
Edited by:
Sarabjit Kumar

OPEN SOURCE TECHNOLOGIES
Edited By

Sarabjit Kumar

Printed by
FRANK BROTHERS & CO. (PUBLISHERS) LIMITED

B-41, Sector-4, NOIDA - 201301, Gautam Budh Nagar
for

Lovely Professional University
Phagwara

SYLLABUS

Open Source Technologies

Objectives: To impart understanding of essentials of open source technologies. Open source technologies course is designed
 to enable web developers and others with limited programming experience to build dynamic database driven
 e-commerce web sites using the PHP programming language.

 S. No. Description

 1. My SQL: Current and Future Versions of MySQL, Installing MySQL. Basic Security Guidelines. Privilege System
and Working with user privileges.

 2. Apache Server: Versions of Apache. Choosing Appropriate Installation Method. Installing on Windows. Apache
Confi guration File Structure. Apache Log File. Starting Apache for First Time.

 3. PHP: Versions of PHP. Installation of PHP. Php.ini basics. Testing Installation.
Building Blocks of PHP: Variables, Data Types, Operators & Expressions, Constants. Switching Flow. Loops,
Code Blocks and Browser Output.

 4. Functions: Meaning, Calling, Defi ning a function. Return value from user-defi ned function. Saving State with
‘static’ function. Testing for existence of function.
Arrays: What are arrays, Creating Arrays, Array Related functions.
Objects: Creating an Object. Object Inheritance.

 5. Working with String, Dates & Time: Formatting String with PHP. Using Date and Time Functions with PHP.
Other String, Date/Time Functions.

 6. Forms: Creating Simple input Form. Accessing Form input with user defi ned arrays, HTML and PHP Code on a
single Page. Using Hidden Fields to Save State. Redirecting User. Working with File Upload.

 7. Cookies: Introducing Cookies, Setting Cookies, Deleting Cookies with PHP, Session Function Overview, Starting
Session, Working with Session Variables. Destroying Sessions and Unsetting variables.

 8. Files and Directories: Include Files with include(). Validating Files. Creating Files, Deleting Files, Opening a File
for Reading, Writing, Appending.

 9. Images: Understanding Image Creation Process, Necessary Modifi cations to PHP, Drawing a New Image, Modifying
Existing Images, Image Creation from User Input.

 10. Stored Procedures: What are Transactions, What are Stored Procedures.
Connecting to MySQL with PHP. Working with MySQL Data.

CONTENT

Unit 1: My SQL

Sarabjit Kumar, Lovely Professional University

1

Unit 2: Working with My SQL

Sarabjit Kumar, Lovely Professional University

18

Unit 3: Apache Server

Manish, Kumar, Lovely Professional University

28

Unit 4: Apache Server Installation in Window

Sarabjit Kumar, Lovely Professional University

39

Unit 5: PHP

Sarabjit Kumar, Lovely Professional University

56

Unit 6: Building Blocks of PHP

Sarabjit Kumar, Lovely Professional University

71

Unit 7: Functions

Sarabjit Kumar, Lovely Professional University

104

Unit 8; Working with Strings, Date and Time

Sarabjit Kumar, Lovely Professional University

125

Unit 9: Working with Forms

Sarabjit Kumar, Lovely Professional University

148

Unit 10: Cookies

Sarabjit Kumar, Lovely Professional University

163

Unit 11: Directories and Files

Mandeep Kaur, Lovely Professional University

180

Unit 12: Images 197

Unit 13: Stored Procedure

Mandeep Kaur, Lovely Professional University

210

Unit 14: Connecting to MySQL with PHP

Mandeep Kaur, Lovely Professional University

226

Manish, Kumar, Lovely Professional University

6 LOVELY PROFESSIONAL UNIVERSITY

Corporate and Business Law

Unit 1: My SQL

 LOVELY PROFESSIONAL UNIVERSITY 1

NotesUnit 1: My SQL

CONTENTS

Objectives

Introduction

1.1 Current and Future Versions of My SQL

 1.1.1 How to Get My SQL

1.2 Installing My SQL

 1.2.1 Installing My SQL on Linux/Unix

 1.2.2 Installing My SQL on Mac OS X

 1.2.3 Installing My SQL on Windows

1.3 Basic Security Guidelines

 1.3.1 Starting My SQL

 1.3.2 Securing Your My SQL Connection

1.4 Summary

1.5 Keywords

1.6 Self Assessment Questions

1.7 Review Questions

1.8 Further Reading

Objectives

After studying this unit, you will be able to:

	 •	 Discuss	current	and	future	versions	of	My	SQL.

	 •	 Explain installing My SQL.

	 •	 Understand basic security guidelines in My SQL.

Introduction

My SQL is the world’s most popular open source database software, with over 100 million
copies of its software downloaded or distributed throughout it’s history. With its superior speed,
reliability and ease of use, My SQL has become the preferred choice for Web, Web 2.0, SaaS,
ISV, Telecom companies and forward-thinking corporate IT Managers because it eliminates
the major problems associated with downtime, maintenance and administration for modern,
online applications.

Many of the world’s largest and fastest-growing organizations use My SQL to save time
and money powering their high-volume Web sites, critical business systems, and packaged
software—including industry leaders such as Yahoo!, Alcatel-Lucent, Google, Nokia, YouTube,
Wikipedia, and Booking.com.

Sarabjit Kumar, Lovely Professional University

Open Source Technologies

2 LOVELY PROFESSIONAL UNIVERSITY

Notes The	flagship	My	SQL	offering	is	My	SQL	Enterprise,	a	comprehensive	set	of	production-tested	
software, proactive monitoring tools, and premium support services available in an affordable
annual subscription.

My SQL is a key part of LAMP (Linux, Apache, My SQL, PHP/Perl/Python), the fast-growing open
source enterprise software stack. More and more companies are using LAMP as an alternative to
expensive proprietary software stacks because of its lower cost and freedom from platform lock-in.

1.1 Current and Future Versions of My SQL

The installation instructions in this unit is refer to My SQL 4.0.21, which is the current production
version of the software. This version number can be read as minor release number 21 of the major
version 4.0 software. My SQL AB, the company responsible for creating and distributing My SQL,
uses	minor	release	numbers	for	updates	containing	security	enhancements	or	bug	fixes.	Minor	
releases	do	not	follow	a	set	release	schedule;	when	enhancements	or	fixes	are	added	to	the	code	
and thoroughly tested, My SQL AB releases a new version, with a new minor version number.

It is possible that by the time you purchase this book, the minor version number will have
changed, to 4.0.21 or beyond. If that is the case, you should read the list of changes at
http://www.My SQL.com/doc/en/News-4.0.x.html for any changes regarding the installation
or	configuration	process,	which	makes	up	the	bulk	of	this	unit.

Although it is unlikely that any installation instructions will change between minor version
updates, you should get in the habit of always checking the changelog of software that you
install and maintain. If a minor version change does occur during the time you are reading
this book, but no installation changes are noted in the change log, simply make a mental note
and substitute the new version number wherever it appears in the installation instructions and
accompanying	figures.

1.1.1 How to Get My SQL

My SQL AB, the Company that develops and maintains the My SQL database server, distributes
My SQL on its Web site: http://www.My SQL.com/. Binary distributions for all platforms,
installer	packages	for	Mac	OS	X,	and	RPMs	and	source	code	files	for	Linux/Unix	platforms	can	
be found at the Web site. Additionally, you can purchase boxed versions of the software that
is, software in a box and with a printed version of the comprehensive My SQL manualfrom the
My SQL AB online store, for a very reasonable price.

Linux	distribution	CDs	usually	contain	some	version	or	another	of	the	open	
source My SQL software, although these are usually several minor versions
that are out of date.

1.2 Installing My SQL

1.2.1 Installing My SQL on Linux/Unix
The process of installing My SQL on Linux/Unix is straight forward, whether you use RPMs or
install	the	binaries.	For	a	minimal	installation	from	RPMs,	you	will	need	two	files:

My SQL-server-VERSION.i386.rpm The My SQL server

My SQL-client-VERSION.i386.rpm The standard My SQL client libraries

To perform a minimal installation from RPMs, type the following at your prompt:

#> rpm -i My SQL-server-VERSION.i386.rpm My SQL-client-VERSION.i386.rpm

Unit 1: My SQL

 LOVELY PROFESSIONAL UNIVERSITY 3

NotesReplace	VERSION	in	the	filename	with	the	actual	version	you	downloaded.	
For example, the current My SQL 4.0 server RPM is called My SQL-
server-4.0.21-0.i386.rpm, and the client libraries RPM is called My SQL-
client-4.0.21-0.i 386.rpm.

Another painless (and very common) installation method is to install My SQL from a binary
distribution. This method requires the gunzip and tar utilities, to uncompress and unpack the
distribution,	and	also	 requires	 the	ability	 to	create	groups	and	users	on	 the	system.	The	first	
series of commands in the binary distribution installation process has you adding a group and
a user and unpacking the distribution, as follows:

Replace	VERSION-OS	in	the	filename	with	the	actual	version	you	downloaded.	
For example, the current My SQL 4.0 Linux/i386 binary is called My SQL-
max-4.0.21-pclinux-i686.tar.gz.

	 •	 groupadd	My	SQL

	 •	 useradd	-g	My	SQL

	 •	 cd/usr/local

	 •	 gunzip	<	/path/to/My	SQL-VERSION-OS.tar.gz|tar	xvf	-

Next, the instructions tell you to create a link with a shorter name:

	 •	 ln	-s	My	SQL-VERSION-OS	My	SQL

	 •	 cd	My	SQL

Once	unpacked,	the	README	and	INSTALL	files	will	walk	you	through	the	remainder	of	the	
installation process for the version of My SQL you’ve chosen. In general, the following series
of commands will be used:

	 •	 scripts/My	SQL_install_db

	 •	 chown	-R	root/usr/local/My	SQL

	 •	 chown	-R	My	SQL/usr/local/My	SQL/data

	 •	 chgrp	-R	My	SQL/usr/local/My	SQL

	 •	 chown	-R	root/usr/local/My	SQL/bin

You’re now ready to start the My SQL server, so skip down to the section called “Basic Security
Guidelines.” If you had any issues with your installation, check the “Troubleshooting Your
Installation” section.

1.2.2 Installing My SQL on Mac OS X

The My SQL installation process for Mac OS X is fairly straight forward the developers from
My SQL AB have created an installation package for Mac OS X. Go to the My SQL downloads
page at http://www.My SQL.com/downloads/My SQL-4.0.html and look for the section titled
“Mac OS X downloads.” Once there, select the appropriate version for your system, either.

No matter the Mac OS X version you use, download the “Standard” package for the current
My	SQL	version.	When	the	download	is	complete,	unpack	the	installer	file	and	double-click	on	
the	*.pkg	file.	Follow	the	installation	steps	below	to	complete	the	process.

 1. The My SQL installer will launch automatically, as shown in Figure 1.1. Click Continue
to move to the next step.

Open Source Technologies

4 LOVELY PROFESSIONAL UNIVERSITY

Notes Figure 1.1: The My SQL Installer has Started

 2. The second screen in the installation process contains information regarding installation
(see Figure 1.2). Read the information and note anything relevant to your situation and
then click Continue.

Figure 1.2: Step 2 of the My SQL Installation Wizard

Unit 1: My SQL

 LOVELY PROFESSIONAL UNIVERSITY 5

Notes 3. The third screen in the installation process displays the license information. Read this
information and press the Continue button, and you will be prompted to agree or disagree,
as shown in Figure 1.3.

 Figure 1.3: Step 3 of the My SQL Installation Wizard. Read the
 License Information, and then Agree to its Content

 4. The fourth screen asks you to select the installation destination (see Figure 1.4). Select the
appropriate drive, and then press the Continue button.

 Figure 1.4: Step 4 of the My SQL Installation Wizard.
 Select an Installation Location

	 5.	 The	 next	 screen	 verifies	 your	 installation	 location	 selection	 and	 requires	 you	 to	 press	
the Install button to continue. At this point, you will be prompted for the Adminstrator
username and password unless you are installing as root before the installation process
continues. Once it continues, let the process run its course until you see the installation
is complete, as shown in Figure 1.5.

Open Source Technologies

6 LOVELY PROFESSIONAL UNIVERSITY

Notes Figure 1.5: My SQL has been Installed

You’re now ready to start the My SQL server, so skip down to the section called “Basic Security
Guidelines.” If you had any issues with your installation, check the “Troubleshooting Your
Installation” section.

1.2.3 Installing My SQL on Windows
The My SQL installation process on Windows is also quite simple the developers from My SQL
AB	have	packaged	up	everything	you	need	 in	one	zip	file	with	a	setup	program!	Download	
the	zip	file,	extract	its	contents	into	a	temporary	directory,	and	run	the	setup.exe	application.	
After the setup.exe application installs the My SQL server and client programs, you’re ready
to start the My SQL server.

The following steps detail the installation of My SQL 4.0.x on Windows, when the installer
is downloaded from My SQL AB. The install sequence looks similar, regardless if you have
a Windows 98, Windows NT, Windows 2000, or Windows XP environment for testing and
development. Many users install My SQL on personal Windows machines just to get a feel for
working with the database before deploying My SQL in a production environment.

If	you	have	the	tools	and	skills	to	compile	your	own	Windows	binary	files,	the	
Cygwin source code is also available from My SQL AB. Follow the instructions
contained	in	the	source	distribution	to	build	your	own	executable	files.

Jumping right into the installation sequence, assuming you have downloaded the Windows
installer from the My SQL AB Web site, follow these steps:

	 1.	 Extract	the	contents	of	the	zip	file	into	a	temporary	directory	and	find	the	setup.exe	file,	and	
then	double-click	it	to	start	the	installation.	You	will	see	the	first	screen	of	the	installation	
wizard, as shown in Figure 1.6. Click Next to continue.

Unit 1: My SQL

 LOVELY PROFESSIONAL UNIVERSITY 7

NotesFigure 1.6: The First Step of the My SQL Installation Wizard

 2. The second screen in the installation process contains information regarding the installation
location (see Figure 1.7). The default installation location is C:\My SQL. If you plan to
install My SQL in a different location, this screen shows you a few changes that you will
have to make on your own. The information on this screen is also important for Windows
NT users who want to start My SQL as a service. Read the information and note anything
relevant to your situation, and then click Next to continue.

 Figure 1.7: Step 2 of the My SQL Installation Wizard. Note any Relevant
 Information before Continuing

Open Source Technologies

8 LOVELY PROFESSIONAL UNIVERSITY

Notes 3. The third screen in the installation process has you select the installation or destination
location (see Figure 1.8). If you want to install My SQL in the default location, click Next
to continue. Otherwise, click Browse and navigate to the location of your choice, and then
click Next to continue.

 Figure 1.8: Step 3 of the My SQL Installation Wizard. Select
 an Installation Location

 4. The fourth screen asks you to select the installation method Typical, Compact, or Custom
(see Figure 1.9). The Custom option allows you to select elements of My SQL to install,
such	as	documentation	and	help	files.	Select	Typical	as	the	installation	method,	and	click	
Next to continue.

 Figure 1.9: Step 4 of the My SQL Installation Wizard.
 Select an Installation Type

Unit 1: My SQL

 LOVELY PROFESSIONAL UNIVERSITY 9

Notes	 5.	 The	installation	process	will	now	take	over	and	install	files	in	their	proper	locations.	When	
the	process	is	finished,	you	will	see	a	confirmation	of	completion,	as	in	Figure	1.10.	Click	
Finish to complete the setup process.

Figure 1.10: My SQL has been Installed

There are no fancy shortcuts installed in your Windows Start menu after an installation of My
SQL from My SQL AB, so now you must start the process yourself. If you navigate to the My
SQL applications directory (usually C:\My SQL\bin\ unless you changed your installation
path),	you	will	find	numerous	applications	ready	for	action	(see	Figure	1.11).

Figure 1.11: A Directory Listing of My SQL Applications

Open Source Technologies

10 LOVELY PROFESSIONAL UNIVERSITY

Notes The winMy SQLadmin.exe application is a great friend to Windows users who are just getting
started	with	My	SQL.	If	you	double-click	this	file,	it	will	start	the	My	SQL	server	and	place	a	
stoplight icon in your taskbar.

When the interface launches, you will see an application that provides an easy way to maintain
and monitor your new server (see Figure 1.12).

Figure 1.12: WinMy SQLadmin Started and Ready for Action

WinMy SQLadmin will automatically interpret environment information, such as IP address
and machine name. The tabs across the top allow you to view system information and edit My
SQL	configuration	options.

For example, if you select the Variables tab, as shown in Figure 1.13, you can also view server
configuration	 information.	 This	 information	 is	 similar	 to	 the	 output	 of	 the	My	 SQL	 SHOW	
VARIABLES command.

Figure 1.13: Server Configuration Information

Unit 1: My SQL

 LOVELY PROFESSIONAL UNIVERSITY 11

NotesTo shut down the My SQL server and/or the WinMy SQLadmin tool, right-click again on the
stoplight icon in your taskbar and select the appropriate option (stop or start). As long as the
My SQL server is running, you can run additional applications through a console window,
such as the My SQL.

If	you	have	any	problems	during	 the	 installation	of	My	SQL,	 the	first	place	you	should	 look	
is the “Problems and Common Errors” unit of the My SQL manual, which is located at
http://www.My SQL.com/doc/P/r/Problems.html.

The following are some common problems:

On Linux/Unix and Mac OS X, incorrect permissions do not allow you to start the My SQL
daemon. If this is the case, be sure you have changed owners and groups to match those indicated
in the installation instructions.

If you see the message Access denied when connecting to My SQL, be sure you are using the
correct username and password.

If you see the message Can’t connect to server, make sure the My SQL daemon is running.

When	defining	tables,	if	you	specify	a	length	for	a	field	whose	type	does	not	require	a	length,	
the	table	will	not	be	created.	For	example,	you	should	not	specify	a	length	when	defining	a	field	
as TEXT (as opposed to CHAR or VARCHAR).

If you still have trouble after reading the manual, sending email to the My SQL mailing list
(see http://lists.My SQL.com/ for more information) will likely produce results. You can also
purchase support contracts from My SQL AB for a very low fee.

1.3 Basic Security Guidelines

Regardless of whether you are running My SQL on Windows, Linux/Unix, or Mac OS X, and
no matter whether you administer your own server or use a system provided to you by your
Internet service provider, you must understand basic security guidelines. If you are accessing
My SQL through your Internet service provider, there are several aspects of server security
that you, as a non-root user, should not be able to modify or circumvent. Unfortunately, many
Internet service providers pay no mind to security guidelines, leaving their clients exposedand
for the most part, unaware of the risk.

1.3.1 Starting My SQL
Securing My SQL begins with the server startup procedure. If you are not the administrator
of the server, you won’t be able to change this, but you can certainly check it out and report
vulnerabilities to your Internet service provider.

If your My SQL installation is on Linux/Unix or Mac OS X, your primary concern should be
the owner of the My SQL daemonit should not be root. Running the daemon as a non-root user
such as My SQL or database will limit the ability of malicious individuals to gain access to the
server	and	overwrite	files.

Running the daemon as a non-root user such as My SQL or database will
limit the ability of malicious individuals to gain access to the server and
overwrite	files.

You can verify the owner of the process using the ps (process status) command on your Linux/
Unix or Mac OS X system. The following output shows My SQL running as a non-root user
(see	the	first	entry	on	the	second	line):

Open Source Technologies

12 LOVELY PROFESSIONAL UNIVERSITY

Notes # ps auxw|grep	My	SQLd

My SQL 153 0.0 0.6 12068 2624 ? S Nov16 0:00 /usr/local/bin/My SQL/bin/My SQLd

—defaults-extra-file=/usr/local/bin/My	SQL/data/my.cnf

—basedir=/usr/local/bin/My	SQL—datadir=/usr/local/bin/My	SQL/data

—user=My	SQL—pid-file=/usr/local/bin/My	SQL/data/mike.pid—skip-locking

The	following	output	shows	My	SQL	running	as	the	root	user	(see	the	first	entry	on	the	second	
line):

#	ps	auxw|grep	My	SQLd

root 21107 0.0 1.1 11176 1444 ? S Nov 27 0:00 /usr/local/My SQL/bin/My SQLd

—basedir=/usr/local/My	SQL	—datadir=/usr/local/My	SQL/data	—skip-locking

If you see that My SQL is running as root on your system, immediately contact your Internet
service provider and complain. If you are the server administrator, you should start the My SQL
process as a non-root user or specify the username in the startup command line:

My	SQLd	—user=non_root_user_name

For example, if you want to run My SQL as user My SQL, use

My	SQLd	—user=My	SQL

However,	the	recommended	method	for	starting	My	SQL	is	through	the	safe_My	SQLd	startup	
script in the bin directory of your My SQL installation:

# /usr/local/bin/My SQL/bin/safe_My	SQLd	&

1.3.2 Securing Your My SQL Connection
You can connect to the My SQL monitor or other My SQL applications in several different ways,
each of which has its own security risks. If your My SQL installation is on your own workstation,
you have less to worry about than users who have to use a network connection to reach their server.

If My SQL is installed on your workstation, your biggest security concern is leaving your
workstation unattended with your My SQL monitor or My SQL GUI administration tool up and
running. In this type of situation, anyone can walk over and delete data, insert bogus data, or
shut down the server. Utilize a screen saver or lock screen mechanism with a password if you
must leave your workstation unattended in a public area.

If My SQL is installed on a server outside your network, the security of the connection should
be of some concern. As with any transmission of data over the Internet, it can be intercepted. If
the transmission is unencrypted, the person who intercepted it can piece it together and use the
information. Suppose the unencrypted transmission is your My SQL login informationa rogue
individual now has access to your database, masquerading as you.

One way to prevent this from happening is to connect to My SQL through a secure connection.
Instead of using Telnet to reach the remote machine, use SSH. SSH looks and acts like Telnet,
but all transmissions to and from the remote machine are encrypted. Similarly, if you use a
Web-based administration interface, such as phpMyAdmin (see http:/phpmyadmin.sourceforge.
net for more information) or another tool used by your Internet service provider, access that
tool over a secure HTTP connection.

 Write down all the steps to install My SQL in your system.

Unit 1: My SQL

 LOVELY PROFESSIONAL UNIVERSITY 13

Notes

Success Story on Big Fish Games Triples Database

Big Fish Games is a global leader in the online games industry and distributes
more games worldwide than any other online site. Within three years of its debut,
BigFishGames.com rocketed into the Top 10 game portals on the Web and now serves

millions of downloads every day.

Their Business Challenge

BigFishGames.com is a fast-growing website with over 25 million unique customer accounts
and over 2.5 million visitors per month. In addition to the English site, Big Fish Games
also offers international game portals in Japanese, German, French and Spanish. Their
ever-growing user base is a huge boost to their business, but it also raises big challenges
around IT capacity planning. To ensure the highest quality game experience, Big Fish Games
has to accurately predict demand and increase bandwidth at the right time to keep a balance
between over-utilizing the system, introducing delays and a bad user experience, and
under-utilizing the system, resulting in a waste of capacity and money.

Their My SQL Solution

Big Fish Games started using My SQL as a small start-up. My SQL allowed Big Fish Games
to quickly grow their business with lower cost and hardware requirements, and has scaled
with the company as it has grown into an industry leader. Today, Big Fish Games deploys
40 My SQL servers to power its popular gaming website which offers thousands of games,
with new games introduced every day. To achieve the scalability and reliability required
by	this	high-trafficked	website,	Big	Fish	Games	relies	on	My	SQL	Replication.	Plus,	DRBD	
is used to improve high availability. In addition to customer-facing material such as the
dynamic website content, e-commerce store, game coupons and discussion forums, the
My SQL database is also used for internal operations, tracking game downloads, account
authentication, game activations and server logs.

My SQL Query Analyzer

In	order	to	accommodate	the	growth	in	website	traffic,	the	DBA	team	at	Big	Fish	Games	has	
been looking into opportunities to improve application performance. Tuning and optimizing
the database is one of the options, but it won’t help if the performance problem is caused
by poorly-written SQL code.

To gain insights into the quality of the SQL code and execution statistics, Big Fish Games
has been using the command line tools to identify target areas for potential performance
improvement. However, for every problem resolution, extra effort was required to combine
information from multiple sources because each command only provided a limited
perspective.

Now, the My SQL Query Analyzer provides a consolidated view of query activities and
execution details, and has enabled Big Fish Games to quickly identify poorly running queries
and tackle the root causes directly in the SQL code. With the help of the My SQL Query
Analyzer,	the	DBA	team	caught	a	“bad”	query	running	400,000	times	overnight	which	never	
showed up in query logs. Furthermore, the My SQL Query Analyzer is very easy to use and
doesn’t	require	the	user	to	be	a	world-class	My	SQL	expert	to	fully	leverage	its	benefits.	

Since the Query Analyzer uses a Service Agent listening to application queries and
performances metrics, the My SQL servers can always be live and operational when being

Contd...

Open Source Technologies

14 LOVELY PROFESSIONAL UNIVERSITY

Notes analyzed. There is no need to switch the servers back and forth between on-line and off-line,
which eliminates unnecessary risks to server availability and reliability.

After deploying the My SQL Query Analyzer, Big Fish Games tripled its database performance
within three days, rather than weeks.

My SQL Enterprise Monitor

Big	Fish	Games	also	relies	on	the	My	SQL	Enterprise	Monitor	and	the	Dashboard	graphs,	
which show the number of queries per second, CPU load and replication status, to ensure
that	the	website	is	performing	well.	Big	Fish	Games	finds	the	My	SQL	Enterprise	Monitor	
valuable because it is built for My SQL and offers more relevant and useful information
than generic monitoring tools.

The My SQL Enterprise Monitor provides critical data points for Big Fish Games to analyze
and	determine	the	optimal	number	of	slaves	to	serve	its	current	website	traffic	and	to	plan	
for	the	future	capacity	requirements.	This	tool	also	helps	the	DBA	team	to	gain	insight	into	
the system status, usage patterns and potential problems, without having to wait to be
notified	by	the	operations	group.

Big Fish Games chooses to deploy My SQL Enterprise for the following reasons:

	 •	 High Performance: My SQL provides fast transaction speed to serve over 300,000
simultaneous users on BigFishGames.com.

	 •	 Ease of use:	My	SQL	is	very	easy	to	use	which	allows	DBAs	to	manage	My	SQL	servers	
without a steep learning curve.

	 •	 Low Maintenance: Using My SQL Enterprise Monitor, Big Fish Games employs just
two	DBAs	to	monitor	over	70	My	SQL	servers,	40	in	active	production	and	30	in	the	
testing environment.

	 •	 Low TCO: My SQL enabled Big Fish Games to launch their business, grow fast and
establish themselves as the industry leader at a fraction of the cost compared to using
a proprietary database.

	 •	 Unlimited Deployment: My SQL Enterprise Unlimited gives Big Fish Games the
fixed-cost	predictability	to	deploy	additional	servers	without	additional	costs.	This	is	
especially	beneficial	for	companies	with	rapidly	growing	data.

	 •	 24x7 support: My SQL offers top quality support, with long-time My SQL developers
providing guaranteed 30 minutes response time for My SQL Enterprise Platinum
customers. It’s invaluable for Big Fish Games to receive problem solving advice from
My SQL support engineers when business-critical applications go down at midnight.

	 •	 Support for popular Operating Systems: My SQL is well-integrated with all major Linux,
Solaris	 and	Unix	 distributions,	 saving	 time	 for	DBAs	 and	 improving	 administrative	
experience.

	 •	 Support for C, C++, C#, PHP, Python, Ruby and Java: My SQL supports drivers for
a wide range of programming languages, including PHP, used by Big Fish Games for
the front-end presentation layer, and Java, used with the Tomcat application server in
the middleware layer.

Memcached

In addition to My SQL Replication, Big Fish Games further increases scalability by using
Memcached, a distributed caching layer. All the web content is stored in Memcached, and

Contd...

Unit 1: My SQL

 LOVELY PROFESSIONAL UNIVERSITY 15

Notesmost	 of	 the	 website	 queries	 are	 processed	 by	 this	 in-memory	 cache,	 which	 significantly	
improves response time as well as scalability.

Sun Fire x64 Servers

Big Fish Games utilizes a 3-tier server deployment strategy, and Sun’s x64 servers have been
chosen because of their excellent reputation for performance and reliability.

	 •	 Sun	Fire	X2100	server	is	best	for	applications	which	require	lots	of	local	disk	space	but	
less I/O or CPU speed.

	 •	 Sun	Fire	X4100	server	works	well	for	applications	which	demand	fast	processors	but	
don’t need speedy local disk I/O.

	 •	 Sun	Fire	X4140	server	is	optimal	with	8	drive	bays	for	applications	where	faster	local	
disk	I/O	via	RAID	10	and	battery	backed	up	write	cache	is	essential.

By identifying the requirements for each application and the right server for each condition,
Big Fish Games has gained 20x in performance by merely replacing an X4100 server with
an X4140 machine.

Questions

1. What do you mean by My SQL Query Analyzer?

2. Explain My SQL Replication.

1.4 Summary

	 •	 My	SQL	 is	 a	key	part	 of	LAMP	 (Linux,	Apache,	My	SQL,	PHP/Perl/Python),	 the	 fast	
growing open source enterprise software stack.

	 •	 My	SQL	AB,	the	company	responsible	for	creating	and	distributing	My	SQL,	uses	minor	
release	numbers	for	updates	security	enhancements	or	bug	fixes.

	 •	 The	process	of	 installing	My	SQL	on	Linux/Unix	 is	straight	 forward,	whether	you	use	
RPMs or install the binaries.

	 •	 If	our	my	SQL	installation	is	on	Linux/Unix	or	Mac	OS	X,	our	primary	concern	should	
be the owner of My SQL daemonit should not be root.

	 •	 If	My	SQL	 is	 installed	on	our	workstation,	 our	biggest	 security	 concern	 is	 leaving	our	
workstation unattended with our My SQL monitor or My SQL GUI administration tool
up and running.

1.5 Keywords

My SQL Connection: You can connect to the My SQL monitor or other My SQL applications in
several different ways, each of which has its own security risks.

My SQL Installation Process for Mac OS X: My SQL installation process for Mac OS X is fairly
straightforwardthe developers from My SQL.

My SQL Privilege System: The	My	SQL	privilege	system	is	always	on.	The	first	time	you	try	to	
connect, and for each subsequent action.

My SQL on Windows: The My SQL installation process on Windows is also quite simple the
developers	 from	My	SQL	AB	have	packaged	up	 everything	 you	need	 in	 one	 zip	file	with	 a	
setup program!

Open Source Technologies

16 LOVELY PROFESSIONAL UNIVERSITY

Notes Securing My SQL: Securing My SQL begins with the server startup procedure. If you are not
the administrator of the server, you won’t be able to change this, but you can certainly check it
out and report vulnerabilities to your Internet service provider.

1. Explain My SQL Query Analyzer.

2. Explain directory listing of My SQL applications.

1.6 Self Assessment Questions

 1. Telnet is a perfectly acceptable method to securely connect to My SQL from a remote host.

 (a) True (b) False

 2. Which three pieces of information does My SQL check each time a request is made?

 (a) Who you are?

 (b) Where you are accessing from?

 (c) What actions you’re allowed to perform?

 (d) All of the above.

	 3.	 What	 command	would	you	use	 to	grant	SELECT,	 INSERT,	and	UPDATE	privileges	 to	
a	user	named	bill	on	localhost	to	all	 tables	on	the	BillDB	database?	Also,	what	piece	of	
information is missing from this statement that is recommended for security purposes?

 (a)	 GRANT	SELECT,	INSERT,	UPDATE

	 	 ON	BillDB.*

 TO bill@localcost

 (b)	 GRANT	SELECT,	INSERT,	UPDATE

	 	 ON	BillDB.*

 TO bill@localhost

 (c)	 GRANT	SELECT,	INSERT,	UPDATE

	 	 ON	BillDB.*

 TO bill@localhost

 (d) None of the above.

 4. My SQL provides slow transaction speed to serve over 300,000 simultaneous users on
BigFishGames.com

 (a) True (b) False

 5. What are common problems in My SQL connection?

 (a) On Linux/Unix and Mac OS X, incorrect permissions do not allow you to start the
My SQL daemon. If this is the case, be sure you have changed owners and groups
to match those indicated in the installation instructions.

 (b) If you see the message Access denied when connecting to My SQL, be sure you are
using the correct username and password.

 (c) If you see the message Can’t connect to server, make sure the My SQL daemon is
running.

 (d) All of the above.

Unit 1: My SQL

 LOVELY PROFESSIONAL UNIVERSITY 17

Notes 6. My SQL is a key part of LAMP (Linux, Apache, My SQL, PHP/Perl/Python)

 (a) True (b) False

1.7 Review Questions

 1. What are the system requirements to install My SQL?

 2. Write steps to Installing My SQL on Mac OS X.

 3. Explain Authentication Process.

 4. What is Two-Step Authentication Process?

 5. What if I tell my Internet service provider to stop running My SQL as root, and it won’t?

 6. What are common problems My SQL connection?

 7. Explain Basic Security Guidelines.

 8. Explain directory listing of My SQL applications.

 9. What is the difference between SQL and SQL Server?

 10. What are the advantages and disadvantages of primary key and foreign key in SQL?

Answers for Self Assessment Questions
 1. (a) 2. (d) 3. (b) 4. (b) 5. (d) 6. (a)

1.8 Further Reading

Teach Yourself PHP, My SQL & Apache, By Meloni, Pearson Education.

http://www.dev.My SQL.com/

Open Source Technologies

18 LOVELY PROFESSIONAL UNIVERSITY

Notes Unit 2: Working with My SQL

CONTENTS

Objectives

Introduction

2.1 Privilege System in SQL

2.2 Working with User Privileges

 2.2.1 Adding Users Through My SQL

 2.2.2 Removing Privileges of My SQL

2.3 Summary

2.4 Keywords

2.5 Self Assessment Questions

2.6 Review Questions

2.7 Further Reading

Objectives

After studying this unit, you will be able to:

	 •	 Explain	SQL	privilege.

	 •	 Discuss	working	with	user	privileges.

Introduction

Table	 privileges	 are	 effective	 for	 a	 certain	 table.	 SQL	 also	 supports	 privileges	 for	 an	 entire	
database,	such	as	the	privilege	to	create	tables	or	views	in	a	certain	database.

Granting	privileges	on	the	database	level	is	not	supported	by	all	SQL	products.	SQL	supports	
the	following	database	privileges:

	 •	 SELECT. This privilege	gives	the	user	the	right	to	access	all	tables	of	the	specified	database	
with	the	SELECT	statement.

	 •	 INSERT. This privilege	gives	the	user	the	right	to	add	rows	to	all	tables	of	the	specified	
database	with	the	INSERT	statement.

	 •	 DELETE. This	 privilege	 gives	 the	 user	 the	 right	 to	 remove	 rows	 from	 all	 tables	 of	 the	
specified	database	with	the	DELETE	statement.

	 •	 UPDATE. This	 privilege	 gives	 the	 user	 the	 right	 to	 update	 values	 in	 all	 tables	 of	 the	
specified	database	with	the	UPDATE	statement.

	 •	 REFERENCES. This	privilege	gives	the	user	the	right	to	create	foreign	keys	that	point	to	
tables	of	the	specified	database.

Sarabjit Kumar, Lovely Professional University

Unit 2: Working with My SQL

 LOVELY PROFESSIONAL UNIVERSITY 19

Notes	 •	 CREATE. This	 privilege	 gives	 the	 user	 the	 right	 to	 create	 new	 tables	 in	 the	 specified	
database	with	the	CREATE	TABLE	statement.

	 •	 ALTER. This	privilege	gives	the	user	the	right	to	alter	all	tables	of	the	specified	database	
with	the	ALTER	TABLE	statement.

	 •	 DROP. This	privilege	gives	the	user	the	right	to	remove	all	tables	of	the	specified	database.

	 •	 INDEX. This privilege	gives	the	user	the	right	to	define	and	remove	indexes	on	all	tables	
of	the	specified	database.

	 •	 CREATE TEMPORARY TABLES. This	privilege	gives	the	user	the	right	to	create	temporary	
tables	in	the	specified	database.

	 •	 CREATE VIEW. This privilege	gives	the	user	the	right	to	create	new	views	in	the	specified	
database	with	the	CREATE	VIEW	statement.

	 •	 CREATE ROUTINE. This	privilege	gives	the	user	the	right	to	create	new	stored	procedures	
and	functions	for	the	specified	database.

	 •	 ALTER ROUTINE. This	privilege	gives	the	user	the	right	to	update	and	remove	existing	
stored	procedures	and	functions	of	the	specified	database.

	 •	 EXECUTE ROUTINE. This	 privilege	 gives	 the	 user	 the	 right	 to	 invoke	 existing	 stored	
procedures	and	functions	of	the	specified	database.

	 •	 LOCK TABLES. This	privilege	gives	the	user	the	right	to	block	existing	tables	of	the	specified	
database.

	 •	 ALL or ALL PRIVILEGES. This	 privilege	 is	 a	 shortened	 form	 for	 all	 the	 privileges	 just	
named.

2.1 Privilege System in SQL

The	My	 SQL	 privilege	 system	 is	 always	 on.	 The	 first	 time	 you	 try	 to	 connect,	 and	 for	 each	
subsequent	action,	My	SQL	checks	the	following	three	things:

Where you are accessing from (your host).

Who	you	say	you	are	(your	username	and	password).

What	you’re	allowed	to	do	(your	command	privileges).

All this information is stored in the database called My SQL, which is automatically created
when	My	SQL	is	installed.	There	are	several	tables	in	the	My	SQL	database:

columns_priv Defines	user	privileges	for	specific	fields	within	a	table.

db	Defines	the	permissions	for	all	databases	on	the	server.

func	Defines	user-created	functions.

host Defines	the	acceptable	hosts	that	can	connect	to	a	specific	database.

tables_priv	Defines	user	privileges	for	specific	tables	within	a	database.

user Defines	the	command	privileges	for	a	specific	user.

Open Source Technologies

20 LOVELY PROFESSIONAL UNIVERSITY

Notes These	 tables	will	 become	more	 important	 to	 you	 later	 in	 this	unit	 as	 you	 add	 a	 few	 sample	
users	to	My	SQL.	For	now,	just	remember	that	these	tables	exist	and	must	have	relevant	data	in	
them	in	order	for	users	to	complete	actions.	Further	discussed	in	working	with	user	privileges.

The Two-Step Authentication Process

As	you’ve	learned,	My	SQL	checks	three	things	during	the	authentication	process.	The	actions	
associated	with	these	three	things	are	performed	in	two	steps:

	 1.	 My	SQL	looks	at	the	host	you	are	connecting	from	and	the	username	and	password	pair	
that	you	are	using.	If	your	host	is	allowed	to	connect,	your	password	is	correct	for	your	
username, and the username matches one assigned to the host, My SQL moves to the
second	step.

	 2.	 For	whichever	SQL	command	you	are	attempting	to	use,	My	SQL	verifies	that	you	have	
the	ability	to	perform	that	action	for	that	database,	table,	and	field.

If	step	1	fails,	you’ll	see	an	error	about	it	and	you	won’t	be	able	to	continue	on	to	step	2.	For	
example,	 suppose	you	are	connecting	 to	My	SQL	with	a	username	of	 joe	and	a	password	of	
abc123	and	you	want	to	access	a	database	called	myDB.	You	will	receive	an	error	message	if	
any	of	those	connection	variables	is	incorrect	for	any	of	the	following	reasons:

Your	password	is	incorrect.

Username	joe	doesn’t	exist.

User joe can’t connect from localhost.

User	joe	can	connect	from	localhost	but	cannot	use	the	myDB	database.

You	may	see	an	error	like	the	following:

#/usr/local/My	SQL/bin/My	SQL	-h	localhost	-u	joe	-pabc123	test

Error	1045:	Access	denied	for	user:	‘joe@localhost’	(Using	password:	YES)

If	user	joe	with	a	password	of	abc123	is	allowed	to	connect	from	localhost	to	the	myDB	database,	
My	SQL	will	check	the	actions	that	joe	can	perform	in	step	2	of	the	process.	For	our	purposes,	
suppose	 that	 joe	 is	 allowed	 to	 select	data	 but	 is	 not	 allowed	 to	 insert	data.	 The	 sequence	of	
events	and	errors	would	look	like	the	following:

#/usr/local/My	SQL/bin/My	SQL	-h	localhost	-u	joe	-pabc123	test

Reading	table	information	for	completion	of	table	and	column	names

You	can	turn	off	this	feature	to	get	a	quicker	startup	with	-A

Welcome	to	the	My	SQL	monitor.	Commands	end	with	;	or	\g.

Your	My	SQL	connection	id	is	61198	to	server	version:	4.0.21-log

Type	‘help;’	or	‘\h’	for	help.	Type	‘\c’	to	clear	the	buffer.

My	SQL>	select	*	from	test_table;

+——+——————+

|	id	|	test_field	|

+——+——————+

+——+——————+

Unit 2: Working with My SQL

 LOVELY PROFESSIONAL UNIVERSITY 21

Notes| 1 | blah |

| 2 | blah blah |

+——+——————+

2	rows	in	set	(0.0	sec)

My	SQL>	insert	into	test_table	values	(‘’,	‘my	text’);

Error	1044:	Access	denied	for	user:	‘joe@localhost’	(Using	password:	YES)

Action-based	permissions	are	common	in	applications	with	several	levels	of	administration.	For	
example,	if	you	have	created	an	application	containing	personal	financial	data,	you	might	grant	
only	SELECT	privileges	 to	entry-level	 staff	members,	but	 INSERT	and	DELETE	privileges	 to	
executive-level	staff	with	security	clearances.

2.2 Working with User Privileges

In	most	cases	when	you	are	accessing	My	SQL	through	an	Internet	service	provider,	you	will	
have	only	one	user	and	one	database	available	to	you.	By	default,	that	one	user	will	have	access	
to	all	 tables	 in	 that	database	and	will	be	allowed	 to	perform	all	 commands.	 In	 this	 case,	 the	
responsibility	is	yours	as	the	developer	to	create	a	secure	application	through	your	programming.

If you are the administrator of your own server or have the ability to add as many databases
and	users	as	you	want,	as	well	as	modify	 the	access	privileges	of	your	users,	 these	next	 few	
sections	will	take	you	through	the	processes	of	doing	so.

2.2.1 Adding Users Through My SQL
Administering	your	server	through	a	third-party	application	might	afford	you	a	simple	method	
for	adding	users,	using	a	wizard-like	process	or	a	graphical	interface.	However,	adding	users	
through	the	My	SQL	monitor	is	not	difficult,	especially	if	you	understand	the	security	checkpoints	
used by My SQL, which you just learned.

The	simplest	method	for	adding	new	users	is	the	GRANT	command.	By	connecting	to	My	SQL	
as	the	root	user,	you	can	issue	one	command	to	set	up	a	new	user.	The	other	method	is	to	issue	
INSERT	statements	into	all	the	relevant	tables	in	the	My	SQL	database,	which	requires	you	to	
know	all	the	fields	in	the	tables	used	to	store	permissions.	This	method	works	just	as	well	but	
is	more	complicated	than	the	simple	GRANT	command.

The	simple	syntax	of	the	GRANT	command	is:

GRANT	privileges.

ON databasename.tablename.

TO	username@host.

IDENTIFIED	BY	“password”;

The	privileges	you	can	grant	are:

ALL	Gives	the	user	all	the	following	privileges.

ALTER	User	can	alter	(modify)	tables,	columns,	and	indexes.

CREATE	User	can	create	databases	and	tables.

DELETE	User	can	delete	records	from	tables.

DROP	User	can	drop	(delete)	tables	and	databases.

Open Source Technologies

22 LOVELY PROFESSIONAL UNIVERSITY

Notes FILE	User	can	read	and	write	files;	this	is	used	to	import	or	dump	data.

INDEX	User	can	add	or	delete	indexes.

INSERT	User	can	add	records	to	tables.

PROCESS	User	can	view	and	stop	system	processes;	only	trusted	users	should	be	able	to	do	this.

REFERENCES	Not	currently	used	by	My	SQL,	but	a	column	for	REFERENCES	privileges	exists	
in the user table.

RELOAD	User	can	issue	FLUSH	statements;	only	trusted	users	should	be	able	to	do	this.

SELECT	User	can	select	records	from	tables.

SHUTDOWN	User	can	shut	down	the	My	SQL	server;	only	trusted	users	should	be	able	to	do	this.

UPDATE	User	can	update	(modify)	records	in	tables.

USAGE	User	can	connect	to	My	SQL	but	has	no	privileges.

If,	for	instance,	you	want	to	create	a	user	called	john	with	a	password	of	99hjc!5,	with	SELECT	
and	INSERT	privileges	on	all	tables	in	the	database	called	myDB,	and	you	want	this	user	to	be	
able to connect from any host, use

GRANT	SELECT,	INSERT

ON	myDB.*

TO	john@”%”

IDENTIFIED	BY	“99hjc!5”;

Note	 the	use	of	 two	wildcards:	 *	 and	%.	These	wildcards	 are	used	 to	 replace	values.	 In	 this	
example,	*	replaces	the	entire	list	of	tables,	and	%	replaces	a	list	of	all	hosts	in	the	known	World	
a very long list indeed.

Here’s	another	example	of	adding	a	user	using	the	GRANT	command,	this	time	to	add	a	user	
called	jane	with	a	password	of	45sdg11,	with	ALL	privileges	on	a	table	called	employees	in	the	
database	called	myCompany.	This	new	user	can	connect	only	from	a	specific	host:

GRANT ALL

ON	myCompany.employees

TO	jane@janescomputer.company.com

IDENTIFIED	BY	“45sdg11”;

If	you	know	that	janescomputer.company.com	has	an	IP	address	of	63.124.45.2,	you	can	substitute	
that	address	in	the	hostname	portion	of	the	command,	as	follows:

GRANT ALL

ON	myCompany.employees

TO	jane@’63.124.45.2’

IDENTIFIED	BY	“45sdg11”;

Unit 2: Working with My SQL

 LOVELY PROFESSIONAL UNIVERSITY 23

NotesOne	note	about	adding	users:	Always	use	a	password	and	make	sure	 that	 the	password	 is	a	
good	one!	My	SQL	allows	you	 to	 create	users	without	 a	password,	 but	 that	 leaves	 the	door	
wide	open	should	someone	with	bad	intentions	guess	the	name	of	one	of	your	users	with	full	
privileges	granted	to	them!

If you use the GRANT command to add users, the changes will immediately take effect. To
make	absolutely	sure	of	this,	you	can	issue	the	FLUSH	PRIVILEGES	command	in	the	My	SQL	
monitor	to	reload	the	privilege	tables.

2.2.2 Removing Privileges of My SQL

Removing	 Privileges	 is	 as	 simple	 as	 adding	 them;	 instead	 of	 a	 GRANT	 command,	 you	 use	
REVOKE.	The	REVOKE	command	syntax	is:

REVOKE	privileges.

ON databasename.tablename.

FROM	username@hostname;

In	the	same	way	that	you	can	grant	permissions	using	INSERT	commands,	you	can	also	revoke	
permissions	 by	 issuing	 DELETE	 commands	 to	 remove	 records	 from	 tables	 in	 the	My	 SQL	
database.	However,	 this	 requires	 that	you	be	 familiar	with	 the	fields	and	 tables,	and	 it’s	 just	
much	easier	and	safer	to	use	REVOKE.

To	revoke	the	ability	for	user	john	to	INSERT	items	in	the	myCompany	database,	you	would	
issue	this	REVOKE	statement:

REVOKE	INSERT

ON	myDB.*

FROM	john@”%”;

Changes	made	to	the	data	in	the	privilege	tables	happen	immediately,	but	in	order	for	the	server	
to	be	aware	of	your	changes,	issue	the	FLUSH	PRIVILEGES	command	in	the	My	SQL	monitor.

Installing	My	SQL	on	Windows	and	Mac	OS	X	is	a	very	simple	process,	thanks	to	a	wizard-based	
installation	method.	My	SQL	AB	provides	a	GUI-based	administration	tool	for	Windows	users,	
called	WinMy	SQLadmin.	Linux/Unix	users	do	not	have	a	wizard-based	installation	process,	
but	it’s	not	difficult	to	follow	a	simple	set	of	commands	to	unpack	the	My	SQL	client	and	server	
binaries.	Linux/Unix	users	can	also	use	RPMs	for	installation.

Security	is	always	a	priority	and	there	are	several	steps	you	can	take	to	ensure	a	safe	and	secure	
installation	of	My	SQL.	Even	if	you	are	not	the	administrator	of	the	server,	you	should	be	able	
to	recognize	breaches	and	raise	a	ruckus	with	the	server	administrator!

The My SQL server should never run as the root user. Additionally, named users within My
SQL	should	always	have	a	password	and	their	access	privileges	should	be	well	defined.

My	SQL	uses	the	privilege	tables	in	a	two-step	process	for	each	request	that	is	made.	My	SQL	
needs	 to	know	who	you	are	and	where	you	are	connecting	 from	and	each	of	 these	pieces	of	
information	must	match	an	entry	in	its	privilege	tables.	Also,	the	user	whose	identity	you	are	
using	must	have	specific	permission	to	perform	the	type	of	request	you	are	making.

You	can	add	user	privileges	using	the	GRANT	command,	which	uses	a	simple	syntax	to	add	
entries	 to	 the	user	 table	 in	 the	My	SQL	database.	The	REVOKE	 command,	which	 is	 equally	
simple,	is	used	to	remove	those	privileges.	

Open Source Technologies

24 LOVELY PROFESSIONAL UNIVERSITY

Notes GRANT	SELECT,	INSERT,	UPDATE

ON	BillDB.*

TO	bill@localhost;

The	important	missing	piece	is	a	password	for	the	user.

Activities

Think of situations in which you might want to restrict command access at the table level. For
example,	you	wouldn’t	want	the	intern-level	administrator	to	have	shutdown	privileges	for	the	
corporate	database.

If	you	have	administrative	privileges	 in	My	SQL,	 issue	 several	GRANT	commands	 to	 create	
dummy	users.	It	doesn’t	matter	whether	the	tables	and	databases	you	name	are	actually	present.

Use	REVOKE	to	remove	some	of	the	privileges	of	the	users	you	created.

History of Microsoft SQL Server

SQL	Server	2005	is	the	latest	version	of	a	database	server	product	that	has	been	evolving	
since	the	late	1980s.	Microsoft	SQL	Server	originated	as	Sybase	SQL	Server	in	1987.	In	
1988,	Microsoft,	Sybase,	and	Aston-Tate	ported	the	product	to	OS/2.	Later,	Aston-Tate	

dropped	out	of	 the	SQL	Server	development	picture,	 and	Microsoft	 and	Sybase	 signed	a	
co-development	agreement	to	port	SQL	Server	to	Windows	NT.	The	co-development	effort	
cumulated	in	the	release	of	SQL	Server	4.0	for	Windows	NT.	After	the	4.0	release,	Microsoft	
and	Sybase	split	on	the	development	of	SQL	Server;	Microsoft	continued	forward	with	future	
releases	 targeted	 for	 the	Windows	NT	platform	while	Sybase	moved	ahead	with	releases	
targeted	for	the	UNIX	platform,	which	they	still	market	today.	SQL	Server	6.0	was	the	first	
release	of	SQL	Server	that	was	developed	entirely	by	Microsoft.	In	1996,	Microsoft	updated	
SQL	Server	with	the	6.5	release.	After	a	two-year	development	cycle,	Microsoft	released	the	
vastly	updated	SQL	Server	7.0	release	in	1998.	SQL	Server	7.0	embodied	many	radical	changes	
in the underlying storage and database engine technology used in SQL Server. SQL Server
2000,	the	accumulation	of	another	two-year	development	effort,	was	released	in	September	
2000.	The	move	from	SQL	Server	7.0	to	SQL	Server	2000	was	more	of	an	evolutionary	move	
that didn’t entail the same kinds of massive changes that were made in the move from 6.5 to
7.0.	Instead,	SQL	Server	2000	built	incrementally	on	the	new	code	base	that	was	established	
in	the	7.0	release.	Starting	with	SQL	Server	2000,	Microsoft	began	releasing	updates	to	the	
basic	 release	of	SQL	Server	 in	 the	 following	year	starting	with	XML	for	SQL	Server	Web	
Release	1,	which	added	several	XML	features	including	the	ability	to	receive	a	result	set	as	
an	XML	document.	The	next	year	they	renamed	the	web	release	to	the	more	succinctly	titled	
SQLXML	2.0,	which,	among	other	things,	added	the	ability	to	update	the	SQL	Server	database	
using	XML	update	grams.	This	was	quickly	followed	by	the	SQLXML	3.0	web	release,	which	
included	the	ability	to	expose	stored	procedures	as	web	services.	Two	years	later,	Microsoft	
SQL	Server	release	history	cumulates	with	the	release	of	SQL	Server	2005.	SQL	Server	2005	
uses the same basic architecture that was established with SQL Server 7 and it adds to this
all	the	features	introduced	with	SQL	Server	2000	and	its	web	releases	in	conjunction	with	
the	integration	of	the	.NET	CLR	and	an	array	of	powerful	new	BI	functions.	The	following	
timeline	summarizes	the	development	history	of	SQL	Server: Contd...

Unit 2: Working with My SQL

 LOVELY PROFESSIONAL UNIVERSITY 25

Notes– 1987	Sybase	releases	SQL	Server	for	UNIX.

– 1988	Microsoft,	Sybase	and	Aston-Tate	port	SQL	Server	to	OS/2.

– 1989	Microsoft,	Sybase	and	Aston-Tate	release	SQL	Server	1.0	for	OS/2.

– 1990 SQL	Server	1.1	is	released	with	support	for	Windows	3.0	clients.

–	Aston-Tate	drops	out	of	SQL	Server	development.

– 1991	Microsoft	and	IBM	end	joint	development	of	OS/2.

- 1992 Microsoft	SQL	Server	4.2	for	16-bit	OS/2	1.3	is	released.

- 1992	Microsoft	and	Sybase	port	SQL	Server	to	Windows	NT.

- 1993 Windows NT 3.1 is released.

- 1993 Microsoft and Sybase release version 4.2 of SQL Server for Windows NT.

- 1994	Microsoft	and	Sybase	co-development	of	SQL	Server	officially	ends.

-	Microsoft	continues	to	develop	the	Windows	version	of	SQL	Server.

–	Sybase	continues	to	develop	the	UNIX	version	of	SQL	Server.

– 1995 Microsoft	releases	version	6.0	of	SQL	Server.

– 1996 Microsoft releases version 6.5 of SQL Server.

– 1998 Microsoft	releases	version	7.0	of	SQL	Server.

– 2000 Microsoft	releases	SQL	Server	2000.

– 2001 Microsoft	releases	XML	for	SQL	Server	Web	Release	1	(download).

– 2002 Microsoft	releases	SQLXML	2.0	(renamed	from	XML	for	SQL	Server).

– 2002 Microsoft	releases	SQLXML	3.0.

– 2005 Microsoft	releases	SQL	Server	2005	on	November	7th,	2005.

Questions

1.	Explain	SQL	Server.

2. Give the time line of all SQL server version.

2.3 Summary

 •	 My	SQL	looks	at	the	host	you	are	connecting	from	and	the	username	and	password	pair	
that	you	are	using.	If	your	host	is	allowed	to	connect,	your	password	is	correct	for	your	
username	and	the	username	matches	one	assigned	to	host,	My	SQL	moves	to	next	step.

	 •	 For	whichever	SQL	command	you	are	attempting	to	use,	My	SQL	verifies	that	you	have	
the	ability	to	perform	that	action	for	that	database,	table	and	field.

	 •	 Administering	your	server	through	a	third	party	application	might	afford	you	a	simple	
method	for	adding	users,	a	wizard-like	process	or	a	graphical	interface.

	 •	 The	simplest	method	for	adding	new	users	is	the	GRANT	command.

	 •	 For	removing	privileges	we	have	to	use	REVOKE	command.

Open Source Technologies

26 LOVELY PROFESSIONAL UNIVERSITY

Notes 2.4 Keywords

Grant Command: This	is	the	simplest	method	for	adding	new	users.

Column:	You	cannot	create	a	table	without	specifying	any	column	name.

Flush: Privileges	command	is	used	to	reload	the	privileges	tables.

Revoke: Command	is	used	to	remove	the	privileges.

Table: A table must have atleast one column.

Explain	directory	listing	of	My	SQL	applications.

2.5 Self Assessment Questions

 1.	 The	simplest	method	for	adding	new	users	is	_______________	command.

 (a) Revoke (b) Insert

 (c) Grant (d)	 Update

	 2.	 _______________	command	is	used	to	remove	the	privileges.

 (a) Grant (b) Insert

 (c)	 Update	 (d) Revoke

	 3.	 Users	can	drop	(delete)	tables	and	databases	through.

 (a) Delete (b)	 Drop

 (c) Insert (d) Alter

	 4.	 _______________	is	used	to	import	or	dump	data.

 (a) File (b) Select

 (c) Flush (d) Delete

	 5.	 The	FLUSH	PRIVILEGES	command	in	the	My	SQL	monitor	to	___________	the	privileges	
table.

 (a) Insert (b) Reload

 (c) Delete (d)	 Drop

2.6 Review Questions

 1.	 How	will	you	connect	SQL	to	the	server?

	 2.	 How	will	you	create	a	database?

	 3.	 What	is	CREATE	TABLE?

	 4.	 Explain	two-step	authentication	process.

	 5.	 What	do	you	mean	by	GRANT	Command	and	give	its	syntax?

Unit 2: Working with My SQL

 LOVELY PROFESSIONAL UNIVERSITY 27

NotesAnswers for Self Assessment Questions
 1. (c) 2. (d) 3. (b) 4. (a) 5. (b)

2.7 Further Reading

Teach Yourself PHP, My SQL & Apache,	By	Meloni,	Pearson	Education.

http://www.dev.My	SQL.com/

Open Source Technologies

28 LOVELY PROFESSIONAL UNIVERSITY

Notes Unit 3: Apache Server

CONTENTS

Objectives

Introduction

3.1 Versions of Apache

 3.1.1 Apache HTTP Server Version 2.0

 3.1.2 Apache Mod

 3.1.3 Hello World

	 3.1.4	 Module	Definition

 3.1.5 Standard Module Stuff

	 3.1.6	 Config	Slots

3.2	 Choosing	Appropriate	Installation	Method

 3.2.1 Installation Options

 3.2.2 What You Need

 3.2.3 Binary Installation

 3.2.4 RPM Installation

 3.2.5 Build from Source

	 3.2.6	 Starting	Apache

 3.2.7 Customize

	 3.2.8	 Restarting	Apache

3.3 Summary

3.4 Keywords

3.5 Self Assessment Questions

3.6 Review Questions

3.7	 Further	Reading	

Objectives

After studying this unit, you will be able to:

	 •	 Understand	versions	of	apache.

	 •	 To understand different installation method for apache.

Manish, Kumar, Lovely Professional University

Unit 3: Apache Server

 LOVELY PROFESSIONAL UNIVERSITY 29

NotesIntroduction

The	Web	 is	 still	 a	 very	young	phenomenon.	Tim	Berners-Lee	 invented	 the	Web	 in	 late	 1990	
while	working	at	CERN,	the	European	Laboratory	for	Particle	Physics.	He	developed	it	so	that	
physicists	working	at	various	universities	around	the	world	could	have	 instantaneous	access	
to	information,	to	enable	their	collaboration	on	a	variety	of	projects.

Tim	defined	URLs,	HTTP,	and	HTML	and,	with	Robert	Cailliau,	wrote	the	first	Web	server	and	
the	first	Web	client	software,	which	was	later	dubbed	a browser.

Just	a	 few	years	ago,	 it	would	have	been	necessary	 to	explain	what	 these	 concepts	meant	 to	
all	but	the	most	technically	aware	audience.	Now,	there	are	few	people	(at	least	in	developed	
nations) who are unaware of the WWW.

Shortly	after	Tim’s	initial	work,	a	group	at	the	National	Center	for	Supercomputing	Activities	
(NCSA)	at	the	University	of	Illinois	at	Urbana-Champaign	(UIUC)	developed	the	NCSA	HTTPd	
Web	server	and	the	NCSA	Mosaic	graphical	Web	browser.	Mosaic	wasn’t	the	first	graphical	Web	
browser,	although	it’s	almost	universally	remembered	as	such.	That	honor	rightfully	belongs	
to	Viola,	written	by	Pei	Wei	and	available	before	Mosaic.	But	Mosaic	quickly	stole	the	spotlight	
and	most	users	becoming	the	most	widely	used	Web	browser	sometime	in	1992.

NCSA	HTTPd	was	the	server	most	used	on	the	Web	for	the	first	several	years	of	its	existence.	
However,	in	1994,	Rob	McCool,	who	had	developed	NCSA	HTTPd,	left	NCSA,	and	the	project	
fizzled.	There	was	no	longer	any	central	organization	collecting	fixes,	developing	new	features,	
and	distributing	a	functional	product.

Since	the	source	code	of	the	server	was	publicly	available,	many	people	using	it	had	developed	
their	own	bug	fixes	and	additional	features	that	they	needed	for	their	own	sites.	These	patches	
were	 shared	 rather	 haphazardly	 via	 Usenet,	 but	 there	 wasn’t	 a	 centralized	 mechanism	 for	
collecting	and	distributing	these	patches.

Thus,	Apache	like	the	World-wide	Web	was	put	together	largely	by	volunteers.	Although	the	
demise of the NCSA HTTPd project left developers with a product that didn’t work very well
at	the	time	and	no	one	to	complain	to	a	far	superior	product	resulted	in	the	long	run.

3.1 Versions of Apache

3.1.1 Apache HTTP Server Version 2.0
The	original	version	released	by	emWare,	Inc	(a	Device	Networking	Company)	with	a	look	and	
feel	similar	to	Apache’s,	can	be	found	here	in	a	zip	file.

3.1.2 Apache Mod

This	seems	to	be	accurate	as	of	Apache	2.0.39.	At	least	it	will	give	a	good	starting	point	into	what	
has traditionally been a sparsely documented area of Apache. This document is written from
the	Unix	perspective,	but	should	not	need	much	modification	to	work	under	other	platforms.	
In	 the	past	 it	was	been	very	difficult	 for	 coders	unfamiliar	with	 the	guts	of	Apache	 to	get	 a	
start	on	making	custom	mods.	Currently	(July	2010)	this	is	even	more	difficult	because,	though	
Apache	2.0	is	shaping	up	nicely,	the	documentation	available	to	the	public	has	not	caught	up.		
Let’s	start	by	jumping	into	the	fridged	waters	head	first.	Let’s	make	a	mod.

You	 can	 include	 custom	mods	 in	Apache	 in	 two	ways.	The	first	way	 is	 to	build	 them	 into	
Apache.	 That	 is	 nice	 for	 a	 production	 quality	 mod,	 but	 when	 you’re	 still	 developing	 the	

Open Source Technologies

30 LOVELY PROFESSIONAL UNIVERSITY

Notes mod,	it	is	generally	a	pain	to	rebuild	all	of	Apache	for	every	little	change/addition	you	make	
to your mod.

The second way to include a mod is to build Apache to load mods at start up. It build them with
the	following	commands	(detailed	more	fully	at	http://httpd.apache.org/docs-2.0/install.html):

>./configure	—prefix=PREFIX	—enable-so

>make

>make install

Then	it,	for	simplicity,	make	the	user	and	group	in	httpd.conf	match	my	own.	They	will	look	
something	like	this:

User	billyboebob

Group billyboebob

3.1.3 Hello World

Next	you	need	a	mod	to	run.	Here	is	the	code	for	a	Hello	World.	We’ll	look	at	what	it	does	in	
more detail shortly.

#include “httpd.h”

#include “http_config.h”

#include “http_core.h”

#include “http_log.h”

#include “http_protocol.h”

#include “ap_compat.h”

static void register_hooks(apr_pool_t *p);

static int helloworld2_handler(request_rec *r);

static void register_hooks(apr_pool_t *p)

{

 ap_hook_handler(helloworld2_handler, NULL, NULL, APR_HOOK_MIDDLE);

}

static int helloworld2_handler(request_rec *r)

{

 r->content_type = “text/html”

 ap_send_http_header(r);

 ap_rputs(“<H1>Hello <i>Apache 2.0</i> World!</H1>”, r);

 return OK;

}

Unit 3: Apache Server

 LOVELY PROFESSIONAL UNIVERSITY 31

Notes module AP_MODULE_DECLARE_DATA helloworld2_module =

{

STANDARD20_MODULE_STUFF, /* stuff that needs to be declared in

 every 2.0 mod */

NULL, /* create per-directory config structure */

NULL, /* merge per-directory config structures */

NULL, /* create per-server config structure */

NULL, /* merge per-server config structures */

NULL, /* command apr_table_t *

register_hooks /* register hooks */

};

Take	this	c	code	name	it	‘mod_helloworld2.c’	and	save	it.	Now	you	can	compile	it	using	an	apache	tool	
called	apxs.	apxs	is	located	in	the	bin	Directory	of	the	Apache	2.0.x	build.	The	command	that	I	used	
to	compile	this	mod	is	‘apxs	-c	-i	-a	mod_helloworld2.c’.	This	will	build	our	mod	and	install	it.

What	good	 is	 the	code	 if	you	don’t	see	 it	doing	anything?	 ‘cd’	 to	 the	 ‘conf’	directory.	 In	 this	
directory	is	the	file	‘httpd.conf’.	Add	these	lines	where	it	seems	appropriate:

 <Location /ourmap>

 SetHandler helloworld2-handler

 </Location>

 Give a	mod	to	run,	the	code	for	a	Hello	World.	

3.1.4 Module Definition

Every	standard	Apache	mod	needs	an	initial	‘module’	to	describe	it.	By	convention	this	is	the	
last	thing	in	the	module.	To	define	it	use:

							module	AP_MODULE_DECLARE_DATA	foobar_module	=

Replace	‘foobar’	with	the	name	of	the	module	(the	file	name	minus	any	extensions).

3.1.5 Standard Module Stuff

There	 are	 14	 slots	 in	 a	 standard	 Apache	 2.0	 module.	 We’re	 fortunate	 though.	 The	 macro	
‘STANDARD20	MODULE	STUFF’	predefines	the	first	eight	of	these	for	us.	The	macro	is	defined	
in	http_config.h	if	you	desire	to	take	a	closer	look	at	it.	It	mostly	contains	bookkeeping	items	
such	as	the	major	and	minor	magic	numbers	for	the	Apache	release.

3.1.6 Config Slots

The	 next	 four	 slots	we	 do	 not	 use,	 so	 let’s	 skip	 them.	 They	 have	 to	 do	with	 host	wide	 and	
directory	wide	configurations	and	access.

Open Source Technologies

32 LOVELY PROFESSIONAL UNIVERSITY

Notes Commands

Special commands sent to the Apache server in the HTTP Header can be captured and handled
with	the	function	pointed	to	by	this	slot.	These	are	typically	used	to	configure	the	module	before	
the	associated	registered	hooks	are	called.

Register Hooks

This is a pointer to a function that details the hooks that this module handles. The convention
is	for	the	function	to	be	called,	of	all	things,	‘register_hooks’.	There	are	lots	and	lots	of	potential	
hooks.	We	only	needed	one	type,	the	ap_hook_handler.

helloworld2_handler

Our	actual	handler	takes	the	form	of:

							static	int	foobar_handler(request_rec	*r)

Where	foobar	is	replaced	with	the	name	of	the	handler.	Our	first	action	in	the	handler	is	to	set	
the	return	messages	content	type	to	‘text/html’.	We	send	the	return	header	with:

	 ap_send_http_header(r);

Now	we	can	send	some	text.	In	our	case	this	is	the	‘Hello’.	We	finish	up	by	sending	the	macro	OK.

3.2 Choosing Appropriate Installation Method

The	Apache	Web	server	is	arguably	the	most	popular	Web	server	in	use	on	the	Internet	today.	
Here	are	some	of	the	reasons	why	Apache	is	so	popular;	you	don’t	have	to	be	running	Windows	
to	 run	Apache.	 It	was	 developed	 on	 various	Unix/Linux/BSD	platforms,	 and	 then	 recently	
ported	to	Win32.	Internet	Information	Server,	a	Web	server	made	by	Microsoft	for	the	Windows	
NT	platform,	is	made	for	use	in	the	“Windows-only”	world.	While	IIS	has	many	features,	it’s	
lack of portability limits it’s market share. Another reason for Apache’s widespread acceptance
is	its	overall	stability.	While	you	can	slow	down	an	Apache	Web	server,	you	can	rarely,	if	ever,	
kill one. The Apache Web server service is near bulletproof.

Apache	has	 been	 shown	 to	 be	 substantially	 faster,	more	 stable,	 and	more	 feature-full	 than	
many	 other	 web	 servers.	 Although	 certain	 commercial	 servers	 have	 claimed	 to	 surpass	
Apache’s	 speed	 (it	 has	 not	 been	demonstrated	 that	 any	 of	 these	 “benchmarks”	 are	 a	 good	
way	of	measuring	WWW	server	speed	at	any	rate).	The	developers	of	Apache	feel	that	it	 is	
better	to	have	a	mostly	fast	free	server	than	an	extremely	fast	server	that	costs	thousands	of	
dollars.	Apache	is	run	on	sites	that	get	millions	of	hits	per	day,	and	they	have	experienced	no	
performance	difficulties.

3.2.1 Installation Options

You can download Apache from the Apache Software Foundation web site located at
http://www.apache.org,	 in	 source	 and	binary	 forms.	While	your	downloading	Apache,	you	
may want to browse over the documentation.

3.2.2 What You Need

To	install	Apache,	you	will	need	the	following	things:

	 1.	 A	computer	running	Linux.

Unit 3: Apache Server

 LOVELY PROFESSIONAL UNIVERSITY 33

Notes 2. Root access on this computer.

	 3.	 For	binary	and	source	installations,	the	tar	and	gunzip	Unix	utilities.

3.2.3 Binary Installation

A	binary	is	pre-configured,	which	means	someone	else	has	gone	to	the	trouble	of	configuring	
and	 building	 the	 software	 for	 you.	 There	 are,	 however,	 a	 few	 things	 you	 should	 keep	 in	
mind:	Binaries	are	compiled	for	a	particular	operating	system.	In	other	words,	you	must	use	
a	binary	built	specifically	for	FreeBSD	on	your	FreeBSD	machine	and	a	Linux	binary	on	your	
Linux	machine.	You	need	 to	be	 sure	 to	grab	 the	correct	binary;	 if	you	don’t	 see	a	binary	 for	
your	particular	operating	system,	you	must	choose	a	different	method	of	installation.	Apache	
Binaries are usually a version or two behind the current source distribution. This means you
don’t	reap	the	benefits	of	the	latest	bug	fixes	and	feature	enhancements.	Because	binaries	are	
pre-configured,	you	don’t	have	much	opportunity	to	alter	the	way	the	software	works.	If	you’re	
a	newcomer,	you	may	not	care	about	this	loss	of	flexibility.	Fortunately	most	Apache	binaries	
include	a	full	source	distribution,	providing	you	with	the	best	of	both	worlds—play	now,	learn	
later.	Now	 let’s	 install	 a	 binary.	Point	 your	browser	 at	http://www.apache.org/dist/httpd/
binaries/	 and	 download	 the	 binary	 for	 your	 operating	 system	 (in	 our	 case,	 Linux).	 You’ll	
most	 likely	be	presented	with	a	directory	 containing	multiple	versions	of	Apache	 in	various	
compressed	forms.	For	the	purposes	of	this	guide,	I’ll	assume	you’ve	downloaded	the	gzip’d	
form	of	 the	 latest	2.0.x	Apache	binary	(currently	 that’s	httpd-2.0.35-i686-pc-linux-rh72.tar.gz).	
If	there	is	a	README	associated	with	the	file	you’re	downloading,	you	may	want	to	review	it	
for	any	interesting	installation	tidbits	or	possible	bugs.

3.2.4 RPM Installation

Those	of	you	running	Red	Hat	Linux	may	want	to	take	advantage	of	Red	Hat’s	RPM	(“RedHat	
Package	Manager”)	 system.	 Almost	 identical	 to	 a	 binary,	 an	 RPM	 is	 further	 customized	 to	
play	 nicely	with	 other	 RPMs	 and	 provide	 a	 consistent	 interface	 to	 installing,	 updating,	 and	
removing	binaries.	For	Linux	newcomers	or	when	installing	a	small	standard	component,	RPMs	
are simple and reliable. Bear in mind that an Apache RPM may already be installed on your
system	depending	on	how	Linux	was	originally	installed	on	your	computer.	To	find	out,	at	the	
shell	prompt,	type:

rpm	-qa	|	grep	apache	If	you	see	something	like	apache-1.3.9xxx,	an	Apache	RPM	has	already	been	
installed.	You	can	also	type	that	command	typing	httpd	instead	of	apache	to	see	if	it’s	installed.

If	 you	 don’t	 have	 an	 Apache	 RPM,	 you	must	 obtain	 one.	 Red	Hat	 7.3	 ships	 apache-1.3.23-	
11.src.rpm	 in	 the	RedHat/RPMS	directory	on	 the	 installation	CD.	Or,	point	your	browser	at	
ftp://ftp.redhat.com/pub/redhat/redhat-7.3-en/os/i386/RedHat/RPMS	and	download	 it.	 If	
you’ve	not	already	done	so,	you’ll	need	to	become	root.	Navigate	to	the	same	directory	as	the	
.rpm	file	 you	obtained,	 and	 then	 type	 the	 following	 command,	 substituting	 the	name	of	 the	
.rpm	you’re	using	for	example:	apache-1.3.23-11.src.rpm.

rpm	-ivh	apache-1.3.23-11.src.rpm

RPM	should	grind	away,	displaying	its	progress	with	a	primitive	#######	progress	bar.	Barring	
any	errors,	you’re	done.

Open Source Technologies

34 LOVELY PROFESSIONAL UNIVERSITY

Notes 3.2.5 Build from Source

Building	Apache	 from	source	may	 seem	 like	a	daunting	 task	 to	newcomers,	but	 the	Apache	
developers	have	done	a	wonderful	job	of	making	the	task	about	as	simple	as	could	be.	Just	three	
more	commands	than	a	binary	installation	and	you	skip	the	arduous	task	of	figuring	out	which	
binary	is	the	right	one	for	your	particular	operating	system.

Point	your	browser	at	http://www.apache.org/dist/httpd/	and	download	the	gzip’d	form	of	
the	current	version	of	Apache	(2.0.36	at	the	time	of	this	writing).

Now	let’s	uncompress	that	archive	using	gunzip	and	tar.	You	should	replace	the	httpd-2.0.36.
tar.gz	below	with	the	name	of	the	gzip’d	file	you	downloaded.

gunzip	<	httpd-2.0.36.tar.gz	|	tar	xvf	–	You	should	end	up	with	an	httpd-2.0.x	directory,	x	being	
the	particular	sub-version	of	Apache.

you	downloaded.	Move	into	the	newly	created	directory.	cd	httpd-2.0.x.

Now	we’ll	use	 the	configure	and	make	commands	to	configure,	make,	and	 install	Apache.	 If	
you’ve	not	already	done	so,	now	would	be	the	time	to	become	root.

./configure

Your	screen	should	look	something	like:

#	./configure

checking	for	chosen	layout...	Apache.

checking	for	working	mkdir	-p...	yes.

checking	build	system	type...	i686-pc-linux-gnu.

checking	host	system	type...	i686-pc-linux-gnu.

checking	target	system	type...	i686-pc-linux-gnu.

Configuring	Apache	Portable	Runtime	library.

...

config.status:	executing	default	commands

Unless	errors	were	reported	(not	warnings),	your	Apache	installation	is	now	configured	and	we

can	move	on.	This	is	where	things	get	a	bit	ugly.	Make’ing	Apache	produces	screenfulls	of	output.

make

Your	screen	should	look	something	like:

#	make

Making	all	in	srclib

make[1]:	Entering	directory	‘/home/ryan/dl/apache_guide/httpd-

Unit 3: Apache Server

 LOVELY PROFESSIONAL UNIVERSITY 35

Notes2.0.36/srclib’

Making	all	in	apr

make[2]:	Entering	directory	‘/home/ryan/dl/apache_guide/httpd-

2.0.36/srclib/apr’

...

make[1]:	Leaving	directory	‘/home/ryan/dl/apache_guide/httpd-2.0.36’

#

Finally,	you’re	ready	to	install	your	Apache	build.

#	make	install

Now Apache is installed.

3.2.6 Starting Apache

Let’s	take	your	new	Apache	installation	out	for	a	spin.

If	you	installed	Apache	using	a	binary	or	from	scratch,	as	root,	type:

/usr/local/apache/bin/apachectl	start

If	you	used	an	RPM,	as	root,	type:

/sbin/service	httpd	start

Point	your	browser	 at	 your	brand	new	Web	 server,	http://localhost/.	 If	 everything	worked	
you	should	see	the	default	home	page.

3.2.7 Customize

Apache	uses	some	rather	easy	to	understand	text	files	for	configuration.	On	a	Red	Hat	system,	
you’ll	find	them	in	/etc/httpd/conf.	Quite	a	few	Linux	distributions	place	them	in	this	same	
place,	but	if	you	can’t	find	such	a	directory,	do	a	search	for	“httpd.conf”.	Once	you	find	these,	
you’ve	found	the	main	config	files.	If	you’re	new	to	Linux,	and	need	help	finding	this	file,	here’s	
how	you	can	find	it.

	 1.	 Login	as	root

	 2.	 Type:	cd	/

	 3.	 Type:	find	-name	httpd.conf

Now	you	should	see	where	 the	file	 is	 located.	When	you	move	 into	 the	directory	containing	
httpd.conf,	you	should	see	these	three	files:

	 • httpd.conf –	This	has	the	settings	for	the	overall	configuration	for	the	server.

	 •	 access.conf –	This	file	contains	all	the	security	settings	for	Apache.

	 • srm.conf –	This	file	contains	the	MIME	definitions	and	default	document	names	for	files	
on the server.

Open Source Technologies

36 LOVELY PROFESSIONAL UNIVERSITY

Notes

Contd...

3.2.8 Restarting Apache

Whenever	you	make	changes	to	the	server	configuration	files,	such	as	httpd.conf,	 they	won’t	
take	effect	until	 the	server	 is	restarted.	 In	Linux,	Apache	can	be	restarted	depending	on	how	
you	installed	it.	If	you	installed	Apache	using	a	binary	or	from	scratch,	as	root,	type:

/usr/local/apache/bin/apachectl	start

If	you	used	an	RPM,	as	root,	type:

/sbin/service	httpd	start

After	being	restarted	the	changes	will	have	taken	effect.

Every	standard	Apache	mod	needs	an	initial	‘module’	to	describe	it.

The	 Apache	 project	 began	 in	 1995	 when	 a	 group	 of	 eight	 volunteers,	 seeing	 that	
web	software	was	becoming	 increasingly	commercialized,	got	 together	 to	 create	a	
supported	 open	 source	web	 server.	Apache	 began	 as	 an	 enhanced	 version	 of	 the	

public-domain	NCSA	 server	but	 steadily	diverged	 from	 the	original.	Many	new	 features	
have	been	added	to	Apache	over	the	years:	significant	features	include	the	ability	for	a	single	
server	to	host	multiple	virtual	web	sites,	a	smorgasbord	of	authentication	schemes,	and	the	
ability	for	the	server	to	act	as	a	caching	proxy.	In	some	cases,	Apache	is	way	ahead	of	the	
commercial	vendors	 in	 the	 features	wars.	For	example,	at	 the	 time	 this	book	was	written	
only	the	Apache	web	server	had	implemented	the	HTTP/1.1	Digest	Authentication	scheme.

Internally,	 the	 server	 has	 been	 completely	 redesigned	 to	 use	 a	 modular	 and	 extensible	
architecture,	turning	it	into	what	the	authors	describe	as	a	“web	server	toolkit.”	In	fact,	there’s	
very	little	of	the	original	NCSA	httpd	source	code	left	within	Apache.	The	main	NCSA	legacy	
is	the	configuration	files,	which	remain	backward-compatible	with	NCSA	httpd.

Apache’s	success	has	been	phenomenal.	In	less	than	three	years,	Apache	has	risen	from	relative	
obscurity	to	the	position	of	market	leader.	Netcraft,	a	British	market	research	company	that	
monitors	the	growth	and	usage	of	the	web,	estimates	that	Apache	servers	now	run	on	over	
50	per	cent	of	the	Internet	web	sites,	making	it	by	far	the	most	popular	web	server	in	the	
world.	Microsoft,	 its	nearest	rival,	holds	a	mere	22	per	cent	of	 the	market.	This	 is	despite	
the fact that Apache has lacked some of the conveniences that common wisdom holds to be
essential,	such	as	a	graphical	user	interface	for	configuration	and	administration.

Apache has been used as the code base for several commercial server products. The most
successful	of	these,	C2Net’s	Stronghold,	adds	support	for	secure	communications	with	Secure	
Socket	Layer	(SSL)	and	a	form-based	configuration	manager.	There	is	also	WebTen	by	Tenon	
Intersystems,	a	Macintosh	PowerPC	port,	and	 the	Red	Hat	Secure	Server,	an	 inexpensive	
SSL-supporting	server	from	the	makers	of	Red	Hat	Linux.

Another	milestone	was	reached	in	November	of	1997	when	the	Apache	Group	announced	its	
port	of	Apache	to	the	Windows	NT	and	95	operating	systems	(Win32).	A	fully	multithreaded	

Unit 3: Apache Server

 LOVELY PROFESSIONAL UNIVERSITY 37

Notesimplementation,	the	Win32	port	supports	all	the	features	of	the	Unix	version	and	is	designed	
with	the	same	modular	architecture	as	its	brother.	Freeware	ports	to	OS/2	and	the	AmigaOS	
are also available.

In	 the	 summer	 of	 1998,	 IBM	 announced	 its	 plans	 to	 join	with	 the	Apache	 volunteers	 to	
develop a version of Apache to use as the basis of its secure Internet commerce server
system,	supplanting	the	servers	that	it	and	Lotus	Corporation	had	previously	developed.

Why	use	Apache?	Many	web	sites	 run	Apache	by	accident.	The	server	software	 is	 small,	
free,	and	well	documented	and	can	be	downloaded	without	filling	out	pages	of	 licensing	
agreements.	The	person	responsible	for	getting	his	organization’s	web	site	up	and	running	
downloads	and	installs	Apache	just	to	get	his	feet	wet,	intending	to	replace	Apache	with	a	
“real”	server	at	a	later	date.	But	that	date	never	comes.	Apache	does	the	job	and	does	it	well.

However,	 there	 are	 better	 reasons	 for	 using	 Apache.	 Like	 other	 successful	 open	 source	
products	such	as	Perl,	 the	GNU	tools,	and	the	Linux	operating	system,	Apache	has	some	
big	advantages	over	its	commercial	rivals.

Questions

1.	What	do	you	mean	by	Secure	Socket	Layer	(SSL)?

2.	Explain	Linux	operating	system	and	GNU	tools.

3.3 Summary

 •	 Apache,	like	the	world	wide	web	was	put	together	largely	by	volunteers.	Although	the	
demise of the NCSA HTTPd project left developers with a product that did not work very
well at the time.

	 •	 There	are	two	ways	in	apache	mod.	The	first	way	is	to	build	them	into	Apache	and	the	
second way is to include a mod is to build Apache to load mod at start up.

	 •	 Apache	has	been	shown	to	be	substantially	faster,	more	stable,	and	more	feature-full	than	
many other web servers.

3.4 Keywords

Apache Configuration File Structure: Apache	keeps	all	of	its	configuration	information	in	text	
files.	The	main	file	is	called	httpd.conf.	This	file	contains	directives	and	containers,	which	enable	
you to customize your Apache installation.

Apache Mod:	This	seems	to	be	accurate	as	of	Apache	2.0.39.	At	least	it	will	give	a	good	starting	
point into what has traditionally been a sparsely documented area of Apache.

HTTP Header: HTTP Header can be captured and handled with the function pointed by the slot.

Module definition: Every	 standard	Apache	mod	 needs	 an	 initial	 ‘module’	 to	 describe	 it.	 By	
convention	this	is	the	last	thing	in	the	module.

Register Hooks: This is a pointer to a function that details the hooks that the module handles.

Give appropriate installation method of Apache.

Open Source Technologies

38 LOVELY PROFESSIONAL UNIVERSITY

Notes 3.5 Self Assessment Questions

 1. Special commands sent to the Apache server in ______________ .

 2. ______________ is a pointer to a function that details the hooks that this module handles.

	 3.	 Apache	Web	server	is	arguably	the	most	popular	Web	server	in	use	on	the	Internet	today.

	 (a)	 True	 (b) False

 4. Apache Web server service is near ______________ .

	 5.	 A	binary	is	pre-configured,	which	means	someone	else	has	gone	to	the	trouble	of	configuring	
and	building.

	 (a)	 True	 (b) False

3.6 Review Questions

 1.	 Define	Apache.

 2. Give various version of Apache.

	 3.	 Define	Apache	HTTP	Server	Version	2.0.

	 4.	 What	is	Apache	mod?

 5. Give appropriate installation method of Apache.

	 6.	 What	is	Binary	Installation?

 7. Give RPM Installation.

Answers for Self Assessment Questions

	 1.	 HTTP	Header	 2.	 Register	hook	 3.	 (a)	 4.	 Bulletproof	 5.	 (a)

3.7 Further Reading

A Beginner’s Guide by: Vaswani, Vikram,	By	Tata	MC-Graw	Hill.

http://www.gibmonts.com/C-plus/ch11level1sec10.htm/.

Unit 4: Apache Server Installation in Window

 LOVELY PROFESSIONAL UNIVERSITY 39

NotesUnit 4: Apache Server Installation in Window

CONTENTS

Objectives

Introduction

4.1 Installation Method in Windows

 4.1.1 Building from Source

 4.1.2 Installing a Binary

4.2	 Apache	Configuration	File	Structure

 4.2.1 Directives

 4.2.2 Containers

 4.2.3 Conditional Evaluation

 4.2.4 ServerRoot

	 4.2.5	 Per	Directory	Configuration	Files

4.3	 Apache	Log	File

 4.3.1 Error Logs

	 4.3.2	 Apache	Access	Log	File

 4.3.3 Tracking Website

 4.3.4 Log Rotation

4.4	 Starting	Apache	for	First	Time

4.5 Summary

4.6 Keywords

4.7 Self Assessment Questions

4.8 Review Questions

4.9	 Further	Reading	

Objectives

After studying this unit, you will be able to:

	 •	 Define	installation	method	in	Widows.

	 •	 Explain	Apache	configuration	file	structure.

	 •	 Understand	log	file.

	 •	 Explain	starting	Apache	for	first	time.

Sarabjit Kumar, Lovely Professional University

Open Source Technologies

40 LOVELY PROFESSIONAL UNIVERSITY

Notes Introduction

The Apache Server combined with the power of PHP, MySQL, and phpMy Admin, creates
one of the best possible development environments for a web programmer. Getting everything
properly	configured	can	take	20-30	minutes.

Installed	Subversion	and	Apache	on	a	Windows	Server	installation.	It’s	relatively	simplified,	but	
you can do various different changes throughout to support your own environment.

4.1 Installation Method in Windows

You have several options when it comes to getting a basic Apache installation in place. Apache
is open source, meaning that you can have access to the full source code of the software, which
in	 turn	enables	you	 to	build	your	own	custom	server.	Additionally,	pre-built	Apache	binary	
distributions	 are	 available	 for	most	modern	Unix	 platforms.	 Finally,	 Apache	 comes	 already	
bundled	with	a	variety	of	Linux	distributions,	and	you	can	purchase	commercial	versions	from	
software	vendors	such	as	Covalent	Technologies	and	IBM.	The	examples	in	this	hour	will	teach	
you	how	to	build	Apache	from	source	if	you	are	using	Linux/Unix,	and	how	to	use	the	installer	
if you plan to run Apache on a Windows system.

4.1.1 Building from Source

Building	from	source	gives	you	the	greatest	flexibility,	as	it	enables	you	to	build	a	custom	server,	
remove	modules	you	do	not	need	and	extend	 the	 server	with	 third-party	modules.	Building	
Apache from source code enables you to easily upgrade to the latest versions and quickly apply
security patches, whereas updated versions from vendors can take days or weeks to appear.

The	 process	 of	 building	 Apache	 from	 the	 source	 code	 is	 not	 especially	 difficult	 for	 simple	
installations,	but	can	grow	in	complexity	when	third-party	modules	and	libraries	are	involved.

4.1.2 Installing a Binary

Linux/Unix	binary	installations	are	available	from	vendors	and	can	also	be	downloaded	from	
the	Apache	Software	Foundation	Web	site.	They	provide	a	convenient	way	to	install	Apache	for	
users	with	 limited	system	administration	knowledge,	or	with	no	special	configuration	needs.	
Third party commercial vendors provide prepackaged Apache installations together with an
application server, additional modules, support, and so on.

The	Apache	Software	Foundation	provides	an	installer	for	Windows	systems—a	platform	where	
a	compiler	is	not	as	commonly	available	as	in	Linux/Unix	systems.

4.2 Apache Configuration File Structure

Apache	 keeps	 all	 of	 its	 configuration	 information	 in	 text	 files.	 The	main	 file	 is	 called	 httpd.
conf.	This	file	contains	directives	and	containers,	which	enable	you	to	customize	your	Apache	
installation.	Directives	configure	specific	settings	of	Apache,	such	as	authorization,	performance	
and	network	parameters.	Containers	specify	the	context	to	which	those	settings	refer.	For	example,	
authorization	configuration	can	refer	to	the	server	as	a	whole,	a	directory	or	a	single	file.

4.2.1 Directives

The	following	rules	apply	for	Apache	directive	syntax:

Unit 4: Apache Server Installation in Window

 LOVELY PROFESSIONAL UNIVERSITY 41

Notes	 •	 The	directive	arguments	follow	the	directive	name.

	 •	 Directive	arguments	are	separated	by	spaces.

	 •	 The	 number	 and	 type	 of	 arguments	 vary	 from	 directive	 to	 directive;	 some	 have	 no	
arguments.

	 •	 A	directive	occupies	a	single	line,	but	you	can	continue	it	on	a	different	line	by	ending	
the previous line with a backslash character (\).

	 •	 The	pound	sign	(£)	should	precede	the	directive,	and	must	appear	on	its	own	line.

In	the	Apache	server	documentation,	found	online	at	http://httpd.apache.org/docs-2.0/,	you	
can browse the directives in alphabetical order or by the module to which they belong. You’ll
soon learn about some of the basic directives, but you should supplement your knowledge
using the online documentation.

Figure	shows	an	entry	from	the	documentation	for	the	ServerName	directive	description.	You	
can	 read	 this	 description	 in	 the	 online	 documentation	 at	 http://httpd.apache.org/docs-2.0/
mod/core.html#servername.

Figure 4.1: Directive description example

Syntax: This	entry	explains	the	format	of	the	directive	options.	Compulsory	parameters	appear	
in italics, optional parameters appear in italics and brackets.

Default: If the directive has a default value, it will appear here.

Context: This entry details the containers or sections in which the directive can appear. Containers
are	explained	in	the	next	section.	The	possible	values	are	server	config,	virtual	host,	directory,	
and.htaccess.

Status: This entry indicates whether the directive is built in Apache (core), belongs to one of
the	bundled	modules	(base	or	extension,	depending	on	whether	they	are	compiled	by	default),	
is part of a Multi Processing Module (MPM), or is bundled with Apache but not ready for use
in	a	production	server	(experimental).

Module: This entry indicates the module to which the directive belongs.

Open Source Technologies

42 LOVELY PROFESSIONAL UNIVERSITY

Notes Compatibility: This entry contains information about which versions of Apache support the
directive.

Override:	Apache	directives	belong	to	different	categories.	The	override	field	is	used	to	specify	
which	 directive	 categories	 can	 appear	 in.htaccess	 per-directory	 configuration	 files.	 A	 brief	
explanation	of	the	directive	follows	these	entries	in	the	documentation,	and	a	reference	to	related	
directives or documentation may appear at the end.

4.2.2 Containers

Directive containers, also called sections, limit the scope for which directives apply. If directives
are	not	inside	a	container,	they	belong	to	the	default	server	scope	(server	config)	and	apply	to	
the server as a whole.

These	are	the	default	Apache	directive	containers:

<VirtualHost>?	A	VirtualHost	directive	specifies	a	virtual	server.	Apache	enables	you	to	host	
different Web sites with a single Apache installation. Directives inside this container apply to a
particular Web site. This directive accepts a domain name or IP address and an optional port as
arguments. You will learn more about virtual hosts in Hour 22, “Apache Performance Tuning
and Virtual Hosting.”

<Directory>, <DirectoryMatch>? These containers allow directives to apply to a certain directory
or	group	of	directories	in	the	file	system.	Directory	containers	take	a	directory	or	directory	pattern	
argument.	Enclosed	directives	apply	 to	 the	specified	directories	and	their	subdirectories.	The	
DirectoryMatch	container	allows	regular	expression	patterns	to	be	specified	as	an	argument.	For	
example,	the	following	allows	a	match	of	all	subdirectories	of	the	www	directory	that	are	made	
up	of	four	numbers,	such	as	a	directory	named	after	a	year	and	month	(0902	for	September	2010):

<DirectoryMatch	“^/www/.*/[0-9]{4}”>

<Location>, <LocationMatch>? These containers allow directives to apply to certain requested
URLs	or	URL	patterns.	They	are	similar	to	their	Directory	counterparts.	LocationMatch	takes	a	
regular	expression	as	an	argument.	For	example,	the	following	matches	directories	containing	
either	“/my/data”	or	“/your/data”:

<LocationMatch	“/(my|your)/data”>

<Files>,	<FilesMatch>?	Similar	to	Directory	and	Location	containers,	Files	sections	allow	directives	
to	apply	to	certain	files	or	file	patterns.

Containers surround directives, as shown in Listing 1.

Listing 1 Sample Container Directives:

 1. <Directory	“/some/directory”>

 2. SomeDirective1

 3. SomeDirective2

	 4.	 </Directory>

	 5.	 <Location	“/downloads/*.html”>

Unit 4: Apache Server Installation in Window

 LOVELY PROFESSIONAL UNIVERSITY 43

Notes 6. SomeDirective3

	 7.	 </Location>

	 8.	 <Files	“\.(gif|jpg)”>

 9. SomeDirective4

	 10.	 </Files>

Sample directives SomeDirective1 and SomeDirective2	will	apply	to	the	directory/www/docs	and	
its subdirectories. SomeDirective3	will	apply	to	URLs	referring	to	pages	with	the	.html	extension	
under	the/download/URL.	SomeDirective4	will	apply	to	all	files	with	.gif	or	.jpg	extensions.

4.2.3 Conditional Evaluation

Apache provides support for conditional containers. Directives enclosed in these containers will
be processed only if certain conditions are met.

 •	 <IfDefine>?	Directives	in	this	container	will	be	processed	if	a	specific	command	line	switch	
is	passed	 to	 the	Apache	executable.	The	directive	 in	Listing	2	will	be	processed	only	 if	
the	DMyModule	switch	was	passed	to	the	Apache	binary	being	executed.	You	can	pass	
this	directly	or	by	modifying	 the	apachectl	 script,	 as	described	 in	 the	“Apache-Related	
Commands” section later in this hour.

	 	 If	 Define	 containers	 allow	 the	 argument	 to	 be	 negated.	 That	 is,	 directives	 inside	 a	
<IfDefine	!MyModule>section	will	be	processed	only	if	no	-DMyModule	parameter	was	
passed	as	a	command-line	argument.	For	example,	if	DSSL	is	not	passed,	listening	on	the	
SSL port (usually 443) will not occur.

	 •	 <IfModule>?	 Directives	 in	 an	 IfModule	 section	 will	 be	 processed	 only	 if	 the	 module	
passed	as	an	argument	is	present	in	the	Web	server.	For	example,	Apache	ships	with	a	
default	httpd.conf	configuration	file	that	provides	support	for	different	MPMs.	Only	the	
configuration	 belonging	 to	 the	MPM	compiled	 in	will	 be	processed,	 as	 you	 can	 see	 in	
Listing	3.	The	purpose	of	the	example	is	to	illustrate	that	only	one	of	the	directive	groups	
will be evaluated.

Listing 2 IfDefine Example

	 1.	 <IfDefine	MyModule>

	 2.	 LoadModule	my_module	modules/libmymodule.so

	 3.	 </IfDefine>

Listing 3 IfModule Example

 1. <IfModule prefork.c>

 2. StartServers 5

 3. MinSpareServers 5

	 4.	 MaxSpareServers	 10

	 5.	 MaxClients		 20

Open Source Technologies

44 LOVELY PROFESSIONAL UNIVERSITY

Notes 	 6.	 MaxRequestsPerChild	 0

	 7.	 </IfModule>

	 8.	 }

 9. <IfModule worker.c>

	 10.	 StartServers	 	 3

	 11.	 MaxClients		 	 8

 12. MinSpareThreads 5

	 13.	 MaxSpareThreads	 	 10

 14. ThreadsPerChild 25

	 15.	 MaxRequestsPerChild	 0

	 16.	 </IfModule>

4.2.4 ServerRoot

The	 ServerRoot	directive	 takes	 a	 single	 argument:	 a	directory	path	pointing	 to	 the	directory	
where the server lives. All relative path references in other directives are relative to the value
of	ServerRoot.	If	you	compiled	Apache	from	source	on	Linux/Unix,	as	described	earlier	in	this	
hour,	the	default	value	of	ServerRoot	is/usr/local/apache2.	If	you	used	the	Windows	installer,	
the	ServerRoot	is	c:\Program	Files\Apache	Group.

4.2.5 Per Directory Configuration Files

Apache	 uses	 perdirectory	 configuration	 files	 to	 allow	 directives	 to	 exist	 outside	 the	 main	
configuration	filehttpd.conf.	These	 special	files	 can	be	placed	 in	 the	file	 system.	Apache	will	
process	the	content	of	these	files	if	a	document	is	requested	in	a	directory	containing	one	of	these	
files	or	any	subdirectories	under	it.	The	contents	of	all	the	applicable	perdirectory	configuration	
files	are	merged	and	processed.	For	example,	 if	Apache	receives	a	request	for	the/usr/local/
apache2/htdocs/index.html	file,	it	will	look	for	per-directory	configuration	files	in	the/,/usr,/
usr/local,/usr/local/apache2,	and	/usr/local/apache2/htdocsdirectories,	in	that	order.

Enabling	 perdirectory	 configuration	 files	 has	 a	 performance	 penalty.	 Apache	 must	 perform	
expensive	disk	operations	looking	for	these	files	in	every	request,	even	if	the	files	do	not	exist.

Perdirectory	configuration	files	are	called	.htaccess	by	default.	This	is	for	historical	reasons;	they	
were	originally	used	to	protect	access	to	directories	containing	HTML	files.

The	directive	AccessFileName	enables	you	to	change	the	name	of	the	perdirectory	configuration	
files	from.htaccess	to	something	else.	 It	accepts	a	 list	of	filenames	that	Apache	will	use	when	
looking	for	perdirectory	configuration	files.

To	determine	whether	a	directive	can	be	overridden	in	the	perdirectory	configuration	file,	check	
whether	the	Context:	field	of	the	directive	syntax	definition	contains.	htaccess.

Apache	directives	belong	 to	different	groups,	 specified	 in	 the	Override:	field	 in	 the	directive	
syntax	description.	Possible	values	are:

	 •	 AuthConfig?	Authorization	directives.

Unit 4: Apache Server Installation in Window

 LOVELY PROFESSIONAL UNIVERSITY 45

Notes	 •	 FileInfo?	Directives	controlling	document	types.

	 •	 Indexes?	Directives	controlling	directory	indexing.

	 •	 Limit?	Directives	controlling	host	access.

	 •	 Options?	Directives	controlling	specific	directory	features.

You	can	control	which	of	these	directive	groups	can	appear	in	perdirectory	configuration	files	
by	using	theAllowOverride	directive.	AllowOverride	can	also	take	an	All	or	a	None	argument.	
All	means	 that	directives	 belonging	 to	 all	 groups	 can	 appear	 in	 the	 configuration	file.	None	
disables	perdirectory	files	in	a	directory	and	any	of	its	subdirectories.	Listing	4	shows	how	to	
disable	perdirectory	configuration	files	for	the	server	as	a	whole.	This	 improves	performance	
and	is	the	default	Apache	configuration.

Listing 4 Disabling PerDirectory Configuration Files

	 1.	 <Directory	/>

 2. AllowOverride none

	 3.	 </Directory>

4.3 Apache Log File

One	of	 the	many	pieces	of	 the	Website	puzzle	 is	Web	logs.	Traffic	analysis	 is	central	 to	most	
Websites,	 and	 the	 key	 to	 getting	 the	most	 out	 of	 your	 traffic	 analysis	 revolves	 around	 how	
you	configure	your	Web	logs.	Apache	is	one	of	the	most	if	not	the	most	powerful	open	source	
solutions	for	Website	operations.	You	will	find	that	Apache’s	Web	logging	features	are	flexible	
for the single Website or for managing numerous domains requiring Web log analysis.

For	the	single	site,	Apache	is	pretty	much	configured	for	logging	in	the	default	install.	The	initial	
httpd.conf	file	 (found	 in/etc/httpd/conf/httpd.conf	 in	most	 cases)	 should	have	a	 section	on	
logs	 that	 looks	similar	 to	 this	 (Apache	2.0.x),	with	descriptive	comments	 for	each	 item.	Your	
default	logs	folder	will	be	found	in/etc/httpd/logs.	This	location	can	be	changed	when	dealing	
with	multiple	Websites,	as	we’ll	see	later.	For	now,	let’s	review	this	section	of	log	configuration.

4.3.1 Error Logs

The error log contains messages sent from Apache for errors encountered during the course of
operation. This log is very useful for troubleshooting Apache issues on the server side.

Apache Log Tip: If you are monitoring errors or testing your server, you can use the command
line to interactively watch log entries. Open a shell session and type “tail –f /path/to/error_log”. This
will	show	you	the	last	few	entries	in	the	file	and	also	continue	to	show	new	entries	as	they	occur.

There	are	no	real	customization	options	available,	other	than	telling	Apache	where	to	establish	
the	file,	 and	what	 level	of	 error	 logging	you	seek	 to	 capture.	First,	 let’s	 look	at	 the	error	 log	
configuration	code	from	httpd.conf.

ErrorLog	logs/error_log

You	may	wish	to	store	all	error-related	information	in	one	error	log.	If	so,	the	above	is	fine,	even	
for	multiple	domains.	However,	you	can	specify	an	error	 log	file	for	each	individual	domain	
you	have.	This	is	done	in	the	<VirtualHost>	container	with	an	entry	like	this:

Open Source Technologies

46 LOVELY PROFESSIONAL UNIVERSITY

Notes <VirtualHost 10.0.0.2>

DocumentRoot “/home/sites/domain1/html/”

ServerName domain1.com

ErrorLog /home/sites/domain1/logs/error.log

</VirtualHost>

If	you	are	responsible	for	reviewing	error	log	files	as	a	server	administrator,	it	is	recommended	
that you maintain a single error log. If you’re hosting for clients, and they are responsible for
monitoring the error logs, it’s more convenient to specify individual error logs they can access
at their own convenience.

The	setting	that	controls	the	level	of	error	logging	to	capture	follows	below:

LogLevel warn

Apache’s	definitions	for	their	error	log	levels	are	as	follows:

Level Description
Emerg Emergencies-System	is	unusable
alert Action must be taken immediately
Crit Critical conditions
Error Error conditions
Warn Warning conditions
Notice Normal	but	significant	condition
Info Informational
Debug Debug-level	messages

4.3.2 Apache Access Log File

Apache	server	records	all	incoming	requests	and	all	requests	processed	to	a	log	file.	The	format	
of	the	access	log	is	highly	configurable.	The	location	and	content	of	the	access	log	are	controlled	
by the CustomLog	directive.	Default	apache	access	log	file	location:

	 •	 RHEL/Red	 Hat/CentOS/Fedora	 Linux	 Apache	 access	 file	 location	 -/var/log/httpd/
access_log

	 •	 Debian/Ubuntu	Linux	Apache	access	log	file	location	-/var/log/apache2/access.log

	 •	 FreeBSD	Apache	access	log	file	location	-/var/log/httpd-access.log

To	find	exact	apache	log	file	location,	you	can	use	grep	command:

#	grep	CustomLog	/usr/local/etc/apache22/httpd.conf

#	grep	CustomLog	/etc/apache2/apache2.conf

#	grep	CustomLog	/etc/httpd/conf/httpd.conf

Output

#	a	CustomLog	directive.

				#CustomLog	“/var/log/httpd-access.log”	common

				CustomLog	“/var/log/httpd-access.log”	combined

Unit 4: Apache Server Installation in Window

 LOVELY PROFESSIONAL UNIVERSITY 47

Notes4.3.3 Tracking Website

Often	by	default,	Apache	will	generate	three	activity	logs:	access,	agent	and	referrer.	These	track	
the accesses to your Website, the browsers being used to access the site and referring urls that
your site visitors have arrived from.

It	 is	 commonplace	now	 to	utilize	Apache’s	“combined”	 log	 format,	which	compiles	all	 three	
of	these	logs	into	one	logfile.	This	is	very	convenient	when	using	traffic	analysis	software	as	a	
majority	of	these	third-party	programs	are	easiest	to	configure	and	schedule	when	only	dealing	
with	one	log	file	per	domain.

Let’s break down the code in the combined log format and see what it all means.

LogFormat	“%h	%l	%u	%t	“%r”	%>s	%b	“%{Referer}i”	“%{User-Agent}i””	combined

LogFormat	starts	the	line	and	simply	tells	Apache	you	are	defining	a	log	file	type	(or	nickname),	
in	this	case,	combined.	Now	let’s	look	at	the	cryptic	symbols	that	make	up	this	log	file	definition.

%h Logs the remote host
%1	 Remote logname, if supplied
%u	 Remote user (mostly useful if logging behind authentication)
%t	 The date and time of the request
%r	 The request to your web site
%s	 The	status	of	the	request	(201,	301,	404,	500,	etc.).	the	>	in	front	of	the
“s” insures only the last status is logged.
%b	 Bytes sent for request (tracks http bandwidth use)
%i Tracks	 items	 sent	 in	 the	HTML	 header.	 So	 by	 adding	 (Referer)	 and	 (User	

Agent), we are capturing the referring url and the browser type in the
combined log format

The	most	common	is	to	identify	individual	log	files	for	each	domain.	This	is	seen	in	the	example	
below, again using the log directive within the <VirtualHost> container for each domain.

<VirtualHost	10.0.0.2>

DocumentRoot	“/home/sites/domain1/html/”	

ServerName	domain1.com	

ErrorLog	/home/sites/domain1/logs/error.log	

CustomLog	/home/sites/domain1/logs/web.log	

</VirtualHost>	
<VirtualHost	10.0.0.3>	
DocumentRoot	“/home/sites/domain2/html/”	
ServerName	domain2.com	
ErrorLog	/home/sites/domain2/logs/error.log	
CustomLog	/home/sites/domain2/logs/web.log	
</VirtualHost>	

<VirtualHost	10.0.0.4>	
DocumentRoot	“/home/sites/domain3/html/”	

Open Source Technologies

48 LOVELY PROFESSIONAL UNIVERSITY

Notes ServerName	domain3.com	
ErrorLog	/home/sites/domain3/logs/error.log	
CustomLog	/home/sites/domain3/logs/web.log	
</VirtualHost>	

In	the	above	example,	we	have	three	domains	with	three	unique	Web	logs	(using	the	combined	
format	we	defined	earlier).	A	traffic	analysis	package	could	then	be	scheduled	to	process	these	
logs and generate reports for each domain independently.

This method works well for most hosts. However, there may be situations where this could
become	 unmanageable.	 Apache	 recommends	 a	 special	 single	 log	 file	 for	 large	 virtual	 host	
environments and provides a tool for generating individual logs per individual domain.

We will call this log type the cvh format, standing for “common virtual host.” Simply by adding
a	 %v	 (which	 stands	 for	 virtual	 host)	 to	 the	 beginning	 of	 the	 combined	 log	 format	 defined	
earlier	and	giving	it	a	new	nickname	of	cvh,	we	can	compile	all	domains	into	one	log	file,	then	
automatically	split	them	into	individual	log	files	for	processing	by	a	traffic	analysis	package.

LogFormat	“%v	%h	%l	%u	%t	“%r”	%>s	%b	“%{Referer}i”	“%{User-Agent}i””	cvh

In this case, we do not make any CustomLog entries in the <VirtualHost> containers and simply
have	 one	 log	 file	 generated	 by	Apache.	A	program	 created	 by	Apache	 called	 split_logfile	 is	
included	in	the	src/support	directory	of	your	Apache	sources.	 from	your	master	 log	file	will	
be	named	for	each	domain	(virtual	host)	and	look	like:	virtualhost.log.

4.3.4 Log Rotation

Finally,	we	want	 to	 address	 log	 rotation.	High	 traffic	 sites	will	 generate	 very	 large	 log	files,	
which will quickly swallow up valuable disk space on your server. You can use log rotation to
manage this process. There are many ways to handle log rotation, and various third party tools
are	available	as	well.	However,	we’re	focusing	on	configurations	native	to	Apache,	so	we	will	
look	at	a	simple	log	rotation	scheme	here.	I’ll	include	links	to	more	flexible	and	sophisticated	
log rotation options in a moment.

This	example	uses	a	rudimentary	shell	script	 to	move	the	current	Web	log	to	an	archive	 log,	
compresses	 the	old	file	and	keeps	an	archive	 for	as	 long	as	12	months,	 then	 restarts	Apache	
with	a	pause	to	allow	the	log	files	to	be	switched	out.

mv	web11.tgz	web12.tgz	

mv	web10.tgz	web11.tgz	

mv	web9.tgz		web10.tgz	

mv	web8.tgz		web9.tgz	

mv	web7.tgz		web8.tgz	

mv	web6.tgz		web7.tgz	

mv	web5.tgz		web6.tgz	

mv	web5.tgz		web6.tgz	

mv	web4.tgz		web5.tgz	

Unit 4: Apache Server Installation in Window

 LOVELY PROFESSIONAL UNIVERSITY 49

Notesmv	web3.tgz		web4.tgz	

mv	web2.tgz		web3.tgz	

mv	web1.tgz		web2.tgz	

mv	web.tgz			web1.tgz	

mv web.log web.old

/usr/sbin/apachectl

graceful

sleep	300	

tar	cvfz	web.tgz	web.old

This	code	can	be	copied	into	a	file	called	logrotate.sh,	and	placed	inside	the	folder	where	your	
web	 log	file	 is	 stored	 (or	whatever	you	name	your	 log	file,	e.g.	access_log,	etc.).	 Just	be	sure	
to	modify	for	your	log	file	names	and	also	chmod	(change	permissions	on	the	file)	to	755	so	it	
becomes	an	executable.

This	works	fine	for	a	single	busy	site.	If	you	have	more	complex	requirements	for	log	rotation,	
be	sure	to	see	some	of	the	following	sites.	In	addition,	many	Linux	distributions	now	come	with	
a	log	rotation	included.	For	example,	Red	Hat	9	comes	with	logrotate.d,	a	log	rotation	daemon	
which	is	highly	configurable.	To	find	out	more,	on	your	Linux	system	with	logrotate.d	installed,	
type man logrotate.

4.4 Starting Apache for First Time

Before you start Apache, you should verify that the minimal set of information is present in
the	Apache	configuration	file,	httpd.conf.	The	following	sections	describe	the	basic	information	
needed	to	configure	Apache	and	how	to	start	the	server.

Using Apache With Microsoft Windows

This	document	explains	how	to	install,	configure	and	run	Apache	1.3	under	Microsoft	Windows.	
Most of this document assumes that you are installing Windows from a binary distribution. If you
want to compile Apache yourself (possibly to help with development, or to track down bugs).

Warning: Apache on NT has not yet been optimized for performance: Apache still performs
best,	 and	 is	most	 reliable	on	Unix	platforms.	Over	 time	NT	performance	has	 improved,	 and	
great	progress	is	being	made	in	the	upcoming	version	2.0	of	Apache	for	the	Windows	platforms.	
Folks	doing	comparative	reviews	of	webserver	performance	are	still	asked	to	compare	against	
Apache	on	a	Unix	platform	such	as	Solaris,	FreeBSD	or	Linux.

	 •	 Installing	Apache	for	Windows	(binary	install)	

	 •	 Running	Apache	for	Windows	

	 •	 Testing	Apache	for	Windows	

	 •	 Configuring	Apache	for	Windows	

Open Source Technologies

50 LOVELY PROFESSIONAL UNIVERSITY

Notes Installing Apache for Windows

Run	the	Apache	.msi	file	you	downloaded	above.	This	will	prompt	you	for:

	 •	 Whether	or	not	you	want	to	run	Apache	for	all	users	(installing	Apache	as	a	Service),	or	
if you want it installed to run in a console window when you choose the Start Apache
shortcut.

	 •	 Your	Server	name,	Domain	name	and	administrative	email	account.	

	 •	 The	 directory	 to	 install	Apache	 into	 (the	 default	 is	 C:\Program	 Files\Apache	Group\
Apache although you can change this to any other directory you wish)

	 •	 The	 installation	 type.	 The	 “Complete”	 option	 installs	 everything,	 including	 the	 source	
code	if	you	downloaded	the	-src.msi	package.	Choose	the	“Custom”	install	if	you	choose	
not to install the documentation, or the source code from that package.

During	 the	 installation,	Apache	will	 configure	 the	files	 in	 the	 conf	directory	 for	your	 chosen	
installation	directory.	However,	 if	any	of	the	files	 in	this	directory	already	exist	they	will	not
be	overwritten.	Instead	the	new	copy	of	the	corresponding	file	will	be	left	with	the	extension	
default.conf.	 So,	 for	 example,	 if	 conf\httpd.conf	 already	 exists	 it	will	 not	 be	 altered,	 but	 the	
version which would have been installed will be left in conf\httpd.default.conf. After the
installation	has	finished	you	should	manually	check	to	see	what	in	new	in	the	.default.conf	file,	
and	if	necessary	update	your	existing	configuration	files.

Also,	 if	 you	 already	have	 a	file	 called	htdocs\index.html	 then	 it	will	 not	 be	overwritten	 (no	
index.html.default	file	will	be	installed	either).	This	should	mean	it	is	safe	to	install	Apache	over	
an	existing	installation	(but	you	will	have	to	stop	the	existing	server	running	before	doing	the	
installation,	then	start	the	new	one	after	the	installation	is	finished).

After	installing	Apache,	you	should	edit	the	configuration	files	in	the	conf	directory	as	required.	
These	files	will	be	configured	during	the	install	ready	for	Apache	to	be	run	from	the	directory	
where it was installed, with the documents served from the subdirectory htdocs. There are
lots of other options which should be set before you start really using Apache. However to get
started	quickly	the	files	should	work	as	installed.

If	you	eventually	uninstall	Apache,	your	configuration	and	log	files	will	not	be	removed.	You	
will	need	to	delete	the	installation	directory	tree	(“C:\Program	Files\Apache	Group”	by	default)	
yourself	if	you	do	not	care	to	keep	your	configuration	and	other	web	files.	Since	the	httpd.conf	
file	is	your	accumulated	effort	in	using	Apache,	you	need	to	take	the	effort	to	remove	it.	The	
same	happens	for	all	other	files	you	may	have	created,	as	well	as	any	log	files	Apache	created.

Running Apache for Windows

There	are	two	ways	you	can	run	Apache:

	 •	 As	a	“service”.	This	 is	 the	best	option	 if	you	want	Apache	 to	automatically	start	when	
your	machine	boots,	and	to	keep	Apache	running	when	you	log-off.	

	 •	 From	a	console	window.	Closing	this	console	window	will	terminate	the	Apache	server.

Unit 4: Apache Server Installation in Window

 LOVELY PROFESSIONAL UNIVERSITY 51

NotesComplete the steps below before you attempt to start Apache as a Windows “service”!

To run Apache from a console window, select the “Start Apache as console app” option from the
Start menu (in Apache 1.3.4 and earlier, this option was called “Apache Server”). This will open
a console window and start Apache running inside it. The window will remain active until you
stop Apache. To stop Apache running, either press select the “Shutdown Apache console app”
icon option from the Start menu (this is not available in Apache 1.3.4 or earlierIn Apache 1.3.13 and
above it is now quite safe to press Ctrl+C or Ctrl+Break to stop the Apache in the console window.

Testing Apache for Windows

If you have trouble starting Apache please use the following steps to isolate the problem. This
applies if you started Apache using the “Start Apache as a console app” shortcut from the Start
menu	and	 the	Apache	 console	window	closes	 immediately	 (or	unexpectedly)	or	 if	 you	have	
trouble starting Apache as a service.

Run	the	“Command	Prompt”	from	the	Start	Menu	-	Programs	list.	Change	to	the	folder	to	which	
you installed Apache, type the command apache, and read the error message. Then review the
error.log	file	for	configuration	mistakes.	If	you	accepted	the	defaults	when	you	installed	Apache,	
the	commands	would	be:

c:

cd “\program files\apache group\apache”

apache

Wait for Apache to exit, or press Ctrl+C

more <logs\error.log

After looking at the error.log you will probably have a good chance of working out what went
wrong	and	be	able	to	fix	the	problem	and	try	again.	If	you	are	unable	to	work	it	out	then	please	
follow	 the	 guidelines	 for	 assistance	 at	 the	 top	 of	 this	 document	 or	 in	 the	 FAQ.	Many	 users	
discover	that	the	nature	of	the	httpd.conf	file	is	easier	to	manage	and	audit	than	page	after	page	
of	configuration	dialog	boxes.

After starting Apache running (either in a console window or as a service) it will be listening
to	port	80	(unless	you	changed	the	Port,	Listen	or	BindAddress	directives	in	the	configuration	
files).	To	connect	to	the	server	and	access	the	default	page,	launch	a	browser	and	enter	this	URL:

http://localhost/

This should respond with a welcome page, and a link to the Apache manual. If nothing happens
or	you	get	an	error,	look	in	the	error.log	file	in	the	logs	directory.	If	your	host	isn’t	connected	
to	the	net,	you	may	have	to	use	this	URL:

http://127.0.0.1/

Once	your	basic	 installation	 is	working,	you	should	configure	 it	properly	by	editing	 the	files	
in the conf directory.

Because Apache CANNOT	 share	 the	 same	 port	 with	 another	 TCP/IP	 application,	 you	may	
need	to	stop	or	uninstall	certain	services	first.	These	include	(but	are	not	limited	to)	other	web	
servers,	and	firewall	products	such	as	BlackIce.	If	you	can	only	start	Apache	with	these	services	
disabled,	reconfigure	either	Apache	or	the	other	product	so	that	they	do	not	listen	on	the	same	

Open Source Technologies

52 LOVELY PROFESSIONAL UNIVERSITY

Notes TCP/IP	ports.	You	may	find	the	Windows	“netstat	-an”	command	useful	in	finding	out	what	
ports are in use.

Configuring Apache for Windows

Apache	is	configured	by	files	in	the	conf	directory.	These	are	the	same	as	files	used	to	configure	the	
Unix	version,	but	there	are	a	few	different	directives	for	Apache	on	Windows	Begin	configuring	
the	Apache	server	by	reviewing	httpd.conf	and	its	directives.	Although	the	files	access.conf	and	
srm.conf	both	exist,	 these	are	old	files	which	are	no	longer	used	by	most	administrators,	and	
you	will	find	no	directives	there.

httpd.conf	contains	a	great	deal	of	documentation	itself,	followed	by	the	default	configuration	
directives recommended when starting with the Apache server. Begin by reading these comments
to	 understand	 the	 configuration	 file	 and	make	 small	 changes,	 starting	 Apache	 in	 a	 console	
window	with	each	change.	If	you	make	a	mistake,	it	will	be	easier	to	back	up	to	configuration	
that last worked. You will have a better idea of which change caused the server to fail.

The	main	differences	in	Apache	for	Windows	are:

	 •	 Because	Apache	for	Windows	is	multithreaded,	it	does	not	use	a	separate	process	for	each	
request,	as	Apache	does	with	Unix.	Instead	there	are	usually	only	two	Apache	processes	
running:	a	parent	process,	and	a	child	which	handles	the	requests.	Within	the	child	each	
request	is	handled	by	a	separate	thread.	So,	“process”-management	directives	are	different:	

	 —	 MaxRequestsPerChild	 -	 Like	 the	Unix	 directive,	 this	 controls	 how	many	 requests	
a	process	will	 serve	before	exiting.	However,	unlike	Unix,	a	process	 serves	all	 the	
requests at once, not just one, so if this is set, it is recommended that a very high
number	is	used.	The	recommended	default,	MaxRequestsPerChild	0,	does	not	cause	
the	process	to	ever	exit.	

	 —	 ThreadsPerChild	 -	This	directive	 is	new,	and	 tells	 the	 server	how	many	 threads	 it	
should	use.	This	 is	 the	maximum	number	of	 connections	 the	 server	 can	handle	at	
once;	be	sure	and	set	this	number	high	enough	for	your	site	if	you	get	a	lot	of	hits.	
The	recommended	default	is	ThreadsPerChild	50.	

	 •	 The	 directives	 that	 accept	 filenames	 as	 arguments	 now	must	 use	Windows	 filenames	
instead	of	Unix	ones.	However,	because	Apache	uses	Unix-style	names	 internally,	you	
must	use	forward	slashes,	not	backslashes.	Drive	letters	can	be	used;	if	omitted,	the	drive	
with	the	Apache	executable	will	be	assumed.	

	 •	 Apache	for	Windows	has	the	ability	to	load	modules	at	runtime,	without	recompiling	the	
server. If Apache is compiled normally, it will install a number of optional modules in
the modules directory. To activate these or other modules, the new LoadModule directive
must be used.

	 •	 LoadModule	status_module	modules/mod_status.so.

	 •	 Apache	can	also	load	ISAPI	Extensions	(i.e. Internet Server Applications), such as those
used by Microsoft’s IIS, and other Windows servers.

Unit 4: Apache Server Installation in Window

 LOVELY PROFESSIONAL UNIVERSITY 53

Notes	 •	 When	running	CGI	scripts,	the	method	Apache	uses	to	find	the	interpreter	for	the	script	
is	configurable	using	the	ScriptInterpreterSource	directive.	

	 •	 Since	it	 is	often	difficult	to	manage	files	with	names	like	.htaccess	under	windows,	you	
may	find	it	useful	to	change	the	name	of	this	configuration	file	using	the	AccessFilename	
directive.

Apache Software Foundation

The	Apache	Web	Server	from	the	Apache	Software	Foundation.	It’s	a	legendary	product	
in many ways. The Internet as we know it now almost certainly wouldn’t be here if
it wasn’t for Apache’s web server.

It is currently, and has been for many years, the number one web server on the Internet
according	 to	most	 analytical	 reports.	This	 is	despite	 the	extreme	 lengths	 that	 some	 rivals	
have	gone	to	try	and	skew	the	figures.	The	widely	read	monthly	survey	by	Netcraft	shows	
that	in	July	2008,	Apache	was	serving	almost	50%	of	the	worlds	web	sites.	Apache	has	been	
the most popular web server on the Internet since April 1996.

The	Apache	web	server	became	so	popular	for	several	reasons:

	 •	 Cost:	It	is	Open	Source	and	free.

 •	 Cross	Platform:	Apache	runs	on	almost	every	mainstream	Operating	System.

 • Modular:	Plugin	modules	enable	wide	support	 for	building	 interactive	and	dynamic	
web sites using a multitude of backend services. Highly popular is the combination of
the MySQL database and the PHP programming language.

	 •	 Performance:	Consistently	Apache	has	outperformed	 its	 rivals	 in	 terms	of	 raw	page	
impression	performance,	efficiency	of	memory	and	processor	cycle	usage	and	its	ability	
to scale to support many websites within one running server instance.

Questions

1.	Explain	the	Software	foundation	of	Apache.

2. What do you mean by PHP programming language?

4.5 Summary

 •	 Apache	comes	already	bundled	with	a	variety	of	linux	distribution.

	 •	 The	main	file	of	its	called	httpd	conf.	This	file	contains	directives	and	containers,	which	
enable	you	to	customize	your	apache	installation.

	 •	 For	the	single	site,	apache	is	pretty	much	configured	for	logging	in	the	default	install.	

4.6 Keywords

Building from Source: Building	 from	 source	 gives	 you	 the	 greatest	 flexibility,	 as	 it	 enables	
you	 to	build	a	custom	server,	 remove	modules	you	do	not	need,	and	extend	 the	server	with	
third party modules.

Open Source Technologies

54 LOVELY PROFESSIONAL UNIVERSITY

Notes Conditional Evaluation: Apache provides support for conditional containers. Directives enclosed
in these containers will be processed only if certain conditions are met.

Containers: Directive containers, also called sections, limit the scope for which directives apply.

Error Logs: The error log contains messages sent from Apache for errors encountered during the
course of operation. This log is very useful for troubleshooting Apache issues on the server side.

Installing a Binary: Linux/Unix	binary	installations	are	available	from	vendors	and	can	also	
be	downloaded	from	the	Apache	Software	Foundation	Web	site.

Installing Apache on Windows: Apache	2.0	runs	on	most	Windows	platforms	and	offers	increased	
performance and stability over the 1.3 versions for Windows. You can build Apache from source,
but because not many Windows users have compilers, this section deals with the binary installer.

ServerRoot: The	ServerRoot	directive	takes	a	single	argument:	a	directory	path	pointing	to	the	
directory where the server lives.

Give installation method of Apache in windows.

4.7 Self Assessment Questions

 1.	 Apache	 keeps	 all	 of	 its	 configuration	 information	 in	 text	 files.	 The	 main	 file	 is	
called ________________.

	 2.	 Apache	uses	________________	configuration	files	to	allow	directives	to	exist	outside	the	
main	configuration	filehttpd.conf.

 3. Directive containers, also called sections.

 (a) True (b)	 False

 4. ServerRoot directive takes a double argument.

 (a) True (b)	 False

 5. The error log contains logs sent from Apache for errors encountered during the course of
operation.

 (a) True (b)	 False

4.8 Review Questions

 1.	 Give	the	steps	of	Apache	Configuration	File	Structure.

	 2.	 What	are	Apache	Log	Files?	Give	their	types	also.

 3. What are error logs?

	 4.	 Write	down	different	rules	for	Apache	directive	syntax.

	 5.	 Explain	containers.

 6. What do you mean by ServerRoot?

Unit 4: Apache Server Installation in Window

 LOVELY PROFESSIONAL UNIVERSITY 55

NotesAnswers for Self Assessment Questions
	 1.	 httpd.conf.		 	 2.	 per-directory

 3. (a) 4. (b)

 5. (b)

4.9 Further Reading

A Beginner’s Guide by: Vaswani, Vikram,	By	Tata	MC-Graw	Hill.

http://www.gibmonts.com/C-plus/ch11level1sec10.htm/

Open Source Technologies

56 LOVELY PROFESSIONAL UNIVERSITY

Notes Unit 5: PHP

CONTENTS
Objectives

Introduction

5.1 Versions of PHP

5.2 Installation of PHP

 5.2.1 Installing with UNIX/Linux PHP Distribution

 5.2.2 Windows

 5.2.3 Installing with PHP Windows Installer

 5.2.4 Go-Pear.Org

 5.2.5 Prerequisites

 5.2.6 Going PEAR

5.3 PHP Installation

5.4 Testing Installation

5.5 Summary

5.6 Keywords

5.7 Self Assessment Questions

5.8 Review Questions

5.9 Further Reading

Objectives

After studying this unit, you will be able to:

	 •	 Explain	versions	of	PHP.

	 •	 Discuss	installation	of	PHP.

	 •	 Discuss	PHP	installation	basics.

	 •	 Explain	testing	installation.

	 •	 Understand	PHP	string	handling	function.

Introduction

PHP	is	a	general-purpose	scripting	language	originally	designed	for	web	development	to	produce	
dynamic	web	pages.	For	this	purpose,	PHP	code	is	embedded	into	the	HTML	source	document	
and	interpreted	by	a	web	server	with	a	PHP	processor	module,	which	generates	the	web	page	
document.	It	also	has	evolved	to	include	a	command-line	interface	capability	and	can	be	used	

Sarabjit Kumar, Lovely Professional University

Unit 5: PHP

 LOVELY PROFESSIONAL UNIVERSITY 57

Notesin	stand	alone	graphical	applications.	PHP	can	be	deployed	on	most	web	servers	and	as	a	stand	
alone	interpreter,	on	almost	every	operating	system	and	platform	free	of	charge	PHP	is	installed	
on more than 20 million websites and 1 million web servers.

PHP	was	originally	created	by	Rasmus	Lerdorf	 in	1995.	The	main	 implementation	of	PHP	 is	
now	produced	by	The	PHP	Group	and	serves	as	the	de	facto	standard	for	PHP	as	there	is	no	
formal	specification.	PHP	is	free	software	released	under	the	PHP	License;	it	is	incompatible	with	
the GNU General Public License (GPL) due to restrictions on the usage of the term PHP While
PHP	originally	stood	for	”Personal	Home	Page”,	 it	 is	now	said	to	stand	for	”PHP:	Hypertext	
Preprocessor ”,	a	recursive	acronym.

5.1 Versions of PHP

 Major Minor Release
 version version date

	 1	 1.0.0	 1995-06-08	 Officially	 called	 ”Personal	 Home	 Page	 Tools	 (PHP	
Tools)”.	This	is	the	first	use	of	the	name	“PHP”.

	 2	 2.0.0	 1997-11-01	 Considered	by	its	creator	as	the	”fastest	and	simplest	
tool”	for	creating	dynamic	web	pages.	 			

	 3	 3.0.0	 1998-06-06	 Development	moves	from	one	person	to	multiple			
developers.	Zeev	Suraski	and	Andi	Gutmans	rewrite	
the base for this version.

	 4	 4.0.0	 2000-05-22	 Added	more	advanced	two-stage	parse/execute	tag-
parsing	system	called	the	Zend	engine.	 			

	 	 4.1.0	 2001-12-10	 Introduced	‘superglobals’	($_GET,	$_POST,	$_SESSION,	
etc.)

	 	 4.2.0	 2002-04-22	 Disabled	 register_globals	 by	 default.	 Data	 received	
over	the	network	is	not	inserted	directly	into	the	global	
namespace	anymore,	closing	possible	security	holes	in	
applications.		 			

	 	 4.3.0	 2002-12-27	 Introduced	the	CLI,	in	addition	to	the	CGI.		 			

	 	 4.4.0	 2005-07-11	 Added	man	pages	for	phpize	and	php-config	scripts.

	 	 4.4.9	 2008-08-07	 Security	enhancements	and	bug	fixes.	The	last	release	
of the PHP 4.4 series.

	 5	 5.0.0	 2004-07-13	 Zend	Engine	II	with	a	new	object	model.

	 	 5.1.0	 2005-11-24	 Performance	 improvements	 with	 introduction	 of	
compiler	variables	in	re-engineered	PHP	Engine.		 			

	 		 5.2.0	 2006-11-02	 Enabled	the	filter	extension	by	default.	Native	JSON		
support.

	 	 5.2.17	 2011-01-06	 Fix	of	critical	vulnerability	connected	to	floating	point.
Contd...

Open Source Technologies

58 LOVELY PROFESSIONAL UNIVERSITY

Notes
	 	 5.3.0	 2009-06-30	 Namespace	support;	Late	static	bindings,	Jump	label		

(limited	goto),	Native	closures,	Native	PHP	archives	
(phar),	 garbage	 collection	 for	 circular	 references,	
improved	Windows	 support,	 sqlite3,	 mysqlnd	 as	 a	
replacement	 for	 libmysql	 as	 underlying	 library	 for	
the	 extensions	 that	 work	with	MySQL,	 fileinfo	 as	 a	
replacement	for	mime_magic	for	better	MIME	support,	
the	Internationalization	extension,	and	deprecation	of	
ereg extension.

	 	 5.3.1	 2009-11-19	 Over	100	bug	fixes,	some	of	which	were	security	fixes	
as well.

	 	 5.3.2	 2010-03-04	 Includes	a	large	number	of	bug	fixes.

	 	 5.3.3	 2010-07-22	 Mainly	bug	and	security	fixes;	FPM	SAPI.	 			

	 	 5.3.4	 2010-12-10	 Mainly	bug	and	security	fixes;	improvements	to	FPM	
SAPI.

 5.3.5 2011-01-06 Fix of critical vulnerability connected to floating
point.	

 5.3.6 2011-03-10

			 php-	 	 	 Removed	items:	‘register_globals’,	‘safe_mode’,

	 trunk-	 ?.?	 No	date	set	 ‘allow_call_time_pass_reference’,	session_register(),	

	 dev	 		 	 session_unregister()	 and	 session_is_registered()	
functions

	 	 	 	 New	features:	traits,	array	dereferencing,	closure	$this		
support,	JsonSerializable	interface.	 	

5.2 Installation of PHP

In	 this	 section,	 you	 learn	how	 to	 install	PEAR	on	your	platform	 from	a	PHP	distribution	or	
through	the	go-pear.org	web	site.

5.2.1 Installing with UNIX / Linux PHP Distribution

This	section	describes	PEAR	installation	and	basic	usage	that	is	specific	for	UNIX	or	UNIX-like	
platforms,	such	as	Linux	and	Darwin.	The	installation	of	the	PEAR	Installer	itself	is	somewhat	
OS-dependent,	and	because	most	of	what	you	need	to	know	about	installation	is	OS-specific,	
you	find	that	here.	Using	the	installer	is	more	similar	on	different	platforms,	so	that	is	described	
in	the	next	section,	with	the	occasional	note	about	OS	idiosyncrasies.

As	of	PHP	4.3.0,	PEAR	with	all	its	basic	prerequisites	is	installed	by	default	when	you	install	PHP.

	 If	you	build	PHP	from	source,	these

	 	 configure

Unit 5: PHP

 LOVELY PROFESSIONAL UNIVERSITY 59

Notes	 	 options	cause	problems

	 	 for	PEAR:
	

	 	 --disable-pear
 .

	 	 make	install

 will neither install the PEAR installer or any

	 	 packages.
	

 --disable-cli

	 	 .	The	PEAR	Installer	depends	on	a	standalone	version	of

 PHP installed.
	

 --without-xml

	 	 .	PEAR	requires	the	XML	extension	for	parsing	package

	 	 information	files.

5.2.2 Windows

This section shows how to install PEAR on a Windows PHP installation. Start by just installing
a	binary	distribution	of	PHP	from	http://www.php.net/downloads.php	(see	Figure	5.1).	If	you	
go	with	the	defaults,	your	PHP	install	will	end	up	in	C:\PHP,	which	is	what	you	will	see	 in	
the	forthcoming	examples.

Figure 5.1: PHP Welcome Screen

Open Source Technologies

60 LOVELY PROFESSIONAL UNIVERSITY

Notes 5.2.3 Installing with PHP Windows Installer

When	you	have	PHP	installed,	you	need	to	make	sure	that	your	include_path	PHP	setting	is	
sensible.	Some	versions	of	the	Windows	PHP	Installer	use	c:\php4\pear	in	the	default	include	
path,	but	this	directory	(c:\php4)	is	different	from	the	one	created	by	the	PHP	Windows	Installer.	
So,	 edit	your	php.ini	file	 (in	c:\winnt	or	 c:\windows,	depending	on	your	Windows	version)	
and	change	this	directory	to	c:\php\pear	(see	Figure	5.2).

Figure 5.2: Example php.ini Modifications

5.2.4 Go-Pear.Org

Go-Pear.Org	is	a	web	site	with	a	single	PHP	script	that	you	can	download	and	run	to	install	the	
latest stable version of the PEAR Installer and the PHP Foundation Classes (PFC). Go-Pear is cross-
platform	and	can	be	run	from	the	command	line	and	from	your	web	server.	PHP	distributions	
bundle	a	particular	release	of	the	PEAR	Installer;	on	the	other	hand,	go-pear	gives	you	the	newest	
stable	PEAR	releases.	However,	go-pear	does	know	your	directory	layout,	but	really	contorts	
itself	to	figure	it	out,	and	will	try	adapting	your	PEAR	Installation	to	that.	In	this	section,	you	
learn	how	to	use	go-pear	from	the	command	line	and	web	server,	and	on	UNIX	and	Windows.

5.2.5 Prerequisites

Because	go-pear	is	written	in	PHP,	you	need	a	CGI	or	CLI	version	of	PHP	to	execute	it	outside	
the	web	server.	By	default,	the	CLI	version	is	installed	along	with	your	web	server	PHP	module.	
Try	running	php	–v	to	see	if	it	is	available	to	you:

PHP	5.0.0	(cli),	Copyright	(c)	1997-2004	The	PHP	Group

Zend	Engine	v2.0,	Copyright	(c)	1998-2004	Zend	Technologies

By	default,	the	php	command	is	installed	in	the	/usr/local/bin	directory	on	UNIX,	or	c:\php	
on	Windows.	In	Windows,	the	CLI	version	of	PHP	may	also	be	called	php-cli	;	in	that	case,	you	
need	to	type	php-cli	for	every	example	that	says	just	php.	

Unit 5: PHP

 LOVELY PROFESSIONAL UNIVERSITY 61

Notes5.2.6 Going PEAR

If	your	PHP	install	did	not	include	PEAR,	you	can	use	go-pear	as	a	universal	PEAR	bootstrapper.	
All you need is a CLI or CGI version of PHP installed somewhere. You can download the
go	pear	script	and	execute	it,	or	run	it	all	in	one	command,	like	this:

$	 lynx	–source	http://go-pear.org	|	php	This	command	simply	takes	the	contents	of	http://
go	pear.org	and	sends	it	to	PHP	for	execution.

If	you	do	not	have	lynx	available	on	your	system,	try	an	alternative	way	of	executing	go-pear	
directly:

Using	GNUS	wget:

$	wget	–O-	http://go-pear.org	|	php

Using	fetch	on	FreeBSD:

$	fetch	–o	–	http://go-pear.org	|	php

Using	Perl	LWP’s	GET	utility:

$	GET	http://go-pear.org	|	php

On	Windows,	there	is	no	“fetch	this	URL”	tool,	but	you	may	be	able	to	use	PHP’s	URL	streams	
(make	sure	that	url_includes	is	not	disabled	in	your	php.ini	file):

C:\>	php-cli	–r	“include(‘http://go-pear.org’);”

If	none	of	this	works,	open	http://go-pear.org	in	your	browser,	save	the	contents	as	go-pear.
php	and	simply	run	it	from	there:

C:\>	php	go-pear.php

The	output	will	look	like	this:

Welcome	to	go-pear!

Go-pear	will	install	the	‘pear’	command	and	all	the	files	needed	by	it.	This	command	is	your	
tool	 for	PEAR	 installation	 and	maintenance.	Go-pear	 also	 lets	 you	download	 and	 install	 the	
PEAR	packages	bundled	with	PHP:	DB,	Net_Socket,	Net_SMTP,	Mail,	XML_Parser,	PHPUnit.	
If	you	wish	to	abort,	press	Control-C	now,	or	press	Enter	to	continue:

This	greeting	tells	you	what	you	are	about	to	start.	Press	Enter	for	the	first	real	question:

HTTP	proxy	(http://user:password@proxy.myhost.com:port),	or	Enter	for	none:

Go-pear	 checks	 your	 http_proxy	 environment	 variable	 and	presents	 the	 value	 of	 that	 as	 the	
default	value	if	http_proxy	is	defined.	If	you	want	to	use	an	HTTP	proxy	when	downloading	
packages,	enter	the	address	of	it	here,	or	just	press	Enter	for	“no	proxy.”

Now,	on	to	the	interesting	part:	Below	is	a	suggested	file	layout	for	your	new	PEAR	installation.	
To	change	individual	locations,	type	the	number	in	front	of	the	directory.	Type	‘all’	to	change	
all	of	then,	or	simply	press	Enter	to	accept	these	locations:

Open Source Technologies

62 LOVELY PROFESSIONAL UNIVERSITY

Notes 1.	 Installation	prefix	:/usr/local

	 2.	 Binaries	directory	:	$prefix/bin

	 3.	 PHP	code	directory	:	$prefix/share/pear

	 4.	 Documentation	base	directory	:	$php_dir/docs

	 5.	 Data	base	directory	:	$php_dir/data

	 6.	 Tests	base	directory	:	$php_dir/tests

1-6,	‘all’	or	Enter	to	continue:

Each	setting	is	internally	assigned	to	a	variable	(prefix,	bin_dir,	php_dir,	doc_dir,	data_dir	and	
test_dir,	respectively).	You	may	refer	to	the	value	of	other	settings	by	referencing	these	variables,	
as	shown	previously.	Let’s	take	a	look	at	each	setting:

Installation prefix: The root directory of your PEAR installation. It has no other effect than
serving	as	a	root	for	the	next	five	settings,	using	$prefix.

Binaries directory:	Where	programs	and	PHP	scripts	from	PEAR	packages	are	 installed.	The	
pear	executable	ends	up	here.	Remember	to	add	this	directory	to	your	PATH.

PHP code directory:	Where	PHP	code	is	installed.	This	directory	must	be	in	your	include_path	
when	using	the	packages	you	install.

Documentation base directory: The	base	directory	for	documentation.	By	default,	it	is	$php_dir/
doc,	and	the	documentation	files	for	each	package	are	installed	as	$doc_dir/Package/file.

Database directory: Where	 the	PEAR	 Installer	 stores	data	files.	Data	files	 are	 just	 a	 catch-all	
category	 for	anything	 that	does	not	fit	 as	PHP	code,	documentation,	 and	 so	on.	As	with	 the	
documentation	base	directory,	the	package	name	is	added	to	the	path,	so	the	data	file	convert.
xsl	in	MyPackage	would	be	installed	as	$data_dir/MyPackage/convert.xsl.

Tests base directory:	Where	regression	test	scripts	for	the	package	are	installed.	The	package	
name	 is	 also	added	 to	 the	directory.	When	you	are	 satisfied	with	 the	directory	 layout,	press	
Enter	to	proceed:	The	following	PEAR	packages	are	bundled	with	PHP:	DB,	Net_Socket.

 Draw PHP Welcome screen

 ?Net_SMTP,	Mail,	XML_Parser,	PHPUnit2.

	 Would	you	like	to	install	these	as	well?	[Y/n]	:

	 	For	 your	 convenience,	 go-pear	 requests	whether	 you	want	 to	 install	 the	 PFC	
packages.	Just	install	them	(press	Enter):

	 Loading	zlib:	ok

	 Downloading	package:	PEAR.............ok

	 Downloading	package:	Archive_Tar......ok
Contd...

Unit 5: PHP

 LOVELY PROFESSIONAL UNIVERSITY 63

Notes	 Downloading	package:	Console_Getopt..........ok

	 Downloading	package:	XML_RPC..........ok

	 Bootstrapping:	PEAR...................(remote)	ok

	 Bootstrapping:	Archive_Tar............(remote)	ok

	 Bootstrapping:	Console_Getopt.........(remote)	ok

	 Downloading	package:	DB...............ok

	 Downloading	package:	Net_Socket.......ok

	 Downloading	package:	Net_SMTP.........ok

	 Downloading	package:	Mail.............ok

	 Downloading	package:	XML_Parser.......ok

	 Downloading	package:	PHPUnit2.........ok

	 Extracting	installer..................ok

	 install	ok:	PEAR	1.3.1

	 install	ok:	Archive_Tar	1.2

	 install	ok:	Console_Getopt	1.2

	 install	ok:	XML_RPC	1.1.0

	 install	ok:	DB	1.6.4

	 install	ok:	Net_Socket	1.0.2

	 install	ok:	Net_SMTP	1.2.6

	 install	ok:	Mail	1.1.3

	 install	ok:	XML_Parser	1.2.0

	 install	ok:	PHPUnit2	2.0.0beta2

	 The	‘pear’	command	is	now	at	your	service	at	/usr/local/bin/pear

	 You	have	just	installed	PEAR!.

PHP	Welcome	screen.	and	php.ini	modifications

5.3 PHP Installation

After	you	have	compiled	or	installed	PHP,	you	can	still	change	its	behavior	with	the	php.ini	file.
On	 Linux/Unix	 systems,	 the	 default	 location	 for	 this	 file	 is/usr/local/php/lib,	 or	 the	 lib	
subdirectory	of	 the	PHP	 installation	 location	you	used	at	configuration	 time.	On	a	Windows	
system,	this	file	should	be	in	the	Windows	directory.

Open Source Technologies

64 LOVELY PROFESSIONAL UNIVERSITY

Notes Directives	in	the	php.ini	file	come	in	two	forms:	values	and	flags.	Value	directives	take	the	form	
of	a	directive	name	and	a	value	separated	by	an	equal	sign.	Possible	values	vary	from	directive	
to	directive.	Flag	directives	take	the	form	of	a	directive	name	and	a	positive	or	negative	term	
separated	by	an	equal	sign.	Positive	terms	include	1,	On,	Yes,	and	TRue.	Negative	terms	include	
0,	Off,	No,	and	False.	Whitespace	is	ignored.

You	can	change	your	php.ini	settings	at	any	time,	but	after	you	do,	you’ll	need	to	restart	the	
server	for	the	changes	to	take	effect.	At	some	point,	take	time	to	read	through	the	php.ini	file	
on	your	own	to	see	the	types	of	things	that	can	be	configured.

5.4 Testing Installation

Installing	PHP	on	your	development	PC	allows	you	to	safely	create	and	test	a	web	application	
without affecting the data or systems on your live website. This article describes PHP installation
as	a	module	within	 the	Windows	version	of	Apache	2.2.	Mac	and	Linux	users	will	probably	
have it installed already.

All-in-One packages

There	are	some	excellent	all-in-one	Windows	distributions	that	contain	Apache,	PHP,	MySQL	and	
other	applications	in	a	single	installation	file,	e.g.	XAMPP	(including	a	Mac	version),	WampServer	
and	Web	Developer.	There	 is	 nothing	wrong	with	using	 these	packages,	 although	manually	
installing	Apache	and	PHP	will	help	you	learn	more	about	the	system	and	its	configuration	options.

The PHP Installer

Although	an	installer	is	available	from	php.net,	I	would	recommend	the	manual	installation	if	
you	already	have	a	web	server	configured	and	running.

Manual Installation

Manual	installation	offers	several	benefits:

	 •	 backing	up,	reinstalling,	or	moving	the	web	server	can	be	achieved	in	seconds	and	

	 •	 you	have	more	control	over	PHP	and	Apache	configuration.

Step 1: extract the files

We	will	install	the	PHP	files	to	C:\php,	so	create	that	folder	and	extract	the	contents	of	the	ZIP	
file	into	it.

PHP	can	be	installed	anywhere	on	your	system,	but	you	will	need	to	change	the	paths	referenced	
in	the	following	steps.

Step 2: configure php.ini

Copy	C:\php\php.ini-recommended	to	C:\php\php.ini.	There	are	several	lines	you	will	need	
to	change	in	a	text	editor	(use	search	to	find	the	current	setting).

Define	the	extension	directory:

	 	 extension_dir	=	”C:\php\ext”		

Enable	extensions.	This	will	depend	on	the	libraries	you	want	to	use,	but	the	following	extensions	
should	be	suitable	for	the	majority	of	applications	(remove	the	semi-colon	comment):

	 1.	 extension=php_curl.dll			

	 2.	 extension=php_gd2.dll			

Unit 5: PHP

 LOVELY PROFESSIONAL UNIVERSITY 65

Notes	 3.	 extension=php_mbstring.dll			

	 4.	 extension=php_mysql.dll			

	 5.	 extension=php_mysqli.dll			

	 6.	 extension=php_pdo.dll			

	 7.	 extension=php_pdo_mysql.dll			

	 8.	 extension=php_xmlrpc.dll		

If	you	want	to	send	emails	using	the	PHP	mail()	function,	enter	the	details	of	an	SMTP	server	
(your	ISP’s	server	should	be	suitable):

	 1.	 	[mail	function]			

	 2.	 ;	For	Win32	only.			

	 3.	 SMTP	=	mail.myisp.com			

	 4.	 smtp_port	=	25			

	 5.	 ;	For	Win32	only.			

	 6.	 sendmail_from	=	my@emailaddress.com		

Step 3: add C:\php to the path environment variable

To	ensure	Windows	can	find	PHP,	you	need	to	change	the	path	environment	variable.	From	the	
Control	Panel,	choose	System,	(then	“Advanced	system	settings”	in	Vista),	select	the	“Advanced”	
tab,	and	click	the	“Environment	Variables”	button.

Scroll	down	the	System	variables	list	and	click	on	“Path”	followed	by	the	“Edit”	button.	Enter	
“;C:\php” to the end of the Variable value line (remember the semi-colon).

Figure 5.3: Example Edit System Variable Value

Now OK your way out. You might need to reboot at this stage.

Open Source Technologies

66 LOVELY PROFESSIONAL UNIVERSITY

Notes Step 4: configure PHP as an Apache module

Ensure	Apache	is	not	running	(use	“net	stop	Apache2.23		from	the	command	line)	and	open	its	
\conf\httpd.conf	configuration	file	in	an	editor.	The	following	lines	given	on	next	page	should	
be	changed:

Line	239,	add	index.php	as	a	default	file	name:

	 1.	 DirectoryIndex	index.php	index.html		

DirectoryIndex	index.php	index.html

At	the	bottom	of	the	file,	add	the	following	lines	(change	the	PHP	file	locations	if	necessary):

 1. # PHP5 module

	 2.	 LoadModule	php5_module	”c:/php/php5apache2_2.dll”			

	 3.	 AddType	application/x-httpd-php	.php			

	 4.	 PHPIniDir	”C:/php”		

Save	the	configuration	file	and	test	it	from	the	command	line	(Start	>	Run	>	cmd):

	 1.	 cd	\Apache2\bin			

	 2.	 httpd	-t		

Step 5: test a PHP file

Create	a	file	named	index.php	in	Apache’s	web	page	root	(either	htdocs	or	D:\WebPages)	and	
add	this	code:

<?php phpinfo(); ?>

Ensure	Apache	has	started	successfully,	open	a	web	browser	and	enter	the	address	http://localhost/.
If	all	goes	well,	a	“PHP	version”	page	should	appear	showing	all	the	configuration	settings.

Success Story of Colgate-Palmolive

Colgate-Palmolive had a unique marketing challenge	 in	 launching	Colgate	Wisp,	
its	new	mini	disposable	toothbrush.	Colgate	began	introducing	the	mini	brush	in	
April,	2009	with	the	help	from	Big	Fuel,	a	social	media	marketing	agency.	The	mini	

brush	created	a	new	product	category	for	Colgate	and	meant	marketing	to	a	young,	urban	
target—18	to	25	year-old	men	and	women—a	demographic	the	personal	care	giant	doesn’t	
typically	focus	dedicated	attention	on.	It	was	clear	that	the	company	needed	to	figure	out	
how	 to	 introduce	 the	 product	 into	 relevant	 conversations	 and	 contexts	where	 its	 college	
student	and	young	professional	target	hangs	out.	

Challenge

Colgate	wanted	to	get	Wisp	into	the	hands	of	young,	urban	consumers	who	are	active	daters.	
The	audience	is	active	and	mobile	and	dating	opportunities	can	be	created	in	an	instant	via	
text.	“Wisp	is	almost	a	brand	new	product	category,”	said	Avi	Savar,	Founding	Partner	and	
CEO	of	Big	Fuel.	“It’s	an	on-the-go	product.	The	biggest	challenge	for	us	was	making	the	
product	and	brand	relevant	to	the	young	consumer	market.” Contd...

Unit 5: PHP

 LOVELY PROFESSIONAL UNIVERSITY 67

NotesNot	surprisingly,	Colgate	turned	to	social	media	to	help	it	launch	a	multi-pronged	campaign.	
But	who	wants	 to	 “friend”	or	 follow	a	disposable	 toothbrush	 on	Facebook?	Colgate	 and	
Big	Fuel	tackled	the	challenge	by	conducting	a	lot	of	research.	Big	Fuel	worked	up	several	
creative	strategies	and	testing	the	concepts.	“We	wanted	to	know,	what	does	this	product	
represent	or	mean	to	the	audience?”	Savar	said.	

Typically,	Colgate	talks	to	moms,	but	with	Wisp,	the	marketer	knew	it	needed	unique	social	
media	components	to	introduce	the	product	and	seed	interest.	Big	Fuel	worked	closely	with	
Y&R	and	VML,	Colgate’s	 creative	and	digital	 agencies	 respectively	on	 the	TV	campaign,	
microsite,	online	banners	and	social	media	elements.	

Strategy

Big	 Fuel	 came	 up	 with	 a	 “Be	More	 Kissable”	 creative	 platform	 that	 positioned	 Colgate	
Wisp	as	a	kind	of	technology	advancement	that	it	believed	would	connect	with	the	target	
audience.	The	idea	centered	around	self-confidence:	“Everyone	wants	to	be	more	kissable	
not	 just	 within	 the	 context	 of	 a	 physical	 kiss,	 but	 all	 the	 time.	 Feeling	 kissable	 is	 about	
feeling	 confident.	 From	 a	 social	media	 standpoint,	we	 thought	 it	was	 a	 good	 platform,”	
Savar	explained.	Colgate	thought	so	too.

The	concept,	one	of	four	that	Big	Fuel	developed,	was	tested	in	four	different	markets.	The	
linchpin	involved	creating	irreverent	online	video	content	and	syndicating	it	on	YouTube	
and	other	video-sharing	hubs.	Along	with	a	strategy	focus	on	online	video,	Colgate	Wisp	
developed	a	Facebook	application	and	a	Be	the	Face	of	Wisp	photo	contest.	

At	the	heart	of	the	strategy—online	video.	Big	Fuel	developed	a	series	of	viral	videos,	partnering	
with	eight	different	publishers	including	CollegeHumor	and	YourTango	and	Web	celebrities	
like	Kip	Kay,	known	for	his	how-to	and	prank	videos,	 to	syndicate	 the	content.	 It	 released	
eight	wacky	videos	targeting	niche	interests	among	the	target	audience,	contextually	integrating	
Colgate	Wisp	into	how-to,	comedy	and	talkshow-genre	video	content.	The	goal	was	to	achieve	
a seamless content integration with no heavy brand sell. Online video syndication offered
Colgate	the	potential	to	scale	its	vast	consumer	target.	

The	photo	contest	sought	to	identify	the	most	kissable	person	in	America:	Participants	who	
entered	the	contest	uploaded	a	photo	to	colgatewisp.com	and	received	a	widget	that	enabled	
friends	to	vote	for	them.	The	widget	was	shared	via	the	Facebook	and	MySpace	networks	
and	via	the	microsite.	“It	was	like	a	syndicated	version	of	‘Are	you	hot	or	not?’,	Savar	said.	

Big	Fuel	turned	the	contest	into	a	social	experience	by	enabling	the	widget	to	syndicate	the	
photo	content.	Participants	uploaded	their	photo,	chose	a	specific	Wisp	color	and	placed	it	
in	the	photo	as	an	overlay.	The	contest	enabled	segmentation	by	geographic	area	as	well.	
For	example,	when	a	man	entered	the	contest,	he	could	choose	to	 look	only	at	women	in	
Chicago	who	entered	the	contest	and	decide	whether	they	were	kissable	or	not.	On	average,	
Big	 Fuel	 reports	 that	 there	 were	 11	 votes	 cast	 per	 person	 or	 one	 individual	 voting	 on	
11	different	people.	

To	drive	brand	engagement	further,	Big	Fuel	created	a	Facebook	app	called	Spin	the	Wisp.	
Once	the	app	was	installed,	it	had	the	names	of	the	consumer’s	Facebook	friends.	Consumers	
could	have	the	app	randomly	pick	Facebook	friends	for	the	game	or	they	could	handpick	

Contd...

Open Source Technologies

68 LOVELY PROFESSIONAL UNIVERSITY

Notes up	to	16	people	to	fill	it.	The	Wisp	landed	on	exotic	locations	and	flavors—a	woman	could	
send	a	virtual	kiss	from	Paris	to	her	crush.	Spin	the	Wisp	became	a	novel	way	to	flirt.

Results

Big	Fuel	reports	that	a	Real	Life	Twitter	video	produced	with	CollegeHumor	netted	more	
than	 1.7	 million	 plus	 views.	 The	 video	 featured	man-in-the-street	 style	 interviews	 by	 a	
standup	comic	who	walked	around	blurting	out	 things	 like:	“I	 just	 found	 this	new	wisp.	
Anybody	want	a	kiss?”	

The	Kip	Kaye	video	“Quick	Draw	Gadget”	 in	which	Kip	constructs	a	quick	draw	gadget	
out	of	a	Colgate	Wisp,	has	generated	more	than	1	million	views.	In	total,	the	eight	videos	
in	the	“Be	More	Kissable”	series	racked	up	more	than	4.1	million	views	on	YouTube	as	of	
late	June	2010.	

The	two	most	recent	videos	for	Colgate	Wisp	are	College	Humor	POV	“New	Year’s	Eve”	
which	logged	1,255,872	views	and	Michelle	Phan’s	“Kissable	Lips”	video	which	has	1,791,352	
views	as	of	late	June.	All	the	videos	were	seeded	on	multiple	video-sharing	sites.

The	game	saw	a	10%	click-through	rate.	Each	time	someone	received	a	virtual	kiss,	they	got	
a	notification	that	appeared	on	their	wall.	The	10%	click-through	rate	was	based	on	the	total	
number	engagements	vis-à-vis	the	notifications.	

The	average	number	of	spins	per	install	on	Spin	the	Wisp	was	7.6.	There	were	more	than	
100,000	engagements	and	40,000	+	installations	of	the	widget	and	more	than	1	million	unique	
impressions	of	the	widget.	There	were	500,000	views	of	a	faux	Wisp	infomercial.

Overall,	as	of	May,	2010,	Big	Fuel	reported	6	million+	total	engagements	with	the	Wisp	campaign	
(widget	installs,	video	views,	game	plays,	pass-alongs).	Big	Fuel	considered	“engagement”	as	
active	participation,	meaning	someone	played	the	game,	shared	 it,	watched	a	video—there	
was	a	10-second	minimum	on	viewing—and	commented	on	a	video,	Savar	said.	

Questions

1.	What	kind	of	challenges	Colgate	faced	during	promoting	their	product?

2.	What	kind	of	Strategies	Colgate	follow	during	promoting	their	product?

5.5 Summary

	 •	 After	you	have	compiled	or	installed	PHP,	you	can	still	change	its	behavior	with	the	php.
ini	file.

	 •	 PHP	is	a	general-purpose	scripting	language	originally	designed	for	web	development	to	
produce	dynamic	web	pages.

	 •	 PHP	was	originally	created	by	Rasmus	Lerdorf	in	1995.

	 •	 Some	versions	 of	 the	Windows	PHP	 Installer	 use	 c:\php4\pear	 in	 the	default	 include	
path,	but	this	directory	(c:\php4)	is	different	from	the	one	created	by	the	PHP	Windows	
Installer.

Unit 5: PHP

 LOVELY PROFESSIONAL UNIVERSITY 69

Notes	 •	 Go-pear.org	is	a	web	site	with	a	single	PHP	script	that	you	can	download	and	run	to	install	
the latest stable version of the PEAR Installer and the PHP Foundation Classes (PFC).

	 •	 PHP	is installed on more than 20 million websites and 1 million web servers in the web.

5.6 Keywords

PHP: It	is	a	scripting	language	originally	designed	for	web	development	to	produce	web	pages.

Installation Prefix: It is the root directory of PEAR installation. It has no other effect than serving
as	a	root	for	the	next	five	settings,	using	and	prefix.

Binaries directory:	Where	programs	and	PHP	scripts	 from	PEAR	packages	are	 installed.	The	
pear	executable	ends	up	here.

Test base directory:	Where	regression	test	scripts	for	the	package	are	installed.

PHP code directory: This directing exists where PHP code is installed. This directory is the
include	N	path	when	using	the	packages	you	install.

1.	Make	the	syntax	table.

2.	Define	switch	Flow.

5.7 Self Assessment Questions

 1.	 PHP	is	a	widely	used	scripting	language	that	 is	especially	suited	for	web	development	
and can be embedded into html.

 (a)	 Open	source	general	purpose

 (b)	 Proprietary	general	purpose

 (c)	 Open	source	special	purpose

 (d)	 Proprietary	special	purpose

	 2.	 Which	of	the	following	variable	is	not	a	predefined	variable?

 (a)	 $get	 (b)	 $ask

 (c)	 $request	 (d)	 $post

 3. Installation	prefix:	The	root	directory	of	your	PEAR	installation.	It	has	no	other	effect	than	
serving	as	a	root	for	the	next	five	settings,	using	$prefix.

 (a) True (b) False

	 4.	 Binaries	directory:	Where	PHP	code	is	installed.	This	directory	must	be	in	your	include_path	
when	using	the	packages	you	install.

 (a) True (b) False

 5. Tests base directory:	 Where	 regression	 test	 scripts	 for	 the	 package	 are	 installed.	 The	
package	name	is	also	added	to	the	directory.

 (a) True (b) False

Open Source Technologies

70 LOVELY PROFESSIONAL UNIVERSITY

Notes 5.8 Review Questions

	 1.	 Explain	PHP and its versions.

	 2.	 Explain	installation	of	PHP.

	 3.	 What	is	PEAR?	How	is	its	installation	done?

	 4.	 Name	five	various	version	of	PHP	with	details	theirin.

Answers for Self Assessment Questions
 1. (a) 2. (b) 3. (b) 4. (b) 5. (a)

5.9 Further Reading

Open source development with LAMP: Using Linux, Apache, My SQL, Perl & PHP
by:	James	Lee,	Pearson	Education.

http://www.w3schools.com/php/default.asp

Unit 6: Building Blocks of PHP

 LOVELY PROFESSIONAL UNIVERSITY 71

NotesUnit 6: Building Blocks of PHP

CONTENTS
Objectives

Introduction

6.1 Building Blocks of PHP

 6.1.1 Variables

 6.1.2 Data Types

 6.1.3 Operators

 6.1.4 Expressions

 6.1.5 PHP Constants

 6.1.6 Switch Flow

 6.1.7 Loop Control Structures

 6.1.8 Browser Output

6.2 Summary

6.3 Keywords

6.4 Self Assessment Questions

6.5 Review Questions

6.6 Further Reading

Objectives

After studying this unit, you will be able to:

 •	 Explain variables in PHP and its data types.

	 •	 Discuss	types	of	operators.

	 •	 Explain	expressions.

	 •	 Discuss	PHP	constants.

Introduction

On the building blocks of PHP, including data types, literals, variables, and constants. Every
concept is illustrated with tested code examples, screen shots showing program output, and
line-by-line explanations.

The basic building blocks of the PHP language: variables and operators. You’ll need to get up to
speed with reading and writing PHP code and a solid grounding in the basics is very important.

Sarabjit Kumar, Lovely Professional University

Open Source Technologies

72 LOVELY PROFESSIONAL UNIVERSITY

Notes 6.1 Building Blocks of PHP

6.1.1 Variables

Variables in PHP are quite different from compiled languages such as C and Java. This is because
their weakly typed nature, which in short means you don’t need to declare variables before using
them, you don’t need to declare their type and, as a result, a variable can change the type of its
value as much as you want. Variables in PHP are preceded with a $ sign, and similar to most
modern languages, they can start with a letter (A-Za-z) or _ (underscore) and can then contain
as many alphanumeric characters and underscores as you like.

Examples of legal variable names include

$count

$_Obj

$A123

Example of illegal variable names include

$123

$*ABC

As previously mentioned, you don’t need to declare variables or their type before using them
in PHP. The following code example uses variables:

$PI = 3.14;

$radius = 5;

$circumference = $PI * 2 * $radius; // Circumference = π * d

You can see that none of the variables are declared before they are used. Also, the fact that $PI
is	a	floating-point	number,	and	$radius	(an	integer)	is	not	declared	before	they	are	initialized.

PHP does not support global variables like many other programming languages (except for
some	special	pre-defined	variables,	which	we	discuss	later).	Variables	are	local	to	their	scope,	
and if created in a function, they are only available for the lifetime of the function. Variables
that are created in the main script (not within a function) aren’t global variables; you cannot see
them inside functions, but you can access them by using a special array $GLOBALS[], using the
variable’s name as the string offset. The previous example can be rewritten the following way:

$PI = 3.14;

$radius = 5;

$circumference = $GLOBALS[“PI”] * 2 * $GLOBALS[“radius”];

→ // Circumference = π * d

You might have realized that even though all this code is in the main scope (we didn’t make
use of functions), you are still free to use $GLOBALS[], although in this case, it gives you no
advantage.

Unit 6: Building Blocks of PHP

 LOVELY PROFESSIONAL UNIVERSITY 73

Notes6.1.1.1 Indirect References to Variables

An extremely useful feature of PHP is that you can access variables by using indirect references,
or to put it simply, you can create and access variables by name at runtime.

Consider the following example:

$name = ”John”;

$$name = ”Registered user”;

print $John;

This code results in the printing of ”Registered user.” The bold line uses an additional $ to
access	the	variable	with	name	specified	by	the	value	of	$name	(”John”)	and	changing	its	value	
to “Registered user”. Therefore, a variable called $John is created. You can use as many levels
of indirections as you want by adding additional $ signs in front of a variable.

6.1.1.2 Managing Variables

Three language constructs are used to manage variables. They enable you to check if certain
variables exist, remove variables, and check variables’ truth values.

isset() isset() The Determines whether a certain variable has already been declared by PHP. It
returns a boolean value true if the variable has already been set, and false otherwise, or if the
variable is set to the value NULL. Consider the following script:

if	(isset($first_name))	{

print	‘$first_name	is	set’;

}

This	code	snippet	checks	whether	the	variable	$first_name	is	defined.	If	$first_name	is	defined,	
isset()	returns	true,	which	will	display	‘$first_name	is	set.’	If	it	isn’t,	no	output	is	generated.

isset() can also be used on array elements (discussed in a later section) and object properties.
Here are examples for the relevant syntax, which you can refer to later:

Checking an array element:

if	(isset($arr[”offset”]))	{

...

}

Checking an object property:

if	(isset($obj->property))	{

...

}

Note that in both examples, we didn’t check if $arr or $obj are set (before we checked the offset
or property, respectively). The isset() construct returns false automatically if they are not set.

Open Source Technologies

74 LOVELY PROFESSIONAL UNIVERSITY

Notes isset() is the only one of the three language constructs that accepts an arbitrary amount of
parameters. Its accurate prototype is as follows:

isset($var1, $var2, $var3, ...);

It	 only	 returns	 true	 if	 all	 the	 variables	 have	 been	defined;	 otherwise,	 it	 returns	 false.	 This	 is	
useful when you want to check if the required input variables for your script have really been
sent by the client, saving you a series of single isset() checks.

unset() “Undeclares” a previously set variable, and frees any memory that was used by it if
no other variable references its value. A call to isset() on a variable that has been unset() returns
false.

For example:

$name = ”John Doe”;

unset($name);

if	(isset($name))	{

print ’$name is set’;

}

This example will not generate any output, because isset() returns false.

unset() can also be used on array elements and object properties similar to isset().

6.1.1.3 Empty

Empty() empty() may be used to check if a variable has not been declared or its value is false.
This language construct is usually used to check if a form variable has not been sent or does not
contain	data.	When	checking	a	variable’s	truth	value,	 its	value	is	first	converted	to	a	Boolean	
according to the rules in the following section, and then it is checked for true/false.

For example:

if	(empty($name))	{

print ‘Error: Forgot to specify a value for $name’;

}

This code prints an error message if $name doesn’t contain a value that evaluates to true.

6.1.1.4 Superglobals

As a general rule, PHP does not support global variables (variables that can automatically be
accessed from any scope). However, certain special internal variables behave like global variables
similar	to	other	languages.	These	variables	are	called	superglobals	and	are	predefined	by	PHP	
for you to use. Some examples of these superglobals are:

$_GET[]. An array that includes all the GET variables that PHP received from the client browser.

Unit 6: Building Blocks of PHP

 LOVELY PROFESSIONAL UNIVERSITY 75

Notes$_POST[]. An array that includes all the POST variables that PHP received from the client browser.

$_COOKIE[]. An array that includes all the cookies that PHP received from the client browser.

$_ENV[]. An array with the environment variables.

$_SERVER[]. An array with the values of the web-server variables.

 “How to Write a Web Application with PHP.” On a language level, it is important to know

that you can access these variables anywhere in your script whether function, method, or global

scope. You don’t have to use the $GLOBALS[] array, which allows for accessing global variables

without having to predeclare them or using the deprecated globals keyword.

6.1.2 Data Types

Eight	different	data	types	exist	in	PHP,	five	of	which	are	scalar	and	each	of	the	remaining	three	

has its own uniqueness. The previously discussed variables can contain values of any of these

data types without explicitly declaring their type. The variable “behaves” according to the data

type it contains.

6.1.2.1 Integers

Integers are whole numbers and are equivalent in range as your C compiler’s long value. On

many common machines, such as Intel Pentiums, that means a 32-bit signed integer with a range

between –2,147,483,648 to +2,147,483,647.

Integers	can	be	written	in	decimal,	hexadecimal	(prefixed	with	0x),	and	octal	notation	(prefixed	

with	0),	and	can	include	+/-	signs.

Some examples of integers include

240000

0xABCD

007

-100

 As integers are signed, the right shift operator in PHP always does a signed
shift.

6.1.2.2 Floating-Point Numbers

Floating-point numbers (also known as real numbers) represent real numbers and are equivalent
to your platform C compiler’s double data type. On common platforms, the data type size is
8	bytes	and	it	has	a	range	of	approximately	2.2E–308	to	1.8E+308.	Floating-point	numbers	include	
a decimal point and can include a +/- sign and an exponent value.

Open Source Technologies

76 LOVELY PROFESSIONAL UNIVERSITY

Notes Examples	of	floating-point	numbers	include

3.14

+0.9e-2

-170000.5

54.6E42

6.1.2.3 Strings

Strings in PHP are a sequence of characters that are always internally nullterminated. However,
unlike some other languages, such as C, PHP does not rely on the terminating null to calculate
a string’s length, but remembers its length internally. This allows for easy handling of binary
data	in	PHP—for	example,	creating	an	image	on-the-fly	and	outputting	it	to	the	browser.	The	
maximum length of strings varies according to the platform and C compiler, but you can expect
it	to	support	at	least	2GB.	Don’t	write	programs	that	test	this	limit	because	you’re	likely	to	first	
reach your memory limit.

When writing string values in your source code, you can use double quotes (“), single quotes
(‘) or here-docs to delimit them.

Double Quotes Examples for double quotes:

“PHP: Hypertext Pre-processor”

“GET	/	HTTP/1.0\n”

“1234567890”

Strings can contain pretty much all characters. Some characters can’t be written as is, however,
and require special notation:

\n Newline

\t Tab.

\” Double quote.

\\ Backslash.

\0 ASCII	0	(null).

\r Line feed.

\$ Escape $ sign so that it is not treated as a variable but
as the character $.

\{Octal	#}	 The	character	represented	by	the	specified	octal	#—	for	
example,\70	represents	the	letter	8.

\x{Hexadecimal#} The	character	represented	by	the	specified	hexadecimal	
#—forexample,	\0x32	represents	the	letter	2.

An additional feature of double-quoted strings is that certain notations of variables and
expressions	can	be	embedded	directly	within	them.	Without	going	into	specifics,	here	are	some	
examples of legal strings that embed variables. The references to variables are automatically
replaced with the variables’ values, and if the values aren’t strings, they are converted to their
corresponding	string	representations	(for	example,	the	integer	123	would	be	first	converted	to	
the string “123”).

Unit 6: Building Blocks of PHP

 LOVELY PROFESSIONAL UNIVERSITY 77

Notes“The	result	is	$result\n”

“The array offset $i contains $arr[$i]”

In cases, where you’d like to concatenate strings with values (such as variables and expressions)
and	this	syntax	isn’t	sufficient,	you	can	use	the	.	(dot)	operator	to	concatenate	two	or	more	strings.	

Single Quotes In addition to double quotes, single quotes may also delimit strings. However,
in contrast to double quotes, single quotes do not support all the double quotes’ escaping and
variable substitution.

The following table includes the only two escapings supported by single quotes:

\’ Single quote.
\\ Backslash, used when wanting to represent a backslash

followed	by	a	single	quote—for	example,	\\’.

 Example: ‘Hello, World’

	 	 	 	 ‘Today\’s	the	day’

6.1.2.4 Here-Docs Here-docs

Here-Docs Here-docs enable you to embed large pieces of text in your scripts, which may include
lots of double quotes and single quotes, without having to constantly escape them.

The following is an example of a here-doc.

 Example: <<<THE_END

PHP stands for “PHP: Hypertext Preprocessor”.

The acronym “PHP” is therefore, usually referred to as a recursive acronym ‘→because the long
form contains the acronym itself.

As this text is being written in a here-doc there is no need to escape the ‘→double quotes.

THE_END

The strings starts with <<<, followed by a string that you know doesn’t appear in your text. It is
terminated by writing that string at the beginning of a line, followed by an optional semicolon(;),
and	then	a	required	newline	(\n).	Escaping	and	variable	substitution	in	here-docs	is	identical	to	
double-quoted strings except that you are not required to escape double quotes.

Accessing String Offsets Individual	characters	in	a	string	can	be	accessed	using	the	$str{offset}	
notation. You can use it to both read and write string offsets. When reading characters, this
notation should be used only to access valid indices. When modifying characters, you may access
offsets that don’t yet exist. PHP automatically sets that offset to the said character, and if this
results in a gap between the ending of the original string and the offset of the new character,
the	gap	filled	with	space	characters	(‘	‘).

This example creates and prints the string “Andi” (in an awkward way):

$str = “A”;

$str{2}	=	“d”;

Open Source Technologies

78 LOVELY PROFESSIONAL UNIVERSITY

Notes $str{1}	=	“n”;

$str = $str . “i”;

print $str;

Tip: For	many	cases,	PHP	has	string	manipulation	functions	which	use	efficient	algorithms.	
You	should	first	look	at	them	before	you	access	strings	directly	using	string	offsets.	They	
are	usually	prefixed	with	str_.	For	more	complex	needs,	the	regular	expressions	functions—
most notably the pcre_ family of functions—will come in handy.

In PHP 4, you could use [] (square brackets) to access string offsets. This
support still exists in PHP 5, and you are likely to bump into it often. However,
you	 should	 really	use	 the	 {}	 notation	because	 it	differentiates	 string	offsets	
from array offsets and thus, makes your code more readable.

6.1.2.5 Booleans

Booleans	were	introduced	for	the	first	time	in	PHP	4	and	didn’t	exist	in	prior	versions.	A	Boolean	
value can be either true or false. As previously mentioned, PHP automatically converts types
when needed. Boolean is probably the type that other types are most often converted to behind
the scenes. This is because, in any conditional code such as if statements, loops, and so on, types
are	converted	to	this	scalar	type	to	check	if	the	condition	is	satisfied.	Also,	comparison	operators	
result in a Boolean value.

Consider the following code fragment:

$numerator = 1;

$denominator = 5;

if	($denominator	==	0)	{

print	“The	denominator	needs	to	be	a	non-zero	number\n”;

}

The result of the equal-than operator is a Boolean; in this case, it would

be false and, therefore, the if() statement would not be entered.

Now, consider the next code fragment:

$numerator = 1;

$denominator = 5;

if	($denominator)	{

/* Perform calculation */

}	else	{

print	“The	denominator	needs	to	be	a	non-zero	number\n”;

}

Unit 6: Building Blocks of PHP

 LOVELY PROFESSIONAL UNIVERSITY 79

NotesYou can see that no comparison operator was used in this example; however, PHP automatically
internally converted $denominator or, to be more accurate, the value 5 to its Boolean equivalent,
true, to perform the if () statement and, therefore, enter the calculation. Although not all types
have been covered yet, the following table shows truth values for their values. You can revisit this
table to check for the types of Boolean value equivalents, as you learn about the remaining types.

Data Type False Values True Values

Integer 0 All non-zero values

Floating point All non-zero values

Strings All other strings

Null Never

Array If it contains at least one
element

Object Never Always

Resource Never Always

6.1.2.6 Null

Null is a data type with only one possible value: The NULL value. It marks variables as being
empty, and it’s especially useful to differentiate between the empty string and null values of
databases. The isset($variable) operator of PHP returns false for NULL, and true for any other
data type, as long as the variable you’re testing exists.

The following is an example of using NULL.

 Example: $value = NULL;

6.1.2.7 Resources

Resources, a special data type, represent a PHP extension resource such as a database query,
an	open	file,	a	database	connection,	and	lots	of	other	external	types.

You will never directly touch variables of this type, but will pass them around to the relevant
functions	that	know	how	to	interact	with	the	specified	resource.

6.1.2.8 Arrays

An array in PHP is a collection of key/value pairs. This means that it maps keys (or indexes)
to values. Array indexes can be either integers or strings whereas values can be of any type
(including other arrays).

Tip: Arrays in PHP are implemented using hash tables, which means that accessing a value
has an average complexity of O (1).

array() construct: Arrays can be declared using the array() language construct, which generally
takes the following form (elements inside square brackets, [], are optional):

array([key =>] value, [key =>] value, ...)

The	key	is	optional,	and	when	it’s	not	specified,	the	key	is	automatically	assigned	one	more	than	
the	largest	previous	integer	key	(starting	with	0).	You	can	intermix	the	use	with	and	without	the	

Open Source Technologies

80 LOVELY PROFESSIONAL UNIVERSITY

Notes key even within the same declaration. The value itself can be of any PHP type, including an array.
Arrays containing arrays give a similar result as multi-dimensional arrays in other languages.

Here are a few examples:

array(1,	2,	3)	is	the	same	as	the	more	explicit	array(0	=>	1,	1	=>	2,	2	‘=>	3).

array(“name” => “John”, “age” => 28)

array(1 => “ONE”, “TWO”, “THREE”) is equivalent to array(1 => “ONE”, 2 =>

→“TWO”, 3 => “THREE”).

array() an empty array.

Here’s an example of a nested array() statement:

array(array(“name” => “John”, “age” => 28), array(“name” =>

→“Barbara”, “age” => 67))

The previous example demonstrates an array with two elements: Each one is a collection (array)
of a person’s information.

Accessing Array Elements: Array elements can be accessed by using the $arr[key] notation,
where key is either an integer or string expression. When using a constant string for key, make
sure you don’t forget the single or double quotes, such as $arr[“key”]. This notation can be used
for both reading array elements and modifying or creating new elements.

Modifying/Creating Array Elements

$arr1 = array(1, 2, 3);

$arr2[0]	=	1;

$arr2[1] = 2;

$arr2[2] = 3;

print_r($arr1);

print_r($arr2);

The print_r() function has not been covered yet in this book, but when it is passed an array, it
prints out the array’s contents in a readable way. You can use this function when debugging
your scripts.

The previous example prints

Array

(

[0]	=>	1

Gutmans_ch02	Page	24	Thursday,	September	23,	2004	2:37	PM

[1] => 2

Unit 6: Building Blocks of PHP

 LOVELY PROFESSIONAL UNIVERSITY 81

Notes[2] => 3

)

Array

(

[0]	=>	1

[1] => 2

[2] => 3

)

So, you can see that you can use both the array() construct and the $arr[key] notation to create
arrays. Usually, array() is used to declare arrays whose elements are known at compile-time,
and the $arr[key] notation is used when the elements are only computed at runtime. PHP also
supports	 a	 special	 notation,	 $arr[],	where	 the	 key	 is	 not	 specified.	When	 creating	new	array	
offsets using this notation (fo example, using it as the l-value), the key is automatically assigned
as one more than the largest previous integer key.

Therefore, the previous example can be rewritten as follows:

$arr1 = array(1, 2, 3);

$arr2[] = 1;

$arr2[] = 2;

$arr2[] = 3;

The result is the same as in the previous example.

The same holds true for arrays with string keys:

$arr1 = array(“name” => “John”, “age” => 28);

$arr2[“name”] = “John”;

$arr2[“age”] = 28;

if	($arr1	==	$arr2)	{

print	‘$arr1	and	$arr2	are	the	same’	.	“\n”;

}

The	message	confirming	the	equality	of	both	arrays	is	printed.

Reading Array Values

You can use the $arr[key] notation to read array values. The next few examples build on top
of the previous example:

print $arr2[“name”];

if	($arr2[“age”]	<	35)	{

Open Source Technologies

82 LOVELY PROFESSIONAL UNIVERSITY

Notes print	“	is	quite	young\n”;

This example prints

Rati is Quite Young

 As previously mentioned, using the $arr[] syntax is not supported when reading
array indexes, but only when writing them.

Accessing Nested Arrays (or Multi-Dimensional Arrays) When accessing nested arrays, you
can just add as many square brackets as required to reach the relevant value. The following is
an example of how you can declare nested arrays:

$arr = array(1 => array(“name” => “John”, “age” => 28), array(“name”

→=> “Barbara”, “age” => 67))

You could achieve the same result with the following statements:

$arr[1][“name”] = “John”;

$arr[1][“age”] = 28;

$arr[2][“name”] = “Barbara”;

$arr[2][“age”] = 67;

Reading a nested array value is trivial using the same notation. For example, if you want to
print John’s age, the following statement does the trick:

print $arr[1][“age”];

Traversing Arrays Using foreach There are a few different ways of iterating over an array. The
most elegant way is the foreach() loop construct.

The general syntax of this loop is

foreach($array as [$key =>] [&] $value)

...

$key	is	optional,	and	when	specified,	it	contains	the	currently	iterated	value’s	key,	which	can	
be either an integer or a string value, depending on the key’s type.

Specifying and for the value is also optional, and it has to be done if you are planning to modify
$value and want it to propagate to $array. In most cases, you won’t want to modify the $value
when iterating over an array and will, therefore, not need to specify it.

Here’s a short example of the foreach() loop:

$players = array(“John”, “Barbara”, “Bill”, “Nancy”);

print	“The	players	are:\n”;

foreach	($players	as	$key	=>	$value)	{

print	“#$key	=	$value\n”;

Unit 6: Building Blocks of PHP

 LOVELY PROFESSIONAL UNIVERSITY 83

Notes}

The output of this example is

The players are:

#0	=	John

#1	=	Barbara

#2	=	Bill

#3	=	Nancy

Here’s a more complicated example that iterates over an array of people and marks which
person is considered old and which one is considered young:

$people = array(1 => array(“name” => “John”, “age” => 28),

→array(“name” => “Barbara”, “age” => 67));

foreach	($people	as	and	$person)	{

if	($person[“age”]	>=	35)	{

$person[“age group”] = “Old”;

}	else	{

$person[“age group”] = “Young”;

}

}

print_r($people);

Again, this code makes use of the print_r() function.

The output of the previous code is the following:

Array

(

[1] => Array

(

[name] => John

[age] => 28

[age group] => Young

)

[2] => Array

(

Open Source Technologies

84 LOVELY PROFESSIONAL UNIVERSITY

Notes [name] => Barbara

[age] => 67

[age group] => Old

)

)

You can see that both the John and Barbara arrays inside the $people array were added an
additional value with their respective age group.

Traversing Arrays Using list() and each() Although foreach() is the nicer way of iterating
over an array, an additional way of traversing an array is by using a combination of the list()
construct and the each() function:

$players = array(“John”, “Barbara”, “Bill”, “Nancy”);

reset($players);

while	(list($key,	$val)	=	each($players))	{

print	“#$key	=	$val\n”;

}

The output of this example is

#0	=	John

#1	=	Barbara

#2	=	Bill

#3	=	Nancy

reset() Iteration in PHP is done by using an internal array pointer that keeps record of the current
position of the traversal. Unlike with foreach(), when you want to use each() to iterate over an
array, you must reset() the array before you start to iterate over it. In general, it is best for you
to always use foreach() and not deal with this subtle nuisance of each() traversal.

each() The each() function returns the current key/value pair and advances the internal pointer
to the next element. When it reaches the end of of the array, it returns a booloean value of false.
The	key/value	pair	is	returned	as	an	array	with	four	elements:	the	elements	0	and	“key”,	which	
have the value of the key, and elements 1 and “value”, which have the value of the value. The
reason for duplication is that, if you’re accessing these elements individually, you’ll probably
want to use the names such as:

$elem[“key”] and $elem[“value”]:

$ages = array(“John” => 28, “Barbara” => 67);

reset($ages);

$person = each($ages);

print $person[“key”];

Unit 6: Building Blocks of PHP

 LOVELY PROFESSIONAL UNIVERSITY 85

Notesprint “ is of age “;

print $person[“value”];

This prints

John is of age 28

When	we	explain	how	the	list()	construct	works,	you	will	understand	why	offsets	0	and	1	also	
exist.

list() The list() construct is a way of assigning multiple array offsets to multiple variables in
one statement:

list($var1, $var2, ...) = $array;

The	first	variable	in	the	list	is	assigned	the	array	value	at	offset	0,	the	second	is	assigned	offset	1,	
and so on. Therefore, the list() construct translates into the following series of PHP statements:

$var1	=	$array[0];

$var2 = $array[1];

...

As	previously	mentioned,	the	indexes	0	and	1	returned	by	each()	are	used	by	the	list()	construct.	
You can probably already guess how the combination of list() and each() work. Consider the
highlighted line from the previous $players traversal example:

$players = array(“John”, “Barbara”, “Bill”, “Nancy”);

reset($players);

while	(list($key,	$val)	=	each($players))	{

print	“#$key	=	$val\n”;

}

What happens in the boldfaced line is that during every loop iteration, each() returns the current
position’s key/value pair array, which, when examined with print_r(), is the following array:

Array

(

[1] => John

[value] => John

[0]	=>	0

[key]	=>	0

)

Then,	the	list()	construct	assigns	the	array’s	offset	0	to	$key	and	offset	1

to $val.

Open Source Technologies

86 LOVELY PROFESSIONAL UNIVERSITY

Notes Additional Methods for Traversing Arrays

You can use other functions to iterate over arrays including current() and next(). You shouldn’t
use them because they are confusing and are legacy functions. In addition, some standard
functions allow all sorts of elegant ways of dealing with arrays such as array_walk(), which is
covered in a later unit.

6.1.3 Operators

PHP contains three types of operators: unary operators, binary operators, and one ternary
operator.

Binary operators are used on two operands:

2 + 3

14 * 3.1415

$i – 1

These examples are also simple examples of expressions. PHP can only perform binary operations
on two operands that have the same type. However, if the two operands have different types,
PHP automatically converts one of them to the other’s type, according to the following rules
(unless stated differently, such as in the concatenation operator).

Type of one of
the Operands

Type of the other
Operand

Conversion Performed

Integer Floating point The integer operand is converted to a
floating	point	number.

Integer String The string is converted to a number. If the
converted string’s type is real, the integer
operand is converted to a real as well.

Real String The string is converted to a real.

Booleans, nulls, and resources behave like integers, and they convert in the following manner:

	 •	 Boolean:	False	=	0,	True	=	1

	 •	 Null	=	0

	 •	 Resource	=	The	resource’s	#	(id)

6.1.3.1 Binary Operators

Numeric Operators All the binary operators (except for the concatenation operator) work only
on numeric operands. If one or both of the operands are strings, Booleans, nulls, or resources,
they are automatically converted to their numeric equivalents before the calculation is performed.

Operator Name Value

+ Addition The sum of the two operands.

– Subtraction The difference between the two operands.

* Multiplication The product of the two operands.

Contd...

Unit 6: Building Blocks of PHP

 LOVELY PROFESSIONAL UNIVERSITY 87

Notes/ Division The quotient of the two operands.

% Modulus Both operands are converted to integers. The result
is	the	remainder	of	the	division	of	the	first	operand	
by the second operand.

Concatenation Operator (.) The concatenation operator concatenates two strings. This operator
works	only	on	strings;	thus,	any	non-string	operand	is	first	converted	to	one.

The	following	example	would	print	out	“The	year	is	2000”:

$year	=	2000;

print “The year is “ . $year;

The	integer	$year	is	internally	converted	to	the	string	“2000”	before	it	is	concatenated	with	the	
string’s	prefix,	“The	year	is”.

6.1.3.2 Assignment Operators

Assignment operators enable	you	to	write	a	value	to	a	variable.	The	first	operand	(the	one	on	
the left of the assignment operator or l value) must be a variable. The value of an assignment
is	the	final	value	assigned	to	the	variable;	for	example,	the	expression	$var	=	5	has	the	value	5	
(and assigns 5 to $var).

In addition to the regular assignment operator =, several other assignment operators are
composites of an operator followed by an equal sign. These composite operators apply the
operator	 taking	 the	variable	on	 the	 left	as	 the	first	operand	and	 the	value	on	 the	 right	 (the	 r	
value) as the second operand, and assign the result of the operation to the variable on the left.

For example:

$counter += 2; // This is identical to $counter = $counter + 2;

$offset *= $counter;// This is identical to $offset = $offset *

→ $counter;

The following list show the valid composite assignment operators:

+=, -=, *=, /=, %=, ^=, .=, &=, |=, <<=, >>=

By-Reference Assignment Operator PHP enables you to create variables as aliases for other
variables. You can achieve this by using the by-reference assignment operator =&. After a variable
aliases another variable, changes to either one of them affects the other.

For example:

$name = “Judy”;

$name_alias =& $name;

$name_alias = “Jonathan”;

print $name;

Open Source Technologies

88 LOVELY PROFESSIONAL UNIVERSITY

Notes The result of this example is

Jonathan

When returning a variable by-reference from a function (covered later in this book), you also
need to use the assign by-reference operator to assign the returned variable to a variable:

$retval =& func_that_returns_by_reference();

6.1.3.3 Comparison Operators

Comparison operators enable you to determine the relationship between two operands. When
both operands are strings, the comparison is performed lexicographically.

The comparison results in a Boolean value. For the following comparison operators, automatic
type conversions are performed, if necessary

Operator Name Value

== Equal to Checks for equality between
two arguments performing
type convers ion when
necessary: 1 == “1” results
in true 1 == 1 results in true

!= Not equal to Inverse of ==.

> Greater than Checks if first operand is
greater than second

< Smaller than Checks if first operand is
smaller than second

>= Greater than or equal to Checks if first operand is
greater or equal to second

<= Smaller than or equal to Checks if first operand is
smaller or equal to second

For the following two operators, automatic type conversions are not performed and, therefore,
both the types and the values are compared.

Operator Name Value

=== Identical to Same as == but the types
o f t h e o p e r a n d s h a v e
tomatch. No automatic type
conversions are performed:1
=== “1” results in false.1 ===
1 results in true.

!== Not identical to The inverse of ===.

6.1.3.4 Logical Operators

Logical operators first	convert	their	operands	to	boolean	values	and	then	perform	the	respective	
comparison.

Unit 6: Building Blocks of PHP

 LOVELY PROFESSIONAL UNIVERSITY 89

NotesOperator Name Value
&&, and Logical AND The result of the logical AND

operation between the two
operands

||, or Logical OR The result of the logical OR
operation between the two
operands

xor Logical XOR The result of the logical XOR
operation between the two
operands

Short-Circuit Evaluation: When evaluating the logical and/or operators, you can often know
the result without having to evaluate both operands. For example, when PHP evaluates
0	&&	1,	it	can	tell	the	result	will	be	false	by	looking	only	at	the	left	operand,	and	it	won’t	continue	
to evaluate the right one. This might not seem useful right now, but later on, we’ll see how we
can use it to execute an operation only if a certain condition is met.

6.1.3.5 Bitwise Operators

Bitwise operators: Perform an operation on the bitwise representation of their arguments. Unless
the arguments are strings, they are converted to their corresponding integer representation, and
the operation is then performed. In case both arguments are strings, the operation is performed
between corresponding character offsets of the two strings (each character is treated as an integer).

Operator Name Value
& Bitwise AND Unless both operands are strings,

the integer value of the bitwise
AND operation between the two
operands. If both operands are
strings, a string in which each
character is the result of a bitwise
AND operation between the two
corresponding characters in the
operands. In case the two operand
strings are different lengths, the
result string is truncated to the
length of the shorter operand.

| Bitwise OR Unless both operands are
strings, the integer value of the
bitwise OR operation between the
two operands. If both operands
are strings, a string in which each
bitwise character is the result of a
bitwise OR operation between the
two corresponding characters in

Contd...

Open Source Technologies

90 LOVELY PROFESSIONAL UNIVERSITY

Notes the operands. In case the two
operand strings are of different
lengths, the result string has the
length of the longer operand; the
missing characters in the shorter
operand are assumed to be zeroes.

^ Bitwise
XOR(exclusive or)

Unless both operands are strings,
the integer value of the bitwise
XOR operation between the
two operands. If both operands
are strings, astring in which
each character is the result of a
bitwise XOR operation between
the two corresponding characters
in the operands. In case the two
operand strings are of different
lengths, the result string is
truncated to the length of the
shorter operand.

6.1.3.6 Unary Operators

Unary operators act on one operand.

6.1.3.7 Negation Operators

Negation operators appear before their operand—for example, !$var (! is the operator, $var is
the operand).

Operator Name Value

! Logical Negation True if the operand evaluates
to false. False if the operand
evaluates to true.

~ Bitwise Negation I n c a s e o f a n u m e r i c
operand,the bitwise negation
of its bitwise representation
(floating-point values are
first converted to integers).
In case of strings, a string
of equal length, in which
each character is the bitwise
negation of its corresponding
character in the original string.

Unit 6: Building Blocks of PHP

 LOVELY PROFESSIONAL UNIVERSITY 91

Notes6.1.3.8 Increment/Decrement Operators

Increment/decrement operators are unique in the sense that they operate only on variables and
not on any value. The reason for this is that in addition to calculating the result value, the value
of the variable itself changes as well.

Operator Name Effect on $var Value of the Expression

$var++ Post-increment $var is incremented by 1. The previous value of $var.

++$var Pre-increment $var is incremented by 1. The new value of $var

(incremented by 1).

$var–– Post-decrement $var is decremented by

1.

The previous value of $var.

––$var Pre-decrement $var is decremented by

1.

The new value of $var

(decremented by 1).

As you can see from the previous table, there’s a difference in the value of post and pre increment.
However, in both cases, $var is incremented by 1. The only difference is in the value to which
the increment expression evaluates.

 Example: 1:

 $num1 = 5;

 $num2 = $num1++;// post-increment, $num2 is assigned $num1’s original value

 print $num1; // this will print the value of $num1, which is now 6

 print $num2; // this will print the value of $num2, which is the

 →original value of $num1, thus, 5

 Example: 2:

 $num1 = 5;

 $num2 = ++$num1;// pre-increment, $num2 is assigned $num1’s

 →incremented value

 print $num1; // this will print the value of $num1, which is now 6

 print $num2; // this will print the value of $num2, which is the

 →same as the value of $num1, thus, 6

The same rules apply to pre- and post-decrement.

Incrementing Strings Strings (when not numeric) are incremented in a similar way to Perl. If
the	last	letter	is	alphanumeric,	it	is	incremented	by	1.	If	it	was	‘z’,	‘Z’,	or	‘9’,	it	is	incremented	
to	‘a’,	‘A’,	or	‘0’	respectively,	and	the	next	alphanumeric	is	also	incremented	in	the	same	way.	
If there is no next alphanumeric, one is added to the beginning of the string as ‘a’, ‘A’, and ‘1,’
respectively. If this gives you a headache, just try and play around with it.

Open Source Technologies

92 LOVELY PROFESSIONAL UNIVERSITY

Notes You’ll get the hang of it pretty quickly.

Non-numeric strings cannot be decremented.

6.1.3.9 The Cast Operators

PHP provides a C-like way to force a type conversion of a value by using the cast operators.
The operand appears on the right side of the cast operator, and its result is the converted type
according to the following table.

Operator Changes Type To

(int), (integer) Integer

(float),	(real),	(double) Floating point String

(string) String

(bool), (boolean) Boolean

(array) Array

(object) Object

The casting operators change the type of a value and not the type of a variable. For example:

$str = “5”;

$num = (int) $str;

This results in $num being assigned the integer value of $str (5), but $str remains of type string.

6.1.3.10 The Silence Operator

The operator @ silences error messages during the evaluation process of an expression. It is
discussed in more detail in unit 7.

6.1.3.11 The One and Only Ternary Operator

One of the most elegant operators is the ?: (question mark) operator. Its format

Is truth_expr ? expr1 : expr2

The operator evaluates truth_expr and checks whether it is true. If it is, the value of the expression
evaluates to the value of expr1 (expr2 is not evaluated). If it is false, the value of the expression
evaluates to the value of expr2

(expr1 is not evaluated).

For example, the following code snippet checks whether $a is set (using isset()) and displays a
message accordingly:

$a	=	99;

$message = isset($a) ? ‘$a is set’ : ‘$a is not set’;

print $message;

This example prints the following:

$a is set

Unit 6: Building Blocks of PHP

 LOVELY PROFESSIONAL UNIVERSITY 93

Notes6.1.4 Expressions

Expressions are the most important building stones of PHP. In PHP, almost anything you write
is	an	expression.	The	simplest	yet	most	accurate	way	to	define	an	expression	is	“anything	that	
has a value”.

The most basic forms of expressions are constants and variables. When you type “$a = 5”, you’re
assigning ‘5’ into $a. ‘5’, obviously, has the value 5, or in other words ‘5’ is an expression with
the value of 5 (in this case, ‘5’ is an integer constant).

After this assignment, you’d expect $a’s value to be 5 as well, so if you wrote $b = $a, you’d
expect it to behave just as if you wrote $b = 5. In other words, $a is an expression with the value
of 5 as well. If everything works right, this is exactly what will happen.

Slightly more complex examples for expressions are functions. For instance, consider the
following function:

< ?p hp

function foo ()

{

 return 5;

}

? >

Assuming you’re familiar with the concept of functions (if you’re not, take a look at the unit
about functions), you’d assume that typing $c = foo() is essentially just like writing $c = 5, and
you’re right. Functions are expressions with the value of their return value. Since foo() returns
5, the value of the expression ‘foo()’ is 5. Usually functions don’t just return a static value but
compute something.

Of course, values in PHP don’t have to be integers, and very often they aren’t. PHP supports
four	scalar	value	types:	integer	values,	floating	point	values	(float),	string	values	and	boolean	
values (scalar values are values that you can’t ‘break’ into smaller pieces, unlike arrays, for
instance). PHP also supports two composite (non-scalar) types: arrays and objects. Each of these
value types can be assigned into variables or returned from functions.

PHP takes expressions much further, in the same way many other languages do. PHP is an
expression-oriented language, in the sense that almost everything is an expression. Consider the
example we’ve already dealt with, ‘$a = 5’. It’s easy to see that there are two values involved here,
the value of the integer constant ‘5’, and the value of $a which is being updated to 5 as well. But
the truth is that there’s one additional value involved here, and that’s the value of the assignment
itself. The assignment itself evaluates to the assigned value, in this case 5. In practice, it means that
‘$a = 5’, regardless of what it does, is an expression with the value 5. Thus, writing something like
‘$b = ($a = 5)’ is like writing ‘$a = 5; $b = 5;’ (a semicolon marks the end of a statement). Since
assignments are parsed in a right to left order, you can also write ‘$b = $a = 5’.

Another good example of expression orientation is pre- and post-increment and decrement.
Users of PHP and many other languages may be familiar with the notation of variable++ and

Open Source Technologies

94 LOVELY PROFESSIONAL UNIVERSITY

Notes variable—These are increment and decrement operators. In PHP/FI 2, the statement ‘$a++’ has
no value (is not an expression), and thus you can’t assign it or use it in any way. PHP enhances
the increment/decrement capabilities by making these expressions as well, like in C. In PHP, like
in C, there are two types of increment-pre-increment and post-increment. Both pre-increment
and post-increment essentially increment—the variable, and the effect on the variable is identical.
The difference is with the value of the increment expression. Pre-increment, which is written
‘++$variable’, evaluates to the incremented value (PHP increments the variable before reading its
value, thus the name ‘pre-increment’). Post-increment, which is written ‘$variable++’ evaluates
to the original value of $variable, before it was incremented (PHP increments the variable after
reading its value, thus the name ‘post-increment’).

A very common type of expressions are comparison expressions. These expressions evaluate to
either FALSE or TRUE. PHP supports > (bigger than), >= (bigger than or equal to), == (equal),
!= (not equal), < (smaller than) and <= (smaller than or equal to). The language also supports
a set of strict equivalence operators: === (equal to and same type) and !== (not equal to or not
same type). These expressions are most commonly used inside conditional execution, such as
if statements.

The last example of expressions we’ll deal with here is combined operator-assignment expressions.
You already know that if you want to increment $a by 1, you can simply write ‘$a++’ or ‘++$a’.
But what if you want to add more than one to it, for instance 3? You could write ‘$a++’ multiple
times,	but	this	is	obviously	not	a	very	efficient	or	comfortable	way.	A	much	more	common	practice	
is to write ‘$a = $a + 3’. ‘$a + 3’ evaluates to the value of $a plus 3, and is assigned back into
$a, which results in incrementing $a by 3. In PHP, as in several other languages like C, you can
write this in a shorter way, which with time would become clearer and quicker to understand
as well. Adding 3 to the current value of $a can be written ‘$a += 3’. This means exactly “take
the value of $a, add 3 to it, and assign it back into $a”. In addition to being shorter and clearer,
this also results in faster execution. The value of ‘$a += 3’, like the value of a regular assignment,
is the assigned value. Notice that it is NOT 3, but the combined value of $a plus 3 (this is the
value that’s assigned into $a). Any two-place operator can be used in this operator-assignment
mode, for example ‘$a -= 5’ (subtract 5 from the value of $a), ‘$b *= 7’ (multiply the value of
$b by 7), etc.

There is one more expression that may seem odd if you haven’t seen it in other languages, the
ternary conditional operator:

<?php

$first ? $second : $third

?>

If	 the	 value	 of	 the	 first	 subexpression	 is	 TRUE	 (non-zero),	 then	 the	 second	 subexpression	 is	
evaluated, and that is the result of the conditional expression. Otherwise, the third subexpression
is evaluated and that is the value.

The following example should help you understand pre- and post-increment and expressions
in general a bit better:

<?php

function double($i)

Unit 6: Building Blocks of PHP

 LOVELY PROFESSIONAL UNIVERSITY 95

Notes{

 return $i*2;

}

$b = $a = 5; /* assign the value five into the variable $a and $b */

$c = $a++; /* post-increment, assign original value of $a

 (5) to $c */

$e = $d = ++$b; /* pre-increment, assign the incremented value of

 $b (6) to $d and $e */

 /* at this point, both $d and $e are equal to 6 */

$f = double($d++); /* assign twice the value of $d before

 the increment, 2*6 = 12 to $f */

$g = double(++$e); /* assign twice the value of $e after

 the increment, 2*7 = 14 to $g */

$h = $g += 10; /* first, $g is incremented by 10 and ends with the

 value of 24. the value of the assignment (24) is

 then assigned into $h, and $h ends with the value

 of 24 as well. */

?>

Some expressions can be considered as statements. In this case, a statement has the form of
‘expr’ ‘;’ that is, an expression followed by a semicolon. In ‘$b=$a=5;’, $a=5 is a valid expression,
but it’s not a statement by itself. ‘$b=$a=5;’ however is a valid statement.

One last thing worth mentioning is the truth value of expressions. In many events, mainly in
conditional	execution	and	loops,	you’re	not	 interested	 in	the	specific	value	of	 the	expression,	
but only care about whether it means TRUE or FALSE. The constants TRUE and FALSE (case-
insensitive) are the two possible boolean values. When necessary, an expression is automatically
converted to boolean. See the section about type-casting for details about how.

PHP provides a full and powerful implementation of expressions, and documenting it entirely
goes beyond the scope of this manual. The above examples should give you a good idea about
what expressions are and how you can construct useful expressions. Throughout the rest of this
manual we’ll write expr to indicate any valid PHP expression.

6.1.5 PHP Constants

Constants and variables is that constant value can not be changed in the process of running
program.	 It	 can	 be	mathematic	 constants,	 passwords,	 paths	 to	files,	 etc.	 By	using	 a	 constant	
you “lock in” the value which prevents you from accidentally changing it. If you want to run a
program several times using a different value each time, you do not need to search throughout

Open Source Technologies

96 LOVELY PROFESSIONAL UNIVERSITY

Notes the entire program and change the value at each instance. You only need to change it at the
beginning of the program where you set the initial value for the constant.

Have	a	look	at	the	example	where	we	use	the	define	function	to	set	the	initial	value	of	a	constant:

php

// first we define a constant PASSWORD

define(“PASSWORD”,”admin”);

echo (PASSWORD); // will display value of PASSWORD constant, i.e. admin

echo constant(“PASSWORD”); // will also display admin

echo “PASSWORD”; // will display PASSWORD

?>

PHP also provides a number of built-in constants for you. “__FILE__”, for example, returns the
name	of	the	file	currently	being	read	by	the	interpreter.	“__LINE__”	returns	the	line	number	of	
the	file.	These	constants	are	useful	for	generating	error	messages.	You	can	also	find	out	which	
version of PHP is interpreting the script using the “PHP_VERSION” constant.

In	PHP,	you	can	define	names,	called	constants, for simple values. As the name implies, you
cannot change these constants once they represent a certain value. The names for constants
have the same rules as PHP variables except that they don’t have the leading dollar sign. It is
common practice in many programming languages—including PHP—to use uppercase letters
for constant names, although you don’t have to. If you wish, which we do not recommend, you
may	define	your	constants	as	case-insensitive,	thus	not	requiring	code	to	use	the	correct	casing	
when referring to your constants.

 Only use case-sensitive constants both to be consistent with accepted coding
standards and because it is unclear if case-insensitive constants will continued
to be supported in future versions of PHP. Unlike variables, constants, once
defined,	are	globally	accessible.	You	don’t	have	to	(and	can’t)	redeclare	them	in	
each	new	function	and	PHP	file.	To	define	a	constant,	use	the	following	function:

Define	(“CONSTANT_NAME”,	value	[,	case_sensitivity])

Where:

“CONSTANT_NAME”	is	a	string.

value is any valid PHP expression excluding arrays and objects.

case_sensitivity is a Boolean (true/false) and is optional. The default is true.

An example for a built-in constant is the Boolean value true, which is registered as case-insensitive.

Here’s	a	simple	example	for	defining	and	using	a	constant:

define(“MY_OK”,	0);

define(“MY_ERROR”,	1);

Unit 6: Building Blocks of PHP

 LOVELY PROFESSIONAL UNIVERSITY 97

Notes...

if	($error_code	==	MY_ERROR)	{

print(“There	was	an	error\n”);

6.1.6 Switch Flow

 Statement. Statement List

 switch (expr){	 switch	(expr):

 case expr:

 case expr:

 statement list

 statement list case expr:

 statement list

 default:

 statement list

 endswitch;

 case expr:

 statement list

 ...

 default:

 statement list

You can use the switch construct to elegantly replace certain lengthy if/elseif constructs. It is given
an expression and compares it to all possible case expressions listed in its body. When there’s
a successful match, the following code is executed, ignoring any further case lines (execution
does not stop when the next case is reached). The match is done internally using the regular
equality operator (==), not the identical operator (===). You can use the break statement to end
execution and skip to the code following the switch construct:

}

Usually, break statements appear at the end of a case statement list, although it is not mandatory.
If no case expression is met and the switch construct contains default, the default statement list
is executed. Note that the default case must appear last in the list of cases or not appear at all:

switch ($answer) {

case ‘y’:

case ‘Y’:

print “The answer was yes\n”;

Open Source Technologies

98 LOVELY PROFESSIONAL UNIVERSITY

Notes break;

case ‘n’:

case ‘N’:

print “The answer was no\n”;

break;

default:

print “Error: $answer is not a valid answer\n”;

break;

}

It is important to include a break statement at the end of any code that will
be executed as part of a case statement. Without a break statement, the
program	flow	will	continue	to	the	next	case	statement	and	ultimately	to	the	
default statement. In most cases, this will result in unexpected behavior,
likely incorrect!

6.1.7 Loop Control Structures

Loop control structures are used for repeating certain tasks in your program, such as iterating
over a database query result set.

6.1.7.1 While Loops

Statement Statement List

while (expr) statement while (expr) :statement list endwhile;

while loops are the simplest kind of loops. In the beginning of each iteration, the while’s truth
expression is evaluated. If it evaluates to true, the loop keeps on running and the statements
inside it are executed. If it evaluates to false, the loop ends and the statement(s) inside the loop
is skipped. For example, here’s one possible implementation of factorial, using a while loop
(assuming $n contains the number for which we want to calculate the factorial):

$result = 1;

while	($n	>	0)	{

$result *= $n—;

}

print “The result is $result”;

Loop Control: break and continue

break;

break expr;

continue;

continue expr;

Unit 6: Building Blocks of PHP

 LOVELY PROFESSIONAL UNIVERSITY 99

NotesSometimes, you want to terminate the execution of a loop in the middle of an iteration. For this
purpose, PHP provides the break statement. If break appears alone, as in break; the innermost loop
is stopped. break accepts an optional argument of the amount of nesting levels to break out of,

break n;

which will break from the n innermost loops (break 1; is identical to break;). n can be any valid
expression.	In	other	cases,	you	may	want	to	stop	the	execution	of	a	specific	loop	iteration	and	
begin executing the next one. Complimentary to break, continue provides this functionality.
continue alone stops the execution of the innermost loop iteration and continues executing
the next iteration of that loop. Continue n can be used to stop execution of the n innermost
loop iterations. PHP goes on executing the next iteration of the outermost loop. As the switch
statement also supports break, it is counted as a loop when you want to break out of a series
of loops with break n.

6.1.7.2 do...while Loops

do

statement

while (expr);

The do...while loop is similar to the previous while loop, except that the truth expression is
checked at the end of each iteration instead of at the beginning. This means that the loop always
runs at least once. do...while loops are often used as an elegant solution for easily breaking out
of a code block if a certain condition is met. Consider the following example:

do	{

statement list

if	($error)	{

break;

}

} while (false);

Because do...while loops always iterate at least one time, the statements inside the loop are
executed once, and only once. The truth expression is always false. However, inside the loop
body, you can use the break statement to stop the execution of the statements at any point, which
is convenient. Of course, do...while loops are also often used for regular iterating purposes.

6.1.7.3 For Loops

Statement Statement List

for (expr; expr; expr) statement for (expr, expr, …; expr, expr, …;

expr, expr, …):

statement list

endfor;

Open Source Technologies

100 LOVELY PROFESSIONAL UNIVERSITY

Notes PHP provides C-style for loops. The for loop accepts three arguments: for (start_expressions;
truth_expressions;	increment_expressions).	Most	commonly,	for	loops	are	used	with	only	one	
expression for each of the start, truth, and increment expressions, which would make the previous
syntax table look slightly more familiar.

Statement Statement List

for (expr; expr; expr) for (expr; expr; expr):

statement statement list endfor;

The start expression is evaluated only once when the loop is reached. Usually it is used to
initialize the loop control variable. The truth expression I evaluated in the beginning of every
loop iteration. If true, the statements inside the loop will be executed; if false, the loop ends.
The increment expression is evaluated at the end of every iteration before the truth expression
is evaluated. Usually, it is used to increment the loop control variable, but it can be used for
any other purpose as well. Both break and continue behave the same way as they do with while
loops. continue causes evaluation of the increment expression before it re-evaluates the truth
expression.

 Example: for	($i	=	0;	$i	<	10;	$i++)	{

	 print	“The	square	of	$i	is	“	.	$i*$i	.	“\n”;

 }

 The result of running this code is

	 The	square	of	0	is	0

 The square of 1 is 1

 ...

	 The	square	of	9	is	81

Like in C, it is possible to supply more than one expression for each of the three arguments
by using commas to delimit them. The value of each argument is the value of the rightmost
expression. Alternatively, it is also possible not to supply an expression with one or more of
the arguments. The value of such an empty argument will be true. For example, the following
is	an	infinite	loop:

for	(;	;)	{

print	“I’m	infinite\n”;

}

Infinite	loops	are,	as	the	name	suggests,	loops	that	run	without	bounds.	If	your	
loop	is	running	infinitely,	your	script	is	running	for	an	infinite	amount	of	time.	
This is very stressful on your Web server, and renders the Web page unusable.

 Make	the	syntax	table.

Unit 6: Building Blocks of PHP

 LOVELY PROFESSIONAL UNIVERSITY 101

Notes6.1.8 Browser Output

The PHP output buffering functions provide a handy way of intercepting the contents of the
buffer before it is sent to the browser. The output is whatever is sent to the browser whenever
you print something off. PHP allows you to capture this output in a buffer before it is sent to
the browser.

The Output Control functions allow you to control when output is sent from the script. This can
be useful in several different situations, especially if you need to send headers to the browser
after your script has began outputting data. The Output Control functions do not affect headers
sent using header() or setcookie(), only functions such as echo() and data between blocks of
PHP code.

Example #1 Output Control example

<?php

ob_start();

echo “Hello\n”;

setcookie(“cookiename”, “cookiedata”);

ob_end_flush();

?>

In the above example, the output from echo() would be stored in the output buffer until ob_
end_flush() was called. In the mean time, the call to setcookie() successfully stored a cookie
without causing an error. (You can not normally send headers to the browser after data has
already been sent.)

Browser Output Control Functions

	 •	 flush — Flush the output buffer

	 •	 ob_clean — Clean (erase) the output buffer

	 •	 ob_end_clean — Clean (erase) the output buffer and turn off output buffering

	 •	 ob_end_flush — Flush (send) the output buffer and turn off output buffering

	 •	 ob_flush — Flush (send) the output buffer

	 •	 ob_get_clean — Get current buffer contents and delete current output buffer

	 •	 ob_get_contents — Return the contents of the output buffer

	 •	 ob_get_flush — Flush the output buffer, return it as a string and turn off output buffering

	 •	 ob_get_length — Return the length of the output buffer

	 •	 ob_get_level — Return the nesting level of the output buffering mechanism

	 •	 ob_get_status — Get status of output buffers

	 •	 ob_gzhandler — ob_start callback function to gzip output buffer

	 •	 ob_implicit_flush	—	Turn	implicit	flush	on/off

	 •	 ob_list_handlers — List all output handlers in use

Open Source Technologies

102 LOVELY PROFESSIONAL UNIVERSITY

Notes 	 •	 ob_start — Turn on output buffering

	 •	 output_add_rewrite_var — Add URL rewriter values

	 •	 output_reset_rewrite_vars — Reset URL rewriter values

6.2 Summary

	 •	 Variables	 overall	 in	 PHP	 are	 proceeded	 with	 a	 $	 sign	 and	 similar	 to	 most	 modern	
languages.

	 •	 Eight	different	data	types	exist	in	PHP,	five	of	which	are	scalar	and	each	of	the	remaining	
three has its own uniqueness.

	 •	 Strings	in	PHP	are	a	sequence	of	characters	that	are	always	internally	nullterminated.	

	 •	 An	array	in	PHP	is	a	collection	of	key/value	pairs.

	 •	 PHP	contains	three	types	of	operators:	unary	operators,	binary	operators,	and	one	binary	
operator.

6.3 Keywords

Comparison Operators: Comparison operators enable you to determine the relationship between
two operands. When both operands are strings, the comparison is performed lexicographically.

Comparison Expressions: Comparison expressions.evaluate to either FALSE or TRUE.

Concatenation Operator: The concatenation operator concatenates two strings. This operator
works	only	on	strings;	thus,	any	non-string	operand	is	first	converted	to	one.

Debugger: The Code::Blocks debugger has full breakpoint support. It also allows the user to
debug their program by having access and using the local function symbol.

Expressions: Expressions are the most important building stones of PHP. In PHP, almost
anything	you	write	is	an	expression.	The	simplest	yet	most	accurate	way	to	define	an	expression	
is “anything that has a value”.

Switch Statement: The	switch	statement	is	an	alternative	way	of	changing	flow,	based	on	the	
evaluation of an expression.

Type Casting: Type	casting	is	the	name	of	the	process	in	which	a	specific	data	type	is	transformed	
into another (e.g., switching from a string data type to an integer data type).

Type Juggling: It means a variable is not restricted to just one data type. This means that you’re
allowed to switch any variable between all the available data types without having to do anything.

1.	Make	the	syntax	table.

2.	Define	switch	flow.

6.4 Self Assessment Questions

	 1.	 You	can	define	a	constant	by	using	the	define()	function.	Once	a	constant	is	defined

 (a)	 It	can	never	be	changed	or	undefined.

 (b)	 It	can	never	be	changed	but	can	be	undefined.

Unit 6: Building Blocks of PHP

 LOVELY PROFESSIONAL UNIVERSITY 103

Notes (c)	 It	can	never	be	changed	but	can	not	be	undefined.

 (d)	 It	can	never	be	changed	and	can	be	undefined.

 2. Integers and ___________ are equivalent in range as your C compiler’s long value.

 (a) Numbers (b) Whole numbers

 (c) Binary Numbers (d) All of the above.

6.5 Review Questions

 1. What is the advantage of using System.Text.StringBuilder over System.String?

 2. What are variables and its various types?

 3. What are integers?

	 4.	 What	are	floating-point	numbers?

 5. What are strings?

 6. What are Booleans?

	 7.	 Define	Data	type.

	 8.	 Define	Binary	operators	and	its	type.

	 9.	 What	are	Logical	operators?

	 10.	 What	are	Bitwise	operators?

 11. What are Negation operators?

 12. What are Expressions?

	 13.	 Define	Constants.

 14. What are Loops?

Answers for Self Assessment Questions
 1. (a) 2. (d)

6.6 Further Reading

Open source development with LAMP: Using Linux, Apache, My SQL, Perl & PHP,
by James Lee, Pearson Education.

http://www.w3schools.com/php/default.asp

Open Source Technologies

104 LOVELY PROFESSIONAL UNIVERSITY

Notes Unit 7: Functions

CONTENTS

Objectives

Introduction

7.1	 User-Defined	Functions

7.2	 Function	Scope

7.3 Returning Values By Value

7.4 Returning Values By Reference

7.5	 Declaring	Function	Parameters

	 7.5.1	 By-Value	Parameters

	 7.5.2	 By-Reference	Parameters

7.6	 Default	Parameters

7.7	 Static	Variables

7.8 Arrays

 7.8.1 Array () Construct

	 7.8.2	 Accessing	Array	Elements

	 7.8.3	 Modifying/Creating	Array	Elements

 7.8.4 Reading Array Values

	 7.8.5	 Accessing	Nested	Arrays	(or	Multi-Dimensional	Arrays)

 7.8.6 Traversing Arrays Using Foreach

 7.8.7 Traversing Arrays Using List() and Each()

 7.8.8 Reset()

 7.8.9 Each()

 7.8.10 List()

 7.8.11 Additional Methods for Traversing Arrays

7.9 Objects

 7.9.1 Creating an Object

 7.9.2 Object Inheritance

7.10	 Summary

7.11 Keywords

7.12	 Self	Assessment	Questions

7.13	 Review	Questions

7.14	 Further	Reading	

Sarabjit Kumar, Lovely Professional University

Unit 7: Functions

 LOVELY PROFESSIONAL UNIVERSITY 105

NotesObjectives

After studying this unit, you will be able to:

	 •	 Discuss	user	defined	functions.

	 •	 Explain	function	scope.

	 •	 Understand	returning	values	by	value.

	 •	 Declaring	function	parameters.

	 •	 Explain	default	parameters.

	 •	 Discuss	static	variables.

	 •	 Explain	arrays.

	 •	 Discuss	objects.

Introduction

A	function	in	PHP	can	be	built-in	or	user-defined;	however,	they	are	both	called	the	same	way.
The	general	form	of	a	function	call	is	func(arg1,arg2,…).	The	number	of		arguments	varies	from	
one	function	to	another.	Each	argument	be	any	valid	expression,	include	other	function	calls.

Here	is	a	simple	example	of	a	predefined	function:

 Example:	 $length	=	strlen(“Peter”);

	 	strlen	is	a	standard	PHP	function	that	returns	the	length	of	a	string.	Therefore,	
$length	is	assigned	the	length	of	the	string	“Peter”:	four.

	 Here’s	an	example	of	a	function	call	being	used	as	a	function	argument:

 Example:	 $length	=	strlen(strlen(“Peter”));

	 	You	 probably	 already	 guessed	 the	 result	 of	 this	 example.	 First,	 the	
innerstrlen(“Peter”)	 is	 executed,	which	 results	 in	 the	 integer	 4.	 So,	 the	 code	
simpli-fies	to

	 $length	=	strlen(4);

Strlen	()	expects	a	string	and,	therefore,	(due	to	PHP’s	magical	auto	conversion	between	types)	
converts	the	integer	4	to	the	string	“4”,	and	thus,	the	resulting	value	of	$length	is	1,	the	length	
of	“4”.

7.1 User-Defined Functions

The	general	way	of	defining	a	function	is

 function function_name (arg1,	arg2,	arg3,	…)

																						statement	list

 }

To	return	a	value	from	a	function,	you	need	to	make	a	call	to	return	expr	inside	your	function.	
This	stops	execution	of	the	function	and	returns	expr	as	the	function’s	value.

Open Source Technologies

106 LOVELY PROFESSIONAL UNIVERSITY

Notes The	following	example	function	accepts	one	argument,	$x,	and	returns	its	square:

 Example:							function	square	($x)

 {

																																																			return	$x*$x;

 }

After	defining	this	function,	it	can	be	used	as	an	expression	wherever	you	desire.

For	example:

print	‘The	square	of	5	is	‘	.	square(5);

7.2 Function Scope

Every	function	has	its	own	set	of	variables.	Any	variables	used	outside	the	function’s	definition	
are	 not	 accessible	 from	within	 the	 function	 by	 default.	When	 a	 function	 	 starts,	 its	 function	
parameters	are	defined.	When	you	use	new	variables	inside	a	function,	they	are	defined	within	
the	function	only	and	don’t	hang	around	after	the	function	call	ends.	In	the	following	example,	
the	Variable	$var	is	not	changed	by	the	function	call:

 Example: function func ()

 {

																																		svar	=	2;

 }

																																		$var	=	1;

																																			 	 	 	 func();

																																		print	$var;

When	the	function	func	is	called,	the	variable	$var,	which	is	assigned	2,	is	only	in	the	scope	of	
the	function	and	thus	does	not	change	$var	outside	the	function.	The	code	snippet	prints	out	1.

Now	hat	if	you	actually	do	want	to	access	and/or	change	$var	on	the	outside?	As	mentioned	
in	 the	“Variables”	section,	you	can	use	 the	built-in	$	GLOBALS[]	array	 to	access	variables	 in	
the	global	scope	of	the	script

																		Rewrite	the	previous	script	the	following	way:

																		Function		func	()

 {

																			$	GLOBALS[“var”]	=	2;

 }

																			$var	=	1;

																			func	();

																			print	$var;

It	prints	the	value	2.

Unit 7: Functions

 LOVELY PROFESSIONAL UNIVERSITY 107

NotesA	global	keyword	also	enables	you	to	declare	what	global	variables	you	want	to	access,	causing	
them	to	be	imported	into	the	function’s	scope.	However,	using	this	keyword	is	not	recommended	
for	various	reasons,	 such	as	misbehaving	with	assigning	values	by	reference,	not	supporting	
unset	(),	and	soon.

								Here’s	a	short	description	of	it—but	please,	don’t	use	it!

								The	syntax	is

global	$var1,	$var2,	...;

Adding	a	global	line	for	the	previous	example	results	in	the	following:

 Example: function func()

 {

																																													global	$var;

																																														$var	=	2;

 }

																														$var	=	1;

																														func();

																														print	$var;

This	way	of	writing	the	example	also	prints	the	number	2.

7.3 Returning Values By Value

You	can	tell	from	the	previous	example	that	the	return	statement	is	used	to	return	values	from	
functions.	The	return	statement	returns	values	by value,	which	means	that	a	copy	of	the	value	
is created and is returned to the caller of the function.

 Example:																	function	get_global_variable_value($name)

 {

																																													return	$GLOBALS[$name];

 }

																																							$num	=	10;

																																						$value	=	get_global_variable_value(“num”);

																																						print	$value;

This	code	prints	the	number	10.	However,	making	changes	to	$value	before	the	print	statement	
only	affects	$value	and	not	the	global	variable	$num.	This	is	because	its	value	was	returned	by	
the get_global_variable_value () by value and not by reference.

7.4 Returning Values By Reference

PHP	also	allows	you	to	return	variables	by reference.	This	means	that	you’re	not	returning	a	
copy	to	the	variable,	but	you’re	returning	the	address	of	your	variable	instead,	which	enables	

Open Source Technologies

108 LOVELY PROFESSIONAL UNIVERSITY

Notes you	to	change	it	from	the	calling	scope.	To	return	a	variable	by-reference,	you	need	to	define	
the	function	as	such	by	placing	an	and	sign	in	front	of	the	function’s	name	and	in	the	caller’s	
code,	assigning	the	return	value	by	reference	to	$value:

 Example:																		function	and	get_global_variable($name)

 {

																																																	return	$GLOBALS[$name];

 }

																																						$num	=	10;

																																						$value	=&	get_global_variable(“num”);

																																						print	$value	.	“\n”;

																																						$value	=	20;

																																						print	$num;

The	previous	code	prints	as

10

20

You	can	see	that	$num	was	successfully	modified	by	modifying	$value,	because	it	is	a	reference	
to	the	global	variable	$num.

You	won’t	need	 to	use	 this	 returning	method	often.	When	you	do,	use	 it	with	 care,	because	
forgetting to assign by reference the by-reference returned value can lead to bugs that are
difficult	to	track	down.

7.5 Declaring Function Parameters

As	previously	mentioned,	you	can	pass	an	arbitrary	amount	of	arguments	to	a	function.	There	
are	two	different	ways	of	passing	these	arguments.	The	first	is	the	most	common,	which	is	called	
passing by value,	and	the	second	is	called	passing by reference.	Which	kind	of	argument	passing	
you	would	like	is	specified	in	the	function	definition	itself	and	not	during	the	function	call.

7.5.1 By-Value Parameters

Here,	 the	argument	can	be	any	valid	expression,	 the	expression	is	evaluated,	and	its	value	is	
assigned	 to	 the	corresponding	variable	 in	 the	 function.	For	example,	here,	$x	 is	assigned	 the	
value	8	and	$y	is	assigned	the	value	of	$c:

 Example:																		Function	pow($x,	$y)

 {

 ...

 }

																																			pow(2*4,	$c);

7.5.2 By-Reference Parameters

Passing	 by-reference	 requires	 the	 argument	 to	 be	 a	 variable.	 Instead	 of	 the	 variable’s	 value	
being	passed,	the	corresponding	variable	in	the	function	directly	refers	to	the	passed	variable	

Unit 7: Functions

 LOVELY PROFESSIONAL UNIVERSITY 109

Noteswhenever	 used.	 Thus,	 if	 you	 change	 it	 inside	 the	 function,	 it	 affects	 the	 sent	 variable	 in	 the	
outer	scope	as	well:

 Example:																function	square(&$n)

 {

																																																$n	=	$n*$n;

 }

																																					$number	=	4;

																																					square($number);

																																					print	$number;

The	&	sign	that	proceeds	$n	in	the	function	parameters	tells	PHP	to	pass	it	by-reference,	and	
the	result	of	the	function	call	is	$number	squared;	thus,	this	code	would	print	16.

7.6 Default Parameters

Default	parameters	like	C++	are	supported	by	PHP.	Default P()arameters enable	you	to	specify	
a	default	value	for	function	parameters	that	aren’t	passed	to	the	function	during	the	function	
call.	The	default	values	you	specify	must	be	a	constant	value,	such	as	a	scalar,	array	with	scalar	
values,	or	constant.

The	following	is	an	example	for	using	default	parameters:

 Example:	 function	increment(&$num,	$increment	=	1)

 {

	 	 																			$num	+=	$increment;

 }

	 	 $num	=	4;

	 	 increment($num);

	 	 increment($num,	3);

This	code	results	in	$num	being	incremented	to	8.	First,	it	is	incremented	by	1	by	the	first	call	
to	 increment,	where	the	default	 increment	size	of	1	 is	used,	and	second,	 it	 is	 incremented	by	
3,	altogether	by	4.

When	you	a	call	a	function	with	default	arguments,	after	you	omit	a	default	
function	argument,	you	must	emit	any	following	arguments.	This	also	means	
that	 following	 a	 default	 argument	 in	 the	 function’s	 definition,	 all	 other	
arguments	must	also	be	declared	as	default	arguments.

7.7 Static Variables

Like	C,	PHP	supports	declaring	local	function	variables	as	static.	These	kind	of	variables	remain	
in	tact	in	between	function	calls,	but	are	still	only	accessible	from	within	the	function	they	are	
declared.	Static	variables	can	be	initialized,	and	this	initialization	only	takes	place	the	first	time	
the static declaration is reached.

Open Source Technologies

110 LOVELY PROFESSIONAL UNIVERSITY

Notes Here’s	an	example	for	the	use	of	static	that	runs	initialization	code	the		first	time	(and	only	the	
first	time)	the	function	is	run:

 Example: function do _something()

 {

 static first _time = true;

 if (first _time) {

 // Execute this code only the first time the
 function is

 →called

 ...

 }

 // Execute the function’s main logic every time

 the function is

 →called

 ...

 }

7.8 Arrays

A	variable	is	a	storage	area	holding	a	number	or	text.	The	problem	is,	a	variable	will	hold	only	
one	value.	An	array	is	a	special	variable,	which	can	store	multiple	values	in	one	single	variable.

An	array	in	PHP	is	actually	an	ordered	map.	A	map	is	a	type	that	associates	values	to	keys.	This	
type	is	optimized	for	several	different	uses;	it	can	be	treated	as	an	array,	list	(vector),	hash	table	
(an	implementation	of	a	map),	dictionary,	collection,	stack,	queue,	and	probably	more.	As	array	
values	can	be	other	arrays,	trees	and	multidimensional	arrays	are	also	possible.	

For	now,	let’s	take	a	look	at	the	general	syntax	of	the	array()	statement:

Array	array([key]=>[value],	[index2]=>[value],	...);

In	PHP,	there	are	three	kinds	of	arrays:

	 •	 Numeric	array	-	An	array	with	a	numeric	index.

	 •	 Associative	array	-	An	array	where	each	ID	key	is	associated	with	a	value.

	 •	 Multidimensional	array	-	An	array	containing	one	or	more	arrays.

Numeric Arrays

A	numeric	array	 stores	each	array	element	with	a	numeric	 index.	There	are	 two	methods	 to	
create	a	numeric	array.

	 1.	 In	the	following	example	the	index	are	automatically	assigned	(the	index	starts	at	0):

 $cars=array(“Saab”,”Volvo”,”BMW”,”Toyota”);

	 2.	 In	the	following	example	we	assign	the	index	manually:

 $cars[0]=”Saab”;

Unit 7: Functions

 LOVELY PROFESSIONAL UNIVERSITY 111

Notes $cars[1]=”Volvo”;

 $cars[2]=”BMW”;

 $cars[3]=”Toyota”;

 Example:	 	In	 the	 following	 example	 you	 access	 the	 variable	 values	 by	 referring	 to	 the	
array	name	and	index:

 <?php

 $cars[0]=”Saab”;

 $cars[1]=”Volvo”;

 $cars[2]=”BMW”;

 $cars[3]=”Toyota”;

 echo $cars[0] . “ and “ . $cars[1] . “ are Swedish cars.”;

 ?>

The	code	above	will	output:

	 	 	 	 	 Saab	and	Volvo	are	Swedish	cars.

Associative Arrays

An	associative	array,	each	ID	key	is	associated	with	a	value.	When	storing	data	about	specific	
named	values,	a	numerical	array	is	not	always	the	best	way	to	do	it.	With	associative	arrays	we	
can	use	the	values	as	keys	and	assign	values	to	them.

 Example:	 1. In	this	example	we	use	an	array	to	assign	ages	to	the	different	persons:

 $ages = array(“Peter”=>32, “Quagmire”=>30, “Joe”=>34);

 Example:	 	2.	This	example	is	the	same	as	example	1,	but	shows	a	different	way	of	creating	
the	array:

 $ages[‘Peter’] = “32”;

 $ages[‘Quagmire’] = “30”;

 $ages[‘Joe’] = “34”;

 The ID keys can be used in a script:

 <?php

 $ages[‘Peter’] = “32”;

 $ages[‘Quagmire’] = “30”;

 $ages[‘Joe’] = “34”;

 echo “Peter is “ . $ages[‘Peter’] . “ years old.”;

 ?>

The code above will output:

 Peter is 32 years old.

Open Source Technologies

112 LOVELY PROFESSIONAL UNIVERSITY

Notes Multidimensional Arrays

In	a	multidimensional	array,	 each	element	 in	 the	main	array	can	also	be	an	array.	And	each	
element	in	the	sub-array	can	be	an	array,	and	so	on.

 Example:	 	1.	 In	 this	 example	we	 create	 a	multidimensional	 array,	with	 automatically	
assigned	ID	keys:

 $families = array

 (

 “Griffin”=>array

 (

 “Peter”,

 “Lois”,

 “Megan”

),

 “Quagmire”=>array

 (

 “Glenn”

),

 “Brown”=>array

 (

 “Cleveland”,

 “Loretta”,

 “Junior”

)

);

The	array	above	would	look	like	this	if	written	to	the	output:

Array

(

[Griffin] => Array

 (

 [0] => Peter

 [1] => Lois

 [2] => Megan

)

[Quagmire] => Array

 (

 [0] => Glenn

)

[Brown] => Array

 (

Unit 7: Functions

 LOVELY PROFESSIONAL UNIVERSITY 113

Notes [0] => Cleveland

 [1] => Loretta

 [2] => Junior

)

)

 Example:	2.	Lets	try	displaying	a	single	value	from	the	array	above:

 echo “Is “ . $families[‘Griffin’][2] .

 “ a part of the Griffin family?”;

 The code above will output:

 Is Megan a part of the Griffin family?

Arrays	in	PHP	are	implemented	using	hash	tables,	which	means	that	accessing	
a	value	has	an	average	complexity	of	O(1).

7.8.1 Array () Construct

Array()	 is	one	of	 the	methods	PHP	provides	to	create	and	populate	an	array	with	data.	 It	 is	
a	 PHP	 statement	 that	 takes	 your	 input	 and	 returns	 an	 array	 variable	 containing	 that	 input.	
Although	the	general	format	never	changes.	

Syntax

An	array	can	be	created	by	the	array()	language	construct.	It	takes	as	parameters	any	number	
of	comma-separated	key	=>	value	pairs.	

array(key	=>		value

	 	 					,	...

)

//	key	may	only	be	an	integer	or	string

//	value	may	be	any	value	of	any	type

Now	that	you	have	an	idea	of	what	an	array()	statement	looks	like,	let’s	look	at	how	your	earlier	
syntax	of	an	array	can	be	stored	as	an	array:

<?php

 $val1 = “car”;

 $mycar = array(0=>”cycle”,

 1=>”byke”,

 2=>$val1);

?>

Open Source Technologies

114 LOVELY PROFESSIONAL UNIVERSITY

Notes 7.8.2 Accessing Array Elements

Array	elements	can	be	accessed	by	using	the	$arr[key]	notation,	where	key	is	either	an	integer	
or	string	expression.	When	using	a	constant	string	for	key,	make	sure	you	don’t	forget	the	single	
or	double	quotes,	such	as	$arr[“key”].	This	notation	can	be	used	for	both	reading	array	elements	
and	modifying	or	creating	new	elements.

 Example:	<?php echo $val1[2]; ?>

7.8.3 Modifying/Creating Array Elements

$arr1	=	array(1,	2,	3);

$arr2[0]	=	1;

$arr2[1]	=	2;

$arr2[2]	=	3;

print_r($arr1);

print_r($arr2);

The	print_r()	function	has	not	been	covered	yet	in	this	book,	but	when	it	is	passed	an	array,	it	
prints	out	the	array’s	contents	in	a	readable	way.	You	can	use	this	function	when	debugging	
your	scripts.

The	previous	example	prints

Array

(

[0]	=>	1

[1]	=>	2

[2]	=>	3

)

Array

(

[0]	=>	1

[1]	=>	2

[2]	=>	3

)

So,	you	can	see	that	you	can	use	both	the	array()	construct	and	the	$arr[key]	notation	to	create	
arrays.	Usually,	array()	 is	used	to	declare	arrays	whose	elements	are	known	at	compile-time,	
and	the	$arr[key]	notation	is	used	when	the	elements	are	only	computed	at	runtime.	PHP	also	
supports	 a	 special	 notation,	 $arr[],	where	 the	 key	 is	 not	 specified.	When	 creating	new	array	
offsets	using	this	notation	(for	example,	using	it	as	the	l-value),	the	key	is	automatically	assigned	
as	one	more	than	the	largest	previous	integer	key.

Unit 7: Functions

 LOVELY PROFESSIONAL UNIVERSITY 115

NotesTherefore,	the	previous	example	can	be	rewritten	as	follows:

$arr1	=	array(1,	2,	3);

$arr2[]	=	1;

$arr2[]	=	2;

$arr2[]	=	3;

The	result	is	the	same	as	in	the	previous	example.

The	same	holds	true	for	arrays	with	string	keys:

$arr1	=	array(“name”	=>	“Peter”,	“age”	=>	28);

$arr2[“name”]	=	“Peter”;

$arr2[“age”]	=	28;

if ($arr1 == $arr2) {

print	‘$arr1	and	$arr2	are	the	same’	.	“\n”;

}

The	message	confirming	the	equality	of	both	arrays	is	printed.

7.8.4 Reading Array Values

You	can	use	the	$arr[key]	notation	to	read	array	values.	The	next	few	examples	build	on	top	
of	the	previous	example:

print	$arr2[“name”];

if	($arr2[“age”]	<	35)	{

print	“is	quite	young\n”;

This	example	prints

Peter	is	quite	young

As	 previously	 mentioned,	 using	 the	 $arr[]	 syntax	 is	 not	 supported	 when	
reading	array	indexes,	but	only	when	writing	them.

7.8.5 Accessing Nested Arrays (or Multi-Dimensional Arrays)

When	accessing	nested	arrays,	you	can	just	add	as	many	square	brackets	as	required	to	reach	
the	relevant	value.	The	following	is	an	example	of	how	you	can	declare	nested	arrays:

$arr	=	array(1	=>	array(“name”	=>	“Peter”,	“age”	=>	28),	array(“name”

|→	=>	“Barbara”,	“age”	=>	67))

You	could	achieve	the	same	result	with	the	following	statements:

$arr[1][“name”]	=	“Peter”;

$arr[1][“age”]	=	28;

Open Source Technologies

116 LOVELY PROFESSIONAL UNIVERSITY

Notes $arr[2][“name”]	=	“Barbara”;

$arr[2][“age”]	=	67;

Reading	a	nested	array	value	 is	 trivial	using	 the	 same	notation.	For	example,	 if	you	want	 to	
print	Peter’s	age,	the	following	statement	does	the	trick:

print	$arr[1][“age”];

7.8.6 Traversing Arrays Using Foreach

There	are	a	few	different	ways	of	iterating	over	an	array.	The	most	elegant	way	is	the	foreach()	
loop	construct.

The	general	syntax	of	this	loop	is

foreach($array	as	[$key	=>]	[&]	$value)

...

$key	is	optional,	and	when	specified,	it	contains	the	currently	iterated	value’s	key,	which	can	
be	either	an	integer	or	a	string	value,	depending	on	the	key’s	type.

Specifying	and	for	the	value	is	also	optional,	and	it	has	to	be	done	if	you	are	planning	to	modify	
$value	and	want	it	to	propagate	to	$array.	In	most	cases,	you	won’t	want	to	modify	the	$value	
when	iterating	over	an	array	and	will,	therefore,	not	need	to	specify	it.

Here’s	a	short	example	of	the	foreach()	loop:

$players	=	array(“Peter”,	“Barbara”,	“Bill”,	“Nancy”);

print	“The	players	are:\n”;

foreach	($players	as	$key	=>	$value)	{

print	“#$key	=	$value\n”;

}

The	output	of	this	example	is

The	players	are:

#0	=	Peter

#1	=	Barbara

#2	=	Bill

#3	=	Nancy

Here’s	 a	more	 complicated	 example	 that	 iterates	 over	 an	 array	 of	 people	 and	marks	which	
person	is	considered	old	and	which	one	is	considered	young:

$people	=	array(1	=>	array(“name”	=>	“Peter”,	“age”	=>	28),

|→array(“name”	=>	“Barbara”,	“age”	=>	67));

foreach	($people	as	&$person)	{

if	($person[“age”]	>=	35)	{

Unit 7: Functions

 LOVELY PROFESSIONAL UNIVERSITY 117

Notes$person[“age	group”]	=	“Old”;

} else {

$person[“age	group”]	=	“Young”;

}

}

print_r($people);

Again,	this	code	makes	use	of	the	print_r()	function.

The	output	of	the	previous	code	is	the	following:

Array

(

[1]	=>	Array

(

[name]	=>	Peter

[age]	=>	28

[age	group]	=>	Young

)

[2]	=>	Array

(

[name]	=>	Barbara

[age]	=>	67

[age	group]	=>	Old

)

)

You	 can	 see	 that	 both	 the	Peter	 and	Barbara	 arrays	 inside	 the	 $people	 array	were	 added	an	
additional	value	with	their	respective	age	group.

7.8.7 Traversing Arrays Using List() and Each()

Although	foreach()	is	the	nicer	way	of	iterating	over	an	array,	an	additional	way	of	traversing	
an	array	is	by	using	a	combination	of	the	list()	construct	and	the	each()	function:

$players	=	array(“Peter”,	“Barbara”,	“Bill”,	“Nancy”);

reset($players);

while	(list($key,	$val)	=	each($players))	{

print	“#$key	=	$val\n”;

}

Open Source Technologies

118 LOVELY PROFESSIONAL UNIVERSITY

Notes The	output	of	this	example	is

#0	=	Peter

#1	=	Barbara

#2	=	Bill

#3	=	Nancy

7.8.8 Reset()

Iteration	 in	PHP	 is	done	by	using	 an	 internal	 array	pointer	 that	 keeps	 record	of	 the	 current	
position	of	the	traversal.	Unlike	with	foreach(),	when	you	want	to	use	each()	to	iterate	over	an	
array,	you	must	reset()	the	array	before	you	start	to	iterate	over	it.	In	general,	it	is	best	for	you	
to always use foreach() and not deal with this subtle nuisance of each() traversal.

7.8.9 Each()

The	each()	function	returns	the	current	key/value	pair	and	advances	the	internal	pointer	to	the	

next	element.	When	it	reaches	the	end	of	of	the	array,	it	returns	a	booloean	value	of	false.	The	

key/value	pair	 is	 returned	as	an	array	with	 four	elements:	 the	elements	0	and	“key”,	which	

have	the	value	of	the	key,	and	elements	1	and	“value”,	which	have	the	value	of	the	value.	The	

reason	for	duplication	is	that,	if	you’re	accessing	these	elements	individually,	you’ll	probably	

want	to	use	the	names	such	as

$elem[“key”]	and	$elem[“value”]:

$ages	=	array(“Peter”	=>	28,	“Barbara”	=>	67);

reset($ages);

$person	=	each($ages);

print	$person[“key”];

print	“	is	of	age	“;

print	$person[“value”];

This	prints

Peter	is	of	age	28

When	we	explain	how	the	list()	construct	works,	you	will	understand	why	offsets	0	and	1	also	
exist.

7.8.10 List()
The	 list()	 construct	 is	 a	way	of	 assigning	multiple	 array	offsets	 to	multiple	variables	 in	one	
statement:

list($var1,	$var2,	...)	=	$array;

The	first	variable	in	the	list	is	assigned	the	array	value	at	offset	0,	the	second	is	assigned	offset	1,	
and	so	on.	Therefore,	the	list()	construct	translates	into	the	following	series	of	PHP	statements:

$var1	=	$array[0];

Unit 7: Functions

 LOVELY PROFESSIONAL UNIVERSITY 119

Notes$var2	=	$array[1];

...

As	previously	mentioned,	the	indexes	0	and	1	returned	by	each()	are	used	by	the	list()	construct.	
You	can	probably	already	guess	how	the	combination	of	 list()	and	each()	work.	Consider	the	
highlighted	line	from	the	previous	$players	traversal	example:

$players	=	array(“Peter”,	“Barbara”,	“Bill”,	“Nancy”);

reset($players);

while (list($key, $val) = each($players)) {

print	“#$key	=	$val\n”;

}

What	happens	in	the	boldfaced	line	is	that	during	every	loop	iteration,	each()	returns	the	current	
position’s	key/value	pair	array,	which,	when	examined	with	print_r(),	is	the	following	array:

Array

(

[1]	=>	Peter

[value]	=>	Peter

[0]	=>	0

[key]	=>	0

)

Then,	the	list()	construct	assigns	the	array’s	offset	0	to	$key	and	offset	1

to $val.

7.8.11 Additional Methods for Traversing Arrays

You	can	use	other	functions	to	iterate	over	arrays	including	current()	and	next().	You	shouldn’t	
use	 them	 because	 they	 are	 confusing	 and	 are	 legacy	 functions.	 In	 addition,	 some	 standard	
functions	allow	all	sorts	of	elegant	ways	of	dealing	with	arrays	such	as	array_walk(),	which	is	
covered in a later unit.

7.9 Objects

The	main	difference	in	OOP	as	opposed	to	functional	programming	is	that	the	data	and	code	are	
bundled	together	into	one	entity,	which	is	known	as	an	object.	Object-oriented	applications	are	
usually	split	up	into	a	number	of	objects	that	interact	with	each	other.	Each	object	is	usually	an	
entity	of	the	problem,	which	is	self-contained	and	has	a	bunch	of	properties	and	methods.	The	
properties	are	 the	object’s	data	which	basically	means	the	variables	 that	belong	to	 the	object.	
The	methods	if	you	are	coming	from	a	functional	background	are	basically	the	functions	that	
the	object	supports.	Going	one	step	further,	the	functionality	that	is	intended	for	other	objects	
to	be	accessed	and	used	during	interaction	is	called	an	object’	sinter face.

Open Source Technologies

120 LOVELY PROFESSIONAL UNIVERSITY

Notes 7.9.1 Creating an Object

Object Initialization:	To	create	a	new	object,	use	the	new	statement	to	instantiate	a	class:	

<?php

class foo

{

 function do_foo()

 {

 echo “Doing foo.”;

 }

}

$bar = new foo;

$bar->do_foo();

?>

Converting to object: 	If	an	object	is	converted	to	an	object,	it	is	not	modified.	If	a	value	of	any	
other	type	is	converted	to	an	object,	a	new	instance	of	the	stdClass	built-in	class	is	created.	If	the	
value	was	NULL,	the	new	instance	will	be	empty.	Arrays	convert	to	an	object	with	properties	
named	 by	 keys,	 and	 corresponding	 values.	 For	 any	 other	 value,	 a	member	 variable	 named	
scalar will contain the value.

<?php

$obj = (object) ‘ciao’;

echo $obj->scalar; // outputs ‘ciao’

?>

7.9.2 Object Inheritance

Inheritance	is	a	well-established	programming	principle,	and	PHP	makes	use	of	this	principle	in	
its	object	model.	This	principle	will	affect	the	way	many	classes	and	objects	relate	to	one	another.	

For	 example,	when	 you	 extend	 a	 class,	 the	 subclass	 inherits	 all	 of	 the	 public	 and	 protected	
methods	 from	the	parent	class.	Unless	a	class	overrides	 those	methods,	 they	will	 retain	 their	
original functionality.

This	 is	 useful	 for	 defining	 and	 abstracting	 functionality,	 and	 permits	 the	 implementation	 of	
additional	 functionality	 in	similar	objects	without	 the	need	 to	remployment	all	of	 the	shared	
functionality.

 Example:		 <?php

 class foo

Unit 7: Functions

 LOVELY PROFESSIONAL UNIVERSITY 121

Notes {

 public function printItem($string)

 {

 echo ‘Foo: ‘ . $string . PHP_EOL;

 }

 public function printPHP()

 {

 echo ‘PHP is great.’ . PHP_EOL;

 }

 }

 class bar extends foo

 {

 public function printItem($string)

 {

 echo ‘Bar: ‘ . $string . PHP_EOL;

 }

 }

 $foo = new foo();

 $bar = new bar();

 $foo->printItem(‘baz’); // Output: ‘Foo: baz’

 $foo->printPHP(); // Output: ‘PHP is great’

 $bar->printItem(‘baz’); // Output: ‘Bar: baz’

 $bar->printPHP(); // Output: ‘PHP is great’

 ?>

7.10 Summary

	 •	 The	general	way	of	defining	a	function	is

	 	 Function	function_name	(arg1,	arg2,	arg3,………).

	 •	 Every	 function	 has	 its	 own	 set	 of	 variables.	 Any	 variable	 used	 outside	 the	 function’s	
definition	are	not	accessible	from	within	the	function	by	default.

	 •	 The	 return	 statement	 returns	 value	 by	value,	which	means	 that	 a	 copy	of	 the	 value	 is	
created and is returned to the caller of the function.

	 •	 Default	parameters	enable	you	to	specify	a	default	value	for	function	parameters	that	are	
not	passed	to	the	function	during	the	function	call.

Open Source Technologies

122 LOVELY PROFESSIONAL UNIVERSITY

Notes 	 •	 An	array	 in	PHP	is	actually	an	ordered	map.	A	map	is	a	 type	that	associates	values	 to	
keys.

	 •	 The	main	difference	in	OOP	as	opposed	to	functional	programming	is	that	the	data	and	
code	are	bundled	together	into	one	entity,	which	is	known	as	an	object.

7.11 Keywords

Multi-Dimensional Arrays: When	accessing	nested	arrays,	you	can	 just	 add	as	many	 square	
brackets	as	required	to	reach	the	relevant	value.	The	following	is	an	example	of	how	you	can	
declare nested arrays.

Arrays: An array in	PHP	is	a	collection	of	key/value	pairs.	This	means	that	 it	maps	keys	(or	
indexes)	to	values.

Default Parameters: Default	parameters	like	C++	are	supported	by	PHP.	Default Parameters
enable	you	to	specify	a	default	value	for	function	parameters	that	aren’t	passed	to	the	function	
during the function call.

Returning Values By Reference: PHP	also	allows	you	to	return	variables	by reference.

Declaring Function Parameter: There	are	two	different	ways	of	passing	these	arguments.	The	
first	is	the	most	common,	which	is	called	passing by value,	and	the	second	is	called	passing by
reference.	Which	kind	of	argument	passing	you	would	like	is	specified	in	the	function	definition	
itself and not during the function call.

By-Value Parameters: Here,	 the	 argument	 can	 be	 any	 valid	 expression,	 the	 expression	 is	
evaluated,	and	its	value	is	assigned	to	the	corresponding	variable	in	the	function.

By-Reference Parameters: Passing	by-reference	requires	the	argument	to	be	a	variable.	Instead	
of	the	variable’s	value	being	passed,	the	corresponding	variable	in	the	function	directly	refers	
to	the	passed	variable	whenever	used.

Static Variables: Static	variables	can	be	initialized,	and	this	initialization	only	takes	place	the	
first	time	the	static	declaration	is	reached.

Accessing Array Elements: Array	 elements	 can	 be	 accessed	 by	 using	 the	 $arr[key]	 notation,	
where	key	is	either	an	integer	or	string	expression.

Objects:	The	main	difference	 in	OOP	as	opposed	to	 functional	programming	 is	 that	 the	data	
and	code	are	bundled	together	into	one	entity,	which	is	known	as	an	object.

We’re	going	to	implement	a	recursive	function	in	MIPS.	Recursion	is	one	of	those	
programming	concepts	that	seem	to	scare	students.	One	reason	is	that	recursive	
functions	 can	be	difficult	 to	 trace	properly	without	 knowing	 something	 about	

how	a	stack	works.	

“Classic”	 recursion	 attempts	 to	 solve	 a	 “big”	problem	by	 solving	 smaller	 versions	of	 the	
problem,	 then	using	 the	solutions	 to	 the	smaller	versions	of	 the	problem	to	solve	 the	big	
problem.	

Contd...

Unit 7: Functions

 LOVELY PROFESSIONAL UNIVERSITY 123

Notes“Classic”	recursion	is	a	divide-and-conquer	method.	For	example,	consider	merge	sorting.	
The	idea	behind	merge	sorting	is	to	divide	an	array	into	two	halves,	and	sort	each	half.	Then,	
you	“merge”	the	two	sorted	halves	to	sort	the	entire	list.	

Thus,	 to	 solve	 the	 big	 problem	of	 sorting	 an	 array,	 solve	 the	 smaller	 problem	of	 sorting	
part	of	an	array,	and	use	the	solution	of	the	smaller	sorted	array	to	solve	the	big	problem	
(by	merging).	

How	do	you	solve	the	smaller	version	of	the	problem?	You	break	that	smaller	problem	into	
even	smaller	problems,	and	solve	those.	

Eventually,	you	get	to	the	smallest	sized	problem,	which	is	called	the	base case. This can be
solved without using recursion.

Recursion	allows	you	to	express	solutions	to	a	problem	very	compactly	and	elegantly.	This	
is	why	people	like	using	recursion.	

However,	recursion	can	use	a	lot	of	stack,	and	if	you’re	not	careful,	you	can	overflow	the	stack.	

For	recursion	to	be	successful,	the	problem	needs	to	have	a	recursive	substructure.	This	is	a	
fancy	term	that	says	that	to	solve	a	big	problem	(say	of	size	N),	you	should	be	able	to	solve	a	
smaller	problem	(of	smaller	size)	in	exactly	the	same	way,	except	the	problem	size	is	smaller.	

As	an	analogy,	you	might	have	to,	say,	sweep	the	floor.	Sweeping	half	the	floor	is	the	same	
as	sweeping	the	entire	floor,	except	you	do	it	on	a	smaller	area.	A	problem	that	 is	solved	
recursively	is	generally	needs	to	have	this	property.	

7.12 Self Assessment Questions

	 1.	 ______________	in	PHP	is	a	collection	of	key/value	pairs.

	 2.	 ______________	is	like	C++	are	supported	by	PHP.

	 3.	 Array	elements	can	be	accessed	by	using	the	$arr[key]	notation.

 (a) True (b)	 False

	 4.	 Arrays	in	PHP	are	implemented	using	hash	tables.

 (a) True (b)	 False

	 5.	 PHP	also	allows	you	to	return	variables	______________	.

	 6.	 Array	elements	can	be	accessed	by	using	the	______________	.

 (a)	 $arr[key]	notation	 (b)	 Z.	arr[key]	notation

 (c)	 P	arr[key]	notation	 (d) all of the above.

7.13 Review Questions

	 1.	 Define	the	Function	scope.

	 2.	 What	are	user	defined	functions?

	 3.	 What	is	function	scope?

	 4.	 Define	the	returning	value.

	 5.	 What	is	default	parameters?

	 6.	 Define	static	variables.

Open Source Technologies

124 LOVELY PROFESSIONAL UNIVERSITY

Notes 	 7.	 What	is	arrays?	Describe	all	parts	of	arrays.

	 8.	 Define	array	elements.

	 9.	 How	can	you	declare	nested	arrays?

	 10.	 Give	an	example	for	using	default	parameters.

	 11.	 How	many	ways	of	defining	a	function	are	there?

	 12.	 Define	objects.

Answer for Self Assessment Questions
	 1.	 An	Array	 	 	 2.	 Default	parameters.

 3. (a) 4. (a)

 5. by reference 6. (a)

7.14 Further Reading

Open Source Development with LAMP,	by	Meloni,	Pearson	Education.

htttp://www.HTMLcenter.com/blog/teach-yourself-php-in-24hours.

Unit 8: Working with Strings, Date and Time

 LOVELY PROFESSIONAL UNIVERSITY 125

NotesUnit 8: Working with Strings, Date and Time

CONTENTS

Objectives

8.1 Date Handling

8.2 Retrieving Date and Time Information

8.3 Formatting Date and Time

8.4 Parsing Date Formats

8.5 Strings with PHP

8.6 PHP String Handling Functions

8.7 Accessing String Offsets

8.8 _toString() METHOD

8.9 Summary

8.10 Keywords

8.11 Self Assessment Questions

8.12 Review Questions

8.13 Further Reading

Objectives

After studying this unit, you will be able to:

	 •	 Understand data handling.

	 •	 Discuss	retrieving	date	and	time	information.

	 •	 Explain	formatting	date	and	time.

	 •	 Understand	parsing	date	formats.

	 •	 Explain	strings	with	PHP.

	 •	 Discuss	accessing	string	offsets.

	 •	 Understand	_toString()	method.

8.1 Date Handling

PHP has a range of functions that handle date and time. Some of these functions work with a
so-called UNIX timestamp, which is the number of seconds since January 1, 1970 at 00:00:00
GMT,	 the	beginning	of	 the	UNIX	epoch.	Because	PHP	only	handles	unsigned	32-bit	 integers	

Sarabjit Kumar, Lovely Professional University

Open Source Technologies

126 LOVELY PROFESSIONAL UNIVERSITY

Notes and	most	operating	 systems	don’t	 support	negative	 timestamps,	 the	 range	 in	which	most	of	
the	PHP	date	functions	operate	is	January	1,	1970	to	January	19,	2038.	The	PEAR::Date	package	
handles	dates	outside	this	range	and	also	in	a	platform-independent	way.

8.2 Retrieving Date and Time Information

The	easiest	way	of	obtaining	the	current	time	is	with	the	time()	function.	It	accepts	no	parameters	
and	simply	returns	the	current	timestamp:

 <?php

 echo time(); // Outputs something similar to “1077913162”

 ?>

The	resolution	is	1	second.	If	you	want	some	more	accuracy,	you	have	two	options:	microtime()	
and	gettimeofday().	The	microtime()	 function	has	one	annoying	peculiarity:	The	return	value	
is	 a	 floating-point	 number	 containing	 the	decimal	 part	 of	 the	 timestamp	 and	 the	 number	 of	
seconds	since	the	epoch,	concatenated	with	a	space.	This	makes	it,	of	course,	a	bit	hard	to	use	
for	a	timestamp	with	sub-second	resolution:

 <?php

 // Outputs something similar to “0.87395100 1078006447”

 echo microtime();

 $time = preg_replace(‘@^(.*)\s+(.*)$@e’, ‘\\2 + \\1’,

 ‘microtime());

 echo $time; // Outputs 1078006447.8741

 ?>

In	putting	the	two	parts	back	together,	you	lose	some	of	the	precision.	The	gettimeofday()	function	
has	a	nicer	interface.	It	returns	an	array	with	elements	representing	the	timestamp	and	additional	
microseconds. Two more elements are included in this array, but you cannot really rely on
them	because	the	underlying	system	functionality—at	least	in	Linux—is	not	working	correctly:

 <?php

 print_r(gettimeofday());

 ?>

returns

Array

 (

 [sec] => 1078006910

 [usec] => 339699

 [minuteswest] => -60

Unit 8: Working with Strings, Date and Time

 LOVELY PROFESSIONAL UNIVERSITY 127

Notes [dsttime] => 0

)

Localtime() and getdate() both return an array. The elements contain information belonging to
the	(optional)	timestamp	passed	to	the	function.	The	returned	arrays	are	not	exactly	the	same.	
Table shows what the elements in the arrays mean.

Table 1: Elements in Arrays Returned by localtime() and getdate()

Meaning Index (localtime()) Index (localtime()) Index (localtime())

Hours tm_hour hours

Day of month tm_mday mday

Month tm_mon mon For localtime: January=0;
for getdate:January=1

Year tm_year Year

Day of week tm_wday wday With 0 being Sunday
and 6 being Saturday

Day of year tm_yday yday With 0 being January
1s t and 366 be ing
December 32nd

DST in effect tm_isdst Set to true if Daylight
Savings Time is in effect

Textual	day	of weekday English name of week
the weekday

Textual	month month English name of the
month

Timestamp Number	 of	 seconds	 since		

01-01-1970

The	 tm_isdst	 element	of	 localtime()	 is	 especially	 interesting.	 It’s	 the	only	way	 in	PHP	 to	 see	
whether the server is in DST. Also, note that the month number in the return array of localtime()
starts	with	0,	not	with	1,	which	makes	December	month	11.	The	first	parameter	for	both	functions	
is	a	time	stamp,	allowing	the	functions	to	return	date	information	based	on	the	time	you	pass	
them, rather than just on the current time. localtime() normally returns an array with numerical
indices,	rather	than	the	indices	as	described	in	the	previous	table.	To	signal	the	function	to	return	
an	associative	array,	you	need	to	pass	true	as	the	second	parameter.	If	you	want	to	return	this	
associative	array	with	information	about	the	current	time,	you	need	to	pass	the	time()	function	
as	first	parameter:

 <?php

 print_r(localtime(time(), true));

 ?>

Open Source Technologies

128 LOVELY PROFESSIONAL UNIVERSITY

Notes Two	more	 date	 functions	 are	 available:	 gmmktime()	 and	mktime().	 Both	 functions	 create	 a	
timestamp	based	 on	parameters	 passed	when	 the	 function	 is	 called.	 The	difference	 between	
the	two	functions	is	that	gmmktime()	treats	the	date/time	parameters	passed	as	a	Greenwich	
Mean	Time	(GMT),	while	parameters	passed	to	mktime()	are	treated	as	local	time.	The	order	of	
parameters	is	not	very	user	friendly,	as	you	can	see	in	the	prototype	of	the	following	function:

timestamp	mktime	([$hour	[,	$minute	[,	$second	[,	$month	[,	$day	[,

‘$year	[,	$is_dst]]]]]]])

The	particularly	weird	order	of	the	parameters.	

All	 parameters	 are	 optional.	 If	 any	 parameter	 is	 not	 included,	 the	 “current”	 value	 is	 used,	
depending	on	the	current	date	and	time.	The	last	parameter,	is_dst,	controls	whether	the	date	
and	time	parameters	that	are	passed	to	the	function	are	DST-enabled	or	not.	The	default	value	
for	the	parameter	is	-1,	which	signals	PHP	to	determine	for	itself	whether	the	date	falls	into	the	
range	when	DST	is	observed.	Here	is	an	example:

 Example: <?php

 /* mktime with a date outside the DST range */

 echo date(“Ymd H:i:s”, mktime(15, 16, 17, 1, 17, 2004)). “\n”;

 echo date(“Ymd H:i:s”, mktime(15, 16, 17, 1, 17, 2004, 0)). “\n”;

 echo date(“Ymd H:i:s”, mktime(15, 16, 17, 1, 17, 2004, 1)). “\n”;

 /* mktime with a date inside the DST range */

 echo date(“Ymd H:i:s”, mktime(15, 16, 17, 6, 17, 2004)). “\n”;

 echo date(“Ymd H:i:s”, mktime(15, 16, 17, 6, 17, 2004, 0)). “\n”;

 echo date(“Ymd H:i:s”, mktime(15, 16, 17, 6, 17, 2004, 1)).

 “\n\n”;

 ?>

The	first	three	calls	“make”	a	timestamp	for	January	17,	in	which	no	DST	is	observed.	Therefore,	
setting	the	$is_dst	parameter	to	0	has	no	effect	on	the	returned	timestamp.	If	it’s	set	to	1,	though,	
the	timestamp	will	be	one	hour	earlier,	as	the	mktime()	function	converts	the	DST	time	(which	
is always one hour ahead of non-DST). For the second set of mktime() calls, we use June 17 in
which	DST	is	observed.	Setting	the	$is_dst	parameter	to	0	now	makes	the	function	convert	the	
time	 from	non-DST	to	DST	and,	 thus,	 the	returned	 timestamp	will	be	one	hour	ahead	of	 the	
result	of	the	first	and	third	calls.	The	output	is

20040217 15:16:17

20040217 15:16:17

20040217 14:16:17

20040617 15:16:17

20040617 16:16:17

20040617 15:16:17

Unit 8: Working with Strings, Date and Time

 LOVELY PROFESSIONAL UNIVERSITY 129

Notes

Contd...

It’s	best	not	to	touch	the	$is_dst	parameter,	because	PHP	usually	interprets	the	date	and	time	
correctly.

If	we	replace	all	calls	 to	mktime()	by	gmmktime(),	 the	parameters	passed	to	 the	 function	are	
treated as GMT time, with no time zones taken into account. With mktime(), the time zone that
the	server	has	configured	is	 taken	 into	account.	For	 instance,	 if	you	are	on	Central	European	
Time	(CET),	passing	the	same	parameters	as	shown	previously	to	gmmktime	output	times	that	
are	one	hour	“later.”	Because	the	date	function	does take into account time zones, the generated
GMT	timestamp	is	treated	as	a	CET	time	zone,	resulting	in	times	that	are	one	hour	for	non	DST	
times	and	two	hours	for	DST	times	(CEST	is	CET+1).

8.3 Formatting Date and Time

Making a GMT date with gmmktime() and then showing it in the current time zone with the
date()	function	doesn’t	make	much	sense.	Thus,	we	also	have	two	functions	for	formatting	date/
time:	date()	to	format	a	local	date/time,	and	gmdate()	to	format	a	GMT	date/time.	Both	functions	
accept	exactly	the	same	parameters.	The	first	parameter	is	a	format	string	(more	about	that	in	a	
bit),	and	the	second	is	an	optional	timestamp.	If	the	timestamp	parameter	is	not	included,	the	
current	 time	 is	used	 in	formatting	the	output.	gmdate()	and	date()	always	format	 the	date	 in	
English,	not	in	the	current	“locale”	that	is	set	on	your	system.	Two	functions	are	provided	to	
format local time/date according to locale settings: strftime() for local time and gmstrftime() for
GMT	times.	Table	describes	formatting	string	characters	for	both	functions.	Note	that	the	(gm)
strftime()	prefix	to	the	formatting	string	options	with	a	%.

Table 2: Date Formatting Modifiers

Description Date/
gmdate

Strftime/
gmstrime

Remarks

AM/PM A
am/pm a %p Either	am	or	pm	for	 the	English	

locale. Other Locates Migh have
replacements	 (for	 example,	 n1_
NL	has	an	empty	atring	here).

Century,	numeric	
two digits

%C Returne the century number 20
for 2004, and so on.

Character,	literal% %% Use	this	to	place	a	literal	character	
%	inside	the	formatting	string.

Character,	newline	 %n Use	 this	 to	 place	 a	 newline	
character inside the formatting
string.

Character,	tab %t Use	 this	 to	place	a	 tab	character	
inside the formatting string.

Day connt in
month

t Number	 of	 days	 in	 the	 month	
defined	by	the	timestamp.

Day of month,
leading	spaces

%e Current	day	in	this	month	defined	
by	 the	 timestamp.	 A	 space	 is	
prepended	when	the	day	number	
is less than 10.

Open Source Technologies

130 LOVELY PROFESSIONAL UNIVERSITY

Notes
Day of month,
leading zeroes

d %D Current	day	in	this	month	defined	
by	 the	 timestamp.	 A	 zero	 is	
prepended	when	the	day	number	
is less than 10.

Day of month,
without leading
zeroes

j Current	day	in	the	month	defined	
by	the	timestamp.

Formatted, locale
preferred	date

%x The	 date	 in	 preferred	 Locale	
format

<?Phy

 setlocale (LC-All, ‘1w_IL’),

 echo strft1me (‘%X\N”);//

 → shows 29/02/04 ?>
Formatted, locale
Preferred date and
time

%c The	 date	 and	 time	 in	 preferred	
locale format format.

 <? php

 setlocale 9LC_All, n1_NL’);

 // shows zo 29 feb 2004

 → 23: 56:12 CET

 echo strft1me (“%C/n”);

 ?>
Formatted, locale
preferred	time

%x The	date	in	preferred	locale	
format.

 <? php

setlocale (LC_ALL, ‘n1_NL’);

echo strftime (‘%x\n”); //

 → shows 29-02-04

?>

Hour 12-hour
format, leading
zeroes

h %1

Hour 12-hour
format, no leading
zeroes

g

Hour, 24-hour
format, leading
zeroes

H %H

Hour, 24-hour
format, no leading
zeroes

G

Contd...

Unit 8: Working with Strings, Date and Time

 LOVELY PROFESSIONAL UNIVERSITY 131

NotesInternet time B The swath Internet time in which
a day is

divided into 1,000 units:

<? php

echo date (‘B’). “\n”//shows

→ 00s

?>

ISO 8601 c Shows the date in ISO 8601 format:
2004-03-01Too:	08:37+01:00

Leap	Year L Returns	1	if	the	year	represented	
by	 the	 timestamp	 is	a	 leap	year,	
or 0 otherwise.

Minutes, leading
Zeroes

1 %M

Month,	full	textual p %B For (gm) strftime (), the month
name is the name in the language
of the current locale.

<?php

set locale (LC_ALL, ‘1w_IL’)’

echo strftime 9”%B\n”);//

shows

?>

Month, numeric
with leading zeroes

M %m

Month, numeric
without leading
zeroes

N

Month, short
textual

M %b,	%h	

RFC	2822 R Returns	a	RFC	2822	(mail)	
formatted	text	(Mon,	1	Mar,	
2004	00:13:34	+	0100).

Seconds since
UNIX	epoch

U

Seconds, numberic
with leading zeroes

s %S

Suffix	 for	 day	 of	
month, English
ordinal

S Returns	an	English	ordinal	suffix	
for use with the J formatting
option.

<?php

echo date (“js\n”); // returns

→ 1st

?>

Contd...

Open Source Technologies

132 LOVELY PROFESSIONAL UNIVERSITY

Notes
Time zone,
numeric (in
seconds)

Z Returns the offest to GMT in
seconds.	 For	 CET,	 this	 is	 3600;	
for EST, this is –18000,
seconds)	for	example.

Time zone,
numeric
formatted

O Returns a formatted offset to
GMT.	For	GET,	this	is	+0100;	for	
EST,	this	is	–0500,	for	example.

Time	zone,	textual T %Z Returns the current time zone
name:	CET,	EST,	and	so	on.

Week number, ISO
8601

W %V 	In	ISO	8601,	week	#	1	is	the	first	
week in the year having four
or more days. The range is 01
to 53, and you can use this in
combination	with	%g	or	%G	for	
the	accompanying	year:

Week number, the
first	 Monday	 in	 a	
year is the start of
week 1

%W	 <? php

// shows 01

echo strftime (“%w”’

strtot1me (“2001-01-0-

→ 01”)), “\m”,

// shows 53

echo strft1me (“%W”,

strtot1me (“2005-12

→ 31”)),”\n”,

?>

Week number, the
first Sunday in a
year is the start of
week 1

%U <? php

// shows 00

echo strftime (“%U”,

strtotime (“2001-01-)

01”)), “\n”;

// shows 52

echo strftime (“%U”,

strtotime (“2001-12-

31”)).”\n”;

?>

Year, numeric two
digits with

Y %Y

Year, numeric
two digits; year
component	for	
%w

%g This number might differ from
the	 “real	 year”,	 as	 in	 ISO	 8601;	
January 1 might still belong to
week 53 of the year before. In that
case, the year returned with this
formatting	option	will	be	the	one	
of	the	previous	year,	too.

Contd...

Unit 8: Working with Strings, Date and Time

 LOVELY PROFESSIONAL UNIVERSITY 133

Notes
Year, numeric four
digits

Y %Y

Year, numeric
four digits; year
component	for	
%w

%G This number might differ from
the	 “real	 year’”	 as	 in	 ISO	 8601;	
January 1 might still belong to
week 53 of the year before. In that
case, the year returned with this
formatting	option	will	be	the	one	
of	the	previous	year,	too.

Day of week, full
textual	

1 %A For strftime (), the day is shown
according to the names of the
current locale.

 <?php

 setlocale (LC_ALL, ‘C’);

 echo strftime (‘%A’);

 setlocale (LC_ALL, ‘no_NO’);

 echo strftime (‘%A’);

 ?>

shows

Monday Mandag
Day of week,
numeric
(0=Sunday)

w %W The range is 0-6 with 0 being
Sunday and 6 being Saturday.

Day of week,
numeric
(1=Monday)

%u The range is 1-7 with I being
Monday and 7 being Sunday.

Day of week, short
textual

D %a For the (gm) strftime () function,
the name is shown according to
the locale; for (gm) date() it is the
normal three letter abbreviation:
Sun, Sat, Wed, and so on.

Day of year,
numeric with
leading zeroes

%j The day number in a year, starting
with 001 for January 1 to 365 or
366.

Day of year,
numeric without
leading zeroes

z The day number in a year, starting
with 0 for January 1 to 365 or 365

DST active I Returns 1 if DST is active and 0
if DST is not active for the given
timestamp.

Formatted,
%d/%m/%y

%D Gives the same result as using
%d/%m/%y.

Formatted,
%H:%M:%S

%T Gives the same result as using
&H;%M:%S.

Contd...

Open Source Technologies

134 LOVELY PROFESSIONAL UNIVERSITY

Notes
Formatted, in
24-hour notation

%R The time in 24-hour notation
withour seconds.

 <?php

 echo strftime (“%R\n”);//

shows

 23:53

 ?>

Formatted, in am/
p.m.	notation	

%r The time in 12-hour notation
including seconds.

 <?php

 echo strftime (“%r\n”);//

shows

 11:53:47

 ?>

 ISO 8601 Week Numbers: That	 the	 ISO	8601	year	 format	option	 (%V)	might	
differ	from	the	normal	year	format	option	(%Y)	if	a	year	has	less	than	four	days:	

<?php

 for ($i = 27; $i <= 31; $i++) {

 echo gmstrftime(

 “%Y-%m-%d (%V %G, %A)\n”,

 gmmktime(0, 0, 0, 12, $i, 2004)

);

}

for ($i = 1; $i <= 6; $i++) {

echo gmstrftime(

 “%Y-%m-%d (%V %G, %A)\n”,

 gmmktime(0, 0, 0, 1, $i, 2005)

);

}

?>

The	script	outputs

2004-12-27 (53 2004, Monday)

2004-12-28 (53 2004, Tuesday)

2004-12-29 (53 2004, Wednesday) Contd...

Unit 8: Working with Strings, Date and Time

 LOVELY PROFESSIONAL UNIVERSITY 135

Notes2004-12-30 (53 2004, Thursday)

2004-12-31 (53 2004, Friday)

2005-01-01 (53 2004, Saturday)

2005-01-02 (53 2004, Sunday)

2005-01-03 (01 2005, Monday)

2005-01-04 (01 2005, Tuesday)

2005-01-05 (01 2005, Wednesday)

2005-01-06 (01 2005, Thursday)

As	you	can	see,	the	ISO	year	is	different	for	January	1	and	2,	2005,	because	the	first	week	
(Monday to Sunday) only has two days.

Questions

1.	Briefly	explain how the	ISO	8601	year	format	option.

2.	Give	the	output	of	script.

DST Issues: Every	 year	 around	October,	 at	 least	 10–25	 bugs	 are	 reported	
when	a	day	is	listed	twice	in	somebody’s	overview.	Actually,	the	day	listed	
twice	is	the	date	on	which	DST	ends,	as	you	can	see	in	the	following	example.

 Example: <?php

 /* Start date for the loop is October 31th, 2004 */

 $ts = mktime(0, 0, 0, 10, 31, 2004);

 /* We loop for 4 days */

 for ($i = 0; $i < 4; $i++) {

 echo date (“Y-m-d (H:i:s)\n”, $ts);

 $ts += (24 * 60 * 60); /* 24 hours */

 }

 ?>

	 When	this	script	is	run,	you	see	the	following	output:

 2004-10-31 (00:00:00)

 2004-10-31 (23:00:00)

 2004-11-01 (23:00:00)

 2004-11-02 (23:00:00)

The 31st is listed twice because there are actually 25 hours between midnight, October 31 and
November	1,	not	the	24	hours	that	were	added	in	our	loop.	You	can	solve	the	problem	in	one	
of	two	ways.	If	you	pick	a	different	time	of	day,	such	as	noon,	the	script	will	always	have	the	
correct date:

 Example: <?php

 /* Start date for the loop is October 29th, 2004 */

 $ts = mktime(12, 0, 0, 10, 29, 2004);

 /* We loop for 4 days */

 for ($i = 0; $i < 4; $i++) {

Open Source Technologies

136 LOVELY PROFESSIONAL UNIVERSITY

Notes echo date (“Y-m-d (H:i:s)\n”, $ts);

 $ts += (24 * 60 * 60);

 }

 ?>

	 Output	is

 2004-10-29 (12:00:00)

 2004-10-30 (12:00:00)

 2004-10-31 (11:00:00)

 2004-11-01 (11:00:00)

However, there is still a difference in the time. A better solution is to abuse
the mktime() function a little.

<?php

 /* We loop for 6 days */

 for ($i = 0; $i < 6; $i++) {

 $ts = mktime(0, 0, 0, 10, 30 + $i, 2004);

 echo date (“Y-m-d (H:i:s) T\n”, $ts);

}

?>

Output	is

	 2004-10-30	(00:00:00)	CEST

	 2004-10-31	(00:00:00)	CEST

	 2004-11-01	(00:00:00)	CET

	 2004-11-02	(00:00:00)	CET

	 2004-11-03	(00:00:00)	CET

	 2004-11-04	(00:00:00)	CET

We	add	 the	day	offset	 to	 the	mktime()	parameter	 that	describes	 the	day	of	month.	mktime()	
then	correctly	wraps	into	the	next	months	and	years	and	takes	care	of	the	DST	hours,	as	you	
can	see	in	the	previous	output.

Sometimes, you want to show a formatted time in the current time zone and
in	 other	 time	 zones	 as	well.	 The	 following	 script	 shows	 a	 full	 textual	 date	
representation	for	the	U.S.,	Norway,	the	Netherlands,	and	Israel:

<?php

 echo strftime(“%c\n”);

 echo “\nEST in en_US:\n”;

Unit 8: Working with Strings, Date and Time

 LOVELY PROFESSIONAL UNIVERSITY 137

Notes setlocale(LC_ALL, “en_US”);

 putenv(“TZ=EST”);

 echo strftime(“%c\n”);

 echo “\nMET in nl_NL:\n”;

 setlocale(LC_ALL, “nl_NL”);

 putenv(“TZ=MET”);

 echo strftime(“%c\n”);

 echo “\nMET in no_NO:\n”;

 setlocale(LC_ALL, “no_NO”);

 putenv(“TZ=MET”);

 echo strftime(“%c\n”);

 echo “\nIST in iw_IL:\n”;

 setlocale(LC_ALL, “iw_IL”);

 putenv(“TZ=IST”);

 echo strftime(“%c\n”);

?>

Output.	is

MON	Mar	 1	 20:19:20	 	 2004

EST in en_us:

MON	Mar	 1	 14:19:20	 	 2004

MET	in	nl_Nil:

Na	01	nrt	2004	 	 20:19:20	 	 MET

IST in iw_IL:

IST 21:13:20 2004

March 1 in different locales.

You need to have the locales and time-zone settings installed on your system
before	this	will	work.	It	is	a	system-dependent	setting	and	not	everything	is	
always	available	on	your	system.	If	you’re	a	Mac	OS	X	user,	have	a	look	at	
http://www.macmax.org/locales/index_en.html	to	install	locales.

8.4 Parsing Date Formats

The	opposite	of	formatting	text	is	parsing	a	textual	description	of	a	date	into	a	timestamp.	The	
strtotime() function handles a many different formats. Table contains a list of the most useful
formats.

Open Source Technologies

138 LOVELY PROFESSIONAL UNIVERSITY

Notes Table 3: Date/Time Formats as Understood by strtotime()

Date String GMT Formatted Date Remarks
11970-0917 1970-09-16 23:00:00 ISO	8601	preferred	date.
9/17/72 1972-09-16 23:00:00 Common	U.S.	way	(d\m\yy)
24		September	1972

24		Sep	1972

Sep		24,	1972

1972-09-23 23:00:00

1972-09-23 23:00:00

1972-09-23 23:00:00

Without	any	specified	time,	0:00	is	

used.	Because	the	time	zone	is	set	to	

MET	(GMT+1),	the	GMT	formatted	

date	is	in	the	previous	day.
20: 02: 00 2004-03-01 19:02:00 Without	 any	 date	 specified,	 the	

current date is used.20:02 2004-03-01 19:02:00
8:	02pm 2004-03-01 19:02:00
20:02-0500 2004-03-02 01:02:00 –0500 is the time zone (EST)
20:02 EST 2004-03-03 01:02:00
Thursday

1 Thursday

this Thursday

2004-03-03 23:00:00 A	 day	 name	 advances	 to	 the	 first	

available day with this name. In

case the current day has this name,

the current day is used.
2 Thursday 19:00 2004-03-11 18:00:00 2 is the second Thursday from now.
Next	Thursday	7	pm 2004-03-11 18:00:00 Next	means	the	next	available	day	

with	this	name	after	the	first	avail-

able day, and thus is the same as 2.
last Thursday 19:34 2004-02-26 18:34:00 The Thursday before the current

day. If the name of the day is

the same as the current day, the

timestamp	 of	 the	 previous	 day	 is	

used.
1 Year 2 days ago 2003-02-27 21:25:44 The current time is used to calculate

the	 relative	 displacement	 with	

The-Sign is needed before every

displacement	 unit;	 ifit’s	 not	 used,	

+	is	assument.	If	“ago”	is	postfixed,	

the	meaning	of	+	and	–	is	reversed.	

Other	 possible	 units	 are	 second,	

minute, hour, week, Month, and

fortnight 914 days).

–1 Year –2 days 2003-02027 21:25:44
–1 year 2 days 2003-03-03 21:25:44
1 year –2 days 2005-03-27 21:25:44
tomorrow 2004-03-02 21:25:44
Yesterday 2004-03-29 21:25:44

20040301 T00:00:00_1900 2004-02-29 05:00:00 Used	for	WDDX	parsing.

Contd...

Unit 8: Working with Strings, Date and Time

 LOVELY PROFESSIONAL UNIVERSITY 139

Notes
2004W021 2004-01-04 23:00:00 Midnight	 of	 the	 first	 day	 of	 ISO	

week 21 in 2004.
2004122 0915 2004-12-22 08:15:00 Only numbers in the form yyyy

mmdd hhmm.

Using	the	strtotime()	function	is	easy.	It	accepts	two	parameters:	the	string	to	parse	to	a	timestamp	
and	an	optional	timestamp.	If	the	timestamp	is	included,	the	time	is	converted	relative	to	the	
timestamp;	if	it’s	not	included,	the	current	time	is	used.	The	relative	calculations	are	only	written	
with	 yesterday,	 tomorrow,	 and	 the	 1	 year	 2	days	 (ago)	 format	 strings.	 strtotime()	 parsing	 is	
always	done	with	the	current	time	zone,	unless	a	different	time	zone	is	specified	in	the	string	
that	is	parsed:

<?php

 echo date(“H:i T\n”, strtotime(“09:22”)); // shows 09:22 CET

 echo date(“H:i T\n\n”, strtotime(“09:22 GMT”)); // shows 10:22 CET

 echo gmdate(“H:i T\n”, strtotime(“09:22”)); // shows 08:22 GMT

 echo gmdate(“H:i T\n”, strtotime(“09:22 GMT”)); // shows 09:22 GMT

?>

8.5 Strings with PHP

Strings in PHP are a sequence of characters that are always internally nullterminated. However,
unlike	some	other	languages,	such	as	C,	PHP	does	not	rely	on	the	terminating	null	to	calculate	
a	string’s	length,	but	remembers	its	length	internally.	This	allows	for	easy	handling	of	binary	
data	in	PHP—for	example,	creating	an	image	on-the-fly	and	outputting	it	to	the	browser.	The	
maximum	length	of	strings	varies	according	to	the	platform	and	C	compiler,	but	you	can	expect	
it	to	support	at	least	2GB.	Don’t	write	programs	that	test	this	limit	because	you’re	likely	to	first	
reach your memory limit. When writing string values in your source code, you can use double
quotes	(“),	single	quotes	(‘)	or	here-docs	to	delimit	them.	Each	method	is	explained	in	this	section.

Double Quotes Examples	for	double	quotes:	

“PHP:	Hypertext	Pre-processor”

“GET	/	HTTP/1.0\n”

“1234567890”

Strings	can	contain	pretty	much	all	characters.	Some	characters	can’t	be	written	as	is,	however,	
and	require	special	notation:

\n Newline.
\t Tab.
\” Double quote.
\\ Backslash.
\0 ASCII	0	(null). Contd...

Open Source Technologies

140 LOVELY PROFESSIONAL UNIVERSITY

Notes \r Line feed.
\$ Escape	$	sign	so	that	it	is	not	treated	as	a	variable

but	as	the	character	$.
\	{Octal	#} The	character	represented	by	the	specified	octal	#—for

example.\70	represents	the	letter	8.
\X{Hexadecima	#} The	character	represented	by	the	specified	hexadecimal	

#—for	example,	\0×32	represents	the	letter	2.

An	additional	feature	of	double-quoted	strings	is	that	certain	notations	of	variables	and	expressions	
can	be	embedded	directly	within	them.	Without	going	into	specifics,	here	are	some	examples	of	
legal	strings	that	embed	variables.	The	references	to	variables	are	automatically	replaced	with	
the	variables’	values,	and	if	the	values	aren’t	strings,	they	are	converted	to	their	corresponding	
string	 representations	 (for	 example,	 the	 integer	 123	 would	 be	 first	 converted	 to	 the	 string	
“123”).

“The	result	is	$result\n”

“The	array	offset	$i	contains	$arr[$i]”

In	cases,	where	you’d	like	to	concatenate	strings	with	values	(such	as	variables	and	expressions)	
and	 this	 syntax	 isn’t	 sufficient,	 you	 can	use	 the	 .	 (dot)	 operator	 to	 concatenate	 two	 or	more	
strings.	This	operator	is	covered	in	a	later	section.

Single Quotes in addition to double quotes, single quotes may also delimit strings. However,
in	contrast	to	double	quotes,	single	quotes	do	not	support	all	the	double	quotes’	escaping	and	
variable substitution.

The	following	table	includes	the	only	two	escapings	supported	by	single	quotes:

\’ Single quote.
\\ Backslash,	 used	when	wanting	 to	 represent	 a	 backslash	

followed	by	a	single	quote—for	example.\\’.

 Example:	 ‘Hello,	World’

	 	 ‘Today\’s	the	day’

Here-Docs Here-docs enable	 you	 to	 embed	 large	 pieces	 of	 text	 in	 your	 scripts,	 which	may	
include	lots	of	double	quotes	and	single	quotes,	without	having	to	constantly	escape	them.	The	
following	is	an	example	of	a	here-doc:

<<<THE_END

PHP	stands	for	“PHP:	Hypertext	Preprocessor”.

The	acronym	“PHP”	is	therefore,	usually	referred	to	as	a	recursive	acronym

|→because the long form contains the acronym itself.

As	this	text	is	being	written	in	a	here-doc	there	is	no	need	to	escape	the

|→double quotes.

THE_END

Unit 8: Working with Strings, Date and Time

 LOVELY PROFESSIONAL UNIVERSITY 141

NotesThe	strings	starts	with	<<<,	 followed	by	a	string	 that	you	know	doesn’t	appear	 in	your	 text.	
It	 is	 terminated	 by	 writing	 that	 string	 at	 the	 beginning	 of	 a	 line,	 followed	 by	 an	 optional	
semicolon	(;),	and	then	a	required	newline	(\n).

Escaping	and	variable	substitution	in	here-docs	is	identical	to	double-quoted	strings	except	that	
you	are	not	required	to	escape	double	quotes.

8.6 PHP String Handling Functions

PHP	 is	 equally	powerful	 than	 any	other	 server	 side	 scripting	 languages	 in	handling	 strings.	
We	will	experiment	with	some	of	the	string	functions	of	PHP	with	some	examples.	There	are	
powerful	functions	like	regular	expressions	to	manage	complex	string	handling	requirements.	
Here are some of them.

Function Action
chr Returns	the	character	corresponding	to	an	ASCII	

code.
crypt One way encoding of a string (called hashing).
explode Converts	 a	 character	 delimited	 string	 into	 an	

arraylike	the	VB	Split	function.
implode Converts	an	array	into	a	character	delimited	string.
ltrim Remove characters (default is remove blanks) from

the beginning of a string.
ord Return	the	ASCII	code	of	a	character.
parse_str Extract	 the	variables	 from	a	query	 string	passed	

via	a	URL.
print Display	a	string.	Always	return	1.
printf Display	a	formatted	string.	Returns	the	length	of	

the formatted string.
rtrim Remove characters (default is remove blanks) from

the endof a string.
sprintf Return a formatted string.
str_replacestr_ireplace Replace	 all	 occurrences	 of	 a	 substring	 within	 a	

string.&nsp;
str_split Split	 a	 string	 into	 an	 array	 equal	 length	 chunks	

(defaultlength 1).
strcmp Binary-safe	string	comparison.
strlen Returns the length of a string.
strposstripos Returns	 the	 position	 of	 first	 occurrence	 of	 a	

substringin a string.
strrev Returns a string with characters reversed.
strtolower Returns a string with all characters converted to

lowercase.

Contd...

Open Source Technologies

142 LOVELY PROFESSIONAL UNIVERSITY

Notes strtoupper Returns a string with all characters converted to
uppercase.

substr Extracts	a	substring	from	a	string.
trim Remove characters (default is remove blanks) from

the beginning and end of a string.

8.7 Accessing String Offsets

Individual	characters	in	a	string	can	be	accessed	using	the	$str{offset}	notation.	You	can	use	it	
to both read and write string offsets. When reading characters, this notation should be used
only	to	access	valid	indices.	When	modifying	characters,	you	may	access	offsets	that	don’t	yet	
exist.	PHP	automatically	sets	that	offset	to	the	said	character,	and	if	this	results	in	a	gap	between	
the	ending	of	the	original	string	and	the	offset	of	the	new	character,	the	gap	filled	with	space	
characters	(‘	‘).	This	example	creates	and	prints	the	string	“Andi”	(in	an	awkward	way):

	 $str	=	“A”;

	 $str{2}	=	“d”;

	 $str{1}	=	“n”;

	 $str	=	$str	.	“i”;

	 print	$str;

For	many	cases,	PHP	has	string	manipulation	 functions	which	use	efficient	
algorithms.	You	should	first	 look	at	 them	before	you	access	strings	directly	
using	string	offsets.	They	are	usually	prefixed	with	str_.	For	more	complex	
needs,	 the	 regular	 expressions	 functions—most	 notably	 the	 pcre_family	 of	
functions—will come in handy.

In	 PHP	 4,	 you	 could	 use	 []	 (square	 brackets)	 to	 access	 string	 offsets.	 This	
support	still	exists	in	PHP	5,	and	you	are	likely	to	bump	into	it	often.	However,	
you	 should	 really	use	 the	 {}	 notation	because	 it	differentiates	 string	offsets	
from array offsets and thus, makes your code more readable.

8.8 __toString() Method

Consider the following code:

class	Person	{

function	__construct($name)

	 {

$this->name	=	$name;

Unit 8: Working with Strings, Date and Time

 LOVELY PROFESSIONAL UNIVERSITY 143

Notes	 }

private	$name;

	 }

$obj	=	new	Person(“Andi	Gutmans”);

print	$obj;

It	prints	the	following:

Object id #1

Unlike	most	other	data	types,	printing	the	object’s	id	will	usually	not	be	interesting	to	you.	Also,	
objects	often	refer	to	data	that	should	have	print	semantics—for	example,	it	might	make	sense	
that	when	you	print	an	object	of	a	class	representing	a	person,	the	person’s	information	would	
be	printed	out.	For	this	purpose,	PHP	enables	you	to	implement	a	function	called	__toString(),	
which	should	return	the	string	representation	of	the	object,	and	when	defined,	the	print	command	
will	 call	 it	 and	print	 the	 returned	 string.	By	using	__toString(),	 the	previous	example	 can	be	
modified	to	its	more	useful	form:

class	Person	{

function	__construct($name)

{

$this->name	=	$name;

}

function __toString()

{

return	$this->name;

}

private	$name;

}

$obj	=	new	Person	(“Andi	Gutmans”);

print	$obj;

It	prints	the	following:

Andi Gutmans

The	__toString()	method	 is	 currently	only	called	by	 the	print	and	echo	 language	constructs.	
In	 the	 future,	 they	will	probably	 also	be	 called	by	 common	 string	operations,	 such	as	 string	
concatenation	and	explicit	casting	to	string.

Open Source Technologies

144 LOVELY PROFESSIONAL UNIVERSITY

Notes

Imagine	we	are	working	at	a	school	district	and	need	to	create	a	webpage	for	the	students’	
parents.	The	webpage	has	an	introduction	string	that	we	need	to	customize	depending	
on if the student is male or female. With str_replace this is mighty easy.

PHP Code:

//string that needs to be customized

$rawstring	=	“Welcome	Birmingham	parents.	Your	replaceme	is	a	pleasure	to	have!”;

//male string

$malestr	=	str_replace(“replaceme”,	“son”,	$rawstring);

//female string

$femalestr	=	str_replace(“replaceme”,	“daughter”,	$rawstring);

echo	“Son:	“.	$malestr	.	“
”;

echo	“Daughter:	“.	$femalestr;

Output:

Son:	Welcome	Birmingham	parents.	Your	son	is	a	pleasure	to	have!

Daughter:	Welcome	Birmingham	parents.	Your	daughter	is	a	pleasure	to	have!

In	the	last	example	we	only	needed	to	replace	one	word	replacement in our string, but what
if	we	wanted	to	replace	many	words?	We	could	just	use	the	function	multiple	times	to	get	
the job done, or we could create an array of placeholders and a second array of replace values to
get it all done in one function call.

The key thing to understand with this technique is that you are creating two arrays that will
be	used	 to	swap	values.	The	first	 item	 in	placeholders	will	be	 replaced	by	 the	first	 item	 in	
the replace values, the second item of placeholders replaced	with	the	second	in	replace values and
so on and so forth.

Let’s	extend	our	simple	example	to	be	a	complete	form	letter	addressed	to	a	student’s	parents.

PHP Code:

//string that needs to be customized

$rawstring	=	“Welcome	Birmingham	parent!	

	 Your	offspring	is	a	pleasure	to	have!	

	 We	believe	pronoun	is	learning	a	lot.

	 The	faculty	simple	adores	pronoun2	and	you	can	often	hear	

	 them	say	\”Attah	sex!\“ ”
”;

//placeholders	array
Contd...

Unit 8: Working with Strings, Date and Time

 LOVELY PROFESSIONAL UNIVERSITY 145

Notes$placeholders	=	array(‘offspring’,	‘pronoun’,	‘pronoun2’,	‘sex’);

//male	replace	values	array

$malevals	=	array(‘son’,	‘he’,	‘him’,	‘boy’);

//female	replace	values	array

$malevals	=	array(‘son’,	‘he’,	‘him’,	‘boy’);

//female	replace	values	array

$femalevals	=	array(‘daughter’,	‘she’,	‘her’,	‘girl’);

//male string

$malestr	=	str_replace($placeholders,	$malevals,	$rawstring);

//female string

$femalestr	=	str_replace($placeholders,	$femalevals,	$rawstring);

echo	“Son:	“.	$malestr	.	“
”;

echo	“Daughter:“.	$femalestr;

Output:

Son:	Welcome	Birmingham	parent!

Your	son	is	a	pleasure	to	have!	We	believe	he	is	learning	a	lot.

The	faculty	simple	adores	he2	and	you	can	often	hear	them	say	“Attah	boy!”

Daughter:	Welcome	Birmingham	parent!	

Your	daughter	is	a	pleasure	to	have!	We	believe	she	is	learning	a	lot.

The	faculty	simple	adores	she2	and	you	can	often	hear	them	say	“Attah	girl!”

8.9 Summary

	 •	 PHP	has	a	range	of	functions	that	handle	date	and	time.	Some	of	these	functions	work	
with	a	so-called	Unix	timestamp,	which	is	the	number	of	seconds	since	January	1,	1970	
at 00:00:00 GMT.

	 •	 The	easiest	way	of	obtaining	the	current	time	is	with	the	time()	function.

	 •	 The	opposite	of	formatting	text	is	parsing	a	textual	description	of	a	date	into	a	timestamp.	
The strtotime() function handles many different formats.

	 •	 Strings	in	PHP	are	a	sequence	of	characters	that	are	always	internally	null	terminated.

	 •	 Individual	characters	in	a	string	can	be	accessed	using	the	$str{offset}	notation.

Open Source Technologies

146 LOVELY PROFESSIONAL UNIVERSITY

Notes 8.10 Keywords

DST Issues:	Every	year	around	October,	at	least	10-25	bugs	are	reported	when	a	day	is	listed	
twice	in	somebody’s	overview.	Actually,	the	day	listed	twice	is	the	date	on	which	DST.

Gmmktime():	Functions	create	a	timestamp	based	on	parameters	passed	when	the	function	is	
called.

GMT: Greenwich Mean Time (GMT) is a term originally referring to mean solar time at the
Royal Observatory in Greenwich, London.

Here-Docs:	 Here-docs	 enable	 you	 to	 embed	 large	 pieces	 of	 text	 in	 your	 scripts,	 which	may	
include lots of double quotes and single quotes.

ISO 8601: ISO 8601 Data elements and interchange formats–Information interchange–
Representation	of	dates	and	times	 is	an	international	standard	covering	the	exchange	of	date	
and time-related data.

Parsing:	 Parsing	 a	 sentence	 means	 to	 computer	 the	 structural	 description	 (descriptions)	 of	
the sentence assigned by a grammar, assuming of course, that the sentence is well-formed.
Mathematical	work	on	parsing.

Strings: A string is series of characters, therefore, a character is the same as a byte. That is, there
are	exactly	256	different	characters	possible.	This	also	implies	that	PHP	has	no	native	support	
of	Unicode.

UNIX timestamp: PHP has a range of functions that handle date and time. Some of these
functions	work	with	a	so-called	UNIX	timestamp.

8.11 Self Assessment Questions

Fill in the blanks:

 1. PHP has a range of functions that handle date and time. Some of these functions work
with a so-called ____________________ .

	 2.	 The	opposite	 of	 ____________________	 is	parsing	 a	 textual	description	of	 a	date	 into	 a	
timestamp.

 3. Single Quotes in addition to double quotes, single quotes may also delimit
____________________.

 4. ____________________ automatically sets that offset to the said character.

State True or False:

 1. The easiest way of obtaining the current time is with the time() function.

 (a) True (b) False

 2. Strings in PHP are a sequence of characters that are always internally null-terminated.

 (a) True (b) False

 3. Here-docs enable	you	to	embed	large	pieces	of	text	in	your	scripts.

 (a) True (b) False

	 4.	 The	__toString()	method	is	currently	only	called	by	the	print	and	echo	language	constructs.

 (a) False (b) True

Unit 8: Working with Strings, Date and Time

 LOVELY PROFESSIONAL UNIVERSITY 147

Notes8.12 Review Questions

 1. What is data handling?

 2. How do we retrieving date and time information?

 3. How we format date and time?

	 4.	 Define	parsing	date	formats?

 5. What are the strings with PHP?

	 6.	 Define	accessing	string	offsets.

Answers for Self Assessment Questions

Fill in the blanks

	 1.	 UNIX	timestamp	 2.	 formatting	text

 3. strings 4. PHP

True or False

 1. (a) 2. (a)

 3. (a) 4. (b)

8.13 Further Reading

PHP: A Beginner’s Guide by: Vaswani, Vikram,	By	Tata	Mc-Graw	Hill.

http://www.gibmonks.com/c_plus/ch11lev1sec10.html/

Open Source Technologies

148 LOVELY PROFESSIONAL UNIVERSITY

Notes Unit 9: Working with Forms

CONTENTS

Objectives

Introduction

9.1 Creating a Simple Input Form

9.2 Creating the Form

9.3	 Accessing	Form	Input	with	User-Defined	Arrays

9.4 Combining HTML and PHP Code on a Single Page

9.5 Using Hidden Fields to Save State

9.6 Redirecting the User

9.7 Sending Mail on Form Submission

	 9.7.1	 System	Configuration	for	the	Mail()	Function

 9.7.2 Creating the Script to Send the Mail

9.8 Working with File Uploads

9.9 Creating the File Upload Form

9.10	 Summary

9.11	 Keywords

9.12	 Self	Assessment	Questions

9.13	 Review	Questions

9.14 Further Reading

Objectives

After studying this unit, you will be able to:

	 •	 Explain	creating	simple	input	form.

	 •	 Understand	creating	the	form.

	 •	 Discuss	accessing	form	input	with	user-defined	arrays.

	 •	 Explain	combining	HTML	and	PHP	code	on	a	single	page.

	 •	 Discuss	hidden	fields	to	save	state.

	 •	 Understand	redirecting	the	user.

	 •	 Discuss	sending	mail	on	form	submission.

	 •	 Explain	working	with	file	uploads.

	 •	 Explain	creating	file	upload	form.

Introduction

Until	now,	 the	PHP	examples	 in	 this	book	have	been	missing	a	crucial	dimension.	Sure,	you	
know	the	basics,	can	set	variables	and	arrays,	create	and	call	functions,	and	connect	to	MySQL	to	

Sarabjit Kumar, Lovely Professional University

Unit 9: Working with Forms

 LOVELY PROFESSIONAL UNIVERSITY 149

Notesdo	great	things	with	a	database.	But	that’s	all	meaningless	if	users	can’t	reach	into	a	language’s	
environment	to	offer	it	information.	In	this,	you	look	at	strategies	for	acquiring	and	working	with	
user	input.	On	the	World	Wide	Web,	HTML	forms	are	the	principal	means	by	which	substantial	
amounts	of	information	pass	from	the	user	to	the	server.	In	this	you	will	learn:

	 •	 How	to	access	information	from	form	fields?

	 •	 How	to	work	with	form	elements	that	allow	multiple	selections?

	 •	 How	to	create	a	single	document	 that	contains	both	an	HTML	form	and	the	PHP	code	
that	handles	its	submission?

	 •	 How	to	save	state	with	hidden	fields?

	 •	 How	to	redirect	the	user	to	a	new	page?

	 •	 How	to	build	HTML	forms	and	PHP	code	that	send	mail?

	 •	 How	to	build	HTML	forms	that	upload	files	and	how	to	write	the	PHP	code	to	handle	
them?

9.1 Creating a Simple Input Form

For	now,	let’s	keep	our	HTML	separate	from	our	PHP	code.	Listing	1	builds	a	simple	HTML	form.

Listing 1 A Simple HTML Form

 1. <html>

 2. <head>

	 3.	 <title>Listing	1	A	simple	HTML	form</title>

	 4.	 </head>

	 5.	 <body>

	 6.	 <form	action=”listing2.php”	method=”POST”>

	 7.	 Name:	

	 8.	 <input	type=”text”	name=”user”>

 9.

	 10.	 Address:	

	 11.	 <textarea	name=”address”	rows=”5”	cols=”40”></textarea>

 12.

	 13.	 <input	type=”submit”	value=”hit	it!”>

	 14.	 </form>

	 15.	 </body>

	 16.	 </html>

Put	these	lines	into	a	text	file	called	listing	1,	and	place	that	file	in	your	Web	server	document	
root.	This	listing	defines	a	form	that	contains	a	text	field	with	the	name	“user”	on	line	8,	a	text	
area	with	the	name	“address”	on	line	11,	and	a	submit	button	on	line	13.	The	FORM	element’s	

Open Source Technologies

150 LOVELY PROFESSIONAL UNIVERSITY

Notes ACTION	argument	points	to	a	file	called	listing	2.php,	which	processes	the	form	information.	
The	method	of	this	form	is	POST,	so	the	variables	are	stored	in	the	$_POST	superglobal.

Listing 2 creates the code that receives our users’ input.

Listing 2 Reading Input from the Form in Listing 1

 1. <html>

 2. <head>

	 3.	 <title>Listing	2	Reading	input	from	the	form	in	Listing		1</title>

	 4.	 </head>

	 5.	 <body>

	 6.	 <?php

	 7.	 print	“Welcome	$_POST[user]<P>\n\n”;

	 8.	 print	“Your	address	is:<P>\n\n$_POST[address]”;

	 9.	 ?>

	 10.	 </body>

	 11.	 </html>

Put	these	lines	into	a	text	file	called	listing	2.php,	and	place	that	file	in	your	Web	server	document	
root.

9.2 Creating the Form

In	Listing	3,	you	 see	 the	basic	HTML	 for	 creating	a	 simple	 feedback	 form.	This	 form	has	an	
action	of	listing12.php,	which	we	create	in	the	next	section.	The	fields	are	very	simple:	Line	7	
contains	a	name	field,	 line	8	contains	 the	return	email	address	field,	and	 line	10	contains	 the	
text	area	for	the	user’s	message.

Listing 3 Creating a Simple Feedback Form

 1. <HTML>

	 2.	 <HEAD>

	 3.	 <TITLE>E-Mail	Form</TITLE>

	 4.	 </HEAD>

	 5.	 <BODY>

	 6.	 <FORM	action=”listing12.php”	method=”POST”>

	 7.	 Your	Name:	<INPUT	type=”text”	name=”name”>

	 8.	 Your	E-Mail	Address:	<INPUT	type=”text”	name=”email”>

	 9.	 Message:

	 10.	 <textarea	name=”message”	cols=30	rows=5></textarea>

	 11.	 <INPUT	type=”submit”	value=”Send	Form”>

Unit 9: Working with Forms

 LOVELY PROFESSIONAL UNIVERSITY 151

Notes	 12.	 </FORM>

	 13.	 </BODY>

	 14.	 </HTML>

Put	these	lines	into	a	text	file	called	listing3.php,	and	place	this	file	in	your	Web	server	document	
root.	Now	access	the	script	with	your	Web	browser,	and	you	should	see	something	like	Figure	9.1.

Figure 9.1: Form Created in Listing 3

In	the	next	section,	you	create	the	script	that	sends	this	form	to	a	recipient.

 Create	simple	feedback	form.

9.3 Accessing Form Input with User-Defined Arrays
The	examples	so	far	enable	us	to	gather	information	from	HTML	elements	that	submit	a	single	
value	per	element	name.	This	leaves	us	with	a	problem	when	working	with	SELECT	elements.	
These	elements	make	it	possible	for	the	user	to	choose	multiple	items.	If	we	name	the	SELECT	
element	with	a	plain	name,	like	so	<select	name=”products”	multiple>	the	script	that	receives	
this	 data	 has	 access	 to	 only	 a	 single	 value	 corresponding	 to	 this	 name.	We	 can	 change	 this	
behavior	by	renaming	an	element	of	this	kind	so	that	its	name	ends	with	an	empty	set	of	square	
brackets. We do this in Listing 4.

Listing 4 An HTML Form Including a SELECT Element
 1. <html>
 2. <head>
	 3.	 <title>Listing	4	An	HTML	form	including	a	SELECT	element</title>
	 4.	 </head>

 5.	 <body>

	 6.	 <form	action=”listing5.php”	method=”POST”>

Open Source Technologies

152 LOVELY PROFESSIONAL UNIVERSITY

Notes 	 7.	 Name:	

	 8.	 <input	type=”text”	name=”user”>

 9.

	 10.	 Address:	

	 11.	 <textarea	name=”address”	rows=”5”	cols=”40”></textarea>

 12.

	 13.	 Pick	Products:	

	 14.	 <select	name=”products[]”	multiple>

	 15.	 <option>Sonic	Screwdriver</option>

	 16.	 <option>Tricorder</option>

	 17.	 <option>ORAC	AI</option>

	 18.	 <option>HAL	2000</option>

	 19.	 </select>

 20.

	 21.	 <input	type=”submit”	value=”hit	it!”>

	 22.	 </form>

	 23.	 </body>

	 24.	 </html>

Put	 these	 lines	 into	 a	 text	 file	 called	 listing4.php,	 and	 place	 that	 file	 in	 your	Web	 server		
document	root.	Next,	 in	the	script	that	processes	the	form	input,	we	find	that	 input	from	the	
“products[]”	form	element	created	on	line	14	is	available	in	an	array	called	$_POST[products].	
Because	products[]	 is	a	SELECT	element,	we	offer	 the	user	multiple	choices	using	the	option	
elements on lines 15 through 18. We demonstrate that the user’s choices are made available in
an	array	in	Listing	5.

Listing 5 Reading Input from the Form in Listing 4

 1. <html>

 2. <head>

	 3.	 <title>Listing	5	Reading	input	from	the	form	in	Listing	6</title>

	 4.	 </head>

	 5.	 <body>

	 6.	 <?php

	 7.	 print	“Welcome	$_POST[user]<p>\n\n”;

	 8.	 print	“Your	address	is:<p>\n\n$_POST[address]<p>\n\n”;

	 9.	 print	“Your	product	choices	are:<p>\n\n”;

	 10.	 if	(!empty($_POST[products]))	{

Unit 9: Working with Forms

 LOVELY PROFESSIONAL UNIVERSITY 153

Notes	 11.	 print	“\n\n”;

	 12.	 ?>

	 13.	 </body>

	 14.	 </html>

9.4 Combining HTML and PHP Code on a Single Page

In	some	circumstances,	you	might	want	 to	 include	form-parsing	code	on	 the	same	page	as	a	
hard-	coded	HTML	form.	Such	a	combination	can	be	useful	 if	you	need	 to	present	 the	same	
form	 to	 the	 user	more	 than	 once.	 You	would	 have	more	 flexibility	 if	 you	were	 to	write	 the	
entire	page	dynamically,	of	 course,	but	you	would	miss	out	on	one	of	 the	great	 strengths	of	
PHP.	The	more	standard	HTML	you	can	leave	in	your	pages,	the	easier	they	are	for	designers	
and	page	builders	to	amend	without	reference	to	you.	You	should	avoid	scattering	substantial	
chunks	of	PHP	code	throughout	your	documents,	however.	Doing	so	makes	them	hard	to	read	
and	maintain.	Where	possible,	you	should	create	functions	that	can	be	called	from	within	your	
HTML code and can be reused in other projects.

For	the	following	examples,	imagine	that	we’re	creating	a	site	that	teaches	basic	math	to	preschool	
children,	and	have	been	asked	to	create	a	script	that	takes	a	number	from	form	input	and	tells	
the	user	whether	it’s	larger	or	smaller	than	a	predefined	integer.

Listing	 6	 creates	 the	HTML.	For	 this	 example,	we	need	only	 a	 single	 text	field,	 but	 even	 so,	
we’ll include a little PHP.

Listing 6 An HTML Form That Calls Itself

 1. <html>

 2. <head>

	 3.	 <title>Listing	6	An	HTML	form	that	calls	itself</title>

	 4.	 </head>

	 5.	 <body>

	 6.	 <form	action=”<	?php	print	$_SERVER[PHP_SELF]	?	>”	method=”POST”>

	 7.	 Type	your	guess	here:	<input	type=”text”	name=”guess”>

	 8.	 </form>

	 9.	 </body>

	 10.	 </html>

The	action	of	this	script	is	$_SERVER[PHP_SELF].	This	variable	is	the	equivalent	of	the	name	
of	the	current	script.	In	other	words,	the	action	tells	the	script	to	reload	itself.

The	script	in	Listing	6	doesn’t	produce	any	output.	In	Listing	7,	we	begin	to	build	up	the	PHP	
element	of	the	page.	First,	we	must	define	the	number	that	the	user	guesses.	In	a	fully	working	
version,	we’d	probably	 randomly	generate	 this	number,	but	 for	now,	we	keep	 it	 simple.	We	
assign	42	to	the	$num_to_guess	variable	on	line	2.	Next,	we	must	determine	whether	the	form	

Open Source Technologies

154 LOVELY PROFESSIONAL UNIVERSITY

Notes has	been	submitted;	otherwise,	we’d	attempt	to	assess	variables	that	aren’t	yet	made	available.	
We	can	test	for	submission	by	testing	for	the	existence	of	the	variable	$_POST[guess],	which	is	
made	available	if	your	script	has	been	sent	a	“guess”	parameter.	If	$_POST[guess]	isn’t	present,	
we	can	safely	assume	that	the	user	arrived	at	the	page	without	submitting	a	form.	If	the	value	
is	 present,	we	 can	 test	 the	 value	 it	 contains.	 The	 test	 for	 the	 presence	 of	 the	 $_POST[guess]	
variable takes place on line 4.

Listing 7 A PHP Number-Guessing Script

 1.	 <	?php

	 2.	 $num_to_guess	=	42;

	 3.	 $message	=	“”;

	 4.	 if	(!isset($_POST[guess]))	{

	 5.	 $message	=	“Welcome	to	the	guessing	machine!”;

	 6.	 }	elseif	($_POST[guess]	>	$num_to_guess)	{

	 7.	 $message	=	“$_POST[guess]	is	too	big!	Try	a	smaller	number”;

	 8.	 }	elseif	($_POST[guess]	<	$num_to_guess)	{

	 9.	 $message	=	“$_POST[guess]	is	too	small!	Try	a	larger	number”;

	 10.	 }	else	{	//	must	be	equivalent

	 11.	 ?>

9.5 Using Hidden Fields to Save State

The	script	in	Listing	7	has	no	way	of	knowing	how	many	guesses	a	user	has	made,	but	we	can	
use	a	hidden	field	to	keep	track	of	this.	A	hidden	field	behaves	exactly	the	same	as	a	text	field,	
except	that	the	user	cannot	see	it	unless	he	views	the	HTML	source	of	the	document	that	contains	
it.	Listing	8	adds	a	hidden	field	to	the	number-guessing	script	and	some	PHP	to	work	with	it.

Listing 8 Saving State with a Hidden Field

 1.	 <	?php

	 2.	 $num_to_guess	=	42;

	 3.	 $num_tries	=	(isset($_POST[num_tries]))	?	$num_tries	+	1	:	0;

	 4.	 $message	=	“”;

	 5.	 if	(!isset($_POST[guess]))	{

	 6.	 $message	=	“Welcome	to	the	guessing	machine!”;

	 7.	 }	elseif	($_POST[guess]	>	$num_to_guess)	{	

	 8.	 $message	=	“$_POST[guess]	is	too	big!	Try	a	smaller	number”;

	 9.	 }	elseif	($_POST[guess]	<	$num_to_guess)	{

	 10.	 $message	=	“$_POST[guess]	is	too	small!	Try	a	larger	number”;

	 11.	 }	else	{	//	must	be	equivalent

	 12.	 $message	=	“Well	done!”;

Unit 9: Working with Forms

 LOVELY PROFESSIONAL UNIVERSITY 155

Notes 13. }

	 14.	 $guess	=	$_POST[guess];

	 15.	 ?>

 16. <html>

 17. <head>

	 18.	 <title>Listing	8	Saving	state	with	a	hidden	field</title>

	 19.	 </head>

	 20.	 <body>

 21. <h1>

	 22.	 <	?php	print	$message	?	>

	 23.	 </h1>

	 24.	 Guess	number:	<	?php	print	$num_tries?	>

	 25.	 <form	action=”<	?php	print	$_SERVER[PHP_SELF]	?>”	method=”POST”	>

	 26.	 Type	your	guess	here:

	 27.	 <input	type=”text”	name=”guess”	value=”<	?php	print	$guess?	>”>

	 28.	 <input	type=”hidden”	name=”num_tries”	value=”<	?php	print	$num_tries?	>”>

	 29.	 </form>

	 30.	 </body>

	 31.	 </html>

The	hidden	field	on	line	28	is	given	the	name	“num_tries”.	We	also	use	PHP	to	write	its	value.	
While	we’re	at	it,	we	do	the	same	for	the	“guess”	field	on	line	27	so	that	the	user	can	always	
see	his	last	guess.	This	technique	is	useful	for	scripts	that	parse	user	input.	If	we	reject	a	form	
submission	for	some	reason,	we	can	at	least	allow	our	user	to	edit	his	previous	query.

Be	sure	that	absolutely	no	output	has	been	sent	to	the	browser.	The	first	time	
content	 is	 sent	 to	 the	browser,	PHP	 sends	out	headers	 and	 it’s	 too	 late	 for	
you	to	send	your	own.	Any	output	from	your	document,	even	a	 line	break	
or	a	space	outside	of	your	script	tags,	causes	headers	to	be	sent.	If	you	intend	
to	use	the	header()	function	in	a	script,	you	must	make	certain	that	nothing	
precedes	the	PHP	code	that	contains	the	function	call.	You	should	also	check	
any	libraries	that	you	might	be	using.

Listing	9	shows	typical	headers	sent	to	the	browser	by	PHP,	beginning	with	line	3,	in	response	
to	the	request	in	line.

9.6 Redirecting the User

Our	simple	script	still	has	one	major	drawback.	The	form	is	rewritten	whether	or	not	the	user	
guesses	correctly.	The	fact	that	the	HTML	is	hard-coded	makes	it	difficult	to	avoid	writing	the	
entire	page.	We	can,	however,	redirect	the	user	to	a	congratulations	page,	thereby	sidestepping	

Open Source Technologies

156 LOVELY PROFESSIONAL UNIVERSITY

Notes the	issue	altogether.	When	a	server	script	communicates	with	a	client,	it	must	first	send	some	
headers	that	provide	information	about	the	document	to	follow.	PHP	usually	handles	this	for	you	
automatically,	but	you	can	choose	to	send	your	own	header	lines	with	PHP’s	header()	function.

To	call	the	header()	function,	you	must	be	sure	that	absolutely	no	output	has	been	sent	to	the	
browser.	The	first	time	content	is	sent	to	the	browser,	PHP	sends	out	headers	and	it’s	too	late	for	
you	to	send	your	own.	Any	output	from	your	document,	even	a	line	break	or	a	space	outside	of	
your	script	tags,	causes	headers	to	be	sent.	If	you	intend	to	use	the	header()	function	in	a	script,	
you	must	make	certain	that	nothing	precedes	the	PHP	code	that	contains	the	function	call.	You	
should	also	check	any	libraries	that	you	might	be	using.	Listing	9	shows	typical	headers	sent	to	
the	browser	by	PHP,	beginning	with	line	3,	in	response	to	the	request	in	line.

Listing 9 Typical Server Headers Sent from a PHP Script

 1.	 HEAD/listing9.php	

	 2.	 HTTP/1.0

	 3.	 HTTP/1.1	200	OK

	 4.	 Date:	Sun,	15	Sep	2002	12	:	32	:	28	GMT

	 5.	 Server:	Apache/2.0.43	(Unix)	PHP/4.2.3	mod_ssl/2.8.9	OpenSSL/0.6

	 6.	 X-Powered-By:	PHP/4.2.3

	 7.	 Connection:	close

	 8.	 Content-Type:	text/html

By	 sending	 a	 “Location”	 header	 instead	 of	 PHP’s	 default,	 you	 can	 cause	 the	 browser	 to	 be	
redirected	to	a	new	page:

header(“Location:	http://www.samspublishing.com”);

Assuming	 that	we’ve	 created	 a	 suitably	 upbeat	 page	 called	 “congrats.html”,	we	 can	 amend	
our	number-guessing	script	to	redirect	the	user	if	she	guesses	correctly,	as	shown	in	Listing	10.

Listing 10 Using header() to Send Raw Headers

 1.	 <?php

	 2.	 $num_to_guess	=	42;

	 3.	 $num_tries	=	(isset($_POST[num_tries]))	?	$num_tries	+	1:	0;

	 4.	 $message	=	“”;

	 5.	 if	(!isset($_POST[guess]))	{

	 6.	 $message	=	“Welcome	to	the	guessing	machine!”;

	 7.	 }	elseif	($_POST[guess]	>	$num_to_guess)	{

	 8.	 $message	=	“$_POST[guess]	is	too	big!	Try	a	smaller	number”;

	 9.	 }	elseif	($_POST[guess]	<	$num_to_guess)	{

	 10.	 $message	=	“$_POST[guess]	is	too	small!	Try	a	larger	number”;

Unit 9: Working with Forms

 LOVELY PROFESSIONAL UNIVERSITY 157

Notes	 11.	 }	else	{	//	must	be	equivalent

	 12.	 header(“Location:	congrats.html”);

	 13.	 exit;

 14. }

	 15.	 ?>

9.7 Sending Mail on Form Submission

You’ve	already	seen	how	to	take	form	responses	and	print	the	results	to	the	screen.	You’re	only	
one	step	away	 from	sending	 those	 responses	 in	an	email	message,	as	you’ll	 soon	see.	Before	
learning	about	sending	mail,	however,	 read	 through	 the	next	 section	 to	make	sure	 that	your	
system	is	properly	configured.

9.7.1 System Configuration for the Mail() Function

Before	you	can	use	the	mail()	function	to	send	mail,	a	few	directives	must	be	set	up	in	the	php.ini	
file	so	that	the	function	works	properly.	Open	php.ini	with	a	text	editor	and	look	for	these	lines:	

[mail	function]

;	For	Win32	only.

SMTP	=	localhost

;	For	Win32	only.

sendmail_from	=	me@localhost.com

;	For	Unix	only.	You	may	supply	arguments	as	well	(default:	“sendmail	-t	-i”).

;sendmail_path	=

If	you’re	using	Windows	as	your	Web	server	platform,	the	first	two	directives	apply	to	you.	For	
the	mail()	function	to	send	mail,	it	must	be	able	to	access	a	valid	outgoing	mail	server.	If	you	
plan	to	use	the	outgoing	mail	server	of	your	ISP	(in	the	following	example,	we	use	EarthLink),	
the	entry	in	php.ini	should	look	like	this:

SMTP	=	mail.earthlink.net

The	second	configuration	directive	 is	 sendmail_from,	which	 is	 the	email	address	used	 in	 the	
From	header	of	the	outgoing	email.	It	can	be	overwritten	in	the	mail	script	itself,	but	normally	
operates	as	the	default	value.	For	example:

sendmail_from	=	youraddress@yourdomain.com

A	good	rule	of	thumb	for	Windows	users	is	that	whatever	outgoing	mail	server	you’ve	set	up	
in	your	email	client	on	that	machine,	you	should	also	use	as	the	value	of	SMTP	in	php.ini.	If	
your	Web	server	is	running	on	a	Linux/Unix	platform,	you	use	the	sendmail	functionality	of	
that particular machine.

In	 this	 case,	 only	 the	 last	 directive	 applies	 to	 you:	 sendmail_path.	 The	 default	 is	 sendmail	
-t	-i,	but	if	sendmail	is	in	an	odd	place	or	if	you	need	to	specify	different	arguments,	feel	free	
to	do	so,	as	in	the	following	example:

sendmail_path	=	/opt/sendmail	-odd	-arguments

After	making	any	changes	to	php.ini	on	any	platform,	you	must	restart	the	Web	server	process	
for	the	changes	to	take	effect.

Open Source Technologies

158 LOVELY PROFESSIONAL UNIVERSITY

Notes 9.7.2 Creating the Script to Send the Mail

This	script	is	only	slightly	different	in	concept	than	the	script	in	Listing	5,	which	simply	printed	
form	responses	to	the	screen.	In	this	script,	in	addition	to	printing	the	responses	to	the	screen,	
you	send	them	to	an	email	address	as	well.

Listing 12 Sending the Simple Feedback Form

 1. <html>

 2. <head>

	 3.	 <title>Listing	12	Sending	mail	from	the	form	in	Listing	11</title>

	 4.	 </head>

	 5.	 <body>

	 6.	 <?php

	 7.	 print	“Thank	you,	$_POST[name],	for	your	message!

\n\n”;

	 8.	 print	“Your	e-mail	address	is:	$_POST[email]

\n\n”;

	 9.	 print	“Your	message	was:

\n\n”;

	 10.	 print	“$_POST[message]	

”;

	 11.	 //start	building	the	mail	string

	 12.	 $msg	=	“Name:	$_POST[name]\n”;

	 13.	 $msg	.=	“E-Mail:	$_POST[email]\n”;

	 14.	 $msg	.=	“Message:	$_POST[message]\n”;

	 15.	 //set	up	the	mail

	 16.	 $recipient	=	“you@yourdomain.com”;

	 17.	 $subject	=	“Form	Submission	Results”;

	 18.	 $mailheaders	=	“From:	My	Web	Site	<defaultaddress@yourdomain.com>	\n”;

	 19.	 $mailheaders	.=	“Reply-To:	$_POST[email]”;

	 20.	 //send	the	mail

	 21.	 mail($recipient,	$subject,	$msg,	$mailheaders);

	 22.	 ?>

	 23.	 </body>

	 24.	 </html>

The	variables	you	use	in	lines	7-9	are	$_POST[name],	$_POST[email],	and	$_POST[message]—the	
names	of	the	fields	in	the	form,	as	part	of	the	$_POST	superglobal.	That’s	all	well	and	good	for	
printing	the	information	to	the	screen,	but	in	this	script,	you	also	want	to	create	a	string	that’s	
sent	in	email.	For	this	task,	you	essentially	build	the	email	by	concatenating	strings	to	form	one	
long	message	string,	using	the	newline	(\n)	character	to	add	line	breaks	where	appropriate.

Unit 9: Working with Forms

 LOVELY PROFESSIONAL UNIVERSITY 159

NotesLines	12	through	14	create	the	$msg	string,	which	contains	the	values	typed	by	the	user	in	the	
form	fields.	This	string	is	the	one	sent	in	the	email.	Note	the	use	of	the	concatenation	operator	
(.=)	when	adding	to	the	variable	$msg,	in	lines	13	and	14.

Lines	16	and	17	are	hard-coded	variables	 for	 the	email	 recipient	and	the	subject	of	 the	email	
message.	Replace	you@yourdomain.com	with	your	own	email	address,	obviously.	If	you	want	
to	change	the	subject,	feel	free!	Lines	18	and	19	set	up	some	mail	headers,	namely	From:	and	
Reply-to:	headers.	You	could	put	any	value	 in	 the	From:	header;	 this	 is	 the	 information	 that	
displays	in	the	From	or	Sender	column	of	your	email	application	when	you	receive	this	mail.

The	 mail()	 function	 takes	 four	 parameters:	 the	 recipient,	 the	 subject,	 the	 message,	 and	 any	
additional mail headers.

The	order	of	these	parameters	is	shown	in	line	21,	and	your	script	is	complete	after	you	close	
up	your	PHP	block	and	your	HTML	elements	in	lines	22-24.

9.8 Working with File Uploads

So	 far,	we’ve	 looked	at	 simple	 form	 input.	However,	 all	 popular	Web	browsers	 support	file	
uploads,	and	so,	of	course,	does	PHP.	In	this	section,	you	examine	the	features	that	PHP	makes	
available	to	deal	with	this	kind	of	input.	Information	about	the	uploaded	file	becomes	available	
to	you	in	the	$_FILES	superglobal,	which	is	indexed	by	the	name	of	the	upload	field	(or	fields)	
in	the	form.	The	corresponding	value	for	each	of	these	keys	is	an	associative	array.	These	fields	
are	described	in	Table	9.1,	using	fileupload	as	the	name	of	the	form	field	used	for	the	upload.

Table 9.1: File Upload Global Variables

Element Contains Example

$_FILES[‘fileupload’]	[‘name’] Original	name	of	uploaded	file test.gif

$_FILES[‘fileupload’]	[‘tmp_name’] Path	to	temporary	file /tmp/phprDfZvN

$_FILES[‘fileupload’]	[‘size’] Size	(in	bytes)	of	uploaded	file 6835

$_FILES[‘fileupload’]	[‘type’]
MIME	 type	 of	 uploaded	 file	
(where	given	by	client)

image/gif

Keep	these	elements	in	the	back	of	your	mind	for	a	moment,	while	we	create	
the	upload	form	in	the	next	section.

9.9 Creating the File Upload Form

First,	we	must	create	the	HTML	form	to	handle	the	upload.	HTML	forms	that	include	file	upload	
fields	must	include	an	ENCTYPE	argument:

ENCTYPE=”multipart/form-data”

PHP	also	works	with	an	optional	hidden	field	that	can	be	inserted	before	the	file	upload	field.	
This	field	must	be	called	MAX_FILE_SIZE	and	should	have	a	value	representing	the	maximum		
size	in	bytes	of	the	file	that	you’re	willing	to	accept.	This	size	cannot	override	the	maximum	size	

Open Source Technologies

160 LOVELY PROFESSIONAL UNIVERSITY

Notes set	in	the	upload_max_filesize	field	in	your	php.ini	file	that	defaults	to	2MB.	The	MAX_FILE_SIZE	
field	 is	 obeyed	 at	 the	 browser’s	 discretion,	 so	 you	 should	 rely	 on	 the	 php.ini	 setting	 to	 cap	
unreasonable	uploads.	After	the	MAX_FILE_SIZE	field	has	been	entered,	you’re	ready	to	add	
the	upload	field	itself.	This	is	simply	an	INPUT	element	with	a	TYPE	argument	of	“file”.	You	
can	give	it	any	name	you	want.	Listing	13	brings	all	this	together	into	an	HTML	upload	form.

Listing 13 A Simple File Upload Form

<?php

$uploaddir = ‘/var/www/uploads/’;

$uploadfile = $uploaddir . basename($_FILES[‘userfile’][‘name’]);

echo “<p>”;

if (move_uploaded_file($_FILES[‘userfile’][‘tmp_name’], $uploadfile))

{

 echo “File is valid, and was successfully uploaded.\n”;

}

else

{

 echo “Upload failed”;

}

echo “</p>”;

echo ‘<pre>’;

echo ‘Here is some more debugging info:’;

print_r($_FILES);

print “</pre>”;

?>

1. Create email to send script.

2. Create the File Upload Form

9.10 Summary

	 •	 The	more	standard	HTML	you	can	leave	in	your	pages,	the	easier	they	are	for	designers	
and	page	builders	to	amend	without	reference	to	you.

	 •	 A	hidden	field	behaves	exactly	the	same	as	a	text	field,	except	that	the	user	cannot	see	it	
unless	he	views	the	HTML	source	of	the	document	that	contains	it.

	 •	 After	making	any	changes	to	php.ini	on	any	platform,	you	must	restart	 the	web	server	
process	for	the	changes	to	take	effect.

Unit 9: Working with Forms

 LOVELY PROFESSIONAL UNIVERSITY 161

Notes	 •	 PHP	also	works	with	an	optional	hidden	field	that	can	be	inserted	before	the	file	upload	
field.

	 •	 The	mail()	 function	 takes	 four	parameters:	The	 recipient,	 the	 subject,	 the	message,	 and	
any	additional	mail	headers.

9.11 Keywords

FORM Elements:	FORM	elements	The	FORM	element’s	ACTION	argument	points	to	a	file	called	
listing2.php,	which	processes	 the	 form	information.	The	method	of	 this	 form	is	POST,	so	 the	
variables	are	stored	in	the	$_POST	superglobal.

HTML and PHP Code on a Single Page: In	some	circumstances,	you	might	want	to	include	form	
parsing	code	on	the	same	page	as	a	hard-coded	HTML	form.	Such	a	combination	can	be	useful	
if	you	need	to	present	the	same	form	to	the	user	more	than	once.

Hidden Fields to Save State: A	hidden	field	behaves	 exactly	 the	 same	as	 a	 text	field,	 except	
that	the	user	cannot	see	it	unless	he	views	the	HTML	source	of	the	document	that	contains	it.

Sending Mail on Form Submission: This	is	the	form	that	the	submitter	fills	in;	submitting	this	
form	causes	form-submit	to	email	a	message	based	on	the	information	filled	in	here.	This	form	
asks	for	the	submitter’s	name,	email	address,	and	some	comments.

System Configuration for the mail() Function:	The	mail()	 function	allows	you	to	send	emails	
directly	from	a	script.

Working with File Uploads: Information	about	the	uploaded	file	becomes	available	to	you	in	
the	$_FILES	superglobal,	which	is	indexed	by	the	name	of	the	upload	field	(or	fields)	in	the	form.

File Upload Form: This	 field	 must	 be	 called	 MAX_FILE_SIZE	 and	 should	 have	 a	 value	
representing	the	maximum	size	in	bytes	of	the	file	that	you’re	willing	to	accept.

9.12 Self Assessment Questions

 State True or False:

	 1.	 The	Form	elements	action	argument	points	to	a	file	called	listing	2.php.

	 (a)	 True	 (b)	 False

	 2.	 Form-passing	code	can	be	useful	if	you	need	to	present	the	same	form	to	the	user	more	
than once.

	 (a)	 False	 (b)	 True

	 3.	 Functions	can	be	called	from	within	your	HTML	code	and	can	be	reused	in	other	projects.

	 (a)	 True	 (b)	 False

	 4.	 Making	no	changes	to	php.ini	on	any	platform,	you	must	restart	the	web	server	process.

	 (a)	 True	 (b)	 False

 Fill in the blanks:

	 1.	 Impart	from	the	“products[]	from	elements	created	on	line	14	is	available	in	an	array	called	
_________________.

Open Source Technologies

162 LOVELY PROFESSIONAL UNIVERSITY

Notes 	 2.	 HTML	is	hard-coded	makes	it	difficult	to	avoid	_________________.

	 3.	 By	 sending	 a	 _________________	 header	 instead	 of	 PHP’s	 default,	 you	 can	 cause	 the	
browser to be redirected to a new page.

	 4.	 If	 the	Webserver	 is	 running	 on	 a	 _________________	 platform,	 you	 use	 the	 sendmail	
functionality	of	that	particular	machine.

9.13 Review Questions

	 1.	 Define	single	input	form.	Give	steps	how	to	create	it.

	 2.	 Give	steps	to	create	form.

	 3.	 What	are	user	defined	arrays?

	 4.	 What	are	HTML	and	PHP	code?	How	do	we	combine	on	single	phase?

	 5.	 How	do	we	use	hidden	files	to	save	state?

	 6.	 What	is	redirection	of	user?

	 7.	 What	is	Sending	Mail	on	Form	Submission?

	 8.	 Give	proper	system	configuration	for	mail	function().

	 9.	 How	to	create	script	to	send	mail?

	 10.	 What	are	file	uploads?	Give	its	working	also.

	 11.	 Explain	how	to	create	file	upload	form.	

Answers for Self Assessment Questions

True or False:

	 1.	 (a)	 	 	 2.	 (b)

	 3.	 (a)	 	 	 4.	 (b)

Fill in the blanks:

	 1.	 $_Post	[product]	 2.	 Writing	the	entire	page

	 3.	 Location	 	 	 4.	 Linus/Unix

9.14 Further Reading

Open source development with LAMP,	By	Meloni,	Pearson	education.

http://www.htmlcenter.com/blog/teach-yourself-php-in-24-hours/

Unit 10: Cookies

 LOVELY PROFESSIONAL UNIVERSITY 163

NotesUnit 10: Cookies

CONTENTS

Objectives

Introduction

10.1 Cookies

10.2 Setting Cookies

10.3 Deleting Cookies with PHP

10.4 Session Function Overview

 10.4.1 Starting Session

 10.4.2 Working with Session Variables

10.5 Destroying Session and Unsetting Variables

10.6 Summary

10.7 Keywords

10.8 Self Assessment Questions

10.9 Review Questions

10.10 Further Reading

Objectives

After studying this unit, you will be able to:

	 •	 Explain cookies.

	 •	 Discuss	setting	cookies.

	 •	 Discuss	cookies	with	PHP.

	 •	 Understand	session	function	overview.

	 •	 Explain	destroying	session	and	unsetting	variables.

Introduction

A cookie is an information that a Web site puts on your hard disk so that it can remember
something about you at a later time. (More technically, it is an information for future use that
is stored by the server on the client side of a client/server communication.) Typically, a cookie
records your preferences when using a particular site. Using the Web’s Hypertext Transfer
Protocol (HTTP), each request for a Web page is independent of all other requests. For this
reason, the Web page server has no memory of what pages it has sent to a user previously or

Sarabjit Kumar, Lovely Professional University

Open Source Technologies

164 LOVELY PROFESSIONAL UNIVERSITY

Notes anything about your previous visits. A cookie is a mechanism that allows the server to store its
own information about a user on the user’s own computer. You can view the cookies that have
been stored on your hard disk (although the content stored in each cookie may not make much
sense	to	you).	The	location	of	the	cookies	depends	on	the	browser.	Internet	Explorer	stores	each	
cookie	as	a	separate	file	under	a	Windows	subdirectory.	Netscape	stores	all	cookies	in	a	single	
cookies.txt.	Opera	stores	them	in	a	single	cookies.dat	file.	

10.1 Cookies

Cookies are commonly used to rotate the banner ads that a site sends so that it doesn’t keep
sending the same ad as it sends you a succession of requested pages. They can also be used
to customize pages for you based on your browser type or other information you may have
provided the Web site. Web users must agree to let cookies be saved for them, but, in general, it
helps Web sites to serve users better. A server can set as many as 20 cookies, and each of these
cookies can be up to 4 KB in size.

The simple registration we used earlier in this chapter does not make data persistent across
requests. If you go to the next page (such as by clicking a link or by entering a different URL in
your browser’s address bar), the posted data is gone. One simple way to maintain data between
the different pages in a web application is with cookies. Cookies are sent by PHP through the
web servermn with the setcookie() function and are stored in the browser. If a time-out is set for
the cookie, the browser will even remember the cookie when you reset your computer; without
the time-out set, the browser forgets the cookie as soon as the browser closes. You can also set
a	cookie	 to	be	valid	only	 for	a	specific	subdomain,	rather	 than	having	the	cookie	sent	by	 the	
browser to the script whenever the domain of the script is the same as the domain where the
cookie was set (the default). In the next example, we set a cookie when a user has successfully
logged in with the login form

<?php

ob_start();

?>

<html>

<head><title>Login</title></head>

<body>

<?php

if (isset ($_POST[‘login’]) && ($_POST[‘login’] == ‘Log in’) &&

($uid = check_auth($_POST[‘email’], $_POST[‘password’])))

{

/* User successfully logged in, setting cookie */

setcookie(‘uid’, $uid, time() + 14400, ‘/’);

header(‘Location: http://kossu/crap/0x-examples/index.php’);

exit();

Unit 10: Cookies

 LOVELY PROFESSIONAL UNIVERSITY 165

Notes} else {

?>

<h1>Log-in</h1>

<form method=”post” action=”login.php”>

<table>

<tr><td>E-mail address:</td>

<td><input type=’text’ name=’email’/></td></tr>

<tr><td>Password:</td>

<td><input type=’password’ name=’password’/></td></tr>

<tr><td colspan=’2’>

<input type=’submit’ name=’login’ value=’Log in’/></td>

</tr>

</table>

</form>

<?php

}

?>

</body>

The check_auth() function checks whether the username and password match with the stored
data and returns either the user id that belongs to the\ user or 0 when an error occurred. The
setcookie(‘uid’, $uid, time() 14400, ‘/’); line tells the web server to add a cookie header to send
to the browser. uid is the name of cookie to be set and $uid has the value of the uid cookie.
The expression time() + 14400 sets the expiry time of the cookie to the current time plus 14,400
seconds, which is 4 hours. The time on the server must be correct because the time() function is
the	base	for	calculating	the	expiry	time.	Notice	that	the	ob_start()	function	is	the	first	line	of	the	
script. ob_start() turns on output buffering, which is needed to send cookies (or other headers)
after you output data. Without this call to ob_start(), the output to the browser would have
started at the <html> line of the script, making it impossible to send any headers, and resulting
in the following error when trying to add another header (with setcookie() or header()): Instead
of using output buffering (which is memory-intensive), you can, of course, change your script
so that data is not output until after you set any headers. Cookies are sent by the script/web
server to the browser. The browser is then responsible for sending the cookie, via HTTP request
headers, to all successive pages that belong to your web application. With the third and fourth
parameters of the setcookie() function, you can control which sections of your web site receive
the	specific	cookie	headers.	The	third	parameter	is	/,	which	means	that	all	pages	in	the	domain	
(the root and all subdirectories) should receive the cookie data. The fourth parameter controls
which domains receive the cookie header. For instance, if you use .example.com, the cookie is

Open Source Technologies

166 LOVELY PROFESSIONAL UNIVERSITY

Notes available to all subdomains of example.com. Or, you could use admin.example.com, restricting
the cookies to the admin part of your application. In this case, we did not specify a domain,
so all pages in the web application receive the cookie. After the line with the setcookie() call, a
line issues a redirect header to the browser. This header requires the full path to the destination
page. After the header line, we terminate the script with exit() so that no headers can be set
from later parts of the code. The browser redirects to the given URL by requesting the new page
and discarding the content of the current one. On any web page requested after the script that
called	set_cookie(),	 the	cookie	data	 is	available	 in	your	script	 in	a	manner	similar	to	the	GET	
and	POST	data.	The	superglobal	to	read	cookies	is	$_COOKIE.	The	following	index.php	script	
shows	the	use	of	cookies	to	authenticate	a	user.	The	first	 line	of	the	page	checks	whether	the	
cookie with the user id is set. If it’s set, we display our index.php page, echoing the user id set
in the cookie. If it’s not set, we redirect to the login page:

<?php

if (isset ($_COOKIE[‘uid’]) && $_COOKIE[‘uid’]) {

?>

<html>

<head><title>Index page</title></head>

<body>

Logged in with UID: <?php echo $_COOKIE[‘uid’]; ?>

Log out.

</body>

</html>

<?php

} else {

/* If no UID is in the cookie, we redirect to the login

→page */

header(‘Location: http://kossu/examples/login.php’);

}

?>

Using this user id for important items, such as remembering authentication data (as we do in
this script), is not wise, because it’s easy to fake cookies. (For most browsers, it is enough to
edit	a	simple	text	field.)	A	better	solution—

using	PHP	sessions—follows	in	a	bit.

Deleting a cookie is almost the same as setting one. To delete it, you use the same parameters
that you used when you set the cookie, except for the value, which needs to be an empty string,
and the expiry date, which needs to be set in the past. On our logout page, we delete the cookie
this way:

<?php

setcookie(‘uid’, ‘’, time() - 86400, ‘/’);

Unit 10: Cookies

 LOVELY PROFESSIONAL UNIVERSITY 167

Notesheader(‘Location: http://kossu/examples/login.php’);

?>

The	time()	-	86400	is	exactly	one	day	ago,	which	is	sufficiently	in	the	past	for	our	browser	to	
forget the cookie data. As previously mentioned, putting authentication data into cookies (as
we did in the previous examples) is not secure because cookies are so easily faked. PHP has, of
course, a better solution: sessions.

10.2 Setting Cookies

To create and modify a cookie, use the PHP functionsetcookie(). setcookie() takes up to six
arguments, depending upon how much control you want over the cookie and who can read
its value.

The simplest way of setting a cookie is:

setcookie(‘name’, ‘bret’);

Then, for every further page on your site viewed by this browser (without the user quitting)
you’ll have the value of ‘bret’ stored in the variable $name for easy access in PHP. This type of
cookie is known as a session cookie, since it lasts for the length of a user’s session.

If you want the cookie to persist after the person exits his or her browser, you must passsetcookie()
through a third parameter, the date you want the cookie to expire. Since PHP’s background
springs	fully	formed	from	the	head	of	UNIX,	you	represent	this	time	as	the	number	of	seconds	
since	January	1,	1970.	If	you’re	a	UNIX	programmer,	this	makes	complete	sense.	But,	if	you’re	
from a Windows or a Macintosh background, you’re just shaking your head wondering if you’ll
ever	understand	those	wacky	UNIX	folk.

The main difference between a cookie and a session is that a cookie is stored on your computer,
and a session is not. Although cookies have been around for many years and most people do
have them enabled, there are some who do not. Cookies can also be removed by the user at any
time, so don’t use them to store anything too important.

A cookie is set with the following code: setcookie(name, value, expiration)

10.3 Deleting Cookies with PHP

PHP, or Hypertext Preprocessor, is an open-source scripting language primarily used for web
programming.	PHP	code	can	be	embedded	into	normal	HTML	code.	A	cookie	is	a	web	file	that	
is used by a server to identify a user of that server. PHP is able to create cookies, retrieve cookie
values and delete cookies.

Deleting a cookie is almost the same as setting one. To delete it, you use the same parameters
that you used when you set the cookie, except for the value, which needs to be an empty string,
and the expiry date, which needs to be set in the past. On our logout page, we delete the cookie
this way:

<?php

 setcookie(‘uid’, ‘’, time() - 86400, ‘/’);

 header(‘Location: http://kossu/examples/login.php’);

?>

Open Source Technologies

168 LOVELY PROFESSIONAL UNIVERSITY

Notes The	time()	-	86400	is	exactly	one	day	ago,	which	is	sufficiently	in	the	past	for	our	browser	to	
forget the cookie data.

Figure 10.1 shows the way our scripts can be tied together. As mentioned, putting authentication
data into cookies (as we did in the previous examples) is not secure because cookies are so
easily faked.

PHP has, of course, a better solution: sessions.

Figure 10.1: Scripts Tied Together.

10.4 Session Function Overview

Session	 functions	provide	a	unique	 identifier	 to	a	user,	which	can	 then	be	used	 to	 store	and	
acquire information linked to that ID. When a visitor accesses a session-enabled page, she is either
allocated	a	new	identifier	or	re-associated	with	one	that	was	already	established	in	a	previous	
access. Any variables that have been associated with the session will become available to your
code	through	the	$_SESSION	superglobal.

When	you	use	sessions,	cookies	are	used	by	default	to	store	the	session	identifier,	but	you	can	
ensure success for all clients by encoding the session ID into all links in your session-enabled
pages.

Session	state	is	usually	stored	in	a	temporary	file,	although	you	can	implement	database	storage	
using a function called session_set_save_handler().

10.4.1 Starting Session

To work with a session, you need to explicitly start or resume that session unless you have
changed	your	php.ini	configuration	file.	By	default,	sessions	do	not	start	automatically.	If	you	
want	to	start	a	session	this	way,	you	will	have	to	find	the	following	line	in	your	php.ini	file	and	
change the value from 0 to 1 (and restart the Web server):

session.auto_start = 0

Unit 10: Cookies

 LOVELY PROFESSIONAL UNIVERSITY 169

NotesBy changing the value of session.auto_start to 1, you ensure that a session is initiated for
every PHP document. If you don’t change this setting, you need to call the session_start()
function in each script.

After a session is started, you instantly have access to the user’s session ID via the session_id()
function. session_id() allows you to either set or get a session ID. Listing 10.1 starts a session
and prints the session ID to the browser.

 Example: 1. Starting or Resuming a Session

 1: <?php

 2: session_start();

 3: ?>

 4: <html>

 5: <head>

 6: <title>Listing 10.1 Starting or resuming a session</title>

 7: </head>

 8: <body>

 9: <?php

 10: echo “<p>Your session ID is “.session_id().”</p>”;

 11: ?>

 12: </body>

 13: </html>

When	 this	 script	 is	 run	 for	 the	 first	 time	 from	 a	 browser,	 a	 session	 ID	 is	 generated	 by	 the	
session_start() function call on line 2. If the page is later reloaded or revisited, the same
session ID is allocated to the user. This action assumes that the user has cookies enabled. For
example,	when	I	run	this	script	the	first	time,	the	output	is

Your session ID is fa963e3e49186764b0218e82d050de7b

When I reload the page, the output is still

Your session ID is fa963e3e49186764b0218e82d050de7b

because I have cookies enabled and the session ID still exists.

Because start_session()	attempts	to	set	a	cookie	when	initiating	a	session	for	the	first	time,	
it is imperative that you call this function before you output anything else at all to the browser.
If you do not follow this rule, your session will not be set, and you will likely see warnings on
your page.

Sessions remain current as long as the Web browser is active. When the user restarts the
browser, the cookie is no longer stored. You can change this behavior by altering the session.
cookie_lifetime setting in your php.ini file. The default value is 0, but you can set an
expiry period in seconds.

Accessing	a	unique	session	identifier	in	each	of	your	PHP	documents	is	only	the	start	of	session	
functionality. When a session is started, you can store any number of variables in the $_SESSION
superglobal and then access them on any session-enabled page.

Open Source Technologies

170 LOVELY PROFESSIONAL UNIVERSITY

Notes 10.4.2 Working with Session Variables

If you are using a pre-4.1.x version of PHP, the $_SESSION superglobal is not present, and
session functionality is much different.

 Example: 2: Add two variables into the $_SESSION superglobal: product1 and
product2 (lines 10 and 11).

 Storing Variables in a Session

 1: <?php

 2: session_start();

 3: ?>

 4: <html>

 5: <head>

 6: <title>Listing 10.2 Storing variables in a session</ title>

 7: </head>

 8: <body>

 9: <?php

 10: $_SESSION[product1] = “Sonic Screwdriver”;

 11: $_SESSION[product2] = “HAL 2000”;

 12: echo “The products have been registered.”;

 13: ?>

 14: </body>

 15: </html>

Creates a separate PHP script that accesses the variables stored in the $_SESSION superglobal
in example2.

 Example: 3: Accessing Stored Session Variables

 1: <?php

 2: session_start();

 3: ?>

 4: <html>

 5: <head>

 6: <title>Listing 10.3 Accessing stored session

 variables</title>

 7: </head>

 8: <body>

 9: <?php

 10: echo “Your chosen products are:”;

 11: echo “$_SESSION[product1] $_SESSION

[product2]\n\n”;

Unit 10: Cookies

 LOVELY PROFESSIONAL UNIVERSITY 171

Notes 12: ?>

 13: </body>

 14: </html>

Figure 10.2 shows the output from example:3. As you can see, we have access to the
$_SESSION[product1] and $_SESSION[product2] variables in an entirely new page.

Figure 10.2: Accessing Stored Session Variables

Although not a terribly interesting or useful example, the script does show how to access stored
session	variables.	Behind	the	scenes,	PHP	writes	information	to	a	temporary	file.	You	can	find	
out	where	this	file	is	being	written	on	your	system	by	using	the	session_save_path()	function.	
This	 function	optionally	accepts	a	path	to	a	directory	and	then	writes	all	session	files	 to	 it.	 If	
you pass it no arguments, it returns a string representing the current directory to which session
files	are	saved.	On	my	system,

echo session_save_path();

prints	 /tmp.	 A	 glance	 at	my	 /tmp	 directory	 reveals	 a	 number	 of	 files	with	 names	 like	 the	
following:

sess_fa963e3e49186764b0218e82d050de7b

sess_76cae8ac1231b11afa2c69935c11dd95

sess_bb50771a769c605ab77424d59c784ea0

Opening	the	file	that	matches	the	session	ID	I	was	allocated	when	I	first	ran	example1, I can see
how the registered variables have been stored:

product1|s:17:”Sonic Screwdriver”;product2|s:8:”HAL 2000”;

When a value is placed in the $_SESSION superglobal, PHP writes the variable name and value
to	a	file.	This	information	can	be	read	and	the	variables	resurrected	later—as	you	have	already	

Open Source Technologies

172 LOVELY PROFESSIONAL UNIVERSITY

Notes seen. After you add a variable to the $_SESSION superglobal, you can still change its value
at	any	time	during	the	execution	of	your	script,	but	the	altered	value	won’t	be	reflected	in	the	
global setting until you reassign the variable to the $_SESSION superglobal.

In example 2: demonstrates the process of adding variables to the $_SESSION superglobal. This
example	is	not	very	flexible,	however.	Ideally,	you	should	be	able	to	register	a	varying	number	
of values. You might want to let users pick products from a list, for example. In this case, you
can use the serialize() function to store an array in your session.

 Example: 4: Creates a form that allows a user to choose multiple products. You should
then be able to use session variables to create a rudimentary shopping cart.
Adding an Array Variable to a Session Variable

 1: <?php

 2: session_start();

 3: ?>

 4: <html>

 5: <head>

 6: <title>Listing 10.4 Storing an array with a session</title>

 7: </head>

 8: <body>

 9: <h1>Product Choice Page</h1>

 10: <?php

 11: if (isset($_POST[form_products])) {

 12: if (!empty($_SESSION[products])) {

 13: $products = array_unique(

 14: array_merge(unserialize($_SESSION[products]),

 15: $_POST[form_products]));

 16: $_SESSION[products] = serialize($products);

 17: } else {

 18: $_SESSION[products] = serialize($_POST[form_products]);

 19: }

 20: echo “<p>Your products have been registered!</p>”;

 21: }

 22: ?>

 23: <form method=”POST” action=”<?php $_SERVER[PHP_SELF] ?>”>

 24: <P>Select some products:

 25: <select name=”form_products[]” multiple size=3>

 26: <option value=”Sonic Screwdriver”>Sonic Screwdriver</option>

Unit 10: Cookies

 LOVELY PROFESSIONAL UNIVERSITY 173

Notes 27: <option value=”Hal 2000”>Hal 2000</option>

 28: <option value=”Tardis”>Tardis</option>

 29: <option value=”ORAC”>ORAC</option>

 30: <option value=”Transporter bracelet”>Transporter

 bracelet</option>

 31: </select>

 32:

 33: <P><input type=”submit” value=”choose”></p>

 34: </form>

 35:

 36: <p>go to content page</p>

 37: </body>

 38: </html>

We start or resume a session by calling session_start() on line 2. This should give us
access to any previously set session variables. We begin an HTML form on line 23 and, on line
25, create a SELECT element named form_products[],	which	contains	OPTION	elements	
for a number of products. Remember that HTML form elements that allow multiple selections
should	have	square	brackets	appended	to	the	value	of	their	NAME	arguments.	This	makes	the	
user’s choices available in an array.

Within the block of PHP code beginning on line 10, we test for the presence of the $_
POST[form_products] array (line 11). If the variable is present, we can assume that the form
has been submitted and information has already been stored in the $_SESSION superglobal.
We then test for an array called $_SESSION[products] on line 12. If the array exists, it was
populated on a previous visit to this script, so we merge it with the $_POST[form_products]
array, extract the unique elements, and assign the result back to the $products array (lines
13–15). We then add the $products array to the $_SESSION superglobal on line 16.

Line 36 contains a link to another script, which we will use to demonstrate our access to the
products the user has chosen. We create this new script in example.

 Example: 5: Accessing Session Variables

 1: <?php

 2: session_start();

 3: ?>

 4: <html>

 5: <head>

 6: <title>Listing 10.5 Accessing session variables</title>

 7: </head>

 8: <body>

 9: <h1> Content Page</h1>

Open Source Technologies

174 LOVELY PROFESSIONAL UNIVERSITY

Notes 10: <?php

 11: if (isset($_SESSION[products])) {

 12: echo “Your cart:”;

 13: foreach (unserialize($_SESSION[products]) as $p) {

 14: echo “$p”;

 15: }

 16: echo “”;

 17: }

 18: ?>

 19: <p>return to product

choice page</p>

 20: </body>

 21: </html>

Once again, we use session_start() to resume the session on line 2. We test for the presence
of the $_SESSION[products] variable on line 11. If it exists, we unserialize it and loop through
it on lines 13–15, printing each of the user’s chosen items to the browser. An example is shown
in Figure 10.3.

Figure 10.3: Accessing an Array of Session Variables

For a real shopping cart program, of course, you would keep product details in a database
and test user input, rather than blindly store and present it, but example 4 and 5 demonstrate
the ease with which you can use session functions to access array variables set in other pages.

Unit 10: Cookies

 LOVELY PROFESSIONAL UNIVERSITY 175

Notes10.5 Destroying Session and Unsetting Variables

You can use session_destroy() to end a session, erasing all session variables. The session_
destroy() function requires no arguments. You should have an established session for this
function to work as expected. The following code fragment resumes a session and abruptly destroys it:

session_start();

session_destroy();

When you move on to other pages that work with a session, the session you have destroyed
will not be available to them, forcing them to initiate new sessions of their own. Any registered
variables will be lost.

The session_destroy() function does not instantly destroy registered variables, however.
They remain accessible to the script in which session_destroy() is called (until it is reloaded).
The following code fragment resumes or initiates a session and registers a variable called test,
which we set to 5. Destroying the session does not destroy the registered variable.

session_start();

$_SESSION[test] = 5;

session_destroy();

print $_SESSION[test]; // prints 5

To remove all registered variables from a session, you simply unset the variable:

session_start();

$_SESSION[test] = 5;

session_destroy();

unset($_SESSION[test]);

print $_SESSION[test]; // prints nothing.

Headers are pieces of information sent to the browser before the main page is
evaluated. When a cookie is sent, it must be accompanied by a compact privacy
policy so the user’s browser can look at both, see if they marry up, and decide

what to do. Get this bit right, and all but the toughest setting on your user’s browser won’t
have a problem with your cookies.

Now,	we	don’t	need	to	go	through	the	details	of	this,	because	the	good	folks	at	the	Privacy	
Council offer an automated service that creates compact policies. They’ll even email the result
to you. Just register with them, select from a series of multiple choice questions about what
your site does and doesn’t do, and you’re in business again.

Contd...

Open Source Technologies

176 LOVELY PROFESSIONAL UNIVERSITY

Notes Now,	you	need	to	know	how	to	implement	the	compact	policy	into	your	pages.	Again,	I’ll	
illustrate this point with the code I used for my own site.

In pure HTML pages, insert this code into the head section of your page:

<meta	http-equiv=”P3P”	content=’CP=”IDC	DSP	COR	CURa	ADMa	OUR	IND	PHY	ONL	
COM STA”’>

In	PHP	pages,	insert	this	as	the	first	thing	on	the	page	after	the	setting	of	the	cookie:

<?php	header(‘P3P:	CP=”IDC	DSP	COR	CURa	ADMa	OUR	IND	PHY	ONL	COM	STA”’);	?>

For other server-side languages, see the link below titled “Header Creation”.

Of course, don’t just use the code above as-is. You need to go to the URL given below
at the Privacy Council, and generate your own. Don’t worry, it’s straightforward and
non-technical.

It’s important to understand that only pages that place cookies need to have a CP. Form
pages don’t set cookies, so they don’t need a policy. Remember that if you use a piece of
JavaScript code to set a cookie for popup control, the page that calls the popup and does the
cookie- setting will require a compact policy.

Some sites may need more than one policy. Why? Well, a policy describes what information
is	 collected	 (and	why)	 in	 a	 specific	URL	 location.	 That	 can	 be	 the	whole	 site,	 or	 specific	
folders on your site. While most of us will probably generate one policy for the whole site,
it is possible to point to a different policy location in each header, on each page. You would
do this if, for example, one section of your site allowed users to subscribe to your newsletter
by	providing	their	email	addresses	and	first	names,	while	the	other	offers	a	members’	area	
that uses cookies to customize the browser’s view. Perhaps you also provide a shopping cart
that stores user status and personal information for use in processing the order.

If	you	need	to	point	to	another	policy	that	has	been	generated	to	describe	a	specific	use	of	
cookies like this, you’ll want to put one of the following headers on the page(s) that pass
cookies to the visiting browser:

Firstly, using PHP:

<?php Header(‘P3P: href=”/your_2nd_policy/p3p.xml” CP=”your compact policy”’); ?>

Now,	using	HTML:

<meta http-equiv=”P3P” href=”/your_2nd_policy/p3p.xml” content=’CP=”your compact
policy”’>

10.6 Summary

 •	 Cookies	can	be	used	for	authentication,	storing	site	preferences,	shopping	cart	contents,	
the	identifier	for	a	server-based	session,	or	anything	else	that	can	be	accomplished	through	
storing text data.

	 •	 Cookies	can	also	be	removed	by	the	user	at	any	time,	so	do	not	use	them	to	stored	anything	
too important.

Unit 10: Cookies

 LOVELY PROFESSIONAL UNIVERSITY 177

Notes	 •	 Session	state	is	usually	stored	in	a	temporary	file,	although	you	can	implement	database	
storage using a function called session set save handler ().

	 •	 Destroying	the	session does not destroy the registered variable.

10.7 Keywords

Changing the Session Function Streams: The	following	figure	summarizes	the	session	functions	
and their attributes. You cannot specify an input stream for the message (MSG) function.

Cookies: These are commonly used to rotate the banner ads that a site sends so that it doesn’t
keep sending the same ad as it sends you a succession of requested pages.

Deleting Cookies with PHP: PHP, or Hypertext Preprocessor, is an open-source scripting
language primarily used for web programming. Deleting a cookie is almost the same as setting
one. To delete it, you use the same parameters that you used when you set the cookie, except
for the value, which needs to be an empty string, and the expiry date, which needs to be set in
the past. On our logout page, we delete the cookie its different way.

Destroying Session and Unsetting Variables: Although a session’s data is temporary and does
not require that you explicitly clean after yourself, you may wish to delete some data for your
various tasks.

Intensity (INT): It is refers to the brightness at which the information is displayed in a stream.

Session Function Overview: Session functions implement a concept that you have already seen;
that	is,	the	provision	to	users	of	a	unique	identifier,	which	can	then	be	used	from	access	to	access	
to acquire information linked to that ID.

SESSIONS: Session Manager also has an input and output stream.

Starting Session: A	session	 is	 a	 combination	of	 a	 server-side	file	 containing	 all	 the	data	you	
wish	to	store,	and	a	client-side	cookie	containing	a	reference	to	the	server	data.	The	file	and	the	
client- side cookie are created using the function session_start() - it has no parameters, but informs
the server that sessions are going to be used.

Working with Session Variables: Session variables are similar to cookies, that is they are used
to store information for a particular period of time. The values in session variables exist only
till the session exists.

1.	 	Write	a	program.	If	a	variable	that	is	PASSED	BY	REFERENCE	is	unset()
inside of a function, only the local variable is destroyed. The variable in the
calling environment will retain the same value as before unset() was called.

2. Write a program. If a globalized variable is unset() inside of a function,
only the local variable is destroyed.

3.	 Draw	figure	that	shows	the	way	our	scripts	can	be	tied	together.

10.8 Self Assessment Questions

 1. A cookie is a _______________ that allows the server to store its own information about
an user on the user’s own computer.

Open Source Technologies

178 LOVELY PROFESSIONAL UNIVERSITY

Notes 2. Cookies are commonly used to rotate the _______________ ads.

 3. The check_auth() function checks whether the username and password match with the
stored data and returns either the user id that belongs to the\ user or 0 when an error
occurred.

 (a) True (b) False

 4. The simplest way of setting a cookie is: setcookie(‘name’, ‘bret’);

 (a) True (b) False

 5. A cookie is a _______________ that is used by a server to identify a user of that server.

 (a)	 web	file	 (b)	 .datfile

 (c)	 PHP	file	 (d)	 .exe	file

	 6.	 _______________	are	used	by	default	to	store	the	session	identifier.

 (a) PHP (b) session function()

 (c) cookies (d)	 identifier	function

	 7.	 TSOIN	is	the	input	stream	for	the	TSO/E	function.

 (a) True (b) False

 8. _______________ allows an application to store information for the current “session,”
which	can	be	defined	as	one	user	being	logged	in	to	your	application.

 (a) string function() (b) .exe function()

 (c) cookies (d) PHP session

10.9 Review Questions

 1.	 Define	cookies.	

 2. How we set cookies explain with the help of program?

 3. Give program of deleting cookies with PHP.

 4. What are the session functions? Give their types also.

 5. What is session manager function()?

	 6.	 Define	starting	session.

	 7.	 How	we	destroy	session	and	unsetting	variable?	Briefly	explain	with	the	help	of	program.

 8. What is check_auth() function?

 9. What is setting of cookies in PHP?

	 10.	 Explain	deleting	of	cookies	with	PHP.

Unit 10: Cookies

 LOVELY PROFESSIONAL UNIVERSITY 179

NotesAnswers for Self Assessment Questions
 1. mechanism 2. banner

 3. (a) 4. (a)

 5. (a) 6. (c)

 7. (a) 8. (d)

10.10 Further Reading

PHP: A Beginner’s Guide by: Vaswani, Vikram, By Tata Mc-Graw Hill.

http://www.w3schools.com/PHP/php_cookies.asp/

Open Source Technologies

180 LOVELY PROFESSIONAL UNIVERSITY

Notes Unit 11: Directories and Files

CONTENTS

Objectives

Introduction

11.1 Including Files with PHP Include() Function

11.2 Validating Files

	 11.2.1	 Checking	for	Existence	with	file_exists	()

 11.2.2 A File or a Directory?

 11.2.3 Checking the Status of a File

 11.2.4 Determining File Size with filesize()

 11.2.5 Getting Date Information About a File

11.3 Creating File

11.4 Delete File

11.5 Opening a File for Reading

11.6 Writing Files

 11.6.1 File Open Write

 11.6.2 File Write Fwrite Function

 11.6.3 File Write: Overwriting

11.7 Appending Files

 11.7.1 File Read

 11.7.2 File Open: Read

 11.7.3 File Read Fread Function

 11.7.4 File Read: Gets Function

 11.7.5 When and How to Include Files

11.8 Summary

11.9 Keywords

11.10 Self Assessment Questions

11.11 Review Questions

11.12 Further Reading

Objectives

After studying this unit, you will be able to:

	 •	 Discuss	including	files	in	include	function.

	 •	 Explain	the	validating	files.

Mandeep Kaur, Lovely Professional University

Unit 11: Directories and Files

 LOVELY PROFESSIONAL UNIVERSITY 181

Notes	 •	 Understand	the	creating	file.

	 •	 Discuss	the	deleting	file.

	 •	 Explain	the	opening	a	file	for	reading.

	 •	 Discuss	the	writing	files.

	 •	 Understand	the	appending	files.	

Introduction

The	presentation	of	the	file	lessons	will	begin	with	how	to	create,	open,	and	close	a	file.	After	
establishing	 those	basics,	we	will	 then	cover	other	 important	file	 tasks,	such	as:	create,	open,	
read,	write	and	append,	files	with	PHP.

Linux	stores	data	and	programs	 in	files.	These	are	organized	 in	directories.	 In	a	simple	way,	
a	directory	is	just	a	file	that	contains	other	files	(or	directories).

The part of the hard disk where you are authorized to save data is called your home directory.
Normally	all	the	data	you	want	will	be	saved	in	files	and	directories	in	your	home	directory.	
To	find	your	home	directory	(if	you	need),	type:

echo $HOME

The symbol ~ can also be used for your home directory.

There is a general directory called/tmp	where	every	user	can	write	files.	But	files	in/tmp	usually	
get	removed	(erased)	when	the	system	boots	or	periodically,	so	you	should	not	store	in/tmp	
data that you want to keep permanently.

A	file	can	be	fully	and	uniquely	identified	by	its	full	name,	including	all	directories	to	which	it	
belongs.	The	system	starts	at	the	root	directory,	with	name/it	“splits”	into	(sub)	directories,	and	
these	split	further,	and	so	on,	until	you	get	to	a	file.	For	example,	a	home	directory	could	be/
usr15/pablo,	on	which	there	is	a	directory	called	programming,	with	a	directory	inside	called	
include,	on	which	there	is	a	file	called	time.h,	the	full	path	of	this	last	file	will	be/usr15/pablo/
programming/include/time.h

11.1 Including Files with PHP Include() Function

The	include()	function	enables	you	to	incorporate	file	into	another	php	file	and	the	included	file	
will	run	as	it’s	part	of	that	file.	For	example,	if	you	want	display	standard	or	same	information	
more	than	one	page.	It	might	be	useful	to	create	separate	file	and	incorporate	with	any	other	
file.	It	makes	easier	to	maintain	the	information	by	changing	one	file	instead	of	going	through	
all	the	files.	

Here is how you would use php include function.

<?php include(“topMenu.php”) ?>

or	you	can	include	it	this	way	if	the	file	is	located	in	different	directory

<?php include(“/root/topMenu.php”); ?>

Following code is an example of simple php code utilizing include() function

<html>

Open Source Technologies

182 LOVELY PROFESSIONAL UNIVERSITY

Notes <body>

<?php

if($_SESSION)

{

 $login=$_SESSION[‘login’] ;

}

else

{

 $login=””;

}

if($login !=””)

{

 include(“member.php”);

}

else

{

 include(“notmember.php”);

}

?>

</body>

</html>

Linux	stores	data	and	programs	in	files.	These	are	organized	in	directories.

11.2 Validating Files

Before	you	work	with	a	file	or	directory	within	your	code,	it’s	often	a	good	idea	to	learn	more	
about	it,	and	whether	it	actually	exists	is	a	pretty	good	start	PHE	provides	many	functions	to	
help	you	to	discover	information	about	files	on	your	system.	This	section	briefly	covers	some	
of the useful functions.

11.2.1 Checking for Existence with file_exists ()

You	can	test	for	the	existence	of	a	file	with	the	file_exists()	function.	This	function	requires	a	string	
representation	of	an	absolute	or	relative	path	to	a	file,	which	might	or	might	not	be	present.	If	
the	file	if	found,	the	file_exists()	function	return	true;	otherwise,	it	returns	false.

if (file_exists (*test.text*)) {

 echo “The file exists”;

 }

This	is	all	well	and	good,	but	what	if	you’re	unsure	whether	something	is	a	file	or	a	directory,	
and you really need to know? Read on!

Unit 11: Directories and Files

 LOVELY PROFESSIONAL UNIVERSITY 183

Notes11.2.2 A File or a Directory?

You	can	 confirm	 that	 the	 entity	you’re	 testing	 is	 a	file,	 as	opposed	 to	a	directorty,	using	 the	
is_file()	function.	The	is_file ()	function	requires	the	file	path	and	returns	a	Boolean	value.

if (is_file(*test.text*)) {

 Echo *test.txt is file!*;

}

Conversely,	you	might	want	to	check	that	the	entity	you’re	testing	is	a	directory.	You	can	do	this	
with the is_dir() function. is_dir ()	requires	the	path	to	the	directory	and	return	a	Boolean	value.

if (is_dir(“/tmp”)) {

 echo “/tmp is a directory”;

}

After	you	know	a	file	or	directory	exists,	you	might	need	to	test	its	permissions.

You’ll learn about this in the next section.

11.2.3 Checking the Status of a File

When	you	know	that	a	particular	entity	exists,	and	it’s	what	you	expect	it	to	be	(either	a	directory	
or	a	file),	you’ll	need	to	know	what	you	can	do	with	it.	Typically,	you	might	want	to	read,	writer	
to,	or	execute	a	file.	PHP	can	help	you	determine	whether	you	can	perform	these	operations.

The is_readable()	function	tells	you	whether	you	can	read	a	file.	On	UNIX	systems,	you	might	
be	able	to	see	a	file	but	still	be	barred	from	reading	its	contents	because	of	its	user	permissions.	
The is_readable()	function	accepts	the	file	path	as	a	string	and	returns	a	Boolean	value.

if (is)_readable(“test.txt”)) {

 echo “test.txt is readable”;

}

The is_writable ()	function	tells	you	whether	you	have	the	proper	permission	to	write	to	a	file.	
As with is_readable(), the is_writable ()	function	requires	to	file	path	and	return	a	Boolean	value.

if (is_writable (“test.txt”)) {

 echo “test.txt is writable”;

}

The is_executable()	function	tells	you	whether	you	can	execute	the	given	file,	relying	on	either	
the	file’s	permissions	or	its	extension,	depending	on	your	platform.	

The	function	accepts	the	file	path	and	returns	a	Boolean	value.

if (is_executable (“test.txt”)) {

 Echo “test.txt is executable”;

}

Open Source Technologies

184 LOVELY PROFESSIONAL UNIVERSITY

Notes Permission-related	information	is	not	all	you	might	need	to	know	about	a	file.	The	next	section	
shows	how	to	determine	the	file	size.

11.2.4 Determining File Size with filesize()

Given	the	path	to	a	file,	the	filesize()	function	attempts	to	determine	and	return	its	size	in	bytes.	
It returns false if it encounters problems.

echo “The size of test.txt is “.filesize (“test.txt”);

Finding	the	specific	file	size	is	important	is	situations	where	you	want	a	attach	a	file	to	an	email	
or	stream	a	file	 to	 the	user—you’ll	need	to	know	the	size	so	as	 to	properly	crate	 the	headers	
(in the case of the email) ro0 known when to stop sending bytes to the user (in the case of the
stream).	For	more	general	purposes,	you	might	want	to	get	the	file	size	so	that	you	can	display	
it to the user before she attempts to download some monstrous application or high-resolution
photograph from your site.

11.2.5 Getting Date Information About a File

Sometimes	you	need	to	know	when	a	file	was	last	written	to	or	accessed.	PHP	provides	several	
function that can provide this information.

You	can	find	out	the	last-accussed	time	of	a	file	using	the	fileatime() function.

This	function	requires	the	file	path	and	returns	the	date	that	the	file	was	last	accessed.	To	access	a	
file	means	either	to	read	or	write	to	it.	Dates	are	returned	from	all	the	date	information	functions	
in	time	stamp—that	is,	the	number	of	seconds	since	January	1,	1970.	The	examples	in	this	book	
use the date() function to translate this value into human-readable form.

$atime = fileatime(“test.txt”);

Echo “test.txt was last accessed on *.date(“D d M Y g:I A”, Satime);

//Sam	ple	output:	test.txt	was	last	accessed	on	Sun	13	Jan	2008	5:33	AM.

You	can	discover	the	modification	date	of	a	file	with	the	function	filemtime(),	

Which	requires	the	file	path	and	returns	the	date	in	UNIX	epoch	format.	To	modify	a	file	means	
to change its contents in some way.

$atime = filemtime (“test.txt”);

echo “test.txt was last modified on “.date(“D d M Y g:I A”, $mtime);

//	Sample	output;	test.txt	was	last	modified	on	Sun	13	Jan	2008	5:45	AM.

PHP	also	enables	you	to	test	the	change	time	of	a	document	with	the	filectime()	function.	On	
UNIX	systems,	the	change	time	is	set	when	a	file’s	contents	are	modified	or	when	changes	are	
made	to	its	permissions	or	ownership.	On	other	platforms,	the	filectime()	returns	the	creation	date.

$ctime= filectime (“text.txt”);

echo “test.txt was last changed on *.date (“D d M Y g:I A”, $ctime);

//	Sample	output;	test.txt	was	last	changed	on	Sun	13	Jan	2008	5:45.

Unit 11: Directories and Files

 LOVELY PROFESSIONAL UNIVERSITY 185

Notes11.3 Creating File

File	creation	is	a	snap	with	PHP,	but	to	make	things	easier	we	are	going	to	make	a	directory	
that	has	permissions	that	allow	the	web	server	to	write.	Create	a	directory	called	test/	and	make	
sure the permissions on it are set as explained above.

Now	that	you	have	the	right	permissions	you	can	go	ahead	and	make	your	first	file.	Create	a	
PHP	script	named	file.php	inside	the	test/	folder	and	include	the	following	code:	

<?php

$file = “./test.txt”;

$fp = fopen (“$file”, “wb”);

$content = “Hello, I am a File!”;

fwrite($fp, $content);

fclose($fp);

echo “Wrote to ($file):<pre>”;

readfile($file);

echo “</pre>”;

?>

So what does all that do?

First	off	we	have	$file	which	just	sets	the	name	of	the	file	you	are	creating	with	the	script,	 in	
this	case	file.txt.	

Next	we	have	$fp	or	“file	pointer”	this	is	used	with	the	fopen()	function	to	first	look	for	a	file	
(specified	by	$file)	 and	 if	not	 found	 create	 it.	 fopen()	will	 be	described	 in	more	detail	 in	 the	
next section.

The	contents	of	 the	file	will	be	determined	 in	 this	 case	by	 the	variable	$content,	 and	will	be	
written	to	the	file	by	the	function	fwrite().	You	should	now	close	your	file,	as	you	do	not	need	
to	write	 anymore	 data	 to	 it	 via	 fclose().	 For	 this	 example,	we	will	 print	 out	what	 has	 been	
written	to	the	file:	

readfile($file)	.

If	the	script	has	run	correctly,	you	will	see	something	like	this:

Wrote	to	(./test.txt):

Hello,	I	am	a	File!

More	on	fopen();

Now let’s look a little more closely at what is going on here.

fopen()	is	the	command	that	opens	the	file	for	reading	or	writing.	It	accepts	a	filename	and	one	
of	six	arguments:	r,	r+,	w,	w+,	a,	a+	as	well	as	b	for	binary	safe	writing	of	files	(Windows	needs	
this	for	non-text	files,	for	Unix	it	doesn’t	matter.	The	safest	way	is	thus	to	always	use	the	“b”	
when	working	with	binary,	non-text	files.)

In	our	case	we	used	wb	to	open	a	binary	file	for	writing	only.	This	will	truncate	the	file	length	
to	zero	so	that	the	file	is	blank	and	then	place	the	content	at	the	beginning	of	the	file.	If	the	file	
does	not	exist,	it	will	attempt	to	create	it.

Open Source Technologies

186 LOVELY PROFESSIONAL UNIVERSITY

Notes Here is a breakdown of the modes:

	 w:	 This	 is	 the	write	mode,	 used	 to	 open	 a	 file	 for	writing,	Whenever	 this	 is	 used	 the	 file	
associated	with	the	command	will	be	recreated.	w+	enables	read/write	mode.

	 r:	 This	mode	is	used	to	open	a	file	for	reading.	r+	enables	read/write	mode.

	 a:	 This	 is	 the	append	mode,	your	content	will	be	added	 to	 the	file	 therefore	keeping	any	
data	already	in	the	file.	Change	to	a+	to	enable	read/write	mode.	

11.4 Delete File

Deleting	a	file	using	PHP	is	done	by	using	the	unlink	function.	Such	a	simple	function	with	so	
much	power!	You	need	to	use	extreme	caution	when	using	the	unlink	function,	as	you	don’t	
want	to	accidentally	delete	a	crucial	file	that	is	needed	elsewhere	for	other	functions.	You	can	
not	 delete	 a	 file	 that	 is	 already	 open	using	 the	 fopen()	 function,	 as	 it	 is	 already	 being	used.	
However,	once	you	close	a	file	you	have	the	ability	to	delete	it.

If	the	file	is	already	opened,	we	need	to	use	the	fclose	function	to	close	the	file.	Remember	how	
it is done:

fclose($file);

This	is	assuming	the	file	that	is	opened	is	assigned	the	variable	$file	previously.	(See	fopen())	
Now	that	the	file	has	been	closed,	you	have	the	ability	to	delete	the	file:

$file	=	“myfile.txt”;

unlink($file);

First,	you	define	which	file	you	wish	to	delete.	In	this	case,	the	file	“myfile.txt”	is	defined	using	
the	variable	“$file”.	Once	you	have	defined	the	file,	you	then	delete	it	using	the	unlink	function.	
After	executing	the	unlink	function,	the	file	will	then	be	removed.

11.5 Opening a File for Reading

The	fopen()	function	is	used	to	open	files	in	PHP.	The	first	parameter	of	this	function	contains	
the	name	of	 the	file	 to	be	opened	and	the	second	parameter	specifies	 in	which	mode	 the	file	
should be opened:

<html>

<body>

<?php

$file=fopen(“welcome.txt”,”r”);

?>

</body>

</html>

Unit 11: Directories and Files

 LOVELY PROFESSIONAL UNIVERSITY 187

NotesThe	file	may	be	opened	in	one	of	the	following	modes:

Modes Description

r Read	only.	Starts	at	the	beginning	of	the	file.

r+ Read/Write.	Starts	at	the	beginning	of	the	file.

w Write	only.	Opens	and	clears	the	contents	of	file;	or	creates	a	new	file	if	 it	
doesn’t exist.

w+ Read/Write.	Opens	and	clears	the	contents	of	file;	or	creates	a	new	file	if	it	
doesn’t exist.

a Append.	Opens	and	writes	 to	 the	end	of	 the	file	or	creates	a	new	file	 if	 it	
doesn’t exist.

a+ Read/Append.	Preserves	file	content	by	writing	to	the	end	of	the	file.

x Write	only.	Creates	a	new	file.	Returns	FALSE	and	an	error	 if	file	already	
exists.

x+ Read/Write.	Creates	a	new	file.	Returns	FALSE	and	an	error	if	file	already	
exists.

 If	the	fopen()	function	is	unable	to	open	the	specified	file,	it	returns	0	(false).

 Example: The following example generates a message if the fopen() function is unable
to	open	the	specified	file:

 <html>

 <body>

 <?php

 $file=fopen(“welcome.txt”,”r”); exit (unable to open file!”);

 ?>

 </body>

 </html>

11.6 Writing Files

Now	that	you	know	how	 to	open	and	close	a	file,	 let’s	get	on	 to	 the	most	useful	part	of	file	
manipulation,	writing!	 There	 is	 really	 only	 one	main	 function	 that	 is	 used	 to	write	 and	 it’s	
logically called fwrite.

11.6.1 File Open Write

Before	we	can	write	information	to	our	test	file	we	have	to	use	the	function	fopen	to	open	the	
file	for	writing.

Open Source Technologies

188 LOVELY PROFESSIONAL UNIVERSITY

Notes PHP Code

$myFile	=	“testFile.txt”;

$fh	=	fopen($myFile,	‘w’);

11.6.2 File Write Fwrite Function

We	can	use	PHP	to	write	to	a	text	file.	The	fwrite	function	allows	data	to	be	written	to	any	type	
of	file.	Fwrite’s	first	parameter	is	the	file	handle	and	its	second	parameter	is	the	string	of	data	
that	is	to	be	written.	Just	give	the	function	those	two	bits	of	information	and	you’re	good	to	go!

Below	we	are	writing	a	couple	of	names	into	our	test	file	testFile.txt	and	separating	them	with	
a carriage return.

PHP Code

$myFile	=	“testFile.txt”;

$fh	=	fopen($myFile,	‘w’)	or	die(“can’t	open	file”);

$stringData	=	“Bobby	Bopper\n”;

fwrite($fh,	$stringData);

$stringData	=	“Tracy	Tanner\n”;

fwrite($fh,	$stringData);

fclose($fh);

The	$fh	variable	contains	the	file	handle	for	testFile.txt.	The	file	handle	knows	the	current	file	
pointer,	which	for	writing,	starts	out	at	the	beginning	of	the	file.

We	wrote	to	the	file	testFile.txt	twice.	Each	time	we	wrote	to	the	file	we	sent	the	string	$stringData	
that	first	contained	Bobby	Bopper	and	second	contained	Tracy	Tanner.	After	we	finished	writing	
we	closed	the	file	using	the	fclose	function.

If	you	were	to	open	the	testFile.txt	file	in	NOTEPAD	it	would	look	like	this:

Contents of the TestFile.txt File

Bobby	Bopper
Tracy Tanner

We	can	write	 to	 a	file	by	using	 fwrite()	 function	PHP.	Please	note	 that	we	have	 to	open	 the	
file	in	write	mode	and	if	write	permission	is	there	then	only	we	can	open	it	in	write	mode.	If	
the	file	does	not	exist	then	one	new	file	will	be	created.	We	can	change	the	permission	of	the	
file	 also.	However	we	 can	 check	 the	presence	of	 a	file	by	using	file_exists	 function.	You	 can	
read	the	content	of	a	file	by	using	fopen()	function	in	PHP.	This	is	the	way	to	write	entries	to	a	
guestbook,	counter	and	many	other	scripts	if	you	are	not	using	any	database	for	storing	data.	
Here	we	will	see	how	to	write	to	a	file.			

Unit 11: Directories and Files

 LOVELY PROFESSIONAL UNIVERSITY 189

Notes<?
$body_content=”This is my content”; // Store some text to enter inside the file
$file_name=”test_file.txt”; // file name
$fp = fopen ($file_name, “w”); // Open the file in write mode, if file does not
fwrite ($fp,$body_content); // entering data to the file
fclose ($fp); // closing the file pointer
chmod($file_name,0777); // changing the file permission.
?>

11.6.3 File Write: Overwriting

Now that testFile.txt contains some data we can demonstrate what happens when you open an
existing	file	for	writing.	All	 the	data	contained	in	the	file	 is	wiped	clean	and	you	start	with	an	
empty	file.	In	this	example	we	open	our	existing	filetestFile.txt	and	write	some	new	data	into	it.

PHP Code

$myFile	=	“testFile.txt”;

$fh	=	fopen($myFile,	‘w’)	or	die(“can’t	open	file”);

$stringData	=	“Floppy	Jalopy\n”;

fwrite($fh,	$stringData);

$stringData	=	“Pointy	Pinto\n”;

fwrite($fh,	$stringData);

fclose($fh);

If	you	now	open	the	testFile.txt	file	you	will	see	that	Bobby	and	Tracy	have	both	vanished,	as	
we	expected,	and	only	the	data	we	just	wrote	is	present.

Contents of the TestFile.txt File

Floppy	Jalopy

Pointy Pinto

11.7 Appending Files

So	far	we	have	learned	how	to	open,	close,	read,	and	write	to	a	file.	However,	the	ways	in	which	
we	have	written	to	a	file	so	far	have	caused	the	data	that	was	stored	in	the	file	to	be	deleted.	
If	you	want	to	append	to	a	file,	that	is,	add	on	to	the	existing	data,	then	you	need	to	open	the	
file	in	append	mode.	

Again,	we	attempt	to	open	the	file.	This	time	we’re	passing	mode	‘a’.	This	 is	what	we	use	to	
append	the	text	to	the	end	of	the	file.	If	you	wish	to	add	data	to	the	end	of	the	file	and	keep	
from	overwriting	the	previous	data,	this	is	the	mode	you	want	to	use.

So	again	we	set	a	$line	variable	and	write	it	to	the	file.	This	time,	the	line	is	added	to	the	end	
of	the	file.	You	can	open	the	file	and	take	a	look,	and	you’ll	see	that	the	text	is	written	on	the	
next line.

Open Source Technologies

190 LOVELY PROFESSIONAL UNIVERSITY

Notes But	wait!	Take	a	 look	at	that	 ‘\n’	newline	character.	That	adds	a	 line	break	in	the	file.	 If	you	
hadn’t	put	that	in,	the	file	would	just	contain.

This has	been	written	to	the	file.	This	has	been	appended	to	the	file.

If	we	want	 to	add	on	 to	a	file	we	need	 to	open	 it	up	 in	append	mode.	The	code	below	does	
just that.

PHP Code

	 $myFile	=	“testFile.txt”;

	 $fh	=	fopen($myFile,	‘a’);

	If	we	were	to	write	to	the	file	it	would	begin	writing	data	at	the	end	of	the	file.	Using	the	testFile.
txt	file	we	created	in	the	File Write lesson	,	we	are	going	to	append	on	some	more	data.	

PHP Code

	 	 $myFile	=	“testFile.txt”;

	 	 $fh	=	fopen($myFile,	‘a’)	or	die(“can’t	open	file”);

	 	 $stringData	=	“New	Stuff	1\n”;

	 	 fwrite($fh,	$stringData);

	 	 $stringData	=	“New	Stuff	2\n”;

	 	 fwrite($fh,	$stringData);

	 	 fclose($fh);

The	contents	of	the	file	testFile.txt would now look like this:

	 Floppy	Jalopy

 Pointy Pinto

 New Stuff 1

 New Stuff 2

The	above	example	may	not	seem	very	useful,	but	appending	data	onto	a	file	is	actually	used	
every day. Almost all web servers have a log of some sort. These various logs keep track of all
kinds	of	information,	such	as:	errors,	visitors,	and	even	files	that	are	installed	on	the	machine.	

A	log	is	basically	used	to	document	events	that	occur	over	a	period	of	time,	rather	than	all	at	
once. Logs: a perfect use for append!

11.7.1 File Read

In	this	lesson,	we	will	teach	you	how	to	read	data	from	a	file	using	various	PHP	functions.

11.7.2 File Open: Read

Before	we	can	read	information	from	a	file	we	have	to	use	the	function	fopen	to	open	the	file	
for	reading.	Here’s	the	code	to	read-open	the	file	we	created	in	the	PHP	File	Write	lessons.

Unit 11: Directories and Files

 LOVELY PROFESSIONAL UNIVERSITY 191

NotesPHP Code

$myFile	=	“testFile.txt”;

$fh	=	fopen($myFile,	‘r’);

The	file	we	created	 in	 the	 last	 lesson	was	named	“testFile.txt”.	Your	PHP	script	 that	you	are	
writing	should	reside	in	the	same	directory	as	“text.txt”.	Here	are	the	contents	of	our	file	from	
File Write.

We	can	open	a	file	or	a	URL	to	read	by	using	fopen()	function	of	PHP.

testFile.txt Contents

Floppy	Jalopy
Pointy Pinto

Now	that	the	file	is	open,	with	read	permissions	enabled,	we	can	get	started!

11.7.3 File Read Fread Function

The	fread	function	is	the	staple	for	getting	data	out	of	a	file.	The	function	requires	a	file	handle,	
which	we	have,	and	an	integer	to	tell	the	function	how	much	data,	in	bytes,	it	is	supposed	to	read.

One	character	is	equal	to	one	byte.	If	you	wanted	to	read	the	first	five	characters	then	you	would	
use	five	as	the	integer.

PHP Code

$myFile	=	“testFile.txt”;

$fh	=	fopen($myFile,	‘r’);

$theData	=	fread($fh,	5);

fclose($fh);

echo	$theData;

Display

Flopp

The	first	five	characters	from	the	testFile.txt	file	are	now	stored	inside	$theData.	You	could	echo	
this	string,	$theData,	or	write	it	to	another	file.

If	you	wanted	to	read	all	 the	data	from	the	file,	 then	you	need	to	get	 the	size	of	 the	file.	The	
filesize	function	returns	the	length	of	a	file,	in	bytes,	which	is	 just	what	we	need!	The	filesize	
function	requires	the	name	of	the	file	that	is	to	be	sized	up.

Open Source Technologies

192 LOVELY PROFESSIONAL UNIVERSITY

Notes PHP Code

$myFile	=	“testFile.txt”;

$fh	=	fopen($myFile,	‘r’);

$theData	=	fread($fh,	filesize($myFile));

fclose($fh);

echo	$theData;

Display

Floppy	Jalopy	Pointy	Pinto

 It	is	all	on	one	line	because	our	“testFile.txt”	file	did	not	have	a	
	tag	to	create	
an	HTML	line	break.	Now	the	entire	contents	of	 the	testFile.txt	file	 is	stored	in	
the string variable $theData.

11.7.4 File Read: Gets Function

PHP	also	lets	you	read	a	line	of	data	at	a	time	from	a	file	with	the	fgets	function.	This	can	or	
cannot	be	useful	to	you,	the	programmer.	If	you	had	separated	your	data	with	new	lines	then	
you could read in one segment of data at a time with the gets function.

Lucky	for	us	our	“testFile.txt”	file	is	separated	by	new	lines	and	we	can	utilize	this	function.

PHP Code

$myFile	=	“testFile.txt”;

$fh	=	fopen($myFile,	‘r’);

$theData	=	fgets($fh);

fclose($fh);

echo	$theData;

testFile.txt Contents

Floppy	Jalopy

The	fgets	function	searches	for	the	first	occurrence	of	“\n”	the	newline	character.	If	you	did	not	
write	newline	characters	 to	your	file	as	we	have	done	 in	File Write,	 then	this	 function	might	
not work the way you expect it to.

If	you	want	to	append	to	a	file,	i.e.,	add	on	to	the	existing	data,	then	you	need	
to	open	the	file	in	append	mode.

11.7.5 When and How to Include Files

You	can	save	yourself	from	some	potential	trouble	by	including	files	wisely.	

Unit 11: Directories and Files

 LOVELY PROFESSIONAL UNIVERSITY 193

NotesYou	should	follow	three	principles	on	including	files:

	 1.	 Only	use	include_once	or	require_once.	Rule	number	one	is	to	always	use	require_once	or	
include_once	to	include	PEAR	code.	If	you	use	require,	your	script	will	likely	die	because	
of	redefinition	errors	(or	it	will	die	sometime	in	the	future).

 2. Determine	the	correlation	between	classes	and	file	names.	PEAR	uses	the one-class-per-file	
principle,	with	 the	 intention	 that	 it	 should	be	 trivial	 to	generate	 the	required	file	name	
from	the	class	name.	Replace	underscores	with	the	directory	separator	character,	append.	
php,	and	you’re	finished.	Here	are	some	examples:

 Class Name File Name

 PEAR PEAR.php

	 	 XML_Parser	XML/Parser.php

	 	 HTML_Quickform_textarea	HTML/QuickForm/textarea.php

	 	 Case	is	significant	here	because	UNIX	file	systems	are	case-sensitive.

	 	 Gutmans_ch12	Page	410	Thursday,	September	23,	2004	2:53	PM

	 	 12.6	Building	Packages	411

 3. Encapsulate	includes.	Each	file	should	use	includes	to	express	clearly	which	class	it	depends	
on from other packages.

Scan Directories with PHP’s Directory Iterators

One	of	php5’s	most	interesting	new	features	is	the	addition	of	iterators,	a	collection	
of readmade interfaces designed to help in navigating and processing hierarchical
data	 structures.	 These	 Iterators	 signficantly	 reduce	 the	 amount	 of	 code	 required	

to	process	an	XML	document	tree	or	a	file	collection.	A	number	of	Iterators	are	available,	
including	 the	 Array	 Iteratior,	 CachingIterator,	 Limit	 Iterator,	 Racursive	 Iterator,	 Simple	
XMLIterator	and	Directory	Iterator.

Processing a Single-level Directory

Let’s begin with something simple: processing a single-level directory. Type (or copy) the
following	script	(Listing	A),	altering	the	directory	path	to	reflect	your	local	configuration:

Listing A

<?	php

$it	=	new	DirectoryIterator	(“/tmp/mystuff’);

foreach	$it	as	$file)		{

	if	(!$	it->	is	Dot	())		{
Contd...

Open Source Technologies

194 LOVELY PROFESSIONAL UNIVERSITY

Notes
echo	$	file.	“\n”

}

}

When	you	view	the	output	of	this	script	in	your	browser,	you	should	see	a	list	of	the	files	
in	the	named	directory.	How	did	this	happen?	Well,	the	Directory	Iteratr	class	provieds	a	
pre-built	 interface	 to	 iterating	over	 the	contents	of	a	directory;	once	 instantiated	with	 the	
location	of	the	target	directory,	it	can	then	be	processed	as	though	it	were	a	standard	PHP	
array,	with	each	element	representing	a	file	in	the	directory.	Note	the	use	of	the	is	Dot	90	
method	to	filter	out	the	“.”	and	“.”	directories,	respectively.

Processing a Nested Directory Tree

Recursively	processing	a	nested	directory	tree	is	almost	as	simple.	In	this	case,	the	Directory	
Iterator	needs	to	check	each	object	it	encounters	within	the	first-level	directory,	determine	
whether	 it	 is	 a	file	or	directory,	 and,	 if	 a	directory,	drill	 one	 level	deeper	 to	 examine	 the	
next	 level	of	 contents.	 this	 sounds	 fairly	complex,	and	 in	 the	past	 could	easily	add	up	 to	
15-plus lines of code.

With_PHP5,	 though,	 all	 you	need	 are	 two	 iterators:	 the	Recursive	Directory	 Iterator	 and	
the	 Recursivelterator	 Iterator,	 which	 together	 incorporate	 all	 the	 above	 functionality.	
Take a look at.

Listing A

Questions

1. How Scan directories and PHP interrelated?

2. What is processing a nested directory tree?

11.8 Summary

	 •	 Validating	the	file	helps	to	limit	the	file	size.

	 •	 Fopen()	is	the	command	that	opens	the	file	for	reading	or	writing.	It	accepts	a	file	name	
and	one	of	six	arguments	=r,rt,	wt,	a,	at	for	unity	of	files.

	 •	 Deleting	a	file	using	PHP	is	done	by	using	the	unlink	function.

	 •	 If	you	want	to	append	to	a	file,	i.e.	add	on	to	the	existing	data,	them	you	need	to	open	
the	file	in	append	mode.

11.9 Keywords

CHMOD:	It	is	a	Unix	command	that	lets	you	tell	the	system	how	much	(or	little)	access	it	should	
permit	to	a	file.	

Unit 11: Directories and Files

 LOVELY PROFESSIONAL UNIVERSITY 195

NotesFile Validator:	The	file	validator	helps	validating	files	and	even	image	file	types.

Fopen:	Opens	file	or	URL, fopen()	binds	a	named	resource,	specified	by	filename,	to	a	stream.

Home Directory: The part of the hard disk where you are authorized to save data is called
home directory.

$lines: contents of YourFile.txt into the array called $lines.

/tmp: There is a general directory called/tmp	where	every	user	can	write	files.

1. Write all PHP Code. For File Write: Overwriting.

2. Write all PHP Code. For File Write: Fwrite Function.

11.10 Self Assessment Questions

	 1.	 File	()	is	similar	to	fgets	in	that	it	reads	the	data	one	line	at	a	time,	however	it	returns	it	
all at once into an array.

 (a) True (b) False

	 2.	 The	file	validator	helps	validating	files	and	even	image	file	types.	

 (a) True (b) False

	 3.	 Manipulating	files	is	a	basic	necessity	for								

 (a) serious programmers (b) normal programmers

 (c) programmers (d) none of the above.

	 4.	 $our	FileName	=	“testFile.txt”;

 (a) True (b) False

	 5.	 We	will	be	using	function	to	read	the	content	by	using	a	file	pointer.

 (a) Thread() (b) Fread()

 (c)	 Fread_()	 (d) All of the above.

	 6.	 Write	a	way	to	look	at	the	content	of	a	file

 (a) with an editor (b) within editor

 (c) without an editor (d) all of the above.

11.11 Review Questions

	 1.	 What	do	you	mean	by	truncating	a	file?

	 2.	 What	are	the	three	basic	ways	to	open	a	file	and	the	corresponding	character	that	PHP	
uses?

 3. How to write data to a Text File?

	 4.	 What	is	the	procedure	to	include	files?

	 5.	 What	precautions	should	be	taken	while	manipulating	files?

Open Source Technologies

196 LOVELY PROFESSIONAL UNIVERSITY

Notes 	 6.	 What	are	the	advantages	of	validating	a	file?

 7. What is the basic use of command CHMOD?

	 8.	 What	are	the	different	ways	to	open	a	file?

Answers for Self Assessment Questions
 1. (a) 2. (b) 3. (a) 4. (a) 5. (b) 6. (a)

11.12 Further Reading

Teach Yourself PHP, MySQL & Apache,	By:	Meloni,	Pearson	Education.

linux.math.tifr.res.in/linux-manual/f...

Unit 12: Images

 LOVELY PROFESSIONAL UNIVERSITY 197

NotesUnit 12: Images

CONTENTS

Objectives

Introduction

12.1 Image Creation Process

 12.1.1 Basic PHP Knowledge

 12.1.2 Your PHP Must Have Been Compiled with the GD Library

 12.1.3 Free Type Must Be Compiled for True Type Font Support

 12.1.4 Creating an Image from Scratch Using PHP

12.2	 Necessary	Modifications	to	PHP

12.3 Drawing a New Image

 12.3.1 Drawing Lines and Shapes

 12.3.2 Using a Colour Fill

12.4 Modifying an Existing Image

 12.4.1 Using True Type Fonts

 12.4.1 Drawing to Your Image

12.5 Image Creation from User Input

12.6 Summary

12.7 Keywords

12.8 Self Assessment Questions

12.9 Review Questions

12.10 Further Reading

Objectives

After studying this unit, you will be able to:

	 •	 Explain image creation process.

	 •	 Discuss	necessary	modifications	to	PHP.

	 •	 Explain	how	to	draw	a	new	image.

	 •	 Explain	how	to	modify	an	existing	image.

	 •	 Discuss	how	to	create	an	image	from	user	input.

Manish, Kumar, Lovely Professional University

Open Source Technologies

198 LOVELY PROFESSIONAL UNIVERSITY

Notes Introduction

PHP makes it very easy to do many things needed on a website, among which is to create an
image. The ability to generate an image in PHP can be useful if you want to do things like create
CAPTCHA	 images,	 or	 even	design	 a	 banner	 or	 logo	 on	 the	 fly	 the	way	 some	 free	 blogging	
software do.

By the end of this tutorial, you will be able to create or modify an existing image using PHP, set
the colours of its background, the text and the lines you draw, write text to that image, draw
a line and set its thickness. You will also be able to either send that image to a web browser or
to	save	it	as	a	file.	Armed	with	this	basic	foundation,	you	will	also	be	able	to	knowledgeably	
explore further and perform more complex operations on images using PHP if you wish.

12.1 Image Creation Process

12.1.1 Basic PHP Knowledge

Assume that you already have some basic knowledge of how to write PHP programs. If not,
you may wish to check out my basic PHP tutorial, How to Program in PHP.

12.1.2 Your PHP Must Have Been Compiled with the GD Library

For any of the functions listed here to be available, your PHP interpreter must have been
compiled with the GD library. If you are using the PHP provided by a commercial web host,
this is probably already provided as a standard feature.

12.1.3 Free Type Must Be Compiled for True Type Font Support

If you want True Type font support, your PHP must have FreeType support compiled into it
as well.

12.1.4 Creating an Image from Scratch Using PHP

The easiest way to understand how to create an image is by looking at some sample code.

 <?php

 $my_img = imagecreate(200, 80);

 $background = imagecolorallocate($my_img, 0, 0, 255);

 $text_colour = imagecolorallocate($my_img, 255, 255, 0);

 $line_colour = imagecolorallocate($my_img, 128, 255, 0);

 imagestring($my_img, 4, 30, 25, “thesitewizard.com”,

 $text_colour);

 imagesetthickness ($my_img, 5);

 imageline($my_img, 30, 45, 165, 45, $line_colour);

 header(“Content-type: image/png”);

 imagepng($my_img);

Unit 12: Images

 LOVELY PROFESSIONAL UNIVERSITY 199

Notes imagecolordeallocate($line_color);

 imagecolordeallocate($text_color);

 imagecolordeallocate($background);

 imagedestroy($my_img);

 ?>

The above code creates a 200x80 PNG image with a blue background and yellow text. It can
be	called	 from	within	your	web	page	simply	by	referencing	 the	php	file.	For	example,	 if	 the	
PHP	file	that	contains	the	above	code	is	called	myimage.php,	then	the	HTML	code	to	invoke	
it can simply be:

Explanation of the Code

	 •	 Creating the Image

	 	 The	first	thing	the	code	does	is	to	call	the	imagecreate()	function	with	the	dimensions	of	
the image, namely its width and height in that order. This function returns a resource
identifier	 for	 the	 image	which	we	save	 in$my_img.	The	 identifier	 is	needed	 for	all	our	
operations on the image.

If the function fails for some reason, it will return FALSE. If you want your
code to be robust, you should test for this.

	 •	 Using Colours in PHP

 Before you can use any sort of colours in your image at all, you will need to allocate the
colour.	Colours	are	represented	by	three	digits,	known	as	the	RGB	value.	The	first	digit	
denotes the red component, the second the green and the third blue, hence RGB, for
Red-Green-Blue. These are the same colour values that you use for your web page as well
as numerous other computer applications.

	 	 Colours	are	allocated	using	the	imagecolorallocate()	function.	This	function	will	automatically	
fill	the	background	of	the	image	with	the	colour	the	first	time	you	call	it,	as	well	as	return	
an	identifier	for	that	particular	colour.	Subsequent	calls	to	imagecolorallocate()	will	simply	
create	a	colour	identifier	for	your	colour,	without	affecting	your	image	background.

	 	 As	you	can	see	from	the	above	code,	my	script	allocates	a	blue	identifier	for	the	image,	
and	in	so	doing,	causes	imagecolorallocate()	to	set	the	background	to	blue	automatically.	
It	also	allocates	a	colour	identifier	for	yellow	and	one	for	a	shade	of	green.	The	latter	two	
identifiers	will	be	used	later	to	write	text	and	draw	a	line.

	 	 imagecolorallocate()	returns	FALSE	if	the	function	fails	for	any	reason.

	 •	 Writing Text to the Image

	 	 To	write	text	to	your	image,	you	will	need	to	use	the	imagestring()	function.	This	function	
uses a set of built-in fonts to do the writing. The fonts have various sizes, ranging from 1
to	5,	where	1	is	the	smallest	font	size	and	5	the	largest.	The	size	of	the	font	is	specified	in	
the	second	parameter	to	the	function.	The	third	and	fourth	parameters	to	imagestring()	
specify the x,y coordinate for the top left hand corner of the text. In the case of the example
above, my text will begin 25 pixels from the top edge of the image, and 30 pixels from the
left.

Open Source Technologies

200 LOVELY PROFESSIONAL UNIVERSITY

Notes 	 	 The	fifth	parameter	is	for	the	text	to	print,	and	the	final	parameter	the	colour	of	the	text.	
This	is	the	same	colour	that	was	allocated	earlier	using	imagecolorallocate().

	 •	 Drawing a Line and Setting the Thickness of the Brush

	 	 The	imageline()	function	can	be	used	to	draw	a	line	to	the	image.	To	set	the	thickness	of	
the	brush	used	to	draw	the	line,	you	may	want	to	call	 the	imagesetthickness()	function	
as	I	did	in	my	example.	The	numeric	parameter	to	imagesetthickness()	is	the	thickness	of	
the	brush	in	pixels.	If	you	don’t	call	imagesetthickness(),	the	line	will	be	1	pixel	thick.

	 	 The	 imageline()	 function	 is	 called	with	 the	start	and	end	coordinates	of	 the	 line,	 in	x,y	
format. The line starts from 30,45 and ends on 165,45. That is, it will be a horizontal line 45
pixels from the top, starting 30 pixels from the left edge and ending 165 pixels from that
same	edge.	Since	$line_colour	was	set	to	a	shade	of	green	earlier,	the	line	will	be	green.

	 •	 How to Output the Image

 Since the output of example script is the image itself, send an “image/png” content type
header to the browser telling it that what follows are the bytes of a PNG image. The
function	imagepng()	is	then	called	to	generate	the	necessary	image	from	$my_img	image	
identifer.	If	you	prefer	to	save	your	image,	don’t	call	the	header()	function	to	output	the	
header,	and	call	imagepng()	with	the	filename	of	the	image	for	its	second	parameter,	like	
the following:

	 	 imagepng($my_img,	“my_new_image.png”);

	 	 Your	image	does	not	have	to	be	a	PNG	image.	You	can	use	imagegif()	or	imagejpeg()	to	
create GIF and JPG images respectively. You should of course send the correct content
type header for the type of image you are creating. For example, a jpeg image should
have a content type of “image/jpeg” while a gif image “image/gif”. Note though that
GIF support may or may not necessarily be compiled into the version of the GD library
your	web	host	is	using,	so	if	you’re	not	sure,	use	one	of	the	other	file	formats.

	 •	 Freeing Resources

 On completion, the program releases the resources associated with the image by
callingimagecolordeallocate()	and	imagedestroy().

Colours	are	represented	by	 three	digits,	known	as	 the	RGB	value.	The	first	
digit denotes the red component, the second the green and the third blue.
These colours are used for web pages as well as numerous other computer
applications.

The fonts have various sizes, ranging from 1 to 5, where 1 is the smallest font
size and 5 the largest.

12.2 Necessary Modifications to PHP

Current versions of the PHP distribution include a bundled version of GD graphics library. The
inclusion of this library eliminates the need to download and install several third-party libraries,
but this library will need to be activated at installation time.

Unit 12: Images

 LOVELY PROFESSIONAL UNIVERSITY 201

NotesIf	you	cannot	install	PHP,	“Installing	and	Configuring	PHP,”	and	are	stuck	with	a	version	of	
PHP earlier than 4.3.0, you will have to go to http://www.boutell.com/gd/ and download the
source of the GD library. Follow the instructions included with that software, and consult its
manual	for	difficulties	with	installation.

To enable the use of the GD library at installation time, Linux/Unix users must add the following
to	the	configure	parameters	when	preparing	to	build	PHP:

—with-gd

If you download your own version of GD, you must specify the path, as in

—with-gd=/path/to/gd.

After	 running	 the	PHP	 configure	program	again,	 you	must	 go	 through	 the	make	 and	make	
install	process.	Windows	users	who	want	to	enable	GD	simply	have	to	activate	php_gd2.dll	as	
an	extension	in	the	php.ini	file.

When	using	the	GD	library,	you	are	limited	to	working	with	files	in	GIF	format.	However,	by	
installing	additional	libraries,	you	can	work	with	JPEG	and	PNG	files	as	well.

12.2.1 Obtaining Additional Libraries

Working	with	GIF	files	might	suit	your	needs	perfectly,	but	if	you	want	to	create	JPEG	or	PNG	
files,	you	will	need	to	download	and	 install	a	 few	libraries,	and	make	some	modifications	 to	
your PHP installation.

JPEG libraries and information can be found at ftp://ftp.uu.net/graphics/jpeg/.

PNG libraries and information can be found at http://www.libpng.org/pub/png/libpng.html.

If you are working with PNG files, you should also install the zlib library, found at
http://www.gzip.org/zlib/.

Follow the instructions at these sites to install the libraries. After installation, Linux/Unix users
must	again	reconfigure	and	rebuild	PHP	by	first	adding	the	following	to	the	PHP	configures	
parameters	(assuming	that	you	want	to	use	all	three,	if	not,	just	add	the	applicable	ones):

—with-jpeg-dir=[path to jpeg directory]

—with-png-dir=[path to PNG directory]

—with-zlib=[path to zlib directory]

After	running	the	PHP	configure	program	again,	you	need	to	go	through	the	make	and	make	
install process. Your libraries should then be activated and ready for use.

12.3 Drawing a New Image

Drawing shapes and lines with PHP is nothing like drawing with image editing program.
Actually, when drawing with PHP you become the editing program. You use individual PHP
functions	to	define	colours,	draw	and	fill	shapes,	re-size	and	save	the	image.	These	functions	
are part of the GD graphics library that was bundled beginning with PHP version 4.3.0.

Open Source Technologies

202 LOVELY PROFESSIONAL UNIVERSITY

Notes The	basic	function	used	to	create	a	new	image	is	called	ImageCreate().	This	function	creates	the	
canvas area for your new image. For example to create an image that is 300px wide and 300px
high you would use following code:

	 1.	 $imageOne	=	ImageCreate(300,	300);

Now	that	you	have	canvis	you	need	to	define	colours	you	want	to	use	in	it.	Colours	are	defined	
using	RGB	color	system.	Using	decimal	values	from	0	to	255	for	each	of	the	red	(R),	green	(G),	and	
blue(B)	you	can	define	a	specific	color.	The	function	used	to	define	colors	is	ImageColorAllocate().

The	first	color	you	allocate	is	used	as	the	background	color	of	the	image.

	 1.	 $white	=		ImageColorAllocate($imageOne,	255,	255,	255);

	 2.	 $red	=	ImageColorAllocate($imageOne,	255,	0,	0);

	 3.	 $blue	=	ImageColorAllocate($imageOne,	0,	0,	255);

	 4.	 $green	=	ImageColorAllocate($imageOne,	0,	255,	0);

12.3.1 Drawing Lines and Shapes

There are several PHP functions to assist you in drawing lines and shapes. And as you can see
below the function names are very descriptive.

	 •	 ImageEllipse() — To draw an ellipse.

	 •	 ImageArc()	—	To	draw	arc	(partial	ellipse).

	 •	 ImagePolygon() — To draw a polygon.

	 •	 ImageRectangle() — To draw a rectangle.

	 •	 ImageLine() — To draw a line.

Each of these functions use x-axis and y-axis coordinates as indicators of where to start and stop
the drawing on the canvas. Here is sample of green rectangle that is 30px wide, 50px high and
10px from the left edge and 20px away from the top of the canvas.

	 1.	 Image	Rectangle	($image	One,	10,	20,	40,	70,	$green);

As	you	can	see	drawing	with	PHP	requires	some	planning	ahead.

12.3.2 Using a Colour Fill

PHP	can	also	fill	the	shapes	with	solid	colour.	Functions	to	do	that	are:

	 •	 ImageFilledEllipse()	—	To	fill	an	ellipse.

Unit 12: Images

 LOVELY PROFESSIONAL UNIVERSITY 203

Notes •	 ImageFilledArc()	—	To	fill	a	partial	ellipse.

	 •	 ImageFilledPlygon()	—	To	fill	a	polygon.

	 •	 ImageFilledRectangle()	—	To	fill	a	rectangle.

These	functions	are	used	just	like	nonfill	drawing	functions	explained	above.

	 1.	 Image	Filled	Rectangle	($image	One,	10,	20,	40,	70,	$green);

PHP	comes	with	several	built-in	styles	that	are	used	in	the	display.	For	example	IMG_ARC_PIE	
says to create a rounded edge.

12.4 Modifying an Existing Image

In most cases, creating an image from scratch is overkill. For most web purposes, you can usually
design the basic background of your image using a normal image editor like Photoshop and
only add any additional text or graphical elements that need to be dynamically drawn using
PHP. This allows you to speed up your scripts and reduce the resource consumption on your
web server. It also lets you create your picture using professional picture designing tools.

To use an existing GIF, JPEG or PNG image as a canvas on which you add additional elements,
use	one	of	the	following	functions	instead	of	imagecreate().

imagecreatefromgif	(string	$filename)

imagecreatefromjpeg	(string	$filename)

imagecreatefrompng	(string	$filename)

For	 example,	 if	 you	 created	a	GIF	file	 called	 “mytemplate.gif”,	 the	 function	 can	be	 called	 as	
follows:

$myimage	=	imagecreatefromgif	(“mytemplate.gif”);

Like	the	basic	imagecreate()	function,	these	functions	return	FALSE	if	they	fail	to	load	the	image	
for any reason.

12.4.1 Using True Type Fonts

If	you	want	to	use	a	True	Type	font,	you	will	need	to	use	imagettftext()	instead.	For	details	on	
how to use this function, please consult the function’s manual page on php.net.

You should note a few things, though, before using this function:

	 •	 Check	that	your	web	host	has	compiled	FreeType	support	into	PHP	before	you	rely	on	
this function.

	 •	 Find	out	whether	your	web	host’s	PHP	is	using	GD	version	1	or	2.	This	affects	a	number	
of	 things,	 including	 the	meaning	of	 the	 font	 size	parameter	 to	 the	 function	 (whether	 it	
means	pixel	size	or	point	size).

	 •	 Note	 that	 the	coordinates	 for	 the	 text	has	a	different	 starting	point	 from	 imagestring().	
That	is,	a	coordinate	like	(say)	10,	20	has	a	different	meaning	in	the	two	functions.

	 •	 Make	sure	the	font	you	want	exists	on	your	web	server.	Remember	that	your	web	server	
is not the same as your computer. Just because a font like Arial exists on your computer

Open Source Technologies

204 LOVELY PROFESSIONAL UNIVERSITY

Notes does not mean that it exists on your server. If you have fonts that you created yourself,
you may want to upload those to your web directory and use those instead. At least, that
way, you have a guarantee that the font needed by your script exists.

	 •	 The	path	setting	to	the	font	file	is	tricky,	and	depends	on	the	version	of	the	GD	library	
your	web	server	is	using.	One	way	around	it	is	to	specify	the	full	path	to	the	file	on	your	
server.

12.4.2 Drawing to Your Image

Besides the line drawing function used above, PHP has other functions that you can use. To
whet your appetite, functions include those that allow you to draw ellipses, arcs and polygons,
change	the	style	of	your	lines	(to	say	dashed	lines),	and	so	on.

However, unless you have special reasons why you might want to dynamically draw complex
pictures onto an image, you should consider creating your base image using a normal picture
editor,	 load	that	 image	using	a	function	like	imagecreatefrompng(),	and	then	only	modifying	
small details with your script. Generating everything from scratch is unnecessary for most
purposes, and can drain your web server resources.

12.5 Image Creation from User Input

You understood that having created an image with php it was possible to load it using the img
tag and it certainly works where the comment is hard coded.

HTML Code:

<html>

<head>

<title>myscripthtml</title>

<script type=”text/javascript”>

 function getComments()

 {

 return true;

 }

</script>

</head>

<body>

Provide comments

<form name=”cmt” action=”myscript2.php” method=”GET” onSubmit=”return

getComments()”/>

<input type=”text” name=”cmment”/>

<input type=”submit” value=”submit comments”/>

</form>

Unit 12: Images

 LOVELY PROFESSIONAL UNIVERSITY 205

Notes</body>

</html>

The	 following	 ‘myscript2.php’	file	creates	an	 image	BUT	I	can’t	get	 that	 image	 to	 load	using	
the img tag:

HTML Code:

PHP Code:
<?php

// Path to our font file

$font = ‘arial.ttf’;

$fontsize = 10;

$quotes = $_GET[‘cmment’];

// get the quote and word wrap it

$quote = wordwrap($quotes,20,”
\n”);

// Create image

$image = imagecreatefrompng(‘baseimage.png’);

// pick color for the background

$bgcolor = imagecolorallocate($image, 100, 100, 100);

// pick color for the text

$fontcolor = imagecolorallocate($image, 255, 255, 255);

// fill in the background with the background color

imagefilledrectangle($image, 200, 100, 400, 200, $bgcolor);

// x,y coords for imagettftext defines the baseline of the text: the

lower-left corner

// so the x coord can stay as 0 but you have to add the font size

to the y to simulate

// top left boundary so we can write the text within the boundary

of the image

$x = 0;

$y = $fontsize;

imagettftext($image, $fontsize, 0, $x, $y, $fontcolor, $font,

$quote);

// tell the browser that the content is an image

header(‘Content-type: image/png’);

// output image to the browser

imagepng($image);

// delete the image resource

imagedestroy($image);

?>

Enterprise Solutions Using Java-PHP

Summary: Production use of Resin® and Quercus™ to deploy combined Java-PHP solution
for Emergency Preparedness and Response for Healthcare.

Solution: Combined Java-PHP architecture. Contd...

Open Source Technologies

206 LOVELY PROFESSIONAL UNIVERSITY

Notes Product: Quercus, a feature of Resin application server.

Industry: Medical

Engineering Challenge:

When David Berry assumed the role of CTO at LiveProcess, he inherited version 1.0 of the
LiveProcess platform, a PHP based web application consisting of eight person years of code.

As	the	project	moved	forward,	several	of	the	existing	functions	and	new	feature	requirements	
could be implemented better as background tasks. However, PHP on.

Apache	is	a	user-initiated	programming	environment	and	requires	user	input	to	run	PHP.	

As an experienced Java developer, David Berry knew that Java could handle the background
tasks	through	multithreading	and	wanted	the	added	Java	benefits	of	integrated	security	and	
connection pooling.

The challenge became – could we integrate PHP with Java EE or would we need to replace
PHP?

Analysis:

Rewriting the PHP application to JSP, Struts, Spring, or JSF would take too much time so
we	 focused	our	 analysis	 on	making	PHP	work	with	 Java.	We	 identified	 two	 solutions:	 a	
Java-PHP bridge or Quercus.

The Java-PHP bridge would consist of Java calling a running instance of Apache/PHP via
RMI, but this would be cumbersome to deploy in a production environment.

Because Quercus runs as a Java Servlet and compiles PHP into Java, it could run the
application	with	minor	modifications	and	would	allow	the	application	to	directly	access	Java	
objects. The Quercus solution would let us easily integrate container managed security, an
open-source persistence library and a scheduler library.

Findings:

In	our	 trial,	90%	of	 the	application	 immediately	ran	on	Quercus.	The	 last	10%	required	a	
little recoding and the release of Resin 3.1.

After the application completely passed our regression tests using Quercus, we started to
enhance	the	LiveProcess	platform	PHP	code	with	Java.	The	first	enhancement	was	to	use	
Java EE container managed security to authenticate users and determine which PHP pages
they could access. We did this by implementing a custom authentication class that used the
existing user tables in our application. This allowed us to remove the “isLoggedIn” check
that we did at the head of every PHP page.

The second area that we focused on was connecting PHP to a Java persistence library.

This allowed us to use enterprise level Java features including connection pooling and
prepared statement pooling, features which are not easily done in PHP.

During our development process, we discovered that using object oriented PHP to develop
a page template framework was superior to JSP or Struts. Our PHP template framework let

Contd...

Unit 12: Images

 LOVELY PROFESSIONAL UNIVERSITY 207

Notesus	limit	the	web	accessible	PHP	files	to	about	six	and	the	bulk	of	the	PHP	code	is	protected	
under	WEB-INF	by	the	Java	EE	container.	The	resulting	PHP	architecture	offers	significant	
flexibility,	maintainability	and	security.	

The benefits of Quercus Java-PHP architecture include:

3/4 Ability to use PHP libraries

3/4 Use of PHP5 object model for page templating

3/4 PHP as Servlet better works than Zend solution or JSR223

3/4 Multithreading

3/4 Background tasks

3/4 Event scheduling

3/4 Java persistence

3/4 Ability to use third party Java or PHP libraries to solve problems Result:

LiveProcess has chosen Quercus and Resin as their Platform of choice.

Questions

1.	Define	solution	for	Emergency	Preparedness	and	Response	for	Healthcare.

2.	Define	Java-PHP	bridge	or	Quercus.

12.6 Summary

	 •	 The	ability	to	generate	an	image	in	PHP	can	be	useful	if	you	want	to	do	things	like	create	
CAPTCHA image.

	 •	 Image	 create	 function	 returns	 a	 resource	 identifier	 for	 the	 image	 which	 are	 same	
insmying.

	 •	 Colour	are	allocated	using	the	image	colour	allocate	()	function.

	 •	 Working	with	files	in	GIF	format	with	using	GD	library	is	limited.

	 •	 Other	facilities	are	also	available	in	PHP	to	design	and	modify	your	image.	

12.7 Keywords

CAPTCHA Image A CAPTCHA or Captcha: It is a type of challenge-response test used in
computing as an attempt to ensure that the response is not generated by a computer.

Free Type: It is a software library written in C that implements a font rasterization engine. It is
used to rasterize characters into bitmaps and provides support for other font-related operations.

Image Creator: The	 tool	 used	 to	 create	 Mee	 Go	 images	 is	 something	 called	 “MIC2”	 (for	
distinguishing	from	obsolete	MIC	-	Moblin	Image	Creator).	MIC	is	composed	of	a	series	of	tools	
to create images, convert images and do some development work on MeeGo. MIC2 is based
primarily on Fedora livecd-tools and appliance-tools.

Open Source Technologies

208 LOVELY PROFESSIONAL UNIVERSITY

Notes True Type: It is an outline font standard originally developed by Apple Computer in the late
1980s as a competitor to Adobe’s Type 1 fonts used in Post Script.

Create an Image from Scratch Using PHP

Draw an Image

12.8 Self Assessment Questions

 1.	 Colours	are	allocated	using	the	imagecolorallocate()	function.

	 (a)	 True	 (b)	 False

	 2.	 To	write	text	to	your	image,	you	will	need	not	to	use	the	imagestring()	function.

	 (a)	 True	 (b)	 False

 3. Colours are represented by three digits, known as

	 (a)	 RCB	value		 (b)	 RTB	value

	 (c)	 RGB	value	 (d)	 None	of	the	above.

 4. Current versions of the PHP distribution include a bundled version.

	 (a)	 GD	graphics	library	 (b)	 CD	graphics	library

	 (c)	 GE	graphics	library	 (d)	 All	of	the	above.

 5. What basic function used to create a new image is called?

	 (a)	 Imagecreate()	 (b)	 Image	Create()

	 (c)	 Image	Create()	 (d)	 None	of	the	above.

 6. In addition to creating images from other images, and drawing images on your own, you
can not create images based on user input.

	 (a)	 True	 (b)	 False

12.9 Review Questions

 1. What RGB values would you use for pure black and pure white?

 2. How do you create a new, blank canvas that is 300 pixels wide and 200 pixels tall?

	 3.	 What	functions	is	used	to	draw	a	polygon	and	a	filled	polygon?

 4. How to create an Image in PHP?

 5. Create an Image from Scratch Using PHP.

 6. Explain Image Creation Process.

 7. Give explanation of the ICP Code.

 8. What does Writing Text to the Image mean?

 9. Explain how to output the Image.

Unit 12: Images

 LOVELY PROFESSIONAL UNIVERSITY 209

Notes	 10.	 What	are	Necessary	Modifications	to	PHP	in	Images?

 11. How will you draw a new Image?

 12. Explain Modifying an Existing Image.

Answers for Self Assessment Questions
	 1.	 (a)	 2.	 (b)	 3.	 (c)	 4.	 (a)	 5.	 (b)	 6.	 (b)

12.10 Further Reading

Open Source Development with LAMP: Using Linux, Apache, MySQL,
Perl & PHP By James Lee, Pearson Education.

http://www.softpanorama.org/Tools/dd.shtml

Open Source Technologies

210 LOVELY PROFESSIONAL UNIVERSITY

Notes Unit 13: Stored Procedure

CONTENTS

Objectives

Introduction

13.1 Transactions

 13.1.1 Properties of Transactions

 13.1.2 COMMIT and ROLLBACK

 13.1.3 Row-Level Locking

13.2 Stored Procedures

 13.2.1 Implementation

 13.2.2 Other Uses

 13.2.3 Comparison with Dynamic SQL

 13.2.4 Comparison with Functions

 13.2.5 Disadvantages

 13.3.6 Why Use Stored Procedures?

 13.2.7 Creating a Stored Procedure

 13.2.8 Calling a Stored Procedure

 13.2.9 Specifying Parameters

 13.2.10 Data Retrieval

 13.2.11 Inserting Data Using Parameters

	 13.2.12	 Benifits	of	Stored	Procedures	

13.3 Summary

13.4 Keywords

13.5 Self Assessment Questions

13.6 Review Questions

13.7 Further Reading

Objectives

After studying this unit, you will be able to:

	 •	 Explain	transactions.

	 •	 Understand	stored	procedures.

Mandeep Kaur, Lovely Professional University

Unit 13: Stored Procedure

 LOVELY PROFESSIONAL UNIVERSITY 211

NotesIntroduction

In a Database Management System (DBMS), a stored procedure is a set of Structured Query
Language (SQL) statements with an assigned name that’s stored in the database in compiled
form so that it can be shared by a number of programs. The use of stored procedures can be
helpful in controlling access to data (end-users may enter or change data but do not write
procedures), preserving data integrity (information is entered in a consistent manner), and
improving productivity (statements in a stored procedure only need to be written one time).

A stored procedure is a set of SQL commands that has been compiled and stored on the database
server.	Once	the	stored	procedure	has	been	“stored”,	client	applications	can	execute	the	stored	
procedure over and over again without sending it to the database server again and without
compiling	 it	again.	Stored	procedures	 improve	performance	by	reducing	network	 traffic	and	
CPU load.

13.1 Transactions

A transaction is a sequential group of database manipulation operations, which is performed
as if it were one single work unit. In other words, a transaction will never be complete unless
each individual operation within the group is successful. If any operation within the transaction
fails, the entire transaction will fail.

A	good	example	would	be	a	banking	transaction,	specifically	a	 transfer	of	$100	between	two	
accounts.	In	order	to	deposit	money	into	one	account,	you	must	first	take	money	from	another	
account. Without using transactions, you would have to write SQL statements that do the
following:

	 1.	 Check	that	the	balance	of	the	first	account	is	greater	than	$100.

	 2.	 Deduct	$100	from	the	first	account.

	 3.	 Add	$100	to	the	second	account.

Additionally, you would have to write your own error-checking routines within your program,
specifically	to	stop	the	sequence	of	events	should	the	first	account	not	have	more	than	$100	or	
should the deduction statement fail. This all changes with transactions, for if any part of the
operation fails, the entire transaction is rolled back. This means that the tables and the data
inside them revert to their previous state.

13.1.1 Properties of Transactions

Transactions have the following four standard properties, usually referred to by the acronym
ACID:

 •	 Atomicity	ensures	 that	 all	operations	within	 the	work	unit	 are	 completed	 successfully;	
otherwise, the transaction is aborted at the point of failure, and previous operations are
rolled back to their former state.

	 •	 Consistency	 ensures	 that	 the	 database	 properly	 changes	 states	 upon	 a	 successfully	
committed transaction.

	 •	 Isolation	enables	transactions	to	operate	independently	of	and	transparent	to	each	other.

	 •	 Durability	ensures	that	the	result	or	effect	of	a	committed	transaction	persists	in	case	of	
a system failure.

Open Source Technologies

212 LOVELY PROFESSIONAL UNIVERSITY

Notes In	MySQL,	transactions	begin	with	the	statement	BEGIN	WORK	and	end	with	either	a	COMMIT	
or a ROLLBACK statement. The SQL commands between the beginning and ending statements
form the bulk of the transaction.

13.1.2 COMMIT and ROLLBACK

When a successful transaction is completed, the COMMIT command should be issued so that
the changes to all involved tables will take effect. If a failure occurs, a ROLLBACK command
should be issued to return every table referenced in the transaction to its previous state.

In	MySQL	as	well	 as	NuSphere’s	Enhanced	MySQL,	you	can	 set	 the	value	
of a session variable called AUTOCOMMIT. If AUTOCOMMIT is set to
1 (the default), then each SQL statement (within a transaction or not) is
considered	 a	 complete	 transaction,	 committed	 by	 default	 when	 it	 finishes.	
When	 AUTOCOMMIT	 is	 set	 to	 0,	 by	 issuing	 the	 SET	 AUTOCOMMIT=0	
command, the subsequent series of statements acts like a transaction, and no
activities	are	committed	until	an	explicit	COMMIT	statement	is	issued.

If transactions were not used in application development, a large amount of programming time
would	 be	 spent	 on	 intricate	 error	 checking.	 For	 example,	 suppose	 your	 application	 handles	
customer order information, with tables holding general order information as well as line items for
that order. To insert an order into the system, the process would be something like the following:

 1. Insert a master record into the master order table.

 2. Retrieve the ID from the master order record you just entered.

 3. Insert records into the line items table for each item ordered.

If	you	are	not	in	a	transactional	environment,	you	will	be	left	with	some	straggly	data	floating	
around	your	tables;	if	the	addition	of	the	record	into	the	master	order	table	succeeds,	but	steps	2	
or 3 fail, you are left with a master order without any line items. The responsibility then falls on
you to use programming logic and check that all relevant records in multiple tables have been
added or go back and delete all the records that have been added and offer error messages to the
user.	This	is	extremely	time-consuming,	both	in	man-hours	as	well	as	in	program-execution	time.

In a transactional environment, you’d never get to the point of childless rows, as a transaction
either fails completely or is completely successful.

13.1.3 Row-Level Locking

Transactional table types support row-level locking, which differs from the table-level locking
that is enforced in MyISAM and other nontransactional table types. With tables that support
row-level	 locking,	 only	 the	 row	 touched	 by	 an	 INSERT,	UPDATE,	 or	 DELETE	 statement	 is	
inaccessible until a COMMIT is issued.

Rows	affected	by	 a	 SELECT	query	will	 have	 shared	 locks,	unless	 otherwise	 specified	by	 the	
programmer.	A	shared	lock	allows	for	multiple	concurrent	SELECT	queries	of	the	data.	However,	
if	you	hold	an	exclusive	lock	on	a	row,	you	are	the	only	one	who	can	read	or	modify	that	row	
until the lock is released. Locks are released when transactions end through a COMMIT or
ROLLBACK statement.

Unit 13: Stored Procedure

 LOVELY PROFESSIONAL UNIVERSITY 213

NotesSetting	an	exclusive	 lock	requires	you	to	add	the	FOR	UPDATE	clause	 to	your	query.	 In	 the	
sequence below, you can see how locks are used to check available inventory in a product
catalog	before	processing	an	order.	This	 example	builds	on	 the	previous	example	by	adding	
more condition-checking.

This	sequence	of	events	is	independent	of	the	programming	language	used;	the	logical	path	can	
be created in whichever language you use to create your application.

 1. Begin transaction.

	 	 BEGIN	WORK;

	 2.	 Check	available	inventory	for	a	product	with	a	specific	ID,	using	a	table	called	inventory	
and	a	field	called	qty.

	 	 SELECT	qty	FROM	inventory	WHERE	id	=	‘ABC-001’	FOR	UPDATE;

 3. If the result is less than the amount ordered, rollback the transaction to release the lock.

	 	 ROLLBACK;

 4. If the result is greater than the amount ordered, continue issuing a statement that reserves
the required amount for the order.

	 	 UPDATE	inventory	SET	qty	=	qty	-	[amount	ordered]	WHERE	id	=	‘ABC-001’;

 5. Insert a master record into the master order table.

 6. Retrieve the ID from the master order record you just entered.

 7. Insert records into the line items table for each item ordered.

 8. If steps 5 through 7 are successful, commit the transaction and release the lock.

	 	 COMMIT;

While the transaction remains uncommitted and the lock remains in effect, no other users
can access the record in the inventory table for the product with the ID of ABC-001. If a user
requests the current quantity for the item with the ID of ABC-002, that row still operates under
the shared lock rules and can be read.

13.2 Stored Procedures

A stored procedure is a subroutine available to applications accessing a relational database
system. Stored procedures (sometimes called a proc, sproc, StoPro, StoredProc, or SP) are actually
stored in the database data dictionary.

Typical uses for stored procedures include data validation (integrated into the database) or access
control mechanisms. Furthermore, stored procedures are used to consolidate and centralize logic
that	was	originally	implemented	in	applications.	Extensive	or	complex	processing	that	requires	
the	execution	of	several	SQL	statements	is	moved	into	stored	procedures,	and	all	applications	
call	the	procedures.	One	can	use	nested	stored	procedures,	by	executing	one	stored	procedure	
from within another.

Stored	procedures	are	similar	to	user-defined	functions	(UDFs).	

The	 major	 difference	 is	 that	 UDFs	 can	 be	 used	 like	 any	 other	 expression	
within SQL statements, whereas stored procedures must be invoked using
the CALL statement.

Open Source Technologies

214 LOVELY PROFESSIONAL UNIVERSITY

Notes CALL procedure(...)

or

EXECUTE	procedure(...)

Stored	procedures	may	return	result	sets,	i.e.	the	results	of	a	SELECT	statement.	
Such result sets can be processed using cursors, by other stored procedures,
by associating a result set locator, or by applications. Stored procedures may
also contain declared variables for processing data and cursors that allow it to
loop through multiple rows in a table. Stored procedure languages typically
include	IF,	WHILE,	LOOP,	REPEAT,	and	CASE	statements,	and	more.	Stored	
procedures can receive variables, return results or modify variables and return
them, depending on how and where the variable is declared.

13.2.1 Implementation

The	exact	and	correct	implementation	of	stored	procedure	varies	from	one	database	system	to	
another. Most major database vendors support them in some form. Depending on the database
ystem, stored procedures can be implemented in a variety of programming languages, for
example	SQL,	Java,	C,	or	C++.	Stored	procedures	written	in	non-SQL	programming	languages	
may	or	may	not	execute	SQL	statements	themselves.

The increasing adoption of stored procedures led to the introduction of procedural elements to
the SQL language in the SQL:1999 and SQL:2003 standards in the part SQL/PSM. That made
SQL an imperative programming language. Most database systems offer proprietary and
vendor-specific	extensions,	exceeding	SQL/PSM.

Database system Implementation language

•	Microsoft	SQLServer Transact-SQL	and	various	.NET	Framework	languages

•	Oracle PL/SQL	or	Java

•	DB2 SQL/PL	or	Java

•	Informix SPL

•	Postgre	SQL PL/pg SQL, can also use own function languages such
as pl/perl or pl/php

•	Fire	bird PSQL (Fyracle also supports portions of Oracle’s PL/
SQL)

•	My	SQL Own stored procedures, closely adhering to SQL:
2003 standard.

13.2.2 Other Uses

In	some	systems	stored	procedures	can	be	used	to	control	transaction	management;	in	others,	
stored procedures run inside a transaction such that transactions are effectively transparent to
them. Stored procedures can also be invoked from a database trigger or a condition handler.
For	example,	a	stored	procedure	may	be	triggered	by	an	insert	on	a	specific	table,	or	update	of	
a	specific	field	in	a	table,	and	the	code	inside	the	stored	procedure	would	be	executed.	Writing	

Unit 13: Stored Procedure

 LOVELY PROFESSIONAL UNIVERSITY 215

Notesstored procedures as condition handlers also allows database administrators to track errors in
the system with greater detail by using stored procedures to catch the errors and record some
audit	information	in	the	database	or	an	external	resource	like	a	file.

13.2.3 Comparison with Dynamic SQL

 •	 Overhead: Because stored procedure statements are stored directly in the database, they
may remove all or part of the compilation overhead that is typically required in situations
where	software	applications	send	inline	(dynamic)	SQL	queries	to	a	database.	(However,	
most database systems implement “statement caches” and other mechanisms to avoid
repetitive compilation of dynamic SQL statements.) In addition, while they avoid some
overhead,	 pre-compiled	 SQL	 statements	 add	 to	 the	 complexity	 of	 creating	 an	 optimal	
execution	plan	because	not	all	arguments	of	the	SQL	statement	are	supplied	at	compile	
time.	 Depending	 on	 the	 specific	 database	 implementation	 and	 configuration,	 mixed	
performance results will be seen from stored procedures versus generic queries or user
defined	functions.

	 •	 Avoidance of Network Traffic: A major advantage with stored procedures is that they
can run directly within the database engine. In a production system, this typically means
that the procedures run entirely on a specialized database server, which has direct access
to	 the	 data	 being	 accessed.	 The	 benefit	 here	 is	 that	 network	 communication	 costs	 can	
be	avoided	completely.	This	becomes	particularly	 important	 for	complex	series	of	SQL	
statements.

	 •	 Encapsulation of Business Logic: Stored procedures allow for business logic to be
embedded as an API in the database, which can simplify data management and reduce the
need to encode the logic else where in client programs. This may result in a lesser likelihood
of data becoming corrupted through the use of faulty client programs. The database system
can ensure data integrity and consistency with the help of stored procedures.

	 •	 Delegation of Access-Rights: In many systems, stored-procedures can be granted access
rights	to	the	database	which	the	users	who	will	execute	those	procedures	do	not	directly	
have.

	 •	 Some Protection from SQL Injection Attacks: Stored procedures can be used to protect
against injection attacks. Stored procedure parameters will be treated as data even if an
attacker inserts SQL commands. Also, some DBMSs will check the parameter’s type.

13.2.4 Comparison with Functions

	 •	 A	function	is	a	subprogram	written	to	perform	certain	computations	and	return	a	single	
value.

	 •	 Functions	must	return	a	value	(using	the	RETURN	keyword),	but	for	stored	procedures	
this is not compulsory.

	 •	 Stored	procedures	can	use	RETURN	keyword	but	without	any	value	being	passed.

	 •	 Functions	 could	 be	 used	 in	 SELECT	 statements,	 provided	 they	 don’t	 do	 any	 data	
manipulation.	However,	procedures	cannot	be	included	in	SELECT	statements.

Open Source Technologies

216 LOVELY PROFESSIONAL UNIVERSITY

Notes 	 •	 A	 function	 can	 have	 only	 IN	 parameters,	 while	 stored	 procedures	may	 have	 OUT	 or	
INOUT	parameters.

	 •	 A	 stored	procedure	 can	 return	multiple	values	using	 the	OUT	parameter	 or	 return	no	
value at all.

13.2.5 Disadvantages

Stored	 procedure	 languages	 are	 quite	 often	 vendor-specific.	 If	 you	want	 to	 switch	 to	 using	
another vendor’s database, then you have to rewrite your stored procedures. Stored procedure
languages	from	different	vendors	have	different	levels	of	sophistication;	for	example,	Oracle’s	
PL/SQL has more languages features and built-in features (via packages such as DBMS_ and
UTL_ and others) than Microsoft’s T-SQL. Tool support for writing and debugging stored
procedures	are	often	not	as	good	as	for	other	programming	languages;	but	again,	this	differs	
between	vendors	and	languages	(for	example,	both	PL/SQL	and	T-SQL	have	dedicated	IDEs	
and debuggers).

13.2.6 Why Use Stored Procedures?

There are several advantages of using stored procedures instead of standard SQL. First, stored
procedures	allow	a	 lot	more	flexibility	offering	capabilities	such	as	conditional	 logic.	Second,	
because	 stored	 procedures	 are	 stored	within	 the	 DBMS,	 bandwidth	 and	 execution	 time	 are	
reduced.	This	is	because	a	single	stored	procedure	can	execute	a	complex	set	of	SQL	statements.	
Third,	 SQL	Server	pre-compiles	 stored	procedures	 such	 that	 they	 execute	 optimally.	 Fourth,	
client	developers	are	abstracted	from	complex	designs.	They	would	simply	need	to	know	the	
stored procedure’s name and the type of data it returns.

13.2.7 Creating a Stored Procedure

Enterprise	Manager	provides	an	easy	way	to	create	stored	procedures.	First,	select	the	database	
to	create	the	stored	procedure	on.	Expand	the	database	node,	right-click	on	“Stored	Procedures”	
and	select	“New	Stored	Procedure...”.	You	should	see	the	following:	

Create	procedure	[owner].[procedure	name]	as

Substitute	OWNER	with	“dbo”	(database	owner)	and	PROCEDURE	NAME	with	the	name	of	
the	procedure.	For	example:	

Create	procedure	[dbo].[getproducts]	as

So	far,	we	are	telling	SQL	Server	to	create	a	new	stored	procedure	with	the	name	GetProducts.	
We specify the body of the procedure after the AS clause:

CREATE	 PROCEDURE	 [dbo].[GetProducts]	 ASSELECT	 ProductID,	 ProductName	 FROM	
Products	Click	 on	 the	Check	 Syntax	 button	 in	 order	 to	 confirm	 that	 the	 stored	procedure	 is	
syntactically	correct.	Please	note	that	the	GetProducts	example	above	will	work	on	the	Northwind	
sample database that comes with SQL Server. Modify it as necessary to suite the database you
are using.

Now	that	we	have	created	a	stored	procedure,	we	will	examine	how	to	call	 it	 from	within	a	
C# application.

Unit 13: Stored Procedure

 LOVELY PROFESSIONAL UNIVERSITY 217

Notes13.2.8 Calling a Stored Procedure

A	very	nice	aspect	of	ADO.NET	 is	 that	 it	 allows	 the	developer	 to	 call	 a	 stored	procedure	 in	
almost	the	exact	same	way	as	a	standard	SQL	statement.

 1. Create a new C# Windows Application project.

	 2.	 From	the	Toolbox,	drag	and	drop	a	DataGrid	onto	the	Form.	Resize	it	as	necessary.

 3. Double-click on the Form to generate the Form_Load event handler. Before entering any
code,	add	“using	System.Data.SqlClient”	at	the	top	of	the	file.

Enter the Following Code

private void Form1_Load(object sender, System.EventArgs e)

 {

 SqlConnection conn = new SqlConnection(“Data

 Source=localhost;Database=Northwind;Integrated Security=SSPI”);

 SqlCommand command = new SqlCommand(“GetProducts”, conn);

 SqlDataAdapter adapter = new SqlDataAdapter(command);

 DataSet ds = new DataSet();

 adapter.Fill(ds, “Products”);

 this.dataGrid1.DataSource = ds;

 this.dataGrid1.DataMember = “Products”;

 }

As	you	can	see,	calling	a	stored	procedure	in	this	example	is	exactly	like	how	you	would	use	
SQL statements, only that instead of specifying the SQL statement, you specify the name of the
stored	procedure.	Aside	from	that,	you	can	treat	it	exactly	the	same	as	you	would	an	ordinary	
SQL statement call with all the advantages of a stored procedure.

13.2.9 Specifying Parameters

Most of the time, especially when using non-queries, values must be supplied to the stored
procedure	at	runtime.	For	instance,	a	@CategoryID	parameter	can	be	added	to	our	GetProducts	
procedure in order to specify to retrieve only products of a certain category. In SQL Server,
parameters	are	specified	after	the	procedure	name	and	before	the	AS	clause.	

Create	procedure	[dbo].[getproducts]	(@categoryid	int)	as	select	productid,	productname	from	
products	where	categoryid	=	@categoryid

Parameters	are	enclosed	within	parenthesis	with	the	parameter	name	first	followed	by	the	data	
type. If more than one parameter is accepted, they are separated by commas:

CREATE PROCEDURE [dbo].[SomeProcedure] (

 @Param1 int,

 @Param2 varchar(50),

Open Source Technologies

218 LOVELY PROFESSIONAL UNIVERSITY

Notes @Param3 varchar(50)

) AS

...

For	our	GetProducts	example,	if	@CategoryID	was	supplied	with	the	value	1,	the	query	would	
equate to:

Select productid, productname from products where categoryid = 1

Which would select all the products that belong to CategoryID 1 or the Beverages category. To
call	the	stored	procedure,	use	Query	Analyzer	to	execute:	

exec GetProducts X

where	 X	 is	 the	 @CategoryID	 parameter	 passed	 to	 the	 stored	 procedure.	 To	 call	 the	 stored	
procedure from within a C# application using 1 as the @CategoryID parameter value, use the
following code:

SqlConnection conn = new SqlConnection(“Data

Source=localhost;Database=Northwind;Integrated Security=SSPI”);

SqlCommand command = new SqlCommand(“GetProducts”, conn);

command.CommandType = CommandType.StoredProcedure;

command.Parameters.Add(“@CategoryID”, SqlDbType.Int).Value = 1;

SqlDataAdapter adapter = new SqlDataAdapter(command);

DataSet ds = new DataSet();

adapter.Fill(ds, “Products”);

this.dataGrid1.DataSource = ds;

this.dataGrid1.DataMember = “Products”;

Note	that	you	must	now	specify	the	CommandType	property	of	the	SqlCommand	object.	The	
reason	we	did	not	do	this	in	the	first	example	was	that	it	is	not	required	if	the	stored	procedure	
does not accept parameters. Of course, specifying the CommandType property even if it is not
needed	may	improve	readability.	The	next	line	actually	combines	two	lines	in	one:	

command.Parameters.Add(“@CategoryID”,

SqlDbType.Int);command.Parameters[“@CategoryID”].Value = 1;

The	first	 line	of	 this	segment	specifies	 that	 the	command	object	 (which	calls	 the	GetProducts	
stored procedure) accepts a parameter named @CategoryID which is of type SqlDbType.Int. The
type	must	be	the	same	as	the	data	type	specified	by	the	stored	procedure.	The	second	line	of	
this code segment gives the parameter the value 1. For simplicity, especially when using more
than one parameter, I prefer to combine to two lines into a single line:

command.Parameters.Add(“@CategoryID”, SqlDbType.Int).Value = 1;

Unit 13: Stored Procedure

 LOVELY PROFESSIONAL UNIVERSITY 219

NotesThe	rest	of	the	code	is	the	same	as	in	the	previous	example	without	parameters.	As	illustrated	
in	the	previous	examples,	ADO.NET	takes	a	lot	of	pain	out	of	database	programming.	Calling	a	
stored procedure uses virtually the same code as using standard SQL and specifying parameters
is a painless process.

13.2.10 Data Retrieval

Data	Retrieval	with	stored	procedures	is	the	same	(surprise!)	as	if	using	standard	SQL.	You	can	
wrap a DataAdapter around the Command object or you can use a DataReader to fetch the data
one	row	at	a	time.	The	previous	examples	have	already	illustrated	how	to	use	a	DataAdapter	
and	fill	a	DataSet.	The	following	example	shows	usage	of	the	DataReader:	

SqlConnection conn = new SqlConnection(“Data

Source=localhost;Database=Northwind;Integrated Security=SSPI”);

SqlCommand command = new SqlCommand(“GetProducts”, conn);

command.CommandType = CommandType.StoredProcedure;

command.Parameters.Add(“@CategoryID”, SqlDbType.Int).Value = 1;

conn.Open();SqlDataReader reader = command.ExecuteReader();

while (reader.Read())

{

 Console.WriteLine(reader[“ProductName”]);

}

conn.Close();

Again, using either a DataAdapter or a DataReader against a query from a stored procedure is
the same as specifying the SQL from within the code.

13.2.11 Inserting Data Using Parameters

Using	other	SQL	statements	such	as	INSERT,	UPDATE	or	DELETE	follow	the	same	procedure.	
First, create a stored procedure that may or may not accept parameters, and then call the stored
procedure from within the code supply the necessary values if parameters are needed. The
following	example	illustrates	how	to	insert	a	new	user	in	a	users	table	that	has	a	username	and	
password	field.	

CREATE PROCEDURE [dbo].[InsertUser] (

 @Username varchar(50),

 @Password varchar(50)

) AS

INSERT INTO Users VALUES(@Username, @Password)

string username = ... // get username from user

string password = ... // get password from user

Open Source Technologies

220 LOVELY PROFESSIONAL UNIVERSITY

Notes SqlConnection conn = new SqlConnection(“Data

Source=localhost; Database=MyDB;Integrated Security=SSPI”);

SqlCommand command = new SqlCommand(“InsertUser”, conn);

command.CommandType = CommandType.StoredProcedure;

command.Parameters.Add(“@Username”, SqlDbType.VarChar).Value = username;

command.Parameters.Add(“@Password”, SqlDbType.VarChar).Value = password;

conn.Open();

int rows = command.ExecuteNonQuery();

conn.Close();

First, we retrieve the username and password information from the user. This information may be
entered onto a form, through a message dialog or through some other method. The point is, the
user	specifies	the	username	and	password	and	the	applicaton	inserts	the	data	into	the	database.	
Also	notice	that	we	called	the	ExecuteNonQuery()	method	of	the	Connection	object.	We	call	this	
method to indicate that the stored procedure does not return results for a query but rather an
integer	indicating	how	many	rows	were	affected	by	the	executed	statement.	ExecuteNonQuery()	
is	used	for	DML	statements	such	as	INSERT,	UPDATE	and	DELETE.	

We can test the value of rows to check if the stored procedure inserted the
data successfully.

if (rows == 1)
{

 MessageBox.Show(“Create new user SUCCESS!”);

}

else

{

 MessageBox.Show(“Create new user FAILED!”);

}

We check the value of rows to see if it is equal to one. Since our stored procedure only did
one	 insert	 operation	 and	 if	 it	 is	 successful,	 the	 ExecuteNonQuery()	method	 should	 return	 1	
to	indicate	the	one	row	that	was	inserted.	For	other	SQL	statements,	especially	UPDATE	and	
DELETE	statements	that	affect	more	than	one	row,	the	stored	procedure	will	return	the	number	
of rows affected by the statement.

Delete from products where productid > 50

This will delete all products whose product ID is greater than 50 and will return the number
of rows deleted.

Stored	procedures	offer	developers	a	 lot	of	flexibility	with	many	features	not	available	using	
standard	SQL.	ADO.NET	allows	us	to	use	stored	procedures	in	our	applications	seamlessly.	The	
combination of these two allows us to create very powerful appliations rapidly.

Unit 13: Stored Procedure

 LOVELY PROFESSIONAL UNIVERSITY 221

Notes13.2.12 Benefits of Stored Procedures

Why	should	you	use	stored	procedures?	Let’s	take	a	look	at	the	key	benefits	of	this	technology:	

	 •	 Precompiled execution. SQL Server compiles each stored procedure once and then
reutilizes	the	execution	plan.	This	results	in	tremendous	performance	boosts	when	stored	
procedures are called repeatedly.

	 •	 Reduced client/server traffic. If network bandwidth is a concern in your environment,
you’ll be happy to learn that stored procedures can reduce long SQL queries to a single
line that is transmitted over the wire.

	 •	 Efficient reuse of code and programming abstraction. Stored procedures can be used by
multiple	users	and	client	programs.	If	you	utilize	them	in	a	planned	manner,	you’ll	find	
the development cycle takes less time.

	 •	 Enhanced security controls.	You	can	grant	users	permission	to	execute	a	stored	procedure	
independently of underlying table permissions.

Load Balancing High Transaction Volume Databases

Recently, while working on a SQL server optimization project, we had the opportunity
to	look	into	one	interesting	problem.	We	had	a	huge	database	(to	the	tune	of	800GB)	
which	 was	 being	 hammered	 with	 approximately	 30000	 transactions	 per	 second.	

Database	 load	was	expected	 to	grow	by	a	 factor	of	100	 in	coming	days	and	 the	 idea	was	
to devise a solution which could handle that load. This was a SQL server 2005 enterprise
edition	database	 hosted	 on	 an	 8	 processor	 fifth	Generation	 server.	We	wouldn’t	 say	 this	
server	was	on	its	knees	with	this	load	but	yes	there	were	wait	times	longer	than	expected	
and	to	add	to	that	there	were	times	when	data	traffic	suddenly	went	up	significantly	and	
in those times DB was not able to keep up.

Though this is not a very common scenario in many of the modern day applications out
there	but	this	definitely	is	a	hallmark	of	databases	handling	loads	from	specific	industries	
like banking. Applications intended for these industries normally have huge volume of
small database transactions. In this article, we present one of the approaches you can take
to handle a scenario such as this.

Introducing Broker Hub

To demonstrate the problem which has these type of database requirements, let’s use the
example	of	a	Broker	Hub	–	a	stock	broking	hub.	Stock	broking	applications	have	very	high	
volume of small database transactions and also there are spurts in database activity depending
on market conditions. For simplicity sake, let’s assume that we were at a point when database
design and usage pattern for Broker hub database was in the most optimal state.

First Choice–Scale Up

So	to	optimize	Broker	Hub	further,	we	had	a	number	of	ideas	and	first	choice	was	obviously	
to increase the hardware capacity. Increasing the hardware capacity did help the case. We
could handle upwards of 50000 transactions a second by moving to a better system with 16
processors	and	a	SAN	array	of	high	speed	disks.	But	above	50000	in	our	load	environments,	
we could still see the database to be the bottleneck.

Next	obvious	idea	was	to	try	SQL	Server	2008	which	has	support	for	performance	optimization	
features like advanced compression (reducing the overall disk IO) and support for virtually

Contd...

Open Source Technologies

222 LOVELY PROFESSIONAL UNIVERSITY

Notes unlimited number of objects (2,147,483,647) and database size (524,272 TB). Again we could
see the difference. Without enabling features like compression we could achieve a bigger
number of around 70000 transactions per second.

Would it Work? Probably not Long Term

Probably enabling compression and using other features to optimize performance would have
resulted	in	a	higher	figure	but	the	problem	here	was	that	there	was	a	limit	to	this.	Adding	
hardware or moving to newer version of a database (or even to a different database) wouldn’t
have given us the virtually unlimited (100 times 30000 transactions per minute) capacity we
were looking at. Obviously we needed some way to deploy more than one server to split
the load and thus increase the capacity to handle very high transaction loads. In simpler
terms we needed a scale out solution instead of scale up for our database. Looking around
for	out	of	 the	box	 solutions	 in	 the	market	didn’t	help,	 simply	because	 there	 aren’t	many	
scale-out solutions available in the market to load balance SQL server. Oracle has launched
such a solution but even that requires syncing between different servers in cluster which
takes up a lot of network bandwidth thus reducing the overall effectiveness of the solution.

Scale Out–Approach

After a lot of brainstorming sessions, it was decided that it was time to create our own scale
out solution. The idea was to create a design which could help us scale out as our user base
grew but at the same time being able to handle sudden increases in transaction volumes.
But as it happens all the time, we didn’t have too much money to be spent on this. We
looked	at	various	existing	products	 such	as	SharePoint	 to	 see	how	 they	stored	 their	data	
and	came	up	with	a	very	simple	first	draft	of	the	scale	out	solution.	It	looked	very	similar	
to way SharePoint does load balancing for its data stores. We had a cluster of database
servers	connected	to	the	Broker	Hub.	Each	database	was	configured	to	handle	a	set	of	users	
with	specific	user	Ids	and	thus	held	data	only	for	those	users.	Merge	replication	was	used	
to replicate data from all databases to a central database which was used for all reporting.
Here’s	how	it	looked	like:

Contd...

Unit 13: Stored Procedure

 LOVELY PROFESSIONAL UNIVERSITY 223

NotesBroker	Hub	front	end	had	to	be	modified	a	bit	in	terms	of	process	flow.	In	this	case,	each	
user	logging	into	Broker	Hub	had	to	be	connected	to	a	specific	database	based	on	his	user	
id. The task of identifying which database has the information related to the user trying to
log in was handled by a new module added to the application called DB Load balancer. The
process	flow	in	this	approach	looked	like	this:

 •	 User	foo	with	User	ID	(n)	logs	in.

	 •	 Application	calls	Custom	DB	load	balancer	to	find	out	that	all	data	specific	to	user	foo	
is on database server DB 2.

	 •	 Application	creates	a	connection	to	DB	2	on	behalf	of	this	user.

	 •	 All	user	transactions	from	User	1	are	directed	to	DB	2	thereafter.

	 •	 Periodically	user	data	is	synchronized	to	the	master	database.

Design Decisions for This Approach

This approach was pretty simple to implement and could achieve the results we were looking
for. But there were a few practical issues:

	 •		We	have	to	introduce	concept	of	ID	buckets.	So	every	transaction	table	on	each	server	
was assigned unique bucket from which it could allocate IDs. With this we overcame
the problem of how to maintain unique IDs.

	 •	 All	the	masters	would	be	replicated	using	transaction	with	update	option.	So	a	change	
on one gets replicated all over.

	 •	 Adding	new	users	was	not	as	simple	as	before.	Every	database	was	configured	for	a	
specific	set	of	users	and	this	set	increased	sequentially.	This	meant	that	we	always	had	
to add the new user in the last server available and if last server was full then we had to
deploy a new database even for a single user (and probably even before the last server
was at its full capacity). This was accepted as an acceptable fact as this would happen
once a while.

	 •	 Any	admin	report	had	to	combine	the	data	from	all	the	servers	to	be	useful	which	meant	
an additional job to aggregate all the data. This was accepted as a design reality.

Questions

1.	 Explain	briefly	broker	hub.

2. What do you mean by DB Load balancer?

13.3 Summary

 •	 A	transaction	is	a	sequence	of	operations	performed	as	a	single	logical	unit.

	 •	 A	stored	procedure	is	a	set	of	SQL	commands	that	has	been	compiled	and	stored	on	the	
database server.

	 •	 Stored	procedures	improve	performance	by	reducing	network	traffic	and	CPU	load.

Open Source Technologies

224 LOVELY PROFESSIONAL UNIVERSITY

Notes 13.4 Keywords

COMMIT: COMMIT command should be issued so that the changes to all involved tables will
take effect.

Function: A function is a subprogram written to perform certain computations and return a
single value.

ROLLBACK: ROLLBACK command should be issued to return every table referenced in the
transaction to its previous state.

Stored Procedure: A stored procedure is a subroutine available to applications accessing a
relational database system.

Transaction: A transaction is a sequential group of database manipulation operations, which is
performed as if it were one single work unit.

1. Using SQL statements, create stored parameter.

2. Create a database of hospital management.

13.5 Self Assessment Questions

 1. _______________ is a sequential group of database manipulation operations, which is
performed as if it were one single work unit.

 (a) Stored procedure (b) Transaction

 (c)	 Linux	 (d)	 None	of	these.

 2. COMMIT command should be issued to return every table referenced in the transaction
to its previous state.

 (a) True (b) False

 3. A _______________ is a subroutine available to applications accessing a relational database
system.

 (a) Stored procedures (b) Transaction

 (c) SQL (d)	 None	of	these.

 4. Functions must return a value.

 (a) True (b) False

 5. _______________ are enclosed within parenthesis with the parameter name.

 (a) Functions (b) Statements

 (c) Parameters (d)	 None	of	these.

13.6 Review Questions

 1. What do you mean by transactions?

	 2.	 Explain	the	following	commands:

 (a) COMMIT

 (b) ROLLBACK

Unit 13: Stored Procedure

 LOVELY PROFESSIONAL UNIVERSITY 225

Notes	 3.	 Define	stored	procedures.

 4. What are the advantages and disadvantages of stored procedures?

 5. Write steps how to create and call stored procedures.

Answers for Self Assessment Questions
 1. (b) 2. (b) 3. (a) 4. (a) 5. (c)

13.7 Further Reading

Open Source Development with LAMP: Using Linux, Apache, MySQL, Perl & PHP
By:	James	Lee,	Pearson	Education.

http://www.opensourcetutorials.com/

Open Source Technologies

226 LOVELY PROFESSIONAL UNIVERSITY

Notes Unit 14: Connecting to MYSQL with PHP

CONTENTS

Objectives

Introduction

14.1 Connecting to MySQL with PHP

 14.1.1 Creating the Connection

 14.1.2 Closing the Connection

14.2 Working with MySQL Data

 14.2.1 Connecting to the Server

 14.2.2 Connecting to the MySQL server

 14.2.3 Issuing Queries

 14.2.4 Creating a Database

 14.2.5 Removing a Database

 14.2.6 Creating Tables

 14.2.7 Inserting Data into the Table

 14.2.8 Retrieving Information from a Table

 14.2.9 Editing and Deleting Records

 14.2.10 Altering the Structure of Tables

 14.2.11 Dropping a Table

 14.2.12 Working with NULL Value

 14.2.13 Backing up a Database

14.3 Summary

14.4 Keywords

14.5 Self Assessment Questions

14.6 Review Questions

14.7 Further Reading

Objectives

After studying this unit, you will be able to:

	 •	 Discuss	creating	the	connection.

	 •	 Discuss	closing	the	connection.

	 •	 Understand	with	MySQL	Data.

Unit 14: Connecting to MySQL with PHP

 LOVELY PROFESSIONAL UNIVERSITY 227

NotesIntroduction

PHP is becoming more and more popular in web programmers, mainly because it can be
configured	to	connect	to	various	databases	like	Oracle,	MySQL,	Solid	and	so	on.	But	for	a	MS	
SQL server, the problem is different. Though you can use PHP’s Sybase-ct support features to
directly connect to MSSQ.

The extension requires the MSSQL Client Tools to be installed on the system where PHP is
installed. The Client Tools can be installed from the MSSQL Server CD or by copying ntwdblib.
dll from\winnt\system32 on the server to\winnt\system32 on the PHP box.

14.1 Connecting to MySQL with PHP

14.1.1 Creating the Connection

Opening a connection to MySQL database from PHP is easy. Just use the mysql_connect()
function like this

 <?php
 $dbhost = ‘localhost’;
 $dbuser = ‘root’;
 $dbpass = ‘password’;

$conn = mysql_connect($dbhost, $dbuser, $dbpass) or die

(‘Error connecting to mysql’);
$dbname = ‘petstore’;
mysql_select_db($dbname);
?>

$dbhost is the name of MySQL server. When your webserver is on the same machine with
the MySQL server you can use localhost or 127.0.0.1 as the value of $dbhost. The $dbuser and
$dbpass are valid MySQL user name and password.

Don’t forget to select a database using my sql_select_db() after connecting to mysql. If no database
selected your query to select or update a table will not work.

Sometimes a web host will require you to specify the MySQL server name and port number. For
example if the MySQL server name is db.php-mysql-tutorial.com and the port number is 3306
(the default port number for MySQL) then you you can modify the above code to:

 <?php

 $dbhost = ‘db.php-mysql-tutorial.com:3306’;

 $dbuser = ‘root’;

 $dbpass = ‘password’;

 $conn = mysql_connect($dbhost, $dbuser, $dbpass) or die (‘Error

connecting to mysql’);

 $dbname = ‘petstore’;

 mysql_select_db($dbname);

 ?>

Open Source Technologies

228 LOVELY PROFESSIONAL UNIVERSITY

Notes It’s	a	common	practice	to	place	the	routine	of	opening	a	database	connection	in	a	separate	file.	
Then	 everytime	 you	want	 to	 open	 a	 connection	 just	 include	 the	 file.	Usually	 the	 host,	 user,	
password	and	database	name	are	also	separated	in	a	configuration	file.	

An	example	of	config.php	that	stores	the	connection	configuration	and	opendb.php	that	opens	
the connection are:

Source code:

config.phps , opendb.phps

 <?php

 // This is an example of config.php

 $dbhost = ‘localhost’;

 $dbuser = ‘root’;

 $dbpass = ‘password’;

 $dbname = ‘phpcake’;

 ?>

 <?php

 // This is an example opendb.php

$conn = mysql_connect($dbhost, $dbuser, $dbpass) or die (‘Error connecting to mysql’);

 mysql_select_db($dbname);

 ?>

So now you can open a connection to mysql like this:

 <?php

 include ‘config.php’;

 include ‘opendb.php’;

 // ... do something like insert or select, etc

 ?>

14.1.2 Closing the Connection

The connection opened in a script will be closed as soon as the execution of the script ends.
But it’s better if you close it explicitly by calling mysql_close() function. You could also put this
function	call	in	a	file	named	closedb.php.	

Source code: closedb.phps

 <?php
 // an example of closedb.php
 // it does nothing but closing
 // a mysql database connection

 mysql_close($conn);
 ?>

Unit 14: Connecting to MySQL with PHP

 LOVELY PROFESSIONAL UNIVERSITY 229

NotesNow	that	you	have	put	 the	database	configuration,	opening	and	closing	routines	 in	separate	
files	your	PHP	script	that	uses	mysql	would	look	something	like	this	:

 <?php
 include ‘config.php’;
 include ‘opendb.php’;

 // ... do something like insert or select, etc

 include ‘closedb.php’;
 ?>

14.2 Working with MySQL Data

14.2.1 Connecting to the Server

As mentioned earlier, MySQL operates in client/server architecture. The client application needs
to connect to database server, before manipulating the data.

For our examples, we will be using Telnet application to connect to the database server, and
manipulate the database. In the examples provided, we are using Windows OS with Telnet
client application. However, please note that there are other ways to connect to the database
server. Initially, you need to call the telnet application by issuing “telnet” command from your
DOS prompt. Now the telnet window pops up as shown below.

After clicking on the “Remote System”, the following window will come where you can give
the IP address of the server for connection

Then click the Connect button which will show the following window.

Open Source Technologies

230 LOVELY PROFESSIONAL UNIVERSITY

Notes

In the above window enter your user name, and then enter the password when prompted. The
following window will be shown with Linux shell prompt (if the server is a Linux system) if
both user name and password are correct. Please note that the prompt depends on the username,
and will vary from user to user.

Now you are connected with the Linux server.

14.2.2 Connecting to the MySQL Server

Before you work with MySQL, ensure that you have a user name and password with appropriate
permissions for connecting to and accessing the MySQL database.

The GRANT and REVOKE commands allow system administrators to create users and grant
and revoke rights to MySQL users at four privilege levels:

Global level: The global privileges apply to all databases on a given server. These privileges
are stored in the my sql.user table. REVOKE ALL ON *.* will revoke only global privileges.

Database level: Database privileges apply to all tables in a given database. These privileges are
stored in the mysql.db and mysql.host tables. REVOKE ALL ON db.* will revoke only database
privileges.

Table level: Table privileges apply to all columns in a given table. These privileges are stored
in the my sql.tables_priv table. REVOKE ALL ON db.table will revoke only table privileges.

Column level: Column privileges apply to single columns in a given table. These privileges
are stored in the my sql.columns_priv table. When using REVOKE you must specify the same
columns that were granted.

 Example: mysql> GRANT ALL PRIVILEGES ON *.* TO name1@localhost IDENTIFIED BY
‘pass’ WITH GRANT OPTION;

Unit 14: Connecting to MySQL with PHP

 LOVELY PROFESSIONAL UNIVERSITY 231

Notes mysql> GRANT ALL PRIVILEGES ON *.* TO name1@”%” IDENTIFIED BY
‘pass’ WITH GRANT OPTION;

The above commands will provide the user “name1” with superuser permissions. The user can connect
from anywhere.

If you give a grant for a users that doesn’t exists, that user is created.

After getting the user_name, password you can connect to the database server.

To connect to the server invoke the mysql program from your shell prompt.

Syntax of the command is:

% mysql <options>

% indicates the shell prompts

mysql is the client program

<options> include the following:

 -h host_name -u user_name -p password

 -u user_name -p (if host is localhost)

In our example, we have the following information:

	 • host :localhost

	 •	 user_name	:subu	

	 •	 password	:subu	

	 •	 database	:sample_db	

Given the above, to connect to the database server use the command:

[anand soft@localhost anandsoft]$ mysql -u subu -p

Then enter your password subu at the password prompt.

The following screenshot depicts the above example:

Now you are connected to the database server.

The connection can be terminated by giving QUIT at the mysql prompt.

mysql>QUIT

Bye

Open Source Technologies

232 LOVELY PROFESSIONAL UNIVERSITY

Notes 14.2.3 Issuing Queries

After you are connected to the server you are ready to issue queries.

In MySQL the keywords and functions can be in uppercase or lowercase.

But	the	database	name	and	table	name	must	be	in	proper	case	as	in	Unix	system	the	files	and	
directives are case sensitive.

To enter a query in mysql, just type it, end it with a semicolon(;) and press enter. The semicolon
tells mysql that the query is complete. You can also use ‘\g’ to terminate queries.

Examples and results of some simple query is given below:

mysql>SELECT NOW();

When you invoke a function in query, there must be no space between function
name and following parenthesis.

As my sql waits for the semicolon before sending the query to the server, you don’t need to
enter it on a single line. You can spread a query over several lines if you want:

mysql>SELECT NOW(),

->USER(),

->VERSION()

->;

Unit 14: Connecting to MySQL with PHP

 LOVELY PROFESSIONAL UNIVERSITY 233

Notes

 The	prompt	changes	from	‘mysql’	to	‘->’after	you	enter	the	first	line	of	query.

If you have begun typing in a multiple-line query and decide you don’t want to execute it, type
‘\c’ to clear(cancel) it.

mysql>SELECT NOW(),

->USER(),

->\c

mysql>

 The prompt changes back to mysql> to indicate that mysql is ready for new
query.’c’ is always lowercase.

14.2.4 Creating a Database

The	 first	 step	 in	 database	 management,	 is	 to	 create	 a	 database.	 The	 following	 steps	 are	
demonstrated using a database sample_db:

 1. Creating (initializing) the database.

 2. Creating the tables within the database.

 3. Interacting with the tables by inserting, retrieving, modifying, or deleting data.

After connection to the server issue the following query to create database by name sample_db

mysql>CREATE DATABASE sample_db;

Now, a database by name sample_db is created, but still not in use. You need to issue USE
<database-name> command to perform any operations on the database. SELECT DATABASE()
command can be used to view the database in use as shown below:

mysql> SELECT DATABASE();

To make the sample_db as the current database in use, issue the command:

mysql>USE sample_db

Open Source Technologies

234 LOVELY PROFESSIONAL UNIVERSITY

Notes
Use is one of the few statements that require no terminating semicolon,
although you can give if you want.

After you issue the use statement, sample_db is the default database:

mysql>SELECT DATABASE();

The other way to make a database current is to name it on command line during connection
to the server as follows:

% mysql -u subu -p sample_db

The available databases could be viewed by issuing the command:

mysql>SHOW DATABASES;

14.2.5 Removing a Database

You can remove it by the following query:

mysql>drop database sample_db;

The command will permanently remove the database.

14.2.6 Creating Tables

The CREATE TABLE statement allows you to create a table within the current database.

Syntax for creating table:

mysql>CREATE TABLE table_name(column_specs);

	 •	 table_name	indicates	the	name	you	want	to	give	the	table.

	 •	 column_specs	provides	the	specifications	for	the	columns	in	the	table,	as	well	as	indexes	
(if you have any).

Each	column	specification	in	the	create	table	statement	consists	of	the	column	name,	the	type	
(like varchar, int, date, etc.) and possibly some column attributes.

A table must have at least one column. You cannot create a table without
specifying any column name.

Now	we	can	create	a	table	having	name	student	and	four	fields	having	name	as	roll_no,	name,	
specialization, dob(date of birth).

Unit 14: Connecting to MySQL with PHP

 LOVELY PROFESSIONAL UNIVERSITY 235

NotesThe CREATE TABLE statement for the student table look like this

mysql>CREATE TABLE student

 (

 roll_no INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY ,

 name VARCHAR(20) NOT NULL,

 specialization VARCHAR(6) NOT NULL,

 dob DATE NOT NULL);

In the above insert statement:

 •	 INT	signifies	that	the	column	holds	integers	(value	with	no	fractional	part).

	 •	 UNSIGNED	disallows	negative	numbers.	

	 •	 NOT	NULL	means	that	the	column	value	must	be	filled	in.	(No	student	can	be	without	
a roll number).

	 •	 AUTO_INCREMENT	works	 like	 this:	 If the value for the roll_no column is missing
(or NULL) when you create a new student table record, MySQL automatically generates
a unique number that is one greater than the maximum value currently in the column.

 • PRIMARY KEY means each value in the column must be unique. This prevents us for using
the roll number twice by mistake, which is desirable property for student roll number.
(Not only that, but MySQL requires every AUTO_INCREMENT column have a unique
index).

	 •	 VARCHAR(n)	 means	 the	 column	 contains	 variable-length	 character	 values,	 with	 a	
maximum length of n characters.

	 •	 Column	 type	 DATE	 holds	 the	 value	 in	 the	 format	 “YYYY-MM-DD”(for	 example,”
1983-10-24”)

Open Source Technologies

236 LOVELY PROFESSIONAL UNIVERSITY

Notes After creating a table you can see the structure of that table by DESC statement or SHOW
COLUMNS FROM table_name

i.e.

mysql>DESC student;

or

mysql>SHOW COLUMNS FROM student;

If you happen to forget the name of any tables inside your database, you
can see it by giving the following query:
mysql>SHOW TABLES;

 You	can	create	primary	key	by	combining	two	or	more	fields	during	table	creation	
by the using the following query:

CREATE TABLE table_name (col1_name type NOT NULL, col2_name type NOT NULL,.....,
primary key (col1, col2)).

The	two	fields	combining	which	you	want	to	make	a	primary	key	cannot	be	NULL.

Here	type	signifies	data	type	of	the	field.

14.2.7 Inserting Data into the Table

The INSERT INTO statement allows you to insert data into a table.

Syntax for insertion is:

mysql>INSERT INTO table_name values(value1,value2,....);

>table_name indicates the name of the table.

>value1,value2.... are the number of values same as the number of columns in the table _name
specified																		

If	you	want	to	insert	values	into	few	fields	instead	of	whole	record,	you	can	achieve	this	by	the	
following query:

mysql>INSERT INTO table_name(col1,col2,col3) values(value1,value2,value3);

or

mysql>insert into table_name set col1=value1,col2=value2,col3=value3...

Any column not named in the set clause is assigned a default value.

Another	method	of	loading	records	into	a	table	is	to	read	the	data	values	directly	from	a	file.	
You can load records using load data statement.

Unit 14: Connecting to MySQL with PHP

 LOVELY PROFESSIONAL UNIVERSITY 237

NotesThe	load	data	statement	acts	as	a	bulk	loader	that	reads	data	from	a	file.

Syntax is:

mysql>LOAD DATA LOCAL INFILE filename	INTO TABLE table_name;

 By default, the load data statement assumes that column values are separated
by tabs and that lines end with new lines. It also assumes that the values are
present	in	the	that	columns	are	stored	in	the	table.	“filename”	should	present	
in the user home directory.

Now you can insert some data into the student table using the above described INSERT
statement.

mysql>INSERT INTO student VALUES(‘11’,’Subhransu Patra’,’cse’,’1983-6-3’);

mysql>INSERT INTO student(roll_no,name,specialization) VALUES(‘12’,’Sudhansu Patra’,’etc’);

mysql>INSERT INTO student SET name=’Suvransu’,specialization=’ee’;

mysql>INSERT INTO student VALUES(‘14’,’Jonny’,’etc’,’1982-6-2’);

mysql>INSERT INTO student VALUES(‘15’,’Missy’,’ee’,’1981-5-4’);

mysql>INSERT INTO student VALUES(‘16’,’Jenny’,’cse’,’1982-5-7’);

mysql>INSERT INTO student VALUES(‘17’,’Billy’,’etc’,’1984-5-4’);

mysql>INSERT INTO student VALUES(‘18’,’Kyle’,’cse’,’1983-7-6’);

mysql>INSERT INTO student VALUES(‘19’,’Nathan’,’ee’,’1982-2-5’);

mysql>INSERT INTO student VALUES(‘20’,’Abby’,’cse’,’1984-9-8’);

14.2.8 Retrieving Information from a Table

The SELECT statement allows you to retrieve and display information from your table.

The general form of SELECT is:

mysql>SELECT	<fields-to-select>

FROM <table or tables>

Open Source Technologies

238 LOVELY PROFESSIONAL UNIVERSITY

Notes WHERE <conditions that data must satisfy>;

You can see the contents of student table as shown below by the following query:

mysql>SELECT * FROM student;

Here	*	signifies	all.	You	can	also	retrieve	specific	field	those	you	want.

Suppose you want to see only roll number and the name of students. The following query
does this

mysql>SELECT roll_no,name from student;

14.2.9 Editing and Deleting Records

Changing	 some	 of	 the	 field	 values,	 or	 even	 deleting	 some	 records	 is	 part	 of	 any	 database	
maintenance. Two frequently used commands for doing the same are UPDATE and DELETE
statements (respectively).

The DELETE statement has this form:

DELETE FROM <table_name> WHERE <records to delete>

The	WHERE	clause	specifies	which	records	to	be	deleted.	It’s	optional	but	if	you	leave	it	out,	
all	records	are	deleted	from	the	table	specified.

i.e. “DELETE FROM <table_name>” will delete all records from table table_name.

Now, suppose you want to delete records of those student who don’t have date of birth, then
you can issue the following command:

mysql>DELETE FROM student WHERE dob=”0000-00-00”;

After the execution of above DELETE statement you can see the contents by giving the above
SELECT statement as below:

mysql>SELECT * FROM student;

Unit 14: Connecting to MySQL with PHP

 LOVELY PROFESSIONAL UNIVERSITY 239

Notes

TO modify existing records, use UPDATE which has this form:

UPDATE table_name SET which columns to change WHERE which records to update.

Here also the WHERE clause is optional, if you don’t specify one, every records in the table is
updated.

i.e., UPDATE table_name SET which columns to change

for example you can change the specialization of a student whose roll number is 20, to etc.
from cse.

The	following	query	fulfills	the	above	change:

mysql>UPDATE student SET specialization=”etc” where roll_no=”20”;

After the execution of above query the contents of the table becomes:

14.2.10 Altering the Structure of Tables

Using	ALTER	statement	you	can	add		fields	to	a	existing	table.

The general form of ALTER statement is:

ALTER TABLE table_name ADD (column specs);

Suppose	you	want	to	add	another	field	as	marks	to	the	student	table	for	storing	students	mark.	
Then the query becomes

Open Source Technologies

240 LOVELY PROFESSIONAL UNIVERSITY

Notes mysql>ALTER TABLE student add marks int(3);

Then the table structure becomes:

Using ALTER statement you can change the data type of a column and the name of an existing
table.

Syntax for changing the data types of a column.

ALTER TABLE table_name MODIFY column_name type.

or

ALTER TABLE table_name CHANGE column_name new column_name type.

 The difference between MODIFY and CHANGE is that, in case of CHANGE
you can change name of column which is not possible by using MODIFY that’s
why change takes two names?

Syntax for changing the table name:

ALTER TABLE table_name RENAME AS new_table_name

Using ALTER statement you can remove a column from a table:

Syntax is:

ALTER TABLE table_name DROP COLUMN col_name;

Unit 14: Connecting to MySQL with PHP

 LOVELY PROFESSIONAL UNIVERSITY 241

NotesSuppose	you	want	to	drop	field	marks,	then	you	can	give	the	following	query:

mysql>ALTER TABLE student DROP COLUMN marks;

14.2.11 Dropping a Table

The difference between DROP and DELETE table is that, after executing DELETE statement the
contents of table are removed but the structure remains same, but in case of DROP statement
both the contents and structure are removed.

Syntax for DROP statement is:

mysql>DROP TABLE table_name;

During issuing query if you put a single quote(‘) or double quote(“) inside a query you must
have to end somewhere with single quote or double quote otherwise an error will be thrown (as
shown below) because mysql will think as receiving a string until the quote ends with another
quote. Anything inside that two quote is treated as string.

14.2.12 Working with NULL Value

When	 the	value	of	 a	field	 is	NULL	you	cannot	 compare	 in	 the	 same	way	as	doing	 for	NOT	
NULL value, if you do so you will not get the desired result.

For NULL value comparison you may follow the following procedure:

mysql>SELECT	*	FROM	table_name	WHERE	field_name	is	NULL;

14.2.13 Backing up a Database

You	can	take	a	backup	of		your	database	in	a	text	file	by	using	the	mysqldump	command	from	
shell prompt as given below

[anand soft@localhost anandsoft]$mysqldump -u subu -psubu sample_db>sample.sql

After	the	execution	of	the	above	command	sample.sql	file	will	contain	the	structure	as	well	as	
the data insertion statements done on sample_db database.

 Sample.sql	file	 is	 stored	 in	 the	user	home	directory,	 i.e.	 the	user	name	under	
which you logged in to the server(not MySQL server). For example if your
username	is	anandsoft,	in	Linux	system	the	file	sample.sql	will	be	stored	in	the	
directory/home/anandsoft/

you can only take the structure of the tables by giving the following command:

[anand soft@localhost anandsoft]$mysqldump -d -u subu -psubu sample_db>sample1.sql

You	can	take	back	up	of	any	specific	table	from	a	database	by	following	way:

Open Source Technologies

242 LOVELY PROFESSIONAL UNIVERSITY

Notes [anand	soft@localhost	anandsoft]$mysqldump		-u	subu	-psubu	database_name	table_name>file_
name

The mysqldump command is a very useful, and frequently used for taking a backup of an
existing database. Another use of this command is when you want to transfer the database from
a local server to a remote server effortlessly. For example, you have created a database on your
local server and tested the program. Now you want to upload the same to an Internet server.
Take an sql dump of the local database by using the mysqldump	 command	and	paste	 the	file	
contents on the remote server. (Alternatively, you can also recreate the database by specifying
the	dump	file	name).

 Create a table in a database and insert, retrieve, edit and delete records in it.

The History of PHP

PHP is an “HTML-embedded scripting language” primarily used for dynamic Web
applications.	The	first	part	of	this	definition	means	that	PHP	code	can	be	interspersed	
with	HTML,	making	it	simple	to	generate	dynamic	pieces	of	Web	pages	on	the	fly.	

As a scripting language, PHP code requires the presence of the PHP processor. PHP code is
normally run in plain-text scripts that will only run on PHP-enabled computers (conversely
programming	languages	can	create	standalone	binary	executable	files,	a.k.a.	programs).	PHP	
takes most of its syntax from C, Java, and Perl. It is an open source technology and runs on
most operating systems and with most Web servers. PHP was written in the C programming
language by Rasmus Lerdorf in 1994 for use in monitoring his online resume and related
personal information. For this reason, PHP originaHy stood for “Personal Home Page”.
Lerdorf combined PHP with his own Form Interpreter, releasing the combination publicly as
PHP/FI (generally referred to as PHP 2.0) on June 8, 1995. Two programmers, Zeev Suraski
and Andi Gutmans, rebuilt PHP’s core, releasing the updated result as PHP/FI 2 in 1997.
The acronym was formally changed to PHP: HyperText Preprocessor, at this time. (This is
an	example	of	a	 recursive	acronym:	where	 the	acronym	 itself	 is	 in	 its	own	definition.)	 In	
1998,	PHP	3	was	released,	which	was	the	first	widely	used	version.	PHP	4	was	released	in	
May 2000, with a new core, known as the Zend Engine 1.0. PHP 4 featured improved speed
and reliability over PHP 3. In terms of features, PHP 4 added references, the Boolean type,
COM support on Windows, output buffering, many new array functions, expanded object-
oriented programming, inclusion of the PCRE library, and more. Maintenance releases of
PHP 4 are still available, primarily for security updates.

PHP 5 was released in July 2004, with the updated Zend Engine 2.0.

Among the many new features in PHP 5 are:

	 •	 Improved object-oriented programming

	 •	 Embedded SQLite

	 •	 Support for new MySQL features (see the image at right)
Contd...

Unit 14: Connecting to MySQL with PHP

 LOVELY PROFESSIONAL UNIVERSITY 243

Notes

	 •	 Exception	handling	using	a	try..catch	structure	

	 •	 Integrated SOAP support (see the image at right)

	 •	 The Filter library (in PHP 5.1)

	 •	 Better XML tools

	 •	 Iterators

and much, much more.

PHP	6	has	been	in	development	since	October	of	2006.	The	most	significant	change	will	be	
native support for Unicode. Unpopular, deprecated features such as Magic Quotes, register_
globals, safe_ mode, and the HTTP_ *_ VARS variables will disappear in PHP 6. Although
PHP is still primarily used for server-side generation of Web pages, it can also be used to
perform command-line scripting or to create graphical applications with the help of GTK+.

Questions

1. Give all version name of PHP.

2. Give the year of funding PHP 6.

14.3 Summary

	 •	 The client application needs to connect to database server, before manipulating the data.

	 •	 The	load	data	statement	acts	as	a	bulk	loader	that	reads	data	from	a	file.

	 •	 The	mysql	dump	command	is	used	for	taking	a	backup	of	an	existing	database.	

Open Source Technologies

244 LOVELY PROFESSIONAL UNIVERSITY

Notes 14.4 Keywords

Column Level: Column privileges apply to single columns in a given table.

Database Level: Database privileges apply to all tables in a given database.

Global Level: The global privileges apply to all databases on a given server.

Table Level: Table privileges apply to all columns in a given table.

$ dhost: $ dhost is the name of MySQL server. When your webserver is on the same machine
with the MySQL server you can use localhost or 127.0.0.1 as the values of $ dhost.

1. Using SQL statements, create stored parameter.

2. Create a database of hospital management.

14.5 Self Assessment Questions

 1. Data Reader command is used to fetch the data one row at a time.

 (a) True (b) False

 2. _____________ operates in client/server architecture.

 (a) MySQL (b) Telnet

 (c) PHP (d) DOS

 3. The _____________ privileges apply to all databases on a given server.

 (a) database (b) GRANT

 (c) global (d) table

 4. The _____________ statement allows you to create a table within the current database.

 (a) edit table (b) create table

 (c) open table (d) none of these.

 5. A table must have at least _____________ column.

 (a)	 five	 (b) two

 (c) four (d) one

14.6 Review Questions

 1. Write steps to opening and closing a connection to MySQL database.

 2. Explain Linux system.

 3. What are the steps to create database?

 4. What is the difference between DROP and DELETE table?

 5. What do you mean by Backing up a Database?

Unit 14: Connecting to MySQL with PHP

 LOVELY PROFESSIONAL UNIVERSITY 245

NotesAnswers for Self Assessment Questions
 1. (a) 2. (a) 3. (c) 4. (b) 5. (d)

14.7 Further Reading

Open Source Development with LAMP: Using Linux, Apache, MySQL, Perl & PHP
By: James Lee, Pearson Education.

http://www.opensourcetutorials.com/

Jalandhar-Delhi G.T. Road (NH-1)
Phagwara, Punjab (India)-144411
For Enquiry: +91-1824-521360
Fax.: +91-1824-506111
Email: odl@lpu.co.in

LOVELY PROFESSIONAL UNIVERSITY

	DCAP-203 - Open Source Technology.pdf
	CH-01.pdf
	CH-02.pdf
	CH-03.pdf
	CH-04.pdf
	CH-05.pdf
	CH-06.pdf
	CH-07.pdf
	CH-08.pdf
	CH-09.pdf
	CH-10.pdf
	CH-11.pdf
	CH-12.pdf
	CH-13.pdf
	CH-14.pdf

