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Unit 1: Banach Space: Definition and Some Examples
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Objectives

After studying this unit, you will be able to:

° Know about Banach spaces.

) Define Banach spaces.

) Solve problems on Banach spaces.
Introduction

Banach space is a linear space, which is also, in a special way, a complete metric space. This
combination of algebraic and metric structures opens up the possibility of studying linear
transformations of one Banach space into another which have the additional property of being
continuous. The concept of a Banach space is a generalization of Hilbert space. A Banach space
assumes that there is a norm on the space relative to which the space is complete, but it is not
assumed that the norm is defined in terms of an inner product. There are many examples of
Banach spaces that are not Hilbert spaces, so that the generalization is quite useful.

1.1 Banach Spaces

1.1.1 Normed Linear Space

Definition: Let N be a complex (or real) linear space. A real valued function n: N — R is said to
define, a norm on N if for any x, y € N and any scalar (complex number) o, the following
conditions are satisfied by n:

(i) nx=20,n((x)=0,ex=0;

(i) n(kx+y)<n(x)+n(y);and
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Banach Space: Definition and Some Examples

(iil) n(ax)=|a| n(x) Notes
It is customary to denote n (x) by

n (x) = x || (read as norm x)

With this notation the above conditions (i) - (iii) assume the following forms:

@ Ix120,lx[=0ex=0;

(i) lIx+yli<lix|l +Ilyl;and

@iii) floxii=lollix|l.

A linear space N together with a norm defined on it, i.e., the pair (N, || ||) is called a normed linear
space and will simply be denoted by N for convenience.

—]]

Notes

1. The condition (ii) is called subadditivity and the condition (iii) is called absolute
homogeneity.

2. If we drop the condition viz. || x||=0 < x =0, then|| ||is called a seminorm (or pseudo
norm) or N and the space N is called a semi-normed linear space.

Theorem 1: If N is a normed linear space and if we define a real valued functiond : N x N — R by
dx y)=lIx-yIl (x, y € N), then d is a metric on N.

Proof: We shall verify the conditions of a metric
i dxy)=z0dxy =0es|x-yll=0ex=y;
(i) dxy)=lx-ylI=0D)y-x)0=[-1]ly-xI =lly-x]I=d(y, x)
(iii) dxy)=lx-yl=llx-z+z-y]|l (z=N)
<lix-zl[+llz-yll =d(x,2)+d(zy)

Hence, d defines a metric on N. Consequently, every normed linear space is automatically a
metric space.

This completes the proof of the theorem.

1.  The above metric has the following additional properties:
(1) If x,y,z€ N and a is a scalar, then
dixtz,y+tz)=|(x+z)-(y+2)I=lx-yll=d (xy).
(i) d(ax, ay) =llox-ay|[=]a(x-y)ll
= lallix-yll=lofd(y).

2. Since every normed linear space is a metric space, we can rephrase the definition of
convergence of sequences by using this metric induced by the norm.
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Notes

1.1.2 Convergent Sequence in Normed Linear Space
Definition: Let (N, || |[) be a normed linear space. A sequence (x,) is N is said to converge to an
element x in N if given € > 0, there exists a positive integer n_ such that

Ix,-x||<eforalln>n,_

If x converges to x, we write Lim x, =x.

or X, —Xasn— oo
It follows from the definition that
x >x&|x -x|[[>0asn—
Theorem 2: If N is a normed linear space, then
[IxII=llyll| <lix-ylforanyx,y € N

Proof: We have

IxII=lx-y)+yll
<lix-yli+lyll
= IxN=Nyll <l x-yll o (1)

Using (1), we have
=t =Nry I =ty =l i<ty -l
But ly-xll =II(-1) x=y)lI=[-1]lIx-yll
Therefore
=(IxN=ly 1) €l x -yl so that
Ixl-lyll =-lx-yl Q)
From (1) and (2) we get
[IxI=Ivl] <tx-y1

This completes the proof of the theorem.
1.1.3 Subspace of a Normed Linear Space

Definition: A subspace M of a normed linear space is a subspace of N consider as a vector space
with the norm obtain by restricting the norm of N to the subset M. This norm on M is said to be
induced by the norm on N. If M is closed in N, then M is called a closed subspace of N.

Theorem 3: Let N be a normed linear space and M is a subspace of N. Then the closure M of M is
also a subspace of N.

(Note that since M is closed, M is a closed subspace).

Proof: To prove that M is a subspace of N, we must show that any linear combination of

elementin M is again in M. That is if xand y € M, then ax + By € M for any scalars o and f.

LOVELY PROFESSIONAL UNIVERSITY



Banach Space: Definition and Some Examples

Since x, y € M, there exist sequences (x,) and (y,) in M such that Notes

x,—~xandy —vy,
By joint continuity of addition and scalar multiplication in M.
ax_+ By, — ax + Py for every scalars oo and .

Since ax_+ Py, € M, we conclude that

ax + By € M and consequently M is a subspace of N.

This completes the proof of the theorem.

—]]

Notes
1. The scalars @, B can be assumed to be non-zero.

For if o = 0 = f, then

ax+fy=0e Mc M

2. In a normed linear space, the smallest closed subspace containing a given set of
vectors S is just the closure of the subspace spanned by the set S. To see this, let S be
the subset of a normed linear space N and let M be the smallest closed subspace of N,

containing S. We show that M = [S], where [S] is the subspace spanned by S.
By theorem, [S] is a closed subspace of N and it contains S.

Since M is the smallest closed subspace containing S, we have

Mc [S].
But [S]c M and M = M, we must have

[S] € M =Mso that [S] ¢ M.

Hence [S] =M.

1.14 Complete Normed Linear Space

Definition: A normed linear space N is said to be complete if every Cauchy sequence in N
converges to an element of N. This means that if || x_-x_|| — 0as m, n — eo, then there exists x €
N such that

[Ix,=x[|— 0asn— e
1.1.5 Banach Space

Definition: A complete normed linear space is called a Banach space.
OR

A normed linear space which is complete as a metric space is called a Banach space.
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In the definition of a Banach space completeness means that if
[Ix, =%, Il = 0asm, n— e, where (x,) C N, then
Jax e N such that

[Ix,=x||—>0asn— oo

]|

g

Note A subspace M of a Banach space B is a subspace of B considered as a normed linear
space. We do not require M to be complete.

Theorem 4: Every complete subspace M of a normed linear space N is closed.
Proof: Let x € N be any limit point of M.

We have to show that x € M.

Since x is a limit point of M, there exists a sequence (x,) in M and x_ — x as n — .
But, since (x ) is a convergent sequence in M, it is Cauchy sequence in M.

Further M is complete = (x_) converges to a point of M so that x € M.

Hence M is closed.

This completes the proof of the theorem.

Theorem 5: A subspace M of a Banach space B is complete iff the set M is closed in B.

Proof: Let M be a complete subspace of a Banach space M. They be above theorem, M is closed
(prove it).

Conversely, let M be a closed subspace of Banach space B. We shall show that M is complete.
Let x = (x) be a Cauchy sequence in M. Then

x, — x in B as B is complete.

We show that x € M.

Nowxe M =xe M (- M being closed = M = M)

Thus every Cauchy sequence in M converges to an element of M. Hence the closed sequence M
of B is complete. This completes the proof of the theorem.

' Example 1: The linear space R of real numbers or C of complex numbers are Banach
spaces under the norm defined by

[Ix|I=]x|,xe R (or C)
Solution: We have
[[x]|=]x|>0and || x]|=0& |x| = &x=0
Further, let z,, z, € C and let z: and z> be their complex conjugates, then
|z, +2,|% = (z, + 2,) (21 +22)

=2Z,21%2,22%t2,7Z1+ 2,72

A

< ‘zl‘z +2 ‘2122‘ + ‘ZZ‘Z
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Banach Space: Definition and Some Examples

_ 2 2 - _ _ Notes
= |z, +2[z)[z,| +|z,] [ ‘Z1'Z2‘+‘ZUZ2‘—‘Zlezu

=(lz,| + |z,|)
|z, +z,| <|z,| + |z,|
or Iz, +z |l <llz, 1+ z Colx = 1x1)
Also lox|l = |ox| = [or| |x]| = [o] [Ix]|

Hence all the conditions of normed linear space are satisfied. Thus both C or R are normed linear
space. And by Cauchy general principle of convergence, R and C are complete under the matrices
induced by the norm. So R and C are Banach spaces.

' Example 2: Euclidean and Unitary spaces: The linear space R" and C" of all n-tuples (x,,
X, ..., X.) of real and complex numbers are Banach spaces under the norm

R 1/2
Ixll = X Ix P
i=1

[Usually called Euclidean and unitary spaces respectively].
Solution: (i) Since each |x,| =0, we have
x>0

- 2 = -0 =
and [ x||= 0 Z|xi| =0ex=0,i=12..,n

S (X, Xy .. x)=0

=x=0
(i) Let x = (x,, X, ..., X)
andy = (y,, ¥, -.. y,) be any two numbers of C" (or R"). Then

IX+yIP =11 (< Xy o X) + (V0 Yy o V) IP

=] (%), (%, +y,) ..., (X, *y,)IP

n
= Yix+y. P
i=1

< DIx+yl(Ix1+1y.1)
i=1

n n
< D IxHy I Iy |
i=1

i=1

Usually Cauchy inequality for each sum, we get

n 2 n % n % n %
Ix+ylP = {2|Xi+y1 |} {lei |Z} +{2|Xi+Yi |Z} {2|Yi |Z}
i1 o1 o1 i1
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=lix+yllIxi+Ix+yll Iyl
=(xt+1y I Arx+y .
If || x + y || = 0, then the above inequality is evidently true.

If || x + y || # 0, we can divide both sides by it to obtain

Ix+yll <lix+Nyll.

n yz n %
(iii) llox|l = {Zlaxi IZ} =Ial{2|xi IZ}
i=1 i=1

= lo] ]l
This proves that R" or C" are normed linear spaces.
Now we show the completeness of C" (or R").

Let <x, x,, ... X, > be a Cauchy sequence in C" (or R"). Since each x_ is an n-tuple of complex (or
real) numbers, we shall write

So that x{™ is the k™ coordinate of x_.
Let & > 0 be given, since <x_> is a Cauchy sequence, there exists a positive integer m , such that

¢, m>m, = [x,-x[<¢e

=[x, —x[ <€

n

S -0
i=1

= XM -x"|<€* (=12, .....,n)

= ‘xgm)—ng) <t

Hence (xﬁm)>::1 is a Cauchy sequence of complex (or real) numbers for each fixed but
arbitrary i.

Since C (or R) is complete, each of these sequences converges to a point, say 2, in C (or R) so that
Limx™ =z (i=12,...,n) e (2)

m—eo

Now we show that the Cauchy sequence <x_> converges to the pointz = (z,, z,, ...... ,z,)€ C (or
R").

To prove this let { — o in (1). Then by (2) we have

n
2
ZM““’ -z| <€
i=1

LOVELY PROFESSIONAL UNIVERSITY



Banach Space: Definition and Some Examples

= Ix, -zlF<e Notes
= lx,-zl<e
It follows that the Cauchy sequence <x_> converges to z € C" (or R").

Hence C" or R" are complete spaces and consequently they are Banach spaces.

1.2 Summary

° A linear space N together with a norm defined on it, i.e. the pair (N, || ||) is called a normed
linear space.

° Let (N, || [l) be a normed linear space. A sequence (x,) in N is said to converge to an element
x in N if given € > 0, there exists a positive integer n_such that

Ix,-xl<e¢ foralln=n_.
. If N is a normed linear space, then
‘HXH_HYH‘SHX_YH for any x,y € N.

o A normed linear space N is said to be complete if every Cauchy sequence in N converges
to an element of N.

o A complete normed linear space is called a Banach space.

1.3 Keywords

A Subspace M of a Normed Linear Space: A subspace M of a normed linear space is a subspace of
N consider as a vector space with the norm obtain by restricting the norm of N to the subset M.
If norm on M is said to be induced by the norm on N. If M is closed in N, then M is called a closed
subspace of N.

Banach Space: A complete normed linear space is called a Banach space.

Complete Normed Linear Space: A normed linear space N is said to be complete if every Cauchy
sequence in N converges to an element of N. This means that if || x_-x_ || — 0as m, n — e, then
there exists x € N such that

[Ix,=x[|— 0asn— e
Normed Linear: A linear space N together with a norm defined on it, i.e., the pair (N, || [|) is called

a normed linear space and will simply be denoted by N for convenience.

1.4 Review Questions

1. Let N be a non-zero normed linear space, prove that N is a Banach space & {x : || x || = 1} is
complete.

2. LetaBanach space B be the direct sum of the linear subspaces M and N, so that B=M & N.
If z=x + y is the unique expression of a vector z in B as the sum of vectors x and y in M and
N, then a new norm can be defined on the linear space Bby || z | =[x || + || y |I.

Prove that this actually is a norm. If B’ symbolizes the linear space B equipped with this
new norm, prove that B” is a Banach space of M and N are closed in B.
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Notes 1.5 Further Readings

N

Books Bourbaki, Nicolas (1987), Topological Vector Spaces, Elements of Mathematics, Berlin:
Springer-Verlag.

Beauzamy, Bernard (1985), Introduction to Banach Spaces and their Geometry (Second
revised ed.), North-Holland.

A
.o,
Online links mathword.wolfram.com?Calculus and Analysis>Functional Analysis
homepage.ntlworld-com/ivan.wilde/notes/fal/fal.pdf

www.math.ucdavis.edu/~ hunter/book.chs.pdf
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Continuous Linear Transformations

Unit 2: Continuous Linear Transformations
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Objectives

After
[
[

studying this unit, you will be able to:
Understand continuous linear transformation
Define bounded linear functional and norm of a bounded linear functional

Understand theorems on continuous linear transformations.

Introduction

In this unit, we obtain the representation of continuous linear functionals on some of Banach
spaces.

21

Continuous Linear Transformation

21.1

Continuous Linear Functionals Definition

Let N be a normed linear space. Then we know the set R of real numbers and the set C of
complex numbers are Banach spaces with the norm of any x € R or x € C given by the
absolute value of x. Thus with our previous notations, 8 (N, R) or § (N, C) denote respectively
the set of all continuous linear transformations from N into R or C.

We denote the Banach space p (N, R) or f§ (N, C) by N* and call it by the conjugate space (or
dual space or adjoint space) of N.

The elements of N* will be referred to as continuous linear functionals or simply functionals
on N.

LOVELY PROFESSIONAL UNIVERSITY
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Notes

]|

ig

Note  The conjugate space (N*)* of N* is called the second conjugate space of N and shall
be denoted by N**. Also note that N** is complete too.

Theorem 1: The conjugate space N* is always a Banach space under the norm

HfH =sup{f(x):xeN,x¢O} . (i)

B

=sup {‘f(x)‘:HxH<1}
= inf {k,kZO and \f(x)‘SkHXHVX}

Proof: As we know that if N, N” are normed linear spaces, (N, N’) is a normed linear space. If
N’ is a Banach space, f (N, N’) is Banach space. Hence f (N, R) or § (N, C) is a Banach space because
R and C are Banach spaces even if N is not complete.

This completes the proof of the theorem.

Theorem 2: Let f be a linear functional on a normed linear space. If f is continuous at x_€ N, it
must be continuous at every point of N.

Proof: If f is continuous at x = x , then
Xn % XO => f (Xr\) % f (X)
To show that f is continuous everywhere on N, we must show that for any y € N,

Y.y =1£(y) 2> £(y)

Let y, »>yasn—

Now f(y) =f(@y,-y+x,*y-x)
since f is linear.
f(y,) =t @, -y +x)+f(y)-f(x) .. (1)
As y,— Yy =Y,-y*+x, — X by hypothesis
Also f is continuous, fly,-y+x)—>f(x) .. (2

From (1) and (2), it follows that
f(y)—=f(y) asn— oo
= f is continuous at y € N and consequently as it is continuous everywhere on N.

Hence proved.
2.1.2 Bounded Linear Functional

A linear functional on a normed linear space N is said to be bounded, if there exists a constant k
such that

‘f(x)‘SKHXH VxeN-

LOVELY PROFESSIONAL UNIVERSITY



Continuous Linear Transformations

Notes
]
iE
Note

We may find many K’s satisfying the above condition for a given bounded function. If it
is satisfied for one K, it is satisfied for a K, > K.

Theorem 3: Let f be a linear functional defined on a normed linear space N, then f is bounded <
f is continuous.

Proof: Let us first show that continuity of f = boundedness of f.

If possible let f is continuous but not bounded. Therefore, for any natural number n, however
large, there is some point x_such that

[E) T 20 | x|l (D)
Consider the vector, y, = nHXxn H so that
lyal ==
Yol = o

= HynH—>0 asn — oo

= y, — 0 in the norm.

Since any continuous functional maps zero vector into zero and f is continuous f (y ) — f (0) = 0.

1
X

n

But ICA e L el

It now follows from (1) & (2) that |f (y,) | > 1, a contradiction to the fact that f (y, ) = 0 asn — oo
Thus if f is bounded, then f is continuous.
Conversely, let f is bounded. Then for any sequence (x, ), we have
[f(x)] <K || x || vn=1,2,...,and K>0.
Let x, — 0 asn — e then
f (x,) = 0 = fis continuous at the origin and consequently it is continuous everywhere.

This completes the proof of the theorem.

=7

g

Note The set of all bounded linear function on N is a vector space denoted by N*. As in the
case of linear operators, we make it a normed linear space by suitably defining a norm of
a functional f.

2.1.3 Norm of a Bounded Linear Functional

If f is a bounded linear functional on a normed space N, then the norm of f is defined as:

f
1 £l = sup L)

NENE

LOVELY PROFESSIONAL UNIVERSITY
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Notes

We first note that the above norm is well defined. Since f is bounded, we have
[fx)] <M || x|]], M=0.
[£(3)] .

Let M’ be the set of real numbers M satisfying this relation. Then the set {;x;ﬁ 0} is
X

bounded above so that it must possess a supremum. Let it be |f[.So |f| is well defined and we

must have

or £691 < [£] ]l
Let us check that H H defined by (1) is truly a norm on N*:

If f, g € N¥, then

[£+g] = sup 00*500]
Ixl=0 HXH
< sup‘f(x)‘+su ‘g(x)‘
NE B B E B
. le+g] < lel+]sl.

Similarly, we can see that ||of | =|a||f|.

16.1.4 Equivalent Methods of Finding || F ||

If f is a bounded linear functional on N, then

[f(x)| <M|x

,M=0.
@  |f]| =inf {M:M e M’} where M’ is the set of all real numbers satisfying

()] <M [x

7

Since H f H € M’ and M’ is the set of all non-negative real numbers, it is bounded below by

zero so that it has an infimum. Hence

Ix]=0

|f] =inf {(M:Me M} . (2
For x # 0 and M € M’ we have ﬁﬁ M. Since M is the only upper bound then from
X
definition (2), we have
‘f(x)‘ ,
M > sup H = |f|| forany M e M".

x|

LOVELY PROFESSIONAL UNIVERSITY



Continuous Linear Transformations

(11

Notes

Since M’ is bounded below by || f|, it has an infimum so that we have

inf M =inf (M:Me M} > [f] .. (3
From (2) and (3), it follows that
|| =inf{M:Me M}

[£] = sup|f ()]

Ix]=0
Let us consider H X H <1. Then
el < €l =] = Jf].
Therefore, we have

sup [£(x)| < |f]|. @)

Ixll=|

Now by definition,

f
] - sup 1

NEEY

It follows from the property of the supremum that, given € > 0, 3 an x” € N such that

[£(x)
S et-9 -6
Define
X = HX/H . Then X is a unit vector.
X

Since {H X H = 1} c {H X H < 1}, we have

sup| £(9] > 1) = 1l £6) > (| £ -©) [by ()]
Hence € > 0 is arbitrary, we have
HS)(TE‘f(X)‘ > | ]| ... (6)
From (4) and (6), we obtain
sup 09| =[]
€] = sup| £ .

Consider H X H =1, we have

(£ < [£]lx]=]£]

LOVELY PROFESSIONAL UNIVERSITY
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So that
sup| £09] < |£]
Now consider
f
o] = sup O
xtso x|
By supremum property, given € >0, I x"#0
Such that |£ (<) | > (|I£]| -€) [|X]
Define X = X
I
Since f is continuous in ||x || <1 and reaches its maximum on the boundary ||x|| =1,
We get
— 1 ,
sup |f(x)| = f (X) == f (x)>|f[-€-
NE ¥
= HSTBM(X)‘>HfH_E .
The arbitrary character of € yields that
sup £09]>|f]

Hence from (7) and (8), we get

J¢] = suplfeol.

Ix]=1

]|
i[5
Note If N is a finite dimensional normed linear space, all linear functions are bounded
and hence continuous. For, let N be of dimension n so that any x € N is of the form

n
E o,x; , wherex,, x,, ..., x_isabasisof Nand o, o, ..., a_are scalars uniquely determined
i=1

by the basis.

Since f is linear, we have

£() = Yo f(x)so that
i=1

[£00)

£ < Yo

LOVELY PROFESSIONAL UNIVERSITY



Continuous Linear Transformations

We have from (1) by using the notation of the Zeroth norm in a finite dimensional space, Notes

1£691 < I, D)

=M, then from (2), we have

If i‘f(xi)

| £0)] <M x],.

Hence f is bounded with respect to | HO .

Since any norm H H on N is equivalent to H ,» fis bounded with respect to any norm on N.

Consequently, f is continuous on N.
16.1.5 Representation Theorems for Functionals

We shall prove, in this section, the representation theorems for functionals on some concrete
Banach spaces.

Theorem 4: If L is a linear space of all n-tuples, then (i) ((‘;)* =10,

Proof: Let (e, e,, ..., e ) be a standard basis for L so that any x = (x,, X,, ..., x,) € L can be written
as

X =xe txe+.. +txe.
If f is a scalar valued linear function defined on L, then we get
f(x) =x f(e)+x,f(e)+...+x f(e) (@
=  f determines and is determined by n scalars
y, =f(e).
Then the mapping

Y =y Yy Yo 2 f

n

where f (x) = inyi is an isomorphism of L onto the linear space L’ of all function f. We shall
i=1

establish (i) - (iii) by using above given facts.

(i)  If we consider the space

L = £, (1 <p <o) with the p* norm, then f is continuous and L’ represents the set of all

continuous linear functionals on 7 so that

L= ()",
Now for y — f as an isometric isomorphism we try to find the norm for y’s.

For 1 < p < oo, we show that

(5)*= 1.
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For x € o, we have defined

1
ul P
[xI = {ZX}
i=1

n

o)

i=1

n

Exiyi

i=1

Now [f(x)| =

X;

Yi

By using Holder’s inequality, we get

1

1 1
ixiYi < {2 X; p}p {2 Yi q}q
p= p

i=1

so that

$ a

1 s{ }

yl

2}

Using the definition of norm for f, we get

Ie] < {2 y} o

i=1

Consider the vector, defined by

q

}; ,¥,20 and x,=0 ify, =0 ... (3)

X =
i

Then

NED) }Hz

i=1

Since q = p (q - 1) we have from (4),

151 = { S -

Now

n q

[
Zyi v

i=1

£ [ =

Vil (By (3))

P>
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So that

Dl =101 < €1 x] . (6)

From (5) and (6), we get

1,l
ul P
{E,yaq} <[]
i=1

{ZYiq}q <] )

i=1

Also from (2) and (7), we have

1
lf] = {Zyiq}q , so that
i=1

y — f is an isometric isomorphism.

Hence |(/3)*= 1.

Let L = ¢} with the norm defined by | x = 2‘ x| -

i=1
Now f defined in (1), above is continuous as in (i) and L” here represents the set of continuous
linear functional on /] so that
U= (o).
We now determine the norm of y’s which makes y — f an isometric isomorphism.

Now,

Smax.{‘yi‘}i }2

But 2 x|y x;| so that |f(x)|<max.{ly,[} ¥ |x].
i=1 i=1 i=1
From the definition of norm for f, we have
If] = max.{yi :i:1,2,...,n} ... (8)

Now consider the vector defined as follows:

If |y,| = max{ }, let us consider vector x as

1<i<n

Yi
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X = ‘y‘ when |y, | = max{

1 1<i<n
i

vil}

and x, = 0 otherwise.

From the definition, x, =0 V k # i. So that we have

Yi
I = %] -1

n

Y xv)

i=1

Further |f (x)| = = |y,

Hence |y,| = |f ()] <[ f] ]

= Iy, SHfH or max. {|y,|} [~ 1Ix]] =1]

< |1£]] ... (10)
From (8) and (10), we obtain

[If]| =max.{|y,|}so that

y — f is an isometric isomorphism of L” to (fr{)* .

Hence (f‘;)*:é“ .

(iii) LetL = ¢7 with the norm
HXH =max {|x]:1=1,2,3, ..., n}L
Now f defined in (1) above is continuous as in (1).
Let L’ represents the set of all continuous linear functionals on /% so that
L= ()"

Now we determine the norm of y’s which makes y — f as isometric isomorphism

2X1Yi

i=1

n

D)

i=1

X.

i

[f()] = Yil -

)Y

i=1

Yi

i

Hence we have

[ f(x) | < { yi}(x) so that

(el < 2\3’\ .1
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Consider the vector x defined by Notes

X = m when y, # 0 and x, = 0 otherwise. ... (12)

i

i

Yi

4

Hence | x =max{

and |[f(x)| =

Yi Yil -

i

Therefore 2

i=1

vl =lEcal <l = T£]-

n

D>

i=1

<[ f] .. (13)

Yi

n

It follows now from (11) and (13) that H f H=2

i=1

yi| so that y — f is an isometric
isomorphism.
Hence, (Z:)*:Z‘l“.

This completes the proof of the theorem.

Theorem 5: The conjugate space of £, is £, , where

1+1=1 and 1 < p <ee.
9

or =1,
Proof: Letx = (x ) € {, so that Z‘Xn‘p <oo. .. ()

n=1
Let ¢, =(0,0,0,...,1,0,0, ...) where 1 is in the m™ place.
e e !, forn=123, ..

We shall first determine the form of f and then establish the isometric isomorphism of ¢, onto

L

q-

v X, 0,0,0,..) in the form EXkek and

k=1

By using (e ), we can write any sequence (x,, X,,

n

X E X =(0,0,0,..., X s X )

k=1

LOVELY PROFESSIONAL UNIVERSITY
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n

X= E X, €

k=1

Now

:{ixkp}p )

The R.H.S. of (2) gives the remainder after n terms of a convergent series (1).

1
- P
Hence {Zxkp} —0asn— oo ...(3

k=n+1

From (2) and (3), it follows that

X= Zxkek. (4)
k=1
Let fe/, and s, =Zxkek then
k=1

S, —>X asn — o, (Using (4))

since f is linear, we have

Also f is continuous and s, — x, we have
f(s) >f(x) asn—e

= £60 = Y xf(e) .. (5)

k=1
which gives the form of the functional on ¢, .
Now we establish the isometric isomorphism of ¢, onto /,, for which we proceed as follows:
Let f (e) = o, and show that the mapping
T: {, — !, given by ... (6)
T () = (o, O ..., O, ...) is an isometric isomorphism of f; onto fq .
First, we show that T is well defined.

Forletx € £,, wherex= (8, B,, ..., B, 0,0, ...)

&' sgno,, 1<k <
where f, = {ako SgIn oy Vn>1:1
= B =l | forl<k<n
= (q-1)P  _ ..1+1= = ( _1)=
= |Bk|p_‘06k‘ —|Otk|q. .p q q p(q q
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q-1 _ q-1 _ Notes
Now o, B, = o, ‘O‘k‘ sgn o, =‘O“k‘ Oy SgN Ol
= o, B =lo a=[B|? (Using property of sgn function) ... (7)
1
n . ;
= [x| = 1) B
k=1

{2&} ®)

k=1

Since we can write

n
X = E Bee, , we get
k=1

f(x) = Eﬁk f(ek)=2ak By

= () = ) Jou] (Using (7)) .. 9)

We know that for every x € £,

LEe) | < [f] ] x

7

which upon using (8) and (9), gives

1
n n ;
P zakkf{zaﬁ}
k=1 k=1

which yields after simplification.

{zakQ}p < 1] .. (10)

since the sequence of partial sums on the L.H.S. of (10) is bounded, monotonic increasing, it
converges. Hence

{2} < || )

so the sequence (c,) which is the image of f under T belongs to £, and hence T is well defined.
We next show that T is onto £, .

Let (B,) € {,, we shall show that there is a g e/, such that T maps g into (8,).
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Letx € {, so that

We shall show that

g(x) = Zxkﬁk is the required g.

k=1

Since the representation for x is unique, g is well defined and moreover it is linear on ¢, . To

prove it is bounded, consider

lg () | =

oo n
ZBka < Z‘Bk Xk‘
k=1 k=1

1

1
< {2 X p}p {2 By q}q (Using Holder’s inequality)
k=1 k=1

- MORIRIYNE

= g is bounded linear functional on £, .
sincee € ¢, fork=1,2, ..., we get
g (e,) = B, for any k so that
T,=(B)and Tison /, onto /,.

We next show that

| Tf|=| £ ] so that T is an isometry.

Since Tf € £, , we have from (6) and (10) that

k=1

{Zak‘*}q SITEN < . (12)

Also, x€l = x= ZXkek. Hence

f(x) = gxk(ek)zixkak .
= HOIE i\xk\\ak\

k=1

LOVELY PROFESSIONAL UNIVERSITY



Continuous Linear Transformations

Notes

IN

1
{Zakq}q {Zxk p}p (Using Holder’s inequality)

or [£(x) |

IN
———
Nk
R
=~
T a
—_——
Q|
el
<
X
m
~
=1

Hence, we have

sxgy{ f(xx)} < {iakq}q = It (Using (6))

which upon using definition of norm yields.
£ <IITEl ... (13)
Thus £l =1TEN (Using (12) and (13))

From the definition of T, it is linear. Also since it is an isometry, it is one-to-one and onto.

Hence T is an isometric isomorphism of ¢, onto /,, i.e.

=1

P q

Theorem 6: Let N and N’ be normed linear and let T be a linear transformation of N into N”. Then
the inverse T~ exists and is continuous on its domain of definition if and only if there exists a
constant m > 0 such that

m x| < Tl VxeN. o (D)
Proof: Let (1) holds. To show that T exists and is continuous.
Now T exists iff T is one-one.
Let x,, x,, € N. Then
Tx)=T(x) =T (x)-T(x,)=0
=T (x,-x)=0
= x, -x, =0by (1)
= X, =X,

Hence T is one-one and so T exists. Therefore to each y in the domain of T, there exists x in N
such that

Tx) =y T (y)=x . (2
Hence (1) is equivalent to

1
m | T ) Iyl = 1T y)lI< iyl

= T-! is bounded = T-! is continuous converse.

Let T exists and be continuous on its domain T(N). Let x be an arbitrary element in N. Since
T exists, there is y € T(N) such that T (y) = x & T(x) =y.
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Again since T is continuous, it is bounded so that there exists a positive constant k such that

1T @) I<kllyll =IxI<k[ITE)

=m | x| <[ T(x) | where m = %>0,

This completes the proof of the theorem.

Theorem 7: Let T : N — N’ be a linear transformation. Then T is bounded if and only if T maps
bounded sets in N onto bounded set in N".

Proof: Since T is a bounded linear transformation,
T (x) | <k| x|l forall x e N.
Let B be a bounded subset of N. Then
Ixll<kkV xe B.
We now show that T(B) is bounded subset of N".
From above we see that
ITx) <k V xeB.
= T (B) is bounded in N".

Conversely, let T map bounded sets in N into bounded sets in N”. To prove that T is a bounded
linear transformation, let us take the closed unit sphere S [0, 1] in N as a bounded set. By
hypothesis, its image T (S[1, 0]) must be bounded set in N".

Therefore there is a constant k, such that

IT(x) <k, forallx e S[0,1]

Let x be any non-zero vector in N. Then [ je S[0,1] and so we get

x
]

&)

= TN <k Il

<k

1

Since this is true for x = 0 also, T is a bounded linear transformation.

This completes the proof of the theorem.

2.2 Summary

o Let N be a normed linear space. Then we know the set R of real numbers and the set C of
complex numbers are Banach spaces with the norm of any x € R or x € C be the absolute
value of X. B (N, R) or B (N, C) denote respectively the set of all continuous linear
transformations from N into R or C.

° A linear functional on a normed linear space N is said to be bounded, if there exists a
constant k such that

f()] < klIx]l V xe N.
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° If f is a bounded linear functional on a normed space N, then the norm of f is defined as: Notes

_ f(x)}
i = e 15

2.3 Keywords

Bounded Linear Functional: A linear functional on a normed linear space N is said to be bounded,
if there exists a constant k such that

‘f(x)‘SKHxH VxeN-

Continuous Linear Transformations: Let N be a normed linear space. Then we know the set R of
real numbers and the set C of complex numbers are Banach spaces with the norm of any x € R or
x € C given by the absolute value of x. Thus with our previous notations, (N, R) or § (N, C)
denote respectively the set of all continuous linear transformations from N into R or C.

Norm of a Bounded Linear Functional: If f is a bounded linear functional on a normed space N,
then the norm of f is defined as:

f
1 £l = sup L)

e T

Second Conjugate: The conjugate space (N*)* of N* is called the second conjugate space of N .

24 Review Questions

1.  Prove that the conjugate space of ¢, is /_,
ie. 0o=1,.

2. Prove that the conjugate space of c_is /.
or c, =1/

1.1
3. Let p > 1 with ;+€=1and1etge L, (X).
Then prove that the function defined by
F(f)= ffg du for fe Lp (X)
X

is a bounded linear functional on Lp (X) and

IEI=1gll,

4. Let N be any n dimensional normed linear space with a basis B = {x,, x,, ..., x }. If
(r, 1, ..., 1) is any ordered set of scalars, then prove that, there exists a unique continuous
linear functional f on N such that

f(x)=r1fori=1,2,...,n

5. If Tis a continuous linear transformation of a normed linear space N into a normed linear
space N’, and if M is its null space, then show that T induces a natural linear transformation
T of N/M into N and that || T'[| =|| T ||.
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2.5 Further Readings

N

Books JB Conway (1990), A Course in Functional Analysis.

E Hille (1957), Functional Analysis and Semigroups.
A
Y.L,
Online links  pt.scribd.com/doc/86559155/14/ Continuous-Linear-Transformations
www.math.psu.edu/bressan/PSPDEF/fabook.pdf
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The Hahn-Banach Theorem

Unit 3: The Hahn-Banach Theorem
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Objectives

After studying this unit, you will be able to:
° State the Hahn-Banach theorem
° Understand the proof of the Hahn-Banach theorem

° Solve problems related to it.
Introduction

The Hahn-Banach theorem is one of the most fundamental and important theorems in functional
analysis. It is most fundamental in the sense that it asserts the existence of the linear, continuous
and norm preserving extension of a functional defined on a linear subspace of a normed linear
space and guarantees the existence of non-trivial continuous linear functionals on normed linear
spaces. Although there are many forms of Hahn-Banach theorem, however we are interested in
Banach space theory, in which we shall first prove Hahn-Banach theorem for normed linear
spaces and then prove the generalised form of this theorem. In the next unit, we shall discuss
some important applications of this theorem.

3.1 The Hahn-Banach Theorem

3.1.1 Theorem: The Hahn-Banach Theorem - Proof

Let N be a normed linear space and M be a linear subspace of N. If f is a linear functional defined
on M, then f can be extended to a functional f defined on the whole space N such that

N0 =1l

Proof: We first prove the following lemma which constitutes the most difficult part of this
theorem.
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Lemimna: Let M be a linear subspace of a normed linear space N let f be a functional defined on M.
If x, € Nsuch thatx ¢ Mand if M, =M + [x ] is the linear subspace of N spanned by M and x , then
f can be extended to a functional f, defined on M_ s.t.

N0 =11£1l.

Proof: We first prove the following lemma which constitutes the most difficult part of this
theorem.

Lemma: Let M be a linear subspace of a normed linear space N let f be a functional defined on M.
If x, € Nsuch thatx ¢ Mand if M, =M + [x ] is the linear subspace of N spanned by M and x , then
f can be extended to a functional f, defined on M_ s.t.

N0 =11£1l.
Proof: The lemma is obvious if f = 0. Let then f # 0.
Case I: Let N be a real normed linear space.
Since x, € M, each vector y in M_ is uniquely represented as
y=x+ax,x€ Mand ae R
This enables us to define
f :M, — Rby
f (y) =f (x+ax)=f(x)+ar,
where r_is any given real number ... (1)

We show that for every choice of the real number r, f_is not only linear on M but it also extends
f from M to M_ and

£, I =11£]l.
Let x,, y, € M,. Then these exists x and y € M and real scalars o and f such that

x, =x+ax andy =y+fx,

Hence, f0oq+y) =f (x+ax +y+Bx)
=f,(x+y+(@+p)x)
=f(x+y)+(a+B)r, 1, is areal scalar .. (@
Since fis linear M, f (x +y) =f (x +y) ... (3

From (2) and (3) it follows after simplification that
f,0q+y) =f()+ar, +f(y)+PBr,

=f, (x+ax)+f (y+Bx)

=1£,00) + £, (v)
= f, 0 +y) =1,0q) + £, (y) @)
Let k be any scalar. Then if y € M, we have

f (ky) =f [k(x+ax)]

=f (k +kox)
But f (k +kox) =f (kx) + kar,

=kf(x)+kar,
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Hence f (ky) =k[f(x)+ar]=kf (y) ) Notes
From (4) and (5) it follows that f_is linear on M.

If y € M, then a = 0 in the representation for y so that

y =X
Hence f () =f(x) Vxe M
= f_ extends ffrom Mto M.
Next we show that

I, 11 =1£ll.

If o = 0 this is obvious. So we consider when a # 0. Since M is a subspace of M we then have
I, =sup {1£,()] :xe M, lIx[I<1)
2sup {|£,(9] :xe M, [Ix|I<1}

=sup {|f(x)| :xe M, || x][|<1} (v f,=fon M)
= £l
Thus, IE N = £l (A

So our problem now is to choose r_ such that || f_|| < || f|I.
Let x,, x, € M. Then we have
f(x)-f(x) =f(x,-x)
< [f (x,-x) |
<NEN G, +x) = (5, + ) |
ST, +x 1= ¢+ x ) 1)
= EIEx, +x I+ I X+l
Thus =£0¢) = IHEIEx, +x 0 <=£00) + I X, + x|l - (6)

Since this inequality holds for arbitrary x , x, € M, we see that

)

sup{-f) = ]|y +x )} = int (=)= e] (ly+x,

yeM

Choose r_ to be any real number such that

)} <r,

sup {~£(y) [ £[ (| y+x,
yeM

)

< inf{-F )+ ] (|y+x,

— yeM
From this, we get for ally € M
sup {(-f(y) =l fll (Ily +x 1)} <1,
<inf{-f(y) +Ilfll (lly +x 1)}

X . . .
Let us take y = — in the above inequality, we have
o
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X
PR

el =

< inf {—f(xj+f (HLXU
yeM o o

If o > 0 the right hand side of (7) becomes

) o

-1 1
r, < Ef(x)+aHfHHx+0on

which implies that

f)+ar, =f (x+ax)<|f|lllx+ax|
If z=x+ ax, € M then we get from above
If, @] <lflllzll .. (8
If a <0, then from L.H.S. of (7) we have

A 21l 2
o o

<r
o

1 1 . 1| -1
——f(x)+—||f||x+ax,| <r, sincea<0, |=|=—
o o o
= fO)+ar, | fllllx+ax,|
= f (z) 2| fllll z |l for every ze M_ ... 9
Replacing z by -z in (9) we get
-f (z) <Ifllll zll, since f is linear on M | ... (10)
Hence we get from (9) and (10).
If,@) | <lfllzl ... (11)

Since f is functional on M, || f || is bounded.

Thus (|| ) shows that f_is a functional on M.

Since || f || =sup {|f (z)| :z€ M, || z]|| < [}, it follows from (|| ) that
I <I£ll

We finally obtain from (A) and (B) that
I =1l

This power the lemma for real normed linear space.

Case II: Let N be a complex normed linear space.

Let N be a normed linear space over C and f be a complex valued functional on a subspace M of
N.

Let g = Re (f) and h = Im (f) so that we can write
f (x) =g (x) +ih (x). We show that g (x) and h (x) are real valued functionals.

Since f is linear, we have

fOx+y) =£()+£(y)
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= gix+y)tih(x+y) =g () +ih(x)+g(y) +ih(y) Notes
=g () +g ) +i(h()+h(y)
Equating the real and imaginary parts, we get
gx+y) =g +g(y)

and h(x+y) =h(x)+h ()
If o € R, then we have

f(ax) =g(ox)+ih(ox)
Since f is linear

flax) =af(x)=ag(x)+aihx)

= f(ax) =og(x)and h (ax)=oh(x)
(equating real and imaginary parts)

= g, h are real linear functions on M.

Further |g (x)| < [£ ()] </ 1Ix]
= If f is bounded on M, then g is also bounded on M.
Similarly h is also bounded on M.

Since a complex linear space can be regarded as a real linear space by restricting the scalars to be
real numbers, we consider M as a real linear space. Hence g and h are real functional on real
space M.

For all x in M we have
fix) =if(x)=i{g(x)+ih (x)}
or g@ix)+ih(ix) =-h(x)+ig(x)
Equating real and imaginary parts, we get
g(@ix) =-h(x)andh (ix) = g(x)
Therefore we can express f (x) either only by g or only h as follows:
F() =g (9 -ig(ix)
=h(ix)+ih (x).

Since g is a real functional on M, by case I, we extend g to a real functional g_on the real space M
such that|| g_ || =l g Il. For x € M, we define

£,() =g, 09 -ig,({x)

First note that f_is linear on the complex linear space M . Such that f = f on M.
Now f(x+y) =g, (x+y)-ig, (ix+iy)

=g, (9+g, () -ig, (0 -ig, (y)

=£,(0+£, ().
Now for a, b € R, we have

f (@+ib)x) =g (ax+ibx) -ig, (-bx+iax)
=ag,(x)*bg (ix)-i(-b) g, (x)-iag,(ix)
=(a+ib) {g, (x) -ig, (ix)}
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So that
f (@a+ib)x) =(a+ib)f (x)
= f is linear on M_and also g = g on M.
=f =fon M.
Now have to show that || f_|| = f||on M_.
Letxe M andf_ (x)=re”
[f ()| =r=e®re®=e"f (x) ... (12)
Since f (x) is linear,
e f (x) =f (ex) .. (13)
So we get from (12) and (13) that
[f () | =r=f (re™x).

Thus the complex valued functional f_is real and so it has only real part so that

1,00 | =g, (™) < |g, (™|

But lg, (€™)] <llg, Illle™]|
=g, IHxIl
We get £ 01 <llg Il

Since g is the extension of g, we get
g, I =1g Il Ix<I£Ix]l.
Therefore
[f, () <[l II x|l so that from the definition of the norm of f , we have
I, 1 <IH£ll
Asin case |, it is obvious that || f || < || f_||
Hence L 1l =Ifll

This completes the proof of the theorem.
3.1.2 Theorems and Solved Examples

Theorem: The generalized Hahn-Banach Theorem for Complex Linear Space.

Let L be a complex linear space. Let p be a real valued function defined on L such that
Px+y)<p()+p(y)

and p(ax) =|a| p(x) V xe L and scalar o.

If f is a complex linear functional defined on the subspace M such that |f (x)| <p (x) for x € M,
then f can be extended to a complex linear functional to be defined on L such that |f (x)| <p (x)
for every x € L.

Proof: We have from the given hypothesis that f is a complex linear functional on M such that

[ f(x) <p(x) V xe M.
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Letg=Re (f)theng (x) < |f (X)| <p (X). Notes

So by the generalised Hahn-Banach Theorem for Real Linear space, can be extended to a linear
functional g on L into R such that g =gonMand g (x)<p(x) V x€ L.

Define f (x) =g (x)-ig, (ix) for x € L as in the Hahn-Banach Theorem, f_is linear functional on
L such that f =f on M.

To complete the proof we have to prove that

[f )| <p(x) ¥V xe L.
Letxe Land f (x) =re® r>oand 0 real. Then

[f ()| =r=e’re’=e™f (x)

=f (e™x).

Since r = f_(e"x), f_ is real so that we can take

£, =r=£ (e°x)=g, (e7) (@
Since g (x) £ p (X), g, (e™x) < p (e™x) for x € L.
But p (e") = |e™| p (x) so that g_ (e x) < p (x) . (2
It follows from (1) and (2) that

I£,09] <p ()
This completes the proof of the theorem.

Corollary 1: Deduce the Hahn-Banach theorem for normed linear spaces from the generalised
Hahn-Banach theorem.

Proof: Let p (x) = f ]| || x || for x e N.
We first note that p (x) 2 0 for all x € N.
Then for any x, y € N, we have
px+y) =lIfll lIx+yll
S HENCIxI+1y 1)

=[EN I+ fy I
=p()+p(y)
= px+y)<p(X+p(y)
Also p(ax) =lfll fax|l = [of £l Ix]I=[o]| p (x).

Hence p satisfies all the conditions of the generalized Hahn-Banach Theorem for
Complex Linear space. Therefore 3 a functional f_ defined on all of N such that f = f on M and

I[£.)] <p)=Ifll lIx]l VxeN.

= IE I < £l e
Since f_is the extension of f from a subspace M, we get

IEI < I1E I @)
From (3) and (4) it follows that

0= 11£1
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Notes Let L be a linear space. A mapping p : L — R is called a sub-linear functional on L if
it satisfies the following two properties namely,

i) pPpx+y)<p(x)+p(y)V x,ye L (sub additivity)
(i) plax)=ap(x),o0=0 (positive homogeneity)

Thus p defined on L in the above theorems is a sub-linear functional on L.

Some Applications of the Hahn-Banach Theorem

Theorem: If N is a normed linear space and x € N, x_# 0 then there exists a functional f € N* such

that
£,(x) =l x lland I, || = 1.
Proof: Let M denote the subspace of N spanned by x, i.e.,
M = {a x, : o any scalar}.
Define f : M — F (R or C) by
fox) = ol
We show that f is a functional on M with || f| = 1.
Let x,, x, € M so that
x, = o, x and x, = o, x_. Then
f(x, +x) =f (o, x, +a,x)
= (o, +0,) lIx,
But (o + o) 1, IF = o [Tl + oy [T I
=1(x)+ £(x)
Hence f(x, +x) =f(x)+f(x)
Let k be a scalar (real or complex). Then if x € M, then x = a x .
Now f (kx) =f (kax ) =kall x || =kf(x)
If follows from (1) and (2) that f is linear.

Further, we note that since x, € M with o =1, we get

f(x) =1l
Forany xe M, weget, | f(x)[ = || [ | x || =llax[I=]xI
= [£0) | =lIxll
= f is bounded and we have
sup'ﬁ(x‘)‘| =1forxe Mand x #0.
X

So by definition of norm of a functional, we get

Il =1.
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The Hahn-Banach Theorem

Hence by Hahn-Banach theorem, f can be extended to a functional f € N* such that f (M) = f (M)
and || f || =l f|l = 1, which in particular yields that
£, (¢) =f0¢) =lIx lland [I £, [ =1.
This completes the proof of the theorem.
Corollary 2: N* separates the vector (points) in N.

Proof: To prove the cor. it suffices to show that if x, y € N with x # y, then there exists a f € N*
such that f (x) # f (y).

Sincex#y = x-y#0.
So by above theorem there exists a functional f € N* such that
flx-y) =t()-£(y)#0
and hence f (x) # f (y).
This shows that N* separates the point of N.
Corollary 3: If all functional vanish on a given vector, then the vector must be zero, i.e.
iff(x)=0 V fe N*thenx=0.
Proof: Let x be the given vector such that f (x) =0 V fe N*
Suppose x # 0. Then by above theorem, there exists a function f € N* such that

f (x) = x| > 0, which contradicts our supposition that

f(x)=0 V fe N* Hence we must have x = 0.

3.2 Summary

o The Hahn-Banach Theorem: Let N be a normed linear space and M be a linear subspace of
N. If f is a linear functional defined on M, then f can be extended to a functional f  defined
on the whole space N such that

I, =1l

° If f is a complex linear functional defined on the subspace M such that |f (x)| < p (x) for
x € M, then f can be extended to a complex linear function f_ defined on L such that
| f,(x) | £p (x) for every x € L.

3.3 Keywords

Hahn-Banach theorem: The Hahn-Banach theorem is one of the most fundamental and important
theorems in functional analysis. It is most fundamental in the sense that it asserts the existence
of the linear, continuous and norm preserving extension of a functional defined on a linear
subspace of a normed linear space and guarantees the existence of non-trivial continuous linear
functionals on normed linear spaces.

Sub-linear Functional on L: Let L be a linear space. A mapping p : L — R is called a sub-linear
functional on L if it satisfies the following two properties namely,

i) px+y)Sp(x)+p(y) V x,yeL (sub additivity)
(i) pax)=oap(x),a=0 (positive homogeneity)
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Notes Thus p defined on L in the above theorems is a sub-linear functional on L.

The Generalized Hahn-Banach Theorem for Complex Linear Space: Let L be a complex linear
space. Let p be a real valued function defined on L such that

px+y)Sp () +tp(y)

and p (@ x) = || p (x) V x € L and scalar o.

3.4 Review Questions

1.  Let M be a closed linear subspace of a normed linear space N and x_ is a vector not in M.
Then there exists a functional f, € N* such that

f M)=0andf (x)=0

2. Let M be a closed linear subspace of a normed linear space N, and let x_ be a vector not in
M. If d is the distance from x_ to M, then these exists a functional f € N* such that
f M)=0,f (x)=d,and | f ||=1.

3. LetMis a closed linear subspace of a normed linear space N and x € N such that x ¢ M.
If d is the distance from x_to M, then there exists a functional f € N* such thatf (M) =0, f

1
(x)=1land | f || = FE

4. Let N be a normed linear space over R or C. Let M C N be a linear subspace. Then

M =N & f e N*is such that f (x) = 0 for every x € M, then f = 0.

5. A normed linear space is separable if its conjugate (or dual) space is separable.

3.5 Further Readings

N

Books Walter Rudin, Functional Analysis (2nd ed.). McGraw-Hill Science/Engineering/
Math 1991.

Eberhard Zeidler, Applied Functional Analysis: Main Principles and their Applications,
Springer, 1995.

A
Y.,
Online links  mat.iitm.ac.in

www.math.ksu.edu

mizar.uwb.edu.pl/JFW/Vol5/hahnban.html
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Objectives

After studying this unit, you will be able to:

° Define the natural imbedding of N into N**.

° Define reflexive mapping.
° Describe the properties of natural imbedding of N into N*.
Introduction

As we know that conjugate space N* of a normed linear space N is itself a normed linear space.
So, we can find the conjugate space (N*)* of N*. We denote it by N** and call it the second
conjugate space of N. Likewise N*, N** is also a Banach space. The importance of the space N**
lies in the fact that each vector x in N given rise to a functional F_in N** and that there exists an
isometric isomorphism of N into N**, called natural imbedding of N into N**.

4.1 The Natural Imbedding of N into N**

4.1.1 Definition: Natural Imbedding of N into N**

The map ] : N — N** defined by
Jx)=F vxeN,
is called the natural imbedding of N into N**.

Since J (N) € N**, N can be considered as part of N** without changing its basic norm structure.
We write N € N** in the above sense.
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4.1.2 Definition: Reflexive Mapping

If the map J : N — N** defined by
Jx)=F, vxeN,

is onto also, then N (or ]) is said to be reflexive (or reflexive mapping). In this case we write
N = N** i.e., if N = N**, then N is reflexive.

=74

i[E

Note  Equality in the above definition is in the sense of isometric isomorphism under the
natural imbedding. Since N** must always be a complete normed linear space, no
incomplete space can be reflexive.

4.1.3 Properties of Natural Imbedding of N into N**

1. Let N be a normed linear space. If x € N, then
[[xlI=sup{|f(x)|:fe N*and || [ =1}.
Using natural imbedding of N into N**, we have for every x € N,

F () =f(x) and [|F_|I=]Ix]|.

Now, || Fx || = sup {|E.(f)|} =sup {|f(x)|, f € N*}

HE HE
therefore, || x || =sup {|f (x)|:fe N* | f||=1}.
II.  Every normed linear space is a dense linear subspace of a Banach space.
Let N be a normed linear space. Let

J : N — N** be the natural imbedding of N into N**.

The image of the mapping is linear subspace ] (N) € N**. Let J(N) be the closure of N(N)
in N**,

Since N** is a Banach space, its closed subspace J(N) is also a Banach space. Hence if we

identity N with J(N), then J(N) is a dense subspace of a Banach space.
414 Theorems and Solved Examples
Theorem 1: Let N be an arbitrary normal linear space. Then each vector x in N induces a functional
Fx on N* defined by
E (f) = f(x) for every f € N* such that || F || =] x [I.

Further, the mapping J : N — N**: J (x) = F_for every x € N defines and isometric isomorphisms
of N into N**.

Proof: To show that F_is actually a function on N*¥, we must prove that F_is linear and bounded
(i.e. continuous).

We first show F_is linear.
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The Natural Imbedding of N in N**

Let f, g € N* and o, B be scalars. Then Notes
F, (af + Bg) = (af + Bg) x = of (x) + Bg ()

= o F, () + BE, ()
= F_is linear
F_is bounded.
For any f € N*, we have

I (O] = fx)]
<IN ()

Thus the constant || x || is bounded (in the sense of a bounded linear functional) for F . Hence F is
a functional on N*,

We now prove || F_||=x]||

We have IF, Il =sup {|F, ()] :NI£l1<1)
Ssup{[[FIl [Ix[I:[1fll<1} (Using (1))
<l

Hence NE N <lx]| .. (2

To prove the reverse inequality we consider the case when x = 0. In this case (2) gives
IE,I=1101=0.

But || F,_ || =0always. Hence || F_||=|0lie. || F_||=] x| forx=0.

Not let x # 0 be a vector in N. Then by theorem (If N is a normal linear space and x_€ N, x_# 0,
then there exists a functional f € N* such that

f, (x) =lIx, land [ £ || =1.)

3 a functional f € N* such that

f(x) =lixlland [ f||=1.
But IE N =sup {[E (B)] - flI<T}

=sup {[£ () I:[1fl1=1}
and since Il =1 () < sup {[£ 09| 1F11 =T}
we conclude that NE N =]l .. (3
[Note that since f (x) = || x || 2 0 we have f (x) = |f (x)|]

From (2) and (3); we have

IE N =1xI @
Finally, we show that ] is an isometric isomorphism of N into N**. For any X, y € N and o scalar.

Fo, @ =fx+y)=£()+1(y)

=FE O +F
F., () =(F+F)f .. )
= F.,=F+F ... (6)
Further, F_ (f) =f (ax) = of (x) = (aF) (f)
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Hence F  =oF ... (7)
Using definition of ] and equations (6) and (7) we get
Juoy =Fuy=F+F =1 +] () . (8)

and Jg =Fo = 0F =0J (x) .9
(8) and (9) = ] is linear and also (4) shows that ] is norm preserving.
For any x and y in N, we have

IJe)-TW I =IF -FI=1F_I=lIx-yll ... (10)
Thus ] preserve distances and it is an isometry. Also (10) shows that

J-J(¥)=0=]J(x-y)=0=x-y=0

ie. J (x) =] (y) = x =y so that] is one-one.

Hence ] defines an isometric isomorphism of N into N**. This completes the proof of the theorem.

' Example 1: The space £} (1< p <) are reflexive.

Solution: We know that if 1 < p < o, then

() =4
But () =5
Hence () =
Similarly we have ()™ = mforp=1
and ()" = forp=-oo

So that 7 spaces are reflexive for 1 < p < .

Example 2: The space £, for 1 < p <o are reflexive.
Sol: We know thatif ¢* =¢ and ¢* =/

= rx =1,
= £, are reflexive for 1 <p < co.

A similar result can be seen to hold for L (X).

' Example 2: If N is a finite dimensional normed linear space of dimension m, then N* also
has dimension m.

Solution: Since N is a finite dimensional normed linear space of dimension m then {x , x, ..., x_}
is a basis for N, and if (o, o, ... o ) is any set of scalars, then there exists a functional f on N such
thatf (x)=a,i=1,2,..m.
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The Natural Imbedding of N in N**

To show that N* is also of dimension m, we have to prove that there is a uniquely determined
basis (£, f,, ..., f,) in N*, with £ (x) =9 .
By the above fact, for eachi=1,2, ..., m, a unique f, in N* exists such that f, (x) = §,. We show now
that {f,f, ..., f } is a basis in N* to complete our proof.

Let us consider o, f, + o, f, + ...... o f = .. (D)

Forall x € N, we have o, f, (x) + o, f, (X) +...... +a f (x)=0.

We have ZOLjfj(xj) =0 =2(xj5ij =0, fori=1,2, ..., m whenx=x,
j j

= f,f f_ are linearly independent in N*.

1

Now let f (x) = a,.

Therefore if x = B.x; , we get
2

£(x) =B, () + Bof () + oo +BF(X,) @)
Further f, (x) = B, (x) + ... + Bf (x) +...... +B_f (x.)
= £(x) =B,

f(x) =0, f, () +a,f,(x)+..... +ao f (%)
=(af+of +..... +a f)(x)
= (% S f_) spans the space.
= N* is m-dimensional.

4.2 Summary

° Themap ]:N — N** defined by
J(x)=F_ Vvxe N,
is called the natural imbedding of N into N**.
o If the map J: N — N** defined by
J(x)=F_ Vvxe N,

is onto also, then N (or ]) is said to be reflexive. In this case we write N = N**, i.e., if N = N**,
then N is reflexive.

o Let N be an arbitrary normal linear space. Then each vector x in N induces a functional F
on N* defined by F_(f) = f (x) for every f € N* such that || F || = x |I.

4.3 Keywords

Natural Imbedding of N into N**: The map J : N — N** defined by
Jx)=F vxeN,

is called the natural imbedding of N into N**.
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Reflexive Mapping: If the map ] : N — N** defined by
Jx)=F, vxeN,

is onto also, then N (or ]) is said to be reflexive (or reflexive mapping).

44 Review Questions

1.  Let X be a compact Hausdorff space, and justify the assertion that C (X) is reflexive if X is
finite.

2. If N is a finite-dimensional normed linear space of dimension n, show that N* also has
dimension n. Use this to prove that N is reflexive.

3. If Bis a Banach space, prove that B is reflexive < B* is reflexive.
4. Prove that if B is a reflexive Banach space, then its closed unit sphere S is weakly compact.
5. Show that a linear subspace of a normed linear space is closed « it is weakly closed.

4.5 Further Readings

N

Books G.F. Simmons, Introduction to topology and Modern Analysis. McGraw-Hill,
Kogakusha Ltd.

J.B. Conway, A Course in Functional Analysis. Springer-Verlag.

ki

Online links www.mathoverflow.net/ ... /natural-embedding

www.tandfonline.com
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5.5  Further Readings

Objectives

After studying this unit, you will be able to:

° State the open mapping theorem.

° Understand the proof of the open mapping theorem.

° Solve problems on the open mapping theorem.

Introduction

In this unit, we establish the open mapping theorem. It is concerned with complete normed
linear spaces. This theorem states that if T is a continuous linear transformation of a Banach
space B onto a Banach space B, then T is an open mapping. Before proving it, we shall prove a

lemma which is the key to this theorem.

5.1 The Open Mapping Theorem

5.1.1 Lemma

Lemma 1: If B and B” are Banach spaces and T is a continuous linear transformation of B onto B’,
then the image of each sphere centered on the origin in B contains an open sphere centered on
the origin in B’.

Proof: Let S, and S/respectively denote the open sphere with radius r centered on the origin in B
and B".

We one to show that T (S) contains same S/ .
However, since T(S) =T (rS)) =1 T (S,), (by linearity of T).
It therefore suffices to show that T (S,) contains some S/ for then S}, where § = 1%, will be contained

inT (S,). We first claim that T(S,) (the closure of T (S,)) contains some S; .
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If x is any vector in B we can by the Archimedean property of real numbers find a positive
integer n such thatn > || x ||, i.e., x€ S,

therefore

and since t is onto, we have

Now B’ being complete, Baire’s theorem implies that some T<5n0> possesses an interior point

Z,. This in turn yields a point y € T(Sno) such that y, is also an interior point of T(Sno) .

Further, mapsj:B"—= B'and g: B’ — B’
defined respectively by j (y) =y =y -y,and g (y) =2n,y

where n_ is a non-zero scalars, are homeomorphisms as shown below f is one-to-one and onto.
To show f, f are continuous, lety, € B and y_ — y in B.

Then  £(y)=y,-¥o2 ¥ -y, =£ ()
and  £1(y) =y, *y, 2y +y, = ()
Hence f and ™ are both continuous so that is a homeomorphism.

Similarly g: B’ — B": g (x) = 2n,y is a homeomorphism for, g is one-to-one, onto and bicontinuous
forn, # 0.

Therefore we have

(i)  f(y,) = 0= origin in B’ is an interior point of f(T(Sn)) :

G £(T(5.)) =£(1(s,)

N
—
—
%2
I
3
—
—_
<
s
m
~
—
0
3
-—
=

I
—~
—
N

3
wn
N
I
N
=]

<
—~
—
w
[

(iii) T(SZHO)
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The Open Mapping Theorem

Combining (i) - (iii), it follows that origin is also an interior point of (T(S,)). Consequently,

there exists € > 0 such that

S, c T(S,)
This justifies our claims.
We conclude the proof of the lemma by showing that
Ses € T(S,), ie., S.CT(S,)
Lety € B'such that|y || <e. Theny € T(S,) and therefore there exists a vector x, € B such that

Xl <L lly-y, Il <e¢/2 and y, =T (x)

We next observe that

Sen T(S,/,) andy -y, € Si;2

Therefore there exists a vector x, € B such that

1
HXS H<§r Y=Vi=Y> H<% andy, =T (x,)

Continuing this process, we obtain a sequence (x ) in B such that

Lets =x +x, +...+x,then
n 1 2 '

€
7

X

n

1
<F1Yn=T(xn) and ||y —(y, +y,+...+y,)

s, I =11%, +x,+ ... +x I

Sl I I+ e+

1 1 1
<l+++.+——
2 2 2

= 2(1—ij
2n

<2

Also for n > m, we have

[Is,=s Il =lls ., +...+x|l

m+1

<|Ix oLt

e |

1 1
< —+...+
2m znfl

=1 (summing the G.P.)

1 1
2 m-1 2 n-m-1

—>0asm,n— oo
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Notes Thus (s,) is a Cauchy sequence in B and since B is complete, 3 a vector x € B such that

s, — x and therefore

x|l =

lims, |=tlim|s, |<2<3,

n—oo
ie,x €S,

It now follows by the continuity of T that

T(x) = T(limsn)

n—eo

= lim T(s,)

n—yee

= lim (y, +y,+...+y,)

=Yy
Hence y €eT(S,)
Thus y € S, =ye T(S,). Accordingly
S. cT(S)

This completes the proof of the lemma.

]

iE

Note 1f B and B’ are Banach spaces, the symbol S (x; r) and S’ (x; r) will be used to denote
open spheres with centre x and radius r in B and B’ respectively. Also S _and S; will denote
these spheres when the centre is the origin. It is easy to see that

S(x;r) =x+S andS =rS

For, we have
yeS(r) =|lly-xl<r
=|lzl|[<randy-x=2z2z€S,
=y=x+zand|z| <r

=yex+§

Thus S(xr) =x+5
o _ L
and S ={x:lIx|l<r} = yx: . <1
={r.ylyll<1}
=rS
Thus S, =rS

Now we prove an important lemma which is key to the proof of the open mapping theorem.
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5.1.2 Proof of the Open Mapping Theorem

Statement: If T is a continuous linear transformation of a Banach space B onto a Banach space B,

then T is an open mapping.

Proof: Let G be an open set in B. We are to show that T (G) is an open set in B’

i.e. if y is any point of T (G), then there exists an open sphere centered at y and contained in T (G).
ye T(G)=y=T(x) for some x € G.

x € G, G open in B = there exists an open sphere S (x; r) with centre x and radius r such that
Sxr)cG.

But as remarked earlier we can write S (x; 1) = x + S, where S_is open sphere of radius r centered
at the origin in B.

Thus x+5 cG .. (D)

By lemma (2) (prove it),

T (S,) contains some S; . Therefore

S (yir) =y+S,
cy+T(S)
=T(x)+T(S)
=T(x+8S)
cT©) (Using (1))
since x+S =5(x;1)cG.

Thus we have shown that to each y € T (G), there exists an open sphere in B’ centered at y and
contained in T (G) and consequently T (G) is an open set.

This completes the proof of the theorem.

5.1.3 Theorems and Solved Examples

Theorem 1: Let B and B’ be Banach spaces and let T be an one-one continuous linear transformation
of B onto B". Then T is a homeomorphism.

In particular, T is automatically continuous.

Proof: We know that a one-to-one continuous open map from B onto B” is a homeomorphism.
By hypothesis T : B — B’ is a continuous one-to-one onto mapping.

By the open mapping theorem, T is open. Hence T is a homeomorphism. Since T is
homeomorphism, T~ exists and continuous from B’ to B so that T~ is bounded and hence

T'e B (B, B).
This completes the proof of the theorem.

Cor. 1: Let Band B’ be Banach spaces and let T € §§ (B, B"). If T : B— B’ is one-to-one and onto, there
are positive numbers m and M such that

m x|l <TG9 <M.
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Proof: By the theorem,

T:B — B’ is a homeomorphism. So that T and T~ are both continuous and hence bounded. Hence
by theorem,

Let N and N’ be normed linear spaces. Then N and N’ are topologically isomorphic if and only
if there exists a linear transformation T of N onto N” and positive constants m and M such that

mx[|<||T ) [I<M]|lx]|, for every x € N.
3 constants m and M such that
m [ x[[<I T (x) I<MIIx]l.

Theorem 2: If a one-to-one linear transformation T of a Banach space B onto itself is continuous,
then its inverse T~ is continuous.

Proof: T is a homeomorphism (using theorem of B onto B. Hence T is continuous.

This completes the proof of the theorem.

]|

ig

Note  The following examples will show that the completeness assumption in the open
mapping theorem and theorem can neither be omitted in the domain of definition of T nor
in the range of T.

' Example 1: Let C’ [0, 1] be the set of all continuous differentiable function on [0, 1]. We
know that C’ [0, 1] is an incomplete space with the norm

IEIL =sup {|£(x)] :0<x<1)
But it is complete with respect to the norm

NEN=1El, + 1.
Now let us choose B=[C"[0,1],]| ||]and N = [C" [0, 1], || II_]-

Consider the identity mapping1: B— N. The identity mapping is one-to-one onto and continuous.
I'! is not continuous. For, if it were continuous, then it is a homeomorphism. Mapping of a
complete space into an incomplete space which cannot be. Hence I does not map open sets into
open sets.

Thus the open mapping theorem fails if the range of T is not a Banach space.

Example 2: Let B” be an infinite dimensional Banach space with a basis {, : i € I} with
[l [l =1for eachie L. Let N be the set of all functions from I to C which vanish everywhere except
a finite member of points in I. Then N is a linear space under addition and scalar multiplication.
We can define the norm on N as

I£I=2 |£G)] i L
Then N is an incomplete normed linear space. Now consider the transformation
T : N — B’ defined as follows.
Foreachfe N, let T (f) =X f (i) a..
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Then T is linear and

ITO1 < DI | o

iel

= 2|fi| =||f|| foreveryfe N.

iel

Hence T is bounded transformation from N to B’. It is also one-to-one and onto. But T does not
map open subsets of N onto B". For, if it maps, it is a linear homeomorphism from N onto B’
which cannot be since N is incomplete.

Theoremn 3: Let B be a Banach space and N be a normed linear space. If T is a continuous linear
open map on B onto N, then N is a Banach space.

Proof: Let (y,) be a Cauchy sequence in N. Then we can find a sequence of positive integer (n,)
such thatn, <n, , and for each k

Hence by theorem: “Let N and N’ be normed linear spaces. A linear map T : N — N’ is open and
onto if and only if there is a M > 0 such that for any y € N’, there is a x € N such that Tx =y and
IxI<Milyll.”

Yo ™ Y| < ZT

For (ynk+ L~ Ya ) €N, thereis an,_e B and a constant M such that

T (x)= Y ~Yn and H XkH < H Yo ~ Yl -

is convergent so that ank is convergent. Since B is a Banach

k=1

By on choice 2

Yosr ™ Y

space there is a x € B such that

«= Lim Px,
k=1

Since T is continuous 2 T(x,) =T (x)asn — oo
k=1

But ) T(x)=Y,., Y, o that

k=1

Yo “¥m 2 T() = Yoy 2 ¥ #T(X)
Since (y,) is a Cauchy sequence such that every subsequences is convergent, (y,) itself converges
andy — Yo, +T(x)inN.
Hence N is complete. Consequently, N is a Banach space.

This completes the proof of the theorem.

'i Example: Let N be complete in two norms || ||, and || ||, respectively. If there is a number
a >0 such that || x ||, <a || x ||, for all x € N, then show that the two norms are equivalent.

Solution: The identity map

i:(N,II1l,) = (N[l ]I,) is an one-one onto map.
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Also || x|l,<allx||,= iis bounded .. (1)
= i is continuous.

Hence by open-mapping theorem, i is open and so it is homeomorphism of (N, || x ||,) onto
(N, [ x ll,). Consequently i is bounded as a map from (N, || x |I,) = (N, [Ix II,)

Sincei™ (x) =x,3a, bs.t. || x|, <b] || .. (2

(1) & (2) imply that the norms are equivalent.

5.2 Summary

° If B and B’ are Banach spaces and T is a continuous linear transformation of B onto B’, then
the image of each sphere centered on the origin in B contains an open sphere centered on
the origin in B".

° The open mapping theorem : If T is a continuous linear transformation of a Banach space
B onto a Banach space B’, then T is an open mapping.

5.3 Keywords

Banach Space: A normed space V is said to be Banach space if for every Cauchy sequence

{v.}> C©V then there exists an element veV such that limv, =v.

Homeomorphism: A map £ : (X, T) — (Y, U) is said to be homeomorphism if

(i) fis one-one onto.

(i) fand f! are continuous.

Open Sphere: Let x, € X and r € R*. Then set {x € X: p (x, x) <1} is defined as open sphere with

centre x_ and radius r.

5.4 Review Questions

1. If Xand Y are Banach spaces and A : X = Y is a bounded linear transformation that is
bijective, then prove that A is bounded.

2. Let X be a vector space and suppose | - ., and |- Hz are two norms on X and that T, and T,

are the corresponding topologies. Show that if X is complete in both norms and T, 2 T,,
then T, =T,

5.5 Further Readings

Books Walter Rudin, Functional Analysis, McGraw-Hill, 1973.

Jean Diendonne, Treatise on Analysis, Volume II, Academic Press (1970).

)

Online links  euclid.colorado.edu/ngwilkin/files/math 6320.../OMT_CGT.pdf

people.sissa.it/nbianchin/courses/ ... /lecture05.banachstein.pdf
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Unit 6: The Closed Graph Theorem

6.1

CONTENTS
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The Closed Graph Theorem
6.1.1 Graph of Linear Transformation
6.1.2 Closed Linear Transformation

6.1.3 The Closed Graph Theorem - Proof

6.2 Summary

6.3 Keyword

6.4 Review Questions

6.5 Further Readings
Objectives

After studying this unit, you will be able to:

o State the closed graph theorem.

o Understand the proof of the closed graph theorem

o Solve problems based on the closed graph theorem.

Introduction

Though many of the linear transformations in analysis are continuous and consequently bounded,
there do exist linear transformation which are discontinuous. The study of such kind of
transformation is much facilitated by studying the graph of transformation and using the graph
of the transformation as subset in the Cartesian product space to characterise the boundedness of

such transformations. The basic theorem in this regard is the closed graph theorem.

6.1 The Closed Graph Theorem

6.1.1 Graph of Linear Transformation

Definition: Let N and N’ be a normed linear space and let T : N — N’ be a mapping with domain
N and range N’. The graph of T is defined to be a subset of N x N” which consists of all ordered

pairs (x, T (x)). It is generally denoted by G..

Therefore the graph of T: N — N’ is

G, ={(x T(x):xe N}

—]]

Notes

G, is a linear subspace of the Cartesian product N x N” with respect to coordinate-

wise addition and scalar multiplications.
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Theorem 1: Let N and N’ be normed linear spaces. Then N x N’ is a normed linear space with
coordinate-wise linear operations and the norm.

1
Il y)ll= (HXHP+HXHP)P ,wherex e N,ye N

and | < p < co. Moreover, this norm induces the product topology on N x N’, and N x N’ is
complete iff both N and N’ are complete.

Proof:

(1)

(if)

It needs to prove the triangle inequality since other conditions of a norm are immediate.

Let (x, y) and (x, y') be two elements of N x N".

Then 0o y)+ Oy =1 (x+x, y+y)l

)p
= {0t 1< +(y 1+

Aer+sry <

= (Hx+x’

P+Hy+y/

1

Iy

y/

X/

P+Hy/

p);}

(By Minkowski’s inequality)

=Ny Iy

This establishes the triangular inequality and therefore N x N’ is a normed linear space.

Furthermore (x, y,) = (X, y) © x, = x and y, = y. Hence theorem on N x N induces the

product topology.

Next we show that N x N’ is complete & N, N’ are complete.

Let (x, y,) be a Cauchy sequence in N x N’. Given € > 0, we can find a n_such that

X, y)- X, ¥yl <€ ¥V mnzn_.
=|(x,-x)lI<€eand ||y -y, ll<€ V mnzn
= (x,) and (y,) are Cauchy sequences in N and N” respectively.
Since N, N are complete, let
x,— X, € Nandy, —y, € N’in their norms,
i.e. l(x,-x)ll <€ and ||y -y ll<€ ¥V m,n=n_
sincex € N,y e N’, (x,y) € N xN".
Further || (x, y,) - (X, ¥,) | <€ V n2=n_(using (2))
= (x,y,)— (x,y,)in thenorm of N x N"and (x_,y) € N x N'.
= N x N’ is complete.
The converse follows by reversing the above steps.

This completes the proof of the theorem.
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.2



The Closed Graph Theorem

—/T] Notes

Notes The following norms are equivalent to above norm

A ey I=max {lIxIl, Iy I}
@) e y)l=lxI+1yll(p=1inthe above theorem)

6.1.2 Closed Linear Transformation

Definition: Let N and N’ be normed linear spaces and let M be a subspace of N. Then a linear
transformation

T:M — N’ is said to be closed
iffx € M,x, »>xand T (x ) - yimply xe Mandy =T (x).

Theorem 2: Let N and N’ be normed linear spaces and B be a subspace of N. Then a linear
transformation T : M — N’ is closed < its graph G, is closed.

Proof: Let T is closed linear transformation. We claim that its graph G is closed i.e. G, contains
all its limit point.

Let (x, y) be any limit point of G,. Then 3 a sequence of pointsin G, (x, T (x,), X, € M, converging
to (x, y). But

x, T(x)) = (xy)

= Ix,T(x)-xyll =0
= I(x,-x), T(x)-yll =0
= Ix, -xlI+IT(x)-yll =0
= Ix,-x||=0and || T(x)-yll —0
= x,—xandT(x) =y (* Tis closed)
= (xy) € G. (By def. of graph)

Thus we have shown that every limit point of G is in G, and hence G, is closed.
Conversely, let the graph of T, G, is closed.

To show that T is closed linear transformation.

Letx € M,x —xand T (x ) —y.

Then it can be seen that (x, y) is an adherent point of G_ so that

(x,y) € Gr.But Gr = G, ( G,isclosed)

Hence (x, y) € G, and so by the definition of G, we have x € Mand y =T (x).

Consequently, T is a closed linear transformation. This completes the proof of the theorem.
6.1.3 The Closed Graph Theorem - Proof

If B and B’ are Banach spaces and if T is linear transformation of B into B’, then T is continuous <
Graph of T (G,) is closed.

Proof: Necessary Part:

Let T be continuous and let G denote the graph of T, i.e.

G, ={(x, T(x):xe BjcBxP.
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We shall show that Gr =G

=
Since G, ¢ Gr always, it suffices to show that Gr c G,.

Let (x, y) € Gr. Then there exists a sequence (x,, T (x,)) in G, such that
(% T (%)) = ()

= x,—~xand T (x)—y.

But T is continuous = T (x ) = T (x) and soy = T (x)

= v y) =0T (X)e G,
= GT C GT

Hence G, = Gr ie. G, is closed.
Sufficient Part:

Let G, is closed. Then we claim that T is continuous. Let B, be the given linear space B renormed
by || |, given by

IxIl,=lxIl+IT(x) | forxe B.
Now T I<IxN+IT ) N=1xIl,-
= T is bounded (continuous) as a mapping from B, to B’

So if B and B, have the same topology then T will be continuous from B to B’. To this end, we have
to show that B and B, are homeomorphic.

Consider the identity mapping

I: B, — B defined by

I (x) = x for every x € B,.

Then I is always one-one and onto.

Further [[T(x) | =1Ix 1< [Ix [+ [T () I =1xIl,

= I is bounded (continuous) as a mapping from B, onto B.

Therefore if we show that B, is complete with respect to || ||,, then B, is a Banach space so by
theorem.

“Let B and B’ be Banach spaces and let T be one-one continuous linear transformation of B onto
B’. Then T is a homeomorphism. In particular, T is automatically continuous.”

I is homeomorphism. Therefore to complete the proof, we have to show that B, is complete
under the norm || ||,.

Let (x) be a Cauchy sequence in B,. Then
Ix,=x I, =lx,-x I+ T -x)ll—-0asmn—e

= (x,) and (T (x )) are Cauchy sequences in B and B’ respectively.
Since B and B’ are complete, we have

x,—»xinBand T (x ) — T (x) in B’ .. (D)
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Since G, is closed, we have
(x, T (x)) € G, and if we take
y =T(x); then (x, y) € G..
Now 1, =xl, =1x, =xlI+ 1T =)l
=lx,=xlI+1I1T(x)-TX) Il
=lx, -xlI+1IT(x,-y) > 0asn— e, (Using (1))
Hence, the sequence (x ) in B, — x € B, and consequently B, is complete.
This completes the proof of the theorem.

Theorem 3: Let B and B be Banach spaces and let T : B— B’ be linear. If G_ is closed in B x B"and
if T is one-one and onto, then T is a homeomorphism from B onto B’.

Proof: By closed graph theorem, T is continuous.

Let T"=T":B"— B. Then T is linear.

Further (x,y) e G, & (y,x) € G,

= G, isclosed in B x B.
= T’ is continuous (By closed graph theorem)
= T is a homeomorphism on B onto B".

This completes the proof of the theorem.

Theorem 4: Let a Banach space B be made into a Banach space B’ by a new norm. Then the
topologies generated by these two norms are the same if either is stronger than the other.

Proof: Let the new norm on B” be || ||. Let || || is stronger than || ||". Then 3 a constant k such that
IxI<k]| x| for every x € B.

Consider the identity map
I:B—B.
We claim that G, is closed.
Letx, = xinBand x, = yin B’
Then || x| <k x|'= V x€ B, 1(x)=x, — yin|| |also.
Since a sequence cannot converge to two distinct points in || ||, y = x. Consequently G, is closed.
Hence closed graph theorem, I is continuous. Therefore 3 a k’s such that
Ix]"=11(x) |I'<K || x || for every x € B. Hence || | is stronger than || ||. Hence two topologies are

same.

6.2 Summary

° Let N and N’ be a normal linear space and let T : N — N’ be a mapping with domain N and
range N’. The graph of T is defined to be a subset of N x N” which consist of all ordered
pairs (x, T (x)). It is generally denoted by G..
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° Let N and N’ be normed linear spaces and let M be a subspace of N. Then a linear
transformation T : M — N’ is said to be closed iff x, € M, x, — xand T (x ) — y imply
xe Mandy =T (x).

° If B and B” are Banach spaces and if T is linear transformation of B into B’, then T is
continuous < Graph of T (G,) is closed.

6.3 Keyword

Closed Linear Transformation: Let N and N’ be normed linear spaces and let M be a subspace of
N. Then a linear transformation

T:M — N is said to be closed

iffx € M, x = xand T (x)—yimply xe Mandy =T (x).

6.4 Review Questions

1. If Xand Y are normed spaces and A : X — Y is a linear transformation, then prove that
graph of A is closed if and only if whenever x  — 0 and Ax_—y, it must be thaty = 0.

2. If Pis a projection on a Banach space B, and if M and N are its range and null space, then

prove that M and N are closed linear subspaces of B such that B=M @ N.

6.5 Further Readings

N

Books Folland, Gerald B, Real Analysis: Modern Techniques and their Applications (1st ed.),
John Wiley & Sons, (1984).

Rudin, Walter, Functional Analysis, Tata McGraw-Hill (1973).

)

Online links  euclid.colorado.edu/ngwilkin/files/ math6320.../ OMT_CGT.pdf

mathworld.wolfram.com
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7.5  Further Readings

Objectives

After studying this unit, you will be able to:

° Understand the definition of conjugate of an operator.
° Understand theorems on it.

° Solve problems relate to conjugate of an operator.
Introduction

We shall see in this unit that each operator T on a normed linear space N induces a corresponding
operator, denoted by T* and called the conjugate of T, on the conjugate space N*. Our first task is
to define T* and our second is to investigate the properties of the mapping T — T*.

7.1 The Conjugate of an Operator

711 The Linear Function
Let N* be the linear space of all scalar-valued linear functions defined on N. Clearly the conjugate
space N* is a subspace of N*. Let T be a linear transformation T’ of N* into itself as follows:
If f € N*, then T’ (f) is defined as
[T (O] = £ (T (x))
Since f (T (x)) is well defined, T” is a well-defined transformation on N*.
Theorem 1: Let T” : N* — N* be defined as
[T ()] x =£ (T (x)), f € N*, then
(@) T’ (j) is a linear junction defined on N.

(b) T’ is alinear mapping of N* into itself.
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(c) T (N*) c N*= Tis continuous, where T is a linear transformation of N into itself which is
not necessarily continuous.

Proof:
(@ x,ye Nand a, § be any scalars. Then
[T ()] (cx+ By) = £ (T (ox + By))
Since T and f are linear, we get
£(T (ox + By)) = f (T (x) +B£(T ()
= [T (O] (9 + BT (Oly
= part (a).
(b) Letf, ge N*and o, B be any scalars. Then
[T (@ f+Bg) (9] = (@f+Bg) (T ()=l B () +B (T (B
= T’ is linear on N*
= part (b)
(c) LetSbe aclosed unit sphere in N. Then we know that T is continuous = T (S) is bounded
= f (T (S)) is bounded for each f € N*.
By definition of T’, f (T (S)) is bounded if and only if [T” (f)] (S) is bounded for each f in
N* =T’ (f) is in N* for each f in N*.
=T (N) c N*
= part (c)
This completes the proof of the theorem.

Note: Part (c) of the above theorem enables us to restrict T" to N* iff T is continuous. Hence
by making T continuous we define an operation called the conjugate of T by restricting T*
to N*. We see it below.

7.1.2 The Conjugate of T
Definition: Let N be normed linear space and let T be a continuous linear transformation of N into
itself (i.e. T is an operator). Define a linear transformation T* of N* into itself as follows:

If f € N*, then, T* (f) is given by

[T* (] () = £(T (x))

We call T* the conjugate of T.

Theorem 2: If T is a continuous linear transformation on a normed linear space N, then its
conjugate T* defined by

T* : N* — N* such that
T* (f) = £.T where
[T* )] (x) =f(T(x)) Vfe N*and allx e N
is a continuous linear transformation on N* and the mapping T — T* given by

¢: B (N) = B (N*) such that
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¢ (T)

= T* for every  (N)

is an isometric isomorphism of b (N) into b (N*) reverses products and preserves the identify

transformation.

Proof: We first show that T* is linear

Let f, g e N* and o, € be any scalars

=(@j+Bg) (T(X)

then [T* (a

Hence

= T* is linear on N*.

j+BglX)

@)TE)+Bg T
o [j (T O]+ B [g (T ()]
o [T* (] () + B [T* (g)] )

=[aT*G()+BT*(g)] (x) V xe N

T (of+Bg) =BT (f)+pT*(g)

To show that T* is continuous, we have to show that it is bounded on the assumption that T is

bounded.
TN =sup {IT* @ I:N£ll<1}
=sup {[ [T*(O] ) -1 fll<land x| <}
=sup {[£ (T (x)[:IflIsland| x|l <}
=sup {lIfIIITNxI:lIxlI<Tand | x|l <} - (D)
<T
= T* is a bounded linear transformation on N* into N*. Hence by application of Hahn-
Banach theorem, for each non-zero x in N, 3 a functional f € N* such that
I =1and f (T (x) =T )l o)
y [T,
ence [IT] = sup HXH :x#0
f(T(x
_ sup { ()f)) L jeg=1, o} (by (2))
T*(f
= sup { (X)(X) Lijeg-1, <+ 0} (by (1))
< sup{T*(X 1€]=1 x;tO}
= sup{| T*(®)[: £]=1}=| T*] NE)
From (1) and (3) it follows that
ITH =T - (@)
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Now we show that

{¢:B(N)—>B(N*) given by}

O(T)=T* - ()

for every T € B (N) is an isometric isomorphism which reverses the product and preserve the
identity transformation.
The isometric character of ¢ follows by using (5) as seen below:
oM =NT<N=1TI.
Next we show that ¢ is linear and one-to-one. Let T, T, € § (N) and «, § be any scalars. Then
0@T+BT) =(@T+BT) by (3)

But [(BT+BT)* O (x) =f(@T+BT) ()

=f@TE+BT, (x)
Since f is linear, we get

[(@T+BT)*(H] =of(Tx)+B(T, (x)

= o [T*(f) (9 + BT (F) (9]

= {aT*(O)}+BIT* (O] ()
V x € N. Hence we get

[(@T+BT)*H] =o[T* O]+ BT (f)]

= (aT*+BT*)(f)
Hence (@T+BT)* =aT*+PT* ... (6)
Therefore O@T+PT) =@T+BT)*=aT+BT* =ap((T)+po(T)

= ¢ is linear.

To show ¢ is one-to-one, let ¢ (T) = ¢ (T,)
Then T* = T*,
N
Using (6) by choosing o =1, B = -1 we get
I(T-T)*I=0=|IT-T,|=00rT=T,.

= ¢ is one-to-one.
Hence ¢ is an isometric isomorphism on f (N) onto f§ (N*).
Finally we show that ¢ reverses the product and preserves the identity transformation.
Now [(TT)* (] () =£(TT,) ()

= £(T (T, ()

=[T* ()] [T, (¥)], since T, (x) € N and T* (f) € N*.
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=[T* (T ()] )
=[(T* T (O] ()

Hence, we get

(TT)* = T* T*so that

0(TT) =(TT)=T%T.
= ¢ reverses the product.
Lastly if I is the identity operator on N, then

[ B () = £ T =£(x) = (16 ().

=T*=Isothat¢ (I)=I*=1
= ¢ preserves the identity transformation.
This completes the proof of the theorem.

Theorem 3: Let T be an operator on a normal linear space N. If N ¢ N* in the natural imbedding,
then T** is an extension of T. If N is reflexive, then T** = T.

Proof: By definition, we have
(T#)* = T*
Using theorem 2, we have || T* || = || T ||.
Hence [[ T**|| = T*[| = T|l.
By definition of conjugate of an operator
T:N—= N, T*: N* — N*, T** : N** — N**.
Let]; x — F_be the natural imbedding of N onto N** so that
Fx(f)=f(x)and] (x) =F_

Further, since T** is the conjugate operator of T*, we get

T* (") x" =x" (T* (x")) where x" € N* and x”" € N**

T () X' =T (] (x)) X.
Using the definition of conjugate, we get

T (J ()X =] (x) (T* (X)).

By definition of canonical imbedding

J 09 (T (X)) =T* () x.

Again T* (x') (x) =x" (T (x)) (By definition of conjugate)
Now x" (T (x)) =J (T (x))x’ (By natural imbedding)
Hence T J (x)x" =] (T (x))x".
= T.] =T

and so T** is the norm preserving extension of T. If N is reflexive, N = N** and so T** coincides
with T.
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This completes the proof of the theorem.

Theorem 4: Let T be an operator on a Banach space B. Then T has an inverse T-1 < T* has an
inverse (T*)?, and

(T")-1 = (T-1*

Proof: T has inverse T' & TT' =T' T=1

By theorem 2, the mapping ¢ : T — T* reverse the product and preserves the identity
(TTY)* =(T"' T)*=1*
(T)*T =T* (T)*=1

= (T*)" exists and it is given by (T*)™ = (T")*. This completes the proof of the theorem.

7.2 Summary

° Let N* be the linear space of all scalar-valued linear functions defined on N. Clearly the
conjugate space N* is a subspace of N*. Let T be a linear transformation T’ of N* into itself
as follows:

If f € N*, then T’ (f) is defined as
T (f) x = £ (T (x))

° Let N be a normed linear space and let T be a continuous linear transformation of N into
itself. Define a linear transformation T* of N* into itself as follows:

If f € N, then T’ (£) is given by
T () x=£(T (x))
We call T* the conjugate of T.

7.3 Keywords

The Conjugate of T: Let N be normed linear space and let T be a continuous linear transformation
of N into itself (i.e. T is an operator). Define a linear transformation T* of N* into itself as
follows:

If f € N*, then, T* (f) is given by
[T* ®)] () = £(T (x))
We call T* the conjugate of T.

The Linear Function: Let N* be the linear space of all scalar-valued linear functions defined on N.
Clearly the conjugate space N* is a subspace of N*. Let T be a linear transformation T’ of N* into
itself as follows:

If f € N*, then T’ (f) is defined as
[T" (H]x = £ (T (x))

Since f (T (x)) is well defined, T” is a well-defined transformation on N*.

74 Review Questions

1.  Let B be a Banach space and N a normed linear space. If {T } is a sequence in B (B, N) such
that T(x) = lim T, (x) exists for each x in B, prove that T is a continuous transformation.
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The Conjugate of an Operator

2. Let T be an operator on a normed linear space N. If N is considered to be part of N** by Notes
means of the natural imbedding. Show that T** is an extension of T. Observe that if N is
reflexive, then T** = T.

3. Let T be an operator on a Banach space B. Show that T has an inverse T~ < T* has an inverse
(T*)?, and that in this case (T*)" = (T")*.

7.5 Further Readings

X

Books James Wilson Daniel, The Conjugate Gradient Method for Linear and Non-linear
Operator Equations.

G.O. Okikiolu, Special Integral Operators: Poisson Operators, Conjugate Operators and
related Integrals. Vol. Okikiolu Scientific and Industrial Organization, 1981.

Y.
Online links  epubs.siam-org/sinum/resource/1/sjnamm/v9/i| /p165_s |

www.ima.umm.edu
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Unit 8: The Uniform Boundedness Theorem
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Objectives

After studying this unit, you will be able to:
o State the uniform boundedness theorem.
o Understand the proof of this theorem.

o Solve problems related to uniform boundedness theorem.
Introduction

The uniform boundedness theorem, like the open mapping theorem and the closed graph
theorem, is one of the cornerstones of functional analysis with many applications. The open
mapping theorem and the closed graph theorem lead to the boundedness of T-' whereas the
uniform boundedness operators deduced from the point-wise boundedness of such operators.
In uniform boundedness theorem we require completeness only for the domain of the definition
of the bounded linear operators.

8.1 The Uniform Boundedness Theorem

8.1.1 The Uniform Boundedness Theorem - Proof

If (a) B is a Banach space and N a normed linear space,
(b) {T;} is non-empty set of continuous linear transformation of B into N, and

(c) {Ti (x)} is a bounded subset of N for each x € B, then { || T, || } is a bounded set of numbers, i.e.
{T,} is bounded as a subset of § (B, N)

Proof: For each positive integer n, let
F ={xeB:|IT,()ll<nV i}.

Then F_is a closed subset of B. For if y is any limit point of F , then 3 a sequence (x,) of points of
F_such that

X, > yask—oo
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The Uniform Boundedness Theorem

= Tx, > T ask—eo (By continuity of T) Notes
= ITx, I =1l Tiy|| ask — oo (By continuity of norm)
= ITyll = It NTx|
<nVi (x.€F)
= y € F.

Thus F_ contains all its limit point and is therefore closed. Further, if x is any element of B, then
by hypothesis (c) of the theorem 3 a real number k > 0 s.t.

ITx) <k V i
Let n be a positive integer s.t. n > k. Then
ITx| <nV i

sothatx € F .

Consequently, we have B = UF" .

n=1

Since B is complete, it therefore follows by Baire’s theorem that closure of some F, say Fn, =F, o

possesses an interior point x . Thus we can find a closed sphere S with centre x  and radius r
such thatS c F, .

o

Now if y is any vector in T, (S,), then

o

y = T,
where s,€S,cE,_.
Iyl =|Ts)| <n,

Thus norm of every vector in T, (S,) is less than or equal to n. We write this factas || T, (S,) | < n,.

o

X
LetS= — . . Then S is a closed unit sphere centred at the origin in B and

T{So -X, ]
rD

TSI =

IN

Ti(S.)

+]

T (x,)

| )

o

Moy
I

o

IN

Hence IT I < 2% v
T

o

This completes the proof of the theorem.

LOVELY PROFESSIONAL UNIVERSITY

66



67

Notes

8.1.2 Theorems and Solved Examples
Theorem 1: 1f B is a Banach space and (f, (x)) is sequence of continuous linear functionals on B such
that (|f, (x) |) is bounded for every x € B, then the sequence (|| f, ||) is bounded.

Proof: Since the proof of the theorem is similar to the theorem (1), however we briefly give its
proof for the sake of convenience to the readers.

For every m, let F_ C B be the set of all x such that [f (x)| <m V n
[f ()] <mV n
Now F_ is the intersection of closed sets and hence it is closed.

As in previous theorem, we have

B= UF“‘ . Since B is complete. It is of second category. Hence by Baire’s theorem, there is a

m=1

x, € F_and aclosed sphere S [x , r ] such that [f ()| <m V n.

Let x be a vector with || x || <r .

Now f (x) =f (x+x,-%x)
=f (x+x)-f (x)
I£,001 < £, O+ x) [+ £, (%) - (D)
Since Ix+x -xIl =lIx|<r,wehave (x+r)€ S[x,r]
[f (x+x)| <m .. (@
Also we have [f x)| <k V n ... (3

From (1), (2) and (3), we have for V x € S|[x, r].

If ()] <(m+k) V n,

Now for x € B, consider the vector ﬁ .

20
r U

In other words,

f
Then | £ (x)|= <M(m+k) so that ‘ n(X)<(m+k].

T, x| U
||f||s(m+k)
r()

This completes the proof of the theorem.

' Example 1: Show that the completeness assumption in the domain of (T)) in the uniform
boundedness theorem cannot be dropped.

Solution: Consider N= space of all polynomial x

=x(®= Y at,,a#0

n=0

for finitely many n’s.
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The Uniform Boundedness Theorem

It we define the norm on N as
x| =max{|a |,n=0,1,2 ..}
then N is an incomplete normed linear space.

n-1

Now define f_(x) = Eak ,n=1,2, ...

k=0
The functions {f } are continuous linear functional on N.
If wetakex=a +at+...... +a,_t"then
[f, ()] <(m+T1)max{|a[}=(m+T1)[x]
so that (|f_(x)|) is point-wise bounded.

Now consider x =1+t +t>+ ... + t*. Then || x || = 1 and from the definition of |f (x)| =n.

o L09] _
ence || f || = =n.
x|

= (|l f, 1) is unbounded.

Thus if we drop the condition of completeness in the domain of (T ), the uniform boundedness
theorem is not true anymore.

Theorem 2: Let N be a normed linear space and B be a Banach space. If a sequence (T ) € § (B, N)
such that T (x) = lim T_ (x) exists for each x in B, then T is a continuous linear transformation.

Proof: T is linear.
T (ox + By) =Lim T _(ax + By)
= lim {T, () + T, (By) |}
=alimT, (x) +BLUm T (y)
=aT(x)+PT(y) for x, y € Band for any scalars o and f.

since lim T (x) exists, (T, (x)) is a convergent sequence in N. Since convergent sequences are
bounded, (T, (x)) is point-wise bounded.

Hence by uniform bounded theorem, (|| T, ||) is bounded so that 3 a positive constant A such that

IT <AV n
Now IT.eON <NT XN < Al
Since T (x) = T (x), we have
ITEN < Al

= T is bounded (continuous) linear transformation. This completes the proof of the theorem.

Corollary 1: If f is a sequence in B* such that f (x) = lim f (x) exists for each x € B, then f is

continuous linear functional on B.

' Example 2: Let (a,) be a sequence of real or complex numbers such that for each x = (x,)

€c, Zanxn converges. Prove that 2| a, |<oeo.

n=1 n=1
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n n
Solution: For every x € c, let f = Zaixi . Since each Zaixi is a finite sum of scalars, (f ) is
i=1

i=1

sequence of continuous linear functional on c . Let f (x) = ng.} f.(x)= lnlg} Zaixi .Bycor.1, f(x)
i=1

exists and bounded. || f || = 2| a, |.Since || f || is bounded, 2| a,| <eo.
n=1 n=1

Theorem 3: A non-empty subset X of a normed linear space N is bounded < f (X) is a bounded set
of numbers for each f in N*.

Proof: Let X be a bounded subset of N so that 3 a positive constant A, such that

IxIl < A, vV xe X )
To show that f (X) is bounded for each f € N*. Now f € N* = f is bounded.
= JA,>0suchthat [f(x)| < Allx]] V xeN .. (2
It follows from (1) & (2) that

[f()] < AR, vV xe X

= f (X) is a bounded set of real numbers for each f € N*.
Conversely, let us assume that f (X) is a bounded set of real numbers for each f € N*.

To show that X is bounded. For convenience, we exhibit the vectors in X by writing X = {x }. We
now consider the natural imbedding J from N to N** given by

Jix, = E,
From the definition of this natural imbedding, we have
E_(f) = f(x) foreach x € N.
Hence our assumption f (X) = {f (x))} is bounded for each f € N* is equivalent to the assumption

i

that {FXi (f)} is bounded set for each f € N*.

Since N* is complete = (F _ ) is bounded subset of N** by uniform boundedness theorem.

Xi

FX

i

That s, (

) is a bounded set of numbers. Since the norms are preserved in natural imbedding,

E

Xi

we have ‘ = | x, || for every x, € X.

Therefore (|| x, ||) is a bounded set of numbers. Hence is bounded subset of N..
This completes the proof of the theorem.
Theorem 4: Let N and N’ be normed linear space A linear transformation.

T : N — N’ is continuous < for each f € N*, f o T € N*.

Proof: We first note that f o T is linear. Also f o T is well defined, since T (x) € N’ for every x € N
and f is a functional on N’ so that f (T (x)) is well defined and f o T € N*. Since T is continuous and
f is continuous, f o T is continuous on N.
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The Uniform Boundedness Theorem

Conversely, let us assume that f o T is continuous for each f € N*. To show that T is continuous
it suffices to show that

T(B) = {Tx: x € N, B =] x || <1} is bounded in N.

For each f € N¥, f o T is continuous and linear on N and so (f o T) B = f (T(B)) is bounded set for
every f € N*, where we have considered the unit sphere B with centre at the origin and radius 1.
Since any bounded set in N can be obtained from B, T (B) is bounded by a non-empty subset X of
a normed linear space N of bounded < f (X) is a bounded set of number for each f in N*.

8.2 Summary

° Uniform Boundedness Theorem: If (a) B is Banach space and N a normed linear space,
(b) {T} is non-empty set of continuous linear transformation of B into N and (c) {T, (x)} is a
bounded subset of N for each x € B, then {|| T, ||} is a bounded set of numbers, i.e. {T} is
bounded as a subset of § (B, N).

° If B is a Banach space and (f, (x)) is sequence of continuous linear functionals on B such that
(If, () |) is bounded for every x € B, then the sequence (|| T, || ) is bounded.

8.3 Keywords

Imbedding: Imbedding is one instance of some mathematical structure contained within another
instance, such as a group that is a subgroup.

Uniform Boundedness Theorem: The uniform boundedness theorem, like the open mapping
theorem and the closed graph theorem, is one of the cornerstones of functional analysis with
many applications.

8.4 Review Questions

1.  If XisaBanach space and A c X*, then prove that A is a bounded set if and only if for every
xin X, Sup {|f (x)| : fe A} <eo,

2. Let H be a Hilbert space and let £ be an orthonormal basis for H. Show that a sequence {h, }
in H satisfies <h , h>— 0 for every hin H if and only if sup {|| h_||: n>1} < and <h,, e>
— 0 for every ein &.

8.2.5 Further Readings

N

Books Bourbaki, Nicolas, Topological vector spaces, Elements of mathematics, Springer (1987).

Diendonne, Jean, Treatise on Analysis, Volume 2, Academic Press, (1970).

Rudin, Walter, Real and Complex Analysis, McGraw-Hill, 1966.

A

v. 2

Online links ~ www jstor.org/stable/2035429
www.sciencedirect.com/science/article/ pii/S0168007211002004
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Unit 9: Hilbert Spaces: The Definition and
Some Simple Properties
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Objectives

After studying this unit, you will be able to:
) Define inner product spaces.

) Define Hilbert space.

° Understand basic properties of Hilbert space.
° Solve problems on Hilbert space.
Introduction

Since an inner product is used to define a norm on a vector space, the inner product are special
normed linear spaces. A complete inner product space is called a Hilbert space. We shall also see
from the formal definition that a Hilbert space is a special type of Banach space, one which
possesses additional structure enabling us to tell when two vectors are orthogonal. From the
above information, one can conclude that every Hilbert space is a Banach space but not conversely
in general.

We shall first define Inner Product spaces and give some examples so as to understand the
concept of Hilbert spaces more conveniently.

9.1 Hilbert Spaces

9.1.1 Inner Product Spaces

Definition: Let X be a linear space over the field of complex numbers C. An inner product on X is
a mapping from X x X — C which satisfies the following conditions:
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Hilbert Spaces: The Definition and Some Simple Properties

(i) (ox+Py,z)=a(x,z)+P(y,z), Vx y,ze Xand o, p € C. (Linearity property) Notes
i) (oy) =% (Conjugate symmetry)
(iii) (x,x)20,(x,x)=0=x=0 (Non-negativity)

A complex inner product space X is a linear space over C with an inner product defined on it.

=7|

Notes

1.  Wecan also define inner product by replacing C by R in the above definition. In that
case, we get a real inner product space.

2. Itshould be noted that in the above definition (x, y) does not denote the ordered pair
of the vectors x and y. But it denotes the inner product of the vectors x and y.

Theorem 1: If X is a complex inner product space then

@ (ox-By, z)=a(x2)-B(y 2)

() (xBy+¥2)=Bxy)*Y¥(x2)

© By-12)=B XYy -¥(Xx2)

(d) (x,0)and (0, x) =0 for every x € X.

Proof: (a) (oax - By, z) = (ax+ (-B)y, 2)
=0 (x 2) * (-B) (v, 2)
=a(x,z)- B (y, 2).

(b) (x By +vz) = By +vz,%) = By, x) +(v2,x)
=By, ¥)+v(zx)
=B(xy)+7(x2)
© (x By -v2) = (x By + (-v) 2) = B(x, y)+(=7) (x,2)

=B y)-v(x2)
(d) (0, x) = (06, x) =0 (0, x) =0, where 0 is the zero
element of x and (x,0)=(0,x)=0=0.
Further note that (x, y +z) = (x, |y +1|2)= 1(x, y) + 1 (x, 2)

Hence (x, y + z) = (x, ¥) + (X, 2).

This completes the proof of the theorem.
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1.  Part (b) shows an inner product is conjugate linear in the second variable.

2. If(x,y)=0V xe X, theny=0.If (x,y) =0 V x € X, it should be true for x =y also,
so that (y,y)=0=y =0.

' Example 1: The space (¢} is an inner product space.
Solution: Let x = (X, X,y ...... S XY = (Vy Yoy oeeeee , V) E LS.

Define the inner product on ¢} as follows:

n

(X/ Y) = in§i

i=1

Now

Q) (ox + By, 2) = Y (ax+By, )2
= 20( xﬁﬁiﬁy@
=a(xz)+B(y 2z)

(ii) (xy) = {ZXiYi }

y

=<

= (XY, + Xy, .t X,

= (;q;l +§2§2 +o.tXay,)

= X1y, + X2y, +.oF Xn Y,

=y,

(ii) () = X

i=1

= Yx[ =0
i=1
Hence (x, x) 20 and (x, x) =0 & x, = 0 for each i, ie. (x,x) =0 & x=0.
(i) - (iii) = ¢, is a inner product space.
9.1.2 Hilbert Space and its Basic Properties

By using the inner product, on a linear space X we can define a norm on X, i.e. for each x € X, we
define || x || = 4/(3,X) . To prove it we require the following fundamental relation known as

Schwarz inequality.
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Theorem 2: If x and y are any two vectors in an inner product space then Notes
[ y) | <IxI iyl .. (1)
Proof: If y =0, we get || y || = 0 and also theorem 1 implies that | (x, y)| = 0 so that (1) holds.
Now, let y # 0, then for any scalar AeC we have
0<|Ix=Ay P = (x - Ay, x - Ay)
But
(x= Ay, x = Ay) =(x,x) = (x, Ay) = (Ay, x) + (Ay, Ay)
=692 (xy) -2+ AL [, Y)
=IxIP -2 (v, %) - (o y) + [A2 1y IP

SIXIP -2 (y,%) =& (5 y) + | L2 HyIR = (x, Ay, x - Ay)

= x-Ay |?P=0 (2

Choose A= (X};YZ),yiO/ YHiO'
- We get from (2)

xy)(xy) (xy xy)[

R e e e U
2 2 2

SR (5 7/ (3T .28

Iyl 4
- -

Iy]
= IxIPllylP=|(xy)l?
or Lo y) | <l Ty Il

This completes the proof of the theorem.
Theorem 3: If X is an inner product space, then m has the properties of a norm, i.e.
x| = «(x,X) is a norm on X.
Proof: We shall show that || || satisfies the condition of a norm.
@ Ixli= %) =lIxIF=(xx)>0and|[x[|=0 & x=0.
(i) Letx,ye€ X, then
Ix+ylP =(x+y x+y)
=)+ Y)+HE)+ () - (@)
=IxIP+ (0 y)+ (xy) +IyIP
=lIx|P+2Re (x,y) + Iy IP [+ (o y) + (¢ y) = 2Re(x,y)]
SIxIP+216oy) [ +ly P [ Re(xy)< |(xy)l]
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SUxIP+20x iy lI+1yIP [using Schwarz inequality]

=(IxI+ 1y
Therefore Ix+yll <lix+Nyll
(iii) llox [ = (ox, o)
=aoo (% x)
= o] x|
= oy x Il = 1Focf x|
(i)-(iii) imply that || x || = 4/(X,X) is a norm on X. This completes the proof of the theorem.

]|

iE

Note  Since we are able to define a norm on X with the help of the inner product, the inner
product space X consequently becomes a normed linear space. Further if the inner product
space X is complete in the above norm, then X is called a Hilbert space.

9.1.3 Hilbert Space: Definition

A complete inner product space is called a Hilbert space.

Let H be a complex Banach space whose norm arises from an inner product which is a complex
function denoted by (x, y) satisfying the following conditions:

H,: (@x + By, 2) =a (x2) + B (y,2),
H,: (xy) =(5,%),and
H,: (%) =1xIP,

forallx,y,ze€ Hand forall a, B € C.

9.1.4 Examples of Hilbert Space

1.  The space ¢ is a Hilbert space.

We have already shown in earlier example that ¢} is an inner product space. Also ¢} is a
Banach space. Consequently ¢} is a Hilbert space. Moreover ¢, being a finite dimensional,

hence ¢} is a finite dimensional Hilbert space.
2. ?, is a Hilbert space.

Consider the Banach space ¢, consisting of all infinite sequence x = (x ), n =1, 2, ... of

complex numbers such that E‘XH‘Z <o with norm of a vector x = (x, ) defined by || x || =

n=1
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We shall show that if the inner product of two vectors x = (x,) and y = (y,) is defined by

xy) = an y., then ¢, is a Hilbert space.

n=1

We first show that inner product is well defined. For this we are to show that forall x, y in ¢, the

infinite series E X,y, is convergent and this defines a complex number.

n=1

By Cauchy inequality, we have

)

i=1

X;Y;

IN
—
N
=X
~
S —
N =
—
Ny
=
N
|

IN
—
™
5
X
=1
5
—
N =
———
ﬁMz
5
~<
=]
~
N

n
2 . - . .
are convergent, the sequence of partial sum E ‘xi yi‘ is a monotonic

i=1

Ya

Since Z\XH\Z and 2
n=1 n=1

increasing sequence bounded above. Therefore, the series E X, ¥,

n=1

is convergent. Hence

>

n=1

X, ?n‘ is absolutely convergent having its sum as a complex number.

Therefore (x,y) = 2 X, ¥, is convergent so that the inner product is well defined. The condition

n=1

of inner product can be easily verified as in earlier example.
Theorem 4: If x and y are any two vectors in a Hilbert space, then
Ix+y)IE+Ix-yIF=2(xIP+1yIP)
Proof: We have for any x and y
l(x+y)IP =(x+y x+Yy) (By def. of Hilbert space)
= x+y)*(y, x+y)
=)+ y) )+, Y)
=IxIP+(xy)+ (., x) +1yIP (@)
Ix-yIF =(x-y x-y)
= x-y) = (v, x-y)
=)= y) =) +HlyIP - ()
Adding (1) and (2), we get
Ix+yP+l(x=-y)IF=20x P+21ylIP=2xIP+]yIF)

This completes the proof of the theorem.
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Theorem 5: In a Hilbert space the inner product is jointly continuous i.e.,
X, =Xy, =2y=X,y,)—> XYy)
Proof: We have
| y) = W)= 10 y,) = (6 ¥) + (%, ¥) = (%0 Y) |
= 1y, =y + (% =% y) |
(by linearity property of inner product)

S Yo =+ 1 =% y) [ la+Bl <ol + B[]

<x +1y, -yll+lIx,-xllllyll [By Schwarz inequality]
Since x, = xandy_—yasn— e

Therefore ||y -y, Il—0and | x -x||— 0ash— . Also (x ) is a continues sequence, it is bounded
sothat||x [[<M Vn.

Therefore

| X, ¥)-(y) | »>0asn—co.
Hence (x,y,) = (x,y) asn — oo
This completes the proof of the theorem.

Theorem 6: A closed convex set E in a Hilbert space H continuous a unique vector of smallest
norm.

Proof: Let d =inf {|| e |; e € E}
To prove the theorem it suffices to show that there exists a unique x € Es.t. || x || = 9.

Definition of § yields us a sequence (x,) in E such that

Lim|x,| =8 ()

n—yoco

Xm‘|'Xn

Convexity of E implies that € E. Consequently

X Xal>s = x, +x 1228 Q)

Using parallelogram law, we get

1%, +x IP+x =x P =20 [P+ 2], I

or 1, =, IP =201 x P+ 210, 1P = 1Ix, -, P
<20 x, IP+2(x, [P - d&? (Using (2))
—0asm,n— e (Using (1))
= Ix,,-x IFP—0asm,n—o
= (x,) isa CAUCHY sequence in E.
= 3 x € Esuch that [ijm x, =x , since His complete and E is a closed subset of H, therefore

n—eo

E is also complete and consequently (x ) is in E is a convergent sequence in E.
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Now I = | Limx,|
n—eo

= Lim H XnH (*+ norm is continuous mapping)

n—oo
=J.
Uniqueness of x.

Let us suppose thaty € E, y#xand || y || = 8.

X+y

Convexity of E = e E

X+y

B )

Also by parallelogram law, we have

R S

XLy
22l T2 T2 T
2 2
_ §+§HX—YH 5| Xy
2 2| 2 | 2
<&
So that
X— 2
2 Y H <9, a result contrary to (3).

Hence we must have y = x.

This completes the proof of the theorem.

' Example: Give an example of a Banach space which is not an Hilbert space.
Solution: C [a, b] is a Banach space with supremum norm, i.e. if x € C [a, b] then
Ixll =Sup {|x(t)| : te [a b]}.

Then this norm does not satisfy parallelogram law as shown below:

t_
Letx(t)=1andy(t)=b—_aa.Then Ixl=1lyll=1

Nowx (t) +y (t) =1+ !

a
+ =
b_a sothat||x +y| =2

t_
x(H)-y®=1- b_z sothat[| x-y| =1

Hence2 (Ix[P-lyIP) =4, and||x+y P+ x-y|*=5
Sothat|[x +y|P+[Ix-yIP=2[xIP+2]y I~

= C [a, b] is not a Hilbert space.
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Let X be a linear space over the field of complex numbers C. An inner product on X is a
mapping from X x X — C which satisfies the following conditions:

(i) (x+Py,z)=axz)+P(y,z) VxyzeXanda,Pe C.

(i) (xx)=20,(x,x)=0=x=0

A complete inner product space is called a Hilbert space.

9.2 Summary
(i)  (xy) =%
9.3 Keywords

Hilbert Space: A complete inner product space is called a Hilbert space.

Inner Product Spaces: Let X be a linear space over the field of complex numbers C. An inner
product on X is a mapping from X x X — C which satisfies the following conditions:

(i) (x+Py,z)=a(xz)+P(y,z), Vx, y,z€ Xand o, B e C. (Linearity property)
(i)  (xy) =(y,x) (Conjugate symmetry)
(i) (xx)20,(x,x)=0=x=0
9.4 Review Questions
1.  For the special Hilbert space ¢;, use Cauchy’s inequality to prove Schwarz’s inequality.
2. Show that the parallelogram law is not true in ¢; (n>1).
3.  Ifx,y are any two vectors in a Hilbert space H, then prove that
4 y)=lix+ylP-lIx-ylP+illx+iy|P-illx-iy |
4. If B is complex Banach space whose norm obeys the parallelogram law, and if an inner
product is defined on B by
4 y)=lix+ylP-lIx-ylP+illx+iy|P-illx-iy [P,
then prove that B is a Hilbert space.
9.5 Further Readings

N

Books Bourbaki, Nicolas (1987), Topological vector Spaces, Elements of Mathematics, BERLIN:

Springer - Verlag.
Halmos, Paul (1982), A Hilbert space Problem Book, Springer - Verlag.

2

Online links  www.math-sinica.edu.tw/www/file_upload/maliufc/liu_ch04.pdf

mathworld.wolfram.com>Calculus and Analysis > Functional Analysis
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Unit 10: Orthogonal Complements

10.1

10.2
10.3
10.4
10.5

CONTENTS
Objectives

Introduction

Orthogonal Complement

10.1.1  Orthogonal Vectors

10.1.2  Pythagorean Theorem

10.1.3  Orthogonal Sets

10.1.4  Orthogonal Compliment: Definition

10.1.5  The Orthogonal Decomposition Theorem or Projection Theorem
Summary

Keywords

Review Questions

Further Readings

Objectives

After studying this unit, you will be able to:

° Define Orthogonal complement

o Understand theorems on it

o Understand the Orthogonal decomposition theorem
° Solve problems related to Orthogonal complement.
Introduction

In this unit, we shall start with orthogonality. Then we shall move on to definition of orthogonal
complement. Let M be a closed linear subspace of H. We know that M* is also a closed linear
subspace, and that M and M* are disjoint in the sense that they have only the zero vector in
common. Our aim in this unit is to prove that H =M @ M, and each of our theorems is a step in

this direction.

10.1 Orthogonal Complement

10.1.1 Orthogonal Vectors

Let H be a Hilbert space. If x, y € H then x is said to be orthogonal to y, written as x Ly, if

(x,y)=0.
By definition,

(@) The relation of orthogonality is symmetric, i.e.,

xly=ylx
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For, xly=((xy=0
= (xy)=0
=(y,x)=0
=ylx

(b) Ifx_Ly thenevery scalar multiple of x is orthogonal to y i.e. x L y = ax Ly for every scalar
ae C

For, let o be any scalar, then
(ax,y) =a(xy)
=a.0
=0
= xly=oxly.
(c)  The zero vector is orthogonal to every vector. For every vector x in H, we have
0,x) =0
s 0Llx forallxe H.
(d)  The zero vector is the only vector which is orthogonal to itself. For,
ifxlx=(xx)=0=|x|fP=0=x=0

Hence, if x | x, then x must be a zero vector.
10.1.2 Pythagorean Theorem

Statement: If x and y are any two orthogonal vectors in a Hilbert space H, then
Ix+ylP=lx-ylP=lxIP+ylP
Proof: Given x L y = (x, y) = 0, then we must have
y Lxie. (y,x) =0
Now Ix+yIP =(x+y x+y)
=)+ y) (v, %) + (v y)
=lIx[P+0+0+]ylP
=lIxIP+lyl?
Also, Ix-yIP=(x-y, x-y)
=) -0 y) =, %)+ (v y)
=lxIP-0-0-]ly P
=lIxIP+lyl?
= Ix+ylP=lx-ylP=lIxIP+lylP?

10.1.3 Orthogonal Sets

Definition: A vector x is to be orthogonal to a non-empty subset S of a Hilbert space H, denoted
by x LSif x Ly forevery yinS.
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Two non-empty subsets S, and S, of a Hilbert space H are said to be orthogonal denoted by Notes
5,15, if x Ly foreveryx € S and every y € S,.

10.1.4 Orthogonal Compliment: Definition

Let S be a non-empty subset of a Hilbert space H. The orthogonal compliment of S, written as S*
and is read as S perpendicular, is defined as

St={xeH:xly VyeS}

Thus, S* is the set of all those vectors in H which are orthogonal to every vectors in H which are
orthogonal to every vector in S.

Theorem 1: 1f S, S, S, are non-empty subsets of a Hilbert space H, then prove the following:

@ {o}=H (b) H'={0} © SnSs'cio
(d S,cS,= S;,cSt (e) Scs+
Proof:

(a) Since the orthogonal complement is only a subset of H, {0}* c H.
It remains to show that H c {0}*.

Let x € H. Since (x, 0) = 0, therefore x € {0}*.

Thus x€ H = x e {0}
= H c{0}-.
Hence {0}t =H

(b) Let x € H. Then by definition of H, we have
(x,y)=0VyeH
Taking y = x, we get
xx)=0=[x|P=0=x=0
Thusxe H*=x=0
-~ H-={0}

() xeSnSsh
Thenx € Sand x € S*

Since x € S*, therefore x is orthogonal to every vector in S. In particular, x is orthogonal to
x because x € S.

Now (x,x)=0= || x|P=0=x=0.
= 0 is the only vector which can belong to both S and S*.
SNStc {0}

If Sis a subspace of H, then 0 € S. Also S* is a subspace of H. Therefore 0 € S*. Thus, if S is
a subspace of H, then 0 € S n S*. Therefore, in this case S N S+ = {0}.
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(d) LetS, cS, wehave
x € S; = x is orthogonal to every vector in S,
=  xis orthogonal to every vector in S, because S, C S,.

= xe85
S, CS;
() LetxeS.Then(x,y)=0V ye S
by definition of (S*)*, x € (S~
Thusx e S= x e S--.
= ScS*t

This completes the proof of the theorem.

Theorem 2: If S is a non-empty subset of a Hilbert space H, then S* is a closed linear subspace of
H and hence a Hilbert space.

Proof: We have

St={xe H:(x,y) =0V y e S} by definition. Since (0, y) =0 Vy € S, therefore at least 0 € S* and
thus S* is non-empty.

Now let x, x, € S* and o, f be scalars. Then (x,, y) =0, (x,, y) =0 for every y € S.
For every y € S, we have
(o + Bxy y) = (x, y) + B y)
=a(0)+p(0)
=0
= ax +Px,eSt
=  S'isasubspace of H.
Next we shall show that S* is a closed subset of H.
Let (x ) € S*and x, — x in H.
Then we have to show that x € S-.
For this we have to prove (x, y) = 0 for every y € S.
Since x_€ S*, (x,y) =0foreveryy € Sand forn=1,2,3, ...
Since the inner product is a continuous function, we get
(%, ¥) = (x,y) asn — o
Since (x,y) =0 V n, (x,y) =0
= x € Sh

Hence S* is a closed subset of H.
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Now S* is a closed subspace of the Hilbert space H.

So, St is complete and hence a Hilbert space. This completes the proof of the theorem.
Theorem 3: If M is a linear subspace of a Hilbert space H, then M is closed

o M=M-

Proof: Let us assume that M = M*,

M being a subspace of H.

by theorem (2), (M*)* is closed subspace of H.

Therefore M = M* is a closed subspace of H. Conversely, let M be a closed subspace of H. We
shall show that M = M*4.

We know that M ¢ M*-.
Now suppose that M # M**.

Now M is a proper closed subspace of Hilbert space M**. 3 a non-zero vector z_in M** such that
z 1 Morz € M.

Now z_ € M'and M** gives z_ € M" n M* (@)
Since M is a subspace of H, we have

M* N M ={0} oA

(by theorem 1 (iii))
From (1) and (2) we conclude that z = 0, a contradiction to the fact that z_is a non-zero vector.
M c M** can be a proper inclusion.
Hence M = M*.
This completes the proof of the theorem.
Cor. If M is a non-empty subset of a Hilbert space H, then M* = M,
Proof: By theorem (2), M* is a closed subspace of H. So by theorem (3),
M = (MY = ML

Theorem 4: If M and N are closed linear subspace of a Hilbert space H such that M L N, then the
linear subspace M L N is closed.

Proof: To prove: M + N is closed, we have to prove that it contains all its limit point.
Let z be a limit point of M + N,
Jasequence (z ) in M + N such that z, — z in H.

SinceM L N, M n N = {0} and M + N is the direct sum of the subspace M and N, z_can be written
uniquely as

z =x +y wherex € Mandy € N.
Taking two points z_ =x_+y _and z =x_+y_, we have
2= 2,= (X = X) * (7, ¥,
Sincex -x € Mandy -y € N, we get

X =%) L (V=¥
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So, by Pythagorean theorem, we have
(¢ = %)+ (v, -y P =X, = x P+ Dy, -y, I
But (x, -x )+ (v, -V,) =2, -z, so that

Nz, -z, I =lIx, -x [F+ly, -y, (1)
Since (z,) is a convergent sequence in H, it is a Cauchy sequence in H.
Hencel/z -z [P~ 0asm,n— ... (2
Using (2) in (1), we see that

Ix,-x IP—0and|ly, -y, IF—0

So that (x ) and (y, ) are Cauchy sequence in M and N.

Since H is complete and M and N are closed subspace of a complete space H, M and N are
complete.

Hence, the Cauchy sequence (x,) in M converges to x in M and the Cauchy sequence (y,) in N
converges to y in N.

Now z=limz =lim(x +y,)
=limx_+limy_

But limx +limy =x+ye M+N

Thus, z=x+ye M+N

= M + N is closed.
10.1.5 The Orthogonal Decomposition Theorem or Projection Theorem

Theorem 5: If M is a closed linear subspace of a Hilbert space H, then H=M @ M".
Proof: If M is a subspace of a Hilbert space H, then we know that M N M* = {0}.
Therefore in order to show that
H =M @ M!, we need to verify that
H=M+M-.
Since M and M™ are closed subspace of H, M + M* is also a closed subspace of H by theorem 4.
Let us take N = M + M* and show that N = H.
From the definition of N, we get M c N and M* c N. Hence by theorem (1), we have
N* c M*' and N* ¢ M*.
Hence N* c M* n M+ = {0}.
= N+ = {0}
= H={0}=H .. (@)
Since N = M + M* is a closed subspace of H, we have by theorem (3),
=N .. (2
From (1) and (2), we have
N=M+M=H.
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Since MMt ={0} and
H=M+M,

we have from the definition of the direct sum of subspaces,
H=M&M-"-

This completes the proof of the theorem.

Theorem 6: Let M be a proper closed linear sub space of a Hilbert space H. Then there exists a
non-zero vector z_in H such that z, | M.

Proof: Since M is a proper subspace of H, there exists a vector x in H which is not in M.
Letd=d (x, M) =inf {|x-y|}:ye M}.
Since x ¢ M, we have d > 0.

Also M is a proper closed subspace of H, then by theorem: “Let M be a closed linear subspace of
a Hilbert space H. Let x be a vector not in M and let d = d (x, m) (or d is the distance from x to M).
Then there exists a unique vector y_in M such that || x -y_||=d.”

There exists a vector y_in M such that
Ix -y, Il =d.
Let z, = x - y,_. We then here
iz I=lIx-y,Il =d>0.
= z_is a non-zero vector.
Now we claim that Z 1 M.
Let y be an arbitrary vector in M. We shall show that z_ 1 y. For any scalar o, we have
z,- oy =x-y,-oy=x-(y,+ay)
since M is a subspaceof Hand y , y € M,
y, T oM e M.
Then by definition of d, we have
Ix-(y,+ay)ll 2d
Now Iz, -ayll =lIx-(y,+ay) lI2d =]z
Iz, - oy I 21z, |
or (z,-ay, z, -ay)-(z,2z) =20
or (z,z)- G(z,y) -y z) +ad(y,y) - (z,2)20
or —t(z,,y)-(z,,y)+od(y,y)=0 (D)
The above result is true for all scalars a.

Let us take o =p(z,,y)-

Putting the value of a, @ in (1), we get

B (20,Y) (20, ¥)~B(Z0,¥) 70, y) +B2 (20, y) (zory) | Y [ 20

or -2 [z, )12+ B | (z, y) I* Iy P20
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or Blz,VI*BllylP-2120 )

The above result is true for all real § suppose that (z, y) # 0. Then taking  positive and so small
that B || y I < 2, we see from (2) that B |(z,, y) |*{B Il y IF -2} <O.

This contradicts (2).
Hence we must have (z,y )=0=2z ly, Vye M.
z 1 M.

This completes the proof of the theorem.

10.2 Summary

o Let H be a Hilbert space. If x, y € H then x is said to be orthogonal to y, written as x Ly, if
(x y) =0.
° If x and y are any two orthogonal vectors in a Hilbert space H, then
Ix+ylF =lx-yF=IxIF+Iyl

o Two non-empty subsets S, and S, of a Hilbert space H are said to be orthogonal denoted by
S, 1S, if x Lyforeveryxe S andeveryy e S,

° Let S be a non-empty subsets of a Hilbert space H. The orthogonal compliment of S,
written as St and is read as S perpendicular, is defined as

St={xeH:xLly Vye S}

o The orthogonal decomposition theorem: If M is a closed linear subspace of a Hilbert space
H, thenH =M & M-,

10.3 Keywords

Orthogonal Compliment: Let S be a non-empty subset of a Hilbert space H. The orthogonal
compliment of S, written as S* and is read as S perpendicular, is defined as

St={xeH:xLly V yeS}

Orthogonal Sets: A vector x is to be orthogonal to a non-empty subset S of a Hilbert space H,
denoted by x L S if x L y for every y in S.

Two non-empty subsets S, and S, of a Hilbert space H are said to be orthogonal denoted by S, L
S, if x Lyforeveryxe S andeveryye S,

Orthogonal Vectors: Let H be a Hilbert space. If x, y € H then x is said to be orthogonal to y,
written as x Ly, if (x, y) =0.

Pythagorean Theorem: If x and y are any two orthogonal vectors in a Hilbert space H, then

Ix+ylP=lx-yIP=lxIF+lyl-

10.4 Review Questions

1.  If Sis a non-empty subset of a Hilbert space, show that S+ = S+,
2. If Mis a linear subspace of a Hilbert space, show that M is closed < M = M.

3.  IfSis a non-empty subset of a Hilbert space H, show that the set of all linear combinations
of vectors in S is dense in H < S* = {0}.
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4. IfSis a non-empty subset of a Hilbert space H, show that S** is the closure of the set of all
linear combinations of vectors in S.

5. If M and N are closed linear subspace of a Hilbert space h such that M L N, then the linear
subspace M + N is closed.

10.5 Further Readings

Books Halmos, Paul R. (1974), Finite-dimensional Vector Spaces, Berlin, New York
Paul Richard Halmos, A Hilbert Space Problem Book, 2nd Ed.
Y.
Online links  Ttcconline.net/ green/courses/203/ .../ orthogonal complements.html
www.math.cornell.edu/~andreim/Lec33.pdf

Wwww.amazon.co.uk
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Unit 11: Orthonormal Sets

CONTENTS

Objectives

Introduction

11.1 Orthonormal Sets
11.1.1  Unit Vector or Normal Vector
11.1.2  Orthonormal Sets, Definition
11.1.3  Examples of Orthonormal Sets
1114  Theorems on Orthonormal Sets

11.2 Summary

11.3 Keywords

11.4 Review Questions

11.5 Further Readings

Objectives

After studying this unit, you will be able to:

° Understand orthonormal sets

° Define unit vector or normal vector

° Understand the theorems on orthonormal sets.
Introduction

In linear algebra two vectors in an inner product space are orthonormal if they are orthogonal
and both of unit length. A set of vectors from an orthonormal set if all vectors in the set are
mutually orthogonal and all of unit length.

In this unit, we shall study about orthonormal sets and its examples.

11.1 Orthonormal Sets

11.1.1 Unit Vector or Normal Vector

Definition: Let H be a Hilbert space. If x € His such that || x || = 1, i.e. (x, x) = 1, then x is said to be
a unit vector or normal vector.

11.1.2 Orthonormal Sets, Definition

A non-empty subset { e, } of a Hilbert space H is said to be an orthonormal set if

(i) i#j=e Le, equivalentlyi#j= (e, e)=0

(i) llell=Tor (e, e)=1foreveryi.
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Thus a non-empty subset of a Hilbert space H is said to be an orthonormal set if it consists of
mutually orthogonal unit vectors.

1. An orthonormal set cannot contain zero vector because || 0 || = 0.

2. Every Hilbert space H which is not equal to zero space possesses an orthonormal
set.

X

Since 0 # x € H. Then || x || # 0. Let us normalise x by taking e = HT , so that

x
B

= e is a unit vector and the set {e} containing only one vector is necessarily an
orthonormal set.
X |
— ¢ isan

3. If {x} is a non-empty set of mutually orthogonal vectors in H, then {e } = {
X.

i
i

x]=1.

1
]l

llell=

orthonormal set.

11.1.3 Examples of Orthonormal Sets

1. In the Hilbert space (3, the subset e, e,, ..., e, where e, is the i-tuple with 1 in the i place

and O’s elsewhere is an orthonormal set.

For (e, e)=0 i#jand (e, e) =1in the inner product 2X1§i of (5.

i=1

2. In the Hilbert space /,, theset{e e, ..., e, ...} where e_is a sequence with 1 in the n* place

and O’s elsewhere is an orthonormal set.
11.1.4 Theorems on Orthonormal Sets

Theorem 1: Let {e, e,, ..., e } be a finite orthonormal set in a Hilbert space H. If x is any vector in

H, then
Yle)l <ixip; (1)
i=1

further,

X—Z(x,ei)ei L e for each j .. (2

i=1

Proof: Consider the vector

y = X_i(xfei)ei
io1
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n

= x—Z(X, e)e, X_E(X/ e)e

i=1 i=1

- - Y e - Y me) e

Y Yxe)xe) @)

i=1 j=1
n

= X=X evertoe- D e txe)+ Y (xe) (xe)

i=1

On summing with respect to j and remembering that (e, ¢) =1,i=jand (e, e) =0, i #]j

n n
= HXHZ—Zx,e Z—ZX,eiZ-FZ‘(x,ei)
i=1

n
i=1 i=1

n
=[x =Yl
i=1

Now || y [P 2 0, therefore || x || - Z\(x, e)

i=1

2

i

2

Z>0

n

= Yle

i=1

<lxIp

= result (1).

Further to prove result (2), we have for each j (1 <j<n),

(x—i(x, ei)ei,ej] = (x, ej)—[i(x, ei)ei,e]]

i=1 i=1

= (ve)= D (v e)(ee)
=(xe)-(xe) [ (e,e)=1i#j0,i=]]

=0

Hence X—Z(X, e)e Le; foreachj.

i=1

This completes the proof of the theorem.

S|
;

Note  The result (1) is known as Bessel’s inequality for finite orthonormal sets.
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Theorem 2: If {e} is an orthonormal set in a Hilbert space H and if x is any vector in H, then the

i

set S = {e, : (x, ) # 0} is either empty or countable.

Proof: For each positive integer n, consider the set

2
S = {ei: (x, ) 2>X},
" n

If the set S_ contains n or more than n’ vectors, then we must have

Sleoef >l -
ejeSy n

By theorem (1), we have
Mlxe)l <uxe Q)

€jE€Sy
which contradicts (1).

Hence if (2) were to be valid, S, should have at most (n - 1) elements. Hence for each positive n,
the set S_is finite.

Now let e € S. Then (x, e) # 0. However small may be the value of |(x, e)|? we can take n so
large that

Therefore if e, € S, then e, must belong to some S . So, we can write S = U S, -

n=1

= Scan be expressed as a countable union of finite sets.

= Sisitself a countable set.

If (x, e) = 0 for each i, then S is empty. Otherwise S is either a finite set or countable set.
This completes the proof of the theorem.

Theorem 3: Bessel’s Inequality: If {e } is an orthonormal set in a Hilbert space H, then Z|(x, e) |* <
Il x |* for every vector x in H.

Proof: LetS = {e, : (x, e) # 0}.
By theorem (2), S is either empty or countable.
If Sis empty, then (x, e) =0 Vi.
So if we define X | (x, e) |*> = 0, then
Sl (xe)|? =0<llx|P.
Now let S is not empty, then S is finite or it is countably infinite.
If S is finite, then we can write S = {e, e,, ..., e } for some positive integer n.

In this case, we have

=l e)|* = Y l(xe)f <IxIP ()

which represents Bessel’s inequality in the finite case.
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If S is countable infinite, let S be arranged in the definite order such as {e , e, ..., e, ...}.

In this case we can write
S e) = Y lxe)l e)
n=1

The series on the R.H.S. of (2) is absolutely convergent.

Hence every series obtained from this by rearranging the terms is also convergent and all such
series have the same sum.

Therefore, we define the sum Z|(x, e) |*to be Zl (x,e).

n=1

Hence the sum of 2| (x, e) | *is an extended non-negative real number which depends only on S
and not on the rearrangement of vectors.

Now by Bessel’s inequality in the finite case, we have
Yltxe)l <l )
i=1

For various values of n, the sum on the L.H.S. of (3) are non-negative. So they form a monotonic
increasing sequence. Since this sequence is bounded above by || x | it converges. Since the
sequence is the sequence of partial sums of the series on the R.H.S. of (2), it converges and we
havee € S,

Sl e) 2= Y Iece)f <lx|p
n=1
This completes the proof of the theorem.

Note: From the Bessel’s inequality, we note that the series 2| (x,e,)* is convergent series.

n=1

Corollary: If e € S, then (x,e ) »> 0asn — oo

Proof: By Bessel’s inequality, the series 2| (x,e,) is convergent.

n=1

Hence |[(x,e)|*—0asn— e

= (x,e)—>0asn— oo,

Theorem 4: If {e } is an orthonormal set in a Hilbert space H and x is an arbitrary vector in H, then
{x-Z(x,e)e} L e foreachj.

Proof: LetS={e,: (x, e) # 0}

Then S is empty or countable. [See theorem (2)]

If S is empty, then (x, e) = 0 for every i.

In this case, we define X (x, e) e, to be a zero vector and so we get

x-2Z(x,e)e=x-0=x

i
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Hence in this case, we have to show x L e, for eachj. Notes
Since S is empty, (x, e) = 0 for every j.
= x L e for every j.
Now let S is not empty. Then S is either finite or countably infinite. If S is finite, let
S ={e,e, ..., e} and we define

Z(xe)e = E(X, e)e;,

i=1

and prove that {X—E(X, ei)ei}i e, for each j. This result follows from (2) of theorem (1).

n=1
Finally let S be countably infinite and let

S={e,e,..,e,..}

Let Sn 2 (X/ ei) ei

2

For m > n, s, -s, I

[
—
kg
0
<

By Bessel’s inequality, the series 2‘ (x,e,) ‘2 is convergent.

n=1

2
asm, n — oo,

Hence 2 |(x, e)

i=n+1

= s, ,-s,IP—>0asm,n— oo
=  (s,) is a Cauchy sequence in H.

Since H is complete s, — s € H. Now s € H can be written as

oo

s= Y xee,

n+1

Now we can define X(x, e) e, = Z(X/ ee, .
n+1

Before, completing the proof, we shall show that the above sum is well-defined and does not
depend upon the rearrangement of vectors.

For this, let the vector in S be arranged in a different manner as

S=1{f,f,f,...f, ..}
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Let s, = Y ()

As shown for the case above for (s ), let

’

s, — s’ in H where we can take

S = D),

n=1

We prove that s =s’. Given € >0 we can find n, such that V n>n,.

>

i=ng+1

2

X, €,

<€’ lls,-sll<e, [|s, =] <e

For some positive integer m; > n,, we can find all the terms of s_in s, also.

’
Hence s, —s

no

< 2 ? <& 5o that we have

i=ng+1

4
Thus, we get H S ~ Sne X, €

Now [Is"=s]|l = H (s’ - 5;10 ) + (s:no - s;‘O ) + (snﬂ - s) H

< +

|+

’ ’ ’ ’
s =m0l + [ Smp —8

Lo+ s =5

no
<e+e+e =3
Since € > 0 is arbitrary, s’ -s=0ors =5s".
Now consider
(x-Z(x,e)e,e) =(x-s¢e)
But (x-s,e) =(x,e)-(se)
=(x,e) - (lims_ e)
By continuity of inner product, we get
(lims, e) =lim (s, e)
Using (3) in (4), we obtain
(x-Z(x,e)e,e) =(x,e)-lim(s, e)

If ¢ S, then

LOVELY PROFESSIONAL UNIVERSITY
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Orthonormal Sets

Hence (x-Z(x,e)e,e) =(x,e)=0sincee ¢ S.
Ife €S, then (s, e) = (Z(X, ei)ei,ej] .. (5)
i=1
If n >j, we get (x,e)e, e | =(x¢e) ... (6)
(B e

From (5) & (6), we get

hm (Sn’ ej) = (Xr ej)'

So, in this case
(x-Z(xe)e,e) =(xe)-(xe)=0
Thus (x - Z (x, ¢) e, e) = 0 for eachj.
Hence x - X (x, e) e, L ¢ for eachj.
This completes the proof of the theorem.

Theorem 5: A Hilbert space H is separable < every orthonormal set in H is countable.

Proof: Let H be separable with a countable dense subset D so that H= D .
Let B be an orthonormal basis for H.
We show that B is countable.
For V x,y € B, x #y, we have
Ix-yIP =lxIP+lyl?=2

Hence the open sphere

S(X; %)={Z : H zZ—X H <%} = as x € B are all disjoint.

. . . o 1
Since D is dense, D must contain a point in each S(x, Ej .

Hence if B is uncountable, then B must also be uncountable and H cannot be separable contradicting
the hypothesis. Therefore B must be countable.

Conversely, let B be countable and let B = {x,, x,, ...}. Then H is equal to the closure of all finite
linear combinations of element of B. That is H= L(B) . Let G be a non-empty open subset of H.

Then G contains an element of the form 2 a,x, witha, € C. We can take a, ¢ C. We can take a,
i=1

to be complex number with real and imaginary parts as rational numbers. Then the set

D= {zlaixi,nzl,z...,ai rational
i=1

is a countable dense set in H and so H is separable.

This completes the proof of the theorem.
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Theorem 6: A orthonormal set in a Hilbert space is linear independent.
Proof: Let S be an orthonormal set in a Hilbert space H.

To show that S is linearly independent, we have to show that every finite subset of S is linearly
independent.

LetS, = {e, e, ..., e } be any finite subset of S.
Now let us consider
oe +oe, +..+oe =0 . (1)

Taking the inner product with e, (1 <k <n),

[Eaiei’ekj = iai(evek) N3]

Using the fact that (e, e,) =0 fori#kand (e, e) =1, we get

n

E(Xi(ej'ek) =0 ...(3

i=1
It follows from (2) on using (1) and (3) that
©0,e) =0,
= o=0vk=12..,n

= 5, is linearly independent.

This completes the proof of the theorem.

' Example: If {e} is an orthonormal set in a Hilbert space H, and if x, y are arbitrary vectors

i

in H, then 2‘(& e)(y &)

<[x[ vl

Solution: Let S= {ei ((xe)(y, €)% 0}

Then S is either empty or countable.

If S is empty, then we have

(x,e)(y,e)=0Vi
and in this case we define

2‘ (x,e) (}Tei)‘ to be number 0 and we have 0 < || x |* || y I

If S is non-empty, then S is finite or it is countably infinite. If S is finite, then we can write
S=le,e, ..., e} for some positive integer n.

In this case we define

Y el ve)

= Yl e)
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1
2
2} (By Cauchy inequality)

< {i(xrei) 2}2 {i(y,ei)

<UxIP Iy IP (by Bessel’s inequality for finite case)

2‘(X’ei)

i=1

[(vre)| <lxlnyl (1)

Finally let S is countably infinite. Let the vectors in S be arranged in a definite order as
S={e,e, .. e,..}

Let us define

Dlxe)

(v.e) (v,e,)

- E\men)

But this sum will be well defined only if we can show that the series 2‘ (x,e,)

n=1

is

(v.e0)
convergent and its sum does not change by rearranging its term i.e. by any arrangement of the
vectors in the set S.

Since (1) is true for every positive integer n, therefore it must be true in the limit. So

Ylexe,)

n=1

[(ve)| <lixl Nyl Q)

From (2), we see that the series 2‘ (x,e,)

n=1

‘(y, e, )| is convergent. Since all the terms of the series

are positive, therefore it is absolutely convergent and so its sum will not change by any
rearrangement of its terms. So, we are justified in defining

Tleellae - Sece e
and from (2), we see that this sumis <[ x| ||y |l
11.2 Summary
° Two vectors in an inner product space are orthonormal if they are orthogonal and both of

unit length. A set of vectors from an orthonormal set if all vectors in the set are mutually
orthogonal and all of unit length.

° Examples of orthonormal sets are as follows:

(1) In the Hilbert space (3, the subsete,, e, ..., ¢ where e, is the i-tuple with 1 in the i*

place and O's elsewhere is an orthonormal set.

For (e, e)=0 i#jand (e, e) =1in the inner product Zx&i of (5.
i=1
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(ii) In the Hilbert space /,, the set {e, e, ..., e, ...} where e_is a sequence with 1 in the

o

n' place and O’s elsewhere is an orthonormal set.

11.3 Keywords

Orthonormal Sets: A non-empty subset { e } of a Hilbert space H is said to be an orthonormal set
if

(i) i#j=e Lle, equivalentlyi#j= (e, e)=0

(i) llell=Tor(e,e)=1 for every i.

Unit Vector or Normal Vector: Let H be a Hilbert space. If x € H is such that || x || =1, i.e. (x, x) =

1, then x is said to be a unit vector or normal vector.

11.4 Review Questions

1. Let {e, e, ..., e } be a finite orthonormal set in a Hilbert space H, and let x be a vector in H.

n
X— E e,

i=1

If o, o, ..., 0, are arbitrary scalars, show that attains its minimum value &

o, = (x, e) for each i.

2. Prove that a Hilbert space H is separable & every orthonormal set in H is countable.

11.5 Further Readings

N

Book Sheldon Axler, Linear Algebra Done Right (2nd ed.), Berlin, New York (1997).

o

Online links www.mth.kcl.ac.uk/~jerdos/op/w3.pdf
mathworld.wolfram.com

www.utdallas.edu/dept/abp/PDEF _files
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Unit 12: The Conjugate Space H
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Objectives

After studying this unit, you will be able to:

o Define the conjugate space H".

o Understand theorems on it.

o Solve problems related to conjugate space H'.
Introduction

Let H be a Hilbert space. A continuous linear transformation from H into C is called a continuous
linear functional or more briefly a functional on H. Thus if we say that f is a functional on H, then
f will be continuous linear functional on H. The set $(H, C) of all continuous linear functional on
H is denoted by H"and is called the conjugate space of H. The elements of H"are called continuous
linear functional or more briefly functionals. We shall see that the conjugate space of a Hilbert
space H is the conjugate space H" of H is in some sense is same as H itself. After establishing a
correspondence between H and H’, we shall establish the Riesz representation theorem for
continuous linear functionals. Thereafter we shall prove that H"is itself a Hilbert space and H is
reflexive, i.e. 3 has a natural correspondence between H and H™ and this natural correspondence

is an isometric isomorphism of H onto H™

12.1 The Conjugate Space H’

12.1.1 Definition

Let H be a Hilbert space. If f is a functional on H, then f will be continuous linear functional on
H. The set B(H,C) of all continuous linear functional on H is denoted by H"and is called the
conjugate space of H. The conjugate space of a Hilbert space H is the conjugate space H"of H is in

some sense is same as H itself.
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12.1.2 Theorems and Solved Examples

Theorem 1: Let y be a fixed vector in a Hilbert space H and let fy be a scalar valued function on
H defined by

fy (x)=(x,y)VxeH.
Then fy is a functional in H'i.e. fy is a continuous linear functional on H and HYH = HfYH
Proof: From the definition
fy :H— C defined as fy(x)=(x,y)Vxe H.
We prove that fy is linear and continuous so that it is a functional.
Let X;,X, € H and o, be any two scalars. Then for any fixed y€H,
fy (ox, +Bx, ) = (0, +Bx,, y)
=a(x,,y)+B(x.y)
= afy (x,)+ By (x.)

= fy is linear.

To show fy is continuous, for any x e H

y 09l = (e )] < -y (1)
(Schwarz inequality)

Let |ly| <M. Then for M > 0

|fy (x)| < M|[x| so that fy is bounded and hence fy is continuous.

Now let y = 0, |y|=0 and from the definition fy = 0 so that |fy|<|y|.
. Sup [fy ()
urther let y #0. Then from (1) we have ] < HYH

Hence using the definition of the norm of a functional,
we get [y <]y -

Further |fy| = sup{‘fy(x)‘ < 1} -(3)

Since y # 0,[5] is a unit vector.

From (3), we get

o)
y[y ()

e[

LOVELY PROFESSIONAL UNIVERSITY
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v (y )1 _
Butfy[y] [y /YJ HyH(Y/Y) HyH ©)

Using (5) in (4) we obtain

ey ]
From (2) and (6) it follows that

[ey][=
This completes the proof of the theorem.

Theorem 2: (Riesz-representation Theorem for Continuous Linear Functional on a Hilbert Space):
Let H be a Hilbert space and let f be an arbitrary functional on H". Then there exists a unique
vector y in H such that

f = fy, i.e. f(x) = (xy) for every vector xe H and |[f[|= y]|

Proof: We prove the following three steps to prove the theorem.
Step 1: Here we show that any f € H" has the representation f = fy.
If f = 0 we take y = 0 so that result follows trivially.

So let us take f#0.

We note the following properties of y in representation if it exists. First of all y #0, since

otherwise f = 0.

Further (x,y) = 0¥x for which f(x) = 0. This means that if x belongs to the null space N(f) of f, then
(xy)=0.

=yeN(f)".

So let us consider the null space N(f) of f. Since f is continuous, we know that N(f) is a proper
closed subspace and since f #0,N(f)#H and so N (f)" = {0}.

Hence by the orthogonal decomposition theorem, Jay, #0in N(f)".Let us define any

arbitrary x ¢ H.
z=£(x)y, —£(y,)x

Now f(z)=f(x)f(y,)~£(y,)f(x) =0

= zeN(f).

Since v, €N(f)", we get
0=(2,y,)=(£6)yo = £(ys)x¥0)

= f(x)(yo,yo)—f(Yo)(XrYO)

Hence we get

£0)(yo, o)~ (¥0) (. ¥0)=0 -0
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Noting that (y,,y,)=|y.| #0, we get from (3),

f(X)=‘ Loz) (x¥0) ~(4)
o

We can write (4) as

f(x)= le f(yoz)YO‘|

Yo

f(y.)

o

Now taking

y, asy, we have established that there exists a y such that f(x) = (x,y) for x € H.

Step 2: In this step we know that

I€01=
If f =0, then y = 0 and |f = y| hold good.
Hence let f#0. Then y #0.

From the relation f(x) = (x,y) and Schwarz inequality we have

£ =

xy]< Xyl

= sup ‘f(X)‘

o I

<[y]-

Using definition of norm of f, we get from above

el <] (5)

Now let us take x =y in f(x) = (x,y), we get

I =(v.y)=£(y) <[l
= [yl <!l - (6)
(5) and (6) implies that

[£1=[y]-

Step 3: We establish the uniqueness of y in f(x) = (x,y). Let us assume that y is not unique in

() = (xy)-

Let for all xeH,3y,,y, such that

f(x) = (xy,) = (xy,)
Then (x,y,) - (xy,) =0

= (xy,-y,) =0vxeH.
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Let us choose x to be y, - y, so that Notes

2
(Y1 “Yar¥a _Yz) = HY1 _Y2H =0
= Vi—y,=0
= Y1=Y:
= y is unique in the representation of f(x) = (x,y)

This completes the proof of the theorem.

=/
i[E]
Note The above Riesz representation theorem does not hold in an inner product space

which is not complete as shown by the example given below. In other words the
completeness assumption cannot be dropped in the above theorem.

'i Example: Let us consider the subspace M of 1, consisting of all finite sequences. This is the
set of all scalar sequence whose terms are zero after a finite stage. It is an incomplete inner
product space with inner product

(x,y) = 2 X, ¥, Vx,yeM

n=1

Now let us define
X
f(x)= o = M.
(x) ;:1 - asx (x.)€

Linearity of f together with Hélder’s inequality yields

DRI

— f is a continuous linear functional on M.

We now prove that there is no y € M such that
f(x)=(xy)VxeM.

Let us take x =¢_=(0,0,....,1,0,0,.....) where 1 is in n™ place.
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Using the definition of f we have f(x) =

S =

Suppose y = (yn) € M satisfying the condition of the theorem, then
f(x)=(xy)= ZXH?n =y,asx=e,.
1
Thus Riesz representation theorem is valid if and only if y, =—#0 for every n.
n

Hence y =(y,)e M.

= 3no yeM such that f(x,y) = (x,y) for every x e H.
= the completeness assumption cannot be left out from the Riesz-representation theorem.

Theorem 3: The mapping ¢:H—>H defined by ¢:H—H defined by (])(y):fy where

fy(x) = (x,y) for every xeH is an (i) additive, (ii) one-to-one, (iii) onto, (iv) symmetry, (v) not
linear.

Proof:
(i) Letusshow that ¢ is additive, i.e.,
0(ys +y2)=0(y1)+0(y2) fory, y, € H.
Now from the definition (])(yl + Yz) =f .,
Hence for every xeH, we get
£y, )= 00y, +¥2) = (0 y1)+ (%)
=f (x)+ fy2 (x)

Y1
= f, =¢(Y1+YZ)=fy1+fy2 =0(y.)+0(y>)
(1) ¢ is one-to-one. Lety, ,y, e H

Then ¢(y,)=f, and ¢(y,)=f, . Then
o(y,)=0(y,) =1, = £,
= (x)=f_ (YVxeH (1)
f, ()= (xy,)andf,_ (x)=(xy,)
from (1), we get
(xy1)=00y2)= (0 y:)=(xy,) =0
= (xy,-y,)=0vxeH (2

Choose x =y, - y, then from (2) if follows that (y,-y,y,-y, =0
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— HY1 _ysz =0 Notes

= Yi=Y>
¢ is one-to-one.
(iii) ¢ is onto: Letf € H'. Then 3 y € H such that
() = (xy)
since f(x) = (x,y) we get
f=f sothat (])(y) =f =f

Hence for feH ,Ja pre-image y € H. Therefore ¢is onto.

(iv) ¢ isisometry; lety,,y, € H, then

[o(y:)-0(y2)|=[€, -,
T _f(‘yz)
But Hfh +f_y2 - fy1_y2 = HY1 _YzH (By theorem (1))

Hence H<I>(y1)— ¢(YZ)H = HY1 - Y2H'

(v)  Toshow ¢ is not linear, let y € H and a be any scalar. Then ¢(o,y)=f oy. Hence for any

x € H, we get

= f,()=0(0y)=0(xy)=0af(x)

= f,=0af

= o(oy)=00(y)

= ¢ is not linear. Such a mapping is called conjugate linear.

This completes the proof of the theorem.

Note: The above correspondence ¢ is referred to as natural correspondence between H and

H".
Theorem 4: If H is a Hilbert space, then H" is also an Hilbert space with the inner product defined
by

(f, £) = (v,x) ()

Proof: We shall first verify that (1) satisfies the condition of an inner product.

Let x,y e H and «,P be complex scalars.

(i) We know (see Theorem 3) that

£, =0f,
= fay=(:va=ocf>,.
Now (af, +Bf, £ )= (£ + £ £, e
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But (f,, +f, ,z) = (z,0x,By) (by (1))
Now (z,ax+PBy) =(z,x)+B(zy)

=a(f,£)+B(f,f,) ... (3
From (2) and (3) it follows that (af, +Bf,,f,)= (£, £, )+B(f,.£,)
(@)(EE )= (yx)=(oy) = (6£)-

(iii) (£, £,) = (x,x) =[x =[|f.| so(£,,£,)> 0 and It]=0e £ =0.

f)(

(i) — (iii) implies that (1) represents an inner product. Now the Hilbert space H is a complete
normed linear space. Hence its conjugate space H" is a Banach space with respect to the norm
defined on H'". Since the norm on H" is induced by the inner product, H" is a Hilbert space with
the inner product (f, f) = (y,x)

This completes the proof of the theorem.

Cor. The conjugate space H" of H'"is a Hilbert space with the inner product defined as follows:

If f,g € H',let F, and F, be the corresponding elements of H" obtained by the Riesz representation
theorem.

Then (F,F ) = (gf) defines the inner product of H".
Theorem 5: Every Hilbert space is reflexive.
Proof: We are to show that the natural imbedding on H and H" is an isometric isomorphism.

Let x be any fixed element of H. Let F_be a scalar valued function defined on H' by F (f) = f(x) for
every f e H'. We have already shown in the unit of Banach spaces that F, € H". Thus each vector
x € H gives rise to a functional F_in H". F is called a functional on H" induced by the vector x.

Let J:H — H"be defined by J(x)=F, for every xe H.

We have also shown in chapter of Banach spaces that J is an isometric isomorphism of Hinto H".
We shall show that ] maps H onto H™.

Let T, :H—™°>H" defined by

T, (x)=£,f (y)=(y,x) for every ye H.
and T, :H —™° > H" defined by
T,(f)=F_F (f)=(ff) forfeH".

Then T,.T, is a composition of T,and T, from H to H". By Theorem 3, T, T, are one-to-one and
onto.

Hence T,.T, is same as the natural imbedding J.
For this we show that J(x) = (T,.T,)x for every x e H.

Now (T, T,)x = T,(T,(x)) = T,(f) = E

fy *
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By definition of ], J(x) = F_. Hence to show T,.T, = ], we have to prove that F_= F, . Notes

For this let feH. Then f = f, where f corresponds to y in the representation
E (B)=(E1)=( £)=(xYy).

But (x,y) = f,(x) = f(x) = F(f).

Thus we get F, (f)=F,(f) for every fe H'.

Hence the mapping F, and F are equal.

= T,.T,=] and ] is a mapping of H onto H", so that H is reflexive.

This completes the proof of the theorem.

=7|

Notes

1. Since F =F, VxeH (From above theorem)

(FX,Fy) = (ny ,ny) = (fy,fx) =(x,y) by using def. of inner product on H and by the
def. of inner product on H".
2. Since 3 an isometric isomorphism of the Hilbert space H onto Hilbert space H",

therefore we can say that Hilbert space Hand H" are congruent i.e. they are equivalent
metrically as well as algebraically. We can identify the space H” with the space H.

12.2 Summary

° Let H be a Hilbert space. If f is a functional on H, then f will be continuous linear functional
on H. The set B(H,C) of all continuous linear functional on H is denoted by H" and is called
conjugate space of H. Conjugate space of a Hilbert space H is the conjugate space H" of H.

o Riesz-representation theorem for continuous linear functional on Hilbert space:

Let H be a Hilbert space and let f be an arbitrary functional on H'. Then there exists a

unique vector y in H such that f = fy, i.e. f(x) = (x,y) for every vector x ¢ H and |f]=y]-

12.3 Keywords

Continuous Linear Functionals: Let N be a normal linear space. Then we know that the set R of
real numbers and the set C of complex numbers are Banach spaces with the norm of any
x€R or xe C given by the absolute value of x. We denote the BANACH space (N,R)or (N, C)
by N".

The elements of N will be referred to as continuous linear functionals on N.

Hilbert space: A complete inner product space is called a Hilbert space.

Let H be a complex Banach space whose norm arises from an inner product which is a complex
function denoted by (x,y) satisfying the following conditions:
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H,: (ox+Py,z)=0(x,z)+B(y,z)
H,: (ﬁ)=(y,x)
i (x) =T

for all x,y,zeH and foralla,pfeC.

Inner Product: Let X be a linear space over the field of complex numbers C. An inner product on
X is a mapping from X x X — C which satisfies the following conditions:

(i) (ux+By,z)=oaxz)+P(y,z) VxyzeXanda, e C

(i)  (xy) =%
(iil) (xx)20,(x,x)=0=x=0

Riesz-representation Theorem for Continuous Linear Functional on a Hilbert Space: Let H be a
Hilbert space and let f be an arbitrary functional on H". Then there exists a unique vector y in H
such that

f = fy, i.e. f(x) = (xy) for every vector xe H and |[f[|= |y]|

The Conjugate Space H': Let H be a Hilbert space. If f is a functional on H, then f will be
continuous linear functional on H. The set §(H,C) of all continuous linear functional on H is
denoted by H and is called the conjugate space of H. The conjugate space of a Hilbert space H is
the conjugate space H of H is in some sense is same as H itself.

12.4 Review Questions

1. Let H be a Hilbert space, and show that H* is also a Hilbert space with respect to the inner
product defined by (f, f ) = (y, x). In just the same way, the fact that H* is a Hilbert space
implies that H** is a Hilbert space whose inner product is given by (F, F)) = (g, f).

2. Let H be a Hilbert space. We have two natural mappings of H onto H**, the second of
which is onto: the Banach space natural imbedding x — F, where f _(y) = (y, x) and

E (f) = (F, f,). Show that these mappings are equal, and conclude that H is reflexive. Show
that (F, F)) = (x, y).

12.5 Further Readings

N

Books Hausmann, Holm and Puppe, Algebraic and Geometric Topology, Vol. 5, (2005)

K. Yosida, Functional Analysis, Academic Press, 1965.

A
.,
Online links  www .spot.colorado.edu

WWW.arvix.org
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Objectives

After studying this unit, you will be able to:

o Define the adjoint of an operator.

o Understand theorems on adjoint of an operator.
o Solve problems on adjoint of an operator.
Introduction

We have already proved that T gives rise to an unique operator T* and H* such that (T*f) (x) =
f(Tx) Vf e H*and Vx € H. The operator T* on H* is called the conjugate of the operator T on H.

In the definition of conjugate T* of T, we have never made use of the correspondence between H
and H*. Now we make use of this correspondence to define the operator T* on H called the
adjoint of T. Though we are using the same symbol for the conjugate and adjoint operator on H,
one should note that the conjugate operator is defined on H*, while the adjoint is defined on H.

13.1 Adjoint of an Operator

Let T be an operator on Hilbert space H. Then there exists a unique operator T* on H such that
(Tx,y)= (x,T*y) forall x,y € H
The operator T* is called the adjoint of the operator T.

Theoremn 1: Let T be an operator on Hilbert space H. Then there exists a unique operator T* on H
such that

(Tx,y)= (x,T*y) forall x,y € H ..(1)
The operator T* is called the adjoint of the operator T.

Proof: First we prove that if T is an operator on H, there exists a mapping T* on H onto itself
satisfying

(Tx,y)= (x,T*y) for all x,yeH. (2
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Let y be a vector in H and f  its corresponding functional in H*.

Let us define

T*:H—"°>H*by

T*:f =f, ..(3)
Under the natural correspondence between H and H*, let ze H corresponding to f, e H*. Thus
starting with a vector y in H, we arrive at a vector z in H in the following manner:

y—f >T*f =f >z, (4)
where T*:H* - H*and y - f and z— f, are on H to H*

under the natural correspondence. The product of the above three mappings exists and it is
denoted by T*.

Then T* is a mapping on H into H such that
T*y=z

We define this T* to be the adjoint of T. We note that if we identify H and H* by the natural

correspondence y — f,, then the conjugate of T and the adjoint of T are one and the same.

After establishing, the existence of T*, we now show (1). For x e H, by the definition of the
conjugate T* on an operator T,

(T*£,)x=£,(Tx) (5

By Riesz representation theorem,

y — f, so that

£, (Tx)=(Tx,y) (6)
Since T* is defined on H*, we get

(T*fy)x=fZ (x)=(x,2) -(7)
But we have from our definition T*y = z ..(8)

From (5) and (6) it follows that

(T*f},)x=(Tx,y) .(9)

From (7) and (8) it follows that
(T*fy)x=(x,T*y) ...(10)

From (9) and (10), we thus obtain
(Tx,y)=(x,T*y)vx,y e H.

This completes the proof of the theorem.
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Notes
|

3
3

Note The relation (Tx,y) = (x,T * y) can be equivalently written as

(T * x,y) = (x,Ty) since

(T*x,y)z(y,T*x)= (Ty,x)= (x,Ty)= (x,Ty)

= (T*xy)=(xTy).

' Example: Find adjoint of T if T is defined on ¢, as Tx=(0,x,,X,,...) for every x=(x,)€/,.

Let T* be the adjoint of T. Using inner product in /,, we have
(T * x,y)=(x,Ty)

since Ty =(0,y,,y,,...), we have
(T*%,y)=(xTy)=Y %Y, =(5x,y),
n=1
where S(x)=(x,,x;,...)
Hence (T * x,y) = (Sx,y) for every xin /7, .
Since T* is unique, T*=S so that we have
T*(x) =Xy, X3, Xy se00)-

Theorem 2: Let H be the given Hilbert space and T* be adjoint of the operator T. Then T* is a
bounded linear transformation and T determine T* uniquely.

Proof: T* is linear.

Let y,,y, € Hand o,B be scalars. Then for x € H, we have
(X,T *(oy, + Byz)) =(Tx,ay, +By,)
But  (Txay, +By,)=a(Txy,)+B(Txy,)
=a(Tx,y,)+B(x, T*y,)

=(x,aT*y,)+(x,BT*y,).

Hence for any xeH,

(x,T*(OLy1 +By2))= (x,oT *y,)+(x,BT*y,)
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=(x,0cT*y1+BT*y2).

= T* is linear.

T* is bounded

for any y € H, let us consider
[Ty =(1*y,7y)
=[(TT*yy)|
<|TT*y| |ly|(using Schwarz inequality)

<[t [Tyl [y

Hence HT*yH2 <|T) [T *y]| [y]>0 (1)

I [T *y] =0 then [T *y| <|T[y] because |T]|y]>0
Hence let |T*y]|#0.
Then we get from (1)
[T yl=<ITi iyl
since T is bounded,

|T| <M so that

HT * yH < MHyH for every y e H.

= T* is bounded.

= T* is continuous.

Uniqueness of T*.

Let if T* is not unique, let T" be another mapping of H into H with property
(Tx,y)=(x,T*y)V x,yeH.

Then we have

(Tx,y)=(x,T'y) .(2)
and (Tx,y)=(x,T*y) ~(3)
From (2) and (3) it follows that

(x,T'y)=(x,T*y)vx,yeH

= (x,(T'y—T*y))=0
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= (x(T'-T*)y)=0vxeH

= (T'-T*)y =0foreveryy eH
Hence T'y =T *y for every y e H.

= T=T*.

This completes the proof of the theorem.

=7|

Notes

so from uniqueness of adjoint 0* = 0.

(i) (ly) = (Ixy) = (xy) = (xIy)

so from uniqueness of adjoint I*=I.

example.

1.  We note that the zero operator and the identity operator I are adjoint operators. For,

i) (x0%y)=(0x,y)=(0,y)=0=(x,0)=(x0y)

2. If His only an inner product space which is not complete, the existence of T*
corresponding to T in the above theorem is not guaranteed as shown by the following

'i Example: Let M be a subspace of L, consisting of all real sequences, each one containing
only finitely many non-zero terms. M is an incomplete inner product space with the same inner

product for 7, given by

(x¥)= x,v,

n=1

For each x e M, define

T(x):[i’;",o,o, ...... J

Then from the definition, for x,yeM,

T(oy)=y, ), =
n=1

Now let e, =(0,0,...,1,0,...) where 1 is in the n* place.

Then using (3) we obtain

T e )=1.3 %W 11
(e“e) 2 ] n

LOVELY PROFESSIONAL UNIVERSITY
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Now we check whether there is T* which is adjoint of T. Now (en ,T*(e, )) =T*(e,).e,, where the

R.H.S. gives the component wise inner product. Since T*(e,) €M, T *(e, )., cannot be equal to
lv n=1,2,..
n

= there is no T* on M such that

(Tle,) ) =(e,, T*(e))

Hence completeness assumption cannot be ignored from the hypothesis.

|

Notes

1.  The mapping T — T * is called the adjoint operation on B(H).

2. From Theorem (2), we see that the adjoint operation is mapping T — T*on B(H)
into itself.

Theorem 3: The adjoint operation T — T* on B(H) has the following properties:

(i) (T +T)*=Tf +T} (preserve addition)
(i) (TT,)*=T:T* (reverses the product)
(iii) (aT)*=oT* (conjugate linear)
(iv) T[]

) JTeT)=Tf
Proof: (i) For every x, y € H, we have
(o (T, +T)y =((T,+T) x,y) (By def. of adjoint)
=(Tx+Txy)
=(Txy) +(Txy)
= T,Yy) + (x, T,%y)
= Ty + T,Yy)
=(x (T + T,%y)
= (T, +T)*=T*+T,* by uniqueness of adjoint operator
(i) For every x,y €H, we have

(X(Tsz)* Y) = ((T1T2)XIY)

= (TI (sz)/Y)
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(iii)

(iv)

=(Tx, T, *y)
= (% T;,(T}y))
=(x(T.T).y)
Therefore from the uniqueness of adjoint operator, we have (T,T,)*=T,T;.
For every x,y e H, we have
(x,(aT)*y) =((aT)x,y) = ((Tx),y)
=a(Txy)
=a(xT*y)=(xa(Ty))
= (x(aT*)y).
Therefore from the uniqueness of adjoint operator, we have
(aT*)=aT*.
For every y e H we have

IT*y]" =(T*y, T*y)

=(TT*y,y)

" [ HT * yHZ =(TT *y,y)is a real number > 0]
=[(TT*y,y)
<|tT*y || (By Schwarz inequality)
<[yl iyl [ Il < T[]

Thus [[T*y[ <[T||T*y|ly|vy e H

= [Ty <[Tlly|vy e H. ()
Now |T*|=Sup{|T*y[:y|<1}

from (1), we see that if [[y|<1 then [T *y| <|T|

= [T <|T] ~(2)
Now applying (2) from the operator T* in place of operator T, we get

[(T*) <l
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= [T <1
S[T<iTe [T
From (2) and (3) it follows that
Tl < [T
(V) We have|T*T|<|T*] |T]
=[T T [- I = Il
=T’
Further for every x e H, we have
|Tx|* = (Tx, Tx)
=(T*Tx,x)
= ‘((T *T)x,x)‘
<[l ]
=) o
Then we have
[T <[ T*T] | vx e H
Now |[T]| = sup {|Tx|: || < 1}
[T =[sup{Im: Il <1}]
= sup{Tx" <1}
From (5) we see that
if [x|<1, then |Tx|* <|T*T].
Therefore, Sup{HTtz x| = 1} <|T*T|

=T <|T*T].
From (5) and (6) it follows that
[T ] =TI}

This completes the proof of the theorem.
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n

Cor: If (T,) is a sequence of bounded linear operators on a Hilbert space and

T, 5T, then T* - T*.

We have

75 -7 =|(T, - 7)*

T, - TH (By properties of T*)
Since T, > T asn— o
=T —>T asn—> oo,

Theorem 4: The adjoint operation on 3(H) is one-to-one and onto. If T is a non-singular operator

on H, then T* is also non-singular and
(T*) " =(T)*.
Proof: Let ¢:B(H)— B(H) is defined by
¢(T)=T*for every T e B(H).
To show ¢ is one-to-one, let T, T, € B(H). Then we shall show that ¢(T,)=¢(T,)=T, =T,.

Now ¢(T,)=¢(T,)

=T* =T¥,
= (T*)*=(T*)* (using Theorem 4. prop (iv))
=T=T,

= ¢ is one-to-one.
¢ is onto:
For T* € (H),we have on using Theorem 4 (iv),
o(T*)=(1)* =T.
Thus for every T*¢ B(H),there is a T*eB(H) such that
¢(T*)=T= ¢ is onto.
Next let T be non-singular operator on H. Then its inverse T 'exists on H and

TT'=T'T=1
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Taking the adjoint on both sides of the above, we obtain
(TT)*=(T"'T)*=1*.

By using Theorem 4 and note (2) under Theorem 2, we obtain
(TH)*T*=T*(T")*=1L

N T* is invertible and hence non-singular.

Further from the above, we conclude
(T *)*1 — (T—l)* .

This completes the proof of the theorem.

=74
iE
Note From the properties of the adjoint operation T — T * on B(H) discussed in Theorems
(3) and (4), we conclude that the adjoint operation T—T* is one-to-one conjugate linear

mapping on B(H) into itself.

' Example: Show that the adjoint operation is one-to-one onto as a mapping of f(H) into
itself.

Solution: Let ¢ : B(H) — B(H) be defined
0(T) =TV Te B(H)
We show ¢ is one-to-one and onto.
0 is one-one:
Let T, T, € B(H). Then
O(T) =o(T,) =T =T}

= (T, = (T

=T =T

=T =T,

= ¢ is one-to-one.
0 is onto:
Let T be any arbitrary member of B(H). Then T* € $(H) and we have ¢(T*) = (T*)* = T** = T. Hence,

the mapping ¢ is onto.

13.2 Summary

o Let T be an operator on Hilbert Space H. Then there exists a unique operator T* on H such

that (Tx,y)=(x,T*y) for all x,y € H. The operator T* is called the adjoint of the operator T.
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° The adjoint operation T— T* on $(H) has the following properties: Notes
(i) (T, +T,)*=T%* +T%
(i) (LT)*=TiTY
(ili) (aT)*=oT*
) Im=I7]
W) [TeT|=ITF

13.3 Keywords

Adjoint of the Operator T: Let T be an operator on Hilbert space H. Then there exists a unique
operator T* on H such that

(Tx,y)= (x,T*y) forall x,y € H
The operator T* is called the adjoint of the operator T.

Conjugate of the Operator T on H: T gives rise to an unique operator T* and H* such that (T*f) (x)
=f(Tx) Vf e H*and Vx € H. The operator T* on H* is called the conjugate of the operator T on H.

13.4 Review Questions

1. Show that the adjoint operation is one-to-one onto as a mapping of f(H)into itself.
2. Show that |[TT*|=|T| .
3. Show that O*=0 and I*=I. Use the latter to show that if T is non-singular, then T* is also

non-singular, and that in this case (T*)" =(T")*.

13.5 Further Readings

N

Books N.I. Akhiezer and I.M. Glazman, Theory of Linear Operators in Hilbert Space, Vol. Il,
Pitman, 1981.

K. Yosida, Functional Analysis, Academic Press, 1965.

A
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Online links ~ www.math.osu.edu/ ~ gerlach.1/math.BVtypset/node 78.html.

sepwww.standford.edu/sep/ prof/pvi/ conj/ paper_html/nodel0.html.
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Objectives

After studying this unit, you will be able to:

o Define self adjoint operator.

) Define positive operator.

° Solve problems on self adjoint operator.
Introduction

The properties of complex number with conjugate mapping z — z motivate for the introduction
of the self-adjoint operators. The mapping z — z of complex plane into itself behaves like the
adjoint operation in 3(H) as defined earlier. The operation z— z has all the properties of the

adjoint operation. We know that the complex number is real iff z=z. Analogue to this

characterization in 3(H) leads to the motion of self-adjoint operators in the Hilbert space.

14.1 Self Adjoint Operator

14.1.1 Definition: Self Adjoint

An operator T on a Hilbert space H is said to be self adjoint if T*=T.

We observe from the definition the following properties:
(i) OandIare self adjoint (~-O*=0 and I* =1)
(ii) An operator T on H is self adjoint if

(Tx,y) = (x,Ty)V x,y € H and conversely.
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If T* is an adjoint operator T on H then we know from the definition that Notes

(Tx,y) = (x,T *y)v x,yeH.
If T is self-adjoint, then T = T*.

(Tx, y) = (x,Ty)V x,yeH.

Conversely, if (Tx,y) = (X, Ty)V x,y € H then we show that T is self-adjoint.
If T* is adjoint of T then (Tx, y) = (x, T*y)

- We have (x,Ty)=(x,T*y)

= (x,(T-T*)y)=0V x,yeH

Butsince x#0= (T-T*)y=0VyeH

=>T=T*

= T is self adjoint.

(iii) Forany Tef(H),T+T *and T * T are self adjoint. By the property of self-adjoint operators,

we have
(T+T*)*=T*+T**
=T*+T
=T+T*
=(T+T*)*=T+T*
and (T*T)*=T*T**=T*T
= (T*T*)*=T*T.
Hence T+T*and T*T are self adjoint.

Theorem 1: If (A,) is a sequence of self-adjoint operators on a Hilbert space H and if (A,)
converges to an operator A, then A is self adjoint.

Proof: Let (A,) be a sequence of self adjoint operators and let A, — A.
A, is self adjoint = A*=A forn=1,2,..
We claim that A=A*

Now A-A*=A-A_+A —-A*+A* -A*
=sla-Ats|a-A[+]A, - Ax]+](A,-a)
S“_(A“_A)“+“An _AnH+HAn_AH [ A: =An]

=[A.-Al+0+]a, -A]
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Notes =21A -All
—0asn—ee
=|A-A*=00r A-A*=0=A-A*

= A is self-adjoint operator.
This completes the proof of the theorem.

Theorem 2: Let S be the set of all self-adjoint operators in B(H). Then S is a closed linear subspace
of B(H) and therefore S is a real Banach space containing the identity transformation.

Proof: Clearly S is a non-empty subset of B(H), since O is self adjoint operator i.e. O € S.
B(H), since O is self adjoint operator i.e. O €.
Let A,,A, €S, We prove thataoA, +BA, €S.
A, A,eS=A*=A and A*=A, (1)
For «,p eR,we have
(0A; +BA,)* = (aA,) * +(BA,)*
= oAt +BA
=aA, +BA, [ o, p are real numbers, .o =0, p= B]
= oA, +BA,is also a self adjoint operator on H.
=A,,A,eS=0A +pA, €S

= S is a real linear subspace of B(H).

Now to show that S is a closed subset of the Banach space B(H).Let A be any limit point of S.
Then 3 a sequence of operator A _is such that A, — A. We shall show that AeSie A=A*.

Let us consider

[A-A*[=]a-A, +A, -AY

<la-Ad+la, -

-la-A,l+[a, - Atl+laz A%

<la-A,[|a, - Az]+]az A

“|-(a A A, AL A 8] A=Az =]

=lA. - Al+[ol+]a, - Al
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. Notes
TN [[ol=07 4| =IT|and] T | =[ T|]

—0as A, —>A

AJA-A*=0= A-A*=0

= A=A*= A is self adjoint
= AeS
= S is closed.

Now since S is a closed linear subspace of the Banach space ((H), therefore S is a real Banach
space. (" S1is a complete linear space)

Also I* =] = the identity operator 1eS.

This completes the proof of the theorem.

Theorem 3: 1If A,,A, are self-adjoint operators, then their product A, A, is self adjoint

o ALA, =A, A (ie they commute)

Proof: Let A, A, be two self adjoint operators in H.

Then A* =A ,A%¥=A,.

Let A;,A, commute, we claim that A;,A, is self-adjoint.
(A1'Az)* =ATAT=AA =AA,

= (AlfAZ)*zAlAZ

= ALA, is self adjoint.

Conversely, let A}A, is self adjoint, then
(A1Az)* =AA,

= A A*=AA,

= A, A, commute

This completes the proof of the theorem.

Theorem 4: 1If T is an operator on a Hilbert space H, then T = T=0« (Tx,y)=0V x,y eH.

Proof: Let T = 0 (i.e. zero operator). Then for all x and y we have
T(x,y) = (Ox,y) = (O,y) =0.
Conversely, (Tx,y)=0V x,yeH

= (Tx,Tx)=0V x,yeH (taking y = Tx)

= Tx=0V x,yeH
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= T = O i.e. zero operator.
This completes the proof of the theorem.

Theorem 5: If T is an operator on a Hilbert space H, then
(Tx,x)=0V xin He T=0.
Proof: Let T = O. Then for all x in H, we have
(Tx,x)=(0x,x)=(0,x)=0.
Conversely, let (Tx,x) =0V x,y € H. Then we show that T is the zero operator on H.

If o, any two scalars and X,y are any vectors in H, then

(T (oo +By), ox +By) = («Tx + BTy, 0x +By)
=o(Tx,ax+By)+B(Ty,ax+Py)
=adi(Tx, x) + aB(Tx,y)+ B0 (Ty,x)+BB(Ty,x)
=of’ (Tx,x) + aB(Tx,y) +B&(Ty,x) +[B[ (Ty,x)

o (T (x +By), ox +By ) = |of (Tx, x) = |B]* (Ty, y) = aB (Tx, y) +Ba(Ty, x)

But by hypothesis (Tx,x)=0VxeH.

= L.H.S. of (1) is zero, consequently the R.H.S. of (1) is also zero. Thus we have
OLE(Tx,y) + B&(Ty,x) =0

for all scalars o, and Vx,y € H.

Putting o=1,8=11n (2) we get
(Tx,y)+(Ty,x)=0

Again putting o =1,8 =1 in (2) we obtain
i(Tx,y)—i(Ty,x) =0

Multiply (3) by (i) and adding to (4) we get

2i (Tx,y) =0vx,yeH

= (Tx,y)=0vx,yeH
= (Tx,Tx)=0vx,y eH (Takingy = Tx)
= Tx=0Vx,yeH
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= T = 0 (zero operator) Notes
This completes the proof of the theorem.
Theorem 6: An operator T on a Hilbert space H is self-adjoint.

& (Tx,X) is real for all x.

Proof: Let T* =T (i.e. T is self adjoint operator)
Then for every x € H,we have
(Tx, Tx)=(x,T*x)=(x,Tx)= (m)
= (Tx,x)equals its own conjugate and is therefore real.
Conversely, let (Tx,x)is real Vx e H.We claim that T is self adjoint i.e. T*=T.

since (Tx,x) is real VxeH,

(Tx,x) = (T,X) = (x,T*x)z (T*x,x)

= (Tx,x)—(T*x,x)=0vxeH

= (Tx-T*x,x)=0vxeH

= ((T-T*)x,x)=0VxeH

= T-T*=0 (2 if (Tx, x) = 0= T = 0]
= T=T*

= T is self adjoint.

This completes the proof of the theorem.

Cor. If H is real Hilbert space, then A is self adjoint
1= (Ax, y) = (Ay, x)Vx,y e H.

A is self adjoint < for any x,y € H.
(Axy)=(xA*y)=(A%y,x).
since H is real Hilbert space (A*y,x)=(A*y,x) so that (Ax,y)=(Ay,x) [“A*=A]

Theorem 7: The real Banach space of all self-adjoint operators on a Hilbert space H is a partially
ordered set whose linear and order structures are related by the following properties:

(@ If A;<A, then A|+A<A,+A forevery AeS;

(b) If A;<A, and >0, then aA, <aA,.

Proof: Let S represent the set of all self-adjoint operators on H. We define a relation <on S as
follows:

If A/A, €S, wewrite A, <A, if (Ax,x)<(A,,x)V xin H.

We shall show that '<'is a partial order relation on S. '<' is reflexive.
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Let A€S. Then

(Ax,x)=(Ax,x)VxeH

= (Ax,x) < (Ax,x)VxeH
= By definition A < A.
= '<'on S is reflexive.

'<!' is transitive.
Let A, <A, and A, <A, then
(A%, x) < (A,x,x)Vx e H.
and (A,x,x)<(A,x,x)VxeH.
From these we get
(Alx,x) < (A3x,x)Vx e H.
and (A,x,x) < (Ax,x)Vx e H.
From these we get
(A x,x) < (A,x,x)Vx e H.
Therefore by definition A, <A, and so the relation is transitive.
'<'is anti-symmetric.
Let A, <A, and A, <A, then toshow that A, = A,.
We have A, <A, = (Ax,x)<(A,x,x)VxeH.
Also A, <A, = (Ax,x)<(Ax,x)VxeH.
From these we get

(Alx,x) = (Azx,x)Vx e H.

= (Ax—A,x,x)=0VxeH.
= (A, -A,)x,x)=0VxeH.
= A -A,=0

= A=A,

= '<'on anti-symmetric.

Hence '<'is a partial order relation on S.

Now we shall prove the next part of the theorem.

(@) Wehave A <A, = (Ax,x)<(Axx)VxeH.
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(b)

= (Axx)+(Ax,x) < (A, x)+(Ax,x)Vxe H.
= ((Al +A2)x,x)s((Al +A)x,x)Ver.

= A +A,<A,+A, by def. of <.

Wehave A, <A, = (Ax,x)<(A,x,x)VxeH

=  a(Axx)<a(A,xx)VxeH [-o>0]
= (ocAlx,x) < (OLAZX,X)VX eH

= ((OLAl)X,X)S((OLAZ)X,X)V x in H

= oA <0A,, by def. of '<!

This completes the proof of the theorem.

14.1.2 Definition - Positive Operator

A self adjoint operator on H is said to be positive if A >0 in the order relation. That is

if

(Ax,x)=0VxeH.

We note the following properties from the above definition.

(i)

(ii)

Identity operator I and the zero operator O are positive operators.
Since I and O are self adjoint and
(Ix,x) = (x,x) = x| 2 0
also (Ox,x)=(0,x)=0
= 1,0 are positive operators.
For any arbitrary T on H, both TT* and T*T are positive operators. For, we have
(TT*)*=(T*)*T*=TT *
= TT* is self adjoint
Also (T*T)*=T*(T*)*=T*T
=T*T is self adjoint
Further we see that
(TT*x,x)=(T*x,T*x)=[T*x[" 20
and (T*Tx,x)=(Tx, T**x)=(Tx,Tx)=|Tx|’ =0

Therefore by definition both TT* and T*T are positive operators.

Theorem 8: 1f T is a positive operator on a Hilbert space H, then I+T is non-singular.

Proof: To show I+T is non-singular, we are to show that I+T is one-one and onto as a mapping of
H onto itself.

I+T is one-one.

First we show (1+ T)x=0=x=0
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Notes We have (1+T)x=0=Ix+Tx=0=x+Tx=0
= Tx=-x

= (Txx)=(-xx) =[x

= P20 [4(Txx20)

= <o

= |xf=0 I: x| is always > 0]
= x=0

~(I+T)x=0=x=0.

Now (I+T)x=(I+T)y= (I+T)(x-y)=0

= x-y=0=x=y

Hence I+T is one-one.

I+T is onto.

Let M = range of I+T. Then I+T will be onto if we prove that M=H.
We first show that M is closed.

For any xeH, we have
[0+ = T
=(x+Tx,x+Tx)
=(x, %)+ (x, Tx) + (Tx,x) +(Tx, Tx)
[+ + (Tox) + (T, )
=[XIF +[Tx| +2(Tx,x) [+ T is positive = T is self-adjoint = (Tx,x)real |
> x| [+ T is positive = (Tx,x) 2 0]
Thus |x|<|(I+T)x|vxeH

Now let ((I+T)x, ) be a CAUCHY sequence in M. For any two positive integers m,n we have
[ =%, [T+ T)(x = x,)]
=T+ T)x, - (I+T)x,|—0,
since ((I+T)x) is a CAUCHY sequence.
-0

i = x

m n

= (x,)is a CAUCHY sequence in H. But H is complete. Therefore by CAUCHY sequence (x, ) in

H converges to a vector, say x in H.
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Now Lim{(I+T)x,}=(I+T)(lim x,) [-1+T is a continuous mapping| Notes

=(I+T)xeM(range of I+T)

Thus the CAUCHY sequence ((I+T)x, ) in M converges to a vector (I+T)x in M.
= every CAUCHY sequence in M is a convergent sequence in M.
= M is complete subspace of a complete space is closed.

= M is closed.

Now we show that M = H. Let if possible M # H.

Then M is a proper closed subspace of H.

Therefore, 3 a non-zero vector X, in H s.t. X, is orthogonal in M.
Since (I+T)x, €M, therefore

xo LM = ({I+T}x,,x)=0

= (X, +Tx,%,) =0

= (xp, %)+ (Tx,%,) =0

= x|+ (Tx,,%,) =0

= —[x[ = (Tx,,x,)

= —|xF =0 [ T positive = (Tx,,%,)20]
=[x <0

= x| =0 [ INF = 0]

=x=0

= a contradiction to the fact that x, #0.

Hence we must have M = H and consequently I+T is onto. Thus I+T is non-singular.

This completes the proof of the theorem.

Cor. If T is an arbitrary operator on H, then the operator I+TT* and I+T*T are non-singular.
Proof: We know that for an arbitrary T on H, T*T and TT* are both positive operators.

Hence by Theorem (8) both the operators I+TT* and I+T*T are non-singular.

14.2 Summary

° An operator T on a Hilbert space H is said to be self adjoint if T*=T.

o A self adjoint operator on H is said to be positive if A >0 in the order relation. That is if

(Ax,x)=0VxeH.
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Notes 14.3 Keywords

Positive Operator: A self adjoint operator on H is said to be positive if A>0 in the order
relation. That is

if (Ax,x)20Vx € H.

Self Adjoint: An operator T on a Hilbert space H is said to be self adjoint if T*=T.

14.4 Review Questions

1. Define a new operation of “Multiplication” for self-adjoint operators by

AA,+AA))

A oA, = ( ,and note that A, o A, is always self-adjointand that it equals A;A,

whenever A and A, commute. Show that this operation has the following properties:
A cA,=A,0A,
A, O(A2 +A3)=A1 oA, +A A,
(A 0A,)=(aA )0 A, =A, o(0A,),
and AoI=IoA =A.Show that
A o(A,0A,)=(A °A,)oA, whenever A and A, commute.
2. If Tis any operator on H, it is clear that |(Tx,x)|<|Tx|[x| <|T[|x|*; so if H={0},we have

sup {\(Tx,x)\ JIXI = x # O} <|T|. Prove that if T is self-adjoint, then equality holds here.

14.5 Further Readings

Books Akhiezer, N.I; Glazman, I.M. (1981), Theory of Linear Operators in Hilbert Space

Yosida, K., Functional Analysis, Academic Press

Y

Online links  www.ams.org/bookstore/pspdf/smfams-14-prev.pdf-UnitedStatesmath
world.wolfram.com
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Unit 15: Normal and Unitary Operators

CONTENTS

Objectives

Introduction

15.1 Normal and Unitary Operators
1511 Normal Operator
1512  Unitary Operator
1513 Isometric Operator

15.2 Summary

15.3 Keywords

15.4 Review Questions

15.5 Further Readings

Objectives

After studying this unit, you will be able to:

° Understand the concept of Normal and Unitary operators.
° Define the terms Normal, Unitary and Isometric operator.
o Solve problems on normal and unitary operators.
Introduction

An operator T on H is said to be normal if it commutes with its adjoint, that is, if TT*=T*T. We
shall see that they are the most general operators on H for which a simple and revealing
structure theory is possible. Our purpose in this unit is to present a few of their more elementary
properties which are necessary for our later work. In this unit, we shall also study about Unitary
operator and Isometric operator.

15.1 Normal and Unitary Operators

15.1.1 Normal Operator

Definition: An operator T on a Hilbert space H is said to be normal if it commutes with its
adjoint i.e. if TT* = T*T

Conclusively every self-adjoint operator is normal. For if T is a self adjoint operator i.e. T*=T
then TT* =T*T and so T is normal.

]
g

Note A normal operator need not be self adjoint as explained below by an example.
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Example: Let H be any Hilbert space and 1:H — H be the identity operator.
Define T = 2il. Then T is normal operator, but not self-adjoint.
Solution: Since I is an adjoint operator and the adjoint operation is conjugate linear,
T* = -2il* = -2il so that
TT* =T*T =4I.
= T is a normal operator on H.

But T = T* = T is not self-adjoint.

=7

ig

Note 1f T €f(H)is normal, then T* is normal.
since if T* is the adjoint of T; then T**=T.

T is normal = TT*=T*T

Hence T*T**=T*T=TT*=T**T* so that T*T**=T**T

= T* is normal if T € B(H).

Theorem 1: The limit T of any convergent sequence (T,) of normal operators is normal.
Proof: Now || Tt -T*|=|(T, ~T)*| =T, -]
=Tf-T*ask—oosince T, > T as k— .
Now we prove TT*=T*T so that T is normal.
ITT*=T*T|=|TT*-T,T# + T,T{ - T¥ T, + T T-TT*|<|TT - T T,|+|T.T. - T.T,|
+| TET, - TT*|

- |TT*-T*T|<|TT*-T,T#|+|| T T, - TT'| (1)

[ T, is normal ie. T, T} =T} T,]

since T, > Tas T} —» T* RHS. of (1)> 0

= [TT*-T*T||=0
= TT*=T*T
= T is normal.

This completes the proof of the theorem.

Theorem 2: The set of all normal operators on a Hilbert space H is a closed subspace of B(H)
which contains the set of all set-adjoint operators and is closed under scalar multiplication.

Proof: Let M be the set of all normal operators on a Hilbert space H. First we shall show that M
is closed subset of B(H) .
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Let T be any limited point of M. Then to show that T e M i.e. to show that T is a normal operator Notes

on H.

Since T is a limited point of M, therefore 3 a sequence(T,) of distinct point of M such that
T, — T.We have

I3 =1%=[T, T =|T. - T[> 0.

= IT=T*|—-0=Tr=T*.

Now, |[TT*-T*T|=|(TT*-T,T*)+(T,T*-T*T)|<|TT*-T,T*

+

T.T*-T*T|

=|(TT*=T,T*)|+|(T,T* = T*T,)+(T*T, - T*T)|
<|TT*-T,T*|+| T, T* - T*T,||+|T*T,- T*T|

=|(TT* -T,T*)

+[of+] T3 T, -T*T|
[+ T,eM=T, is a normal operator on Hie. T, T*= T* T, and [0]=0]
=|TT*-T,T#|+||T*T,-T*T|—0sinceT, >Tand T¥— T*
Thus, [TT*-T*T|=0= TT*-T*T=0

= TT*=T*T =T is normal operator on H.
= T e M and so M is closed.

Now every self adjoint operator is normal. Therefore the set M contains the set of all self-adjoint
operators on H.

Finally, we show that M is closed with respect to scalar multiplication i.e. Te M

= oT eM, o is any scalar.

In other words, we are to show that if T is a normal operator on H and « is any scalar, then oT
is normal operator on H. Since T is normal, therefore TT* =T*T.

We have (aT)*=oT *.
Now (oT)(aT)* = (aT)(olT *) = otox (TT *).

Also (oT)* (oT) = (0T ) (aT) = 00x(T * T) = (cxcr) (TT*)
= (aT)(aT)* = (oT)* (o)
= oI is normal.

This completes the proof of the theorem.

Theorem 3: If N, N, are normal operators on a Hilbert space H with the property that either
commutes with the adjoint of the other, then N, + N,and N,N, are also normal operators.

Proof: Since N,, N, are normal operators, therefore

N, N#=N*N, and N,N# =N N, (1)
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Also by hypothesis, we have N, N*,=N*,N, and N,N* =N* N,

we claim that N, + N, is normal.

ie. (N, + NN, + N)*= (N, + N)*(N, + N,)

since adjoint operation preserves addition, we have

=

(N, + NN, + Np* = (N, + N,) (N*, 4N,
N,N*, +N,N, + N,N*, + N,N*,

N,N*, + N*,N, + N*, N, + N*,N,

(N*, +N%,)(N, +N,)

(N, +N,)*(N, +N,) (using (1) and (2))

(N, +N,)(N; +N,)*=(N, +N,)*(N, +N,)

N, +N, is normal.

Now we show that N,N, is normal i.e.

(N1N2 )(NlNZ )* = (NlNZ ) * (N1N2)'

LHS.= (N,N,)(N,N,)*=N,N,N*,N*

=

=

=N, (N,N*,)N*,
=N, (N*, N, )N *,
= (N,N*,)(N,N*,)
=(N*,N,)(N* N,)
=N*, (N,N*)N,
=(N*,N*)(N,N,)
=(N:N,)*(N\N;)

(NlNZ)(NlNz )* = (NlNz ) * (NlNZ)

N,N, is normal.

This completes the proof of the theorem.

Theorem 4: An operator T on a Hilbert space H is normal < |T *x||=|Tx| for every xeH.

Proof: We have T is normal & TT*=T*T

o TT*-T*T=0
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& ((TT*-T*T)x,x)=0Vx

& (TT*x;x)=(T*Tx,x)Vx

& (T*x, T*x)=(Tx,T**x)Vx

ST =|Txfyx  [T**=T]
& T x| =[Txvx.

This completes the proof of the theorem.

Theorem 5: If N is normal operator on a Hilbert space H, then [N| =[N?||.

Proof: We know that if T is a normal operator on H then
[Tx|=|T *x||vVx (1)
Replacing T by N, and x by Nx we get

NN = [N Nx| v
= [N = [N+ Nix| v ~(2)

Now  [N?|=Sup{|N’x]:}]<1)
=Sup{IN*Nx|:|x| <1} (by (2)
=IN*N|
=INJ°

This completes the proof of the theorem.

Theorem 6: Any arbitrary operator T on a Hilbert space H can be uniquely expressed as

T =T, +iT, where T,, T, are self-adjoint operators on H.

+T*

Proof: Let T, = T and T, = %(T -T¥)
i
Then T, +iT, =T (1)

Now T*FE(T+T*)}

= (T+T*)*

_ N

= (T*4+T*)

=N

=—(T*+T)=%(T+T*)=T1

N
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Notes T* =T

= 1= 4
= T, is self-adjoint.
1 *
o 1 [Lr-1
2i
1 .
== |(T-T*
(Zij( )
1
= (T*=T**
2i( )
1 1
=——(T*-T)=—(T-T*)=T
(T =T)= (1T =T,
= T* =T,
= T, is self-adjoint.

Thus T can be expressed in the form (1) where T,, T, are self adjoint operators.
To show that (1) is unique.

Let T=1U, +iU, U,U, are both self-adjoint

We have T*=(U, +iU,)*

=U*, +(iU,)*

=U* +U*,

=U* -iU*, =U, -iU,
~T+T*=(U, -iU,)+(U, -iU,)=2U,

= U1=%(T+T’)=T1

and T-T*=(U, +iU, )~ (U, -iU,) = 2iU,

U, :l.(T_T*):Tz
2i

= expression (1) for T is unique.

This completes the proof of the theorem.

=7
g
Note The above result is analogous to the result on complex numbers that every complex

number z can be uniquely expressed in the form z = x + iy where X, y are real. In the above
theorem T =T, + T,, T, is called real part of T and T, is called the imaginary part of T.
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Theorem 7: If T is an operator on a Hilbert space H, then T is normal < its real and imaginary Notes
parts commute.

Proof: Let T, and T, be the real and imaginary parts of T. Then T,, T, are self-adjoint operators
and T=T, +iT,

We have T* = (T, +iT,)* = T,* + (il,)*

=T*+ 1 T

=T* -iT,*

=T, -iT,
Now TT* = (T, +iT,) (T, - iT,)

=T2+T2+i(T,T,-T,T,) ()
and T*T = (T, - iT,) (T, - iT,)

=T2+T2+i(T,T,-T,T) )

Since T is normal i.e. TT* = T*T.
Then from (1) and (2), we see that
T2+ T2+i(T,T,-T,T) =T2+T2+i(T,T,-T,T,))

= T,T, -TT, =TT,-T,T,
= 2T, T, =2TT,
= T,T, =T,T,= T, T, commute.

Conversely, let T, T, commute
ie. T,T, = T,T,, then from (1) and (2)

We see that

TT* =T*T = T is normal.

' Example: If T is a normal operator on a Hilbert space H and A is any scalar, then T - Al is
also normal.

Solution: T is normal = TT* = T*T

Also (T - AD* = T* - (\D)*

=T*- AI*

=T*- A1
Now (T = AI) (T = R)* = (T = AI) (T* - A1)

=TT* - AL-AT*+ A |2 (D)
Also (T = AD)* (T = AL) = (T* - A1) (T - AD)

=T*T -AI*- AT+ L] (2
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Since TT* = T*T, therefore R.H.S. of (1) and (2) are equal.
Hence their L.H.S. are also equal.
(T = AI) (T - AD)* = (T - AD)* (T - Al)

= T - Al is normal.
15.1.2 Unitary Operator

An operator U on a Hilbert space H is said to be unitary if UU* =U*U =I.

=7|

Notes

(i) Every unitary operator is normal.

(ii) U*=U'ie. an operator is unitary iff it is invertible and its inverse is precisely equal
to its adjoint.

Theorem 8: If T is an operator on a Hilbert space H, then the following conditions are all
equivalent to one another.

(i) T*T=L

(i) (Tx,Ty)=(xy) forall x,y € H.

(i) | Tx|=|x|vxeH.

Proof: (i) = (ii)

(Tx,Ty) = (x, T*Ty) = (x,Iy) = (x,y) Vx and y.
(ii) = (iii)

We are given that

(Tx,Ty) =(x,y)Vx,y eH.

Taking y = x, we get

2

(Tx,Tx) = (x,x) = [T =X

= ]| =[x vx € H.
(i) = (i)

Given ||Tx||=|x|vx

= I T = I

= (Tx, Tx)=(x,x)
= (T*Tx,x)=(x,x)
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= ((T*T-T)x,x)=0VxeH Notes
= T*T-1=0
= T*T=1

This completes the proof of the theorem.

15.1.3 Isometric Operator

Definition: An operator T on H is said to be isometric if [Tx—Ty| =[x - y|vx,y e H.

Since T is linear, the condition is equivalent to |Tx| =||x|| for every x € H.

For example: let {el,ez,...,en,...} be an orthonormal basis for a separable Hilbert space H and
T eB(H) be defined as T(x,e, +x,€, +...) = X,€, + X,€, +... where x = (x, ).

Then [Tx|" = Y x, [ =[xff

n=1

= T is an isometric operator.
The operator T defined is called the right shift operator given by Te_=e_,,.

Theorem 9: If T is any arbitrary operator on a Hilbert space H then H is unitary < it is an
isometric isomorphism of H onto itself.

Proof: Let T is a unitary operator on H. Then T is invertible and therefore T is onto.

Further TT* =1.
Hence |Tx| =||x|| for every x € H. [By Theorem (7)]

= T preserves norms and so T is an isometric isomorphism of H onto itself.

Conversely, let T is an isometric isomorphism of H onto itself. Then T is one-one and onto.
Therefore T exists. Also T is an isometric isomorphism.

= [T =[] v

= T*T=1 [By Theorem (7)]
= (T*T)T" =IT"

- T*(TT")=T"

= T*I=T"

= TT*=I=T*T and so T is unitary.

This completes the proof of the theorem.
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=7
iE
Note 1f T is an operator on a Hilbert space H such that |Tx| = x| ¥x € H and T is definitely

an isometric isomorphism of H onto itself. But T need not be onto and so T need not be
unitary. The following example will make the point more clear.

' Example: Let T be an operator on 1, defined by T{x,,x,,...} ={0,x,,%,,...}
= ITx][= x| vx €.
= T is an isometric isomorphism of 1, into itself.

However T is not onto. If (yl,yz,...) is a sequence in 1, such that y, #0, then 3 no sequence in 1,

whose T-image is (Y1rer~~-) . Therefore T is not onto and so T is not unitary.

15.2 Summary

° An operator T on a Hilbert space H is said to be normal if it commutes with its adjoint i.e.
if TT" = T'T. Conclusively every self adjoint operator is normal.

o The set of all normal operators on a Hilbert space H is a closed subspace of 3(H) which

contains the set of all set-adjoint operators and is closed under scalar multiplication.

) An operator U on a Hilbert space H is said to be unitary if UU* = U*U =L

) An operator T on H is said to be isometric if HTX - TyH = HX— yHVx,y e H, since T is linear,

the condition is equivalent to |Tx|=|x| for every xe H.

15.3 Keywords

Normal Operator: An operator T on a Hilbert space H is said to be normal if it commutes with
its adjoint i.e. if TT* = T*T.

Unitary Operator: An operator U on a Hilbert space H is said to be unitary if UU* = U*U = 1.

Isometric Operator: An operator T on H is said to be isometric if HTx—TyH= HX—YHVX,y eH.

Since T is linear, the condition is equivalent to |Tx|=|x| for every x e H.

15.4 Review Questions

1 If T is an operator on a Hilbert space H, then T is normal & its real and imaginary part
commute.

2. An operator T on H is normal < [T *x|=|Tx| for every x.

3. The set of all normal operators on H is a closed subset of 3(H) which contains the set of all

self-adjoint operators and is closed under scalar multiplication.

4. If H is finite-dimensional, show that every isometric isomorphism of H into itself is
unitary.
5. Show that the unitary operators on H form a group.
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15.5 Further Readings

N

Books

A

Y. &

Online link

Arch W. Naylor, R Sell George, Linear Operator Theory in Engineering and Sciences,
New York Springer, (1982).

Paul Garret, Operators in Hilbert Spaces, 2005.

www.maths.leeds.ac.uk/nkisilv/
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16.5 Further Readings

Objectives

After studying this unit, you will be able to:
o Define perpendicular projections.
o Define invariance and orthogonal projections.

o Solve problems on projections.

Introduction

We have already defined projections both in Banach spaces and Hilbert spaces and explained
how Hilbert spaces have plenty of projection as a consequence of orthogonal decomposition
theorem or projection theorem. Now, the context of our present work is the Hilbert space H, and
not a general Banach space, and the structure which H enjoys in addition to being a Banach space
enables us to single out for special attention those projections whose range and null space are
orthogonal. Our first theorem gives a convenient characterisation of these projections.

16.1 Projections

16.1.1 Perpendicular Projections

A projection P on a Hilbert space H is said to be a perpendicular projection on H if the range M
and null space N of P are orthogonal.

Theorem 1:If P is a projection on a Hilbert space H with range M and null space N then M L N < P
is self-adjoint and in this case N =M".

Proof: Let M LN and z be any vector in H. Then since H=M @ N, we can write z uniquely as

z=x+y,xeM,yeN.
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Thus  Pz=P(x+y)
=Px+Py

=Px=x (yEN)

= (Pz,z)=(x,z) [ Pz=P (x+y) =x,P being projection on H]

(x,x+y)
=(x,%)+(x,y)
=[N

and (Pz* z)=(z,Pz)

(xx)+(x,y)

I
—_
=
+

o
*
S~—"
I

Hence (Pz,z)=(Pz*z)VzeH

= (P-P*)z,z)=0VzeH
= P-P*=0ie. P=P*
= P is self adjoint.

Further, M LN=NcM"*

If N#M?*, then N is a proper closed linear subspace of the Hilbert space M"and therefore 3 a

vectorz, 20 M* st. z, LN.

Now z, L Mandz, L Nand H=M® N.
= z, LH=2,=0, a contradiction.
Hence N =M*

Conversely, let P*=P,x,y be any vectors in M and N respectively. Then

(xy)=(Pxy)

(xP*y)=(xPy)
=(x,0)=0

=MLN.

This completes the proof of the theorem.

Theorem 2: If P is the projection on the closed linear subspace M of H, then
xeM & Px=x & ||Px|=|x|.

Proof: We have, P is a projection on H with range M then, to show xeM & Px=x.
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Let Px = x. Then X is in the range of P because Px is in the range of P.

Px=x=>xeM.

Conversely, let x e M. Then to show Px = x.
Let Px =y. Then we must show that y = x.
We have

Px=y= P(Px)=Py = P’x=Py
=Px=Py |.P*=P|
=P(x-y)=0
= x—vy is a in null space of P.
=x-yeM".
=>x-y=z,zeM".

S X=y+z

Now y =Px =y is in the range of P.
i.e. yis in M. Thus we have expressed
x=y+z,yeM,ze M*".
But x is in M. So we can write x = x+0, xe M,0e M*
But H=M@&M".
Therefore we must havey =x,z =0
Hence xeM = Px=x.
Now we shall show that Px = x < |[Px|=]x|.
If Px = x then obviously [[Px|=|x].
Conversely, suppose that |[Px|=[x|.
We claim that Px = x. We have

X = Px+(1-P)x

Now Px is in M. Also P is the projection on M.

= [P is the projection on M*.
= (I + P) x in M*.
= Px and (I+P)x are orthogonal vectors.

Then by Pythagorean theorem, we get

[Px+ (1-P)xf =[P +(1-P)x
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From (1) and (2), we have Notes

I =[P +[(T-P)xf°

= Ja-P)x['=0 [by hypothesis [Px|=[x|]
= (I-P)x=0

= x—Px=0

= Px=0

This completes the proof of the theorem.
Theorem 3: If P is a projection on a Hilbert space H, then
(i) Pisa positive operator i.e. P>(
(i) o0<P<1
(i) [Px| <[x|vxeH.
(iv) [P|<1.
Proof: P, projection on H = P?*=P,P =P.
Let M = range of P.
(i) LetxeH. Then
(Px,x) = (PPx,x)
=(Px,P"x) = (Px,Px) = |Px|* > 0
=  (Px,x)>=0VxeH.
=  Pisa positive operator i.e. P > 0.
(i) P is a projection on H= I - P is also a projection on H.
= I1-P=0. (by (i)
= P<I

But P >0, consequently 0<P <1.
(iii) LetxeH.If M is the range of P, then M" is the range of (I - P).
Now Px is in M and (I - P)x is in M.

Therefore Px and (I - P)x are orthogonal vector. So by Pythagorean theorem, we have

[Px+(1-P)x| =[Px|} +[(1-P)x|’

= X =Pxf +|a-P)x [ Px+(I-P)x=x]
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=[x 2[Pxff
= [Px]z]].
(iv) We have [P||=sup{|[Px|:|x| <1}
But|[Px| < |x|Vx e H (by((iii))
~sup{|[Px|:|x|<1} <1

Hence ||P|<1

This completes the proof of the theorem.

' Example: If P and Q are the projections on closed linear subspaces M and N of H. Show
that PQ is a projection & PQ = QP. In this case, show that PQ is the projection on M N N.

Solution: Since P and Q are projections on H, therefore P>=P, P* =P, Q*=Q, Q*=Q. Also itis given
that M is range of P and N is the range of Q.

Now suppose PQ is projection on H. Then to prove that PQ = QP.

Since PQ is a projection on H.

(PQ* =PQ
= Q*P* =PQ
= QP =PQ ( Q*=Q,P*=P)

Conversely, let PQ = QP. We shall show that PQ is a projection on H.
We have (PQ)* = Q*P* = QP = PQ.

Also (PQY = (PQ) (PQ) = (PQ) (QP)
=PQ?P =PQP
= QPP = QP?
=QP=PQ
Thus (PQ)* =PQ and (PQ)*=PQ.
= PQ is a projection on H.

Finally we are to show that PQ is the projection on M N N, i.e. we are to show that range of PQ
isMNN.

Let R (PQ) = range of PQ.
Letxe MNN= xe M, xe N we have

PQ) (x) =P (Qx) =Px [ Nisrange of Qand x e N = Qx =x]

=x [- Misrange of Pand x € P]
= PQ)x =x
x € R (PQ)
= xe MNN = xe R (PQ)
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MnNN cR (PQ)
Now let x € R (PQ). Then (PQ)x = x

Now (PQ)x =x
= P[(PQ)x] =Px
= [P (PQ)] x =Px
= (P2Q) x =Px
= (PQ) x =Px
But (PQ) x =x.

~. We have Px = x = x € M i.e. the range of P.

Also PQ =QP

xeR (PQ) = (PQ) x =x
= @QP)x=x = Q[(QP)x] = Qx
= (QP)x=Qx = (QP)x =Qx

But (QP)x=x, .. Qx=x=x¢€ N.
Thus xe R(PQ) =>xeMandxe N
=>xeMnNN
RPQ) cM NN
Hence R(PQ) =M NnN.

'i Example: Show that an idempotent operator on a Hilbert space H is a projection on H &
it is normal.

Solution: P is an idempotent operator on Hi.e. P2=P.
Let P be a projection on H. Then P* = P. We have
PP* = P* P* [taking P* in place of P in L.H.S.]
=P*P [~ P*=P]
= P is normal.
Conversely, let PP* = P*P.
Then to prove that P* = P.
For every vector y € H, we have
(Py, Py) = (y, P* Py) = (y, PP*y) [+ P*P =PP*]
= (Pty, P*y) [ (P =P]
From this we conclude that
Py=0 o P*y =0.
Now let x be any vector in H.

Lety = x - Px. Then
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Py =P(x-Px)=Px-Px=Px-Px=0
0 =P*y =P*(x - Px) = P*x - P*Px

= P*x =P*Px V xe H
P* =P*P
Now P = (P*)* = (P*P)* = P*P = P*

. P is a self adjoint operator.
Also P2 =P.

Hence P is a projection on H.

16.1.2 Invariance

Definition: Let T be an operator on a Hilbert space H and M be a closed subspace of H. Then M
is said to be invariant under T if T(M)c M. If we do not take into account the action of T on
vectors outside M, then T can be regarded as an operator on M itself. The operator T on H induces
on operator T, on M such that T (x) = T(x) for every xe M. This operator T,, is called the
restriction of T on M.

Further, let T be an operator on Hilbert space H. If M is a closed subspace of H and if M and M*

are both invariant under T, then T is said to be reduced by M. If T is reduced by M, we also say
that M reduces T.

Theorem 4: A closed linear subspace M of a Hilbert space H is invariant under the operation

T & M* is invariant under T*.

roof: Le is invariant under T, we show is invariant under T*.
P Let M tunder T h L t under T*

Let y be any arbitrary vector in M*. Then to show that T"y is also in M* i.e. T'y is orthogonal to
every vector in M.

Let x be any vector in M. Then Tx e M because M is invariant under T.
Also y e M* = y is orthogonal to every vector in M.

Therefore y is orthogonal to Tx i.e.

(Tx,y)=0
= (xTy)=0
= T’y is orthogonal to every vector x in M.

~T*yisinM" and so M" is invariant under T*.

Conversely, let M' is invariant under T*. Thus to show that M is invariant under T. Since M*is

a closed linear subspace of H invariant under T*, therefore by first case (Ml)L is invariant

under T.

But (M') =M**=Mand (T*)*=T**=T.
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Hence M is invariant under T.
This completes the proof of the theorem.

Theorem 5: A closed linear subspace M of a Hilbert space H reduces on operator < M is invariant
under both T and T*.

Proof: Let M reduces T, then by definition both M and M are invariant under T*. But by

L
theorem 4, if M" is invariant under T then (Ml) i.e. M is invariant under T*. Thus M is invariant
under T and T*.

Conversely, let M is invariant under both T and T*. Since M is invariant under T*, therefore M"

is invariant under (T*)* = T (by theorem 4). Thus both M and M" are invariant under T.
Therefore M reduces T.

Theorem 6: If P is the projection on a closed linear subspace M of a Hilbert space H, then M is

invariant under an operator T < TP =PTP.
Proof: Let M is invariant under T.
Let x € H. Then Px is in the range of T, Px e M = TPx € M.

Now P is projection and M is the range of P. Therefore TPx € M = TPx will remain unchanged
under P. So, we have

PTPx =TPx
= PTP=TP (By equality of mappings)

Conversely, let PTP = TP. Let x € M. Since P is a projection with range M and x € M, therefore

Px=x
= TPx=Tx
= PTPx =Tx [-PTP =TP]
= PTPx =TPx [ TPx=Tx]

But P is a projection with range M.

~P(TPx)=TPx=TPxe M= TxeM
Since TPx = Tx.

Thus xeM = TxeM
— M is invariant under T.

Theorem 7: If P is the projection on a closed linear subspace of M of a Hilbert space H, then M
reduces an operator < TP = PT.

Proof: M reduces T < M is invariant under T and T*.

& TP=PTP and T*P=PT*P
& TP =PTP and (T *P)*=(PT*P)*
& TP=PTP and P*T**=P*T**P*

& TP =PTP and PT = PTP [ P is projection & P* =P. AlsoTT* = T]
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Thus M reduces T.

& TP =PIP and PT =PTP (1)
Now suppose M reduces T. Then from (1), TP = PTP and PT = PTP. This gives TP =PT.
Conversely, let TP = PT

= PTP =P*T (Multiplying both sides on left by P.)

or PTP=PT [-P*=P]

similarly multiplying both sides of TP = PT on the right of P, we get

TP?=PTP or TP =PTP. Thus

TP =PT = TP =PTP and PT = PTP.

Therefore from (1), we conclude that M reduces T.

Theorem 8: If M and N are closed linear subspace of a Hilbert space H and P and Q are the
projections on M and N respectively, then

(1) M 1N & PQ=0.and
(i) PQ=0&QP=0.
Proof: Since P and Q are projections on a Hilbert space H, therefore P*=P, Q*= Q.
We first observe that
PQ=0& (PQ)*=(0)* < Q*P*=0*
< QP=0.
Therefore to prove the theorem it suffices to prove that
M LN & PQ=0.

First suppose M L N. If y is any vector in N, then M L N < y is orthogonal to every vector in M.
so y e M*.Consequently N c M*.
Now, let z be any vector in H. Then Qz is the range of Q i.e. Qz is in N.

Consequently Qz is in M* which is null space of P.

Therefore P(Qz)=0.
Thus PQz=0VzeH
PQ=0

Conversely, let PQ =0 and Xx€M and yeN.

since M is the range of P, therefore Px = x. Also N is the range of Q. Therefore
Qy=y
We have (x,y) = (Px, Qy) = (x,P'Qy)
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=(xPQy) [.P*=P] Notes

=(xOy)  [-PQ=0]
= (x0)=0

~Mand N are orthogonal i.e. ML N.

16.1.3 Orthogonal Projections

Definition: Two projections P and Q on a Hilbert space H are said to be orthogonal if PQ = O.
Note: By theorem 8, P and Q are orthogonal iff their ranges M and N are orthogonal.

Theorem 9: 1f P, P,, ... P_are projections on closed linear subspaces M, M,, ... M, of a Hilbert
space H, then P =P +P,+... + P_is a projection < the Ps are pair-wise orthogonal (in the sense
that PP, =0,i # ).

Also then P is the projectionon M =M, + M, + ... + M.

Proof: Given that P, P,, ... P_are projections on H.

Therefore P> =P, =P, foreachi=1,2,..,n.

LetP=P +P+..+P ThenP'=(P,+P+..+P) =P +..+P,
=P, +P,+..+P =P.

Sufficient Condition:

Let PP, =0,i#j. Then to prove that

P is a projection on H. We have
P2=PP =(P,+P+..+P) (P +P+..+P)
=P} +P;..+P! [PP=0,i#j]
=P, +P+..+P
=P
Thus, P* =P =P*.
Therefore P is a projection on H.
Necessary Condition:
Let P is a projection on H.
Then P2 =P = P*
We are to prove that PP, =0 if i #j.
We first observe that if T is any projection on H and z is any vector in H, then
(Tz,z) =(TTz z)=(Tz T*z)
= (Tz, Tz)

=Tz} (1)
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I’ =[P

P.x|

n
<Y [P = [P+t [
j=1

= Z;(P}.x,x)

= (P, x) + ...+ (P,x,x)
=((P,+P,..+P,)x)

= (Px,x)

=Px|*

<

[Using (i)]

[by ()]

-2

Thus we conclude that sign of equality must hold throughout the above computation. Therefore

we have

2 C 2

P = Y [Py
j=1

2
- [px| =0ifj=i
= [Px|=0,j=i
- Px=0,j#i
= x is in the null space of P,,i#]j
= xeM,"if j=i
= x is orthogonal to the range M of every I with j#i.

Thus every vector x in the range P,(i = 1,...,n) is orthogonal to the range of every P, with j#iL

Therefore the range of P, is orthogonal to the range of every P, with j#i. Hence

PP =0, i#]j [By theorem (8)]

Finally in order to show that P is the projection on M=M, +M, +...+ M

We are to show that R(PP) = M where R(P) is the range of P.

Let xe M. Then x=x, +X, +...+ X,

where x, €M,, 1<i<n.Now from (2), we observe that || = |Px|" if x is the range of some P,.

- X; €M, ie. the range of P,.
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= Pix2=><i2:>Pix=><i

= Px, =x,

= x; € the range of P.

= x, €R(P), foreachi=1,2,..,n

= X; +X, +...+x, ER(P).

= x€R(P).

Then xe M = xeR(P)

~MCcCR(P) -(3)

Now suppose that x € R(P). Then

Px=x
= (P, +P, +...+P,)x=x
= Px+Px+..+P x=x

But P, (x)eM,,P, (x)eM,,...P, (x) e M, .
S~XEM;+M,+...+M_ and so R(P)c M (4)

Hence from (3) and (4), we get
M =R(P)

This completes the proof of the theorem.

16.2 Summary

o A projection P on a Hilbert space H is said to be a perpendicular projection on H if the
range M and null space N of P are orthogonal.

° Let T be an operator on a Hilbert space H and M be a closed subspace of H. Then M is said
to be invariant under T if T(M)c M.

° Let T be an operator on Hilbert space H, if M is closed subspace of H and if M and M" are
both invariant under T, then T is said to be reduced by M.

° Two projections P and Q on a Hilbert space H are said to be orthogonal if PQ = O.

16.3 Keywords

Invariance: Let T be an operator on a Hilbert space H and M be a closed subspace of H. Then M
is said to be invariant under T if T(M)c M.

Orthogonal Projections: Two projections P and Q on a Hilbert space H are said to be orthogonal
if PQ=0.

Perpendicular Projections: A projection P on a Hilbert space H is said to be a perpendicular
projection on H if the range M and null space N of P are orthogonal.
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Notes 16.4 Review Questions

1.  If Pand Q are the projections on closed linear subspaces M and N of H, prove that PQ is a
projection & PQ = QP. In this case, show that PQ is the projection on M nN.

2. If P and Q are the projections on closed linear subspaces M and N of H, prove that the
following statements are all equivalent to one another:

(@ P=<Q;

(b) Px|<|Qx| for every x;

© McN;
(d PQ=PF;
(e) QP=P.

3. If Pand Q are the projections on closed linear subspaces M and N of H, prove thatQ—P is
a projection & P < Q. In this case, show that Q - P is the projection on NnM*.

16.5 Further Readings

N

Books Borbaki, Nicolas (1987), Topological Vector Spaces, Elements of mathematics, Berlin:
Springer - Verlag

Rudin, Walter (1987), Real and Complex Analysis, McGraw-Hill.

ki

Online links  www.math.Isu.edu/ ~ sengupta,/7330£02/7330f02proiops.pdf

Planetmath.org/....OrthogonalProjections OntoHilbertSubspaces.html.
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Finite Dimensional Spectral Theory

Unit 17: Finite Dimensional Spectral Theory
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Objectives

After studying this unit, you will be able to:

o Understand finite dimensional spectral theory.

° Describe spectral analysis and spectral resolution of an operator.

° Define compact operators and understand properties of compact operators.
° Solve problems on spectral theory.

Introduction

The generalisation of the matrix eigenvalue theory leads to the spectral theory of operators on
a Hilbert space. Since the linear operators on finite dimensional spaces are determined uniquely
by matrices, we shall study to some extent in detail the relationship between linear operators in
a finite dimension Hilbert spaces and matrices as a preliminary step towards the study of
spectral theory of operators on finite dimensional Hilbert spaces.
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17.1 Finite Dimensional Spectral Theory

17.1.1 Linear Operators and Matrices on a Finite Dimensional Hilbert
Space

Let H be the given Hilbert space of dimension n with ordered basis B = {e, e, ..., e } where the
ordered of the vector is taken into consideration. Let T € B(H) (the set of all bounded linear
operators). Since each vector in H is uniquely expressed as linear combination of the basis, we

n
can express Te, as Te, = 2 o

i=1

:e; , where the n-scalars o, 0., ... o are uniquely determined by Te..
yri 7 nj j

Then vectors Te,, Te,, ..., Te, determine uniquely the n’ scalars o, i,j =1, 2, ... n. These n’ scalars
determine matrix with (o, &, ..., o, ) as the i row and (a,;, a,, ... @) as its j* column. We

in. j nj

denote this matrix by {T} and call this matrix as the matrix of the operator T with respect to the
ordered basis B.

Oy Oy en O
Oy Oy ... O
Hence 7= [%] =| 2= 2

Oy Oy -en O

We note that
(i)  [0] = 0, which is the zero matrix.
(i) [=I= [Sii], which is a unit matrix of order n. Here 51; is the Kronecker delta.

Definition: The set of all n X n matrices denoted by A is complex algebra with respect to
addition, scalar multiplication and multiplication defined for matrices.

This algebra is called the total matrices algebra of order n.

Theorem 1: Let B be an ordered basis for a Hilbert space of dimension n. Let T € § (H) with (T) =
[0‘11]' then T is singular & [%] is non-singular and we have [o,]" = [T"].
Proof: T is non-singular iff there exists an operator T-' on H such that

T'T=TT'=1I .. (1)
Since there is one-to-one correspondence between T and [T],
(1) is true & [T T] = [TT'] = [1]
from (2) [T] [T] = [T] [T] = [1] = [5,]
so that [T] [8,] = [8,] [T] = [3,], [T] = [0
= [%] is a non-singular and [o,]" = [T"].

This completes the proof of the theorem.
17.1.2 Similar Matrices

Let A, B are square matrix of order n over the field of complex number. Then B is said to be
similar to A if there exists a n X n non-singular matrix C over the field of complex numbers such
that

B=C'AC.

LOVELY PROFESSIONAL UNIVERSITY



Finite Dimensional Spectral Theory

This definition can be extended similarly for the case when A, B are operators on a Hilbert space. Notes

=7|

Notes
1. The matrices in A are similar iff they are the matrices of a single operator on H
relative to two different basis H.

2. Similar matrices have the same determinant.

17.1.3 Determinant of an Operator
Let T be an operator on an n-dimensional Hilbert space H. Then the determinant of the operator
T is the determinant of the matrix of T, namely [T] with respect to any ordered basis for H.

Following we given properties of a the determinant of an operator on a finite dimensional
Hilbert space H.

(i) det (I) =1, I being identity operator.
Since det (I) = det ([I]) = det ([3,]) = 1.
(if) det (T, T,) =(detT)) (det T)
(iii) det (T) # 0 < [T] is non-singular
< det ([T]) = 0.

Hence det (T) # 0 < [T] is non-singular.

17.1.4 Spectral Analysis

Definition: Eigenvalues

Let T be bounded linear operator on a Hilbert space H. Then a scalar A is called an eigenvalue of
T if there exists a non-zero vector x in H such that Tx = Ax.

Eigenvalues are sometimes referred as characteristic values or proper values or spectral values.
Definition: Eigenvectors

If A is an eigenvalue of T, then any non-zero vector x € H such Tx = Ax, is called a eigenvector
(characteristic vector or proper vector or spectral vector) of T.

Properties of Eigenvalues and Eigenvectors

i5

Notes 1f the Hilbert space has no non-zero vectors then T cannot have any eigenvectors
and consequently the whole theory reduces to triviality. So we shall assume that H # 0
throughout this unit.

1.  If x is an eigenvector of T corresponding to the eigenvalue A and o is a non-zero
scalar, then ax is also an eigenvector of T corresponding to the same eigenvalue A.

Contd...
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Notes Since x is an eigenvector of T, corresponding to the eigenvalue A # 0 and Tx = Ax.
az0=o0x#0

Hence T (0x) = aT(x) = a(Ax)

Therefore corresponding to an eigenvalue XA there are more than one eigenvectors.

2. If x is an eigenvector of T, then x cannot correspond to more than one eigenvalue
of T.

If possible let A, A, be two eigenvalues of T, (A, # A,) for eigenvector x. Then
Tx =A,x and Tx = Ax

= Ax =X
= (A, -2)x=0
= A -A,=0 (- x#0)
= A=A,
3. Let A be an eigenvalue of an operator T on H. If M, is the set consisting of all

eigenvectors of T corresponding to A together with the vector 0, then M, is a non-
zero closed linear subspace of H invariant under T.

By definition x € M, & Tx = Ax (@)
By hypothesis 0 € M, and 0 vector satisfies (1).
M, ={xe H:Tx=2Ax} ={xe H: (T -Al) x = 0}

Since T and I are continuous, M, is the null space of continuous transformation T - Al
Hence M, is closed.

Next we show that if x € M,, then Tx € M,. If x € M, then Tx = Ax.
Since M, is a linear subspace of H, x € M, = Ax=Tx e M,.

= M, is invariant under T.

Definition: Eigenspace

The closed subspace M, is called the eigenspace of T corresponding to the eigenvalue A.

From property (3), we have proved that each eigenspace of T is a non-zero linear subspace of H
invariant under T.

]
iE

Note 1t is not necessary for an operator T on a Hilbert space H to possess an eigenvalue.

' Example: Consider the Hilbert space ¢, and the operator T on ¢, defined by
T (x, %y ...) = (0, %, X, ...)
Let A be a eigenvalue of T. Then 3 a non zero vector

y = (Yy ¥y -.-) in ¢, such that Ty = Ay.
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Now Ty = Ay =Ty Yy ) =h Ty Yy --r)
=0y, -) =Ry, Ay, ...)
= }‘Y1 =0, }»yz =Yy e
Now y is a non-zero vector =y, # 0
Ay,=0=21=0.
Then Ay, =y, =y, = 0 and this contradicts the fact that y is a non-zero vector. Therefore T cannot
have an eigenvalue.

17.1.5 Spectrum of an Operator

The set of all eigenvalues of an operator is called the spectrum of T and is denoted by o (T).

Theorem 1: If T is an arbitrary operator on a finite dimensional Hilbert space H, then the spectrum
of T namely o (T) is a finite subset of the complex plane and the number of points in ¢ (T) does
not exceed the dimension n of H.

Proof: First we shall show that an operator T on a finite dimensional Hilbert space h is singular
if and only if there exists a non-zero vector x € H such that Tx = 0.

Let 3 anon-zero vector x € Hs.t. Tx =0. We can write Tx = 0 as Tx = T0. Since x # 0, the two distinct
elements x, 0 € H have the same image under T. Therefore T is not one-to-one. Hence T~ does
not exist. Hence it is singular.

Conversely, let T is singular. Let 3 no non-zero vector such that Tx = 0. This means Tx =0 = x =
0. Then T must be one-to-one. Since H is finite dimensional and T is one-to-one, T is onto, so that
T is a non-singular, contradicting the hypothesis that T is singular. Hence there must be non-
zero vector x s.t. Tx = 0.

Now if T is an operator on a finite dimensional Hilbert space H of dimension n. Then A scalar
A € o (T), if there exists a non-zero vector x such that (T - AI)x = 0.

Now (T - Al)x = 0 & (T - Al) is a singular.
(T - Al) is singular < det (T - AI) = 0. Thus A € ¢ (T) & A satisfies the equation det (T - AI) = 0.
Let B be an ordered basis for H. Thus det (T - Al)
= det ([T - AI],)
But det ([T - AI]) = det ([T], - A[1],)
Thus det (T - AL) = det ([T], - A[8,]).
So det (T - Al) = 0= det ([T], - A[5,]) = 0 .. (1)
If [T], = [o] is a matrix of T then (1) gives

Olyy A Oy, Oy
Oy Oy = A Oy, (2)
anl ann - }\'

The expression of determinant of (2) gives a polynomial equation of degree n in A with complex
coefficients in the variable A. This equation must have at least one root in the field of complex
number (by fundamental theorem of algebra). Hence every operator T on H has eigenvalue so
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that o (T) # ¢. Further, this equation in A has exactly n roots in complex field. If the equation has
repeated roots, then the number of distinct roots are less than n. So that T has an eigenvalue and
the number of distinct eigenvalue of T is less than or equal to n. Hence the number of elements
of o(T) is less than or equal to n. This completes the proof of the theorem.

' Example: For a two dimensional Hilbert space H, let B = {e,, e,} be a basis and T be an
operator on H given by the matrix

A= Bﬂ glz} (1)
21 22

(i) IfTisgivenby Te, = e, and Te, = - e, find the spectrum T.
(ii) If T is an arbitrary operator on H with the same matrix representation, then
T2 (0, + 00) T+ (0t 0y = 0, 0)) T=0
Sol:
(i) Using the matrix A of the operator T, we have
Te,=a,e +a,e =esothato,=0and a, =1

Te,=0,e +a,e =-e sothata,=-1and o, =0
Oy O 0-1
Hence [T]=| ™ 1Z}=[ }
[T] [0121 Oy, 10
For this matrix, the eigenvalue are given by the characteristic equation

-A-1] _
R
= M+1=0=A==*isoo(T)={ti}.
(ii) Let us consider the eigenvalues of A, which are given by
|:OC‘11 - Oy i| =0
Oy Oy — A
= Moo, o)A+ (0 0, -0, o) =0 .. (@
Since (2) is true for A, we can take
T =Al ... (3)
From (2) and (3) we get
T2 - (o, + o) TH+ (o, 0y -0y, ) I=10 .. (4)
The operator T on H having A as an eigenvalue satisfies equation (4).

Theorem 2: If T is an operator on a finite dimension Hilbert space, then the following statements
are true.

(@) Tissingular & 0€ o (T)

(b) If T is non-singular, then A € ¢ (T)& A eo (T)

(c)  If Aisnon-singular, then 6 (ATA™) =c (T)

(d) Ifxe o(T)andif Pis polynomial then P (A) € o (P (T)).
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Proof: Notes

@)

(b)

T is singular < 3 a non-zero vector x € H such that Tx = 0 or Tx = 0. Hence T is singular
& 0 is the eigenvalue of Ti.e. 0 € o (T).

Let T be non-singular and A € ¢ (T).

Hence A # 0 by (a) so that A exists. Since A is an eigenvalue of T, 3 a non-zero vector
x € Hs.t. Tx = Ax.

Premultiplying by T we get
T Tx =T" (Ax)
=T'(x)= %x forx =0

Hence A € (o(T™))
Conversely, if A is an eigenvalue of T~ then (A7) = A is an eigenvalue of (T")" = T.
Hence A € o (T).
LetS= ATA"'. Then we find S - Al
Now S - Al = ATA™ - A (AI) A
= A (T-Al) A?
det (S - AL) = det (A(T - AI) A7)
= det (T - Al
=  MAisaneigenvalue of T < det (T - AI) = 0.
Hence det (T -Al) =0 < det (S-AI) =0
= Sand T have the some eigenvalues so that
6 (ATA") =o (T).
If . = 6 (T), A is an eigenvalue of T. Then 3 a non-zero vector x such that Tx = Ax.
Hence T (Tx) =T (Ax) = ATx = A%x.

Hence if A is an eigenvalue of T, then A? is an eigenvalue of T? Repeating this we get that
if A is an eigenvalue of T, then A" is an eigenvalue of T" for any positive integer n.

LetP (t)=a,+at+...+a t"a,a,.... ,a,_ are scalars.

=[a,*a, (A)+...... +a Amx
Hence P(A) =a,+aA + ...... +a, A" is an eigenvalue of P (T).

Thisif A € 6 (T), then P (1) € o (P (T)).

This completes the proof of the theorem.

17.1.6 Spectral Theorem

Statement: Let T be an operator on a finite dimensional Hilbert space H with A, A,, ..., A_ as the
eigenvalues of T and with M, M,, ..., M _be then corresponding eigenspaces. If P, P,, ..., P_ are
the projections on the spaces, then the following statements are equivalent.
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(@) The M/s are pairwise orthogonal and span H:

(b) TheDP/s are pairwise orthogonal and P, + P, + ... +P_=Iland T=AP + AP, +...+A P .

(c) T is normal operator on H.
Proof: We shall show that
(i) = (i) = (i) = (@)

(i) = (i)

m

Assume that M/'s are pairwise orthogonal and span H. Hence every x € H can be represented

uniquely as
X =xtx, .. X

where x, € M, fori=1,2,..., m

. (1)

by hypothesis M,'s are pairwise orthogonal. Since P/'s are projections in M's = P/'s are pairwise

orthogonal, i.e.i#j= PP, =0.
If x is any vector in H, then from (1) for each i,
P(x) =P (x, +x,+ ... +x)
=Px, +Px,+...+Px_

Since P, is the range of M, P, x, = x..
Fori#jM, LM, since x, € M, for each j we have

xiJ_Miforj;ti.
Hence x, € M/ (null space of P)
= x € Mj =Px =x

from (2) we get

Px =x
Since I is the identity mapping on H, we get
Ix =x, +x,+ ... +x

=Px+Px+..+P x
m

=P, +P,+...+P )x Vxe H.

This show that =P +P,+...... +P .
For every x € H, we have from (1)

T =T +x,+...+x)

Txl + sz +...+Tx
m
Since x, € M, = Tx, = Ax,

T =AX +Ax, +...... A X

(i) = (i)
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LetT=AP +AP,+ ... +X_ P_, where P/s are pairwise orthogonal projections and to show that Notes
T is normal.

Since P/'s are projection and = P* =P, and P’ =P, ... (6)
Further we have PP, =0 fori #j

Since adjoint operation is conjugate linear, we get

T =P +AP, + ... +A P *
= MP* +MaP*, +. o+ AP *

= MP, + AP+ + AP, .

Now TT* = (AP + AP+ + A P (AP, + AP, +.oo o+ AmP)
= |APPH|IA PP+ . | AP (PP =0,i#j)
= | A PP, + | A, 2P, + +[A_|?P ... (by (6))

Similarly T*T can be found s.t.

T*T = | A [P, + || %P, + ... + |Am|2P
Hence T*T = TT* = T is normal.
(i) = (i)
Let T is normal operator on H and prove that M/'s are pairwise orthogonal and M,’s span H.
We know that if
T is normal on H = its eigenspaces M,’s are pairwise orthogonal.

So it suffices to show that M,’s span H.

Let M =M +M,+....+M_
and P=P +P,+.... +P

=TP, + TP, +...... + TP,
=PT+P,T+....+P.T
=(P,+P,+.....+P)T
=PT

Since P is projection on M and TP = PT, M reduces T and so M" is invariant under T. Let U
be the restriction of T to M*. Then U is an operator on a finite dimensional Hilbert space

M*and Ux =Tx V x € M" If x is an eigenvector for U corresponding to eigenvalue A then
x € M*and Ux = Ax.

Tx = Ax and so x is also eigenvector for T.

Hence each eigenvector of U is also an eigenvector for T. But T has no eigenvector in M*. Hence
M n M* = {0}. So U is an operator on a finite dimensional Hilbert space M+ and U has no
eigenvector and so it has no eigenvalue.
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M- = {0).

For if M* # {0}, then every operator on a non-zero finite dimensional Hilbert space must have an
eigenvalue.

Now M*={0}=M=H.
ThusM =M, + M, +...... +M,, = Hand so M,'s span H.

This complete the proof of the theorem.
17.1.7 Spectral Resolution of an Operator

Let T be an operator on a Hilbert space H. If there exist distinct complex numbers A, A, ..., A
and non-zero pairwise orthogonal projections p,, p,, ..., p,, such that

m

T=Ap, +Ap,+...+A D
and p=p, +p,+... +p,, then the expression

T=Ap, +Ap,+... + A p, for Tis called the spectral resolution for T.

]|

g

Note We note that the spectral theorem coincides with the spectral resolution for a
normal operator on a finite dimensional Hilbert space.

Theorem: The spectral resolution of the normal operator on a finite dimensional non-zero Hilbert
space is unique.

Proof: Let T=Ap, +Ap,+ ...+ XA p_

be a spectral resolution of a normal operator on a non-zero finite dimensional Hilbert space H.
Then A,, A, ..., A are distinct complex numbers and p,’s are non-zero pairwise orthogonal
projections such thatp, + p, + ... + p_ =1. We establish that A, + A, ..., A_ are precisely the distinct
eigenvalues of T.

To this end we show first that for each i, A, is an eigenvalue of T. Since p, # 0 is a projection, 3 a
non-zero x in the range of p, such that px = x

Let us consider
Tx = (Ap, +Ap, + ... +A_p )X
=P, T Ap,p, ... HAPIF A D, PIX
So p/'s are pairwise orthogonal p p, = 0 for i #j and p; = p, we have Tx = A,px = Ax by px = x.
= A, is an eigenvalue of T.

Next we show that each eigenvalue of T is an element of the set (A, A, ..., A ). Since T is an
operator on a finite dimensional Hilbert space, T must have an eigenvalue.

If A is an eigenvalue of T then Tx = Ax = Alx.
= MAp,tApt.o tAp)x=A(p,tp,t...+tp,)X
= {A-MNp,+*-Vp,+...+RA -Np.tx =0 .2
Since p;= p, and p, p; = 0 for i # j operating with p, throughout (2), we get
A -A)px=0fori=1,2, ..., m.
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If A, # A for each i, px = 0 for each i.
Hence px+px+...+p x=0

= (@E*tp,*...+p)x=0

= Ix=0

=  x=0,acontradiction to the fact that x # 0. Hence A must be equal to A, for some i. This in the
spectral resolution (1) of T, the scalar A, are the precisely the eigenvalue of T.

If the spectral resolution is not unique.
LetT=pQ, +uQ,+... +n Q. .. (3

be another revolution of T. Then w,, W, ... i is the same set of eigenvalues of T written in
different order. Hence writing the eigenvalues in the same order as in (1) and renaming the
projections, we can write (3) as

T=1Q +A,Q,+...+1 Q_ (4
To prove uniqueness, we shall show that p, in (1) and Q, in (4) are some.
Using the fact p} =p, pp;=0 Vi#j, we can have

T =I=p +p,+...+p,

T =Ap, +Ap,+ ...+ A D

T2 =A%, + ...+ A2p_
and n =AM, + ... + A2p_for any positive integer n. ... (5)

Now if g (t) is a polynomial with complex coefficient in the complex variable t, we can write

g (T)as
gM=gr)p,+gA)p,+... +g () p,

= Zg(Ki)pj ... (by 5)
=
Let 7, be a polynomial such that &, (1) ; landm (A)=0
ifi#]
Taking =, in place of g, we get

n (T) = Zni (A)p; = 2611' pPi=Pp
1

=1

Hence for each i, let p, = m, (T) which is a polynomial in T. The proof is complete if we show the
existence of 7, over the field of complex number.

(E=Ay). (=2 ) (E= ) (t=A,)
A=Ay (hi = A y) (M = Ai) - (A = Ay)

satisfies our requirements i.e. 7, () =1and m (A) =0 if i #j

Now m,(t) =

Repeating the above discussion for Qs we get in a similar manner Q, = 7, (T) for each i.
p, = Q, for each i.

This completes the proof of the theorem.
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17.1.8 Compact Operators

Definition: A subset A in a normed linear space N is said to be relatively compact if its closure A
is compact.

A linear transformation T of a normed linear space N into a normed linear space N is said to be

a compact operator if it maps a bounded set of N into a relatively compact set in N, i.e.

T : N — N’ is compact of every bounded set Bc N, T(B) is compact in N'.

17.1.9 Properties of Compact Operators

1. Let T: N — N’ be a compact operator. Then T is bounded (continuous) linear operator. For,

let B be a bounded set in N. Since T is compact, T(B) is compactin N’. So T(B) is complete

and totally bounded in N’. Since a totally bounded set is always bounded, T(B) is bounded

and consequently T(B) is bounded, since a subset of a bounded set is bounded.
T is a bounded linear transformation and it is continuous.

2. Let T be a linear transformation on a finite dimensional space N. Then T is compact
operator. For, N is finite dimensional and T is linear T(N) is finite dimensional. Since any
linear transformation on a finite dimensional space is bounded. T(B) is bounded subset of

T(N) for every bounded set B N. Now if T(B) is bounded so is T(B) and is closed. T(N) is

finite dimensional, any closed and bounded subset of T(N) is compact, so that T(B) is

compact, being closed and bounded subset of T(N).

3. The operator O on any normed linear space N is compact.

4. If the dimension of N is infinite, then identity operator I: N — N is not compact operator.
For consider a closed unit sphere.
S={xe N:| x| £1} then S is bounded.

Since N is a infinite dimensional.

1(S)=S= S is not necessarily compact.
Hence I: N — N is not compact operator. But I is a bounded (continuous) operator.

Theorem: A set A in a normed linear space N is relatively compact < every sequence of points
in A contains a convergent sub sequence.

Proof: Let A is relatively compact.

Since A C A, every sequence in A is also sequence in A .Since A is compact, such a sequence

in A contains a convergent subsequence. Hence every sequence in A has a convergent
subsequence.

Conversely, let every sequence in A has a convergent subsequence.

Let (y,) be a sequence of points in A . Since A is dense in A, 3 a sequence (x ) of points of A s.t.

1
[0 =yall == ()
n
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and X, X E A .. (2

wecanfinda (¥, ) of (y,) s.t.

Ynk_XH = ‘ Ynk_xnk-‘rxnk_XH

[+]

< [ ya = |+ = %]
— 0asn — eo.
= A is compact.

This completes the proof of the theorem.

17.2 Summary

° If T is an arbitrary operator on a finite dimensional Hilbert space H, then the spectrum of
T namely o (T) is a finite subset of the complex plane and the number of points in 6 (T) does
not exceed the dimension n of H.

° Let T be bounded linear operator on a Hilbert space H. Then a scalar A is called an eigenvalue
of T if there exists a non-zero vector x in H such that Tx = Ax.

° The closed subspace M, is called the eigenspace of T corresponding to the eigenvalue A.
° The set of all eigenvalues of an operator is called the spectrum of T. It is denoted by o (T).
° The spectral resolution of the normal operator on a finite dimensional non-zero Hilbert

space is unique.

° A subset A in a normed linear space N is said to be relatively compact if its closure A is
compact.

17.3 Keywords

Eigenspace: The closed subspace M, is called the eigenspace of T corresponding to the eigenvalueA.

Eigenvalues: Let T be bounded linear operator on a Hilbert space H. Then a scalar A is called an
eigenvalue of T if there exists a non-zero vector x in H such that Tx = Ax.

Eigenvalues are sometimes referred as characteristic values or proper values or spectral values.

Eigenvectors: If A is an eigenvalue of T, then any non-zero vector x € H such Tx = Ax, is called a
eigenvector.

Similar Matrices: Let A, B are square matrix of order n over the field of complex number. Then
B is said to be similar to A if there exists a n X n non-singular matrix C over the field of complex
numbers such that

B=C'AC.

Spectrum of an Operator: The set of all eigenvalues of an operator is called the spectrum of T and
is denoted by o (T).

Total Matrices Algebra: The set of all n X n matrices denoted by A is complex algebra with
respect to addition, scalar multiplication and multiplication defined for matrices.

This algebra is called the total matrices algebra of order n.
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1. IfTe B (H) is a self-adjoint operator, then ¢ (T) = {m, M} where m, M are spectral values.
2. If T is self-adjoint operator then & (T) is the subset of the real line [- |[T ||, || T [[].

3. Let|IR (T)lI=(T-Al)"foraTe B (X, X). Prove that [ RT || > 0as A — c.
4

Prove that the projection of a Hilbert space H onto a finite dimensional subspace of H is
compact.

17.5 Further Readings

N

Books Walter Rudin, Real and complex analysis, Third, McGraw-Hill Book Co., New York,
1987.

Erwin Kreyszig, Introductory functional analysis with applications, John Wiley &
Sons Inc., New York, 1989.

A
Y.

Online links www.math.washington.edu
chicago.academia.edu

www.math.ethz.ch/~ Kowalski/spectral-theory.pdf
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