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Objectives

After studying this unit, you will be able to:

 •	 Discuss	history	of	operating	systems

	 •	 Explain	Unix-like	structures	in	operating	systems

	 •	 Understand	microsoft	windows	family	of	operating	systems

	 •	 Explain	history	of	personal	computers

	 •	 Discuss	meaning	of	operating	systems

	 •	 Explain	supervisor	and	user	mode

	 •	 Understand	meaning	of	system	calls	and	kernel

	 •	 Explain	operating	system	operations	and	functions

	 •	 Understand	 types	 of	 operating	 system:	 RTOSs,	 multiprogramming,	 multitasking,	
distributed	systems,	etc

Introduction 

Modern	general-purpose	computers,	 including	personal	computers	and	mainframes,	have	an	
operating	system	to	run	other	programs,	such	as	application	software.	Examples	of	operating	
systems	for	personal	computers	include	Microsoft	Windows,	Mac	OS	(and	Darwin),	Unix,	and	
Linux.	The	lowest	level	of	any	operating	system	is	its	kernel.	This	is	the	first	layer	of	software	
loaded into memory when a system boots or starts up. The kernel provides access to various 
common	 core	 services	 to	 all	 other	 system	and	 application	programs.	These	 services	 include,	
but	are	not	limited	to:	disk	access,	memory	management,	task	scheduling,	and	access	to	other	
hardware devices. 

As	the	kernel,	an	operating	system	is	often	distributed	with	tools	for	programs	to	display	and	
manage	a	graphical	user	interface	(although	Windows	and	the	Macintosh	have	these	tools	built	
into	 the	 operating	 system),	 as	well	 as	 utility	 programs	 for	 tasks	 such	 as	managing	files	 and	
configuring	the	operating	system.	They	are	also	often	distributed	with	application	software	that	
does	not	relate	directly	to	the	operating	system’s	core	function,	but	which	the	operating	system	
distributor	finds	advantageous	to	supply	with	the	operating	system.	

The	delineation	between	the	operating	system	and	application	software	 is	not	precise,	and	is	
occasionally	subject	 to	controversy.	From	commercial	or	 legal	points	of	view,	 the	delineation	
can	depend	on	the	contexts	of	the	interests	involved.	For	example,	one	of	the	key	questions	in	
the United States v. Microsoft antitrust trial was whether Microsoft’s web browser was part of 
its operating system or whether it was a separable piece of application software. 

Like	the	term	“operating	system”	itself,	the	question	of	what	exactly	should	form	the	“kernel”	is	
subject	to	some	controversy,	with	debates	over	whether	things	like	file	systems	should	be	included	
in	the	kernel.	Various	camps	advocate	microkernels,	monolithic	kernels,	and	so	on.	Operating	
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Notessystems	are	used	on	most,	but	not	all,	computer	systems.	The	simplest	computers,	including	the	
smallest	embedded	systems	and	many	of	the	first	computers,	did	not	have	operating	systems.	
Instead,	they	relied	on	the	application	programs	to	manage	the	minimal	hardware	themselves,	
perhaps with the aid of libraries developed for the purpose. Commercially-supplied operating 
systems	 are	 present	 on	 virtually	 all	modern	 devices	 described	 as	 computers,	 from	 personal	
computers	to	mainframes,	as	well	as	mobile	computers	such	as	PDAs	and	mobile	phones.

1.1 History of Operating Systems 

An	 operating	 system	 (OS)	 is	 a	 software	 program	 that	 manages	 the	 hardware	 and	 software	
resources	of	a	computer.	The	OS	performs	basic	tasks,	such	as	controlling	and	allocating	memory,	
prioritizing the processing	 of	 instructions,	 controlling	 input	 and	 output	 devices,	 facilitating	
networking,	and	managing	files.	

The	first	computers	did	not	have	operating	systems.	However,	software	tools	for	managing	the	
system	and	simplifying	the	use	of	hardware	appeared	very	quickly	afterwards,	and	gradually	
expanded	 in	 scope.	 By	 the	 early	 1960s,	 commercial	 computer	 vendors	were	 supplying	 quite	
extensive	 tools	 for	streamlining	the	development,	scheduling,	and	execution	of	 jobs	on	batch	
processing	 systems.	 Examples	 were	 produced	 by	 UNIVAC	 and	 Control	 Data	 Corporation,	
amongst others. 

Through	the	1960s,	several	major	concepts	were	developed,	driving	the	development	of	operating	
systems. The development of the IBM System/360 produced a family of mainframe computers 
available	 in	widely	differing	capacities	and	price	points,	 for	which	a	single	operating	system	
OS/360	was	planned	 (rather	 than	developing	ad	hoc	programs	 for	 every	 individual	model).	
This concept of a single OS spanning an entire product line was crucial for the success of 
System/360	and,	in	fact,	IBM’s	current	mainframe	operating	systems	are	distant	descendants	of	
this original system; applications written for the OS/360 can still be run on modern machines. 
OS/360	also	contained	another	important	advance:	the	development	of	the	hard	disk	permanent	
storage	device	(which	IBM	called	DASD).	Another	key	development	was	the	concept	of	time-
sharing:	the	idea	of	sharing	the	resources	of	expensive	computers	amongst	multiple	computer	
users interacting in real time with the system. Time sharing allowed all of the users to have 
the illusion of having exclusive access to the machine; the Multics timesharing system was 
the most famous of a number of new operating systems developed to take advantage of the 
concept.	Multics,	particularly,	was	an	inspiration	to	a	number	of	operating	systems	developed	
in	the	1970s,	notably	Unix.	Another	commercially	popular	minicomputer	operating	system	was	
VMS.	The	first	microcomputers	did	not	have	the	capacity	or	need	for	the	elaborate	operating	
systems that had been developed for mainframes and minis; minimalistic operating systems were 
developed.	One	notable	early	operating	system	was	CP/M,	which	was	supported	on	many	early	
microcomputers	and	was	largely	cloned	in	creating	MS-DOS,	which	became	wildly	popular	as	
the	operating	system	chosen	for	the	IBM	PC	(IBM’s	version	of	 it	was	called	IBM-DOS	or	PC-
DOS),	its	successors	making	Microsoft	one	of	the	world’s	most	profitable	companies.	The	major	
alternative	throughout	the	1980s	in	the	microcomputer	market	was	Mac	OS,	tied	intimately	to	
the Apple Macintosh computer. 

By	 the	 1990s,	 the	microcomputer	 had	 evolved	 to	 the	 point	where,	 as	well	 as	 extensive	GUI	
facilities,	 the	 robustness	 and	 flexibility	 of	 operating	 systems	 of	 larger	 computers	 became	
increasingly desirable. Microsoft’s response to this change was the development of Windows 
NT,	which	served	as	the	basis	for	Microsoft’s	entire	operating	system	line	starting	in	1999.	Apple	
rebuilt	their	operating	system	on	top	of	a	Unix	core	as	Mac	OS	X,	released	in	2001.	Hobbyist-
developed	 reimplementations	 of	Unix,	 assembled	with	 the	 tools	 from	 the	GNU	project,	 also	
became popular;	 versions	 based	 on	 the	 Linux	 kernel	 are	 by	 far	 the	most	 popular,	 with	 the	
BSD derived UNIXes holding a small portion of the server market. The growing complexity of 
embedded devices has a growing trend to use embedded operating systems on them.
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Notes 1.1.1 Today 
Command	line	interface	(or	CLI)	operating	systems	can	operate	using	only	the	keyboard	for	input.	
Modern	OS’s	use	a	mouse	for	input	with	a	graphical	user	interface	(GUI)	sometimes	implemented	
as	a	shell.	The	appropriate	OS	may	depend	on	the	hardware	architecture,	specifically	the	CPU,	
with only Linux and BSD running on almost any CPU. Windows NT has been ported to other 
CPUs,	most	 notably	 the	Alpha,	 but	 not	many.	 Since	 the	 early	 1990s	 the	 choice	 for	 personal	
computers has been	largely	limited	to	the	Microsoft	Windows	family	and	the	Unix-like	family,	
of which Linux and Mac OS X are becoming the major choices. Mainframe computers and 
embedded	systems	use	a	variety	of	different	operating	systems,	many	with	no	direct	connection	
to	Windows	or	Unix,	but	typically	more	similar	to	Unix	than	Windows.	

	 •	 Personal	computers	

	 •	 IBM	PC	compatible	—	Microsoft	Windows	and	smaller	Unix	variants	(like	Linux	and	BSD)	

	 •	 Apple	Macintosh	—	Mac	OS	X,	Windows,	Linux	and	BSD	

	 •	 Mainframes	—	A	number	of	unique	OS’s,	sometimes	Linux	and	other	Unix	variants

	 •	 Embedded	systems	—	A	variety	of	dedicated	OS’s,	and	limited	versions	of	Linux	or	other	
OS’s 

1.1.2 Unix-like Family
The Unix-like family	is	a	diverse	group	of	operating	systems,	with	several	major	subcategories	
including	System	V,	BSD,	and	Linux.	The	name	“Unix”	is	a	trademark	of	the	Open	Group	which	
licenses	 it	 for	use	to	any	operating	system	that	has	been	shown	to	conform	to	the	definitions	
that they have cooperatively developed. The name is commonly used to refer to the large set 
of operating systems which resemble the original Unix. Unix systems run on a wide variety of 
machine architectures. They are used heavily as server systems in business as well as workstations 
in	academic	and	engineering	environments.	Free	software	Unix	variants,	such	as	Linux	and	BSD,	
are	increasingly	popular.	They	are	used	in	the	desktop	market	as	well,	for	example	Ubuntu,	but	
mostly by hobbyists. Some Unix variants like HP’s HP-UX and IBM’s AIX are designed to run 
only	on	that	vendor’s	proprietary	hardware.	Others,	such	as	Solaris,	can	run	on	both	proprietary	
hardware	and	on	commodity	x86	PCs.	Apple’s	Mac	OS	X,	a	microkernel	BSD	variant	derived	
from	NeXTSTEP,	Mach,	and	FreeBSD,	has	replaced	Apple’s	earlier	(non-Unix)	Mac	OS.	Over	
the	past	several	years,	free	Unix	systems	have	supplanted	proprietary	ones	in	most	instances.	
For	instance,	scientific	modelling	and	computer	animation	were	once	the	province	of	SGI’s	IRIX.	
Today,	they	are	dominated	by	Linux-based.

The	team	at	Bell	Labs	who	designed	and	developed	Unix	went	on	to	develop	and	Inferno,	which	
were	designed	for	modern	distributed	environments.	They	had	graphics	built-in,	unlike	Unix	
counterparts	 that	added	 it	 to	 the	design	 later	did	not	become	popular	because,	unlike	many	
Unix distributions.

1.1.3 Microsoft Windows 
The Microsoft Windows family of operating systems originated as a graphical layer on top 
of the older MS-DOS environment for the IBM PC. Modern versions are based on the newer 
Windows	 NT	 core	 that	 first	 took	 shape	 in	 OS/2	 and	 borrowed	 from	 OpenVMS.	Windows	
runs	on	32-bit	and	64-bit	Intel	and	AMD	computers,	although	earlier	versions	also	ran	on	the	
DEC	Alpha,	MIPS,	and	PowerPC	architectures	(some	work	was	done	to	port	it	to	the	SPARC	
architecture).	As	 of	 2004,	Windows	 held	 a	 near-monopoly	 of	 around	 90%	 of	 the	worldwide	
desktop	market	share,	although	this	is	thought	to	be	dwindling	due	to	the	increase	of	interest	
focused	on	open	source	operating	systems.	It	is	also	used	on	low-end	and	mid-range	servers,	
supporting	applications	such	as	web	servers	and	database	servers.	 In	 recent	years,	Microsoft	
has	spent	significant	marketing	and	R&D	money	 to	demonstrate	 that	Windows	 is	capable	of	
running	any	enterprise	application	(see	the	TPC	article).
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Notes1.1.4 Other Systems
Mainframe	operating	systems,	such	as	IBM’s	z/OS,	and	embedded	operating	systems	such	as	
VxWorks,	eCos,	and	Palm	OS,	are	usually	unrelated	to	Unix	and	Windows,	except	for	Windows	
CE,	Windows	NT	Embedded	4.0	and	Windows	XP	Embedded	which	are	descendants	of	Windows,	
and	 several	 *BSDs,	 and	Linux	distributions	 tailored	 for	 embedded	 systems.	OpenVMS	 from	
Hewlett-Packard	(formerly	DEC)	is	still	under	active	development.	Older	operating	systems	which	
are	still	used	in	niche	markets	include	the	Windows	like	OS/2	from	IBM;	Mac	OS,	the	non-Unix	
precursor to Apple’s Mac OS X; BeOS; RISC OS; and AmigaOS. Research and development of 
new operating systems continues. GNU Hurd is designed to be backwards compatible with 
Unix,	but	with	enhanced	functionality	and	a	microkernel	architecture.	Microsoft	Singularity	is	
a research project to develop an operating system with better memory protection. 

1.2 History of Personal Computers 

A	personal	computer	(PC)	is	usually	a	microcomputer	whose	price,	size,	and	capabilities	make	
it suitable for personal usage. The term was popularized by IBM marketing.

Figure 1.1: Personal Computer

Time share “terminals” to central computers were sometimes used before the advent of the 
PC.	(A	smart	terminal	—	televideo	ASCII	character	mode	terminal	made	around	1982.)	Before	
their	advent	in	the	late	1970s	to	the	early	1980s,	the	only	computers	one	might	have	used	if	one	
were privileged were “computer-terminal based” architectures owned by large institutions. 
In	these,	the	technology	was	called	“computer	time	share	systems”,	and	used	minicomputers	
and	main-frame	computers.	These	central	computer	systems	frequently	required	large	rooms	
—	roughly,	a	handball-court-sized	room	could	hold	two	to	three	small	minicomputers	and	its	
associated	peripherals,	each	housed	in	cabinets	much	the	size	of	three	refrigerators	side	by	side	
(with	blinking	lights	and	tape	drives).	In	that	era,	mainframe	computers	occupied	whole	floors;	
a big hard disk was a mere 10–20 megabytes mounted on a cabinet the size of a small chest-type 
freezer.	Earlier	PCs	were	generally	called	desktop	computers,	and	 the	slower	Pentium-based	
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Notes personal computer of the late 1990s could easily outperform the advanced minicomputers of 
that era. Since the terms “personal computer” and “PC” have been introduced to vernacular 
language,	their	meanings	and	scope	have	changed	somewhat.	The	first	generations	of	personal	
microcomputers	were	 usually	 sold	 as	 kits	 or	merely	 instructions,	 and	 required	 a	 somewhat	
skilled	person	to	assemble	and	operate	them.	These	were	usually	called	microcomputers,	but	
personal computer was also used. Later generations were sometimes interchangeably called by 
the	names	“home	computer”	and	“personal	computer”.	By	the	mid-1980s,	“home	computer”	was	
becoming a less common label in favour of “personal computer”. These computers were pre-
assembled	and	required	little	to	no	technical	knowledge	to	operate.	In	today’s	common	usage,	
personal	computer	and	PC	usually	indicate	an	IBM	PC	compatible.	Because	of	this	association,	
some manufacturers of personal computers that are not IBM PCs avoid explicitly using the terms 
to	describe	their	products.	Mostly,	the	term	PC	is	used	to	describe	personal	computers	that	use	
Microsoft Windows operating systems.

Figure 1.2: Random-Access Memory

A four-megabyte RAM card measuring about 22 by 15 inches; made for the VAX 8600 
minicomputer	(circa	1986).	Dual	 in-line	package	(DIP)	Integrated	circuits	populate	nearly	the	
whole board; the RAM chips are in the majority located in the rectangular areas to the left 
and	right.	One	early	use	of	“personal	computer”	appeared	in	a	3	November	1962,	New	York	
Times article reporting John W. Mauchly’s vision of future computing as detailed at a recent 
meeting	of	the	American	Institute	of	Industrial	Engineers.	Mauchly	stated,	“There	is	no	reason	
to suppose the average boy or girl cannot be master of a personal computer.” Some of the 
first	 computers	 that	might	be	 called	“personal”	were	early	minicomputers	 such	as	 the	LINC	
and	PDP-8.	By	 today’s	 standards	 they	were	very	 large	 (about	 the	 size	 of	 a	 refrigerator)	 and	
cost-prohibitive	 (typically	 tens	 of	 thousands	 of	US	dollars),	 and	 thus	were	 rarely	 purchased	
by	an	individual.	However,	they	were	much	smaller,	less	expensive,	and	generally	simpler	to	
operate	than	many	of	the	mainframe	computers	of	the	time.	Therefore,	they	were	accessible	for	
individual laboratories and research projects. Minicomputers largely freed these organizations 
from the batch processing and bureaucracy of a commercial or university computing centre. In 
addition,	minicomputers	were	relatively	interactive	and	soon	had	their	own	operating	systems.	
Eventually,	 the	minicomputer	 included	 VAX	 and	 larger	minicomputers	 from	Data	 General,	
Prime,	and	others.	The	minicomputer	era	largely	was	a	precursor	to	personal	computer	usage	
and an intermediary step from mainframes. 
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NotesDevelopment of the single-chip microprocessor was an enormous catalyst to the popularization 
of	cheap,	easy	to	use,	and	truly	personal	computers.	Arguably	the	first	true	“personal	computer”	
was	the	Altair	8800,	which	brought	affordable	computing	to	an	admittedly	select	market	in	the	
1970s.	However,	it	was	arguably	this	computer	that	spawned	the	development	of	both	Apple	
Computer	as	well	as	Microsoft,	spawning	the	Altair	BASIC	programming	language	interpreter,	
Microsoft’s	 first	 product.	 The	 first	 generation	 of	 microcomputers	 (computers	 based	 on	 a	
microprocessor)	that	appeared	in	the	mid-1970s,	due	to	success	of	the	Steve	Wozniak-designed	
Apple	Computer	release,	the	Apple	II,	were	usually	known	as	home	computers.	These	were	
less capable and in some ways less versatile than large business computers of the day. 
They	were	generally	used	by	computer	enthusiasts	for	learning	to	program,	running	simple	
office/productivity	 applications,	 electronics	 interfacing,	 and	 general	 hobbyist	 pursuits.	
It	was	 the	 launch	of	 the	VisiCalc	 spreadsheet,	 initially	 for	 the	Apple	 II	 (and	 later	 for	 the	
Atari	8-bit	family,	Commodore	PET,	and	IBM	PC)	that	became	the	“killer	app”	that	turned	
the microcomputer into a business tool. This was followed by the August 1981 release of 
the	IBM	PC	which	would	revolutionize	the	computer	market.	The	Lotus	1-2-3,	a	combined	
spreadsheet	(partly	based	on	VisiCalc),	presentation	graphics,	and	simple	database	application,	
would become the PC’s own killer app. Good word processor programs would also appear for 
many	home	computers,	in	particular	the	introduction	of	Microsoft	Word	for	the	Apple	Macintosh	
in	1985	(while	earlier	versions	of	Word	had	been	created	for	the	PC,	it	became	popular	initially	
through	the	Macintosh).

In	the	January	3,	1983	issue	of	Times	magazine	the	personal	computer	was	named	the	“Machine	
of	the	Year”	or	its	Person	of	the	Year	for	1982.	During	the	1990s,	the	power	of	personal	computers	
increased	 radically,	blurring	 the	 formerly	 sharp	distinction	between	personal	 computers	and	
multiuser computers such as mainframes. Today higher-end computers often distinguish 
themselves	from	personal	computers	by	greater	reliability	or	greater	ability	to	multitask,	rather	
than by brute CPU ability.

1.2.1 Uses

Personal computers are normally operated by one user at a time to perform such general purpose 
tasks	as	word	processing,	 internet	browsing,	e-mail	and	other	digital	messaging,	multimedia	
playback,	video	game	play,	computer	programming,	etc.	Other	more	specific	functions	usually	
performed	with	the	help	of	a	PC	include	working,	teleworking,	learning,	researching,	printing,	
online	banking,	online	shopping	and	dealing	online	with	public	sector	institutions	and	services.	
The	 user	 of	 a	modern	 personal	 computer	may	 have	 significant	 knowledge	 of	 the	 operating	
environment	 and	 application	programs,	 but	 is	 not	 necessarily	 interested	 in	programming	or	
even	able	to	write	programs	for	the	computer.	Therefore,	most	software	written	primarily	for	
personal	computers	tends	to	be	designed	with	simplicity	of	use,	or	“user-friendliness”	in	mind.	
However,	the	software	industry	continuously	provide a wide range of new products for use in 
personal	computers,	targeted	at	both	the	expert	and	the	non-expert	user.

1.3 Operating System Meaning

An operating system is an important part of almost every computer system. A computer system 
can	be	divided	roughly	into	four	components:	the	hardware,	the	operating	system,	the	application	
programs,	and	the	users	(Figure	1.3).
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Figure 1.3: Abstract View of the Components of a Computer System

The	hardware-the	central	processing	unit	(CPU),	the	memory,	and	the	input/output	(110)	devices-
provides	 the	basic	 computing	 resources.	The	application	programs-such	as	word	processors,	
spreadsheets,	compilers,	and	web	browsers—define	the	ways	in	which	these	resources	are	used	
to solve the computing problems of the users. The operating system controls and coordinates 
the use of the hardware among the various application programs for the various users. The 
components	of	a	computer	system	are	its	hardware,	software,	and	data.

The operating system provides the means for the proper use of these resources in the operation 
of	the	computer	system.	Operating	systems	can	be	explored	from	two	viewpoints:	the	user	and	
the system.

An	 operating	 system	 is	 similar	 to	 a	 government.	 Like	 a	 government,	 it	
performs no useful function by itself. It simply provides an environment 
within which other programs can do useful work.

1.4 Supervisor and User Mode

In	 computer	 terms,	supervisor mode	 is	 a	hardware-mediated	flag	which	 can	be	 changed	by	
code	 running	 in	 system-level	 software.	 System-level	 tasks	 or	 threads	will	 have	 this	 flag	 set	
while	they	are	running,	whereas	user-space	applications	will	not.	This	flag	determines	whether	



Unit 1: Operating System

 LOVELY PROFESSIONAL UNIVERSITY 9

Notesit would be possible to execute machine code operations such as modifying registers for 
various	descriptor	 tables,	or	performing	operations	such	as	disabling	 interrupts.	The	 idea	
of having two different modes to operate in comes from “with more control comes more 
responsibility”	a	program	in	supervisor	mode	is	trusted	to	never	fail,	because	if	it	does,	the	
whole computer system may crash.

In	 a	monolithic	 kernel,	 the	kernel	 runs	 in	 supervisor	mode	 and	 the	 applications	 run	 in	user	
mode.	Other	 types	of	operating	 systems,	 like	 those	with	an	exokernel	or	microkernel	do	not	
necessarily share this behaviour.

1.4.1 Some Examples from the PC World

Linux and Windows are two operating systems that use supervisor/user-mode. DOS and other 
simple	operating	systems	 run	 in	 supervisor	mode	permanently,	meaning	 that	drivers	 can	be	
written directly into software. In user-mode it would be necessary to utilise a system call into 
kernel-space	 (running	 in	 supervisor	mode)	where	 trusted	 code	 in	 the	 operation	 system	will	
perform the needed task.

Most processors have at least two different modes. The x86-processors have four different modes 
divided into four different “rings”. Programs that run in ring0 can do anything with the system 
and code that runs in ring3 should be able to fail at any time without any impact at the rest 
of	the	computer	system.	Ring1	and	ring2	is	mostly	never	used,	but	could	be	configured	with	
different levels of access.

Figure 1.4: User and Supervisor Modes

A control program manages the execution of user programs to prevent 
errors and improper use of the computer. It is especially concerned with the 
operation and control of I/O devices.

1.5 System Calls

In	computing,	a	system call	is	the	mechanism	used	by	an	application	program	to	request	service	
from the operating system based on the monolithic kernel or to system servers on operating 
systems	based	on	 the	microkernel-structure.	Timings	of	 requested	 service	have	 to	be	 strictly	
predictable	for	application	in	real	time	systems	—	those	are	most	advanced	and	secure.	So	far,	
the	only	thing	we	have	done	was	to	use	well	defined	kernel	mechanisms	to	register	/proc	files	
and	device	handlers.	This	is	fine	if	you	want	to	do	something	the	kernel	programmers	thought	
you	had	want,	such	as	write	a	device	driver.	But	what	if	you	want	to	do	something	unusual,	to	
change	the	behaviour	of	the	system	in	some	way?	Then,	you	are	mostly	on	your	own.
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example	 below,	 I	 killed	 the	 open()	 system	 call.	 This	 meant	 I	 couldn’t	
open	 any	 files,	 I	 couldn’t	 run	 any	 programs,	 and	 I	 couldn’t	 shutdown	
the	computer.	 I	had	 to	pull	 the	power	switch.	Luckily,	no	files	died.	To	
ensure	you	won’t	 lose	any	files	either,	please	 run	sync	right	before	you	
do the insmod and the rmmod.

In	general,	a	process	is	not	supposed	to	be	able	to	access	the	kernel.	It	can’t	access	kernel	memory	
and it can’t call kernel	functions.	The	hardware	of	the	CPU	enforces	this	(that	is	the	reason	why	
it	is	called	‘protected	mode’).

System	 calls	 are	 an	 exception	 to	 this	 general	 rule.	What	 happens	 is	 that	 the	 process	 fills	
the registers with the appropriate values and then calls a special instruction which jumps 
to	a	previously	defined	 location	 in	 the	kernel	 (of	course,	 that	 location	 is	 readable	by	user	
processes,	it	is	not	writable	by	them)?	Under	Intel	CPUs,	this	is	done	by	means	of	interrupt	
0x80.	The	hardware	knows	that	once	you	jump	to	this	location,	you	are	no	longer	running	
in	restricted	user	mode,	but	as	the	operating	system	kernel	and,	therefore,	you	are	allowed	
to do whatever you want.

The location in the kernel a process can jump to is called system call. The procedure at that location 
checks	the	system	call	number,	which	tells	the	kernel	what	service	the	process	requested.	Then,	it	
looks	at	the	table	of	system	calls	(sys_call_table)	to	see	the	address	of	the	kernel	function	to	call.	
Then	it	calls	the	function,	and	after	it	returns,	does	a	few	system	checks	and	then	return	back	to	
the	process	(or	to	a	different	process,	if	the	process	time	ran	out).	If	you	want	to	read	this	code,	it	
is	at	the	source	file	arch/$<$architecture$>$/kernel/entry.S,	after	the	line	ENTRY(system_call).	
So,	if	we	want	to	change	the	way	a	certain	system	call	works,	what	we	need	to	do	is	to	write	
our	own	function	to	implement	it	(usually	by	adding	a	bit	of	our	own	code,	and	then	calling	
the	original	 function)	 and	 then	 change	 the	pointer	 at	 sys_call_table	 to	point	 to	our	 function.	
Because	we	might	be	removed	later	and	we	don’t	want	to	leave	the	system	in	an	unstable	state,	
it	is	important	for	cleanup_module	to	restore	the	table	to	its	original	state.

The	source	code	here	is	an	example	of	such	a	kernel	module.	We	want	to	‘spy’	on	a	certain	user,	
and	to	printk(	)	a	message	whenever	that	user	opens	a	file.	Towards	this	end,	we	replace	the	
system	call	to	open	a	file	with	our	own	function,	called	our_sys_open.	This	function	checks	the	
uid	(user’s	id)	of	the	current	process,	and	if	it	is	equal	to	the	uid	we	spy	on,	it	calls	printk(	)	to	
display	the	name	of	the	file	to	be	opened.	Then,	either	way,	it	calls	the	original	open(	)	function	
with	the	same	parameters,	to	actually	open	the	file.

The	init_module	function	replaces	the	appropriate	location	in	sys_call_table	and	keeps	the	original	
pointer	in	a	variable.	The	cleanup_module	function	uses	that	variable	to	restore	everything	back	
to	normal.	This	approach	is	dangerous,	because	of	the	possibility	of	two	kernel	modules	changing	
the	same	system	call.	Imagine	we	have	two	kernel	modules,	A	and	B.	A’s	open	system	call	will	
be	A	open	and	B’s	will	be	B_open.	Now,	when	A	is	inserted	into	the	kernel,	the	system	call	is	
replaced	with	A	open,	which	will	call	the	original	sys_open	when	it	is	done.	Next,	B	is	inserted	
into	the	kernel,	which	replaces	the	system	call	with	B_open,	which	will	call	what	it	thinks	is	the	
original	system	call,	A	open,	when	it	is	done.

Now,	if	B	 is	removed	first,	everything	will	be	well	 it	will	simply	restore	the	system	call	 to	A	
open,	which	calls	 the	original.	However,	 if	A	 is	 removed	and	 then	B	 is	 removed,	 the	system	
will	crash.	A’s	removal	will	restore	the	system	call	to	the	original,	sys_open,	cutting	B	out	of	the	
loop.	Then,	when	B	is	removed,	it	will	restore	the	system	call	to	what	it	thinks	is	the	original,	
A	open,	which	is	no	longer	in	memory.	At	first	glance,	it	appears	we	could	solve	this	particular	
problem	by	checking	if	the	system	call	is	equal	to	our	open	function	and	if	so	not	changing	it	
at	all	(so	that	B	won’t	change	the	system	call	when	it	is	removed),	but	that	will	cause	an	even	
worse	problem.	When	A	is	removed,	it	sees	that	the	system	call	was	changed	to	B_open	so	that	
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memory.	Unfortunately,	B_open	will	still	 try	 to	call	A	open	which	 is	no	 longer	 there,	so	 that	
even without removing B the system would crash.

There	are	two	ways	to	prevent	this	problem.	The	first	is	to	restore	the	call	to	the	original	value,	
sys_open.	Unfortunately,	sys_open	is	not	part	of	the	kernel	system	table	in	/proc/ksyms,	so	we	
can’t access it. The other solution is to use the reference count to prevent root from rmmod’ing 
the	module	once	it	is	loaded.	This	is	good	for	production	modules,	but	bad	for	an	educational	
sample which is why I didn’t do it here.

1.5.1 The Library as an Intermediary
Generally,	systems	provide	a	library	that	sits	between	normal	programs	and	the	operating	system,	
usually	an	implementation	of	the	C	library	(libc),	such	as	glibc.	This	library	exists	between	the	
OS	and	the	application,	and	increases	portability.

On	exokernel	based	systems,	the	library	is	especially	important	as	an	intermediary.	On	exokernels,	
libraries	shield	user	applications	from	the	very	low	level	kernel	API,	and	provide	abstractions	
and resource management.

1.5.2 Examples and Tools
On	Unix,	Unix-like	and	other	POSIX-compatible	Operating	Systems,	popular	system	calls	are	
open,	read,	write,	close,	wait,	exec,	fork,	exit,	and	kill.	Many	of	today’s	operating	systems	have	
hundreds	of	system	calls.	For	example,	Linux	has	319	different	system	calls.	Similarly,	FreeBSD	
has almost 330.

Tools such as strace and truss allow a process to execute from start and report all system calls 
the	process	invokes,	or	can	attach	to	an	already	running	process	and	intercept	any	system	call	
made by said process if the operation does not violate the permissions of the user. This special 
ability	of	the	program	is	usually	also	implemented	with	a	system	call,	e.g.	the	GNU’s	strace	is	
implemented	with	ptrace(	).

1.5.3 Typical Implementations
Implementing	system	calls	requires	a	control	transfer	which	involves	some	sort	of	architecture-
specific	feature.	A	typical	way	to	implement	this	is	to	use	a	software	interrupt	or	trap.	Interrupts	
transfer control to the OS so software simply needs to set up some register with the system call 
number they want and execute the software interrupt.

For	many	RISC	processors	this	is	the	only	feasible	implementation,	but	CISC	architectures	such	
as	x86support	additional	techniques.	One	example	is	SYSCALL/SYSENTER,	SYSRET/SYSEXIT	
(the	two	mechanisms	were	independently	created	by	AMD	and	Intel,	respectively,	but	in	essence	
do	the	same	thing).	These	are	“fast”	control	transfer	instructions	that	are	designed	to	quickly	
transfer control to the OS for a system call without the overhead of an interrupt. Linux 2.5 began 
using	this	on	the	x86,	where	available;	formerly	it	used	the	INT	instruction,	where	the	system	
call number was placed in the EAX register before interrupt 0x80 was executed.

An older x86 mechanism is called a call gate and is a way for a program to literally call a 
kernel function directly using a safe control transfer mechanism the OS sets up in advance. This 
approach	has	been	unpopular,	presumably	due	to	the	requirement	of	a	far	call	which	uses	x86	
memory	segmentation	and	the	resulting	lack	of	portability	it	causes,	and	existence	of	the	faster	
instructions mentioned above.

For	IA64	architecture,	EPC	(Enter	Privileged	Mode)	instruction	is	used.	The	first	eight	system	
call	arguments	are	passed	in	registers,	and	the	rest	are	passed	on	the	stack.
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A	 timer	 can	be	 set	 to	 interrupt	 the	 computer	 after	 a	 specified	period.	The	
period	may	be	fixed	or	variable.	

1.5.4 Types of System Call

System calls can be roughly	grouped	into	five	major	categories:

 1. Process Control

	 •	 end,	abort

	 •	 load,	execute

	 •	 create	process,	terminate	process

	 •	 get	process	attributes,	set	process	attributes

	 •	 wait	for	time

	 •	 wait	event,	signal	event

	 •	 allocate	and	free	memory

 2. File Management

	 •	 create	file,	delete	file

	 •	 open,	close

	 •	 read,	write,	reposition

	 •	 get	file	attributes,	set	file	attributes

 3. Device Management

	 •	 request	device,	release	device

	 •	 read,	write,	reposition

	 •	 get	device	attributes,	set	device	attributes

	 •	 logically	attach	or	detach	devices

 4. Information Maintenance

	 •	 get	time	or	date,	set	time	or	date

	 •	 get	system	data,	set	system	data

	 •	 get	process,	file,	or	device	attributes

	 •	 set	process,	file,	or	device	attributes

 5. Communication

	 •	 create,	delete	communication	connection

	 •	 send,	receive	messages

	 •	 transfer	status	information

	 •	 attach	or	detach	remote devices
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 /* syscall.c

  *
  * System call “stealing” sample.
  */

	 	 /*	The	necessary	header	files	*/

  /* Standard in kernel modules */
  #include <linux/kernel.h> /* We’re doing kernel work */
	 	 #include	<linux/module.h>	/*	Specifically,	a	module	*/

  /* Deal with CONFIG_MODVERSIONS */
  #if CONFIG_MODVERSIONS==1
	 	 #define	MODVERSIONS
  #include <linux/modversions.h>
  #endif

  #include <sys/syscall.h> /* The list of system calls */

  /* For the current (process) structure, we need
  * this to know who the current user is. */
  #include <linux/sched.h>

  /* In 2.2.3 /usr/include/linux/version.h includes a
  * macro for this, but 2.0.35 doesn’t - so I add it

  * here if necessary. */
  #ifndef KERNEL_VERSION
	 	 #define	KERNEL_VERSION(a,b,c)	((a)*65536+(b)*256+(c))
  #endif

  #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
  #include <asm/uaccess.h>
  #endif

  /* The system call table (a table of functions). We 
	 	 *	just	define	this	as	external,	and	the	kernel	will	
	 	 *	fill	it	up	for	us	when	we	are	insmod’ed	
  */

  extern void *sys_call_table[];

	 	 /*	UID	we	want	to	spy	on	-	will	be	filled	from	the	
  * command line 
  */int uid; 

  #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0)
  MODULE_PARM(uid, “i”);
  #endif/

  * A pointer to the original system call. The reason 
  * we keep this, rather than call the original function 
  * (sys_open), is because somebody else might have 
  * replaced the system call before us. Note that this 
  * is not 100% safe, because if another module 
  * replaced sys_open before us, then when we’re inserted 
  * we’ll call the function in that module - and it 
  * might be removed before we are. 
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  * Another reason for this is that we can’t get sys_open. 
  * It’s a static variable, so it is not exported. 
  asmlinkage int (*original_call)(const char *, int, int);

  /* For some reason, in 2.2.3 current->uid gave me 
	 	 *	zero,	not	the	real	user	ID.	I	tried	to	find	what	went	
  * wrong, but I couldn’t do it in a short time, and 
  * I’m lazy - so I’ll just use the system call to get the 
  * uid, the way a process would. 
  * 
  * For some reason, after I recompiled the kernel this 
  * problem went away. 
  */
  asmlinkage int (*getuid_call)();

  /* The function we’ll replace sys_open (the function 
  * called when you call the open system call) with. To 
	 	 *	find	the	exact	prototype,	with	the	number	and	type	
	 	 *	of	arguments,	we	find	the	original	function	first	
  * (it’s at fs/open.c). 
  * 
  * In theory, this means that we’re tied to the 
  * current version of the kernel. In practice, the 
  * system calls almost never change (it would wreck havoc 
  * and require programs to be recompiled, since the system 
  * calls are the interface between the kernel and the 
  * processes). 
  */

	 	 asmlinkage	int	our_sys_open(const	char	*filename,	
	 	 	 int	flags,	
   int mode)
  { 
   int i = 0; 
   char ch; 
  /* Check if this is the user we’re spying on */ 
  if (uid == getuid_call()) { 
  /* getuid_call is the getuid system call, 
  * which gives the uid of the user who 
  * ran the process which called the system 
  * call we got */ 

	 	 /*	Report	the	file,	if	relevant	*/	
	 	 printk(“Opened	file	by	%d:	“,	uid);	
  do {
  #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0) 
	 	 get_user(ch,	filename+i);
  #else 
	 	 	 ch	=	get_user(filename+i);
  #endif 
	 	 	 i++;	
   printk(“%c”, ch); 
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  printk(“\n”);
  }

  /* Call the original sys_open - otherwise, we lose 
	 	 *	the	ability	to	open	files	*/	
	 	 return	original_call(filename,	flags,	mode);
  }

  /* Initialize the module - replace the system call */
  int init_module()
  { 
  /* Warning - too late for it now, but maybe for 
  * next time... */ 
  printk(“I’m dangerous. I hope you did a “); 
  printk(“sync before you insmod’ed me.\n”); 
  printk(“My counterpart, cleanup_module(), is even”); 
  printk(“more dangerous. If\n”); 
	 	 printk(“you	value	your	file	system,	it	will	“);	
  printk(“be \”sync; rmmod\” \n”); 
  printk(“when you remove this module.\n”); 

  /* Keep a pointer to the original function in 
  * original_call, and then replace the system call 
  * in the system call table with our_sys_open */ 
  original_call = sys_call_table[__NR_open]; 
  sys_call_table[__NR_open] = our_sys_open; 

  /* To get the address of the function for system 
  * call foo, go to sys_call_table[__NR_foo]. */ 

	 	 printk(“Spying	on	UID:%d\n”,	uid);	

  /* Get the system call for getuid */ 
  getuid_call = sys_call_table[__NR_getuid]; 

  return 0;
  }
	 	 /*	Cleanup	-	unregister	the	appropriate	file	from	/proc	*/
  void cleanup_module()
  { 

  /* Return the system call back to normal */ 
  if (sys_call_table[__NR_open] != our_sys_open) { 
  printk(“Somebody else also played with the “); 
  printk(“open system call\n”); 
  printk(“The system may be left in “); 
  printk(“an unstable state.\n”); 
  } 

	 	 sys_call_table[__NR_open]	=	original_call;
  } 
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A system call is also known as a monitor call.

1.6 Kernel

The kernel is a program that constitutes the central core of a computer operating system. It 
has complete control over everything that occurs in the system.

A	kernel	 can	 be	 contrasted	with	 a	 shell	 (such	 as	 bash,	 csh	 or	 ksh	 in	Unix-like	 operating	
systems),	which	is	the	outermost	part	of	an	operating	system	and	a	program	that	interacts	
with	user	commands.	The	kernel	 itself	does	not	 interact	directly	with	 the	user,	but	rather	
interacts with the shell and other programs as well as with the hardware devices on the 
system,	 including	 the	processor	 (also	called	 the	central	processing	unit	or	CPU),	memory	
and disk drives.

The	kernel	is	the	first	part	of	the	operating	system	to	load	into	memory	during	booting	(i.e.,	
system	startup),	and	it	remains	there	for	the	entire	duration	of	the	computer	session	because	
its	services	are	required	continuously.	Thus	it	is	important	for	it	to	be	as	small	as	possible	
while still providing all the essential services needed by the other parts of the operating 
system and by the various application programs.

Because	 of	 its	 critical	 nature,	 the	 kernel	 code	 is	 usually	 loaded	 into	 a	 protected	 area	 of	
memory,	which	prevents	 it	 from	being	overwritten	by	other,	 less	frequently	used	parts	of	
the	 operating	 system	 or	 by	 application	 programs.	 The	 kernel	 performs	 its	 tasks,	 such	 as	
executing	 processes	 and	 handling	 interrupts,	 in	 kernel	 space,	whereas	 everything	 a	 user	
normally	does,	such	as	writing	text	in	a	text	editor	or	running	programs	in	a	GUI	(graphical	
user	interface),	is	done	in	user	space.	This	separation	is	made	in	order	to	prevent	user	data	
and kernel data from interfering with each other and thereby diminishing performance or 
causing	the	system	to	become	unstable	(and	possibly	crashing).

When	a	computer	crashes,	it	actually	means	the	kernel	has	crashed.	If	only	a	single	program	
has	crashed	but	 the	rest	of	 the	system	remains	 in	operation,	 then	the	kernel	 itself	has	not	
crashed.	A	crash	is	the	situation	in	which	a	program,	either	a	user	application	or	a	part	of	
the	 operating	 system,	 stops	 performing	 its	 expected	 function(s)	 and	 responding	 to	 other	
parts of the system. The program might appear to the user to freeze. If such program is a 
critical	to	the	operation	of	the	kernel,	the	entire	computer	could	stall	or	shut	down.

The	 kernel	 provides	 basic	 services	 for	 all	 other	 parts	 of	 the	 operating	 system,	 typically	
including	memory	management,	 process	management,	 file	management	 and	 I/O	 (input/
output)	management	 (i.e.,	 accessing	 the	peripheral	devices).	These	 services	 are	 requested	
by	other	parts	of	the	operating	system	or	by	application	programs	through	a	specified	set	
of program interfaces referred to as system calls.

Process	management,	possibly	 the	most	obvious	aspect	of	a	kernel	 to	 the	user,	 is	 the	part	
of the kernel that ensures that each process obtains its turn to run on the processor and 
that the individual processes do not interfere with each other by writing to their areas of 
memory.	A	process,	also	referred	to	as	a	task,	can	be	defined	as	an	executing	(i.e.,	running)	
instance of a program.

The	 contents	 of	 a	 kernel	 vary	 considerably	 according	 to	 the	 operating	 system,	 but	 they	
typically	 include	 (1)	 a	 scheduler,	which	 determines	 how	 the	 various	 processes	 share	 the	
kernel’s	 processing	 time	 (including	 in	what	 order),	 (2)	 a	 supervisor,	which	 grants	 use	 of	
the	computer	to	each	process	when	it	is	scheduled,	(3)	an	interrupt	handler,	which	handles	
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Notesall	requests	from	the	various	hardware	devices	(such	as	disk	drives	and	the	keyboard)	that	
compete	for	the	kernel’s	services	and	(4)	a	memory	manager,	which	allocates	the	system’s	
address	spaces	(i.e.,	locations	in	memory)	among	all	users	of	the	kernel’s	services.

The	kernel	 should	not	be	confused	with	 the	BIOS	 (Basic	 Input/Output	System).	The	BIOS	 is	
an	 independent	 program	 stored	 in	 a	 chip	 on	 the	motherboard	 (the	main	 circuit	 board	 of	 a	
computer)	 that	 is	used	during	the	booting	process	for	such	tasks	as	 initializing	the	hardware	
and loading the kernel into memory. Whereas the BIOS always remains in the computer and is 
specific	to	its	particular	hardware,	the	kernel	can	be	easily	replaced	or	upgraded	by	changing	or	
upgrading	the	operating	system	or,	in	the	case	of	Linux,	by	adding	a	newer	kernel	or	modifying	
an existing kernel.

Most	kernels	have	been	developed	for	a	specific	operating	system,	and	there	is	usually	only	one	
version	available	for	each	operating	system.	For	example,	the	Microsoft	Windows	2000	kernel	is	
the only kernel for Microsoft Windows 2000 and the Microsoft Windows 98 kernel is the only 
kernel	for	Microsoft	Windows	98.	Linux	is	far	more	flexible	in	that	there	are	numerous	versions	
of	the	Linux	kernel,	and	each	of	these	can	be	modified	in	innumerable	ways	by	an	informed	user.

A few kernels have been designed with the goal of being suitable for use with any operating 
system.	The	best	known	of	these	is	the	Mach	kernel,	which	was	developed	at	Carnegie-Mellon	
University and is used in the Macintosh OS X operating system.

It	is	not	necessary	for	a	computer	to	have	a	kernel	in	order	for	it	to	be	usable,	the	reason	being	
that	 it	 is	 not	necessary	 for	 it	 to	have	 an	operating	 system.	That	 is,	 it	 is	possible	 to	 load	and	
run	programs	directly	on	bare	metal	machines	(i.e.,	computers	without	any	operating	system	
installed),	although	this	is	usually	not	very	practical.

In	fact,	the	first	generations	of	computers	used	bare	metal	operation.	However,	it	was	eventually	
realized	that	convenience	and	efficiency	could	be	increased	by	retaining	small	utility	programs,	
such	 as	 program	 loaders	 and	 debuggers,	 in	memory	 between	 applications.	 These	 programs	
gradually evolved into operating system kernels.

The	 term	kernel	 is	 frequently	used	 in	books	and	discussions	about	Linux,	whereas	 it	 is	used	
less	 often	 when	 discussing	 some	 other	 operating	 systems,	 such	 as	 the	Microsoft	Windows	
systems.	The	reasons	are	that	the	kernel	is	highly	configurable	in	the	case	of	Linux	and	users	
are encouraged to learn about and modify it and to download and install updated versions. 
With	 the	Microsoft	Windows	operating	 systems,	 in	 contrast,	 there	 is	 relatively	 little	point	 in	
discussing	kernels	because	they	cannot	be	modified	or	replaced.

1.6.1 Categories of Kernels
Kernels	can	be	classified	into	four	broad	categories:	monolithic kernels, microkernels, hybrid 
kernels and exokernels. Each has its own advocates and detractors.

Monolithic	kernels,	which	have	traditionally	been	used	by	Unix-like	operating	systems,	contain	
all	the	operating	system	core	functions	and	the	device	drivers	(small	programs	that	allow	the	
operating	system	to	interact	with	hardware	devices,	such	as	disk	drives,	video	cards	and	printers).	
Modern	monolithic	kernels,	 such	as	 those	of	Linux	and	FreeBSD,	both	of	which	 fall	 into	 the	
category	of	Unix-like	operating	systems,	feature	the	ability	to	load	module	at	runtime,	thereby	
allowing	easy	extension	of	the	kernel’s	capabilities	as	required,	while	helping	to	minimize	the	
amount of code running in kernel space.

A	microkernel	usually	provides	only	minimal	services,	such	as	defining	memory	address	spaces,	
interprocess	communication	(IPC)	and	process	management.	All	other	functions,	such	as	hardware	
management,	 are	 implemented	 as	 processes	 running	 independently	 of	 the	 kernel.	 Examples	 of	
microkernel	operating	systems	are	AIX,	BeOS,	Hurd,	Mach,	Mac	OS	X,	MINIX	and	QNX.
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Notes Hybrid	kernels	are	similar	to	microkernels,	except	that	they	include	additional	code	in	kernel	
space so that such code can run more swiftly than it would were it in user space. These kernels 
represent a compromise that was implemented by some developers before it was demonstrated 
that pure microkernels can provide high performance. Hybrid kernels should not be confused 
with	monolithic	kernels	that	can	load	modules	after	booting	(such	as	Linux).

Most	modern	operating	 systems	use	hybrid	kernels,	 including	Microsoft	Windows	NT,	 2000	
and	XP.	DragonFly	BSD,	a	recent	 fork	 (i.e.,	variant)	of	Free	BSD,	 is	 the	first	non-Mach	based	
BSD operating system to employ a hybrid kernel architecture.

Exokernels are a still experimental approach to operating system design. They differ from the 
other types of kernels in that their functionality is limited to the protection and multiplexing 
of	the	raw	hardware,	and	they	provide	no	hardware	abstractions	on	top	of	which	applications	
can be constructed. This separation of hardware protection from hardware management enables 
application	developers	to	determine	how	to	make	the	most	efficient	use	of	the	available	hardware	
for	each	specific	program.

Exokernels	in	themselves	they	are	extremely	small.	However,	they	are	accompanied	by	library	
operating	systems,	which	provide	application	developers	with	the	conventional	functionalities	
of a complete operating system. A major advantage of exokernel-based systems is that they 
can	incorporate	multiple	library	operating	systems,	each	exporting	a	different	API	(application	
programming	interface),	such	as	one	for	Linux	and	one	for	Microsoft	Windows,	thus	making	it	
possible to simultaneously run both Linux and Windows applications.

1.6.2 The Monolithic versus Micro Controversy

In	the	early	1990s,	many	computer	scientists	considered	monolithic	kernels	to	be	obsolete,	and	
they	 predicted	 that	 microkernels	 would	 revolutionize	 operating	 system	 design.	 In	 fact,	 the	
development	of	Linux	as	a	monolithic	kernel	rather	than	a	microkernel	led	to	a	famous	flame	war	
(i.e.,	a	war	of	words	on	the	Internet)	between	Andrew	Tanenbaum,	the	developer	of	the	MINIX	
operating	system,	and	Linus	Torvalds,	who	originally	developed	Linux	based	largely	on	MINIX.

Proponents of microkernels point out that monolithic kernels have the disadvantage that an 
error	 in	 the	 kernel	 can	 cause	 the	 entire	 system	 to	 crash.	 However,	 with	 a	microkernel,	 if	 a	
kernel	process	crashes,	it	is	still	possible	to	prevent	a	crash	of	the	system	as	a	whole	by	merely	
restarting	 the	 service	 that	 caused	 the	 error.	Although	 this	 sounds	 sensible,	 it	 is	 questionable	
how	important	it	is	in	reality,	because	operating	systems	with	monolithic	kernels	such	as	Linux	
have become extremely stable and can run for years without crashing.

Another	disadvantage	 cited	 for	monolithic	kernels	 is	 that	 they	are	not	portable;	 that	 is,	 they	
must	be	rewritten	for	each	new	architecture	(i.e.,	processor	type)	that	the	operating	system	is	
to	be	used	on.	However,	in	practice,	this	has	not	appeared	to	be	a	major	disadvantage,	and	it	
has not prevented Linux from being ported to numerous processors.

Monolithic kernels also appear to have the disadvantage that their source code can become 
extremely	 large.	 Source	 code	 is	 the	 version	 of	 software	 as	 it	 is	 originally	written(i.e.,	 typed	
into	a	computer)	by	a	human	in	plain	text	(i.e.,	human	readable	alphanumeric	characters)	and	
before it is converted by a compiler into object code that a computer’s processor can directly 
read and execute.

For	example,	 the	source	code	 for	 the	Linux	kernel	version	2.4.0	 is	approximately	100MB	and	
contains	nearly	3.38	million	lines,	and	that	for	version	2.6.0	is	212MB	and	contains	5.93	million	
lines.	This	adds	to	the	complexity	of	maintaining	the	kernel,	and	it	also	makes	it	difficult	for	new	
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Notesgenerations of computer	science	students	to	study	and	comprehend	the	kernel.	However,	the	
advocates of monolithic kernels claim that in spite of their size such kernels are easier to design 
correctly,	and	thus	they	can	be	improved	more	quickly	than	can	microkernel-based	systems.

Moreover,	 the	 size	 of	 the	 compiled	 kernel	 is	 only	 a	 tiny	 fraction	 of	 that	 of	 the	 source	 code,	
for example roughly 1.1MB in the case of Linux version 2.4 on a typical Red Hat Linux 9 
desktop installation. Contributing to the small size of the compiled Linux kernel is its ability to 
dynamically	load	modules	at	runtime,	so	that	the	basic	kernel	contains	only	those	components	
that are necessary for the system to start itself and to load modules.

The monolithic Linux kernel can be made extremely small not only because of its ability to 
dynamically	load	modules	but	also	because	of	its	ease	of	customization.	In	fact,	there	are	some	
versions	that	are	small	enough	to	fit	together	with	a	large	number	of	utilities	and	other	programs	
on	a	single	floppy	disk	and	still	provide	a	fully	functional	operating	system	(one	of	the	most	
popular	of	which	is	muLinux).	This	ability	to	miniaturize	its	kernel	has	also	led	to	a	rapid	growth	
in	the	use	of	Linux	in	embedded	systems	(i.e.,	computer	circuitry	built	into	other	products).

Although	microkernels	 are	 very	 small	 by	 themselves,	 in	 combination	with	 all	 their	 required	
auxiliary	code	they	are,	in	fact,	often	larger	than	monolithic	kernels.	Advocates	of	monolithic	
kernels	also	point	out	 that	 the	 two-tiered	structure	of	microkernel	systems,	 in	which	most	of	
the	operating	system	does	not	 interact	directly	with	 the	hardware,	 creates	a	not-insignificant	
cost	in	terms	of	system	efficiency.

File-system management is one of the most visible components of an 
operating system.

Self Assessment

Fill in the blanks:

 1. An .................... is a software program that manages the hardware and software resources 
of a computer.

	 2.	 Operating	systems	can	be	explored	from	two	viewpoints:	the		....................	and	the	system.

 3. A .................... manages the execution of user programs.

	 4.	 A		....................	is	the	mechanism	used	by	an	application	program	to	request	service	from	
the operating system.

1.7 Operating System Functions

1.7.1 What is an Operating System?

The operating system is the core software component of your computer. It performs many 
functions	and	is,	in	very	basic	terms,	an	interface	between	your	computer	and	the	outside	world.	
In	the	section	about	hardware,	a	computer	is	described	as	consisting	of	several	component	parts	
including	your	monitor,	keyboard,	mouse,	and	other	parts.	The	operating	system	provides	an	
interface to these parts using what is referred to as “drivers”. This is why sometimes when 
you	install	a	new	printer	or	other	piece	of	hardware,	your	system	will	ask	you	to	install	more	
software called a driver.
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Notes 1.7.2 What does a Driver do?

A driver is a specially written program which understands the operation of the device it 
interfaces	to,	such	as	a	printer,	video	card,	sound	card	or	CD	ROM	drive.	It	translates	commands	
from the operating system or user into commands understood by the component computer 
part it interfaces with. It also translates responses from the component computer part back to 
responses	that	can	be	understood	by	the	operating	system,	application	program,	or	user.	The	
below diagram gives a graphical depiction of the interfaces between the operating system and 
the computer component.

Figure 1.5: Operating System Interfaces

1.7.3 Other Operating System Functions
The	operating	system	provides	for	several	other	functions	including:

	 •	 System	tools	 (programs)	used	to	monitor	computer	performance,	debug	problems,	
or maintain parts of the system.

	 •	 A	 set	 of	 libraries	 or	 functions	which	 programs	may	 use	 to	 perform	 specific	 tasks	
especially relating to interfacing with computer system components.

The operating system makes these interfacing functions along with its other functions operate 
smoothly and these functions are mostly transparent to the user.

1.7.4 Operating System Concerns
As	mentioned	 previously,	 an	 operating	 system	 is	 a	 computer	 program.	 Operating	 systems	
are written by human programmers who make mistakes. Therefore there can be errors in the 
code even though there may be some testing before the product is released. Some companies 
have	better	software	quality	control	and	testing	than	others	so	you	may	notice	varying	levels	
of	quality	from	operating	system	to	operating	system.	Errors	in	operating	systems	cause	three	
main	types	of	problems:

	 •	 System	crashes	and	instabilities:	These	can	happen	due	to	a	software	bug	typically	in	the	
operating	system,	although	computer	programs	being	run	on	the	operating	system	can	
make the system more unstable or may even crash the system by themselves. This varies 
depending on the type of operating system. A system crash is the act of a system freezing 
and becoming unresponsive which would cause the user to need to reboot.
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Notes	 •	 Security	flaws:	Some	software	errors	leave	a	door	open	for	the	system	to	be	broken	into	
by	unauthorized	 intruders.	As	 these	flaws	are	discovered,	unauthorized	 intruders	may	
try	to	use	these	to	gain	illegal	access	to	your	system.	Patching	these	flaws	often	will	help	
keep your computer system secure. How this is done will be explained later.

	 •	 Sometimes	errors	in	the	operating	system	will	cause	the	computer	not	to	work	correctly	
with some peripheral devices such as printers.

Giving sound command make sure sound card is enabled.

1.7.5 Types of Operating System
Within	the	broad	family	of	operating	systems,	there	are	generally	four	types,	categorized	based	
on the types of computers they control and the sort of applications they support. The categories 
are	real-time	operating	system,	single	user	single	task,	single	user	multitasking	and	multi-user.

1.7.5.1 Real-Time Operating System (RTOS)
Real-time	operating	systems	are	used	to	control	machinery,	scientific	instruments	and	industrial	
systems	such	as	embedded	systems	(programmable	thermostats,	household	appliance	controllers),	
industrial	robots,	spacecraft,	industrial	control	(manufacturing,	production,	power	generation,	
fabrication,	and	refining),	and	scientific	research	equipment.	

An	RTOS	typically	has	very	little	user-interface	capability,	and	no	end-user	utilities,	since	the	
system will be a “sealed box” when delivered for use. A very important part of an RTOS is 
managing the resources of the computer so that a particular operation executes in precisely the 
same	amount	of	 time,	every	 time	 it	occurs.	 In	a	complex	machine,	having	a	part	move	more	
quickly	just	because	system	resources	are	available	may	be	just	as	catastrophic	as	having	it	not	
move at all because the system is busy.

An	RTOS	facilitates	the	creation	of	a	real-time	system,	but	does	not	guarantee	the	final	result	will	
be	real-time;	this	requires	correct	development	of	the	software.	An	RTOS	does	not	necessarily	
have	high	throughput;	rather,	an	RTOS	provides	facilities	which,	 if	used	properly,	guarantee	
deadlines	can	be	met	generally	(soft	real-time)	or	deterministically	(hard	real-time).	An	RTOS	
will typically use specialized scheduling algorithms in order to provide the real-time developer 
with	 the	 tools	 necessary	 to	 produce	 deterministic	 behavior	 in	 the	 final	 system.	An	 RTOS	 is	
valued	more	for	how	quickly	and/or	predictably	it	can	respond	to	a	particular	event	than	for	
the given amount of work it can perform over time. Key factors in an RTOS are therefore a 
minimal	interrupt	latency	(the	time	between	the	generation	of	an	interrupt	by	a	device	and	the	
servicing	of	the	device	which	generated	the	interrupt)	and	a	minimal	thread	switching	latency	
(the	time	needed	by	the	operating	system	to	switch	the	CPU	to	another	thread).

An early example of a large-scale real-time operating system was Transaction Processing Facility. 
Current	users	include	Sabre	(reservations),	Amadeus	(reservations),	VISA	Inc	(authorizations),	
Holiday	 Inn	 (central	 reservations),	 CBOE	 (order	 routing),	 Singapore	Airlines,	 KLM,	Qantas,	
Amtrak,	Marriott	International	,	Worldspan	and	the	NYPD	(911	system).

1.7.5.2 Single User, Single Task
As	 the	name	 implies,	 this	operating	system	 is	designed	 to	manage	 the	computer	 so	 that	one	
user can effectively do one thing at a time. The Palm OS for Palm handheld computers is a good 
example	of	a	modern	single-user,	single-task	operating	system.
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Notes Figure 1.6: The Palm Treo 700p is one of Many Smartphones produced that combines 
Palm PDA functions with a cell phone, allowing for built-in voice and Data

1.7.5.3 Single User, Multitasking

This is the type of operating system most people use on their desktop and laptop computers 
today. Microsoft’s Windows and Apple’s Mac OS platforms are both examples of operating 
systems that will let a single user have several programs in operation at the same time. For 
example,	it’s	entirely	possible	for	a	Windows	user	to	be	writing	a	note	in	a	word	processor	while	
downloading	a	file	from	the	Internet	while	printing	the	text	of	an	e-mail	message.

Multi-user:	Multi-user	is	a	term	that	defines	an	operating	system	or	application	software	that	
allows concurrent access by multiple users of a computer. A multi-user operating system allows 
many different users to take advantage of the computer’s resources simultaneously. The operating 
system	must	make	sure	that	the	requirements	of	the	various	users	are	balanced,	and	that	each	
of	the	programs	they	are	using	has	sufficient	and	separate	resources	so	that	a	problem	with	one	
user	doesn’t	affect	the	entire	community	of	users.	Unix,	VMS	and	mainframe	operating	systems,	
such	as	MVS,	are	examples	of	multi-user	operating	systems.

Time-sharing systems are multi-user systems. Most batch processing systems for mainframe 
computers	may	also	be	considered	“multi-user”,	to	avoid	leaving	the	CPU	idle	while	it	waits	for	
I/O	operations	to	complete.	However,	the	term	“multi-tasking”	is	more	common	in	this	context.

An	example	is	a	Unix	server	where	multiple	remote	users	have	access	(such	as	via	Secure	Shell)	
to the Unix shell prompt at the same time. Another example uses multiple X Window sessions 
spread	across	multiple	terminals	powered	by	a	single	machine	—	this	is	an	example	of	the	use	
of thin client.

Management	systems	are	implicitly	designed	to	be	used	by	multiple	users,	typically	one	system	
administrator or more and an end-user community.

It’s important to differentiate between multi-user operating systems and single-user operating 
systems that support networking. Windows 2000 and Novell Netware can each support hundreds 
or	thousands	of	networked	users,	but	the	operating	systems	themselves	are	not	true	multi-user	
operating systems. The system administrator is the only “user” for Windows 2000 or Netware. 
The	network	support	and	all	of	the	remote	user	logins	the	network	enables	are,	in	the	overall	
plan	of	the	operating	system,	a	program	being	run	by	the	administrative	user.

1.7.5.4 Multiprogramming

Disjoint Processes:

Our	starting	point	is	the	concurrent	statement:

cobegin S1; S2; . . . ; Sn coend
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NotesThis	notation	indicates	that	statements	S1,	S2,	.	.	.	,	Sn	can	be	executed	concurrently;	when	all	
of	them	are	terminated,	the	following	statement	in	the	program	(not	shown	here)	is	executed.	
This	restricted	form	of	concurrency	simplifies	the	understanding	and	verification	of	programs	
considerably,	compared	to	unstructured	fork	and	join	primitives.	Algorithm	1	illustrates	the	use	
of	the	concurrent	statement	to	copy	records	from	one	sequential	file	to	another.

var f, g: ¯le of T;

s, t: T; eof: Boolean;

begin

  input(f, s, eof );

  while not eof do

  begin t := s;

  cobegin

  output(g, t);

  input(f, s, eof );

  coend

  end

 end

Giving video command make sure Video card is enabled.

Algorithm	1:	Copying	of	a	sequential	file

The	variables	here	are	two	sequential	files,	f	and	g,	with	records	of	type	T;	two	buffers,	s	and	
t,	holding	one	record	each;	and	a	Boolean,	eof,	indicating	whether	or	not	the	end	of	the	input	
file	has	been	reached.

Input and output of single records are handled by two standard procedures. The algorithm inputs 
a	record,	copies	it	from	one	buffer	to	another,	outputs	it,	and	at	the	same	time,	inputs	the	next	
record.	The	copying,	output,	and	input	are	repeated	until	the	input	file	is	empty.

Now	suppose	the	programmer	by	mistake	expresses	the	repetition	as	follows:

while not eof do

cobegin

t := s;

output(g, t);

input(f, s, eof );

coend

The	 copying,	 output,	 and	 input	 of	 a	 record	 can	 now	 be	 executed	 concurrently.	 To	 simplify	
the	argument,	we	will	only	consider	cases	in	which	these	processes	are	arbitrarily	interleaved	
but not overlapped in time. The erroneous concurrent statement can then be executed in six 
different	ways	with	three	possible	results:	(1)	if	copying	is	completed	before	input	and	output	
are	 initiated,	 the	 correct	 record	will	 be	 output;	 (2)	 if	 output	 is	 completed	 before	 copying	 is	
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Notes initiated,	the	previous	record	will	be	output	again;	and	(3)	if	input	is	completed	before	copying	
is	initiated,	and	this	in	turn	completed	before	output	is	initiated,	the	next	record	will	be	output	
instead.	This	is	just	for	a	single	record	of	the	output	file.	If	we	copy	a	file	of	10,000	records,	the	
program can give of the order of 310;000 different results. 

The	actual	sequence	of	operations	in	time	will	depend	on	the	presence	of	other	(unrelated)	
computations	and	the	(possibly	time-dependent)	scheduling	policy	of	the	installation.	It	is	
therefore very unlikely that the programmer will ever observe the same result twice. The 
only	hope	of	locating	the	error	is	to	study	the	program	text.	This	can	be	very	frustrating	(if	
not	 impossible)	when	 it	 consists	of	 thousands	of	 lines	 and	one	has	no	 clues	 about	where	
to	 look.	 Multiprogramming	 is	 an	 order	 of	 magnitude	 more	 hazardous	 than	 sequential	
programming unless we ensure that the results of our computations are reproducible in 
spite	of	errors.	In	the	previous	example,	this	can	easily	be	checked	at	compile	time.	In	the	
correct	version	of	Algorithm	1,	 the	output	and	 input	processes	operate	on	disjoint	sets	of	
variables	 (g;t)	 and	 (f,	 s,	 eof).	 They	 are	 called	disjoint	 or	 non-interacting	processes.	 In	 the	
erroneous	version	of	the	algorithm,	the	processes	are	not	disjoint:	the	output	process	refers	
to a variable t changed by the copying process; and the latter refers to a variable s changed 
by	the	input	process.	This	can	be	detected	at	compile	time	if	the	following	rule	is	adopted:	
a	 concurrent	 statement	 defines	 disjoint	 processes	 S1;	 S2;	 :	 :	 :	 ;	 Sn	which	 can	 be	 executed	
concurrently. This means that a variable vi changed by statement Si cannot be referenced 
by another statement Si	 (where	 j	=6i).	 In	other	words,	we	 insist	 that	 a	variable	 subject	 to	
change by a process must be strictly private to that process; but disjoint processes can refer 
to shared variables not changed by any of them.

Throughout	this	paper,	we	tacitly	assume	that	sequential	statements	and	assertions	made	about	
them only refer to variables which are accessible to the statements according to the rules of 
disjointness	 and	mutual	 exclusion.	 The	 latter	 rule	will	 be	 defined	 in	 Section	 3.	Violations	 of	
these rules must be detected at compile time and prevent execution. To enable a compiler to 
check	the	disjointness	of	processes	the	language	must	have	the	following	property—it	must	be	
possible by simple inspection of a statement to distinguish between its constant and variable 
parameters.	We	will	not	discuss	the	influence	of	this	requirement	on	language	design	beyond	
mentioning that it makes unrestricted use of pointers and side effects unacceptable. The rule of 
disjointness	is	due	to	Hoare	(1971).	It	makes	the	axiomatic	property	of	a	concurrent	statement	
S	very	simple:	if	each	component	statement	Si	terminates	with	a	result	Ri	provided	a	predicate	
Pi	holds	before	its	execution	then	the	combined	effect	of	S	is	the	following:

“P” S “R”

where

P	=	P1	&	P2	&	……..	&	Pn

R	=	R1	&	R2	&	…….	&	Rn

As	Hoare	puts	it:	“Each	Si makes its contribution to the common goal.”

Mutual Exclusion: The usefulness of disjoint processes has its limits. We will now consider 
interacting processes and concurrent processes which access shared variables. A shared variable 
v	of	type	T	is	declared	as	follows:

Var	v:	shared	T
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NotesConcurrent processes can only refer to and change a shared variable inside a structured statement 
called a critical region.

region v do S

This notation associates a statement S with a shared variable v.

Critical regions referring to the same variable exclude each other in time. They can be arbitrarily 
interleaved	in	time.	The	idea	of	progressing	towards	a	final	result	(as	in	a	concurrent	statement)	
is therefore meaningless. All one can expect is that each critical region leaves certain relationships 
among	the	components	of	a	shared	variable	v	unchanged.	These	relationships	can	be	defined	by	
an assertion It is about v which must be true after initialization of v and before and after each 
subsequent	critical	region	associated	with	v.	Such	an	assertion	is	called	an	invariant.

When	a	process	 enters	 a	 critical	 region	 to	 execute	 a	 statement	 S,	 a	predicate	P	holds	 for	 the	
variables accessible to the process outside the critical region and an invariant. It holds for the 
shared	 variable	 v	 accessible	 inside	 the	 critical	 region.	 After	 the	 completion	 of	 S,	 a	 result	 R	
holds for the former variables and invariant. It has been maintained. So a critical region has 
the	following	axiomatic	property:

“P “

region	v	do	\P	&I”	S	\R&I”;

“R”

Process Communication: Mutual exclusion of operations on shared variables makes it possible 
to make meaningful statements about the effect of concurrent computations. But when processes 
cooperate on a common task they must also be able to wait until certain conditions have been 
satisfied	by	other	processes.	For	this	purpose	it	introduce	a	synchronizing	primitive,	await,	which	
delays a process until the components of a shared variable v satisfy a condition.

	 	 B:

  region v do

  begin . . . await B; . . . end

The	await	primitive	must	be	textually	enclosed	by	a	critical	region.	If	critical	regions	are	nested,	
the synchronizing condition B is associated with the innermost enclosing region. 

“Consumer” “Producer”

region v do region v do S2

begin await B; S1 end

The implementation of critical regions and await primitives is illustrated in Fig.1.7. When a 
process,	such	as	the	consumer	above,	wishes	to	enter	a	critical	region,	it	enters	a	main	queue	
Qv	associated	with	a	shared	variable	v.	After	entering	its	critical	region,	the	consumer	inspects	
the	shared	variable	to	determine	whether	it	satisfies	a	condition	B.	In	that	case,	the	consumer	
completes	its	critical	region	by	executing	a	statement	S1;	otherwise,	the	process	leaves	its	critical	
region	temporarily	and	joins	an	event	queue	Qe	associated	with	the	shared	variable.
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Notes Figure 1.7: Scheduling of Conditional Critical Regions V by Means of 
Process Queues Qv and Qe

Q
v V

Q
e

All processes waiting for one condition or another on variable v enter the same event 
queue.	When	another	process	(here	called	the	producer)	changes	v	by	a	statement	S2 inside 
a	critical	region,	 it	 is	possible	that	one	or	more	of	the	conditions	expected	by	processes	in	
the	event	queue	will	be	satisfied.	So,	after	completion	of	a	critical	 region,	all	processes	 in	
the	 event	 queue	Qe	 are	 transferred	 to	 the	main	 queue	Qv to enable them to reenter their 
critical regions and inspect the shared variable v again. It is possible that a consumer will 
be transferred in vain between Qv and Qe several times before its condition B holds. But 
this	can	only	occur	as	frequently	as	producers	change	the	shared	variable.	This	controlled	
amount of busy waiting is the price we pay for the conceptual simplicity achieved by using 
arbitrary Boolean expressions as synchronizing conditions. The desired invariant it for the 
shared	variable	v	must	be	satisfied	before	an	await	primitive	is	executed.	When	the	waiting	
cycle	terminates,	the	assertion	B	&	I	holds.

As	an	example,	consider	the	following	resource	allocation	problem—two	kinds	of	concurrent	
processes,	called	readers	and	writers,	share	a	single	resource.	The	readers	can	use	the	resource	
simultaneously,	 but	 the	writers	must	 have	 exclusive	 access	 to	 it.	When	 a	writer	 is	 ready	 to	
use	the	resource,	it	should	be	enabled	to	do	so	as	soon	as	possible.	This	problem	is	solved	by	
Algorithm	 2.	Here	 variable	 v	 is	 a	 record	 consisting	 of	 two	 integer	 components	 defining	 the	
number of readers currently using the resource and the number of writers currently waiting 
for	or	using	the	resource.	Both	readers	and	writers	are	initialized	to	zero.	var	v:	shared	record	
readers,	writers:	integer	end	w:	shared	Boolean;

“Reader” “Writer”

region v do region v do

begin begin

await	writers	=	0;	 writers	:=	writers	+	1;

readers	:=	readers	+	1;	 await	readers	=	0;

end end

read; region w do write;

region v do region v do

readers	:=	readers	¡	1;	 writers	:=	writers	¡	1;

Algorithm 2: Resource sharing by readers and writers

Mutual exclusion of readers and writers is achieved by letting readers wait until the number of 
writers	is	zero,	and	vice	versa.	Mutual	exclusion	of	individual	writers	is	ensured	by	the	critical	
region on the Boolean w. The priority rule is obeyed by increasing the number of writers as 
soon	as	one	of	them	wishes	to	use	the	resource.	This	will	delay	subsequent	reader	requests	until	
all	pending	writer	requests	are	satisfied.	Algorithm	2	demonstrates	the	conceptual	advantage	
of a structured notation.
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NotesThe	conceptual	simplicity	of	critical	regions	is	achieved	by	ignoring	details	of	scheduling—the	
programmer	is	unaware	of	the	sequence	in	which	waiting	processes	enter	critical	regions	and	
access	shared	resources.	This	assumption	is	justified	for	processes	which	are	so	loosely	connected	
that	simultaneous	requests	for	the	same	resource	rarely	occur.	But	in	most	computer	installations	
resources	are	heavily	used	by	a	large	group	of	users.	In	this	situation,	an	operating	system	must	
be	able	to	control	the	scheduling	of	resources	explicitly	among	competing	processes.	To	do	this,	
a programmer	must	be	able	 to	associate	an	arbitrary	number	of	 event	queues	with	a	 shared	
variable and control the transfers of processes to and from them. 

The declaration

var	e:				event	v;

associates	an	event	queue	e	with	a	shared	variable	v.

A	process	can	leave	a	critical	region	associated	with	v	and	join	the	event	queue	e	by	executing	
the standard procedure

	 	 	 	 await(e)

Another	process	can	enable	all	processes	 in	the	event	queue	e	to	reenter	their	critical	regions	
by executing the standard procedure

	 	 	 	 cause(e)

A	consumer	producer	relationship	must	now	be	expressed	as	follows:

“Consumer” “Producer”

region v do region v do

begin begin

while	not	B	do	await(e);	 S2;

S1;	 cause(e);

end end

Although	 less	elegant	 than	 the	previous	notation,	 the	present	one	still	 clearly	shows	 that	 the	
consumer is waiting for condition B to hold. And we can now control process scheduling to 
any	degree	desired.	To	simplify	explicit	scheduling,	

var	v:	shared	record

	 available:	set	of	R;

	 requests:	set	of	P;

	 grant:	array	P	of	event	v;

   end

procedure	reserve(process:	P;	var	resource:	R);

region v do

begin

	 while	empty(available)	do

	 begin	enter(process,	requests);

	 	 await(grant[process]);
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	 	 remove(resource,	available);

 end

	 procedure	release(resource:	R);

	 var	process:	P;

 region v do

	 begin	enter(resource,	available);

	 if	not	empty(requests)	then

	 	 begin	remove(process,	requests);

	 	 cause(grant[process]);

  end

 end

Algorithm 3: Scheduling of heavily used resources

If the scheduling	rule	is	completely	unknown	to	the	programmer	as	before,	additional	variables	
are	required	to	ensure	that	resources	granted	to	waiting	processes	remain	available	to	them	until	
they reenter their critical regions.

Algorithm 3 is a simple example of completely controlled resource allocation. A number 
of	 processes	 share	 a	 pool	 of	 equivalent	 resources.	 Processes	 and	 resources	 are	 identified	 by	
indices	of	type	P	and	R	respectively.	When	resources	are	available,	a	process	can	acquire	one	
immediately;	otherwise,	 it	must	enter	a	 request	 in	a	data	 structure	of	 type	 set	of	P	and	wait	
until a resource is granted to it. It is assumed that the program controls the entry and removal 
of set elements completely.

Conclusion

The	essential	properties	of	these	concepts	are:

 1. A distinction between disjoint and interacting processes;

	 2.	 An	association	of	shared	data	with	operations	defined	on	them;

 3. Mutual exclusion of these operations in time;

 4. Synchronizing primitives which permit partial or complete control of process 
scheduling.

1.7.5.5 Multiprocessing

Multiprocessing	 is	 the	 use	 of	 two	 or	 more	 central	 processing	 units	 (CPUs)	 within	 a	 single	
computer system. The term also refers to the ability of a system to support more than one 
processor and/or the ability to allocate tasks between them. There are many variations on this 
basic	theme,	and	the	definition	of	multiprocessing	can	vary	with	context,	mostly	as	a	function	
of	how	CPUs	are	defined.

Multiprocessing sometimes refers to the execution of multiple concurrent software processes 
in	a	system	as	opposed	to	a	single	process	at	any	one	instant.	However,	the	terms	multitasking	
or	multiprogramming	 are	more	 appropriate	 to	 describe	 this	 concept,	which	 is	 implemented	
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Notesmostly	in	software,	whereas	multiprocessing	is	more	appropriate	to	describe	the	use	of	multiple	
hardware	CPUs.	A	 system	can	be	both	multiprocessing	and	multiprogramming,	only	one	of	
the	two,	or	neither	of	the	two.

Processor Symmetry:	 In	 a	multiprocessing	 system,	 all	CPUs	may	be	 equal,	 or	 some	may	be	
reserved for special purposes. A combination of hardware and operating-system software design 
considerations	determine	the	symmetry	(or	lack	thereof)	in	a	given	system.	For	example,	hardware	
or	software	considerations	may	require	that	only	one	CPU	respond	to	all	hardware	interrupts,	
whereas	all	other	work	 in	 the	 system	may	be	distributed	equally	among	CPUs;	or	execution	
of	 kernel	mode	 code	may	 be	 restricted	 to	 only	 one	processor	 (either	 a	 specific	 processor,	 or	
only	one	processor	at	a	time),	whereas	user-mode	code	may	be	executed	in	any	combination	of	
processors.	Multiprocessing	systems	are	often	easier	to	design	if	such	restrictions	are	imposed,	
but	they	tend	to	be	less	efficient	than	systems	in	which	all	CPUs	are	utilized.

Systems	 that	 treat	 all	 CPUs	 equally	 are	 called	 symmetric	 multiprocessing	 (SMP)	 systems.	
In	 systems	where	 all	CPUs	 are	 not	 equal,	 system	 resources	may	 be	 divided	 in	 a	 number	 of	
ways,	 including	 asymmetric	multiprocessing	 (ASMP),	 non-uniform	memory	 access	 (NUMA)	
multiprocessing,	and	clustered	multiprocessing.

Processor Coupling: Tightly-coupled multiprocessor systems contain multiple CPUs that 
are connected at the bus level. These CPUs may have access to a central shared memory 
(SMP	 or	 UMA),	 or	 may	 participate	 in	 a	 memory	 hierarchy	 with	 both	 local	 and	 shared	
memory	 (NUMA).	 Chip	 multiprocessors,	 also	 known	 as	 multi-core	 computing,	 involves	
more than one processor placed on a single chip and can be thought of the most extreme 
form of tightly-coupled multiprocessing. Mainframe systems with multiple processors are 
often tightly-coupled.

Loosely-coupled	multiprocessor	 systems	 (often	 referred	 to	as	 clusters)	 are	based	on	multiple	
standalone single or dual processor commodity computers interconnected via a high speed 
communication	system	(Gigabit	Ethernet	is	common).	A	Linux	Beowulf	cluster	is	an	example	
of a loosely-coupled system.

Tightly-coupled	systems	perform	better	and	are	physically	smaller	than	loosely-coupled	systems,	
but	have	historically	required	greater	initial	investments	and	may	depreciate	rapidly;	nodes	in	
a loosely-coupled system are usually inexpensive commodity computers and can be recycled 
as independent machines upon retirement from the cluster.

Power consumption is also a consideration. Tightly-coupled systems tend to be much more 
energy	efficient	than	clusters.	This	is	because	considerable	economies	can	be	realized	by	designing	
components	to	work	together	from	the	beginning	in	tightly-coupled	systems,	whereas	loosely-
coupled	systems	use	components	that	were	not	necessarily	intended	specifically	for	use	in	such	
systems.

Instruction and Data Streams:	In	multiprocessing,	the	processors	can	be	used	to	execute	a	single	
sequence	of	instructions	in	multiple	contexts	(single-instruction,	multiple-data	or	SIMD,	often	
used	 in	 vector	 processing),	multiple	 sequences	 of	 instructions	 in	 a	 single	 context	 (multiple-
instruction,	 single-data	 or	MISD),	 or	multiple	 sequences	 of	 instructions	 in	multiple	 contexts	
(multiple-instruction,	multiple-data	or	MIMD).
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Figure 1.8: SISD Multiprocessing

In	 1Tcomputing1T,	 SISD	 (Single	 Instruction,	 Single	 Data)	 is	 a	 term	 referring	 to	 a	 computer	
architecture	 in	which	a	single	processor,	a	uniprocessor,	executes	a	single	 instruction	stream,	
to operate on data stored in a single memory.

In	a	single	instruction	stream,	single	data	stream	computer	one	processor	sequentially	processes	
instructions; each instruction processes one data item.

SISD	 is	one	of	 the	 four	main	classifications.	 In	 this	 system	classifications	are	based	upon	 the	
number of concurrent instructions and data streams present in the computer architecture. SISD 
can have concurrent processing characteristics. Instruction fetching and pipelined execution of 
instructions are common examples found in most modern SISD computers.

SIMD Multiprocessing:	 In	 a	 single	 instruction	 stream,	 multiple	 data	 stream	 computer	 one	
processor	handles	a	stream	of	instructions,	each	one	of	which	can	perform	calculations	in	parallel	
on multiple data locations.

SIMD	multiprocessing	is	well	suited	to	parallel	or	vector	processing,	in	which	a	very	large	set	
of data can be divided into parts that are individually subjected to identical but independent 
operations. A single instruction stream directs the operation of multiple processing units to 
perform the same manipulations simultaneously on potentially large amounts of data.

For	certain	types	of	computing	applications,	this	type	of	architecture	can	produce	enormous	
increases	 in	performance,	 in	 terms	of	 the	elapsed	 time	required	 to	complete	a	given	 task.	
However,	a	drawback	to	this	architecture	is	that	a	large	part	of	the	system	falls	idle	when	
programs or system tasks are executed that cannot be divided into units that can be processed 
in parallel.

Additionally,	programs	must	be	carefully	and	specially	written	to	take	maximum	advantage	of	
the	architecture,	and	often	special	optimizing	compilers	designed	to	produce	code	specifically	
for this environment must be used.

Some compilers in this category provide special constructs or extensions to allow programmers 
to directly specify operations to be performed in parallel.

SIMD	multiprocessing	finds	wide	use	in	certain	domains	such	as	computer	simulation,	but	is	
of little use in general-purpose desktop and business computing environments.
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NotesMISD Multiprocessing:	Multiple	Instruction,	Single	Data	is	a	type	of	1Tparallel	computing1T	
1Tarchitecture1T where many functional units perform different operations on the same data. 
1TPipeline1T	architectures	belong	to	this	type,	though	a	purist	might	say	that	the	data	is	different	
after processing by each stage in the pipeline.

MISD	multiprocessing	offers	mainly	 the	advantage	of	 redundancy,	since	multiple	processing	
units	perform	the	same	tasks	on	the	same	data,	reducing	the	chances	of	incorrect	results	if	one	
of the units fails. MISD architectures may involve comparisons between processing units to 
detect failures. Fault-tolerant computers executing the same instructions redundantly in order 
to	detect	and	mask	errors,	 in	a	manner	known	as	1Ttask	replication1T,	may	be	considered	to	
belong to this type.

Apart	 from	 the	 redundant	 and	 fail-safe	 character	 of	 this	 type	 of	multiprocessing,	 it	 has	 few	
advantages,	 and	 it	 is	 very	 expensive	 .It	 does	not	 improve	performance.	Not	many	 instances	
of	this	architecture	exist,	as	1TMIMD1T	architectures	may	be	used	in	a	number	of	application	
areas	such	as	1Tcomputer-aided	design1T/1Tcomputer-aided	manufacturing1T,	1Tsimulation1T,	
1Tmodeling1T,	 and	 as	 communication	 switches.	MIMD	machines	 can	 be	 of	 either	 1Tshared	
memory1T	or	1Tdistributed	memory1T	categories.	These	classifications	are	based	on	how	MIMD	
processors access memory.

MIMD multiprocessing architecture is suitable for a wide variety of tasks in which completely 
independent and parallel execution of instructions touching different sets of data can be put 
to	productive	use.	For	this	reason,	and	because	it	 is	easy	to	implement,	MIMD	predominates	
in multiprocessing.

MIMD	does	raise	issues	of	deadlock	and	resource	contention,	however,	since	threads	may	collide	
in	their	access	to	resources	in	an	unpredictable	way	that	is	difficult	to	manage	efficiently.	MIMD	
requires	special	coding	in	the	operating	system	of	a	computer	but	does	not	require	application	
changes. Both system and user software may need to use software constructs such as semaphores 
(also	called	locks	or	gates)	to	prevent	one	thread	from	interfering	with	another	if	they	should	
happen to cross paths in referencing the same data. This gating or locking process increases code 
complexity,	lowers	performance,	and	greatly	increases	the	amount	of	testing	required,	although	
not usually enough to negate the advantages of multiprocessing.

Symmetric Multiprocessing: In	 computing,	 symmetric	 multiprocessing	 or	 SMP	 involves	 a	
multiprocessor computer architecture where two or more identical processors can connect 
to a single shared main memory. Most common multiprocessor systems today use an SMP 
architecture.	In	the	case	of	multi-core	processors,	the	SMP	architecture	applies	to	the	cores.	

Treating them as Separate Processors: SMP systems allow any processor to work on any task no 
matter	where	the	data	for	that	task	are	located	in	memory;	with	proper	operating	system	support,	
SMP	systems	can	easily	move	tasks	between	processors	to	balance	the	workload	efficiently.

SMP	represents	one	of	the	earliest	styles	of	multiprocessor	machine	architectures,	typically	used	
for building smaller computers with up to 8 processors. Larger computer systems might use 
newer	architectures	such	as	NUMA	(Non-Uniform	Memory	Access)	and	1TSIMD1T	are	often	
more	appropriate	for	common	data	parallel	 techniques.	Specifically,	 they	allow	better	scaling	
and use of computational resources than MISD does.

MIMD Multiprocessing: In	1Tcomputing1T,	MIMD	(Multiple	Instruction	stream,	Multiple	Data	
stream)	is	a	technique	employed	to	achieve	parallelism.	Machines	using	MIMD	have	a	number	
of 1Tprocessors1T that function 1Tasynchronously1T and independently.

At	any	time,	different	processors	may	be	executing	different	instructions	on	different	pieces	of	
data MIMD.
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Notes Figure 1.9: A typical SMP system. Three processors are connected to the 
same memory module through a bus or crossbar switch.
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Asymmetric Multiprocessing

Asymmetric multiprocessing varies greatly from the standard processing model that we see in 
personal	computers	today.	Due	to	the	complexity	and	unique	nature	of	this	architecture,	it	was	
not	 adopted	by	many	vendors	or	programmers	during	 its	brief	 stint	 (1970–1980).	Whereas	 a	
symmetric	multiprocessor	or	SMP	treats	all	of	the	processing	elements	in	the	system	identically,	
an ASMP system assigns certain tasks only to certain processors.

Asymmetric	hardware	systems	commonly	dedicated	individual	processors	to	specific	tasks.	For	
example,	one	processor	may	be	dedicated	to	disk	operations,	another	to	video	operations,	and	
the	rest	to	standard	processor	tasks.	These	systems	do	not	have	the	flexibility	to	assign	processes	
to	the	least-loaded	CPU,	unlike	an	SMP	system.

Although	hardware-level	ASMP	may	not	be	in	use,	the	idea	and	logical	process	is	still	commonly	
used	in	applications	that	are	multiprocessor	intensive.	Unlike	SMP	applications,	which	run	their	
threads	on	multiple	processors,	ASMP	applications	will	 run	on	one	processor	 but	 outsource	
smaller	tasks	to	another.	Although	the	system	may	physically	be	an	SMP,	the	software	is	still	
able to use it as an ASMP by simply giving certain tasks to one processor and deeming it the 
“master”,	and	only	outsourcing	smaller	tasks	to	“slave	“processors.

  	 Prepare	a	list	of	system	requirements	before	installing	an	operating	system.

1.8 Hardware ASMP

1.8.1 Overview
Asymmetrical	multiprocessors	are	defined	by	the	characteristic	 that	each	processor	 is	unique	
(non-symmetrical).	It	is	common	to	have	one	processor	that	has	access	to	the	memory	map	as	a	
whole,	and	other	processors	which	simply	act	as	slaves	to	the	main	or	master	processor.	Usually,	
these slave processors will have their own memory which is not tied to the primary processors 
memory.	 Slave	processors	 are	 required	 to	 exchange	data	with	 the	main	processor	 through	a	
partitioned segment of memory that is allocated solely for the purpose of communication. 
Depending	on	 the	hardware	 in	question,	each	processor	may	or	may	not	be	able	 to	speak	 to	
other processors directly.

1.8.2 Differences between Hardware ASMP and SMP
In	the	symmetrical	multiprocessing	design,	each	processor	is	able	to	access	the	entire	memory	
map;	there	are	no	master	or	slave	processors.	In	this	case	each	processor	is	non-unique	and	has	
equal	power.	This	means	that	they	can	share	memory	between	themselves	and	can	interact	with	
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Noteseach	other	directly,	regardless	of	how	many	there	are	in	the	system.	People	commonly	confuse	
these	architectures	and	as	such	it	is	important	to	define	the	differences.

1.9 Software ASMP

1.9.1 Overview
Asymmetric multiprocessing as opposed to asymmetrical multiprocessors is the term that 
refers to software side ASMP. In software each program or application is a process ASMP 
for	 software	means	 that	 all	 tasks/processes	 are	 unique.	 Thus	 a	 given	 task	 such	 as	 your	
operating system or favourite game would be assigned to a certain processor. In a more 
general context “a certain task not runs on every processor. “It is common for application 
which uses ASMP to work in the following way. The main processor will determine what 
work	needs	to	be	done	and	will	take	the	bulk	of	the	load,	from	there	it	can	create	instances	
of	 the	given	task	on	other	processors	to	complete	work.	Take	a	video	rendering	program,	
the	main	processor	 could	 run	 the	application	and	 the	user	 interface,	while	offloading	 the	
rendering component to a slave processor. This type of action needs to be written into the 
software and is not decided at the hardware level. It is the programmers’ responsibility to 
determine what jobs should be completed by a given processor.

It	must	be	noted	that	most	applications	will	ONLY	run	on	the	master	processor	and	that	 the	
slave processors can merely take on the role of completing tasks that the master processor asks. 
It is rare that an entire application will or can be run from a slave processor.

1.9.2 Differences between Software ASMP and SMP
Symmetrical	multiprocessing,	when	referring	to	software,	implies	the	exact	opposite	of	ASMP.	
In	regards	to	the	operating	system,	a	SMP	machine	is	able	to	spawn	any	process/task	on	any	of	
the	processors	available.	Because	SMP	systems	have	no	master	or	slave	processors,	each	logical	
unit	is	able	to	complete	a	given	task.	In	an	ASMP	system,	a	certain	processor	may	not	be	able	to	
complete	a	task	for	a	number	of	reason	such	as	the	inability	to	access	the	entire	memory	map,	
special	purpose	nature	of	the	processor	(e.g.	a	coprocessor)	and	thus	tasks	must	be	give	to	it	by	
master	processor.	Therefore,	it	is	up	to	the	programmer	to	make	sure	the	processors	are	being	
used	to	their	maximum	potential.	In	an	ASMP	environment,	a	programmer	has	to	worry	about	
whether a processor can complete a given task and how to make the processors communicate 
effectively to distribute tasks.

1.9.3 Modern Applications of ASMP
Currently,	there	are	no	consumer	level	production	computers	that	use	asymmetric	multiprocessor	
designs.	There	are,	however,	computers	that	are	able	to	distribute	tasks	Asymmetrically.	In	theory	
you are able to use a Symmetrical processor to do asymmetrical computations. A programmer 
can	choose	to	use	one	processor	as	a	main,	and	only	offload	certain	tasks	to	the	other	processor.	
Although	each	physical	or	logical	processor	is	able	to	complete	any	given	task,	priority	is	given	
to	one	as	the	“master”	processor,	and	the	other	is	given	the	position	of	“slave”.

1.9.4 Graphical Representation of Asymmetric Multiprocessing
Below are examples of what a cluster of asymmetrical multiprocessors would look like. Observe 
the	extremely	unique	nature	of	these	designs	and	how	only	one	processor	has	access	to	the	I/O	
part	of	the	system.	As	stated	before,	these	systems	work	best	and	were	originally	designed	to	do	
very	specific	tasks.	One	processor	may	simply	do	physics	calculations	while	another	is	dedicated	
to	 rendering	 2D	video.	Above	 those	 two	processors,	will	 be	 a	master	 processor	 that	 assigns	
tasks. Notice also that the main memory is not accessible by all of the processors. The master 
processor	will	usually	relay	information	on	a	“need	to	know”	basis,	to	the	slave	processors.
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Figure 1.10: Slave Processors
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1.10 Multitasking

An operating system that utilizes multitasking is one that allows more than one program to 
run	 simultaneously.	 If	 that	 operating	 system	 has	 cooperative	 multitasking,	 it’s	 up	 to	 each	
running program to yield control of system resources to allow the other running applications to 
perform	their	chores.	In	other	words,	programs	must	cooperate.	In	a	cooperative	multitasking	
environment,	 programs	 can	 be	written	 such	 that	 they	 do	 not	 cooperate	 graciously—or	 even	
such that they do not cooperate at all. A better method of implementing multitasking is for an 
operating system to employ preemptive multitasking. In a preemptive multitasking environment 
the	operating	system	can,	and	does,	preempt	currently	running	applications.

With	 preemptive	multitasking,	 the	 burden	 of	 passing	 control	 from	 one	 program	 to	 another	
falls on the operating system rather than on running applications. The advantage is that no one 
program	can	grab	and	retain	control	of	system	resources.	If	you	have	not	already	guessed,	the	
BeOS	has	preemptive	multitasking.	The	BeOS	microkernel	(a	low-level	task	manager	discussed	
later	in	this	unit)	is	responsible	for	scheduling	tasks	according	to	priority	levels.	All	tasks	are	
allowed	 use	 of	 a	 processor	 for	 only	 a	 very	 short	 time—three-thousandths	 of	 a	 second.	 If	 a	
program	does	not	completely	execute	a	task	in	one	such	time-slice,	it	will	pick	up	where	it	left	
off the next time it regains use of a processor.

1.11 Distributed Systems

A	network,	in	the	simplest	terms,	is	a	communication	path	between	two	or	more	systems.	
Distributed systems depend on networking for their functionality. By being able to 
communicate,	distributed	systems	are	able	to	share	computational	tasks,	and	provide	a	rich	
set of features to users.

Networks	vary	by	the	protocols	used,	the	distances	between	nodes,	and	the	transport	media.	
TCP/IP	 is	 the	 most	 common	 network	 protocol,	 although	 ATM	 and	 other	 protocols	 are	 in	
widespread	use.	Likewise,	operating-system	support	of	protocols	varies.	Most	operating	systems	
support	TCP/IP,	including	the	Windows	and	UNIX	operating	systems.	Some	systems	support	
proprietary	protocols	 to	suit	 their	needs.	To	an	operating	system,	a	network	protocol	simply	
needs	an	 interface	device-a	network	adapter,	 for	 example-with	a	device	driver	 to	manage	 it,	
and software to package data in the communications protocol to send it and to unpackage it to 
receive it. These concepts are discussed throughout the book.

Networks	are	typecast	based	on	the	distances	between	their	nodes.	A	local-area	network	(LAN),	
exists	within	a	room,	a	floor,	or	a	building.	A	wide-area	network	(WAN),	usually	exists	between	
buildings,	 cities,	 or	 countries.	 A	 global	 company	may	 have	 a	WAN	 to	 connect	 its	 offices,	
worldwide. These networks could run one protocol or several protocols. The continuing advent 
of	new	 technologies	brings	 about	new	 forms	of	networks.	 For	 example,	 a	metropolitan-area 
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Notesnetwork	 (MAN),	 could	 link	 buildings	within	 a	 city.	 BlueTooth	 devices	 communicate	 over	 a	
short	distance	of	several	feet,	in	essence	creating	a	small-area network.

The	media	to	carry	networks	are	equally	varied.	They	include	copper	wires,	fiber	strands,	and	
wireless	 transmissions	 between	 satellites,	 microwave	 dishes,	 and	 radios.	When	 computing	
devices	are	connected	to	cellular	phones,	they	create	a	network.	Even	very	short-range	infrared	
communication	 can	 be	 used	 for	 networking.	 At	 a	 rudimentary	 level,	 whenever	 computers	
communicate they use or create a network. These networks also vary by their performance 
and reliability.

1.11.1 Client-Server Systems
As	PCs	have	become	 faster,	more	powerful,	 and	 cheaper,	designers	have	 shifted	away	 from	
the centralized system architecture. Terminals connected to centralized systems are now being 
supplanted	by	PCs.	Correspondingly,	user-interface	functionality	that	used	to	be	handled	directly	
by	 the	centralized	systems	 is	 increasingly	being	handled	by	 the	PCs.	As	a	 result,	 centralized	
systems today act as server systems	to	satisfy	requests	generated	by	client systems. The general 
structure of a client-server system is depicted in Figure Server systems can be broadly categorized 
as	compute	servers	and	fileservers.

Compute-server systems	provide	an	interface	to	which	clients	can	send	requests	to	perform	an	
action,	in	response	to	which	they	execute	the	action	and	send	back	results	to	the	client.

File-server systems	provide	a	file-system	interface	where	clients	can	create,	update,	read,	and	
delete	files.

1.11.2 Peer-to-Peer Systems
The	growth	of	computer	networks—especially	the	Internet	and	World	Wide	Web	(WWW)—has	
had	 a	 profound	 influence	 on	 the	 recent	 development	 of	 operating	 systems.	When	PCs	were	
introduced	in	the	1970s,	they	were	designed	for	“personal”	use	and	were	generally	considered	
standalone computers. With the beginning of widespread public use of the Internet in the 
1980s	for	electronic	mail,	ftp,	and	gopher,	many	PCs	became	connected	to	computer	networks.	
With	the	introduction	of	the	Web	in	the	mid-1990s,	network	connectivity	became	an	essential	
component of a computer system.

Figure 1.12: General Structure of a Client-server System

Virtually all modern PCs and workstations are capable of running a web browser for 
accessing	hypertext	documents	on	 the	Web.	Operating	 systems	 (such	as	Windows,	OS/2,	
MacOS,	and	UNIX)	now	also	 include	 the	system	software	 (such	as	TCP/IP	and	PPP)	 that	
enables a computer to access the Internet via a local-area network or telephone connection. 
Several	 include	 the	web	 browser	 itself,	 as	well	 as	 electronic	mail,	 remote	 login,	 and	file-
transfer clients and servers.
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Notes The computer networks used in these applications consist of a collection of processors that do 
not	share	memory	or	a	clock.	Instead,	each	processor	has	its	own	local	memory.	The	processors	
communicate	with	one	another	through	various	communication	lines,	such	as	high-speed	buses	or	
telephone lines. These systems are usually referred to as loosely coupled systems	(or	distributed 
systems).	Some	operating	systems	have	taken	the	concept	of	networks	and	distributed	systems	
further than the notion of providing network connectivity. A network operating system is an 
operating	system	that	provides	features	such	as	file	sharing	across	the	network,	and	that	includes	
a communication scheme that allows different processes on different computers to exchange 
messages. A computer running a network operating system acts autonomously from all other 
computers	on	the	network,	although	it	is	aware	of	the	network	and	is	able	to	communicate	with	
other	networked	computers.	A	distributed	operating	system	is	a	less	autonomous	environment:	
The different operating systems communicate closely enough to provide the illusion that only 
a single operating system controls the network. We cover computer networks and distributed 
systems in units coming up.

    Distinguish between the client-server and peer-to-peer models of distributed 
system.

V Distributed Operating Systems

The V operating system is a microkernel operating system that was developed by 
faculty and students in the Distributed Systems Group at Stanford University in the 
1980s. V was the successor to the Thoth and Verax operating systems.

The key concepts in V are multithreading and synchronous message passing. Communication 
between	threads	in	V	uses	synchronous	message	passing,	with	short,	fixed-length	messages	
that can include access rights for the receiver to read or write part of the sender’s address 
space before replying. The same message-passing interface is used both between threads 
within	one	process,	between	threads	of	different	processes	within	one	machine,	and	between	
threads on different machines connected by a local Ethernet. A thread receiving a message 
is	not	required	to	reply	to	it	before	receiving	other	messages;	this	distinguishes	the	model	
from Ada rendezvous.

One common pattern for using the messaging facility is for clients to send messages to 
a	 server	 requesting	 some	 form	of	 service.	From	 the	 client	 side,	 this	 looks	much	 like	RPC	
(remote	procedure	call).	The	convenience	of	an	automatic	stub	generator	is	lacking,	but	on	
the	other	hand,	the	client	can	pass	one	parameter	by	reference,	which	is	not	possible	with	
RPC.	From	the	server	side	the	model	differs	more	from	RPC,	as	by	default	all	client	requests	
are multiplexed onto one server thread. The server is free to explicitly fork threads to handle 
client	requests	in	parallel,	however;	if	this	is	done,	the	server-side	model	is	much	like	RPC	too.

Questions:

 1. Differentiate between V distributed operating system and distributed operating system.

	 2.	 Define	remote	procedure	call.
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NotesSelf Assessment
Multiple choice questions:

 5. The operating system manages

	 (a)	 Memory	 (b)	 Processes

	 (c)	 Disks	and	I/O	devices	 (d)	 All	of	the	above	

 6. Which is not the function of the operating system?

	 (a)	 Memory	management	 (b)	 Disk	management

	 (c)	 Application	management	 (d)	 Virus	protection	

 7. What is a shell? 

	 (a)	 It	is	a	hardware	component		 (b)	 It	is	a	command	interpreter	

	 (c)	 It	is	a	part	in	compiler	 (d)	 It	is	a	tool	in	CPU	scheduling	

 8. Multiprogramming systems 

	 (a)	 are	easier	to	develop	than	single	programming	systems	

	 (b)	 execute	each	job	faster	

	 (c)	 execute	more	jobs	in	the	same	time	

	 (d)	 are	used	only	on	large	main	frame	computers	

 9. Which of the following operating systems is better for implementing a Client-Server 
network? 

	 (a)	 MS	DOS		 (b)	 Windows	95

	 (c)	 Windows	98	 (d)	 Windows	2000

1.12 Summary

	 •	 An	operating	system	(OS)	is	a	software	program	that	manages	the	hardware	and	software	
resources of a computer.

	 •	 Command	Line	 Interface	 (CLI)	operating	systems	can	operate	using	only	 the	keyboard	
for input. 

	 •	 Modern	 OS’s	 use	 a	mouse	 for	 input	 with	 a	 graphical	 user	 interface	 (GUI)	 sometimes	
implemented	as	a	shell.	The	Unix-like	family,	The	Microsoft	Windows	family	of	operating	
systems.

	 •	 The	kernel	is	a	program	that	constitutes	the	central	core	of	a	computer	operating	system.	It	
has complete control over everything that occurs in the system and functions of operating 
system. 

1.13 Keywords

Asymmetric Multiprocessing: Asymmetric hardware systems commonly dedicated individual 
processors	to	specific	tasks.

Computer Server System: Computer-server systems provide an interface to which clients can 
send	requests	to	perform	an	action,	in	response	to	which	they	execute	the	action	and	send	back	
results to the client.
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Notes File Server System:	File-server	systems	provide	a	file-system	interface	where	clients	can	create,	
update,	read,	and	delete	files.

Kernel: Kernel is a program that constitutes the central core of a computer operating system.

MISD Multiprocessing:	Multiple	Instruction,	Single	Data	is	a	type	of	1Tparallel	computing1T	
1Tarchitecture1T where many functional units perform different operations on the same data.

Multitasking: An operating system that utilizes multitasking is one that allows more than one 
program to run simultaneously.

Operating System:	An	operating	system	(OS)	is	a	software	program	that	manages	the	hardware	
and software resources of a computer.

Peer-to-Peer System:	Peer-to-peer	(P2P)	computing	or	networking	is	a	distributed	application	
architecture that partitions tasks or workloads between peers.

Real Time Operating System (RTOS):	Real-time	operating	systems	are	used	to	control	machinery,	
scientific	instruments	and	industrial	systems	such	as	embedded	systems.

SIMD Multiprocessing:	 In	 a	 single	 instruction	 stream,	 multiple	 data	 stream	 computer	 one	
processor	handles	a	stream	of	instructions,	each	one	of	which	can	perform	calculations	in	parallel	
on multiple data locations.

Symmetric Multiprocessing: SMP involves a multiprocessor computer architecture where two 
or more identical processors can connect to a single shared main memory.

System Calls:	System	call	is	the	mechanism	used	by	an	application	program	to	request	service	
from the operating system.

Unix-like:	 Unix-like	 family	 is	 a	 diverse	 group	 of	 operating	 systems,	 with	 several	 major	
subcategories	including	System	V,	BSD,	and Linux.

1. What are the key ingredients of an operating system?

2. What is the usefulness of system call?

1.14 Review Questions

 1. What does an operating system do?

 2. What are the three main purposes of an operating system?

 3. List the four steps needed to run a program on a completely dedicated machine.

 4. What is the main advantage of multiprogramming?

 5. What are the main differences between operating systems for mainframe computers and 
PCs?

	 6.	 In	 a	multiprogramming	 and	 time-sharing	 environment,	 several	users	 share	 the	 system	
simultaneously. This situation can result in various security problems.

	 (a)	 What	are	two	such	problems?

	 (b)	 Can	we	ensure	the	same	degree	of	security	in	a	time-shared	machine	as	we	have	in	
a dedicated machine? Explain your answer.
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Notes	 7.	 How	do	clustered	systems	differ	from	multiprocessor	systems?	What	is	required	for	two	
machines belonging to a cluster to cooperate to provide a highly available service?

 8. How are network computers different from traditional personal computers? Describe some 
usage scenarios in which it is advantageous to use network computers.

 9. Give two reasons why caches are useful. What problems do they solve? What problems 
do	they	cause?	If	a	cache	can	be	made	as	large	as	the	device	for	which	it	is	caching	(for	
instance,	a	cache	as	large	as	a	disk),	why	not	make	it	that	large	and	eliminate	the	device?

	 10.	 Discuss,	with	examples,	how	the	problem	of	maintaining	coherence	of	cached	data	manifests	
itself	in	the	following	processing	environments:

	 (a)	 Single-processor	systems

	 (b)	 Multiprocessor	systems

	 (c)	 Distributed	systems

 11. Describe a mechanism for enforcing memory protection in order to prevent a program 
from modifying the memory associated with other programs.

	 12.	 Define	the	essential	properties	of	the	following	types	of	operating	systems:

	 (a)	 Batch	 (b)	 Interactive	 (c)	 Time	sharing

	 (d)	 Real	time	 (e)	 Network	 (f)	 Parallel

	 (g)	 Distributed	 (h)	 Clustered	 (i)	 Handheld

 13. What are the tradeoffs inherent in handheld computers?

 14. What are the advantages and disadvantages of using the same systemcall interface for 
manipulating	both	files	and	devices?

 15. What is the purpose of the command interpreter? Why is it usually separate from the 
kernel? Would it be possible for the user to develop a new command interpreter using 
the system-call interface provided by the operating system?

 16. Why is the separation of mechanism and policy desirable?

 17. In what ways is the modular kernel approach similar to the layered approach? In what 
ways does it differ from the layered approach?

 18. What is the relationship between a guest operating system and a host operating system in 
a system like VMware? What factors need to be considered in choosing the host operating 
system?

 19. Describe the actions taken by a kernel to context-switch between processes.

	 20.	 What	 is	 the	main	difficulty	 that	a	programmer	must	overcome	 in	writing	an	operating	
system for a real-time environment?

Answers to Self Assessment
 1. operating system 2. user 3. control program 4. system call

	 5.	 (d)	 	 	 6.	 (d)	 7.	 (b)	 8.	 (c)	

	 9.	 (d)	 	 	
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Notes 1.15 Further Readings

Introduction to Operating Design and Implementation,	by	Michael	Kifer,	Scoott	
A. Smolka.
Operating Systems,	by	Stuart	E.	Madnick,	John	J.	Donovan.	

wiley.com/coolege.silberschatz
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Notes Objectives

After studying this unit, you will be able to:

	 •	 Discuss	process	concept

	 •	 Explain	process	control	block

	 •	 Understand	process	scheduling

	 •	 Explain	cooperating	processes

	 •	 Discuss	overview	of	inter	process	communication

Introduction

Multiprogramming	systems	explicitly	allow	multiple	processes	to	exist	at	any	given	time,	where	
only	one	is	using	the	CPU	at	any	given	moment,	while	the	remaining	processes	are	performing	
I/O or are waiting. 

The process manager is of the four major parts of the operating system. It implements the process 
abstraction. It does this by creating a model for the way the process uses CPU and any system 
resources. Much of the complexity of the operating system stems from the need for multiple 
processes	 to	 share	 the	hardware	 at	 the	 same	 time.	As	 a	 conseuence	of	 this	 goal,	 the	process	
manager	 implements	CPU	sharing	 (called	 scheduling),	process	 synchronization mechanisms,	
and	a	deadlock	 strategy.	 In	 addition,	 the	process	manager	 implements	part	 of	 the	operating	
system’s protection and security. 

2.1 Process Concept

One impediment	 to	our	discussion	of	operating	systems	is	the	question	of	what	to	call	all	
the	 CPU	 activities.	 A	 batch	 system	 executes	 jobs,	whereas	 a	 timeshared	 system	 has	 user	
programs,	or	tasks.	Even	on	a	single-user	system,	such	as	Microsoft	Windows	and	Macintosh	
OS,	a	user	may	be	able	to	run	several	programs	at	one	time:	a	word	processor,	web	browser,	
and e-mail package.

Even	 if	 the	user	 can	execute	only	one	program	at	 a	 time,	 the	operating	 system	may	need	 to	
support	its	own	internal	programmed	activities,	such	as	memory	management.	In	many	respects,	
all	these	activities	are	similar,	so	we	call	all	of	them	processes.	The	terms	job	and	process	are	
used	almost	interchangeably	in	this	text.	Although	we	personally	prefer	the	term	process,	much	
of operating-system theory and terminology was developed during a time when the major 
activity of operating systems was job processing. It would be misleading to avoid the use of 
commonly	accepted	terms	that	 include	the	word	 job	(such	as	 job	scheduling)	simply	because	
process has superseded job.

2.1.1 Process
A	process	is	a	sequential	program	in	execution.	The	components	of	a	process	are	the	following:	

	 •	 The	object	program	to	be	executed	(called	the	program text in	UNIX).

	 •	 The	data on	which	the	program	will	execute	(obtained	from	a	file	or	 interactively	from	
the	process’s	user).	

	 •	 Resources	required	by	the	program	(for	example,	files	containing	requisite	information).

	 •	 The	status of the process’s execution. 
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During the lifespan	of	a	process,	 its	execution	status	may	be	 in	one	of	 four	states	 (associated	
with	each	state	is	usually	a	queue	on	which	the	process	resides):

	 •	 Executing: The process is currently running and has control of a CPU. 

	 •	 Waiting:	The	process	is	currently	able	to	run,	but	must	wait	until	a	CPU	becomes	available.

	 •	 Blocked:	The	process	is	currently	waiting	on	I/O,	either	for	input	to	arrive	or	output	to	
be sent. 

	 •	 Suspended:	The	process	is	currently	able	to	run,	but	for	some	reason	the	OS	has	not	placed	
the	process	on	the	ready	queue.

 • Ready: The process	is	in	memory,	will	execute	given	CPU	time.

Figure 2.1: Diagram of Process State
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	 • Terminated:	The	process	has	finished	execution.	These	state	names	are	arbitrary,	and	they	
vary	across	operating	systems.	The	states	 that	 they	represent	are	 found	on	all	 systems,	
however.	Certain	operating	systems	more	finely	delineate	process	states. 

Only	one	process	can	be	running	on	any	processor	at	any	instant,	although	
many processes may be ready and waiting.

2.2 Process Control Block

Each	 process	 is	 represented	 in	 the	 operating	 system	 by	 a	 process	 control	 block	 (PCB),	 also	
called a task control block. A PCB is shown in Figure 2.2. It contains many pieces of information 
associated	with	a	specific	process,	including	these:
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Figure 2.2: Process Control Block (PCB)

P

P

P

R

M

L

Process state:	The	state	may	be	new,	ready,	running,	waiting,	halted,	and	so	on.

Program counter: The counter indicates the address of the next instruction to be executed 
for this process.

CPU registers:	 The	 registers	 vary	 in	 number	 and	 type,	 depending	 on	 the	 computer	
architecture.	They	include	accumulators,	index	registers,	stack	pointers,	and	general-purpose	
registers,	plus	any	condition-code	information.

Along	with	 the	program	counter,	 this	state	 information	must	be	saved	when	an	 interrupt	
occurs,	to	allow	the	process	to	be	continued	correctly	afterward	(Figure	2.3).

CPU-scheduling information:	 This	 information	 includes	 a	 process	 priority,	 pointers	 to	
scheduling	queues,	and	any	other	scheduling	parameters.	Memory-management	information:	
This	information	may	include	such	information	as	the	value	of	the	base	and	limit	registers,	
the	 page	 tables,	 or	 the	 segment	 tables,	 depending	 on	 the	 memory	 system	 used	 by	 the	
operating system.

Memory-management information: This information may include such information as the 
value	of	the	base	and	limit	registers,	the	page	tables,	or	the	segment	tables,	depending	on	
the memory system used by the operating system.
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Figure 2.3: Diagram Showing CPU Switch from Process to Process
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Accounting information:	 This	 information	 includes	 the	 amount	 of	CPU	and	 real	 time	used,	
time	limits,	account	numbers,	job	or	process	numbers,	and	so	on.

Status information:	The	information	includes	the	list	of	I/O	devices	allocated	to	this	process,	
a	list	of	open	files,	and	so	on.	The	PCB	simply	serves	as	the	repository	for	any	information	that	
may vary from process to process.

Threads: The process model discussed so far has implied that a process is a 
program	that	performs	a	single	thread	of	execution.	For	example,	if	a	process	
is	running	a	word-processor	program,	a	single	thread	of	instructions	is	being	
executed. This single thread of control allows the process to perform only 
one task at one time.

2.3 Process Scheduling

The	 objective	 of	 multiprogramming	 is	 to	 have	 some	 process	 running	 at	 all	 times,	 so	 as	 to	
maximize CPU utilization. The objective of time-sharing is to switch the CPU among processes 
so	 frequently	 that	 users	 can	 interact	with	 each	 program	while	 it	 is	 running.	A	uniprocessor	
system can have only one running process.

If	more	processes	exist,	the	rest	must	wait	until	the	CPU	is	free	and	can	be	rescheduled.
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Notes 2.3.1 Scheduling Queues
As	processes	enter	the	system,	they	are	put	into	a	job	queue.	This	queue	consists	of	all	processes	
in the system. The processes that are residing in main memory and are ready and waiting to 
execute	are	kept	on	a	list	called	the	ready	queue.	This	queue	is	generally	stored	as	a	linked	list.	
A	ready-queue	header	contains	pointers	to	the	first	and	final	PCBs	in	the	list.	We	extend	each	
PCB	to	include	a	pointer	field	that	points	to	the	next	PCB	in	the	ready	queue.

The	operating	system	also	has	other	queues.	When	a	process	is	allocated	the	CPU,	it	executes	
for	a	while	and	eventually	quits,	is	interrupted,	or	waits	for	the	occurrence	of	a	particular	event,	
such	as	the	completion	of	an	I/O	request.	In	the	case	of	a	I/O	request,	such	a	request	may	be	to	a	
dedicated	tape	drive,	or	to	a	shared	device,	such	as	a	disk.	Since	the	system	has	many	processes,	
the	disk	may	be	busy	with	the	I/O	request	of	some	other	process.	The	process	therefore	may	
have to wait for the disk. The list of processes waiting for a particular I/O device is called a 
device	queue.	Each	device	has	its	own	device	queue	(Figure	2.4).

Figure 2.4: The Ready Queue and Various I/O Device Queues

Queue header PCB, PCB,

Ready
queue

Head

Tail Registers Registers

Map
tape
unit 0

Map
tape
unit 0

PCB, PCB, PCB,

Head

Tail

Head

Tail

Disk
unit 0

Terminal

unit 0

PCB,

Head

Tail

Head

Tail

A	common	representation	of	process	scheduling	is	a	queueing	diagram,	such	as	that	in	Figure	
2.5.	Each	rectangular	box	represents	a	queue.	Two	types	of	queues	are	present—the	ready	queue	
and	a	set	of	device	queues.	The	circles	represent	the	resources	that	serve	the	queues,	and	the	
arrows	indicate	the	flow	of	processes	in	the	system.

A	new	process	is	initially	put	in	the	ready	queue.	It	waits	in	the	ready	queue	until	it	is	selected	
for	execution	(or	dispatched).	Once	the	process	is	assigned	to	the	CPU	and	is	executing,	one	of	
several	events	could	occur:
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Notes	 •	 The	process	could	issue	an	I/O	request,	and	then	be	placed	in	an	I/O	queue.

	 •	 The	process	could	create	a	new	sub	process	and	wait	for	its	termination.

	 •	 The	process	could	be	removed	forcibly	from	the	CPU,	as	a	result	of	an	interrupt,	and	be	
put	back	in	the	ready	queue.

Figure 2.5: Queuing-diagram Representation of Process Scheduling
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In	the	first	two	cases,	the	process	eventually	switches	from	the	waiting	state	to	the	ready	state,	
and	is	then	put	back	in	the	ready	queue.	A	process	continues	this	cycle	until	 it	terminates,	at	
which	time	it	is	removed	from	all	queues	and	has	its	PCB	and	resources	deallocated.

2.3.2 Schedulers
A	process	migrates	between	the	various	scheduling	queues	throughout	its	lifetime.	The	operating	
system	must	select,	for	scheduling	purposes,	processes	from	these	queues	in	some	fashion.	The	
selection process is carried out by the appropriate scheduler.

In	 a	 batch	 system,	 often	 more	 processes	 are	 submitted	 than	 can	 be	 executed	 immediately.	
These	processes	are	 spooled	 to	a	mass-storage	device	 (typically	a	disk),	where	 they	are	kept	
for	later	execution.	The	long-term	scheduler,	or	job	scheduler,	selects	processes	from	this	pool	
and	loads	them	into	memory	for	execution.	The	short-term	scheduler,	or	CPU	scheduler,	selects	
from	 among	 the	 processes	 that	 are	 ready	 to	 execute,	 and	 allocates	 the	CPU	 to	 one	 of	 them.	
The	primary	distinction	between	these	two	schedulers	is	the	frequency	of	their	execution.	The	
short-term	scheduler	must	select	a	new	process	for	the	CPU	frequently.	A	process	may	execute	
for	only	a	few	milliseconds	before	waiting	for	an	I/O	request.	Often,	the	short-term	scheduler	
executes	at	least	once	every	100	milliseconds.	Because	of	the	brief	time	between	executions,	the	
short-term scheduler must be fast. If it takes 10 milliseconds to decide to execute a process for 
100	milliseconds,	then	10/(100	+	10)	=	9	percent	of	the	CPU	is	being	used	(or	wasted)	simply	
for scheduling the work.

The	long-term	scheduler,	on	the	other	hand,	executes	much	less	frequently.	There	may	be	minutes	
between the creation of new processes in the system. The long-term scheduler controls the degree 
of	multiprogramming—the	number	of	processes	in	memory.	If	the	degree	of	multiprogramming	
is	stable,	then	the	average	rate	of	process	creation	must	be	equal	to	the	average	departure	rate	
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Notes of	processes	 leaving	the	system.	Thus,	 the	 long-term	scheduler	may	need	to	be	 invoked	only	
when a process leaves the system. Because	of	the	longer	interval	between	executions,	the	long-
term scheduler can afford to take more time to select a process for execution.

The long-term scheduler	 must	 make	 a	 careful	 selection.	 In	 general,	 most	 processes	 can	 be	
described as either I/O bound or CPU bound. An 110-bound process spends more of its time 
doing I/O than it spends doing computations. A CPU-bound	 process,	 on	 the	 other	 hand,	
generates	 I/O	requests	 infrequently,	using	more	of	 its	 time	doing	computation	 than	an	 I/O-
bound process uses. The long-term scheduler should select a good process mix of I/O-bound 
and	CPU-bound	processes.	If	all	processes	are	I/O	bound,	the	ready	queue	will	almost	always	
be	empty,	and	the	short-term	scheduler	will	have	little	to	do.	If	all	processes	are	CPU	bound,	
the	 I/O	waiting	queue	will	 almost	 always	 be	 empty,	 devices	will	 go	unused,	 and	 again	 the	
system will be unbalanced. The system with the best performance will have a combination of 
CPU-bound and I/O-bound processes.

On	 some	 systems,	 the	 long-term	 scheduler	 may	 be	 absent	 or	 minimal.	 For	 example,	 time-
sharing	 systems	 such	 as	 UNIX	 often	 have	 no	 long-term	 scheduler,	 but	 simply	 put	 every	
new process in memory for the short-term scheduler. The stability of these systems depends 
either	 on	 a	 physical	 limitation	 (such	 as	 the	 number	 of	 available	 terminals)	 or	 on	 the	 self-
adjusting	 nature	 of	 human	 users.	 If	 the	 performance	 declines	 to	 unacceptable	 levels,	 some	
users	will	simply	quit.	Some	operating	systems,	such	as	time-sharing	systems,	may	introduce	
an	 additional,	 intermediate	 level	 of	 scheduling.	 This	 medium-term	 scheduler,	 diagrammed	
in	 Figure	 2.6,	 removes	 processes	 from	memory	 (and	 from	 active	 contention	 for	 the	 CPU),	
and	 thus	 reduces	 the	 degree	 of	 multiprogramming.	 At	 some	 later	 time,	 the	 process	 can	 be	
reintroduced into memory and its execution can be continued where it left off. This scheme is 
called	swapping.	The	process	 is	 swapped	out,	 and	 is	 later	 swapped	 in,	by	 the	medium-term	
scheduler. Swapping may be necessary	 to	 improve	 the	 process	mix,	 or	 because	 a	 change	 in	
memory	requirements	has	overcommitted	available	memory,	requiring	memory	to	be	freed	up.

Figure 2.6: Addition of Medium-term Scheduling to the Queueing Diagram
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2.3.3 Context Switch
Switching	the	CPU	to	another	process	requires	saving	the	state	of	the	old	process	and	loading	
the saved state for the new process. This task is known as a context switch. The context of a 
process	is	represented	in	the	PCB	of	a	process;	 it	 includes	the	value	of	the	CPU	registers,	the	
process	state	and	memory-management	information.	When	a	context	switch	occurs,	the	kernel	
saves the context of the old process in its PCB and loads the saved context of the new process 
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Notesscheduled	 to	 run.	Context-switch	 time	 is	 pure	 overhead,	 because	 the	 system	does	 no	useful	
work	while	switching.	 Its	speed	varies	 from	machine	to	machine,	depending	on	the	memory	
speed,	 the	number	of	 registers	 that	must	be	 copied,	 and	 the	 existence	of	 special	 instructions	
(such	as	a	single	instruction	to	load	or	store	all	registers).	Typical	speeds	range	from	1	to	1000	
microseconds.	Context-switch	times	are	highly	dependent	on	hardware	support.	For	instance,	
some	processors	(such	as	the	Sun	UltraSPARC)	provide	multiple	sets	of	registers.	A	context	switch	
simply	includes	changing	the	pointer	to	the	current	register	set.	Of	course,	if	active	processes	
exceed	register	sets,	the	system	resorts	to	copying	register	data	to	and	from	memory,	as	before.	
Also,	the	more	complex	the	operating	system,	the	more	work	must	be	done	during	a	context	
switch.	 Advanced	memory-management	 techniques	 may	 require	 extra	 data	 to	 be	 switched	
with	each	context.	For	instance,	the	address	space	of	the	current	process	must	be	preserved	as	
the	space	of	the	next	task	is	prepared	for	use.	How	the	address	space	is	preserved,	and	what	
amount	of	work	is	needed	to	preserve	it,	depend	on	the	memory-management	method	of	the	
operating system.

Context switching has become such a performance bottleneck that 
programmers	are	using	new	structures	(threads)	to	avoid	it	whenever	possible.

Self Assessment

Multiple choice questions:

 1.	 PCB	=	......................	.

	 	 (a)	 Program	Control	Block	 (b)	 Process	Control	Block

	 	 (c)	 Process	Communication	Block	 (d)	 None	of	the	above	

 2. FIFO scheduling is ...................... .

	 	 (a)	 Preemptive	Scheduling	 (b)	 Non	Preemptive	Scheduling

	 	 (c)	 Deadline	Scheduling	 (d)	 Fair	share	scheduling	

	 3.	 Switching	the	CPU	to	another	process	requires	to	save	state	of	the	old	process	and	loading	
new process state is called as ...................... .

	 	 (a)	 Process	Blocking	 (b)	 Context	Switch

	 	 (c)	 Time	Sharing	 (d)	 None	of	the	above	

 4. The state of a process after it encounters an I/O instruction is ...................... .

	 	 (a)	 Ready		 (b)	 Blocked/Waiting

	 	 (c)	 Idle		 (d)	 Running	

2.4 Cooperating Processes

The concurrent processes executing in the operating system may be either independent processes 
or cooperating processes. A process is independent if it cannot affect or be affected by the other 
processes	executing	in	the	system.	Clearly,	any	process	that	does	not	share	any	data	(temporary	
or	persistent)	with	any	other	process	is	independent.	On	the	other	hand,	a	process	is	cooperating	
if	it	can	affect	or	be	affected	by	the	other	processes	executing	in	the	system.	Clearly,	any	process	
that shares data with other processes is a cooperating process.
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Notes We	may	want	to	provide	an	environment	that	allows	process	cooperation	for	several	reasons:

	 •	 Information sharing: Since several users may be interested in the same piece of information 
(for	instance,	a	shared	file),	we	must	provide	an	environment	to	allow	concurrent	access	
to these types of resources.

	 •	 Computation speedup:	If	we	want	a	particular	task	to	run	faster,	we	must	break	it	into	
subtasks,	each	of	which	will	be	executing	in	parallel	with	the	others.	Such	a	speedup	can	
be	achieved	only	if	the	computer	has	multiple	processing	elements	(such	as	CPUs	or	I/O	
channels).

	 •	 Modularity:	We	may	want	 to	 construct	 the	 system	 in	 a	modular	 fashion,	dividing	 the	
system functions into separate processes or threads. 

	 •	 Convenience: Even an individual user may have many tasks on which to work at one 
time.	For	instance,	a	user	may	be	editing,	printing,	and	compiling	in	parallel.

Concurrent	 execution	 of	 cooperating	 processes	 requires	mechanisms	 that	 allow	processes	 to	
communicate with one another and to synchronize their actions.

To	 illustrate	 the	 concept	 of	 cooperating	 processes,	 let	 us	 consider	 the	 producer-consumer	
problem,	which	is	a	common	paradigm	for	cooperating	processes.	A	producer	process	produces	
information	that	is	consumed	by	a	consumer	process.	For	example,	a	print	program	produces	
characters	 that	are	consumed	by	 the	printer	driver.	A	compiler	may	produce	assembly	code,	
which	is	consumed	by	an	assembler.	The	assembler,	in	turn,	may	produce	object	modules,	which	
are consumed by the loader.

To	 allow	 producer	 and	 consumer	 processes	 to	 run	 concurrently,	 we	must	 have	 available	 a	
buffer	of	items	that	can	be	filled	by	the	producer	and	emptied	by	the	consumer.	A	producer	can	
produce one item while the consumer is consuming another item. The producer and consumer 
must	be	synchronized,	so	that	the	consumer	does	not	try	to	consume	an	item	that	has	not	yet	
been	produced.	In	this	situation,	the	consumer	must	wait	until	an	item	is	produced.

The unbounded-buffer producer-consumer problem places no practical limit on the size 
of	the	buffer.	The	consumer	may	have	to	wait	for	new	items,	but	the	producer	can	always	
produce	new	items.	The	bounded-buffer	producer	consumer	problem	assumes	a	fixed	buffer	
size.	 In	 this	 case,	 the	 consumer	must	wait	 if	 the	 buffer	 is	 empty,	 and	 the	producer	must	
wait if the buffer is full.

The buffer may either be provided by the operating system through the use of an Inter Process 
Communication	(IPC)	facility	or	by	explicitly	coded	by	the	application	programmer	with	the	use	
of shared memory. Let us illustrate a shared-memory solution to the bounded-buffer problem. 
The	producer	and	consumer	processes	share	the	following	variables:

#define	BUFFER-SIZE	10

typedef s t r u c t {

. . .

)	item;

item	buffer	[BUFFER-SIZE]	;

int	in	=	0;

i	n	t	out	=	0;

The	shared	buffer	is	implemented	as	a	circular	array	with	two	logical	pointers—in	and	out.	The	
variable	in	points	to	the	next	free	position	in	the	buffer;	out	points	to	the	first	full	position	in	the	
buffer.	The	buffer	is	empty	when	in	==	out	;	the	buffer	is	full	when	((in	+	1)	%	BUFFERSIZE)	
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a	local	variable	nextproduced	in	which	the	new	item	to	be	produced	is	stored:

while	(1)	{

/* produce an item in nextproduced */

while	(	(	(in	+	1)	%	BUFFER-SIZE)	==	out)

; /* do nothing */

buffer	[in]	=	nextproduced;

in	=	(in	+	1)	%	BUFFER-SIZE;

1

The consumer process has a local variable next consumed in which the item to be consumed 
is	stored:

while	(I)	{

while	(in	==	out)

; // do nothing

nextconsumed	=	buffer	[out]	;

out	=	(out	+	1)	%	BUFFER-SIZE;

/* consume the item in nextconsumed */

1

2.5 Overview of Inter-Process Communication

In	the	previous	section,	we	showed	how	cooperating	processes	can	communicate	in	a	shared-memory	
environment.	The	scheme	requires	that	these	processes	share	a	common	buffer	pool,	and	that	the	
code for implementing the buffer be written explicitly by the application programmer. Another way 
to achieve the same effect is for the operating system to provide the means for cooperating processes 
to	communicate	with	each	other	via	an	inter-process	communication	(PC)	facility.

IPC provides a mechanism to allow processes to communicate and to synchronize their actions 
without sharing the same address space. IPC is particularly useful in a distributed environment 
where the communicating processes may reside on different computers connected with a 
network. An example is a chat program used on the World Wide Web. IPC is best provided by 
a	message-passing	system,	and	message	systems	can	be	defined	in	many	ways.	In	this	section,	
we look at different issues when designing message-passing systems.

2.5.1 Message-passing System
The function of a message system is to allow processes to communicate with one another without 
the need to resort to shared data. We have already seen message passing used as a method of 
communication	in	Microkernels.	In	this	scheme,	services	are	provided	as	ordinary	user	processes.	
That	 is,	 the	services	operate	outside	of	 the	kernel.	Communication	among	the	user	processes	
is accomplished through the passing of messages. An IPC facility provides at least the two 
operations—	send(message)	and	receive(message).	Messages	sent	by	a	process	can	be	of	either	
fixed	or	variable	size.	If	only	fixed-sized	messages	can	be	sent,	the	system-level	implementation	
is	straightforward.	This	restriction,	however,	makes	the	task	of	programming	more	difficult.	On	
the	other	hand,	variable-sized	messages	require	a	more	complex	system-level	implementation,	
but	the	programming	task	becomes	simpler.	If	processes	P	and	Q	want	to	communicate,	they	
must send messages to and receive messages from each other; a communication link must exist 
between them. This link can be implemented in a variety of ways. We are concerned here not 
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several	methods	for	logically	implementing	a	link	and	the	send/receive	operations:
	 •	 Direct	or	indirect	communication
	 •	 Symmetric	or	asymmetric	communication
	 •	 Automatic	or	explicit	buffering
	 •	 Send	by	copy	or	send	by	reference
	 •	 Fixed-sized	or	variable-sized	messages
We look at each of these types of message systems next.

2.5.2 Naming
Processes that want to communicate must have a way to refer to each other.

They can use either direct or indirect communication.

2.5.3 Direct Communication
With	direct	communication,	each	process	that	wants	to	communicate	must	explicitly	name	the	
recipient	or	sender	of	the	communication.	In	this	scheme,	the	send	and	receive	primitives	are	
defined	as:

	 • send(P, message) –Send a message to process P.

 • receive(Q, message) –Receive a message from process Q.

A	communication	link	in	this	scheme	has	the	following	properties:

	 •	 A	 link	 is	 established	 automatically	 between	 every	 pair	 of	 processes	 that	 want	 to	
communicate. The processes need to know only each other’s identity to communicate.

	 •	 A	link	is	associated	with	exactly	two	processes.

	 •	 Exactly	one	link	exists	between	each	pair	of	processes.

This	scheme	exhibits	symmetry	in	addressing;	that	is,	both	the	sender	and	the	receiver	processes	
must name the other to communicate. A variant of this scheme employs asymmetry in addressing. 
Only	the	sender	names	the	recipient;	the	recipient	is	not	required	to	name	the	sender.	In	this	
scheme,	the	send	and	receive	primitives	are	defined	as	follows:

	 • send(P, message) –Send a message to process P.

receive	(id,	message)—Receive	a	message	from	any	process;	the	variable	id	is	set	to	the	name	
of the process with which communication has taken place.

The disadvantage in both symmetric and asymmetric schemes is the limited modularity of the 
resulting	process	definitions.	Changing	the	name	of	a	process	may	necessitate	examining	all	other	
process	definitions.	All	references	to	the	old	name	must	be	found,	so	that	they	can	be	modified	
to the new name. This situation is not desirable from the viewpoint of separate compilation.

2.5.4 Indirect Communication
With	indirect	communication,	the	messages	are	sent	to	and	received	from	mailboxes,	or	ports.	A	
mailbox can be viewed abstractly as an object into which messages can be placed by processes 
and	 from	which	messages	can	be	 removed.	Each	mailbox	has	a	unique	 identification.	 In	 this	
scheme,	a	process	can	communicate	with	some	other	process	via	a	number	of	different	mailboxes.	
Two processes can communicate only if they share a mailbox. The send and receive primitives 
are	defined	as	follows:

	 • send(A, message) –Send a message to mailbox A.

 • receive(A, message) –Receive a message from mailbox A.
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	 •	 A	link	is	established	between	a	pair	of	processes	only	if	both	members	of	the	pair	have	a	
shared mailbox.

	 •	 A	link	may	be	associated	with	more	than	two	processes.

	 •	 A	number	of	different	 links	may	exist	 between	 each	pair	 of	 communicating	processes,	
with each link corresponding to one mailbox.

Now	suppose	that	processes	P1,	P2,	and	P3	all	share	mailbox	A.	Process	P1	sends	a	message	to	
A,	while	P2	and	P3	each	execute	a	receive	from	A.	Which	process	will	receive	the	message	sent	
by	P1?	The	answer	depends	on	the	scheme	that	we	choose:

	 •	 Allow	a	link	to	be	associated	with	at	most	two	processes.

	 •	 Allow	at	most	one	process	at	a	time	to	execute	a	receive	operation.

	 •	 Allow	the	system	to	select	arbitrarily	which	process	will	receive	the	message.

(that	 is,	either	P2	or	P3,	but	not	both,	will	receive	the	message).	The	system	may	identify	the	
receiver to the sender.

A mailbox may be owned either by a process or by the operating system. If the mailbox is 
owned	by	a	process	(that	is,	the	mailbox	is	part	of	the	address	space	of	the	process),	then	we	
distinguish	between	the	owner	(who	can	only	receive	messages	through	this	mailbox)	and	the	
user	(who	can	only	send	messages	to	the	mailbox).	Since	each	mailbox	has	a	unique	owner,	there	
can be no confusion about who should receive a message sent to this mailbox. When a process 
that	owns	a	mailbox	terminates,	the	mailbox	disappears.	Any	process	that	subsequently	sends	
a	message	to	this	mailbox	must	be	notified	that	the	mailbox	no	longer	exists.

On	the	other	hand,	a	mailbox	owned	by	the	operating	system	is	independent	and	is	not	attached	
to any particular process. The operating system then must provide a mechanism that allows a 
process	to	do	the	following:

	 •	 Create	a	new	mailbox.

	 •	 Send	and	receive	messages	through	the	mailbox.

	 •	 Delete	a	mailbox.

The	process	that	creates	a	new	mailbox	is	that	mailbox’s	owner	by	default.	Initially,	the	owner	
is	 the	only	process	 that	can	receive	messages	 through	this	mailbox.	However,	 the	ownership	
and receive privilege may be passed to other processes through appropriate system calls. Of 
course,	this	provision	could	result	in	multiple	receivers	for	each	mailbox.

2.5.5 Synchronization
Communication between processes takes place by calls to send and receive primitives. There 
are different design options for implementing each primitive. Message passing may be either 
blocking	or	nonblocking—also	known	as	synchronous	and	asynchronous.

	 •	 Blocking send: The sending process is blocked until the message is received by the 
receiving process or by the mailbox.

	 •	 Nonblocking send: The sending process sends the message and resumesoperation.

	 •	 Blocking receive: The receiver blocks until a message is available.

	 •	 Nonblocking receive: The receiver retrieves either a valid message or a null.
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Notes Different combinations of send and receive are possible. When both the send and receive are 
blocking,	we	have	a	rendezvous	between	the	sender	and	the	receiver.

2.5.6 Buffering
Whether	 the	 communication	 is	 direct	 or	 indirect,	 messages	 exchanged	 by	 communicating	
processes	reside	in	a	temporary	queue.	Basically,	such	a	queue	can	be	implemented	in	three	ways:

	 •	 Zero capacity:	The	queue	has	maximum	length	0;	thus,	the	link	cannot	have	any	messages	
waiting	in	it.	In	this	case,	the	sender	must	block	until	the	recipient	receives	the	message.

	 •	 Bounded capacity:	The	queue	has	finite	length	n;	thus,	at	most	n	messages	can	reside	in	
it.	If	the	queue	is	not	full	when	a	new	message	is	sent,	the	latter	is	placed	in	the	queue	
(either	 the	message	 is	 copied	 or	 a	 pointer	 to	 the	message	 is	 kept),	 and	 the	 sender	 can	
continue	execution	without	waiting.	The	link	has	a	finite	capacity,	however.	If	the	link	is	
full,	the	sender	must	block	until	space	is	available	in	the	queue.

	 •	 Unbounded capacity:	 The	 queue	 has	 potentially	 infinite	 length;	 thus,	 any	 number	 of	
messages can wait in it. The sender never blocks.

The zero-capacity case is sometimes referred to as a message system with no 
buffering; the other cases are referred to as automatic buffering.

2.5.7 An Example: Mach
As	an	example	of	a	message-based	operating	system,	consider	the	Mach	operating	system,	
developed at Carnegie Mellon University. The Mach kernel supports the creation and 
destruction	of	multiple	 tasks,	which	are	similar	 to	processes	but	have	multiple	 threads	of	
control.	Most	communication	in	Mach—including	most	of	the	system	calls	and	all	intertask	
information—is	carried	out	by	messages.	Messages	are	sent	to	and	received	from	mailboxes,	
called ports in Mach.

Even	system	calls	are	made	by	messages.	When	each	task	is	created,	two	special	mailboxes—
the	Kernel	mailbox	and	 the	Notify	mailbox—are	also	 created.	The	kernel	uses	 the	Kernel	
mailbox	to	communicate	with	the	task.	The	kernel	sends	notification	of	event	occurrences	
to the Notify port. Only three system calls are needed for message transfer. The msg-send 
call sends a message to a mailbox. A message is received via msgxeceive. Remote procedure 
calls	 (RPCs)	 are	 executed	 via	msg-rpc,	which	 sends	 a	message	 and	waits	 for	 exactly	 one	
return	message	 from	 the	 sender.	 In	 this	way,	RPC	model	 a	 typical	 subroutine	procedure	
call,	but	can	work	between	systems.

The	port-allocate	system	call	creates	a	new	mailbox	and	allocates	space	for	its	queue	of	messages.	
The	maximum	size	of	the	message	queue	defaults	to	eight	messages.	The	task	that	creates	the	
mailbox is that mailbox’s owner. The owner also is given receive access to the mailbox. Only 
one	 task	 at	 a	 time	 can	 either	own	or	 receive	 from	a	mailbox,	 but	 these	 rights	 can	be	 sent	 to	
other tasks if desired.

The	mailbox	has	an	initially	empty	queue	of	messages.	As	messages	are	sent	to	the	mailbox,	the	
messages are copied into the mailbox. All messages have the same priority. Mach guarantees 
that	multiple	messages	from	the	same	sender	are	queued	in	first-in,	first-out	(FIFO)	order,	but	
does	not	guarantee	an	absolute	ordering.	For	instance,	messages	sent	from	each	of	two	senders	
may	be	queued	in	any	order.

The	messages	 themselves	 consist	 of	 a	 fixed-length	 header,	 followed	 by	 a	 variable-length	
data portion. The header includes the length of the message and two mailbox names. When 
a	message	 is	 sent,	 one	mailbox	 name	 is	 the	mailbox	 to	which	 the	message	 is	 being	 sent.	
Commonly,	 the	sending	thread	expects	a	reply;	 the	mailbox	name	of	 the	sender	 is	passed	
on	 to	 the	 receiving	 task,	which	may	use	 it	 as	 a	 “return	 address”	 to	 send	messages	 back.	
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NotesThe variable part of a message is a list of typed data items. Each entry in the list has a 
type,	 size,	 and	value.	The	 type	of	 the	objects	 specified	 in	 the	message	 is	 important,	 since	
operating-system-defined	objects-such	as	the	ownership	or	receive	access	rights,	task	states,	
and memory segments-may be sent in messages.

The	send	and	receive	operations	themselves	are	flexible.	For	instance,	when	a	message	is	sent	to	a	
mailbox,	the	mailbox	may	be	full.	If	the	mailbox	is	not	full,	the	message	is	copied	to	the	mailbox	
and	the	sending	thread	continues.	If	the	mailbox	is	full,	the	sending	thread	has	four	options:

	 1.	 Wait	indefinitely	until	there	is	room	in	the	mailbox.

 2. Wait at most n milliseconds.

	 3.	 Do	not	wait	at	all,	but	rather	return	immediately.

	 4.	 Temporarily	cache	a	message.	One	message	can	be	given	to	the	operating	system	to	keep,	
even though the mailbox to which it is being sent is full. When the message can be put 
in	the	mailbox,	a	notification	message	is	sent	back	to	the	sender;	only	one	such	message	
to a full mailbox can be pending at any time for a given sending thread.

The	final	option	is	meant	for	server	tasks,	such	as	a	line-printer	driver.	After	finishing	a	request,	
these	tasks	may	need	to	send	a	one-time	reply	to	the	task	that	had	requested	service,	but	must	
also	continue	with	other	service	requests,	even	if	the	reply	mailbox	for	a	client	is	full.	The	receive	
operation must specify from which mailbox or mailbox set to receive a message. A mailbox 
set	 is	 a	 collection	of	mailboxes,	 as	declared	by	 the	 task,	which	 can	be	grouped	 together	 and	
treated as one mailbox for the purposes of the task. Threads in a task can receive from only a 
mailbox or mailbox set for which that task has receive access. A port-status system call returns 
the number of messages in a given mailbox. The receive operation attempts to receive from 
either	of	the	following:

 1. Any mailbox in a mailbox set

	 2.	 A	specific	(named)	mailbox

If	no	message	is	waiting	to	be	received,	the	receiving	thread	may	wait,	wait	
at	most	n	milliseconds,	or	not	wait.

The Mach message system attempts to avoid double-copy operations by using virtual-memory-
management	 techniques.	 Essentially,	 Mach	maps	 the	 address	 space	 containing	 the	 sender’s	
message into the receiver’s address space. The message itself is never actually copied. This 
message-management	 technique	 provides	 a	 large	 performance	 boost,	 but	 works	 only	 for	
intrasystem messages.

2.5.8 An Example: Windows 2000
The Windows 2000 operating system is an example of modern design that employs modularity to 
increase functionality and decrease the time needed to implement new features. Windows 2000 
provides	support	for	multiple	operating	environments	or	subsystems,	with	which	application	
programs communicate via a message-passing mechanism. The application programs can be 
considered to be clients of the Windows 2000 subsystem server.

The	message-passing	facility	in	Windows	2000	is	called	the	local	procedure	call	(LPC)	facility.	
The LPC in Windows 2000 communicates between two processes that are on the same machine. 
It	 is	 similar	 to	 the	 standard	RPC	mechanism	 that	 is	widely	used,	but	 it	 is	optimized	 for	and	
specific	to	Windows	2000.	Like	Mach,	Windows	2000	uses	a	port	object	to	establish	and	maintain	
a connection between two processes. Every client that calls a subsystem needs a communication 
channel,	which	is	provided	by	a	port	object	and	is	never	inherited.	Windows	2000	uses	two	types	
of	ports—connection	ports	and	communication	ports.	They	are	really	 the	same	but	are	given	
different	names	according	to	how	they	are	used.	Connection	ports	are	named	objects,	which	are	
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Notes visible to all processes; they give applications a way to set up a communication channel. This 
communication	works	as	follows:

	 •	 The	client	opens	a	handle	to	the	subsystem’s	connection	port	object.

	 •	 The	client	sends	a	connection	request.	

	 •	 The	 server	 creates	 two	private	 communication	ports,	 and	 returns	 the	handle	 to	 one	of	
them to the client.

   Give the current Windows name.

If	a	client	needs	to	send	a	larger	message,	it	passes	the	message	through	a	section	object	(or	shared	
memory).	The	client	has	to	decide,	when	it	sets	up	the	channel,	whether	or	not	it	will	need	to	
send	a	large	message.	If	the	client	determines	that	it	does	want	to	send	large	messages,	it	asks	for	
a	section	object	to	be	created.	Likewise,	if	the	server	decides	that	replies	will	be	large,	it	creates	
a	section	object.	So	that	the	section	object	can	be	used,	a	small	message	is	sent	that	contains	a	
pointer and size information about that section object. This method is more complicated than 
the	first	method,	but	 it	 avoids	 the	data	 copying.	 In	both	 cases,	 a	 callback	mechanism	can	be	
used	when	either	the	client	or	the	server	cannot	respond	immediately	to	a	request.	The	callback	
mechanism allows them to perform asynchronous message handling.

Windows	2000	uses	three	types	of	message-passing	techniques	over	a	port	
that	the	client	specifies	when	it	establishes	the	channel.	The	simplest,	which	
is	used	for	small	messages,	uses	 the	port’s	message	queue	as	 intermediate	
storage and copies the message from one process to the other. Under this 
method,	messages	of	up	to	256	bytes	can	be	sent.

How could a system be designed to allow a choice

of operating systems to boot from? What would 

the bootstrap program need to do?

Consider a system that would like to run both Windows XP and three different 
distributions	 of	 Linux	 (e.g.,	 RedHat,	 Debian,	 and	 Mandrake).	 Each	 operating	
system	 will	 be	 stored	 on	 disk.	 During	 system	 boot-up,	 a	 special	 program	

(which	 we	 will	 call	 the	 boot	 manager	 manager)	 will	 determine	 which	 operating	
system	 to	 boot	 into.	 This	 means	 that	 rather	 initially	 booting	 to	 an	 operating	 system,	
the	 boot	 manager	 will	 first	 run	 during	 system	 start-up.	 It	 is	 this	 boot	 manager	 that	 is	
responsible for determining which system to boot into. Typically boot managers must 
be stored at certain locations of the hard disk to be recognized during system start-up.  
Boot managers often provide the user with a selection of systems to boot into; boot managers 
are also typically designed to boot into a default operating system if no choice is selected by  
the user.

Questions:

1. Explain process of Bootstrap loader.

2.	 Define	working	of	Bootstrap	loader	in	the	term	of	process	management.
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Notes
 1. Write an Algorithm for PCB concept.

 2. Give the step for intercrosses communication.

Self Assessment

Fill in the blanks:

 5. Any process that shares data with other processes is a ....................... process.

	 6.	 Message	sent	by	a	process	can	be	of	either	fixed	or	.......................	size.

 7. A ....................... is associated with more than two processes.

 8. A ....................... owned by the operating system is independent.

True or False:

 9. The Mach kernel supports the creation and destruction of multiple task.

	 10.	 Window	2000	uses	two	types	of	message	passing	techniques	over	a	port.

2.6 Summary
 •	 A	process	is	a	sequential	program	in	execution.	A	process	migrates	between	the	various	

scheduling	queues	throughout	its	lifetime.

 •	 The	operating	system	must	select,	for	scheduling	purposes,	processes	from	these	queues	
in some fashion.

 • The selection process is carried out by the appropriate scheduler.

 •	 Switching	 the	CPU	 to	another	process	 requires	 saving	 the	 state	of	 the	old	process	and	
loading the saved state for the new process. This task is known as a context switch. The 
context of a process is represented in the PCB of a process; it includes the value of the 
CPU	registers,	the	process	state	and	memory-management	information.

 • A mailbox can be viewed abstractly as an object into which messages can be placed by 
processes and from which messages can be removed.

2.7 Keywords

 Buffering: A buffer is a temporary storage location for data while the data is being transferred.

Context Switch: A	context	switch	(also	sometimes	referred	to	as	a	process	switch	or	a	task	switch)	
is	the	switching	of	the	CPU	(central	processing	unit)	from	one	process	or	thread	to	another.

Cooperating Processes:  Processes can cooperate with each other to accomplish a single task. 
Cooperating	processes	can:

	 •	 Improve	performance	by	overlapping	activities	or	performing	work	in	parallel.

	 •	 Enable	an	application	to	achieve	a	better	program	structure	as	a	set	of	cooperating	processes,	
where each is smaller than a single monolithic program.

CPU Registers:	 The	 central	 processing	 unit	 (CPU)	 contains	 a	 number	 of	 memory	 locations	
which	are	individually	addressable	and	reserved	for	specific	purpose.	These	memory	locations	
are called registers.

‘Inter-process Communication’ (IPC): In	 computing,	 ‘Inter-process communication’	 (IPC)	 is	
a	set	of	techniques	for	the	exchange	of	data	among	multiple	threads	in	one	or	more	processes.
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Notes Message-Passing System: Message passing in computer science is a form of communication 
used	in	parallel	computing,	object-oriented	programming,	and	interprocess	communication.

Process Control Block (PCB): The PCB is a certain store that allows the operating systems to 
locate key information about a process.

Process Counter: Program	 instructions	 uniquely	 identified	 by	 their	 program	 counters	 (PCs)	
provide a convenient and accurate means of recording the context of program execution and 
PC-based	prediction	 techniques	have	been	widely	used	 for	performance	optimizations	at	 the	
architectural level.

Process Management:  The operating system manages many kinds of activities ranging from 
user	programs	to	system	programs	like	printer	spooler,	name	servers,	file	server,	etc.	Each	of	
these activities is encapsulated in a process.

Process Scheduling:  The problem of determining when processors should be assigned and to 
which processes is called processor scheduling or CPU scheduling.

Process State: The process state consist of everything necessary to resume the process execution 
if it is somehow put aside temporarily.

Synchronization:	 In	 computer	 science,	 especially	parallel	 computing,	 synchronization	means	
the coordination of simultaneous threads or processes to complete a task in order to get correct 
runtime order and avoid unexpected race conditions.

Thread: A	thread	is	a	single	sequence	stream	within	in	a	process.	Because	threads	have	some	
of	 the	properties	of	processes,	 they	are	 sometimes	called	 lightweight	processes.	 In	a	process,	
threads allow multiple executions of streams.

2.8 Review Questions

 1. What is a process?

 2. What about process states?

 3. What is a process control block?

 4. How do processes inter-communicate?

 5. How do processes synchronize their activity?

	 6.	 How	do	processes	protect	critical	data	(Critical	sections)?

	 7.	 Consider	the	interprocess-communication	scheme	where	mailboxes	are	used:	

	 (a)		 Suppose	a	process	P wants	to	wait	for	two	messages,	one	from	mailbox	A	and	one	
from	mailbox	B.	What	sequence	of	send and receive should it execute?

	 (b)	 What	 sequence	 of	 send and receive should P execute if P wants to wait for one 
message	from	mailbox	A	or	from	mailbox	B	(or	from	both)?

	 8.	 What	 are	 the	 benefits	 and	 the	 detriments	 of	 each	 of	 the	 following?	Consider	 both	 the	
systems and the programmers’ levels.

	 	 (a)	 Direct	and	indirect	communication

	 	 (b)	 Symmetric	and	asymmetric	communication

	 	 (c)	 Automatic	and	explicit	buffering
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Notes	 	 (d)	 Send	by	copy	and	send	by	reference

	 	 (e)	 Fixed-sized	and	variable-sized	messages

 9. Describe the actions taken by a kernel to switch context between processes.

	 10.	 Write	 a	 socket-based	 Fortune	 Teller	 server.	 Your	 program	 should	 create	 a	 server	 that	
listens	to	a	specified	port.	When	a	client	receives	a	connection,	the	server	should	respond	
with a random fortune chosen from its database of fortunes.

 11. Describe the actions used in Buffering in the processes.

 12. Describe about the  process scheduling in the operating system.

 13. How do processes interprocess communication?

	 14.	 What	are	the	benefits	and	the	detriments	of	Cooperating	process.

 15. Describe the Process States in operating system.

Answers to Self Assessment
	 1.	 (b)	 2.	 (b)	 3.	 (b)	 4.	 (b)	 5.	 cooperating

 6. Variable 7. link 8. mailbox 9. True 10. False

2.9 Further Readings

Operating Systems, by	Harvey		M.	Deitel	,	Paul	J.	Deitel,	David	R.	Choffnes.

Operating Systems,	by	Andrew	Tanebaum,	Albert	S.	Woodhull.	

wiley.com/coolege.silberschatz
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Notes Objectives

After studying this unit, you will be able to:

	 •	 Explain	concept	of	threads

	 •	 Discuss	introduction	to	multi-threading	in	IDL

	 •	 Understand	context	switching

	 •	 Explain	scheduling	criteria

	 •	 Understand	types	of	scheduling

	 •	 Explain	scheduling	algorithms

	 •	 Understand	overview	of	thread	scheduling

Introduction

A process is a program	 in	 execution.	 A	 process	 must	 have	 system	 resources,	 such	 as	
memory and the underlying CPU. The kernel supports the illusion of concurrent execution 
of multiple processes by scheduling system resources among the set of processes that are 
ready	to	execute.	On	a	multiprocessor,	multiple	processes	may	really	execute	concurrently.	
This	unit	describes	the	composition	of	a	process,	the	method	that	the	system	uses	to	switch	
between	processes,	and	the	scheduling	policy	that	 it	uses	 to	promote	sharing	of	 the	CPU.	
It	 also	 introduces	 process	 creation	 and	 termination,	 and	 details	 the	 signal	 facilities	 and	
process-debugging facilities.

3.1 Concept of Threads

Despite	of	the	fact	that	a	thread	must	execute	in	process,	the	process	and	its	associated	threads	
are different concept. Processes are used to group resources together and threads are the entities 
scheduled for execution on the CPU.

A	thread	is	a	single	sequence	stream	within	a	process.	Because	threads	have	some	of	the	properties	
of	processes,	they	are	sometimes	called	lightweight	processes.	In	a	process,	threads	allow	multiple	
executions	of	streams.	In	many	respect,	threads	are	popular	way	to	improve	application	through	
parallelism. The CPU switches rapidly back and forth among the threads giving illusion that the 
threads	are	running	in	parallel.	Like	a	traditional	process,	i.e.	process	with	one	thread,	a	thread	can	
be	in	any	of	several	states	(Running,	Blocked,	Ready	or	terminated).	Each	thread	has	its	own	stack.	
Since thread will generally call different procedures and thus a different execution history. This is  
why	thread	needs	its	own	stack.	An	operating	system	that	has	thread	facility,	the	basic	unit	of	
CPU	utilization	is	a	thread.	A	thread	has	or	consists	of	a	program	counter	(PC),	a	register	set,	
and a stack space. 

Threads are not independent of one other like processes as a result threads 
shares	with	other	threads	their	code	section,	data	section,	OS	resources	also	
known	as	task,	such	as	open	files	and	signals.
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Notes
3.1.1 Processes vs Threads

As we mentioned earlier that in many respect threads operate in the same way as that of 
processes.	Some	of	the	similarities	and	differences	are:

3.1.1.1 Similarities

	 •	 Like	processes	threads	share	CPU	and	only	one	thread	active	(running)	at	a	time.

	 •	 Like	processes,	threads	within	a	processes,	threads	within	a	processes	execute	sequentially.

	 •	 Like	processes,	thread	can	create	children.

	 •	 And	like	process,	if	one	thread	is	blocked,	another	thread	can	run.

3.1.1.2 Differences

	 •	 Unlike	processes,	threads	are	not	independent	of	one	another.

	 •	 Unlike	processes,	all	threads	can	access	every	address	in	the	task.

	 •	 Unlike	 processes,	 threads	 are	 design	 to	 assist	 one	 other.	Note	 that	 processes	might	 or	
might not assist one another because processes may originate from different users.

3.1.2 Why Threads?

Following are some reasons why we use threads in designing operating systems.

 1. A process with multiple threads makes a great server for example printer server.

	 2.	 Because	 threads	 can	 share	 common	 data,	 they	 do	 not	 need	 to	 use	 interprocess	 
communication.

	 3.	 Because	of	the	very	nature,	threads	can	take	advantage	of	multiprocessors.

3.1.2.1 Threads are Cheap in the Following Sense: 

	 1.	 They	only	need	a	stack	and	storage	for	registers	therefore,	threads	are	cheap	to	create.

 2. Threads use very little resources of an operating system in which they are working. That 
is,	threads	do	not	need	new	address	space,	global	data,	program	code	or	operating	system 
resources.

 3. Context switching are fast when working with threads. The reason is that we only have 
to	save	and/or	restore	PC,	SP	and	registers.

But	 this	 cheapness	 does	 not	 come	 free—the	 biggest	 drawback	 is	 that	 there	 is	 no	 protection	
between threads.

3.1.3 User-level Threads

User-level	 threads	 implement	 in	 user-level	 libraries,	 rather	 than	 via	 systems	 calls,	 so	 thread	
switching	does	not	need	to	call	operating	system	and	to	cause	interrupt	to	the	kernel.	In	fact,	the	 
kernel knows nothing about user-level threads and manages them as if they were single-threaded 
processes.
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The	 most	 obvious	 advantage	 of	 this	 technique	 is	 that	 a	 user-level	 threads	 package	 can	 be	
implemented on an Operating System that does not support threads. Some other advantages	are:

	 •	 User-level	threads	does	not	require	modification	to	operating	systems.

	 •	 Simple Representation:	Each	thread	is	represented	simply	by	a	PC,	registers,	stack	and	
a	small	control	block,	all	stored	in	the	user	process	address	space.

	 •	 Simple Management:	This	simply	means	that	creating	a	thread,	switching	between	threads	
and synchronization between threads can all be done without intervention of the kernel.

	 •	 Fast and Efficient: Thread switching is not much more expensive than a procedure call.

3.1.3.2 Disadvantages
	 •	 There	is	a	lack	of	coordination	between	threads	and	operating	system	kernel.	Therefore,	

process as whole gets one time slice irrespect of whether process has one thread or 1000 
threads	within.	It	is	up	to	each	thread	to	relinquish	control	to	other	threads.

	 •	 User-level	threads	require	non-blocking	systems	call,	i.e.	a	multithreaded	kernel.	Otherwise,	
entire	 process	will	 blocked	 in	 the	 kernel,	 even	 if	 there	 are	 runable	 threads	 left	 in	 the	
processes.	For	example,	if	one	thread	causes	a	page	fault,	the	process	blocks.

3.1.4 Kernel-level Threads
In	this	method,	the	kernel	knows	about	and	manages	the	threads.	No	runtime	system	is	needed	
in	 this	 case.	 Instead	of	 thread	 table	 in	 each	process,	 the	kernel	has	 a	 thread	 table	 that	keeps	
track	of	all	threads	in	the	system.	In	addition,	the	kernel	also	maintains	the	traditional	process	
table to keep track of processes. Operating Systems kernel provides system call to create and 
manage threads.

3.1.4.1 Advantages
	 •	 Because	kernel	has	full	knowledge	of	all	threads,	Scheduler	may	decide	to	give	more	time	

to a process having large number of threads than process having small number of threads.

	 •	 Kernel-level	threads	are	especially	good	for	applications	that	frequently	block.

3.1.4.2 Disadvantages
	 •	 The	 kernel-level	 threads	 are	 slow	 and	 inefficient.	 For	 instance,	 threads	 operations	 are	

hundreds of times slower than that of user-level threads.

	 •	 Since	kernel	must	manage	and	schedule	 threads	as	well	 as	processes.	 It	 requires	a	 full	
thread	control	block	(TCB)	for	each	thread	to	maintain	information	about	threads.	As	a	
result	there	is	significant	overhead	and	increased	in	kernel	complexity.

3.1.5 Advantages of Threads over Multiple Processes
	 •	 Context Switching:	 Threads	 are	 very	 inexpensive	 to	 create	 and	 destroy,	 and	 they	 are	

inexpensive	to	represent.	For	example,	they	require	space	to	store,	the	PC,	the	SP,	and	the	
general-purpose	registers,	but	 they	do	not	 require	space	 to	share	memory	 information,	
information	about	open	files	of	I/O	devices	in	use,	etc.	With	so	little	context,	it	is	much	
faster	to	switch	between	threads.	In	other	words,	it	is	relatively	easier	for	a	context	switch	
using threads.

	 •	 Sharing:	Threads	allow	the	sharing	of	a	 lot	resources	that	cannot	be	shared	in	process,	for	
example,	sharing	code	section,	data	section,	Operating	System	resources	like	open	file,	etc.
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	 •	 Blocking:	The	major	disadvantage	is	that	if	the	kernel	is	single	threaded,	a	system	call	of	

one thread will block the whole process and CPU may be idle during the blocking period.

	 •	 Security: Since there is an extensive sharing among threads there is a potential problem 
of	security.	It	is	quite	possible	that	one	thread	over	writes	the	stack	of	another	thread	(or	
damaged	shared	data)	although	it	is	very	unlikely	since	threads	are	meant	to	cooperate	
on a single task.

3.1.7 Application that Benefits from Threads
A	proxy	server	satisfying	the	requests	for	a	number	of	computers	on	a	LAN	would	be	benefited	
by	a	multi-threaded	process.	 In	general,	any	program	that	has	 to	do	more	than	one	task	at	a	
time	could	benefit	from	multitasking.	For	example,	a	program	that	reads	input,	process	it,	and	
outputs	could	have	three	threads,	one	for	each	task.

3.1.8 Application that cannot Benefit from Threads
Any	sequential	process	that	cannot	be	divided	into	parallel	task	will	not	benefit	from	thread,	as	
they	would	block	until	the	previous	one	completes.	For	example,	a	program	that	displays	the	
time	of	the	day	would	not	benefit	from	multiple	threads.

3.1.9 Resources Used in Thread Creation and Process Creation
When	 a	 new	 thread	 is	 created	 it	 shares	 its	 code	 section,	 data	 section	 and	 operating	 system	
resources	like	open	files	with	other	threads.	But	it	is	allocated	its	own	stack,	register	set	and	a	
program counter.

Figure 3.1

Thread creation
Thread B

Thread A

Thread C

The creation of a new process differs from that of a thread mainly in the fact that all the shared 
resources of a thread are needed explicitly for each process. So though two processes may be 
running the same piece of code they need to have their own copy of the code in the main memory 
to be able to run. Two processes also do not share other resources with each other. This makes 
the creation of a new process very costly compared to that of a new thread.

A virus is also a thread in operating system.

3.2 Context Switch

To	give	each	process	on	a	multiprogrammed	machine	a	fair	share	of	the	CPU,	a	hardware	clock	
generates interrupts periodically. This allows the operating system to schedule all processes in 
main	memory	(using	scheduling	algorithm)	to	run	on	the	CPU	at	equal	intervals.	Each	time	a	
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has	used.	If	it	has	used	up	its	entire	time	slice,	then	the	CPU	scheduling	algorithm	(in	kernel)	
picks a different process to run. Each switch of the CPU from one process to another is called 
a context switch.

3.2.1 Major Steps of Context Switching
	 •	 The	values	of	 the	CPU	 registers	 are	 saved	 in	 the	process	 table	of	 the	process	 that	was	

running just before the clock interrupt occurred.

	 •	 The	registers	are	loaded	from	the	process	picked	by	the	CPU	scheduler	to	run	next.

In	 a	 multiprogrammed	 uniprocessor	 computing	 system,	 context	 switches	 occur	 frequently	
enough that all processes appear to be running concurrently. If a process has more than one 
thread,	the	Operating	System	can	use	the	context	switching	technique	to	schedule	the	threads	
so they appear to execute in parallel. This is the case if threads are implemented at the kernel 
level. Threads can also be implemented entirely at the user level in run-time libraries. Since in 
this	case	no	thread	scheduling	is	provided	by	the	Operating	System,	it	is	the	responsibility	of	
the	programmer	to	yield	the	CPU	frequently	enough	in	each	thread	so	all	threads	in	the	process	
can make progress.

3.2.2 Action of Kernel to Context Switch among Threads
The threads share a lot of resources with other peer threads belonging to the same process so 
a	context	switch	among	threads	for	the	same	process	is	easy.	It	involves	switch	of	register	set,	
the program counter and the stack. It is relatively easy for the kernel to accomplish this task.

3.2.3 Action of Kernel to Context Switch among Processes
Context switches among processes are expensive. Before a process can be switched its process 
control	block	(PCB)	must	be	saved	by	the	operating	system.	The	PCB	consists	of	the	following	
information:

	 •	 The	process	state.

	 •	 The	program	counter,	PC.

	 •	 The	values	of	the	different	registers.

	 •	 The	CPU	scheduling	information	for	the	process.

	 •	 Memory	management	information	regarding	the	process.

	 •	 Possible	accounting	information	for	this	process.

	 •	 I/O	status	information	of	the	process.

When the PCB of the currently executing process is saved the operating system loads the PCB 
of the next process that has to be run on CPU. This is a heavy task and it takes a lot of time.

Before	 a	 process	 can	 be	 switched	 its	 process	 control	 block	 (PCB)	must	 be	
saved by the operating system.

3.3 Multi-threading in IDL

ITT-VIS	has	added	support	for	using	threads	internally	in	IDL	to	accelerate	specific	numerical	
computations	on	multi-processor	systems.	Multi-processor	capable	hardware	has	finally	become	
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Processing),	and	IDL	users	are	beginning	to	own	such	hardware.	In	the	future,	it	is	reasonable	
to imagine that most machines will have multiple CPUs.

The	multi-threading	capability,	first	added	in	IDL	5.5,	applies	to	binary	and	unary	operators,	
many	 core	mathematical	 functions,	 and	 a	 number	 of	 image	 processing,	 array	manipulation	
and	 type	conversion	 routines.	Although	performance	 results	will	vary,	 the	execution	 time	of	
these	 computations	 can	 be	 significantly	 reduced	 on	 systems	 with	 multiple	 processors.	 The	
ability	 to	exploit	multiple	CPUs	will	become	very	 important	 in	coming	years,	and	 the	 list	of	
threaded routines is expected to grow with each release of IDL. IDL users should be aware that 
ITT-VIS	offers	a	Global	Services	Group	(GSG)	that	can	be	hired	to	help	optimize	user-written	
code	or	to	parallelize	specific	algorithms	beyond	those	that	use	the	thread	pool.	The	interface	
for	 controlling	 the	 IDL	 thread	 pool	 is	 simple,	 allowing	 immediate	 and	measurable	 benefits	
with	little	effort.	In	addition,	the	IDL	thread	pool	is	safe	and	transparent	on	platforms	that	are	
unable	to	support	threading.	Those	platforms	that	can	benefit	will	use	threads,	and	those	that	
cannot	will	continue	to	produce	correct	results	using	a	single	thread,	and	with	the	same	level	
of performance as previous versions of IDL. This unit provides background and motivation for 
IDL’s multi-threading capability.

3.3.1 Multi-threading
The concept of multi-threading involves an operating system that is multi-thread capable 
allowing programs to split tasks between multiple execution threads. On a machine with multiple 
processors,	these	threads	can	execute	concurrently,	potentially	speeding	up	the	task	significantly.	
Mathematical	computations	on	large	amounts	of	scientific	data	can	be	quite	intensive	and	are	
ideal candidates for threading on systems with multiple CPUs.

The most common type of program is the single-threaded program. IDL has traditionally been 
single-threaded.	When	the	program	runs,	this	single	thread	starts	at	the	main(	)	function	in	the	
program,	 and	 runs	until	 it	 either	 exits,	 or	 performs	 an	 illegal	 operation	 and	 is	 killed	 by	 the	
operating	system.	Since	it	is	the	only	thread,	it	knows	that	anything	that	happens	in	this	program	
is	caused	solely	by	it.	Most	modern	operating	systems	time	slice	between	various	programs,	so	at	
any	given	time,	a	single	thread	is	either	running	or	sleeping.	There	are	two	reasons	why	it	may	
be	sleeping—It	is	waiting	for	a	needed,	but	currently	unavailable	resource	(e.g.	memory,	data	
(input,	output)...).	The	operating	system	is	 letting	some	other	program	run.	This	time	slicing,	
which	is	usually	preemptive	multitasking,	happens	so	quickly	that	the	end	user	is	fooled	into	
thinking that everything is running simultaneously.

To	move	 from	single-threaded	 to	multi-threaded	 (MT)	programs	requires	a	small	conceptual	
generalization	of	 the	above.	 Instead	of	having	only	a	 single	 thread,	we	allow	more	 than	one	
thread	in	a	single	process.	Each	thread	has	its	own	program	counter	and	stack,	and	is	free	to	run,	
unimpeded by any other thread in the same program. All threads in the same program share any 
other	resources,	including	code,	data,	and	open	files.	The	operating	system	still	schedules	which	
threads	run	and	when,	but	instead	of	scheduling	by	process,	 it	now	schedules	the	individual	
threads	within	a	process.	If	your	system	has	a	single	CPU,	preemptive	multitasking	still	gives	
the illusion that more than one thing is going on simultaneously. If the system has more than 
one	CPU,	then	more	than	one	thread	can	be	running	on	the	system	at	a	given	time.	It	is	even	
possible that more than one thread within a given program will run simultaneously. This is 
actual	simultaneous	execution,	not	the	mere	illusion	of	it	as	with	a	uniprocessor.	It	is	important	
to realize that the software concept of threading is an abstraction provided by the operating 
system,	and	it	is	available	whether	or	not	the	underlying	hardware	has	multi-processing	(MP)	
capabilities.	 It	 is	 reasonable	 to	 run	 a	MT	 program	 on	 a	 uniprocessor,	 unless	 your	 program	
requires	actual	 simultaneous	execution	of	multiple	 threads	 to	work	properly.	For	example,	a	
program	might	use	a	thread	to	wait	for	incoming	data	from	a	slow	source,	while	other	threads	
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for	such	a	program.	In	contrast,	if	you	are	using	threads	to	speed	up	a	numerical	computation,	
you	will	require	actual	MP	hardware	to	see	any	benefit.	On	a	uniprocessor,	this	program	will	
work	harder	 (MT	code	adds	overhead)	and	will	 take	essentially	 the	same	amount	of	 time	 to	
complete as a single-threaded version. Common sense suggests that threading does not make 
a uniprocessor able to compute any faster.

3.3.2 Multi-threading to IDL
Simply	put,	ITT-VIS	has	implemented	multi-threading	in	IDL	in	order	to	allow	users	to	harness	
additional	CPUs	to	do	more	work	in	less	time.	Scientific	data	sets	continue	to	grow	in	size	faster	
than computers can process them. Multi-processors offer one way to handle larger problems.

Multi-processor	hardware	and	Symmetric	Multi-Processing	(SMP)	have	become	cheap	and	easily	
available.	There	are	some	powerful	trends	driving	this	change:

	 1.	 As	transistor	densities	on	processor	chips	increase	with	each	generation,	there	is	room	for	
replicated processing units.

	 2.	 At	any	given	point	in	time,	the	cost	of	the	second	most	powerful	CPU	in	production	is	
much lower than the most powerful CPU. It makes sense that if you can harness multiple 
cheap,	but	only	slightly	less	powerful,	CPUs,	you	can	do	more	work	for	less	money.

	 3.	 There	are	physical	limits	that	govern	how	fast	a	single	CPU	can	possibly	go,	and	we	expect	
to	hit	those	limits	within	a	few	(10-20,	max)	years.	Once	we	hit	this	limit,	the	only	way	to	
increase computing power may be to add CPUs.

The development of SMP systems has been driven not by the need to run multi-threaded 
programs,	but	by	a	need	to	increase	throughput	on	servers	that	run	multiple	single-threaded	
programs	 simultaneously	 (e.g.,	 to	 serve	 files,	 mail	 and	 printing).	 Economies	 of	 scale	 allow	
computer vendors to apply this technology to desktop machines. It is becoming common for 
individuals	to	have	such	machines,	and	it	appears	that	this	trend	will	continue.

3.3.3 Modeling Multi-threaded Processors
Symmetric	multi-processing	 (SMP)	 has	 been	 employed	 by	 computer	makers	 for	 some	 time.	
Multiple processors are connected to a common memory pool and a combination of hardware 
and operating system functions permit work to be balanced across the entire unit. Each processor 
had a single “thread” that processed programming instructions.

Recently chip manufacturers added additional threads to the processors to further increase 
efficiency	of	the	chips.	The	added	capacity	of	multi-threaded	processors	is	welcomed	but	they	
provide	some	challenges	for	the	capacity	planner.	As	work	is	added	to	a	system,	multi-threaded	
CPU cores perform differently from multiple single-threaded CPU cores in a symmetric multi-
processing	(SMP)	environment.	The	meaning	of	per-process	CPU	time	measurements	depend	
upon	chip	technology,	 therefore,	measurement	results	and	expected	future	performance	may	
not be intuitively obvious any more.

This paper explains a conceptual architecture developed for modeling multi-threaded processors 
and the new functionality provided in Team Quest Model to support multi-threaded processors. 
A modeling example using Linux on Intel chips will be provided to aid your understanding.

3.3.4 Single-threaded versus Multi-threaded Symmetric Multiprocessing
Let’s begin by comparing older single-threaded SMP technology with newer multi-threaded 
technologies.	In	both	cases,	the	CPU	chip	is	the	hardware	component	that	provides	the	instruction	
processing	 capability.	 Within	 each	 chip	 there	 may	 be	 multiple	 CPU	 cores,	 and	 each	 core	
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multiprocessing,	each	CPU	core	supports	a	single	hardware	instruction	thread	that	 interfaces	
with	 the	 operating	 system	 (diagram	on	 left	 in	 Figure	 3.2).	When	 activating	multi-threading,	
each	core	supports	multiple	hardware	instruction	threads,	each	interfacing	with	the	operating	
system. Each hardware instruction thread is recognized by the operating system as a logical CPU.

Figure 3.2: Single-threaded SMP and Multi-threaded SMP

Older SMP systems exhibited performance limitations as more CPU’s were added to a 
configuration.	For	 those	of	us	 familiar	with	 the	history	of	mainframe	 computers,	we	 saw	
that	each	incremental	processor	added	a	lesser	amount	of	additional	capacity.	In	fact,	one	
vendor,	Amdahl	Corporation,	increased	the	computational	power	of	the	last	two	processors	
in their 12-way computer in order to overcome the SMP shortfall. These limitations resulted 
from hardware and operating system architectures designed to ensure data integrity 
through	the	use	of	various	tactics	such	as	signaling	and	locks.	Over	the	years,	all	the	major	
vendors	have	made	significant	 improvements	 in	 this	area.	As	a	result,	most	SMP	systems	
today have near linear performance scaling in the hardware and operating systems. In a 
multiprocessing	architecture,	there	are	two	approaches	to	providing	additional	processing	
power.	Each	additional	core,	bearing	a	single	logical	CPU,	delivers	a	nearly	equal	quantity	
of	CPU	capacity.	 In	most	of	 today’s	architectures,	 this	results	 in	a	commensurate	 increase	
in capacity when cores are added. The multi-threading option adds multiple threads to 
each	core.	Each	 thread	adds	some	additional	amount	of	CPU	capacity.	However,	because	
these	threads	share	the	CPU	core	resources,	the	addition	of	a	thread	typically	delivers	only	
a portion of the capacity of a single-threaded core.

Examples	of	multi-threaded	chips	include	Sun	UltraSPARC	T1	and	T2,	SPARC64	VII,	Intel	Xeon,	
Intel	Itanium2,	Intel	Pentium	4,	IBM	POWER5	and	IBM	POWER6.

Multi-processor	 hardware	 and	 Symmetric	 Multi-Processing	 (SMP)	 have	
become cheap and easily available. There are some powerful trends driving 
this change.

3.3.5 Performance Scaling in Multi-threaded Systems
When	more	threads	are	added	to	cores	in	multi-threaded	systems,	performance	depends	upon	
chip technologies. All deviate from a linear growth line graph once you get beyond the point 
where a single thread is active on each core and core resources are shared. Chip performance 
differences as seen during Team Quest testing can be seen in Figure 3.3.
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Figure 3.3: Comparison or Multi-threaded System

Intel	Xeon	(2	chips,	2	cores	per	chip,	2	threads	per	core)	delivers	minimal	performance	gain	once	
four	 threads	are	exceeded.	Sun	UltraSPARC	T1	 (1	 chip,	4	 cores	per	 chip,	4	 threads	per	 core)	
shows	a	linear	increase	in	performance	up	to	four	threads,	slightly	degraded	performance	when	
there	are	two	threads	per	core	active,	and	then	only	nominal	gain	after	core	sharing	increases	
as more than two threads become active.

IBM	POWER5	(4	chips,	2	cores	per	chip,	2	threads	per	core),	shows	linear	gain	up	to	eight	threads	
(one	per	core)	and	then	the	gain	per	thread	drops	from	that	point	forward.	Where	performance	
becomes	non-linear,	it	is	because	more	than	one	thread	has	become	active	on	a	CPU	core.

Similarly,	 when	 you	 view	 transaction	 behavior	 with	 multi-threaded	 CPUs	 you	 see	 some	
interesting	results.	Figure	3.4	displays	 testing	results	 from	a	 transaction	 that	executes	a	fixed	
number of instructions and a CPU core that supports four threads per core. If only one thread 
is	active,	each	transaction	will	complete	in	one	second.	If	two	threads	are	active	per	core	it	will	
take	1.25	seconds	for	the	same	transaction.	If	three	threads	are	active,	each	transaction	will	take	
about	1.6	seconds.	If	four	threads	are	active,	each	transaction	will	take	about	2.1	seconds.	The	
behavior	 of	 transaction,	 therefore,	depends	on	how	many	 simultaneous	 logical	CPU	 threads	
are active on a core. 

The results show that the best performance for a single transaction comes when there is only 
one CPU hardware thread is active on the core on which it is consuming resources.

Figure 3.4: Active Threads per Core
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active,	there	is	a	greater	total	capacity.	It	is	the	same	whether	two	active	threads	on	a	core	or	
more.	The	best	throughput	(transactions	completed	per	second)	occurs	when	all	CPU	hardware	
threads are active.

3.3.6 Team Quest Model Reporting Changes
In	 a	 traditional	 single-threaded	 SMP	CPU	 architecture,	 the	Active	 Resource	 Statistic	 Service	
Time	 is	 always	 equal	 to	 the	Effective	Service	Time.	Therefore,	when	 there	 are	not	 any	other	
bottlenecks in the system the CPU utilization will grow at a linear rate.

   Figure 3.5 (a):  Single-threaded Architecture  Figure 3.5 (b): Multi-threaded Architecture

  (a)          (b)

This is no longer true with a multi-threading CPU architecture. When the CPU has more than 
a minimal utilization,	 the	 Effective	 Service	 Time	will	 sometimes	 be	 greater	 than	 the	 Service	
Time.	Figure	3.5(b)	 shows	how	multi-threading	deviates	 from	a	 traditional	SMP	straight	 line	
trend	line	(Figure	3.5(a)).

In the case of this Solaris system using a Sun Ultra SPARC T1 processor with four threads per 
core,	 the	 service	 time	 is	 indeed	 less	 than	 the	effective	 service	 time.	At	 low	utilizations	when	
there	is	only	one	thread	per	core	active,	however,	it	is	likely	that	the	service	time	will	equal	the	
effective service time and the utilization growth will be linear until more than one thread per 
core	is	active	but	as	the	processor	gets	busier	and	more	threads	become	active	within	the	core,	
effective service will get progressively larger than the service time and the utilization growth 
will be larger than linear.

3.3.7 Context Switches and Mode Switches
Context switches can occur only in kernel mode. Kernel mode is a privileged mode of the CPU 
in which only the kernel runs and which provides access to all memory locations and all other 
system	resources.	Other	programs,	 including	applications,	 initially	operate	 in	user	mode,	but	
they	can	run	portions	of	 the	kernel	code	via	system	calls.	A	system	call	 is	a	request	 in	a	 like	
operating	system	by	an	active	process	(i.e.,	a	process	currently	progressing	in	the	CPU)	for	a	
service	performed	by	the	kernel,	such	as	input/output	(I/O)	or	process	creation	(i.e.,	creation	of	
a	new	process).	I/O	can	be	defined	as	any	movement	of	information	to	or	from	the	combination	
of	the	CPU	and	main	memory	(i.e.	RAM),	that	is,	communication	between	this	combination	and	
the	computer’s	users	 (e.g.,	via	 the	keyboard	or	mouse),	 its	 storage	devices	 (e.g.,	disk	or	 tape	
drives),	or	other	computers.

The	existence	of	these	two	modes	in	Unix-like	operating	systems	means	that	a	similar,	but	
simpler operation is necessary when a system call causes the CPU to shift to kernel mode. 
This	is	referred	to	as	a	mode	switch	rather	than	a	context	switch,	because	it	does	not	change	
the current process.

Context switching is an essential feature of multitasking operating systems. A multitasking 
operating system is one in which multiple processes execute on a single CPU seemingly 
simultaneously and without interfering with each other. This illusion of concurrency is achieved 
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Notes by	means	of	context	switches	that	are	occurring	in	rapid	succession	(tens	or	hundreds	of	times	
per	second).	These	context	switches	occur	as	a	result	of	processes	voluntarily	relinquishing	their	
time in the CPU or as a result of the scheduler making the switch when a process has used up 
its CPU time slice.

A	context	switch	can	also	occur	as	a	result	of	a	hardware	 interrupt,	which	 is	a	signal	 from	a	
hardware	device	(such	as	a	keyboard,	mouse,	modem	or	system	clock)	to	the	kernel	that	an	even 
(e.g.,	a	key	press,	mouse	movement	or	arrival	of	data	from	a	network	connection)	has	occurred.

Intel	80386	and	higher	CPUs	contain	hardware	support	 for	context	 switches.	However,	most	
modern operating systems perform software	 context	 switching,	 which	 can	 be	 used	 on	 any	
CPU,	rather	than	hardware	context	switching	in	an	attempt	to	obtain	improved	performance.	
Software	context	switching	was	first	implemented	in	Linux	for	Intel-compatible	processors	with	
the 2.4 kernel.

One	major	 advantage	 claimed	 for	 software	 context	 switching	 is	 that,	whereas	 the	 hardware	
mechanism	 saves	 almost	 all	 of	 the	CPU	 state,	 software	 can	be	more	 selective	 and	 save	 only	
that	portion	that	actually	needs	to	be	saved	and	reloaded.	However,	there	is	some	question	as	
to	how	important	this	really	is	 in	increasing	the	efficiency	of	context	switching.	Its	advocates	
also claim that software context switching allows for the possibility of improving the switching 
code,	thereby	further	enhancing	efficiency,	and	that	it	permits	better	control	over	the	validity	
of the data that is being loaded.

3.3.8 The Cost of Context Switching
Context switching	 is	 generally	 computationally	 intensive.	 That	 is,	 it	 requires	 considerable	
processor	time,	which	can	be	on	the	order	of	nanoseconds	for	each	of	the	tens	or	hundreds	of	
switches	per	second.	Thus,	context	switching	represents	a	substantial	cost	to	the	system	in	terms	
of	CPU	time	and	can,	in	fact,	be	the	most	costly	operation	on	an	operating	system.

Consequently,	a	major	focus	in	the	design	of	operating	systems	has	been	to	avoid	unnecessary	
context	 switching	 to	 the	 extent	 possible.	 However,	 this	 has	 not	 been	 easy	 to	 accomplish	 in	
practice.	In	fact,	although	the	cost	of	context	switching	has	been	declining	when	measured	in	
terms	of	the	absolute	amount	of	CPU	time	consumed,	this	appears	to	be	due	mainly	to	increases	
in	CPU	clock	speeds	rather	than	to	improvements	in	the	efficiency	of	context	switching	itself.

One	 of	 the	many	 advantages	 claimed	 for	 Linux	 as	 compared	with	 other	 operating	 systems,	
including	 some	 other	 Unix-like	 systems,	 is	 its	 extremely	 low	 cost	 of	 context	 switching	 and	
mode switching.

3.3.9 Monitoring Context Switches
A context	switch	occurs	when	the	kernel	switches	the	processor	from	one	thread	to	another—for	
example,	when	a	thread	with	a	higher	priority	than	the	running	thread	becomes	ready.	Context	
switching activity is important for several reasons. A program that monopolizes the processor 
lowers the rate of context switches because it does not allow much processor time for the other 
processes’ threads. A high rate of context switching means that the processor is being shared 
repeatedly—for	example,	by	many	threads	of	equal	priority.	A	high	context-switch	rate	often	
indicates that there are too many threads competing for the processors on the system.

The rate of context switches can also affect performance of multiprocessor 
computers. For information about how to monitor and tune context-switch 
activity	on	multiprocessor	systems,	see	“Measuring	Multiprocessor	System	
Activity” in this book.
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We can view	context	switch	data	in	two	ways:

	 •	 The	System\Context	Switches/sec	counter	in	System	Monitor	reports	systemwide	context	
switches.

	 •	 The	Thread	 (_Total)\Context	Switches/sec	 counter	 reports	 the	 total	number	of	 context	
switches generated per second by all threads.

Although these counters might	vary	slightly	due	to	sampling,	generally	they	will	be	nearly	equal.

Figure 3.6: System Wide Context Switches During a Processor Bottleneck

In	Figure	3.6,	Processor	(_Total)\%	Processor	Time	 jumps	to	about	60	per	cent	during	the	
sample	 interval.	 System\Processor	 Queue	 Length	 (scaled	 by	 a	 factor	 of	 10),	 shows	 that	
the	queue	varies	from	2	to	6,	with	a	mean	near	4.	System\Context	Switches	(shown	scaled	
by	a	 factor	of	10),	 reveals	an	average	of	about	750	 switches	per	 second.	A	 rate	of	 context	
switches	from	500	to	2,000	per	second	might	indicate	a	problem	with	a	network	adapter	or	
a	 device	 driver	 or	 that	 you	 are	 using	 an	 inefficient	 server-based	 application	 that	 spawns	
too many threads.

The Pviewer utility on the on the Windows 2000 operating system CD reports context switch 
data. For information about installing and using the Windows 2000 Support Tools and 
Support	Tools	Help,	see	the	file	Sreadme.doc	in	the	\Support\Tools	folder	of	the	Windows	
2000 operating system CD.
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Notes 3.3.10 Context Switching Perform
Typically	there	are	several	tasks	to	perform	in	a	computer	system.	So	if	one	task	requires	some	
I/O	operation,	you	want	to	initiate	the	I/O	operation	and	go	on	to	the	next	task.	You	will	come	
back to it later.

This act of switching from one process to another is called a “Context Switch”.

When	you	 return	 back	 to	 a	 process,	 you	 should	 resume	where	 you	 left	 off.	 For	 all	 practical	
purposes,	this	process	should	never	know	there	was	a	switch,	and	it	should	look	like	this	was	
the only process in the system.

To	implement	this,	on	a	context	switch,	you	have	to

	 •	 save	the	context	of	the	current	process

	 •	 select	the	next	process	to	run

	 •	 restore	the	context	of	this	new	process.

What is the context of a process?

	 •	 Program	Counter

	 •	 Stack	Pointer

	 •	 Registers

	 •	 Code	+	Data	+	Stack	(also	called	Address	Space)

	 •	 Other	state	information	maintained	by	the	OS	for	the	process	(open	files,	scheduling	info,	
I/O	devices	being	used,	etc.)

All	this	information	is	usually	stored	in	a	structure	called	Process	Control	Block	(PCB).	All	the	
above has to be saved and restored.

3.3.10.1 What does a context_switch( ) routine look like?
context_switch()

{

 Push registers onto stack

 Save ptrs to code and data.

 Save stack pointer

 Pick next process to execute

	 Restore	stack	ptr	of	that	process	/*	You	have	now	switched	the	stack	*/

 Restore ptrs to code and data.

 Pop registers

 Return

}

3.3.11 Super OS Context Switching in Power Managed Environment 

Super	OS	context	switching	consists	of	a	process	which	suspends	the	currently	operating	OS,	
when	and	as	determined	by	user	and	transfer	of	 the	systems	control	 to	 another	OS,	which	
may	be	booting	from	shut	down	state	(Start)	or	a	previously	suspended	state	(Resume).	
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NotesFollowing	is	the	original	Power	Managed	(ACPI,	APM)	Start	(OS	Initialization)	logic	diagram	
which may follow as a result of external power on or internal OS waking Interrupt.

Figure: 3.7: OS Initialization

Self Assessment

Multiple choice questions:

 1. A thread 
	 	 (a)	 is	a	lightweight	process	where	the	context	switching	is	low.
	 	 (b)	 is	a	lightweight	process	where	the	context	switching	is	high.
	 	 (c)	 is	used	to	speed	up	paging.
	 	 (d)	 none	of	the	above.

 2. Process is
	 	 (a)	 program	in	High	level	language	kept	on	disk
	 	 (b)	 contents	of	main	memory
	 	 (c)	 a	program	in	execution
	 	 (d)	 a	job	in	secondary	memory
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	 	 (a)	 the	dispatching	of	a	task	 (b)	 the	creation	of	a	new	job

	 	 (c)	 the	creation	of	a	new	process	 (d)	 increasing	the	priority	of	a	task

	 4.	 The	components	that	process	data	are	located	in	the:

	 	 (a)	 input	devices	 (b)	 output	devices

	 	 (c)	 system	unit	 (d)	 storage	component

 5. System software is the set of programs that enables your computer’s hardware devices 
and ....................... software to work together.

	 	 (a)	 management	 (b)	 processing

	 	 (c)	 utility	 (d)	 application

3.4 Scheduling Criteria

Different	CPU	scheduling	algorithms	have	different	properties,	and	the	choice	of	a	particular	
algorithm may favor one class of processes over another. In choosing which algorithm to use in 
a	particular	situation,	we	must	consider	the	properties	of	the	various	algorithms.	Many	criteria	
have been suggested for comparing CPU scheduling algorithms. Which characteristics are used 
for comparison can make a substantial difference in which algorithm is judged to be best. The 
criteria	include	the	following:

	 •	 CPU Utilization: We want to keep the CPU as busy as possible.

	 •	 Throughput:	If	the	CPU	is	busy	executing	processes,	then	work	is	being	done.	One	measure	
of	work	is	the	number	of	processes	that	are	completed	per	time	unit,	called	throughput.	
For	long	processes,	this	rate	may	be	one	process	per	hour;	for	short	transactions,	it	may	
be 10 processes per second.

	 •	 Turnaround Time:	From	the	point	of	view	of	a	particular	process,	the	important	criterion	
is how long it takes to execute that process. The interval from the time of submission of 
a process to the time of completion is the turnaround time. Turnaround time is the sum 
of	the	periods	spent	waiting	to	get	into	memory,	waiting	in	the	ready	queue,	executing	
on	the	CPU,	and	doing	I/O.

	 •	 Waiting Time: The CPU scheduling algorithm does not affect the amount of the time 
during which a process executes or does I/O; it affects only the amount of time that a 
process	spends	waiting	 in	 the	ready	queue.	Waiting	 time	 is	 the	sums	of	periods	spend	
waiting	in	the	ready	queue.

	 •	 Response Time:	In	an	interactive	system,	turnaround	time	may	not	be	the	best	criterion.	
Often,	 a	process	 can	produce	 some	output	 fairly	 early	and	 can	 continue	 computing	
new	results	while	previous	results	are	being	output	to	the	user.	Thus,	another	measure	
is	the	time	from	the	submission	of	a	request	until	the	first	response	is	produced.	This	
measure,	called	response	time,	is	the	time	it	takes	to	start	responding,	not	the	time	it	
takes to output the response. The turnaround time is generally limited by the speed 
of the output device.

It	is	desirable	to	maximize	CPU	utilization	and	throughput	and	to	minimize	turnaround	time,	
waiting	time,	and	response	time.	 In	most	cases,	we	optimize	the	average	measure.	However,	
under	some	circumstances,	it	is	desirable	to	optimize	the	minimum	or	maximum	values	rather	
than	 the	average.	For	example,	 to	guarantee	 that	all	users	get	good	service,	we	may	want	 to	
minimize	the	maximum	response	time.	Investigators	have	suggested	that,	for	interactive	systems,	
it is more important to minimize the variance in the response time than to minimize the average 
response time. A system with reasonable and predictable response time may be considered more 
desirable	than	a	system	that	is	faster	on	the	average	but	is	highly	variable.	However,	little	work	
has been done on CPU-scheduling algorithms that minimize varianc.
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Notes3.5 Types of Scheduling

There are three	levels	for	scheduling	in	Operating	Systems:

	 •	 Long	Term	Scheduling

	 •	 Short	Term	Scheduling

	 •	 Medium	Term	Scheduling

3.5.1 Long Term Scheduling

In	this	level	of	scheduling,	Operating	System	manage	that	which	process	should	be	admitted	to	the	
system;	ready	or	suspended	ready	queue.	OR which process competes for the system resources. 

3.5.2 Medium Term Scheduling
Which	 process	 should	 compete	 for	 CPU,	 i.e.	 scheduling	 for	 the	 process	 should	move	 from	
suspended ready state.

3.5.3 Short Term Scheduling
Which	process	should	assign	to	the	CPU.	It	is	done	by	the	dispatcher,	which	carry	the	process	
from	ready	queue	and	assign	it	to	the	CPU	for	processing.

Long Term Scheduling may also known as admission scheduling of Job 
scheduling.

Figure 3.8: Graphical Representation of Scheduling
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Real-time systems are systems in which correctness depends not only upon the logical correctness 
of the system but also upon the temporal correctness. If the system produces the correct 
logical	 results,	but	at	 the	wrong	 time	 it	has	 failed.	Laplante	defines	a	 real-time	system	as	
“a	 system	 that	 must	 satisfy	 explicit	 (bounded)	 response-time	 constraints	 or	 risk	 severe	
consequences,	 including	 failure”.	 Examples	 of	 real-time	 systems	 are	 robotics	 controls,	
weapons	guidance	systems,	anti-lock	brakes,	flight	control	systems,	and	engine	and	emissions	
controls.	Characteristically,	these	systems	have	rigid	time	requirements	on	the	operation	of	
the	processor	or	the	flow	of	data.	The	system	is	normally	multi-tasking	and	uses	periodic	
or	 aperiodic	 tasking	 (or	 some	 combination	 of	 the	 two).	 A	 real-time	 system	 usually	 has	
requirements	for	bounded	response	time	and	typically	does	not	utilize	secondary	storage	or	
virtual	memory	because	of	the	non-determinism	introduced	by	these	techniques.	Failure	to	
meet	response	time	constraints	results	in	system	failure.	In	the	literature,	real-time	tasks	are	
usually referred to as having either hard or soft constraints. These are differentiated by the 
criticality of their on-time completion. A task with hard timing constraints must complete 
within these constraints or the system fails. Tasks with soft timing constraints that do not 
complete within their constraints degrade the system but do not cause system failure.

In	 hard	 real-time	 systems,	 there	 are	 two	 types	 of	 processes—periodic	 and	 aperiodic	
(asynchronous).	A	periodic	process	is	one	which	is	repeatedly	executed	once	each	period.	
An aperiodic process is one that occurs in response to some internal or external event. They 
are unpredictable in nature but generally have some form of constraint that will allow them 
to be modeled. Xu and Parnas state that periodic processes with hard deadlines dominate 
most	hard	real-time	systems.	Aperiodic	processes	are	minimal	in	number	and	require	only	
minimal	 CPU	 time.	 Additionally,	 although	 precise	 request	 times	 for	 aperiodic	 processes	
are	not	known,	usually	a	minimum	amount	of	time	between	two	consecutive	requests	can	
be	defined.	Today’s	real-time	systems	have	several	drawbacks.	Even	though	timing	errors	
(missed	deadlines)	are	among	the	most	difficult	and	costly	errors	to	find	and	correct,	many	
safety-critical	 hard	 real-time	 systems	 are	 built	 using	 techniques	 and	 methodologies	 that	
provide no guarantees that timing constraints will be met. The systems are generally based 
on	static	designs	if	the	system	is	predictable.	This	makes	the	designs	inflexible	in	operation	
and	difficult	and	expensive	to	change.	If	the	systems	are	not	based	on	static	designs,	then	
they tend to lack predictability except under strict conditions that are usually not realistic in 
real world applications. Next generation real-time systems must be designed and constructed 
to	 be	 dynamic	 in	 operation	 to	 adjust	 to	 changing	 conditions,	 predictable	 in	 performance	
so	that	correctness	can	be	guaranteed	and	flexible	so	that	changes	can	be	made	easily	and	
inexpensively.

 1 Process Arrival  Service
  Time Time

 1 0 8

 2 1  4

 3  2 9

 4  3 5

 FCFS
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P1 P2 P3 P4

  0 8 12 21 26

	 Average	wait	=	((8	–	0)	+	(12	–1)	+	(21	–	2)	+	26	–	3))/4	=	61/4	=	15.25

    
	 Residence	Time	 5:	CPU-Scheduling
 at the CPU

For example,	the	time	slot	could	be	100	milliseconds.	If	job1	takes	a	total	
time	of	250	ms	to	complete,	the	round-robin	scheduler	will	suspend	the	
job after 100 ms and give other jobs their time on the CPU. Once the 
other	jobs	have	had	their	equal	share	(100	ms	each),	job1	will	get	another	
allocation of CPU time and the cycle will repeat. This process continues 
until	the	job	finishes	and	needs	no	more	time	on	the	CPU.
• Job1 = Total time to complete 250 ms (quantum 100 ms).
	 1.	 First	allocation	=	100	ms.
	 2.	 Second	allocation	=	100	ms.
	 3.	 Third	allocation	=	100	ms	but	job1	self-terminates	after	50	ms.

 4. Total CPU time of	job1	=	250	ms.

 2 First-Come, First-Served (FCFS) Scheduling

Process Burst Time
P1 24
P2 3
P3 3

	 •	 Suppose	that	the	processes	arrive	in	the	order:	P1,	P2,	P3.	The	Gantt	
Chart	for	the	schedule	is:

 P  P  P

 0 1 2 3

 24 27 30

	 •	 Waiting	time	for	P1	=	0;	P2		=	24;	P3	=	27

	 •	 Average	waiting	time:		(0	+	24	+	27)/3	=	17

 ã	 Suppose	 that	 the	processes	arrive	 in	 the	order	P2,	P3,	P1.	The	Gantt	
chart	for	the	schedule	is:

 P  P  P

 0 3 6 3

	 •	 Waiting	time	for	P1	=	6;	P2	=	0;	P3	=	3

	 •	 Average	waiting	time:			(6	+	0	+	3)/3	=	3
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 • Convoy effect short process behind long process

 3 Shortest-Job-First (SJR) Scheduling

Associate with each process the length of its next CPU burst. Use these 
lengths to schedule the process with the shortest time.

Two	schemes:

 1.  non pre- emptive - once CPU given to the process it cannot be 
preempted until completes its CPU burst.

 2. preemptive - if a new process arrives with CPU burst length less 
than	remaining	time	of	current	executing	process,	preempt.	This	
scheme	is	know	as	the	Shortest-Remaining-Time-First	(SRTF).

  SJF is optimal - gives minimum average waiting time for a given 
set of processes.

Process Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

   SJF	(non-preemptive)

P1 P3 P2 P4

  0 7 8 12 16

Average	waiting	time	=	[0	+(8-2)+(7-4)	+(12-5)]	/4	=4

Example of Preemptive SJF

Process Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

	SJF	(preemptive)

P1 P2 P3 P2 P4 P1

 0 2 4 5 7 11 16

Average	waiting	time	=	(9	+	1	+	0	+2)/4	=3

Determining Length of Next CPU Burst
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Can	 be	 done	 by	 using	 the	 length	 of	 previous	 CPU	 bursts,	 using	
exponential averaging.

Prediction of the Length of the Next CPU Burst

												Pn+1	=	a	tn	+(1-a)Pn	

													This	formula	defines	an	exponential	average

              Pn stores the past history

              tn contents are most recent information

the parameter “a “controls the relative weight of recent  and past history 
of  in our prediction

													If	a	=0	then	Pn	+1	=Pn

             That is prediction is constant

														If	a	=	1	then	Pn	+1	=	tn

              Prediction is last cpu burst

 4 RR with Time Quantum = 4

Process Burst Time

P1 24

P2 3

P3 3

 The	Gantt	chart	is:

P1 P2 P3 P1 P1 P1 P1 P1

 0 4 7 10 14 18 22 26 30

Average	waiting	time	=				[(30-24)+4+7]/3		=	17/3	=	5.66

 5 Multilevel Feedback Queue

 

Quantum = 8

Quantum = 16

FCFS
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Notes Three queues:

				 1.	 Q0	-	time	quantum	8	milliseconds

					2.	 Q1	-	time	quantum	16	milliseconds

 3. Q2 - FCFS

Scheduling:

	 	1.	 A	new	job	enters	queue	Q0	which	is	served	FCFS	.	When	it	gains	
CPU,	job	receives	8	milliseconds.

	 	 If	it	does	not	finish	in	8	milliseconds,	job	is	moved	to	queue	Q1.

     2. At Q1 job is again served FCFS and receives 16 additional 
milliseconds.	 If	 it	 still	 does	 not	 complete,	 it	 is	 preempted	 and	
moved	to	queue	Q2.

3.6.1 Conventional Time-share Scheduling
The goals for conventional time-share scheduling are concerned with maximizing CPU utilization 
and	overall	throughput,	and	minimizing	average	turn-around	time,	average	waiting	time,	and	
response time. These goals are designed to maximize the use of system resources while appearing 
to provide an acceptable level of performance to the user. The algorithms used in conventional 
time-share scheduling are generally relatively simple to implement and understand. They try 
to effect a balance between system resource utilization and user perception of response and 
turn-around	time.	First	Come	First	Served	(FCFS)	scheduling	is	a	simple	first	in,	first	out	queue.	
It	is	simple	to	implement	but	it	has	several	deficiencies.	Its	average	wait	time	is	typically	quite	
long.	It	 is	non-preemptive,	and	it	 is	subject	to	the	convoy	effect	if	there	are	many	I/O	bound	
processes	mixed	with	a	few	CPU	bound	processes.	In	this	case,	there	can	be	large	amounts	of	
idle system resource time as the I/O bound processes sit idle waiting for the CPU bound process 
to	complete.	Shortest	Job	First	(SJF)	scheduling	is	provably	optimal	but	requires	clairvoyance	
to	fully	implement,	since	it	is	usually	not	possible	to	know	a priori	which	job	in	the	wait	queue	
is	the	shortest	job.	There	are	methods,	such	as	using	the	last	processing	burst	or	some	function	
of	 the	 last	 burst,	 that	 allow	 SJF	 scheduling	 to	 be	 emulated.	 SJF	 can	 be	 implemented	 either	
preemptively or non-preemptively and its average waiting time is low. Priority scheduling is 
somewhat similar to many real-time scheduling algorithms. Priority scheduling can be preemptive 
or non-preemptive. Process starvation can be a problem with priority scheduling when many 
high priority processes are competing for time. Process aging can help this situation but aging 
effectively	modifies	 the	 relative	priorities	of	 all	process	 in	 the	 system	and	makes	 the	 system	
non-deterministic. Round Robin scheduling is similar to FCFS scheduling but preemption is 
added	so	that	each	time	quantum	a	new	process	receives	access	to	the	system	resources.	This	
way each process gets a share of the system resources without having to wait for all processes 
in front of it to run to completion. Its average waiting time is typically rather long and its 
performance	 is	 directly	 related	 to	 the	 size	 of	 the	 time	 quantum.	Round	Robin	 scheduling	 is	
the	degenerative	 case	 of	 preemptive	priority	 scheduling	when	 all	 priorities	 are	 equal.	 These	
scheduling	algorithms	are	all	in	common	use	but	they	have	deficiencies	when	applied	to	real-
time	scheduling.	 In	particular,	 the	 lack	of	determinacy	 is	a	serious	problem	that	makes	 them	
unsuitable for real-time scheduling.

3.6.2 Real-time Scheduling
In	direct	contrast	with	the	goals	for	time-share	scheduling,	the	goals	for	real-time	scheduling	are	
concerned	with	minimizing	the	time	from	stimulus	to	response,	completing	tasks	within	specific	
time	constraints,	and	providing	deterministic	performance.	Although	system	resource	utilization	
is	still	of	 interest,	 it	 is	no	longer	a	primary	driver.	Determinism	and	temporal	correctness	are	
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Notesnow	the	principal	concerns.	The	algorithms	used,	or	proposed	for	use;	in	real-time	scheduling	
vary from the relatively simple to the extremely complex. They try to provide deterministic 
performance while meeting the timing constraints of the system. Real-time algorithms can be 
divided	into	several	classes	of	algorithm.	The	two	major	classes	are	off-line	algorithms,	which	
generate scheduling information prior to system execution which is then utilized by the system 
during	 runtime,	 and	 online	 algorithms,	 which	 generate	 scheduling	 information	 while	 the	
system is running. Online algorithms can be subdivided into static priority based and dynamic 
priority based algorithms. Static priority based algorithm’s are relatively simple to implement 
but	lack	flexibility.	Dynamic	priority	based	algorithms	have	the	flexibility	to	cope	with	changing	
environments	but	are	typically	complicated	to	implement	and	require	a	large	amount	of	system	
resources to execute. Off-line algorithms are theoretically fully predictable since they are fully 
deterministic if the system is properly constrained. They are good for applications where all 
characteristics	are	known	a	priority	and	change	very	infrequently.	Off-line	algorithms	require	
a	fairly	complete	characterization	of	all	processes	involved,	such	as	execution	times,	deadlines,	
and	ready	times.	They	typically	require	 large	amounts	of	off-line	processing	time	to	produce	
the	final	schedule	and	due	to	this	they	are	quite	inflexible.	Any	change	to	the	system	processes,	
either adding or deleting processes or changing the characteristics of one or more processes 
requires	starting	the	scheduling	problem	over	from	the	beginning.	In	its	favor	off-line	scheduling	
requires	minimal	run-time	processing	time.	Online	Static	Priority	Based	algorithms	are	arguably	
the most common in practice. They have a fairly complete theoretical base and they may be 
either	 preemptive	 or	 non-preemptive.	 They	work	well	 with	 fixed	 periodic	 tasks	 but	 do	 not	
handle	aperiodic	 tasks	particularly	well,	although	there	are	methods	 to	adapt	 the	algorithms	
so that they can also effectively handle aperiodic tasks. A severe problem that can occur with 
Static Priority Based algorithms is priority inversion. This occurs when a higher priority task is 
blocked	by	a	lower	priority	task	which	is	using	a	resource	required	by	the	higher	priority	task.	
Dynamic	Priority	Based	algorithms	require	the	largest	amount	of	on-line	resources.	However,	
this	allows	them	to	be	extremely	flexible.	Many	Dynamic	Priority	Based	algorithms	also	contain	
an	off-line	component.	This	reduces	the	amount	of	online	resources	required	while	still	retaining	
the	flexibility	of	a	dynamic	algorithm.	There	are	two	subsets	of	dynamic	algorithms—planning	
based for guaranteed performance and best effort to maximize performance in overload 
conditions.	Planning	based	algorithms	guarantee	that	if	a	task	is	accepted	for	execution,	it	and	
all	other	previously	accepted	tasks	will	meet	their	time	constraints.	On	the	other	hand,	best	effort	
algorithms attempt to provide better response to aperiodic tasks or soft tasks while still meeting 
the timing constraints of the hard periodic tasks. This is often accomplished by utilizing spare 
processor capacity to service these soft or aperiodic tasks.

3.6.3 Real-time Scheduling AlgorithmsOff-line/Pre-run-time Scheduling
In	 systems	using	pre-run-time	scheduling,	 the	 schedule	 is	 computed	off-line.	This	 requires	a	
fairly	complete	characterization	of	all	processes,	such	as	ready	times,	deadlines,	and	execution	
time	requirements.	However,	it	does	allow	consideration	of	many	different	schedule	possibilities	
since the only time constraint in generating the schedule is the amount of time the developer is 
willing	to	invest.	If	different	system	modes	or	some	form	of	error	handling	is	desired,	multiple	
schedules	 can	 be	 computed,	 one	 for	 each	 alternate	 situation.	 At	 run-time,	 a	 small	 run-time	
scheduler can choose proper one. This scheduler can also be used for a limited number of 
aperiodic processes. Although a strict pre-run-time scheduler has no provisions for handling 
aperiodic	tasks,	it	is	possible	to	translate	an	aperiodic	process	into	a	periodic	one,	thus	allowing	
aperiodic processes to be scheduled using pre-run-time scheduling. 

	(	)

One way to do this is to translate each aperiodic process

cd,,min
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following	conditions:
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where cis	the	worst	case	computation	 time,	dis	 the	deadline,	ris	 the	release	 time,prd is the 
period and min is the minimum time between invocations of the aperiodic task. A major 
advantage	of	pre-run-time	scheduling	is	a	significant	reduction	in	run-time	resources	required	
for	 scheduling.	 However,	 it	 is	 inflexible.	 Any	 change	 requires	 re-computing	 the	 entire	
schedule.	Additionally,	it	cannot	handle	an	environment	that	is	not	completely	predictable.	
Its real advantage is that in a predictable environment it can guarantee system performance. 
In	many	cases,	 it	 is	the	only	practical	way	to	provide	absolute	predictability	in	a	complex	
real-time	system	Although	pre-run-time	scheduling	has	several	advantageous	characteristics,	
there are also several concerns that must be addressed. A pre-run-time schedule is of little 
use	if	 it	does	not	satisfying	the	system	timing	constraints.	Using	pre-run-time	scheduling,	
this can be guaranteed for sets of periodic and aperiodic functions if aperiodic functions are 
translated to periodic functions and a feasible schedule can be found where every process 
starts after its release time and completes before its deadline within a period that is contained 
within	the	least	common	multiple	of	their	periods.	In	systems	using	pre-run-time	scheduling,	
there	is	generally	(if	not	always)	a	required	ordering	of	the	execution	of	processes.	This	can	
be accommodated by using precedence relations that are enforced during the pre-run-time 
scheduling. Preventing simultaneous access to shared resources and devices is another 
function	that	pre-run-time	scheduling	must	enforce.	This	can	be	accomplished	by	defining	
which	portion	 of	 a	 process	 cannot	 be	preempted	by	 another	 and	 then	defining	 exclusion	
constraints and enforcing them during the pre-run-time scheduling. Another goal that may 
be desired for pre-run-time schedules is reducing the cost of context switches caused by 
preemption. This can be accomplished by choosing algorithms that do not result in a large number 
of	preemptions,	such	as	Earliest	Deadline	First.	It	is	also	desirable	to	increase	the	chances	that	a	
feasible schedule can be found. If the input to the chosen pre-run-time scheduling algorithm is 
exactly	the	input	to	the	real	system	and	not	an	approximation,	then	the	mathematical	pre-run-
time	algorithms	are	more	 likely	 to	find	a	 feasible	schedule.	As	an	example	of	a	pre-run-time	
algorithm,	their	systems	consist	of	a	set	of	semi-preemptable	activities	that	is	modeled	as	a	set	
of	non-preemptible	beads.	These	beads	have	four	types	of	constraints:

 1. Absolute timing constraints,	where	each	bead	must	be	scheduled	between	an	earliest	start	
time and its deadline.

 2. Relative timing constraints,	consisting	of	precedence	relations	between	the	beads.

 3. Consistency constraints,	 which	 require	 an	 order	 between	 subsets	 of	 beads	 to	 enforce	
consistent usage of shared resources.

 4. Independency constraints,	which	are	used	to	exploit	knowledge	that	only	one	alternative	of	
a	conditional	is	executed	at	run-time.	The	algorithm	uses	a	heuristic	scheduling	approach,	
where	the	application	designer	specifies	processes,	resources,	and	constraints.	Processes	
are	 then	 divided	 into	 non-preemptible	 beads	 based	 on	 pre-defined	 preemption	 points	
and	 functional	 constraints	are	derived.	At	 this	 stage,	 each	process	and	all	 its	 resources	
are assigned to an individual processor. Now all communication paths are known so 
communication beads are added and functional constraints are adjusted as necessary. Beads 
are then grouped into non-preemptible blocks to decrease context switching overhead and 
to	reduce	the	number	of	discrete	items	that	need	to	be	scheduled.	Windows	are	defined	
in	which	 if	all	beads	 in	a	block	complete	within	 the	window,	all	 constraints	have	been	
met.	Blocks	are	assigned	a	sequence	so	each	falls	within	its	window	and	no	blocks	overlap	
(on	any	discrete	processor).	If	a	feasible	schedule	can	not	be	found,	the	non-preemptible	
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Notesblocks are split into smaller pieces and more processors are added to the problem. The 
algorithm then begins again at the point of assigning processes and their resources to a 
processor.

Future Research
More	work	needs	to	be	done	on	incorporating	error	detection,	recovery	and	fault	tolerance	in	
pre-run-time	 scheduled	 systems.	 Although	 a	 technique	 for	 doing	 this	was	 presented	 earlier	
in	 this	 paper,	 more	 robust	 methods	 need	 to	 be	 developed.	 Many	 pre-run-time	 scheduling	
techniques	 require a severe set of constraints in order to bound the amount of computation 
necessary	to	produce	a	schedule.	These	constraints	often	limit	the	applicability	of	the	technique	
to real world conditions. More work needs to be done to eliminate as many of the constraints 
as possible if pre-run-time scheduling is going to be a viable solution for other than only the 
highly constrained system.

3.6.4 On-line Scheduling Algorithms
On-line scheduling algorithms compute a schedule in real-time as processes arrive. The on-
line scheduler does not assume any knowledge of process characteristics for processes which 
have	not	yet	arrived.	Major	advantages	of	on-line	scheduling	are	that	there	is	no	requirement	
to	know	process	 characteristics	 in	advance	and	 they	 tend	 to	be	flexible	 and	easily	adaptable	
to environmental changes. Many arguments have been made against run-time scheduling. 
Static priority driven schedulers are capable of generating only a limited subset of the possible 
schedules.	 This,	 and	 the	 basic	 assumption	 that	 the	 system	 has	 no	 knowledge	 of	 process	
characteristics	 for	processes	 that	 have	not	 yet	 arrived,	 severely	 restricts	 the	potential	 for	 the	
system	to	meet	timing	and	resource	sharing	requirements.	If	the	scheduler	does	not	have	such	
knowledge,	it	is	impossible	to	guarantee	that	system	timing	constraints	will	be	met.	No	matter	
how	 sophisticated	 the	 scheduler	 is,	 it	 is	 always	 possible	 that	 some	 newly	 arriving	 task	will	
have	characteristics	 that	make	either	 the	process	or	some	other	process(es)	miss	 its	deadline.	
As	an	example,	there	are	times	when	it	is	necessary	to	allow	the	processor	to	become	idle	if	all	
timing	constraints	are	 to	be	met,	such	as	when	a	high	priority	 task	with	a	 far	away	deadline	
idles to wait for the arrival of a lower priority task with a near-term deadline. Neither static nor 
dynamic algorithms can deal with this type of problem. Because of the relative small number of 
possible	schedules	that	can	be	produced	by	a	run-time	scheduler,	CPU	utilization	is	usually	lower	
than that provided by a pre-run-time scheduler. Reliance on run-time mechanisms for process 
synchronization	and	mutual	exclusion,	such	as	rendezvous	and	monitors	creates	timing	issues	
that	are	very	difficult	to	predict.	Additionally,	the	use	of	such	mechanisms	allows	scheduling	
decisions	 to	 be	 made	 at	 the	 process	 level,	 rather	 than	 relegating	 them	 to	 the	 system.	 This	
introduces yet another source of uncertainty in predicting system performance. Other problems 
include	starvation,	priority	inversion,	and	deadlock.	In	pre-run-time	scheduling,	it	is	possible	to	
avoid	all	this	overhead	by	defining	precedence	and	exclusion	relations	between	processes	and	
process segments to allow synchronization and mutual exclusion. Allowing interrupts to occur 
at any random time from internal or external events further increases the unpredictability of a 
system.	 It	also	 requires	a	 significant	amount	of	 resources	 for	context	 switching.	Pre-run-time	
scheduling	significantly	reduces	the	amount	of	run-time	resources	needed	for	scheduling	and	
context	switching.	In	pre-run-time	scheduling,	a	periodic	interrupts	are	noted	but	not	serviced	
until the corresponding periodic handler is scheduled to run. This reduces time spent in context 
switches and gives greater latitude in scheduling the entire system. Systems scheduled using on-
line	algorithms	are	usually	“proved”	by	testing	and/or	simulation.	As	has	been	observed,	you	
can	only	show	the	presence	of	errors,	no	amount	of	testing	or	simulation	can	prove	the	system	
error	free.	Additionally,	 in	on-line	scheduling	the	amount	of	time	and	resources	available	for	
scheduling is severely restricted and the scheduling problem is computationally hard. Although 
these	 arguments	 are	 compelling,	 many	 of	 today’s	 real-time	 systems	 use	 on-line	 scheduling	
simply	because	 it	 does	perform	 reasonably	well	under	most	 circumstances	 and	 it	 is	flexible.	
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The	flexibility	of	on-line	 scheduling	makes	up	 for	most	of	 the	deficiencies	
when it comes to implementing a real world system.

3.6.5 Non-Preemptive Static Priority Algorithms
Many real-time systems have the characteristic in which the order of task execution 
is known a priori and each task must complete before another task can start. These 
systems	 can	 be	 scheduled	 non-preemptively.	 This	 scheduling	 technique	 avoids	
the overhead associated with multiple context switches per task and can achieve 
very high processor utilization. These systems are modelled as systems of mutually 
constrained,	 sequential	 tasks.	 These	 constraints	 are	 of	 the	 form—Static	 non-preemptive 
run-time	 scheduling	 has	 the	 advantage	 of	 high	 efficiency	 since	 the	 only	 context	 switches	
performed	are	to	initiate	a	new	task.	Additionally,	tasks	are	guaranteed	of	meeting	execution	
deadlines.	 Two	 non-preemptive	 algorithms	 will	 be	 examined—the	 parametric	 dispatching	
algorithm. Both of these algorithms attempt to provide high processor utilization while 
preserving task deadline guarantees and system schedulability. The parametric dispatching 
algorithm	uses	a	calendar	of	functions,	which	maintains	for	each	task	functions,	F	min	and	F	
max,	describing	the	upper	and	lower	bounds	on	the	allowable	start	times	for	the	task.	During	an	
off-line	component,	the	timing	constraints	between	tasks	are	analyzed	to	generate	the	calendar	
of	 functions.	During	system	execution,	a	calendar	evaluator	determines	 the	upper	and	 lower	
bounds for the start times for each task. These bounds are then passed to a dispatcher which then 
determines when within the window to start execution of the task. This decision can be based 
on whether there are other non-real-time tasks waiting to execute. Singh’s predictive algorithm 
depends upon known a priori task execution and arrival times. When it is time to schedule a 
task	 for	execution,	 the	 scheduler	not	only	 looks	at	 the	first	 task	 in	 the	 ready	queue,	but	also	
looks	at	the	deadlines	for	tasks	that	are	predicted	to	arrive	prior	to	the	first	task’s	completion.	
If	a	later	task	is	expected	to	arrive	with	an	earlier	deadline	then	the	current	task,	the	scheduler	
may insert CPU idle time and wait for the pending arrival if this will produce a better schedule. 
In	particular,	the	insertion	of	idle	time	may	keep	the	pending	task	from	missing	its	deadline.	
Suppose	 there	 is	a	 task	 t	with	deadline	D	currently	at	 the	head	of	 the	queue	11	and	 there	 is	
another	task,	t	with	deadline	D	whose	predicted	arrival	time,	r,222	is	later	then	the	current	time.	
If	t	and	t’s	execution	times	result	in	t	12	2	completing	later	than	t’s	deadline,	then	t	will	miss	its	
deadline	if	t	is	221	dispatched	first.	In	this	case,	the	only	feasible	schedule	requires	that	the	CPU	
idle while waiting for t’s arrival2. These algorithms both have drawbacks when applied to real-
world	systems.	Both	algorithms	require	significant	a	priori	knowledge	of	the	system	tasks,	both	
execution	times	and	ordering.	Because	of	this,	they	are	quite	rigid	and	inflexible.	Even	minor	
task	changes	require	significant	rework	of	the	scheduler.	Additionally,	the	parametric	algorithm	
is	not	a	scheduling	algorithm	in	its	own	right	since	it	requires	a	predetermined	task	ordering.	It	
is	best	used	in	conjunction	with	another	scheduling	technique.	Future	areas	of	development	in	
non-preemptive	scheduling	include	determining	necessary	and	sufficient	conditions	for	a	task	
set	to	be	schedulable.	Additionally,	neither	of	these	algorithms	has	any	technique	for	handling	
aperiodic tasks. Further work needs to go into incorporating non-preemptive scheduling with 
some other scheduling algorithm to handle aperiodic tasking and thus be useful for other than 
severely constrained systems.

3.6.6 Preemptive Static Priority-based Algorithms
In	the	early	days	of	real-time	computing,	real-time	systems	were	built	around	a	cyclic	executive,	
similar	 to	 a	 very	 rudimentary	 off-line	 scheduler,	 and	 constructed	 in	 a	 fairly	 undisciplined	
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Notesmanner,	primarily	due	to	a	lack	of	any	other	technique.	In	the	late	‘70s	and	early	‘80s,	researchers	
realized	that	this	method	of	constructing	systems	was	producing	systems	that	were	inflexible	
and	difficult	to	maintain.	It	was	also	realized	that	new	methods	and	techniques	were	needed	
to	 support	 the	 analysis,	 design,	 and	 implementation	 of	 real-time	 systems.	 Although	many	
scheduling	techniques	were	proposed,	preemptive	static	priority-based	scheduling	has	emerged	
as	one	of	the	more	widely	studied	and	implemented	techniques.	Preemptive	static	priority-based	
scheduling algorithms form the basis for most commercially available real-time operating systems.  
The Ada95 and POSIX standards are also based upon preemptive static priority based algorithms. 
A literature search will reveal that preemptive static priority-based algorithms are among the 
most	widely	studied	and	understood	of	any	class	of	scheduling	algorithm.	The	model	assumes:

 1. All processes are periodic.

	 2.	 All	processes	have	a	deadline	that	is	equal	to	their	period.

 3. All processes are independent of one another.

	 4.	 All	processes	have	a	fixed	computation	time.

 5. No process may voluntarily suspend itself.

 6. All processes are released as soon as they are ready.

 7. Overheads are ignored.

The basic timing constraint assumption is that the computation time of all processes is less than 
or	equal	to	the	deadline,	which	is	equal	to	the	period.	Clearly,	if	this	is	not	the	case,	the	problem	
is unsolvable since the computation time will exceed the period. There are several reasons for 
the popularity of the preemptive static priority-based algorithms. This class of algorithms tends 
to	be	easy	to	understand	and	easy	to	implement.	In	the	most	basic	scenario,	the	implementation	
consists	of	little	more	than	a	priority	queue.	Additionally,	given	the	necessary	system	constraints,	
these	algorithms	can	guarantee	task	completion.	If	execution	guarantees	are	not	required,	this	
algorithm	 class	 is	 also	 quite	 flexible.	 Tasks	 can	 be	 added	 or	 deleted	with	 no	 change	 to	 the	
scheduler. The rate-monotonic algorithm is one of the most well known in preemptive static 
priority-based scheduling and many algorithms are based upon variations of it. That a set of n 
independent	periodic	tasks,	where	a	periodic	task	t	is	characterized	by	a	I	period	T	and	a	worst	
case execution time C.

The upper bound on the utilization ii Ti1is	ln	2	=	0.69	as	n approaches	infinity.	Fortunately,	this	
bound is n(	)	21-n very pessimistic. The average CPU utilization for a task set scheduled using the 
rate-monotonic	algorithm	was	88%.	The	deadline-monotonic	scheduling	algorithm	is	really	just	a	
special case of the rate-monotonic algorithm. The rate-monotonic algorithm assumes that a task’s 
deadline is the same as the end of the task’s period. Deadline-monotonic scheduling was developed 
to	comprehend	periodic	task’s	which	have	deadlines	prior	to	the	end	of	their	period,	resulting	in	
a narrower window of opportunity than the task’s period. That a set of n periodic tasks scheduled 
by	the	deadline-monotonic	algorithm	will	always	meet	its	deadlines	if:(	)(	)CBEC1==	+	++	++	=	-I 
in C,,121	L	ii I 1 2 I T TT i1 2i where B is the duration in which task t is blocked by lower priority 
tasks,C is ii I the	task’s	required	execution	time,T	is	the	task’s	period,E is the difference I I between 
the	task’s	period	and	it’s	deadline.	When	the	task’s	deadline	is	(	)	earlier	than	the	end	of	the	period, 
ETD =-	where	D is the earlier I iii deadline. It has also been proven that assigning higher priorities 
to tasks with narrower windows is optimal for scheduling.

The main advantage of deadline-monotonic scheduling over rate-monotonic scheduling is that 
there are task sets that cannot be scheduled using rate-monotonic scheduling but are schedulable 
using deadline-monotonic scheduling. The weight-monotonic scheduling algorithm attempts to 
generate schedules that exhibit temporal fairness. Temporal fairness is a property that provides 
for	more	equal	allocation	of	processor	time	over	some	period	to	all	tasks,	thus	providing	relative	
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Proportionate progress is used as a measure of temporal fairness. Assuming that processing time 
is	divided	into	equal	length	slots,	a	schedule	exhibits	proportionate	progress	if	for	all	processes	
p	at	all	integer	times	t,	the	difference	between	the	amount	of	processor	time	(number	of	slots)	
that should have been allocated to process p and the amount that was allocated is strictly less 
than the absolute value of 1 for all p at time t. Baruah has shown that proportionate progress is 
a	stronger	requirement	than	periodic	scheduling.	That	is,	all	schedules	exhibiting	proportionate	
progress	are	periodic,	but	not	all	periodic	schedules	display	proportionate	progress.	The	weight-
monotonic	algorithm	first	defines	a	weight	for	each	task	in	the	system,	where	the	task’s	weight	is	
the	ratio	of	its	required	execution	time	to	xe	its	period.	At	each	time	slot,	the	processor	is	assigned	
to the task with xp	 the	greatest	weight,	with	ties	broken	arbitrarily.	At	first	glance,	this	 looks	
very similar to the rate-monotonic algorithm. The difference is that the rate-monotonic makes 
scheduling decisions based solely on the task’s period while the weight-monotonic algorithm 
also	considers	its	execution	requirement.	This	has	the	effect	of	elevating	the	priority	of	a	task	
that would have been given low priority under the rate-monotonic algorithm so that it receives 
a proportionally larger share of the available processing time. It seems that this would negate 
the advantages gained from rate-monotonic scheduling but experiments show that the weight-
monotonic algorithm often successfully schedules task sets that were unschedulable under 
the rate-monotonic algorithm. The reason for this apparent contradiction is the difference in 
the	definition	of	“contending	tasks”	between	schedules	exhibiting	proportionate	progress	and	
periodic	schedules.	Essentially,	in	proportionate	progress	schedules,	high	priority	tasks	do	not	
completely	take	over	the	processor,	thus	allowing	lower	priority	tasks	an	opportunity	to	run	and	
avoid starvation. Static priority-based scheduling algorithms have a number of problems that 
have	to	be	addressed	when	they	are	used	for	real-world	problems.	Under	overload	conditions,	
it	is	difficult	to	guarantee	performance	of	static	priority-based	algorithms.	It	can	also	be	quite	
difficult	 to	guarantee	performance	and	achieve	high	processor	utilization.	Without	providing	
some	kind	of	algorithmic	extension,	such	as	a	server	task,	static	priority-based	algorithms	do	
not have provisions to handle “soft” or aperiodic processes. This topic will be addressed in 
more detail later in this paper when dynamic priority algorithms are discussed. A phenomenon 
known	as	priority	inversion,	which	in	essence	makes	a	high	priority	task	block	while	waiting	
on a lower task to release some resource can also be a problem although there are several 
techniques	to	counter	this	situation.	The	Priority	Inheritance	Protocol,	Priority	Ceiling	Emulation,	
and Priority Ceiling Protocol are all useful in alleviating the problem. The Priority Inheritance 
Protocol	acts	when	a	higher	priority	task	is	blocked	by	a	lower	priority	task.	When	this	occurs,	
the lower priority task inherits the priority of the higher priority task. This prevents a medium 
priority task from preempting the lower priority task. When the lower priority task releases 
the	resource	the	higher	priority	task	was	blocking	on,	the	lower	priority	task	is	returned	to	its	
original priority level. Although the Priority Inheritance Protocol prevents unbounded blocking 
of	a	higher	priority	task	by	a	lower	priority	task,	it	does	not	guarantee	that	mutual	deadlocks	
will not occur. It also suffers from the possibility of chained blocking. Chained blocking occurs 
when two lower priority tasks each hold a resource that a higher priority task desires. The higher 
priority task now has to wait on both lower priority tasks to release their resources before it 
can run. Priority Ceiling Emulation combats the problem of priority inversion by selectively 
inhibiting	preemption.	With	this	method,	the	priority	of	a	low	priority	task	is	raised	high	enough	
to	prevent	it	being	blocked	by	a	medium	priority	task.	To	accomplish	this,	the	highest	priority	
of any task that will lock a resource is kept as an attribute of that resource. Whenever a task 
is	 granted	access	 to	 that	 resource,	 its	priority	 is	 temporarily	 raised	 to	 the	maximum priority 
associated	with	the	resource.	When	the	task	has	finished	with	the	resource,	the	task	is	returned	
to	its	original	priority.	Under	this	protocol,	deadlocks	cannot	occur	and	a	task	can	be	blocked	
at most once by a lower priority task. The Priority Ceiling Protocol is a combination of the two 
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Notesprevious	methods	that	prevents	chained	blocking	and	mutual	deadlocks.	In	this	protocol,	each	
resource	is	assigned	a	priority	ceiling	which	is	the	highest	priority	of	any	task	that	may	request	
its	service.	The	following	rules	then	apply:

 1. A higher priority task always preempts a lower priority task.

 2. A task cannot enter its critical section unless its priority is higher than the priority ceiling 
of all resources currently locked by other tasks.

 3. A lower priority task that blocks a higher priority task temporarily inherits the priority 
of the higher priority task.

The only difference between this protocol and the Priority Inheritance Protocol is the addition 
of	 rule	 2.	However,	 this	 rule	 is	what	prevents	 chained	blocking	 and	mutual	deadlocking	by	
forcing a total ordering of executing and suspended critical sections. The relative complexity 
of implementing this protocol is its primary drawback. A real-world problem that often arises 
is	the	existence	of	a	finite	number	of	priority	levels.	Most	algorithmic	research	tends	to	assume	
the	 availability	 of	 infinite	 priority	 levels	 for	 ease	 of	 modeling	 and	 analysis	 but	 in	 practical	
systems,	this	is	just	not	the	case.	The	effects	of	limited	priorities	and	have	shown	that	limited	
priorities	 affect	 the	degree	 of	 schedulability	 (maximum	processor	utilization)	 and	produce	 a	
form of priority inversion. For a system scheduled using the rate-monotonic algorithm with the 
potential	requirement	of	100,000	priority	levels,	limiting	the	system	to	only	256	priority	levels	
reduced	the	maximum	processor	utilization	by	a	factor	of	0.9986,	which	is	negligible.	However,	
reducing the number of priority levels to 16 reduces the maximum processor utilization by 0.7025 
which	is	starting	to	become	significant.	Reducing	the	number	of	priority	levels	to	four	reduces	
the	maximum	utilization	by	0.0811.	This	translates	 into	less	than	7.5%	processor	utilization	if	
task	deadlines	are	guaranteed.	Additionally,	reducing	the	number	of	priority	levels	means	that	
tasks of slightly different priority must be grouped together under a single priority level. This 
has	the	effect	of	causing	another	form	of	priority	inversion	that	has	no	work	around,	such	as	
the	priority	 ceiling	protocol,	due	 to	 a	higher	 real	priority	 task	blocking	on	a	 task	within	 the	
same priority group that has a lower real priority. The lack of performance guarantees under 
overload conditions does not have an easy work around with static priority-based algorithms. 
Most	 attempts	 to	 counter	 this	 deficiency	 involve	modifying	 the	 scheduling	 algorithm	 to	use	
some form of adaptive priority. These algorithms will be explored later when dynamic priority 
algorithms	are	discussed.	The	difficulty	in	obtaining	high	processor	utilization	is	another	problem	
that	has	no	simple	work	around.	This	tends	to	be	task	set	specific	and	general	methods	to	ensure	
high processor utilization under these scheduling algorithms do not exist. Most attempts at 
countering this problem add a “server task” or something similar to attempt to “capture” the idle 
processor	time,	but	then	the	scheduling	algorithm	falls	into	the	class	of	best	effort	algorithms,	
another form of dynamic priority algorithm that will be discussed later.

Future Research
Much of the current work has focused on uniprocessor applications of the static priority-based 
scheduling	algorithms.	When	multiple	processors	are	involved,	the	complexity	of	the	problem	
increases	 exponentially.	However,	with	 today’s	multiprocessor	 systems	 becoming	more	 and	
more	common,	 this	 is	an	area	 that	needs	 further	 research.	Burchard,	Liebeherr,	Oh,	and	Son	
among	others,	have	begun	to	investigate	the	problem	of	adapting	static	priority-based	scheduling	
algorithms to multiprocessors. They have proposed a method that develops more stringent 
schedulability conditions so that more tasks can be assigned to each processor using rate-
monotonic	scheduling	then	was	previously	considered	feasible.	However,	their	results	depend	
upon	“novel”	schedulability	conditions	and	more	work	is	needed	before	their	 techniques	are	
ready for real-world use. Lortz and Shin have also investigated multiprocessor scheduling and 
have	concluded	that	in	multiprocessor	systems,	the	implementation	of	mutual	exclusion	and	task	
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Notes synchronization	is	handled	better	by	global	semaphores	based	on	a	task’s	blocking	tolerance	(the	
amount	of	time	it	can	be	blocked	without	missing	its	deadline)	rather	than	the	task’s	priority.	In	
this	scenario,	simple	FIFO	queues	for	the	semaphores	perform	better	than	rate-monotonic	queues	
in direct opposition to what provides the best performance on a uniprocessor. These results 
underscore the vast differences between uniprocessor and multiprocessor real-time scheduling 
that need to be explored. Another topic that needs additional work is the integration of static 
priority-based scheduling algorithms with adaptive scheduling algorithms to handle aperiodic 
and	soft	deadline	tasks	and	to	provide	a	smooth,	graceful	degradation	of	system	performance	
under overload conditions while still providing the advantages of static priority-based scheduling 
under normal conditions.

3.6.7 Dynamic Planning-based Algorithms
Static priority-based scheduling algorithms were shown to have many advantages but two of 
their	disadvantages	have	received	a	significant	amount	of	study.	Their	low	processor	utilization	
and poor handling of aperiodic and soft-deadline tasks have prompted researchers to search for 
ways	to	combat	these	deficiencies.	This	research	has	resulted	in	a	class	of	scheduling	algorithms	
known as Dynamic Planning-Based algorithms. Dynamic planning-based algorithms attempt to 
improve the response and performance of a system to aperiodic and soft-deadline tasks while 
continuing to guarantee the performance of the hard-deadline periodic tasks. The traditional 
way of handling aperiodic and soft-deadline tasks in a system that contained periodic tasks with 
hard-deadlines was to allow the aperiodic or soft tasks to run in the background. This meant 
that these types of tasks only got serviced when the processor had nothing else to do. The result 
of this was unpredictable and normally rather poor response to these tasks. The other approach 
used	was	to	model	aperiodic	tasks	as	periodic	tasks	with	a	period	equal	to	the	minimum	time	
between their arrivals and then schedule them using the same algorithm as for the real periodic 
tasks. This tended to be extremely wasteful of CPU cycles because the minimum period between 
arrivals	was	usually	significantly	smaller	than	the	average.	The	general	model	for	these	types	
of	algorithms	is	a	system	where	all	periodic	tasks	have	hard	deadlines	equal	to	the	end	of	their	
period,	their	periods	are	constant,	and	their	worst	case	execution	times	are	constant.	All	aperiodic	
tasks	 (and	soft-deadline	 tasks)	are	assumed	 to	have	no	deadlines	and	 their	arrival,	or	 ready,	
times	are	unknown.	Dynamic	Planning-Based	algorithms	tend	to	be	quite	flexible	in	servicing	
aperiodic tasks while still maintaining the completion guarantees for hard-deadline tasks. Most 
of the algorithms also provide a form of guarantee for aperiodic tasks. They will not accept the 
task	 for	execution	 if	 they	cannot	guarantee	 its	on-time	completion.	Additionally,	most	of	 the	
algorithms can provide higher processor utilization than static priority-based algorithms while 
still	including	task	completion	guarantees.	Earliest	Deadline	First	(EDF)	scheduling	was	one	of	
the	first	dynamic	planning-based	algorithms	proposed.	 It	provides	 the	basis	 for	many	of	 the	
algorithms currently being studied and proposed. The concept behind EDF is relatively simple. 
When	 it	 is	 time	 to	 select	 a	 task	 to	execute,	 select	 the	 task	 that	has	 the	earliest	deadline.	One	
advantage	of	EDF	is	that	if	a	task	set	is	scheduled	using	the	Earliest	Deadline	First	algorithm,	
there will be no idle processor time prior to system overload. This means that unlike static 
priority-based	 algorithms,	 when	 using	 EDF,	 the	 system	will	 only	 suffer	 overload	when	 the	
execution	time	requirement	for	the	task	set	exceeds	100%	of	the	available	time.	This	compares	
with	approximately	69%	for	rate-monotonic	scheduling.	Of	course,	in	reality	there	will	be	some	
overhead	 associated	with	 scheduling	 and	 context	 switches	 but	when	using	EDF	 scheduling,	
processor	utilization	can	approach	100%.	The	Predictive	Deadline	(PD)	algorithm	extends	the	
EDF algorithm to predict timing faults and to reject less critical tasks during overload conditions. 
The	PD	algorithm	assumes	cyclic	task	behavior	where	each	cycle	is	defined	by	the	task’s	ready	
time	and	its	deadline.	Tasks	are	required	to	estimate	their	execution	time,	which	is	used	by	the	
algorithm to predict overloads. Each task is also assigned a priority which is used to shed less 
important tasks during overload conditions. Tasks are then scheduled by earliest deadline. As 
each	task	is	inserted	into	the	ready	queue,	the	sum	of	the	execution	times	for	all	tasks	preceding	
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Noteseach	task	with	a	later	deadline	is	computed.	When	this	is	complete,	if	no	overloads	are	predicted,	
the	 task	 with	 the	 earliest	 deadline	 is	 removed	 from	 the	 queue	 and	 begins	 execution.	 If	 an	
overload	is	predicted,	the	algorithm	scans	the	ready	queue	and	removes	the	lowest	priority	task.	
It then re-computes the execution sums. This process continues until there is either no overload 
predicted	or	until	 the	ready	queue	 is	empty.	One	obvious	drawback	to	 this	algorithm	is	 that	
under	overload	conditions,	the	processor	can	spend	a	significant	amount	of	time	attempting	to	
perform	scheduling,	which	adds	to the overload problem by using up CPU resources.

Another algorithm that is based upon the EDF algorithm is the Total Bandwidth server. This 
algorithm is based on the concept that many real-time systems consist of both hard periodic 
tasks	and	firm	aperiodic	tasks.	To	guarantee	the	timely	completion	of	the	hard	periodic	tasks	
in overload	conditions,	it	is	sometimes	necessary	to	reject	some	of	the	aperiodic	tasks.	A	special	
Server	task	is	included	in	the	system	whose	computation	time,	or	capacity,	is	used	to	service	these	
aperiodic	tasks.	This	way,	aperiodic	tasks	can	be	serviced	in	a	more	predictable	fashion	without	
jeopardizing	the	completion	of	hard	periodic	tasks.	In	this	algorithm,	a	value	is	assigned	to	each	
aperiodic task. This value is only received if the task completes by its deadline. It is also used to 
determine	which	tasks	should	be	rejected	during	overload	conditions.	During	overload	conditions,	
the algorithm has to make choices on which tasks will complete and which will not in order 
to maximize the value of the system. The original Total Bandwidth server algorithm works by 
assigning a suitable deadline to each aperiodic task when it arrives and then scheduling it with 
the periodic tasks using the EDF algorithm. The deadline for the aperiodic task is determined 
as follows. When the k-th aperiodic task arrives at time t=r,	 it	 is	given	the	deadline	d where: 
k k(	)	drd C=+	max	 ,	k U kkk1 –S where d is the deadline of the k-1-th	 task,C is the maximum 
execution time k-1kof the task and Uis	the	server	utilization	factor	(its	bandwidth	in	terms	of	S 
CPU	execution	time).	The	task	is	then	placed	in	the	ready	queue	as	defined	by	EDF.

The algorithm has been extended to add resource reclamation and to provide a robust guarantee 
mechanism to provide graceful degradation of the system under overload conditions. The original 
algorithm used the maximum execution time of the task to schedule a portion of the server’s 
bandwidth. Not all tasks take the maximum amount of time to complete. In order to reclaim 
the	 server	bandwidth	 that	was	 scheduled	 for	 a	 task,	 the	 actual	 execution	 time	of	 a	 task	 that	
completes early is used to compute the deadline that could have been assigned to it if its actual 
execution time had been known. This adjusted value is then used to compute the deadline of the 
following	request.	Graceful	degradation	during	overload	conditions	is	added	to	the	algorithm	
by calculating the deadline as shown above and comparing it to the task’s actual deadline. If 
the	 computed	deadline	 is	 less	 than	or	 equal	 to	 the	 actual	deadline,	 the	 task	 is	 accepted	 and	
scheduled.	If	the	computed	deadline	is	later,	the	algorithm	searches	for	the	lowest	value	task	
that has been scheduled and rejects it in the hope that the newly arrived task can be scheduled 
with guaranteed completion. This search continues until the task has either been scheduled or 
the	ready	queue	is	empty.	Another	server	algorithm	is	the	Dynamic	Priority	Exchange	(DPE)	
server.	 This	 algorithm	 trades	 the	 server	 execution	 with	 lower	 priority	 periodic	 tasks	 (those	
with	later	deadlines)	when	there	are	no	aperiodic	tasks	to	be	serviced.	This	way	no	CPU	time	
is	wasted,	it	is	only	exchanged	between	tasks,	unless	the	system	is	idle.

The server has a period T and a capacity C. At the beginning of each S S period,	the	server’s	
capacity is set to C . Each periodic task that has a S deadline within the current period is assigned 
an aperiodic capacity which is initially set to 0. All tasks are then assigned priorities via the 
EDF algorithm. When the highest priority in the system is an aperiodic capacity of C units of 
time,	the	following	occurs:

	 •	 If	 there	 are	 aperiodic	 tasks	waiting	 to	 be	 serviced,	 they	 are	 executed	 until	 they	 either	
complete or the capacity of the server has been exhausted. If there are no aperiodic tasks 
awaiting	service,	the	periodic	task	with	the	earliest	deadline	is	executed	and	a	capacity	
equal	 to	 the	execution	 time	of	 that	 task	 is	added	to	 the	aperiodic	capacity	of	 the	 task’s	
deadline and subtracted from C. This has the effect of exchanging the deadlines of the 
highest priority capacity and the periodic task.



Principles of Operating Systems

92 LOVELY PROFESSIONAL UNIVERSITY

Notes 	 •	 If	there	are	no	periodic	or	aperiodic	tasks	waiting	to	execute	the	capacity	of	C is consumed 
in	idle	time.	In	order	to	implement	the	algorithm,	the	capacity	of	the	server	and	the	periodic	
process capacity must be updated every time there is an exchange and the server must be 
checked to ensure that its capacity has not been exhausted. The Dual Priority algorithm is 
an example of the class of algorithms that identify and exploit spare processing capacity in 
the	system.	Under	this	algorithm,	hard	periodic	tasks	execute	at	either	an	upper	or	lower	
band	priority	level.	At	their	ready	time,	the	tasks	assume	the	lower	band	priority.	After	
a	fixed	time	from	their	ready	time,	 they	are	promoted	to	 the	high	priority	band.	Other	
soft deadline tasks are assigned a medium priority in between the two bands. This way 
soft deadline tasks are given preferential scheduling until hard priority tasks undergo 
promotion. The offset from the ready time in which promotion takes place is determined 
for	each	task	via	off-line	analysis,	using	worst	case	arrivals	and	execution	times.	The	spare	
capacity reclamation is accomplished by identifying spare capacity that becomes available 
when	tasks	do	not	arrive	at	their	maximum	rate.	The	Polling	Server	(PS)	algorithm	schedules	
a	periodic	task,	the	polling server that is used to provide relative high priority services to 
aperiodic	tasks.	Every	time	it	executes,	it	is	available	to	service	existing	or	newly	arriving	
aperiodic tasks during its execution period. The server is subject to preemption by higher 
priority tasks and runs until it either its period ends or until there is no aperiodic tasks left 
to	execute.	In	the	latter	instance,	it	looses	any	time	that	was	left	in	its	period	and	is	unable	
to service aperiodic tasks until the beginning of its next execution period. The Deferrable 
Server	(DS)	algorithm,	a	derivation	of	the	rate-monotonic	algorithm,	is	designed	to	improve	
the response time of the system to aperiodic tasks by deferring the completion time of hard 
periodic tasks while ensuring that their deadlines are still met. This algorithm is another 
instance of dynamic algorithms that utilize a special server process to service aperiodic 
tasks. The Deferrable Server algorithm schedules a periodic task to service aperiodic tasks 
with	high	priority.	Like	the	Polling	Server,	it	is	ready	to	service	aperiodic	tasks	that	are	
waiting or arrive during its period unless it is preempted or runs out of execution time. 
Aperiodic tasks that arrive outside of its period are scheduled as background tasks. Unlike 
the	Polling	Server,	however,	it	does	not	lose	its	remaining	execution	time	once	no	more	
aperiodic tasks are pending. It remains able to service aperiodic tasks until the end of 
its	period,	at	which	time	any	unused	execution	time	is	 lost.	 It	 is	 important	 to	note	that	
the	Deferrable	Server	(DS)	task	 is	different	from	the	other	periodic	tasks	 in	the	system.	
It is demand driven and does not run unless there is an aperiodic task to service. This 
means that it does not necessarily begin execution at the beginning of its period. It defers 
its execution until needed. The DS task is assigned a priority based on its period. If it is 
given the highest priority by making its period no longer than the period of the shortest 
periodic	task,	then	it	can	guarantee	responsiveness	to	aperiodic	tasks.	At	lower	priority	
levels,	the	system	response	to	aperiodic	tasks	begins	to	degrade.	The	Reservation-Based	
algorithm was designed to guarantee all periodic task deadlines while minimizing the 
chances of missing an aperiodic task’s deadline. The algorithm schedules all periodic tasks 
using	the	rate-monotonic	technique.	Aperiodic	tasks	are	assumed	to	have	lower	priorities	
than	periodic	tasks	and	are	scheduled	First-Come,	First-Served	by	using	processor	time	
that is left over after all the periodic tasks have been executed. This is accomplished by 
designating	a	unit	 cycle,	which	 is	 the	greatest	 common	divisor	of	all	 task	periods.	The	
time left over in each unit cycle is reserved for the execution of aperiodic tasks. The 
Reservation-Based algorithm differs from the Polling and Deferrable server algorithms 
in that it does not create a periodic server to deal with the aperiodic tasks. This makes 
it much simpler to implement. It also has the goal of ensuring that aperiodic tasks meet 
their	deadline,	in	contrast	to	the	PS	and	DS	goal	of	quick	response.	The	largest	drawback	
of	dynamic	priority-based	algorithms	is	the	overhead	required	to	identify	spare	capacity	
in	 the	 system.	Along	with	 this	 overhead,	 there	 is	 a	 processor	utilization	 issue.	 Several	
of	the	algorithms	sacrifice	some	portion	of	useable	CPU	time	in	order	to	rapidly	service	
aperiodic	tasks.	This	can	require	a	more	powerful	processor	in	order	to	provide	the	extra	
computing capacity or there may be other periodic tasks that could have been incorporated 
into the design that were eliminated to provide the extra capacity.
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NotesFuture Research
The	 overhead	 required	 to	 identify	 spare	 system	 capacity	 needs	 to	 be	 incorporated	 into	 the	
models	that	are	currently	used	to	study	Dynamic	Priority-Based	algorithms.	Until	this	is	done,	
the results lack real-world validity. There also needs to be an effort directed at adapting these 
algorithms or developing new ones for distributed systems. Identifying spare capacity on a 
global instead of local scale should introduce many new challenges.

3.6.8 Dynamic Best Effort Algorithms
In	many	 real-time	 systems,	 there	 are	 a	 set	 of	 tasks	which	absolutely	must	 complete	by	 their	
deadlines or catastrophic system failure occurs. These systems often also have another set of 
tasks in which it is not necessary for every instance of the task to meet its deadline or in which 
the repetition rate of some set of tasks can be varied as system load varies. Examples are packet 
audio	and	packet	video.	As	long	as	most	of	the	packets	arrive	by	their	deadlines,	the	requisite	
information will be conveyed with minimal degradation. Another example is in a radar system 
where	the	sample	rate	for	a	target	can	be	varied	dependent	upon	its	course	and	speed.	In	this	case,	
the number of targets being tracked can dynamically vary as a function of the target parameters. 
In	 these	kinds	of	systems,	Dynamic	Best	Effort	algorithms	provide	a	means	 to	cope	with	 the	
situation	where	not	every	task	can	complete	by	its	deadline.	In	particular,	when	a	system	begins	
to	overload,	dynamic	best	effort	scheduling	can	provide	a	graceful	and	orderly	degradation	of	
performance for all task groups rather then randomly letting some fail while others randomly 
succeed.	Unfortunately,	many	scheduling	algorithms	that	work	well	under	normal	conditions	
fail	miserable	when	the	system	begins	to	overload.	As	an	example,	the	Earliest	Deadline	First	
algorithm,	which	has	been	shown	to	be	optimal	under	non-overload	conditions,	has	also	been	
shown to perform even worse than random scheduling under overload conditions. The system 
model for dynamic best effort scheduling is the system with multiple processing streams where 
the	failure	of	some	quantity	of	the	repetitive	tasks	within	the	stream	can	fail	without	causing	
catastrophic failure of the stream or in which the repetition rate of some periodic task can be 
varied as some function of the system processing parameters. Dynamic Best Effort scheduling 
has several advantages. Most important is the ability of most of these algorithms to provide 
relatively	good	performance	in	overload	conditions	in	comparison	to	other	scheduling	techniques.	
By	 using	 this	 scheduling	 paradigm,	 a	 system	 can	maximize	 the	 likelihood	 of	 the	maximum	
possible	number	of	tasks	completing	by	their	deadlines,	or	the	most	critical	 tasks	completing	
by	their	deadlines,	or	the	highest	value	tasks	to	the	system	completing	by	their	deadlines.	This	
gives	the	designer	significant	latitude	in	determining	how	the	system	will	respond	in	overload	
conditions.	Additionally,	Dynamic	Best	Effort	 scheduling	 can	maximize	processor	utilization	
when tasks have periods which vary dynamically.

The task model for Dynamic Best Effort scheduling varies depending upon the assumptions made 
about	the	tasks	in	the	system.	Task	models	that	have	been	used	for	analysis	are	given	below:

3.6.9 Equal Request Times
All	tasks	in	the	interval	under	study	request	execution	at	the	same	time.	An	example	of	a	system	
for which this would hold is a communications switch which periodically polls its incoming 
lines	for	packets	to	forward.	All	packets	that	have	arrived	since	the	last	poll	request	immediate	
service even though the processing time and deadlines for the packets may vary.

3.6.10 Equal Execution Times
In	this	case,	all	tasks	have	identical	execution	times,	even	though	they	may	be	ready	for	execution	
at	different	times	and	have	different	deadlines.	An	example	is	a	fire-control	system	where	all	
targets take an identical amount of time to process but may arrive at different times and have 
different deadlines for the targeting solution dependent upon target speed and location.
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Notes 3.6.11 Monotonic Absolute Deadlines
A	task	requesting	service	 is	guaranteed	 to	have	a	deadline	 that	 is	at	 least	as	 late	as	all	other	
tasks	that	have	previously	requested	service.	This	is	essentially	a	first-come,	first-served	system,	
such as might occur in a process control system where the processing steps are strictly ordered.

3.6.12 Equal Relative Deadlines
All tasks in this model have the same relative deadlines. This is similar to the offer by a well 
known pizza delivery company that your pizza will be there in 30 minutes or it is free.

3.6.13 Equal Absolute Deadlines
In	this	case,	all	tasks	have	the	same	absolute	deadline.	An	example	is	a	banking	system	in	which	
transactions	occur	at	random	times	during	the	day	and	require	varying	amounts	of	processing	
but must all be completed by the end of the business day. Algorithms of this class have the 
advantage	of	being	very	flexible	in	dealing	with	a	varying	system	environment	and	being	able	
to	deal	with	overload	conditions	without	total	failure.	In	fact,	except	for	the	condition	of	Equal	
Request	 Times	 and	Equal	Absolute	Deadlines,	 the	 efficiency	 of	 the	 schedule	 generated	 by	 a	
Dynamic Best Effort scheduling algorithm is only one half to two-thirds that of an optimal 
scheduler.	In	the	most	general	terms,	the	Dynamic	Best	Effort	scheduling	algorithms	differ	only	
in	the	way	they	assign	priorities.	For	example,	the	Earliest	Deadline	First	algorithm	attempts	to	
minimize	 task	 failures	 by	 scheduling	 the	 task	 with	 the	 earliest	 deadline	 to	 execute	 first.	
Unfortunately,	 this	 algorithm	 suffers	 from	 the	 domino	 effect,	 where	 the	 failure	 of	 one	 task	
dominos and causes other tasks further down the line to also miss their deadline. Because of 
this,	 its	 performance	 rapidly	 degrades	 under	 overload	 conditions.	 Another	 approach	 is	 to	
schedule	the	task	with	the	highest	value	first.	In	this	case,	the	task	that	has	the	most	importance	
to	the	system	is	the	first	to	run.	A	third	approach	is	to	prioritize	task	dispatching	by	task	density,	
where density is the importance value of the task divided by the cost to execute the task. This 
approach tends to maximize the cumulative value of the tasks that complete by their deadlines. 
A mixed approach has also been used. Here the importance value of a task and its deadline are 
both used to compute a weighted sum of the importance and the deadline which is then used 
to	determine	the	task’s	priority.	Unfortunately,	none	of	these	algorithms	as	presented	provide	
any	 form	of	guarantee	of	 task	 completion.	Because	of	 this,	 they	 are	 all	prone	 to	 the	domino	
effect described earlier since they have no awareness of the current processor loading and 
therefore	 if	 scheduling	 a	new	 task	will	 cause	 a	problem.	Buttazzo,	 et	 al. have proposed and 
characterized a class of extensions to the previous algorithms they refer to as guaranteed. These 
extensions perform an acceptance test before accepting a new task for execution. If a processor 
overload	 will	 occur	 by	 accepting	 the	 newly	 arrived	 task,	 it	 is	 rejected.	 Unfortunately,	 this	
extension does not consider the importance of the task so an extremely important task may be 
rejected so that a task of low importance can run. To counter this problem they have proposed 
a robust extension. This extension performs by applying the acceptance test to each arriving 
task	similar	to	the	guaranteed	extension.	However,	if	an	overload	condition	is	detected,	the	least	
valued task that will remove the overload is rejected rather than blindly rejecting the newest 
task.	Additionally,	rejected	tasks	are	temporarily	maintained	in	a	reject	queue	from	which	they	
can	possibly	be	executed	at	a	 later	point	 in	time.	Another	Dynamic	Best	Effort	algorithm,	for	
situations	such	as	voice	or	video,	where	m of n tasks must complete by their deadline has been 
proposed by Hamdaoui and Ramanathan. This system model is more m restrictive than a system 
in which percent of the tasks must complete by n their deadline. The latter model allows failing 
tasks to group together which still meets the percentage of task completion criteria but can 
severely	degrade	system	performance.	As	an	example,	consider	live	video.	Missing	two	frames	
out	of	every	20	may	only	cause	a	little	static	or	jerkiness	in	the	picture.	However,	missing	the	
middle	 40	 frames	 out	 of	 a	 400	 frame	 sequence	 is	 clearly	unacceptable.	 In	 the	 former	model,	
where	 the	 errors	 are	 required	 to	be	 spread	out,	 the	Distance	Based	Priority	 (DBP)	algorithm	
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to failure. Streams that are close to dynamic failure are accorded higher priority than streams 
that	are	relatively	safe.	To	illustrate,	suppose	we	have	three	concurrent	streams,	S,	S,	and	S,1	2	
3	that	each	have	an	8	of	10	constraint.	Suppose	that	in	the	current	window,	S	1	has	processed	
six	tasks	of	which	one	failed	to	complete,	S	has	processed	2	nine	tasks	of	which	two	have	failed	
to	 complete,	 and	 S	 has	 processed	 seven	 3	 tasks	 with	 no	 failures.	 Under	 these	 conditions, 
S,	will	receive	the	highest	2	priority	since	even	one	more	task	failure	will	cause	a	stream	failure.	
S,	will	1	receive	the	next	highest	priority,	and	S	will	receive	the	lowest	priority	since	it	3	is	the	
farthest	from	stream	failure.	One	issue	that	arises	for	this	algorithm	is	the	effect	of	finite	priority	
levels. Although	many	 systems	have	 256	or	more	priority	 levels	 available,	many	backplanes	
and	communication	processors,	where	this	algorithm	is	particularly	appropriate,	have	a	limited	
number	of	priority	levels.	In	general,	a	stream	with	(m,	n)-firm	deadlines	needs	n-m+	2	priority	
levels	to	fully	implement	the	algorithm.	However,	simulation	studies	performed	by	Hamdaoui	
and Ramanathan have shown that there is a substantial reduction in dynamic stream failures 
with as few as three priority levels. Adaptive Best Effort scheduling has been proposed by Wang 
and Lin to handle repetitive tasks. These tasks differ from periodic tasks in that there is normally 
no control over the spacing between task instances. The spacing between two instances of a 
specific	 task	can	vary	 from	zero	 to	 twice	 the	period	of	 the	 task,	depending	upon	 the	current	
workload	of	the	system.	In	this	situation,	rather	than	accepting	or	rejecting	tasks,	or	just	letting	
certain	tasks	fail,	the	system	attempts	to	adjust	the	period	of	these	tasks.	The	difficulty	associated	
with this form of scheduling is that the standard periodic task model does not comprehend 
dynamically	varying	periods.	This	requires	developing	an	adaptive	 task	model.	The	primary	
difference between the periodic task model and the adaptive task model is in selecting the task 
ready	times.	In	the	periodic	model,	a	task’s	next	ready	time	coincides	with	its	last	completion	
time.	 In	 the	adaptive	model,	 the	ready	 time	can	be	set	 to	anytime	prior	 to	 the	 task	deadline,	
dependent	upon	task	execution	requirements.	This	way	the	task	ready	time	and	deadline	can	
be considered the minimum and maximum spacing from the previous execution of the task. 
Although several different scheduling policies could be used with Adaptive Best Effort 
scheduling,	Wang	and	Lin	confined	their	studies	to	the	Earliest-Deadline-First	(EDF)	and	Rate-
Monotonic	(RM)	policies	since	they	have	both	been	studied	extensively	and	are	relatively	common	
in	many	commercial	real-time	operating	systems.	To	carry	out	their	study,	they	(	)	rc-I	I	j defined	
a	ready	ratio,	R ,	for	the	j-th instance of the task t I as R =	-	1	I	I	j	F	j	j	i where r is	the	ready	time,	
or earliest time that the J -th instance of task t can I j run,	c is	the	time	the	task	completes,	and	
F is	the	frame	time,	or	period	of	ii j the	task.	An	adaptive	system	with	fixed	ready	ratios	is	one	
in which all ready ratios are set to a constant value. An adaptive system with rate monotonic 
ready	ratios	is	one	in	which	the	ready	ratios	are	set	according	to	the	system	workload	indexes,	
which	are	the	total	execution	times	of	a	task	divided	by	its	period,	and	the	task	periods.	The	
results	of	their	studies	showed	that	under	a	normal	workload,	the	adaptive	EDF	scheduler	with	
rate-monotonic	ready	ratios	clearly	provided	the	best	performance.	However,	as	the	workload	
on	the	system	increased,	periodic	EDF	(non-adaptive)	provided	a	better	scheduling	alternative.	
Fixed ready ratio EDF simply did not	perform	well.	For	use	in	real	world	applications,	Adaptive	
Best Effort algorithms have several drawbacks that need to be overcome. Adding task importance 
parameters to the algorithm could allow it to more gracefully degrade under heavy workload 
conditions	by	allowing	it	to	discard	tasks	of	low	importance,	rather	than	selecting	tasks	essentially	
at	random.	However,	this	algorithm	appears	to	need	significant	further	study	before	it	would	
be applicable to real world systems.

Future Research
Future work in Dynamic Best Effort algorithms should include developing algorithms that 
have	more	deterministic	performance	under	overload	conditions.	Additionally,	investigation	of	
other periodic scheduling policies for the adaptive period algorithm might provide improved 
performance.
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We will start by looking at the basic principles of how threads are scheduled. Any particular 
virtual	machine	(and	underlying	operating	system)	may	not	follow	these	principles	exactly,	but	
the principles form the basis for our understanding of thread scheduling. Let us start by looking 
at	an	example	with	some	CPU-intensive	threads.	In	this	and	subsequent	units,	we	will	consume	
CPU resources with a recursive Fibonacci	number	generator,	which	has	the	advantage	(for	our	
purposes)	of	being	an	elegant	and	very	slow	program:

import java.util.*;

import java.text.*;

public class Task implements Runnable {

 long n;

 String id;

private long fib(long n) {

 if (n == 0)

  return 0L;

 if (n == 1)

  return 1L;

 return fib(n - 1) + fib(n - 2);

}

public Task(long n, String id) {

 this.n = n;

 this.id = id;

}

public void run( ) {

 Date d = new Date( );

 DateFormat df = new SimpleDateFormat(“HH:mm:ss:SSS”);

 long startTime = System.currentTimeMillis( );

 d.setTime(startTime);

 System.out.println(“Starting task” + id + “ at ” + df.format(d));

 fib(n);
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Notes long endTime = System.currentTimeMillis( );

 d.setTime(endTime);

 System.out.println(“Ending task” + id + “ at ” + df.format(d) +

  “after ” + (endTime - startTime) + “milliseconds”);

 }

}

We have made this class a Runnable object so that we can run multiple instances of it in multiple 
threads.

public class ThreadTest {

 public static void main(String[] args) {

  int nThreads = Integer.parseInt(args[0]);

  long n = Long.parseLong(args[1]);

  Thread t[] = new Thread[nThreads];

 for (int i = 0; i < t.length; i++) {

  t[i] = new Thread(new Task(n, “Task” + i));

  t[i].start( );

 }

 for (int i = 0; i < t.length; i++) {

 try {

 t[i].join( );

  } catch (InterruptedException ie) {}

  }

  }

  }

Running	this	code	with	three	threads	produces	this	kind	of	output:

Starting	task:	 Task	2	at	00:04:30:324

Starting	task:	 Task	0	at	00:04:30:334

Starting	task:	 Task	1	at	00:04:30:345

Ending	task:	 Task	1	at	00:04:38:052	after	7707	milliseconds
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Notes Ending	task:	 Task	2	at	00:04:38:380	after	8056	milliseconds

Ending	task:	 Task	0	at	00:04:38:502	after	8168	milliseconds

Let	us	look	at	this	output.	Notice	that	the	last	thread	we	created	and	started	(Task	2)	was	the	
first	one	that	printed	its	first	output.	However,	all	threads	started	within	20	milliseconds	of	each	
other.	The	actual	calculation	took	about	eight	seconds	for	each	thread,	and	the	threads	ended	
in	a	different	order	than	they	started	in.	In	particular,	even	though	Task	2	started	first,	it	took	
349	milliseconds	longer	to	perform	the	same	calculation	as	Task	1	and	finished	after	Task	1.

Generally,	we	had	expect	to	see	similar	output	on	almost	any	Java	virtual	machine	running	
on	almost	any	platform:	the	threads	would	start	at	almost	the	same	time	in	some	random	
order,	 and	 they	would	 end	 in	 a	 (different)	 random	 order	 after	 having	 run	 for	 about	 the	
same	 amount	 of	 time.	 Certain	 virtual	machines	 and	 operating	 systems,	 however,	 would	
produce	this	output:

Starting	task:	 Task	0	at	00:04:30:324	

Ending	task:	 Task	0	at	00:04:33:052	after	2728	milliseconds

Starting	task:	 Task	1	at	00:04:33:062

Ending	task:	 Task	1	at	00:04:35:919	after	2857	milliseconds

Starting	task:	 Task	2	at	00:04:35:929

Ending	task:	 Task	2	at	00:04:37:720	after	2791	milliseconds

The	total	here	takes	about	the	same	amount	of	time,	but	now	they	have	run	sequentially:	the	
second	task	did	not	begin	to	execute	until	the	first	task	was	finished.	Another	interesting	fact	
about this output is that each individual task took less time than it did previously.

3.7.1 Priority-based Scheduling

In	each	of	these	examples,	multiple	threads	compete	for	time	on	the	CPU.	When	multiple	threads	
want	to	execute,	it	is	up	to	the	underlying	operating	system	to	determine	which	of	those	threads	
are	placed	on	a	CPU.	Java	programs	can	influence	that	decision	in	some	ways,	but	the	decision	
is ultimately up to the operating system.

A	Java	virtual	machine	is	required	to	implement	a	preemptive,	priority-based	scheduler	among	
its	various	threads.	This	means	that	each	thread	in	a	Java	program	is	assigned	a	certain	priority,	
a	positive	 integer	 that	 falls	within	a	well-defined	range.	This	priority	 can	be	 changed	by	 the	
developer.	The	Java	virtual	machine	never	changes	the	priority	of	a	thread,	even	if	the	thread	has	
been running for a certain period of time. The priority value is important because the contract 
between the Java virtual machine and the underlying operating system is that the operating 
system must generally choose to run the Java thread with the highest priority. That is what 
we mean when we say that Java implements a priority-based scheduler. This scheduler is 
implemented	 in	a	preemptive	 fashion,	meaning	that	when	a	higher-priority	 thread	comes	
along,	 that	 thread	 interrupts	 (preempts)	whatever	 lower-priority	 thread	 is	 running	at	 the	
time.	The	contract	with	the	operating	system,	however,	is	not	absolute,	which	means	that	the	
operating	system	can	sometimes	choose	to	run	a	lower-priority	thread.	Java’s	requirement	
for	 a	 priority-based,	 preemptive	 scheduling	 mechanism	 maps	 well	 to	 many	 operating	
systems.	Solaris,	the	various	Windows	operating	systems,	Linux,	and	most	other	operating	
systems on desktop computers and servers all provide the support for that kind of thread 
scheduling.	Certain	operating	systems,	particularly	those	on	specialized	devices	and	on	
smaller,	handheld	devices,	do	not	provide	that	level	of	scheduling	support;	Java	virtual	
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scheduling on their own.

Our	 first	 example,	where	 the	 threads	 all	 complete	 at	 about	 the	 same	 time,	 is	 executed	 on	 a	
standard	operating	system	(Solaris)	where	the	thread	scheduling	is	handled	by	the	operating	
system.	Our	second	example,	where	the	threads	run	sequentially,	is	from	a	system	where	the	
Java virtual machine itself handles the thread scheduling. Both implementations are valid Java 
virtual machines.

3.7.2 The Scheduling Process

Let	us	examine	how	the	scheduling	process	works	in	a	little	more	detail.	At	a	conceptual	level,	
every	thread	in	the	Java	virtual	machine	can	be	in	one	of	four	states:

3.7.2.1 Initial

A	thread	object	is	in	the	initial	state	from	the	period	when	it	is	created	(that	is,	when	its	constructor	
is	called)	until	the	start(	)method	of	the	thread	object	is	called.

3.7.2.2 Runnable

A	thread	is	 in	the	runnable	state	once	its	start(	)	method	has	been	called.	A	thread	leaves	the	
runnable	state	in	various	ways,	but	the	runnable	state	can	be	thought	of	as	a	default	state:	if	a	
thread	is	not	in	any	other	state,	it	is	in	the	runnable	state.	A	thread	that	is	in	the	runnable	state	
may not actually be running; it may be waiting for a CPU. A thread that is running on a CPU 
is called a currently running thread.

3.7.2.3 Blocked

A	thread	that	is	blocked	is	one	that	cannot	be	run	because	it	is	waiting	for	some	specific	event	to	
occur.	Threads	block	for	many	reasons:	they	attempt	to	read	data	(e.g.	from	a	socket)	when	no	data	is	 
available;	 they	execute	a	 thread-blocking	method	(e.g.	 the	sleep(	),	wait(	),	or	 join(	)	methods);	
or	they	attempt	to	acquire	a	synchronization	lock	that	another	thread	already	holds.	We	have	
seen	APIs	that	also	block,	but	internally	those	methods	are	all	executing	the	wait(	)	method.

3.7.2.4 Exiting

A thread is in the exiting	state	once	its	run(	)	method	returns	(or	its	deprecated	stop(	)	method	
has	been	called).

The basic process of thread scheduling is essentially the same whether it is performed by the 
Java virtual machine or the underlying operating system. Our intent here is to provide an 
illustration	of	how	thread	scheduling	works,	not	to	provide	a	blueprint	of	how	any	particular	
thread scheduler is actually implemented.

We can conceive that a thread scheduler keeps track of all the threads on which it operates 
by using linked lists; every thread is on a list that represents the state of the thread. A Java 
thread	can	have	one	of	11	priorities,	 so	we	conceive	of	14	 linked	 lists:	one	 for	all	 threads	
in	the	initial	state,	one	for	all	threads	in	the	blocked	state,	one	for	all	threads	in	the	exiting	
state,	and	one	for	each	priority	level.	The	list	of	threads	at	a	given	priority	level	represents	
only	those	threads	that	are	currently	in	the	runnable	state:	a	thread	in	the	runnable	state	at	
priority	7	is	placed	on	the	priority	7	list,	but	when	the	thread	blocks,	it	moves	to	the	blocked	
linked	list.	We’re	speaking	here	of	having	11	priorities,	but	that	number	is	a	Java	abstraction:	
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would	still	have	its	own	linked	list).

For	simplicity,	we	conceive	of	these	threads	as	being	on	an	ordered	list;	in	reality,	they	may	be	
held in simple pools. Keeping the threads in a linked list implies that threads will be selected 
to	run	in	a	particular	order.	While	that	is	a	useful	way	of	thinking	about	the	process,	it	is	not	
necessarily the way an implementation may work. Let us see how this scheduling will occur with 
the	example	we	show	at	the	beginning	of	the	chapter.	That	example	has	a	total	of	four	threads:	
the	initial	thread	(which	executes	the	main(	)	method)	and	the	three	task	threads	we	started.	
In	 fact,	 as	we	have	mentioned,	 there	are	more	 threads	because	 the	virtual	machine	 starts	
various	background	threads	(like	the	garbage	collection	thread).	But	for	our	discussion,	we	
will consider only the four threads that are executing our code.

The	threads	that	calculate	a	Fibonacci	number	never	block:	they	move	from	the	initial	state	
to the runnable state to the executing state. The main thread is in the runnable state and then 
enters	the	blocking	state	when	it	executes	the	 join(	)	method	to	wait	for	the	other	threads.	
The	second	time	that	we	run	the	program,	the	state	of	the	threads	follows	the	transition	path	
shown in Figure 3.9. The main thread is the currently running thread until it blocks at time 
T1.	At	that	point,	one	of	the	task	threads	becomes	the	currently	running	thread;	it	remains	
the	 currently	 running	 thread	until	 time	T2	when	 it	finishes	 and	 transitions	 to	 the	 exiting	
state.	Another	 task	 thread	becomes	 the	currently	 running	 thread,	and	 the	cycle	 continues 
until all threads have completed.

Figure 3.9: A Simple Thread-state Diagram

That explains	the	output	that	we	see	when	we	run	the	program	for	a	second	time:	everything	
(including	the	output)	proceeds	sequentially.	So	why	is	 the	output	different	 the	first	 time	
we run the example?

The	 first	 time	we	 run	 the	 example,	we	 do	 so,	 on	 a	 typical	 operating	 system.	 The	 thread	
scheduler	on	that	OS,	in	addition	to	being	priority-based	and	preemptive,	is	also	time-slicing.	
That	means	when	threads	are	waiting	for	the	CPU,	the	operating	system	allows	one	of	them	
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run	for	a	very	short	time,	and	so	on.	A	portion	of	the	thread transitions on such an operating 
system is shown in Figure 3.10.

Figure 3.10: Thread States with OS Scheduling

Java	does	not	mandate	that	its	threads	be	time-sliced,	but	most	operating	systems	do	so.	There	
is	often	some	confusion	in	terminology	here:	preemption	is	often	confused	with	time-slicing.	In	
fact,	preemption	means	only	that	a	higher-priority	thread	runs	instead	of	a	lower-priority	one,	
but	when	threads	have	the	same	priority,	they	do	not	preempt	each	other.	They	are	typically	
subject	to	time-slicing,	but	that	is	not	a	requirement	of	Java.

There	is	one	other	important	point	about	these	two	figures.	In	our	first	figure,	the	time	points	
(T1,	 T2,	 and	 so	 on)	 are	 relatively	 far	 apart.	 The	 time	 transitions	 in	 that	 case	 are	 determined	
when	a	particular	thread	changes	state:	when	the	main	thread	changes	to	the	blocked	state,	a	
task thread changes to become the currently running thread. When that thread changes to the 
exiting	state,	a	second	task	thread	changes	to	become	the	currently	running	thread	and	so	on.	
In	the	second	case,	the	time	transitions	occur	at	a	much	shorter	interval,	on	the	order	of	a	few	
hundred	milliseconds	or	so.	In	this	case,	the	transitions	of	the	threads	between	currently	running	
and waiting for CPU are imposed by the operating system and not as a result of anything the 
thread	itself	has	done.	Of	course,	if	a	thread	voluntarily	changes	to	the	exiting	or	waiting	state,	
a transition occurs at that point as well.

3.8 Priority Exceptions

When	an	operating	system	schedules	Java	threads,	it	may	choose	to	run	a	lower-priority	thread	
instead	of	a	higher-priority	thread	in	two	instances,	described	next.

Priority inversion:	 In	 a	 typical	 priority-based	 threading	 system,	 something	 unusual	 occurs	
when	a	thread	attempts	to	acquire	a	 lock	that	 is	held	by	a	 lower-priority	thread:	because	the	
higher-priority	 thread	becomes	 blocked,	 it	 temporarily	 runs	with	 an	 effective	priority	 of	 the	
lower-priority	thread.	Suppose	that	we	have	a	thread	with	a	priority	of	8	that	wants	to	acquire	
a lock that is held by a thread with a priority of 2. Because the priority 8 thread is waiting for 
the	priority	2	threads	to	release	the	lock,	it	ends	up	running	with	an	effective	priority	of	2.	This	
is known as priority inversion.
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holds a lock that is wanted by a thread with a higher priority has its priority temporarily and 
silently	raised:	its	new	priority	becomes	the	same	as	the	priority	of	the	thread	that	it	is	causing	
to	 block.	When	 the	 thread	 releases	 the	 lock,	 its	 priority	 is	 lowered	 to	 its	 original	 value.	 The	
goal of priority inheritance is to allow the high-priority thread to run as soon as possible. It is 
a	common	feature	of	operating	systems,	and	Java	virtual	machines	running	on	those	operating	
systems	are	subject	to	it.	However,	it	is	not	a	requirement	of	the	Java	specification.

3.8.1 Complex Priorities
The second case involves the priority assigned to threads by the operating system. We 
mentioned	that	Java	has	11	priority	levels	(10	of	which	are	available	to	developers),	but	this	
is an abstraction of the Java language. Operating systems usually have many more priorities. 
More	 important,	 though,	 is	 that	 the	priority	 that	 the	operating	system	assigns	to	a	 thread	
is a complex formula that takes many pieces of information into account. A simple version 
of	this	formula	might	be	this:

Real	Priority	=	Java	Priority	+	SecondsWaiting	For	CPU

This type of formula accounts for the length of time that the thread has been waiting for a 
CPU.	After	a	sufficient	amount	of	time	has	passed,	a	thread	with	a	Java	priority	of	3	has	a	
real priority that is higher than a currently running Java thread with a priority of 5. This 
gives	the	priority	3	thread	an	opportunity	to	run,	even	though	it	has	a	lower	priority	than	
other unblocked threads.

Complex priorities are advantageous because they help to prevent thread starvation. Without 
such	a	model,	a	 low-priority	 thread	would	have	to	wait	 for	all	other	high-priority	 threads	to	
block before it is given a chance to execute; it is likely that it might have to wait forever. With 
complex	priorities,	 it	can	still	run	much	less	often	than	it	 is	higher-priority	peers,	but	at	 least	
it will run sometimes.

On	 the	 other	 hand,	 complex	 priorities	mean	 that	 you	 cannot	 guarantee	 thread	 scheduling.	 In	
particular,	you	cannot	use	thread	priorities	to	try	and	prevent	race	conditions	in	data	access:	a	lower-
priority thread can interrupt a higher-priority thread while it is in the process of updating shared 
data.	You	also	cannot	use	thread	priorities	to	ensure	a	certain	order	of	execution	between	tasks.

 1. C Program For Round Robin Scheduling Method

 2. C Program For Priority Scheduling Algorithm

 3. C Program for Shortest Job First Scheduling Algorithm

Applying Process Design Principles

Dan Madison is a principal in Value Creation partners. He facilitates process 
improvement	using	 lean,	 six	 sigma,	 reengineering,	 and	continuous	 improvement	
techniques.	Dan	is	the	author	of	Process	Mapping,	Process	Improvement	and	Process	

Management.

Dan	Madison	has	 studied	what	 a	 business	 process	 should	 look	 like	 for	 fifteen	 years.	He	
studied what major corporations did in process improvement that made them successful 
and	distilled	his	findings	into	design	principles	that	anyone	can	use.	He	has	come	up	with	
38 design principles that apply to all business processes.

Contd...
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NotesHis	first	example	was	from	the	permit	and	inspection	department	for	the	city	of	San	Jose,	
California.	Before	the	redesign,	it	had	taken	more	than	a	month	to	get	their	permits	approved.	
There was no money available from the city for process improvement. Madison helped the 
city	develop	 a	new	permit	 form	and	process	using	 four	 “lenses,”	 or	pictures	 of	 how	 the	
processes	were	done	and	how	the	results	were	judged.	These	were:

Frustration	(as	experienced	by	the	people	in	the	process)

Quality

Time

Cost

Frustration level is very important because Madison says that it has a high correlation to 
quality	and	there	is	usually	immediate	buy-in	from	people	within	the	process.

After	finding	out	the	frustration	level,	it	is	important	to	find	out	why.	In	the	permit	process,	
the	main	 problem	was	 incomplete	 information	 on	 the	 permit	 forms,	 so	 the	 process	was	
amended to ensure that all the information that was needed was in place from the beginning.

The	developers	needed	to	have	a	single	point	of	contact	with	the	city,	in	order	to	find	out	the	
information they needed. The city also began to cluster the permits so that similar projects 
had their own process. This meant that a developer who wanted to build a high rise had a 
different process and form than a homeowner who wanted to put in a swimming pool. It was 
found by studying the processes that the no-permit-needed people and the simple permits 
were	found	to	take	half	the	permit	load	for	the	city.	With	minor	changes	and	adjustment,	these	
customers were able to get what they needed from the city in just a few hours. Previously 
they had waited days and weeks.

In	designing	the	new	processes	around	the	design	principles,	the	first	thing	needed	was	to	
make	sure	all	the	required	information	was	there.	There	were	14	different	permits.	One	of	
the	first	things	to	work	out	was	who	reviewed	the	applications	to	see	what	was	needed.	The	
city	hired	and	trained	from	within	five	generalist	engineers	to	do	the	reviews.	Each	engineer	
had	his	own	team,	and	each	team	was	self-sufficient.

The	most	important	Design	Principles	are:

Initially,	design	work	flow	around	value	adding	activities,	not	 functions	or	departments.	
Work is performed where it makes the most sense.

Provide a single point of contact for customers and suppliers whenever possible.

Consider every hand off as an opportunity for error. Have as few people as possible involved 
in the performance of a process.

If	things	coming	into	the	process	naturally	cluster,	create	a	separate	process	for	each	cluster.	
Redesign	the	process	first,	then	automate	it.

Bring downstream information needs upstream. Capture information once at the source and 
share	it	widely.	Ensure	100%	quality	at	the	beginning	of	the	process.

Ensure	a	continuous	flow	of	the	“main	sequence”	(those	activities	that	directly	add	value	to	
the	customer-nothing	should	slow	the	value-added	steps)

Look for places to use or create a “generalist” instead of multiple specialists. Push decision-
making	down	 to	 the	 lowest	 levels	 that	make	sense.	Use	simulation,	practice,	or	 role	play	
to	test	new	process	designs	risk	free.	If	your	process	deals	with	complexity,	then	consider	
using	teams.	Co-locate	the	teams.	If	you	can’t	do	this,	then	network	them.

Contd...



Principles of Operating Systems

104 LOVELY PROFESSIONAL UNIVERSITY

Notes The people who work	in	the	process	should	be	very	involved	in	the	analysis,	design,	and	
implementation of improvements.

Create a process consultant for cross-functional processes.

It	is	important	to	look	closely	at	every	hand	off,	from	one	person	or	department	to	another	
because each one is an opportunity for errors to come in. Minimize the hand offs. And always 
remember,	don’t	automate	the	as-is	process.	Improve	the	processes	first,	then	automate	them.	
Insure	100%	quality	at	the	front	end	because	it	all	starts	there.

Madison said that San Jose had asked the developers what they considered a good turn-
around	 time	was,	 and	 they	 answered	 that	 if	 they	 got	 their	 approvals	within	 two	weeks	
instead	of	a	month,	they	would	be	happy.	Using	the	new	generalist	teams,	San	Jose	got	the	
permit approval time down to two or three days. This result made the developers ecstatic.

This	was	first	done	back	in	1995	just	as	the	building	boom	was	ramping	up.	Just	before	2000	
Madison checked back with San Jose and found that they were handling double the amount 
of	work	they	did	a	few	years	earlier,	and	with	no	increase	in	staff.

Questions:

1. Who is Dan Madison?

2. Explain important Design Principles.

Self Assessment

Fill in the blanks:

 6. The number of processes completed per unit time are known as ...................... .

 7.  ...................... in	the	sum	of	periods	spent	waiting	in	the	ready	queue.

 8. A  ...................... process is one which is repeatedly executed once in each period. 

True or False:

 9. On-line scheduling algorithms does not compute a schedule in real-time as processes 
arrive.

 10. Runnable state in a thread can be thought of as a default state.

3.9 Summary

 • Thread is a single	sequence	stream	within	in	a	process.	In	this	method,	the	kernel	knows	
about and manages the threads.

	 •	 Context	Switch	ITT-VIS	has	added	support	for	using	threads	internally	in	IDL	to	accelerate	
specific	numerical	computations	on	multi-processor	systems.

	 •	 The	concept	of	multi-threading	involves	an	operating	system	that	is	multi-thread	capable	
allowing programs to split tasks between multiple execution threads. 
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Notes3.10 Keywords

Process Management: Process	management	is	a	series	of	techniques,	skills,	tools,	and	methods	
used to control and manage a business process within a large system or organization.

Threads:	A	thread	is	a	single	sequence	stream	within	in	a	process.

Process: A process is an instance of a computer program that is being executed. It contains the 
program	code	and	its	current	activity.	Depending	on	the	operating	system	(OS).

Kernel: The kernel is the central component of most computer operating systems; it is a bridge 
between applications and the actual data processing done at the hardware level.

Context Switch:	A	context	switch	is	the	computing	process	of	storing	and	restoring	state	(context)	
of a CPU so that execution can be resumed from the same point at a later time.

Multitasking:	 Multitasking	 is	 the	 ability	 of	 an	 operating	 system	 to	 execute	 more	 than	 one	
program simultaneously.

The Cost of Context Switching: Context switching represents a substantial cost to the system 
in	terms	of	CPU	time	and	can,	in	fact,	be	the	most	costly	operation	on	an	operating	system.

BIOS: The	BIOS	software	is	built	into	the	PC,	and	is	the	first	code	run	by	a	PC	when	powered	
on	 (‘boot	 firmware’).	 The	 primary	 function	 of	 the	 BIOS	 is	 to	 load	 and	 start	 an	 operating	
system.

CPU Scheduling: CPU	 scheduling	 algorithms	 have	 different	 properties,	 and	 the	 choice	 of	 a	
particular algorithm may favor one class of processes over another.

Scheduling Algorithm:	A	scheduling	algorithm	is	the	method	by	which	threads,	processes	or	data	
flows	are	given	access	to	system	resources	(e.g.	processor	time,	communications	bandwidth).

3.11 Review Questions

 1. What	is	a	thread?	Describe	the	differences	among	short-term,	medium-term,	and	long-term	
scheduling.

 2. Provide two programming examples in which multi-threading does not provide better 
performance than a single-threaded solution.

 3. Describe the actions taken by a thread library to context switch between user-level threads.

 4. Under what circumstances does a multithreaded solution using multiple kernel threads 
provide better performance than a single-threaded solution on a single-processor system?

 5. Which of the following components of program state are shared across threads in a multi-
threaded process?

	 	 (a)	 Register	values	 (b)	 Heap	memory

	 	 (c)	 Global	variables	 (d)	 Stack	memory

 6. Can a multi-threaded solution using multiple user-level threads achieve better performance 
on multi-processor system than on a single-processor system?
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Notes  7. Consider multi-processor system and a multi-threaded program written using the many-
to-many threading model. Let the number of user-level threads in the program be more 
than the number of processors in the system. Discuss the performance implications of the 
following scenarios.

  (a)	 The	number	 of	 kernel	 threads	 allocated	 to	 the	program	 is	 less	 than	 the	number	 of	
processors.

	 	 (b)	 The	 number	 of	 kernel	 threads	 allocated	 to	 the	 program	 is	 equal	 to	 the	 number	 of	 
processors.

	 	 (c)	 The	number	of	kernel	threads	allocated	to	the	program	is	greater	than	the	number	of	
processors but less than the number of user level threads.

	 8.	 Write	a	multi-threaded	Java,	Pthreads,	or	Win32	program	that	outputs	prime	numbers.	
This	program	should	work	as	 follows:	The	user	will	 run	 the	program	and	will	 enter	a	
number on the command line. The program will then create a separate thread that outputs 
all	the	prime	numbers	less	than	or	equal	to	the	number	entered	by	the	user.

 9. Why is it important for the scheduler to distinguish I/O-bound programs from CPU-bound 
programs?

 10.	 Discuss	how	the	following	pairs	of	scheduling	criteria	conflict	in	certain	settings.

	 	 (a)	 CPU	utilization	and	response	time

	 	 (b)	 Average	turnaround	time	and	maximum	waiting	time

	 	 (c)	 I/O	device	utilization	and	CPU	utilization

 11. Which of the following scheduling algorithms could result in starvation?

	 	 (a)	 First-come,	first-served

	 	 (b)	 Shortest	job	first

	 	 (c)	 Round	robin

	 12.	 Consider	 a	 system	 implementing	 multilevel	 queue	 scheduling.	 What	 strategy	 can	 a	
computer user employ to maximize the amount of CPU time allocated to the user’s process?

 13. Explain the differences in the degree to which the following scheduling algorithms 
discriminate	in	favor	of	short	processes:

	 	 (a)	 FCFS

	 	 (b)	 RR

	 	 (c)	 Multilevel	feedback	queues

	 14.	 Using	the	Windows	XP	scheduling	algorithm,	what	is	the	numeric	priority	of	a	thread	for	
the following scenarios?

	 	 (a)	 A	thread	in	the	REALTIME	PRIORITY	CLASS	with	a	relative	priority	of	HIGHEST.

	 	 (b)	 A	thread	in	the	NORMAL	PRIORITY	CLASS	with	a	relative	priority	of	NORMAL.

	 	 (c)	 A	thread	in	the	HIGH	PRIORITY	CLASS	with	a	relative	priority	of	ABOVE	NORMAL.

 15.	 Consider	the	scheduling	algorithm	in	the	Solaris	operating	system	for	time	sharing	threads:

	 	 (a)	 What	is	the	time	quantum	(in	milliseconds)	for	a	thread	with	priority	10?	With	priority	
55?
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Notes	 	 (b)	 Assume	a	thread	with	priority	35	has	used	its	entire	time	quantum	without	blocking.	
What new priority will the scheduler assign this thread?

	 	 (c)	 Assume	a	thread	with	priority	35	blocks	for	I/O	before	its	time	quantum	has	expired.	
What new priority will the scheduler assign this thread?

 16. What are Input and Output devices?

Answers to Self Assessment
 1.	 (a)	 2.	 (c)	 3.	 (c)	 4.	 (c)	 5.	 (d)

 6. throughput 7. Waiting time 8. periodic 9. False 10. True

3.12 Further Readings

Introduction to Operating Design and Implementation,	by	Michael	Kifer,	Scoott	
A. Smolka.

Operating Systems, by Andrew	Tanebaum,	Albert	S.	Woodhull.

wiley.com/coolege.silberschatz
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Objectives

After studying this unit, you will be able to:

	 •	 Explain	meaning	of	process	management-III

	 •	 Understand	concept	of	critical	section

	 •	 Discuss	the	critical-section	problem

	 •	 Explain	way	to	handle	critical-section	problem

	 •	 Understand	safety-critical	operating	systems

	 •	 Discuss	semaphores

	 •	 Explain	deadlock	concept	and	handling	

Introduction

A	process	is	a	program	in	execution.	A	process	must	have	system	resources,	such	as	memory	
and the underlying CPU. The kernel supports the illusion of concurrent execution of multiple 
processes by scheduling system resources among the set of processes that are ready to execute. 
On	a	multiprocessor,	multiple	processes	may	really	execute	concurrently.	This	unit	describes	the	
composition	of	a	process,	the	method	that	the	system	uses	to	switch	between	processes,	and	the	
scheduling policy that it uses to promote sharing of the CPU. It also introduces process creation 
and	termination,	and	details	the	signal	facilities	and	process-debugging	facilities.

4.1 Concept of Critical Section

4.1.1 Basic Concept
If	a	data	item	is	shared	by	a	number	threads,	race	conditions	could	occur	if	the	shared	item	is	
not	protected	properly.	The	easiest	protection	mechanism	is	a	lock.	In	general,	if	a	set	of	data	
items must be protected so that at any time there is no more than one thread can have access 
to	it,	we	can	associate	the	set	of	data	items	with	a	lock.	The	use	of	locks	is	actually	very	easy.	
For	every	thread,	before	it	accesses	the	set	of	data	items,	it	acquires	the	lock.	Once	the	lock	is	
successfully	acquired,	the	thread	becomes	the	owner	of	that	lock	and	the	lock	is	locked.	Then,	
the	owner	can	access	the	protected	items.	After	this,	the	owner	must	release	the	lock	and	the	
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Notes lock becomes unlocked. It is possible that while the owner is accessing one of the protected data 
items	and	another	thread	comes	of	course,	this	second	thread	must	acquire	that	lock.	However,	
since	the	lock	is	locked,	this	request	is	unsuccessful	and	the	requesting	thread	will	be	suspended	
and	queued	at	the	lock.	When	the	lock	is	released	by	its	owner,	one	of	the	waiting	threads	will	
be allowed to continue and locks the lock.

This	mechanism	can	be	seen	in	everyday	life.	For	example,	on	an	airplane,	before	you	use	its	
lavatory,	you	check	to	see	if	it	is	locked.	If	it	is,	you	join	the	waiting	line;	otherwise,	you	enter	
and	lock	the	door.	Once	the	door	is	 locked,	you	are	protected	from	the	intrusion	of	anybody	
else	(i.e.	mutual	exclusion).	When	you	exit,	you	unlock	the	door	so	that	one	of	those	waiting	
can	enter.	There	could	be	more	than	one	waiting	persons,	and	who	will	be	allowed	to	enter	and	
lock	the	door	depends	on	some	queuing	policy	(e.g.,	first-in-first-out).	But,	a	good	programmer	
should not make any assumption about this policy.

Therefore,	the	use	of	a	lock	simply	establishes	a	critical	section	as	shown	below.	Before	entering	
a	critical	section,	a	thread	acquires	a	lock.	If	it	is	successful,	this	thread	enters	the	critical	section	
and	the	lock	is	locked.	As	a	result,	all	subsequent	acquiring	requests	will	be	queued	until	the	
lock	is	unlocked.	In	this	way,	the	owner	of	the	lock	(i.e.,	the	thread	that	successfully	acquired	
the	lock)	is	the	only	thread	that	can	execution	the	instructions	of	the	indicated	critical	section.	
At	the	end	of	the	execution	of	the	instructions	in	a	critical	section,	the	owner	releases	the	lock,	
and,	at	 this	point,	 the	 lock	 is	unlocked,	allowing	the	next	 thread	to	enter	 this	critical	section.	
Therefore,	mutual	exclusion	is	guaranteed.	Because	of	this,	a lock is also usually referred to as 
a mutex for mutual exclusion.

Figure 4.1: Critical Section A

Critical
Section

Aquire the lock
Lock is locked

Lock is unlocked

Release the lock

In	general,	there	are	a	number	of	restrictions	to	the	use	of	locks,	although	not	all	systems	enforce	
the same set of restrictions.	However,	it	would	be	very	helpful	for	a	programmer	to	know	the	
possible	restrictions.	The	first	restriction	is	only	the owner can release the lock. This is a very 
natural	requirement.	Imagine	the	following	situation.	Suppose	thread	A is the current owner of 
lock L and thread B is a second thread who wants to lock the lock. If a non-owner can unlock a 
lock,	thread	B can unlock the lock that thread A	owns,	and,	hence,	either	both	threads	may	be	
executing	in	the	same	critical	section,	or	thread	B preempts thread A and executes the instructions 
of	the	critical	section.	However,	both	are	not	very	secured	ways	of	protecting	the	shared	items.	
Thus,	in	most	systems,	Thread Mentor	included,	only	the	owner	of	a	lock	can	release	the	lock.

The second restriction is recursive lock acquisition is not allowed. This means the current owner 
of	the	lock	is	not	allowed	to	acquire	the	same	lock	again.	More	precisely,	if	thread	A currently 
owns lock L. If thread Awants to own lock L	again,	it	must	release	lock	L	and	re-acquire	lock	
it	again.	Some	systems	permit	a	lock	to	be	acquired	recursively	because	this	is	useful	in	some	
applications;	however,	Thread Mentor does not allow this to happen because we believe that a 
programmer must know all the fundamentals before s/he starts to do something strange such 
as	acquiring	the	same	lock	recursively.
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NotesFigure 4.2: Critical Section B
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The key to preventing	trouble	involving	shared	storage	is	find	some	way	to	prohibit	more	than	
one process from reading and writing the shared data simultaneously. That part of the program 
where the shared memory is accessed is called the Critical Section. To avoid race conditions and 
flawed	results,	one	must	 identify	codes	in	Critical	Sections	 	 in	each	thread.	The	characteristic	
properties	of	the	code	that	form	a	Critical	Section	are:

	 •	 Codes	that	reference	one	or	more	variables	in	a	“read-update-write”	fashion	while	any	of	
those variables is possibly being altered by another thread.

	 •	 Codes	that	alter	one	or	more	variables	that	are	possibly	being	referenced	in	“read-updata-
write” fashion by another thread.

	 •	 Codes	use	a	data	structure	while	any	part	of	it	is	possibly	being	altered	by	another	thread.

	 •	 Codes	alter	any	part	of	a	data	structure	while	it	is	possibly	in	use	by	another	thread.

Here,	the	important	point	is	that	when	one	process	is	executing	shared	modifiable	data	in	its	
critical	 section,	 no	 other	 process	 is	 to	 be	 allowed	 to	 execute	 in	 its	 critical	 section.	 Thus,	 the	
execution of critical sections by the processes is mutually exclusive in time.

Part of the program where the shared memory is accessed is called the 
Critical Section.

4.2 The Critical Section Problem

n	 processes	 all	 competing	 to	 use	 some	 shared	 data.	 Each	 process	 has	 a	 code	 segment,	
called	 critical	 section,	 in	which	 the	 shared	data	 is	 accessed.	 Problem	 –	 ensure	 that	when	
one	 process	 is	 executing	 in	 its	 critical	 section,	 no	 other	 process	 is	 allowed	 to	 execute	 in	
its critical section. Structure of process Pi repeat entry section critical section exit section 
remainder section until false.

4.3 Way to Handle Critical Section Problem

 1. Mutual Exclusion:	If	process	Pi	is	executing	in	its	critical	section,	then	no	other	processes	
can be executing in their critical sections.

 2. Progress: If no process is executing in its critical section and there exist some processes 
that	wish	to	enter	their	critical	section,	then	the	selection	of	the	processes	that	will	enter	
the	critical	section	next	cannot	be	postponed	indefinitely.
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 3. Bounded Waiting: A bound must exist on the number of times that other processes are 

allowed to enter	their	critical	sections	after	a	process	has	made	a	request	to	enter	its	critical	
section	and	before	that	request	is	granted.	Assume	that	each	process	executes	at	a	nonzero	
speed. No assumption concerning relative speed of the n processes.

Initial Attempts to Solve Problem
Only	2	processes,	P0	and	P1

General	structure	of	process	Pi	(other	process	Pj)

repeat

entry section

critical section

exit section

remainder section

until false;

Processes may share some common variables to synchronize their actions.

Algorithm 1
	Shared	variables:

–	var	turn:	(0..1);

initially	turn	=	0

–	turn	=	i)	Pi	can	enter	its	critical	section

Process Pi

repeat

while	turn	=6	i	do	no-op;

critical section

turn	:=	j;

remainder section

until false;

Satises	mutual	exclusion,	but	not	progress.

Algorithm 2
Shared variables

–	var	ag:	array	[0..1]	of	boolean;

initially	ag[0]	=	ag[1]	=	false.

–	ag[i]	=	true	)	Pi	ready	to	enter	its	critical	section

Process Pi

repeat

ag[i]	:=	true;

while	ag[j]	do	no-op;

critical section
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Notesag[i]	:=	false;

remainder section

until false;

Does	not	satisfy	the	mutual	exclusion	requirement.

Algorithm 3
Combined shared variables of algorithms 1 and 2.

Process Pi

repeat

ag[i]	:=	true;

turn	:=	j;

while	(ag[j]	and	turn=j)	do	no-op;

critical section

ag[i]	:=	false;

remainder section

until false;

Meets	all	three	requirements;	solves	the	critical-section

problem for two processes.

Bakery Algorithm
Critical	section	for	n	processes	Before	entering	its	critical	section,	process	receives	a	number.

Holder of the smallest number enters the critical section.

If	processes	Pi	and	Pj	receive	the	same	number,	if	i	<	j,	then

Pi is served rst; else Pj is served rst. The numbering scheme always generates numbers in

increasing	order	of	enumeration;	i.e.,	1,2,3,3,3,3,4,5...

	Notation	<	lexicographical	order	(ticket	#,	process	id	#)

–	(a,b)	<	(c,d)	if	a	<	c	or	if	a	=	c	and	b	<	d

–	max(a0,	.	.	.	,	an1)	is	a	number,	k,	such	that	k		ai

for	i	=	0,

n		1	,	.	.	.

 Shared data

var	choosing:	array	[0..n1]	of	boolean;

number:	array	[0..n1]	of	integer;

Data	structures	are	initialized	to	false	and	0,	respectively

Bakery Algorithm (Cont.)
repeat

choosing[i]	:=	true;

number[i]	:=	max(number[0],	number[1],	...,	number[n		1])+1;
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Notes choosing[i]	:=	false;

for	j	:=	0	to	n		1

do begin

while	choosing[j]	do	no-op;

while	number[j]	=6	0

and	(number[j],j)	<	(number[i],	i)	do	no-op;

end;

critical section

number[i]	:=	0;

remainder section

until false;

Synchronization Hardware
Test and modify the content of a word atomically.

function	Test-and-Set	(var	target:	Boolean):	Boolean;

begin

Test-and-Set	:=	target;

target	:=	true;

end;

Mutual Exclusion with Test-and-Set
Shared	data:	var	lock:	Boolean	(initially	false)

Process Pi

repeat

while	Test-and-Set(lock)	do	no-op;

critical section

lock	:=	false;

remainder section

until false;

    Explain steps of Bakery Algorithm.

Self Assessment

Multiple choice questions:

	 1.	 	Which	of	the	following	are(is)	Language	Processor(s)?

	 (a)	 Assembles	 (b)	 Compilers

	 (c)	 Interpreters	 (d)	 All	of	the	above
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Notes	 2.	 To	avoid	the	race	condition,	the	number	of	processes	that	may	be	simultaneously	inside	
their critical section is

	 (a)	 8	 (b)	 1

	 (c)	 16	 (d)	 0

 3. A critical region

	 (a)	 is	a	piece	of	code	which	only	one	process	executes	at	a	time

	 (b)	 is	a	region	prone	to	deadlock

	 (c)	 is	a	piece	of	code	which	only	a	finite	number	of	processes	execute

	 (d)	 is	found	only	in	Windows	NT	operation	system

	 4.	 The	 solution	 to	 Critical	 Section	 Problem	 is:	Mutual	 Exclusion,	 Progress	 and	 Bounded		
Waiting.

	 (a)	 The	statement	is	false.	 (b)	 The	statement	is	true.

	 (c)	 The	statement	is	contradictory.	 (d)	 None	of	the	above

4.4 Safety-Critical Operating Systems

The	successful	design	of	safety-critical	systems	is	difficult	and	demands	significant	attention	to	
detail.	Fortunately,	an	operating	system’s	emphasis	on	protection	and	resource	guarantees	can	
make the job of application developers less arduous.

Whether	you	are	designing	a	telecom	switch,	a	piece	of	medical	equipment,	or	one	of	the	many	
complex	 systems	 aboard	 an	 aircraft,	 certain	 critical	 parts	 of	 the	 application	must	 be	 able	 to	
operate	under	all	conditions.	Indeed,	given	the	steadily	increasing	speed	of	processors	and	the	
economically-driven	desire	to	run	multiple	applications,	at	varying	levels	of	criticality,	on	the	
same	processor,	the	risks	continue	to	grow.	Consider	a	blood	gas	analyzer	used	in	an	intensive	
care	unit.	The	analyzer	may	serve	two	distinct	purposes.	First,	it	monitors	the	level	of	oxygen	
and	 other	 gasses	 in	 the	 patient’s	 bloodstream,	 in	 real	 time.	 If	 any	monitored	 gas	 reaches	 a	
dangerously	 low	 or	 high	 level,	 the	 analyzer	 should	 produce	 an	 audible	 alarm	or	 take	 some	
more	direct,	 intervention,	action.	But	 the	device	may	have	a	second	use,	offering	a	historical	
display	of	gas	 levels	 for	“offline”	analysis.	 In	 such	a	 system,	data	 logging,	data	display,	and	
user interface threads may compete with the critical monitoring and alarm threads for use of 
the processor and other resources. In order for threads of varying importance to safely coexist 
in	the	same	system,	the	operating	system	that	manages	the	processor	and	other	resources	must	
be able to properly partition the software to guarantee resource availability. The key word here 
is	 guarantee.	 Post-design,	 post-implementation	 testing	 cannot	 be	 counted	 on.	 Safety-critical	
systems must be safe at all times.

4.4.1 Terminology
The	following	terms	are	used	in	this	article:

	 •	 Thread: A lightweight unit of program execution

	 •	 Process:	A	heavyweight	unit	consisting	primarily	of	a	distinct	address	space,	within	which	
one or more threads execute

	 •	 Kernel: The portion of an operating system that provides core system services such as 
scheduling,	thread	synchronization,	and	interprocess	communication
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Fault	tolerance	begins	with	memory	protection.	For	many	years,	microprocessors	have	included	
on-chip	memory	management	units	(MMU)	that	enable	individual	threads	of	software	to	run	
in hardware-protected address spaces. But many commercial real-time operating systems never 
enable	the	MMU,	even	if	such	hardware	is	present	in	the	system.

When	all	of	an	application’s	threads	share	the	same	memory	space,	any	thread	could-intentionally	
or	unintentionally-corrupt	the	code,	data,	or	stack	of	another	thread.	A	misbehaved	thread	could	
even corrupt the kernel’s own code or internal data structures. It is easy to see how a single 
errant	pointer	 in	one	thread	could	easily	bring	down	the	entire	system,	or	at	 least	cause	it	 to	
behave unexpectedly.

For	safety	and	reliability,	a	process-based	real-time	operating	system	(RTOS)	is	preferable.	To	
create	processes	with	individual	address	spaces,	the	RTOS	need	only	create	some	RAM-based	
data structures and enable the MMU to enforce the protections described therein. The basic idea 
is that a new set of logical addresses is “switched in” at each context switch. The MMU maps a 
logical address used during an instruction fetch or a data read or write to a physical address in 
memory	through	the	current	mapping.	It	also	flags	attempts	to	access	illegal	logical	addresses,	
which have not been “mapped” to any physical address.

The cost of processes is the overhead inherent in memory access through a look-up table. But 
the payoff is huge. Careless or malicious corruption across process boundaries is rendered 
impossible. A bug in a user interface thread cannot corrupt the code or data of a more critical 
thread. It’s truly a wonder that non-memory protected operating systems are still used in complex 
embedded	systems	where	reliability,	safety,	or	security	are	important.

Enabling	 the	MMU	has	 other	 benefits	 as	well.	One	 big	 advantage	 stems	 from	 the	 ability	 to	
selectively map and unmap pages into a logical address space. Physical memory pages are 
mapped into the logical space to hold the current process’ code; others are mapped for data. 
Likewise,	 physical	memory	pages	 are	mapped	 in	 to	 hold	 the	 stacks	 of	 threads	 that	 are	 part	
of the process. An RTOS can easily provide the ability to leave a page’s worth of the logical 
addresses	after	each	thread’s	stack	unmapped.	That	way,	if	any	thread	overflows	its	assigned	
stack,	 a	 hardware	 memory	 protection	 fault	 will	 occur.	 The	 kernel	 will	 suspend	 the	 thread	
instead	of	allowing	it	to	corrupt	other	important	memory	areas	within	the	address	space	(like	
another	thread’s	stack).	This	adds	a	level	of	protection	between	threads,	even	within	the	same	
address space.

Memory	 protection,	 including	 this	 kind	 of	 stack	 overflow	 detection,	 is	 often	 helpful	 during	
the development of an application. Programming errors will generate exceptions that are 
immediately	detected	and	easily	traceable	to	the	source	code.	Without	memory	protection,	bugs	
can	cause	subtle	corruptions	that	are	very	difficult	to	track	down.	In	fact,	since	RAM	is	often	
located	at	physical	address	zero	in	a	flat	memory	model,	even	NULL	pointer	dereferences	will	
go	undetected!	(Clearly,	logical	page	zero	is	a	good	one	to	add	to	the	“unmap	list.”).	Another	
issue is that the kernel must protect itself against improper system calls. 

The kernel must protect itself against improper system calls. Many kernels 
return	the	actual	pointer	to	a	newly	created	kernel	object,	such	as	a	semaphore,	
to	the	thread	that	created	it,	as	a	handle.	When	that	pointer	is	passed	back	
to	 the	 kernel	 in	 subsequent	 system	 calls,	 it	may	 be	 dereferenced	 directly.	
But	what	if	the	thread	uses	that	pointer	to	modify	the	kernel	object	directly,	
or simply overwrites its handle with a pointer to some other memory. The 
results may be disastrous.
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NotesA	bad	system	call	should	never	be	able	to	take	down	the	kernel.	An	RTOS	should,	therefore,	
employ	opaque	handles	for	kernel	objects.	It	should	also	validate	the	parameters	to	all	system	
calls.

4.4.3 Fault Tolerance and High Availability
Even	the	best	software	has	latent	bugs.	As	applications	become	more	complex,	performing	more	
functions for	a	software-hungry	world,	the	number	of	bugs	in	fielded	systems	will	continue	to	
rise.	System	designers	must,	therefore,	plan	for	failures	and	employ	fault	recovery	techniques	
of	course,	the	effect	of	fault	recovery	is	application-dependent—a	user	interface	can	restart	itself	
in	the	face	of	a	fault,	a	flight-control	system	probably	cannot.	One	way	to	do	fault	recovery	is	
to	have	a	supervisor	thread	in	an	address	space	all	its	own.	When	a	thread	faults	(for	example,	
due	to	a	stack	overflow),	the	kernel	should	provide	some	mechanism	whereby	notification	can	
be	 sent	 to	 the	 supervisor	 thread.	 If	necessary,	 the	 supervisor	 can	 then	make	a	 system	call	 to	
close	down	the	faulted	thread,	or	the	entire	process,	and	restart	it.	The	supervisor	might	also	
be	hooked	into	a	software	“watchdog”	setup,	whereby	thread	deadlocks	and	starvation	can	be	
detected as well.

In	many	critical	systems,	high	availability	is	assured	by	employing	multiple	redundant	nodes	in	
the	system.	In	such	a	system,	the	kernel	running	on	a	redundant	node	must	have	the	ability	to	
detect a failure in one of the operating nodes. One method is to provide a built-in heartbeat in the 
interprocessor	message	passing	mechanism	of	the	RTOS.	Upon	system	startup,	a	communications	
channel is opened between the redundant nodes and each of the operating nodes. During normal 
operation,	the	redundant	nodes	continually	receive	heartbeat	messages	from	the	operating	nodes.	
If	the	heartbeat	fails	to	arrive,	the	redundant node can take control automatically.

Figure 4.3: Redundancy via System Heartbeats
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Notes 4.4.4 Mandatory vs. Discretionary Access Control

An example of a discretionary	access	control	is	a	Unix	file—a	process	or	thread	can,	at	its	sole	
discretion,	modify	 the	permissions	on	a	file,	 thereby	permitting	 access	 to	 the	file	by	another	
process in the system. Discretionary access controls are useful for some objects in some systems. 
An RTOS that is used in a safety- or security-critical system must be able to go one big step 
further	and	provide	mandatory	access	control	of	critical	system	objects.	For	example,	consider	
an	aircraft	sensor	device,	access	to	which	is	controlled	by	a	flight	control	program.	The	system	
designer	must	be	able	to	set	up	the	system	statically	such	that	the	flight	control	program	and	
only	 the	 flight	 control	 program	has	 access	 to	 this	 device.	Another	 application	 in	 the	 system	
cannot	dynamically	 request	and	obtain	access	 to	 this	device.	And	 the	flight	 control	program	
cannot dynamically provide access to the device to any other application in the system. The 
access	control	is	enforced	by	the	kernel,	is	not	circumventable	by	application	code,	and	is	thus	
mandatory. Mandatory access control provides guarantees. Discretionary access controls are 
only	 as	 effective	 as	 the	 applications	using	 them,	 and	 these	 applications	must	 be	 assumed	 to	
have bugs in them.

   Differentiate between Mandatory vs. discretionary access control.

4.4.5 Guaranteed Resource Availability: Space Domain
In	safety-critical	systems,	a	critical	application	cannot,	as	a	result	of	malicious	or	careless	execution	
of	 another	 application,	 run	 out	 of	 memory	 resources.	 In	 most	 real-time	 operating	 systems,	
memory used to hold thread control blocks and other kernel objects comes from a central store.

Figure 4.4: (a) Before Memory Quotas (b) After
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NotesWhen	a	 thread	 creates	 a	new	 thread,	 semaphore,	or	other	kernel	object,	 the	kernel	 carves	
off a chunk of memory from this central store to hold the data for this object. A bug in one 
thread	 could,	 therefore,	 result	 in	 a	 situation	where	 this	program	creates	 too	many	kernel	
objects	 and	 the	 central	 store	 is	 exhausted	 (see	Figure	 4.4	 a).	A	more	 critical	 thread	 could	
fail	as	a	result,	perhaps	with	disastrous	effects.

In	order	to	guarantee	that	this	scenario	cannot	occur,	the	RTOS	can	provide	a	memory	quota	
system	wherein	 the	 system	 designer	 statically	 defines	 how	much	 physical	memory	 each	
process	has	 (see	Figure	4.4	b).	For	example,	 a	user	 interface	process	might	be	provided	a	
maximum	of	128	KB	and	a	flight	control	program	a	maximum	of	196	KB.	If	a	thread	within	
the	user	interface	process	encounters	the	aforementioned	failure	scenario,	the	process	may	
exhaust	its	own	128	KB	of	memory.	But	the	flight	control	program	and	its	196	KB	of	memory	
are	 wholly	 unaffected.	 In	 a	 safety-critical	 system,	 memory	 should	 be	 treated	 as	 a	 hard	
currency—when	a	 thread	wants	 to	create	a	kernel	object,	 its	parent	process	must	provide	
a	portion	of	its	memory	quota	to	satisfy	the	request.	This	kind	of	space	domain	protection	
should be part of the RTOS design. Central memory stores and discretionarily-assigned 
limits	are	insufficient	when	guarantees	are	required.

If	an	RTOS	provides	a	memory	quota	system,	dynamic	loading	of	low	criticality	applications	
can be tolerated. High criticality applications already running are guaranteed to have the 
physical	memory	they	will	require	to	run.	In	addition,	the	memory	used	to	hold	any	new	
processes	 should	 come	 from	 the	 memory	 quota	 of	 the	 creating	 process.	 If	 this	 memory	
comes	from	a	central	store,	then	process	creation	can	fail	if	a	malicious	or	carelessly	written	
application	 attempts	 to	 create	 too	many	 new	 processes.	 (Most	 programmers	 have	 either	
mistakenly	executed	or	at	 least	heard	of	a	Unix	“fork	bomb,”	which	can	easily	take	down	
an	entire	system.)	In	most	safety-critical	systems,	dynamic	process	creation	will	simply	not	
be	 tolerated	 at	 all,	 and	 the	RTOS	 should	 be	 configurable	 such	 that	 this	 capability	 can	 be	
removed from the system.

4.4.6 Guaranteed Resource Availability: Time Domain
The	vast	majority	of	RTOSes	employ	priority-based,	preemptive	schedulers.	Under	this	scheme,	
the	highest	priority	 ready	 thread	 in	 the	system	always	gets	 to	use	 the	processor	 (execute).	 If	
multiple	threads	are	at	that	same	highest	priority	level,	they	generally	share	the	processor	equally,	
via	time	slicing.	The	problem	with	this	time	slicing	(or	even	run-to-completion)	within	a	given	
priority	level,	is	that	there	is	no	provision	for	guaranteeing	processor	time	for	critical	threads.

Consider	 the	 following	scenario—the	system	includes	 two	threads	at	 the	same	priority	 level.	
Thread	A	is	a	non-critical,	background	thread.	Thread	B	is	a	critical	thread	that	needs	at	least	
40%	of	the	processor	time	to	get	its	work	done.	Because	Threads	A	and	B	are	assigned	the	same	
priority	 level,	 the	 typical	 scheduler	will	 time	 slice	 them	 so	 that	 both	 threads	 get	 50%	of	 the	
processor.	At	this	point,	Thread	B	is	able	to	get	its	work	done.	Now	suppose	Thread	A	creates	
a	new	thread	at	the	same	priority	level.	Consequently,	there	are	three	highest	priority	threads	
sharing	the	processor.	Suddenly,	Thread	B	is	only	getting	33%	of	the	processor	and	cannot	get	
its	critical	work	done.	For	that	matter,	if	the	code	in	Thread	A	has	a	bug	or	virus,	it	may	create	
dozens	or	even	hundreds	of	“confederate”	threads,	causing	Thread	B	to	get	a	tiny	fraction	of	
the runtime.

One solution to this problem is to enable the system designer to inform the scheduler of a 
thread’s	maximum	 “weight”	within	 the	 priority	 level.	When	 a	 thread	 creates	 another	 equal	
priority	thread,	the	creating	thread	must	give	up	part	of	its	own	weight	to	the	new	thread.	In	our	
previous	example,	suppose	the	system	designer	had	assigned	weight	to	Thread	A	and	Thread	B	
such	that	Thread	A	has	60%	of	the	runtime	and	Thread	B	has	40%	of	the	runtime.	When	Thread	
A	creates	the	third	thread,	it	must	provide	part	of	its	own	weight,	say	30%.	Now	Thread	A	and	
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Notes the	new	thread	each	get	30%	of	the	processor	time,	but	critical	Thread	B’s	40%	remains	inviolate.	
Thread A can create many confederate threads without affecting the ability of Thread B to get 
its work done; Thread B’s processor reservation is thus guaranteed. A scheduler that provides 
this	kind	of	guaranteed	resource	availability	in	addition	to	the	standard	scheduling	techniques	
is	required	in	some	critical	embedded	systems,	particularly	avionics.

Figure 4.5: Traditional Scheduler vs. Scheduler with Weights
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The problem inherent in all schedulers is that they are ignorant of the process in which threads 
reside.	Continuing	our	previous	example,	suppose	that	Thread	A	executes	in	a	user	interface	
process	while	 critical	 Thread	B	 executes	 in	 a	 flight	 control	 process.	 The	 two	 applications	
are	partitioned	and	protected	in	the	space	domain,	but	not	 in	the	time	domain.	Designers	
of	safety-critical	systems	require	the	ability	to	guarantee	that	the	run-time	characteristics	of	
the user interface cannot possibly affect the run-time characteristics of the flight control 
system. Thread schedulers simply cannot make this guarantee. Consider a situation 
in which Thread B normally gets all the runtime it needs by making it higher priority 
than Thread A or any of the other threads in the user interface. Due to a bug or poor 
design	 or	 improper	 testing,	 Thread	B	may	 lower	 its	 own	priority	 (the	 ability	 to	do	 so	
is	 available	 in	 practically	 all	 kernels),	 causing	 the	 thread	 in	 the	 user	 interface	 to	 gain	
control	of	the	processor.	Similarly,	Thread	A	may	raise	its	priority	above	the	priority	of	
Thread B with the same effect.

A convenient way to guarantee that the threads in processes of different criticality cannot 
affect each other is to provide a process-level scheduler. Designers of safety critical software 
have	noted	this	requirement	for	a	long	time.	The	process,	or	partition,	scheduling	concept	is	a	
major	part	of	ARINC	Specification	653,	an	Avionics	Application	Software	Standard	Interface.

The	 ARINC	 653	 partition	 scheduler	 runs	 partitions,	 or	 processes,	 according	 to	 a	 timeline	
established by the system designer. Each process is provided one or more windows of execution 
within	the	repeating	timeline.	During	each	window,	all	the	threads	in	the	other	processes	are	
not	runnable;	only	the	threads	within	the	currently	active	process	are	runnable	(and	typically	
are	 scheduled	 according	 to	 the	 standard	 thread	 scheduling	 rules).	 When	 the	 flight	 control	
application’s	window	is	active,	its	processing	resource	is	guaranteed;	a	user	interface	application	
cannot run and take away processing time from the critical application during this window.
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NotesAlthough	not	specified	in	ARINC	653,	a	prudent	addition	to	the	implementation	is	to	apply	
the concept of a background partition. When there are no runnable threads within the active 
partition,	 the	partition	scheduler	should	be	able	 to	run	background	threads,	 if	any,	 in	 the	
background	 partition,	 instead	 of	 idling.	 An	 example	 background	 thread	might	 be	 a	 low	
priority diagnostic agent that runs occasionally but does not have hard real-time deadlines. 
Attempts have been made to add partition scheduling on top of commercial off-the-shelf 
operating systems by selectively halting all the threads in the active partition and then 
running	all	 the	 threads	 in	 the	next	partition.	Thus,	partition	switching	 time	 is	 linear	with	
the	number	of	threads	in	the	partitions,	an	unacceptably	poor	implementation.

The RTOS must implement the partition scheduler within the kernel and 
ensure that partition switching takes constant time and is as fast as possible.

4.4.7 Schedulability

Meeting	hard	deadlines	is	one	of	the	most	fundamental	requirements	of	a	real-time	operating	
system and is especially important in safety-critical systems. Depending on the system and the 
thread,	missing	a	deadline	can	be	a	critical	fault.

Rate	monotonic	analysis	(RMA)	is	frequently	used	by	system	designers	to	analyze	and	predict	
the	timing	behavior	of	systems.	In	doing	so,	the	system	designer	is	relying	on	the	underlying	
operating system to provide fast and temporally deterministic system services. Not only must 
the	designer	understand	how	long	it	takes	to	execute	the	thread’s	code,	but	also	any	overhead	
associated	with	the	thread	must	be	determined.	Overhead	typically	includes	context	switch	time,	
the	time	required	to	execute	kernel	system	calls,	and	the	overhead	of	interrupts	and	interrupt	
handlers	firing	and	executing.

All real-time operating systems incur the overhead of context switching. Lower context switching 
time	implies	lower	overhead,	more	efficient	use	of	available	processing	resources,	and	increased	
likelihood of meeting deadlines. A real-time operating system’s context switching code is usually 
hand optimized for optimal execution speed.

4.4.8 Interrupt Latency

A typical embedded system has several types of interrupts resulting from the use of various 
kinds	of	devices.	Some	 interrupts	are	higher	priority	and	require	a	 faster	response	 time	than	
others.	For	example,	an	 interrupt	 that	signals	 the	kernel	 to	read	a	sensor	 that	 is	critical	 to	an	
aircraft’s	 flight	 control	 should	be	handled	with	 the	minimum	possible	 latency.	On	 the	 other	
hand,	a	typical	timer	tick	interrupt	frequency	may	be	60	Hz	or	100	Hz.	Ten	milliseconds	is	an	
eternity	in	hardware	terms,	so	interrupt	latency	for	the	timer	tick	interrupt	is	not	as	critical	as	
for most other interrupts.

Most kernels disable all interrupts while manipulating internal data structures during system 
calls.	Interrupts	are	disabled	so	that	the	timer	tick	interrupt	cannot	occur	(a	timer	tick	may	cause	
a	context	switch)	at	a	time	when	internal	kernel	data	structures	are	being	changed.	The	system’s	
interrupt latency is directly related to the length of the longest critical section in the kernel.

In	effect,	most	kernels	 increase	 the	 latency	of	all	 interrupts	 just	 to	avoid	a	 low	priority	 timer	
interrupt. A better solution is to never disable interrupts in kernel system calls and instead 
to postpone the handling of an intervening timer tick until the system call completes. This 
strategy	depends	on	all	kernel	system	calls	being	short	(or	at	least	that	calls	that	are	not	short	
are	 restartable),	 so	 that	 scheduling	 events	 can	 preempt	 the	 completion	 of	 the	 system	 call.	 
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Notes Therefore,	the	time	to	get	back	to	the	scheduler	may	vary	by	a	few	instructions	(insignificant	for	
a	60	Hz	scheduler),	but	will	always	be	short	and	bounded.	It	is	much	more	difficult	to	engineer	
a	kernel	 that	has	preemptible	system	calls	 in	 this	manner,	which	 is	why	most	kernels	do	not	
do it this way.

4.4.9 Bounded Execution Times

In order to allow computation of the overhead of system calls that a thread will execute while 
doing	its	work,	an	RTOS	should	provide	bounded	execution	times	for	all	such	calls.	Two	major	
problems involve the timing of message transfers and the timing of mutex take operations.

A	 thread	may	 spend	 time	performing	a	variety	of	 activities	of	 course,	 its	primary	activity	 is	
executing code. Other activities include sending and receiving messages. Message transfer times 
vary with the size of the data. How can the system designer account for this time? The RTOS can 
provide a capability for controlling whether transfer times are attributed to the sending thread 
or	to	the	receiving	thread,	or	shared	between	them.	Indeed,	the	kernel’s	scheduler	should	treat	
all	activities,	not	 just	the	primary	activity,	as	prioritized	units	of	execution	so	that	the	system	
designer can properly control and account for them.

4.4.10 Priority Inversion

Priority inversion has long been the bane of system designers attempting to perform rate 
monotonic	analysis,	since	RMA	depends	on	higher	priority	threads	running	before	lower	priority	
threads. Priority inversion occurs when a high priority thread is unable to run because a mutex 
(or	 binary	 semaphore)	 it	 attempts	 to	 obtain	 is	 owned	 by	 a	 low	priority	 thread,	 but	 the	 low	
priority thread is unable to execute and release the mutex because a medium priority thread is 
also runnable. The most common RTOS solution to the priority inversion problem is to support 
the priority inheritance protocol.

Figure 4.6: Priority Inversion
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A	mutex	that	supports	priority	inheritance	works	as	follows—if	a	high	priority	thread	attempts	
to	take	a	mutex	already	owned	by	a	low	priority	thread,	the	kernel	automatically	elevates	the	
low priority thread to the priority of the high priority thread. Once the low priority thread 
releases	 the	mutex,	 its	 priority	will	 be	 returned	 to	 normal	 and	 the	 high	 priority	 thread	will	
run. The dynamic priority elevation prevents a medium priority thread from running while the 
high	priority	thread	is	waiting;	priority	inversion	is	avoided.	In	this	example,	the	critical	section	
execution	time	(the	time	the	low	priority	thread	holds	the	mutex)	is	added	to	the	overhead	of	
the high priority thread.
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A weakness of the priority inheritance protocol is that it does not prevent chained blocking. 
Suppose	a	medium	priority	thread	attempts	to	take	a	mutex	owned	by	a	low	priority	thread,	
but	while	 the	 low	priority	 thread’s	priority	 is	 elevated	 to	medium	by	priority	 inheritance,	 a	
high priority thread becomes runnable and attempts to take another mutex already owned by 
the	medium	priority	thread.	The	medium	priority	thread’s	priority	is	increased	to	high,	but	the	
high priority thread now must wait for both the low priority thread and the medium priority 
thread to complete before it can run again.

The chain of blocking critical sections can extend to include the critical sections of any threads 
that	might	access	the	same	mutex.	Not	only	does	this	make	it	much	more	difficult	for	the	system	
designer	 to	 compute	 overhead,	 but	 since	 the	 system	designer	must	 compute	 the	worst	 case	
overhead,	the	chained	blocking	phenomenon	may	result	in	a	much	less	efficient	system.	These	
blocking	factors	are	added	into	the	computation	time	for	tasks	in	the	RMA	analysis,	potentially	
rendering the system unschedulable. This may force the designer to resort to a faster CPU or to 
remove functionality from the system.

   Differentiate between Priority inheritance and Priority inversion.

Figure 4.8: Chained Blocking caused by Priority Inheritance
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A solution called the priority ceiling protocol not only solves the priority inversion problem but 
also	prevents	chained	blocking.	In	one	implementation	scheme	(called	the	highest	locker),	each	
semaphore	has	an	associated	priority,	which	is	assigned	by	the	system	designer	to	be	the	priority	
of	the	highest	priority	thread	that	might	ever	try	to	acquire	that	object.	When	a	thread	takes	such	
a	semaphore,	it	is	immediately	elevated	to	the	priority	of	the	semaphore.	When	the	semaphore	
is	 released,	 the	 thread	 reverts	back	 to	 its	 original	priority.	Because	of	 this	priority	 elevation,	
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released. It is easy to see how this prevents chained blocking.

Figure 4.9: Priority Ceilings
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Several RTOSes	 provide	 support	 for	 both	 priority	 inheritance	 and	 priority	 ceilings,	 leaving	
the decision up to the system designer. Ada’s protected objects implement the priority ceiling 
protocol.

4.4.11 Changing Requirements

Many of the real-time operating systems in use today were originally designed for software 
systems	that	were	smaller,	simpler,	and	ran	on	processors	without	memory	protection	hardware.	
With	the	ever-increasing	complexity	of	applications	in	today’s	embedded	systems,	fault	tolerance	
and high availability features have become increasingly important. Especially stringent are the 
requirements	for	safety-critical	systems.

Fault	 tolerance	 begins	 with	 processes	 and	memory	 protection,	 but	 extends	 to	 much	more,	
especially the need to guarantee resource availability in the time and space domains. Kernel 
support for features like the priority ceiling protocol give safety-critical system designers the 
capabilities	needed	to	maximize	efficiency	and	guarantee	schedulability	in	their	systems.

4.5 Semaphores

A semaphore is a protected variable whose value can be accessed and altered only by the 
operations P and V and initialization operation called ‘Semaphoiinitislize’. Binary Semaphores 
can assume only the value 0 or the value 1 counting semaphores also called general semaphores 
can	assume	only	non-negative	values.	The	P	(or	wait	or	sleep	or	down)	operation	on	semaphores	
S,	written	as	P(S)	or	wait	(S),	operates	as	follows:

P(S):IF S	>	0

THEN	S	:=	S	–	1

ELSE	(wait	on	S)

The	V	 (or	 signal	 or	wakeup	or	 up)	 operation	 on	 semaphore	 S,	written	 as	V(S)	 or	 signal	 (S),	
operates	as	follows:

V(S):IF	(one	or	more	process	are	waiting	on	S)

THEN(let	one	of	these	processes	proceed)

ELSE S	:=	S	+1
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semaphore	operations	has	stared,	no	other	process	can	access	the	semaphore	until	operation	has	
completed.	Mutual	exclusion	on	the	semaphore,	S,	is	enforced	within	P(S) and V(S).

If	 several	 processes	 attempt	 a	P(S)	 simultaneously,	 only	process	will	 be	 allowed	 to	proceed.	
The	other	processes	will	be	kept	waiting,	but	the	implementation	of	P	and	V	guarantees	that	
processes	will	not	suffer	indefinite	postponement.	Semaphores	solve	the	lost-wakeup	problem.

4.5.1 Producer-Consumer Problem Using Semaphores
The	solution	to	producer-consumer	problem	uses	 three	semaphores,	namely,	 full,	empty	and	
mutex. 

Initialization
	 •	 Set	full	buffer	slots	to	0.
	 	 i.e.,	semaphore	full	=	0.

	 •	 Set	empty	buffer	slots	to	N.
	 	 i.e.,	semaphore	empty	=	N.

	 •	 For	control	access	to	critical	section	set	mutex	to	1.
	 	 i.e.,	semaphore	mutex	=	1.

Producer	(	)
WHILE	(true)

produce-Item	(	);
P	(empty);
P	(mutex);
enter-Item	(	)
V	(mutex)
V	(full);

Consumer	(	)
WHILE	(true)	
P	(full)

P	(mutex);

remove-Item	(	);

V	(mutex);

V	(empty);

consume-Item	(Item)

The semaphore ‘full’ is used for counting the number of slots in the buffer 
that are full. The ‘empty’ for counting the number of slots that are empty 
and semaphore ‘mutex’ to make sure that the producer and consumer do not 
access	modifiable	shared	section	of	the	buffer	simultaneously.

4.6 Deadlock Concept and Handling

In	 a	multiprogramming	 environment,	 several	 processes	may	 compete	 for	 a	 finite	 number	 of	
resources.	A	process	requests	resources;	if	the	resources	are	not	available	at	that	time,	the	process	
enters	 a	 wait	 state.	Waiting	 processes	may	 never	 again	 change	 state,	 because	 the	 resources	
they	have	requested	are	held	by	other	waiting	processes.	This	situation	 is	called	a	deadlock. 
Perhaps the best illustration of a deadlock can be drawn from a law passed by the Kansas 
legislature	early	in	the	20th	century.	It	said,	in	part—“When	two	trains	approach	each	other	at	a	
crossing,	both	shall	come	to	a	full	stop	and	neither	shall	start	up	again	until	the	other	has	gone.”	 
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Notes In	 this	 unit,	we	describe	methods	 that	 an	 operating	 system	 can	use	 to	 prevent	 or	 deal	with	
deadlocks.	Most	current	operating	systems	do	not	provide	deadlock-prevention	facilities,	but	
such	features	will	probably	be	added	soon.	Deadlock	problems	can	only	become	more	common,	
given	current	trends,	 including	larger	numbers	of	processes,	multi-threaded	programs,	many	
more	resources	within	a	system,	and	the	emphasis	on	long-lived	file	and	database	servers	rather	
than batch systems.

Keep away your system from the deadlock condition for the best processing 
of the system. 

4.6.1 System Model
A	system	consists	of	a	finite	number	of	resources	to	be	distributed	among	a	number	of	competing	
processes.	The	resources	are	partitioned	into	several	types,	each	of	which	consists	of	some	number	
of	identical	instances.	Memory	space,	CPU	cycles,	files,	and	I/O	devices	(such	as	printers	and	
tape	drives)	are	examples	of	resource	types.	If	a	system	has	two	CPUs,	then	the	resource	type	
CPU	has	two	instances.	Similarly,	the	resource	type	printer	may	have	five	instances.	If	a	process	
requests	an	instance	of	a	resource	type,	the	allocation	of	any	instance	of	the	type	will	satisfy	the	
request.	If	it	will	not,	then	the	instances	are	not	identical,	and	the	resource	type	classes	have	not	
been	defined	properly.	For	example,	a	system	may	have	two	printers.	These	two	printers	may	
be	defined	to	be	in	the	same	resource	class	if	no	one	cares	which	printer	prints	which	output.	
However,	if	one	printer	is	on	the	ninth	floor	and	the	other	is	in	the	basement,	then	people	on	
the	ninth	floor	may	not	see	both	printers	as	equivalent,	and	separate	resource	classes	may	need	
to	 be	 defined	 for	 each	 printer.	A	process	must	 request	 a	 resource	 before	 using	 it,	 and	must	
release	the	resource	after	using	it.	A	process	may	request	as	many	resources	as	 it	requires	 to	
carry	out	 its	designated	 task.	Obviously,	 the	number	of	 resources	 requested	may	not	 exceed	
the	total	number	of	resources	available	in	the	system.	In	other	words,	a	process	cannot	request	
three	printers	if	the	system	has	only	two.	Under	the	normal	mode	of	operation,	a	process	may	
utilize	a	resource	in	only	the	following	sequence:

 1. Request:	If	the	request	cannot	be	granted	immediately	(for	example,	the	resource	is	being	
used	by	another	process),	then	the	requesting	process	must	wait	until	it	can	acquire	the	
resource.

 2. Use:	The	process	can	operate	on	the	resource	(for	example,	if	the	resource	is	a	printer,	the	
process	can	print	on	the	printer).

 3. Release:	The	process	releases	the	resource.	The	request	and	release	of	resources	are	system	
calls.	Examples	are	the	request	and	release	device,	open	and	close	file,	and	allocate	and	free	
memory	system	calls.	Request	and	release	of	other	resources	can	be	accomplished	through	
the	waif	and	signal	operations	on	semaphores.	Therefore,	for	each	use,	the	operating	system	
checks	to	make	sure	that	the	using	process	has	requested	and	been	allocated	the	resource.	
A	system	 table	 records	whether	each	 resource	 is	 free	or	allocated,	and,	 if	 a	 resource	 is	
allocated,	to	which	process.	If	a	process	requests	a	resource	that	is	currently	allocated	to	
another	process,	it	can	be	added	to	a	queue	of	processes	waiting	for	this	resource.

A set of processes is in a deadlock state when every process in the set is waiting for an event 
that can be caused only by another process in the set. The events with which we are mainly 
concerned	 here	 are	 resource	 acquisition	 and	 release.	 The	 resources	 may	 be	 either	 physical	
resources	(for	example,	printers,	tape	drives,	memory	space,	and	CPU	cycles)	or	logical	resources	
(for	example,	files,	semaphores,	and	monitors).	However,	other	types	of	events	may	result	 in	
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each	of	 three	processes	holds	one	of	 these	 tape	drives.	 If	 each	process	now	requests	another	
tape	drive,	the	three	processes	will	be	in	a	deadlock	state.	Each	is	waiting	for	the	event	“tape	
drive	is	released,”	which	can	be	caused	only	by	one	of	the	other	waiting	processes.	This	example	
illustrates a deadlock involving the same resource type. Deadlocks may also involve different 
resource	types.	For	example,	consider	a	system	with	one	printer	and	one	tape	drive.	Suppose	
that process Pi is holding the	tape	drive	and	process	Pi	is	holding	the	printer.	If	Pi	requests	the	
printer	and	Pi	requests	the	tape	drive,	a	deadlock	occurs.

A programmer who is developing multi-threaded applications must pay 
particular	 attention	 to	 this	 problem—Multi-threaded	 programs	 are	 good	
candidates for deadlock because multiple threads can compete for shared 
resources.

4.6.2 Deadlock Characterization
In	a	deadlock,	processes	never	finish	executing	and	system	resources	are	 tied	up,	preventing	
other jobs from starting. Before we discuss the various methods for dealing with the deadlock 
problem,	we	shall	describe	features	that	characterize	deadlocks.

Necessary Conditions

A	deadlock	situation	can	arise	if	the	following	four	conditions	hold	simultaneously	in	a	system:

 1. Mutual Exclusion:	At	least	one	resource	must	be	held	in	a	nonsharable	mode;	that	is,	only	
one	process	at	a	time	can	use	the	resource.	If	another	process	requests	that	resource,	the	
requesting	process	must	be	delayed	until	the	resource	has	been	released.

 2. Hold and Wait:	A	process	must	be	holding	at	least	one	resource	and	waiting	to	acquire	
additional resources that are currently being held by other processes.

 3. No Preemption:	Resources	cannot	be	preempted;	that	is,	a	resource	can	be	released	only	
voluntarily	by	the	process	holding	it,	after	that	process	has	completed	its	task.

 4. Circular Wait:	A	set	{Po,	PI,	...,	P,)	of	waiting	processes	must	exist	such	that	Po	is	waiting	
for	a	resource	that	is	held	by	PI,	PI	is	waiting	for	a	resource	that	is	held	by	P2,	...,	PnPl	
is	waiting	for	a	resource	that	is	held	by	P,,	and	P,	is	waiting	for	a	resource	that	is	held	
by Po. We emphasize that all four conditions must hold for a deadlock to occur. The 
circular-wait	condition	implies	the	hold-and-wait	condition,	so	the	four	conditions	are	
not completely independent.

4.6.3 Resource-Allocation Graph

Deadlocks can be described more precisely in terms of a directed graph called a system 
resource-allocation graph. This graph consists of a set of vertices V and a set of edges E. 
The	 set	 of	 vertices	V	 is	 partitioned	 into	 two	different	 types	 of	 nodes	P	=	 {PI,	 P2,	 ...,	 Pn},	
the	set	consisting	of	all	the	active	processes	in	the	system,	and	R	=	{R1,	R2,	...,	Rm),	the	set	
consisting of all resource types in the system. A directed edge from process Pi to resource 
type	Rj	is	denoted	by	Pi	-+	Rj;	it	signifies	that	process	Pi	requested	an	instance	of	resource	
type Ri and is currently waiting for that resource. A directed edge from resource type Ri 
to	process	Pi	 is	denoted	by	Rj	-+	Pi;	 it	 signifies	 that	an	 instance	of	 resource	 type	Ri	has	
been	allocated	to	process	Pi.	A	directed	edge	Pi	-+	Rj	is	called	a	request	edge;	a	directed	
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Notes edge	Rj	+	Pi	 is	 called	an	assignment	edge.	Pictorially,	we	 represent	each	process	Pi	as	
a	 circle,	 and	each	 resource	 type	Ri	as	a	 square.	Since	 resource	 type	Ri	may	have	more	
than	 one	 instance,	 we	 represent	 each	 such	 instance	 as	 a	 dot	 within	 the	 square.	 Note	
that	a	request	edge	points	to	only	the	square	Xi,	whereas	an	assignment	edge	must	also	
designate	one	of	the	dots	in	the	square.	When	process	Pi	requests	an	instance	of	resource	
type	Rj,	 a	 request	 edge	 is	 inserted	 in	 the	 resource-allocation	graph.	When	 this	 request	
can	be	fulfilled,	the	request	edge	is	instantaneously	transformed	to	an	assignment	edge.	
When	the	process	no	longer	needs	access	to	the	resource	it	releases	the	resource,	and	as	
a result the assignment edge is deleted. The resource-allocation graph shown in Figure 
depicts the following situation.

The sets P,	R,	and	E:

	 •	 P	=	{P1,	P2,	P3}

	 •	 R	=	{R1,	R2,	R3,	R4}

	 •	 E	=	{P1 → R1,	P2 → R3,	R1 → P2,	R2 → P2,	R2 → P1,	R3 → P3}

Resource	instances:

	 •	 One	instance	of	resource	type	R1

	 •	 Two	instances	of	resource	type	R2

	 •	 One	instance	of	resource	type	R3

	 •	 Three	instances	of	resource	type	R4

Figure 4.10: Resource-Allocation Graphs
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	 •	 Process	PI	 is	holding	an	 instance	of	resource	 type	R2,	and	 is	waiting	for	an	 instance	of	
resource type R1.

	 •	 Process	P2	is	holding	an	instance	of	R1	and	R2,	and	is	waiting	for	an	instance	of	resource	
type R3.

	 •	 Process	P3	is	holding an instance of R3.

Given	the	definition	of	a	resource-allocation	graph,	it	can	be	shown	that,	if	the	graph	contains	
no	cycles,	then	no	process	in	the	system	is	deadlocked.	If	the	graph	does	contain	a	cycle,	then	
a	deadlock	may	exist.	If	each	resource	type	has	exactly	one	instance,	then	a	cycle	implies	that	a	
deadlock	has	occurred.	If	the	cycle	involves	only	a	set	of	resource	types,	each	of	which	has	only	
a	single	instance,	then	a	deadlock	has	occurred.	Each	process	involved	in	the	cycle	is	deadlocked.	
In	this	case,	a	cycle	in	the	graph	is	both	a	necessary	and	a	sufficient	condition	for	the	existence	
of	deadlock.	If	each	resource	type	has	several	instances,	then	a	cycle	does	not	necessarily	imply	
that	a	deadlock	has	occurred.	In	this	case,	a	cycle	in	the	graph	is	a	necessary	but	not	a	sufficient	
condition	for	the	existence	of	deadlock.	To	illustrate	this	concept,	let	us	return	to	the	resource-
allocation	graph	depicted.	Suppose	 that	process	P3	 requests	an	 instance	of	 resource	 type	R2.	
Since no resource instance is currently	available,	a	request	edge	P3	-+	RL is added to the graph. 
At	this	point,	two	minimal	cycles	exist	in	the	system:

P1 → R1 → P2 → R3 → P3 → R2 → P1

P2 → R3 → P3 → R2 → P2

Figure 4.11: Resource-Allocation Graph with a Deadlock
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Notes Processes	PI,	P2,	 and	P3	are	deadlocked.	Process	P2	 is	waiting	 for	 the	 resource	R3,	which	 is	
held	by	process	P3.	Process	P3,	on	the	other	hand,	is	waiting	for	either	process	PI	or	process	P2	
to	release	resource	R2.	In	addition,	process	PI	is	waiting	for	process	P2	to	release	resource	R1.	
Now	consider	the	resource-allocation	graph	in	Figure	4.11.	In	this	example,	we	also	have	a	cycle.	
However,	 there	 is	no	deadlock.	Observe	 that	process	P4 may release its instance of resource 
type	R2.	That	resource	can	then	be	allocated	to	P3,	breaking	the	cycle.

P1 → R1 → P3 → R2 → P1

In	summary,	 if	a	resource-allocation	graph	does	not	have	a	cycle,	 then	the	system	is	not	 in	a	
deadlock	state.	On	the	other	hand,	if	there	is	a	cycle,	then	the	system	may	or	may	not	be	in	a	
deadlock state. This observation is important when we deal with the deadlock problem.

4.6.4 Methods for Handling Deadlocks

Principally,	we	can	deal	with	the	deadlock	problem	in	one	of	three	ways.	We	can	use	a	protocol	
to	prevent	or	avoid	deadlocks,	ensuring	that	the	system	will	never	enter	a	deadlock	state.	We	
can	allow	the	system	to	enter	a	deadlock	state,	detect	it,	and	recover.

We	can	ignore	the	problem	altogether,	and	pretend	that	deadlocks	never	occur	in	the	system.	
This	solution	is	used	by	most	operating	systems,	including	UNIX.	We	shall	elaborate	briefly	on	
each	method.	Then,	we	shall	present	detailed	algorithms.	To	ensure	that	deadlocks	never	occur,	
the system can use either a deadlockprevention or a deadlock-avoidance scheme. 

4.6.5 Deadlock Prevention

Deadlock prevention is a set of methods for ensuring that at least one of the necessary conditions 
cannot	hold.	These	methods	prevent	deadlocks	by	constraining	how	requests	for	resources	can	
be made.

4.6.6 Deadlock Avoidance

Deadlock	avoidance,	on	the	other	hand,	requires	that	the	operating	system	be	given	in	advance	
additional	 information	concerning	which	 resources	a	process	will	 request	and	use	during	 its	
lifetime.	With	 this	additional	knowledge,	we	can	decide	 for	each	 request	whether	or	not	 the	
process	should	wait.	To	decide	whether	the	current	request	can	be	satisfied	or	must	be	delayed,	
the	system	must	consider	the	resources	currently	available,	the	resources	currently	allocated	to	
each	process,	and	the	future	requests	and	releases	of	each	process.	If	a	system	does	not	employ	
either	a	deadlock-prevention	or	a	deadlock	avoidance	algorithm,	then	a	deadlock	situation	may	
occur.	In	this	environment,	the	system	can	provide	an	algorithm	that	examines	the	state	of	the	
system	to	determine	whether	a	deadlock	has	occurred,	and	an	algorithm	to	recover	from	the	
deadlock	(if	a	deadlock	has	indeed	occurred).	We	discuss	these	issues	in	if	a	system	does	not	
ensure	that	a	deadlock	will	never	occur,	and	also	does	not	provide	a	mechanism	for	deadlock	
detection and recovery then we may arrive at a situation where the system is in a deadlock 
state	yet	has	no	way	of	recognizing	what	has	happened.	In	this	case,	the	undetected	deadlock	
will	result	in	the	deterioration	of	the	system	performance,	because	resources are being held by
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Notes  Figure 4.12: Resource-Allocation Graph with a Cycle but no Deadlock

processes	 that	 cannot	 run,	and	because	more	and	more	processes,	 as	 they	make	 requests	 for	
resources,	 enter	a	deadlock	state.	Eventually,	 the	 system	will	 stop	 functioning	and	will	need	
to be restarted manually. Although this method does not seem to be a viable approach to the 
deadlock	problem,	it	is	nevertheless	used	in	some	operating	systems.	In	many	systems,	deadlocks	
occur	infrequently	(say,	once	per	year);	thus,	this	method	is	cheaper	than	the	costly	deadlock-
prevention,	deadlock-avoidance,	or	deadlock-detection	and	recovery	methods	that	must	be	used	
constantly.	Also,	 in	some	circumstances,	 the	system	is	 in	a	frozen	state	but	not	 in	a	deadlock	
state.	As	an	example,	consider	a	real-time	process	running	at	the	highest	priority	(or	any	process	
running	on	a	non-preemptive	scheduler)	and	never	returning	control	to	the	operating	system.	
Thus,	 systems	must	 have	 manual	 recovery	methods	 for	 non-deadlock	 conditions,	 and	may	
simply	use	those	techniques	for	deadlock	recovery.	

4.6.7 Mutual Exclusion

The	mutual-exclusion	condition	must	hold	for	non-sharable	resources.	For	example,	a	printer	
cannot	be	simultaneously	shared	by	several	processes.	Sharable	resources,	on	the	other	hand,	
do	not	require	mutually	exclusive	access,	and	thus	cannot	be	involved	in	a	deadlock.	Read-only	
files	are	a	good	example	of	a	sharable	resource.	If	several	processes	attempt	to	open	a	read-only	
file	at	the	same	time,	they	can	be	granted	simultaneous	access	to	the	file.	A	process	never	needs	
to	wait	for	a	sharable	resource.	In	general,	however,	we	cannot	prevent	deadlocks	by	denying	
the mutual-exclusion condition. Some resources are intrinsically non-sharable.



Principles of Operating Systems

132 LOVELY PROFESSIONAL UNIVERSITY

Notes 4.6.8 Hold and Wait
To	ensure	that	the	hold-and-wait	condition	never	occurs	in	the	system,	we	must	guarantee	that,	
whenever	a	process	requests	a	resource,	it	does	not	hold	any	other	resources.	One	protocol	that	
can	be	used	requires	each	process	to	request	and	be	allocated	all	its	resources	before	it	begins	
execution.	We	can	implement	this	provision	by	requiring	that	system	calls	requesting	resources	
for	a	process	precede	all	other	system	calls.	An	alternative	protocol	allows	a	process	to	request	
resources	only	when	the	process	has	none.	A	process	may	request	some	resources	and	use	them.	
Before	it	can	request	any	additional	resources,	however,	it	must	release	all	the	resources	that	it	
is	currently	allocated.	To	illustrate	the	difference	between	these	two	protocols,	we	consider	a	
process	that	copies	data	from	a	tape	drive	to	a	disk	file,	sorts	the	disk	file,	and	then	prints	the	
results	to	a	printer.	If	all	resources	must	be	requested	at	the	beginning	of	the	process,	then	the	
process	must	initially	request	the	tape	drive,	disk	file,	and	printer.	It	will	hold	the	printer	for	its	
entire	execution,	even	though	it	needs	the	printer	only	at	the	end.	The	second	method	allows	the	
process	to	request	initially	only	the	tape	drive	and	disk	file.	It	copies	from	the	tape	drive	to	the	
disk,	then	releases	both	the	tape	drive	and	the	disk	file.	The	process	must	then	again	request	the	
disk	file	and	the	printer.	After	copying	the	disk	file	to	the	printer,	it	releases	these	two	resources	
and	terminates.	These	protocols	have	two	main	disadvantages.	First,	resource	utilization	may	
be	 low,	 since	many	 of	 the	 resources	may	 be	 allocated	 but	 unused	 for	 a	 long	 period.	 In	 the	
example	given,	for	instance,	we	can	release	the	tape	drive	and	disk	file,	and	then	again	request	
the	disk	file	and	printer,	only	if	we	can	be	sure	that	our	data	will	remain	on	the	disk	file.	If	we	
cannot	be	assured	that	they	will,	then	we	must	request	all	resources	at	the	beginning	for	both	
protocols.	Second,	starvation	is	possible.	A	process	that	needs	several	popular	resources	may	
have	to	wait	indefinitely,	because	at	least	one	of	the	resources	that	it	needs	is	always	allocated	
to some other process.

4.6.9 No Preemption
The third necessary condition is that there be no preemption of resources that have already been 
allocated.	To	ensure	that	this	condition	does	not	hold,	we	can	use	the	following	protocol.	If	a	
process	 is	holding	some	resources	and	requests	another	resource	 that	cannot	be	 immediately	
allocated	 to	 it	 (that	 is,	 the	 process	 must	 wait),	 then	 all	 resources	 currently	 being	 held	 are	
preempted.	In	other	words,	these	resources	are	implicitly	released.	The	preempted	resources	are	
added to the list of resources for which the process is waiting. The process will be restarted only 
when	it	can	regain	its	old	resources,	as	well	as	the	new	ones	that	it	is	requesting.	Alternatively,	
if	a	process	requests	some	resources,	we	first	check	whether	they	are	available.	If	they	are,	we	
allocate	 them.	 If	 they	 are	 not	 available,	we	 check	whether	 they	 are	 allocated	 to	 some	 other	
process	that	is	waiting	for	additional	resources.	If	so,	we	preempt	the	desired	resources	from	
the	waiting	process	and	allocate	them	to	the	requesting	process.	If	the	resources	are	not	either	
available	or	held	by	a	waiting	process,	 the	requesting	process	must	wait.	While	 it	 is	waiting,	
some	of	its	resources	may	be	preempted,	but	only	if	another	process	requests	them.	A	process	
can	be	restarted	only	when	it	is	allocated	the	new	resources	it	is	requesting	and	recovers	any	
resources that were preempted while it was waiting. This protocol is often applied to resources 
whose	state	can	be	easily	saved	and	restored	later,	such	as	CPU	registers	and	memory	space.	It	
cannot generally be applied to such resources as printers and tape drives.

4.6.10 Circular Wait
The	fourth	and	final	condition	for	deadlocks	is	the	circular-wait	condition.	One	way	to	ensure	
that	this	condition	never	holds	is	to	impose	a	total	ordering	of	all	resource	types,	and	to	require	
that	each	process	requests	resources	in	an	increasing	order	of	enumeration.
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NotesLet	R	=	{XI,	R2,	 ...,	R,)	be	the	set	of	resource	types.	We	assign	to	each	resource	type	a	unique	
integer	 number,	 which	 allows	 us	 to	 compare	 two	 resources	 and	 to	 determine	 whether	 one	
precedes	another	in	our	ordering.	Formally,	we	define	a	one-to-one	function	F:	R	+	N,	where	N	
is the set of natural numbers.	For	example,	if	the	set	of	resource	types	R	includes	tape	drives,	
disk	drives,	and	printers,	then	the	function	F	might	be	defined	as	follows:

F(tape	drive)	=	1,

F(disk	drive)	=	5,

F(printer)	=	12.

We	can	now	consider	 the	 following	protocol	 to	prevent	deadlocks.	Each	process	 can	 request	
resources	only	in	an	increasing	order	of	enumeration.	That	is,	a	process	can	initially	request	any	
number	of	instances	of	a	resource	type,	say	Xi.	After	that,	the	process	can	request	instances	of	
resource	type	Ri	if	and	only	if	F(Rj)	>	F(Ri).	If	several	instances	of	the	same	resource	type	are	
needed,	a	single	request	for	all	of	them	must	be	issued.	For	example,	using	the	function	defined	
previously,	a	process	that	wants	to	use	the	tape	drive	and	printer	at	the	same	time	must	first	
request	the	tape	drive	and	then	request	the	printer.	Alternatively,	we	can	require	that,	whenever	
a	process	 requests	an	 instance	of	 resource	 type	Rj,	 it	has	 released	any	resources	Ri	 such	 that	
F(Ri)	2	F(Rj).	If	these	two	protocols	are	used,	then	the	circular-wait	condition	cannot	hold.	We	
can	demonstrate	this	fact	by	assuming	that	a	circular	wait	exists	(proof	by	contradiction).	Let	
the	 set	of	processes	 involved	 in	 the	circular	wait	be	 {Po,	PI,	 ...,	P,),	where	Pi	 is	waiting	 for	a	
resource	Xi,	which	is	held	by	process	Pi+l.	(Modulo	arithmetic	is	used	on	the	indexes,	so	that	
P,	is	waiting	for	a	resource	R,	held	by	Po.)	Then,	since	process	Pi+l	is	holding	resource	Ri	while	
requesting	resource	Ri+l,	we	must	have	F(Ri)	<	F(Ri+1),	for	all	i.	But	this	condition	means	that	
F(Ro)	<	F(R1)	<	...	<	F(R,)	<	F(Ro).	By	transitivity,	F(Ro)	<	F(Ro),	which	is	impossible.	Therefore,	
there can be no circular wait.

    The	function	F	should	be	defined	according	to	the	normal	order	of	usage	of	the	
resources	in	a	system.	For	example,	since	the	tape	drive	is	usually	needed	before	
the	printer,	it	would	be	reasonable	to	define	F(tape	drive)	<	F(printer).

4.6.11 Safe State

A	state	is	safe	if	the	system	can	allocate	resources	to	each	process	(up	to	its	maximum)	in	some	
order and still avoid	a	deadlock.	More	formally,	a	system	is	in	a	safe	state	only	if	there	exists	a	
safe sequence.	A	sequence	of	processes	<PI,	P2,	...,	P,>	is	a	safe	sequence	for	the	current	allocation	
state	if,	for	each	Pi,	the	resources	that	Pi	can	still	request	can	be	satisfied	by	the	currently	available	
resources	plus	the	resources	held	by	all	the	Pi,	with	j	<	i.	In	this	situation,	if	the	resources	that	
process	Pi	needs	are	not	immediately	available,	then	Pi	can	wait	until	all	Pi	have	finished.	When	
they	have	finished,	Pi	can	obtain	all	of	its	needed	resources,	complete	its	designated	task,	return	
its	allocated	resources,	and	terminate.	When	Pi	terminates,	Pi+l	can	obtain	its	needed	resources,	
and	so	on.	If	no	such	sequence	exists,	then	the	system	state	is	said	to	be	unsafe.	A	safe	state	is	
not	a	deadlock	state.	Conversely,	a	deadlock	state	is	an	unsafe	state.	Not	all	unsafe	states	are	
deadlocks.	An	unsafe	state	may	lead	to	a	deadlock.	As	long	as	the	state	is	safe,	the	operating	
system	can	avoid	unsafe	(and	deadlock)	states.	In	an	unsafe	state,	the	operating	system	cannot	
prevent	processes	from	requesting	resources	such	that	a	deadlock	occurs.	The	behaviour	of	the	
processes	controls	unsafe	states.	To	illustrate,	we	consider	a	system	with	12	magnetic	tape	drives	
and	3	processes—Po,	PI,	and	P2.	Process	Po	requires	10	 tape	drives,	process	PI	may	need	as	
many	as	4,	and	process	P2	may	need	up	to	9	tape	drives.	Suppose	that,	at	time	t0,	process	Po	is	
holding	5	tape	drives,	process	PI	is	holding	2,	and	process	PZ	is	holding	2	tape	drives.	(Thus,	
there are 3 free tape drives.)
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Maximum Needs Current Needs

P0 10 5

P1 4 2

P2 9 2

At	time	t0,	the	system	is	in	a	safe	state.	The	sequence	<PI,	PO,	P2>	satisfies	the	safety	condition,	
since	process	PI	can	immediately	be	allocated	all	its	tape	drives	and	then	return	them	(the	system	
will	 then	have	5	available	 tape	drives),	 then	process	Po	can	get	all	 its	 tape	drives	and	return	
them	(the	system	will	then	have	10	available	tape	drives),	and	finally	process	P2	could	get	all	its	
tape	drives	and	return	them	(the	system	will	then	have	all	12	tape	drives	available).	A	system	
may	go	from	a	safe	state	to	an	unsafe	state.	Suppose	that,	at	time	t1,	process	Pp	requests	and	is	
allocated	1	more	tape	drive.	The	system	is	no	longer	in	a	safe	state.	At	this	point,	only	process	PI	
can	be	allocated	all	its	tape	drives.	When	it	returns	them,	the	system	will	have	only	4	available	
tape	drives.	Since	process	Po	is	allocated	5	tape	drives,	but	has	a	maximum	of	10,	it	may	then	
request	5	more	tape	drives.	Since	they	are	unavailable,	process	Po	must	wait.	Similarly,	process	
P2	may	request	an	additional	6	tape	drives	and	have	to	wait,	resulting	in	a	deadlock.	Our	mistake	
was	 in	granting	 the	 request	 from	process	P2	 for	1	more	 tape	drive.	 If	we	had	made	P2	wait	
until	either	of	the	other	processes	had	finished	and	released	its	resources,	then	we	could	have	
avoided	 the	deadlock.	Given	 the	concept	of	a	safe	state,	we	can	define	avoidance	algorithms	
that ensure that the system will never deadlock. The idea is simply to ensure that the system 
will	always	remain	 in	a	safe	state.	 Initially,	 the	system	is	 in	a	safe	state.	Whenever	a	process	
requests	a	resource	that	is	currently	available,	the	system	must	decide	whether	the	resource	can	
be	allocated	immediately	or	whether	the	process	must	wait.	The	request	is	granted	only	if	the	
allocation	leaves	the	system	in	a	safe	state.	In	this	scheme,	if	a	process	requests	a	resource	that	
is	currently	available,	it	may	still	have	to	wait.	Thus,	resource	utilization	may	be	lower	than	it	
would be without a deadlock-avoidance algorithm.

4.6.12 Resource-Allocation Graph Algorithm

If	we	have	a	resource-allocation	system	with	only	one	instance	of	each	resource	type,	a	variant	
of	the	resource-allocation	graph	can	be	used	for	deadlock	avoidance.	In	addition	to	the	request	
and	assignment	edges,	we	introduce	a	new	type	of	edge,	called	a	claim	edge.	A	claim	edge	Pi	
-+	Rj	 indicates	 that	process	Pi	may	request	 resource	Rj	at	 some	time	 in	 the	 future.	This	edge	
resembles	 a	 request	 edge	 in	direction,	 but	 is	 represented	by	 a	dashed	 line.	When	process	Pi	
requests	resource	Rj,	the	claim	edge	Pi	-+	Rj	is	converted	to	a	request	edge.	Similarly,	when	a	
resource	Rj	is	released	by	Pi,	the	assignment	edge	Rj	-+	Pi	is	reconverted	to	a	claim	edge	Pi	-+	
Xi.	We	note	that	the	resources	must	be	claimed	a	priori	in	the	system.	That	is,	before	process	
Pi	starts	executing,	all	its	claim	edges	must	already	appear	in	the	resource-allocation	graph.	
We	can	relax	this	condition	by	allowing	a	claim	edge	Pi	+	Rj	to	be	added	to	the	graph	only	
if	all	the	edges	associated	with	process	Pi	are	claim	edges.	Suppose	that	process	Pi	requests	
resource	Rj.	The	request	can	be	granted	only	 if	converting	the	request	edge	Pi	 -+	Rj	 to	an	
assignment	edge	Rj	+	Pi	does	not	result	in	the	formation	of	a	cycle	in	the	resource-allocation	
graph. Note that we check for safety by using a cycle-detection algorithm. An algorithm for 
detecting	a	 cycle	 in	 this	graph	 requires	an	order	of	n2	operations,	where	n	 is	 the	number	of	
processes in the system.
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NotesFigure 4.13: Resource-Allocation Graph for Deadlock Avoidance

If	no	cycle	exists,	then	the	allocation	of	the	resource	will	leave	the	system	in	a	safe	state.	If	a	
cycle	is	found,	then	the	allocation	will	put	the	system	in	an	unsafe	state.	Therefore,	process	
Pi will have to wait for	its	requests	to	be	satisfied.	To	illustrate	this	algorithm,	we	consider	
the	resource-allocation	graph	of	Figure	4.13.	Suppose	that	P2	requests	R2.	Although	R2	 is	
currently	free,	we	cannot	allocate	it	to	P2,	since	this	action	will	create	a	cycle	in	the	graph.	
A	 cycle	 indicates	 that	 the	 system	 is	 in	 an	unsafe	 state.	 If	PI	 requests	R2,	 and	P2	 requests	
R1,	then	a	deadlock	will	occur.

4.6.13 Banker’s Algorithm

The resource-allocation graph algorithm is not applicable to a resource-allocation system with 
multiple instances of each resource type. The deadlock-avoidance algorithm that we describe 
next	is	applicable	to	such	a	system,	but	is	less	efficient	than	the	resource-allocation	graph	scheme.	
This algorithm is commonly known as the banker’s algorithm. The name was chosen because 
this algorithm could be used in a banking system to ensure that the bank never allocates its 
available cash such that it can no longer satisfy the needs of all its customers. When a new process 
enters	the	system,	it	must	declare	the	maximum	number	of	instances	of	each	resource	type	that	
it may need. This number may not exceed the total number of resources in the system. When 
a	user	requests	a	set	of	resources,	 the	system	must	determine	whether	the	allocation	of	 these	
resources	will	leave	the	system	in	a	safe	state.	If	it	will,	the	resources	are	allocated;	otherwise,	the	
process must wait until some other process releases enough resources. Several data structures 
must be maintained to implement the banker’s algorithm. These data structures encode the 
state of the resource-allocation system. Let n be the number of processes in the system and rn 
be	the	number	of	resource	types.	We	need	the	following	data	structures:	Available:	a vector of 
length rn	indicates	the	number	of	available	resources	of	each	type.	If	Available[j]	=	k,	there	are	
k instances of resource type Rj available.

Max: An n x rn	matrix	 defines	 the	maximum	demand	 of	 each	 process.	 If	Max[i,j]	 =	 k,	 then	
process	Pi	may	request	at	most	k	instances	of resource type.

Ri . Allocation: An n x rn	matrix	defines	the	number	of	resources	of	each	type	currently	allocated	
to	each	process.	If	Allocation[i,j]	=	k,	then	process	Pi is currently allocated k instances of resource 
type	Rj.	Need:	An	n	x	rn	matrix	indicates	the	remaining	resource	need	of	each	process.	If	Need[i,j]	
=	k,	then	process	Pi may need k more instances of resource type Ri to complete its task. Note 
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Notes that	Need[i,j]	=	Max[i,j]	-	Allocafion[i,j].	These	data	structures	vary	over	time	in	both	size	and	
value.	To	simplify	 the	presentation	of	 the	banker’s	algorithm,	 let	us	establish	some	notation.	
Let	X	and	Y	be	vectors	of	length	n.	We	say	that	X	5	Y	if	and	only	if	X[i]	5	Y[i]	for	all	i	=	1,	2,	
...,	n.	For	example,	if	X	=	(1,7,3,2)	and	Y	=	(0,3,2,1),	then	Y	5	X.	Y	<	X	if	Y	IX	and	Y$X.	We	can	
treat each row in the matrices Allocation and Need as vectors and refer to them as Allocationi 
and	Needi,	 respectively.	 The	 vector	Allocation;	 specifies	 the	 resources	 currently	 allocated	 to	
process	Pi;	the	vector	Need,	specifies	the	additional	resources	that	process	Pi	may	still	request	
to	complete	its	task.	Safety	Algorithm	The	algorithm	for	finding	out	whether	or	not	a	system	is	
in	a	safe	state	can	be	described	as	follows:

	 1.	 Let	Work	and	Finish	be	vectors	of	length	m	and	n,	respectively.	Initialize	Work	:=	Available	
and	Finisk[i]	:=false	for	i	=	1,2,	...,	n.

	 2.	 Find	an	i	such	that	both	a.	Finisk[i]	=false	b.	Needi	5	Work.	If	no	such	i	exists,	go	to	step	4.

	 3.	 Work	:=	Work	+	Allocationi	Finisk[i]	:=	true	go	to	step	2.

	 4.	 If	Finish[i]	=	true	for	all	i,	then	the	system	is	in	a	safe	state.	This	algorithm	may	require	
an order of rn x n2 operations to decide whether a state is safe.

4.6.14 Resource-Request Algorithm
Let	Requesti	 be	 the	 request	 vector	 for	process	Pi.	 If	Request;[j]	 =	k,	 then	process	Pi	wants	 k	
instances	of	resource	type	Rj.	When	a	request	for	resources	is	made	by	process	Pi,	the	following	
actions	are	taken:

	 1.	 If	Requesti	5	Needi,	go	 to	step	2.	Otherwise,	 raise	an	error	condition,	since	 the	process	
has exceeded its maximum claim.

	 2.	 If	Requesti	5	Available,	go	to	step	3.	Otherwise,	Pi	must	wait,	since	the	resources	are	not	
available.

	 3.	 Have	 the	 system	 pretend	 to	 have	 allocated	 the	 requested	 resources	 to	 process	 Pi	 by	
modifying	the	state	as	follows:

Available	:=	Available	-	Request,;

Allocationi	:=	Allocation;	+	Request;;

Needi	:=	Needi	-	Requesti;

If	the	resulting	resource-allocation	state	is	safe,	the	transaction	is	completed	and	process	Pi	is	
allocated	its	resources.	However,	if	the	new	state	is	unsafe,	then	Pi	must	wait	for	Requesti	and	
the old resource-allocation state is restored.

	 	Consider	a	system	with	five	processes	Po	through	P4	and	three	resource	
types	A,	B,	C.	Resource	type	A	has	10	instances,	resource	type	B	has	5	
instances,	and	resource	type	C	has	7	instances.	Suppose	that,	at	time	To,	
the	following	snapshot	of	the	system	has	been	taken:

Allocation Max Available
A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2
P1 2 0 0 3 2 2
P2 3 0 2 9 0 2
P3 2 1 1 2 2 2
P4 0 0 2 4 3 3
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NotesWe claim that	the	system	is	currently	in	a	safe	state.	Indeed,	the	sequence	
<PI,	P3/	P4,	P2/	Po>	satisfies	the	safety	criteria.	Suppose	now	that	process	
PI	requests	one	additional	instance	of	resource	type	A	and	two	instances	
of	resource	type	C,	so	Requestl	=	(1,0,2).	To	decide	whether	this	request	
can	be	immediately	granted,	we	first	check	that	Requestl	5	Available	(that	
is,	(1,0,2)	5	(3,3,2)),	which	is	true.	We	then	pretend	that	this	request	has	
been	fulfilled,	and	we	arrive	at	the	following	new	state:

Allocation Need Available
A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0
P1 3 0 2 0 2 0
P2 3 0 2 6 0 0
P3 2 1 1 0 1 1
P4 0 0 2 4 3 1

We must determine	whether	this	new	system	state	is	safe.	To	do	so,	we	
execute	our	safety	algorithm	and	find	that	the	sequence	<PI,	P3,	P4,	POI	
P2>	 satisfies	our	 safety	 requirement.	Hence,	we	 can	 immediately	grant	
the	request	of	process	PI.	You	should	be	able	to	see,	however,	that	when	
the	system	is	 in	 ths	state,	a	 request	 for	 (3,3,0)	by	P4 cannot	be	granted,	
since	 the	resources	are	not	available.	A	request	 for	 (0,2,0)	by	Po	cannot	
be	granted,	even	 though	 the	resources	are	available,	 since	 the	resulting	
state is unsafe.

4.6.15 Deadlock Detection

If a system does not employ	either	a	deadlock-prevention	or	a	deadlock-avoidance	algorithm,	
then	 a	 deadlock	 situation	 may	 occur.	 In	 this	 environment,	 the	 system	 must	 provide:	 An	
algorithm that examines the state of the system to determine whether a deadlock has occurred. 
An	algorithm	to	recover	from	the	deadlock.	In	the	following	discussion,	we	elaborate	on	these	
two	requirements	as	they	pertain	to	systems	with	only	a	single	instance	of	each	resource	type,	
as	well	as	to	systems	with	several	instances	of	each	resource	type.	At	this	point,	however,	let	us	
note	that	a	detection-and-recovery	scheme	requires	overhead	that	includes	not	only	the	run-time	
costs	of	maintaining	the	necessary	information	and	executing	the	detection	algorithm,	but	also	
the potential losses inherent in recovering from a deadlock.

4.6.16 Single Instance of Each Resource Type
If	all	resources	have	only	a	single	instance,	then	we	can	define	a	deadlock	detection	algorithm	
that	uses	a	variant	of	the	resource-allocation	graph,	called	a	wait-for	graph.	We	obtain	this	graph	
from the resource-allocation graph by removing the nodes of type resource and collapsing the 
appropriate	edges.	More	precisely,	an	edge	from	Pi to Pi in a wait-for graph implies that process 
Pi is waiting for process Pi to release a resource that Pi needs. An edge Pi -t Pi exists in a wait-
for graph if and only if the corresponding resource allocation graph contains two edges Pi	-+	
Rq	and	Rq	+	Pj	for	some	resource	Rq.	For	example,	we	present	a	resource-allocation	graph	and	
the corresponding wait-for graph.
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Notes A deadlock exists in the system if and only if the wait-for graph contains a 
cycle.	To	detect	deadlocks,	the	system	needs	to	maintain	the	wait-for	graph	
and periodically to invoke an algorithm that searches for a cycle in the graph.

An	algorithm	 to	detect	a	 cycle	 in	a	graph	 requires	an	order	of	n2	operations,	where	n	 is	 the	
number of vertices in the graph.

Figure 4.14: (a) Resource-Allocation Graph and (b) Corresponding Wait-for Graph

4.6.17 Several Instances of a Resource Type
The wait-for graph scheme is not applicable to a resource-allocation system with multiple 
instances of each resource type. The deadlock-detection algorithm that we describe next is 
applicable to such a system. The algorithm employs several time-varying data structures that 
are similar to those used in the banker’s algorithm.

Available: A vector of length rn indicates the number of available resources of each type.

Allocation:	An	n	x	rn	matrix	defines	the	number	of	resources	of	each	type	currently	allocated	
to each process.

Request:	 An	 n	 x	 rn	matrix	 indicates	 the	 current	 request	 of	 each	 process.	 If	 Request[i,j]	 =	 k,	
then	process	Pi	is	requesting	k	more	instances	of	resource	type	Ri.	The	5	relation	between	two	
vectors	is	defined.	To	simplify	notation,	we	shall	again	treat	the	rows	in	the	matrices	Allocation	
and	Request	as	vectors,	and	shall	refer	to	them	as	Allocationi	and	Requesti,	respectively.	The	
detection	algorithm	described	here	simply	investigates	every	possible	allocation	sequence	for	
the processes that remain to be completed. Compare this algorithm with the banker’s algorithm.

1.	Let	Work	and	Finish	be	vectors	of	length	m	and	n,	respectively.	Initialize	Work	:=	Available.	For	

i	=	1,	2,	...,	n,	if	Allocation	$0,	then	Finish[i]	:=false;
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Notesotherwise,	Finish[i]	:=	true.

2. Find an index i such that both

a.	Finish[i]	=false.

b.	Requesti	5	Work.

If	no	such	i	exists,	go	to	step	4.

3.	Work	:=	Work	+	Allocationi

Finish[i]	:=	true	go	to	step	2.

4.	 If	Finish[i]	=	false,	 for	some	i,	1	_<	i	5	n,	 then	the	system	is	 in	a	deadlock	state.	Moreover,	
if	Finish[i]	=false,	 then	process	Pi	 is	deadlocked.	This	algorithm	requires	an	order	of	m	x	n2	
operations	 to	detect	whether	 the	 system	 is	 in	 a	deadlocked	 state.	You	may	wonder	why	we	
reclaim	the	resources	of	process	Pi	(in	step	3)	as	soon	as	we	determine	that	Requesti	_<	Work	
(in	step	2b).	We	know	that	Pi	is	currently	not	involved	in	a	deadlock	(since	Requesti	<	Work).	
Thus,	we	 take	 an	 optimistic	 attitude,	 and	 assume	 that	 Pi	will	 require	 no	more	 resources	 to	
complete its task; it will thus soon return all currently allocated resources to the system. If our 
assumption	 is	 incorrect,	a	deadlock	may	occur	 later.	That	deadlock	will	be	detected	 the	next	
time	that	the	deadlock-detection	algorithm	is	invoked.	To	illustrate	this	algorithm,	we	consider	
a	system	with	five	processes	Po	through	P4	and	three	resource	types	A,	B,	C.	Resource	type	A	
has	7	instances,	resource	type	B	has	2	instances,	and	resource	type	C	has	6	instances.	Suppose	
that,	at	time	To,	we	have	the	following	resource-allocation	state:

Allocation Need Available
A B C A B C A B C

P0 0 1 0 0 0 2 0 0 0
P1 2 0 0 2 0 2
P2 3 0 3 0 0 0
P3 2 1 1 1 0 0
P4 0 0 2 0 0 2

We	claim	that	the	system	is	not	in	a	deadlocked	state.	Indeed,	if	we	execute	our	algorithm,	we	
will	find	that	the	sequence	<Po,	P2,	P3,	PI,	P4>	will	result	in	Finish[i]	=	true	for	all	i.	Suppose	
now	that	process	P2	makes	one	additional	request	for	an	instance	of	type	C.	The	Request	matrix	
is	modified	as	follows:

  
Request

A B C
P0 0 1 0
P1 2 0 2
P2 0 0 1
P3 1 0 0
P4 0 0 2

We claim that the system is now deadlocked. Although we can reclaim the resources held by 
process	Po,	the	number	of	available	resources	is	not	sufficient	to	fulfill	the	requests	of	the	other	
processes.	Thus,	a	deadlock	exists,	consisting	of	processes	PI,	P2,	P3,	and	Pq.
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Notes 4.6.18 Detection-Algorithm Usage
When	should	we	invoke	the	detection	algorithm?	The	answer	depends	on	two	factors:

 1. How often is a deadlock likely to occur?

 2. How many processes will be affected by deadlock when it happens?

If	 deadlocks	 occur	 frequently,	 then	 the	 detection-algorithm	 should	 be	 invoked	 frequently.	
Resources allocated to deadlocked processes will be idle until the deadlock can be broken. In 
addition,	the	number	of	processes	involved	in	the	deadlock	cycle	may	grow.

Deadlocks	occur	only	when	some	process	makes	a	request	that	cannot	be	granted	immediately.	
This	 request	 may	 be	 the	 final	 request	 that	 completes	 a	 chain	 of	 waiting	 processes.	 In	 the	
extreme,	we	could	invoke	the	deadlock	detection	algorithm	every	time	a	request	for	allocation	
cannot	be	granted	immediately.	In	this	case,	we	can	identify	not	only	the	set	of	processes	that	
is	deadlocked,	but	also	the	specific	process	that	“caused”	the	deadlock.	(In	reality,	each	of	the	
deadlocked	processes	is	a	link	in	the	cycle	in	the	resource	graph,	so	all	of	them,	jointly,	caused	
the	deadlock.)	If	there	are	many	different	resource	types,	one	request	may	cause	many	cycles	in	
the	resource	graph,	each	cycle	completed	by	the	most	recent	request	and	“caused”	by	the	one	
identifiable	process.	Of	course,	invoking	the	deadlock-detection	algorithm	for	every	request	may	
incur a considerable overhead in computation time. A less expensive alternative is simply to 
invoke	the	algorithm	at	less	frequent	intervals—for	example,	once	per	hour,	or	whenever	CPU	
utilization	drops	below	40	per	 cent.	 (A	deadlock	eventually	 cripples	 system	 throughput	and	
will	cause	CPU	utilization	to	drop.)	If	the	detection	algorithm	is	invoked	at	arbitrary	points	in	
time,	there	may	be	many	cycles	in	the	resource	graph.	We	would	generally	not	be	able	to	tell	
which of the many deadlocked processes caused the deadlock.

4.6.19 Recovery from Deadlock
When	a	detection	algorithm	determines	that	a	deadlock	exists,	several	alternatives	exist.	One	
possibility	is	to	inform	the	operator	that	a	deadlock	has	occurred,	and	to	let	the	operator	deal	
with the deadlock manually. The other possibility is to let the system recover from the deadlock 
automatically. There are two options for breaking a deadlock. One solution is simply to abort one 
or more processes to break the circular wait. The second option is to preempt some resources 
from one or more of the deadlocked processes.

4.6.20 Process Termination
To	eliminate	deadlocks	by	aborting	a	process,	we	use	one	of	 two	methods.	 In	both	methods,	
the system reclaims all resources allocated to the terminated processes.

4.6.21 Abort All Deadlocked Processes
This	method	clearly	will	break	the	deadlock	cycle,	but	at	a	great	expense;	these	processes	may	
have	computed	for	a	long	time,	and	the	results	of	these	partial	computations	must	be	discarded	
and probably recomputed later.

4.6.22 Abort One Process at a Time Until the Deadlock Cycle is Eliminated
This	method	 incurs	 considerable	 overhead,	 since,	 after	 each	 process	 is	 aborted,	 a	 deadlock-
detection algorithm must be invoked to determine whether any processes are still deadlocked. 
Aborting	a	process	may	not	be	easy.	If	the	process	was	in	the	midst	of	updating	a	file,	terminating	
it	will	leave	that	file	in	an	incorrect	state.	Similarly,	if	the	process	was	in	the	midst	of	printing	
data	on	the	printer,	the	system	must	reset	the	printer	to	a	correct	state	before	printing	the	next	
job.	 If	 the	partial	 termination	method	 is	used,	 then,	given	a	 set	of	deadlocked	processes,	we	
must	determine	which	process	(or	processes)	should	be	terminated	in	an	attempt	to	break	the	
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Notesdeadlock.	 This	 determination	 is	 a	 policy	 decision,	 similar	 to	CPU-scheduling	 problems.	 The	
question	is	basically	an	economic	one;	we	should	abort	those	processes	the	termination	of	which	
will	incur	the	minimum	cost.	Unfortunately,	the	term	minimum	cost	is	not	a	precise	one.	Many	
factors	may	determine	which	process	is	chosen,	including:

 1. What the priority of the process is?

	 2.	 How	 long	 the	process	has	 computed,	 and	how	much	 longer	 the	process	will	 compute	
before completing its designated task?

	 3.	 How	many	and	what	type	of	resources	the	process	has	used	(for	example,	whether	the	
resources	are	simple	to	preempt)?

 4. How many more resources the process needs in order to complete?

 5. How many processes will need to be terminated?

 6. Whether the process is interactive or batch?

4.6.23 Resource Preemption
To	eliminate	deadlocks	using	 resource	preemption,	we	 successively	preempt	 some	 resources	
from processes and give these resources to other processes until the deadlock cycle is broken. 
If	preemption	is	required	to	deal	with	deadlocks,	then	three	issues	need	to	be	addressed:

 1. Selecting a Victim: Which resources and which processes are to be preempted? As in 
process	 termination,	we	must	 determine	 the	 order	 of	 pre-1	 emption	 to	minimize	 cost.	
Cost factors may include such parameters as the number of resources a deadlock process 
is	holding,	and	the	amount	of	time	a	deadlocked	process	has	thus	far	consumed	during	
its execution.

 2. Rollback:	If	we	preempt	a	resource	from	a	process,	what	should	be	done	with	that	process?	
Clearly,	it	cannot	continue	with	its	normal	execution;	it	is	missing	some	needed	resource.	
We	must	roll	back	the	process	to	some	safe	state,	and	restart	it	from	that	state.	Since,	in	
general,	 it	 is	difficult	to	determine	what	a	safe	state	is,	them	simplest	solution	is	a	total	
rollback:	Abort	the	process	and	then	restart	 it.	However,	 it	 is	more	effective	to	rollback	
the	process	only	as	far	as	necessary	to	break	the	deadlock.	On	the	other	hand,	this	method	
requires	the	system	to	keep	more	information	about	the	state	of	all	the	running	processes.

 3. Starvation:	How	do	we	ensure	that	starvation	will	not	occur?	That	is,	how	can	we	guarantee	
that resources will not always be preempted from the same process? In a system where 
victim	selection	is	based	primarily	on	cost	factors,	it	may	happen	that	the	same	process	is	
always	picked	as	a	victim.	As	a	result,	this	process	never	completes	its	designated	task,	a	
starvation situation that needs to be dealt	with	in	any	practical	system.	Clearly,	we	must	
ensure	that	a	process	can	be	picked	as	a	victim	only	a	(small)	finite	number	of	times.	The	
most common solution is to include the number of rollbacks in the cost factor.

Write Code that Acquires More Than One Lock

Lock *l1, *l2;

void p() {

  l1->Acquire();

  l2->Acquire();

  code that manipulates data that l1 and l2 protect

  l2->Release();
 Contd...
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}

void q() {

  l2->Acquire();

  l1->Acquire();

  code that manipulates data that l1 and l2 protect

  l1->Release();

  l2->Release();

}

If p and q	 execute	 concurrently,	 consider	what	may	 happen.	 First,	p	 acquires	11 and q 
acquires	12.	 Then,	p	waits	 to	 acquire	12 and q	waits	 to	 acquire	11. How long will they 
wait? Forever. This case is called deadlock.

Questions:

 1. What are conditions for deadlock?

 2. How can p and q	avoid	deadlock?	Order	the	locks,	and	always	acquire	the	locks	in	that	
order. Eliminates the circular wait condition.

 

1.  Consider four processes arrived at different times and needed CPU time 
differ	from	process	to	other	according	to	the	next	table:

Process Arrived Time CPU	time	(minute)
P1 10:00 4 m 

P2 10:10 3 m 

P3 10:15 2 m 

P4 10:25 2 m
 

2.	 	Calculate	 the	 termination	 time	 for	 each	 process,	 If	 the	 probability	 of 
I/O=0.7	in	each	of	the	following	cases:

	 (a)	 Mono-programming.

	 (b)	 Multi-programming.

Self Assessment
Multiple choice questions:

 5. .................. is a high level abstraction over Semaphore.

	 (a)	 Shared	memory	 (b)	 Message	passing

	 (c)	 Monitor	 (d)	 Mutual	exclusion

	 6.	 The	process	related	to	process	control,	file	management,	device	management,	information	
about	system	and	communication	that	is	requested	by	any	higher	level	language	can	be	
performed by .................. .

	 (a)	 Editors	 (b)	 Compilers

	 (c)	 System	Call	 (d)	 Caching
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Notes 7. Which is not the state of the process? 

	 (a)	 Blocked	 (b)	 Running

	 (c)	 Ready	 (d)	 Privileged

Fill in the blanks:

 8. .................. is a lightweight unit of program execution.

 9. An example of a discretionary acess control is a .................. .

 10. A system is in a safe state only if there exists a .................. .

4.7 Summary

 •	 If	a	data	 item	is	shared	by	a	number	threads,	race	conditions	could	occur	 if	 the	shared	
item is not protected properly.

	 •	 The	first	restriction	is	only	the	owner	can	release	the	lock.	The	second	restriction	is	recursive	
lock	acquisition	is	not	allowed.

	 •	 Each	process	has	a	code	segment,	called	critical	section,	in	which	the	shared	data	is	accessed.	

	 •	 For	 many	 years,	 microprocessors	 have	 included	 on-chip	 memory	 management	 units	
(MMU).	

	 •	 As	applications	become	more	complex,	performing	more	functions	for	a	software-hungry	
world,	the	number	of	bugs	in	fielded	systems	will	continue	to	rise.

	 •	 A	 typical	 embedded	 system	 has	 several	 types	 of	 interrupts	 resulting	 from	 the	 use	 of	
various kinds of devices.

	 •	 Priority	inversion	has	long	been	the	bane	of	system	designers	attempting	to	perform	rate	
monotonic	analysis,	since	RMA	depends	on	higher	priority	threads	running	before	lower	
priority threads.

	 •	 A	semaphore	is	a	protected	variable	whose	value	can	be	accessed	and	altered	only	by	the	
operations P and V and initialization operation called ‘Semaphoiinitislize’.

	 •	 Deadlocks	can	be	described	more	precisely	in	terms	of	a	directed	graph	called	a	system	
resource-allocation graph.

4.8 Keywords

Memory Management Unit (MMU): Memory management units that enable individual threads 
of software to run in hardware-protected address spaces.

Real Time Operating System (RTOS): A Real-Time Operating System is a computing environment 
that	reacts	to	input	within	a	specific	time	period.

Rate Monotonic Analysis (RMA):	Rate	monotonic	analysis	is	frequently	used	by	system	designers	
to analyze and predict the timing behavior of systems.

Deadlock: A deadlock is a situation in which two computer programs sharing the same resource 
are	effectively	preventing	each	other	from	accessing	the	resource,	resulting	in	both	programs	
ceasing to function.

Resource Allocation Graph: Deadlocks can be described more precisely in terms of a directed 
graph called a system resource-allocation graph.

Deadlock Avoidance: A deadlock-avoidance algorithm dynamically examines the resource-
allocation state to ensure that a circular wait condition can never exist.

Claim Edge: Resource-allocation graph can be used for deadlock avoidance. In addition to the 
request	and	assignment	edges,	we	introduce	a	new	type	of	edge,	called	a	claim	edge.
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Notes 4.9 Review Questions

 1. State a simple rule for avoiding deadlocks in this system.

 2. Consider the deadlock situation that could occur in the dining-philosophers Problem when 
the philosophers obtain the chopsticks one at a time. Discuss How the four necessary 
conditions for deadlock indeed hold in this Setting. Discuss how deadlocks could be 
avoided by eliminating any one of the four conditions.

 3. What is the meaning of the term busy waiting? What other kinds of waiting are there in 
an operating system? Can busy waiting be avoided altogether? Explain your answer.

	 4.	 The	first	known	correct	software	solution	to	the	critical-section	problem	for	n	processes	
with a lower bound on waiting of n - 1 turns was presented by Eisenberg and McGuire. 
The	processes	share	the	following	variables	enum	pstate	{idle,	want-in,	in-cs);

	 	 pstate	flagCnl	;	i	n	t	turn;
  do {

	 flag[i]	=	true;
	 while	(flag[j])	{
	 	 		if	(turn	==	j)	{
	 	 						flag[i]	=	false;
	 	 						while	(turn	==	j);
	 	 						flag[i]	=	true;
    }
 }

   critical section

    turn	=	j;

	 		 	 flag[i]	=	false;

   remainder section

	 	 	 while	(1);		

The structure of process Pi in Dekker’s algorithm.

All	 the	 elements	 of	 flag	 are	 initially	 idle;	 the	 initial	 value	 of	 turn	 is	 immaterial	 (between	 0	 
and	n-1).	The	structure	of	process	Pi is shown below. 

   do {

   while(1) {

	 	 		flag[i]	=	want-in;

	 	 		j	=	turn;

	 	 		while	(j	!	=	i)	{

	 	 				if	(flag[j]	!=	idle)

	 	 						j	=	turn;

      else

	 	 						j	=	(j+1)	%	n;

  }
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	 	 flag[i]	=	in-cs;

  j	=	0;

	 	 while	((j	<	n)	&&	(j	==	i	||	flag[j]	!=	in_cs))

	 				j++;

	 	 if	((j	>=	n)	&&	(turn	++	i	||	flag[turn)	==	idle))	break;

  }

	 	 	 turn	=	i;

   critical section

  j	—	(turn	+	1)	%	n:

	 	 while	(flag	[j]	==	idle)

	 								j	=	(j+1)	%	n;

	 	 turn	=	j;

	 	 flag[i]	=	idle;

 remainder section

	 }while	(1)

  The structure of process Pi in Eisenberg and McGuire’s algorithm.

	 	 Prove	that	the	algorithm	satisfies	all	three	requirements	for	the	critical	section	problem.

	 5.	 Demonstrate	that	monitors,	conditional	critical	regions,	and	semaphore	are	all	equivalent,	
insofar as the same types of synchronization problems can be implemented with them.

	 6.	 Write	a	bounded-buffer	monitor	in	which	the	buffers	(portions)	are	embedded	within	the	
monitor itself.

 7. List three examples of deadlocks that are not related to a computer-system environment.

 8. Is it possible to have a deadlock involving only one process? Explain your answer.

 9. Suppose that a system is in an unsafe state. Show that it is possible for the processes to 
complete their execution without entering a deadlock state.

 10. Consider a system consisting of four resources of the same type that are shared by three 
processes,	each	of	which	needs	at	most	two	resources.	Show	that	the	system	is	deadlock-
free.

	 11.	 Can	a	system	detect	that	some	of	its	processes	are	starving?	If	you	answer	“yes,”	explain	
how it can. If you answer “no,”	 explain	 how	 the	 system	 can	 deal	with	 the	 starvation	
problem.

	 12.	 Consider	the	following	snapshot	of	a	system:

Allocation

A B C

Max

A B C

Available

A B C
P0 0012 1520
P1 1000 1750
P2 1354 2356
P3 0632 0652
P4 0014 0656
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Notes  13. Discuss about Banker’s Algorithm with the example.

 14. What is deadlock condition? Explain with the example.

	 15.	 Write	the	definition	of	Semaphores.

Answers to Self Assessment
	 1.	 (d)	 2.	 (b)	 3.	 (a)	 4.	 (b)

	 5.	 (c)	 6.	 (c)	 7.	 (d)	 8.	 Thread

	 9.	 Unix	file	 	 	 10.	 Safe	sequence

4.10 Further Readings

Operating Systems,	by	Harvey		M.	Deitel,	Paul	J.	Deitel,	David	R.	Choffnes.	

Operating Systems, by Andrew	Tanebaum,	Albert	S.	Woodhull.

wiley.com/coolege.silberschatz
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Objectives

 After studying this unit, you will be able to:
	 •	 Explain	memory	management
	 •	 Understand	swapping
	 •	 Discuss	contiguous-memory	allocation
	 •	 Explain	paging
	 •	 Discuss	thrashing
	 •	 Explain	overview	of	page	replacement
	 •	 Understand	LRU	page	replacement

Introduction
In	this	unit,	we	discuss	various	ways	to	manage	memory.	The	memory	management	algorithms	
vary from a primitive bare-machine approach to paging and segmentation strategies. Each 
approach has its own advantages and disadvantages. Selection of a memory-management 
method	for	a	specific	system	depends	on	many	factors,	especially	on	the	hardware	design	of	the	
system.	As	we	shall	see,	many	algorithms	require	hardware	support,	although	recent	designs	
have closely integrated the hardware and operating system.

Memory is central to the operation of a modern computer system. Memory consists of a large 
array	of	words	or	bytes,	each	with	its	own	address.	The	CPU	fetches	instructions	from	memory	
according to the value of the program counter. These instructions may cause additional loading 
from	and	storing	to	specific	memory	addresses.	A	typical	instruction-execution	cycle,	for	example,	
first	fetches	an	instruction	from	memory.	The	instruction	is	then	decoded	and	may	cause	operands	
to	be	 fetched	from	memory.	After	 the	 instruction	has	been	executed	on	the	operands,	results	
may be stored back in memory. The memory unit sees only a stream of memory addresses; it 
does	not	know	how	they	are	generated	(by	the	instruction	counter,	indexing,	indirection,	literal	
addresses,	and	so	on)	or	what	they	are	for	(instructions	or	data).	Accordingly,	we	can	ignore	
how	a	memory	address	is	generated	by	a	program.	We	are	interested	in	only	the	sequence	of	
memory addresses generated by the running program.

5.1 Address Binding

Usually,	a	program	resides	on	a	disk	as	a	binary	executable	file.	The	program	must	be	brought	
into memory and placed within a process for it to be executed. Depending on the memory 
management	in	use,	the	process	may	be	moved	between	disk	and	memory	during	its	execution.	
The	collection	of	processes	on	the	disk,	that	is	waiting	to	be	brought	into	memory	for	execution	
forms the input queue.

The	 normal	 procedure	 is	 to	 select	 one	 of	 the	 processes	 in	 the	 input	 queue	 and	 to	 load	 that	
process	into	memory.	As	the	process	is	executed,	it	accesses	instructions	and	data	from	memory.	
Eventually,	the	process	terminates,	and	its	memory	space	is	declared	available.
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NotesMost	systems	allow	a	user	process	to	reside	in	any	part	of	the	physical	memory.	Thus,	although	
the	 address	 space	 of	 the	 computer	 starts	 at	 00000,	 the	first	 address	 of	 the	user	process	does	
not need to be 00000. This arrangement affects the addresses that the user program can use. In 
most	cases,	a	user	program	will	go	through	several	steps-some	of	which	may	be	optional-before	
being executed. Addresses may be represented in different ways during these steps. Addresses 
in	the	source	program	are	generally	symbolic	(such	as	count).	A	compiler	will	typically	bind 
these	symbolic	addresses	to	relocatable	addresses	(such	as	“14	bytes	from	the	beginning	of	this	
module”).	The	linkage	editor	or	loader	will	in	turn	bind	these	relocatable	addresses	to	absolute	
addresses	 (such	 as	 74014).	 Each	 binding	 is	 a	 mapping	 from	 one	 address	 space	 to	 another.	
Classically,	the	binding	of	instructions	and	data	to	memory	addresses	can	be	done	at	any	step	
along	the	way:

 1. Compile Time: If	you	know	at	compile	 time	where	the	process	will	 reside	 in	memory,	
then,

 2. Absolute Code can	be	generated.	For	example,	if	you	know	a	priori	that	a	user	process	
resides	starting	at	location	R,	then	the	generated	compiler	code	will	start	at	that	location	
and	extend	up	from	there.	If,	at	some	later	time,	the	starting	location	changes,	then	it	will	
be necessary to recompile this code. The MS-DOS. COM-format programs are absolute 
code bound at compile time.

 3. Load Time: If	it	is	not	known	at	compile	time	where	the	process	will	reside	in	memory,	then	
the compiler must generate relocatable code. In	this	case,	final	binding	is	delayed	until	load

Figure 5.1: Multistep Processing of a user Program
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Notes  	 time.	If	the	starting	address	changes,	we	need	only	to	reload	the	user	code	to	incorporate	
this changed value.

 4. Execution Time: If the process can be moved during its execution from one memory 
segment	to	another,	then	binding	must	be	delayed	until	run	time.	Special	hardware	must	
be available for this scheme to work. Most general-purpose operating systems use this 
method. A major portion of this unit is devoted to showing how these various bindings can 
be implemented effectively in a computer system and to discussing appropriate hardware 
support.

5.2 Logical versus Physical-Address Space

An address generated by the CPU is commonly referred to as a logical address, whereas an 
address	seen	by	the	memory	unit—that	is,	the	one	loaded	into the memory-address register of 
the memory is commonly referred to as a physical address.

The compile-time and load-time address-binding methods generate identical logical and physical 
addresses.	However,	the	execution-time	address	binding	scheme	results	in	differing	logical	and	
physical	 addresses.	 In	 this	 case,	we	usually	 refer	 to	 the	 logical	 address	 as	 a	virtual address. 
We use logical address and virtual address interchangeably in this text. The set of all logical 
addresses generated by a program is a logical-address space; the set of all physical addresses 
corresponding to these logical addresses is a physical-address space. Thus,	in	the	execution-time	
address-binding	scheme,	the	logical-	and	physical-address	spaces	differ.

The run-time mapping from virtual to physical addresses is done by a hardware device called 
the memory-management unit (MMU).

This	method	requires	hardware	support	slightly	different	from	the	hardware	configuration.	The	
base register is now called a relocation register. The value in the relocation register is added to 
every	address	generated	by	a	user	process	at	the	time	it	is	sent	to	memory.	For	example,	if	the	
base	is	at	14000,	then	an	attempt	by	the	user	to	address	location	0	is	dynamically	relocated	to	
location 14000; an access to location 346 is mapped to location 14346. The MS-DOS operating 
system running on the Intel 80x86 family of processors uses four relocation registers when 
loading and running processes.

The user program never sees the real physical addresses. The program can create a pointer 
to	 location	 346,	 store	 it	 in	 memory,	 manipulate	 it,	 compare	 it	 to	 other	 addresses-all	 as	 the	
number	346.	Only	when	it	is	used	as	a	memory	address	(in	an	indirect	load	or	store,	perhaps)	
is it relocated relative to the base register. The user program deals with logical addresses. The 
memory-mapping hardware converts logical addresses into physical addresses. This form of 
execution-time	binding	was	discussed	in	section	given	above.	The	final	location	of	a	referenced	
memory address is not determined until the reference is made.

We	now	have	two	different	types	of	addresses:	 logical	addresses	(in	the	range	0	to	max)	and	
physical	addresses	(in	the	range	R	+	0	to	R	+	max	for	a	bas	value	R).	The	user	generates	only	
logical addresses and thinks that the process runs in locations 0 to max. The user program supplies 
logical addresses; these logical addresses must be mapped to physical addresses before they are 
used. The concept of a logical-address space that is bound to a separate physical address space 
is central to proper memory management.
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Figure 5.2: Dynamic Relocation using a Relocation Register
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5.3 Swapping

A	 process	 needs	 to	 be	 in	memory	 to	 be	 executed.	 A	 process,	 however,	 can	 be	 swapped	
temporarily	 out	 of	 memory	 to	 a	 backing	 store,	 and	 then	 brought	 back	 into	 memory	 for	
continued	execution.	For	example,	assume	a	multiprogramming	environment	with	a	round-
robin	CPU-scheduling	algorithm.	When	a	quantum	expires,	the	memory	manager	will	start	
to	swap	out	 the	process	 that	 just	finished,	and	to	swap	in	another	process	 to	 the	memory	
space	that	has	been	freed	(Figure	5.3).	 In	the	meantime,	the	CPU	scheduler	will	allocate	a	
time	slice	to	some	other	process	in	memory.	When	each	process	finishes	its	quantum,	it	will	
be	 swapped	with	 another	process.	 Ideally,	 the	memory	manager	 can	 swap	processes	 fast	
enough	that	some	processes	will	be	in	memory,	ready	to	execute,	when	the	CPU	scheduler	
wants	to	reschedule	the	CPU.	The	quantum	must	also	be	sufficiently	large	that	reasonable	
amounts of computing are done between swaps.

Figure 5.3: Swapping of Two Processes using a Disk as a Backing Store
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Notes A variant of this swapping policy is used for priority-based scheduling algorithms. If a higher-
priority	process	arrives	and	wants	service,	the	memory	manager	can	swap	out	the	lower-priority	
process so that it can load and execute the higher-priority process. When the higher-priority 
process	finishes,	the	lower-priority	process	can	be	swapped	back	in	and	continued.	This	variant	
of swapping is sometimes called roll out, roll in.

Normally a process that is swapped out will be swapped back into the same memory space 
that it occupied previously. This restriction is dictated by the method of address binding. 
If	 binding	 is	 done	 at	 assembly	 or	 load	 time,	 then	 the	 process	 cannot	 be	moved	 to	 different	
locations.	If	execution-time	binding	is	being	used,	then	a	process	can	be	swapped	into	a	different	
memory	space,	because	the	physical	addresses	are	computed	during	execution	time.	Swapping	
requires	a	backing	store.	The	backing	store	is	commonly	a	fast	disk.	It	must	be	large	enough	to	
accommodate	copies	of	all	memory	images	for	all	users,	and	it	must	provide	direct	access	to	
these memory images. The system maintains a ready queue consisting of all processes whose 
memory images are on the backing store or in memory and are ready to run. Whenever the 
CPU	scheduler	decides	to	execute	a	process,	it	calls	the	dispatcher.	The	dispatcher	checks	to	see	
whether	the	next	process	in	the	queue	is	in	memory.	If	not,	and	there	is	no	free	memory	region,	
the dispatcher swaps out a process currently in memory and swaps in the desired process. It 
then reloads registers as normal and transfers control to the selected process. 

The context-switch time in such a swapping system is fairly high. To get an idea of the context-
switch	time,	let	us	assume	that	the	user	process	is	of	size	1MB	and	the	backing	store	is	a	standard	
hard disk with a transfer rate of 5 MB per second. The actual transfer of the 1 MB process to or 
from	memory	takes	1000	KB/5000	KB	per	second	=	1	/5	second	=	200	milliseconds.

Assuming	that	no	head	seeks	are	necessary	and	an	average	latency	of	8	milliseconds,	the	swap	
time	takes	208	milliseconds.	Since	we	must	both	swap	out	and	swap	in,	the	total	swap	time	is	
then	about	416	milliseconds.	For	efficient	CPU	utilization,	we	want	our	execution	time	for	each	
process	to	be	long	relative	to	the	swap	time.	Thus,	in	a	round-robin	CPU-scheduling	algorithm,	
for	example,	the	time	quantum	should	be	substantially	larger	than	0.416	seconds.	Notice	that	the	
major part of the swap time is transfer time. The total transfer time is directly proportional to 
the amount of memory swapped. If we have a computer system with 128 MB of main memory 
and	a	resident	operating	system	taking	5	MB,	the	maximum	size	of	the	user	process	is	123	MB.	
However,	many	user	processes	may	be	much	smaller	than	this	size-say,	1	MB.	A	1	MB	process	
could	be	swapped	out	in	208	milliseconds,	compared	to	the	24.6	seconds	for	swapping	123	MB.	
Therefore,	it	would	be	useful	to	know	exactly	how	much	memory	a	user	process	is	using,	not	
simply	how	much	it	might	be	using.	Then,	we	would	need	to	swap	only	what	is	actually	used,	
reducing	swap	time.	For	this	method	to	be	effective,	the	user	must	keep	the	system	informed	
of	any	changes	in	memory	requirements.	Thus,	a	process	with	dynamic	memory	requirements	
will	need	to	issue	system	calls	(request	memory	and	release	memory)	to	inform	the	operating	
system of its changing memory needs.

Swapping	is	constrained	by	other	factors	as	well.	If	we	want	to	swap	a	process,	we	must	be	sure	
that it is completely idle. Of particular concern is any pending I/O. A process may be waiting 
for	an	I/O	operation	when	we	want	to	swap	that	process	to	free	up	its	memory.	However,	if	the	
1/0	is	asynchronously	accessing	the	user	memory	for	I/O	buffers,	then	the	process	cannot	be	
swapped.	Assume	that	the	1/0	operation	was	queued	because	the	device	was	busy.	Then,	if	we	
were	to	swap	out	process	PI	and	swap	in	process	P2,	the	I/O	operation	might	then	attempt	to	
use memory that now belongs to process P2. The two main solutions to this problem are never 
to	swap	a	process	with	pending	I/O,	or	to	execute	1/0	operations	only	into	operating-system	
buffers. Transfers between operating-system buffers and process memory then occur only when 
the	process	is	swapped	in.	The	assumption	that	swapping	requires	few,	if	any,	head	seeks	needs	
further explanation. We postpone discussing this issue until where secondary-storage structure 
is	covered.	Generally,	swap	space	is	allocated	as	a	chunk	of	disk,	separate	from	the	file	system,	
so	 that	 its	use	 is	as	 fast	as	possible.	Currently,	 standard	swapping	 is	used	 in	 few	systems.	 It	
requires	 too	much	 swapping	 time	 and	 provides	 too	 little	 execution	 time	 to	 be	 a	 reasonable	
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Notesmemory-management solution.	Modified	versions	of	swapping,	however,	are	found	on	many	
systems.	A	modification	of	swapping	is	used	in	many	versions	of	UNIX.	Swapping	was	normally	
disabled,	but	would	start	if	many	processes	were	running	and	were	using	a	threshold	amount	
of memory. Swapping would again be halted if the load on the system were reduced. Early PCs 
lacked	sophisticated	hardware	(or	operating	systems	that take	advantage	of	the	hardware)	to	
implement more advanced memory management methods,	but	they	were	used	to	run	multiple	
large	processes	by	a	modified	version	of	swapping.	A	prime	example	is	the	Microsoft	Windows	
3.1	operating	system,	which	supports	concurrent	execution	of	processes	 in	memory.	 If	a	new	
process	is	loaded	and	there	is	insufficient	main	memory,	an	old	process	is	swapped	to	disk.	This	
operating	system,	however,	does	not	provide	full	swapping,	because	the	user,	rather	than	the	
scheduler,	decides	when	it	is	time	to	preempt	one	process	for	another.	Any	swapped-out	process	
remains	swapped	out	(and	not	executing)	until	the	user	selects	that	process	to	run.	Follow-on	
Microsoft	operating	systems,	such	as	Windows	NT,	take	advantage	of	advanced	MMU	features	
now found even on PCs. 

Swapping	is	a	simple	memory/process	management	technique	used	by	the	
operating	system(os)	to	increase	the	utilization	of	the	processor	by	moving	
some	blocked	process	from	the	main	memory	to	the	secondary	memory(hard	
disk);	 thus	 forming	 a	 queue	 of	 temporarily	 suspended	 process	 and	 the	
execution continues with the newly arrived process. After performing the 
swapping	process,the	operating	system	has	two	options	in	selecting	a	process	
for execution.

5.4 Contiguous Memory Allocation

The main memory must accommodate both the operating system and the various user processes. 
We	 therefore	 need	 to	 allocate	 different	 parts	 of	 the	main	memory	 in	 the	most	 efficient	way	
possible.	This	 section	will	 explain	one	 common	method,	 contiguous	memory	 allocation.	The	
memory	 is	 usually	 divided	 into	 two	 partitions—one	 for	 the	 resident	 operating	 system,	 and	
one for the user processes. We may place the operating system in either low memory or high 
memory. The major factor affecting this decision is the location of the interrupt vector. Since the 
interrupt	vector	 is	often	 in	 low	memory,	programmers	usually	place	 the	operating	system	in	
low	memory	as	well.	Thus,	in	this	text,	we	shall	discuss	only	the	situation	where	the	operating	
system resides in low memory. The development of the other situation is similar. We usually 
want several user processes to reside in memory at the same time. We therefore need to consider 
how	 to	allocate	available	memory	 to	 the	processes	 that	are	 in	 the	 input	queue	waiting	 to	be	
brought	 into	memory.	 In	 this	 contiguous	memory	 allocation,	 each	 process	 is	 contained	 in	 a	
single contiguous section of memory.

5.5 Paging

Paging is a memory-management scheme that permits the physical-address space of a process to 
be	noncontiguous.	Paging	avoids	the	considerable	problem	of	fitting	the	varying-sized	memory	
chunks	onto	the	backing	store,	from	which	most	of	the	previous	memory-management	schemes	
suffered.	When	some	code	fragments	or	data	residing	in	main	memory	need	to	be	swapped	out,	
space must be found on the backing store. The fragmentation problems discussed in connection 
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Notes with	main	memory	are	also	prevalent	with	backing	store,	except	that	access	is	much	slower,	so	
compaction	is	impossible.	Because	of	its	advantages	over	the	previous	methods,	paging	in	its	
various forms is commonly used in most operating systems.

Traditionally,	support	for	paging	has	been	handled	by	hardware.	However,	recent	designs	have	
implemented	paging	by	closely	integrating	the	hardware	and	operating	system,	especially	on	
64-bit microprocessors.

Figure 5.4: Paging Hardware
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5.5.1 Basic Method

Physical	memory	is	broken	into	fixed-sized blocks called frames. Logical memory is also broken 
into	blocks	of	the	same	size	called	pages.	When	a	process	is	to	be	executed,	its	pages	are	loaded	
into any available memory frames from the backing store. The backing store is divided into 
fixed-sized	blocks	that	are	of	the	same	size	as	the	memory	frames.	Every	address	generated	by	
the	CPU	is	divided	into	two	parts:	a	page	number	(p) and a page offset (d). The page number 
is used as an index into a page table. The page table contains the base address of each page in 
physical	memory.	This	base	 address	 is	 combined	with	 the	page	offset	 to	define	 the	physical	
memory	address	that	is	sent	to	the	memory	unit.	The	page	size	(like	the	frame	size)	is	defined	
by	the	hardware.	The	size	of	a	page	is	typically	a	power	of	2,	varying	between	512	bytes	and	16	
MB	per	page,	depending	on	the	computer	architecture.	The	selection	of	a	power	of	2	as	a	page	
size makes the translation of a logical address into a page number and page offset particularly 
easy.	If	the	size	of	logical-address	space	is	2m,	and	a	page	size	is	2n	addressing	units	(bytes	or	
words),	then	the	high-order	rn—n	bits	of	a	logical	address	designate	the	page	number,	and	the	
n	low-order	bits	designate	the	page	offset.	Thus,	the	logical	address	is	as	follows:



Unit 5: Memory Management

 LOVELY PROFESSIONAL UNIVERSITY 155

NotesFigure 5.5: Paging Model of Logical and Physical Memory
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As	a	concrete	(although	minuscule)	example,	consider	the	memory	in	Figure	5.7.	Using	a	page	
size	of	4	bytes	and	a	physical	memory	of	32	bytes	(8	pages),	we	show	how	the	user’s	view	of	
memory	can	be	mapped	into	physical	memory.	Logical	address	0	is	page	0,	offset	0.	Indexing	into	
the	page	table,	we	find	that	page	0	is	in	frame	5.	Thus,	logical	address	0	maps	to	physical	address 
20	 (=	 (5	×	4)	+	0).	Logical	address	3	 (page	0,	offset	3)	maps	 to	physical	address	23	 (=	 (5	×	4)	
+	 3).	 Logical	 address	 4	 is	 page	 1,	 offset	 0;	 according	 to	 the	page	 table,	 page	 1	 is	mapped	 to	
frame	6.	Thus,	 logical	address	4	maps	 to	physical	address	24	 (=	 (6	×	4)	+	0).	Logical	address	
13	maps	to	physical	address	9.	You	may	have	noticed	that	paging	itself	is	a	form	of	dynamic	
relocation. Every logical address is bound by the paging hardware to some physical address. 
Using	paging	 is	 similar	 to	 using	 a	 table	 of	 base	 (or	 relocation)	 registers,	 one	 for	 each	 frame	
of	 memory.	When	 we	 use	 a	 paging	 scheme,	 we	 have	 no	 external	 fragmentation:	 Any	 free	
frame	 can	 be	 allocated	 to	 a	 process	 that	 needs	 it.	 However,	 we	 may	 have	 some	 internal	
fragmentation.	Notice	that	frames	are	allocated	as	units.	If	the	memory	requirements	of	a	process	
do	 not	 happen	 to	 fall	 on	 page	 boundaries,	 the	 last	 frame	 allocated	may	 not	 be	 completely	
full.	 For	 example,	 if	 pages	 are	 2,048	 bytes,	 a	 process	 of	 72,766	 bytes	 would	 need	 35	 pages	
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Notes plus	 1,086	 bytes.	 It	 would	 be	 allocated	 36	 frames,	 resulting	 in	 an	 internal	 fragmentation	 of 
2048	—	1086	=	962	bytes.	In	the	worst	case,	a	process	would	need	n	pages	plus	one	byte.	It	would	
be	allocated	n	+	1	frames,	resulting	in	an	internal	fragmentation	of	almost	an	entire	frame.	If	
process	size	is	independent	of	page	size,	we	expect	internal	fragmentation	to	average	one-half	
page	 per	 process.	 This	 consideration	 suggests	 that	 small	 page	 sizes	 are	 desirable.	However,	
overhead	is	involved	in	each	page-table	entry,	and	this	overhead	is	reduced	as	the	size	of	the	
pages	increases.	Also,	disk	I/O	is	more	efficient	when	the	number	of	data	being	transferred	is	
larger.	Generally,	page	sizes	have	grown	over	time	as	processes,	data	sets,	and	main	memory	
have	become	larger.	Today	pages	typically	are	between	KB	and	8	KB,	and	some	systems	support	
even	larger	page	sizes.	Some	CPUs	and	kernels	even	support	multiple	page	sizes.	For	instance,	
Solaris	uses	8	KB	and	4	MB	page	sizes,	depending	on	the	data	stored	by	the	pages.	Researchers	
are	now	developing	variable	on-the-fly	page-size	 support.	Each	page-table	entry	 is	usually	4	
bytes	long,	but	that	size	can	vary	as	well.	A	32-bit	entry	can	point	to	one	of	232	physical	page	
frames.	If	a	frame	is	4	KB,	then	a	system	with	4-byte	entries	can	address	236	bytes	(or	64	GB)	
of	physical	memory.	When	a	process	arrives	in	the	system	to	be	executed,	its	size,	expressed	in	
pages,	is	examined.	Each	page	of	the	process	needs	one	frame.	Thus,	if	the	process	requires	n	
pages,	at	least	n	frames	must	be	available	in	memory.	If	n	frames	are	available,	they	are	allocated	
to	this	arriving	process.	The	first	page	of	the	process	is	loaded	into	one	of	the	allocated	frames,	
and the frame number is put in the page table for this process.

Figure 5.7: Paging Examples for a 32-byte Memory with 4-byte Pages
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NotesAn important aspect of paging is the clear separation between the user’s view of memory and 
the actual physical memory. The user program views that memory as one single contiguous 
space,	containing	only	this	one	program.

Figure 5.8: Free Frames: (a) Before Allocation and (b) After Allocation

In	fact,	the	user	program	is	scattered	throughout	physical	memory,	which	also	holds	other	
programs. The difference between the user’s view of memory and the actual physical memory 
is reconciled by the address-translation hardware. The logical addresses are translated into 
physical addresses. This mapping is hidden from the user and is controlled by the operating 
system.	Notice	 that	 the	user	process	by	definition	 is	unable	 to	access	memory	 it	does	not	
own.	It	has	no	way	of	addressing	memory	outside	of	its	page	table,	and	the	table	includes	
only those pages that the process owns. Since the operating system is managing physical 
memory,	it	must	be	aware	of	the	allocation	details	of	physical	memory—which	frames	are	
allocated,	which	 frames	 are	 available,	 how	many	 total	 frames	 there	 are,	 and	 so	 on.	 This	
information is generally kept in a data structure called a frame table. The frame table has 
one	entry	for	each	physical	page	frame,	indicating	whether	the	latter	is	free	or	allocated	and,	
if	 it	 is	 allocated,	 to	which	page	of	which	process	 or	processes.	 In	 addition,	 the	 operating	
system	must	be	aware	that	user	processes	operate	 in	user	space,	and	all	 logical	addresses	
must	be	mapped	to	produce	physical	addresses.	 If	a	user	makes	a	system	call	 (to	do	I/O,	
for	example)	and	provides	an	address	as	a	parameter	(a	buffer,	for	instance),	that	address	
must be mapped to produce the correct physical address. The operating system maintains a 
copy	of	the	page	table	for	each	process,	just	as	it	maintains	a	copy	of	the	instruction	counter	
and register contents. This copy is used to translate logical addresses to physical addresses 
whenever the operating system must map a logical address to a physical address manually. 
It	is	also	used	by	the	CPU	dispatcher	to	define	the	hardware	page	table	when	a	process	is	
to be allocated the CPU. Paging therefore increases the context-switch time. 
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Notes Paging	 used	 by	 the	 CPU	 dispatcher	 to	 define	 the	 hardware	 page	 table	
when a process is to be allocated the CPU. Paging therefore increases the 
context-switch time.

5.5.2 Hardware Support
Each operating system has its own methods for storing page tables. Most allocate a page table 
for	each	process.	A	pointer	 to	 the	page	table	 is	stored	with	the	other	register	values	(like	the	
instruction	counter)	in	the	process	control	block.	When	the	dispatcher	is	told	to	start	a	process,	
it	must	 reload	 the	user	 registers	and	define	 the	 correct	hardware	page-table	values	 from	 the	
stored user page table. The hardware implementation of the page table can be done in several 
ways.	In	the	simplest	case,	the	page	table	is	implemented	as	a	set	of	dedicated	registers.	These	
registers should be built with very high-speed logic to make the paging-address translation 
efficient.	 Every	 access	 to	memory	must	 go	 through	 the	paging	map,	 so	 efficiency	 is	 a	major	
consideration.	The	CPU	dispatcher	reloads	these	registers,	just	as	it	reloads	the	other	registers.	
Instructions	 to	 load	or	modify	 the	page-table	registers	are,	of	course,	privileged,	so	 that	only	
the operating system can change the memory map. The DEC PDP-11 is an example of such 
an	architecture.	The	address	consists	of	16	bits,	and	the	page	size	is	8	KB.	The	page	table	thus	
consists of eight entries that are kept in fast registers. The use of registers for the page table is 
satisfactory	if	the	page	table	is	reasonably	small	(for	example,	256	entries).	Most	contemporary	
computers,	however,	allow	the	page	table	to	be	very	large	(for	example,	1	million	entries).	For	
these	machines,	the	use	of	fast	registers	to	implement	the	page	table	is	not	feasible.	Rather,	the	
page	table	is	kept	in	main	memory,	and	a	page-table	base	register	(PTBR) points to the page 
table.	 Changing	 page	 tables	 requires	 changing	 only	 this	 one	 register,	 substantially	 reducing	
context-switch time. 

The	problem	with	this	approach	is	the	time	required	to	access	a	user	memory	location.	If	we	
want	to	access	location	i,	we	must	first	index	into	the	page	table,	using	the	value	in	the	PTBR	
offset by the page number for i. This	 task	requires	a	memory	access.	 It	provides	us	with	 the	
frame	number,	which	is	combined	with	the	page	offset	to	produce	the	actual	address.	We	can	
then	access	the	desired	place	in	memory.	With	this	scheme,	two memory accesses are needed 
to	access	a	byte	(one	for	the	page-table	entry,	one	for	the	byte).	Thus,	memory	access	is	slowed	
by a factor of 2. This delay would be intolerable under most circumstances. We might as well 
resort to swapping!

The	standard	solution	 to	 this	problem	is	 to	use	a	special,	 small,	 fast	 lookup	hardware	cache,	
called translation look-aside buffer (TLB).	 The	TLB	 is	 associative,	 high-speed	memory.	 Each	
entry	in	the	TLB	consists	of	two	parts:	a	key	(or	tag)	and	a	value.	When	the	associative	memory	
is	presented	with	an	item,	it	is	compared	with	all	keys	simultaneously.	If	the	item	is	found,	the	
corresponding	value	field	is	returned.	The	search	is	fast;	the	hardware,	however,	is	expensive.	
Typically,	the	number	of	entries	in	a	TLB	is	small,	often	numbering	between	64	and	1,024.	The	
TLB is used with page tables in the following way. The TLB contains only a few of the page-
table	entries.	When	a	logical	address	is	generated	by	the	CPU,	its	page	number	is	presented	to	
the	TLB.	If	the	page	number	is	found,	its	frame	number	is	immediately	available	and	is	used	
to access memory. The whole task may take less than 10 per cent longer than it would if an 
unmapped memory reference were used. 

If	the	page	number	is	not	in	the	TLB	(known	as	a	TLB miss),	a	memory	reference	to	the	page	
table	must	be	made.	When	the	frame	number	is	obtained,	we	can	use	it	to	access	memory.	In	
addition,	we	add	the	page	number	and	frame	number	to	the	TLB,	so	that	they	will	be	found	
quickly	on	the	next	reference.	 If	 the	TLB	is	already	full	of	entries,	 the	operating	system	must	
select	one	for	replacement.	Replacement	policies	range	from	least	recently	used	(LRU)	to	random.	
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NotesFurthermore,	some	TLBs	allow	entries	to	be	wired	down,	meaning	that	they	cannot	be	removed	
from	the	TLB.	Typically,	TLB	entries	for	kernel	code	are	often	wired	down.	Some	TLBs	store	
address-space	identifiers	(ASIDs) in	each	entry	of	the	TLB.	An	ASID	uniquely	identifies	each	
process and is used to provide address space protection for that process. When the TLB attempts 
to	resolve	virtual	page	numbers,	it	ensures	the	ASID	for	the	currently	running	process	matches	
the	ASID	associated	with	the	virtual	page.	If	the	ASIDs	do	not	match,	they	are	treated	as	a	TLB	
miss.	 In	 addition	 to	 providing	 address-space	protection,	 an	ASID	 allows	 the	TLB	 to	 contain	
entries for several different processes simultaneously.

Figure 5.9: Paging Hardware with TLB

If	the	TLB	does	not	support	separate	ASIDs,	every	time	a	new	page	table	is	selected	(for	instance,	
each	 context	 switch),	 the	TLB	must	 be	flushed (or	 erased)	 to	 ensure	 that	 the	 next	 executing	
process	does	not	use	the	wrong	translation	information.	Otherwise,	there	could	be	old	entries	
in the TLB that contain valid virtual addresses but have incorrect or invalid physical addresses 
left over from the previous process. The percentage of times that a particular page number is 
found in the TLB is called the hit ratio. An	80-per	cent	hit	ratio	means	that	we	find	the	desired	
page	number	in	the	TLB	80	percent	of	the	time.	If	 it	 takes	20	nanoseconds	to	search	the	TLB,	
and	100	nanoseconds	to	access	memory,	then	a	mapped	memory	access	takes	120	nanoseconds	
when the page number is in the TLB. 

If	we	fail	to	find	the	page	number	in	the	TLB	(20	nanoseconds),	then	we	must	first	access	memory	
for	 the	page	 table	and	 frame	number	 (100	nanoseconds),	and	 then	access	 the	desired	byte	 in	
memory	(100	nanoseconds),	for	a	total	of	220	nanoseconds.	To	find	the	effective memory-access 
time, we	must	weigh	each	case	by	 its	probability:	 effective	access	 time	=	0.80	x	120	+	0.20	x	
220	=	140	nanoseconds.	In	this	example,	we	suffer	a	40-per	cent	slowdown	in	memory	access	
time	(from	100	to	140	nanoseconds).	For	a	98-per	cent	hit	ratio,	we	have	effective	access	time	=	
0.98	x	120	+	0.02	x	220	=	122	nanoseconds.	This	increased	hit	rate	produces	only	a	22-per	cent	
slowdown in access time. 

   How to uses paging in the RAM and CPU?
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Notes 5.5.3 Protection
Memory protection in a paged environment is accomplished by protection bits 11 that are 
associated	with	each	frame.	Normally,	these	bits	are	kept	in	the	page	table.	One	bit	can	define	
a page to be read-write or read-only. Every reference to memory goes through the page table to 
find	the	correct	frame	number.	At	the	same	time	that	the	physical	address	is	being	computed,	
the protection bits can be checked to verify that no writes are being made to a read-only page. 
An	attempt	 to	write	 to	a	 read-only	page	causes	a	hardware	 trap	 to	 the	operating	 system	 (or	
memory-protection	violation).	We	can	easily	expand	this	approach	to	provide	a	finer	level	of	
protection.	We	can	create	hardware	to	provide	read-only,	read-write,	or	execute-only	protection.	
Or,	by	providing	separate	protection	bits	for	each	kind	of	access,	we	can	allow	any	combination	
of these accesses; illegal attempts will be trapped to the operating system. One more bit is 
generally	attached	to	each	entry	 in	 the	page	 table:	a	validin valid bit. When this bit is set to 
“valid,”	this	value	indicates	that	the	associated	page	is	in	the	process	logical-address	space,	and	
is	 thus	a	 legal	 (or	valid)	page.	 If	 the	bit	 is	 set	 to	“invalid,”	 this	value	 indicates	 that	 the	page	
is not in the process logical-address space. Illegal addresses are trapped by using the validin 
valid bit. The operating system sets this bit for each page to allow or disallow accesses to that 
page.	For	example,	in	a	system	with	a	14-bit	address	space	(0	to	16383),	we	may	have	a	program	
that	should	use	only	addresses	0	to	10468.	Given	a	page	size	of	2	KB,	however,	finds	that	the	
validin	valid	bit	is	set	to	invalid,	and	the	computer	will	trap	to	the	operating	system.	Because	
the	program	extends	to	only	address	10468,	any	reference	beyond	that	address	is	illegal.	This	
problem	is	a	result	of	the	2	KB	page	size	and	reflects	the	internal	fragmentation	of	paging.	Rarely	
does	a	process	use	all	its	address	range.	In	fact,	many	processes	use	only	a	small	fraction	of	the	
address space available to them. It would be wasteful in these cases to create a page table with 
entries	with	entries	for	every	page	in	the	address	range.	Most	of	this	table	would	be	unused,	
but	would	take	up	valuable	memory	space.	Some	systems	provide	hardware,	in	the	form	of	a	
page-table length register (PTLR), to indicate the size of the page table. This value is checked 
against every logical address to verify that the address is in the valid range for the process. 
Failure of this test causes an error trap to the operating system.

Structure of the Page Table: In	this	section	we	explore	some	of	the	most	common	techniques	
for structuring the page table.

Figure 5.10: Valid (v) or Invalid (i) Bit in a Page Table
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Notes5.5.4 Hierarchical Paging
Most	modern	computer	systems	support	a	 large	 logical-address	space	 (Z3	 to	2@).	 In	such	an	
environment,	 the	page	 table	 itself	becomes	excessively	 large.	For	example,	consider	a	system	
with	a	32-bit	logical-address	space.	If	the	page	size	in	such	a	system	is	4	KB	(212),	then	a	page	
table	may	consist	of	up	to	1	million	entries	(232/212).	Assuming	that	each	entry	consists	of	4	
bytes,	each	process	may	need	up	to	4	MB	of	physical-address	space	for	 the	page	table	alone.	
Clearly,	we	would	not	want	to	allocate	the	page	table	contiguously	in	main	memory.	One	simple	
solution to this problem is to divide the page table into smaller pieces. There are several ways 
to accomplish this division.

Figure 5.11: A Two-level Page-table Scheme

Remember our example to our 32-bit machine with a page size of 4 KB. A logical address is divided 
into	a	page	number	consisting	of	20	bits,	and	a	page	offset	consisting	of	12	bits.	Because	we	page	the	
page	table,	the	page	number	is	further	divided	into	a	10-bit	page	number	and	a	10-bit	page	offset.	
Thus,	a	logical	address	is	as	follows—where	p1	is	an	index	into	the	outer	page	table	and	p2	is	the

Figure 5.12: Logical Address

Page number Page offset

p1 d

10 12

p2

10

displacement within the page of the outer page table. The address-translation method for this 
architecture is shown in Figure 5.14. Because address translation works from the outer page table 
inwards,	this	scheme	is	also	known	as	a	forward-mapped page table. The Pentium-I1 uses this 
architecture. The VAX architecture also supports a variation of two-level paging. The VAX is 
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Notes a 32-bit machine with page size of 512 bytes. The logical-address space of a process is divided 
into	four	equal	sections,	each	of	which	consists	of	230	bytes.

Each	section	represents	a	different	part	of	the	logical-address	space	of	a	process.	The	first	2	high-
order bits of the logical address designate the appropriate section. The next 21 bits represent the 
logical	page	number	of	that	section,	and	the	final	9	bits	represent	an	offset	in	the	desired	page.	
By	partitioning	the	page	table	in	this	manner,	the	operating	system	can	leave	partitions	unused	
until a process needs them. An address on the VAX architecture	is	as	follows:

Figure 5.13: VAX Architecture

Section Offset

s d

2 9

p

21

Page

where	s	designates	the	section	number,	p	is	an	index	into	the	page	table,	and	d	is	the	displacement	
within the page. The size of a one-level page table for a VAX process using one section still is 
2”	bits	*	4	bytes	per	entry	=	8	MB.	So	that	main-memory	use	is	reduced	even	further,	the	VAX 
pages	the	user-process	page	tables.	For	a	system	with	a	64-bit	logical-address	space,	a	two-level	
paging	scheme	is	no	longer	appropriate.	To	illustrate	this	point,	 let	us	suppose	that	 the	page	
size	in	such	a	system	is	4	KB	(212).	In	this	case,	the	page	table	will	consist	of	up	to	252	entries.	
If	we	use	a	two-level	paging	scheme,	then	the	inner	page	tables	could	conveniently	be	one	page	
long,	or	contain	21	4-byte	entries.	The	addresses	would	look	like:

Figure 5.14: Address Translation for a Two-level 32-bit Paging Architecture
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Page of
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Figure 5.15: 32-bit Paging
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The outer	page	table	will	consist	of	242	entries,	or	244	bytes.	The	obvious	method	to	avoid	such	
a large table is to divide the outer page table into smaller pieces. This approach is also used 
on	 some	32-bit	processors	 for	 added	flexibility	 and	efficiency.	We	 can	divide	 the	outer	page	
table	in	various	ways.	We	can	page	the	outer	page	table,	giving	us	a	three-level	paging	scheme.	
Suppose that the outer	page	table	is	made	up	of	standard-size	pages	(21	entries,	or	2	bytes);	a	
64-bit	address	space	is	still	daunting:
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Figure 5.16:  64-bit Address

2nd outer page
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The outer page table is still 234 bytes	large.	The	next	step	would	be	a	four-level	paging	scheme,	
where	the	second	level	outer	page	table	itself	is	also	paged.	The	SPARC	architecture	(with	32-bit	
addressing)	supports	a	three-level	paging	scheme,	whereas	the	32-bit	Motorola	68030	architecture	
supports a four-level paging scheme.

However,	for	64-bit	architectures,	hierarchical	page	tables	are	generally	considered	inappropriate.	
For	example,	the	64-bit	UltraSPARC	would	require	seven	levels	of	paging-a	prohibitive	number	
of memory accesses to translate each logical address. 42 10 12 inner page P2 2nd outer page 
PI Hashed Page Tables. A common approach for handling address spaces larger than 32 bits 
is to use a hashed page table, with the hash value being the virtual-page number. Each entry 
in	 the	hash	 table	 contains	a	 linked	 list	of	 elements	 that	hash	 to	 the	 same	 location	 (to	handle	
collisions).	Each	element	consists	of	three	fields:	(a)	 the	virtual	page	number,	 (b)	the	value	of	
he	mapped	page	frame,	and	(c)	a	pointer	to	the	next	element	in	the	linked	list.	The	algorithm	
works	as	follows:	The	virtual	page	number	in	the	virtual	address	is	hashed	into	the	hash	table.	
The	virtual	page	number	is	compared	to	field	(a)	in	the	first	element	in	the	linked	list.	If	there	is	
a	match,	the	corresponding	page	frame	(field	(b))	is	used	to	form	the	desired	physical	address.	
If	 there	 is	no	match,	 subsequent	entries	 in	 the	 linked	 list	are	searched	for	a	matching	virtual	
page number. A variation to this scheme that is favorable for 64-bit address spaces has been 
proposed. Clustered page tables are similar to hashed page tables except that each entry in 
the	hash	table	refers	to	several	pages	(such	as	16)	rather	than	a	single	page.	Therefore,	a	single	
page-table entry can store the mappings for multiple physical-page frames. Clustered page tables

Figure 5.17: Hashed Page Table

are particularly useful for sparse address spaces where memory references are noncontiguous 
and scattered throughout the address space.

Inverted Page Table: Usually,	each	process	has	a	page	table	associated	with	it.	The	page	table	has	
one	entry	for	each	page	that	the	process	is	using	(or	one	slot	for	each	virtual	address,	regardless	
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Notes of	the	latter’s	validity).	This	table	representation	is	a	natural	one,	since	processes	reference	pages	
through the pages’ virtual addresses. The operating system  t of millions of entries. These tables 
may	consume	large	amounts	of	physical	memory,	which	is	required	just	to	keep	track	of	how	
the other physical memory is being used.

To	solve	this	problem,	we	can	use	an	inverted page table. An inverted page table has one entry 
for	each	real	page	(or	frame)	of	memory.	Each	entry	consists	of	the	virtual	address	of	the	page	
stored	in	that	real	memory	location,	with	information	about	the	process	that	owns	that	page.	
Thus,	only	one	page	table	is	in	the	system,	and	it	has	only	one	entry	for	each	page	of	physical	
memory. which depicts a standard page table in operation. Because only one page table is in the 
system	yet	there	are	usually	several	different	address	spaces	mapping	physical	memory,	inverted	
page	tables	often	require	an	address-space	identifier	stored	in	each	entry	of	the	page	table.	

Figure 5.18: Inverted Page Table

Storing	the	address-space	identifier	ensures	the	mapping	of	a	logical	page	for	a	particular	process	
to the corresponding physical page frame. Examples of systems using inverted page tables include 
the	64-bit	UltraSPARC	and	PowerPC.	To	illustrate	this	method,	we	describe	a	simplified	version	
of the implementation of the inverted page table used in the IBM RT. Each virtual address in the 
system	consists	of	a	triple	<process-id,	page-number,	offset>.	Each	inverted	page-table	entry	is	
a	pair	<process-id,	page-number>	where	the	process-id	assumes	the	role	of	the	address-space	
identifier.	When	a	memory	reference	occurs,	part	of	the	virtual	address,	consisting	of	<process-id,	
page	number>,	is	presented	to	the	memory	subsystem.	The	inverted	page	table	is	then	searched	
for	a	match.	If	a	match	is	found-say,	at	entry	i-then	the	physical	address	<i, offset>	is	generated.	
If	no	match	is	found,	then	an	illegal	address	access	has	been	attempted.

Although	 this	 scheme	 decreases	 the	 amount	 of	memory	 needed	 to	 store	 each	 page	 table,	 it	
increases the amount of time needed to search the table when a page reference occurs. Because 
the	inverted	page	table	is	sorted	by	a	physical	address,	but	lookups	occur	on	virtual	addresses,	
the whole table might need to be searched for a match. This search would take far too long. Of 
course,	each	access	to	the	hash	table	adds	a	memory	reference	to	the	procedure,	so	one	virtual-
memory	 reference	 requires	 at	 least	 two real-memory reads one for the hash-table entry and 
one	for	the	page	table.	To	improve	performance,	recall	that	the	TLB	is	searched	first,	before	the	
hash table is consulted. 
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Notes5.5.5 Shared Pages
Another advantage of paging is the possibility of sharing common code. This consideration is 
particularly	important	in	a	time-sharing	environment.	Consider	a	system	that	supports	40	users,	
each of whom executes a text editor. If the text editor consists of 150 KB of code and 50 KB of 
data	space,	we	would	need	8,000	KB	to	support	the	40	users.	If	the	code	is	reentrant code,	Here	
we see a three-page editor-each page of size 50 KB; the large page size is used to simplify the 
figure-being	shared	among	three	processes.	Each	process	has	its	own	data	page.	Reentrant	code	
(or	pure code) is	non-self-modifying	code.	If	the	code	is	reentrant,	then	it	never	changes	during	
execution.	Thus,	two	or	more	processes	can	execute	the	same	code	at	the	same	time.	Each	process	
has its own copy of registers and data storage to hold the data for the process execution. The 
data	for	two	different	processes	will,	of	course,	vary	for	each	process.

Figure 5.19: Sharing of Code in a Paging Environment

Only one copy of the editor needs to be kept in physical memory. Each user’s page table maps 
onto	 the	same	physical	copy	of	 the	editor,	but	data	pages	are	mapped	onto	different	 frames.	
Thus,	to	support	40	users,	we	need	only	one	copy	of	the	editor	(150	KB),	plus	40	copies	of	the	
50	KB	of	data	space	per	user.	The	total	space	required	is	now	2,150	KB,	instead	of	8,000	KB-a	
significant	savings.	Other	heavily	used	programs	can	also	be	shared-compilers,	window	systems,	
run-time	libraries,	database	systems,	and	so	on.	To	be	sharable,	the	code	must	be	reentrant.	The	
read-only nature of shared code should not be left to the correctness of the code; the operating 
system	 should	 enforce	 this	 property	 have	 difficulty	 implementing	 shared	memory.	 Shared	
memory	 is	usually	 implemented	 as	multiple	 virtual	 addresses	 (one	 for	 each	process	 sharing	
the	memory)	that	are	mapped	to	one	physical	address.	This	standard	method	cannot	be	used,	
however,	as	there	is	only	one	virtual	page	entry	for	every	physical	page,	so	one	physical	page	
cannot	have	 two	(or	more)	shared	virtual	addresses.	Organizing	memory	according	to	pages	
provides	numerous	other	benefits	in	addition	to	allowing	several	processes	to	share	the	same	
physical pages.
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Notes The	free	page	queue	is	a	list	of	page	frames	that	are	available	for	assignment	
after a page fault. Some operating systems support page reclamation; if a 
page fault occurs for a page that had been stolen and the page frame was 
never	reassigned,	then	the	operating	system	avoids	the	necessity	of	reading	
the	page	back	in	by	assigning	the	unmodified	page	frame.

5.6 Segmentation

An important aspect of memory management that became unavoidable with paging is the 
separation of the user’s view of memory and the actual physical memory. The user’s view 
of memory is not the same as the actual physical memory. The user’s view is mapped onto 
physical memory. The mapping allows differentiation between logical memory and physical 
memory.

5.6.1 Segmentation with Paging

Both paging and segmentation have	advantages	and	disadvantages.	In	fact,	of	the	two	most	
popular	microprocessors	now	being	used,	 the	Motorola	68000	 line	 is	designed	based	on	a	
flat-address	space,	whereas	the	Intel	80	×	86	and	Pentium	family	are	based	on	segmentation.	
Both are merging memory models toward a mixture of paging and segmentation. We can 
combine these two methods to improve on each. This combination is best illustrated by the 
architecture of the Intel 386. The IBM OS/2 32-bit version is an operating system running 
on	top	of	the	Intel	386	(and	later)	architecture.	The	Intel	386	uses	segmentation	with	paging	
for	memory	management.	 The	maximum	number	 of	 segments	 per	 process	 is	 16	KB,	 and	
each segment can be as large as 4 gigabytes. The page size is 4 KB. We shall not give a 
complete	description	of	the	memory-management	structure	of	the	386	in	this	text.	Rather,	
we shall present the major ideas. The logical-address space of a process is divided into 
two	partitions.	The	first	partition	consists	of	up	 to	8	KB	segments	 that	are	private	 to	 that	
process. The second partition consists of up to 8 KB segments that are shared among all the 
processes.	Information	about	the	first	partition	is	kept	in	the	local descriptor table (LDT), 
information about the second partition is kept in the global descriptor table (GDT). Each 
entry	in	the	LDT	and	GDT	consists	of	8	bytes,	with	detailed	information	about	a	particular	
segment including the base location and length of that segment. The logical address is a 
pair	(selector,	offset),	where	the	selector	is	a	16-bit	number:

Figure 5.20: 16-bit Number

13 21

s pg

in	which	s	designates	the	segment	number,	g	indicates	whether	the	segment	is	in	the	GDT	or	
LDT,	and	p deals with protection. The offset is a 32-bit number specifying the location of the 
byte	(or	word)	within	the	segment	in	question.	The	machine	has	six	segment	registers,	allowing	
six segments to be addressed at any one time by a process. It has six 8-byte micro program 
registers to hold the corresponding descriptors from either the LDT or GDT. This cache lets the 
386 avoid having to read the descriptor from memory for every memory reference. The physical 
address on the 386 is 32 bits long and is formed as follows.

The segment register points to the appropriate entry in the LDT or GDT. The base and limit 
information	about	the	segment	in	question	are	used	to	generate	a	linear address. First,	the	limit	
is	used	to	check	for	address	validity.	If	the	address	is	not	valid,	a	memory	fault	is	generated,	
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Notesresulting	in	a	trap	to	the	operating	system.	If	it	is	valid,	then	the	value	of	the	offset	is	added	to	
the	value	of	 the	base,	resulting	in	a	32-bit	 linear	address.	This	address	 is	 then	translated	into	
a	physical	address.	As	pointed	out	previously,	each	segment	is	paged,	and	each	page	is	4	KB.

A	page	table	may	thus	consist	of	up	to	1	million	entries.	Because	each	entry	consists	of	4	bytes,	
each	process	may	need	up	to	4	MB	of	physical-address	space	for	the	page	table	alone.	Clearly,	
we would not want to allocate the page table contiguously in main memory. The solution 
adopted in the 386 is to use a two-level paging scheme. The linear address is divided into a 
page	number	consisting	of	20	bits,	and	a	page	offset	 consisting	of	12	bits.	Since	we	page	 the	
page	table,	the	page	number	is	further	divided	into	a	10-bit	page	directory	pointer	and	a	10-bit	
page	table	pointer.	The	logical	address	is	as	follows:

Figure 5.21:  Logical Address

Page number Page offset

p1 d

10 12

p2

10

To	improve	the	efficiency	of	physical-memory	use,	Intel	386	page	tables	can	be	swapped	to	disk.	In	
this	case,	an	invalid	bit	is	used	in	the	page	directory	entry	to	indicate	whether	the	table	to	which

Figure 5.22: Intel 80386 Address Translation
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Notes the	entry	is	pointing	is	in	memory	or	on	disk.	If	the	table	is	on	disk,	the	operating	system	can	
use the other 31 bits to specify the disk location of the table; the table then can be brought into 
memory on demand.

All CPU address is differed one another.

Segmentation is one approach to memory management and protection in the 
operating	system.	It	has	been	superseded	by	paging	for	most	purposes,	but	
much	of	the	terminology	of	segmentation	is	still	used,	“segmentation	fault”	
being an example. Some operating systems still have segmentation at some 
logical level although paging is used as the main memory management policy.

Self Assessment

Multiple choice questions:

 1. Primary memory stores  ..................... .

	 (a)	 Data	alone

	 (b)	 Programs	alone

	 (c)	 Results	alone

	 (d)	 All	of	these

 2. Memory is made up of ..................... .

	 (a)	 Set	of	wires

	 (b)	 Set	of	circuits

	 (c)	 Large	number	of	cells

	 (d)	 All	of	these

	 3.	 The	principal	of	locality	of	reference	justifies	the	use	of

	 (a)	 re-enterable	 (b)	 non-reusable

	 (c)	 virtual	memory	 (d)	 cache	memory

5.7 Virtual Memory

5.7.1 Paging and Swapping
Virtual memory is a way of making the physical memory of a computer system effectively larger 
than	it	really	is.	Rather	than	using	mirrors,	the	system	does	this	by	determining	which	parts	of	
its	memory	are	often	sitting	idle,	and	then	makes	a	command	decision	to	empty	their	contents	
onto	a	disk,	thereby	freeing	up	useful	RAM.

As	we	noted	earlier,	it	is	quite	seldom	that	every	byte	of	every	program	is	in	use	all	of	the	time.	
More often programs are large and contain sections of code which are visited rarely if ever at 
all	by	the	majority	of	users	—	so	if	they	are	not	used,	why	keep	them	in	RAM?
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NotesVirtual memory uses two methods to free up RAM when needed.

	 •	 Swapping:	An	entire	process,	 including	code	 segment	and	data	 segments	 is	 expunged	
from the system memory.

	 •	 Paging: Only single pages are swapped out.

Of	course,	the	simplest	way	to	clear	a	space	in	RAM	is	to	terminate	some	processes,	but	virtual	
memory	is	more	subtle	than	that.	The	idea	is	to	free	RAM	only	temporarily,	with	the	intention	
of copying the data back again later. All of this should happen in such a way that the user of 
the system do not realize that it is happening.

Swapping and paging dump the system memory in special disk caches. Normally these disk 
areas	are	not	part	of	 the	usual	file	 system	structure,	 since	 the	overhead	of	maintaining	a	file	
system	is	inappropriate	when	only	the	system	needs	to	use	the	disk.	Instead,	the	system	stores	
swap	files	in	large	contiguous	blocks,	sacrificing	utilization	of	space	for	speed.	Some	systems	
also	allow	swapping	to	a	special	file	in	the	normal	filesystem,	which	has	a	reserved	size.

In	UNIX,	there	both	methods	are	available.	On	BSD	systems,	normally	a	whole	disk	partition	
(see	next	section)	 is	 reserved	 for	swapping	and	paging.	 (This	 is	called	 the	swap	partition	 for	
historical	reasons.)	If	this	fails	to	provide	enough	space,	under	SunOS	the	system	administrator	
can	either	add	other	partitions,	or	use	the	mkfile	command	to	create	a	swap	file	on	a	normal	in	
a	part	of	the	file	system	where	there	is	sufficient	space.	In	the	system	5	based	HPUX	operating	
system,	 the	normal	 swap	 area	 is	 invisible	 to	 the	user.	Additional	 swap	 space	 can	 simply	 be	
grabbed	from	some	part	of	 the	filesystem,	by	the	kernel,	 if	 the	system	goes	short.	Eventually	
this	can	lead	to	a	paradoxical	situation	in	which	the	user	sees	nothing	on	the	disk,	but	the	OS	
declares that the disk is full!

Early versions of UNIX used swapping exclusively when RAM was in short supply. Since BSD 
4.3,	all	systems	which	have	learned	something	from	the	BSD	project	use	paging	as	their	main	
method of virtual memory implementation.

5.7.2 Demand Paging — Lazy Evaluation
You	might	ask	—	if	a	program	has	a	lot	of	pages	which	do	not	get	used,	what	is	the	purpose	
of	loading	them	in	the	first	place	and	then	swapping	them	out?	One	could	simply	make	a	
rule that no page should be brought into memory until it were needed. Such a scheme is 
possible,	but	few	systems	allow	a	program	to	run	if	it	cannot	be	loaded	fully	into	memory	
on	start-up.	One	argument	against	this	extreme	form	of	paging	is	that,	it	could	be	dangerous	
to start a program which was unable to complete because it was too large to run on the 
system,	under	the	conditions	of	the	moment.	If	it	started	to	run	and	then	crashed	or	exited,	
it	 could	 compromise	 important	data.	 (The	BSD	UNIX	 system	allocates	 sufficient	 space	 in	
its	swap	area	to	swap	or	page	out	each	entire	process	as	it	begins.	That	way,	none	of	them	
will	ever	run	out	of	swap	during	execution.)

On	the	other	hand,	if	a	program	can	be	loaded	in,	it	is	most	likely	safe	—	so	if	we	then	discover	
that	large	parts	of	the	program	are	never	used,	we	can	page	them	out	and	never	bother	to	page	
them in again.

This is an example of what is called lazy evaluation. A lazy pager never brings a page back into 
memory	until	is	has	to,	i.e.	until	someone	wants	to	use	it.	This	can	save	a	considerable	amount	of 
I/O	time.	Another	name	for	this	is	demand	paging,	since	it	only	occurs	on	demand	from	user	
processes.

It is now easy to see how the paging concept goes hand in hand with the logical memory 
concept:	each	time	the	system	pages	out	a	frame	of	physical	memory,	it	sets	a	flag	in	the	page	
table next to the logical page that was removed. If a process attempts to read from that page 
of	logical	memory	the	system	first	examines	the	flag	to	see	if	the	page	is	available	and,	if	it	is	
not,	a	page	fault	occurs.
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Notes A	page	fault	is	a	hardware	or	software	interrupt	(depending	on	implementation)	which	passes	
control to the operating system. The OS proceeds to locate the missing page in the swap area and 
move it back into a free frame of physical memory. It then binds the addresses by updating the 
paging	table	and,	when	control	returns	to	the	waiting	process,	the	missing	page	is	automatically	
restored,	as	if	it	had	never	been	gone.

Notice,	 that	 the	 location	of	 the	physical	 frame	 is	completely	 irrelevant	 to	 the	user	process.	A	
frame	does	not	have	to	be	moved	back	into	the	same	place	that	it	was	removed	from,	because	
the runtime binding of addresses takes care of its relocation.

5.7.3 Swapping and Paging Algorithms
How does the system decide what pages or processes to swap out? This is another problem in 
scheduling. A multitude of schemes is available. Here we shall only consider some examples.

Consider	the	UNIX	system	a	moment.	Before	paging	was	introduced,	the	only	way	that	memory	
segments	could	increase	their	size	was	to:

 1. Try to look for free memory at the end of the current segment and add it to the current 
segment.

	 2.	 Try	to	allocate	a	new,	larger	segment,	copy	the	data	to	the	new	segment	and	deallocate	
the old one.

	 3.	 Swap	out	the	process,	reallocate	and	swap	in	again.

In	this	use	of	swap	space,	it	is	clear	that	a	process	is	swapped	out	while	it	is	waiting	for	a	suitable	
hole in to appear in the memory. This might take a long time and it might be immediate. Another 
case	for	swapping	out	a	job	is	if	it	has	been	idle	(sleeping)	for	a	long	time.

On	a	BSD-like	UNIX	 system,	 the	 first	 three	 processes	 to	 be	 started	 are	 the	 swapper,	 init,	
the and the page daemon. The page daemon is responsible for examining the state of the 
page-table and deciding which pages are to be moved to disk. Normally the swapper will 
not	swap	out	processes	unless	they	have	been	sleeping	for	a	long	time,	because	the	pager	
will	first	strip	them	of	their	inactive	pages.	It	will	begin	to	swap	out	processes	however,	if	
the	average	 load	on	 the	system	 is	very	high.	 (The	 load	average	 is	a	number	based	on	 the	
kernel’s	 own	 internal	 accounting	 and	 is	 supposed	 to	 reflect	 the	 state	 of	 system	 activity.)	
This gives ‘cheap’ processes a chance to establish themselves. It is the page daemon which 
makes	the	paging	decisions.	By	copying	read-only	segments	to	the	swap	area	at	load	time,	
the	running	overhead	of	paging	out	read-only	data	 is	removed,	since	 the	data	are	always	
where	we	need	 them	 in	 swap	 space	and	never	 change.	 In	modernized	versions	of	UNIX,	
such	as	the	Solaris	systems	by	Sun	Microsystems,	read	only	pages	from	the	code	segment	
are	thrown	away	when	they	are	selected	for	swap	out	and	then	read	in	from	the	filesystem	
if	needed	again.	Moreover,	data	pages	are	only	allocated	swap	space	when	they	are	forced	
out	of	physical	memory.	These	optimizations	reflect	the	fact	that	modern	systems	have	more	
physical memory than previously; also disks are getting faster.

Let us now look more generally at how paging decisions are made. The most important aspect 
of paging is that pages can still be accessed even though they are physically in secondary storage 
(the	disk).	Suppose	a	page	fault	occurs	and	there	are	no	free	frames	into	which	the	relevant	data	
can	be	loaded.	Then	the	OS	must	select	a	victim:	it	must	choose	a	frame	and	free	it	so	that	the	
new	faulted	page	can	be	read	 in.	This	 is	called	(obviously)	page	replacement.	The	success	or	
failure of virtual memory rest on its ability to make page replacement decisions. Certain facts 
might	 influence	 these	algorithms.	For	 instance,	 if	a	process	 is	 receiving	I/O	from	a	device,	 it	
would	be	foolish	to	page	it	out	—	so	it	would	probably	I/O	locked	into	RAM.	Here	are	some	
viable alternatives for page replacement.
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Notes5.7.4 FIFO — First In First Out
The	simplest	way	of	replacing	frames	is	to	keep	track	of	their	age	(by	storing	their	age	in	the	
frame	 table).	 This	 could	 either	 be	 the	date,	 as	 recorded	by	 the	 system	 clock,	 or	 a	 sequential	
counter.	When	 a	 new	page	 fault	 occurs,	we	 can	 load	 in	 pages	 until	 the	 physical	memory	 is	
full	—	thereafter,	we	have	to	move	out	pages.	The	page	which	has	been	in	memory	longest	is	
then	selected	as	the	first	to	go.

This	algorithm	has	the	advantage	of	being	very	straightforward,	but	its	performance	can	suffer	
if a page is in heavy use for a long period of time. Such a page would be selected even though 
it was still in heavy use.

FIFOs	are	used	commonly	in	electronic	circuits	for	buffering	and	flow	control	
which is from hardware to software. In hardware form a FIFO primarily 
consists	of	a	set	of	read	and	write	pointers,	storage	and	control	logic.

 Data sent via FIFO is not persisted in memory and can be an unreliable 
method for data sources. To ensure your data is not lost.

5.7.5 Second Chance
A simple optimization we can add to the FIFO algorithm is the following. Suppose we keep a 
reference bit for each page in the page table. Every time the memory management unit accesses 
a	page	it	sets	that	bit	to.	When	a	page	fault	occurs,	the	page	replacement	algorithm	looks	at	that	
bit	and	-	if	it	is	set	to	—	sets	the	bit	to	but	jumps	over	it	and	looks	for	another	page.

The	 idea	 is	 that	 pages	 which	 are	 frequently	 use	 will	 have	 their	 bits	 set	 often	 and	 will	
therefore	not	get	paged	out.	Of	course,	this	testing	incurs	an	overhead.	In	the	extreme	case	
that all pages are in heavy use the page algorithm must cycle through all the pages setting 
their	bits	to	zero	before	finding	the	original	page	again.	Even	then,	it	might	not	find	a	page	
to	replace,	if	the	bit	was	set	again	while	it	was	looking	through	the	others.	In	such	a	case,	
the paging system simply fails.

5.7.6 LRU—Least Recently Used
The best possible solution to paging would be to replace the page that will not be used for the 
longest	 period	 of	 time—but	unfortunately,	 the	 system	has	 no	way	of	 knowing	what	 that	
is. A kind of compromise solution is to replace the page which has not been used for the 
longest	period.	 	This	does	not	require	a	crystal	ball,	but	 it	does	require	some	appropriate	
hardware	support	to	make	it	worthwhile.	As	with	all	good	ideas,	it	costs	the	system	quite	
a lot to implement it.

Two	possibilities	for	such	an	implementation	are	the	following:

	 •	 We record the time at which each page was last referenced. Unlike the FIFO scheme 
above,	 this	means	that	we	have	to	update	 the	 time-stamp	every	single	 time	memory	 is	
referenced,	instead	of	only	each	time	a	page	is	replaced.	If	the	copying	operation	takes,	
say,	five	CPU	instructions	(jump	to	update	routine,	locate	page	table	entry,	load	system	
clock	time,	store	system	clock	time,	return),	this	means	—	roughly	speaking	—	that	the	
system	is	slowed	down	by	a	factor	of	around	five.	This	is	an	unacceptable	loss,	so	unless	
the	memory	management	unit	can	do	something	fancy	in	hardware,	 this	scheme	is	not	
worth the system’s time.

	 •	 We	keep	a	stack	of	page	addresses,	so	that	the	page	number	of	the	most	recently	accessed	
page	is	always	on	the	top	of	the	stack.	Although	this	sounds	cheaper	in	principle,	since	the	
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Notes page	replacement	algorithm	never	has	to	search	for	a	replacement	—	it	just	looks	on	top	
of	the	stack	—	it	still	results	in	a	large	system	overhead	to	maintain	the	stack.	We	must	
update	a	data	 structure	which	 requires	process	 synchronization	and	 therefore	waiting.	
Again,	without	special	hardware,	 this	 is	not	economical.	 In	practice,	many	systems	use	
something like the second-chance algorithm above. The UNIX page daemon uses this 
approach.

5.8 Thrashing

Swapping	and	paging	can	lead	to	quite	a	large	system	overhead.	Compared	to	memory	speeds,	
disk	 access	 is	 quite	 slow	—	 and,	 in	 spite	 of	 optimized	 disk	 access	 for	 the	 swap	 area,	 these	
operations	delay	the	system	markedly.	Consider	the	sequence	of	events	which	takes	place	when	
a	page	fault	occurs:

 1. Interrupt/trap and pass control to the system interrupt handler.

 2. Save the process control block.

	 3.	 Determine	cause	of	interrupt	—	a	page	fault.

	 4.	 Consult	MMU	—	is	the	logical	address	given	inside	the	process’	segment,	i.e.	legal.

	 5.	 Look	for	a	free	frame	in	the	frame	table.	If	none	is	found,	free	one.

	 6.	 Schedule	the	disk	operation	to	copy	the	required	page	and	put	the	process	into	the	waiting	
state.

 7. Interrupt from disk signals end of waiting.

 8. Update the page table and schedule the process for running.

	 9.	 (On	scheduling)	Restore	the	process	control	block	and	resume	executing	the	instruction	
that was interrupted.

Such	a	sequence	of	operations	could	take	of	the	order	or	milliseconds	under	favorable	conditions	
(although	 technology	 is	 rapidly	 reducing	 the	 timescale	 for	 everything).	 It	 is	 possible	 for	 the	
system to get into a state where there are so many processes competing for limited resources 
that it spends more time servicing page faults and swapping in and out processes than it does 
executing the processes. This sorry state is called thrashing.

Thrashing can occur when there are too many active processes for the available memory. 
It can be alleviated in certain cases by making the system page at an earlier threshold of 
memory	 usage	 than	 normal.	 In	most	 cases,	 the	 best	way	 to	 recover	 from	 thrashing	 is	 to	
suspend	 processes	 and	 forbid	 new	 ones,	 to	 try	 to	 clear	 some	 of	 the	 others	 by	 allowing	
them	to	execute.	The	interplay	between	swapping	and	paging	is	important	here	too,	since	
swapping effectively suspends jobs.

Thrashing can occur when there are too many active processes for the 
available memory. It can be alleviated in certain cases by making the system 
page	at	an	earlier	 threshold	of	memory	usage	 than	normal.	 In	most	cases,	
the best way to recover from thrashing is to suspend processes and forbid 
new	ones,	 to	 try	 to	 clear	 some	of	 the	others	by	 allowing	 them	 to	 execute.	
The	 interplay	 between	 swapping	 and	 paging	 is	 important	 here	 too,	 since	
swapping effectively suspends jobs.
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Notes5.9 Demand Paging

A demand-paging system is similar to a paging system. Processes reside on secondary memory 
(which	is	usually	a	disk).	When	we	want	to	execute	a	process,	we	swap	it	into	memory.	Rather	
than	swapping	the	entire	process	into	memory,	however,	we	use	a	lazy swapper. A lazy swapper 
never swaps a page into memory unless that page will be needed. Since we are now viewing a 
process	as	a	sequence	of	pages,	rather	than	as	one	large	contiguous	address	space,	use	of	swap	
is	technically	incorrect.	A	swapper	manipulates	entire	processes,	whereas	a	pager is concerned 
with	the	individual	pages	of	a	process.	We	thus	use	pager,	rather	than	swapper,	in	connection	
with demand paging.

5.9.1 Basic Concepts

When	a	process	 is	 to	be	 swapped	 in,	 the	pager	guesses	which	pages	will	be	used	before	 the	
process	is	swapped	out	again.	Instead	of	swapping	in	a	whole	process,	the	pager	brings	only	
those	necessary	pages	into	memory.	Thus,	it	avoids	reading	into	memory	pages	that	will	not	be	
used	anyway,	decreasing	the	swap	time	and the amount of physical memory needed. 

Figure 5.23: Transfer of a Paged Memory to Contiguous Disk Space
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With this scheme,	we	need	some	form	of	hardware	support	to	distinguish	between	those	pages	
that are in memory and those pages that are on the disk. The valid-invalid bit scheme already 
described	and	can	be	used	for	this	purpose.	This	time,	however,	when	this	bit	is	set	to	“valid,”	
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“invalid,”	this	value	indicates	that	the	page	either	is	not	valid	(that	is,	not	in	the	logical	address	
space	of	the	process),	or	is	valid	but	is	currently	on	the	disk.	The	page-table	entry	for	a	page	that	
is	brought	into	memory	is	set	as	usual,	but	the	page-table	entry	for	a	page	that	is	not	currently	
in	memory	is	simply	marked	invalid,	or	contains	the	address	of	the	page	on	disk.	This	situation	
is	depicted	in	figure	given	below.	Notice	that	marking	a	page	invalid	will	have	no	effect	if	the	
process	never	attempts	to	access	that	page.	Hence,	if	we	guess	right	and	page	in	all	and	only	
those	pages	that	are	actually	needed,	the	process	will	run	exactly	as	though	we	had	brought	in	
all pages. While the process executes and accesses pages that are memory resident, execution 
proceeds normally. But what happens if the process tries to access a page that was not brought 
into memory? Access to a page marked invalid causes a page-fault trap.	The	paging	hardware,	
in	translating	the	address	through	the	page	table,	will	notice	that	the	invalid	bit	is	set,	causing	
a trap to the operating system. This trap is the result of the operating system’s failure to bring 
the	desired	page	into	memory	(in	an	attempt	to	minimize	disk-transfer	overhead	and	memory	
requirements),	 rather	 than	an	 invalid	address	error	as	a	result	of	an	attempt	to	use	an	 illegal	
memory	address	(such	as	an	incorrect	array	subscript).	We	must	therefore correct this oversight. 
The	procedure	for	handling	this	page	fault	is	straightforward	(Figure	5.24).

Figure 5.24: Page Table when Some Pages are not in Main Memory
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	 1.	 We	check	an	internal	table	(usually	kept	with	the	process	control	block)	for	this	process,	
to determine whether the reference was a valid or invalid memory access.

	 2.	 If	the	reference	was	invalid,	we	terminate	the	process.	If	it	was	valid,	but	we	have	not	yet	
brought in that page,	we	now	page	it	in.	

 3. We	find	a	free	frame	(by	taking	one	from	the	free-frame	list,	for	example).
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NotesFigure 5.25: Steps in Handling a Page Fault

 4. We schedule a disk operation to read the desired page into the newly allocated frame.

 5. When the	disk	read	is	complete,	we	modify	the	internal	table	kept	with	the	process	and	
the page table to indicate that the page is now in memory.

 6. We restart the instruction that was interrupted by the illegal address trap. The process 
can now access the page as though it had always been in memory.

It	is	important	to	realize	that,	because	we	save	the	state	(registers,	condition	code,	instruction	
counter)	of	 the	 interrupted	process	when	the	page	 fault	occurs,	we	can	restart	 the	process	 in	
exactly	the	same	place	and	state,	except	that	the	desired	page	is	now	in	memory	and	is	accessible.	
In	this	way,	we	are	able	to	execute	a	process,	even	though	portions	of	it	are	not	(yet)	in	memory.	
When	the	process	 tries	 to	access	 locations	 that	are	not	 in	memory,	 the	hardware	 traps	 to	 the	
operating	system	(page	fault).	The	operating	system	reads	the	desired	page	into	memory	and	
restarts	the	process	as	though	the	page	had	always	been	in	memory.	In	the	extreme	case,	we	
could start executing a process with no pages in memory. When the operating system sets the 
instruction	pointer	 to	 the	first	 instruction	of	 the	process,	which	 is	on	a	non-memory-resident	
page,	the	process	immediately	faults	for	the	page.	After	this	page	is	brought	into	memory,	the	
process	continues	to	execute,	faulting	as	necessary	until	every	page	that	it	needs	is	in	memory.	
At	that	point,	it	can	execute	with	no	more	faults.	This	scheme	is	pure demand paging: Never 
bring	a	page	into	memory	until	it	is	required.

Theoretically,	some	programs	may	access	several	new	pages	of	memory	with	each	instruction	
execution	(one	page	for	the	instruction	and	many	for	data),	possibly	causing	multiple	page	faults	
per	instruction.	This	situation	would	result	in	unacceptable	system	performance.	Fortunately,	
analysis of running processes shows that this behavior is exceedingly unlikely. Programs tend 
to have locality of reference which results in reasonable performance from demand paging. The 
hardware to support demand paging is the same as the hardware for paging and swapping. 
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special value of protection bits.

Secondary Memory: This memory holds those pages that are not present in main memory. The 
secondary	memory	is	usually	a	high-speed	disk.	It	is	known	as	the	swap	device,	and	the	section	
of disk used for this purpose is known as swap space. In	addition	to	 this	hardware	support,	
considerable	software	is	needed,	as	we	shall	see.	Additional	architectural	constraints	must	be	
imposed. A crucial one is the need to be able to restart any instruction after a page fault. In most 
cases,	this	requirement	is	easy	to	meet.	A	page	fault	could	occur	at	any	memory	reference.	If	the	
page	fault	occurs	on	the	instruction	fetch,	we	can	restart	by	fetching	the	instruction	again.	If	a	
page	fault	occurs	while	we	are	fetching	an	operand,	we	must	fetch	and	decode	the	instruction	
again,	and	then	fetch	the	operand.

As	a	worst-case	example,	consider	a	three-address	instruction	such	as	ADD	the	content	of	A	to	
B	placing	the	result	in	C.	These	are	the	steps	to	execute	this	instruction:

	 1.	 Fetch	and	decode	the	instruction	(ADD).

 2. Fetch A.

 3. Fetch B.

 4. Add A and B.

 5. Store the sum in C.

If	we	faulted	when	we	tried	to	store	in	C	(because	C	is	in	a	page	not	currently	in	memory),	we	
would	have	to	get	the	desired	page,	bring	it	in,	correct	the	page	table,	and	restart	the	instruction.	
The	 restart	would	 require	 fetching	 the	 instruction	again,	decoding	 it	 again,	 fetching	 the	 two	
operands	again,	and	then	adding	again.	However,	there	is	not	much	repeated	work	(less	than	
one	complete	instruction),	and	the	repetition	is	necessary	only	when	a	page	fault	occurs.	The	
major	difficulty	occurs	when	one	instruction	may	modify	several	different	locations.	For	example,	
consider	 the	 IBM	System	360/370	MVC	 (move	character)	 instruction,	which	can	move	up	 to	
256	bytes	from	one	location	to	another	(possibly	overlapping)	location.	If	either	block	(source	
or	destination)	straddles	a	page	boundary,	a	page	fault	might	occur	after	the	move	is	partially	
done.	In	addition,	if	the	source	and	destination	blocks	overlap,	the	source	block	may	have	been	
modified,	in	which	case	we	cannot	simply	restart	the	instruction.

This	problem	can	be	solved	in	two	different	ways.	In	one	solution,	the	microcode	computes	and	
attempts	to	access	both	ends	of	both	blocks.	If	a	page	fault	is	going	to	occur,	it	will	happen	at	
this	step,	before	anything	is	modified.	The	move	can	then	take	place,	as	we	know	that	no	page	
fault	can	occur,	since	all	the	relevant	pages	are	in	memory.	The	other	solution	uses	temporary	
registers	to	hold	the	values	of	overwritten	locations.	If	there	is	a	page	fault,	all	the	old	values	
are written back into memory before the trap occurs. This action restores memory to its state 
before	the	instruction	was	started,	so	that	the	instruction	can	be	repeated.

A	similar	architectural	problem	occurs	in	machines	that	use	special	addressing	modes,	including	
auto	decrement	and	auto	increment	modes	(for	example,	the	PDP-11).	These	addressing	modes	
use a register as a pointer and automatically decrement or increment the register as indicated. 
Auto decrement automatically decrements the register before using its contents as the operand 
address; auto increment automatically increments the register after using its contents as the 
operand	address.	Thus,	the	instruction	MOV (R2) +,	-	(R3) copies the contents of the location 
pointed	to	by	register2	into	the	location	pointed	to	by	register3.	Register2	is	incremented	(by	two	
for	a	word,	since	the	PDP-11	is	a	byte-addressable	computer)	after	it	is	used	as	a	pointer;	register3	
is	decremented	(by	two)	before	it	is	used	as	a	pointer.	Now	consider	what	will	happen	if	we	get	
a	fault	when	trying	to	store	into	the	location	pointed	to	by	register3.	To	restart	the	instruction,	
we must reset the two registers to the values they had before we started the execution of the 
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and	amount	modified	for	any	register	that	is	changed	during	the	execution	of	an	instruction.	This	
status register allows the operating system to undo the effects of a partially executed instruction 
that causes a page fault. These are by no means the only architectural problems resulting from 
adding	paging	to	an	existing	architecture	to	allow	demand	paging,	but	they	illustrate	some	of	
the	difficulties.	Paging	 is	added	between	 the	CPU	and	 the	memory	 in	a	computer	 system.	 It	
should	be	entirely	transparent	to	the	user	process.	Thus,	people	often	assume	that	paging	could	
be	added	to	any	system.	Although	this	assumption	is	true	for	a	non-demand-paging	environment,	
where	a	page	fault	represents	a	fatal	error,	it	is	not	true	where	a	page	fault	means	only	that	an	
additional page must be brought into memory and the process restarted.

5.9.2 Performance of Demand Paging
Demand	paging	can	have	a	significant	effect	on	the	performance	of	a	computer	system.	To	see	
why,	let	us	compute	the	effective access time for a demand paged memory. For most computer 
systems,	 the	memory-access	 time,	 denoted	ma,	 now	 ranges	 from	10	 to	 200	 nanoseconds.	As	
long	as	we	have	no	page	faults,	 the	effective	access	time	is	equal	to	the	memory	access	time.	
If,	 however,	 a	 page	 fault	 occurs,	 we	must	 first	 read	 the	 relevant	 page	 from	 disk,	 and	 then	
access	the	desired	word.	Let	p	be	the	probability	of	a	page	fault	(0	5	p	5	1).	We	would	expect	
p	to	be	close	to	zero;	that	is,	there	will	be	only	a	few	page	faults.	The	effective access time is 
then	effective	access	time	=	(1	–	p)	x	ma	+	p	x	page	fault	time.	To	compute	the	effective	access	
time,	we	must	know	how	much	time	is	needed to service a page fault. A page fault causes the 
following	sequence	to	occur:

 1. Trap to the operating system.

 2. Save the user registers and process state.

 3. Determine that the interrupt was a page fault.

 4. Check that the page reference was legal and determine the location of the page on the 
disk.

	 5.	 Issue	a	read	from	the	disk	to	a	free	frame:

	 (a)	 Wait	in	a	queue	for	this	device	until	the	read	request	is	serviced.

	 (b)	 Wait	for	the	device	seek	and/or	latency	time.

	 (c)	 Begin	the	transfer	of	the	page	to	a	free	frame.

	 6.	 While	waiting,	allocate	the	CPU	to	some	other	user	(CPU	scheduling;	optional).

	 7.	 Interrupt	from	the	disk	(I/O	completed).

	 8.	 Save	the	registers	and	process	state	for	the	other	user	(if	step	6	is	executed).

 9. Determine that the interrupt was from the disk.

 10. Correct the page table and other tables to show that the desired page is now in memory.

 11. Wait for the CPU to be allocated to this process again.

	 12.	 Restore	the	user	registers,	process	state,	and	new	page	table,	then	resume	the	interrupted	
instruction. 

Not	all	of	these	steps	are	necessary	in	every	case.	For	example,	we	are	assuming	that,	in	step	
6,	 the	 CPU is allocated to another process while the I/O occurs. This arrangement allows 
multiprogramming	 to	maintain	 CPU	 utilization,	 but	 requires	 additional	 time	 to	 resume	 the	
page-fault service routine when the I/O transfer is complete.

In	any	case,	we	are	faced	with	three	major	components	of	the	page-fault	service	time:
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 2. Read in the page.

 3. Restart the process.

The	first	and	third	tasks	may	be	reduced,	with	careful	coding,	to	several	hundred	instructions.	
These	 tasks	may	 take	 from	 1	 to	 100	microseconds	 each.	 The	 page-switch	 time,	 on	 the	 other	
hand,	will	probably	be	close	to	24	milliseconds.	A	typical	hard	disk	has	an	average	latency	of	
8	milliseconds,	a	seek	of	15	milliseconds,	and	a	transfer	time	of	1	millisecond.	Thus,	the	total	
paging	time	would	be	close	to	25	milliseconds,	including	hardware	and	software	time.	Remember	
also	that	we	are	looking	at	only	the	device-service	time.	If	a	queue	of	processes	is	waiting	for	
the	device	(other	processes	that	have	caused	page	faults),	we	have	to	add	device-queuing	time	
as	we	wait	 for	 the	paging	device	 to	be	 free	 to	 service	our	 request,	 increasing	even	more	 the	
time to swap. 

If we take an average page-fault service time of 25 milliseconds and a memory-access time of 
100	nanoseconds,	then	the	effective	access	time	in	nanoseconds	is	effective	access	time	=	(1	–	p)	
x	(100)	+	p	(25	milliseconds)	=	(1	–	p)	x	100	+	p	x	25,000,000	=	100	+	24,999,900	x	p.	We	see	then	
that the effective access time is directly proportional to the page-fault rate. If one access out 
of	1,000	causes	a	page	fault,	the	effective	access	time	is	25	microseconds.	The	computer	would	
be slowed down by a factor of 250 because of demand paging. If we want less than 10-percent 
degradation,	we	need:

110	>	100	+	25,000,000	×	p,
10	>	25,000,000	×	p,
p	<	0.0000004,

That	is,	to	keep	the	slowdown	due	to	paging	to	a	reasonable	level,	we	can	allow	only	less	than	
one	memory	access	out	of	 2,500,000	 to	page	 fault.	 It	 is	 important	 to	keep	 the	page-fault	 rate	
low	in	a	demand-paging	system.	Otherwise,	the	effective	access	time	increases,	slowing	process	
execution dramatically. One additional aspect of demand paging is the handling and overall use 
of	swap	space.	Disk	I/O	to	swap	space	is	generally	faster	than	that	to	the	file	system.	It	is	faster	
because	swap	space	is	allocated	in	much	larger	blocks,	and	file	lookups	and	indirect	allocation	
methods	are	not	used	It	is	therefore	possible	for	the	system	to	gain	better	paging	throughput,	
by	copying	an	entire	file	 image	 into	 the	 swap	space	at	process	 startup,	and	 then	performing	
demand	paging	from	the	swap	space.	Another	option	is	to	demand	pages	from	the	file	system	
initially,	but	to	write	the	pages	to	swap	space	as	they	are	replaced.	This	approach	will	ensure	
that	only	needed	pages	are	ever	read	from	the	file	system,	but	all	subsequent	paging	is	done	
from swap space. 

Some	 systems	 attempt	 to	 limit	 the	 amount	 of	 swap	 space	 when	 binary	 files	 are	 used.	
Demand	 pages	 for	 such	 files	 are	 brought	 directly	 from	 the	 file	 system.	 However,	 when	
page	 replacement	 is	 called	 for,	 these	 pages	 can	 simply	 be	 overwritten	 (because	 they	 are	
never	modified)	and	read	in	from	the	file	system	again	if	needed.	Using	this	approach,	the	
file	 system	 itself	 serves	as	 the	baclung	store.	However,	 swap	space	must	 still	be	used	 for	
pages	not	associated	with	a	file;	these	pages	include	the	stack and heap for a process. This 
technique	is	used	in	several	systems	including	Solaris	2.	This	method	appears	to	be	a	good	
compromise; it is used in BSD UNIX.
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In	our	presentation	so	far,	the	page-fault	rate	has	not	been	a	serious	problem,	because	each	page	
has	faulted	at	most	once,	when	it	is	first	referenced.	This	representation	is	not	strictly	accurate.	
If	a	process	of	ten	pages	actually	uses	only	one-half	of	them,	then	demand	paging	saves	the	
I/O	necessary	to	load	the	five	pages	that	are	never	used.	We	could	also	increase	our	degree	
of	multiprogramming	by	running	twice	as	many	processes.	Thus,	if	we	had	40	frames,	we	
could	run	eight	processes,	rather	than	the	four	that	could	run	if	each	required	10	frames	(five	
of	which	were	never	used).	 If	we	increase	our	degree	of	multiprogramming,	we	are	over-
allocating	memory.	If	we	run	six	processes,	each	of	which	is	ten	pages	in	size,	but	actually	
uses	only	five	pages,	we	have	higher	CPU	utilization	and	throughput,	with	10	frames	to	
spare.	It	is	possible,	however,	that	each	of	these	processes,	for	a	particular	data	set,	may	
suddenly	try	to	use	all	ten	of	its	pages,	resulting	in	a	need	for	60	frames,	when	only	40	
are	available.	Although	this	situation	may	be	unlikely,	it	becomes	much	more	likely	as	
we	increase	the	multiprogramming	level,	so	that	the	average	memory	usage	is	close	to	
the	available	physical	memory.	(In	our	example,	why	stop	at	a	multiprogramming	level	
of	 six,	when	we	 can	move	 to	 a	 level	 of	 seven	 or	 eight?)	 Further,	 consider	 that	 system	
memory is not used only for holding program pages. Buffers for 1/0 also consume a 
significant amount of memory. This use can increase the strain on memory-placement 
algorithms. Deciding how much memory to allocate to I/O and how much to program 
pages is a significant challenge. Some systems allocate a fixed percentage of memory 
for	 I/O	 buffers,	 whereas	 others	 allow	 both	 user	 processes	 and	 the	 I/O	 subsystem	 to	
compete for all system memory. Over-allocation manifests itself as follows. While a user 
process	 is	 executing,	a	page	 fault	occurs.	The	hardware	 traps	 to	 the	operating	 system,	
which checks its internal tables to see that this page fault is a genuine one rather than 
an illegal memory access. The operating system determines where the desired page is 
residing	on	the	disk,	but	then	finds	that	there	are	no	free	frames	on	the	free-frame	list:	
All memory is in use. The operating system has several options at this point. It could 
terminate	the	user	process.	However,	demand	paging	is	the	operating	system’s	attempt	
to improve the computer system’s utilization and throughput.

Figure 5.26: Memory-mapped Files
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Figure 5.27: Need for Page Replacement
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Users should not be aware that their processes are running on a paged system-paging should be 
logically transparent to the user. So this option is not the best choice. The operating system could 
swap	out	a	process,	 freeing	all	 its	 frames,	and	reducing	the	 level	of	multiprogramming.	This	
option	is	a	good	one	in	certain	circumstances;	Here,	we	discuss	a	more	intriguing	possibility—
page replacement.

5.10.1 Basic Scheme
Page	 replacement	 takes	 the	 following	 approach.	 If	 no	 frame	 is	 free,	we	 find	 one	 that	 is	 not	
currently	being	used	and	free	it.	We	can	free	a	frame	by	writing	its	contents	to	swap	space,	and	
changing	the	page	table	(and	all	other	tables)	to	indicate	that	the	page	is	no	longer	in	memory.	
We can now use the freed frame to hold the page for which the process faulted. We modify the 
page-fault	service	routine	to	include	page	replacement:	

 1. Find the location of the desired page on the disk. 

	 2.	 Find	a	free	frame:

	 (a)	 If	there	is	a	free	frame,	use	it.

	 (b)	 If	there	is	no	free	frame,	use	a	page-replacement	algorithm	to	select	a	victim	frame.

	 (c)	 Write	the	victim	page	to	the	disk;	change	the	page	and	frame	tables	accordingly.

 3. Read	the	desired	page	into	the	(newly)	free	frame;	change	the	page	and	frame	tables.

 4. Restart the user process.

Notice	 that,	 if	no	 frames	are	 free,	 two	page	 transfers	 (one	out	and	one	 in)	are	 required.	This	
situation effectively doubles the page-fault service time and increases the effective access time 
accordingly.	We	can	 reduce	 this	overhead	by	using	a	modify	bit	 (or	dirty	bit).	Each	page	or	
frame may have a modify bit associated with it in the hardware. The modify m bit for a page is 
set	by	the	hardware	whenever	any	word	or	byte	in	the	page	is	written	into,	indicating	that	the	
page	has	been	modified.	When	we	select	a	page	for	replacement,	we	examine	its	modify	bit.	If	
the	bit	is	set,	we	know	that	the	page	has	been	modified	since	it	was	read	in	from	the	disk.	In	
this	case,	we	must	write	that	page	to	the	disk.	If	 the	modify	bit	 is	not	set,	however,	the	page	
has	not	been	modified	since	it	was	read	into	memory.	Therefore,	if	the	copy	of	the	page	on	the	
disk	has	not	been	overwritten	(by	some	other	page,	for	example),	then	we	can	avoid	writing	the	
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memory	page	to	the	disk—it	is	already	there.	This	technique	also	applies	to	read-only	pages	(for	
example,	pages	of	binary	code).	Such	pages	cannot	be	modified;	thus,	they	may	be	discarded	
when	desired.	This	scheme	can	reduce	significantly	the	time	required	to	service	a	page	fault,	
since	it	reduces	I/O	time	by	one-half	if	the	page	is	not	modified.
Page replacement is basic to demand paging. It completes the separation between logical 
memory	 and	 physical	memory.	With	 this	mechanism,	 an	 enormous	 virtual	memory	 can	 be	
provided	 for	 programmers	 on	 a	 smaller	 physical	 memory.	With	 non-demand	 paging,	 user	
addresses	are	mapped	 into	physical	addresses,	 so	 the	 two	sets	of	addresses	can	be	different.	
All	 the	pages	of	a	process	still	must	be	 in	physical	memory,	however.	With	demand	paging,	
the size of the logical address space is no longer constrained by physical memory. If we have a 
user	process	of	20	pages,	we	can	execute	it	in	ten	frames	simply	by	using	demand	paging,	and	
using	a	replacement	algorithm	to	find	a	free	frame	whenever	necessary.	If	a	page	that	has	been	
modified	is	to	be	replaced,	its	contents	are	copied	to	the	disk.	A	later	reference	to	that	page	will	
cause	a	page	fault.	At	that	time,	the	page	will	be	brought	back	into	memory,	perhaps	replacing	
some other page in the process.
We	must	solve	two	major	problems	to	implement	demand	paging:	We	must	develop	a	frame-
allocation algorithm and a page-replacement algorithm. If we have multiple processes in 
memory,	we	must	decide	how	many	 frames	 to	 allocate	 to	 each	process.	 Further,	when	page	
replacement	is	required,	we	must	select	the	frames	that	are	to	be	replaced.	Designing	appropriate	
algorithms	to	solve	these	problems	is	an	important	task,	because	disk	1/0	is	so	expensive.

Even slight improvements in demand-paging methods yield large gains in system performance.
There are many different page-replacement algorithms. Every operating system probably has 
its	own	replacement	scheme.	How	do	we	select	a	particular	replacement	algorithm?	In	general,	
we want the one with the lowest page-fault rate. We evaluate an algorithm by running it on a 
particular string of memory references and computing the number of page faults. The string of 
memory references is called a reference string. We	can	generate	reference	strings	artificially	(by	
a	random-number	generator,	for	example)	or	we	can	trace	a	given	system	and	record	the	address	
of	each	memory	reference.	The	latter	choice	produces	a	large	number	of	data	(on	the	order	of	1	
million	addresses	per	second).	To	reduce	the	number	of	data,	we	use	two	facts.	First,	for	a	given	
page	size	(and	the	page	size	is	generally	fixed	by	the	hardware	or	system),	we	need	to	consider	
only	the	page	number,	rather	than	the	entire	address.	Second,	if	we	have	a	reference	to	a	page	
p,	then	any	immediately	following	references	to	page	p	will	never	cause	a	page	fault.	Page	p	
will	be	in	memory	after	the	first	reference;	the	immediately	following	references	will	not	fault.	
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Notes For	example,	if	we	trace	a	particular	process,	we	might	record	the	following	address	sequence:
0100,	0432,	0101,	0612,	0102,	0103,	0104,	0101,	0611,	0102,	0103,
0104,	0101,	0610,	0102,	0103,	0104,	0101,	0609,	0102,	0105,
which,	at	100	bytes	per	page,	is	reduced	to	the	following	reference	string.	
1,	4,	1,	6,	1,	6,	1,	6,	1,	6,	1.
To determine the number of page faults for a particular reference string and page-replacement 
algorithm,	we	also	need	to	know	the	number	of	page	frames	available.	Obviously,	as	the	number	
of	 frames	 available	 increases,	 the	 number	 of	 page	 faults	 decreases.	 For	 the	 reference	 string	
considered	previously,	for	example,	if	we	had	three	or	more	frames,	we	would	have	only	three	
faults,	one	 fault	 for	 the	first	 reference	 to	each	page.	On	 the	other	hand,	with	only	one	 frame	
available,	we	would	 have	 a	 replacement	with	 every	 reference,	 resulting	 in	 11	 faults.	As	 the	
number	of	frames	increases,	the	number	of	page	faults	drops	to	some	minimal	level.	Of	course,	
adding physical memory increases the number of frames. 
To	illustrate	the	page-replacement	algorithms,	we	shall	use	the	reference	string
7,	0,	1,	2,	0,	3,	0,	4,	2,	3,	0,	3,	2,	1,	2,	0,	1,	7,	0,	1
for a memory with three frames.

Figure 5.29: Graph of Page Faults versus the Number of Frames

5.10.2 FIFO Page Replacement
The simplest page-replacement algorithm is a FIFO algorithm. A FIFO replacement algorithm 
associates with each page the time when that page was brought into memory. When a page 
must	be	replaced,	the	oldest	page	is	chosen.	Notice	that	it	is	not	strictly	necessary	to	record	the	
time	when	a	page	is	brought	in.	We	can	create	a	FIFO	queue	to	hold	all	pages	in	memory.	We	
replace	the	page	at	the	head	of	the	queue.	When	a	page	is	brought	into	memory,	we	insert	it	
at	the	tail	of	the	queue.	For	our	example	reference	string,	our	three	frames	are	initially	empty.	
The	first	three	references	(7,	0,	1)	cause	page	faults,	and	are	brought	into	these	empty	frames.	
The	next	reference	(2)	replaces	page	7,	because	page	7	was	brought	in	first.	Since	0	is	the	next	
reference	and	0	is	already	in	memory,	we	have	no	fault	for	this	reference.	The	first	reference	to	
3 results	in	page	0	being	replaced,	since	it	was	the	first	of	the	three	pages	in	memory	(0,	1,	and	
2)	to	be	brought	in.	Because	of	this	replacement,	the	next	reference,	to	0,	will	fault.	Page	1	is	then	
replaced	by	page	0.	Every	time	a	fault	occurs,	we	show	which	pages	are	in	our	three	frames.	
There are 15 faults altogether. The FIFO page-replacement algorithm is easy to understand and 
program.	However,	its	performance	is	not	always	good.	The	page	replaced	may	be	an	initialization	
module	 that	was	used	a	 long	 time	ago	and	 is	no	 longer	needed.	On	the	other	hand,	 it	 could	
contain	a	heavily	used	variable	 that	was	 initialized	early	and	 is	 in	 constant	use.	Notice	 that,	
even	if	we	select	for	replacement	a	page	that	is	in	active	use,	everything	still	works	correctly.	
After	we	page	out	an	active	page	to	bring	in	a	new	one,	a	fault	occurs	almost	immediately	to	
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Notesretrieve the active page. Some other page will need to be replaced to bring the active page back 
into	memory.	Thus,	a	bad	replacement	choice	increases	the	page-fault	rate	and	slows	process	
execution,	but	does	not	cause	incorrect	execution.

To	illustrate	the	problems	that	are	possible	with	a	FIFO	page-replacement	algorithm,	we	consider	
the reference string page frames.

1,	2,	3,	4,	1,	2,	5,	1,	2,	3,	4,	5.

Figure 5.30: FIFO Page-replacement Algorithm

Figure 5.31: Page-fault Curve for FIFO Replacement on a Reference String
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5.10.3 Optimal Page Replacement
One result of the discovery of Belady’s anomaly was the search for an optimal.

5.10.4 Page-replacement Algorithm
An optimal page-replacement	algorithm	has	 the	 lowest	page-fault	 rate	of	all	algorithms,	and	
will	never	suffer	from	Belady’s	anomaly.	Such	an	algorithm	does	exist,	and	has	been	called	OPT	
or MIN. It is simply replace the page that will not be used for the longest period of time. Use 
of	 this	page-replacement	algorithm	guarantees	 the	 lowest	possible	page	 fault	 rate	 for	a	fixed	
number	of	frames.	For	example,	on	our	sample	reference	string,	the	optimal	page-replacement	
algorithm	would	yield	nine	page	faults.	The	first	three	references	cause	faults	that	fill	the	three	
empty	frames.	The	reference	to	page	reference	string	2	replaces	page	7,	because	7	will	not	be	
used	until	 reference	18,	whereas	page	0	will	be	used	at	5,	and	page	1	at	14.	The	reference	 to	
page	3	replaces	page	1,	as	page	1	will	be	the	last	of	the	three	pages	in	memory	to	be	referenced	
again.	With	only	nine	page	faults,	optimal	replacement	is	much	better	than	a	FIFO	algorithm,	
which	had	15	faults.	(If	we	ignore	the	first	three,	which	all	algorithms	must	suffer,	then	optimal	
replacement	is	twice	as	good	as	FIFO	replacement)	In	fact,	no	replacement	algorithm	can	process	
this	reference	string	in	three	frames	with	less	than	nine	faults.	Unfortunately,	the	optimal	page-
replacement	algorithm	 is	difficult	 to	 implement,	because	 it	 requires	 future	knowledge	of	 the	
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Notes reference	string.	As	a	result,	the	optimal	algorithm	is	used	mainly	for	comparison	studies.	For	
instance,	it	may	be	useful	to	know	that,	although	a	new	algorithm	is	not	optimal,	it	 is	within	
12.3	per	cent	of	optimal	at	worst,	and	within	4.7 per cent on average.

Figure 5.32: Optimal Page-replacement Algorithm

5.11 LRU Page Replacement
If	the	optimal	algorithm	is	not	feasible,	perhaps	an	approximation	to	the	optimal	algorithm	
is	possible.	The	key	distinction	between	the	FIFO	and	OPT	algorithms	(other	than	looking	
backward	or	 forward	 in	 time)	 is	 that	 the	FIFO	algorithm	uses	 the	 time	when	a	page	was	
brought into memory; the OPT algorithm uses the time when a page is to be used. If we 
use	the	recent	past	as	an	approximation	of	the	near	future,	then	we	will	replace	the	page	that	
has	not	been	used	for	the	longest	period	of	time.	This	approach	is	the	least-recently-used	(LRU)	
algorithm. LRU replacement associates with each page the time of that page’s last use. When a 
page	must	be	replaced,	LRU	chooses	that	page	that	has	not	been	used	for	the	longest	period	of	
time.	This	strategy	is	the	optimal	page-replacement	algorithm	looking	backward	in	time,	rather	
than	forward.	Strangely,	if	we	let	SR	be	the	reverse	of	a	reference	string	S,	then	the	page-fault	
rate for the OPT algorithm on S is the same as the page-fault rate for the OPT algorithm on SR.

Figure 5.33: LRU Page-replacement Algorithm

Similarly,	the	page-fault	rate	for	the	LRU	algorithm	on	S	is	the	same	as	the	page-fault	rate	for	the	
LRU algorithm on SR. The result of applying LRU replacement to our example reference string is 
shown	in	the	Figure	5.33.	The	LRU	algorithm	produces	12	faults.	Notice	that	the	first	five	faults	
are	the	same	as	the	optimal	replacement.	When	the	reference	to	page	4	occurs,	however,	LRU	
replacement	sees	that,	of	the	three	frames	in	memory,	page	2	was	used	least	recently.	The	most	
recently	used	page	is	page	0,	and	 just	before	that	page	3	was	used.	Thus,	 the	LRU	algorithm	
replaces	page	2,	not	knowing	that	page	2	is	about	to	be	used.	When	it	then	faults	for	page	2,	the	
LRU	algorithm	replaces	page	3	since,	of	the	three	pages	in	memory	{0,	3,	4},	page	3	is	the	least	
recently	used.	Despite	these	problems,	LRU	replacement	with	12	faults	is	still	much	better	than	
FIFO replacement with 15. The LRU policy is often used as a page-replacement algorithm and 
is considered to be good. The major problem is how to implement LRU replacement. 

An	 LRU	 page-replacement	 algorithm	may	 require	 substantial	 hardware	
assistance.	The	problem	is	to	determine	an	order	for	the	frames	defined	by	
the time of last  use. Two implementations are feasible.
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Notes5.11.1 Counters
In	the	simplest	case,	we	associate	with	each	page-table	entry	a	time-of-use	field,	and	add	to	the	
CPU a logical clock or counter. The clock is incremented for every memory reference. Whenever 
a	reference	to	a	page	is	made,	the	contents	of	the	clock	register	are	copied	to	the	time-of-use	
field	 in	 the	page-table	entry	 for	 that	page.	 In	 this	way,	we	always	have	 the	“time”	of	 the	
last reference to each page. We replace the page with the smallest time value. This scheme 
requires	a	search	of	 the	page	table	 to	find	the	LRU	page,	 and	a	write	 to	memory	 (to	 the	
time-of-use	 field	 in	 the	 page	 table)	 for	 each	 memory	 access.	 The	 times	 must	 also	 be	
maintained	when	 page	 tables	 are	 changed	 (due	 to	 CPU	 scheduling).	 Overflow	 of	 the	
clock must be considered.

5.11.2 Stack
Another approach to implementing LRU replacement is to keep a stack of page numbers. 
Whenever	 a	 page	 is	 referenced,	 it	 is	 removed	 from	 the	 stack	 and	 put	 on	 the	 top.	 In	 this	
way,	the	top	of	the	stack	is	always	the	most	recently	used	page	and	the	bottom	is	the	LRU	
page	 (figure).	 Because	 entries	 must	 be	 removed	 from	 the	 middle	 of	 the	 stack,	 it	 is	 best	
implemented	by	a	doubly	 linked	 list,	with	a	head	and	 tail	pointer.	Removing	a	page	and	
putting	it	on	the	top	of	the	stack	then	requires	changing	six	pointers	at	worst.	Each	update	
is	a	little	more	expensive,	but	there	is	no	search	for	a	replacement;	the	tail	pointer	points	to	
the	bottom	of	the	stack,	which	is	the	LRU	page.	This	approach	is	particularly	appropriate	
for software or microcode implementations of LRU replacement.

Neither optimal replacement nor LRU replacement suffers from Belady’s anomaly. There 
is	 a	 class	 of	 page-replacement	 algorithms,	 called	 stack	 algorithms,	 that	 can	 never	 exhibit	
Belady’s anomaly. A stack algorithm is an algorithm for which it can be shown that the 
set of pages in memory for n frames is always a subset of the set of pages that would be 
in	memory	with	n	+	1	frames.	For	LRU	replacement,	the	set	of	pages	in	memory	would	be	
the	n	most	 recently	 referenced	pages.	 If	 the	number	of	 frames	 is	 increased,	 these	n	pages	
will still be the most recently referenced and so will still be in memory. Note that neither 
implementation of LRU would be conceivable without hardware assistance beyond the 
standard	TLB	 registers.	 The	updating	of	 the	 clock	fields	 or	 stack	must	 be	done	 for	 every	
memory	reference.	 If	we	were	to	use	an	 interrupt	 for	every	reference,	to	allow	software	to	
update	such	data	structures,	it	would	slow	every	memory	reference	by	a	factor	of	at	least	ten,	
hence slowing every user process by a factor of ten. Few systems could tolerate that level of 
overhead for memory management.

   How to use stack in memory give steps?

5.11.3 LRU Approximation Page Replacement
Few computer systems provide	 sufficient	hardware	 support	 for	 true	LRU	page	 replacement.	
Some	 systems	 provide	 no	 hardware	 support,	 and	 other	 page-replacement	 algorithms	 (such	
as	a	FIFO	algorithm)	must	be	used.	Many	systems	provide	some	help,	however,	 in	 the	 form	
of	a	reference	bit.	The	reference	bit	 for	a	page	is	set,	by	the	hardware,	whenever	that	page	is	
referenced	(either	a	read	or	a	write	to	any	byte	in	the	page).	Reference	bits	are	associated	with	
each	entry	in	the	page	table.	Initially,	all	bits	are	cleared	(to	0)	by	the	operating	system.	As	a	
user	process	executes,	the	bit	associated	with	each	page	referenced	is	set	(to	1)	by	the	hardware.	
After	some	time,	we	can	determine	which	pages	have	been	used	and	which	have	not	been	used	
by	examining	the	reference	bits.	We	do	not	know	the	order	of	use,	but	we	know	which	pages	
were used and which were not used. This partial ordering information leads to many page-
replacement algorithms that approximate LRU replacement.
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Notes Figure 5.34: Use of a Stack to Record the most recent Page References
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5.11.4 Additional-Reference-Bits Algorithm
We can gain additional ordering information by recording the reference bits at regular intervals. 
We	can	keep	an	8-bit	byte	for	each	page	in	a	table	in	memory.	At	regular	intervals	(say,	every	
100	milliseconds),	 a	 timer	 interrupt	 transfers	 control	 to	 the	 operating	 system.	 The	 operating	
system	shifts	the	reference	bit	for	each	page	into	the	high-order	bit	of	its	8-bit	byte,	shifting	the	
other	bits	right	1	bit,	discarding	the	low-order	bit.	These	&bit	shift	registers	contain	the	history	
of	page	use	for	the	last	eight	time	periods.	If	the	shift	register	contains	00000000,	then	the	page	
has not been used for eight time periods; a page that is used at least once each period would 
have a shift register value of 11111111. A page with a history register value of 11000100 has been 
used more recently than has one with 01110111. If we interpret these 8-bit bytes as unsigned 
integers,	the	page	with	the	lowest	number	is	the	LRU	page,	and	it	can	be	replaced.	Notice	that	the	
numbers	are	not	guaranteed	to	be	unique,	however.	We	can	either	replace	(swap	out)	all	pages	
with	the	smallest	value,	or	use	a	FIFO	selection	among	them.	The	number	of	bits	of	history	can	
be	varied,	of	course,	and	would	be	selected	(depending	on	the	hardware	available)	to	make	the	
updating as fast as possible. In the extreme case,	the	number	can	be	reduced	to	zero,	leaving	only	
the reference bit itself. This algorithm is called the second-chance page replacement algorithm.

5.11.5 Second-chance Algorithm
The basic algorithm of second-chance replacement is a FIFO replacement algorithm. When a 
page	has	been	selected,	however,	we	inspect	its	reference	bit.	 If	 the	value	is	0,	we	proceed	to	
replace	this	page.	 If	 the	reference	bit	 is	set	 to	1,	however,	we	give	that	page	a	second	chance	
and	move	on	to	select	the	next	FIFO	page.	When	a	page	gets	a	second	chance,	its	reference	bit	
is	cleared	and	its	arrival	time	is	reset	to	the	current	time.	Thus,	a	page	that	is	given	a	second	
chance	will	 not	 be	 replaced	 until	 all	 other	 pages	 are	 replaced	 (or	 given	 second	 chances).	 In	
addition,	if	a	page	is	used	often	enough	to	keep	its	reference	bit	set,	it	will	never	be	replaced.	
One	way	to	implement	the	second-chance	(sometimes	referred	to	as	the	clock)	algorithm	is	as	a	
circular	queue.	A	pointer	indicates	which	page	is	to	be	replaced	next.	When	a	frame	is	needed,	
the	pointer	advances	until	 it	finds	a	page	with	a	0	 reference	bit.	As	 it	 advances,	 it	 clears	 the	
reference	bits.	Once	a	victim	page	is	found,	the	page	is	replaced,	and	the	new	page	is	inserted	in	
the	circular	queue	in	that	position.	Notice	that,	in	the	worst	case,	when	all	bits	are	set,	the	pointer	
cycles	through	the	whole	queue,	giving	each	page	a	second	chance.	 It	clears	all	 the	reference	
bits before selecting the next page for replacement. Second-chance replacement degenerates to 
FIFO replacement if all bits are set.
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NotesFigure 5.35: Second-chance (clock) Page-replacement Algorithm
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5.11.6 Enhanced Second-chance Algorithm
We can enhance the second-chance algorithm by considering both the reference bit and the 
modify	bit	as	an	ordered	pair.	With	these	two	bits,	we	have	the	following	four	possible	classes:

	 1.	 (0,0)	neither	recently	used	nor	modified—best	page	to	replace

	 2.	 (0,l)	not	recently	used	but	modified—not	quite	as	good,	because	the	page	will	need	to	be	
written out before replacement

	 3.	 (1,0)	recently	used	but	clean—it	probably	will	be	used	again	soon

	 4.	 (1,l)	recently	used	and	modified—it	probably	will	be	used	again	soon,	and	the	page	will	be	
need to be written out to disk before it can be replaced when page replacement is called 
for,	each	page	is	in	one	of	these	four	classes.	

We	use	 the	 same	 scheme	as	 the	 clock	 algorithm,	 but	 instead	 of	 examining	whether	 the	
page	 to	which	we	 are	 pointing	 has	 the	 reference	 bit	 set	 to	 1,	we	 examine	 the	 class	 to	
which that page belongs. We replace the first page encountered in the lowest nonempty 
class.	Notice	that	we	may	have	to	scan	the	circular	queue	several	 times	before	we	find	
a page to be replaced.

This algorithm is used in the Macintosh virtual-memory-management scheme. The major 
difference between this algorithm and the simpler clock algorithm is that here we give preference 
to	those	pages	that	have	been	modified	to	reduce	the	number	of	I/Os	required.	

5.11.7 Counting-based Page Replacement
There	are	many	other	algorithms	that	can	be	used	for	page	replacement.	For	example,	we	could	
keep	a	counter	of	the	number	of	references	that	have	been	made	to	each	page,	and	develop	the	
following two schemes. 
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Notes The	 least	 frequently	used	 (LFU)	page-replacement	algorithm	requires	 that	 the	page	with	 the	
smallest count be replaced. The reason for this selection is that an actively used page should 
have a large reference count. This algorithm suffers from the situation in which a page is used 
heavily	during	 the	 initial	phase	of	a	process,	but	 then	 is	never	used	again.	Since	 it	was	used	
heavily,	it	has	a	large	count	and	remains	in	memory	even	though	it	is	no	longer	needed.	One	
solution	is	to	shift	the	counts	right	by	1	bit	at	regular	intervals,	forming	an	exponentially	decaying	
average usage count. 

The	most	frequently	used	(MFU)	page-replacement	algorithm	is	based	on	the	argument	that	the	
page with the smallest count was probably just brought in and has yet to be used. As you might 
expect,	neither	MFU	nor	LFU	replacement	is	common.	The	implementation	of	these	algorithms	
is	expensive,	and	they	do	not	approximate	OPT	replacement	well.

5.11.8 Page-buffering Algorithm

Other	 procedures	 are	 often	 used	 in	 addition	 to	 a	 specific	 page-replacement	 algorithm.	 For	
example,	systems	commonly	keep	a	pool	of	free	frames.	When	a	page	fault	occurs,	a	victim	frame	
is	chosen	as	before.	However,	the	desired	page	is	read	into	a	free	frame	from	the	pool	before	the	
victim	is	written	out.	This	procedure	allows	the	process	to	restart	as	soon	as	possible,	without	
waiting	for	the	victim	page	to	be	written	out.	When	the	victim	is	later	written	out,	its	frame	is	
added	to	the	free-frame	pool.	An	expansion	of	this	idea	is	to	maintain	a	list	of	modified	pages.	
Whenever	the	paging	device	is	idle,	a	modified	page	is	selected	and	is	written	to	the	disk.	Its	
modify bit is then reset. This scheme increases the probability that a page will be clean when it 
is	selected	for	replacement,	and	will	not	need	to	be	written	out.	Another	modification	is	to	keep	
a	pool	of	free	frames,	but	to	remember	which	page	was	in	each	frame.	Since	the	frame	contents	
are	not	modified	when	a	frame	is	written	to	the	disk,	the	old	page	can	be	reused	directly	from	
the free-frame pool if it is needed before that frame is reused. No 1/0 is needed in this case. 
When	a	page	fault	occurs,	we	first	check	whether	the	desired	page	is	in	the	free-frame	pool.	If	
it	is	not,	we	must	select	a	free	frame	and	read	into	it.	

This	 technique	 is	used	 in	 the	VAX/VMS	 system,	with	 a	FIFO	 replacement	 algorithm.	When	
the	FIFO	replacement	algorithm	mistakenly	replaces	a	page	that	is	still	in	active	use,	that	page	
is	quickly	retrieved	from	the	free-frame	buffer,	and	no	I/O	is	necessary.	The	free-frame	buffer	
provides	protection	against	the	relatively	poor,	but	simple,	FIFO	replacement	algorithm.	This	
method is necessary because the early versions of the VAX did not implement the reference 
bit correctly.

5.12 Thrashing

If the number of frames allocated to a low-priority process falls below the minimum number 
required	by	 the	 computer	 architecture,	we	must	 suspend	 that	 process	 execution.	We	 should	
then	page	out	 its	 remaining	pages,	 freeing	all	 its	allocated	 frames.	This	provision	 introduces	
a	 swap-in,	 swap-out	 level	 of	 intermediate	CPU	 scheduling.	 In	 fact,	 look	 at	 any	 process	 that	
does not have “enough” frames. Although it is technically possible to reduce the number of 
allocated	frames	to	the	minimum,	there	is	some	(larger)	number	of	pages	in	active	use.	If	the	
process	does	not	have	this	number	of	frames,	it	will	quickly	page	fault.	At	this	point,	it	must	
replace	some	page.	However,	since	all	 its	pages	are	 in	active	use,	 it	must	replace	a	page	that	
will	be	needed	again	right	away.	Consequently,	it	quickly	faults	again,	and	again,	and	again.	
The	process	continues	to	fault,	replacing	pages	for	which	it	then	faults	and	brings	back	in	right	
away. This high paging activity is called thrashing. A process is thrashing if it is spending more 
time paging than executing.
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Notes5.12.1 Cause of Thrashing

Thrashing results	in	severe	performance	problems.	Consider	the	following	scenario,	which	
is based on the actual behaviour of early paging systems. The operating system monitors 
CPU	utilization.	If	CPU	utilization	is	too	low,	we	increase	the	degree	of	multiprogramming	
by introducing a new process to the system. A global page-replacement algorithm is used; 
it replaces pages with no regard to the process to which they belong. Now suppose that a 
process enters a new phase in its execution and needs more frames. It starts faulting and 
taking	frames	away	from	other	processes.	These	processes	need	those	pages,	however,	and	
so	 they	also	 fault,	 taking	 frames	 from	other	processes.	These	 faulting	processes	must	use	
the	paging	device	 to	swap	pages	 in	and	out.	As	they	queue	up	for	 the	paging	device,	 the	
ready	queue	empties.	As	processes	wait	 for	 the	paging	device,	CPU	utilization	decreases.	
The	 CPU	 scheduler	 sees	 the	 decreasing	 CPU	 utilization,	 and	 increases	 the	 degree	 of	
multiprogramming as a result. The new process tries to get started by taking frames from 
running	processes,	causing	more	page	faults,	and	a	longer	queue	for	the	paging	device.	As	
a	 result,	CPU	utilization	drops	 even	 further,	 and	 the	CPU	 scheduler	 tries	 to	 increase	 the	
degree of multiprogramming even more. Thrashing has occurred and system throughput 
plunges.	 The	 page	 fault	 rate	 increases	 tremendously.	 As	 a	 result,	 the	 effective	 memory	
access	time	increases.	No	work	is	getting	done,	because	the	processes	are	spending	all	their	
time	paging.	This	phenomenon	 is	 illustrated	 in	 the	Figure	 5.36,	 in	which	CPU	utilization	
is plotted against the degree of multiprogramming. As the degree of multiprogramming 
increases,	CPU	utilization	also	increases,	although	more	slowly,	until	a	maximum	is	reached.	
If	 the	 degree	 of	multiprogramming	 is	 increased	 even	 further,	 thrashing	 sets	 in	 and	CPU	
utilization	drops	sharply.	At	this	point,	to	increase	CPU	utilization	and	stop	thrashing,	we	
must decrease the degree of multiprogramming. We can limit the effects of thrashing by using 
a	local	replacement	algorithm	(or	priority	replacement	algorithm).	With	local	replacement,	
if	one	process	 starts	 thrashing,	 it	 cannot	 steal	 frames	 from	another	process	and	cause	 the	
latter to thrash also. Pages are replaced with regard to the process of which they are a part. 
However,	if	processes	are	thrashing,	they	will	be	in	the	queue	for	the	paging	device	most	of	
the	time.	The	average	service	time	for	a	page	fault	will	increase,	due	to	the	longer	average	
queue	for	the	paging	device.	Thus,	the	effective	access	time	will	increase	even	for	a	process	
that	is	not	thrashing.	To	prevent	thrashing,	we	must	provide	a	process	as	many	frames	as	
it	needs.	But	how	do	we	know	how	many	frames	it	“needs”?	There	are	several	techniques.	
The working-set strategy starts by looking at how many frames a process is actually using. 
This	approach	defines	the	locality	model	of	process	execution.

Figure 5.36: Thrashing
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Notes The	locality	model	states	that,	as	a	process	executes,	it	moves	from	locality	to	locality.	A	locality	
is a set of pages that are actively used together. A program is generally composed of several 
different	localities,	which	may	overlap.	For	example,	when	a	subroutine	is	called,	it	defines	a	
new	locality.	In	this	locality,	memory	references	are	made	to	the	instructions	of	the	subroutine,	
its	local	variables,	and	a	subset	of	the	global	variables.	When	the	subroutine	is	exited,	the	process	
leaves	this	locality,	since	the	local	variables	and	instructions	of	the	subroutine	are	no	longer	in	
active	use.	We	may	return	to	this	locality	later.	Thus,	we	see	that	localities	are	defined	by	the	
program structure and its data structures. The locality model states that all programs will exhibit 
this basic memory reference structure. Note that the locality model is the unstated principle 
behind the caching discussions so far in this book. If accesses to any types of data were random 
rather	 than	patterned,	 caching	would	be	useless.	Suppose	 that	we	allocate	enough	 frames	 to	
a process to accommodate its current locality. It will fault for the pages in its locality until all 
these	pages	are	in	memory;	then,	it	will	not	fault	again	until	it	changes	localities.	If	we	allocate	
fewer	frames	than	the	size	of	the	current	locality,	the	process	will	thrash,	since	it	cannot	keep	
in memory all the pages that it is actively using. 

5.12.2 Working-set Model

The	working-set	model	is	based	on	the	assumption	of	locality.	This	model	uses	a	parameter,	A,	
to	define	the	working-set	window.	The	idea	is	to	examine	the	most	recent	A	page	references.	
The set of pages in the most recent A page references is the working set If a page is in 
active	 use,	 it	will	 be	 in	 the	working	 set.	 If	 it	 is	 no	 longer	 being	 used,	 it	will	 drop	 from	 the	
working	 set	A	 time	 units	 after	 its	 last	 reference.	 Thus,	 the	working	 set	 is	 an	 approximation	
of	 the	 program’s	 locality.	 For	 example,	 given	 the	 sequence	 of	 memory	 references	 shown	
in	 if	 A	 =	 10	 memory	 references,	 then	 the	 working	 set	 at	 time	 tl	 is	 (1,	 2,	 5,	 6,	 7).	 By	 time	
t2,	 the	working	 set	 has	 changed	 to	 {3,	 4).	 The	 accuracy	 of	 the	working	 set	 depends	 on	 the	
selection	 of	 A.	 If	 A	 is	 too	 small,	 it	 will	 not	 encompass	 the	 entire	 locality;	 if	 A	 is	 too	 large,	
it	 may	 overlap	 several	 localities.	 In	 the	 extreme,	 if	 A	 is	 infinite,	 the	 working	 set	 is	 the	 set	

Figure 5.37: Working-set Model

of pages touched during the process execution. The most important property of the working 
set	is	its	size.	If	we	compute	the	working-set	size,	WSSi,	for	each	process	in	the	system,	we	can	
then consider where D is the total demand for frames. Each process is actively using the pages 
in	its	working	set.	Thus,	process	i	needs	WSSi	frames.	If	the	total	demand	is	greater	than	the	
total	number	of	 available	 frames	 (D	>	m),	 thrashing	will	occur,	because	 some	processes	will	
not have enough frames. Use of the working-set model is then simple. The operating system 
monitors the working set of each process and allocates to that working set enough frames to 
provide	 it	with	 its	working-set	size.	 If	 there	are	enough	extra	frames,	another	process	can	be	
initiated.	If	the	sum	of	the	working-set	sizes	increases,	exceeding	the	total	number	of	available	
frames,	 the	operating	system	selects	a	process	 to	suspend.	The	process	pages	are	written	out	
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Notesand its frames are reallocated to other processes. The suspended process can be restarted later. 
This working-set strategy prevents thrashing while keeping the degree of multiprogramming as 
high	as	possible.	Thus,	it	optimizes	CPU	utilization.	The	difficulty	with	the	working-set	model	
is keeping track of the working set. The working-set window is a moving window. At each 
memory	reference,	a	new	reference	appears	at	one	end	and	the	oldest	reference	drops	off	the	
other end. A page is in the working set if it is referenced anywhere in the working-set window. 
We	can	approximate	the	working-set	model	with	a	fixed	interval	timer	interrupt	and	a	reference	
bit.	For	example,	assume	A	is	10,000	references	and	we	can	cause	a	timer	interrupt	every	5,000	
references.	When	we	get	a	timer	interrupt,	we	copy	and	clear	the	reference-bit	values	for	each	
page.	Thus,	if	a	page	fault	occurs,	we	can	examine	the	current	reference	bit	and	2	in-memory	
bits	to	determine	whether	a	page	was	used	within	the	last	10,000	to	15,000	references.	If	it	was	
used,	at	least	1	of	these	bits	will	be	on.	If	it	has	not	been	used,	these	bits	will	be	off.	Those	pages	
with at least 1 bit on will be considered to be in the working set. Note that this arrangement 
is	not	entirely	accurate,	because	we	cannot	tell	where,	within	an	interval	of	5,000,	a	reference	
occurred. We can reduce the uncertainty by increasing the number of our history bits and the 
frequency	of	interrupts	(for	example,	10	bits	and	interrupts	every	1,000	references).	However,	
the	cost	to	service	these	more	frequent	interrupts	will	be	correspondingly	higher.	

5.12.3 Page-fault Frequency

The	 working-set	 model	 is	 successful,	 and	 knowledge	 of	 the	 working	 set	 can	 be	 useful	 for	
prepaging  but it seems a clumsy way to control thrashing. A strategy that uses the page-fault 
frequency	(PFF)	takes	a	more	direct	approach.

Figure 5.38: Page-fault Frequency

The	specific	problem	is	how	to	prevent	thrashing.	Thrashing	has	a	high	page-fault	rate.	Thus,	
we	want	 to	control	 the	page-fault	 rate.	When	 it	 is	 too	high,	we	know	that	 the	process	needs	
more	frames.	Similarly,	if	the	page-fault	rate	is	too	low,	then	the	process	may	have	too	many	
frames. We can establish upper and lower bounds on the desired page-fault rate. If the actual 
page-fault	rate	exceeds	the	upper	limit,	we	allocate	that	process	another	frame;	if	the	page-fault	
rate	 falls	below	the	 lower	 limit,	we	remove	a	 frame	from	that	process.	Thus,	we	can	directly	
measure and control the page-fault rate to prevent thrashing.
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Notes As	with	 the	working-set	 strategy,	we	may	 have	 to	 suspend	 a	 process.	 If	 the	 page-fault	 rate	
increases	and	no	 free	 frames	are	available,	we	must	select	 some	process	and	suspend	 it.	The	
freed frames are then distributed to processes with high page-fault rates.

Write a program for memory management

 #include <memory>

 #include <iostream>

	int	main(	)	{

				std::auto_ptr<int>	a(new	int(3));

				//	a.get(	)	returns	the	raw	pointer	of	a

				std::cout	<<	“a	loc:	“	<<	a.get(	)	<<	‘\n’;

				std::cout	<<	“a	val:	“	<<	*a	<<	‘\n’;

 

				std::auto_ptr<int>	b;

 

				b	=	a;	//	now	b	points	to	the	int,	a	is	null

 

				std::cout	<<	“b	loc:	“	<<	b.get(	)	<<	‘\n’;

				std::cout	<<	“b	val:	“	<<	*b	<<	‘\n’;

				std::cout	<<	“a	loc:	“	<<	a.get(	)	<<	‘\n’;	

 

    return 0;

 }

 Questions:

 1. Give the brief about the pointer in memory.

	 2.	 Explain	the	Garbage	collection	(GC)	in	memory	management.

 1.	 Assuming	a	1-KB	page	size,	what	are	the	page	numbers	and	offsets	for	
the	following	address	references	(provided	as	a	decimal	numbers):

	 (a)	 2375
	 (b)	 19366
	 (c)	 30000
	 (d)	 256
	 (e)	 16385
 2. C Program for First In First Serve Algorithm.
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NotesSelf Assessment

Multiple choice questions:

 4. Virtual memory is ..................... .

	 (a)	 An	extremely	large	main	memory

	 (b)	 An	extremely	large	secondary	memory

	 (c)	 An	illusion	of	extremely	large	main	memory

	 (d)	 A	type	of	memory	used	in	super	computers.	

	 5.	 The	problem	of	thrashing	is	effected	scientifically	by	.....................	.

	 (a)	 Program	structure

	 (b)	 Program	size

	 (c)	 Primary	storage	size

	 (d)	 None	of	the	above	

 6. The mechanism that bring a page into memory only when it is needed is called 
..................... .

	 (a)	 Segmentation

	 (b)	 Fragmentation

	 (c)	 Demand	Paging

	 (d)	 Page	Replacement

	 7.	 The	Memory	Buffer	Register	(MBR)

	 (a)	 is	a	hardware	memory	device	which	denotes	the	location	of	the	current	instruction	
being executed.

	 (b)	 is	a	group	of	electrical	 circuits	 (hardware),	 that	performs	 the	 intent	of	 instructions	
fetched from memory.

	 (c)	 contains	the	address	of	the	memory	location	that	is	to	be	read	from	or	stored	into.

	 (d)	 contains	 a	 copy	 of	 the	 designated	memory	 location	 specified	 by	 the	MAR	 after	 a	
“read” or the new contents of the memory prior to a “write”.

 8. The LRU algorithm

	 (a)	 pages	out	pages	that	have	been	used	recently.

	 (b)	 pages	out	pages	that	have	not	been	used	recently.

	 (c)	 pages	out	pages	that	have	been	least	used	recently.

	 (d)	 pages	out	the	first	page	in	a	given	area.

 9. Thrashing

	 (a)	 is	a	natural	consequence	of	virtual	memory	systems.

	 (b)	 can	always	be	avoided	by	swapping.

	 (c)	 always	occurs	on	large	computers.

	 (d)	 can	be	caused	by	poor	paging	algorithms.
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Notes  10. Thrashing can be avoided if

	 (a)	 the	pages,	belonging	to	the	working	set	of	the	programs,	are	in	main	memory.

	 (b)	 the	speed	of	CPU	is	increased.

	 (c)	 the	speed	of	I/O	processor	is	increased.

	 (d)	 all	of	the	above.

5.13 Summary

 • The memory management algorithms vary from a primitive bare-machine approach to 
paging and segmentation strategies.

	 •	 The	main	memory	must	accommodate	both	 the	operating	system	and	 the	various	user	
processes. We therefore need to allocate different parts of the main memory in the most 
efficient	way	possible.

	 •	 Paging	 is	 a	memory-management	 scheme	 that	permits	 the	physical-address	 space	of	 a	
process to be noncontiguous.

	 •	 Hardware	Support	Each	operating	system	has	its	own	methods	for	storing	page	tables.	

	 •	 Most	allocate	a	page	table	for	each	process.

	 •	 Memory	protection	in	a	paged	environment	is	accomplished	by	protection	bits	11	that	are	
associated	with	each	frame.	Normally,	these	bits	are	kept	in	the	page	table.

	 •	 Another	advantage	of	paging	is	the	possibility	of	sharing	common	code.

	 •	 Swapping	and	paging	can	lead	to	quite	a	large	system	overhead.

	 •	 A	demand-paging	system	is	similar	to	a	paging	system.

	 •	 A	FIFO	replacement	algorithm	associates	with	each	page	 the	 time	when	that	page	was	
brought into memory.

5.14 Keywords

Compile Time:	 It	 refers	 to	 either	 the	operations	performed	by	a	 compiler	 (the	 “compile-time	
operations”),	programming	 language	requirements	 that	must	be	met	by	source	code	 for	 it	 to	
be	successfully	compiled	(the	“compile-time	requirements”),	or	properties	of	the	program	that	
can be reasoned about at compile time.

Fragmentation: A	multiprogrammed	 system	 will	 generally	 perform	 more	 efficiently	 if	 it	
has	 a	 higher	 level	 of	 multiprogramming.	 For	 a	 given	 set	 of	 processes,	 we	 can	 increase	 the	
multiprogramming	level	only	by	packing	more	processes	into	memory.	To	accomplish	this	task,	
we	must	 reduce	memory	waste	 or	 fragmentation.	 Systems	with	 fixed-sized	 allocation	 units,	
such	 as	 the	 single-partition	 scheme	 and	paging,	 suffer	 from	 internal	 fragmentation.	 Systems	
with	variable-sized	allocation	units,	 such	as	 the	multiple-partition	scheme	and	segmentation,	
suffer from external fragmentation.

Global Descriptor Table (GDT):	 Is	specific	 to	 the	 IA32	architecture.	 It	 contains	entries	 telling	
the CPU about memory segments. A similar Interrupts Descriptor Table exists containing tasks 
and interrupts descriptors. Read the GDT Tutorial.

Hashed Page Tables: A common approach for handling address spaces larger than 32 bits.

Local Descriptor Table (LDT): Is a memory table used in the x86 architecture in protected 
mode	and	containing	memory	segment	descriptors:	start	in	linear	memory,	size,	executability,	
writability,	access	privilege,	actual	presence	in	memory.
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NotesMemory-Management Unit (MMU): The run-time mapping from virtual to physical addresses 
is done by a hardware device.

Relocation: One solution to the external-fragmentation problem is compaction. Compaction 
involves shifting a program in memory without the program noticing the change. This 
consideration	 requires	 that	 logical	 addresses	 be	 relocated	 dynamically,	 at	 execution	 time.	 If	
addresses	are	relocated	only	at	load	time,	we	cannot	compact	storage.

Secondary Memory: This memory holds those pages that are not present in main memory.

Translation Look-Aside Buffer (TLB): Standard	 solution	 to	 this	 problem	 is	 to	 use	 a	 special,	
small,	fast	look	up	hardware	cache.

5.15 Review Questions

	 1.	 Describe	how	the	Swap(	)	instruction	can	be	used	to	provide	mutual	exclusion	that	satisfies	
the	bounded-waiting	requirement.

	 2.	 Given	five	memory	partitions	of	100	KB,	500	KB,	200	KB,	300	KB,	and	600	KB	(in	order),	
how	would	each	of	 the	first-fit,	best-fit,	and	worst-fit	algorithms	place	processes	of	212	
KB,	417	KB,	112	KB,	and	426	KB	(in	order)?Which	algorithm	makes	the	most	efficient	use	
of memory?

 3. Most systems allow programs to allocate more memory to its address space during 
execution. Data allocated in the heap segments of programs is an example of such 
allocated	memory.	What	 is	 required	 to	 support	 dynamic	memory	 allocation	 in	 the	
following	schemes:

	 (a)	 contiguous-memory	allocation

	 (b)	 pure	segmentation

	 (c)	 pure	paging

	 4.	 On	a	system	with	paging,	a	process	cannot	access	memory	 that	 it	does	not	own;	why?	
How could the operating system allow access to other memory? Why should it or should 
it not?

	 5.	 Compare	paging	with	segmentation	with	respect	to	the	amount	of	memory	required	
by the address translation structures in order to convert virtual addresses to physical 
addresses.

 6. Why are segmentation and paging sometimes combined into one scheme?

 7. Explain why it is easier to share a reentrant module using segmentation than it is to do 
so when pure paging is used.

	 8.	 Consider	the	following	segment	table:

Segment Base Length

0 219 600

1 2300 14

2 90 100

3 1327 580

4 1952 96

  What are the physical addresses for the following logical addresses?
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Notes  9. What is the purpose of paging the page tables?

 10. Consider the hierarchical paging scheme used by the VAX architecture. How many 
memory operations are performed when an user program executes a memory load 
operation?

 11. Compare the segmented paging scheme with the hashed page tables scheme for handling 
large address spaces. Under what circumstances is one scheme preferrable over the 
other?

	 12.	 Discuss	the	hardware	support	required	to	support	demand	paging.

	 13.	 What	 is	 the	copy-on-write	 feature	and	under	what	 circumstances	 is	 it	beneficial	 to	use	
this	feature?	What	is	the	hardware	support	required	to	implement	this	feature?

 14. A certain computer provides its users with a virtual-memory space of 232 bytes. The 
computer	has	218	bytes	of	physical	memory.	The	virtual	memory	is	implemented	by	paging,	
and the page size is 4096 bytes. A user process generates the virtual address 11123456. 
Explain how the system establishes the corresponding physical location. Distinguish 
between software and hardware operations.

	 15.	 Discuss	 situations	 under	 which	 the	 least	 frequently	 used	 page-replacement	 algorithm	
generates fewer page faults than the least recently used page replacement algorithm. Also 
discuss under what circumstance does the opposite holds.

	 16.	 Consider	a	demand-paging	system	with	the	following	time-measured	utilizations:

	 	 	 CPU	utilization	 20%

	 	 	 Paging	disk	 97.7%

	 	 	 Other	I/O	devices	 5%

	 17.	 Suppose	that	your	replacement	policy	(in	a	paged	system)	is	to	examine	each	page	regularly	
and to discarding that page if it has not been used since the last examination. What would 
you gain and what would you lose by using this policy rather than LRU or second-chance 
replacement?

 18. A page-replacement algorithm should minimize the number of page faults. We can do 
this	minimization	by	distributing	heavily	used	pages	evenly	over	all	of	memory,	rather	
than having them compete for a small number of page frames. We can associate with each 
page	frame	a	counter	of	the	number	of	pages	that	are	associated	with	that	frame.	Then,	
to	replace	a	page,	we	search	for	the	page	frame	with	the	smallest	counter.

	 	 (a)	 Define	a	page-replacement	algorithm	using	this	basic	 idea.	Specifically	address	the	
problems	of	(1)	what	the	initial	value	of	the	counters	is,	(2)	when	counters	are	increased,	 
(3)	when	counters	are	decreased,	and	(4)	how	the	page	to	be	replaced	is	selected.

	 	 (b)	 How	many	page	faults	occur	for	your	algorithm	for	the	following	reference	string,	
for four page frames?

	 	 	 1,	2,	3,	4,	5,	3,	4,	1,	6,	7,	8,	7,	8,	9,	7,	8,	9,	5,	4,	5,	4,	2.

	 	 (c)	 What	is	the	minimum	number	of	page	faults	for	an	optimal	page	replacement	strategy	
for the reference string in part b with four page frames?
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Notes 19. What is the cause of thrashing? How does the system detect thrashing? Once it detects 
thrashing,	what	can	the	system	do	to	eliminate	this	problem?

 20. Is it possible for a process to have two working sets? One representing data and another 
representing code? Explain.

Answers to Self Assessment

	 1.	 (d)	 2.	 (d)	 3.	 (d)	 4.	 (c)	 5.	 (a)

	 6.	 (c)	 7.	 (d)	 8.	 (c)	 9.	 (d)	 10.	 (b)

5.16 Further Readings

Operating Systems,	by	Staurt	E.	Madnick,	John	J.	Doonovan.	

Operating Systems,	by	Andrew	Tanebaum,	Albert	S.	Woodhull.	

wiley.com/coolege.silberschatz
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Notes Objectives

After studying this unit, you will be able to:

	 •	 Explain	file	concepts

	 •	 Understand	file	access

	 •	 Discuss	access	methods

	 •	 Explain	directories	for	languages

	 •	 Understand	file	sharing

	 •	 Discuss	protection	mechanisms

	 •	 Explain	allocation	methods

	 •	 Understand	free-space	management

	 •	 Discuss	directory	implementation

Introduction

A	file	is	a	collection	of	related	information	defined	by	its	creator.	Computer	can	store	files	on	
the	disk	(secondary	storage),	which	provide	long	term	storage.	Some	examples	of	storage	media	
are	magnetic	tape,	magnetic	disk	and	optical	disk.	Each	of	these	media	has	its	own	properties	
like	speed,	capacity,	data	transfer	rate	and	access	methods.

Drive: The piece of hardware that holds and runs disks; used as a top-level location criterion 
for	a	file.	Your	“hard	disk”	or	“hard	drive”	is	usually	designated	with	the	letter	“C,”	while	your	
floppy	disk/drive	is	usually	named	“A.”

File:	One	document,	one	image,	one	something.	In	the	world	of	computing,	the	terms	“folder”	
and	 “file”	 are	 entirely	 separate,	 distinct,	 and	 no	 interchangeable.	 Folders	 contain	 files;	 files	
cannot contain folders. Files are represented by various icons that indicate which program is 
used	to	open	them:	

File extension:	The	two	or	three	or	four	letters	after	the	dot	in	a	filename.	The	file	extension	

indicates	what	kind	of	file	it	is:	its	“format”	or	“type.”	For	instance,	the	file	extension	.exe	refers	

to	an	“executable”	file-in	other	words,	an	application.	The	file	extension	.html	indicates	a	

Hypertext	Markup	Language	file—in	other	words,	a	web	page.	In	My	Computer	or	Windows	

Explorer,	double-clicking	on	a	file	will	open	it	if	the	file	extension	is	correct.	Some	common	file	
extensions:.

doc – Microsoft Word document 

wpd – WordPerfect Document 

txt – Plain text document 

htm,	 .html	–	A	plain	text	document	with	added	code	that	enables	 it	 to	be	read	on	the	World	
Wide Web 

jpg	–	An	image	file	

gif	–	An	image	file	
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Notesexe	–	An	executable	file,	meaning	an	application/program/piece	of	software	

Filename:	The	name	of	a	file,	including	or	not	including	its	file	extension.

File Size:	The	size	of	a	file	measured	 in	bytes.	A	floppy	disk	holds	about	1.5	Mb;	a	Zip	disk	
holds	100	Mb	or	250	Mb;	a	CD	holds	about	800	Mb;	a	DVD	holds	about	4,700	Mb.

1,000	bytes	=	1	kilobyte	(Kb)	

1,000	kilobytes	=	1	megabyte	(Mb)	

1,000	megabytes	=	1	gigabyte	(Gb)	

1,000	gigabytes	=	1	terabyte	(Tb)	

Folder:	Also	“directory.”	A	division	of	a	drive	into	which	you	put	files	or	further	folders	(which	
are	then	called	subdirectories).	In	both	Windows	and	Mac,	a	folder	subfolder	is	represented	by	
an	icon	that	looks	like	a	manila	folder:

Path:	The	exact	location	of	a	file,	including	drive	letter,	directory,	subdirectory,	and	filename,	
as	in	the	following:	C:\My	Documents\TTSP\Basic	File	Management.doc	.

Six	main	major	activities	of	an	operating	system	in	regard	to	file	management	
are:

	 1.	 The	creation	and	deletion	of	files.	

 2. The creation and deletion of directions. 

	 3.	 The	support	of	primitives	for	manipulating	files	and	directions.	

	 4.	 The	mapping	of	files	onto	secondary	storage.	

	 5.	 The	back	up	of	files	on	stable	storage	media

	 6.	 A	file	is	a	collection	of	related	information	defined	by	its	creator.	Computer	
can	store	files	on	the	disk	(secondary	storage),	which	provide	long	term	
storage.	 Some	examples	of	 storage	media	are	magnetic	 tape,	magnetic	
disk and optical disk. Each of these media has its own properties like 
speed,	capacity,	data	transfer	rate	and	access	methods.

6.1 Managing Files in Windows

There	are	three	ways	of	managing	files	in	Windows	operating	systems:	

	 •	 From	within	a	program;

	 •	 By	using	My	Computer;	and

	 •	 By	using	Windows	Explorer.

6.1.1 Managing Files from within a Program 
When you choose “File” →	“Save	As”	from	within	a	program	such	as	Microsoft	Word,	a	dialogue	
box	appears	with	three	important	features:	

“Save	in”	(near	the	top	of	the	box).
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A	dropdown	box	that	brings	up	your	computer’s	directory	structure,	 to	allow	you	to	choose	
where	to	save	your	file.

“File	name”	(near	the	bottom	of	the	box).

Allows	you	to	type	in	a	name	for	your	file.

	“Save	as	type”	(at	the	bottom	of	the	box).	

A	dropdown	box	that	allows	you	to	choose	a	format	(type)	for	your	file.	The	default	file	format	
will	appear	with	the	default	file	extension.

Figure 6.1: File Management in Window

These	three	options	also	appear	when	you	choose	“File”	“Open”	from	within	Microsoft	Word,	
but	they	have	slightly	different	names.	Other	programs	will	have	the	same	three	options,	which	
again might have slightly different names.

6.1.2 Using My Computer 
Double-clicking	 on	 the	My	Computer	 icon,	which	 should	 be	 located	 in	 the	 upper	 left-hand	
corner	of	your	desktop,	will	open	a	window	labeled	My	Computer.	From	within	this	window,	
you	can	open,	move,	copy,	and	delete	files;	you	can	also	create,	move,	copy,	and	delete	folders.	
Double	clicking	on	any	folder	icon	also	opens	My	Computer,	but	you	will	see	the	contents	of	
that directory rather than the contents of your computer. 
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Figure 6.2: Double Clicking Process

At	the	“top”	level	of	the	directory	structure	are	the	drives,	differentiated	by	letters:	

A:\	is	your	floppy	disk	drive	

C:\	is	your	hard	disk	

D:\	is	your	Zip,	CD,	or	DVD	drive	

J:\	is	your	Home	Directory	(your	blue.unix.Virginia.edu	account).	This	drive	only	appears	when	
you have logged in to your Home Directory. 

Go	to	“View”	at	the	top	of	the	window	to	change	the	way	files	and	folders	are	displayed	within	
the	window.	There	are	four	ways	to	view	files	and	folders:	

Large icons 

Small icons 

List:	Choose	this	when	you	want	to	work	with	several	files	or	folders	at	a	time.

Details:	This	 is	a	good	mode	to	work	in	when	you	want	to	see	when	the	file	was	created,	 its	
size,	and	other	important	information.	

	 •	 The	toolbar	has	several	buttons	that	enable	you	to	work	with	files	and	folders:
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Notes Up:	Choosing	“Up”	enables	you	to	navigate	through	the	computer’s	directory	structure	quickly.	
Clicking	on	 this	 button	will	 change	 the	 contents	 of	 the	 current	window,	 taking	you	“up”	 in	
the	directory	structure	until	you	get	to	the	highest	level,	at	which	only	the	drives	are	shown.

Cut:	When	you	single-click	on	a	file	or	folder	to	select	it,	it	will	be	highlighted	in	the	window.	
Choosing	“Cut”	will	delete	the	file	or	folder	from	its	current	location	and	copy	it	to	the	clipboard	
so that it can be pasted elsewhere.

Copy:	Choosing	“Copy”	will	copy	a	selected	file	or	folder	into	the	clipboard	so	that	it	can	be	
pasted	elsewhere,	but	will	not	remove	the	file	or	folder	from	its	current	location.

Paste:	Choosing	“Paste”	will	paste	a	file	or	folder	that	is	stored	in	the	clipboard	into	the	current	
location.

Undo: Choosing “Undo” allows you to undo an action that you have just performed. This is 
particularly useful when you have just deleted something you didn’t mean to delete.

Delete:	Choosing	“Delete”	will	delete	a	selected	file	or	folder	without	copying	it	to	the	clipboard.

Properties: Choosing “Properties” will bring up a box that gives you information about a 
particular	file	or	folder.

To	create	a	new	folder	in	the	current	window,	you	can	do	one	of	two	things:

Go to “File” → “New” →	“Folder.”	A	new	folder	appears	in	the	current	window,

and the folder name is highlighted that will allow you to name it.

Right-click	anywhere	in	the	current	window	(not	on	an	icon	or	filename)	and

choose “New” → “Folder.”

Right-clicking	 on	 a	 selected	file	 or	 folder	will	 allow	you	 to	 do	 several	 useful	 things,	 among	
which	are	the	following:

Rename	 a	 file	 or	 folder	 by	 choosing	 “Rename.”	A	 blinking	 cursor	will	 appear	 in	 the	 file	 or	
folder name.

Create a desktop shortcut by choosing “Send To” → “Desktop as Shortcut.”

Copy	the	file	or	folder	to	a	floppy	disk	by	choosing	“Send	To”	→	“3	½	Floppy	(A:).”

Cut,	copy,	paste,	or	print	a	file.

6.1.3 Using Windows Explorer
In	Windows	Explorer,	the	entire	directory	structure	is	always	available	at	all	times	in	the	left-
hand pane. In this respect it differs from My Computer.

Another difference between Windows Explorer and My Computer is that Windows Explorer 
allows	you	to	drag-and-drop	files	and	folders	with	the	mouse.
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NotesIn	the	left-hand	pane,	drives,	directories,	and	subdirectories	are	visible.	To	expand	your	view	of	
the	contents	of	a	drive	or	directory,	click	on	the	+	sign	next	to	the	directory	name.	To	collapse	
your	view	of	the	contents	of	a	drive	or	directory,	click	on	the	–	sign	next	to	the	directory	name.

To	 see	 the	 contents	 of	 a	 drive	 or	 directory,	 click	 once	 on	 it	 (i.e.,	 select	 it).	 In	 the	 right	 hand	
pane,	 the	contents	of	 the	selected	drive	or	directory	are	 then	displayed.	The	right	hand	pane	
functions	 just	 like	 the	windows	in	My	Computer.	 In	 the	Figure	6.3,	 the	drive	C:\	 is	selected,	
and its contents are shown in the right-hand pane.

Another difference between Windows Explorer and My Computer is that 
WindowsExplorer	 allows	 you	 to	 drag-and-drop	files	 and	 folders	with	 the	
mouse.

Figure 6.3: Windows Explorer

In	the	next	example,	the	drive	C:\	has	been	expanded,	and	the	directory	“Documents”	has	been

selected. Its contents are displayed in the right-hand pane.

  	 How	to	save	file	another	drive	in	computer	system?
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Figure 6.4: Explorering Document

Sorting Files

You	can	sort	files	in	My	Computer	and	Windows	Explorer	by	clicking	once	on	the	Name,	
Size,	Type,	or	Modified	header	buttons.	To	 sort	 the	files	with	 the	most	 recent	 listed	first,	
for	 instance,	 click	 once	 on	 “Modified.”	 To	 re-sort	 them	with	 the	 earliest	 listed	first,	 click	
again	on	“Modified.”

6.1.4 Working with More than One File

To select two or more	separate	files,	hold	down	the	“Ctrl”	key	and	click	on	each	filename.	To	
select	a	contiguous	group	of	files	in	a	list,	click	on	the	first	filename,	then	hold	down	the	“Shift”	
key	and	click	on	the	last	filename.	All	files	in	between	will	also	be	selected.	You	can	then	perform	
cut,	copy,	and	delete	functions	on	all	the	selected	files.

6.1.5 Locating Lost Files

Use the “Find File” facility of your operating system by going to “Start” → “Find” → “Files or 
Folders.”	A	box	will	appear	that	will	allow	you	to	search	for	a	file	by	name,	by	part	of	its	name	
(use	*	as	a	wildcard	character),	by	location,	by	date,	by	type,	or	by	other	criteria.
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A	file	is	an	abstract	data	type,	a	“thing”,	which	is	defined	and	implemented	by	the	operating	
system.	The	main	task	of	the	operating	system	is	to	map	the	logical	file	concept	onto	physical	
storage	devices,	such	as	disks	or	tapes.

A file

Has a type	(.com,.bat,exe,…)	which	can	either	be	known	and	managed	by	the	operating	system,	
or leaving the interpretation to the application process.

Some	systems	allow	different	file	operations	based	on	type.

For general purpose systems it is more effective to implement only basic types and grant 
maximum freedom to the processes.

For	 specialized	 systems,	 i.e.	 a	 database	 system,	 it	 “may”	be	more	 efficient	 to	 implement	 the	
logic in the operating system.

Consists of a sequence of logical records,	which	can	be	of	type	byte,	a	fixed	or	variable	length	
line,	or	a	complex	data	type	(structure).

The	O/S	becomes	bulky	and	complex	if	it	supports	too	many	file	structures.

Assuming	a	file	to	be	an	array	of	bytes	and	deferring	interpretation	to	the	applications	ensures	
that	the	O/S	is	simplified.

6.2.1 Basic File Operations

	 •	 Create:	find	space	for	the	file	and	make	an	entry	in	the	directory.

	 •	 Open:	find	file	and	determine	if	it	has	already	been	opened.	If	not	open	search	directory,	
cache	information,	add	entry	in	per-process	open-file	table.	If	open	check	lock	and	cache	
information	if	lock	can	be	acquired.	Increment	the	open	count.

	 •	 Close:	decrement	the	open	count	and	remove	the	file’s	entry	from	the	open-file	table	 if	
count reaches zero.

	 •	 Read:	read	data	from	the	file.

	 •	 Write:	write	data	to	the	file.

	 •	 Delete:	search	directory,	release	file	space	and	erase	directory	entry.

	 •	 Reposition:	reposition	the	file	position	pointer.	This	is	more	commonly	known	as	seek.

	 •	 Truncate:	delete	content	of	a	file,	but	keep	file	properties.

	 •	 Lock:	file	locks	provide	concurrency	control.	A	shared	lock	allows	multiple	“readers”	to	
acquire	a	lock	concurrently,	while	exclusive	lock	ensures	only	one	“writer”	can	modify	a	
file.With	mandatory	 locking	the	operating	system	ensures	 locking	 integrity,	while	with	
advisory locking the application process ensures that the correct locking strategy is 
followed. The Windows operating system uses the mandatory locking strategy.
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Multiple choice questions: 

 1. Which of the following systems software does the job of merging the records from two 
files	into	one?

	 (a)	 Security	software	 (b)	 Utility	program	

	 (c)	 Networking	software	 (d)	 Documentation	system	

	 (e)	 None	of	the	above

 2. Which directory implementation is used in most Operating System?

	 (a)	 Single	level	directory	structure	 (b)	 Two	level	directory	structure

	 (c)	 Tree	directory	structure	 (d)	 Acyclic	directory	structure

Fill in the blanks:

	 3.	 A	database	system	is	more	efficient	to	implement	the	.......................	in	the	operating	system.

	 4.	 To	select	 two	or	more	separate	file,	hold	down	the	 .......................	key	and	click	on	each	
filename.

	 5.	 We	can	rename	a	file	or	folder	by	choosing	.......................	option.

6.3 File Access

	 •	 Sequential:	Process	files	from	beginning	to	end,	in	order,	one	record	after	the	other.	For	
example,	if	we	want	to	read	a	document	from	beginning	to	end,	we	typically	start	at	the	
beginning	and	read	page,	by	page	until	we	reach	the	end.

	 •	 Direct:	Process	file	by	accessing	the	content	in	no	specific	order.	For	example,	if	we	only	want	
to	read	page	1013	it	makes	sense	to	reposition	(seek)	to	page	1013	and	read	the	page.

  

6.4 Access Methods

An	access	method	defines	the	way	processes	read	and	write	files.	We	study	some	of	these	below.

6.4.1 Sequential Access
Under	 this	 access	 method,	 the	 entire	 file	 is	 read	 or	 written	 from	 the	 beginning	 to	 the	 end	
sequentially.	Files	 in	popular	programming	 languages	 such	as	Pascal	 and	Ada	provide	 such	
access.	The	file	is	associated	with	a	read/write mark,	which	is	advanced	on	each	access.	If	several	
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Notesprocesses	are	reading	or	writing	from	the	same	file,	then	the	system	may	define	one	read/write	
mark or several. 

In	the	former	case,	the	read/write	mark	is	kept	at	a	central	place,	while	in	
the	latter	case	it	is	kept	with	the	process	table	entry.	In	Unix,	a	combination	
of	the	two	schemes	is	provided,	as	we	shall	see	later.

6.4.2 Direct Access
This access allows a user to position the read/write mark before reading or writing. This feature 
is	useful	for	applications	such	as	editors	that	need	to	randomly	access	the	contents	of	the	file.

6.4.3 Mapped Access
The Multics operating systems provide a novel form of access which we shall call mapped access. 
When	a	process	opens	a	file,	 it	 is	mapped	to	a	segment.	The	open	call	returns	the	number	of	
this	segment.	The	process	can	thus	access	the	file	as	part	of	its	virtual	store.	The	Close	Segment	
call	may	be	used	to	close	the	file.

6.4.4 Structured Files
So	far,	we	have	treated	files	as	byte	streams.	Database	applications	often	wish	to	treat	them	as	
records	that	may	be	accessed	by	some	key.	To	accommodate	these	applications,	some	systems	
support	typed	or	structured	files	that	are	considered	streams	of	records.	If	a	file	is	structured,	
the	owner	of	the	file	describes	the	records	of	the	file	and	the	fields	to	be	used	as	keys.	OS/360	
for	IBM	computers	and	DEC	VMS	provide	such	files.

6.4.5 Binding of Access Methods 
An	access	method	may	be	specified	at	various	times:

When	the	operating	system	is	designed.	In	this	case,	all	files	use	the	same	method.	When	the	
file	is	created.	Thus,	every	time	the	file	is	opened,	the	same	access	method	will	be	used.	When	
the	file	is	opened.	Several	processes	can	have	the	same	file	open	and	access	it	differently.

6.5 Directory Structures

A	disk	is	typically	partitioned,	also	known	as	slices	and	minidisks.	The	device	directory	or	volume	
table	of	contents	records	and	maintains	the	file	properties	such	as	name,	size,	type	and	location.

Metadirectory

Enterprise

DIrectory

Directory

Database
Departmental

Directories

OS Directories

(MS, Novell, etc.)

Application-Specific

Directories

Border

Directory

Overall Campus Directory Structure
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All	files	are	 contained	 in	 the	 same	directory,	which	 can	be	a	daunting	directory	 structure	as	
number	of	files	increases.	Using	long	filenames	and	using	the	character	“.”	we	could	(but	really	
should	not)	simulate	multi-level	directory:

mail.willy.inbound.mailB.txt

mail.willy.inbound.mailC.txt

mail.willy.deleted.mailA.txt

cat bo a test data mail cont hex recordsDirectory

Files

6.5.2 Two-level Directory
Each	user	has	his	own	user	file	directory,	which	contains	the	files	for	each	user.
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Notes6.5.3 Tree-structured Directory
An extension to the two-level directory to a tree of arbitrary height. Each directory can contain 
one	or	more	directories	and/or	files.

bin usr tmp home uvn lib dev etc

bin
(root)

xyz Bg

news docs junk

pusswdabc 3f jkl2w

6.5.4 Acrylic-structured Directory
Allows	directories	to	share	sub-directories	and	files.	The	sharing	is	achieved	by	creating	links	
that	point	to	another	file	or	directory,	implemented	as	an	absolute	or	relative	path.

6.5.5 Paths
	 •	 Absolute path begins at the root and follows a path down to a specified file.  

Example:	c:\temp\x\demo\testing\hello.cpp.

	 •	 Relative path defines	 a	 path	 from	 the	 relative	 path.	 Example:	 if	we	 are	 located	 in	 c:\
temp\x	and	relative	path	is	\test\log.txt,	then	its	absolute	path	would	be	c:\temp\test\
log.txt.	This	topic	shows	the	naming	conventions	used	to	denote	the	location	of	files	on	
the	portal	server	and	the	types	of	resources	you	can	find	in	those	directories.

6.6 WebSphere Portal Directory Structure

Throughout	this	documentation,	the	install	location	for	the	portal	server	component	of	WebSphere	
Portal	is	noted	as	wp_root,	which	is	the	config	root.

The	following	table	shows	the	default	location	if	it	is	not	otherwise	specified	during	installation:

  Operating system Location

  z/OS 	 /usr/lpp/zPortalServer/V5R1M0	(install	root)

	 /PortalServer/V5R1M0/Portal1	(config	root)	

z/OS: The portal server has the following directory structure on z/OS after installation. All 
directories	are	r/w	on	the	config	root.	The	content,	however,	might	be	r/w	(files	are	copied)	
or	r/o	(files	are	symlinked).

wp_root		 	 Root	directory	for	WebSphere	Portal.

 | 

	|	+—	bin	(mixed)	 WebSphere	Portal	tools	(scripts	must	be	r/w;	all
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Notes 	|	 	 	 other	files	r/o).

 |

	+—	cloudscape	(r/w)	 Cloudscape	database	files.

 |

	+—	config	 	 Portal	configuration	files.

 | |

	|	+	actions	(r/o)

 | |

	|	+	helpers	(r/w)

 | |

	|	+	includes	(r/w)

 | |

	|	+	scripts

 | |

	|	+	templates	(r/o)

 | |

	|	+	was	(r/w)
 | |
	|	+	work	(r/w)
 |
	|—	content
 |
	+—	deployed	(r/w)	 Copies	of	the	.ear	and	.war	files	for	installed	portlet	applications.
 | 
 |
	+—	doc	(r/o)	 	 WebSphere	Portal	Information	Center	and	Javadoc.
 |
	+—	IBMTrans	(r/w)	 	Transcoding	component	(these	subdirectories	are	linked	r/o:	bin,	lib,	

plugins,	toolkit,	XMLConfigRules,	and	xmlconfig_stage).
 | 
 |  
 | 
 | 
 |
	+—	install	(r/o)	 	 Contains	wps.ear.
 |
	+—	installableApps	(r/w)	WAR	files	prior	to	deployment.
 |
	+—	installableConnectors	
 |
	+—	installedApps	(r/w)	 	Active	 portlet	 applications	 extracted	 to	 the	 WAR	 file	 directory	

structure  
	|(created	during	installation).		
 | 
 |
	+—	itlm	 	 IBM	Tivoli	License	Manager	files
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	+—	jcr	 	 	 Java	Content	Repository	files.
 |
	+—	ldap	 	 LDAP	configuration	files.	
 |
	+—	log	(r/w)	 	 WebSphere	Portal	log	files	(created	during	installation).
 | 
 |
	+—	migration	(r/w)	 	Scripts	used	to	assist	in	migrating	from	previous	releases	of	WebSphere	

Portal. 
 | 
 |
	+—	odc	(mixed)	 	 	On-demand	client	files	(./com	is	r/w;	all	other	subdirectories	are	r/o).
 |             
 |

	+—	portletscripts	(r/w)	 XML	files	for	installing	portlets	individually.

 |

	+—	pzn	(r/w)	 	 	Personalization	runtime	and	resources	(This	component	copies	files	
during	installation	to	a	WebSphere	subdirectory).	

 | 

 | 
 |
	+—	shared
 | |
	|	+—	ext	(r/o)	 	 Contains	collaborator.jar.
 | |
	|	+—	app	(r/w)	 	 WebSphere	Portal	runtime	JARs,	TLDs,	and	other	resources.
 | | 
 | |
	|	+—	config	r/w)	 Portal	configuration	files.
 | | |
	|	|	+-	services	 	 Portal	services	configuration	files	(*.properties).
 | |
	|	+—	nls	(r/o)	 	 WebSphere	Portal	NLS	files.
 |
	+—	service	 	 Contains	fix	packages.
 |
	+—	version	(r/w)	 Version	information	for	various	components.
 |
	+—	wcm	 	 Source	Web	application	files	for	Web	Content	Management
 |
	+—	wmm	(mixed)	 	Member	Manager	configuration,	including	attributes	of	portal	users	

(code	will	be	r/o).

WebSphere Application Server Installation Directory

Throughout	this	documentation,	the	install	location	for	WebSphere	Application	Server	is	noted	
aswas_root.
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is	not	otherwise	specified	during	installation:

Default location of WebSphere Application Server

Operating system Location

z/OS /WebSphere/V5R1M0/AppServer

WebSphere Application Server Profile Directory

Throughout	this	documentation,	the	location	for	the	WebSphere	Application	Server	profiles	is	
noted	aswa	profile	root.

The	following	table	shows	the	default	WebSphere	Application	Server	location	for	profiles	if	it	
is	not	otherwise	specified	during	installation.

Default	location	of	WebSphere	Application	Server	profiles

Operating system Location

z/OS /WebSphere/V5R1M0/AppServer

WebSphere Application Server Configuration Directory

Throughout	this	documentation,	the	location	for	the	WebSphere	Application	Server	configuration	
files	is	noted	as	was_config_root.

The following table shows the default WebSphere Application Server location if it is not otherwise 
specified	during	installation.

Default	location	of	WebSphere	Application	Server	configuration	files

Operating system Location

z/OS /WebSphere/V5R1M0/AppServer/config

wps.war directory

The WebSphere Portal enterprise application is installed to the following location within 
WebSphere	Application	Server’s	path:

was_root/installedApps/cell_name/wps.ear/wps.war

The	WAR	file	directory	structure	for	the	WebSphere	Portal	enterprise	application	contains	the	
following resources.

wps.war
 | 
	+—	c2a	 	 	 Cooperative	portlet	resources
 |
	+—	doc		 	 Portal-level	help	and	readme
 |
	+—	DocEditor	 	 JSPs	for	the	Rich	Text	Editor
 |
	+—	dtd		 	 XML	DTDs	and	schema	definitions	
 |
	+—	html	 	 License	and	privacy	HTML	files	for	the	portal.	
 |
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Notes	+—	images	 	 Common	images	for	the	portal
 |
	+—	menu	 	 Resources	for	MenuService	applet	(Collaborative	Components	API)
 |
	+—	META-INF	 	 Standard	Java	MANIFEST.MF	for	the	portal	Web	application
 |
	+—	peopleawareness	 Resources	for	the	people	awareness	features
 |
	+—	screens	 	 Screen	JSPs	for	the	portal
 | |
	|	+—	markup_name Subdirectory for each markup type
 | 
	|—	skins	 	 Skin	JSPs	for	the	portal
 | |
	|	+—	markup_name Subdirectory for each markup type
 | 
	|—	themes	 	 Theme	JSPs	for	the	portal
 | | 
	|	+—	markup_name Subdirectory for each markup type
 | 

	+—	virtualportal		 XMLAccess	file	for	setting	up	a	virtual	portal

 |

	+—	WEB-INF	 	 Protected	resources	for	the	portal	Web	application

 |

	+—	wts		 	 JavaScript	resources	for	Transcoding	Technology

The following directories contain resources for customization. Resources for all other directories 
in	the	portal	Web	application	directory	structure	must	not	be	modified.

	 •	 /doc

	 •	 /html

	 •	 /images

	 •	 /screens

	 •	 /skins

	 •	 /themes

	 •	 /virtualportal

6.6.1 Directories for Languages
The following shows the languages supported by WebSphere Portal and the directories used for 
storing	locale-specific	resources.	These	directories	are	used	in	portlet	Web	application	directories	
and	in	theWebSphere	Portal	enterprise	application	(themes,	skins,	and	other	Web	application	
resources).
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Language

(locale)
Directory

Language
(locale)

Directory
Language

(locale)
Directory

Arabic /ar Hungarian /hu Brazilian /pt_BR
Portuguese

Czech /cs Italian /it Romanian /ro
Danish /da Hebrew /iw Russian /ru
German /de Japanese /ja Swedish /sv
English /en Korean /ko Thai /th
Greek /el Dutch /nl Turkish /tr
Spanish /es Norwegian /no Ukrainian /uk
Finnish /fi Polish /pl Simplified /zh

Chinese
French /fr Portuguese /pt Traditional /zh_TW

Chinese

6.7 File Sharing

In	the	previous	sections,	we	explored	the	motivation	for	file	sharing	and	some	of	the	difficulties	
involved	in	allowing	users	to	share	files.	Such	file	sharing	is	very	desirable	for	users	who	want	
to	collaborate	and	 to	reduce	 the	effort	 required	 to	achieve	a	computing	goal.	Therefore,	user	
oriented	operating	systems	must	accommodate	the	need	to	share	files	in	spite	of	the	inherent	
difficulties.

In	this	section,	we	examine	more	aspects	of	file	sharing.	First	is	the	topic	of	multiple	users	and	
the	sharing	methods	possible.	Once	multiple	users	are	allowed	to	share	files,	the	challenge	is	
to	extend	sharing	to	multiple	file	systems,	including	remote	file	systems.	Finally,	there	can	be	
several	interpretations	of	conflicting	actions	occurring	on	shared	files.	For	instance,	if	multiple	
users	are	writing	to	the	file,	should	all	the	writes	be	allowed	to	occur,	or	should	the	operating	
system protect the user actions from each other. 

6.7.1 Multiple Users
When	an	operating	system	accommodates	multiple	users,	the	issues	of	file	sharing,	file	naming,	
and	file	protection	become	preeminent.	Given	a	directory	structure	that	allows	files	to	be	shared	
by	users,	the	system	must	mediate	the	file	sharing.	The	system	either	can	allow	a	user	to	access	
the	files	of	other	users	by	default,	or	it	may	require	that	a	user	specifically	grant	access	to	the	files.	
These	are	the	issues	of	access	control	and	protection,	which	are	covered	below.	To	implement	
sharing	and	protection,	the	system	must	maintain	more	file	and	directory	attributes	than	on	a	
single-user	system.	Although	there	have	been	many	approaches	to	this	topic	historically,	most	
systems	have	evolved	to	the	concepts	of	file/directory	owner	(or	user)	and	group.	The	owner	
is	the	user	who	may	change	attributes,	grant	access,	and	has	the	most	control	over	the	file	or	
directory.	The	group	attribute	of	a	file	is	used	to	define	a	subset	of	users	who	may	share	access	
to	the	file.	For	example,	the	owner	of	a	file	on	a	UNIX	system	may	issue	all	operations	on	a	file,	
while	members	of	the	file’s	group	may	execute	one	subset	of	those	operations,	and	all	other	users	
may execute another subset of operations. Exactly which operations can be executed by group 
members	and	other	users	is	definable	by	the	file’s	owner.	More	details	on	permission	attributes	
are included in the next section. Most systems implement owner attributes by managing a list 
of user names and associated user identifiers (user IDS).	 In	Windows	NT	parlance,	 this	 is	a	
Security ID (SID).	These	numerical	IDS	are	unique,	one	per	user.	When	a	user	logs	in	to	the	
system,	the	authentication	stage	determines	the	appropriate	user	ID	for	the	user.	That	user	ID	
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Notesis	associated	with	all	of	the	user’s	processes	and	threads.	When	they	need	to	be	user	readable,	
they	are	translated	back	to	the	user	name	via	the	user	name	list.	Likewise,	group	functionality	
can be implemented as a system-wide list of group names and group identifiers. Every user 
can	be	in	one	or	more	groups,	depending	upon	operating	system	design	decisions.	The	user’s	
group IDS are also included in every associated process and thread. The owner and group 
IDS	of	a	given	file	or	directory	are	stored	with	the	other	file	attributes.	When	a	user	requests	
an	operation	on	a	file,	the	user	ID	can	be	compared	to	the	owner	attribute	to	determine	if	the	
requesting	user	is	the	owner	of	the	file.	Likewise,	the	group	IDS	can	be	compared.	The	result	
indicates which permissions are applicable. The system then applies those permissions to the 
requested	operation,	and	allows	or	denies	it.	The	user	information	within	a	process	can	be	used	
for	other	purposes	as	well.	One	process	may	attempt	to	interact	with	another	process,	and	user	
information	can	dictate	the	result,	based	on	the	design	of	the	operating	system.	For	example,	a	
process	may	attempt	to	terminate,	background,	or	lower	the	priority	of	another	process.	If	the	
owner	of	each	process	is	the	same,	then	the	command	may	succeed,	or	else	it	may	be	denied.	
It may also be allowed to succeed if it is owned by the privileged user. Many systems have 
multiple	local	file	systems,	including	partitions	of	a	single	disk	or	multiple	partitions	on	multiple	
attached	disks.	 In	 these	cases,	 the	ID	checking	and	permission	matching	are	straightforward,	
once	the	file	systems	are	mounted.

The user information within a process can be used for other purposes as 
well.	One	process	may	 attempt	 to	 interact	with	 another	process,	 and	user	
information	can	dictate	the	result,	based	on	the	design	of	the	operating	system.	
For	example,	a	process	may	attempt	to	terminate,	background,	or	lower	the	
priority	of	another	process.	 If	 the	owner	of	each	process	 is	 the	 same,	 then	
the	command	may	succeed,	or	else	it	may	be	denied.

6.7.2 Remote File Systems
The advent of networks allowed communication between remote computers. Networking allows 
the sharing of resources spread within a campus or even around the world. One obvious resource 
to	share	is	data,	in	the	form	of	files.	Through	the	evolution	of	network	and	file	technology,	file-
sharing	methods	have	changed.	In	the	first	implemented	method,	users	manually	transfer	files	
between machines via programs like ftp. The second major method is a distributed file system 
(DFS)	in	which	remote	directories	are	visible	from	the	local	machine.	In	some	ways,	the	third	
method,	the	World Wide Web,	 is	a	reversion	to	the	first.	A	browser	is	needed	to	gain	access	
to	the	remote	files,	and	separate	operations	(essentially	a	wrapper	for	ftp)	are	used	to	transfer	
files.	ftp	is	used	for	both	anonymous	and	authenticated	access.	Anonymous access allows a user 
to	transfer	files	without	having	an	account	on	the	remote	system.	The	World	Wide	Web	uses	
anonymous	file	exchange	almost	exclusively.	DFS	involve	a	much	tighter	integration	between	the	
machine	that	is	accessing	the	remote	files	and	the	machine	providing	the	files.	This	integration	
adds	complexity,	which	we	describe	in	this	section.

   How to use operating system concept of Remote File Systems?

6.7.3 The Client-Server Model
Remote	file	 systems	allow	a	 computer	 to	mount	one	or	more	file	 systems	 from	one	or	more	
remote	machines.	In	this	case,	the	machine	containing	the	files	is	the	server,	and	the	machine	
wanting	access	to	the	files	is	the	client.	The	client-server	relationship	is	common	with	networked	
machines.	 Generally,	 the	 server	 declares	 that	 a	 resource	 is	 available	 to	 clients	 and	 specifies	
exactly	which	resource	and	exactly	which	clients.	Files	are	usually	specified	on	a	partition	or	
subdirectory	 level.	A	server	can	serve	multiple	clients,	and	a	client	 can	use	multiple	 servers,	
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Notes depending	on	the	implementation	details	of	a	given	client-server	facility.	Client	identification	
is	more	difficult.	Clients	can	be	specified	by	their	network	name	or	other	identifier,	such	as	IP	
address,	but	 these	can	be	spoofed	 (or	 imitated).	An	unauthorized	client	can	spoof	 the	server	
into	deciding	that	it	is	authorized,	and	the	unauthorized	client	could	be	allowed	access.	More	
secure solutions include secure authentication of the client to the server via encrypted keys. 
Unfortunately,	with	security	comes	many	challenges,	 including	ensuring	compatibility	of	 the	
client	 and	 server	 (they	must	use	 the	 same	 encryption	 algorithms)	 and	 secure	key	 exchanges	
(intercepted	keys	could	again	allow	unauthorized	client	access).	These	problems	are	difficult	
enough	that,	most	commonly,	unsecure	authentication	methods	are	used.	In	the	case	of	UNIX	
and	its	network	file	system	(NFS),	authentication	is	via	the	client	networking	information,	by	
default.	In	this	scheme,	the	user	IDS	must	match	on	the	client	and	server.	If	not,	the	server	will	
be	unable	to	determine	access	rights	to	files.	Consider	the	example	of	a	user	who	has	the	ID	of	
1000	on	the	client	and	2000	on	the	server.	A	request	from	the	client	to	the	server	for	a	specific	
file	will	not	be	handled	appropriately,	as	the	server	will	determine	if	user	1000	has	access	to	the	
file,	rather	than	the	real	user	ID	of	2000.	Access	would	be	granted	or	denied	based	on	incorrect	
authentication information. The server must trust the client to present the correct user ID. The 
NFS	protocols	allow	many-to-many	relationships.	That	is,	many	servers	can	provide	files	to	many	
clients.	In	fact,	a	given	machine	can	be	both	a	server	to	other	NFS	clients	and	a	client	of	other	
NFS	servers.	Once	 the	 remote	file	 system	 is	mounted,	file	operation	 requests	are	 sent	on	 the	
behalf	of	the	user,	across	the	network,	to	the	server,	via	the	DFS	protocol.	Typically,	a	file	open	
request	is	sent	along	with	the	ID	of	the	requesting	user.	The	server	then	applies	the	standard	
access	checks	to	determine	if	the	user	has	credentials	to	access	the	file	in	the	mode	requested.	
The	request	is	either	allowed	or	denied.	If	 it	 is	allowed,	a	file	handle	is	returned	to	the	client	
application,	and	the	application	then	may	perform	read,	write,	and	other	operations	on	the	file.	
The	client	closes	the	file	when	access	is	completed.	The	operating	system	may	apply	semantics	
similar	to	those	for	a	local	file	system	mount,	or	may	have	different	semantics.

6.7.4 Distributed Information Systems
To	ease	the	management	of	client-server	services,	distributed information systems,	also	known	
as distributed naming services,	have	been	devised	to	provide	a	unified	access	to	the	information	
needed for remote computing. Domain name system (DNS) provides host-name-to-network-
address	translations	for	the	entire	Internet	(including	the	World	Wide	Web).	Before	DNS	was	
invented	and	became	widespread,	files	 containing	 the	 same	 information	were	 sent	via	email	
or f t p between all networked hosts. This methodology was not scalable. Other distributed 
information systems provide user narne/password/user ID/group ID space for a distributed 
facility. UNIX systems have had a wide variety of distributed information methods. Sun 
Microsystems	introduced	yellozv	pages	(since	renamed	to	network information service (NIS)),	
and	most	of	the	industry	adopted	its	use.	It	centralizes	storage	of	user	names,	host	names,	printer	
information,	 and	 the	 like.	Unfortunately,	 it	 uses	unsecure	 authentication	methods,	 including	
sending	user	passwords	unencrypted	(in	clear	text)	and	identifying	hosts	by	IP	address.	Sun’s	
NIS+	is	a	much	more	secure	replacement	for	NIS,	but	is	also	much	more	complicated	and	has	
not been widely adopted. In the case of Microsoft networks (CIFS),	network	information	is	used	
in	conjunction	with	user	authentication	(user	name	and	password)	to	create	a	network login 
that	the	server	uses	to	decide	whether	to	allow	or	deny	access	to	a	requested	file	system.	For	
this	authentication	to	be	valid,	the	user	names	must	match	between	the	machines	(as	with	NFS).	
Microsoft uses two distributed naming structures to provide a single namespace for users. The 
older naming technology is domains.	The	newer	technology,	available	 in	Windows	2000	and	
beyond,	is	active	directory.	Once	established,	the	distributed-naming	facility	is	used	by	all	clients	
and servers to authenticate users. The industry is moving toward lightweight directory-access 
protocol (LDAP)	as	a	secure,	distributed	naming	mechanism.	In	fact,	active	directory	is	based	
on LDAP. Sun Microsystems’ Solaris 8 allows LDAP to be used for user authentication as well 
as system-wide retrieval of information such as available printers. If the convergence of the use 
of	LDAP	succeeds,	then	one	distributed	LDAP	directory	will	be	used	by	an	organization	to	store	
all user and resource information for all computers within that organization. The result would 
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access to all computers within the organization. It would also ease systems-administration efforts 
by	combining,	into	one	location,	information	that	is	currently	scattered	in	various	files	on	each	
system or in differing distributed information services.

6.7.5 Failure Modes
Local	 file	 systems	 can	 fail	 for	 a	 variety	 of	 reasons,	 including	 failure	 of	 the	 disk	 containing	
the	 file	 system,	 corruption	 of	 the	 directory	 structure	 or	 other	 disk	management	 information	
(collectively	called	metadata),	disk-controller	failure,	cable	failure,	or	host	adapter	failure.	User	
or	systems-administrator	failure	can	also	cause	files	to	be	lost,	or	entire	directories	or	partitions	
to be deleted. Many of these failures would cause a host to crash and an error condition to be 
displayed,	and	require	human	intervention	to	repair.	Some	failures	do	not	cause	 loss	of	data	
or loss of availability of data.

Redundant arrays of inexpensive disks (RAID) can prevent the loss of a disk from resulting in 
the	loss	of	data.	Remote	file	systems	have	more	failure	modes.	By	nature	of	the	complexity	of	
network	systems	and	the	required	interactions	between	remote	machines,	many	more	problems	
can	 interfere	with	 the	 proper	 operation	 of	 remote	 file	 systems.	 In	 the	 case	 of	 networks,	 the	
network can be interrupted between the two hosts. This could be due to hardware failure or 
misconfiguration,	or	networking	implementation	issues	at	any	of	the	involved	hosts.	Although	
some	networks	have	built-in	resiliency,	including	multiple	paths	between	each	host,	many	do	
not.	Any	single	failure	could	interrupt	the	flow	of	DFS	commands.	Consider	a	client	in	the	midst	
of	using	a	remote	file	system.	It	has	remote	file	systems	mounted	and	may	have	files	open	from	
the	remote	host;	among	other	activities,	it	may	be	performing	directory	lookups	to	open	files,	
reading	or	writing	data	to	files,	and	closing	files.	Now	consider	a	partitioning	of	the	network,	
a	crash	of	 the	server,	or	even	a	scheduled	shutdown	of	 that	 server,	 such	 that	 the	 remote	file	
system	is	no	longer	reachable.	This	scenario	is	rather	common,	so	it	would	not	be	appropriate	for	
the	client	to	act	as	it	would	in	the	case	of	a	loss	of	a	local	file	system.	Rather,	the	system	could	
either	 terminate	all	operations	 to	 the	 lost	server,	or	delay	operations	until	 the	server	 is	again	
reachable.	This	failure	semantics	is	defined	and	implemented	as	part	of	the	remote	file	system	
protocol.	Termination	of	all	operations	can	result	in	users	losing	data,	and	patience.	Most	DFS	
protocols	either	enforce	or	allow	delaying	of	file-system	operations	 to	remote	hosts,	with	 the	
hope	that	the	remote	host	will	become	available	again.	For	this	kind	of	recovery	from	failure,	
some kind of state information may be maintained on both the client and server. If the server 
has	crashed,	but	must	recognize	that	it	had	exported	file	systems,	remotely	mounted	them,	and	
opened	certain	files,	NFS	takes	a	simple	approach,	implementing	a	stateless DFS.	In	essence,	it	
assumes	that	a	client	request	for	a	file	read	or	write	would	not	have	occurred	unless	the	file	system	
had	been	remotely	mounted	and	the	file	had	been	previously	open.	The	NFS	protocol	carries	
all	the	information	needed	to	locate	the	appropriate	file	and	perform	the	requested	operation	
on	a	file.	Likewise,	it	does	not	track	which	clients	have	its	exported	partitions	mounted,	again	
assuming	that	if	a	request	comes	it,	it	must	be	legitimate.	While	this	stateless	approach	makes	
NFS	resilient	and	rather	easy	to	implement,	it	makes	it	unsecure.	For	example,	forged	read	or	
write	requests	could	be	allowed	by	an	NFS	server	event.

6.8 Consistency Semantics

Consistency semantics	 is	an	 important	criterion	 for	evaluating	any	file	system	that	 supports	
file	sharing.	It	is	a	characterization	of	the	system	that	specifies	the	semantics	of	multiple	users	
accessing	 a	 shared	 file	 simultaneously.	 In	 particular,	 these	 semantics	 should	 specify	 when	
modifications	of	data	by	one	user	are	observable	by	other	users.	The	 semantics	are	 typically	
implemented	 as	 code	with	 the	 file	 system.	Consistency	 semantics	 are	 directly	 related	 to	 the	
process	synchronization	algorithms.	However,	the	complex	algorithms	of	that	chapter	tend	not	
to	be	implemented	in	the	case	of	file	I/O	because	of	the	great	latencies	and	slow	transfer	rates	
of	disks	and	networks.	For	example,	performing	an	atomic	transaction	to	a	remote	disk	could	
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Notes involve	several	network	communications	or	several	disk	reads	and	writes,	or	both.	Systems	that	
attempt such a full set of functionalities tend to perform poorly. A successful implementation 
of complex sharing semantics can be found in the Andrew File System. For the following 
discussion,	we	assume	that	a	series	of	file	accesses	 (that	 is,	 reads	and	writes)	attempted	by	a	
user	to	the	same	file	is	always	enclosed	between	the	open and close operations. The series of 
accesses between the open and close operations is a file session.	To	illustrate	the	concept,	we	
sketch several prominent examples of consistency semantics.

6.8.1 UNIX Semantics
The	UNIX	file	system	uses	the	following	consistency	semantics—Writes	to	an	open	file	by	a	user	
are	visible	immediately	to	other	users	that	have	this	file	open	at	the	same	time.	One	mode	of	
sharing	allows	users	to	share	the	pointer	of	current	location	into	the	file.	Thus,	the	advancing	of	
the	pointer	by	one	user	affects	all	sharing	users.	Here,	a	file	has	a	single	image	that	interleaves	
all	accesses,	regardless	of	their	origin.	In	the	UNIx	semantics	a	file	is	associated	with	a	single	
physical image that is accessed as an exclusive resource. Contention for this single image results 
in user processes being delayed.

6.8.2 Session Semantics
The Andrew	file	system	(AFS)	uses	the	following	consistency	semantics:	Writes	to	an	open	file	
by	a	user	are	not	visible	immediately	to	other	users	that	have	the	same	file	open	simultaneously.	
Once	a	file	is	closed,	the	changes	made	to	it	are	visible	only	in	sessions	starting	later.	Already	
open	instances	of	the	file	do	not	reflect	these	changes.	According	to	these	semantics,	a	file	may	be	
associated	temporarily	with	several	(possibly	different)	images	at	the	same	time.	Consequently,	
multiple users are allowed to perform both read and write accesses concurrently on their image 
of	the	file,	without	delay.	Almost	no	constraints	are	enforced	on	scheduling	accesses.

6.8.3 Immutable-Shared-Files Semantics
A	unique	approach	 is	 that	of	 immutable	shared	files.	Once	a	file	 is	declared	as	shared	by	 its	
creator,	it	cannot	be	modified.	An	immutable	file	has	two	key	properties:	Its	name	may	not	be	
reused	and	its	contents	may	not	be	altered.	Thus,	the	name	of	an	immutable	file	signifies	that	
the	contents	of	the	file	are	fixed,	rather	than	the	file	being	a	container	for	variable	information.	
The	implementation	of	these	semantics	in	a	distributed	system	is	simple,	because	the	sharing	
is	disciplined	(read-only).

6.9 Protection Mechanisms

The concept of multiprogramming introduces the sharing resources among users. This sharing 
involves	 Memory,	 I/O	 devices,	 Programs	 and	 Data.	 The	 ability	 to	 share	 these	 resources	
introduces	the	need	for	protection.	An	OS	may	offer	protection	along	the	following	Spectrum:	
No	Protection:	This	is	appropriate	when	sensitive	procedures	are	being	run	at	separate	times	
Isolation.	This	approach	implies	that	each	process	operates	separately	from	other	processes,	with	
no	sharing.	Each	process	has	its	own	address	space,	files,	and	other	objects	Share	all	or	Share	
nothing:	In	this	method,	the	owner	of	an	object	declares	it	to	be	public	or	private,	in	the	other	
words,	only	the	owner‘s	processes	may	access	the	object.	Share	via	access	limitation—The	OS	
checks	the	permissibility	of	each	access	by	a	specific	user	to	specific	object;	the	OS	therefore	acts	
as	a	guard	between	users	and	objects,	ensuring	that	only	authorized	accesses	occur.	Share	via	
dynamic	capabilities:	This	extends	the	concept	of	access	control	 to	allow	dynamic	creation	of	
sharing	rights	for	objects.	Limit	use	of	an	object—This	form	of	protection	limits	not	just	access	to	
an object but the use to which that object may be put. A given OS may provide different degree 
of	protection	for	different	objects,	users	and	applications	The	OS	needs	to	balance	the	need	to	
allow	sharing,	with	the	need	to	protect	the	resources	of	individual	users.
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Notes6.9.1 Protection of Memory
In	a	multiprogramming	environment,	protection	of	main	memory	is	essential.	The	concern	here	is	
not just security but the correct functioning of the various processes that are active. The separation 
of the memory space of various processes is easily accomplished with a virtual-memory scheme. 
Segmentation	or	Paging,	or	two	in	combination,	provides	an	effective	tools	of	managing	main	
memory.	If	complete	isolation	is	sought,	then	the	OS	must	simply	ensure	that	each	segment	or	
page	accessible	only	by	the	process	to	which	it	is	assigned.	This	is	accomplished	by	requiring	
that there be no duplicate entries in page and/or segment tables. If sharing is to be allowed then 
the same segment or page may appear in more than one table. Segmentation specially lends 
itself to the implementation of protection and sharing policies. Because each segment table entry 
includes a length as well as a base address. A program can not access a main memory location 
beyond	the	limit	of	a	segment.	To	achieve	sharing,	it	is	possible	for	a	segment	to	be	referenced	
in	the	segment	tables	of	more	than	on	process.	In	the	paging	system,	the	page	structure	of	the	
programs and data is not visible to the programmer. The measures taken to control access in a 
data processing systems fall into two categories:

 1. User-oriented

 2. Data-oriented

A program can not access a main memory location beyond the limit of a 
segment.	To	achieve	sharing,	it	is	possible	for	a	segment	to	be	referenced	in	
the segment tables of more than on process.

6.9.2 User-oriented Access Control
User	control	of	access	is	sometimes	referred	to	as	Authentication.	The	most	common	technique	for	
user	access	control	on	a	shared	system	or	server	is	the	user	log,	which	requires	ID	and	Password.	
User access control in distributed environment can be either centralized or decentralized in a 
centralized	approach	network	provides	a	log	on	service,	determining	who	is	allowed	to	use	the	
network and to whom the user is allowed to connect. Decentralized user access control treats 
the	network	as	a	transport	communication	link,	and	the	destination	host	carries	out	the	usual	
log	on	procedure.	In	many	networks,	two	levels	of	access	control	may	be	used.	Data-Oriented	
Access	Control	 Following	 successful	 log	 on	 ,	 the	 user	 has	 been	 granted	 access	 to	 one	 or	 set	
of hosts and applications. At this time we need Data access control. In this regard real world 
operating	system	protection	models	fall	basically	into	one	of	two	types:

	 1.	 Mandatory	Access	Controls	(MAC)

	 2.	 Discretionary	Access	Controls	(DAC)

In computer security passive resources are called objects and active entities that utilize the 
resources	are	called	subjects.	Typical	objects	 include—files,	directories,	memory,	printers	and	
typical	subjects	include:	users,	processes.	The	roles	depend	on	situation—for	example,	a	process	
can	request	access	to	some	resource	(act	as	a	subject)	and	later	be	a	target	of	access	request	(act	
as	an	object).

In	Mandatory	 access	 controls,	 also	 called	multilevel	 access	 control,	Objects	 (information)	 are	
classified	on	hierarchical	levels	of	security	sensitivity	(typically,	top	secrets,	secret,	confidential).	
Subjects	 (Users)	 are	 assigned	 their	 security	 clearance.	 Access	 of	 a	 subject	 to	 an	 object	 is	
granted or denied depending on the relation between the clearance of the subject and the 
security	classification	of	the	object.	Lattice	model	and	Bell-LaPadula	model	are	based	on	MAC	
Discretionary	access	controls	(DAC).	Each	object	has	its	unique	owner.	The	owner	exercises	its	
discretion over the assignment of access permissions. Lampson introduced the access matrix 
model for DAC. The core of this model is a matrix whose rows are indexed by subjects and 
columns by objects.



Principles of Operating Systems

222 LOVELY PROFESSIONAL UNIVERSITY

Notes Figure 6.5: Access Matrix Model

In	 real	 systems,	 however,	 access	 control	matrices	 are	 not	 very	 practical,	 because	 the	matrix	
is usually sparse and there is a lot of redundancy and new subjects and objects can be added 
or	removed	easily,	but	 the	centralized	matrix	could	become	a	bottleneck.	The	matrix	may	be	
decomposed	 by	 columns,	 yielding	Access	Control	 List	 (ACL).	 Thus	 for	 each	 object,	 an	ACL	
details users and their permitted access rights. ACL may contain a default or public entry. 
Decomposition	by	rows	yields	capability	tickets.	A	capability	ticket	specifies	authorized	objects	
and operations for a user. Each user has a number of tickets and may be authorized to lend or 
give	them	to	others	because	tickets	may	be	dispersed	around	the	system,	they	present	a	greater	
security	problem	than	ACL.	To	accomplish	 this	problem,	OS	hold	all	 tickets	on	behalf	of	 the	
users. These tickets would have to be held in a region of memory inaccessible to users.

Figure 6.6: Access Control List
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Notes6.9.3 Protection Based on an OS Mode
Most	processor	supports	at	least	two	modes	of	operations—1.	User	mode	and	2.	Kernel	mode.	
The reason for using two modes should be clear. It is necessary to protect the OS and the key 
OS	table	such	as	process	control	blocks,	 from	interference	by	user	programs	 in	kernel	mode.	
This level of control is not necessary for user mode.

6.10 Allocation Methods

The	direct-access	nature	of	disks	allows	us	exibility	 in	 the	 implementation	of	files.	 In	almost	
every	case,	many	files	are	stored	on	the	same	disk.	The	main	problem	is	how	to	allocate	space	
to	these	files	so	that	disk	space	is	utilized	effectively	and	files	can	be	accessed	quickly.	Three	
major methods of allocating	disk	space	are	in	wide	use—contiguous,	linked,	and	indexed.	Each	
method	has	advantages	and	disadvantages.	Some	systems	(such	as	Data	General’s	RDOS	for	
its	Nova	line	of	computers)	support	all	three.	More	commonly,	a	system	uses	one	method	for	
all	files	within	a	file	system	type.

6.10.1 Contiguous Allocation
Contiguous	allocation	requires	that	each	file	occupy	a	set	of	contiguous	blockson	the	disk.	Disk	
addresses	dene	a	linear	ordering	on	the	disk.	With	thisordering,	assuming	that	only	one	job	is	
accessing	the	disk,	accessing	block	b	+	1	after	block	b	normally	requires	no	head	movement.	
When	head	movementis	needed	 (from	the	 last	 sector	of	one	cylinder	 to	 the	 last	 sector	of	 the	
next	cylinder),	the	head	need	only	move	from	one	track	to	the	next.	Thus,	the	number	of	disk	
seeks	required	for	accessing	contiguously	allocated	files	is	minimal,	as	is	seek	time	when	a	seek	
is	finally	needed.	The	 IBM	VM/CMS	operating	 system	uses	 contiguous	allocation	because	 it	
provides	such	good	performance.	Contiguous	allocation	of	a	file	is	defined	by	the	disk	address	
and	length	(inblock	units)	of	the	first	block.	If	the	file	is	n	blocks	long	and	starts	at	location	b,	
then	it	occupies	blocks	b,	b	+	1,	b	+	2,	 ...,	b	+	n	–	1.	The	directory	entry	for	each	file	indicates	
the	address	of	the	starting	block	and	the	length	of	the	area	allocated	for	this	file. 

Figure 6.7: Contiguous Allocation of Disk Space
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Accessing	 a	 file	 that	 has	 been	 allocated	 contiguously	 is	 easy.	 For	 sequential	 access,	 the	 file	
system	 remembers	 the	disk	 address	 of	 the	 last	 block	 referenced	 and,	when	necessary,	 reads	
the	next	block.	For	direct	access	to	block	i	of	a	file	that	starts	at	block	b,	we	can	immediately	
access	 block	 b	 +	 i.	 Thus,	 both	 sequential	 and	 direct	 access	 can	 be	 supported	 by	 contiguous	
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Notes allocation.	Contiguous	allocation	has	some	problems,	however.	One	diffculty	is	finding	space	
for	a	new	file.	Any	management	 system	can	be	used,	but	 some	are	 slower	 than	others.	First	
and	best	fit	are	the	most	common	strategies	used	to	select	a	free	hole	from	the	set	of	available	
holes.	Simulations	have	shown	that	both	first	fit	and	best	fit	are	more	efficient	than	worst	fit	in	
terms	of	both	time	and	storage	utilization.	Neither	first	fit	nor	best	fit	is	clearly	best	in	terms	of	
storage	utilization,	but	first	fit	is	generally	faster.	All	these	algorithms	suffer	from	the	problem	
of	external	fragmentation.	As	files	are	allocated	and	deleted,	the	free	disk	space	is	broken	into	
little pieces. External fragmentation exists whenever free space is broken into chunks. It becomes 
a	problem	when	the	largest	contiguous	chunk	is	insufficient	for	a	request;	storage	is	fragmented	
into	a	number	of	holes,	no	one	of	which	is	 large	enough	to	store	the	data.	Depending	on	the	
total	amount	of	disk	storage	and	the	average	file	size,	external	fragmentation	may	be	a	minor	
or	a	major	problem.	Some	older	PC	systems	used	contiguous	allocation	on	floppy	disks.	

Two	possibilities	then	exist.	First,	the	user	program	can	be	terminated,	with	an	appropriate	error	
message. The user must then allocate more space and run the program again. These repeated 
runs	may	be	costly.	To	prevent	them,	the	user	will	normally	over	estimate	the	amount	of	space	
needed,	 resulting	 in	considerable	wasted	space.	The	other	possibility	 is	 to	find	a	 larger	hole,	
copy	 the	 contents	of	 the	file	 to	 the	new	space,	 and	 release	 the	previous	 space.	This	 series	of	
actions	can	be	repeated	as	long	as	space	exists,	although	it	can	be	time	consuming.	However,	the	
user need never be informed explicitly about what is happening; the system continues despite 
the	problem,	although	more	and	more	slowly.	Even	if	the	total	amount	of	space	needed	for	a	
file	is	known	in	advance,	preallocation	may	be	inefficient.	A	file	that	will	grow	slowly	over	a	
long	period	(months	or	years)	must	be	allocated	enough	space	 for	 its	final	size,	even	though	
much	of	 that	 space	will	 be	unused	 for	 a	 long	 time.	The	file	 therefore	has	 a	 large	 amount	 of	
internal	fragmentation.	To	minimize	these	drawbacks,	some	operating	systems	use	a	modified	
contiguous-allocation	 scheme.	 Here,	 a	 contiguous	 chunk	 of	 space	 is	 allocated	 initially;	 and	
then,	if	that	amount	proves	not	to	be	large	enough,	another	chunk	of	contiguous	space,	known	
as	an	extent,	is	added.	The	location	of	a	file’s	blocks	is	then	recorded	as	a	location	and	a	block	
count,	plus	a	link	to	the	first	block	of	the	next	extent.	On	some	systems,	the	owner	of	the	file	
can	set	the	extent	size,	but	this	setting	results	in	efficiencies	if	the	owner	is	incorrect.	Internal	
fragmentation	can	still	be	a	problem	if	the	extents	are	too	large,	and	external	fragmentation	can	
become a problem as extents of varying sizes are allocated and deallocated. The commercial 
Veritas	file	system	uses	extents	to	optimize	performance.	It	is	a	high-performance	replacement	
for the standard UNIX UFS.

Figure 6.8: Linked Allocation of Disk Space
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NotesLinked	allocation	does	have	disadvantages.	However,	the	major	problem	is	that	it	can	be	used	
effectively	only	for	sequential-access	files.	To	find	the	 ith	block	of	a	file,	we	must	start	at	 the	
beginning	 of	 that	 file	 and	 follow	 the	pointers	until	we	get	 to	 the	 ith	 block.	 Each	 access	 to	 a	
pointer	requires	a	disk.

Figure 6.9: File Allocation Table
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An	important	variation	on	linked	allocation	is	the	use	of	a	file-allocation	table	(FAT).	This	simple	
but	efficient	method	of	disk-space	allocation	is	used	by	the	MS-DOS	and	OS/2	operating	systems.	
A section of disk at the beginning of each volume is set aside to contain the table. The table has 
one entry for each disk block and is indexed by block number. The FAT is used in much the 
same	way	as	a	linked	list.	The	directory	entry	contains	the	block	number	of	the	first	block	of	the	
file.	The	table	entry	indexed	by	that	block	number	contains	the	block	number	of	the	next	block	
in	the	file.	This	chain	continues	until	the	last	block,	which	has	a	special	end-of-file	value	as	the	
table	entry.	Unused	blocks	are	indicated	by	a	0	table	value.	Allocating	a	new	block	to	a	file	is	
a	simple	matter	of	finding	the	first	0-valued	table	entry	and	replacing	the	previous	end-of-file	
value	with	the	address	of	the	new	block.	For	a	file	consisting	of	disk	blocks	217,	618,	and	339.	
The	FAT	allocation	 scheme	can	 result	 in	 a	 significant	number	of	disk	head	 seeks,	unless	 the	
FAT	is	cached.	The	disk	head	must	move	to	the	start	of	the	volume	to	read	the	FAT	and	find	
the	location	of	the	block	in	question,	then	move	to	the	location	of	the	block	itself.	In	the	worst	
case,	both	moves	occur	for	each	of	the	blocks.	A	benefit	is	that	random-access	time	is	improved,	
because	the	disk	head	can	find	the	location	of	any	block	by	reading	the	information	in	the	FAT.

6.10.2 File Allocation Methods—Chained

The	opposite	extreme	to	contiguous	allocation	is	chained	allocation.	Here,	the	blocks	allocated	
to	a	file	form	a	linked	list	(or	chain),	and	as	a	file’s	length	is	extended	(by	appending	to	the	file),	
a	new	block	is	allocated	and	linked	to	the	last	block	in	the	file.
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Notes Figure 6.10: Chained Allocation
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A	small	“pointer”	of	typically	32	or	64	bits	is	allocated	within	each	file	block	to	indicate	the	next	
block	in	the	chain.	Thus	seeking	within	a	file	requires	a	read	of	each	block	to	follow	the	pointers.	

New	blocks	may	be	allocated	from	any	free	block	on	the	disk.	In	particular,	a	file’s	blocks	need	
no longer be contiguous.

6.10.3 File Allocation Methods—Indexed
The	file	allocation	method	of	choice	in	both	Unix	and	Windows	is	the	indexed	allocation	method.	
This method was championed by the Multics operating system in 1966.

Figure 6.11: Indexed Allocation with Block Portions
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The	file-allocation	table	contains	a	multi-level	index	for	each	file.	Indirection	blocks	are	introduced	
each	time	the	total	number	of	blocks	“overflows”	the	previous	index	allocation.	Typically,	the	
indices	 are	 neither	 stored	with	 the	 file-allocation	 table	 nor	with	 the	 file,	 and	 are	 retained	 in	
memory	when	the	file	is	opened.

Before using memory allocation must be know index concept of memory.
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Since disk space	is	limited,	we	need	to	reuse	the	space	from	deleted	files	for	new	files,	if	possible.	
(Write-once	optical	disks	only	allow	one	write	to	any	given	sector,	and	thus	such	reuse	is	not	
physically	possible.)	To	keep	 track	of	 free	disk	space,	 the	system	maintains	a	 free-space list. 
The	free-space	list	records	all	free	disk	blocks—those	not	allocated	to	some	file	or	directory.	To	
create	a	file,	we	search	 the	 free-space	 list	 for	 the	required	amount	of	space,	and	allocate	 that	
space	to	the	new	file.	This	space	is	then	removed	from	the	free-space	list.	When	a	file	is	deleted,	
its	disk	space	is	added	to	the	free-space	list.	The	free-space	list,	despite	its	name,	might	not	be	
implemented	as	a	list,	as	we	shall	discuss.

6.11.1 Bit Vector
Frequently,	the	free-space	list	is	implemented	as	a	bit	map or bit vector. Each block is represented 
by	1	bit.	If	the	block	is	free,	the	bit	is	1;	if	the	block	is	allocated,	the	bit	is	0.	For	example,	consider	
a	disk	where	blocks	2,	3,	4,	5,	8,	9,	10,	11,	12,	13,	17,	18,	25,	26,	and	27	are	free,	and	the	rest	of	
the blocks are allocated. The free-space bit map would be

001111001111110001100000011100000 . . .

The	main	advantage	of	 this	approach	 is	 its	 relatively	 simplicity	and	efficiency	 in	finding	 the	
first	free	block,	or	n	consecutive	free	blocks	on	the	disk.	Indeed,	many	computers	supply	bit-
manipulation	instructions	that	can	be	used	effectively	for	that	purpose.	For	example,	the	Intel	
family	starting	with	the	80386	and	the	Motorola	family	starting	with	the	68020	(processors	that	
have	powered	PCs	and	Macintosh	systems,	respectively)	have	instructions	that	return	the	offset	
in	a	word	of	the	first	bit	with	the	value	1.	In	fact,	the	Apple	Macintosh	operating	system	uses	
the	bit-vector	method	to	allocate	disk	space.	To	find	the	first	free	block,	the	Macintosh	operating	
system	checks	sequentially	each	word	in	the	bit	map	to	see	whether	that	value	is	not	0,	since	
a	0-valued	word	has	all	0	bits	and	represents	a	set	of	allocated	blocks.	The	first	non-0	word	is	
scanned	for	the	first	1	bit,	which	is	the	location	of	the	first	free	block.	The	calculation	of	the	block	
number	is	(number	of	bits	per	word)	x	(number	of	0-value	words)	+	offset	of	first	1	bit.	Again,	
we	see	hardware	features	driving	software	functionality.	Unfortunately,	bit	vectors	are	inefficient	
unless	the	entire	vector	is	kept	in	main	memory	(and	is	written	to	disk	occasionally	for	recovery	
needs).	Keeping	it	 in	main	memory	is	possible	for	smaller	disks,	such	as	on	microcomputers,	
but not for larger ones. A 1.3-GB disk with 512-byte blocks would need a bit map of over  
332 KB to track its free blocks. Clustering the blocks in groups of four reduces this number to 
over 83 KB per disk.

6.11.2 Linked List
Another	approach	to	free-space	management	is	to	link	together	all	the	free	disk	blocks,	keeping	
a	pointer	to	the	first	free	block	in	a	special	location	on	the	disk	and	caching	it	in	memory.	This	
first	block	contains	a	pointer	to	the	next	free	disk	block,	and	so	on.	we	would	keep	a	pointerto	
block	2,	as	the	first	free	block.	Block	2	would	contain	a	pointer	to	block.	3,	which	would	point	to	
block	4,	which	would	point	to	block	5,	which	would	point	to	block	8,	However,	this	scheme	is	
not	efficient;	to	traverse	the	list,	we	must	read	each	block,	which	requires	substantial	1/0	time.	
Fortunately,	traversing	the	free	list	is	not	a	frequent	action.	Usually,	the	operating	system	simply	
needs	a	free	block	so	that	it	can	allocate	that	block	to	a	file,	so	the	first	block	in	the	free	list	is	
used. The FAT method incorporates free-block accounting into the allocation data structure. No 
separate method is needed.
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Notes Figure 6.12: Linked Free-Space List on Disk
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6.11.3 Grouping

A	modification	of	the	free-list	approach	is	to	store	the	addresses	of	n	free	blocks	in	the	first	free	
block.	The	first	n-1	of	 these	blocks	are	actually	 free.	The	 last	block	contains	 the	addresses	of	
another	n	free	blocks,	and	so	on.	The	importance	of	this	implementation	is	that	the	addresses	of	
a large number of free	blocks	can	be	found	quickly,	unlike	in	the	standard	linked-list	approach.

6.11.4 Counting

Another	approach	is	to	take	advantage	of	the	fact	that,	generally,	several	contiguous	blocks	may	
be	allocated	or	freed	simultaneously,	particularly	when	space	is	allocated	with	the	contiguous-
allocation	 algorithm	 or	 through	 clustering.	 Thus,	 rather	 than	 keeping	 a	 list	 of	 n	 free	 disk	
addresses,	we	can	keep	the	address	of	the	first	free	block	and	the	number	n	of	free	contiguous	
blocks	that	follow	the	first	block.	Each	entry	in	the	free-space	list	then	consists	of	a	disk	address	
and	a	count.	Although	each	entry	requires	more	space	than	would	a	simple	disk	address,	the	
overall	list	will	be	shorter,	as	long as the count is generally greater than 

6.12 Directory Implementation 

To	keep	track	of	files,	file	systems	normally	have	directories	or	folders,	which,	in	many	systems,	
are	themselves	files.	In	this	section,	we	will	discuss	directories,	their	organization,	their	properties,	
and the operations that can be performed on them.

6.12.1 Simple Directories

A directory typically contains	a	number	of	entries,	one	per	file.	One	possibility	is	shown	in	Fig.	
6.13(a),	 in	which	each	entry	contains	 the	file	name,	 the	file	attributes,	and	the	disk	addresses	
where	the	data	are	stored.	Another	possibility	is	shown	in	Fig.	6.13(b).	Here	a	directory	entry	
holds	the	file	name	and	a	pointer	to	another	data	structure	where	the	attributes	and	disk	addresses	
are found. Both of these systems are commonly used.
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NotesFigure 6.13: (a) Attributes in the Directory Entry and (b) Attributes Elsewhere

When	a	file	 is	 opened,	 the	operating	 system	 searches	 its	directory	until	 it	 finds	 the	name	of	
the	file	to	be	opened.	It	then	extracts	the	attributes	and	disk	addresses,	either	directly	from	the	
directory	entry	or	from	the	data	structure	pointed	to,	and	puts	them	in	a	table	in	main	memory.	
All	subsequent	references	to	the	file	use	the	information	in	main	memory.

The number of directories varies from system to system. The simplest form of directory 
system	is	a	single	directory	containing	all	files	for	all	users,	as	illustrated	in	Fig.	6.14(a).	On	
early	personal	computers,	this	single-directory	system	was	common,	in	part	because	there	
was only one user.

Figure 6.14: Three File System Designs: (a) Single Directory Shared by All Users, 
(b) One Directory Per User, (c) Arbitrary Tree Per User. The Letters Indicate the 

Directory or File’s Owner

The problem with having only one directory in a system with multiple users is that different users 
may	accidentally	use	the	same	names	for	their	files.	For	example,	 if	user	A	creates	a	file	called	
mailbox,	and	then	 later	user	B	also	creates	a	file	called	mailbox,	B’s	file	will	overwrite	A’s	file.	
Consequently,	this	scheme	is	not	used	on	multi-user	systems	any	more,	but	could	be	used	on	a	
small	embedded	system,	for	example,	a	handheld	personal	digital	assistant	or	a	cellular	telephone.

To	 avoid	 conflicts	 caused	 by	 different	 users	 choosing	 the	 same	 file	 name	 for	 their	 own	 files,	
the	next	step	up	is	giving	each	user	a	private	directory.	In	that	way,	names	chosen	by	one	user	
do not interfere with names chosen by a different user and there is no problem caused by the 
same	name	occurring	in	two	or	more	directories.	This	design	leads	to	the	system	of	Fig.	6.14	(b).	 
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Notes This	design	could	be	used,	for	example,	on	a	multi-user	computer	or	on	a	simple	network	of	
personal	computers	that	shared	a	common	file	server	over	a	local	area	network.	Implicit	in	this	
design	is	that	when	a	user	tries	to	open	a	file,	the	operating	system	knows	which	user	it	is	in	
order	to	know	which	directory	to	search.	As	a	consequence,	some	kind	of	 login	procedure	 is	
needed,	in	which	the	user	specifies	a	login	name	or	identification,	something	not	required	with	
a	single-level	directory	system.	When	this	system	is	implemented	in	its	most	basic	form,	users	
can	only	access	files	in	their	own	directories.

6.12.2 Hierarchical Directory Systems
The	two-level	hierarchy	eliminates	file	name	conflicts	between	users.	But	another	problem	is	that	
users	with	many	files	may	want	to	group	them	in	smaller	subgroups,	for	instance	a	professor	
might want to separate handouts for a class from drafts of chapters of a new textbook. What 
is	needed	is	a	general	hierarchy	(i.e.,	a	 tree	of	directories).	With	this	approach,	each	user	can	
have	as	many	directories	as	are	needed	so	that	files	can	be	grouped	together	in	natural	ways.	
This	approach	is	shown	in	Fig.	6.14	(c).	Here,	the	directories	A,	B,	and	C	contained	in	the	root	
directory	each	belong	to	a	different	user,	two	of	whom	have	created	subdirectories	for	projects	
they are working on.

The ability to create an arbitrary number of subdirectories provides a powerful structuring tool 
for	users	to	organize	their	work.	For	this	reason	nearly	all	modern	PC	and	server	file	systems	
are organized this way.

However,	 as	we	have	pointed	out	 before,	 history	often	 repeats	 itself	with	new	 technologies.	
Digital	cameras	have	to	record	their	images	somewhere,	usually	on	a	flash	memory	card.	The	
very	first	digital	cameras	had	a	single	directory	and	named	the	files	DSC0001.JPG,	DSC0002.
JPG,	etc.	However,	it	did	not	take	very	long	for	camera	manufacturers	to	build	file	systems	with	
multiple	directories,	as	 in	Fig.	6.14	b).	What	difference	does	 it	make	 that	none	of	 the	camera	
owners	understand	how	to	use	multiple	directories,	and	probably	could	not	conceive	of	any	use	
for	this	feature	even	if	they	did	understand	it?	It	is	only	(embedded)	software,	after	all,	and	thus	
costs the camera manufacturer next to nothing to provide. Can digital cameras with full-blown 
hierarchical	file	systems,	multiple	login	names,	and	255-character	file	names	be	far	behind?

6.12.3 Path Names
When	the	file	system	is	organized	as	a	directory	 tree,	some	way	 is	needed	for	specifying	file	
names.	Two	different	methods	are	commonly	used.	 In	 the	first	method,	each	file	 is	given	an	
absolute	path	name	consisting	of	 the	path	from	the	root	directory	to	 the	file.	As	an	example,	
the	path	/usr/ast/mailbox	means	that	the	root	directory	contains	a	subdirectory	usr/,	which	in	
turn	contains	a	subdirectory	ast/,	which	contains	the	file	mailbox.	Absolute	path	names	always	
start	at	the	root	directory	and	are	unique.	In	UNIX	the	components	of	the	path	are	separated	
by	/.	In	Windows	the	separator	is	\	 .	Thus	the	same	path	name	would	be	written	as	follows	
in	these	two	systems:

Windows	 \usr\ast\mailbox

UNIX  /usr/ast/mailbox

No	matter	which	character	is	used,	if	the	first	character	of	the	path	name	is	the	separator,	then	
the path is absolute.

The other kind of name is the relative path name. This is used in conjunction with the concept of 
the	working	directory	(also	called	the	current	directory).	A	user	can	designate	one	directory	as	
the	current	working	directory,	in	which	case	all	path	names	not	beginning	at	the	root	directory	
are	taken	relative	to	the	working	directory.	For	example,	if	the	current	working	directory	is	/
usr/ast,	 then	 the	 file	whose	 absolute	 path	 is	 /usr/ast/mailbox	 can	 be	 referenced	 simply	 as	
mailbox.	In	other	words,	the	UNIX	command	cp	/usr/ast/mailbox	/usr/ast/mailbox.bak	nand	
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Notesthe command cp mailbox mailbox.bak do exactly the same thing if the working directory is /usr/
ast/.	The	relative	form	is	often	more	convenient,	but	it	does	the	same	thing	as	the	absolute	form.

Some	programs	need	to	access	a	specific	file	without	regard	to	what	the	working	directory	
is.	In	that	case,	they	should	always	use	absolute	path	names.	For	example,	a	spelling	checker	
might	need	to	read	/user/lib/dictionary	to	do	its	work.	It	should	use	the	full,	absolute	path	
name in this case because it does not know what the working directory will be when it is 
called.	The	absolute	path	name	will	always	work,	no	matter	what	the	working	directory	is	of	
course,	if	the	spelling	checker	needs	a	large	number	of	files	from	/user/lib/,	an	alternative	
approach	is	for	it	to	issue	a	system	call	to	change	its	working	directory	to	/user/lib/,	and	
then	use	 just	dictionary	as	the	first	parameter	to	open.	By	explicitly	changing	the	working	
directory,	it	knows	for	sure	where	it	is	in	the	directory	tree,	so	it	can	then	use	relative	paths.

Each	process	has	its	own	working	directory,	so	when	a	process	changes	its	working	directory	
and	later	exits,	no	other	processes	are	affected	and	no	traces	of	the	change	are	left	behind	in	the	
file	system.	In	this	way	it	is	always	perfectly	safe	for	a	process	to	change	its	working	directory	
whenever	 that	 is	 convenient	 on	 the	 other	 hand,	 if	 a	 library	 procedure	 changes	 the	working	
directory	and	does	not	change	back	to	where	it	was	when	it	is	finished,	the	rest	of	the	program	
may not work since its assumption about where it is may now suddenly be invalid. For this 
reason,	 library	 procedures	 rarely	 change	 the	 working	 directory,	 and	 when	 they	must,	 they	
always change it back again before returning.

Most operating systems that support a hierarchical directory system have two special entries in 
every	directory,	“.”	and	“..”,	generally	pronounced	“dot”	and	“dotdot.”	Dot	refers	to	the	current	
directory;	dotdot	refers	to	its	parent.	To	see	how	these	are	used,	consider	the	UNIX	file	tree	of	
Fig. 6.15 A certain process has /usr/ast/ as its working directory. It can use .. to go up the tree. 
For	example,	it	can	copy	the	file	/usr/lib/dictionary	to	its	own	directory	using	the	command:

cp ../lib/dictionary.

Figure 6.15: A UNIX Directory Tree
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Notes The	first	path	instructs	the	system	to	go	upward	(to	the	usr	directory),	then	to	go	down	to	the	
directory	lib/	to	find	the	file	dictionary.

The	second	argument	(dot)	names	the	current	directory.	When	the	cp	command	gets	a	directory	
name	(including	dot)	as	its	last	argument,	it	copies	all	the	files	there.	Of	course,	a	more	normal	
way to do the copy would be to type cp /usr/lib/dictionary. Here the use of dot saves the user 
the trouble of typing dictionary a second time.

Nevertheless,	 typing	cp	/usr/lib/dictionary	dictionary	also	works	fine,	as	does	cp	/usr/lib/
dictionary /usr/ast/dictionary. All of these do exactly the same thing.

Some	 programs	 need	 to	 access	 a	 specific	 file	 without	 regard	 to	 what	 the	
working	directory	is.	In	that	case,	they	should	always	use	absolute	path	names.	
For	example,	a	spelling	checker	might	need	to	read	/usr/lib/dictionary	to	
do its work. 

6.12.4 Directory Operations
The system calls for managing directories exhibit more variation from system to system than 
system	calls	for	files.	To	give	an	impression	of	what	they	are	and	how	they	work,	we	will	give	
a	sample	(taken	from	UNIX).

	 1.	 Create.	A	directory	is	created.	It	is	empty	except	for	dot	and	dotdot,	which	are	put	there	
automatically	by	the	system	(or	in	a	few	cases,	by	the	mkdir	program).

 2. Delete. A directory is deleted. Only an empty directory can be deleted. A directory 
containing only dot and dotdot is considered empty as these cannot usually be deleted.

	 3.	 Opendir.	Directories	can	be	read.	For	example,	to	list	all	the	files	in	a	directory,	a	listing	
program	opens	 the	directory	 to	 read	out	 the	names	of	all	 the	files	 it	 contains.	Before	a	
directory	can	be	read,	it	must	be	opened,	analogous	to	opening	and	reading	a	file.

	 4.	 Closedir.	When	a	directory	has	been	 read,	 it	 should	be	 closed	 to	 free	up	 internal	 table	
space.

	 5.	 Readdir.	This	call	returns	the	next	entry	in	an	open	directory.	Formerly,	it	was	possible	to	
read	directories	using	the	usual	read	system	call,	but	that	approach	has	the	disadvantage	
of forcing the programmer to know and deal with the internal structure of directories. In 
contrast,	readdir	always	returns	one	entry	in	a	standard	format,	no	matter	which	of	the	
possible directory structures is being used.

	 6.	 Rename.	In	many	respects,	directories	are	just	like	files	and	can	be	renamed	the	same	way	
files	can	be.

	 7.	 Link.	Linking	is	a	technique	that	allows	a	file	to	appear	in	more	than	one	directory.	This	
system	call	specifies	an	existing	file	and	a	path	name,	and	creates	a	link	from	the	existing	
file	to	the	name	specified	by	the	path.	In	this	way,	the	same	file	may	appear	in	multiple	
directories.	A	link	of	this	kind,	which	increments	the	counter	in	the	file’s	i-node	(to	keep	
track	of	 the	number	of	directory	entries	containing	the	file),	 is	sometimes	called	a	hard	
link.

	 8.	 Unlink.	A	directory	 entry	 is	 removed.	 If	 the	file	being	unlinked	 is	 only	present	 in	one	
directory	(the	normal	case),	it	is	removed	from	the	file	system.	If	it	is	present	in	multiple	
directories,	 only	 the	path	name	 specified	 is	 removed.	The	others	 remain.	 In	UNIX,	 the	
system	call	for	deleting	files	(discussed	earlier)	is,	in	fact,	unlink.

The	above	list	gives	the	most	important	calls,	but	there	are	a	few	others	as	well,	for	example,	
for managing the protection information associated with a directory.
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Notes

A Study of Scalability and Performance of Solaris Zones

This	 thesis	 presents	 a	 quantitative evaluation of an operating system virtualization 
technology	known	as	Solaris	Containers	or	Solaris	Zones,	with	a	special	emphasis	on	
measuring	the	influence	of	a	security	technology	known	as	Solaris	Trusted	Extensions,	

Solaris	Zones	 is	an	operating	system-level	 (OS-level)	virtualization	 technology	embedded	
in the Solaris OS that primarily provides containment of processes within the abstraction 
of	a	complete	operating	system	environment.	Solaris	Trusted	Extensions	present	a	specific	
configuration	of	the	Solaris	operating	system	that	 is	designed	to	offer	multi-level	security	
functionality.

Firstly,	we	examine	the	scalability	of	the	OS	with	respect	to	an	increasing	number	of	zones.	
Secondly,	we	evaluate	the	performance	of	zones	in	three	scenarios.	In	the	first	scenario	we	
measure	as	a	baseline—the	performance	of	Solaris	Zones	on	a	2-CPU	core	machine	in	the	
standard	configuration	that	is	distributed	as	part	of	the	Solaris	OS.	In	the	second	scenario	we	
investigate	the	influence	of	the	number	of	CPU	cores.	In	the	third	scenario	we	evaluate	the	
performance	in	the	presence	of	a	security	configuration	known	as	Solaris	Trusted	Extensions.	
To	evaluate	performance,	we	calculate	a	number	of	metrics	using	the	AIM	benchmark.	We	
calculate	these	benchmarks	for	the	global	zone,	a	non-global	zone,	and	increasing	numbers	
of concurrently running non-global zones. We aggregate the results of the latter to compare 
aggregate system performance against single zone performance.

The	results	of	this	study	demonstrate	the	scalability	and	performance	impact	of	Solaris	Zones	
in	the	Solaris	OS.	On	our	chosen	hardware	platform,	Solaris	Zones	scales	to	about	110	zones	
within	a	short	creation	time	(i.e.,	less	than	13	minutes	per	zone	for	installation,	configuration,	
and	boot.)	As	the	number	of	zones	increases,	the	measured	overhead	of	virtualization	shows	
less	than	2%	of	performance	decrease	for	most	measured	benchmarks,	with	one	exception:	the	
benchmarks	for	memory	and	process	management	show	that	performance	decreases	of	5-12%	
(depending	on	 the	 sub-benchmark)	are	 typical.	When	evaluating	 the	Trusted	Extensions-
based	security		configuration,	additional	small	performance	penalties	were	measured	in	the	
areas of Disk/Filesystem I/O and Inter Process Communication. Most benchmarks show 
that aggregate system performance is higher when distributing system load across multiple 
zones compared to running the same load in a single zone.

Questions:

	 1.	 What	is	the	use	of	Solaris	Zones	in	operating	systems?

	 2.	 Explain	the	impact	of	Solaris	Zones	in	the	Solaris	OS.

Self Assessment

Multiple choice questions:

	 6.	 Computers	process	data	into	information	by	working	exclusively	with:

	 (a)	 multimedia	 (b)	 words

	 (c)	 characters	 (d)	 numbers

	 7.	 The	components	that	process	data	are	located	in	the:

	 (a)	 input	devices	 (b)	 output	devices

	 (c)	 system	unit	 (d)	 storage	component
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Notes True or False:

 8. Direct access does not allow a user to partitioned the read/write mark before reading or 
writing.

 9. A disk is typically position also known as slices and minidisks.

6.13 Summary

	 •	 A	file	is	a	collection	of	related	information	defined	by	its	creator.

	 •	 Computer	can	store	files	on	the	disk	(secondary	storage),	which	provide	long	term	storage.	
A	file	can	be	managed	 in	operating	systems	 in	 three	ways;	 from	within	a	program,	by	
using	MY	computer,	and	by	using	Windows	Explorer.	A	file	is	an	abstract	data	type,	a	
“thing”,	which	is	defined	and	implemented	by	the	operating	system.

	 •	 The	main	 task	of	 the	operating	 system	 is	 to	map	 the	 logical	file	 concept	onto	physical	
storage	devices,	such	as	disks	or	tapes.	A	file	can	be	accessed	directly	or	sequentially.

	 •	 A	disk	is	typically	partitioned,	also	known	as	slices	and	minidisks.

	 •	 The	device	directory	or	volume	table	of	contents	records	and	maintains	the	file	properties	
such	as	name,	size,	type	and	location.

	 •	 WebSphere	Portal	and	the	directories	used	for	storing	locale-specific	resources	is	also	been	
explained.

	 •	 File	sharing	is	also	a	very	desirable	for	users	who	want	to	collaborate	and	to	reduce	the	
effort	required	to	achieve	a	computing	goal.	Therefore,	user	oriented	operating	systems	
must	accommodate	the	need	to	share	files	in	spite	of	the	inherent	difficulties.

	 •	 Consistency	semantics	is	an	important	criterion	for	evaluating	any	file	system	that	supports	
file	sharing.	It	is	a	characterization	of	the	system	that	specifies	the	semantics	of	multiple	
users	accessing	a	shared	file	simultaneously.	Allocation	methods	are	also	a	required	feature	
for	file	management.

6.14 Keywords

Domain Name System (DNS): A system for converting host names and domain names into 
IP	addresses	on	the	Internet	or	on	local	networks	that	use	the	TCP/IP	protocol.	For	example,	
when a Web site address is given to the DNS either by typing a URL in a browser or behind 
the scenes from one	 application	 to	 another,	DNS	 servers	 return	 the	 IP	 address	 of	 the	 server	
associated with that name. 

Network Information Service (NIS): A naming service from Sun that allows resources to be 
easily	added,	deleted	or	 relocated.	Formerly	known	as	Yellow	Pages,	NIS	 is	 a	de	 facto	Unix	
standard.	NIS+	is	a	redesigned	NIS	for	Solaris	2.0	products.	The	combination	of	TCP/IP,	NFS	
and NIS comprises the primary networking components of Unix. 

Distributed File System (DFS): Is a set of client and server services that allow an organization 
using	Microsoft	Windows	servers	to	organize	many	distributed	SMB	file	shares	into	a	distributed	
file	system.	DFS	provides	location	transparency	and	redundancy	to	improve	data	availability	in	
the face of failure or heavy load by allowing shares in multiple different locations to be logically 
grouped	under	one	folder,	or	DFS	root.
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NotesAnonymous Access:	The	most	common	Web	site	access	control	method,	allows	anyone	to	visit	
the public areas of your Web sites.

Free-Space List: A list of unoccupied areas of memory in main or backing store. It is a special 
case of an available list.

1.	 Assume	4	jobs	arrive	to	a	batch	system	at	10:00	am	in	the	morning	precisely	
at	the	following	moments:

	 Job	1:	10:00am	(requires	4	minutes	of	CPU)

	 Job	2:	10:10am	(requires	3	minutes	of	CPU)

	 Job	3:	10:15am	(requires	2	minutes	of	CPU)

	 Job	4:	10:20am	(requires	1	minute	of	CPU)

	 When	does	each	job	completes,	If	the	probability	of	I/O	is	0.8?

2. C Program For File Operations.

3. C Program For File Copy and Move.

6.15 Review Questions

	 1.	 What	is	a	file?

	 2.	 What	are	the	typical	operations	performed	on	files?

 3. What are File Control Blocks?

	 4.	 What	are	file	types?

 5. How is free space managed?

	 6.	 Consider	a	file	system	where	a	file	can	be	deleted	and	its	disk	space	Reclaimed	while	links	
to	that	file	still	exist.	What	problems	may	occur	if	a	new	file	is	created	in	the	same	storage	
area or with the same absolute path name? How can these problems be avoided?

 7. What are the advantages and disadvantages of a system providing mandatory locks instead 
of providing advisory locks whose usage is left to the users’ discretion?

 8. What are the advantages and disadvantages of recording the name of the creating program 
with	the	file’s	attributes	(as	is	done	in	the	Macintosh	Operating	System)?

 9. If the operating system were to know that a certain application is going to access the 
file	 data	 in	 a	 sequential	 manner,	 how	 could	 it	 exploit	 this	 information	 to	 improve	
performance?

	 10.	 Give	an	example	of	an	application	that	could	benefit	from	operating	system	support	for	
random	access	to	indexed	files.

	 11.	 Discuss	the	merits	and	demerits	of	supporting	links	to	files	that	cross	mount	points	(that	
is,	the	file	link	refers	to	a	file	that	is	stored	in	a	different	volume).

	 12.	 Discuss	the	advantages	and	disadvantages	of	associating	with	remote	file	systems	(stored	
on	 file	 servers)	 a	 different	 set	 of	 failure	 semantics	 from	 that	 associated	with	 local	 file	
systems.

 13. Give an example of a Directory implementation that could benefit from operating 
system.
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Notes  14. Discuss the advantages and disadvantages of access matrix.

 15. What is Hierarchical Directory Systems.

	 16.	 What	does	Contiguous	Allocation	requires?

Answers to Self Assessment 
	 1.	 (b)	 2.	 (a)	 3.	 logic	 4.	 ctrl		 5.	 rename	

	 6.	 (d)	 7.	 (c)	 8.	 False	 9.	 True	

6.16 Further Readings

Introduction to Operating Design and Implementation,	by	Michael	Kifer,	Scoott	
A. Smolka.

Operating Systems,	by	Harvey	M.	Deitel,	Paul	J.	Deitel,	David	R.	Choffnes.	

Operating Systems,	by	Stuart	E.	Madnick,	John	J.	Donovan.	

wiley.com/coolege.silberschatz
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Notes
Objectives

After studying this unit, you will be able to:

 • Explain meaning of secondary storage structure

 • Understand	the	benefits	of	secondary	storage

 • Discuss disk structure

	 • Explain disk scheduling

	 • Understand disk management

 •	 Explain	swap-space	management

 • Understand overview of RAID structure

 • Discuss improvement of reliability via redundancy

	 •	 Explain	improvement	in	performance	via	parallelism

Introduction

Any non-volatile storage medium that is not directly accessible to the processor. Memory directly 
accessible	 to	 the	 processor	 includes	main	memory,	 cache	 and	 the	 CPU	 registers.	 Secondary	
storage	includes	hard	drives,	magnetic	tape,	CD-ROM,	DVD	drives,	floppy	disks,	punch	cards	
and paper tape.

Secondary storage devices are usually accessed via some kind of controller. This contains registers 
that	can	be	directly	accessed	by	the	CPU	like	main	memory	(“memory	mapped”).	Reading	and	
writing these registers can cause the device to perform actions like reading a block of data off 
a disk or rewinding a tape.

7.1 The Benefits of Secondary Storage

Picture,	 if	you	can,	how	many	filing-cabinet	drawers	would	be	required	 to	hold	 the	millions	
of	files	of,	say,	tax	records	kept	by	the	Internal	Revenue	Service	or	historical	employee	records	
kept	by	General	Motors.	The	record	storage	rooms	would	have	 to	be	enormous.	Computers,	
in	contrast,	permit	storage	on	tape	or	disk	in	extremely	compressed	form.	Storage	capacity	is	
unquestionably	one	of	the	most	valuable	assets	of	the	computer.

Secondary	storage,	sometimes	called	auxiliary	storage,	 is	storage	separate	from	the	computer	
itself,	where	you	 can	 store	 software	and	data	on	a	 semi	permanent	basis.	 Secondary	 storage	
is	 necessary	 because	memory,	 or	 primary	 storage,	 can	 be	 used	 only	 temporarily.	 If	 you	 are	
sharing	your	computer,	you	must	yield	memory	to	someone	else	after	your	program	runs;	 if	
you	are	not	sharing	your	computer,	your	programs	and	data	will	disappear	from	memory	when	
you	 turn	off	 the	computer.	However,	you	probably	want	 to	store	 the	data	you	have	used	or	
the information you have derived from processing; that is why secondary storage is needed. 
Furthermore,	memory	is	 limited	in	size,	whereas	secondary	storage	media	can	store	as	much	
data as necessary. Keep in mind the characteristics of the memory hierarchy that were described 
in the section on the CPU and memory.
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Notes 

Storage Speed Capacity Relative	Cost	($) Permanent

Registers Fastest Lowest Highest No

RAM Very Fast Low/Moderate High No

Floppy Disk Very Slow Low Low Yes

Hard Disk Moderate Very High Very Low Yes

The	benefits	of	secondary	storage	can	be	summarized	as	follows:

Capacity:	Organizations	may	store	the	equivalent	of	a	roomful	of	data	on	sets	of	disks	that	take	 
up	less	space	than	a	breadbox.	A	simple	diskette	for	a	personal	computer	holds	the	equivalent	 
of	500	printed	pages,	or	one	book.	An	optical	disk	can	hold	 the	equivalent	of	approximately	 
400 books.

Reliability:	Data	 in	 secondary	 storage	 is	basically	 safe,	 since	 secondary	 storage	 is	physically	
reliable.	Also,	it	is	more	difficult	for	unscrupulous	people	to	tamper	with	data	on	disk	than	data	
stored	on	paper	in	a	file	cabinet.

Convenience:	With	the	help	of	a	computer,	authorized	people	can	locate	and	access	data	quickly.

Cost: Together	the	three	previous	benefits	indicate	significant	savings	in	storage	costs.	It	is	less	
expensive	to	store	data	on	tape	or	disk	(the	principal	means	of	secondary	storage)	than	to	buy	
and	house	filing	cabinets.	Data	that	is	reliable	and	safe	is	less	expensive	to	maintain	than	data	
subject	to	errors.	But	the	greatest	savings	can	be	found	in	the	speed	and	convenience	of	filing	
and retrieving data.

These	benefits	 apply	 to	 all	 the	various	 secondary	 storage	devices	 but,	 as	 you	will	 see,	 some	 
devices	are	better	 than	others.	We	begin	with	a	 look	at	 the	various	storage	media,	 including	 
those	used	for	personal	computers,	and	then	consider	what it takes to get data organized and  
processed.

7.2 Disk Structure

Disks provide the bulk of secondary storage for modern computer systems. Magnetic tape was 
used	as	an	early	secondary-storage	medium,	but	the	access	time	is	much	slower	than	for	disks.	
Thus,	tapes	are	currently	used	mainly	for	backup,	for	storage	of	infrequently	used	information,	
as	a	medium	for	transferring	information	from	one	system	to	another,	and	for	storing	quantities	
of data so large that they are impractical as disk systems. Modern disk drives are addressed as 
large one-dimensional arrays of logical blocks, where the logical block is the smallest unit of 
transfer.	The	size	of	a	logical	block	is	usually	512	bytes,	although	some	disks	can	be	low-level 
formatted to	choose	a	different	logical	block	size,	such	as	1,024	bytes.	The	one-dimensional	array	
of	logical	blocks	is	mapped	onto	the	sectors	of	the	disk	sequentially.	Sector	0	is	the	first	sector	
of	the	first	track	on	the	outermost	cylinder.	The	mapping	proceeds	in	order	through	that	track,	
then	through	the	rest	of	the	tracks	in	that	cylinder,	and	then	through	the	rest	of	the	cylinders	
from	outermost	to	innermost.	By	using	this	mapping,	we	can-at	least	in	theory-convert	a	logical	
block	number	into	an	old-style	disk	address	that	consists	of	a	cylinder	number,	a	track	number	
within	that	cylinder,	and	a	sector	number	within	that	track.	In	practice,	it	is	difficult	to	perform	
this	translation,	for	two	reasons.	First,	most	disks	have	some	defective	sectors,	but	the	mapping	
hides	this	by	substituting	spare	sectors	from	elsewhere	on	the	disk.	Second,	the	number	of	sectors	
per track is not a constant on some drives. On media that use constant linear velocity (CLV), 
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Notes the density of bits per track	is	uniform.	The	farther	a	track	is	from	the	center	of	the	disk,	the	
greater	 its	 length,	 so	 the	more	 sectors	 it	 can	hold.	As	we	move	 from	outer	 zones	 to	 inner	
zones,	 the	 number	 of	 sectors	 per	 track	 decreases.	 Tracks	 in	 the	 outermost	 zone	 typically	
hold 40 percent more sectors than do tracks in the innermost zone. The drive increases its 
rotation speed as the head moves from the outer to the inner tracks to keep the same rate 
of data moving under the head. This method is used in CD-ROM and DVD-ROM drives. 
Alternatively,	 the	disk	 rotation	speed	can	stay	constant,	and	 the	density	of	bits	decreases	
from inner tracks to outer tracks to keep the data rate constant. This method is used in hard 
disks and is known as constant angular velocity (CAV). The number of sectors per track 
has	been	increasing	as	disk	technology	improves,	and	the	outer	zone	of	a	disk	usually	has	
several	 hundred	 sectors	 per	 track.	 Similarly,	 the	 number	 of	 cylinders	 per	 disk	 has	 been	
increasing; large disks have tens of thousands of cylinders.

The number of sectors per track has been increasing as disk technology 
improves,	and	the	outer	zone	of	a	disk	usually	has	several	hundred	sectors	
per	 track.	Similarly,	 the	number	of	cylinders	per	disk	has	been	 increasing;	
large disks have tens of thousands of cylinders.

7.3 Disk Scheduling

In	multiprogramming	 systems,	many	processes	may	 be	 generating	 requests	 for	 reading	 and	
writing	 disk	 records.	 Because	 these	 processes	 often	 make	 requests	 faster	 than	 they	 can	 be	
serviced	by	the	moving	head	disks,	waiting	queues	are	build	up	for	each	devices.	In	order	to	
stop	unbounded	 increase	 in	 the	queue	 length	 these	pending	requests	must	be	examined	and	
serviced	 in	 an	 efficient	manner.	 Disk	 scheduling	 involves	 a	 careful	 examination	 of	 pending	
requests	to	determine	the	most	efficient	ways	to	service	the	waiting	requests	terms.

Latency Time: The time it takes for the data block to rotate from its current to just under the 
read-write head is called latency time.

Seek Time: The time it takes to position the read-write head on the top of the track where data 
block is stored.

Transfer Time: The time it takes to transfer a block of data from the disk to memory.

These	times	>>	CPU	processing	time.

 Transfer rate of RL81 (VAX Disk) = 2.2 mb/sec

Data block size = 512 bytes.

Total	block	transfer	time	(Latency+Seek+Transfer)	=	about	0.1	sec.

CPU	will	take	about	9600	ns	(0.0000096	sec)	to	read	this	block.

    Give the detail how to schedule the disk in operating system.

   Disk Scheduling Algorithms

   First Come First Served:	Process	the	first	request	then	the	next	and	so	on.
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Notes
 Required	tracks:	98,	183,	37,	122,	14,	124,	14,	124,	65	and	67.	Head	starts	at:	53

Figure 7.1: Total Tracks Covered: 53 to 98 = 45, 98 to 183 = 85, and so on = 640

Problems:	Wild	swing.	Several	close	requests	can	be	serviced	together	such	as	37	and	14,	122	
and 124 etc.

7.3.1 Shortest Seek Time First (SSTF)
Service	all	requests	close	to	the	current	head	position	together,	before	moving	the	head	far	away	
to	service	another	request.	This	policy	is	similar	to	shortest	job	first.

Figure 7.2: Total Number of Tracks Covered: 236
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Notes Problems:	May	cause	starvation	to	some	requests,	since	requests	may	arrive	at	anytime.

7.3.2 Scan
Head	starts	at	one	end	and	moves	towards	the	other	end,	servicing	the	requests	on	its	way.	At	
the	end	the	head	movement	direction	is	reversed	and	servicing	continues.	Example,	head	position	
at	53	movement	towards	zero,	servicing	37,	14	and	goes	up	to	zero	and	then	changes	direction.

Figure 7.3: Scan

This	 algorithm	 is	 sometimes	 called	“elevator”	 algorithm,	 since	 it	 resembles	 to	 the	behaviour	
of elevator.

7.3.3 Cscan 
A variant of scan designed to provide a more uniform wait. Starts from one end and moves 
towards	 the	other	end	servicing	all	 requests	on	 its	way.	When	 the	head	 reaches	 to	 the	other	
end,	it	 immediately	returns	to	the	beginning	of	the	disk,	without	servicing	any	request	on	its	
return journey.

Figure 7.4: Cscan

Self Assessment
Multiple choice questions:

	 1.	 An	online	backing	storage	system	capable	of	storing	larger	quantities	of	data	is

	 	 (a)	 CPU	 (b)	 Memory

	 	 (c)	 Mass	storage	 (d)	 Secondary	storage

 2. Which is an item of storage medium in the form of circular plate?

	 	 (a)	 Disk	 (b)	 CPU

	 	 (c)	 Printer	 (d)	 ALU
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Notes	 3.	 Which	of	the	following	disk	scheduling	techniques	has	a	drawback	of	starvation?

	 	 (a)	 SCAN	 (b)	 SST

	 	 (c)	 FCFS	 (d)	 LIFO

 4. The total time to prepare a disk drive mechanism for a block of data to be read from is 
its 

	 	 (a)	 latency	

	 	 (b)	 latency	plus	transmission	time	

	 	 (c)	 latency	plus	seek	time	

	 	 (d)	 latency	plus	seek	time	plus	transmission	time	

7.4 Selecting a Disk Scheduling Algorithm

The	performance	of	these	algorithms	depends	heavily	on	the	workload	(number	of	requests).	
Under	 light	 load	 all	 algorithms	 perform	 the	 same.	 If	 the	 queue	 seldom	 has	more	 than	 one	
outstanding	request,	then	all	algorithms	are	effectively	the	same.	Their	performance	also	depends	
upon	the	file	organization	and	the	type	of	generated	requests.	In	a	sequential	processing	and	
sequential	file,	the	head	movement	will	be	minimum	and	therefore	the	seek	time	and	latency	
time	will	be	minimum	so	FCFS	may	perform	better.	A	indexed	sequential	file,	on	the	other	hand,	
may	 include	blocks	 that	may	be	 scattered	all	over	 the	disk	and	a	 sequential	processing	with	
FCFS	will	be	very	slow.	SSTF	is	quite	common	and	scan	and	cscan	are	good	for	heavy	load.

7.4.1 Scheduling Fixed-head Devices
Fixed	head	disk	=	DRUM.	One	head	per	track	on	the	drum.

Seek	time	=	0.

Latency	time	<	moving	head	disk.

 Figure 7.5: Scheduling Fixed-head Devices

Different	algorithm	is	required	for	this	device.
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Notes 7.5 Disk Management

The	operating	system	is	responsible	for	several	other	aspects	of	disk	management,	too.	Here	we	
discuss	disk	initialization,	booting	from	disk,	and	bad-block	recovery.

7.5.1 Disk Formatting

A new magnetic disk is a blank	slate:	It	is	just	platters	of	a	magnetic	recording	material.	Before	
a	disk	can	store	data,	it	must	be	divided	into	sectors	that	the	disk	controller	can	read	and	write.	
This	process	is	called	low-level	formatting	(or	physical formatting). Low-level formatting fills	
the disk with a special data structure for each sector. The data structure for a sector typically 
consists	of	a	header,	a	data	area	(usually	512	bytes	in	size),	and	a	trailer.	The	header	and	trailer	
contain	information	used	by	the	disk	controller,	such	as	a	sector	number	and	an	error-correcting 
code (ECC). When	the	controller	writes	a	sector	of	data	during	normal	I/O,	the	ECC	is	updated	
with	a	value	calculated	from	all	the	bytes	in	the	data	area.	When	the	sector	is	read,	the	ECC	is	
recalculated and is compared with the stored value. If the stored and calculated numbers are 
different,	this	mismatch	indicates	that	the	data	area	of	the	sector	has	become	corrupted	and	that	
the disk sector may be bad. The ECC is an error-correcting code because it contains enough 
information	 that,	 if	 only	 a	 few	 bits	 of	 data	 have	 been	 corrupted,	 the	 controller	 can	 identify	
which bits have changed and can calculate what their correct values should be. The controller 
automatically does the ECC processing whenever a sector is read or written. Most hard disks are 
low-level formatted at the factory as a part of the manufacturing process. This formatting enables 
the manufacturer to test the Idisk and to initialize the mapping from logical block numbers to 
defect-free	sectors	on	the	disk.	For	many	hard	disks,	when	the	disk	controller	is	instructed	to	
low-level	format	the	disk,	 it	can	also	be	told	how	many	bytes	of	data	space	to	leave	between	
the	header	and	trailer	of	all	sectors.	It	is	usually	possible	to	choose	among	a	few	sizes,	such	as	
256,	512,	and	1,024	bytes.	Formatting	a	disk with a larger sector size means that fewer sectors 
can	fit	on	each	track,	but	that	also	means	fewer	headers	and	trailers	are	written	on	each	track,	
and thus increases the space available for user data. Some operating systems can handle only 
a sector size of 512 bytes.

To	use	a	disk	to	hold	files,	the	operating	system	still	needs	to	record	its	own	data	structures	on	
the	disk.	It	does	so	in	two	steps.	The	first	step	is	to	partition the disk into one or more groups 
of cylinders. The operating system can treat each partition as though it were a separate disk. 
For	 instance,	one	partition	 can	hold	a	 copy	of	 the	operating	 system’s	 executable	 code,	while	
another	holds	user	files.	After	partitioning,	 the	second	step	 is	 logical formatting (or	creation	
of	a	file	system).	In	this	step,	the	operating	system	stores	the	initial	file-system	data	structures	
onto	the	disk.	These	data	structures	may	include	maps	of	 free	and	allocated	space	(a	FAT	or	
inodes)	and	an	initial	empty	directory.

Some operating systems give special programs the ability to use a disk partition as a large 
sequential	array	of	logical	blocks,	without	any	file-system	data	structures.	This	array	is	sometimes	
called	 the	 raw	 disk,	 and	 I/O	 to	 this	 array	 is	 termed	 raw	 I/O.	 For	 example,	 some	 database	
systems prefer raw I/O because it enables them to control the exact disk location where each 
database	record	is	stored.	Raw	1/0	bypasses	all	the	file-system	services,	such	as	the	buffer	cache,	
file	 locking,	 prefetching,	 space	 allocation,	 file	 names,	 and	 directories.	We	 can	make	 certain	
applications	more	efficient	by	implementing	their	own	special-purpose	storage	services	on	a	raw	
partition,	but	most	applications	perform	better	when	they	use	the	regular	file-system	services.	

   Give the step of disk management.
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NotesThe controller automatically does the ECC processing whenever a sector is 
read or written. Most hard disks are low-level formatted at the factory as a 
part of the manufacturing process.

7.5.2 Boot Block
For	a	computer	 to	 start	 running-for	 instance,	when	 it	 is	powered	up	or	 rebooted-it	needs	
to have an initial program to run. This initial bootstrap program tends to be simple. It 
initializes	all	aspects	of	the	system,	from	CPU	registers	to	device	controllers	and	the	contents	
of	main	memory,	and	then	starts	the	operating	system.	To	do	its	job,	the	bootstrap	program	
finds	the	operating	system	kernel	on	disk,	loads	that	kernel	into	memory,	and	jumps	to	an	
initial	address	to	begin	the	operating-system	execution.	For	most	computers,	the	bootstrap	
is	stored	in	read-only	memory	(ROM). This	location	is	convenient,	because	ROM	needs	no	
initialization	and	is	at	a	fixed	location	that	the	processor	can	start	executing	when	powered	
up	or	 reset.	And,	 since	ROM	is	 read	only,	 it	 cannot	be	 infected	by	a	computer	virus.	The	
problem	is	that	changing	this	bootstrap	code	requires	changing	the	ROM	hardware	chips.	
For	this	reason,	most	systems	store	a	tiny	bootstrap	loader	program	in	the	boot	ROM,	whose	
only job is to bring in a full bootstrap program from disk. The full bootstrap program can be 
changed	easily:	A	new	version	is	simply	written	onto	the	disk.	The	full	bootstrap	program	
is	stored	in	a	partition	called	the	boot	blocks,	at	a	fixed	location	on	the	disk.	A	disk	that	has	
a boot partition is called a boot disk or system disk.

The	code	in	the	boot	ROM	instructs	the	disk	controller	to	read	the	boot	blocks	into	memory	(no	
device	drivers	are	loaded	at	this	point),	and	then	starts	executing	that	code.	The	full	bootstrap	
program is more sophisticated than the bootstrap loader in the boot ROM; it is able to load the 
entire	operating	 system	 from	a	non	fixed	 location	on	disk,	and	 to	 start	 the	operating	 system	
running.

Even	so,	the	full	bootstrap	code	may	be	small.	For	example,	MS-DOS	uses	one	512-byte	block	
for its boot program.

 Be careful during the disk management because the disk is very important 
term in computer system.

7.5.3 Bad Blocks

Because disks	have	moving	parts	and	small	tolerances	(recall	that	the	disk	head	flies	just	above	
the	disk	surface),	they	are	prone	to	failure.	Sometimes	the	failure	is	complete,	and	the	disk	needs	
to	be	replaced,	and	its	contents	restored	from	backup	media	to	the	new	disk.	More	frequently,	
one or more sectors become defective. Most disks even come from the factory with bad blocks. 
Depending	on	 the	disk	 and	 controller	 in	use,	 these	blocks	 are	handled	 in	 a	variety	of	ways.	
On	simple	disks,	such	as	some	disks	with	IDE	controllers,	bad	blocks	are	handled	manually.	
For	instance,	the	MS-DOS	format	command	does	a	logical	format	and,	as	a	part	of	the	process,	
scans	the	disk	to	find	bad	blocks.	If	format	finds	a	bad	block,	it	writes	a	special	value	into	the	
corresponding FAT entry to tell the allocation routines not to use that block. If blocks go bad 
during	normal	operation,	a	special	program	(such	as	chkdsk)	must	be	run	manually	to	search	
for the bad blocks and to lock them away as before. Data that resided on the bad blocks usually 
are lost.



Principles of Operating Systems

246 LOVELY PROFESSIONAL UNIVERSITY

Notes Figure 7.6: MS-DOS Disk Layout
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More	sophisticated	disks,	such	as	the	SCSI	disks	used	in	high-end	PCs	and	most	workstations	
and	servers,	are	smarter	about	bad-block recovery. The controller maintains a list of bad blocks 
on	the	disk.	The	list	is	initialized	during	the	low-level	format	at	the	factory,	and	is	updated	over	
the life of the disk. Low level formatting also sets aside spare sectors not visible to the operating 
system. The controller can be told to replace each bad sector logically with one of the spare 
sectors. This scheme is known as sector sparing or forwarding. A typical bad-sector transaction 
might	be	as	follows:	The	operating	system	tries	to	read	logical	block	87.	The	controller	calculates	
the	ECC	and	finds	 that	 the	sector	 is	bad.	 It	 reports	 this	finding	 to	 the	operating	system.	The	
next	 time	that	 the	system	is	rebooted,	a	special	command	is	run	to	tell	 the	SCSI	controller	 to	
replace the bad sector	with	a	spare.	After	that,	whenever	the	system	requests	logical	block	87,	the	
request	is	translated	into	the	replacement	sector’s	address	by	the	controller.	Such	a	redirection	
by the controller could invalidate any optimization by the operating system’s disk-scheduling 
algorithm!	 For	 this	 reason,	most	 disks	 are	 formatted	 to	 provide	 a	 few	 spare	 sectors	 in	 each	
cylinder,	and	a	spare	cylinder	as	well.	When	a	bad	block	is	remapped,	the	controller	uses	a	spare	
sector	from	the	same	cylinder,	if	possible.	As	an	alternative	to	sector	sparing,	some	controllers	
can be instructed to	replace	a	bad	block	by	sector	slipping.	Here	is	an	example:	Suppose	that	
logical	block	17	becomes	defective,	and	the	first	available	spare	follows	sector	202.	Then,	sector	
slipping	would	remap	all	the	sectors	from	17	to	202,	moving	them	all	down	one	spot.	That	is,	
sector	202	would	be	copied	into	the	spare,	then	sector	201	into	202,	and	then	200	into	201,	and	
so	on,	until	sector	18	is	copied	into	sector	19.	Slipping	the	sectors	in	this	way	frees	up	the	space	
of	sector	18,	so	sector	17	can	be	mapped	to	it.	The	replacement	of	a	bad	block	generally	is	not	a	
totally	automatic	process	because	the	data	in	the	bad	block	are	usually	lost.	Thus,	whatever	file	
was	using	that	block	must	be	repaired	(for	 instance,	by	restoration	from	a	backup	tape),	and	
that	requires	manual intervention.

The operating system tries to read logical block 87. The controller calculates 
the	ECC	and	finds	that	the	sector	is	bad.	It	reports	this	finding	to	the	operating	
system.

7.6 Swap Space Management

Swap	space	 is	an	area	on	a	high-speed	storage	device	 (almost	always	a	disk	drive),	 reserved	
for use by the virtual memory system for deactivation and paging processes. At least one swap 
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Notesdevice	 (primary	 swap)	must	 be	 present	 on	 the	 system.	 During	 system	 startup,	 the	 location	
(disk	block	number)	and	size	of	each	swap	device	is	displayed	in	512	KB	blocks.	The	swapper	
reserves	swap	space	at	process	creation	time,	but	does	not	allocate	swap	space	from	the	disk	
until pages need to go out to disk. Reserving swap at process creation protects the swapper 
from	running	out	of	swap	space.	You	can	add	or	remove	swap	as	needed	(that	is,	dynamically)	
while	the	system	is	running,	without	having	to	regenerate	the	kernel.	HP-UX	uses	both	physical	
and	pseudo	swap	to	enable	efficient	execution of programs.

7.6.1 Pseudo-Swap Space
System memory used for swap space is called pseudo-swap space. It allows users to execute 
processes in memory without allocating physical swap. Pseudo-swap is controlled by an 
operating-system	 parameter;	 by	 default,	 swapmem	 on	 is	 set	 to	 1,	 enabling	 pseudo-swap.	
Typically,	when	the	system	executes	a	process,	swap	space	is	reserved	for	the	entire	process,	in	
case	it	must	be	paged	out.	According	to	this	model,	to	run	one	gigabyte	of	processes,	the	system	
would	have	to	have	one	gigabyte	of	configured	swap	space.	Although	this	protects	the	system	
from	running	out	of	swap	space,	disk	space	reserved	for	swap	is	under-utilized	if	minimal	or	
no swapping occurs.

To	avoid	such	waste	of	resources,	HP-UX	is	configured	to	access	up	to	three-quarters	of	system	
memory	capacity	as	pseudo-swap.	This	means	 that	 system	memory	 serves	 two	 functions:	 as	
process-execution	space	and	as	swap	space.	By	using	pseudo-swap	space,	a	one-gigabyte	memory	
system	with	one-gigabyte	of	swap	can	run	up	to	1.75	GB	of	processes.	As	before,	if	a	process	
attempts	to	grow	or	be	created	beyond	this	extended	threshold,	it	will	fail.	When	using	pseudo	
swap	for	swap,	the	pages	are	locked;	as	the	amount	of	pseudo-swap	increases,	the	amount	of	
lockable memory decreases.

For	factory-floor	systems	(such	as	controllers),	which	perform	best	when	the	entire	application	is	
resident	in	memory,	pseudo-swap	space	can	be	used	to	enhance	performance:	you	can	either	lock	
the application in memory or make sure the total number of processes created does not exceed 
three-quarters	of	system	memory.	Pseudo-swap	space	is	set	to	a	maximum	of	three-quarters	of	
system	memory	because	the	system	can	begin	paging	once	three-quarters	of	system	available	
memory	has	been	used.	The	unused	quarter	of	memory	allows	a	buffer	between	the	system	and	
the	swapper	to	give	the	system	computational	flexibility.	When	the	number	of	processes	created	
approaches	capacity,	the	system	might	exhibit	thrashing	and	a	decrease	in	system	response	time.	
If	necessary,	you	can	disable	pseudo-swap	space	by	setting	the	tunable	parameter	swapmem	
on in /usr/conf/master.d/core-hpux to zero. At the head of a doubly linked list of regions that 
have pseudo-swap allocated is a null terminated list called pswaplist.

7.6.2 Physical Swap Space

There are two kinds of physical	swap	space—device	swap	and	file-system	swap.

7.6.2.1 Device Swap Space

Device	swap	space	resides	in	its	own	reserved	area	(an	entire	disk	or	logical	volume	of	an	LVM	
disk)	and	 is	 faster	 than	file-system	swap	because	 the	system	can	write	an	entire	request	 (256	
KB)	to	a	device	at	once.

7.6.2.2 File-system Swap Space

File-system swap space	 is	 located	on	a	mounted	file	 system	and	can	vary	 in	 size	with	 the	
system’s	swapping	activity.	However,	its	throughput	is	slower	than	device	swap,	because	
free	file-system	blocks	may	not	always	be	contiguous;	therefore,	separate	read/write	requests	
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Notes must	be	made	for	each	file-system	block.	To	optimize	system	performance,	file-system	swap	
space	 is	 allocated	 and	 de-allocated	 in	 swchunk-sized	 chunks.	 Swchunk	 is	 a	 configurable	
operating	 system	 parameter;	 its	 default	 is	 2048	 KB	 (2	MB).	 Once	 a	 it	 is	 released	 for	 file	
system	use,	unless	 it	has	been	preallocated	with	swapon.	If	swapping	to	file-system	swap	
space,	each	chunk	of	swap	space	is	a	file	in	the	file	system	swap	directory,	and	has	a	name	
constructed	from	the	system	name	and	the	swaptab	index	(such	as	becky.6	for	swaptab[6]	
on	a	system	named	becky).

7.6.3 Swap Space Parameters
Several	configurable	parameters	deal	with	swapping.

Table 7.1: Configurable Swap Space Parameters

Parameter Purpose

swchunk The number of DEV_BSIZE blocks in a unit of 
swap	space,	by	deault,	2	MB	on	all	systems.

maxswapchunks Maximum number of swap chunks allowed 
on a system.

swapmen_on Parameter allowing creation of more processes 
than	 you	 have	 physical	 swap	 space	 for,	 by	
using pseudo-swap.

7.6.4 Swap Space Global Variables
When	the	kernel	is	initialized,	conf.c	includes	globals.h,	which	contains	numerous	characteristics	
related	to	swap	space,	shown	in	the	next	table.	The	most	important	to	swap	space	reservation	
are	swapspc_cnt,	swapspc_max,	swapmem_cnt,	swapmem_max,	and	sys_mem.

Table 7.2: Swap Space Characteristics in Gobalsh

Element Meaning

bswlist head of free swap header list.

*pageoutbp pointer to swbuf header used by pageout when swapping.

ref_hand current reference hand used by pageout daemon.

maxmem page count of actual max memory per process.

physmem page count of physical memory on this CPU.

nswdev number of swap devices.

nswap pae count of size of swap space.

*fswdevt pointer	to	file	system	swap	table.

*swaptab pointer to the table of swap chunks.

swapphys_buf pages of physical swap space to keep available.

swapphys_cnt pages of available physical swap space on disk.

Contd..
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swapspc_cnt Total amount of swap currently available on all devices and 

file	systems	enabled	in	units	of	pages.	Updated	each	time		a	
device	or	file	system	is	enabled	for	swapping.

swapspc_max Total amount of device and file-system swap currently 
enabled on the system in units of pages. Updated each time 
a	device	or	file	system	is	enabled	for	swapping.

swapspc_debit number of of swap blocks by which to adjust swapspc_cnt.

swapspc_sparing number of swap blocks unavailable to swap.

swapmem_max Maximum number of pages of pseudo-swap enabled. 
Initialized to 3/4 available system memory.

swapmem_cnt Total number of pages of pseudo-swap currently available. 
Initialized to 3/4 available system memory.

maxfs_pri highest available device priority.

maxdev_pri highest available swap prioirity.

sys_mem Number of pages of memory not available for use as pseudo-
swap. Initialized to 1/4 avaiable system memory.

sysmen_max maximum pages not available for swap.

freemem page count of remaining blocks of free memory.

freemem_cnt Number of processes waiting for memory.

7.6.5 Swap Space Values
System	swap	space	values	are	calculated	as	follows:

	 •	 Total	 swap	 available	 on	 the	 system	 is	 swapspc_max	 (for	 device	 swap	 and	 file	 system	
swap)	+	swapmem_max	(for	pseudo-swap).

	 •	 Allocated	swap	is	swapspc_max	–	[sum(swdevt[n].sw_nfpgs)+	sum(fswdevt[n].fsw_nfpgs)]	
(for	device	swap	and	file	systemswap)	+	(swapmem_max	–	swapmem_cnt)	(for	pseudo-
swap).	In	HP-UX,	only	data	area	growth	(using	sbrk(	))	or	stack	growth	will	cause	a	process	
to die for lack of swap space. Program text does not use swap.

7.6.6 How Swap Space is Prioritized

All	swap	devices	and	file	systems	enabled	for	swap	have	an	associated	priority,	ranging	from	0	to	
10,	indicating	the	order	that	swap	space	from	a	device	or	file	system	is	used.	System	administrators	
can	 specify	 swap-space	 priority	 using	 a	 parameter	 of	 the	 swapon(1M)	 command.	 Swapping	
rotates	among	both	devices	and	file	systems	of	equal	priority.	Given	equal	priority,	however,	
devices	are	swapped	to	by	the	operating	system	before	file	systems,	because	devices	make	more	
efficient	use	of	CPU	time.	We	recommend	that	you	assign	the	same	swapping	priority	to	most	
swap	devices,	unless	a	device	 is	 significantly	slower	 than	 the	 rest.	Assigning	equal	priorities	
limits	disk	head	movement,	which	improves	swapping	performance.
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Start	at	the	lowest	priority	swap	device	or	file	system.	The	lower	the	number,	the	higher	priority;	
that	is,	space	is	taken	from	a	system	with	a	zero	priority	before	it	is	taken	from	a	system	with	
a one priority.

If	multiple	devices	have	the	same	priority,	swap	space	is	allocated	from	the	devices	in	a	round-
robin	fashion.	Thus,	to	interleave	swap	requests	between	a	number	of	devices,	the	devices	should	
be	assigned	the	same	priority.	Similarly,	if	multiple	file	systems	have	the	same	priority,	requests	
for	swap	are	interleaved	between	the	file	systems.

In	 the	figure	below	 swap	 requests	 are	 initially	 interleaved	between	 the	 two	 swap	devices	 at	
priority 0.

If	a	device	and	a	file	system	have	the	same	swap	priority,	all	the	swap	space	from	the	device	is	
allocated	before	any	file-system	swap	space.	Thus,	the	device	at	priority	1	will	be	filled	before	
swap	is	allocated	from	the	file	system	at	priority 1.

Figure 7.7: Choosing a Swap Location
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7.6.7.1 Swap Space Structures
Swapping is accomplished on HP-UX using the following data structures.

	 •	 Device	 swap	priority	array	 (swdev_pri[	]),	used	 to	 link	 together	 swap	devices	with	 the	
same	priority.	That	is,	the	entry	in	swdev_pri[n]	is	the	head	of	a	list	of	swap	devices	having	
priority	n.	The	first	field	in	swdev_pri[	]	structure	is	the	head	of	the	list;	the	sw_next	field	
in	the	swdevt[	]	structure	links	each	device	into	the	appropriate	priority	list.

	 •	 File	system	swap	priority	array	(swfs_pri[	]),	which	serves	the	same	purpose	as	swdev_pri[	],	
but	for	file	system	swap	priority.

	 •	 Device	swap	table	(struct	swdevt),	defined	in	conf.h	to	establish	the	fundamental	swap	
device information.

	 •	 File	system	swap	table	(struct	fswdevt),	defined	in	swap.h	for	supplimentary	file-system	
swap.

	 •	 Swap	table	of	available	chunks	(struct	swaptab),	which	keeps	track	of	the	available	free	
pages of swap space.

	 •	 Mapping	of	swap	pages	(struct	swapmap),	whose	entries	together	with	swaptab	combine	
for a swap disk block descriptor. The following table details the elements of the struct 
swdevt.
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Element Meaning

sw_dev Actual	 swap	device,	as	defined	by	 its	major	 (upper	8	bits)	
and	minor	(lower	24	bits)	numbers.

sw_enable Enabled	flag.	Zero	if	device	swap	is	disabled;	one	if	enabled.

sw_start Offset	into	the	swap	area	on	disk,	in	kilobytes.

sw_nblksavail Size	of	swap	area,	in	kilobytes.

sw_nblksenabled Number of blocks enabled for swap. Must be a multiple of 
swchunk	(2MB	default).

sw_nfpgs Number of free swap pages on the device.

Updated whenever a page is used or freed.

sw_priority Priority	of	swap	device	(1-10).

sw_head,

sw_tail

First	and	last	swaptab[]	entry	associated
with swap device.

sw_next Pointer	to	the	next	device	swap	entry	(swdevt)	at	this	priority;	
implemented as a circular list used to update the pointer in 
swdev_pri for round-robin use of all devices at a particular 
priority.

The following table details the principle elements of the struct fswdevt.

Table 7.4: File System Swap Table (struct fswdevt)

Element Meaning

fsw_next Pointer	to	next	file	system	swap	(fswdevt	entry)	at	this	
priority; implemented as a circular list.

fsw_enable Enabled	flag.	Zero	if	file-system	swap	is	disabled;	one	
if enabled.

fsw_nfpgs Number	 of	 free	 swap	 pages	 in	 this	 file	 system	 swap;	
updated whenever a page is used or freed.

fsw_allocated Number	 of	 swchunks	 (2MB	default)	 allocated	 on	 this	
file-system	swap.

fsw_min Minimum	swchunks	 to	be	preallocated	when	 the	file-
system swap is enabled.

fsw_limit Maximum	swchunks	allowed	on	file	system;	unlimited	
if set to zero.

fsw_reserve Minimum	blocks	 (of	size	 fsw_bsize)	 reserved	for	non-
swap	use	on	this	file	system.

fsw_priority Priority	of	device	(0-10).	Priority	can	also	be	determined	
by	identifying	swfs_pri	[	]	linked	list.

Contd...
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few_vnode vnode	of	the	file	system	swap	directory	(/paging)	under	

which	the	swap	files	are	created.

fsw_bsize Block	size	used	on	 this	file	 system;	used	 to	determine	
how	much	space	fsw_reserve	is	reserving.

fsw_head Index	into	swaptab	[	]	of	first,	last	entry

fsw_tail associated	with	this	file	system	swap.

fsw_mntpoint File system mount point; character representation of 
fsw_vnode,	 used	 for	 utilities	 (such	 as	 swapinfo	 (1M)	
and error messages.

7.6.7.2 Swaptab and Swapmap Structures
Two	 structures	 track	 swap	 space.	 The	 swaptab[	]	 array	 tracks	 a	 chunk	 of	 swap	 space.	
swapmap entries hold swap information on a per-page level. swaptab defaults to track a 
2MB chunk of space and swapmap tracks each page within that 2MB chunk. Each entry 
in	 the	 swaptab[	]	 array	has	 a	 pointer	 (called	 st_swpmp)	 to	 a	unique	 swapmap.	 swapmap	
entries have backwards pointers to the swaptab index. There is one entry in the swapmap for 
each	page	represented	by	the	swaptab	entry	(default	2	MB,	or	512	pages);	that	is,	swapmap	
conforms in size to swchunk. A linked list of free swap pages begin at the swaptab entry’s 
st_free	and	use	each	 free	swapmap	entry’s	 sm_next.	When	a	page	of	 swap	 is	needed,	 the	
kernel	walks	the	structures	(using	the	getswap(	)	routine	in	vm_swalloc.c),	which	calls	other	
routines	that	actually	locate	the	chunk,	and	so	forth.

	 •	 Beginning	with	the	lowest	priority,	we	begin	by	examining	swdev_pri[].curr,	which	points	
to a swdevt entry.

	 •	 If	sw_nfpgs	is	zero	(no	free	pages),	we	follow	the	pointer	sw_next	to	get	the	next	swdevt	
entry at this priority.

	 •	 If	none	of	these	have	free	pages,	we	move	on	to	swfs	pri[].curr,	the	file	system	swap	at	
this	priority,	checking	fsw_nfpgs	for	free	pages.

If	we	are	still	unsuccessful,	we	move	to	the	next	priority	and	try	again.

	 •	 Once	we	find	a	swdevt	or	fswdevt	with	free	pages,	we	walk	that	device’s	swaptab	list,	
starting	with	sw	head	or	fsw	head,	and	using	st	next	in	each	swaptab	entry,	until	we	find	
a swaptab entry with non-zero st nfpgs.

	 •	 st	 free	points	 to	 the	first	 free	swapmap	entry	 (and	 thus	first	 free	page)	 in	 this	swaptab	
chunk.

	 •	 The	 swalloc(	)	 routine	 creates	 a	 disk	 block	 descriptor	 (dbd)	 using	 14	 bits	 of	 dbd_data	
for	the	swaptab	index	and	14	bits	for	the	swapmap	index.	The	r_bstore	in	the	region	is	
set	 to	the	disk	device	vnode	or	the	file	system	directory	vnode,	and	the	dbd	is	marked	
DBD_BSTORE.

When	faulting	in	from	swap,	the	same	process	is	followed	as	for	faulting	in	from	the	file	system:	
r_bstore	and	dbd_data	are	hashed	together	and	checked	for	a	soft	fault,	then	devswap_pagein(	)	
is	called.	The	devswap_pagein(	)	routine	uses	the	dbd_data	as	a	14-bit	swaptab	index	and	a	14-
bit swapmap index to determine the location of the page on disk. Now all information needed 
to retrieve the page from swap has been stored.
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NotesFigure 7.8: The Swaptab and Swapmap Structures
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Table 7.5: Swap Table Entry (struct swaptab)

Element Meaning

st_free Index	to	the	first	free	page	in	the	chunk.	Each	entry	maps	to	a	
4KB-age of swap.

st_next Index	to	next	swaptab	entry	for	same	device	or	file-system	swap;	
at	end	of	list,	st_next	is	–	1.

st_flags ST_INDEL:	 File-system	 swap	 flag,	 indicating	 chunk	 is	 being	
deleted; do not allocate pages from it. Set only by the realswapoff 
(	)	routine.

ST_FREE:	 File-system	 swap	 flag,	 indicating	 chunk	 may	 be	
deleted,	 because	 none	 of	 its	 pages	 are	 in	 use.	 In	 the	 case	 of	
remote	swap,	the	chunk	should	not	be	deleted	immediately;	set	
st_free_time	to	current	 time	plus	30	minutes	has	elapsed,	 the	
chunk	can	be	freed.	If	the	chunk	is	needed	during	the	interim,	
the	flag	can	be	cleared	using.

chunk_release(	).	called	from	lsync(	).	ST_INUSE:	swaptab	entry	
is being changed.

st_dev, Pointers to swdevt entry that references the

st_fsp swaptab entry.

st_nfpgs Number	of	free	pages	in	this	(swchunk)	swaptab	entry.

st_swpmp Pointer	to	swapmap	[	]	array	that	defines	this	swchunk	of	swap	
pages.

st_free_time Indicates	when	remote	fs	chunk	can	be	freed	(see	explanation	
of	ST_FREE	flag).
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Element Meaning

sm_unct Number of threads using the page. When decremented to 
zero,	the	swap	page	is	free	and	the	free	pages	linked	list	can	
be updated.

sm_next Index	of	 the	next	 free	page	 in	 the	 swapmap	 [].	This	 is	valid	
only	 if	 sm_ucnt	 is	zero;	 that	means	 that	 this	swapmap	entry	
is	included	in	the	linked	list	beginning	with	swaptab’s	st_free

.

A	linked	list	of	free	swap	pages	begin	at	the	swaptab	entry’s	st_free	and	use	
each	 free	 swapmap	entry’s	 sm_next.	When	a	page	of	 swap	 is	needed,	 the	
kernel	walks	 the	 structures	 (using	 the	getswap()	 routine	 in	vm_swalloc.c),	
which	calls	other	routines	that	actually	locate	the	chunk,	and	so	forth.

7.7 Overview of RAID Structure

Disk	drives	have	continued	 to	get	 smaller	and	cheaper,	 so	 it	 is	now	economically	 feasible	 to	
attach a large number of disks to a computer system. Having a large number of disks in a 
system	presents	opportunities	for	 improving	the	rate	at	which	data	can	be	read	or	written,	 if	
the	disks	are	operated	 in	parallel.	 Furthermore,	 this	 setup	offers	 the	potential	 for	 improving	
the	reliability	of	data	storage,	because	redundant	information	can	be	stored	on	multiple	disks.	
Thus,	failure	of	one	disk	does	not	lead	to	loss	of	data.	A	variety	of	disk-organization	techniques,	
collectively	called	redundant	arrays	of	inexpensive	disks	(RAID),	are	commonly	used	to	address	
the	performance	and	reliability	issues.	In	the	past,	RAIDS	composed	of	small	cheap	disks	were	
viewed	as	a	cost	effective	alternative	to	large,	expensive	disks;	today,	RAIDS	are	used	for	their	
higher	reliability	and	higher	data-transfer	rate,	rather	than	for	economic	reasons.	Hence,	the	I 
in	RAID	stands	for	“independent”,	instead	of	“inexpensive.”

7.7.1 Improvement of Reliability via Redundancy
Let	us	first	 consider	 reliability.	The chance that some disk out of a set of N disks will fail is 
much	higher	than	the	chance	that	a	specific	single	disk	will	fail.	Suppose	that	the	mean	time	to	
failure	of	a	single	disk	is	100,000	hours.	Then,	the	mean	time	to	failure	of	some	disk	in	an	array	
of	 100	disks	will	be	100,000/100	=	1,000	hours,	or	 41.66	days,	which	 is	not	 long	at	 all!	 If	we	
store	only	one	copy	of	the	data,	then	each	disk	failure	will	result	in	loss	of	a	significant	amount	
of data-such a high rate of data loss is unacceptable. The solution to the problem of reliability 
is	 to	 introduce	redundancy;	we	store	extra	 information	 that	 is	not	needed	normally,	but	 that	
can	be	used	in	the	event	of	failure	of	a	disk	to	rebuild	the	lost	information.	Thus,	even	if	a	disk	
fails,	data	are	not	lost.	The	simplest	(but	most	expensive)	approach	to	introducing	redundancy	
is	to	duplicate	every	disk.	This	technique	is	called	mirroring	(or	shadowing).	A	logical	disk	then	
consists	of	two	physical	disks,	and	every	write	is	carried	out	on	both	disks.	If	one	of	the	disks	
fails,	the	data	can	be	read	from	the	other.	Data	will	be	lost	only	if	the	second	disk	fails	before	
the	first	failed	disk	is	replaced.

The mean time to failure-where failure is the loss of data-of a mirrored disk depends on two 
factors:	the	mean	time	to	failure	of	the	individual	disks,	as	well	as	on	the	mean	time	to	repair,	
which	 is	 the	 time	 it	 takes	 (on	 average)	 to	 replace	 a	 failed	disk	 and	 to	 restore	 the	data	on	 it.	
Suppose	that	the	failures	of	the	two	disks	are	independent;	that	is,	the	failure	of	one	disk	is	not	
connected	to	the	failure	of	the	other.	Then,	if	the	mean	time	to	failure	of	a	single	disk	is	100,000	
hours	and	the	mean	time	to	repair	is	10	hours,	then	the	mean	time	to	data	loss	of	a	mirrored	
disk	system	is	100,	0002/(2	*	10)	=	500	*	l06	hours,	or	57,000	years!
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NotesYou	should	be	aware	that	the	assumption	of	independence	of	disk	failures	is	not	valid.	Power	
failures	and	natural	disasters,	such	as	earthquakes,	fires,	and	floods,	may	result	in	damage	to	
both	disks	at	the	same	time.	Also,	manufacturing	defects	in	a	batch	of	disks	can	cause	correlated	
failures.	As	disks	age,	the	probability	of	failure	increases,	increasing	the	chance	that	a	second	
disk	will	 fail	while	 the	 first	 is	 being	 repaired.	 In	 spite	 of	 all	 these	 considerations,	 however,	
mirrored-disk systems offer much higher reliability than do single disk systems. Power failures 
are	a	particular	source	of	concern,	since	they	occur	far	more	frequently	than	do	natural	disasters.	
However,	even	with	mirroring	of	disks,	if	writes	are	in	progress	to	the	same	block	in	both	disks,	
and	power	fails	before	both	blocks	are	fully	written,	the	two	blocks	can	be	in	an	inconsistent	
state.	The	solution	to	this	problem	is	to	write	one	copy	first,	 then	the	next,	so	that	one	of	the	
two	copies	is	always	consistent.	Some	extra	actions	are	required	when	we	restart	after	a	power	
failure,	to	recover	from	incomplete	writes.

The	simplest	 (but	most	expensive)	approach	 to	 introducing	redundancy	 is	 to	
duplicate	every	disk.	This	technique	is	called	mirroring	(or	shadowing).	A	logical	
disk	then	consists	of	two	physical	disks,	and	every	write	is	carried	out	on	both	
disks.	If	one	of	the	disks	fails,	the	data	can	be	read	from	the	other.	Data	will	be	
lost	only	if	the	second	disk	fails	before	the	first	failed	disk	is	replaced.

7.7.2 Improvement in Performance via Parallelism
Now	let	us	consider	the	benefit	of	parallel	access	to	multiple	disks.	With	disk	mirroring,	the	rate	
at	which	read	requests	can	be	handled	is	doubled,	since	read	requests	can	be	sent	to	either	disk	
(as	long	as	both	disks	in	a	pair	are	functional,	as	is	almost	always	the	case).	The	transfer	rate	
of	each	read	is	the	same	as	in	a	single-disk	system,	but	the	number	of	reads	per	unit	time	has	
doubled.	With	multiple	disks,	we	can	improve	the	transfer	rate	as	well	(or	instead)	by	striping	
data	across	multiple	disks.	 In	 its	 simplest	 form,	data striping consists of splitting the bits of 
each byte across multiple disks; such striping is called bit-level striping. For	example,	 if	we	
have	an	array	of	eight	disks,	we	write	bit	i	of	each	byte	to	disk	i. The array of eight disks can be 
treated	as	a	single	disk	with	sectors	that	are	eight	times	the	normal	size,	and,	more	important,	
that	have	eight	times	the	access	rate.	In	such	an	organization,	every	disk	participates	in	every	
access	(read	or	write),	so	the	number	of	accesses	that	can	be	processed	per	second	is	about	the	
same	as	on	a	single	disk,	but	each	access	can	read	eight	times	as	many	data	in	the	same	time	
as on a single disk. Bit-level striping can be generalized to a number of disks that either is a 
multiple	of	8	or	divides	8.	For	example,	if	we	use	an	array	of	four	disks,	bits	I	and	4+i	of	each	
byte	go	to	disk	i.	Further,	striping	does	not	need	to	be	at	the	level	of	bits	of	a	byte:	For	example,	
in block-level striping, blocks	of	a	file	are	striped	across	multiple	disks;	with	n disks,	block	i 
of	a	file	goes	to	disk	(i	mod	n)	+	1.	Other	levels	of	striping,	such	as	bytes	of	a	sector	or	sectors	
of	a	block,	also	are	possible.

In	summary,	there	are	two	main	goals	of	parallelism	in	a	disk	system:

	 1.	 Increase	the	throughput	of	multiple	small	accesses	(that	is,	page	accesses)	by	load	balancing.

 2. Reduce the response time of large accesses.

7.8 RAID Levels
Mirroring	provides	high	reliability,	but	it	is	expensive.	Striping	provides	high	data-transfer	rates,	
but it does not improve reliability. Numerous schemes to provide redundancy at lower cost by 
using	the	idea	of	disk	striping	combined	with	“parity”	bits	(which	we	describe	next)	have	been	
proposed.	These	schemes	have	different	cost-performance	tradeoffs	and	are	classified	into	levels	
called RAID levels. We	describe	the	various	levels	here;	Figure,	shows	them	pictorially	(in	the	
figure,	P indicates	error-correcting	bits	and	C	indicates	a	second	copy	of	the	data).	In	all	cases	
depicted	in	the	figure,	four	disks’	worth	of	data	is	stored,	and	the	extra	disks	are	used	to	store	
redundant information for failure recovery.
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Notes Figure 7.9: RAID Levels

(c) RAID 2 : Memory-style error-correcting codes

(f) RAID 5 : Block-interleaved distributed parity
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(a) RAID 0 : Non-redundant striping

(b) RAID 1 : Mirrored disks

(d) RAID 3 : Bit-interleaved parity

(e) RAID 4 : Block-interleaved parity

(g) RAID 6 : P + Q redundancy

RAID Level 0: RAID	level	0	refers	to	disk	arrays	with	striping	at	the	level	of	blocks,	but	without	
any	redundancy	(such	as	mirroring	or	parity	bits).	Figure	7.9(a)	shows	an	array	of	size	4.

RAID Level 1: RAID	level	1	refers	to	disk	mirroring.	Figure	7.9(b)	shows	a	mirrored	organization	
that holds four disks’ worth of data.

RAID Level 2: RAID level 2 is also known as memory-style error-correcting code (ECC) 
organization. Memory systems have long implemented error detection using parity bits. Each 
byte in a memory system may have a parity bit associated with it that records whether the 
numbers of bits in the byte	set	to	1	is	even	(parity=O)	or	odd	(parity=l).	If	one	of	the	bits	in	the 
byte	gets	damaged	(either	a	1	becomes	a	0,	or	a	0	becomes	a	1),	the	parity	of the byte changes 
and	thus	will	not	match	the	stored	parity.	Similarly,	if	the stored	parity	bit	gets	damaged,	it	will	
not	match	the	computed	parity.	Thus, all single-bit errors are detected by the memory system. 
Error-correcting schemes	store	two	or	more	extra	bits,	and	can	reconstruct	the	data	if	a	single bit 
gets damaged. The idea of ECC can be used directly in disk arrays via striping of bytes across 
disks.	For	example,	 the	first	bit	of	each	byte	could	be	stored	 in	disk	1,	 the	second	bit	 in	disk	
2,	and	so	on	until	 the	eighth	bitis	stored	 in	disk	8,	and	the	error-correction	bits	are	stored	 in	
further	disks.	This	scheme	is	shown	pictorially	in	Figure	7.9(c),	where	the	disks	labeled	P store 
the	error-correction	bits.	If	one	of	the	disks	fails,	the	remaining	bits	of	the	byte	and	the	associated	
error correction bits can be read from other disks and be used to reconstruct the damaged data. 
Figure	7.9(c)	shows	an	array	of	size	4;	note	RAID	level	2	requires	only	three	disks’	overhead	for	
four	disks	of	data,	unlike	RAID	level	1,	which	required	four	disks’	overhead.

RAID Level 3: RAID level 3, or bit-interleaved parity organization, improves on level 2 by 
noting	that,	unlike	memory	systems,	disk	controllers	can	detect	whether	a	sector	has	been	read	
correctly,	 so	a	 single	parity	bit	 can	be	used	 for	error	correction,	as	well	as	 for	detection.	The	
idea	is	as	follows.	If	one	of	the	sectors	gets	damaged,	we	know	exactly	which	sector	it	is,	and,	
for	each	bit	 in	 the	sector,	we	can	figure	out	whether	 it	 is	a	1	or	a	0	by	computing	 the	parity	
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Notesof the corresponding bits from sectors in the other disks. If the parity of the remaining bits is 
equal	 to	 the	 stored	parity,	 the	missing	bit	 is	 0;	 otherwise,	 it	 is	 1.	RAID	 level	3 is as good as 
level	2	but	is	less	expensive	in	the	number	of	extra	disks	(it	has	only	a	one-disk	overhead),	so,	
level	2	is	not	used	in	practice.	This	scheme	is	shown	pictorially	in	Figure	7.9(d).	RAID	level	3 
has	two	benefits	over	level	1.	Only	one	parity	disk	is	needed	for	several	regular	disks,	unlike	
one	mirror	disk	for	every	disk	in	level	1,	thus	reducing	the	storage	overhead.	Since	reads	and	
writes	of	a	byte	are	spread	out	over	multiple	disks,	with	N-way	striping	of	data,	the	transfer	
rate for reading or writing a single block is N times as fast as with a RAID-level-1 organization 
using	N-way	striping.	On	the	other	hand,	RAID	level	3 supports a lower number of I/Os per 
second,	since	every	disk	has	to	participate	in	every	I/O	request.	A	further	performance	problem	
with RAID 3 (as	with	all	parity-based	RAID	levels)	is	the	expense	of	computing	and	writing	the	
parity.	This	overhead	results	 in	 significantly	 slower	writes,	as	 compared	 to	non-parity	RAID	
arrays.	To	moderate	this	performance	penalty,	many	RAID	storage	arrays	include	a	hardware	
controller	with	dedicated	parity	hardware.	This	offloads	the	parity	computation	from	the	CPU	
to the array. The array has a non-volatile RAM (NVRAM) cache	as	well,	 to	 store	 the	blocks	
while the parity is computed and to buffer the writes from the controller to the spindles. This 
combination	can	make	parity	RAID	almost	as	fast	as	non-parity.	In	fact,	a	caching	array	doing	
parity RAID can outperform a non-caching non-parity RAID.

RAID Level 4: RAID	level	4,	or	block-interleaved	parity	organization,	uses	block-level	striping,	
as	in	RAID	0,	and	in	addition	keeps	a	parity	block	on	a	separate	disk	for	corresponding	blocks	
from N other	disks.	This	scheme	is	shown	pictorially	in	Figure	7.9(e).	If	one	of	the	disks	fails,	
the parity block can be used with the corresponding blocks from the other disks to restore the 
blocks of the failed disk.

A	block	read	accesses	only	one	disk,	allowing	other	requests	to	be	processed	by	the	other	disks.	
Thus,	the	data-transfer	rate	for	each	access	is	slower,	but	multiple	read	accesses	can	proceed	in	
parallel,	leading	to	a	higher	overall	I/O	rate.	The	transfer	rates	for	large	reads	is	high,	since	all	
the	disks	can	be	read	in	parallel;	large	writes	also	have	high	transfer	rates,	since	the	data	and	
parity can be written in parallel.

Small	independent	writes,	on	the	other	hand,	cannot	be	performed	in	parallel.	A	write	of	a	block	
has	to	access	the	disk	on	which	the	block	is	stored,	as	well	as	the	parity	disk,	since	the	parity	
block has to be updated.

Moreover,	both	the	old	value	of	the	parity	block	and	the	old	value	of	the	block	being	written	
have to be read for the new parity to be computed. This is known as the read-modify-write. 
Thus,	 a	 single	write	 requires	 four	disk	 accesses:	 two	 to	 read	 the	 two	old	blocks,	 and	 two	 to	
write the two new blocks.

RAID Level 5: RAID	 level	 5,	 or	 block-interleaved	 distributed	 parity,	 differs	 from	 level	 4	 by	
spreading	data	and	parity	among	all	N	+	1	disks,	rather	than	storing	data	in	N	disks	and	parity	in	
one	disk.	For	each	block,	one	of	the	disks	stores	the	parity,	and	the	others	store	data.	For	example,	
with	an	array	of	five	disks,	the	parity	for	the	nth	block	is	stored	in	disk	(n	mod	5)	+	1;	 the	nth	
blocks of the other four disks store actual data for that block. This setup is denoted pictorially in 
Figure	7.9(f ),	where	the	Ps	are	distributed	across	all	level	1,	thus	reducing	the	storage	overhead.	
Since	reads	and	writes	of	a	byte	are	spread	out	over	multiple	disks,	with	N-way	striping	of	data,	
the transfer rate for reading or writing a single block is N times as fast as with a RAID-level-1 
organization	using	N-way	striping.	On	the	other	hand,	RAID	level	3 supports a lower number of 
I/Os	per	second,	since	every	disk	has	to	participate	in	every	I/O	request.	A	further	performance	
problem with RAID 3 (as	with	all	parity-based	RAID	levels)	is	the	expense	of	computing	and	
writing	 the	parity.	This	 overhead	 results	 in	 significantly	 slower	writes,	 as	 compared	 to	non-
parity	RAID	arrays.	To	moderate	this	performance	penalty,	many	RAID	storage	arrays	include	a	
hardware	controller	with	dedicated	parity	hardware.	This	offloads	the	parity	computation	from	
the CPU to the array. The array has a non-volatile RAM (NVRAM) cache	as	well,	to	store	the	
blocks while the parity is computed and to buffer the writes from the controller to the spindles. 
This	combination	can	make	parity	RAID	almost	as	fast	as	non-parity.	In	fact,	a	caching	array	
doing parity RAID can out perform a non-caching non-parity RAID.
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Notes RAID Level 0 + 1: RAID	level	0	+	1	refers	 to	a	combination	of	RAID	levels	0	and	1.	RAID	0	
provides	the	performance,	while	RAID	1	provides	the	reliability.	Generally,	it	provides	better	
performance than RAID 5. It is common in environments where both performance and reliability 
are	important.	Unfortunately,	it	doubles	the	number	of	disks	needed	for	storage,	as	does	RAID	
1,	 so	 it	 is	 also	more	expensive.	 In	RAID	0	+	1,	 a	 set	of	disks	are	 striped,	and	 then	 the	 stripe	
is	 mirrored	 to	 another,	 equivalent	 stripe.	 Another	 RAID	 option	 that	 is	 becoming	 available	
commercially	is	RAID	1	+	0,	in	which	disks	are	mirrored	in	pairs,	and	then	the	resulting	mirror	
pairs	are	striped.	This	RAID	has	some	theoretical	advantages	over	RAID	0	+	1.	For	example,	if	
a	single	disk	fails	in	RAID	0	+	1,	the	entire	stripe	is	inaccessible,	leaving	only	the	other	stripe	
available.	With	a	failure	in	RAID	1	+	0,	the	single	disk	is	unavailable,	but	its	mirrored	pair	is	
still available as are all the rest of the disks.

Finally,	 we	 note	 that	 numerous	 variations	 have	 been	 proposed	 to	 the	 basic	 RAID	 schemes	
described	here.	As	a	result,	some	confusion	may	exist	about	the	exact	definitions	of	the	different	
RAID levels.

7.8.1 Selecting a RAID Level
If	a	disk	fails,	the	time	to	rebuild	its	data	can	be	significant	and	will	vary	with	the	RAID	level	
used.	Rebuilding	is	easiest	for	RAID	level	1,	since	data	can	be	copied	from	another	disk;	for	the	
other	levels,	we	need	to	access	all	the	other	disks	in	the	array	to	rebuild	data	in	a	failed	disk.	
The rebuild performance of a RAID system may be an important factor if continuous supply 
of	data	is	required,	as	it	is	in	high-performance	or	interactive	database	systems.	Furthermore,	
rebuild	performance	influences	the	mean	time	to	failure.

RAID level 0 is used in high-performance applications where data loss is not critical. RAID level 
1	is	popular	for	applications	that	require	high	reliability	with	fast	recovery.	RAID	0	+	1	and	1	
+	0	are	used	where	performance	and	reliability	are	important,	for	example	for	small	databases.	

Figure 7.10: RAID 0 + 1 and 1 + 0
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NotesDue to RAID 1’s high	space	overhead,	RAID	level	5	is	often	preferred	for	storing	large	volumes	
of	data.	Level	6	is	not	supported	currently	by	many	RAID	implementations,	but	it	should	offer	
better reliability than level 5. RAID system designers have to make several other decisions as 
well.	For	example,	how	many	disks	should	be	in	an	array?	How	many	bits	should	be	protected	
by	each	parity	bit?	If	more	disks	are	in	an	array,	data-transfer	rates	are	higher,	but	the	system	
is	more	expensive.	If	more	bits	are	protected	by	a	parity	bit,	the	space	overhead	due	to	parity	
bits	is	lower,	but	the	chance	that	a	second	disk	will	fail	before	the	first	failed	disk	is	repaired	
is	greater,	 and	 that	will	 result	 in	data	 loss.	One	other	aspect	of	most	RAID	 implementations	
is a hot spare disk or disks. A hot spare is	not	used	for	data,	but	is	configured	to	be	used	as	a	
replacement	should	any	other	disk	fail.	For	instance,	a	hot	spare	can	be	used	to	rebuild	a	mirror	
pair	should	one	of	 the	disks	 in	the	pair	 fail.	 In	this	way,	 the	RAID	level	can	be	reestablished	
automatically,	without	waiting	for	the	failed	disk	to	be	replaced.	Allocating	more	than	one	hot	
spare allows more than one failure to be repaired without human intervention.

7.8.2 Extensions
The	concepts	of	RAID	have	been	generalized	to	other	storage	devices,	including	arrays	of	tapes,	
and	even	to	the	broadcast	of	data	over	wireless	systems.	When	applied	to	arrays	of	tapes,	the	
RAID structures are able to recover data even if one of the tapes in an array of tapes is damaged. 
When	applied	to	broadcast	of	data,	a	block	of	data	is	split	into	short	units	and	is	broadcast	along	
with	a	parity	unit;	if	one	of	the	units	is	not	received	for	any	reason,	it	can	be	reconstructed	from	
the	other	units.	Commonly,	tape-drive	robots	containing	multiple	tape	drives	will	stripe	data	
across all the drives to increase throughput and decrease backup time.

A	block	read	accesses	only	one	disk,	allowing	other	requests	to	be	processed	
by	the	other	disks.	Thus,	the	data-transfer	rate	for	each	access	is	slower,	but	
multiple	 read	accesses	 can	proceed	 in	parallel,	 leading	 to	 a	higher	overall	
I/O	rate.	The	transfer	rates	for	large	reads	is	high,	since	all	the	disks	can	be	
read	in	parallel;	large	writes	also	have	high	transfer	rates,	since	the	data	and	
parity can be written in parallel.

Stable-storage Implementation

Stable	storage	 is	a	classification	of	computer	data	storage	 technology	that	guarantees	
atomicity for any given write operation and allows software to be written that is robust 
against	some	hardware	and	power	failures.	To	be	considered	atomic,	upon	reading	back	

a	just	written-to	portion	of	the	disk,	the	storage	subsystem	must	return	either	the	write	data	
or the data that was on that portion of the disk before the write operation. Most computer 
disk	drives	are	not	considered	stable	storage	because	they	do	not	guarantee	atomic	write:	
an	error	could	be	returned	upon	subsequent	read	of	the	disk	where	it	was	just	written	to	in	
lieu of either the new or prior data.

Multiple	techniques	have	been	developed	to	achieve	the	atomic	property	from	weakly-atomic	
devices	such	as	disks.	Writing	data	to	a	disk	in	two	places	in	a	specific	way	is	one	technique	
and	can	be	done	by	application	software.	Most	often	though,	stable	storage	functionality	is	
achieved by mirroring data	on	separate	disks	via	RAID	technology	(level	1	or	greater).	The	
RAID controller implements the disk writing algorithms that enable separate disks to act 
as	stable	storage.	The	RAID	technique	is	robust	against	some	single	disk	failure	in	an	array	
of	disks	whereas	the	software	technique	of	writing	to	separate	areas	of	the	same	disk	only	
protects against some kinds of internal disk media failures such as bad sectors in single 
disk arrangements.

Contd...
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To implement stable storage: 

 1. Replicate information on more than one nonvolatile storage media with independent 
failure modes. 

 2. Update information in a controlled manner to ensure that we can recover the stable data 
after any failure during data transfer or recovery.

Questions:

 1. What is the use of stable-storage implementation?

 2. How stable-storage in an operating system can be achieved?

 1. What is the difference between primary and secondary storage?

 2. What is logical device?

	 3.	 Disk	Operations	Read/Write	operations:

	 4.	 Calculating	the	disk	access	time	on	different	cases:

	 (a)	 The	file	is	stored	contiguous.

	 (b)	 The	file	is	stored	on	same	cylinder.

	 (c)	 The	file	is	stored	randomly	or	scattered	on	different	places.

Self Assessment
Multiple choice questions:

	 5.	 Which	among	the	following	are	the	best	tools	for	fixing	errors	on	disks?

	 	 (a)	 Fdisk	 (b)	 Scandisk

	 	 (c)	 Chkdsk	 (d)	 Fixdsk

 6. Which command can be used to create the disk’s tracks and sectors?

	 	 (a)	 Fdisk	 (b)	 Format

	 	 (c)	 Chkdsk	 (d)	 Attrib

 7. Which command is used to create root directory and FAT on disk?

	 	 (a)	 Chkdsk	 (b)	 Command.com

	 	 (c)	 Format	 (d)	 Fat

	 8.	 ......................	is	a	technique	of	temporarily	removing	inactive	programs	from	the	memory	
of computer system. 

	 	 (a)	 Swapping		 (b)	 Spooling	

	 	 (c)	 Semaphore	 (d)	 Scheduler	

Fill in the blanks:

	 9.	 Low-level	formatting	fill	the		......................	with	a	special	data	structure	for	each	sector.

 10. System memory used for swap-space is called  ...................... space.
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Notes	 11.	 If	multiple	devices	have	the	same	priority,	swap-space	is	allocated	from	the	devices	in	a		
...................... fashion.

7.9 Summary

 •	 Secondary	storage	devices	which	are	usually	accessed	via	some	kind	of	controller.	This	
contains	registers	that	can	be	directly	accessed	by	the	CPU	like	main	memory	(“memory	
mapped”).	

	 •	 Secondary	 storage,	 sometimes	 called	 auxiliary	 storage,	 is	 storage	 separate	 from	 the	
computer	 itself,	where	you	can	store	software	and	data	on	a	semi-permanent	basis.	To	
provide the bulk of secondary storage for modern computer systems Disc used and 
Magnetic	 tape	was	used	as	 an	 early	 secondary-storage	medium,	but	 the	 access	 time	 is	
much slower than for disks.

	 •	 In	multiprograming	systems,	many	processes	may	be	generating	requests	for	reading	and	
writing disk records.

7.10 Keywords

Bit-level Stripping: Data striping consists of splitting the bits of each byte across multiple disks; 
such striping is called bit-level striping.

Constant Linear Velocity (CLV): Constant	linear	velocity	(CLV)	is	a	qualifier	for	the	rated	speed	
of an optical disc drive and may also be applied to the writing speed of recordable discs.

Data Stripping: The	distribution	of	a	unit	of	data	over	 two	or	more	hard	disks,	enabling	 the	
data	to	be	read	more	quickly,	known	as	data	striping.

Error Correcting Code (ECC): Error correction code is a coding system that incorporates extra 
parity bits in order to detect errors.

Logical Blocks: The logical block is the smallest unit of transfer. The size of a logical block is 
usually 512 bytes.

Logical Formatting: Logical	formatting	is	the	process	of	placing	a	file	system	upon	a	hard	disk	
drive partition of a hard disk so that an operating system can use available hard disk platter 
space	to	store	and	retrieve	files.

Low-level Formatted: The	sector	identification	on	a	disk	that	the	drive	uses	to	locate	sector	for	
reading and writing is called low level formatted.

7.11 Review Questions

	 1.	 Consider	a	file	system	on	a	disk	that	has	both	logical	and	physical	block	sizes	of	512	bytes.	
Assume	that	the	information	about	each	file	is	already	in	memory.	For	each	of	the	three	
allocation	strategies	(contiguous,	linked,	and	indexed),	answer	these	questions:

	 	 (a)	 How	is	the	logical-to-physical	address	mapping	accomplished	in	this	system?	(For	the	
indexed	allocation,	assume	that	a	file	is	always	less	than	512	blocks	long.)

	 	 (b)	 If	we	are	currently	at	logical	block	10	(the	last	block	accessed	was	block	10)	and	want	
to	access	logical	block	4,	how	many	physical	blocks	must	be	read	from	the	disk?
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Notes  2. In what situations would using memory as a RAM disk be more useful than using it as 
a disk cache?

	 3.	 None	of	the	disk-scheduling	disciplines,	except	FCFS,	are	truly	fair	(starvation	may	occur).

	 	 (a)	 Explain	why	this	assertion	is	true.

	 	 (b)	 Describe	a	way	to	modify	algorithms	such	as	SCAN	to	ensure	fairness.

	 	 (c)	 Explain	why	fairness	is	an	important	goal	in	a	time-sharing	system.

	 	 (d)	 Give	three	or	more	examples	of	circumstances	in	which	it	is	important	that	the	operating	
system	be	unfair	in	serving	I/O	requests.

	 4.	 Suppose	that	a	disk	drive	has	5,000	cylinders,	numbered	0	to	4999.	The	drive	is	currently	
serving	a	request	at	cylinder	143,	and	the	previous	request	was	at	cylinder	125.	The	queue	
of	pending	requests,	in	FIFO	order,	is

	 	 86,	1470,	913,	1774,	948,	1509,	1022,	1750,	130.

	 	 Starting	from	the	current	head	position,	what	is	the	total	distance	(in	cylinders)	that	the	
disk	arm	moves	to	satisfy	all	the	pending	requests	for	each	of	the	following	disk-scheduling	
algorithms?

	 	 (a)	 FCFS

	 	 (b)	 SSTF

	 	 (c)	 SCAN

	 	 (d)	 LOOK

	 	 (e)	 C-SCAN

	 	 (f)	 C-LOOK

 5. Write a Java program for disk scheduling using the SCAN and C-SCAN disk-scheduling 
algorithms.

	 6.	 Is	 disk	 scheduling,	 other	 than	 FCFS	 scheduling,	 useful	 in	 a	 single-user	 environment?	
Explain your answer.

	 7.	 Compare	 the	 performance	 of	 C-SCAN	 and	 SCAN	 scheduling,	 assuming	 a	 uniform	
distribution	of	requests.	Consider	the	average	response	time	(the	time	between	the	arrival	
of	a	request	and	the	completion	of	that	request’s	service),	the	variation	in	response	time,	
and the effective bandwidth. How does performance depend on the relative sizes of seek 
time and rotational latency?

 8. Why is rotational latency usually not considered in disk scheduling? How would you 
modify	SSTF,	SCAN,	and	C-SCAN	to	include	latency	optimization?

	 9.	 Why	is	it	important	to	balance	file	system	I/O	among	the	disks	and	controllers	on	a	system	
in a multitasking environment?

 10. Is there any way to implement truly stable storage? Explain your answer.

 11. Discuss the relative advantages and disadvantages of sector sparing and sector slipping.
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Notes 12. What would be the effects on cost and performance if tape storage had the same areal 
density as disk storage?

	 13.	 If	magnetic	hard	disks	eventually	have	the	same	cost	per	gigabyte	as	do	tapes,	will	tapes	
become	obsolete,	or	will	they	still	be	needed?	Explain	your	answer.

 14. Imagine that a holographic storage drive has been invented. Suppose that a holographic 
drive	costs	$10,000	and	has	an	average	access	time	of	40	milliseconds.	Suppose	that	it	uses	
a	$100	cartridge	the	size	of	a	CD.	This	cartridge	holds	40,000	images,	and	each	image	is	
a	square	black	and	white	picture	with	resolution	6,000	x	6,000	pixels	(each	pixel	stores	1	
bit).	Suppose	that	the	drive	can	read	or	write	one	picture	in	1	millisecond.

	 15.	 Answer	the	following	questions:

	 	 (a)	 What	would	be	some	good	uses	for	this	device?

	 	 (b)	 How	would	this	device	affect	the	1/0	performance	of	a	computing	system?

	 	 (c)	 Which	other	kinds	of	storage	devices,	if	any,	would	become	obsolete	as	a	result	of	this	
device being invented?

	 16.	 Suppose	that	we	agree	that	1	KB	is	1,024	bytes,	1	MB	is	1,0242	bytes,	and	1	GB	is	1,0243 bytes. 
This	progression	 continues	 through	 terabytes,	petabytes,	 and	exabytes	 (1,0246).	 Several	
newly	proposed	scientific	projects	plan	to	be	able	to	record	and	store	a	few	exabytes	of	
data	during	the	next	decade.	To	answer	the	following	questions,	you	will	need	to	make	
a few reasonable assumptions; state the assumptions that you make.

	 	 (a)	 How	many	disk	drives	would	be	required	to	hold	4	exabytes	of	data?

	 	 (b)	 How	many	magnetic	tapes	would	be	required	to	hold	4	exabytes	of	data?

	 	 (c)	 How	many	optical	tapes	would	be	required	to	hold	4	exabytes	of	data?

	 	 (d)	 How	many	holographic	storage	cartridges	would	be	required	to	hold	4	exabytes	of	
data?

	 	 (e)	 How	many	cubic	feet	of	storage	space	would	each	option	require?

	 17.	 Consider	a	RAID	Level	5	organization	comprising	five	disks,	with	the	parity	for	sets	of	
four	blocks	on	four	disks	stored	on	the	fifth	disk.	How	many	blocks	are	accessed	in	order	
to perform the following? 

	 	 (a)	 A	write	of	one	block	of	data.

	 	 (b)	 A	write	of	seven	continuous	blocks	of	data.

Answers to Self Assessment

 1.	 (c)	 2.	 (a)	 3.	 (b)	 4.	 (c)	 5.	 (b)	

	 6.	 (b)	 7.	 (c)	 8.	 (a)	 9.	 disk	

 10. pseudo-swap 11. round-robin 
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Notes 7.12 Further Readings

Operating Systems,	by	Stuart	E.	Madnick,	John	J.	Donovan.

Operating Systems,	by	Andrew	Tanebaum,	Albert	S.	Woodhull.	

wiley.com/coolege.silberschatz
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Notes Objectives

After studying this unit, you will be able to:

	 •	 Discuss	goals	of	protection	of	system	protection

	 •	 Explain	access	matrix

	 •	 Understand	implementation	of	access	matrix

	 •	 Discuss	access	control

	 •	 Explain	revocation	of	access	rights

	 •	 Understand	capability	based	system

Introduction

The processes in an operating system must be protected from one another’s activities. To provide 
such	protection,	we	can	use	various	mechanisms	to	ensure	that	only	processes	that	have	gained	
proper	 authorization	 from	 the	 operating	 system	 can	operate	 on	 the	files,	memory	 segments,	
CPU,	 and	 other	 resources	 of	 a	 system.	 Protection	 refers	 to	 a	mechanism	 for	 controlling	 the	
access	of	programs,	processes,	 or	users	 to	 the	 resources	defined	by	a	 computer	 system.	This	
mechanism	must	provide	a	means	 for	specifying	 the	controls	 to	be	 imposed,	 together	with	a	
means	of	enforcement.	We	distinguish	between	protection	and	security,	which	is	a	measure	of	
confidence	that	the	integrity	of	a	system	and	its	data	will	be	preserved. 

8.1 Goals of Protection

Implementation	of	protection	in	an	OS	generally	involves	three	factors.	The	interface	to	the	user,	

the	interface	to	the	hardware,	and	the	decision	making	process	with	regard	to	filling	requests.	

If	we	expand	our	thinking,	we	can	make	the	same	statement	about	protection	in	any	

environment	where	there	are	external	users,	underlying	capabilities,	and	a	protection	function	
to be performed.

Because the external interface is so heterogeneous and so little has been done to model its effect 
on	protection	systems,	it	is	difficult	to	cover	it	at	more	than	a	cursory	level.	Hardware	protection	
and	the	decision	making	mechanisms	are	fairly	well	developed	arts,	however,	so	we	will	cover	
them here at length.

8.1.1 Computer Architecture to Support OS Protection
The implementation of protection in OSs almost always depends heavily on a hardware separation 
mechanisms. A separation mechanism is a way to partition information into areas that only 
communicate	 through	 well-defined	 and	 controlled	 channels.	 In	 order	 to	 enforce	 separation	
against	a	serious	attacker,	it	is	insufficient	to	make	information	flow	inconvenient	or	available	
only to the knowledgeable as is the case in most personal computer systems.

One way to provide protection is to simulate a hypothetical machine on a physical machine so 
that all operations of the hypothetical machine are controlled by the simulation. This could be 
as	secure	a	system	as	any	purely	physical	system,	but	the	performance	of	the	physical	machine	
is severely reduced because most of the time is spent in controlling the simulation rather than 
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Notesperforming	user	 level	processing.	A	purely	physical,	and	very	reliable	method	must	be	used	
for most real-world applications.

A physical means for implementing protection is typically provided by architectural features 
of	computer	hardware.	In	order	to	provide	physical	partitioning,	we	must	assure	that	there	
is	 no	 path	 through	which	 information	 can	 flow	between	 users.	 In	 the	 hardware	 domain,	
information	is	typically	processed	by	finite	state	machines	(FSMs)	which	maintain	a	state,	
and transform inputs combined with state information into outputs and changes in state 
[	 ].	The	only	 information	 that	persists	 in	 such	a	 system	 is	 state	 information,	 and	 thus	we	
can	protect	information	from	flowing	between	domains	by	keeping	their	state	information	
separate.	This	 is	 just	 like	OSs	based	on	a	sign-up	sheet,	wherein	each	user	has	 full	access	
to the machine over a different period of time.

A typical model for a computer system is the Von Neumann model in which a machine consists 
of	 a	 control	 unit	 (C),	 an	 input	 and	 output	 unit	 (I/O),	 an	 arithmetic	 logic	 unit	 (ALU),	 and	 a	
memory	unit	(M)	VonNeumann63.	The	machine	fetches	instructions	telling	it	what	to	do	next	
from	the	memory.	The	control	unit	which	consists	of	FSMs	then	controls	M,	I/O,	ALU,	and	C	
to	implement	the	instructions.	In	most	such	machines,	state	information	is	maintained	in	a	set	
of	 special	memory	elements	called	“registers”,	 in	M,	and	 in	peripheral	devices	such	as	disks	
and tapes. 

There are generally two classes of these registers. One class is used primarily by C for 
remembering	 the	 instruction	being	performed,	 the	portion	of	 the	 instruction	currently	under	
way,	the	conditions	of	the	ALU,	the	memory	location	of	the	next	instruction	to	be	performed,	
and other control related information. The other class is used to store the current values of data 
registers	associated	with	user	programs	including	the	result	of	the	last	arithmetic	operation,	the	
user’s	general	purpose	registers,	and	other	user	data.

Registers	are	generally	quite	expensive	to	implement	compared	to	the	state	information	stored	
in	M	and	 I/O	devices,	 they	operate	at	 extremely	high	speeds	compared	 to	 state	 information	
stored	M	and	I/O,	and	 they	are	central	 to	 the	 interpretation	of	 instructions,	 so	 they	must	be	
connected to many other devices using specially designed complex switching devices. As a 
result,	 it	 is	generally	not	 cost	or	performance	effective	 to	provide	enough	sets	of	 registers	 to	
store state information for all of the processes that could possibly coexist on a typical machine. 
As	an	alternative,	designers	provide	 two	sets	of	 registers	 that	 can	be	 stored	 in	and	 reloaded	
from	M,	the	set	of	registers	in	use	at	any	given	time	being	associated	with	the	protection	state	
of the machine.

When	 the	OS	 is	 executing	 its	 ‘kernel’	program,	 it	uses	a	 completely	 independent	 set	of	 state	
information	from	that	used	by	any	other	process,	and	it	generally	has	access	to	the	full	range	of	
hardware	instructions	available	to	the	physical	machine.	When	any	other	program	is	operating,	it	
generally	uses	limited	state	information,	and	has	access	to	only	a	limited	number	of	instructions	
that effect the physical machine. When the machine is using the kernel registers and has full 
access,	we	will	say	the	machine	is	running	in	the	kernel	state,	or	kernel	mode,	and	when	the	
other	state	registers	are	used	and	limited	instructions	are	allowed,	we	say	the	machine	is	in	the	
user	state,	or	user	mode.	Several	citations	are	given	in	[	]	for	protected	hardware	states,	but	as	
yet,	the	originator	of	this	concept	has	not	been	identified.

In	user	mode,	machine	instructions	that	are	only	allowed	to	kernel	mode	cannot	be	executed,	
so a typical method for providing these services to users is through ‘system calls’. A system 
call is typically implemented by executing an instruction which is not allowed in user mode. 
This	causes	an	error	which	the	hardware	interprets	as	a	request	to	change	to	the	kernel	mode.	
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Notes Since the register that determines where the next instruction comes from is different in kernel 
mode	than	in	user	mode,	the	next	instruction	comes	from	the	kernel’s	memory	location	after	the	
location of the instruction which the kernel used to return to user mode after the last kernel call. 
This	instruction	is	typically	the	beginning	of	a	routine	which	determines	the	nature	of	the	request	
from	the	state	of	the	user’s	registers	and	memory,	and	either	processes	the	request	or	denies	it.

A similar process occurs whenever the system clock signals to the kernel that it’s time to switch 
to	another	user’s	turn	to	execute	programs	in	a	timesharing	environment.	In	this	case,	the	kernel	
typically	saves	the	values	of	the	old	user’s	registers	in	the	kernel’s	memory	space,	restores	the	
register	values	associated	with	the	new	user	from	kernel	space,	and	returns	to	user	mode.	Thus,	
the	next	user	continues	wherever	they	left	off,	and	the	last	user	waits	to	regain	access	to	the	system.

The	astute	reader	will	see	several	problems	that	remain	to	be	resolved.	In	particular,	the	memory	
of the machine must be protected in some manner or the state information of one domain could 
be	altered	or	examined	by	writing	or	reading	its	memory	from	another	domain.	Similarly,	state	
information in peripheral devices may be exploited in this manner unless some additional 
protection	is	provided.	Finally,	information	may	be	exchanged	between	domains	by	differing	
usage of shared facilities.

Because of the prominent position of memory in the fetching of instructions and data and the 
storage	 of	 control	 state	 information	 for	 the	 kernel	 and	 user	 domains,	 it	 presents	 a	 problem	
that	must	be	addressed	by	hardware	in	order	to	afford	efficient	processing	under	most	current	
architectures.	Memory	 is	generally	protected	 through	 the	use	of	 a	 technique	 called	 ‘memory	
mapping’. Memory mapping involves the use of a special set of control registers that translate 
memory	locations	specified	by	a	user	into	physical	memory	locations	in	M.	Thus	a	given	user	
might	access	a	memory	location	numbered	125,	which	the	‘translation	buffer’	maps	into	physical	
location 2978. If the kernel assures that the memory maps of different users don’t have overlaps 
in	physical	memory	locations,	we	are	guaranteed	that	they	don’t	share	state	information,	and	
thus	we	maintain	 the	 separation	mechanism.	Similarly,	 shared	memory	can	be	 implemented	
with	this	mechanism	for	controlled	communication.	In	most	practical	systems,	memory	mapping	
is	done	on	a	page	by	page	basis	(i.e.	in	1000	word	groups)	so	that	the	size	of	the	memory	map	
needn’t be enormous or expensive.

All I/O is generally performed by kernel mode instructions so the kernel can enforce protection of 
I/O	resources.	In	the	case	of	terminal	I/O,	the	user	may	have	an	interface	that	is	nearly	identical	
to	the	kernel’s	instructions,	while	for	shared	devices	such	as	disks	and	printers,	the	kernel	may	
abstract	the	physical	characteristics	of	the	device	completely,	and	leave	the	user	with	a	purely	
logical	abstraction	such	as	a	file	system.

The	logical	extension	of	the	two	state	machine	(i.e.	kernel	and	user	mode)	is	the	use	of	machines	
with	numerous	states,	each	with	an	increasing	level	of	control.	In	general,	a	two	state	machine	
is	much	simpler	 to	 implement.	Because	complexity	 increases	 the	 likelihood	of	errors,	and	all	
protection	relevant	instructions	are	likely	to	be	equally	critical	to	system	wide	protection,	this	
is usually the way implementations are performed. If multiple logical protection ‘rings’ are 
desired,	they	can	be	implemented	with	a	two	state	machine	in	which	certain	domains	are	treated	
differently	than	others	by	the	kernel,	rather	than	by	providing	a	multitude	of	control	registers	
and classes of instructions in hardware.
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Notes8.2 Access Matrix

Access matrices are widely used to hold a symbolic representation of the set of rights available 
to	subjects	 for	access	 to	objects.	 In	 the	case	of	 the	PO	set	policy,	 ‘flow	control	matrices’	hold	
only	a	single	right	which	determines	whether	or	not	flow	is	permitted	from	domain	to	domain,	
while	more	complex	policies	require	more	rights,	and	thus	more	complex	software.	Matrices	are	
well	understood	data	structures	which	have	been	used	for	a	long	time,	and	implementations	are	
very straight forward. The programmer merely implements a table lookup for every protection 
related	OS	request	to	determine	whether	or	not	the	requested	right	is	to	be	granted.

Figure 8.1: Access Matrix

File 1 File 2 File 3 File 4 Account 
1

Account 
2

Own Own Inquiry
User A R R credit

W W
Own Inquiry Inquiry

User B R R R debit credit
W W

Own Inquiry
User C R R R debit

W W

Access Matrix Example

An	access	matrix	has	several	standard	operations	associated	with	it:

	 •	 Entry	of	a	right	into	a	specified	cell

	 •	 Removal	of	a	right	from	a	specified	cell

	 •	 Creation	of	a		subject

	 •	 Creation	of	an	object

	 •	 Removal	of	an	subject

	 •	 Removal	of	an	object

The two most used implementations are access control lists and capabilities. Access control lists 
are achieved by placing on each object a list of users and their associated rights to that object. 
For	example,	if	we	have	file	1,	file	2	and	file	3,	and	users	*(subjects)	Pradip	and	Sally,	an	access	
control	list	might	look	like:

Objects (Files)

 Users File 1 File 2 File 3

 Pradip RWX R-X RW-

 Sally --- RWX R--

The	rights	are	R	 (Read),	W	(Write	 )	and	X	 (execute).	A	dash	 indicates	 that	 the	user	does	not	
have	that	particular	right.	Thus,	Pradip	does	not	have	permission	to	execute	File	3,	and	Sally	
has no rights at all on File 1.
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Notes Capabilities are accomplished by storing on each subject a list of rights the subject has for every 
object.	This	effectively	gives	each	user	a	keyring.	To	remove	access	to	a	particular	object,	every	
user	 (subject)	 that	has	access	 to	 it	must	be	“touched”.	A	 touch	 is	 an	examination	of	 a	user’s	
rights to that object and potentially removal of rights. This brings back the problem of sweeping 
changes	in	access	rights.	Here	is	what	an	implementation	of	capabilities	might	look	like,	using	
the	above	example:

 Users

	 Pradip	 File	1:	RWX	 File	2:	R-X	 File	3:	RW-

	 Sally	 File	1:	---	 File	2:	RWX	 File	3:	R--

Access restrictions such as access controls lists and capabilities sometimes are not enough. In 
some	cases,	information	needs	to	be	tightened	further,	sometimes	by	an	authority	higher	than	
the	owner	of	the	information.	For	example,	the	owner	of	a	top	secret	document	in	a	government	
office	might	deem	the	information	available	to	many	users,	but	his	manager	might	know	the	
information	should	be	restricted	further	than	that.	In	this	case,	the	flow	of	information	needs	
to	be	controlled		—	secure	information	cannot	flow	to	a	less	secure	user.

8.2.1 Implementation of Access Matrix
Recall,	that	an	access	matrix	may	be	implemented	by	access	control	lists	or	capabilities.	These	
traditional implementation approaches must be extended in many ways to implement the access-
control	properties	of	distributed	applications	mentioned	above:

Network-Wide Capabilities: A capability no longer references a local object; thus a scheme for 
addressing	a	remote	object	must	be	implemented.	To	address	this	problem,	Amoeba	stores	in	
a capability an encryption of the access rights to and a network-wide id of a protected object.

Replicated Access Lists: A way must be found to replicate access control lists of replicas. Both 
Suite and Lotus Notes use the mechanisms provided by the replication system for replicating 
objects to also replicate access control lists of these objects.

Application-Defined Objects:	 Traditional	 operating	 systems	 do	 not	 support	 user-defined	
objects,	thereby	restricting	themselves	to	protecting	predefined	rights	such	as	file	rights.	As	we	
saw	above,	distributed	systems	must	protect	application-defined	operations	 such	as	 connect.	
Two	approaches	have	been	used	to	protect	application-defined	objects.	One	approach,	used	in	
Hydra,	is	to	develop	a	kernel	that	manages	application-defined	objects,	intercepting,	and	thereby	
guarding,	all	operations	on	these	objects.	An	alternative	approach	is	to	provide	access	control	
in	user-space.	X	servers,	Suite	dialogue	managers	and	Web	browsers	are	examples	of	user-level	
code implementing access control. The advantage of the second approach is that it can be used 
with	existing,	non	object-oriented,	operating	systems	and	access	checks	do	not	require	context	
switches	to	the	operating	system.	However,	some	form	of	authentication	facility	is	required	to	
verify a subject’s identity.

8.2.2 Access Proxies
A	general	 technique	 for	 implementing	 access-control	 in	 user-space	 is	 to	 implement	 for	 each	
protected	class	a	proxy	class	that	has	the	same	interface	as	the	protected	class,	performs	access	
checks,	and	forwards	operations	to	the	protected	class	if	these	checks	succeed.

8.2.3 Stack Check/Modified Name Space
Access control for the process that allows code to be dynamically downloaded into it needs to be 
distinguished between local and downloaded code and provide restricted rights to downloaded 
code	 to	 ensure,	 for	 instance,	 that	 it	does	not	destroy	or	 leak	 the	 contents	of	 local	data.	 Java-
enabled Web browsers illustrate how such a mechanism can be supported. Two approaches 
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Noteshave been used by them to restrict the access of downloaded Java applets. One approach relies 
on the fact that separate class loader objects are used to load local and remote code and that 
the	stack	frame	of	each	method	points	to	the	object	that	loaded	it.	As	a	result,	when	a	protected	
method	is	called,	the	browser	can	provide	restricted	access	if	the	stack	contains	a	method	that	
was	called	(directly	or	indirectly)	by	downloaded	code.

The other approach relies on the fact that the loader can determine the name space of downloaded 
code.	It	creates	restrictive	proxy	classes	for	the	protected	classes,	and	makes	sure	that	downloaded	
code sees the proxy classes instead of the protected classes.

In	 computer	 science,	 an	 Access	 Control	 Matrix	 or	 Access	 Matrix	 is	 an	
abstract,	formal	security	model	of	protection	state	in	computer	systems,	that	
characterizes the rights of each subject with respect to every object in the 
system.

Self Assessment

Multiple choice questions:

 1. What is system protection?

	 (a)	 System	protection	is	a	feature	that	regularly	creates	and	saves	information	about	your	
computer’s	system	files	and	settings.

	 (b)	 System	protection	is	a	program	that	regularly	creates	and	saves	 information	about	
your	computer’s	system	files	and	settings.

	 (c)	 System	protection	is	a	application	that	regularly	creates	and	saves	information	about	
your	computer’s	system	files	and	settings.

	 (d)	 None	of	these.

	 2.	 Access	matrix	is	defined	as	....................	.

	 (a)	 a	model	of	protection	mechanisms	in	computing	systems.

	 (b)	 is	a	matrix	that	shows	the	protection	level	across	several	domains.

	 (c)	 work	flow	management.

	 (d)	 All	of	the	above.

 3. Where we can implement the Access Matrix?

	 (a)	 Network-wide	capabilities.

	 (b)	 Replicated	access	lists.

	 (c)	 Application-Defined	Objects.

	 (d)	 All	of	the	above.

8.3 Access Control 

This	 section	 introduces	concepts,	 common	 terms,	and	basic	 (popular)	policies	and	models	of	
access control. The contents of this section are referenced throughout the document. 
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Notes Access	control	is	concerned	with	determining	the	allowed	activities	of	legitimate	users,	mediating	
every attempt by a user to access a resource in the system. A given information technology 
(IT)	infrastructure	can	implement	access	control	systems	in	many	places	and	at	different	levels.	
Operating	 systems	 use	 access	 control	 to	 protect	 files	 and	 directories.	 Database	management	
systems DBMS apply access control to regulate access to tables and views. Most commercially 
available	 application	 systems	 implement	 access	 control,	 often	 independent	 of	 the	 operating	
systems and/or DBMSs on which they are installed. 

The objectives of an access control system are often described in terms of protecting system 
resources	 against	 inappropriate	 or	 undesired	 user	 access.	 From	 a	 business	 perspective,	 this	
objective could just as well be described in terms of the optimal sharing of information. After 
all,	the	main	objective	of	IT	is	to	make	information	available	to	users	and	applications.	A	greater	
degree	of	 sharing	may	get	 in	 the	way	of	 resource	protection;	 in	 reality,	 a	well-managed	and	
effective	 access	 control	 system	 actually	 facilitates	 sharing.	 A	 sufficiently	 fine-grained	 access	
control	mechanism	can	enable	selective	sharing	of	 information	where,	 in	 its	absence,	sharing	
may be considered too risky altogether. 

8.3.1 Concepts 
This section introduces some of the concepts that are commonly used in the access control 
research community and are also used throughout this document. 

 •	 Object: An entity that contains or receives information. Access to an object potentially 
implies	access	to	the	information	it	contains.	Examples	of	objects	are	records,	fields	(in	a	
database	record),	blocks,	pages,	segments,	files,	directories,	directory	trees,	process,	and	
programs,	as	well	as	processors,	video	displays,	keyboards,	clocks,	printers,	and	network	
nodes.	Devices	such	as	electrical	switches,	disc	drives,	relays,	and	mechanical	components	
connected to a computer system may also be included in the category of objects. 

	 •	 Subject:	An	active	entity,	generally	in	the	form	of	a	person,	process,	or	device	that	causes	
information	to	flow	through	objects	(see	below)	or	changes	the	system	state.	

	 •	 Operation:	An	active	process	invoked	by	a	subject;	for	example,	when	an	automatic	teller	
machine	(ATM)	user	enters	a	card	and	correct	personal	identification	number	(PIN),	the	
control	program	operation	on	 the	user’s	behalf	 is	a	process,	but	 the	subject	can	 initiate	
more	than	one	operation-deposit,	withdrawal,	balance	inquiry,	etc.

	 •	 Permission (privilege): An authorization to perform some action on the system. In most 
computer	security	 literature,	 the	term	permission	refers	to	some	combination	of	objects	
and operations. A particular operation used on two different objects represents two distinct 
permissions,	and	similarly,	two	different	operations	applied	to	a	single	object	represent	
two	distinct	permissions.	For	example,	a	bank	teller	may	have	permissions	to	execute	debit	
and	credit	operations	on	customer	records	through	transactions,	while	an	accountant	may	
have of accounting data. 

	 •	 Access Control List (ACL):	A	list	associated	with	an	object	that	specifies	all	the	subjects	
that	can	access	the	object,	along	with	their	rights	to	the	object.	Each	entry	in	the	list	is	a	
pair	(subject,	set	of	rights).	An	ACL	corresponds	to	a	column	of	the	access	control	matrix	
(described	next).	ACLs	are	 frequently	 implemented	directly	or	 as	 an	approximation	 in	
modern operating systems. 

	 •	 Access Control Matrix:	A	table	in	which	each	row	represents	a	subject,	each	column	represents	
an	object,	and	each	entry	is	the	set	of	access	rights	for	that	subject	to	that	object.	In	general,	
the	access	control	matrix	is	sparse—most	subjects	do	not	have	access	rights	to	most	objects.	
Therefore,	different	representations	have	been	proposed.	The	access	control	matrix	can	be	
represented	as	a	list	of	triples,	having	the	form	<subject,	rights,	object>.	Searching	a	large	
number	of	these	triples	is	inefficient	enough	that	this	implementation	is	seldom	used.	Rather,	
the	matrix	is	typically	subdivided	into	columns	(ACLs)	or	rows	(capabilities).	



Unit 8: System Protection

 LOVELY PROFESSIONAL UNIVERSITY 273

Notes	 •	 Separation of Duty (SOD): The principle that no user should be given enough privileges to 
misuse	the	system.	For	example,	the	person	authorizing	a	paycheck	should	not	also	be	the	
one	who	can	prepare	it.	Separation	of	duties	can	be	enforced	either	statically	by	defining	
conflicting	 roles	 (i.e.,	 roles	which	 cannot	 be	 executed	 by	 the	 same	 user)	 or	 dynamically	
by enforcing the control at access time. An example of dynamic separation of duty is the 
two-person	rule.	The	first	user	 to	execute	a	 two-person	operation	can	be	any	authorized	
user,	whereas	the	second	user	can	be	any	authorized	user	different	from	the	first.	There	are	
various	types	of	SOD;	an	important	one	is	a	history-based	SOD	that	regulates,	for	example,	
the	same	subject	(role)	cannot	access	the	same	object	for	a	certain	number	of	times.	

	 •	 Safety:	Measures	that	the	access	control	configuration	(e.g.,	access	control	mechanism	or	
model)	will	not	result	in	the	leakage	of	permissions	to	an	unauthorized	principal.	Thus,	
a	configuration	 is	said	 to	be	safe	 if	no	permission	can	be	 leaked	 to	an	unauthorized	or	
unintended principal. 

	 •		Domain and Type Enforcement:	The	grouping	of	processes	into	domains,	and	objects	into	
types,	such	that	access	operations	(such	as	read,	write,	execute,	and	create)	are	restricted	
from domains to types and between domains. A process belongs to one domain at any 
given	time	and	transits	to	other	domains	by	sending	signals	or	executing	a	file	in	a	new	
domain.

  Give the way of protection used in operating system.

8.3.2 Policies, Models and Mechanisms 
When	planning	an	access	control	system,	three	abstractions	of	controls	should	be	considered—
access	 control	 policies,	 models,	 and	 mechanisms.	 Access	 control	 policies	 are	 high-level	
requirements	 that	 specify	how	access	 is	managed	 and	who,	under	what	 circumstances,	may	
access	what	information.	While	access	control	policies	can	be	application-specific	and	thus	taken	
into	consideration	by	the	application	vendor,	policies	are	 just	likely	to	pertain	to	user	actions	
within	the	context	of	an	organizational	unit	or	across	organizational	boundaries.	For	instance,	
policies may pertain to resource usage within or across organizational units or may be based 
on	need-to-know,	competence,	authority,	obligation,	or	conflict-of-interest	factors.	Such	policies	
may span multiple computing platforms and applications. 

At	a	high	level,	access	control	policies	are	enforced	through	a	mechanism	that	translates	a	user’s	
access	request,	often	in	terms	of	a	structure	that	a	system	provides.	There	are	a	wide	variety	of	
structures;	for	example,	a	simple	table	lookup	can	be	performed	to	grant	or	deny	access.	Although	
no	well-accepted	standard	yet	exists	for	determining	their	policy	support,	some	access	control	
mechanisms are direct implementations of formal access control policy concepts. 

Rather than attempting to evaluate and analyze access control systems exclusively at the 
mechanism	level,	security	models	are	usually	written	to	describe	the	security	properties	of	an	
access control system. A model is a formal presentation of the security policy enforced by the 
system and is useful for proving theoretical limitations of a system. Access control models are 
of general interest to both users and vendors. They bridge the rather wide gap in abstraction 
between policy and mechanism. Access control mechanisms can be designed to adhere to the 
properties of the model. Users see an access control model as an unambiguous and precise 
expression	 of	 requirements.	 Vendors	 and	 system	 developers	 see	 access	 control	 models	 as	
design	 and	 implementation	 requirements.	On	 one	 extreme,	 an	 access	 control	model	may	 be	
rigid	in	its	implementation	of	a	single	policy.	On	the	other	extreme,	a	security	model	will	allow	
for the expression and enforcement of a wide variety of policies and policy classes. As stated 
previously,	 the	 focus	 of	 this	 document	 is	 on	 the	 practical	 side	 of	 the	 access	 control	 system;	
detailed descriptions of access control models are not included in this publication. 
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Notes Generating	a	list	of	access	control	policies	is	of	limited	value,	since	business	objectives,	tolerance	
for	risk,	corporate	culture,	and	the	regulatory	responsibilities	that	influence	policy	differ	from	
enterprise	 to	enterprise,	and	even	from	organizational	unit	 to	organizational	unit.	The	access	
control	policies	within	a	hospital	may	pertain	to	privacy	and	competency	(e.g.,	only	doctors	and	
nurse	practitioners	may	prescribe	medication),	and	hospital	policies	will	differ	greatly	from	those	
of	a	military	system	or	a	financial	 institution.	Even	within	a	specific	business	domain,	policy	
will	differ	 from	institution	 to	 institution.	Furthermore,	access	control	policies	are	dynamic	 in	
nature,	in	that	they	are	likely	to	change	over	time	in	reflection	of	ever-evolving	business	factors,	
government	 regulations,	and	environmental	 conditions.	There	are	 several	well-known	access	
control	 policies,	 which	 can	 be	 categorized	 as	 discretionary	 or	 non-discretionary.	 Typically,	
discretionary	access	control	policies	are	associated	with	identity-based	access	control,	and	non-
discretionary	access	controls	are	associated	with	rule-based	controls	(for	example,	mandatory	
security	policy).

8.3.3 Discretionary Access Control (DAC) 
DAC leaves a certain amount of access control to the discretion of the object’s owner or anyone 
else	who	is	authorized	to	control	the	object’s	access.	For	example,	it	is	generally	used	to	limit	
a	user’s	access	to	a	file;	it	is	the	owner	of	the	file	who	controls	other	users’	accesses	to	the	file.	
Only	those	users	specified	by	the	owner	may	have	some	combination	of	read,	write,	execute,	
and	other	permissions	to	the	file.	DAC	policy	tends	to	be	very	flexible	and	is	widely	used	in	
the	commercial	and	government	sectors.	However,	DAC	is	known	to	be	 inherently	weak	 for	
two	reasons.	First,	granting	read	access	is	transitive;	for	example,	when	Ann	grants	Bob	read	
access	to	a	file,	nothing	stops	Bob	from	copying	the	contents	of	Ann’s	file	to	an	object	that	Bob	
controls.	 Bob	may	now	grant	 any	 other	 user	 access	 to	 the	 copy	 of	Ann’s	 file	without	Ann’s	
knowledge.	Second,	DAC	policy	is	vulnerable	to	Trojan	horse	attacks.	Because	programs	inherit	
the	identity	of	the	invoking	user,	Bob	may,	for	example,	write	a	program	for	Ann	that,	on	the	
surface,	performs	some	useful	function,	while	at	the	same	time	destroys	the	contents	of	Ann’s	
files.	When	 investigating	 the	problem,	 the	audit	files	would	 indicate	 that	Ann	destroyed	her	
own	files.	Thus,	formally,	the	drawbacks	of	DAC	are	as	follows:	

 •	 Information	can	be	copied	from	one	object	to	another;	therefore,	there	is	no	real	assurance	
on	the	flow	of	information	in	a	system.	

	 •	 No	restrictions	apply	to	the	usage	of	information	when	the	user	has	received	it.	

	 •	 The	privileges	 for	accessing	objects	are	decided	by	 the	owner	of	 the	object,	 rather	 than	
through	a	system-wide	policy	that	reflects	the	organization’s	security	requirements.	

ACLs and owner/group/other access control mechanisms are by far the most common 
mechanism	for	implementing	DAC	policies.	Other	mechanisms,	even	though	not	designed	with	
DAC	in	mind,	may	have	the	capabilities	to	implement	a	DAC	policy.	

8.3.4 Non-Discretionary Access Control 
In	 general,	 all	 access	 control	 policies	 other	 than	 DAC	 are	 grouped	 in	 the	 category	 of	 non-
discretionary	access	control	(NDAC).	As	the	name	implies,	policies	in	this	category	have	rules	
that are not established at the discretion of the user. Non-discretionary policies establish controls 
that	cannot	be	changed	by	users,	but	only	through	administrative	action.	

Separation	of	duty	(SOD)	policy	can	be	used	to	enforce	constraints	on	the	assignment	of	users	
to	roles	or	tasks.	An	example	of	such	a	static	constraint	is	the	requirement	that	two	roles	to	be	
mutually	exclusive;	if	one	role	requests	expenditures	and	another	approves	them,	the	organization	
may	prohibit	the	same	user	from	being	assigned	to	both	roles.	So,	membership	in	one	role	may	
prevent	the	user	from	being	a	member	of	one	or	more	other	roles,	depending	on	the	SOD	rules,	
such	as	Work	Flow	and	Role-Based	Access	Control	(see	the	following	sections).	Another	example	
is	a	history-based	SOD	policy	that	regulates,	for	example,	whether	the	same	subject	(role)	can	
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Notesaccess the same object a certain number of times. Three popular non-discretionary access control 
policies are discussed in this section. 

8.3.5 Mandatory Access Control (MAC) 
Mandatory	access	control	 (MAC)	policy	means	 that	access	control	policy	decisions	are	made	
by	a	central	authority,	not	by	the	individual	owner	of	an	object,	and	the	owner	cannot	change	
access	rights.	An	example	of	MAC	occurs	in	military	security,	where	an	individual	data	owner	
can	neither	decide	who	has	a	Top	Secret	Clearance,	nor	the	owner	can	change	the	classification	
of	an	object	from	Top	Secret	to	Secret.	MAC	is	the	frequently	mentioned	NDAC	policy.	

The	need	for	a	MAC	mechanism	arises	when	the	security	policy	of	a	system	dictates	that:	

 1. Protection decisions must not be decided by the object owner. 

	 2.	 The	system	must	enforce	 the	protection	decisions	 (i.e.,	 the	system	enforces	 the	security	
policy	over	the	wishes	or	intentions	of	the	object	owner).	

Usually a labeling mechanism and a set of interfaces are used to determine access based on the 
MAC	policy;	 for	example,	a	user	who	 is	 running	a	process	at	 the	Secret	classification	should	
not	be	allowed	to	read	a	file	with	a	label	of	Top	Secret.	This	is	known	as	the	“simple	security	
rule,”	 or	 “no	 read	 up.”	 Conversely,	 a	 user	who	 is	 running	 a	 process	with	 a	 label	 of	 Secret	
should	 not	 be	 allowed	 to	write	 to	 a	 file	with	 a	 label	 of	 Confidential.	 This	 rule	 is	 called	 the	
“*-property”	(pronounced	“star	property”)	or	“no	write	down.”	The	*-property	is	required	to	
maintain system security in an automated environment. A variation on this rule called the “strict 
*-property”	requires	that	information	can	be	written	at,	but	not	above,	the	subject’s	clearance	
level.	Multilevel	security	models	such	as	the	Bell-La	Padula	Confidentiality	and	Biba	Integrity	
models	are	used	to	formally	specify	this	kind	of	MAC	policy.	However,	information	can	pass	
through	a	covert	channel	in	MAC,	where	information	of	a	higher	security	class	is	deduced	by	
inference such as assembling and intelligently combining information of a lower security class. 
Popular mechanisms used in implementing MAC policies are demonstrated.

8.3.6 Role-based Access Control
Although	RBAC	is	technically	a	form	of	non-discretionary	access	control,	recent	computer	security	
texts	often	list	RBAC	as	one	of	the	three	primary	access	control	policies	(the	others	are	DAC	and	
MAC).	In	RBAC,	access	decisions	are	based	on	the	roles	that	individual	users	have	as	part	of	
an	organization.	Users	take	on	assigned	roles	(such	as	doctor,	nurse,	teller,	or	manager).	Access	
rights	are	grouped	by	role	name,	and	the	use	of	resources	is	restricted	to	individuals	authorized	
to	 assume	 the	 associated	 role.	 For	 example,	within	 a	 hospital	 system,	 the	 role	 of	 doctor	 can	
include	operations	to	perform	a	diagnosis,	prescribe	medication,	and	order	laboratory	tests;	the	
role of researcher can be limited to gathering anonymous clinical information for studies. The 
use of roles to control access can be an effective means for developing and enforcing enterprise-
specific	security	policies	and	for	streamlining	the	security	management	process.	Under	RBAC,	
users are granted membership into roles based on their competencies and responsibilities in the 
organization. The operations that a user is permitted to perform are based on the user’s role. 
User membership into roles can be revoked easily and new memberships established as job 
assignments	dictate.	Role	associations	can	be	established	when	new	operations	are	instituted,	
and	old	operations	can	be	deleted	as	organizational	functions	change	and	evolve.	This	simplifies	
the administration and management of privileges; roles can be updated without updating the 
privileges for every user on an individual basis.

When	a	user	is	associated	with	a	role,	the	user	can	be	given	no	more	privileges	than	is	necessary	
to	perform	the	job;	since	many	of	the	responsibilities	overlap	between	job	categories,	maximum	
privilege for each job category could cause unauthorized access. This concept of least privilege 
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Notes requires	identifying	the	user’s	job	functions,	determining	the	minimum	set	of	privileges	required	
to	perform	those	functions,	and	restricting	the	user	to	a	domain	with	those	privileges	and	nothing	
more.	In	less	precisely	controlled	systems,	least	privilege	is	often	difficult	or	costly	to	achieve	
because	it	is	difficult	to	tailor	access	based	on	various	attributes	or	constraints.	Role	hierarchies	
can	be	established	to	provide	for	the	natural	structure	of	an	enterprise.	A	role	hierarchy	defines	
the	 roles	 that	have	unique	attributes	 and	 that	may	 contain	other	 roles;	 that	 is,	 one	 role	may	
implicitly include the operations that are associated with another role.

8.3.7 Temporal Constraints 

Temporal constraints are formal statements of access policies that involve time-based restrictions 
on	access	to	resources;	they	are	required	in	several	application	scenarios.	In	some	applications,	
temporal	constraints	may	be	required	to	limit	resource	use.	In	other	types	of	applications,	they	
may	 be	 required	 for	 controlling	 time-sensitive	 activities.	 It	 is	 the	 time-based	 constraints	 (in	
addition	to	other	constraints	like	workflow	precedence	relationships)	that	must	be	evaluated	for	
generating	dynamic	authorizations	during	workflow	execution	time.	Temporal	constraints	may	
also	be	required	in	non-workflow	environments	as	well.	For	example,	in	a	commercial	banking	
enterprise,	an	employee	should	be	able	to	assume	the	role	of	a	teller	(to	perform	transactions	
on	customer	accounts)	only	during	designated	banking	hours	(such	as	9	a.m.	to	2	p.m.,	Monday	
through	Friday,	and	9	a.m.	to	12	p.m.	on	Saturday).	To	meet	this	requirement,	it	is	necessary	to	
specify temporal constraints that limit role availability and activation capability only to those 
designated banking hours. 

Popular access control policies related to temporal constraints are the history-based access control 
policies,	which	are	not	supported	by	any	standard	access	control	mechanism	but	have	practical	
application	in	many	business	operations	such	as	task	transactions	and	separation	of	conflicts-
of-interests.	History-based	access	control	is	defined	in	terms	of	subjects	and	events	where	the	
events	of	the	system	are	specified	as	the	object	access	operations	associated	with	activity	at	a	
particular	security	level.	This	assures	that	the	security	policy	is	defined	in	terms	of	the	sequence	
of	events	over	time,	and	that	the	security	policy	decides	which	events	of	the	system	are	permitted	
to	ensure	that	information	does	not	“flow”	in	an	unauthorized	manner.	Popular	history-based	
access	control	policies	are	Workflow	and	Chinese	Wall,	which	are	described	below.	

8.3.8 Workflow 
Based	 on	 the	 definition	 provided	 by	 the	 Workflow	Management	 Coalition	 (WFMC),	 an	
international	organization	of	workflow	vendors,	users,	and	research	groups,	a	workflow	 is	a	
representation	of	an	organizational	or	business	process	in	which	“documents,	information,	or	
tasks are passed from one participant to another in such a way that is governed by rules or 
procedures.”	A	workflow	separates	the	various	activities	of	a	given	organizational	process	into	
a	set	of	well-defined	tasks.	Hence,	typically,	a	workflow	(often	synonymous	with	a	process)	is	
specified	as	a	 set	of	 tasks	and	a	set	of	dependencies	among	 the	 tasks,	and	 the	sequencing	of	
these	tasks	is	important.	The	various	tasks	in	a	workflow	are	usually	carried	out	by	several	users	
in	accordance	with	organizational	rules	relevant	to	the	process	represented	by	the	workflow.	

The	representation	of	a	business	process	using	a	workflow	involves	a	number	of	organizational	
rules or policies. An important class of organization policies is the organization’s security policies. 
Within	the	realm	of	security	policies,	access	control	policies	play	a	key	role,	and	hence	defining	
and	enforcing	access	control	requirements	becomes	a	key	function	of	a	Workflow	Management	
System	(WFMS).	

Figure	8.2	presents	a	schematic	diagram	of	the	overall	architecture	of	a	WFMS,	which	consists	
of	 two	main	components—design-time	and	run-time.	The	design-time	component	consists	of	
a	set	of	tools	(called	the	process	definition	tools)	that	are	used	for	defining	and	modeling	the	
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(e.g.,	purchase	order	process),	the	definition	of	various	tasks	within	the	process	(e.g.,	purchase	
order	approval	task),	and	a	set	of	business	rules	associated	with	the	process	(e.g.,	task	sequence	
or	data	flow	among	tasks).	The	run-time	component	of	a	WFMS	(also	called	a	workflow	engine)	
consists	of	a	set	of	servers	that	interpret	the	process	definition	and	create	and	maintain	process	
instances.	Task	instances	associated	with	each	process	instance	are	also	created	(based	on	process	
definition).	The	 list	of	 instantiated	 tasks	pending	 to	be	executed	 is	presented	 to	 the	user	 (for	
his	or	her	action)	through	a	work	list	server.	The	tasks	themselves	are	executed	in	task	servers.	
Data	servers	act	as	repositories	of	data	that	are	needed	by	tasks.	In	addition,	there	are	monitor	
servers that maintain the execution history for various process or task instances to facilitate 
run-time access control decisions. 

Figure 8.2: Components of the Workflow Management System

The	 goal	 of	 the	Workflow	 policy	 is	 to	 maintain	 consistency	 between	 the	 internal	 data	 and	
external	(users’)	expectations	of	that	data.	Note	that	many	individual	process	instances	may	be	
operational	during	process	enactment;	each	needs	 to	be	associated	with	a	specific	set	of	data	
relevant to that individual process instance. 

8.3.9 Chinese Wall 
Brewer	and	Nash	identified	the	Chinese	Wall	policy	to	address	conflict-of-interest	issues	related	
to	consulting	activities	within	banking	and	other	financial	disciplines.	Like	WFMS,	the	Chinese	
Wall	 policy	 is	 application-specific	 as	 it	 applies	 to	 a	 narrow	 set	 of	 activities	 that	 are	 tied	 to	
specific	business	transactions.	For	example,	consultants	naturally	are	given	access	to	proprietary	
information to provide a service for their clients. When a consultant gains knowledge amounting 
to	 insider	 information,	 that	knowledge	 can	be	used	outside	 the	 company,	 thus	undermining	
the	competitive	advantage	of	one	or	both	 institutions,	or	used	for	personal	profit.	The	stated	
objective	of	the	Chinese	Wall	policy	is	to	prevent	illicit	flows	of	information	that	can	result	in	
conflicts	of	interest.	

The	Chinese	Wall	policy	is	a	commercially	inspired	confidentiality	policy,	whereas	most	other	
commercial	policies	focus	on	integrity.	The	access	permissions	change	dynamically—as	a	subject	
accesses	some	objects,	other	objects	that	would	previously	have	been	accessible	are	now	denied.	
For	example,	the	Chinese	Wall	policy	is	used	where	company-sensitive	information	is	categorized	
into	mutually	disjoint	conflict-of-interest	categories	(COI).	Each	company	belongs	to	only	one	
COI,	and	each	COI	has	two	or	more	member	companies.	The	membership	within	a	COI	includes	
like	companies,	whereby	a	consultant	obtaining	sensitive	information	regarding	one	company	
would	 risk	a	 conflict	of	 interest	 if	he	or	 she	were	 to	obtain	 sensitive	 information	 concerning	
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Notes another	company.	Several	COIs	may	coexist.	For	example,	COI1	may	pertain	to	banks,	while	
COI2 may pertain to energy companies. The Chinese Wall policy aims to prevent a consultant 
from reading information for more than one company in any given COI. 

There are several observations that we can make regarding this policy with respect to read 
operations.	First,	as	long	as	a	consultant	has	not	read	information	belonging	to	any	institution,	
the consultant is not yet bound by the policy and is free to read any sensitive information of 
any institution. Note that although a consultant may be free to read sensitive information under 
the	Chinese	Wall	policy,	he	or	she	may	be	restricted	from	reading	sensitive	information	with	
respect	to	another	policy,	such	as	a	MAC	policy.	Second,	once	a	consultant	has	read	sensitive	
information	of	bank	A,	the	consultant	is	prohibited	from	reading	sensitive	information	belonging	
to	any	other	bank	included	in	the	COI	of	which	bank	A	is	a	member.	Third,	all	consultants	are	
free to read all the public information of all institutions. 

In	 the	 history-based	 access	 control	 policies,	 previous	 access	 events	 are	 used	 as	 one	 of	 the	
decision	 factors	 for	 the	next	access	authorization;	 the	policies	 require	 sophisticated	historical	
system	state	control	for	tracking	and	maintaining	of	historical	events.	For	example,	the	Chinese	
Wall	policy	 is	simple	and	easy	to	describe;	however,	 its	 implementation	and	deployment	are	
less straightforward. 

8.4 Revocation of Access Rights

These	are	to	be	performed:

	 •	 Immediately	or	after	a	delay

	 •	 For	all	users	or	a	selective	group

	 •	 All	rights	or	partial	rights

	 •	 Temporary	or	permanent

Remove	access	rights	for	an	object	—	given	to	a	user/domain.	Easy	with	global	table	or	access	
list	—	search	list	for	object	and	remove	entry.	Capabilities	are	distributed	throughout	the	system	
—	must	be	found	and	destroyed	—	difficult:

	 •	 Expiry Time:	Capabilities	expire	after	a	time	and	new	must	be	requested	—	this	is	refused	
if rights have been revoked.

	 •	 Back Pointers:	Objects	maintain	pointers	to	all	capabilities	issued	—	costly	to	implement,	
particularly if capabilities are passed around as parameters.

	 •	 Indirect Capabilities:	Capability	points	to	table	entry	which	points	to	object	—	Invalidate	
entry	to	revoke	capability	—	No	selective	revocation.

	 •	 Keys:	 Capability	 contains	 encrypted	 key	 checked	 by	 object	—	 change	 key	 in	 object	 to	
revoke	capability	—	No	selective	revocation.

8.5 Capability Based System

Capability	based	systems	were	first	described	in	the	literature	in	the	mid-1960’s.	Their	informal	
descriptions	are	typically	based	upon	the	notion	that	a	capability	is	equivalent	to	a	‘‘ticket,’’	in	
the sense that possession of the ticket allows the possessing process access to the object described 
in	the	capability,	provided	that	the	access	mode	is	compatible	with	the	‘‘access	rights’’	stored	
within the capability. Whether a computer system based upon capabilities can provably enforce 
the DoD security policy has been a matter of discussion for some time. Boebert has argued that 
an	 ‘‘unmodified’’	capability	machine	must	be	 incapable	of	enforcing	the	property	defined	by	
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of	DoD	 security	 policy,	 this	 result	 implied	 that	 an	 ‘‘unmodified’’	 capability	machine	 cannot	
meet	the	DoD	requirements.	Boebert’s	discussion	introduces	the	undefined	term	‘‘unmodified	
capability machine.’’ In this paper we describe several classes of capability machine designs for 
managing access control information and show some that some classes cannot meet the DoD 
requirements	but	others	can.	We	thereby	circumvent	a	debate	about	the	meaning	of	the	term	
‘‘unmodified	capability	machine.’’

This	 paper	 begins	with	 the	 brief	 definitions	 of	 the	 basic	 notions	 concerning	 capabilities	 and	
capability	machines.	We	next	consider	the	sequence	of	events	a	capability	may	undergo	between	
the	creation	of	a	segment	and	an	access	to	that	segment,	and	we	discuss	strategies	for	controlling	
access	rights	in	this	context.	A	design	taxonomy	is	developed	to	describe	these	options.	Finally,	we	
show some classes in the design taxonomy that are not compatible with the DoD security policy.

8.5.1 Basic Notions
The	basic	notions	center	on	the	properties	of	data	and	processes,	the	descriptions	of	these	entities,	
the	mechanisms	that	control	access,	and	the	policies	that	define	‘‘correct’’	access	limitations.	We	
start	with	data,	processes,	and	capabilities.

Definition:	A	segment	is	a	group	of	data	possessing	identical	security	attributes.	Additionally,	the	
segment may contain a set of capabilities possessing identical security attributes; these security 
attributes need not necessarily be the same as the attributes of the data contained within the 
segment. A segment that can hold only capabilities is called a capability list or c-list.

Definition:	A	capability	is	an	object	describing	a	segment,	and	possibly	containing	access	rights	
or	 other	 access	 control	 information,	 as	 described	 below.	Note	 that	 if	 the	 capability	 contains	
access	rights,	it	must	be	distinguished	from	data	to	prevent	unauthorized	changes	to	the	access	
rights,	which,	if	permitted,	would	defeat	all	attempts	to	limit	access	based	upon	the	access	rights	
present in accessible capabilities. Capabilities can be distinguished from data either by tagging 
or by limiting their locations to distinguished segments or portions of segments that may only 
contain capabilities.

Definition: A	segment	possesses	certain	data	security	attributes,	including,	but	not	limited	to,	a	
security	level	and	an	access	control	list.	In	addition,	the	segment	may	possess	a	separate	set	of	
capability security attributes describing any capabilities stored within the segment. All data within 
the segment possess the data security attributes associated with the segment. All capabilities 
within the segment possess the capability security attributes associated with the segment.

Definition: A process is the execution of a program on behalf of a user logged in at a certain 
security level.

Definition: The security attributes of a process include a security level and the identity of the 
user	on	whose	behalf	the	program	is	executed.	A	process	may	have	other	attributes,	such	as	its	
domain	of	execution,	in	certain	designs.

Definition: A reference monitor is a mechanism for checking each attempted access by a process 
to an item within a segment for conformance with the access modes permitted for the process 
to that segment. A process can attempt access to a segment only via a capability that has been 
prepared	for	access	(e.g.	by	placing	it	in	a	capability	register).	Capabilities	prepared	for	access	
are not shared among processes.

Definition: A security policy is a set of rules for determining the maximum permissible access 
rights	for	a	particular	process	to	a	particular	segment,	given	the	attributes	of	both	the	process	
and the segment.

Definition: The DoD mandatory security policy limits the access rights to a segment based upon 
a comparison between the security level of the segment and the security level of the accessing 
process.	Write	is	allowed	if	the	level	of	the	segment	dominates	the	level	of	the	process,	read	if	
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Notes the	level	of	the	process	dominates	the	level	of	the	segment.	Domination	is	a	reflexive	relation,	
so	that	both	read	and	write	are	permitted	if	the	two	levels	are	identical.	(The	DoD	policy).

A	capability	is	a	communicable,	unforgeable	token	of	authority.	It	refers	to	a	
value that references an object along with an associated set of access rights.

   Describe the DoD policy in term of Protection.

OS Rings in System Protection

In	practice,	this	means	that	formal	mechanisms	must	be	in	place	to	segregate	the	trusted	
operating system from untrusted user programs. The most reliable way to accomplish 
this	 is	 in	hardware.	If	 the	segregation	occurs	in	software,	a	software	failure	(such	as	a	

buffer	overflow)	can	be	used	to	compromise	the	system.	The	first	system	to	support	rings	
in	 hardware	was	 the	MULTICS	 time-sharing	 system	 in	 the	 1960s,	 which	 included	 eight	
rings. This approach of hardware-enforced rings has been almost universally adopted by 
later architectures.

The most common CPU architecture in use today is the x86 compatible architecture. Beginning 
with	 the	 80286	 chipset,	 the	 x86	 family	 has	 provided	 two	 main	 methods	 of	 addressing	
memory—real	 mode	 and	 protected	 mode.	 Real	 mode,	 limited	 to	 a	 single	 megabyte	 of	
memory,	 quickly	 became	 obsolete.	 Protected	mode	 provided	 numerous	 new	 features	 to	
support	multitasking.	These	 included	segmenting	processes,	so	 that	 they	could	no	 longer	
write	 outside	 their	 address	 space,	 along	with	 hardware	 support	 for	 virtual	memory	 and	
task switching.

In	the	x86	family,	protected	mode	uses	four	priority	levels,	numbered	0	to	3.	System	memory	
is	divided	into	segments,	and	each	segment	is	assigned	a	priority	level.	The	processor	uses	the	
priority level to determine what can and cannot be done with code or data within a segment. 
The	term	rings	comes	from	the	MULTICS	system,	where	privilege	levels	were	visualized	as	
a	set	of	concentric	rings.	Ring	0	is	considered	to	be	the	innermost	ring,	with	total	control	of	
the	processor.	Ring	3,	the	outermost	ring,	is	provided	only	with	restricted	access.

Windows,	Linux,	and	most	Unix	variants	all	use	rings,	although	they	have	generally	dropped	
the four-ring structure and instead adopted a two-layer approach that uses only rings 0 and 
3. Security mechanisms in the hardware enforce restrictions on ring 3 by limiting code access 
to	segments,	paging,	and	input/output.	If	a	user	program	running	in	ring	3	tries	to	address	
memory	outside	of	its	segments,	hardware	interrupt	stops	code	execution.	Some	assembly	
language instructions are not even available for execution outside of Ring 0.

Questions:

	 1.	 Which	was	the	first	system	to	use	rings	as	hardware	for	system	protection?

 2. How rings can be used in system protection?
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Multiple choice questions:

 4. What is the use of Chinese Wall?

	 (a)	 To	address	conflict-of-interest	issues	related	to	consulting	activities	within	banking	
and	other	financial	disciplines.

	 (b)	 To	 address	 conflict-of-interest	 issues	 related	 to	 consulting	 activities	within	 college	
and other Institutional disciplines.

	 (c)	 To	address	conflict	of-interest	issues	related	to	consulting	activities	within	government	
offices.

	 (d)	 All	of	the	above.

 5. What is Access Control List?

	 (a)	 A	list	associated	with	an	object	that	specifies	all	the	objects	that	can	access	the	subject,	
along with their rights to the object.

	 (b)	 A	list	associated	with	an	object	that	specifies	all	the	subjects	that	can	access	the	object,	
along with their rights to the object.

	 (c)	 A	list	associated	with	a	subject	that	specifies	all	the	subjects	that	can	access	the	object,	
along with their rights to the object.

	 (d)	 None	of	the	above.

	 6.	 What	is	Discretionary	Access	Control	(DAC)?

	 (a)	 DAC	leaves	a	certain	amount	of	access	control	to	the	discretion	of	the	object’s	owner	
or anyone else who is not authorized to control the object’s access.

	 (b)	 DAC	leaves	a	certain	amount	of	access	matrix	to	the	discretion	of	the	object’s	owner	
or anyone else who is authorized to control the object’s access.

	 (c)	 DAC	leaves	a	certain	amount	of	access	control	to	the	discretion	of	the	object’s	owner	
or anyone else who is authorized to control the object’s access.

	 (d)	 All	of	the	above.

Fill in the blanks:

 7. ......................  control is concerned with determining the  allowed activities of legitimate 
uses.

 8. ...................... is an entity that contains or receives information in the access control research 
community.

8.6 Summary

	 •	 The	processes	in	an	operating system must be protected from one another’s activities.
	 •	 Implementation	of	protection	in	an	OS	generally	involves	three	factors.
	 •	 Access	matrices	 are	widely	used	 to	hold	 a	 symbolic	 representation	of	 the	 set	 of	 rights	

available to the subjects for access to objects.

	 •	 Access	control	 is	concerned	with	determining	the	allowed	activities	of	 legitimate	users,	
mediating every attempt by a user to access a resource in the system.

	 •	 Capability	systems	were	first	described	in	the	literature	in	the	mid-1960’s.
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Notes 8.7 Keywords

Access Control Mechanisms: The manner by which the operating system enforces the access 
control policy.

Access Control Policies:	 Access	 control	 policy	 defined	 “whose	 data	 is	 to	 be	 protected	 from	
whom”. 

DoD Policy:	This	publication,	DoD	5200.28-STD,	“Department	of	Defense	Trusted	Computer	
System	 Evaluation	 Criteria,”	 is	 issued	 under	 the	 authority	 of	 an	 in	 accordance	 with	 DoD	
Directive	5200.28,	“Security	Requirements	for	Automatic	Data	Processing	(ADP)	Systems,”	and	
in furtherance of responsibilities assigned by DoD Directive 52l5.

Workflow Management Coalition (WFMC): Work Flow Management is a fast evolving technology 
which is increasingly being exploited by businesses in a variety of industries.

System Protection: A model of protection mechanisms in computing systems is presented and 
its appropriateness is argued. The “safety” problem for protection systems under this model is 
to	determine	in	a	given	situation	whether	a	subject	can	acquire	a	particular	right	to	an	object.	
In	 restricted	 cases,	 it	 can	 be	 shown	 that	 this	 problem	 is	 decidable,	 i.e.	 there	 is	 an	 algorithm	
to	 determine	 whether	 a	 system	 in	 a	 particular	 configuration	 is	 safe.	 In	 general,	 and	 under	
surprisingly	weak	assumptions,	it	cannot	be	decided	if	a	situation	is	safe.	Various	implications	
of this fact are discussed.

1.	 C	program	for	file	permissions.

2. Give the steps for protection of the operating system.

8.8 Review Questions

 1.	 The	access-control	matrix	could	be	used	to	determine	whether	a	process	can	switch	from,	
say,	domain	A	to	domain	B	and	enjoy	the	access	privileges	of	domain	B.	Is	this	approach	
equivalent	to	including	the	access	privileges	of	domain	B	in	those	of	domain	A?

 2. Consider a system in which “computer games” can be played by students only between 
10	p.m.	and	6	a.m.,	by	faculty	members	between	5	p.m.	and	8	a.m.,	and	by	the	computer	
center	staff	at	all	times.	Suggest	a	scheme	for	implementing	this	policy	efficiently.

	 3.	 What	hardware	features	are	needed	for	efficient	capability	manipulation?	Can	these	be	
used for memory protection?

 4. Discuss the strengths and weaknesses of implementing an access matrix using access lists 
that are associated with the objects.

 5. Discuss the strengths and weaknesses of implementing an access matrix using capabilities 
that are associated with the domains.

	 6.	 Explain	why	a	capability-based	system	such	as	Hydra	provides	greater	flexibility	than	the	
ring protection scheme in enforcing protection policies.

 7. What is the need-to-know principle? Why is it important for a protection system to adhere 
to this principle?

 8. How are the access-matrix facility and the role-based access-control facility similar? How 
do they differ?
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 10. How can systems that implement the principle of least privilege still have protection 
failures that lead to security violations?

 11. Discuss the strengths and weaknesses of capability based system.

 12. What is the goal of protection in Operating System?

 13. Discuss about the DoD policy in system protection.

	 14.	 What	is	Workflow	Management	Coalition	(WFMC)?

	 15.	 Explain	the	Mandatory	Access	Control	(MAC). 

Answers to Self Assessment
	 1.	 (a)	 2.	 (d)	 3.	 (d)	 4.	 (a)	 5.	 (b)

	 6.	 (c)	 7.	 Access	 8.	 Object

8.9 Further Readings

Operating Systems, by Andrew	Tanenbaum,	Albert	S.	Woodhull.		
Operating Systems, by Stuart	E.	Madnick,	John	J.	Donovan.	

wiley.com/coolege.silberschatz
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After studying this unit, you will be able:

	 •	 Explain	security	problem

	 •	 Understand	program	threats

	 •	 Explain	system	threats

	 •	 Understand	network	threats

	 •	 Discuss	cryptography

	 •	 Explain	user	authentication

	 •	 Understand	implementation	of	defenses

	 •	 Discuss	firewall

Introduction

It	is	unnecessary	to	say	that	all	operating	systems	are	not	equal	in	every	sphere.	None	of	the	most	
accepted operating systems now-a-day are developed keeping safe and sound electronic business 
in	mind.	 From	 the	moment	 the	 computer	 is	 booted	 (after	 loading	 the	 BIOS),	 the	 interaction	
with the operating system starts. This essential portion of software describes what can be done 
with the system of the computer and how it is to be done. Whether the interaction is with the 
file	system	or	while	chatting	with	somebody	with	the	help	of	an	instant	messenger	line	up,	the	
operating system works at the back of the pictures to provide with a perfect experience as it 
understands the procedures and changes them into those things that the computer can process. 
Even	as	operating	systems	differ	on	a	lot	of	levels,	the	most	ordinary	operating	systems	offer	
much more than an easy crossing point between the user and the machine.

These	include	many	programs	with	the	intention	to	provide	the	user	with	many	extras,	starting	
from	the	straightforward	screen	savers	to	multifaceted	file-encryption	plans.	However,	it’s	vital	
to know that these programs are add-ons which are added on to the OS and are not essential for 
the computer to function. A lot of users become closely familiar with the operating system’s frills 
(such	as	the	Solitaire),	but	do	not	remember	about	the	security	parameters	that	are	incorporated	
to	help	 the	user	preserve	 a	 secure	 and	dependable	operating	 setting.	And	 therefore,	 a	 lot	 of	
information systems continue living in an insecure condition that keeps the system at the danger 
of a virus infection or at the total compromise by a hacker. From creation a protected home 
network	 to	creating	well-built	passwords,	 it	 is	very	vital	 to	know	the	particulars	of	using	an	
operating	system	in	a	secure	and	safe	and	sound	mode.	In	today’s	world,	where	the	computer	
is an essential gadget it is foolish to set up a computer devoid of the security system. It is only 
one	virus	or	Trojan	horse	 that	 is	 enough	 to	 form	a	 concurrent	 consequence	of	 contaminated	
computers and compromise systems.

UNIX which is the eldest and the mainly used networking operating system of today’s world 
has	got	the	benefit	of	having	been	patched	and	hacked	by	crackers	and	hackers	for	many	years.	
Amongst	all	other	UNIX	derivatives,	the	most	popular	derivatives	is	Linux,	which	was	developed	
by Linus Torvalds and now being maintained by a lot many of volunteers and a lot of software 
companies. But this Linux still has got errors which are being discovered in a day-to-day basis. 
It	is	tremendously	significant	to	keep	an	eye	on	these	incidences	and	use	the	essential	patches	
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Notes of the updates as soon as they are accessible. Microsoft’s Windows family platform has got an 
extraordinary expansion as a server and client platform. Whether it is installed in the thousands 
of	home	PCs,	 in	 the	 Internet	 server	or	on	 corporate	LANs,	 its	 fame	has	made	 it	more	prone	
for breakage by many hackers. Bodily security is becoming more and more common through 
out the world as novel and graver terrorizations are emerging. Physical security of public and 
possessions comes in course of time to most human; still the lost in the mix up is the prime 
necessitate	for	securing	the	data.	Over	and	over	again,	this	data	contains	responsive	information	
that is sought after by people against the law.

Encryption and Privacy Resource

	 •	 It	acts	as	a	source	for	learning	about	a	range	of	encryption	schemes.

	 •	 This	includes	privacy	fortification	tips	and	security	fundamentals.

NIST Vulnerability and Threat Portal

	 •	 It	is	an	absolute	portal	for	recent	attacks	or	incidents,	bugs,	advisories,	etc.	kept	up	by	the	
National Institute of Standards and Technology.

PC Talk - Security

	 •	 This	is	the	latest	news	from	the	field	of	IT	security.

CERT/CCC Current Activity

	 •	 Central	depository	for	high	force	security	vulnerabilities	and	incidents	are	being	informed	
to the CERT or CCC.

The	two	best	security	oriented	operating	systems	are:

Back Track

	 •	 This	is	an	Innovative	Penetration	Testing	which	comes	live	from	Linux	distribution.

	 •	 This	brilliant	bootable	live-CD	has	generated	as	a	result	of	from	the	merger	of	Whax	and	
Auditor.

	 •	 It	shows	off	an	enormous	diversity	of	Security	and	Forensics	apparatus	and	provides	an	
affluent	maturity	of	the	environment.

	 •	 The	user	modularity	is	highlighted	so	the	allocation	can	be	customized	with	no	trouble	
by	the	user	to	incorporate	private	scripts,	extra	tools,	customized	kernels,	etc.

Knoppix

	 •	 This	is	designed	as	the	general	purpose	live	bootable	system	to	be	taken	on	CD	or	DVD.	
It	consists	of	a	diplomatic	set	of	involuntary	hardware	revealing,	GNU/Linux	software,	
and	hold	up	for	a	lot	of	sound	cards,	graphics	cards,	USB	and	SCSI	appliances	and	other	
peripherals.

	 •	 KNOPPIX	can	also	be	used	as	a	creative	Linux	system	as	the	educational	CD,	desktop,	
rescue system.
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Notes9.1 Overview

Security systems generally implement a useful subset of a 3-dimentional matrix with dimensions 
of	actor,	object,	and	action.	 Implementing	the	full	matrix	 is	never	done	for	both	performance	
and usability reasons.

Mainstream	operating	system	security	is	primarily	based	on	access	control	lists.	For	each	object,	
we can maintain a list of actors which may manipulate it.

Capability-based	systems,	not	to	be	confused	with	the	systems	that	refer	to	special	administrative	
abilities	as	capabilities,	flip	things	around	the	other	way.	For	each	actor,	they	maintain	a	list	of	
objects upon which the actor may act.

Mainstream	operating	 system	 security	 is	 discretionary.	 That	 is,	 an	 object	 owner	may	decide	
who else has access to the object.

Mandatory	access	 control	 is	non-discretionary.	A	set	of	 rules	acts	 to	enforce	 security,	 setting	
up	permissions	that	users	are	unable	to	override.	This	stops	insiders	from	being	effective	spies,	
selling	designs	 to	 the	competition,	sharing	medical	 records	with	 the	press,	 running	spyware,	
and making many types of user errors.

None	of	the	above	methods	excludes	any	other	of	the	above	methods.	DG/UX	has	capabilities,	
discretionary	 ACLs,	 and	mandatory	 access	 control.	 Linux	 provides	 discretionary	 ACLs	 and	
several	choices	for	mandatory	access	control.	File	descriptors,	available	on	all	UNIX-like	systems,	
can serve as capabilities.

9.1.1 Protection

The	first	security	attempts	were	protection	schemes,	which	controlled	the	access	of	programs	to	
sensitive	areas	like	the	0	page,	where	the	software	interrupts	for	the	operating	system	calls	were	
usually	stored	for	efficient	calling,	or	the	operating	system	areas,	where	the	operating	system	
code	was	 kept	while	 it	was	 running.	 This	 capability	was	 required	 for	 time-sharing	 because	
neophyte programmers sometimes overwrote the operating system shutting down the whole 
computer	because	they	didn’t	understand	the	addressing	system.	CPU’s	like	the	Z80	began	to	
be designed to set aside “System” areas so that they couldn’t be overwritten by mistake.

One way of doing this was to create a separate name space for the system and control access 
to	it.	Often	the	documentation	of	how	to	access	the	protected	mode	was	scant,	or	missing	from	
popular	books,	as	an	attempt	to	secure	it	by	obscurity.	This	turned	out	to	be	relatively	useless	
since	it	meant	that	an	underground	market	for	information	was	created,	and	only	the	crackers	
knew for sure how they were breaking into the operating systems.

Some CPU’s set up complex software interrupts as gateways between the protected mode memory 
and	the	user	areas.	Each	user	area	had	its	own	software	interrupt	area,	that	did	a	system	call	to	
the	protected	system	area	because	the	interrupt	area	was	within	the	user	space,	the	interrupt	
vectors	could	be	overwritten	with	impunity,	without	affecting	any	other	programs	use	of	the	
operating system. This was a useful mechanism because peripheral drivers tended to supply 
their	own	interrupt	service	routines	for	specific	peripherals.

An	application	like	Windows	could	create	a	virtualized	version	of	itself,	and	modify	the	interrupts	
within	that	one	virtual	version,	without	affecting	the	rest	of	the	operating	system.	This	is	usually	
what	 the	 difference	 is,	 between	 286	 and	 386	 protective	mode,	 the	 Virtual	 copy	 of	windows	
with the ability to modify its own interrupt vectors and not affect the rest of the machine. Up 
to	now	until	the	386	protected	mode,	all	programs	shared	the	same	interrupt	vectors	and	one	
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Notes programs mishandling or malware sabotage of the interrupts could trigger the collapse of 
the whole system.

  	 Show	or	explain	how	to	use	firewall	insecurity	of	operating	system.

9.1.2 Access Control Lists

Traditional UNIX access control is a type of discretionary ACL. The number of possible actions 
are	grouped	into	four	categories—read,	write,	execute,	and	special	operations	normally	reserved	
for	an	object	owner.	The	list	of	actors	associated	with	each	object	is	rather	restricted,	simplifying	
both	the	implementation	and	the	user	experience.	There	are	three	actors	listed—owner,	group,	
and	other.	An	actor	gets	the	permissions	of	the	first	of	those	that	it	qualifies	as.	The	owner	always	
gets special operations that the others do not get. The group is an indirect reference to a list of 
actors	specified	elsewhere,	and	thus	is	a	form	of	compression.	The	“other”	is	just	that,	all	other	
actors.	Through	the	creation	of	groups,	traditional	UNIX	access	control	can	provide	a	great	deal	
of	power.	The	creation	of	groups	 is	normally	 limited	however,	often	being	an	administrative	
action	that	requires	human	approval.

The	action	categories	may	be	more	or	less	fine-grained.	NetWare	uses	read,	write,	create,	erase,	
modify,	file	scan,	access	control,	and	supervisor.	A	system	may	split	the	normal	“write”	category	
into	overwrite	and	append.	A	system	may	lack	an	“execute”	category,	instead	simply	requiring	
read	access	to	execute	a	file.

Many systems allow for somewhat arbitrary lists of actors to be associated with each object. This 
includes	Windows,	modern	UNIX-like	systems	including	Linux,	and	Netware.	The	list	might	
support	 a	 dozen	 entries	 or	 a	 few	 hundred	 entries,	 as	 determined	 to	 be	 a	 good	 compromise	
between performance and control.

An	interesting	innovation	in	ACLs	has	been	hierarchical	actors.	For	example,	the	VST	a	OS	used	
decimal,	dot-delimited	actor	identifiers.	In	this	scheme,	a	userid	is	a	series	of	decimal	numbers	
seperated	by	dots	 (eg,	1.85.23.323.888)	and	 if	a	user	possesses	a	userid	which	corresponds	 to	
the	object’s	userid	up	to	its	end,	then	the	user	owns	the	object.	So	for	example,	a	user	possesing	
userid	1.85.23	would	own	any	object	assigned	to	1.85.23.323.888	whereas	the	object	itself	(whether	
another	user	or	program)	wouldn’t	be	able	to	access	other	objects	owned	by	1.85.23.	This	scheme	
allows	for	the	dynamic	creation	of	a	hierarchy	of	users	and	subusers.	A	weaker	form	of	 this,	
compatible	with	the	vast	body	of	POSIX	software,	can	be	had	by	providing	a	mechanism	for	
users of a UNIX-like system to create and control groups.

An	access	control	list	(ACL)	is	a	table	that	tells	a	computer	operating	system	
which	access	rights	each	user	has	to	a	particular	system	object,	such	as	a	file	
directory	or	individual	file.

9.1.3 Capabilities

Capabilities	are	unforgeable	references	to	objects	that	let	their	holder	access	a	well-defined	subset	
of	operations	defined	on	that	object.
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NotesThere are many different things which may serve as capabilities. There are human-readable 
capabilities	called	“passwords”	which	people	make	use	of.	There	are	flat,	low-level,	centralized	
capabilities implemented by experimental OS kernels. There are tickets granted by Kerberos 
servers.	There	are	UNIX-style	file	descriptors,	which	may	be	passed	from	process	to	process	to	
provide access.

Operating	systems	such	as	KeyKOS	and	EROS	have	used	flat,	low-level	and	highly	centralized	
capabilities,	leaving	the	implementation	of	human-useful	capabilities	to	higher	level	layers.

Capabilities	in	such	schemes	are	flat	because	they	can	not	be	interrogated.	You	can	not	ask	such	
a	capability	about,	say,	when	it	was	created	or	how	many	times	it	has	been	accessed.	None	of	
such	capabilities	possess	internal	state	which	can	be	mutated.	Typically,	one	can	create	a	new	
downgraded	capability	from	a	capability	one	possesses,	but	one	can	not	downgrade	or	change	in	
any way the original capability itself. These capabilities are not objects but primitive data types.

Capabilities in such schemes are low level because they do not offer high-level security 
abstractions.	In	KeyKOS,	capabilities	were	exactly	of	two	types,	read	and	read+write,	though	
KeyKOS capabilities could contain additional information to implement service levels and other 
such	levels.	Capabilities	in	such	schemes	do	not	naturally	aggregate	other	capabilities	(a	very	
simple	and	highly	useful	security	abstraction),	one	must	artificially	create	an	object	in	between	
whose	 sole	 job	 is	 to	 aggregate	 them.	 Note	 that	 certain	 security	 abstractions	 (like	 dynamic	
permission	inheritance)	are	practically	unimplementable	on	the	top	of	a	low-level	system.

Capabilities	in	such	schemes	are	centralized	because	the	kernel,	and	only	the	kernel,	manages	all	
capabilities.	Rather	than	every	module	exporting	its	own	capabilities,	the	only	capabilities	there	
are	 in	the	kernel.	This	 is	actually	a	consequence	of	using	low-level	capabilities.	 If	capabilities	
were	sufficiently	high-level	so	as	to	provide	message-passing	services,	then	it	would	be	feasible	to	
force every module to use secondary capabilities that all route through a single protected kernel 
capability.	Instead,	each	module	(called	a	Domain)	in	KeyKOS	had	access	to	a	maximum	of	exactly	
16 capabilities in special slots protected by the kernel and accessible only through special calls.

9.1.4 Mandatory Access Control

Traditional mandatory access control or MAC is modeled on the scheme used by the U.S. 
government	for	handling	classified	information.	More	specifically,	this	is	mandatory	sensitivity	
control	or	MSEN.	There	are	levels	of	security	such	as	TOP	SECRET,	SECRET,	CLASSIFIED,	and	
UNCLASSIFIED. There are categories based on need-to-know or special program access. An 
actor	with	SECRET	access	is	prohibited	from	reading	TOP	SECRET	data,	but	might	be	permitted	
to	write	to	it.	(there	may	be	an	additional	discretionary	ACL	which	prevents	this	though)	One	
may be able to read from lower security levels and write to higher security levels. There may 
be	a	concept	of	contamination,	allowing	an	actor	with	SECRET	access	to	write	UNCLASSIFIED	
data as long as no CLASSIFIED or SECRET data has been read.

Mandatory	 integrity	 control	 (MINT)	 works	 the	 other	 way,	 preventing	 pristine	 objects	 from	
being	 contaminated	with	 junk.	 In	 this	 case,	 all	 actors	 are	permitted	 to	 read	 the	most	 trusted	
data. An actor that tries to execute something downloaded from an untrusted source will either 
be stopped or will lose the ability to write to more trusted objects.

More modern systems combine the functions of MSEN and MINT into a state-transition model 
with	roles.	As	actors	do	things,	their	state	may	change.	In	a	UNIX-like	system	with	role-based	
access	control,	the	execution	of	a	new	executable	is	a	particularly	important	point	at	which	state	
transitions happen. Role-based security is particularly useful for enforcing privacy regulations 
such	as	HIPPA	(U.S.	medical	info	law)	and	the	EU	privacy	laws.	Two	popular	implementations	
of	this	are	SE	Linux	and	RSBAC,	both	available	for	Linux.
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Notes In	 computer	 security,	mandatory	 access	 control	 (MAC)	 refers	 to	 a	 type	of	
access control by which the operating system constrains the ability of a 
subject or initiator to access or generally perform some sort of operation on 
an object or target.

9.1.5 Cryptographic Access Control
The advent of International Networking spread the security concerns outside the usual realm 
of	the	operating	system,	to	the	data	that	was	moving	to	and	from	the	system	over	the	network.	
The ability to mimic a valid data packet meant that data could be changed enroute simply by 
rerouting	the	valid	packet,	and	replacing	it	with	an	invalid	packet.	As	a	result,	security	had	to	
be	spread	not	only	to	the	local	system,	but	also	to	all	critical	correspondence	between	systems.	
At	first	such	mechanisms	were	implemented	by	sending	digests	of	the	original	data	as	part	of	
the	data	stream,	under	the	assumption	that	a	changed	packet	would	not	fit	the	original	digest.	
However it was found that digests were not cryptographically secure and could be fooled 
into	 thinking	 that	data	was	valid	when	 it	was	not.	As	well,	 sending	data	 in	clear	meant	 that	
someone	in	an	intervening	system	could	read	the	packet	with	a	packet	sniffer,	and	learn	what	
the information was.

The	idea	when	this	was	determined	became	to	cryptographically	protect	the	data,	which	would	
at	 least,	 it	was	hoped,	 slow	down	 the	 reading	 of	 the	mail,	 and	 cryptographically	 secure	 the	
digest,	so	that	it	could	not	be	fooled	as	easily.

9.2 Security Problem

Even casually computer savvy users these days know about beware of security threats on the 
Internet.	They	know	that	the	online	universe	is	a	crawl	with	computer	viruses,	worms,	Trojan	
horses	 and	 other	malicious	 bits	 of	 code,	 and	 if	 they	 are	 prudent,	 they	 have	 equipped	 their	
computers	with	up-to-date	anti-virus	and	firewall	software	for	repelling	these	invaders.	They	
are	leery	of	unsolicited	e-mail	attachments,	and	careful	about	the	websites	they	visit.	They	have	
probably	heard	about	(or	experienced)	“denial	of	service”	attacks	in	which	malicious	hackers	
direct	 thousands	 of	 computers	 to	 bombard	 a	 company’s	 servers	with	 requests	 to	 shut	 them	
down. They probably even know not to fall for “phishing” scams in which hyperlinks take users 
to phony sites posing as legitimate banks and credit card companies for the purpose of stealing 
passwords and account information. 

What	few	in	the	public	realize,	however,	is	that	the	Internet	is	vulnerable	to	much	deeper	levels	
of fraud-ones that exploit fundamental security gaps in the network protocols themselves. These 
attacks,	often	called	“pharming,”	are	all	but	impossible	for	individuals	to	guard	against	or	even	
detect.	They	 represent	a	growing	 threat	 to	personal,	 corporate	and	national	 security	 that	 the	
federal government needs to address urgently. 

Consider,	 for	example,	 the	defenselessness	of	 the	domain	name	system	 (DNS),	 the	 Internet’s	
version	of	“411	information”.	When	you	type	a	“www.”	style	name	into	your	browser	software,	
the	browser	converts	it	 into	an	IP	address,	a	string	of	digits	that	 is	the	equivalent	to	a	phone	
number.	 It	gets	 the	 IP	address	by	contacting	a	 local	name	server,	 typically	operated	by	your	
Internet	service	provider.	Unlike	telephone	numbers,	however,	which	are	often	valid	for	several	
years,	 IP	 addresses	 change	 frequently	 and	 so	 the	 IP	 address	 comes	with	 an	 expiration	date,	
known	as	a	“time	to	live”	(or	TTL).	On	the	Internet,	TTLs	are	typically	measured	in	seconds,	
hours	or	days,	even	if	the	associated	IP	address	does	not	change	that	often.	If	a	local	name	server	
receives	a	request	for	an	“expired”	DNS	name,	it	in	turn	queries	a	hierarchy	of	other	servers,	
keying	its	request	to	two	16-bit	 identification	codes—one	for	a	transaction	ID	and	other	for	a	
port	number.	Unfortunately,	the	port	number	is	often	predictable,	and	so	it	becomes	possible	
for a cyberthief to produce a likely match to both codes by generating a relatively small number 
of	answers	(say	65,536).



Unit 9: System Security

 LOVELY PROFESSIONAL UNIVERSITY 291

NotesThe	cyberthief	can	then	ask	the	local	name	server	for	the	IP	address	for	XYZ	Bank’s	home	page	
and	learn	when	it	will	expire.	At	the	moment	of	expiration,	he	again	asks	for	the	bank’s	address	
and	immediately	sends	out	the	65,536	answers	that	list	his	own	computer’s	IP	address	as	that	
of	the	bank.	Under	the	DNS	protocol,	the	local	name	server	simply	accepts	the	first	answer	that	
matches	its	codes;	it	does	not	check	from	where	the	answer	came,	and	it	ignores	any	additional	
replies.	Even	though	XYZ	Bank’s	IP	address	has	not	really	changed,	the	local	name	server	still	
replaces the correct address with the hacker’s address and communicates the false information 
to customers.

So,	if	our	hacker	gets	his	answers	in	first,	the	local	name	server	will	direct	customers	seeking	
XYZ	Bank	to	his	computer.	Assuming	that	the	hacker	runs	a	convincing	imitation	of	the	bank’s	
sign-in	page,	 customers	will	 not	 realize	 that	 they	 are	 handing	 their	 confidential	 information	
over to a fake.

Similar	 flaws	 plague	 other	 Internet	 protocols,	 such	 as	 the	 Border	 Gateway	 Protocol	 (BGP),	
which governs the pathways followed by data packets on the Internet. They also affect the 
Dynamic	Host	Configuration	Protocol	(DHCP),	which	roaming	computers	utilize	to	find	network	
resources	when	they	are	connected	in	new	locations.	For	example,	suppose	you	are	sitting	in	
your	 favorite	 coffee	 shop	and	want	 to	open	a	 connection	 to	 the	 shop’s	wireless	 router.	Your	
laptop	broadcasts	a	query	for	the	server	to	identify	itself,	and	DHCP	directs	that	your	laptop	
will	accept	the	first	response	it	gets	as	legitimate.	If	a	hacker	sitting	across	the	room	can	fire	off	
a	reply	before	the	coffee	shop’s	router	does,	your	laptop	will	be	connected	to	his.	Everything	
will	seem	normal	to	you,	but	his	computer	can	record	all	your	communications	and	covertly	
direct you to malicious sites at will.

Such vulnerabilities imperil more than individuals and commercial institutions. Secure 
installations	in	the	government	offices	and	the	military	can	be	compromised	this	way,	too.	And	
indeed there have been cases in which these loopholes did allow data to be stolen and records 
to be altered.

How do we come to be in such a mess? The reasons are partly historical. Today’s protocols 
descend from ones developed 35 years ago when the Internet was still a research network. There 
was no need to safeguard the network against malicious entities. Now the Internet has opened up 
and	grown	explosively,	but	we	have	not	developed	inherently	stronger	security—the	protocols	
still take for granted that the billions of people and devices online are both competent and 
honest.	Nobody	ever	went	back	to	do	the	difficult	job	of	developing	inherently	stronger	security.

Fixing the Internet protocols will be a formidable challenge. Some improvements are relatively 
simple	to	imagine—for	example,	switching	to	identification	codes	that	use	more	than	16	bits—
but	would	involve	considerable	work	to	adopt	on	a	global	basis.	Techniques	for	authenticating	
that	messages	coming	from	the	proper	parties	are	well-developed,	but	those	technologies	are	
not necessarily fast enough to be embedded in all the routers on the Internet without bringing 
traffic	to	a	crawl	(or	forcing	prohibitive	investments	in	new	equipment).	Some	other	important	
kinds	of	protocol	 improvements	 still	need	 to	be	conceived.	Of	course,	an	essential	 feature	of	
any new protocol is that it can be implemented without seriously disrupting Internet operations 
in the process.

For	these	reasons	and	more,	in	its	February	2005	report,	the	President’s	Information	Technology	
Advisory	 Committee	 (PITAC),	 of	 which	 I	 was	 a	member,	 strongly	 recommended	 increased	
federal funding for basic research into cybersecurity. The Department of Homeland Security 
currently	devotes	only	one-tenth	of	1	percent	of	its	research	budget	to	this	concern.	DARPA	(the	
Defense	Advanced	Research	Projects	Agency)	used	to	fund	this	kind	of	work	more	generously	
but	 its	current	focus	is	more	narrowly	military	and	its	research	on	cybersecurity	 is	classified,	
limiting	the	amount	of	research	that	can	be	conducted	at	universities,	and	inhibiting	the	transfer	
of technology to industry. The National Science Foundation studies the problem but can only 
do	so	much.	And,	although	industry	takes	the	problem	seriously,	inadequate	profit	incentives	
discourage companies from aggressively developing broad-based solutions.
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Notes Even	once	better	protocols	are	in	hand,	convincing	the	world	to	accept	them	represents	its	own	
set	of	headaches.	No	central	governing	body	rules	the	Internet,	and	standards	bodies	have	been	
ineffective	at	getting	parties	to	adopt	adequate	security	specifications.	The	situation	is	further	
complicated by the fact that national governments differ in their views of how the Internet 
should	be	run,	and	many	key	Internet	players	argue	against	any	government	intervention	at	all.

What	 is	 clear	 is	 that	 cybersecurity	 deserves	 immediate,	 sustained	 attention.	As	 noted	 in	 the	
PITAC	report,	“the	 IT	 infrastructure	of	 the	U.S.	 is	highly	vulnerable	 to	 terrorist	and	criminal	
attacks. It is imperative that we take action before the situation worsens and the cost of inaction 
becomes even greater.”

Operating systems provide the fundamental mechanisms for securing 
computer	 processing.	 Since	 the	 1960s,	 operating	 systems	 designers	 have	
explored how to build “secure” operating systems.

9.3 Program Threats

Threats	originated	from	viruses,	which	are	strictly	speaking	programs	that	replicate	themselves	
without	your	knowledge.	The	 earliest	 known	viruses	were	 simply	 annoying,	 appearing	 as	 a	
MS-DOS	 program	 in	 folders	 of	 infected	 computers,	 transferred	 through	 floppy	 disks.	 They	
became	dangerous	when	these	viruses	started	to	spoof	and	infect	valid	files.	With	the	advent	
of	the	Internet,	viruses	further	evolved	into	worms	that	spread	through	networks.	Worms	not	
only	propagate	themselves,	but	also	“carry”	other	malicious	files	in	them,	such	as	Trojan	horses,	
which	drop	malicious	files	in	computers.	

Threats make affected the system.

9.3.1 Types of Threats
Worms: This malicious program category largely exploits operating system vulnerabilities to 
spread	itself.	The	class	was	named	for	the	way	the	worms	crawl	from	computer	to	computer,	
using networks and e-mail. This feature gives many worms a rather high speed in spreading 
themselves.

Viruses:	Programs	that	infected	other	programs,	adding	their	own	code	to	them	to	gain	control	
of	 the	 infected	 files	when	 they	 are	 opened.	 This	 simple	 definition	 explains	 the	 fundamental	
action performed by a virus-infection.

Trojans: Programs	that	carry	out	unauthorized	actions	on	computers,	such	as	deleting	information	
on	drives,	making	the	system	hang,	stealing	confidential	information,	etc.	This	class	of	malicious	
program	 is	not	a	virus	 in	 the	 traditional	 sense	of	 the	word	 (meaning	 it	does	not	 infect	other	
computers	or	data).	Trojans	cannot	break	into	computers	on	their	own	and	are	spread	by	hackers,	
who disguise them as regular software. The damage that they incur can exceed that done by 
traditional virus attacks by several fold.

Spyware: Software that collects information about a particular user or organization without 
their	knowledge.	You	might	never	guess	that	you	have	spyware	installed	on	your	computer.

Riskware: Potentially dangerous applications include software that has not malicious features 
but could form part of the development environment for malicious programs or could be used 
by hackers as auxiliary components for malicious programs.

Rootkits: Utilities used to conceal malicious activity. They mask malicious programs to keep 
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Notesanti-virus programs from detecting them. Rootkits modify the operating system on the computer 
and alter its basic functions to hide its own existence and actions that the hacker undertakes 
on the infected computer.

  Give the basic security task used in operating system.

9.3.2 System Threats

In	 all	 the	 device	 drivers	 considered	 so	 far	 in	 the	 book,	we	 have	 not	 been	 overly	 concerned	
about	the	thread	context	in	which	our	driver	subroutines	have	executed.	Most	of	the	time,	our	
subroutines	run	in	an	arbitrary	thread	context,	which	means	we	cannot	block	and	cannot	directly	
access	user-mode	virtual	memory.	Some	devices	are	very	difficult	to	program	when	faced	with	
the	first	set	of	these	constraints.

Some devices are best handled by polling. A device that can not asynchronously interrupt the 
CPU,	for	example,	needs	to	be	interrogated	from	time-to-time	to	check	its	state.	In	other	cases,	
the natural way to program the device might be to perform an operation in steps with waits 
in	between.	A	floppy	disk	driver,	 for	 example,	 goes	 through	a	 series	 of	 steps	 to	perform	an	
operation.	In	general,	the	driver	has	to	command	the	drive	to	spin	upto	speed,	wait	for	the	spin-
up	to	occur,	commence	the	transfer,	wait	for	a	short	while,	and	then	spin	the	drive	back	down.	
You	could	design	a	driver	that	operates	as	a	finite	state	machine	to	allow	a	callback	function	to	
properly	sequence	operations.	It	would	be	much	easier,	though,	if	you	could	just	insert	event	
and timer waits at the appropriate spots of a straight-line program.

Dealing	with	situations	that	require	you	to	periodically	interrogate	a	device	is	easy	with	the	help	
of a system thread belonging to the driver. A system thread is a thread that operates within the 
overall	umbrella	of	a	process	belonging	to	the	operating	system	as	a	whole.	In	the	next	section,	
we will discuss  about system threads that execute solely in kernel mode and the mechanism by 
which	you	create	and	destroy	your	own	system	threads.	Next,	we	will	discuss	about	an	example	
that how to use a system thread to manage a polled input device.

9.3.3 Network Threats
Trojan	horses,	worms	and	DoS	(denial	of	service)	attacks	are	often	maliciously	used	to	consume	
and	destroy	the	resources	of	a	network.	Sometimes,	misconfigured	servers	and	hosts	can	serve	
as network security threats as they unnecessarily consume resources. In order to properly 
identify	and	deal	with	probable	threats,	one	must	be	equipped	with	the	right	tools	and	security	
mechanisms.	In	this	article,	we	will	discuss	some	of	the	best	practices	for	identifying	and	dealing	
with such threats.

9.3.4 Types of Network Threats
Most	experts	classify	network	security	threats	in	two	major	categories—logic	attacks	and	resource	
attacks. Logic attacks are known to exploit existing software bugs and vulnerabilities with the 
intent of crashing a system. Some use this attack to purposely degrade network performance 
or grant an intruder access to a system.

One	such	exploit	is	the	Microsoft	PnP	MS05-039	overflow	vulnerability.	This	attack	involves	an	
intruder	exploiting	a	stack	overflow	in	the	Windows	PnP	(plug	and	play)	service	and	can	be	
executed on the Windows 2000 system without a valid user account. Another example of this 
network security threat is the infamous ping of death where an attacker sends ICMP packets 
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Notes to a system that exceeds the maximum capacity. Most of these attacks can be prevented by 
upgrading	vulnerable	software	or	filtering	specific	packet	sequences.

Resource attacks are the second category of network security threats. These types of attacks are 
intended to overwhelm critical system resources such as CPU and RAM. This is usually done 
by	 sending	multiple	 IP	packets	 or	 forged	 requests.	An	attacker	 can	 launch	a	more	powerful	
attack by compromising numerous hosts and installing malicious software. The result of this 
kind	of	exploit	is	often	referred	to	zombies	or	botnet.	The	attacker	can	then	launch	subsequent	
attacks from thousands of zombie machines to compromise a single victim. The malicious 
software normally contains code for sourcing numerous attacks and a standard communications 
infrastructure to enable remote control.

9.3.4.1 Seek and Destroy
The	first	 step	 in	 training	your	staff	 to	 identify	network	security	 threats	 is	achieving	network	
visibility. This concept is all rather simple as you cannot defend against or eradicate what you can 
not see. This level of network visibility can be achieved with existing features found in devices 
you	already	have.	Additionally,	you	can	create	strategic	diagrams	to	fully	illustrate	packet	flows	
and where exactly within the network you may be able to implement security mechanisms to 
properly identify and mitigate potential threats.

You	must	establish	a	baseline	of	normal	network	activity	and	patterns	in	order	to	detect	abnormal	
activity and potential network security threats. Mechanisms like NetFlow can be integrated within 
your infrastructure to help effectively identify and classify problems. Prior to implementing such 
a	system,	you	should	perform	some	sort	of	traffic	analysis	to	fully	comprehend	the	rates	and	
patterns	of	general	 traffic.	 In	a	 successful	detection	system,	 learning	 is	achieved	over	a	huge	
interval which includes the peaks and valleys of network activity.

The best defense against common network security threats involves devising a system that is 
adhered	to	by	everyone	in	the	network.	Furthermore,	you	can	strengthen	your	level	of	security	
with reliable software that makes this process much easier.

No program or operating system is built perfectly secured unless your 
computer is disconnected from the Internet or unplugged from any connection.

Self Assessment

Multiple choice questions:

	 1.	 A	stored	procedure	is	a	precompiled	sequence	of	Transact-SQL	commands	in	the	.................... 
that are executed by calling the procedure within another SQL command or from the 
database driver.

	 (a)	 database	 (b)	 software

	 (c)	 application	 (d)	 None	of	these

 2. ....................	from	viruses,	which	are	strictly	speaking	programs	that	replicate	themselves	
without your knowledge.

	 (a)	 Database	 (b)	 Robotics

	 (c)	 Simulation	 (d)	 Threats	originated
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 3. Virus programs infected other programs by adding their own code to them.

 4. Rootkit is a program that carry out unauthorized action on computers.

9.4 Cryptography

Does increased security provide comfort to paranoid people? Or does security provide 
some very basic protections that we are naive to believe that we do not need? During 
this time when the Internet provides essential communication between millions of people 
and	is	being	increasingly	used	as	a	tool	for	commerce,	security	becomes	a	tremendously	
important issue to deal with.

There	are	many	aspects	to	security	and	many	applications,	ranging	from	secure	commerce	
and payments to private communications and protecting passwords. One essential aspect for 
secure	communications	is	that	of	cryptography,	which	is	the	focus	of	this	chapter.	But	it	is	
important	to	note	that	while	cryptography	is	necessary	for	secure	communications,	it	is	not	
by	itself	sufficient.	The	reader	is	advised,	then,	that	the	topics	covered	in	this	chapter	only	
describe	the	first	of	many	steps	necessary	for	better	security	in	any	number	of	situations.

This	paper	has	 two	major	purposes.	The	first	 is	 to	define	some	of	 the	 terms	and	concepts	
behind	basic	cryptographic	methods,	and	to	offer	a	way	to	compare	the	myriad	cryptographic	
schemes in use today. The second is to provide some real examples of cryptography in use 
today. 

No	mention	is	made	here	about	pre-computerized	crypto	schemes,	the	difference	between	a	
substitution	and	transposition	cipher,	cryptanalysis,	or	other	history.	

9.4.1 The Purpose of Cryptography

Cryptography is the science	of	writing	in	secret	code	and	is	an	ancient	art;	the	first	documented	
use of cryptography in writing dates back to circa 1900 B.C. when an Egyptian scribe used 
non-standard hieroglyphs in an inscription. Some experts argue that cryptography appeared 
spontaneously	sometime	after	writing	was	invented,	with	applications	ranging	from	diplomatic	
missives	 to	 war-time	 battle	 plans.	 It	 is	 no	 surprise,	 then,	 that	 new	 forms	 of	 cryptography	
came soon after the widespread development of computer communications. In data and 
telecommunications,	 cryptography	 is	 necessary	 when	 communicating	 over	 any	 untrusted	
medium,	which	includes	just	about	any	network,	particularly	the	Internet.

Within	 the	 context	 of	 any	 application-to-application	 communication,	 there	 are	 some	 specific	
security	requirements,	including:

	 •	 Authentication:	The	process	of	proving	one’s	identity.	(The	primary	forms	of	host-to-host	
authentication	on	the	Internet	today	are	name-based	or	address-based,	both	of	which	are	
notoriously	weak.)

	 •	 Privacy/Confidentiality: Ensuring that no one can read the message except the intended 
receiver.

	 •	 Integrity: Assuring the receiver that the received message has not been altered in any way 
from the original.

	 •	 Non-repudiation: A mechanism to prove that the sender really sent this message.
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Notes Cryptography,	 then,	not	only	protects	data	 from	 theft	or	 alteration,	but	 can	also	be	used	 for	
user	authentication.	There	are,	in	general,	three	types	of	cryptographic	schemes	typically	used	
to	accomplish	these	goals—secret	key	(or	symmetric)	cryptography,	public-key	(or	asymmetric)	
cryptography,	 and	 hash	 functions,	 each	 of	which	 is	 described	 below.	 In	 all	 cases,	 the	 initial	
unencrypted	data	is	referred	to	as	plaintext.	It	is	encrypted	into	ciphertext,	which	will	in	turn	
(usually)	be	decrypted	into	usable	plaintext.

In	many	of	the	descriptions	below,	two	communicating	parties	will	be	referred	to	as	Alice	and	
Bob;	 this	 is	 the	 common	nomenclature	 in	 the	 crypto	field	 and	 literature	 to	make	 it	 easier	 to	
identify	 the	 communicating	parties.	 If	 there	 is	 a	 third	or	 fourth	party	 to	 the	 communication,	
they	will	be	referred	to	as	Carol	and	Dave.	Mallory	is	a	malicious	party,	Eve	is	an	eavesdropper,	
and Trent is a trusted third party.

9.4.2 Types of Cryptographic Algorithms
There	 are	 several	ways	 of	 classifying	 cryptographic	 algorithms.	 For	 purposes	 of	 this	 paper,	
they will be categorized based on the number of keys that are employed for encryption and 
decryption,	and	further	defined	by	their	application	and	use.	The	three	types	of	algorithms	that	
will	be	discussed	are	(Figure	9.1):	

	 •	 Secret Key Cryptography (SKC): Uses a single key for both encryption and decryption. 

	 •	 Public Key Cryptography (PKC): Uses one key for encryption and another for decryption. 

	 •	 Hash Functions: Uses a mathematical transformation to irreversibly “encrypt” information. 

Figure 9.1: Three Types of Cryptography—Secret-key, Public key and Hash Function

Plaintext Ciphertext Plaintext

(a) Secret key (symmetric) cryptography. SKC uses a single key for both

encryption and decryption.

Plaintext Ciphertext Plaintext

(b) Public key (asymmetric) cryptography. PKC uses to key, one for

encryption and the other for decryption.

Hash function
Plaintext Ciphertext

(c) Has function (one-way cryptography). Hash functions have no key

since the plaintext is not recoverable from the cipher text.
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Notes9.4.2.1 Secret Key Cryptography
With	 secret	 key	 cryptography,	 a	 single	 key	 is	 used	 for	 both	 encryption	 and	 decryption.	 As	
shown	in	Figure	9.1,	the	sender	uses	the	key	(or	some	set	of	rules)	to	encrypt	the	plaintext	and	
sends	the	ciphertext	to	the	receiver.	The	receiver	applies	the	same	key	(or	rule	set)	to	decrypt	
the	message	and	recover	the	plaintext.	Because	a	single	key	is	used	for	both	functions,	secret	
key cryptography is also called symmetric encryption.

With	this	form	of	cryptography,	it	 is	obvious	that	the	key	must	be	known	to	both	the	sender	
and	the	receiver;	that,	in	fact,	is	the	secret.	The	biggest	difficulty	with	this	approach,	of	course,	
is the distribution of the key.

Secret key cryptography schemes are generally categorized as being either stream ciphers or 
block	 ciphers.	 Stream	ciphers	operate	on	a	 single	bit	 (byte	or	 computer	word)	 at	 a	 time	and	
implement some form of feedback mechanism so that the key is constantly changing. A block 
cipher is so-called because the scheme encrypts one block of data at a time using the same key 
on	each	block.	In	general,	the	same	plaintext	block	will	always	encrypt	to	the	same	ciphertext	
when using the same key in a block cipher whereas the same plaintext will encrypt to different 
ciphertext in a stream cipher.

Stream	ciphers	come	in	several	flavors	but	two	are	worth	mentioning	here.	Self-synchronizing	
stream ciphers calculate each bit in the keystream as a function of the previous n bits in the 
keystream. It is termed “self-synchronizing” because the decryption process can stay synchronized 
with the encryption process merely by knowing how far into the n-bit keystream it is. One 
problem is error propagation; a garbled bit in transmission will result in n garbled bits at the 
receiving side. Synchronous stream ciphers generate the keystream in a fashion independent of 
the message stream but by using the same keystream generation function at sender and receiver. 
While	stream	ciphers	do	not	propagate	transmission	errors,	they	are,	by	their	nature,	periodic	
so that the keystream will eventually repeat.

Block	ciphers	can	operate	in	one	of	several	modes;	the	following	four	are	the	most	important:

	 •	 Electronic	Codebook	(ECB)	mode	is	the	simplest,	most	obvious	application—the	secret	key	
is used to encrypt the plaintext block to form a ciphertext block. Two identical plaintext 
blocks,	 then,	will	always	generate	 the	same	ciphertext	block.	Although	this	 is	 the	most	
common	mode	of	block	ciphers,	it	is	susceptible	to	a	variety	of	brute-force	attacks.

	 •	 Cipher	Block	Chaining	(CBC)	mode	adds	a	feedback	mechanism	to	the	encryption	scheme.	
In	CBC,	 the	 plaintext	 is	 exclusively-ORed	 (XORed)	with	 the	 previous	 ciphertext	 block	
prior	to	encryption.	In	this	mode,	two	identical	blocks	of	plaintext	never	encrypt	to	the	
same ciphertext.

	 •	 Cipher	Feedback	 (CFB)	mode	 is	 a	block	 cipher	 implementation	as	a	 self-synchronizing	
stream	cipher.	CFB	mode	allows	data	to	be	encrypted	in	units	smaller	than	the	block	size,	
which might be useful in some applications such as encrypting interactive terminal input. 
If	we	were	using	1-byte	CFB	mode,	for	example,	each	incoming	character	is	placed	into	
a	shift	register	 the	same	size	as	 the	block,	encrypted,	and	the	block	transmitted.	At	 the	
receiving	side,	the	ciphertext	is	decrypted	and	the	extra	bits	in	the	block	(i.e.,	everything	
above	and	beyond	the	one	byte)	are	discarded.

	 •	 Output	Feedback	(OFB)	mode	is	a	block	cipher	implementation	conceptually	similar	to	a	
synchronous stream cipher. OFB prevents the same plaintext block from generating the 
same ciphertext block by using an internal feedback mechanism that is independent of 
both the plaintext and ciphertext bitstreams.
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Notes The Cryptography API contains functions that allow applications to encrypt 
or	digitally	sign	data	in	a	flexible	manner,	while	providing	protection	for	the	
user’s sensitive private key data.

9.5 User Authentication

When	things	go	wrong	it	is	useful	to	be	able	to	identify	the	people	involved,	both	the	possible	
victims and those who may have caused the problem. This is as true on computer networks as 
anywhere else. The aim should be to have all users of JANET identify themselves whenever 
they	 are	 on	 the	 network,	 but	 in	 a	 few	 situations	 the	 cost	 or	 inconvenience	 of	 achieving	 this	
may	be	unreasonable.	Why	identify	users?	The	JANET	Security	Policy	requires	that	connected	
organizations	 exercise	 ‘responsibility	 about	 giving,	 controlling	 and	 accounting	 for	 access	 to	
JANET’.	The	Policy	does	not	mandate	that	everyone	accessing	the	network	must	log	on	to	it,	
but	lets	each	organization	to	decide	how	to	control	network	access	responsibly.	Likewise,	the	
law of the land and the expectations of society do not insist that every action be traceable to an 
individual.	There	is	no	legal	requirement	to	identify	or	record	every	logon,	e-mail,	web	request	
or mouse click. However activity on a network can almost always be traced to an organization 
that owns an Internet domain or address. Organizations are expected to behave responsibly and 
will	be	blamed	if	they	are	not	seen	to	do	so.	For	example:

	 •	 JISC	(Joint	Information	Systems	Committee)	may,	in	extreme	cases,	suspend	or	withdraw	
the right to connect to JANET if an organization’s behaviour represents a serious threat 
to other users of the network;

	 •	 Other	users	may	be	reluctant	to	accept	communications	from	an	organization	that	does	
not	deal	promptly	 and	 effectively	with	problems,	 for	 example	 some	 JANET	 sites	have	
found themselves on blacklists that prevent them exchanging e-mail with others;

	 •	 In	a	 few	circumstances,	 the	courts	may	fine	an	organization	or	 imprison	 its	directors	 if	
crimes	were	committed	as	a	result	of	 their	negligence,	 in	other	words,	 if	 they	have	not	
taken reasonable care to avoid causing foreseeable harm;

	 •	 More	often,	courts	may	require	organizations	to	pay	damages	to	individuals	or	businesses	
who have suffered loss or harm because of their negligence;

	 •	 Society	and	the	press	may	publicly	blame	an	organization	that	fails	to	meet	the	standards	
expected	of	it.	JISC’s	Legal	Information	Service	(JISCLegal)	publishes	an	article	on	the	legal	
liability	of	universities	and	colleges	at—Organizations	should	consider	the	risk	of	misuse	
when	deciding	if	any	groups	of	users	and	systems	do	not	need	individual	identification.	
An individual account should only take a few minutes to set up. If the user only needs it 
for a few seconds then creating and deleting an account may be an unreasonable overhead. 
However,	 the	 convenience	of	not	 setting	up	and	managing	 individual	accounts	 cannot	
justify	 a	 significantly	 increased	 risk	of	harm	 to	others	 and	 the	organization.	Harm	can	
be	caused	by	hacking,	malicious	messages,	downloading	illegal	material	and	many	other	
types	of	activity,	the	scope	for	which	will	normally	be	less	where	an	individual’s	access	
is	 limited	to	a	few	systems,	rather	than	the	whole	Internet.	However,	 if	critical	 internal	
systems may be accessed then the potential harm should not be underestimated. How to 
identify users the most common way for individuals to identify themselves is to log on 
when	they	sit	down	at	a	terminal;	however,	this	is	not	the	only	option.	If	users	have	to	
prove their identity to get into a workstation room or borrow a laptop then a record can 
be kept of who used which computer when. Some organizations let anyone see a limited 
set	of	web	pages	but	require	a	login	to	gain	access	to	other	sites	or	services.	However	they	
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Notesare	collected,	records	linking	a	user	to	his	or	her	IP	address	should	be	kept	long	enough	
for misuse to be reported and investigated. Staff and students of the organization should 
have	their	own	local	accounts.	Visitors	may	also	have	local	accounts,	or	authorized	staff	
may be enabled to set up daily accounts for their guests. Visitors from other organizations 
may be authenticated by their home organization if both organizations are members of 
JANET	Roaming	or	another	partner	in	the	teReNA	(trans-European	Research	and	education	
Network	Association)	eduroam	federation.

Even	if	individual	identities	are	not	checked,	access	to	the	JANET	network	must	still	be	limited	
to those who are known to the organization. Knowingly providing network access to strangers 
is likely to be a breach of JANET policies and to be considered irresponsible by other users of the 
network.	Access	may	be	limited	by	physical	barriers,	although	this	does	not	work	for	wireless	
networks,	or	by	providing	temporary	access	codes	to	guests	such	as	conference	delegates.

Organizations may wish to arrange their networks so that these visitors do not accidentally 
obtain access to internal resources controlled or licensed by IP address.

Organizations	that	provide	access	to	networks,	and	users	who	benefit	from	that	access,	should	
regard	it	as	normal	to	require	an	individual	identity.	Systems	for	establishing	electronic	identity	
are	becoming	easier	to	use	and	manage.	In	a	few	situations	there	may	be	a	justification	for	not	
checking and recording identity but this should only be done after a rational assessment of the 
risks	and	benefits.

  Explain how to change the user authentication password in the computer.

9.5.1 Implementation of Defenses
Several layers of security can be built on the top of the database. This article primarily focuses 
on use of encryption and stored procedures at the database level. While the use of encryption 
techniques	prevents	eavesdropping	and	interception	of	the	traffic	at	the	network	level,	the	use	
of stored procedures protects against attacks involving tampering of data sent to the server.

9.5.1.1 First Layer of Defense (Encryption)
When	 encryption	 is	 used,	 the	 traffic	 between	 the	 database	 driver	 and	 the	 database	 server	
is	 encrypted.	This	makes	 it	difficult	 for	 the	 attackers	 to	 intercept	 the	data	 in	 transit,	 thereby	
preventing successful execution of several attacks such as injection based attacks on two-tier 
thick client applications.

The	 two	most	used	 encryption	 techniques	 are	 Internet	Protocol	 Security	 (IPSEC)	 and	Secure	
Socket	Layer	(SSL).	Many	of	the	latest	versions	of	the	databases	support	both	types	of	encryption	
techniques.	While	IPSEC	encryption	works	on	the	network	layer,	SSL	encryption	works	at	the	
transport	 layer	 leading	 to	 an	 easier	 implementation.	 Currently,	 SSL	 encryption	 is	 the	more	
popular one due to its ease of implementation. Let us see a few examples of using SSL encryption 
on popular databases.

9.5.1.2 The SSL Handshake
When	a	client	(database	driver)	initiates	a	connection	to	the	server	over	SSL,	a	SSL	handshake	
occurs	between	the	client	and	server.	During	this	handshake,	both	the	client	and	the	server	agree	
upon	a	specific	cipher	suite	that	specifies	the	encryption	algorithm	to	be	used.	Then	the	server	
authenticates	itself	to	the	client	by	providing	its	certificate	signed	by	a	trusted	CA.	Later,	both	
the client and server generate a session key and exchange it using a public key cryptography. 
Any further communication happens in an encrypted form.
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Here,	we	consider	SQL	Server	2000	for	 the	discussion.	SQL	Server	uses	Tabular	Data	Stream	
(TDS)	packets	 for	exchanging	commands	with	 its	 client	 counterparts.	These	TDS	packets	are	
handled	by	Net	Library	protocols,	which	enable	communication	between	the	SQL	Server	and	
its	clients	over	a	network.	In	SQL	Server	2000,	these	Net	Libraries	can	be	configured	using	SQL	
Server	Network	Utility	for	Secure	Socket	Layer	encryption	that	uses	a	Super	Socket	Net	Library,	
which aids other Net Libraries. 

SSL encryption can be implemented between SQL Server 2000 and its clients by obtaining a 
certificate	from	an	appropriate	Certificate	Authority	and	installing	it	on	the	server.	Then	all	the	
clients	need	to	be	configured	to	trust	the	issuing	CA.	Finally,	the	protocol	encryption	has	to	be	
forced using the Server Network Utility. A detailed description of Net Libraries and implementing 
SSL over them is available here.

Figure 9.2: SSL Tunnel

9.5.1.4 SSL Encryption in Oracle

Oracle database uses various features of the Oracle Advanced Security option to provide security 
to the enterprise networks. The SSL feature of the Oracle Advanced Security option enables a 
secure	communication	between	Oracle	Database	server	and	client	by	encrypting	the	traffic.	In	
addition,	it	also	provides	authentication	of	server	or	client	or	both.	This	SSL	functionality	can	
also	be	combined	with	other	authentication	methods	supported	by	Oracle	Advanced	Security,	
thereby using the SSL encryption feature alone. 

9.5.1.5 Securing Oracle Network Traffic

Oracle	provides	a	platform	independent	networking	infrastructure	for	accessing	databases,	
which is called Net8. This Net8 product with the Oracle Advanced Security option has a 
feature	 to	use	Secure	Shell	 (SSH)	protocol	 to	 secure	 the	 traffic	between	 the	client	and	 the	
server.	Though	this	mechanism	protects	against	eavesdropping,	it	does	not	protect	against	
the attacks discussed in the previous article as the database server and database driver are 
separated from the SSH tunnel. 
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A	 stored	 procedure	 is	 a	 precompiled	 sequence	 of	 Transact-SQL	 commands	 in	 the	 database	
that are executed by calling the procedure within another SQL command or from the database 
driver.	It	also	significantly	reduces	the	amount	of	data	being	transmitted	between	the	database	
server and the web server.

User	defined	stored	procedures	can	be	used	to	perform	several	activities	at	the	database	such	as	
authentication and authorization checks. A stored procedure can also be used to manage user 
sessions by using authentication tokens. The following diagram explains how a stored procedure 
can be used for authentication and authorization purposes.

Figure 9.3: Authentication and Authorization Purposes

In	the	above	diagram,	UDSP	Login	is	the	stored	procedure	used	to	perform	authentication	checks	
and UDSP Execute is the stored procedure used to perform authorization checks.

Authentication checks

When	a	user	submits	the	login	credentials,	the	application	sends	it	to	the	database	in	an	SQL	
query.	The	SQL	query	calls	the	stored	procedure	UDSP	Login,	which	verifies	the	credentials	and	
if correct returns a randomly created token. The database server responds with authentication 
success along with the token. This token is mapped with the username used for login in a 
database	table	and	is	used	as	a	Session	ID	in	a	web	application.	Incase	the	authentication	fails,	
the database returns only an authentication failure message. This protects the application from 
various authentication attacks.

Authorization checks

After	the	user	has	logged	in	to	the	application,	all	transaction/execution	requests	contains	the	
token	created	at	the	time	of	authentication.	The	SQL	query	request	calls	the	UDSP_Execute	stored	
procedure,	which	validates	the	request	by	using	the	token	to	identify	the	user	mapped	to	the	
token and the rights assigned to that user. This protects the application against unauthorized 
access and privilege escalation attacks.
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Use	of	stored	procedures	also	has	several	other	security	implications.	By	using	stored	procedures,	
a	user	can	be	restricted	to	access	only	specific	rows	and	columns	of	a	database	table.	This	enables	
effective management of user permissions across all the database tables. This database journal 
article on SQL Stored Procedures discusses the implications of using them. 

9.5.1.7 Additional Layer of Defense (Database Security Patches)

Database	vendors	release	periodic	security	patches	to	fix	several	software	bugs	in	the	database	
left open during development of the particular version. These patches should be installed on 
the database servers as and when they are available. This reduces the chances of the database 
being exploited through the known vulnerabilities. Vendors have their own periodicity and 
distribution mechanism for security patches. Oracle uses its Security Technology Center to 
announce Security Alerts and Patches.

There is an article series published in the database journal that explains the importance and 
installation	procedures	for	database	patches.	One	of	the	articles,	describes	an	SQL	Injection	
error	in	the	Oracle	database	and	the	patch	released	to	fix	the	error.	Similarly,	several	patches	
address	certain	specific	errors	that	may	lead	to	compromise	of	the	database	through	different	
applications	used	to	access	the	database.	Hence,	it	is	essential	to	establish	several	layers	of	
security on the database to ensure it is safe and secure from attacks.

9.6 Firewall

A firewall is a part of a computer system or network that is designed to block unauthorized 
access while permitting authorized communications. It is a device or set of devices that is 
configured	 to	permit	 or	deny	network	 transmissions	based	upon	a	 set	 of	 rules	 and	other	
criteria.

Firewalls	 can	 be	 implemented	 in	 either	 hardware	 or	 software,	 or	 a	 combination	 of	 both.	
Firewalls	are	frequently	used	to	prevent	unauthorized	Internet	users	from	accessing	private	
networks	connected	 to	 the	 Internet,	especially	 intranets.	All	messages	entering	or	 leaving	
the	 intranet	pass	 through	the	firewall,	which	 inspects	each	message	and	blocks	those	that	
do	not	meet	the	specified	security	criteria.

There	are	several	types	of	firewall	techniques:

 1. Packet Filter:	Packet	filtering	inspects	each	packet	passing	through	the	network	and	
accepts	or	rejects	it	based	on	user-defined	rules.	Although	difficult	to	configure,	it	is	
fairly	effective	and	mostly	transparent	to	its	users.	It	is	susceptible	to	IP	spoofing.

 2. Application Gateway: Applies	security	mechanisms	to	specific	applications,	such	as	FTP	
and	Telnet	servers.	This	is	very	effective,	but	can	impose	a	performance	degradation.

 3. Circuit-level Gateway: Applies security mechanisms when a TCP or UDP connection is 
established.	Once	the	connection	has	been	made,	packets	can	flow	between	the	hosts	
without further checking.
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 4. Proxy Server: Intercepts all messages entering and leaving the network. The proxy 

server effectively hides the true network addresses.

The	term	firewall/fire	block	originally	meant	a	wall	to	confine	a	fire	or	potential	fire	within	
a	 building;	 cf.	 firewall	 (construction).	 Later	 uses	 refer	 to	 similar	 structures,	 such	 as	 the	
metal sheet separating the engine compartment of a vehicle or aircraft from the passenger 
compartment.

	 •	 The	Morris	Worm	spread	itself	through	multiple	vulnerabilities	in	the	machines	of	the	
time.	Although	 it	was	 not	malicious	 in	 intent,	 the	Morris	Worm	was	 the	 first	 large	
scale attack on Internet security; the online community was neither expecting an attack 
nor prepared to deal with one.

Figure 9.4: Firewall Window

9.6.1 First Generation: Packet Filters
The	 first	 paper	 published	 on	 firewall	 technology	was	 in	 1988,	when	 engineers	 from	Digital	
Equipment	Corporation	(DEC)	developed	filter	systems	known	as	packet	filter	firewalls.	This	
fairly	 basic	 system	was	 the	 first	 generation	 of	what	 became	 a	 highly	 evolved	 and	 technical	
internet	security	feature.	At	AT&T	Bell	Labs,	Bill	Cheswick	and	Steve	Bellovin	were	continuing	
their	research	in	packet	filtering	and	developed	a	working	model	for	their	own	company	based	
on	their	original	first	generation	architecture.

This	type	of	packet	filtering	pays	no	attention	to	whether	a	packet	is	part	of	an	existing	stream	
of	traffic	(i.e.	it	stores	no	information	on	connection	“state”).	Instead,	it	filters	each	packet	based	
only	on	information	contained	in	the	packet	itself	(most	commonly	using	a	combination	of	the	
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number).

TCP	and	UDP	protocols	 constitute	most	 communication	over	 the	 Internet,	 and	because	TCP	
and	UDP	traffic	by	convention	uses	well	known	ports	for	particular	types	of	traffic,	a	“stateless”	
packet	 filter	 can	 distinguish	 between,	 and	 thus	 control,	 those	 types	 of	 traffic	 (such	 as	 web	
browsing,	remote	printing,	email	transmission,	file	transfer),	unless	the	machines	on	each	side	
of	the	packet	filter	are	both	using	the	same	non-standard	ports.

Packet	filtering	firewalls	work	mainly	on	the	first	three	layers	of	the	OSI	reference	model,	which	
means	most	of	the	work	is	done	between	the	network	and	physical	 layers,	with	a	 little	bit	of	
peeking	into	the	transport	layer	to	figure	out	source	and	destination	port	numbers.	When	a	packet	
originates	from	the	sender	and	filters	through	a	firewall,	the	device	checks	for	matches	to	any	
of	the	packet	filtering	rules	that	are	configured	in	the	firewall	and	drops	or	rejects	the	packet	
accordingly.	When	the	packet	passes	through	the	firewall,	 it	filters	 the	packet	on	a	protocol/
port	number	basis	(GSS).	For	example,	if	a	rule	in	the	firewall	exists	to	block	telnet	access,	then	
the	firewall	will	block	the	IP	protocol	for	port	number	23.

9.6.2 Second Generation: Application Layer

The	 key	 benefit	 of	 application	 layer	 filtering	 is	 that	 it	 can	 “understand”	 certain	 applications	
and	protocols	(such	as	File	Transfer	Protocol,	DNS,	or	web	browsing),	and	it	can	detect	 if	an	
unwanted protocol is sneaking through on a non-standard port or if a protocol is being abused 
in any harmful way.

An	application	firewall	 is	much	more	 secure	 and	 reliable	 compared	 to	packet	filter	firewalls	
because	it	works	on	all	seven	layers	of	the	OSI	model,	from	the	application	down	to	the	physical	
Layer.	This	is	similar	to	a	packet	filter	firewall	but	here	we	can	also	filter	information	on	the	basis	
of	content.	Good	examples	of	application	firewalls	are	MS-ISA	(Internet	Security	and	Acceleration)	
server,	McAfee	Firewall	Enterprise	&	Palo	Alto	PS	Series	firewalls.	An	application	firewall	can	
filter	higher-layer	protocols	such	as	FTP,	Telnet,	DNS,	DHCP,	HTTP,	TCP,	UDP	and	TFTP	(GSS).	
For	example,	if	an	organization	wants	to	block	all	the	information	related	to	“foo”	then	content	
filtering	can	be	enabled	on	the	firewall	to	block	that	particular	word.	Software-based	firewalls	
(MS-ISA)	 are	much	 slower	 than	 hardware	 based	 stateful	 firewalls	 but	 dedicated	 appliances	
(McAfee	&	Palo	Alto)	provide	much	higher	performance	levels	for	Application	Inspection.

In	2009/2010,	the	focus	of	the	most	comprehensive	firewall	security	vendors	turned	to	expanding	
the	list	of	applications	such	firewalls	are	aware	of	now	covering	hundreds	and	in	some	cases	
thousands	of	applications	which	can	be	identified	automatically.	Many	of	these	applications	can	
not	only	be	blocked	or	allowed	but	manipulated	by	the	more	advanced	firewall	products	to	allow	
only certain functionally enabling network security administrations to give users functionality 
without	 enabling	 unnecessary	 vulnerabilities.	 As	 a	 consequence	 these	 advanced	 version	 of	
the	“Second	Generation”	firewalls	are	being	referred	to	as	“Next	Generation”	and	surpass	the	
“Third	Generation”	firewall.	It	is	expected	that	due	to	the	nature	of	malicious	communications	
this trend will have to continue to enable organizations to be truly secure.

9.6.3 Third Generation: “Stateful” Filters

From	1989-1990,	three	colleagues	from	AT&T	Bell	Laboratories,	Dave	Presetto,	Janardan	Sharma,	
and	Kshitij	Nigam,	developed	the	third	generation	of	firewalls,	calling	them	circuit	level	firewalls.
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placement of each individual packet within the packet series. This technology is generally referred 
to as a stateful packet inspection as it maintains records of all connections passing through the 
firewall	and	 is	able	 to	determine	whether	a	packet	 is	 the	start	of	a	new	connection,	a	part	of	
an	existing	connection,	or	is	an	invalid	packet.	Though	there	is	still	a	set	of	static	rules	in	such	
a	firewall,	the	state	of	a	connection	can	itself	be	one	of	the	criteria	which	trigger	specific	rules.

This	type	of	firewall	can	actually	be	exploited	by	certain	Denial-of-service	attacks	which	can	fill	
the connection tables with illegitimate connections.

9.6.4 Subsequent Developments

In	1992,	Bob	Braden	and	Annette	DeSchon	at	the	University	of	Southern	California	(USC)	were	
refining	the	concept	of	a	firewall.	The	product	known	as	“Visas”	was	the	first	system	to	have	
a	visual	integration	interface	with	colours	and	icons,	which	could	be	easily	implemented	and	
accessed on a computer operating system such as Microsoft’s Windows or Apple’s MacOS. 
In	 1994,	 an	 Israeli	 company	 called	Check	Point	 Software	Technologies	built	 this	 into	 readily	
available software known as FireWall-1.

The	existing	deep	packet	inspection	functionality	of	modern	firewalls	can	be	shared	by	Intrusion-
prevention	systems	(IPS).

Currently,	the	Middlebox	Communication	Working	Group	of	the	Internet	Engineering	Task	Force	
(IETF)	is	working	on	standardizing	protocols	for	managing	firewalls	and	other	middleboxes.

Another axis of development is about integrating identity of users into Firewall rules. Many 
firewalls	provide	such	features	by	binding	user	identities	to	IP	or	MAC	addresses,	which	is	very	
approximate	and	can	be	easily	turned	around.	The	NuFW	firewall	provides	real	identity-based	
firewalling,	by	requesting	the	user’s	signature	for	each	connection.	authpf	on	BSD	systems	loads	
firewall	rules	dynamically	per	user,	after	authentication	via	SSH.

9.6.5 Types

There	are	several	classifications	of	firewalls	depending	on	where	the	communication	is	taking	
place,	where	the	communication	is	intercepted	and	the	state	that	is	being	traced.

9.6.5.1 Network Layer and Packet Filters

Network	layer	firewalls,	also	called	packet	filters,	operate	at	a	relatively	low	level	of	the	TCP/IP	
protocol	stack,	not	allowing	packets	to	pass	through	the	firewall	unless	they	match	the	established	
rule	set.	The	firewall	administrator	may	define	the	rules;	or	default	rules	may	apply.	The	term	
“packet	filter”	originated	in	the	context	of	BSD	operating	systems.

Network	 layer	 firewalls	 generally	 fall	 into	 two	 subcategories,	 stateful	 and	 stateless.	 Stateful	
firewalls	maintain	context	about	active	sessions,	and	use	that	“state	information”	to	speed	packet	
processing.	Any	existing	network	connection	can	be	described	by	several	properties,	including	
source	and	destination	IP	address,	UDP	or	TCP	ports,	and	the	current	stage	of	the	connection’s	
lifetime	(including	session	initiation,	handshaking,	data	transfer,	or	completion	connection).	If	
a	packet	does	not	match	an	existing	connection,	 it	will	be	evaluated	according	to	the	rule	set	
for new connections. If a packet matches an existing connection based on comparison with the 
firewall’s	state	table,	it	will	be	allowed	to	pass	without	further	processing.
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to	filter	 than	 to	 look	up	a	session.	They	may	also	be	necessary	 for	filtering	stateless	network	
protocols	that	have	no	concept	of	a	session.	However,	they	cannot	make	more	complex	decisions	
based on what stage communications between hosts have reached.

Modern	firewalls	can	filter	traffic	based	on	many	packet	attributes	like	source	IP	address,	source	
port,	destination	IP	address	or	port,	destination	service	like	WWW	or	FTP.	They	can	filter	based	
on	protocols,	TTL	values,	netblocks	of	originator,	of	the	source,	and	many	other	attributes.

Commonly	used	packet	filters	on	various	versions	of	Unix	are	 ipf	 (various),	 ipfw	 (FreeBSD/
Mac	OS	X),	pf	(OpenBSD,	and	all	other	BSDs),	iptables/ipchains	(Linux).

9.6.5.2 Application-layer

Application-layer	firewalls	work	on	the	application	level	of	the	TCP/IP	stack	(i.e.,	all	browser	
traffic,	or	all	telnet	or	ftp	traffic),	and	may	intercept	all	packets	traveling	to	or	from	an	application.	
They	block	other	packets	(usually	dropping	them	without	acknowledgment	to	the	sender).	In	
principle,	application	firewalls	can	prevent	all	unwanted	outside	traffic	from	reaching	protected	
machines.

On	 inspecting	 all	packets	 for	 improper	 content,	firewalls	 can	 restrict	 or	prevent	outright	 the	
spread of networked computer worms and Trojans. The additional inspection criteria can add 
extra latency to the forwarding of packets to their destination.

9.6.5.3 Proxies
A	proxy	device	 (running	 either	 on	dedicated	hardware	or	 as	 software	 on	 a	 general-purpose	
machine)	may	act	as	a	firewall	by	responding	to	input	packets	(connection	requests,	for	example)	
in	the	manner	of	an	application,	whilst	blocking	other	packets.

Proxies	make	tampering	with	an	internal	system	from	the	external	network	more	difficult	and	
misuse of one internal system would not necessarily cause a security breach exploitable from 
outside	the	firewall	(as	long	as	the	application	proxy	remains	intact	and	properly	configured).	
Conversely,	 intruders	may	hijack	a	publicly-reachable	 system	and	use	 it	 as	a	proxy	 for	 their	
own	purposes;	 the	proxy	then	masquerades	as	 that	system	to	other	 internal	machines.	While	
use	of	internal	address	spaces	enhances	security,	crackers	may	still	employ	methods	such	as	IP	
spoofing	to	attempt	to	pass	packets	to	a	target	network.

9.6.5.4 Network Address Translation
Main	article—Network	address	translation

Firewalls	often	have	network	address	translation	(NAT)	functionality,	and	the	hosts	protected	
behind	 a	 firewall	 commonly	 have	 addresses	 in	 the	 “private	 address	 range”,	 as	 defined	 in	
RFC 1918. Firewalls often have such functionality to hide the true address of protected hosts. 
Originally,	 the	NAT	function	was	developed	to	address	 the	 limited	number	of	 IPv4	routable	
addresses that could be used or assigned to companies or individuals as well as reduce both 
the amount and therefore cost of obtaining enough public addresses for every computer in an 
organization. Hiding the addresses of protected devices has become an increasingly important 
defense against network reconnaissance.

A	firewall	is	a	set	of	related	programs,	located	at	a	network	gateway	server,	
that protects the resources of a private network from users from other 
networks.
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Digital Signatures and Public Key Cryptography

Signatures	 on	 documents	 in	 the	 real	 world	 are	 the	 specialized	 or	 unique	 mark	 or	
impression made by the person with the help of ink. It is assumed that no two persons 
would have the same signature. The signature of a person on the document implies 

that the document is attributed to him. Signature are made by the person to authenticate the 
documents.	‘The	authenticity	of	many	legal,	financial	and	other	documents	is	determined	by	
the presence or absence of an authorized handwritten signature. For computerized message 
systems	 to	replace	 the	physical	medium	of	paper	and	 ink	documents,	a	solution	must	be	
found to the problem of authenticating the messages. The solution to this problem in digital 
media is called Digital Signature.

Relating Digital Signatures with Public Key Cryptography

As	we	have	seen	in	the	public	cryptographic	system,	a	sender	encrypts	the	message	using	
the receiver’s public key. The encrypted message is then decrypted by the receiver’s private 
key. Digital Signatures are based on the same concept but the difference is that the sender 
encrypts the message with its private key and the receiver decodes it with the sender’s public 
key. Thus the mechanism of public key cryptography is reversed in the implementation of 
digital signature system. The signer or sender encodes the document with his own private 
key. This allows anyone with his public key to decode the document. Since the documents can 
be	decoded	with	his	public	key,	and	he	is	the	only	one	who	has	access	to	the	corresponding	
private	key,	everyone	knows	that	he	really	did	encode	(sign)	it.	This	proves	the	authenticity	
and the integrity of the document.

The	sender	or	the	signer	(A)	of	a	document	(D)	will	sign	the	document	in	the	following	ways:

	 1.	 Encrypt	document	(D)	with	the	private	key	of	sender	(A).

	 2.	 Cipher	text	produced	in	the	step	1,	is	thus	the	signed	document	3.	

	 3.	 The	receiver	(B)	of	the	cipher	text	will	decrypt	it	using	the	public	key	of	sender	(A).

The sender publishes his public key to all the potential recipients of a document signed by 
him.	The	private	key	of	 the	 sender	 remains	with	 the	 sender	 thus,	only	he	will	be	able	 to	
encrypt the document with this key. Only the receiver who has the public key of the sender 
will	be	able	to	decrypt	the	document.	This	serves	the	purpose	of	a	digital	signature.	Therefore,	
we	may	define	the	digital	signature	as	follows:

Digital	Signature	represents	that	way	of	document	encryption	or	public	key	cryptography,	
in which the documents are encrypted by the private key of the signer and decrypted by 
the receiver using the public key of the signer.

 Questions:

 1. What are digital signatures?

 2. What is the relationship of Digital signatures with Public Key Cryptography?

Self Assessment

Fill in the blanks:

 5. .................... is the science of writing in secret code.

 6. Secret key cryptography uses a single key for both .................... and decryption.
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	 8.	 A	stored	procedure	is	a	precompiled	sequence	of	.................... command in the database.

 9. .................... mode adds a feedback mechanism to the encryption scheme.

 10. A .................... is a part of computer system that is designated to block unauthorized access 
while permitting authorized communications. 

9.7 Summary

 •	 CERT/CCC	Current	Activity	KNOPPIX	can	also	be	used	as	a	creative	Linux	system	as	
the	educational	CD,	desktop,	rescue	system.

	 •	 Security	 systems	 generally	 implement	 a	 useful	 subset	 of	 a	 3-dimentional	 matrix	 with	
dimensions	of	actor,	object,	and	action.	 Implementing	 the	 full	matrix	 is	never	done	 for	
both performance and usability reasons.

	 •	 Mainstream	operating	system	security	is	primarily	based	on	access	control	lists.

	 •	 Traditional	UNIX	access	control	is	a	type	of	discretionary	ACL.

	 •	 The	many	possible	 actions	 are	 grouped	 into	 four	 categories—read,	write,	 execute,	 and	
special operations normally reserved for an object owner.

	 •	 Capabilities	are	unforgivable	references	to	objects	that	let	their	holder	access	a	well-defined	
subset	of	operations	defined	on	that	object.

	 •	 Threats	 originated	 from	 viruses,	 which	 are	 strictly	 speaking	 programs	 that	 replicate	
themselves without your knowledge.

	 •	 Secret	key	cryptography	schemes	are	generally	categorized	as	being	either	stream	ciphers	
or block ciphers.

	 •	 Database	 vendors	 release	 periodic	 security	 patches	 to	 fix	 several	 software	 bugs	 in	 the	
database left open during development of the particular version.

	 •	 A	firewall	is	a	part	of	a	computer	system	or	network	that	is	designed	to	block	unauthorized	
access while permitting authorized communications.

	 •	 It	is	a	device	or	set	of	devices	that	is	configured	to	permit	or	deny	network	transmissions	
based upon a set of rules and other criteria.

9.8 Keywords

 1. Domain Name System (DNS):	The	Domain	Name	System	(DNS)	is	a	hierarchical	naming	
system	built	on	a	distributed	database	for	computers,	services,	or	any	resource	connected	
to the Internet or a private network.

 2. Dynamic Host Configuration Protocol (DHCP):	Dynamic	host	configuration	protocol	is	
used to automatically assign TCP/IP addresses to clients along with the correct subnet 
mask,	default	gateway,	and	DNS	server.	

	 	 Two	ways	for	a	computer	to	get	its	IP	address:	

	 •	 Using	DHCP	from	a	DHCP	server.	

	 •	 Manual	configuration.	

 3. Encryption: The	Encrypting	File	System	(EFS)	on	Microsoft	Windows	is	a	file	system	filter	
that	provides	filesystem-level	encryption	and	was	introduced	in	version	3.0	of	NTFS.	The	
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Notestechnology	enables	files	to	be	transparently	encrypted	to	protect	confidential	data	from	
attackers with physical access to the computer.

 4. The President’s Information Technology Advisory Committee (PITAC): The President’s 
Information	 Technology	 Advisory	 Committee	 (PITAC)	 was	 established	 in	 February	
1997,	to	provide	the	President,	OSTP,	and	the	federal	agencies	involved	in	IT	R&D	with	
guidance	and	advice	on	all	areas	of	high-performance	computing,	communications,	and	
information	technologies.	Representing	the	research,	education,	and	library	communities	
and	including	network	providers	and	representatives	from	critical	industries,	the	committee	
advises the Administration’s effort to accelerate development and adoption of information 
technologies. PITAC was appointed by the President to provide independent expert advice 
on	maintaining	America’s	preeminence	in	advanced	information	technology	(IT).

 5. KeyKOS: KeyKOS	is	a	persistent,	pure	capability-based	operating	system	for	the	IBM	S/370	
mainframe	computers.	It	allows	emulating	the	VM,	MVS,	and	POSIX	environments.	It	is	
a	predecessor	of	the	Extremely	Reliable	Operating	System	(EROS),	and	its	successors,	the	
CapROS and Coyotos operating systems. KeyKOS is a nanokernel-based operating system.

 6. Mandatory Integrity Control (MIC) or Integrity Levels:	(or	Protected	Mode	in	the	context	
of	applications	like	Internet	Explorer,	Google	Chrome	and	Adobe	Reader)	MIC	is	a	core	
security	 feature,	 introduced	 in	Windows	 Vista	 and	Windows	 Server	 2008,	 that	 adds	
Integrity	Levels	(IL)	to	processes	running	in	a	login	session.

 7. Protection: A model of protection mechanisms in computing systems is presented and its 
appropriateness is argued. The “safety” problem for protection systems under this model 
is	to	determine	in	a	given	situation	whether	a	subject	can	acquire	a	particular	right	to	an	
object.

 8. Secure Sockets Layer (SSL):	 Secure	 Sockets	 Layer	 (SSL)	 protocol	 to	 create	 a	 uniquely	
encrypted	channel	for	private	communications	over	the	public	Internet.	Each	SSL	Certificate	
consists of a public key and a private key.

 1. How to enable the security of operating system?

 2. Give the step of installing antivirus.

9.9 Review Questions

 1.	 Buffer-overflow	attacks	can	be	avoided	by	adopting	a	better	programming	methodology	
or by using special hardware support. Discuss these solutions.

 2. A password may become known to other users in a variety of ways. Is there a simple 
method for detecting that such an event has occurred? Explain your answer.

	 3.	 The	list	of	all	passwords	is	kept	within	the	operating	system.	Thus,	if	a	user	manages	to	
read	this	list,	password	protection	is	no	longer	provided.	Suggest	a	scheme	that	will	avoid	
this	problem.	(Hint:	Use	different	internal	and	external	representations.)

 4. Discuss a means by which managers of systems connected to the Internet could have 
designed their systems to limit or eliminate the damage done by a worm. What are the 
drawbacks of making the change that you suggest?

 5. Make a list of six security concerns for a bank’s computer system. For each item on your 
list,	state	whether	this	concern	relates	to	physical,	human,	or	operating-system	security.
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Notes  6. What are the two advantages of encrypting data stored in the computer system?

 7. Why does not D(kd , N)(E(ke	,	N)(m))	provide	authentication	of	the	sender?	To	what	uses	
can such an encryption be put?

	 8.	 	Discuss,	what	you	know	about	system	security.

 9. Explain in detail the program threats in system security.

 10. Explain the networking threats with examples.

 11. What is the role of the cryptography in system security?

 12. What is the difference between program threads and networking threads?

	 13.	 Briefly	describe	about	the	authentication	in	system	security.

	 14.	 Describe	the	role	of	firewall	in	system	security.

	 15.	 Differentiate	between	implementing	security	defense	and	firewall.

Answers to Self Assessment
 1.	 (a)	 2.	 (d)	 3.	 True	 4.	 False	

 5. Cryptography 6. encryption 7. IPSEC 8. Transact-SQL 

	 9.	 Cipher	Block	Chaining	(CBC)	 10.	 firewall	

9.10 Further Readings

Operating Systems, by Andrew	Tanenbaum,	Albert	S.	Woodhull.	 
Operating Systems, by Harvey	M.	Deitel,	Paul	J.	Deitel,	David	R.	Choffnes.	

wiley.com/coolege.silberschatz
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Objectives

After studying this unit, you will be able to:

• Explain	history	of	Windows	2000

• Explain	programming	Windows	2000

Introduction

Windows 2000 is the latest update in the Microsoft Windows family of products.  It is a 
combination of features designed in the Windows 98 and NT 4.0.  Like previous versions of 
Windows,	it	uses	a	Graphical	User	Interface	(GUI)	format,	Plug-and-Play	compatibility	and	USB	
support.	 	What	makes	Windows	2000	significantly	different	are	 the	 formats	 it	 is	available	 in.		
There are following four products that compose the Windows 2000 family.

Windows 2000 Professional

This	version	of	Windows	2000	is	equivalent	to	the	Windows	98/NT	4.0	workstation	clients.		It	
is designed to offer basic peer-to-peer networking services and client services in a client-server 
network. It is designed to integrate the ease of usability of Windows 98 with the reliability 
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Notes and	security	of	Windows	NT	4.0.	Basic	 improvements	 include	a	more	reliable	user	 interface,	
enhanced	 Plug-and-Play	 compatibility,	 increased	 power	management	 options	 and	 extended	
hardware	 compatibility,	 including	direct	USB	 and	 FireWire	 support.	 	 It	 also	 uses	 a	 new	file	
encryption system that increases security on the network when integrated with Active Directory 
Services.		Finally,	it	has	a	host	of	new	application	management	tools	that	simplify	and	extend	
administrative and user control over the network.

Windows 2000 Server

Windows 2000 Server is a network-enhanced version of Windows 2000 Professional.  It contains 
all	the	same	aspects	as	Windows	2000	Pro,	but	adds	network	serving	ability,	enhanced	file	and	
print	sharing	services,	application	server	technology,	and	Web-Server	utilities.		It	is	designed	to	
allow	small-to-medium-sized	businesses	network	their	systems	efficiently	at	a	lower	cost	than	
traditional NT 4.0 methods by stripping out unused tools.  

Windows 2000 integrates Active Directory Services into several existing services such as Domain 
Name	System	(DNS),	Dynamic	Host	Control	Protocol	 (DHCP)	and	WINS	(Windows	Internet	
Name	Service)	allowing	central	control	over	management	of	users,	groups,	security	and	network	
resources.  It supports single-processor systems as well as four-way symmetric multiprocessing 
(SMP)	systems.		It	supports	up	to	4	GB	of	physical	memory.

Windows 2000 Advanced Server

Advanced server is essentially the same as Windows 2000 Server with enhanced scalability and 
advanced	high	availability	required	for	larger	enterprise	servers	and	departmental	solutions.		It	
focuses	more	on	application	and	departmental	networking,	with	support	for	eight-way	symmetric	
multiprocessing and two-way clustering.  It also integrates Intel’s Physical Address Extensions 
(PAEs)	technology	to	allow	for	support	for	larger	physical	memory	quantities.		It	is	meant	for	
larger	businesses	with	database-intensive	requirements.

Windows 2000 Datacenter Server

Datacenter is a highly specialized version of Windows 2000 designed for large-scale enterprise 
solutions.		It	integrates	technologies	optimized	for	large	data	warehouses,	econometric	analysis,	
large-scale	 simulations	 in	science	and	engineering,	online	 transaction	processing	 (OLTP)	and	
server	 consolidation	 projects.	 It	 adds	 elements	 to	 enhance	 Internet	 Service	 Provider	 (ISP)	
support and Web Hosting Services. It supports 4-way clustering and sixteen-way Symmetric 
multiprocessing	(Upgradeable	to	32-way	SMP).

10.1 History of Windows 2000

Microsoft	operating	systems	for	desktop	and	laptop	PCs	can	be	divided	into	three	families— 
MS-DOS,	Consumer	Windows	(Windows	95/98/Me),	and	Windows	NT.	Below	we	will	briefly	
sketch each of these families.

Windows 2000 is a line of operating systems produced by Microsoft for use 
on	personal	computers,	business	desktops,	laptops,	and	servers.	Released	on	 
17 February 2000.

10.1.1 MS-DOS
In	 1981,	 IBM,	 at	 that	 time,	 the	 biggest	 and	most	 powerful	 computer	 company	 in	 the	world,	
produced	the	8088-based	IBM	PC.	The	PC	came	equipped	with	a	16-bit	real-mode,	single-user,	
command-line oriented operating system called MS-DOS 1.0. The operating system was provided 
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Notesby	Microsoft,	a	tiny	startup,	mostly	known	at	that	time	for	its	BASIC	interpreter	used	on	8080	
and	Z-80	systems.	This	operating	system	consisted	of	8	KB	of	memory	resident	code	and	was	
closely	modeled	on	CP/M,	a	tiny	operating	system	for	the	8-bit	8080	and	Z80	CPUs.	Two	years	
later,	a	much	more	powerful	24-KB	operating	system,	MS-DOS	2.0,	was	released.	It	contained	
a	command	line	processor	(shell),	with	a	number	of	features	borrowed	from	UNIX.

When	Intel	came	out	with	the	286	chip,	IBM	built	a	new	computer	around	it,	the	PC/AT,	released	
in	1986.	AT	stood	for	“Advanced	Technology”,	because	the	286	ran	at	a	then	impressive	8	MHz	
and	could	address-with	great	difficulty-all	of	16	MB	of	RAM.	In	practice,	most	systems	had	at	
most	1	MB	or	2	MB,	due	to	the	great	expense	of	so	much	memory.	The	PC/AT	came	equipped	
with	Microsoft’s	MS-DOS	3.0,	by	now	36	KB.	Over	the	years,	MS-DOS	continued	to	acquire	new	
features,	but	it	was	still	a	command-line	oriented	system.

  Give the command of make directory in the DOS.

10.1.2 Windows 95/98/ME

Inspired	 by	 the	 user	 interface	 of	 the	 Apple	 Lisa,	 the	 forerunner	 to	 the	 Apple	 Macintosh,	
Microsoft	decided	to	give	MS-DOS	a	graphical	user	interface	(shell)	which	is	called	Windows. 
Windows	1.0,	released	in	1985,	was	something	of	a	dud.	Windows	2.0,	designed	for	the	PC-AT	
and	released	in	1987,	was	not	much	better.	Finally,	Windows	3.0	for	the	386	(released	in	1990),	
and	especially	its	successors	3.1	and	3.11,	caught	on	and	were	huge	commercial	successes.	None	
of	these	early	versions	of	Windows	were	true	operating	systems,	but	more	like	graphical	user	
interfaces	on	top	of	MS-DOS,	which	was	still	in	control	of	the	machine	and	the	file	system.	All	
programs ran in the same address space and a bug in any one of them could bring the whole 
system to a grinding halt.

The	release	of	Windows	95	in	August	1995	still	did	not	completely	eliminate	MS-DOS,	although	it	
transferred	nearly	all	the	features	from	the	MS-DOS	part	to	the	Windows	part.	Together,	Windows	
95	and	the	new	MS-DOS	7.0	contained	most	of	the	features	of	a	full-blown	operating	system,	
including	virtual	memory,	process	management,	and	multiprogramming.	However,	Windows	
95	was	not	a	full	32-bit	program.	It	contained	large	chunks	of	old	16-bit	assembly	code	(as	well	
as	some	32-bit	code)	and	still	used	the	MS-DOS	file	system,	with	nearly	all	its	limitations.	The	
only	major	change	to	the	file	system	was	the	addition	of	long	file	names	in	place	of	the	8	+	3	
character	file	names	allowed	in	MS-DOS.

Even	 with	 the	 release	 of	 Windows	 98	 in	 June	 1998,	 MS-DOS	 was	 still	 there	 (now	 called	 
version	7.1)	and	running	16-bit	code.	Although	yet	more	functionality	migrated	from	the	MS-DOS	
part	to	the	Windows	part,	and	a	disk	layout	suitable	for	larger	disks	was	now	standard,	under	
the	hood,	Windows	98	was	not	much	different	from	Windows	95.	The	main	difference	was	the	
user	interface,	which	integrated	the	desktop	and	the	Internet	more	closely.	It	was	precisely	this	
integration	that	attracted	the	attention	of	the	U.S.	Deptartment	of	Justice,	which	then	sued	Microsoft	
claiming	that	it	was	an	illegal	monopoly,	an	accusation	Microsoft	vigorously	denied.	In	April	2000,	
the U.S. Federal court agreed with the government. In addition to containing a large lump of old  
16-bit	assembly	code	in	the	kernel,	Windows	98	had	two	other	serious	problems.	First,	although	
it	was	a	multiprogramming	system,	the	kernel	itself	was	not	reentrant.	If	a	process	was	busy	in	
manipulating	some	kernel	data	structure	and	then	suddenly	its	quantum	ran	out	and	another	
process	started	running,	the	new	process	might	find	the	data	structure	in	an	inconsistent	state. 
To	prevent	this	type	of	problem,	after	entering	the	kernel,	most	processes	first	acquired	a	giant	
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Notes mutex covering the whole system before doing anything. While this approach eliminated potential 
inconsistencies,	it	also	eliminated	the	most	of	the	values	of	multiprogramming	since	processes	were	
frequently	forced	to	wait	for	unrelated	processes	to	leave	the	kernel	before	they	could	enter	it.

Second,	each	Windows	98	process	had	a	4-GB	virtual	address	space.	Of	this,	2	GB	was	completely	
private	to	the	process.	However,	the	next	1	GB	was	shared	(writably)	among	all	other	processes	
in the system. The bottom 1 MB was also shared among all processes to allow all of them to 
access the MS-DOS interrupt vectors. This sharing facility was heavily used by most Windows 
98	applications.	As	a	consequence,	a	bug	in	one	program	could	wipe	out	key	data	structures	
used	by	unrelated	processes,	 leading	to	whole	crashing.	Worse	yet,	 the	 last	1	GB	was	shared	
(writably)	with	the	kernel	and	contained	some	critical	kernel	data	structures.	Any	rogue	program	
that overwrote these data structures with garbage could bring down the system. The obvious 
solution of not putting kernel data structures in user space was not possible because this feature 
was essential to making old MS-DOS programs work under Windows 98.

In	 the	millennium	year,	 2000,	Microsoft	 brought	 out	 a	minor	 revision	 to	Windows	98	 called	
Windows Me (Windows Millennium Edition).	 Although	 it	 fixed	 a	 few	 bugs	 and	 added	 a	
few	features,	under	the	covers	it	is	essentially	Windows	98.	The	new	features	included	better	
ways	to	catalog	and	share	images,	music,	and	movies,	more	support	for	home	networking	and	
multiuser	games,	and	more	Internet-related	features,	such	as	support	for	instant	messaging	and	
broadband	connections	(cable	modems	and	ADSL).	One	interesting	new	feature	was	the	ability	
to	restore	the	computer	to	its	previous	settings	after	a	misconfiguration.	If	a	user	reconfigures	
the	system	(e.g.,	changing	the	screen	from	640	×	480	to	1024	×	768)	and	it	no	longer	works,	this	
feature	makes	it	possible	to	revert	back	to	the	last	known	working	configuration.

10.1.3 Windows NT

By	the	late	1980s,	Microsoft	realized	that	building	a	modern	32-bit	operating	system	on	the	top	
of	the	leaky	16-bit	MS-DOS	probably	was	not	the	best	way	to	go.	It	recruited	David	Cutler,	one	
of	the	key	designers	of	DEC’s	VMS	operating	system,	to	work	for	Microsoft	and	gave	him	the	
job of leading a team to produce a brand-new 32-bit Windows compatible operating system 
from	the	ground	up.	This	new	system,	later	called	Windows NT (Windows New Technology), 
was	intended	for	mission-critical	business	applications	as	well	as	for	home	users.	At	the	time,	
mainframes	still	ruled	the	(business)	world,	so	designing	an	operating	system	on	the	assumption	
that	 companies	would	use	personal	 computers	 for	anything	 important	was	a	visionary	goal,	
but one that history has shown to be a very good one. Features such as security and high 
reliability,	clearly	lacking	on	the	MS-DOS-based	versions	of	Windows,	were	high	on	the	agenda	
for	(Windows)	NT.	Cutler’s	background	with	VMS	clearly	shows	in	various	places,	with	there	
being more than a passing similarity between the design of NT and that of VMS.

The	 project	 succeeded	 and	 the	 first	 version,	 called	Windows	 NT	 3.1,	 was	 released	 in	 1993.	
This initial release number was chosen to match the number of Microsoft’s then popular 16-bit 
Windows 3.1 system. Microsoft expected that NT would rapidly replace Windows 3.1 because 
it was technically a far superior system.

Much	to	its	surprise,	nearly	all	users	preferred	to	stick	with	the	old	16-bit	system	they	knew,	
rather	than	upgraded	to	an	unknown	32-bit	system	they	did	not	know,	however	better	it	might	
be.	Furthermore,	NT	required	 far	more	memory	 than	Windows	3.1	and	 there	were	no	32-bit	
programs	for	it	to	run,	so	why	bother?	The	failure	of	NT	3.1	to	catch	on	in	the	marketplace	was	
the	reason	Microsoft	decided	 to	build	a	32-bit-ish	version	of	Windows	3.1,	namely	Windows	
95. The continued user resistance to NT then caused Microsoft to produce Windows 98 and 
finally	Windows	Me;	each	one	claimed	to	be	the	very	last	release	of	the	MS-DOS-based	systems.
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systems,	 it	 did	 acquire	 a	 small	 following	 in	 the	 server	market.	A	 few	new	 3.x	 releases	with	
small	changes	occurred	in	1994	and	1995.	These	slowly	began	to	acquire	more	following	among	
desktop users as well.

The	first	major	upgradation	to	NT	came	with	NT	4.0	in	1996.	This	system	had	the	power,	security,	
and	reliability	of	the	new	operating	system,	but	also	supported	the	same	user	interface	as	the	
by then very popular Windows 95. This compatibility made it much easier for users to migrate 
from	Windows	95	to	NT,	and	many	of	them	did	so.

From	the	beginning,	NT	was	designed	 to	be	portable,	 so	 it	was	written	almost	entirely	 in	C,	
with only a tiny bit of assembly code for low-level functions such as interrupt handling. The 
initial	 release	 consisted	 of	 3.1	million	 lines	 of	 C	 for	 the	 operating	 system,	 libraries,	 and	 the	
environment	subsystems	(discussed	below).	When	NT	4.0	came	out,	the	code	base	had	grown	
to	16	million	lines	of	code,	still	mostly	C,	but	with	a	small	amount	of	C++	in	the	user	interface	
part.	By	this	time	the	system	was	highly	portable,	with	versions	running	on	the	Pentium,	Alpha,	
MIPS,	 and	PowerPC,	 among	other	CPUs.	 Some	of	 these	have	been	dropped	 since	 then.	The	
story of how NT was developed is given in the site Showstopper. The site also tells a lot about 
the key people involved.

Figure 10.1: Some Differences between Windows 98 and Windows NT

Item Windows 95/98 Windows NT

Full 32-bit system? No Yes

Security? No Yes

Protected	file	mappings? No Yes

Private addr space for each MS-DOS prog? No Yes

Unicode? No Yes

Runs on Intel 80x86
80x86,	Alpha,	
MIPS,	…

Multiprocessor support? No Yes

Re-entrant code inside OS? No Yes

Plug and play? Yes No

Power management? Yes No

FAT-32	file	system? Yes Optional

NTFS	file	system? No Yes

Win32 API? Yes Yes

Run all old MS-DOS programs? Yes No

Some critical OS data writable by user? Yes No
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Notes Microsoft announced Multi-Tool Word for Xenix and MS-DOS in 1983. Its 
name	was	soon	simplified	to	Microsoft	Word.	Free	demonstration	copies	of	
the	 application	were	bundled	with	 the	November	 1983	 issue	of	PC	World,	
making	it	the	first	program	to	be	distributed	on-disk	with	a	magazine.

10.1.4 Windows 2000
The	release	of	NT	following	NT	4.0	was	originally	going	to	be	called	NT	5.0.	However,	in	1999,	
Microsoft	changed	the	name	to	Windows	2000,	mostly	in	an	attempt	to	have	a	neutral	name	that	
both Windows 98 users and NT users could see as a logical next step for them. To the extent 
that	this	approach	succeeds,	Microsoft	will	have	a	single	main	operating	system	built	on	reliable	
32-bit technology but using the popular Windows 98 user interface.

Since	Windows	2000	really	is	NT	5.0,	it	inherits	many	properties	from	NT	4.0.	It	is	a	true	32-bit	
(soon	to	be	64-bit)	multiprogramming	system	with	individually	protected	processes.	Each	process	
has	a	private	32-bit	 (soon	64-bit)	demand-paged	virtual	address	space.	The	operating	system	
runs	in	kernel	mode,	whereas	user	processes	run	in	user	mode,	providing	complete	protection	
(with	none	of	 the	protection	flaws	of	Windows	98).	Processes	can	have	one	or	more	 threads,	
which	are	visible	to,	and	scheduled	by,	the	operating	system.	It	has	Department	of	Defense	C2	
security	 for	all	files,	directories,	processes,	 and	other	 shareable	objects	 (at	 least,	 if	 the	floppy	
disk	is	removed	and	the	network	is	unplugged).	Finally,	it	also	has	full	support	for	running	on	
symmetric multiprocessors with up to 32 CPUs.

The	fact	that	Windows	2000	really	is	NT	5.0	is	visible	in	many	places.	For	example,	the	system	
directory	 is	called	\winNT	and	 the	operating	system	binary	 (in	\winNT\system32)	 is	called	
ntoskrnl.exe.	Right	clicking	on	this	file	to	examine	its	properties	shows	that	its	version	number	
is	 5.xxx.yyy.zzz,	 where	 the	 5	 stands	 for	 NT	 5,	 xxx	 is	 the	 release	 number,	 yyy	 is	 the	 build	
(compilation)	number,	and	zzz	is	the	minor	variant.	Also,	many	of	the	files	in	\winNT	and	its	
subdirectories	have	NT	in	their	names,	such	as	ntvdm,	NT’s	virtual	MS-DOS	emulator.

Windows 2000 is more than just a better NT 4.0 with the Windows 98 user interface. To start 
with,	 it	 contains	 a	 number	 of	 other	 features	 previously	 found	 only	 in	Windows	 98.	 These	
include	complete	support	for	plug-and-play	devices,	the	USB	bus,	IEEE	1394	(FireWire),	IrDA	
(the	infrared	link	between	portable	computers	and	printers),	and	power	management,	among	
others.	 In	 addition,	 a	 number	 of	 new	 features	 not	 present	 in	 any	 other	Microsoft	 operating	
system	have	been	added,	 including	active	directory	service,	security	using	Kerberos,	support	
for	smart	cards,	system	monitoring	tools,	better	integration	of	laptop	computers	with	desktop	
computers,	 a	 system	management	 infrastructure,	 and	 job	objects.	Also,	 the	main	file	 system,	
NTFS,	has	been	extended	to	support	encrypted	files,	quotas,	linked	files,	mounted	volumes,	and	
content	indexing,	for	example.	Another	novel	NTFS	feature	is	the	single	instance	store,	which	is	
a	kind	of	copy-on-write	link	in	which	two	users	can	share	a	linked	file	until	one	of	them	writes	
on	it,	at	which	time	a	copy	is	made	automatically.

One of the other major improvement is internationalization. NT 4.0 came in separate versions for 
different languages with the text strings embedded in the code. Installing an English software 
package on a Dutch computer often caused parts of the operating system to stop using Dutch 
and	start	using	English	because	certain	files	containing	code	and	text	strings	were	overwritten.	
This problem has been eliminated. Windows 2000 has a single binary that runs everywhere in 
the	world.	An	installation,	or	even	an	individual	user,	can	choose	the	 language	to	use	at	run	
time	because	all	the	menu	items,	dialog	strings,	error	reports,	and	other	text	strings	have	been	
removed	from	the	operating	system	and	put	in	separate	directories,	as	per	installed	language.	
Like	all	previous	versions	of	NT,	Windows	2000	uses	Unicode	throughout	the	system	to	support	
languages	not	using	the	Latin	alphabet,	such	as	Russian,	Greek,	Hebrew,	and	Japanese.

One	thing	that	Windows	2000	does	not	have	is	MS-DOS.	It	is	simply	not	there	in	any	form	(nor	
was	 it	 there	 in	NT).	There	 is	a	command	line	 interface,	but	 this	 is	a	new	32-bit	program	that	
includes the old MS-DOS functionality and considerably new functionality as well.
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NotesDespite	many	portability	features	with	regard	to	the	code,	hardware,	language,	etc.,	in	one	respect	
Windows	2000	 is	 less	portable	 than	NT	4.0—it	runs	on	only	 two	platforms,	 the	Pentium	and	
the	Intel	IA-64.	Originally	NT	supported	additional	platforms,	including	the	PowerPC,	MIPS,	
and	Alpha,	but	over	the	years,	Microsoft	dropped	one	after	another	for	commercial	reasons.

Like	 previous	 versions	 of	 NT,	 Windows	 2000	 comes	 in	 several	 product	 levels,	 this	 time:	
Professional,	Server,	Advanced	server,	and	Datacenter	server.	The	differences	between	all	these	
versions	are	minor	however,	with	the	same	executable	binary	used	for	all	versions.	When	the	
system	is	installed,	the	product	type	is	recorded	in	an	internal	database	(the	registry).	At	boot	
time,	 the	operating	 system	checks	 the	 registry	 to	 see	which	version	 it	 is.	The	differences	 are	
shown in Figure 10.2.

Figure 10.2: The Different Versions of Windows 2000

Version Max RAM CPUs Max clients Cluster size Optimized for

Professional 4 GB 2 10 0 Response time

Server 4 GB 4 Unlimited 0 Throughput

Advanced server 8 GB 8 Unlimited 2 Throughput

Datacenter server 64 GB 32 Unlimited 4 Throughput

As	can	be	seen	from	the	figure,	the	differences	include	the	maximum	memory	supported,	the	
maximum	number	of	CPUs	 (for	 a	multiprocessor	 configuration),	 and	 the	maximum	number	
of clients that can be served. The cluster size relates to the ability of Windows 2000 to make 
two	or	four	machines	look	like	a	single	server	to	the	outside	world,	a	useful	feature	for	Web	
servers,	 for	example.	Finally,	 the	default	parameters	are	 tuned	differently	on	Professional,	 to	
favor	 interactive	programs	over	batch	work,	although	these	can	easily	be	changed	if	desired.	
One last difference is that some extra software is provided on the servers and some extra tools 
are provided on Datacenter server for managing large jobs.

The	reason	for	having	multiple	versions	is	simply	marketing:	this	allows	Microsoft	to	charge	big	
companies more than they charge individuals for what is essentially the same product. This idea 
is	not	new,	however,	and	hardly	unique	to	Microsoft.	For	years,	airlines	having	been	charging	
business	passengers	much	more,	not	only	for	Business	Class,	but	also	for	Cattle	Class	 if	 they	
want	the	luxury	of	buying	the	ticket	a	day	before	the	flight	instead	of	a	month	before	the	flight.

Technically,	the	way	the	version	differences	are	maintained	is	that	in	a	few	places	in	the	code,	
two	variables	are	read	from	the	registry,	ProductType and ProductSuite. Depending on their 
values,	slightly	different	code	is	executed.	Changing	these	variables	is	in	violation	of	the	license.	
In	addition,	the	system	traps	any	attempt	to	change	them	and	records	the	attempt	at	tampering	
in an indelible way so it can be detected later.

In	 addition	 to	 the	 basic	 operating	 system,	Microsoft	 has	 also	developed	 several	 tool	 kits	 for	
advanced	users.	These	 include	 the	Support	Tools,	 the	Software	Development	Kit,	 the	Driver	
Development	Kit,	and	the	Resource	Kit.	These	include	a	large	number	of	utilities	and	tools	for	
tweaking and monitoring the system. The support tools are on the Windows 2000 CD-ROM 
in	 the	 directory	 \support\tools.	 The	 standard	 installation	 procedure	 does	 not	 install	 them,	
but	 there	 is	 a	 file	 setup.exe	 in	 that	 directory	 that	 does.	 The	 SDK	 and	DDK	 are	 available	 to	
developers at msdn.microsoft.com. The Resource Kit is a Microsoft product in a box. There are 
also	various	third-party	tools	available	for	snooping	on	the	Windows	2000	internals,	including	
a nice set available for free at the Website www.sysinternals.com. Some of these even provide 
more information than the corresponding Microsoft tools.
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Notes Windows	2000	is	an	immensely	complex	system,	now	consisting	of	over	29	million	lines	of	C	
code.	If	printed	50	lines	per	page	and	1000	pages	per	bound	site,	the	full	code	would	occupy	
580	 volumes.	 This	 opus	would	 occupy	 23	 running	meters	 of	 shelf	 space	 (for	 the	 paperback	
version).	If	arranged	in	sitecases	1	m	wide	with	6	shelves	per	sitecase,	the	set	would	occupy	a	
wall 4 m wide.
A	comparison	of	a	few	operating	system	source	code	sizes	is	given	in	Figure	10.3.	However,	this	
table	should	be	taken	with	a	grain	(or	better	yet,	a	metric	ton)	of	salt	because	what	constitutes	the	
operating	system	is	different	for	different	systems.	For	example,	the	entire	window	system	and	
GUI	is	a	part	of	the	kernel	in	Windows,	but	not	in	any	UNIX	version.	It	is	simply	a	user	process	
there.	Counting	X	Windows	adds	another	1.5	million	 lines	of	 code	 to	all	 the	UNIX	versions,	
and	that	does	not	even	count	the	GUI	code	(Motif,	GNOME,	etc.),	which	is	also	not	a	part	of	
the	operating	system	in	the	UNIX	world.	Additionally,	some	systems	include	code	for	multiple	
architectures	(e.g.,	five	for	4.4	BSD	and	nine	for	Linux),	with	each	architecture	adding	10,000	to	
50,000	lines	of	code.	The	reason	Free	BSD	1.0	has	only	235,000	lines	of	code	whereas	4BSD	Lite,	
from	which	it	 is	derived,	has	743,000	lines	it	supports	for	all.	The	obsolete	architectures	(e.g.,	
the	VAX)	was	dropped	in	Free	BSD.
Also,	 the	 number	 of	 file	 systems,	 devices	 drivers,	 and	 libraries	 supplies	 varies	 greatly	 from	
system	to	system.	In	addition,	Windows	contains	large	amounts	of	test	code	that	UNIX	does	not	
contain	as	well	as	some	utilities	and	support	for	numerous	languaged	besides	English.	Finally,	
the	measurements	were	made	by	different	people,	which	introduce	considerable	variance	(e.g.,	
did	make	files,	headers,	configuration	files	and	documentation	count	and	how	much	was	there?).	
This is not like comparing apples with oranges; it is like comparing apples with telephones. 
However,	all	the	counts	within	a	single	family	came	from	the	same	source,	so	intra	family	counts	
are somewhat meaningful.

Despite	all	these	disclaimers,	two	conclusions	are	fairly	clear:

 1. System bloat seems to be as inevitable as death and taxes.

 2. Windows is much bigger than UNIX.
Whether small is beautiful or big is beautiful is a matter of heated controversy. The argument 
for	the	former	is	that	small-size	and	a	lean-and-mean	mentality	produces	a	manageable,	reliable	
system that users can understand. The argument for the latter is that many users want lots of 
features.	In	any	event,	it	should	also	be	clear	that	any	students	planning	to	write	a	full-blown,	
state-of-the-art operating system from scratch have their work cut out for them.

Figure 10.3: A comparison of some operating system sizes. The first string in each box is 
the version; the second is the size measured in lines of source code, where K = 1000 and  

M = 1,000,000. Comparisons within a column have real meaning; comparisons across 
columns do not, as discussed in the text.
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NotesAlthough	Windows	2000	is	already	the	world	heavyweight	champion	in	terms	of	pure	mass,	it	is	
still	growing,	with	bugs	being	fixed	and	new	features	being	added.	The	way	Microsoft	manages	
its development is worth noting. Hundreds of programmers work on various aspects of Windows 
2000	all	days.	Whenever	a	piece	of	code	is	finished,	the	programmer	submits	it	electronically	to	
the	build	team.	At	6	P.M.	every	day,	the	door	is	closed	and	the	system	is	rebuilt	(i.e.,	recompiled	
and	linked).	Each	build	gets	a	unique	sequence	number,	which	can	he	seen	by	examining	the	
version number of ntoskrnl.exe	(the	first	public	release	of	Windows	2000	was	build	2195).

The new operating system is electronically distributed to thousands of machines around the 
Microsoft	campus	in	Redmond,	WA,	where	it	is	subjected	to	intense	stress	tests	all	night.	Early	
the	next	morning,	the	results	of	all	the	tests	are	sent	to	the	relevant	groups,	so	they	can	see	if	their	
new code works. Each team then decides which code they want to work on that day. During the 
day,	the	programmers	work	on	their	code	and	at	6	p.m.	the	build-and-test-cycle	begins	anew.

10.2 Programming Windows 2000

It	is	now	time	to	start	our	technical	study	of	Windows	2000.	However,	before	getting	into	the	
details	of	the	internal	structure,	we	will	first	take	a	look	at	the	programming	interface	and	the	
registry,	a	small	in-memory	data	base.

10.2.1 Win32 Application Programming Interface
Like	all	other	operating	systems,	Windows	2000	has	a	set	of	system	calls	it	can	perform.	However,	
Microsoft	has	never	made	 the	 list	of	Windows	system	calls	public,	 and	 it	 also	changes	 them	
from	release	to	release.	Instead,	what	Microsoft	has	done	is	to	define	a	set	of	function	calls	called	
Win32 API (Win32 Application Programming Interface) that are publicly known and fully 
documented.	These	are	library	procedures	that	either	make	system	calls	to	get	the	work	done,	
or,	in	some	cases,	do	the	work	right	in	user	space.	The	existing	Win32	API	calls	do	not	change	
with	new	releases	of	Windows,	although	new	API	calls	are	added	frequently.

Binary programs for the Intel x86 that adhere exactly to the Win32 API interface will run 
unmodified	on	all	versions	of	Windows	since	Windows	95.	As	shown	in	Figure	10.4,	an	extra	
library is needed for Windows 3.x to match a subset of the 32-bit API calls to the 16-bit operating 
system,	but	 for	 the	other	systems	no	adaptation	 is	needed.	 It	 should	be	noted	 that	Windows	
2000	adds	substantial	new	functionality	to	Win32,	so	it	has	additional	API	calls	not	included	on	
older versions of Win32 and which will not work on older versions of Windows.

Figure 10.4: The Win32 API Allows Programs to Run on Almost all Versions of Windows
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Notes The	Win32	API	philosophy	is	completely	different	from	the	UNIX	philosophy.	In	the	latter,	the	
system	calls	are	all	publicly	known	and	form	a	minimal	interface:	removing	even	one	of	them	
would reduce the functionality of the operating system. The Win32 philosophy is to provide 
a	very	 comprehensive	 interface,	 often	with	 three	or	 four	ways	of	doing	 the	 same	 thing,	 and	
including	many	functions	(i.e.,	procedures)	that	clearly	should	not	be	(and	are	not)	system	calls,	
such	as	an	API	call	to	copy	an	entire	file.

Many	Win32	API	calls	create	kernel	objects	of	one	kind	or	another,	including	files,	processes,	
threads,	pipes,	and	so	on.	Every	call	creating	an	object	returns	a	result	called	a	handle	to	the	
caller.	This	handle	can	subsequently	be	used	to	perform	operations	on	the	object.	Handles	are	
specific	to	the	process	that	created	the	object	referred	to	by	the	handle.	They	cannot	be	passed	
directly	 to	another	process	and	used	 there	 (just	as	UNIX	file	descriptors	cannot	be	passed	 to	
other	processes	and	used	there).	However,	under	certain	circumstances,	it	is	possible	to	duplicate	
a	handle	and	pass	it	to	other	processes	in	a	protected	way,	allowing	them	controlled	access	to	
objects belonging to other processes. Every object also has a security descriptor associated with 
it,	telling	in	detail	who	may	and	may	not	perform	what	kinds	of	operations	on	the	object.

Not all system-created data structures are objects and not all objects are kernel objects. The 
only	ones	that	are	true	kernel	objects	are	those	that	need	to	be	named,	protected,	or	shared	in	
some	way.	Every	kernel	object	has	a	 system-defined	 type,	has	well-defined	operations	on	 it,	
and	occupies	storage	in	kernel	memory.	Although	users	can	perform	the	operations	(by	making	
Win32	calls),	they	cannot	get	at	the	data	directly.

The operating system itself can also create and use objects and does so heavily. Most of these 
objects are created to allow one component of the system to store some information for a 
substantial	period	of	time	or	to	pass	some	data	structure	to	another	component.	For	example,	
when	a	device	driver	is	loaded,	an	object	is	created	for	it	holding	its	properties	and	pointers	to	
the	functions	it	contains.	Within	the	operating	system,	the	driver	 is	then	referred	to	by	using	
its object.

Windows 2000 is sometimes said to be object-oriented because the only way to manipulate 
objects is by invoking operations on their handles by making Win32 API calls. On the other 
hand,	it	lacks	some	of	the	most	basic	properties	of	object-oriented	systems	such	as	inheritance	
and polymorphism.

The	Win32	API	calls	 cover	every	conceivable	area	an	operating	system	could	deal	with,	and	
quite	 a	 few	 of	 it	 arguably	 should	 not	 deal	 with.	 Naturally,	 there	 are	 calls	 for	 creating	 and	
managing	processes	and	threads.	There	are	also	many	calls	that	relate	to	interprocess	(actually,	
interthread)	 communication,	 such	 as	 creating,	 destroying,	 and	 using	mutexes,	 semaphores,	
events,	and	other	IPC	objects.

Although	much	of	the	memory	management	system	is	invisible	to	programmers	(fundamentally,	
it	 is	 just	demand	paging),	one	 important	 feature	 is	visible:	namely	 the	ability	of	a	process	 to	
map	a	file	onto	a	region	of	its	virtual	memory.	This	allows	the	process	the	ability	to	read	and	
write	parts	of	the	file	as	though	they	were	memory	words.

An	important	area	for	many	programs	is	file	I/O.	In	the	Win32	view,	a	file	is	just	a	linear	sequence	
of	bytes.	Win32	provides	over	60	calls	for	creating	and	destroying	files	and	directories,	opening	
and	closing	files,	reading	and	writing	them,	requesting	and	setting	file	attributes,	and	much	more.

Another area for which Win32 provides calls is security. Every process has an ID telling who it is 
and every object can have an access control list telling in great detail precisely which users may 
access	it	and	which	operations	they	may	perform	on	it.	This	approach	provides	for	a	fine-grained	
security	in	which	specific	individuals	can	be	allowed	or	denied	specific	access	to	every	object.
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NotesProcesses,	threads,	synchronization,	memory	management,	file	I/O,	and	security	system	calls	
are	nothing	new.	Other	operating	systems	have	them	too,	although	generally	not	hundreds	of	
them,	as	Win32	does.	But	what	really	distinguishes	Win32	are	the	thousands	upon	thousands	
of	calls	for	the	graphical	interface.	There	are	calls	for	creating,	destroying,	managing	and	using	
windows,	menus,	tool	bars,	status	bars,	scroll	bars,	dialog	boxes,	icons,	and	many	more	items	that	
appear	on	the	screen.	There	are	calls	for	drawing	geometric	figures,	filling	them	in,	managing	the	
colour	palettes	they	use,	dealing	with	fonts,	and	placing	icons	on	the	screen.	Finally,	there	are	
calls	for	dealing	with	the	keyboard,	mouse	and	other	input	devices	as	well	as	audio,	printing,	
and	other	output	devices.	 In	 short,	 the	Win32	API	 (especially	 the	GUI	part)	 is	 immense	and	
we	could	not	even	begin	to	describe	it	in	any	detail	in	this	unit,	so	we	will	not	try.	Interested	
readers should consult one of the many sites on Win32.

Although	the	Win32	API	is	available	on	Windows	98	(as	well	as	on	the	consumer	electronics	
operating	 system,	Windows	 CE),	 not	 every	 version	 of	Windows	 implements	 every	 call	 and	
sometimes	 there	are	minor	differences	as	well.	For	example,	Windows	98	does	not	have	any	
security,	so	those	API	calls	that	relate	to	security	just	return	error	codes	on	Windows	98.	Also,	
Windows	2000	file	names	use	 the	Unicode	character	 set,	which	 is	not	available	on	Windows	
98	and	Windows	98	file	names	are	not	 case	 sensitive,	whereas	Windows	2000	file	names	are	
case	sensitive	(although	some	kinds	of	searches	on	file	names	are	not	case	sensitive).	There	are	
also	differences	in	parameters	to	some	API	function	calls.	On	Windows	2000,	for	example,	all	
the screen coordinates given in the graphics functions are true 32-bit numbers; on Windows 
95,	only	the	low-order	16	bits	are	used	because	much	of	the	graphics	subsystem	is	still	16-bit	
code. The existence of the Win32 API on several different operating systems makes it easier to 
port	programs	between	them,	but	since	these	minor	variations	exist,	some	care	must	be	taken	
to achieve portability.

  How to differentiate between Win32 and Win64?

10.2.2 Registry
Windows	needs	to	keep	track	of	a	great	deal	of	information	about	hardware,	software,	and	users.	
In	Windows	3.x,	this	information	was	stored	in	hundreds	of	.int	(initialization)	files	spread	all	
over	 the	disk.	 Starting	with	Windows	 95,	 nearly	 all	 the	 information	needed	 for	 booting	 and	
configuring	the	system	and	tailoring	it	to	the	current	user	was	gathered	in	a	big	central	database	
called the registry. In this section we will give an overview of the Windows 2000 registry.

To	start	with,	it	is	worth	noting	that	although	many	parts	of	Windows	2000	are	complicated	and	
messy,	 the	registry	 is	one	of	 the	worst,	and	the	cryptic	nomenclature	does	not	make	 it	much	
better.	Fortunately,	entire	sites	have	been	written	describing	it.	That	said,	the	idea	behind	the	
registry	 is	very	simple.	 It	consists	of	a	collection	of	directories,	each	of	which	contains	either	
subdirectories	 or	 entries.	 In	 this	 respect	 it	 is	 a	 kind	of	file	 system	 for	very	 small	files.	 It	 has	
directories	and	entries	(the	files).

The confusion starts with the fact that Microsoft calls a directory a key,	which	is	definitely	not.	
Furthermore,	all	 the	 top-level	directories	start	with	 the	string	HKEY,	which	means	handle	 to	
key.	Subdirectories	tend	to	have	somewhat	better	chosen	names,	although	not	always.

At	 the	bottom	of	 the	hierarchy	are	 the	 entries,	 called	values,	which	 contain	 the	 information.	
Each	value	has	three	parts:	a	name,	a	type,	and	the	data.	The	name	is	just	a	Unicode	string,	often	
default if the directory contains only one value. The type is one of 11 standard types. The most 
common	ones	are	Unicode	string,	a	list	of	Unicode	strings,	a	32-bit	integer	an	arbitrary	length	
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Notes binary	number,	and	a	symbolic	link	to	a	directory	or	entry	elsewhere	in	the	registry.	Symbolic	
names	are	completely	analogous	to	symbolic	links	in	file	systems	or	shortcuts	on	the	Windows	
desktop:	they	allow	one	entry	to	point	to	another	entry	or	directory.	A	symbolic	link	can	also	
be	used	as	a	key,	meaning	that	something	that	appears	to	be	a	directory	is	 just	a	pointer	to	a	
different directory.

Figure 10.5: The root keys registry keys and selected subkeys. The capitalization 
has no meaning but follows the Microsoft practice here

Key Description

HKEY_LOCAL_MACHINE

HARDWARE

SAM

SECURITY

SOFTWARE

SYSTEM

Properties of the hardware and software

Hardware description and mapping of hardware to 
drivers

Security and account information for users

System-wide security policies

Generic information about installed application 
programs
Information for booting the system

HKEY_USERS Information about the users; one subkey per user

User	AST’s	profile

Which	 sound	 to	 make	 when	 (incoming	 email/fax,	
error,	etc.)

USER_AST_ID

AppEvents

Console Command	prompt	settings	(colours,	fonts,	history,	etc.)

Control Panel Desktop	appearance,	screensaver,	mouse	ensitivity,	etc.

Environment Environment variables
Keyboard Layout Which	keyboard:	102-key	US,	AZERTY,	Dvorak,	etc.

Printers Information about installed printers

Software User preferences for Microsoft and third party software

HKEY_PERFORMANCE_DATA Hundreds of counters monitoring system performance

HKEY_CLASSES_ROOT Link	 to	 HKEY_LOCAL_MACHINE\SOFTWARE	
CLASSES

HKEY_CURRENT_CONFIG Link	to	the	current	hardware	profile

HKEY_CURRENT_USER Link to the current user profile

At	the	top	level,	 the	Windows	2000	registry	has	six	keys,	called	root keys,	as	listed	in	Figure	
10.5. Some interesting sub keys	 (subdirectories)	are	also	shown	here.	To	see	this	 list	on	your	
system,	use	one	of	the	registry	editors,	either	regedit	or	regedt32,	which	unfortunately	display	
different information and use different formats. They can also change registry values. Amateurs 
should not change the keys or values on any system they plan to boot again. Just looking is 
safe,	though.	You	have	been	warned.

The	first	key	(i.e.,	directory),	HKEY_LOCAL_MACHINE,	is	probably	the	most	important	as	it	
contains	all	the	information	about	the	local	system.	It	has	five	subkeys	(i.e.,	subdirectories).	The	
HARDWARE subkey contains many subkeys telling all about the hardware and which driver 
controls	which	piece	of	hardware.	This	information	is	displayed	on	the	fly	by	the	plug-and-play	
manager	as	the	system	boots.	Unlike	the	other	subkeys,	it	is	not	stored	on	disk.
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NotesThe	SAM	(Security	Account	Manager)	subkey	contains	the	user	names,	groups,	passwords,	and	
other	account	and	security	information	needed	for	logging	in.	The	SECURITY	subkey	contains	
general	security	policy	information,	such	as	minimum	length	for	passwords,	how	many	failed	
login	attempts	are	tolerated	before	the	police	is	called,	etc.

The	SOFTWARE	subkey	is	where	software	manufacturers	store	preferences	etc.	For	example,	
if	a	user	has	Adobe	Acrobat,	Photoshop	and	Premiere	installed,	there	will	be	a	subkey	Adobe	
here,	and	below	that	further	subkeys	for	Acrobat,	Photoshop,	Premiere,	and	any	other	Adobe	
products. The entries in these subdirectories can store anything the Adobe programmers want 
to	put	there,	generally	system-wide	properties	such	as	the	version	and	build	number,	how	to	
uninstall	the	package,	drivers	to	use,	and	so	forth.	The	registry	saves	them	the	trouble	of	having	
to	invent	their	own	method	for	storing	this	information.	User-specific	information	also	goes	in	
the	registry,	but	under	HKEY_USERS.

The	 SYSTEM	 subkey	 holds	most	 of	 the	 information	 about	 booting	 the	 system,	 for	 example,	
the	list	of	drivers	that	must	be	loaded.	It	also	holds	the	list	of	services	(daemons)	that	must	be	
started	after	booting	up	and	the	configuration	information	for	all	of	them.

The	next	top-level	key	is	HKEY_USERS,	which	contains	the	profiles	of	all	the	users.	All	the	user-
specific	preferences	in	a	number	of	areas	are	stored	here.	When	a	user	changes	a	preference	using	
the	control	panel,	for	example,	the	desktop	colour	scheme,	the	new	settings	are	recorded	here.	
In	fact,	many	of	the	programs	on	the	control	panel	do	little	more	than	collect	user	information	
and	change	the	registry	accordingly.	Some	of	the	subkeys	under	HKEY_USERS	are	shown	in	 
Figure	10.5	and	should	need	little	additional	comment.	Some	of	the	subkeys,	such	as	Software,	
contain	surprisingly	large	numbers	of	subkeys,	even	if	no	software	packages	are	installed.

The	 next	 top-level	 key,	 HKEY_PERFORMANCE_DATA	 contains	 neither	 data	 read	 in	 from	
the	 disk	 nor	 data	 collected	 by	 the	 plug-and-play	manager.	 Instead,	 it	 offers	 a	window	 into	
the operating system. The system itself contains hundreds of counters for monitoring system 
performance.	These	counters	are	accessible	via	this	registry	key.	When	a	subkey	is	queried,	a	
specified	procedure	is	run	to	collect	and	return	the	information	(possibly	by	reading	one	or	more	
counters	and	combining	them	in	some	way).	This	key	is	not	visible	using	regedit	or	regedt32.	
Instead	one	has	to	use	the	performance	tools,	such	as	pfmon,	perfmon,	and	pview.	There	are	
many	such	tools,	some	on	the	Windows	2000	CD-ROM,	some	 in	 the	resource	kits,	and	some	
from third parties.

The next three top-level keys do not actually exist. Each one is a symbolic link to some place 
elsewhere	in	the	registry.	The	HKEY_CLASSES_ROOT	key	is	the	most	interesting.	It	points	to	
the	directory	 that	handles	COM	(Component	Object	Model)	objects	and	also	 the	associations	
between	 file	 extensions	 and	 programs.	When	 a	 user	 double	 clicks	 on	 a	 file	 ending	 in,	 say,	
.doc,	the	program	catching	the	mouse	click	looks	here	to	see	which	program	to	run	(probably	
Microsoft	Word).	The	complete	database	of	recognized	extensions	and	which	program	each	one	
is owned by is under this key.

The	HKEY_CURRENT_CONFIG	key	links	to	the	current	hardware	configuration.	A	user	can	
construct	multiple	hardware	configurations,	for	example	by	disabling	various	devices	to	see	if	
they	were	the	cause	of	strange	system	behaviour.	This	key	points	to	the	current	configuration.	
Similarly,	HKEY_CURRENT_USER	points	to	the	current	user	so	that	user’s	preferences	can	be	
found	quickly.

None	of	the	last	three	keys	really	adds	anything,	since	the	information	was	available	elsewhere	
anyway	(although	less	conveniently	accessible).	Thus	despite	the	fact	that	regedit	and	regedt32	
list	five	top-level	keys,	there	are	really	only	three	top-level	directories	and	one	of	them	is	not	
shown	among	the	five	displayed.
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Notes The	registry	is	fully	available	to	the	Win32	programmer.	There	are	calls	to	create	and	delete	keys,	
look	up	values	within	keys,	and	more. Some of the more useful ones are listed in Figure 10.6.

Figure 10.6: Some of the Win32 API calls for Using the Registry

Win32 API function Description 
RegCreateKeyEx Create a new registry key
RegDeleteKey Delete a registry key
RegOpenKeyEx Open a key to get a handle to it
RegEnumKeyEx Enumerate the subkeys subordinate to the key 

of the handle
RegQueryValueEx Look up the data for a value within a key

When	the	system	is	turned	off,	most	of	the	registry	information	(but	not	all,	as	discussed	above)	
is	stored	on	the	disk	in	files	called	hives.	Most	of	them	are	in	\winnt\system32\config.	Because	
their	integrity	is	so	critical	to	correct	system	functioning,	when	they	are	updated,	backups	are	
made automatically and writes are done using atomic transactions to prevent corruption in the 
event	of	system	crash	during	the	write.	Loss	of	the	registry	requires	reinstalling	all	software.

Self Assessment
Multiple choice questions:

 1. .................... is a line of operating systems produced by Microsoft for use on personal 
computers,	business	desktops,	laptops	and	servers.

	 (a)	 Windows	95	 (b)	 Windows	98

	 (c)	 Windows	2000		 (d)	 Windows	Me

 2. Window 95 was released in .................... .

	 (a)	 August	1995	 (b)	 June	1998

	 (c)	 April	2000	 (d)	 May	2000

	 3.	 In	the	millennium	year	2000,	Microsoft	brought	out	a	minor	revision	to	Windows	98	called	
.................... .

	 (a)	 Windows	95	 (b)	 Windows	NT

	 (c)	 Windows	2000		 (d)	 Windows	Me

 4. One thing that Windows 2000 does not have is .................... .

	 (a)	 Server	 (b)	 MS-DOS

	 (c)	 System32	 (d)	 Windows	NT

	 5.	 At	the	top	level,	the	Windows	2000	registry	has	....................	keys,	called	root	keys.

	 (a)	 2	 (b)	 4

	 (c)	 6	 (d)	 8

10.3 Summary

	 •	 Windows	2000	which	includes	Microsoft	Operating	Systems	for	desktop	and	laptop.

	 •	 PCs	can	be	divided	into	three	families,	i.e.	MS-DOS,	Consumer	Windows	and	Windows	
NT.
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Notes	 •	 Windows	NT	 (Windows	New	 Technology)	was	 intended	 for	mission	 critical	 business	
applications as well as for home users.

	 •	 Programming	 (Windows	 2000),	 which	 includes	 the	Win32	 application	 programming	
interface which tells us that Microsoft has never made the list of Windows system calls 
public and it also changes them from release to release.

	 •	 Windows	98	and	Windows	NT,	different	versions	of	Windows	2000	and	the	description	
of the key.

	 •	 The	SAM	(Security	Account	Manager)	subkey	contains	the	user	names,	groups,	passwords	
and other accounts and security information needed for logging in.

10.4 Keywords

Hives:	When	 the	 system	 is	 turned	off,	most	of	 the	 registry	 information	 is	 stored	on	 the	disk	
files	called	hives.

Registry:	In	Windows	95,	nearly	all	the	information	needed	for	booting	and	configurating	the	
system and tailoring it to the current user was gathered in a big central database called the registry.

Win 32API:	Windows	2000	has	a	 set	of	 system	calls	 it	 can	perform.	However,	Microsoft	has	
never made the list of Windows system calls public and it also changes them from release to 
release.	Instead,	what	Microsoft	has	done	is	define	a	set	of	function	calls	called	the	Win32	API	
(Win32	Application	Programming	Interface).

Windows Me:	In	the	millennium	year,	2000,	Microsoft	brought	out	a	minor	revision	to	Windows	
98	called	Windows	Me	(Windows	Millennium	Edition).

Windows:	Microsoft	decided	 to	give	MS-DOS	a	graphical	user	 interface	 (shell)	 that	 is	 called	 
Windows.

10.5 Review Questions

	 1.	 When	the	kernel	catches	system	call,	how	does	it	know	which	system	call	it	is	supposed	
to carry out?

	 2.	 Define	Windows	NT	and	describe	why	it	is	named	so.

 3. Describe in detail Windows 2000 and its versions.

 4. What are the differences between Windows 98 and Windows NT? Describe. 

	 5.	 Define	Programming	Windows	2000	and	its	structures.

Answers to Self Assessment
	 1.	 (c)	 2.	 (a)	 3.	 (d)	 4.	 (b)	 5.	 (c)

10.6 Further Readings

Operating Systems,	 by	Harvey	M.	Deitel,	Paul	 J.	Deitel,	David	R.	Choffnes.	
Introduction to Operating Design and Implementation, by	Michael	Kifer,	Scoott	
A. Smolka.

wiley.com/coolege.silberschatz
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NotesIntroduction

In	this	unit,	we	will	briefly	look	at	the	operating	systems	from	its	functional	point	of	view;	that	
is the services which are provided by the operating system. A detailed discussion will follow 
in	the	subsequent	units.

Common System Components

	 •	 Due	to	the	complex	nature	of	the	modern	operating	systems,	it	is	partitioned	into	smaller	
component.	Each	component	performs	a	well-defined	function	with	well-defined	inputs	
and outputs.

	 •	 Many	modern	operating	systems	have	the	following	components.

	 —	 Process	Management	

	 	—	 Main	Memory	Management

	 —		 File	Management

	 —		 I/O	System	Management

	 —		 Secondary	Management

	 —		 Networking

	 —		 Protection	System

	 —		 Command-Interpreter	System

11.1 Operating System Structure

Windows	2000	consists	of	 two	major	parts:	 the	operating	 system	 itself,	which	 runs	 in	kernel	
mode,	and	 the	environment	subsystems,	which	run	 in	user	mode.	The	kernel	 is	a	 traditional	
kernel	in	the	sense	that	it	handles	process	management,	memory	management,	file	systems,	and	
so on. The environment subsystems are somewhat unusual because they are separate processes 
that help user programs carry out certain system functions. In the following sections we will 
examine each of these parts in turn.

One of NT’s many improvements over Windows 3.x was its modular structure. It consisted 
of	a	moderately	small	kernel	 that	ran	in	kernel	mode,	plus	some	server	processes	that	ran	in	
user	mode.	User	processes	interacted	with	the	server	processes	using	the	client-server	model:	
a	client	sent	a	request	message	to	a	server,	and	the	server	did	the	work	and	returned	the	result	
to the client via a second message. This modular structure made it easier to port it to several 
computers	besides	the	Intel	line,	including	the	DEC	Alpha,	IBM	PowerPC,	and	SGI	MIPS.	It	also	
protected	the	kernel	from	bugs	in	the	server	code.	However,	for	performance	reasons,	starting	
with	NT	4.0,	pretty	much	all	of	the	operating	system	(e.g.,	system	call	handling	and	all	of	the	
screen	graphics)	was	put	back	into	kernel	mode.	This	design	was	carried	over	to	Windows	2000.

Nevertheless,	 there	 is	 still	 some	structure	 in	Windows	2000.	 It	 is	divided	 into	 several	 layers,	
each one using the services of the ones beneath it. The structure is illustrated in Figure 11.1. 
One of the layers is divided horizontally into many modules. Each module has some particular 
function	and	a	well-defined	interface	to	the	other	modules.

The	 lowest	 two	 software	 layers,	 the	HAL	 and	 the	 kernel,	 are	written	 in	C	 and	 in	 assembly	
language and are partly machine dependent. The upper ones are written entirely in C and 
are	almost	entirely	machine	independent.	The	drivers	are	written	in	C,	or	in	a	few	cases	C++.	
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Notes Below	we	will	first	examine	the	various	components	of	the	system	starting	at	the	bottom	and	
working our way up.

Figure 11.1: The structure of Windows 2000 (slightly simplified). The shaded  
area is the executive. The boxes indicated by D are device drivers.  

The service processes are system daemons.
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The software component of a computer system that is responsible for the 
management and coordination of activities and the sharing of the resources 
of	 the	 computer.	 The	 operating	 system	 (OS)	 acts	 as	 a	 host	 for	 application	
programs that are run on the machine.

11.1.1 Hardware Abstraction Layer

One	of	the	goals	of	Windows	2000	(and	Windows	NT	before	it)	was	to	make	the	operating	system	
portable	across	platforms.	Ideally,	when	a	new	machine	comes	along,	it	should	be	possible	to	just	
recompile	the	operating	system	with	the	new	machine’s	compiler	and	have	it	run	for	the	first	
time.	Unfortunately,	the	upper	layers	of	the	operating	system	can	be	made	completely	portable	
(because	they	mostly	deal	with	internal	data	structures),	while	the	lower	layers	deal	with	device	
registers,	interrupts,	DMA,	and	other	hardware	features	that	differ	appreciably	from	machine	to	
machine.	Even	though	most	of	the	low-level	code	is	written	in	C,	it	cannot	just	be	scooped	up	
from	a	Pentium,	plopped	down	on,	say,	an	Alpha,	recompiled,	and	rebooted	due	to	the	many	
small hardware differences between the Pentium and the Alpha that have nothing to do with 
the different instruction sets and which cannot be hidden by the compiler.

Fully	aware	of	 this	problem,	Microsoft	made	a	serious	attempt	 to	hide	many	of	 the	machine	
dependencies in a thin layer at the bottom called the HAL (Hardware Abstraction Layer).	(The	
name	HAL	was	 inspired	by	 the	 computer	HAL	 in	 the	 late	 Stanley	Kubrick’s	movie	 2001:	A	
Space Odyssey. Rumor has it that Kubrick chose the name “HAL” by taking the name of the 
then-dominant	computer	company—IBM—and	subtracting	1	from	each	letter.)
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NotesThe	job	of	the	HAL	is	to	present	the	rest	of	the	operating	system	with	abstract	hardware	devices,	
in	 particular,	 devoid	 of	 the	warts	 and	 idiosyncracies	with	which	 real	 hardware	 is	 so	 richly	
endowed.	These	devices	are	presented	in	the	form	of	machine-independent	services	(procedure	
calls	and	macros)	 that	 the	rest	of	 the	operating	system	and	the	drivers	can	use.	By	using	 the	
HAL	services	(which	are	identical	on	all	Windows	2000	systems,	no	matter	what	the	hardware	
is)	 and	 not	 addressing	 the	 hardware	 directly,	 drivers	 and	 the	 kernel	 require	 fewer	 changes	
when being ported to new hardware. Porting the HAL itself is straightforward because all 
the machine-dependent codes are concentrated in one place and the goals of the port are well 
defined,	namely,	implement	all	of	the	HAL	services.

The services chosen for inclusion in the HAL are those that relate to the chip set on the parentboard 
and	which	vary	from	machine	to	machine	within	reasonably	predictable	limits.	In	other	words,	
it	is	designed	to	hide	the	differences	between	one	vendor’s	parentboard	and	another	one’s,	but	
not the differences between a Pentium and an Alpha. The HAL services include access to the 
device	 registers,	 bus-independent	device	 addressing,	 interrupt	handling	and	 resetting,	DMA	
transfers,	 control	 of	 the	 timers	 and	 real-time	 clock,	 low-level	 spin	 locks	 and	multiprocessor	
synchronization,	interfacing	with	the	BIOS	and	its	CMOS	configuration	memory.	The	HAL	does	
not	provide	abstractions	or	services	for	specific	I/O	devices	such	as	keyboards,	mice,	or	disks	
or for the memory management unit.

As	 an	 example	 of	what	 the	 hardware	 abstraction	 layer	 does,	 consider	 the	 issue	 of	memory-
mapped I/O versus I/O ports. Some machines have one and some have the other. How should 
a	driver	 be	programmed:	 to	use	memory-mapped	 I/O	or	 not?	Rather	 than	 forcing	 a	 choice,	
which	would	make	the	driver	not	portable	to	a	machine	that	did	it	the	other	way,	the	hardware	
abstraction layer offers three procedures for driver writers to use for reading the device registers 
and	another	three	for	writing	them:

uc	=	READ_PORT_UCHAR(port);									WRITE_PORT_UCHAR(port,	uc);

us	=	READ_PORT_USHORT(port);								WRITE_PORT_USHORT(port,	us);

ul	=	READ_PORT_ULONG(port);									WRITE_PORT_LONG(port,	ul);

These	 procedures	 read	 and	 write	 unsigned	 8-,	 16-,	 and	 32-bit	 integers,	 respectively,	 to	 the	
specified	port.	 It	 is	up	to	 the	hardware	abstraction	 layer	 to	decide	whether	memory-mapped	
I/O	is	needed	here.	In	this	way,	a	driver	can	be	moved	without	modification	between	machines	
that differ in the way the device registers are implemented.

Drivers	often	need	to	access	specific	I/O	devices	for	various	purposes.	At	the	hardware	level,	a	
device has one or more addresses on a certain bus. Since modern computers often have multiple 
buses	(ISA,	PCI,	SCSI,	USB,	1394,	etc.),	it	can	happen	that	two	or	more	devices	have	the	same	bus	
address,	so	some	way	is	needed	to	distinguish	them.	The	HAL	provides	a	service	for	identifying	
devices by mapping bus-relative device addresses onto system-wide logical addresses. In this 
way,	 drivers	 are	 not	 required	 to	 keep	 track	 of	which	 device	 is	 on	which	 bus.	 These	 logical	
addresses are analogous to the handles the operating system gives user programs to refer to 
files	and	other	system	resources.	This	mechanism	also	shields	higher	layers	from	properties	of	
alternative bus structures and addressing conventions.

Interrupts	have	a	similar	problem—they	are	also	bus	dependent.	Here,	too,	the	HAL	provides	
services to name the interrupts in a system-wide way and also provides services to allow drivers 
to	 attach	 interrupt	 service	 routines	 to	 interrupts	 in	 a	portable	way,	without	having	 to	know	
anything	about	which	interrupt	vector	is	for	which	bus.	Interrupt	request	level	management	is	
also handled in the HAL.

Another HAL service is setting up and managing DMA transfers in a device-independent way. 
Both	the	system—wide	DMA	engine	and	DMA	engines	on	specific	I/O	cards	can	be	handled.	
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Notes Devices are referred by their logical addresses. The HAL also implements software scatter/
gather	(writing	or	reading	from	noncontiguous	blocks	of	physical	memory).

The HAL also manages clocks and timers in a portable way. Time is kept track of in units of 
100	nsec	starting	at	1	January	1901,	which	is	far	more	precise	than	MS-DOS’s	keeping	track	of	
time in units of 2 sec since 1 January 1980 and provides support for the many computer-related 
activities	in	the	17th,	18th,	and	19th	centuries.	The	time	services	decouple	the	drivers	from	the	
actual	frequencies	at	which	the	clocks	run.

Kernel	components	sometimes	need	to	synchronize	at	a	very	 low	level,	especially	 to	prevent	
race conditions in multiprocessor systems. The HAL provides some primitives to manage this 
synchronization,	 such	 as	 spin	 locks,	 in	which	 one	CPU	 simply	waits	 for	 a	 resource	 held	 by	
another	CPU	to	be	released,	particularly	in	situations	where	the	resource	is	typically	only	held	
for a few machine instructions.

Finally,	after	 the	system	has	been	booted,	 the	HAL	talks	to	the	BIOS	and	inspects	the	CMOS	
configuration	memory,	if	any,	to	find	out	which	buses	and	I/O	devices	the	system	contains	and	
how	they	have	been	configured.	This	information	is	then	put	into	the	registry	so	other	system	
components	can	look	it	up	without	having	to	understand	how	the	BIOS	or	configuration	memory	
work. A summary of some of the things the HAL does is given in Figure 11.2.

Since	the	HAL	is	highly-machine	dependent,	it	must	match	the	system	it	is	installed	on	perfectly,	
so	a	variety	of	HALs	are	provided	on	the	Windows	2000	CD-ROM.	At	system	installation	time,	
the	appropriate	one	 is	selected	and	copied	to	 the	system	directory	\winNT\system32	on	the	
hard	disk	as	hal.dll.	All	subsequent	boots	use	this	version	of	the	HAL.	Removing	this	file	will	
make the system unbootable.

Although	the	HAL	is	reasonably	efficient,	for	multimedia	applications,	it	may	not	be	fast	enough.	
For	this	reason,	Microsoft	also	produced	a	software	package	called	DirectX,	which	augments	
the HAL with additional procedures and allows user processes much more direct access to the 
hardware.	DirectX	is	somewhat	specialized,	so	we	will	not	discuss	it	further	in	this	unit.

Figure 11.2: Some of the Hardware Functions the HAL Manages

Hardware	refers	to	a	physical	piece	of	a	computer.	This	could	be	a	hard	drive,	
monitor,	memory	chip,	or	CPU.	The	key	 idea	 is	 that	 the	 item	 is	 something	
you can touch.
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Notes11.1.2 Kernel Layer

Above the hardware abstraction layer is a layer that contains what Microsoft calls the kernel,	as	
well	as	the	device	drivers.	Some	early	documentation	refers	to	the	kernel	as	the	“microkernel,”	
which	it	really	never	was	because	the	memory	manager,	file	system,	and	other	major	components	
resided in kernel space and ran in kernel mode from day one. The kernel is certainly not a 
microkernel now since virtually the entire operating system was put in kernel space starting 
with NT 4.0.

In	the	unit	on	UNIX,	we	used	the	term	“kernel”	to	mean	everything	running	in	kernel	mode.	
In	this	unit,	we	will	reserve	the	term	“kernel”	for	the	part	 labeled	as	such	in	Figure	11.2	and	
call	the	totality	of	the	code	running	in	kernel	mode	the	“operating	system.”	Part	of	kernel	(and	
much	of	the	HAL)	is	permanently	resident	in	main	memory	(i.e.,	is	not	paged).	By	adjusting	its	
priority,	it	can	control	whether	it	can	tolerate	being	preempted	by	I/O	interrupts	or	not.	Although	
a	substantial	fraction	of	the	kernel	is	machine	specific,	most	of	it	 is	nevertheless	written	in	C,	
except where top performance overshadows all other concerns.

The purpose of the kernel is to make the rest of the operating system completely independent 
of	 the	hardware,	and	 thus	highly	portable.	 It	picks	up	where	 the	HAL	 leaves	off.	 It	accesses	
the hardware via the HAL and builds upon the extremely low-level HAL services to construct 
higher-level	abstractions.	For	example,	the	HAL	has	calls	to	associate	interrupt	service	procedures	
with	interrupts,	and	set	their	priorities,	but	does	little	else	in	this	area.	The	kernel,	in	contrast,	
provides a complete mechanism for doing context switches. It properly saves all the CPU 
registers,	changes	the	page	tables,	flushes	the	CPU	cache,	and	so	on,	so	that	when	it	is	done,	the	
previously running thread has been saved in tables in memory. It then sets up the new thread’s 
memory map and loads its registers so the new thread can start running.

The code for thread scheduling is also in the kernel. When it is time to see if a new thread 
can	run,	for	example,	after	a	quantum	runs	out	or	after	an	I/O	interrupt	completes,	the	kernel	
chooses the thread and does the context switch necessary to run it. From the point of view of 
the	 rest	 of	 the	 operating	 system,	 thread	 switching	 is	 automatically	 handled	 by	 lower	 layers	
without any work on their part and in a portable way. The scheduling algorithm itself will be 
discussed later in this unit when we come to processes and threads.

In	addition	to	providing	a	higher-level	abstraction	of	the	hardware	and	handling	thread	switches,	
the	kernel	also	has	another	key	function:	providing	low-level	support	for	two	classes	of	objects:	
control objects and dispatcher objects. These objects are not the objects that user processes get 
handles	to,	but	are	internal	objects	upon	which	the	executive	builds	the	user	objects.

Control objects	are	those	objects	that	control	the	system,	including	primitive	process	objects,	
interrupt	objects,	and	two	somewhat	strange	objects	called	DPC	and	APC.	A DPC (Deferred 
Procedure Call) object is used to split off the non-time-critical part of an interrupt service 
procedure	from	the	time	critical	part.	Generally,	an	interrupt	service	procedure	saves	a	few	volatile	
hardware registers associated with the interrupting I/O device so they do not get overwritten 
and	re-enables	the	hardware,	but	saves	the	bulk	of	the	processing	for	later.

For	example,	after	a	key	is	struck,	the	keyboard	interrupt	service	procedure	reads	the	key	code	
from	a	 register	 and	 re-enables	 the	keyboard	 interrupt,	 but	does	not	need	 to	process	 the	key	
immediately,	 especially	 if	 something	more	 important	 (i.e.,	higher	priority)	 is	 currently	going	
on.	As	 long	as	 the	key	 is	processed	within	 about	 100	msec,	 the	user	will	 be	none	 the	wiser.	
DPCs are also used for timer expirations and other activities whose actual processing need not 
be	instantaneous.	The	DPC	queue	is	the	mechanism	for	remembering	that	there	is	more	work	
to do later.
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Notes Another kernel control object is the APC (Asynchronous Procedure Call). APCs are like DPCs 
except	 that	 they	execute	 in	 the	context	of	a	 specific	process.	When	processing	a	key	press,	 it	
does not matter on whose context the DPC runs in because all that is going to happen is that 
the	key	code	will	be	 inspected	and	probably	put	 in	a	kernel	buffer.	However,	 if	an	 interrupt	
requires	copying	a	buffer	from	kernel	space	to	a	buffer	in	some	user	process	address	space	(e.g.,	
as	it	may	on	completion	of	a	read	from	the	modem),	then	the	copying	procedure	needs	to	run	
in the receiver’s context. The receiver’s context is needed so the page table will contain both 
the	kernel	buffer	and	 the	user	buffer	 (all	processes	 contain	 the	entire	kernel	 in	 their	 address	
spaces,	as	we	will	see	later).	For	this	reason,	the	kernel	distinguishes	between	DPCs	and	APCs.

The other kind of kernel objects are dispatcher objects.	These	 include	semaphores,	mutexes,	
events,	waitable	timers,	and	other	objects	that	threads	can	wait	on.	The	reason	that	these	have	to	
be	handled	(in	part)	in	the	kernel	is	that	they	are	intimately	intertwined	with	thread	scheduling,	
which	is	a	kernel	task.	As	a	little	aside,	mutexes	are	called	“mutants”	in	the	code	because	they	
were	 required	 to	 implement	 the	OS/2	 semantics	 of	 not	 automatically	 unlocking	 themselves	
when	a	thread	holding	one	exiled,	something	the	Windows	2000	designers	considered	bizarre.	
(The	OS/2	semantics	are	relevant	because	NT	was	originally	conceived	of	as	a	replacement	for	
OS/2,	the	operating	system	shipped	on	IBM’s	PC/2.)

11.1.3 Executive

Above	 the	kernel	and	device	drivers	 is	 the	upper	portion	of	 the	operating	system,	called	 the	
executive,	shown	as	the	shaded	area	in	Figure	11.1.	The	executive	is	written	in	C,	is	architecture	
independent,	and	can	be	ported	to	new	machines	with	relatively	little	effort.	It	consists	of	
10	components,	each	of	which	is	just	a	collection	of	procedures	that	work	together	to	accomplish	
some goal. There are no hard boundaries between the pieces and different authors describing 
the executive might even group the procedures differently into components. It should be noted 
that	components	on	the	same	level	can	(and	do)	call	each	other	extensively.

The object manager	manages	all	objects	known	to	the	operating	system.	These	include	processes,	
threads,	files,	directories,	semaphores,	I/O	devices,	timers,	and	many	others.	The	object	manager	
allocates a block of virtual memory from kernel address space when an object is created and 
returns it to the free list when the object is deal-located. Its job is to keep track of all the objects.

To	avoid	any	confusion,	most	of	 the	executive	components	 labeled	“manager”	 in	Figure	11.1	
are	not	processes	or	threads,	but	merely	collections	of	procedures	that	other	threads	can	execute	
when	in	kernel	mode.	A	few	of	them,	such	as	the	power	manager	and	plug-and-play	manager,	
really are independent threads though.

The object manager also manages a name space in which newly created objects may be placed 
so they can be referred to later. All other components of the executive use objects heavily to do 
their work. Objects are so central to the functioning of Windows 2000 that they will be discussed 
in detail in the next section.

The I/O manager provides a framework for managing I/O devices and provides generic I/O 
services.	It	provides	the	rest	of	the	system	with	device-independent	I/O,	calling	the	appropriate	
driver	 to	 perform	 physical	 I/O.	 It	 is	 also	 home	 to	 all	 the	 device	 drivers	 (indicated	 by	D	 in	 
Figure	11.1).	The	file	systems	are	technically	device	drivers	under	control	of	the	I/O	manager.	
Two	different	ones	are	present	 for	 the	FAT	and	NTFS	file	 systems,	each	one	 independent	of	
the	others	and	controlling	different	disk	partitions.	All	the	FAT	file	systems	are	managed	by	a	
single driver. 

The process manager	handles	processes	and	threads,	including	their	creation	and	termination.	
It	deals	with	 the	mechanisms	used	 to	manage	 them,	rather	 than	policies	about	how	they	are	
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Notesused. It builds upon the kernel process and thread objects and adds extra functionality to them. 
It is the key to multiprogramming in Windows 2000.

The memory manager implements Windows 2000’s demand-paged virtual memory architecture. 
It manages the mapping of virtual pages onto physical page frames. It thereby enforces the 
protection rules that restrict each process to only access those pages belonging to its address 
space	and	not	to	other	processes’	address	spaces	(except	under	special	circumstances).	

The security manager	enforces	Windows	2000’s	elaborate	security	mechanism,	which	meets	the	U.S.	
Department	of	Defense’s	Orange	site	C2	requirements.	The	Orange	site	specifies	a	large	number	of	
rules	that	a	conforming	system	must	meet,	starting	with	authenticated	login	through	how	access	
control	is	handled,	to	the	fact	that	virtual	pages	must	be	zeroed	out	before	being	reused.

The cache manager keeps the most recently used disk blocks in memory to speed up access to 
them	in	the	(likely)	event	that	they	are	needed	again.	Its	 job	is	to	figure	out	which	blocks	are	
probably	going	to	be	needed	again	and	which	ones	are	not.	It	is	possible	to	configure	Windows	
2000	with	multiple	file	systems,	in	which	case	the	cache	manager	works	for	all	of	them,	so	each	
one	does	not	have	to	do	its	own	cache	management.	When	a	block	is	needed,	the	cache	manager	
is	asked	to	supply	it.	If	it	does	not	have	the	block,	the	cache	manager	calls	upon	the	appropriate	
file	system	to	get	it.	Since	files	can	be	mapped	into	processes’	address	spaces,	the	cache	manager	
must interact with the virtual memory manager to provide the necessary consistency. The amount 
of space devoted to caching is dynamic and can increase or decrease as demands on it change.

The plug-and-play manager	is	sent	all	notifications	of	newly	attached	devices.	For	some	devices,	
a	check	is	made	at	boot	time	and	not	thereafter.	Other	devices,	for	example,	USB	devices,	can	
be	attached	at	any	time	and	their	attachment	triggers	a	message	to	the	plug-and-play	manager,	
which then locates and loads the appropriate driver.

The power manager rides herd on power usage. This consists of turning off the monitor and 
disks	after	 they	have	been	 idle	 for	a	while.	On	laptops,	 the	power	manager	monitors	battery	
usage and takes action when the battery is about to run dry. Such action typically tells programs 
to	save	their	files	and	prepare	for	a	graceful	shutdown.

The configuration manager is incharge of the registry. It adds new entries and looks up keys 
when asked to.

The local procedure call manager	provides	for	a	highly-efficient	interprocess	communication	
used between processes and their subsystems. Since this path is needed to carry out some 
system	calls,	efficiency	is	critical	here,	which	is	why	the	standard	interprocess	communication	
mechanisms are not used.

The	Win32	GDI	 executive	module	 handles	 certain	 system	 calls	 (but	 not	 all	 of	 them).	 It	was	
originally in user space but was moved to kernel space in NT 4.0 to improve performance. The 
GDI (Graphics Device Interface) handles image management for the monitor and printers. It 
provides system calls to allow user programs to write on the monitor and printers in a device-
independent	way.	It	also	contains	the	window	manager	and	display	driver.	Prior	to	NT	4.0,	it,	
too,	was	in	user	space	but	the	performance	was	disappointing,	so	Microsoft	moved	it	into	the	
kernel	to	speed	it	up.	It	is	worth	mentioning	that	Figure	11.1	is	not	at	all	to	scale.	For	example,	the	
Win32 and graphics device interface module are larger than the rest of the executive combined.

At the top of the executive is a thin layer called system services. Its function is to provide an 
interface to the executive. It accepts the true Windows 2000 system calls and calls other parts 
of the executive to get them executed.
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Notes At	boot	 time,	Windows	2000	 is	 loaded	 into	memory	as	a	collection	of	files.	The	main	part	of	
the	operating	system,	consisting	of	the	kernel	and	executive,	is	located	in	the	file	ntoskrnl.exe.	
The	HAL	is	a	shared	library	located	in	a	separate	file,	hal.dll.	The	Win32	and	graphics	device	
interface	are	together	in	a	third	file,	win32k.sys.	Finally,	many	device	drivers	are	also	loaded.	
Most of these have extension .sys.

Actually,	the	ntoskrnl.exe	file	comes	in	uniprocessor	and	multiprocessor	versions.	Also,	there	
are	versions	for	the	Xeon	processor,	which	can	have	more	than	4	GB	of	physical	memory	and	
the	 Pentium,	which	 cannot.	 Finally,	 versions	 can	 consist	 of	 a	 free	 build	 (sold	 in	 stores	 and	
preinstalled	by	computer	manufacturers)	or	a	checked	build	(for	debugging	purposes).	together	
there	could	be	eight	combinations,	although	two	pairs	were	combined	leaving	only	six.	One	of	
these is copied to ntoskrnl.exe when the system is installed.

The	checked	builds	are	worth	a	few	words.	When	a	new	I/O	device	is	installed	on	a	PC,	there	
is invariably a manufacturer-supplied driver that has to be installed to make it work. Suppose 
that	an	IEEE	1394	card	is	installed	on	a	computer	and	appears	to	work	fine.	Two	weeks	later	
the system suddenly crashes. To whom does the owner blame? Microsoft?

The	 bug	may	 indeed	 be	Microsoft’s,	 but	 some	 bugs	 are	 actually	 due	 to	 flakey	 drivers,	 over	
which Microsoft has no control and which are installed in kernel memory and have full access 
to all kernel tables as well as the entire hardware. In an attempt to reduce the number of irate 
customers	 on	 the	 phone,	Microsoft	 tries	 to	 help	 driver	writers	 debug	 their	 code	 by	 putting	
statements	of	the	form.	ASSERT(some	condition)	throughout	the	code.	These	statements	make	
sanity	checks	on	all	parameters	 to	 internal	kernel	procedures	 (which	may	be	 freely	called	by	
drivers)	and	make	many	other	checks	as	well.	The	free	builds	have	ASSERT	defined	as	a	macro	
that	does	nothing,	removing	all	the	checks.	The	checked	builds	have	defined	it	as:

#define	ASSERT(a)	if	(!(a))	error(…)

causing all the checks to appear in the ntoskrnl.exe executable code and be carried out at run 
time.	While	this	slows	down	the	system	enormously,	it	helps	driver	writers	debug	their	drivers	
before they ship them to customers. The checked builds also have numerous other debugging 
features turned on.

A	kernel	 can	be	 contrasted	with	 a	 shell,	which	 is	 the	 outermost	part	 of	 an	
operating system and a program that interacts with user commands.

11.1.4 Device Drivers

The last part of Figure 11.1 consists of the device drivers. Each device driver can control one or 
more	I/O	devices,	but	a	device	driver	can	also	do	things	not	related	to	a	specific	device,	such	as	
encrypting a data stream or even just providing access to kernel data structures. Device drivers 
are not part of the ntoskrnl.exe binary. The advantage of this approach is that once a driver 
has	been	installed	on	a	system,	 it	 is	added	to	a	 list	 in	the	registry	and	is	 loaded	dynamically	
when	the	system	boots.	In	this	way,	ntoskrnl.exe	is	the	same	for	everyone,	but	every	system	is	
configured	precisely	for	those	devices	it	contains.

There	are	device	drivers	for	macroscopically	visible	I/O	devices	such	as	disks	and	printers,	but	
also	for	many	internal	devices	and	chips	that	practically	no	one	has	ever	heard	of.	In	addition,	
the	 file	 systems	 are	 also	 present	 as	 device	 drivers,	 as	 mentioned	 above.	 The	 largest	 device	
driver,	the	one	for	Win32,	GDI,	and	video,	is	shown	on	the	far	right	of	Figure	11.1.	It	handles	
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Notesmany	system	calls	and	most	of	 the	graphics.	Since	customers	can	 install	new	device	drivers,	
they	have	the	power	to	affect	the	kernel	and	corrupt	the	system.	For	this	reason,	drivers	must	
be written with great care.

11.1.5 Implementation of Objects

Objects are probably the single most important concept in Windows 2000. They provide a uniform 
and	consistent	interface	to	all	system	resources	and	data	structures	such	as	processes,	threads,	
semaphores,	etc.	This	uniformity	has	various	facets.	First,	all	objects	are	named	and	accessed	
in	the	same	way,	using	object	handles.	Second,	because	all	accesses	to	the	objects	go	through	the	
object	manager,	it	is	possible	to	put	all	the	security	checks	in	one	place	and	ensure	that	no	process	
can	make	an	end	run	around	them.	Third,	sharing	of	objects	among	processes	can	be	handled	in	
a	uniform	way.	Fourth,	since	all	object	opens	and	closes	go	through	the	object	manager,	it	is	easy	
to	keep	track	of	which	objects	are	still	in	use	and	which	can	be	safely	deleted.	Fifth,	this	uniform	
model	for	object	management	makes	it	easy	to	manage	resource	quotas	in	a	straightforward	way.

A	key	to	understanding	objects	 is	 to	realize	that	an	(executive)	object	 is	 just	some	number	of	
consecutive	words	in	memory	(i.e.,	in	kernel	virtual	address	space).	An	object	is	a	data,	structure	
in	RAM,	no	more	and	no	 less.	A	file	on	disk	 is	not	an	object,	although	an	object	 (i.e.,	 a	data	
structure	in	kernel	virtual	address	space)	is	created	for	a	file	when	it	is	opened.	A	consequence	
of	 the	 fact	 that	objects	are	 just	kernel	data	structures	 is	 that	when	the	system	is	 rebooted	 (or	
crashes)	all	objects	are	 lost.	 In	fact,	when	the	system	boots,	 there	are	no	objects	present	at	all	
(except	 for	 the	 idle	and	 system	processes,	whose	objects	 are	hardwired	 into	 the	ntoskrnl.exe	
file).	All	other	objects	are	created	on	the	fly	as	the	system	boots	up	and	various	initialization	
(and	later	user)	programs	run.

Objects	have	a	structure,	as	shown	in	Figure	11.3.	Each	object	contains	a	header	with	certain	
information	 common	 to	 all	 objects	 of	 all	 types.	 The	fields	 in	 this	 header	 include	 the	 object’s	
name,	the	object	directory	in	which	it	lives	in	object	space,	security	information	(so	a	check	can	
be	made	when	an	object	is	opened),	and	a	list	of	processes	with	open	handles	to	the	object	(if	
a	certain	debugging	flag	is	enabled).

Figure 11.3: The Structure of an Object
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Notes Each	object	header	also	contains	a	quota	charge	field,	which	is	the	charge	levied	against	a	process	
for	opening	the	object.	 If	a	file	object	costs	1	point	and	a	process	belongs	to	a	 job	that	has	10	
file	points	worth	of	quota,	the	processes	in	that	job	can	only	open	10	files	in	total.	In	this	way	
resource limits can be enforced for each object type separately.

Objects	occupy	valuable	real	estate—pieces	of	kernel	virtual	address	space,	so	when	an	object	
is no longer needed it should be removed and its address space reclaimed. The mechanism 
for reclamation is to have a reference counter in each object’s header. It counts the number of 
open handles held by processes. This counter is incremented every time the object is opened 
and	decremented	 every	 time	 it	 is	 closed.	When	 it	 hits	 0,	 no	more	users	 hold	 handles	 to	 the	
object.	When	an	object	is	acquired	or	released	by	an	executive	component,	a	second	counter	is	
incremented	or	decremented,	even	though	no	actual	handle	is	issued.	When	both	counters	hit	0,	no	
user	process	is	using	the	object	and	no	executive	process	is	using	the	object,	so	the	object	can	
be removed and its memory freed.

The	object	manager	needs	to	maintain	dynamic	data	structures	(its	objects),	but	it	is	not	the	only	
part of the executive with this need. Other pieces also need to allocate and release chunks of 
kernel	memory	dynamically.	To	meet	these	needs,	the	executive	maintains	two	page	pools	in	
kernel	address	space—for	objects	and	for	other	dynamic	data	structures.	Such	pools	operate	as	
heaps,	similar	to	the	C	language	calls	malloc	and	free	for	managing	dynamic	data.	One	pool	is	
paged	and	the	other	is	nonpaged	(pinned	in	memory).	Objects	that	are	needed	often	are	kept	
in	the	nonpaged	pool;	objects	that	are	rarely	accessed,	such	as	registry	keys	and	some	security	
information,	are	kept	in	the	paged	pool.	When	memory	is	tight,	the	latter	can	be	paged	out	and	
faulted	back	on	demand.	 In	 fact,	 substantial	portions	of	 the	operating	 system	code	and	data	
structures	are	also	pageable,	to	reduce	memory	consumption.	Objects	that	may	be	needed	when	
the	system	is	running	critical	code	(and	when	paging	is	not	permitted)	must	go	in	the	nonpaged	
pool.	When	a	small	amount	of	storage	is	needed,	a	page	can	be	taken	from	either	pool	and	then	
broken up into units as small as 8 bytes.

Objects	 are	 typed,	which	means	each	one	has	 certain	properties	 common	 to	all	 objects	of	 its	
type.	The	type	is	indicated	by	a	pointer	in	the	header	to	a	type	object,	as	shown	in	Figure	11.3.	
The	type	object	information	includes	items	such	as	the	type	name,	whether	a	thread	can	wait	
on	the	object	(yes	for	mutexes,	no	for	open	files),	and	whether	new	objects	of	this	type	go	on	
the paged or nonpaged pool. Each object points to its type object.

The	last	thing	a	type	object	has	is	also	the	most	important:	pointers	to	the	code	for	certain	standard	
operations	such	as	open,	close,	and	delete.	Whenever	one	of	these	operations	is	invoked	on	an	
object,	 the	pointer	 to	 the	 type	object	 is	 followed	and	the	relevant	code	 located	and	executed.	
This	mechanism	gives	the	system	the	opportunity	to	initialize	new	objects,	and	recover	storage	
when they are deleted.

Executive	components	can	create	new	types	dynamically.	There	is	no	definite	list	of	object	types,	
but	some	of	the	more	common	ones	are	listed	in	Figure	11.4.	Let	us	briefly	go	over	the	object	
types in Figure 11.4. Process and thread are obvious. There is one object for every process and 
every	 thread,	which	holds	 the	main	properties	needed	 to	manage	 the	process	or	 thread.	The	
next	 three	 objects,	 semaphore,	mutex,	 and	 event,	 all	 deal	with	 interprocess	 synchronization.	
Semaphores	 and	mutexes	work	 as	 expected,	 but	with	 various	 extra	 bells	 and	whistles	 (e.g.,	
maximum	values	and	timeouts).	Events	can	be	in	one	of	two	states:	signaled	or	nonsignaled.	
If	a	thread	waits	on	an	event	that	is	in	signaled	state,	the	thread	is	released	immediately.	If	the	
event	is	in	nonsignaled	state,	it	blocks	until	some	other	thread	signals	the	event,	which	releases	
all	blocked	threads.	An	event	can	also	be	set	up,	so	after	a	signal	has	been	successfully	waited	
for,	it	automatically	reverts	back	to	nonsignaled	state,	rather	than	staying	in	signaled	state.
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NotesPort,	 timer,	 and	 queue	 objects	 also	 relate	 to	 communication	 and	 synchronization.	 Ports	 are	
channels between processes for exchanging messages. Timers provide a way to block for a 
specific	time	interval.	Queues	are	used	to	notify	threads	that	a	previously	started	asynchronous	
I/O operation has completed.

Figure 11.4: Some Common Executive Types Object Managed by Object Manager

Type  Description

Process User process

Thread Thread within a process

Semaphore Counting semaphore used for interprocess synchronization

Mutex Binary semaphore used to enter a critical region

Event Synchronization object with persistent state (signaled/not)

Port Mechanism for interprocess message passing

Timer Object allowing a thread to sleep for a fixed time interval

Queue Object used for completion notification on asynchronous I/O

Open file Object associated with an open file

Access token Security descriptor for some object

Profile Data structure used for profiling CPU usage

Section Structure used for mapping files onto virtual address space

Key Registry key

Object directory Directory for grouping objects within the object manager

Symbolic link Pointer to another object by name

Device I/O device object

Device driver Each loaded device driver has its own object

Open	file	objects	are	created	when	a	file	is	opened.	Files	that	are	not	opened	do	not	have	objects	
managed by the object manager. Access tokens are security objects; they identify a user and 
tell	what	special	privileges	the	user	has,	if	any.	Profiles	are	structures	used	for	storing	periodic	
samples of the program counter of a running thread to see where the program is spending its time.

Sections	are	the	objects	used	by	the	memory	system	for	handling	memory-mapped	files.	They	
record	which	file	(or	part	thereof)	is	mapped	onto	which	memory	addresses.	Keys	are	registry	
keys and are used to relate names to values. Object directories are entirely local to the object 
manager. They provide a way to collect related objects together in exactly the same way directories 
work	in	the	file	system.	Symbolic	links	are	also	similar	to	their	file	system	counterparts—they	
allow a name in one part of the object name space to refer to an object in a different part of the 
object name space. Each known device has a device object that contains information about it 
and	is	used	to	refer	to	the	device	within	the	system.	Finally,	each	device	driver	that	has	been	
loaded has an object in the object space.



Principles of Operating Systems

338 LOVELY PROFESSIONAL UNIVERSITY

Notes Users can create new objects or open existing objects by making Win32 calls such as 
CreateSemaphore or OpenSemaphore. These are the calls to library procedures that ultimately 
result in the appropriate system calls being made. The result of any successful call that creates 
or opens an object is a 64-bit handle table entry that is stored in the process’ private handle 
table in kernel memory. The 32-bit index of the handle’s position in the table is returned to the 
user	to	use	on	subsequent	calls.

The 64-bit handle table entry in the kernel contains two 32-bit words. One word contains a 29-bit 
pointer	to	the	object’s	header.	The	low-order	3	bits	are	used	as	flags	(e.g.,	whether	the	handle	is	
inherited	by	child	processes).	These	bits	are	masked	off	before	the	pointer	is	followed.	The	other	
word contains a 32-bit rights mask. It is needed because permissions checking is done only at 
the	time	the	object	is	created	or	opened.	If	a	process	has	only	read	permission	to	an	object,	all	
the	other	rights	bits	in	the	mask	will	he	0s,	giving	the	operating	system	the	ability	to	reject	any	
operation on the object other than reading it.

The handle tables for two processes and their relationships to some objects are illustrated in 
Figure	11.5.	In	this	example,	process	A	has	access	to	threads	1	and	2	and	access	to	mutexes	
1 and 2. Process B has access to thread 3 and mutexes 2 and 3. The corresponding entries in the 
handle	tables	hold	the	rights	to	each	of	these	objects.	For	example,	process	A	might	have	the	rights	
to	lock	and	unlock	its	mutexes,	but	not	the	right	to	destroy	them.	Note	that	mutex	2	is	shared	by	
both	processes	allowing	threads	in	them	to	synchronize.	The	other	mutexes	are	not	shared,	which	
might mean that the threads within process A use mutex 1 for their internal synchronization 
and the threads within process and B use mutex 3 for their internal synchronization.

Figure 11.5: The Relationship between Handle Tables, Objects and Type Objects

 

11.1.6 Object Name Space
As	objects	are	created	and	deleted	during	execution,	the	object	manager	needs	a	way	to	keep	
track	of	them.	To	do	this	job,	it	maintains	a	name	space,	in	which	all	the	objects	in	the	system	
are located. The name space can be used by a process to locate and open a handle for some 
other	process’	object,	provided	it	has	been	granted	permission	to	do	so.	The	object	name	space	
is	one	of	three	name	spaces	maintained	by	Windows	2000.	The	other	ones	are	the	file	system	
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Notesname space and the registry name space. All three are hierarchical name spaces with multiple 
levels of directories for organizing entries. The directory objects listed in Figure 11.4 provide 
the means to implement this hierarchical name space for objects.

Since	 executive	objects	 are	volatile	 (i.e.,	 vanish	when	 the	 computer	 is	 shut	down,	unlike	file	
system	and	registry	entries),	when	the	system	boots	up,	there	are	no	objects	in	memory	and	the	
object	name	space	is	empty.	During	booting,	various	parts	of	the	executive	create	directories	and	
then	fill	them	with	objects.	For	example,	as	the	plug-and-play	manager	discovers	devices	out	
there,	it	creates	a	device	object	for	each	one	and	enters	this	object	into	the	name	space.	When	
the	system	is	fully	booted,	all	I/O	devices,	disk	partitions,	and	other	interesting	discoveries	are	
in the object name space.

Not	all	objects	get	entered	by	the	Columbus	method—just	go	look	and	see	what	you	find.	Some	
executive components look in the registry to see what to do. A key example here is device drivers. 
During	bootup,	the	system	looks	in	the	registry	to	see	which	device	drivers	are	needed.	As	they	
are	loaded	one	by	one,	an	object	is	created	for	each	one	and	its	name	is	inserted	into	the	object	
space.	Within	the	system,	the	driver	is	referred	to	by	a	pointer	to	its	object.

Although	 the	 object	 name	 space	 is	 crucial	 to	 the	 entire	 operation	 of	 the	 system,	 few	people	
know that it even exists because it is not visible to users without special viewing tools. One 
such	viewing	 tool	 is	winobj,	 available	 for	 free	at	www.sysinternals.com.	When	 run,	 this	 tool	
depicts an object name space that typically contains the object directories listed in Figure 11.6 
as well as a few others.

Figure 11.6: Some Typical Directories in the Object Name Space

Directory  Contents

?? Starting place for looking up MS-DOS devices like C:

Device All discovered I/O devices

Driver Objects corresponding to each loaded device driver

ObjectTypes The type objects shown in Fig. 11.4

Windows Objects for sending messages to all the windows

BaseNamedObjs User-created objects such as semaphores, mutexes, etc.

Arcname Partition names discovered by the boot loader

NLS National language support objects

File System File system driver objects and file system recognizer objects

Security Objects belonging to the security system

KnownDLLs Key shared libraries that are opened early and held open

The	somewhat	strangely	named	directory	\??contains	the	names	of	all	the	MS-DOS-style	device	
names,	such	as	A:	for	the	floppy	disk	and	C:	for	the	first	hard	disk.	These	names	are	actually	
symbolic	finks	to	the	directory	\Devicewhere	the	device	objects	live.	The	name	\??	was	chosen	
to	make	it	alphabetically	first	to	speed	up	lookup	of	all	path	names	beginning	with	a	drive	letter.	
The contents of the other object directories should be self explanatory.
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Notes In	 computing,	 a	device driver or software driver is a computer program 
allowing higher-level computer programs to interact with a hardware device.

11.1.7 Environment Subsystems
Going	 back	 to	 Figure	 11.1,	 we	 see	 that	Windows	 2000	 consists	 of	 components	 in	 kernel	
mode and in user mode. We have now completed our examination of the kernel mode 
components; now it is time to look at the user mode components of which there are three 
kinds:	 DLLs,	 environment	 subsystems,	 and	 service	 processes.	 These	 components	 work	
together to provide each user process with an interface that is distinct from the Windows 
2000 system call interface.

Windows	2000	supports	three	different	documented	APIs—Win32,	POSIX,	and	OS/2.	Each	of	
these interfaces has a published list of library calls that programmers can use. The job of the DLLs 
(Dynamic	Link	Libraries)	and	environment	subsystems	is	to	implement	the	functionality	of	the	
published	interface,	thereby	hiding	the	true	system	call	interface	from	application	programs.	In	
particular,	the	Win32	interface	is	the	official	interface	for	Windows	2000,	Windows	NT,	Windows	
95/98/Me,	and	to	a	limited	extent,	Windows	CE.	By	using	the	DLLs	and	Win32	environment	
subsystem,	a	program	can	be	written	to	the	Win32	specification	and	run	unmodified	on	all	these	
versions	of	Windows,	even	though	the	system	calls	are	not	the	same	on	the	various	systems.

To	see	how	these	interfaces	are	implemented,	let	us	look	at	Win32.	A	Win32	program	normally	
contains	many	calls	to	Win32	API	functions,	for	example,	CreateWindow,	DrawMenuBar,	and	
OpenSemaphore.	There	are	thousands	of	such	calls,	and	most	programs	use	a	substantial	number	
of them. One possible implementation would be to statically link every Win32 program with all 
the	library	procedures	that	it	uses.	If	this	were	done,	each	binary	program	would	contain	one	
copy of each procedure that used in its executable binary.

The trouble with this approach is that it wastes memory if the user has multiple programs 
open	at	once	and	they	use	many	of	the	same	library	procedures.	For	example,	Word,	Excel,	and	
Powerpoint	all	use	exactly	the	same	procedures	for	opening	dialog	boxes,	drawing	windows,	
displaying	menus,	managing	the	clipboard,	etc.,	so	if	a	user	had	all	of	them	to	open	and	active	
at	once,	 there	would	be	 three	 (identical)	 copies	of	 each	of	 the	 libraries	 in	memory.	To	avoid	
this	problem,	all	versions	of	Windows	support	 shared	 libraries,	 called	DLLs (Dynamic Link 
Libraries). Each DLL collects together a set of closely related library procedures and their data 
structures	into	a	single	file,	usually	(but	not	always)	with	extension	.DLL.	When	an	application	
is	linked,	the	linker	sees	that	some	of	the	library	procedures	belong	to	DLLs	and	records	this	
information in the executable’s header. Calls to procedures in DLLs are made indirectly through 
a	 transfer	 vector	 in	 the	 caller’s	 address	 space.	 Initially	 this	 vector	 is	 filled	with	 0s,	 since	 the	
addresses of the procedures to be called are not yet known.

When	 the	application	process	 is	 started,	 the	DLLs	 that	are	needed	are	 located	 (on	disk	or	 in	
memory)	and	mapped	into	the	process’	virtual	address	space.	The	transfer	vector	is	then	filled	
in with the correct addresses so that the procedures can then be called via the transfer vector 
with	only	a	negligible	loss	of	efficiency.	The	win	here	is	that	even	though	multiple	application	
programs	have	the	same	DLL	mapped	in,	only	one	copy	of	the	DLL	text	is	needed	in	physical	
memory	(but	each	process	gets	 its	own	copy	of	the	private	static	data	in	the	DLL).	Windows	
2000 uses DLLs extremely heavily for all aspects of the system.

Now we have enough background to see how the Win32 and other process interfaces are 
implemented. Each user process generally links with a number of DLLs that together implement 
the	Win32	interface.	To	make	an	API	call,	one	of	the	procedures	in	a	DLL	is	called,	shown	as	
step 1 in Figure 11.7. What happens next depends on the Win32 API call? Different ones are 
implemented in different ways.
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Figure 11.7: Various Routes Taken to Implement Win32 API Function Calls

In	some	cases,	the	DLL	calls	another	DLL	(ntdll.dll)	that	actually	traps	to	the	operating	system.	
This path is shown as steps 2a and 3a in Figure 11.7. It is also possible that the DLL does all 
the	work	itself	without	making	a	system	call	at	all.	For	other	Win32	API	calls,	a	different	route	
is	taken,	namely,	first	a	message	is	sent	to	the	Win32	subsystem	process	(csrss.exe),	which	then	
does	some	work	and	then	makes	a	system	call	(steps	2b,	3b,	and	4b).	Here,	too,	in	some	cases	
the environment subsystem does all the work in user space and just returns immediately. The 
message passing between the application process and the Win32 subsystem process has been 
carefully optimized for performance using a special local procedure call mechanism implemented 
by the executive and shown as LPC in Figure 11.1.

In	 the	 first	 version	 of	Windows	NT,	 virtually	 all	 the	Win32	API	 calls	 took	 route	 2b,	 3b,	 4b,	
putting	a	large	chunk	of	the	operating	system	in	user	space	(e.g.,	the	graphics).	However,	starting	
with	NT	4.0,	most	of	the	codes	were	put	into	kernel	mode	(in	the	Win32/GDI	driver	in	Figure	
11.1)	for	performance	reasons.	In	Windows	2000,	only	a	small	number	of	Win32	API	calls	(for	
example	process	and	thread	creation)	take	the	long	route.	The	other	ones	take	the	direct	route,	
by passing the Win32 environment subsystem.

The	three	most	important	DLLs	are	shown	in	Figure	11.7,	but	they	are	not	the	only	the	ones.	
There	are	over	800	separate	DLLs	in	the	\winnt\system32	directory	to	talling	130	MB.	To	avoid	
any	confusion,	the	number	of	DLL	files	are	over	800;	the	number	of	API	calls	contained	in	them	
exceeds	13,000.	(The	29	million	lines	of	code	had	to	compile	into	something,	after	all.)	A	few	of	
the	more	important	DLLs	are	listed	in	Figure	11.8.	The	number	of	exported	functions	(i.e.,	those	
visible	outside	the	file)	in	each	one	is	given,	but	these	tend	to	change	(meaning	increase)	over	
time.	The	number	of	exported	functions	in	the	first	public	release	of	ntdll.dll	in	Windows	2000	
is 1179. These are the real system calls. The 1209 calls exported by ntoskrnl.exe are the functions 
available to device drivers and other code linked with the kernel. The list of exported functions 
in	any	.exe	or	.dll	file	can	be	viewed	using	the	depends	program	in	the	platform	SDK	Kit.
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Figure 11.8: Some key Windows 2000 files, the mode they run in, the number of  

exported function calls, and the main contents of each file. The calls in win32k.sys 
are not formally exported since win32k.sys is not called directly

File Mode Fcns Contents

hal.dll Kernel 95 Low-level	hardware	management,	e.g.,	port	I/O

ntoskrnl.exe Kernel 1209 Windows	2000	operating	system	(kernel	+	executive)

win32k.sys Kernel - Many system calls including most of the graphics

ntdll.dll User 1179 Dispatcher from user mode to kernel mode

csrss.exe User 0 Win32 environment subsystem process

kernel32.dll User 823 Most	of	the	core	(nongraphics)	system	calls

gdi32.dll User 543 Font,	text,	colour,	brush,	pen,	bitmap,	palette,	drawing,	etc.	calls

user32.dll User 695 Window,	icon,	menu,	cursor,	dialog,	clipboard,	etc.	calls

advapi32.dll User 557 Security,	cryptography,	registry,	management	calls

Although the Win32 process	interface	is	the	most	important	one,	there	are	also	two	other	ones—
POSIX and OS/2. The POSIX environment provides minimal support for UNIX applications. It 
supports	only	the	P1003.1	functionality	and	little	else.	It	does	not	have	threads,	windowing,	or	
networking,	for	example.	In	practice,	porting	any	real	UNIX	program	to	Windows	2000	using	
this subsystem is close to impossible. It was included only because parts of the U.S. Government 
require	operating	systems	for	government	computers	to	be	P1003.1	compliant.	This	subsystem	is	
not	self-contained	and	uses	the	Win32	subsystem	for	the	most	of	its	work,	but	without	exporting	
the	 full	Win32	 interface	 to	 its	user	programs	 (which	would	have	made	 it	usable,	 at	no	extra	
cost	to	Microsoft).

To	allow	UNIX	users	to	migrate	to	Windows	2000,	Microsoft	has	a	product	called	Interix	that	
provides a better degree of UNIX compatibility than the POSIX subsystem.

The OS/2 subsystem is similarly limited in functionality and does not support any graphical 
applications.	In	practice,	it,	too,	is	completely	useless.	Thus	the	original	idea	of	having	multiple	
operating system interfaces implemented by different processes in user space is essentially gone. 
What is left is a full Win32 implementation in kernel mode and little else.

Self Assessment

Multiple choice questions:

	 1.	 One	of	the	goals	of	Windows	2000	(and	Windows	NT	before	it)	was	to	make	the	operating	
system ...................... .

	 (a)	 portable	 (b)	 machine	dependent

	 (c)	 reliable	 (d)	 none	of	these

 2. Microsoft made a serious attempt to hide many of the machine dependencies in a thin 
layer at the bottom called ...................... .

	 (a)	 Kernel	 (b)	 Hardware	layer

	 (c)	 Hardware	Abstraction	layer	 (d)	 Hardware	data	layer
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Notes 3. The ......................  provides a framework for managing I/O devices and provides generic 
I/O services.

	 (a)	 I/O	manager	 (b)	 I/O	providers

	 (c)	 Device	manager	 (d)	 Device	provider

 4. The ......................  keeps the most recently used disk blocks in memory to speed up access 
to them in the event that they are needed again.

	 (a)	 Power	manager	 (b)	 Memory	manager

	 (c)	 Process	manager	 (d)	 Cache	manager

 5. Device drivers are not part of the ...................... .

	 (a)	 Kernel	binary	 (b)	 krnl.exe	binary

	 (c)	 ntoskr.exe	binary	 (d)	 ntoskrnl.exe	binary

11.2 Summary

	 •	 Windows2000	consists	of	two	major	parts:	the	operating	system	itself,	which	runs	in	kernel	
mode,	and	the	environment	subsystems,	which	runs	in	user	mode.	

	 •	 Hardware	Abstraction	Layer,	the	way	it	manages	clocks	and	timers	in	a	portable	way.

	 •	 The	Kernel	Layer,	which	includes	the	control	objects	and	dispatcher	objects.

	 •	 Executive	includes	the	object	manager,	I/O	manager,	process	manager,	memory	manager,	
security	manager,	cache	manager,	plug-and-play	manager,	power	manager,	configuration	
manager,	and	local	procedure	call	manager.

	 •	 Device	drivers	which control one or more I/O devices.

11.3 Keywords

Control Objects: These are the	objects	that	control	the	system,	including	primitive	process	objects,	
interrupt	objects,	and	two	somewhat	strange	objects	called	DPC	and	APC.

DirectX:	HAL	is	reasonably	efficient,	for	multimedia	applications	it	may	not	be	fast	enough.	For	
this	reason,	Microsoft	also	produced	a	software	package	called	DirectX.	It	allows	user	processes	
much more direct access to the hardware. 

Graphic Device Interface (GDI): It handles image management for the monitor and printers. It 
provides system calls to allow user programs to write on the monitor and printers in a device-
independent way.

HAL (Hardware Abstract Layer): Microsoft made a serious attempt to hide many of the machine 
dependencies	in	a	thin	layer	at	the	bottom	that	is	called	HAL	(Hardware	Abstraction	Layer).

System Services: At the top of the executive is a thin layer called system services. Its function 
is to provide an interface to the executive. It accepts the true Windows 2000 system calls and 
calls other parts of the executive to have them executed.
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Notes 11.4 Review Questions

	 1.	 Explain	operating	system	structure	with	figure.

 2. What is HAL? Describe the job of HAL with suitable example.

 3. What is the purpose of the kernel in the operating system? How can we differentiate the 
kernel with HAL?

 4. Where is the executive located in the operating system? Write the components of the 
executive.

	 5.	 Define	the	following	terms:

	 (a)	 cache	manager

	 (b)		 plug-and-play	manager

	 (c)	 GDI

Answers to Self Assessment
	 1.	 (a)	 2.	 (c)	 3.	 (a)	 4.	 (d)	 5.	 (d)

11.5 Further Readings

Operating Systems,	 by	Harvey	M.	Deitel,	Paul	 J.	Deitel,	David	R.	Choffnes.	
Introduction to Operating Design and Implementation,	by	Michael	Kifer,	Scoott	
A. Smolka.

wiley.com/coolege.silberschatz
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A thread is the entity within a process that can be scheduled for execution. All threads of a 
process	share	its	virtual	address	space	and	system	resources.	In	addition,	each	thread	maintains	
exception	handlers,	a	scheduling	priority,	thread	local	storage,	a	unique	thread	identifier,	and	a	
set of structures the system will use to save the thread context until it is scheduled. The thread 
context	 includes	the	thread’s	set	of	machine	registers,	 the	kernel	stack,	a	 thread	environment	
block,	and	a	user	stack	in	the	address	space	of	the	thread’s	process.	Threads	can	also	have	their	
own	security	context,	which	can	be	used	for	impersonating	clients.

Microsoft	Windows	supports	preemptive	multitasking,	which	creates	the	effect	of	simultaneous	
execution	 of	 multiple	 threads	 from	multiple	 processes.	 On	 a	 multiprocessor	 computer,	 the	
system can simultaneously execute as many threads as there are processors on the computer.

12.1 Processes and Threads in Windows 2000

Windows 2000 has a number of concepts for managing the CPU and grouping resources together. 
In	 the	 following	 sections	we	will	 examine	 these,	discussing	 some	of	 the	 relevant	Win32	API	
calls,	and	show	how	these	concepts	are	implemented.

12.1.1 Fundamental Concepts of Process and Threads in Windows 2000
Windows	2000	supports	traditional	processes,	which	can	communicate	and	synchronize	with	
one	another,	 just	as	they	can	be	in	UNIX.	Each	process	contains	at	least	one	thread,	which	in	
turn	contains	at	least	one	fiber	(lightweight	thread).	Furthermore,	processes	can	be	collected	into	
jobs	for	certain	resource	management	purposes.	Together,	 jobs,	processes,	 threads,	and	fibers	
provide	a	very	general	set	of	tools	for	managing	parallelism	and	resources,	both	on	uniprocessors	
(single-CPU	machines)	and	on	multiprocessors	(multi	CPU	machines).	A	brief	summary	of	these	
four concepts is given in Figure 12.1.

Figure 12.1: Basic Concepts Used for CPU and Resource Management

Name Description

Job Collection of processes that share quotas and limits

Process Container for holding resources

Thread Entity scheduled by the kernel

  Fiber Lightweight thread managed entirely in user space

Let us examine these concepts from the largest to the smallest. A job in Windows 2000 is a 
collection	of	one	or	more	processes	 that	are	 to	be	managed	as	a	unit.	 In	particular,	 there	are	
quotas	and	resource	limits	associated	with	each	job	stored	in	the	corresponding	job	object.	The	
quotas	 include	 items	such	as	 the	maximum	number	of	processes	 (prevents	any	process	 from	
generating	an	unbounded	number	of	 children),	 the	 total	CPU	 time	available	 to	 each	process	
individually	and	to	all	the	processes	combined,	and	the	maximum	memory	usage,	again,	per	
process	and	 total.	 Jobs	can	also	 impose	security	 restrictions	on	 the	processes	 in	 the	 job,	 such	
as	not	being	able	to	acquire	administrator	(superuser)	power,	even	with	the	proper	password.

Processes	are	more	interesting	and	also	more	important	than	jobs.	As	in	UNIX,	processes	are	
containers	for	resources.	Every	process	has	a	4	GB	address	space,	with	the	user	occupying	the	
bottom	2	GB	(optionally	3	GB	on	Advanced	server	and	Datacenter	server)	and	the	operating	
system	 occupying	 the	 rest.	 Thus	 the	 operating	 system	 is	 present	 in	 every	 process’	 address,	
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a	process	ID,	one	or	more	threads,	a	list	of	handles	(managed	in	kernel	mode),	and	an	access	
token holding its security information. Processes are created using a Win32 call that takes as 
its	input	the	name	of	an	executable	file,	which	defines	the	initial	contents	of	the	address	space	
and	creates	the	first	thread.

Every	process	starts	out	with	one	 thread,	but	new	ones	can	be	created	dynamically.	Threads	
forms	 the	 basis	 of	 CPU	 scheduling	 as	 the	 operating	 system	 always	 selects	 a	 thread	 to	 run,	
not	a	process.	Consequently,	every	thread	has	a	state	(ready,	running,	blocked,	etc.),	whereas	
processes	do	not	have	states.	Threads	can	be	created	dynamically	by	a	Win32	call	that	specifies	
the address within the enclosing process’ address space it is to start running at. Every thread 
has	a	thread	ID,	which	is	taken	from	the	same	space	as	the	process	IDs,	so	an	ID	can	never	be	
in	use	for	both:	a	process	and	a	thread	at	the	same	time.	Process	and	thread	IDs	are	multiples	
of	four	so	they	can	be	used	as	byte	indices	into	kernel	tables,	the	same	as	other	objects.

A	 thread	normally	 runs	 in	user	mode,	but	when	 it	makes	a	 system	call	 it	 switches	 to	kernel	
mode and continues to run as the same thread with the same properties and limits it had in user 
mode.	Each	thread	has	two	stacks,	one	for	use	when	it	is	in	user	mode	and	one	for	use	when	it	
is	in	kernel	mode.	In	addition	to	a	state,	an	ID,	and	two	stacks,	every	thread	has	a	context	(in	
which	to	save	its	registers	when	it	is	not	running),	a	private	area	for	its	own	local	variables,	and	
possibly	its	own	access	token.	If	it	has	its	own	access	token,	this	one	overrides	the	process	access	
token in order to let client threads pass their access rights to server threads who are doing work 
for	them.	When	a	thread	is	finished	executing,	it	can	exit.	When	the	last	thread	still	active	in	a	
process	exit,	the	process	terminates.

It	is	important	to	realize	that	threads	are	a	scheduling	concept,	not	a	resource	ownership	concept.	
Any thread is able to access all the objects that belong to its process. All it has to do is to grab 
the handle and to make the appropriate Win32 call. There is no restriction on a thread that it 
cannot access an object because a different thread created or opened it. The system does not 
even keep track of which thread created which object. Once an object handle has been put in a 
process	handle	table,	any	thread	in	the	process	can	use	it.

In	addition	to	the	normal	threads	that	run	within	user	processes,	Windows	2000	has	a	number	
of daemon threads that run only in kernel space and are not associated with any user process 
(they	are	associated	with	 the	 special	 system	or	 idle	processes).	Some	perform	administrative	
tasks,	such	as	writing	dirty	pages	to	the	disk,	while	others	form	a	pool	that	can	be	assigned	to	a	
component of the executive or a driver that needs to get some work done asynchronously in the 
background. We will study some of these threads later when we come to the memory management.

Switching threads in Windows 2000 is relatively expensive because doing a thread switch 
requires	entering	and	later	leaving	kernel	mode.	To	provide	very	lightweight	pseudoparallelism,	
Windows 2000 provides fibers,	which	are	like	threads,	but	are	scheduled	in	user	space	by	the	
program	that	created	them	(or	its	run-time	system).	Each	thread	can	have	multiple	fibers,	the	
same	way	a	process	can	have	multiple	threads,	except	that	when	a	fiber	logically	blocks,	it	puts	
itself	on	the	queue	of	blocked	fibers	and	selects	another	fiber	to	run	in	the	context	of	its	thread.
The	operating	system	is	not	aware	of	this	transition	because	the	thread	keeps	on	running,	even	
though	 it	may	 be	 first	 running	 one	 fiber,	 then	 another.	 In	 fact,	 the	 operating	 system	 knows	
nothing	at	all	about	fibers,	so	there	are	no	executive	objects	relating	to	fibers,	as	there	are	for	
jobs,	processes,	and	threads.	There	are	also	no	true	system	calls	for	managing	fibers.	However,	
there	are	Win32	API	calls.	These	are	among	the	Win32	API	calls	that	do	not	make	system	calls,	
which we mentioned during the discussion of Figure 11.7 in previous Unit. The relationship 
between	jobs,	processes,	and	threads	is	illustrated	in	Figure	12.2.
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Figure 12.2: The Relationship Between Jobs, Processes and Threads. Several Fibers  

can also be Multiplexed on One Thread (not shown)

Although	 we	 will	 not	 discuss	 it	 in	 much	 detail,	 Windows	 2000	 is	 capable	 of	 running	 on	
a	 symmetric	 multiprocessor	 system.	 This	 requirement	 means	 that	 the	 operating	 system	
code	must	 be	 fully	 reentrant,	 that	 is,	 every	 procedure	 must	 be	 written	 in	 such	 a	 way	 that	
two	 or	 more	 CPUs	 may	 be	 changing	 its	 variables	 at	 once,	 without	 causing	 problems.	 In	
many	 cases,	 this	 means	 that	 code	 sections	 have	 to	 be	 protected	 by	 spin	 locks	 or	 mutexes	
to	 keep	 additional	 CPUs	 at	 bay	 until	 the	 first	 one	 is	 done	 (i.e.,	 serialize	 access	 to	 critical	
regions).	 The	 number	 of	 CPUs	 the	 system	 can	 handle	 is	 governed	 by	 the	 licensing	
restrictions. There is no technical reason why Windows Professional cannot run on a  
32-node	multiprocessor,	it	is	the	same	binary	as	Datacenter	Server,	after	all.

The upper limit of 32 CPUs is a hard limit because word-length bitmaps are used to keep track 
of	CPU	usage	in	various	ways.	For	example,	one	word-length	bitmap	keeps	track	of	which	of	the	
(up	to)	32	CPUs	are	currently	idle,	and	another	bitmap	is	used	per	process	to	list	the	CPUs	this	
process is permitted to run on. The 64-bit version of Windows 2000 should be able to effortlessly 
support	up	to	64	CPUs;	beyond	that	requires	actually	changing	the	code	substantially	(to	use	
multiple	words	for	the	bitmaps).

12.1.2 Job, Process, Thread and Fiber Management API Calls
New processes are created using the Win32 API function CreateProcess. This function has  
10	parameters,	each	of	which	has	many	options.	This	design	is	clearly	much	more	complicated	
than	the	UNIX	scheme,	in	which	fork	has	no	parameters,	and	exec	has	just	three:	pointers	to	the	
name	of	the	file	to	execute:	the	(parsed)	command	line	parameter	array,	and	the	environment	
strings.	Roughly	speaking,	the	10	parameters	to	CreateProcess	are	as	follows:

	 1.	 A	pointer	to	the	name	of	the	executable	file.

	 2.	 The	command	line	itself	(unparsed).

 3. A pointer to a security descriptor for the process.

 4. A pointer to a security descriptor for the initial thread.

 5. A bit telling whether the new process inherits the creator’s handles.

	 6.	 Miscellaneous	flags	(e.g.,	error	mode,	priority,	debugging,	consoles).
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 8. A pointer to the name of the new process’ current working directory.

 9. A pointer to a structure describing the initial window on the screen.

 10. A pointer to a structure that returns 18 values to the caller.

Windows 2000 does not enforce any kind of parent-child or other hierarchy. All processes are 
created	equally	(no	processes	are	created	more	equal).	However,	since	1	of	the	18	parameters	
returned	to	the	creating	process	is	a	handle	to	the	new	process	(allowing	considerable	control	
over	 the	new	process),	 there	 is	an	 implicit	hierarchy	 in	 terms	of	who	has	a	handle	 to	whom.	
Although these handles cannot just be passed directly to other processes. There is a way for a 
process	to	make	a	duplicate	handle	suitable	for	another	process	and	then	give	it	the	handle,	so	
the implicit process hierarchy may not last long.

Each	process	 in	Windows	2000	is	created	with	a	single	thread,	but	a	process	can	create	more	
threads	later	on.	Thread	creation	is	simpler	than	process	creation—CreateThread	has	only	six	
parameters	instead	of	10	such	as:

 1. The optional security descriptor.

 2. The initial stack size.

 3. The starting address.

	 4.	 A	user-defined	parameter.

	 5.	 The	initial	state	of	the	thread	(ready	or	blocked).

 6. The thread’s ID.

The	kernel	does	the	thread	creation,	so	it	is	clearly	aware	of	threads	(i.e.,	they	are	not	implemented	
purely	in	user	space	as	is	the	case	in	some	other	systems).

 	 	 How	 to	 differentiate	 between	 Job,	 Process,	 Thread	 and	 Fiber	Management	API	  
Calls?

12.1.3 Interprocess Communication

Threads	can	communicate	in	a	wide	variety	of	ways,	including	pipes,	named	pipes,	mailslots,	
sockets,	 remote	procedure	 calls,	 and	 shared	files.	 Pipes	have	 two	modes:	 byte	 and	message,	
selected at creation time. Byte-mode pipes work the same way as in UNIX. Message-mode pipes 
are	somewhat	similar	but	preserve	message	boundaries,	so	that	four	writes	of	128	bytes	will	be	
read	as	four	128-byte	messages,	and	not	as	one	512-byte	message,	as	might	happen	with	byte-
mode pipes. Named pipes also exist and have the same two modes as regular pipes. Named 
pipes can also be used over a network; regular pipes cannot.

Mailslots	 are	 the	 features	of	Windows	2000,	not	present	 in	UNIX.	They	are	 similar	 to	pipes	
in	some	ways,	but	not	all.	For	one	thing,	they	are	one-way,	whereas	pipes	are	two-way.	They	
can	also	be	used	over	a	network	but	do	not	provide	guaranteed	delivery.	Finally,	 they	allow	
the	sending	process	to	broadcast	a	message	to	many	receivers,	instead	of	to	just	one	receiver.
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example,	one	process	writes	 to	a	socket	and	another	one	on	a	remote	machine	reads	 from	it.	
Sockets	can	also	be	used	to	connect	processes	on	the	same	machine,	but	since	they	entail	more	
overhead	than	pipes,	they	are	generally	only	used	in	a	networking	context.

Remote procedure calls are a way for process A to have process B call a procedure in B’s address 
space on A’s behalf and return the result to A. Various restrictions on the parameters exist. For 
example,	it	makes	no	sense	to	pass	a	pointer	to	a	different	process.

Finally,	 processes	 can	 share	 memory	 by	mapping	 onto	 the	 same	 file	 at	 the	 same	 time.	 All	
writes done by one process then appear in the address spaces of the other processes. Using this 
mechanism,	the	shared	buffer	used	in	producer-consumer	problems	can	easily	be	implemented.

Just	 as	Windows	 2000	 provides	 numerous	 interprocess	 communication	 mechanisms,	 it	 also	
provides	numerous	synchronization	mechanisms,	including	semaphores,	mutexes,	critical	regions,	
and	events.	All	of	these	mechanisms	work	on	threads,	not	processes,	so	that	when	a	thread	blocks	
on	a	semaphore,	other	threads	in	that	process	(if	any)	are	not	affected	and	can	continue	to	run.

A	 semaphore	 is	 created	 using	 the	 CreateSemaphore	 API	 function,	 which	 can	 initialize	 it	 to	
a	given	value	and	define	a	maximum	value	as	well.	Semaphores	are	kernel	objects	and	 thus	
have security descriptors and handles. The handle for a semaphore can be duplicated using 
DuplicateHandle and passed on to another process so that multiple processes can be synchronized 
on	the	same	semaphore.	Calls	for	up	and	down	are	present,	although	they	have	the	somewhat	
peculiar	names	of	ReleaseSemaphore	(up)	and	WaitForSingleObject	(down).	It	is	also	possible	
to	give	WaitForSingleObject	a	timeout,	so	the	calling	thread	can	be	released	eventually,	even	if	
the	semaphore	remains	at	0	(although	timers	reintroduce	races).

Mutexes	 are	 also	 kernel	 objects	 used	 for	 synchronization,	 but	 simpler	 than	 semaphores	
because	they	do	not	have	counters.	They	are	essentially	locks,	with	API	functions	for	locking	
(WaitForSingleObject)	and	unlocking	(ReleaseMutex).	Like	semaphore	handles,	mutex	handles	
can be duplicated and passed between processes so that threads in different processes can 
access the same mutex.

The third synchronization mechanism is based on critical sections,	(which	we	have	called	critical	
regions	elsewhere	in	this	site)	which	are	similar	to	mutexes,	except	local	to	the	address	space	of	
the	creating	thread.	Because	critical	sections	are	not	kernel	objects,	they	do	not	have	handles	or	
security descriptors and cannot be passed between processes. Locking and unlocking is done 
with	EnterCriticalSection	and	LeaveCriticalSection,	 respectively.	Because	 these	API	 functions	
are	performed	initially	in	user	space	and	only	make	kernel	calls	when	blocking	is	needed,	they	
are faster than mutexes.

The last synchronization mechanism uses kernel objects called events of which there are two 
kinds—manual-reset events and auto-reset events. Any event can be in one of two states; 
set and cleared. A thread can wait for an event to occur with WaitForSingleObject. If another 
thread	 signals	 an	 event	with	 SetEvent,	what	 happens	depends	 on	 the	 type	 of	 event.	With	 a	
manual-reset	 event,	 all	 waiting	 threads	 are	 released	 and	 the	 event	 stays	 set	 until	 manually	
cleared	with	ResetEvent.	With	an	auto-reset	event,	if	one	or	more	threads	are	waiting,	exactly	
one	thread	is	released	and	the	event	is	cleared.	An	alternative	operation	is	PulseEvent,	which	
is	 like	SetEvent	except	 that	 if	nobody	is	waiting,	 the	pulse	 is	 lost	and	the	event	 is	cleared.	 In	
contrast,	a	SetEvent	that	occurs	with	no	waiting	threads	is	remembered	by	leaving	the	event	in	
set	state	so	a	subsequent	thread	waiting	on	it	is	released	immediately.

Events,	mutexes,	and	semaphores	can	all	be	named	and	stored	in	the	file	system,	like	named	
pipes.	 Two	 or	 more	 processes	 can	 be	 synchronized	 by	 opening	 the	 same	 event,	 mutex,	 or	
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for	the	others,	although	the	latter	approach	is	certainly	an	option	as	well.

The	 number	 of	Win32	API	 calls	 dealing	with	 processes,	 threads,	 and	 fibers	 is	 nearly	 100,	 a	
substantial number of which deal with IPC in one form or another. A summary of the ones 
discussed above as well as some other important ones are given in Figure 12.3.

Figure 12.3: Some of the Win32 Calls for Managing Processes, Threads, and Fibers

Win32 API Function Description

CreateProcess Create a new process

CreateThread Create a new thread in an existing process

CreateFiber Create a new fiber

ExitProcess Terminate current process and all its threads

ExitThread Terminate this thread

ExitFiber Terminate this fiber

SetPriorityClass Set the priority class for a process

SetThreadPriority Set the priority for one thread

CreateSemaphore Create a new semaphore

CreateMutex Create a new mutex

OpenSemaphore Open an existing semaphore

OpenMutex Open an existing mutex

WaitForSingleObject Block on a single semaphore, mutex, etc.

WaitForMultipleObjects Block on a set of objects whose handles are given

PulseEvent Set an event to signaled then to non-signaled

ReleaseMutex Release a mutex to allow another thread to acquire it

ReleaseSemaphore Increase the semaphore count by 1

EnterCriticalSection Acquire the lock on a critical section

LeaveCriticalSection Release the lock on a critical section

Most of the calls in Figure 12.3 were either discussed above or should be self-explanatory. Again 
note	that	not	all	of	these	are	system	calls.	As	we	mentioned	earlier,	Windows	2000	knows	nothing	
about	fibers.	They	are	entirely	implemented	in	user	space.	As	a	consequence,	the	CreateFiber	call	
does	its	work	entirely	in	user	space	without	making	any	system	calls	(unless	it	has	to	allocate	
some	memory).	Many	other	Win32	calls	have	this	property	as	well,	including	EnterCriticalSection	
and LeaveCriticalSection as we noted above.
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In	computing,	‘Inter-process	communication’	(IPC)	is	a	set	of	techniques	for	
the exchange of data among multiple threads in one or more processes. 

12.1.4 Implementation of Processes and Threads

Processes	 and	 threads	 are	 more	 important	 and	more	 elaborate	 than	 jobs	 and	 fibers,	 so	 we	
will concentrate on them here. A process is created when another process makes the Win32 
CreateProcess	 call.	This	 call	 invokes	 a	 (user-mode)	procedure	 in	kernel32.dll	 that	 creates	 the	
process in following steps using multiple system calls and other work.

	 1.	 The	executable	file	given	as	a	parameter	is	examined	and	opened.	If	it	is	a	valid	POSIX,	
OS/2,	16-bit	Windows,	or	MS-DOS	file,	a	special	environment	is	set	up	for	it.	If	it	is	a	valid	
32-bit	Win32	.exe	file,	the	registry	is	checked	to	see	if	it	is	special	in	some	way	(e.g.,	to	be	
run	under	supervision	of	a	debugger).	All	of	this	is	done	in	user	mode	inside	kernel32.
dll.

	 2.	 A	system	call,	NtCreateProcess,	 is	made	to	create	the	empty	process	object	and	enter	 it	
into the object manager’s name space. Both the kernel object and the executive object are 
created.	In	addition,	the	process	manager	creates	a	process	control	block	for	the	object	and	
initializes	it	with	the	process	ID,	quotas,	access	token,	and	various	other	fields.	A	section	
object is also created to keep track of the process’ address space.

	 3.	 When	kernel32.dll	 gets	 control	 back,	 it	makes	 another	 system	 call,	NtCreateThread,	 to	
create the initial thread. The thread’s user and kernel stacks are also created. The stack 
size	is	given	in	the	header	of	the	executable	file.

 4. Kernel32.dll now sends a message to the Win32 environment subsystem telling it about 
the new process and passing it to the process and thread handles. The process and threads 
are entered into the subsystems tables so it has a complete list of all processes and threads. 
The subsystem then displays a cursor containing a pointer with an hourglass to tell the 
user that something is going on but that the cursor can be used in the meanwhile. When 
the	process	makes	its	first	GUI	call,	usually	to	create	a	window,	the	cursor	is	removed	(it	
times	out	after	2	seconds	if	no	call	is	forthcoming).

	 5.	 At	this	point,	the	thread	is	able	to	run.	It	starts	out	by	running	a	runtime	system	procedure	
to complete the initialization.

	 6.	 The	run-time	procedure	sets	the	thread’s	priority,	tells	the	loaded	DLLs	that	a	new	thread	
is	present,	and	does	other	housekeeping	chores.	Finally,	it	begins	running	the	code	of	the	
process’ main program.

Thread	creation	also	consists	of	a	number	of	steps,	but	we	will	not	go	into	them	in	much	detail.	
It	 starts	 when	 the	 running	 process	 executes	 CreateThread,	 which	 calls	 a	 procedure	 inside	
kernel32.dll. This procedure allocates a user stack within the calling process and then makes 
the	NtCreateThread	call	to	create	an	executive	thread	object,	initialize	it,	and	also	create		and	
initialize	 a	 thread	 control	 block.	Again,	 the	Win32	 subsystem	 is	 notified	 and	 enters	 the	new	
thread in its tables. Then the thread starts running and completes its own initialization.

When	a	process	or	 thread	 is	 created,	 a	handle	 is	 returned	 for	 it.	This	handle	 can	be	used	 to	
start,	stop,	kill,	and	inspect	the	process	or	thread.	It	is	possible	for	the	owner	of	a	handle	to	pass	
the	handle	to	another	process	in	a	controlled	and	secure	way.	This	technique	is	used	to	allow	
debuggers to have control over the processes they are debugging.
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Windows 2000 does not have a central scheduling	thread.	Instead,	when	a	thread	cannot	run	any	
more,	the	thread	enters	kernel	mode	and	runs	the	scheduler	itself	to	see	which	thread	to	switch	
to.	The	following	conditions	cause	the	currently	running	thread	to	execute	the	scheduler	code:

	 1.	 The	thread	blocks	on	a	semaphore,	mutex,	event,	I/O,	etc.

	 2.	 It	signals	an	object	(e.g.,	does	an	up	on	a	semaphore).

	 3.	 The	running	thread’s	quantum	expires.

In	condition	1,	the	thread	is	already	running	in	kernel	mode	to	carry	out	the	operation	on	the	
dispatcher	or	I/O	object.	It	cannot	possibly	continue,	so	it	must	save	its	own	context,	run	the	
scheduler	code	to	pick	its	successor,	and	load	that	thread’s	context	to	start	it.

In	condition	2,	the	running	thread	is	in	the	kernel,	too.	However,	after	signaling	some	object,	
it	can	definitely	continue	because	signaling	an	object	never	blocks.	Still,	the	thread	is	required	
to run the scheduler to see if the result of its action has released a higher priority thread that is 
now	free	to	run.	If	so,	a	thread	switch	occurs	because	Windows	2000	is	fully	preemptive	(i.e.,	
thread	switches	can	occur	at	any	moment,	not	just	at	the	end	of	the	current	thread’s	quantum).

In	condition	3,	a	trap	to	kernel	mode	occurs,	at	which	time	the	thread	executes	the	scheduler	
code	to	see	who	runs	next.	Depending	on	what	other	threads	are	waiting,	the	same	thread	may	
be	selected,	 in	which	case	 it	gets	a	new	quantum	and	continues	running.	Otherwise	a	thread	
switch happens.

The	scheduler	is	also	called	under	two	other	conditions:

 1. An I/O operation completes.

 2. A timed wait expires.

In	the	first	condition,	a	thread	may	have	been	waiting	on	this	I/O	and	is	now	released	to	run.	A	
check has to be made to see if it should preempt the running thread since there is no guaranteed 
minimum	run	time.	The	scheduler	is	not	run	in	the	interrupt	handler	itself	(since	that	may	keep	
interrupts	 turned	off	 too	 long).	 Instead	a	DPC	is	queued	for	slightly	 later,	after	 the	 interrupt	
handler	is	done.	In	the	second	condition,	a	thread	has	done	a	down	on	a	semaphore	or	blocked	
on	some	other	object,	but	with	a	 timeout	 that	has	now	expired.	Again	 it	 is	necessary	 for	 the	
interrupt	handler	to	queue	a	DPC	to	avoid	having	it	run	during	the	clock	interrupt	handler.	If	
a	thread	has	been	made	ready	by	this	timeout,	the	scheduler	will	be	run	and	if	nothing	more	
important	is	available,	the	DPC	will	run	next.

Now we come to the actual scheduling algorithm. The Win32 API provides two hooks for 
processes	 to	 influence	 thread	scheduling.	These	hooks	 largely	determine	the	algorithm.	First,	
there is a call SetPriorityClass that sets the priority class of all the threads in the caller’s process. 
The	allowed	values	are:	realtime,	high,	above	normal,	normal,	below	normal,	and	idle.	Second,	
there	 is	 a	 call	 SetThreadPriority	 that	 sets	 the	 relative	 priority	 of	 some	 thread	 (possibly,	 but	
not	necessarily,	 the	calling	thread)	compared	to	 the	other	 threads	 in	 its	process.	The	allowed	
values	are:	time	critical,	highest,	above	normal,	normal,	below	normal,	lowest,	and	idle.	With	
six	process	classes	and	seven	thread	classes,	a	thread	can	have	any	one	of	42	combinations.	This	
is the input to the scheduling algorithm.

The	scheduler	works	as	follows.	The	system	has	32	priorities,	numbered	from	0	to	31.	The	42	
combinations are mapped onto the 32 priority classes according to the table of Figure 12.4. 
The number in the table determines the thread’s base priority.	In	addition,	every	thread	has	a	
current	priority,	which	may	be	higher	(but	not	lower)	than	the	base	priority	and	that	we	will	
discuss shortly.
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Figure 12.4: Mapping of Win32 Priorities to Windows 2000 Priorities

Win32 process class priorities

Realtime High Above
Normal

Normal Below
Normal

Idle

Time critical 31 15 15 15 15 15

Highest 26 15 12 10 8 6

Win 32
thread
priorities

Above normal 25 14 11 9 7 5

Normal 24 13 10 8 6 4

Below normal 23 12 9 7 5 3

Lowest 22 11 8 6 4 2

Idle 16 1 1 1 1 1

To	use	these	priorities	for	scheduling,	the	system	maintains	an	array	with	32	entries,	corresponding	
to priorities 0 through 31 derived from the table of Figure 12.4. Each array entry points to the 
head of a list of ready threads at the corresponding priority. The basic scheduling algorithm 
consists of searching the array from priority 31 down to priority 0. As soon as a non-empty slot 
is	found,	the	thread	at	the	head	of	the	queue	is	selected	and	run	for	one	quantum.	If	the	quantum	
expires,	the	thread	goes	to	the	end	of	the	queue	at	its	priority	level	and	the	thread	at	the	front	
is	chosen	next.	 In	other	words,	when	there	are	multiple	 threads	ready	at	 the	highest	priority	
level,	they	run	round	robin	for	one	quantum	each.	If	no	thread	is	ready,	the	idle	thread	is	run.

It should be noted that scheduling is done by picking a thread without regard to which process 
that	thread	belongs.	Thus,	the	scheduler	does	not	first	pick	a	process	and	then	pick	a	thread	in	
that process. It only looks at the threads. It does not even know which thread belongs to which 
process.	On	a	multiprocessor,	each	CPU	schedules	itself	using	the	priority	array.	A	spin	lock	is	
used to make sure that only one CPU at a time is inspecting the array.

The	array	of	queue	headers	 is	shown	in	Figure	12.5.	The	figure	shows	that	 there	are	actually	
four	categories	of	priorities:	realtime,	user,	zero,	and	idle,	which	is	effectively	-1.	These	deserve	
some	comment.	Priorities	16-31	are	called	real	time,	but	they	are	not.	There	are	no	guarantees	
given	and	no	deadlines	are	met.	They	are	simply	higher	priority	than	0-15.	However,	priorities	
16 through 31 are reserved for the system itself and for threads explicitly assigned those priorities 
by the system administrator. Ordinary users may not run there for a good reason. If a user thread 
were	to	run	at	a	higher	priority	than,	say,	the	keyboard	or	mouse	thread	and	get	into	a	loop,	
the	keyboard	or	mouse	thread	would	never	run,	effectively	hanging	the	system.

User	 threads	 run	 at	 priorities	 1-15.	 By	 setting	 the	 process	 and	 thread	 priorities,	 a	 user	 can	
determine which threads get preference. The zero thread runs in the background and eats up 
whatever CPU time nobody else wants. Its job is to zero pages for the memory manager. We 
will	discuss	its	role	later.	If	there	is	absolutely	nothing	to	do,	not	even	zero	pages,	the	idle	thread	
runs. It is not really a full blown thread though.
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Figure 12.5: Windows 2000 Supports 32 Priorities for Threads 

Over	the	course	of	time,	some	patches	were	made	to	the	basic	scheduling	algorithm	to	improve	
system	performance.	Under	certain	specific	conditions,	the	current	priority	of	a	user	thread	can	
be	raised	above	the	base	priority	(by	the	operating	system),	but	never	above	priority	15.	Since	
the	array	of	Figure	12.5	is	based	on	the	current	priority,	changing	this	priority	affects	scheduling.	
No adjustments are ever made to threads running at priority 15 or higher.

Let	us	now	see	when	a	thread’s	priority	is	raised.	First,	when	an	I/O	operation	completes	and	
releases	a	waiting	thread,	the	priority	is	boosted	to	give	it	a	chance	to	run	again	quickly	and	start	
more I/O. The idea here is to keep the I/O devices busy. The amount of boost depends on the 
I/O	device,	typically	1	for	a	disk,	2	for	a	serial	line,	6	for	the	keyboard,	and	8	for	the	sound	card.

Second,	if	a	thread	was	waiting	on	a	semaphore,	mutex,	or	other	event,	when	it	is	released,	it	
gets	boosted	by	2	units	if	it	is	in	the	foreground	process	(the	process	controlling	the	window	to	
which	keyboard	input	is	sent)	and	1	unit	otherwise.	This	fix	tends	to	raise	interactive	processes	
above	the	big	crowd	at	level	8.	Finally,	if	a	GUI	thread	wakes	up	because	window	input	is	now	
available,	it	gets	a	boost	for	the	same	reason.

These	boosts	are	not	forever.	They	take	effect	 immediately,	but	if	a	thread	uses	all	of	 its	next	
quantum,	it	loses	one	point	and	moves	down	one	queue	in	the	priority	array.	If	it	uses	up	another	
full	quantum,	it	moves	down	to	another	level,	and	so	on	until	it	hits	its	base	level,	where	it	remains	
until	it	is	boosted	again.	Clearly,	if	a	thread	wants	good	service,	it	should	play	a	lot	of	music.

There	is	an	other	case	in	which	the	system	fiddles	with	the	priorities.	Imagine	that	two	threads	
are	working	together	on	a	producer-consumer	type	problem.	The	producer’s	work	is	harder,	so	
it	gets	a	high	priority,	say	12,	compared	to	the	consumer’s	4.	At	a	certain	point,	the	producer	
has	filled	up	a	shared	buffer	and	blocks	on	a	semaphore,	as	illustrated	in	Figure	12.6	(a).
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Before	the	consumer	gets	a	chance	to	run	again,	an	unrelated	thread	at	priority	8	becomes	ready	
and	starts	running,	as	shown	in	Figure	12.6(b).	As	long	as	this	thread	wants	to	run,	it	will	be	
able	to,	since	it	outruns	the	consumer	and	the	producer,	while	higher,	is	blocked.	Under	these	
circumstances,	the	producer	will	never	get	to	run	again	until	the	priority	8	thread	gives	up.

Windows 2000 solves this problem through what might be charitably called a big hack. The 
system keeps track of how long it has been since a ready thread ran last. If it exceeds a certain 
threshold,	it	is	moved	to	priority	15	for	two	quanta.	This	may	give	it	the	opportunity	to	unblock	
the	producer.	After	the	two	quanta	are	up,	the	boost	is	abruptly	removed	rather	than	decaying	
gradually.	Probably	a	better	solution	would	be	to	penalize	threads	that	use	up	their	quantum	
over	and	over	by	lowering	their	priority.	After	all,	the	problem	was	not	caused	by	the	starved	
thread,	but	by	the	greedy	thread.	This	problem	is	well	known	under	the	name	priority inversion.

An analogous problem happens if a priority 16 thread grabs a mutex and does not get a chance 
to	run	for	a	long	time,	starving	more	important	system	threads	that	are	waiting	for	the	mutex.	
This problem can be prevented within the operating system by having a thread that needs a 
mutex	for	a	short	time	just	disable	scheduling	while	it	is	busy.	On	a	multiprocessor,	a	spin	lock	
should be used.

Before	leaving	the	subject	of	scheduling,	it	is	worth	saying	a	couple	of	words	about	the	quantum.	
On Windows 2000 Professional the default is 20 msec; on uniprocessor servers it is 120 msec; on 
multiprocessors	various	other	values	are	used,	depending	on	the	clock	frequency.	The	shorter	
quantum	favors	interactive	users	whereas	the	longer	quantum	reduces	context	switches	and	thus	
provides	better	efficiency.	These	defaults	can	be	increased	manually	by	2x,	4x,	or	6x	if	desired.	
As	an	aside,	the	size	of	the	quantum	was	chosen	a	decade	ago	and	not	changed	since	although	
machines are now more than an order of magnitude faster. The numbers probably could be 
reduced by a factor of 5 to 10 with no harm and possibly better response time for interactive 
threads in a heavily loaded system.

One last patch to the scheduling algorithm says that when a new window becomes the foreground 
window,	all	of	 its	 threads	get	a	 longer	quantum	by	an	amount	 taken	 from	 the	 registry.	This	
change	gives	them	more	CPU	time,	which	usually	translates	to	better	service	for	the	window	
that just moved to the foreground.

Scheduling	is	applied	in	procurement	and	production,	in	transportation	and	
distribution,	and	in	information	processing	and	communication.
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One	of	the	design	goals	of	Windows	2000	was	inherited	from	NT—try	to	run	as	many	reasonable	
MS-DOS	programs	as	possible.	This	goal	is	quite	different	from	Windows	98’s	stated	goal:	run	
all	old	MS-DOS	programs	(to	which	we	add—no	matter	how	ill-behaved	they	may	be).

The way Windows 2000 deals with ancient programs is to run them in a fully protected 
environment.	When	an	MS-DOS	program	is	started,	a	normal	Win32	process	is	started	and	
loaded	with	 an	MS-DOS	 emulation	 program,	 ntvdm(NT	Virtual	 DOS	Machine)	 that	will	
monitor the MS-DOS program and carry out its system calls. Since MS-DOS only recognized 
memory up to 1 MB on the 8088 and only up to 16 MB with bank switching and other tricks 
on	 the	 286,	 it	 is	 safe	 to	 put	 ntvdm	 high	 in	 the	 process’	 virtual	 address	 space	where	 the	
program has no way to address it. This situation is shown in Figure 12.7.

Figure 12.7: MS-DOS Programs are Run Under Windows 2000

When the MS-DOS program is just executing	normal	instructions,	it	can	run	on	the	bare	hardware	
since the Pentium includes all the 8088 and 286 instructions as subsets. The interesting part 
is what happens when the MS-DOS program wants to do I/O or interact with the system. A 
well-behaved	program	just	makes	a	system	call.	In	expectation	of	this,	ntvdm instructs Windows 
2000	 to	 reflect	 all	MS-DOS	 system	 calls	 back	 to	 it.	 In	 effect,	 the	 system	 call	 just	 bounces	 off	
the	operating	system	and	is	caught	by	the	emulator,	as	shown	in	steps	1	and	2	in	Figure	12.7.	
Sometimes	this	technique	is	referred	to	as	using	a	trampoline.

Once	it	gets	control,	the	emulator	figures	out	what	the	program	was	trying	to	do	and	issues	its	
own	Win32	calls	to	get	the	work	done	(step	3	and	4	in	Figure	12.7).	As	long	as	the	program	is	
well	behaved	and	just	makes	legal	MS-DOS	system	calls,	this	technique	works	fine.	The	trouble	
is that some old MS-DOS programs bypassed the operating system and wrote directly to the 
video	RAM,	read	directly	from	the	keyboard,	and	so	on,	things	that	are	impossible	in	a	protected	
environment.	To	the	extent	that	the	illegal	behavior	causes	a	trap,	there	is	some	hope	that	the	
emulator	can	figure	out	what	the	program	was	trying	to	do	and	emulate	it.	If	it	does	not	know	
what	the	program	wants,	the program is just killed because 100 percent emulation was not a 
Windows	2000	requirement.

Self Assessment
Multiple choice questions:

	 1.	 What	command	is	used	to	remove	files?

	 (a)	 dm	 (b)	 m

	 (c)	 delete	 (d)	 erase
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	 (a)	 one	thread	 (b)	 two	threads

	 (c)	 four	threads	 (d)	 none	of	these.

   3. A thread normally runs in ...................... .

	 (a)	 User	mode	 (b)	 Safe	mode.

	 (c)	 both	(a)	and	(b)	 (d)	 None	of	these

 4. A semaphore is created using the ...................... API function.

	 (a)	 APISemaphore	 (b)	 CreateSemaphore

	 (c)	 WaitSemaphore	 (d)	 None	of	these

12.2 Booting Windows 2000

Before	Windows	2000	can	start	up,	it	must	be	booted.	The	boot	process	creates	the	initial	processes	
that	bring	up	the	system.	In	this	section,	we	will	briefly	discuss	how	the	boot	process	works	for	
Windows 2000. This short assembly language program reads the partition table to see which 
partition	contains	the	bootable	operating	system.	When	it	finds	the	operating	system	partition,	
it	reads	in	the	first	sector	of	that	partition,	called	the	boot sector,	and	jumps	to	it.	The	program	
in	the	boot	sector	reads	its	partition’s	root	directory,	searching	for	a	file	called	ntldr	(another	
piece	of	archaeological	evidence	that	Windows	2000	is	really	NT).	If	 it	finds	that	file,	 it	reads	
the	file	into	memory	and	executes	it.	Ntldr	loads	Windows	2000.	As	an	aside,	there	are	several	
versions	of	the	boot	sector,	depending	on	whether	the	partition	is	formatted	as	FAT-16,	FAT-32,	
or	NTFS.	When	Windows	2000	is	 installed,	 the	correct	version	of	 the	master	boot	record	and	
boot sector are written to disk.

Ntldr	now	reads	a	file	called	Boot.ini,	which	 is	 the	only	configuration	 information	not	 in	 the	
registry. It lists all the versions of hal.dll and ntoskrnl.exe available for booting in this partition. 
The	file	also	provides	many	parameters,	such	as	how	many	CPUs	and	how	much	RAM	to	use,	
whether	to	give	user	processes	2	GB	or	3	GB,	and	what	rate	to	set	the	real-time	clock	to.	Ntldr	
then	 selects	 and	 loads	 hal.dll	 and	 ntoskrnl.exe	 files	 as	well	 as	 bootvid.dll,	 the	 default	 video	
driver	for	writing	on	the	display	during	the	boot	process.	Ntldr	next	reads	the	registry	to	find	
out	which	drivers	are	needed	to	complete	the	boot	(e.g.,	the	keyboard	and	mouse	drivers,	but	
also	dozens	more	for	controlling	various	chips	on	the	parentboard).	Finally,	it	reads	in	all	these	
drivers and passes control to ntoskrnl.exe.

Once	started,	the	operating	system	does	some	general	initialization	and	then	calls	the	executive	
components	to	do	their	own	initialization.	For	example,	the	object	manager	prepares	its	name	
space to allow other components call it to insert their objects into the name space. Many 
components	also	do	specific	things	related	to	their	function,	such	as	the	memory	manager	setting	
up	 the	 initial	page	 tables	and	 the	plug-and-play	manager	finding	out	which	 I/O	devices	are	
present	and	loading	their	drivers.	All	 in	all,	dozens	of	steps	are	involved,	during	which	time	
the progress bar displayed on the screen is growing in length as steps are completed. The last 
step	is	creating	the	first	true	user	process,	the	session manager,	smss.exe.	Once	this	process	is	
started	and	running,	booting	is	completed.

The session manager is a native Windows 2000 process. It makes true system calls and does not 
use	the	Win32	environment	subsystem,	which	is	not	even	running	yet.	In	fact,	one	of	 its	first	
duties	is	to	start	it	(csrss.exe).	It	also	reads	the	registry	hives	from	disk	and	learns	what	else	it	is	
supposed to do. Typically its work includes entering many objects in the object manager’s name 
space,	creating	any	extra	paging	files	needed,	and	opening	important	DLLs	to	have	them	around	
all	the	time.	After	it	has	done	most	of	this	work,	it	creates	the	login	daemon,	winlogon.exe.

At	this	point,	the	operating	system	is	up	and	running.	Now	it	is	time	to	get	the	service	processes	
(user	 space	 daemons)	 going	 on	 and	 allow	 users	 to	 log	 in.	 Winlogon.exe	 first	 creates	 the	
authentication	manager	(lsass.exe),	and	then	the	parent	process	of	all	the	services	(services.exe).	
The	latter	looks	in	the	registry	to	find	out	which	user	space	daemon	processes	are	needed	and	
what	files	they	are	in.	It	then	starts	creating	them.	The	fact	that	the	disk	is	generally	being	heavily	
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Notesused	after	the	first	user	has	logged	in	(but	has	done	nothing)	is	not	the	user’s	fault.	The	culprit	is	
services.exe	creating	all	the	services.	In	addition,	it	also	loads	any	remaining	device	drivers	that	have	
not yet been loaded. The hierarchy of initial processes and some typical services are shown in Figure 12.8.

Figure 12.8: The processes starting up during the boot phase. The ones above the line  
are always started. The ones below it are examples of services that could be started

Process Description

idle Not really a process, but home to the idle thread

system
Creates smss.exe & paging files; reads registry; opens 
DLLs

smss.exe First real proc; much initialization; creates csrss & winlogon

csrss.exe Win32 subsystem process

winlogon.exe Login daemon

lsass.exe Authentication manager

services.exe Looks in registry and starts services

Printer server Allows remote jobs to use the printer

File server Serves requests for local files

Telnet daemon Allows remote logins

Incoming email handler Accepts and stores inbound email

Incoming fax handler Accepts and prints inbound faxes

DNS resolver Internet domain name system server

Event logger Logs various system events

Plug-and-play manager Monitors hardware to see what is out there

Winlogon.exe is also responsible for all user logins. The actual login dialog is handled by a 
separate program in msgina.dll to make it possible for third parties to replace the standard login 
with	faceprint	identification	or	something	else	other	than	name	and	password.	After	a	successful	
login,	winlogon.exe	gets	the	user’s	profile	from	the	registry	and	from	it	determines	which	shell	
to	 run.	Many	people	do	not	 realize	 it,	but	 the	standard	Windows	desktop	 is	 justexplorer.exe	
with	some	options	set.	 If	desired,	a	user	can	select	any	other	program	as	 the	shell,	 including	
the	command	prompt	or	even	Word,	by	editing	the	registry.	However,	editing	the	registry	is	
not for the faint of heart; a mistake here can make the system unusable.

12.3 Memory Management

Windows 2000 has an extremely sophisticated virtual memory system. It has a number of Win32 
functions for using it and part of the executive plus six dedicated kernel threads for managing 
it.	In	the	following	sections,	we	will	look	at	the	fundamental	concepts,	the	Win32	API	calls,	and	
finally	the	implementation.

12.3.1 Fundamental Concepts of Memory Management

In	Windows	2000,	every	user	process	has	its	own	virtual	address	space.	Virtual	addresses	are	
32	bits	 long,	so	each	process	has	4	GB	of	virtual	address	space.	The	lower	2	GB	minus	about	
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in	a	protected	way.	The	virtual	address	space	is	demand	paged,	with	a	fixed	page	size	(4	KB	
on	the	Pentium).

Figure 12.9: Virtual address space layout for three user processes. The white areas  
are private per process. The shaded areas are shared among all processes
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The virtual address space layout for three user processes is shown in Figure 12.9 in slightly 
simplified	form.	The	bottom	and	top	64	KB	of	each	process’	virtual	address	space	is	normally	
unmapped. This choice was made intentionally to help catch programming errors. Invalid pointers 
are	often	0	or	-1,	so	attempts	to	use	them	on	Windows	2000	will	cause	an	immediate	trap	instead	
of	reading	garbage	or,	worse	yet,	writing	to	an	incorrect	memory	location.	However,	when	old	
MS-DOS	programs	are	being	run	in	emulation	mode,	they	can	be	mapped	in.

Starting at 64 KB comes the user’s private code and data. This extends up to almost 2 GB. The 
last piece of the bottom 2 GB contains some system counters and timers that are shared among 
all users read only. Making them visible here allows processes to access them without the 
overhead of a system call.

The	upper	2	GB	contains	 the	operating	system,	 including	 the	code,	data,	and	 the	paged	and	
nonpaged	pools	(used	for	objects,	etc.).	The	upper	2	GB	is	shared	among	all	user	processes,	except	
for	the	page	tables,	which	are	each	process’	own	page	tables.	The	upper	2	GB	of	memory	is	not	
writable and mostly not even readable for user-mode processes. The reason for putting it here 
is	that	when	a	thread	makes	a	system	call,	it	traps	into	kernel	mode	and	just	keeps	on	running	
in	the	same	thread.	By	making	the	whole	operating	system	and	all	of	its	data	structures	(as	well	
as	the	whole	user	process)	visible	within	a	thread’s	address	space	when	it	enters	kernel	mode,	
there	is	no	need	to	change	the	memory	map	or	flush	the	cache	upon	kernel	entry.	All	that	has	
to be done is switch over to the thread’s kernel stack. The trade-off here is less private address 
space	per	process	in	return	for	faster	system	calls.	Large	database	servers	already	feel	cramped,	
which is why the 3-GB user space option is available on Advanced Server and Datacenter Server.

Each virtual page can be in one of three states:	free,	reserved,	or	committed.	A	free page is not 
currently	 in	use	and	a	reference	to	 it	causes	a	page	fault.	When	a	process	 is	started,	all	of	 its	
pages are in free state until the program and initial data are mapped into its address space. 
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committed page is mapped using the virtual memory hardware and succeeds if the page is in 
main	memory.	If	the	page	is	not	in	main	memory,	a	page	fault	occurs	and	the	operating	system	
finds	and	brings	in	the	page	from	disk.

A virtual page can also be in reserved	state,	meaning	it	is	not	available	for	being	mapped	until	
the	 reservation	 is	 explicitly	 removed.	 For	 example,	 when	 a	 new	 thread	 is	 created,	 1	MB	 of	
stack	space	 is	reserved	in	the	process	virtual	address	space,	but	only	one	page	 is	committed.	
This	technique	means	that	the	stack	can	eventually	grow	to	1	MB	without	fear	that	some	other	
thread will allocate the needed contiguous piece of virtual address space out from under it. In 
addition	to	the	free,	reserved,	and	committed	attributes,	pages	also	have	other	attributes,	such	
as	being	readable,	writable,	and	executable.

An interesting trade-off occurs with assignment of backing store to committed pages. A simple 
strategy	would	be	to	assign	a	page	in	one	of	the	paging	files	to	back	up	each	committed	page	at	
the time the page was committed. This would guarantee that there was always a known place 
to write out each committed page should it be necessary to evict it from memory. The downside 
of	this	strategy	is	 that	 the	paging	file	might	have	to	be	as	 large	as	the	union	of	all	processes’	
virtual	memory.	On	a	large	system	that	rarely	ran	out	of	memory	and	thus	rarely	paged,	this	
approach would waste disk space.

To	avoid	wasting	disk	space,	Windows	2000	committed	pages	 that	have	no	natural	home	on	
the	disk	(e.g.,	stack	pages)	are	not	assigned	a	disk	page	until	the	moment	that	they	have	to	be	
paged	out.	This	design	makes	 the	 system	more	 complex	because	 the	paging	files	maps	may	
have	to	be	fetched	during	a	page	fault,	and	fetching	them	may	cause	one	or	more	additional	
page	faults	inside	the	page	fault	handler.	On	the	other	hand,	no	disk	space	need	be	allocated	
for pages that are never paged out.

Trade-offs	like	this	(system	complexity	versus	better	performance	or	more	features)	tend	to	get	
resolved in favour of the latter because the value of better performance or more features is clear 
but	the	downside	of	complexity	(a	bigger	maintenance	headache	and	more	crashes	per	year)	is	
hard	to	quantify.	Free	and	reserved	pages	never	have	shadow	pages	on	disk	and	references	to	
them always cause page faults.

The	shadow	pages	on	the	disk	are	arranged	into	one	or	more	paging	files.	There	may	be	up	to	
16	paging	files,	possibly	spread	over	16	separate	disks,	for	higher	I/O	bandwidth.	Each	one	has	
an	initial	size	and	a	maximum	size	it	can	grow	to	later	if	needed.	These	files	can	be	created	at	
the maximum size at system installation time in order to reduce the chances that they are highly 
fragmented,	but	new	ones	can	be	created	using	the	control	panel	later	on.	The	operating	system	
keeps track of which virtual page maps onto	which	part	of	which	paging	file.	For	(execute	only)	
program	text,	the	executable	binary	file	(i.e.,	.exe or .dll	file)	contains	the	shadow	pages;	for	data	
pages,	the	paging	files	are	used.

Windows	2000,	like	many	versions	of	UNIX,	allows	files	to	be	mapped	directly	onto	regions	of	
the	virtual	address	spaces	(i.e.,	runs	of	consecutive	pages).	Once	a	file	has	been	mapped	onto	
the	address	space,	it	can	be	read	or	written	using	ordinary	memory	references.	Memory-mapped	
files	are	implemented	in	the	same	way	its	other	committed	pages,	only	the	shadow	pages	are	
in	the	users	file	instead	of	in	the	paging	file.	As	a	result,	while	a	file	is	mapped	in,	the	version	
in	memory	may	not	be	identical	to	the	disk	version	(due	to	recent	writes	to	the	virtual	address	
space).	However,	when	the	file	is	unmapped	or	is	explicitly	flushed,	the	disk	version	is	brought	
up-to-date.

Windows 2000 explicitly allows two or more processes to map onto the same part of the same 
file	at	the	same	time,	possibly	at	different	virtual	addresses,	as	shown	in	Figure	12.10.	By	reading	
and	writing	memory	words,	the	processes	can	now	communicate	with	each	other	and	pass	data	
back	and	forth	at	very	high	bandwidth,	since	no	copying	is	required.	Different	processes	may	
have	different	access	permissions.	Since	all	 the	processes	using	a	mapped	file	share	the	same	
pages,	changes	made	by	one	of	them	are	immediately	visible	to	all	the	others,	even	if	the	disk 
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Notes file	has	not	yet	been	updated.	Care	is	also	taken	that	if	another	process	opens	the	file	for	normal	
reading,	it	sees	the	current	pages	in	RAM,	not	stale	pages	from	the	disk.

Figure 12.10: Mapped Regions with their Shadow Pages on Disk. The lib.dll File  
is Mapped into Two Address Spaces at the Same Time.

 

It	 is	worth	noting	 that	 there	 is	a	problem	 if	 two	programs	share	a	DLL	file	and	one	of	 them	
changes	 the	file’s	static	data.	 If	no	special	action	 is	 taken,	 the	other	one	will	 see	 the	changed	
data,	which	is	probably	not	what	is	desired.	The	problem	is	solved	by	mapping	all	pages	in	as	
read only by secretly noting that some are really writable. When a write happens to a page that 
is	mapped	read	only	but	is	really	writable,	a	private	copy	of	the	page	is	made	and	mapped	in.	
Now it can be written safely without affecting other users or the original copy on disk. This 
technique	is	called	copy-on-write.

Also it is worth noting that if program text is mapped into two address spaces at different 
addresses,	 a	 certain	 problem	 arises	with	 addressing.	What	 happens	 if	 the	 first	 instruction	 is	
JMP	300?	If	process	one	maps	the	program	in	at	address	65,536,	the	code	can	easily	be	patched	
to	read	JMP	65836.	But	what	happens	if	a	second	process	now	maps	it	in	at	131,072?	The	JMP	
65836	will	go	to	address	65,836	instead	of	131,372	and	the	program	will	fail.	The	solution	is	to	
use	only	relative	offsets,	not	absolute	virtual	addresses	in	code	that	is	to	be	shared.	Fortunately,	
most machines have instructions using relative offsets as well as instructions using absolute 
addresses.	Compilers	can	use	the	relative	offset	instructions,	but	they	have	to	know	in	advance	
whether to use them or the absolute ones. The relative ones are not used all the time because 
the	resulting	code	is	usually	less	efficient.	Usually,	a	compiler	flag	tells	them	which	to	use.	The	
technique	of	making	it	possible	to	place	a	piece	of	code	at	any	virtual	address	without	relocation	
is called position independent code.

Years	 ago,	 when	 16	 bit	 (or	 20	 bit)	 virtual	 address	 spaces	were	 standard,	 but	machines	 had	
megabytes	of	physical	memory,	all	kinds	of	 tricks	were	 thought	of	 to	allow	programs	to	use	
more	physical	memory	than	to	fit	in	the	address	space.	Often	these	tricks	went	under	the	name	
of bank switching,	in	which	a	program	could	substitute	some	block	of	memory	above	the	16-bit	
or	20-bit	limit	for	a	block	of	its	own	memory.	When	32-bit	machines	were	introduced,	people	
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Notesthought they would have enough address space forever. They were wrong. The problem is back. 
Large programs often need more than the 2 GB or 3 GB of user address space Windows 2000 
allocates	to	them,	so	bank	switching	is	back,	now	called	address windowing extensions. This 
facility	allows	programs	to	map	into	shuffle	chunks	of	memory	in	and	out	of	the	user	portion	
of	the	address	space	(and	especially	above	the	dreaded	4	GB	boundary).	Since	it	is	only	used	
on	 servers	with	more	 than	 2	GB	of	 physical	memory,	we	will	 defer	 the	discussion	until	 the	
next	edition	of	this	site	(by	which	time	even	entry-level	desktop	machines	will	be	feeling	the	
32-bit	pinch).

12.3.2 Memory Management System Calls
The Win32 API contains a number of functions that allow a process to manage its virtual 
memory explicitly. The most important of these functions are listed in Figure 12.11. All of them 
operate	on	a	region	consisting	either	of	a	single	page	or	a	sequence	of	two	or	more	pages	that	
are consecutive in the virtual address space.

Figure 12.11: The Principal Win32 API Functions for Managing  
Virtual Memory in Windows 2000

Win32 API function Description

VirtualAlloc Reserve or commit a region

VirtualFree Release or decommit a region

VirtualProtect Change the read/write/execute protection on a region

VirtualQuery Inquire about the status of a region

VirtualLock Make a region memory resident (i.e., disable paging for it)

VirtualUnlock Make a region pageable in the usual way

CreateFileMapping Create a file mapping object and (optionally) assign it a name

MapViewOfFile Map (part of) a file into the address space

UnmapViewOfFile Remove a mapped file from the address space

OpenFileMapping Open a previously created file mapping object

The	first	four	API	functions	are	used	to	allocate,	free,	protect	and	query	regions	of	virtual	address	
space. Allocated regions always begin on 64 KB boundaries to minimize porting problems to 
future	architectures	with	pages	 larger	 than	current	ones	(up	to	64	KB).	The	actual	amount	of	
address	space	allocated	can	be	less	than	64	KB,	but	must	be	a	multiple	of	the	page	size.	The	next	
two give a process the ability to hardware pages in memory so they will not be paged out and to 
undo	this	property.	A	real-time	program	might	need	this	ability,	for	example.	A	limit	is	enforced	
by	the	operating	system	to	prevent	processes	from	getting	too	greedy.	Actually,	the	pages	can	
be	removed	from	memory,	but	only	 if	 the	entire	process	 is	swapped	out.	When	it	 is	brought	
back,	 all	 the	 locked	pages	are	 reloaded	before	any	 thread	can	 start	 running	again.	Although	
not	shown	in	Figure	12.11,	Windows	2000	also	has	API	functions	to	allow	a	process	to	access	
the	virtual	memory	of	a	different	process	over	which	it	has	been	given	control	(i.e.,	for	which	
it	has	a	handle).	The	last	four	API	functions	listed	are	for	managing	memory-mapped	files.	To	
map	a	file,	a	file	mapping	object	(see	Figure	12.4)	must	first	be	created,	with	CreateFileMapping.	
This	 function	returns	a	handle	 to	 the	file	mapping	object	and	optionally	enters	a	name	 for	 it	
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Notes into	the	file	system	so	another	process	can	use	it.	The	next	two	functions	map	and	unmap	files,	
respectively.	The	last	one	can	be	used	by	a	process	to	map	in	a	file	currently	also	mapped	in	by	
a	different	process.	In	this	way,	two	or	more	processes	can	share	regions	of	their	address	spaces.	
This	technique	allows	them	to	write	in	limited	regions	of	each	other’s	memory.

12.3.3 Implementation of Memory Management

Windows 2000 supports a single linear 4 GB demand-paged address space per process. 
Segmentation	is	not	supported	in	any	form.	Theoretically,	page	sizes	can	be	of	any	power	
of	two	up	to	64	KB.	On	the	Pentium	they	are	fixed	at	4	KB;	on	the	Itanium	they	can	be	8	KB	
or	16	KB.	In	addition,	the	operating	system	itself	can	use	4	MB	pages	to	reduce	page	table	
space consumed.

Unlike	 the	 scheduler,	which	selects	 individual	 threads	 to	 run	and	does	not	 care	much	about	
processes,	 the	memory	manager	deals	entirely	with	processes	and	does	not	care	much	about	
threads.	After	all,	processes,	not	threads,	own	the	address	space	and	that	is	what	the	memory	
manager	deals	with.	When	a	region	of	virtual	address	space	is	allocated,	as	four	of	them	have	
been for process A	 in	 Figure	 12.10,	 the	 memory	manager	 creates	 a	VAD (Virtual Address 
Descriptor)	for	it,	listing	the	range	of	addresses	mapped,	the	backing	store	file	and	offset	where	
it	 is	mapped,	 and	 the	protection	 code.	When	 the	first	page	 is	 touched,	 the	directory	of	page	
tables	is	created	and	a	pointer	to	it	inserted	is	in	the	VAD.	In	fact,	an	address	space	is	completely	
defined	by	 the	 list	of	 its	VADs.	This	scheme	supports	sparse	address	spaces	because	unused	
areas between the mapped regions use no resources.

12.3.4 Page Fault Handling

Windows	2000	does	not	use	any	form	of	prepaging.	When	a	process	starts,	none	of	 its	pages	
are in memory. All of them are brought in dynamically as page faults occurs. On each page 
fault,	a	 trap	to	 the	kernel	occurs.	The	kernel	builds	a	machine-independent	descriptor	 telling	
what happened and passes this to the memory manager part or the executive. The memory 
manager then checks it for validity. If the faulted page falls within a committed or reserved 
region,	it	looks	up	the	address	in	the	list	of	VADs,	finds	(or	creates)	the	page	table,	and	looks	
up the relevant entry.

The	page	table	entries	are	different	for	different	architectures.	For	the	Pentium,	the	entry	for	a	
mapped	page	is	shown	in	Figure	12.12.	Unmapped	pages	also	have	entries,	but	their	format	is	
somewhat	different.	For	example,	for	an	unmapped	page	that	must	be	zeroed	before	it	may	be	
used,	that	fact	is	noted	in	the	page	table.

Figure 12.12: A Page Table Entry for a Mapped Page on the Pentium

G: Page is global to all processes
L : Large (4 MB) page
D: Page is dirty
A: Page has been accessed
C: Caching enabled/disabled

Wt: Write through (no caching)
U : Page is accessible in user mode
W : Writing to the page permitted
V : Valid page table entry

Bits 20

Page frame

3 1 1 1 1 1 1 1 1 1

G L D A C U W V
W
t

Not
used
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NotesThe most important bits in the page table entry for purposes of the paging algorithm are the A 
and D bits. They are fed by the hardware and keep track of whether the page has been referenced 
or	written	on,	respectively,	since	the	last	time	they	were	cleared.

Page	faults	come	in	five	categories:

 1. The page referenced is not committed.

 2. A protection violation occurred.

 3. A shared page has been written.

 4. The stack needs to grow.

 5. The page referenced is committed but not currently mapped in.

The	first	and	second	cases	are	fatal	errors	from	which	there	is	no	recovery	for	the	faulting	process.	
The	third	case	has	the	same	symptoms	as	the	second	one	(an	attempt	to	write	to	a	read-only	
page),	but	the	treatment	is	different.	The	solution	is	to	copy	the	page	to	a	new	physical	page	
frame	and	map	the	same	in	read/write.	This	is	how	copy-on-write	works.	(If	a	shared	page	is	
marked	writable	in	all	the	processes	using	it,	it	is	not	copy-on-write	and	no	fault	occurs	when	
writing	to	it.)	The	fourth	case	requires	allocating	a	new	page	frame	and	mapping	in	it.	However,	
the	security	rules	require	that	the	page	contain	only	0s,	to	prevent	the	process	from	snooping	
on	the	previous	owner	of	the	page.	Thus	a	page	of	0s	must	be	found,	or	if	one	is	not	available,	
another	page	frame	must	be	allocated	and	zeroed	on	the	spot.	Finally,	the	fifth	case	is	a	normal	
page fault where page is located and mapped in.

The	actual	mechanics	of	getting	and	mapping	pages	is	fairly	standard,	so	we	will	not	discuss	
this issue. The only noteworthy feature is that Windows 2000 does not read in isolated pages 
from	 the	disk.	 Instead,	 it	 reads	 in	 runs	 of	 consecutive	pages,	 usually	 about	 1-8	 pages,	 in	
an attempt to minimize the number of disk transfers. The run size is larger for code pages 
than for data pages.

12.3.5 Page Replacement Algorithm

Page replacement works like this. The system makes a serious attempt to maintain a substantial 
number	of	free	pages	in	the	memory	so	that	when	a	page	fault	occurs,	a	free	page	can	be	claimed	
on	the	spot,	without	the	need	to	first	write	some	other	page	to	disk.	As	a	consequence	of	this	
strategy,	most	page	faults	can	be	satisfied	with	at	most	one	disk	operation	(reading	in	the	page),	
rather	than	sometimes	two	(writing	back	a	dirty	page	and	then	reading	in	the	needed	page).

Of	course,	the	pages	on	the	free	list	have	to	come	from	somewhere,	so	the	real	page	replacement	
algorithm	is	how	pages	get	taken	away	from	processes	and	put	on	the	free	list	(actually,	there	
are	 four	 free	 lists,	but	 for	 the	moment	 it	 is	 simplest	 to	 think	of	 there	being	 just	one;	we	will	
come	to	the	details	later).	Let	us	now	have	a	look	at	how	Windows	2000	frees	pages.	To	start	
with,	the	entire	paging	system	makes	heavy	use	of	the	working	set	concept.	Each	process	(not	
each	thread)	has	a	working	set.	This	set	consists	of	 the	mapped-in	pages	that	are	 in	memory	
and can be thus referenced without a page fault. The size and composition of the working set 
fluctuates	as	the	process’	threads	run,	of	course.

Each	process’	working	set	is	described	by	two	parameters:	the	minimum	size	and	the	maximum	
size.	Every	process	starts	with	the	same	minimum	and	maximum,	but	these	bounds	can	change	
over time. The default initial minimum is in the range 20-50 and the default initial maximum 
is	in	the	range	45-345,	depending	on	the	total	amount	of	RAM.	The	system	administrator	can	
change	these	defaults,	however.
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Notes If	a	page	fault	occurs	and	the	working	set	is	smaller	than	the	minimum,	the	page	is	added.	On	
the	other	hand,	if	a	page	fault	occurs	and	the	working	set	is	larger	than	the	maximum,	a	page	
is	evicted	from	the	working	set	(but	not	from	memory)	to	make	room	for	the	new	page.	This	
algorithm	means	that	Windows	2000	uses	a	local	algorithm,	to	prevent	one	process	from	hurting	
others	by	hogging	memory.	However,	 the	 system	does	 try	 to	 tune	 itself	 to	 some	extent.	 For	
example,	if	it	observes	that	one	process	is	paging	like	crazy	(and	the	others	are	not),	the	system	
may	increase	the	size	of	its	maximum	working	set,	so	that	over	time,	the	algorithm	is	a	mix	of	
local	and	global.	There	is	an	absolute	limit	on	the	working	set	size,	however:	even	if	there	is	only	
one	process	running,	it	may	not	take	the	last	512	pages,	to	leave	some	slack	for	new	processes.

So	far,	so	good,	but	the	story	is	not	over	yet.	Once	a	second,	a	dedicated	kernel	daemon	thread,	
the balance set manager,	checks	to	see	if	there	are	enough	free	pages.	If	there	are	not	enough,	it	
starts the working set manager thread to examine the working sets and recover more pages. The 
working	set	manager	first	determines	the	order	to	examine	the	processes	in.	Large	processes	that	
have been idle for a long time are considered before small active processes and the foreground 
process is considered last.

The working set manager then starts inspecting processes in the chosen order. If a process’ 
working set is currently less than its minimum or it has incurred more than a certain number 
of	 page	 faults	 since	 the	 last	 inspection,	 it	 is	 passed	 over.	Otherwise,	 one	 or	more	 pages	 are	
removed. The target number of pages to remove is a complicated function of the total RAM 
size,	how	tight	memory	is,	how	the	current	working	set	size	compares	to	the	process’	minimum	
and	maximum,	and	other	parameters.	All	the	pages	are	examined	in	turn.

On	 a	 uniprocessor,	 if	 a	 page’s	 reference	 bit	 is	 clear,	 a	 counter	 associated	 with	 the	 page	 is	
incremented.	If	the	reference	bit	is	set,	the	counter	is	set	to	zero.	After	the	scan,	the	pages	with	the	
highest counters are removed from the working set. The thread continues examining processes 
until	it	has	recovered	enough	pages,	then	it	stops.	If	a	complete	pass	through	all	processes	still	
has	 not	 recovered	 enough	 pages,	 it	 makes	 another	 pass,	 trimming	more	 aggressively,	 even	
reducing working sets below their minimum if necessary.

On	a	multiprocessor,	looking	at	the	reference	bit	does	not	work	because	although	the	current	
CPU	may	not	have	touched	the	page	recently,	some	other	one	may	have.	Examining	another	
CPU’s	reference	bits	is	too	expensive	to	do.	Consequently,	the	reference	bit	is	not	examined	and	
the oldest pages are removed.

It	should	be	noted	that	for	page	replacement	purposes,	the	operating	system	itself	is	regarded	
as a process. It owns pages and also has a working set. This working set can be trimmed. 
However,	parts	of	the	code	and	the	nonpaged	pool	are	locked	in	memory	and	cannot	be	paged	
out under any circumstances.

12.3.6 Physical Memory Management

Above we mentioned that there were actually four free lists. Now it is time to see what all of 
them are for. Every page in memory is either in one or more working sets or on exactly one of 
these	four	lists,	which	are	illustrated	in	Figure	12.13.	The	standby	(clean)	and	modified	(dirty)	
lists	hold	pages	 that	have	recently	been	evicted	from	a	working	set,	are	still	 in	memory,	and	
are still associated with the process that was using them. The difference between them is that 
clean	pages	have	a	valid	copy	on	disk	and	can	thus	be	abandoned	at	will,	whereas	dirty	pages	
do not have an up-to-date copy on disk. The free list consists of clean pages that are no longer 
associated with any process. The pages on the zeroed page list are not associated with any 
process	and	are	also	filled	with	zeros.	A	fifth	 list	holds	any	physically	defective	RAM	pages	
that may exist to make sure that they are not used for anything.



Unit 12: Processes and Threads in Windows

 LOVELY PROFESSIONAL UNIVERSITY 367

Notes
 Figure 12.13: The Various Page Lists and the Transitions between Them 

Pages are moved between the working sets and the various lists by the working set manager 
and other kernel daemon threads. Let us examine the transitions. When the working set manager 
removes	a	page	from	a	working	set,	 the	page	goes	on	the	bottom	of	the	standby	or	modified	
list,	depending	on	its	state	of	cleanliness.	This	transition	is	shown	as	(1).	Pages	on	both	lists	are	
still	valid	pages,	so	if	a	page	fault	occurs	and	one	of	these	pages	is	needed,	it	is	removed	from	
the	list	and	faulted	back	into	the	working	set	without	any	disk	I/O	(2).	When	a	process	exits	
its	nonshared	pages	cannot	be	faulted	back	to	it,	so	they	go	on	the	free	list	(3).	These	pages	are	
no longer associated with any process.

Other transitions are caused by other daemon threads. Every 4 seconds the swapper thread runs 
and looks for processes all of whose threads have been idle for a certain number of seconds. If 
it	finds	any	such	processes,	their	kernel	stacks	are	unpinned	and	their	pages	are	moved	to	the	
standby	or	modified	lists,	also	shown	as	(1).

Two	other	daemon	threads,	the	mapped page writer and the modified page writer,	wake	up	
periodically	to	see	 if	 there	are	enough	clean	pages.	 If	 there	are	not,	 they	take	pages	from	the	
top	of	the	modified	list,	write	them	back	to	disk,	and	then	move	them	to	the	standby	list.	The	
former	handles	writes	 to	mapped	files	 and	 the	 latter	 handles	writes	 to	 the	paging	files.	 The	
result of these writes is to transform dirty pages into clean pages.

The	reason	for	having	two	threads	is	that	a	mapped	file	might	have	to	grow	as	a	result	of	the	
write,	and	growing	it	requires	access	to	on-disk	data	structures	to	allocate	a	free	disk	block,	if	
there	is	no	room	in	memory	to	bring	them	in	when	a	page	has	to	be	written,	a	deadlock	could	
result.	The	other	thread	can	solve	the	problem	by	writing	the	pages	to	a	paging	file,	which	never	
grows. Nobody ever said Windows 2000 was simple.

The	other	 transitions	 in	Figure	12.13	 are	 as	 follows.	 If	 a	process	unmaps	a	page,	 the	page	 is	
no	longer	associated	with	a	process	and	can	go	on	the	free	list	(5),	except	for	the	case	that	it	is	
shared.	When	a	page	fault	requires	a	page	frame	to	hold	the	page	about	to	be	read	in,	the	page	
frame	is	taken	from	the	free	list	(6),	if	possible.	It	does	not	matter	that	the	page	may	still	contain	
confidential	 information	because	 it	 is	 about	 to	be	overwritten	 in	 its	 entirety.	The	 situation	 is	
different when a stack grows.

In	that	case,	an	empty	page	frame	is	needed	and	the	security	rules	require	the	page	to	contain	
all	zeros.	For	this	reason,	another	kernel	daemon	thread,	the	zero page thread,	runs	at	the	lowest	
priority,	 erasing	pages	 that	 are	 on	 the	 free	 list	 and	 putting	 them	on	 the	 zeroed	 page	 list	 (7).	
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Notes Whenever	 the	CPU	 is	 idle	 and	 there	are	 free	pages,	 they	might	 as	well	 as	be	zeroed	 since	a	
zeroed page is potentially more useful than a free page.

The	existence	of	all	 these	lists	 leads	to	some	subtle	policy	choices.	For	example,	suppose	that	
a page has to be brought in from disk and the free list is empty. The system is now forced to 
choose	between	taking	a	clean	page	from	the	standby	list	 (which	might	otherwise	have	been	
faulted	back	 in	 later)	 or	 an	 empty	page	 from	 the	 zeroed	page	 list	 (throwing	 away	 the	work	
done	in	zeroing	it).	Which	is	better?	If	 the	CPU	is	 idle	a	 lot	and	the	zero	page	thread	gets	 to	
run	often,	taking	a	zeroed	page	is	better	because	there	is	no	shortage	of	them.	However,	if	the	
CPU	is	always	busy	and	the	disk	is	mostly	idle,	it	is	better	to	take	a	page	from	the	standby	list	
to avoid the CPU cost of having to zero another page later if a stack grows.

Another	puzzle,	how	aggressively	should	the	daemons	move	pages	from	the	modified	list	to	the	
standby	list?	Having	clean	pages	around	is	better	than	having	dirty	pages	around	(since	they	
can	be	reused	instantly),	but	an	aggressive	cleaning	policy	means	more	disk	I/O	and	there	is	
some chance that a newly-cleaned page may be faulted back into a working set and dirtied again.

In	 general,	 Windows	 2000	 resolves	 these	 kinds	 of	 conflicts	 through	 complex	 heuristics,	
guesswork,	historical	precedent,	rules	of	thumb,	and	administrator-controlled	parameter	settings.	
Furthermore,	the	code	is	so	complex	that	the	designers	are	loathe	to	touch	parts	of	it	for	fear	of	
breaking something somewhere else in the system that nobody really understands any more.

To	keep	track	of	all	the	pages	and	all	the	lists,	Windows	maintains	a	page	frame	database	with	as	
many	entries	as	there	are	RAM	pages,	as	shown	in	Figure	12.14.	This	table	is	indexed	by	physical	
page	 frame	number.	The	entries	are	fixed	 length,	but	different	 formats	are	used	 for	different	
kinds	of	entries	(e.g.,	valid	versus	invalid).	Valid	entries	maintain	the	page’s	state	and	a	count	
of	how	many	page	tables	point	to	the	page,	so	the	system	can	tell	when	the	page	is	no	longer	
in use. Pages that are in a working set tell which one. There is also a pointer to the page table 
pointing	to	the	page,	if	any	(shared	pages	are	handled	specially),	a	link	to	the	next	page	on	the	
list	(if	any),	and	various	other	fields	and	flags,	such	as	read	in	progress,	write	in	progress,	etc.

 Figure 12.14: Some of the Major Fields in the Page Frame Database for a Valid Page 
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NotesAll	 in	 all,	memory	management	 is	 a	 highly	 complex	 subsystem	with	many	 data	 structures,	
algorithms,	and	heuristics.	It	attempts	to	be	largely	self	tuning,	but	there	are	also	many	knobs	
that administrators can tweak to affect system performance. A number of these knobs and the 
associated counters can be viewed using tools in the various tool kits mentioned earlier. Probably 
the most important thing to remember here is that memory management in real systems is a lot 
more than just one simple paging algorithm like clock or aging.

Memory management is the act of managing computer memory. In its simpler 
forms,	this	involves	providing	ways	to	allocate	portions	of	memory	to	programs	
at	their	request,	and	freeing	it	for	reuse	when	no	longer	needed.

Self Assessment

Fill in the blanks:

 5. The actual login dialog is handled by a separate program in ...................... .

 6. In ...................... every user process has its own virtual address space.

	 		7.	 The	......................	file	is	mapped	into	two	address	spaces	at	the	same	time.

	 8.	 Mapped	page	writer	handles	writes	to	......................	files.

True or False:

	 9.	 Once	order	or	data	is	mapped	onto	a	page,	the	page	is	said	to	be	a	free	page.

 10. Windows 2000 support a single linear 4 GB demand-page address space per process.

12.4 Summary

 •	 Every	process	starts	with	one	thread,	but	newer	ones	can	be	created	dynamically.

	 •	 A	thread	normally	runs	in	user	mode.

	 •	 Windows	2000	does	not	enforce	any	kind	of	parent-child	or	other	hierarchy.

	 •	 Threads	creation	is	simpler	than	process	creation.	Create	threads	has	only	six	parameters.

	 •	 Socket	is	like	pipes,	except	that	they	normally	connect	process	on	different	machines.

	 •	 In	implementation	of	process,	a	process	created	when	another	process	makes	the	win32	
create process call.

	 •	 When	an	MS-DOS	program	started,	a	normal	Win32	process	is	started	and	loaded	with	
an MS-DOS emulation program.

12.5 Keywords

API: The Windows	API,	informally	WinAPI,	is	Microsoft’s	core	set	of	application	programming	
interfaces	(APIs)	available	in	the	Microsoft	Windows	operating	systems.

Boot Sector:	A	boot	sector	is	a	sector	of	a	hard	disk,	floppy	disk,	or	similar	data	storage	device	
that	contains	code	for	booting	programs	(usually,	but	not	necessarily,	operating	systems)	stored	
in other parts of the disk.
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Notes Mailslots:	Mailslot	is	a	mechanism	for	one-way	interprocess	communications	(IPC).	Applications	
can store messages in a mailslot. The owner of the mailslot can retrieve messages that are stored 
there.	These	messages	are	typically	sent	over	a	network	to	either	a	specified	computer	or	to	all	
computers	in	a	specified	domain.

Mutexes: Mutex object is a synchronization object whose state is set to be signaled when it is 
not	owned	by	any	thread,	and	not	signaled	when	it	is	owned.

Scheduling: Scheduling is the process of deciding how to commit resources between a variety 
of possible tasks.

Win32: The Windows API for developing 32-bit applications. Win32 is built into Windows 95 
and	Windows	NT	so	applications	that	rely	on	the	API	(Win32	applications)	should	run	equally	
well in both environments. It is also possible to run some Win32 applications under older 16-bit 
versions of windows by installing the Win32s runtime system.

12.6 Review Questions

 1. Explain the  process of threads in windows and discuss its basic fundamental.

	 2.	 Draw	the	diagram	of	relationship	between	jobs,	process	and	threads.	Explain.

 3. Give the description on Inter-process communication.

	 4.	 Define	the	following	terms:

	 (a)	 Socket	 (b)	 Mailslots

	 (c)	 Semaphore

 5. Explain and discuss the scheduling in windows operating system.

 6. How to use the in Windows MS-DOS Emulation?

 7. Give and explain the booting process of windows system.

 8. Give the working of Memory management in operating system.

	 9.	 Describe	the	following	terms	briefly:

	 (a)	 Page	fault	 (b)	 Virtual	page

	 (c)	 Default	page	 (d)	 Page	replacement

Answers to Self Assessment
	 1.	 (b)	 2.	 (a)	 3.	 (a)	 4.	 (b)

 5. msgina.dll 6. Windows 2000 7. lib.dill 8. mapped

 9. False 10. True

12.7 Further Readings

Operating Systems,	by	Harvey	M.	Deitel	 ,	Paul	J.	Deitel,	David	R.	Choffnes,	
Introduction to Operating Design and Implementation,	by	Michael	Kifer,	Scoott	
A. Smolka.

wiley.com/coolege.silberschatz
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Notes Objectives

After studying this unit, you will be able to:

	 •	 Discuss	input/output	of	Windows

	 •	 Explain	Windows	2000	file	system

	 •	 Explain	security	in	Windows	2000

	 •	 Understand	caching	in	Windows	2000

Introduction

A large part of the I/O manager’s role is the management of communication between drivers. 
All drivers supply a standard set of services that the I/O manager can call. This uniform 
interface	allows	 the	 I/O	manager	 to	communicate	with	all	drivers	 in	 the	same	way,	without	
any knowledge of how the devices they control actually work.

Drivers	 communicate	with	 each	 other	 using	 data	 structures	 called	 I/O	 request	 packets.	 The	
drivers	do	not	pass	I/O	request	packets	to	each	other	directly.	Instead,	they	pass	the	packets	to	
the	I/O	manager,	which	delivers	them	to	the	appropriate	destination	drivers	using	the	drivers’	
standard	services.	The	packets	passed	at	the	various	stages	are	different—it’s	a	primary	job	of	
each	layer	to	construct	the	appropriate	request	packets	to	pass	to	the	next	layer.

13.1 Input/Output in Windows 2000

The	goal	of	the	Windows	2000	I/O	system	is	to	provide	a	framework	for	efficiently	handling	a	
very	wide	variety	of	I/O	devices.	Current	input	devices	include	various	kinds	of	keyboards,	mice,	
touch	pads,	joysticks,	scanners,	still	cameras,	television	cameras,	bar	code	readers,	microphones,	
and	laboratory	rats.	Current	output	devices	include	monitors,	printers,	plotters,	beamers,	CD-
recorders,	 and	 sound	 cards.	 Storage	devices	 include	floppy	disks,	 IDE	 and	 SCSI	 hard	disks,	
CD-ROMs,	DVDs,	Zip	drives,	and	tape	drives.	Finally,	other	devices	include	clocks,	networks,	
telephones,	and	camcorders.	No	doubt	many	new	I/O	devices	will	be	invented	in	the	years	to	
come,	so	Windows	2000	has	been	designed	with	a	general	framework	to	which	new	devices	can	
easily be attached. In the following sections we will examine some of the issues relating to I/O.

13.1.1 Fundamental Concepts of Input/Output in Windows 2000

The I/O manager is on intimate terms with the plug-and-play manager. The basic idea behind 
plug	and	play	is	that	of	an	enumerable	bus.	Many	buses,	including	PC	Card,	PCI,	USB,	IEEE	
1394,	and	SCSI,	have	been	designed	so	that	the	plug-and-play	manager	can	send	a	request	to	
each	slot	and	ask	the	device	there	to	identify	itself.	Having	discovered	that	what	is	out	there,	
the	plug-and-play	manager	allocates	hardware	resources,	such	as	 interrupt	 levels,	 locates	the	
appropriate	drivers,	 and	 loads	 them	 into	memory.	As	 each	one	 is	 loaded,	 a	driver object is 
created	for	 it.	For	some	buses,	such	as	SCSI,	enumeration	happens	only	at	boot	 time,	but	 for	
other	buses,	such	as	USB	and	IEEE	1394,	it	can	happen	at	any	moment,	requiring	close	contact	
between	 the	 plug-and-play	manager,	 the	 bus	 driver	 (which	 actually	 does	 the	 enumeration),	
and the I/O manager.
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NotesThe I/O manager is also closely connected with the power manager. The power manager can 
put	the	computer	into	any	of	six	states,	roughly	described	as:

 1. Fully operational.

	 2.	 Sleep	1:	CPU	power	reduced,	RAM	and	cache	on;	instant	wake-up.

	 3.	 Sleep	2:	CPU	and	RAM	on;	CPU	cache	off;	continue	from	current	PC.

	 4.	 Sleep	3:	CPU	and	cache	off;	RAM	on;	restart	from	fixed	address.

	 5.	 Hibernate:	CPU,	cache,	and	RAM	off;	restart	from	saved	disk	file.

	 6.	 Off:	Everything	off;	full	reboot	required.

I/O devices can also be in various power states. Turning them on and off is handled by the 
power manager and I/O manager together. Note that states 2 through 6 are only used when 
the CPU has been idle for a shorter or longer time interval.

Somewhat	surprisingly,	all	the	file	systems	are	technically	I/O	drivers.	Requests	for	data	blocks	
from user processes are initially sent to the cache manager. If the cache manager cannot satisfy 
the	request	from	the	cache,	it	has	the	I/O	manager	call	the	proper	file	system	driver	to	go	and	
get the block it needs from disk.

An interesting feature of Windows 2000 is its support for dynamic disks. These disks may span 
multiple	partitions	and	even	multiple	disks	and	may	be	reconfigured	on	the	fly,	without	even	
having	to	reboot.	In	this	way,	logical	volumes	are	no	longer	constrained	to	a	single	partition	or	
even	a	single	disk	so	that	a	single	file	system	may	span	multiple	drives	in	a	transparent	way.

Another interesting aspect of Windows 2000 is its support for asynchronous I/O. It is possible for a 
thread to start an I/O operation and then continue executing in parallel with the I/O. This feature 
is	especially	important	on	servers.	There	are	various	ways	the	thread	can	find	out	that	the	I/O	has	
completed. One is to specify an event object at the time the call is made and then wait on it eventually. 
Another	is	to	specify	a	queue	to	which	a	completion	event	will	be	posted	by	the	system	when	the 
I/O is done. A third is to provide a callback procedure that the system calls when the I/O has 
completed.

13.1.2 Input/Output API Calls

Windows	2000	has	over	100	separate	APIs	for	a	wide	variety	of	I/O	devices,	 including	mice,	
sound	cards,	telephones,	tape	drives,	etc.	Probably	the	most	important	is	the	graphics	system,	
for which there are thousands of Win32 API calls. We began our discussion with the Window 
graphical	system.	Here	we	will	continue,	mentioning	a	few	of	the	Win32	API	categories,	each	
of which has many calls. A brief summary of the categories are given in Figure 13.1.

Win32	 calls	 exist	 to	 create,	destroy,	 and	manage	windows.	Windows	have	a	vast	number	of	
styles	and	options	that	can	be	specified,	including	titles,	borders,	colours,	sizes,	and	scroll	bars.	
Windows	can	be	fixed	or	movable,	of	constant	size	or	resizable.	Their	properties	can	be	queried	
and messages can be sent to them.

Many	windows	contain	menus,	so	there	are	Win32	calls	for	creating	and	deleting	menus	and	
menu	bars.	Dynamic	menus	can	be	popped	up	and	removed.	Menu	items	can	be	highlighted,	
dimmed	out,	or	cascaded.
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Notes Dialog	 boxes	 are	popped	up	 to	 inform	 the	user	 of	 some	 event	 or	 ask	 a	 question.	 They	may	
contain	buttons,	sliders,	or	text	fields	to	be	filled	in.	Sounds	can	also	be	associated	with	dialog	
boxes,	for	example	for	warning	messages.

There	are	hundreds	of	drawing	and	painting	functions	available,	ranging	from	setting	a	single	
pixel to doing complex region clipping operations. Many calls are provided for drawing lines 
and	 closed	 geometric	 figures	 of	 various	 kinds,	 with	 detailed	 control	 over	 textures,	 colours,	
widths,	and	many	other	attributes.

Figure 13.1: Some Categories of Win32 API Calls

API group Description

Window management Create, destroy, and manage windows

Menus
Create, destroy, and append to menus and 
menu bars

Dialog boxes Pop up a dialog box and collect information

Painting and drawing Display points, lines, and geometric figures

Text Display text in some font, size, and colour

Bitmaps and icons Placement of bitmaps and icons on the screen

Colours and palettes Manage the set of colours available

The clipboard
Pass information from one application to 
another

Input Get information from the mouse and keyboard

Another	 group	 of	 calls	 relates	 to	 displaying	 text.	 Actually,	 the	 text	 display	 call,	 TextOut,	 is	
straightforward.	 It	 is	 the	management	of	 the	 colour,	point	 sizes,	 typefaces,	 character	widths,	
glyphs,	kerning,	and	other	typesetting	details	where	the	complexity	comes	in.	Fortunately,	the	
rasterization	of	text	(conversion	to	bitmaps)	is	generally	done	automatically.

Bitmaps are small rectangular blocks of pixels that can be placed on the screen using the 
BitBlt Win32 call. They are used for icons and occasionally text. Various calls are provided for 
creating,	destroying,	and	managing	icon	objects.

Many	displays	use	a	colour	mode	with	only	256	or	65,536	of	the	224 possible colours in order 
to	 represent	each	pixel	with	only	1	or	2	bytes,	 respectively.	 In	 these	cases	a	 colour	palette	 is	
needed	to	determine	which	256	or	65,536	colours	are	available.	The	calls	in	this	group	create,	
destroy,	and	manage	palettes,	select	the	nearest	available	colour	to	a	given	colour,	and	try	to	
make colours on the screen match colours on colour printers.

Many	Windows	2000	programs	allow	the	user	to	select	some	data	(e.g.,	a	block	of	text,	part	of	
a	drawing,	a	set	of	cells	in	a	spreadsheet),	put	it	on	the	clipboard,	and	allow	it	to	be	pasted	into	
another application. The clipboard is generally used for this transmission. Many clipboard formats 
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Notesare	defined,	including	text,	bitmaps,	objects,	and	metafiles.	The	latter	are	sets	of	Win32	calls	that	
when	executed	draw	something,	allowing	arbitrary	drawings	to	be	cut	and	pasted.	This	group	
of	calls	puts	things	on	the	clipboard,	takes	things	off	the	clipboard,	and	generally	manages	it.

Finally,	we	 come	 to	 input.	 There	 are	 no	Win32	 calls	 for	GUI	 applications	 for	 reading	 input	
from the keyboard because GUI applications are event driven. The main program consists of a 
big	loop	getting	input	messages.	When	the	user	types	something	interesting,	a	message	is	sent	
to	 the	program	telling	 it	what	 just	came	 in.	On	the	other	hand,	 there	are	calls	 relating	 to	 the	
mouse	such	as	reading	its	(x,	y)	position	and	the	state	of	its	buttons.	Some	of	the	input	calls	are	
actually	output	calls,	though,	such	as	selecting	a	mouse	cursor	icon	and	moving	it	around	the	
screen	 (basically,	 this	 is	output	 to	 the	screen).	For	nonGUI	applications,	 it	 is	possible	 to	read	
from the keyboard.

13.1.3 Implementation of I/O
We	could	go	on	more	or	less	indefinitely	about	the	Win32	graphics	calls,	but	now	it	is	time	to	look	
at how the I/O manager implements graphics and other I/O functions. The main function of the 
I/O manager is to create a framework in which different I/O devices can operate. The basic 
structure of the framework is a set of device-independent procedures for certain aspects of I/O 
plus a set of loaded device drivers for communicating with the devices.

13.1.4 Device Drivers

To	make	sure	that	device	drivers	work	well	with	the	rest	of	Windows	2000,	Microsoft	has	defined	
a Windows Driver Model	 that	device	drivers	are	expected	 to	conform	with.	Furthermore,	 it	
also has provided a tool kit that is designed to help driver writers produce conformant drivers. 
In	 this	 section,	we	will	briefly	examine	 this	model.	Conformant	drivers	must	meet	all	 of	 the	
following	requirements	as	well	as	some	others:

	 1.	 Handle	incoming	I/O	requests,	which	arrive	in	a	standard	format.

 2. Be as object based as the rest of Windows 2000.

 3. Allow plug-and-play devices to be dynamically added or removed.

	 4.	 Permit	power	management,	where	applicable.

	 5.	 Be	configurable	in	terms	of	resource	usage.

 6. Be reentrant for use on multiprocessors.

 7. Be portable across Windows 98 and Windows 2000.

I/O	Requests	 are	passed	 to	drivers	 in	 the	 form	of	 a	 standardized	packet	 called	 an	 IRP (I/O 
Request Packet). Conformant drivers must be able to handle them. Drivers must be object based 
in	the	sense	of	supporting	a	specific	list	of	methods	that	the	rest	of	the	system	can	call.	They	must	
also correctly deal with other Windows 2000 objects when given an object handle to deal with.

Conformant	drivers	must	fully	support	plug	and	play,	which	means	that	if	a	device	managed	
by	the	driver	is	suddenly	added	or	removed	from	the	system,	the	driver	must	be	prepared	to	
accept	this	information	and	act	on	it,	even	in	the	case	that	the	device	currently	being	accessed	is	
suddenly removed. Power management must also be supported for the devices for which this is 
relevant.	For	example,	if	the	system	decides	it	is	now	time	to	go	into	a	low-power	hibernation	
mode,	all	devices	that	are	capable	of	doing	this	must	do	so	to	save	energy.	They	must	also	wake	
up when told to do so.
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Notes Drivers	must	be	configurable,	which	means	not	having	any	built-in	assumptions	about	which	
interrupt	lines	or	I/O	ports	certain	devices	use.	For	example,	the	printer	port	on	the	IBM	PC	
and its successors has been at address 0x378 for more than 20 years and it is unlikely to change 
now. But a printer driver that has this address hard coded into it is not conformant.

Being	multiprocessor	 safe	 is	 also	 a	 requirement	 as	Windows	 2000	was	 designed	 for	 use	 on	
multiprocessors.	 Concretely,	 this	 requirement	means	while	 a	 driver	 is	 actively	 running	 and	
processing	one	 request	 on	behalf	 of	 one	CPU,	 a	 second	 request	may	 come	 in	 on	behalf	 of	 a	
different CPU. The second CPU may begin executing the driver code simultaneously with the 
first	one.	The	driver	must	function	correctly	even	when	being	executed	concurrently	by	two	or	
more	CPUs,	which	implies	that	all	sensitive	data	structures	may	only	be	accessed	from	inside	
critical regions. Just assuming that there will not be any other calls until the current one is 
finished	is	not	permitted.

Finally,	conformant	drivers	must	work	not	only	on	Windows	2000	but	also	on	Windows	98.	It	
may	be	necessary	to	recompile	the	driver	on	each	system	however,	and	use	of	C	preprocessor	
commands to isolate platform dependencies is permitted.

In	UNIX,	drivers	are	located	by	using	their	major	device	numbers.	Windows	2000	uses	a	different	
scheme.	At	boot	 time,	or	when	a	new	hot	pluggable	plug-and-play	device	 is	 attached	 to	 the	
computer,	Windows	 2000	 automatically	 detects	 it	 and	 calls	 the	 plug-and-play	manager.	 The	
manager	queries	the	device	to	find	out	what	the	manufacturer	and	model	number	are.	Equipped	
with	this	knowledge,	it	looks	on	the	hard	disk	in	a	certain	directory	to	see	if	it	has	the	driver.	
If	it	does	not,	it	displays	a	dialog	box	asking	the	user	to	insert	a	floppy	disk	or	CD-ROM	with	
the	driver.	Once	the	driver	is	located,	it	is	loaded	into	memory.

Each	driver	must	supply	a	set	of	procedures	that	can	be	called	to	get	its	services.	The	first	one,	
called DriverEntry,	initializes	the	driver.	It	is	called	just	after	the	driver	is	loaded.	It	may	create	
tables	and	data	structures,	but	must	not	touch	the	device	yet.	It	also	fills	in	some	of	the	fields	
of	the	driver	object	created	by	the	I/O	manager	when	the	driver	was	loaded.	The	fields	in	the	
driver	object	include	pointers	to	all	the	other	procedures	that	drivers	must	supply.	In	addition,	
for	each	device	controlled	by	the	driver	(e.g.,	each	IDE	disk	controlled	by	the	IDE	disk	driver),	
a device object is created and initialized to point to the driver object. These driver objects are 
entered	into	a	special	directory,\??.	Given	a	device	object,	the	driver	object	can	be	located	easily,	
and hence its methods can be called.

A	second	required	procedure	is	AddDevice,	which	is	called	once	(by	the	plug-and-play	manager)	
for	each	device	to	be	added.	Once	this	has	been	accomplished,	the	driver	is	called	with	the	first	
IRP,	which	sets	up	the	interrupt	vector	and	actually	initializes	the	hardware.	Other	procedures	that	
drivers	must	contain	are	the	interrupt	service	procedure,	various	timer	management	procedures,	
a	fast	I/O	path,	DMA	control,	a	way	to	cancel	currently	executing	requests,	and	many	more.	All	
in	all,	Windows	2000	drivers	are	so	complex	that	multiple	sites	have	been	written	about	them.	

A	driver	in	Windows	2000	may	do	all	the	work	by	itself,	as	the	printer	driver	does	in	Figure	
13.2	 (just	as	an	example).	On	the	other	hand,	drivers	may	also	be	stacked,	which	means	 that	
a	request	may	pass	through	a	sequence	of	drivers,	each	doing	part	of	the	work.	Two	stacked	
drivers are also illustrated in Figure 13.2.
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 Figure 13.2: Windows 2000 Allows Drivers to be Stacked 
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One common use for stacked drivers is to separate out the bus management from the functional 
work	of	actually	controlling	the	device.	Bus	management	on	the	PCI	bus	is	quite	complicated	
on	account	of	many	kinds	of	modes	and	bus	transactions,	and	by	separating	this	work	from	the	
device-specific	part,	driver	writers	are	freed	from	learning	how	to	control	the	bus.	They	can	just	
use	the	standard	bus	driver	in	their	stack.	Similarly,	USB	and	SCSI	drivers	have	a	device-specific	
part	and	a	generic	part,	with	common	drivers	used	for	the	generic	part.

Another use of stacking drivers is to be able to insert filter drivers	into	the	stack.	A	filter	driver	
performs	some	transformation	on	the	data	on	the	way	up	or	down.	For	example,	a	filter	driver	
could compress data on the way to the disk or encrypt data on the way to the network. Putting 
the	filter	here	means	that	neither	the	application	program	nor	the	true	device	driver	have	to	be	
aware	of	it	and	it	works	automatically	for	all	data	going	to	(or	coming	from)	the	device.

13.2 The Windows 2000 File System

Windows	2000	supports	several	file	systems,	the	most	important	of	which	are	FAT-16,	FAT-32 and 
NTFS (NT File System).	FAT-16	is	the	old	MS-DOS	file	system.	It	uses	16-bit	disk	addresses,	which	
limits it to disk partitions no larger than 2 GB. FAT-32 uses 32-bit disk addresses and supports disk 
partitions	up	to	2	TB.	NTFS	is	a	new	file	system	developed	specifically	for	Windows	NT	and	carried	
over	to	Windows	2000.	It	uses	64-bit	disk	addresses	and	can	(theoretically)	support	disk	partitions	
up	to	264	bytes,	although	other	considerations	limit	it	to	smaller	sizes.	Windows	2000	also	supports 
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Notes read-only	file	systems	for	CD-ROMs	and	DVDs.	It	is	possible	(even	common)	to	have	the	same	
running	system	have	access	to	multiple	file	system	types	available	at	the	same	time.

In	this	unit,	we	will	treat	the	NTFS	file	system	because	it	is	a	modern	file	system	unencumbered	
by	the	need	to	be	fully	compatible	with	the	MS-DOS	file	system,	which	was	based	on	the	CP/M	
file	system	designed	for	8-inch	floppy	disks	more	than	20	years	ago.	Times	have	changed	and	
8-inch	floppy	disks	are	not	quite	state	of	the	art	any	more.	Neither	are	their	file	systems.	Also,	
NTFS	differs	both	in	user	interface	and	implementation	in	a	number	of	ways	from	the	UNIX	file	
system,	which	makes	it	a	good	second	example	to	study.	NTFS	is	a	large	and	complex	system	
and	space	 limitations	prevent	us	 from	covering	all	of	 its	 features,	but	 the	material	presented	
below should give a reasonable impression of it.

13.2.1 Fundamental Concepts of Windows 2000 File System

Individual	 file	 names	 in	NTFS	 are	 limited	 to	 255	 characters;	 full	 paths	 are	 limited	 to	 32,767	
characters.	File	names	are	in	Unicode,	allowing	people	in	countries	not	using	the	Latin	alphabet	
(e.g.,	Greece,	Japan,	India,	Russia,	and	Israel)	to	write	file	names	in	their	native	language.	For	
example,	τλ∈	is	a	perfectly	legal	file	name.	NTFS	fully	supports	case	sensitive	names	(so	foo	is	
different	from	Foo	and	FOO).	Unfortunately,	the	Win32	API	does	not	fully	support	case-sensitivity	
for	file	names	and	not	at	all	for	directory	names,	so	this	advantage	is	lost	to	programs	restricted	
to	using	Win32	(e.g.,	for	Windows	98	compatibility).

An	NTFS	file	 is	not	 just	a	 linear	 sequence	of	bytes,	as	FAT-32	and	UNIX	files	are.	 Instead,	a	
file	consists	of	multiple	attributes,	each	of	which	is	represented	by	a	stream	of	bytes.	Most	files	
have	a	 few	short	streams,	such	as	 the	name	of	 the	file	and	 its	64-bit	object	 ID,	plus	one	 long	
(unnamed)	stream	with	the	data.	However,	a	file	can	also	have	two	or	more	(long)	data	streams	
as	well.	Each	stream	has	a	name	consisting	of	the	file	name,	a	colon,	and	the	stream	name,	as	in	
foo:stream1.	Each	stream	has	its	own	size	and	is	lockable	independently	of	all	the	other	streams.	
The	idea	of	multiple	streams	in	a	file	was	borrowed	from	the	Apple	Macintosh,	in	which	files	
have	two	streams,	the	data	fork	and	the	resource	fork.	This	concept	was	incorporated	into	NTFS	
to allow an NTFS server be able to serve Macintosh clients.

File	streams	can	be	used	for	purposes	other	than	Macintosh	compatibility.	For	example,	a	photo	
editing program could use the unnamed stream for the main image and a named stream for a 
small thumbnail version. This scheme is simpler than the traditional way of putting them in the 
same	file	one	after	another.	Another	use	of	streams	is	in	word	processing.	These	programs	often	
make	two	versions	of	a	document,	a	temporary	one	for	use	during	editing	and	a	final	one	when	
the	user	is	done.	By	making	the	temporary	one	a	named	stream	and	the	final	one	the	unnamed	
stream,	both	versions	 automatically	 share	 a	file	name,	 security	 information,	 timestamps,	 etc.	
with no extra work.

The maximum stream length is 264 bytes. To get some idea of how big a 264-byte	stream	is,	imagine	
that	the	stream	were	written	out	in	binary,	with	each	of	the	0s	and	1s	in	each	byte	occupying	
1 mm of space. The 267-mm	listing	would	be	15	light-years	long,	reaching	far	beyond	the	solar	
system,	 to	Alpha	Centauri	and	back.	File	pointers	are	used	 to	keep	 track	of	where	a	process	
is	in	each	stream,	and	these	are	64	bits	wide	to	handle	the	maximum	length	stream,	which	is	
about 18.4 exabytes.

The	Win32	API	function	calls	 for	file	and	directory	manipulation	are	roughly	similar	 to	 their	
UNIX	 counterparts,	 except	most	 have	more	 parameters	 and	 the	 security	model	 is	 different.	
Opening	a	file	returns	a	handle,	which	is	then	used	for	reading	and	writing	the	file.	For	graphical	
applications,	no	file	handles	are	predefined.	Standard	input,	standard	output,	and	standard	error	
have	to	be	acquired	explicitly	if	needed;	in	console	mode	they	are	preopened,	however,	Win32	
also has a number of additional calls not present in UNIX.
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The	 principal	Win32	API	 functions	 for	 file	management	 are	 listed	 in	 Figure	 13.3.	 There	 are	
actually	many	more,	but	these	give	a	reasonable	first	impression	of	the	basic	ones.	Let	us	now	
examine	these	calls	briefly.	CreateFile	can	be	used	to	create	a	new	file	and	return	a	handle	to	it.	
This	API	function	must	also	be	used	to	open	existing	files	as	there	is	no	FileOpen	API	function.	
We have not listed the parameters for the API functions because they are so voluminous. As an 
example,	CreateFile	has	seven	parameters,	which	are	roughly	summarized	as	follows:

	 1.	 A	pointer	to	the	name	of	the	file	to	create	or	open.

	 2.	 Flags	telling	whether	the	file	can	be	read,	written,	or	both.

	 3.	 Flags	telling	whether	multiple	processes	can	open	the	file	at	once.

	 4.	 A	pointer	to	the	security	descriptor,	telling	who	can	access	the	file.

	 5.	 Flags	telling	what	to	do	if	the	file	exists/does	not	exist.

	 6.	 Flags	dealing	with	attributes	such	as	archiving,	compression,	etc.

	 7.	 The	handle	of	a	file	whose	attributes	should	be	cloned	for	the	new	file.

Figure 13.3: The Principal Win32 API Functions for File I/O. The Second  
Column Gives the Nearest UNIX Equivalent

Win32 API function UNIX Description

CreateFile open Create a file or open an existing file; return a handle

DeleteFile unlink Destroy an existing file

CloseHandle close Close a file

ReadFile read Read data from a file

WriteFile write Write data to a file

SetFilePointer lseek Set the file pointer to a specific place in the file

GetFileAttributes stat Return the file properties

LockFile fcntl Lock a region of the file to provide mutual exclusion

UnlockFile fcntl Unlock a previously locked region of the file

The next six API functions in Figure 13.3 are fairly similar to the corresponding UNIX system 
calls.	The	last	two	allow	a	region	of	a	file	to	be	locked	and	unlocked	to	permit	a	process	to	get	
guaranteed mutual exclusion to it.

Using	these	API	functions,	 it	 is	possible	 to	write	a	procedure	to	copy	a	file,	analogous	to	 the	
UNIX	version.	 Such	 a	 code	 fragment	 (without	 any	 error	 checking)	 is	 shown	 in	 the	program	
below.	 It	has	been	designed	 to	mimic	our	UNIX	version.	 In	practice,	one	would	not	have	 to	
program	a	copy	file	program	since	CopyFile	is	an	API	function	(which	executes	something	close	
to	this	program	as	a	library	procedure).
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/*	Open	files	for	input	and	output	*/
inhandle	=	CreateFile(“data”,	GENERIC_READ,	0,	NULL,	OPEN_EXISTING,	0,	NULL);
outhandle	 =	 CreateFile(“newf”,	 GENERIC_WRITE,	 0,	 NULL,	 CREATE_ALWAYS,	
FILE_ATTRIBUTE_NORMAL,	NULL);
/*	Copy	the	file.	*/
do{
				s	=	ReadFile(inhandle,	buffer,	BUF_SIZE,	&count,	NULL);
				if(s	&&	count	>	0)	WriteFile(outhandle,	buffer,	count,	&ocnt,	NULL);
}	while(s	>	0	&&	count	>	0);
 /* Close	the	files.	*/
CloseHandle(inhandle);
CloseHandle(outhandle);

Windows	2000	NTFS	is	a	hierarchical	file	system,	similar	to	the	UNIX	file	system.	The	separator	
between	component	names	is	\	however,	instead	of	/,	a	fossil	inherited	from	MS-DOS.	There	
is a concept of a current working directory and path names can be relative or absolute. Hard 
and	symbolic	links	are	supported,	the	former	implemented	by	having	multiple	directory	entries,	
as	 in	UNIX,	and	the	 latter	 implemented	using	reparse	points	 (discussed	later	 in	this	unit).	 In	
addition,	compression,	encryption,	and	fault	tolerance	are	also	supported.	These	features	and	
their implementations will be discussed later in this unit.

The major directory management	API	functions	are	given	in	Figure	13.4,	again	along	with	their	
nearest	UNIX	equivalents.	The	functions	should	be	self	explanatory.

Figure 13.4: The Principal Win32 API Functions for Directory Management. The Second 
Column Gives the Nearest UNIX Equivalent, When One Exists

Win32 API function UNIX Description

CreateDirectory mkdir Create a new directory

RemoveDirectory rmdir Remove an empty directory

FindFirstFile opendir Initialize to start reading the entries in a directory

FindNextFile readdir Read the next directory entry

MoveFile rename Move a file from one directory to another

SetCurrentDirectory chdir Change the current working directory

13.2.3 Implementation of the Windows 2000 File System

NTFS	is	a	highly	complex	and	sophisticated	file	system.	It	was	designed	from	scratch,	rather	
than	being	an	attempt	to	improve	the	old	MS-DOS	file	system.	Below	we	will	examine	a	number	
of	its	features,	starting	with	its	structure,	then	moving	on	to	file	name	lookup,	file	compression,	
and	file	encryption.

13.2.4 File System Structure

Each	 NTFS	 volume	 (e.g.,	 disk	 partition)	 contains	 files,	 directories,	 bitmaps,	 and	 other	 data	
structures.	 Each	 volume	 is	 organized	 as	 a	 linear	 sequence	 of	 blocks	 (clusters	 in	Microsoft’s	
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Notesterminology),	with	the	block	size	being	fixed	 for	each	volume	and	ranging	 from	512	bytes	
to 64	KB,	depending	on	the	volume	size.	Most	NTFS	disks	use	4	KB	blocks	as	a	compromise	
between	large	blocks	(for	efficient	transfers)	and	small	blocks	(for	low	internal	fragmentation).	
Blocks are referred to by their offset from the start of the volume using 64 bit numbers.

The main data structure in each volume is the MFT (Master File Table),	 which	 is	 a	 linear	
sequence	of	fixed-size	1	KB	records.	Each	MFT	record	describes	one	file	or	directory.	It	contains	
the	file’s	attributes,	such	as	its	name	and	timestamps,	and	the	list	of	disk	addresses	where	its	
blocks	are	located.	If	a	file	is	extremely	large,	it	is	sometimes	necessary	to	use	two	or	more	MFT	
records	to	contain	the	list	of	all	the	blocks,	in	which	case	the	first	MFT	record,	called	the	base 
record,	 points	 to	 the	 other	MFT	 records.	 This	 overflow	 scheme	dates	 back	 to	CP/M,	where	
each directory entry was called an extent. A bitmap keeps track of which MFT entries are free.

The	MFT	is	itself	a	file	and	as	such	can	be	placed	anywhere	within	the	volume,	thus	eliminating	
the	problem	with	defective	sectors	in	the	first	track.	Furthermore,	the	file	can	grow	as	needed,	
up to a maximum size of 248 records.

The	MFT	is	shown	in	Figure.	13.5.	Each	MFT	record	consists	of	a	sequence	of	(attribute	header,	
value)	pairs.	Each	attribute	begins	with	a	header	telling	which	attribute	this	is	and	how	long	the	
value	is	because	some	attribute	values	are	variable	length,	such	as	the	file	name	and	the	data.	
If	the	attribute	value	is	short	enough	to	fit	in	the	MFT	record,	it	is	placed	there.	If	it	is	too	long,	
it is placed elsewhere on the disk and a pointer to it is placed in the MFT record.

The	first	16	MFT	records	are	reserved	for	NTFS	metadata	files,	as	shown	in	Figure	13.5.	Each	of	
the	records	describes	a	normal	file	that	has	attributes	and	data	blocks,	 just	like	any	other	file.	
Each	of	these	files	has	a	name	that	begins	with	a	dollar	sign	to	indicate	that	it	is	a	metadata	file.	
The	first	record	describes	the	MFT	file	itself.	In	particular,	it	tells	where	the	blocks	of	the	MFT	
file	are	located	so	the	system	can	find	the	MFT	file.	Clearly,	Windows	2000	needs	a	way	to	find	
the	first	block	of	the	MFT	file	in	order	to	find	the	rest	of	the	file	system	information.	The	way	
it	finds	the	first	block	of	the	MFT	file	is	to	look	in	the	boot	block,	where	its	address	is	installed	
at system installation time.

Figure 13.5: The NTFS Master File Table
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Notes Record	1	 is	a	duplicate	of	 the	early	part	of	 the	MFT	file.	This	 information	 is	so	precious	 that	
having	a	second	copy	can	be	critical	in	the	event	one	of	the	first	blocks	of	the	MFT	ever	goes	bad.	
Record	2	is	the	log	file.	When	structural	changes	are	made	to	the	file	system,	such	as	adding	a	
new	directory	or	removing	an	existing	one,	the	action	is	logged	here	before	it	is	performed,	in	
order to increase the chance of correct recovery in the event of a failure during the operation. 
Changes	 to	file	attributes	are	also	 logged	here.	 In	 fact,	 the	only	 changes	not	 logged	here	are	
changes	to	user	data.	Record	3	contains	information	about	the	volume,	such	as	its	size,	 label,	
and version.

As	 mentioned	 above,	 each	 MFT	 record	 contains	 a	 sequence	 of	 (attribute	 header,	 value)	
pairs.	The	$AttrDef	file	is	where	the	attributes	are	defined.	 Information	about	 this	file	is	in	MFT 
record	4.	Next	comes	the	root	directory,	which	itself	is	a	file	and	can	grow	to	arbitrary	length.	
It is described by MFT record 5.

Free	 space	 on	 the	 volume	 is	 kept	 track	 of	with	 a	 bitmap.	 The	 bitmap	 is	 itself	 a	 file	 and	 its	
attributes and disk addresses are given in MFT record 6. The next MFT record points to the 
bootstrap	loader	file.	Record	8	is	used	to	link	all	the	bad	blocks	together	to	make	sure	they	never	
occur	in	a	file.	Record	9	contains	the	security	information.	Record	10	is	used	for	case	mapping.	
For	the	Latin	letters	A-Z	case	mapping	is	obvious	(at	least	for	people	who	speak	Latin).	Case	
mapping	for	other	languages,	such	as	Greek,	Armenian,	or	Georgian	(the	country,	not	the	state),	
is	less	obvious	to	Latin	speakers,	so	this	file	tells	how	to	do	it.	Finally,	record	11	is	a	directory	
containing	miscellaneous	files	for	things	like	disk	quotas,	object	identifiers,	reparse	points,	and	
so on. The last 4 MFT records are reserved for future use.

Each	MFT	record	consists	of	a	record	header	followed	by	a	sequence	of	(attribute	header,	value)	
pairs.	The	record	header	contains	a	magic	number	used	for	validity	checking,	a	sequence	number	
updated	each	time	the	record	is	reused	for	a	new	file,	a	count	of	references	to	the	file,	the	actual	
number	of	bytes	in	the	record	used,	the	identifier	(index,	sequence	number)	of	the	base	record	
(used	only	 for	extension	records),	and	some	other	miscellaneous	fields.	Following	 the	record	
header	comes	the	header	of	the	first	attribute,	then	the	first	attribute	value,	the	second	attribute	
header,	the	second	attribute	value,	and	so	on.

NTFS	defines	13	attributes	that	can	appear	in	MFT	records.	These	are	listed	in	Figure	13.6.	Each	
MFT	record	consists	of	a	sequence	of	attribute	headers,	each	of	which	identifies	the	attribute	it	
is	heading	and	gives	the	length	and	location	of	the	value	field	along	with	a	variety	of	flags	and	
other	information.	Usually,	attribute	values	follow	their	attribute	headers	directly,	but	if	a	value	
is	too	long	to	fit	in	the	MFT	record,	it	may	be	put	in	a	separate	disk	block.	Such	an	attribute	is	
said to be a non-resident attribute.	The	data	attribute	is	an	obvious	candidate.	Some	attributes,	
such	as	the	name,	may	be	repeated,	but	all	attributes	must	appear	in	a	fixed	order	in	the	MFT	
record. The headers for resident attributes are 24 bytes long; those for non-resident attributes 
are	longer	because	they	contain	information	about	where	to	find	the	attribute	on	disk.

The	 standard	 information	field	 contains	 the	file	owner,	 security	 information,	 the	 timestamps	
needed	by	POSIX,	the	hard	link	count,	the	read-only	and	archive	bits,	etc.	It	 is	a	fixed-length	
field	and	is	always	present.	The	file	name	is	variable	length	in	Unicode.	In	order	to	make	files	
with	nonMS-DOS	names	accessible	to	old	16-bit	programs,	files	can	also	have	an	8	+	3	MS-DOS	
name.	If	the	actual	file	name	conforms	to	the	MS-DOS	8	+	3	naming	rule,	a	secondary	MS-DOS	
name is not used.
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Figure 13.6: The Attributes Used in MFT Records

Attribute Description

Standard information Flag bits, timestamps, etc.

File name File name in Unicode; may be repeated for MS-DOS name

Security descriptor Obsolete. Security information is now in $Extend$Secure

Attribute list Location of additional MFT records, if needed

Object ID 64-bit file identifier unique to this volume

Reparse point Used for mounting and symbolic links

Volume name Name of this volume (used only in $Volume)

Volume information Volume version (used only in $Volume)

Index root Used for directories

Index allocation Used for very large directories

Bitmap Used for very large directories

Logged utility stream Controls logging to $LogFile

Data Stream data; may be repeated

In	NT	4.0,	security	information	could	be	put	in	an	attribute,	but	in	Windows	2000	it	all	goes	into	
a	single	file	so	that	multiple	files	can	share	the	same	security	descriptions.	The	attribute	list	is	
needed	in	case	the	attributes	do	not	fit	in	the	MFT	record.	This	attribute	then	tells	where	to	find	
the extension records. Each entry in the list contains a 48-bit index into the MFT telling where 
the	extension	record	 is	and	a	16-bit	sequence	number	 to	allow	verification	 that	 the	extension	
record and base records match up.

The	object	ID	attribute	gives	the	file	a	unique	name.	This	is	sometimes	needed	internally.	The	
reparse	point	tells	the	procedure	parsing	the	file	name	to	do	something	special.	This	mechanism	
is used for mounting and symbolic links. The two volume attributes are used only for volume 
identification.	The	next	three	attributes	deal	with	how	directories	are	implemented.	Small	ones	
are	just	lists	of	files	but	large	ones	are	implemented	using	B+	trees.	The	logged	utility	stream	
attribute	is	used	by	the	encrypting	file	system.

Finally,	we	come	to	the	attribute	that	everyone	has	been	waiting	for	the	data.	The	stream	name,	if	
present,	goes	in	this	attribute	header.	Following	the	header	is	either	a	list	of	disk	addresses	telling	
which	blocks	the	file	contained,	or	for	files	of	only	a	few	hundred	bytes	(and	there	are	many	of	
these),	the	file	itself.	Putting	the	actual	file	data	in	the	MFT	record	is	called	an	immediate file. 

Of	course,	most	of	the	time	the	data	does	not	fit	in	the	MFT	record,	so	this	attribute	is	usually	
non-resident. Let us now take a look at how NTFS keeps track of the location of nonresident 
attributes,	in	particular	data.

The	model	for	keeping	track	of	disk	blocks	is	that	they	are	assigned	in	runs	of	consecutive	blocks,	
where	possible,	for	efficiency	reasons.	For	example,	if	the	first	logical	block	of	a	file	is	placed	in	 
block	20	on	the	disk,	then	the	system	will	try	hard	to	place	the	second	logical	block	in	block	21,	
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Notes the	third	logical	block	in	22,	and	so	on.	One	way	to	achieve	these	runs	is	to	allocate	disk	storage	
several	blocks	at	a	time,	if	possible.

The	blocks	in	a	file	are	described	by	a	sequence	of	records,	each	one	describing	a	sequence	of	
logically	contiguous	blocks.	For	a	file	with	no	holes	 in	 it,	 there	will	be	only	one	such	record.	
Files	that	are	written	in	order	from	beginning	to	end	all	belong	to	this	category.	For	a	file	with	
one	hole	in	it	(e.g.,	only	blocks	0–49	and	blocks	60–79	are	defined),	there	will	be	two	records.	
Such	a	file	 could	be	produced	by	writing	 the	first	 50	blocks,	 then	 seeking	 forward	 to	 logical	
block	60	and	writing	another	20	blocks.	When	a	hole	is	read	back,	all	the	missing	bytes	are	zeros.

Each	record	begins	with	a	header	giving	the	offset	of	the	first	block	within	the	file.	Next	comes	
the	offset	of	the	first	block	not	covered	by	the	record.	In	the	example	above,	the	first	record	would	
have	a	header	of	(0,	50)	and	would	provide	the	disk	addresses	for	these	50	blocks.	The	second	
one	would	have	a	header	of	(60,	80)	and	would	provide	the	disk	addresses	for	these	20	blocks.

Each	record	header	is	followed	by	one	or	more	pairs,	each	giving	a	disk	address	and	run	length.	The	
disk address is the offset of the disk block from the start of its partition; the run length is the number 
of blocks in the run. As many pairs as needed can be in the run record. Use of this scheme for a  
three-run,	nine-block	file	is	illustrated	in	Figure.	13.7.

Figure 13.7: An MFT Record for a Three-run, Nine-block File

 

In	this	figure	we	have	an	MFT	record	for	a	short	file	(short	here	means	that	all	the	information	
about	the	file	blocks	fits	in	one	MFT	record).	It	consists	of	the	three	runs	of	consecutive	blocks	
on	the	disk.	The	first	run	is	blocks	20-23,	the	second	is	blocks	64-65,	and	the	third	is	blocks	80-
82.	Each	of	these	runs	is	recorded	in	the	MFT	record	as	a	(disk	address,	block	count)	pair.	How	
many	runs	are	there	depends	on	how	good	a	 job	the	disk	block	allocator	did	in	finding	runs	
of	consecutive	blocks	when	the	file	was	created.	For	a	n-block	file,	the	number	of	runs	can	be	
anything from 1 up to and including n.

Several	comments	are	worth	making	here.	First,	there	is	no	upper	limit	to	the	size	of	files	that	
can	 be	 represented	 this	way.	 In	 the	 absence	 of	 address	 compression,	 each	pair	 requires	 two	
64-bit	numbers	in	the	pair	for	a	total	of	16	bytes.	However,	a	pair	could	represent	1	million	or	
more	consecutive	disk	blocks.	 In	fact,	a	20	MB	file	consisting	of	20	separate	runs	of	1	million	
1	KB	blocks	each	fits	easily	in	one	MFT	record,	whereas	a	60	KB	file	scattered	into	60	isolated	
blocks does not.

Second,	while	the	straightforward	way	of	representing	each	pair	takes	2	×	8	bytes,	a	compression	
method is available to reduce the size of the pairs below 16. Many disk addresses have multiple  
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Noteshigh-order	zero-bytes.	These	can	be	omitted.	The	data	header	tells	how	many	are	omitted,	that	
is,	how	many	bytes	are	actually	used	per	address.	Other	kinds	of	compression	are	also	used.	In	
practice,	the	pairs	are	often	only	4	bytes.

Our	first	example	was	easy—all	the	file	information	fit	in	one	MFT	record.	What	happens	if	the	
file	is	so	large	or	highly	fragmented	that	the	block	information	does	not	fit	in	one	MFT	record?	
The	answer	is	simple—use	two	or	more	MFT	records.	In	Figure	13.8	we	see	a	file	whose	base	
record	 is	 in	MFT	 record	102.	 It	 has	 too	many	 runs	 for	one	MFT	 record,	 so	 it	 computes	how	
many	extension	records	it	needs,	say,	two,	and	puts	their	indices	in	the	base	record.	The	rest	of	
the	record	is	used	for	the	first	k	data	runs.

Figure 13.8: A File that Requires Three MFT Records to Store All Its Runs

 

Note	that	Figure	13.8	contains	some	redundancy.	In	theory,	it	should	not	be	necessary	to	specify	
the	end	of	a	sequence	of	 runs	because	 this	 information	can	be	calculated	 from	the	run	pairs.	
The	reason	for	“overspecifying”	this	information	is	to	make	seeking	more	efficient:	to	find	the	
block	at	a	given	file	offset,	it	is	only	necessary	to	examine	the	record	headers,	not	the	run	pairs.

When	all	 the	 space	 in	 record	102	has	been	used	up,	 storage	of	 the	 runs	continues	with	MFT	
record	105.	As	many	runs	are	packed	in	this	record	as	fit.	When	this	record	is	also	full,	the	rest	
of the runs go in MFT record 108. In this way many MFT records can be used to handle large 
fragmented	files.

A problem arises if so many MFT records are needed that there is no room in the base MFT to 
list	all	their	indices.	There	is	also	a	solution	to	this	problem:	the	list	of	extension	MFT	records	
is	made	nonresident	(i.e.,	stored	on	disk	instead	of	in	the	base	MFT	record).	Then	it	can	grow	
as large as needed.

An MFT entry for a small directory is shown in Figure 13.9. The record contains a number of 
directory	entries,	each	of	which	describes	one	file	or	directory.	Each	entry	has	a	fixed-length	
structure	followed	by	a	variable-length	file	name.	The	fixed	part	contains	the	index	of	the	MFT	
entry	for	the	file,	the	length	of	the	file	name,	and	a	variety	of	other	fields	and	flags.	Looking	for	
an	entry	in	a	directory	consists	of	examining	all	the	file	names	in	turn.

 Figure 13.9: The MFT Record for a Small Directory
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Notes Large	directories	use	a	different	format.	Instead	of	listing	the	files	linearly,	a	B+	tree	is	used	to	
make alphabetical lookup possible and to make it easy to insert new names in the directory in 
the proper place.

13.2.5 File Name Lookup
We	now	have	enough	information	to	see	how	file	name	lookup	occurs.	When	a	user	program	
wants	to	open	a	file,	it	typically	makes	a	call	like	CreateFile(“C:\maria\web.htm”,	…)

This	call	goes	 to	 the	user-level	shared	 library,	kernel32.dll	where	\??	 is	pre-pended	to	 the	file	
name giving

\??\C:\maria\web.htm

It is the name that is passed as a parameter to the system call NtFileCreate.

Then the operating system starts the search at the root of the object manager’s name space. It 
then	looks	in	the	directory	\??	to	find	C:,	which	it	will	find.	This	file	is	a	symbolic	link	to	another	
part	of	the	object	manager’s	name	space,	the	directory	\Device.	The	link	typically	ends	at	an	
object	whose	name	 is	 something	 like	\Device\HarddiskVolume1.	This	object	 corresponds	 to	
the	first	partition	of	the	first	hard	disk.	From	this	object	it	is	possible	to	determine	which	MFT	
to	use,	namely	the	one	on	this	partition.	These	steps	are	shown	in	Figure	13.10.

Figure 13.10: Steps in Looking up the File C:\maria\web.htm

 

The	parsing	of	 the	file	name	continues	now	at	 the	root	directory,	whose	blocks	can	be	found	
from	 entry	 5	 in	 the	MFT.	 The	 string	 “maria”	 is	 now	 looked	up	 in	 the	 root	 directory,	which	
returns the index into the MFT for the directory maria. This directory is then searched for the 
string	“web.htm”.	 If	successful,	 the	result	 is	a	new	object	created	by	the	object	manager.	The	
object,	which	is	unnamed,	contains	the	 index	of	 the	MFT	record	for	 the	file.	A	handle	to	this	
object	is	returned	to	the	calling	process.	On	subsequent	ReadFile	calls,	the	handle	is	provided,	
which	allows	the	object	manager	to	find	the	index	and	then	the	contents	of	the	MFT	record	for	
the	file.	If	a	thread	in	a	second	process	opens	the	file	again,	it	gets	a	handle	to	a	new	file	object.

In	addition	to	regular	files	and	directories,	NTFS	supports	hard	links	in	the	UNIX	sense,	and	
also symbolic links using a mechanism called reparse points.	 It	 is	 possible	 to	 tag	 a	 file	 or	
directory	as	a	reparse	point	and	associate	a	block	of	data	with	it.	When	the	file	or	directory	is	
encountered	during	a	file	name	parse,	exception	processing	is	triggered	and	the	block	of	data	
is	 interpreted.	 It	can	do	various	 things,	 including	redirecting	the	search	to	a	different	part	of	
the directory hierarchy or even to a different partition. This mechanism is used to support both 
symbolic	links	and	mounted	file	systems.
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13.2.6 File Compression

NTFS	 supports	 transparent	 file	 compression.	 A	 file	 can	 be	 created	 in	 compressed	 mode,	
which means that NTFS automatically tries to compress the blocks as they are written to disk 
and automatically uncompresses them when they are read back. Processes that read or write 
compressed	files	are	completely	unaware	of	the	fact	that	compression	and	decompression	are	
going on.

Compression	works	 as	 follows.	When	NTFS	writes	 a	file	marked	 for	 compression	 to	disk,	 it	
examines	the	first	16	(logical)	blocks	in	the	file,	irrespective	of	how	many	runs	they	occupy.	It	
then runs a compression algorithm on them. If the resulting data can be stored in 15 or fewer 
blocks,	 the	 compressed	data	are	written	 to	 the	disk,	preferably	 in	one	 run,	 if	possible.	 If	 the	
compressed	data	still	take	16	blocks,	the	16	blocks	are	written	in	uncompressed	form.	Then	blocks	
16-31	are	examined	to	see	if	they	can	be	compressed	to	15	blocks	or	less,	and	so	on.

Figure	 13.11	 shows	 a	 file	 in	which	 the	 first	 16	 blocks	 have	 successfully	 compressed	 to	 eight	
blocks,	the	second	16	blocks	failed	to	compress,	and	the	third	16	blocks	have	also	compressed	
by	50%.	The	 three	parts	have	been	written	as	 three	 runs	 and	 stored	 in	 the	MFT	 record.	The	
“missing” blocks are stored in the MFT entry with disk address 0 as shown in Figure 13.11. 
Here	the	header	(0,	48)	is	followed	by	five	pairs,	two	for	the	first	(compressed)	run,	one	for	the	
uncompressed	run,	and	two	for	the	final	(compressed)	run.

When	the	file	is	read	back,	NTFS	has	to	know	which	runs	are	compressed	and	which	are	not.	
It	sees	that	based	on	the	disk	addresses.	A	disk	address	of	0	indicates	that	it	is	the	final	part	of	
16	compressed	blocks.	Disk	block	0	may	not	be	used	for	storing	data,	to	avoid	ambiguity.	Since	
it	contains	the	boot	sector,	using	it	for	data	is	impossible	anyway.

   Figure 13.11: (a) An Example of a 48-Blocks File being Compressed to 32 Blocks 
(b) The MFT Record for the File after Compression

 

Random	access	to	compressed	files	is	possible,	but	tricky.	Suppose	that	a	process	does	a	seek	
to	block	35	in	Figure	13.11.	How	does	NTFS	locate	block	35	in	a	compressed	file?	The	answer	
is	that	it	has	to	read	and	decompress	the	entire	run	first.	Then	it	knows	where	block	35	is	and	
can pass it to any process that reads it. The choice of 16 blocks for the compression unit was 
a compromise. Making it shorter would have made the compression less effective. Making it 
longer would have made random access more expensive.
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Notes 13.2.7 File Encryption
Computers	are	used	nowadays	to	store	all	kinds	of	sensitive	data,	including	plans	for	corporate	
takeovers,	tax	information,	etc.	where	the	owners	do	not	especially	want	revealed	to	anyone.	
Information	 loss	 can	 happen	when	 a	 laptop	 computer	 is	 lost	 or	 stolen,	 a	 desktop	 system	 is	
rebooted	using	 an	MS-DOS	floppy	disk	 to	 bypass	Windows	 2000	 security,	 or	 a	 hard	disk	 is	
physically removed from one computer and installed on another one with an insecure operating 
system. Even the simple act of going to the bathroom and leaving the computer unattended and 
logged in can be a huge security breach.

Windows	2000	addresses	 these	problem	by	having	an	option	 to	 encrypt	files,	 so	 even	 in	 the	
event	the	computer	is	stolen	or	rebooted	using	MS-DOS,	the	files	will	be	unreadable.	The	normal	
way	to	use	Windows	2000	encryption	is	to	mark	certain	directories	as	encrypted,	which	causes	
all	 the	files	 in	 them	 to	be	 encrypted,	 and	new	files	moved	 to	 them	or	 created	 in	 them	 to	be	
encrypted	as	well.	The	actual	encryption	and	decryption	is	not	done	by	NTFS	itself,	but	by	a	
driver called EFS (Encrypting File System),	which	 is	positioned	between	NTFS	and	the	user	
process.	In	this	way,	application	programs	are	unaware	of	encryption	and	NTFS	itself	is	only	
partially involved in it.

To	understand	how	the	encrypting	file	system	works,	it	is	necessary	to	understand	how	modern	
cryptography works. 

Now	let	us	see	how	Windows	2000	encrypts	files.	When	the	user	asks	a	file	to	be	encrypted,	a	
random	128-bit	file	key	is	generated	and	used	to	encrypt	the	file	block	by	block	using	a	symmetric	
algorithm	parametrized	by	this	key.	Each	new	file	encrypted	gets	a	different	128-bit	random	file	
key,	so	no	two	files	use	the	same	encryption	key,	which	increases	security	 in	ease	one	key	is	
compromised. The current encryption algorithm is a variant of DES (Data Encryption Standard),	
but the EFS architecture supports the addition of new algorithms in the future. Encrypting each 
block independently of all the others is necessary to make random access still possible.

The	file	key	has	to	be	stored	somewhere	so	the	file	can	be	decrypted	later.	If	it	were	just	stored	
on	the	disk	in	plaintext,	then	someone	who	stole	or	found	the	computer	could	easily	decrypt	
the	file,	defeating	the	purpose	of	encrypting	the	files.	For	this	reason,	the	file	keys	must	all	be	
encrypted before they are stored on the disk. Public-key cryptography is used for this purpose.

After	the	file	is	encrypted,	the	location	of	the	user’s	public	key	is	looked	up	using	information	
in the registry. There is no danger of storing the public key’s location in the registry because if 
a	thief	steals	the	computer	and	finds	the	public	key,	there	is	no	way	to	deduce	the	private	key	
from	it.	The	128	bit	random	file	key	is	now	encrypted	with	the	public	key	and	the	result	stored	
on	disk	along	with	the	file,	as	shown	in	Figure	13.12.

Figure 13.12: Operating of the Encrypting File System
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NotesTo	decrypt	a	file,	the	encrypted	128-bit	random	file	key	is	fetched	from	disk.	However,	to	decrypt	
it	and	retrieve	the	file	key,	the	user	must	present	the	private	key.	Ideally,	this	should	be	stored	
on	a	smart	card,	external	to	the	computer,	and	only	inserted	in	a	reader	when	a	file	has	to	be	
decrypted.	Although	Windows	2000	supports	smart	cards,	it	does	not	store	private	keys	on	them.

Instead,	the	first	time	a	user	encrypts	a	file	using	EFS,	Windows	2000	generates	a	(private	key,	
public	key)	pair	 and	 stores	 the	private	key	on	disk	 encrypted	using	a	 symmetric	 encryption	
algorithm. The key used for the symmetric algorithm is derived either from the user’s login 
password	or	from	a	key	stored	on	the	smart	card,	if	smart	card	login	is	enabled.	In	this	way,	
EFS can decrypt the private key at login time and keep it within its own virtual address space 
during	normal	operation	so	it	can	decrypt	the	128-bit	file	keys	as	needed	without	further	disk	
accesses.	When	the	computer	is	shut	down,	the	private	key	is	erased	from	EFS’	virtual	address	
space so anyone stealing the computer will not have access to the private key.

A	complication	occurs	when	multiple	users	need	access	to	the	same	encrypted	file.	Currently	the	
shared	use	of	encrypted	files	by	multiple	users	is	not	supported.	However,	the	EFS	architecture	
could	support	sharing	in	the	future	by	encrypting	each	file’s	key	multiple	times,	once	with	the	
public	 key	 of	 each	 authorized	 user.	All	 of	 these	 encrypted	 versions	 of	 the	 file	 key	 could	 be	
attached	to	the	file.

The	potential	need	to	share	encrypted	files	is	one	reason	why	this	two-key	system	is	used.	If	all	
files	were	encrypted	by	their	owner’s	key,	there	would	be	no	way	to	share	any	files.	By	using	
a	different	key	to	encrypt	each	file,	this	problem	can	be	solved.

Having	a	random	file	key	per	file	but	encrypting	it	with	the	owner’s	symmetric	key	does	not	
work because having the symmetric encryption key just lying around in plain view would ruin 
the	security	—	generating	the	decryption	key	from	the	encryption	key	is	too	easy.	Thus	(slow)	
public-key	cryptography	is	needed	to	encrypt	the	file	keys.	Because	the	encryption	key	is	public	
anyway,	having	it	lying	around	is	not	dangerous.

The other reason the two-key system being used is performance. Using public-key cryptography to 
encrypt	each	file	would	be	too	slow.	It	is	much	more	efficient	to	use	symmetric-key	cryptography	
to	encrypt	the	data	and	public-key	cryptography	to	encrypt	the	symmetric	file	key.

Self Assessment

Multiple choice questions:

 1. The I/O manager is on intimate terms with ...................... manager.

	 (a)	 plug-and-play	 (b)	 play

	 (c)	 plug	 (d)	 none	of	these

 2. Windows is based on ...................... system.

	 (a)	 character	base	 (b)	 graphics	base

	 (c)	 event	 (d)	 none	of	these

	 3.	 Windows	2000	supports	most	important	file	which	are	......................	.

	 (a)	 FAT	16	 (b)	 FAT	32

	 (c)	 NTFS				 (d)	 All	of	these

	 4.	 Windows	2000	NTF	is	used	in	......................	file	system.

	 (a)	 vertical	 (b)	 hierarchical

	 (c)	 both	 (d)	 none	of	these
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Notes 13.3 Security in Windows 2000

Having	just	looked	at	encryption	in	the	file	system,	this	is	a	good	time	to	examine	security	in	 
general.	NT	was	designed	to	meet	the	U.S.	Department	of	Defense’s	C2	security	requirements	 
(DoD	5200.28-STD),	the	Orange	site.	This	standard	requires	operating	systems	to	have	certain	
properties	in	order	to	be	classified	as	secured	enough	for	certain	kinds	of	military	work.	Although	
Windows	 2000	 was	 not	 specifically	 designed	 for	 C2	 compliance,	 it	 inherits	 many	 security	
properties	from	NT,	including	the	following:

	 1.	 Secure	login	with	antispoofing	measures.

 2. Discretionary access controls.

 3. Privileged access controls.

 4. Address space protection per process.

 5. New pages must be zeroed before being mapped in.

 6. Security auditing.

Let	us	review	these	items	briefly	(none	of	which	are	met	by	Windows	98,	incidentally).

Secure	login	means	that	the	system	administrator	can	require	all	users	to	have	a	password	in	
order	 to	 log	 in.	 Spoofing	 is	when	 a	malicious	user	writes	 a	 program	 that	 displays	 the	 login	
prompt or screen and then walks away from the computer in the hope that an innocent user 
will sit down and enter a name and password. The name and password are then written to disk 
and the user is told that login has failed. Windows 2000 prevents this attack by instructing users 
to	hit	CTRL-ALT-DEL	to	log	in.	This	key	sequence	is	always	captured	by	the	keyboard	driver,	
which then invokes a system program that puts up the genuine login screen. This procedure 
works because there is no way for user processes to disable CTRL-ALT-DEL processing in the 
keyboard driver.

Discretionary	 access	 controls	 allow	 the	 owner	 of	 a	file	 or	 other	 object	 to	 say	who	 can	use	 it	
and	 in	 what	 way.	 Privileged	 access	 controls	 allow	 the	 system	 administrator	 (superuser)	 to	
override them when needed. Address space protection simply means that each process has its 
own protected virtual address space not accessible by any unauthorized process. The next item 
means	that	when	a	stack	grows,	the	pages	mapped	in	are	initialized	to	zero	so	processes	cannot	
find	any	old	information	put	there	by	the	previous	owner.	Finally,	security	auditing	allows	the	
administrator to produce a log of certain security-related events.

In the next section we will describe the basic concepts behind Windows 2000 security. After 
that	we	will	look	at	the	security	system	calls.	Finally,	we	will	conclude	by	seeing	how	security	
is implemented.

13.3.1 Fundamental Concepts of Security in Windows 2000
Every	Windows	2000	user	 (and	group)	 is	 identified	by	a	SID (Security ID). SIDs are binary 
numbers with a short header followed by a long random component. Each SID is intended to 
be	unique	worldwide.	When	a	user	starts	up	a	process,	the	process	and	its	threads	run	under	
the user’s SID. Most of the security system is designed to make sure that each object can be 
accessed only by threads with authorized SIDs.

Each process has an access token	 that	 specifies	 its	 SID	 and	 other	 properties.	 It	 is	 normally	
assigned	at	login	time	by	winlogon	and	is	shown	in	Figure	13.13,	although	processes	should	call	
GetTokenInformation	to	acquire	this	information	since	it	may	change	in	the	future.	The	header	
contains	some	administrative	information.	The	expiration	time	field	could	tell	when	the	token	
ceases	to	be	valid,	but	it	is	currently	not	used.	The	Groups	fields	specify	the	groups	to	which	the	
process	belongs:	this	is	needed	for	POSIX	conformance.	The	default	DACL (Discretionary ACL) is 
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Notesthe	access	control	list	assigned	to	objects	created	by	the	process	if	no	other	ACL	is	specified.	The	
user SID tells who owns the process. The restricted SIDs are to allow untrustworthy processes 
to take part in jobs with trustworthy processes but with less power to do damage.

Finally,	 the	 privileges	 listed,	 if	 any,	 give	 the	 process	 special	 powers,	 such	 as	 the	 right	 to	
shut	 the	machine	down	or	access	files	 to	which	access	would	otherwise	be	denied.	 In	effect,	
the privileges split up the power of the superuser into several rights that can be assigned to 
processes	individually.	In	this	way,	a	user	can	be	given	some	superuser	power,	but	not	all	of	
it.	 In	summary,	 the	access	 token	 tells	who	owns	 the	process	and	which	defaults	and	powers	
are associated with it.

Figure 13.13: Structure of an Access Token

Header Expiration Groups Default User Group Restricted Privileges
time DACL SID SID SIDs

When	a	user	logs	in,	winlogon	gives	the	initial	process	an	access	token.	Subsequent	processes	
normally inherit this token on down the line. A process’ access token initially applies to all the 
threads in the process.	However,	a	thread	can	acquire	a	different	access	token	during	execution,	
in	which	 case	 the	 thread’s	 access	 token	 overrides	 the	 process’	 access	 token.	 In	 particular,	 a	
client thread can pass its access token to a server thread to allow the server to access the client’s 
protected	files	and	other	objects.	This	mechanism	is	called	impersonation.

Another basic concept is the security descriptor. Every object has a security descriptor associated 
with it that tells who can perform which operations on it. A security descriptor consists of a 
header followed by a DACL with one or more ACEs (Access Control Elements). The two main 
kinds	of	 elements	 are	Allow	and	Deny.	An	allow	element	 specifies	 a	 SID	and	a	bitmap	 that	
specifies	which	operations	processes	with	that	SID	may	perform	on	the	object.	A	deny	element	
works	 the	 same	way,	 except	 a	match	means	 the	 caller	may	 not	 perform	 the	 operation.	 For	
example,	Ida	has	a	file	whose	security	descriptor	specifies	that	everyone	has	read	access,	Elvis	
has	no	access.	Cathy	has	read/write	access,	and	Ida	herself	has	full	access.	This	simple	example	
is	illustrated	in	Figure	13.14.	The	SID	everyone	refers	to	the	set	of	all	users,	but	it	is	overridden	
by any explicit ACEs that follow.

Figure 13.14: An Example of Security Descriptor for a File
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Notes In	addition	to	the	DACL,	a	security	descriptor	also	has	a	SACL (System Access Control List),	
which	is	like	a	DACL	except	that	it	specifies	not	who	may	use	the	object,	but	which	operations	
on	the	object	are	recorded	in	the	system-wide	security	event	log.	In	Figure	13.14,	every	operation	
that	Marilyn	performs	on	the	file	will	be	logged.	Windows	2000	provides	additional	auditing	
features to log sensitive accesses.

13.3.2 Security API Calls
Most of the Windows 2000 access control mechanism is based on security descriptors. The 
usual	pattern	is	that	when	a	process	creates	an	object,	it	provides	a	security	descriptor	as	one	
of	 the	parameters	 to	 the	CreateProcess,	CreateFile,	or	other	object	 creation	call.	This	 security	
descriptor	then	becomes	the	security	descriptor	attached	to	the	object,	as	we	saw	in	Figure	13.14.	
If	no	security	descriptor	is	provided	in	the	object	creation	call,	the	default	security	in	the	caller’s	
access	token	(see	Figure	13.13)	is	used	instead.

Many	of	the	Win32	API	security	calls	relate	to	the	management	of	security	descriptors,	so	we	
will focus on those here. The most important calls are listed in Figure 13.15. To create a security 
descriptor,	storage	for	it	is	first	allocated	and	then	initialized	using	InitializeSecurityDescriptor.	
This	call	fills	in	the	header.	If	the	owner	SID	is	not	known,	it	can	be	looked	up	by	name	using	
LookupAccountSid. It can then be inserted into the security descriptor. The same holds for the 
group	SID,	if	any.	Normally,	these	will	be	the	caller’s	own	SID	and	one	of	the	caller’s	groups,	
but	the	system	administrator	can	fill	in	any	SIDs.

Figure 13.15: The Principal Win32 API Functions for Security

  Win32 API function    Description

InitializeSecurityDescriptor Prepare a new security descriptor for use

LookupAccountSid Look up the SID for a given user name

SetSecurityDescriptorOwner Enter the owner SID in the security descriptor

SetSecurityDescriptorGroup Enter a group SID in the security descriptor

InitializeAcl Initialize a DACL or SACL

AddAccessAllowedAce Add a new ACE to a DACL or SACL allowing access

AddAccessDeniedAce Add a new ACE to a DACL or SACL denying access

DeleteAce Remove an ACE from a DACL or SACL

SetSecurityDescriptorDacl Attach a DACL to a security descriptor

At	 this	 point	 the	 security	 descriptor’s	DACL	 (or	 SACL)	 can	 be	 initialized	with	 InitializeAcl.	
ACL	 entries	 can	 be	 added	 using	 AddAccessAllowedAce,	 and	 AddAccessDeniedAce.	 These	
calls can be repeated multiple times to add as many ACE entries as are needed. DeleteAce can 
be	used	to	remove	an	entry,	more	like	on	an	existing	ACL	than	on	one	being	constructed	for	
the	first	time.	When	the	ACL	is	ready,	SetSecurityDescriptorDacl	can	be	used	to	attach	it	to	the	
security	descriptor.	Finally,	when	the	object	is	created,	the	newly	minted	security	descriptor	can	
be passed as a parameter to have it attached to the object.
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Notes13.3.3 Implementation of Security

Security	in	a	standalone	Windows	2000	system	is	implemented	by	a	number	of	components,	most	
of	which	we	have	already	seen	 (networking	 is	a	whole	other	 story	and	beyond	 the	scope	
of	this	site).	Logging	in	is	handled	bywinlogon	and	authentication	is	handled	by	lsass	and	
msgina.dll. The result of a successful login is a new shell with its associated access token. This 
process	uses	the	SECURITY	and	SAM	keys	in	the	registry.	The	former	sets	the	general	security	
policy and the latter contains the security information for the individual users.

Once	 a	 user	 is	 logged	 in,	 security	 operations	 happen	 when	 an	 object	 is	 opened	 for	 access.	
Every	OpenXXX	call	requires	the	name	of	the	object	being	opened	and	the	set	of	rights	needed.	
During	processing	of	the	open,	the	security	manager	checks	to	see	if	the	caller	has	all	the	rights	
required.	It	performs	this	check	by	looking	at	the	caller’s	access	token	and	the	DACL	associated	
with	the	object	it	goes	down	the	list	of	entries	in	the	ACL	in	order.	As	soon	as	it	finds	an	entry	
that	matches	 the	caller’s	SID	or	one	of	 the	caller’s	groups,	 the	access	 found	 there	 is	 taken	as	
definitive.	If	all	the	rights	of	the	caller	needs	are	available,	the	open	succeeds;	otherwise	it	fails.

DACLs	can	have	Deny	entries	as	well	as	Allow	entries,	as	we	have	seen.	For	this	reason,	it	is	
usual	to	put	entries	denying	access	ahead	of	entries	granting	access	in	the	ACL,	so	that	a	user	
who	is	specifically	denied	access	cannot	get	in	via	a	back	door	by	being	a	member	of	a	group	
that has legitimate access.

After	an	object	has	been	opened,	a	handle	to	it	is	returned	to	the	caller.	On	subsequent	calls,	the	
only check that is made is whether the operation now being tried was in the set of operations 
requested	at	open	time,	to	prevent	a	caller	from	opening	a	file	for	reading	and	then	trying	to	
write	on	it.	Any	log	entries	required	by	the	SACL	are	made.

13.4 Caching in Windows 2000

The	Windows	2000	cache	manager	does	caching	for	performance	reasons,	conceptually	similar	
to	caches	in	other	operating	systems.	However,	its	design	has	some	unusual	properties	that	are	
worth	looking	at	briefly.

The	cache	manager’s	job	is	to	keep	file	system	blocks	that	have	been	used	recently	in	memory	
to	reduce	access	time	on	any	subsequent	reference.	Windows	2000	has	a	single	integrated	cache	
that	works	for	all	the	file	systems	in	use,	including	NTFS,	FAT-32,	FAT-16,	and	even	CD-ROM	
file	systems.	This	means	that	the	file	systems	do	not	need	to	maintain	their	own	caches.

As	a	consequence	of	the	design	goal	to	have	a	single	integrated	cache	despite	the	presence	of	
multiple	file	systems,	the	cache	manager	 is	 located	 in	an	unusual	position	 in	 the	 system.	
It	is	not	a	part	of	the	file	system	because	there	are	multiple	independent	file	systems	that	may	
have	nothing	in	common.	Instead	it	operates	at	a	higher	level	than	the	file	systems,	which	are	
technically drivers under control of the I/O manager.

The	Windows	 2000	 cache	 is	 organized	 by	 the	 virtual	 block,	 not	 by	 the	 physical	 block.	 The	
traditional	file	caches	keep	track	of	blocks	by	two-part	addresses	of	the	form	(partition,	block),	
where	the	first	member	denotes	a	device	and	partition	and	the	second	member	is	a	block	number	
within	that	partition.	The	Windows	2000	cache	manager	does	not	do	that.	Instead,	it	uses	(file,	
offset)	to	refer	to	a	block.	The	reason	for	this	unorthodox	arrangement	is	that	when	a	request	
comes	in	to	the	cache	manager,	it	is	specified	as	(file,	offset)	because	that	is	all	the	calling	process	
knows.	If	cache	blocks	had	been	labeled	by	a	(partition,	block)	tag,	the	cache	manager	would	
have	no	way	of	knowing	which	(file,	offset)	block	corresponds	to	which	(partition,	block)	block	
since	it	is	the	file	systems	that	maintain	those	mappings.
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Notes Let	us	now	examine	how	the	cache	manager	works.	When	a	file	is	referenced,	the	cache	manager	
maps	a	256	KB	chunk	of	kernel	virtual	address	space	onto	the	file.	If	the	file	is	larger	than	256	
KB,	only	a	portion	of	the	file	is	mapped.	The	total	amount	of	virtual	address	space	the	cache	
manager can use is determined at boot time and depends on the amount of RAM present. If 
the	cache	manager	runs	out	of	256	KB	chunks	of	virtual	address	space,	it	must	unmap	an	old	
file	before	mapping	in	a	new	one.

Once	a	file	is	mapped,	the	cache	manager	can	satisfy	requests	for	its	blocks	by	just	copying	from	
kernel	virtual	address	space	to	the	user	buffer.	If	the	block	copied	is	not	in	physical	memory,	
a page fault will occur and the memory manager will satisfy the fault in the usual away. The 
cache manager is not even aware of whether the block was in the cache or not. The copy always 
succeeds.

The	operation	of	the	cache	manager	is	shown	in	Figure	13.16	in	the	case	of	an	NTFS	file	system	
on	a	SCSI	disk	and	a	FAT-32	file	system	on	an	IDE	disk.	When	a	process	does	a	read	on	a	file,	
the	request	is	directed	to	the	cache	manager.	If	the	block	needed	is	in	the	cache,	it	is	copied	to	
the	user	immediately.	If	it	is	not	in	the	cache,	the	cache	manager	gets	a	page	fault	when	trying	
to	copy	it.	When	the	page	fault	has	been	handled,	the	block	is	copied	to	the	calling	process.

Figure 13.16: The Path Through the Cache to the Hardware

 

As	a	consequence	of	this	design,	the	cache	manager	does	not	know	how	many	of	its	mapped	
pages are in physical memory or even how large its cache is. Only the memory manager knows 
for sure. This approach allows the memory manager to dynamically trade off the size of the 
cache	against	memory	for	user	pages.	If	there	is	little	file	activity	but	there	are	many	processes	
active,	the	memory	manager	can	use	most	of	physical	memory	for	process	pages.	On	the	other	
hand,	if	there	is	a	lot	of	file	activity	and	few	processes,	more	physical	memory	can	be	devoted	
to the cache.

Another property the cache manager has is that coherence is maintained between memory-
mapped	files	and	the	files	that	are	open	for	reading	and	writing.	Consider,	for	example,	a	situation	
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Notesin	which	one	process	opens	some	file	for	reading	and	writing	and	a	second	process	maps	that	
file	onto	its	address	space.	What	happens	if	the	second	process	writes	on	the	file	directly	and	
immediately	 thereafter	 the	first	one	 reads	 in	a	block	 that	was	 just	 changed?	Does	 it	get	 stale	
data?	The	answer	is	no.	In	both	cases	open	files	and	mapped	files,	the	cache	manager	maps	a 
256	KB	piece	of	its	virtual	address	space	onto	the	file.	The	file	is	only	mapped	once,	no	matter	
how	many	 processes	 have	 it	 open	 or	mapped.	 In	 the	 case	 of	 a	mapped	 file,	 both	 the	 cache	
manager	and	the	user	process	share	pages	in	memory.	When	a	read	request	has	to	be	satisfied,	
the	cache	manager	just	copies	the	page	from	memory	to	the	user	buffer,	which	always	reflects	
the	 exact	 current	 state	 of	 the	file	 because	 the	 cache	manager	 is	 using	 the	 same	pages	 as	 the	
process	that	has	the	file	mapped	in.

Before installing the operating system the customer setting and the data base 
have to be saved.

Self Assessment

Fill in the blanks:

	 5.	 In	a	file,	encryption	is	done	by	a	driver	called	......................	.

 6. The Windows 2000 cache is organised by ...................... block.

	 7.	 ......................	hard	disk	drive	is	a	non-volatile,	random	access	device	for	digital	data.

True or False:

 8. The zip drive is a medium-capacity removable disk storage system.

 9. SIDs are binary numbers with a short header followed by a long random component.

13.5 Summary

 •	 The	I/O	manager	is	on	intimate	terms	with	the	plug-and-play	manager.	The	basic	plug	
and play is that of an enumerable bus.

	 •	 Microsoft	has	defined	a	Windows	Driver	model	that	device	drivers	are	expected	to	conform	
with.

	 •	 Windows	2000	supports	some	important	files	like	FAT-16,	FAT-32	and	NTFS.

	 •	 Secure	login	means	that	the	system	administrator	can	require	all	user	to	have	password	
in order to log in.

	 •	 Win32	API	security	calls	relate	to	the	management	of	security	descriptors.

	 •	 The	caches	manager	jobs	keep	file	systems	blocks	that	have	been	used	recently	in	memory	
to	reduce	access	time	on	any	subsequent	reference.

13.6 Keywords

Bitmaps:	Bitmap	or	pixmap	is	a	type	of	memory	organization	or	image	file	format	used	to	store	
digital images.

Dynamic Disks: The Dynamic Disk is a physical disk that manages its volumes by using LDM 
database.
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Notes FAT: File	Allocation	Table	 (FAT)	 is	 a	 computer	file	 system	architecture	now	widely	used	on	
many	computer	systems	and	most	memory	cards,	such	as	those	used	with	digital	cameras.

NTFS:	NTFS	is	the	standard	file	system	of	Windows	NT,	including	its	later	versions	Windows	2000,	
Windows	XP,	Windows	Server	2003,	Windows	Server	2008,	Windows	Vista	and	Windows	7.

SCSI Hard Disk:	A	hard	disk	drive	(HDD)	is	a	non-volatile,	random	access	device	for	digital	
data. It features rotating rigid platters on a motor-driven spindle within a protective enclosure. 

Zip Driver:	 The	 Zip	 drive	 is	 a	 medium-capacity	 removable	 disk	 storage	 system	 that	 was	
introduced	by	Iomega	in	late	1994.	Originally,	Zip	disks	 launched	with	capacities	of	100	MB,	
but	later	versions	increased	this	to	first	250	MB	and	then	750	MB.

13.7 Review Questions

 1. Explain the concept of Input/output in Windows 2000.

 2.  Discuss the following terms in brief.

	 (a)	 NTFS	 (b)	 FAT

	 (c)	 CD-ROM	 (d)	 SCSI

 3. Give the explanation about the SCSI hard disk.

 4. What are I/O API calls in windows?

 5. Explain the implementation of I/O. Give example.

	 6.	 How	to	use	the	file	system	in	windows?	Give	the	example	and	discuss	in	brief.

 7. Explain the concept of security in Windows 2000. Discuss security API calls.

Answers to Self Assessment
 1.	 (a)	 2.	 (b)	 3.	 (d)	 4.	 (b)	 5.	 EFS

 6. virtual 7. SCSI 8. True 9. True

13.8 Further Readings

Operating Systems, by	Harvey	M.	Deitel,	Paul	 J.	Deitel,	David	R.	Choffnes.	
Introduction to Operating Design and Implementation, by	Michael	Kifer,	Scoott	
A. Smolka. 

wiley.com/coolege.silberschatz
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Objectives

After studying this unit, you will be able:

	 •	 Discuss	overview	of	Linux

	 •	 Explain	process	of	Linux

	 •	 Understand	of	Booting	process	of	Linux

	 •	 Explain	Memory	management	of	Linux

	 •	 Explain	Input/output	of	Linux

	 •	 Discuss	Linux	file	system

	 •	 Understand	Security	of	Linux

Introduction
During	 the	 early	years	 of	MINIX	development	 and	discussion	on	 the	 Internet,	many	people	
requested	(or	 in	many	cases,	demanded)	more	and	better	 features,	 to	which	the	author	often	
said	“No”	(to	keep	the	system	small	enough	for	students	to	understand	completely	in	a	one-
semester	university	course).	This	continuous	”No”	irked	many	users.	At	this	time,	FreeBSD	was	
not	available,	so	that	was	not	an	option.	After	a	number	of	years	went	by	like	this,	a	Finnish	
student,	Linus	Torvalds,	decided	to	write	another	UNIX	clone,	named	Linux,	which	would	be	
a full-blown production system with many features that MINIX was initially lacking.

The	first	version	of	Linux,	0.01,	was	released	in	1991.	It	was	cross-developed	on	a	MINIX	machine	
and	borrowed	numerous	ideas	from	MINIX,	ranging	from	the	structure	of	the	source	tree	to	the	
layout	of	the	file	system.	However,	it	was	a	monolithic	rather	than	a	microkernel	design,	with	
the	entire	operating	system	in	the	kernel.	The	code	size	totaled	9,300	lines	of	C	and	950	lines	of	
assembler,	roughly	similar	to	MINIX	version	in	size	and	also	roughly	comparable	in	functionality.

Linux	rapidly	grew	in	size	and	evolved	into	a	full	production	UNIX	clone	as	virtual	memory,	a	
more	sophisticated	file	system,	and	many	other	features	were	added.	Although	it	originally	ran	
only	on	the	386	(and	even	had	embedded	386	assembly	codes	in	the	middle	of	C	procedures),	
it	was	quickly	ported	to	other	platforms	and	now	runs	on	a	wide	variety	of	machines,	just	as	
UNIX	does.	One	difference	with	UNIX	does	 stand	out	 however—Linux	makes	use	 of	many	
special features of the gcc compiler and would need a lot of work before it would compile with 
an ANSI standard C compiler.

The	next	major	release	of	Linux	was	version	1.0,	 issued	in	1994.	It	was	about	165,000	lines	of	
code	and	included	a	new	file	system,	memory-mapped	files	and	BSD-compatible	networking	
with sockets and TCP/IP. It also included many new device drivers. Several minor revisions 
followed	in	the	next	two	years.	By	this	time,	Linux	was	sufficiently	compatible	with	UNIX	that	
a	vast	amount	of	UNIX	software	was	ported	to	Linux,	making	it	far	more	useful	than	it	would	
have	otherwise	been.	In	addition,	a	large	number	of	people	were	attracted	to	Linux	and	began	
working on the code and extending it in many ways under Torvalds’ general supervision.

The	 next	 major	 release,	 2.0	 was	 made	 in	 1996.	 It	 consisted	 of	 about	 470,000	 lines	 of	 C	
and	 8000	 lines	 of	 assembly	 code.	 It	 included	 support	 for	 64	 bit	 architectures,	 symmetric	
multiprogramming,	new	networking	protocols	and	numerous	other	features.	A	large	fraction	
of the total code mass was taken up by an extensive collection of device drivers. Additional 
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Notesreleases	followed	frequently.	The	version	numbers	of	the	Linux	kernel	consist	of	four	numbers— 
A, B, C and D,	 the	first	 number	 denotes	 the	 kernel	 version.	 The	 second	 number	 denotes	 the	
major	 revision.	Prior	 to	 the	 2.6	 kernel,	 even	 revision	numbers	 corresponded	 to	 stable	 kernel	
releases,	whereas	odd	ones	corresponded	to	unstable	revisions,	under	development.	With	the	
2.6	 kernel	 that	 is	 no	 longer	 the	 case.	 The	 third	 number	 corresponds	 to	 the	minor	 revisions,	
such	as	support	for	new	drivers.	The	fourth	number	corresponds	to	minor	bug	fixes	or	security	
patches.	 A	 large	 array	 of	 standard	 UNIX	 software	 has	 been	 ported	 to	 Linux,	 including	 the	 
X	Window	System	and	a	great	deal	of	networking	software.	Two	different	GUIs	(GNOME	and	
KDE)	have	also	been	written	for	Linux.	In	short,	it	has	grown	to	a	full-blown	UNIX	clone	with	
all the bells and whistles a UNIX lover might want.

One	unusual	feature	of	Linux	is	its	business	model—it	is	free	software.	It	can	be	downloaded	
from	 various	 sites	 on	 the	 Internet,	 for	 example:	www.kernel.org. Linux comes with a license 
devised	by	Richard	Stallman,	 founder	of	 the	Free	Software	Foundation.	Despite	 the	 fact	 that	
Linux	is	free,	this	license,	the	GPL (GNU Public License),	is	longer	than	Microsoft’s	Windows	
license	and	specifies	what	you	can	and	cannot	do	with	the	code.	Users	may	use,	copy,	modify,	
and redistribute the source and binary code freely. The main restriction is that all works derived 
from the Linux kernel may not be sold or redistributed in binary form only; the source code 
must	either	be	shipped	with	the	product	or	be	made	available	on	request.

Although	Torvalds	still	controls	the	kernel	fairly	closely,	a	large	amount	of	user-level	software	
has	been	written	by	numerous	other	programmers,	many	of	them	originally	migrated	over	from	
the	MINIX,	BSD,	and	GNU	online	communities.	However,	as	Linux	evolves,	a	steadily	smaller	
fraction	of	the	Linux	community	want	to	hack	source	code	(witness	hundreds	of	books	telling	
how	to	install	and	use	Linux	and	only	a	handful	discussing	the	code	or	how	it	works).	Also,	
many Linux users now forego the free distribution on the Internet to buy one of many CD-ROM 
distributions available from numerous competing commercial companies.

A Website listing the current top 100 top Linux distributions is www.distrowatch.org. As more 
and more software companies start selling their own versions of Linux and more and more 
hardware	companies	offer	to	preinstall	it	on	the	computers	they	ship,	the	line	between	commercial	
software	and	free	software	is	beginning	to	blur	substantially.	As	a	footnote	to	the	Linux	story,	
it	is	interesting	to	note	that	just	as	the	Linux	bandwagon	was	gaining	steam,	it	got	a	big	boost	
from	an	unexpected	source	AT&T.	In	1992,	Berkeley,	by	now	running	out	of	funding,	decided	
to	terminate	BSD	development	with	one	final	release,	4.4BSD,	(which	later	formed	the	basis	of	
FreeBSD).	Since	this	version	contained	essentially	no	AT&T	code,	Berkeley	issued	the	software	
under	an	open	source	 license	 (not	GPL)	 that	 let	everybody	do	whatever	 they	wanted	with	 it	
except	 one	 thing—sue	 the	 University	 of	 California.	 The	AT&T	 subsidiary	 controlling	UNIX	
promptly	 reacted	 by—you	 guessed	 it—suing	 the	University	 of	 California.	 It	 simultaneously	
sued	a	company,	BSDI,	set	up	by	the	BSD	developers	to	package	the	system	and	sell	support,	
much	as	Red	Hat	and	other	companies	now	do	for	Linux.	Since	virtually	no	AT&T	code	was	
involved,	 the	 lawsuit	was	 based	 on	 copyright	 and	 trademark	 infringement,	 including	 items	
such as BSDI’s 1-800-ITS-UNIX telephone number. Although the case was eventually settled 
out	of	 court,	 this	 legal	action	kept	FreeBSD	off	 the	market	 just	 long	enough	 for	Linux	 to	get	
well	established.	Had	the	lawsuit	not	happened,	starting	around	1993	there	would	have	been	
a	 serious	 competition	between	 two	 free,	open	 source	UNIX	systems:	 the	 reigning	 champion,	
BSD,	a	mature	and	stable	system	with	a	large	academic	following	dating	back	to	1977	versus	
the	vigorousyoung	challenger,	Linux,	just	two	years	old	but	with	a	grow	by	following	among	
individual users. Who knows how this battle of the free UNICES would have turned out?

Linux began in 1991 with the commencement of a personal project by a Finnish 
student,	Linus	Torvalds.
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In	 this	 section,	we	will	 provide	 a	 general	 introduction	 to	 Linux	 and	 how	 it	 is	 used,	 for	 the	
benefit	of	readers	not	already	familiar	with	it.	Nearly	all	of	this	material	applies	to	just	about	all	
UNIX	variants	with	only	small	deviations.	Although	Linux	has	several	graphical	interfaces,	the	
focus	here	is	how	Linux	appears	to	a	programmer	working	in	a	shell	window	on	X.	Subsequent	
sections will focus on system calls and how it works inside.

14.1.1 Linux Goals
UNIX was always an interactive system designed to handle multiple processes and multiple users 
at	the	same	time.	It	was	designed	by	programmers,	for	programmers,	to	use	in	an	environment	
in	which	the	majority	of	the	users	are	relatively	sophisticated	and	are	engaged	in	(often	quite	
complex)	software	development	projects.	 In	many	cases,	a	 large	number	of	programmers	are	
actively	cooperating	to	produce	a	single	system,	so	UNIX	has	extensive	facilities	to	allow	people	
to work together and share information in controlled ways. The model of a group of experienced 
programmers working together closely to produce advanced software is obviously very different 
from	the	personal	computer	model	of	a	single	beginner	working	alone	with	a	word	processor,	
and	 this	 difference	 is	 reflected	 throughout	UNIX	 from	 start	 to	 finish.	 It	 is	 only	 natural	 that	
Linux	inherited	many	of	these	goals,	even	though	the	first	version	was	for	a	personal	computer.	
What	is	it	that	good	programmers	want	in	a	system?	To	start	with,	most	like	their	systems	to	be	
simple,	elegant,	and	consistent.	For	example,	at	the	lowest	level,	a	file	should	just	be	a	collection	
of	bytes.	Having	different	 classes	of	files	 for	 sequential	 access,	 random	access,	 keyed	access,	
remote	access,	etc.	(as	mainframes	do)	just	gets	in	the	way.

Similarly,	if	the	command

ls A*

means	list	all	the	files	beginning	with	‘’A’’	then	the	command

rm A*

should	mean	remove	all	the	files	beginning	with	“A”	and	not	remove	the	one	file	whose	name	
consists of an ‘’A’’ and an asterisk. This characteristic is sometimes called the principle of least 
surprise.

Another	 thing	 that	 experienced	 programmers	 generally	 want	 is	 power	 and	 flexibility.	 This	
means that a system should have a small number of basic elements that can be combined in an 
infinite	variety	of	ways	to	suit	the	application.	One	of	the	basic	guidelines	behind	Linux	is	that	
every	program	should	do	just	one	thing	and	do	it	well.	Thus	compilers	do	not	produce	listings,	
because other programs can do much better.

Finally,	 most	 programmers	 have	 a	 strong	 dislike	 for	 useless	 redundancy.	Why	 type	 copy	
when cp	is	enough?	To	extract	all	the	lines	containing	the	string	“ard”	from	the	file	f,	the	Linux	
programmer types grep ard f.	The	opposite	approach	is	to	have	the	programmer	first	select	the	
grep	program	(with	no	arguments),	and	then	have	grep	announce	itself	by	saying:	“Hi,	I’m	grep,	
I	look	for	patterns	in	files.	Please	enter	your	pattern.”	After	getting	the	pattern,	grep prompts for 
a	file	name.	Then	it	asks	if	there	are	any	more	file	names.	Finally,	it	summarizes	what	it	is	going	
to do and ask if that is correct. While this kind of user interface may or may not be suitable for 
rank	novices,	it	irritates	skilled	programmers	to	no	end.

14.1.2 Interfaces to Linux

A	Linux	 system	 can	 be	 regarded	 as	 a	 kind	 of	 pyramid,	 as	 illustrated	 in	 Figure	 14.1.	At	 the	
bottom	is	the	hardware,	consisting	of	the	CPU,	memory,	disks,	a	monitor	and	keyboard,	and	
other devices running on the bare hardware is the operating system. Its function is to control 
the hardware and provide a system call interface to all the programs. These system calls allow 
user	programs	to	create	and	manage	processes,	files,	and	other	resources.
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Programs	make	system	calls	by	putting	the	arguments	in	registers	(or	sometimes,	on	the	stack),	
and issuing trap instructions to switch from user mode to kernel mode. Since there is no way 
to	 write	 a	 trap	 instruction	 in	 C,	 a	 library	 is	 provided,	 with	 one	 procedure	 per	 system	 call.	
These	procedures	are	written	 in	assembly	 language,	but	can	be	called	 from	C.	Each	one	first	
puts	its	arguments	in	the	proper	place,	then	executes	the	trap	instruction.	Thus	to	execute	the	
read	system	call,	a	C	program	can	call	the	read	library	procedure.	As	an	aside,	it	is	the	library	
interface,	and	not	the	system	call	interface,	that	is	specified	by	POSIX.	In	other	words,	POSIX	
tells	which	 library	procedures	a	 conformant	 system	must	 supply,	what	 their	parameters	are,	
what	 they	must	do,	 and	what	 results	 they	must	 return.	 It	 does	not	 even	mention	 the	 actual	
system	calls.	In	addition	to	the	operating	system	and	system	call	library,	all	versions	of	Linux	
supply	a	large	number	of	standard	programs,	some	of	which	are	specified	by	the	POSIX	1003.2	
standard,	and	some	of	which	differ	between	Linux	versions.

These	include	the	command	processor	(shell),	compilers,	editors,	text	processing	programs,	and	
file	manipulation	utilities.	It	is	the	programs	that	a	user	at	the	keyboard	invokes.

Thus	we	 can	 speak	 of	 three	 different	 interfaces	 to	 Linux—the	 true	 system	 call	 interface,	 the	
library	interface,	and	the	interface	formed	by	the	set	of	standard	utility	programs.	Most	personal	
computer versions of Linux have replaced this keyboard-oriented user interface with a mouse-
oriented	 graphical	 user	 interface,	 without	 changing	 the	 operating	 system	 itself	 at	 all.	 It	 is	
precisely	this	flexibility	that	makes	Linux	so	popular	and	has	allowed	it	to	survive	numerous	
changes	 in	 the	underlying	 technology	so	well.	The	GUI	 for	Linux	 is	 similar	 to	 the	first	GUIs	
developed	for	UNIX	systems	in	the	1970s,	and	popularized	by	Macintosh	and	later	Windows	
for	PC	platforms.	The	GUI	creates	a	desktop	environment,	a	familiar	metaphor	with	windows,	
icons,	folders,	toolbars,	and	drag-and-drop	capabilities.	A	full	desktop	environment	contains	a	
window	manager,	which	controls	the	placement	and	appearance	of	windows,	as	well	as	various	
applications,	and	provides	a	consistent	graphical	interface.	Popular	desktop	environments	for	
Linux	 include	 GNOME	 (GNU	Network	 Object	 Model	 Environment)	 and	 KDE	 (K	 Desktop	
Environment).	GUIs	on	Linux	are	supported	by	the	X	Windowing	System,	or	commonly	X11	
or	 just	X,	which	defines	communication	and	display	protocols	 for	manipulating	windows	on	
bitmap displays for UNIX and UNIX-like systems. The X server is the main component which 
controls	devices	such	as	keyboards,	mouse,	screen	and	is	responsible	 for	redirecting	 input	 to	
or accepting output from client programs. The actual GUI environment is typically built on 
top	of	a	 low-level	 library,	xlib,	which	contains	 the	 functionality	 to	 interact	with	 the	X	server.	
The	graphical	interface	extends	the	basic	functionality	of	X11	by	enriching	the	windows	view,	
providing	 buttons,	 menus,	 icons,	 and	 other	 options.	 The	 X	 server	 can	 be	 started	manually,	
from	a	command	line,	but	 is	 typically	started	during	the	boot	process	by	a	display	manager,	
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When	working	on	Linux	systems	through	a	graphical	interface,	users	may	use	mouse	clicks	to	
run	applications	or	open	file,	drag	and	drop	to	copy	files	from	one	location	to	another,	etc.	In	
addition,	users	may	invoke	a	terminal	emulator	program,	or	xterm.

14.1.3 Shell

Although	Linux	systems	have	a	graphical	user	interface,	most	programmers	and	sophisticated	
users	still	prefer	a	command	line	interface,	called	the	shell. Often they start one or more shell 
windows from the graphical user interface and just work in them. The shell command line 
interface	is	much	faster	to	use,	more	powerful,	easily	extensible,	and	does	not	give	the	user	RSI	
from	having	to	use	a	mouse	all	the	time.	Below	we	will	briefly	describe	the	bash	shell	(bash).	
It	is	heavily	based	on	the	original	UNIX	shell,	Bourne	shell,	and	in	fact	its	name	is	an	acronym	
for	Bourne	Again	Shell.	Many	new	shells	are	also	in	use	(ksh,	csh,	etc.),	however,	bash	is	the	
default	shell	 in	most	Linux	systems.	When	the	shell	starts	up,	it	 initializes	itself,	 then	types	a	
prompt	character,	often	a	per	cent	or	dollar	sign,	on	the	screen	and	waits	for	the	user	to	type	
a command line.

When	the	user	types	a	command	line,	the	shell	extracts	the	first	word	from	it,	assumes	it	is	the	
name	of	a	program	to	be	run,	searches	for	this	program,	and	if	it	finds	it,	runs	the	program.	The	
shell	then	suspends	itself	until	the	program	terminates,	at	which	time	it	tries	to	read	the	next	
command. What is important here is simply the observation that the shell is an ordinary user 
program. All it needs is the ability to read from the keyboard and write to the monitor and the 
power	 to	 execute	other	programs.	Commands	may	 take	arguments,	which	are	passed	 to	 the	
called program as character strings.

For	example,	the	command	line

cp src dest

invokes	the	cp	program	with	two	arguments,	src	and	dest.	This	program	interprets	the	first	one	
to	be	the	name	of	an	existing	file.	It	makes	a	copy	of	this	file	and	calls	the	copy	dest.

Not	all	arguments	are	file	names.	In	head	20	file	the	first	argument,	20,	tells	head	to	print	the	first	
20	lines	of	file,	instead	of	the	default	number	of	lines,	10.	Arguments	that	control	the	operation	
of a command or specify an optional value are called flags,	and	by	convention	are	indicated	with	
a	dash.	The	dash	is	required	to	avoid	ambiguity,	because	the	command	head	20	file	is	perfectly	
legal,	and	tells	head	to	first	print	the	initial	10	lines	of	a	file	called	20,	and	then	print	the	initial	
10	lines	of	a	second	file	called	file.	Most	Linux	commands	accept	multiple	flags	and	arguments.

To	make	it	easy	to	specify	multiple	file	names,	the	shell	accepts	magic characters,	sometimes	
called wild cards.	An	asterisk,	for	example,	matches	all	possible	strings,	so

ls *.c

tells ls	to	list	all	the	files	whose	name	ends	in	.c	If	files	named	x.c, y.c,	and	z.c	all	exist,	the	above	
command	is	equivalent	to	typing

ls x.c y.c z.c

Another	wild	card	is	the	question	mark,	which	matches	any	one	character.	A	list	of	characters	
inside	square	brackets	selects	any	of	them,	so

ls	[ape]*

lists	all	files	beginning	with	‘’a’’,	‘’p’’,	or	‘’e’’.	A	program	like	the	shell	does	not	have	to	open	
the	 terminal	 (keyboard	and	monitor)	 in	order	 to	 read	 from	 it	or	write	 to	 it.	 Instead,	when	 it	
(or	 any	 other	 program)	 starts	 up,	 it	 automatically	 has	 access	 to	 a	 file	 called	 standard input  
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error	(for	writing	error	messages).	Normally,	all	three	default	to	the	terminal,	so	that	reads	from	
standard input come from the keyboard and writes to standard output or standard error go to 
the screen. Many Linux programs read from standard input and write to standard output as the 
default.	For	example,	sort	invokes	the	sort	program,	which	reads	lines	from	the	terminal	(until	
the	user	types	a	CTRL-D,	to	indicate	end	of	file),	sorts	them	alphabetically,	and	writes	the	result	
to	the	screen.	It	 is	also	possible	to	redirect	standard	input	and	output,	as	 is	often	useful.	The	
syntax	for	redirecting	standard	input	uses	a	less	than	sign	(<)	followed	by	the	input	file	name.	
Similarly,	standard	output	is	redirected	using	a	greater	than	sign	(>).	It	is	permitted	to	redirect	
both	in	the	same	command.	For	example,	the	command	sort	<in	>out	causes	sort to take its input 
from	the	file	in	and	write	its	output	to	the	file	out.	Since	standard	error	has	not	been	redirected,	
any	error	messages	go	to	the	screen.	A	program	that	reads	its	input	from	standard	input,	does	
some	processing	on	it,	and	writes	its	output	to	standard	output	is	called	a	filter. Consider the 
following	command	line	consisting	of	three	separate	commands:

sort	<in	>temp;	head	–30	<temp;	rm	temp

It	first	runs	sort,	taking	the	input	from	in and writing the output to temp. When that has been 
completed,	 the	 shell	 runs	head,	 telling	 it	 to	print	 the	first	 30	 lines	of	 temp and print them on 
standard	 output,	 which	 defaults	 to	 the	 terminal.	 Finally,	 the	 temporary	 file	 is	 removed.	 It	
frequently	occurs	that	the	first	program	in	a	command	line	produces	output	that	is	used	as	the	
input	on	 the	next	program.	 In	 the	above	example,	we	used	 the	file	 temp to hold this output. 
However,	Linux	provides	a	simpler	construction	to	do	the	same	thing.

In

sort	<in	|	head	–30

the	vertical	bar,	called	the	pipe symbol,	says	to	take	the	output	from	sort and use it as the input 
to head,	eliminating	the	need	for	creating,	using,	and	removing	the	temporary	file.	A	collection	
of	 commands	 connected	 by	 pipe	 symbols,	 called	 a	 pipeline,	 may	 contain	 arbitrarily	 many	
commands.	A	four-component	pipeline	is	shown	by	the	following	example:

grep	ter	*.t	|	sort	|	head	–20	|	tail	–5	>foo

Here	all	the	lines	containing	the	string	‘’ter’’	in	all	the	files	ending	in	.t are written to standard 
output,	where	they	are	sorted.	The	first	20	of	these	are	selected	out	by	head which passes then 
to tail,	which	writes	the	last	five	(i.e.,	lines	16	to	20	in	the	sorted	list)	to	foo. This is an example 
of	how	Linux	provides	basic	building	blocks	 (numerous	filters),	 each	of	which	does	one	 job,	
along with a mechanism for them to be put together in almost limitless ways.

Linux is a general-purpose multiprogramming system. A single user can run several programs 
at	once,	each	as	a	separate	process.	The	shell	syntax	for	running	a	process	in	the	background	is	
to	follow	its	command	with	an	ampersand.	Thus	wc	-l	<a	>b	&	runs	the	word	count	program,	
wc,	 to	count	 the	number	of	 lines	 (-l	flag)	 in	 its	 input,	a,	writing	 the	result	 to	b,	but	does	 it	 in	
the	background.	As	soon	as	 the	command	has	been	typed,	 the	shell	 types	 the	prompt	and	 is	
ready	to	accept	and	handle	the	next	command.	Pipelines	can	also	be	put	in	the	background,	for	
example,	by	sort	<x	|	head	&	Multiple	pipelines	can	run	in	the	background	simultaneously.

It	 is	 possible	 to	put	 a	 list	 of	 shell	 commands	 in	 a	file	 and	 then	 start	 a	 shell	with	 this	 file	 as	
standard	 input.	 The	 (second)	 shell	 just	 processes	 them	 in	 order,	 the	 same	 as	 it	 would	with	
commands typed on the keyboard. Files containing shell commands are called shell scripts. 
Shell scripts may assign values to shell variables and then read them later. They may also have 
parameters,	and	use	if,	for,	while,	and	case	constructs.	Thus	a	shell	script	is	really	a	program	
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to	make	shell	 scripts	 (and	 the	command	 language	 in	general)	 look	 like	C	programs	 in	many	
respects.	Since	 the	shell	 is	 just	another	user	program,	various	other	people	have	written	and	
distributed a variety of other shells.

14.1.4 Linux Utility Programs

The	command-line	(shell)	user	interface	to	Linux	consists	of	a	large	number	of	standard	utility	
programs.	These	programs	can	be	divided	into	six	categories	as	follows:

 1. File and directory manipulation commands.

 2. Filters.

 3. Program development tools such as editors and compilers.

 4. Text processing.

 5. System administration.

 6. Miscellaneous.

The	POSIX	1003.2	standard	specifies	the	syntax	and	semantics	of	just	under	100	of	these,	primarily	
in	the	first	three	categories.	The	idea	of	standardizing	them	is	to	make	it	possible	for	anyone	to	
write shell scripts that use these programs and work on all Linux systems.

In	 addition	 to	 these	 standard	utilities,	 there	 are	many	application	programs	as	well,	 such	as	
Web	browsers,	image	viewers,	etc.	Let	us	consider	some	examples	of	these	programs,	starting	
with	file	and	directory	manipulation.	 cp	a	b	 copies	file	a to b,	 leaving	 the	original	file	 intact.	
In	contrast,	mv	a	b	copies	a to b	but	removes	the	original.	In	fact,	it	moves	the	file	rather	than	
really	making	a	copy	in	the	usual	sense.	Several	files	can	be	concatenated	using	cat,	which	reads	
each	of	 its	 input	files	and	copies	 them	all	 to	 standard	output,	one	after	another.	Files	can	be	
removed by the rm command. The chmod command allows the owner to change the rights bits 
to modify access permissions. Directories can be created with mkdir and removed with rmdir. 
To	see	a	list	of	the	files	in	a	directory,	 it	can	be	used.	It	has	a	vast	number	of	flags	to	control	
how	much	detail	about	each	file	is	shown	(e.g.,	size,	owner,	group,	creation	date),	to	determine	
the	sort	order	(e.g.,	alphabetical,	by	time	of	last	modification,	reversed),	to	specify	the	layout	on	
the	screen,	and	much	more.	We	have	already	seen	several	filters:	grep	extracts	lines	containing	
a	given	pattern	from	standard	input	or	one	or	more	input	files;	sort	sorts	its	input	and	writes	
it	on	standard	output;	head	extracts	the	initial	 lines	of	 its	 input;	 tail	extracts	the	final	 lines	of	
its	input.	Other	filters	defined	by	1003.2	are	cut	and	paste,	which	allow	columns	of	text	to	be	
cut	and	pasted	 into	files;	od	which	converts	 its	 (usually	binary)	 input	 to	ASCII	 text,	 in	octal,	
decimal,	or	hexadecimal;	 tr,	which	does	character	 translation	(e.g.,	 lower	case	to	upper	case),	
and	pr	which	formats	output	for	the	printer,	including	options	to	include	running	heads,	page	
numbers,	and	so	on.

Compilers	 and	 programming	 tools	 include	 gcc,	 which	 calls	 the	 C	 compiler,	 and	 ar,	 which	
collects	library	procedures	into	archive	files.	Another	important	tool	is	make,	which	is	used	to	
maintain	large	programs	whose	source	code	consists	of	multiple	files.	Typically,	some	of	these	
are header files,	which	contain	type,	variable,	macro,	and	other	declarations.	Source	files	often	
include	these	using	a	special	include	directive.	This	way,	two	or	more	source	files	can	share	the	
same	declarations.	However,	 if	a	header	file	 is	modified,	 it	 is	necessary	to	find	all	 the	source	
files	that	depend	on	it,	and	recompile	them.	The	function	of	make	is	to	keep	track	of	which	file	
depends	on	which	header,	and	similar	 things,	and	arrange	for	all	 the	necessary	compilations	
to	occur	automatically.	Nearly	all	Linux	programs,	except	 the	smallest	ones,	are	set	up	 to	be	
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with	a	short	description	of	each	one.	All	Linux	systems	have	these	programs,	and	many	more.

Figure 14.2: A Few of the Common Linux Utility Program Required by POSIX

Program Typical use

catt Concatenate multiple files to standard output

chmod Change file protection mode

cp Copy one or more files

cut Cut columns of text from a file

grep Search a file for some pattern

head Extract the first lines of a file

ls List directory

make Compile files to build a binary

mkdir Make a directory

od Octal dump a file

paste Paste columns of text into a file

pr Format a file for printing

rm Remove one or more files

rmdir Remove a directory

sort Sort a file or lines alphabetically

tail Extract the last lines of a file

tr Translate between character sets

14.1.5 Kernel Structure
In	Figure	14.1,	we	saw	the	overall	structure	of	a	Linux	system.	Now	let	us	zoom	in	and	look	
more closely at the kernel before examining the various parts.

Figure 14.3: Structure of the Linux Kernel
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Notes The	 kernel	 sits	 directly	 on	 the	 hardware	 and	 enables	 interactions	with	 various	 devices,	 the	
system	memory	 and	 controls	CPU	accesses.	At	 the	 lowest	 level,	 as	 shown	 in	Figure	 14.3,	
it	 contains	 interrupt	 handlers	which	 are	 the	primary	way	 for	 interacting	with	devices,	 and	
low-level dispatching mechanism. This dispatching occurs when an interrupt happens. The 
low-level	code	here	stops	the	running	process,	saves	its	state	in	the	kernel	process	structures,	
and starts the appropriate driver. Process dispatching also happens when the kernel completes 
some operations and it is the time to start up a user process again. The dispatching code is in 
assembler	and	is	quite	distinct	from	scheduling.	Next,	we	divide	the	various	kernel	subsystems	
into three main components.

The I/O component in Figure 14.3 contains all kernel pieces responsible for interacting with 
devices	 and	 performing	 network	 and	 storage	 I/O	 operations.	 At	 the	 highest	 level,	 the	 I/O	
operations	are	all	integrated	under	a	Virtual	File	System	layer.	That	is,	at	the	top	level,	performing	
a	read	operation	to	a	file,	whether	it	is	in	memory	or	on	disk,	is	the	same	as	performing	a	read	
operation	to	retrieve	a	character	from	a	terminal	input.	At	the	lowest	level,	all	I/O	operations	
pass	 through	 some	 device	 driver.	 All	 Linux	 drivers	 are	 classified	 as	 either	 character	 device	
drivers	or	block	device	drivers,	with	 the	main	difference	 that	seeks	and	random	accesses	are	
allowed on block devices and not on character devices.

Technically,	network	devices	are	character	devices,	but	they	are	handled	somewhat	differently	
that	 it	 is	probably	clearer	to	separate	them,	as	has	been	done	in	the	figure.	Above	the	device	
driver	 level,	 the	kernel	code	is	different	for	each	device	type.	Character	devices	may	be	used	
in	 two	different	ways.	Some	programs,	 such	as	visual	 editors	 like	vi	 and	emacs,	want	 every	
key	stroke	as	it	is	hit.	Raw	terminal	(tty)	I/O	makes	this	possible.	Other	software,	such	as	the	
shell,	is	line	oriented,	and	allows	users	to	edit	the	whole	line	before	hitting	ENTER	to	send	it	
to the program.

In this case the character stream from the terminal device is passed through a so called line 
discipline,	and	appropriate	formatting	is	applied.	Networking	software	is	often	modular,	with	
different devices and protocols supported. The layer above the network drivers handles a 
kind	of	routing	function,	making	sure	that	the	right	packet	goes	to	the	right	device	or	protocol	
handler. Most Linux systems contain the full functionality of a hardware router within the 
kernel,	although	the	performance	is	less	than	that	of	a	hardware	router.	Above	the	router	code	
is	the	actual	protocol	stack,	always	including	IP	and	TCP,	but	also	many	additional	protocols.	
Overlaying	all	the	network	is	the	socket	interface,	which	allows	programs	to	create	sockets	for	
particular	networks	and	protocols,	getting	back	a	file	descriptor	for	each	socket	to	use	later.	On	
top	of	the	disk	drivers	is	the	I/O	scheduler,	which	is	responsible	for	ordering	and	issuing	disk	
operation	 requests	 in	 a	way	 that	 tries	 to	 conserve	wasteful	disk	head	movement,	 or	 to	meet	
some other system policy.

At	the	very	top	of	the	block	device	columns	are	the	file	systems.	Linux	may	have,	and	it	does	in	
fact,	multiple	file	systems	coexisting	concurrently.	In	order	to	hide	the	gruesome	architectural	
differences	of	various	hardware	devices	from	the	file	system	implementation,	a	generic	block	
device	layer	provides	an	abstraction	used	by	all	file	systems.

To the right in Figure 14.3 are the other two key components of the Linux kernel. These are 
responsible for the memory and process management tasks. Memory management tasks include 
maintaining	the	virtual	to	physical	memory	mappings,	maintaining	a	cache	of	recently	accessed	
pages	 and	 implementing	 a	 good	 page	 replacement	 policy,	 and	 on-demand	 bringing	 in	 new	
pages of needed code and data into memory. The key responsibility of the process management 
component	is	the	creation	and	termination	of	processes.	It	also	includes	the	process	scheduler,	
which	chooses	which	process	or,	rather,	thread	to	run	next.	As	we	shall	see	in	the	next	section,	
the	Linux	kernel	treats	both	processes	and	threads	simply	as	executable	entities,	and	will	schedule	
them	based	on	a	global	scheduling	policy.	Finally,	code	for	signal	handling	also	belongs	to	this	
component.
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NotesWhile	 the	 three	 components	 are	 represented	 separately	 in	 the	 figure,	 they	 are	 highly	
interdependent.	File	systems	typically	access	files	through	the	block	devices.	However,	in	order	
to	hide	the	large	latencies	of	disk	accesses,	files	are	copied	into	the	page	cache	in	main	memory.	
Some	files	may	even	be	dynamically	created	and	may	only	have	an	in-memory	representation,	
such	as	files	providing	some	runtime	resource	usage	information.	In	addition,	the	virtual	memory	
systems	may	rely	on	a	disk	partition	or	in-file	swap	area	to	back	up	parts	of	the	main	memory	
when	it	needs	to	free	up	certain	pages,	and	therefore	relies	on	the	I/O	component.	Numerous	
other	 interdependencies	exist.	 In	addition	 to	 the	static	 in-kernel	components,	Linux	supports	
dynamically loadable modules. These modules can be used to add or replace the default device 
drivers,	file	system,	networking,	or	other	kernel	codes.	The	modules	are	not	shown	in	Figure	14.3.

Finally,	at	the	very	top	is	the	system	call	interface	into	the	kernel.	All	system	calls	come	here,	
cause a trap which switches the execution from user mode into protected kernel mode and 
passes control to one of the kernel components described above.

14.2 Processes in Linux

In	the	previous	sections,	we	started	out	by	looking	at	Linux	as	viewed	from	the	keyboard,	that	
is,	what	the	user	sees	in	an	xterm	window.	We	gave	examples	of	shell	commands	and	utility	
programs	 that	are	 frequently	used.	We	ended	with	a	brief	overview	of	 the	 system	structure.	
Now it is time to dig deeply into the kernel and look more closely at the basic concepts that 
Linux	supports,	namely,	processes,	memory,	the	file	system,	and	input/output.	These	notions	
are	important	because	the	system	calls—the	interface	to	the	operating	system	itself—manipulate	
them.	For	example,	system	calls	exist	 to	create	processes	and	threads,	allocate	memory,	open	
files,	and	do	I/O.

Unfortunately,	with	so	many	versions	of	Linux	in	existence,	there	are	some	differences	between	
them.	 In	 this	 unit,	we	will	 emphasize	 the	 features	 common	 to	 all	 of	 them	 rather	 than	 focus	
on	any	one	specific	version.	Thus	in	certain	sections	(especially	implementation	sections),	the	
discussion	may	not	apply	equally	to	every	version.

14.2.1 Fundamental Concepts of Process in Linux
The main active entities in a Linux system are the processes. Linux processes are very similar 
to	 the	 classical	 sequential	 processes.	 Each	 process	 runs	 a	 single	 program	 and	 initially	 has	 a	
single	thread	of	control.	In	other	words,	it	has	one	program	counter,	which	keeps	track	of	the	
next instruction to be executed. Linux allows a process to create additional threads once it starts 
executing.

Linux	is	a	multiprogramming	system,	so	multiple,	 independent	processes	may	be	running	at	
the	same	time.	Each	user	may	have	several	active	processes	at	once;	so	on	a	large	system,	there	
may	be	hundreds	or	even	thousands	of	processes	running.	In	fact,	on	most	of	the	single-user	
workstations,	even	when	the	user	is	absent,	dozens	of	background	processes,	called	daemons,	
are	 running.	 These	 are	 started	 by	 a	 shell	 script	when	 the	 system	 is	 booted.	 (‘’Daemon’’	 is	 a	
variant	 spelling	 of	 ‘’demon,’’	which	 is	 a	 self-employed	 evil	 spirit.)	 A	 typical	 daemon	 is	 the	
cron daemon.	It	wakes	up	once	a	minute	to	check	if	there	is	any	work	for	it	to	do.	If	so,	it	does	
the work. Then it goes back to sleep until it is time for the next check. This daemon is needed 
because	 it	 is	possible	 in	Linux	to	schedule	activities	minutes,	hours,	days,	or	even	months	 in	
the	future.	For	example,	suppose	a	user	has	a	dentist	appointment	at	3	o’clock	next	Tuesday.	
He	can	make	an	entry	in	the	cron	daemon’s	database	telling	the	daemon	to	beep	at	him	at,	say,	
2:30.	When	the	appointed	day	and	time	arrives,	the	cron	daemon	sees	that	it	has	work	to	do,	
and starts up the beeping program as a new process. The cron daemon is also used to start up 
periodic	activities,	such	as	making	daily	disk	backups	at	4	a.m.,	or	reminding forgetful users 
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Notes every year on October 31 to stock up on trick-or-treat goodies for Halloween. Other daemons 
handle	 incoming	and	outgoing	electronic	mail,	manage	 the	 line	printer	queue,	 check	 if	 there	
are	enough	free	pages	in	memory,	and	so	forth.	Daemons	are	straightforward	to	implement	in	
Linux	because	each	one	is	a	separate	process,	independent	of	all	other	processes.	Processes	are	
created in Linux in an especially simple manner. The fork system call creates an exact copy of 
the original process. The forking process is called the parent process and the new process is 
called the child process.	The	parent	and	child	each	have	their	own,	private	memory	images.	If	
the	parent	subsequently	changes	any	of	 its	variables,	 the	changes	are	not	visible	to	the	child,	
and vice versa.

Open	files	are	shared	between	parent	and	child.	That	is,	if	a	certain	file	was	open	in	the	parent	
before	the	fork,	it	will	continue	to	be	open	in	both	the	parent	and	the	child	afterward.	Changes	
made	 to	 the	 file	 by	 either	 one	will	 be	 visible	 to	 the	 other.	 This	 behavior	 is	 only	 reasonable,	
because	these	changes	are	also	visible	to	any	unrelated	process	that	opens	the	file	as	well.	The	
fact	that	the	memory	images,	variables,	registers,	and	everything	else	are	identical	in	the	parent	
and	child	leads	to	a	small	difficulty—	How	do	the	processes	know	which	one	should	run	the	
parent code and which one should run the child code? The secret is that the fork system call 
returns	a	0	to	the	child	and	a	nonzero	value,	the	child’s	PID (Process Identifier) to the parent. 
Both	processes	normally	check	the	return	value,	and	act	accordingly.	As	shown	in	Figure	14.4,	
processes	are	named	by	their	PIDs.	When	a	process	is	created,	the	parent	is	given	the	child’s	
PID,	as	mentioned	above.

Figure 14.4: Process Creation in Linux 

} else if (pid > 0) {

pid = fork();

if (pid < 0) {

handle_error()

}
/* child code goes here. /*/

mechanical, photocopying, recording, or likewise

/* fork failed (e.g., memory or some table is full) */

/* parent code goes here. /*/

/* if the fork succeeds, pid > 0 in the parent */

} else {

If	the	child	wants	to	know	its	own	PID,	there	is	a	system	call,	getpid,	that	provides	it.	PIDs	are	
used	in	a	variety	of	ways.	For	example,	when	a	child	terminates,	the	parent	is	given	the	PID	of	
the	child	that	 just	finished.	This	can	be	important	because	a	parent	may	have	many	children.	
Since	children	may	also	have	children,	an	original	process	can	build	up	an	entire	tree	of	children,	
grandchildren,	and	further	descendants.	Processes	in	Linux	can	communicate	with	each	other	
using a form of message passing. It is possible to create a channel between two processes into 
which one process can write a stream of bytes for the other to read. These channels are called 
pipes. Synchronization is possible because when a process tries to read from an empty pipe it 
is blocked until data are available. Shell pipelines are implemented with pipes. When the shell 
sees	a	line	like	sort	<f	|	head	it	creates	two	processes,	sort	and	head,	and	sets	up	a	pipe	between	
them in such a way that sort’s standard output is connected to head’s standard input. In this 
way,	all	the	data	that	sort	writes	go	directly	to	head,	instead	of	going	to	a	file.	If	the	pipe	fills	
up,	the	system	stops	running	sort	until	head	has	removed	some	data	from	the	pipe.

Processes	can	also	communicate	in	another	way—software	interrupts.	A	process	can	send	what	
is called a signal to another process. Processes can tell the system what they want to happen 
when	a	signal	arrives.	The	choices	are	to	ignore	it,	to	catch	it,	or	to	let	the	signal	kill	the	process	
(the	default	 for	most	 signals).	 If	 a	process	 elects	 to	 catch	 signals	 sent	 to	 it,	 it	must	 specify	 a	
signal	handling	procedure.	When	a	signal	arrives,	control	will	abruptly	switch	to	the	handler.	
When	the	handler	is	finished	and	returns,	control	goes	back	to	where	it	came	from,	analogous	
to hardware I/O interrupts. A process can only send signals to members of its process group,	
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Noteswhich	 consists	 of	 its	 parent	 (and	 further	 ancestors),	 siblings,	 and	 children	 (and	 further	
descendants).	A	process	may	also	 send	a	 signal	 to	all	members	of	 its	process	group	with	
a	single	system	call.	Signals	are	also	used	for	other	purposes.	For	example,	 if	a	process	 is	
doing	floating-point	arithmetic,	and	inadvertently	divides	by	0,	it	gets	a	SIGFPE	(floating-
point	 exception)	 signal.	 The	 signals	 that	 are	 required	 by	 POSIX	 are	 listed	 in	 Figure	 14.5.	
Many	Linux	systems	have	additional	signals	as	well,	but	programs	using	them	may	not	be	
portable to other versions of Linux and UNIX in general.

Figure 14.5: The Signals Required by POSIX

Signal Cause

SIGABRT Sent to abort a process and force a core dump

SIGALRM The alarm clock has gone off

SIGFPE A floating-point error has occurred (e.g., division by 0)

SIGHUP The phone line the process was using has been hung up

SIGILL The user has hit the DEL key to interrupt the process

SIGQUIT The user has hit the key requesting a core dump

SIGKILL Sent to kill a process (cannot be caught or ignored)

SIGPIPE The process has written to a pipe which has no readers

SIGSEGV The process has referenced an invalid memory address

SIGTERM Used to request that a process terminate gracefully

SIGUSR1 Available for application-defined purposes

SIGUSR2 Available for application-defined purpose

14.2.2 Process Management System Calls in Linux

Let us now look at the Linux system calls dealing with process management. The main ones are 
listed	in	Figure	14.6.	Fork	is	a	good	place	to	start	the	discussion.	The	Fork	system	call,	supported	
also	by	other	traditional	UNIX	systems,	is	the	main	way	to	create	a	new	process	in	Linux	systems.	
It	creates	an	exact	duplicate	of	the	original	process,	including	all	the	file	descriptors,	registers	
and	everything	else.	After	the	fork,	the	original	process	and	the	copy	(the	parent	and	child)	go	
their	separate	ways.	All	the	variables	have	identical	values	at	the	time	of	the	fork,	but	since	the	
entire	parent	address	space	is	copied	to	create	the	child,	subsequent	changes	in	one	of	them	do	
not	affect	the	other	one.	The	fork	call	returns	a	value,	which	is	zero	in	the	child,	and	equal	to	the	
child’s	PID	in	the	parent.	Using	the	returned	PID,	the	two	processes	can	see	which	is	the	parent	
and	which	is	the	child.	In	most	cases,	after	a	fork,	the	child	will	need	to	execute	different	code	
from	the	parent.	Consider	the	case	of	the	shell.	It	reads	a	command	from	the	terminal,	forks	off	
a	child	process,	waits	for	the	child	to	execute	the	command,	and	then	reads	the	next	command	
when	the	child	terminates.	To	wait	for	the	child	to	finish,	the	parent	executes	a	waitpid	system	
call,	which	just	waits	until	the	child	terminates	(any	child	if	more	than	one	exists).
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Figure 14.6: Some System Calls Relating to Processes

System call Description

pid = fork( ) Create a child process identical to the parent

pid = waitpid(pid, & statloc, opts) Wait for a child to terminate

S = execve(name, argv, envp) Replace a process’ core image

exit(status) Terminate process execution and return status

S = sigaction(sig. & act, & oldact) Define action to take on signals

S = sigreturn (&context) Return from a signal

S = sigprocmask(how, &set, &old) Examine or change the signal mask

S = sigpending (set) Get the set of blocked signals

s = sigsuspend(sigmask) Replace the signals mask and suspend the 
process

s = kill(pid, sig) Send a signal to a process

residual = alarm(seconds) Set the alarm clock

s = pause( ) suspend the caller until the next signal

Waitpid has three parameters.	The	return	code	s	is	~	1	If	an	error	has	occurred,	pid	is	a	process	
ID,	and	residual	is	the	remaining	time	in	the	previous	alarm.	The	parameters	are	what	the	name	
suggests.	First	one	allows	the	caller	 to	wait	 for	a	specific	child.	 If	 it	 is	~	1,	any	old	child	(i.e.,	
the	first	child	to	terminate)	will	do.	The	second	parameter	is	the	address	of	a	variable	that	will	
be	set	to	the	child’s	exit	status	(normal	or	abnormal	termination	and	exit	value).	The	third	one	
determines whether the caller blocks or returns if no child is already terminated. In the case of 
the	shell,	the	child	process	must	execute	the	command	typed	by	the	user.	It	does	this	by	using	
the	exec	system	call,	which	causes	its	entire	core	image	to	be	replaced	by	the	file	named	in	its	
first	parameter.	A	highly	simplified	shell	illustrating	the	use	of	fork,	waitpid,	and	exec	is	shown	
in	Figure.	14.7.	In	the	most	general	case,	exec	has	three	parameters:	the	name	of	the	file	to	be	
executed,	a	pointer	to	the	argument	array,	and	a	pointer	to	the	environment	array.	These	will	
be	 described	 shortly.	 Various	 library	 procedures,	 including	 execl,	 execv,	 execle,	 and	 execve,	
are	provided	to	allow	the	parameters	to	be	omitted	or	specified	in	various	ways.	All	of	these	
procedures	invoke	the	same	underlying	system	call.	Although	the	system	call	is	exec,	there	is	
no library procedure with this name; one of the others must be used. Let us consider the case 
of	a	command	typed	to	the	shell	such	as	cp	file1	file2	used	to	copy	file1	to	file2.	After	the	shell	
has	been	forked,	the	child	locates	and	executes	the	file	cp	and	passes	its	information	about	the	
files	to	be	copied.	The	main	program	of	cp	(and	many	other	programs)	contains	the	function	
declaration	where	argc	is	a	count	of	the	number	of	items	on	the	command	line,	including	the	
program	name.	For	the	example	above,	argc	is	3.	The	second	parameter,	argv,	is	a	pointer	to	an	
array.	Element	i	of	that	array	is	a	pointer	to	the	i-th	string	on	the	command	line.	In	this	example,	
argv[0]	would	point	to	the	string	‘’cp’’.	Similarly,	argv[1]	would	point	to	the	5-character	string	‘’file1’’	
and	argv[2]	would	point	to	the	5-character	string	‘’file2’’.	The	third	parameter	of	main,	envp,	is	a	
pointer	to	the	environment,	an	main(argc,	argv,	envp)	array	of	strings	containing	assignments	of	
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Notesthe	form	name	=	value	used	to	pass	information	such	as	the	terminal	type	and	home	directory	
name	to	a	program.	In	Figure	14.7,	no	environment	is	passed	to	the	child,	so	the	third	parameter	
of execve is a zero in this case.

Figure 14.7: A Highly Simplified Shell

 while (TRUE) {ty /* repeat forever /*/
  type_prompt( ); /* display prompt on the screen */
  read_command(command, params); /* read input line from keyboard */

  pid = fork( ); /* fork off a child process */
  if (pid < 0) { /* error condition */
   printf(“Unable to fork0); /* error condition */
   continue;

  }

  if (pid) !=0) {
   waitpid (–1, &status, 0); /* parent waits for child */
  } else {
   execve(command, params, 0); /* child does the work */
  }
 }

If	exec	seems	complicated,	do	not	despair;	 it	 is	the	most	complex	system	call.	All	the	rest	are	
much	simpler.	As	an	example	of	a	simple	one,	consider	exit,	which	processes	should	be	used	
when	 they	 are	 finished	 executing.	 It	 has	 one	 parameter,	 the	 exit	 status	 (0	 to	 255),	 which	 is	
returned to the parent in the variable status of the waitpid system call. The low-order byte of 
status	contains	 the	 termination	status,	with	0	being	normal	 termination	and	 the	other	values	
being	various	error	conditions.	The	high-order	byte	contains	the	child’s	exit	status	(0	to	255),	
as	specified	in	the	child’s	call	to	exit.	For	example,	if	a	parent	process	executes	the	statement	n	
=	waitpid(~1,	&status,	0);	it	will	be	suspended	until	some	child	process	terminates.	If	the	child	
exits	with,	say,	4	as	the	parameter	to	exit,	the	parent	will	be	awakened	with	n	set	to	the	child’s	
PID	and	status	set	to	0x0400	(0x	as	a	prefix	means	hexadecimal	in	C).	

The low-order byte of status relates to signals; the next one is the value the child returned in 
its	 call	 to	exit.	 If	a	process	exits	and	 its	parent	has	not	yet	waited	 for	 it,	 the	process	enters	a	
kind of suspended animation called the zombie state.	When	the	parent	finally	waits	for	it,	the	
process terminates.

Several	system	calls	relate	to	signals,	which	are	used	in	a	variety	of	ways.	For	example,	if	a	user	
accidently	tells	a	text	editor	to	display	the	entire	contents	of	a	very	long	file,	and	then	realizes	
the	error,	 some	way	 is	needed	 to	 interrupt	 the	editor.	The	usual	 choice	 is	 for	 the	user	 to	hit	
some	special	key	(e.g.,	DEL	or	CTRLC),	which	sends	a	signal	to	the	editor.	The	editor	catches	
the signal and stops the print-out.

To	announce	its	willingness	to	catch	this	(or	any	other)	signal,	the	process	can	use	the	sigaction	
system	call.	The	first	parameter	 is	 the	 signal	 to	be	 caught	 (see	Figure.	 14.5).	The	 second	 is	 a	
pointer	to	a	structure	giving	a	pointer	to	the	signal	handling	procedure,	as	well	as	some	other	
bits	and	flags.	The	third	one	points	to	a	structure	where	the	system	returns	information	about	
signal	handling	currently	in	effect,	in	case	it	must	be	restored	later.	The	signal	handler	may	run	
for	as	long	as	it	wants	to.	In	practice,	though,	signal	handlers	are	usually	fairly	short.	When	the	
signal	handling	procedure	is	done,	it	returns	to	the	point	from	which	it	was	interrupted.	The	
sigaction	system	call	can	also	be	used	to	cause	a	signal	to	be	ignored,	or	to	restore	the	default	
action,	which	is	killing	the	process.	Hitting	the	DEL	key	is	not	the	only	way	to	send	a	signal.	The	



Principles of Operating Systems

412 LOVELY PROFESSIONAL UNIVERSITY

Notes kill system call allows a process to signal another related process. The choice of the name ‘’kill’’ 
for	this	system	call	is	not	an	especially	good	one,	since	most	processes	send	signals	to	other	ones	
with	the	intention	that	they	might	be	caught.	For	many	real-time	applications,	a	process	needs	to	
be	interrupted	after	a	specific	time	interval	to	do	something,	such	as	to	retransmit	a	potentially	
lost	packet	over	an	unreliable	communication	line.	To	handle	this	situation,	the	alarm	system	
call	has	been	provided.	The	parameter	specifies	an	interval,	in	seconds,	after	which	a	SIGALRM	
signal is sent to the process. A process may have only one alarm outstanding at any instant. If an 
alarm	call	is	made	with	a	parameter	of	10	seconds,	and	then	3	seconds	later	another	alarm	call	
is	made	with	a	parameter	of	20	seconds,	only	one	signal	will	be	generated,	20	seconds	after	the	
second	call.	The	first	signal	is	cancelled	by	the	second	call	to	alarm.	If	the	parameter	to	alarm	is	
zero,	any	pending	alarm	signal	is	cancelled.	If	an	alarm	signal	is	not	caught,	the	default	action	
is	taken	and	the	signaled	process	is	killed.	Technically,	alarm	signals	may	be	ignored,	but	that	
is a pointless thing to do.

It	sometimes	occurs	that	a	process	has	nothing	to	do	until	a	signal	arrives.	For	example,	consider	
a	 computer-aided	 instruction	 program	 that	 is	 testing	 reading,	 speed	 and	 comprehension.	 It	
displays some text on the screen and then calls alarm to signal it after 30 seconds. While the 
student	 is	 reading	 the	 text,	 the	program	has	nothing	 to	do.	 It	 could	sit	 in	a	 tight	 loop	doing	
nothing,	but	that	would	waste	CPU	time	that	a	background	process	or	other	user	might	need.	
A	better	solution	is	to	use	the	pause	system	call,	which	tells	Linux	to	suspend	the	process	until	
the next signal arrives.

 	 Give	the	command	write	file	in	the	Linux	operating	system.

14.2.3 Implementation of Processes and Threads in Linux
A	process	in	Linux	is	like	an	iceberg	that	what	you	see	is	the	part	above	the	water,	but	there	is	
also an important part underneath. Every process has a user part that runs the user program. 
However,	when	one	of	its	threads	makes	a	system	call,	it	traps	to	kernel	mode	and	begins	running	
in	kernel	context,	with	a	different	memory	map	and	full	access	to	all	machine	resources.	It	 is	
still	the	same	thread,	but	now	with	more	power	and	also	its	own	kernel	mode	stack	and	kernel	
mode	program	counter.	These	are	important	because	a	system	call	can	block	part	way	through,	
for	example,	waiting	for	a	disk	operation	to	complete.	The	program	counter	and	registers	are	
then saved so the thread can be restarted in kernel mode later.

The Linux kernel internally represents processes as tasks,	via	the	structure	task	struct.	Unlike	
other	OS	approaches,	which	make	a	distinction	between	a	process,	lightweight	process	and	thread,	
Linux	uses	the	task	structure	to	represent	any	execution	context.	Therefore,	a	single-threaded	
process will be represented with one task structure; a multi-threaded process will have one task 
structure	for	each	of	the	user-level	threads.	Finally,	the	kernel	itself	is	multi-threaded,	and	has	
kernel level threads which are not associated with any user process and are executing kernel 
code.	We	will	return	to	the	treatment	of	multi-threaded	processes	(and	threads	in	general)	later	
in	this	section.	For	each	process,	a	process	descriptor	of	type	task_	struct	is	resident	in	memory	
at	all	times.	It	contains	vital	information	needed	for	the	kernel’s	management	of	all	processes,	
including	scheduling	parameters,	lists	of	open	file	descriptors,	etc.	The	process	descriptor	along	
with memory for the kernel-mode stack for the process are created upon process creation.

For	compatibility	with	other	UNIX	systems,	Linux	identifies	processes	via	the	Process	Identifier	
(PID).	The	kernel	organizes	all	processes	in	a	doubly	linked	list	of	task	structures.	In	addition	
to	 accessing	 process	 descriptors	 by	 traversing	 the	 linked	 lists,	 the	 PID	 can	 be	 mapped	 to	
the	 address	 of	 the	 task	 structure,	 and	 the	process	 information	 can	 be	 accessed	 immediately.	 
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NotesThe	task	structure	contains	a	variety	of	fields.	Some	of	these	fields	contain	pointers	to	other	data	
structures	or	segments,	 such	as	 those	containing	 information	about	open	files.	Some	of	 these	
segments are related to the user-level structure of the process which is not of interest when 
the	user	process	in	not	runnable.	Therefore,	these	may	be	swapped	or	paged	out,	in	order	not	
to	waste	memory	on	information	that	is	not	needed.	For	example,	although	it	is	possible	for	a	
process	to	be	sent	a	signal	while	it	is	swapped	out,	it	is	not	possible	for	it	to	read	a	file.	For	this	
reason,	information	about	signals	must	be	in	memory	all	the	time,	even	when	the	process	is	not	
present	in	memory.	On	the	other	hand,	information	about	file	descriptors	can	be	kept	in	the	user	
structure and brought in only when the process is in memory and runnable. The information 
in	the	process	descriptor	falls	into	the	following	broad	categories:

 1. Scheduling Parameters:	Process	priority,	amount	of	CPU	time	consumed	recently,	amount	
of	time	spent	sleeping	recently.	Together,	these	are	used	to	determine	which	process	to	
run next.

 2. Memory Image:	Pointers	to	the	text,	data,	and	stack	segments,	or	page	tables.	If	the	text	
segment	 is	 shared,	 the	 text	pointer	points	 to	 the	shared	 text	 table.	When	 the	process	 is	
not	in	memory,	information	about	how	to	find	its	parts	on	disk	is	here	too.

 3. Signals:	Masks	showing	which	signals	are	being	ignored,	which	are	being	caught,	which	
are	being	temporarily	blocked,	and	which	are	in	the	process	of	being	delivered.

 4. Machine Registers:	When	a	 trap	 to	 the	kernel	occurs,	 the	machine	 registers	 (including	
the	floating-point	ones,	if	used)	are	saved	here.

 5. System Call State:	Information	about	the	current	system	call,	including	the	parameters,	
and results.

 6. File Descriptor Table:	When	a	system	call	involving	a	file	descriptor	is	invoked,	the	file	
descriptor	is	used	as	an	index	into	this	table	to	locate	the	in-core	data	structure	(i-node)	
corresponding	to	this	file.

 7. Accounting: Pointer to a table that keeps track of the user and system CPU time used by 
the process. Some systems also maintain limits here on the amount of CPU time a process 
may	use,	the	maximum	size	of	its	stack,	the	number	of	page	frames	it	may	consume,	and	
other items.

 8. Kernel Stack:	A	fixed	stack	for	use	by	the	kernel	part	of	the	process.

 9. Miscellaneous:	Current	process	state,	event	being	waited	for,	if	any,	time	until	alarm	clock	
goes	off,	PID,	PID	of	the	parent	process,	and	user	and	group	identification.

Keeping	this	information	in	mind,	it	is	now	easy	to	explain	how	processes	are	created	in	Linux.	
The mechanism for creating a new process is actually fairly straightforward. A new process 
descriptor	and	user	area	are	created	for	the	child	process	and	filled	in	largely	from	the	parent.	
The	child	is	given	a	PID,	its	memory	map	is	set	up,	and	it	is	given	shared	access	to	its	parent’s	
files.	Then	its	registers	are	set	up	and	it	is	ready	to	run.

When	a	fork	system	call	is	executed,	the	calling	process	traps	to	the	kernel	and	creates	a	task	
structure	and	 few	other	 accompanying	data	 structures,	 such	as	 the	kernel	mode	 stack	and	a	
thread_	info	structure.	This	structure	is	allocated	at	a	fixed	offset	from	the	process’	end-of-stack,	
and	contains	few	process	parameters,	along	with	the	address	of	the	process	descriptor.	By	storing	
the	process	descriptor’s	address	at	a	fixed	location,	Linux	needs	only	few	efficient	operations	to	
locate the task structure for a running process. The majority of the process descriptor contents 
are	filled	out	based	on	 the	parent’s	descriptor	values.	Linux	 then	 looks	 for	an	available	PID,	
and updates the PID hash table entry to point to the new task structure. In case of collisions 
in	the	hash	table,	process	descriptors	may	be	chained.	It	also	sets	the	fields	in	thetask_	struct	
to	point	to	the	corresponding	previous/next	process	on	the	task	array.	In	principle,	 it	should 
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Notes now	allocate	memory	for	the	child’s	data	and	stack	segments,	and	to	make	exact	copies	of	the	
parents’	 segments,	 since	 the	semantics	of	 fork	say	 that	no	memory	 is	 shared	between	parent	
and	child.	The	text	segment	may	either	be	copied	or	shared	since	it	is	read	only.	At	this	point,	
the child is ready to run.

However,	 copying	memory	 is	 expensive,	 so	 all	modern	 Linux	 systems	 cheat.	 They	 give	 the	
child	its	own	page	tables,	but	have	them	point	to	the	parent’s	pages,	only	marked	read	only.	
Whenever	 the	 child	 tries	 to	write	 on	 a	 page,	 it	 gets	 a	 faulty	protection.	 The	 kernel	 sees	 this	
and	then	allocates	a	new	copy	of	 the	page	to	 the	child	and	marks	 it	read/write.	 In	 this	way,	
only pages that are actually written have to be copied. This mechanism is called copy on 
write.	 It	 has	 the	 additional	 benefit	 of	 not	 requiring	 two	 copies	 of	 the	 program	 in	memory,	
thus	 saving	 in	RAM.	After	 the	 child	 process	 starts	 running,	 the	 code	 running	 there	 (a	 copy	
of	 the	 shell)	does	an	exec	 system	call	giving	 the	 command	name	as	a	parameter.	The	kernel	
now	 finds	 and	 verifies	 the	 executable	 file,	 copies	 the	 arguments	 and	 environment	 strings	
to	 the	 kernel,	 and	 releases	 the	 old	 address	 space	 and	 its	 page	 tables.	Now	 the	 new	 address	
space	must	be	created	and	filled	 in.	 If	 the	system	supports	mapped	files,	as	Linux	and	other	 
UNIX-based	systems	do,	the	new	page	tables	are	set	up	to	indicate	that	no	pages	are	in	memory,	
except	perhaps	one	stack	page,	but	that	the	address	space	is	backed	by	the	executable	file	on	
disk.	When	 the	 new	process	 starts	 running,	 it	will	 immediately	 get	 a	 page	 fault,	which	will	
cause	 the	first	page	of	code	 to	be	paged	 in	 from	the	executable	file.	 In	 this	way,	nothing	has	
to	be	loaded	in	advance,	so	programs	can	start	quickly	and	fault	in	just	those	pages	they	need	
and	no	more.	Finally,	the	arguments	and	environment	strings	are	copied	to	the	new	stack,	the	
signals	are	reset,	and	the	registers	are	initialized	to	all	zeros.	At	this	point,	the	new	command	can	
start	running.	Figure	14.8	illustrates	the	steps	described	above	through	the	following	example:

A	user	 types	a	command,	 ls	on	the	 terminal,	 the	shell	creates	a	new	process	by	forking	off	a	
clone of itself. The new shell then calls exec to overlay its memory with the contents of the 
executable	file	ls.

Figure 14.8: The Steps in Executing the Command ls Typed to the Shell

14.2.4 Threads in Linux
We	 discussed	 threads	 in	 a	 general	 way.	 Here,	 we	 will	 focus	 on	 kernel	 threads	 in	 Linux,	
particularly focusing on the differences in the Linux thread models and other UNIX systems. 
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NotesIn	order	 to	better	understand	 the	unique	capabilities	provided	by	 the	Linux	model,	we	 start	
with a discussion of some of the challenging decisions present in multithreaded systems. The 
main issue in introducing threads is maintaining the correct traditional UNIX semantics. First 
consider	 fork.	Suppose	 that	a	process	with	multiple	 (kernel)	 threads	does	a	 fork	system	call.	
Should	 all	 the	 other	 threads	 be	 created	 in	 the	 new	 process?	 For	 the	moment,	 let	 us	 answer	
that	question	with	yes.	 Suppose	 that	one	of	 the	other	 threads	was	blocked	 reading	 from	 the	
keyboard. Should the corresponding thread in the new process also be blocked reading from 
the	 keyboard?	 If	 so,	which	 one	 gets	 the	 next	 line	 typed?	 If	 not,	what	 should	 that	 thread	 be	
doing in the new process? The same problem holds for many other things threads can do. In 
a	single-threaded	process,	the	problem	does	not	arise	because	the	one	and	only	thread	cannot	
be blocked when calling fork. Now consider the case that the other threads are not created 
in the child process. Suppose that one of the not-created threads holds a mutex that the  
one-and-only	 thread	 in	 the	new	process	 tries	 to	acquire	after	doing	 the	 fork.	The	mutex	will	
never be released and the one thread will hang forever. Numerous other problems exist too. 
There is no simple solution.

File	I/O	is	another	problem	area.	Suppose	that	one	thread	is	blocked	reading	from	a	file	and	
another	thread	closes	the	file	or	does	an	lseek	to	change	the	current	file	pointer.	What	happens	
next? Who knows? Signal handling is another thorny issue. Should signals be directed at a 
specific	thread	or	at	the	process	in	general?	A	SIGFPE	(floating-point	exception)	should	probably	
be caught by the thread that caused it. What if it does not catch it? Should just that thread be 
killed,	or	all	threads?	Now	consider	the	SIGINT	signal,	generated	by	the	user	at	the	keyboard.	
Which thread should catch that? Should all threads share a common set of signal masks? All 
solutions to these and other problems usually cause something to break somewhere. Getting 
the	semantics	of	threads	right	(not	to	mention	the	code)	is	a	nontrivial	business.	Linux	supports	
kernel threads in an interesting way that is worth looking at. The implementation is based on 
ideas	from	4.4BSD,	but	kernel	threads	were	not	enabled	in	that	distribution	because	Berkeley	
ran out of money before the C library could be rewritten to solve the problems discussed above.

Historically,	 processes	were	 resource	 containers	 and	 threads	were	 the	 units	 of	 execution.	 A	
process	contained	one	or	more	threads	that	shared	the	address	space,	open	files,	signal	handlers,	
alarms,	and	everything	else.	Everything	was	clear	and	simple	as	described	above.	In	2000,	Linux	
introduced	a	powerful	new	system	call,	clone	that	blurred	the	distinction	between	processes	and	
threads and possibly even inverted the primacy of the two concepts. Clone is not present in any 
other	version	of	UNIX.	Classically,	when	a	new	thread	was	created,	the	original	thread(s)	and	
the	new	one	shared	everything	but	their	registers.	In	particular,	file	descriptors	for	open	files,	
signal	 handlers,	 alarms,	 and	 other	 global	 properties	were	 per	 process,	 not	 per	 thread.	What	
clone	did	was	to	make	it	possible	for	each	of	these	aspects	and	others	to	be	process	specific	or	
thread	specific	is	called	as	follows:

pid	=	clone(function,	stack_	ptr,	sharing_	flags,	arg);

The	 call	 creates	 a	 new	 thread,	 either	 in	 the	 current	 process	 or	 in	 a	 new	process,	 depending	
on	sharing_	flags.	If	the	new	thread	is	in	the	current	process,	it	shares	the	address	space	with	
existing	threads	and	every	subsequent	write	to	any	byte	in	the	address	space	by	any	thread	is	
immediately	visible	to	all	the	other	threads	in	the	process.	On	the	other	hand,	if	the	address	space	
is	not	shared,	then	the	new	thread	gets	an	exact	copy	of	the	address	space,	but	subsequent	writes	
by the new thread are not visible to the old ones. These semantics are the same as POSIX fork.

In	both	cases,	the	new	thread	begins	executing	at	function,	which	is	called	with	arg	as	its	only	
parameter.	Also	in	both	cases,	the	new	thread	gets	its	own	private	stack,	with	the	stack	pointer	
initialized	to	stack_	ptr.	The	sharing	flags	parameter	is	a	bitmap	that	allows	a	much	finer	grain	
of sharing than traditional UNIX systems. Each of the bits can be set independently of the 
other	ones,	and	each	of	them determines whether the new thread copies some data structure 
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Notes of shares it with the calling thread. Figure 14.9 shows some of the items that can be be shared 
or	copied	according	to	bits	in	sharing	flags.

Figure 14.9: Bits in the Sharing Flags Bitmap

Flag Meaning when set Meaning when cleared

CLONE_VM Create a new thread Create a new process

CLONE_FS Share umask, root,  and 
working dirs

Do not share them

CLONE_FILES Share the file descriptors Copy the file descriptors

CLONE_SIGHAND Share the signal handler tale Copy the table

CLONE_PID New thread gets old PID New thread gets own PID

CLONE_PARENT New thread has same parent 
as caller

New thread’s parent is caller

The	CLONE_	VM	bit	 determines	whether	 the	 virtual	memory	 (i.e.,	 address	 space)	 is	 shared	
with	the	old	threads	or	copied.	If	it	is	set,	the	new	thread	just	moves	in	with	the	existing	ones,	
so	the	clone	call	effectively	creates	a	new	thread	in	an	existing	process.	If	the	bit	is	cleared,	the	
new thread gets its own address space. Having its own address space means that the effect of 
its	STORE	instructions	are	not	visible	to	the	existing	threads.	This	behaviour	is	similar	to	fork,	
except	as	noted	below.	Creating	a	new	address	space	is	effectively	the	definition	of	a	new	process.

The	CLONE_	FS	bit	controls	sharing	of	the	root	and	working	directories	and	of	the	umask	flag.	
Even	 if	 the	new	 thread	has	 its	own	address	 space,	 if	 this	bit	 is	 set,	 the	old	and	new	 threads	
share working directories. This means that a call to chdir by one thread changes the working 
directory	of	 the	other	thread,	even	though	the	other	thread	may	have	its	own	address	space.	
In	UNIX,	a	call	to	chdir	by	a	thread	always	changes	the	working	directory	for	other	threads	in	
its	process,	but	never	for	threads	in	another	process.	Thus	this	bit	enables	a	kind	of	sharing	not	
possible	in	traditional	UNIX	versions.	The	CLONE_	FILES	bit	is	analogous	to	the	CLONE_	FS	
bit.	If	set,	the	new	thread	shares	its	file	descriptors	with	the	old	ones,	so	calls	to	lseek	by	one	
thread	are	visible	to	the	other	ones,	again	as	normally	holds	for	threads	within	the	same	process	
but	not	 for	 threads	 in	different	processes.	Similarly,	CLONE_	SIGHAND	enables	or	disables	
the	sharing	of	the	signal	handler	table	between	the	old	and	new	threads.	If	the	table	is	shared,	
even	among	threads	in	different	address	spaces,	then	changing	a	handler	in	one	thread	affects	
the	handlers	in	the	others.	Finally,	CLONE_	PID	controls	whether	the	new	thread	gets	its	own	
PID or shares its parent’s PID. This feature is needed during system booting. User processes 
are not permitted to enable it.

Finally,	every	process	has	a	parent.	The	CLONE_	PARENT	bit	controls	who	the	parent	of	the	
new	thread	is.	It	can	either	be	the	same	as	the	calling	thread	(in	which	case	the	new	thread	is	a	
sibling	of	the	caller)	or	it	can	be	the	calling	thread	itself,	in	which	case	the	new	thread	is	a	child	
of	the	caller.	There	are	a	few	other	bits	that	control	other	items,	but	they	are	less	important.	This	
fine-grained	sharing	is	possible	because	Linux	maintains	separate	data	structures	for	the	various	
items.	(scheduling	parameters,	memory	image,	and	so	on).	The	task	structure	just	points	to	these	
data	structures,	so	it	 is	easy	to	make	a	new	task	structure	for	each	cloned	thread	and	have	it	
either	point	to	the	old	thread’s	scheduling,	memory,	and	other	data	structures	or	to	copies	of	
them.	The	fact	that	such	fine-grained	sharing	is	possible	does	not	mean	that	it	is	useful,	however,	
especially since traditional UNIX versions do not offer this functionality. A Linux program that 
takes advantage of it is then no longer portable to UNIX.
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NotesThe	Linux	thread	model	raises	another	difficulty.	UNIX	systems	associate	a	single	PID	with	a	
process,	independent	of	whether	it	is	single-	or	multi-threaded.	In	order	to	be	compatible	with	
other	UNIX	systems,	Linux	distinguishes	between	a	process	identifier	(PID)	and	a	task	identifier	
(TID).	Both	fields	are	stored	in	the	task	structure.	When	clone	is	used	to	create	a	new	process	
which	shares	nothing	with	its	creator,	PID	is	set	to	a	new	value,	otherwise,	the	task	receives	a	
new	TID,	but	inherits	the	PID.	In	this	manner	all	threads	in	a	process	will	receive	the	same	PID	
as	the	first	thread	in	the	process.

14.2.5 Scheduling in Linux
We	will	now	look	at	 the	Linux	scheduling	algorithm.	To	start	with,	Linux	threads	are	kernel	
threads,	so	scheduling	is	based	on	threads,	not	processes.	Linux	distinguishes	three	classes	of	
threads	for	scheduling	purposes:

 1. Real-time FIFO.

 2. Real-time round robin.

 3. Timesharing.

Real-time FIFO threads are the highest priority and are not preemptable except by a newly-
readied real-time FIFO thread with higher priority. Real-time round-robin threads are the same 
as	 real-time	 FIFO	 threads	 except	 that	 they	 have	 time	 quanta	 associated	with	 them,	 and	 are	
preemptable	by	the	clock.	If	multiple	real-time	round-robin	threads	are	ready,	each	one	is	run	
for	its	quantum,	after	which	it	goes	to	the	end	of	the	list	of	real-time	round-robin	threads.	None	
of	these	classes	is	actually	real	time	in	any	sense.	Deadlines	cannot	be	specified	and	guarantees	
are not given. These classes are simply higher priority than threads in the standard timesharing 
class. The reason Linux calls them real time is that Linux is conformant to the P1003.4 standard 
(‘’real-time’’	extensions	to	UNIX)	which	uses	those	names.	The	real	time	threads	are	internally	
represented	with	priority	 levels	 from	0	to	99,	0	being	the	highest	and	99	the	 lowest	real-time	
priority	level.	The	conventional,	non-real-time	threads	are	scheduled	according	to	the	following	
algorithm.	Internally,	the	non-real-time	threads	are	associated	with	priority	levels	from	100	to	
139,	 i.e.,	Linux	 internally	distinguishes	among	140	priority	 levels	 (for	real-time	and	non-real-
time	tasks).	Like	for	the	real-time	round-robin	threads,	Linux	associates	time	quantum	values	
for	each	of	the	non-real	time	priority	levels.	The	quantum	is	a	number	of	clock	ticks	the	thread	
may	continue	to	run	for.	In	the	current	Linux	version,	the	clock	runs	at	1000Hz	and	each	tick	
is	 1ms,	which	 is	 called	 a	 jiffy.	 Like	most	UNIX	 systems,	 Linux	 associates	 a	 nice	 value	with	
each	thread.	The	default	is	0	but	this	can	be	changed	using	the	nice	(value)	system	call,	where	
value	ranges	from	–20	to	+19.	This	value	determines	the	static	priority	of	each	thread.	A	user	
computing ?to a billion places in the background might put this call in his program to be nice to 
the other users. Only the system administrator may ask for better	than	normal	service	(meaning	
values	from	?20	to	?1).	Deducing	the	reason	for	this	rule	is	left	as	an	exercise	for	the	reader.

A key data structure used by the Linux scheduler is a runqueue.	A	 runqueue	 is	 associated	
with	each	CPU	in	the	system,	and	among	other	information,	it	maintains	two	arrays,	active and 
expired.	As	shown	in	Figure	14.10,	each	of	these	fields	is	a	pointer	to	an	array	of	140	list	heads,	
each corresponding to a different priority.

The list head points to a doubly-linked list of processes at a given priority. The basic 
operation of the scheduler can be described as follows. The scheduler selects a task from 
the	 highest	 priority	 active	 array.	 If	 that	 task’s	 timeslice	 (quantum)	 expires,	 it	 is	 moved	 to	
an	 expired	 list	 (potentially	 at	 a	 different	 priority	 level).	 If	 the	 task	 blocks,	 for	 instance	 to	
wait	 for	 an	 I/O	 event,	 before	 its	 timeslice	 expires,	 once	 the	 event	 occurs	 and	 its	 execution	
can	 resume,	 it	 is	 placed	 back	 on	 the	 original	 active	 array,	 and	 its	 timeslice	 is	 decremented	
to	 reflect	 the	 CPU	 time	 it	 already	 consumed.	 Once	 its	 timeslice	 is	 fully	 exhausted,	 it	 will	
also be placed on an expired array. When there are no more tasks in any of the active  
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Notes arrays,	the	scheduler	simply	swaps	the	pointers,	so	the	expired	arrays	now	become	active,	and	
vice	versa.	This	method	ensures	that	low	priority	tasks	will	not	starve	(except	when	real-time	
FIFO	threads	completely	hog	the	CPU,	which	is	unlikely	to	happen).	Different	priority	levels	are	
assigned	different	timeslice	values.	Linux	assigns	higher	quanta	to	higher	priority	processes.	For	
instance,	tasks	running	at	priority	level	100	will	receive	the	time	quanta	of	800	msec,	whereas	
tasks at priority level of 139 will receive 5 msec. The idea behind this scheme is to get processes 
out	of	the	kernel	fast.	If	a	process	is	trying	to	read	a	disk	file,	making	it	wait	for	a	second	between	
read calls will slow it down enormously. It is far better to let it run immediately after each 
request	is	completed,	so	that	it	can	make	the	next	one	quickly.	Similarly,	if	a	process	was	blocked	
waiting	for	keyboard	input,	it	is	clearly	an	interactive	process,	and	as	such	should	be	given	a	
high priority as soon as it is ready in order to ensure that interactive processes get good service.

Figure 14.10: Illustration of Linux Runqueue and Priority Arrays

In	 this	 light,	CPU-bound	processes	basically	get	 any	 service	 that	 is	 left	 over	when	all	 the	 I/O	
bound	 and	 interactive	 processes	 are	 blocked.	 Since	 Linux	 (or	 any	 other	 OS)	 does	 not	 know	
apriori	whether	a	task	is	I/O-	or	CPU-bound,	it	relies	on	continuously	maintaining	interactivity	
heuristics.	In	this	manner,	Linux	distinguishes	between	static	and	dynamic	priority.	The	threads’	
dynamic	 priority	 is	 continuously	 recalculated,	 so	 as	 to	 (1)	 reward	 interactive	 threads,	 and	 (2)	
punish	CPU-hogging	 threads.	 The	maximum	priority	 bonus	 is	 ~5,	 since	 lower	priority	 values	
correspond	 to	higher	priority	 received	by	 the	 scheduler.	The	maximum	priority	penalty	 is	+5.	
More	 specifically,	 the	 scheduler	 maintains	 a	 sleep_	 avg	 variable	 associated	 with	 each	 task.	
Whenever	a	 task	 is	 awaken,	 this	variable	 is	 incremented,	whenever	a	 task	 is	preempted	or	 its	
quantum	expires,	 this	variable	 is	decremented	by	 the	 corresponding	value.	This	value	 is	used	
to	dynamically	map	the	task’s	bonus	to	values	from	~5	to	+5.	The	Linux	scheduler	recalculates	
the new priority level as a thread is moved from the active to the expired list. The scheduling 
algorithm	described	in	this	section	refers	to	the	2.6	kernel,	and	was	first	introduced	in	the	unstable	
2.5 kernel. Earlier algorithms exhibited poor performance in multiprocessor settings and did 
not scale well with an increased number of tasks. Since the description presented in the above  



Unit 14: Case Study of Linux Operating System

 LOVELY PROFESSIONAL UNIVERSITY 419

Notesparagraphs indicates that a scheduling decision can be made through access to the appropriate active 
list,	it	can	be	done	in	constant	O(1)	time,	independent	of	the	number	of	processes	in	the	system.

In	addition,	the	scheduler	includes	features	particularly	useful	for	multiprocessor	or	multicore	
platforms.	 First,	 the	 runqueue	 structure	 is	 associated	with	 each	CPU	 in	 the	multiprocessing	
platform.	The	scheduler	tries	to	maintain	benefits	from	affinity	scheduling,	and	to	schedule	tasks	
on	the	CPU	on	which	they	were	previously	executing.	Second,	a	set	of	system	calls	is	available	
to	further	specify	or	modify	the	affinity	requirements	of	a	selected	thread.	Finally,	the	scheduler	
performs	periodic	load	balancing	across	runqueues	of	different	CPUs	to	ensure	that	the	system	
load	is	well	balanced,	while	still	meeting	certain	performance	or	affinity	requirements.

The	scheduler	considers	only	runnable	tasks,	which	are	placed	on	the	appropriate	runqueue.	
Tasks which are not runnable and are waiting on various I/O operations or other kernel events 
are	placed	on	another	data	 structure,	waitqueue.	A	waitqueue	 is	 associated	with	each	event	
that	tasks	may	wait	on.	The	head	of	the	waitqueue	includes	a	pointer	to	a	linked	list	of	tasks	
and	a	spinlock.	The	spinlock	is	necessary	so	as	to	ensure	that	the	waitqueue	can	be	concurrently	
manipulated through both the main kernel code and interrupt handlers or other asynchronous 
invocations.

In	fact,	the	kernel	code	contains	synchronization	variables	in	numerous	locations.	Earlier	Linux	
kernels had just one Big Kernel Lock (BLK).	 This	 proved	 highly	 inefficient,	 particularly	 on	
multiprocessor	platforms,	since	it	prevented	processes	on	different	CPUs	to	execute	kernel	code	
concurrently.	Hence,	many	new	synchonization	points	were	introduced	at	much	finer	granularity.

Self Assessment

Multiple choice questions:

 1. A command line interface is called ..................... .

	 (a)	 Shell	 (b)	 kernel

	 (c)	 Linux	 (d)	 None	of	these

 2. The forking process  is called the ..................... .

	 (a)	 Memory	management	 (b)	 Parent	process

	 (c)	 Loading		process	 (d)	 None	of	these

Fill in the blanks:

 3. The function of Linux system is to ..................... the hardware.

 4. A full desktop environment contains a ..................... which controls the placement and 
appearance of window.

	 5.	 To	make	it	easy	to	specify	multiple	file	names,	the	shell	accepts		.....................	.

14.3 Booting Linux

Details	vary	from	platform	to	platform,	but	 in	general	 the	following	steps	represent	 the	boot	
process.	When	the	computer	starts,	 the	BIOS	performs	Power-On-Self-Test	(POST)	and	initial	
device	 discovery	 and	 initialization,	 since	 the	 OS’	 boot	 process	may	 rely	 on	 access	 to	 disks,	
screens,	keyboards,	etc.	Next,	the	first	sector	of	the	boot	disk,	the	Master Boot Record (MBR) is 
read	into	a	fixed	memory	location	and	executed.	This	sector	contains	a	small	(512-byte)	program	
that loads a standalone program called boot	from	the	boot	device,	usually	an	IDE	or	SCSI	disk.	
The	boot	program	first	copies	itself	to	a	fixed	high	memory	address	to	free	up	low	memory	for	
the operating system.
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Notes Once	moved,	boot	reads	the	root	directory	of	the	boot	device.	To	do	this,	 it	must	understand	
the	file	system	and	directory	format,	which	is	the	case	with	some	bootloaders	such	as	GRUB 
BootloaderGRandUnified	Other	popular	bootloaders,	such	as	Intel’s	LILO,	do	not	rely	on	any	
specific	filesystem.	 Instead,	 they	need	a	block	map,	 and	 low-level	 addresses,	which	describe	
physical	sectors,	heads,	and	cylinders,	to	find	the	relevant	sectors	to	be	loaded.	Then	it	reads	
in	the	operating	system	kernel	and	jumps	to	it.	At	this	point,	boot	has	finished	its	job	and	the	
kernel is running.

The kernel start-up code is written in assembly language and is highly machine dependent. 
Typical	work	 includes	 setting	up	 the	 kernel	 stack,	 identifying	 the	CPU	 type,	 calculating	 the	
amount	 of	 RAM	 present,	 disabling	 interrupts,	 enabling	 the	 MMU,	 and	 finally	 calling	 the	
C-language main procedure to start the main part of the operating system. The C code also 
has	 considerable	 initialization	 to	 do,	 but	 this	 is	 more	 logical	 than	 physical.	 It	 starts	 out	 by	
allocating	a	message	buffer	to	help	debug	boot	problems.	As	initialization	proceeds,	messages	
are	written	here	about	what	 is	happening,	so	 they	can	be	fished	out	after	a	boot	 failure	by	a	
special	diagnostic	program.	Think	of	this	as	the	operating	system’s	cockpit	flight	recorder	(the	
black	box	investigators	look	for	after	a	plane	crash).	Next	the	kernel	data	structures	are	allocated.	
Most	are	fixed	size,	but	a	few,	such	as	the	page	cache	and	certain	page	table	structures,	depend	
on the amount of RAM available.

At	this	point	the	system	begins	autoconfiguration.	Using	configuration	files	telling	what	kinds	of 
I/O	devices	might	be	present,	it	begins	probing	the	devices	to	see	which	ones	actually	are	present.	If	
a	probed	device	responds	to	the	probe,	it	is	added	to	a	table	of	attached	devices.	If	it	fails	to	respond,	
it	is	assumed	to	be	absent	and	ignored	henceforth.	Unlike	traditional	UNIX	versions,	Linux	can	device	
drivers	do	not	need	to	be	statically	linked	and	may	be	loaded	dynamically	(as	can	all	versions	of	 
MS-DOS	 and	Windows,	 incidentally).	 The	 arguments	 for	 and	 against	 dynamically	 loading	
drivers	 are	 interesting	 and	worth	 stating	 briefly.	 The	main	 argument	 for	 dynamic	 loading	
is	 that	a	single	binary	can	be	shipped	 to	customers	with	divergent	configurations	and	have	
it	automatically	load	the	drivers	it	needs,	possibly	even	over	a	network.	The	main	argument	
against	dynamic	loading	is	security.	If	you	are	running	a	secure	site,	such	as	a	bank’s	database	
or	a	corporate	Web	server,	you	probably	want	to	make	it	impossible	for	anyone	to	insert	random	
code into the kernel. The system administrator may keep the operating system sources and 
object	files	on	a	 secured	machine,	do	all	 system	builds	 there,	and	ship	 the	kernel	binary	 to	
other	machines	over	a	local	area	network.	If	drivers	cannot	be	loaded	dynamically,	this	scenario	
prevents machine operators and others who know the superuser password from injecting 
malicious	or	buggy	code	into	the	kernel.	Furthermore,	at	large	sites,	the	hardware	configuration	
is	known	exactly	at	the	time	the	system	is	compiled	and	linked.	Changes	are	sufficiently	rare	
having to relink the system when a new hardware device is added is not an issue.

Once	all	the	hardware	has	been	configured,	the	next	thing	to	do	is	to	carefully	handcraft	process	0,	
set	up	its	stack,	and	run	it.	Process	0	continues	initialization,	doing	things	like	programming	the	 
real-time	clock,	mounting	the	root	file	system,	and	creating	init	(process	1)	and	the	page	daemon	
(process	2).	Init	checks	its	flags	to	see	if	it	is	supposed	to	come	up	single	user	or	multiuser.

In	the	former	case,	it	forks	off	a	process	that	execs	the	shell	and	waits	for	this	process	to	exit.	
In	the	latter	case,	it	forks	off	a	process	that	executes	the	system	initialization	shell	script,	/etc/
rc,	which	can	do	file	system	consistency	checks,	mount	additional	file	systems,	start	daemon	
processes,	 and	 so	 on.	 Then	 it	 reads	 /etc/ttys,	 which	 lists	 the	 terminals	 and	 some	 of	 their	
properties.	For	each	enabled	terminal,	it	forks	off	a	copy	of	itself,	which	does	some	housekeeping	
and then execs a program called getty. Getty sets the line speed and other properties for each 
line	(some	of	which	may	be	modems,	for	example),	and	then	types	login:	on	the	terminal’s	screen	
and tries to read the user’s name from the keyboard. When someone sits down at the terminal 
and	provides	a	login	name,	getty	terminates	by	executing	/bin/login,	the	login	program.	Login	
then	asks	for	a	password,	encrypts	it,	and	verifies	it	against	the	encrypted	password	stored	in	
the	password	file,	/etc/passwd.	If	it	is	correct,	login	replaces	itself	with	the	user’s	shell,	which	
then	waits	for	the	first	command.	If	it	is	incorrect,	login	just	asks	for	another	user	name.	This	
mechanism is illustrated in Figure 14.11 for a system with three terminals.
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NotesFigure 14.11: The Sequence of Processes Used to Boot Some Linux Systems

Process 0

Process 1
Page

daemoninit

login

Terminal 1

Password : sh

Terminal 2

% cp f1 f2Login :

cp

Terminal 0

getty

Process 2

In the Figure	14.11,	the	getty	process	running	for	terminal	0	is	still	waiting	for	input.	On	terminal	
1,	a	user	has	typed	a	login	name,	so	getty	has	overwritten	itself	with	login,	which	is	asking	for	
the	password.	A	successful	login	has	already	occurredon	terminal	2,	causing	the	shell	to	type	the	
prompt	(%).	The	user	then	typed	cp	f1	f2	which	has	caused	the	shell	to	fork	off	a	child	process	and	
have	that	process	exec	the	cp	program.	The	shell	is	blocked,	waiting	for	the	child	to	terminate,	at	
which time the shell will type another prompt and read from the keyboard. If the user at terminal 
2	had	typed	cc	instead	of	cp,	the	main	program	of	the	C	compiler	would	have	been	started,	which	
in turn would have forked off more processes to run the various compilers passes.

14.4 Memory Management in Linux

The Linux memory model is straightforward to make programs portable and to make it possible 
to	 implement	Linux	on	machines	with	widely	differing	memory	management	units,	 ranging	
from	essentially	nothing	(e.g.,	the	original	IBM	PC)	to	sophisticated	paging	hardware.	This	is	
an area of the design that has been barely changed in decades. It has worked well so it has not 
needed much revision. We will now examine the model and how it is implemented.

14.4.1 Fundamental Concepts of Memory Management in Linux
Every	 Linux	 process	 has	 an	 address	 space	 logically	 consisting	 of	 three	 segments:	 text,	 data,	
and stack. An example process’ address space is depicted in Figure 14.12 as process A. The text 
segment contains the machine instructions that form the program’s executable code. It is produced 
by	the	compiler	and	assembler	by	translating	the	C,	C++,	or	other	program	into	machine	code.	
The text segment is normally read-only. Self-modifying programs went out of style in about 
1950	because	they	were	too	difficult	to	understand	and	debug.	Thus	the	text	segment	neither	
grows nor shrinks nor changes in any other way. The data segment contains storage for all the 
program’s	variables,	strings,	arrays,	and	other	data.	It	has	two	parts,	the	initialized	data	and	the	
uninitialized	data.	For	historical	reasons,	the	latter	is	known	as	the	BSS	(historically	called	Block 
Started by Symbol).	The	initialized	part	of	the	data	segment	contains	variables	and	compiler	
constants	that	need	an	initial	value	when	the	program	is	started.	For	example,	in	C	it	is	possible	
to	declare	a	character	string	and	initialize	it	at	the	same	time.	When	the	program	starts	up,	it	
expects	that	the	string	has	its	initial	value.	To	implement	this	construction,	the	compiler	assigns	
the	string	a	location	in	the	address	space,	and	ensures	that	when	the	program	is	started	up,	this	
location	contains	the	proper	string.	From	the	operating	system’s	point	of	view,	initialized	data	
are not all that different from program text both contain bit patterns produced by the compiler 
that must be loaded into memory when the program starts.
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Notes Figure 14.12: (a) Process A’s Virtual Address Space (b) Physical Memory 
(c) Process B’s Virtual Address Space
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The existence of uninitialized data is actually just an optimization. When a global variable is not 
explicitly	initialized,	the	semantics	of	the	C	language	say	that	its	initial	value	is	0.	In	practice,	
most	global	variables	are	not	initialized	explicitly,	and	are	thus	0.	This	could	be	implemented	
by	simply	having	a	section	of	the	executable	binary	file	exactly	equal	to	the	number	of	bytes	of	
data,	and	initializing	all	of	them,	including	the	ones	that	have	defaulted	to	0.	However,	to	save	
space	in	the	executable	file,	this	is	not	done.	Instead,	the	file	contains	all	the	explicitly	initialized	
variables follows the program text. The uninitialized variables are all gathered together after the 
initialized	ones,	so	all	the	compiler	has	to	do	is	to	put	a	word	in	the	header	telling	how	many	bytes	
to	allocate.	To	make	this	point	more	explicit,	consider	Figure	14.12	again.	Here	the	program	text	
is	8	KB	and	the	initialized	data	is	also	8	KB.	The	uninitialized	data	(BSS)	is	4	KB.	The	executable	
file	is	only	16	KB	(text	+	initialized	data),	plus	a	short	header	that	tells	the	system	to	allocate	
another 4 KB after the initialized data and zero it before starting the program. This trick avoids 
storing	4	KB	of	zeros	in	the	executable	file.	In	order	to	avoid	allocating	a	physical	page	frame	
full	of	zeros,	during	initialization	Linux	allocates	a	static	zero	page,	a	write-protected	page	full	
of	zeros.	When	a	process	is	loaded,	its	uninitialized	data	region	is	set	to	point	to	the	zero	page.	
Whenever	a	process	actually	attempts	to	write	in	this	area,	the	copy	on	write	mechanism	kicks	
in,	and	an	actual	page	frame	is	allocated	to	the	process.	Unlike	the	text	segment,	which	cannot	
change,	the	data	segment	can	change.	Programs	modify	their	variables	all	the	time.	Furthermore,	
many	programs	need	 to	allocate	space	dynamically,	during	execution.	Linux	handles	 this	by	
permitting the data segment to grow and shrink as memory is allocated and deallocated. A system 
call,	brk,	is	available	to	allow	a	program	to	set	the	size	of	its	data	segment.	Thus	to	allocate	more	
memory,	a	program	can	increase	the	size	of	its	data	segment.	The	C	library	procedure	malloc,	
commonly	used	to	allocate	memory,	makes	heavy	use	of	this	system	call.	The	process	address	
space descriptor contains information on the range of dynamically allocated memory areas in 
the	process,	typically	called	heap.

The	third	segment	 is	 the	stack	segment.	On	most	of	 the	machines,	 it	starts	at	or	near	 the	 top	
of	the	virtual	address	space	and	grows	down	toward	0.	For	instance,	on	32	bit	×	86	platforms,	
the	stack	starts	at	address	0	×	C0000000,	which	is	the	3	GB	virtual	address	limit	visible	to	the	
process	 in	user	mode.	 If	 the	stack	grows	below	the	bottom	of	 the	stack	segment,	a	hardware	
fault	normally	occurs,	and	the	operating	system	lowers	the	bottom	of	the	stack	segment	by	one	
page. Programs do not explicitly manage the size of the stack segment.
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NotesWhen	a	program	starts	up,	its	stack	is	not	empty.	Instead,	it	contains	all	the	environment	(shell)	
variables as well as the command line typed to the shell to invoke it. In this way a program can 
discover	its	arguments.	For	example,	when	the	command	cp	src	dest	is	typed,	the	cp	program	
is	run	with	the	string	‘’cp	src	dest’’	on	the	stack,	so	it	can	find	out	the	names	of	the	source	and	
destination	files.	The	string	is	represented	as	an	array	of	pointers	to	the	symbols	in	the	string,	
to	make	parsing	easier.	When	two	users	are	running	the	same	program,	such	as	the	editor,	it	
would	be	possible,	but	inefficient,	to	keep	two	copies	of	the	editor’s	program	text	in	memory	at	
once.	Instead,	most	Linux	systems	support	shared text segments.	In	Figure	14.12,	we	see	two	
processes,	A and B,	that	have	the	same	text	segment.	In	Figure	14.12,	we	see	a	possible	layout	
of	physical	memory,	in	which	both	processes	share	the	same	piece	of	text.	The	mapping	is	done	
by	the	virtual	memory	hardware.	Data	and	stack	segments	are	never	shared	except	after	a	fork,	
and	then	only	those	pages	 that	are	not	modified.	 If	either	one	needs	to	grow	and	there	 is	no	
room	adjacent	to	it	to	grow	into,	there	is	no	problem	since	adjacent	virtual	pages	do	not	have	
to map onto adjacent physical pages.

On	 some	 computers,	 the	 hardware	 supports	 separate	 address	 spaces	 for	 instructions	 and	
data.	When	this	feature	is	available,	Linux	can	use	it.	For	example,	on	a	computer	with	32-bit	
addresses,	if	this	feature	is	available,	there	would	be	232	bits	of	address	space	for	instructions	
and an additional 232 bits of address space for the data and stack segments to share. A jump 
to	0	goes	to	address	0	of	text	space,	whereas	a	move	from	0	uses	address	0	in	data	space.	This	
feature doubles the address space available.

In	 addition	 of	 dynamically	 allocating	more	memory,	 processes	 in	 Linux	 can	 access	 file	 data	
through memory-mapped files.	This	feature	makes	it	possible	to	map	a	file	onto	a	portion	of	a	
process’	address	space	so	the	file	can	be	read	and	written	as	if	it	were	a	byte	array	in	memory.	
Mapping	 a	 file	 in	makes	 random	 access	 to	 it	much	 easier	 than	 using	 I/O	 system	 calls	 such	
as read and write. Shared libraries are accessed by mapping them in using this mechanism. 
In	Figure	14.13,	we	see	a	file	that	is	mapped	into	two	processes	at	the	same	time,	at	different	
virtual addresses.

Figure 14.13: Two Processes can Share a Mapped File
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We	can	map	in	the	same	file	at	the	same	time.	In	fact,	by	mapping	in	a	scratch	file	(which	will	
be	discarded	after	all	the	processes	exit),	this	mechanism	provides	a	high	bandwidth	way	for	
multiple	processes	to	share	memory.	In	the	most	extreme	case,	two	or	more	processes	could	map	
in	a	file	that	covers	the	entire	address	space,	giving	a	form	of	sharing	that	is	partway	between	
separate	processes	and	threads.	Here	the	address	space	is	shared	(like	threads),	but	each	process	
maintains	 its	 own	open	files	 and	 signals,	 for	 example,	which	 is	not	 like	 threads.	 In	practice,	
making	two	address	spaces	exactly	correspond	is	never	done,	however.
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Notes 14.4.2 Memory Management System Calls in Linux
POSIX does not specify any system calls for memory management. This topic was considered 
too	machine	 dependent	 for	 standardization.	 Instead,	 the	 problem	was	 swept	 under	 the	 rug	
by saying that programs needing dynamic memory management can use the malloc library 
procedure	(defined	by	the	ANSI	C	standard).	How	malloc	is	implemented	is	thus	moved	outside	
the	scope	of	the	POSIX	standard.	In	some	circles,	this	approach	is	known	as	passing the buck. 
In	practice,	most	Linux	systems	have	system	calls	 for	managing	memory.	The	most	common	
ones	are	listed	in	Figure	14.14.	Brk	specifies	the	size	of	the	data	segment	by	giving	the	address	of	
the	first	byte	beyond	it.	If	the	new	value	is	greater	than	the	old	one,	the	data	segment	becomes	
larger; otherwise it shrinks.

Figure 14.14: Some System Calls Relating to Memory Management

System call Description
s = brk(addr) Change data segment size
a = mmap(addr, len, prot, flags, fd, offset) Map a file in
s = unmap(addr, len) Unmap a file

The return code s is ~1 if an	error	has	occurred;	 a	 and	addr	are	memory	addresses,	 len	 is	 a	
length,	prot	controls	protection,	flags	are	miscellaneous	bits,	 fd	 is	a	file	descriptor,	and	offset	
is	a	file	offset.	The	mmap	and	munmap	system	calls	 control	memory-mapped	files.	The	first	
parameter	 to	 mmap,	 addr,	 determines	 the	 address	 at	 which	 the	 file	 (or	 portion	 thereof)	 is	
mapped.	It	must	be	a	multiple	of	the	page	size.	If	this	parameter	is	0,	the	system	determines	the	
address	itself	and	returns	it	in	a.	The	second	parameter,	len,	tells	how	many	bytes	to	map.	It,	
too,	must	be	a	multiple	of	the	page	size.	The	third	parameter,	prot,	determines	the	protection	for	
the	mapped	file.	It	can	be	marked	readable,	writable,	executable,	or	some	combination	of	these.	
The	fourth	parameter,	flags,	controls	whether	the	file	is	private	or	sharable,	and	whether	addr	
is	a	requirement	or	merely	a	hint.	The	fifth	parameter,	fd,	is	the	file	descriptor	for	the	file	to	be	
mapped.	Only	open	files	can	be	mapped,	so	to	map	a	file	in,	 it	must	first	be	opened.	Finally,	
offset	 tells	where	 in	the	file	 to	begin	the	mapping.	 It	 is	not	necessary	to	start	 the	mapping	at	
byte	0;	any	page	boundary	will	do.	The	other	call,	unmap,	removes	a	a	mapped	file.	If	only	a	
portion	of	the	file	is	unmapped,	the	rest	remains	mapped.

14.4.3 Implementation of Memory Management in Linux 

Each	Linux	process	on	a	32	bit	machine	typically	gets	3	GB	of	virtual	address	space	for	itself,	
with the remaining 1 GB reserved for its page tables and other kernel data. The kernel’s 1 GB 
is	not	visible	when	running	in	user	mode,	but	becomes	accessible	when	the	process	traps	into	
the	kernel.	The	kernel	memory	typically	resides	in	low	physical	memory,	however	it	is	mapped	
in	the	top	1	GB	of	each	process	virtual	address	space,	between	addresses	0×C0000000	and	
0×FFFFFFFF	 (3-4	 GB).	 The	 address	 space	 is	 created	 when	 the	 process	 is	 created	 and	 is	
overwritten on an exec system call.

In order to allow multiple processes to share the underlying physical memory Linux monitors 
the	use	of	the	physical	memory,	allocates	more	memory	as	needed	by	user	processes	or	kernel	
components,	 dynamically	 maps	 portions	 of	 the	 physical	 memory	 into	 the	 address	 space	 of	
different	processes,	and	dynamically	brings	 in	and	out	of	memory	program	executables,	files	
and	other	state,	necessary	to	utilize	the	platform	resources	efficiently	and	to	ensure	execution	
progress. The remainder of this unit describes the implementation of various mechanisms in 
the Linux kernel which are responsible for these operations.
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Notes14.4.4 Physical Memory Management 
Due	 to	 idiosyncratic	hardware	 limitations	on	many	systems,	not	all	physical	memory	can	be	
treated	identically.	Linux	distinguishes	between	three	memory	zones:

1.	ZONE_	DMA	—	pages	that	can	be	used	for	DMA	operations.

2.	ZONE_	NORMAL	—	normal,	regularly-mapped	pages.

3.	ZONE_	HIGHMEM	—	pages	with	high	memory	addresses,	which	are	not	permanently	mapped.

The exact boundaries and layout of the memory zones is architecture dependent. On x86 
hardware,	 certain	 devices	 can	 perform	DMA	 operations	 only	 in	 the	 first	 16	MB	 of	 address	
space,	hence	ZONE_	DMA	is	in	the	range	0–16	MB.	In	addition,	the	hardware	cannot	directly	
map	memory	addresses	above	896	MB,	hence	ZONE_	HIGHMEM	is	anything	above	this	mark.	
ZONE_	NORMAL	is	anything	in	between.	Therefore,	on	x86	platforms,	the	first	896	MB	of	the	
Linux	address	space	are	directly	mapped,	whereas	the	remaining	128	MB	of	the	kernel	address	
space are used to access high memory regions. The kernel maintains a zone structure for each 
of	the	three	zones,	and	can	perform	memory	allocations	for	the	three	zones	separately.

Main	memory	in	Linux	consists	of	three	parts.	The	first	two	parts,	the	kernel	and	memory	map,	are	
pinned	in	memory	(i.e.,	never	paged	out).	The	rest	of	memory	is	divided	into	page	frames,	each	of	 
which	 can	 contain	 a	 text,	 data,	 or	 stack	 page,	 a	 page	 table	 page,	 or	 be	 on	 the	 free	 list.	 The	
kernel maintains a map of the main memory which contains all information about the use of 
the	physical	memory	in	the	system,	such	as	its	zones,	free	page	frame	s,	etc.	The	information	
is	organized	as	follows.	First	of	all,	Linux	maintains	an	array	of	page descriptors,	of	type	page	
for	each	physical	page	frame	in	the	system,	called	mem_	map.	Each	page	descriptor	contains	a	
pointer	to	the	address	space	it	belongs	to,	in	case	the	page	is	not	free,	a	pair	of	pointers	which	
allow	it	to	form	doubly-linked	lists	with	other	descriptors,	for	instance	to	keep	together	all	free	
page	frames,	and	few	other	fields.	In	Figure	14.15,	the	page	descriptor	for	page	150	contains	a	
mapping to the address. 

Figure 14.15: Linux Main Memory Representation
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Notes The	 size	 of	 the	 page	 descriptor	 is	 32	 bytes,	 therefore	 the	 entire	memory	map	 can	 consume	
less	than	1%	of	the	physical	memory	(for	a	page	frame	of	4	KB).	Since	the	physical	memory	is	
divided	into	zones,	for	each	zone	Linux	maintains	a	zone	descriptor.	The	zone	descriptor	contains	
information	about	the	memory	utilization	within	each	zone,	such	as	number	of	active	or	inactive	
pages,	low	and	high	watermarks	to	be	used	by	the	page	replacement	algorithm	described	later	
in	this	chapter,	as	well	as	many	other	fields.

In	 addition,	 a	 zone	 descriptor	 contains	 an	 array	 of	 free	 areas.	 The	 ith	 element	 in	 this	 array,	
identifies	the	first	page	descriptor	of	the	first	block	of	2i	free	pages.	Since	there	may	be	multiple	
blocks	of	2i	free	pages,	Linux	uses	the	pair	of	page	descriptor	pointers	in	each	page	element,	
to link these together. This information is used in the memory allocation operations supported 
in	Linux.	In	Figure	14.15	free	area[0],	which	identifies	all	free	areas	of	main	memory	consisting	
of	only	one	page	frame	(since	20	is	one),	points	to	page	70,	the	first	one	of	the	three	free	areas.	
The other free blocks of size one can be reached through the links in each.

Figure 14.16: Linux Uses Four-level Page Tables 
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Physical memory is used for various purposes. The kernel itself is fully hardwired; no part 
of	it	 is	ever	paged	out.	The	rest	of	memory	is	available	for	user	pages,	the	paging	cache,	and	
other	purposes.	The	page	cache	holds	pages	containing	file	blocks	that	have	recently	been	read	
or	have	been	read	in	advance	in	expectation	of	being	used	in	the	near	future,	or	pages	of	file	
blocks	which	need	to	be	written	to	disk,	such	as	those	which	have	been	created	from	user	mode	
processes which have been swapped out to disk. It is dynamic in size and competes for the same 
pool	of	pages	as	the	user	processes.	The	paging	cache	is	not	really	a	separate	cache,	but	simply	
the set of user pages that are no longer needed and are waiting around to be paged out. If a 
page	in	the	paging	cache	is	reused	before	it	is	evicted	from	memory,	it	can	be	reclaimed	quickly.	
In	addition,	Linux	supports	dynamically	loaded	modules,	generally	device	drivers.	These	can	
be of arbitrary size and each one must be allocated a contiguous piece of kernel memory. As a 
consequence	of	these	requirements,	Linux	manages	physical	memory	in	such	a	way	that	it	can	
acquire	an	arbitrary-sized	piece	of	memory	at	will.	The	algorithm	it	uses	is	known	as	the	buddy	
algorithm and is described below.

14.4.5 Memory Allocation Mechanisms
Linux supports several mechanisms for memory allocation. The main mechanism for allocating 
new page frames of physical memory is the page allocator,	which	operates	using	the	so	called	
buddy algorithm. The basic idea for managing a chunk of memory is as follows. Initially memory 
consists	of	a	single	contiguous	piece,	64	pages	in	the	simple	example	of	Figure	14.17:	When	a	
request	 for	memory	comes	 in,	 it	 is	first	 rounded	up	to	a	power	of	 two,	say	8	pages.	The	 full	
memory	chunk	 is	 then	divided	 in	half,	as	shown	in	 (b).	Since	each	of	 these	pieces	 is	still	 too	
large,	the	lower	piece	is	divided	in	half	again	(c)	and	again	(d).	Now	we	have	a	chunk	of	the	
correct	size,	so	it	is	allocated	to	the	caller,	as	shown	shaded	in	(d).
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NotesFigure 14.17: Operation of the Buddy Algorithm

Now suppose	that	a	second	request	comes	in	for	8	pages.	This	can	be	satisfied	hardwired;	
no	part	of	it	 is	ever	paged	out.	The	rest	of	memory	is	available	for	user	pages,	the	paging	
cache,	 and	 other	 purposes.	 The	 page	 cache	 holds	 pages	 containing	 file	 blocks	 that	 have	
recently been read or have been read in advance in expectation of being used in the near 
future,	or	pages	of	file	blocks	which	need	to	be	written	to	disk,	such	as	those	which	have	
been created from user mode processes which have been swapped out to disk. It is dynamic 
in size and competes for the same pool of pages as the user processes. The paging cache 
is	not	 really	a	 separate	 cache,	but	 simply	 the	 set	of	user	pages	 that	are	no	 longer	needed	
and are waiting around to be paged out. If a page in the paging cache is reused before it is 
evicted	from	memory,	it	can	be	reclaimed	quickly.

Buddy algorithm leads to considerable internal fragmentation because if you want a 65-page 
chunk,	you	have	to	ask	for	and	get	a	128-page	chunk.	To	alleviate	this	problem,	Linux	has	a	
second	memory	allocation,	the	slab allocator,	that	takes	chunks	using	the	buddy	algorithm	
but	then	carves	slabs	(smaller	units)	from	them	and	manages	the	smaller	units	separately.	
Since	the	kernel	frequently	creates	and	destroy	objects	of	certain	type	(e.g.,	task_	struct),	it	
relies on so called object caches. These caches consist of pointers to one or more slab which 
can	store	a	number	of	objects	of	the	same	type.	Each	of	the	slabs	may	be	full,	partially	full,	
or empty.

For	 instance,	when	 the	 kernel	 needs	 to	 allocate	 a	 new	 process	 descriptor,	 that	 is,	 a	 new 
task_struct	it	looks	in	the	object	cache	for	task	structures,	and	first	tries	to	find	a	partially	full	
slab,	and	allocate	a	new	task_	struct	object	there.	If	no	such	slab	is	available,	it	looks	through	
the	list	of	empty	slabs.	Finally,	if	necessary,	it	will	allocate	a	new	slab,	place	the	new	task	
structure	there,	and	link	this	slab	with	the	task	structure	object	cache.	The	kmalloc	kernel	
service,	 which	 allocates	 physically	 contiguous	 memory	 regions	 in	 the	 kernel	 address	
space,	is	in	fact	built	on	top	of	the	slab	and	object	cache	interface	described	here.	A	third	
memory	 allocator,	 vmalloc,	 is	 also	 available	 and	 is	 used	when	 the	 requested	memory	
need	only	be	contiguous	in	virtual	space,	but	not	 in	physical	memory.	In	practice,	 this	
is	 true	 for	most	of	 the	 requested	memory.	One	exception	 is	devices,	which	 live	on	 the	
other	side	of	the	memory	bus	and	the	memory	management	unit,	and	therefore	do	not	
understand	virtual	addresses.	However,	the	use	of	vmalloc	results	in	some	performance	
degradation,	 and	 is	 used	 primarily	 for	 allocating	 large	 amounts	 of	 contiguous	 virtual	
address	space,	such	as	for	dynamically	inserting	kernel	modules.	All	these	memory	allocators	
are derived from those in System V.
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Notes 14.4.6 Virtual Address Space Representation

The	 virtual	 address	 space	 is	 divided	 into	 homogeneous,	 contiguous,	 page	 aligned	 areas	
or	 regions.	 That	 is	 to	 say,	 each	 area	 consists	 of	 a	 run	 of	 consecutive	 pages	 with	 the	 same	
protection	and	paging	properties.	The	 text	 segment	and	mapped	files	are	examples	of	areas.	
There can be holes in the virtual address space between the areas. Any memory reference to 
a	hole	results	 in	a	 fatal	page	 fault.	The	page	size	 is	fixed,	 for	example,	4	KB	for	 the	Pentium	
and	 8	 KB	 for	 the	 Alpha.	 Starting	 with	 the	 Pentium,	 which	 supports	 page	 frames	 of	 4	MB,	
Linux	can	support	jumbo	page	frames	of	4	MB	each.	In	addition,	in	a	PAE (Physical Address 
Extension)	mode,	which	is	used	on	certain	32	bit	architecture	to	increase	the	process	address	
space	 beyond	 4	GB,	 page	 sizes	 of	 2	MB	 are	 supported.	 Each	 area	 is	 described	 in	 the	 kernel	
by	a	vm_	area_	 struct	 entry.	All	 the	vm_	area_	 structs	 for	 a	process	are	 linked	 together	 in	a	
list	sorted	on	virtual	address	so	all	the	pages	can	be	found.	When	the	list	gets	too	long	(more	
than	 32	 entries),	 a	 tree	 is	 created	 to	 speed	 up	 searching.	 The	 vm_	 area_	 struct	 entry	 lists	 
the	area’s	properties.	These	include	the	protection	mode	(e.g.,	read	only	or	read/write),	whether	
it	is	pinned	in	memory	(not	pageable),	and	which	direction	it	grows	in	(up	for	data	segments,	
down	for	stacks).

The	vm_	area_	struct	also	records	whether	the	area	is	private	to	the	process	or	shared	with	one	
or	more	other	processes.	After	a	fork,	Linux	makes	a	copy	of	the	area	list	for	the	child	process,	
but sets up the parent and child to point to the same page tables. The areas are marked as 
read/write,	but	 the	pages	are	marked	as	read	only.	 If	either	process	tries	 to	write	on	a	page,	
a protection fault occurs and the kernel sees that the area is logically writable but the page is 
not,	so	it	gives	the	process	a	copy	of	the	page	and	marks	it	read/write.	This	mechanism	is	how	
copy on write is implemented.

The	vm_	area_	struct	also	records	whether	the	area	has	backing	storage	on	disk	assigned,	and	
if	so,	where.	Text	segments	use	the	executable	binary	as	backing	storage	and	memory-mapped	
files	use	 the	disk	file	as	backing	storage.	Other	areas,	 such	as	 the	stack,	do	not	have	backing	
storage assigned until they have to be paged out.

A	top-level	memory	descriptor,	mm_	struct,	gathers	information	about	all	virtual	memory	areas	
belonging	 to	an	address	 space,	 information	about	 the	different	 segments	—	 text,	data,	 stack,	
about	users	sharing	this	address	space,	etc.	All	vm_	area_	struct	elements	of	an	address	space	
can	be	accesses	through	its	memory	descriptor	in	two	ways.	First,	they	are	organized	in	a	linked	
lists,	ordered	by	virtual	memory	addresses.	This	way	is	useful	when	all	virtual	memory	areas	
need	to	be	accessed,	or	when	the	kernel	 is	searching	to	allocated	a	virtual	memory	region	of	
a	specific	size.	In	addition,	the	vm_	area_	struct	entries	are	organized	in	a	binary	‘’red-black’’	
tree,	a	data	structure	optimized	for	fast	 lookups.	This	method	is	used	when	a	specific	virtual	
memory needs to be accessed. By enabling access to elements of the process address space via 
these	two	methods,	Linux	uses	more	state	per	process	but	allows	different	kernel	operations	to	
use	the	access	method	which	is	more	efficient	for	the	task	at	hand.

14.4.7 Paging in Linux

Early UNIX systems relied on a swapper process to move entire processes between memory 
and	disk,	whenever	not	all	active	processes	could	fit	in	the	physical	memory.	Linux,	as	well	as	
other	modern	UNIX	versions,	no	longer	move	entire	processes.	The	main	memory	management	
unit is a page and	almost	all	memory	management	components,	operate	on	a	page	granularity.	
The swapping subsystem also operates on page granularity and is tightly coupled with the Page 
Frame Reclaiming Algorithm,	described	later	in	this	section.

The	basic	idea	behind	paging	in	Linux	is	simple:	a	process	need	not	be	entirely	in	memory	in	
order	to	run.	All	that	is	actually	required	is	the	user	structure	and	the	page	tables.	If	these	are	
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Notesswapped	in,	the	process	is	deemed	‘’in	memory’’	and	can	be	scheduled	to	run.	The	pages	of	the	
text,	data,	and	stack	segments	are	brought	in	dynamically,	one	at	a	time,	as	they	are	referenced.	If	
the	user	structure	and	page	table	are	not	in	memory,	the	process	cannot	be	run	until	the	swapper	
brings them in. Paging is implemented partly by the kernel and partly by a new process called 
the page daemon.	The	page	daemon	is	process	2	(process	0	is	the	idle	process	traditionally	called	
the	swapper	and	process	1	is	in	it,	as	shown	in	Figure	14.12).

Like	all	daemons,	the	page daemon is started up periodically so it can look around to see if there is 
any work for it to do. If it discovers that the number of pages on the list of free memory pages is too 
low,	it	initiates	action	to	free	up	more	pages.	Linux	is	a	demand-paged	system	with	no	prepaging	and	
no	working	set	concept	(although	there	is	a	system	call	in	which	a	user	can	give	a	hint	that	a	certain	
page	may	be	needed	soon,	in	the	hopes	it	will	be	there	when	needed).	Text	segments	and	mapped	
files	are	paged	to	their	respective	files	on	disk.	Everything	else	is	paged	to	either	the	paging	partition	 
(if	 present)	 or	 one	 of	 the	fixed-length	paging	files,	 called	 the	 swap area.	 Paging	files	 can	 be	
added	and	removed	dynamically	and	each	one	has	a	priority.	Paging	to	a	separate	partition,	
accessed	as	a	raw	device,	 is	more	efficient	 than	paging	to	a	file	 for	several	reasons.	First,	 the	
mapping	between	file	blocks	and	disk	blocks	 is	not	needed	 (saves	disk	 I/O	reading	 indirect	
blocks).	Second,	the	physical	writes	can	be	of	any	size,	not	just	the	file	block	size.	Third,	a	page	
is	always	written	contiguously	to	disk;	with	a	paging	file,	it	may	or	may	not	be.

Pages are not allocated on the paging device or partition until they are needed. Each device and 
file	starts	with	a	bitmap	telling	which	pages	are	free.	When	a	page	without	backing	store	has	to	
be	tossed	out	of	memory,	the	highest	priority	paging	partition	or	file	that	still	has	space	is	chosen	
and	a	page	allocated	on	it.	Normally,	the	paging	partition,	if	present,	has	higher	priority	than	
any	paging	file.	The	page	table	is	updated	to	reflect	that	the	page	is	no	longer	present	in	memory	
(e.g.,	the	page-not-present	bit	is	set)	and	the	disk	location	is	written	into	the	page	table	entry.

14.4.8 Page Replacement Algorithm

Page replacement works as follows. Linux tries to keep some pages free so they can be claimed 
as	 needed.	Of	 course,	 this	 pool	must	 be	 continually	 replenished,	 so	 the	PFRA (Page Frame 
Reclaiming Algorithm) algorithm is how this happens.

First	of	all,	Linux	distinguishes	between	four	different	types	of	pages:	unreclaimable,	swappable,	
syncable,	 and	 discardable.	 Unreclaimable	 pages,	 which	 include	 reserved	 or	 locked	 pages,	
kernel	mode	stacks,	etc.,	may	not	be	paged	out.	Swappable	pages	must	be	written	back	to	the	
swap area or the paging disk partition before the page can be reclaimed. Syncable pages must 
be	written	back	 to	disk	 if	 they	have	been	marked	as	dirty.	Finally,	discardable	pages	 can	be	
reclaimed immediately.

At	boot	time,	init	starts	up	a	page	daemon,	kswapd,	one	per	each	memory	node,	and	configures	
them to run periodically. Each time kswapd	awakens,	 it	checks	to	see	if	 there	are	enough	free	
pages	available,	by	comparing	the	low	and	high	watermarks	with	the	current	memory	usage	for	
each	memory	zone.	If	there	is	enough	memory,	it	goes	back	to	sleep,	although	it	can	be	awakened	
early if more pages are suddenly needed. If the available memory for any of the zones falls 
below	a	threshold,	kswapd	initiates	the	page	frame	reclaiming	algorithm.	During	each	run,	only	
a	certain	 target	number	of	pages	 is	 reclaimed,	 typically	32.	This	number	 is	 limited	 to	control	
the	 I/O	pressure	 (the	number	of	disk	writes,	created	during	 the	PFRA	operations).	Both,	 the	
number	of	reclaimed	pages	and	the	total	number	of	scanned	pages	are	configurable	parameters.

Each	 time	PFRA	executes,	 it	 first	 tries	 to	 reclaim	 easy	pages,	 then	proceeds	with	 the	 harder	
ones. Discardable and unreferenced pages can be reclaimed immediately by moving them onto 
the	zone’s	freelist.	Next,	it	looks	for	pages	with	backing	store	which	have	not	been	referenced	
recently,	using	a	clock-like	algorithm.	Following	are	shared	pages	that	none	of	the	users	seems	
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Notes to	be	using	much.	The	 challenge	with	 shared	pages	 is	 that,	 if	 a	page	 entry	 is	 reclaimed,	 the	
page tables of all address spaces originally sharing that page must be updated in a synchronous 
manner.	Linux	maintains	efficient	tree	like	data	structures	to	easily	find	all	users	of	a	shared	page.	
Ordinary	user	pages	are	searched	next,	and	if	chosen	to	be	evicted,	they	must	be	scheduled	for	
write in the swap area. The swappiness of	the	system,	that	is,	the	ratio	of	pages	with	backing	
store	versus	pages	which	need	to	be	swapped	out	selected	during	PFRA,	is	a	tunable	parameter	
of the algorithm.

Finally,	if	a	page	is	invalid,	absent	from	memory,	shared,	locked	in	memory,	or	being	used	for	
DMA,	it	is	skipped.	PFRA	uses	a	clock-like	algorithm	to	select	old	pages	for	eviction	within	a	
certain category. At the core of this algorithm is a loop which scans through each zone’s active 
and	inactive	lists,	trying	to	reclaim	different	kinds	of	pages,	with	different	urgency.	The	urgency	
value is passed as a parameter telling the procedure how much effort to expend to reclaim some 
pages.	Usually,	this	means	how	many	pages	to	inspect	before	giving	up.

During	PFRA,	pages	are	moved	between	the	active	and	inactive	list	in	a	manner	described	in	
Figure	14.18	maintain	try	to	find	pages	which	have	not	been	referenced	and	are	unlikely	to	be	
needed	in	the	near	future,	PFRA	maintains	two	flags	per	page—active/inactive,	and	referenced	
or	not.	These	two	flags	encode	four	states,	as	shown	in	Figure	14.18	during	first	set	of	pages,	
PFRA	first	clears	their	reference	bits.	If	during	the	second	run	over	the	page	it	is	determined	that	
it	has	been	referenced,	it	is	advanced	to	another	state,	from	which	it	is	less	likely	to	be	reclaimed.	
Otherwise,	the	page	is	moved	to	a	state	from	where	it	will	more	likely	to	be	evicted.	Pages	on	
the	inactive	list,	which	have	not	been	referenced	since	the	last	time	they	were	inspected,	are	best	
candidates	for	eviction.	These	correspond	to	pages	with	both	PG	active	and	PG	referenced	equal	
to	zero	in	Figure	14.18	ever	necessary,	pages	may	be	reclaimed	even	if	they	are	in	some	of	the	
other	states.	The	refill	arrows	in	Figure	14.18	considered	in	the	page	frame	replacement	algorithm.

Figure 14.18: Refill Arrows in Page Frame Replacement Algorithm 
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The reason PRFA maintains pages in the inactive list although they might have referenced is 
to prevent following situations. Consider a process which makes periodic accesses to different 
pages,	with	a	1-hour	period.	A	page	accessed	since	the	last	loop	will	have	its	reference	flag	set.	
However,	since	it	will	not	be	needed	again	for	the	next	hour,	there	is	no	reason	not	to	consider	
it as a candidate for reclamation.

One other aspect of the memory management system that we have not yet mentioned is a second 
daemon,	 pdflush,	 actually	 a	 set	 of	 background	 daemon	 threads.	 The	 pdflush	 threads	 either 
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Notes(1)	wake	up	periodically,	 typically	each	500	msec,	 to	write	back	to	disk	very	old	dirty	pages,	
or	(2)	are	explicitly	awakened	by	the	kernel	when	available	memory	levels	fall	below	a	certain	
threshold,	to	write	back	dirty	pages	from	the	page	cache	to	disk.	In	laptop mode,	 in	order	to	
conserve	battery	life,	dirty	pages	are	written	to	disk	whenever	pdflush	threads	wakeup.	Dirty	
pages	may	also	be	written	out	to	disk	on	explicit	requests	for	synchronization,	via	systems	calls	
such	as	sync,	orfsync,	fdatasync.	Older	Linux	versions	used	two	separate	daemons:	kupdate,	for	
old	page	write	back,	and	bdflush,	for	page	write	back	under	low	memory	conditions.	In	the	2.4	
kernel	this	functionality	was	integrated	in	the	pdflush	threads.	The	choice	of	multiple	threads	
was made in order to hide long disk latencies.

14.5 Input/Output in Linux

The	I/O	system	in	Linux	is	fairly	straightforward.	Basically,	all	I/O	devices	are	made	to	look	
like	files	and	are	accessed	as	such	with	the	same	read	and	write	system	calls	that	are	used	to	
access	all	ordinary	files.	In	some	cases,	device	parameters	must	be	set,	and	this	is	done	using	a	
special system call. We will study these issues in the following sections. 

14.5.1 Fundamental Concepts of Input/Output in Linux
Like	all	computers,	those	running	Linux	have	I/O	devices	such	as	disks,	printers,	and	networks	
connected to them. Some way is needed to allow programs to access these devices. Although 
various	 solutions	 are	 possible,	 the	 Linux	 one	 is	 to	 integrate	 the	 devices	 into	 the	 file	 system	
as what are called special files.	 Each	 I/O	device	 is	 assigned	 a	 path	 name,	 usually	 in	 /dev.	
For	example,	a	disk	might	be	/dev/hd1,	a	printer	might	be	/dev/lp,	and	the	network	might	
be	/dev/net.	These	 special	files	 can	be	accessed	 the	 same	way	as	any	other	files.	No	special	
commands	or	system	calls	are	needed.	The	usual	open,	read,	and	write	system	calls	will	do	just	
fine.	For	example,	the	command	cp	file	/dev/lp copies the file	to	printer,	causing	it	to	be	printed	
(assuming	that	the	user	has	permission	to	access	/dev/lp).	Programs	can	open,	read,	and	write	
special	files	the	same	way	as	they	do	regular	files.	In	fact,	cp in the above example is not even 
aware	 that	 it	 is	printing.	 In	 this	way,	no	special	mechanism	 is	needed	 for	doing	Special	files	
are	divided	into	two	categories—block	and	character.	A	block special file is one consisting of 
a	sequence	of	numbered	blocks.	The	key	property	of	the	block	special	file	is	that	each	block	can	
be	 individually	addressed	and	accessed.	 In	other	words,	a	program	can	open	a	block	special	
file	and	read,	say,	block	124	without	first	having	to	read	blocks	0	to	123.	Block	special	files	are	
typically used for disks.

Character special files are normally used for devices that input or output a character stream. 
Keyboards,	 printers,	 networks,	 mice,	 plotters,	 and	 most	 other	 I/O	 devices	 that	 accept	 or	
produce	data	 for	people	use	character	 special	files.	 It	 is	not	possible	 (or	even	meaningful)	 to	
seek	to	block	124	on	a	mouse.	Associated	with	each	special	file	is	a	device	driver	that	handles	
the corresponding device. Each driver has what is called a major device number that serves 
to	identify	it.	If	a	driver	supports	multiple	devices,	say,	two	disks	of	the	same	type,	each	disk	
have a minor device number	that	identifies	it.	Together,	the	major	and	minor	device	numbers	
uniquely	 specify	 every	 I/O	device.	 In	 few	 cases,	 a	 single	driver	 handles	 two	 closely	 related	
devices.	For	example,	the	driver	corresponding	to	/dev/tty controls both the keyboard and the 
screen,	which	is	often	thought	of	as	a	single	device,	the	terminal.

Although	most	 character	 special	 files	 cannot	 be	 randomly	 accessed,	 they	 often	 need	 to	 be	
controlled	 in	ways	 that	block	special	files	do	not.	For	example,	 input	 typed	on	 the	keyboard	
and displayed on the screen. When a user makes a typing error and wants to erase the last 
character	 typed,	 he	 presses	 some	key.	 Some	user	 prefer	 to	 use	 backspace,	 and	 others	 prefer	
DEL.	Similarly,	to	erase	the	entire	line	 just	typed,	many	conventions	abound.	Traditionally	@	
was	used,	but	with	the	spread	of	e-mail	(which	uses	@	within	e-mail	address),	many	systems	
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Notes have	adopted	CTRL-U	or	 some	other	 character.	Likewise,	 to	 interrupt	 the	 running	program,	
some	special	key	must	be	hit.	Here,	too,	different	users	have	different	preferences.	CTRL-C	is	
a	common	choice,	but	it	is	not	universal.

Rather	 than	making	 a	 choice	 and	 forcing	 everyone	 to	 use	 it,	 Linux	 allows	 all	 these	 special	
functions and many others to be customized by the user. A special system call is generally 
provided	for	setting	these	options.	This	system	call	also	handles	tab	expansion,	enabling	and	
disabling	of	character	echoing,	conversion	between	carriage	return	and	line	feed,	and	similar	
items.	The	system	call	is	not	permitted	on	regular	files	or	block	special	files.	

14.5.2 Networking
Another	example	of	I/O	is	networking,	as	pioneered	by	Berkeley	UNIX	and	taken	over	by	Linux	
more-or-less verbatim. The key concept in the Berkeley design is the socket. Sockets are analogous 
to	mailboxes	and	telephone	wall	sockets	in	that	they	allow	users	to	interface	to	the	network,	just	as	 
mailboxes allow people to interface to the postal system and telephone wall sockets allow them 
to plug in telephones and connect to the telephone system. The sockets’ position is shown in 
Figure 14.19.

Figure 14.19: The Uses of Sockets for Networking

Sockets can be created and	destroyed	dynamically.	Creating	a	socket	returns	a	file	descriptor,	
which	 is	 needed	 for	 establishing	 a	 connection,	 reading	data,	writing	data,	 and	 releasing	 the	
connection.	Each	socket	supports	a	particular	type	of	networking,	specified	when	the	socket	is	
created.	The	most	common	types	are:

 1. Reliable connection-oriented byte stream.

 2. Reliable connection-oriented packet stream.

 3. Unreliable packet transmission.

The	first	socket	type	allows	two	processes	on	different	machines	to	establish	the	equivalent	of	
a pipe between them. Bytes are pumped in at one end and they come out in the same order at 
the other. The system guarantees that all bytes that are sent arrive and in the same order they 
were	sent.	The	second	type	is	similar	to	the	first	one,	except	that	it	preserves	packet	boundaries.	
If	the	sender	makes	five	separate	calls	to	write,	each	for	512	bytes,	and	the	receiver	asks	for	2560	
bytes,	with	a	type	1	socket,	all	2560	bytes	will	be	returned	at	once.	With	a	type	2	socket,	only	
512 bytes will be returned. Four more calls are needed to get the rest. The third type of socket 
is used to give the user access to the raw network. This type is especially useful for real-time 
applications,	and	for	those	situations	in	which	the	user	wants	to	implement	a	specialized	error	
handling scheme. Packets may be lost	or	reordered	by	the	network.	There	are	no	guarantees,	
as	in	the	first	two	cases.	The	advantage	of	this	mode	is	higher	performance,	which	sometimes	
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Notesoutweighs reliability	 (e.g.,	 for	multimedia	delivery,	 in	which	being	fast	counts	 for	more	 than	
being	right).	When	a	socket	is	created,	one	of	the	parameters	specifies	the	protocol	to	be	used	for	
it.	For	reliable	byte	streams,	the	most	popular	protocol	is	TCP (Transmission Control Protocol). 
For	unreliable	packet-oriented	transmission,	UDP (User Datagram Protocol) is the usual choice. 
Both are these are layered on top of IP (Internet Protocol). All of these protocols originated 
with	the	U.S.	Dept.	of	Defense’s	ARPANET,	and	now	form	the	basis	of	 the	Internet.	There	is	
no	common	protocol	for	reliable	packet	streams.	Before	a	socket	can	be	used	for	networking,	it	
must have an address bound to it. This address can be in one of several naming domains. The 
most	common	domain	 is	 the	 Internet	naming	domain,	which	uses	32-bit	 integers	 for	naming	
endpoints	in	Version	4	and	128-bit	integers	in	Version	6	(Version	5	was	an	experimental	system	
that	never	made	it	to	the	major	leagues).

Once	sockets	have	been	created	on	both	the	source	and	destination	computers,	a	connection	can	be	
established	between	them	(for	connection-oriented	communication).	One	party	makes	a	listen	system	
call	on	a	local	socket,	which	creates	a	buffer	and	blocks	until	data	arrive.	The	other	one	makes	a	 
connect	system	call,	giving	as	parameters	the	file	descriptor	for	a	local	socket	and	the	address	
of	a	remote	socket.	If	the	remote	party	accepts	the	call,	the	system	then	establishes	a	connection	
between	 the	 sockets.	 Once	 a	 connection	 has	 been	 established,	 it	 functions	 analogously	 to	 a	
pipe.	A	process	can	read	and	write	from	it	using	the	file	descriptor	for	its	local	socket.	When	
the	connection	is	no	longer	needed,	it	can	be	closed	in	the	usual	way,	via	the	close	system	call.

14.5.3 Input/Output System Calls in Linux
Each	I/O	device	in	a	Linux	system	generally	has	a	special	file	associated	with	it.	Most	I/O	can	
be	done	by	just	using	the	proper	file,	eliminating	the	need	for	special	system	calls.	Nevertheless,	
sometimes	 there	 is	 a	 need	 for	 something	 that	 is	 device	 specific.	 Prior	 to	 POSIX	most	UNIX	
systems	 had	 a	 system	 call	 ioctl	 that	 performed	 a	 large	 number	 of	 device-specific	 actions	 on	
special	files.	Over	the	course	of	the	years,	it	had	gotten	to	be	quite	a	mess.	POSIX	cleaned	it	up	
by	splitting	its	 functions	 into	separate	function	calls	primarily	for	terminal	devices.	 In	Linux,	
and	modern	UNIX	systems	in	general,	whether	each	one	is	a	separate	system	call	or	they	share	
a single system call or something else is implementation dependent.

The	first	four	listed	in	Figure	14.20	are	used	to	set	and	get	the	terminal	speed.	Different	calls	are	
provided	for	input	and	output	because	some	modems	operate	at	split	speed.	For	example,	old	
videotex	systems	allowed	people	to	access	public	databases	with	short	requests	from	the	home	
to the server at 75 bits/sec with replies coming back at 1200 bits/sec. This standard was adopted 
at a time when 1200 bits/sec both ways was too expensive for home use. Time has changed in 
the	networking	world.	This	asymmetry	still	persists,	with	some	telephone	companies	offering	
inbound	service	at	8	Mbps	and	outbound	service	at	512	Kbps,	often	under	the	name	of	ADSL 
(Asymmetric Digital Subscriber Line).

Figure 14.20: The Main POSIX Calls for Managing the Terminal

Function call Description

s = cfsetospeed(& termios, speed) Set the output speed

s = cfsetispeed(&termios, speed) Set the input speed

s = cfgetospeed(& termios, speed) Get the output speed

s = cfgtetispeed(&termios, speed) Get the input speed

s = tcsetattr(fd, opt, & termios) Set the attributes

s = tcgetattr(fd, & termios) Get the attributes
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Notes The last two calls in the list are for setting and reading back all the special characters used for 
erasing	 characters	 and	 lines,	 interrupting	processes,	 and	 so	 on.	 In	 addition,	 they	 enable	 and	
disable	echoing,	handle	flow	control,	and	other	related	functions.	Additional	I/O	function	calls	
also	exist,	but	they	are	somewhat	specialized	so	we	will	not	discuss	them	further.	In	addition,	
ioctl is still available.

14.5.4 Implementation of Input/Output in Linux 

I/O in Linux is implemented by a collection of device	 drivers,	 one	 per	 device	 type.	
The function of the drivers is to isolate the rest of the system from the idiosyncracies of 
the hardware. By providing standard interfaces between the drivers and the rest of the 
operating	 system,	 most	 of	 the	 I/O	 system	 can	 be	 put	 into	 the	 machine-independent	 part	
of	 the	 kernel.	 When	 the	 user	 accesses	 a	 special	 file,	 the	 file	 system	 determines	 the	 major	
and	minor	 device	 numbers	 belonging	 to	 it,	 whether	 it	 is	 a	 block	 special	 file	 or	 a	 character	
special file. The major device number is used to index into one of two internal hash 
tables containing data structures for character or block devices. Thus the located structure  
contains	pointer	to	the	procedures	to	call	to	open	the	device,	read	the	device,	write	the	device,	and	
so on. The minor device number is passed as a parameter. Adding a new device type to Linux 
means adding a new entry to one of these tables and supplying the corresponding procedures 
to handle the various operations on the device.

Some of the operations which may be associated with different character devices are shown in 
Figure	14.21.	Each	row	refers	to	a	single	I/O	device	(i.e.,	a	single	driver).	The	columns	represent	
the functions that all character drivers must support. Several other functions also exist. When 
an	 operation	 is	 performed	 on	 a	 character	 special	 file,	 the	 system	 indexes	 into	 hash	 table	 of	
character	devices	to	select	the	proper	structure,	then	calls	the	corresponding	function	to	have	
the	work	performed.	Thus	each	of	the	file	operation	contains	a	pointer	to	a	function contained 
in the corresponding driver.

Figure 14.21: Some of the File Operations Supported for Typical Character Devices

Device Open Close Read Write loctl Other

Null null null null null null ...

Memory null null mem_read mem_write nul ...

Keyboard k_open k_close k_read error k_ioctl ...

Tty tty_open tty_close tty_read tty_write tty_iocti ...

Printer lp_open lp_close error lp_write lp_iocti ... 

Each	driver	is	split	into	two	parts,	both	of	which	are	part	of	the	Linux	kernel	that	run	in	kernel	
mode. The top half runs in the context of the caller and interfaces to the rest of Linux. The 
bottom half runs in kernel context and interacts with the device. Drivers are allowed to make 
calls	to	kernel	procedures	for	memory	allocation,	timer	management,	DMA	control,	and	other	
things.	The	set	of	kernel	functions	that	may	be	called	is	defined	in	a	document	called	the	Driver-
Kernel Interface.	Writing	device	drivers	for	Linux	is	covered	in	detail	 in	(Egan	and	Teixeira,	
1992;	Rubini	and	Corbert,	2005).

The	I/O	system	is	split	into	two	major	components:	the	handling	of	block	special	files	and	the	
handling	of	character	special	files.	We	will	now	look	at	each	of	these	components	in	turn.	The	
goal	of	 the	part	of	 the	system	that	does	 I/O	on	block	special	files	 (e.g.,	disks)	 is	 to	minimize	
the	number	of	actual	transfers	that	must	be	done.	To	accomplish	this	goal,	Linux	systems	have	
a cache	 between	 the	 disk	 drivers	 and	 the	 file	 system,	 as	 illustrated	 in	 Figure	 14.22.	 Prior	 to	
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Notesthe	2.2	 kernel,	Linux	maintained	 completely	 separate	page	 and	buffer	 caches,	 so	 a	 file	
residing in a disk block could be cached in both caches. Newer versions of Linux have 
a	unified	cache.	A	generic	block	 layer	holds	 these	 components	 together,	 and	performs	
the	necessary	translations	between	disk	sectors,	blocks,	buffers	and	pages	of	data,	and	
enables the operations on them.

The cache is a table in the kernel for holding thousands of the most recently used blocks. When 
a	block	is	needed	from	a	disk	for	any	purpose	(i-node,	directory,	or	data),	a	check	is	first	made	
to	see	that	it	is	in	the	cache.	If	so,	it	 is	taken	from	there	and	a	disk	access	is	avoided,	thereby	
resulting	in	great	improvements	in	system	performance.		If	the	block	is	not	in	the	page	cache,	it	
is	read	from	the	disk	into	the	cache	and	from	there,	copied	to	where	it	is	needed.	Since	the	page	
cache	has	room	for	only	a	fixed	number	of	blocks,	the	page	replacement	algorithm	described	
in the previous section is invoked. The page cache works for writes as well as for reads. When 
a	program	writes	a	block,	it	goes	to	the	cache,	not	to	the	disk.

Figure 14.22: The Linux I/O System
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In	addition	to	avoid	having	blocks	stay	too	long	in	the	cache	before	being	written	to	the	disk,	
all the dirty blocks are written to the disk every 30 seconds. In order to minimize the latency 
of	repetitive	disk	head	movements,	Linux	relies	on	an	I/O scheduler. The purpose of the I/O 
scheduler	is	to	reorder	or	bundle	read/write	requests	to	block	devices.	There	are	many	scheduler	
variants,	optimized	for	different	types	of	workloads.	The	basic	Linux	scheduler	is	based	on	the	
original Linus Elevator scheduler. The operations of the elevator scheduler can be summarized 
as	 follows—disk	operations	are	 sorted	 in	a	doubly	 linked	 list,	ordered	by	 the	address	of	 the	
sector	of	the	disk	request.	New	requests	are	inserted	in	this	list	in	a	sorted	manner.	This	prevents	
repeated costly disk head movements.

The	request	list	is	than	merged	so	that	adjacent	operations	are	issued	via	a	single	disk	request.	
The	basic	elevator	scheduler	can	lead	to	starvation.	Therefore,	the	revised	version	of	the	Linux	
disk	scheduler	includes	two	additional	lists,	maintaining	read	or	write	operations	ordered	by	
their	deadline.	The	default	deadlines	are	0.5	sec	for	read	requests	and	5	sec	for	write	requests.	
If	a	system	defined	deadline	for	the	oldest	write	operation	is	about	to	expire,	that	write	request	
will	be	serviced	before	any	of	the	requests	on	the	main	doubly	linked	list.	The	interaction	with	
character devices is much simpler. Since character devices produce or consume streams of 
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Notes characters,	or	bytes	of	data,	support	for	random	access	makes	little	sense.	One	exception	is	the	
use of line disciplines.	A	line	discipline	can	be	associated	with	a	terminal	device,	represented	
via the structure tty_ struct,	 and	 it	 represents	an	 interpreter	 for	 the	data	exchanged	with	 the	
terminal	device.	For	 instance,	 local	 line	 editing	 can	be	done	 (i.e.,	 erased	 characters	 and	 lines	
can	be	removed),	carriage	returns	can	be	mapped	onto	line	feeds,	and	other	special	processing	
can	be	 completed.	However,	 if	 a	process	wants	 to	 interact	on	every	 character,	 it	 can	put	 the	
line	in	raw	mode,	in	which	case	the	line	discipline	will	be	bypassed.	Output	works	in	a	similar	
way,	expanding	 tabs	 to	 spaces,	 converting	 line	 feeds	 to	carriage	 returns	+	 line	 feeds,	adding	
filler	characters	following	carriage	returns	on	slow	mechanical	terminals,	and	so	on.	Like	input,	
output	can	go	through	the	line	discipline	(cooked	mode)	or	bypass	it	(raw	mode).	Raw	mode	is	
especially useful when sending binary data to other computers over a serial line and for GUIs. 
Here,	no	conversions	are	desired.

The interaction with network devices is somewhat different. While network devices also 
produce/consume	streams	of	characters,	their	asynchronous	nature	makes	them	less	suitable	
for easy integration under the same interface as other character devices. The networking 
device	 driver	 produces	 packets	 consisting	 of	multiple	 bytes	 of	 data,	 along	with	 network	
headers.	These	packets	are	 then	routed	 through	a	series	of	network	protocol	drivers,	and	
ultimately are passed to the user space application. A key data structure is the socket buffer 
structure,	skbuff,	which	is	used	to	represent	portions	of	memory	filled	with	packet	data.	The	
data in an skbuff buffer does not always start at the start of buffer. As it is being processed 
by	various	protocols	in	the	networking	stack,	protocol	headers	may	be	removed,	or	added.	
The	user	processes	interact	with	networking	devices	via	sockets,	which	in	Linux	support	the	
original BSD socket API. The protocol drivers can be bypassed and direct access to the underlying 
network device is enabled via raw sockets. Only superusers are allowed to create raw sockets.

14.5.5 Modules in Linux
For	decades,	UNIX	device	drivers	have	been	statically	linked	into	the	kernel	so	they	were	
all present in memory when the system was booted every time. Given the environment in 
which	UNIX	grew	up,	mostly	departmental	minicomputers	and	then	high-end	workstations,	
with	 their	 small	and	unchanging	sets	of	 I/O	devices,	 this	 scheme	worked	well.	Basically,	
a computer center built a kernel containing drivers for the I/O devices and that was it. If 
next	year	it	bought	a	new	disk,	it	relinked	the	kernel.	With	the	arrival	of	Linux	on	the	PC	
platform,	suddenly	all	that	changed.	The	number	of	I/O	devices	available	on	the	PC	is	orders	
of	magnitude	larger	than	on	any	minicomputer.	In	addition,	although	all	Linux	users	have	
(or	can	easily	get)	the	full	source	code,	probably	the	vast	majority	would	have	considerable	
difficulty	adding	a	driver,	updating	the	all	device-driver	related	data	structures,	relinking	
the	kernel,	 and	 then	 installing	 it	 as	 the	bootable	 system	 (not	 to	mention	dealing	with	 the	
aftermath	of	building	a	kernel	that	does	not	boot).

Linux solved this problem with the concept of loadable modules. These are chunks of code that 
can be loaded into the kernel while the system is running. Most commonly these are character 
or	block	device	drivers,	but	they	can	also	be	entire	file	systems,	network	protocols,	performance	
monitoring	 tools,	or	anything	else	desired.	When	a	module	 is	 loaded,	 several	 things	have	 to	
happen.	First,	the	module	has	to	be	relocated	on-the-fly,	during	loading.	Second,	the	system	has	
to	check	to	see	if	the	resources	the	driver	needs	are	available	(e.g.,	interrupt	request	levels)	and	if	
so,	mark	them	as	in	use.	Third,	any	interrupt	vectors	that	are	needed	must	be	set	up.	Fourth,	the	
appropriate	driver	switch	table	has	to	be	updated	to	handle	the	new	major	device	type.	Finally,	
the	driver	is	allowed	to	run	to	perform	any	device-specific	initialization	it	may	need.	Once	
all	these	steps	are	completed,	the	driver	is	fully	installed,	the	same	as	any	statically	installed	
driver. Some modern UNIX systems also support loadable modules	now,	too.

14.6 Linux File System

The most visible part of any	operating	system,	including	Linux,	is	the	file	system.	In	the	following	
sections	we	will	examine	the	basic	ideas	behind	the	Linux	file	system,	the	system	calls,	and	how	
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Notesthe	file	system	is	implemented.	Some	of	these	ideas	derive	from	MULTICS,	and	many	of	them	
have	been	copied	by	MSDOS,	Windows,	and	other	 systems,	but	others	are	unique	 to	UNIX-
based	 systems.	With	minimal	mechanism	 and	 a	 very	 limited	 number	 of	 system	 calls,	 Linux	
nevertheless	provides	a	powerful	and	elegant	file	system.

14.6.1 Fundamental Concepts of Linux File System
The	initial	Linux	file	system	was	the	MINIX	1	file	system.	However,	due	to	the	fact	that	it	
limited	file	 names	 to	 14	 characters	 (in	 order	 to	 be	 compatible	with	UNIX	Version	 7)	 and	
its	maximum	file	size	was	64	MB	(which	was	overkill	on	the	10	MB	hard	disks	of	 its	era),	
there	was	interest	in	better	file	systems	almost	from	the	beginning	of	the	Linux	development,	
which	began	about	5	years	after	MINIX	1	was	released.	The	first	improvement	was	the	ext	
file	system,	which	allowed	file	names	of	255	characters	and	files	of	2	GB,	but	it	was	slower	
than	the	MINIX	1	file	system,	so	the	search	continued	for	a	while.	Eventually,	the	ext2	file	
system	was	invented	with	long	file	names,	long	files,	and	better	performance,	and	that	has	
become	the	main	file	system.	However,	Linux	supports	several	dozens	of	file	systems	using	
the	Virtual	File	System	(VFS)	layer	(described	in	the	next	section).

When	Linux	is	linked,	a	choice	is	offered	of	which	file	systems	should	be	built	into	the	kernel.	
Other	ones	can	be	dynamically	loaded	as	modules	during	execution,	if	need	be.	A	Linux	file	is	
a	sequence	of	0	or	more	bytes	containing	arbitrary	information.	No	distinction	is	made	between	
ASCII	files,	binary	files,	or	any	other	kinds	of	files.	The	meaning	of	the	bits	in	a	file	is	entirely	
up	to	the	file’s	owner.	The	system	does	not	care.	File	names	are	limited	to	255	characters,	and	
all	 the	ASCII	 characters	 except	NUL	 are	 allowed	 in	 file	 names,	 so	 a	 file	 name	 consisting	 of	
three	carriage	returns	is	a	legal	file	name	(but	not	an	especially	convenient	one).	By	convention,	
many	programs	expect	file	names	to	consist	of	a	base	name	and	an	extension,	separated	by	a	
dot	(which	counts	as	a	character).	Thus	prog.c	is	typically	a	C	program,	prog.f90	is	typically	a	
FORTRAN	90	program,	and	prog.o	is	usually	an	object	file	(compiler	output).	These	conventions	
are not enforced by the operating system but some compilers and other programs expect them. 
Extensions	may	be	of	 any	 length	 and	files	may	have	multiple	 extensions,	 as	 in	prog.java.gz,	
which is probably a gzip compressed Java program.

Files	can	be	grouped	together	in	directories	for	convenience.	Directories	are	stored	as	files,	and	
to	 a	 large	 extent	 can	be	 treated	 like	files.	Directories	 can	 contain	 subdirectories,	 leading	 to	 a	
hierarchical	file	system.	The	root	directory	is	called	/	and	usually	contains	several	subdirectories.	
The	/	character	is	also	used	to	separate	directory	names,	so	that	the	name	/usr/ast/x	denotes	the	
file	x	located	in	the	directory	ast,	which	itself	is	in	the	/usr directory. Some of the major directories 
near	the	top	of	the	tree	are	shown	in	Figure	14.23.	There	are	two	ways	to	specify	file	names	in	
Linux,	both	to	the	shell	and	when	opening	a	file	from	within	a	program.	The	first	way	is	using	
an absolute path,	which	means	telling	how	to	get	to	the	file	starting	at	the	root	directory.	An	
example of an absolute path is /usr/ast/books/mos3/chap-10. This tells the system to look in 
the	root	directory	for	a	directory	called	usr,	then	look	there	for	another	directory,	ast.	In	turn,	
this directory contains a directory books.

Figure 14.23: Some Important Directories Found in Most Linux Systems

Directory Contents

bin Binary (executable) programs

dev Special files for I/O devices

etc Miscellaneous system files

lib Libraries

usr User directories
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Notes Absolute	 path	 names	 are	 often	 long	 and	 inconvenient.	 For	 this	 reason,	 Linux	 allows	
users and processes to designate the directory in which they are currently working as the 
working directory.	 Path	 names	 can	 also	 be	 specified	 relative	 to	 the	 working	 directory.	 A	
path	 name	 specified	 relative	 to	 the	 working	 directory	 is	 a	 relative	 path.	 For	 example,	 if 
/usr/ast/books/mos3	 is	 the	 working	 directory,	 then	 the	 shell	 command	 cp	 chap-10	 backup-10	
has exactly the same effect as the longer command cp /usr/ast/books/mos3/chap-10 /
usr/ast/books/mos3/backup-10.	 It	 frequently	occurs	 that	 a	user	needs	 to	 refer	 to	 a	file	 that	
belongs	 to	 another	 user,	 or	 at	 least	 is	 located	 elsewhere	 in	 the	 file	 tree.	 For	 example,	 if	 two	 
users	are	sharing	a	file,	it	will	be	located	in	a	directory	belonging	to	one	of	them,	so	the	other	
will	have	to	use	an	absolute	path	name	to	refer	to	it	(or	change	the	working	directory).	If	this	
is	long	enough,	it	may	become	irritating	to	have	to	keep	typing	it.	Linux	provides	a	solution	to	
this	problem	by	allowing	users	to	make	a	new	directory	entry	that	points	to	an	existing	file.	Such	
an entry is called a link. Consider this situation with an example shown in Figure 14.24. Fred 
and	Lisa	are	working	together	on	a	project,	and	each	one	needs	frequent	access	to	the	other’s	
files.	If	Fred	has	/usr/fred	as	his	working	directory,	he	can	refer	to	the	file	x	in	Lisa’s	directory	as	
/usr/lisa/x.	Alternatively,	Fred	can	create	a	new	entry	in	his	directory	as	shown	in	Figure	14.24,	
after which he can use x to mean /usr/lisa/x.

In	the	example	just	discussed,	we	suggested	that	before	linking,	the	only	way	for	Fred	to	refer	
to	Lisa’s	file	x	was	using	 its	absolute	path.	Actually,	 this	 is	not	really	 true.	When	a	directory	
is	 created,	 two	entries	and	 ..,	 are	automatically	made	 in	 it.	The	 former	 refers	 to	 the	working	
directory	itself.	The	latter	refers	to	the	directory’s	parent,	that	is,	the	directory	in	which	it	itself	
is listed. Thus from /usr/fred,	another	path	to	Lisa’s	file	x is ../lisa/x.	In	addition	to	regular	files,	
Linux	also	supports	character	special	files	and	block	special	files.	Character	special	files	are	used	
to model serial I/O devices such as keyboards and printers. Opening and reading from /dev/tty 
reads from the keyboard; opening and writing to /dev/lp writes to the printer.

Figure 14.24: (a) Before Linking and (b) After Linking
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Block	 special	 files,	 often	 with	 names	 like	 /dev/hd1,	 can	 be	 used	 to	 read	 and	write	 raw	 disk	
partitions	without	regard	to	the	file	system.	Thus	a	seek	to	byte	k	followed	by	a	read	will	begin	
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Notesreading	 from	 the	 k-th	 byte	 on	 the	 corresponding	 partition,	 completely	 ignoring	 the	 i-node	
and	file	structure.	Raw	block	devices	are	used	for	paging	and	swapping,	by	programs	that	lay	
down	file	systems	(e.g.,	mkfs),	and	by	programs	that	fix	sick	file	systems	(e.g.,	fsck),	for	example.	
Many	computers	have	two	or	more	disks.	On	mainframes	at	banks,	it	is	frequently	necessary	
to	have	100	or	more	disks	on	a	single	machine,	in	order	to	hold	the	huge	databases	required.	
Even	personal	computers	normally	have	at	 least	 two	disks—a	hard	disk	and	an	optical	 (e.g.,	
DVD)	drive.	When	these	are	multiple	disk	drives,	the	question	arises	of	how	to	handle	them.	
One	 solution	 is	 to	put	 a	 self-contained	file	 system	on	each	one	and	 just	keep	 them	separate.	
Consider,	the	situation	depicted	in	Figure	14.25.

Here	we	have	a	hard	disk,	which	we	will	call	C:,	and	a	DVD,	which	we	will	call	D,	each	has	its	own	
root	directory	and	files.	With	this	solution,	the	user	has	to	specify	both	the	device	and	the	file	when	
anything	other	than	the	default	is	needed.	For	example,	to	copy	the	file	x to the directory d,	(assuming	
C:	is	the	default),	one	would	type	cp	D:/x	/a/d/x.	This	is	the	approach	taken	by	systems	like	 
MS-DOS,	Windows	98,	 and	VMS.	The	Linux	 solution	 is	 to	 allow	one	disk	 to	be	mounted	 in	
another	disk’s	file	tree.	In	this	example,	we	could	mount	the	DVD	on	the	directory	/b,	yielding	
the	file	 system	of	Figure	14.25.	The	user	now	sees	 a	 single	file	 tree,	 and	no	 longer	has	 to	be	
aware	of	which	file	resides	on	which	device.	

Figure 14.25: (a) Separate File Systems and (b) After Mounting

Another	interesting	property	of	the	Linux	file	system	is	locking.	In	some	applications,	two	or	
more	processes	may	be	using	the	same	file	at	the	same	time,	which	may	lead	to	race	conditions.	
One	solution	is	to	program	the	application	with	critical	regions.	However,	if	the	processes	belong	
to	independent	users	who	do	not	even	know	each	other,	this	kind	of	coordination	is	generally	
inconvenient.	Consider,	for	example,	a	database	consisting	of	many	files	in	one	or	more	directories	
that are accessed by unrelated users. It is certainly possible to associate a semaphore with each 
directory	or	file	and	achieve	mutual	exclusion	by	having	processes	do	a	down	operation	on	the	
appropriate	semaphore	before	accessing	the	data.	The	disadvantage,	however,	is	that	a	whole	
directory	or	file	is	then	made	inaccessible,	even	though	only	one	record	may	be	needed.

For	 this	 reason,	POSIX	provides	 a	flexible	 and	fine-grained	mechanism	 for	processes	 to	 lock	
as	little	as	a	single	byte	and	as	much	as	an	entire	file	in	one	indivisible	operation.	The	locking	
mechanism	requires	the	caller	to	specify	the	file	to	be	locked,	the	starting	byte,	and	the	number	
of	 bytes.	 If	 the	 operation	 succeeds,	 the	 system	makes	 a	 table	 entry	 noting	 that	 the	 bytes	 in	
question	 (e.g.,	 a	database	 record)	 are	 locked.	Two	kinds	of	 locks	 are	provided,	shared locks 
and exclusive locks.	 If	a	portion	of	a	file	already	contains	a	shared	lock,	a	second	attempt	to	
place	a	shared	lock	on	it	is	permitted,	but	an	attempt	to	put	an	exclusive	lock	on	it	will	fail.	If	a	
portion	of	a	file	contains	an	exclusive	lock,	all	attempts	to	lock	any	part	of	that	portion	will	fail	
until	the	lock	has	been	released.	In	order	to	successfully	place	a	lock,	every	byte	in	the	region	
to be locked must be available.
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Notes When	placing	a	lock,	a	process	must	specify	whether	it	wants	to	block	or	not	in	the	event	that	
the	lock	cannot	be	placed.	If	it	chooses	to	block,	when	the	existing	lock	has	been	removed,	the	
process is unblocked and the lock is placed. If the process chooses not to block when it cannot 
place	a	lock,	the	system	call	returns	immediately,	with	the	status	code	telling	whether	the	lock	
succeeded or not.

Locked	regions	may	overlap.	In	Figure	14.26,	we	see	that	process	A	has	placed	a	shared	lock	on	
bytes	4	through	7	of	same	file.	Later,	process	B	places	a	shared	lock	on	bytes	6	through	9.	Finally,	
C	locks	bytes	2	through	11.	As	long	as	all	these	locks	are	shared,	they	can	co-exist.

Figure 14.26: (a) A File with One Lock, (b) Addition of a Second Lock 
and (c) A Third Lock

Now	consider	what	happens	if	a	process	tries	to	acquire	an	exclusive	lock	to	byte	9	of	the	file	
of	Figure	14.26(c),	with	a	request	to	block	if	the	lock	fails.	Since	two	previous	locks	cover	this	
block,	the	caller	will	block	and	will	remain	blocked	until	both	B	and	C	release	their	locks.

14.6.2 File System Calls in Linux 
Many	system	calls	relate	to	files	and	the	file	system.	First	we	will	look	at	the	system	calls	that	
operate	on	individual	files.	Later	we	will	examine	those	that	involve	directories	or	the	file	system	
as	a	whole.	To	create	a	new	file,	the	create	call	can	be	used.	The	parameters	provide	the	name	
of	the	file	and	the	protection	mode.	Thus

fd	=	creat(“abc”,	mode);

creates	a	file	called	abc	with	the	protection	bits	taken	from	mode.	These	bits	determine	which	
users	may	access	the	file	and	how.	That	will	be	described	later.	The	create	call	not	only	creates	
a	new	file,	but	also	opens	it	for	writing.	To	allow	subsequent	system	calls	to	access	the	file,	a	
successful create returns as its result a small non-negative integer called a file descriptor,	fd	in	
the	example	above.	If	a	create	is	done	on	an	existing	file,	that	file	is	truncated	to	length	0	and	its	
contents are discarded. Files can also be created using the open call with appropriate arguments.

Now	let	us	continue	looking	at	the	principal	file	system	calls,	which	are	listed	in	Figure	14.27.	
To	 read	or	write	 an	existing	file,	 the	file	must	first	be	opened	using	open.	This	 call	 specifies	
the	file	name	to	be	opened	and	how	it	 is	to	be	opened:	for	reading,	writing,	or	both.	Various	
options	can	be	specified	as	well.	Like	create,	the	call	to	open	returns	a	file	descriptor	that	can	
be used for reading or writing.

Afterward,	the	file	can	be	closed	by	close,	which	makes	the	file	descriptor	available	for	reuse	on	
a	subsequent	create	or	open.	Both	the	create	and	open	calls	always	return	the	lowest	numbered	
file	descriptor	not	currently	in	use.	When	a	program	starts	executing	in	the	standard	way,	file	
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Notesdescriptors	0,	1,	and	2	are	already	opened	for	standard	input,	standard	output,	and	standard	
error,	respectively.	In	this	way,	a	filter,	such	as	the	sort	program,	can	just	read	its	input	from	
file	descriptor	0	and	write	its	output	to	file	descriptor	1,	without	having	to	know	what	files	they	
are. This mechanism works because the shell arranges for these values to refer to the correct 
(redirected)	files	before	the	program	is	started.	The	most	heavily	used	calls	are	undoubtedly	read	
and	write.	Each	one	has	three	parameters:	a	file	descriptor	(telling	which	open	file	to	read	or	
write),	a	buffer	address	(telling	where	to	put	the	data	or	get	the	data	from),	and	a	count	(telling	
how	many	bytes	to	transfer).	A	typical	call	is

n	=	read(fd,	buffer,	nbytes);

Although	 nearly	 all	 programs	 read	 and	write	 files	 sequentially,	 some	 programs	 need	 to	 be	
able	to	access	any	part	of	a	file	at	random.	Associated	with	each	file	is	a	pointer	that	indicates	
the	current	position	in	the	file.	When	reading	(writing)	sequentially,	it	normally	points	to	the	
next	byte	to	be	read	(written).	If	the	pointer	is	at,	say,	4096,	before	1024	bytes	are	read,	it	will	
automatically be moved to 5120 after a successful read system call. The lseek call changes the 
value	of	the	position	pointer,	so	that	subsequent	calls	to	read	or	write	can	begin	anywhere	in	the	
file,	or	even	beyond	the	end	of	it.	It	is	called	lseek	to	avoid	conflicting	with	seek,	a	now-obsolete	
call that was formerly used on 16 bit computers for seeking.  

Figure 14.27: Some System Calls Relating to Files

System call Description

fd = creat(name, mode) One way to create a new file

fd = open(file, how, ...) Open a file for reading, writing or both

s = close(fd) Close an open file

n = read(fd, buffer, nbytes) Read data from a file into a buffer

n = write(fd, buffer, nbytes) Write data from a buffer into a file

position = lseek(fd, offset, whence) Move the file pointer

s = stat(name, &buf) Get a file’s status information

s = fstat(fd, &buf) Get a file’s status information

s = pipe(&fd[0]) Create a pipe

s = fcnt(fd, cms, ...) File locking and other operations

The	 return	 code	 s	 is	~1	 if	 an	 error	has	occurred;	 fd	 is	 a	file	descriptor,	 and	position	 is	 a	file	
offset.	The	parameters	should	be	self-explanatory.	Lseek	has	three	parameters:	the	first	one	is	
the	file	descriptor	for	the	file;	the	second	one	is	a	file	position;	the	third	one	tells	whether	the	
file	position	is	relative	to	the	beginning	of	the	file,	the	current	position,	or	the	end	of	the	file.	
The	value	returned	by	lseek	is	the	absolute	position	in	the	file	after	the	file	pointer	was	changed.	
Slightly	 ironically,	 lseek	 is	 the	only	file	system	calls	 that	can	never	cause	an	actual	disk	seek	
because	all	it	does	is	update	the	current	file	position,	which	is	a	number	in	memory.

For	each	file,	Linux	keeps	track	of	 the	file	mode	(regular,	directory,	special	file),	size,	 time	of	
last	modification,	and	other	information.	Programs	can	ask	to	see	this	information	via	the	stat	
system	call.	The	first	parameter	is	the	file	name.	The	second	one	is	a	pointer	to	a	structure	where	
the	 information	requested	 is	 to	be	put.	The	fields	 in	 the	structure	are	shown	 in	Figure	14.28.	
The	fstat	call	is	the	same	as	stat	except	that	it	operates	on	an	open	file	(whose	name	may	not	be	
known)	rather	than	on	a	path	name.

The	pipe	system	call	is	used	to	create	shell	pipelines.	It	creates	a	kind	of	pseudofile,	which	buffers	the	
data	between	the	pipeline	components,	and	returns	file	descriptors	for	both	reading	and	writing	the	
buffer.	In	a	pipeline	such	as	sort	<in	|	head	–30	file	descriptor	1	(standard	output)	in	the	process	running	
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Notes sort	would	be	set	(by	the	shell)	to	write	to	the	pipe	and	file	descriptor	0	(standard	input)	in	the	process	 
running head	would	be	set	to	read	from	the	pipe.	In	this	way,	sort	just	reads	from	file	descriptor	
0	(set	to	the	file	in)	and	writes	to	file	descriptor	1	(the	pipe)	without	even	being	aware	that	these	
have	been	 redirected.	 If	 they	have	not	been	 redirected,	 sort will automatically read from the 
keyboard and write to the screen.

Figure 14.28: The Fields Returned by the Stat System Call

Device	the	file	is	on

I-node	number	(which	file	on	the	device)

File	mode	(includes	protection	information)

Number	of	links	to	the	file

Identify	of	the	file’s	owner

Group	the	file	belongs	to

File	size	(in	bytes)

Creation time

Time of last access

Time	of	last	modification

Similarly,	when	head	 reads	 from	file	descriptor	0,	 it	 is	 reading	the	data	sort put into the pipe 
buffer without even knowing that a pipe is in use. This is a clear example where a simple concept 
(redirection)	with	a	simple	 implementation	(file	descriptors	0	and	1)	 leads	to	a	powerful	 tool	
(connecting	program	in	arbitrary	ways	without	having	to	modify	them	at	all).	The	last	system	
call	in	Figure	14.28	is	fcntl.	It	is	used	to	lock	and	unlock	files,	apply	shared	or	exclusive	locks,	
and	 perform	 a	 few	 other	 file-specific	 operations.	Now	 let	 us	 look	 at	 some	 system	 calls	 that	
relate	more	to	directories	or	the	file	system	as	a	whole,	rather	than	just	to	one	specific	file.	Some	
common ones are listed in Figure 14.29. Directories are created and destroyed using mkdir and 
rmdir,	respectively.	A	directory	can	only	be	removed	if	it	is	empty.

Figure 14.29: Some System Calls Relating to Directories

System call Description

s = mkdir(path, mode) Create a new directory

s = rmdir(path) Remove a directory

s = link(oldpath, newpath) Create a link to an existing file

s = unlink(path) Unlink a file

s = chdir(path) Change the working directory

dir = opendir(path) Open a directory for reading

s = closedir(dir) Close a directory

dirent = readdir(dir) Read one directory entry

rewinddir(dir)
Rewind a directory so it can be 
reread
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NotesThe	return	code	s	is	~1	if	an	error	has	occurred;	dir	identifies	a	directory	stream	and	dirent	is	a	
directory	entry.	The	parameters	should	be	self-explanatory.	As	we	saw	in	Figure	14.29,	linking	
to	a	file	creates	a	new	directory	entry	that	points	to	an	existing	file.	The	link	system	call	creates	
the	link.	The	parameters	specify	the	original	and	new	names,	respectively.	Directory	entries	are	
removed	with	unlink.	When	the	last	link	to	a	file	is	removed,	the	file	is	automatically	deleted.	For	
a	file	that	has	never	been	linked,	the	first	unlink	causes	it	to	disappear.	The	working	directory	
is changed by the chdir system call. Doing so has the effect of changing the interpretation of 
relative path names.

The	last	four	calls	of	Figure	14.30	are	for	reading	directories.	They	can	be	opened,	closed,	and	
read,	analogous	to	ordinary	files.	Each	call	to	readdir	returns	exactly	one	directory	entry	in	a	
fixed	format.	There	is	no	way	for	users	to	write	in	a	directory	(in	order	to	maintain	the	integrity	
of	 the	file	system).	Files	can	be	added	 to	a	directory	using	create	or	 link	and	removed	using	
unlink.	There	is	no	way	to	seek	to	a	specific	file	in	a	directory,	but	rewinddir	allows	an	open	
directory to be read again from the beginning.

14.6.3 Implementation of the Linux File System
In	this	section	first	we	will	look	at	the	abstractions	supported	by	the	Virtual	File	System	layer.	
The VFS hides from higher level processes and applications the differences among many types 
of	file	 systems	 supported	by	Linux,	whether	 they	are	 residing	on	 local	devices	or	are	 stored	
remotely	 and	need	 to	 be	 accessed	over	 the	network.	Devices	 and	other	 special	 files	 are	 also	
accessed	through	the	VFS	 layer.	Next,	we	will	describe	 the	 implementation	of	 the	first	wide-
spread	Linux	file	system,	ext2,	or	the	second	extended file system.	Afterward,	we	will	discuss	
the	improvements	in	the	ext3	file	system.	A	wide	variety	of	other	file	systems	are	also	in	use.	
All	Linux	systems	can	handle	multiple	disk	partitions,	each	with	a	different	file	system	on	it.

14.6.4 Linux Virtual File System
In	order	to	enable	applications	to	interact	with	different	file	systems,	implemented	on	different	
types	of	 local	or	remote	devices,	Linux	adopts	an	approach	used	in	other	UNIX	systems:	 the	
Virtual	File	System	(VFS).	VFS	defines	a	set	of	basic	file	system	abstractions	and	the	operations	
which are allowed on these abstractions. Invocations of the system calls described in the previous 
section,	access	the	VFS	data	structures,	determine	the	exact	file	system	where	the	accessed	file	
belongs,	and	via	function	pointers	stored	in	the	VFS	data	structures	invoke	the	corresponding	
operation	in	the	specified	file	system.	Figure	14.30	summarizes	the	four	main	file	system	structures	
supported by VFS. The superblock contains	 critical	 information	 about	 the	 layout	 of	 the	 file	
system.	Destruction	of	the	superblock	will	render	the	file	system	unreadable.	The	i-nodes	(short	
for	 index-nodes,	but	never	 called	 that,	 although	 some	 lazy	people	drop	 the	hyphen	and	call	
them inodes)	each	describe	exactly	one	file.	Note	that	in	Linux,	directories	and	devices	are	also	
represented	as	files,	thus	they	will	have	corresponding	i-nodes.	Both	superblocks	and	i-nodes	
have	a	corresponding	structure	maintained	on	the	physical	disk	where	the	file	system	resides.

Figure 14.30: File System Abstractions Supported by the VFS

Object Description Operation

Superblock specific filesystem read_inode, sync_fs

Dentry directory entry, single component of a path create, link

I-node specific file d_compare, d_delete

File open file associated with a process read, write
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Notes In	order	to	facilitate	certain	directory	operations	and	traversals	of	paths,	such	as	/usr/ast/bin,	
VFS supports a dentry data structure which represents a directory entry. This data structure is 
created	by	the	file	system	on	the	fly.	Directory	entries	are	cached	in	a	dentry_	cache.	For	instance,	
the	dentry_	cache	would	contain	entries	for	/,	/usr,	/usr/ast,	etc.	If	multiple	processes	access	
the	same	file	through	the	same	hard	link	(i.e.,	same	path)	their	file	object	will	point	to	the	same	
entry in this cache.

Finally,	 the	file	data	structure	 is	an	 in-memory	representation	of	an	open	file,	and	 is	 created	
in	response	to	the	open	system	call.	 It	supports	operations	such	as	read,	write,	sendfile,	 lock,	
and	other	system	calls	described	in	the	previous	section.	The	actual	file	systems	implemented	
underneath VFS need not use the exact same abstractions and operations internally. They must 
however	implement	semantically	equivalent	file	system	operations	as	the	ones	specified	with	
the VFS objects. The elements of the operations data structures for each of the four VFS objects 
are	pointers	to	functions	in	the	underlying	file	system.

14.6.5 Linux Extended File System—Ext2
We	next	describe	the	most	popular	on-disk	file	system	used	in	Linux	—	ext2.	The	first	Linux	
release	used	the	MINIX	file	system,	and	was	limited	by	short	filenames	and	64	MB	file	sizes.	The	
MINIX	file	system	was	replaced	with	the	first	extended	file	system,	ext,	which	permitted	both	
longer	file	names	and	larger	file	sizes.	Due	to	its	performance	inefficiencies,	ext	is	replaced	by	
its	successor,	ext2,	which	is	still	in	widespread	use.	An	ext2	Linux	disk	partition	contains	a	file	
system	with	the	layout,	illustrated	in	Figure	14.31.	Block	0	is	not	used	by	Linux	and	often	contains	
code	to	boot	the	computer.	Following	block	0,	the	disk	partition	is	divided	into	groups	of	blocks,	
without regard to where the disk cylinder boundaries fall each group is organized as follows.

The	first	block	 is	 the	superblock.	 It	 contains	 information	about	 the	 layout	of	 the	file	 system,	
including	 the	 number	 of	 i-nodes,	 the	 number	 of	 disk	 blocks,	 and	 the	 start	 of	 the	 list	 of	 free	
disk	blocks	(typically	a	few	hundred	entries).	Next	comes	the	group	descriptor,	which	contains	
information	about	the	location	of	the	bitmaps,	the	number	of	free	blocks	and	i-nodes	in	the	group	
and the number of directories in the group. This information is important since ext2 attempts 
to spread directories evenly over the disk.

Figure 14.31: Disk Layout of the Linux ext2 File System

Two	bitmaps	keep	track	of	the	free	blocks	and	free	i-nodes,	respectively,	a	choice	inherited	from	
the	MINIX	1	file	system	(and	in	contrast	to	most	UNIX	file	systems,	which	use	a	free	list).	Each	
map	is	one	block	long.	With	a	1	KB	block,	this	design	limits	a	block	group	to	8192	blocks	and	
8192 i-nodes. The former is a real restriction but the latter is not in practice.

Following the superblock are the i-nodes themselves. They are numbered from 1 up to some maximum. 
Each	i-node	is	128	bytes	long	and	describes	exactly	one	file.	An	i-node	contains	accounting	information	
(including	all	the	information	returned	by	stat,	which	simply	takes	it	from	the	i-node),	as	well	as  
enough	information	to	locate	all	the	disk	blocks	that	hold	the	file’s	data.	Following	i-nodes	are	
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Notesthe	data	blocks.	All	the	files	and	directories	are	stored	here.	If	a	file	or	directory	consists	of	more	
than	one	block,	the	blocks	need	not	be	contiguous	on	the	disk.	In	fact,	the	blocks	of	a	large	file	
are likely to be spread all over the disk.

I-nodes corresponding to directories are dispersed throughout the disk block groups. Ext2 
attempts	to	collocate	ordinary	files	in	the	same	block	group	as	the	parent	directory,	and	data	
files	in	the	same	block	as	the	original	file	i-node,	provided	that	there	is	sufficient	space.	This	idea	
was	taken	from	the	Berkeley	Fast	File	System	(McKusick	et	al.,	1984).	The	bitmaps	are	used	to	
make	quick	decisions	regarding	where	to	allocate	new	file	system	data.	When	new	file	blocks	
are	allocated,	ext2	also	preallocates	a	number	 (eight)	of	additional	blocks	 for	 that	file,	 so	as	 to	
minimize	the	file	 fragmentation	due	to	future	write	operations.	This	scheme	balances	 the	file	
system load across the entire disk. It also performs well due to its tendencies for collocation and 
reduced	fragmentation.	To	access	a	file,	it	must	first	use	one	of	the	Linux	system	calls,	such	as	
open,	which	requires	the	file’s	pathname.	The	pathname	is	parsed	to	extract	individual.	

If	a	relative	path	is	specified,	the	lookup	starts	from	the	process’	current	directory,	otherwise	
it	 starts	 from	the	root	directory.	 In	either	case,	 the	 i-node	 for	 the	first	directory	can	easily	be	
located:	there	is	a	pointer	to	it	in	the	process	descriptor,	or,	in	the	case	of	a	root	directory,	it	is	
typically stored in a predetermined block on disk.

The	directory	file	allows	file	names	up	to	255	characters	and	is	illustrated	in	Figure	14.32.	Each	
directory consists of some integral number of disk blocks so that directories can be written 
atomically	to	the	disk.	Within	a	directory,	entries	for	files	and	directories	are	in	unsorted	order,	
with	each	entry	directly	following	the	one	before	it.	Entries	may	not	span	disk	blocks,	so	often	
there is some number of unused bytes at the end of each disk block.

Figure 14.32: (a) A Linux Directory with Three Files and (b) The Same Directory After 
the File Voluminous has been Removed

 

Each	directory	entry	in	Figure	14.32	consists	of	four	fixed-length	fields	and	one	variable-length	field.	
The	first	field	is	the	i-node	number,	19	for	the	file	colossal,	42	for	the	file	voluminous,	and	88	for	the	 
directory	 bigdir.	 Next	 comes	 a	 field	 reclen,	 telling	 how	 big	 the	 entry	 is	 (in	 bytes),	 possibly	
including	some	padding	after	the	name.	This	field	is	needed	to	find	the	next	entry	for	the	case	
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Notes that	the	file	name	is	padded	by	an	unknown	length.	That	is	the	meaning	of	the	arrow	in	Figure	
14.32.	Then	comes	the	type	field:	file,	directory,	etc.	The	last	fixed	field	is	the	length	of	the	actual	
file	name	in	bytes,	8,	10,	and	6	in	this	example.	Finally,	comes	the	file	name	itself,	terminated	by	
a 0 byte and padded out to a 32-bit boundary. Additional padding may follow that. In Figure 
14.32,	we	see	the	same	directory	after	the	entry	for	voluminous	has	been	removed.	All	that	is	done	
is	increase	the	size	of	the	total	entry	field	for	colossal,	turning	the	former	field	for	voluminous	
into	padding	for	the	first	entry.	This	padding	can	be	used	for	a	subsequent	entry,	of	course.

Since	directories	are	searched	linearly,	it	can	take	a	long	time	to	find	an	entry	at	the	end	of	a	
large	directory.	Therefore,	 the	system	maintains	a	cache	of	recently	accessed	directories.	This	
cache	is	searched	using	the	name	of	the	file,	and	if	a	hit	occurs,	the	costly	linear	search	is	avoided.	
A	dentry	object	is	entered	in	the	dentry	cache	for	each	of	the	path	components,	and,	through	
its	i-node,	the	directory	is	searched	for	the	subsequent	path	element	entry,	until	the	actual	file	
i-node is reached.

For	instance,	to	look	up	a	file	specified	with	an	absolute	path	name	such	as	/usr/ast/file	the	
following	steps	are	required.	First,	the	system	locates	the	root	directory,	which	generally	uses	
i-node	2,	especially	when	i-node	1	is	reserved	for	bad	block	handling.	It	places	an	entry	in	the	
dentry cache for future lookups of the root directory. Then it looks up the string ‘’usr’’ in the 
root	directory,	to	get	the	i-node	number	of	the	/usr	directory,	which	is	also	entered	in	the	dentry	
cache.	This	i-node	is	then	fetched,	and	the	disk	blocks	are	extracted	from	it,	so	the	/usr	directory	
can	be	read	and	searched	for	the	string	‘’ast’’.	Once	this	entry	is	found,	the	i-node	number	for	
the /usr/ast directory can be taken from it. Armed with the i-node number of the /usr/ast 
directory,	this	i-node	can	be	read	and	the	directory	blocks	located.	Finally,	‘’file’’	is	looked	up	
and its i-node number found. Thus the use of a relative path name is not only more convenient 
for	the	user,	but	it	also	saves	a	substantial	amount	of	work	for	the	system.

If	the	file	is	present,	the	system	extracts	the	i-node	number,	and	uses	this	as	an	index	into	the	i-node	
table	(on	disk)	to	locate	the	corresponding	i-node	and	bring	it	into	memory.	The	i-node	is	put	in	the 
i-node table,	 a	 kernel	 data	 structure	 that	 holds	 all	 the	 i-nodes	 for	 currently	 open	 files	 and	
directories.	 The	 format	 of	 the	 i-node	 entries,	 as	 a	 bare	minimum,	must	 contain	 all	 the	fields	
returned	by	the	stat	system	call	so	as	to	make	stat	work	(see	Figure	14.29).	In	Figure	14.33,	we	
show	the	some	of	the	fields	included	in	the	i-node	structure	supported	by	the	Linux	file	system	
layer.	The	actual	i-node	structure	contains	many	more	fields,	since	the	same	structure	is	also	used	
to	represent	directories,	devices,	and	other	special	files.	The	i-node	structure	also	contains	fields	
reserved for future use. History has shown that unused bits do not remain that way for long.

Let	us	now	see	how	the	system	reads	a	file.	Remember	that	a	typical	call	tothe	library	procedure	
for	invoking	the	read	system	call	 looks	like	this:	n	=	read(fd,	buffer,	nbytes);When	the	kernel	
gets	control,	all	it	has	to	start	with	are	these	three	parameters,and	the		information	in	its	internal	
tables	relating	to	the	user.	One	of	the	items	in	the	internal	tables	is	the	file	descriptor	array.	It	
is	 indexed	by	a	file	descriptor	and	contains	one	entry	for	each	open	file	(up	to	the	maximum	
number,	usually	defaults	to	32).	The	idea	is	to	start	with	this	file	descriptor	and	end	up	with	
the corresponding i-node.



Unit 14: Case Study of Linux Operating System

 LOVELY PROFESSIONAL UNIVERSITY 447

Notes

Figure 14.33: Some Fields in the I-node Structure in Linux

Field Bytes Description

Mode 2 File type, protection bits, setuid, setgid bits

Ninks 2 Number of directory entries pointing to this i-node

Uid 2 UID of the file owner

Gid 2 GID of the file owner

Size 4 File size in bytes

Addr 60 Address of first 12 disk blocks, then 3 indirect blocks

Gen 1 Generation number (incremented every time i-node is reused)

Atime 4 Time the file was last accessed

Mtime 4 Time the file was last modified

Ctime 4 Time the i-node was last changed (except the other times)

Let	 us	 consider	 one	 possible	 design—just	 put	 a	 pointer	 to	 the	 i-node	 in	 the	 file	 descriptor	
table.	Although	simple,	unfortunately,	this	method	does	not	work.	The	problem	is	as	follows.	
Associated	with	every	file	descriptor	is	a	file	position	that	tells	at	which	byte	the	next	read	(or	
write)	will	start.	Where	should	it	go?	One	possibility	is	to	put	it	in	the	i-node	table.	However,	
this	approach	fails	if	two	or	more	unrelated	processes	happen	to	open	the	same	file	at	the	same	
time	because	each	one	has	its	own	file	position.

A	 second	possibility	 is	 to	put	 the	file	position	 in	 the	file	descriptor	 table.	 In	 this	way,	 every	
process	that	opens	a	file	gets	its	own	private	file	position.	Unfortunately,	this	scheme	fails	too,	
but	the	reasoning	is	more	subtle	and	has	to	do	with	the	nature	of	file	sharing	in	Linux.	Consider	
a	shell	script,	s,	consisting	of	two	commands,	p1	and	p2,	to	be	run	in	order.	If	the	shell	script	
is called by the command line

s	>x

it	is	expected	that	p1	will	write	its	output	to	x,	and	then	p2	will	write	its	output	to	x	also,	starting	
at	the	place	where	p1	stopped.	When	the	shell	forks	off	p1,	x	is	initially	empty,	so	p1	just	starts	
writing	at	file	position	0.	However,	when	p1	finishes,	some	mechanism	is	needed	to	make	sure	
that	the	initial	file	position	that	p2	sees	is	not	0	(which	it	would	be	if	the	file	position	were	kept	
in	the	file	descriptor	table),	but	the	value	p1	ended	with.	The	way	this	is	achieved	is	shown	in	
Figure	14.34.	The	trick	is	to	introduce	a	new	table,	the	open file description table between the 
file	descriptor	table	and	the	 i-node	table,	and	put	the	file	position	(and	read/write	bit)	 there.	
In	this	figure,	the	parent	is	the	shell	and	the	child	is	first	p1	and	later	p2.	When	the	shell	forks	
off	p1,	 its	user	structure	(including	the	file	descriptor	table)	 is	an	exact	copy	of	the	shell’s,	so	
both	of	them	point	to	the	same	open	file	description	table	entry.	When	p1	finishes,	the	shell’s	
file	descriptor	 is	still	pointing	to	 the	open	file	description	containing	p1’s	file	position.	When	
the	shell	now	forks	off	p2,	the	new	child	automatically	inherits	the	file	position,	without	either	
it or the shell even having to know what that position is.
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Notes
Figure 14.34: The Relation between the File Descriptor Table, the Open File  

Description Table, and the I-node Table

However,	if	an	unrelated	process	opens	the	file,	it	gets	its	own	open	file	description	entry,	with	
its	own	file	position,	which	is	precisely	what	is	needed.	Thus	the	whole	point	of	the	open	file	
description	table	is	to	allow	a	parent	and	child	to	share	a	file	position,	but	to	provide	unrelated	
processes with their own values.

Getting	back	to	the	problem	of	doing	the	read,	we	have	now	shown	how	the	file	position	and	
i-node	are	located.	The	i-node	contains	the	disk	addresses	of	the	first	12	blocks	of	the	file.	If	the	
file	position	falls	in	the	first	12	blocks,	the	block	is	read	and	the	data	are	copied	to	the	user.	For	
files	longer	than	12	blocks,	a	field	in	the	i-node	contains	the	disk	address	of	a	single indirect 
block,	 as	 shown	 in	Figure	14.34.	This	block	contains	 the	disk	addresses	of	more	disk	blocks.	
For	example,	if	a	block	is	1	KB	and	a	disk	address	is	4	bytes,	the	single	indirect	block	can	hold	
256	disk	addresses.	Thus	 this	scheme	works	 for	files	of	up	to	268	KB	 in	 total.	Beyond	that,	a	
double indirect block	 is	used.	 It	contains	the	addresses	of	256	single	 indirect	blocks,	each	of	
which	holds	the	addresses	of	256	data	blocks.	This	mechanism	is	sufficient	to	handle	files	up	to	
10	??216	blocks	(67,119,104	bytes).	If	even	this	is	not	enough,	the	i-node	has	space	for	a	triple 
indirect block. Its pointers point to many double indirect blocks. This addressing scheme can 
handle	file	sizes	of	224	1	KB	blocks	(16	GB).	For	8	KB	block	sizes,	the	addressing	scheme	can	
support	file	sizes	up	to	64	TB.

14.6.6 Linux Ext3 File System
In	 order	 to	 prevent	 data	 loss	 after	 system	 crashes	 and	 power	 failures,	 the	 ext2	 file	 system	
would have to write out each data block to disk as soon as it was created. The latency incurred 
during	 the	 required	disk	head	seek	operation	would	be	so	high	 that	 the	performance	would	
be	 intolerable.	Therefore,	writes	are	delayed,	and	changes	may	not	be	 committed	 to	disk	 for	
up	to	30	sec,	which	is	a	very	long	time	interval	in	the	context	of	modern	computer	hardware.	
To	improve	the	robustness	of	the	file	system,	Linux	relies	on	journaling file systems.	Ext3,	a	
follow-on	of	the	ext2	file	system,	is	an	example	of	a	journaling	file	system.
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NotesThe	basic	idea	behind	this	type	of	file	systems	is	to	maintain	a	journal,	which	describes	all	file	
system	operations	in	a	sequential	order.	By	sequentially	writing	out	and	changes	to	the	file	system	
data	or	metadata	 (i-nodes,	 superblock,	etc.),	 the	operations	do	not	suffer	 from	the	overheads	
of	disk	head	movement	during	random	disk	accesses.	Eventually,	the	changes	will	be	written	
out,	committed,	to	the	appropriate	disk	location,	and	the	corresponding	journal	entries	can	be	
discarded.

If	a	system	crash	or	power	failure	occurs	before	the	changes	are	committed,	during	restart,	the	
system	will	detect	that	the	file	system	was	not	unmounted	properly,	will	traverse	the	journal,	
and	apply	the	file	system	changes	described	in	the	journal	log.

Ext3	is	designed	to	be	highly	compatible	with	ext2,	and	in	fact,	all	core	data	structures	and	disk	
layout	are	the	same	in	both	systems.	Furthermore,	a	file	system	which	has	been	unmounted	as	an	
ext2	system,	can	be	subsequently	mounted	as	an	ext3	system	and	offer	the	journaling	capability.

The	 journal	 is	 a	 file	 used	 as	 a	 circular	 buffer.	 It	 may	 be	 stored	 on	 the	 same	 or	 separate	
device from the main file system. Since the journal operations are not “journalled” 
themselves,	 these	 are	 not	 handled	 by	 the	 same	 ext3	 file	 system.	 Instead,	 a	 separate	 JBD 
(Journaling Block Device) is used to perform the journal read/write operations. JBD 
supports	 three	 main	 data	 structures:	 log	 record,	 atomic	 operation	 handle,	 and	 transaction.	
A	 log	 record	 describes	 a	 low	 level	 file	 system	 operation,	 typically	 resulting	 in	 changes	
within	 a	 block.	 Since	 a	 system	 call	 such	 as	 write	 includes	 changes	 at	 multiple	 places	— 
i-nodes,	 existing	 file	 blocks,	 new	 file	 blocks,	 list	 of	 free	 blocks,	 etc.,	 related	 log	 records	 are	
grouped	in	atomic	operations.	Ext3	notifies	JBD	of	the	start	and	end	of	a	system	call	processing,	
so	that	JBD	can	ensure	that	either	all	 log	records	in	an	atomic	operation	are	applied,	or	none	
of	them.	Finally,	primarily	for	efficiency	reasons,	JBD	treats	collections	of	atomic	operations	as	
transactions. Log records are stored consecutively within a transaction. JBD will allow portions 
of	the	journal	file	to	be	discarded	only	after	all	log	records	belonging	to	a	transaction	are	safely	
committed to disk.

Since	writing	out	a	jog	entry	for	each	disk	change	may	be	costly,	ext3	may	be	configured	to	keep	
a	journal	of	all	disk	changes,	or	only	of	changes	related	to	the	file	system	metadata	(the	i-nodes,	
superblocks,	bitmaps,	and	so	on).	Journaling	metadata	only	introduces	fewer	system	overheads	
and	results	in	better	performance,	however	does	not	make	any	guarantees	against	corruption	
of	file	data.	Several	other	journaling	file	systems	maintain	logs	of	only	metadata	operations:

(e.g.,	SGI’s	XFS).

14.6.7  /proc File System

Another	Linux	file	system	is	the	/proc	(process)	file	system,	an	idea	originally	devised	in	the	8th	
edition	of	UNIX	from	Bell	Labs	and	later	copied	in	4.4BSD	and	System	V.		However,	Linux	extends	the	
idea	in	several	ways.	The	basic	concept	is	that	for	every	process	in	the	system,	a	directory	is	created	
in /proc.	The	name	of	the	directory	is	the	process	PID	expressed	as	a	decimal	number.	for	example, 
/proc/619	is	the	directory	corresponding	to	the	process	with	PID	619.	In	this	directory	files	that	
appear	to	contain	information	about	the	process,	such	as	its	command	line,	environment	strings,	
and	signal	masks.	In	fact,	these	files	does	not	exist	on	the	disk.	When	they	are	read,	the	system	
retrieves the information from the actual process as needed and returns it in a standard format. 
Many	of	the	Linux	extensions	relate	to	other	files	and	directories	located	in	/proc.	They	contain	
a	wide	variety	of	information	about	the	CPU,	disk	partitions,	devices,	interrupt	vectors,	kernel	
counters,	file	systems,	loaded	modules,	and	much	more.	Unprivileged	user	programs	may	read	
much	of	this	information	to	learn	about	system	behavior	in	a	safe	way.	Some	of	these	files	may	
be written to in order to change system parameters.



Principles of Operating Systems

450 LOVELY PROFESSIONAL UNIVERSITY

Notes 14.6.8 NFS—The Network File System

Networking	has	played	a	major	role	in	Linux,	and	UNIX	in	general,	right	from	the	beginning	
(the	first	UNIX	network	was	built	 to	move	new	kernels	 from	the	PDP-11/70	to	 the	Interdata	
8/32	 during	 the	 port	 to	 the	 later).	 In	 this	 section,	we	will	 examine	 Sun	Microsystem’s	NFS 
(Network File System),	which	is	used	on	all	modern	Linux	systems	to	join	the	file	systems	on	
separate	computers	into	one	logical	whole.	Currently,	the	most	dominant	NSF	implementation	is	
version	3,	introduced	in	1994	(Pawloski	et	al,	1994).	NSFv4	was	introduced	in	2000	and	provides	
several	enhancements	over	the	previous	NFS	architecture.	Three	aspects	of	NFS	are	of	interest:	
the	 architecture,	 the	 protocol,	 and	 the	 implementation.	We	will	 now	 examine	 these	 in	 turn,	
first	in	the	context	of	the	simpler	NFS	version	3,	then	we	will	briefly	discuss	the	enhancements	
included in v4.

14.6.8.1 NFS Architecture

The basic idea behind NFS is to allow an arbitrary collection of clients and servers to share a 
common	file	system.	In	many	cases,	all	the	clients	and	servers	are	on	the	same	LAN,	but	this	
is	not	required.	It	is	also	possible	to	run	NFS	over	a	wide	area	network	if	the	server	is	far	from	
the client. For simplicity we will speak of clients and servers as though they were on distinct 
machines,	but	 in	fact,	NFS	allows	every	machine	to	be	both	a	client	and	a	server	at	the	same	
time. Each NFS server exports one or more of its directories for access by remote clients. When 
a	directory	 is	made	available,	 so	are	all	of	 its	 subdirectories,	 so	 in	 fact,	 entire	directory	 trees	
are	normally	exported	as	a	unit.	The	list	of	directories	a	server	exports	is	maintained	in	a	file,	
often	/etc/exports,	so	these	directories	can	be	exported	automatically	whenever	the	server	is	
booted.	Clients	access	exported	directories	by	mounting	them.	When	a	client	mounts	a	(remote)	
directory,	it	becomes	part	of	its	directory	hierarchy,	as	shown	in	Figure	14.35.

Figure 14.35: Examples of Remote Mounted File Systems. Directories are Shown  
as Squares and Files are shown as Circles
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NotesIn	 this	 example,	 client	1	has	mounted	 the	bin	directory	of	 server	1	on	 its	own	bin	directory,	
so it can now refer to the shell as /bin/sh and get the shell on server 1. Diskless workstations 
often	have	only	a	skeleton	file	system	(in	RAM)	and	get	all	their	files	from	remote	servers	like	
this.	Similarly,	 client	1	has	mounted	server	2’s	directory	/projects	on	 its	directory	/usr/ast/
work	so	it	can	now	access	file	as	a	/usr/ast/work/proj1/a.	Finally,	client	2	has	also	mounted	
the	projects	directory	and	can	also	access	file	a,	only	as	/mnt/proj1/a.	As	seen	here,	the	same	
file	can	have	different	names	on	different	clients	due	to	its	being	mounted	in	a	different	place	
in the respective trees. The mount point is entirely local to the clients; the server does not know 
where it is mounted on any of its clients.

14.6.8.2 NFS Protocols
Since	one	of	 the	goals	of	NFS	 is	 to	support	a	heterogeneous	system,	with	clients	and	servers	
possibly	 running	 different	 operating	 systems	 on	 different	 hardware,	 it	 is	 essential	 that	 the	
interface	between	the	clients	and	servers	be	well	defined.	Only	 then	 is	 it	possible	 for	anyone	
to be able to write a new client implementation and expect it to work correctly with existing 
servers,	and	vice	versa.

NFS	accomplishes	this	goal	by	defining	two	client-server	protocols.	A	protocol	is	a	set	of	requests	
sent	by	clients	to	servers,	along	with	the	corresponding	replies	sent	by	the	servers	back	to	the	
clients.	The	first	NFS	protocol	handles	mounting.	A	 client	 can	 send	a	path	name	 to	 a	 server	
and	request	permission	to	mount	that	directory	somewhere	in	its	directory	hierarchy.	The	place	
where	it	is	to	be	mounted	is	not	contained	in	the	message,	as	the	server	does	not	care	where	it	
is	to	be	mounted.	If	the	path	name	is	legal	and	the	directory	specified	has	been	exported,	the	
server returns a file handle	 to	 the	client.	The	file	handle	contains	fields	uniquely	 identifying	
the	 file	 system	 type,	 the	 disk,	 the	 i-node	 number	 of	 the	 directory,	 and	 security	 information.	
Subsequent	calls	 to	read	and	write	files	 in	 the	mounted	directory	or	any	of	 its	subdirectories	
use	the	file	handle.

When	Linux	boots,	it	runs	the	/etc/rc	shell	script	before	going	multiuser.	Commands	to	mount	
remote	 file	 systems	 can	 be	 placed	 in	 this	 script,	 thus	 automatically	mounting	 the	 necessary	
remote	 file	 systems	 before	 allowing	 any	 logins.	 Alternatively,	 most	 versions	 of	 Linux	 also	
support automounting. This feature allows a set of remote directories to be associated with a 
local	directory.	None	of	these	remote	directories	are	mounted	(or	their	servers	even	contacted)	
when	the	client	is	booted.	Instead,	the	first	time	a	remote	file	is	opened,	the	operating	system	
sends	a	message	to	each	of	the	servers.	The	first	one	to	reply	wins,	and	its	directory	is	mounted.

Automounting	has	two	principal	advantages	over	static	mounting	via	the	/etc/rc	file.	First,	if	
one	of	the	NFS	servers	named	in	/etc/rc	happens	to	be	down,	it	is	impossible	to	bring	the	client	
up,	at	least	not	without	some	difficulty,	delay,	and	quite	a	few	error	messages.	If	the	user	does	
not	even	need	that	server	at	the	moment,	all	that	work	is	wasted.	Second,	by	allowing	the	client	
to	try	a	set	of	servers	in	parallel,	a	degree	of	fault	tolerance	can	be	achieved	(because	only	one	
of	 them	needs	 to	be	up),	and	the	performance	can	be	 improved	(by	choosing	the	first	one	 to	
reply—presumably	the	least	heavily	loaded).	On	the	other	hand,	 it	 is	 tacitly	assumed	that	all	
the	file	systems	specified	as	alternatives	 for	 the	automount	are	 identical.	Since	NFS	provides	
no	support	for	file	or	directory	replication,	it	is	up	to	the	user	to	arrange	for	all	the	file	systems	
to	 be	 the	 same.	 Consequently,	 automounting	 is	 most	 often	 used	 for	 read-only	 file	 systems	
containing	system	binaries	and	other	files	 that	rarely	change.	The	second	NFS	protocol	 is	 for	
directory	and	file	access.	Clients	 can	 send	messages	 to	 servers	 to	manipulate	directories	and	
read	and	write	files.	Also,	they	can	also	access	file	attributes,	such	as	file	mode,	size,	and	time	
of	last	modification.	Most	Linux	system	calls	are	supported	by	NFS,	with	the	perhaps	surprising	
exception of open and close.

The omission of open and close is not an accident. It is fully intentional. It is not necessary to open 
a	file	before	reading	it,	nor	to	close	it	when	done.	Instead,	to	read	a	file,	a	client	sends	the	server	a	 
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Notes lookup	message	containing	the	file	name,	with	a	request	to	look	it	up	and	return	a	file	handle,	
which	is	a	structure	that	identifies	the	file	(i.e.,	contains	a	file	system	identifier	and	i-node	number,	
among	other	data).	Unlike	an	open	call,	this	lookup	operation	does	not	copy	any	information	
into	internal	system	tables.	The	read	call	contains	the	file	handle	of	the	file	to	read,	the	offset	in	
the	file	to	begin	reading,	and	the	number	of	bytes	desired.	Each	such	message	is	self-contained.	
The advantage of this scheme is that the server does not have to remember anything about open 
connections	 in	between	calls	 to	 it.	Thus	if	a	server	crashes	and	then	recovers,	no	information	
about	open	files	 is	 lost,	because	 there	 is	none.	A	server	 like	 this	 that	does	not	maintain	state	
information	about	open	files	is	said	to	be	stateless.

Unfortunately,	 the	NFS	method	makes	 it	 difficult	 to	 achieve	 the	 exact	 Linux	 file	 semantics.	
For	example,	in	Linux	a	file	can	be	opened	and	locked	so	that	other	processes	cannot	access	it.	
When	the	file	is	closed,	the	locks	are	released.	In	a	stateless	server	such	as	NFS,	locks	cannot	be	
associated	with	open	files,	because	the	server	does	not	know	which	files	are	open.	NFS	therefore	
needs	a	separate,	additional	mechanism	to	handle	locking.

NFS	uses	the	standard	UNIX	protection	mechanism,	with	the	rwx	bits	for	the	owner,	group,	and	
others	(mentioned	in	Unit	1	and	discussed	in	detail	below).	Originally,	each	request	message	
simply	contained	the	user	and	group	IDs	of	the	caller,	which	the	NFS	server	used	to	validate	
the	 access.	 In	 effect,	 it	 trusted	 the	 clients	 not	 to	 cheat.	 Several	 years’	 experience	 abundantly	
demonstrated	that	such	an	assumption	was—how	shall	we	put	it?—naive.	Currently,	public	key	
cryptography can be used to establish a secure key for validating the client and server on each 
request	and	reply.	When	this	option	is	enabled,	a	malicious	client	cannot	impersonate	another	
client because it does not know that client’s secret key.

14.6.8.3 NFS Implementation

Although	the	implementation	of	the	client	and	server	code	is	independent	of	the	NFS	protocols,	
most Linux systems use a three-layer implementation. The top layer is the system call layer. This 
handles	calls	like	open,	read,	and	close.	After	parsing	the	call	and	checking	the	parameters,	it	
invokes	the	second	layer,	the	Virtual	File	System	(VFS)	layer.

The	task	of	the	VFS	layer	is	to	maintain	a	table	with	one	entry	for	each	open	file.	The	VFS	layer	
has	an	entry,	a	virtual i-node,	or	v-node,	for	every	open	file.	V-nodes	are	used	to	tell	whether	
the	file	is	local	or	remote.	For	remote	files,	enough	information	is	provided	to	be	able	to	access	
them.	For	 local	files,	 the	file	 system	and	 i-node	are	 recorded	because	modern	Linux	systems	
can	support	multiple	file	systems	(e.g.,	ext2fs,	/proc,	FAT,	etc.).	Although	VFS	was	invented	to	
support	NFS,	most	modern	Linux	systems	now	support	it	as	an	integral	part	of	the	operating	
system,	even	if	NFS	is	not	used.	To	see	how	v-nodes	are	used,	let	us	trace	a	sequence	of	mount,	
open,	and	read	system	calls.	To	mount	a	remote	file	system,	the	system	administrator	(or	/etc/rc)	
calls	the	mount	program	specifying	the	remote	directory,	the	local	directory	on	which	it	is	to	be	
mounted,	and	other	information.	The	mount	program	parses	the	name	of	the	remote	directory	to	
be mounted and discovers the name of the NFS server on which the remote directory is located. 
It	then	contacts	that	machine	asking	for	a	file	handle	for	the	remote	directory.	If	the	directory	
exists	and	is	available	for	remote	mounting,	the	server	returns	a	file	handle	for	the	directory.	
Finally,	it	makes	a	mount	system	call,	passing	the	handle	to	the	kernel.

The kernel then constructs a v-node for the remote directory and asks the NFS client code to 
create an r-node	(remote i-node)	in	its	internal	tables	to	hold	the	file	handle.	The	v-node	points	
to the r-node. Each v-node in the VFS layer will ultimately contain either a pointer to an r-node 
in	the	NFS	client	code,	or	a	pointer	to	an	i-node	in	one	of	the	local	file	systems.	Thus	from	the	
v-node	it	 is	possible	to	see	if	a	file	or	directory	is	local	or	remote.	If	 it	 is	 local,	the	correct	file	
system	and	i-node	can	be	located.	If	it	is	remote,	the	remote	host	and	file	handle	can	be	located.	
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NotesWhen	a	remote	file	is	opened	on	the	client,	at	some	point	during	the	parsing	of	the	path	name,	
the	kernel	hits	the	directory	on	which	the	remote	file	system	is	mounted.	It	sees	that	this	directory	
is	remote	and	in	the	directory’s	v-node	finds	the	pointer	to	the	r-node.	It	then	asks	the	NFS	client	
code	to	open	the	file.	The	NFS	client	code	looks	up	the	remaining	portion	of	the	path	name	on	
the	remote	server	associated	with	the	mounted	directory	and	gets	back	a	file	handle	for	 it.	 It	
makes	an	r-node	for	the	remote	file	in	its	tables	and	reports	back	to	the	VFS	layer,	which	puts	
in	its	tables	a	v-node	for	the	file	that	points	to	the	r-node.	Again	here	we	see	that	every	open	
file	or	directory	has	a	v-node	that	points	to	either	an	r-node	or	an	i-node.

The	 caller	 is	 given	 a	 file	 descriptor	 for	 the	 remote	 file.	 This	 file	 descriptor	 is	 mapped	 onto	
the v-node by tables in the VFS layer. Note that no table entries are made on the server side. 
Although	 the	server	 is	prepared	 to	provide	file	handles	upon	request,	 it	does	not	keep	 track	
of	which	files	happen	to	have	file	handles	outstanding	and	which	do	not.	When	a	file	handle	
is	sent	to	it	for	file	access,	it	checks	the	handle,	and	if	it	is	valid,	use	it.	Validation	can	include	
verifying	an	authentication	key	contained	in	the	RPC	headers,	if	security	is	enabled.	When	the	
file	descriptor	is	used	in	a	subsequent	system	call,	for	example,	read,	the	VFS	layer	locates	the	
corresponding	v-node,	and	from	that	determines	whether	it	is	local	or	remote	and	also	which	
i-node	or	r-node	describes	it.	It	then	sends	a	message	to	the	server	containing	the	handle,	the	
file	offset	(which	is	maintained	on	the	client	side,	not	the	server	side),	and	the	byte	count.	For	
efficiency	reasons,	transfers	between	client	and	server	are	done	in	large	chunks,	normally	8192	
bytes,	even	if	fewer	bytes	are	requested.	When	the	request	message	arrives	at	the	server,	it	is	
passed	to	the	VFS	layer	there,	which	determines	which	local	file	system	holds	the	requested	file.	
The	VFS	layer	then	makes	a	call	to	that	local	file	system	to	read	and	return	the	bytes.	These	data	
are then passed back to the client After the client’s VFS layer has gotten the 8 KB chunk it asked 
for,	it	automatically	issues	a	request	for	the	next	chunk,	so	it	will	have	it	should	it	be	needed	
shortly.	This	feature,	known	as	read ahead,	improves	performance	considerably.	For	writes	an	
analogous	path	is	followed	from	client	to	server.	Also,	transfers	are	done	in	8	KB	chunks	here	
too.	If	a	write	system	call	supplies	fewer	than	8	KB	bytes	of	data,	the	data	are	just	accumulated	
locally.	Only	when	the	entire	8	KB	chunk	is	full	is	it	sent	to	the	server.	However,	when	a	file	is	
closed,	all	of	its	data	are	sent	to	the	server	immediately.

Another	technique	used	to	improve	performance	is	caching,	as	in	ordinary	UX.	Servers	cache	
data	to	avoid	disk	accesses,	but	this	is	invisible	to	the	clients.	Clients	maintain	two	caches,	one	
for	file	attributes	(i-nodes)	and	one	for	file	data.	When	either	an	i-node	or	a	file	block	is	needed,	
a	check	is	made	to	see	if	it	can	be	satisfied	out	of	the	cache.	If	so,	network	traffic	can	be	avoided.	
While	client	caching	helps	performance	enormously,	 it	also	 introduces	some	nasty	problems.	
Suppose	 that	 two	clients	are	both	caching	 the	same	file	block	and	 that	one	of	 them	modifies	
it.	When	the	other	one	reads	the	block,	it	gets	the	old	(stale)	value.	The	cache	is	not	coherent.

Given	 the	potential	 severity	of	 this	problem,	 the	NFS	 implementation	does	 several	 things	 to	
mitigate	 it.	For	one,	associated	with	each	cache	block	 is	a	 timer.	When	 the	 timer	expires,	 the	
entry	is	discarded.	Normally,	the	timer	is	3	sec	for	ata	blocks	and	30	sec	for	directory	blocks.	
Doing	this	reduces	the	risk	somewhat.	In	addition,	whenever	a	cached	file	is	opened,	a	message	
is	sent	to	the	server	to	find	out	when	the	file	was	last	modified.	If	the	last	modification	occurred	
after	the	local	copy	was	cached,	the	cache	copy	is	discarded	and	the	new	copy	fetched	from	the	
server.	Finally,	once	every	30	sec	a	cache	timer	expires,	and	all	the	dirty	(i.e.,	modified)	blocks	in	
the	cache	are	sent	to	the	server.	While	not	perfect,	these	patches	make	the	system	highly	usable	
in most practical circumstances.
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Notes 14.6.8.4 NFS Version 4 
Version 4 of the Network File System was designed to simplify certain operations from its 
predecessor.	 In	 contrast	 to	NSFv3	which	 is	described	above,	NFSv4	 is	 a	 stateful	 file	 system.	
This	permits	open	operations	to	be	invoked	on	remote	files,	since	the	remote	NFS	server	will	
maintain	 all	 file	 system	 related	 structures,	 including	 the	 file	 pointer.	 Read	 operations	 then	
need	not	include	absolute	read	ranges,	but	can	be	incrementally	applied	from	the	previous	file	
pointer	position.	This	results	in	both,	use	of	shorter	messages,	and	also	in	the	ability	to	bundle	
multiple NFSv3 operations in one network transaction. The stateful nature of NFSv4 makes 
it easy to also integrate the variety of NFSv3 protocols described earlier in this section into 
one	coherent	protocol.	There	is	no	need	to	support	separate	protocols	for	mounting,	caching,	
locking,	or	secure	operations.	NFSv4	also	works	better	with	both	Linux	(and	UNIX	in	general)	
and	Windows	file	system	semantics.	

14.7 Security in Linux

Linux,	as	a	clone	of	MINIX	and	UNIX,	has	been	a	multiuser	system	almost	from	the	beginning.	
This history means that security and control of information was built in very early on. In the 
following	sections,	we	will	look	at	some	of	the	security	aspects	of	Linux.

Self Assessment

Fill in the blanks:

	 6.	 .......................	command	is	used	to	create	Linux	file	system.

	 7.	 In	the	Linux	process,	the		.......................	contains	the	machine	instruction.

 8. The kernel and memory map parts of main memory in Linux are  ....................... in memory.

	 9.	 A		.......................	file	is	one	consisting	of	a	sequence	of	numbered	blocks.

	 10.	 .......................	contains	information	about	the	layout	of	the	file	system.

14.8 Summary

 •	 The	first	version	of	Linux	0.01	was	released	in	1991.	It	was	cross-developed	on	a	MINIX	
machine and borrowed numerous ideas from MINIX ranging from the structure of the 
source	tree	to	the	layout	of	the	file	system.

	 •	 Linux	is	a	multiprogramming	system,	so	multiple	independent	processes	may	be	running	
at the same time.

	 •	 When	the	computer	is	start,	the	BIOS	performs	powers-ON	self	(POST)	and	initial	device	
process. 

	 •	 The	Linux	memory	model	 is	 straightforward	 to	make	programs	portable	 and	 to	make	
it possible to implement Linux on machine with widely differing memory management 
units. 

	 •	 The	I/O	system	in	Linux	is	fairly	straightforward.

	 •	 The	most	visible	part	of	any	operating	system,	including	Linux	is	the	file	system.	

	 •	 Security	of	Linux.	The	Linux	as	a	clone	of	MINIX	and	UNIX	has	been	a	multiuser	system	
almost from the beginning. 



Unit 14: Case Study of Linux Operating System

 LOVELY PROFESSIONAL UNIVERSITY 455

Notes14.9 Keywords

Kernel: The Linux kernel is an operating system where kernel used by the Linux family of Unix-
like operating systems. It is one of the most prominent examples of free and open source software.

Memory:	The	term	memory	identifies	data	storage	that	comes	in	the	form	of	chips,	and	the	word	
storage	is	used	for	memory	that	exists	on	tapes	or	disks.	Moreover,	the	term	memory	is	usually	
used	as	shorthand	for	physical	memory,	which	refers	to	the	actual	chips	capable	of	holding	data.	
Some	computers	also	use	virtual	memory,	which	expands	physical	memory	onto	a	hard	disk.

MINIX : MINIX		is	a	new	open-source	operating	system	designed	to	be	highly	reliable,	flexible,	
and	secure.	It	is	loosely	based	somewhat	on	previous	versions	of	MINIX,	but	is	fundamentally	
different in many key ways.

Page Allocator: An allocation scheme which combines a normal power of two allocator with 
free	buffer	coalescing	and	the	basic	concept	behind	it	is	quite	simple.	Memory	is	broken	up	into	
a large blocks of pages where each block is a power of two numbers of pages.

Paging: The operating system copies a certain number of pages from your storage device to 
main	memory.	When	a	program	needs	a	page	that	is	not	in	main	memory,	the	operating	system	
copies	 the	 required	 page	 into	memory	 and	 copies	 another	 page	 back	 to	 the	 disk.	 One	 says	
that the operating system pages the data. Each time a page is needed that is not currently in 
memory,	a	page	fault	occurs.	An	invalid	page	fault	occurs	when	the	address	of	the	page	being	
requested	is	invalid.

System Call: Operating systems contain sets of routines for performing various low-level 
operations.	For	example,	all	operating	systems	have	a	routine	 for	creating	a	directory.	 If	you	
want	to	execute	an	operating	system	routine	from	a	program,	you	must	make	a	system	call.

Threads: A thread is placeholder information associated with a single use of a program that can 
handle multiple concurrent users.

UNIX:	Unix		 is	a	multitasking,	multiuser	computer	operating	system,	is	originally	developed	
in	1969	by	a	group	of	AT&T	employees	at	Bell	Labs.

14.10 Review Questions

	 1.	 Can	a	page	fault	ever	lead	to	the	faulting	process	being	terminated?	If	so,	give	an	example.	
If	not,	why	not?

	 2.	 Why	are	open	file	description	tables	necessary	in	Linux?

 3. A non-real time Linux process has priority levels from 100 to 139. What is the default 
static priority and how is the nice values used to change this?

 4. Why do you think the designers of Linux made it impossible for a process to send a signal 
to a another process that is not in its process group?

	 5.	 In	every	process’	entry	is	the	task	structure,	the	PID	of	the	process’	parent	is	stored.	Why?

	 6.	 When	a	new	process	 is	 forked	off,	 it	must	be	assigned	a	unique	integer	as	 its	PID.	Is	 it	
sufficient	 to	have	a	 counter	 in	 the	kernel	 that	 is	 incremented	on	each	process	 creation,	
with the counter used as the new PID? Discuss your answer.

Answers to Self Assessment
 1.	 (a)	 2.	 (b)	 3.	 control	 4.	 window	manager

 5. Magic characters 6. fsck 7. text segement

	 8.	 pinned	 	 	 9.	 block	special	file	 10.	 Superblock
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Notes 14.11 Further Readings

Operating Systems,	 by	Harvey	M.	Deitel,	Paul	 J.	Deitel,	David	R.	Choffnes.		
Introduction to Operating Design and Implementation, by	Michael	Kifer,	Scoott	
A. Smolka. 
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