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LOVELY PROFESSIONAL UNIVERSITY

Notes Unit 1: The Jordan Form

CONTENTS

Objectives

Introduction

1.1 Overview

1.2 Jordan Form

1.3 Summary

1.4 Keywords

1.5 Review Questions

1.6 Further Readings

Objectives

After studying this unit, you will be able to:

 Understand the finite vector space V for a linear operator T can be written as a direct sum
of the cyclic invariant subspaces Z(i, T).

 Know that the characteristic polynomial f of T decomposes as the product of the individual
characteristic polynomial pi = xki for the r annihilators such that k1 k2  ...  kr. The minimal
polynomial also has the form

p = (x – c1)r1 ... (x – ck)rk

 See that with the help of the companion matrix the linear operator represented by the
matrix can be put into the Jordan form.

Introduction

In this unit the findings of the unit 20 are used to put any matrix A representing the linear
operator into the Jordan form.

It is seen that by using the idea of the direct decomposition of the vector space into the sum of the
cyclic subspaces the given matrix A can be shown to be similar to a Jordan matrix.

1.1 Overview

Suppose that N is a nilpotent linear operator on a finite-dimensional space. From Theorem 1 of
the last unit we find that with N-annihilators p1, p2, ..., pr for r non-zero vectors 1, 2,...,r, V is
decomposed as follows:

V = Z(1, N) ... Z(r, N)

Here pi+1 divides for i = 1,..., r–1. As N is nilpotent the minimal polynomial is xK for K  n, thus
each pi = xki, such that

K1 = K1  K2  ... Kr

Richa Nandra, Lovely Professional University
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The Jordan Form

NotesThe companion matrix of xKi is the Ki × Ki matrix

0 0 0 0
1 0 0 0
0 1 0 0

0 0 0 1 0

iA

 
 
 
 
 
 
 
 

 
 
 

     
 ...(1)

Thus Theorem 1 of unit 20 gives us an ordered basis for V in which the matrix of N is the direct
sum of the elementary nilpotent matrices (1). Thus with a nilpotent n × n matrix we associate an
integer r such that k1 + k2 + ... + kr = n and ki  ki+1 and which determines the rational form of matrix.
The positive integer is precisely the nullity of N, as the null space has a basis the r vectors

Nki–1 i ...(2)

For, let  be in the null space of N, we write  as

 = f11 + ... + frr

where fi is a polynomial, the degree of fi is assumed to be less than ki. Since N = 0 for each i we
have

0  = N(fii)

= Nfi(N)i,

= (xfi) i

Thus x fi is divisible by xk and since deg (fi) < ki, this means that

fi = cixki–1

where ci is some scalar. But then

 = c1(xk1–1 1) + ... + cr(xkr–1 r)

which shows that the vectors (2) form a basis for the null space of N.

1.2 Jordan Form

Now we combine our findings about nilpotent operators or matrices with the primary
decomposition theorem of unit 18. Suppose that T is a linear operator on V and that the
characteristic polynomials for T factors over F as follows:

f = (x – c1)d1 ... (x – ck)dk

where c1,..., ck are distinct elements of F and di  1. Then the minimal polynomial for T will be

p = (x – c1)r1 ... (x – ck)rk

where 1  ri  di. If Wi is the null space of (T – ciI)ri, then the primary decomposition theorem tells
us that

V = W1  ...  Wk

and that the operator Ti induced on Wi by T has minimal polynomial (x – ci)ri. Let Ni be the linear
operator on Wi defined by Ni = T – ciI. Then Ni is nilpotent and has minimal polynomial xri. On Wi,
T acts like Ni plus the scalar ci times the identity operator. Suppose we choose a basis for the
subspace Wi corresponding to the cyclic decomposition for the nilpotent operator Ni. Then the
matrix of Ti in this ordered basis will be the direct sum of matrices

2
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Notes
0 0 0

1 0 0

0 0 1

c
c

c
c

 
 
 
 
 
 
 
 




   



...(3)

each with c = ci. Furthermore, the sizes of these matrices will decrease as one reads from left to
right. A matrix of the form (3) is called an elementary Jordan matrix with characteristic value c.
Now if we put all the bases for the Wi together, we obtain an ordered basis for V. Let us describe
the matrix A of T in this ordered basis.

The matrix A is the direct sum

1

2

0 0
0 0

0 0 k

A
A

A

A

 
 
 
 
 
 




  


...(4)

of matrices A1,..., Ak. Each Ai is of the form

( )
1

( )
2

( )

0 0
0 0

0 0
i

i

i

i

l
n

J
J

A

J

 
 
 
 
 
  




  


where each ( )i
jJ  is an elementary Jordan matrix with characteristic value ci. Also, within each Ai,

the sizes of the matrices ( )i
jJ  decrease as j increases. An n × n matrix A which satisfies all the

conditions described so far in this paragraph (for some distinct scalars c1,..., ck) will be said to be
in Jordan form.

We have just pointed out that if T is a linear operator for which the characteristic polynomial
factors completely over the scalar field, then there is an ordered basis for V in which T is
represented by a matrix which is in Jordan form. We should like to show now that this matrix is
something uniquely associated with T, up to the order in which the characteristic values of T are
written down.

The uniqueness we see as follows. Suppose there is some ordered basis for V in which T is
represented by the Jordan matrix A described in the previous paragraph. If Ai is a di × di matrix,
then di is clearly the multiplicity of ci as a root of the characteristic polynomial for A, or for T. In
other words, the characteristic polynomial for T is

f = (x – c1)d1 ... (x – ck)dk

This shows that cj, ..., ck and d1, ..., dk are unique, up to the order in which we write them. The fact
that A is the direct sum of the matrices Ai gives us a direct sum decomposition V = W1  ...  Wk

invariant under T. Now note that Wi must be the null space of (T – ciI)n, where n = dim V; for,
Ai – ciI is clearly nilpotent and Aj – ciI is non-singular for j  i. So we see that the subspaces Wi are
unique. If Ti is the operator induced on Wi by T, then the matrix Ai is uniquely determined as the
rational form for (Ti ... ciI).

3
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The Jordan Form

NotesNow we wish to make some further observations about the operator T and the Jordan matrix A
which represents T in some ordered basis. We shall list a string of observations:

(1) Every entry of A not on or immediately below the main diagonal is 0. On the diagonal of
A occur the k distinct characteristic values c1,..., ck of T. Also, ci is repeated di times, where di

is the multiplicity of ci as a root of the characteristic polynomial, i.e., di = dim Wi.

(2) For each i, the matrix Ai is the direct sum of ni elementary Jordan matrices ( )i
jJ  with

characteristic values ci. The number ni is precisely the dimension of the space of characteristic
vectors associated with the characteristic value ci. For, ni is the number of elementary
nilpotent blocks in the rational form for (Ti – ciI), and is thus equal to the dimension of the
null space of (T – ciI). In particular notice that T is diagonalizable if and only if ni = di for
each i.

(3) For each i, the first block ( )
1
tJ  in the matrix A, is an ri × ri matrix, where ri is the multiplicity

of ci as a root of the minimal polynomial for T. This follows from the fact that the minimal
polynomial for the nilpotent operator (Ti – ciI) is xri.

Of course we have as usual the straight matrix result. If B is an n × n matrix over the field F and
if the characteristic polynomial for B factors completely over F, then B is similar over F to an
n × n matrix A in Jordan form, and A is unique up to a rearrangement of the order of its
characteristic values. We call A the Jordan form of B.

Also, note that if F is an algebraically closed field, then the above remarks apply to every linear
operator on a finite-dimensional space over F, or to every n × n matrix over F. Thus, for example,
every n × n matrix over the field of complex numbers is similar to an essentially unique matrix
in Jordan form.

If the linear transformation T is nilpotent then 1 0nT  where n1 is the index of nilpotency. If
1 1 0nT  we can find a vector v in the space V such that 11 0nT . Then we can form the vectors

v1 = v, v2 = T v, v3 = T2v, … 11
1

n
nv T v  vectors which are claimed to be linearly independent over

the field F.

Let V1 be the subspace of V spanned by v1 = v, v2 = Tv, … 11
1

n
nv T v , V1 is invariant under T, and

in the basis above, the linear transformation induced by T on V1 has a matrix 1nA  of the form (1).

Let the vector space V is of the form V = V1  W where W is invariant under T. Using the basis

v1, v2, … 1nv  of V1 and any basis of W as a basis of V, the matrix of T in this basis has the form

1

2

0
0

n

n

A
A

where A2 is the matrix of T2, the linear transformation induced on W by T. Since 1 /21
20, 0nT T

for some n2  n1.

Let T is a linear operator on C2. The characteristic polynomial for T is either (x – C1) (x – C2) where
C1 and C2 are distinct or is (x – C)2. In the former case T is diagonalizable and is represented in
some ordered basis by the matrix

1

2

0
0

C
C .

In the later case, the minimal polynomial for T may be (x – C), in which case T = C I, or may be
(x – C)2, in which case T is represented in some order basis by the matrix

4
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Notes 0
1
C

C

Thus every 2 × 2 matrix over the field of complex numbers is similar to a matrix of one of the two
types displayed above, possibly with C1 = C2.

Example 1: Let T be represented in ordered basis by the matrix

3

0 1 1
0 0 0
0 0 0

A F

The ordered basis is 1 = (1, 0, 0), 2 = (0, 1, 0), 3 = (0, 0, 1)

Let 1 = 1, 2 = A1 = 2 + 3, 3 = 3. In this basis

(1, 2, 3) the matrix A becomes

A’ = PAP–1

where P =
1 0 0
0 1 1 ,
0 0 1

A straight forward method gives

P–1 =
1 0 0
0 1 1 ,
0 0 1

then A’ =
0 1 0
0 0 0
0 0 0

which is in Jordan form. Thus A is similar to A’.

Example 2: Let A be a complex 3 × 3 matrix

2 0 0
2 0

1
A a

b c

The characteristic polynomial for A is obviously (x – 2)2 (x + 1). Either this is the minimal
polynomial, in which case A is similar to

2 0 0
1 2 0
0 0 1

or the minimal polynomial is (x – 2) (x + 1), in which case A is similar to

2 0 0
0 2 0
0 0 1

5
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The Jordan Form

NotesNow

0 0 0
( 2 )( ) 3 0 0

0 0
A I A I a

ac

and thus A is similar to a diagonal matrix if and only if a = 0.

Example 3: Let

2 0 0 0
1 2 0 0
0 0 2 0
0 0 2

A

a

The characteristic polynomial for A is (x – 2)4. Since A is the direct sum of two 2 × 2 matrices, it
is clear that the minimal polynomial for A is (x – 2)2. Now if a = 0 or if a = 1, then the matrix A is
in Jordan form. Notice that the two matrices we obtain for a = 0 and a = 1 have the same
characteristic polynomial and the same minimal polynomial, but are not similar. They are not
similar because for the first matrix the solution space of (A – 2I) has dimension 3, while for the
second matrix it has dimension 2.

Example 4: Linear differential equations with constant coefficients provide a nice
illustration of the Jordan form. Let a0,..., an–1 be complex numbers and let V be the space of all n
times differentiable functions f on an interval of the real line which satisfy the differential
equation

1

1 1 01 0
n n

nn n

d f d f dfa a a f
dx dx dx



 
    

Let D be the differentiation operator. Then V is invariant under D, because V is the null space of
p(D), where

p = xn + ... + a1x + a0

What is the Jordan form for the differentiation operator on V?

Let c1,..., ck be the distinct complex roots of p:

p = (x – c1)r1f ... (x – ck)rk

Let Vi be the null space of (D – ciI)ri, that is, the set of solutions to the differential equation

(D – ciI)ri f = 0

Then the primary decomposition theorem tells us that

V = V1  ...  Vk

Let Ni be the restriction of D – ciI to Vi. The Jordan form for the operator D (on V) is then
determined by the rational forms for the nilpotent operators N1,..., Nk on the spaces V1,..., Vk.

So, what we must know (for various values of c) is the rational form for the operator N = (D – cI)
on the space Vc, which consists of the solutions of the equation

(D – cI)r f = 0

6
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Notes How many elementary nilpotent blocks will there be in the rational form for N? The number
will be the nullity of N, i.e., the dimension of the characteristic space associated with the
characteristic value c. That dimension is 1, because any function which satisfies the differential
equation

Df = cf

is a scalar multiple of the exponential function h(x) = ecx. Therefore, the operator N (on the
space Vc) has a cyclic vector. A good choice for a cyclic vector is g = xr–1h:

g(x) = xr–1ecx

This gives

2

1

( 1)

( 1)!

r

r

Ng r x h

N g r h





 

 

 

2

1

( 1)

( 1)!

r

r

Ng r x h

N g r h





 

 

 

2

1

( 1)

( 1)!

r

r

Ng r x h

N g r h





 

 

 

The preceding paragraph shows us that the Jordan form for D (on the space V) is the direct sum
of k elementary Jordan matrices, one for each root ci.

Self Assessment

1. If A is an n × n matrix over the field F with characteristic polynomials

f = (x – c1)d1 (x – c2)d2 ... (x – ck)dk

What is the trace of A?

2. Show that the matrix

0 1 0
1 0 1
0 1 0

A
 
 

  
  

is nilpotent. Show also that the Jordan form of A consists of a single 3 × 3 matrix.

1.3 Summary

 The findings of the theorem 1 of the last unit helps us to see that the finite vector space V
for a linear nilpotent operator is decomposed as the direct sum of its cyclic invariant
subspaces Z(i; N) with N annihilators p1, p2, ..., pr.

 Since N is nilpotent, the minimal polynomial is xk where k  n, and thus each pi is also of the
form pi = xki.

 Theorem 1 of the last unit also helps us to write N as the direct sum of the elementary
nilpotent matrices known as companion matrices.

1.4 Keywords

Companion Matrix: is such an n × n matrix whose elements are zeros every where except
immediately below the diagonal line has 1s.

Nilpotent Matrix: A matrix A such that Ak = 0, is called nilpotent matrix of index k. Provided
ak-1  0.

7
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The Jordan Form

Notes1.5 Review Questions

1. The differentiation operator on the space of the polynomials of degree less than or equal
to 3 is represented by the matrix

0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

 
 
 
 
 
 

What is the Jordan form of the matrix?

2. If A is a complex 5 × 5 matrix with the characteristic polynomial

f = (x – 2)3 (x + 7)2

and the minimal polynomial p = (x – 2)2 (x + 7), what is the Jordan form for A?

Answer: Self Assessment

1. Trace of A = c1d1 + c2d2 + ... + ckdk

1.6 Further Readings

Books Kenneth Hoffman and Ray Kunze, Linear Algebra

I.N. Herstein, Topics in Algebra

8
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Notes Unit 2: Computation of Invariant Factors

CONTENTS

Objectives

Introduction

2.1 Overview

2.2 Computation of Invariant Factors

2.3 Summary

2.4 Keywords

2.5 Review Question

2 .6 Further Readings

Objectives

After studying this unit, you will be able to:

 Understand how to obtain the characteristic polynomial for a matrix of large size with the
help of the elementary row and column operations.

 See that this unit gives a detailed method which can be used by computation of invariant
factors as the matrix involved depends upon the polynomials in the field Fn(x).

 See that with method of elementary row and column operations a matrix can be put into
the Jordan form.

 Understand that if P is an m × m matrix with entries in the polynomial algebra F(x) then P
is invertible means that P is row equivalent to the m × m identity matrix and P is a product
of elementary matrices.

Introduction

In this unit a method for computing the invariant factors p1, ... pr is given where p1, p2, ... pr define
the rational form for the n  n matrix A.

The elementary row operations and column operations are to be used to reduce (xI – A) into an
row equivalent matrix.

It is also shown that if N is row equivalent to M then N = PM, where P an m  m matrix is a product
of elementary matrices.

2.1 Overview

We wish to find a method for computing the invariant factors p1,  p2, ... pr which define the
rational form for an n  n matrix A with entries in the field F. To begin with a very simple case
in which A is the companion matrix (2) of unit 9 of a monic polynomial

p = xn + Cn–1 xn–1 + ... + C1x + C0.

In unit (19) we saw that p is both the minimal and the characteristic polynomial for the companion
matrix A. Now, we want to give a direct calculation which shows that p is the characteristic
polynomial for A.

Richa Nandra, Lovely Professional University
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Computation of Invariant Factors

NotesIn this case

xI – A = 

0

1

2

2

1

0 0 0
1 0 0

0 1 0

0 0 0
0 0 0 1

n

n

x C
x C

x C

C
x C





     
 


In the row-operation, let us add x times row n to row (n – 1). This will remove the x in the (n – 1,
n – 1) place and still the determinant of [xI – A] does not change. To continue, add x times the new
row (n – 1) to row (n – 2). Continuing successively unit all of the x’s on the main diagonal have
been removed by that process, the result is the matrix

1 0
1

2 1
2

3 2

2
1 2

1

0 0 0 0 ...

1 0 0 0 ...

0 1 0 0 ...

0 0 0 0
0 0 0 01

n

n

n

n n

n

x C x C

x C x C

x C x C

x C x C
x C






          




which has the same determinant as xI – A. The upper right-hand entry of this matrix is the
polynomial p. Now we use column operations to clean up the last columns. We do so by adding
to last column appropriate multiples of the other columns:

0 0 0 0
1 0 0 0 0

0 1 0 0 0

0 0 0 0 0
0 0 0 1 0

p



   



Multiply each of the first (n – 1) columns by –1 and then perform (n – 1) interchanges of adjacent
columns to bring the present nth column to the first position. The total effect of the 2n – 2 sign
changes is to have the determinant unaltered. We obtain the matrix

1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 1





   


...(1)

It is then clear that p = det (xI – A).

2.2 Computation of Invariant Factors

We are going to show that for any n  n matrix A, there is a succession of row and column
operations which will transform xI – A into a matrix, in which the invariant factors of A appear
down the main diagonal.

10
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Notes
We will be concerned with ( )

m n
F x , the collection of m  n matrices with entries which are

polynomials over the field F. If M is such a matrix, an elementary row operation on M is one of
the following:

1. multiplications of one row of M by a non-zero scalar in F;

2. replacement of the rth row of M by row r plus f times row s, where f is any polynomial
over F and r = s;

3. interchange of two rows of M.

The inverse operation of an elementary row operation is an elementary row operation of the
same type. Notice that we could not make such an assertion if we allowed non-scalar polynomials
in (1). An m × m elementary matrix, that is, an elementary matrix in F[x]m  m, is one which can be
obtained from the m  m identity matrix by means of a single elementary row operation. Clearly
each elementary row operation on M can be effected by multiplying M on the left by a suitable
m  m elementary matrix; in fact, if e is the operation, then

e(M) = e(I)M.

Let M, N be matrices in F[x]m  n. We say that N is row-equivalent to M if N can be obtained from
M by a finite succession of elementary row operations:

M = M0  M1  ...  Mk = N.

Evidently N is row-equivalent to M if and only if M is row-equivalent to N, so that we may use
the terminology 'M and N are row-equivalent.' If N is row-equivalent to M, then

N = PM

where the m  m matrix P is a product of elementary matrices:

P = E1 ... Ek.

In particular, P is an invertible matrix with inverse

P–l = Ek
–l ... E1

–1.

Of course, the inverse of E, comes from the inverse elementary row operation.

All of this is just as it is in the case of matrices with entries in F. Thus, the next problem which
suggests itself is to introduce a row-reduced echelon form for polynomial matrices. Here, we
meet a new obstacle. How do we row-reduce a matrix? The first step is to single out the leading
non-zero entry of row 1 and to divide every entry of row 1 by that entry. We cannot (necessarily)
do that when the matrix has polynomial entries. As we shall see in the next theorem, we can
circumvent this difficulty in certain cases; however, there is not any entirely suitable
row-reduced form for the general matrix in F[x]m  n. If we introduce column operations as well
and study the type of equivalence which results from allowing the use of both types of operations,
we can obtain a very useful standard form for each matrix. The basic tool is the following.

Lemma: Let M be a matrix in F[x]m n which has some non-zero entry in its first column, and let p
be the greatest common divisor of the entries in column 1 of M. Then M is row-equivalent to a
matrix N which has

0

0

p



as its first column.

11
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Computation of Invariant Factors

NotesProof: We shall prove something more than we have stated. We shall show that there is an
algorithm for finding N, i.e., a prescription which a machine could use to calculate N in a finite
number of steps. First, we need some notation.

Let M be any m  n matrix with entries in F[x] which has a non-zero first column

M1 = 
1

m

f

f


Define

I(M1) = 
0

min
fi

 deg fi

p(M1) = g.c.d. (f1, ... fm) ...(2)

Let j be some index such that deg fj, = l(M1). To be specific, let j be the smallest index i for which
deg fi, = I(M1). Attempt to divide each f, by fj:

fi = fjgi, + ri, ri = 0 or deg ri < deg fj  ...(3)

For each i different from j, replace row i of M by row i minus gi times row j. Multiply row j by the
reciprocal of the leading coefficient of fj and then interchange rows j and 1. The result of all these
operations is a matrix M' which has for its first column

M’1 = 

2

1

1

1

ˆ
j

j

j

m

f

r

r

r
r

r





...(4)

where ˆ
jf  is the monic polynomial obtained by normalizing fj to have leading coefficient 1. We

have given a well-defined procedure for associating with each M a matrix M' with these properties.

(a) M' is row-equivalent to M.

(b) p(M’1) = p(M1).

(c) Either l(M’1) < l(M1) or

M’1 = 

1( )
0

0

p M


...(4A)

It is easy to verify (b) and (c) from (3) and (4). Property (c) is just another way of stating that either
there is some i such that r,  0 and deg ri, < deg fj, or else ri, = 0 for all i and ˆ

jf  is (therefore) the
greatest common divisor of f1, ..., fm.

The proof of the lemma is now quite simple. We start with the matrix M and apply the above
procedure to obtain M'. Property (c) tells us that either M' will serve as the matrix N in the
lemma or l(M’1) < l(M1). In the latter case, we apply the procedure to M' to obtain the matrix

12
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Notes M(2) = (M')'. If M(2) is not a suitable N, we form M(3) = M(2))', and so on. The point is that the strict
inequalities

l(Mi) > l(M’1) > l(M1
(2) > ...

cannot continue for very long. After not more than l(M1) iterations of our procedure, we must
arrive at a matrix M(k) which has the properties we seek.

Theorem 1: Let P be an m  m matrix with entries in the polynomial algebra F[x]. The following
are equivalent.

(i) P is invertible.

(ii) The determinant of P is a non-zero scalar polynomial.

(iii) P is row-equivalent to the m  m identity matrix.

(iv) P is a product of elementary matrices.

Proof: Certainly (i) implies (ii) because the determinant function is multiplicative and the only
polynomials invertible in F[x] are the non-zero scalar ones. Our argument here provides a proof
that (i) follows from (ii). We shall complete the merry-go-round

(i)   (ii)
   

(iv)  (iii).

The only implication which is not obvious is that (iii) follows from (ii).

Assume (ii) and consider the first column of P. It contains certain polynomials p1, ... , pm, and

g.c.d. (p1, ..., pm) = 1

because any common divisor of p1, ..., pm. must divide (the scalar) det P. Apply the previous
lemma to P to obtain a matrix

Q = 

21
0

0

ma a

B




...(5)

which is row-equivalent to P. An elementary row operation changes the determinant of a matrix
by (at most) a non-zero scalar factor. Thus det Q is a non-zero scalar polynomial. Evidently the
(m – 1)  (m – 1) matrix B in ( 5) has the same determinant as does Q. Therefore, we may apply the
last lemma to B. If we continue this way for m steps, we obtain an upper-triangular matrix

R = 

21
0 1

0 0 1

m

m

a a
b




  


which is row-equivalent to R. Obviously R is row-equivalent to the m  m identity matrix.

Corollary: Let M and N be m  n matrices with entries in the polynomial algebra F]x]. Then N is
row-equivalent to M if and only if

N = PM

where P is an invertible m  m matrix with entries in F[x].

13
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Computation of Invariant Factors

NotesWe now define elementary column operations and column-equivalence in a manner analogous
to row operations and row-equivalence. We do not need a new concept of elementary matrix
because the class of matrices which can be obtained by performing one elementary column
operation on the identity matrix is the same as the class obtained by using a single elementary
row operation.

Definition: The matrix N is equivalent to the matrix M if we can pass from M to N by means of
a sequence of operations

M = M0  M1  ...  Mk = N

each of which is an elementary row operation or an elementary column operation.

Theorem 2: Let M and N be m  n matrices with entries in the polynomial algebra F[x ]. Then N
is equivalent to M if and only if

N = PMQ

where P is an invertible matrix in F[x]m  m and Q is an invertible matrix in F[x]n  n.

Theorem 3: Let A be an n  n matrix with entries in the field F, and let p1, ... , pr be the invariant
factors for A. The matrix x I – A is equivalent to the n  n diagonal matrix with diagonal entries
p1, ... , pr, 1, 1, ... , 1.

Proof: There exists an invertible n  n matrix P, with entries in F, such that PAP–1 is in rational
form, that is, has the block form

PAP–1 = 

1

2

0 0
0 0

0 0 r

A
A

A




   


where Ai is the companion matrix of the polynomial pi. According to Theorem 2, the matrix

P(xI – A)P–1 = xI – PAP–1 ...(6)

is equivalent to xI – A. Now

xI – PAP–1 = 

1

2

0 0
0 0

0 0 r

xI A
xI A

xI A




  


...(7)

where the various I's we have used are identity matrices of appropriate sizes. At the beginning
of this section, we showed that xl – A, is equivalent to the matrix

0 0
0 1 0

0 0 1

ip 


  


.

From (6) and (7) it is then clear that xl – A is equivalent to a diagonal matrix which has the
polynomials pi, and (n – r) 1's on its main diagonal. By a succession of row and column
interchanges, we can arrange those diagonal entries in any order we choose. For example: p1, ...,
pr, 1, ... ,1.

Theorem 3 does not give us an effective way of calculating the elementary divisors p1, ... , pr

because our proof depends upon the cyclic decomposition theorem. We shall now give an

14
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Notes explicit algorithm for reducing a polynomial matrix to diagonal form. Theorem 3 suggests that
we may also arrange that successive elements on the main diagonal divide one another.

Definition: Let N be a matrix in F[xJm  n. We say that N is in (Smith) normal form if

(a) every entry off the main diagonal of N is 0;

(b) on the main diagonal of N there appear (in order) polynomials f1, ... , fl such that fk divides
fk + j, 1  k  l – 1.

In the definition, the number l is l = min (m, n). The main diagonal entries are fk = Nkk, k = 1, ..., l.

Theorem 4: Let M be an m  n matrix with entries in the polynomial algebra F[x]. Then M is
equivalent to a matrix N which is in normal form.

Proof: If M = 0, there is nothing to prove. If M  0, we shall give an algorithm for finding a matrix
M' which is equivalent to M and which has the form

M’ = 

1 0 0
0

0

f

R



 ...(8)

where R is an (m – 1)  (n – 1) matrix and f1 divides every entry of R. We shall then be finished,
because we can apply the same procedure to R and obtain f2, etc.

Let l(M) be the minimum of the degrees of the non-zero entries of M. Find the first column which
contains an entry with degree l(M) and interchange that column with column 1. Call the resulting
matrix M(0). We describe a procedure for finding a matrix of the form

0 0
0

0

g

S



 ...(9)

which is equivalent to M(0). We begin by applying to the matrix M(0) the procedure of the lemma
before Theorem 1, a procedure which we shall call PL6. There results a matrix

M(1) = 
0

0

p a b
c d

e f




  


...(10)

If the entries a, ... , b are all 0, fine. If not, we use the analogue of PL6  for the first row, a procedure
which we might call PL6'. The result is a matrix

M(2) = 

0 0
' ' '

' ' '

q
a c e

b d f




  


...(11)

where q is the greatest common divisor of p, a, ... , b. In producing M(2), we may or may not have
disturbed the nice form of column 1. If we did, we can apply PL6 once again. Here is the point.
In not more than l(M) steps:

PL6 PL6 PL6(0) (1) (2) ( )... tM M M M

15
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Noteswe must arrive at a matrix M(t) which has the form (9): because at each successive step we have
l(M(k + 1) < l(M(k). We name the process which we have just defined P7-36.

PL-36(0) ( )tM M

In (9), the polynomial g may or may not divide every entry of S. If it does not, find the first
column which has an entry not divisible by g and add that column to column 1. The new first
column contains both g and an entry gh + r where r  0 and deg r < deg g. Apply process P7-36 and
the result will be another matrix of the form (9), where the degree of the corresponding g has
decreased.

It should now be obvious that in a finite number of steps we will obtain (8), i.e., we will reach a
matrix of the form (9) where the degree of g cannot be further reduced.

We want to show that the normal form associated with a matrix M is unique. Two things we
have seen provide clues as to how the polynomials fl ..., f1 in Theorem 4 are uniquely determined
by M. First, elementary row and column operations do not change the determinant of a square
matrix by more than a non-zero scalar factor. Second, elementary row and column operations
do not change the greatest common divisor of the entries of a matrix.

Definition: Let M be an m  n matrix with entries in F[x]. If 1  k  min (m, n), we define k(M) to
be the greatest common divisor of the determinants of all k  k submatrices of M.

Recall that a k  k submatrix of M is one obtained by deleting some m – k rows and some n – k
columns of M. In other words, we select certain k-tuples

I = (i1, ..., ik), 1  i1 < ... < ik  m

J = (j1, ..., jk), 1  j1, < ... < jk  n

and look at the matrix formed using those rows and columns of M. We are interested in the
determinants

DI, J(M) = det 
1 1 1

1

k

k k k

i j i j

i j i j

M M

M M



 


...(12)

The polynomial k(M) is the greatest common divisor of the polynomials DI, j(M), as I and J range
over the possible k-tuples.

Theorem 5: If M and N are equivalent m  n matrices with entries in F[x], then

k(M) = k(N), 1  k  min (m, n) ...(13)

Proof: It will suffice to show that a single elementary row operation e does not change k. Since
the inverse of e is also an elementary row operation, it will suffice to show this: If a polynomial
f divides every DI, J(M) , then f divides DI, J(e(M)) for all k-tuples I and J.

Since we are considering a row operation, let 1, ..., m be the rows of M and let us employ the
notation

DJ( i1 ..., ik) = DI, J(M).

Given I and J, what is the relation between DI, J(M) and DI, J(e(M))? Consider the three types of
operations e:

(a) multiplication of row r by a non-zero scalar c;

(b) replacement of row r by row r plus g times row s, r  s;

(c) interchange of rows r and s, r  s.

16
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Notes Forget about type (c) operations for the moment, and concentrate on types (a) and (b), which
change only row r. If r is not one of the indices i1, ... , ik, then

DI, J(e(M)) = DI, J(M).

If r is among the indices i1, ..., ik, then in the two cases we have

(a) DI, J(e(M)) = DJ( i1, ..., c r, ..., ik)

= cDJ( i1, ..., r, ..., ik)

= cDI, J(M);

(b) DI, J(e(M)) = DJ( i1, ..., r + g s, ..., ik)

= DI, J(M) +gDJ( i1, ..., s, ..., ik)

For type (a) operations, it is clear that any f which divides DI,J(M) also divides DI,J(e(M)). For the
case of a type (c) operation, notice that

DJ( i1, ..., s, ..., ik) = 0, if s = i, for some j

DJ( i1, ..., s ..., ik) = ± DI’. J(M), if s  i, for all j.

The I’ in the last equation is the k-tuple (i1, ... , s, ... , ik) arranged in increasing order. It should now
be apparent that, if f divides every DI.J(M), then f divides every DI.J(e(M)).

Operations of type (c) can be taken care of by roughly the same argument or by using the fact
that such an operation can be effected by a sequence of operations of types (a) and (b).

Corollary: Each matrix M in F[x]m n is equivalent to precisely one matrix N which is in normal
form. The polynomials f1, ... , fk which occur on the main diagonal of N are

fk =  
1

( ) ,
( )

k

k

M
M 1  k  min (m, n)

where, for convenience, we define 0(M) = l.

Proof: If N is in normal form with diagonal entries f1, ..., fk; it is quite easy to see that

k(N) =  f1f2 ... fk.

Of course, we call the matrix N in the last corollary the normal form of M. The polynomials f1, ...,
fk are often called the invariant factors of M.

Suppose that A is an n  n matrix with entries in F, and let p1, ... , pr be the invariant factors for A.
We now see that the normal form of the matrix xI – A has diagonal entries 1, 1, ... , 1, pr, ..., pl. The
last corollary tells us what p1, ... , pr are, in terms of submatrices of xI – A.  The number n – r is the
largest k such that k(xI – A) = 1. The minimal polynomial p1 is the characteristic polynomial for
A divided by the greatest common divisor of the determinants of all (n – 1)  (n – 1) submatrices
of xI – A, etc.

Self Assessment

1. True or false? Every matrix in Fn × n is row-equivalent to an upper-triangular matrix.

2. T be a linear operator on a finite dimensional vector space and let A be the matrix of T in
some ordered basis. Show that T has a cyclic vector if and only if the determinants of the
(n – 1) (n – 1) sub-matrices of (xI – A) are relatively prime.

17
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Notes2.3 Summary

 In this unit a method for computing the invariant factors p1 ... pr which define the rational
form of the matrix, is given. It is shown that by elementary row and column operations it
can be achieved.

 It is shown that if N is row-equivalent to a matrix M then N = PM where p is a product of
elementary matrices.

 By this method one can show that

P(xI – A) P–1 = xI – PAP–1 = 

1

2

0 0
0 0

0 r

xI A
xI A

xI A





 

where Ai is companion matrix.

2.4 Keywords

An Elementary Matrix in ( )
n n

F x   is one which can be obtained from n  n identity matrix by
means of a single elementary operation.

An Elementary Row Operation: An elementary row operation on a matrix M whose determinant
has to be found, will not change the determinant of M if this row operation is one of the
following: (i) multiplication of one row of M by a non-zero scalar in F; (ii) replacement of the rth
row of M by the row r plus f times row s, where f is any polynomial over F and r  s; (iii)
interchange of two rows of M.

Row equivalent: Let M, N be matrices in ( )
m m

F x . We say that N is row equivalent to M if N can
be obtained from M by a finite succession of elementary row operations.

2.5 Review Question

1. Let T be the linear operator on R8 which is represented in the standard basis by the matrix

A = 

1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1
0 1 1 0 0 0 0 1
0 0 0 1 1 0 0 0
0 1 1 1 1 1 0 1
0 1 1 1 1 0 1 1
0 0 0 0 0 0 0 0

(a) Find the characteristic polynomial and the invariant factors.

(b) Find the Jordan form of A.

(c) Find a direct sum decomposition of R8 into T-cyclic subspaces as in theorem 1 of
unit 20.

18
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Notes Answer: Self Assessment

1. True

2.6 Further Readings

Books Kenneth Hoffman and Ray Kunze, Linear Algebra

I.N. Herstein, Topics in Algebra
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Semi-simple Operators

NotesUnit 3: Semi-simple Operators

CONTENTS

Objectives

Introduction

3 .1 Overview

3 .2 Semi-simple Operators

3 .3 Summary

3 .4 Keywords

3 .5 Review Questions

3 .6 Further Readings

Objectives

After studying this unit, you will be able to:

 Understand the meaning of semi-simple linear operator T by means of a few lemma stated
in this unit.

 See that if T is a linear operator on V and the minimal polynomial for T is irreducible over
the scalar field then T is semi-simple.

 Know that T, a linear operator on a finite-dimensional space is semi-simple if and only if
T is diagonalizable.

 Understand that if T is a linear operator on V, a finite dimensional vector space over F a
subfield of the field of complex numbers, then there is a semi-simple operator S and a
nilpotent operator N on V such that T = S + N and SN = NS.

Introduction

In this unit the outcome of the last few units is reviewed and a few lemmas based on these ideas
are proved.

The criteria for an operator to be semi-simple are given. It is shown that a linear operator on
finite dimensional space having minimal polynomial to be irreducible is semi-simple.

It is also shown that for a linear operator T on a finite dimensional vector space V over the field
F which is subfield of the field of complex numbers, the operator is the sum of a semi-simple
operator S on V and a nilpotent operator N on V such that T = S + N and SN = NS.

3.1 Overview

In the last couple of units we have been dealing with a single linear operator T on a finite
dimensional vector space V. The aim has been to decompose T into a direct sum of linear
operators of an elementary nature.

We first of all studied the characteristic values and characteristic vectors and also constructed
diagonalizable operators. It was observed then that the characteristic vectors of T need not space
the space.

Sachin Kaushal, Lovely Professional University
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Notes Then the cyclic decomposition theorem help us in expressing any linear operator as a direct sum
of operators with a cyclic vector. If U is a linear operator with a cyclic vector, there is a basis
( 1, 2, ..., n) with

U i = i + 1 i = 1, .... n – 1,

U n = –c0 1 – c1 1, .... –cn–1 n.

This means that action of U on this basis is to shift each i to the next vector j + 1, except that U n

is some prescribed linear combination of the vectors in the basis. The general operator T is the
direct sum of a finite number of such operators U and got reasonably elementary description of
the action of T. Then cyclic decomposition theorem to nilpotent operators is applied and with
the help of the primary decomposition theorem Jordan form is obtained.

The importance of the rational form or the Jordan form is obtained from the fact that these forms
can be computed in specific cases. Of course, if one is given a specific linear operator T and if its
cyclic or Jordan form can be computed, one can obtain vast amounts of information about T.
However there are some difficulties in this method. At first the computation may be lengthy.
The other difficulty is there may not be any method for doing computations. In the case of
rational form the difficulty may be due to lengthy calculation. It is also worthwhile to mention
a theorem which states that if T is a linear operator on a finite-dimensional vector space over an
algebraically closed field then T is uniquely expressible as the sum of a diagonalizable operator
and a nilpotent operate which commute.

In this unit we shall prose analogous theorem without assuming that the scalar field is
algebraically closed. We begin by defining the operators which will play the role of the
diagonalizable operators.

3.2 Semi-simple Operators

We say that T a linear operator on a finite dimensional space V over the field F, is semi-simple
if every T-invariant subspace has a complementary T-invariant subspace.

We are going to characterize semi-simple operators by means of their minimal polynomials,
and this characterization will show us, that, when F is algebraically closed, an operator is semi-
simple if and only it is diagonalizable.

Lemma: Let T be a linear operator on the finite dimensional vector space V and let

V = W1  ... + Wk

be the primary decomposition for T. In other words, if p is the minimal polynomial for T and
1

1 ... krr
kp p p is the prime factorization of p, then Wj is the null space of ( )rj

jp T . Let W be any
subspace of V which is invariant under T. Then

W = (W   W1)  ...  (W  Wk)

Proof: If E1, E2, ..... Ek the projections associated with the decomposition V = WI  ...  Wk, then
each Ej is a polynomial in T. That is, there are polynomials h1, ..., hk such that Ej = hj(T).

Now let W be a subspace which is invariant under T. If  is any vector in W, then  = l + ... + k,
where j is in Wj. Now j = Ej  = hj(T) , and since W is invariant under T, each j is also in W. Thus
each vector  in W is of the form  = 1 + ... + k, where j is in the intersection W·  Wj. This
expression is unique, since V = W1  ...  Wk. Therefore

W = (W   W1)  ...  (W  Wk)

Lemma: Let T be a linear operator on V, and suppose that the minimal polynomial for T is
irreducible over the scalar field F. Then T is semi-simple.
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NotesProof: Let W be a subspace of V which is invariant under T. We must prove that W has a
complementary T-invariant subspace. According to corollary of Theorem 1 of unit 20 it will
suffice to prove that if f is a polynomial and  is a vector in V such that f(T)  is in W, then there
is a vector  in W with f(T)  = f(T) . So suppose  is in V and f is a polynomial such that f(T)  is
in W. If f(T)  = 0, we let  = 0 and then  is a vector in W with f(T)  = f(T) . If f(T)   0, the
polynomial f is not divisible by the minimal polynomial p of the operator T. Since p is prime,
this means that f and p are relatively prime, and there exist polynomials g and h such that fg + ph
= l. Because p(T) = 0, we then have f(T)g(T) = I. From this it follows that the vector  must itself be
in the subspace W; for

= g(T)f(T)

= g(T)(f(T) )

while f(T)  is in W and W is invariant under T. Take  = .

Theorem 1: Let T be a linear operator on the finite-dimensional vector space V. A necessary and
sufficient condition that T be semi-simple is that the minimal polynomial p for T be of the form
p = p1 ... pk, where pI, ... , pk are distinct irreducible polynomials over the scalar field F.

Proof: Suppose T is semi-simple. We shall show that no irreducible polynomial is repeated in
the prime factorization of the minimal polynomial p. Suppose the contrary. Then there is some
non-scalar monic polynomial g such that g2 divides p. Let W be the null space of the operator g(T).
Then W is invariant under T. Now p = g2h for some polynomial h. Since g is not a scalar polynomial,
the operator g(T)h(T) is not the zero operator, and there is some vector  in V such that g(T)h(T)

 0, i.e., (gh)   0. Now (gh)  is in the subspace W, since g(gh ) = g2h  = p  = 0. But there is no
vector  in W such that gh  = qh ; for, if  is ill W

(gh) = (hg)  = h(g ) = h(0) = 0.

Thus, W cannot have a complementary T-invariant subspace, contradicting the hypothesis that T
is semi-simple.

Now suppose the prime factorization of p is p = p1 ... pk, where p1, ... , pk are distinct irreducible
(non-scalar) monic polynomials. Let W be a subspace of V which is invariant under T. We shall
prove that W has a complementary T-invariant subspace. Let V = WI  ...  Wk be the primary
decomposition for T, i.e., let Wj be the null space of pj(T). Let Tj be the linear operator induced on
Wj by T, so that the minimal polynomial for Tj is the prime pj. Now W  Wj is a subspace of Wj

which is invariant under Tj (or under T). By the last lemma, there is a subspace Vj of Wj such that
Wj = (W  Wj)  Vj and Vj is invariant under Tj (and hence under T). Then we have

V = W1  ...  Wk

= (W  W1)  V1  ...  (W  Wk)  Vk

= (W  W1) + ... + (W  Wk)  V1  ...  Vk.

By the first lemma above, W = (W  W1)  ...  (W  Wk) so that if W’ = V1  ...  Vk, then V = W
 W’ and W’ is invariant under T.

Corollary: If T is a linear operator on a finite-dimensional vector space over an algebraically
closed field, then T is semi-simple if and only if T is diagonalizable.

Proof: If the scalar field F is algebraically closed, the monic primes over F are the polynomials
x – c. In this case, T is semi-simple if and only if the minimal polynomial for T is p = (x – c1) ...
(x – ck), where c1, ... , ck are distinct elements of F. This is precisely the criterion for T to be
diagonalizable.

We turn now to expressing a linear operator as the sum of a semi-simple operator and a nilpotent
operator which commute. In this, we shall restrict the scalar field to a subfield of the complex
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Notes numbers. We will see that what is important is that the field F be a field of characteristic zero,
that is, that for each positive integer n the sum 1 + ... + 1 (n times) in F should not be 0. For a
polynomial f over F, we denote by f(k) the kth formal derivative of f. In other words, f(k) = Dkf, where
D is the differentiation operator on the space of polynomials. If g is another polynomial, f(g)
denotes the result of substituting g in f, i.e., the polynomial obtained by applying f to the
element g in the linear algebra F[x].

Lemma (Taylor's Formula): Let F be a field of characteristic zero and let g and h be polynomials
over F. If f is any polynomial over F with deg f  n, then

f(g) = f(h) + f(1)(h)(g – h) + 
(2)( )
2!

f h  (g – h)2 + ... + 
( )( )

!

nf h
n

 (g – h)n,

Proof: What we are proving is a generalized Taylor formula. The reader is probably used to
seeing the special case in which h = c, a scalar polynomial, and g = x. Then the formula says

f = f(x) = f(c) + f(1)(c) (x – c) + 
(2)( )
2!

f c
(x – c)2  + ... + 

( )( )
!

nf c
n

(x – c)n

The proof of the general formula is just an application of the binomial theorem

(a + b)k = ak + kak-1b + 2 2( 1)
2!

kk k a b  + ... + bk.

Since substitution and differentiation are linear processes, one need only prove the formula

when f = xk. The formula for f = 
0

n
k

k
k

c x  follows by a linear combination. In the case f = xk with

k  n, the formula says

gk = hk + khk–l(g – h) + 
( 1)

2!
k k

hk–2 (g – h)2 + ... + (g – h)k

which is just the binomial expansion of

gk = [h + (g – h)]k.

Lemma: Let F be a subfield of the complex numbers, let f be a polynomial over F, and let f' be the
derivative of f. The following are equivalent:

(a) f is the product of distinct polynomials irreducible over F.

(b) f and f' are relatively prime.

(c) As a polynomial with complex coefficients, f has no repeated root.

Proof: Let us first prove that (a) and (b) are equivalent statements about f. Suppose in the prime
factorization of f over the field F that some (non-scalar) prime polynomial p is repeated. Then f
= p2h for some h in F[x]. Then

f' = p2h' + 2pp'h

and p is also a divisor of f'. Hence f and f' are not relatively prime. We conclude that (b) implies (a).

Now suppose f = p1 ... pk, where pI, ... , pk are distinct non-scalar irreducible polynomials over F.
Let fj = f /pj. Then

f' = P’1 f1 + P’2 f2 + ... + P’k fk

Let p be a prime polynomial which divides both f and f '. Then p = pi, for some i. Now pi divides
fj for j  i, and since pi also divides
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f' = 

1

n

j j
j

p f

we see that pi must divide p’i fi. Therefore pi divides either fi or p’i. But pi does not divide fi, since p1,
... , pk are distinct. So pi divides p'i. This is not possible, since p’i has degree one less than the degree
of pi. We conclude that no prime divides both f and f', or that (f, f') = 1.

To see that statement (c) is equivalent to (a) and (b), we need only observe the following:
Suppose f and g are polynomials over F, a subfield of the complex numbers. We may also regard
f and g as polynomials with complex coefficients. The statement that f and g are relatively prime
as polynomials over F is equivalent to the statement that f and g are relatively prime as
polynomials over the field of complex numbers. We use this fact with g = f'. Note that (c) is just
(a) when f is regarded as a polynomial over the field of complex numbers. Thus (b) and (c) are
equivalent, by the same argument that we used above.

Theorem 2: Let F be a subfield of the field of complex numbers, let V be a finite-dimensional
vector space over F, and let T be a linear operator on V. Let  be an ordered basis for V and let
A be the matrix of T in the ordered basis . Then T is semi-simple if and only if the matrix A is
similar over the field of complex numbers to a diagonal matrix.

Proof: Let p be the minimal polynomial for T. According to Theorem 1, T is semi-simple if and
only if p = p1 ... pk where p1, ... , pk, are distinct irreducible polynomials over F. By the last lemma,
we see that T is semi-simple if and only if p has no repeated complex root.

Now p is also the minimal polynomial for the matrix A. We know that A is similar over the field
of complex numbers to a diagonal matrix if and only if its minimal polynomial has no repeated
complex root. This proves the theorem.

Theorem 3: Let F be a subfield of the field of complex numbers, let V be a finite-dimensional
vector space over F, and let T be a linear operator on V. There is a semi-simple operator S on V
and a nilpotent operator N on V such that

(i) T = S + N;

(ii) SN = NS.

Furthermore, the semi-simple S and nilpotent N satisfying (i) and (ii) are unique, and each is a
polynomial in T.

Proof: Let 1
1 ... krr

kp p  be the prime factorization of the minimal polynomial for T, and let f = p1 ...
pk· Let r be the greatest of the positive integers r1, ... , rk, Then the polynomial f is a product of
distinct primes, f' is divisible by the minimal polynomial for T, and so

f(T)r = 0.

We are going to construct a sequence of polynomials: g0, g1, g2, ... such that

0

n
j

j
j

f x g f

is divisible by fn+1, n = 0, 1,2, .... We take g0 = 0 and then f(x – g0f0 = f(x) = f is divisible by f. Suppose
we have chosen g0, ... , gn–1. Let

h = 
1

0

n
j

j
j

x g f
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Notes so that, by assumption, f(h) is divisible by fn. We want to choose gn so that f(h) is divisible by fn+1.
We apply the general Taylor formula and obtain

f(h – gnfn) = f(h) – gnfnf'(h) + fn+lb

where b is some polynomial. By assumption f(h) = qfn. Thus, we see that to have f(h – gnfn) divisible
by fn+1 we need only choose gn in such a way that (q – gnf’) is divisible by f. This can be done,
because f has no repeated prime factors and so f and f’ are relatively prime. If a and e are
polynomials such that af + ef' = 1, and if we let gn = eq, then q – gnf’ is divisible by f.

Now we have a sequence g0, g1, .. , such that fn+1 divides 
0

n
i

j
j

f x g f . Let us take n = r – 1 and

then since f(T)r = 0

1

0
( ) ( )

r
i

j
j

f T g T f T = 0.

Let

N = 
1 1

0 0
( ) ( ) ( ) ( )

r r
j j

j j
j j

g T f T g T f T

Since 
1

n
i

j
j

g f  is divisible by f, we see that Nr = 0 and N is nilpotent. Let S = T – N. Then f(S) =

f(T – N) = 0. Since f has distinct prime factors, S is semi-simple.

Now we have T = S + N where S is semi-simple, N is nilpotent, and each is a polynomial in T. To
prove the uniqueness statement, we shall pass from the scalar field F to the field of complex
numbers. Let  be some ordered basis for the space V. Then we have

[T] = [S]  + [N]

while [S]  is diagonalizable over the complex numbers and [N]  is nilpotent. This diagonalizable
matrix and nilpotent matrix which commute are uniquely determined.

Self Assessment

1. If N is a nilpotent linear operator on V, show that for any polynomial f the semi-simple
part of f(N) is a scalar multiple of the identity operator (F a subfield of C).

2. Let T be a linear operator on R3 which is represented by the matrix

3 1 1
2 2 1
2 2 0

in the standard ordered basis. Show that there is a semi-simple operator S on R3 and a
nilpotent operator N on V such that T = S + N and SN = NS.

3.3 Summary

 In this unit the idea of semi-simple linear operator is explored after a brief review of the
outcome of the previous few units.

 It is shown that a linear operator is semi-simple if every T-invariant subspace W of the
finite dimensional space V, has a complementary T-invariant subspace W’ such that
V = W   W’.
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Notes It is seen that for a linear operator T on V, a finite dimensional vector space over a field of
complex numbers has a semi-simple operator S on V and a nilpotent operator N on V such
that T = S + N, SN = NS.

3.4 Keywords

Complementary T-invariant subspace:  Let T a linear operator has a T-invariant sub-space W
such that V = W  W’ then W’ is a subspace which is complementary to W. However if W’ is also
T-invariant then W’ is known as complementary T-invariant subspace.

Semi-simple operator: Let T be a linear operator on V, and suppose that the minimal polynomial
for T is irreducible over the scalar field F, then T is called a semi-simple operator.

3.5 Review Questions

1. Let T be a linear operator on a finite dimensional space over a subfield of C. Prove that T
is semi-simple and only if the following is true. If f is a polynomial and f(T) is nilpotent,
then f(T) = 0.

2. Let T a linear operator on V is represented by the matrix

A = 
4 2 2
5 3 2
2 4 1

Show that T is diagonalizable.

3.6 Further Readings

Books Kenneth Hoffman and Ray Kunze, Linear Algebra

Michael Artin, Algebra
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Notes Unit 4: Inner Product and Inner Product Spaces

CONTENTS

Objectives

Introduction

4.1 Inner Product

4.2 Inner Product Space

4.3 Summary

4.4 Keywords

4.5 Review Questions

4.6 Further Readings

Objectives

After studying this unit, you will be able to:

 See that there is some similarity between the scalar product in vector analysis and the
concept of inner product.

 Understand that an inner product on a vector space V is a function which assigns to each
ordered pair of vectors ,  in V a scalar ( / ) in the field F such a way that for all , , 
in V and all scalars C

( / ) ( | ) ( | )c c

 Know the importance of the construction known as Gram–Schmidt orthogonalization
process to convert a set of independent vector ( 1, 2, … n) into an orthogonal set of
vectors ( 1, 2, … n).

 Understand orthogonal projection operators and their importance.

Introduction

In this unit the concept of inner product and inner product space is introduced and a similarity
is shown with the scalar product of dot product in vector analysis.

The Cauchy-Schwarz inequality is introduced.

With the help of examples it is shown how to obtain a set of orthogonal vectors ( 1, 2, … n)
from a set of independent  vectors ( 1, 2, … n) by means of a construction known as Gram-
Schmidt orthogonalization process.

By introducing orthogonal projection, E of V on W, it is seen that E is an idempotent linear
transformation of V onto W, W is the null space of F and V =  W W .

4.1 Inner Product

In this unit we consider the vector space V over a field of real or complex numbers. In the first
case V is called a real vector space, in the second, a complex vector field. We have had some
experience of a real vector space in fact both analytic geometry and the subject matter of vector

Sachin Kaushal, Lovely Professional University
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Notesanalysis deal with these spaces. In these concrete examples, we had the idea of length, secondly
we had the idea of the angle between two vectors. These became special cases of the notion of a
dot product (often called a scalar or inner product.) of vectors in R3. Given the vectors v = (x1, x2,
x3) and w = (y1, y2, y3) in R3 the dot product of v and w is defined as

v.w = x1 y1 + x2 y2 + x3 y3.

Note that the length of the vector v is given by .v v  and the angle  between v and w is given by

cos =
. .

. .
v w

v v w w

We list a few of the properties of a dot product:

1. . 0v v

2. . .v w w v

3. .( ) . .v aw bw a v w b v w

for any vectors v, w and real numbers a, b. If now include the complex field we slightly modify
the above relations and list them as follows:

1. . .v w w v

2. . 0 and . 0 if and only if 0;v v v v v

3. (au + bw).v = au.v + bw.v

4. ( ) ( . ) .u av bw a u v b u w

for all complex numbers a, b and all complex vectors u, v, w.

Definition. Let F be the field of real numbers or the field of complex numbers, and V a vector
over F. An inner product on V is a function which assigns to each ordered pair of vectors ,  in
V a scalar ( | ) in F in such a way that for all , ,  in V and all scalars C.

(a) ( | ) ( | ) ( | );

(b) ( | ) ( | )c c

(c) ( | ) ( | ),  the bar denoting complex conjugation;

(d) ( | ) 0 if 0.

It should be observed that conditions (a), (b) and (c) imply that

(e) ( | ) ( | ) ( | ).c c

In the examples that follow and throughout the unit F is either the field of real numbers or the
field of complex numbers.

Example 1: In F(n) define, for  = (x1, x2, ... xn) and 1 2 1 2 2= ( ... ), ( | ) , + ...ny y y x y x y

n nx y we call ( | ) the Standard Inner Product.

Example 2: In F(2) define for  = (x1, x2) and  = (y1, y2),

( | ) = 1 1 1 2 2 1 2 22 , .x y x y x y x y
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Notes Since

( | ) = 2 2
1 1 2 22 2x x y x

= 2
1 1 2 1 2( )( )x x x x x

It follows that ( | ) 0 if 0.  Conditions (a), (b), and (c) of the definition are easily verified.
So ( | ) defines an inner product on F(2).

Example 3: Let V be Fn n, the space of all n × n matrices over F. Then V is isomorphic to
Fn2 in a natural way. It follows from Example 1 that the equation

(A|B) = ,
,

j k j k
j k

A B

defines an inner product on V. Furthermore, if we introduce the conjugate transpose matrix B*,

where B*jk = j kB  we may express this inner product of Fnn in terms of the trace function:

(A|B) = tr (A|B*) = tr (B* A).

For tr (AB*) = ( *) jj
j

AB

= *jk kj
j k

A B

= .jk jk
j k

A B

Example 4: Let Fn1 be the space of n  1 (column matrices over F, and let Q be an n  n
invertible matrix over F. For X, Y in Fn1 set

(X|Y) = Y*Q*QX.

We are identifying the 1  1 matrix on the right with its single entry. When Q is the identity
matrix, this inner product is essentially the same as that in Example 1; we call it the standard
inner product on Fn 1. The reader should note that the terminology ‘standard inner product’ is
used in two special contexts. For a general finite-dimensional vector space over F, there is no
obvious inner product that one may call standard.

Example 5: Let V be the vector space of all continuous complex-valued functions on the
unit interval, 0 1.t Let

(f|g) = 
1

0
( ) ( ) .f t g t dt

The reader is probably more familiar with the space of real-valued continuous functions on the
unit interval, and for this space the complex conjugate on g may be omitted.

Example 6: This is really a whole class of examples. One may construct new inner
products from a given one by the following method. Let V and W be vector spaces over F and
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Notessuppose (|) is an inner product on W. If T is a non-singular linear transformation from V into W,
then the equation

pr ( , ) = (T |T )

defines an inner product pr on V. The inner product in Example 4 is a special case of this
situation. The following are also special cases.

(a) Let V be a finite-dimensional vector space, and let,

 =  { 1 ..., n)

be an ordered basis for V. Let 1, ..., n be the standard basis vectors in Fn, and let T be the
linear transformation from V into Fn such that T j = j, j = 1, ..., n. In other words, let T be
the ‘natural’ isomorphism of V onto Fn that is determined by . If we take the standard
inner product on Fn, then

1

, .
n

j j k k j j
j k j

pr x y x y

Thus, for any basis for V there is an inner product on V with the property ( j| k) = jk; in
fact, it is easy to show that there is exactly one such inner product. Later we shall show that
every inner product on V is determined by some basis  in the above manner.

(b) We look again at Example 5 and take V = W, the space of continuous functions on the unit
interval. Let T be the linear operator ‘multiplication by t,’ that is, (Tf) (t) = tf(t), 0 t 1. It
is easy to see that T is linear. Also T is non-singular; for suppose Tf = 0. Then tf(t) = 0 for
0  t  1; hence f(t) = 0 for t > 0. Since f is continuous, we have f(0) = 0 as well, or f = 0. Now
using the inner product of Example 5, we construct a new inner product on V by setting

pr(f,g) = 
1

0
( )( )( )( )Tf t Tg t dt

= 
1

2

0
( ) ( ) .f t g t t dt

We turn now to some general observations about inner products. Suppose V is complex vector
space with an inner product. Then for all ,  in V

( | ) = Re ( | ) + i Im ( | ) ... (1)

where Re ( | ) and Im ( | ) are the real and imaginary parts of the complex number ( | ). If
z is a complex number, then Im (z) = Re (– iz). It follows that

Im ( | ) = Re [– i( | )] = Re ( |i ).

Thus the inner product is completely determined by its ‘real part’ in accordance with

( | ) = Re ( | ) + i Re ( |i ) ... (2)

Occasionally it is very useful to know that an inner product on a real or complex vector space is
determined by another function, the so-called quadratic form determined by the inner product.
To define it, we first denote the positive square root of ( | ) by|| ||; || || is called the norm
of  with respect to the inner product. By looking at the standard inner products in R1, C1, R2, and
R3, the reader, should be able to convince himself that it is appropriate to think of the norm of 
as the ‘length’ or ‘magnitude’ of . The quadratic form determined by the inner product is the
function that assigns to reach vector  the scalar|| ||2. It follows from the properties of the
inner product that

2( ) = 22 2 Re ( | )
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Notes for all vectors  and . Thus in the real case

( | ) = 2 21 1
4 4

... (3)

In the complex case we use (2) to obtain the more complicated expression

( | ) = 
2 2 2 21 1

4 4 4 4
i ii i ... (4)

Equations (3) and (4) are called the polarization identities. Note that (4) may also be written as
follows:

( | ) = 
4

2

1

1 .
4

n n

n

i i

The properties obtained above hold for any inner product on a real or complex vector space V,
regardless of its dimension. We turn now to the case in which V is finite-dimensional. As one
might guess, an inner product on a finite-dimensional space may always be described in terms
of an ordered basis by means of a matrix.

Suppose that V is finite-dimensional, that

= {1, ..., n}

is an ordered basis for V, and that we are given a particular inner product on V; we shall show
that the inner product is completely determined by the values

Gjk = ( k| j)  ... (5)

it assumes on pairs of vectors in B. If  = k k
k

x and  = ,j j
j

y then

( | ) = |n k
k

x

= ( | )k k
k

x

= ( | )k j k j
k j

x y

= 
,

j jk k
j k

y G x

= Y*GX

where X, Y are the coordinate matrices of ,  in ordered basis , and G is the matrix with entries
Gjk = ( k|aj). We call G the matrix of the inner product in the ordered basis . It follows from (5)
that G is Hermitian i.e., that G = G*; however, G is a rather special kind of Hermitian matrix. For
G must satisfy the additional condition

X*GX > 0, X  0. … (6)

In particular, G must be invertible. For otherwise there exists an X  0 such that GX = 0, and for
any such X, (6) is impossible. More explicitly, (6) says that for any scalars x1, ..., xn not all of which
are 0.
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,

0j jk k
j k

x G x  .... (7)

From this we see immediately that each diagonal entry of G must be positive; however, this
condition on the diagonal entries is by no means sufficient to insure the validity of (6). Sufficient
conditions for the validity of (6) will be given later.

The above process is reversible; that is, if G is any n  n matrix over F which satisfies (6) and the
condition G = G*, then G is the matrix in the ordered basis  of an inner product on V. This inner
product is given by the equation

( | ) = Y*GX

where X and Y are the coordinate matrices of  and  in the ordered basis .

Self Assessment

1. Let V be a vector space (|) an inner product on V.

(a) Show that (o| ) = 0 for all  in V.

(b) Show that if ( | ) = 0 for all  in V, then  = 0.

2. Let (|) be the standard inner product on R2.

(a) Let  = (1, 2),  = (– 1, 1). If  is a vector such that ( | ) = –1 and ( | ) = 3, find .

(b) Show that for any in R2 we have

= ( | 2) 1 + ( | 2) 2

Where 1 = (1, 0) and 2 = (0,1).

4.2 Inner Product Space

After gaining some insight about an inner product we want to see how to combine a vector space
to some particular inner product in it. We shall thereby establish the basic properties of the
concept of length and orthogonality which are imposed on the space by the inner product.

Definition: An Inner Product space is a real or complex vector space together with a specified
inner product on that space.

A finite-dimensional real inner product space is often called a Euclidean Space. A complex inner
product space is often referred to as a unitary space.

We now introduce the theorem:

Theorem 1. If V is an inner product space, then for any ,  in V and any scalar

(i) ;c c

(ii) 0 for 0;

(iii) ( | )

(iv)

Proof: Statements (i), (ii) can be proved from various definitions. The inequality in (iii) is valid
for   = 0. If   0, put
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= 2

( | ) , so ( | ) 0 and

20 = 2 2
( | ) ( | )

= 
2

2
2 2

( | )( | )( | )( | )

Hence 
2 22( | ) . Now using (iv) we find that

2
= 22 ( | ) ( | )

= 22 2 Re( | )

22 2

= 2 .

Thus, .

The inequality in (iii) is called the Cauchy-Schwarz inequality. It has a wide variety of applications.

The proof shows that if (for example)  is non-zero, then ( | unless

= 2
( | ) .

Thus, equality occurs in (iii) if and only if  and  are linearly dependent.

Example 7: If we apply the Cauchy-Schwarz inequality to the inner products given in
Examples 1, 3, and 5, we obtain the following:

(a)
1/2 1/222

k k k kx y x y

(b) 1/2 1/2tr ( *) (tr ( *)) (tr ( *))AB AA BB

(c)
1/2 1/21 1 1

2 2

0 0 0
( ) ( ) ( ) ( ) .f x g x dx f x dx g x dx

Definitions: Let  and  be vectors in an inner product space V. Then  is orthogonal to  if ( | )
= 0; since this implies  is orthogonal to , we often simply say that  and  are orthogonal. If S
is a set of vectors in V, S is called an orthogonal set provided all pairs of distinct vectors in S are
orthogonal. An orthonormal set is an orthogonal set S with the additional property that 1 for
every  in S.

The zero vector is orthogonal to every vector in V and is the only vector with this property. It is
appropriate to think of an orthonormal set as a set of mutually perpendicular vectors, each
having length 1.
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Example 8: The standard basis of either Rn or Cn is an orthonormal set with respect to the

standard inner product.

Example 9: The vector (x, y) in R2 is orthogonal to (–y, x) with respect to standard inner
product, for

(( , )|( , ))x y y x = 0.xy yx

However if R2 is equipped with the inner product of Example 2, then (x, y) and (– y, x) are
orthogonal if and only if

y =  x

Example 10: Let V be Cn  n, the space of complex n  n matrices, and let Epq be the matrix
whose only non-zero entry is a 1 in row p and column q. Then the set of all such matrices Epq is
orthonormal with respect to the inner product given in Example 3. For

( | )pq rsE E = tr( ) tr( ) .pq prsr
qs qs prE E E

Example 11: Let V be the space of continuous complex-valued (or real-valued) functions
on the interval 0 1x  with the inner product

(f|g) =
1

0
( ) ( ) .f x g x dx

Suppose ( ) 2 cos 2nf x nx and that ( ) 2 sin 2 .ng x nx Then {1, f1, g1, f2, g2, ...} is an infinite
orthonormal set. In the complex case, we may also form the linear combinations

1 ( ), 1, 2 . . . .
2 n nf ig n

In this way we get a new orthonormal set S which consists of all functions of the form

2( ) , 1, 2, . . . .inx
nh x e n

The set S’ obtained from S by adjoining the constant function 1 is also orthonormal. We assume
here that the reader is familiar with the calculation of the integrals in equation.

The orthonormal sets given in the examples above are all linearly independent. We show now
that this is necessarily the case.

Theorem 2: An orthogonal set of non-zero vectors in linearly independent.

Proof: Let S be a finite or infinite orthogonal set of non-zero vectors in a given inner product
space. Suppose 1 2 . . . , m are distinct vectors in S and that

1 1 2 2 . . . .m mc c c

Then

( | )k = |j j k
j

c
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= ( | )j j k

j

c

= ( | ).k k kc

Since ( | ) 0,k k it follows that

ck = 2
( | ) , 1 .k

k

k m

Thus, when  = 0, each ck = 0; so S is an independent set.

Corollary: If  vector  is a linear combination of an orthogonal sequence of non-zero vectors
1, . . ., m, then  is the particular linear combination

= 1
1

( | ) .
m

k
k

kk

… (8)

This corollary follows from the proof of the theorem. There is another corollary which although
obvious, should be mentioned. If { 2 . . . , m} is an orthogonal set of non-zero vectors in a finite-
dimensional inner product space V, then m  dim V. This says that the number of mutually
orthogonal directions in V cannot exceed the algebraically define dimension of V. The maximum
number of mutually orthogonal directions in V is what one would intuitively regard as the
geometric dimension of V, and we have just seen that this is not greater than the algebraic
dimension. The fact that these two dimensions are equal is a particular corollary of the next
result.

Theorem 3: Let V be an inner product space and let 1 . . . , n be any independent vectors in V.
Then one may construct orthogonal vectors 1, . . ., n in V such that for each k = 1, 2, . . . , n the set

{ 1, . . . , k}

is a basis for the subspace spanned by 1, . . . , k.

Proof: The vectors 1 . . . , n will be obtained by means of a construction known as the
Gram-Schmidt orthogonalization process. First let 1 = 1. The other vectors are then given
inductively as follows:

Suppose 1, . . . , m (1 m < n) have been chosen so that for every k

1{ , . . . , }, 1k k m

is an orthogonal basis for the subspace of V that is spanned by 1, . . . , k. To construct the next
vector m+1, let

1m = 1
1 2

1

( | )
.

m
m k

m k
kk

… (9)

Then 1 0.m For otherwise m+1 is a linear combination of 1, . . . , m and hence a linear

combination of 1, . . . , m. Futhermore, if 1 ,j m then

1( | )m j = 1
1 2

1

( | )( | ) ( | )
m

m k
m j k j

kk

b
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= 0.

Therefore { 1, . . . , m+1} is an orthogonal set consisting of m + 1 non-zero vectors in the subspace
spanned by 1, . . . , m+1. By theorem 2, it is a basis for this subspace. Thus the vectors 1, . . . , n

may be constructed one after the other in accordance with (9). In particular, when n = 4, we have

1 = 1

2 =
2 1

2 2 1
1

( | ) … (10)

3 =
3 1 3 2

3 2 1 2 2
1 2

( | ) ( | )

4 =
4 1 4 2 4 3

4 2 1 2 2 2 3
1 2 3

( | ) ( | ) ( | ) . … (11)

Corollary: Every finite-dimensional inner product space has an orthonormal basis.

Proof: Let V be a finite-dimensional inner product space and { 1, . . . , n} a basis for V. Apply the
Gram-Schmidt process to construct an orthogonal basis { 1, . . . , n}. Then to obtain an orthonormal
basis, simply replace each vector k by / .k k

One of the main advantages which orthonormal bases have over arbitrary bases is that
computations involving coordinates are simpler. To indicate in general terms why this is true,
suppose that V is a finite-dimensional inner product space. Then, as in the last section, we may
use Equation (5) to associate a matrix G with every ordered basis  = { 1, . . . , n} of V. Using this
matrix

Gjk = ( k| j)

we may compute inner products in terms of coordinates, If  is an orthonormal basis, then G is
the identity matrix, and for any scalars xj and yk

.j j k k j j
j k j

x y x y

Thus in terms of an orthonormal basis, the inner product in V looks like the standard inner
product in Fn.

Although it is of limited practical use for computations, it is interesting to note that the
Gram-Schmidt process may also be used to test for linear dependence. For suppose 1, …, n are
linearly dependent vectors in an inner product space V. To exclude a trivial case, assume that

1 0. Let m be the largest integer for which 1, …, m are independent. Then 1  m < n. Let

1, …, m be the vectors obtained by applying the orthogonalization process to 1 …, m. Then
the vector m+1 given by (9) is necessarily 0. For m+1 is in the subspace spanned by 1, 2, …, n

and orthogonal to each of these vectors; hence it is 0 by (6). Conversely it 1, …, n are different
from 0 and m+1 = 0, then 1

, 2, …, m+1 are linearly dependent.

Example 12: Consider the vectors

1 = (4, 0, 3)
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2 = (7, 0, –1)

3 = (1, 5, 4)

in R3 equipped with the standard inner product. Applying the Gram-Schmidt process to 1, 2, 3,
we obtain the following vectors.

1 = (4, 0, 3)

2 = (7, 0, –1) – (7, 0, 1|4, 0, 3) (4, 0, 3)
25

= (7, 0, – 1) – (4, 0, 3) = (3, 0, – 4)

3 =  (1, 5, 4) – 
(1, 5, 4|3, 0, 4) (1, 5, 4|4, 0, 3)(3, 0, 4) (4, 0, 3)

25 25

= (1, 5, 4) + 13 16(3, 0, 4) (4, 0, 3)
25 25

= (0, 5, 0)

These vectors are evidently non-zero and mutually orthogonal. Hence ( 1, 2, 3) is an orthogonal
basis for R3. To express an arbitrary vector (x1, x2, x3,) in R3 as a linear combination of 1, 2, 3,
it is not necessary to solve any linear equation. For it suffices to use (8).

Thus

(x1, x2, x3) = 3 1 1 3 2
1 2 3

3 4 (3 4 )
25 25 5

x x x x x

as is readily verified. In particular,

(1, 2, 3) = 
13 9 2(4, 0, 3) (3, 0, 4) (0, 5, 0)
25 25 5

To put this point in another way, what we have shown in the following: The basis ( f1, f2, f3) of (R3)
which is dual to basis ( 1, 2, 3) is defined explicitly by the equations

f1(x1, x2, x3) = 1 34 3
25

x x

f2(x1, x2, x3)  = 1 33 4
25

x x

f3(x1, x2, x3) = 2 ,
5
x

and these equations may be written more generally in the form

fj (x1, x2 x3) = 
1 2 3

2

( , , | )j

j

x x x
 .

Finally, note that from 1, 2, 3 we get the orthonormal basis

1 1(4, 0, 3), (3, 0, 4), (0, 1, 0).
5 5
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Notes
Example 13: If F be the real field and V be the set of polynomials, in a variable x over F

of degree 2 or less. In V we define an inner product by: If p(x), q(x) V, then

(p(x), q(x)) = 
1

1
( ) ( )p x q x dx

Let us start with the basis 1 = 1, 2 = x, 3 = x2 of V and obtain orthogonal set by applying Gram-
Schmidt process. Let

1 = 
1

1

1
2

as 2
1 = 

1

1
1. 2.dx

’2 = 2 2 1 1( , )

= 
121

1 1

1 1.1
22 2
xx x dx x

So the orthonormal 2 is given by

2 = 1/2, 1
2 2

1

3
2

x x x
x dx

Finally

,
3 = 3 3 2 2 3 1 1( , ) ( , )

= 2 2 23 3 1 1, , ,
2 2 2 2

x x x x x

Now

2 3,
2

x x = 
141

2

1
1

3 3, 0
2 2 4

xx x dx

and

2 1,
2

x = 
131

2

1 1

1 1 2,1
3 32 2
xx dx

Thus

,
3 = 2 1

3
x

and normalized 3 is given by

3 = 

2 21 1
3 3 2

1/2, 21
3 2

1

10 (3 1)
41

3

x x x
x dx

.
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Notes Thus 1, 2 and 3 are orthornormal set of polynomials in V.

In essence, the Gram-Schmidt process consists of repeated applications of a basic geometric
operation called orthogonal projection, and it is best understood from this point of view. The
method of orthogonal projection also arises naturally in the solution of an important
approximation problem.

Suppose W is a subspace of an inner product space V, and let  be an arbitrary vector in V. The
problem is to find a best possible approximation to  by vectors in W. This means we want to
find a vector  for which is as small as possible subject to the restriction that  should
belong to W. Let us make our language precise.

A best approximation to  by vectors in W is a vector  in W such that

for every vector  in W.

By looking at this problem in R2 or in R3, one sees intuitively that a best approximation to  by
vectors in W ought to be a vector  in W such that  –  is perpendicular (orthogonal) to W and
that there ought to be exactly one such . These intuitive ideas are correct for finite-dimensional
subspace and for some, but not all, indefinite-dimensional subspaces. Since the precise situation
is too complicated to treat here, we shall only prove the following result.

Theorem 4: Let W be a subspace of an inner product space V and let  be a vector in V.

1. The vector  in W is a best approximation to  by vectors in W if and only if  –  is
orthogonal to every vector in W.

2. If a best approximation to  by vectors in W exists, it is unique.

3. If W is finite-dimensional and { 1 . . . , n} is orthonormal basis for W, then the vector

= 2
( | )k

k
kk

is the (unique) best approximation to  by vectors in W.

Proof: First note that if  is any vector in V, then  –  = (  – ) + (  – ), and

2 22 2 Re ( | ) .

Now suppose  –  is orthogonal to every vector in W, that  is in W and that . Then, since
–  is in W, it follows that

2 =
2 2

> 2 .

Conversely, suppose that  for every  in W. Then from the first equation above it
follows that

22 Re( | ) 0

for all  in W. Since every vector in W may be expressed in the form  –  with  in W, we see that

22 Re ( | ) 0
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Notesfor every  in W. In particular, if  is in W and , we may take

= 2
( | ) ( ),

Then the inequality reduces to the statement

2 2

2 2

( | ) ( | )
2 0.

This holds if and only if (  – |  – ) = 0. Therefore,  –  is orthogonal to every vector in W. This
completes the proof of the equivalence of the two conditions on a given in (i). This orthogonality
condition is evidently satisfied by at most one vector in W, which proves (ii).

Now suppose that W is a finite-dimensional subspace of V. Then we know, as a corollary of
Theorem 3, that W has an orthogonal basis. Let { 1, . . . , n} be any orthogonal basis for W and
define  by (11). Then, by the computation in the proof of Theorem 3,  –  is orthogonal to each
of the vectors k(  –  is vector obtained at the last stage when the orthogonalization process is
applied to 1, . . . , n, ). Thus –  is orthogonal to every linear combination of 1, . . . , n, i.e,
to every vector in W. If  is in W and , it follows that . Therfore,  is the best
approximation to  that lies in W.

Definition: Let V be an inner product space and S any set of vectors in V. The orthogonal
complement of S is the set S of all vectors in V which are orthogonal to every vector in S.

The orthogonal complement of V is the zero subspace, and conversely {0} .V If S is any subset
of V, its orthogonal complement S (S perp) is always a subspace of V. For S is non-empty, since
it contains 0; and whenever  and  are in S and c is any scalar,

( | )c = ( | ) ( | )c

= c0 + 0

= 0

for every  in S, thus c  +  also lies in S. In Theorem 4 the characteristic property of the vector
 is that it is the only vector in W such that –  belongs to .W

Definition: Whenever the vector  in Theorem 4 exists it is called the orthogonal projection of 
on W. If every vector in V has an orthogonal projection on W, the mapping that assigns to each
vector in V its orthogonal projection on W is called the orthogonal projection of V on W.

By Theorem 4, the orthogonal projection of an inner product space on a finite-dimensional
subspace always exists. But Theorem 4 also implies the following result.

Corollary: Let V be an inner product space, W a finite-dimensional subspace, and E the orthogonal
projection of V on W. Then the mapping

E

is the orthogonal projection of V on .W

Proof: Let  be an arbitrary vector in V. Then  – E  is in ,W and for any  in W ,  –  = E  +
(  – E  – ) . Since E  is in W and  – E  –  is in ,W it follows that
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Notes 2
= 

22E E

 
2( )E

with strict inequality when    – E . Therefore,  – E  is the best approximation to  by vectors
in .W

Example 14: Given R3 the standard inner product. Then the orthogonal projection of
(– 10, 2, 8) on the subspace W that is spanned by (3, 12, –1) is vector

 = (( 10, 2, 8)|(3, 12, 1)) (3, 12, 1)
9 144 1

= 14 (3, 12, 1).
154

The orthogonal projection of R3 on W is the linear transformation E defined by

1 2 3
1 2 3

3 12( , ) (3, 12, 1).
154

x x xx x x

The rank of E is clearly 1; hence its nullity is 2. On the other hand,

1 2 3( , , ) (0, 0, 0)E x x x

if and only if 3x1 + 12x2 – x3 = 0. This is the case if and only if (x1, x2, x3, is in .W Therefore, .W
is the null space of E, and dim 2.W Computing

1 2 3
1 2 3

3 12, 3, 12, 1
154

x x xx x x

we see that the orthogonal projection of R3 on W is the linear transformation I – E that maps the
vector (x1, x2, x3) onto the vector

1 2 3 1 2 3 1 2 3
1 145 36 3 36 10 12 , 3 12 153 .

154
x x x x x x x x x

The observations made in Example 14 generalize in the following fashion.

Theorem 5: Let W be a finite-dimensional subspace of an inner product space V let E be the
orthogonal projection of V on W. Then E is an idempotent linear transformation of V onto W,

W  is the null space of E, and

V = .W W

Proof: Let  be an arbitrary vector in V. Then E  is the best approximation to  that lies in W. In
particular, E  =  when  is in W. Therefore, E(E ) = E  for every  in V; that is, E is idempotent:
E2 = E. To prove, that E is a linear transformation, let  and  be any vectors in V and c an
arbitrary scalar. Then, by Theorem 4,  – E  and  – E  are each orthogonal to every vector in W.
Hence the vector

( ) ( ) ( ) ( )c E E c cE E
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Notesalso belongs to W . Since cE  + E  is a vector in W, it follows from Theorem 4 that

E(c  + ) = cE  +E .

Of course, one may also prove the linearity of E by using (11) . Again let  be any vector in V.
Then E  is the unique vector in W such that  – E  is in .W Thus E  = 0 when  is in .W
Conversely,  is in W when E  = 0. Thus W is the null space of E. The equation

 = E  +  – E

show that V = W + W ; moreover, M W = {0}. For if  is vector in M W , then ( | ) = 0.
Therefore,  = 0, and V is the direct sum of W and .W

Corollary: Under the conditions of the theorem, I – E is orthogonal projection of V on .W  It is

an idempotent linear transformation of V onto W with null space W.

Proof: We have already seen that the mapping E is the orthogonal projection of V on

.W Since E is a linear transformation, this projection on W is the linear transformation I – E.
From its geometric properties one sees that I – E is an idempotent transformation of V onto W.
This also follows from the computation

(I – E) (I – E) = I – E – E + E2

= I – E.

Moreover, (I – E)  = 0 if and only if  = E , and this is the case if and only if  is in W. Therefore
W is the null space of I – E.

The Gram-Schmidt process may now be described geometrically in the following way. Given an
inner product space V and vectors 1, . . . , n in V, let Pk (k > 1) be the orthogonal projection of V
on the orthogonal complement of the subspace spanned by 1, . . . , k – 1, and set P1 = I. Then the
vectors one obtains by applying the orthogonalization process to 1, . . . , n, are defined by the
equations

k = Pk k,       1 .k n

Theorem 5 implies another result known as Bessel’s inequality.

Corollary: Let { 1, . . ., n} be an orthogonal set of non-zero vectors in an inner product space V.
If  is any vector in V, then

2
2

2

( | )k

kk

and equality holds if and only if

= 2
( | ) .k

k
kk

Proof: Let  = 2| / .k k k
k

 Then  =  +  where ( / ) = 0. Hence

2 = 22 .

It now suffices to prove that

2 = 
2

2

( | )
.k

kk
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Notes This is straightforward computation in which one uses the fact that ( j| k) = 0 for .j k

In the special case in which { 1 . . . , n} is an orthonormal set, Bessel’s inequality says that

2 2( | ) .k
k

The corollary also tells us in this case that  is in the subspace spanned by 1, . . ., n if and only
if

=  ( | )k k
k

or if and only if Bessel’s inequality is actually an equality. Of course, in the event that V is finite
dimensional and { 1, . . . , n} is an orthogonal basis for V, the above formula holds for every
vector  in V. In other words, if { 1, . . . , n} is an orthonormal basis for V, the kth coordinate of

 in the ordered basis { 1, . . . , n} is ( | k).

Example 15: We shall apply the last corollary to the orthogonal sets described in Example
11. We find that

(a)
21 1

2–2

0 0
( ) ( )

n
ikt

k n

f t e dt f t dt

(b)
2

1
22

0

n n
ikt

k k
k n k n

c e dt c

(c)
1 2

0
2 cos 2 2 sin 4 1 1 2.t t dt

Self Assessment

3. Apply the Gram-Schmidt process to the vectors 1 = (1, 0, 1), 2 (1, 0, –1), 3 = (0, 3, 4) to
obtain an orthonormal basis for R3 with the standard inner product.

4. Let V be an inner product space. The distance between two vectors  and  in V is defined
by

( , ) ,d

so that

(a) d( , ) 0;

(b) d ( , ) = d ( , );

(c) d( , ) d( , ) + ( , ).

4.3 Summary

 The idea of an inner product is somewhat similar to the scalar product in the vector
calculus.
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Notes With the help of a few examples the concept of inner product is illustrated.

 The inner product is also related to the polarization identities.

 The relation between the vector space and the inner product is established.

 The Cauchy-Schwarz inequality is established.

 The Gram-Schmidt orthogonalization process help us to find a set of orthogonal vectors as
a bases of the vector space V.

4.4 Keywords

An Inner Product Space is a real or complex vector space, together with a specified inner product
on that space.

An Orthogonal Set: If S is a set of vectors in V, S is called an orthogonal set provided all pairs of
distinct vectors in S are orthogonal. An orthonormal set is an orthogonal set S with the additional

property that 1 for every d in S.

Bessel’s Inequality: Let ( 1, 2, . . . , n) be an orthogonal set of non-zero vectors in an inner

product space V. If  is any vector in V, then the Bessel Inequality is given by 
22

2
2

( | )
.k

kk

Cauchy-Schwarz Inequality: If V is an inner product space, then for any vectors ,  in V,

( | ) ,

is called the Cauchy-Schwarz inequality and the above equality occurs if and only if  and  are

linearly dependent.

Conjugate Transpose Matrix: The conjugate transpose matrix B* is defined by the relation

* ,Kj jKB B  where B  is complex conjugate of the matrix B.

Gram-Schmidt Orthogonalization Process: Let V be an inner product space and let 1, 2, . . . n
be any independent set of vectors in V, then one may construct orthogonal vectors 1, 2, . . . n
in V by means of a construction known as Gram-Schmidt orthogonalization process.

Linearly Independent: An orthogonal set of non-zero vectors is linearly independent.

Polarization Identities: For the real vector space polarization identities are defined by

2 21 1( | ) .
4 4

Standard Inner Product: If  = (x1, x2, . . . xn),  = (y1, y2, . . . yn) are vectors in Fn, there is an inner
product which we call the standard inner product, defined by the relation

1

( | ) .
n

i i
i

x y

The Orthogonal Complement: Let V be an inner product space and S any set of vectors in V. The
orthogonal complement of S is the set S of all vectors in V which are orthogonal to every vector
in S.
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Notes 4.5 Review Questions

1. Verify that the standard inner product on Fn is an inner product.

2. Consider R4 with the standard inner product. Let W be the subspace of R4 consisting of all
vectors which are orthogonal to both  = (1, 0, – 1, 1) and  = (2, 3, – 1, 2). Find the basis for
W.

3. Consider C3, with the standard inner product. Find an orthonormal basis for the subspace
spanned by 1 = (1, 0, i) and 2 = (2, 1, 1+ i).

Answers: Self Assessment

2. (a)  = 
7 2,
3 3

3. 1 1(1, 0, 1), (1, 0, 1), (0, 1, 0)
2 2

4.6 Further Readings

Books Kenneth Hoffman and Ray Kunze, Linear Algebra

I N. Herstein, Topics in Algebra

45



LOVELY PROFESSIONAL UNIVERSITY

Linear Functional and Adjoints of Inner Product Space

NotesUnit 5: Linear Functional and Adjoints of
Inner Product Space

CONTENTS

Objectives

Introduction

5.1 Linear Functional

5.2 Adjoint of Linear Operators

5.3 Summary

5.4 Keywords

5.5 Review Questions

5.6 Further Readings

Objectives

After studying this unit, you will be able to:

 Understand that any linear functional f on a finite-dimensional inner product space is
‘inner product with a  fixed vector in the space’.

 Prove the existence of the ‘adjoint’ of a linear operator T on V, this being a linear operator
T* such that (T ) = ( T* )  for all and in V.

 A linear operator T such that T = T* is called self-adjoint (or Hermitian). If  is an
orthonormal basis for V, then [T*]B = [T] .

Introduction

The idea of the linear functional helps in understanding the nature of the inner product.

The concept of adjoint of a linear transformation with the help of the inner product helps in
understanding the self-adjoint operators or Hermitian operators.

This unit also makes a beginning to the understanding of unitary operators and normal operators.
The normal operator T has the property that T*T = TT*.

5.1 Linear Functional

In this section we treat linear functionals on inner product space and their relation to the inner
product. Basically any linear functional f on a finite dimensional inner product space is ‘inner
product with a fixed vector in the space’, i.e. that such an f has the form f( ) = ( ) for some fixed

 in V. We use this result to prove the existence of the ‘adjoint’ of a linear operator T on V, this
being a linear operator T* such that (T ) = ( T* ) for all and in V. Through the use of an
orthonormal basis, this adjoint operation on linear operators (passing from T to T*) is identified
with the operation of forming the conjugate transpose of a matrix.

We define a function f  from V, any inner product space into the scalar field by

f  ( ) = ( ).

Sachin Kaushal, Lovely Professional University
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Notes This function f  is a linear functional on V, because by its very definition, ( ) is linear as a function
of . If V is finite-dimensional, every linear functional on V arises in this way from some .

Theorem 1: Let V be a finite-dimensional inner product space, and f a linear functional on V. Then
there exists a unique vector in V such that f( ) = ( ) for all in V.

Proof: Let { 1, 2, ...., n} be an orthonormal basis for V. Put

=
1

( )
n

j j
j

f ...(1)

and let f  be the linear functional defined by

f ( ) = ( ).

Then

f ( k) = ( ) ( )k j j k
j

f f

Since this is true for each k, is follows that f = f . Now suppose  is a vector in V such that ( )
= ( ) for all . Then ( ) = 0 and . Thus there is exactly one vector  determining
the linear functional f in the stated manner.

The proof of this theorem can be reworded slightly, in terms of the representation of linear
functionals in a basis. If we choose on orthonormal basis { 1, ...., n) for V, the inner product of

= x1 1 + ... + xn n and  = y1 1 + ...+ yn n will be

( ) = 1 1 ... .n nx y x y

If f is any linear functional on V, then f has the form

f( ) = c1x1 + ... +cnxn

for some fixed scalars c1, ...., cn determined by the basis. Of course cj = f ( j). If we wish to find a
vector  in V such that ( ) = f ( ) for all , then clearly the coordinates yj of  must satisfy

i jy c  or ( ).i jy f Accordingly,

= 1 1( ) ... ( )n nf f

is the desired vector.

Some further comments are in order. The proof of Theorem 1 that we have given is admirably
brief, but it fails to emphasize the essential geometric fact that  lies in the orthogonal complement
of the null space of f. Let W be the null space of f. Then V = W + W , and f is completely determined
by its values on W . In fact, if P is the orthogonal projection of V on W , then

f( ) = f (P )

for all  in V. Suppose f 0. Then f is of rank 1 and dim (W ) = 1. If  is any non-zero vector in W ,
it follows that

P = 2
( )

for all  in V. Thus

f( ) = 2
( )( ). f
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Notesfor all , and 2[ ( )/ ] .f

Example 1: We should give one example showing that Theorem 1 is not true without the
assumption that V is finite dimensional. Let V be the vector space of polynomials over the field
of complex numbers, with the inner product

(f  g) =
1

0
( ) ( ) .f t g t dt

This inner product can also be defined algebraically. If f = akxk and g = bkxk, then

(f  g) =
.

.
1 j k

j k

j a b
j k

Let z be a fixed complex number, and let L be the linear functional ‘evaluation at z’:

L(f) = f(z).

Is there a polynomial g such that (f  g) = L(f) for every f? The answer is no; for suppose we have

f(z) =
1

0
( ) ( )f t g t dt

for every f. Let h = x z, so that for any f we have (hf) (z) = 0. Then

0 =
1

0
( ) ( ) ( )h t f t g t dt

for all f. In particular this holds when f hg  so that

1 2 2

0
( ) ( )h t g t dt = 0

and so hg = 0. Since h 0, it must be that g = 0. But L is not the zero functional; hence, no such g
exists.

One can generalize the example somewhat, to the case where L is a linear combination of point
evaluations. Suppose we select fixed complex numbers z1, ...., zn and scalars c1, ...., cn and let

L(f) = c1 f(z1) + ... +cn f (zn).

Then L is a linear functional on V, but there is no g with L(f) = (f  g), unless c1 = c2 = .... = cn = 0. Just
repeat the above argument with h = (x z1) ... (x zn) in the Example 1.

We turn now to the concept of the adjoint of a linear operator.

5.2 Adjoint of Linear Operators

Theorem 2: For any linear operator T on a finite-dimensional inner product space V, there exists
a unique linear operator T* on V such that

(T ) = (  T* ) ...(2)

for all  in V.

Proof: Let  be any vector in V. Then (T ) is a linear functional on V. By Theorem 1 there
is a unique vector  in V such that (T ) = ( ) for every  in V. Let T* denote the mapping
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Notes :

= T* .

We have (2), but we must verify that T* is a linear operator. Let ,  be in V and let c be a scalar.
Then for any ,

( T* (c )) = (T c )

= (T c ) + (T )

= ( ) ( )c T T

= ( * ) ( * )c T T

= ( cT* ) + ( T* )

= ( c T*  + T* ).

Thus T* (c ) = cT*  + T*  and T* is linear operator.

The uniqueness of T* is clear. For any  in V, the vector T*  is uniquely determined as the vector
 such that (T ) = ( ) for every .

Theorem 3: Let V be a finite-dimensional inner product space and let  = { 1, ...., n} be an
(ordered) orthonormal basis for V. Let T be a linear operator on V and let A be the matrix of T in
the ordered basis . Then Akj = (T j k).

Proof: Since  is an orthonormal basis, we have

=
1

( ) .
n

k k
k

The matrix A is defined by

T j =
1

j

n

k k
k

A

and since

T j =
1

( )
n

j k k
k

T

we have ( ).
jk j kA T

Corollary: Let V be a finite-dimensional inner product space, and let T be a linear operator on V.
In any orthonormal basis for V, the matrix of T* is the conjugate transpose of the matrix of T.

Proof: Let  = { 1, ...., n} be an orthonormal basis for V, let A = [T] and B = [T*]. According to
Theorem 3,

Akj = (T j k)

Bkj = (T* j k).

By the definition of T* we then have

Bkj = (T* j k)

= ( * )k jT
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Notes= ( )k jT

= .jkA

Example 2: Let V be a finite-dimensional inner product space and E the orthogonal
projection of V on a subspace W. The for any vectors  and  in V.

(E ) = (E E + (1 – E) )

= (E E )

= (E + (1 – E) E )

= ( E )

From the uniqueness of the operator E* it follows that E* =  E. Now consider the projection E
described in Example 14 of unit 24. Then

A =
9 36 3

1 36 144 12
154

3 12 1

is the matrix of E in the standard orthonormal basis. Since E = E*, A is also the matrix of E*, and
because A = A*, this does not contradict the preceding corollary. On the other hand, suppose

1 = (154, 0, 0)

2 = (145, –36, 3)

3 = (–36, 10, 12)

Then { 1, 2, 3} is a basis, and

E 1 = (9, 36, –3)

E 2 = (0, 0, 0)

E 3 = (0, 0, 0)

Since (9, 36, –3) = –(154, 0, 0) – (145, –36, 3), the matrix B of E in the basis { 1, 2, 3} is defined by
the equation

B =
1 0 0
1 0 0

0 0 0

In this case B  B*, and B* is not the matrix of E* = E in the basis { 1, 2, 3}. Applying the corollary,
we conclude that { 1, 2, 3} is not an orthonormal basis. Of course this is quite obvious anyway.

Definition: Let T be a linear operator on an inner product space V. Then we say that T has an
adjoint on V if there exists a linear operator T* on V such that (T ) = ( T* ) for all  and  in V.

By Theorem 2 every linear operator on a finite-dimensional inner product space V has an adjoint
on V. In the finite-dimensional case this is not always true. But in any case there is at most one
such operator T*; when it exists, we call it the adjoint of T.

Two comments should be made about the finite-dimensional case.

1. The adjoint of T depends not only on T but on the inner product as well.
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Notes 2. As shown by example 2, in an arbitrary ordered basis , the relation between [T] and [T*]
is more complicated than that given in the corollary above.

Example 3: Let V be Cn×1, the space of complex n × 1 matrices, with inner product (X/Y) =
Y * X. If A is an n × n matrix with complex entries, the adjoint of the linear operator X AX is
the operator X A * X. For

(AX Y) = Y*AX = (A*Y)*X = (X A*Y)

Example 4: This is similar to Example 3. Let V be Cn × n with the inner product (A B) =
tr (B*A). Let M be a fixed n × n matrix over C. The adjoint of left multiplication by M is left
multiplication by M*. Of course, ‘left multiplication by M’ is the linear operator LM defined by
LM (A) = MA.

(LM(A) B) = tr (B* (MA))

= tr (MAB*)

= tr (AB*M)

= tr (A(M*B)*)

= (A LM* (B)).

Thus (LM)* = LM*. In the computation above, we twice used the characteristic property of the trace
function: tr (AB) = tr (BA).

Example 5: Let V be the space of polynomials over the field of complex numbers, with
the inner product.

(f g) =
1

0
( ) ( ) .f t g t dt

If f is a polynomial, f = akxk, we let .k
kf a x  That is, f  is the polynomial whose associated

polynomial function is the complex conjugate of that for f:

( )f t = ( ), realf t t

Consider the operator ‘multiplication by f,’ that is, the linear operator Mf defined by Mf(g) = fg.
Then this operator has an adjoint, namely, multiplication by .f  For

(Mf(g) h) = (fg h)

=
1

0
( ) ( ) ( )f t g t h t dt

=
1

0
( )[ ( ) ( )]g t f t h t dt

= ( )g fh

= ( ( ))fg M h

and so ( )* .ffM M
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Example 6: In Example 5, we saw that some linear operators on an infinite-dimensional

inner product space do have an adjoint. As we commented earlier, some do not. Let V be the
inner product space of Example 6, and let D be the differentiation operator on C[x]. Integration
by parts shows that

(Df g) = f(1)g(1) f(0) g(0) (f Dg).

Let us fix g and inquire when there is a polynomial D*g such that (Df g) = (f D*g) for all f. If such
a D*g exists, we shall have

(f D*g) = f (1) g(1) f (0) g(0) (f Dg)

or

(f D*g + Dg) = f (1) g(1) f (0) g(0).

With g fixed, L(f) = f(1) g(1) f(0) g(0) is a linear functional of the type considered in Example 1 and
cannot be of the form L( f ) = (f h) unless L = 0. If D*g exists, then with h = D*g + Dg we do have L( f )
= (f h), and so g(0) = g(1) = 0. The existence of a suitable polynomial D*g implies g(0) = g(1) = 0.
Conversely, if g(0) = g(1) = 0, the polynomial D*g = – Dg satisfies (Df g) = (f D*g) for all f. If we
choose any g for which g(0) 0 or g(1) 0, we cannot suitable define D*g, and so we conclude that
D has no adjoint.

We hope that these examples enhance the reader’s understanding of the adjoint of a linear
operator. We see that the adjoint operation, passing from T to T*, behaves somewhat like
conjugation on complex numbers. The following theorem strengthens the analogy.

Theorem 4: Let V be a finite-dimensional inner product space. If T and U are linear operators on
V and c is a scalar,

(i) (T + U)* = T* + U*;

(ii) (cT)* = *;c T

(iii) (TU)* = U*T*;

(iv) (T*) = T.

Proof: To prove (i), let  and  be any vectors in V.

Then

((T + U) ) = (T + U )

= (T ) + (U )

= ( T* ) + ( U* )

= ( T*  + U* )

= (  (T* + U*) )

From the uniqueness of the adjoint we have (T + U)* = T* + U*. We leave the proof of (ii) to the
reader. We obtain (iii) and (iv) from the relations

(TU ) = (U T* ) = ( U*T* )

(T* ) = ( * ) ( / ) ( ).T T T

Theorem 4 is often phrased as follows: the mapping T T* is a conjugate-linear anti-isomorphism
of period 2. The analogy with complex conjugation which we mentioned above is, of course,
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= 1 2 ,z z z  = z. One must be careful to observe the reversal of order in a product, which the adjoint
operation imposes: (UT)* = T*U*. We shall mention extensions of this analogy as we continue
our study of linear operators on an inner product space. We might mention something along
these lines now. A complex number z is real if the only if .z z  One might expect that the linear
operators T such that T = T* behave in some way like the real numbers. This is in fact the case. For
example, if T is a linear operator on a finite-dimensional complex inner product space, then

T = U1 + iU2

where U1 = U*1 and U2 = U*2. Thus, in some sense, T has a ‘real part’ and an ‘imaginary part.’ The
operators U1 and U2 satisfying U1 = U*1, and U2 = U*2, and are unique, and are given by

U1 =
1 ( *)
2

T T

U2 =
1 ( *).
2

T T
i

A linear operator T such that T = T* is called self-adjoint (for Hermitian). If  is an orthonormal
basis for V, then

[T*] = [T]*
and so T is self-adjoint if and only if its matrix in every orthonormal basis is a self-adjoint
matrix. Self-adjoint operators are important, not simply because they provide us with some sort
of real and imaginary part for the general linear operator, but for the following reasons:
(1) Self-adjoint operators have many special properties. For example, for such an operator there
is an orthonormal basis of characteristic vectors. (2) Many operators which arise in practice are
self-adjoint. We shall consider the special properties of self-adjoint operators later.

Self Assessment

1. Let V be a finite-dimensional inner product space T a linear operator on V. If T is invertible,
show that T* is invertible and (T*)–1 = (T–1)*.

2. Show that the product of two self-adjoint operators is self-adjoint if any only if the two
operators commute.

5.3 Summary

 The linear functional f concept is also a form of inner product on a finite-dimensional
inner product space.

 The fact that f has the form f( ) = ( ) for some  in V helps us to prove the existence of the
‘adjoint’ of a linear operator T on V.

 A linear operator T such that T = T* is called self-adjoint (or Hermitian) and so T is
self- adjoint if and only if its matrix in every orthonormal basis is a self-adjoint matrix.

5.4 Keywords

A linear functional f on a finite dimensional inner product space is ‘inner-product with a fixed
vector in the space’. Let  be some fixed vector in any inner product space V, we then define a
function f  from V into the scalar field by

53



LOVELY PROFESSIONAL UNIVERSITY

Linear Functional and Adjoints of Inner Product Space

Notesf ( ) = ( )

A linear operator T* is an adjoint of T on V, such that (T ) = ( T* ) for all  and  in V.

Self-adjoint (or Hermitian): A linear operator T such that T = T* is called self-adjoint
(or Hermitian). If  is an orthonormal basis for V, then [T*] = [T]* and so a self-adjoint if and only
if its matrix in every orthonormal basis is a self-adjoint matrix.

5.5 Review Questions

1. Let T be the linear operator on C2 defined by T 1 = (1 + i, 2), T 2 = (i, i). Using the standard
inner product, find the matrix of T* in the standard ordered basis.

2. Let V be a finite-dimensional inner product space and T a linear operator V. Show that the
range of T* is the orthogonal complement of the null space of T.

5.6 Further Readings

Books Kenneth Hoffman and Ray Kunze, Linear Algebra

I N. Herstein, Topics in Algebra

Michael Artin, Algebra
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Objectives

After studying this unit, you will be able to:

 Understand the meaning of unitary operators, i.e. a unitary operator on an inner product
space is an isomorphism of the space onto itself.

 See that unitary and orthogonal matrices are explained with the help of some examples.

 Understand that for each invertible n × n matrix B in the general linear group GL (n) there
exist unique unitary matrix U and lower triangular matrix M such that U = MB.

 Know that the linear operator T is normal if it commutes with its adjoint TT* = T*T.

 Understand that for every normal matrix A there is a unitary matrix P such that P–1AP is a
diagonal matrix.

Introduction

In this unit there are two sections – one dealing with unitary operators on finite dimensional
inner product spaces and other dealing with the normal operators.

It is shown that if an n × n matrix B belongs to GL (n) then there exist unique matrices N and U
such that N is in T+ (n), U is in U (n), and B = N.U.

In the second section properties of normal operators are studied. It is seen that a complex n × n
matrix A is said to be normal if A*A = AA*.

With the help of some theorems it is shown that for a normal operator T on V, a finite dimensional
complex inner product space, V has an orthonormal basis consisting of characteristic vectors
for T.

6.1 Unitary Operators

In this unit we first of all consider the concept of an isomorphism between two inner product
spaces. An isomorphism of two vector spaces V onto W is a one-one linear transformation from
V onto W. Now an inner product space consists of a vector space and a specified inner product on
that space. Thus, when V and W are inner product spaces, we shall require an isomorphism from

Sachin Kaushal, Lovely Professional University
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NotesV onto W not only to preserve the linear operations, but also to preserve products. An
isomorphism of an inner product space onto itself is called a ‘unitary operator’ on that space. Some
of the basic properties of unitary operators are being established in the section along with some
examples.

Definition: Let V and W be inner product spaces over the same field and let T be a linear
transformation from V onto W. We say that T-preserves inner products if (T \T ) = ( \ ) for all

,  in V. An isomorphism of V onto W is a vector space isomorphism T of V onto W which also
preserves inner products.

If T preserves inner products then  T   =    and so T is non-singular. Thus if T is an isomorphism
of V onto W, then T–1 is an isomorphism of W onto V; hence, when such a T exists, we shall simply
say V and W are isomorphic. Of course, isomorphism of inner product spaces is an equivalence
relation.

Theorem 1: Let V and W be finite-dimensional inner product spaces over the same field, having
the same dimension. If T is a linear transformation from V into W, the following are equivalent.

(i) T preserves inner products.

(ii) T is an (inner product space) isomorphism.

(iii) T carries every orthonormal basis for V onto an orthonormal basis for W.

(iv) T carries some orthonormal basis for V onto an orthonormal basis for W.

Proof: (i)  (ii) If T preserves inner products, then  T   =    for all  in V. Thus T is non-
singular, and since dim V = dim W, we know that T is a vector space isomorphism.

(ii)  (iii) Suppose T is an isomorphism. Let { 1, …, n} be an orthonormal basis for V. Since T is
a vector space isomorphism and dim W = dim V, it follows that {T 1, …, T n} is a basis for W.
Since T also preserves inner products, {T 1|T k} = ( j| k) = jk.

(iii) (iv) This requires no comment.

(iv) (i) Let { 1, …, n} be an orthonormal basis for V such that {T 1, …, T n} is an orthonormal
basis for W. Then

(T j|T k) = ( j| k) = jk.

For any  = x1 1 + … + xn n and  = y1 1 + … + yn n in V, we have

( | ) = 
1

n

j j
j

x y

(T |T ) = j j k k
j k

x T y T

= ( | )j k j k
j k

x y T T

= 
1

n

j j
j

x y

and so T preserves inner products.
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Example 1: If V is an n-dimensional inner product space, then each ordered orthonormal

basis  = { 1, …, n} determines an isomorphism of V onto Fn with the standard inner product.
The isomorphism is simply

T (x1 1 + … + xn n) = (x1, …, xn).

There is the superficially different isomorphism which  determines of V onto the space Fn×1

with (X|Y) = Y*X as inner product. The isomorphism is

  [ ]
i.e., the transformation sending  into its coordinate matrix in the ordered basis . For any
ordered basis , this is a vector space isomorphism; however, it is an isomorphism of the two
inner product spaces if and only if is orthonormal.

Example 2: Here is a slightly less superficial isomorphism. Let W be the space of all
3 × 3 matrices A over R which are skew-symmetric, i.e., At = –A. We equip W with the inner

product (A|B) = 1
2 tr (ABt), the 1

2  being put in as a matter of convenience. Let V be the space R3

with the standard inner product. Let T be the linear transformation from V into W defined by

T (x1, x2, x3) = 
3 2

3 1

2 1

0
0

0

x x
x x
x x

Then T maps V onto W, and putting

A = 
3 2

3 1

2 1

0
0

0

x x
x x
x x

, B = 
3 2

3 1

2 1

0
0

0

y y
y y
y y

we have

tr (ABt) = x3y3 + x2y2 + x3y3 + x2y2 + x1y1

= 2 (x1y1 + x2y2 + x3y3).

Thus ( | ) = (T |T ) and T is a vector space isomorphism. Note that T carries the standard basis
( 1, 2, 3) onto the orthonormal basis consisting of the three matrices

0 0 0 0 0 1 0 1 0
0 0 1 , 0 0 0 , 1 0 0
0 1 0 1 0 0 0 0 0

.

Example 3: It is not always particularly convenient to describe an isomorphism in terms
of orthonormal bases. For example, suppose G = P*P where P is an invertible n × n matrix with
complex entries. Let V be the space of complex n × 1 matrices, with the inner product [X|Y] =
Y*GX.

Let W be the same vector space, with the standard inner product (X|Y) = Y*X. We know that V
and W are isomorphic inner product spaces. It would seem that the most convenient way to
describe an isomorphism between V and W is the following: Let T be the linear transformation
from V into W defined by T(X) = PX. Then

(TX|TY) = (PX|PY)

57



LOVELY PROFESSIONAL UNIVERSITY

Unitary Operators and Normal Operators

Notes= (PY)*(PX)

= Y*P*PX

= Y*GX

= [X|Y].

Hence T is an isomorphism.

Example 4: Let V be the space of all continuous real-valued functions on the unit interval,
0  t  1, with the inner product

[f|g] = 
1

2

0
( ) ( )f t g t t dt .

Let W be the same vector space with the inner product

(f|g) = 
1

0
( ) ( )f t g t dt .

Let T be the linear transformation from V into W given by

(Tf) (t) = tf(t).

Then (Tf|Tg) = [f|g], and so T preserves inner products; however, T is not an isomorphism of V
onto W, because the range of T is not all of W. Of course, this happens because the underlying
vector space is not finite dimensional.

Theorem 2: Let V and W be inner product spaces over the same field, and let T be a linear
transformation from V into W. Then T preserves inner products if and only if  T   =    for
every  in V.

Proof: If T preserves inner products, T ‘preserves norms’. Suppose  T   =     for every  in V.
Then  T  2 =   2. Now using the appropriate polarization identity and the fact that T is linear,
one easily obtains ( | ) = (T |T ) for all ,  in V.

Definition: A unitary operator on an inner product space is an isomorphism of the space onto
itself.

The product of two unitary operators is unitary. For, if U1 and U2 are unitary, then U2U1 is
invertible and  U2U1   =  U1   =    for each . Also, the inverse of a unitary operator is
unitary, since  U   =     says  U–1   =   , where  = U . Since the identity operator is clearly
unitary, we see that the set of all unitary operators on an inner product space is a group, under
the operation of composition.

If V is a finite-dimensional inner product space and U is a linear operator on V, Theorem 1 tells
us that U is unitary if and only if (U |U ) = ( | ) for each ,  in V; or, if and only if for some
(every) orthonormal basis { 1, …, n} it is true that {U 1, …, U n} is an orthonormal basis.

Theorem 3: Let U be a linear operator on an inner product space V. Then U is unitary if and only
if the adjoint U* of U exists and UU* = U*U = I.

Proof: Suppose U is unitary. Then U is invertible and

(U | ) = (U |UU–1 ) = ( |U–1 )

for all , . Hence U–1 is the adjoint of U.

Conversely, suppose U* exists and UU* = U*U = I. Then U is invertible, with U–1 = U*. So, we need
only show that U preserves inner products.
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(U |U ) = ( |U*U )

= ( |I )

= ( | )

for all , .

Example 5: Consider Cn×1 with the inner product (X|Y) = Y*X. Let A be an n × n matrix
over C, and let U be the linear operator defined by U(X) = AX. Then

(UX|UY) = (AX|AY) = Y*A*AX

for all X, Y. Hence, U is unitary if and only if A*A = I.

Definition: A complex n × n matrix A is called unitary, if A*A = I.

Theorem 4: Let V be a finite-dimensional inner product space and let U be a linear operator on V.
Then U is unitary if and only if the matrix of U in some (or every) ordered orthonormal basis is
a unitary matrix.

Proof: At this point, this is not much of a theorem, and we state it largely for emphasis. If  = { 1,
…, n} is an ordered orthonormal basis for V and A is the matrix of U relative to , then A*A =
I if and only if U*U = I. The result now follows from Theorem 3.

Let A be an n × n matrix. The statement that A is unitary simply means

(A*A)jk = jk

or
1

n

rj rk
r

A A = jk

In other words, it means that the columns of A form an orthonormal set of column matrices,
with respect to the standard inner product (X|Y) = Y*X. Since A*A = I if and only if AA* = I, we
see that A is unitary exactly when the rows of A comprise an orthonormal set of n-tuples in Cn

(with the standard inner product). So, using standard inner products, A is unitary if and only if
the rows and columns of A are orthonormal sets. One sees here an example of the power of the
theorem which states that a one-sided inverse for a matrix is a two-sided inverse. Applying this
theorem as we did above, say to real matrices, we have the following: Suppose we have a square
array of real numbers such that the sum of the squares of the entries in each row is 1 and distinct
rows are orthogonal. Then the sum of the squares of the entries in each column is 1 and distinct
columns are orthogonal. Write down the proof of this for a 3 × 3 array, without using any
knowledge of matrices, and you should be reasonably impressed.

Definition: A real or complex n × n matrix A is said to be orthogonal, if AtA = I.

A real orthogonal matrix is unitary; and, a unitary matrix is orthogonal if and only if each of its
entries is real.

Example 6: We give some examples of unitary and orthogonal matrices.

(a) A 1 × 1 matrix [c] is orthogonal if and only if c = ± 1, and unitary if and only if cc  = 1. The
latter condition means (of course) that |c| = 1, or c = ei , where  is real.

(b) Let

A = 
a b
c d .
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At = A–1 = 
1 d b

c aad bc .

The determinant of any orthogonal matrix is easily seen to be  1. Thus A is orthogonal if
and only if

A = 
a b
b a

or A = 
a b
b a

where a2 + b2 = 1. The two cases are distinguished by the value of det A.

(c) The well-known relations between the trigonometric functions show that the matrix

A = 
cos sin
sin cos

is orthogonal. If is a real number, then A  is the matrix in the standard ordered basis for
R2 of the linear operator U , rotation through the angle . The statement that A  is a real
orthogonal matrix (hence unitary) simply means that U  is a unitary operator, i.e., preserves
dot products.

(d) Let

A = 
a b
c d

Then A is unitary if and only if

a c
b d = 

1 d b
c aad bc .

The determinant of a unitary matrix has absolute value 1, and is thus a complex number of
the form ei ,  real. Thus A is unitary if and only if

A = 
1 0
0 ii i

a b a b
ee b e a b a

where  is a real number, and a, b are complex numbers such that |a|2 + |b|2 = 1.

As noted earlier, the unitary operators on an inner product space form a group. From this and
Theorem 4 it follows that the set U (n) of all n × n unitary matrices is also a group. Thus the
inverse of a unitary matrix and the product of two unitary matrices are again unitary. Of course
this is easy to see directly. An n × n matrix A with complex entries is unitary if and only if A–1 =
A*. Thus, if A is unitary, we have (A–1)–1 = A = (A*)–1 = (A–1)*. If A and B are n × n unitary matrices,
then (AB)–1 = B–1A–1 = B*A* = (AB)*.

The Gram-Schmidt process in Cn has an interesting corollary for matrices that involves the
group U (n).

Theorem 5: For every invertible complex n × n matrix B there exists a unique lower-triangular
matrix M with positive entries on the main diagonal such that MB is unitary.
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Notes Proof: The rows 1, …, n of B form a basis for Cn. Let 1, …, n be the vectors obtained from 1,
…, n by the Gram-Schmidt process. Then, for 1  k  n, { 1, …, k} is an orthogonal basis for the
subspace spanned by { 1, …, k}, and

k = 2

( | )k j
k j

j k j

.

Hence, for each k there exist unique scalars 
k j

C  such that

k = k k jj
j k

C .

Let U be the unitary matrix with rows

1

1

, , n

n

and M the matrix defined by

k j
M = 

,
1 if

1 , if

0, if

k j
k

k

C j k

j k

j k

Then M is lower-triangular, in the sense that its entries above the main diagonal are 0. The
entries Mkk of M on the main diagonal are all > 0, and

k

k
= 

1

, 1
n

kj j
j

M k n .

Now these equations simply say that

U = MB.

To prove the uniqueness of M, let T+(n) denote the set of all complex n × n lower-triangular
matrices with positive on the main diagonal. Suppose M1 and M2 are elements of T+(n) such that
MiB is in U(n) for i = 1, 2. Then because U(n) is a group

(M1B) (M2B)–1 = M1M2
–1

lies in U(n). On the other hand, although it is not entirely obvious, T+(n) is also a group under
matrix multiplication. One way to see this is to consider the geometric properties of the linear
transformations

X  MX, (M in T+(n))

on the space of column matrices. Thus M2
–1, M1M2

–1, and (M1M2
–1)–1 are all in T+(n). But, since

M1M2
–1 is in U(n), (M1M2

–1)–1 = (M1M2
–1)*. The transpose or conjugate transpose of any lower-

triangular matrix is an upper-triangular matrix. Therefore, M1M2
–1 is simultaneously upper and

lower-triangular, i.e., diagonal. A diagonal matrix is unitary if and only if each of its entries on
the main diagonal has absolute value 1; if the diagonal entries are all positive, they must
equal 1. Hence M1M2

–1 = I and M1 = M2.
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under matrix multiplication. This group is called the general linear group. Theorem 5 is
equivalent to the following result.

Corollary: For each B in GL(n) there exist unique matrices N and U such that N is in T+(n), U is in
U(n), and

B = N . U.

Proof: By the theorem there is a unique matrix M in T+(n) such that MB is in U(n). Let MB = U and
N = M–1. Then N is in T+(n) and B = N . U. On the other hand, if we are given any elements N and
U such that N is in T+(n), U is in U(n), and B = N . U, then N–1B is in U(n) and N–1 is the unique
matrix M which is characterized by the theorem; furthermore U is necessarily N–1B.

Example 7: Let x1 and x2 be real numbers such that 2 2
1 2x x  = 1 and x1  0. Let

B = 
1 2 0

0 1 0
0 0 1

x x
.

Applying the Gram-Schmidt process to the rows of B, we obtain the vectors

1 = (x1, x2, 0)

2 = (0, 1, 0) – x2 (x1, x2, 0)

= x1 (– x2, x1, 0)

3 = (0, 0, 1).

Let U be the matrix with rows 1, ( 2/x1), 3. Then U is unitary, and

U = 
1 2 1 2

2
2 1

1 1

1 0 00 010 0 0 1 0
0 0 1 0 0 1

0 0 1

x x x xxx x
x x

Now multiplying by the inverse of

M = 2

1 1

1 0 0
1 0

0 0 1

x
x x

we find that

1 2 0
0 1 0
0 0 1

x x
= 

1 2

2 1 2 1

1 0 0 0
0 0

0 0 1 0 0 1

x x
x x x x

Let us now consider briefly change of coordinates in an inner product space. Suppose V is a
finite-dimensional inner product space and that  = { 1, …, n} and  = { 1,, …, n} are two
ordered orthonormal bases for V. There is a unique (necessarily invertible) n × n matrix P such
that

[ ] = P–1[ ]
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of U in the ordered basis B:

k = 
1

n

jk j
j

P .

Since and  are orthonormal bases, U is a unitary operator and P is a unitary matrix. If T is any
linear operator on V, then

[T] = P–1[T] P = P*[T] P.

Definition: Let A and B be complex n × n matrices. We say that B is unitarily equivalent to A if
there is an n × n unitary matrix P such that B = P–1AP. We say that B is orthogonally equivalent
to A if there is an n × n orthogonal matrix P such that B = P–1AP.

With this definition, what we observed above may be stated as follows: If  and  are two
ordered orthonormal bases for V, then, for each linear operator T on V, the matrix [T]  is
unitarily equivalent to the matrix [T]. In case V is a real inner product space, these matrices are
orthogonally equivalent, via a real orthogonal matrix.

Self Assessment

1. Let B given by

B = 
3 0 4
1 0 7
2 9 11

is 3 × 3 invertible matrix. Show that there exists a unique lower triangular matrix M with
positive entries on the main diagonal such that MB is unitary. Find M and MB.

2. Let V be a complex inner product space and T a self-adjoint linear operator on V. Show that

(i) I + i T is non-singular

(ii) I – i T is non-singular

(iii) (I – i T) (I + i T)–1 is unitary.

6.2 Normal Operators

In this section we are interested in finding out the fact that there is an orthonormal basis  for V
such that the matrix of the linear operator T on a finite dimensional inner product space V, in the
basis  is diagonal.

We shall begin by deriving some conditions on T which will be subsequently shown to be
sufficient. Suppose  = ( 1, …, n) is an orthonormal basis for V with the property

T j = Cjaj, j = 1, 2, … n … (1)

This simply says that T in this ordered basis is a diagonal matrix with diagonal entries c1, c2, …
cn. If V is a real inner product space, the scalars c1, …, cn are (of course) real, and so it must be that
T = T*. In other words, if V is a finite-dimensional real inner product space and T is a linear
operator for which there is an orthonormal basis of characteristic vectors, then T must be
self-adjoint. If V is a complex inner product space, the scalars c1, …, cn need not be real, i.e., T need
not be self-adjoint. But notice that T must satisfy

TT* = T*T. … (2)
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NotesFor, any two diagonal matrices commute, and since T and T* are both represented by diagonal
matrices in the ordered basis , we have (2). It is a rather remarkable fact that in the complex case
this condition is also sufficient to imply the existence of an orthonormal basis of characteristic
vectors.

Definition: Let V be a finite-dimensional inner product space and T a linear operator on V. We
say that T is normal if it commutes with its adjoint i.e., TT* = T*T.

Any self-adjoint operator is normal, as is any unitary operator. Any scalar multiple of a normal,
operator is normal; however, sums and products of normal operators are not generally normal.
Although it is by no means necessary, we shall begin our study of normal operators by considering
self-adjoint operators.

Theorem 6: Let V be an inner product space and T a self-adjoint linear operator on V. Then each
characteristic value of T is real, and characteristic vectors of T associated with distinct characteristic
values are orthogonal.

Proof: Suppose c is a characteristic value of T, i.e., that T = c for some non-zero vector . Then

c(|) = (c|)

= (T|)

= (|T)

= (|c)

= ( | )c

Since (|)  0, we must have .c c  Suppose we also have T = d with   0. Then

c(|) = (T|)

= (|T)

= (|d)

= ( | )d

= d(|)

If c  d, then (|) = 0.

It should be pointed out that Theorem 6 says nothing about the existence of characteristic values
or characteristic vectors.

Theorem 7: On a finite-dimensional inner product space of positive dimension, every self-adjoint
operator has a (non-zero) characteristic vector.

Proof: Let V be an inner product space of dimension n, where n > 0, and let T be a self-adjoint
operator on V. Choose an orthonormal basis  for V and let A = [T]. Since T = T*, we have
A = A*. Now let W be the space of n  1 matrices over C, with inner product (X|Y) = Y*X. Then
U(X) = AX defines a self-adjoint linear operator U on W. The characteristic polynomial, det
(xI – A), is a polynomial of degree n over the complex numbers; every polynomial over C of
positive degree has a root. Thus, there is a complex number c such that det (cI – A) = 0. This means
that A – cI is singular, or that there exists a non-zero X such that AX = cX. Since the operator U
(multiplication by A) is self-adjoint, it follows from Theorem 6 that c is real. If V is a real vector
space, we may choose X to have real entries. For then A and A – cI have real entries, and since
A – cI is singular, the system (A – cI)X = 0 has a non-zero real solution X. It follows that there is
a non-zero vector  in V such that T = c.
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Notes There are several comments we should make about the proof.

1. The proof of the existence of a non-zero X such that AX = cX had nothing to do with the fact
that A was Hermitian (self-adjoint). It shows that any linear operator on a finite-dimensional
complex vector space has a characteristic vector. In the case of a real inner product space,
the self-adjointness of A is used very heavily, to tell us that each characteristic value of A
is real and hence that we can find a suitable X with real entries.

2. The argument shows that the characteristic polynomial of a self-adjoint matrix has real
coefficients, in spite of the fact that the matrix may not have real entries.

3. The assumption that V is finite-dimensional is necessary for the theorem; a self-adjoint
operator on an infinite-dimensional inner product space need not have a characteristic
value.

Example 8: Let V be the vector space of continuous complex-valued (or real-valued)
continuous functions on the unit interval, 0  t  1, with the inner product

(f|g) = 
1

0
( ) ( )f t g t dt .

The operator ‘multiplication by t,’ (Tf)(t), is self-adjoint. Let us suppose that Tf = cf. Then

(t – c) f(t) = 0, 0  t  1

and so f(t) = 0 for t  c. Since f is continuous, f = 0. Hence T has no characteristic values (vectors).

Theorem 8: Let V be a finite-dimensional inner product space, and let T be any linear operator on
V. Suppose W is a subspace of V which is invariant under T. Then the orthogonal complement of
W is invariant under T*.

Proof: We recall that the fact that W is invariant under T does not mean that each vector in W is
left fixed by T; it means that if  is in W then T is in W. Let  be in W . We must show that T*
is in W , that is, that ( |(T* ) = 0 for every  in W. If  is in W, then T  is in W, so (T | ) = 0. But
(T | ) = ( |T* ).

Theorem 9: Let V be a finite-dimensional inner product space, and let T be a self-adjoint linear
operator on V. Then there is an orthonormal basis for V, each vector of which is a characteristic
vector for T.

Proof: We are assuming dim V > 0. By Theorem 7, T has a characteristic vector . Let 1 = /
so that 1 is also a characteristic vector for T and 1  = 1. If dim V = 1, we are done. Now we
proceed by induction on the dimension of V. Suppose the theorem is true for inner product
spaces of dimension less than dim V. Let W be the one-dimensional subspace spanned by the
vector 1. The statement that 1 is a characteristic vector for T simply means that W is invariant
under T. By Theorem 8,  the orthogonal complement W  is invariant under T* = T. Now W , with
the inner product from V, is an inner product space of dimension one less than the dimension of
V. Let U be the linear operator induced on W  by T, that is the restriction of T to W . Then U is
self-adjoint and by induction hypothesis, W  has an orthonormal basis { 2, . . ., n} consisting of
characteristic vectors for U. Now each of these vectors is also a characteristic vector for T, and
since V = W  W , we conclude that { 1, . . ., n} is the desired basis for V.

Corollary: Let A be an n  n Hermitian (self-adjoint) matrix. Then there is a unitary matrix P such
that P–1AP is diagonal (A is unitary equivalent to a diagonal matrix). If A is real symmetric
matrix, there is a real orthogonal matrix P such that P–1AP is diagonal.

Proof: Let V be Cn 1, with the standard inner product, and let T be the linear operator on V which
is represented by A in the standard ordered basis. Since A = A*, we have T = T*. Let  = { 1, ..., n}
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Notesbe an ordered orthonormal basis for V, such that T j = cj j, j = 1, …, n. If D = [T], then D is the
diagonal matrix with diagonal entries c1, …, cn. Let P be the matrix with column vectors 1,
…, n. Then D = P–1AP.

In case each entry of A is real, we can take V to be Rn, with the standard inner product, and repeat
the argument. In this case, P will be a unitary matrix with real entries, i.e., a real orthogonal
matrix.

Combining Theorem 9 with our comments at the beginning of this section, we have the following:
If V is a finite-dimensional real inner product space and T is a linear operator on V, then V has
an orthonormal basis of characteristic vectors for T if and only it T is self-adjoint. Equivalently,
if A is an n  n matrix with real entries, there is a real orthogonal matrix P such that PtAP is
diagonal if and only if A = At. There is no such result for complex symmetric matrices. In other
words, for complex matrices there is a significant difference between the conditions A = At and
A = A*.

Having disposed of the self-adjoint case, we now return to the study of normal operators in
general. We shall prove the analogue of Theorem 9 for normal operators, in the complex case.
There is a reason for this restriction. A normal operator on a real inner product space may not
have any non-zero characteristic vectors. This is true, for example, of all but two rotations in R2.

Theorem 10: Let V be a finite-dimensional inner product space and T a normal operator on V.
Suppose   is a vector in V. Then  is a characteristic vector for T with characteristic value c if and
only if  is a characteristic vector for T* with characteristic value c .

Proof: Suppose U is any normal operator on V. Then  U  =  U* . For using the condition
UU* = U*U one sees that

 U 2 = (U |U ) = ( |U*U )

= ( |UU* ) = (U* |U* ) =  U* 2.

If c is any scalar, the operator U = T – cI is normal. For (T– cI)* = T* – c I, and it is easy to check that
UU* = U*U. Thus

(T – cI) = (T* – cI)

so that (T – cI) = 0 if and only if (T* – c I)  = 0.

Definition: A complex n x n matrix A is called normal if AA* = A*A.

It is not so easy to understand what normality of matrices or operators really means; however,
in trying to develop some feeling for the  concept, the reader might find it helpful to know that
a triangular matrix is normal if and only if it is diagonal.

Theorem 11: Let V be a finite-dimensional inner product space, T a linear operator on V, and  on
orthonormal basis for V. Suppose that the matrix A of T in the basis  is upper triangular. Then
T is normal if and only if A is a diagonal matrix.

Proof: Since  is an orthonormal basis, A* is the matrix of T* in . If A is diagonal, then AA* =
A*A, and this implies TT* = T*T. Conversely, suppose T is normal, and let  = { 1, . . ., n}. Then,
since A is upper-triangular, T 1 = A11 1. By Theorem 10 this implies, T* 1 = A 11 1. On the other
hand,

T* 1 = 1
( *) j j

j

A

= 1 jj
j

A
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Notes Therefore, A1j = 0 for every j > 1. In particular, A12 = 0, and since A is upper-triangular, it follows
that

T 2 = A22 2.

Thus T* 2 = A 22 2 and A2j = 0 for all j  2. Continuing in this fashion, we find that A is diagonal.

Theorem 12: Let V be a finite-dimensional  complex inner product space and let T be any linear
operator on V. Then there is an orthonormal basis for V in which the matrix of T is upper
triangular.

Proof: Let n be the dimension of V. The theorem is true when n = 1, and we proceed by induction
on n, assuming the result is true for linear operators on complex inner product spaces of dimension
n – 1. Since V is a finite-dimensional complex inner product space, there is a unit vector  in V
and a scalar c such that

T* = c .

Let W be the orthogonal complement of the subspace spanned by  and let S be the restriction of
T to W. By Theorem 10, W is invariant under T. Thus S is a linear operator on W. Since W has
dimension n – 1, our inductive assumption implies the existence of an orthonormal basis { 1, . .
., n–1} for W in which the matrix of S is upper-triangular; let n = . Then { 1, . . ., n} is an
orthonormal basis of V in which the matrix of T is upper-triangular.

This theorem implies the following result for matrices.

Corollary: For every complex n  n matrix A there is unitary matrix U such that U–1AU is upper-
triangular.

Now combining Theorem 12 and Theorem 11, we immediately obtain the following analogue
of Theorem 9 for normal operators.

Theorem 13: Let V be a finite-dimensional complex inner product space and T a normal operator
on V. Then V has an orthonormal basis consisting of characteristic vectors for T.

Also for every normal matrix A, there is a unitary matrix P such that P–1AP is a diagonal matrix.

Self Assessment

3. For each of the following real symmetric matrices A, find a real orthogonal matrix P such
that P–1AP is diagonal

(i) A = 1 1
1 1

(ii) A = 4/3 2 /3
2 /3 5/3

(iii) A = 0 1
1 0

4. Prove that T is normal if T = T1 + i T2, where T1 and T2 are self-adjoint operators which
commute.

6.3 Summary

 In this unit we have studied unitary operators and normal operators.
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Notes With the help of a few theorems and examples the properties of unitary operators are
explained.

 The distinction between unitary operators, orthogonal operators and normal operators is
established.

 With the help of a few theorem it is shown that for every normal matrix A, there is a
unitary matrix P such that P–1AP is a diagonal matrix.

6.4 Keywords

General Linear Group: A general linear group denotes the set of all invertible complex n  n
matrices and is denoted by GL(n).

Isomorphism: An isomorphism of inner product spaces V onto W is a vector space isomorphism
of the linear operator T of V onto W which also preserves inner products.

Orthogonal: A real or complex n  n matrix A is said to be orthogonal if AtA = I.

Unitary: A complex n  n matrix A is called unitary if A*A = 1.

Unitary Operator: A unitary operator on an inner product space is isomorphism of the space
onto itself.

6.5 Review Questions

1. For A = 
1 2 3
2 3 4
3 4 5

there is a real orthogonal matrix P such that P–1AP = D is diagonal. Find such a diagonal
matrix D.

2. If T is a normal operator. Prove that characteristic vectors for T which are associated with
distinct characteristic values are orthogonal.

6.6 Further Readings

Books Michael Artin Algebra

I N. Herstein Topics in Algebra

Kenneth Hoffman and Ray Kunze Linear Algebra
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CONTENTS
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7.2 Forms on Inner Product Spaces

7.3 Summary

7.4 Keywords

7 .5 Review Questions

7 .6 Further Readings

Objectives

After studying this unit, you will be able to:

 See that the material covered in this unit on inner product spaces is more sophisticated and
generally more involved technically

 Understand more clearly sesquilinear form as well as bilinear forms

 See that the map f  T isomorphism of the space of forms onto L(V, V) is understood well

 Know how to obtain the matrix of f in the ordered basis .

Introduction

In this unit the topics covered in the units 24, 25 and unit 26 are reviewed.

It is seen that these ideas can further be elaborated on an advanced stage.

It is shown that the section devotes to the relation between forms and linear operators.

One can see that for every Hermitian form f on a finite dimensional inner product space V, there
is an orthonormal basis of V in which f is represented by a diagonal matrix with real entries.

7.1 Overview

In the units 24, 25, 26 we have covered topics which are quite fundamental in nature. It covered
basically a lot of topics like inner products, inner product spaces, adjoint operators, unitary
operators and linear functionals. However, in the next few units we shall deal with inner product
spaces and spectral theory, forms on inner product spaces, positive forms and properties of the
normal operators. Apart from the formulation of the principal axis theorem or the orthogonal
diagonalization of self-adjoint operators the material covered in these units is sophisticated and
generally more technically involved. In these units the arguments and proofs are written in a
more condensed forms. Units 27 and 28 are devoted to results concerning forms on inner product
spaces and the relations between forms and linear operators. Unit 2 deals with spectral theory,
i.e. with the implication of the ideas of units 24, 25 and 26 concerning the diagonalization of self-
adjoint and normal operators.

Richa Nandra, Lovely Professional University
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If T is a linear operator on a finite-dimensional inner product space V the function f defined on
V  × V by

f( , ) = (T | )

may be regarded as a kind of substitute of T. Many questions about T are equivalent to questions
concerning f. In fact, it is easy to see that f determines T. For if  = { 1, ..., n} is an orthonormal
basis for V, then the entries of the matrix of T in  are given by

Ajk = f( k, j)

It is important to understand why f determines T from a more abstract point of view. The crucial
properties of f are described in the following definition.

Definition: A (sesquilinear) form on a real or complex vector space V is a function f on V  V with
values in the field of scalars such that

(a) f(c  + , ) = cf( , ) + f( , )

(b) f(  + c , ) = c f( , ) + f( , )

for all , ,   in V and all scalars c.

Thus, a sesquilinear form is a function on V  V such that f( , ) is a linear function of  for fixed
 and a conjugate-linear function of  for fixed . In the real case, f( , ) is linear as a function of

each argument; in other words, f is a bilinear form. In the complex case, the sesquilinear form f
is not bilinear unless f = 0. In the remainder of this chapter, we shall omit the adjective ‘sesquilinear’
unless it seems important to include it.

If f and g are forms on V and c is a scalar, it is easy to check that cf + g is also a form. From this it
follows that any linear combination of forms on V is again a form. Thus the set of all forms on
V is a subspace of the vector space of all scalar-valued functions on V  V.

Theorem 1: Let V be a finite-dimensional inner product space and f a form on V. Then there is a
unique linear operator T on V such that

f( , ) = (T | )

for all , , in  V and the map f  T is an isomorphism of the space of forms onto L(V, V).

Proof: Fix a vector  in V. Then a  f( , ) is a linear function on V. By theorem 6 in unit 26 there
is a unique vector  in V such that f( , ) = ( | ) for every . We define a function U from V into
V by setting U  = . Then

f( |c  + ) = ( |U(c  + ))

= ( , ) ( , )cf f

= ( | ) ( | )c U U

= ( | )c U U

for all , ,  in V and all scalars c. Thus U is a linear operator on V and T = U* is an operator such
that f( , ) = (T | ) for all  and . If we also have f( , ) = (T’ | ), then

(T  – T’ | ) = 0

for all  and ; so T  = T’   for all . Thus for each form f there is a unique linear operator Tf such
that

f( , ) = (Tj | )

70



LOVELY PROFESSIONAL UNIVERSITY

Notes for all ,  in V. If f and g are forms and c a scalar, then

(cf + g) ( , ) = (Tcf + g | )

= cf( , ) + g( , )

= c(Tf | ) + (Tg | )

= (cTf + Tg| | )

for all  and  in V. Therefore,

Tcf + g = cT1 + Tg

so f  Tf is a linear map. For each T in L(V, V) the equation

f( , ) = (T | )

defines a form such that Tf = T, and Tf = 0 if and only if f = 0. Thus f  Tf is an isomorphism.

Corollary: The equation

(f|g) = tr(TfT*g)

defines an inner product on the space of forms with the property that

(f|g) = 
,

( , ) ( , )k j k j
j k

f g

for every orthonormal basis { 1, ..., n} of V.

Proof: It follows easily from Example 3 of unit 24 that (T, U)  tr (TU*) is an inner product on
L(V, V). Since f  Tf is an isomorphism, Example 6 of unit 24 shows that

(f|g) = tr (TfT*g)

is an inner product. Now suppose that A and B are the matrices of Tf and Tg in the orthonormal
basis  = { 1, ..., n}. Then

Ajk = (Tf k| j) = f( k, j)

and Bjk = (Tg k| j) = g( k, j). Since AB* is the matrix of TfT*g in the basis , it follows that

(f|g) = tr (AB*) = 
,

jk jk
j k

A B

Definition: If f is a form and  = { 1, ..., n} an arbitrary ordered basis of V, the matrix A with
entries

Ajk = f( k, j)

is called the matrix of f in the ordered basis .

When  is an orthonormal basis, the matrix of f in  is also the matrix of the linear transformation
Tf, but in general this is not the case.

If A is the matrix of f in the ordered basis  = ( 1, ... n), if follows that

s s r r
s r

f x y = ,
r rs s

r s
y A x

...(1)

for all scalars x, and y (1  r, s  n). In other words, the matrix A has the property that

f( , ) = Y*AX

where X and Y are the respective coordinate matrices of  and  in the ordered basis .
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j = 
1

n

ij i
i

P ,  (1  j  n)

is given by the equation

A = P*AP. (2)

For

A jk = f( k, j)

= ,sk s rj r
s r

f P P

= 
,

rj rs sk
r s

P A P

= (P*AP)jk.

Since P *= P–1 for unitary matrices, it follows from (2) that results concerning unitary equivalence
may be applied to the study of forms.

Theorem 2: Let f be a form on a finite-dimensional complex inner product space V. Then there is
an orthonormal basis for V in which the matrix of f is upper-triangular.

Proof: Let T be the linear operator on V such that f( , ) = (T | ) for all  and . By Theorem 12
of unit 26 there is an orthonormal basis ( 1, ..., n) in which the matrix of T is upper-triangular.
Hence.

f( k, j) = (T k| j) = 0

when j > k.

Definition: A form f on a real or complex vector space V is called Hermitian if

f( , ) = ( , )f

for all  and  in V.

If T is a linear operator on a finite-dimensional inner product space V and f is the form

f( , ) = (T | )

then ( , ) ( | ) ( * | )f T T b ; so f is Hermitian if and only if T is self-adjoint.

When f is Hermitian f( , ) is real for every , and on complex spaces this property characterizes
Hermitian forms.

Theorem 3: Let V be a complex vector space and f a form on V such that f( , ) is real for every .
Then f is Hermitian.

Proof: Let  and  be vectors in V. We must show that f( , ) =  ( , )f . Now

f(  + ,  + ) = f( , ) + f( , ) + f( , ) + f( , ).

Since f(  + ,  + ) = f( , ), and f( , ) are real, the number f( , ) + f( , ) is real. Looking at the
same argument with  + i  instead of  + , we see that – if ( , ) + if ( , ) is real. Having
concluded that two numbers are real, we set them equal to their complex conjugates and obtain

f( , ) + f( , ) = ( , )f  + ( , )f

–if( , ) + if ( , ) = ( , )if  – ( , )if
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Notes If we multiply the second equation by i and add the result to the first equation, we obtain

2f( , ) = 2f( , ).

Corollary: Let T be a linear operator on a complex finite-dimensional inner product space V.
Then T is self-adjoint if and only if (T | ) is real for every  in V.

Theorem 4 (Principal Axis Theorem): For every Hermitian form f on a finite-dimensional inner
product space V, there is an orthonormal basis of V in which f is represented by a diagonal
matrix with real entries.

Proof: Let T be the linear operator such that f( , ) = (T | ) for all  and  in V. Then, since
f( , ) = ( , )f  and ( | ) ( | )T T , it follows that

(T | ) = ( , ) ( | )f T

for all  and ; hence T = T*. By Theorem 5 of unit 24, there is an orthonormal basis of V which
consists of characteristic vectors for T. Suppose { 1, ..., n} is an orthonormal basis and that

T j = cj j

for 1  j  n. Then

f( k, j) = (T k| j) = kjck

and by Theorem 2 of unit 24 each ck is real.

Corollary: Under the above conditions

( , )j j k k
j k

f x y = j j j
j

c x y

Self Assessment

1. Which of the following functions f, defined on vectors  = (x1, x2) and  (y1, y2) = in c2, are
sesquilinear forms on c2

(a) f( , ) = (x1 – y 1)2 + x2 y 2

(b) f( , ) = x y 2 – x 2y1

(c) f( , ) = x1 y 1

2. Let f be a non-degenerate form on a finite-dimensional space V. Show that each linear
operator S has an ‘adjoint’ relative to f’, i.e., an operator S’ such that f(S , ) = f( , S’ ) for
all , .

7.3 Summary

 In the introduction a review of the last units 24, 25, 26 is done. It is stated that the ideas
covered in these units are fundamental.

 In this unit forms on inner product space are studied and the relation between the forms
and the linear operator is established.

 A sesquilinear form is introduced and explained for all , ,  in the finite vector space V
and its relation with the linear operators.

 When the basis  is an orthonormal basis, the matrix of the form f in  is also matrix of the
linear transformation Tfi.
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A Sesquilinear Form: A sesquilinear form on a real or complex vector space V is a function f on
V  V with values in the field of scalars such that

f(c + , ) = cf(, ) + f(, )

f( + c, ) = cf(, ) + f(, )

for all ,   in V and all scalars c.

Hermitian: A form f on a real or complex vector space V is called Hermitian if

f(, ) = ( , )f

for all  and  in V.

Self-adjoint: The  linear operator T is self-adjoint on a complex finite-dimensional inner product
space V, if and only if (T|) is real for every  in V.

7.5 Review Questions

1. Let

A = 
1

2
i

i

and let g be the form (on the space of 2 × 1 complex matrices) defined by g(X, Y) = Y*AX.
Is g an inner product?

2. Let f be the form on R2 defined by

f [(x1, y1), (y2, y2)] = x1y1 + x2y2

Find the matrix of f in each of the following bases:

{(1, –1), (1, 1)}, {(1, 2), (3, 4)}

Answer: Self Assessment

1. (b), (c)

7.6 Further Readings

Books Kenneth Hoffman and Ray Kunze, Linear Algebra

Michael Artin, Algebra
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Objectives

After studying this unit, you will be able to:

 Understand when a form f on a real or complex vector space v is non-negative. If the form
f is Hermitian and f( , ) > 0 for every  in v, the form f is positive.

 Know that f is a positive form if and only if A = A* and the principal minors of the matrix
A of f are all positive.

 See that if A is the matrix of the form f in the ordered basis { 1, ..., n} of v and the principal
minors of A are all different from 0, then there is a unique upper triangular matrix P with
Pkk = 1(1  k  n) such that P*AP is upper triangular.

Introduction

In this unit the form f on a real or complex vector space is studied and seen under what conditions
the form f is positive.

On the basis of the principal minors of A being all different from 0, the positive form f, it is seen
that there is an upper-triangular matrix P with Pkk = 1 (1  k  n) such that B = AP is lower
triangular.

8.1 Positive Forms

In this unit we study non-negative (sesqui) forms and their relation to a given inner product on
the given finite vector space.

A form f on a real or complex vector space v is non-negative if it is Hermitian and f( , )  0 for
every  in v. The form f is positive if it is Hermitian and f( , ) > 0 for all   0.

A positive form on v is simply an inner production v. Let f be a form on the finite dimensional
space. Let  = ( 1, 2, ... n) be an ordered basis of v, and let A be the matrix of f on the basis , i.e.,
Ajk = f( k, j). If  = x1 1 + ...... + xn n, then

f( , ) = ( , )j j k k
j k

f x xa a

Richa Nandra, Lovely Professional University
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Notes= ( ( , )j k j k
j k

x x f

= ( )kj j k
j k

A x x ...(1)

So we see that f is non-negative if and only if

and

A = A*

0kj j k
j k

A x x  for all scalars x1, x2, ... xn ..(2)

For positive f, the relation should be true for all (x1, x2, ... xn)  0. The above conditions on positive
f form are true if

g(X, Y) = Y*AX ...(3)

is a positive form on the space of n × 1 column matrices over the scalar field.

Theorem 1: Let F be the field of real number or the field of complex numbers. Let A be an n × n
matrix over F. The function g defined by

g(X, Y) = Y*AX ...(4)

is a positive form on the space Fn×1 if and only if there exists an invertible n × n matrix P with
entries in F such that A = P*P.

Proof: For any n × n matrix A, the function g in (4) is a form on the space of column matrices. We
are trying to prove that g is positive if and only if A = P*P. First, suppose A = P*P. Then g is
Hermitian and

g(X, X) = X*P*PX

= (PX)*PX

    0.

If P is invertible and X  0, then (PX)*PX > 0.

Now, suppose that g is a positive form on the space of column matrices. Then it is an inner
product and hence there exist column matrices Q1, ..., Qn such that

jk = g(Q1, Qk)

= Q*
kAQj.

But this just says that, if Q is the matrix with columns Q1, ..., Qn, then A*AQ = I. Since {Q1, ..., Qn}
is a basis, Q is invertible. Let P = Q–1 and we have A = P*P.

In practice, it is not easy to verify that a given matrix A satisfies the criteria for positivity which
we have given thus far. One consequence of the last theorem is that if g is positive then det
A > 0, because det A = det (P*P) = det P* det P  = |det P|2. The fact that det A > 0 is by no means
sufficient to guarantee that g is positive; however, there are n determinants associated with A
which have this property: If A = A* and if each of those determinants is positive, then g is a
positive form.

Definition: Let A be an n × n matrix over field F. The principal minors of A are the scalars k(A)
defined by
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1

1

( ) det , 1 .
n k

k

k kk

A A
A k n

A A


 



Lemma: Let A be an invertible n × n matrix with entries in a field F. The following two statements
are equivalent:

(a) There is an upper triangular matrix P with Pkk = 1 (1  k  n) such that the matrix B = AP is
lower-triangular.

(b) The principal minors of A are all different from 0.

Proof: Let P be any n  n matrix and set B = AP. Then

Bjk = ,jr rk
r

A P

If P is upper-triangular and Pkk = 1 for every k, then

1

1

k

jr rk
r

A P = Bjk – Akk, k > 1

Now B is lower-triangular provided Bjk = 0 for j < k. Thus B will be lower-triangular if and only
if

1

1

k

jr rk
r

A P = – Akk, 1  j  k – 1

2  k  n. ...(5)

So, we see that statement (a) in the lemma is equivalent to the statement that there exist scalars
Prk, 1  r  k, 1  k  n, which satisfy (5) and Pkk = 1, 1  k  n.

In (5) for each k > 1 we have a system of k – 1 linear equations for the unknowns P1k, P2k, ..., Pk–1, k.
The coefficient matrix of that system is

1, 1

1 1, 1

n k

k k k

A A

A A



 


and its determinant is the principal minor k–1(A). If each k–1(A)  0, the systems (5) have unique
solutions. We have shown that statement (b) implies statement (a) and that the matrix P is
unique.

Now suppose that (a) holds. Then, as we shall see,

k(A) = k(B)

= B11B22... Bkk, k = 1, ..., n. ...(6)

To verify (6), let A1, ..., An and B1, ... Bn be the columns of A and B, respectively. Then

B1 = A1

Br = 
1

1
,

r

jr j r
j

P A A r > 1. ...(7)

Fix k, 1  k  n. From (7) we see that the rth column of the matrix

11

1

kk

k kk

B B

B B
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Notesis obtained by adding to the rth column of

11 1

1

k

k kk

A A

A A


 



a linear combination of its other columns. Such operations do not change determinants. That
proves (6), except for the trivial observation that because B is triangular k(B) = B11 ... Bkk. Since A
and P are invertible, B is invertible. Therefore

(B) = B11 ... Bnn  0

and so k(A)  0, k = 1, ..., n.

Theorem 2: Let f be a form on a finite dimensional vector space V and let A be the matrix of f in
an ordered basis B. Then f is a positive form if and only if A = A* and the principal minors of A
are all positive.

Proof: Suppose that A = A* and k(A)  k  n. By the lemma, there exists an (unique) upper-
triangular matrix P with Pkk = 1 such that B = AP is lower triangular. The matrix P* is lower-
triangular, so that P*B = P*AP is also lower triangular. Since A is self-adjoint, the matrix
D = P*AP is self-adjoint. A self-adjoint triangular matrix is necessarily a diagonal matrix. By the
same reasoning which led to (6),

k(D) = k(P*B)

= k(B)

= k(A).

Since D is diagonal, its principal minors are

k(D) = D11 ... Dkk.

From k(D) > 0, 1  k  n, we obtain Dkk > 0 for each k.

If A is the matrix of the form f in the ordered basis B = { 1, ..., n}, then D = P*AP is the matrix of
f in the basis { 1, ..., n} defined by

j = 
1

n

ij i
i

P

Since D is diagonal with positive entries on its diagonal, it is obvious that

X*DX > 0. X  0

from which it follows that f is a positive form.

Now, suppose we start with a positive form f. We know that A = A*. How do we show that
k(A) > 0, 1  k  n? Let Vk be the subspace spanned by 1, ..., k and let fk be the restriction of f to

Vk  Vk. Evidently fk is a positive form on Vk and, in the basis { 1, ..., k} it is represented by the
matrix.

11 1

1

k

k kk

A A

A A


 



As a consequence of Theorem 1, we noted that the positivity of a form implies that the determinant
of any representing matrix is positive.

There are some comments we should make, in order to complete our discussion of the relation
between positive forms and matrices. What is it that characterizes the matrices which represent
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Notes positive forms? If f is a form on a complex vector space and A is the matrix of f in some ordered
basis, then f will be positive if and only if A = A* and

                                       X *AX > 0 for all complex X  0                                                           ....(8)

It follows from Theorem 3 of unit 27 that the condition A = A* is redundant, i.e., that (8) implies
A = A*. One the other hand, if we are dealing with a real vector space the form f will be positive
if and only if A = At and

                                             X *AX > 0 for all real X  0                                                             ....(9)

We want to emphasize that if a real matrix A satisfies (9), it does not follow that A = At. One thing
which is true is that, if A = At and (9) holds, then (8) holds as well. That is because

(X + iY)*A(X + iY) = (Xt – iYt)A(X + iY)

= XtAX + YtAY + i[XtAY – YtAX]

and if A = At then YtAX = XtAY.

If A is an n  n matrix with complex entries and if A satisfies (9), we shall call A a positive matrix.

Now suppose that V is a finite-dimensional inner product space. Let f be a non-negative form on
V. There is a unique self-adjoint linear operator T on V such that

f( , ) = (T | ) ...(10)

and T has the additional property that (T | )  0

Definition: A linear operator T on a finite-dimensional inner product space V is non-negative if
T = T* and (T | )  0 for all  in V. A positive linear operator is one such that T = T* and
(T | ) > 0 for all  0.

If V is a finite-dimensional (real or complex) vector space and if (.|.) is an inner product on V,
there is an associated class of positive linear operators on V. Via (10) there is a one-one
correspondence between that class of positive operators and the collection of all positive forms
on V. Let us summarise as:

If A is an n  n matrix over the field of complex numbers, the following are equivalent:

1. A is positive, i.e. 0kj j k
j k

A x x  whenever x1, ..., xn are complex numbers, not all 0.

2. (X|Y) = Y*AX is an inner product on the space of n  1 complex matrices.

3. Relative to the standard inner product (X|Y) = Y*X on n  1  matrices, the linear operator
X  AX is positive.

4. A = P*P for some invertible n  n matrix P over C.

5. A = A*, and the principal minors of A are positive.

If each entry of A is real, these are equivalent to:

1. A = At, and 0kj j k
j k

A x x  whenever x1, ..., xn are real numbers, not all 0.

2. (X|Y) = YtAX is an inner product on the space of n  1 real matrices.

3. Relative to the standard inner product (X|Y) = YtX on n  1 real matrices, the linear
operator X  AX is positive.

4. There is an invertible n  n matrix P, with real entries, such that A = PtP.
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Notes8.2 More on Forms

Theorem 3: Let f be a form on a real or complex vector space V and { 1, ..., r} a basis for the finite
dimensional subspace W of V. Let M be the r  r matrix with entries

Mjk = f( k, j)

and W ’ the set of all vectors  in V such that f( , ) for all  in W. Then W’ is subspace of V, and
W  W’ = {0} if and only if M is invertible. When this is the case, V = W + W’.

Proof: If  and  are vectors in W’ and c is a scalar, then for every  in W

f( , c  + ) =  c f( , ) + f( , )

= 0.

Hence, W’ is a subspace of V.

Now suppose  = 
1

r

x k
k

x  and that  = 
1

r

j j
j

y . Then

f( , ) = 
,

,
r

jk k
j k

y M x

= .j jk k
k j

y M x

It follows from this that W  W’  {0} if and only if the homogeneous system

1

r

j jk
j

y M = 0, 1  k  r

has a non-trivial solution (y1 ..., yr). Hence W  W ‘ {0} if and only if M* is invertible. But the
invertibility of M* is equivalent to the invertibility of M.

Suppose that M is invertible and let

A = (M*)–1 = (M–1)*

gj( ) = 
1

( , )
r

jk k
k

A f

Then

gj(c  + ) = ( , )kn k
k

f c

= ( , ) ( , )jk k jk k
k k

c A f A f

= cgj( ) + gj( )

Hence, each gj is a linear function on V. Thus we may define a linear operator E on V by setting

E = 
1

( )
r

j j
j

g
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Notes Since

gj( n) = ( , )jk k n
k

A f

= ( *)jk kn
k

A M

= jn

it follows that E( n) = n for 1  n  r. This implies E  =  for every   in W. Therefore, E maps V
onto W and E2 = E. If  is an arbitrary vector in V, then

f( n, E ) = f ( )n j j
j

g

= ( ) ( , )j n j
j

g f a

= ( , ) ( , )jk k n j
j k

A f f

Since A* = M–1, it follows that

f( n, E ) = 
1( ) ( , )kj jn k

k j
M M f

= ( , )kn k
k

f

= f( n , ).

This implies f( , E ) = f( , ) for every  in W. Hence

f( ,  – E ) = 0

for all  in W and  in V. Thus 1 – E maps V into W’. The equation

= E  + (1 – E)

shows that V = W + W’. One final point should be mentioned. Since W   W’ = {0}, every vector
in V is uniquely the sum of a vector in W  and a vector in W’. If  is in W’, it follows that E  = 0.
Hence I – E maps V onto W’.

The projection E constructed in the proof may be characterized as follows: E  =  if and only if
 is in W and  —  belongs to W’. Thus E is independent of the basis of W that was used in its

construction. Hence we may refer to E as the projection of V on W that is determined by the
direct sum decomposition

V = W   W’.

Note that E is an orthogonal projection if and only if W’ = W .

Theorem 4: Let f be a form on a real or complex vector space V and A the matrix of f in the ordered
basis { 1, ..., n} of V. Suppose the principal minors of A are all different from 0. Then there is a
unique upper triangular matrix P with Pkk = 1 (1  k  n ) such that

P*AP

is upper-triangular.
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NotesProof: Since k(A*) = ( )k A  (1  k  n ), the principal minors of A are all different from 0. Hence,
by the lemma used in the proof of Theorem 2, there exists an upper-triangular matrix P with
Pkk = 1 such that A*P is lower-triangular. Therefore, P*A = (A*P)* is upper-triangular. Since the
product of two upper-triangular matrices is again upper triangular, it follows that P*AP is
upper-triangular. This shows the existence but not the uniqueness of P. However, there is another
more geometric argument which may be used to prove both the existence and uniqueness of P.

Let Wk be the subspace spanned by 1, ..., k and W’k the set of all  in V such that f( , ) = 0 for
every  in Wk. Since k(A)  0, the k  k matrix M with entries

Mij = f( j, i) = Aij

(1  i, j  k) is invertible. By Theorem 3

V = Wk  W’k.

Let Ek be the projection of V on Wk which is determined by this decomposition, and set E0 = 0. Let

k = k – Ek –1 k, (1  k  n)

Then 1 = 1, and Ek–1 k belongs to Wk–1 for k > 1. Thus when k > 1, there exist unique scalars Pjk such
that

 Ek –1 k = –
1

1

k

jk j
j

P

Setting Pkk = 1 and Pjk = 0 for j < k, we then have an  n × n upper triangular matrix P with Pkk = 1 and

Bk = 
1

k

jk j
j

P

for k =1, ..., n. Suppose 1   i  k. Then Bk is in Wi  Wk–1 since Bk belongs to W’k –1, it follows that
f( i, k) = 0. Let B denote the matrix of f in the ordered basis ( 1, ... n). Then

Bki = f( i, k)

so Bki = 0 when k > i. Thus B is upper-triangular. On the other hand,

B = P*AP.

Self Assessment

1. Which of the following matrices are positive?

1 1 1 1 1 2 1 3
1 2 1 1

, , 2 1 1 , 1 2 1 2 1 4
3 4 1 3

3 1 1 1 3 1 4 1 5

i
i

2. Prove that the product of two positive linear operators is positive if and only if they
commute.

3. Let S and T be positive operators. Prove that every characteristic value of ST is positive.

8.3 Summary

 In this unit we are studying the form f on a finite vector space being non-negative.

 We obtain certain equivalent properties and show that when the matrix A of linear operator
is Hermitian i.e. A + A* as well as the principal minors of the matrix A are all positive.
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Notes  It is shown that if A is the matrix of the form f in the ordered basis { 1, ... n} of V and the
principal minors are all different from zero, then there exists a unique upper-triangular
matrix P with Pkk =1 (1  k  n) such that P*AP is upper triangular.

8.4 Keywords

Non-negative Form: A form f on  real or complex vector space V is non-negative if it is Hermitian
and f( , )  0.

Positive Form: A form f is positive if it is Hermitian and f( , ) > 0

Upper Triangular Matrix: A matrix P is upper triangular one if its elements Pij satisfy the
relations: Pkk = 1, 1  k  n and Pij = 0 for j > k.

8.5 Review Questions

1. Let

A = 
1 1 2

1 2 1 4

(a) Show that A is positive

(b) Find an invertible real matrix P such that

A = PtP.

2. Does

1 2 1 2 1 1 2 1 1 2 2 2( , )|( , ) 2 2x x y y x y x y x y x y  define an inner product on c2?

8.6 Further Readings

Books Kenneth Hoffman and Ray Kunze, Linear Algebra

I N. Herstein, Topics in Algebra
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NotesUnit 9: Spectral Theory and Properties of
Normal Operators

CONTENTS

Objectives

Introduction

9 .1 Spectral Theory

9 .2 Properties of Normal Operators

9 .3 Summary

9 .4 Keywords

9 .5 Review Questions

9 .6 Further Readings

Objectives

After studying this unit, you will be able to:

 Understand that Theorems 9 and 13 of unit 26 are pursued further concerning the
diagonalization of self-adjoint and normal operators.

 See that if T is a normal operator or a self-adjoint operator on a finite dimensional inner
product space V. Let C1, Ck be the distinct characteristic values of T and Wi be the
characteristic space associated with Ci and Ei be the orthogonal projection of V on Wi, then
V is the direct sum of W1, W2, ... Wk and T = C1E1 + C2E2 + ... + Ck Ek which is called spectral
resolution of T.

 See that if A is a normal matrix with real (complex) entries, then there is a real orthogonal
(unitary) matrix P such that P–1AP is in rational canonical form.

Introduction

In this unit the properties of the normal operators or the self-adjoint operator are studied
further.

The spectral resolution of the linear operator T is given by the decomposition T = C1E1 + C2E2 +
Ek Ck, where C1, C2 ... Ck are the distinct characteristic values of T and E1, E2 ... Ek are the orthogonal
projections of V on W1, W2 ... Wk.

If T is a diagonalizable normal operator on a finite dimensional inner product space V, then T is
self-adjoint, non-negative or unitary according as each characteristic value of T is real,
non-negative or of absolute value 1.

The family of orthogonal projections (P1, P2, ... Pk) is called the resolution of the identity determined

bF, and T = ( )j j
j

r T P  is the spectral resolution of T in terms of this family.

Sachin Kaushal, Lovely Professional University
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In this unit we try to implement the findings of the Theorems 9 and 13 of unit 26 regarding the
diagonalization of self-adjoint and normal operators.

We start with the following spectral theorem:

Theorem 1 (Spectral Theorem): Let T be a normal operator on a finite dimensional complex inner
product space V or a self-adjoint operator on a finite dimensional real inner product space. Let
C1, ... Ck be the distinct characteristic values of T. Let Wj be the characteristic space associated with
Cj and Ej, the orthogonal projection of V on Wj. Then Wi is orthogonal to W*j when i  j, V is the
direct sum of W1, W2, ... Wk and

T = C1E1 + C2E2 + ... + Ck Ek ...(1)

Proof:  Let  be a vector in Wj, a vector in Wi, and suppose i  j. Then c,( | ) = (T | ) =

( |T* ) = ( | ).ic  Hence (cj – ci)( | ) = 0, and since. cj – ci  0, it follows that ( | ) = 0. Thus Wj

is orthogonal to Wi, when i  j. From the fact that V has an orthonormal basis consisting of
characteristic vectors (cf. Theorems 9 and 13 of  unit 26), it follows that V = W1 + ... + Wk. If j

belongs to Vj (1  j  k) and 1 + ... + k = 0, then

0 = ( | ) ( | )i j i j
j j

= 2
i

for every i, so that V is the direct sum of W1, ... , Wk. Therefore E1 + ... + Ek = I and

T = TE1 + ... + TEk.

= c1E1 + ... + ckEk

The decomposition (1) is called the spectral resolution of T. This terminology arose in part from
physical applications which caused the spectrum of a linear operator on a finite-dimensional
vector space to be defined as the set of characteristic values for the operator. It is important to
note that the orthogonal projections E1, ... , Ek are canonically associated with T; in fact, they are
polynomials in T.

Corollary: If ej =  II i
i j j i

x c
c c , then Ej = ej(T) for 1  j  k.

Proof: Since EiEj = 0 when i  j, it follows that

T2 = c2
1E1 + ... + c2

kEk

and by all easy induction argument that

Tn = cn
1E1 + ... + cn

kEk

for every integer n  0. For an arbitrary polynomial

f = 
0

r
n

n
n

x

we have

f(T) = 
0

r
n

n
n

T
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Notes
= 

0 1

r k
n

n j j
n j

c E

= 
1 0

k r
n

n j
j n

c Ej

= 
1

( )
r

j j
j

f c E

Since ej(cm) = jm, it follows that ej(T) = Ej.

Because E1,. ., Ek are canonically associated with T and

I = E1 + ... + Ek

the family of projections (E1, ..., Ek) is called the resolution of the identity defined by T.

There is a comment that should be made about the proof of the spectral theorem. We derived the
theorem using Theorems 9 and 13 of  unit 26 on the diagonalization of self-adjoint and normal
operators. There is another, more algebraic, proof in which it must first be shown that the
minimal polynomial of a normal operator is a product of distinct prime factors. Then one
proceeds as in the proof of the primary decomposition theorem (Theorem 1) unit 18.

In various applications it is necessary to know whether one may compute certain functions of
operators or matrices, e.g., square roots. This may be done rather simply for diagonalizable
normal operators.

Definition: Let T be a diagonalizable normal operator on a finite-dimensional inner product
space and

T =  
1

k

j j
j

c E

its spectral resolution. Suppose f is a function whose domain includes the spectrum of T that has
values in the field of scalars. Then the linear operator f(T) is defined by the equation

f(T) = 
1

( ) .
k

j j
j

f c E ...(2)

Theorem 2: Let T be a diagonalizable normal operator with spectrum S on a finite-dimensional
inner product space V. Suppose f is a function whose domain contains S that has values in the
field of scalars. Then f(T) is a diagonalizable normal operator with spectrum f(S). If U is a unitary
map of V onto V' and T' = UTU–1, then S is the spectrum of T' and

f(T) = Uf(T)U–1.

Proof: The normality of f(T) follows by a simple computation from (2) and the fact that

f(T)* = ( )j j
j

f c E

Moreover, it is clear that for every  in Ej(V)

f(T) = f(cj) .

Thus, the set f(S) of all f(c) with c in S is contained in the spectrum of f(T). Conversely, suppose
 0 and that

f(T) = b .
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Notes Then  = j
j

E  and

f(T) = ( ) j
j

f T E

= ( )j j
j

f c E

= j
j

bE

Hence,
2

( ( ) )j j
j

f c b E = 
2 2

( )j j
j

f c b E

= 0.

Therefore, f(cj) = b or Ej  = 0. By assumption,  0, so there exists an index i such that Ei   0. It
follows that f(ci) = b and hence that f(S) is the spectrum of f(T). Suppose, in fact, that

f(S) = {b1, ... , br}

where bm  bn when m  n. Let Xm be the set of indices i such that 1  i  k and f(ci) = bm. Let Pm = i
j

E

the sum being extended over the indices i in Xm. Then Pm is the orthogonal projection of V on the
subspace of characteristic vectors belonging to the characteristic value bm of f(T), and

f(T) =  
1

r

m m
m

b P

is the spectral resolution of f(T).

Now suppose U is a unitary transformation of V onto V' and that T’ = UTU–1. Then the equation

T = C

holds if and only if

T'U = cU .

Thus S is; the spectrum of T', and U maps each characteristic subspace for T onto the corresponding
subspace for T'. In fact, using (2), we see that

T' = ,j j
j

c E 1
j jE UE U

is the spectral resolution of T'. Hence

f(T’) = ( )j j
j

f c E

= 1( )j j
j

f c UE U

= U 1( ) )j j
j

f c E U

= Uf(T)–1

87



LOVELY PROFESSIONAL UNIVERSITY

Spectral Theory and Properties of Normal Operators

NotesIn thinking about the preceding discussion, it is important for one to keep in mind that the
spectrum of the normal operator T is the set

S ={c1, ... , ck}

of distinct characteristic values. When T is represented by a diagonal matrix in a basis of
characteristic vectors, it is necessary to repeat each value cj as many times as the dimension of the
corresponding space of characteristic vectors. This is the reason for the change of notation in the
following result.

Corollary: With the assumptions of Theorem 2, suppose that T is represented in the ordered
basis  = { 1, ... , n} by the diagonal matrix D with entries d1, ... , dn. Then, in the basis , f(T) is
represented by the diagonal matrix f(D) with entries f(d1), ... , f(dn). If ’ = { 1, ... , n} is any other
ordered basis and P the matrix such that

j = ij i
j

P

then P–1 f(D)P is the matrix of f(T) in the basis '.

Proof: For each index i, there is a unique j such that 1  j  k, i belongs to Ej(V), and di = cj. Hence
f(T) i = f(di) i for every i, and

f(T) j = ( )ij i
j

P f T

= i ij i
j

d P

= ( )ij i
j

DP

= 
1( )ij ki k

j k
DP P

= 
1( ) .kj k

k
P DP

It follows from this result that one may form certain functions of a normal matrix. For suppose
A is a normal matrix. Then there is an invertible matrix P, in fact a unitary P, such that PAP–1 is
a diagonal matrix, say D with entries d1, ..., dn; Let f be a complex-valued function which can be
applied to d1, ... dn, and let f(D) be the diagonal matrix with entries f(d1) .....f(dn). Then P–1f(D)P is
independent of D and just a function of A in the following sense. If Q is another invertible matrix
such that QAQ–1 is a diagonal matrix D’, then f may be applied to the diagonal entries of D’ and

P–1 f(D)P = Q–1 f(D’)Q.

Definition: Under the above conditions, f(A) is defined as P–1 f(D)P.

Theorem 3: Let A be a normal matrix and c1, ..., ck, the distinct complex roots of det (xl – A). Let

ei = II j

j i i j

x c
c c

and Ei = ei(A) (1  i  k). Then EiEj = 0 when i  j, E2
1 = Ei, E*i = Ei,

and

I = E1 + ... + Ek.
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f(A) = f(c1)E1 + ... + f(ck)Ek;

in particular, A = c1E1 + ... + ckEk.

We recall that an operator on an inner product space V is non-negative if T is self-adjoint and
(T | )  0 for every  in V.

Theorem 4: Let T be a diagonalizable normal operator on a finite-dimensional inner product
space V. Then T is self-adjoint, non-negative, or unitary according as each characteristic value of
T is real, non-negative, or of absolute value 1.

Proof: Suppose T has the spectral resolution T = c1E1 + ... + ckEk, then T* = c1E1 + ... + c kEk. To say
T is self-adjoint is to say T = T*, or

(c1 – c 1)E1 + ... + (ck – c k)Ek = 0.

Using the fact that EiEj = 0 for i  j, and the fact that no Ej, is the zero operator, we see that T is
self-adjoint if and only if cj = c j, j = 1, ... , k. To distinguish the normal operators which are
non-negative, let us look at

(T | ) = 
1 1

|
k k

j j i
j i

c E E

= ( | )j j i
i j

c E E

= 
2

j j
j

c E

We have used the fact that (Ej |Ei ) = 0 for i  j. From this it is clear that the condition (T | ) 0
is satisfied if and only if cj  0 for each j. To distinguish the unitary operators, observe that

TT* = c1c1E1 + ... + ckckEk.

= c1
2E1 + ... + ck

2Ek.

If TT* = I, then I = |c1|2E1 + ... + ck
2Ek, and operating with Ej

Ej = cj
2Ej.

Since Ej  0, we have cj
2 = 1 or cj  = l. Conversely, if cj

2 = 1 for  each j it is clear that TT* = I.

It is important to note that this is a theorem about normal operators. If T is a general linear
operator on V which has real characteristic values, it does not follow that T is self-adjoint. The
theorem states that if T has real characteristic values, and if T is diagonalizable and normal, then
T is self-adjoint. A theorem of this type serves to strengthen the analogy between the adjoint
operation and the process of forming the conjugate of a complex number. A complex number z
is real or of absolute value 1 according as z = z , or z z = 1. An operator T is self-adjoint or unitary
according as T = T* or T*T = I.

We are going to prove two theorems now, which are the analogues of these two statements:

1. Every non-negative number has a unique non-negative square root.

2. Every complex number is expressible in the form ru, where r is non-negative and u  = 1.
This is the polar decomposition z = rei  for complex numbers.
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NotesTheorem 5: Let V be a finite-dimensional inner product space and T a non-negative operator on
V. Then T has a unique non-negative square root, that is, there is one and only one non-negative
operator N on V such that N2 = T.

Proof: Let T = c1E1 + ... + ckEk be the spectral resolution of T. By Theorem 4, each cj  0. If c is any
non-negative real number, let c  denote the non-negative square root of c. Then according to
Theorem 3 and (2) N = T  is a well-defined diagonalizable normal operator on V. It is non-
negative by Theorem 4, and, by an obvious computation, N2 = T.

Now let P be a non-negative operator on V such that P2 = T. We shall prove that P = N. Let

P = d1F1 + ... + drFr

be the spectral resolution of P. Then dj   0 for each j, since P is non-negative. From P2 = T we have

T = d2
1F1 + ... + d2

rFr.

Now F1, ..., Fr satisfy the conditions I = F1 + ... + Fr, FiFj = 0 for i  j, and no Fj is 0. The numbers
d2

1 ..., d2
r are distinct, because distinct non-negative numbers have distinct squares. By the

uniqueness of the spectral resolution of T, we must have r = k, and (perhaps reordering) Fj, = Ej,
d2

j = cj. Thus P = N.

Theorem 6: Let V be a finite-dimensional inner product space and let T be any linear operator on
V. Then there exist a unitary operator U on V and a non-negative operator N on V such that
T = UN. The non-negative operator N is unique. If T is invertible, the operator U is also unique.

Proof: Suppose we have T = UN, where U is unitary and N is non-negative. Then T* = (UN)* =
N*U* = NU*. Thus T*T = NU*UN = N2. This shows that N is uniquely determined as the non-
negative square root of the non-negative operator T*T.

So, to begin the proof of the existence of U and N, we use Theorem 5 to define N as the unique
non-negative square root of T*T. If T is invertible, then so is N because

(N N ) = (N2 ) = (T*T ) = (T T ).

In this case, we define U = TN–1 and prove that U is unitary. Now U* = (TN–1)* = (N–l)*T* =
(N*)–1T* = N–1T*. Thus

UU* = TN–1N–1T*

= T(N–1)2T*

= T(N2)–1T*

= T(T*T)–1T*

= TT–1(T*)–1T*

= I

and C is unitary.

If T is not invertible, we shall have to do a bit more work to define U. We first define U on the
range of N. Let  be a vector in the range of N say  = N . We define U  = T , motivated by the
fact that we want UB  = T . We must verify that U is well-defined on the range of N in other
words, if N  = N  then T  = T . We verified above that N 2 = T 2 for every  in V. Thus, with
 =  – , we see that N (  – ) = 0 if and only if T(  – ) = 0. So U is well-defined on the range

of N and is clearly linear where defined. Now if W is the range of N, we are going to define U on
W . To do this, we need the following observation. Since T and N have the same null space, their
ranges have the same dimension. Thus W  has the same dimension as the orthogonal complement
of the range of T. Therefore, there exists an (inner product space) isomorphism U0 of W  onto
T(V) . Now we have defined U on W, and we define U on W  to be U0.
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form  = N  + , where N  is in the range W of N, and  is in W . We define

U = T  + U0 .

This U is clearly linear, and we verified above that it is well-defined. Also

(U U ) (T  + U0 T  + U0 )

= (T T ) + (U0 U0 )

= (N N ) + ( )

= ( )

and so U is unitary. We also have UN  = T  for each .

We call T = UN a polar decomposition for T. We certainly cannot call it the polar decomposition,
since U is not unique. Even when T is invertible, so that U is unique, we have the difficulty that
U and N may not commute. Indeed, they commute if and only if T is normal. For example, if
T = UN = NU, with N non-negative and U unitary, then

TT* = (NU)(NU)* = NUU*N = N2 = T*T.

The general operator T will also have a decomposition T = N1U1, with N1 non-negative and U1

unitary. Here, N1 will be the non-negative square root of TT*. We can obtain this result by
applying the theorem just proved to the operator T*, and then taking adjoints.

We turn now to the problem of what can be said about the simultaneous diagonalization of
commuting families of normal operators. For this purpose the following terminology is
appropriate.

Definition: Let  be a family of operators on an inner product space V. A function r on  with
values in the field  of scalars will be called a root of  if there is a non-zero  in V such that

T = r(T)

for all T in . For any function r from  to , let V(r) be the set of all  in V such that T  = r(T)
for every T in .

Then V(r) is a subspace of V, and r is a root of  if and only if V(r)  {0}. Each non-zero  in V(r)
is simultaneously a characteristic vector for every T in .

Theorem 7: Let  be a commuting family of diagonalizable normal operators on a finite-
dimensional inner product space V. Then  has only a finite number of roots. If r1, ... , rk are the
distinct roots of , then

(i) V(ri) is orthogonal to V(rj) when i  j, and

(ii) V = V(r1)  ...  V(rk).

Proof: Suppose r and s are distinct roots of . Then there is an operator T in  such that r(T)  s(T).
Since characteristic vectors belonging to distinct characteristic values of T are necessarily
orthogonal, it follows that V(r) is orthogonal to V(s). Because V is finite-dimensional, this
implies  has at most a finite number of roots. Let r1,..., rk, be the roots of F. Suppose {T1, ..., Tm}
is a maximal linearly independent subset of , and let

{Ei1, Ei2, ... }

be the resolution of the identity defined by Ti, (1  i  m). Then the projections Eij form a
commutative family. For each Eij is a polynomial in Ti and T1, ... , Tm, commute with one another.
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I = 
1 2

21 2 mji j mj
j j jm

E E E

each vector  in V may be written in the form

= 1 2
1

1 2
...,

... .mj j mj
j jm

E E E … (3)

Suppose j1, ..., jm, are indices for which  = E1j1E2j2, ... Emjm  0. Let

i = II nnj
n i

E .

Then  = Eij i; hence there is a scalar ci such that

T1 = ci , 1  i  m.

For each T in , there exist unique scalars bi such that

T = 
1

m

i i
i

b T

Thus

T = i i
i

b T

= .i i
i

b c

The function T   i i
i

b c , is evidently one of the roots, say ri or , and  lies in V(ri). Therefore,

each non-zero term in (3) belongs to one of the spaces V(r1), ..., V(rk). It follows that V is the
orthogonal direct sum of V(rl), ...,V(rk).

Corollary: Under the assumptions of the theorem, let Pj be the orthogonal projection of V on
V(rj) (1  j  k). Then PiPj = 0 when i  j,

I = P1 + ... + Pk,

and every T in  may be written in the form

T = ( ) .j j
i

r T P … (4)

Definition: The family of orthogonal projections {P1, ..., Pk} is called the resolution of the identity
determined by , and (4) is the spectral resolution of T in terms of this family.

Although the projections P1, ..., Pk, in the preceding corollary are canonically associated with the
family , they are generally not in  nor even linear combinations of operators in ; however,
we shall show that they may be obtained by forming certain products of polynomials in elements
of .

In the study of any family of linear operators on an inner product space, it is usually profitable
to consider the self-adjoint algebra generated by the family.

Definition: A self-adjoint algebra of operators on an inner product space V is a linear
sub-algebra of L(V, V) which contains the adjoint of each of its members.
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Notes An example of a self-adjoint algebra is L(V, V) itself. Since the intersection of any collection of
self-adjoint algebras is again a self-adjoint algebra, the following terminology is meaningful.

Definition: If  is a family of linear operators on a finite-dimensional inner product space, the
self-adjoint algebra generated by  is the smallest self-adjoint algebra which contains .

Theorem 8: Let  be a commuting family of diagonalizable normal operators on a finite-
dimensional inner product space V, and let  be the self-adjoint algebra generated by  and the
identity operator. Let {P1,..., Pk} be the resolution of the identity defined by . Then  is the set
of all operators on V of the form

T = 
1

k

j j
j

c P … (15)

where c1, ..., ck are arbitrary scalars.

Proof: Let  denote the set of all operators on V of the form (15). Then  contains the identity
operator and the adjoint

T* = j j
j

c P

of each of its members. If T = j j
j

c P  and U = ,j j
j

d P then for every scalar a

aT + U = ( )j j
j

ac d P

and

TU =  
,

i j i j
i j

c d P P

= i j j
j

c d P

= UT.

Thus  is a self-adjoint commutative algebra containing  and the identity operator. Therefore
 contains .

Now let r1, ..., rk be all the roots of . Then for each pair of indices (i, n) with i  n, there is an
operator Tin in  such that ri(Tin)  rn(Tin). Let ain = ri(Tin) – rn(Tin) and bin = rn(Tin). Then the linear
operator

Qi =  1II in
n i

a  (Tin – binI)

is an element of the algebra . We will show that Qi = Pi (1  i  k). For this, suppose j  i and that
 is an arbitrary vector in V(rj). Then

Tij = rj(Tij)

= bij

so that (Tij – bijI)  = 0. Since the factors in Qi all commute, it follows that Q1  = 0. Hence Qi agrees
with Pi on V(rj) whenever j  i. Now suppose  is a vector in V(ri). Then Tin  = ri(Tin) j and

ain
–1(Tin – binI)  = ain

–1[ri(Tin) – rn(Tin)]  = .

Thus Qi  =  and Qi agrees with Pi on V(ri); therefore, Qi = Pi for -i = 1, ... , k. From this it follows
that  = .
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diagonalizable normal operator. We show next that  has a single generator.

Corollary: Under the assumptions of the theorem, there is an operator T in  such that every
member of  is a polynomial in T.

Proof: Let T = 
1

k

j j
j

t P  where t1, . . . , tk are distinct scalars. Then

Tn = 
1

k
n
j j

j

t P

for n = 1, 2, . . . If

f = 
8

1

n
n

n

a x

it follows that

f(T) = 
8 8

1 1 1

k
n n

n n j j
n n j

a T a t P

= 
8

1 1

k
n

n j j
j n

a t P

= 
1

( )
k

j j
j

f t P

Given an arbitrary

U = 
1

k

j j
j

c P

in , there is a polynomial f such that f(tj) = cj (1  j  k), and for any such f, U = f(T).

9.2 Properties of Normal Operators

In unit 26 we developed the basic properties of self-adjoint and normal operators, using the
simplest and most direct methods possible. In last section we considered various aspects of
spectral theory. Here we prove some results of a more technical nature which are mainly about
normal operators on real spaces.

We shall begin by proving a sharper version of the primary decomposition theorem of unit 18
for normal operators. It applies to both the real and complex cases.

Theorem 9: Let T be a normal operator on a finite-dimensional inner product space V. Let p be the
minimal polynomial for T and p1, . . ., pk its distinct monic prime factors. Then each pj occurs with
multiplicity 1 in the factorization of p and has degree 1 or 2. Suppose Wj is the null space of pj(T).
Then

(i) Wj is orthogonal to Wi when i  j;

(ii) V = W1  . . .   Wk;

(iii) Wj is invariant under T, and pj is the minimal polynomial for the restriction of T to Wj;
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orthogonal projection of V on Wj.

In the proof we use certain basic facts which we state as lemmas.

Lemma 1: Let N be a normal operator on an inner product space W. Then the null space of N is the
orthogonal complement of its range.

Proof: Suppose ( |N ) = 0 for all  in W. Then (N* | ) = 0 for all ; hence N*  = 0. By Theorem
10 of unit 26, this implies N  = 0. Conversely, if N  = 0, then N*  = 0, and

(N* | ) = ( |N ) = 0

for all  in W.

Lemma 2: If N is a normal operator and  is a vector such that N2  = 0, then N  = 0.

Proof: Suppose N is normal and that N2  = 0. Then N  lies in the range of N and also lies in the
null space of N. By Lemma 1, this implies N  = 0.

Lemma 3: Let T be a normal operator and f any polynomial with coefficients in the  scalar field.
Then f(T) is also normal.

Proof: Suppose f = a0 + a1x + . . . + anxn. Then

f(T) = a0I + a1T + . . . + anTn

and f(T)* = 0 1 * ( *) .n
na I a T a T

Since T*T = TT*, it follows that f(T) commutes with f(T)*.

Lemma 4: Let T be a normal operator and f, g relatively prime polynomials with coefficients in
the scalar field. Suppose  and  are vectors such that f(T)  = 0 and g(T)  = 0. Then ( | ) = 0.

Proof: There are polynomials a and b with coefficients in the scalar field such that af + bg = 1. Thus

a(T) f(T) + b(T) g(T) = I

and  = g(T) b(T) . It follows that

( | ) = (g(T) b(T) | ) = (b(T) |g(T)* )

By assumption g(T)  = 0. By Lemma 3, g(T) is normal. Therefore, by Theorem 10 of unit 26,
g(T)*  = 0; hence ( | ) = 0.

Proof of Theorem 9: Recall that the minimal polynomial for T is the monic polynomial of least
degree among all polynomials f such that f(T) = 0. The existence of such polynomials follows
from the assumption that V is finite-dimensional. Suppose some prime factor pj of p is repeated.
Then p = p2

j g for some polynomial g. Since p(T) = 0, it follows that

(pj(T))2 g(T) = 0

for every  in V. By Lemma 3, pj(T) is normal. Thus Lemma 2 implies

pj(T)g(T) = 0

for every  in V. But this contradicts the assumption that p has least degree among all f such that
f(T) = 0. Therefore, p = p1 . . . pk. If V is a complex inner product space each pj is necessarily of the
form

pj = x – cj

with cj real or complex. On the other hand, if V is a real inner product space, then pj = xj – cj with
cj in R or
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where c is a non-real complex number.

Now let fj = p/pj. Then, since f1, . . ., fk are relatively prime, there exist polynomials gj with
coefficients in the scalar field such that

1 = .j j
j

f g … (6)

We briefly indicate how such gj may be constructed. If pj = x – cj, then fj(cj)  0, and for gj we take
the scalar polynomial 1/fj(cj). When every pj is of this form, the fj gj are the familiar Lagrange
polynomials associated with c1, . . ., ck, and (6) is clearly valid. Suppose some pj = (x – c)(x – c )
with c a non-real complex number. Then V is a real inner product space, and we take

gj = x c x c
s s

where s = (c – c ) fj(c). Then

gj = ( ) ( )s s x cs cs
ss

so that gj is a polynomial with real coefficients. If p has degree n, then

1 – j j
j

f g

is a polynomial with real coefficients of degree at almost n – 1; moreover, it vanishes at each of
the n (complex) roots of p, and hence is identically 0.

Now let  be an arbitrary vector in V. Then by (16)

= ( ) ( )j j
j

f T g T

and since pj(T) fj(T) = 0, it follows that fj(T) gj(T)  is in Wj for every j. By Lemma 4, Wj is orthogonal
to Wj whenever i j. Therefore, V is the orthogonal direct sum of W1, . . ., Wk. If  is any vector in
Wj, then

pj(T) T = Tpj (T)  = 0;

thus Wj is invariant under T. Let Tj be the restriction of T to Wj. Then pj(Tj) = 0, so that pj is divisible
by the minimal polynomial for Tj. Since pj is irreducible over the scalar field, it follows that pj is
the minimal polynomial for Tj.

Next, let ej = fj gj and Ej = ej(T). Then for every vector  in V, Ej  is in Wj, and

= j
j

E

Thus  – Ej  = j
j i

E  since Wj is orthogonal to Wj when j  i, this implies that  – Ej  is in Wi . It

now follows from Theorem 4 of unit 24 that Ei is the orthogonal projection of V on Wi.

Definition: We call the subspaces Wj (1  j  k) the primary components of V under T.

Corollary: Let T be a normal operator on a finite-dimensional inner product space V and W1,
…, Wk the primary components of V under T. Suppose W is a subspace of V which is invariant
under T.
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W = j
j

W W

Proof: Clearly W contains j
j

W W . On the other hand, Wj being invariant under Tj is invariant

under every polynomial in T. In particular, W is invariant under the orthogonal projection Ej of

V on Wj. If  is in Wj it follows that Ej  is in jW W , and, at the same time,  = j
j

E .

Therefore, W is contained in j
j

W W .

Theorem 9 shows that every normal operator T on a finite-dimensional inner product space is
canonically specified by a finite number of normal operators Tj, defined on the primary
components Wj of V under T, each of whose minimal polynomials is irreducible over the field of
scalars. To complete our understanding of normal operators it is necessary to study normal
operators of this special type.

A normal operator whose minimal polynomial is of degree 1 is clearly just a scalar multiple of
the identity. On the other hand, when the minimal polynomial is irreducible and of degree 2 the
situation is more complicated.

Example 1: Suppose r > 0 and that  is a real number which is not an integral multiple
of . Let T be the linear operator on R2 whose matrix in the standard orthonormal basis is

A = cos sin
sin cosr

Then T is a scalar multiple of an orthogonal transformation and hence normal. Let p be the
characteristic polynomial of T. Then

p = det (xI – A)

= (x – r cos )2 + r2 sin2 

= x – 2r cos x + r2.

Let a = r cos , b = r sin , and c = a + ib. Then b  0, c = re 
i

A = a b
b a

and p = (x – c)(x – c ). Hence p is irreducible over R. Since p is divisible by the minimal polynomial
for T, it follows that p is the minimal polynomial.

This example suggests the following converse.

Theorem 10: Let T be a normal operator on a finite-dimensional real inner product space V and p
its minimal polynomial. Suppose

p = (x – a)2 + b2

where a and b are real and b  0. Then there is an integer s > 0 such that p8 is the characteristic
polynomial for T, and there exist subspaces V1, …, Vs of V such that

(i) Vj is orthogonal to Vi when i  j;

(ii) V = V1  …  Vs;
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T j = a j + b j

T j = – b j + a j.

In other words, if r = 2 2a b  and  is chosen so that a = r cos  and b = r sin , then V is an
orthogonal direct sum of two-dimensional subspaces Vj on each of which T acts as ‘r times
rotation through the angle .

The proof of Theorem 10 will be based on the following result.

Lemma: Let V be a real inner product space and S a normal operator on V such that S2 + I = 0. Let
 be any vector in V and  = S . Then

*
*

S
S … (1)

( | ) = 0, and    =   .

Proof: We have S  =  and S  = S2  = – . Therefore 0 =  S  –  2 +  S  +  2 =  S  2 – 2(S | )
+   2 +  S  2 + 2(S | ) + 2.

Since S is normal, it follows that

0 =  S*  2 – 2(S* | ) +   2 +  S*  2 + 2(S* | ) +   2 =  S*  +  2 +  S*  –  2.

This implies (1); hence

( | ) = (S* | ) = ( |S )

= ( | – )

= – ( | )

and ( | ) = 0. Similarly

  2 = (S* | ) = ( |S ) =   2.

Proof of Theorem 10: Let V1, …, Vs be a maximal collection of two-dimensional subspaces
satisfying (i) and (ii), and the additional conditions.

T* j = a j – b j,

1  j  s. … (2)

T* j = b j – a j

Let W  = V1 + … + Vs. Then W is the orthogonal direct sum of V1, …, Vs. We shall show that
W = V. Suppose that this is not the case. Then W   {0}. Moreover, since (iii) and (2) imply that W
is invariant under T and T*, it follows that W  is invariant under T* and T = T**. Let S = b–1(T – aI).
Then S* = b–1(T* – aI), S*S = SS*, and W  is invariant under S and S*. Since (T – aI)2 + b2I = 0, it
follows that S2 + I = 0. Let  be any vector of norm 1 in W  and set  = S . Then  is in W  and
S  = – . Since T = aI + bS, this implies

T = a  + b

T = – b  + a .

By the lemma, S*  = – , S*  = , ( | ) = 0, and    = 1. Because T* = aI + bS*, it follows that

T* = a  – b

T* = b  + a .
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and (2). Therefore, W = V, and since

det x a b
b x a = (x – a)2 + b2

it follows from (i), (ii) and (iii) that

det (xI – T) = [(x – a)2 + b2]s.

Corollary: Under the conditions of the theorem, T is invertible, and

T* = (a2 + b2) T–1.

Proof: Since

a b a b
b a b a = 

2 2

2 2
0

0
a b

a b

it follows from (iii) and (2) that TT* = (a2 + b2)I. Hence T is invertible and T* = (a2 + b2)T–1.

Theorem 11: Let T be a normal operator on a finite-dimensional inner product space V. Then any
linear operator that commutes with T also commutes with T*. Moreover, every subspace invariant
under T is also invariant under T*.

Proof: Suppose U is a linear operator on V that commutes with T. Let E, be the orthogonal
projection of V on the primary component Wj (1  j  k) of V under T. Then Ej is a polynomial in
T and hence commutes with U. Thus

EjUEj = UEj
2 = UEj.

Thus U(Wj) is a subset of Wj. Let Tj and Uj denote the restrictions of T and U to Wj. Suppose Ij is the
identity operator on Wj. Then Uj commutes with Tj, and if Tj = cjIj, it is clear that Uj also commutes

with *
jT  = j jc I . On the other hand, if Tj is not a scalar multiple of Ij, then Tj is invertible and there

exist real numbers aj and bj such that

*
jT = 2 2 1

j j ja b T .

Since UjTj = TjUj, it follows that 1 1
j j j jT U U T . Therefore Uj commutes with *jT  in both cases.

Now T* also commutes with Ej, and hence Wj is invariant under T*. Moreover for every  and 
in Wj

(Tj | ) = (T | ) = ( |T* ) = ( | *jT ).

Since T*(Wj) is contained in Wj, this implies *jT  is the restriction of T* to Wj. Thus

UT* j = T*U j

for every j in Wj. Since V is the sum of W1, …, Wk, it follows that

UT* = T*U

for every  in V and hence that U commutes with T*.

Now suppose W is a subspace of V that is invariant under T, and let Zj = W  Wj. By the corollary

to Theorem 9, W = j
j

Z . Thus it suffices to show that each Zj is invariant under *lT . This is clear
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Notesif Tj = cjI. When this is not the case, Tj is invertible and maps Zj into and hence onto Zj. Thus
1( ) ,j j jT Z Z  and since

*jT = 2 2 1
j j ja b T

it follows that T*(Zj) is contained in Zj, for every j.

Suppose T is a normal operator on a finite-dimensional inner product space V. Let W be a
subspace invariant under T. Then the preceding corollary shows that W is invariant under T*.
From this it follows that W  is invariant under T** = T (and hence under T* as well). Using this
fact one can easily prove the following strengthened version of the cyclic decomposition theorem.

Theorem 12: Let T be a normal linear operator on a finite-dimensional inner product space V
(dim V  1). Then there exist r non-zero vectors 1, …, r in V with respective T-annihilators e1,
…, er such that

(i) V = Z ( 1; T)  …  Z( r; T);

(ii) if 1  k  r – 1, then ek+1 divides ek;

(iii) Z( j; T) is orthogonal to Z( k; T) when j k. Furthermore, the integer r and the annihilators
e1, …, er are uniquely determined by conditions (i) and (ii) and the fact that no k is 0.

Corollary: If A is a normal matrix with real (complex) entries, then there is a real orthogonal
(unitary) matrix P such that P–1AP is in rational canonical form.

It follows that two normal matrices A and B are unitarily equivalent if and only if they have the
same rational form; A and B are orthogonally equivalent if they have real entries and the same
rational form.

On the other hand, there is a simpler criterion for the unitary equivalence of normal matrices
and normal operators.

Definition: Let V and V  be inner product spaces over the same field. A linear transformation

U : V  V

is called a unitary transformation if it maps V onto V  and preserves inner products. If T is a
linear operator on V and T  a linear operator on V , then T is unitarily equivalent to T  if there
exists a unitary transformation U of V onto V  such that

UTU–1 = T .

Lemma: Let V and V  be finite-dimensional inner product spaces over the same field. Suppose T
is a linear operator on V and that T  is a linear operator on V . Then T is unitarily equivalent to
T  if and only  if there is an orthonormal basis  of V and an orthonormal basis   of V  such that

[T] = [T ] .

Proof: Suppose there is a unitary transformation U of V onto V  such that UTU–1 = T . Let  =
{ 1, …, n} be any (ordered) orthonormal basis for V. Let j = U j (1  j  n). Then   = { 1, …, n}
is an orthonormal basis for V  and setting

T j = 
1

n

kj k
k

A

we see that

T j = UT j
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= kj k

k

A U

= kj k
k

A

Hence [T]
B
 = A = [T ]

B
.

Conversely, suppose there is an orthonormal basis  of V and an orthonormal basis   of V  such
that

[T] = {T }
and let A = [T]. Suppose  = { 1, …, n} and that   = { 1, …, n}. Let U be the linear transformation
of V into V  such that U j = j (1  j  n). Then U is a unitary transformation of V onto V , and

UTU–1
j = UT j

= kj k
k

U A

= kj k
k

A .

Therefore, UTU–1
j = T j (1  j  n), and this implies UTU–1 = T .

It follows immediately from the lemma that unitarily equivalent operators on finite-dimensional
spaces have the same characteristic polynomial. For normal operators the converse is valid.

Theorem 13: Let V and V  be finite-dimensional inner product spaces over the same field. Suppose
T is a normal operator on V and that T  is a normal operator on V . Then T is unitarily equivalent
to T  if and only if T and T  have the same characteristic polynomial.

Proof: Suppose T and T  have the same characteristic polynomial f. Let Wj (1  j  k) be the
primary components of V under T and Tj the restriction of T to Wj. Suppose Ij is the identity
operator on Wj. Then

f = 31
det ( )

k

jj
xI T

Let pj be the minimal polynomial for Tj. If pj = x – cj it is clear that

det (xIj – Tj) = ( )s j
jx c

where sj is the dimension of Wj. On the other hand, if pj = (x – aj)2 + 2
jb  with aj, bj real and bj  0, then

it follows from Theorem 10 that

det (xIj – Tj) = 
s j
jp

where in this case 2sj is the dimension of Wj. Therefore f = .s j
jj

p  Now we can also compute f by

the same method using the primary components of V  under t . Since p1, …, pk are distinct primes,
if follows from the uniqueness of the prime factorization of f that there are exactly k primary
components W j (1  j  k) of V  under T  and that these may be indexed in such a way that pj is the
minimal polynomial for the restriction T j of T  to W j. If pj = x – cj, then Tj = cjIj and T j = cjI j where
I j is the identity operator on W j. In this case it is evident that Tj is unitarily equivalent to T j. If
pj = (x – aj)2 + b2

j as above, then using the lemma and theorem 12, we again see that Tj is unitarily
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Notesequivalent to T j. Thus for each j there are orthonormal bases Bj and B j of Wj and W j, respectively
such that

[ ] [ ] .j B j Bj j
T T

Now let U be the linear transformation of V into V  that maps each Bj onto B j. Then U is a unitary
transformation of V onto V  such that UTU–1 = T .

Self Assessment

1. If U and T are normal operators which commute, prove that U + T and UT are normal.

2. Let A be an n × n matrix with complex entries such that A* = –A and let B = eA. Show that

(a) det B = etr A;

(b) B* = e–A;

(c) B is unitary.

3. For

A = 
1 2 3
2 3 4
3 4 5

there is a real orthogonal matrix p such that P–1AP = D is diagonal. Find such a diagonal
matrix D.

9.3 Summary

 The properties of unitary operators, normal operators or self-adjoint operators are studied
further. This study is an improvement of the results of unit 26.

 It is seen that a diagonalizable normal operator T on a finite dimensional inner product
space is either a self-adjoint, non-negative or unitary according as each characteristic
value of T is real, non-negative or of absolute value 1.

 If A is a normal matrix with real (complex) entries, then there is a real orthogonal (unitary)
matrix P such that P–1AP is in rational canonical form.

9.4 Keywords

A Unitary Transformation: Let V and V’ be inner product spaces over the same field. A linear
transformation U: V  V’ is called a unitary transformation if it preserves inner product.

Polar Decomposition: We call T = UN a polar decomposition for T on a finite dimensional inner
product space where U is a unitary operator and a unique non-negative linear operator on V.

The Non-negative: The non-negative operator T on an inner product space is self-adjoint and
(T | )  0 for every   in V.

The Spectral Resolution: The decomposition of the linear operator T as the sum of orthogonal
projections, i.e.

1

k

i i
i

T C E .
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Notes 9.5 Review Questions

1. If T is a normal operator, prove that characteristic vectors for T which are associated with
distinct characteristic values are orthogonal.

2. Let T be a linear operator on the finite dimensional complex inner product space V. Prove
that the following statements about T are equivalent.

(a) T is normal

(b)  T  =  T*  for every  in V

(c) If  is a vector and c a scalar such that T  = c , then T*  = c .

(d) There is an orthonormal basis  such that [T]  is diagonal.

Answer: Self Assessment

3. D = 
9 57

2
9 57

2

1 0 0

0 0

0 0

9.6 Further Readings

Books Kenneth Hoffman and Ray Kunze, Linear Algebra

Michael Artin, Algebra
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10.3 Summary

10.4 Keywords

10.5 Review Questions

10.6 Further Readings

Objectives

After studying this unit, you will be able to:

 Understand that the bilinear forms and inner products discussed in earlier units have a
strong relation.

 See the isomorphism between the space of bilinear forms and the space of n  n matrices
is established.

 Know that the linear transformations from V into V* defined by (Lf ) ( ) = f( , ) = (Rf )
( ) (where f is a bilinear form) are such that rank (Lf) = rank (Rf).

Introduction

In this unit we are interested in studying a bilinear form f on a finite vector space of dimension n.

With the help of a number of examples it is shown how to get various forms of bilinear forms
including linear functionals, bilinear forms involving n  1 matrices.

It is also established that the rank of a bilinear form is equal to the rank of the matrix of the form
in any ordered basis.

10.1 Bilinear Forms

In this unit we treat bilinear forms on finite dimensional vector spaces. There are a few similarities
between the bilinear forms and the inner product spaces. Let V be a real inner product space and
suppose that A is a real symmetric linear transformation on V. The real valued function f(v)
defined on V by f(v) = (v, A, v) can also be called the quadratic form i.e. bilinear form associated
with A. If we assume A to be a real, n  n symmetric matrix (aij) acting on F(n) and for an arbitrary
vector v = (x1, x2 ..., xn) in F(n), then

f(v) = (v, A, v) = a11x1
2 + a22x2

2 + ... + annxn
2 + 2 ij j j

iLj
a x x

In real n-dimensional Euclidean space such quadratic functions serve to define the quadratic
surfaces.

Sachin Kaushal, Lovely Professional University
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Notes Let us formally define the Bilinear form as follows:

A Bilinear Form:  Let V be a vector space over the field F, a bilinear form is a function f, which
assigns to each ordered pair of vectors ,  in V a scalar f( , ) in F, and which satisfies

1 2 1 2

1 1 2 1 1 2 2

( , ) ( , ) ( , )
( , ) ( , ) ( , )

f c cf f
f c cf f ...(1)

Thus a bilinear form on V is a function f from V  V into F which is linear as a function of either
of its arguments when the other is fixed. The zero function from V  V into F is clearly a bilinear
form. Also any linear combination of bilinear forms on V is again a bilinear form is f and g are
bilinear on V, so is cf + g where c is a scalar in F. So we may conclude that the set of all bilinear
forms on V is a subspace of the space of all functions from V  V  into F. Let us denote the space
of bilinear forms on V by L(V, V, F).

Example 1: Let m, n be positive integers and F a field. Let V be the vector space of all
m  n matrices over F. Let A be a fixed m  m matrix over F. Define

fA (X, Y) = tr (X*AY)

then fA is a bilinear form on V. For, if x, y, z are m  n matrices over F,

fA (CX, Z, Y) = tr [(CX + Z)+ AY]

= tr [cXtAY] + tr [ZtAY]

= cfA(X, Y) + fA(Z, Y)

If we take n = 1, we have

fA(X, Y) = XtAY + ij i j
i j

A x y

So every bilinear form fA for some A is of this form on a space of m × 1.

Example 2: Let F be a field. Let us find all bilinear forms on the space F2. Suppose f is such
a bilinear form. If  = (x1, x2) and  = (y1, y2) are vectors in F2, then

f( , ) = f(x1 1 + x2 2, )

= x1f( 1, ) + x2f( 2, )

= x1f( 1, y1 1 + y2 2) + x2f( 2, y1 1 + y2 2)

= x1y1f( 1, 1) + x1y2f( 1, 2) + x2y1f( 2, 1) + x2y2f( 2, 2).

Thus f is completely determined by the four scalars Aij = f( i, j) by

f( , ) = A11x1y1 + A12x1y2 + A21x2y1
 + A22x2y2

= 
,

ij i j
i j

A x y

If X and Y are the coordinate matrices of  and , and if A is the 2  2 matrix with entries A(i, j) =
Aij = f( i, j), then

f( , ) = XtAY. … (2)

We observed in Example 1 that if A is any 2 × 2 matrix over F, then (2) defines a bilinear form on
F2. We see that the bilinear forms on F2 are precisely those obtained from a 2 × 2 matrix as in (2).
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NotesThe discussion in Example 2 can be generalized so as to describe all bilinear forms on a finite-
dimensional vector space. Let V be a finite-dimensional vector space over the field F and let

 = { 1, ..., n} be an ordered basis for V. Suppose f is a bilinear form on V. If

 = x1 1 + ... + xn n and  = y1 1 + ... + yn n

are vectors in V, then

f( , ) = ,i i
i

f x

= ( , )i i
i

x f

= ,i i j j
i j

x f y a

= ( , )i i i j
i i

x y f

If we let Aij = f( i, j), then

f( , ) =  ij i i
i i

A x y

= XtAY

where X and Y are the coordinate matrices of  and  in the ordered basis . Thus every bilinear
form on V is of the type

f( , ) = [ ]t A[ ] … (3)

for some n  n matrix A over F. Conversely, if we are given any n  n matrix A, it is easy to see
that (3) defines a bilinear form f on V, such that Aij = f( i, j).

Definition: Let V be a finite-dimensional vector space, and let  = { 1, ..., n} be an ordered basis
for V. If f is a bilinear form on V, the matrix of f in the ordered basis  is the n  n matrix A with
entries Aij = f( i, j). At times, we shall denote this matrix by [f] .

Theorem 1: Let V be a finite-dimensional vector space over the field F. For each ordered basis 
of V, the function which associates with each bilinear form on V its matrix in the ordered basis

 is an isomorphism of the space L(V, V, F) onto the space of n  n matrices over the field F.

Proof: We observed above that f  [f]  is a one-one correspondence between the set of bilinear
forms on V and the set of all n  n matrices over F. That this is linear transformation is easy to
see, because

(cf + g) ( i, j) = cf( i, j) + g( i, j)

for each i and j. This simply says that

[cf + g] = c[f]  + [g] .

Corollary: If  = { 1, ..., n} is an ordered basis of V, and * = {L1, ... Ln} is the dual basis for V*, then
the n2 bilinear forms

fij( , ) = Li( ) Lj( ), 1  i  n, 1  j  n

form a basis for the space L(V, V, F). In particular, the dimension of L(V, V, F) is n2.

Proof: The dual basis {L1, ... Ln} is essentially defined by the fact that Li( ) is the ith coordinate of
 in the ordered basis  (for any  in V).
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fij( , ) = Li( )Lj( )

are bilinear forms. If

 = x1 1 + ... + xn n and  = y1 1 + ... + yn n

then

fij( , ) = xiyj

Let f be any bilinear form on V and let A be the matrix of f in the ordered basis . Then

f( , ) = 
,

ij i j
i j

A x y

which simply says that

f = 
,

ij ij
i j

A f

It is now clear that the n2 forms fij comprise a basis for L(V, V, F).

One can rephrase the proof of the corollary as follows. The bilinear from fij has as its matrix in the
ordered basis  the matrix ‘unit’ Ei,j, whose only non-zero entry is a 1 in now i and column j. Since
these matrix units comprise a basis for the space of n  n matrices, the forms fij comprise a basis
for the space of bilinear forms.

The concept of the matrix of a bilinear form in an ordered basis is similar to that of the matrix of
a linear operator in an ordered basis. Just as for linear operators, we shall be interested in what
happens to the matrix representing a bilinear form, as we change from one ordered basis to
another. So, suppose  = { 1, ... n} and  = { 1, ..., n} are two ordered bases for V and that f is
a bilinear form on V. How are the matrices [f]  and [f] , related? Well, let P be the (invertible)
n  n matrix such that

[ ] = P[ ]

for all  in V. In other words, define P by

j = 
1

n

ij i
i

P

For any vectors ,  in V

f( , ) = [ ]t [ f ] [ ]

= (P[ ] )t [ f ] P[ ]

= [ ]t (Pt[ f ] P)[ ] .

By the definition and uniqueness of the matrix representing f in the ordered basis , we must
have

[f] = Pt[f] P. ...(4)

Example 3:  Let V be the vector space R2. Let f be the bilinear form defined on  = (x1, x2)
and  = (y1, y2) by

f( , ) = x1y1 + x1y2 + x2y1 + x2y2
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f( , ) = [x1, x2] 
1

2

1 1
1 1

y
y

and so the matrix of f in the standard ordered basis  = { 1, 2} is

[f] = 
1 1
1 1

Let  = { 1, 2} be the ordered basis defined by 1 = (1, –1), 2 = (1, 1). In this case, the matrix P
which changes coordinates from  to  is

P = 
1 1
1 1

Thus

[f] = Pt[f] P

= 
1 1 1 1 1 1
1 1 1 1 1 1

= 
1 1 0 2
1 1 0 2

= 
0 0
0 4

What this means is that if we express the vectors  and  by means of their coordinates in the
basis , say

= x 1 1 + x 2 2,  = y 1 1 + x 2 2

then

f( , ) = 4x2y 2

One consequence of the change of basis formula (4) is the following: If A and B are n × n matrices
which represent the same bilinear form on V in (possibly) different ordered bases, then A and B
have the same rank. For, if P is an invertible n  n matrix and B = PtAP, it is evident that A and B
have the same rank. This makes it possible to define the rank of a bilinear form on V as the rank
of any matrix which represents the form in an ordered basis for V.

It is desirable to give a more intrinsic definition of the rank of a bilinear form. This can be done
as follows: Suppose F is a bilinear form on the vector space V. If we fix a vector  in V, then
f( , ) is linear as a function of . In this way, each fixed  determines a linear functional on V;
let us denote this linear functional by Lf( ). To repeat, if  is a vector in V, then Lf( ) is the linear
functional on V whose value on any vector  is f( , ). This gives us a transformation   Lf( )
form V into the dual space V*. Since

f(c 1, + 2, ) = cf( 1, ) + f( 2, )

we see that

Lf(c 1, + 2) = cLf( 1) + Lf( 2)

that is Lf is a linear transformation from V into V*.
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Notes In a similar manner, f determines a linear transformation Rf from V into V*. For each fixed  in
V, f( , ) is linear as a function of . We define Rf( ) to be the linear functional on V whose value
on the vector  is f( , ).

Theorem 2: Let f be a bilinear form on the finite-dimensional vector space V. Let Lf and Rf be a
linear transformation from V into V* defined by (Lf )( ) = f( , ) = (Rf )( ). Then rank (Lf) = rank
(Rf).

Proof: One can give a ‘coordinate free’ proof of this theorem. Such a proof is similar to the proof
that the row-rank of a matrix is equal to its column-rank. Some here we shall give a proof which
proceeds by choosing a coordinate system (basis) and then using the ‘row-rank equals column-
rank’ theorem.

To prove rank (Lf) = rank (Rf), it will suffice to prove that Lf and Rf have the same nullity. Let  be
an ordered basis for V, and let A = [f] . If  and  are vectors in V, with coordinate matrices X and
Y in the ordered basis , then f( , ) = XtAY. Now Rf( ) = 0 means that f( , ) = 0 for every  in
V, i.e., that XtAY = 0 for every n 1 matrix X. The latter condition simply says that AY =  0. The
nullity of Rf is therefore equal to the dimension of the space of solutions of AY = 0.

Similarly, Lf( ) = 0 if and only if XtAY = 0 for every n  1 matrix Y. Thus  is in the null space of
Lf if and only if XtA = 0, i.e. AtX = 0. The nullity of Lf is therefore equal to the dimension of the
space of solutions of AtX = 0. Since the matrices A and At have the same column-rank, we see that

nullity (Lf) = nullity (Rf).

Definition: If f is a bilinear form on the finite-dimensional space V, the rank of f is the integer
r = rank (Lf) = rank (Rt).

Corollary 1: The rank of a bilinear form is equal to the rank of matrix of the form in any ordered
basis.

Corollary 2: If f is a bilinear form on the n-dimensional vector space V, the following are
equivalent:

(a) rank (f) = n

(b) For each non-zero  in V, there is  in V such that f( , )  0.

(c) For each non-zero  in V, there is an  in V such that f( , )  0.

Proof: Statement (b) simply says that the null space of Lf is the zero subspace. Statement (c) says
that the null space of Rf is the zero subspace. The linear transformations Lf and Rf have nullity 0
if and only if they have rank n, i.e., if and only if rank (f) = n.

Definition: A bilinear form f on a vector space V is called non-degenerate (or non-singular) if it
satisfies conditions (b) and (c) of Corollary 2.

If V is finite-dimensional, then f is non-degenerate provided f satisfies any one of the three
conditions of Corollary 2. In particular, f is non-degenerate (non-singular) if and only if its
matrix in some (every) ordered basis for V is a non-singular matrix.

Example 4: Let V = Rn, and let f be the bilinear form defined on  = (x1, ..., xn) and  =
(y1 ..., yn) by

f( , ) = x1y1 + ... + xnyn.

Then f is a non-degenerate bilinear form on Rn. The matrix of f in the standard basis is the n  n
identity matrix.

f(x, y) = XtY.
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1. Which of the following functions f, defined on vectors  = (x1, x2) and (y1, y2) in R2, are
bilinear forms?

(a) f( , ) = (x1 – yI)2 + x2y2

(b) f( , ) = (x1 + yI)2 + (x1 – y1)2

(c) f( , ) = x1y2 – x2y1

2. Let f be any bilinear form on a finite-dimensional space V. Let W be the subspace of all 
such that f( , ) = 0 for every . Show that

rank f = dim V – dim W.

10.2 Symmetric Bilinear Forms

In dealing with a bilinear form sometimes it is asked when is there an ordered basis  for V in
which f is represented by a diagonal matrix. It will be seen in this part of the unit that if f is a
symmetric bilinear form, i.e., f( , ) = f( , ) then f will be represented by a diagonal matrix in
an ordered basis of the space V.

If V is a finite-dimensional, the bilinear form f is symmetric if and only if the matrix A in some
ordered basis is symmetric, At = A.

To see this, one enquires when the bilinear form

f(X, Y) = XtAY

is symmetric.

This happens if and only if XtAY = YtAX for all column matrices X and Y. Since XtAY is a 1  1
matrix, we have XtAY = YtAtX. Thus f is symmetric if and only if YtAtX = YtAX for all X, Y. Clearly
this just means that A = At. In particular, one should note that if there is an ordered basis for V in
which f is represented by a diagonal matrix, then f is symmetric, for any diagonal matrix is a
symmetric matrix.

If f is a symmetric bilinear form, the quadratic form associated with f is the function q from V into
F defined by

q( ) = f( , )

If F is a subfield of the complex numbers, the symmetric bilinear form f is completely determined
by its associated quadratic form, according to the polarization identity

f( , ) = 1
4 q(  + ) – 1

4 q(  – ) ...(5)

If f is the bilinear form of Example 4, the dot product, the associated quadratic form is

1( , ... )nq x x = x2
1 + ... + x2

n

In other words, q( ) is the square of the length of . For the bilinear form fA(X, Y) = XtAY, the
associated quadratic form is

qA(X) = XtAX = 
,

ij i j
i j

A x x
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spaces discussed earlier. If V is a real vector space, an inner product on V is a symmetric bilinear
form f on V which satisfies

f( , ) > 0 if   0. ...(6)

A bilinear form satisfying (6) is called positive definite. Thus, an inner product on a real vector
space is a positive definite, symmetric bilinear form on that space. Note that an inner product is
non-degenerate. Two vectors ,  are called orthogonal with respect to the inner product f if
f( , ) = 0 . The quadratic form q( ) = f( , ) takes only non-negative values, and q( ) is usually
thought of as the square of the length of . Of course, these concepts of length and orthogonality
stem from the most important example of an inner product – the dot product.

If f is any symmetric bilinear form on a vector space V, it is convenient to apply some of the
terminology of inner products to f. It is especially convenient to say that  and  are orthogonal
with respect to f if f( , ) = 0. It is not advisable to think of f( , ) as the square of the length of ;
for example if V is a complex vector space, we may have f( , ) = 1  or on a real vector space,
f( , ) = –2.

Theorem 3: Let V be n finite-dimensional vector space over a field of characteristic zero, i.e. if n
is a positive integer the sum 1 + 1 + ... + 1 (n times) in F is not zero, and let f be a symmetric
bilinear form on V. Then there is an ordered basis for V in which f is represented by a diagonal
matrix.

Proof: What we must find is an ordered basis

= { 1, ..., n}

such that f( i, j) = 0 for i  j. If f = 0 or n = 1, the theorem is obviously true. Thus we may suppose
f  0 and n > 1. If f( , ) = 0 for every  in V, the associated quadratic form q is identically 0, and
the polarization identity (5) shows that f = 0. Thus there is a vector  in V such that f( , ) =
q( )  0. Let W be the one-dimensional subspace of V which is spanned by , and let W  be the set
of all vectors  in V such that f( , ) = 0. Now we claim that V = W  W . Certainly the subspaces
W and W  are independent. A typical vector in W is c , where c is a scalar. If c  is also in W , then
f(c , c ) = c2f( , ) = 0. But f( , )  0, thus c = 0. Also, each vector in V is the sum of a vector in W
and a vector in W . For, Let  be any vector in V, and put

=  –
( , )
( , )

f
f

.

Then

( , ) = f( , ) –
( , )
( , )

f
f

f( , )

and since f is symmetric, f( , )  = 0. Thus  is in the subspace W . The expression

= 
( , )
( , )

f
f

  + 

shows us that V = W + W .

The restriction of f to W  is a symmetric bilinear form on W . Since W  has dimension (n – 1), we
may assume by induction that W  has a basis { 2, ..., n} such that

f( i, j) = 0, i  j (i,  2, j  2)

Putting 1 = , we obtain a basis { 1, ..., n} for V such that f( i, j) = 0 for i  j.
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NotesCorollary: Let F be a subfield of the complex numbers, and let A be a symmetric n  n matrix
over F. Then there is an invertible n  n matrix P over F such that PtAP is diagonal.

In case F is the field of real numbers, the invertible matrix P in this corollary can be chosen to be
an orthogonal matrix, i.e., Pt = P–1. In other words, if A is a real symmetric n  n matrix, there is
a real orthogonal matrix P such that PtAP is diagonal.

Theorem 4: Let V be a finite-dimensional vector space over the field of complex numbers. Let f be
a symmetric bilinear form on V which has rank r. Then there is an ordered basis  = { 1, ..., n} for
V such that

(i) the matrix of f in the ordered basis  is diagonal

(ii) f( j, j) = 
1, 1, ...,
0, .

j r
j r

Proof: By Theorem 3, there is an ordered basis ( 1, ..., n) for V such that

f( i, j) = 0 for i  j.

Since f has rank r, so does its matrix is the ordered basis { 1, ... , n}. Thus we must have
f( j, j)  0  for precisely r values of j. By reordering the vectors j, we may assume that

f( j, j)  0, j = 1, ..., r.

Now we use the fact that the scalar field is the field of complex numbers. If ,( )j jf  denotes
any complex square root of f( j, j), and if we put

j = ,

1 , 1, ...,
( )

,

j
j j

j

j r
f

j r

the basis { 1, ..., n} satisfies conditions (i) and (ii).

Of course, Theorem 4 is valid if the scalar field is any subfield of the complex numbers in which
each element has a square root. It is not valid, for example, when the scalar field is the field of
real numbers. Over the field of real numbers, we have the following substitute for Theorem 4.

Theorem 5: Let V an n-dimensional vector space over the field of real numbers, and let f be a
symmetric bilinear form on V which has rank r. Then there is an ordered basis { 1, 2, ..., n} for
V in which the matrix of f is diagonal and such that

f( j, j) = 1, j = 1, ... r.

Furthermore, the number of basis vectors j for f( j, j) = 1 is independent of the choice of basis.

Proof: There is a basis { 1, ..., n} for V such that

f( i, j) = 0, i  j

f( j, j)  0, 1  j  r

f( j, j) = 0, j > r.

Let

j = |f( j, j)|–1/2 j, 1  j  r

j = j, j  > r.

Then ( 1, ..., n) is a basis with the stated properties.
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Notes Let p be the number of basis vectors, j for which f( j, j) = 1; we must show that the number p is
independent of the particular basis we have, satisfying the stated conditions. Let V+ be the
subspace of V spanned by the basis vectors j for which f( j, j) = 1, and let V’ be the subspace
spanned by the basis vectors j for which f( j, j) = –1. Now p = dim V+, so it is the uniqueness of
the dimension of V+ which we must demonstrate. It is easy to see that if  is a non-zero vector in
V+ then f( , ) > 0; in other words, f is positive definite on the subspace V+. Similarly, if  is a non-
zero vector in V–, then f( , ) < 0, i.e., f is negative definite on the subspace V–. Now let V  be the
subspace spanned by the basis vectors j for which f( j, j) = 0. If  is in V , then f( , ) = 0 for all

 in V.

Since { 1, ..., n} is a basis for V, we have

V = V+  V– V .

Furthermore, we claim that if W is any subspace of V on which f is positive definite, then the
subspaces W, V–, and V  are independent. For, suppose  is in W,  is in V–,  is in V , and  + 
+  = 0. Then

0 = f( ,  +  + ) = f( , ) + f( , ) + f( , )

0 = f( ,  +  + ) = f( , ) + f( , ) + f( , )

Since  is in V , f( , ) = f( , ) = 0; and since f is symmetric, we obtain

0 = f( , ) + f( , )

0 = f( , ) + f( , )

hence f( , ) = f( , ). Since f( , )  0 and f( , )  0, it follows that

f( , ) = f( , ) = 0

But f is positive definite on W and negative definite on V–. We conclude that  =  = 0, and hence
that  = 0 as well.

Since

V = V+  V–  V

and W, V–, V  are independent, we see that dim W   dim V+. That is, if W is any subspace of V on
which f is positive definite, the dimension of W cannot exceed the dimension of V+. If 1 is
another ordered basis for V which satisfies the conditions of the theorem, we shall have
corresponding subspaces V+

1, V–
1, and V 1 and, the argument above shows that dim V+

1  dim V+.
Reversing the argument, we obtain dim V+  dim V+

1, and consequently

dim V+ = dim V+
1.

There are several comments we should make about the basis ( 1, ..., n} of Theorem 5 and the
associated subspaces V+, V–, and V  First, note that V  is exactly the subspace of vectors which are
'orthogonal' to all of V. We noted above that V  is contained in this subspace; but,

dim V  = dim V – (dim V+ + dim V–) = dim V – rank f

so every vector a such that f( , ) = 0 for all  must be in V . Thus, the subspace V  is unique. The
subspaces V+ and V– are not unique; however, their dimensions are unique. The proof of Theorem
5 shows us that dim V+ is the largest possible dimension of any subspace on which f is positive
definite. Similarly, dim V– is the largest dimension of any subspace on which f is negative
definite.

Of course

dim V+ + dim V– = rank f.
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dim V+ – dim V–

is often called the signature of f. It is introduced because the dimensions of V+ and V– are easily
determined from the rank of f and the signature of f.

Perhaps we should make one final comment about the relation of symmetric bilinear forms on
real vector spaces to inner products. Suppose V is a finite-dimensional real vector space and that
V1, V2, V3 are subspaces of V such that

V = V1  V2  V3

Suppose that f1 is an inner product on VI, and f2 is an inner product on V2. We can then define a
symmetric bilinear form f on V as follows: If ,  are vectors in V, then we can write

 = l + 2 + 3 and  = 1 + 2 + 3

with j. and j in Vj. Let

f( , ) = fl( 1 + 1) – f2( 2 + 2)

The subspace V  for f will be V3, V1 is a suitable V+ for f, and V2 is a suitable V–. One part of the
statement of Theorem 5 is that every symmetric bilinear form on V arises in this way. The
additional content of the theorem is that an inner product is represented in some ordered basis
by the identity matrix.

Self Assessment

3. Let V be a finite-dimensional vector space over a subfield F of the complex numbers and
let S be the set of all symmetric bilinear forms in V. Show that S is a subspace of L(V, V, F).

4. The following expressions define quadratic forms q on R2. Find the symmetric bilinear
form f corresponding to each q.

(a) ax1
2

(b) x1
2 + 9x2

2

(c) bx1x2

10.3 Summary

 In this unit concept of bilinear form is introduced.

 It is seen that there a strong relation between bilinear forms and inner products.

 The isomorphism between the space of bilinear forms and the space of n × n matrices is
established.

 The rank of a bilinear form is defined and non-degenerate bilinear forms are introduced.

10.4 Keywords

A Bilinear Form: A bilinear form on V is a function f, which assigns to each pair of vectors, , 
in V a scalar f( , ) in F, and satisfies linear relations.

A non-degenerate bilinear form on a vector space V is a bilinear form if for each non-zero  in
V, there is  in V such that f( , )  0 as well as for each non-zero  in V, there is and  in V such
that f( , )  0.
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Notes The polarization Identity helps in determining the symmetric bilinear form by its associated
quadratic form.

10.5 Review Questions

1. Let V be a finite-dimensional vector space over a subfield F of the complex numbers, and
let S be the set of all symmetric bilinear forms on V.

(a) Show that S is a subspace of L(V, V, F)

(b) Find Dim S’

2. Let q be the quadratic form on R2 given by

q(x1, x2) = 2bx1x2

Find an  invertible linear operator V on R2 such that

(V+q) (x1, x2) = 2bx1
2 – 2bx2

2.

Answers: Self Assessment

1. (b) and (c)

4. (a) f( , ) = ax1y1

(b) f( , ) = x1y1 + 9x2y2

(c) f( , ) = 2
b

(x1y2 + y1x2)

Here  = (x1, x2)

 = (y1, y2)

10.6 Further Readings

Books Kenneth Hoffman and Ray Kunze, Linear Algebra

Michael Artin, Algebra
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CONTENTS

Objectives

Introduction

11.1 Skew-symmetric Bilinear Forms

11.2 Summary

11.3 Keywords

11.4 Review Questions

11.5 Further Readings

Objectives

After studying this unit, you will be able to:

 See that skew-symmetric bilinear form is studied in a similar way as the symmetric
bilinear form was studied.

 Know that here the quadratic form is given by the difference h( , ) = 
1
2  [f( , ) –f[ , ]]

 Understand that the space L(V, V, F) is the direct sum of the subspace of symmetric forms
and the subspace of skew-symmetric forms.

Introduction

In this unit a bilinear form f on V called skew-symmetric form i.e. f( , ) = –f( , ) is studied.
Close on the steps of symmetric bilinear form of the unit 30 the skew-symmetric form is developed.
It is seen that in the case of a skew-symmetric form, its matrix A in some (or every) ordered basis
is skew-symmetric, At = –A.

11.1 Skew-symmetric Bilinear Forms

After discussing symmetric bilinear forms we can deal with the skew-symmetric forms with
ease. Here again we are dealing wth finite vector space over a subfield F of the field of complex
numbers.

A bilinear form f on V is called skew-symmetric if f( , ), –f( , ) for all , and  in V. It means
that f( , ) = 0. So we now need to introduce two different quadratic forms as follows:

If we let

g( , ) = 
1
2 [f( , ) + f( , )]

h( , ) = 
1
2 [f( , ) + f( , )]

So it is seen that g is a symmetric bilinear form on V and h is a skew-symmetric form on V. Also
f = g + h. These expressions for V, as the symmetric and skew-symmetric form is unique. So the
space L(V, V, F) is the direct sum of the subspace of symmetric forms and the subspace of
skew-symmetric forms.

Sachin Kaushal, Lovely Professional University
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Notes Thus a bilinear form f is skew-symmetric if and only if its matrix A is equal to –At in some
ordered basis.

When f is skew-symmetric, the matrix of f in any ordered basis will have all its diagonal entries
0. This just corresponds to the observation that f( , ) = 0 for every  in V, since f( , ) = –f( , ).

Let us suppose f is a non-zero skew-symmetric bilinear form on V. Since f  0, there are vectors
,  in V such that f( , )  0. Multiplying  by a suitable scalar, we may assume that f( , ) = 1.

Let  be any vector in the subspace spanned by  and , say  = c  + d . Then

f( , ) = f(c  + d , ) = df( , ) = –d

f( , ) = f(c  + d , ) = cf( , ) = c

and so

= f( , )  – f( , ) ...(1)

In particular, note that  and  are necessarily linearly independent; for, if  = 0, then f( , ) =
f( , ) = 0.

Let W be the two-dimensional subspace spanned by  and . Let W  be the set of all vectors  in
V such that f( , ) = f( , ) = 0, that is, the set of all  such that f( , ) = 0 for every  in the subspace
W. We claim that V = W  W . For, let  be any vector in V, and

= f( , )  – f( , )

=  – 

Then  is in W, and  is in W , for

f( , ) = f(  – f( , )  + f( , ) , )

= f( , ) + f( , )f( , )

= 0

and similarly f( , ) = 0. Thus every  in V is of the form  =  + , with  in W and  in W . From
(1) it is clear that W  W  = {0}, and so V = W  W .

Now the restriction of f to W  is a skew-symmetric bilinear form on W . This restriction may be
the zero form. If it is not, there are vectors ' and ' in W  such that f( ', ') = 1. If we let W' be the
two-dimensional subspace spanned by ' and ', then we shall have

V = W  W'  W0

where W0 is the set of all vectors  in W  such that f( ', ) = f( ', ) = 0. If the restriction of f to W0

is not the zero form, we may select vectors ", " in W0 such that f( ", ") = 1, and continue.

In the finite-dimensional case it should be clear that we obtain a finite sequence of pairs of
vectors,

( 1, 1), ( 2, 2), ... , ( k, k)

with the following properties:

(a) f( j, j) = 1, j = 1, ... , k.

(b) f( i, j) = f( i, j) = f[ i, j) = 0, i  j.

(c) If Wj is the two-dimensional subspace spanned by j and j, then

V = W1  ...  Wk  W0

where every vector in W0 is 'orthogonal' to all j, and j, and the restriction of f to W0 is the zero
form.
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NotesTheorem 1: Let V be an n-dimensional vector space over a subfield of the complex numbers, and
let f be a skew-symmetric bilinear form on V. Then the rank r of f is even, and if r = 2k there is an
ordered basis for V in which the matrix of f is the direct sum of the (n – r)  (n – r) zero matrix and
k copies of the 2  2 matrix

0 1
1 0

Proof: Let 1, 1, ... k, k be vectors satisfying conditions (a), (b), and (c) above. Let { i, ..., s} be
any ordered basis for the subspace W0. Then

= { 1, 1, 2, 2, ..., k k, 1, ..., s}

is an ordered basis for V. From (a), (b), and (c) it is clear that the matrix of f in the ordered basis
 is the direct sum of the (n – 2k)  (n – 2k) zero matrix and k copies of the 2  2 matrix

0 1
1 0 ...(2)

Furthermore, it is clear that the rank of this matrix, and hence the rank of f, is 2k.

One consequence of the above is that if f is a non-degenerate, skew-symmetric bilinear form on
V, then the dimension of V must be even. If dim V = 2k, there will be an ordered basis { 1, 1, ...,

k, k} for V such that

f( i, j ) = 
1,
1,

i j
i j

f( i, j ) = f( i, j) = 0

The matrix of f in this ordered basis is the direct sum of k copies of the 2  2 skew-symmetric
matrix (2).

Self Assessment

1. Let f be a symmetric bilinear form on cn and g a skew symmetric bilinear form on cn.
Suppose f + g = 0. Show that f = 0, g = 0.

2. Let V be an n-dimensional vector space over a subfield F of C. Prove that

(a) The equation

(Pf) ( , ) =  
1
2 f( , ) – 

1
2 f( , ) defines

a linear operator P on L (V, V, F)

(b) P2 = P, i.e. P is a projection

11.2 Summary

 A bilinear form f on V is called skew-symmetric if f( , ) = –f( , )

 The space L(V, V, F) of the bilinear forms is the direct sum of the sub-space of symmetric
forms and the subspace of skew-symmetric forms.

 In an n-dimensional vector space over a subfield of the complex numbers, the skew
symmetric bilinear form f has an even rank r = 2k, k being an integer.
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Skew Symmetric Bilinear Form: A bilinear form f on V is called skew symmetric if f( , ) –f( , )
for all vectors, ,  in V.

Skew-symmetric matrix: A matrix A in some (or every) ordered basis is skew-symmetric, if
A+ = –A, i.e. the two by two matrix

0 1
1 0

is a skew-symmetric matrix.

A non-degenerate skew-symmetric bilinear form f is such that

f( i, j) = 
0,
1,

i j
i j

f( i, i) = f( i, i) = 0

the dimension of the space must be even i.e. n = 2k.

11.4 Review Questions

1. Let V be a vector space over a field F. Show that the set of all skew-symmetric bilinear
forms on V a sub-space of L(V, V, F)

2. Let V be a finite dimensional vector space and L1, L2 linear functional on V. Show that the
equation

f( , ) = L1( ) L2( ) – L1( ) L2( )

denotes a skew symmetric bilinear form on V. Also show that f = 0 if and only if L1, L2 are
linearly dependent.

11.5 Further Readings

Books Kenneth Hoffman and Ray Kunze, Linear Algebra

Michael Artin, Algebra
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CONTENTS

Objectives

Introduction

12.1 Overview

12.2 Groups Preserving Bilinear Forms

12.3 Summary

12.4 Keywords

12.5 Review Questions

12.6 Further Readings

Objectives

After studying this unit, you will be able to:

 Understand that there are certain classes of linear transformations including the identity
transformation that preserve the form f of bilinear forms.

 See that the collection of linear operators which preserve f, is closed under the formation
of operator products.

 Know that a linear operator T preserves the bilinear form f if and only if T preserves the
quadratic form

q( ) = f( , )

 See that the group preserving a non-degenerate symmetric bilinear form f on V is
isomorphism to an n  n pseudo-orthogonal group.

Introduction

In this unit the groups preserving certain types of bilinear forms is studied.

It is seen that orthogonal groups preserve the length of a vector.

For non-degenerate symmetric bilinear form on V the group preserving f is isomorphic to n  n
pseudo-orthogonal group.

For the symmetric bilinear form f on R4 with quadratic form

g(x, y, z, t) = t2 – x2 – y2 – z2

a linear operator T on R4 preserving this particular bilinear form is called Lorentz transformation
and the group preserving f is called the Lorentz Group.

12.1 Overview

Here we shall be concerned with some groups of transformations which preserve the form of
the bilinear forms. Let T be a linear operator on V. We say that T preserves f if f(T , T ) = f( , ) for
all  and  in V. Consider a function g( , ) = f(T , T ). If T preserves f it simply means g = f. The
identity operator preserves every bilinear form. If S and T are two linear operators which

Sachin Kaushal, Lovely Professional University
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Notes preserve f, the product ST also preserves f; for f(ST , ST ) = f(T , T ) = f( , ). In other words the
collection of linear operators which preserve f, is closed under the formation of operator products.

Consider a bilinear form given by

= 
, 1

n

ij i j
i j

a x y

If we introduce

X = 

1 1

2 2,

n n

x y
x y

Y

x y
 

then

B = XtAY

where n rowed square matrix A is

A = [aij]

In case Y = X then we have a quadratic form

Q = 
1 1

n n

ij i j
i j

a x x

In matrix form

Q = XTAX

We now consider certain transformation operator P such that

X = PX’

where P is non-singular (or invertible), then

Xt = (PX’)t = X’tPt

So

Q = X’tPtAPX’

Defining

A’ = PtAP

We have

Q = X’tA’X’

If A is symmetric then

At’ = (PtAP)t = PtAtP = PtAP = A’

Thus symmetry of the matrix is maintained. Now if Q represents the length of the vector (x1, x2,
... xn) then preservation of length means;

XtX = Xt’PtPX’ = Xt’X’, if

PtP = I

which means that P is an orthogonal matrix.

One of the examples of the orthogonal transformation the rotation of co-ordinate system.
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Example 1: Consider a three dimensional co-ordinates (x, y, z). Let us give a rotation

along z-direction by an angle Q so that the new co-ordinates are x’, y’, z’

then

x’ = x cos  = y sin 

y’ = x sin  + y cos 

z’ = z

We see that the square of the length becomes

x’2 + y’2 + z’2 = (x cos  – y sin )2 + (x sin  + y cos )2 + z2

= x2 + y2 + z2.

So the rotation is a transformation that preserves the bilinear form of the length. For more
details see the next section.

12.2 Groups Preserving Bilinear Forms

We start this section with a few theorems and examples.

Theorem 1: Let f be a non-degenerate bilinear form on a finite-dimensional vector space V. The
set of all linear operators on V which preserve f is a group under the operation of composition.

Proof: Let G be the set of linear operators preserving f. We observed that the identity operator
is in G and that whenever S and T are in G the composition ST is also in G. From the fact that f is
non-degenerate, we shall prove that any operator T in G is invertible, and T–1 is also in G.
Suppose T preserves f. Let  be a vector in the null space of T. Then for any  in V we have

f( , ) = f(T , T ) = f(0, T ) = 0.

Since f is non-degenerate,  = 0. Thus T is invertible. Clearly T–1 also preserves f; for

f(T–I , T–1 ) = f(TT–1 , TT–1 ) = f( , )

If f is a non-degenerate bilinear form on the finite-dimensional space V, then each ordered basis
 for V determines a group of matrices 'preserving' f. The set of all matrices [T] , where T is a

linear operator preserving f, will be a group under matrix multiplication. There is an alternative
description of this group of matrices, as follows. Let A = [f] , so that if  and  are vectors in V
with respective coordinate matrices X and Y relative to , we shall have

f( , ) = X’AY.

Let T be any linear operator on V and M = [T] . Then

f(T , T ) = (MX)t A (MY)

= Xt (MtAM)Y.

Accordingly, T preserves f if and only if MtA M = A. In matrix language then, Theorem 1 says the
following: If A is an invertible n  n matrix, the set of all n  n matrices M such that MtAM = A is
a group under matrix multiplication. If A = [f] , then M is in this group of matrices if and only if
M = [T] , where T is a linear operator which preserves f.

Let f be a bilinear form which is symmetric. A linear operator T preserves f If and only if T
preserves the quadratic form

g( ) = f( , )

associated with f. If T preserves f, we certainly have

q(T ) = f(T , T ) = f( , ) = q( )
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Notes for every  in V. Conversely, since f is symmetric, the polarization identity

f( , ) = 1
4 q(  + ) – 1

4 q(  – )

shows us that T preserves f provided that q( T ) = q( ) for each  in V.  (We are assuming here that
the scalar field is a subfield of the complex numbers.)

Example 2: Let V be either the space Rn or the space Cn. Let f be the bilinear form

f( , ) = 
1

n

i i
j

x y

where  = (xl, ... , xn) and  = (y1, ... , yn). The group preserving f is called the n-dimensional (real
or complex) orthogonal group. The name 'orthogonal group' is more commonly applied to the
associated group of matrices in the standard ordered basis. Since the matrix of f in the standard
basis is I, this group consists of the matrices M which satisfy MtM = I. Such a matrix M is called an
n  n (real or complex) orthogonal matrix. The two n  n orthogonal groups are usually denoted
O(n, R) and O(n, C). Of course, the orthogonal group is also the group which preserves the
quadratic form

q(x1, ... , xn) = x1
2 + ... + x2n.

Example 3: Let f be the symmetric bilinear form on Rn with quadratic form

q(x1 ..., xn) = 2 2

1 1

p n

j j
j j p

x x

Then f is non-degenerate and has signature 2p – n. The group of matrices preserving a form of
this type is called a pseudo-orthogonal group. When p = n, we obtain the orthogonal group
O( n, R) as a particular type of pseudo-orthogonal group. For each of the n + 1 values
p = 0, 1, 2, ... n, we obtain different bilinear forms f; however, for p = k and p = n – k the forms are
negatives of one another and hence have the same associated group. Thus, when n is odd, we
have (n + 1)/2 pseudo-orthogonal groups of n  n matrices, and when n is even, we have
(n + 2)/2 such groups.

Theorem 2: Let V be an n-dimensional vector space over the field of complex numbers, and let f
be a non-degenerate symmetric bilinear form on V. Then the group preserving f is isomorphic
to the complex orthogonal group O(n, C).

Proof: Of course, by an isomorphism between two groups, we mean a one-one correspondence
between their elements which 'preserves' the group operation. Let G be the group of linear
operators on V which preserve the bilinear form f. Since f is both symmetric and non-degenerate,
Theorem 4 of unit 30 tells us that there is an ordered basis  for V in which f is represented by the
n  n identity matrix. Therefore, a linear operator T preserves f if and only if its matrix in the
ordered basis  is a complex orthogonal matrix. Hence

T    [T]

is an isomorphism of G onto O(n, C).

Theorem 3: Let V be an n-dimensional vector space over the field of real numbers, and let f be a
non-degenerate symmetric bilinear form on V. Then the group preserving f is isomorphic to an
n  n pseudo-orthogonal group.

Proof: Repeat the proof of Theorem 2, using Theorem 5 of unit 30 instead of Theorem 4 of
unit 30.
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Example 4: Let f be the symmetric bilinear form on Rn with quadratic form

q(x, y, z, t) = t2 – x2 – y2 – z2.

A linear operator T on R4 which preserves this particular bilinear (or quadratic) form is called a
Lorentz transformation, and the group preserving f is called the Lorentz group. We should like
to give one method of describing some Lorentz transformations.

Let H be the real vector space of all 2  2 complex matrices A which are Hermitian, A = A*. It is
easy to verify that

(x, y, z, t) = 
t x y iz
y iz t x

defines an isomorphism  of R4 onto the space H. Under this isomorphism, the quadratic form q
is carried onto the determinant function, that is

q(x, y, z, t) = det
t x y iz
y iz t x

or

q( ) = det  ( ).

This suggests that we might study Lorentz transformations on R4 by studying linear operators
on H which preserve determinants.

Let M be any complex 2  2 matrix and for a Hermitian matrix A define

UM(A) = MAM*.

Now MAM* is also Hermitian. From this it is easy to see that UM is a (real) linear operator on H.
Let us ask when it is true that UM 'preserves' determinants, i.e., det [UM(A)] = det A for each A
in H. Since the determinant of M* is the complex conjugate of the determinant of M, we see that

det [UM(A)] = [det M|2 det A.

Thus UM preserves determinants exactly when del M has absolute value 1.

So now let us select any 2  2 complex matrix M for which [det M| = 1. Then UM is a linear
operator on H which preserves determinants. Define

TM = –1 UM .

Since  is an isomorphism, TM is a linear operator on R4. Also, TM is a Lorentz transformation; for

q(TM ) = q( –1UM )

= det ( –1UM )

= det (UM )

= det ( )

= q( )

and so TM preserves the quadratic form q.

By using specific 2  2 matrices M, one can use the method above to compute specific Lorentz
transformations.

Self Assessment

1. Suppose M belongs O(n, C). Let

yi = 
1

n

ik k
k

M x
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2

1

n

i
i

y = 
2

1

n

j
j

x

2. If M be an n  n matrix over C with columns M1, M2, ... Mn. Show that M belongs to O(n, c)
if and only if

M+j Mk = jk.

12.3 Summary

 In this unit certain groups preserving the bilinear forms is studied and seen that these set
of groups is isomorphic to the n × n pseudo orthogonal group when the bilinear form is
non-degenerate.

 The examples of rotation and Lorentz transformations that preserve certain bilinear forms
are studied.

12.4 Keywords

Orthogonal group: The group preserving f given by

f( , ) = 
1

n

i i
i

x y

for  = (x1, x2, ... xn),  = (y1, y2, ... yn), is called the n-dimensional (real or complex) orthogonal
group.

Pseudo-orthogonal Group: For a non-degenerate bilinear form f on R4 with quadratic form

q(x1, x2, ... xn) = 2 2

1 1

p n

j i
j i p

x x

the group of matrices preserving a form of this type is called pseudo-orthogonal group.

12.5 Review Questions

1. Let f be the bilinear form on C2 defined by f[(x1, x2), (y1, y2)] = x1y2 – x2y1

show that

(a) if T is a linear operator on C2, then f(T , T ) = (det T) f( , ) for ,  in C2

(b) T preserves f if and only if det T = +1.

2. Let T be a linear operator C2 which preserves the quadratic form x1
2 – x2

2 Show that

det T = 1.

12.6 Further Readings

Books Kenneth Hoffman and Ray Kunze, Linear Algebra

Michael, Artin Algebra
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