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Sachin Kaushal, Lovely Professional University —Unit 1: Differentiation and Integration: Differentiation of Monotone Functions

Unit 1: Differentiation and Integration: Differentiation Notes
of Monotone Functions
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1.5 Further Readings

Objectives

After studying this unit, you will be able to:

o Understand differentiation and integration

° Describe Lipschitz condition and Lebesgue point of a function
° State Vitali’s Lemma and understand its proof.

° Explain four Dini’s derivatives and its properties

° Describe Lebesgue differentiation theorem.

Introduction

Differentiation and integration are closely connected. The fundamental theorem of the integral
calculus is that differentiation and integration are inverse processes. The general principle may
be interpreted in two different ways:

1. If f is a Riemann integrable function over [a, b], then its indefinite integral i.e.
F : [a, b] = R defined by F (x) = J.f (t)dt is continuous on [a, b]. Furthermore if f is

a

continuous at a point x_€ [a, b], then F is differentiable thereat and F’(xo0) = f (x).

2. If f is Riemann integrable over [a, b] and if there is a differentiable function F on [a, b] such
that F'=f(x) for x € [a, b], then

Jf(t)dt ~F(x)-F (a) [a<x<b].
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Notes

1.1 Differentiation and Integration

1.1.1 Lipschitz Condition

Definition: A function f defined on [a, b] is said to satisfy Lipschitz condition (or Lipschitzian
function), if 3 a constant M > 0 s.t.

f()-f ()] <M [x-y|, Vxye€ [a b]
1.1.2 Lebesgue Point of a Function

Definition: A point x is said to be a Lebesgue point of the function f (t), if

X+

Lim% ") - £(x)|dE =0.

h—0

1.1.3 Covering in the Sense of Vitali

Definition: A set E is said to be covered in the sense of Vitali by a family of intervals (may be open,
closed or half open), M in which none is a singleton set, if every point of the set E is contained in

some small interval of M i.e., for each x € E, 3and € > 0, an interval l € M s.t. x € I and /() <e.

The family M is called the Vitali Cover of set E.

’ Example: If E = {q : q is a rational number in the interval [a, b]}, then the family [I qu

where [Iqi]z [q—l,q+l}, i € N is a vitali cover of [a, b].
i i

Vitali's Lemma

Let E be a set of finite outer measure and M be a family of intervals which cover E in the sense of
Vitali; then for a given ¢ > 0, it is possible to find a finite family of disjoint intervals {I,, k =1, 2,
... n} of M, such that

m*{E—QIk} <e.

Proof: Without any loss of generality, we assume that every interval of family M is a closed
interval, because if not we replace each interval by its closure and observe that the set of end
pointsof L, I, ...... I, has measure zero.

[Due to this property some authors take family M of closed intervals in the definition of Vitali’s
covering].

Suppose 0 is an open set containing E s.t. m* (0) < m* (E) + 1 <eo we assume that each interval in
M is contained in 0, if this can be achieved by discarding the intervals of M extending beyond 0
and still the family M will cover the set E in the sense of Vitali.

Now we shall use the induction method to determine the sequence <I, : k=1, 2, ... n> of disjoint
intervals of M as follows:

LOVELY PROFESSIONAL UNIVERSITY



Unit 1: Differentiation and Integration: Differentiation of Monotone Functions

Let I, be any interval in M and let ¢, be the supremum (least upper bound of the lengths of the Notes

intervals in M disjoint from I, (i.e., which do not have any point common with I,).

Obviously ¢, <eoas £, <m (0) < eo.

Now we choose an interval I, from M, disjoint from I, such that ¢(I,)> %21. Let 7, be the

supremums of lengths of all those intervals of M which do not have any point common with I,

or I, obviously /, <o,

In general, suppose we have already chosen r intervals I, I, ... I (mutually disjoint). Let ¢, be

the supremums of the length of those intervals of M which do not have any point in common

with U I; (i.e, which do not meet any of the intervals I, L, ... I. Then £, <m (0) < ce.

i=1

Now if E is contained in U I, , then Lemma established. Suppose U I, cE. Then we can find

i=1 i=1

interval I s.t. ¢(I,)> lfr which is disjoint from I, L, ... L.

r+1 2 T

Thus at some finite iteration either the Lemma will be established or we shall get an infinite

sequence <I > of disjoint intervals of M s.t. /(I ,)> %(r and / <eo,n=1,2,3...

r+1

Note that </ > is a monotonically decreasing sequence of non-negative real numbers.

Obviously, we have that U [Lc0= 2((( .)<m(0) <o hence for any arbitrary € > 0, we can
i=1 r=1

find an integer N s.t.

N
LetasetF = UIf'

r=1

N
The lemma will be established if we show that m* (F) < €. For, let x € F, then x ¢ U I, = xisan

r=1

N
element of E not belonging to the closed set U I, = Janinterval [ in M s.t. x € Tand /(I) is so

r=1

N
small that I does not meet the U I, ie.

r=1

InL =¢, Vr=1,2,..N.

Therefore we shall have ((I)<¢<2/((I,.,) as by the method of construction we take

1
[(In+1) s EZN :
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Notes

Italso I NI ,, = ¢, we should have ¢(I)</,,. Further if the interval I does not meet any of the

intervals in the sequence <I >, we must have
()¢, Vr
which is not true as ¢, <2/(I_,,)>0asr — oo,

= I must meet at least one of the intervals of the sequence <I >. Let p be the least integer s.t. I
meets Ip. Thenp>Nand /(I)</¢ o1 <20 (Ip). Further let x e Taswell x € Ip, then the distance of x

from the mid point of I is at most

Z(I)+%£(€p) < 2z(1p)+%4(1p) =§z(lp)

Thus if I is an interval having the same mid point as I but length 5 times the length of I, i.e.
£(J,)=5((1,) . Then x € ] also.

Thus for every x € F,Jan integer p > Ns.t. x € ]|

and /(J,)=5¢((1,) . Also

FCEJJP

p=N+1
N N £
= m*(F)s2€(]p)=52€(1p)<5-g=8
p=N+1 p=N+1

and hence the Lemma holds good.
1.1.4 Four Dini's Derivatives

The usual condition of differentiability of a function f (x) is too strong. Here we are studying the
functions under slightly weaker condition (measurability). So why we define four quantities,
called as Dini’s Derivatives, which may be defined even at the points where the function is not
differentiable.

1. D*f (x) = Won w , called upper right derivative
. f(x+h)-f(x) , L
2. D, f(x) = Th-alIUn T hn called lower right derivative
: _ ——f(x+h)-f(x)
3 D-f (x) = Lim N ,

or Lim &;—f(x) , called upper left derivative

‘. D10 - pip &#00
or Lim w , called lower left derivative
h—04 —
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Unit 1: Differentiation and Integration: Differentiation of Monotone Functions

Notes

1. Df(x)2D,f(x)and Df(x)>Df(x)

If D* f (x) = D, f (x), then we conclude that right hand derivative of f (x) exists at the
point x and denoted by {” (x*). Similarly if D- f (x) = D_f (x), we say that f (x) is left
differentiable at x and denote this common value by {" (x).

2. The function is said to be differentiable at x if all the four Dini’s derivatives are equal
but different than * e, i.e. if

D'f(x)=D, f(x) =D f(x) =D f(x)#+oo

and their common value is denoted by {” (x).

Properties of Dini's Derivatives

1. Dini’s derivatives always exist, may be finite or infinite for every function f.
2. D*(f+g)<D"f+ D*g with similar properties for the other derivatives.
3. Iff and g are continuous at a point ‘x’, then
D' (f.g) (})<f () D" g (x) +g () D' (x).
4. D, f(x)=-D"(-f(x))
and D_f (x) =- D (- f (x)).

5. Iffisa continuous function on [a, b] and one of its derivatives (say D*) is non-negative on
(a, b). Then f is non-decreasing on [a, b] i.e.

f (x) <f (y) whenever x <y, y € [a, b].

6. If f is any function on an interval [a, b], then the four derivatives if exist are measurable.
1.1.5 Lebesgue Differentiation Theorem

Statement: Let f : [a, b] — R be a finite valued monotonically increasing function, then f is
differentiable. Also f : [a, b] = R is L-integrable and

J.bf/(x) dx < f(b)—f(a) .

Proof: Define a sequence <f > of non-negative functions, where f_: [a, b] — R such that,

£ () = n[f(x+%)—f(x)},Vxe[a,b] (1)

and set f (x) = f (b), for x > b.

By hypothesis, f : [a, b] — Ris an increasing function, therefore f :[a, b] — R is also an increasing
function and hence integrable in the Lebesgue sense.

Again from (i) we have

fix+(1/n)}-f(x)

I:EE £, = 117?110 (1/n) /Vx€la,b],
={ (x), a.e.
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Notes

Thus, the sequence <f > converges to f' (x), a.e.

Using Fatou’s Lemma, we have

b b
f #(x)dx < Lim inf{J £(x) dx} ... (i)
b b 1
Again Liminf | f (x)dx = Lim infnj [f(x——)—f(x)}dx
n—eo a N—>oo a n

- Liminfn Uabf(x %) dx —Lbf(x) dx}

Putting t = x + (1/n), we get

b 1 b+(1/n) b+(1/n)
I f(x+—)dx - f f(t)dtzJ. £(x) dx
a n a+(1/n) a+(1/n)
[By the first property of definite integrals]

b b+(1/n) b
Liminf [ (x)dx =Liminfn|;|. f(x)dx—J. f(x)dx}

noe a n—e a+(1/n)

b+(1/n) a+(1/n)
- Lim inf n[ .[ £(x) dx .[ £(x) dx} .. (i)
n—ee b a
Now extend the definition of f by assuming
f(x) =f(b), Vxe [bb+1/n]

b+(1/n) bi(1/n) 1
= J' £(x) dx =J' £(b) dx = £ (b)
b b

n

Also f (a) < f (x), for x € (a, a +l), therefore
n

a+(1/n) a+(1/n) 1
J' £(x) dx zf f(a)dx=—f(a)
a n

a

a+(1/n) 1
= —I f(x)dx < ——=f(a)
a n
b be(1/n) a+(1/n)
(iii) = Liminf| f (x)dx = Liminf n“l f(b) dx + (—J. f(x) dxj
n—eo a n—oeo b a
. 1 1
< Lim inf n[f(b)~—+(——)f(a)} <f(b)-f(a)
e n n

Thus from (ii), we get

J.bf’(x) dx <f(b)-f(a)

= f'(x) is integrable and hence finite a.e. thus f is differentiable a.e.

LOVELY PROFESSIONAL UNIVERSITY



Unit 1: Differentiation and Integration: Differentiation of Monotone Functions

' Example: Let f be a function defined by f (0) = 0 and f (x) = x sin (1/x) for x # 0. Find

D* £ (0), D, f (0), D~ (0), D_f (0).

D*f(0) = Lim

= ﬁsinlzl,as—lsﬁnlsl
h h

Also D,  (0) =ﬁw:ﬁ5in%:—l

h—o" h h—o"

— 0) —
D£(0) = Jim =57 = =Lim “h
= ﬁ—sinlzl
h—o h
and D f(0) = I;ij?%;‘f@):%g? (—sin%)=—1

Theorem: Let x be a Lebesgue point of a function f (t); then the indefinite integral
F(x) =F (a) + J' £(t)dt

is differentiable at each point x and F” (x) = f (x).

Proof: Given that x is a Lebesgue point of f (t), so that

Il
o

heo

1 x+h
LimEJ‘ £(t) - £(x)|dt
Now lJ.th(x) dt = 1f(x)rhl dt=L£ ) [
hJ. h ‘ " h *

- %f(x).hzf(x)

Thus f(x) = %J.th(x) dt
Also F(x+h)-F (x) = rhf(t) dt—fxf(t) dt

= J.Xf(t)dt+J.X+hf(t)dt—'l.xf(t)dtzjwhf(t)dt
- F(x+h}3—F(x) _ %J.jhf(t)dt

LOVELY PROFESSIONAL UNIVERSITY
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Notes From (ii) and (iii) we have

(x+h}3 F6) g, ‘ ‘hj“" dt——j ‘

- %Lx+h[f(t x)]dt| < —f I£(t)- ()|t

Lim w_ f(x) < Lim % M\f(t)—f(x)\dt <0 [Using (i)]
or Lim W—f(x) <0 .. (iv)

Since modulus of any quantity is always positive, therefore

LimFOFR=F) ¢

h—o

>0 .. (V)

Combining (iv) and (v), we obtain

F(x+h) F(x) —f(x

h—»o )
- I]_,im F(x+h}2—F(x) = (x)
= F (x) =f(x).

Theorem: Every point of continuity of an integrable function f (t) is a Lebesgue point of f (t).

Proof: Let f (t) be integrable over the closed interval [a, b] and let f (t) be continuous at the
point x .

f (t) is continuous at t = x_implies that V & >0, 3a § > 0 such that,

[f(t)-f(x) | <e whenever [t-x_ | <3.

xoth Xo+h
- j |f(t)—f(x0)|dt<£I dt +eh whenever | h |<8.

x0+h
hLo ) |dt<e . (i)
Now h — 0= ¢ — 0. So from (i), we have
1 Xo+h

Lime | 1O -0 dt<0 . (i)

Xo+h
Now Lim | L[ "1 fx,) lat

o

x0+h
< Lim — j ) [dt=<0 [Using (ii)]

LOVELY PROFESSIONAL UNIVERSITY



Unit 1: Differentiation and Integration: Differentiation of Monotone Functions

or

Notes
Lim

h—o

1 Xo+h
o IRECEERIEE

0

=0 [- Modulus of any quantity is always non-negative]

1 Xo+h
Lim f I ()= f(x,)|dt|=0.

h—o

This shows that x_ is a Lebesgue point of f (t).

1.2 Summary

A function f defined on [a, b] is said to satisfy Lipschitz condition if 3 a constant M > 0 such
that
[ f(x)-f(y)<M |x-y]|, V x,y€ [a b].
A point x is said to be a Lebesgue point of the function f (t), if
Lim - [ e - folde <0 =0
h—o hJ,

Let E be a set of finite outer measure and M be a family of intervals which cover E in the
sense of Vitali; then for a given € > 0, it is possible to find a finite family of disjoint
intervals

{I,k=1,2,...,n} of M, such that

m*[E—UIk
k=1

Lebesgue differentiation theorem: Let f : [a, b] — R be a finite valued monotonically
increasing function, then f is differentiable. Also

<e.

f: [a, b] = R is L-integrable and

jf’(x) dx<f(b)-f(a).

a

1.3 Keywords

Dinni’s Derivatives: These are the ways to define the quantities to judge the
measurability of the functions even at the points where it is not differentiable.

Fundamental Theorem of the Integral: The fundamental theorem of the integral calculus is that
differentiation and integration are inverse processes.

Measurable functions: An extended real valued function f defined over a measurable set E is said
to be measurable in the sense of Lebesgue if set

E (f > a) = {x € E: f(x) > a} is measurable for all extended real numbers a.

Vitali's Lemma: Let E be a set of finite outer measure and M be a family of intervals which cover
E in the sense of Vitali; then for a given € > 0, it is possible to find a finite family of disjoint
intervals {I, k =1, 2, ... n} of M, such that

m*| E- Ik} <e.
=U
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Notes

1.4 Review Questions

1. If the function f assumes its maximum at ¢, show that D+ f (c) <0and D_f (c) 2 0.
2. Give an example of functions such that D* (f + g) # D* f + D*g.
3. Find the four Dini’s derivatives of function f : [0, 1] - R

such thatf (x)=0,if xe 0,if xe Qand f (x) =1,if x# Q.

4. Evaluate the four Dini’s derivative at x = 0 of the function f (x) given below:
ax sin21+bx COSzl, x>0
= X X
f09=1 1 .1
pxsin—+qxcos"—,x<0
X X

and f (0) =0, given thata <b, p<q.

5. Every point of continuity of an integrable function f (t) is a Lebesgue point of f (t). Elucidate.

1.5 Further Readings

N

Books J. Yeh, Real Analysis: Theory of Measure and Integration
Bartle, Robert G. (1976). The Elements of Real Analysis (second edition ed.)

ki

Online links  www solitaryroad.com/c756.html

www.public.iastate.edu/.../Royden_Real_Analysis_Solutions.pdf

LOVELY PROFESSIONAL UNIVERSITY
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Unit 2: Functions of Bounded Variation Notes

CONTENTS
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21.3 Functions of Bounded Variation - Definition
214 Theorems and Solved Examples

2.2 Summary

23 Keywords

2.4 Review Questions

2.5  Further Readings

Objectives

After studying this unit, you will be able to:

° Define absolute continuous function.

° Define monotonic function.

° Understand functions of bounded variation.

° Solve problems on functions of bounded variation.
Introduction

Functions of bounded variation is a special class of functions with finite variation over an
interval. In Mathematical analysis, a function of bounded variation, also known as a BV function,
is a real-valued function whose total variation is bounded: the graph of a function having this
property is well behaved in a precise sense. Functions of bounded variation are precisely those
with respect to which one may find Riemann - Stieltjes integrals of all continuous functions.

In this unit, we will study about absolute continuous function, Monotonic function and functions
of bounded variation.

2.1 Functions of Bounded Variation

2.1.1 Absolute Continuous Function

A real-valued function f defined on [a,b] is said to be absolutely continuous on [a,b], if for an

arbitrary e>0, however small, 3 a,8> 0, such that

< e,whereverz (b,-a,)<3,

r=1

it)-a)

LOVELY PROFESSIONAL UNIVERSITY 11
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Notes

where a, <b,<a,<b,<..<a <b ie, a’s and b’s are forming finite collection

{(ai,bi):i=1,2,...,n} of pair-wise disjoint (non-overlapping) intervals (or of disjoint closed
intervals).

Obviously, every absolutely continuous function is continuous.

=7|

Notes

° If a function satisfies ‘2 {£(b,)- f(ar)}‘ <&, even then it is absolutely continuous.

° The condition Z(br —a,)<38, means that total length of all the intervals must be

r=1

less than 3.

2.1.2 Monotonic Function

Recall that a function f defined on an interval I is said to be monotonically non-increasing, iff
x>y =f(x)<f(y),Vx,y€el

and monotonically non-decreasing, iff
x>y=f(x)2f(y),Vx,yel

Also f is said to be strictly decreasing, iff
x>y =f(x)<f(y)

and strictly increasing, iff

x>y =f(x)>f(y)

2.1.3 Functions of Bounded Variation - Definition

Let f be a real-valued function defined on [a,b] which is divided by means of points

a=Xx,<X, <X, <..<X, =Db.

Then the set P ={x,,x,,,,...X, } is termed as subdivision or partition of [a,b].

b n-1
Let us take V(f,P)= Y [f(x,.,)-f(x,), and \bi(f,P) = sup\bf(f,P) for all possible subdivisions P of
a r=0 a a

b
[a,b]. (This is called total variation of f over [a,b] and also denoted by I(f) ).

LOVELY PROFESSIONAL UNIVERSITY



Unit 2: Functions of Bounded Variation

Notes
b
If V(f) is finite, then f is called a function of bounded variation or function of finite variation

over [a,b].

Set of all the functions of bounded variation on [a,b] is denoted by BV [a,b].

|

Notes

If f is defined on R, then we define

oo

V(f)=1in V(f).

—o0 a—eo —a

Some important observations about the functions of bounded variations.
Let f: [a,b] > R and P be any subdivision of [a,b]. Then:
@) [f(x)-f(a)<V(f),xela,b]

(f)=0

—~
—
=3

=

ER )

b b
(iii) P,cP,= V(f,P)<V(f,P,), where P, and P, are any two subdivisions of [a,b].

=
=
> <o

b
(f,P) < V(f), for all subdivisions P of [a,b].

(v) For each £€>0, however small, 3 at least one subdivision P’ of [a,b] such that

V(EP)+e>V(E).
(vi) V(£)20.

(vii) a<b<e=V(H)<V(f).

2.1.4 Theorems and Solved Examples

Theorem 1: A monotonic function on [a,b] is of bounded variation.
Proof: Divide the interval [a,b] by means of points
a=X, <X, <X, <..<X, =b.

without any loss of generality, we can take f(x) as increasing function on [a,b]. Since if f is a
decreasing function, f is an increasing function and so by taking -f = g, we see that g is an
increasing function and so we are allowed to consider only increasing functions. Thus

X, <X

T r+1

=f(x,)<f(x,,)

LOVELY PROFESSIONAL UNIVERSITY 13
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Notes

Now V=Sf(x..)-f(x,)
r=0

=§; {f (xr+1 ) - f(xr )}[u sing (i)]

V=£(x,)-f(x,)=£(b)-f(a).

Now f is monotonic = f(b)and f(a) are finite quantities.

= V = a finite quantity independent of the mode subdivision. Hence f is of bounded variation.

=7|

Notes

If f is a monotonic function on [a,b], then

® o

(f)=[f(b)— £ (a)

Theorem 2: Let V, P, N denote total, positive and negative variations of a bounded function f on

[a,b]; then prove that
V =P+N, and P-N= f(b)-f(a).
Proof: Let the interval [a,b] be divided by means of points

a=X, <X, <X, <..<X, =b.

If P denotes the sum of those differences f(x,,,)-f(x,) which are +n for positive and -n for

negative, then obviously,
v=p+n,fb)-fl@)=p-n

Let P=supp,V=supv,N=supn,

where suprema are taken over all subdivisions of [a,b]. From (i), we have
v =2p + f(a) - f(b),
v =2n + {(b) - f(a).

Taking supremum in (iii) and (iv) and using (ii), we get
V =2P +f(a) - f(b),
V =2N + {(b) - f(a).

By adding and subtracting, (v) and (vi) give
V =P+N and {(b) - f(a) = P-N.

..(i)
...(i)

...(iii)
..(iv)

..(vi)

Theorem 3: If f, and f, are non-decreasing functions on [a,b], then f,—f, is of bounded variation on

[a,b].
Proof: Let f = f - f, defined on [a,b].

Then for any partition P = {a =Xy, Xy e X, = b}, we have
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Unit 2: Functions of Bounded Variation

Notes
E‘f(xi)_ f(xifl )‘ Sz‘fl (Xi)_ f (Xi—l )‘ + E‘fz (Xi ) -f, (Xi—l)‘
<[£(b)-f,(a)]+[£(b)-£(a)]
as f and f, are monotonically increasing.

(f) <f (b)+1£,(b)-1f,(a)—f (a), which is a finite quantity.

> <o

=

b
=  V(f) <o and hence f is of bounded variation.

Theorem 4: If £ e BV [a,b] and c€(a,b), then feBV [a,c] and feBV [c,b]. Also

= feBV [a,c] and similarly f e BV [c,b].
Now if P, and P, are any subdivisions of [a,c] and [c,b] respectively, then P=P UP,is a

subdivision of [a,b].

v

= V(£,P,)+V(£,P,)=V(EP)<V(F).

But P, and P, are any subdivisions. So taking supremums on P, and P,, we get

V(£)+V(£) < V(). (1)
Now let P={a=x,,X,,X,,...,x, =b} be a subdivision of [a,b] and ce[x, x|
=P, ={x,,X,,X;,--,X,,,c} and
P, ={c,X,, X,;1,X,.,--s X, } are the subdivisions of [a,c] and [c,b] respectively.
b -1 ul
Now Y(f,P) = g‘ ‘f (x;)—£(xi )‘ + ‘f(xr)— £(x,, )‘ + .gl‘f (x;)—£(xiy )‘
r-1 n
= ‘71‘f(xi)—f(xH)‘+‘f(x,)—f(c)+f(c)—f(xﬂ)‘+‘Zl‘f(xi)—f(xi4)‘
-1 n
s[ f(xi)—f(xi_l)‘+‘f(c)—f(xr_l)@+Uf(xr)—f(c)‘+‘_Zl‘f(xi)—f(xi_l)ﬂ
c b c b
<V(£,B,)+V(£,P,) < V(£)+ V()
...(ii)

(i) and (i) = V(£)=V(£)+ V(£).

c

LOVELY PROFESSIONAL UNIVERSITY 15
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Notes

|

Notes

° This theorem enables us to define a new function (called variation function) say
V(x)=V(f),¥ xe[a,b].

e Ifx>yinJab], then \y/(f):</(f)+{/(f)

a X

ie v(y) =v(x) + \v/(f)

X
= v(x) is an increasing function.
. If a<c, <, <..<c, <b,then

b

V()= V(O + V() +.. 4V (f)

a cq Ch

Corollary:

feBVJ[a,b]< feBV]a,c],

f e BV[c,Db] for each c €[a,b].
Theorem 5: If a function f of bounded variation in [a,b] is continuous at c €[a, b], then the function
defined by v(x) = \:/(f), is also continuous at x = ¢ and vice versa.
Proof: Suppose f is continuous at x = c. Hence for arbitrary € /2 >0, we can find a § such that
asc-§ <x<cor [x— c|<8 =|f(x)-f(c)<e /2 (1)
Also we know by remark (v) after the definition (2.1.3), for above €, we can get a subdivision

P= {azxo,xl,xz,...,xn :c}of [a,c]
st \C/(f)<\cl(f,P)+§ ...(ii)

Now choosing positive § >min[§,,c—x, ], we get that for any x such that c-3<x<c, we also
have x,, <x<x,.

n-1

HEYGHED)

f(xr)—f(xrq)‘+‘f(xn)_f(xn—1)‘+§

<g\f(xr)-f(xrl)\+\f(xn)—f(x)+f(x)-f(XH)‘Jr%
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Unit 2: Functions of Bounded Variation

= Vx st c-8<x<c,wehave v(c)-v(x)<e
= 1t v(x) =v(c).

x—=c-0

= v(x) is continuous on the left at x = c.

Notes

Similarly considering the partition of [c,b], one can show that v(x) is right continuous also at

x = ¢ and hence v(x) is also continuous at x = c.
Converse of the above Theorem

If v(x) is continuous at x=c=€c[a,b]so is f also at x - c.

Proof: Since v(x) is continuous at x = ¢, for arbitrary small €>0,3 a §> 0 such that

[v(x)-v(c)|<e,xe(c—8,c+8)

Now let ¢ < x < c+8.Then by Note (ii) of Theorem 4, we get

= V(x)=v(c)+Y(f)
- v(x)=v(e)=V(£) 2 [f(x)- £(c)]
= [f(x)=f(c)| <|v(x)-v(c)|<e [by ()]

Similarly, we can show that [f(c)—f(x)|<€,ifc -8 <x<c.

(ii) and (iii) show that f(x) is also continuous at x = c.

...(ii)

...(ii)

Theorem 6: Let f and g be functions of bounded variation on [a,b] ; then prove that f+g, f-g, fg and

f/g (‘ g(x)‘ >0> O,Vx) and cf are functions of bounded variation, ¢ being constant.

Proof:
(i) Setf+g=h,then

‘h(xm)— h(xr) = “:f (Xm) + g(xr+1 ):| - I:f(xr) + g(xr):”

where a = x <x,<x,<..<x =b
n

LOVELY PROFESSIONAL UNIVERSITY
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Notes

(if)

(iii)

=[[£(c) = £x) ]+ [8 (%) -8 (x)]
<[[£(x) - £(x) ]+ [8 (%) -8 (x)] -

n-1

h(xm)—h(x,)‘sg‘h(xm)—h(xr)

Now by hypothesis, f, g are functions of bounded variations.
b b
= V(f)and V (g)are finite.

(h) = a finite quantity.

l
s <o

Hence h = f + g is of bounded variation in [a,b].

Let h = f - g. Then as above,

<[E ()= £06) ]+ [ (x5 (%))

(%)= h(x)

= v (h) = a finite quantity.
Hence h = f - g is of bounded variation in [a,b].

Let h(x) = f(x).g(x). Then
[ (%) =R () = [ (%0 )-8 (%) - £ (x,) 8 (x,)

= ‘f(xm).g(xm)— f(Xr)g(xr+l)+ f(xr)g(xm)—f(xr)g(xr)

< ‘g(xﬁl )I:f(xrfl)_ f(xr):l

e[ (x)-g(x)]

[F(x1) = £(x.)

+f(x,)

S‘g(x”l) g(xn)—8(x)-

Let A= sup{\f(x)\ 1X€E [a,b]},
B= sup{\g(x)\ :X€E [a,b]},

()~ B ) S BJE ()~ £x) + Alg (x,.) g (x,)-

g\h(xm)—h(xr)SBg\h(xm) h(x,)+A 'g\g(xm) g(x,)
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Unit 2: Functions of Bounded Variation

. b b b Notes
ie. V(h)<B.V(f)+A.V(g).

= a finite quantity.

Hence h(x) = f(x).g(x) is of bounded variation in [a,b].
(iv) First, we shall show that 1/g is of bounded variation, where g(x)>0>0,Vx¢€[a,b].

Now, g(x)20>0,Vx€[a,b]

= £l>O,Vxe[a,b].
o

1
g(x)

Again, we observe that

8

Hence 7 is of bounded variation in [a,b].

Now f and 7 are of bounded variation in [a,b].

8

=f. 1 is of bounded variation in [a,b] [by case (iii)]

= £ is of bounded variation in [a,b].

(v) Do yourself. Note that \b/(cf)= \c\\bl(f)

i
Notes

Since BV [a,b] is closed for all four algebraic operations, it is a linear space.

Theorem 7: Every absolutely continuous function f defined on [a,b] is of bounded variation.

Proof: Since f is absolutely continuous on [a,b]; for e=1,3a §>0
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Notes

whenever Y,(b;—a,)<3,

i=1
and a=a, <b,<a,<b,<..<a <b, =D

Now consider another subdivision of [a,b] or say refinement of P by adjoining some additional
points to P in such a way that all the intervals can be divided into r parts each of total length less

than 9.

Let the r sub-intervals be [c,c ], [c,,c,],....[c,,c ] such that

a=c,c =band(c,—)<9§VvK=0,12,.,(-1)

Obviously, Y ‘f (X0) - £(xi11)

<1,wherex,,,,x,.€[c,,c,.,]

or V(f)<1, [Using (i)]

Hence V(£)=V(f)+V(f)+...+ V (f)<1+1+1+...+1=r= finite quantity.

0 ‘1 r-1

Hence, f is of bounded variation.

|

Notes

Converse of above theorem is not necessarily true. These exists functions of bounded
variation but not absolutely continuous.

Theorem 8: Jordan Decomposition Theorem

A function f is of bounded variation, if and only if it can be expressed as a difference of two
monotonic functions both non-decreasing.

Proof: Let f be the function of f:[a,b]— R.
CaseI. f € BV[a,b]. Then we can write

f=v-(v-1), ...(i)
so that f(x)=v(x)-(v(x)-£(x)),x€[ab].

Now if x, y € [a, b] such that x <y, then by the remark (ii) of theorem 4, we get

V(£)=V(£)+ V(D).

=v(x)< v(y) and hence v is a non-decreasing function on [a,b].
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Unit 2: Functions of Bounded Variation

Again, if x<y in [a,b], then as above Notes

=v(y)-f(y)2v(x)-f(x)=(v-f)y = (v—f)x

= v —f is also a non-decreasing function on [a,b].

Thus (i) shows that f is expressible as a difference of two monotonically non-decreasing functions.
Case II. Set g (x) and h (x) be increasing functions such that f(x) = g(x) - h(x).

Divide the closed interval [a,b] by means of points

a=x,<x<x<.<x=b.

Let V:E‘f(xr+l)—f(xr)
r=0

Now, we have that

£(xa) = £ ) = [ (%)~ h(x) = {8 (x.) = (x.)}
=[[g(x.)-g(x)]+[n(x.)~h(x..)]
<[g(xa) =g (%) +[h(x)~h(x..)
<[g(x1)-g(x ) +[h(x..)-h(x)

Now, g(x) and h(x) are monotonically increasing functions, so that g(Xm)—g(Xr)ZO

and h(x,,,)-h(x,)=0

=g (%) -8(x) =8(xn)-8(x,)

and ‘h(xﬁ1 )-h(x,)

=h(xm)—h(xr).

Hence ‘f(xm)—f(xr)

<[g(xa)-gx)]+[h(x.1)~h(x)]

nZlf(XM)—f(Xr) < nzl[g(xm)—g(xr):“ i[h(xm)_h(xr):l

n-1

Now D [8(x1)=8(x)]=[g(x)=8(x)+[g(x) =g () J+ot o [ x,) -8 x,.)]

(b)-g(a) (v x,=bx,=a)

Similarly, nZ[h(xm )-h(x,)]=h(b)-h(a).

n-1

Hence M [f(x..)-f(x,)]<g(b)-g(a)+h(b)~h(a).
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Notes

since f is finite in [a,b] Now = g(b),g(a)h(b), h(a) are finite numbers.
n-1

Z[f(xm )=h(x,)]<e
r=0

= V(f) <eo.

a

= fis a function of bounded variation. Alternatively, since g (x) and h(x) are both non-decreasing,
so by theorem 3, g(x) - h(x) and hence f(x) is of bounded variation.

Corollary: A continuous function is of bounded variation iff it can be expressed are as a difference
of two continuous monotonically increasing functions. It follows from the results of Theorems
5and 8.

Theorem 9: An indefinite integral is a function of bounded variation, i.e. if f€L[a,b] and F(x) is

indefinite integral of f(x) i.e. F (x) = J.f (t)dt, thenF e BV[a,b].Also show that

X

{/(f)s.[\f\.

a

Proof: Since f€L[a,b], also |f|€L[a,b].

Let P ={x,:1=0,1,2,..,n}be a subdivision of the interval [a,b]. Then
X Xi-1
Ji- s

a

2 ‘F (Xi ) -F (X1—1 )‘ :2

i=1

X

=2 I f szn: J. If]
= =1,

b
=j\f\<oo.

a

b

= feBV[a,b]and V(£,p)= [l

Further above result is true for any subdivision of P of [a,b]. Therefore taking supremum, we get

j(f)sjf.

a a
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Notes
' Example: A function f of bounded variation on [a,b] is necessarily bounded on [a,b] but

not conversely.

X b
Solution: If x€[a,b], then [f(x)~f(a)[= V()< V(f)<eo

= -V(£)<f(x)~f(a) < V()

» <o

(f)<f(x)<

» <o

(F)+£(a)

=f(a)-

= f(x)is bounded on [a,b]

For the converse, define the function f on [0,1] by

0,if x=0

£(x) =
() x.sin(E),ifO<xS1
X

since 0<x<land-1< sin(E) <1, the function f is obviously bounded. Now consider the
X

partition

P={0, 2 2 ,...,3,%,%,1}0f[o,1]
2n+l 2n-1 7 53

Where n eN. Then we get

V(£,P) =‘f(i)—f(o)‘+...+ f(gj—f(g)‘+‘f(1)—f(3)‘
; 2n+1 3) 5 3
2 2
= -1) =0|+...+|=(-1)-=.1j+|0-=(-1
et () 1)
2 (2 2) 2
= RS e B et
2n+l 375)73
=4.(1+1+...+ ! )
3 5 2n+1
1

But we know that series 2 is divergent. Therefore letting n — - we get that

2n+1
1 1
\Ol(f) =1t \O/(f,P) =0

= f is not of bounded variation.
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Notes

' Example: Show that the function

. T,
xsin—if (0 <x <£2), )
X is continuous

f(x)=
0,if x=0

without being of bounded variation.
or

show that there exists a continuous function without being of bounded variation.
Solution: We know that 1t £(x)=0=£(0)

= f(x) is continuous but not of bounded variation (see converse of above example.)
Hence the result.

Problem: Show that if f exists and is bounded on [a, b], then f € BV [a, b].

Solution: According to given, let || <M on [a, b].

Then for any X, , x; € [a, b], we get

f(xi) _f(xi—l)

X; =X

<M :>| f(xi) _f(xi—l) |S M(Xi _XH)

= for any partition P of [a, b],

VO MY (x -x.,)=M(b-2)

= fe BVIa b].

Problem: Show that the function f defined as
.1
f(x)=x"sin—for0<x<1,£f(0)=0,p=2.
X
is of bounded variation [0, 1].

(0+h)? sinl—O
h

Solution: Note that RF'(0) = [th_)n;’l o

= Limh®™® sinl =0
h

h—o

(=h)? sin(—%) -0
and L{’(0)=lim———————
h—o —-h
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Unit 2: Functions of Bounded Variation

Notes
4 ’ P 1 1 p-1 s 1
= f(0) = 0and f'(x) = X" cos—| —— [+ px* sin—
x\ x X
.1 1
N f/(X) = xP2 |:pX sm; - COS;i| , for0<x<1
= f'(x) is bounded for 0 < x < 1.

According to above problem, f € BV [0, 1].

2.2 Summary

. A real-valued function f defined on [a,b] is said to be absolutely continuous on [a,b], if for

an arbitrary €>0, however small,3a,5>0,s.t.

<€ wheneverZ(br -a)<3§,

r=1

Yite)-f(a,)

where a, <b, <a,<b,<..<a <b,

° A function f defined on an interval I is said to be monotonically non-increasing, iff

x>y=f(x)< f(y),Vx,yel.

and monotonically non-decreasing, iff x >y = f(x), > f(y) V x, ge L

n-1
. Let G(f,P):Z‘f(xm)—f(xr)‘, and \b/(f)=sup\b](f,l)) for all possible subdivisions P of
a —ry a a
b
[a,b]. If \a/(f) is finite, then f is called a function of bounded variation over [a,b].

2.3 Keywords

Absolute Continuous Function: A real valued function f defined on [a, b] is said to be absolutely
continuous on [a, b], if for an arbitrary € > 0, however small, 3 a, § > 0, such that

Y If(b,)~f(a,)| <&, wherever Y (b, -a,)<3
r=1 r=1

wherea, <b,<a,<b,<...<a <b ie. a’sandb,’s are forming finite collection {(a, b)) :1=1, 2,
..., n} of pair-wise disjoint intervals.

Continuous: A continuous function is a function f:X—Y where the pre-image of every open
set in Y is open in X.

Disjoint: Two sets A and B are said to be disjoint if they have no common element, i.e. ANB=¢.
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Notes Monotonic Decreasing Function: A monotonic decreasing function is a function that either
decreases or remains the same, never increases i.e. a function f(x) such that f(x,) < f(x,) for x, > x,.

Monotonic Function: A monotonic function is a function that is either a monotonic increasing or
monotonic decreasing.

Monotonic Increasing Function: A monotonic increasing function is a function that either
increases or remains the same, never decreases i.e. a function f(x) such that f(x,) > f(x,) for x, > x,.

2.4 Review Questions

1.  Show that sum and product of two functions of bounded variation is again a function of
bounded variation.

2. Show that the function f defined on [0,1] by

xcos(ﬂ)for 0<x<1
f(x)= 2
0forx=0

is continuous but not of bounded variation on [0,1].

. (m
3. Show that the function f defined on [0,1] as f(x) = XS (;) for x >0, £(0)=0is continuous but

is not of bounded variation on [0,1].

4. Define a function of bounded variation on [a,b]. Show that every increasing function on
[a,b] is of bounded variation and every function of bounded variation on [a,b] is
differentiable on [a,b].

5. Show that a continuous function may not be of bounded variation.
6.  Show that a function of bounded variation may not be continuous.
7. If f is a function such that its derivative f exists and is bounded. Then prove that the

function f is of bounded variation.

2.5 Further Readings

N

Books Halmos, Paul (1950), Measure Theory, Van Nostrand and Co.

Kolmogorov, Andrej N.; Fomin, Sergej V. (1969). Introductory Real Analysis, New
York: Dovers Publications.

A
Y.

Online links WWW.ams.org

www.whitman.edu/mathematics/SeniorProjectArchive/.../ grady.pdf
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Unit 3: Differentiation of an Integral Notes

CONTENTS

Objectives

Introduction

3.1 Differentiation of an Integral
3.2  Summary

33 Keyword

3.4 Review Questions

3.5  Further Readings

Objectives

After studying this unit, you will be able to:

° Define differentiation of an integral.
° Solve problems related to it.
Introduction

If f is an integrable function on [a, b], we define its indefinite integral to be the function F defined
on [a, b] by

F(x) = j.f(t) dt

Here, it is shown that the derivative of the indefinite integral of an integrable function is equal
to the integrand almost everywhere. We begin by establishing some lemmas.

3.1 Differentiation of an Integral

If f is an integrable function on [a, b] then f is integrable on any interval [a, x] C [a, b]. The
function F given by

F(x)=J‘f(t)dt+c,

where c is a constant, called the indefinite integral of f.

Lemma 1: If f is integrable on [a, b] then the indefinite integral of f namely the function F on

[a, b] given by F (x) = Jf (t) is a continuous function of bounded variation on [a, b].

Proof: Let x_ be any point of [a, b].
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Notes

= j'f(t)dt—]gf(t)dt

a a

Then [F(x)~F(x,)

X

- ff(t)dt+j.f(t)dt

a

a

- If(t)dt+jf(t)dt

Xo

- ff(t)dt

IN

f|f(t)|dt

But f is integrable on [a, b]
= |f] is integrable on [a, b]
[Since we know that measurable function f is integrable over E iff |f| is integrable over E]

Given € >0, 3 8 > 0 such that for every measurable set A C [a, b] with m (A) < §, we have

f| f|< e by theorem, “if f is a non-negative function which is integrable over a set E, then
A

given € > 0, there is a § > 0 such that for every set A c E with m (A) <$§, J.f <e.”
A

= <g, for [x-x | <4.

j|f(t)|dt

= |FR-F(x)| = J.f(t)dt < Jllf(t)|dt <e
whenever |x -x_| <3.
=  |F(x)-F(x )| <ewherever |x-x_| <8

=  Fis continuous at x_ and hence in [a, b].
Now we shall show that F is a function of bounded variation.
LetP={a=x <x, <x,<...<x_ = b} bea partition of [a, b].

Then

I £(t) dt

Xi-1

PILOSOBIEDY

n
i=1
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Unit 3: Differentiation of an Integral

Notes

n

$2T|f(t)|dt

=1 iy

b
- f|f(t)|dt
b
5 T'E) < [Irdt
But |f| is integrable therefore.
b
f|f|dt < oo
= T)(F) <e
= F ¢ BV [a, b]

Hence the Proof.

Theorem 1: Let f be an integrable on [a, b].
Tf .[f(t)dt —0V xe[a,b] then f=0ae. in [a, b].

Proof: Let if possible, f # 0 a.e. in [a, b].

Let f (t) > 0 on a set E of positive measure, then there exists a closed set F c E with m (F) > 0.
Let A=(a, b)-F.

Then A is an open set.

Now j.f(t)dtz J' £()dt

a AUF

But J' f(t)dt=0

- J.f(t)dt+ff(t)dt:0

R J.f(t)dt+.[f(t)dt=0 N J.f(t)dt=—.|.f(t)dt
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Notes But f (t) > 0 on F with m (F) > 0 implies

J.f(t)dt;tO

F

Therefore If(t) dt#0
A

Now, A being as open set, it can be expressed as a union of countable collection {(a_, b )} of
disjoint open intervals as we know that an open set can be expressed as a union of countable
collection of disjoint open intervals.

Thus ff(t)dt:ZTf(t)dt

But If(t) dt#0
A

= ZTf(t)dt:tO

bn
= jf(t)dt#O for some n
= either J.f(t) dt#0

bn
Or ff(t) dt#0

In either case, we see that if f is positive on a set of positive measure, then for some x € [a, b] we
have

'[f(t) dt#0.
Similarly if f is negative on a set of positive measure we have
J.f(t) dt#0.

But it leads to the contradiction of the given hypothesis. Hence our supposition is wrong.
f=0a.e.in [a, b].

Hence the proof.
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Theorem 2: First fundamental theorem of calculus statement: If f is bounded and measurable on Notes

[a, b] and F (x) = If(t) dt + F (a), then F’(x) = f (x) a.e. in [a, b].

Proof: Since every indefinite integral is a function of bounded variation, therefore F (x) is a
function of bounded variation over [a, b]. Thus F (x) can be expressed as a difference of two
monotonic functions and since every monotonic function has a finite differential coefficient at
every point of a set of non-zero measure, therefore F (x) has a finite differential coefficient a.e. in
[a, b]. Now F is given to be bounded;

If] <M (say) ()
Let f () = FXHR)ZFR)
h
withh= 1.
X
Then [f ()| = %(F(x+h)—F(x)
_ % .[f(t)dt—ff(t)dt
- % J.f(t)dt+ff(t)dt
_ ;(J.f(t)dt+ff(t)dtJ
B 1 x+h
== If(t)dt
But If] <M
[f.(x)] < % dt=—(x+h-x)
- 6091 < 30
= £ ()] <M

Since f_(x) > F" (x) a.e.,
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then the bounded convergence theorem implies that
_[F’(X) dx = lim | E,(x) dx

a a

- lim % J' [F(x + h)— F(x)] dx

= lim [111 f [F(x)dx —% j F(x) dx]

X a

=F()-F()

= J.f (t)dt, by hypothesis

{ F(x)= j'f(t) dt+F(a) = F(x)-F(a) = jf(t) dt]

a

or J[F’(t) (1)) dt =0, Vx

a

= F'(x) -f (x) =0a.e.in[a, b]

Hence F’(x) =f(x) a.e. in [a, b] by the theorem, “If f is integrable on [a, b] and Jf (t)dt =0, Vxe[a, b]

thenf=0a.e.in [a, b]”.
Hence F’ (x) = f (x) a.e. in [a, b].

Hence the proof.

Theorem 3: If f is an integrable function on [a, b] and if F(x) = J.f (t)dt +F(a) then F'(x) = £ (x) a.e.
in [a, b]. ’
Proof: Without loss of generality, we may assume that f (x) >0 V x

Let us define a sequence {f } of functions

f :[a, b] = R, where

f(x)if f(x) <n,
flx ={ nif f(x) > n

n

Clearly, each f_is bounded and measurable function and so, by the theorem,

Let f be a bounded and measurable function defined on [a, b]. If F(x) = J.f (t)dt + F(a), then F'(x)

=f(x) a.e. in [a, b]”, we have

d X
— | £ =f L.
[t =t mae
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Unit 3: Differentiation of an Integral

Also, f-f >0 Vn, and therefore, the function G_ defined by Notes

X

G.(9=[(-1,)

a

is an increasing function of x, which must have a derivative almost everywhere by Lebesgue
theorem and clearly, this derivative must be non-negative.

X

Since G, (x) = _[(f -f)

a

- If(t)dt—jfn (t)dt

X

- J.f(t)dt _ Gn(x)+j.fn(t)dt

a

Now the relation

F(x) = J.f(t)dt+F(a) becomes

F () = G, =[f,()dt+FG),

= F(x) = GL(x)+£,(x)ae.

>f (x)a.e. Vn.

since n is arbitrary, we have

> JF'(X) dx > jf(x) dx (1)
Also by the Lebesgue’s theorem, i.e. “Let f be an increasing real-valued function defined on
[a, b].

Then f is differentiable a.e. and the derivative f’ is measurable.

b
and Jf’ (x)dx <f (b) - f ()", we have

'[F’(x)dx <F (b) -F (a) Q)

a
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But F(x) = _[ £(t)dt+F(a)

Therefore (2) becomes

b

JF’ () dx < .ff(x) dx .. 0)
From (1) and (3), we get

jF’ (x)dx = .[ f(x) dx

b b
- JF'(X) dx —Jf(x) dx =0
b
N J' [F'(x) - f(x)]dx =0
since F'(x) - f(x) =0 a.e., which gives that

F'(x) -f(x) =0a.e.and

S0 F'(x) =f(x) a.e.
3.2 Summary
° If f is an integrable function on [a, b] then f is integrable on any interval [a, x] C [a, b]. The

function F given by
F(x)= j.f(t) dt+c,
where c is a constant, called the indefinite integral of F.
° Let f be an integrable on [a, b]. If jf(t) dt=0Vxe€[a,b]thenf=0a.e. in [a, b].

3.3 Keyword

Differentiation of an Integral: If f is an integrable function on [a, b] then f is integrable on any
interval [a, x] C [a, b]. The function F given by

F(x)=J.f(t)dt+c,

where c is a constant, called the indefinite integral of f.
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3.4 Review Questions Notes

1. If f is an integrable function on [a, b] and if F (x) = ~"f(t) dt+F(a) then check whether

F'(x) = f (x) is absolute continuous function in [a, b] or not.

2. If F is an absolutely continuous function on [a, b], then prove that F (x) = Jf (t)dt+C where

f=F a.e.on [a, b] and C is constant.
3.5 Further Readings

N

Books Flanders, Harley. Differentiation under the Integral Sign

Frederick S. Woods, Advanced Calculus, Ginn and Company

David V. Widder, Advanced Calculus, Dover Publications Inc., New Edition
(Jul 1990).

a
Y. 4,
Online links ~ www.physicsforums.com > Mathematics > Calculus & Analysis

www.sp.phy.cam.ac.uk/~ alt 36/ partial diff.pdf
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Unit 4: Absolute Continuity
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4.5 Further Readings

Objectives

After studying this unit, you will be able to:

) Define Absolute Continuous function.

o Solve problems on absolute continuity

o Understand the proofs of related theorems.
Introduction

It may happen that a continuous function f is differentiable almost everywhere on [0,1], its
derivative f’ is Lebesgue integrable, and nevertheless the integral of f* differs from the increment
of f. For example, this happens for the Cantor function, which means that this function is not
absolutely continuous. Absolute continuity of functions is a smoothness property which is
stricter than continuity and uniform continuity.

4.1 Absolute Continuity

4.1.1 Absolute Continuous Function

A real-valued function f defined on [a,b] is said to be absolutely continuous on [a,b], if for an

arbitrary €>0, however small, 3 a,3 >0, such that

Do)~

where a, <b,<a,<b,<..<a <b ie. a’s and b/s are forming finite collection

<€ whenever 2 (b,—a,)<3,

r=1

{(a;,b,):i=1,2,..,n} of pair-wise disjoint intervals.

Obviously, every absolutely continuous function is continuous.
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Notes
]|

Notes

1. If a function satisfied ‘Zf (b,)~f(a,)| <€, even then it is absolutely continuous.

2. The condition E(bf —a,) <8 means that total length of all the intervals must be less

r=1

than §.

4.1.2 Theorems and Solved Examples

Theorem 1: Every absolutely continuous function f defined on [a,b] is of bounded variation.

Proof: Since f is absolutely continuous on [a,b]; for e=1, 3 a 8> 0 such that

<1,

D e(b)-t(a)

whenever Z(bi -a,)<39,

r=1

and a=a, <b, <a,<b,<..<a <b, =b.

Now consider another subdivision of [a,b] or say refinement of P by adjoining some additional
points to P in such a way that all the intervals can be divided into r parts each of total length less
than §.

Let the r-sub-intervals be [Cofcl]/[cucz]r~--r[CHrC,] such that

a=c,,c,=band (ck+l —ck) <3§,vk=0,1,2,..,(r-1)

<1,

Obviously, Z‘f(xm)—f(xi)

where x, x, € [Ck/Ck+1]

or V' (1) <1,

“k

b &1 &2 r
Hence V(f)=V(f)+ V(f)+..+ V (f)<1+1+..+1=r = finite quantity.

0 €1 Cr-1

Hence f is of bounded variation.
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=7|

Notes
Converse of above theorem is not necessarily true. There exists functions of bounded
variation but not absolutely continuous.

f(x).g(x) are also absolutely continuous functions. Hence show that o (x

Theorem 2: Let f(x) and g(x) be absolutely continuous functions, then prove that f(x)*g(x) and

f(x)
)

(if‘g(x) > O,Vx‘) is also

absolutely continuous function.
Proof: Given f(x) and g(x) are absolutely continuous functions on the closed interval [a,b],

therefore for each €>0, there exists § >( such that

<€ and

Yite)-tla,)

<€,

Ds(b)-s(a)

whenever Z(br —a,) <3, for all the points a,,b,,a,,b,,...,a,,b, such that

r=1

a, <b,<a,<b,<..<a <b,.

O Wehave, Y[i(b)zg(b)]-[fla)2ea ]=D0)-1(a ) glb)-s(a,)

Now if Z(br —a,)<3d,then
r=1

rzn;f(br)—f(ar) <§ andzg(b,)—g(ar) <§
.-,Z“:f(b,)i'g(br)]_[f(ar)ig(ar)] <§+ % .

n

whenever Z(br -a,)<8.

r=1

This show that [f(x)+g(x)]are also absolutely continuous functions over [a,b].
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. Notes
(ii) We have Z‘f(br)g(br)—f(ar)g(ar)

- (e g0 -£lb)gla ) +(b.)gla)-f(a gl )

- 3o s(0)-gla)Jrgla [1(0)-f(a.)]

Sg‘f(br)[g(br)—g(ar)]

=Y Jela (0]

ggwb,)\\g(b,)—g(a,)

+2g(ar)

Now every absolutely continuous function is bounded therefore f(x) and g(x) are bounded
in the closed interval [a,b].

f(b,)-£(a,).

Let |f(x)|<K,,

g(x)|<K,,Vxe[a,b].

Then we have

<K e +[K,| e=e (K |+ [K,|),

D i(e)g(b)-f(a)s(a.)

Whenever 2‘(bI -a ) <d.
r=1

Setting e(‘K1‘+‘K2‘)= €%,

< =€*,

We have i\f(br)g(b,)—f(ar)g(ar)

n

Whenever Z(br -a,)<3§,

r=1
where a, <b, <a, <b,<..<a <b;
= Product of two absolutely continuous functions is also absolutely continuous.

(iii) We have |g(x)>0Vx€[a,b]|; therefore

|g(x)|= p, where p>0,Vxe[a,b].
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Sl 1 1| a €
Now ;\g(br) g(a,)| 2\ g(b)g(a,) | p*’

Y . €
Whenever E(br -a,)<d. Settmgg= €%, we get

r=1

This show that % is absolutely continuous function over [a,b].
g(x

1
g(x)

Now £(x), are absolutely continuous.

= f(x),% is absolutely continuous.
g(x

— % is also absolutely continuous over [a,b].
g(x

Hence the theorem is true.

|

Note

By Theorem 1, its remark and above theorem it follows that set of all absolutely continuous
functions on [a,b] is a proper subspace of the space BV [a,b] of all functions of bounded
variation on [a,b].

Theorem 3: If € BV[a,b], then f is absolutely continuous on [a,b], iff the variation function

b <

v(x) = V(f)is absolutely continuous on [a,b].

Proof: Case I: Given v(x) is absolutely continuous.

= For arbitrary €>0,38> 0 s.t.

-a,)<3d.

T

<¢e,whenever E(b

r=1

Sfvlb)-vla)

Also, we know that |f(x)—f(a)|< \j/(f) =v(x)
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<e€

R Z‘V(bi)—v(ai)

= v(x)is absolutely continuous.

Theorem 4: A necessary and sufficient condition that a function should be an indefinite integral
is that it should be absolutely continuous.

Proof: Condition is sufficient.
Let f(x) be an absolutely continuous function over the closed interval [a,b].

Therefore f is of bounded variation and hence we can express f(x) as

where f (x) and f,(x) are monotonically increasing functions and hence both are differentiable.

<e wheneverz (b,—a,)<38

r=1

<Y lv(b)-v(a)

=f is also absolutely continuous on [a,b].

Case II: Given f is absolutely continuous on [a,b].

= for a given €>0,3ad>0s.t.

o)-t(a)

<e -.(0)
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for every finite collection P{]ai,bi[, i= 1,2,...,n} of pairwise disjoint sub-intervals of [a,b] such
that Z(b" -a;) <4.

i=1
Now, let P, {]xi,l,bxid[,k = 1,...,mi} be a finite collection of non-overlapping intervals of the
interval [a,b].

Then the collection {]x,’;_l,bx;i[ :1=1,2,..,n,k= 1,...,mi} is a finite collection of non-overlapping

sub-intervals of [a,b] such that

and hence by (i), Ei‘f(xi)—f(xiﬂ)‘ = €.

i=1 k=1

Hence f'(x) exists and |f'(x)|<f, (x)+f, (x)
b
=]

= f’(x) is integrable also.

£(x) <1, (b)+1, (b) £ (a) £, (a) <=,

Now let F(x) be an definite integral of f'(x) i.e.
H@=H®+Iﬂwﬁmehm] ..(ii)

Using fundamental theorem of integral calculus,

We get

F(x)=f(x)

or F(x) = f(x) + constant (say c) ...(iii)
From (ii), we have F(a) = f(a),

Using this in (iii), we get ¢ = 0 and hence F (x) = f(x).

Thus every absolutely continuous function f(x) is an indefinite integral of its own derivative.

Condition is necessary: Let f(x) be an indefinite integral of f(x) defined on the closed interval
[a,b], so that

F(x)= J.f(t)dt +£(a),¥x€[a,b] and f(x) is integrable over [a,b].

Corresponding to arbitrary small >0, let § >0 be such that if m(A) <8, then I\f | <€,
A
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Now select 2n real numbers such that Notes

a,<b,<a,<b,<a,<..<a, <b,

such that A = Ufa, b,] and Y. (b, -a,)<3.

i=1

Then XF(bi)—F(ai) =§n:

b; aj
Jelr

n
i=1

bj
jp

n |bi
SE If :J\f\ < €.
i=1 a; A

Thus, we have shown that for arbitrary small €>0,3a8>0 S.t-Z(bi -a,)<8.

i=1

<e.

= YJF(v)-F(a)

= F is absolutely continuous.
Thus every indefinite integral is absolutely continuous.

Theorem 5: If a function f is absolutely continuous in an interval [a,b] and if f'(x) = 0. a.e. in [a,b],
then f is constant.

Proof: Letc €[a,b] be arbitrary. If we show that f(c) = f(a), then the theorem will be proved.
LetE = {x €la,c[:f'(x)= 0}.
since c is arbitrary, therefore set EC Ja,c[. This implies any xeE= f'(x)=0.

Let €, n > 0 arbitrary. Now f'(x)=0,Vx € E= Fan arbitrary small interval [x,x+h]c[a,c]

such that

e =) ey siof o

This implies that corresponding to every xeE,3 an arbitrary small closed interval [x,x+h]
contained in [a,c] s.t.

|f(x+h)—f(x)| <nh.

Thus the interval [x,x+h],Vx€E,over E in Vitali’s sense. Thus by Vitali’s Lemma, we can

determine a finite number of non-overlapping intervals I, where
I =[x,y ]vVk=12.3,..n

such that this collection covers all of E except for a set of measure less than § > where § is pre-

assigned number which corresponds to € occurring in the definition of absolute continuity of f.
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Notes Suppose x, <Xx,,,; then adjoining the points y , x

n+l’

Wehave a=y,<x, <y, <X, <Yy, <..<X, <y, <X, =C

Now since f is absolutely continuous, therefore for above subdivision of [a,c], we have
n

Z‘f(xm )= (v )‘ <€, wheneverZ(xm -yi)<8.
k=0

k=0

o = S)-fe)]<n Y -x)<ne-a)

k=1

Now |[f(c)-f(a)|=

YWRINED YIARLY

< e+n(c—a)

But €,n and hence € +n(c—a) are arbitrary small positive numbers. So letting € - 0,n — 0
We get f(c) = f(a)
= f(x) is a constant function.

Corollary: If the derivatives of two absolutely continuous functions are equivalent, then the
functions differ by a constant.

Proof: Let f and g be two absolutely continuous functions and f' = g’ — (f _g)' =0 = by above

theorem f - g = constant and hence the result.

'i Example: If f is an absolutely continuous monotone function on [a,b] and E a set of
measure zero, then show that f (E) has measure zero.

Proof: Let the function f be monotonically increasing. By the definition of absolute continuity of

f, for €>0,3 8 >0 and non-overlapping intervals {In = [an,bn]} such that

<e

Y (b,-a,)<8= Y [f(b,)-f(a,)

or Y [£(b,)-f(a,)]<e
Now, Ecla,b]=EcUI,

= f(E) c £(UL,) = UE(I,)

= m*(£(E)< Y m*(£(1,))< Y [F(x,)-£(x,)]<e,
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- Not
where f(x,) and f(x,) are the maximum and maximum values of f(x) in the interval [a b, ]. otes

Also note that Z

Qn—gn‘SZ(bn—ankS

= m*(f(E)) <€, € being arbitrary.

=m*(f(E))=0=m(f(E))=0.

'i Example: Give an example which is continuous but not absolutely continuous.

Solution: Consider the function f:F — R, where F is the Cantor’s ternary set.

Let xeF= x=x1x2x3...=2;—t,xk =0or2

K=1

Define f(x)= 2%, where 1, =%xk.

K=1

=0.1,1), 1,
This function is continuous but not absolutely continuous.

(i) Note that this function is constant on each interval contained in the complement of the
Cantor’s ternary set.

For, let (a,b) be one of the countable open intervals contained in Fc. Then in ternary
notation,

a=0apa,.a 0222
andb=0apa,.a 2000,

wherea =0or2, for i<n-1.

=f(a)=0r,1,,...,1,, 01111 .. wheret =(%) ,

f(b)=0x,1,,...,1, ; 10000 ...
But in binary notation

Or,r,..,1,,01111..=0x,s,..,5,, 10000...

= f(a)=f(b).

Thus, we extend the function f overall of the set [0,1] instead of F by defining
f(x)=£(b),Vxe(a,b)cF". Thus, the Cantor’s function is defined over [0,1] and maps it
onto [0,1].

It is clearly a non-decreasing function.
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(iii)

To show that f(x) is a continuous function. Note that if ¢',¢"eF, then we have

c'=0.(2p,)(2p,)(2p, ).

each p;,q; =0 or =1
c"=O.(2q1)(2q2)(2q3)..}

1
If \c'—c”\<(3fn),then p,=q, for 1<i<n+1 and hence

[£(e)—£(c") <(2i) ()

=asn—e,c' >c"f(c)—>f(c"),
Hence if c,eFand (c,) is a sequence in F such that c, — ¢, when n— co, then
f(c,)— f(c,), when n — oo,
Now let x, €[0,1] and let (x, ) be a sequence in [0,1] such that x, — X, as n —> .
CaseI: Let x, € F = x, €1,say(a,b)C F*
= x, €l and hence f(x,)=f(x)=f(a)

and hence f(x, ) — f(x,) as n— .

CaseII: Let x, € F. Now for each n such that x, € F,set x, =c, and hence f(x,)— f(x,).

If x, ¢ F,then 3 an open interval I F*.

(i) if x, <x,, then set c_as the upper end point of I.

(if) Ifx, <x,, then set c_as the lower end point of L.

= in any case f(x,)— f(x,) as n—co.

But the sequence (x, ) was any sequence satisfying the stated conditions.
—f is a continuous function.

To show f(x) is not absolutely continuous. Note that f'(x) = 0 at each x € F*.

= f'(x) exists and is zero on [0,1] and is summable on [0,1].

We know that for f(x) to be absolutely continuous, we must have
£(x) =If'(x)dx+f(0).

0
Particularly, we must have

f(l)—f(O)sz‘(x)dx.
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X Notes
But f(1) - £(0) = 1 and If'(l)dx —0asf'(x)=0
0

:>f(1)=f(0)¢j.f‘(1)dx=0 as f'(x)=0

= f(x) is not absolutely continuous.
Theorem 6: Prove that an absolutely continuous function on [a, b] is an indefinite integral.
Proof: Let f(x) be an absolutely continuous function in a closed interval [a, b] so that f'(x) &

J.f’(t) dt exists finitely V x € [a, b].

a

Let F(x) be an indefinite integral of f’(x), so that
F(x) = f(a) + J' £/(t) dt, x € [a,b] )

We shall prove that F(x) = f(x).
Since an indefinite integral is an absolutely continuous function.
Therefore F(x) is absolutely continuous in [a, b].
Then from (1),
F(x) =f(x)a.e.

d
= &[F(x) -f(x)] =0.

Integrating, we get
F(x) - f(x) = c (constant) .. (2

Taking x = ain (1), we get

F(a) = f(a) +J'f'(t) dt

= F(a) -f(a) =0
or F(x) -f(x) =0forx=a
Then from (2), we get c = 0.
Thus (2) reduces to
F(x) -f(x) =0a.e.
= F(x) =f(x) a.e.

which shows that f(x) is indefinite integral of its own derivative.
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4.2 Summary

° A real-valued function f defined on [a,b] is said to be absolutely continuous on [a,b], if for
an arbitrary e> 0, however small, 3 a,§ >0, such that

<€, whenever 2 (b, —a,)<3d.

r=1

Z\f(b»—f(a,)

o Every absolutely continuous function is continuous.

o Every absolutely continuous function f defined on [a,b] is of bounded variation.

4.3 Keywords

Absolute Continuity of Functions: Absolute continuity of functions is a smoothness property
which is stricter than continuity and uniform continuity.

Absolute Continuous Function: A real-valued function f defined on [a,b] is said to be absolutely

continuous on [a,b], if for an arbitrary €>0, however small, 3 a,8> 0, such that

Yite)-fa)

where a, <b, <a,<b,<..<a <b,ie. a’s and b/s are forming finite collection

n

<€ whenever 2 (b, —a,)<3,

r=1

{(ai,bi):i=1,2,...,n} of pair-wise disjoint intervals.

4.4 Review Questions

1.  Define absolute continuity for a real variable. Show that f(x) is an indefinite integral, if F
is absolutely continuous.

2. If f,g: [0,1] _sR are absolutely continuous, prove that f + g and fg are also absolutely

continuous.
3. Show that the set of all absolutely continuous functions on an interval I is a linear space.
4.  Ifgisanon-decreasing absolutely continuous function on [a,b] and f is absolutely continuous

on [g(a), g(b)], show that fog is also absolutely continuous on [a,b].

5. If f is absolutely continuous on [a,b] and f'(x) >0 for almost all x€[a,b], show that f is

non-decreasing on [a,b].
4.5 Further Readings

N

Books Krishna B Athreya, N Soumendra Lahiri, Measure Theory and Probability Theory,
Springer (2006).
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Aole Nielsen, An Introduction to Integration and Measure Theory, Wiley-Interscience, Notes
(1997).

N.L. Royden, Real Analysis (third ed.), Collier MacMillan, (1988).

A
4

Online links dl.acm.org

mrich.maths.org
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5.4 Review Questions

5.5 Further Readings

Objectives

After studying this unit, you will be able to:
° Understand Lr-spaces, conjugate numbers and norm of an element of LP-space

° Understand the proof of Holder’s inequality.
Introduction

In this unit, we discuss an important construction, which is extremely useful in virtually all
branches of analysis. We shall study about Lr-spaces and Holder’s inequality.

5.1 Spaces, Holder

5.1.1 L*-Spaces

The class of all measurable functions f (x) is known as LP-spaces over [a, b], if Lebesgue -
integrable over [a, b] for each p exists, 0 < p < o, i.e.

b

J'|f|de<oo,(p>0)

a

and is denoted by Lr [a, b].
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|

mentioning of interval is not necessary.

Note  The symbol Lr is used for such classes when limits of integration are known and

Notes

5.1.2 Conjugate Numbers

. 1.1
Let p, q be any two n on-negative extended real numbers s.t. —+—=1, then p, q are called

(mutually) conjugate numbers.

Obviously, 2 is self-conjugate number.

Also if p # 2, then q # 2. Further, if p = o, then q =1 = 1, < are conjugate numbers.

|

Note  Non-negativity = p=1,q2>1.

5.1.3 Norm of an Element of L'-space

The p-norm of any f € Lr [a, b], denoted by || f ||p, is defined as

"
IIfIIP=“|fIP1 0<p<e.

a

Theorem 1:1f f € LF [a, b] and g <f, then g € L? [a, b].
Proof: Let a be any positive real number.
{xe[ab]l:g(x)>0} ={xe [ab]l:a<g(x)<f(x)}
={xe [a b]:f(x)>a}
Again f € L? [a, b]
= f is measurable over [a, b].
= {x € [a, b] : f (x) > a} is a measurable set.
= {x € [a, b] : g (x) > 0} is a measurable set.
= g is a measurable function over [a, b]

Again since g (x) <f (x), V x € [a, b]

b b

= '[|g|pdxsf|f|pdx<m
b

or J'|g|de<oo

Thus |g|Pe L|[a, b].

(- [f]*€ La b])
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Thus we have proved that g is a measurable function over [a, b] such that

|g|P € L[a, b]
Hence g € Lr[a, b]
Theorem 2:If f € LP [a, b], p>1, thenf e L [a, b]

Proof: f € LF [a, b] = f is measurable over [a, b]

Let A ={xe[ab]: |f(x)=1}
and A, ={xe[ab]: |f(x)<1}
Then [a,b] =A,UA,and A, N A,=¢

Using countable additive property of the integrals, we have

b

J|f|dx - f|f|dx+j|f|dx

a A1 Ay
Now - [f)| 21, x€ A
[f] < [f[PonA asp>1

I|f|dx < flfl" dx<ee asfe Lr|[a, b]
A1 A1

Now [f(x) |<], V x€ A,

Using first mean value theorem, we get
J.|f|dx <m(A,) = A finite quantity
A2

Combining (ii) and (iii) and making use of (i), we get

b
f|f|dx <o

a

Thus f is a measurable function over [a, b], such that

b
f|f|dx <o
= |f] €L [a, b] and hence f € L [a, b].

Theorem 3:If f € LF [a, b], g € LF [a, b]; thenf + g € LF[a, b]

Proof: Since f, g € LP [a, b] = f, g are measurable over [a, b]
= f + g is measurable over [a, b]

Let A ={xe[abl: [f(x)]2]g()])

and  A,={xe[abl: ()] <]g()}

Then[a,b]=A UA,and A, " A, =¢
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Notes
Therefore j|f+g|P dx:j|f+g|p+.[|f+g|P dx.
A1 Ap
Again, [f+g|P<([f| + gl <(lg| + |gl)onA,and<(|f] + |f])Pon A,
<2P |g|PonA,and <2° [f|Pon A,

Integrating, we have

[igvgr <2 fier

A1 A1
and [ie+gl <2 [1gr
Ay Ay

Since £, g< 12 [a,b] = [|[ <eoand [|g] <=
A1 A2

I|f+g|p<mandf|f+g|p<m [by (i) and (ii)]
A1

A1

b
= J|f+g|pdx<w =f+gelrla b]

5.1.4 Simple Version of Holder's Inequality

1 1 .
Lemma 1: Let p, q > 1 be such that —+—=1, and let u and v be two non-negative numbers, at

least one being non-zero. Then the function f : [0, 1] — R defined by

1

£(t) =ut+ v(1-t), te [0,1],

has a unique maximum point at

The maximum value of f is

max f(t) = (u” +vP)P . (2

te[0,1]
Proof: If v =0, then f (t) = tu, V t € [0, 1] (with u > 0), and in this case, the Lemma is trivial.

Likewise, if u = 0, then

£(t) = v(1—tq)5, Vv te [0,1] (with v > 0), )
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and using the inequality

1

(1-t)7 <1,V te(0,1],

We immediately get f (t) <f (0), V te (0,1],
and the Lemma again follows.
For the remainder of the proof we are going to assume that u, v > 0.
Obviously f is differentiable on (0, 1) and the solutions of the equation (3)
() =0
Let s be defined as in (1), so under the assumption that u, v > 0, we clearly have 0 <s < 1.
We are going to prove first that s is the unique solution in (0, 1) of the equation (3).

We have

1

£ (t) u+v%(1—w)?1-q-tq* .. (4

u—V( v J,te(O,l)

1-t1

so the equation (3) reads

tq
- =0.
. V[l_tq)

Equivalently, we have

1

P
1) TV

tq
1-tt

= (u/v),

S CVAS

1-(u/v)l uP+vP’

Having shown that the “candidates” for the maximum point are 0, 1 and s let us show that s is the
only maximum point.

For this purpose, we go back to (4) and we observe that {’ is also continuous on (0, 1).
Since lim f’(t) =u>0and

t—0"

lim f'(t) =-o0

t—1"

and the equation (3) has exactly one solution in (0, 1), namely s, this forces

£ (t)>0V te (0s)
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and £ (t) <0V te (s 1). Notes
This means that, f is increasing on [0, s] and decreasing on [s, 1], and we are done.

The maximum value of f is then given by

max f(t) =£(s),

te[0,1]

and the fact that f (s) equals the value in (2) follows from an easy computation.
5.1.5 Holder's Inequality

Statement: Leta,, a, ...,a, b, b, ..., b _be non-negative numbers. Let p, q > 1 be real number

n TV T

with the property 1 + 1. 1. Then
P q

zn:aibi < [iaf]p-(ib?Jq Q)

=1 =

Moreover, one has equality only when the sequences (af Yy a}:) and (bq e, bj{) are proportional.

Proof: The proof will be carried on by induction on n. The case n =1 is trivial.
Casen =2.
Assume (b,, b,) # (0, 0). (otherwise everything is trivial).

Define the number

b,
r = 1
(by +b3)a
Notice that r € [0, 1] and we have
b
— = (1- rq)é
(b +bg)a

1
Notice also that, upon dividing by (b{ +bj)s, the desired inequality

a, b +ab, < (a§+ag)% (b;‘+b;‘)% ... (6)

reads

arta, (1—1“1)& < (a?+a§)§ (7)

It is obvious that this is an equality when a, = a, = 0. Assume (a,, a,) # (0, 0), and set up the
function.

1
£() = at+a,(1-t")1,te [0,1].
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We now apply Lemma (1) stated above, which immediately gives us (7).
Let us examine when equality holds.

If a, = a, = 0, the equality obviously holds, and in this case (a,, a,) is clearly proportional to (b,,
b,). Assume (a,, a,) # (0, 0).

Again by Lemma (1), we know that equality holds in (7), exactly when

. T
that is b1 T = { &4 }q s
(by +b3)s

or equivalently

q P
bj A

q q P p -
b} + b3 al +ab

Obviously this forces

q q
bj ay

b} + b3 al +ab

so indeed (af,a}) and (b{,b}) are proportional.

Having proven the case n = 2, we now proceed with the proof of:

The implication: Case n = k = case n = k + 1, start with two sequences (a,, a,, ..., a,, a,,,) and
(b, b, ...,a, b))

Define the numbers

[V
Il

Ly R
(2&1}’] andb=[2b;1] .
j:l j:l

Using the assumption that the case n = k holds, we have

ki k é k %
aibi < al . b? + ak+1 bl<+l

=1

ab+a, b, ... (8
Using the case n = 2, we also have

ab+a, b, < (ap +ag, )% '(bq +bi, )i

(iaip]p .[ib;Jq, .. 9)

so combining with (8) we see that the desired inequality (5) holds for n =k + 1.

LOVELY PROFESSIONAL UNIVERSITY



Unit 5: Spaces, Holder

Assume now we have equality. Then we must have equality in both (8) and in (9). Notes

On one hand, the equality in (8) forces (af, ab,..., aﬁ) and (b;1 ,bi, .., b“kl) to be proportional (since

we assume the case n = k). On the other hand, the equality in (9) forces (ap , aﬁﬂ) and (bq , bﬁﬂ) to

be proportional (by the case m = 2). Since

k k
a’ = E af and b= E b]?‘
7

j=1

j=1
it is clear that (af, a5, ..., af,af,,) and (b}, b{,..., b}, bf,,) are proportional.
5.1.6 Riesz-Holder's Inequality

Statement: Let p and q be conjugate indices or exponents (numbers) and f € L? [a, b], g € L1][a, b];
then show that

(i) f-gella,b]

) [esl=<[€l, Is], ie

[IE (j|f|?); ([1sr)

with equality only when o [f|P=f |g|9a.e. for some non-zero constants o and f.

D =

Lemmna: If A and B are any two non-negative real numbers and 0 < A <1, then
A’B1*<AA + (1 - ) B, with equality when A = B.
Proof: If either A =0 or B = 0, then the result is trivial.
LetA>0,B>0
Consider the function
¢ (x) =x*-Ax, where 0 <x <ecand 0 <A <1

do - d’o A
a:xx} '~ and @=7\(k—1)x '

Now solving j—q) =0, wegetx=1.
X

2

Alsoatx =1, @

2
X

<QasO<A<1.

By calculus, ¢ (x) is maximum at x =1, so

O0(x) <o (1) ie. x*-Ax<PH - .. (1)
. A
Now, putting x = B We get
A
(é) —x(é) <1-2 or ABF oD < 1-
B B B
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Or A*B"-)AA <(1-A)Bor
A* B <A +B(1-2) .. (2

Obviously equality holds good only for x =1, i.e. only when A = B.
Proof of Theorem

Note that when p =1, q = e, the proof of theorem is obvious. Let us assume that 1 < p < e and
1< q < oo,

1
Now set 7\=E;p>1 = A<l
Theref 1 1-\ (..14_1_1]
erefore q ~1- P q

Putting these values of A and 1 - A in (2), we get

1 1

Arps < A, B .3
P q

If one of the functions f (x) and g (x) is zero a.e. then the theorem is trivial. Thus, we assume that
f#0, g# 0 a.e. and hence the integrals

b b
J|f|de and J.|g|qu

are strictly positive and hence || f ||p >0,1lg ||q > (.

Set £ = Hfﬁ—") g(x)=%
and A" = |f(x)|, BT =|g(x)]|.

Then (3) gives

ol 509l
P q

Integrating, we get

IN

[1f09 801 < = [1E091 ax+— [1g6oP ax
a p a q a

b b
P q
BN LT ECO T

b b

T ierax T g as
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J.|f|"dx J'|g|qu

a
b

J.|f|pdx J.|g|qu

a

= l.'.l:l‘

q
Hence j|f x)|dx <1
Putting the values of f (x) and g (x), we get
b
[£(x) g(x) [ dx

oS <Torlfgl< Il g ()
£, Tsl, P

Now f e L [a,b], ge Li[a, b]

b b
- J'|f|de<oo and J.|g|qu<oo
= [£], < and [g], <<=

Therefore, from (4), we have
I fgll, <eo =f, € L"[a, b]
Also the equality will hold when A =B

e 1E(X)]7 = [g (9% ace.
| fP q
ie. 1f|f|p _ |g|q,a.e.
1€ sl
or i Ja[ 16F = ] IsFae

or if we have got some non-zero constants «, B
o|f]? =B|g|y ae.

Hence the theorem.
5.1.7 Riesz-Hoélder's Inequality for 0 < p <1

If 0 <p <1and p and q are conjugate exponents, and f € LF and g € L9, then

J.|fg|2HprHg . providedj|g|q¢o.

(In this case, the inequality is reversed than that of the case for 1 < p <eo.)

Proof: Conjugacy of p, q = l+1 =1
P q
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= j:1—p
q

= p+(—pJ=1
q

and P = +—=1 and since 0<p<1 = 1<l<1:>P>1,
P 0 P

1
Q

=

If we take p=

i.e. 1< P < oo <o and also l=j=1—p =>O<l<1 as0<p<1=0Q>1.
Q q Q

P, Q are conjugate numbers with 1 <P < o,

If we take |fg| =Frand |g|1=G2

(M3

Then fg=|fg|%-|g|%=|f|lj|g|
= |f|r.

f, g are non-negative measurable functions s.t.

Alsofe Lrand g e L1,

Applying the Holder’s inequality for P, Q to the functions f and g, we get

[irc1 <11, 161,
[IEp ) (J1GE]* o tfg1 =t 161
s st
s i)

N J.|f|" <

N I|f|‘° <

: fir
: fir

1
P <

© i)
< T, provided J.|g|q¢0
a)d
g

fuvf(ﬁqw

1
= Ilfgl 2 ! ZHpr Hqu
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Theorem 4: SCHWARZ or CAUCHY-SCHWARZ INEQUALITY statement: Let f and g be square Notes
integrable, i.e.

f,ge L?[a, b]; thenfg<L[a bland | fg || <[ fll, [l gl
Proof: Let x € [a, b] be arbitrary, then
[ ] - 1801720
or 2109 |- 180 [ < [0 + [8(x) [

On integrating, we get

b b b
21 f0s00lax < [1509°ds [1g09 G
b b
Now f, g € L?[a, b] = f and g are measurable over [a, b] and I| f(x) [ dx < oo,f| g(x) P dx<ee.

b
Using in (i), we get J.| f(x) g(x)|dx < oo

Thus fg € L [a, b].
Let a € R be arbitrary. Then
(o[ £] + Ig]) 20

b
[@il+ign? >0
b b b
or o [I£F dx+2af|fg dx+ [lgF dx 20

b b b
Write A = .[|f|2 dx,B=2J.|fg|dx,C=J.|g|2 dx
Then we have 0?’A +aB + C>0 ... (ii)

Now, if A =0, then f(x) = 0 a.e. in [a, b] and hence B = 0 and both sides of the inequality to be
proved are zero. Thus when A = 0, the inequality is trivial.

B
Again, let A # 0. Writing o. = - A in (ii), we get

2
A(—i) +B(—£)+C2 0.
2A 2A

which gives B*> < 4AC.
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Now putting the values of A, B, C in last inequality, we have

‘lUilnglX}2 4U‘|f|21 U.Iglzl
or jlf(X) (8()dx < [jilf(x)lz]l/2 U’.Ig(X)IZJU2

IN

A

a

or gl <II£ll, gl

Note: The above theorem is a particular case of Holder’s inequality.

' Example: Let f, g be square integrable in the Lebesgue sense then prove f + g is also
square integrable in the Lebesgue sense, and || f + g ||, <[ fll, + [ g |l,.

Solution: By hypothesis f> € L [a, b], g* € L [a, b].
f, g2e L[a, b] =fge L[a, b]. [by Schwarz inequality]
Again (f+g) =f+g*+2fge L[a b]

Hence (f + g) is square integrable, again, we have

b b b b
I(f +g) = ffz +Ig2 + ZIfg

I\
—_—
s
+
D C—
GqN
+

b 172 /4 1/2
2 [J. f? } [I g’ ] (by Schwarz inequality)

; o
U(Hg)zj < Ifz]/ +Ug2}/

a

or N+ gll, <I£ll, + gl

' Example: Prove that || f+ g |, <[ fll, + [l g II,-
Solution: We know that |f+g| < [f| + |g].

Integrating both the sides.

[1e+e1 < [ie1+figl

= NE+gll, <IEl, + gl
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5.2 Summary Notes

° The class of all measurable functions f (x) is known as L? - space over [a, b], if Lebesgue-
integrable over [a, b] for each p exists, 0 < p < e, i.e.

b
f|f|p dx<es, (p>0)

. The p-norm of any f € Lr [a, b], denoted by || f ||p, is defined as

b p
fPZUIfI}’] ,0<p<e

° Let p, q > 1 be such that 1 + 1 =1, and let u and v be two non-negative numbers, at least
P q

one being non-zero. Then the function f : [0, 1] — R defined by

1
f(t)y=ut+v(1-t7)s,tel0,1],

1
(S LA
s:
uf +v?P

. Let p and q be conjugate indices or exponents and f € L? [a, b], g € L1[a, b], then itis evident
that

(i) fgeLlab]
(i) g l<Nfll, g, ie.

fisgi= (fiee} (et

5.3 Keywords

has a unique maximum point at

Conjugate Numbers: Let p, q be any two n on-negative extended real numbers s.t. 1 + 1 1, then

p, q are called (mutually) conjugate numbers.
Hélder's Inequality: Leta, a, ...,a, b, b, ..., b_be non-negative numbers. Let p, q > 1 be real

number with the property 1 + 1 1. Then
P q

1 1
Z n P (o q
ab. < P . q
o <[3] (34

pe

j=1

Moreover, one has equality only when the sequences (a?, ..., a" ) and (b*,..., b{) are proportional.
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LP-Spaces: The class of all measurable functions f (x) is known as Lr-spaces over [a, b], if Lebesgue
- integrable over [a, b] for each p exists, 0 < p < o, i.e.

b

J|f|de<W,(p>0)

a

and is denoted by LF [a, b].
p-norm: The p-norm of any f € L? [a, b], denoted by || f ||p, is defined as

v
||f||p= I|f|P ,0<p<t>o,

a

5.4 Review Questions

1.  Iff and g are non-negative measurable functions, then show that in Holder’s inequality,
equality occurs iff 3 some constants s and t (not both zero) such that sfr + tg1=0.

2. State and prove Holder’s Inequality.
5.5 Further Readings

N

Books G.H. Hardy, J.E. Littlewood, G. Polya, Inequalities, Cambridge University Press,
(1934)

L.P. Kuptsov, Hélder inequality, Springer (2001)

Kenneth Kuttler, An Introduction of Linear Algebra, BRIGHAM Young University,
2007

A
Y.

Online links ~ www.m-hiKari.com
www.math.Ksu.edu

www.tandfonline.com
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Unit 6: Minkowski Inequalities Notes

CONTENTS

Objectives

Introduction

6.1 Minkowski Inequalities
6.1.1 Proof of Minkowski Inequality Theorems
6.1.2 Minkowski Inequality in Integral Form

6.2 Summary

6.3 Keywords

6.4 Review Questions

6.5 Further Readings

Objectives

After studying this unit, you will be able to:
° Define Lr-space, conjugate numbers and norm of an element of LP-space.
° Understand Minkowski inequality.

o Solve problems on Minkowski inequality.
Introduction

In mathematical analysis, the Minkowski inequality establishes that the L? spaces are normed
vector spaces. Let S be a measure space, let 1 < p < e and let f and g be elements of L? (s). Then
f + g is in LP (s), we have the triangle inequality

IE+gll <IEl+Igll,

with equality for 1 <p < e if and only if f and g are positively linearly dependent, i.e. f= A_for
some A > 0. In this unit, we shall study Minkowski’s inequality for 1 <p <eeand for 0 <p <1. We
shall also study almost Minkowski’s inequality in integral form.

6.1 Minkowski Inequalities

Here, the norm is given by:

1/p
ie1,= ([167 du)

if p <o, or in the case p = e by the essential supremum
Ifll,=esssup . |f(x)].

The Minkowski inequality is the triangle inequality in LP(S). In fact, it is a special case of the
more general fact
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I£ll,= sup |[fgldu, 1/p+1/q=1

lely=1

where it is easy to see that the right-hand side satisfies the triangular inequality.

Like Holder's inequality, the Minkowski inequality can be specialized to sequences and vectors
by using the counting measure:

1/p 1/p
<

o] 43 (3]

for all real (or complex) numbers x, ..., X, ¥,, ..., y, and where n is the cardinality of S (the
number of elements in S).

Thus, we may conclude that

If p > 1, then Minkowski's integral inequality states that

1/p 1/p 1/p
< +

[t00+s0orax <[t ax| +|[ 1sP ax

Similarly, if p >1 and a,, b, > 0, then Minkowski's sum inequality states that

n 1/p n 1/p n
Yla +b, s(Zw’] +[Z|bk|"]
k=1 k=1 k=1

Equality holds iff the sequences a,, a,, ... and b, b,, ... are proportional.

1/p

6.1.1 Proof of Minkowski Inequality Theorems

Theorem 1: State and prove Minkowski inequality. If f and g € L? (1 < p <o), thenf + g€ LF and
IE+gll <IEl+1Igl,.
or

Let 1 < p < oo, Prove that for every pair f, g € LP {0, 1}, the function f + g € Lr {0, 1} and that
[f+g ||p <|f ||p +lg ||p. When does equality occur?

Or

Suppose 1 < p < o. Prove that for any two functions f and g in L? [a, b]

o e

Proof: When p = 1, the desired result is obvious.
If p = oo, then
[f] <IIf]l_ ae.

lg] <ligll.ae.
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= [f+g| <[fl+ |g] Notes
Il +1igll. ae.

= If+gll. <l +lgl.

Hence the result follows in this case also. Thus, we now assume that1 < p < oo,

Since Lr is a linear space, f + g € L».

Let q be conjugate to p, then 1+l =1.

P q
Now (f+g)el’
= (f+gpae L
Since 1+1:1 N 1:1_1 N lzpi_l
P q q p q P

= (o1 =p, [(1£+gF") = [1£+5P

and therefore |f+ g|P' e LP = (f + g)”/9€ LPbecausep-1= P

q

On applying Holder’s inequality for f and (f + g)/9, we get

or J'|f|-|f+g|%dx < J.|f|")dx)%(.|.|f+g|"dx)% ()
Since g € L», therefore interchanging f and g in (1), we get

f|g|~|f+g|%dx < J.|g|")dx)%(-'.|f+g|pdx)%[ Q)
Adding, we get
J.|f|~|f+g|%dx+J.|g|~|f+g|% dx < |:(J.|f|"dx)%+(J.|g|"dx)%]-(.[|f+g|f’dx)% .. 3)
Now [f+g|o =|f+g||f+g
But L NS N -

P q q q

P,
£+ |7 = [f+gl[frel

P,
< (fl+1g) 1 E+gl
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P, P,
or f+glr < €] E+g 0 +1gl- | f+gl"

Integrating, we get
[ifgrax < J'|f|.|f+g|%+|g|.|f+g|% dx

Using (3), relation (4) becomes
J.|f+ gPdx < {

Dividing each term by J.(| f+gl dx)%1 , we get

fier dx)%+(f|g|p dx)%} (£+gP dx)

(J.|f+g|pdx)l_% <

f|f|" dx)%+(_[|g|p dx)%

But 11,5411
p

1, 1, 1

So (J.|f+g|pdx/p < f|f|vdx)/p+(f|g|de)/p
or IE+gll, <IEIL+Ngl,

Hence the proof.

. (4)

]

is a multiple of the other.

Note Equality hold in Minkowski’s inequality if and only if one of the functions f and g

Theorem 2: Minkowski’s inequality for 0 <p <1.If 0 < p <1 and {, g are non-negative functions

in LP, then

HE+gll, >l + gl

Proof: For this proceed as in theorem Minkowski’s inequality and applying the Holder’s

inequality for 0 < p <1 for the functions f € L and (f + g)*/ € L9, we get

Jier)" (fiessroy]”
frf (e

Also g € LP, proceeding as above, we get

figra)"(fievsr]”

[ienggps >

- [ifntegr

[1ne+gr >
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Adding these two, Notes
1 1 1
'flf+g|p/q(lf|+|gl) > [{|f|"}5+{|g|p}5}x{|f+g|P}5 ... (iii)
Also 1.1 4 1+B=p
P q q
= [t+g[" = |f+g|'|f+gI%=(If|+|g|)-|f+gl%z asf20,g20

) firesr =[erys ey fieesr)

/4
Dividing by (j| f+g |p) ! , we get

1~(1/q)
(Jieser) = [lel, +lel,]

1/q
- (Jiever) " zutn, g1,
= IE+gll, 21 £ll,+ gl
6.1.2 Minkowski Inequality in Integral Form

Statement: Suppose f: R x R — R is Lebesgue measurable and 1 < p <. Then

(Mh(x' Y dx)l/p : I (U h(x, y)" dx )]/p dy

Proof: By an approximation argument we need only consider h of the form

h(xy)= Y ECILE(Y), (xy)ERXR,

=1

where N is a positive integer, f}. is Lebesgue measurable, and FJ. eL,j=1,...N,and F, n FJ. = ¢ if
1<i<j<N. We use Minkowski’s inequality to estimate

(irsrafo)” | }2 I

1/p
fi(x)pdx)

ZH F 600

But

s

de)l/pdy - 2IF1(I|h(x,y) P dx)l/p =ZN;J'Fj(J'|fj(x) P dx)w
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' Example: If <f > is a sequence of functions belonging to L*(a, b) and also f € L? (a, b) and
Lim || f_-f ||, = 0, then prove that

b b
~l‘fzdx = Limj f2dx

Solution: By Minkowski’s inequality, we get

[, 1L =6 0| <1If, -1,

= Lim | |If, Il, - Ifll,| <Lim|If -£],=0
= Lim ||| f, L, =IIfIl,| =0 = Lim || £ ||, = [I£[,
b V2o 1/2 b b
= Lim[J.(fn)zde = {J.dexJ = Lim .[ff dx = jfzdx .
6.2 Summary
° The class of all measurable function f (x) is known as LP space over [a, b], if Lebesgue

integrable over [a, b] for each p exists, 0 < p < oo,

° Iffandge LP(1<p<oo), thenf+ge LPand||f+g||p$||f||p+||g||p.

6.3 Keywords

Lr-space: The class of all measurable functions f (x) is known as Lr-space over [a, b], if Lebesgue-
integrable over [a, b] for each exists, 0 <p < oo, i.e.,

b
.[|f|pdx<M,(p>0)

and is denoted by LF [a, b].

Minkowski Inequality in Integral Form: Suppose f : R X R — R is Lebesgue measurable and 1 <

p <o, Then
(I U h(x, y)dy dxj”p < | (Uh(x, o) dx j”*’ &

Minkowski Inequality: Minkowski inequality establishes that the LP spaces are normed vector
spaces. Let S be a measure space, let 1 < p <ec and let f and g be elements of L? (s). Then f + g is in
Lr (s), we have the triangle inequality

E+gl, <IEl+lIgl,
with equality for 1 < p < e if and only if f and g are positively linearly dependent.
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6.4 Review Questions Notes
1.  Iff, g are square integrable in the Lebesgue sense, prove that f + g is also square integrable
and

f+glL,<Ifll, +1gll,

2. If | <p <eoo, then show that equality can be true, iff there are non-negative constants o and
B, such that pf = ag.

6.5 Further Readings

N

Books Books: Stein, Elias (1970). Singular Integrals and Differentiability Properties of
Functions. Princeton University Press.

Hardy, G.H.; Littlewood, J.E.; Polya, G. (1952). Inequalities, Cambridge
Mathematical Library (second ed.). Cambridge: Cambridge University Press.

o

Online links ~ Mathworld.wolfram.com>Calculus and Analysis>Inequalities

Planet math.org/Minkowski In-equality.html
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Objectives

After studying this unit, you will be able to:

° Understand convergence and completeness.

° Understand Riesz-Fischer theorem.

° Solve problems on convergence and completeness.
Introduction

Convergence of a sequence of functions can be defined in various ways, and there are situations
in which each of these definitions is natural and useful. In this unit, we shall start with the
definition of convergence and Cauchy sequence and proceed with the topic completeness of LP.

7.1 Convergence and Completeness

7.1.1 Convergent Sequence

Definition: A sequence <x > in a normal linear space X with norm || - || is said to converge to an

element x € X if for arbitrary € >0, however small, 3n € N such that || x -x||<€, V n>n,

Then we write lim x, =x .
n-—oeo
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7.1.2 Cauchy Sequence Notes

Definition: A sequence <x_>in a normal linear space (X, || - ||) is said to be a Cauchy sequence if for
arbitrary € >0,3n, € Ns.t.

Ix,-x_ll<€, Vn,m2n,
7.1.3 Complete Normed Linear Space

Definition: A normed linear space (X, || - [|) is said to be complete if every Cauchy sequence <x_>in
it converges to an element x € X.

7.1.4 Banach Space
Definition: A complete normed linear space is also called Banach space.

7.1.5 Summable Series

Definition: A series zun in N, is said to be summable toasumuifue N, and lim S =u, where
n-—oo

n=1
S=u+u+..+tu
n 1 2 n

In this case, we write
u= E u, .
n=1

Further, the series Zun is said to be absolutely summable if ZHunH <oo.

n=1 n=1

7.1.6 Riesz-Fischer Theorem

Theorem: The normed Lr-spaces are complete for (p > 1).

Proof: In order to prove the theorem, we shall show that every Cauchy sequence in L [a, b] space
converges to some element f in LP-space. Let <f > be one of such sequences in Lr-space. Then for
given € > 0, 3 a natural number n,, such that

m,n2n0=>||fm—fn||p<e,

. . . . 1 .
since € is arbitrary therefore taking e= 5 wecan find a natural number n, such that
forallm,n2n1=>||fm—fn||p< >
o . 1 .
Similarly, taking €= 57 vV keN, we can find a natural number n,, such that

1
forallm,nzn = |f -f || < o
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1
In particular, m>n, = || f_-f [I< o -

Obviously n, <n,<n,...<n, <...
i.e. <n,> is a monotonic increasing sequence of natural numbers.

Set g, = f, , then from above, we have

ny /
1
”gz_g1”P= fnz_fn2p<E/
1
“g3_g2”p_ fn3_fn2p<272/
_ 1
” gk+1_gk ”P - fnk+1 _fnk . <?.

Adding these inequalities, we get

- = 1 ‘
ZHgkﬂ_ngp < ZZT=1 - (D)
k=1 k=1

Thus ZH 8™ ngp is convergent. Define g such that

k=1
g((x) = ‘g] (x)‘ + 2‘ 8 —gk‘p if RH.S. is convergent . (ii)
k=1

and g (x) = oo, if right hand side is divergent.

b b ) %

Now, [I|g(x) " dX] = Lig}{'[l&(xﬂzgm ~ 8x j}

a a k=1
or llgll, = lnig},(glp + ZHng —gkp) (By Minkowski’s inequality)
k=1
g1+ 2l gl <ng [by ()]

= Igll,<e = ge L"[a, b].
Let E ={xe [a, b]:g(x) =00}
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Now we define a function f such that Notes
f(x) =0, V xe E

and £() =g )+ Y(8,.,~8), forxe [a b] butx & E,
k=1
m-1
or f(x) = }nig[gl+2(gk+l—gk)],forxe E
k=1
= lim g, (x)
Thus f(x) =0, forxe Eand

f(x) = limg, (x) forx ¢ E.

m—yeo

f(x) = }E& g.(X) a.e.in[a, b]

or }nlglolo‘ S —f‘ =0 ae.in[a, b] ... (iif)
m-1
Also, g.(x) =8 +Z(gk+1 —gk)
k=1
m-1
= 18] <180+ D (80 —84)
k=1

<lgl+ > (8..-8) =8

k=1

= lg,.| <g VmeN
= lim[g, ()| <g
(iii) = |f| <g.
Again, lg, ~fl <lg,l + [f[<g+g=2g
lg,.-fl <2g.

Thus there exists a function g € LP [a, b] s.t.
lg, - fl <28 V m
and lim ‘ & —f‘ =0a.e.in [a, b] ... (iv)

Applying Lebesgue dominated convergence theorem,

m—see

b b b
limJ“gm ~fffdx = Ikgrl g, — ] dx =IO~dx =0 [Using (iv)]
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.y
- im0

= lim[ g, —f] =0

m—seo

= lim

m—eo

f,, ~f|, =0asg, = f,

= £, ~f] <e.
Also I£. - £, HP <e.

e, ~f1l, = [ £ =, +£, ~ ],
< |f.-f.. \P+ f —fHP
<(e+e)=¢€".

Hence }ningm—pr =0
or limf, =fe Lr[a, b].

m—eo

This proves the theorem.
Alternative Statement of this Theorem

A convergent sequence <f > in LP-spaces has a limit in LP-space.
Or
Every Cauchy sequence <f > in the LP-space converges to a function in LP-space.

Theorem: Prove that a normed linear space is complete iff every absolutely summable sequence
is summable.

Proof: Necessary part

Let X be a complete normed linear space with norm || - || and <f > be an absolutely summable
sequence of elements of X

- Sl =M<,
n=1
= For arbitrary € > 0, however small, 3n € N

st Yt <e, ()

Now, if S_= Zfi ,then V n>m>n_, we get

i=1
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R . Notes
Is,-s, 0= | X6 < Y[
i=m+1 i=m+1
< 2 f|<e
= Sequence <S > of partial sums is a Cauchy sequence
= <S,> converges.
= Sequence <f > is summable to some element S € X.

But X is a complete space. Therefore <S > will converge to some element S € X.

Sufficient part: Given that every absolutely summable sequence in the space X is summable.
To show that X is complete.

Let <f > be a Cauchy sequence in X.

For each positive integer k, we can choose a number n, € N such that
If -f | < 1 Vnm2n (if)
n m 2T 4 4 =k oo

We can choose these n,’s such thatn,, > n,.

Then <f“k:1 >w is a subsequence of <f >.

Setting g, = f, and g = f —f

e ~ fuq - (K> 1), we get a sequence <g > s.t. its k™ partial.

Sum=S§ =g +g,+...+g =f +(f,—-f)+...+(, £ )=Ff, -

1 ..

Now, g II= ||, —£, | < [by (ii)], Vk>1

N O 1 - .
= EH g SHgJHZF =|lg,Il+1 (a finite quantity)

=] =
= The sequence <g, > is absolutely summable and hence by the hypothesis, it is a summable
sequence.
= The sequence of partial sums of this sequence converges to some S € X.
= The sequence <S > converges and hence <fnk> converges to some f € X.

Now, we shall show that the limit f_= f.

Again, since <f > is a Cauchy sequence, we get that for each € > 0, however small, 3n" € N s.t.

¥n,m>n’.
€
f —f |I<=.
I, £ 1 2

Also since f, — f,3n” € N such that Yk >n”,
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€
£, —f< 5
Choosing a number k, as large that k > n” and n, > n’, we get

& -fl=<le -t ]+

£ —fH<§+§=e,

= V n>n’, we obtain || f_-f|| <&, where ¢ is an arbitrary quantity.
= f — f € Xand hence X is a complete space.

Theorem: Let {f } be a sequence in LP, 1 < p <o, such thatf{ — fa.e. and that f € Lr.

If lim [ anp =|I£ll,, then

lim| £, ~£] =0

n—ee

Proof: Without any loss of generality, we may assume that each f >0 a.e. so that f is also > 0 a.e.
since the result in general case follows by considering f = f* - f~.

Now, let a and b be any pair of non-negative real numbers, we have
la-b[r<2°(fa|*+ [b]9),
1<p<e
So, we get
2 (|f [P+ (|f]P) - |f -f|P 20ae.
Thus, by Fatou’s Lemma and by the given hypothesis,
We get

n—eo

2 [1ep = Jtim| 20 ([ +147) - - |

IN

tim inf [ 27 (|6, +[£F") ~|f, ~ ']

2" tim [[e[+2° I +timint (— I —f\p)
- 2P+1j\f\P ~limsup I £, — £ .
Since f\f\p <eo it follows that
LiggSUPJ‘\fn—f\p <0.
Therefore limsup [|£, ~£[" =limint [£, ~£[" =0,

So that Lii{}_ﬂfn —f‘p =0
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1 Notes
= 1im(J'\fn—f\Pdt)" =0

n—eo

= limen—pr =0.

n—eo
Theorem: In a normed linear space, every convergent sequence is a Cauchy sequence.

Proof: Let the sequence <x > in a normed linear space N, converges to a point x € N,. We shall
show that it is a Cauchy sequence.

Let € > 0 be given. Since the sequence converges to x_ 3 a positive integer m_s.t.
nm =[x -x|<e/2 (@
Hence for all m, n > m, we have
[Ix, = Il =lIx, -x +x -

<Hixg =x I, =l
e €

<4+ =eby(1
515 y (1)

It follows that the convergent sequence <x_> is a Cauchy sequence.
Theorem: Prove that L~ [0, 1] is complete.
Proof: Let (f ) be any Cauchy sequence in L=, and let
A =T > LY
B, . = [ 0)-£, 001 > - £, 1L}
Thenm (A)=0=m (Bm’n) k,mn=1,223,..),
So that if E is the union of these sets, we have m (E) = 0.
Now, if x€ F=[0, 1] - E, then
£, () <IE, Il
[f (x)-f, (x) <|If -f |l_L—>0asn, m#eo.
Hence the sequence (f ) converges uniformly to a bounded function on F.

Define f : [0, 1] = R by

f(x) =

n—eo

limf (x) if xeF
0, ifxeE

Thenfe L=and || f -f||_—0asn— .
Thus L~ is

Hence proved.

7.2 Summary

° A sequence <x > in a normal linear space X with norm || - || is said to converge to an element
x € Xif for arbitrary € >0, however small, 3n Ns.t. || x -x|| <€, ¥V n>n_. Then we write

limx, =x

n—ee
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) A complete normed linear space is also called Banach space.

) The normed Lr-spaces are complete for (p = 1).

° A convergent sequence <f > in LP-spaces has a limit in LP-space.

° A normed linear space is complete iff every absolutely summable sequence is summable.
) In a normed linear space, every convergent sequence is a Cauchy sequence.

7.3 Keywords

Banach Space: A complete normed linear space is also called Banach space.

Cauchy Sequence: A sequence <x > in a normal linear space (X, || - ||) is said to be a Cauchy
sequence if for arbitrary € > 0,3 n, € N s.t.
Ix,-x_ lI<€, V nmz2n,

Complete Normed Linear Space: A normed linear space (X, || - [|) is said to be complete if every
Cauchy sequence <x > in it converges to an element x € X.

Convergence almost Everywhere: Let <f > be a sequence of measurable functions defined over a
measurable set E. Then <f > is said to converge almost everywhere in E if there exists a subset E_
of Es.t.

@ f (x)—>f(x), VxeE-E_.
and (ii) m (E)=0.

Convergent Sequence: A sequence <x > in a normal linear space X with norm || - || is said to
converge to an element x € X if for arbitrary € > 0, however small, 3n € N such that || x_-x || <

€,V n>n,

Then we write lim x, =x .

n—ee

Normed Linear Space: A linear space N together with a norm defined on it, i.e., the pair (N, || ]
is called a normed linear space.

Summable Series: A series 2 u, in N, is said to be summable toasumuif ue N, and limS, =u,

n=1

where

S=u+u+..+tu
n 1 2 n

7.4 Review Questions

1. Prove that ¢} is complete.

2. Prove that the vector space L~ equipped with | - | .. is a complete vector space.

‘L“
3. Suppose f € L~ is supported on a set of finite measure.

Then f € LF for all p < e, and

[£].- = 1]~ as p—eo.
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Iffe Lp (p>0),f>0and f, = min (f n) (n € N), show that f € LPand lim |f, ~f] =0. Notes

7.5 Further Readings

N

Books H.L. Royden, Real analysis.
Walter Rudin, Real and Complex Analysis, Third, McGraw-Hill Book Co., New
York, 1987.
A
Y.,

Online links  www.public.iastate.edu

www.scribd.com/doc/49732162/103.Convergence-and-Completeness.
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Objectives

After studying this unit, you will be able to:

° Understand bounded linear functional on LP-spaces
° Understand related theorems.

° Solve problems on bounded linear functionals.
Introduction

In this unit, we obtain the representation of bounded linear functionals on LP-space. We shall

also study about linear functional, continuous linear functionals and norm of f € £ ; . Further, we

shall prove important theorems on bounded linear functionals.

8.1 Bounded Linear Functionals on LP-spaces

8.1.1 Linear Functional

Definition: Let N, be a normed space over a field R (or C). A mapping f: N, — R (or C) is called a
linear functional on N, if f (ax + By) =af (x) +Bf(y), V x,y € N, and o, f € R (or C).

8.1.2 Bounded Linear Functional

Definition: A linear functional f on a normed space N, is said to be bounded if there is a constant
k > 0 such that

£ | <klxl, ¥ xe N, ()
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The smallest constant k for which (1) holds is called the norm of f, written || f ||. Notes
- RiCIN .
Thus || f || = sup H ” H :x#0and xeN, 1 or equivalently
£l =sup{|f(x)| :xe Xand || x|[=1}.
Also [f)| <l IIxI V xe N,.

Definition: Let p € R, p > 0. We define LP = L [0, 1] to be the set of all real-valued functions on
[0, 1] such that

1
; 1
(i)  fis measurable and (ii) || £ ll,= [J.| £ Jp < oo,
0

|

Note L' or simply L denotes the class of measurable function f (x) which are also
L-integrable.

8.1.3 Bounded Linear Functional on Lr-spaces

If xe ¢, and f is bounded linear functional on ¢, then f has the unique representation of the

form as an infinite series

£ = Y xfey)

k=1

8.1.4 Norm

The norm of f € Z; is given by

el = {2|f(ek)|q}q

Likewise in finite dimensional case, the bounded linear functionals are characterised by the
values they assume on the sete , k=1,2,3, ....

8.1.5 Continuous Linear Functional

A linear functional f is continuous if given € > 0 there exists § > 0 so that

[f (x) - f(y)] <€ whenever || x-y | <9.

8.1.6 Theorems

Theoremn 1: Suppose 1 < p < eo, and 1 + 1 =1, then, with B = LP we have
P q

B* =19,
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in the following sense: For every bounded linear functional ¢ on LP there is a unique g € L1 so
that

0 = If(x)g(x)du(x), forall fe L

Moreover, 1), =gl -

This theorem justifies the terminology where by q is usually called the dual exponent of p.

The proof of the theorem is based on two ideas. The first, as already seen, is Holder’s inequality;
to which a converse is also needed. The second is the fact that a linear functional ¢ onLr,1<p
< o, leads naturally to a (signed) measure v. Because of the continuity of ¢ the measure v is

absolutely continuous with respect to the underlying measure p, and our desired function g is
then the density function of v in terms of p.

We begin with:

Lemma: Suppose 1 < p, q < o, are conjugate exponents.

J.fg‘.

(i) Suppose g is integrable on all sets of finite measure and

(i) Ifge L3, then |g]q = sup
1€l p <y

sup [fg| =M <

£l
f sir&\};ﬂéel

Thenge L9, and | g Hm =M.
For the proof of the lemma, we recall the signum of a real number defined by
1if x>0
sign (x) = {—1if x<0
0if x=0

Proof: We start with (i). If g = 0, there is nothing to prove, so we may assume that g is not 0 a.e.,

and hence | g |, #0 . By Holder’s inequality, we have that

lely = s [ 18]
lelipg
To prove the reverse inequality we consider several cases.

° First, if = 1 and p = e, we may take f (x) = sign g (x). Then, we have HfHLN =1 and

clearly J.fg =|g]. -

e If1<p, q<e,then wesetf (x) = |g (x| sign g(x)/|gi,. We observe that

[0 = [5G0l du/|g [l =1 since p (a-1) =g, and that [fg =]l
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° Finally, if q = e and p =1, let € > 0, and E a set of finite positive measure, where |g (x)| > Notes
|g]|.- — € - (Such a set exists by the definition of | g .. and the fact that the measure u is c-
finite). Then, if we take f (x) = X' E (x) sign g (x)/u (E), where AE denotes the characteristic

function of the set E, we see that |f|, =1, and also

Jfg=u(1E)£IgI2g;€-

This completes the proof of part (i).

To prove (ii) we recall that we can find a sequence {g } of simple functions so that |g_(x)< | g (x) |
while g _(x) — g (x) for each x. When p >1 (so q < =), we take f (x) = | g (x)|9" sign g(x)/H g HqL: .

As before,

f, H » =1. However

8. ()
q-1 :‘
19

8&n

g’

J.fngJ

[E;

and this does not exceed M. By Fatou’s Lemmas if follows that J|g|qSMq , so g € L1 with

n

|g|.q <M . The direction H g HLq 2M is of course implied by Holder’s inequality. When p =1 the

4
argument is parallel with the above but simpler. Here we take f_(x) = (sign g (x)) XYE_(x), where
E, is an increasing sequence of sets of finite measure whose union is X. The details may be left to
the reader.

With the lemma established we turn to the proof of the theorem. It is simpler to consider first the
case when the underlying space has finite measure. In this case, with ¢ the given functional on
Lr, we can then define a set function v by

v (E)= ¢ (XE),

where E is any measurable set. This definition make sense because A is now automatically in L»
since the space has finite measure. We observe that

o (E)] <C(uE)? - (@)
where C is the norm of the linear functional, taking into account the fact that H X HLP = (p.(E))l/p .
Now the linearity of ¢ clearly implies that v is finitely-additive. Moreover, if {E } is a countable
collection of disjoint measurable sets, and we put E= U = E., By =U = wnEn » then obviously

N
xo=x +| JrE, .

n=1

Then U(E)=D(E;\1)+2N v(E,). However v(Ey)—0, as N — « because of (1) and the

n=1
assumption p < oo, This shows that v is countably additive and moreover (1) also shows us that
v is absolutely continuous with respect to p.

We can now invoke the key result about absolutely continuous measures, the Lebesgue-Radon

- Nykodin theorem. It guarantees the existence of an integrable function g so that v (E) = _[g du
E
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for every measurable set E. Thus we have ((AE)= JXEg du . The representation /(f)= Ifg du

then extends immediately to simple function f, and by a passage to the limit, to all f € LF since the

simple functions are dense in LP, 1 < p < co. Also by lemma, we see that H g HLq = H £ H .
To pass from the situation where the measure of X is finite to the general case, we use an

increasing sequence {E } of sets of finite measure that exhaust X, that is, X = U E, . According
to what we have just proved, for each n there is an integrable function g_on E_(which we can set

to be zero in E; ) so that

o) = Ifgn du Q)

whenever f is supported in E_and f € L. Moreover by conclusion (ii) of the lemma | g, p S H 1 H .

Now it is easy to see because of (2) that g =g a.e.on E_, whenever n 2 m. Thus lim___g (x)

= g (x) exists for almost every x, and by Fatou’s lemma, || g|| LI<|| ¢ || . As a result we have that
L(f) = J.f gdu for each f € L? supported in E , and then by a simple limiting argument, for all f
€ Lrsupported in E . The fact that | ¢ <1l gl Lais already contained in Holder’s inequality and

therefore the proof of the theorem is complete.

Theorem 2: Let f be a linear functional defined on a normed linear space N, then f is bounded <
f is continuous.

Proof: Let us first show that continuity of f = boundedness of f.

If possible let f is continuous but not bounded. Therefore, for any natural number n, however
large, there is some point x  such that

()] 20, Q)
Consider the vector y, = ‘X 2 so that
n|x,
1
Iy, Il =—-
= Iy, II—0asn— eo.
= y, — < 0 in the norm.

Since any continuous functional maps zero vector into zero, and f is continuous f (y,) — f (0) = 0.

But £y = H%(Hf(xa e

Hn

It now follows from (1) and (2) that
[f (y,) |> 1, a contradiction to the fact that
f(y)—0asn— e

Thus if f is bounded then f is continuous.

LOVELY PROFESSIONAL UNIVERSITY



Unit 8: Bounded Linear Functional on the LP-spaces

Conversely, let f is bounded. Then for any sequence (x, ), we have Notes
[f(x)] <kllx I Vn=1,2,...and k=0.

Let x, — 0 as n — oo then

f(x)—0

= f is continuous at the origin and consequently it is continuous everywhere.

This completes the proof of the theorem.

Theorem 3: If L is a linear space of all n-tuples, then

M (5)=4

) (5)r=r

(i) (2)*=03

Proof: Let (e, e,, ..., e ) be a standard basis for L so that any x = (x,, X,, ..., x,) € L can be written

asx=xe txe +..+txe.
If f is a scalar valued linear function defined on L, then we get

f(x) =x,f(e) +xf(e)+...+xf(e) (@
= f determines and is determined by n scalars y, = f (e,).

Then the mapping

Yy = (Y Yo --- y,) = f where f (x) = ZXin is an isomorphism of L onto the linear space L’ of all
i=1

function f. We shall establish (i) - (iii) by using above given facts.

(i)  If we consider the space L = ¢} (1 < p < ) with the p™ norm, then f is continuous and L’

represents the set of all continuous linear functionals on /7 so that L" = (Z;) .

Now for y — f as an isometric isomorphism we try to find the norm of y’s.

For 1 < p < oo, we show that
() =0

Forx e 0, we have defined,

x|l {im |P};

i=1

n

ZXiyi

i=1

n

<Y Ixllyl
i=1

By using Holder’s inequality, we get

1 1
2' xy;| < {2| X; |p}" {2|yi [ }q so that
i=1 i=1 i-1

i=

Now [f (x)| =
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i=1

001 = [ Srf | S

Using the definition of norm for f, we get

e {Zlyi I“‘}q Q)

Consider the vector, defined by

Ak e _
X, = y ,y:#0 and x, =0ify, =0 .03

Then, x|l = {lei Ip}p =[2{||};|T} T .. (@

i=1

Since q = p (q - 1) we have from (4),

IxI = {ilyi |q}q .. (5)

n n ) q
Now 1101 =[P Ly, (4
i=1 i=1 i
= e (By ()
i=1
So that
DUyl = [ <Hfl ] e
i=1

From (5) and (6) we get,

1
{Zm |q} s SUf
i=1

= {2'5’1 |q}q <Nl )

Also from (2) and (7) we have

1
Hfll = {Eb’a |q}q,so that
i=1
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y — f is an isometric isomorphism.
n\%x _ s
Hence (f P) = (5.

Let L = ¢] with the norm defined by

n
Ixll = 1%
i=1

Now f defined in (1), above is continuous as in (i) and L” here represents the set of continuous

linear functional on /7] so that

L= ().

We now determine the norm of y’s which makes y — f an isometric isomorphism.

n

inyi

i=1

n
Yixl 1yl
i=1

Now, [f(x)| =

IN

n

But Yixllyl

i=1

IN

max.{|y; |} 2| x| so that
i1

IN

£691 < max{ly, I} Yhxl-

From the definition of the norm for f, we have
[If Il =max.{|y,|:i=1,2, ..., n}

Now consider the vector defined as follows:

If |y, | = max {| y; |} , let us consider the vector x as
_ vl - _
X, = when|y, |= ﬁggxﬂ V2 |} and x; =0

1
otherwise

From the definition, x, =0 V k # i, so that we have

Yi
) =] =1
1)1l -
Further | f (x)| = E(XiYI) = |yl
i=1

Hence [y, | = [£() | <IIEIl I x]]
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<Ifll
From (8) and (10), we obtain

1]l =max. {|y,|} so that
y — f is an isometric isomorphism of L’ to (5‘11 )*
Hence (z‘l‘)*z "

(iii) LetL = ¢ with the norm

x|l =max {|x|:1,23,...,n}.

= ly;| <l fllor max{|y,|} [ IIx]=1]

.. (10)

Now f defined in (1) above is continuous as in (1). Let L’ represents the set of all continuous

linear functionals on /" so that
U= ()"
Now we determine the norm of y’s which makes y — f as isometric isomorphism.

n

2 XiYi

i=1

n

<YIxllyil.
i=1

[£()]

IN

But ) Ix| 1y,
i=1

Hence we have

max (1%, ) Y 1y |
i=1

IN

[£()]

{zm |} Q<o thatef< Dy
i=1 i=1

Consider the vector x defined by

_ vl

i

when y, # 0 and x, = 0 otherwise.

Hence [[x]] = max {l}]"} =1
lyil
and 1601 = | Y Ixyil|= Yyl
P p
Therefore

Myl = 1£61<IENIxN=1fl,
i=1

= Dyl <l
i=1
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Unit 8: Bounded Linear Functional on the LP-spaces

It follows now from (11) and (13) that

] = EI y:| so thaty — f is an isometric isomorphism.
i=1

Hence, (21)* =/

This completes the proof of the theorem.

|

Note  'We need the signum function for finding the conjugate spaces of some infinite
dimensional space which we define as follows:

If y is a complex number, then
_Y.
sgny = |— ify=0

Y
=0ify=0

(i) |sgny| =0ify=0and | sgny| =1ify#0

v

(ii)ysgn y =0ify=0and ysgn y = Iy ly|,ify=0.
Theorem 4: The conjugate space of / is ¢ , where
l+l =land1<p <eo.
P q
or =1,
Proof: Letx = (x ) € {, so that 2|xn [P< oo .. ()
-1

Lete =(0,0,0,...,1,0,0, ...) where 1 is in the n™ place.
e e !, forn=1,23, ...

We shall first determine the form of f and then establish the isometric isomorphism of ¢, onto

L

q-

By using (e ), we can write any sequence

(X X, .- %, 0,0,0, ...) in the form ZXk e, and

k=1

n
X — E X, €, =(0,0,0,..., X0y, Xpuns-er)-

k=1
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n

X = E X, €

k=1

Now :{2|Xk |PF ... (2

k=n+1

The R.H.S. of (2) gives the remainder after n terms of a convergent series (1).

1
Hence {2|Xk |p}p —0asn — ce. ...(3

k=n+1

From (2) and (3) if follows that

k=1
Letfe (* andS = Zxk e, then
k=1
S, > xasn— (Using (4))
Since f is linear, we have
£6) = ) xf(ey)
k=1

Also f is continuous and S, — x, we have

f(S,) > f(x)asn— e
= £6) = Y xf(ey) NG

k=1

which gives the form of the functional on ¢, .
Now we establish the isomeric isomorphism of /*  onto /,, for which proceed as follows:
Let f (e) = o, and show that the mapping
T: (% — !, given by
T ) = (o, 0 ..., O, ...) is an isomeric isomorphism of ¢ *, onto L.

First, we show that T is well defined.

Forletxe {,, wherex= (B, B, ..., B, 0,0, ...) where

B, = {|05k|g’1 Sgn&k, 1<k<n
k

0 vn>k
- [B.] =l |7 for1<k<n.

- 1 1
- 1817 = Tou [T = Joy ] (',-p+q=q¢p(q—1)=qJ
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Now o, B, =0, | o, |7 sgn ou =] o, |* o, sgn o Notes

= o B = log [9=1B|" .. (7)
(Using property of sgn function)

1

{}n] B, |P}p

= x|l
k=1

= x|l

]

——
\TM:
N

=

=

]
[E—

o=

I
—
-
Q
=
Q=
_E
i
(o)
©

Since we can write

n
X = ZBkek , we get
k=1

Fo) = Zskf<ek)=k2akﬁk

= f(x) = 2|ock I (Using (7)) ... (9)

We know that for every x € £,

LEG) [ <IEN Tl
which upon using (8) and (9), gives

1

(] < 2|ock|qsf{2|ock|‘*}P

k=1 k=1

which yields after simplification.

{ZIak I‘*}p <\ £l ... (10)

Since the sequence of partial sum on the L.H.S. of (10) is bounded; monotonic increasing, it
converges. Hence

{EI% I‘*}p <N £l ... (11)

k=1

So the sequence (0,) which is the image of f under T belongs to ¢, and hence T is well defined.
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We next show that T is onto 7, .
Let (B,) € ¢, , we shall show thatisa g € ¢, such that T maps g into (f,).

Letxe £, so that

We shall show that

g(x) = EXk By is the required g.

k=1

Since the representation for x is unique, g is well defined and moreover it is linear on /. To

prove it is bounded, consider

lg ()| Zr_‘:ﬁk Xy Si‘ﬁk Xk‘

IN

1 1
ul P& q
{ZXk p} { 2‘ qu} (Using Holder’s inequality)
k=1

k=1

. 50l < x{zmk r*}q

= g is bounded linear functional on /.
Since e € L, fork=1,2, ..., we get
g (e,) = B, for any k so that
T,=()andTison (*, onto /.

We next show that

[ TE || =]l f |l so that T is an isometry.

Since Tf € ¢, we have from (6) and (10) that

1
{Eoc} = ITAI<II£]
k=1

oo

Also, xel, =x= ZXkek . Hence
k=1
f(x) = zxk(ek) =2Xkak
k=1 k=1
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[}
=
=
X

IA

Yoixl e |
k=1

IN

k=1

1 1
{2| o |q}q { 2‘ x| }P (Using Hoélder’s inequality)
k=1
1
Z q
or [f ()] S{zmqu} HXHVXEZP,
k=1

Hence we have

s:g){lf(;ﬂ} < {ka |q}q =T (Using (6))

which upon using definition of norm yields

£l <[l TE] .. (13)
Thus £l =1TEN (Using (12) and (13))
From the definition of T, it is linear. Also since it is an isometry, it is one-to-one and onto

(already shown). Hence T is an isometric isomorphism of ¢ *, onto [, ie,

0*, =t

q-

This completes the proof of the theorem.
Theorem 5: Let p > 1 with 1 + 1 1 andlet g € L (X). Then the function defined by
P q

F = [fgduforfel, (9
X

is a bounded linear functional on L _ (X) and

IE =1lgl, ()
Proof: We first note that

Fislinear on L (X). Forif £, f, € L (X), then we get
E(f,+1) = J'(fl +f2)gdu=J.f1gdu+ff2gdp
X X X

=F(f)+F(£)

So that
F(f, +1f) =F(f)+F(f)
and F(F) =a ffgdu:aF(f).
Now |F(f)| = J.fgdu Sflfgldu .. (2
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Making use of Holder’s inequality, we get

£|fg|du < {Dfr’du}i{@gwdu}q

=I£1 gl
From (2) and (3) it follows that

IE@] <Nl gl

Hence sup {Fflfl :felp(X)and f # 0} < H g Hq
P

= IFll <lg ||q (Using definition of the norm) ... (4)
Further, letf =|g|i'sgn g .. (5)
Since ‘sgn g‘ =1, we get

|7 = |g[*@h =gl (~p@-1)=q

1
P q
Thus, fe L, (X)and J|f|PdM = J‘|g|qdu .. (6)
X X
1
P _ q/p
But {Ilglqdu} {J.Iglpdu} =81
X X

which implies on using (6) that

e, = ll;” )
Now F @ = [fgdu=[l5r gsgngdu

X X
= [1gr du=|sl:
X
Hence Isllel =FE®=<IEN NI,
and this on using (7) yields that
/
Il =F@<iFI[sl}”
= I8 =ugl,<IFl . (8)
(~8#0)
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From (4) and (8) it finally follows that
IEN =gl

This completes the proof of the theorem.

Approximation by Continuous Function

Notes

Theorem 6: If f is a bounded measurable function defined on [a, b], then for given € > 0,3 a

continuous function g on [a, b], such that
If-gll, <e

_[ f(t) dt where x € [a, b].

a

Proof: Let F (x)

X+]

IF(x +h)-F ()| = If(t)dt—jf(t)dt

a

Then

x+h

< J' f(t) dt

x+h

= f f(t) dt

< Mh, where |f (x)| <M, V x € [a, b].

Taking h < 3, and Mh < ¢, we get
[x+h-x|<d=]|F(x+h)-F(x) | <g,
= F (x) is continuous on [a, b].

x+h
Let G (x) =n .[

X

f(t)dt:xe[a,b]landneN;

then G (x) =n [F(x + %j - F(x)] ("~ F (x) is continuous on [a, b] =

G, (x) is continuous on [a, b] V n)

Again, since F(x) = '[f(t) dt, x e[a, b].

F'(x) =f (x) a.e.in [a, b].

F(x+(1/n)-F(x)

Now, Lim G, (x) = Li
ow n-—ee ( ) nl_}l;l;l 1/1’1
L FOHR)FG) |1
h—0 h n
=F (x) =f (x) a.e.in [a, b]
and hence Lim [G, (x) - f)] =0.
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x+(1/n)
f £(t) dt

X

x+(1/n)

Also |G, ()| =

Hence |G, (x)[<M, Vne Nand V x € [a, b].
[G,(x) - f (X)]* <M +M)?=4M? x € [a, b].
On applying Lebesgue bounded convergence theorem, we get

b b
Lim (G, -f) = j Lim (G, —f)? =0

n—eo

= Lim [G, - f], =0
. tim|G, -, =0
or Li_)rng—GnH =0

= for givene >0,3n_ € N, such thatn>n_
- I£-G, I, <e

Particularly for n =n,.

- |£-G..|, <
= If-gll, <e (Taking G, =g)
Thus there exists a continuous function G,_(x)=g(x)
x+(1/no)
=n, f f(t)dt, x [a, b],
which satisfies the given condition. X
8.2 Summary
o A linear functional f on a normed space N, is said to be bounded if there is a constant
k > 0 such that

[fe)| <k[Ix|l, V xe N,

° If xe (¢, and f is bounded linear functional on ¢, then f has the unique representation of

the form as an infinite series.

k=1
e  Thenormoffe ¢, is given by
1
- a
HERPIECSI
k=1

LOVELY PROFESSIONAL UNIVERSITY

<n f [£(t)[dt=M.
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8.3 Keywords Notes

Bounded Linear Functional on LP-spaces: If xe ( , and f is bounded linear functional on ¢ o7 then

f has the unique representation of the form as an infinite series

oo

t(x) = zxkf(ek)

k=1
Bounded Linear Functional: A linear functional f on a normed space N, is said to be bounded if
there is a constant k > 0 such that

[f(x)| <k| x|, V xe N,

Continuous Linear Functional: A linear functional f is continuous if given € > 0 there exists § >
0 so that

[f (x)-f(y)] <€ whenever || x-y | <9.
Linear Functional: Let N, be a normed space over a field R (or C). A mapping f : N, — R (or C)
is called a linear functional on N, if f (ax + By) =af (x) +Bf(y), V x,y € N, and &, B € R (or C).

Norm: The norm of f € / is given by

1

16l = {Zlf(ek)lq}q

k=1

8.4 Review Questions

Account for bounded linear functionals on Lr-space.
State and prove different continuous linear functional theorems.
Describe approximation by continuous function.

How will you explain norms of bounded linear functional on Lr-space?

S A

What is Isometric Isomorphism?

8.5 Further Readings

N

Books Rudin, Walter (1991), Functional Analysis, Mc-Graw-Hill Science/Engineering/
Math

Kreyszig, Erwin, Introductory Functional Analysis with Applications, WILEY 1989.

T.H. Hilderbrandt, Transactions of the American Mathematical Society. Vol. 36,
No. =4,1934.

AN

v,

Online links  www.math.psu.edu/yzheng/m597k/m597KkLIII4.pdf
www.public.iastate.edu/.../Royden_Real_Analysis_Solutions.pdf
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Unit 9: Measure Spaces
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Objectives

After studying this unit, you will be able to:

[ Define measure space.

[ Define null set in a measure space.

) Understand theorems based on measure spaces.
) Solve problems on measure spaces.
Introduction

A measurable space is a set S, together with a non-empty collection, S, of subsets of S, satisfying
the following two conditions:

1.  For any A, B in the collection S, the set' A - Bis alsoin S.
2. Forany A, A, ...€ S, UA €S
The elements of S are called measurable sets. These two conditions are summarised by saying

that the measurable sets are closed under taking finite differences and countable unions.

9.1 Measure Space

Measurable Space: Let U be a 6-algebra of subsets of set X. The pair (X, I{) is called a measurable
space. A subset E of X is said to be U/-measurable if E € U.

(@) If pis a measure on a G-algebra U of subsets of a set X, we call the triple (X, /4, u) a measure
space.

(b) A measure u on a c-algebra U of subsets of a set X is called a finite measure if m (X) <oo. In
this case (X, U, u) is called a finite measure space.
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(€0 A measure u on a 6-algebra U of subsets of a set X is called a o-finite measure if there exists Notes
asequence (E :ne N)inlUfsuchthatl/  E =Xandu (E ) <eefor every n € N.In this case

ne N 'n

(X, U, ) is called a o-finite measure space.

(d) AsetD e Uin an arbitrary measure space (X, U, u) is called a o-finite set if there exists a
sequence (D, :n€ A)inU such that U _ D =Dand u (D,) < for everyn e N.

Lemma 1: (a) Let (X, U, u) be a measure space. If D € U is a o-finite set, then there exists an
increasing sequence (F_:n e N)insuch that imF, =D and u (F,) <o for every n € Nand there

exists a disjoint sequence (G_:ne€ N)inif suchthat/ _, G =D and pu (G,) < for every n € .

ne N

(b) If (X, U, ) is a o-finite measure space then every D € U is a c-finite set.

Proof 1: Let (X, U, u) be a measure space. Suppose D € U is a o-finite set. Then there exists a
sequence (D, :ne N)inUsuch that U, _, D =D andu (D,) <e for every ne M. Foreachne A

let F, =U; D, . Then (F :n € N) is an increasing sequence in Y such that limF, =U __F

neN " n

=U,.D, =D and WEF,)= M[UDk] s ZM(Dk) <o for everyn € N.
k=1 k=1

Let G, =F, and G, =F \ U/ F, for n>2. Then (G :n € N) is a disjoint sequence in ¢ such that

U,vG, =U,F, =D as in the proof of Lemma “let (E_: n € ) be an arbitrary sequence in an

algebra U of subsets of a set X. Then there exists a disjoint sequence (F : n € N) in i such that

N N
1 UE" = UF“ for every N € W,

n=1 n=1

and
@ (e Jr"
neN neN

n-1
L(G)=n(F)<eand wG,)= p.(Fn UH Fk) <W(F,) <o forn = 2. This proves (a).
2. Let (X, U, k) be a o-finite measure space. Then there exists a sequence (E_:n e N)in{such
that U _,.E =Xandp (E ) <e foreveryne N.LetDe U. Foreachne N, letD, =DnNE_.

Then (D, : n€ N)is asequence in U such that U _,.D, =D and m (D,) <u (E)) << for every
n € N. Thus D is a o-finite set. This proves (b).

9.1.1 Null Set in a Measure Space

Definition: Given a measure |\ on a 6-algebra U/ of subsets of a set X - A subset E of X is called a null
set with respect to the measure p if E € ¢/ and p (E) = 0. In this case we say also that E is a null set
in the measure space (X, U, n). (Note that ¢ is a null set in any measure space but a null set in a
measure space need not be ¢.)

Theorem 1: A countable union of null sets in a measure space is a null set of the measure space.

Proof: Let (E_ :n e N) be a sequence of null sets in a measure space (X, U, u). LetE=U,_E .Since
U is closed under countable unions,

we have E € U.
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By the countable subadditivity of u on ¥4,
wehavep (BE)<X W (E)=0.

Thus p (E) = 0.

This shows that E is a null set in (X, U, ).

9.1.2 Complete Measure Space

Definition: Given a measure |\ on a 6-algebra U of subsets of a set X. We say that the ¢ -algebra U/
is complete with respect to the measure  if an arbitrary subset E; of a null set E with respect to
U is a member of U (and consequently has u (E)) = 0 by the Monotonicity of p). When U is
complete with respect to u, we say that (X, U, u) is a complete measure space.

Example: Let X = {a, b, c}. Then U = {¢, {a}, {b, c}, X} is a c-algebra of subsets of X. If we
define a set function p on U by setting p (¢) =0, u ({a}) =1, u ({b, c}) =0, and p (X) =1, then p is
a measure on U. The set {b, c} is a null set in the measure space (X, U, ), but its subset {b} is not
a member of U. Therefore, (X, U, ) is not a complete measure space.

9.1.3 Measurable Mapping
Let f be a mapping of a subset D of a set X into a set Y. We write D (f) and R (f) for the domain of
definition and the range of f respectively. Thus

D(f) =DcX,

R(f) ={ye Y:y=f(x)forsomexe D (f)} CY.

For the image of D (f) by f, we have f (D (f)) = R (f). For an arbitrary subset E of y we define the
preimage of E under the mapping f by

F'(E):={xe X:f(x)e E}={xe D (f):f(x) € E}.

=7|

Notes

1.  Eisanarbitrary subset of Y and need not be a subset of R (f). Indeed E may be disjoint
from R (f), in which case f (E) = ¢. In general, we have f (f (E)) c E.

2. For an arbitrary collection C of subsets of Y, we let f* (C) : = {f* (E) : E € C}.

Theorem 2: Given sets X and Y. Let f be a mapping with D (f) c Xand R (f) Y. Let Eand E_be
arbitrary subsets of Y. Then

1. £(Y)=D (),
2. F1(E)=F (Y\E)= £ (Y)\F (E) =D () \ £ (E),
3. 1 (U, A E)=U_ A 1 (E),
4. 1 (N, A E)=n_ Af’1 (E).

Theorem 3: Given sets X and Y. Let f be a mapping with D (f) c X and R (f) C Y. If Bis a 5-algebra
of subsets of Y then f* (B) is a 6-algebra of subsets of the set D (f). In particular, if D (f) = X then
f* (B) is a o-algebra of subsets of the set X.
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Proof: Let B be a c-algebra of subsets of the set Y. To show that f* (B) is a 6-algebra of subsets of Notes
the set D (f) we show that D (f) € {7 (B); if A € £ (B) then D (f)\ A € {7 (B); and for any sequence
(A, :ne Minf! (B)ywehaveU _ A € ' (B).

1. By (1) of above theorem, we have D (f) = {7 (Y) € f' (B) since Y € B.

2. LetAe f'(B). Then A =" (B) for some B € B. Since B € Bwe have f"' (B) € " (B). On the
other hand by (2) of above theorem, we have f*! (B) =D (f)\f' (B) = D (f)\ A. Thus D (f)\ A
e 1 (B).

3. Let(A :ne N)beasequence in {7 (B). Then A ={"' (B, ) for some B_€ B for eachn e N.
Then by (3) of above theorem, we have

Ja. =@ =¢ [UBn]e £(B),

neN neN neN

since UBn e(B).

neN
Measurable Mapping

Definition: Given two measurable spaces (X, i) and (Y, B). Let f be a mapping with D (f) € X and
R (f) € Y. We say that f is a U/ B measurable mapping if ' (B) € U for every B € B, that is, f* (B)
cu

Theorem 4: Given two measurable spaces (X, /) and (Y, B). Let f be a U{/ B-measurable mapping.
(a) IfU, is a o-algebra of subsets of X such that i, © U, then f is U/, / B-measurable.

(b) If B, is a c-algebra of subsets of Y such that B, C B, then f is // B -measurable.

Proof: (a) Follows from ' (B) c U c U, and (b) from ' (B)) c f* (B) c U.

Composition of two measurable mappings is a measurable mapping provided that the two
measurable mappings from a chain.

Theorem 5: Given two measurable spaces (X, ) and (Y, B), where B = ¢ (C) and C is arbitrary
collection of subsets of Y. Let f be a mapping with D (f) € &/ and R (f) c Y. Then f is a U/ B-
measurable mapping of D (f) into Y if and only if ! (C) C U.

Proof: If f is a U/ B-measurable mapping of D (f) into Y, then f* (B) € U so that f* (C) c U.
Conversely if f (C) c U, then o (f* (C) c 6 (i) = U. Now by theorem,

“Let f be a mapping of a set X into a set Y. Then for an arbitrary collection C of subsets of Y, we
have o (f* (C)) = f* (o (C).”

o6 (1 (C)=1£" (o (C)) =f* (B). Thus f! (B) c U and f is a U/ B- measurable mapping of D (f).
Theorem 6: 1f X is a thick subset of a measure space (X, S, u), if §,= S X, and if, for Ein S, u, (E
N X,) = u (B), then (X, S, u,) is a measure space.

Proof: If two sets, E, and E,, in S are such that E, n X = E, " X, then (E, AE,) n X_= 0, so that
(E, nE,) = 0 and therefore u (E,) = u (E,). In other words p, is indeed unambiguously defined on
S,
Suppose next that {F } is a disjoint sequence of sets in S, and let E_be a set in S such that

F =E nX,n=12, ...

LOVELY PROFESSIONAL UNIVERSITY 103



104

Notes

If E,.=E —U{E :1<i<n},n=1,2,..., then

(E,AE,)nX, = (F,~U{F:1<i<n})AF,

So that ]J.(]::HA En) =0, and therefore

X e(F) = o1 Mo (EL) =27 Uo(E, ) =1

U2l

In other word y, is indeed a measure, and the proof of the theorem is complete.

]
—
M

9.2 Summary

° Let U be a c-algebra of subsets of a set X. The pair (X, U) is called a measurable space. A
subset E of X is said to be U/-measurable if E € U.

° If u is a measure on a 6-algebra U of subsets of a set X, we call the triple (X, U, p) a measure
space.

° A subset E of X is called a null set with respect to the measure p if E € ¢/and p (E) = 0.
° Two measurable spaces (X, U) and (Y, B). Let f be a mapping with D (f) c Xand R (f) C Y.
We say that f is a 1/ B-measurable mapping if ' (B) € U for every B € B, thatis f! (B) C U.

9.3 Keywords

Complete Measure Space: Given a measure [ on a 6-algebra U/ of subsets of a set X. We say that
the o -algebra U/ is complete with respect to the measure p if an arbitrary subset E; of a null set
E with respect to u is a member of I/ (and consequently has u (E;) = 0 by the Monotonicity of w).
When U is complete with respect to u, we say that (X, I, u) is a complete measure space.

Measurable Mapping: Given two measurable spaces (X, U) and (Y, B). Let f be a mapping with D
(f) c Xand R (f) c Y. We say that f is a U/ B measurable mapping if ' (B) € U for every B € B, that
is, 1 (B) c U.

Measurable Space: A measurable space is a set S, together with a non-empty collection, S, of
subsets of S.

Null Set in a Measure Space: A subset E of X is called a null set with respect to the measure p if
E € Uand p (E) = 0. In this case we say also that E is a null set in the measure space (X, U, p).

Sigma Algebra: F is sigma algebra which establishes following relations:
(i) A, e Fforall kimplies U A eF

k=1

(ii) A e Fimplies A©e F
(ili) ¢pe F
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9.4 Review Questions Notes

1.  Let U be a c-algebra of subsets of a set X and let Y be an arbitrary subset of X. Let
B={ANY:Ae U}. Show that B is a c-algebra of subsets of Y.

2. Let (X, U, u) be a measure space. Show that for any E,, E, € U/ we have the equality:
W(E, UE,) + 1 (E,NE) = (E) +pu (Ey).

9.5 Further Readings

N

Books Paul Halmos, (1950). Measure Theory. Van Nostrand and Co.

Bogachev, V.I. (2007), Measure Theory, Berlin : Springer
A
.o,
Online links  planetmath.org/measurable space.html

mathworld.wolfram.com > Calculus and Analysis > Measure Theory
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Unit 10: Measurable Functions
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Objectives

After studying this unit, you will be able to:

° Understand measurable functions.

) Define equivalent functions and characteristic function.
) Describe Egoroff's theorem and Riesz theorem.

) Define simple function and step function.
Introduction

In this unit, we shall see that a real valued function may be Lebesgue integrable even if the
function is not continuous. In fact, for the existence of a Lebesgue integral, a much less restrictive
condition than continuity is needed to ensure integrability of f on [a, b]. This requirement gives
rise to a new class of functions, known as measurable functions. The class of measurable functions
plays an important role in Lebesgue theory of integration.
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10.1 Measurable Functions Notes

10.1.1 Lebesgue Measurable Function/Measurable Function

Definition: Let E be a measurable set and R* be a set of extended real numbers. A function
f: E— R*is said to be a Lebesgue measurable function on E or a measurable function on E iff the
set

E(f>0a)={xe E:f(x)>a}=f"{a, )} is a measurable subset of E V a € R.

=7|

Notes

1. The definition states that f is a measurable function if for every real number a, the
inverse image of (0, o) under f is a measurable set.

2. The measure of the set E (f > o) may be finite or infinite.

3. A function whose values are in the set of extended real numbers is called an extended
real valued function.

4. If E = R, then the set E (f > o) becomes an open set.

'i Example: A constant function with measurable domain is measurable.

Sol: Let f be a constant function defined over a measurable set E so that f (x) =€ V x € E.

Then for any real number o,

E,if c>a

E(f>0) = {q),if c<a

The sets E and ¢ are measurable and hence E (f > o) is measurable i.e. the function f is measurable.

Theorem 1: Let f and g be measurable real valued functions on E, and c is a constant. Then each of
the following functions is measurable on E.

@ ftc ®) cf
© f+g d) f-g

(e If] ® £

(g fg h) f/g (g vanishes no where on E)

Proof: Let o be an arbitrary real number.
(a) Since f is measurable and
E(f+tc>a)=E(f>a ¥ o),
the function f * c is measurable.
(b) To prove c f is measurable over E.

If ¢ =0, then cf is constant and hence measurable because a constant function is measurable.
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©

(d)

Consider the case in which ¢ # 0, then

E(f>g)if c>0
E (cf>a) = ¢
£

f<9)if c<0
C

Both the sets on R.H.S. are measurable.

Hence E (cf > o) is measurable and so cf is measurable V c € R.

Before proving f + g is measurable, we first prove that if f and g are measurable over E then
the set E (f > g) is also measurable.

Now f > g = 3 a rational number r such that

£69>r>g ()

Thus E(f>g) = | JIE(E>r)n(Eg<n)]

reQ

an enumerable union of measurable sets.

measurable set, since Q is an enumerable set.

Now, we shall prove that f + g is measurable over E. Let a be any real number.

Now E(f+g>a)=E(f>a-g) .. (D)
Again, g is measurable

=cg is measurable, c is constant.

("~ We know that if f is a measurable function and c is constant then cf is measurable)

=  a+cgismeasurable V a,ce R

=  a- gis measurable by taking ¢’ = -1,
since f and a - g are measurable

=  E (f > a-g) is measurable.

=  E (f + g > a) is a measurable set.

=  f+ gis a measurable function.

To prove that f - g is measurable. Before proving f - g is measurable, we first prove that if
f and g are measurable over E then the set E (f > g) is also measurable.

Now f > g = 3 a rational number r, such that f (x) >r > g (x).
Thus E(f>g) = | JIE(E>r)n(Eg<n)]
reQ
= an enumerable union of measurable sets.
= measurable sets, since Q is an enumerable set.
Now we shall prove that f - g is measurable over E.

Let a be any real number.
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Now E(f-g>a)=E(f>a+g) Notes
since g is measurable.

=  cgis measurable, c is constant.

=  a+cgismeasurable Va,ce R

=  a+ gis measurable by taking c =1,
since f and a + g are measurable

=  E (f >a+ g) is measurable.

=  E (f - g > a) is a measurable set.

=  f - g is a measurable function.

To prove |f| is measurable.

We have

E(|f|>oc)={Eif a<0 .

[E (f > )] U[E(f < —a)]if oo=>0

[because we know that |x| >a = x>aor x < -a]

since f is measurable therefore E (f > o) and E (f < - o) are measurable by definition.
Also we know that finite union of two measurable sets is measurable.

= E(f>a)UE (f <- ) is measurable.

=  E (|f| > a) is measurable.

= |f| is measurable.

To prove f? is measurable.

Eif <0

Wehave E (> a) = {E(|f|>x/&)]if @20

ButE (|f| > Vo) = [E(f > Vo)]U[E(f <—Ja)], if >0 (v |x| >a=>x>aorx<-a)

X _ |Eif a<0
Ef*>o)= {[E(f>\ﬂ)]u[E(f<—\/a)]if o=0

But f is measurable over E.

= E(f> \/&) and E (f< —\ﬂ) are measurable sets.

= [E(f>Ja)]U[E(f <-a)] is measurable.

(" union of two measurable sets is measurable)
=  E (2 > a) is measurable because both the sets on RHS are measurable.
=  f?is measurable over E.
To prove fg is measurable.

Clearly, f + g and f - g are measurable functions over E.
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= (f+ g)’ (f - g)* are measurable functions over E.

=  (f+ g)* - (f - g)* is a measurable function over E.
= %[(f +g) —(f- g)2] is a measurable function over E.

=  fgis a measurable function over E.
(h) To prove f/g is measurable.

Let g vanish nowhere on E, so that

g(x)#0 VvV xe E.

1 .
= — exists.

Now we shall show that 1 is measurable.

We have
E(g>0) ifa=0

E(;>aj= [E(g<0)]m[E(g<éﬂ ifo>0
[E(g <0)]U[E(g<0)]n [E(g < é)]

.. . . . 1 .
Also finite union and intersection of measurable sets are measurable. Hence E ( >o | is

measurable in every case.

Since f and 1 are measurable.

8

= (f)/(lJ is measurable over E.
8

f .
= — 1is measurable over E.

10.1.2 Almost Everywhere (a.e.)

Definition: A property is said to hold almost everywhere (a.e.) if the set of points where it fails to
hold is a set of measure zero.

' Example: Let f be a function defined on R by

¢ _ 0, if xisirrational
(x) 1, if x is rational

Then f (x) =0 a.e.
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10.1.3 Equivalent Functions Notes

Definition: Two functions f and g defined on the same domain E are said to be equivalent on E,
writtenasf~gonE, iff=ga.e.onE, ie. f (x) =g (x) forallx € E-E, where E, ¢ E withm (E,)
=0.

Theorem 2:1f f, g : E — R (E € M) such that g € Q (E).
Proof: Let o be any real number and let E, =E (f > o) and E, = E (g > )
Then E AE, =(E -E)U(E-E)

= {xe E:f(x) # g ()
so that by given hypothesis we have

m (E, AE,) =0.

This together with the fact that E, is measurable
= E, is measurable.

Hence g € Q (E).
10.1.4 Non-negative Functions

Definition: Let f be a function, then its positive part, written f* and its negative part, written f, are
defined to be the non-negative functions given by

+ =

= max (f, 0) and f* = max (-f, 0) respectively.

Note f =f_-f1

and || = + 1

Theorem 3: A function is measurable iff its positive and negative parts are measurable.

Proof: For every extended real valued function f, we may write

fr=—1[f+ [f]]

N =

and 1= = [|f] -f]

N | =

But f is measurable then |f| is measurable and hence positive and negative parts of f i.e. f* and
f- are measurable.

Conversely, let f* and f be measurable.
Since f=f-f!

Since we know that if f and g are measurable functions defined on a measurable set E thenf - g
is measurable on E.

Here f* - f! is measurable.

and hence f is measurable.
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Theorem 4: If f is a measurable function and f = g a.e. then g is measurable.
Proof: Let E = {x : f (x) # g (X)}.
Thenm (E) =0
Let o be a real number.

x:g(x)>0) ={x:f(x)>0juf{xeE:g(x)>a}-{xe E:g(x)<a}
since f is measurable, the first set on the right is measurable i.e. {x : f (x) > o} is measurable.
The last two sets on the right are measurable since they are subsets of E and m (E) = 0.
Thus, {x : g (x) > a} is measurable.

So, g is measurable.

' Example: Give an example of function for which f is not measurable but |f| is measurable.
Sol: Let k be a non-measurable subset of E = [0, 1).

Define a function f : E — R by

lif xek
f&) ‘{—ufxek

The function f is not measurable, since E (f > 0) (=k) is a non-measurable set. But | f| is measurable
as the set

Eifa<1
E(|f]>a) = {q)ilfg;l is measurable

10.1.5 Characteristic Function

Definition: Let A be subset of real numbers. We define the characteristic function , of the set A as
follows:

B lif xeA
%) = 0ifxeA

|

Note  The characteristic function ), of the set A is also called the indicator function of A.

Theorem 5: Show that the characteristic function y, is measurable iff A is measurable.
Proof: Let %, be measurable.

Since A = {x : %, (x) > 0} is measurable.

But y, is measurable, therefore the set {x: , (x) > 0} is measurable.

= A is measurable.

Conversely, let A be measurable and o be any real number.

oif =1
thenE (x,> o) = (Aif0<a<1
Eif a<0
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Every set on R.H.S. is measurable. Notes
Therefore E (y, > ) is measurable.

Hence %, is measurable.

|

Note The above theorem asserts that the characteristic function of non-measurable sets
are non-measurable even though the domain set is measurable.

10.1.6 Simple Function

A real valued function ¢ is called simple if it is measurable and assumes only a finite number of
values.

If ¢ is simple and has the values a,, a,, ... o, then

o = 20(1 Xa;
i-1

where A ={x:10(x)=o}
and A, N Ai is a null set.

Thus we can always express a simple function as a linear combination of characteristic function.

(i) ¢ is simple & A’s are measurable.
(i) sum, product and difference of simple functions are simple.

(iii) the representation of ¢ as given above is not unique.

But if ¢ is simple and {a, o, ...... , o} is the set of non-zero values of f, then
o = 20{‘1 Xa;
i=1
where A ={x:0(x) =0}

This representation of ¢ is called the Canonical representation. Here A’s are disjoint
and o’s are distinct and non-zero.

(iv) Simple function is always measurable.

10.1.7 Step Function

A real valued function S defined on an interval [a, b] is said to be a step function if these is a
partition a = x_ < x, ... <x_= b such that the function assumes one and only one value in each
interval.
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(i)  Step function also assumes finite number of values like simple functions but the sets
{x:S (x) = C} are intervals for each i.

i

(i) Every step function is also a simple function but the converse is not true.

1, x is rational

e.g.f: R — Rsuch thatf (x) = {0/ s irrational

is a simple function but not step as the sets of rational and irrational are not intervals.

Theorem 6: If f and g are two simple functions then o f + 8 g is also a simple function.

Proof: Since f and g are simple functions and we know that every simple function can be
expressed as the linear combination of characteristic function.

f and g can be expressed as the linear combination of characteristic function.

f= zm:(xi XA;
i=1

and g= Zﬁj Xs;
j=1

where A’s and B's are disjoint.
A = {x:f(x)=o})

B, = {x:g(x) =)

The set E, obtained by takingall intersections A, N B, from a finite disjoint collection of measurable
sets and we may write

n

f = zak Xy

o=
and g = ibk Xy
P
where n = mm’.
of + Bg = oczn:ak Xe, +B§n:bk Xk,
p =

Y (@a, +By) 1,
k=1

which is a linear combination of characteristic functions, therefore it is simple.
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N Notes
Similarly fg = Zak +by X,

k=1

which is again a linear combination of characteristic function, therefore fg is simple.

Theorem 7: Let E be a measurable set with m (E) < and {f } a sequence of measurable functions
converging a.e. to a real valued function defined on E. Then, given € > 0 and 3 > 0, there is a set
A Cc Ewithm (A) < and an integer N such that [f (x) -f(x)| <eforallxe E-Aandalln>N.

Proof: Let F be the set of points of E for which f — f. Then m (F) =0 and f_(x) — f (x) forall x €
E - F =E, (say). Then by the previous theorem for the set E , we get A CE, withm (A)) <8 and
an integer N such that

[f (x)-f(x) | <eforalln=Nandxe€ E -A,.
We get the required result by taking
A=A UFsincem (F)=0and E-A=E - A

|

Note Before proving this theorem first prove the previous theorem.

10.1.8 Convergent Sequence of Measurable Function

Definition: A sequence {f } of measurable functions is said to converge almost uniformly to a
measurable function f defined on a measurable set E if for each € > 0 there exists a measurable
set A C E with m (A) < € such that {f } converges to f uniformly an E - A.

10.1.9 Egoroff's Theorem

Statement: Let E be a measurable set with m (E) < and {f } a sequence of measurable functions
which converge to f a.e. on E. Then, given n > 0 there is a set A C E with m (A) <n with that the
sequence {f } converges to f uniformly on E - A.

Proof: Applying the theorem, “Let E be a measurable set with m (E) < « and {f } a sequence of
measurable function converging a.e. to real valued function f defined on E. Then given € > 0 and
&> 0 there is a set A ¢ E with m (A) < 8 and an integer N such that

[f (x)-f(x) | <eforallxe E-Aandalln>N"
with € =1, 8 =1/2, we get a measurable set
A, C E withm (A)) <n/2and a positive integer N, such that
[f, () -f(x)|<1forallx =N,
and x€ E,whereE =E-A,.
Again, taking e =1/2 and 8 =n/2%,

we get a measurable set A, C E, with m (A,) <1/2% and a positive integer N, such that

1
[f (x)-f(x)] < > vn=N,and x € E,whereE,=E - A, and so on.
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A CcE  withm(A) < D anda positive integer N such that
P P P 2p P

[f () -f()| < 1 Vn2N andx € E where
P

E =E -1-A.
P P P

Let A= EAP ,
p=1

then m (4) < Zm(Ap)
p-1
n
But m(Ap) < E
S n
m (A) < 2 P
p=1
11
But 2% isa G.P.seriesso S =%:1%:% =1
=1 ) 2
P 2 2
m (A) <n
Also, E-A =E_LJAp

1} 1}
D =D
i =
KA |
>
ﬁ:f> N

Letxe E-A.Thenxe E Vpandso

£ (0-f()] <, ¥n=N.
p

P

1
Let us choose p such that — <¢, we get
p

[f,(x)-f(x)| <eVxe E-Aandn2N_ =N
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Note Egoroff’s theorem can be stated as: almost every where convergence implies almost
uniform convergence.

10.1.10 Riesz Theorem

Let {f } be a sequence of measurable functions which converges in measure to f. Then there is a

n

subsequence {f k} which converges in measure to f a.e.

Proof: Let {¢_} and {3 } be two sequences of positive real numbers such that ¢ — 0 asn — o and

26n<w.

n=1

Let us now choose an increasing sequence {n,} of positive integers as follows.

Let n be a positive integer such that
m({x e E[f,(x) - f(x)| 2 €}) <8
Since f — f in measure for a given ¢, > 0 and 9, > 0, 3 a positive integer n, such that

m({x €E,

fnl(x)—f(x)‘ZEl})<61,Vn1 >n

Similarly, let n, be a positive number such that m({x €E,|f,(x)—- f(x)‘ > 82}) <3J,,Vn, 2n, and so
on.

In general let n, be a positive number such that

m({x :x€E,|f, (x) —f(x)‘ > Ek}) <9, andthatn, 2n,,.

We shall now prove that the subsequence {fnk} converges to f a.e.

Let A, = O{x ix€E[f, () f(x)]|2¢ ], keN and A= ﬁAk .

i=k k=1
Clearly, {A,} is a decreasing sequence of measurable sets and m (A,) < eo.
Therefore, we have

m (A) = limm(A,)

k—eo

Butm (A)) < EﬁiﬁOaSk—wxn
i=k

Hence m (A) = 0.

Now it remains to show that {f } convergestofon E - A. Let x € E - A.
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Then x_ ¢ A, for some positive integer k .

or x, g{xeE:[f )-f(X)]| =g} k=k,
which gives [f (x)-f(x)| <g, k>k,

But g —>0ask — oo,

Hence {im £, (%) =1£(x,)-

10.2 Summary

o Let E be a measurable set and R* be a set of extended real numbers. A function f: E — R*is
said to be a Lebesgue measurable function on E or a measurable function on E iff the set E

(f>a)={xe E:f(x) >0} =£f"{(a, =)} is a measurable subset of EV 0. € R.

o A property is said to hold almost everywhere (a.e.) if the set of points where it fails to hold
is a set of measure zero.

o Two functions f and g defined on the same domain E are said to be equivalent on E, written
asf~gonE,iff=gae . onE,ie.f(x)=g(x)forallxe E-E, where E, C E withm (E,) = 0.

o f* = max (f, 0) and ! = max (-f, 0)
[f] =f+£1

° Let A be subset of real numbers. We define the characteristic function y, of the set A as
follows:

B 1,if xe A
%)=10,if xe A

o A real valued function ¢ is called simple if it is measurable and assumes only a finite
number of values.

10.3 Keywords

Almost Everywhere (a.e.): A property is said to hold almost everywhere (a.e.) if the set of points
where it fails to hold is a set of measure zero.

Characteristic Function: Let A be subset of real numbers. We define the characteristic function
x, of the set A as follows:

B lif xeA
%) = 0ifxeA

Egoroff’s Theorem: Let E be a measurable set with m (E) < e« and {f } a sequence of measurable
functions which converge to f a.e. on E. Then given n > 0 there is a set A ¢ E with m (A) <n such
that the sequence {f } converges to f uniformly on E - A.

Equivalent Functions: Two functions f and g defined on the same domain E are said to be
equivalent on E, written asf ~gonE,iff=ga.e.onE,ie. f(x) =g (x) forallx € E-E, where E,
c E withm (E,) = 0.

LOVELY PROFESSIONAL UNIVERSITY



Unit 10: Measurable Functions

Haracteristic Function: Let A be subset of real numbers. We define the characteristic functiony;, Notes
of the set A as follows:

_[lifxeA
X () = Oif xg A

Lebesgue Measurable Function: A function f : E — R* is said to be a Lebesgue measurable function
on E or a measurable function on E iff the set

E(f>0a)={xe E:f(x)>a}=f"{a, =)} is a measurable subset of E V a € R.
Measurable Set: A set E is said to be measurable if for each set T, we have
m* (T) = m* (T A E) + m* {T N E°)

Non-negative Functions: Let f be a function, then its positive part, written f* and its negative
part, written f, are defined to be the non-negative functions given by

f* = max (f, 0) and f = max (-f, 0) respectively.
Riesz Theorem: Let {f } be a sequence of measurable functions which converges in measure to f.

Then there is a subsequence {fnk} which converges to f a.e.

Simple Function: A real valued function ¢ is called simple if it is measurable and assumes only
a finite number of values.

If ¢ is simple and has the values a,, a,, ... o, then

o = 20(1 Xa;
i-1

where A ={x:10(x)=o}
and A, N Ai is a null set.

Step Function: A real valued function S defined on an interval [a, b] is said to be a step function
if these is a partition a = x <x, ... <x_= b such that the function assumes one and only one value
in each interval.

Subsequence: If (x ) is a given sequence in X and (n,) is an strictly increasing sequence of positive

integers, then {xnk} is called a subsequence of (x ).

10.4 Review Questions

1.  Iffisameasurable function and cis a real number, then is it true to say that cf is measurable?
2. A non-zero constant function is measurable if and only if X is measurable comment.
3. Let Q be the set of rational number and let f be an extended real-valued function such that

{x : f (x) > a} is measurable for each o € Q. Then show that f is measurable.

4. Show that if f is measurable then the set {x : f (x) = o} is measurable for each extended real
number o.
5. If f is a continuous function and g is a measurable function, then prove that the composite

function fog is measurable.
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Notes 6. Show that
(i) Xars = Xa"Xs
(ﬁ) Xas = Xa T X —Xa Xs

(iii) X, = 1-%a

10.5 Further Readings

N

Books Dudley, R.M. (2002). Real Analysis and Probability (2 ed.). Cambridge University
Press

Strichartz, Robert (2000). The Way of Analysis. Jones and Bortlett.
A
.4,
Online links  mathworld.wolfram.com>calculus and Analysis > Measure theory

planetmath.org/Measurable functions.html

zeta.math.utsa.edu/~ mqr 328/ class/real2/ mfunct.pdf
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Unit 11: Integration Notes

CONTENTS
Objectives
Introduction
11.1 Integration
11.1.1  The Riemann Integral
1112  Lebesgue Integral of a Bounded Function over a Set of Finite Measure
11.1.3  The Lebesgue Integral of a Non-negative Function
11.1.4  The General Lebesgue Integral
11.2 Summary
11.3 Keywords

11.4 Review Questions

11.5 Further Readings

Objectives

After studying this unit, you will be able to:

° Define the Riemann integral and Lebesgue integral of bounded function over a set of
finite measure.

° Understand the Lebesgue integral of a non-negative function.
o Solve problems on integration.
Introduction

We now come to the main use of measure theory: to define a general theory of integration. The
particular case of the integral with respect to the Lebesgue measure is not, in any way, simpler
the general case, which will give us a tool of much wider applicability.

11.1 Integration

11.1.1 The Riemann Integral

Let f be a bounded real valued function defined on the interval [a,b] and leta =x,<x, <...<x =b
be a sub-division of [a, b].

Then for each sub-division we can define the sums

S= i(xi _Xi—])Mi
i=1

and s = Z(Xi —=X;,) m,
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where M = sup f(x),
Xj—1<XSX{
mi N xi_111<1xfsxi f(X)

We then define the upper Riemann integral of f by
B
RJ.f(x)dx=infS

where the infimum is taken over all possible sub-divisions of [a, b].

Similarly, we define the lower Riemann integral
b
R J.f(x) dx=sup$S
The upper integral is always at least as large as the lower integral, and if the two are equal, we

say that f is Riemann integrable and we call this common value the Riemann integral of f.

It will be denoted by

Rff(x) dx

a

|

Note By a step function we mean function ¥ s.t.

x]

i-17 i

Y(x)=o V xe[x

for some sub-division of [a, b] and some set of constant o, then
X1 Xn

J“I—’(x)dx = J“P(x)dx+...+ I ¥ (x) dx
Xo Xn-1

X1 x2 Xn

= J.Oc1 dx+J.oc2 dx+...+ I o, dx

Xo X1 Xn-1

= OCl (X1 _XU) + (X‘z (Xz_xl) + + OLn (Xn—l _Xn)

= Zai(xi_xm) (1)
i=1
with this in mind, we see that
5
R[f(dx = infu, (f)
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inf Mi(xi - XH)

b
inf J“P (x)dx for all step functions
¥ (x) 2f (x)

b
Similarly R Jf (x)dx =supL_(f)

n
sup Zmi (Xi ~ X )
i=1

b
sup J.q) (x)dx for all step function

009 <f ().

11.1.2 Lebesgue Integral of a Bounded Function over a Set of Finite
Measure

CharacteristicFunction
The function y, defined by

_[lifxeE
%) =0ifxg B

is called the characteristic function of E.

Simple Function

A linear combination ¢ (x) = Zoci X, (x) is called a simple function if the sets E, are measurable.
i=1

This representation of ¢ is not unique.

However, a function ¢ is simple if and only if it is measurable and assumes only a finite number
of values.

Canonical Representation

If ¢ is simple function and {a, a,, ..., & } the set of non-zero values of ¢, then

o= iai Xg; s
i1

where E = {x: ¢ (x)

]
R
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This representation of ¢ is called the canonical representation. Here Es are disjoint and o.’s are
finite in number, distinct and non-zero.

Elementary Integral
Definition: If ¢ vanishes outside a set of finite measure, we define the elementary integral of ¢ by

I¢(x) dx= Zoci mE,; when ¢ has the canonical representation.

i=1

6= i(xi Xg; -
i-1

We sometimes abbreviate the expression for this integral I¢. If E is any measurable set, we

define the elementary integral of ¢ over E by I(b = J(]) A -
E

b
If E = [a, b], then the integral .[ ¢ will be denoted by J.(I) .

[a, b] a

Theorem 1: Let ¢ and ¥ be simple functions which vanish outside a set of finite measure, then

f(a¢+b‘}’) = aJ‘¢+bJ.‘P andif 0> ae, thenJ‘q)ZJ.‘I—’

Proof: Since ¢ and ¥ are simple functions.

Therefore these can be written in the canonical form
¢ = Zai Xa

and v = ZB]' XB]-
=1
where {A} and {Bj} are disjoint sequences of measurable sets and
A ={x:0(x) =0
and B = x:¥(x)= B}.}

The set E, obtained by taking all intersections A, N B, form a finite disjoint collection of measurable
sets. We may write

N

0= Zak Xk, and

k=1
N

Y = Zbk Xg, (Where N = mm’)

k=1
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Now ad + b¥

:)
M
o
=

=
+
o
M
=
=
&

which is again a simple function.
Since I¢ = Zai m E,

J' (a0 +b¥) = Z(aak +bb,)mE, (by definition)

k=1
N

a Zak mE, +b ibk mE,
k=1

k=1

af¢+bJ.T

Now since 0 =>Y ae.

= 0-¥ =0a.e.

We have proved that

J‘(a¢+b‘P) - aJ.(I)+bJ.‘I’

Puta =1, b = -1 in the first part, we get

[o-v) = [o-|¥

Since ¢ - ¥ > 0 a.e. is a simple function, by the definition of the elementary integral, we have

f(q)—l{f) >0
> J'q)—J'\P >0
= J.(l) > IT

Theorem 2: Riemann integrable is Lebesgue integrable.

Proof: Since f is Riemann integrable over [a, b], we have

b b b
}'Jnff ITl(x) dx =sup J.q)l(x) dx=R ff(x) dx
Y= o<f

where ¢, and ¥, vary over all step functions defined on [a, b].
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sup | 0,(x)dx < sup | ¢(x)dx

¢1<f o<f
a a

and J.\p(x x > inf \P()d

\P1>f >t

where ¢ and ¥ vary over all the simple functions defined on [a, b]. Thus from the above relation,
we have

o<f

b b
ij dx<sup q)( )dxs;lg{IW(x)dst.[f(x)dx

= Jf(x)dx=R'rf(x)dx

a

]

Note The converse of this theorem is not true i.e.
A Lebesgue integrable function may not be Riemann integrable

e.g. Let f be a function defined on the interval [0, 1] as follows:

~ 10, if x is irrational

{1, if x is rational
f(x) =

Let us consider a partition p of an interval [0, 1].

N
U(p f) = ZMi Ax,
i=1

=1Ax, +1Ax, + ... +1Ax =1-0
=1.

jfdx —infU(p,f=1-0=1

0

1
ffdx =supL (p, f)

=sup {0Ax, + 0Ax, + ...... +0Ax }
=0
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Thus J.fdx ¢J'fdx

The function is not Riemann integrable.
Now for Lebesgue Integrability

Let A, be the set of all irrational numbers and A, be the set of all rational numbers in [0, 1].

The partition P = {A,, A,} is a measurable partition of [0, 1] and mA, =0, mA, = 1.

L(p f) = iﬂf f(x)-mA, +i£';f f(x)-mA,
=0-mA, +1-mA, =1.
U(p,f) = sgp f(x)-mA, +sllp f(x)-mA,
1 2
=0-mA +1-mA, =1.
st;pL(p,f) = 1=iI;fU(p,f)

= f is Lebesgue integrable over [0, 1].

Theorem 3: 1f f and g are bounded measurable functions defined on the set E of finite measure,
then

1) J(af+bg)=ajf+bjg
(2 Iff=ga.e, then If=Jg

(B) Iff<ga.e, then If < Jg
E E

- fn

(4) If A and B are disjoint measurable set of finite measure, then

jf:!ﬂj‘;f

AUB

Hence

Proof of 1: Result is true if a =0
Leta#0.
If ¥ is a simple function then so is a ¥ and conversely.

Hence fora >0

af = inf |a¥

a¥=af

71 Sy
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= inf | a¥ (~-a>0)

Again if a <0,

jaf _ inf |a¥
= a¥=af
E

=sup|a¥ (-a<0)

Y<f

= sup aJ“i’

Y<f

=asup|¥

w<f
E

Therefore in each case

af =aff . (@)

7] ey

Now we prove that

[

o

Let ¥, and ¥, be two simple functions such that ¥, > f and ¥, > g, then ¥, + ¥, is a simple
functionand ¥, + ¥, > f + g.

or f+g="% +¥,

I(f+g) < f(\{g 1)

E E

But J“F]+‘If2 = jT1+ITZ
E E E

LOVELY PROFESSIONAL UNIVERSITY



Unit 11: Integration

= j(f+g) < J“Iﬁ+_‘“1’2
E E E
Since inf | ¥, = J.f
f<¥q
E E
and giSnNPf2 ¥, = J.g
E E
J.(f+g) < J.f+J.g

On the other hand if ¢, and ¢, are two simple functions such that ¢, < f and ¢, < g. Then ¢, + ¢, is

simple function and

¢1+¢2

<f+g

or f+g>0 +0,

[+ = [0 +0)

But I (0, +0,)

= J f+g

Since sup | ¢, =
f>¢1

and sup |9, =
f2¢2 2

From (2) and (3), we get

Proof of 2: Since f = g a.e.

ajf + bj g from (i)
E E

= f-g=0ae.
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Let F ={x:f(x)#g(x)}

Then by definition of a.e., we have mF =0 and F C E.

[E-9 (t-8)=[t-5)+ [ t-8)

E FU(E-F) E-F

=(f-g)mF+(f-g)m(E-F)

=(f-g).0+0. m(E-F)[- mF=0and f-g=0over E-F]

[E-g) =0

= [i-[s =0= [i=[s
E E E

E

|

Note Converse need not be true

e.g. Let the functions f : [-1, 1] = Rand g: [-1, 1] = R be defined by

_[2ifx<0
f(X)_{Oifx>0

and g(x) =1V x
1 1

Then If(x) dx =2= J.g(x) dx
-1 -1

But f#gae.

In other words, they are not equal even for a single point in [-1, 1].

Proof of 3: f< g a.e.
= f-g<O0ae.

Let ¢ be simple function,

=f-g
- <0
= I¢ <0
= [E-5) <0

- J.f—J.g <0
E E
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= jf Sjg
E E
Since f<|f|
N J'f sI|f| (1)
E E
Again - f < |f|
= J'—f sI|f|
E E

or —f|f| < J'f Q)

From (1) and (2) we get

—£|f| s!fslm
If s!|f|.

E
Proof of 4: 1t follows from (3) and the fact that .[1 =mE.
E

Proof of 5: J. f = J.fXA\JB

AUB

Now Xak = Xa TXs —Xacs

where A and B are disjoint measurable sets i.e.

AnB=0¢
Jf = J.f(xA+xB)—ffomB
- IfXA+.[fXB_O [** AnB=¢and m () =0]

=./|:f+.l[f

11.1.3 The Lebesgue Integral of a Non-negative Function

Definition: If f is a non-negative measurable function defined on a measurable set E, we define

h<f
E

J.f =sup | h,
E
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where h is a bounded measurable function such that

m{x:h(x) #0} <o

Theorem 4: Let f be a non-negative measurable function. Show that J.f =0 implies f =0 a.e.

Proof: Let ¢ be any measurable simple function such that
¢ <f
Sincef=0a.e.onE

= 0 <0a.e.
J'¢(x) dx <0
E
Taking supremum over all those measurable simple functions ¢ < f, we get

Ifdx <0
E

Similarly let ¥ be any measurable simple function such that ¥ > f

Since f=0a.e.
¥ >0a.e.
- j ¥(x)dx >0

E

Taking infimum over all those measurable simple functions ¥ > f, we get

Ifdx >0
E

From (1) and (2), we get

Conversely, let ff dx =

1
If En={XZf(X)>;},then

. (1)

.2

But leEn (x)dx = lmEn (By definition)
n n
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jfdx >1mE,
: n
1
Or Img, < [fdx
n
E
But [rax <o
E
lmEn <0
n
= mE <0
But m E_> 0 is always true
mE =0
But (x:f(x)>0} = UE,
and mE =0
= m(QEn) =
= mi{x:f(x)>0} =0

f=0aeonE

Theorem 5: Let f and g be two non-negative measurable functions. If f is integrable over E and

g (x) <f (x) on E, then g is also integrable over E, and

[-8) = [e-s.

Proof: Since we know that if f and g are non-negative measurable functions defined on a set E,

then
I(f+g) =If+fg
E E E
Since t=(f-g+g

therefore we have

(f—g)+fg

E

[t = [a-svs-

1 Sy

. (1)

Since the functions f - g and g are non-negative and measurable. Further, f being integrable over

E, J.f < oo (by definition)
E
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Therefore, each integral on the right of (1) is finite.

In particular, J.g < oo,
E

which shows that g is an integrable function over E.

Since J.f = j(f—g)+jg
- [t-]s - [u-o.

11.1.4 The General Lebesgue Integral

For the positive part f* of a function f, we define
f* =max (f, 0)
and negative part f- by f-
f- = max (-f, 0)

and that f is measurable if and only if both f* and f- are measurable.

=7
i[5
Note f =f-f
and [f| =f+f

Definition: A measurable function f is said to be Lebesgue integrable over E if f* and f~ are both

Lebesgue integrable over E. In this case, we define If = J.f - ff' .
E E E

Theorem 6: Let f and g be integrable over E, then

(@) The function of f is integrable over E, and ch = cjf .
E E

(b)  Sum of two integrable functions is integrable i.e. the function f + g is integral over E, and
[ere) = [e+ g
E E E

(¢ Iff<gace,then Ifsjg.
E E

(d) If A and B are disjoint measurable sets contained in E, then

J.f =J.fs.l|;f.

AUB A
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Proof: (a) If ¢ 20, then Notes
(c)* =ct*
(cf)- = cf”
and if ¢ <0, then
(cf) = (=) £
(cf)- =(-¢c)- £

Since f is integrable so f* and f~ are also integrable and conversely. Hence the result
follows.

(b) Inorder to prove the required result first of all we show that if f and f, are non-negative
integrable functions such that f = f - f, then

jf=jg-fg (1)

Since f=f-f,
Also f=f-f,
then fr-f=f-f
= fr+f,=f+f (2

Also we know that if f and g are non-negative measurable functions defined on a set E,

then
[g) = e+ e

Then from (2), we get

[e+fe =a+]e
- IF—IF =Ig—f@ .. 3)

But f is integrable so f* and f- are integrable i.e.

Ji-fe-fr

Therefore (3) becomes

Hence J.f = J.f1 —.[fz
E E

which proves (1).
Now, if f and g are integrable functions over E, then
fog,frgandfrg =(f+g)-(F+g)

and also integrable functions over E.
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Furthermore f and g are integrable, it implies that |f| and |g| are integrable.
(" A measurable function f is integrable over E if and only if |f| is integrable over E.)

Thus |f| + |g| is integrable over E.

(- J(f +g)= jf + j g and by the definition of integrable)
E E

E
Since |[f+g| < [+]f] + [g]
which shows that f + g is integrable.

Hence sum of two integrable functions is integrable.

Thus J.(f+g) = J.(f*+g*)—_|.(f’+g*)

E E

frefe f g

Since g = f + (g - f) and {, g - f are integrable over E.
Then by the given hypothesis (g - f)- =0 a.e.

then J' (g-f) =0,
E

(Since we know that if f = 0 a.e. then ff =0)

becomes
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> j ¢
E

' Example: Let f be a non-negative integrable function. Show that the function F defined
by

F(x) = Jf(t) dt is continuous on R.

Solution: Since f is a non-negative integrable function, then given € > 0 there is a § > 0 such that for
every set A C R with m (A) <9, we have

jf

A

<g

If x € R, then V x € Rwith |x-x_ | <9, we have

jf (t)

Xo

dt <e¢

- :ff(t)dt N j'f(t)dt <e
. j.f(t)dt N ]:f(t)dt <
N If(t)dt - J.f(t)dt <
= [F(x)-F(x)| <e

Hence F is continuous at x . Since x_ € R is arbitrary, F is continuous on R.
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11.2 Summary

Let ¢ and ¥ be simple functions which vanish outside a set of finite measure, then

J.(aq) +b¥) = ajd) + bJ“P and if ¢ =¥ a.e., then I(b > J“P
A Lebesgue integrable function may not be Riemann integrable.
Let A, be the set of all irrational numbers and A, be the set of all rational numbers in [0, 1].
If f is a non-negative measurable function defined on a measurable set E, we define

J‘f=sup h
E

h<f 4
E

where h is a bounded measurable function such that
m{x:h(x)#0} <o

Let f and g be two non-negative measurable functions. If f is integrable over E and g (x) <
f (x) on E, then g is also integrable over E, and

[E-g=[t-[s

11.3 Keywords

Canonical Representation: If ¢ is simple function and {o,, a,, ..., @ } the set of non-zero values of
0, then

o = Eai Xg; s
i1

where E, = {x: ¢ (x) = a}.

Characteristic Function: The function y,_ defined by

_[lifxeE
%) = 0ifxg B

is called the characteristic function of E.

Elementary Integral: If ¢ vanishes outside a set of finite measure, we define the elementary

integral of ¢ by I(b(x) dx = Zoci mE, when ¢ has the canonical representation.
i=1

6= iai Xg; -
i-1

Lebesgue Integrable: A measurable function f is said to be Lebesgue integrable over E if f* and {-

are both Lebesgue integrable over E. In this case, we define jf = If* —Jf' .
E E E
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n Notes
Simple Function: A linear combination ¢ (x) = 20(i X, (x) is called a simple function if the sets
i=1

E, are measurable.

Simple Function: A linear combination ¢ (x) = Eai X, (x) is called a simple function if the sets E,
i=1

are measurable.
This representation of ¢ is not unique.

However, a function ¢ is simple if and only if it is measurable and assumes only a finite number
of values.

The Lebesgue Integral of a Non-negative Function: If f is a non-negative measurable function
defined on a measurable set E, we define

h<f
E

J.f =sup | h,
E
where h is a bounded measurable function such that
m{x:h(x) #0} <o

The Riemann Integral: Let f be a bounded real valued function defined on the interval [a, b] and
leta = x,<x, <... <x =b be asub-division of [a, b].

Then for each sub-division we can define the sums

S= zn:(xi _Xi—‘l)Mi
i=1

and 5 = E (x; =x;,) m,
i=1
where M = sup f(x),
! Xj—1<XSXj
m. = inf f(x)
Xj—1<XSXj

11.4 Review Questions

1. Prove that jaf = ajfv real number a.
E

E

2. If f is bounded real valued measurable function defined on a measurable set E of finite

measure such that a < f (x) < b, then show that amE < ‘[f < bmE.
E

3. Iffand g are non-negative measurable functions defined on E € M then prove that

(a) jcf:cjf,c>0

E
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Notes (f+g)=Jf+Jg

E E

(b)

o Sy

(© J.f=0:>f=0a.e.

(d) Iff<ga.e.then If < Ig
E E
4. If f is integrable over E, then show that |f| is integrable over E, and

JE'f

5. Show that if f is a non-negative measurable function then f = 0 a.e. on E iff If =0.
E

SJ.|f|.

E

6. If If =0andf (x)20onE, thenf=0a.e.
E

11.5 Further Readings

N

Books Erwin Kreyszig, Introductory Functional Analysis with Applications, John Wiley &
Sons Inc., New York, 1989

Walter Rudin, Real and Complex Analysis, Third McGraw Hill Book Co., New York,
1987

R.G. Bartle, The Elements of Integration and Lebesgue Measure, Wiley Interscience,
1995

&3

Online links  www.maths.manchester.ac.uk

WWwWw.uir.ac.za
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Unit 12: General Convergence Theorems Notes

CONTENTS
Objectives
Introduction
12.1 General Convergence Theorems
1211  Convergence almost Everywhere
1212  Pointwise Convergence
12.1.3  Uniform Convergence, Almost Everywhere (a.e.)
1214 Bounded Convergence Theorem
12.1.5 Fatou’s Lemma
12.1.6 Monotone Convergence Theorem
12.1.7  Lebesgue Dominated Convergence Theorem
122 Summary
12.3 Keywords
12.4 Review Questions

12.5 Further Readings

Objectives

After studying this unit, you will be able to:

o Understand bounded convergence theorem.

o State and prove monotone convergence theorem and Lebesgue dominated convergence
theorem.

o Solve related problems on these theorems.

Introduction

Convergence of a sequence of functions can be defined in various ways and there are situations
in which each of these definitions is natural and useful. In this unit, we shall study about
convergence almost everywhere, pointwise and uniform convergence. We shall also prove
bounded convergence theorem and monotone convergence theorem which are so useful in
solving problems on convergence. The dominated convergence theorem is one of the most
important results of Lebesgue’s integration theory. It gives a general sufficient condition for the
validity of proceeding to the limit of a sequence of functions under the integral sign. It is an
invaluable tool to study functions defined by integrals.

12.1 General Convergence Theorems

12.1.1 Convergence almost Everywhere

Let <f > be a sequence of measurable functions defined over a measurable set E. Then <f > is said
to converge almost everywhere in E if there exists a subset E, of E s.t.
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Notes

(i f(x)—f(x), VxeE-E,
and (ii) m (E) = 0.

12.1.2 Pointwise Convergence

Let <f > be a sequence of measurable functions on a measurable set E. Then <f > is said to
converge “pointwise” in E, if 3 a measurable function f on E such that

f(x) >f(x) V xe Eor

It £(x) =f(x)

n—eo

12.1.3 Uniform Convergence, Almost Everywhere (a.e.)

Let <f > be a sequence of measurable functions defined over a measurable set E. Then the
sequence <f > is said to converge uniformly a.e. to f, if 3 a set B, C E s.t.

(i) m(E)=0and

(ii) <f > converges uniformly to f on the set E - E.
12.1.4 Bounded Convergence Theorem

Theorem 1: State and Prove: Bounded Convergence Theorem

Statement: Let {f } be a sequence of measurable functions defined on a set E of finite measure, and

suppose that there is a real number M such that [f (x) | <M Vnand x. If f (x) = lim f (x) for each

x in E, then

n—eo
E

J.f = lim [£,
E
Proof: Since f (x) = lim J.fn(x) and f_is measurable on E
E

f is also measurable on E

Let € > 0 be given

Then 3 measurable set A C E with mA < & and a positive integer N such that

L0 -F (] < 5=

Ifn —If I(fﬂ _f)

E

Vn>Nandx € E-A

< fle-n]

E
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Notes
- J' (fn—f)\+J'\(fn-f)\ as(E-A)nA =0
E-A A
<& J.1+J.( f +\f\)
2mE
E-A A
< Lm(E-A)+2MJ1
2mE
A
<% mE+2MmA asm (E-A)<mE
2mE
< fioam-E
2 PV M
= —+7
=
Thus If —J.f <g

But € was arbitrary

12.1.5 Fatou’s Lemma

If {f } is a sequence of non-negative measurable functions and f (x) — f (x) almost everywhere on
a set E, then

Proof: Since integrals over sets of measure zero are zero.

Without loss of generality, we may assume that the convergence is everywhere. Let h be
a bounded measurable function with h < f and h (x) = 0 outside a set E” ¢ E of finite
measure.

Define a function h by
h, (x) = Min. {h(x), f_(x)}
then h (x) <h(x) and h_(x) <f (x)

h,_ is bounded by the boundedness of h and vanishes outside E’as x € E-E = h(x) =0
= h,_(x) = 0 because
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Notes Sinceh =horh =f
h,_is measurable function on E’
Ifh =h,thenh —h
Ifh =f <h<f
thenf —hasf —f
= h —h
Thush —h

Since h, (x) = h (x) for each x € E"and {h } is a sequence of bounded measurable functions
on E

By Bounded Convergence Theorem

Ih Ih+ j fh—hm h,
v, n—
asE=(E-E)UE &([E-E)nE=¢

lim | h,
n—eo

E

IN

lim|f as h <f
n—ee %

< lim|f as E'cE
n~>wE/
= < |h<lim | f,

n—eo
E ,

Taking supremum over all h < f, we get

sup h Ih—hm f

n<f n—sce

n—eo

- J'f < [f<tim (¥,

Remarks:

(1) If in Fatou’s Lemma, we take

‘ _[Lnsx<n+1
W) = 0, otherwise

withE=R

then |f<lim |f,

n—eo

Thus in Fatou’s Lemma, strict inequality is possible.
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(2) f 20V xe Eis essential for Fatou’s Lemma Notes

However, if we take

1 2
f09 =1 0=y
0, otherwise

with E = [0, 2]

Then IfS@ £

n—yee

12.1.6 Monotone Convergence Theorem

Statement: Let {f } be an increasing sequence of non-negative measurable functions and let

f=lim |f, . Then

n—eo

=t [t
Proof: Let h be a bounded measurable function with h <fand h (x) =0 outside a set E’ C E of finite
measure
Define a function h_by
h (x) =Min. {h(x), f (x)}
then h (x) <h(x) and h (x) <f (x)
h_is bounded by the boundedness of h and vanishes outside E” as
x€ E-E = h(x) =0= h (x) =0 because f (x) >0
Sinceh =horh =f
h_is measurable function on E’
Ifh =h,thenh —h
thenf —hasf —f
= h —h
Thush —h
Since h (x) — h(x) for each x € E” and {h, } is a sequence of measurable functions on E’
By Bounded Convergence Theorem
_[h:fm f h=J.h=1ni£E h,
E ¥ EFF [

asE =(E-E)UE & (E-E)nE =¢.

= lim | h,

n—eo
E
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Notes

= lim | f,

n—ee

IN

lim | f as E'cE

n—ee

= [h < ame,
E n—oee

Taking supremum over all h < f, we get

— noeo

sup.[h < lim | f,
E

- J'f < lim (£, ()
E

n—eo

Since {f } is monotonically increasing sequence and f — f

£ <t
= .[fn sJ'f
- Tim [, sJ'f Q)

From (1) and (2), we have

J'f < lim [ £ <Tim fnsff

J' f <lim|f,
Theorem 2: Let {u, } be a sequence of non-negative measurable functions, and let f = E.I.un .
h=1

Then J.f = ij.un
h=1

n

Proof: Letf =u +u,+...+u = fui
j=1

thenf — f

ie. limf =f

n—eo

Let h be a bounded measurable function with h < f and h(x) = 0 outside a set E’ c E of finite
measure.

Define a function h_ by

h (x) = Min. {h (x), f (x)}
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then h_(x) <h(x) and h, (x) <f (x) Notes
h, is bounded by the boundedness of h and vanishes outside E” as
x€ E-E = h(x) =0= h,(x) = 0 because f (x) > 0.
Sinceh =horh =f
h, is measurable function on E’
Ifh =h,thenh —h
Ifh =f <h<f
thenf —hasf —f
= h —h
Thush —h
Since h, (x) = h(x) for each x € E’ and {h } is a sequence of measurable function on E’
By Bounded Convergence Theorem
_[h:fh+ _[ h:J'hzm h,
S T S 5

asE=(E-E)UE &E-E)nE=¢

=lim | h,

n—eo
¥

= lim | f,

n—eo

IN

lim|f as E'cE

n—oo

n—soo
E

= J' h < lim[f,
E
Taking supremum over all h < f, we get

sup | h_ lim | f, ()

h<f — N
E

n—oee

= Ifs@fﬂ
E

Since {f } is monotonically increasing sequence and f — f

£ <f
> J'fn < If
N fim [ ¢ <If @)
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Notes From (1) and (2), we have

J'stm £ <fim fnsff
- Ifslim £
=lim|f

Hence [t - 3w

n=1

Theorem 3: Let f be a non-negative function which is integrable over a set E. Then given € > 0
there is a 8 > 0 such that for every set A c E with mA < §, we have

J.f <g

A
Proof: 1f £ is bounded function on E

Then 3 positive real number M such that

[f(x)| <MV xe E

For givene>033 = ﬁ such that for every set A  E with mA < §, we have

J.fSJ.M:MmA<M.6:M%:e
A A

ie. J.f<£
A

Thus the result is true if f is a bounded function. So assume that f is not a bounded function on E.

Define a function f_on E by

£(x) if £(x) <
£.( )={nx 1othzrwirsle
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Then each f_is bounded and Notes
f_— f at each point
Since {f } is an increasing sequence of bounded functions such that f — f on E
By the monotone convergence theorem
i -
E 3
For given € > 0 3 a positive integer N such that

o

<Ef0rnZN
2

€
i F P
= I IN<2
E E
= —E<J‘f—J‘fN<E
2 2
E E
= fe-t<E
E

Choose 6 < £
2N

If mA <39, then we have

e _ Jla-ssal

- [e-to+ [

A A

IN

f(f—fN)+fN as £, <N
A

E

< E+NrnA
2

LINS
2

A

A
\
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Notes

= If<£
A

12.1.7 Lebesgue Dominated Convergence Theorem

Theorem 4: State and prove Lebesgue dominated convergence theorem

Statement: Let g be an integrable function on E and let {f } be a sequence of measurable functions
such that [f | <gonEand limf =fa.e.onE. Then

J.f-hm £

n—ee

Proof: Since we know that if f is a measurable function over a set E and there is an integrable
function g such that |f| < g, then f is integrable over E. So clearly, each f_is integrable over E.

Also limf =fa.e.onE.
and [f | <gae onE
= |f| <ga.e.onE.

Hence f is integrable over E.

Let {0, } be a sequence of functions defined by ¢, =f,, . Clearly, ¢, is anon-negative and integrable
function for each n.

Therefore, by Fatou’s Lemma, we have

[t+g) < im [t +g)

= f < lim [f, ()
E n~>°°E

Similarly, let {'¥' } be a sequence of functions defined by ¥ =g -f . Clearly ¥ is a non-negative
and integrable function for each n. So, given by Fatou’s Lemma, we have

n—eo

f@—ﬂﬁﬁm (-£)

= J.g—.[f < g lim [ £,
E 5 n-—ee
N —If < “lim [f,

.2

]
—_—
—
v
g
rt Se—
,_h

Hence from (1) & (2), we get
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o Notes
But lim an = limjfn =limjfn
E E E

Hence J.f = limffn .
E E

Corollary: Let {u } be a sequence of integrable functions on E such that Eun converges a.e. on

n=1

n
PR

i=1

E. Let g be a function which is integrable on E and satisfy <g a.e. on E for each n. Then

P
n=1

is integrable on E and J‘ZU“ = 2Iun .

g n=1 n=1 g

Proof: Let u, =f .

Applying Lebesgue Dominated Convergence Theorem for the sequence {f }, we get

J.iun=2_][un

E n=1 n

Corollary: If f is integrable over E and {E} is a sequence of disjoint measurable sets such that

;Ei:E,then
[=3]r
E

=1 g

Proof: Since {E} is a sequence of disjoint measurable sets, we may write.

f=if-)(}Ei
i=1

The function f. Xy is integrable over E since ‘f XEJ <|f| and |f| is integrable over E. Moreover

<|f|,vneN

if'XEi
i=1

Thus the conditions of above corollary are satisfied and hence

!.f =J'if-xﬂ

E i=1
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' Example: Show that the theorem of bounded convergence applies to f (x) =

S [

i=1 g

-3

i=1 §;

x<1.
nx
Sol: f =
° ) 1+n°x’
1
T 1
—+nx
nx
_ 1
- .
—— nx) +2
[
<1
2
Thus 3 a number % such that |f (x)| < %

Hence it satisfies the conditions of bounded convergence theorem.

Now

n—seo

1
nx
li f dx =1i Iid
im | £ (x)dx Imol+n2x2 X

= 1imilog(1 +1°x%)

n—e 21

= tim [1/(1+n°x*)]2nx’

n—eo 2

. nx’
= lim o
noe ]+ nx

1 1
limf, (x)dx = lim(L) dx

n—eo noe | T4 HZXZ
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1 Notes
- J(O) dx=0
0
1 1
= lim | f (x)dx = |limf, (x)dx

0 0

This verifies the result of bounded convergence theorem.

1
' Example: Use Lebesgue dominated convergence theorem to evaluate lim | f (x)dx ,

n—eo
0

where
3/2
f(x) = 12 X n=1,23,..0<x<1
. n’/?x
Solution: f =
" 1+n°x*
1 n®?
T x 1+n3
1
< —=g(x), (say)
X
= f.(x) <g (¥
and g (x) e L(0,1],

Hence by Lebesgue Dominated Convergence Theorem.

1 1

lim | f (x)dx = | limf (x)dx

n—ee n—eo

1
= dex =0.
0

' Example: If (f ) is a sequence of non-negative functions.t. f — fand f_<f for eachn, show

that
ff —lim J‘ £
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Notes Solution: From the given hypothesis it follows that

Ej'fn sjf (1)

Also by Fatou’s Lemma, we have

jf < mffn Q)

Then from (1) and (2), we get

[ <tmfs <fm[r<[r.

Hence J. f = mffn Smj.fn =limffn .

' Example: If o> 0, prove that Lim.[(l - i) x*'dx = J‘e’x.x‘H dx , where the integrals are
n-—oo n

o

taken in the Lebesgue sense.

n—see n

Solution:Iff (x) = (1 - i) X1 >0, thenf (x) < g(x), where g(x) = e*.x*! {recall Lim(l - i) = e‘x}
n

Also g(x) € L[0, o], hence by Lebesgue dominated convergence theorem, we get

Lim | { (x)dx = I:LIBfn(x)dx

= | Lim (1 - 5) X% dx
n

n—eo
o

oo

= J‘e’x.x(H dx

' Example: Show thatif o> 1,

1
Xsimx

———dx=0(n")asn—eo.
1+ (nx)

Solution: Consider the sequence <f (x)> s.t.

¢ _ X sinx
o) 1+ (nx)*’ n

Obviously since o0 > 1, and x € [0, 1]
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nx sinx
1+ (nx)* |~

If¥(x)=1, Vx then | fn(x) | V¥ (x), V x.

Hence by dominated convergence theorem, we get

nx sinx

n—eo

. h nx sinx ( .
Lim| —— =J. im
)1+ (nx)* ) noe 14 (nx)*

‘| =0
X sinx

2P dx =0 (nd
= 01+(nx)°' X =0

'% R 2y 4 -n2d
Example: Show that Lim DX dx
1+x

n—eo 2

1
dx =J(0) dx=0
0

1
. X sinx
= Limn x| | ———dx
noe ) 1+ (nx)

1

=0, if a >0, but not for a = 0.

a

tti =
Solution: If a> 0, Erllld Hlﬁ;lzxndi} , we get

oo _a2

ue'u du e

= J~¢(“a“)1+u /n

2
n’xe ™ x*
1+x*

2

u.e 2

Al —_— <u.e " eL[0,e
S0 1+(u2/n2) q)(na,m) [ ]

—u

u.e

and Limo, . ,———
noe M) L2 /n?

=0as¢..,=0

Hence by Lebesgue dominated convergence theorem, we obtain

J‘ dx I;H"I}.“q)(r"‘m)1+u */n? du

J Doy =5 du= Jde 0.
ety 1+u /n’

Now when a =0,

22
n’xe ™™
1+x*

o 22
n’xe ™™
1+x?
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Notes

1

> %anx.e’“szdx (putting 1 in place of x2)

12.2 Summary

° Bounded Convergence Theorem: Let {f } be a sequence of measurable functions defined on
a set E of finite measure, and suppose that there is a real number M such that [f (x)| <M

Vnandall x. If f (x) = limf (x) for each x in E, then

J.f—hm £

n—eo

o Monotone Convergence Theorem: Let {f } be an increasing sequence of non-negative

measurable functions and let f = limf, . Then

n—ee

Jretm[

° Lebesgue Dominated Convergence Theorem: Let g be an integrable function on E and let {f }

be a sequence of measurable functions such that |f | <gonEand limf, =fa.e.onE. Then

J.f—hm f

n—eo

12.3 Keywords

Convergence almost Everywhere: Let <f > be a sequence of measurable functions defined over a
measurable set E. Then <f > is said to converge almost everywhere in E if there exists a subset E;
of Es.t.

() f(x)—>f(x), vV xe E-E,
and (ii) m (E) = 0.

Convergence: Refers to the notion that some functions and sequence approach a limit under
certain conditions.

Fatou’s Lemma: If {f } is a sequence of non-negative measurable functions and f _(x) — f (x) almost

everywhere on a set E, then

f <liminf | f,

n—ee

Pointwise Convergence: Let <f > be a sequence of measurable functions on a measurable set E.
Then <f > is said to converge “pointwise” in E, if 3 a measurable function f on E such that

f(x) >f(x) V xe Eor
It f.(x) =f(x)

n—eo
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Uniform Convergence, Alinost Everywhere (a.e.): Let <f > be a sequence of measurable functions Notes
defined over a measurable set E. Then the sequence <f > is said to converge uniformly a.e. to f,
if 3aset B, C Es.t.

(i) m(E)=0and

(if) <f > converges uniformly to f on the set E - E.

12.4 Review Questions

1.  Show that we may have strict inequality in Fatou’s Lemma.

2. Let <f >be an increasing sequence of non-negative measurable functions, and let f = lim f .
Show that J.f = limJ.fn )
Deduce that ff = ZJ.un ,if u,_ is a sequence of non-negative measurable functions and
n=1

3.  State the Monotone Convergence theorem. Show that it need not hold for decreasing
sequences of functions.

4.  Let{g } be a sequence of integrable functions which converge a.e. to an integrable function
g. Let {f } be a sequence of measurable functions such that |f | < g _and {f } converges to f
a.e.

If Ig = Iim.[gn

then prove that J.f =lim |f, .

n—eo

5. State and prove monotone convergence theorem.

12.5 Further Readings

N

Books G.F. Simmons, Introduction to Topology and Modern Analysis, New York: McGraw
Hill, 1963.

H.L. Royden, Real analysis, Prentice Hall, 1988.

o

Online links dl,acm,org
math.stanford.edu

www.springerlink.com
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CONTENTS
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13.1.3  Hahn Decomposition Theorem
13.1.4  Hahn Decomposition: Definition
13.2 Summary
13.3 Keywords

13.4 Review Questions

13.5 Further Readings

Objectives

After studying this unit, you will be able to:

° Define signed measure.

) Describe positive and negative and null sets.
) Solve problems on signed measure.
Introduction

We have seen that a measure is a non-negative set function. Now we shall assume that it takes
both positive and negative values. Such assumption leads us to a new type of measure known as
signed measure. In this unit, we shall start with definition of signed measure and we shall prove
some important theorems on it.

13.1 Signed Measures

13.1.1 Signed Measure: Definition
Definition: Let the couple (X, A) be a measurable space, where A represents a c-algebra of
subsets of X. An extended real valued set function
ViAo [-eo, ]
defined on A is called a signed measure, if it satisfies the following postulates:

(i)  yassumes at most one of the values - oo or + o.

(i) v(0)=0.
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(iii) If <A >is any sequence of disjoint measurable sets, then Notes

Y[OAH} SY(AH),

i.e,, vy is countably additive.

From this definition, it follows that a measure is a special case of a signed measure. Thus, every
measure on A is a signed measure but the converse is not true in general, i.e. every signed
measure is not a measure in general.

If - 0 <y (A) <o, for very A € A, then we say that signed measure y is finite.
13.1.2 Positive Set, Negative Set and Null Set

Definition

(a) Positive Set: Let (X, A) be a measurable space and let A be any subset of X. Then A c X is
said to be a positive set relative to a signed measure y defined on (X, A), if

(i) A€ A ie. Aismeasurable.

(i) y(E)20, VE C As.t. E is measurable.

Obviously, it follows from the above definition that:

(i) every measurable subset of a positive set is a positive set,
(ii) ¢ is a positive set w.r.t. every signed measure.

Also for A to be positive. y(A) > 0 is the necessary condition, but not in general sufficient
for A to be positive.

(b) Negative Set: Let (X, A) be a measurable space. Then a subset A of X is said to be a negative
set relative to a signed measure y defined on measurable space (X, A) if

(i) Ae Aie, Ais measurable.
(i) y(E)<0, VE C As.t. E is measurable.
=  set A is negative w.r.t. y, provided it is positive w.r.t. - y.

(©)  Null Set: A set A C X is said to be a null set relative to a signed measure y defined on
measurable space (X, A) is, A is both positive and negative relative to y.

Thus, measure of every null set is zero.

Now, we know that a measurable set is a set of measure zero, iff every measurable subset of it

has y measure zero. Thus, if A € X is a null set relative to y then y (E) =0, V measurable subsets
E c A. In other words.

Aisanull set & y (E) =0, V measurable subsets E C A.
Theorem 1: Countable union of positive sets w.r.t. a signed measure is positive.

Proof: Let (X, A) be a measurable space and let y be a signed measure defined on (X, A). Let <A >

be a sequence of positive subsets of X, let A = UAa and let B be any measurable subset of A.

i=1

Set B, = BNA NAT, N...... NAS,vVneN.
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where Aj(n=1,2,3...n-1) denotes complement of A (n=1, 2,3, ... n - 1) with respect to X.

Now, we know that complement of a measurable set is also measurable so that each
A$(n=1,2,3..n-1) is measurable relative to y. Again, intersection of countable collection of

measurable sets is also measurable. Hence B _is a measurable subset of the positive set A . Thus
y(B,) =0 (by the definition of positive set) ... (i)

Obviously, the set B, are disjoint and

if B = OB,. , we get ... (i)
y(B) = ZY(BH) ... (iid)

In view of (i).

y(B) 20.
Thus, we have
(1) A is measurable for

A_is a positive set = A is a measurable set

= countable union U A_ is measurable,

n=1

= A= UAn is measurable

n=1

(2) y(B)20, V Bc As.t. Bis ameasurable set.
Hence A is a positive set, by definition.

Theorem 2: Let (X, A) be a measurable space and lety be a signed measure defined on (X, A). If B
is a measurable set with finite negative measure i.e., - «» <y (B) <0, then prove that B contains a
negative set A C B with the property y (A) <0.

Proof: If B is itself a negative set, then we may take A = B and theorem is done. Therefore
consider the case when B is not a negative set. Then there must exist a measurable subset E, ¢ B
and a smallest positive integer n, s.t.

v(E) >~
B=(B-E)UE, and (B-E)NE =0,

Y(B) =y(B-E)+v(E) - ()

or Yy(B-E) =y(B)-v(E) .. (i)

Since y (B) is finite, (i) implies that y (B - E,) and y (E,) are finite. Again y (B) <0, (ii) implies that
y(B-E)<0.
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Now, the set B - E, is either negative or contains a subset of positive measure. If the set B - E, is Notes
anegative set, then we may take A = B - E, and the theorem is done. So, suppose that B - E, is not

a negative set. Then there must exist a measurable subset E, of B - E, and a smallest positive

number n, with a property

E) >

VE) >
Since B=B-E UE)uU(E,UE),
and (B-E,UE) n(E,VE,)=4¢,
we have Yy(B) =y(B-E UE)+y(E,UE)
or Yy(B-EUVE) =y(B)-vy(E,VE)

=Y (B) -V (E)-v(E).

As before, Yy(B-EUE) >0[+y(B)<0,y(E)>0forr=1,2]

Thus, B - E, U E, is a set of negative measure, which is either a negative set or contains a subset
of positive measure. If B - E, U E, is a negative set, then the theorem is done by taking B= A - E,
U E,. Otherwise we repeat the above process.

On repeating this process, at some stage we shall get either a negative subset A C Bs.t. y (A) <0
or a sequence <E > of disjoint measurable sets and a sequence <n_:r € N> of positive integers s.t.

r-1
1

E cB- {l lEn} and o <y(E)<e
n=1 T

In first case, we have nothing to do. In the latter case, let

A=B- {UE} orB=AuU {OE} ... (i)

n=1 n=1

Then as before, it follows that

Y(B) =y (A)+ Y VE,).

>y (A)+ Zi . (i)

o e

[+ change of suffix is in material]

Since y (B) is finite and y assumes at most one of the values - e and e, it follows from (iv) that

e . 1 .
Y (A) is finite and the series E — is convergent.
n
k=1 k

Then v(A) <y (B) - Zl

o1 Tk

= a finite negative number

("~ v (B) is a finite negative number)
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or Y (A) <0.

Again, we know that difference of two measurable sets is measurable and enumerable union of
measurable sets is measurable therefore it follows from (iii) that A is a measurable set.

Now we shall prove that A is a negative set. Let E C A be an arbitrary measurable set.

Since A =B- {OE“]’

n=1

E =B-OE,‘.
n=1

Since n, — e, we can choose k so large that

<
v(E) <

Letting n, — oo, we obtain
vy (E) £0.
Thus we have

(1) A is measurable.

(2) y(E)<0, V Ec As.t. Eis measurable.

Hence A is a negative set.
13.1.3 Hahn Decomposition Theorem
Theorem 3: Let y be a signed measure on a measurable space (X, .A). Then there exists a positive
set P and a negative set Q s.t.
PnQ=¢pandPuQ=X.

Proof: Let (X, A) be a measurable space and let ¥ be a signed measure defined on a measurable
space (X, A). Since, by definition, y assumes at most one of the values + e or collection of all
negative subsets of X w.r.t. y and let 3 be a collection of all negative subsets of X w.r.t. y and let

k =inf{y(E):E € B)
(i) = that there exists a sequence <E > in B such that

Limy(E,) =k

Let Q=Jk.

Since B is a family of negative sets, < E > is a sequence of negative sets. Again, we know by
remark of theorem 1 that countable union of negative sets is negative, it follows that Q is a
negative subset of X so that

Y(Q 2K
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Now, Q - E_ is a subset of Q, it follows that Notes
v¥(@Q-E) =<0

Since (Q-E)nE =¢

and Q=(Q-E)UE,

we have 7(Q =v(@Q-E)+v(E)

= y(Q) <y(E), Vne NandE € B.

Therefore Y(Q <K ... (iii)

(ii) and (iii) =y (Q) =K = - < k. .. (iv)

Now we shall show that p = QF, the complement of Q w.r.t. y is a positive subset of X. Suppose

not, i.e. P is negative. Then V E C P s.t. E is measurable and y (E) < 0. Now we know that if
- oo <7y (E) <0, we get a negative set A c Es.t. y (A) <0.

A, Q are distinct negative subsets of X

=

L

A U Q is negative set

Y(AuQ)=K [using (i)]
Y(A)+y Q=K

Y (A)+ K=K, [using (iv)]
Y (A)=0,

a contradiction, for y (A) <0
P = Q€ is a positive subset of X
Q is a negative subset of X.

ThusX=PuUQ,PnQ=0o.

13.1.4 Hahn Decomposition: Definition

A decomposition of a measurable space X into two subsets s.t. X=P U Q,Pn Q= ¢,

where P and Q are positive and negative sets respectively relative to the signal measure ¥, is
called as Hahn decomposition for the signed measure y. P and Q are respectively called positive
and negative components of X.

Notice that Hahn decomposition is not unique.

13.2 Summary

Let the couple (X, .A) be a measurable space, where A represents a c-algebra of subsets of
X. An extended real-valued set function

Y A= [ oo, 0]
defined on A is called a signed measure, if it satisfies the following postulates:
(i) vy assumes at most one of the values - e or + oo,
(i) v(©)=0.

(iii) If <A > is any sequence of disjoint measurable sets, then y is countably additive.
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° Let (X, A) be a measurable space and then A c X is said to be a positive set relative to a
signed measure y defined on (X, A) if

(i) A is measurable
(ii) y(E)20, V E c As.t. Eis measurable.

° Let (X, A) be a measurable space. Then A C X is said to be negative set relative to a signed
measure Yy if

(i) A is measurable
(ii) y(E)<0, V E c As.t. Eis measurable.

o A c X is said to be a null set relative to a signed measure y defined on measurable space
(X, A) is: A is both positive and negative relative to y.

13.3 Keywords

Hahn Decomposition: Definition: A decomposition of a measurable space X into two subsets s.t.
X=PuQ,PnQ=6.

Negative Set: Let (X, A) be a measurable space. Then a subset A of X is said to be a negative set
relative to a signed measure y defined on measurable space (X, A) if

(i) Ae Aie, Ais measurable.
(i) y(E)<0, VE C As.t. E is measurable.

Null Set: A set A C Xis said to be a null set relative to a signed measure y defined on measurable
space (X, A) is, A is both positive and negative relative to y.

Positive Set: Let (X, A) be a measurable space and let A be any subset of X. Then A ¢ X is said to
be a positive set relative to a signed measure y defined on (X, A), if

(i) Ae A ie. Aismeasurable.
(i) y(E)=0, VE C As.t. E is measurable.

Signed Measure: Let the couple (X, A) be a measurable space, where A represents a 6-algebra of
subsets of X. An extended real valued set function

Vi A = [-eo, o]
defined on A is called a signed measure, if it satisfies the following postulates:

(i)  yassumes at most one of the values - oo or + oo.

(i) v(0)=0.

13.4 Review Questions

1. Ify(E)= Jxe'*zdx, then find positive, negative and null sets w.r.t. y. Also give a Hahn
E

decomposition of R w.r.t. y.
2. State and prove Hahn decomposition theorem for signed measures.

3. If p is a measure and vy,, v, are the signed measures given by y, (E) =u (AN E), v, (E) =u (B
N E), where u (A N B) =0, show that y, 1y,
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4. Show that if y, and v, are two finite signed measures, then so is ay, + by, where a, b are real Notes
numbers.

13.5 Further Readings

N

Books Bartle, Robert G., The Elements of Integration, New York - London - Sydney: John
Wiley and Sons

Cohn, Donald L. (1997) [1980], Measure Theory (reprint ed.), Boston - Based -
Stuttgart: Birkhauser Verlag

A
Y.,
Online links ~ www .maths.bris.ac.uk

www.planetmath.org/signedmeasure.html
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Unit 14: Radon-Nikodym Theorem
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Objectives

After studying this unit, you will be able to:

) Define Absolutely continuous measure function

° State Radon-Nikodym theorem

° Understand the proof of Radon-Nikodym theorem

° Solve problems on this theorem
Introduction

In mathematics, the Radon-Nikodym theorem is a result in measure theory that states that given
a measurable space (X, X), if a 6-finite measure on (X, X) is absolutely continuous with respect to
a o-finite measure on (X, X), then there is a measurable function f on X and taking values in [0, o],
such that for any measurable set A.

The theorem is named after Johann Radon, who proved the theorem for the special case where
the underlying space is R in 1913, and for Otto Nikodym who proved the general case in 1930.
In 1936 Hans Freudenthal further generalised the Radon-Nikodym theorem by proving the
Freudenthal spectral theorem, a result in Riesz space theory, which contains the Radon-Nikodym
theorem as a special case.

If Y is a Banach space and the generalisation of the Radon-Nikodym theorem also holds for
functions with values in Y, then Y is said to have the Radon-Nikodym property. All Hibert
spaces have the Radon-Nikodym property.

14.1 Radon-Nikodym Theorem

14.1.1 Absolutely Continuous Measure Function

Let (X, A) be a measurable space and let y and p be measure functions defined on the space (X, A).
The measure v is said to be absolutely continuous w.r.t. p if

u(A)y=0or |ul (A)=0, Ae A=7v(A)=0,and is denoted by y < .
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—T] Notes

Notes

° If p is o-finite, the converse is also true.

° If y and p are signed measures on (X, A), theny <« pif |y| <« |u].

Radon-Nikodym Theorem

Let (X, A, u) be a o-finite measure space. If Y be a measure defined on A s.t. y is absolutely
continuous w.r.t. i, then there exists a non-negative measurable function f on s.t.

Y(A) = J. fdu, VAe A
A
The function f is unique in the sense that if g is any measurable function with the property
defined as above, then f = g almost everywhere with respect to p.
Proof: To establish the existence of the function f, we shall use the following two Lemmas:

Lemma 1: Let E be a countable set of real numbers. Let for each a € E there is a set F, € A s.t.
F cF,, wheneverb <ai.e. <F >isa monotonic decreasing sequence of subsets of A corresponding
to the sequence <a > of real numbers in E. Then 3 a measurable extended real valued function f
on X s.t.

f(x)<a,xeF,
and f(x)za,xe (X-F).
Proof: Let f (x) = inf {a: x € F } x € X and let, conventionally
inf {empty collection of real numbers} = oo
Now, xeF =f(x)<a
x¢ F = xeF foreveryb<a
=f(x)>a
Now, f(x)<a=x¢€ F forsomeb<a

or x:f(x)<a}= U[F"]'

b<a

Alsox € F, = f (x) <b <aforsomeb <a.

Hence f is measurable.

Again, by definition of f, we observe that
f(x)<a,xeF,

and f(x)=a,x¢ F.

Thus f is the required function.

Lemma 2: Let E be a countable set of real numbers. Let corresponding to each a € E, there is a set
F e As.t.

Y (F, - F,) = 0 whenever b > a.
Then there exists a measurable function f with the property
x€F =f(x)<aae.

and x€ (X-F)=f(x)>aae.
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Proof: Let P = | JIE. ~F}.

b<a

Evidently y (P) = 0.
Let E =F UP.

This = F/-F =(F, -F)-P=¢fora<b.

In view of Lemma 1, it follows that 3 a measurable function f s.t.
f(x)<a,xe F

and f(x)<a,xe X-F

Thus we have

xeF =f(x)<a ae.,

xeX-EFE =f(x)>a a.e.l}except forxeP.

Proof of the main theoren

At first, suppose that p is finite.
= (y - a W) is a signed measure on A for each rational number a.
Let (P, Q,) be a Hahn decomposition for the measure (y - a ).
Let P, =Xand Q_ = ¢.
By the definition of Hahn decomposition theorem,
P uQ =X
and P,uQ, =X
Therefore, Q -Q, =Q, - (X-P)
=Q NP,
Thus, (v-aw (Q,-Q) <0
Similarly, we can prove that
(v-bw) (Q,-Q) 20
Let a < b, then from (i) and (ii), we have
kQ,-Q) =0
Therefore, by Lemma (ii)
f(x) 2a,ae.xe P,
and f(x) <a,ae.xeQ,
where f is measurable
Since Q, = ¢, it follows that f is non-negative

Again, let A € A be arbitrary.

Define A = AN (QM - QrJ
n n

o o
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A =A-v (Q’J

n

o

=0

Evidently, A=A _u (UAr] ,

where A is disjoint union of measurable sets.

v =1(a)+ Y.

Obviously A c (Qrﬂ _er

n n

o o

- T <)< vxea,
nO o
r r+1
= ;”’(Ar) s Ifdl’- < TM(Ar) [by first mean value theorem]
o A[ o
. r r+1
Again  —u(A)<Y(A,)<—u(4A,), we have
nﬂ nO
1 1
YA )~ —u(A,) | < [ fdusv(a) (A, (i)
n, J n,

Now, if W (A)) >0, theng (A)=0, [~ (y-au)A_is positive, V a]
and  y(A)=0ifp(A)=0 [y <)

In either case, y (A_) = L fdp.
Adding the inequalities (iii) over r, we get
YA - i) < [Tdu=1(A)+—u(A,)
0 " 0
Since n_is arbitrary and p (A) is assumed to be finite, it follows that
Y(A) :Lf duvA € A.

To show that the theorem is true for 6-finite measure u, decompose X into a countable union of
X, of finite u-measure. Applying the same argument as above for each X, we get the required
function.

To show the second part, let g be any measurable function satisfying the condition,

y(a)= [ fduvaca
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Notes For each n € N, define
1
A = {xeX:f(x)—g(x)Z—}eA
n n
1
and Bﬂ:{xeX:g(x)—f( X) 2 ;}GA

1
Since f (x) - g (x) 2 —, VAx€ A, we have by first mean value theorem

':S

1
f(f-g)du 2 WA,)

An

ffdu fgdu> WA,)

An

Y(A) -Y(A) > %u(An) or 0= %u(An)

= u(A)<

Since p (A ) is always greater than equal to zero, we have u(A ) = 0.
Similarly, we can show that

= u(B,) <0.

If C={xeX:f(x)#zgx)}

- Ja, us,),

n=1
then u(@C)=0=f=gae onXwrt
Hence the theorem.

Theorem 1: If y,, v, are o-finite signed measures on (X, A) and y, < W, y, i, then

dv, +v,) _dv,  dv, | dv, _d(=vy)

du du dup du du

Proof: Since vy,, v, are o-finite and y, < W, y, < W, we have that y, + v, is also o-finite and
Y, Ty, < W

Now forany A € A,

, +v,) (A) =7, (A) +v, (A)

I s dvz oy, ﬂdhd%}du

du du
dv1+vz} J‘{dvl de}
0 g = |2+ =2 d
- ﬂ du JLdu dp

A

170 LOVELY PROFESSIONAL UNIVERSITY



Unit 14: Radon-Nikodym Theorem

Not
dy, +v,) _dy,  dv, 7
du du dp
Prove the other result yourself.

Theorem 2: If y is a o-finite signed measures and U is a o-finite measure s.t. y < U, show that

dly|_|dv
du |du|

Proof: Let y = y* - y- with Hahn decomposition A, B.

Then on A,

S_Z‘z Cclliu and on B,

dv

&y dy _d(y+y) _dlvl

du du du du -

Theorem 3: If y be a c-finite signed measure and W, A be o-finite measures on (X, A) s.t. ¥ < pu,
< A: then show that

dy _dy du

dr du da

Proof: Since we may write y =y* -y~ and

~dy” _d(-v) —dy’ _d(=v)
du  du ~dr  d

we need to prove the above result for measures only.

dy_,
du

then we need to prove that

If and % =g, (f, g are non-negative functions as obtained in Radon-Nikodym Theorem),

vy (F) = Ifgd)».

Let ¥ be a measurable simple function s.t.

Y= iai (DEi/
i=1

then ITdu = » a, WE; nF)
= Y a '[ gdk:J“{’gdk.
1

i= EjnF F

Let <¥ > be a sequence of measurable simple function which converges to f, then

y(F) = jfdp :limj‘l‘ndu .
F F
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umflyngdx - J' fd as ¥,g > fg
F F

_dr g, _dv du
= BT T TN
14.2 Summary
° Let (X, A) be a measurable space and let r and m be measure functions, defined on the space

(X, A). The measure Y is said to be absolutely continuous w.r.t. u if
u(A)y=0or |u| (A)=0,Ae A=y (A)=0,andis denoted by y < p.

° Let (X, A, n) be a o-finite measure space. If Y be a measure defined on A s.t. is absolutely
continuous w.r.t. i, then there exists a non-negative measurable function f s.t.

Y (A) = Ifdp., VAe A
A

The function f is unique in the sense that if g is any measurable function with the property
defined as above, then f = g almost everywhere with respect to p.

14.3 Keywords

Absolutely Continuous Measure Function: Let (X, A) be a measurable space and let y and p be
measure functions defined on the space (X, A). The measure y is said to be absolutely continuous
w.r.t. uif

u(A)y=0or |u| (A)=0, Ae A=1v(A)=0,and is denoted by y <« .

Radon-Nikodym Theorem: Let (X, A, 1) be a o-finite measure space. If y be a measure defined on
A s.t. y is absolutely continuous w.r.t. [, then there exists a non-negative measurable function f
on s.t.

v(a) = [ fduvaea

The function f is unique in the sense that if g is any measurable function with the property
defined as above, then f = g almost everywhere with respect to p.

14.4 Review Questions

-1
1. Show that ﬂ: d—“ ,
du \dy

where u and y are o-finite signed measuresand p < v,y < L.
2. Ify(E)= jfdp, , where J.fdp. exists, then find |y| (E).
E E

3.  State and prove Radon-Nikodym theorem.
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14.5 Further Readings Notes
Book G.E. Shilov and B.L. Gurevich, Integral, Measure and Derivative: A Unified Approach,

Richard A. Silverman, trans. Dover Publications, 1978.

Y.
Online links  www.math.ksu.edu/nnagy/real-an/4-04-rn.pdf
mathworld.woltram.com
www.csun.edu

pioneer.netserv.chula.ac.th
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