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Bessel ,s Functions

NotesUnit 1: Bessel,s Functions
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Objectives

After studying this unit, you should be able to:

 Deduce Bessel,s Differential equation from Laplace equation

 Obtain singular and non-singular points of Bessel,s equations

 Obtain series solutions of Bessel,s equation by Frobenius Method

 Establish recurrence relations between various Bessel,s Co-efficient

 Obtain the formula for Jn(x) from its generating functions

 Obtain zeroes of Bessel Functions.

Introduction

In this unit we shall be dealing with the various forms of Laplace differential equation involving
Cartesian, Cylindrical and Spherical polar Co-ordinates.

Bessel,s functions play a very important and central place in optical phenomical and in applied
mathematical process. Just as a Fourier series, power series, Bessel,s functions are quite useful in
solving problems involving laplace equations in cylindrical co-ordinates. In this unit the
importance is given to the following aspects of the Bessel,s functions:

1. Solution of Bessel,s functions Jn(x), Yn(x) for various values of n as well as for different
expansions involving x or (1/x).

Richa Nandra, Lovely Professional University
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Notes 2. Recurrence relations are quite useful as they help in finding whole class of Jn(x) in terms of
two or three Jn(x) of lower values of n i.e., n = 0, 1, 2.

3. Generating function for Jn(x) is introduced so that certain formulas involving Bessel
functions can be deduced. With the help of generating functions we can deduce recurrence
relations or certain other formulas straight away.

4. Finally we also discuss the zeros of Bessel functions as they will lead us to the completeness
as well as orthogonality properties of Bessel,s Functions.

1.1 Bessel,s Differential Equations from Laplace Equations

In dealing with the theory of potential problems in electrostatics or in gravitational field we
commonly use Laplace equations

2 2 2

2 2 2
V V V

x y z
= 0 ...(1)

Here V is a function of the Cartesian Co-ordinates. Any solution nV  of this equation, which is a
homogeneous polynomial of degree n in x, y, z is called the solid spherical Harmonies.

Depending upon the symmetry of the problem we can express Laplace equation in cylindrical
co-ordinates (r, , z) or spherical polar co-ordinates (r, , ). You must be knowing that the
relations between x, y, z and r, , z are

x = r cos 

y = r sin ...(2)

z = z

Also the relation between x, y, z and r, ,  are

x = r sin  cos 

y = r sin  sin ...(3)

z = r cos 

1.2 Bessel,s Differential Equations

To define Bessel functions we first of all obtain Bessel,s Differential equation from Laplace,s
equation. To do that we write Laplace,s equations (1) in cylindrical co-ordinates as

2 2 2

2 2 2 2
1 1V V V V
r yr r z

= 0 ...(4)

We assume that V as a function of r,  and z can be written as

V = R(r) , ( ) z,(z) ...(5)

Where R, ,, Z, are functions of r, , z alone respectively. Substituting in (4) we get

2 2 2

2 2 2 2
1d R dR RZ d d ZZ Z R
r drdr r d dz

= 0

Or
2 2 2

2 2 2 2
1 1 1 1 1d R dR d d Z
R rR dr Zdr r d dZ = 0 ...(6)

2



LOVELY PROFESSIONAL UNIVERSITY

Bessel ,s Functions

NotesSince the first three terms are independent of z, therefore the fourth term must also be independent
of z. Let it be a constant c, so that

2

2
1 d Z
Z dz = c

Or
2

2
d Z
dz = cZ ...(7)

Similarly, the third term in equation (6) must be free from  i.e.

2

2
1 d

d = d

Or
2

2
d
d = d ...(8)

With the help of (7) and (8) equation (6) becomes

2

2 2
1 1 1d R dR d c
R r drdr r

= 0

or
2

2 2
2 ( )d R dRr r d cr R

drdr
= 0 ...(9)

Let us put kr = x, so that

dR
dr =

dRk
dx

2

2
d R
dr

=
2

2
2

d Rk
dx

By putting these values in (9), we get

2 2
2 2

2 2
d R dr cxk r kr d R

dxdx k
= 0

Putting c = k2 and D =  n2, we get

2
2 2 2

2 ( )d R dRx x x n R
dxdx = 0

Again put R = y we have
2

2 2 2
2 ( )d y dyx x x n y

dxdx
= 0

This is Bessel,s differential equation. The solution of this equation is called cylindrical function
or Bessel,s function of order n, denoted as Jn(x).

In this unit we shall be using certain properties of gamma function (x):

(i) (n) is defined by the integral

(n) = 1

0
, 0x ne x dx n

3
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Notes
(ii) (n) = 2

2 2 1

0

x ne x

(iii) (1) = 1

(iv) (1/2) = 

(v) (n + 1) = n (n), n > 0

(vi) (n + 1) = 1. 2. 3. ...n = n! for n a +ve integer

(vii) (n) (1  n) = sinn

(viii) (m) =  if m = 0 or  ve integer

(ix) (2n) = 
2 12 ( ) 1/2

n
x n

1.3 On Second Order Differential Equation of the Fuchs Type

Consider Bessel,s equation for any n:

2
2 2 2

2 ( )d y dyx x x n y
dxdx = 0

Or
2 2

2 2
1 1d y dy n y
x dxdx x

= 0 ...(A)

Let p(x) = 1
x

q(x) = 1  
2

2
n
x

...(B)

Thus p(x) has a pole at x = 0 and q(x) has a double pole at x = 0. Thus x = 0 is a singular point of
Bessel,s Differential Equation. Since

x p(x) and x2 q(x), ...(C)

are finite at x = 0, the point x = 0 is a regular singular point of Bessel Differential equation. Also
by putting x = 1/r as independent variable we can show that x =  is an irregular singular point.
To see this put

x = 1
r

, r = 1
x

Then dy
dx

 = 2
2

1dy dy dydr r
dr dx dr drx

2

2
d y
dx

 = 2 dyd r
dx dr

4



LOVELY PROFESSIONAL UNIVERSITY

Bessel ,s Functions

Notes
= 2 2 dydr r

dr dr

=
2

2 2
22 dy d yr r r

dr dr

2

2

d y
dx

=
2

4 3
2 2d y dyr r

drdr

So the Bessel,s equation becomes

2
4 3 2 2

2 2 2
1 1 12d y dy dyr r r n y

dr r drr dr r = 0

Or
2

2 2
2 2

1d y dyr r n y
drdr r = 0

2 2

2 4 2
1 1d y dy n y
r drdr r r

= 0

Thus 0r  or x =  is an irregular singular point. Since the singular points for the Bessel ,s
equation are only 0 and , therefore we can get a series solution of the Bessel,s equation in
powers of x which converges for 0 < x < . According to Fuchs theorem, the point is regular
singular point provided p(x), q(x) satisfy conditions (C).

Fuchs theorem states that for x = x0 to be a regular singular point, it is necessary and sufficient
that p(x) has at most a pole of order 1 and q(x) at most a pole of order 2.

1.3.1 Series Solution of Bessel,s Differential Equation

Bessel,s differential equation is

2
2 2 2

2 ( )d y dyx x x n y
dxdx = 0 ...(10)

Here we shall apply Frobenius method which assumes the solution to be of the form

y =
0

k r
r

r

x x c ...(11)

Substituting in equation 10 we have

2 2

0

( ) ( 1) ( ) ( ) 0k r k r n r
r r r

r

C k r k r x C k r x C x n x

or
2 2

0

( ) ( 1) ( ) ( ) 0k r
r

r

C x k r k r k r x n ...(12)

Equating to zero the lowest power of x i.e. xk to zero we have

2
0 ( 1)C k k k n = 0

or 2 2
0C k n = 0 ...(13)

5
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Notes As C0  0, we have

K2  n2 = 0 ...(14)

The equation (14) is called indicial equation.

So k = n or k =  n

We first consider the case k = n, next equate the co-efficient of xk+1 to zero i.e.

C1 [(k + 1)2  n2] = 0

For k = n, (k + 1)2  n2  0

So we have C1 = 0 ...(15)

Putting the co-efficient of xk+2 to zero, we get

C2 {(k + 2) (k + 1) + k + 2  n2} + C0 = 0

or C2 [(k + 2)2  n2] + C0 = 0

or C2 = 0
2 2( 2)

C
k n

= 0
2 2( 2)

C
n n

for k = n

or = 0 0
2(2 2)(2) ( 1)2

C C
n n

...(16)

Putting the co-efficient of xk+3 to zero, we get

C3 [(k + 3)2  n2] + C1 = 0

or C3 = 1
2 2( 3)

C
n n

 = 0, as C1 = 0

Putting the co-efficient of xk+4 to zero, we get

C4 [(k + 4)2  n2] + C2 = 0

or C4 = 2
2 2( 4)

C
n n

= 2

(2 4)(4)
C

n

=
2

22
2 4

( 1)
( 2)2, 2 ( 1)( 2)1.2(2)

CC
n n n

Proceeding in the same way we get

C1 = 0 = C3 = C5 = C7 = ... ...(17)

And C2k = 0
2

( 1)
( 1)( 2)...1.2...(2 ) 2

k

k
C

n n k
for 1, 2, 3 ...(18)

6
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Bessel ,s Functions

Notes
So C6 =

3
0

6
( 1)

( 1)( 2)( 3) 3 (2)
C

n n n

C8 =
4

0
8

( 1)
( 1)( 2)( 3)( 4) 4 (2)

C
n n n n

    
    
    

Substituting the values of k, C0, C1, C2,... in equation for y we get

y =
2 4

0 0
0 ....

( 1) 1 2 ( 1)( 2) 2 2
n k x k xx C

n n n

   =
2 4

0
1 1 11 ....

( 1) 1 2 ( 1)( 2) 2 2
n x xC x

n n n
...(19)

If we now take C0 to be

C0 =
1

2 ( 1)n n
...(20)

Where (n) is a gamma function.

As you know the properties of gamma functions n (n) = (n + 1), for any value of n, so we get
various values of (n). The equation for y becomes

y =
2 421 ( 1)1 .....

( 1) 1 2 ( 1)( 2)1.2 22 ( 1)

n

n
x x x

n n nn

=
2 421 1 ( 1) ...

( 1) 2 ( 2) 1 2 ( 3) .2 2

n nx x x
n n n

or y =
2

0

( 1)
( 1 ) 2

n ss

s

x
n s s ...(21)

Here we have used the fact that

(n + 1) (n + 1) = (n + 2),

(n + 2) (n + 2) = (n + 3) and so on.

Also 1, 2, 3... s = ( 1)s s

The above solution is called Bessel,s function Jn(x). Thus

Jn(x) =
2

0

( 1) 1
( 1 ) ( 1) 2

n ss

s

x
n s s ...(22)

For k = n and if n is not an integer then the other solution for k = n is obtained from the
equation of Jn(x) by replacing n  n i.e.

7
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Notes
J n(x) =

2

0

( 1)
( 1 ) 1 2

s ns

s

x
s n s ...(23)

Thus the general solution of Bessel,s equation is

y = A Jn(x) + B J n(x) ...(24)

Where A, B are arbitrary constants.

Example: Proceeding as above shown that for n = 0

J0(x) = 1  
2 4 6

2 2
1 1 ...

2 2 22 3
x x x

= 1  2 4 6

2 2 2 2 2 ...
2 2 4 2 4 6
x x x ...(25)

Prove for integer n

J n(x) = Jn(x) ( 1)n ...(26)

To prove this consider the expression for Jn(x) i.e.

Jn(x) =
2

0

( 1)
( 1) ( 1) 2

n ss

s

x
n s s

Thus J n(x) =
2

0

( 1)
( 1 ) ( 1) 2

s ns

s

x
s n s

=
1 2

0

( 1)
( 1 ) ( 1) 2

n s ns

s

x
s n s + 

2( 1)
( 1 ) ( 1) 2

s ns

s n

x
s n s ...(27)

In the first term we have the argument of

(s + 1  n),

To be negative i.e.

S + 1  n

is ve for s = 0 to n  2 and it is zero for s = n  1. From the properties of gamma functions

(s + 1  n) is  for s + 1  n  0 ...(28)

So the first series for J n(x) is zero and the expression for J n(x) becomes

J n(x) =
2( 1)

( 1 ) ( 1) 2

s ns

s n

x
s n s

Putting S = r + n, we have for

s = n, n + 1,... 

r = 0, 1, 2, ... 

Thus J n(x) =
2

0

( 1)
( 1 ) ( 1) 2

r nr n

r

x
r n n r n

8



LOVELY PROFESSIONAL UNIVERSITY

Bessel ,s Functions

Notes
=

2

0

( 1)( 1)
( 1) ( 1) 2

r nr
n

r

x
n r r

or J n(x) = ( 1)n Jn(x) ...(26)

Thus J n(x) is not independent of Jn(x)

1.3.2 Solution of Bessel
,
s Differential Equation when n is a Non-negative

Integer

We had seen that when n is not an integer there are two independent solutions i.e. Jn(x) and J n(x).

When n is a non-negative integer

J n(x) = ( 1)n Jn(x) ...(26)

And so it is dependent on Jn(x). To find a second solution we introduce Neumann Function

Yv(x) = ( )cos ( )
sin

v vJ x v J x
v

...(29)

If v is not an integer, then Yv(x) and Jv(x) form a general solution of the Bessel,s equation. If v is
a non-negative integer, then from equation (26), equation (29) becomes an indeterminate form.
To calculate the limit of (29) for v  n, differentiate both the numerator and denominator with
respect to v. Then setting v n, we have

( ) lim ( )n n
Y x Y x = 

sin ( ) cos ( ) ( )lim
cos

v
n

J x J x J x

= 
( ) ( )1 ( 1)n

n n

J x J x
...(29a)

Now from equation (21)

J (x) = 
2

0

( 1)
( 1) 2

s

s

s x
s s

( )J x = 
2

2 2
2

0

log( 1) ( 1)
2 ( 1) 2( 1)

s x x

s

s x s x
s s u s

= 
2

0

( 1) ( /2) log ( 1)
1 2s

s x x s
s s ]

where

( 1)s = 
( 1)
( 1)

s
s ...(30)

thus ( )lim
n

J x = 
2

2

0

( 1)
log ( 1)

1 2

n ss x

s

x n s
s n s ...(31)

9
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Notes The expression for J n(x) is from (27)

J (x) =
1 2 2

0

( 1) ( 1)
1 ( 1) 2 1) ( 1 ) 2

n s ss s

s s n

x x
s s s s ...(27)

As you know from the properties of gamma functions

(x) (1  x) = sin x ...(32)

From (27) we obtain

2

2
( 1)

sx

s  =

2

( )sin( )
2

sx s s
...(33)

Differentiating (33), we see that for 0  s  n

2( /2) ( )sin( )s

n

x s sd
d

= 
2

11 ( ) ( )sin( )
2

s

x s s s

1cos( ) log( /2)sin( )
n

m x s

=
2

( )cos( )
2

n mx n m n m

Therefore as  n, ( )vJ x
x

 tends to

1 2 2

0

( 1) ( )( /2) ( 1) ( /2) log( /2) ( 1)
( 1) ( )

n n n s s s

s s n

s x x x n s
s s n s

=
1 2

1 21
2

0

( 1)( 1) ( 1) ( 1) ( ) log ( 1)
2 2

n n s
n n m n s

s s n

n s x xx s
s ...(34)

Using (31) and (34) we get for Neumann Function Yn(x) with n being a non-negative integer the
following

Yn(x) =
2

0

2 1 ( 1) ( 1)( )log ( 1)
2 2 !( )!

n s
s

n
s

x x s n sJ x
s n s

1 2

0

1 ( 1 )!
! 2

n n s

s

n s x
s ...(35)

For n = 0, the last term does not appear. Thus Jn(x) and Yn(x) form the general solution.

Thus we see that the Neumann Function Yn(x) defined by the relation

Yn(x) =
( )cos ( )

sin
J x J x

converges uniformly to Yn(x) given by equation (35) as v  n is any bounded closed domain in
the complex x plane except for the origin. Formula (35) for Yn(x) is known as Hankel Formula.

10
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Bessel ,s Functions

NotesHankel Functions: The Hankel Function, or the Bessel Functions of the third kind are defined by

(1)( )H x  = J (x) + i Y (x)

(2)( )H x  = J (x) + i Y (x)

Prove that

J1/2(x) =
1/22 sin x

x
...(29)

Proof: Jn(x) is given by

Jn(x) =
2

0

( 1)
( 1 ) ( 1) 2

s ns

s

x
n s s

So J1/2(x) =
2 1/2

0

( 1)
( 3/2) ( 1) 2

ss

s

x
s s

=
1/2 2

0

( 1)
2 ( 3/2) ( 1) 2

ss

s

x x
s s

Expanding

J1/2(x) =
1

2 o 2 4

3 5 7
2 2 2

1 1 1 ....
2 ( ) (1) 2 ( ) (2) 2 ( ) (3) 2
x x x x

or J1/2(x) =
1

2 2 4

3 3 3
2 2 2

1 1 11 ...
2 ( ) (2) 2 5/2 (3) 2
x x x

=
1

2 2 4

2 41 1
2 2

(2)1 2.21 ...
2 ( ) ( ) 1 2 3 53 2 (2)

xx x

=
1

2 2 4

1 1
2 2

1 1 ...
2 ( ) ( ) 2 3 1 2 3 4 5
x x x

=
1

2 3 5

1
2

2 1 ...
2 ( ) 3 5
x x xx

x

=
1

2

1
2

1 2 sin
( )

x
x

Here 1
2

11
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Notes Self Assessment

1. Prove that

1
2
( )J x  =

1
22 cosx

x

Show that when n is any integer positive or negative

Jn( x) = ( 1)n Jn(x)

The expression for Jn(x) is given by

Jn(x) =
2

0

( 1)
! ( 1)! 2

n ss

s

x
s n s

Case I let n be a positive integer. Replacing x  x in the above equation we have

Jn( x) =
2

0

( 1)
! ( 1)! 2

n ss

s

x
s n s

=
22

0

( 1) ( 1)
! ( 1)! 2

n ss n s

s

x
s n s

=
22

0

( 1) ( 1)( 1)
! ( 1)! 2

n ss s
n

s

x
s n s

= 2( 1) ( ) ( 1) 1n s
nJ x as

Thus Jn( x) = ( 1)n Jn(x)

1.4 Recurrence Formulas for Jn(x)

Some of the recurrence relations involving Bessel functions are as follows:

I. x Jn(x) = n Jn(x) x Jn + 1(x),

where Jn(x) = 
d
dx Jn(x)

To prove the above relation, we start from the series expansion of Jn(x) as follows:

Jn(x) =
2

0

( 1)
!( )! 2

n ss

s

x
s n s

Differentiating it w.r.t. x and multiplying by x on both sides, we have

x J n(x) =
2

2
0

( 1) ( 2 )
!( )! 2

s n s

n s
s

n s x
s n s

12
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Bessel ,s Functions

Notes
=

2 2 1

0 1

( 1) ( /2)( 1)
!( )! 2 ( 1)! ( )!

n s s n ss

s s

xxn x
s n s s n s

=
2 1

1

( 1)( )
( 1)!( )! 2

n ss

n
s

xn J x x
s n s

In the last sum, let us replace s by r as

s = r + 1, then

( )nx J x  =

1 2
1

0

( 1)
2( )

!( 1 )!

n r
r

n
r

x

n J x x
r n r

or ( )nx J x  =
1 2

0

( 1)( )
!( 1 )! 2

n rr

n
r

xn J x x
r n r

= n Jn(x)  x Jn+1(x)

As the last sum is equal to Jn+1(x). Thus

( )nx J x  = n Jn(x)  x Jn+1(x)

II. ( )nx J x  + n Jn(x) = x Jn 1(x)

Again, we have

( )nx J x  =
2

2
0

( 1) ( 2 )
!( )! 2

s n s

n s
s

n s x
s n s

           =
2

0

( 1) (2 2 )
!( )! 2

n ss

s

n s n x
s n s

           =
1 2

0

( 1) (2 2 ) ( )
!( )! 2 2

n ss

n
s

n s x x n J x
s n s

           =
1 2

0

( 1) ( ) ( )
!( )! 2

n ss

n
s

n s xx n J x
s n s

           =
1 2

0

( 1) ( )
!( 1 )! 2

n s

n
s

xx n J x
s n s

{As (n + s)! = (n + s)(n  1 + s)!}

Thus identifying the sum with Jn 1(x), we have

x J n(x) = x Jn 1(x)  n Jn(x)

13
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Notes or rearranging terms we have

1( ) ( ) ( )n n nx J x n J x x J x

III. 1 12 ( ) [ ( ) ( )]n n nn J x x J x J x

To prove this we just make use of the above two recurrence relations I and II, here we have

x J n(x) = n Jn(x)  x Jn+1(x)

and x J n(x) + n Jn(x) = x Jn 1(x)

Substracting we get

n Jn(x) = n Jn(x)  x Jn+1 (x)  x Jn 1 (x)

or 2n Jn(x) = x [Jn 1 (x) + Jn+1 (x)].

Again rearranging terms we have

2n Jn(x) = x Jn+1(x) + x Jn 1 (x)

or 2n Jn(x) = x [Jn 1(x) + Jn+1 (x)]

You can see that relation III is not independent. It depends upon I and II recurring relations.

IV. 2 J n(x) = Jn 1(x)  Jn+1 (x)

Hint: Add recurrence relations I and II and simplify the result.

From recurrence relation I, we can show that

J 0(x) = J1(x)

V. 1( ) ( )n n
n n

d x J x x J x
dx

Now, the left hand side is

( )n
n

d x J x
dx  = 1 ( )n n

n nn x J x x J

= 1 [ ( ) ( )]n
n nx n J x x J x

= 1
1[ ( ) ( ) ( )]n

n n nx n J x n J x x J x {From recurrence relation I}

= 1
1[ ( )]n

nx x J x

= 1 ( ) . .n
nx J x R H S

Self Assessment

2. Prove

1( ) ( )n n
n n

d x J x x J x
dx

14
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Bessel ,s Functions

Notes1.5 Generating Function for Jn(x)

Prove that when n is positive integer Jn(x) is the Co-efficient of tn in the expansion of

1
2
x t

te ...(A)

in ascending and descending powers of t. Also show that Jn(x) multiplied by ( 1)n is the
co-efficient of t n in the expansion of the above expression.

Proof:

Expanding 
1

2
x t

te  in powers of x i.e.

1
2
x t

te  = 2 2
xt xe e

t

=
2 32 2 3 3 1 11 ....... 1 , .......

2 2 3! 2 2 2 3 2
x t x txt x x x

t t t
(B)

In the above expansion, collecting the co-efficients of tn, we have

1 1
2

nx
n  

1 2 21 1 1 ...
( 1)! 2 2 ( 2)! 2 2 2

n nx x x x
n n

=
2 41 1 1

2 ( 1)! 2 ( 2)! 2 2

n n nx x x
n n n

=
2

0

( 1) ( )
2

n ss

n
s

x J x
s n s ...(C)

Similarly co-efficients of t n in the above product is

= 1. 
21 21

2 ( 1)( 1) ( 1) ...
2 ( 1)! 2 2 2 ( 2)! 2

nn n nxn nx x x x
n n n

= ( 1)n 
2 421 ( 1) ( 1) ...

2 1 1 2 2 2 2

n n nx x x
n n n

= ( 1)n 
2

0

( 1)
2

n ss

s

x
s n s

= ( 1)n Jn(x)

In the above product the co-efficient of t0 is

= 1  
2 4 6 8

2 2 2 2 2 2
1 1 1 ....

2 2 2 22 2 3 2 3 4
x x x x

= 1  
2 4 6 8

2 2 2 2 2 2 2 2 2 2 ....
2 2 4 2 4 6 2 4 6 8
x x x x

= J0(x)

15
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Notes Thus in the expansion of t,

1
2
xe t

t  = J0 + 
1t
t

æ ö
-ç ÷è ø J1 + 

2 3
2 32 3

1 1 1... ..... (1) ...n n
nnt J t J t J

t t t

= 2
0 1 1 2 2( ) ( ) ( )] ( ) ( ) ...J x t J x J x t J x J x

= ( )n
n

n

t J t

Here we have used the result J n(x) = ( 1)n Jn(x)

(A) Trigonometric Expansions involving Bessel,s Functions

Show that

(a) cos (x sin ) = J0(x) +2 cos 2  J2 +2 cos 4  J4 + ....

(b) sin (x sin ) = 2 sin  J1 + 2 sin 3  J3 + ....

(c) cos (x cos ) = J0  2 cos  J2 + 2 cos 4  J4 ....

(d) sin (x cos ) = 2 cos  J1  2 cos 3  J3 + 2 cos 5  J5 + ...

(e) cos x = J0  2 J2 + 2J3  2J4 + ...

(f) sin x = 2 J1  2 J3 + 2 J5 ....

Proof: We know from generating function that

1
2
xe t

t
 = ( )n

n
n

t J x

=
0 1

( ) ( )n n
n n

n n

t J x t J x

=
0 1

( ) ( )n n
n n

n n

t J x t J x

= 0
1

( ( 1) ) ( )n n n
n

n

J t t J x {since J n(x) = ( 1) Jn(x)}

Thus,

2 1x

e t
t

 = 1 2 2 3 3
0 1 2 3( ) ( ) ( )J t t J t t J t t J ...(i)

Let us put t =  ei , tn = ein 

then (i) becomes 2 ( )
x

i ie e e  = 2 2 3 3
0 1 2 3( ) ( ) ( ) ...i i i i i iJ e e J e e J e e J (ii)

Since cos n  = 
1
2

in ine e

sin n  =
1
2

in ine e
i

16
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Bessel ,s Functions

NotesSo (ii) may be written as

eix sin  = J0 + 2i sin  J1 + 2 cos 2  J2 + 2 i sin 3  J3 + ... ...(iii)

comparing real and imaginary part on both sides

we have

(a) cos (x sin ) = J0 + 2 cos 2  J2 + 2 cos 4  J4 + ... ...(iv)

(b) sin (x sin ) = 2 sin  J1 + 2 sin 3  J3 + ... ...(v)

Replacing  by /2   in (iv) and (v) and using sin   sin ( /2  ) = cos , we get

(c) cos (x cos ) = J0  2 cos 2  J2 + 2 cos 4  J4 ... ...(vi)

(d) sin (x cos ) = 2 cos  J1  2 cos 3  J3 + 2 cos 5  J5 ... ...(vii)

Replacing  by 0 in (iv) and (vii) we get

(e) cos x = J0  2 J2 + 2 J4 ... ...(viiii)

and

(f) sin x = 2 J1  2 J3 + 2 J5 ... ...(ix)

1.6 On the Zeros of Bessel Functions Jn(x)

We know that Bessel function Jn(x) satisfies the equation

2
2 2

2
( )( ) ( ) ( ) 0nn

n
d J xd J xx x x n J x

dxdx

Here n is a positive integer

let us put x = ,

1n nd J d J
dx d

2 2

2 2 2
1n nd J d J

dx d

So equation (1) becomes

2
2 2 2 2

2
( ) ( ) ( ) ( ) 0n n

n
d J d J n J

dd ...(ii)

which may be written as

2( ) 2 ( ) 0n
n

d Jd n J
d d ..(iii)

let us put R = , P = , Q = 
2n

Then
( ) 2 ( )n

n
d Jd R Q p J

d d ...(iv)

17
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Notes Here due to R = 0, it can be shown that for some a i.e. 0  x  a, Jn( ) satisfies the Boundary

Condition Jn( a) = 0 ...(v)

And so the solutions of (iii) form an orthonormal set w.r.t. weight function P = .

So zeros of Jn( ) if denoted by in i = 1, 2,...

Let

1a < 2a < 3a... m....

So a = amn

thus  = mn
mna

Since both Jn and nd J
d  are continuous at  = 0, therefore for each fixed n = 0, 1, 2... the Bessel

function Jn( mn) (m = 1, 2,...) with mn = m

a
, form an orthogonal set on the internal 0  x  a w.r.t.

weight P =  i.e.

0
( ) ( ) 0 for

a

n mn n pnJ J p m

So zeros of Jn(x) are useful in obtaining orthogonal properties of Jn(x). The details of the above
discussion will be given in the later units.

Example: Prove that Jn(x) = 0 has no repeated roots except  at x = 0.

Solution: If possible let  be a repeated root of

Jn(x) = 0 at x = ...(i)

Thus Jn( ) = 0 as well as J n( ) = 0 ...(ii)

Now from recurrence formulae I and II,

x J n(x) = n Jn(x)  x Jn+1 (x),

x J n(x) + n Jn(x) = x Jn 1(x),

We have

Jn+1(x) =
n
x  Jn(x)  J n(x) ...(iii)

J  n  1(x) =
n
x

 Jn(x) + J n(x) ...(iv)

As Jn(x) = 0 and J n( ) = 0, we have from III and IV J n+1( ) = 0 and Jn 1( ) = 0, i.e. for the same value
of x = , Jn(x), Jn+1(x), Jn 1(x) are all zero x, which is absurd as we cannot have two power series
having the same sum function. Then Jn(x) = 0 cannot have repeated roots except x = 0.

18
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Bessel ,s Functions

Notes1.7 Illustrative Examples

Example 1: Show that

(i) x sin x = 2 (22 J2  42 J4 + 62 J6  ...)

(ii) x cos x = 2 (12 J1  32 J3 + 52 J5  ...)

Solution: (i) We know that

cos (x sin ) = J0 + 2 J2 cos 2  + 2 J4 cos 4  + ... ...(i)

Differentiating w.r.t. ‘ , we get

sin (x sin ). x cos  = 0  2.2 J2 sin 2   2.4 J4 sin 4 ... ...(ii)

Differentiating (ii) w.r.t. , ,, we have

cos (x sin ). (x cos )2 + sin (x sin ) (x sin )

= 2.22.J2 cos 2  2.42 J4 cos 4   2.62 J0 cos 6 ... ...(iii)

Replacing  by /2 in (iii), we get

x sin x = 2 (22 J2  42 J4 + 62 J6 ...)

(ii) Start with

sin (x sin ) = 2J1 sin  + 2J3 sin 3  + ...

Differentiate this twice w.r.t. , , as in part (i) and then replace  by /2. Thus we can get the
required answer.

Example 2: Show that when n is integral

(a) Jn =
0

cos( sin )n x d

(b) J0 =
0

cos( cos )x d

=
0

cos( sin )x d

and hence deduce that

J0(x) = 1  
2 4 6

2 2 2 2 2 22 2 .4 2 .4 .6
x x x  + ....

=
2

2
0

( 1)

2 . !

r r

r
r

x

r

Solution: We know that

cos (x sin ) = J0 + 2J2 cos 2 +... + 2J2m cos 2m  +... ...(i)

and sin (x sin ) = 2 sin .J1 + 2 sin 3  J3 + ...

+2J2m + 1 sin (2m + 1)  +... ...(ii)
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Notes Multiplying both sides of (i) by cos 2m  and then integrating between the limits 0 to , we get

0

cos( sin )cos 2x m d

= 2
0 2 2

0 0 0

cos2 2 cos2 cos2 ... 2 cos 2 ...mJ m d J m d J m d

= 0 + 0 + ... + 2
0

(1 cos 4 ) ...mJ m d

= J2m.

Similarly, we can prove that

0

cos( sin )cos(2 1) 0x m d

Again multiplying both sides of (ii) by sin (2m + 1)  and then integrating between the limits 0 to
, we get

0

sin( sin )sin(2 1)x m d

= 1 2
0 0

2 sin .sin(2 1) 2 sin 3 sin(2 1)J m d J m d

2
2 1

0

... 2 sin (2 1) ...mJ m d

= 0 + 0 +...+ 2 1
0

2 1 cos2(2 1) ...mJ m d

= J2m+1 0 2 1[ ] mJ

Similarly,

0

sin( sin )sin 2 0x m d

Therefore

0 0

cos(2 sin ) cos2 .cos( sin )m x d m x d

+
0

sin 2 .sin( sin )m x d

= J2m

20
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Bessel ,s Functions

NotesAlso

0

cos (2 1) sinm x d

=
0 0

cos(2 1) .cos( sin ) sin(2 1) sin( sin )m x d m x d

= 2 1mJ

Hence for all positive integral n, we get

0

cos( sin ) .nx d J

If n is negative, say n =  m, where m is positive, then

0

cos( sin )x d

=
0

cos( sin )m x d

=
0

cos ( ) sin( )m x d Putting  =  

=
0

cos ( sin )m m x d

=
0

cos cos( sin )m m x + sin sin( sin )m m x d

= ( 1)m 
0

cos ( sin )m x d

= ( 1)m Jm(x) Since J m (x) = ( 1)m  Jm(x)

= Jn(x)

Hence for all integral values of n

0

cos ( sin ) nn x d J

(b) Putting  = /2 +  in the value of cos (x sin ) from (i), we have

cos (x cos ) = J0  2J2 cos 2  + 2J4 cos 4  ...

0 2
0 0 0

cos ( cos ) 2 cos2 ...x d J d J d

=  J0
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Notes From (i) we have

cos (x sin ) = J0 + 2J2 cos 2  + 2J4 cos 4  ...

0 2
0 0 0

cos ( sin ) 2 cos2 ...x d J d J d

0.J

Deduction: We have to prove that

0
0

1( ) cos ( cos )J x x d

=
2 2 4 4 6 6

0

1 cos cos cos1 ...
2! 4! 6!

x x x d ...(iii)

Since
2

0

1.3.5...(2 1)cos
2.4.6...(2 )

r rd
r

from definite integrals.

from (iii), we get

J0(x) =
2 4 61 1 1.3 1.3.5

2! 2 4! 2.4 6! 2.4.6
...x x x

=
2 4 6

2 2 2 2 2 21 ...
2 2 4 2 4 6
x x x

=
2 4 6

2 2 2 61 ...
2 2 (2!) 2 (3!)
x x x

=
2

0

( 1)
(2 . !)

r r

r
r

x
r

Self Assessment

3. Verify directly from the representation

J0(x) = 
0

1 cos( sin )x d

that J0(x) satisfies Bessel,s equation in which n = 0

Example 3: Prove

0 2 2
0

1j ( ) , 0.
{( )}

axe bx dx a
a b

22
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Bessel ,s Functions

NotesSolution: From example above, we have

J0(x) = 
0

1 cos( sin )x dx

0
0

j ( )axe bx dx
0 0

1 cos( sin ) dx 
x

axe bx d

0 0

1 cos( sin )axe bx dx d

( sin ) ( sin )

0 0

1  
2

i bx i bx
ax e ee dx d

( sin ) (   i sin )

0 0

1  
2

a ib x a b xe e dx d

( sin ) (   sin )

00

1  
2 ( sin ) ( sin )

a ib x a ib xe e d
a ib a ib

0

1 1 1  
2 sin sin

d
a ib a ib

2 2 2
0

1 2   
2  sin

a d
a b

/2 2

2 2 2
0

cosec2.  
 cosec

da
b a

/2 2

2 2 2 2
0

cosec2.  
( ) cot

da
a b a

/2

1
2 2 2 2

0

1 cot2. cot  
{( )} {( )}

a a
a a b a b

1 1
2 2

2 cot 0 cot  
{( )}a b

2 2

1  
{( )}a b
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Notes
Example 4: Using generating function or otherwise, show that

1 ( )n
n nJ x J x

Solution: We have

1
2( )
x zn z

n
n

J x z e

Replacing x by x in (i), we get

1 1
2 2( )
x xz zn z z

n
n

J x z e e

    ( ).( )n
n

n

J x z [by (i)]

( ) ( ).( 1)n n n
n n

n n

J x z J x z

Equating the coefficient of zn from both sides of (ii) gives

1 ( )n
n nJ x J x .

Example 5: If n > 1, show that

1

0

( )
x

n
nx J x dx = 1( )n

nx J x

Solution: From recurrence formula I, we have

( )n
n

d x J x
dx = 1( )n

nx J x ...(i)

Replacing n by (n + 1) in (i), we get

1
1( )n

n
d x J x
dx = 1 ( )n

nx J x ...(ii)

Integrating (i) w.r.t. ,x, between the limits 0 and x, we get

1
1 0
( )

xn
nx J x = 1

0

( )
x

n
nx J x dx

or 1

0

( )
x

n
nx J x dx = 1

1( )n
nx J x
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Bessel ,s Functions

Notes
Example 6: Show that

(a) 1
0

( )
x

n
nx J x dx  = 1 , 1.

2 ( 1)
n

nn x J n
n

(b) 1
0

( )n
nx J x dx = 

1 1,  .
22 ( 1)n n

n

Solution:

(a) From recurrence formula II, we have

( )n
n

d x J x
dx = 1( )n

nx J x dx ...(i)

Integrating (i) w.r.t. ,x, between the limits 0 and x, we get

0
( )

xn
nx J x = 1

0

( )
x

n
nx J x dx

10
0

( )( ) lim ( )
x

n nn
n nnx

J xx J x x j x dx
x

...(ii)

But 
2

0 0

( ) 1 1lim lim . 1 ...
2.2.( 1)2 ( 1) 2 ( 1)

n
n

n n n nx x

J x x x
nx x n n

Hence (ii) may be written as

1
0

1( ) ( )
2 ( 1)

x
n n

n nnx J x dx x J x
n

(b) Integrating (i) w.r.t. ,from 0 to , we get

10
0

( ) ( )n n
n nx J x x J x dx

10 0
0

( ) ( ) lim lim ( )nn n
nn nx x

J x J x x J x dx
x x ...(iii)

As in part (a), 1
0

( ) 1lim
2 ( 1)

n
n nx

J x
x n

...(iv)

We know that for large values of x the approximate value of ( )nJ x is given by

1
22 1 1( ) ~ cos ,

2 2 2nJ x x n n
x
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Notes
Using (v), 

( )lim 0n
nx

J x
x

Using (iv) and (vi), (iii) reduces to

1
0

1( )
2 ( 1)

n
n nx J x dx

n

1.8 Summary

 Bessel Differential equation is seen to have x = 0 as regular singular point

 x =  is irregular singular point of the Bessel Differential.

 Bessel Differential equation is deduced from Laplace equation.

 Bessel Differential equation is of Fuchs Type and so Frobenius method of expanding
solution of Bessel,s equation as power series in x is valid.

 The generating function of Bessel function is given by

1x t
z te = ( )n

nt J x

 With the help of generating function we obtain recurrence relations

 It is seen that ( )nJ x  does not have repeated zeroes except at x = 0.

1.9 Keywords

Ordinary point of a Differential equation is such that the solution can be expressed in terms of
a power series.

Regular singular point x = x0 is such that p(x), q(x) of the differential equation

2

2 ( ) ( ) 0d y dyp x q x y
dxdx

behave as

0 0

2
0 0finite lim , = finite lim

x x x x
x x p x x x q x

Recurrence relation is a relation involving a few Bessel functions i.e. it involves

1 1( ), ( ), ( )n n nJ x J x J x  and 
( )ndJ x

dx
.

Generating function is such a function which on expansions gives the values of ( )nJ x .

Fuchs type differential equation satisfies the properties as given above.

Indicial equation gives the values of the parameter appearing in power series expansion of
( )nJ x .
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Bessel ,s Functions

Notes1.10 Review Questions

Prove that:

1.
2

10 0
2 2

( )( ) ( )d J x dJJ x x x
dxdx

2.
2

0
2 0 2

( )( ) ( ) 2 d J xJ x J x
dx

3.
2

0 0
2 2( ) 3 4 ( ) 0dJ d JJ x x

dx dx

4. 1 12 ( ) ( ) ( )n n n
d J x J x J x
dx

5. Solve the Differential equation

2
2

2
2

9 0
4

d y dyx x x y
dxdx

and show that

3 3
2 2

( ) ( )y A J x B J x

1.11 Further Readings

G. N. Watson, A Treatise on the Theory of Bessel Functions

Louis A. Pipes and L.R. Harvill, Applied Mathematics for Engineers and Physicists

K. Yosida, Lectures on Differential and Integral Equations

Jai Dev Anand, P.K. Mittal and Ajay Wadhwa, Mathematical Physics Part II
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Notes Unit 2: Legendre’s Polynomials

CONTENTS

Objectives

Introduction

2.1 Legendre’s Differential Equation from Laplace’s Equation

2.1.1 Power Series Solution of Legendre’s Equation in Ascending Powers of x

2.1.2 Solution of Legendre’s Equation in Descending Powers of x.

2.2 Rodrigue’s Formula for Legendre Polynomials

2.3 Generating Function for Legendre Polynomials

2.4 Recurrence Relations for Legendre Polynomials

2.5 Orthogonal Properties of Legendre Polynomials

2.6 Expansion of a f(x) in terms of Legendre’s Polynomials

2.7 Summary

2.8 Keywords

2.9 Review Questions

2.10 Further Readings

Objectives

After studying this unit, you should be able to:

 Observe that Legendre’s differential equation is obtained from the Laplace differential
equation

 Obtain the Legendre’s polynomial Pn(x) as a power series having xn as a maximum
powerterm for n > 0 integer

 See recurrence relations of Pn(x) help in finding all Pn(x) in terms of two or three lower
Pn(x).

 See that a generating function is found by which various Pn(x) are found.

 See that orthogonal properties of Pn(x) help in expressing any function f(x) in terms of
various Pn(x).

Introduction

The Legendre’s polynomials ( )nP x  play an important role in potential problems i.e. in
electrostatics and gravitational field. It is therefore important to study the properties of ( )nP x .

1. First of it is important to study the solution of Legendre’s equations so that more insight
to ( )nP x  can be seen.

Richa Nandra, Lovely Professional University
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Legendre’s Polynomials

Notes2. Recurrence relations derived in this unit help us in finding unknown ( )nP x  in terms of
two or three known Legendre polynomial

 The Legendre’s polynomials ( )nP x  have zeroes at some , 1, 2, ...ix x i  i.e. 2( )P x
has two zeroes, 3( )P x  has three and so on.

 Legendre polynomials are quite suited in numerical evaluations of certain integrals.

2.1 Legendre’s Differential Equation from Laplace’s Equation

Laplace’s equation in spherical polar coordinates is

2
2

2 2
1 1sin 0

sin sin
V V Vr

r r ...(A)

Let us put

V = ( , )n
nr F ...(B)

Here ( , )nF  is a function of  and . So

V
r = 1n

nn r F

V
= n nFr

2

2
V

=
2

2
n nFr

Substituting in Laplace equation, we get

2
1

2 2
1 sin

sin sin

n
n n n n

n
F r Fn r F r

r = 0

or 2 2( 1) sin
sin sin

n n
n n n

n
r F r Fn n r F = 0

Dividing by rn, we have

2

2 2
1 1( 1) sin

sin sin
n n

n
F Fn n F = 0 ...(C)

Next consider the case when ( , )nF  is independent of , so

1( 1) sin
sin

n
n

Fn n F = 0 ...(D)

Let us put the independent variable  in terms of x given by

x = cos 

n
d F
d = sinn nF x F

x x
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Notes
sin nF = 2sin nF

x

sin nF = 2sin nF
x

=
2

3
22 sin cos sinn nF d F

dx dx

Substituting in equation (D) we have

2
2

2( 1) 2 cos sinn
n

F d Fn n F
x dx

= 0

or
2

2
2( 1) 2 (1 )x

n
dF d Fn n F x x
dx dx = 0

Rewriting it as:

2
2

2(1 ) 2 ( 1)n n
n

d F dFx x n n F
dxdx = 0 ...(E)

This equation (E) is known as Legendre’s differential equations. The solution of equation (E) for
positive integer values of n are known as Legendre Polynomial.

Putting Legendre equation in Fuchs form we have

2

2 2 2
2 ( 1)

(1 ) (1 )
n n

n
d F x dF n n F

dxdx x x = 0 ...(F)

Here let coefficients of ndF
dx  and Fn be

( )p x = 2
2

(1 )
x
x

..(G)

( )q x = 2
( 1)

(1 )
n n

x

At 1x  and 1,x  both  ( )p x  and ( )q x  have poles of the first order. So the points x = 1 and
x = 1 are regular singular points of the Legendre ’s equations. Let us investigate the behaviour
of the equation for x . For this purpose let us put

x =
1 , nF y
r ...(H)

dy
dx = 2dy dydr r

dx dx dr
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Notes2

2
d y
dx = 2 2dy dyd dx r

dx dx dr dr

=
2

2 4
22 dy d yr r r

dx dr

The equation (F) becomes

2 2
4

2

2 2

2 ( 1)
1 11 1

d y dyr n nr y
dxdr r

r r

= 0

2 3 2
4

2 2
2 ( 1)

( 1) ( 1)
d y dyr n n rr y

dxdr x r
= 0

or
2

2 2 2 2
2 ( 1)

( 1) ( 1)
d y dy n n y

drdr r r r r
= 0 (I)

Thus r = 0 or x =  is a regular singular point of the differential equation (Legendre’s). Thus we can

find a solution of Legendre’s equation in terms of a power series in x as well as in powers of 
1 .
x

2.1.1 Power Series Solution of Legendre’s Equation in Ascending Powers
of x

2
2

2(1 ) 2 ( 1)nn
n

dFd Fx x n n F
dxdx

= 0 ...(A)

As in the case of Bessel’s differential equation we assume a solution of the form:

nF =
0

s r
r

r

x C x

or nF =
0

r s
r

r

C x ...(B)

For (B) to be a solution of (A) it is necessary that when equation (B) is substituted into (A), the
coefficients of every power of x vanish. So we have

2 2 1

0 0 0

(1 ) ( )( 1) 2 ( ) ( 1)r s r s r s
r r r

r r r

x r s r s C x x C r s x n n C x 0

or 2

0

( )( 1) ( ) 2 ( ) ( 1)r s r s r s r s
r r r

r

r s r s C x x C r s x x n n C 0

or 2

0

( )( 1) [ ( 1) 2( ) ( )( 1)]r s r s
r r

r

r s r s C x C x n n r s r s r s 0

2

0

( )( 1) ( )( 1)r s r s
r r

r

r s r s C x C x n r s n r s ...(C)
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Equating coefficients of 2r sx  we get

2( )( 1) ( 2)( 1)r rC r s r s n r s n r s C = 0

for 0, 1, ...r ...(D)

Since the leading term  is Co so that

1 20, 0.C C  Thus Co satisfies

0( )( 1)C s s = 0 ...(E)

Since 0 0,C  so the indicial equation is

( 1)s s = 0 ...(F)

giving the value 0s  and 1.s

Next putting 1,r  we have

1( 1)s s C = 0 ...(G)

So for 0,s  C0 and C1 are both arbitrary. Thus for s = 0, equation (D) becomes

rC = 2
( 2)( 1)

( 1) r
n r n r C

r r ...(H)

From equation (H),

2C = 0
( 1)
1.2

n n C

3C = 1
( 1)( 2)

3.2
n n C

4C = 2 0
( 2)( 3) ( 2)( 1)( 3)

4.3 1.2.3.4
n n n n n nC C

5C = 3 1
( 3( 4) ( 3)( 1)( 2)( 4)

5.4 1.2.3.4.5
n n n n n nC C

                                                            ...............................................................................................

                                                            ...............................................................................................

                                                            ...............................................................................................

and so

Substituting the above values of C,0 in equation (B) and using s = 0 value we have

( )nF x =
4

2
0

( 1) ( 2)( 1)( 3)1 ...
2 1.2.3.4

n n n n n n xC x

3 4
1

( 1)( 2) ( 3)( 1)( 2)( 4) ...
1.2.3 1.2.3.4.5

n n n n n nC x x x ...(I)

By applying ratio test it may be shown that above two series converge in the interval (-1, 1)
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NotesAs a problem, one can show that for s = 1, we can get second series by the above procedure. Since
equation (I) contains two arbitrary constants so equation (I) is the general solution of Legendre’s
equation (A). Now if we give arbitrary coefficients C0 and C1 such numerical value that the
polynomial (I) becomes equal to one when x is unity, we obtain for n the values 0, 1, 2, 3, ..., and
obtain the following system of polynomials:

0( )P x = 1

1( )P x = x

2( )P x = 2(3 1)/2x

3( )P x = 3 4 2
4

1 1(5 3 ); ( ) (35 30 3)
2 8

x x P x x x ...(J)

The general polynomial ( )nP x  which satisfies Legendre’s equation is given by the series

( )nP x = 2

0

( 1) (2 2 )!
2 ( )!( 2 )!

N r
n x

n
r

n r x
n r n r

...(K)

Where /2N n  for even n and ( 1)/2N n  for n odd.

2.1.2 Solution of Legendre’s Equation in Descending Powers of x

The Legendre’s Equation is

2
2

2(1 ) 2 ( 1)d y dyx x n n y
dxdx = 0 ...(A)

Let us assume

y =
0

s r
r

r

C x ...(B)

dy
dx =

1

0

( ) s r
r

r

s r C x ...(C)

2

2
d y
dx =

2

0

( )( 1) s r
r

r

s r s r C x ...(D)

Substituting in (A), we get

2 2 1

0 0 0

(1 ) ( )( 1) 2 ( ) ( 1)s r s r s r
r r r

r r r

x C s r s r x x C s r x n n C x = 0

or 2

0

( )( 1) ( 1) ( )( 1)s r s r
r

r

C s r s r x n n s r s r x = 0 ...(E)

Simplifying (E) we have

2

0

( )( 1) ( )( 1)s r s r
r

r

C s r s r x n s r n s r x 0 ...(F)
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Notes Equation (F) being identity, we can equate to zero the coefficients of various powers of x.
Equating to zero the coefficients of highest powers of x i.e. of xs, we have

0( )( 1)C n s n s = 0 ...(G)

Since 0 0,C  so the indicial equation is

( )( 1)n s n s = 0 ...(H)

The solutions of equation (H) are

s = n and s =  n  1 ...(I)

Equating to zero the coefficient of the next lower power of x i.e. of 1 ,sx  we have

1( 1)( )a n s n s = 0 ...(J)

So 1 0,a  as its coefficient is not zero for both s n  and 1.s n

Again equating to zero the coefficient of the general term i.e. of ,k rx  we have

2( 2)( 1) ( )( 1)s rC s r s r n s r n s r C = 0

or

Cr = 2
( 2)( 1)

( )( 1) r
s r s r C

n s r n s r ...(K)

Putting 2r

2C = 0
( )( 1)

( 2)( 1)
s s C

n s n s

Putting r = 3

3C = 1( 1)( 2)
( 3)( 2)

s s C
n s n s

 = 0, as 1 0C

Thus

C1 = 3 5 ... 0C C (L)

Now there are two values for s i.e.

s = n and s =  n  1 (I)

We first take s = n, then the general recurrence relation (K) becomes

Cr = 2
( 2)( 1)

(2 1) r
n r n r C

r n r (M)

Putting r = 2, 4, 6, ... we obtain the coefficients 2 4 6, , ...C C C in terms of Co i.e.

C2 = 0
( 1)

2(2 1)
n n C

n
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C4 = 2

( 2)( 3)
(2 3)

n n C
n n

= 0
( 3)( 2)( 1)
1.2.4.(2 3)(2 1)
n n n n C

n n

C6 = 4
( 4)( 5)

6(2 5)
n n C

n

= 0
( 5)( 4)( 3)( 2)( 1)

2.4.6(2 5)(2 3)(2 1)
n n n n n n C

n n n

                                                                                                    .......................................................................
                                                                                                    .......................................................................
                                                                                                    .......................................................................

Substituting these values of C’s in equation (B) we have for s = n

y = 2 4
0

( 1) ( 1)( 2)( 3) ...
2(2 1) 2.4 (2 1)(2 3)

n x nn n n n n nC x x x
n n n ...(N)

= y1 (say)

For the second value of 1,s n  we have from equation (K)

Cr = 2
( 1)( )

(2 1)( ) r
n r n r C

n r r

or Cr = 2
( 1)( )

(2 1) r
n r n r C
r n r ...(O)

Putting the values of 2, 4, 6, ...r  in equation (O)

C2 = 0
( 1)( 2)

2(2 3)
n n C

n

C4 = 2
( 3)( 4)

4(2 5)
n n C

n

= 0
( 4)( 3)( 2)( 1)

2.4(2 3)(2 5)
n n n n C

n n

                      ........................................................................
                      ........................................................................
                      ........................................................................

Substituting these values of C’s in equation (B) we have for 1s n

y = 1 3 5
0 2 4 ....n n nC x C x C x

=
1 3 5

0
( 1)( 2) ( 1)( 2)( 3)( 4) ...

2.(2 3) 2.4(2 3)(2 5)
n n nn n n n n nC x x x

n n n

= y2 ...(P)

35



LOVELY PROFESSIONAL UNIVERSITY

Notes So the two solutions of Legendre’s equations form the general solution

y = 1 2A y B y ...(Q)

In particular, if we take constant C0 to be

C0 =
1.3.5...(2 1)

!
n

n

in equation (N), we get the solution

( )nP x =
2 41.3.5 (2 1) ( 1) ( 1)( 2)( 3) ...

2(2 1) 2.4 (2 1)(2 3)
n n nn n n n n n nx x x

n n n n ...(R)

denoted by ( )nP x , and is called Legendre’s function of first kind.

Legendre’s Functions of the Second Kind
When n is a positive integer and putting the value of Co, as

Co =
!

1.3.5....(2 1)
n

n ...(S)

in the second solution (P) we get the Legendre’s function of the second kind denoted by ( )nQ x
i.e.

( )nQ x = 1 3 5( 1) ( 2)! ( 1)( 2)( 3)( 4) ...
1.3.5...(2 1) 2.(2 3) 2.4. (2 3) (2 5)

n n nn nn n n n nx x x
n n n n ...(T)

As is seen from equation (T), ( )nQ x  is an infinite or non-terminating series.

Thus the general solution of Legendre’s equation is

y = ( ) ( )n nA P x B Q x ...(U)

2.2 Rodrigue’s Formula for Legendre Polynomials

An other formula for ( )nP x  can be obtained from the Legendre’s differential equation. Here we
start with

u = (x2  1)n ...(A)

Then
du
dx = 2 12 ( 1)nnx x

Multiplying both sides by (x2  1) and transposing to left hand side, we get

2 2( 1) 2 ( 1)ndux nx x
dx = 0

or 2( 1) 2dux nx u
dx = 0

Differentiating the above equation with respect to x, we get
2

2
2(1 ) 2 2 2d u du dux x nu nx

dx dxdx = 0

    
2

2
2(1 ) 2( 1) 2d u dux n x nu

dxdx  = 0 ...(B)
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NotesWe now apply Leibnitz theorem to differentiate equation r times. Here Leibnitz theorem states
that the rth differentiation of product of two functions is given by

( )
r

r
d fg
dx =

2 21

1 2 2
( 1) ....

2

r rr

r r n
d g df d f d gd r rf r g

dxdx dx dx dx
...(C)

So differentiating equation (B) r times we get
2 1 1

2
2 1 1

( 1)(1 ) .( 2 ) ( 2) 2( 1) . 2
2

r r r r r r

r r r r r r
d u d u d u d ur r d u d ux r x n x r n
dx dx dx dx dx dx = 0

or rearranging terms

2 1
2

2 1(1 ) 2 ( 1 ) ( 1) 2 ( 1) 2
r r r

r r r
d u d u d ux x n r r r r n n
dx dx dx = 0 ...(D)

Simplifying the above equation and putting

ru =
r

r
d u
dx , ...(E)

We get

2
2

2(1 ) 2 ( 1 ) ( 1)(2 )r r
rr

d u dux x n r r n r u
dx dx = 0

We now put r = n and get

2
2

2(1 ) 2 ( 1) ( 1)( )n n
n

d u dux x n n u
dxdx = 0

This is Legendre’s equation. Hence for r = x, un satisfies Legendre’s equation. Thus the Legendre’s
polynomial are given by

( )nP x = 2( 1) ( )
n

n
n

d x C
dx ...(F)

Where C is a constant. To evaluate C we compare the coefficients of xn on both sides of (F) i.e.

2
(2 )!
2 ( !)

n

n
n x

n = 2 2(2 )(2 1)...( 1)
n

n n
n

dC x C n n n x
dx

=
(2 )!

!
nnC x

n
Thus

1
( !)2nn = C

Thus

( )nP x = 21 ( 1)
2 !

n
n

n n
d x

n dx
This is Rodrigue’s formula for the Legendre’s polynomials. We can again find a few Legendre
polynomials from this formula.
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Notes Self Assessment

1. Find

1 2 3( ), ( ), ( )P x P x P x

from Rodrigue formula

2.3 Generating Function for Legendre Polynomials

In the following we will show that ( )nP x  is the coefficient of hn in the expansion of

1
2 2(1 2 )xh h

for | | |,| | |x h

i.e.
1

2 2(1 2 )xh h =
0

( )n
n

n

h P x ...(A)

Now
1

2 2(1 2 )hx h =
1

2[1 (2 )]h x h

= 2 21 1 3 11 ( )(2 ) . (2 ) ...
2 2 2 2

h x h h x h

1 11.3...(2 3)... (2 )
2.4.6(2 2)

n nn h x h
n

1.3. ...(2 1) (2 ) ...
2.4.6....(2 )

n nn h x h
n

Therefore the coefficients of hn are

=
1 2

2 2 41.3.5...(2 1) 1.3.5. ...(2 3) 1.3.5...(2 5)(2 ) (2 ) 1 2 (2 )
2.4.6...(2 ) 2.4.6 ...(2 2) 2.4.6...(2 4)

n n
C C

n n nx x n n x
n n n

...(B)

=
2

2 4
1.3.5...(2 1) 2 (2 )(2 2)( 2)( 3)( 1) ...

2 1 2 (2 1)(2 3) 2 2

n
nn n x n n n nx n

n n n n

=
2 41.3.5...(2 1) ( 1) ( 1)( 2)( 3) ...

2(2 1) 2.4.(2 1)(2 2)
n n nn n n n n n nx x x

n n n n

= ( )nP x ...(C)

Thus

1
2 2(1 2 )xh h =

0

( )n
n

n

h P x

Where ( )nP x  is given by

( )nP x =
2 4( 2)( 1) ( 3)1.3.5...(2 1) ( 1) ...

2(2 1) 2.4.(2 1)(2 2)
n n nn n n nn n nx x x

n n n n ...(D)
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NotesAlso it can be written as

( )nP x = 2

0

( 1) (2 2 )!
2 ( )!( 2 )!

n r
n r

n
r

n r x
n r n r

...(E)

Example 1: From the relation

1
2 2(1 2 )xh h =

0

( )n
n

n

h P x

Obtain 0 1 2 3( ), ( ), ( ), ( )P x P x P x P x  and 4( ).P x

i.e.

Prove

0( )P x = 11, ( ) 1P x

2( )P x = 2 3
3

1 1(3 1), ( ) (5 3 )
2 2

x P x x x

4( )P x = 4 21 (35 30 3).
8

x x

Example 2: Express 4 3 2( ) 2 2 3P x x x x x  in terms of Legendre’s polynomials.

Solution: From Example 1, we have

0( )P x =
2

1 2
(3 1)1, ( ) , ( ) ,

2
xP x x P x

3( )P x =
3 4 2

4
(5 3 ) 35 30 3, ( )

2 8
x x x xP x

from 4( )P x = 4 21 (35 30 3),
8

x x

x4 = 2
4

8 6 3( ) ,
35 7 35

P x x

from 3( )P x = 3 3
3

1 2 3(5 3 ), ( ) ,
2 5 5

x x x P x x

from 2( )P x = 2 2
2

1 2 1(3 1), ( )
2 5 3

x x P x

and x = 1 0( ); 1 ( )P x P x

Substituting these values, we have

( )P x = 2 3 2
4

8 6 3( ) 2 2 3
35 7 35

P x x x x x

= 3 2
4

8 20 108( ) 2
35 7 35

P x x x x
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Notes
=

2
4 3

8 2 3 20 108( ) 2 ( )
35 5 5 7 35

P x P x x x x

= 2
4 3

8 4 20 1 108( ) ( )
35 5 7 5 35

P x P x x x

= 4 3 2
8 4 20 2 1 1 108( ) ( ) ( )
35 5 7 3 3 5 35

P x P x P x x

= 4 3 2
8 4 40 1 224( ) ( ) ( )
35 5 21 5 105

P x P x P x x

= 4 3 2 1 0
8 4 40 1 224( ) ( ) ( ) ( ) ( )
35 5 21 5 105

P x P x P x P x P x

Example 3: Prove 1 2
1 11 (cos ) (cos ) ...
3 3

P P

... log 1 sin sin
2 2

Solution: From the generating function, we have

0

( )n
n

n

h P x = 2 1/2(1 2 )hx h ...(i)

Integrating w.r.t. h from 0 to 1, we get

1

00

( )n
n

n

h P x dh =
1

20 (1 2 )
dh
hx h

...(ii)

Replacing x by cos  on both sides, (ii) gives

1

00

(cos ) n
n

n

P h dh =
1

20 (1 2 cos )
dh

h h

or
11

0 0

(cos )
1

n

n
n

hP
n

=
1

2 20 ( cos ) sin

dh

h

or
0

(cos )
1

n

n

P
n = 2 2

0
log( cos ) ( cos ) sinh h

= 2 2log {(1 cos ) [(1 cos ) sin ]} log (1 cos )

= log{(1 cos ) [2(1 cos )}] log(1 cos )

=
(1 cos ) 2 (1 cos )

log
(1 cos )

=
{(1 cos )} {(1 cos )} 2 {(1 cos )}

log
{(1 cos )} {(1 cos )}
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Notes
=

[(1 cos )] 2
log

[(1 cos )]

=

2

2

2sin 2
2

log
2sin

2

=
1 sin

2log
sin

2

0
1 2

(cos ) 1 1(cos ) (cos ) ...
1 2 3

P P P =
1 sin

2log
sin

2

or 1 2
1 11 (cos ) (cos ) ...
2 3

P P =

11 sin
2log 1sin

2

0[ (cos ) 1]P

Example 4: Show that

( ) (1)na P = 1

( ) ( )nb P x = ( 1) ( )n
nP x

Hence deduce that ( 1)nP = ( 1) .n

Solution:
(a) We know that

0

( )n
n

n

h P x = 2 1/2(1 2 )xh h

Putting x = 1

0

(1)n
n

n

h P = 2 1/2(1 2 )h h

= 1(1 )h

= 21 ... ...nh h h

=
0

n

n

h

Equating the coefficients of hn, we get (1) 1.nP

(b) we have

2 1/2(1 2 )xh h =
0

( )n
n

n

h P x
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Notes Now, 2 1/2(1 2 )xh h = 2 1/2{1 2 ( ) (– ) }x h h

=
0

( ) ( )n
n

n

h P x

=
0

( 1) ( )n n
n

n

h P x ...(i)

Again 2 1/2(1 2 )xh h = 2 1/2{1 2( ) }x h h

=
0

( )n
n

n

h P x ...(ii)

From (i) and (ii) we have

=
0 0

( ) ( 1) ( )n n n
n n

n n

h P x h P x

Equating the coefficients of hn from both sides, we get

( )nP x = ( 1) ( ).n
nP x

Deduction: Putting x = 1, we have

( 1)nP = ( 1) (1)n
nP

= ( 1) [ (1) 1].n
nP

Example 5: Prove that 1( ) (1) ( 1)
2na P n n

                   1 1( ) ( 1) ( 1) ( 1)
2

n
nb P n n

Solution: ( )nP x satisfies Legendre’s equation

2
2

2(1 ) 2 ( 1) 0,d y dyx x n n y
dxdx  putting ( )ny P x

 2(1 ) ( ) 2 ( ) ( 1) ( )n n nx P x xP x n n P x = 0 ...(i)

(a) Putting x = 1,  in (i) we have

2 (1) ( 1) (1)n nP n n P = 0

(1)nP =
1 ( 1) (1)
2 nn n P

=
1 ( 1)
2

n n [ (1) 1].nP

(b) Putting 1x  in (i), we get
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Notes2 ( 1) ( 1) ( 1)n nP n n P = 0

or ( 1)nP =
1 ( 1) ( 1)
2 nn n P

= 1 1( 1) . ( 1)
2

n n n [ ( 1) ( 1) ].n
nP

Example 6: Prove that (0) 0,nP  for n odd and

(0)nP =
/2

2
( 1) ! ,
2 { /2!}

n

n
n

n  for n even.

Solution:

(i) We know that

( )nP x = 2 41.3.5...(2 1) ( 1) ( 1)( 2)( 3) ...
! 2(2 1) 2.4(2 1)(2 3)

n n nn n n n n n nx x x
n n n n

when n is odd, say (2 1),n m  then

2 1( )mP x = 2 1 2 1 21.3.5...{2(2 1) 1} (2 1)(2 1 1) ...
(2 1)! 2.{2(2 1) 1}

m mm m mx x
m m

Putting 0,x  we get 2 1(0) 0,mP

i.e., (0)nP = 0 when n is odd.

Also, we have

0

( )n
n

n

h P x = 2 1/2(1 2 )xh h

or
0

(0)n
n

n

h P =
1/22 1/2 2(1 ) 1 ( )h h

= 2 2 2 2 3 21 1.3 1.3.5 1.3.5...(2 1)1 .( ) ( ) ( ) ... ( ) ...
2 2.4 2.4.6 2.4...2

rrh h h h
r

Hence all powers of h on the R.H.S. are even.

Equating the coefficient of h2m on both sides, we have

2 (0)mP =
1.3.5...(2 1) ( 1)

2.4.6...2
mm

m

= 2 2
(2 )!( 1)

2 ( !)
m

m
m
m

i.e. when n = 2 m, then

(0)nP =
2

2
( 1) !

2 ( /2)!

n

n
n

n
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Example 7: Prove that 

1
2 2(1 2 )xz z  is a solution of the equation

2
2

2
( ) (1 )zz x

x xz
= 0

Where

= 2 1/2(1 2 )xz z
Solution: Let

= 2 1/2

0

(1 2 ) n
n

n

xz z z P

or z = 1

0

n
n

n

z P

2

2 ( )z z
z

=
0

( 1) .n
n

n

n nz P

Also x =
0

n
n

n

z P

2(1 )x
x x

= 2

0

(1 ) n
n

n

x z P
x

= 2

0 0

(1 ) 2n n
n n

n n

x z P x z p

Substituting this in the L.H.S. of the given equation, we get

2
2

2
( ). (1 )zz x

x xz = 2

0

[( 1) (1 ) 2 ]n n n
n n n

n

n nz P x z P xz P

= 2

0

[(1 ) 2 ( 1) ]n
n n n

n

z x P xP n n P

= 0 since nP  is a solution of Legendre’s equation.

Self Assessment

2. Show that

2

2 3/2
1

(1 2 )
z

xz z =
0

(2 1) ( ) .x
n

n

n P x z

Laplace’s First Integral for Pn(x): when n is a positive integer. Show that

( )nP x = 2

0

1 ( 1) cos .
x

x x d

Proof: From integral calculus, we have

0 cos
d

a b =
2 2

,
( )a b

 where 2 2a b ...(i)
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Putting 1a hx  and ( 1)b h x

so that 2 2a b = 2 2 2 2(1 ) ( 1) 1 2hx h x xh h

Thus, we have from (i)

2 1/2(1 2 )xh h =
1

2

0
1 ( 1) coshx h x d

=
1

2

0
1 1 cosh x x d

= 1

0
(1 )ht d where 2 1 cost x x

or ( )n
nh P x = 2 2

0
(1 ... ...)n nht h t h t d

Equating coefficient of hn we get

( )np x = 2

0 0
1 cos

n
nt d x x d

( )nP x = 2

0

1 ( 1) cos
n

x x d

Deductions

(i) Putting cosx  in above relation, we get

0

1(cos ) (cos sin cos ) .n
nP i d

(ii) If we take n = 1 and +ve sign, then we get

2
1

0

1( ) [( 1)] cos .P x x x d

Laplace’s Second Integral for Pn(x): When n is a Positive Integer. Show that

( )nP x = 10 2

1

( 1) cos
n

d

x x

Proof: From integral calculus, we have

0 cos
d

a b
=

2 2
,

( )a b
 where 2 2 .a b ...(i)

Let 1a xh  and 2( 1)b h x

so that 2 2a b = 21 2xh h
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Notes By putting these values in (i) we have

2 1/2(1 2 )xh h =
1

2

0
1 ( 1) cos 1xh h x d

or
1/2

2
11 2 . ix

h h h =
1

2

0
{ ( 1) cos 1h x x d

or
0

1 ( )nn
n

P x
h h

= 1

0
( 1)t d where  2( 1) cost h x x

=
1

0

1 11 d
t t

= 20

1 1 1 11 ... ...n d
t t t t

= 2 3 10

1 1 1 1... n d
t t t t

= 10 0

1
n

n

d
t

=
10 1 20 ( 1) cos

n
nn

d

h x x

Equating the coefficient of 1
1 ,nh  we get

( )nP x = 10 2( 1) cos
n

d

x x
]

( )nP x = 10 2

1

( 1) cos
n

d
x x x

Deductions: Replacing n by ( 1)n in above relation, we get

( 1)( )nP x =
0 2

1

( 1) cos
n

d

x x

= 2

0

1 ( 1) cos
x

x x d

= ( )nP x

( )nP x = 1( )nP x
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Notes2.4 Recurrence Relations for Legendre Polynomials

I. Prove that

(2 1) ( )nn xP x = 1 1( 1) ( ) ( )n nn P x nP x

We now have from generating function

2 1/2(1 2 )hx h =
0

( )n
n

n

h P x

Differentiating both sides w.r.t. h we have

2 3/21 ( 2 2 )(1 2 )
2

x h hx h = 1

0

( )n
n

n

nh P x

Multiplying both sides by 2(1 2 );hx h  we get

2 1/2( )(1 2 )x h hx h = 2 1

0

(1 2 ) ( )n
n

n

hx h nh P x

or

0

( ) ( )n
n

n

x h h P x = 2 1

0

(1 2 ) ( )n
n

n

hx h nh P x

Expanding

2
0 1 2( ) ( ) ( ) ( ) ...x h P x h P x h P x 2 2

1 2 3(1 2 ) ( ) 2 ( ) 3 ( ) ...hx h P x h P x h P x

Comparing the coefficients of hn on both sides, we have

1( ) ( )n nxP x P x = 1 1( 1) ( ) 2 ( ) ( 1) ( )n n nn P x xnP x n P x

Rearranging terms, we have

( ) 2 ( )n nxP x xnP x = 1 1( 1) ( ) ( 1 1) ( )n nn P x n P x

or

(2 1) ( )nn P x = 1 1( 1) ( ) ( )n nn P x nP x

II. Prove that

( )nnP x = 1( ) ( )n nxP x P x

Proof:

Consider the relation

2 1/2(1 2 )hx h =
0

( )x
n

n

h P x ...(A)

Differentiating w.r.t. h, we have

2 3/21 ( 2 2 )(1 2 )
2

x h xh h = 1

0

( )n
n

n

nh P x
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2 3/2( )(1 2 )x h hx h = 1

0

( )n
n

n

nh P x ...(B)

Differentiating (A) again by x, we have

2 3/2( 2 )( 1/2)(1 2 )h hx h =
0

( )n
n

n

h P x

or

2 3/2(1 2 )h hx h =
0

( )n
n

n

h P x ...(C)

Multiplying (B) by h and (C) by (x  h), and subtracting we get

1

0

( )n
n

n

h n h P x =
0

( ) ( )n
n

n

x h h P x ...(D)

Now comparing the coefficients of hn on both sides we have

( ) ( )nn P x = 1( ) ( )n nxP x P x

which is the recurrence relation II

III. Prove that

(2 1) ( )nn P x = 1 1( ) ( )n nP x P x

Proof:

From recurrence relation I

(2 1) ( )nn xP x = 1 1( 1) ( ) ( )n nn P x nP x

Differentiating w.r.t. x we have

(2 1) ( ) (2 1) ( )n nn xP x n P x = 1( 1) ( ) ( )n nn P x nP x ...(A)

From recurrence formula II

( )nxP x = 1( ) ( )n nnP x P x ...(B)

Substituting in (A) we have

1(2 1) ( ) ( ) (2 1) ( )n n nn nP x P x n P x = 1( 1) ( ) ( )n nn P x nP x

1(2 1) ( 1) ( ) ( )n nn n P x P x = 1 1( 1) ( ) ( )n nn P x np x

or rearranging

(2 1)( 1) ( )nn n P x = 1 1( 1) ( ) ( 1) ( )n nn P x n P x

Removing common factor we have

(2 1) ( )nn P x = 1 1( ) ( )n nP x P x
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3. Prove

( 1) ( )nn P x = 1( ) ( )n nP x xP x

4. Prove that

2(1 ) ( )nx P x = 1( ) ( )n nn P x xP x

2.5 Orthogonal Properties of Legendre Polynomials

Prove that

(i)
1

1
( ) ( ) 0m nP x P x dx  if m n  and

(ii)
1

2

1

2[ ( )]
2 1nP x dx

n

Proof:

From Legendre equation ( )nP x being solution of it so we have

2
2

2
( ) ( )(1 ) 2 ( 1) ( )n n

n
d P x dP xx x n n P x

dtdx = 0

or 2 ( )(1 ) ( 1) ( )n
n

d dP xx n n P x
dx dx = 0 ...(A)

In the same way, we have

2 ( )(1 ) ( 1) ( )m
m

d dP xx m m P x
dx dx = 0 ...(B)

Multiplying equation (A) by ( )mP x  and (B) by nP  and subtracting

2 2( )(1 ) (1 ) ( ) [ ( 1) ( 1)] ( ) ( )n m
m n m n

d P x d Pd dP x P x x n n m m P x P x
dx dx dx dx

= 0 ...(C)

Integrating equation (C) between the limits 1 to 1, we have

1 12 2

1 1

( )( ) (1 ) ( ) (1 ) ( )( 1)n m
m n

d P x d Pd dP x x dx P x x dx n m n m
dx dx dx dx

1

1

( ) ( )m nP x P x dx = 0

Integrating by parts we have

11 1
2 2 2

11 1

( )( ) ( )( )(1 ) (1 ) ( )(1 )n nm m
m n

d P d P xdP x dP xP x x x dx P x x
dx dx dx dx

1 1
2

1 1

( )( )(1 ) ( )( 1) ( ) ( )m
n m n

d P xd P x x dx n m n m P x P x dx
dx dx = 0
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1 1

2 2

1 1

( )( ) ( ) ( )0 (1 ) 0 (1 )nm n md P xdP x dP x dP xx dx x dx
dx dx dx dx

1

1

( )( 1) ( ) ( )m nn m n m P x P x dx = 0

or
1

1
( )( 1) ( ) ( )m nn m n m P x P x dx = 0

Thus
1

1

( ) ( )m nP x P x dx = 0 for m n ...(D)

This proves the first part.

To prove (ii)

We have
2 1(1 2 )xh h = 2 1/2 2 1(1 2 ) .(1 2 )xh h x h

=
0 0

( ) ( )n m
n m

n m

h P x h P x

= 2 2

0 0
0

( ) 2 ( ) ( )n m n
n n m

n m
n
m n

h P x h P x P x ...(E)

Integrating between the limits 1 to +1, we have

1 1
2 2

0 01 1
0

( ) 2 ( ) ( )n m n
n n m

n m
n
m n

h P x dx h P x P x dx =
1

2
1
(1 2 )

dx
hx h

Thus
1

2 2

0 1

( )n
n

n

h P x dx =
1

2 1/2
1
(1 2 )

dx
xh h

...(F)

=
21 1 1 1log log

2 1 1
h h

h h h h

Expanding the R.H.S. in powers of h, we have

1
2 2

0 1

( )n
n

n

h P x dx =
2 3 4 2 3 41 ... ...

2 3 4 2 3 4
h h h h h hh h

h

=
3 5 72 ...

3 5 7
h h hh

h

=
2

0

12
2 1

n

n

h
n
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So comparing the coefficients of 2nh  on both sides we have

1
2

1

( )nP x dx =
2

2 1n ...(G)

Thus
1

1

( ) ( )m nP x P x dx =
0 for
2 for =

2 1

m n

m n
n

From the properties of Legendre’s polynomials we can prove certain results.

2.6 Expansion of a f(x) in terms of Legendre’s Polynomials

Since 0 1 2( ), ( ), ( )...P x P x P x  a set Legendre polynomials are orthogonal in the range of , ( 1,1),x

any function ( )f x  can be expressed in terms an expansion series involving ( )nP x  i.e.

( )f x =
0

( )n n
n

C P x for x in the range 1 1x ...(i)

M ultiplying equation (i) by ( )mP x  and integrating over the limit 1 to 1, we have

1

1

( ) ( )mf x P x dx =
1

0 1

( ) ( )n m n
n

C P x P x dx ...(ii)

Now

1

1

( ) ( )m nP x P x dx =
0 if
2 if

2 1

m n

m n
n

...(iii)

Substituting in (i) we have

1

1

( ) ( )mf x P x dx = 2
2 1mC

m
...(iv)

Example: Expand ( )f x  in the form

0

( ),r r
r

C P x

Where

( )f x =
0 1 0
1, 0 1

x
x

...(i)

We know

( )f x =
0

( )r r
r

C P x ...(ii)
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Notes where

Cr =
1

1

2 1 ( ) ( )
2 r

r f x P x dx

Cr =
1

0

(2 1) 1. ( )
2 r

r P x dx for 1, 2,...r ...(iii)

Putting 0, 1, 2, 3, ....r

C0 =
1 1 1

0
0 0 0

1 1 1 1( ) 1.
2 2 2 2

P x dx dx x

C1 =
1 1 12

1
0 0 0

3 3 3 3( ) .
2 2 2 2 4

xP x dx x dx

C2 =
1

2
0

5 ( )
2

P x dx

=
1

2

0

5 1(3 1)
2 2

x dx

=
13

0

5 3 0
4 3

x x

C3 =
1

3
0

7 ( )
2

P x dx

=
1

3

0

7 1(5 3 )
2 2

x x dx

=
14 2

0

7 5 3
4 4 2

x x

=
7 5 3
4 4 2

=
7 5 6 7
4 4 6

So ( )f x = 0 1 3
1 3 7( ) ( ) ( ) ...
2 4 16

P x P x P x
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5. Obtain the first three terms in the expansion of the function

( )f x =
0 1 0

0 1
x

x x

in terms of Legendre’s Polynomials and show that

( )f x = 0 1 2
1 3 25( ) ( ) ( ) ...
4 4 48

P x P x P x

Prove that all the roots of ( ) 0nP x  are distinct

Solution: If the roots of ( ) 0nP x are not all different, then at least two of them must be equal.

Let  be their common value. Then

( )nP = 0 (i)

and ( )nP = 0                                           Here dp P
dx

Since ( )nP x  is the solution of Legendre’s equation

2
2

2
( )(1 ) ( ) 2 ( 1) ( )n

n n
d P xdx P x x n n P x

dxdx
= 0 ...(ii)

Differentiating (ii) r times by Leibnitz’s theorem, we get

2 1
2

1 22 1(1 ) ( ) 2 ( ) 2 ( )
r n

r r
n n nr n r

d d drx P x x c P x c P x
dx dx dx

1

112 ( ) 1. ( ) ( 1) ( )
r r

r
n n nr r r

d d drx P x c P x n n P x
dx dx dx = 0

or 1 2 1

2 1
2

2 1
( )(1 ) ( ) 2 1 ( ) 2 2 ( 1)

r r r
n

n C n C Cr r
d d d P xx P x x r P x r r n n

drdx dx = 0 ...(iii)

Putting 0,r x

2
2

2(1 ) ( ) 2 ( ) ( 1) ( )n n n
xx

d dP x P x n n P
dxdx

= 0 ...(iv)

Since ( ) 0n
x

d P x
dx

 and ( ) 0,nP so

2

2
( )n

x

d P x
dx = 0 ...(v)
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Notes Similarly putting r = 1, 2, ... in (iii) and simplifying stepwise, we have

( )nP = 0 ( ) 0 0... ( ) 0iv n
n nP P ...(vi)

But since

( )n
n x

P x =
1.3...(2 1). ! 0n n

n ...(vii)

Therefore our assumption that ( ) 0nP  has a repeated root is not correct.

Hence all the roots of ( ) 0nP x  are distinct.

Example: Find the roots of 2( ) 0P x

As 2( ) 0P x = 21 (3 1)
2

x

2( )P = 210 (3 1)
2

x

23 = 1

= 1/ 3

So the roots are

1 = 2
11/ 3,
3

d

Self Assessment

6. Show that the roots of 3( ) 0P x  are

3 3, 0,
5 5

2.7 Summary

 Legendre’s Differential equation is obtained from Laplace equation in spherical polar
co-ordinates.

 Legendre’s Differential equation has 1,x  as well as x  as regular singular points.

 So Legendre’s Differential equation is solved as a power series.

 It is found that Legendre polynomial ( )nP x  is a finite power series having nx  as the
highest power of x.

 The generating function for ( )nP x  is found to be 2 1/2

0

(1 2 ) ( )n
n

n

h h h P x
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Notes Rodrigue’s formula for Legendre polynomials help us to find a few ( )nP x  i.e. 0 1( ), ( ),P x P x

2( ),..... .P x

 Orthogonal properties of ( )nP x  are obtained. It is seen that { ( )} 0, 1, ...nP x n  form a

complete set in the range 1 1.x

 Just as Fourier series we show that a function in the range 1 1x  is expanded in terms

of ( )’ .nP x s

2.8 Keywords

Regular singular points of Legendre equations are 1x  and .x

Legendre polynomial ( )nP x  is a terminating series with highest power of x as xn.

Generating function of the Legendre polynomial is 2 1

0

(1 2 ) ( )n
n

n

hx h h P x

Rodrigue’s formula has been obtained and certain properties of ( )nP x  are obtained in a straight
forward manner.

Recurrence relations between various Legendre’s polynomials obtained are useful in expressing
higher polynomials in terms of 0( )P x  and 1( ).P x

Orthogonality properties of the Legendre Polynomials obtained, help us in evaluating certain
integrals easily.

2.9 Review Questions

Show that

1. 2 1( ) ( ) (2 1) ( )n n nP x P x n P x

2.
1

1 2
1

2( ) ( )
4 1n n

nx P x P x dx
n

3. 9 8 9( ) ( ) 9 ( )x P x P x P x

4. Show that all the roots of ( ) 0nP x  are real and lie between 1 and +1.

5. Prove that

4 2
4 2 1

8 63 ( ) ( ) ( )
35 35

x x x P x P x P x
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Notes 2.10 Further Readings

Books Piaggio H.T.H., Differential Equations

Yosida, K., Lectures in Differential and Integral Equations
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NotesUnit 3: Hermite Polynomials

CONTENTS

Objectives

Introduction

3.1 Power Series Solution of Hermite Polynomials

3.2 Generating Functions of Hermite Polynomials ( )nH z

3.3 The Rodrigue s Formula for ( )nH x

3.4 Orthogonal Properties of Hermite Polynomials

3.5 Recurrence Formula for Hermite Polynomials

3.6 Summary

3.7 Keywords

3.8 Review Questions

3.9 Further Readings

Objectives

After studying this unit, you should be able to:

 Solve second order differential equation like Hermite equation.

 Familiarize yourself with the properties of Hermite Polynomials through generating
function.

 Obtain certain relations involving Hermite polynomials with the help of Rodrigue formula.

 Solve certain integrals. You can express any function ( )f x  in terms of Hermite polynomials
Hn(x).

 Relate some Hermite polynomials in terms of others with the help of recurrence relations.

Introduction

In the previous two units you have learnt the method of Frobenius in solving second order
differential equations in power series. This method will help us to solve Hermite differential
equation. In this unit we will be able to solve the equation for x  range.

Just as the generating functions were introduced in the previous chapter, here in this chapter
also it will be introduced for Hermite polynomials. Also orthogonal properties and recurrence
relations are very important in understanding the properties of Hermite polynomials.

3.1 Power Series Solution of Hermite Polynomials

Consider the following equation, containing a parameter ,

2 2
2x xdyd e e y

dx dx = 0 ...(A)

Richa Nandra, Lovely Professional University
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Notes On the infinite open interval ( , ).  Here we take as boundary conditions the following: as

,x  and as , ( )x y x  tends to infinity of an order not greater than a certain finite power
of x, i.e.

y(x) = 0  as kx x ...(B)

The equation (i) is written as

2 2 22

2 2 2x x xd y dye x e e y
dxdx = 0

or

2

2 2 2d y dyx y
dxdx = 0 ...(i)

From the coefficients of 
dy
dx  and y, it is clear that there are no singular points except .x

Hence its solution can be given by a power series by Frobenius method

y(x) =
0

r k
r

r

a x ...(ii)

Which converges for .x

dy
dx = 1

0

( ) k r
r

r

r k a x

and
2

2
d y
dx = 2

0

( )( 1) k r
r

r

a k r k r x

Substituting in (i), we have

2

0

( )( 1) 2( ) 2k r k r k r
r

r

a k r k r x k r x x = 0,

or 2

0

( )( 1) 2( )k r k r
r

r

a k r k r x k r x = 0 ...(iii)

Now (iii) being an identity, we can equate to zero the coefficients of various powers of x.

Equating to zero the coefficient of lowest power of x, i.e., of 2 ,kx  we get

a0 k(k  1) = 0.

Now a0  0, as it is the coefficient of the first term with which the series is started.

either k = 0

or k = 1 ...(iv)

Equating the coefficient of xk 1 in (iii) to zero, we get

1( 1)a k k = 0 ...(v)
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Noteswhich implies that 1 0a  or 0k  or both are zero, since 1 0k  for any value of k given
by (iv).

Now equating to zero the coefficient of general term, i.e., k rx  in (iii), we get

2( 2)( 1)ra k r k r = 2 ( ) 0ra k r

or 2ra =
2( ) .

( 2)( 1) r
k r a

k r k r

or 2ra =
2( ) 2 .

( 2)( 1) r
k r a

k r k r ...(vi)

Now two cases arise—

Case I: when k = 0, then from (vi), we have

2ra =
2 2

( 2)( 1) r
r a

r r ...(vii)

Putting r = 0, 2, 4, etc. in (vii), we have

2a = 0 0
2 2

2.1 2!
a a

4a = 2 0
4 2 (4 2 ).2

4.3 4.3.2!
a a

=
2 2

0 0
2 ( 2 ) 2 ( 2)

4! 4!
a a

and so on.

2ma = 0
( 2) ( 2) ( 2 2) .

(2 )!

m m a
m

Again putting r = 1, 3, 5, etc.

3a = 1 1
2 2 2( 1)

3.2 3!
a a

5a = 3
6 2

5.4
a

= 1
2(6 2 )( 1)

5.4.3.2
a

= 2
1

( 1)( 3)( 2)
5!

a

and so on.

2 1ma = 1
( 2) ( 1)( 3) ( 2 1)

(2 1)!

m m a
m
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Notes Now if 1 0,a  then we have

y =
0

r
r

r

a x

= 2 3
0 1 2 3a a x a x a x

=
2

2 4 2
0

( 2) ( 2) ( 2 2)2 2 ( 2)1
2! 4! (2 )!

m
mma x x x

m

2
3 5

1
2( 1) 2 ( 1)( 3)

3! 5!
a x x x

2 1( 2) ( 1)( 3) ( 2 1)
(2 1)!

m
mm x

m ...(viii)

and if a1 = 0, then we have

y =
2

2 4 2
0

2 2 ( 2) ( 2) ( 2) ( 2 2)1
2! 4! (2 )!

m
mma x x x

m ...(ix)

= y1 (say).

Case II: When k = 1, from (vi), we have

2ra =
2( 1) 2 .
( 3)( 2) r

r a
r r

Putting r = 1, 3, ... etc.

a3 = a5 = ... = 0 (each).

Since in this case from (iv), a1 = 0

Putting r = 0, 2, 4, ... etc.

a2 = 0 0
2 2 2( 1)

3.2 3!
a a

a4 = 2 0
6 2 2( 1)( 3)

5.4 3!
a a

and so on.

a2m = 0
( 2) ( 1)( 3) ( 2 1)

(2 1)!

m m a
m

we have

y =
1

0

r
r

r

a x

= 3 5 2 1
0 2 4 2

m
ma x a x a x a x
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Notes
=

2
3 5

0
2( 1) 2 ( 1)( 3)

3! 5!
a x x x

2 1( 2) ( 1)( 3) ( 2 1)
(2 1)!

m
mm x

m

= y2 (say) ...(x)

From (viii) and (x) it is obvious that (x) is the part of solution, given by (viii). But as the two are
the solutions of the same equations so (x) must not be the part of solution (viii).

a1 = 0 and the solution in the case k = 0 must be given by (ix).

Hence the general solution of Hermite s equation is

1 2 ,y Ay By

where A and B are arbitrary constants and 1 2,y y  are given by (ix) and (x).

Hermite s Polynomials

When  is an even integer, equation (ix) gives an even polynomial of degree n.

Let  = n, n being an even integer and let

a0 = /2 !( 1)
!

2

n n
n

Coefficient of xn in (ix) is

/2
/2 ! ( 2) ( 2) ( 2)( 1)

!!
2

n
n n n n n n

n n
=

2 . 1 1
2 2 2 .

( /2)!

n

n

n n

n

Similarly coefficient of 2nx

( 2)/2
/2 ! ( 2) ( 2) ( 2 2)( 1)

( /2)! ( 2)!

n
n n n n n n

n n

22 ( 1) /2( /2 1) 2
( /2)!

n n n n n
n

2( 1) 2
1!

nn n

and so on.

So value of y is given by

yn = 2 4 /2( 1) ( 1)( 2)( 3) !(2 ) (2 ) (2 ) ( 1)
1! 2! ( /2)!

n n n nn n n n n n nx x x
n
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Notes This value of yn is known as the Hermite s polynomial of degree n and is written as

( )nH x = 2 4 /2( 1) ( 1)( 2)( 3) !(2 ) (2 ) (2 ) ( 1)
1! 2! ( /2)!

n n n nn n n n n n nx x x
n

or ( )nH x =
( /2)

2

0

!( 1) (2 )
!( 2 )!

n
r n r

r

n x
r n r

where 2
n

=
/2 if  is even

1 ( 1) if  is odd
2

n n

n n

A first few ( )nH x  are given as follows

0( )H x = 11, ( ) 2H x x

2( )H x = 2 2(2 ) 2 4 2x x

3( )H x = 3 23.2(2 ) (2 ) 4 2 3
1

x x x x

4( )H x = 4 212 4.3.2.1(2 ) (2 ) (1)
1 2

x x

= 4 216 48 12x x

Self Assessment

Fill in the blanks:

1. Hermite polynomial ( )nH x  is a ............... series.

2. As 4, ( )x H x  tends to infinity of an order not greater than ............... power of x.

3. 3( )H x  satisfies equation (i) for  = ...............

4. The value of 4( )H o  is ...............

We now give some of the properties of Hermite polynomials like generating functions, Rodrigue
formula, orthogonality relations and the recurrence formulae.

3.2 G en eratin g  F u n ctio n s o f H erm ite P o ly n o m ials Hn(x)

To prove that

22xt te =
0

( )
n

n
n

t H x
n

or

show that ( )nH x
n

 are the coefficients of nt  in the expansion of the function 
22xt te  (known as

generating function for ( )nH x ),
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Hermite Polynomials

NotesWe have

22tx te =
22 .tx te e

=
2

0 0

(2 )
! !

s
r

r s

ttx
r s

= 2

0, 0

(2 )( 1) .
! !

r
s r s

r s

x t
r s

Coefficient of nt  (for fixed value of s)

[obtained by putting r + 2s = n, i.e., r = n  2s]

=
2(2 )( 1)

( 2 )! !

n s
s x

n s s

The total value of nt  is obtained by summing over all allowed values of s, and since 2r n s

2 0 or /2n s s n

Thus if n is even s goes from 0 to n/2 and if n is odd, s goes from 0 to (n - 1)/2.

Coefficient of nt =
( /2) 2

0

(2 )( 1)
( 2 )! !

n n s
s

s

x
n s s

= ( )
!

nH x
n

Hence 
22tx te =

0

( )
!

n

n
n

t H x
n

2 2( )x t xe =
0

( ).
!

n

n
n

t H x
n

Other form for the Hermite Polynomials

Prove

( )nH x =
2

2
12 exp
4

n nd x
dx

...(i)

We have

21
2

txd e
dx = 2txte

21
2

txd d e
dx dx

= 2 22 txt e
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Notes
21 1

2 2
txd d e

dx dx = 2 2txt e

or
2

21
2

txd e
dx

= 2 2txt e

21
2

n
txd e

dx
= 2n txt e

Hence

2
2

2
1exp
4

txd e
dx

=
2

2
2

0

1 1
! 4

n
tx

n

d e
n dx

=
2

2

0

( 1) 1
! 2

nn
tx

n

d e
n dx

= 2 2

0

( 1) [from (ii)]
!

n
n tx

n

t e
n

= 2 2

0

( 1)
!

n
tx n

n

e t
n

=
22 (2 )2 . tx ttx te e e

or
2

2
0

1 1exp. (2 )
4 !

n

n

d tx
ndx

=
0

( )
!

n

n
n

t H x
n

Equating the coefficient of nt  from the two sides, we have

2

2
1 1exp. 2
4 !

n nd x
ndx =

1 ( )
! nH x

n

or ( )nH x =
2

2
12 exp. .
4

n nd x
dx

Self Assessment

5. Obtain the expression for 2( )H x  from generating function 
22 .xt te

6. Obtain the expression for ( )n
d H x
dx  from the generating function 22 .xt te

7. Show that for odd n.

(0) 0nH
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Notes8. 1 0( ) 2 ( )H x xH x  is

(a) positive

(b) zero

(c) negative

(d) none of the above

3.3 The Rodrigue s Formula for ( )nH x

To Prove

( )nH x =
2 2

( 1)
n

n x x
n

de e
dx

...(i)

Proof:

We have
22tx te =

0

( )
!

nn

n

H x t
n

or
2 2( )x t xe = 0 20 1 2( ) ( ) ( )

0! 1! 2!
H x H x H xt t t

11( ) ( )
! ( 1)!

n nn nH x H xt t
n n

Differentiating both sides, partially with respect to t, n times and then putting t = 0, we have

( ) !
!

nH x n
n =

2 2( )

0

n
t x x

n
t

e e
t ...(ii)

Now let ,  i.e., at 0,t x t x

t

or
2( )

0

n
t x

n
t

e
t

= 2n

n e

=
2

( 1)
n

n x
n e

x

=
2

( 1)
n

n x
n

d e
dx

( )nH x =
2 2

( 1) .
n

n x x
n

de e
dx ...(A)
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Notes First few Hermite Polynomials from Rodrigue s Formula

From Rodrigue s Formula for ( )nH x

( )nH x =
2 2

( 1) .
n

n x x
n

de e
dx

Putting n = 0, 1, 2, 3, ... we get

0( )H x =
2 2
. 1x xe e

1( )H x =
2 2

( 1) 2x xde e x
dx

2( )H x =
2 2 2 22

2
2( 1) 2x x x xd de e e xe

dxdx

=
2 2 224 2x x xe x e e

= 24 2 .x

3( )H x =
2 23

3
3( 1) x xde e

dx

=
2 224 2x xde x e

dx

=
2 2 222 4 2 8x x xe x x e xe

=
2 23 38 12 8 12 .x xe x x e x x

Similarly, 4( )H x = 4 216 48 12 etc.x x

3.4 Orthogonal Properties of Hermite Polynomials

Prove

2
( ) ( )x

n me H x H x dx = 2

0, if 

2 ( )! if 

m n

n m n

We have
2 2t txe =

0

( )
!

n

n
n

tH x
n

and
2 2s sxe =

0

( )
!

m

m
m

sH x
m

2 22 2t tx s sxe e =
0 0

( ) ( )
! !

n m

n m
n m

t sH x H x
n m
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Notes1 ( ) ( )
! ! n mH x H x

n m = Coeff. of n mt s  in the expansion of 
2 22 2t tx s sxe e

2
( ) ( )x

n me H x H x dx  is equal to n! m! times the coefficient of n mt s  in the expansion of

2 2 22 2. .x t tx s sxe e e dx

Now,
2 2 22 2. .x t tx s sxe e e dx

=
2 2 2 2 2t s x tx sxe e dx

=
2 2 22 2 ( ) ( )x t s t s dxt se e

= ( ) 22 x t x dxtse e

=
22 , putting ( )ts ue e du x t s u

= 2 ,tse
2

since ue du

=
2(2 ) (2 )1 2

2! !

nts tsts
n

Coefficient of n mt s  in the expansion of

2 2 22 2x t tx s sxe e e dx

is 0 if m n

and 
2 . if .

!

n
m n

n

We can also write it as follows

2

,( ) ( ) 2 !x n
n m mne H x H x dx n

where mn is Kronecker delta defined as

0, if 
1, if mn

m n
m n
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Notes Self Assessment

9. Using Rodrigue s Formula derive the Hermite s polynomials 2 3( ) and ( )H x H x

10. Evaluate

2

2 1( ) ( )xx e H x H x dx

11. Evaluate

2

2( )xx e H x dx

3.5 Recurrence Formula for Hermite Polynomials

(I) Prove

( )n
d H x
dx = 12 ( ) for 1nn H x n

We have from generating function

0

( )
!

n
n

n

H x t
n =

22xt te ...(i)

Differentiating both sides with respect to x, we have

0

( )n
n

n

t dH x
n dx =

222 xt tt e

=
0

( )2
!

n
n

n

H x tt
n

=
1

0

( )2
!

nn

n

H x t
n Let 1n n

=
1

1

( )2
1 !

n
n

n

H x t
n

or

0

( )n
n

n

t dH x
n dx =

1

1

( )2
( 1)!

n
n

n

H x t
n ...(ii)

Comparing nt  on both sides we have

( )
!

nH x
n =

1( )2
( 1)!

nH x
n

( )Here ( )n
n

d H x H x
dx

or
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Notesor ( )nH x = 12 ( )nn H x

(II) 2 ( )nx H x = 1 12 ( ) ( )n nnH x H x

we have
0

( )
!

n
n

n

H x t
n =

2 2tt xe

Differentiating both sides with respect to t, we get

1

0

( )
!

nn

n

H x n t
n =

2 2 ( 2 2 )t txe t x

or
1

1

( )
( 1)!

nn

n

H x t
n =

2 22 22 2t tx t txt e x e

or
1

1

( )
( 1)!

nn

n

H x t
n =

0 0

( ) ( )2 2
! !

n nn n

n n

H x H xt t x t
n n

(Since term of L.H.S. Corresponding to n = 0 is zero)

or
0

( )2
!

nn

n

H xx t
n = 1 1

0 0

( ) ( )2
! ( 1)!

n nn n

n n

H x H xt t
n n

or
0

( )2
!

nn

n

H xx t
n =

1 1

1 0

( ) ( )2
( 1)! !

n nn n

n n

H x H xt t
n n

Equating the coefficient of ,nt  on both sides, we have

( )2
!

nH xx
n =

1 1( ) ( )2
( 1)! !

n nH x H x
n n

or 2 ( )nx H x = 1 12 ( ) ( )n nn H x H x

(III) ( )nH x = 12 ( ) ( )n nx H x H x

Writing recurrence formulae I and II, we have

( )nH x = 12 ( )nn H x ...(i)

and 2 ( )nx H x = 1 12 ( ) ( )n nn H x H x ...(ii)

Subtracting (ii) from (i), we have

( )nH x = 12 ( ) ( )n nx H x H x

(IV) ( ) 2 ( ) 2 ( )n n nH x x H x nH x = 0

Hermite s differential equation is

2

2 2 2d y dyx ny
dxdx = 0
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Notes Since ( )nH x  is the solution of (i), hence, we have

( ) 2 ( ) 2 ( )n n nH x x H x nH x = 0

Illustrative Examples

Example 1: Evaluate

2
( ) ( )x

n mxe H x H x dx

Solution: From recurrence formula II, we have

( )nxH x = 1 1
1( ) ( )
2n nnH x H x

2
( )x

n mxe H H x dx =
2

1 1
1( ) ( ) ( )
2

x
n n me nH x H x H x dx

=
2 2

1 1
1( ) ( ) ( ) ( )
2

x x
n m n mn e H x H x dx e H x H x dx

= 1 1
1, 1,

12 ( 1)! 2 ( 1)!
2

n n
n m n mn n n

= 1
1, 1,2 ! 2 1 !n n

n m n mn n

where  is Kronecker delta.

Example 2: Prove that 14 ( 1)n nH n n H

Solution: From recurrence formula I, we have

nH = 12 nnH ...(i)

Differentiating with respect to x, we have

nH = 12 nnH ...(ii)

Replacing n by (n  1) in (i), we have

1nH = 22( 1) nn H ...(iii)

From (ii) and (iii), we have

nH = 14 ( 1) nn n H

Example 3: Prove that, if m < n

( )
n

nm
d H x

dx =
2 ! ( )

( )!

m

n m
n H x

n m
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NotesSolution: We have

0

( )
!

n

n
n

t H x
n

=
2 2t txe ...(i)

0

( )
!

n m

nm
n

t d H x
n dx

=
2 2

m
t tx

m
d e
dx

= 2 2(2 )m t txt e

=
0

(2 ) ( )
!

n
m

n
n

tt H x
n

(from (i))

=
0

12 ( )
!

m n m
n

n

t H x
n

Putting , , for 0;n m r n r m n

, for , ,r m n r

0

( )
!

n m

nm
n

t d H x
n dx

= 12 ( )
( )!

m r
r m

r m

t H x
r m

...(ii)

Equating the coefficient of nt  from the two sides, we have

1 ( )
!

n

nm
d H x

n dx = 12 ( )
( )!

m
n mH x

n m

( )
n

nm
d H x

dx =
2 ! ( )

( )!

m

n m
n H x

n m
 Q.E.D.

Example 4: Prove that 2 2 1
(2 )!(0) ( 1) . and (ii) (0) 0

!
n

n n
nH H

n
Solution: We have

0

( )
!

n

n
n

t H x
n

=
2 2t txe

Putting x = 0

0

(0)
!

n

n
n

t H
n

=
2te

=
2

2 ( ) ( )1 ... ( 1) ...
2! !

n
nt tt

n
...(1)
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Notes (i) Equating the coefficients of 2 ,nt  on both sides, we have

2
1 (0)

(2 )! nH
n = 1( 1)

!
n

n

or 2 (0)nH = (2 )!( 1)
!

n n
n

(ii) Again equating the coefficients of 2 1 ,nt  on both sides of (i), we have

2 1
1 (0)

(2 1)! nH
n = 0 [Since R.H.S. of (i) does not involve

odd powers of t]

Hence 2 1(0)nH = 0.

Example 5: Prove that

( )nP x =
2

0

2 ( ) .
!

n t
nt e H xt dt

n

Solution: We have

( )nH x =
( /2)

2

0

!( 1) (2 )
!( 2 )

n
r n r

r

n x
r n r

( )nH xt =
( /2)

2

0

!( 1) (2 )
!( 2 )

n
r n r

r

n xt
r n r

2

0

2 ( )
!

n t
nt e H xt dt

n =
2

( /2)
2

0 0

2 !( 1) (2 ) .
!( 2 ). !

n
n t r n r

r

nt e xt dt
r n rn

=
2

1( /2) 2 1 2 2 1
2

00

2 ( 1)
!( 2 )!

n n r r n r n rt

r

x e t dt
r n r

=
( /2) 2 1 2

0

2 ( 1) 1 1
2 2!( 2 )!

n n r r n r

r

x n r
r n r

2 (2 1)

0
Since 2 ( )nte t dt n

=
( /2) 2 2

2( )
0

2 ( 1) 2( ) !
!( 2 )!2 ( )!

n n r r n r

n r
r

x n r
r n r n r

2
1 (2 )!Since 
2 !2 x

xx
x
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Notes
=

( /2) 2

0

(2 2 )!( 1) ( )
2 ( )!( 2 )!( )!

n n
r

nn
n

n r x P x
r n r n r

Hence,

2

0

2( ) ( ) .
!

n t
n nP x t e H xt dt

n

Self Assessment

12. From recurrence relation II Obtain the value of 3( ).H x  Given that

2
2 1( ) 4 2; ( ) 2H x x H x x

13. Prove that

1( ) 4 ( ) 2 ( ) 0n n nH x nx H x n H x

14. Prove that

3
2

( ) 6 ( )dH x H x
dx

3.6 Summary

 Hermite differential equation has no finite singular points except .x  Therefore
Frobenius method involving a power series solution is obtained.

 There are two independent solutions corresponding to two different values of indicial
power.

 For n  a polynomial solution called Hermite polynomial is obtained.

 Hermite polynomials are seen to be generated by a generating function.

 Orthogonal properties of Hermite polynomials are obtained. It helps in expressing any
polynomial in terms of ( )nH x .

 Recurrence relations established help in expressing every polynomial as well as its
derivatives in terms of two or three Hermite polynomials.

3.7 Keywords

Boundary Conditions are the behaviour of the solution of the differential equations in the
initial value of the independent variable as well as at the final value of independent variable.

Frobenius Method: At an ordinary point as well as at regular singular point, helps in evaluating
the solution as a power series.

Orthogonality relations of Hermite polynomials are relations involving integrals of two
Hermite polynomials. These relations help us to see that ( )nH x  form a complete set.

Recurrence Relations are relations between two or three polynomials for all values of n and x.

Rodrigue Formula Expresses ( )nH x  in an alternative way than that of finding a solution of
differential equations.
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Notes 3.8 Review Questions

1. Use the Rodrigue s formula to drive the Hermite polynomials 2 3( ) and ( )H x H x

2. Evaluate

2

2 3( ) ( )xx e H x H x dx

3. Show that

1 0( ) 2 ( )H x xH x

4. For what value of , (0) 0?nn H

5. From generating function show that

5 3
5( ) 32 160 120H x x x x

Answers: Self Assessment

1. Terminating

2. Finite

3. n

4. 12

5. 2
2( ) (4 2)H x x

6. 1
( ) 2 ( )n

n
dH x nH x

dx

8. b

9. 2 3
2 3( ) 4 2, ( ) 8 12H x x H x x x

10. 4

11. Zero

3.9 Further Readings

Books K. Yosida, Lectures on Differential and Integral Equations

L.D. Landau and E.M. Lifshitz, Quantum Mechanics
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NotesUnit 4: Laguerre Polynomials

CONTENTS

Objectives

Introduction

4.1 Solution of Laguerre s Differential Equation

4.2 Generating Function for Laguerre Polynomials ( )nL x

4.3 Rodrigue s Formula for Laguerre Polynomials ( )nL x

4.4 Orthogonality Property of Laguerre Polynomials ( )nL x

4.5 Recurrence Formulae for Laguerre Polynomials ( )nL x

4.6 Summary

4.7 Keywords

4.8 Review Questions

4.9 Further Readings

Objectives

After studying this unit, you should be able to:

 Use generating function which helps you to familiarise with more properties of Laguerre
polynomials.

 Use Rodrigue formula which is quite helpful in making you more familiar with properties
of Laguerre polynomials.

 Employ of orthogonal properties to evaluate certain integrals.

 Use recurrence relations to correct one set of polynomials into another.

Introduction

Laguerre polynomials are shown to satisfy Laguerre differential equation. This equation has
x = 0 as regular singular point whereas x  is an irregular singular point. A power series
solution is obtained by Frobenius method.

Generating function is obtained wherein it will be seen that most properties of Laguerre
polynomials are obtained orthogonal properties, recurrence relations Rodrigue s formula for
Laguerre polynomials are very important and almost all properties of Ln(x) are obtained from
the above relations.

4.1 Solution of Laguerre s Differential Equation

Consider the following differential equation containing a parameter .

0x xx e y e y

Richa Nandra, Lovely Professional University
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Notes On the infinite interval (0, ),  we take as boundary conditions the following:

( )y x  remains finite as 0,x

( )y x  tends to infinity as 0( ) as .x x

The above equation when expanded is equal to

( 1)x x xx e y e x y e y = 0

or

(1 )x y x y y = 0 ...(i)

Here y = .dy
dx

Equation (i) has only one finite regular singular point 0x  whereas x  is irregular singular
point. So we can apply Frobenius method to express the solution of (i) as a power series:

y =
0

k r
r

n

a x ...(ii)

dy
dx = 1

0

( ) k r
r

r

a k r x

and
2

2
d y
dx = 2

0

( )( 1) k r
r

r

a k r k r x

Substituting in (i), we get

1 1

0

( )( 1) (1 )( )k r k r k r
r

r

a k r k r x x k r x x = 0

or

2 1

0

( ) ( )k r k r
r

r

a k r x k r x = 0 ...(iii)

Now (iii) being an identity, we can equate the coefficients of various powers of x to zero.

Equating to zero the coefficient of lowest power of x, i.e., of 1 ,kx  we have

2
0a k = 0

Now, 0 0,a  as it is coefficient of the first term with which the series is started.

k = 0.

Equating to zero the coefficient of general term, i.e., of ,k rx  we have

2
1( 1) ( )r ra k r a k r = 0
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1ra = 2

( )
( 1) r

k r a
k r

for k = 0

1ra = 2( 1) r
r a
r

...(iv)

Putting r = 0, 1, 2, ..., in (iv), we have

1a = 0 0( 1)
1

a a

2a = 2
1 02 2

1 ( 1)( 1)
2 (2!)

a a

3a = 3
2 02 2

2 ( 1)( 2)( 1)  etc.
3 (3!)

a a

Hence ra = 02
( 1)( 2) ( 1)(1)

( !)
r r a

r

From (ii), we have

y = 2
0 1 2

0

r r r
r

r

a x a a x a x a x

= 2 3
0 2 2

( 1) ( 1)( 2)1
(2!) (3!)

a x x x

2
( 1) ( 1)( 1)

( !)
r rr x

r ...(v)

If = n

y = 2 2
0 2 2 2

( 1) ( 1) ( 1)1 . ( 1)
1 (2!) ( !)
n n n n n n ra x x

r

= 0 2
0

( 1) ( 1)( 1)
( !)

n
r r

r

n n n ra x
r

= 0 2
0

!( 1)
( )!( !)

n
r r

r

na x
n r r

Laguerre Polynomials

The standard solution of Laguerre equation for which 0 1a  is called the Laguerre polynomial

of order n and is denoted by ( ).nL x
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( )nL x = 2

0

!( 1)
( )!( !)

n
r r

r

n x
n r r

...(vi)

The first few Laguerre polynomials are:

0( )L x = 11, ( ) 1L x x

2( )L x = 21 2 4
2

x x

3( )L x = 2 31 6 18 9
6

x x x

Self Assessment

1. The value of (0)nL  is

(a) 0 (b) 1

(c) 1 (d) None of these

2. 2( )L x  satisfies Laguerre s differential equation for  equal to

(a) 1 (b) 3

(c) 2 (d) 1

3. Fill in the blanks:

The Laguerre polynomial tends to infinity as a ............... power of x as .x

4. Laguerre polynomial ( )nL x  is a polynomial having a leading power of x equal to

(a) n (b) Zero

(c) One (d) None of the above

4.2 Generating Function for Laguerre Polynomials ( )nL x

To prove /(1 )

0

1 ( ).
1

tx t n
n

r

e t L x
t

We have

/(1 )1
1

tx te
t

=
0

1 1
1 ! 1

r

r

xt
t r t

= 1
0

( 1)
! (1 )

r r r

r
r

x t
r t

= ( 1)

0

( 1) (1 )
!

r
rr r

r

x t t
r
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= 2

0

( 1) ( 1)( 2)1 ( 1)
! 2!

r
r r

r

r rx t r t t
r

=
0 0

( 1) ( )! .
! ! !

r
r r s

r s

r sx t t
r r s

= 2
, 0

( )!( 1)
( !) !

r r
t

r s

r s x r s
r s

Putting ,  or ,s r n s n r  we get the coefficient of ,nt for a fixed value of r as

2
!( 1) .

( !) ( )!
r rn x

r n r

Therefore the total coefficient of nt  is obtained by summing over all allowed values of r, since
 and 0s n r s

0 or .n r r n

Hence the coefficient of nt  is

2
0

!( 1)
( !) ( )!

n
r r

r

n x
r n r

= ( )nL x

Hence /(1 )1
(1 )

tx te
t =

0

( ).n
n

n

t L x

Self Assessment

5. Obtain the expression for 1 2( ) and ( )L x L x  from the generating function

/(1 )

0

1 ( )
(1 )

tx t n
n

n

e t L x
t

6. Show that from the generating function

(0) 1 for 0, 1, 2,nL n

7. Obtain the expression for 3( )L x  from the generating function

/(1 )

0

1 ( )
(1 )

tx t n
n

n

e t L x
t

8. Whether 2
22 ( ) 4L x x x  is equal to

(a) 0 (b) 1

(c) 2 (d) 2
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Notes 4.3 Rodrigue s Formula for Laguerre Polynomials ( )nL x

To prove

( )nL x =  for 0, 1, 2,
!

x n
n x

n
e d x e n
n dx ...(i)

Proof: Using Leibnitz s theorem we have

!

x n
n x

n
e d x e
n dx = 1 1 1 2( 1)( 1) ( 1) ( 1) ( 1) !

! 2

x
n n x n n x n n x xe n nx e n n x e n n x e n e

n

 1 1 2 2( 1)( 1) ( 1) ( 1) ( 1) !
! 2

x
n n x n n x n n x xe n nx e n n x e n n x e n e

n

= 1 1!( 1) ( 1) !
! ( 1)!

x x
n n n ne e n nx x n

n n ...(ii)

= 1 1
2 2

! ! !( 1) ( 1)
!( !) ( 1)! . !

n n n nn n nx x
nn n i

= 2
0

!( 1) ( )
( !) ( )!

n
r r

n
r

n x L x
r n r ...(iii)

Hence ( )nL x = .
!

x n
n x

n
e d x e
n dx

First few Laguerre Polynomials from Rodrigue s Formula

We have from Rodrigue s formula

( )nL x = !

x n
n x

n
e d x e
n dx

Putting n = 0

0( )L x =
0

0
0 ( ) 1

0!

x
xe d x e

dx

Putting n = 1

1( )L x = ( ) 1
1!

x
x x x xe d xe e e xe x

dx

Putting n = 2

2( )L x =
2

2 2
2 2

2! 2!

x x
x x xe d e dx e xe x e

dxdx

= 22 4
2!

x
x x xe e x e x e
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= 21 2 4

2!
x x

Similarly,

3( )L x = 2 31 6 18 9
3!

x x x

4( )L x = 2 3 41 24 96 72 16 , .
4!

x x x x etc

Self Assessment

9. Show that

2
2

2 2( )
2

x
xe dL x x e

dx

10. Show that 3x  is given by

3
0 1 2 36 ( ) 3 ( ) 3 ( ) ( )x L x L x L x L x

11. From  Rodrigue s formula show that

2
1 0

( ) ( ) ( )dL x L x L x
dx

4.4 Orthogonality Property of Laguerre Polynomials ( )nL x

To prove

0
( ) ( )x

n me L x L x dx =
0 if 
1 if mn

m n
m n

...(i)

We have from the generating function of Laguerre polynomial, that

0

( )n
n

n

t L x = (1 )1
1

tx te
t

and
0

( )m
m

m

s L x = /(1 )1
1

xs se
s

, 0

( ) ( )x n m
n m

m n

e t s L x L x =
/(1 )

(1 )1
(1 )(1 )

sxtx t
sxe e

t s ...(ii)

Thus

0
( ) ( )x

n me L x L x dx = Coeff. of m ns t  in the expansion of 
/(1 )/(1 )

0

1
(1 )(1 )

sx stx t exe e dx
t s
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=
1

1 1

0

1
(1 )(1 )

t sx
t se dx

t s

=
1

1 1

0

1 1
(1 )(1 )

1
(1 ) (1 )

t sx
t se

t s t s
t s

= 1 (1 )(1 ) [ 1]
(1 )(1 ) (1 )(1 ) (1 ) (1 )

t s
t s t s t s s t

= 1 2 31 (1 ) 1 ( ) ( ) ( )
1

nst st st st st
st ...(iii)

In which coefficient of m ns t

is 0 if m n ...(iv)

and is 1 if m n

Hence

0
( ) ( )x

m ne L x L x dx =
0 if 
1 if 

m n
m n

or

0
( ) ( )x

m ne L x L x dx =  (where , , 1, 2, 3, )mn m n ...(v)

Self Assessment

12. Whether 2 3
0

( ) ( )xe L x L x dx  is equal to

(a) 1 (b) 5

(c) 1 (d) 0

13. Find out

0

( )mn m
m

L x

14. Prove that

1 2
0

( ) ( ) 0xe L x L x dx
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Notes4.5 Recurrence Formulae for Laguerre Polynomials ( )nL x

I. 1( 1) ( )nn L x = 1(2 1 ) ( ) ( )n nn x L x n L x

We have
0

( )n
n

n

t L x = (1 )1
(1 )

tx
te

t

Differentiating both sides with respect to t, we have

1

0

( )n
n

n

n t L x = (1 )
2

1 1
1(1 )

tx
tx e

tt

or 2 1

0

(1 ) ( )n
n

n

t n t L x =
/(1 )

/(1 )1(1 ) .
(1 ) 1

tx t
tx tet x e

t t

or 2 1

0

(1 ) ( )n
n

n

t n t L x =
0 0

(1 ) ( ) ( )n n
n n

n n

t t L x x t L x

or 2 1

1

1 2 ( )n
n

n

t t n t L x =
1 0

(1 ) ( ) ( )n n
n n

n n

t t L x x t L x

or
1 1

1 1 1

( ) 2 ( ) ( )n n n
n n n

n n n

n t L x n t L x n t L x

= 1

0 0 0

( ) ( ) ( )n n n
n n n

n n n

t L x t L x x t L x

Equating the coefficient of nt  on both sides, we have

1 1( 1) ( ) 2 ( ) ( 1) ( )n n nn L x n L x n L x

= 1( ) ( ) ( )n n nL x L x xL x

or 1( 1) ( )nn L x = 1(2 1 ) ( ) ( )n nn x L x n L x

II. ( )nxL x = 1( ) ( )n nnL x nL x

We have

0

( )n
n

n

t L x = (1 )1
(1 )

tx
te

t

Differentiating with respect to x, we have

0

( )n
n

n

t L x =
/(1 )1

(1 ) 1
tx t te

t t

or
0

(1 ) ( )n
n

n

t t L x = /(1 )1.
1

tx tt e
t
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or

0

(1 ) ( )n
n

n

t t L x =
0

( )n
n

n

t t L x

or 1

0 0

( ) ( )n n
n n

n n

t L x t L x = 1

0

( )n
n

n

t L x

Equating the coefficients of ,nt  on both sides, we get

1( ) ( )n nL x L x = 1( )nL x

or ( )nL x = 1 1( ) ( )n nL x L x ...(i)

Differentiating recurrence formula I with respect to x, we get

1( 1) ( )nn L x = 1(2 1 ) ( ) ( ) ( )n n nn x nL x L x nL x ...(ii)

Replacing n by (n + 1) in (i), we get

1( )nL x = ( ) ( )n nL x L x

Also from (i) 1( )nL x = 1( ) ( )n nL x L x

Substituting these values in (ii), we have

( 1) ( ) ( )n nn L x L x = 1(2 1 ) ( ) ( ) ( ) ( )n n n nn x L x L x n L x L x

or ( )nxL x = 1( ) ( )n nnL x n L x

III ( )nL x =
1

0

( )
n

r
r

L x

We have
0

( )n
n

n

t L x = /(1 )1
1

tx te
t

Differentiating with respect to x, we have

0

( )n
n

n

t L x =
0

( )
1

r
r

r

t t L x
t

(as in II)

= 1

0

(1 ) ( )r
r

r

t t t L x

= 2

0

1 ( )r
r

r

t t t t L x

=
0 0

( )s r
r

s r

t t t L x

= 1

0, 0

( )r s
r

s r

t L x ...(i)
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NotesFor fixed values of r, the coefficient of tn on the R.H.S. is ( ),rL x  obtained by putting

1  or 1.r s n s n r

Total Coefficient of tn is obtained by summing over all allowed values of r.

Since 1 and 0s n r r

Therefore 1 0 or ( 1).n r r n

Coefficient of tn on the R.H.S. =
1

0

( )
n

r
r

L x

Therefore equating coefficient of tn, on both sides of (i), we have

1

0

( ) ( ).
n

n r
r

L x L x

Illustrative Examples

Example 1: Prove that (0) 1.nL

Solution: We have

0

( )n
n

n

t L x = (1 )1
1

tx
te

t

Putting 0,x  we have

0

(0)n n
n

t L =
11 (1 )

(1 )
t

t

= 21 nt t t

=
0

n

n

t

(0)nL = 1

Example 2: Expand 3 2 3 2x x x  in a series of Laguerre polynomials.

Solution: We know that ( )nL x  is a polynomial of degree n. Since 3 2 3 2x x x  is a polynomial
of degree 3, we may write

3 2 3 2x x x =
3

0

( )r r
r

C L x ...(i)

Putting values of 0 1 2 3( ), ( ), ( ) and ( )L x L x L x L x  from section 4.3, we have

3 2 3 2x x x = 2 2 33
0 1 2

1(1 ) . 2 4 6 18 9
2! 3!

cc c x c x x x x
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or 3 2 3 2x x x = 0 1 2 3 1 22 3c c c c c c c x

2 32 3
3

3
2 2 6
c cc x x ...(ii)

Equating coefficients of like powers of x on both sides of (ii), we get

0 1 2 3c c c c = 2

1 2 32 3c c c = 3

2 3
1 3
2 2

c c = 31 and 1
6
c

Solving these, we get,

3c = 2 1 06, 20, 19, 7C c c ...(iii)

Putting these values in (i) we get

3 2 3 2x x x = 0 1 2 37 ( ) 19 ( ) 20 ( ) 6 ( ).L x L x L x L x

Example 3: Prove that

( ) (1 ) ( ) ( )n n nxL x x L x nL x = 0

and hence deduce that

(0)nL = n

Solution: Since ( )nL x  satisfies the Laguerre s equation

2

2 (1 ) 0,  for d y dyx x ny n
dxdx

( ) (1 ) ( ) ( ) 0.n n nxL x x L x nL x

Putting 0,x  we have

(0) (0)n nL nL

or (0)nL n since (0) 1nL

Self Assessment

15. Express 4( )L x  in terms of 3 2( ) and ( )L x L x

16. Show that

1( ) ( ) ( )n n nL x L x L x

17. Show that

(1) (1) 0n nL nL
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Notes4.6 Summary

 Laguerre differential equation has 0x  as a regular singular point. Thus Frobenius method
is applied to get a power series.

 For ,n n  being a positive integer we obtain a finite power series solution known as

Laguerre polynomials ( ).nL x  The highest power of ( ) is .n
nL x x

 Like in the previous units here we show a generating function, Rodrigue formula for
( ).nL x

 ( ) for 0,1,2nL x n  form an orthogonal set of functions and satisfy orthogonality
property.

 Various recurrence relations are obtained that help in understanding Laguerre polynomials.

4.7 Keywords

Laguerre Polynomials are a finite power series in x.

Frobenius Method: Laguerre differential equation has 0x  as regular singular point. So
Frobenius method on application gives a power series solution.

Orthogonal Relations of Laguerre polynomials are relations involving integrals of two Hermite
polynomials. Due to these relations ( ) for 0,1,2,nL x n  form an orthogonal set of functions.

4.8 Review Questions

1. Discuss the nature of singularities of the differential equation

0xy y xy

2. Find all the singular points of the differential equation

2 21 0x y xy x y

3. Show from recurrence relation III

1

0

( ) ( )
n

n r
r

L x L x

Prove that

0

( ) ( ) 0,  for 1,2,x n
n

dL xe L x dx n
dx

4. Show that 3 2 1( ), ( ) and ( )L x L x L x  are related as

3 2 13 ( ) (5 ) ( ) ( )L x x L x L x
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Notes Answers: Self Assessment

1. (b)
2. (c)
3. finite
4. n

5. 2
1 2

1( ) 1 , ( ) (2 4 )
2

L x x L x x x

7. 2 3
3

1( ) 6 18 9
6

L x x x x

8. (c)
12. (d)

13. ( )nL x

4.9 Further Readings

Books K. Yosida, Lectures on differential and Integral Equations

L.D. Landau and E.M. Lifshitz, Quantum Mechanics
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NotesUnit 5: Integral Equations and Algebraic
System of Linear Equations

CONTENTS

Objectives

Introduction

5.1 Connection between a First Order Differential Equation and Integral Equation

5.2 Conversion of a Differential Equation of Second Order to an Integral Equation

5.3 Fredholm Integral Equations and Boundary Value Problem

5.4 Relation between Integral Equations and Algebraic System of Linear Equations

5.5 Summary

5.6 Keywords

5.7 Review Questions

5.8 Further Readings

Objectives

After studying this unit, you should be able to:

 Remind ourselves that in unit six we studied Picard s method of showing the existence of
the solution of first order differential equations which let us to integral equations.

 Study how to express a differential equation with boundary conditions or initial conditions
into an integral equation.

 See the connection between an integral equation and an algebraic system of linear equations.

Introduction

In the next few units we are interested in studying various types of integral equations and see
how to solve them.

You will learn how to express a differential equation with initial conditions into an integral
equation.

In the case of boundary value problem of a differential equation we are let to Fredholm type of
integral equations.

By dividing the interval into segments we will see how the solution of an integral equation
reduced to an algebraic system to equations.

5.1 Connection between a First Order Differential Equation and
Integral Equation

In unit 6 we studied the existence and uniqueness of the solution of the first order differential
equation of the type

dy
dx = f(x, y) ...(1)

Richa Nandra, Lovely Professional University
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Notes with the initial conditions that at x = x0, y = y0. We assume that

1. The function f(x, y) is real valued and continuous on a domain D of the xy plane given by

0 0 0 0,x a x x a y b y y b ...(2)

where a and b are positive numbers

2. f(x, y) satisfies the Lipschitz condition with respect to y in D, that is, there exists a positive
constant k such that

1 2 1 2( , ) ( , )f x y f x y K y y ...(3)

for every pair of points 2 2( , ), ( , )x y x y  of D,

with the help of Picard s method of successive approximation, it is then seen that y(x)
satisfies the integral equation

0

0( ) ( , ( ))
x

x

y x y f t y t dt ...(4)

The integrand f (t, y(t)) on the right hand side of (4) is a continuous function, hence y(x) is
differentiable with respect to x, and its derivatives is equal to f(x, y(x)). Here the integral equation
(4) can be solved by the method of successive approximation.

Uniqueness of the Solution: We have obtained the integral equations (4) for the solution y(x) of
(1) satisfying the initial conditions x = x0, y = y0. There remains an other important problem, the
problem of uniqueness. Is there any other solution satisfying the same initial condition.
Fortunately under our two assumptions, we can prove the uniqueness of the solution. To see this
let z(x) be another solution of (1) such that x = x0, z(x0) = y0. Then

z(x) =
0

0 ( , ( )) .
x

x

y f t z t dt

By the assumption 2, we obtain for 0x x b

( ) ( )y x z x
0

( ) ( )
x

x

K y t z t dt ...(5)

Therefore, we also obtain 0x x h

( ) ( )y x z x 0KN x x

where

N =
0

( ) ( )x x hSup y x z x

Substituting the above estimate for ( ) ( )y t z t  on the right side of (5), we obtain further

( ) ( )y x z x 2
0 / 2,NK x x
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Notesfor 0( ) .x x h  Substituting this estimate for ( ) ( )y t z t  once more on the right side of (5) we
have

( ) ( )y x z x 3
0 / 3KN x x

for 0 .x x h  Repeating this substitution we obtain

( ) ( )y x z x 0 / !, 1,2,...mNK x x m m

for 0 .x x h  The right side of the above inequality tends to zero as m . This means that

N =
0

sup ( ) ( )x x h y x z x

is equal to zero. So the solution of y(x) by the integral equal is unique also.

5.2 Conversion of a Differential Equation of Second Order to an
Integral Equation

Example: Convert the differential equation

2
2 8d y dy y

dx dx
= 25 3x x ...(1)

with the initial conditions

x = 0, 0
0

( ) 2, 3.
x

dyy x
dx ...(2)

Solution 1: Let

y =
2

2 ( )d y G x
dx ...(3)

Integrating (3) once yields the result

( )y x = 1
0

( )
x

G t dt C

For x = 0, this gives

(0)y = 0 + C1 = 3

therefore

( )y x =
0

( ) 3
x

G t dt ...(4)

Again integrating (4),

y(x) = 2
0 0 0

( ) 3
x t x

G t dt dt dx C
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Notes Integrating the first term on the right by parts we have

y(x) = 2
0 00

( ) ( ) 3

xt x

t G t dt tG t dt x C

= 2
0 0

( ) ( ) 3
x x

x G t dt t G t dt x c

or y(x) = 2
0

( ) ( ) 3
x

x t G t dt x c

Subjecting this to the condition

y(x) =  2 at x = 0

we get 2 = 0 + 0 +c2 or c2 =  2

so y(x) =
0

( ) ( ) 3 2
x

x t G t dt t ...(5)

Writing (1) with the help of (3), (4) and (5), we have

0 0

( ) 2 ( ) 6 8 ( ) ( ) 24 16
x x

G x G t dt x t G t dt t = 25 3x x

or 2

0

( ) (2 8 8 ) ( ) 5 21 22
x

G x x t G t dt x t = 0 ...(6)

Where G(x) =
2

2
d y
dx ...(7)

Solution 2: We follow an other method. In this method we integrate equation (1) from 0 to x,

0 0
( ) 2 ( ) 8 ( )

x
x x

a

y t y t y t dt = 3 25 3
3 2

x x

or
0

( ) (0) 2 ( ) 2 (0) 8 ( )
x

y x y y x y y t dt = 3 25 3
3 2

x x

but (0)y = 3, y(0) =  2

(0) 2 (0)y y = 1

0

( ) 2 ( ) 8 ( )
x

y x y x y t dt = 3 25 3 1
3 2

x x

Again integrating, we get

0
0 0

( ) 2 ( ) 8 ( ) ( )
x x

x
y t y t dt x t y t dt =

3
45

12 2
xx x
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or

0

( ) (0) ( 8 8 2) ( )
x

y x y x t y t dt =
3

45
12 2

xx x

or
0

( ) ( 8 8 2) ( )
x

y x x t y t dt =
3

45 2
12 2

xx x ...(8)

Note:  In this problem we have two answers, i.e. one for 
2

2
d y
dx  another for y for the same

problem, but they lead to the same conclusion.

Self Assessment

1. Express the differential equation

2
2

2 ( ) 1d y dyx x y x x
dxdx

 with the condition at x = 0, y(0) = 4, 
0

2,
x

dy
dx

into integral

equation.

5.3 Fredholm Integral Equations and Boundary Value Problem

Let us consider the following example of a second order differential equation with the given
boundary conditions and establish the integral equation

Example 1: Express the differential equation

2

2 ( )d y a y x
dx

= 0,

with the boundary conditions

x = 0, y(0) = 0, x = 1, y(1) = 0,

as an integral equation

Solution: We have

2

2 ( )d y a y x
dx

= 0 ...(i)

with y(0) = 0 = y(1) ...(ii)

Method 1: Let

2

2
d y
dx = G(x)

Integrating, we get

dy
dx = 1

0

( )
x

G t dt c ...(iii)
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Notes Again Integrating

y(x) = 1 2
0 0

( )
x t

dt G t dt c c

= 1 2
0 00

( ) ( )

xt x

t G t dt t G t dt c x c

= 1 2
0 0

( ) ( )
x x

x G t dt tG t dt c x c

or y(x) = 1 2
0

( ) ( )
x

x t G t dt c x c ...(iv)

For x = 0, equation (iv) gives

0 = y(0) = 0 + c10 + c2 or c2 = 0

Now (iv) becomes

y(x) = 1
0

( ) ( )
x

x t G t dt c x ...(v)

For t = 1

y(1) =
1

1
0

0 (1 ) ( ) .1t G t dt c

or c1 =
1

0

(1 ) ( )t G t dt

Now equation (v) becomes

y(x) =
1

0 0

( ) ( ) (1 ) ( )
x

x t G t dt x t G t dt

=
1

0 0

( ) ( ) ( ) ( )
x

x t G t dt xt x G t dt

=
1

0 0

( ) ( ) ( ) ( ) ( ) ( )
x x

x

x t G t dt xt x G t dt xt x G t dt

=
1

0

( 1) ( ) ( 1) ( )
x

x

x G t dt x t G t dt

or y(x) =
1

0

( , ) ( )K x t G t dt ...(vi)
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with K(x, t) =

( 1) if
( 1) if
x t t x

x t t x
...(vii)

Using this in (i),

1

0

( ) ( , ) ( )G x a K x t G t dt = 0

where G(x) =
2

2
( 1) ,

, ( , )
( 1) ,
x t t xd y K x t
t x t xdx

Method 2:

Integrating (i) from 0 to x

0 0

( ) ( )
x x

y t dt a y t dt = 0

0
0

( ) ( )
x

x
y t a y t dt = 0

or
0

( ) (0) ( )
t

y x y a y t dt = 0

Again integrating,

00
0

( ) (0)[ ] ( ) ( )
x

x xy t y t a x t y t dt = 0

or
0

( ) (0) (0) ( ) ( )
x

y x y y x a x t y t dt = 0

or
0

( ) (0) ( ) ( )
x

y x y x a x t y t dt = 0 ...(viii)

Putting x = 1, this gives

1

0

(1) (0) (1 ) ( )y y a t y t dt = 0

or as y(1) = 0, we have

(0)y =
1

0

(1 ) ( )a t y t dt
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Notes Substituting this in (viii) we have

1

0 0

( ) (1 ) ( ) ( ) ( )
x

y x x a t y t dt a x t y t dt = 0

or
1

0 0

( ) ( 1) ( ) ( ) ( )
x

y x a x t y t dt a x t y t dt = 0

or
1

0 0

( ) ( 1) ( ) ( 1) ( ) ( ) ( )
x x

x

y x a x t y t dt a x t y t dt a x t y t dt = 0

or
1

0

( ) ( 1) ( ) ( 1) ( )
x

x

y x a t x y t dt a x t y t dt = 0

Taking

K(t, x) =
( 1) ,
( 1) ,

t x t x
x t t x

So we get

1

0

( ) ( , ) ( )y x a K t x y t dt = 0 ...(ix)

Example 2: Express the differential equation

2

2
( ) ( )d y x y x

dx
= f(x) ...(1)

into an integral equation. Here y, y and f are continuous differentiable on the interval 0 < x < 1
with the boundary conditions.

y(0) = 0 = y(1)

Following the method 2, let us integrate (1) from 0 to x, we have

0 0 0

( ) ( ) ( )
x x x

y u du y u du f u du = 0

or
0 0

( ) (0) ( ) ( )
x x

y x y y u du f u du = 0 ...(2)

Integrating once again, we have

0 0 0

( ) (0) ( ) ( ) ( ) ( )
x x x

y x dx y x x u y u du x u f u du = 0
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or

0 0

( ) (0) (0) ( ) ( ) ( ) ( )
x x

y x y y x x u y u du x u f u du = 0

or
0 0

( ) (0) ( ) ( ) ( ) ( )
x x

y x y x x u y u du x u f u du = 0 ...(3)

To find the value of y (0), put x = 1 in equation (3), we get

1 1

0 0

0 (0).1 (1 ) ( ) (1 ) ( )y u y u du u f u du = 0

so y (0) is given by

y (0) =
1 1

0 0

(1 ) ( ) (1 ) ( )u y u du u f u du ...(4)

Substituting this value of y (0) in equation (3) and rearranging terms we get

y(x) =
1 1

0 0 0 0

(1 ) ( ) ( ) ( ) (1 ) ( ) ( ) ( )
x x

x u y u du x u y u du u f u du x u f u du

or y(x) =
1

0 0 0

(1 ) ( ) ( ) ( ) (1 ) ( ) ( ) ( )
x x x

x

x u y u du x u y u du x u y u du x u f u du

1

0

(1 ) ( ) (1 ) ( ) 0
x

x

x u f u du u f u xdu

Simplifying the above equation we have

             y(x) = 
1 1

0 0

(1 ) ( ) (1 ) ( ) ( 1) ( ) (1 ) ( ) 0
x x

x x

u x y u du x u y u du u x f u du x u f u du ...(5)

Defining

K(u, x) =
( 1)
( 1)

u x u x
x u u x

We write equation (4) as

y(x) =
1 1

0 0

( , ) ( ) ( , ) ( )K u x y u du K u x f u dx

Knowing K(u, x) and f(u), we know the second integral on the right hand side. Let us put

1

0

( , ) ( )K u x f u du = (x) ...(6)
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Notes Thus y(x) is given by the integral equation

y(x) =
1

0

( , ) ( ) ( )K u x y u du x ...(7)

Self Assessment

2. Express

2 ( ) 3 ( ) 2 ( ) 4 2 costy x y x y x e t with initial conditions (0) 4, (0) 1,y y  into
integral equation.

(Hint: Integrate the differential equation twice and use initial conditions.)

5.4 Relation between Integral Equations and Algebraic System of
Linear Equations

Consider the general linear Fredholm integral of the second kind for a function (x) of the type

1

0

( ) ( , )x K x y dy = ( ) (0 1)f x x ...(1)

and the linear Fredholm equation of the first kind is given by

1

0

( , ) ( )K x y y dy = ( ) (0 1)f x x ...(2)

The problem of solving (1) and (2) can be considered as a generalization of the problem of
solving a set of n linear algebraic equations in n unknown:

1

n

rs s
s

a x = br. (r = 1, 2, ...n) ...(3)

For this purpose we divide the interval (0 x 1) into n segments and define

K(x, y) = Krs (r, s = 1, 2, ... n)

and f(x) = fr
Here, x, y are divided into strips as ...(4)

1r
n

< rx
n

(r = 1, 2, ... n)

1s
n <

sy
n (s = 1, 2, 3, ... n)

Then equation (1) becomes

( )x =
/

1 ( 1)/

( )
s nn

r rs
s s n

f K y dy 1r rx
n n

        ...(5)

Equation (5) shows that if a function ( )x exists it must be a step function, i.e.
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(x) = r                

1 , ( 1,2,... )r rx r n
n n

then equation (1) can be written in the form

1

n

r rs s
s

K = ( 1,2,3,.... )rf r n ...(6)

Define the determinant A with elements

                              rs rsK
n          for r, s = 1, 2, ... n

and rs =
0 ,
1 ,

r s
r s

If the determinant A does not vanish, then (6), and therefore (5) has a unique solution for any
given step function f(x).

In the same way if we take up equation (2) and use equations (3) and (4) then equation (2) takes
up the form

rf =
/

1 ( 1)/

1( ) ,
s mn

rs
s s n

r rK y dy x
n n

...(7)

This case of (7) is different than that of (5) as here one cannot conclude that (x) is necessarily a
step function. All that can be said  is that if we set

/

( 1)/

( )
s n

s n

n y dy = xs,

then (7) becomes

Fr =
1

( 1,2,... )
n

rs s
s

K x r n
n

...(8)

Here x1, x2, ... xn give the mean values of (x) is the successive intervals 1 1 2 10, , , ... , ,n n
n n n n n

So there are infinitely many solutions of (x).

5.5 Summary

 In this unit we have seen how to convert a differential equation with conditions into an
integral equation.

 The existence and uniqueness of the solution of the integral equation is based on Picard s
method which puts some conditions on the Kernel as well on the function.

 It is seen that the integral equation is reduced to a algebraic system of equations if we
divide the interval into segment.
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Notes 5.6 Keywords

Integral equation is an equation in which the unknown variable appears under the integral sign.

The conversion of a differential equation into an integral equation is possible if the function and
its first derivatives are continuous in the interval.

5.7 Review Questions

1. Express the differential equation

2 8 0y y y

with boundary conditions (0) 0 (1)y y as in integral equation.

2. Convert the differential equation

22 8 5 3 ,y y y x x

with (0) 2, (0) 3y y  into integral equation.

Answers: Self Assessment

1. 3 2 2

0

( ) ( 4 ) ( ) 1 3 4 2,
x

G x x x x G t dt x x  with 
2

2( ) d yG x
dx

2.
0

2 ( ) ( 2 2 3) ( ) 4 2 cos 10 6
t

xy x t u y u du e x t

5.8 Further Readings

Books Louis A. Pipes and Lawrence R. Harnvill, Applied Mathematics for Engineers
and Physicists

Tricomi, P.G., Integral Equation

Yosida, K., Lectures in Differential and Integral Equations
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NotesUnit 6: Volterra Equations and L2

Kernels and Functions

CONTENTS

Objectives

Introduction

6.1 Classification of Integral Equations

6.2 Volterra Integral Equations

6.3 L2 Kernels and Functions

6.4 Solution of Volterra Integral Equation of Second Kind

6.5 Summary

6.6 Keywords

6.7 Review Questions

6.8 Further Readings

Objectives

After studying this unit, you should be able to:

 Know that integral equations can be of Volterra type equations of first or second kind or
they can be Fredholm type of first or second kind.

 See that in the case of Volterra integral equations the upper limit depends upon the
independent variable while in the case of Fredholm integral equations the limits are
fixed.

 Understand that there are certain conditions on the Kernels as well on the functions for the
existence of the solution. Here it is seen that the Kernels as well as the functions are L2 class
and so the solution does exist.

Introduction

L2 class Kernels as well as functions are square integrable. So if the iteration procedure is applied
one can see that product of two L2 class Kernels is also L2-class.

This method enables us to find the resolvent Kernels by L2-class method and the solution of the
integral equation is obtainable.

6.1 Classification of Integral Equations

In the last unit we studied the integral equations by converting a differential equation with
boundary conditions or initial conditions. We see that the boundary conditions lead us to
integral equations of the type

( ) ( ) ( , ) ( )
b

a

y x f x K x u y u du ...(1)

Sachin Kaushal, Lovely Professional University
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Notes
or ( , ) ( ) ( )

b

a

K x u y u f x ...(2)

In these cases the limits of integrations are fixed by some constants and the unknown variable
appears inside the integral sign. These equations are known as Fredholm integral equations of
the second kind (1) and the first kind (2) respectively.

We can also have integral equations of the following type.

( ) ( ) ( , ) ( )
x

a

y x f x K x u y u du ...(3)

or ( , ) ( ) ( )
x

a

K x u y u du f x ...(4)

In the equations (3) and (4) the limits of integration depends on the independent variable.
Equations (3) and (4) are known as Volterra integral equations of the second kind and the first
kind respectively.

We can take up the various types of integral equations and study them and devise methods of
solving them. The solution of the integral equation is based on the properties of the Kernels
K (u, x) as well as the function f(x).

In this unit we concentrate on the Volterra integral equations and in particular see how the
solution of the Volterra integral equations are carried out along with the discussion of the
L2-Kernel.

6.2 Volterra Integral Equations

In the previous unit we had seen some difficulties in the solutions of the integral equation by
converting them into an algebraic system of equations. It is seem there that when dealing with
integral equation of the first kind we find the mean values of the function in the successive

intervals 1 1 20, ,
n n n

, .... and so therefore the equation (2) of that section will possess infinite

many solutions.

To avoid these difficulties, Vito Volterra investigated the solution of the integral equations in
which the Kernel satisfies the conditions

K(x, y) = 0 if u > x ...(1)

This corresponds (in the sense of the previous unit) to the simple case of a system of algebraic
linear equations where the elements of the determinant above the main diagonal are all zero.

We rewrite the integral equations of Volterra type of the second kind and first kind as follows:

0

( ) ( , ) ( ) ( )
t

y x K x u y u du f x ...(2)

and
0

( , ) ( ) ( )
t

K x u y u du f x ...(3)

In this section we shall study the Volterra integral equation of the second kind (2) that we can
readily solve by Picard’s process of successive approximation as discussed in unit 6. We state by
setting y0(x) = f(x) and then determine y1(x):
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1

0

( ) ( ) ( , ) ( )
k

y x f x K x u f u du

Continuing in this manner we obtain an infinite sequence of functions

0 1 2( ), ( ), ( )...... ( )......ny x y x y x y x ...(4)

satisfying the recurrence relations

1
0

( ) ( ) ( , ) ( ) ,
k

n ny x f x K x u y u du (n = 1, 2, 3....) ...(5)

Setting

1( ) ( ) ( )n
n n ny x y x x (n = 1, 2, 3....) ...(6)

and putting

0(x) = f(x), we get

2
0

( ) ( )
n

v
n

v

y x x ...(7)

Also 1
0

( ) ( , ) ( )
x

n nx K x u u du (n= 1, 2, 3, ...)

Hence 1
0

( ) ( , ) ( )
t

x K x u f u du

and
1

2 1 1 1
0 0

( ) ( , ) ( , ) ( )
t u

x K x u du K u u f u du

This repeated integral be considered as a double integral over the triangular region indicated in
the figure 25.1 thus interchanging the order of integration, we obtain

Figure 6.1

O

X

x

x Y

2 1 1 1
0

( ) ( ) ( , ) ( , )
x x

u
x f u du K x u K u u du

or 2 2
0

( ) ( , ) ( )
x

x K x u f u du
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Notes
where 2 1 1 1( , ) ( , ) ( , )

x

u
K x u K x u K u u du

Similarly, we find in general

0
( ) ( , ) ( )

x

n nx K x u f u du (n = 1, 2, 3, ....) ...(8)

Where the integrated Kernels are defined as

K1(x, u)  K(x, u), K2(x, u), K3(x, u)......

are defined by the recurrence formula

1 1 1 1
0

( , ) ( , ) ( , )
x

n nK x u K x u K u u du (n = 1, 2, 3, ....) ...(9)

Moreover, it is easily seen that we also have

0 0

1 1 1 1 1
0

1 1 1 0 0
0

( , ) ( , ) ( , )

( , ) ( , ) 1

x

n n

x

r s

K x u K x u K u u du

K x u K u u du r s n
...(9)

where r0 = 1, s0 = n.

Now 1 1 1 1 1 2 1 2 2 1
0 1

( , ) ( , ) ( , ) ( , )
x x

n n
u

K x u K x u K u u K u u du du

Interchanging the integrals we have

1 1 2 2 1 1 1 1 2 1
0 2

1 2 2 2 2
0

2 2 1 2 2
0

( , ) ( , ) ( , ) ( , )

( , ) ( , )

( , ) ( , )

x x

n n
u

x

n

x

n

K x u K u u du K x u K u u du

K u u K x u du

K x u K u u du

In the same way we get

1 3 2 2 2 2
0

( , ) ( , ) ( , )
x

n nK x u K x u K u u du

and so on. So we may write

1 2 2 2
0

( , ) ( , ) ( , )
x

n r sK x u K x u K u u du where (r = 1, 2,...n, s = n  r + 1) ...(10)

Now from equation (7)

0

00

01

( ) ( )

( , ) ( )

( ) ( , ) ( )

n
v

n v
v

n xv
v

v
n xv

v
v

y x x

K x u f u du

f x K x u f u du

or
0 1

( ) ( ) ( , ) ( )
nx

n v
v

y x f x K x u f u du
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NotesHence if the solution exists, it should be given by letting  n  and given by

0
( ) ( ) ( , , ) ( )

x
f x f x H x u f u du ...(11)

where H(x, u, ) is the resolvent Kernel given by the series

1
0

( , , ) ( , )n
n

n

H x u K x u ...(12)

This method of successive approximation cannot only be applied to those of Volterra type
integral equations but a whole lot of other equations including the Fredholm integral equations.

Example: Let the Volterra integral equation be given by

0
( ) ( ) ( )

xx
y x X x t y t dt for 0  x  1

The interacted Kernels are

1

3

2

3 5

3

2 1

( , )

( )( , ) ( ) ( )
1.2.3.

( ) ( ) ( )( , )
1.2.3 5

( )( , )
(2 1)!

x

t

n

n

K x t x t

x tK x t x r r t dr

x r r t dr s tK x t

x tK x t
n

         

Hence
3 5

0

3 5 7

0

( ) ( )( ) ( ) .... .
3! 5!

( ) ( ) ( ) .... sin
3! 5! 7!

s

x

x t x ty x x x t t dt

x t x t x tx x

So the answer is

y(x) = sin x

6.3 L2-Kernels and Functions

In the case of Volterra integral equation

0
( ) ( ) ( , ) ( )

x
y x f x K x u f u du ...(1)

The Kernel K(x, u) and the f(x) are supposed to be continuous and differentiable in the double
interval 0  x  h and 0  u  h. They are consequently bounded in the L2-space. Namely the
Kernel and the function f(x) are quadratically integrable in the L2-space i.e. 0  x  h and
0  u  h where h is constant i.e. the integrals

2 2

0 0
( , )

h h
K K x u dxdu N ...(2)

2

0
( )

h
t f x dx ...(3)

105



LOVELY PROFESSIONAL UNIVERSITY

Notes exist and are finite in the Lebesgue sense while N is finite. Such a Kernel as well as the function
will be called L2 Kernel and L2-function, respectively.

The consequences of the Kernel being L2-Kernel are many. One of them is as follows:
The functions

1 2 1 2
2 2

0 0
( ) ( , ) , ( ) ( , )

h h
A x K x u du B u K x u dx ...(4)

exist almost everywhere for 0  x  h an 0  u  h respectively. Also A(x), B(u) belong to L2 class.

and finally that

2 2 2

0 0
( ) ( )

h h
K A x dx B u du ...(5)

Secondly, if (x) is any L2-function in (0, h) then the two functions

0 0
( ) ( , ) ( ) , ( ) ( , ) ( )

h h
x K x u u du u K x u x dx ...(6)

are also L2-functions. This is an immediate consequence of the Schwarz inequality

2
2 2( ) ( ) ( ) ( ) .

b b b

a a a
f x g x dx f x dx g x dx

From (6) it follows that

,K K ...(7)

In the same way, it is easy to show that the composition of two L2 Kernels K(x, u) and H(u, t) i.e.
the formation of two new Kernels

1 1 1 1
0

2 1 1 1
0

( , ) ( , ) ( )

( , ) ( , ) ( )

h

h

G x u K x u H u u du

G x u H x u K u u du
...(8)

yields two new L2-Kernels, such that

1 2,G K H G H K ...(9)

and so on. In fact this last formula give us useful bounds for the norms of the iterated Kernels

n
nK K ...(10)

Self Assessment

1. Show that the nth iterated Kernel Kn(x, u) satisfies the bound

n
nK K

6.4 Solution of Volterra Integral Equation of Second Kind

In the section we want to prove the existence and uniqueness of the solution of the Volterra
integral equation of the second kind

0
( ) ( , ) ( ) ( )

x
y x K x u y u du f x (0  x  h) ...(1)
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Noteswhere the Kernel K(x, u) and the function f(x) belong to the class L2. In the last sections we had
seen that the solution is given by the formula

0
( ) ( ) ( , , ) ( )

x
y x f x H x u f u du ...(2)

where the resolvent Kernel H(x, u, ) is given by the series of iterated Kernels

1
0

( , , ) ( , )v
v

v

H x y K x u ...(3)

The series (3) converges almost everywhere. H(x, u, ) satisfies the integral equation

( , ) ( , , ) ( , ) ( , , )

( , , ) ( , )

x

y

x

y

K x u H x u K x z H z u dz

H x z K z u dz
..(4)

Proof: with the help of the Schwarz inequality, we first find

2
2
2 1 1 1

2 2
1 1 1 1

( , ) ( , ) ( , )

( , ) ( , )

x

y

x x

y y

K x u K x u K u u du

K x u du k u y du

               2 2 2 2
1 1 1 1

0 0
( , ) ( , ) ( ) ( ),

h h
K x u du K u u du A x B y

and successively

2 2 2
3 1 1 2 1 1

2 2 2
1 1 1 1

0

2 2 2
1 1

( , ) ( , ) ( , )

( , ) ( ) ( )

( ) ( ) ( )

x x

y y

h x

y

x

y

K x u K x u du K u u du

K x u du A u B u du

A x B u A u du

2 2 2
4 1 1 3 1 1

2 2 2 2
1 1 1 1 2 2

0

2 2 2 2
1 1 2 2

( , ) ( , ) ( , )

( , ) ( ) ( ) ( )

( ) ( ) ( ) ( )

x x

y y

h x x

y u

x x

y u

K x u K x u du K u u du

K x u du A u B u du A u du

A x B u A u du A u du

         

In general, we can write

2 2 2
2( , ) ( ) ( ) ( , )n nK x u A x B u F x u (n = 1, 2, 3, ...) ...(5)

where

2 2
1 1 1 2 1 1 1( , ) ( ) , ( , ) ( ) ( , ) ,...

x x

y u
F x u A u du F x u A u F u u dz

or generally

2
1( , ) ( ) ( , ) ,

x

n n
y

F x u A z F z u dz (n = 2, 3, ...) ...(6)
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Notes Now we state that

1
1( , ) ( , )
!

n
nF x u F x u

n (n = 1, 2, 3, ...) ...(7)

This formula is obviously valid for n = 1. If it is assumed true for n = 1, it also remains valid
for n, since it follows from (6) that

2 1
1

1 1
1

1 1

1( , ) ( ) ( , )
( 1)!

( , )1 ( , )
( 1)!

1 1 1( , ) ( , )
( 1)! !

x n
n

y

x n

y

z x
n n

z u

F x u A z F z u dz
n

F z uF z u dz
n z

F z u F x u
n n n

On the other hand from equation (2) of the section it follows that

2 2
1

0
0 ( , ) ( )

h
F x u A z dz N

hence

210 ( , )
!

n
nF x u N

n

and by substituting into (5) we obtain

2( , ) ( ) ( ) , ( 0, 1, 2, ...)
!

n

n
NK x u A x B u n

n

Neglecting the first term, this shows that the infinite series (3) or that of equation (12) of
section (25.2) which gives the resolvent Kernel H, has the majorant

0

( | |)( , ) | | ( ) ( ) ,
!

n

n

NM x u A x B u
n

where the last series always converges because the power series

0 !

n

n

Z
n

has an infinite radius of convergence. This is not sufficient to insure that the series (3) be uniformly
and absolutely convergent everywhere, but it is sufficient to ensure its uniform convergence
almost every where, because the functions A(x) and B(u) may become infinite in a subset of (0, h)
of measure zero. However a fundamental theorem of Lebesgue allows the integration of the
series term-by-term, because M(x, u) is a L2 function. In such a case, we will say that the series is
almost uniformly convergent.

If follows that term-by-term integration can be used to evaluate

1 1 1( , ) ( , , ) , ( , , ) ( , )
x x

u u
K x t H t u dt H x u K u u du

Remembering that

( , ) ( , ) ( , ) ,
x

n v n v
y

K x u K x z K z u dz (h = 1, 2, .....n  1) ...(8)

we obtain the basic equation (4). Here the interchange of order improving (8) is allowed under
our hypothesis that K and hence Kn and H belong to L2-class.
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Volterra Equations and L2 Kernels and Functions

NotesWith the help of (4), it is easy to prove that the function y(x) given by (2) satisfies (1). Also

0
0

( ) ( ) ( , , ) ( )
x

y x f x H x u f u du ...(9)

certainly belongs to L2 proved that f(x) belongs to the same class. But then we have

0 0
0

0 0 0 0

( ) ( , ) ( )

( ) ( , , ) ( ) ( , ) ( ) ( , ) ( , , ) ( )

x

x x x zr

y x K x u y u du

f x H x u f u du K x u f u du K x z dz H z u f u du

             
0 0

( ) ( , ) ( , , ) ( , ) ( , , ) ( )
x x

f x K x u H x u K x z H z u dz f u du

             ( ) 0 ( )f x f x

So the function y0(x) from (9) is the only function of class L2 of the given equation, neglecting the
function y(x) given by

0
( ) ( , ) ( )

x
y x K x u u du ...(10)

known as a zero function in L2-space. For this we observe that let v be the norm of y(x) in the
basic interval (0, h)

2 2

0
( )

h
v y x dx

then from (10) using Schwarz inequality, it follows that

2 2 2 2 2 2 2

0 0
( ) | | ( , ) ( ) | | ( )

x x
y x K x u du y z dz A x v

and successively

2 4 2 2 2 4 2 2 2

0 0 0

2 6 2 2 2 2

0 0 0

6 2 2 2 2

0 0

( ) | | ( , ) ( ) | | ( ) ( )

( ) | | ( , ) ( ) ( )

| | ( ) ( ) ( )

x x x

x x u

x y

y x v K x u du A z dz v A x A u du

y x v K x u du A u du A z dz

v A x A u du A z dz

By analogy to (7) we have

2
12 2 2

1 1
0 0 0 0

1( ) ...... ( ) ( )
! !

n nx u xn
n n

NA u du A u du A u du
n n

...(11)

hence we can write

2 2
22 2 2 (| | )( ) ( ) , ( 0, 1, 2, ...)

!

nNx v A x n
n

and this shows that y(x) = 0 at any point where A(x) is finite. So we have shown that y0(x) is a
unique solution of (1).

An alternative approx of proving the existence and uniqueness of the solution of the Volterra
integral equation is by Picard’s process of successive approximation method. It is advisable to
try it as an alternative as given in Yosida book.
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Notes Self Assessment

2. Show that for L2 Kernel K(x, t) the nth iterated Kernel of Volterra integral equation
Kn(x, t) is also L2 class.

6.5 Summary

 Volterra integral equations are obtained by converting a differential equation with initial
conditions.

 For L2-Kernels the resolvent Kernel can be found by iterated Kernel in the limit of n .

 For degenerate type of Kernels the resolvent Kernel can be obtained in a simpler way.

6.6 Keywords

Kernel that is L2 class has the same properties as a square integrable integral.

The L2 class nature of the Kernel as well as the function of L2 class helps finding the solution by
iteration.

6.7 Review Questions

1. What ae integral equation. Give examples.

2. How will you classify integral equations?

3. Account for volterra integral equations.

4. What are L2 Kernel and functions? Explain with suitable examples.

5. Consider the volterra equation with Kernel function
 

ˆ( ) ( )kK t K t

where k = 2,  = 10 3 and kk indefined by

3/2
1 1( ) exp

42kk t
ktt k

construct a solution function.

6.8 Further Readings

Books Tricomi, F.G., Integral Equations

Yosida, K., Lectures in Differential and Integral Equations
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Volterra Integral Equation of the First Kind

NotesUnit 7: Volterra Integral Equation of the First Kind

CONTENTS

Objectives

Introduction

7.1 Volterra Equations of First Kind, function and Kernel Classes

7.2 Reduction of Volterra Equations of the First Kind to Volterra Equations of the
Second Kind

7.3 Summary

7.4 Keyword

7.5 Review Question

7.6 Further Readings

Objectives

After studying this unit, you should be able to:

 Know various types of Kernels and how they help in solving the integral equations.

 Understand that it is difficult to solve Volterra integral equation of the first kind. It can
first be converted to Volterra integral equation of the second kind and the methods discussed
earlier in units can be employed to solve it.

Introduction

Volterra integral equations of the first kind is by suitable method converted into Volterra
integral equations to solve it by suitable method.

The resolvent Kernel can be found easily in the case of Volterra integral equation of the second
kind.

7.1 Volterra Equations of First Kind, function and Kernel Classes

In this unit we present methods for solving Volterra linear equations of the first kind which
have the form

0

( , ) ( )
x

K x u y u du = f(x) ...(1)

Here y(x) is unknown function on the interval a x b K(x, u) is the Kernel of the equation and
f(x) is a given known function. The functions y(x), f(x) are usually assumed to be continuous or
square integrable on (a, b). The Kernel K(x, u) is assumed to either continuous or the square
a x b, a u b or it satisfies the condition

2( , )
b b

a a

K x u dxdu = N2 < 

i.e. K(x, u) is of class L2. Also K(x, u) = 0 for u > x.

Sachin Kaushal, Lovely Professional University
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Notes We now classify some of the Kernels as follows:

1. Degenerate Kernels or Poincere Goursat Kernels

The Kernel K(x, u) of the integral equation is said to be degenerate if it can be represented
in the form

K(x, u) = 1 1 2 2( ) ( ) ( ) ( ) ...g x h u g x h u ...(3)

2. Difference Kernel

The Kernel of the integral equation is said to be difference Kernel if it depends upon the
difference of the arguments,

K(x, u) = K(x  u).

3. Polar Kernels

They are of the form

K(x, u) = ( , ) ( , ) 0 1
( )
L x u M x u
x u

...(4)

where L(x, u) and M(x, u) are continuous on the square

a x b, a u b and L (x, x) 0

4. Logarithmic Kernels

They are of the form

K(x, u) = L(x, u) log (x  u) + M (x  u) ...(5)

The following generalized Abel equation is a special case of equation (1)  with the Kernel
of the form (4)

0

( )
( )

x
y u du
x u

= f(x) 0 1 ...(6)

Example: In case the Kernel K(x, u) and f(x) are continuous then f(x) must satisfy the
following conditions:

(i) If ( , ) 0,K a a then ( ) 0f

(ii) If 1 2 1( , ) ( , ) ( , )... ( , ) 0,n
x x xK a a K a a K a a K a a  and

0 ( , ) ,n
xK a a

then f(a) = 1( ) ... ( ) 0.nf a f a

7.2 Reduction of Volterra Equations of the First Kind to Volterra
Equations of the Second Kind

Consider Volterra integral equation of the first kind

0

( , ) ( )
x

K x u y u du = f(x) ...(1)
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Volterra Integral Equation of the First Kind

NotesAlso suppose that the Kernel K(x, u) and the function f(x) have continuous derivatives on the
interval a x b and a u b i.e.

( , ) ( , )( ), ,d K x u K x uf x
dx x u

exist and continuous, the equation (1) can be reduced to that of second kind provided k(x, x) 0.

To see that differentiate (1) with respect to x,

0

( , )( , ) ( ) . ( )
x

K x uK x x y x y u du
x

=
df
dx

or
0

( , )
( ) ( )

( , )

a K x u
xy x y u du
K x x

= ( , )

dt
dx

K x x ...(2)

which is the Volterra equation of the second kind with Kernel

[ ( , )]
( , )

K x u
x

K x x

and the function

( , )

df
dx

K x x
.

If K(x, x) = 0 then we have to differentiate twice to reduce the equation to that of second kind.

There is a second method of reducing the Volterra equation of the first kind to Volterra equation
of the second kind. For this consider the equation (1)

0

( , ) ( )
x

K x u y u du = f(x) ...(1)

If we set
0

( )
x

y u du = Z(x) ...(2)

Clearly Z(0) = 0

Now integrate by parts of L.H.S. of the integral i.e.

0

( , ) ( )
x

dzK x u u du
du

= f(x)

or 0
0

( , )( , ) ( ) ( )
x

u x
u

K r uK x u Z u Z u du
u

= f(x)

or
0

( , )( , ) ( ) ( )
x

K x uK x x Z x Z u du
u

= f(x)
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Notes

or
0

( , )

( ) ( )
( , )

x K x u
uZ x Z u du

K x x
=

( )
( , )
f x

K x x ...(3)

which is Volterra equation of second kind with Kernel

( , )

( , )

K x u
u

K x x

and the function ( )
( , ).

f x
K x x Here it is assumed that K(x, x) 0. Applying the techniques of last

unit we can write the solution of Z(x) as

Z(x) =
0

( ) ( )( , ,1)
( , ) ( , )

x
f x f uH x u du

K x x K u u
...(4)

where H  (x, u, 1) is the resolvent Kernel corresponding to the Kernel ( , )/ ( , ).d K x u K x x
du

Example 1: Consider the Volterra integral equation of the first kind

0

( , ) ( )
x

K x u y u du = f(x) ...(1)

with the Kernel K(x, u) given by

K(x, u) = ex u

So the equation (1) becomes

0

( )
x

x ue y u du = f(x) ...(2)

Let us put

0

( )
x

y u du = Z(x) ...(3)

So that Z(0) = 0 and ( )( ) .dz xy x
dx

Substituting this value of y in (2) we have

0

( )
x

x u dze u du
du

= f(x)

Integrating L.H.S. by parts once we have

0
0

( ) ( )
x

xx u x ue Z u e Z u du = f(x)
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Volterra Integral Equation of the First Kind

Notes
or

0

( ) ( )
x

x uz x e Z u du = f(x) ...(4)

Which is the Volterra integral equation of the second kind. The equation (4) can be solved by the
method developed in the last unit. Here

( , )K x u = .x ue e ...(5)

= 1( , )K x u

Example 2: Consider the Volterra equation of the first kind

0

( , ) ( )
x

K x u y u = f(x) ...(1)

Where K(x, u) is a degenerate Kernel of the form

( , )K x u = 1 2 1 2( ) ( ) ( ) ( )g x g u h x h u ...(2)

Substituting in (1) we get

1 2 1 2
0 0

( ) ( ) ( ) ( ) ( ) ( )
x x

g x g u y u du h x h x y u du = f(x)

or

1 2 1 2
0 0

( ) ( ) ( ) ( ) ( ) ( )
x x

g x g u y u du h x h u y u du = f(x) ...(3)

Let us introduce an other variable Z(x) by the relation

Z(x) = 2
0

( ) ( )
x

g u y u du ...(4)

where Z(0) = 0

and
( )dz x

dx = 2( ) ( )g x y x ...(5)

So equation (3) becomes

2

1 1
0

( ) ( ) ( )
( )

x

z

dzh
dxg x Z x h x du

g u
= f(x)

Now integrating by parts the integral on L.H.S. we have

2 2
1 1 1

2 20 0

( ) ( )( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

x x
h u d h ug x Z x h x Z u h x Z u du
g u du g u

= f(x)
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Notes or

2
1 2 1 2 1 2

20

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

x
d h ug x g x h x h x Z x h x g x Z u du
dx g u

= 2( ) ( ).f x g x

Simplifying equation (6) we have

1 2 2

1 2 1 2 20

( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( ) ( )

x
h x g x d h uZ x Z u du

g x g x h x h x du g u
=

2

1 2 1 2

( ) ( )
( ) ( ) ( ) ( )

f x g x
g x g x h x h x ...(7)

So equation (7) is Volterra equation of the second kind. Putting

( , )NK x u = 1 2 2

1 2 1 2 2

( ) ( ) ( )
[ ( ) ( ) ( ) ( )] ( )

h x g x d h u
g x g x h x h a du g u

and ( )Nf x = 2

1 2 1 2

( ) ( )
( ) ( ) ( ) ( )

f x g x
g x g x h x h x

equation (7) can be put into the form

0

( ) ( , ) ( )
x

NZ x K x u Z u du = ( )Nf x ...(8)

Knowing 1 2 1 2( ), ( ), ( ), ( )g x g x h x h x  and f(x) we can then solve equation (8) by the methods of the
last unit.

Self Assessment

1. Solve the integral equation

2( )

0

( ) ( ) ( )
x

x uy x f x e y u du

7.3 Summary

 Volterra integral equation of the first kind may have a number of different kinds of
Kernels.

 It is sometimes useful to convert Volterra integral equation into Volterra integral equation
of the second kind.

 By converting Volterra integral equation into that of second order the method of solving
the Volterra integral equation of second kind may be employed.

7.4 Keyword

Volterra integral equation of the first kind is related to Volterra integral equation of the second
kind and the solution of Volterra integral equation of the first kind can be found by the methods
already used.
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Volterra Integral Equation of the First Kind

Notes7.5 Review Question

Convert the Volterra integral equation of the first kind

2

0

( , ) ( )
x

K x t y t dt x

where K(x, t) is a degenerate Kernel of the form

( , ) ( 1)( 1).K x t xt x t

into integral equation of the second kind.

Answer: Self Assessment

1.
(2 ) ( )

0

( ) ( ) ( )
x

x uy x f x e f u du

7.6 Further Readings

Books Tricomi, F.G., Integral Equation

Yosida, K., Lectures in Differential and Integral Equation
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Notes Unit   :  Volterra Integral Equations and Linear
Differential Equations

CONTENTS

Objectives

Introduction

8.1 Relation between Linear Differential Equations and Volterra Integral Equations

8.2 Conversion of Volterra Integral Equation of Second Kind into a Differential Equation

8.3 Summary

8.4 Keywords

8.5 Review Questions

8.6 Further Readings

Objectives

After studying this unit, you should be able to:

 Know that the existence and uniqueness of the solution of differential equations leads us
to the integral equations

 See the relation between the integral equations and the linear differential equations with
initial conditions.

 Understand that the solution of the integral equation also satisfies a certain differential
equation with boundary conditions.

Introduction

The connection between a differential equation and integral equation should be seen clearly.

This connection helps us to solve certain differential equations by converting it into an integral
equation and vice versa.

  .1 Relation between Linear Differential Equations and Volterra

Integral Equations

In the unit 24 we had seen that a differential equation of first order or second order under certain
conditions is converted into an integral equation. This idea can be further explained in details in
this unit. Let us consider an nth order linear differential equation as follows:

1 2

1 21 2( ) ( ) ...... ( )
n n n

nn n n
d y d y d ya x a x a y f x
dx dx dx

...(1)

It is assumed that the unknown functions y(x), f(x), a1(x) a2(x),...an(x) are continuous and
differentiable on the interval (a, b). The function y(x) satisfies the following initial conditions:

( 1) ( 1)

0 0 0 0(0) , (0) , (0) ...... (0) ...
n n

y y y y y y y y ...(2)

Sachin Kaushal, Lovely Professional University

8

8
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Volterra Integral Equations and Linear Differential Equations

NotesTo convert the linear differential equation (1) into an integral equation we introduce a function
(x) by the relation

( )
n

n
d y x
dx

...(3)

Integrating once we have by taking into account (2),

1

1 0
0

1
1

01 0

( )

( ) ( )

xn x

n

n xn
n

d y u du
dx

d y x y u du
dx

Integrating once more we have

2
2 1

0 0 1 12 0 0

2 1
0 0

0

( ) ( )

( ) ( )

n x un n
n

xn n

d y x y y x du u du
dx

y y x x u u du
...(4)

In general integrating up to n times we have

2 3 2 1
12 1

0 0 0 0 0 0
0

1( ) ... ( ) ( ) ...
2 3 2 ( 1)! ( 1)!

n n x nn nx x x xy x y y x y y y y x u u du
n n n ...(5)

Writing (1) with the help of (3), (4) and (5) we have

1 2 1
1 0 2 0 0

0 0
( ) ( ) ( ) ( ) ( ) ( )

x x
n n nx a x y u du a x y xy x u u du     

           
    

2
3 2 1 2

3 0 0 0
0

1( ) ( ) ( ) ...... ......
2 2

xn n nxa x y xy y x u u du

12
1 1

0 0 0 0
0

1...... ( ) ( ) ( )
2 ( 1)! ( 1)!

n xn n
n

x xa y y x y y x n u du f x
n n ...(6)

Defining

2
1 2 1 3 2 2

1 0 2 0 0 3 0 0 0( ) ( ) ( ) ( )
2

n n n n n nxF x f x a x y a x y xy a y xy y

12
1

0 0 0 0...... ...
2 ( 1)!

n
n

n
x xa y xy y y

n
...(7)

and

1
23

1 2
( )( )( , ) ( ) ( ) ( ) ( ) ...

2! ( 1)!

n

n
x ua xK x u a x a x x u x u a

x

or
1

1

( )( , )
( 1)!

n k

k
k

x uK x u a
k








 ...(8)

Substituting (7) and (8) into (6) we get

0
( ) ( , ) ( ) ( )

x
x K x u u du F x ...(9)
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Notes So we have converted a differential equation (1) into the Volterra integral equation of the
second kind with Kernel given by (8) and the function given by (7). The unknown function being
given by (3).

Example: Convert

2 ( ) 3 ( ) 2 ( ) 4 2 cosxy x y x y x e x ...(1)

with y(0) = 4, y (0) = 1, into integral equation

Let us put

y (x) = G(x) ...(2)

Integrating (1) with respect to x, we have

0 0
( ) ( )

xxy x G u du

or
0

(0) ( )
xdy y G u du

dx

0
1 ( )

xdy G u du
dx ...(3)

Integrating with respect to x again we have

1
10 0 0

( ) ( )
x uxy x x du G u du

or
0

( ) (0) ( ) ( )
x

y x y x x u G u du

0
( ) 4 ( ) ( )

x
y x x x u G u du ...(4)

Substituting from equations (2), (3) and (4) into (1) we have

0 0
2 ( ) 3 1 ( ) 2 4 ( ) ( ) 4 2 cos

x x xG x G u du x x u G u du e x

Rearranging we have

0
2 ( ) ( ) 3 2( ) 4 2 cos 3 2 (4 )

x xG x G u du x u e x x ...(5)

0
2 ( ) ( , ) ( ) ( )

x
G x K x u G u du F x ...(6)

where

( , ) 3 2( )

( ) 4 2 cos 5 2x

K x u x u

F x e x x ...(7)

So we get Volterra integral equation of the second kind.

Self Assessment

1. Convert the linear differential equation

3

3 6 ( ) 0 with (0) 4, (0) 3, (0) 2d y y x y y y
dx
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Volterra Integral Equations and Linear Differential Equations

Notes   .2 Conversion of Volterra Integral Equation of Second

Kind into a Differential Equation

We have seen that a linear differential equation with initial conditions can be expressed into a
Volterra integral equation. In this section we can show that an integral equation can also be
converted into a linear differential equation. To see that we take up the following example.

Example: Convert the integral equation

2

0
( ) 3 4 2 sin ( ) 3( ) 2 ( )

x
y x x x x u x u y u du ...(1)

into the linear differential equation.

Before attempting the problem we know that

( ) ( )

( ) ( )
( , ) ( ) ( , ) ( ) [ , ( )] [ , ( )]

b t b t

a t a t

d db daK t u y u du K t u y u du K t b t K t a t
dt t dt dt ...(2)

using equation (2), differentiate (1) with respect to x, we have

2

0
( ) 3 2 cos ( ) 3( ) 2 ( ) 2( ) 3 ( )

x
y x x x x x x y x x u y u du

or
0

( ) 3 2 cos 2 ( ) 2( ) 3 ( )
x

y x x y x x u y u du ...(3)

Differentiating (3) again, we have

0
( ) 2sin 2 ( ) 2( ) 3 ( ) (2) ( )

x
y x x y x x x y x y u du

or
0

( ) 2sin 2 ( ) 3 ( ) 2 ( )
x

y x x y x y x y u du ...(4)

Differentiating equation (4) again, we have

( ) 2cos 2 ( ) 3 ( ) 2 ( )y x x y x y x y x

or ( ) 2 ( ) 3 ( ) 2 ( ) 2cosy x y x y x y x x ...(5)

Self Assessment

2. Convert the integral equation

2 3 2

0
( ) 2 3 3cos 2( ) 3 ( ) 6 ( )

x
y x x x x x u x u y u du

  .3 Summary

 We have taken up the case of nth order differential equation and have seen how an
integral equation can be established.

 There is a strong connection between the initial value differential equation and the Volterra
integral equation of the second type or of first type.

8

8

121



LOVELY PROFESSIONAL UNIVERSITY

Notes    .4 Keywords

The relation between the Volterra integral equation and linear differential equation with initial
condition has to be understood.

Method of conversion of differential equation to integral equation shows that the solution is
unique as we show that the new integral equation satisfies the original differential equation.

   .5 Review Questions

1. Convert the differential equation

2( ) ( ) ( ) 1y x xy x x y x x

with y(0) = 4, y (0) = 2, into integral equation.

2. Convert the differential equation

3
( ) 3 ( ) 2 ( ) 4

6
xy x y x y x x

with y(0) = 1, y (0) = 2

Answers: Self Assessment

1.
3

2 2
30

( ) 3 ( ) ( ) 18 24 3 with ( )
x d yG x x u G u du x x G x

dx

2. ( ) 6 ( ) 6 ( ) 12 ( ) 3cosivy x y x y x y x x

   .6 Further Readings

Books Tricomi, F.G., Integral Equations

Yosida, K., Lectures in Differential and Integral Equations

8

8

8
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NotesUnit 9: Integral Equations

CONTENTS

Objectives

Introduction

9.1 Fredholm Equations

9.2 Types of Kernels

9.3 Methods of Solving Fredholm Integral Equations

9.4 Description of Some Methods used in the solution of Fredholm Integral Equation

9.5 Summary

9.6 Keywords

9.7 Review Question

9.8 Further Readings

Objectives

After studying this unit, you should be able to:

 Classify the type of Fredholm integral equations.

 Classify the Kernel of any integral equation i.e. is it symmetric or Poincere Goursat type
or of different type?

 Choose the right method of solving the integral equation.

Introduction

You have learnt in the previous few units the Volterra integral equation of the second and first
kind.

You will find similarities and differences in approach between the two types of integral equations.

9.1 Fredholm Equations

In the last three units we studied one type of integral equation known as Volterra integral
equation. In the next few units we are interested in studying an other integral equation known
as Fredholm integral equation.

In the case of Volterra integral equation we saw that linear differential equations with initial
condition lead us to Volterra integral equation. In the case of boundary value problem, the
differential equations can be converted into Fredholm integral equation.

Now the Fredholm equations can be of the form

( )Q x = ( ) ( , ) ( )
b

a

f x K x t Q t dt ...(1)

or ( )f x = ( , ) ( )
b

a

K x t Q t dt ...(2)

Sachin Kaushal, Lovely Professional University
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Notes Here K(x, t) the Kernel and f(x) the function are known and Q(x) is an unknown function on the
interval a x b.

Let (x) be a function which satisfies the Fredholm integral equation

( )t = ( ) ( , ) ( )
b

a

g t K t x Q x dx ...(3)

Here ( , )K t x = K(x, t)

9.2 Types of Kernels

Just like in Volterra integral equation in the case of Fredholm integral equations are a variety of
Kernels as follows:

1. Symmetric Kernels: Kernels having properties

 as K(x, t) = K(t, x)

are called symmetric Kernels.

2. Degenerate Kernels or Poincere Goursat type of Kernels. The Kernels of the type

K(x, t) =
1

( ) ( )
n

i i
i

g x h t

These Kernels play an important part in the development of Fredholm theory of integral
equation like the eigenvalue and eigenfunction problems.

3. Difference Kernels: The Kernels of the type

K(x, t) = K(x – t)

are known as difference Kernels. These types of Kernels do arise while converting a
differential equation with boundary conditions.

The conditions on Kernels are that they should be continuous and its partial derivatives should
be continuous. Also they should be square integrable.

9.3 Methods of Solving Fredholm Integral Equations

There are various methods of solving integral equations which can briefly summarized as follows:

(a) We can reduce integral equation to a differential equation which can be solved easily.

(b) The Fredholm integral equations can be solved by transform method. In this method the
Laplace transformation helps in writing an integral equation into an algebraic equation
and then by inverse Laplace transformation get the final solution.

(c) The Iteration Method: The most important method of solving the Fredholm integral
equation is the iterative method. In this method the unknown function is expanded in
powers of the iterated parameter. This series is known as Neumann series. There is an
other alternate approach in which the Kernels are iterated up to nth times and then solved
the integral equations. The famous iterative method are that of Picard’s methods or by
using the idea of L2 class Kernels in the iterative approaches.

(d) Numerical Methods: Sometimes the Kernel of the Fredholm equations is approximated by
a suitable Poincere Goursat Kernel on step functions, then the integral equations can be
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Integral Equations

Notesreduced to an algebraic system of linear equations. If the integral of the given integral
equation is replaced by a suitable sum then instead of dividing the basic integral into sub-
intervals of the same size, it may be useful to divide it according to the zeros of a certain
polynomial of Legendre. This method is developed in most books on numerical methods.

9.4 Description of Some Methods used in the solution of Fredholm

Integral Equation

In the next few units we are interested in studying the Fredholm integral equations. In the unit
29, we study the Fredholm equations by the method of successive approximation. In this iteration
method either the unknown function or the Kernel is iterated into a series known as Neumann’s
series. The convergence of the series depends upon the iterative parameter and the nature of the
Kernel as well as the function in the domain a x b, a t b when the Kernel K(x, t) and the
function f(x) are square integrable. For this purpose the function as well as Kernel has continuous
derivations. Then in the unit 31 we will study the solution of Fredholm equations with a special
type of Kernels known as Poincere Goursat Kernels (P.G.). In the light of P.G. Kernels the
existence and uniqueness of the solution of Fredholm equations of both kinds. In the unit 32 the
final unit the famous Fredholm theorem on the existence and uniqueness of the solutions is
described along with the conditions put on the functions.

Example: Express the differential equation

2

2 9d y y
dx

= 18 (0) 0
2

x y y ...(1)

as an integral equation.

Solution: Integrating (1) from 0 to x,

2

2
0 0

9 ( )
x x

d ydx y u du
dx

=
0

18
x

x dx

or
0 0

9 ( )
x

x

dy dy y u du
dx dx

= 9x2

or
0

( ) (0) 9 ( )
x

y x y y u du = 9x2

Again integrating

0
0 0

( ) (0) 9 ( )
x t

xy x y x dt y u du =
39

3
x

or

0 0

( ) (0) (0) 9 ( )
x x

y x y y x y u du dt = 3x3
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or

0

( ) (0) 9 ( ) ( )
x

y x y x y u du x u = 3x3 ...(2)

Putting x = /2 in (2) and using boundary condition we have

/2

0

(0) 9 ( )
2 2

y u y u du = 3 3

Solving for y (0), we have

(0)y =
/2

2

0

18 ( ) 6
2

u y u du ...(3)

Substituting in equation (3) we have

/2
2

0 0

18( ) ( ) 6 9 ( ) ( )
2

x
xy x u y u du x x u y u = 3x3

or
/2

0 0

18 18( ) ( ) ( ) 9 ( ) ( )
2 2

x x

x

x xy x u y u du u y u x u y u = 3 23 6x x ...(4)

or letting

F(x) = 3x (x2 + 2 2) ...(5)

and K(x, u) =

18 9( )
2

18
2

x u x u for u x

x u for u x
...(6)

Equation (4) then becomes

/2

0

( ) ( , ) ( )y x K x u y u = F(x) ...(7)

which is the required integral equation of the second kind.

Self Assessment

1. Convert the differential equation

4 sin 3 with (0) (1) 0y y x y y

into integral equation.
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Notes9.5 Summary

 In Fredholm integral equations of first kind and second kind the upper limit of integration
is fixed.

 Fredholm Integral equation can be obtained from linear differential equations by applying
certain boundary conditions.

 Types of Kernels appearing in Fredholm equations are of the type; symmetric Kernels,
difference Kernels, Poincere Goursat Kernels.

9.6 Keywords

Degenerate Kernels or Poincere Goursat Kernels are of the type 
1

( , ) ( ) ( )
n

i i
i

K x t g x h t  where

( ),ig x  ( )ih t  are known functions.

Symmetric Kernels: The Kernels K(x, t) having the property K(x, t) = K(t, x) are known as symmetric
Kernels.

9.7 Review Question

1. Express the differential equation

2( ) ( ) 6 1y x y x y x

with (0) (1) 0y y  into Fredholm integral equation.

Answer: Self Assessment

1.
1

0

( ) 4 ( , ) ( ) sin 3G x K x t G t dt x

where ( ) 4 ( ),G x x

(1 )
( , )

(1 )
t x t x

K x t
x t t x

9.8 Further Readings

Books Erwin Kreyzig, Introductory Functional Analysis with Application

Tricomi, F.G., Integral Equations

Yosida, K., Lectures in Differential and Integral Equation
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Method of Successive Approximation

CONTENTS

Objectives

Introduction

10.1 The Method of Successive Approximation

10.2 Lower Bound for the Radius of Convergence

10.3 Summary

10.4 Keyword

10.5 Review Question

10.6 Further Readings

Objectives

After studying this unit, you should be able to:

 Realize that when the expansion parameter is small the unknown function is iterated in
powers of this parameter.

 Describe the Kernel iteratively in powers of the expansion parameter.

 Explain and calculate the iterated function n(x) or iterated Kernel Kn(x, t).

 Estimate the lower bound for the radius of convergence of Neumann series.

Introduction

You have learnt the method of successive approximation in the case of Volterra integral equations.

The method of successive approximation becomes all the more easy as upper limit of integration
is fixed.

10.1 The Method of Successive Approximation

The method of successive approximation in the earlier unit has been applied to the solution of
Volterra integral equation. This method can be applied even more easily to the basic Fredholm
equation of the second kind. Let us consider the Fredholm integral equation of the second kind.

1

0
( ) ( , ) ( ) ( )y x K x u y u du f x ...(1)

However, the solution obtained in this way has some difficulty in case | | is not small and
hence may no longer converge. The method of successive approximation can be used more
easily because now all integrations are to be performed between the limits 0 and 1.

Now let

2
1 2( ) ( ) ( ) ( ) ....y x f x x x ...(2)

Sachin Kaushal, Lovely Professional University
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Fredholm Equations Solution by the Method of Successive Approximation

NotesThis is called Neumann Series. Substituting (2) into (1) we obtain

12 2
1 2 1 2

0
( ) ( ) ( ) .... ( , ) ( ) ( ) ( ) .... ( )f x x x K x u f u u x du f x ...(3)

Comparing the powers of  on both sides we have
1

1
0

( ) ( , ) ( ) 0x K x u f u du

1

1 1 1

2 1 1 1 1
0 0 0
1

2 1 1
0
1 1

3 2 3
0 0

1 1

1
0 0

( ) ( , ) ( )

( ) ( , ) ( ) ( , ) ( , ) ( )

( , ) ( )

( , ) ( ) ( , ) ( )

( , ) ( ) ( , ) (for 1, 2, ...)n n n

x K x u f u du

x K x u u du K x u K u u f u du

K x y f u du

K x u u du K x u f u du

K x u u du K x u du n



In the above we have

2 1 1 1

3 1 2 1 1

( , ) ( , ) ( , )

( , ) ( , ) ( , ) .

........................................................

K x u K x u K u u du

K x u K x u K u u du ...(4)

and so on.

More generally

1 1 1( , ) ( , ) ( , )n r n rK x u K x u K u u du [n = 2, 3, 4, ...; r = 1, 2,..., n  1; K1 = K ...(5)

Thus the series for the resolvent Kernel H(x, u, ) is given by

2
2 3( , , ) ( , ) ( , ) ( , ) ... ( , )n

nH x u K x u K x u K x u K x u ...(6)

The solution then is given by

,( ) ( ) ( , ) ( )y x f x H x u f u du ...(7)

The main difference from the Volterra case is that the series for the resolvent Kernel (6) now
converges only for sufficiently small values of | |. In other words, although H(x, u, ) is still
analytic function of  it is no longer an entire function of .

10.2 Lower Bound for the Radius of Convergence

We shall now determine a lower bound for the radius of convergence of the power series (6).
We observe that if we preserve the basic hypothesis i.e. that the Kernel K(x, y) is an L2 Kernel,

i.e. 2 2 2 2 2( , ) ( ) ( )K K x u dxdu A x dx B u du N ...(8)

where

1 2 1 21 12 2

0 0
( ) ( , ) , ( ) ( , )A x K x u du B u K x u dx ...(9)
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Notes we have successively

2
2 2 2
2 1 1 1

2 2 2 2 2 2 2 2 2
3 1 1 2 1 1 1 1

2 2 2 2 2 2 2 2 2 4
4 3

( , ) ( , ) ( , ) ( ) ( )

( , ) ( , ) ( , ) ( ) ( ) ( ) ( ) ( )

( , ) ( , ) ( , ) ( ) ( ) ( ) ( ) ( )

K x u K x u K u u du A x B u

K x u K x u du K u u du A x B u A u du A x B u N

K x u K x z dz K z u dz A x B u N A z dz A x B u N

and hence in general

2( , ) ( ) ( ) n
nK x u A x B x N (n = 0, 1, 2, ....) ...(10)

If we neglect the first term of (6), this process that (6) has the majorant

0

( ) ( )| | (| | ) ;n

n

A x B x N

This is a geometric series with the common ratio | |N, hence it converges for | |N < 1, i.e. for

1K ...(11)

We thus see that under the condition (11), the partial sums of (6) have a majorant of the type

C A(x) B(x)

where C is a constant i.e., a majorant which is L2 function of both x and u. In other words (6) is an
almost uniformly convergent series, hence a series which can be integrated term-by-term in
either x or u (by Lebesgue fundamental theorem). Now the resolvent Kernel is an analytic
function whose singular points are outside or on the boundary of the circle (11).

Since term-by-term integration is permitted, we see that by using (5) under condition (11) we
have

1

1 1 1 1 1 1
0

2 3
1

( , ) ( , , ) ( , , ) ( , )

( , ) ( , ) ...

[ ( , , ) ( , )]

K x u H u u du H x u K u u du

K x u K x u

H x u K x u

that is,

1 1 1

1 1 1

( , ) ( , , ) ( , ) ( , , )

( , , ) ( , )

K x u H x u K x u H u u du

H x u K u u du
...(12)

Now considering that all the terms of this double equality are analytic functions of , we can
thus assert that the basic equation (12) for the resolvent Kernel are valid not only in the circle
(11), but in the whole domain of existence of the resolvent Kernel H in the  plane. If now f(x)
belongs to the class L2, then the given equation (1) has at least one solution of the same class L2,
this solution is

( ) ( ) ( , , ) ( )y x f x H x u f u du ...(13)

in the domain of existence H, of H.

Moreover, it is easy to see that the solution (13) is the unique L2-solution of our equation, not
only inside the circle 1K  but also in the whole domain of existence H.

130



LOVELY PROFESSIONAL UNIVERSITY

Fredholm Equations Solution by the Method of Successive Approximation

Notes
Example: Let us consider the following integral equation

1

0
( ) ( ) ( )x uy x e y u du f x ...(1)

we now have

1 1
1 1

2 1 1
0 0

( , ) ( , )x u u u x u x uK x u e du e du e K x u

with this consequence that all the iterated Kernels Kn coincide with the given Kernel K(x, u) and
the series (6) becomes

2( , , ) ( , ) (1 ....)H x u K x u ...(2)

Hence we have

( , )( , , )
( 1)
K x uH x u ...(3)

and we see that the resolvent Kernel is analytic function of . So we have one and only one
solution for  1.

1

0
( ) ( ) ( )

( 1)

x
uey x f x e f u du ...(4)

We started with the integral equation (1)

1

0
( ) ( , ) ( ) ( )y x K x u y u f x ...(1)

and arrived at the equation (13)

1

0
,( ) ( ) ( , ) ( )y x f x H x u f u du ...(13)

where the resolvent Kernel satisfies the equation (12)

1 1( , ) ( , , ) ( , , ) ( , )K x u H x u H x u u u du ...(11)

Substituting (13) into L.H.S. of (1)

1 1 1

1 1 1
0 0 0

( ) ( , , ) ( ) ( , ) ( ) ( , , ) ( )f x H x u f u du K x u f u H u u f u du du

= 
1 1 1

1 1 1
0

0 0

( ) ( ) ( , ) ( , , ) ( , , ) ( ) ( , )f x du f u K x u H x u H u u f u du K x u du

= 
1 1

1 1
0 0

( ) ( , ) ( , , ) ( , , ) ( , ) ( )f x du K x u H x u H x u K u u f u

= f(x) + 0 = R.H.S.
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Notes Self Assessment

1. Solve the following integral equation

1

0
( ) ( ) 1.y x m y t dt

Also find the Neumann series for y(x)

1

0
( ) constant.y t dtHint :

10.3 Summary

 The iterative method gives the solution of the function in terms of the powers of the
parameter of the equation.

 We can either get an iterative power series in the wave function or the iterated Kernel.

 After iterating it nth times we get the solution as limiting as n tends to .

 In this way we get the Resolvent Kernel in the nth iteration when n is very large.

10.4 Keyword

The successive method helps in getting the solution of the problem as a power series in terms of
powers of the parameter known as Neumann series. The estimate of the radius of convergence of
the Neumann series gives an estimate of the accuracy of the solution.

10.5 Review Question

The Fredholm integral equation is

2

0
( ) ( , ) ( ) ( )y x K x t y t dt f x

where 2

1

( , ) sin ( ) sin [( 1) ]
v

K x t v vs v t

find K3(x, t), the third iterative Kernel.

Answer: Self Assessment

1. 1( )
1

y x
u

, the Neumann series is y(x) = 1 + 2 + 3 + ... .

10.6 Further Readings

Books Tricomi, F.G., Integral Equations

Yosida, K., Lectures in Differential and Integral Equations
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NotesUnit 11: Neumann s Series

CONTENTS

Objectives

Introduction

11.1 Fredholm Integral Equations, Successive Approximation Neumann s Series

11.2 Successive Approximation for the Resolvent Kernel

11.3 Summary

11.4 Keywords

11.5 Review Question

11.6 Further Readings

Objectives

After studying this unit, you should be able to:

 Find lots of similarities of the description of the successive approximation approach in
regard to getting Neumann Series.

 Observe that the unknown function can either be expanded in power series of  or the
resolvent Kernel is expanded in power series in .

 Understand the convergence of the Neumann Series as given in unit 29.

Introduction

For small values of  the solution of the Fredholm equation can be determined as power series
known as Neumann s Series.

The resolvent kernel is an analytic function of the parameter  but it is not an entire function of
the whole complex plane.

11.1 Fredholm Integral Equations, Successive Approximation

Neumann s Series

Consider the Fredholm integral equations of the first kind and second kind:

( ) ( , ) ( )
b

a
f x K x t y t dt ...(1)

and

( ) ( ) ( , ) ( )
b

a
y x f x K x t y t dt ...(2)

In these equations y(x) is an unknown function that has to be found and f(x) and K(x, t) are given
as function and the Kernel of the integral equations. Unless in the case of Volterra integral
equation, here the limits of the integral are fixed as constants a and b. The range of x and t are
given as a  x  b and a  t  b. Depending upon the nature of Kernel K(x, t) a suitable method of

Richa Nandra, Lovely Professional University
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Notes solving the integral equation is to be chosen. Here the parameter  also plays an important part.
So if  is small as well as the Kernel K(x, t) is continuous along with its partial derivatives, we can
use the method of successive approximation.

Let us consider first the equation (2) of Fredholm integral equation of the second kind. To a zero
approximation

( ) ( ).y x f x

If we substitute this value of y(x) in the integral (2) we get

( ) ( ) ( , ) ( )
b

a
f x f x K x t f t dt ...(3)

or 1( ) ( ) ( )y x f x x

where 1( ) ( , ) ( )
b

a
x K x t f t dt ...(4)

So to a first approximation y(x) is given by (2). To get an improvement over the above
approximation we put this new value of y(x) given by (3) into (2) to improve the solution as
follows:

2

( ) ( ) ( , ) ( ) ( , ) ( )

( ) ( , ) ( ) ( , ) ( , ) ( )

b b

a a

b b b

a a a

y x f x K x t f t K t u f u du dt

f x K x t f t dt K x t dt K t u f u du

or 2
1 2( ) ( ) ( ) ( )y x f x x x ...(5)

where

2( ) ( , ) ( , ) ( )

( ) ( , ) ( , )

b b

a a
b b

a a

x K x t dt K t u f u du

du f u K x t K t u dt

or 2 2( ) ( , ) ( )
b

a
x du K x u f u ...(6a)

where 2( , ) ( , ) ( , )
b

a
K x u K x t K t u dt ...(6b)

We can improve the accuracy by taking more powers of  in y(x) i.e. we may write

2 3
1 2 3( ) ( ) ... ...n

ny x f x ...(7)

where 1, 2 are given by (4) and (6a) and other s are given by

( ) ( , ) ( )
b

n n
a

x du K x u f u for n = 1, 2, .... ...(8)

and the nth Kernel Kn(x, u) given by

1 1 1( , ) ( , ) ( , )
b

n r n r
a

K x u K x u K u u du [n = 2, 3, 4,...; r = 1, 2, ...n  1 ...(9)

while K1(x, u) = K(x, u)

Thus
1

( ) ( ) ( )
n

i
i

i

y x f x x .... for any n ...(10)
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NotesThis series for the solution of the Fredholm integral equation of the second kind is known as
Neumann Series.

11.2 Successive Approximation for the Resolvent Kernel

Writing in full the expression for the function y(x), we have

2 3
1 2 3( ) ( ) ( ) ( ) ( ) ...y x f x x x x ...(10)

Making use of (4) (6a) and (8) for 1, 2, 3,...... into (10) we get

2 3
2 3

2 3
1 2 3

( ) ( ) ( , ) ( ) ( , ) ( ) ( , ) ( ) ...

( ) ( , ) ( , ) ( , ) ... ( )

b b b

a a a
y x f x K x t f t dt K x t f t dt K x t f t dt

f x K x t K x t K x t f t dt

( ) ( ) ( , , ) ( )
b

a
y x f x H x t f t dt ..(11)

where the resolvent Kernel H(x, t, ) is given by the series

2
1 2 3( , , ) ( , ) ( , ) ( , ) ....H x t K x t K x t K x t ...(12)

Equation (12) is now the power series known again as Neumann Series.

As discussed in unit 29, we see that the resolvent Kernel is still analytic function of  but is no
longer an entire function of . Also the resolvent Kernel satisfies the integral equation

1 1 1( , , ) ( , ) ( , , ) ( , )H x u K x u H x u K u u du ...(13)

Now the solution (11) is the unique L2-solution of the equation (2), as f(x) and K(x, t) are L2-class
and it exists in the whole domain of C(a, b). We now show that if the homogeneous equation (1)
for  = 0 has a certain non-trivial solution then with the help of equation (13) we obtain

0 0 0

2
0 0 0 0 0 0

2
0 0 0 0 0 0

0 0 0 0 0 0

( ) ( , ) ( )

( , , ) ( ) ( ) ( , , ) ( , )

( , , ) ( ) ( , , ) ( , ) ( )

( , , ) ( ) ( , , ) ( )

0

x K x t t dt

H x t t dt t dt H x z K z t dz

H x t t dt H x z dz K z t t dt

H x t t dt H x z dz z

This shows that if equation (2) has a unique non-trivial solution of the form (12) then the non-
trivial solution of the homogeneous equation (1) is 0(x), vanishes almost everywhere.

The above analysis process the following theorem to each quadratically integrable Kernel
K(x, t) there corresponds a resolvent Kernel H(x, t, ) which is analytic function of , regular at
least inside the circle 1K  and represented these by the power series (12). Let the domain
of existence of the resolvent Kernel in the complex plane  be H. Then if f(x) also belongs to the
class L2, the unique quadratically integrable solution of Fredholm s equation (2) valid in H is
given by (11).

For the proof of this theorem please refer to the treatment in the unit 29.
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Example: Consider the integral equation

( ) ( ) ( , ) ( )
b

a
y x f x K x t y t dt ...(1)

Find the solution when f(x) = ex, K(x, t) = 2ex + t, a = 0, b = 1.

Substitute the value of f(x) and K(x, t) in (1) we have

1

0
1

0

( ) 2 ( )

1 2 ( )

x x t

x t

y x e e e y t dt

e e y t dt

Let
1

0
( ) constanttC e y t dt ...(2)

then ( ) (1 2 )xy x e C ...(3)

Substituting this value of y in (2) we have

21

0

( 1)(1 2 ) . (1 2 )
2

t t eC C e e dt C

Solving for C i.e.

2 22 2 ( 1) ( 1)C C e e

2

2
( 1)

2 1 ( 1)
eC

e ....(4)

Substituting in (3) we have

2( ) [1 ( 1)]xy x e e ...(5)

The denominator is non-zero.

Self Assessment

1. Solve the Fredholm integral equation

0( ) ( ) ( )
b

a
y x f x K y t dt

where K0 is a constant and show that for | | < 1/K0(b  a) the corresponding Neumann
Series is convergent.

11.3 Summary

 In case the parameter  is small one gets the solution of Fredholm equation of the second
kind as a power series in  called Neumann series.

 The Resolvent Kernel can also be expanded in powers of  provided the Kernel K(x, t) is of
L2-class. The resolvent Kernel is though an analytic function of  but is not an entire
function in whole of complex -plane.
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Notes11.4 Keywords

The C(a, b) is a space of all continuous functions defined on the interval (a, b).

The unknown functions y(x) and f(x) are of C(a, b) type while K(x, t) is of C2(a, b)  C (a, b) type on
the square a  x  b and a  t  b.

11.5 Review Question

Solve the Fredholm integral equation of the second kind

1

0
( ) ( ) (1 ) ( )Y x f x x t y t dt

when  is not an eigenvalue.

Answer: Self Assessment

1. 0
0

( ) ( ) , ( )
1 ( )]

b
o o

a

K Cy x f x C f x dx
K b a

Expand 
0

1
1 ( )K b a

 in powers of  to get Neumann Series.

11.6 Further Readings

Books Erwin Kreyzig, Introductory Functional Analysis with Applications

Tricomi, F.G., Integral Equations

Yosida, K., Lectures in Differential and Integral Equations
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Notes Unit 12: Fredholm Equations with
Poincere Goursat Kernels

CONTENTS

Objectives

Introduction

12.1 The Poincere Goursat Kernels

12.2 Resolvent Kernel H(x, u, )

12.3 Eigenvalues and Eigenfunctions

12.4 Summary

12.5 Keywords

12.6 Review Question

12.7 Further Readings

Objectives

After studying this unit, you should be able to:

 Know that Fredholm equations may have varieties of Kernels. Among them the Poincere-
Goursat Kernel also plays an important part.

 Observe that in this type of Fredholm equation the resolvent Kernel is a quotient of two
polynomials of the nth degree in  and the denominator is independent of the variables of
the Kernel.

 Understand the nature of singular points of resolvent Kernel in terms of zeros of the
denominator polynomial D( ).

Introduction

In this unit we saw that resolvent Kernel has a structure that helps in understanding the nature
of the solution of non-homogeneous as well as homogeneous equations.

Fredholm integral equation as well as its conjugate equation can be studied together to understand
the structure of the solutions.

12.1 The Poincere Goursat Kernels

In the unit we consider again the Fredholm integral equation of the second kind i.e.

1

0
( ) ( , ) ( ) ( )y x K x u y u du f x ...(1)

Here we take the structure of the Kernel to be of the form

( , ) ( ) ( )
n

i i
i i

K x u g x h u ...(2)

Richa Nandra, Lovely Professional University
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NotesSuch a Kernel has been mentioned in the case of Volterra integral equations and are called
degenerate Kernels or Poincere Goursat Kernels i.e. P-G Kernels. In equation (2) the functions
gi(x) and hi(u), for i = 1, 2, ...n, are L2-class. We will see that in this case the Fredholm integral
equation can be reduced to an algebraic system of a linear equation in n unknown. Here gi(x) and
hi(x) i = 1, 2, ...n are independent in the basic interval (0, 1).

Substituting (2) in one we have

1

0 1

( ) ( ) ( ) ( ) ( )
n

i i
i

y x g x h u y u du f x

or
1

01

( ) ( ) ( ) ( ) ( ) ( )
n

i i
i

y x g x h u y u du f x

If we put

1

0
( ) ( )k kh u g u du (x = 1, 2, ...n) ...(3)

then equation (1) becomes

1

( ) ( ) ( )
n

i i
i

y x f x g x ...(4)

From equation (4) it is already seen that the difference y(x) f(x) must necessarily coincide with
a suitable linear combination of the functions gi(x). Now multiply equation (4) by hk(x) i = 1, 2,...n
and integrate between 0 and 1 we have

1 1 1

0 0 01

( ) ( ) ( ) ( ) ( ) ( )
n

k k i i k
i

h x y x dx h x f x dx g x h x dx

Defining

( ) ( )

( ) ( )

i k ik

i i

g x h x dx a

h x f x dx b
...(5)

We have

1

n

k ik i k
i

a b ...(6)

We thus see that the unknowns 1, ... n must satisfy the following system of linear equations

11 1 12 2 13 3 1 1

21 1 22 2 23 3 2 2

1 1 2 2

(1 ) ......
(1 ) ....

...... (1 )

n n

n n

n n nn n n

a a a a b
a a a a b

a a a b


...(7)

To each set of solution °1, °2 ... °n of this system there corresponds a solution of equation (1)
given by (4). Now the solution of equation exist if the determinant formed by the coefficients i
in equation (7) defined by

11 12 13 1

21 22 2

31

1 2

1 ......
(1 ) ...............

........................................( )
...................................................

..............(1 )

n

n

n n nn

a a a a
a a a
aD

a a a

...(8)
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Notes is non-zero. So there is one and only one solution of the system of n simultaneous equations 1,

2, ... n. Thus if D( )  0, then the system (7) has one and only one solution given by Gamer’s rule
i.e.

1 1 2 2
1 ... ( 1, 2, 3, ... )
( )k k k nk nD b D b D b k n

D

where Dhk denotes co-factor of (h, k) the elements of the determinant (8), correspondingly, the
solution (1) has the unique solution

1
1 1 2 2( ) ( ) ... ( )

( )

n

k
k k nk n ky x f x D b D b D b g x

D
...(9)

As D( )  0, the corresponding Fredholm equation of the first kind

1

0
( ) ( , ) ( )y x K x u y u du ...(10)

has only the trivial solution y(x)  0 as D( )  0.

12.2 Resolvent Kernel H(x, u, )

If we now substitute the expression of bi in (5), the solution (9) can also be written as

1

1 1 2 2 3 3
0

( ) ( ) ( ) ( ) ( ) ... ( ) ( ) ( )
( ) k k k nk n ky x f x D h u D h u D h u D h u f u g x du

D

but the sum under the integral sign can be considered as the expansion of the negative of a
determinant of the (n + 1) order i.e.

1 2 2 3 3( ( ) ( ) (4) ...... ( ) ( )ik k k nk n kD h u D h u D h D b u g x

= 

1 2

1 11 12 1

2

0 ( ) ( ) ..................... ( )
( ) 1 .........

......................................( , , )
.................................................

( ) (1 )

n

n

n

n nn

g x g x g x
h u a a a

aD x u

h u a

 ...(11)

Hence we can write equation (9) as

1

0
( ) ( ) ( , , ) ( )

( )
y x f x D x u f u du

D ...(12)

Defining the resolvent Kernel H(x, u, ) by

( , , )( , , )
( )

D x uH x u
D ...(13)

so equation (12) becomes

1

0
( ) ( ) ( , , ) ( )y x f x H x u f u du ...(14)

In the equation (13) the resolvent Kernel H(x, u, ) is the quotient of two polynomials of the nth
degree in  and the denominator is independent of x and u and this has important consequences.
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NotesAt this point it is to be noticed that the only singular points of H(x, u, ) in the -plane are the
roots of the equation

D( ) = 0 ...(15)

which will be called the eigenvalues of our Kernel K(x, u)

12.3 Eigenvalues and Eigenvectors

If D( ) = 0 the non-homogeneous equation (1) has no solution in general, because an algebraic
linear system with vanishing determinant can only be solved for certain values of the quantities
on the right hand side of equation (7).

Furthermore, from each non-trivial solution 0 0 0
1 2, ,..., n   of the homogeneous algebraic system

we obtain a non-trivial solution of the homogeneous equation (10), which we call an
eigenfunction and vice versa.

To be precise, from the theory of algebraic systems of linear equations. We infer that, if 
coincides with a certain eigenvalue 0 for which the determinant D( 0) has the characteristic
P(1  p  n  1), and we put n  p = r, then there are r solutions of the homogeneous system (7).
Furthermore, these solutions can be represented by formulae of the type

1 1 2 2 ... ( 1, 2, ..., )k k k rk rB C B C B C k n ...(16)

where C1,  C2,..., Cr denote r arbitrary constants and

11 12 1

1 2

, , ...
........................

, . ...

n

r r rn

B B B

B B B
...(17)

are r arbitrarily fixed but linearly independent solutions of the system in question.

This shows that to each eigenvalue 0 of index r = n  p there corresponds a solution of the
homogeneous equation (10) of the form

0 1 01 2 02 0( ) ( ) ( ) ... ( )r rx C x C x C x ...(18)

where C1, C2,...Cr are r arbitrary constants and

01 02 0( ), ( ), ..., ( )rx x x

are r linearly independent functions, which can be expressed in terms of the Bhk as follows:

0
1

( ) ( ) ( 1, 2, ..., )
n

h hk k
k

x B g x h r ...(19)

Moreover, we can assume that these functions are normalized, i.e., that their norms are all equal
to unity,

2
0 ( ) 1 ( 1, 2, ..., )h x dx h r ...(20)

Al these eigenfunctions are annihilated by the Fredholm operator

[ ( )] 0.s ohF y ...(21)

Using elementary transformations on the determinant (7), we can see that the index r = n  p of
an eigenvalue is never larger than its multiplicity m as a root of the equation D( ) = 0. Moreover,
in the important case ahk = akh we have

r = m
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Notes Another important fact is that to the given Kernel (1) and to the associated one

1

( , ) ( ) ( )
n

k k
k

K y x g y h x ...(21)

there corresponds the same function D( ) and consequently the same eigenvalues. This is because
the interchange of gk and hk carries ahk into akh and hence only interchanges the rows and columns
of determinant (8).

However, the eigenfunctions of the associated Kernel, i.e. the non-trivial solutions of the associated
homogeneous equation

( ) ( , ) ( ) 0x K y x y dy ...(22)

for  = 0 are not the previous function (16) but other ones,

*
0

1

( ) ( ) ( 1, 2, ..., ),
n

h hk k
k

x B h x h r ...(23)

where

* * *
11 12 1

* * *
1 2

, , ...
........................

, . ...

n

r r rn

B B B

B B B

...(24)

are any r linearly independent solutions of the associated homogeneous system

11 1 21 2 1

21 1 22 2 2

1 1 2 2

(1 ) ... 0
(1 ) ... 0,

... (1 ) 0

n n

n n

n n nn n

a a a
a a a

a a a


...(25)

Any eigenfunction 0h(x) corresponding to the eigenvalue 0 and any associated eigenfunction

1k(x) corresponding to a different eigenvalue 1 are always orthogonal in the basic interval
(0, 1).

In fact we have

1 0 1

0 0
0 0 1 1

1 1

( ) ( ) ( ) ( , ) ( )

( ) ( , ) ( ) ( ) ( ) ,

oh k k oh

h k oh k

I x x dx x dx K x y y dy

y dy K x y x dx y y dy I

and this equality can be true only if 0 = 1 or if I = 0.

We now return to the non-homogeneous equation (1) for the case D( ) = 0. We prove that for
 = 0 the non-homogeneous equation can be solved if and only if the r orthogonality

conditions

( , ) ( ) ( ) 0 ( 1, 2, ..., )oh ohf f x x dx h r ...(26)

are satisfied. In this case the non-homogeneous equation has r solutions of the form

1 01 2 02( ) ( ) ( ) ( ) ... ( ),r orx x C x C x C x ...(27)

where (x) is a suitable linear combination of g1(x), g2(x),...gn(x).
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NotesIn fact, conditions (26) are necessary because if equation (1) for  = 0 admits a certain solution
(x), then from the equation itself, it follows that

0 0 0 0

0 0 0

( ) ( ) ( ) ( ) ( ) ( , ) ( )

( ) ( ) ( ) ( , ) ( ) .

h h h

h h

f x x dx x x dx x dx K x y y dy

x x dx y dy K x y x dx

But, since 0 and 0h(x) are eigenvalue and corresponding eigenfunction of the associated Kernel,
we have

0 0 0( , ) ( ) ( );h hK x y x dx y

hence

0( ) ( ) 0hf x x dx

Furthermore, conditions (26) are also sufficient, since from them it can be easily deduced that the
non-homogeneous system (7), which we shall write briefly as

1 1 2 2 ..., ,n nb b b

reduces to only n  r independent equations. Consequently we can now solve it readily (carrying
r unknowns on the right hand side), since the characteristic of matrix of the coefficients is exactly
p = n  r.

We can reduce the system for the following reason: Let us multiply the previous equations by
B*

h1, B
*
h2, ...B

*
hr, respectively and add. Bearing in mind equations (25), we have

* * * *
11 1 21 2 1 1

1

* * *
12 1 22 2 2 2

* * *
1 1 2 2

[(1 ) ... ]

[ (1 ) ... ]
..................................................................

[ ... (1 ) ] 0,

n

hk k h h n hn
k

h h n hn

n h n h nn hn n

B a B a B a B

a B a B a B

a B a B a B

while on the other side, by virtue of (26), we also have

* *

1 1

( ) ( ) ( ) ( ) 0.
n n

hk k hk k oh
k k

B b B Y x f x dx x f x dx

Among other things, form (27) of the solution demonstrates the following obvious fact: the
general solution of equation (1) when D( ) = 0 can be considered as the sum of any particular
solution (x) and of the general solution (18) of the homogeneous equation.

Thus we have proved for PG Kernels the following basic Fredholm theorem, which will be
extended to general Kernels in the next section:

Fredholm’s integral equation of the second kind

( ) ( , ) ( ) ( )x K x y y dy f x

has, in general, one and only one solution of the class L2 given by the formula

( ) ( ) ( , ; ) ( ) ,x f x H x y f y dy
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Notes where H(x, y; ) is the resolvent Kernel. H(x, y; ) is an analytic function , and if | | < || || 1 it
is given by the Neumann series

2
2 3( , ; ) ( , ) ( , ) ( , ) ...,H x y K x y K x y K x y

where K2, K3,... are the iterated Kernels. The only exceptions are the singular points of H(x, y; )
which coincide with the zeros (called eigenvalues) of an analytic function D( ) of . In the case
of a PG Kernel, D( ) is a polynomial.

If  = 0 is a root of multiplicity m  1 of the equation D( ) = 0, then the homogeneous equation

( ) ( , ) ( ) 0x K x y y dy

has r linearly independent non-trivial solutions, called eigenfunctions, where r, the index of the
eigenvalue, satisfies the condition 1  r  m. The same is true of the associated homogeneous
equation.

( ) ( , ) ( ) 0.x K x y y dy

However, if  = 0 the non-homogeneous equation has solutions (exactly r solutions) if and
only if the given function f(x) is orthogonal to all the eigenfunctions of the associated homogeneous
equation.

A very important alternative theorem can immediately be deduced as a corollary:

Alternative Theorem: If the homogeneous Fredholm integral equation has only the trivial
solution, then the corresponding non-homogeneous equation always has one and only one
solution. On the contrary, if the homogeneous equation has some non-trivial solutions, then the
non-homogeneous integral equation has either no solution or an infinity of solutions, depending
on the given function f(x).

But even this corollary has been proved only for PG Kernels.

Self Assessment

1. The Kernel of Fredholm integral equation

2

0
( ) ( ) ( , ) ( )y x f x K x t y t dt

is given by

2
1

1( , ) sin( ) sin[( 1) ]
v

k x t vx v t
V

Find the iterated Kernel.

2( , )K x t

 0

sinUse the relation lim .u uHint :

12.4 Summary

 Fredholm integral equation of the second kind is studied with the help of Poincere Goursat
Kernels.
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Notes It is seen that the resolvent Kernel can be expressed in terms of quotient of two polynomials
of the nth degree in  and denominator is independent of the independent variables.

 Also conditions are discussed when  is an eigenvalue and the corresponding eigenfunctions
are discussed with respect to P.G. Kernel only.

12.5 Keywords

In this unit the resolvent Kernel of the Fredholm integral equation of the second kind as well as
corresponding conjugate equation is discussed.

In the next unit we shall be studying Fredholm theorem for the existence and uniqueness of the
eigenvalue solution of the problem with only general Kernel.

12.6 Review Question

The Kernel of Fredholm integral equation

2

0
( ) ( ) ( , ) ( )y x f x K x t y t dt

is given by

2
1

1( , ) sin( ) sin [( 1) ]
v

K x t vx v t
v

Find the iterated Kernel

K3 (x, t)

 0

sinUse the relation lim .u uHint :

Answer: Self Assessment

1. 2 2 2
1

sin( ) sin[( 2) ]( , )
( 1)v

vx v tK x t
v v

12.7 Further Readings

Books Tricomi, F.G., Integral Equations

Yosida, K., Lectures in Differential and Integral Equations
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Notes Unit 13: The Fredholm Theorem

CONTENTS

Objectives

Introduction

13.1 Fredholm Alternate Theorem

13.2 Proof of Fredholm Theorem

13.3 Summary

13.4 Keywords

13.5 Review Question

13.6 Further Readings

Objectives

After studying this unit, you should be able to:

 Learn that Fredholm integral equations are of two types – of first kind and of second kind

 Prove that if  is not an eigenvalue then the Fredholm Integral equation has a solution for
the second kind and the solution for the homogeneous equation is zero.

 Show that for an eigenvalue problem the Fredholm integral equation of second kind has
a solution which also contains a set of r-constants in addition to one of its solution.

Introduction

The proof of the Fredholm theorem consists of two parts. In the first part the solution is unique
and  is not an eigenvalue.

The second part explains the eigenvalue problem of the homogeneous Fredholm integral equation
and explains the structure of the main integral equation and the conjugate one.

13.1 Fredholm Alternate Theorem

The theorem states that:

Either the integral equation of the second kind

( ) ( ) ( , ) ( )
b

a
f s Q s K s t Q t dt ...(1)

with fixed , admits a unique continuous solutions Q(s) for any continuous function f(s), in
particular Q(s) = 0 for f(s)  0, or the associated homogeneous equation

( ) ( , ) ( ) 0
b

a
Q s K s t Q t dt ...(2)

admits a number ( 1)r r  of linearly independent continuous solutions 1 2( ), ( ).... ( )nQ s Q s Q s . In
the first case, the conjugate equation

Richa Nandra, Lovely Professional University
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Notes
( ) ( ) ( , ) ( )

b

a
g s s K t s t dt ...(3)

also admits a unique continuous solution (s) for any continuous function g(s). In the second
case the associated homogeneous equation

( ) ( , ) ( )
b

a
s K t s t dt ...(4)

admits a number r of linearly independent continuous solutions  1 2 3( ), ( ), ( )... ( )rs s s s . In
the second case, the equation (1) admits a solution if and only if

( ) ( ) 0
b

i
a

t s s ds (i = 1, 2, ...r) ...(5)

If condition (5)  is satisfied, the general solution of (1) is written as

(1)

1

( ) ( ) ( )
r

j j
j

Q s Q s C Q s ...(6)

by means of a particular solution Q(1)(s) of (1) and r arbitrary constants C1, C2, ..., Cr. Similarly, the
conjugate equation (3) admits a solution if and only if

( ) ( ) 0 ( 1, 2, 3.... )
b

j
a

g s Q s j r ...(7)

If condition (7) is satisfied, the general solution of (3) is written as

(1)

1

( ) ( ) ;( )
r

j
j

s s C s

by means of a particular solution (1)(s) of (3) and r arbitrary constants C1, C2, ...Cr.

The theorem also shows that the unique solution of (1) exists for any continuous function f(x) if
and only if  is not an eigenvalue.

The proof of the Fredholm’s alternative theorem is given in two parts for continuous Kernel
K(s, t) on the domain a  s  b,  a  t  b. We shall start proving the theorem by Schmidt’s method
instead of L2-class method. Of course both the methods had to the same conclusion.

13.2 Proof of Fredholm Theorem

The case when 2| ( , )| 1
b b

a a
K s t ds dt

For the sake of simplicity, we take  = 1 and consider the equation

( ) ( , ) ( ) ( )
b

a
s K s t t dt f s ...(1)

An equation in the unknown (t), of the form

( ) ( , ) ( ) ( )
b

a
t K s t s ds g t ...(2)

g(t) being a given continuous function on the interval a  t  b, is called the conjugate equation
of (1).
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Notes Theorem 1: Under the assumption

2| ( , )| 1
b b

a a
K s t ds dt ...(3)

the equation (1) [(2)] admits one and only one solution (s)[ (t)] for any f(s)[g(t)]; in particular
(s)  0[ (t)  0] for the homogeneous equation

( ) ( , ) ( ) 0
b

a
s K s t t dt ...(4)

( ) ( , ) ( ) 0
b

a
t K s t s ds ...(5)

Proof: Starting with the Kernel K(s, t), we define the iterated Kernels K(1)(s, t), K(2)(s, t), ...., K(n)

(s, t), ... as follows:

(1)

(2)

( 1)( )

( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , )

b

a

b nn

a

K s t K s t

K s t K s r K r t dr

K s t K s r K r t dr

   ...(6)

The following relation clearly holds for the iterated Kernels

( ) ( ) ( )( , ) ( , ) ( , )
bn m n m

a
K s t K s r K r t dr ...(7)

By (6) and the Schwarz inequality, we have

( 1)( ) 2 2 2| ( , )| | ( , )| | ( , )|
b b nn

a a
K s t K s r dr K r t dr

hence

( ) 2| ( , )|
b b n

a a
K s t ds dt

( 1)2 2| ( , )| | ( , )|
b b b b n

a a a a
K s r ds dt K r t dr dt

Repeating this procedure, we finally obtain

( ) 2 2| ( , )| | ( , )|
nb b b bn

a a a a
K s t ds dt K s t ds dt ...(8)

On the other hand, according to (6) and (7), we see that for n 3.

( 2)( )
1 1 1( , ) ( , ) ( , ) ( , )

b b nn

a a
K s t K s r K r r K r t dr dr

Hence by the Schwarz inequality we have

( 2)( ) 2 2 2
1 1 1 1| ( , )| | ( , )| | ( , ) ( , )|

b b b bnn

a a a a
K s t K r r dr dr K s r K r t dr dr

Accordingly, by making use of (8), we obtain

2
( ) 2 2 2 2

1 1| ( , )| | ( , )| | ( , )| | ( , )|
nb b b bn

a a a a
K s t K s t ds dt K s r dr K r t dr
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NotesThe term in braces on the right side is continuous on the domain a  s  b, a  t  b; hence
bounded. Therefore, according to the assumption (3), the series.

( )

1

( , ) ( , )n

n

s t K s t ...(9)

converge uniformly on the domain a  s  b, a  t  b. Hence by term-by-term integration and
by using (7) we obtain

( , ) ( , ) ( , ) ( , )
b

a
s t K s t K s r r t dr ...(10)

( , ) ( , ) ( , ) ( , )
b

a
s t K s t s r K r t dr ...(11)

The series (9) is known as the Neumann series for the Kernel K(s, t).

Now, by making use of (10), we can prove that

( ) ( ) ( , ) ( )
b

a
s f s s t f t dt ...(12)

satisfies the equation (1). In fact, substituting (12) in (1) and using (10), we have

( ) ( , ) ( )

( ) ( , ) ( ) ( , ) ( ) ( , ) ( )

b

a
b b b

a a a

s K s t t dt

f s s t f t dt K s t f t t r f r dr dt

        
( ) ( , ) ( , ) ( , ) ( , ) ( )

( )

b b

a a
f s s t K s t K s r r t dr f t dt

f s

Conversely, we can prove that if (s) satisfies the equation (1), then (s) satisfies (12). In fact,

substituting f(s) = (s) ( , ) ( )
b

a
K s t t dt  in (12) and using (11), we see that

( ) ( , ) ( )

( , ) ( ) ( , ) ( )

( ) ( , ) ( , ) ( , ) ( , ) ( )

( )

b

a
b b

a a

b b

a a

s K s t t dt

s t t K t r r dr dt

s s t K s t s r K r t dr t dt

s

Accordingly, we see that the equation (1) is equivalent to the equation (12). Similarly, we can
prove that conjugate equation (2) is equivalent to the equation

( ) ( ) ( , ) ( )
b

a
t g t s t g s ds ...(13)

Example: Under the assumption (3), every solution (s) of the equation (1) is given by
(12) by means of the Kernel (s, t) and every solution (t) of the conjugate equation (2) is given
by (13) by means of the conjugate Kernel (s, t) of (s, t), defined by

(s, t) = (t, s) ...(14)
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Notes For this reason, the Kernels (s, t) and (s, t) are called the resolvent Kernels of the equation (1)
and (2) respectively.

The foregoing theorem shows that  is not an eigenvalue of either the Kernel K(s, t) or its
conjugate Kernel K (s, t),

K (s, t) = K(t, s) ...(15)

The General Case

We shall prove that there exist two sets of linearly independent continuous functions

1 2

1 2

( ), ( ), ..., ( )
( ), ( ), ..., ( )

m

m

s s s
B t t t ...(15)

defined on the interval [a, b], such that

2

1

( , ) ( ) ( ) 1
mb b

v v
a a v

K s t s t ds dt ...(16)

To prove this, let  be an arbitrary positive number. Then we divide the interval (a, b) into a finite
number of sub-intervals I1, I2, ..., In, such that

sup || ( , ) ( , )a s v K s t K s t

for any pair of points t , t  in each Iv. This is possible, because of the uniform continuity of
K(s, t) on the domain a  s  b, a  t  b. Let tv be an inner point of Iv. Let I v be an interval
contained in the interior of Iv and containing the point tv. Then we define v(t) as follows:

0 outside of
( )

1 on
v

v
v

I
t

I

such that the function v(t) is continuous and 0   v(t)  1 on the interval [a, b]. We now set

( ) ( , )r s K s t  and

1

( , ) ( , ) ( ) ( )
n

v v
v

N s t K s t s t

Then we see that

| ( , )| | ( , ) ( , )|vN s t K s t K s t

for t in I v, and

| ( , )| | ( , ) ( , ) ( )| 2v vN s t K s t K s t t M

for t in Iv  I v where

M = sup || ( , )a s b a t b K s t

Since  and the sum of lengths of Iv  I v are both arbitrary, we can choose the values of them so
small that

2

1

( , ) ( ) ( ) 1
nb b

v v
a a v

K s t s t ds dt

Clearly, the function 1(t), 2(t), ..., n(t) are linearly independent. Hence, if 1(s), 2(s), ..., n(s)
are linearly independent, then our proof is completed. If otherwise, say, n(s) is written as a
linear combination of 1(s), 2(s), ..., n–1(s), then
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1

( , ) ( ) ( )
n

v v
v

R s t s t

is also written in the form

1
(1)

1

( , ) ( ) ( )
n

v v
v

R s t s t

If (1) (1) (1)
1 2 1( ), ( ), ..., ( )nt t t  are linearly independent, then, by setting (1)( ) ( )v vt t , the number

n is diminished. If otherwise, say, (1)
1( )n t  is written as a linear combination of

(1) (2) (1)
1 2 2( ), ( ), ..., ( )nt t t  then R(s, t) is also written as

2
(1) (1)

1

( , ) ( ) ( )
n

v v
v

R s t s t

Repeating this argument alternatively for  and , we finally obtain two sets of linearly
independent functions

1 2 1 2( ), ( ), ..., ( ) and ( ), ( ),..., ( )m ms s s t t t

in terms of which R(s, t) is written as

1

( , ) ( ) ( )
m

v v
v

R s t s t

provided that ( , ) 0K s t  and ( , ) 0R s t . Then by setting v(s) = v(s), and v(t) = v(t), the proof
is completed

we now set

1
1

( , ) ( , ) ( ) ( )
m

v v
v

K s t K s t s t

and denote the resolvent Kernel of K1(s, t)  by

( )
1 1

1

( , ) ( , )n

n

s t K s t

Then, the equation (1) is written as

1( ) ( , ) ( )
b

a
s K s t t dt

      
1

( ) ( ) ( ) ( )
mb

v v
a v

f s s t t dt ...(17)

and we can prove in the same way as in last that (s) is determined by

1
1

1

( ) ( ) ( , ) ( ) ( ) ( )

( ) ( , ) ( )

mb b

v v v
a av

b

a

s s s r r dr t t dt

f s s r f r dr
...(18)
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Notes From this follows the fact that to solve the equation (1) is equivalent to finding a solution (s) of
the equation (18) with the term in brackets as the Kernel and for the right side the given function

1( ) ( , ) ( )
b

a
f s s r f r dr

We shall prove incidentally that

1( ) ( , ) ( )
b

v v
a

s s r r dr (v = 1, 2, ..., m) ...(19)

are linearly independent. To prove this, suppose

1
1

1
1 1

0 ( ) ( , ) ( )

( ) ( , ) ( )

m b

v v v
av

m mb

v v v v
av v

c s s r r dr

c s s r c r dr

and 1
| | 0.

m
vv

c  Then, by the properties of the resolvent Kernel 1(s, t), we have

1
1

( ) 0 ( , )0. 0
m b

v v
av

c s K s r dr

This contradicts the linear independence of v(s).

The equation (18) is reduced to the system of equations

1 1
1

( ) ( ) ( , ) ( ) ( ) ( , ) ( )
mb b

v v v
a av

s f s s r f r s s r r dr ...(20)

( ) ( )
b

a
t t dt (  = 1, 2, ..., m) ...(21)

Hence, substituting (20) in (21), we have a system of linear equations in unknowns, 1, 2, ... m,

1
1

( ) ( ) ( , ) ( ) ( )
m b b

v v v
a av

s s ds s r r s dr ds

    1( ) ( , ) ( ) ( )
b b

a a
t r t r dr f t dt (  = 1, 2, ..., m) ...(22)

Accordingly to solve the equation (1) is equivalent to finding the solutions  of (22); indeed,
substituting the solution  in (20), we obtain the solution of (1).

Similarly, we see that to solve the equation (2) is equivalent to solving the following system of
linear equations in the unknowns

1, 2,..., m,

1
1

( ) ( ) ( , ) ( ) ( )
m b b

v v v
a av

t t dt r t t r dr dt ...(23)

1( ) ( , ) ( ) ( )
b b

a a
a s s r r dr g s ds (  = 1, 2, ..., m)

and the solution (t) of (2) is given by

1 1
1

( ) ( ) ( , ) ( ) ( ) ( , ) ( )
mb b

v v v
a av

t g t r t g r dr t r t r dr ...(24)
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Noteswhere the v are the solution of (23).

Let  be the matrix of the equations (22), in the unknowns , and  that of the equations (23), in
the unknowns . Then

 is the transposed matrix of ...(25)

Hence det  0 if and only if det  0.

We first consider the case when det  0, and hence, det   0. In this case, the equation (22)[(23)]
for any function f(s)[g(t)], admits a unique solution

 = ( 1, 2, ..., m) [ = ( 1, 2, ..., m)]

Therefore, for the given function f(s)[g(t)], the equation (1) [2] admits a unique solution (s)[ (t)].
In particular, if f(s)  0 [g(t)  0], then

1 2

1 2

( , , ..., ) (0, 0, ..., 0)
[ ( , , ..., ) (0, 0, ..., 0)]

m

m

hence, (s)  0[ (t)  0]

We next consider the case when det  = 0, and hence det  = 0. For the sake of simplicity we write
(22), (23) as

1

m

v v
v

c f (  = 1, 2, ..., m) ...(23 )

1

m

v v
v

c g (  = 1, 2, ..., m) ...(24 )

respectively. The matrices ,  are of course written as

 = ( v  c v),  = (   c )

where  = 0 for , and  = 1  for  = . For the case when det  = det  = 0, the following facts
are known:

The associated systems of linear homogeneous equations

1

0
m

v v
v

c (  = 1, 2, ..., m) ...(22 )

and

1

0
m

v v
v

c (  = 1, 2, ..., m) ...(23 )

admit a number r(r  1) of linearly independent solutions

11 12 1

1 2

(1) ( , , ..., ), ...,
( ) ( , , ..., )

m

r r rmr

and
11 12 1

1 2

(1) ( , , ..., ), ...,
( ) ( , , ..., )

m

r r rmr

respectively. The inhomogeneous system (22 ) admits a solution for given f1, f2, ..., fm if and only
if

1

0
m

jf (j = 1, 2, ..., m)
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Notes in other words, for the general solution of (23 ).

1 2
1 1 1 1

( ) , , ...,
r r r r

j j j j j j jm
j j j j

c j c c c

which contains a number r of arbitrary constants c1, c2, ..., cr, there hold the following relations

1 1

0
m r

j j
j

f c ...(26 )

If the condition (26 ) is satisfied, then the general solution of (22 ) is given by the sum of a

particular solution 1 2( , , ..., )m  of (22 ) and the general solution 
1

( )
r

jj
c j  of (22 ), that

is, by the following expression containing r arbitrary constants c1, c2, ..., cr.

1

( )
r

j
j

c j ...(27)

1 1 2 2
1 1 1

, , ...,
r r r

j j j j m j jm
j j j

c c c

Similarly, the equations (23 ) admit a solution for given g1, g2, ...gm if and only if the following
relations

1 1

0
m r

j j
j

g c ...(28)

hold; and under the condition (28), the general solution of (23 ) is given by the sum of a particular

solution 1 2( , , ..., )m  of (23 ) and the general solution 1
( )

r
jj

c p j  of (23 ), that is, by

the following expression containing r arbitrary constants c1, c2,.... cr.

1

1 21 2
1 1 1

( )

, , ...,

r

j
j

r r r

j j j j j jmm
j j j

c j

c c c
...(29)

Accordingly, substituting the solution-  given by (27), if any, in (20), we obtain the general
solution (s) of the equation (1). The function (s) contains r arbitrary constants. In fact, if

1
1 1

0 ( ) ( , ) ( )
m rb

v v j jv
av j

s s r r dr c

then, by the linear independence of (19)

1

0
r

j jv
j

c (v = 1, 2, ..., m,)

This contradicts the fact that (1), (2), ... (r) are linearly independent solution of (22 ). We can
also obtain, substituting (29) in (24), the general solution (t) of (2) which contains a number r of
arbitrary constants.
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NotesFinally, we shall reduce the solvability condition (26 ) to a more readable and usual form as
follows:

The term on the left side of (26) is, by (22) and (22 )

1
1 1

( ) ( , ) ( ) ( )
m mb b

j j m
a a

f t r t r dr f t dt

From (24), it is easily seen that the function in brackets on the right side is a solution of (2) with
g(t)  0, that is, of

( ) ( , ) ( ) 0
b

a
t K s t s ds ...(30)

On the other hand, the general solution of (30) is given by linear combinations of the functions
in brackets. Therefore (26) is equivalent to the following for every solution (t) of (30).

( ) ( ) 0
b

a
f t t dt ...(31)

Similarly, we see that the condition (28) is equivalent to the following: for every solution (s) of
the equation

( ) ( , ) ( ) 0

( ) ( ) 0

b

a
b

a

s K s t t dt

g s s ds
...(32)

Self Assessment

1. The Fredholm equation is given by

1 2 2

0
( ) ( ) ( ) ( )y x f x xt x t y t dt

solve for y(x) when f(x) = x3.

13.3 Summary

 We have seen that Fredholm integral equation has solutions that depend on the nature of
the resolvent Kernel as well on the function f(s).

 If the parameter  is not an eigenvalue then the non-homogeneous equation has one and
only one solution and the homogeneous equation has a solution Q(x) = 0.

 For  to be one of the eigenvalues, the homogeneous equation admits a number of
independent solutions.

13.4 Keywords

The nature of the solution of the Fredholm integral equation of the second kind as well as on the
first kind depends upon the constant parameter  as well as on the function f(x).

The eigenvalue problem puts certain conditions on the function f(s) for the solutions to exist.
Fredholm theorem elaborates on these points.
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Notes 13.5 Review Question

Show that for the unsymmetric Kernel

2

1

( , ) sin( ) sin[( 1) ]
v

K x t v vx v t

defined  on the domain  0 2 , 0 2x t  has the iterated Kernel given by

1 2 2 2 2 1

1

( , ) [ ( 1) ( 2) ...( 1) ] sin sin[( ) ]n
n

v

K x t v v v v n xv n v t

[Hint: Integrate term-by-term and use the relation 
0

sinlim .u ]

Answer: Self Assessment

1. y(x) = x3 + xc1  x2c2

where 1 25
2

(120 )
(600 80 )

C ,

C2 = 14 5 (1 /3)
5

C
.

13.6 Further Readings

Books Tricomi, F.G., Integral Equations

Yosida, K., Lectures in Differential and Integral Equations
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