output-
carry:

C = K + Z8Z4 + Z8Z2

In case C = 1, 0110 is added to the binary sum and an output-carry is provided for the next stage.

Figure 10.2 depicts a BCD adder circuit to add two BCD numbers in parallel and to produce a sum
digit, which is also in BCD. The internal construction of the BCD adder must include the correction
logic.

Figure 10.2: Block Diagram of BCD Adder

 As depicted in figure 10.2, a second 4-bit binary adder is used to add 0110. To produce the binary
sum, the two decimal digits along with the input-carry are added in the top 4-bit binary adder.

In case the output-carry is equal to 0, no binary number is added to the binary sum. However, in
case the output-carry is equal to 1, binary number 0110 is added to the binary sum through the 4-
bit binary adder on the left side of figure 6.4. The output-carry that is generated from the binary
adder on the left side of figure 6.4 can be ignored, because it provides information that is already
present in the output-carry terminal.

A decimal parallel-adder adding n decimal numbers requires n BCD adder stages along with the
output-carry from one stage connected to the input-carry of the next-higher order stage. BCD adders
comprise the required circuits for carry look-ahead to achieve shorter propagation delays. It should
be noted that the adder circuit for correction may not require all four full-adders. It is also possible
to optimize the adder circuits.

10.2.2 BCD Subtraction

A subtractor circuit is required to perform a subtraction operation on two decimal numbers. BCD
subtraction is slightly different from BCD addition. Performing subtraction operation by taking
the 9’s or 10’s complement of the subtrahend and adding it to the minuend is economical. It is not
possible to obtain the 9’s complement by complementing every bit in the code because the BCD

161

Unit 10: Computer Arithmetic II

LOVELY PROFESSIONAL UNIVERSITY

Notesis not a self- complementing code. The 9’s complement has to be formed by a circuit that subtracts
every BCD number from 9.

The 9’s complement of a decimal digit that is represented in BCD can be obtained by
complementing the bits in the coded representation of the digit. However, it is essential that a
correction is included. There are two methods of correction. They are:

1. First Method: The binary 1010 is added to every complemented digit. The carry is discarded
after performing the addition.

2. Second Method: The binary 0110 is added before the digit is complemented.

For instance, the 9’s complement of BCD 0111 is calculated by complementing every bit to get
1000. The value 0010 is obtained by adding binary 1010 and ignoring the carry. Using the second
method, 0110 and 0111 can be added to obtain 1101. The required output, that is, 0010 can be
obtained by complementing every bit.

Complementing every bit of a 4-bit binary digit N is the same as subtracting the digit from 1111.
When the decimal equivalent of 10 is added, the value obtained is 15 - N + 10 = 9 - N + 16. However,
the digit 16 signifies the carry that is discarded, hence, the result equals to 9 - N as required.
Adding and then complementing the binary equivalent of decimal 6 provides 15 - (N + 6) = 9 - N
as needed.

A combination circuit can also be used to obtain the 9’s complement of a BCD digit. When this
combination circuit is attached to a BCD adder, it results in a BCD adder or subtractor.

Consider that the subtrahend digit is denoted by the four binary variables B8, B4, B2 and B1. Also
consider M to be a mode bit that controls add or subtract operation. Therefore, when M = 0, the
two digits are added and when M = 1, the digits are subtracted.

Consider the binary variables x8, x4, x2 and x1 to be the outputs of the 9’s complementer circuit.
According to the truth table for circuits:

1. B1 needs to be complemented at all times.

2. B2 is the same every time in 9’s complement as in original number.

3. x4 is 1 if the exclusive OR of B2 and B4 is 1.

4. x8 is 1 if B8B4B2 = 000.

For the 9’s complement circuit, the Boolean functions are as follows:

1. x1 = B1M1 + B11M

2. x2 = B2

3. x4 = B4M1 + (B14B2 + B4B12)M

4. x8 = B8M1 + B18B14B12M

In the above equations it can be observed that x = B if M= 0. If M = 1, the x outputs produce the 9’s
complement of B.

10.3 Decimal Arithmetic Operation
Algorithms that are used for arithmetic operations with decimal data and binary data are alike. If
the micro-operations symbol is interpreted correctly the same flowchart can be used for both
multiplication and division. The decimal numbers in BCD are stored in groups of four bits in the
computer registers. When performing decimal micro-operations, every 4-bit group represents a
decimal digit and has to be taken as a group.

162

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes For convenience, the same symbol can be used for binary and decimal arithmetic micro-operations
with different interpretation. Table 10.2 depicts symbols for decimal arithmetic micro-operations.

Table 10.2: Symbols for Decimal Arithmetic Micro-
Operations.

Symbolic Representation Meaning
X ? X + Adds decimal numbers and transfers the

output to X.
Y 9’s complement of Y.
X ? X + Y + 1 Adds content of X and 10's complement of Y

and transfers the output to X.
dshr X Shifts the decimal number one digit towards

right in register X.
d X Shifts the decimal number one digit towards

left in register X.

 In table 10.2, we can see a bar over the symbol for the register letter. This refers to the 9’s
complement of decimal number that is stored in the register. When 1 is added to the 9’s
complement the 10’s complement is produced. Therefore, the symbol X � X+ Y + 1 for decimal
digits denotes, transfer of decimal sum that was formed by adding the original content X to the
10’s complement of Y. It may be confusing to use similar symbols for 9’s complement and 1’s
complement in case both types of data are used in the same system. Therefore, it would be better
to implement a different symbol for the 9’s complement. In case only one type of data is taken
into consideration, the symbol would apply to the type of data used.

Consider that a register X holds a decimal 7860 in BCD. The bit pattern of the 12 flip-flops equal
to:

0111 1000 0110 0000.

The micro-operation dshr X moves the decimal number one digit to the right to provide 0786.
This shift is over the four bits and as such, changes the content of register to 0000 0111 1000 0110.

10.4 Summary
• Binary division involves successive comparison, shifting, and subtraction.

• In division, the overflow condition is identified when a flip-flop is set. This flip-flop is named
as DVF.

• The interrupt makes the computer to terminate the current program and branch to a service
routine that would take the required corrective measures.

• The decimal arithmetic unit is a digital function that does decimal micro-operations, which
performs addition or subtraction of decimal numbers by forming the 9’s or 10’s complement of
the subtrahend.

• The decimal arithmetic unit accepts coded decimal numbers and then generates output in
binary form.

• BCD adders are used to perform decimal additions. BCD adder is a 4-bit binary adder used to
add two 4-bit words having a BCD format.

• It is economical to perform subtraction on two decimal numbers by taking 9’s or 10’s
complement of the subtrahend and adding it to the minuend.

• The 9’s complement is formed by a circuit that subtracts every BCD number from 9.

• In decimal arithmetic operation, if micro-operations symbol is interpreted properly, the same
flowchart can be used for both multiplication and division.

• When decimal micro-operations are performed each 4-bit group represents a decimal digit
and has to be taken as a group.

163

Unit 10: Computer Arithmetic II

LOVELY PROFESSIONAL UNIVERSITY

Notes10.5 Keywords
BCD: Binary Coded Decimal is a method of representing decimal numbers.

DVF: Divide-Overflow Flip-flop.

Micro-operation: Detailed low-level instructions used in some designs to implement complex
machine instructions.

10.6 Self Assessment
1. State whether the following statements are true or false:

(a) The divide overflow condition occurs in case the high-order half bits of the dividend
comprises a number that is equal to the divisor.

(b) Decimal arithmetic unit refers to a digital function that does decimal micro-operations.

(c) The 9’s complement has to be formed by a circuit that subtracts every BCD number
from 10.

(d) When performing decimal micro-operations, every 4-bit group represents a decimal
digit and has to be taken as a group.

2. Fill in the blanks:

(a) The ______________________ refers to a 4-bit binary adder that can add two 4-bit words
having a BCD (Binary-Coded Decimal) format.

(b) A combination circuit can also be used to obtain the _________________ of a BCD digit.

(c) The decimal numbers in BCD are stored in groups of _____________________ bits in the
computer registers.

3. Select a suitable choice in every question.

(a) While performing the division operation, which of the following stores the overflow
bit?

(i) Subroutine

(ii) Registers

(iii) Flip-flop

(iv) Floating point data

(b) Which of the following symbolic representation shifts the decimal number one digit
towards left in register X?

(i) dshr X

(ii) dshl X

(iii) Y

(iv) X � X + Y

10.7 Review Questions
1. “In a computer system the division operation could lead to quotient with an overflow, since

the registers cannot hold a number that exceeds the standard length.” Discuss.

2. Illustrate the division algorithm using a flowchart.

3. “BCD adder refers to a 4-bit binary adder that can add two 4-bit words having a BCD (Binary-
Coded Decimal) format.” Explain.

4. Analyze the symbols used for decimal arithmetic micro-operations.

164

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes Answers: Self Assessment

1. (a) False (b) True (c) False (d) True

2. (a) BCD adder (b) 9’s complement (c) Four

3. (a) Flip-flop (b) dshl X

10.8 Further Readings

Books Swartzlander, E.; Lemonds, Carl. (2011), Computer Arithmetic: A Complete Reference,
1st ed.
Parhami, Behrooz. (2000), Computer Arithmetic: Algorithms and Hardware Designs,
Oxford University Press, New York.

Online links http://www.quadibloc.com/comp/cp02.htm

http://lapwww.epfl.ch/courses/comparith/Arithm-CRC.pdf

165

Unit 11: Input/Output Organization

LOVELY PROFESSIONAL UNIVERSITY

Notes
Unit 11: Input/Output Organization

 CONTENTS

 Objectives

 Introduction

 11.1 Peripheral Devices

 11.2 I/O Interface

 11.3 Data Transfer Schemes

 11.4 Program Control

 11.5 Interrupts

 11.5.1 Interrupt I/O

 11.5.2 Enabling and Disabling Interrupts

 11.5.3 Program Interrupts

 11.5.4 Interrupt Cycle

 11.6 Direct Memory Access

 11.7 I/O Processor

 11.8 Summary

 11.9 Keywords

 11.10 Self Assessment

 11.11 Review Questions

 11.12 Further Readings

Objectives
After studying this unit, you will be able to:

• Define peripheral devices

• Explain input/output (I/O) interfaces

• List the data transfer schemes

• Explain the concept of program control

• Describe interrupts

• Explain the concept of DMA transfer

• Define I/O Processors

Introduction
We are aware that computer organization refers to operational units and their interconnections
that conform to the architecture specifications. A computer is a complex system that contains
millions of elementary electronic components. A computer serves no purpose unless it
communicates with the external environment. A user provides instructions to the computer through
input devices, and the input data from the user after processing is stored in the memory. The
computational results are given to the user through an output device.

Ajay Kumar Bansal, Lovely Professional University

166

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes Commercial computers include many types of input and output (I/O) devices. I/O devices are
interconnected with the Central Processing Unit (CPU) and the main memory, and each of these
devices controls one or more external devices. These devices constitute the Input/Output system.

The I/O devices of a computer provide an efficient mode of communication between the central
system and the outside environment. Programs are stored in the computer memory for
computation. The results obtained from the computations are displayed to the users. The common
means of entering information in a computer is using a keyboard that allows the user to directly
enter alphanumeric information.

Did u know? Once a key is pressed, the terminal sends a binary-coded character to the computer.

CPU is a device that is capable of performing computations at a high speed.

The I/O organization of a computer depends on the size of the computer and the I/O devices
connected to it. The amount of hardware in the computer available for communicating with the
peripheral units helps us know the difference between a small and a large computer. Some
techniques involved with peripheral devices are presented in this unit.

11.1 Peripheral Devices
Peripheral devices are devices that are connected either internally or externally to a computer.
These devices are commonly used to transfer data. The most common processes that are carried
out in a computer are entering data and displaying processed data. Several devices can be used to
receive data and display processed data. The devices used to perform these functions are called as
peripherals or I/O devices.

Peripherals read information from or write in the memory unit on receiving a command from
the CPU. They are considered to be a part of the total computer system. As they require a
conversion of signal values, these devices can be referred to as electromechanical and
electromagnetic devices. The most common peripherals are printer, scanner, keyboard, mouse,
tape device, microphone and external modem that are externally connected to the computer.

The following are some of the commonly used peripherals:

Keyboard
Keyboard is the most commonly used input device. It is used to provide commands to the
computer. The commands are usually in the form of text. The keyboard consists of many keys
such as function keys, numeric keypad, character keys, and various symbols.

Monitor

The most commonly used output device is the monitor. A cable connects the monitor to the video
adapters in the computer’s motherboard. These video adapters convert the electrical signals to
the text and images that are displayed. The images on the monitor are made of thousands of
pixels.

The cursor is the characteristic feature of display devices. It marks the position on the screen where
the next character will be inserted.

Printer

Printers provide a permanent record of computer data or text on paper. We can classify printers
as impact and non-impact printers. Impact printers print characters due to the physical contact of
the print head with the paper. In non-impact printers, there is no physical contact. Some examples
of printers are:

1. Daisywheel

2. Dot Matrix

3. Laser Printer

167

Unit 11: Input/Output Organization

LOVELY PROFESSIONAL UNIVERSITY

NotesLet us understand in detail about these printers:

1. Daisywheel: The daisywheel consists of a wheel with characters placed along its circumference.
To print a character, the wheel rotates to the required position, and an energized magnet
presses the letter against the ribbon.

2. Dot Matrix: The dot matrix printer has a set of dots along the printing mechanism. The decision
to print a dot depends on the specific characters that are printed on the line.

Example: A 5 X 7 dot matrix printer that prints 80 characters per line has seven horizontal
lines, each consisting of 5 X 80 = 400 dots.
3. Laser Printer: The laser printer imprints the character image by using a rotating photographic

drum. The resulting pattern is transferred to paper in the same way as a photocopier.

Daisywheel and dot matrix printers are impact printers. Laser printer is a non-impact printer.

Magnetic Tape

Magnetic tapes are used in most companies to store data files.

Magnetic tapes use a read-write mechanism. The read-write mechanism refers to writing data on
or reading data from a magnetic tape. The tapes store the data in a sequential manner. In this
sequential processing, the computer must begin searching at the beginning and check each record
until the desired data is available. As the tape moves along the stationary read-write mechanism,
the access is sequential and the records are accessed one after another. The magnetic tape is the
cheapest medium for storage because it can store large number of binary digits, bytes, or frames
on every inch of the tape. The advantages of using magnetic tape include unlimited storage, low
cost, high data density, rapid transfer rate, portability and ease of use.

Magnetic Disk

Another medium for storing data is magnetic disks. Magnetic disks have high speed rotational
surfaces coated with magnetic material. A read-write mechanism is used to achieve the access to
write on or read from the magnetic disk. Magnetic disks are mostly used for bulk storage of
programs and data.

There are many other peripheral devices found in computer systems such as digital incremental
plotters, optical and magnetic readers, analog to digital converters, and various data acquisition
equipment.

The following section deals with the method used to transfer information from the computer to
the peripherals.

ASCII Alphanumeric Characters

Alphanumeric characters are used for the transfer of information to and from the I/O devices and
the computer. American Standard Code for Information Interchange (ASCII) is the standard binary
code used to represent alphanumeric characters. This standard uses seven bits to code 128 characters.
However, there is an additional bit on the left that is always assigned 0. Therefore, there are 8
bits in total.

Example: Letter A is represented as 01000001 in ASCII.

The ASCIII code consists of 34 nonprinting characters and 94 characters used for various control
operations. There are 26 uppercase letters A through Z, 26 lowercase letters a through z, numerals
from 0 to 9, and 32 printable characters such as %,*.

Task Write your full name in ASCII using eight bits per character with the leftmost bit
always 0. You may check for all ASCII codes online.

The control characters are used to route the data and arrange the printed text into a prescribed
format.

168

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes A list of control characters is shown in table 11.1.

Table 11.1: Control Character and Description

Control Character Description
NUL Null
SOH Start of Heading
STX Start of text
EOT End of transmission
ENQ Enquiry
ACK Acknowledge
DLE Data Lin k Escape
ETB End of transmission block
EM End of medium

There are three types of control characters. They are:

1. Format Effectors

2. Information Separators

3. Communication Control Characters

The functions of these control characters are:

1. Format Effectors: They control the layout of printing. They include familiar typewrite controls
such as Back Space (BS), Horizontal Tabulation (HT), and Carriage Return (CR).

2. Information Separators: They separate the data into divisions such as paragraphs and pages.
They include Record Separator (RS) and File Separator (FS).

3. Communication Control: They are used during the transmission of text between remote
terminals.

Example: STX (start of text) and ETX (end of text) are examples of communication control
characters. They are used to frame a text message when they are transmitted through a
communication medium.

11.2 I/O Interface
The concept of I/O interface helps us understand how devices intercommunicate. I/O interface
provides a method by which information is transferred between internal storage and external I/
O devices. All the peripherals connected to a computer require special communication connections
for interfacing them with the CPU. The importance of communication connections is to resolve
the differences that occur between the computer and each peripheral.

Some of the major differences are:

1. The operation of electromagnetic devices and peripherals are different from the operation of
CPU and memory, which are electronic devices. There is a need for conversion of signal values
to resolve this difference.

2. The transfer rate of CPU is faster than the transfer rate of the peripherals. Additionally, the
peripherals require a synchronization mechanism to transfer the data.

3. Data codes and formats in peripherals differ from the word format in the CPU and memory.

4. Each operating mode is different and each mode must be controlled to prevent disturbing the
operation of the peripheral devices connected to the CPU.

Therefore, computer systems include special hardware components between the CPU and
peripherals to resolve these differences. This special hardware supervises and synchronizes all
input and output transfers. They are named interface units as they interface the processor bus and

169

Unit 11: Input/Output Organization

LOVELY PROFESSIONAL UNIVERSITY

Notesperipheral bus. Each device also has its own controller that supervises the operations of the
particular mechanism in the peripheral device.

I/O Bus and Interface Modules

The I/O bus is the pathway used for peripheral devices to communicate with the computer
processor. A typical connection of I/O bus to I/O devices is shown in figure 11.1.

Figure 11.1: Connection of I /O Bus to I/O Devices

 The I/O bus consists of data lines, address lines, and control lines. In any general purpose

computer, the magnetic disk, printer, and keyboard and display terminal are commonly employed.
Each peripheral unit has an interface unit associated with it. Each interface decodes the control
and address received from the I/O bus. It interprets the address and control received from the
peripheral, and provides signals for the peripheral controller. It also supervises the transfer of
data between peripheral and processor and also synchronizes the data flow.

Example: Printer can perform actions such as control of paper motion, print timing, and
selection of printing characters.

The I/O bus is connected to all peripheral interfaces from the processor. The processor places a
device address on the address line to communicate with a particular device. Each interface contains
an address decoder attached to the I/O bus that monitors the address lines. When the address is
detected by the interface, it activates the path between the bus lines and the device that it controls.
The interface disables the peripherals whose address does not correspond to the address in the
bus.

At the same time, when the address is made available in the address lines, the processor provides
a function code in the control lines. The interface that is selected replies to the function code and
executes it. This function code is referred to as an I/O command. This also corresponds to an
instruction that is executed in the interface and the peripheral unit connected to that interface. An
interface receives any of the following four commands:

1. Control

2. Status

3. Data Output

4. Data Input

170

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes These interface commands are used for the following purposes:

1. Control: A command control is given to activate the peripheral and to inform its next task. This
control command depends on the peripheral, and each peripheral receives its own sequence of
control commands, depending on its mode of operation.

Example: A magnetic tape may be given the instruction to rewind the tape by one record,
to rewind the whole tape, or to start the tape moving in the forward direction.

2. Status: A status command is used to test different test conditions in the interface and the
peripheral.

Example: The computer may require checking the status of the peripheral before a transfer
is made. During this transfer, the errors that occur are detected by the interface.
These errors are cleared by setting bits in a status register that the processor can
read at certain intervals.

3. Data Output: A data output command makes the interface respond to the command by
transferring data from the bus to one of its registers.

Example: In a tape unit, when a control command is issued, the computer starts the tape to
move.

4. Data Input: The data input command is opposite to the data output command. In data input,
the interface receives an item of data from the peripheral and places it in its buffer register.
Later, the processor checks if the data is available by means of a status command and then
issues a data input command.

I/O Versus Memory Bus

In addition to communicating with I/O devices, the processor must also communicate with the
memory unit. Similar to the I/O bus, the memory bus contains independent sets of data, address,
and control lines. There are three ways for buses to communicate with memory and I/O. They
are:

1. Use two separate buses, one for memory and the other for I/O.

2. Use one common bus for both memory and I/O, but have separate control lines for each.

3. Use one common bus for memory and I/O with common control lines.

171

Unit 11: Input/Output Organization

LOVELY PROFESSIONAL UNIVERSITY

NotesIn figure 11.2, an example of an interface unit is shown.

Figure 11.2: Example of an Interface Unit

 In figure 11.2, the I/O interface consists of two data registers, a control register, a status register,
bus buffers, and timing and control circuits. The interface communicates with the CPU through
the data bus. The Chip Select (CS) and the Register Select (RS) inputs determine the address
assigned to the interface. The I/O read and I/O write are control lines that specify input and output
respectively. There are four registers that communicate with the I/O device attached to the interface.

The I/O data from the device can be transferred to either port A or port B. There is a magnetic
disk unit that transfers data in both directions but not at the same time. In this kind of system, the
function code in the I/O bus is not needed because control is sent to the control register, status
information is received from the status register, and data is transferred between ports A and B.

The control register receives control information from the CPU. The interface and the I/O device
attached to it can be placed in various operating modes by loading the corresponding bits into
the control register.

Example: Port A is defined as an input port and port B as an output port. A magnetic tape
unit is instructed to rewind the tape or to start the tape moving in the forward
direction. The bits in the status register are used for status conditions and for
recording errors that occur during the data transfer. A status bit represents port
A, which received a new data item from the I/O device.

172

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes Table 11.2 shows a list of control characters.

Table 11.2: List of Control Characters

CS RS1 RS0 Register Selected
0 X X None
1 0 0 Port A register
1 0 1 Port B register
1 1 0 Control register
1 1 1 Status register

The interface registers communicate with the CPU through the bidirectional data bus. The address
bus selects the interface unit through the Chip Select (CS) and the two Register Select (RS0 and
RS1) inputs. A circuit is provided externally to detect the address assigned to the interface registers.
This enables the CS input when the interface is selected. RS1 and RS0 are usually connected to the
least significant lines of the address bus. These two bits select any of the two inputs listed in table
7.2. The content from the selected register is transferred to the CPU through the data bus when I/
O read signal is enabled.

11.3 Data Transfer Schemes
It is important to know the data transfer schemes because they provide an efficient means of
transmitting data between the processing unit and the I/O devices. In a computer, the data transfer
happens between any of these combinations — CPU and memory, CPU and I/O devices, and
memory and I/O devices. A computer is interfaced with many devices of different speeds.
Therefore, I/O devices may not be ready to transfer data as soon as the microprocessor issues the
instruction for this purpose. Many data transfer schemes have been developed to solve this
problem. The data transfer schemes have been broadly classified into two categories:

1. Programmed data transfer schemes

2. Direct Memory Access (DMA) data transfer scheme

Let us now discuss these data transfer schemes.

Programmed Data Transfer Schemes

In programmed data transfer scheme, data transfer takes place between the CPU and I/O device
under the control of a program that resides in the memory. In this scheme, the program is executed
by the CPU. This scheme is used when a small amount of data is to be transferred. The three
important types of programmed data transfer schemes are:

1. Synchronous Data Transfer Scheme: This type of programmed data transfer scheme is used
when the processor and the I/O devices match in speed. Some suitable instructions such as IN
and OUT are used for ‘to and from’ data transfer of I/O devices.

2. Asynchronous Data Transfer Scheme: This type of programmed data transfer scheme is used
when the speeds of I/O devices and the microprocessor do not match and also when the timing
characteristics of the I/O devices are not predictable.

3. Interrupt Driven Data Transfer Scheme: In this programmed data transfer scheme, the processor
enables the I/O devices and then continues to execute its original program instead of wasting
time on checking the status of the I/O devices. When the I/O devices are ready to send and
receive data, then the processor is informed through a specific control line called the ‘Interrupt
line’.

DMA Data Transfer Scheme

In DMA data transfer, data is directly transferred from the memory to the I/O device or vice
versa without going through the microprocessor. This scheme is used when there is a need to
transfer bulk data. Transferring bulk data using a microprocessor consumes more time. Therefore,
the microprocessor performs the data transfer between an I/O device and memory using this

173

Unit 11: Input/Output Organization

LOVELY PROFESSIONAL UNIVERSITY

NotesDMA technique. For a DMA transfer, I/O devices must also contain an electronic circuitry to
generate control signals. But most I/O devices are not equipped with such facilities. Hence, to
solve this problem, manufacturers have developed a single chip programmable DMA controller
to interface I/O devices with the microprocessor for DMA transfer.

Example: Intel 8237A, 82307 and so on are examples of single chip programmable DMA
controller. These are DMA control electronic circuitry that is used to generate control signals for a
DMA transfer.

11.4 Program Control
Data transfer instructions are stored in successive memory addresses. When these instructions are
processed in the CPU, the data transfer instructions fetch the data from consecutive memory
locations and process it. Once the data transfer is complete, the program control moves from the
current memory location to the fetch cycle with the program counter containing the address of
next instruction to be executed. Sometimes, the program control instruction specifies conditions
for altering the content of the program counter while transferring data.

Some of the typical program control instructions are shown in table 11.3:

Table 11.3: Typical Program Control Instructions

Name Mnemonic
Branch BR

Jump JMP

Skip SKP

Call CALL

Return RET

Compare (by subtraction) CMP

The branch and jump instructions are used interchangeably, but sometimes they are used to denote
different addressing modes. Branch is usually a one-address instruction. In assembly language, it
is represented as ADR for an address. When this instruction is executed, the branch instruction
transfers the value of ADR into the Program Counter (PC).

Branch and jump may be conditional or unconditional. A conditional branch instruction specifies
a condition such as branch if positive or branch if zero. If the condition is satisfied, the PC is
loaded with branch address and the next instruction is taken from this address. If the condition is
not satisfied, the PC is not changed and the next instruction is taken from the next location. On
the other hand, an unconditional branch instruction causes a branch to specify an address without
any condition.

The skip instruction is a zero-address instruction as it does not need an address field. If the condition
is met, the conditional skip instruction skips the next instruction. If the condition is not met, control
moves to the next instruction where the programmer inserts an unconditional branch instruction.

The call and return instructions are used with subroutines. The compare and return instructions
do not change the program execution. They are listed in the table because of their setting conditions
for subsequent conditional branch instructions. The compare instruction subtracts two operands,
but the result is not retained. But some status bit conditions are set as a result of the operation.
The status bits may be the carry bit, the sign bit, a zero indication, or an overflow condition.

174

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes 11.5 Interrupts
Whenever certain condition exists within a program or the computer system, it becomes necessary
to have the computer automatically execute one special routine or a collection of special routines.

Example: It is necessary for a computer system to respond to devices such as keyboard,
sensor and other components when they request for service.

The common method used to service an interrupt device is the polled approach. In this process,
the processor tests each device in sequence and in effect asks each device if it needs to communicate
with the processor. However, this method has a decremented effect on the system throughout,
thus limiting the tasks and reducing the effectiveness of using such devices.

The other desirable approach is the one that allows the processor to execute the main program
and stop the execution of the program only to service the peripheral devices when the device
itself instructs the processor to do so. Also, the method provides an external asynchronous input
that instructs the processor to complete the instruction that is currently being executed. The method
also requests to fetch a new routine that will service the requesting device. In this method, the
processor resumes program execution from the last instruction executed. This method of servicing
the I/O request is called Interrupt driven I/O. System throughput is increased by using this method.
The event that causes the interruption is called interrupt and the special routine executed to service
the interrupt is called an Interrupt Service Routine (ISR).

There three ways to interrupt a normal program are:

1. By an external signal

2. By a special instruction in the program

3. By the occurrence of some condition

Figure 11.3 shows an interrupt operation.

Figure 11.3: Interrupt Operation

Hardware interrupts are caused by an external signal, whereas software interrupts are caused by
special instructions.

175

Unit 11: Input/Output Organization

LOVELY PROFESSIONAL UNIVERSITY

NotesHardware Interrupt

A hardware interrupt is generated by a hardware device such as a key-press or a mouse-click. The
hardware interrupts are classified as:

1. Single level interrupts

2. Multilevel interrupts

Let us now discuss these interrupts.

Single Level Interrupts

In single level interrupts, many devices can interrupt the processor at the same time to attend to
their requests. But all the devices raise requests through a single input pin of the CPU. When
interrupted, the CPU must identify the device that raised the request. Once the I/O port is identified,
the CPU attends to the request of I/O device and then continues to carry out the task that it was
performing before being interrupted.

In single level interrupts, interrupt requests from all the devices are logically ORed and connected
to the interrupt input of the processor. Hence, the interrupt request from any device is routed to
the processor interrupt input. After the processor is interrupted, it identifies the requesting device
by reading the interrupt status of each device.

Figure 11.4 shows the equivalent circuit of the single interrupt line used in devices. All the I/O
devices are connected to INTR through switches to ground. A device closes its associated switch
to request an interrupt. When all the interrupt request signals from INTR1 to INTRn are inactive
and all the switches are open, then the voltage on the interrupt request will be equal to VDD.
When the device requests an interrupt by closing its switch, then the voltage line drops to 0,
causing the interrupt request signal INTR to go to 1. Closing of one or more switching will cause
the line voltage to drop to 0. This results in an INTR signal.

Figure 11.4: Single Level Interrupt System

176

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes Multilevel Interrupts

In multilevel interrupts, more than one interrupt pin is present in the processor. Therefore,
interrupts can be identified by the CPU on receiving an interrupt request from any of the interrupt
pins.

Figure 11.5 shows the multilevel interrupt system.

Let us now discuss the process flow of a multilevel interrupt. When the external asynchronous
input is inserted, the logic control of a multilevel interrupt is as follows:

1. The processor completes its current instruction.

2. The current contents of the program counter are stored in the stack.

!
Caution

 Remember, during the execution of an instruction, the program counter is pointing to

the memory location for the next instruction.

3. The program counter is loaded with the address of an interrupt service routine.

4. Program execution continues with the instruction taken from the memory location pointed by
the new program counter contents.

5. The interrupt program is executed until a return instruction is executed.

6. Once the RET instruction receives the old address from the stack, it puts back the address into
the program counter. This allows the interrupted program to continue executing at the
instruction following the one where it was interrupted.

Figure 11.5: Multilevel Interrupt System

177

Unit 11: Input/Output Organization

LOVELY PROFESSIONAL UNIVERSITY

Notes

Notes To handle interrupts from multiple devices, the processor has to perform the following
tasks:
1. It has to recognize the device requesting an interrupt.
2. It has to allow the device to interrupt while another interrupt is being serviced.

11.5.1 Interrupt I/O
An interrupt I/O is a process of data transfer in which an external device or a peripheral informs
the CPU that it is ready for communication and requests the attention of the CPU.

To demonstrate the basic requirements for input and output communication, let us consider an
illustration of a terminal unit with a keyboard and printer.

I/O Configuration

The terminals send and receive serial information. Each quantity of serial information has eight
bits of alphanumeric code, where the leftmost bit is always 0. The serial information from the
input register is shifted into the input register INPR. The output register OUTR is used to store
the serial information for the printer. These two registers communicate with the Accumulator
(AC) in parallel and with a communication interface in a serial form.

The Input/Output configuration is shown in figure 11.6. The transmitter interface receives serial
information from the keyboard and transmits it to INPR. The receiver interface receives
information from OUTR and sends it to the printer serially.

Figure 11.6: Input/Output Configuration

Input/ Outp ut Terminal Serial Commun ication Interface Computer Register and
Flip-flop

Prin ter

Tran smitter
Interface

Receiver
Interface

Keyb oard

AC

OUTR

INP R

FGO

FGI

 The input/output registers consist of eight bits. The FGI is a 1-bit input flag, which is a control
flip-flop. The flag bit is set to 1 when new information is available in the input device and is
cleared to 0 when the information is accepted by the computer.

The process of information transfer is as follows. Initially, the FGI is cleared to 0. When a key is
pressed on the keyboard, the alphanumeric code corresponding to the key is moved to INPR and
the input flag FGI is set to 0. The information in INPR cannot be changed as long as the flag is set.
The computer checks the flag bit; if it is 1, the information from INPR is transferred in parallel
into AC and FGI is cleared to 0.

178

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes The output register OUTR works similar to the input register INPR.

The flow of information through OUTR is the reverse of INPR. Here, the output flag FGO is set to
1 initially. The computer checks the flag bit; if it is 1, the information from AC is transferred in
parallel to OUTR and FGO is cleared to 0. New information cannot be loaded into OUTR when
the FGO is 0 because this condition indicates that the output device is in the process of printing a
character.

Input Register

The INPR input register is a register that consists of eight bits and holds alphanumeric input
information. The 1-bit input flag FGI is a control flip-flop. When new information is available in
the input device, the flag bit is set to 1. It is cleared to 0 when the information is accepted by the
computer. The flag is required to synchronize the timing rate difference between the input device
and the computer.

The process of information transfer is as follows:

1. The input flag FGI is set to 0. When a user presses any key on the keyboard, an 8-bit
alphanumeric code is moved into INPR and the input flag FGI is set to 1.

2. The computer checks the flag bit. If the bit is 1, then the information from INPR is transferred
to AC and simultaneously FGI is cleared to 0.

3. After the flag is cleared, new information can be shifted into INPR by entering another key.

Output Register

The working of the output register OUTR is similar to that of the input register INPR, but the
direction of information flow is in reverse.

The process of information transfer is as follows:

1. The output flag FGO is set to 1.

2. The computer checks the flag bit. If the bit is 1, the information from AC is transferred to OUTR
and simultaneously FGO is cleared to 0.

3. Then the output device accepts the coded 8-bit information and prints the corresponding
character.

4. After this operation is complete, the output device sets the FGO to 1.

11.5.2 Enabling and Disabling Interrupts

Interrupts can be classified as maskable and non-maskable interrupts.

1. Maskable Interrupt: It is a hardware interrupt that can be ignored.

2. Non-maskable Interrupt: It is a hardware interrupt that cannot be ignored. It is usually signaled
when a non-recoverable hardware error occurs.

Interrupts can be masked or unmasked by setting the particular flip-flop in the processor. When
the interrupt is masked, processor does not respond even though the interrupt is activated. These
days most of the processors provide this masking facility.

These interrupts can be enabled and disabled under program control. The enabling and disabling
of interrupts can be done using an Interrupt Flag (IF). The IF controls the external interrupts that
are signaled through the INTR pin. When IF=0, INTR interrupts are restrained; when IF=1, INTR
interrupts are enabled.

179

Unit 11: Input/Output Organization

LOVELY PROFESSIONAL UNIVERSITY

Notes11.5.3 Program Interrupts
A program interrupt is an interrupt that is initiated by an internal or an external signal rather
than from the execution of an instruction.

 There are three types of program interrupts, namely:

1. Internal Interrupt

2. External Interrupt

3. Software Interrupt

1. Internal Interrupts: These are often referred to as traps. These interrupts occur when an
instruction is terminated before the time allocated for it is over.

Example: Whenever we try to divide a number by ‘0’, an error occurs during the execution.
The execution is terminated there and an error message pops up on the screen.
The subroutine of the interrupt is responsible for the corrective measures that process the internal
interrupt.

2. External Interrupts: These are caused by I/O devices and peripherals. They are generated
when an external device requests for transfer of data and so on. Some of the differences between
internal interrupt and external interrupt are shown in table 11.4.

Table 11.4: Differences Between Internal Interrupt and
External Interrupt

Internal Interrupt External Interrupt
Internal interrupts are synchronous with the
program.

External interrupts are not synchronous with
the program.

Internal interrupts are generated due to some
condition violated by the main program.

External interrupts are generated by
peripherals.

Internal interrup ts are generated at the same
place each time.

External interrupts do not depend on re-
execution of the same.

 3. Software Interrupts: These interrupts are not initiated by any hardware; instead they are
generated when appropriate instructions are executed.

11.5.4 Interrupt Cycle

The interrupt cycle is a hardware implementation of a branch and save return address operation.
The available return address is stored in PC in a specific location where it can be taken later when
the program returns to the instruction at which it was interrupted. The location may be a processor,
a register, a memory stack, or a specific memory location. The memory location is chosen at address
0 for storing the return address. After this, control inserts address 1 into PC and clears IEN and R
so that no more interruptions occur.

180

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes A simple example of the interrupt cycle process is shown in figure 11.7.

Figure 11.7: Interrupt Cycle

Let us assume that an interrupt occurs and R is set to 1 when the control is executing the instruction
at address 255. At this instant, the return address 256 is in PC. The programmer had previously
placed an I/O service program in memory from address 1120.

When the control reaches the timing signal T0 and finds that R = 1, it continues with the interrupt
cycle. Then the content of PC (256) is stored in memory location 0, PC is set to 1, and R is cleared
to 0. But for the next instruction cycle, the instruction is read from address 1 as it is the content of
PC. Next, the branch instruction at address 1 causes the program to transfer the service to 1120.
Once this is completed, ION instruction is executed to set IEN to 1. Then the program returns to
the location where it was interrupted.

Later, the instruction that returns the computer to the initial place is the branch indirect function
with an address part of 0. Next, the control goes to the indirect phase to read the effective address.
The effective address is in location 0 and contains the return address that was stored there during
the previous interrupt cycle.

11.6 Direct Memory Access
Direct Memory Access (DMA) is a hardware controlled data transfer technique. An external device
is used to control data transfer. External device generates address and control signals that are
required to control data transfer. External devices also allow peripheral devices to directly access
memory. The external device which controls the data transfer is called the DMA controller.

DMA Idle Cycle

When the system is turned on, the switches are in position A. The processor starts executing the
program until it needs to read a block of data from the disk. The disk processor sends a series of
commands to the disk controller to search and read the desired block of data from the disk. When
the disk controller is ready to send the data from the disk, it sends DMA request (DRQ) signal to
the DMA controller. Then the DMA controller sends a HOLD signal to the processor HOLD input.
The processor responds to this signal by suspending the buses and sending an HLDA
acknowledgement signal. When the DMA controller receives the HLDA signal, it sends a control
signal to change the switch position from A to B.

181

Unit 11: Input/Output Organization

LOVELY PROFESSIONAL UNIVERSITY

NotesFigure 11.8 shows how a DMA controller operates in a computer system.

Figure 11.8: DMA Controller Operating in
Microprocessor System

HLDA

A

SMART
(eg D ISK
CON TROLLER)

AD0-AD15

ALE

HOLD

H LDA

ADDRESS
LATCHES

D ATA
BUS

BUFFER

CONTROL BUS

MICRO
PROCESSOR

HRQ

DMA
CO NTROLLER

DREQ

D ACK0

PERIPHERAL
DEVICE

MEMORY

AD DRESS BUS

CO NTROL BUS

DATA BUS

IOR , IO W

MEMW, MEMR

CO NTROL BUS

DATA BUS
A

A

B

B

B

IOR , IOW

MEMW, MEMR

 DMA Active Cycle

When the DMA controller gets control of the buses, it sends the memory address where the first
byte of data from the disk is to be written. It also sends a DMA acknowledge (DACK) signal to
the disk controller device signaling it to get ready to send the output byte. Then it asserts both
the IOR and MEMW signals on the control bus. IOR enables the disk controller to yield the byte
of data from the disk and MEMW signal enables the addressed memory to accept data from the
data bus.

Cycle Stealing Mode

In this data transfer mode, the device can make only one transfer (byte or word). After each transfer,
DMAC gives the control of all buses to the processor. This is a single transfer mode with the
process as follows:

1. I/O device asserts DRQ line when it is ready to transfer data.

2. The DMAC asserts HLDA line to request use of the buses from the processor.

3. The processor asserts HLDA, granting the control of buses to the DMAC.

4. The DMAC asserts DACK to the requesting I/O device and executes DMA bus cycle, resulting
in data transfer.

5. I/O device deasserts its DRQ after data transfer of one byte or word.

6. DMA deasserts DACK line.

7. The word/byte transfer count is decremented and the memory address is incremented.

8. The HOLD line is deasserted to give control of all buses back to the processor.

9. HOLD signal is reasserted to request the use of buses when I/O device is ready to transfer
another byte or word. The same process is then repeated until the last transfer.

182

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes 10. When the transfer count is exhausted, terminal count is generated to indicate the end of the
transfer.

11.7 I/O Processor
Sometimes it is necessary for a processor to have some special features like controlling the I/O
operations along with the ability to execute I/O instructions according to the requirements.
Therefore, it is necessary to study the features of I/O processors (IOPs). An I/O processor is an I/
O channel that has a special-purpose processor. This processor has the ability to execute I/O
instructions and it can also have control over I/O operation. The I/O instructions are stored in
the main memory. The CPU initiates an I/O transfer by instructing the I/O channel to execute an
I/O program when I/O transfer is required. The I/O program specifies the area of memory storage
priority and action that needs to be taken for some conditions.

Features

1. An IOP can fetch and execute its own instructions.

2. Instructions are specially designed for I/O processing.

3. In addition to data transfer, an IOP can perform arithmetic and logic operations, branches,
searches, and translations.

4. IOP performs all work involved in I/O transfer including device setup, programmed I/O, and
DMA operation.

5. IOP can transfer data from an 8-bit source to a 16-bit destination and vice versa.

6. Memory-based control blocks are used for communication between IOP and CPU.

7. IOP supports multiprocessing environment. Both IOP and CPU can process simultaneously.

11.8 Summary
• I/O devices enable an efficient mode of communication.

• Peripheral devices are devices that are externally connected to the computer such as the printer
and scanner.

• The means of transferring information between internal storage and external storage is
provided by I/O interfaces.

• There are mainly two types of data transfer schemes used to transfer data between two devices
such as CPU and memory, CPU and I/O devices, and memory and I/O devices.

• Interrupts exist within a program that operates the computer to stop and understand the next
action.

• There are two types of hardware interrupts, namely single level interrupt and multilevel
interrupt.

• An interrupt cycle is a hardware implementation of a branch and save return address operation.

• Direct Memory Access is a hardware controlled data transfer technique.

• I/O processor is an I/O channel that has a special purpose processor.

11.9 Keywords
Deassert: Set a signal to its inactive state

Microprocessor: It is an integrated circuit semiconductor chip that performs the bulk of the
processing and controls the different parts of a system.

Program Counter (PC): It holds the address of instruction.

Synchronous: Occurs at the same time.

183

Unit 11: Input/Output Organization

LOVELY PROFESSIONAL UNIVERSITY

Notes11.10 Self Assessment
1. State whether the following sentences are true or false:

(a) In cycle stealing data transfer mode, the device can make only two transfers.

(b) After execution the current instruction, the CPU serves an interrupt depending on the
device of the interrupt.

(c) The compare and return instructions do not change the program execution.

(d) The working of the output register is similar to that of the input register, and the
direction of the flow is also similar.

(e) The jump instruction is a zero-address instruction because it does not need an address
field.

2. Fill in the blanks:

(a) The ___________________ consists of a wheel with the characters placed along the
circumference.

(b) The _______________________ places a device address on the address line to
communicate with a particular device.

(c) Data are directly transferred from memory to the I/O device or vice versa without
going through the microprocessor in ___________________ data transfer scheme.

(d) The call and return instructions are used with ___________________

(e) The _______________________ is a hardware implementation of a branch and save return
address operation.

3. Select a suitable choice for every question:

(a) What type of information is entered in computer by means of a keyboard?

(i) Alphanumeric

(ii) Beta numeric

(iii) Binary information

(iv) Octal information

(b) Which is the most commonly used video monitor?

(i) Liquid Crystal Display (LCD)

(ii) Cathode Ray Tube (CRT)

(iii) Light Emitting Diode (LED)

(iv) Plasma Display

(c) Which command is used to test different test conditions in the interface and the
peripheral?

(i) Data output

(ii) Status

(iii) Control

(iv) Data input

(d) Which type of instruction occurs when an instruction is terminated before the time
allocated for it is over?

(i) External interrupt (ii) Software interrupt

(iii) Internal interrupt (iv) Hardware interrupt

184

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes 11.11 Review Questions
1. “The most commonly used peripherals are video monitors.” Elaborate.

2. “Input/Output interface provides a way for transferring information between internal storage
and external I/O devices.” Elaborate.

3. “The I/O bus consists of data lines, address lines, and control lines.” Comment.

4. “In a computer, the data transfer happens between two devices such as CPU and memory, CPU
and I/O devices, and memory and I/O devices.” Justify.

5. “Instructions are stored in successive memory addresses. When these instructions are processed
in the CPU, they are fetched from a consecutive memory location and executed.” Comment.

6. “The interrupts are classified as single level interrupts and multilevel interrupts.” Elaborate

7. “The INPR input register consists of eight bits and holds alphanumeric input information.”
Comment.

8. “The working of the output register is similar to that of the input register but the direction of
information flow is in reverse.” Justify.

9. “An interrupt I/O is a process of data transfer through which an external device or a peripheral
informs the CPU that it is ready for communication and requests the attention of the CPU.”
Elaborate.

10. “The interrupt cycle is a hardware implementation of a branch and save return address
operation.” Comment.

11. “Direct Memory Access is a hardware-controlled data transfer technique.” Elaborate.

12. “In cycle stealing data transfer mode, the device can make only one transfer.” Comment.

Answers: Self Assessment

1. (a) False (b) False (c) True

(d) False (e) False

2. (a) Daisywheel (b) Processor (c) Direct Memory Access (DMA)

(d) Subroutines (e) Interrupt Cycle

3. (a) Alphanumeric (b) Cathode Ray Tube (CRT) (c) Status

(d) Internal interrupt

11.12 Further Readings

Books Godse.A.P & GodseRandall Raus D.A. Computer Organization And Architecture,
Essentials of computer science 2. Research and education association

Morris Mano. Computer System Architecture, 3rd ed, Pearson Education, Inc.

Online links http://whatis.techtarget.com/definition/0,,sid9_gci212374,00.html

h t t p : / / w w w . g o o g l e . c o . i n /
#hl=en&biw=986&bih=560&q=Quotes+on+computer+organisation&aq
=f&aqi=&aql=&oq=&fp=19f06de9fa513ae8

http://en.wikipedia.org/wiki/Non-maskable_interrupt

185

Unit 12: Memory Organization Concepts

LOVELY PROFESSIONAL UNIVERSITY

Notes

Unit 12: Memory Organization Concepts

 CONTENTS

 Objectives

 Introduction

 12.1 Memory Hierarchy

 12.2 Main Memory

 12.3 Cache

 12.3.1 Direct Mapping

 12.3.2 Associative Mapping

 12.3.3 Set Associative Mapping

 12.4 Virtual Memory

 12.4.1 Address Space and Memory Space

 12.4.2 Address Mapping Using Pages

 12.4.3 Associative Memory Page Table

 12.4.4 Page Replacement

 12.5 Summary

 12.6 Keywords

 12.7 Self Assessment

 12.8 Review Questions

 12.9 Further Readings

Objectives
After studying this unit, you will be able to:

• Explain memory hierarchy

• Describe main memory

• Describe cache memory

• Define virtual memory

Introduction
“Ideally one would desire an indefinitely large memory capacity such that any particular word
would be immediately available.

We are forced to recognize the possibility of constructing a hierarchy of memories, each of which
has greater capacity than the preceding but which is less quickly accessible.”

A. W. Burks, H. H. Goldstine, and J. Von Neumann

Computer architects rightly predicted that programmers would want unlimited amounts of
memory. A cost-effective way to provide large amounts of memory is by using a memory
hierarchy, which takes advantage of locality and performance of memory technologies (such as
SRAM, DRAM, and so on). The principle of locality states that most programs do not refer all
code or data in a uniform manner. Locality occurs in time and in space. The belief that smaller
hardware can be made faster, contributed to the development of memory hierarchies based on
different speeds and sizes.

Pooja Gupta, Lovely Professional University

186

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes The significance of memory hierarchy has improved with advances in performance of processors.
As the performance of the processor increases, the memory should also support this performance.
Therefore, computer architects are working towards minimizing the processor-memory gap.

12.1 Memory Hierarchy
You may be aware that the data required to operate a computer is stored in the hard drive.
However, other storage methods are also required. This requirement is for a number of reasons,
but mostly it is because the hard drive is slow and executing programs using it could be impractical.
When the processor requires data or functions, it first fetches the required data from the hard
drive and then loads them into the main memory (RAM). This increases the operation speed and
programs are executed faster.

Main memory and the hard drive form two levels of the computer’s memory hierarchy. In memory
hierarchy, the storage devices are arranged in such a way that they take advantage of the
characteristics of different storage technologies in order to improve the overall performance of a
computer system.

Figure 12.1 shows the standard memory hierarchy of a computer.

Figure 12.1: Representation of Standard Memory
Hierarchy

The memory unit is an essential component of any digital computer, because all the programs
and data are stored here. A very small computer with a limited purpose may be able to accomplish
its intended task without the need for additional storage capacity. Nearly all conventional
computers would run more efficiently if they were provided with additional storage space,
excluding the capacity of the main memory. It is not possible for one memory unit to accommodate
all the programs used in a conventional computer due to lack of storage space. Additionally, almost
all computer users collect and continue to amass large amount of data processing software. Not
all information that is gathered is needed by the processor at the same time. Thus, it is more
appropriate to use low-cost storage devices to serve as a backup for storing the information that
is not currently used by the CPU.

The memory unit that exchanges information directly with the CPU is called the main memory.
Devices that support backup storage are referred to as auxiliary memory. The most common
devices that support storage in typical computer systems are magnetic disks and magnetic tapes.
They are mainly used to store system programs, large data files, and other backup information.
Only programs and data that are currently required by the processor reside in the main memory.
All other information is stored in auxiliary/secondary memory and moved to the main memory
when needed.

The overall memory capacity of a computer can be pictured as being a hierarchy of components.
The memory hierarchy system includes all storage devices used in a computer system. They range
from the slow but large capacity auxiliary memory to a comparatively faster main memory, to
an even smaller but faster cache memory accessible to the high-speed processing logic.

187

Unit 12: Memory Organization Concepts

LOVELY PROFESSIONAL UNIVERSITY

NotesFigure 12.2 shows the components in a typical memory hierarchy.

Figure 12.2: Memory Hierarchy in a Computer System

Placed at the bottom of the hierarchy is the comparatively slow magnetic tape used to store
removable files. Next is the magnetic disk that is used as backup storage.

The main memory takes up a central position because of its ability to communicate directly with
the CPU and with auxiliary memory devices, through an Input/Output (I/O) processor. When the
CPU needs programs that are not present in the main memory, they are brought in from the
auxiliary memory. Programs that are not currently required in the main memory are moved into
the auxiliary memory to provide space for currently used programs and data.

To increase the speed of processing, a very-high-speed memory, known as cache, is used. It helps
in making the current data and programs available to the CPU at high speed. The cache memory
is used in computer systems to compensate for the difference between the main memory access
time and processor logic speed. CPU logic is quicker than main memory access time. Yet, the
processing speed of the CPU is limited by the main memory’s speed. The difference in these
operating speeds can be balanced by using an extremely fast, small cache between the CPU and
main memory. The cache access time is nearly equal to the processor logic clock cycle time. The
cache is used to store the following:

1. Fragments of program that is presently being executed in the CPU

2. Temporary data that is repeatedly needed in the current operation

When programs and data are available at a high rate, it is possible to increase the performance
rate of the computer.

Although the I/O processor manages data transfers between main memory and auxiliary memory,
the cache organization deals with the transfer of information between the main memory and the
CPU. Thus, the cache and the CPU interact at different levels in the memory hierarchy system.
The main reason for having two or three levels of memory hierarchy is to achieve cost-
effectiveness. As the storage capacity of the memory increases, the cost-per-bit of storing binary
information decreases and the memory access time increases. When compared to main memory,
the auxiliary memory has a large storage capacity and is relatively inexpensive. However, the
auxiliary memory has low access speed. The cache memory is very small, quite expensive, and
has very high access speed. Consequently, as the memory access speed increases, so does its relative
cost. The main purpose of employing a memory hierarchy is to achieve the optimum average
access speed while minimizing the total cost of the entire memory system.

188

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes

Did u know? Many operating systems are designed in such a way that they allow the CPU to
process a number of independent programs concurrently. This concept, called
multiprogramming, refers to the presence of two or more programs in different parts of the
memory hierarchy at the same time. In this way, it is possible to make use of the computer by
processing several programs in sequence.

Example: Assume that a program is being executed in the CPU and an I/O operation is
required. The CPU instructs the I/O processor to start processing the transfer. At
this point, the CPU is free to execute another program. In a multiprogramming
system, when one program is waiting for an input or output process to take place,
there is another program ready to use the CPU for execution.

12.2 Main Memory
The main memory is the fundamental storage unit in a computer system. It is a relatively large
and fast memory, and stores programs and data during computer operations. The technology that
makes the main memory work is based on semiconductor integrated circuits.

As mentioned earlier, RAM is the main memory. Integrated circuit Random Access Memory (RAM)
chips are available in two possible operating modes. They are:

1. Static: It basically consists of internal flip-flops, which store the binary information. The
stored information remains valid as long as power is supplied to the unit. The static RAM is
simple to use and has shorter read and write cycles.

2. Dynamic: It stores the binary information in the form of electric charges that are applied to
capacitors. The capacitors are made available inside the chip by Metal Oxide Semiconductor
(MOS) transistors. The stored charge on the capacitors tends to discharge with time and thus,
the capacitors must be regularly recharged by refreshing the dynamic memory. Refreshing is
done by progressively supplying the capacitor with words every few milliseconds to restore
the decaying charge. The dynamic RAM uses minimum power and provides ample storage
capacity in a single memory chip.

Notes Metal Oxide Semiconductor (MOS) transistor is the basic building block of almost all
modern digital memories, processors and logic chips. MOS transistors find many uses and can
function as a switch, an amplifier or a resistor.

Most of the main memory in a computer is typically made up of RAM integrated circuit chips,
but a part of the memory may be built with Read Only Memory (ROM) chips. Formerly, RAM
was used to refer to a random-access memory. But now it is used to address a read/write memory
to distinguish it from a read-only memory, although ROM is also random access. RAM is used for
storing the volumes of programs and data that are subject to change. ROM is used for storing
programs that permanently reside in the computer. It is also used for storing tables of constants
whose value does not change once the computer is constructed.

Notes The ROM part of main memory is used for storing an initial program called a bootstrap
loader. The bootstrap loader is a program whose function is to initiate the computer software
when power is turned on. As RAM is volatile, its contents are lost when power is turned off.
The contents of ROM are not lost even when power is turned off.

189

Unit 12: Memory Organization Concepts

LOVELY PROFESSIONAL UNIVERSITY

NotesRAM and ROM chips are available in a variety of sizes. If the memory requirement for the computer
is larger than the capacity of a single chip, a number of chips can be combined to form the required
memory size.

Random Access Memory

The term Random Access Memory or RAM is typically used to refer to memory that is easily read
from and written to by the microprocessor. In reality, it is not right to use this term. For a memory
to be called random access, it should be possible to access any address at any time. This
differentiates RAM from storage devices such as tapes or hard drives where the data is accessed
sequentially.

Practically, RAM is the main memory of a computer. Its objective is to store data and applications
that are currently in use. The operating system controls the usage of this memory. It gives
instructions like when the items are to be loaded into RAM, where they are to be located in RAM,
and when they need to be removed from RAM. RAM is intended to be very fast both for reading
and writing data. RAM also tends to be volatile, that is, all the data is lost as soon as power is cut
off.

Read Only Memory

In every computer system, there must be a segment of memory that is stable and unaffected by
power loss. This kind of memory is called Read Only Memory or ROM. Once again, this is not
the right term. If it was not possible to write to this type of memory, it would not have been
possible to store the code or data that is to be contained in it. It simply indicates that without
special mechanisms in place, a processor may not be able to write to this type of memory.

Did u know? ROM also stores the computer’s BIOS (Basic Input/Output System). BIOS is the
code that guides the processor to access its resources when power is turned on, it must be
present even when the computer is powered down. The other function of BIOS is storing the
code for embedded systems.

Example: It is important for the code in your car’s computer to persist even if the battery is
disconnected.
There are some categories of ROM that the microprocessor can write to. However, the time taken
to write to them, or the programming requirements needed to do so, makes it difficult to write to
them regularly. This is why these memories are still considered read only.

There are few situations where the processor cannot write to a ROM under any conditions.

Example: There is no need to modify the code in your car’s computer. This ROM is
programmed before installing. In order to install a new program in the car’s computer, the old ROM
is removed and a new ROM is installed in its place.

SRAM

RAMs that are made up of circuits and can preserve the information as long as power is supplied
are referred to as Static Random Access Memories (SRAM). Flip-flops form the basic memory
elements in a SRAM device. A SRAM consists of an array of flip-flops, one for each bit.

Since SRAM consists of an array of flip-flops, a large number of flip-flops are needed to provide
higher capacity memory. Because of this, simpler flip-flop circuits, BJT and MOS transistors are
used for SRAM. This helps to save chip area and provides memory integrated circuits at relatively
reduced cost, increased speed and reduces the power dissipation as well. SRAMs have very short
access times typically less than 10 ns. SRAMs with battery backup are commonly used to provide
stability to data during power loss.

190

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes DRAM

SRAMs are faster but their cost is high, because their cells require many transistors. RAMs can be
obtained at a lower cost if simpler cells are used. A MOS storage cell based on capacitors can be
used to replace the SRAM cells. Such a storage cell cannot preserve the charge (that is, data)
indefinitely and must be recharged periodically. Therefore, these cells are called as dynamic storage
cells. RAMs using these cells are referred to as Dynamic RAMs or simply DRAMs.

12.3 Cache
Even with improvements in hard drive performance, it is still not practical to execute programs
or access data directly from the mechanical devices like hard disk and magnetic tapes, because
they are very slow. Therefore, when the processor needs to access data, it is first loaded from the
hard drive into the main memory where the higher performance RAM allows fast access to the
data. When the processor does not require the data anymore, it can either be discarded or used to
update the hard drive.

The cost makes the capacity of a computer’s main memory inadequate when compared to its hard
drive. However, this would not have a major impact as all of the data on a hard drive need not be
accessed all the time by the processor. Only the currently active data or programs need to be in
RAM. Additional performance improvements can be achieved by taking this concept to another
level.

As discussed earlier, there are two main classifications of RAM: Static RAM (SRAM) and Dynamic
RAM (DRAM). SRAM is faster, but that speed comes at a high cost - it has a lower density and it is
more expensive. Since main memory needs to be relatively large and inexpensive, it is
implemented with DRAM.

Main memory improves the performance of the system by loading only the data that is currently
required or in use from the hard drive. However, the system performance can be improved
considerably by using a small, fast SRAM to store data and code that is in immediate use. The
code and data that is not currently needed can be stored in the main memory.

You must be aware that in a programming language, instructions that are executed often tend to
be clustered together. This is mainly due to the basic constructs of programming such as loops
and subroutines. Therefore, when one instruction is executed, the chances of it or its surrounding
instructions being executed again in the near future are high. Over a short interval, a cluster of
instructions may execute over and over again. This is referred to as the principle of locality. Data
also behaves as per this principle as related data is often stored in consecutive locations.

To benefit from this principle, a small, fast SRAM is placed between the processor/CPU and main
memory to hold the most recently used instructions/programs and data under the belief that
they will most likely be used again soon. This small, fast SRAM is called a RAM cache or just a
cache. The location of a cache in a memory hierarchy is shown in Figure 12.3.

 Figure 12.3: Cache Placement be tween Main Memory
and Processor

The SRAM of the cache needs to be small, the reason being that the larger address decoder circuits
are slower than small address decoder circuits. As the memory increases, the complexity of the
address decoder circuit also increases. As the complexity of the address decoder circuit increases,
the time taken to select a memory location based on the address it received also increases. For
this reason, making a memory smaller makes it faster.

191

Unit 12: Memory Organization Concepts

LOVELY PROFESSIONAL UNIVERSITY

NotesThe concept of reducing the size of memory can be optimized by placing an even smaller SRAM
between the cache and the processor, thereby creating two levels of cache. This new cache is usually
contained inside of the processor. As the new cache is put inside the processor, the wires connecting
the two become very short, and the interface circuitry becomes more closely integrated with that
of the processor. These two conditions together with the smaller decoder circuit facilitate faster
data access. When two caches are present, the cache within the processor is referred to as a level 1
or L1 cache. The cache between the L1 cache and memory is referred to as a level 2 or L2 cache.

Figure 12.4 shows the placement of L1 and L2 cache in memory.

Figure 12.4: L1 and L2 Cache Placement

 The split cache, another cache organization, is shown in figure 12.5. Split cache requires two caches.
In this case, a processor uses one cache to store code/instructions and a second cache to store data.
This cache organization is typically used to support an advanced type of processor architecture
such as pipelining. Here, the mechanisms used by the processor to handle the code are so distinct
from those used for data that it does not make sense to put both types of information into the
same cache.

Figure 12.5: Split Cache Organization

The success of caches depends upon the principle of locality. The principle proposes that when
one data item is loaded into a cache, the items close to it in memory should be loaded too.

If a program enters a loop, most of the instructions that are part of that loop are executed multiple
times. Therefore, when the first instruction of a loop is being loaded into the cache, it loads its
bordering instructions simultaneously to save time. In this way, the processor does not have to
wait for the main memory to provide subsequent instructions. As a result of this, caches are
organized in such a way that when one piece of data or code is loaded, the block of neighboring
items are loaded too. Each block loaded into the cache is identified with a number known as a
tag. This tag can be used to find the original addresses of the data in the main memory. Therefore,
when the processor is in search of a piece of data or code (hereafter referred to as a word), it only
needs to check the tags to see if the word is contained in the cache.

Each block of words and its corresponding tag is combined in the cache to form a line. The lines
are structured into a table. When the main memory needs a word from within a block, the whole
block is moved into one of the lines of the cache along with its tag, which is used to identify the
address of the block.

192

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes Cache Operation

The processor first checks the cache when it needs a word from the memory. If the word is not in
the cache, a condition known as miss occurs. In order to ensure that no time is lost due to a miss,
the process for accessing the same word from main memory is simultaneously activated. If the
word is present in the cache, then the processor uses the cache’s word and disregards the results
from the main memory. This mechanism is referred to as a hit.

In case of a miss, the entire block containing the word is loaded into a line of the cache, and the
word is sent to the processor. Depending on the design of the cache/processor interface, the word
is either loaded into the cache first and then given to the processor or it is loaded into the cache
and sent to the processor simultaneously. In the first case, the cache is controlled by the memory
interface and lies between memory and the processor. In the second case, the cache acts like an
extra memory on the same bus with the main memory.

Suppose the main memory is divided into n blocks and the cache has space to accommodate exactly
m blocks. By virtue of the nature of the cache, m is much smaller than n. If we divide m into n ,
get an integer which illustrates the number of times that the main memory could fill the cache
with different blocks from its contents.

Example: Suppose main memory is 128 M (227) and a block size is four words (22), then main
memory contains n = 227–2 = 225 blocks. If the cache for this system can hold 256 K (218) words, then m
= 218–2 = 216 blocks. Therefore, the main memory could fill the cache n/m = 225/216 = 225–16 = 29 = 512
times.
The main memory is much larger than a cache, so each line in the cache is responsible for storing
one of many blocks from main memory. In our above example, each line of the cache is
responsible for storing one of 512 different blocks from main memory at a specific time.

The process of transferring data from main memory to cache memory is called as mapping. There
are three methods used to map a line in the cache to an address in memory so that the processor
can quickly find a word. They are:

1. Direct Mapping

2. Associative Mapping

3. Set Associative Mapping

!
Caution The only one mistake that can be made in computer design is not having enough
address bits for memory addressing and memory management. It is difficult to correct this.

12.3.1 Direct Mapping
Direct mapping is a procedure used to assign each memory block in main memory to a specific
line in the cache. If a line is already filled with a memory block and a new block needs to be
loaded, then the old block is discarded from the cache.

193

Unit 12: Memory Organization Concepts

LOVELY PROFESSIONAL UNIVERSITY

NotesFigure 12.6 shows how multiple blocks from the above example are mapped to each line in the
cache.

Figure 12.6: Direct Mapping of Main Memory to Cache

 Just like locating a word within a block, bits are taken from the main memory address to uniquely
describe the line in the cache where a block can be stored.

Example: Consider a cache with 29 = 512 lines, then a line would need 9 bits to be uniquely
identified.

Therefore, the 9 bits of the address immediately to the left of the word identification bits would
recognize the line in the cache where the block is to be stored. The bits of the address that were
not used for the word offset or the cache line would be used for the tag. Figure 12.7 represents
this partitioning of the bits.

 Figure 12.7: Direct Mapping Partitioning of Memory
Address

As soon as the block is stored in the line of the cache, the tag is copied to the tag location of the
line. From the cache line number, the tag, and the word position within the block, the original
address of the word can be reproduced.

In short, direct mapping divides an address into three parts: t tag bits, l line bits, and w word bits.
The word bits are the least significant bits that identify the specific word within a block of memory.
The line bits are the next least significant bits that identify the line of the cache in which the block
is stored. The remaining bits are stored along with the block as the tag which locates the block’s
position in the main memory.

194

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes 12.3.2 Associative Mapping
Associative mapping or fully associative mapping does not make use of line numbers. It breaks
the main memory address into two parts - the word ID and a tag as shown in Figure 12.8. In order
to check for a block stored in the memory, the tag is pulled from the memory address and a
search is performed through all of the lines of the cache to see if the block is present.

 Figure 12.8: Associative Partitioning of Memory
Address

This method of searching for a block within a cache appears like it might be a slow process, but it
is not. Each line of the cache has its own compare circuitry, which can quickly analyze whether or
not the block is contained at that line. With all of the lines performing this comparison process in
parallel, the correct line is identified quickly.

This mapping technique is designed to solve a problem that exists with direct mapping where
two active blocks of memory could map to the same line of the cache. When this happens, neither
block of memory is allowed to stay in the cache as it is replaced quickly by the competing block.
This leads to a condition that is referred to as thrashing. In thrashing, a line in the cache goes
back and forth between two or more blocks, usually replacing a block even before the processor
goes through it. Thrashing can be avoided by allowing a block of memory to map to any line of
the cache.

However, this advantage comes with a price. When an associative cache is full and the processor
needs to load a new block from memory, a decision has to be made regarding which of the existing
blocks should be discarded. The selection method, known as a replacement algorithm, should
aim to replace the block least likely to be needed by the processor in the near future.

There are many replacement algorithms, none of which has any precedence over the others. In an
attempt to realize the fastest operation, each of these algorithms is implemented in hardware.

1. Least Recently Used (LRU): This method replaces the block that has not been read by the
processor in the longest period of time.

2. First In First Out (FIFO): This method replaces the block that has been in cache the longest.

3. Least Frequently Used (LFU): This method replaces the block which has had fewest hits since
being loaded into the cache.

4. Random: This method randomly selects a block to be replaced. Its performance is slightly
lower than LRU, FIFO, or LFU.

The objective of a replacement algorithm is to try to remove the page least likely to be referenced
in the immediate future.

12.3.3 Set Associative Mapping
Set associative mapping merges direct mapping with fully associative mapping by grouping
together lines of a cache into sets. The sets are determined using a direct mapping scheme.
However, the lines within each set are considered as tiny fully associative cache where any block
that is to be stored in the set can be stored to any line within the set.

195

Unit 12: Memory Organization Concepts

LOVELY PROFESSIONAL UNIVERSITY

NotesFigure 12.9 represents this arrangement using a sample cache that uses four lines to a set.

 Figure 12.9: Set Associative Map ping of Main Memory
to Cache

A set associative cache that contains k lines per set is called as a k way set associative cache. Since
the mapping technique uses the memory address just like direct mapping does, the number of
lines contained in a set must be equal to an integer power of two, for example, two, four, eight,
sixteen, and so on.

Example: Description of set associative mapping.
Consider a cache with 29 = 512 lines, a block of memory contains 23 = 8 words, and
the full memory space contains 230 = 1G words. In a direct mapping scheme, this
would leave 30 – 9 – 3 = 18 bits for the tag.

!
Caution Note that the direct mapping method is the same as set associative method where the
set size is equal to one line.

By shifting from direct mapping to set associative with a set size of two lines per set, the number
of sets obtained equals to half the number of lines. In the instance of the cache having 512 lines,
we would obtain 256 sets of two lines each, which would need eight bits from the memory address
to identify the set. This would leave 30 – 8 – 3 = 19 bits for the tag. By shifting to four lines per set,
the number of sets is reduced to 128 sets requiring 7 bits to identify the set and twenty bits for the
tag.

196

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes Every time the number of lines per set in the example is doubled, the number of bits used to
identify the set is reduced by one, thus increasing the number of tag bits by one. This is shown in
the Figure 12.10.

Figure 12.10: Effect of Cache Set Size on Address
Partitioning

Whenever a block from memory has to be stored in a set already filled with other blocks, one of
the replacement algorithms described for fully associative mapping is used.

12.4 Virtual Memory
In typical computer systems, data and programs are initially stored in auxiliary memory. Fragments
of data or programs are brought into main memory as and when the CPU requires them. Virtual
memory is a method or approach used in some large computer systems. It allows the user to
construct programs as though a large memory space was available, which is equal to the whole
of auxiliary memory. Every address that is referenced by the CPU goes through an address
mapping from the so-called virtual address to a physical address in the main memory. Virtual
memory is made use of to give programmers the impression that they have a very large memory
at their disposition, even though the computer actually has a relatively small main memory. A
virtual memory system implements a mechanism that translates program-generated addresses
into correct main memory locations. This translation happens dynamically even as programs are
being executed in the CPU. The translation or mapping is automatically handled by the hardware
by means of a mapping table.

12.4.1 Address Space and Memory Space

Addresses that are used by programmers are called virtual addresses, and the set of such addresses
is called the address space. The space or spot where the address is stored in the main memory is
called a location or physical address and the set of such locations is called the memory space.
Therefore, the address space is the set of addresses generated by programs as they reference
instructions and data. The memory space holds the actual main memory locations that are directly
addressable for processing. In most computers, the address and memory spaces are the same.

 Did u know?The address space is permitted to be bigger than the memory space in computers
with virtual memory.

197

Unit 12: Memory Organization Concepts

LOVELY PROFESSIONAL UNIVERSITY

Notes
Example: Consider, main-memory having capacity of 32K words (K = 1024). 15 bits are

required to specify a physical address in memory since 32K = 2 15. Assuming that the computer has
available auxiliary memory for storing 220 = 1024K words. Thus auxiliary memory has a storage
capacity equivalent to the capacity of 32 main memories. If the address space is denoted by N and the
memory space by M, we then have for this example N = 1024K and M = 32K.

In a multiprogramming computer system, programs and data are transferred to and from auxiliary
memory and main memory when required by the CPU. Suppose Program1 is currently being
executed in the CPU, Program1 and a section of its associated data are transferred from auxiliary
memory into main memory as shown in figure 12.11. The associated programs and data need not
be in adjacent locations in the memory, since information is being moved in and out, and empty
spaces may be scattered in the memory.

Figure 12.11: Relation between Address and Memory
Space in a Virtua l Memory System

 In a virtual memory system, programmers are made to believe that they have the total address
space for their use. Additionally, the address field of the instruction code has a sufficient number
of bits to specify all virtual addresses. Suppose, the address field of an instruction code consists of
20 bits, but physical memory addresses can only be specified with 15 bits. As a result, CPU will
reference instructions and data with a 20-bit address, but the information at this address must be
taken from physical memory because access to auxiliary storage for individual words would be
extremely long.

Thus, a table is needed to map a virtual address of say 20 bits to a physical address of say 15 bits.
Mapping is a dynamic process, which means that every address is translated instantly as a word
is referenced by CPU.

A separate memory or main memory may be used to store the mapping as shown in figure 12.12.

1. In the first case, an additional memory unit is needed along with one extra memory access
time.

198

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes 2. In the second case, the table takes space from main memory and two accesses to memory are
required with the program running at half speed.

3. In the third case, an associative memory can be used. The associative mapping technique is
discussed later.

In figure 12.12, a virtual address of 20 bits is mapped and listed in the memory mapping table. It
is then mapped to a 15 bit physical address which refers to a location in the main memory.

12.4.2 Address Mapping Using Pages
Presenting the address mapping in table form is simplified, if the information in the address space
and the memory space are each divided into groups of fixed size. The physical memory is divided
into clusters of equal size called blocks, which may range from 64 to 4096 words each. The term
page refers to clusters of address space of the same size.

Example: Suppose a page or block consists of 1K words, then address space can be divided
into 1024 pages and main memory can be divided into 32 blocks.

Even though both a page and a block are split into groups of 1K words, a page refers to the
cluster of address space, while a block refers to the cluster of memory space. The programs are
also split into pages. Segments of programs are moved from auxiliary memory to main memory
in records equal to the size of a page. The term page frame is at times used to identify a block.

Example: Suppose a computer has an address space of 8K and a memory space of 4K. If they
are each split into groups of 1K words, we get eight pages and four blocks as shown in figure 12.13.
At any given time, up to four pages of address space may be available in main memory in any one
of the four blocks.
The mapping from address space to memory space is made possible if each virtual address is
considered to be represented by two numbers - both a page number address and a line within the
page. In a computer with 2p words per page, p bits are used to specify a line address and the
remaining high-order bits of the virtual address specify the page number.

Figure 12.12: Memory Table for Mapping a Virtual Address

199

Unit 12: Memory Organization Concepts

LOVELY PROFESSIONAL UNIVERSITY

Notes
Example: The figure 12.13 shows a virtual address having 13 bits. As each page contains

210 = 1024 words, the higher-order three bits of a virtual address will specify one of the eight pages
and the lower-order 10 bits specify the line address within the page.

 Figure 12.13: Address Space and Memory Space Split
into Groups of 1K Words

Notes The line address is the same in address space as well as memory space; the only
mapping needed is from a page number to a block number.

The structure of the memory mapping table in a paged system is shown in Figure 12.14. The
memory-page table comprises eight words, one for each page. The address in the page table denotes
the page number and the content of the word gives the block number where that page is stored in
main memory. The table shows that pages 1, 2, 5, and 6 are now present in the main memory in
blocks 3, 0, 1, and 2, respectively. A presence bit in each location signifies whether the page has
been moved from auxiliary memory into main memory. Zero in the presence bit signifies that
this page is not available in main memory. The CPU points to a word in memory with a virtual
address of 13 bits. The three high-order bits of the virtual address specify a page number and also
an address for the memory-page table.

200

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes Figure 12.14 shows memory table in a paged system.

Figure 12.14: Memory Table in a Paged System

 The content of the word in the memory page table at the page number address is copied into the
memory table buffer register. If the presence bit is 1, the block number thus copied is transferred
to the two high-order bits of the main memory address register. The line number from the virtual
address is moved into the 10 lower-order bits of the memory address register. A read signal to
main memory moves the content of the word to the main memory buffer register that is ready to
be used by the CPU. If the presence bit of the word copied from the page table is 0, it indicates
that the content of the word referenced by the virtual address is not present in the main memory.
A request to the operating system is then generated to get the required page from auxiliary
memory and place it into main memory before resuming computation.

12.4.3 Associative Memory Page Table
A random-access memory page table is not appropriate when it comes to storage utilization. In
the illustration in figure 12.14, we noticed that eight words of memory are needed, one for each
page. But at least four words are always marked empty because the main memory cannot
accommodate more than four blocks. Normally, a system with m blocks and n pages would require
a memory-page table of n locations of which, up to m blocks is marked with block numbers and
all others are empty.

201

Unit 12: Memory Organization Concepts

LOVELY PROFESSIONAL UNIVERSITY

Notes
Example: Consider a computer with an address space of 1024K words and memory space of

32K words. If each page or block is composed of 1K words, the number of pages will be 1024 and the
number of blocks will be 32. The capacity of the memory-page table will be 1024 words and there
will be only 32 locations having a presence bit equal to 1. At any given time, at least 992 locations
will be free.
A better approach towards organizing the page table would be to construct it with a number of
words equal to the number of blocks in the main memory. In this way, the memory size is reduced
and each location is fully utilized. This method can be implemented using an associative memory
where each word in memory includes a page number together with its related block number.
Each word’s page field is compared with the page number present in the virtual address and if a
match is found, the word is read from memory and its corresponding block number is determined.

Figure 12.15: An Associative Memory Page Table

 Let us consider the same case of eight pages and four blocks shown in the example of figure 12.14.
If we replace the random access memory-page table with an associative memory of four words as
shown in figure 12.15, then each entry in the associative memory array would consist of two
fields. By observing the figure, you would find that the first three bits specify a field for storing
the page number and the last two bits make up a field for storing the block number. The virtual
address is stored in the argument register. The page number bits in the page field of the associative
memory and the page numbers in the argument register are matched against each other. If a match
is found, the 5-bit word is read out from memory and the related block number is transferred to
the main memory address register. If no match occurs, a request to the operating system is
generated to fetch the required page from auxiliary memory.

202

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes 12.4.4 Page Replacement
A virtual memory organization is a combination of hardware and software systems. To make
efficient utilization of memory space all the software operations are handled by the memory
management software. The memory management software must decide on the following three
things,

1. Which page in main memory must to be removed to create space for a new page?

2. When a new page is to be moved from auxiliary memory to main memory?

3. Where the page is to be located in main memory?

The hardware mapping system and the memory management software together form the
architecture of a virtual memory.

When the program execution starts, one or more pages are moved into main memory and the
page table is set to indicate their location. The program is executed from main memory until a
reference is made for a page that is not in memory. This event is termed as page fault. When page
fault occurs, the program that is currently in execution is stopped until the required page is moved
into main memory. Since the act of loading a page from auxiliary memory to main memory is
basically an I/O operation, the operating system assigns this task to the I/O processor. In this
interval, control is transferred to the next program in main memory that is waiting to be processed
in the CPU. Soon after the memory block is assigned and then moved, the suspended program
can resume execution.

If main memory is full, a new page cannot be moved in. Therefore, it would be necessary to
remove a page from a memory block to accommodate the new page. The decision of removing
specific pages from memory is determined by the replacement algorithm. The different
replacement algorithms have been discussed briefly in the previous sections.

12.5 Summary
• Memory hierarchy is essential in computers as it provides an optimized low-cost memory

system.

• Main memory and the hard drive form two levels of the computer’s memory hierarchy.

• The main memory plays an important role as it can communicate directly with the CPU and
auxiliary memory.

• Most of the main memory in a computer is typically made up of RAM integrated circuit chips,
but a part of the memory may be built with ROM chips also.

• SRAM can be used to construct high capacity memory. SRAMs have very short access times.

• Cache memory is built using SRAMs.

• Cache is used to store temporary data that will be used in the immediate future.

• In order to have data that would be needed frequently, a mapping system is employed.

• There are three important methods used to map a line in the cache to an address in memory.
They are direct mapping, associative mapping, and set associative mapping.

• Virtual memory is a memory management system that will ensure that the CPU is not left idle
at any given time.

12.6 Keywords
Access Time: The time taken to locate the address and perform the transfer.

Argument Register: It is the small amount of storage available on CPU to store arguments.

Memory Access Time: It is the time interval between a memory operation request (read or write)
and the time the memory operation completes.

Processor Cycle Time: It is the time taken to perform a basic operation performed by a CPU.

Transfer Rate: Rate at which data is transferred to/from the memory device.

203

Unit 12: Memory Organization Concepts

LOVELY PROFESSIONAL UNIVERSITY

Notes12.7 Self Assessment
1. State whether the following statements are true or false:

(a) Main memory and the hard drive form two levels of the computer’s memory hierarchy.

(b) Main memory stores programs and data permanently.

(c) RAM is the main memory of a computer.

(d) It is possible to make memory smaller and faster by placing an even smaller SRAM
between the cache and the processor.

(e) A random-access memory page table is not a good choice when it comes to storage
utilization.

(f) Addresses that are used by programmers are called physical addresses.

2. Fill in the blanks:

(a) To increase the speed of processing, a very-high-speed memory known
as________________ is used.

(b) The ___________________ processor manages data transfers between main memory
and auxiliary memory.

(c) Flip-flops form the basic memory elements in a ___________________ device.

(d) ___________________ breaks the main memory address into two parts, namely, the
 word ID and a tag.

(e) If a reference is made for a page that is not in memory, it results in an event called a
___________________.

3. Select the suitable choice for every question:

(a) An essential component of any digital computer is

(i) Virtual memory (ii) Main memory (iii) Auxiliary memory (iv) I/O processor

(b) RAM is typically used to refer memory that can

(i) Only read (ii) Only write (iii) Both read and write (iv) Read but not write

(c) Over a short interval, a cluster of instructions may execute over and over again. This is
called

(i) Page replacement (ii) LFU (iii) Principle of locality (iv) None of the above

(d) Identify which of the following is not a replacement algorithm.

(i) LRU (ii) FIFO (iii) LFU (iv) LIFO

(e) A better approach towards organizing the page table is by using:

(i) Set-associative mapping

(ii) Associative mapping

(iii) Direct mapping

(iv) Page replacement

12.8 Review Questions
1. “Not all information that is gathered is needed by the processor at the same time.” Explain.

2. “A method that is used to compensate for the difference in operating speeds is to use an
extremely fast, small cache between the CPU and main memory.” Justify.

3. “The term Random Access Memory is typically used to refer to memory that is easily read
from and written to by the microprocessor. In reality, it is not right to use this term.” Why?

204

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes 4. “Set associative mapping merges direct mapping with fully associative mapping by grouping
together lines of a cache into sets.” Elaborate.

5. “If a line is already filled with a memory block and a new block needs to be loaded then the old
block is discarded from the cache.” Explain.

6. “Flip-flops form the basic memory elements in a SRAM device.” Why?

7. “In a virtual memory system, programmers are made to believe that they have the total
address space for their use.” Why and how?

8. “A presence bit in each location signifies whether the page has been moved from auxiliary
memory into main memory.” Explain with an example.

9. Discuss about address space and memory space.

10. “Even with improvements in hard drive performance, it is still not practical to execute programs
or access data directly from these mechanical devices because they are far too slow.” How is
this drawback overcome?

11. When does a page fault occur?

12. Explain operation of cache.

Answers: Self Assessment

1. (a) True (b) False (c) True (d) True (e) True (f) False

2. (a) Cache (b) I/O processor (c) SRAM

(d) Associative mapping (e) Page fault

3. (a) Main memory (b) Both read and written (c) Principle of locality

(d) LIFO (e) Associative mapping

12.9 Further Readings

Books Mano. M. Computer System Architecture, 3rd ed. Pearson Education, Inc

Null, L., & Lobur, J. (2006). The Essentials of Computer Organization and Architecture.
2nd ed. U.S.A.: Jones and Bartlett Publishers.

Singh. A. K. Digital Principles Foundation of Circuit Design and Application. New
Age International Pvt. Ltd

Stallings, W. (2006). Computer Organization and Architecture. Prentice Hall.

Online links http://www.scribd.com/doc/47360147/CODF-v02b

ftp://ftp.prenhall.com/pub/esm/computer_science.s-041/stallings/COA4e-Notes/
Ch4-5.pdf

http://www.csit-sun.pub.ro/courses/cn2/Carte_H&P/H%20and%20P/
chapter_5.pdf

205

Unit 13: Multiprocessors

LOVELY PROFESSIONAL UNIVERSITY

Notes
Unit 13: Multiprocessors

 CONTENTS

 Objectives

 Introduction

 13.1 Multiprocessors

 13.1.1 Coupling of Processors

 13.2 Uses of Multiprocessors

 13.3 Interconnection Structures

 13.3.1 Time-shared Common Bus

 13.3.2 Multiport Memory

 13.3.3 Crossbar Switch

 13.3.4 Multistage Switching Network

 13.3.5 Hypercube Interconnection

 13.4 Interprocessor Communication and Synchronization

 13.5 Summary

 13.6 Keywords

 13.7 Self Assessment

 13.8 Review Questions

 13.9 Further Readings

Objectives
After studying this unit, you will be able to:

• Describe the characteristics of multiprocessor

• Discuss the uses of multiprocessors

• Explain interconnection structures

• Explain interprocessor communication and synchronization

Introduction
Multiprocessor is a single computer that has multiple processors. It is possible that the processors
in the multiprocessor system can communicate and cooperate at various levels of solving a given
problem. The communications between the processors take place by sending messages from one
processor to another, or by sharing a common memory.

Both multiprocessors and multicomputer systems share the same fundamental goal, which is to
perform the concurrent operations in the system. However, there is a significant difference between
multicomputer systems and multiprocessors. The difference exists depending on the extent of
resource sharing and cooperation in solving a problem. A multicomputer system includes
numerous autonomous computers which may or may not communicate with each other. However,
a single operating system that provides communication between processors and their programs
on the process, data set, and data element level, controls a multiprocessor system.

Manmohan Sharma, Lovely Professional University

206

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes The interprocessor communication is carried out with the help of shared memories or through an
interrupt network. Most significantly, a single operating system that provides interactions between
processors and their programs at different levels, control the whole system.

Did u know? Processors share access to general sets of memory modules, Input/Output channels,
and also peripheral devices. All processors have their individual local memory and Input/
Output devices along with shared memory.

13.1 Multiprocessors
Multiprocessor is a data processing system that can execute more than one program or more than
one arithmetic operation simultaneously. It is also known as multiprocessing system.
Multiprocessor uses with more than one processor and is similar to multiprogramming that allows
multiple threads to be used for a single procedure. The term ‘multiprocessor’ can also be used to
describe several separate computers running together. It is also referred to as clustering. A system
is called multiprocessor system only if it includes two or more elements that can implement
instructions independently. A multiprocessor system employs a distributed approach. In distributed
approach, a single processor does not perform a complete task. Instead more than one processor
is used to do the subtasks.

Some of the major characteristics of multiprocessors include:

1. Parallel Computing: This involves simultaneous application of multiple processors. These
processors are developed using a single architecture in order to execute a common task. In
general, processors are identical and they work together in such a way that the users are under
the impression that they are the only users of the system. In reality, however, there are many
users accessing the system at a given time.

2. Distributed Computing: This involves the usage of a network of processors. Each processor in
this network can be considered as a computer in its own right and have the capability to solve
a problem. These processors are heterogeneous, and generally one task is allocated to a single
processor.

3. Supercomputing: This involves usage of the fastest machines to resolve big and computationally
complex problems. In the past, supercomputing machines were vector computers but at present,
vector or parallel computing is accepted by most of the people.

4. Pipelining: This is a method wherein a specific task is divided into several subtasks that must
be performed in a sequence. The functional units help in performing each subtask. The units
are attached in a serial fashion and all the units work simultaneously.

5. Vector Computing: It involves usage of vector processors, wherein operations such as
‘multiplication’ is divided into many steps and is then applied to a stream of operands
(“vectors”).

6. Systolic: This is similar to pipelining, but units are not arranged in a linear order. The steps in
systolic are normally small and more in number and performed in a lockstep manner. This is
more frequently applied in special-purpose hardware such as image or signal processors.

A multiprocessor system has the following advantages:

1. It helps to improve the cost or performance ratio of the system.

2. It helps to fit the needs of an application, when several processors are combined. At the same
time, a multiprocessor system avoids the expenses of the unnecessary capabilities of a
centralized system. However, this system provides room for expansion.

3. It helps to divides the tasks among the modules. If failure happens, it is simple and cheaper
to identify and replace the malfunctioning processor, instead of replacing the failing part of
complex processor.

207

Unit 13: Multiprocessors

LOVELY PROFESSIONAL UNIVERSITY

Notes4. It helps to improve the reliability of the system. A failure that occurs in any one part of a
multiprocessor system has a limited effect on the rest of the system. If error occurs in one
processor, a second processor may take up the responsibility of doing the task of the processor
in which the error has occurred. This helps in enhancing the reliability of the system at the cost
of some loss in the efficiency.

13.1.1 Coupling of Processors

There are two types of multiprocessor systems and they are:

1. Tightly-coupled Multiprocessor System: This system has many CPUs that are attached at the
bus level. Tasks and/or processors interact in a highly synchronized manner. The CPUs have
access to a central shared memory and communicate through a common shared memory.

2. Loosely-coupled Multiprocessor System: This multiprocessor system is often referred to as
clusters. These systems operate based on single or dual processor commodity computers
interconnected through a high speed communication system. Tasks or processors do not
communicate in a synchronized manner as done in tightly-coupled multiprocessor systems.
They communicate through message passing packets. This system has a high overhead for data
exchange and uses distributed memory system.

Example: The best example for a loosely-coupled multiprocessor system is a Linux Beowulf
cluster. The example for a tightly-coupled multiprocessor system is mainframe system.
Granularity of Parallelism

When you talk about parallelism, you need to know the concept of granularity. The granularity
of parallelism specifies the size of the computations that are carried out at the same time between
synchronizations. Granularity is referred to as the level to which a system is divided into small
parts, either the system itself or its explanation or observation. Granularity of parallelism is of
three types. They are:

1. Coarse-grain: A task is divided into a handful of pieces, where each piece is performed with the
help of a powerful processor. Processors are heterogeneous. Communication/computation
ratio is very high.

2. Medium-grain: A task is divided into tens to few thousands of subtasks. Processors here usually
run the same code. Computation ratio is more often hundreds or more.

3. Fine-grain: A task is divided into thousands to millions of small subtasks that are implemented
using very small and simple processors, or through pipelines. Processors have instructions
broadcasted to them. The computation ratio is more often 1 or less.

Memory

We are aware of the concepts of memory and the memory hierarchy. The different categories of
memory discussed in the previous units are main memory, cache memory, and virtual memory.
In this section, the different types of memory are listed. They are:

1. Shared (Global) Memory:

(a) All processors can access a global memory space.

(b) Processors can also have some local memory.

208

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes Figure 13.1 depicts shared memory.

Figure 13.1: Shared Memory

 2. Distributed (Local, message-passing) Memory:

(a) All the memory units are associated with the processors.

(b) A message must be sent to another processor’s memory to retrieve information from
 that memory.

Figure 13.2 depicts distributed memory.

Figure 13.2: Distr ibuted Memory

3. Uniform Memory: Every processor takes the same time to reach all memory locations.

4. Non-uniform Memory Access: Memory access is not uniform. It is in contrast to the uniform
memory.

209

Unit 13: Multiprocessors

LOVELY PROFESSIONAL UNIVERSITY

NotesShared Memory Multiprocessors

In shared-memory multiprocessors, there are numerous processors accessing one or more shared
memory modules. The processors may be physically connected to the memory modules in many
ways, but logically every processor is connected to every memory module.

One of the major characteristics of shared memory multiprocessors is that all processors have
equally direct access to one large memory address space.

The limitation of shared memory multiprocessors is memory access latency.

Example: Bus and cache-based systems: Encore Multimax, Sequent BalanceMultistage IN-
based systems: Ultracomputer, Butterfly, RP3, HEPCrossbar switch-based systems: C mmp, Alliant
FX/8
Figure 13.3 depicts shared memory multiprocessors.

Figure 13.3: Shared Memory Multiprocessors

Shared memory multiprocessors have a major benefit over other multiprocessors, because all the
processors share the same view of the memory.

These processors are also termed as Uniform Memory Access (UMA) systems. This term denotes
that memory is equally accessible to every processor, providing the access at the same performance
rate.

Message-Passing Multiprocessors

In a message-passing multiprocessor system, a method for conveying messages between nodes,
and a node and a method, in order to format the same in a message-passing computer system is
specified. Network interface is an example of the message-passing multiprocessor system. In the
network interface for a computer system, there exists:

1. Multiple nodes linked with one another through an interconnection network for communication
of messages.

2. More than one processor and a local shared memory that are linked with one another through
a node bus.

210

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes Figure 13.4 depicts message-passing multiprocessors.

Figure 13.4: Message-passing Multiprocessors

 Some of the important characteristics of message-passing multiprocessors are:

1. Computers are interconnected.

2. All processors have their own memory and they communicate through message -passing.

Example: Tree structure: Teradata, DADO

Mesh-connected: Rediflow, Series 2010, J-MachineHypercube: Cosmic Cube, iPSC, NCUBE, FPS T
Series, Mark III
Limitations of message-passing multiprocessors are communication overhead and difficulty in
programming.

13.2 Uses of Multiprocessors
Use of multiprocessor systems in real-time applications is becoming popular. One of the major
reasons for this popularity is the recent drop in the cost of these systems. At present, dual processor
machines are available at fifty to sixty thousand rupees, and it is predicted that the prices are
going to drop even further. The faster response time and fault-tolerance feature of such systems
are the other reasons that attract real-time system developers to install multiprocessor systems.

It is to be noted that using a multiprocessor is more beneficial than using independent processors.
The parallelism existing within each multiprocessor helps in gaining localized high performance
and also maintains extensive multithreading for the fine-grained parallel programming models.
The thread block has individual threads that execute together within a multiprocessor to allocate
data.

For maintaining area and power efficiency, the multiprocessor shares large and complex units
among the different processor cores, which also include the instruction cache, the multithreaded
instruction unit, and the shared memory RAM.

One of the main advantages of multiprocessor is shared memory programming model. Shared-
memory multiprocessors have a major advantage over other multiprocessors, as all the other
processors share the same view of the memory. These processors are also termed as Uniform
Memory Access (UMA) systems. This term indicates that all processors can equally access the
memory with the same performance.

211

Unit 13: Multiprocessors

LOVELY PROFESSIONAL UNIVERSITY

NotesThe popularity of the shared-memory systems is just not due to the demand for high performance
computing. These systems also provide high throughput for a multiprocessing load. They also
work efficiently as high-performance database servers, Internet servers, and network servers. As
more processors are added, the throughput of these systems is increased linearly.

Multiprocessors also find their applications in various domains which include:

1. Server Workload: This includes many concurrent updates, lookups, searches, queries, and so
on. Processors deal with different requests.

Example: Database for airline reservation
2. Media Workload: Processors compress/decompress different parts of image/frames. This

includes compressing/decompressing of different parts of image/frames.

3. Scientific Computing: This includes large grids that integrate changes over time, and each
processor computes for a part of the grid.

Example: Protein folding, aerodynamics, and weather simulation.

13.3 Interconnection Structures
The structures that are used to connect the memories and processors (and between memories and
I/O channels if required), are called interconnection structures. A multiprocessor system is formed
by elements such as CPUs, peripherals, and a memory unit that is divided into numerous separate
modules. There can exist different physical configurations for the interconnection between the
elements. The physical configurations are based on the number of transfer paths existing between
the processors and memory in a shared memory system or among the processing elements in a
loosely coupled system. An interconnection network is established using several physical forms
available. Some of the physical forms include:

1. Time-shared common bus

2. Multiport memory

3. Crossbar switch

4. Multistage switching network

5. Hypercube system

Operation of Bus

Bus is defined as a group of signal lines that carry module-to-module communication. Here, data
highways connect several digital system elements. Each processor (and memory) is connected to
a common bus. Memory access is moderately uniform, but it is less scalable.

212

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes Figure 13.5 depicts operation of bus.

Figure 13.5: Operation of Bus

 In figure 13.5:

Master Device (M2, M3, M4): This is a device that initiates and controls the communication.

Slave Device (S5, S6, S8): This is a responding device.

As depicted in figure 13.5, if M2 wishes to communicate with S6,

1. M2 sends signals (address) on the bus that causes S6 to respond.

2. M2 sends data to S6, or S6 sends data to M2. (determined by the command line)

13.3.1 Time-shared Common Bus

In time-shared common bus, there are numerous processors connected through a common path
to the memory unit in a common-bus multiprocessor system. Figure 13.6 shows organization of
time-shared common bus for five processors. At any specified time, only one processor can
communicate with the memory or another processor. The processor that is in control of the bus at
the time performs transfer operations. Any processor that wants to initiate a transfer must first
verify the availability status of the bus.

Once the bus is available, the processor can establish a connection with the destination unit to
initiate the transfer. A command is issued to inform the destination unit about the function to be
performed. The receiving unit identifies its address in the bus, and then responds to the control
signals from the sender, after which the transfer is initiated. As all processors share a common
bus, it is possible that the system may display some transfer conflicts. Incorporation of a bus
controller that creates priorities among the requesting units helps in resolving the transfer conflicts.

Figure 13.6: Organization of a Time-Shared Common
Bus

213

Unit 13: Multiprocessors

LOVELY PROFESSIONAL UNIVERSITY

NotesThere is a restriction of one transfer at a time for a single common-bus system. This means that
other processors are busy with internal operations or remain idle waiting for the bus when one
processor is communicating with the memory. Hence, the speed of the single path limits the total
overall transfer rate within the system. The system processors are kept busy through the execution
of two or more independent buses, to allow multiple bus transfers simultaneously. However,
this leads to increase in the system cost and complexity.

Figure 13.7 depicts a more economical execution of a dual bus structure for multiprocessors.

Figure 13.7: System Bus Structure for Multiprocessors

 In figure 13.7 we see that there are many local buses, and each bus is connected to its own local
memory, and to one or more processors. Each local bus is connected to a peripheral, a CPU, or
any combination of processors. Each local bus is linked to a common system bus using a system
bus controller.

The I/O devices connected to both the local I/O peripherals and the local memory is available to
the local processor. All processors share the memory connected to the common system bus. When
an IOP is connected directly to the system bus, the Input/Output devices attached to it are made
available to all processors. At any specified time, only one processor can communicate with the
shared memory, and other common resources through the system bus. All the other processors
are busy communicating with their local memory and I/O devices.

13.3.2 Multiport Memory
Multiport memory is a memory that helps in providing more than one access port to separate
processors or to separate parts of one processor. A bus can be used to achieve this kind of an
access. This mechanism is applicable to interconnected computers too. A multiport memory system
uses separate buses between each CPU and each memory module. Figure 9.8 depicts a multiport
memory system for four CPUs and four Memory Modules (MMs). Every processor bus is connected
to each memory module. A processor bus consist three elements; namely: address, data, and control
lines. These elements are needed to communicate with memory. Memory module has four ports
and each port contains one of the buses. It is necessary for a module to have internal control logic
to verify which port will have access to memory at any specified time. Assigning fixed priorities
to each memory port helps in resolving memory access conflicts. The priority for memory access

214

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes related to each processor is created with the physical port position that its bus occupies in each
module. Consequently, CPU1 has priority over CPU2, CPU2 has priority over CPU3, and CPU4
has the least priority.

Figure 13.8: Multiport Memory Organiza tion

The multiport memory organization has an advantage of high transfer rate. This is because of
several paths between memory and processors. The only drawback is that it needs expensive
memory control logic and more number of cables and connectors. Therefore, this interconnection
structure is usually suitable for systems having small number of processors.

13.3.3 Crossbar Switch
In a network, a device that helps in channeling data between any two devices that are connected
to it, up to its highest number of ports is a crossbar switch. The paths set up between devices can
be fixed for some period of time or changed when wanted.

In a crossbar switch organization, there are several cross points that are kept at intersections
between processor buses and memory module paths.

215

Unit 13: Multiprocessors

LOVELY PROFESSIONAL UNIVERSITY

NotesFigure 13.9 shows a crossbar switch interconnection between four memory modules and four CPUs.

Figure 13.9: Crossbar Switch

In figure 13.9, the small square in each crosspoint indicates a switch. This switch determines the
path starting from a processor to a memory module. There is control logic for each switch point
to set up the transfer path between a memory module and a processor. It checks the address that
is placed in the bus to verify if its particular module is addressed. It also allows resolving multiple
requests to get access to the same memory module on a predetermined priority basis.

216

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes The functional design of a crossbar switch connected to one memory module is depicted in figure
13.10.

Figure 13.10: Block Diagram of Crossbar Switch

 The circuit includes multiplexers that choose the data, address, and control from one CPU for
communication with the memory module. The arbitration logic establishes priority levels to choose
one CPU when two or more CPUs try to get access to the same memory. The binary code controls
the multiplexers. A priority encoder generates this binary code within the arbitration logic.

Notes A crossbar switch organization maintains and supports simultaneous transfers from
memory modules, since there is a separate path related with each module. On the other hand,
the hardware necessary to implement the switch may be quite large and complex.

13.3.4 Multistage Switching Network

The network that is built from small (for example, 2 x 2 crossbar) switch nodes along with a
regular interconnection pattern is a multistage switching network. Two-input, two-output
interchange switch is a fundamental element of a multistage network. There are two inputs marked
A and B, and two outputs marked 0 and 1 in the 2 x 2 switch as shown in figure 13.11.

217

Unit 13: Multiprocessors

LOVELY PROFESSIONAL UNIVERSITY

NotesFigure 13.11 depicts operation of a 2x2 interchange switch.

Figure 13.11: Operation of a 2 x 2 Interchange Switch

As depicted in figure 13.11, there are control signals associated with the switch. The control signals
establish interconnection between the input and output terminals. The switch can connect input A
to either of the outputs. Terminal B of the switch acts in a same way. The switch can also arbitrate
between conflicting requests. In case, inputs A and B request the same output terminals, it is possible
that only one of the inputs is connected and the other is blocked.

It is possible to establish a multistage network to control the communication between numerous
sources and destinations. The multistage network is established with the help of 2 x 2 switch as a
building block.

218

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes Consider the binary tree shown in figure 13.12 to see how this is carried out.

The two processors P1 and P2 are linked through switches to eight memory modules labeled in
binary, starting from 000 through 111. The path starting from source to destination is determined
from the binary bits of destination number. The first bit of the destination number helps in
indicating the first level’s switch output. The second bit identifies the second level’s switch output,
and the third bit specifies the third level’s switch output.

Example: As shown in figure 13.12, in order to make a connection between P1 and memory
101, it is important to create a path from P1 to output 1 in the third-level switch, output 0 in the
second-level switch, and output 1 in the third-level switch. Hence, it is evident that either P1 or P2
must be connected to any one of the eight memories.
It is also evident that certain request patterns however cannot be satisfied simultaneously.

Example: As shown in figure 13.12, if P1 is connected to one of the destinations 000 through
011, then it is possible to connect P2 to only one of the destinations 100 through 111.

There are many topologies for multistage switching networks that help to:

1. Control the processor-memory communication in a tightly-coupled multiprocessor system.

2. Control the communication between the processing components in a loosely-coupled system.

Omega switching network is one such topology that is depicted in the figure 13.13. There exists
exactly one path from source to any specific destination in this configuration. However, certain
request patterns cannot be connected simultaneously. For example, it is not possible to connect
any two sources simultaneously to destinations 000 and 001.

Figure 13.12: Binary Tree with 2 x 2 Switches

219

Unit 13: Multiprocessors

LOVELY PROFESSIONAL UNIVERSITY

NotesFigure 13.13 depicts 8x8 Omega switching network.

Figure 13.13: 8 x 8 Omega Switching Network

 As depicted in figure 13.13, a specific request is started in the switching network through the
source that sends a 3-bit pattern depicting the destination number. Every level checks a different
bit to determine the 2 x 2 switch setting as the binary pattern moves through the network. Level 1
examines the most important bit, level 2 examines the middle bit, and level 3 examines the least
important bit. When the request appears on input 2 x 2 switch, it is routed to the lower output if
the specified bit is 1 or to the upper output if the specified bit is 0.

The source is considered to be a processor and the destination is considered as a memory module
in a tightly-coupled multiprocessor system. The path is set when the first pass is through the
network. If the request is read or write the address is transferred into memory, and then the data
is transferred in either direction using the succeeding passes. Both the destination and the source
are considered to be processing elements in a loosely-coupled multiprocessor system. The source
processor transfers a message to the destination processor once the path is established.

13.3.5 Hypercube Interconnection
The hybercube is considered to be a loosely coupled system. This system is composed of N = 2n

processors that are interconnected in an n-dimensional binary cube. Each processor indicates a
node of the cube. Although it is expected to refer to every node as having a processor, in effect it
not only has a CPU but also local memory and I/O interface. Every processor contains direct
communication paths to n other neighbor processors. These paths relates to the edges of the cube.
The processors can be assigned with 2n distinct n-bit binary addresses. Each processor address
differs from that of each of its n neighbors by exactly one bit position.

Did u know?
 The hypercube interconnection is also referred to as binary n-cube multiprocessor

structure.

220

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes Figure 13.14 depicts the hypercube structure for n, wherein n = 1, 2, and 3.

Figure 13.14: Hypercube Structures for n = 1, 2, and 3

 A depicted in figure 13.14, a one-cube structure contains n = 1 and 2n = 2. It has two processors
that are interconnected by a single path. A two-cube structure contains n = 2 and 2n = 4. It has four
nodes that are interconnected as a square. There are eight nodes interconnected as a cube in a
three-cube structure. There are 2n nodes in an n-cube structure with a processor existing in every
node.

A binary address is assigned to every node such that the addresses of two neighbors vary in exactly
one bit position.

Example: As shown in figure 13.13, the three neighbors of the node having address 100 in a
three-cube structure are 000, 110, and 101. Each of these binary numbers vary from address 100 by
one bit value.
Routing messages through an n-cube structure may require one to n links, starting from a source
node to a destination node.

Example: As shown in figure 13.12, it is possible for node 000 to communicate directly with
node 001 in a three-cube structure. To communicate from node 000 to node 111, the message has to
travel through at least three links.

Computing the exclusive-OR of the source node address with the destination node address helps
in developing a routing procedure. The resulting binary value has 1 bit relating to the axes on
which the two nodes vary. Later, the message is sent along any one of the axes.

Example: A message at 010 being sent to 001 generates an exclusive-OR of the two addresses
equivalent to 011 in a three-cube structure. It is possible to send the message along the second axis
to 000 and then through the third axis 001.

221

Unit 13: Multiprocessors

LOVELY PROFESSIONAL UNIVERSITY

Notes
Example: The Intel iPSC complex is considered to be a representative of the hypercube

architecture.

The Intel iPSC has 128 (n = 7) microcomputers connected through communication channels. Each
node has a CPU, local memory, floating-point processor, and serial communication interface units.
The individual nodes work independently on data saved in local memory according to the resident
programs. It is evident that the programs and data at every node is received through a message-
passing system from other nodes or from a cube manager. Application programs are developed
and gathered on the cube manager and then downloaded to the individual nodes. Computations
are allocated through the system and implemented concurrently.

Task Visit http://ed-thelen.org/comp-hist/intel-iPSC-860.html and discuss about the
hypercube architecture and special features of Intel iPSC/860.

13.4 Interprocessor Communication and Synchronization

A multiprocessor system has various processors that must be provided with a facility to
communicate with each other. Using a common I/O channel, a communication path is established.
The most frequently used procedure in a shared memory multiprocessor system is to set aside a
part of the memory that is available to all processors. The major use of the common memory is
to work as a message center similar to a mailbox, where every processor can leave messages for
other processors and pick up messages meant for it.

The sending processor prepares a request, a message, or a procedure, and then places it in the
memory mailbox. The receiving processor can check the mailbox periodically to determine if
there are valid messages in it, as a processor identifies a request only while polling messages.
However, the response time of this procedure may be time consuming. The sending processor
has a more efficient procedure, and the procedure involves alerting the receiving processor directly
using an interrupt signal. This procedure is achieved with the help of software initiated
interprocessor interrupt initialized in one processor, which when implemented generates an
external interrupt condition in a second processor. This interrupt informs the second processor
that processor one has inserted a new message in its mailbox.

Notes Status bits present in common memory are usually used to determine the condition of
the mailbox, if it has meaningful data, and for which processor it is intended.

A multiprocessor system has other shared resources in addition to shared memory.

Example: An IOP to which a magnetic disk storage unit is connected, is available to all
CPUs. This helps in providing a facility for sharing of system programs stored in the disk.
A communication path can be established between two CPUs through a link between two IOPs,
which connects two different CPUs. This kind of link allows each CPU to treat the other as an I/O
device, such that messages can be transferred through the I/O path.

There should be a provision for assigning resources to processors to avoid inconsistent use of
shared resources by many processors. This job is given to the operating system. The three
organizations that are used in the design of operating system for multiprocessors include:

1. Master-slave configuration

2. Separate operating system

3. Distributed operating system

In a master-slave configuration mode, one processor, designated the master, always implements
the operating system functions. The remaining processors, designated as slaves, do not execute

222

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes operating system functions. If a slave processor requires an operating system service, then it should
request it by interrupting the master.

Each processor can implement the operating system routines that it requires in the separate
operating system organization. This kind of organization is more appropriate for loosely-coupled
systems wherein, every processor needs to have its own copy of the entire operating system.

The operating system routines are shared among the available processors in the distributed
operating system organization. However, each operating system function is allocated to only one
processor at a time. This kind of organization is also termed as a floating operating system because
the routines float from one processor to another, and the implementation of the routines are
allocated to different processors at different times.

The memory is distributed among the processors and there is no shared memory for sending
information in a loosely-coupled multiprocessor system. Message passing system through I/O
channels is used for communication between processors. The communication is started by one
processor calling a procedure that exists in the memory of the processor with which it has to
communicate. A communication of channel is established when both the sending processor and
the receiving processor recognize each other as source and destination. A message is then sent to
the nodes with a header and different data objects that are required for communication between
the nodes. In order to send the message between any two nodes, several possible paths are
available. The operating system of each node has the routing information which indicates the
available paths to send a message to different nodes.

The communication efficiency of the interprocessor network depends on four major factors and
they are:

1. Communication routing protocol

2. Processor speed

3. Data link speed

4. Topology of the network

Interprocessor Synchronization

Synchronization is a communication of control information between processors. Synchronization
helps to:

1. Implement the exact sequence of processes.

2. Ensure mutually exclusive access to allocated writable data.

Synchronization refers to a special case where the control information is the data employed to
communicate between processors. Synchronization is necessary to implement the exact sequence
of processes and to ensure mutually exclusive access to shared writable data.

There are many mechanisms in multiprocessor systems to handle the synchronization of resources.
The hardware directly implements low-level primitives. These primitives act as essential
mechanisms that enforce mutual exclusion for more difficult mechanisms executed in software.
Many hardware mechanisms for mutual exclusion are developed. However, the use of a binary
semaphore is considered to be one of the most popular mechanisms.

The following are the methods to achieve synchronization.

Synchronization can be achieved by mutual exclusion with a semaphore. Semaphores are
considered to be the means of addressing the requirements of both task synchronization and mutual
exclusion. Mutual exclusion includes a processor to eliminate or lock out access to allocated resource
by other processors when it is in a Critical Section.

223

Unit 13: Multiprocessors

LOVELY PROFESSIONAL UNIVERSITY

NotesMutual Exclusion with a Semaphore

Appropriately operating multiprocessor system must provide a mechanism that would ensure
systematic access to shared memory and other shared resources. This is required to protect data,
since two or more processors can change the data simultaneously. This mechanism is referred to
as mutual exclusion. A multiprocessor system must have mutual exclusion to allow one processor
to rule out or lock out access to an allocated resource by other processors when it is in a critical
section. A critical section is defined as a program sequence which once started must complete
implementation before another processor accesses the same allocated resource.

Notes A semaphore is considered to be a software-controlled flag stored in a memory location
such that all processors can access.

When the semaphore is set to one, it indicates that a processor is implementing a critical program,
and the shared memory is unavailable to other processors. When the semaphore is set to zero, it
indicates that the shared memory is available to any requesting processor. Processors sharing the
same memory segment agree to not use the memory segment unless the semaphore is 0, showing
that memory is available. The processors also concur to set the semaphore to 1, while they are
implementing a critical section, and then to clear it to 0 when they are done.

Testing and setting the semaphore is considered to be a critical function, and needs to be carried
out as a single indivisible operation. Otherwise, two or more processors may check the semaphore
simultaneously and set the semaphore in such a way that it can enter a critical section at the same
time. This action allows the simultaneous execution of these critical sections resulting in incorrect
initialization of control factors and a loss of necessary information.

A semaphore is initialized using a test and set instruction together with a hardware lock
mechanism. A hardware lock is defined as a processor-generated signal that helps in preventing
other processors from using the system bus as long as the signal is active. When the instruction is
being executed, the test-and-set instruction tests and sets a semaphore and activates the lock
mechanism. This helps in preventing the other processors from changing the semaphore between
the time that the processor is testing it and the time that the processor is setting it. Consider that
the semaphore is a bit in the least significant position of a memory word whose address is
symbolized by SEM. Let the mnemonic TSL designate the “test and set while locked” function.
The instruction TSL SEM is executed in two memory cycles, that is, the first one to read and the
second to write without any interference as given below:

R � M[SEM] Test semaphore

M[SEM] � 1 Set semaphore

In order to test the semaphore, its value is transferred to a processor register R and then set to 1.
The value of R indicates what to do next. If the processor identifies that R = 1, it means that the
semaphore was initially set. Even if the register is set again, it does not change the value of the
semaphore. This indicates that another processor is executing a critical section and therefore, the
processor that checked the semaphore does not access the shared memory. The common memory
or the shared resource that the semaphore represents is available when R = 0. In order to avoid
other processors from accessing memory, the semaphore is set to 1. Now, it is possible for the
processor to execute the critical section. To release the shared resource to other processors, the
final instruction of the program must clear location SEM to zero.

It is crucial to note that the lock signal must be active at the time of execution of the test-and-set
instruction. Once the semaphore is set, the lock signal does not have to be active. Therefore, the
lock mechanism prevents other processors from accessing memory while the semaphore is being
set. Once set, the semaphore itself will prevent other processors from accessing shared memory
while one processor is implementing a critical section.

224

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes

Task Visit http://www.articlesbase.com/information-technology-articles/multiprocessor-
semaphore-318193.html and discuss how shared memory semaphores act as essential tools
for interprocessor synchronization.

13.5 Summary
• A multiprocessor generally refers to a single computer that has many processors.

• The term ‘multiprocessor’ can also be used to describe several separate computers running
together. It is also referred to as clustering.

• Processors in the multiprocessor system communicate and cooperate at various levels of solving
a particular problem.

• The difference that exists between multicomputer systems and multiprocessors depends on
the extent of resource sharing and cooperation in solving a problem.

• Multiprocessor system uses a distributed approach, wherein a single processor does not perform
a complete task but more than one processor is used to perform the subtasks.

• There are two types of multiprocessor systems; they are tightly-coupled multiprocessor system
and loosely-coupled multiprocessor system.

• One of the major characteristics of shared memory multiprocessors is that all processors have
equally direct access to one large memory address space.

• Multiprocessor systems work efficiently as high-performance database servers, Internet servers,
and network servers.

• Common-bus multiprocessor system has numerous processors connected through a common
path to a memory unit.

• A multiport memory system uses separate buses between each CPU and each memory module.

• There are many cross points located at intersections between processor buses and memory
module paths in a crossbar switch organization.

• The most frequently used procedure in a shared memory multiprocessor system is to set aside
a part of memory that is available to all processors.

• Appropriately functioning multiprocessor system must provide a mechanism that will ensure
systematic access to shared memory and other shared resources.

225

Unit 13: Multiprocessors

LOVELY PROFESSIONAL UNIVERSITY

Notes13.6 Keywords
Autonomous Computers: A network administered by a single set of management rules that are
controlled by single person, group, or organization. Autonomous systems frequently use only
one routing protocol even though it is possible to use multiple protocols.

Control Logic: It is the part of a software architecture that helps in controlling what the program
will do. This part of the program is also termed as controller.

Multithreading: It is a process wherein the same job is broken logically and performed
simultaneously and the output is combined at the end of processing.

Real-time Applications: A real-time application is an application program that works within a
given time frame that the user assumes as immediate or current.

13.7 Self Assessment
1. State whether the following statements are true or false:

(a) The communication between the processors happens by sending messages from one
processor to another or by sharing a common memory.

(b) If failure happens, it is difficult and expensive to identify and replace the malfunctioning
processor instead of replacing the failing part of complex processor.

(c) One of the major characteristics of shared memory multiprocessors is that all processors
have equally direct access to one large memory address space.

(d) It is noted that using a multiprocessor is not as beneficial as using independent
processors.

(e) There is a restriction of one transfer at a time for a single common-bus system.

(f) There is control logic for each switch point to set up the transfer path between memory
and a processor.

2. Fill in the blanks:

(a) The __________________ communication is carried out with the help of shared memories
or through an interrupt network.

(b) A method wherein a specific task is divided into several subtasks that must be
performed in a sequence is __________________.

(c) There are numerous processors connected through a common path to a memory unit
in a __________________ multiprocessor system.

(d) The __________________ establishes priority levels to choose one CPU when two or
more CPUs try to get access to the same memory.

(e) A semaphore is initialized using a test and set instruction together with a
_________________ mechanism.

226

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes 3. Select a suitable choice in every question.

(a) Which of the following involves single architecture in order to execute a common task?

(i) Distributed computing

(ii) Parallel computing

(iii) Super computing

(iv) Vector computing

(b) Which of the following is the memory wherein all memory units are associated with
processors?

(i) Shared (Global) memory

(ii) Uniform memory

(iii) Distributed memory

(iv) Non-uniform memory

(c) Which of the following is used to establish a network to control the communication
between numerous sources and destinations?

(i) Time-shared common bus

(ii) Multistage switching network

(iii) Memory unit

(iv) Hypercube system

(d) Which of the following is a kind of organization used in the design of operating system
 for multiprocessors that is also termed as a floating operating system?

(i) Distributed operating system

(ii) Separate operating system

(iii) Master-slave configuration

(iv) Loosely-coupled multiprocessor system

(e) Which of the following is a major factor that communication efficiency of the
 interprocessor network depends on?

(i) Writable data

(ii) Communication routing protocol

(iii) External interrupt condition

(iv) Receiving processor

13.8 Review Questions
1. “Multiprocessor system has many advantages”. Elaborate.

2. “Multiprocessor has many major characteristics”. Explain some of the characteristics of
multiprocessor system.

3. Explain why loosely-coupled multiprocessor system is more often referred to as clusters.

4. “Granularity of parallelism is of three types”. Briefly explain the three types of granularity of
parallelism.

5. “Use of multiprocessor systems in real-time applications is becoming popular”. Justify.

6. “Multiprocessors find their applications in various domains”. Elaborate.

227

Unit 13: Multiprocessors

LOVELY PROFESSIONAL UNIVERSITY

Notes7. “There are numerous processors connected through a common path to a memory unit in a
common-bus multiprocessor system”. Explain this concept for a time-shared common bus for
five processors with the figure.

8. “A multiport memory system uses separate buses between each CPU and each memory
module”. Elaborate this concept with a figure for four CPUs and four memory modules (MMs).

9. “There are numerous cross points that are located at intersections between processor buses and
memory module paths in a crossbar switch organization”. Explain a crossbar switch
interconnection between four memory modules and four CPUs with a diagram.

10. “Two-input, two-output interchange switch is a fundamental element of a multistage network”.
Elaborate.

11. “There are many topologies for multistage switching networks and omega switching network
is one such topology”. Explain.

12. “The hypercube system is considered to be a loosely coupled system and this system is composed
of N = 2n processors that are interconnected in an n-dimensional binary cube”. Elaborate and
explain the hypercube structure for n = 1, 2, and 3.

13. “There are three organizations that are used in the design of operating system for
multiprocessors”. Elaborate.

Answers: Self Assessment

1. (a) True

(b) False

(c) True

(d) False

(e) True

(f) True

2. (a) Interprocessor

(b) Pipelining

(c) Common-bus

(d) Arbitration logic

(e) Hardware lock

3. (a) Parallel computing

(b) Distributed memory

(c) Multistage switching network

(d) Distributed operating system

(e) Communication routing protocol

228

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes 13.9 Further Readings

Books Godse, A. P., & Godse, D. A. (2009). Computer Organization.1 st ed. Pune: Technical
Publications.

Stallings, W. Computer Organization and Architecture: Designing for Performance.

Morris, M, Computer System Architecture, 3rd ed.

Online links http://cnx.org/content/m32797/latest/

229

Unit 14: Introduction to Parallel Processing

LOVELY PROFESSIONAL UNIVERSITY

Notes
Unit 14: Introduction to Parallel Processing

 CONTENTS

 Objectives

 Introduction

 14.1 Pipelining

 14.1.1 Pipelining Conflicts

 14.1.2 Techniques for Overcoming Pipelining Conflicts

 14.2 Instruction Pipeline

 14.3 RISC Pipeline

 14.4 Vector Processing

 14.4.1 Characteristics of Vector Processing

 14.4.2 Advantages of Vector Processing

 14.5 Parallel Processing

 14.6 Summary

 14.7 Keywords

 14.8 Self Assessment

 14.9 Review Questions

 14.10 Further Readings

Objectives
After studying this unit, you will be able to:

• Describe the process of pipelining

• Explain the working of an instruction pipeline

• Define RISC pipeline

• Discuss vector processing

• Discuss parallel processing

Introduction
A large class of techniques is used to speed the processing of a computer system. The two basic
techniques which can increase the instruction execution rate of a processor are to increase the
clock rate and to increase the number of instructions that can be executed at the same time.
Pipelining and instruction-level parallelism are examples of the second technique. Parallel
processing is a technique used to permit data processing tasks to happen simultaneously in order
to increase the speed of processing of a computer system.

The instruction executions in conventional computers were done in a sequential manner wherein,
if one program is being executed the other one waits till the first one is completed. In contrast, in
parallel processing, the execution is done concurrently, resulting in faster execution time and higher
throughput. The hardware requirement for a parallel processing system is higher than a
conventional computer system.

Parallel processing is fast since it utilizes concurrent data processing to achieve faster execution.
Parallel processing is achieved by dividing the data among different units wherein each unit is

Yadwinder Singh, Lovely Professional University

230

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes processed simultaneously. The control unit governs the timing and sequencing in order to obtain
the desired results in a minimum amount of time.

As we already know, the operation sequence in a computer is to first fetch instructions from
memory and then execute them in the processor. The sequence of instructions read from memory,
makes an instruction stream. The data operations performed in the processor are consisted in the
data stream. Parallel processing may occur in the instruction stream, data stream, or in both.

Parallel processing can be classified in a number of ways—from the processors internal
organization, from the interconnection structure between processor, or from the information flow
through the system point of view.

Pipelining and vector processing are different aspects of parallel processing which are discussed
in the subsequent sections of this unit.

14.1 Pipelining
Pipelining is a technique of breaking a sequential process into small fragments or sub operations.
The execution of each of these sub process takes place in a special dedicated segment that functions
concurrently with all other segments. The pipeline has a collection of processing segments which
helps the flow of binary information. The internal working in a pipeline is such that the outcome
of one segment is conveyed to the next segment in the pipeline until the desired result is obtained.
The final outcome is obtained after the data is passed through all segments.

The term “pipeline” indicates that the flow of information takes place in parallel. Pipelining refers
to the temporal overlapping of processing. The overlapping of processing is done by associating
a register with each segment in the pipeline. The registers help in providing isolation between
each segment so that every segment can work on distinct data simultaneously.

Did u know?
 There is a common analogy between pipelining in a computer and manufacturing

parts on an assembly line. In both the cases the aim is to keep equipments busy for maximum
time, increase throughput by increasing the number of stages and decreasing the amount of
work done at a given stage.

A segment consists of an input register and a combinational circuit. The register stores the data
and the combinational circuit performs the operation in the particular segment. The output of the
combinational circuit of a segment is sent to the input register of the next segment. To perform
the activity in each segment, a clock is set for each register.

When we consider a sequential execution of three instructions, each having three stages of
execution, the sequence got is the following instruction cycle.

If each stage requires one unit time and a separate unit for each action, then the total time taken
would be nine units. In the case of pipelined execution of the same instruction set, the sequence
would require only five units. This is shown in figure 14.1.

231

Unit 14: Introduction to Parallel Processing

LOVELY PROFESSIONAL UNIVERSITY

NotesFigure 14.1 depicts the comparison between parallel processing and sequential processing.

Figure 14.1: Pipelining Versus Sequential Processing

As observed in figure 14.1, we can save approximately 50% of the execution time by using
pipelining.

Figure 14.1 depicts a space time chart which helps in depicting the performance measures of using
pipeline. The chart depicts the working of the subtasks with respect to time. From figure 14.1 it
can be observed that the time required to process three instructions (I 1, I2, I3) is only five time
units if three stage pipelining is used and nine time units if sequential processing is used.

Example: The pipeline organization can be understood with the help of an example to
perform the combined multiply and add operations

Ex: An * Bn + Cn * Dnn =1,2,3….
The sub operations performed in each segment of the pipeline is as shown in the table 14.1

Table 14.1: Sub Operations

R1? An, R2 ? Bn, R3 ? Cn, R4 ? Dn Input An, Bn, Cn, Dn

R5 ? An * Bn, R6 ? Cn * n Multiply

R7 ? R5 + R6 Add and store in Register R7

232

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes Each sub operation is implemented in a segment within a pipeline. The separation between each
segment is provided by registers for each segment to work on different data simultaneously. Each
segment uses one or three registers with combinational circuits. R1 through R7 are registers that
receive new data with every clock pulse. The combinational circuits are multiplier and adder.

Figure 14.2: Example of Pipe line Processing

 The seven registers are loaded with new data during every clock pulse. The effect of each clock
pulse in the register is shown in table 14.2.

The following is the sequence in which the instructions are carried out:

1. Clock Pulse 1: The first clock pulse transfers:

(a) A1 and B1 into R1 and R2

(b) C1 and D1 into R3 and R4

2. Clock Pulse 2: The second clock pulse transfers:

(a) The product of R1 and R2 into R5

(b) The product of R3 and R4 into R6

(i) A2 and B2 into R1 and R2, (ii) C2 and D2 into R3 and R4.

3. Clock Pulse 3: The third clock pulse operates simultaneously on all three segments. It transfers

(a) A3 and B3 into R1 and R2

(b) C3 and D3 into R3 and R4

(c) The product of R1 and R2 into R5

(d) The product of R3 and R4 into R6

(e) The sum of R5 and R6 in R7

Therefore, it takes three clock pulses to fill up the pipeline and get the first output from R7. After
these three clock pulses, each clock pulse produces a new output and moves the data one step

233

Unit 14: Introduction to Parallel Processing

LOVELY PROFESSIONAL UNIVERSITY

Notesdown the pipeline. This continues until new input data flows into the system, and even if the
input of data stops, the clock must continue till the last output emerges from the pipeline.

Table 14.2 depicts the contents of the registers.

Table 14.2: Contents of Registers

Clock
Pulse Segmen t 1 Segment 2 Segment 3 Segment 4

 R1 R2 R3 R4 R5 R6 R7
1 A1 B1 C1 D1
2 A2 B2 C2 D2 A1*B1 C1*D 1
3 A3 B3 C3 D3 A2*B2 C2*D 2 A1*B1+C1*D1
4 A3*B3 C3*D 3 A2*B2+C2*D2
5 A3*B3+C3*D3

The performance parameters that are important with respect to pipelining are speedup, efficiency
and throughput.

Speedup
Speedup is defined as the time in pipeline process over the time in non pipeline process.

Time in pipeline process is Tk = k + (n 1) periods, where k is the cycle used to fill up the pipeline
or to complete the execution of the first task and n 1 number of cycles are needed to complete
the remaining n “ 1 tasks. The same number of tasks can be executed in a non-pipeline processor
with an equivalent function in T1 = n*k time delay.

The maximum speedup that a linear pipeline provides is k, where k is the number of stages in the
pipe. It should be noted that the maximum speedup is Sk k, for n >> k. Due to data dependencies
between instructions, interrupts, and other factors, the maximum speedup is difficult to achieve.

Efficiency

The percentage of busy time-space spans over the total time-space span gives the efficiency of a
linear pipeline. This is equal to the sum of all busy and idle time-space spans. Let n, k be the
number of instructions, the number of pipeline stages, and the clock period of a linear pipeline,
respectively. The pipeline efficiency is defined by:

Throughput
Throughput can be defined as the number of results that can be completed by a pipeline per unit
time. This helps us to understand the computing power of a pipeline. In terms of efficiency and
clock period of a linear pipeline, we define the throughput as follows:

234

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes 14.1.1 Pipelining Conflicts
The potential increase in performance, results only when pipelining is proportional to the number
of pipeline stages. However, this increase would be achievable only if pipelined operations are
performed without any interruption throughout program execution. The ideal situation is not so,
the potential increase can be delayed for some reason. The pipeline stages may not always be
able to complete its operations in the set time.

Consider that the execution stage E is responsible for arithmetic and logic operations. The set
time for this operation would be one clock period. However, an operation like division can take
more than one clock cycle and require more time to complete execution. Figure 14.3 shows an
example of an instruction requiring three cycles to complete, from cycle 4 through cycle 6.

Figure 14.3: Example of Pipelining Conflict

Clock cycle 1 2 3 4 5 6 7 8 9
Instruction

I1 F1 D1 E1 S1

I2 F2 D2 E2 S2

I3 F3 D3 E3 S3

I4 F4 D4 E4 S4

I5 F5 D5 E5

As seen in figure 14.3, in cycles 5 and 6, the information in buffer must wait until the instruction
execution stage has completed its operation. This blocks stage2 and in turn, stage 1 from accepting
new instructions because the information in B1 cannot be overwritten. Thus, decode step for
instruction and fetch step for instruction 5 is delayed. A phenomenon that causes the pipeline to
stall is called a hazard or conflict.

Types of Conflicts

There are three types of conflicts:

1. Resource conflicts

2. Data dependency conflicts

3. Branch difficulties

Let us now discuss these conflicts.

Resource Conflicts

These conflicts arise due to insufficient resources wherein it is not possible to overlap the
operations. The performance of pipelined processor depends on either of the two conditions. They
are:

1. Whether or not the functional units are pipelined?

2. Do the multiple execution units allow all possible combination of instructions in the pipeline?

235

Unit 14: Introduction to Parallel Processing

LOVELY PROFESSIONAL UNIVERSITY

NotesIf for a particular combination, pipeline is stalled to avoid the resource conflicts, then there is a
structural hazard.

Structural hazard occurs if two instructions require the use of a given hardware resource at the
same time. The most common situation in which this hazard occurs is when resources request for
memory. Consider a situation where one instruction needs to access memory for storage of the
result while another instruction is being fetched. If the instructions and data reside in the same
cache unit, only one instruction can proceed and the other instruction is delayed. To avoid this
conflict many processors use separate caches for instruction and data.

Data Dependency Conflicts

These conflicts arise when the instruction in the pipeline depends on the result of the previous
instructions and these instructions are still in pipeline and are not executed yet. When either the
source or the destination operand of an instruction is not available at the expected time in the
pipeline, the pipeline is stalled. Such a situation is termed as a data hazard or data conflict.

Consider a program with two instructions, I1 followed by I2. When this program is executed in a
pipeline, the execution of these two instructions is performed concurrently. If the result of I1 and
I2 are dependent on each other, then the result of I1 may not be available for the execution of I2.

Example: Consider the following operations to understand the data dependency conflict:
I1: A � A+5
I2: B � A*2
The result of I2 is dependent on the result of I1, therefore we may get incorrect
result if both are executed concurrently.

Assume A = 10, if the given operations are performed sequentially, the result obtained will be 30.
But if they are performed concurrently, the value of A used while computing B would be its
original value 10, which leads to an incorrect result. The conflict due to such a situation is called
data conflict or data dependent conflict. To avoid incorrect result, the dependent instructions are
to be executed one after the other (in order).

Branch Difficulties

This difficulty is faced when branch and other instructions change the contents of program counter.
There are two types of branches - conditional and unconditional. Conditional branches may or
may not cause branching but an unconditional branch always causes branching. This difficulty is
termed as control hazard.

The following critical actions can be followed during pipelining process which helps in handling
control hazard:

1. Timely detection of a branch instruction

2. Early calculation of branch address

3. Early testing of branch condition (fate) for conditional branch instructions

14.1.2 Techniques for Overcoming Pipelining Conflicts

The following are the techniques that can be followed to avoid pipelining conflicts:

1. Hardware Interlocks: Hardware interlocks are electronic circuits that detect instructions whose
source operands are destinations of instructions further up in the pipeline. After detecting this
situation, the instruction whose source is not available is delayed by a suitable number of
clock periods. In this way, the conflict is resolved.

2. Operand Forwarding: This procedure uses a special hardware to detect a conflict and circumvent
it, by routing the data through special paths between pipeline segments. This method requires
additional hardware paths through MUXs (multiplexers).

236

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes 3. Delayed Branching: In this procedure, the compiler is responsible for resolving the pipelining
conflicts. The compiler detects the branch instructions and organizes the machine language
code sequence by inserting useful instructions that keep the pipeline functioning without
obstructions.

4. Branch Prediction: This method utilizes some sort of intelligent forecasting through appropriate
logic. A pipeline with branch prediction guesses the result of a conditional branch instruction
before it is executed. The pipeline fetches the stream of instructions from a predicted path, thus
saving the time that is wasted by branch penalties.

5. Speculative Execution: The advantage of branch prediction is that it helps the instructions
following the branch to be fetched and executed without any delay. However, this must be
done on a speculative basis. Speculative execution means that instructions are executed before
the processor is certain that they are in the correct execution path. Hence, care must be taken
that no processor registers or memory locations are updated until it is confirmed that these
instructions have to be executed. If the branch decision indicates otherwise, the instructions
and all their associated data in the execution units must be purged and the correct instructions
must be fetched and executed.

14.2 Instruction Pipeline
An instruction pipeline reads consecutive instructions from memory while in the other segments
the previous instructions are being executed. Pipeline processing occurs both in the data stream
and in the instruction stream. This leads to the overlapping of the fetch and execute instruction
and hence simultaneous operations are performed. One possible extra activity associated with
such a scheme is that an instruction may cause a branch out of a sequence. In which case, the
pipeline is emptied and all the instructions that have previously been read from memory after
the branch instruction should be discarded.

A computer can be designed to provide a two segment unit, with an instruction fetch unit and an
instruction execution unit. By means of a first-in, first-out (FIFO) buffer the instruction fetch segment
is implemented. This is a type of unit forming a queue rather than a stack. When the execution
unit is not accessing the memory, the control increments the program counter and uses its address
value to read consecutive instructions from memory. The instructions are inserted into the FIFO
buffer so that the execution occurs on a FIFO basis. Thus an instruction stream can be placed in a
queue to wait for decoding and processing by the execution segment. Therefore, we can say that
the instruction stream queuing mechanism provides an efficient way for reducing the average
access time for memory to read instructions. Whenever there is space in the FIFO buffer, the control
unit initiates the next instruction fetch phase. The buffer acts as a queue from which control then
extracts the instructions for the execution unit.

Computers with complex instructions require other phases in addition to the fetch and execute to
process an instruction completely. In the most general case, the computer needs to process each
instruction with the following sequence of steps.

1. Fetch instruction from memory.

2. Decode instruction.

3. Calculate effective address.

4. Fetch operands from memory.

5. Execute instruction.

6. Store result in the proper place.

Different segments can take different time durations to operate on the incoming information.
This could prevent the instruction pipeline from operating at its maximum speed. Some segments
are skipped for certain operations.

237

Unit 14: Introduction to Parallel Processing

LOVELY PROFESSIONAL UNIVERSITY

Notes
Example: A register mode instruction does not need an effective address calculation. But at

certain times two or more segments may require memory access at the same time, causing one
segment to wait until another is finished with the memory. By using two memory buses for accessing
instructions and data in separate modules, memory access conflicts are sometimes resolved. In this
way, an instruction word and a data word can be read simultaneously from two different modules.
Figure 14.4 illustrates an example of instruction pipelining.

Figure 14. 4: Example of Instruction Pipelining

 The time that each step takes to fulfill its function depends on the instruction and the way it is
executed. The design of an instruction pipeline would be most efficient if the instruction cycle is
divided into segments of equal duration.

238

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes
Example: Four-Segment Instruction Pipeline

The instruction pipeline can be reduced to four segments by making two
assumptions. The first assumption is that the decoding of the instruction can be
combined with the calculation of the effective address and made into one segment.
The second assumption is that most of the instructions places the result into a
processor register so that the instruction execution and storing of the result can
be combined into one segment.

Figure 14.4 depicts how the instruction cycle in the CPU can be processed with a four-segment
pipeline. The simultaneous operations which can take place are, while an instruction is being
executed in segment 4, the next instruction in sequence is busy fetching an operand from memory
in segment 3. The effective address calculation can be done in a separate arithmetic circuit for the
third instruction, and when the memory is available, the fourth and all subsequent instructions
can be fetched and placed in an instruction FIFO.

Therefore maximum up to four sub-operations in the instruction cycle can overlap and up to four
different instructions can be processed at the same time. At times, an instruction in the sequence
may be a program control type that causes a branch out of normal sequence. In such a case, the
pending operations in the last two segments are completed and all information stored in the
instruction buffer is deleted. The pipeline then restarts from the new address stored in the program
counter. Similarly, an interrupt request when acknowledged causes the pipeline to empty and
start again from a new address value.

The operation of the instruction pipeline is depicted in table 14.3.

Table 14.3: Instruction Pipeline with Branch

Step: 1 2 3 4 5 6 7 8 9 10 11 12
Instruction: 1 FI DA FO EX
 2 FI DA FO EX
(branch) 3 FI DA FO EX
 4 FI - - FI DA FO EX
 5 - - - FI DA FO EX
 6 FI DA FO EX

 The four segments in the instruction pipeline are represented in the table 14.3 with the following
abbreviated symbols:

1. Fl is the segment to fetch an instruction.

2. DA is the segment to decode the instruction and calculate the effective address.

3. FO is the segment to fetch the operand.

4. EX is the segment to execute the instruction and store result.

The time in the horizontal axis is divided into steps of equal duration. By assuming that the
processor has separate instruction and data memories, the operation in Fl and FO can proceed at
the same time.

Each segment operates on different instructions in the absence of a branch instruction. In step 4,
instruction 1 is being executed in segment EX; the operand for instruction 2 is being fetched in
segment FO; instruction 3 is being decoded in segment DA; and instruction 4 is being fetched
from memory in segment FI.

Assume instruction 3 as a branch instruction. When this instruction is decoded in segment DA in
step 4, the transfer from FL to DA of the other instructions is halted until the branch instruction is
executed in step 6. If the branch is taken into consideration, a new instruction is fetched in step 7,

239

Unit 14: Introduction to Parallel Processing

LOVELY PROFESSIONAL UNIVERSITY

Noteselse, the instruction fetched previously in step 4 can be used. The pipeline then continues until a
new branch instruction is encountered.

Another delay likely to occur in the pipeline is when the EX segment needs to store the result of
the operation in the data memory while the FO segment needs to fetch an operand. In which case,
segment FO must wait until segment EX has finished its operation.

Task Consider a five stage pipeline, with an extra execution task of storing the result at a
particular memory location. Assume the branch instruction to be taken into consideration at
instruction 4. If so, at which stage will the operation end if the total numbers of instructions
are 8?

14.3 RISC Pipeline
Reduced Instruction Set Computers (RISC) was introduced to execute as fast as one instruction per
clock cycle. This RISC pipeline helps to simplify the computer architecture’s design. It relates to
what is known as the Semantic Gap, that is, the difference between the operations provided in the
high level languages (HLLs) and those provided in computer architectures. Generally, wider the
semantic gap, larger the number of undesirable consequences, which are execution inefficiency,
excessive machine program size, and increased compiler complexity.

To avoid these consequences, the conventional response of the computer architects is to add layers
of complexity to newer architectures. This also increases the number and complexity of instructions
together with increase in the number of addressing modes. The architecture which resulted from
the adoption of this “add more complexity” are known as Complex Instruction Set Computers
(CISCs). But this brought in disadvantages like a complex instruction decoding scheme, an increased
size of the control unit, and increased logic delays. The advantage of RISC over CISC is that RISC
achieves pipeline segments in just one clock cycle, but CISC uses many segments in its pipeline,
requiring two or more clock cycles for the longest segment.

The significant advantageous capability attributed to RISC is the use of an efficient instruction
pipeline. Using a small number of sub operations, the simplicity of the instruction set can be used
to implement an instruction pipeline with each sub-operation being executed in one clock cycle.
The fixed length instruction format helps the decoding of the operation to occur at the same time
as the register selection. The data manipulation instructions have register-to- register operations.

All operands are in registers, hence there is no need for calculating an effective address or fetching
of operands from memory. Therefore, the instruction pipeline can be implemented with two or
three segments. One segment fetches the instruction from program memory, and the other segment
executes the instruction in the ALU. A third segment may be used to store the result of the ALU
operation in a destination register.

The data transfer instructions use register indirect addressing. These instructions in RISC are limited
to load and store instructions. They require three or four stages in the pipeline. To prevent conflicts
between a memory access and to load or store an operand, most RISC machines use two separate
buses with two memories. The two memories can sometimes operate at the same speed as the
CPU clock and are referred to as cache memories wherein one memory stores the instructions
and the other stores the data.

The said major advantage of RISC to execute instructions at the rate of one per clock cycle is
always not possible, since every instruction cannot be fetched from memory and executed in one
clock cycle ideally under all circumstances. The method to achieve the execution of an instruction
per clock cycle is to start each instruction with each clock cycle and to pipeline the processor to
achieve the goal of single-cycle instruction execution.

RISC compiler gives support to translate the high level language program into machine language
program. Problems in handling difficulties in relation to data conflicts and branch penalties are
taken care by the RISC processors, which relies on the efficiency of the compiler to detect and
minimize the delays encountered with these problems.

240

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes RISCs Design Principles

The RISC design principles are:

1. Keep the most frequently accessed operands in CPU registers.

2. Minimize the register-to-memory operations.

These principles can be achieved using the following mechanisms:

1. Use a large number of registers to optimize operand referencing and reduce the processor
memory traffic.

2. Optimize the design of instruction pipelines such that minimum compiler code generation can
be achieved.

3. Use a simplified instruction set and leave out those complex and unnecessary instructions.

Let us consider a three segment instruction pipeline which shows how a compiler can optimize
the machine language program to compensate for pipeline conflicts.

A typical set of instructions for a RISC processor is of three types. They are:

1. Data Manipulation Instructions: Manage the data in processor registers.

2. Data Transfer Instructions: These are load and store instructions which use an effective address
that is obtained by adding the contents of two registers or a register and a displacement
constant provided in the instruction.

3. Program Control Instructions: These instructions use register values and a constant to evaluate
the branch address, which is transferred to a register or the program counter (PC).

Now, consider the hardware operation for a computer with RISC processor. The control section
fetches the instruction from program memory into an instruction register. The instruction is
decoded at the same time that the registers needed for the execution of the instruction are selected.
The processor unit consists of a number of registers and an arithmetic logic unit (ALU) that
performs the necessary arithmetic, logic, and shift operations. A data memory is used to load or
store the data from a selected register in the register file.

The instruction cycle can be divided into three sub operations and implemented in three segments:

I: Instruction fetch

A: ALU operation

E: Execute instruction

The I segment fetches the instruction from program memory. The instruction is decoded and an
ALU operation is performed in the A segment. The ALU is used for three different functions.
Depending on the decoded instruction, the ALU performs the following functions:

1. An operation for a data manipulation instruction

2. An evaluation of the effective address for a load or store instruction

3. A calculation of the branch address for a program control instruction

The E segment directs the output of the ALU to one of a destination, depending on the decoded
instruction. It transfers the result of the ALU operation into a destination register in the register
file, it transfers the effective address to a data memory for loading or storing, or it transfers the
branch address to the program counter.

241

Unit 14: Introduction to Parallel Processing

LOVELY PROFESSIONAL UNIVERSITY

Notes14.4 Vector Processing
High computational power is a never ending requirement. Certain classes of computational
problems are beyond the ability of a conventional computer. The scientific and research
computations involve many computations which require extensive and high power computers.
These computations when run in a conventional computer may take days or weeks to complete.
The science and engineering problems can be formulated in terms of vectors and matrices using
vector processing.

The following are some examples or application areas in which vector processing is used.

1. Radar and signal processing to detect space/underwater targets

2. Remote sensing for earth resources exploration

3. Wind tunnel experiments

4. Medical diagnosis

5. Long-range weather forecasting

6. Petroleum explorations

7. Seismic data analysis

8. Medical diagnosis

9. Aerodynamics and space flight simulations

10. Artificial intelligence and expert systems

11. Mapping the human genome

12. Image processing

To achieve high performance in all these processes, a fast, reliable hardware and innovative
procedures from vector and parallel processing techniques have to be used.

14.4.1 Characteristics of Vector Processing
A vector is a structured set of elements. The elements in a vector are scalar quantity. A vector
operand contains an ordered set of n elements, where n is called the length of the vector. Each
clock period processes two successive pairs of elements. During one single clock period the dual
vector pipes and the dual sets of vector functional units allow the processing of two pairs of
elements. As the completion of each pair of operation takes place, the results are delivered to
appropriate elements of the result register. The operation continues until the number of elements
processed is equal to the count specified by the vector length register.

In parallel vector processing, more than two results are generated per clock cycle. The parallel
vector operations are automatically initiated under the following two circumstances:

1. Firstly, when successive vector instructions use different functional units and different vector
registers.

2. Secondly, when successive vector instructions use the result stream from one vector register as
the operand of another operation using a different functional unit. This process is termed as
chaining.

A vector processor performs better with longer vectors due to the startup delay in a pipeline.

Vector processing reduces the overhead associated with maintenance of the loop-control variables
which makes it more efficient than scalar processing.

14.4.2 Advantages of Vector Processing
Although vector processing is not for general purpose computation, it does offer significant
advantages for scientific computing applications. The following are the advantages of using vector
processing:

1. Flynn’s bottleneck can be reduced by using vector instructions as each vector instruction
specifies a lot of work. Vector instructions can specify the work equivalent of an entire loop.

242

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes Thus, fewer instructions are required to execute programs. This reduces the bandwidth required
for instruction fetch.

Notes Flynn’s bottleneck states that maximum processor element (PE) can process only one
instruction per clock cycle.

2. Data hazards can be eliminated due to the structured nature of the data used by vector machines.
We can determine the absence of a data hazard at compile-time, which not only improves
performance but also allows for planned pre-fetching of data from memory.

3. Memory latency can be reduced by using pipelined load and store operations.

Example: When we fetch the first element in a 64-element addition operation, we can schedule
fetching the remaining 63 elements from memory. By using interleaved memory designs, vector
machines can amortize the high latency associated with memory access over the entire vector.
4. Control hazards are reduced as a result of specifying a large number of iterations in a single

vector instruction. The number of iterations depends on the size of the vector registers.

Example: If the machine has 64-clement vector registers, each vector instruction can specify
work equivalent to 64 loop iterations.

5. Pipelining can be exploited to the maximum extent. This is facilitated by the absence of data
and control hazards. Vector machines not only use pipelining for integer and floating-point
operations, but also to feed data from one functional unit to another. This process is known as
chaining. In addition, as mentioned before, load and store operations also use pipelining.

Did u know? The most powerful computers of the 1970s and the 1980s were vector machines.
But with increasingly higher degrees of semiconductor integration, the mismatch between
instruction bandwidth and operand bandwidth essentially deteriorated. As of 2009, only one
of the world’s top 500 supercomputers was still based on vector architecture.

14.5 Parallel Processing
Parallel processing helps in the concurrent execution of many programs in the computer. It is in
contrast to sequential processing. Parallel processing method of information processing emphasizes
on the running of concurrent events during computing processes. Concurrency implies parallelism,
simultaneity, and pipelining. The concurrent events can be attained in a computer system at various
processing levels. Parallel events can occur in multiple resources during the same time interval,
simultaneous events can occur at the same time instant, and pipelined events can occur in
overlapped time spans. Therefore, parallel processing is a cost-effective means to improve system
performance through concurrent activities in the computer.

Parallel processing can be done in four ways while considering the following programmatic levels:

1. Job or program level

2. Task or procedure level

3. Inter-instruction level

4. Intra-instruction level

The highest level of parallel processing, job or program level, requires the development of parallel
processable algorithms. This level is conducted among multiple jobs or programs through
multiprogramming, time sharing, and multiprocessing. The implementation of parallel algorithms
depends on the efficient allocation of limited hardware-software resources to the multiple programs
that are used to solve a large computational problem. The next highest level of parallel processing

243

Unit 14: Introduction to Parallel Processing

LOVELY PROFESSIONAL UNIVERSITY

Notesis task or procedure level conducted among procedures or program segments within the same
program. This involves the decomposition of a program into multiple tasks (segments). The third
level is the inter-instruction level which brings in concurrency among multiple instructions. Data
dependency analysis is often performed to reveal parallelism among instructions. In the last level,
which is the intra-instruction level, faster and concurrent operations can be brought in within
each instruction.

Parallel processing is part of the architectural trend of multiprocessor systems, which has shared
memory space and peripherals under the control of one integrated operating system. Computer
manufacturers started the development of systems with a single central processor called a
uniprocessor system, but their goal is to achieve high performance.

Did u know? Parallel processing differs from multitasking, in which a single CPU executes
 several programs at once.

The general operation involved in a computer is to fetch instructions from memory and execute
them in the processor and then store the results in the main memory. The sequence of instructions
which is read from memory comprises an instruction stream flowing from memory to processor.
Operation on data constitutes a data stream flowing to and from the processor.

According to Michael J Flynn, parallel processors can be divided into the following four groups
based on the number of instructions and data streams that they have:

1. Single Instruction Stream Single Data stream (SISD)

2. Single Instruction Stream Multiple Data stream (SIMD)

3. Multiple Instruction Stream Single Data stream (MISD)

4. Multiple Instruction Stream Multiple Data stream (MIMD)

Let us now briefly discuss the four groups of parallel processors.

SISD Computer Organization

SISD represents a computer organization with a control unit, a processing unit and a memory
unit. SISD is like the serial computer in use. SISD executes instructions sequentially and they may
or may not have parallel processing capabilities. Instructions executed sequentially may get
overlapped in their execution stages. An SISD computer may have more than one functional unit
in it. But all the functional units are under the supervision of one control unit. Parallel processing
in such systems can be attained by pipeline processing or by using multiple functional units.

SIMD Computer Organization

SIMD organization includes multiple processing elements. All these elements are under the
supervision of a common control unit. All processors receive identical instruction from the control
unit, but operate on different data items. The shared subsystem contains multiple modules which
help in communicating with all the processors simultaneously. This is further divided into word
slice and bit slice mode organizations.

MISD Computer Organization

MISD organization includes multiple processing units, each receiving separate instructions operating
over the same data stream. The result of one processor becomes the input of the next processor.
The introduction of this organization received less attention and was not practically implemented
on architecture. The structure was of only theoretical interest.

MIMD Computer Organization
An MIMD computer organization involves interactions among the multi processors since all
memory streams are derived from the common data space shared by all processors. If the multi
data streams were derived from different shared memories then it is a multiple SISD operation
which is equal to a set of ‘n’ independent SISD systems.

244

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes An MIMD is tightly coupled when the degree of interactions among the processors is high,
otherwise they are said to be loosely coupled. This kind of organization refers to a computer
system capable of processing several programs simultaneously. Most multiprocessor computer
systems come under this category.

14.6 Summary
• Parallel processing is a technique of executing several jobs simultaneously in order to enhance

the speed of processing and throughput.

• Pipelining is a technique of dividing a sequential process into sub operations.

• The performance parameters important with respect to pipelining are speedup, efficiency and
throughput.

• There are three major pipelining conflicts: resource conflicts, data dependency conflicts and
branch difficulties

• The pipelining conflicts can be removed by the following schemes:

(a) Hardware interlocks

(b) Operand forwarding

(c) Delayed branching

(d) Branch prediction

(e) Speculative execution

• Computers with vector processing capabilities are in demand to run specialized applications
involving computations which are beyond the capabilities of a conventional computer.

• Parallel vector processing permits the generation of more than two results per clock period.

• Flynn’s classification of computers defines the following four major groups of parallel
processing:

(a) SISD (Single Instruction stream, Single Data stream)

(b) SIMD (Single Instruction stream, Multiple Data stream)

(c) MISD (Multiple Instruction stream, Single Data stream)

(d) MIMD (Multiple Instruction stream, Multiple Data stream)

14.7 Keywords
Branch Penalty: The delay caused due to a branch instruction in a pipeline.

Combinational Circuit: A combinational circuit is one for which the output value is determined
solely by the values of the inputs.

Concurrent: Executed at the same time.

Latency: Measure of time delay that is experienced in a system.

14.8 Self Assessment

1. State whether the following statements are true or false:

(a) The overlapping of processing is done by associating a combinational circuit with each
segment in the pipeline.

(b) Even after the input of data stops, the clock must continue till the last output emerges
out of the pipeline.

(c) The said major advantage of RISC to execute instructions at the rate of one per clock
cycle is always not possible.

245

Unit 14: Introduction to Parallel Processing

LOVELY PROFESSIONAL UNIVERSITY

Notes(d) Data hazard occurs if two instructions require the use of a given hardware resource at
the same time.

(e) The percentage of the total time-space span over the busy time-space spans gives the
efficiency of a linear pipeline.

(f) Pipeline processing occurs both in the data stream and in the instruction stream.

2. Fill in the blanks:

(a) _____________________ use register values and a constant to evaluate the branch address.

(b) _____________________ is defined as the number of results that can be completed by a
pipeline per unit time.

(c) _____________________ method requires additional hardware paths through MUXs
 (multiplexers).

(d) _____________________ brings in concurrency among multiple instructions.

(e) _____________________ is the difference between the operations provided in the high
level languages (HLLs) and those provided in computer architectures.

3. Select a suitable choice for every question.

(a) Which of the following level is conducted among multiple jobs or programs through
multiprogramming, time sharing, and multiprocessing.

(i) Job or program level

(ii) Task or procedure level

(iii) Inter-instruction level

(iv) Intra-instruction level

(b) ____________________ are electronic circuits that detect instructions whose source
operands are destinations of instructions further up in the pipeline.

(i) Hardware interlocks

(ii) Combinational circuits

(iii) Arithmetic circuit

(iv) Delayed branching

(c) ______________________ help in providing isolation between each segment so that every
segment can work on distinct data simultaneously.

(i) Overlapping of processes

(ii) Registers

(iii) Memory interleaving

(iv) Speculative execution

(d) A pipeline with ________________________ guesses the result of a conditional branch
 instruction before it is executed.

(i) Branch prediction

(ii) Delayed branching

(iii) Open forwarding

(iv) Hardware interlocks

246

Computer Organization and Architecture/Introduction to Computer Organization and Architecture

LOVELY PROFESSIONAL UNIVERSITY

Notes (e) Which computer organization is further divided into word slice and bit slice mode
organizations?

(i) Single Instruction stream Single Data stream (SISD)

(ii) Single Instruction stream Multiple Data stream (SIMD)

(iii) Multiple Instruction stream Single Data stream (MISD)

(iv) Multiple Instruction stream Multiple Data stream (MIMD)

14.9 Review Questions
1. “A compiler can optimize the machine language program to compensate for pipeline conflicts.”

Justify with example.

2. “When compared with sequential processing, pipelining reduces the amount of time used.”
Discuss with the help of a time space chart.

3. “The pipeline stages are not always able to complete its operations in the set time.” Explain
with an example.

4. “Reduced Instruction Set Computers (RISC) was introduced to execute as fast as one instruction
per clock cycle.” Explain in detail.

5. “Resource conflict arises due to insufficient resources where in it is not possible to overlap the
operations.” Discuss considering a situation.

6. “The instruction pipeline can be reduced to segments by making assumptions.” Explain with
example.

7. “Pipelining conflicts can be overcome.” Discuss with regard to techniques.

8. “Memory latency can be reduced by using pipelined load and store operations.” Explain with
example.

9. “When the pipeline is stalled due to the unavailability of either the source or the destination
operand at the expected time it is termed as a data hazard.” Discuss with example.

10. “According to Flynn, Parallel processors can be divided into four groups based on the number
of instructions and data streams.” Name the types and explain.

11. “The advantage of RISC over CISC is that RISC achieves pipeline segments in just one clock
cycle.” Justify and discuss the differences between the two.

12. “Different sets of addresses can be assigned to different memory with the help of interleaving”
Explain.

Answers: Self Assessment
1. (a) False (b) True (c) True (d) False (e) False

(f) True

2. (a) Program control instructions (b) Throughput (c) operand forwarding

(d) Inter-instruction level (e) Semantic gap

3. (a) Job or program level (b) Hardware interlocks (c) Registers

 (d) Branch prediction (e) SIMD

247

Unit 14: Introduction to Parallel Processing

LOVELY PROFESSIONAL UNIVERSITY

Notes14.10 Further Readings

Books Stallings, W. (2009). Computer Organisation and Architecture: Designing for
performance. Prentice Hall.

Null,L., & Lobur, J. (2006). The essentials of Computer Organization and Architecture.
Jones & Barlett Learning.

Godse, A.P., & Godse D.A. (2008). Digital Electronics. Pune: Technical Publications

Online links http://brahms.emu.edu.tr/rza/chapter1.pdf

http://www.cs.unb.ca/profs/gdueck/courses/Ch_12.ppt.pdf

http://www.scribd.com/doc/45907864/Pipeline-and-Vector-Processing

Jalandhar-Delhi G.T. Road (NH-1)
Phagwara, Punjab (India)-144411
For Enquiry: +91-1824-521360
Fax.: +91-1824-506111
Email: odl@lpu.co.in

LOVELY PROFESSIONAL UNIVERSITY

	00.pdf
	01.pdf
	02.pdf

