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Unit 1: Differentiation and Integration: Differentiation of Monotone Functions

NotesUnit 1: Differentiation and Integration: Differentiation
     of Monotone Functions
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Objectives

After studying this unit, you will be able to:

 Understand differentiation and integration

 Describe Lipschitz condition and Lebesgue point of a function

 State Vitali’s Lemma and understand its proof.

 Explain four Dini’s derivatives and its properties

 Describe Lebesgue differentiation theorem.

Introduction

Differentiation and integration are closely connected. The fundamental theorem of the integral
calculus is that differentiation and integration are inverse processes. The general principle may
be interpreted in two different ways:

1. If f is a Riemann integrable function over [a, b], then its indefinite integral i.e.

F : [a, b]  R defined by F (x) = 
x

a

f (t) dt  is continuous on [a, b]. Furthermore if f is

continuous at a point xo  [a, b], then F is differentiable thereat and F (xo) = f (xo).

2. If f is Riemann integrable over [a, b] and if there is a differentiable function F on [a, b] such
that F f(x)  for x  [a, b], then

x

a

f (t) dt = F (x) – F (a)  [a  x  b].

Sachin Kaushal, Lovely Professional University
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Notes 1.1 Differentiation and Integration

1.1.1 Lipschitz Condition

Definition: A function f defined on [a, b] is said to satisfy Lipschitz condition (or Lipschitzian
function), if  a constant M > 0 s.t.

|f (x) – f (y)|  M |x – y|, x, y  [a, b].

1.1.2 Lebesgue Point of a Function

Definition: A point x is said to be a Lebesgue point of the function f (t), if

x n

h 0 x

1Lim |f(t) f (x)|dt 0.
h

1.1.3 Covering in the Sense of Vitali

Definition: A set E is said to be covered in the sense of Vitali by a family of intervals (may be open,
closed or half open), M in which none is a singleton set, if every point of the set E is contained in
some small interval of M i.e., for each x  E,  and  > 0, an interval I M s.t. x I and (I) .

The family M is called the Vitali Cover of set E.

Example: If E = {q : q is a rational number in the interval [a, b]}, then the family qi
I

where qi

1 1I q , q
i i

, i  N is a vitali cover of [a, b].

Vitali's Lemma

Let E be a set of finite outer measure and M be a family of intervals which cover E in the sense of
Vitali; then for a given  > 0, it is possible to find a finite family of disjoint intervals {Ik, k = 1, 2,
… n} of M, such that

n

k
k 1

m * E I < .

Proof: Without any loss of generality, we assume that every interval of family M is a closed
interval, because if not we replace each interval by its closure and observe that the set of end
points of I1, I2, …… In has measure zero.

[Due to this property some authors take family M of closed intervals in the definition of Vitali’s
covering].

Suppose 0 is an open set containing E s.t. m* (0) < m* (E) + 1 <  we assume that each interval in
M is contained in 0, if this can be achieved by discarding the intervals of M extending beyond 0
and still the family M will cover the set E in the sense of Vitali.

Now we shall use the induction method to determine the sequence <Ik : k = 1, 2, … n> of disjoint
intervals of M as follows:
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Unit 1: Differentiation and Integration: Differentiation of Monotone Functions

NotesLet I1 be any interval in M and let 1  be the supremum (least upper bound of the lengths of the
intervals in M disjoint from I1 (i.e., which do not have any point common with I1).

Obviously 1  <  as 1   m (0) < .

Now we choose an interval I2 from M, disjoint from I1, such that  2 1
1(I ) .
2

 Let 2  be the

supremums of lengths of all those intervals of M which do not have any point common with I2

or I2 obviously 2  < .

In general, suppose we have already chosen r intervals I 1, I2, … Ir (mutually disjoint). Let r  be
the supremums of the length of those intervals of M which do not have any point in common

with i
i 1

I  (i.e., which do not meet any of the intervals I1, I2, … Ir. Then r   m (0) < .

Now if E is contained in 
r

i
i 1

I , then Lemma established. Suppose 
r

i
i 1

I E . Then we can find

interval Ir+1 s.t. r 1 r
1(I )
2

  which is disjoint from I1, I2, … Ir.

Thus at some finite iteration either the Lemma will be established or we shall get an infinite

sequence <Ir> of disjoint intervals of M s.t. r 1 r
1(I )
2

   and r < , n = 1, 2, 3 ….

Note that < r > is a monotonically decreasing sequence of non-negative real numbers.

Obviously, we have that   r r
r 1i 1

I 0 ( ) m(0)  hence for any arbitrary  > 0, we can

find an integer N s.t.

r
r N 1

1(I )
5

 .

Let a set F = 
N

r
r 1

I .

The lemma will be established if we show that m* (F) < . For, let x  F, then x 
N

r
r 1

I  x is an

element of E not belonging to the closed set 
N

r
r 1

I  an interval I in M s.t. x  I and (I)  is so

small that I does not meet the 
N

r
r 1

I , i.e.

I  Ir = , r = 1, 2, … N.

Therefore we shall have N n 1(I) 2 (I )    as by the method of construction we take

n 1 N
1I
2

  .



4 LOVELY PROFESSIONAL UNIVERSITY

Notes It also I  IN+1 = , we should have N 1I  . Further if the interval I does not meet any of the
intervals in the sequence <Ir>, we must have

rI , r 

which is not true as r r 12 (I ) 0  as r .

 I must meet at least one of the intervals of the sequence <Ir>. Let p be the least integer s.t. I
meets Ip. Then p > N and   p 1 p(I) 2 (I ).  Further let x  I as well x  Ip, then the distance of x

from the mid point of Ip is at most

p p p p
1 1 5(I) ( ) 2 (I ) (I ) (I )
2 2 2

     

Thus if Ip is an interval having the same mid point as Ip but length 5 times the length of Ip, i.e.
 p p(J ) 5 (I ) . Then x  Jp also.

Thus for every x  F,  an integer p > N s.t. x  Jp

and  p p(J ) 5 (I ) . Also

 p
p N 1

F J

 p p
p N 1 p N 1

m * (F) (J ) 5 (I ) 5
5

and hence the Lemma holds good.

1.1.4 Four Dini's Derivatives

The usual condition of differentiability of a function f (x) is too strong. Here we are studying the
functions under slightly weaker condition (measurability). So why we define four quantities,
called as Dini’s Derivatives, which may be defined even at the points where the function is not
differentiable.

1. D+ f (x) = 
n 0

f(x h) f (x)Lim
h

, called upper right derivative

2. D+ f (x) = 
h 0

f (x h) f (x)Lim
h , called lower right derivative

3. D– f (x) = 
h 0

f (x h) f (x)Lim
h

,

or 
h 0

f (x h) f (x)Lim
h

, called upper left derivative

4. D– f (x) = 
h 0

f (x h) f (x)Lim
h

or 
h 0

f (x h) f (x)Lim
h

, called lower left derivative
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Notes

Notes

1. D+f (x)  D+ f (x) and D f(x) D f(x)

If D+ f (x) = D+ f (x), then we conclude that right hand derivative of f (x) exists at the
point x and denoted by f  (x+). Similarly if D– f (x) = D– f (x), we say that f (x) is left
differentiable at x and denote this common value by f  (x–).

2. The function is said to be differentiable at x if all the four Dini’s derivatives are equal
but different than , i.e. if

D+ f (x) = D+  f (x) = D– f (x) = D– f (x)  

and their common value is denoted by f  (x).

Properties of Dini's Derivatives

1. Dini’s derivatives always exist, may be finite or infinite for every function f.

2. D+ (f + g)  D+ f + D+ g with similar properties for the other derivatives.

3. If f and g are continuous at a point ‘x’, then

D+ (f . g) (x)  f (x) D+ g (x) + g (x) D+ f (x).

4. D+ f (x) = – D+ (– f (x))

and D– f (x) = – D– (– f (x)).

5. If f is a continuous function on [a, b] and one of its derivatives (say D +) is non-negative on
(a, b). Then f is non-decreasing on [a, b] i.e.

f (x)  f (y) whenever x  y, y  [a, b].

6. If f is any function on an interval [a, b], then the four derivatives if exist are measurable.

1.1.5 Lebesgue Differentiation Theorem

Statement: Let f : [a, b]  R be a finite valued monotonically increasing function, then f is
differentiable. Also f : [a, b]  R is L-integrable and

b

a
f (x) dx f (b) f (a) .

Proof: Define a sequence <fn> of non-negative functions, where fn : [a, b]  R such that,

fn (x) = 
1n f x f (x) , x [a, b]
n … (1)

and set f (x) = f (b), for x  b.

By hypothesis, f : [a, b]  R is an increasing function, therefore fn : [a, b]  R is also an increasing
function and hence integrable in the Lebesgue sense.

Again from (i) we have

nn
Lim f (x) = 

1/n 0

f {x (1/n)} f (x)Lim , x [a, b]
(1/n) ,

= f  (x), a.e.
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Notes Thus, the sequence <fn> converges to f  (x), a.e.

Using Fatou’s Lemma, we have

b

a
f (x) dx  

b

nn a
Lim inf f (x) dx … (ii)

Again
b

nn a
Lim inf f (x) dx = 

b

n a

1Lim inf n f x f(x) dx
n

= 
b b

n a a

1Lim inf n f x dx f(x) dx
n

Putting t = x + (1/n), we get

b

a

1f x dx
n = 

b (1/n) b (1/n)

a (1/n) a (1/n)
f (t) dt f (x) dx

[By the first property of definite integrals]

b

nn a
Lim inf f (x) dx = 

b (1/n) b

n a (1/n) a
Lim inf n f (x) dx f (x) dx

= 
b (1/n) a (1/n)

n b a
Lim inf n f (x) dx f (x) dx … (iii)

Now extend the definition of f by assuming

f (x) = f (b), x  [b, b + 1/n].

b (1/n)

b
f (x) dx = 

b (1/n)

b

1f (b) dx f (b)
n

Also f (a)  f (x), for x  1a, a
n

, therefore

a (1/n)

a
f (x) dx  

a (1/n )

a

1f (a) dx f (a)
n

–
a (1/n)

a
f (x) dx 1 f (a)

n

(iii) 
b

nn a
Lim inf f (x) dx = 

b (1/n) a (1/n)

n b a
Lim inf n f(b) dx f(x) dx

 
n

1 1Lim inf n f (b) f (a) f (b) f (a)
n n

Thus from (ii), we get

b

a
f (x) dx  f (b) – f (a)

 f (x) is integrable and hence finite a.e. thus f is differentiable a.e.
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Notes
Example: Let f be a function defined by f (0) = 0 and f (x) = x sin (1/x) for x  0. Find

D+ f (0), D+ f (0), D– f (0), D– f (0).

D+ f (0) = 
h oh o

1h sin 0f(0 h) f(o) hLim Lim
h h

= 
h o

1 1Lim sin 1, as 1 sin 1
h h

Also D+ f (0) = 
h o h o

f(0 h) f(0) 1Lim Lim sin 1
h h

D– f (0) = 
h oh o

1( h)sin 0f(0 h) f(0) hLim Lim
0 h h

= 
h o

1Lim sin 1
h

and D– f (0) = 
h o h o

f(0 h) f(0) 1Lim Lim sin 1
h h

Theorem: Let x be a Lebesgue point of a function f (t); then the indefinite integral

F (x) = F (a) + 
x

a
f (t) dt

is differentiable at each point x and F  (x) = f (x).

Proof: Given that x is a Lebesgue point of f (t), so that

x h

h o x

1Lim f(t) f(x) dt
h

= 0 … (i)

Now
x h

x

1 f (x) dt
h

= 
x h

x h
x

x

1 1f (x) 1 dt f (x) [t]
h h

= 1 f (x).h f (x)
h

Thus f (x) = 
x h

x

1 f (x) dt
h

… (ii)

Also F (x + h) – F (x) = 
x h x

a a
f (t) dt f (t) dt

= 
x x h x x h

a x a x
f (t) dt f (t) dt f (t)dt f (t) dt

F(x h) F(x)
h = 

x h

x

1 f (t)dt
h … (iii)
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Notes From (ii) and (iii) we have

F(x h) F(x) f(x)
h

= 
x h x h

x x

1 1f (t)dt f (x)dt
h h

= 
x h

x

1 f (t) f (x) dt
h

  
x h

x

1 f (t) f (x) dt
h

h o

F(x h) F(x)Lim f(x)
h

x h

h o x

1Lim f(t) f (x) dt 0
h

[Using (i)]

or
h o

F(x h) F(x)Lim f(x)
h

 0 … (iv)

Since modulus of any quantity is always positive, therefore

h o

F(x h) F(x)Lim f(x)
h

 0 … (v)

Combining (iv) and (v), we obtain

h o

F(x h) F(x)Lim f(x)
h = 0

h o

F(x h) F(x)Lim
h

= f (x)

F  (x) = f (x).

Theorem: Every point of continuity of an integrable function f (t) is a Lebesgue point of f (t).

Proof: Let f (t) be integrable over the closed interval [a, b] and let f (t) be continuous at the
point xo.

f (t) is continuous at t = xo implies that  > 0,  a  > 0 such that,

|f (t) – f (xo) | < , whenever |t – xo| < .

x h x ho o

o
x xo o

|f (t) f(x )|dt dt h whenever|h| .

x ho

o
xo

1 |f (t) f(x )|dt
h

… (i)

Now h  0   0. So from (i), we have

x ho

oh o xo

1Lim |f (t) f(x )|dt 0
h … (ii)

Now
x ho

oh o xo

1Lim |f (t) f(x )|dt
h

 
x ho

oh o xo

1Lim |f (t) f(x )|dt 0
h [Using (ii)]
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Notes
or

x ho

oh o xo

1Lim |f (t) f(x )|dt 0
h [ Modulus of any quantity is always non-negative]

i.e.
x ho

oh o xo

1Lim |f (t) f(x )|dt 0
h .

This shows that xo is a Lebesgue point of f (t).

1.2 Summary

 A function f defined on [a, b] is said to satisfy Lipschitz condition if  a constant M > 0 such
that

| f (x) – f (y)  M |x – y|,  x, y  [a, b].

 A point x is said to be a Lebesgue point of the function f (t), if

x h

h o x

1Lim f(t) f (x) dt 0
h

= 0

 Let E be a set of finite outer measure and M be a family of intervals which cover E in the
sense of Vitali; then for a given  > 0, it is possible to find a finite family of disjoint
intervals

{Ik, k = 1, 2, …, n} of M, such that

n

k
k 1

m * E I .

 Lebesgue differentiation theorem: Let f : [a, b]  R be a finite valued monotonically
increasing function, then f is differentiable. Also

f : [a, b]  R is L-integrable and

b

a

f (x) dx f (b) f (a) .

1.3 Keywords

Dinni’s Derivatives: These are the ways to define the quantities to judge the
measurability of the functions even at the points where it is not differentiable.

Fundamental Theorem of the Integral: The fundamental theorem of the integral calculus is that
differentiation and integration are inverse processes.

Measurable functions: An extended real valued function f defined over a measurable set E is said
to be measurable in the sense of Lebesgue if set

E (f > a) = {x  E : f (x) > a} is measurable for all extended real numbers a.

Vitali's Lemma: Let E be a set of finite outer measure and M be a family of intervals which cover
E in the sense of Vitali; then for a given  > 0, it is possible to find a finite family of disjoint
intervals {Ik, k = 1, 2, … n} of M, such that

n

k
k 1

m * E I < .
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Notes 1.4 Review Questions

1. If the function f assumes its maximum at c, show that D+ f (c)  0 and D– f (c)  0.

2. Give an example of functions such that D+ (f + g)  D+ f + D+g.

3. Find the four Dini’s derivatives of function f : [0, 1]  R

such that f (x) = 0, if x  0, if x  Q and f (x) = 1, if x  Q.

4. Evaluate the four Dini’s derivative at x = 0 of the function f (x) given below:

f (x) = 
2 2

2 2

1 1ax sin bx cos , x 0
x x
1 1px sin qx cos , x 0
x x

and f (0) = 0, given that a < b, p < q.

5. Every point of continuity of an integrable function f (t) is a Lebesgue point of f (t). Elucidate.

1.5 Further Readings

Books J. Yeh, Real Analysis: Theory of Measure and Integration

Bartle, Robert G. (1976). The Elements of Real Analysis (second edition ed.)

Online links www.solitaryroad.com/c756.html

www.public.iastate.edu/.../Royden_Real_Analysis_Solutions.pdf
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CONTENTS
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2.1.4 Theorems and Solved Examples

2.2 Summary
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Objectives

After studying this unit, you will be able to:

 Define absolute continuous function.

 Define monotonic function.

 Understand functions of bounded variation.

 Solve problems on functions of bounded variation.

Introduction

Functions of bounded variation is a special class of functions with finite variation over an
interval. In Mathematical analysis, a function of bounded variation, also known as a BV function,
is a real-valued function whose total variation is bounded: the graph of a function having this
property is well behaved in a precise sense. Functions of bounded variation are precisely those
with respect to which one may find Riemann – Stieltjes integrals of all continuous functions.

In this unit, we will study about absolute continuous function, Monotonic function and functions
of bounded variation.

2.1 Functions of Bounded Variation

2.1.1 Absolute Continuous Function

A real-valued function f defined on [a,b] is said to be absolutely continuous on [a,b], if for an
arbitrary 0 , however small,  a, 0, such that

n n

r r r r
r 1 r 1

f b – f a  ,wherever b a ,

Sachin Kaushal, Lovely Professional University
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Notes where 1 1 2 2 n na b a b ... a b i.e., a i’s and b i’s are forming finite collection

i ia ,b : i 1,2,...,n  of pair-wise disjoint (non-overlapping) intervals (or of disjoint closed

intervals).

Obviously, every absolutely continuous function is continuous.

Notes

 If a function satisfies r rf b – f a , even then it is absolutely continuous.

 The condition 
n

r r
r 1

b a ,  means that total length of all the intervals must be

less than .

2.1.2 Monotonic Function

Recall that a function f defined on an interval I is said to be monotonically non-increasing, iff

x y f x f y , x,y I

and monotonically non-decreasing, iff

x y f x f y , x,y I

Also f is said to be strictly decreasing, iff

x y f x f y

and strictly increasing, iff

x y f x f y

2.1.3 Functions of Bounded Variation – Definition

Let f be a real-valued function defined on [a,b] which is divided by means of points

0 1 2 na x x x ... x b.

Then the set 0 1 2 nP x ,x ,x ,...,x is termed as subdivision or partition of [a,b].

Let us take 
n 1b

r 1 ra r 0
V f,P f x f x , and 

b b

a a
V f,P sup V f,P  for all possible subdivisions P of

[a,b]. (This is called total variation of f over [a,b] and also denoted by 
b

a
T f ).
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Unit 2: Functions of Bounded Variation

Notes
If 

b

a
V f  is finite, then f is called a function of bounded variation or function of finite variation

over [a,b].

Set of all the functions of bounded variation on [a,b] is denoted by BV [a,b].

Notes

If f is defined on R, then we define

a

a a
V f lin V f .

Some important observations about the functions of bounded variations.

Let f: [a,b] R and P be any subdivision of [a,b]. Then:

(i)
x

a
f x f a V f ,x [a,b]

(ii)
a

a
V f 0

(iii)
b b

1 2 1 2a a
P P V f,P V f,P , where 1P  and 2P  are any two subdivisions of [a,b].

(iv)
b b

a a
V f,P V f , for all subdivisions P of [a,b].

(v) For each 0,  however small,  at least one subdivision P’ of [a,b] such that

b b

a a
V f,P' V f .

(vi)
b

a
V f 0.

(vii)
b c

a a
a b c V f V f .

2.1.4 Theorems and Solved Examples

Theorem 1: A monotonic function on [a,b] is of bounded variation.

Proof: Divide the interval [a,b] by means of points

0 1 2 na x x x ... x b.

without any loss of generality, we can take f(x) as increasing function on [a,b]. Since if f is a
decreasing function, –f is an increasing function and so by taking –f = g, we see that g is an
increasing function and so we are allowed to consider only increasing functions. Thus

r r 1 r r 1x x f x f x

r 1 r            f x – f x 0

r 1 r r 1 r            f x – f x f x – f x ...(i)
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Notes
Now 

n 1 n 1

r 1 r r 1 r
r 0 r 0

V f x – f x f x – f x [using (i)]

     n 0V f x f x f b f a .

Now f is monotonic f b and f a are finite quantities.

V a finite quantity independent of the mode subdivision. Hence f is of bounded variation.

Notes

If f is a monotonic function on [a,b], then

b

a
T f f b f a

Theorem 2: Let V, P, N denote total, positive and negative variations of a bounded function f on
[a,b]; then prove that

V = P+N, and P–N= f(b)–f(a).

Proof: Let the interval [a,b] be divided by means of points

0 1 2 na x x x ... x b.

n 1

r 1 r
r 0

v f x – f x

If P denotes the sum of those differences r 1 rf x – f x  which are +n for positive and –n for
negative, then obviously,

v = p + n, f(b) – f(a) = p – n ...(i)

Let P supp,V supv,N supn, ...(ii)

where suprema are taken over all subdivisions of [a,b]. From (i), we have

v = 2p + f(a) – f(b), ...(iii)

v = 2n + f(b) – f(a). ...(iv)

Taking supremum in (iii) and (iv) and using (ii), we get

V = 2P + f(a) – f(b), ...(v)

V = 2N + f(b) – f(a). ...(vi)

By adding and subtracting, (v) and (vi) give

V = P+N and f(b) – f(a) = P–N.

Theorem 3: If f1 and f2 are non-decreasing functions on [a,b], then f1–f2 is of bounded variation on
[a,b].

Proof: Let f = f1 – f2 defined on [a,b].

Then for any partition 0 1 nP a x ,x ,...,x b ,  we have
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Notes
i i 1 1 i 1 i 1 2 i 2 i 1f x – f x f x – f x f x – f x

                            1 1 2 2f b – f a f b – f a

as f1 and f2 are monotonically increasing.

b

1 2 2 1a
V f f b f b f a f a , which is a finite quantity.

b

a
V f and hence f is of bounded variation.

Theorem 4: If f BV [a,b] and c a,b , then f BV [a,c]  and f BV [c,b] .  Also

b c b

a a c
V f V f V f

Proof: Since f BV[a,b] and [a,c] [a,b] we get 

c b

a a
V f V f

f BV [a,c]  and similarly f BV [c,b] .

Now if P1 and P2 are any subdivisions of [a,c] and [c,b] respectively, then 1 2P P P is a
subdivision of [a,b].

c b b b

1 2a c a a
V f,P V f,P V f,P V f .

But P1 and P2 are any subdivisions. So taking supremums on P1 and P2, we get

c b b

a c a
V f V f V f . ...(1)

Now let 0 1 2 nP a x ,x ,x ,...,x b be a subdivision of [a,b] and r 1 rc x ,x

1 0 1 2 r 1P x ,x ,x ,...,x ,c and

    2 r r 1 r 2 nP c,x ,x ,x ,...,x are the subdivisions of [a,c] and [c,b] respectively.

Now
r 1 nb

i i 1 r r 1 i i 1a i 1 i r 1
V f,P f x f x f x f x f x f x

                      
r 1 n

i i 1 r r 1 i i 1
i 1 i r 1

f x f x f x f c f c f x f x f x

                     
r 1 n

i i 1 r 1 r i i 1
i 1 i r 1

f x f x f c f x f x f c f x f x

                     
c b c b

1 2a c a c
V f,P V f,P V f V f

(i) and (ii) 
b c b

a a c
V f V f V f . ...(ii)
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Notes

Notes

 This theorem enables us to define a new function (called variation function) say

x

a
V x V f ,  x [a,b] .

 If x > y in [a,b], then 
y yx

a a x
V f V f V f .

i.e. v(y) = v(x) + 
y

x
V f .

v x  is an increasing function.

 If 1 2 na c c ... c b,then

c cb b1 2

a a c c1 n
V f V f V f ... V f

Corollary:

f BV[a,b] f BV[a,c],

f BV[c,b] for each c [a,b].

Theorem 5: If a function f of bounded variation in [a,b] is continuous at c [a,b], then the function

defined by v(x) = 
x

a
V f , is also continuous at x = c and vice versa.

Proof: Suppose f is continuous at x = c. Hence for arbitrary /2 0, we can find a 1 such that

1 1a c x c or x  c f x f c /2 ...(i)

Also we know by remark (v) after the definition (2.1.3), for above , we can get a subdivision

P = 0 1 2 na x ,x ,x ,...,x c of [a,c]

s.t. 
c c

a a
V f V f,P

2
...(ii)

Now choosing positive 1 n 1min[ ,c x ], we get that for any x such that c x c , we also

have  n 1 nx x x .

(ii)
n 1c

r r 1 n n 1a r 1
V f f x f x f x f x

2

                  
n 1

r r 1 n n 1
r 1

f x f x f x f x f x f x
2
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Notes
                  

n 1

r r 1 n 1 n
r 1

f x f x f x f x f x f x
2

                  
x

a
V f + f c f x

2

c x

a a
V f V f , [by (i)]

c x

a a
0 V f V f ,

x s.t. c x c,we have v c v x

x c 0
lt v x  = v c .

v x  is continuous on the left at x = c.

Similarly considering the partition of [c,b], one can show that v(x) is right continuous also at
x = c and hence v(x) is also continuous at x = c.

Converse of the above Theorem

If v(x) is continuous at x c [a,b] so is f also at x – c.

Proof: Since v(x) is continuous at x = c, for arbitrary small 0,  a 0 such that

v x v c ,x c ,c ...(i)

Now let c x c . Then by Note (ii) of Theorem 4, we get

x c x

a a c
V f V f V f

x

c
v x v c V f

x

c
v x v c V f f x f c

f x f c v x v c  [by (i)] ...(ii)

Similarly, we can show that f c f x ,if c x c. ...(iii)

(ii) and (iii) show that f(x) is also continuous at x = c.

Theorem 6: Let f and g be functions of bounded variation on [a,b] ; then prove that f+g, f-g, fg and

f/g g x 0, x and cf are functions of bounded variation, c being constant.

Proof:

(i) Set f + g = h, then

r 1 r r 1 r 1 r rh x h x f x g x f x g x

where  a = x0 < x1< x2<...<xn= b
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Notes
r 1 r r 1 rf x f x g x g x

r 1 r r 1 rf x f x g x g x .

n 1 n 1 n 1

r 1 r r 1 r r 1 r
r 0 r 0 r 0

h x h x h x h x g x g x .

or
b b b

a a a
V h V f V g .

Now by hypothesis, f, g are functions of bounded variations.

b b

a a
V f and V g are finite.

b

a
V h a finite quantity.

Hence h = f + g is of bounded variation in [a,b].

(ii) Let h = f – g. Then as above,

r 1 r r 1 r r 1 rh x h x f x f x g x g x .

b b b

a a a
V h V f V g

b

a
V h a finite quantity.

Hence h = f – g is of bounded variation in [a,b].

(iii) Let h(x) = f(x).g(x). Then

r 1 r r 1 r 1 r rh x h x f x .g x f x .g x

r 1 r 1 r r 1 r r 1 r rf x .g x f x g x f x g x f x g x

r 1 r 1 r r r 1 rg x f x f x f x g x g x .

r 1 r 1 r r r 1 rg x f x f x f x . g x g x .

Let A = sup f x : x [a,b] ,

       B = sup g x : x [a,b] ,

r 1 r r 1 r r 1 rh x h x B. f x f x A. g x g x .

n 1 n 1 n 1

r 1 r r 1 r r 1 r
r 0 r 0 r 0

h x h x B. h x h x A g x g x .
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Notes
i.e.

b b b

a a a
V h B.V f A.V g .

                               = a finite quantity.

Hence h(x) = f(x).g(x) is of bounded variation in [a,b].

(iv) First, we shall show that 1/g is of bounded variation, where g x 0, x [a,b].

Now, g x 0, x [a,b]

1 1 0, x [a,b].
g x

Again, we observe that

r r 1
r r 12

r 1 r r r 1

g x g x1 1 1 g x g x
g x g x g x .g x

n 1 n 1

r r 12
r 0 r 0r 1 r

1 1 1 g x g x
g x g x

b b

2a a

1 1V V g a finite quantity.
g

Hence 
1
g is of bounded variation in [a,b].

Now f and 
1
g are of bounded variation in [a,b].

f. 1
g

 is of bounded variation in [a,b] [by case (iii)]

f
g

 is of bounded variation in [a,b].

(v) Do yourself. Note that 
b b

a a
V cf c V f .

Notes

Since BV [a,b] is closed for all four algebraic operations, it is a linear space.

Theorem 7: Every absolutely continuous function f defined on [a,b] is of bounded variation.

Proof: Since f is absolutely continuous on [a,b]; for 1,  a 0
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Notes
s.t.

n

i i
i 1

f b f a 1,

whenever 
n

i i
i 1

b a ,

and 1 1 2 2 n na a b a b ... a b b.

Now consider another subdivision of [a,b] or say refinement of P by adjoining some additional
points to P in such a way that all the intervals can be divided into r parts each of total length less

than .

Let the r sub-intervals be [c0,c1], [c1,c2],...,[cr-1,cr] such that

a = c0, cr = b and (ck+1–ck) < , K 0,1,2,...,(r 1)

Obviously, i 1 i 1 i 1 i k k 1
i

f x – f x 1,where x ,x . [c ,c ]

or
ck 1

ck
V f 1, [Using (i)]

Hence
c c cb 1 2 r

a c c c10 r 1
V f V f V f ... V f 1 1 1 ... 1 r finite quantity.

Hence, f is of bounded variation.

Notes

Converse of above theorem is not necessarily true. These exists functions of bounded
variation but not absolutely continuous.

Theorem 8: Jordan Decomposition Theorem

A function f is of bounded variation, if and only if it can be expressed as a difference of two
monotonic functions both non-decreasing.

Proof: Let f be the function of f :[a,b] R.

Case I. f BV[a,b].  Then we can write

f = v – (v – f), ...(i)

so that f x v x v x f x ,x [a,b].

Now if x, y  [a, b] such that x < y, then by the remark (ii) of theorem 4, we get

y yx

a a x
V f V f V f .

y

x
v y v x V f 0

v x v y and hence v is a non-decreasing function on [a,b].



LOVELY PROFESSIONAL UNIVERSITY 21

Unit 2: Functions of Bounded Variation

NotesAgain, if x<y in [a,b], then as above

y

x
v y v x V f f y f x f y f x

v y f y v x f x v f y v f x

v f is also a non-decreasing function on [a,b].

Thus (i) shows that f is expressible as a difference of two monotonically non-decreasing functions.

Case II. Set g (x) and h (x) be increasing functions such that f(x) = g(x) – h(x).

Divide the closed interval [a,b] by means of points

a = x0 < x1< x2<...< xn=b.

Let 
n 1

r 1 r
r 0

V f x f x

Now, we have that

r 1 r r 1 r 1 r r

r 1 r r r 1

r 1 r r r 1

r 1 r r 1 r

f x f x g x h x g x h x

                       g x g x h x h x

                       g x g x h x h x

                       g x g x h x h x

Now, g(x) and h(x) are monotonically increasing functions, so that r 1 rg x g x 0

r 1 rand h x h x 0

r 1 r r 1 rg x g x g x g x

and r 1 r r 1 rh x h x h x h x .

Hence r 1 r r 1 r r 1 rf x f x g x g x h x h x

n 1 n 1 n 1

r 1 r r 1 r r 1 r
r 0 r 0 r 0

f x f x g x g x h x h x

Now 
n 1

r 1 r 1 0 2 1 n n 1
r 0

g x g x g x g x g x g x ..... .... g x g x

n 0

n 0

g x g x

g b g a           x b,x a

Similarly, 
n 1

r 1 r
r 0

h x h x h b h a .

Hence 
n 1

r 1 r
r 0

f x f x g b g a h b h a .
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Notes
since f is finite in [a,b] Now g b ,g a h b ,h a  are finite numbers.

n 1

r 1 r
r 0

f x h x

b

a
V f .

f is a function of bounded variation. Alternatively, since g (x) and h(x) are both non-decreasing,
so by theorem 3, g(x) – h(x) and hence f(x) is of bounded variation.

Corollary: A continuous function is of bounded variation iff it can be expressed are as a difference
of two continuous monotonically increasing functions. It follows from the results of Theorems
5 and 8.

Theorem 9: An indefinite integral is a function of bounded variation, i.e. if f L[a,b] and F x  is

indefinite integral of f x  i.e. F (x) = 
x

a

f t dt,  then F BV[a,b].Also show that

 

x
b

a
a

V f f .

Proof: Since f L[a,b],  also f L[a,b].

Let P = ix : i 0,1,2,...,n be a subdivision of the interval [a,b]. Then

x xi i 1n n

i i 1
r 0 i 1 a a

F x F x f f

                                

x xi in n

i 1 i 1x xi 1 i 1

f f

                                 
b

a

f .

b
b

a
a

f BV[a,b] and V f,p f .

Further above result is true for any subdivision of P of [a,b]. Therefore taking supremum, we get

b b

a a

f f .
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Example: A function f of bounded variation on [a,b] is necessarily bounded on [a,b] but

not conversely.

Solution: If  x [a,b], then 
x b

a a
f x f a V f V f

b b

a a
V f f x f a V f

b b

a a
f a V f f x V f f a

f x is bounded on [a,b]

For the converse, define the function f on [0,1] by

0,if x 0
f x

x.sin ,if 0 x 1
x

since 0 x 1 and 1 sin 1,
x

the function f is obviously bounded. Now consider the

partition

2 2 2 2 2P= 0, , ,..., , , ,1 of [0,1]
2n+1 2n–1 7 5 3

Where n N.  Then we get

1

0

2 2 2 2V f,P f f 0 ... f f f 1 f
2n 1 3 5 3

            
n2 2 2 21 0 ... 1 .1 0 1

2n 1 3 5 3

            
2 2 2 2...

2n 1 3 5 3

            
1 1 14. ... .
3 5 2n 1

But we know that series 
1

2n 1 is divergent. Therefore letting n  we get that

1 1

0 n 0
V f lt V f,P

f is not of bounded variation.
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Notes
Example: Show that the function

xsin if 0 x 2
f x is continuousx

0,if  x 0

without being of bounded variation.

or

show that there exists a continuous function without being of bounded variation.

Solution: We know that 
x 0
lt f x 0 f 0

f x  is continuous but not of bounded variation (see converse of above example.)

Hence the result.

Problem: Show that if f  exists and is bounded on [a, b], then f  BV [a, b].

Solution: According to given, let |f |  M on [a, b].

Then for any Xi – 1, xi  [a, b], we get

i i 1
i i 1 i i 1

i i 1

f(x ) f(x ) M |f(x ) f(x )| M(x x )
x x

for any partition P of [a, b],

b

i i 1a
V(f) M (x x ) M(b a)

f  B V [a, b].

Problem: Show that the function f defined as

p 1f(x) x sin for 0 x 1, f(o) 0, p 2.
x

is of bounded variation [0, 1].

Solution: Note that RF (0) = 

p

h o

1(0 h) sin 0
hLim

h

= (p 1)

h o

1Lim h sin 0
h

and 

p

h o

1( h) sin 0
hLf (0) lim 0

h
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f (0) = 0 and f (x) = p p 1

2

1 1 1x cos px sin
x x x

f (x) = xp–2 
1 1pxsin cos
x x , for 0 < x  1

f (x) is bounded for 0  x 1.

According to above problem, f  BV [0, 1].

2.2 Summary

 A real-valued function f defined on [a,b] is said to be absolutely continuous on [a,b], if for
an arbitrary 0, however small,  a, 0,s.t.

n n

r r r r
r 1 r 1

f b f a whenever b a ,

where 1 1 2 2 n na b a b ... a b

 A function f defined on an interval I is said to be monotonically non-increasing, iff

, , .x y f x f y x y I

and monotonically non-decreasing, iff x > y  f(x),  f(y)  x, g I.

 Let 
n 1

b

r 1 ra
r 0

V f,P f x f x , and b b

a a
V f Sup V f,P for all possible subdivisions P of

[a,b]. If 
b

a
V f is finite, then f is called a function of bounded variation over [a,b].

2.3 Keywords

Absolute Continuous Function: A real valued function f defined on [a, b] is said to be absolutely
continuous on [a, b], if for an arbitrary  > 0, however small,  a,  > 0, such that

n n

r r r r
r 1 r 1

|f(b ) f(a )| , wherever (b a )

where a1 < b1  a2 < b2  …  an < bn i.e. a1’s and b1’s are forming finite collection {(ai, bi) : i = 1, 2,
…, n} of pair-wise disjoint intervals.

Continuous: A continuous function is a function f : X Y  where the pre-image of every open
set in Y is open in X.

Disjoint: Two sets A and B are said to be disjoint if they have no common element, i.e. A B .
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Notes Monotonic Decreasing Function: A monotonic decreasing function is a function that either
decreases or remains the same, never increases i.e. a function f(x) such that f(x2)  f(x1) for x2 > x1.

Monotonic Function: A monotonic function is a function that is either a monotonic increasing or
monotonic decreasing.

Monotonic Increasing Function: A monotonic increasing function is a function that either
increases or remains the same, never decreases i.e. a function f(x) such that f(x2)  f(x1) for x2 > x1.

2.4 Review Questions

1. Show that sum and product of two functions of bounded variation is again a function of
bounded variation.

2. Show that the function f defined on [0,1] by

xxcos for 0 x 1
f x 2

0 for x 0

is continuous but not of bounded variation on [0,1].

3. Show that the function f defined on [0,1] as f(x) = xsin
x  for x > 0, f(0)=0 is continuous but

is not of bounded variation on [0,1].

4. Define a function of bounded variation on [a,b]. Show that every increasing function on
[a,b] is of bounded variation and every function of bounded variation on [a,b] is
differentiable on [a,b].

5. Show that a continuous function may not be of bounded variation.

6. Show that a function of bounded variation may not be continuous.

7. If f is a function such that its derivative f’ exists and is bounded. Then prove that the
function f is of bounded variation.

2.5 Further Readings

Books Halmos, Paul (1950), Measure Theory, Van Nostrand and Co.

Kolmogorov, Andrej N.; Fomin, Sergej V. (1969). Introductory Real Analysis, New
York: Dovers Publications.

Online links www.ams.org

www.whitman.edu/mathematics/SeniorProjectArchive/.../grady.pdf
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NotesUnit 3: Differentiation of an Integral

CONTENTS

Objectives

Introduction

3.1 Differentiation of an Integral

3.2 Summary

3.3 Keyword

3.4 Review Questions

3.5 Further Readings

Objectives

After studying this unit, you will be able to:

 Define differentiation of an integral.

 Solve problems related to it.

Introduction

If f is an integrable function on [a, b], we define its indefinite integral to be the function F defined
on [a, b] by

F (x) = 
x

a

f (t) dt

Here, it is shown that the derivative of the indefinite integral of an integrable function is equal
to the integrand almost everywhere. We begin by establishing some lemmas.

3.1 Differentiation of an Integral

If f is an integrable function on [a, b] then f is integrable on any interval [a, x]  [a, b]. The
function F given by

F (x) = 
x

a

f (t) dt c ,

where c is a constant, called the indefinite integral of f.

Lemma 1: If f is integrable on [a, b] then the indefinite integral of f namely the function F on

[a, b] given by F (x) = 
x

a

f (t)  is a continuous function of bounded variation on [a, b].

Proof: Let xo be any point of [a, b].

Sachin Kaushal, Lovely Professional University
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Notes

Then oF(x) F(x ) = 
xx o

a a

f (t) dt f (t) dt

= 
x a

a xo

f (t) dt f (t) dt

= 
a x

x ao

f (t) dt f (t) dt

= 
x

xo

f (t) dt

 
x

xo

|f(t)|dt

But f is integrable on [a, b]

 |f| is integrable on [a, b]

[Since we know that measurable function f is integrable over  iff |f| is integrable over E]

Given  > 0, > 0 such that for every measurable set A [a, b] with m (A) < , we have

A

|f|  by theorem, “if f is a non-negative function which is integrable over a set E, then

given > 0, there is a > 0 such that for every set A E with m (A) < , 
A

f .”

x

xo

|f(t)|dt  < , for |x – xo| < .

|F(x) – F (xo)| = 
x x

x xo o

f (t) dt |f (t)|dt < 

whenever |x – xo| < .

|F(x) – F(xo)| <  wherever |x – xo| < 

F is continuous at xo and hence in [a, b].

Now we shall show that F is a function of bounded variation.

Let P = {a = xo < x1 < x2 < … < xn = b} be a partition of [a, b].

Then

n

i i 1
i 1

F(x ) F(x ) = 
xin

i 1 xi 1

f (t) dt
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xin

i 1 xi 1

|f(t)|dt

= 
b

a

|f(t)|dt

b
aT (F)

b

a

|f(t)|dt

But |f| is integrable therefore.

b

a

|f|dt

b
aT (F) < 

F  BV [a, b]

Hence the Proof.

Theorem 1: Let f be an integrable on [a, b].

If 
x

a

f(t)dt 0 x [a, b]  then f = 0 a.e. in [a, b].

Proof: Let if possible, f  0 a.e. in [a, b].

Let f (t) > 0 on a set E of positive measure, then there exists a closed set F  E with m (F) > 0.

Let A = (a, b) – F.

Then A is an open set.

Now
b

a A F

f (t) dt f (t) dt

But
b

a

f (t) dt 0

b

A F

f (t) dt 0

A F

f (t) dt f (t) dt 0

A F A F

f (t) dt f (t) dt 0 f (t) dt f (t) dt
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Notes But f (t) > 0 on F with m (F) > 0 implies

F

f (t) dt 0

Therefore 
A

f (t) dt 0

Now, A being as open set, it can be expressed as a union of countable collection {(an, bn)} of
disjoint open intervals as we know that an open set can be expressed as a union of countable
collection of disjoint open intervals.

Thus
bn

nA an

f (t) dt f (t) dt

But
A

f (t) dt 0

bn

n an

f (t) dt 0

bn

an

f (t) dt 0  for some n

either 
an

a

f (t) dt 0

Or
bn

a

f (t) dt 0

In either case, we see that if f is positive on a set of positive measure, then for some x  [a, b] we
have

x

a

f (t) dt 0 .

Similarly if f is negative on a set of positive measure we have

x

a

f (t) dt 0 .

But it leads to the contradiction of the given hypothesis. Hence our supposition is wrong.

f = 0 a.e. in [a, b].

Hence the proof.
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[a, b] and F (x) = 
x

a

f (t) dt  + F (a), then F (x) = f (x) a.e. in [a, b].

Proof: Since every indefinite integral is a function of bounded variation, therefore F (x) is a
function of bounded variation over [a, b]. Thus F (x) can be expressed as a difference of two
monotonic functions and since every monotonic function has a finite differential coefficient at
every point of a set of non-zero measure, therefore F (x) has a finite differential coefficient a.e. in
[a, b]. Now F is given to be bounded;

|f|  M (say) … (1)

Let fn (x) = F(x h) F(x)
h

.

with h = 1
x

.

Then |fn (x)| = 1 (F(x h) F(x)
h

= 
x h x

a a

1 f (t) dt f (t) dt
h

= 
x h a

a x

1 f (t) dt f (t) dt
h

= 
a x h

x a

1 f (t) dt f (t) dt
h

= 
x h

x

1 f (t) dt
h

But |f|  M

|fn(x)|  
x h

x

M Mdt (x h x)
h h

|fn(x)|
M (h)
h

|fn(x)|  M

Since fn (x)  F  (x) a.e.,
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Notes then the bounded convergence theorem implies that
x

a

F (x) dx = 
x

xh
a

lim F (x) dx

= 
x

h 0
a

1lim [F(x h) F(x)]dx
h

= 
x h a h

h 0
x a

1 1lim [F(x)dx F(x) dx
h h

= F (x) – F (a)

= 
x

a

f (t) dt,  by hypothesis

x x

a a

F(x) f (t) dt F(a) F(x) F(a) f (t) dt

or
x

a

[F (t) f(t)]dt 0, x

F (x) – f (x) = 0 a.e. in [a, b]

Hence F (x) = f(x) a.e. in [a, b] by the theorem, “If f is integrable on [a, b] and 
x

a

f (t) dt 0, x [a, b]

then f = 0 a.e. in [a, b]”.

Hence F  (x) = f (x) a.e. in [a, b].

Hence the proof.

Theorem 3: If f is an integrable function on [a, b] and if F(x) = 
x

a

f (t) dt  + F(a) then F (x) = f (x) a.e.

in [a, b].

Proof: Without loss of generality, we may assume that f (x)  0 x

Let us define a sequence {fn} of functions

fn : [a, b]  R, where

fn(x) = 
f(x) if f(x) n,

n if f(x) n

Clearly, each fn is bounded and measurable function and so, by the theorem,

Let f be a bounded and measurable function defined on [a, b]. If F(x) = 
x

a

f (t) dt  + F(a), then F (x)

= f(x) a.e. in [a, b]”, we have
x

n n

a

d f f (x) a.e.
dx
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NotesAlso, f – fn > 0 n, and therefore, the function Gn defined by

x

n n

a

G (x) (f f )

is an increasing function of x, which must have a derivative almost everywhere by Lebesgue
theorem and clearly, this derivative must be non-negative.

Since Gn (x) = 

x

n

a

(f f )

= 
x x

n

a a

f (t ) dt f (t ) dt

x

a

f (t ) dt = 
x

n n

a

G (x) f (t ) dt

Now the relation

F (x) = 
x

a

f (t ) dt F(a)  becomes

F (x) = 
x

n n

a

G (x) f (t ) dt F(a) ,

F (x) = n nG (x) f (x) a.e.

 fn(x) a.e. n.

since n is arbitrary, we have

F (x)  f(x) a.e.

b

a

F (x) dx
b

a

f (x) dx … (1)

Also by the Lebesgue’s theorem, i.e. “Let f be an increasing real-valued function defined on
[a, b].

Then f is differentiable a.e. and the derivative f  is measurable.

and
b

a

f (x) dx  f (b) – f (a)”, we have

b

a

F (x) dx  F (b) – F (a) … (2)
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But F (x) = 
b

a

f (t) dt F(a)

F(b) – F(a) = 
b

a

f (x) dx

Therefore (2) becomes
b

a

F (x) dx
b

a

f(x) dx … (3)

From (1) and (3), we get
b

a

F (x) dx = 
b

a

f(x) dx

b b

a a

F (x) dx f(x) dx = 0

b

a

F (x) f(x) dx = 0

since F (x) – f(x)  0 a.e., which gives that

F (x) – f(x) = 0 a.e. and

so F (x) = f(x) a.e.

3.2 Summary

 If f is an integrable function on [a, b] then f is integrable on any interval [a, x]  [a, b]. The
function F given by

F (x) = 
x

a

f (t) dt c ,

where c is a constant, called the indefinite integral of F.

 Let f be an integrable on [a, b]. If 
x

a

f (t) dt 0 x [a,b] then f = 0 a.e. in [a, b].

3.3 Keyword

Differentiation of an Integral: If f is an integrable function on [a, b] then f is integrable on any
interval [a, x]  [a, b]. The function F given by

F (x) = 
x

a

f (t) dt c ,

where c is a constant, called the indefinite integral of f.
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Notes3.4 Review Questions

1. If f is an integrable function on [a, b] and if F (x) = 
x

a

f (t) dt F(a)  then check whether

F (x) = f (x) is absolute continuous function in [a, b] or not.

2. If F is an absolutely continuous function on [a, b], then prove that F (x) = 
x

a

f (t) dt C where

f = F  a.e. on [a, b] and C is constant.

3.5 Further Readings

Books Flanders, Harley. Differentiation under the Integral Sign

Frederick S. Woods, Advanced Calculus, Ginn and Company

David V. Widder, Advanced Calculus, Dover Publications Inc., New Edition
(Jul 1990).

Online links www.physicsforums.com > Mathematics > Calculus & Analysis

www.sp.phy.cam.ac.uk/~ alt 36/partial diff.pdf
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Objectives

After studying this unit, you will be able to:

 Define Absolute Continuous function.

 Solve problems on absolute continuity

 Understand the proofs of related theorems.

Introduction

It may happen that a continuous function f is differentiable almost everywhere on [0,1], its
derivative f’ is Lebesgue integrable, and nevertheless the integral of f’ differs from the increment
of f. For example, this happens for the Cantor function, which means that this function is not
absolutely continuous. Absolute continuity of functions is a smoothness property which is
stricter than continuity and uniform continuity.

4.1 Absolute Continuity

4.1.1 Absolute Continuous Function

A real-valued function f defined on [a,b] is said to be absolutely continuous on [a,b], if for an
arbitrary 0, however small,  a, 0, such that

n

r r
r 1

f b f a whenever 
n

r r
r 1

b a ,

where 1 1 2 2 n na b a b ... a b i.e. a i’s and b i’s are forming finite collection

i ia ,b : i 1,2,...,n of pair-wise disjoint intervals.

Obviously, every absolutely continuous function is continuous.

Sachin Kaushal, Lovely Professional University
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Notes

1. If a function satisfied r rf b f a , even then it is absolutely continuous.

2. The condition 
n

r r
r 1

b a means that total length of all the intervals must be less

than .

4.1.2 Theorems and Solved Examples

Theorem 1: Every absolutely continuous function f defined on [a,b] is of bounded variation.

Proof: Since f is absolutely continuous on [a,b]; for 1,   a 0 such that

n

i i
r 1

f b f a 1,

whenever
n

i i
r 1

b a ,

and 1 1 2 2 n na a b a b ... a b b.

Now consider another subdivision of [a,b] or say refinement of P by adjoining some additional
points to P in such a way that all the intervals can be divided into r parts each of total length less
than .

Let the r-sub-intervals be 0 1 1 2 r 1 rc ,c , c ,c ,..., c ,c  such that

0 r k+1 ka c ,c b and c c , k 0,1,2,..., r 1

Obviously, i 1 i
i

f x f x 1,

where i 1 i k k 1x ,x c ,c

or 
ck 1

ck
V f 1,

Hence 
c c cb 1 2 r

a c c c0 1 r 1
V f V f V f ... V f 1 1 ... 1 r finite quantity.

Hence f is of bounded variation.
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Notes

Converse of above theorem is not necessarily true. There exists functions of bounded
variation but not absolutely continuous.

Theorem 2: Let f(x) and g(x) be absolutely continuous functions, then prove that f x g x  and

f x .g x  are also absolutely continuous functions. Hence show that 
f x if g x 0, x
g x

is also

absolutely continuous function.

Proof: Given f x  and g x are absolutely continuous functions on the closed interval [a,b],

therefore for each 0 , there exists 0 such that

n

r r
r 1

f b f a and

n

r r
r 1

g b g a ,

whenever 
n

r r
r 1

b a , for all the points 1 1 2 2 n na ,b ,a ,b ,...,a ,b such that

1 1 2 2 n na b a b ... a b .

(i) We have, 
n n n

r r r r r r r r
r 1 r 1 r 1

f b g b f a g a f b f a g b g a .

Now if 
n

r r
r 1

b a ,then

n n

r r r r
r 1 r 1

f b f a  and g b g a .
2 2

n

r r r r
r 1

f b g b f a g a + = ,
2 2

whenever 
n

r r
r 1

b a .

This show that f x g x are also absolutely continuous functions over [a,b].
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(ii) We have 
n

r r r r
r 1

f b g b f a g a

n

r r r r r r r r
r 1

f b g b f b g a f b g a f a g a

n

r r r r r r
r 1

f b g b g a g a f b f a

n n

r r r r r r
r 1 r 1

f b g b g a g a f b f a

n n

r r r r r r
r 1 r 1

f b g b g a g a f b f a .

Now every absolutely continuous function is bounded therefore f(x) and g(x) are bounded
in the closed interval [a,b].

Let 1 2f x K , g x K , x [a,b].

Then we have

n

r r r r 1 2 1 2
r 1

f b g b f a g a K K K K ,

Whenever 
n

r r
r 1

b a .

Setting 1 2K K  *,

We have 
n

r r r r
r 1

f b g b f a g a  = *,

Whenever 
n

r r
r 1

b a ,

where 1 1 2 2 n na b a b ... a b ;

 Product of two absolutely continuous functions is also absolutely continuous.

(iii) We have g x 0 x [a,b] ;  therefore

                g x ,where 0, x [a,b].
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Now, 
n n

r r
2

r r r rr 1 r 1

g a g b1 1  =  < ,
g b g a g b g a

Whenever 
n

r r 2
r 1

b a . Setting = *,we get

          
n

r rr 1

1 1  < *.
g b g a

This show that 1
g x

is absolutely continuous function over [a,b].

Now f(x), 1
g x

 are absolutely continuous.

1f x .
g x

is absolutely continuous.

f x
g x

is also absolutely continuous over [a,b].

Hence the theorem is true.

Note

By Theorem 1, its remark and above theorem it follows that set of all absolutely continuous
functions on [a,b] is a proper subspace of the space BV [a,b] of all functions of bounded
variation on [a,b].

Theorem 3: If BV[a,b], then f is absolutely continuous on [a,b], iff the variation function

x

a
v x V f is absolutely continuous on [a,b].

Proof: Case I: Given v(x) is absolutely continuous.

For arbitrary >0,  0 s.t.

n n

r r r r
r 1 r 1

v b v a  < ,whenever b a .

Also, we know that 
x

a
f x f a V f v x
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n n

r r r r
r 1 r 1

f b f a = f b f a f a f a

n

r r
r 1

f b f a f a f a

Now taking supremum over all collections of Pi of [ai, bi] for i = 2,...,n, we get

n bi

air 1

V f  .

But 
b a bi i i

a a ai
V f V f V f

b b ai i i

a a ai
V f V f V f

bi

i iai
V f v b v a

n

i i
i 1

v b v a  <  

v x is absolutely continuous.

Theorem 4: A necessary and sufficient condition that a function should be an indefinite integral
is that it should be absolutely continuous.

Proof: Condition is sufficient.

Let f(x) be an absolutely continuous function over the closed interval [a,b].

Therefore f is of bounded variation and hence we can express f(x) as

f(x) = f1(x) – f2(x)

where f1(x) and f2(x) are monotonically increasing functions and hence both are differentiable.

n n

r r r r
r 1 r 1

v b v a  < whenever b a

f  is also absolutely continuous on [a,b].

Case II: Given f is absolutely continuous on [a,b].

 for a given 0,  a 0 s.t.

n

i i
i 1

f b f a  < , ...(i)
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for every finite collection i iP a ,b , i 1,2,...,n  of pairwise disjoint sub-intervals of [a,b] such

that 
n

i i
i 1

b a  .

Now, let i i
i k 1 ki iP x ,bx ,k 1,...,m be a finite collection of non-overlapping intervals of the

interval [ai,bi].

Then the collection 1 , : 1,2,..., , 1,...,i i
k k i ix bx i n k m is a finite collection of non-overlapping

sub-intervals of [a,b] such that

mn ni
i i
k k 1 i i

i 1 k 1 i 1

x x b a .

and hence by (i), 
mn i

i i
k k 1

i 1 k 1

f x f x  .

Hence f’(x) exists and ' '
1 2f ' x f x f x

b

1 2 1 2

a

f x f b f b f a f a ,

f x  is integrable also.

Now let F(x) be an definite integral of f’(x) i.e.

F(x) = F(a) + 
x

a

f t dt, x [a,b] ...(ii)

Using fundamental theorem of integral calculus,

We get

F’(x) = f’(x)

or F(x) = f(x) + constant (say c) ...(iii)

From (ii), we have F(a) = f(a),

Using this in (iii), we get c = 0 and hence F (x) =  f(x).

Thus every absolutely continuous function f(x) is an indefinite integral of its own derivative.

Condition is necessary: Let f(x) be an indefinite integral of f(x) defined on the closed interval
[a,b], so that

x

a

F x f t dt f a , x [a,b] and f(x) is integrable over [a,b].

Corresponding to arbitrary small 0, let  >0 be such that if 
A

m(A) ,then f ,
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i i 2 2 3 n na b a b a ... a b

such that A = 
n

n

i i i ii 1
i 1

U a ,b  and b a .

Then  
b ai in n

i i
i 1 i 1 a a

F b F a f f

b bi in n

i 1 i 1a a Ai i

F f f  .

Thus, we have shown that for arbitrary small 
n

i i
i 1

0,  a 0 s.t. b a .

n

i i
i 1

F b F a .

 F is absolutely continuous.

Thus every indefinite integral is absolutely continuous.

Theorem 5: If a function f is absolutely continuous in an interval [a,b] and if f’(x) = 0. a.e. in [a,b],
then f is constant.

Proof: Let c [a, b] be arbitrary. If we show that f(c) = f(a), then the theorem will be proved.

Let E = x a, c : f '(x) 0 .

since c is arbitrary, therefore set E a,c . This implies any x E f ' x 0.

Let ,  > 0 arbitrary. Now f ' x 0, x E an arbitrary small interval x,x h a,c

such that 
f x h f x

f x h f x h.
h

This implies that corresponding to every x E,  an arbitrary small closed interval x,x h
contained in [a,c] s.t.

f x h f x h.

Thus the interval x,x h , x E, over E in Vitali’s sense. Thus by Vitali’s Lemma, we can
determine a finite number of non-overlapping intervals Ik, where

k k kI x ,y  k 1,2,3,...,n

such that this collection covers all of E except for a set of measure less than 0 where  is pre-
assigned number which corresponds to  occurring in the definition of absolute continuity of f.
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Notes Suppose k k 1x x ;  then adjoining the points y0, xn+1.

We have 0 1 1 2 2 n n n 1a y x y x y ... x y x c.

Now since f is absolutely continuous, therefore for above subdivision of [a,c], we have

n n

k 1 k k 1 k
k 0 k 0

f x f y ,  whenever x y .

(i)
n n

k k k k
k 1 k 1

f y f x n y x n c a .

Now 
n n

k 1 k k k
k 0 k 1

f c f a f x f y f y f x

                             
n n

k 1 k k k
k 0 k 1

f x f y f y f x

                              n c a

But ,n and hence n c a  are arbitrary small positive numbers. So letting 0,n 0

We get f(c) = f(a)

f x  is a constant function.

Corollary: If the derivatives of two absolutely continuous functions are equivalent, then the
functions differ by a constant.

Proof: Let f and g be two absolutely continuous functions and f’ = g’ f g ' 0  by above

theorem f – g = constant and hence the result.

Example: If f is an absolutely continuous monotone function on [a,b] and E a set of
measure zero, then show that f (E) has measure zero.

Proof: Let the function f be monotonically increasing. By the definition of absolute continuity of

f, for 0,  0  and non-overlapping intervals n n nI a ,b such that

n n n nb a f b f a

or n nf b f a

Now,
nE [a,b] E I

n nf E f I f I 

n n nm * f E m * f I f x f x ,
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where nf x  and nf x  are the maximum and maximum values of f(x) in the interval [an,bn].

Also note that n n n nx x b a

m * f E , being arbitrary.

m * f E 0 m f E 0.

Example: Give an example which is continuous but not absolutely continuous.

Solution: Consider the function f : F R, where F is the Cantor’s ternary set.

Let k
1 2 3 kk

K 1

xx F x x x x ... ,x 0 or 2
3

Define k
k kk

K 1

r 1f x ,  where r x .
2 2

                     = 0. r1, r2, r3.....

This function is continuous but not absolutely continuous.

(i) Note that this function is constant on each interval contained in the complement of the
Cantor’s ternary set.

For, let (a,b) be one of the countable open intervals contained in F c. Then in ternary
notation,

a = 0.a1a2...an–1 0 2 2 2

and b = 0.a1a2...an-1 2 0 0 0,

where ai = 0 or 2, for i n 1.

i
1 2 n 1 i

af a 0.r ,r ,...,r  0 1 1 1 1 ...,where r ,
2

1 2 n 1f b 0.r ,r ,...,r  1 0 0 0 0 ...

But in binary notation

1 2 n 1 1 2 n 10.r ,r ,...,r  0 1 1 1 1 ... 0.r ,r ,...,r  1 0 0 0 0 ...

f a f b .

Thus, we extend the function f overall of the set [0,1] instead of F by defining
cf x f b , x a,b F .  Thus, the Cantor’s function is defined over [0,1] and maps it

onto [0,1].

It is clearly a non-decreasing function.
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Notes (ii) To show that f(x) is a continuous function. Note that if c', c'' F, then we have

1 2 3
i i

1 2 3

c' 0. 2p 2p 2p ...
each p ,q 0 or =1

c'' 0. 2q 2q 2q ...

If n

1c' c'' ,
3

then pi = qi, for 1 i n 1  and hence

n

1f c' f c''
2 ...(i)

as n ,c' c'', f c' f c'' ,

Hence if 0 nc F and c   is a sequence in F such that n 0c c ,when n , then

n 0f c f c ,when n .

Now let 0x [0,1] and let nx   be a sequence in [0,1] such that n 0x x  as n .

Case I: Let c
0 0x F x I,say a,b F

                              n nx I and hence f x f x f a

and hence n 0f x f x  as n .

Case II: Let 0x F. Now for each n such that n n n n 0x F,set x c  and hence f x f x .

If c
nx F, then  an open int erval I F .

(i) if n 0x x , then set cn as the upper end point of I.

(ii) If 0 nx x , then set cn as the lower end point of I.

n 0in any case f x f x  as n .

But the sequence nx  was any sequence satisfying the stated conditions.

f is a continuous function.

(iii) To show f(x) is not absolutely continuous. Note that f’(x) = 0 at each cx F .

f ' x exists and is zero on [0,1] and is summable on [0,1].

We know that for f(x) to be absolutely continuous, we must have

x

0

f x f ' x dx f 0 .

Particularly, we must have

1

0

f 1 f 0 f ' x dx.
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But f(1) – f(0) = 1 and 

x

0

f ' 1 dx 0 as f ' x 0

x

0

f 1 f 0 f ' 1 dx 0 as f ' x 0

f x  is not absolutely continuous.

Theorem 6: Prove that an absolutely continuous function on [a, b] is an indefinite integral.

Proof: Let f(x) be an absolutely continuous function in a closed interval [a, b] so that f (x) &

x

a

f (t) dt  exists finitely x  [a, b].

Let F(x) be an indefinite integral of f (x), so that

F(x) = 
x

a

f(a) f (t) dt, x [a,b] … (1)

We shall prove that F(x) = f(x).

Since an indefinite integral is an absolutely continuous function.

Therefore F(x) is absolutely continuous in [a, b].

Then from (1),

F (x) = f (x) a.e.

d [F(x) f(x)]
dx

= 0.

Integrating, we get

F(x) – f(x) = c (constant) … (2)

Taking x = a in (1), we get

F(a) = 
a

a

f(a) f (t) dt

F(a) – f(a) = 0

or F(x) – f(x) = 0 for x = a

Then from (2), we get c = 0.

Thus (2) reduces to

F(x) – f(x) = 0 a.e.

F(x) = f(x) a.e.

which shows that f(x) is indefinite integral of its own derivative.
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 A real-valued function f defined on [a,b] is said to be absolutely continuous on [a,b], if for
an arbitrary 0, however small,  a, 0, such that

n n

r r r r
r 1 r 1

f b f a ,  whenever b a .

 Every absolutely continuous function is continuous.

 Every absolutely continuous function f defined on [a,b] is of bounded variation.

4.3 Keywords

Absolute Continuity of Functions: Absolute continuity of functions is a smoothness property
which is stricter than continuity and uniform continuity.

Absolute Continuous Function: A real-valued function f defined on [a,b] is said to be absolutely
continuous on [a,b], if for an arbitrary 0, however small,  a, 0, such that

n

r r
r 1

f b f a whenever 
n

r r
r 1

b a ,

where 1 1 2 2 n na b a b ... a b i.e. a i’s and b i’s are forming finite collection

i ia ,b : i 1,2,...,n of pair-wise disjoint intervals.

4.4 Review Questions

1. Define absolute continuity for a real variable. Show that f(x) is an indefinite integral, if F
is absolutely continuous.

2. If f,g: [0,1] R  are absolutely continuous, prove that f + g and fg are also absolutely
continuous.

3. Show that the set of all absolutely continuous functions on an interval I is a linear space.

4. If g is a non-decreasing absolutely continuous function on [a,b] and f is absolutely continuous
on [g(a), g(b)], show that fog is also absolutely continuous on [a,b].

5. If f is absolutely continuous on [a,b] and f ' x 0 for almost all x [a,b],  show that f is

non-decreasing on [a,b].

4.5 Further Readings

Books Krishna B Athreya, N Soumendra Lahiri, Measure Theory and Probability Theory,
Springer (2006).
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NotesAole Nielsen, An Introduction to Integration and Measure Theory, Wiley-Interscience,
(1997).

N.L. Royden, Real Analysis (third ed.), Collier MacMillan, (1988).

Online links dl.acm.org

mrich.maths.org
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5.1.1 Lp-spaces
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5.1.3 Norm of an Element of Lp-space

5.1.4 Simple Version of Hölder's Inequality

5.1.5 Hölder's Inequality

5.1.6 Riesz-Hölder's Inequality

5.1.7 Riesz-Hölder's Inequality for 0 < p < 1

5.2 Summary

5.3 Keywords

5.4 Review Questions

5.5 Further Readings

Objectives

After studying this unit, you will be able to:

 Understand Lp-spaces, conjugate numbers and norm of an element of Lp-space

 Understand the proof of Hölder’s inequality.

Introduction

In this unit, we discuss an important construction, which is extremely useful in virtually all
branches of analysis. We shall study about Lp-spaces and Hölder’s inequality.

5.1 Spaces, Hölder

5.1.1 LP-Spaces

The class of all measurable functions f (x) is known as Lp-spaces over [a, b], if Lebesgue –
integrable over [a, b] for each p exists, 0 < p < , i.e.

b

p

a

|f| dx , (p 0)

and is denoted by Lp [a, b].

Sachin Kaushal, Lovely Professional University
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Note  The symbol Lp is used for such classes when limits of integration are known and
mentioning of interval is not necessary.

5.1.2 Conjugate Numbers

Let p, q be any two n on-negative extended real numbers s.t. 1 1 1
p q

, then p, q are called

(mutually) conjugate numbers.

Obviously, 2 is self-conjugate number.

Also if p  2, then q  2. Further, if p = , then q = 1  1,  are conjugate numbers.

Note  Non-negativity  p  1, q  1.

5.1.3 Norm of an Element of LP-space

The p-norm of any f  Lp [a, b], denoted by  f p, is defined as

 f p = 

1
b p

p

a

|f| , 0 < p < .

Theorem 1: If f  Lp [a, b] and g  f, then g  Lp [a, b].

Proof: Let  be any positive real number.

{x  [a, b] : g (x) > } = {x  [a, b] :  < g (x)  f (x)} ( g  f)

= {x  [a, b] : f (x) > }

Again f  Lp [a, b]

f is measurable over [a, b].

{x  [a, b] : f (x) > } is a measurable set.

{x  [a, b] : g (x) > } is a measurable set.

g is a measurable function over [a, b]

Again since g (x)  f (x),  x  [a, b]

b b

p p

a a

|g| dx |f| dx ( |f|p  L [a, b])

or
b

p

a

|g| dx

Thus |g|p  L [a, b].
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Notes Thus we have proved that g is a measurable function over [a, b] such that

|g|p  L [a, b]

Hence g  Lp [a, b]

Theorem 2: If f  Lp [a, b], p > 1, then f  L [a, b]

Proof: f  Lp [a, b]  f is measurable over [a, b]

Let A1 = {x [a, b] : |f (x) 1}

and A2 = {x [a, b] : |f (x) 1}

Then [a, b] = A1  A2 and A1  A2 = 

Using countable additive property of the integrals, we have
b

a

|f|dx = 
A A1 2

|f|dx |f|dx … (i)

Now  |f (x)|  1, x  A1

|f|  |f|p on A1 as p > 1

A1

|f|dx  p

A1

|f| dx  as f  Lp [a, b] … (ii)

Now |f (x) |<|,  x  A2

Using first mean value theorem, we get

2

A2

|f|dx m (A ) = A finite quantity … (iii)

Combining (ii) and (iii) and making use of (i), we get

b

a

|f|dx < 

Thus f is a measurable function over [a, b], such that

b

a

|f|dx < 

|f|  L [a, b] and hence f  L [a, b].

Theorem 3: If f  Lp [a, b], g  Lp [a, b]; then f + g  Lp [a, b]

Proof: Since f, g Lp [a, b]  f, g are measurable over [a, b]

 f + g is measurable over [a, b]

Let A1 = {x  [a, b] : |f (x)|  |g (x)|}

and A2 = {x  [a, b] : |f (x)| < |g (x)|}

Then [a, b] = A1  A2 and A1  A2 = 
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Therefore p p p

A A1 2

|f g| dx |f g| |f g| dx .

Again, |f + g|p  (|f| + |g|)p  (|g| + |g|)p on A2 and  (|f| + |f|)p on A1

 2P |g|p on A2 and  2p |f|p on A1

Integrating, we have

p

A1

|f g|  p p

A1

2 |f|

and p

A2

|f g|  p p

A2

2 |g|

Since f, g  Lp [a, b]  p p

A A1 2

|f| and |g|

                                 p p

A A1 1

|f g| and |f g| [by (i) and (ii)]

b

p

a

|f g| dx  f + g  Lp [a, b]

5.1.4 Simple Version of Hölder's Inequality

Lemma 1: Let p, q > 1 be such that 1 1 1
p q

, and let u and v be two non-negative numbers, at

least one being non-zero. Then the function f : [0, 1]  R defined by

f (t) = ut + 
1

q qv(1 t ) , t  [0, 1],

has a unique maximum point at

s = 

1
p q

p p

u
u v

… (1)

The maximum value of f is

t [0 , 1]
max f(t) = 

1
p p p(u v ) … (2)

Proof: If v = 0, then f (t) = tu,  t  [0, 1] (with u > 0), and in this case, the Lemma is trivial.

Likewise, if u = 0, then

f (t) = 
1

q qv(1 t ) ,  t  [0, 1] (with v > 0), … (3)
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Notes and using the inequality

1
q q(1 t ) 1, t (0, 1],

We immediately get f (t) < f (0),  t  (0, 1],

and the Lemma again follows.

For the remainder of the proof we are going to assume that u, v > 0.

Obviously f is differentiable on (0, 1) and the solutions of the equation (3)

f  (t) = 0

Let s be defined as in (1), so under the assumption that u, v > 0, we clearly have 0 < s < 1.

We are going to prove first that s is the unique solution in (0, 1) of the equation (3).

We have

f  (t) = 
1 1

q q q 11u v (1 t ) q t
q

… (4)

= 
q

q

tu v , t (0, 1)
1 t

so the equation (3) reads

q

q

tu v
1 t

= 0.

Equivalently, we have

1
q p

q

t
1 t

= u/v,

q

q

t
1 t

= (u/v)p,

t2 = 
p p

p p p

(u/v) u ,
1 (u/v) u v

Having shown that the “candidates” for the maximum point are 0, 1 and s let us show that s is the
only maximum point.

For this purpose, we go back to (4) and we observe that f  is also continuous on (0, 1).

Since
t 0
lim f (t) = u > 0 and

t 1
lim f (t) = – 

and the equation (3) has exactly one solution in (0, 1), namely s, this forces

f  (t) > 0  t  (0, s)
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This means that, f is increasing on [0, s] and decreasing on [s, 1], and we are done.

The maximum value of f is then given by

t [0 , 1]
max f(t) = f (s),

and the fact that f (s) equals the value in (2) follows from an easy computation.

5.1.5 Hölder's Inequality

Statement: Let a1, a2, …, an, b1, b2, …, bn be non-negative numbers. Let p, q > 1 be real number

with the property 1 1 1
p q

. Then

n

j j
j 1

a b  

1 1
n np q

p q
j j

j 1 j 1

a b … (5)

Moreover, one has equality only when the sequences p p
1 na , , a  and q q

nb , , b  are proportional.

Proof: The proof will be carried on by induction on n. The case n = 1 is trivial.

Case n = 2.

Assume (b1, b2)  (0, 0). (otherwise everything is trivial).

Define the number

r = 1
1

q q q
1 2

b

b b
.

Notice that r  [0, 1] and we have

2
1

q q q
1 2

b

b b
= 

1
q q1 r

Notice also that, upon dividing by 
1

q q q
1 2b b , the desired inequality

a1 b1 + a2 b2  
1 1

q q q qp q
1 2 1 2a a b b … (6)

reads

a1 r + a2 
1

q q1 r  
1

q q p
1 2a a … (7)

It is obvious that this is an equality when a1 = a2 = 0. Assume (a1, a2)  (0, 0), and set up the
function.

f (t) = 
1

q q
1 2a t a 1 t , t  [0, 1].
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Let us examine when equality holds.

If a1 = a2 = 0, the equality obviously holds, and in this case (a1, a2) is clearly proportional to (b1,
b2). Assume (a1, a2)  (0, 0).

Again by Lemma (1), we know that equality holds in (7), exactly when

r = 

1
p q
1

p p
1 2

a
a a

that is 1
1

q q q
1 2

b

b b
= 

1
p q
1

p p
1 2

a
a a

,

or equivalently

q
1

q q
1 2

b
b b

= 
p
1

p p
1 2

a
a a

.

Obviously this forces

q
1

q q
1 2

b
b b = 

q
1

p p
1 2

a
a a ,

so indeed p p
1 2a , a  and q q

1 2b , b  are proportional.

Having proven the case n = 2, we now proceed with the proof of:

The implication: Case n = k  case n = k + 1, start with two sequences (a1, a2, …, ak, ak+1) and
(b1, b2, …, ak, bk+1).

Define the numbers

a = 

1
k p

p
j

j 1

a  and b = 

1
k q

q
j

j 1

b .

Using the assumption that the case n = k holds, we have

k 1

j j
j 1

a b  

1 1
k kp q

p q
j j

j 1 j 1

a b  + ak+1 bk+1

= ab + ak+1 bk+1 … (8)

Using the case n = 2, we also have

ab + ak+1 bk+1  
1 1

p p q qp q
k 1 k 1a a b b

= 

1 1
k 1 k 1p q

p q
j j

j 1 j 1

a b , … (9)

so combining with (8) we see that the desired inequality (5) holds for n = k + 1.
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On one hand, the equality in (8) forces p p p q q q
1 2 k 1 2 ka , a , , a and b , b , , b to be proportional (since

we assume the case n = k). On the other hand, the equality in (9) forces p p
k 1a , a and q q

k 1b , b  to

be proportional (by the case m = 2). Since

k k
p p q q

j j
j 1 j 1

a a and b b ,

it is clear that p p p p
1 2 k k 1a , a , , a , a  and q q q q

1 2 k k 1b , b , , b , b  are proportional.

5.1.6 Riesz-Hölder's Inequality

Statement: Let p and q be conjugate indices or exponents (numbers) and f  Lp [a, b], g Lq [a, b];
then show that

(i) f g L[a, b]

(ii) p q
fg f g i.e.

1 1
p qp q|fg| |f| |g|

with equality only when  |f|p =  |g|q a.e. for some non-zero constants  and .

Lemma: If A and B are any two non-negative real numbers and 0 <  < 1, then

A B1–   A + (1 – ) B, with equality when A = B.

Proof: If either A = 0 or B = 0, then the result is trivial.

Let A > 0, B > 0

Consider the function

 (x) = x  – x, where 0 x < and 0 < < 1

1d x
dx

 and 
2

1
2

d ( 1)x
dx

.

Now solving d
dx

 = 0, we get x = 1.

Also at x = 1, 
2

2

d
dx

 < 0 as 0 <  < 1.

By calculus,  (x) is maximum at x = 1, so

 (x)  (1)  i.e. x  – x l  – . … (1)

Now, putting x = 
A
B

, we get

A A
B B

 
A1 or A B 1
B
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A  B1–  A + B (1 – ) … (2)

Obviously equality holds good only for x = 1, i.e. only when A = B.

Proof of Theorem

Note that when p = 1, q = , the proof of theorem is obvious. Let us assume that 1 < p <  and
1 < q < .

Now set = 
1
p

; p > 1    < 1

Therefore
1
q = 1 – 

1 1 1
p q



Putting these values of  and 1 –  in (2), we get

1 1
p qA B A B

p q
… (3)

If one of the functions f (x) and g (x) is zero a.e. then the theorem is trivial. Thus, we assume that
f  0, g  0 a.e. and hence the integrals

b b

p q

a a

|f| dx and |g| dx

are strictly positive and hence  f p > 0,  g q > 0.

Set f (x) = 
p q

g(x)f(x) , g(x)
f g

and
1
pA = |f(x)|, 

1
qB g(x) .

Then (3) gives

|f(x) g(x)|  
qp g(x)f(x)

p q

Integrating, we get

b

a

|f(x) g(x)|dx
b b

p p

a a

1 1|f(x)| dx |g(x)| dx
p q

= 
b b qp

b b

p qa a

a a

|g(x)|1 |f(x)| 1dx dx
p q

|f| dx |g| dx
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= 

b b

p q

a a
b b

p q

a a

|f| dx |g| dx
1 1
p q

|f| dx |g| dx

= 1 1 1
p q

.

Hence
b

a

|f(x) g(x)|dx  1.

Putting the values of f (x) and g (x), we get

b

p qa

|f(x) g(x)|dx
f g

 1 or  fg    f p  g  q … (4)

Now f  Lp [a, b],   g  Lq [a, b]

b b

p q

a a

|f| dx and |g| dx

p q
f and g

Therefore, from (4), we have

 fg 1 <  fg  L  [a, b]

Also the equality will hold when A = B

i.e. |f (x)|p = |g (x)|q, a.e.

i.e.
p

p

p

|f|if
f

= 
q

q

q

|g|
g

, a.e.

or if q p
q

g |f| = p q
p

f |g| , a.e.

or if we have got some non-zero constants , 

 |f|p = |g|q, a.e.

Hence the theorem.

5.1.7 Riesz-Hölder's Inequality for 0 < p < 1

If 0 < p < 1 and p and q are conjugate exponents, and f  Lp and g  Lq, then

q
p q|fg| f g , provided |g| 0 .

(In this case, the inequality is reversed than that of the case for 1  p < .)

Proof: Conjugacy of p, q 1 1 1
p q
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Notes 1 11
q p

p 1 p
q

pp 1
q

If we take 
1p
P

 and p 1
P Q

, then 1 1 1
p Q

 and since 1 10 p 1 1 P 1
0 P

,

i.e. 1< P <  <  and also 1 p 11 p 0 1
Q q Q

 as 0 < p < 1  Q > 1.

P, Q are conjugate numbers with 1 < P < .

If we take |fg| = Fp and |g|q = GQ.

Then fg = 
1 q
p Q

g|f | |g|  = 
1 q p
p Q qp|f| |g|

= |f|p.

f, g are non-negative measurable functions s.t.

Also f  Lp and g  Lq.

Applying the Hölder’s inequality for P, Q to the functions f and g, we get

|FG|   F P   G Q

p|f|  
1 1
P QP Q|F| |G|  as |fg| = fg = |f|p

p|f|
pp

qq|fg| |g|

1
pp|f|

1
qq|fg| |g|

1
pp|f| 1

qq

|fg|

|g|
, provided q|g| 0

|fg|
1 1
p qp q

p q|f| |q| f g
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NotesTheorem 4: SCHWARZ or CAUCHY-SCHWARZ INEQUALITY statement: Let f and g be square
integrable, i.e.

f, g  L2[a, b]; then fg  L [a, b] and  fg    f 2  g 2.

Proof: Let x [a, b] be arbitrary, then

[|f(x)| – |g(x)|]2  0

or 2|f(x)|.|g(x)|  |f(x)2 + |g(x)|2.

On integrating, we get

b

a

2 |f(x)g(x)|dx  
b b

2 2

a a

|f(x) dx |g(x)| dx … (i)

Now f, g  L2[a, b]  f and g are measurable over [a, b] and 
b b

2 2

a a

|f(x)| dx , |g(x)| dx .

Using in (i), we get 
b

a

|f(x) g(x)|dx

Thus fg  L [a, b].

Let a  R be arbitrary. Then

( |f| + |g|)2  0

b

2

a

( |f| |g|)  0

or 
b b b

2 2 2

a a a

|f| dx 2 |fg|dx |g| dx   0

Write A = 
b b b

2 2

a a a

|f| dx, B 2 |fg|dx, C |g| dx

Then we have 2A + B + C  0 … (ii)

Now, if A = 0, then f(x) = 0 a.e. in [a, b] and hence B = 0 and both sides of the inequality to be
proved are zero. Thus when A = 0, the inequality is trivial.

Again, let A  0. Writing  = – 
B

2A
 in (ii), we get

2B BA B C 0
2A 2A

.

which gives B2  4AC.
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2b

a

4 |fg|dx  
b b

2 2

a a

4 |f| |g|

or
b

a

|f(x) (g(x)|dx  
1/2 1/2b b

2 2

a a

|f(x)| |g(x)|

or  fg  f 2   g 2.

Note: The above theorem is a particular case of Hölder’s inequality.

Example: Let f, g be square integrable in the Lebesgue sense then prove f + g is also
square integrable in the Lebesgue sense, and  f + g 2   f 2 +  g 2.

Solution: By hypothesis f2  L [a, b], g2  L [a, b].

f2, g2  L [a, b]  fg  L [a, b]. [by Schwarz inequality]

Again (f + g)2 = f2 + g2 + 2fg  L [a, b].

Hence (f + g) is square integrable, again, we have

b

2

a

(f g) = 
b b b

2 2

a a a

f g 2 fg

1 /2 1 /2b b b b

2 2 2 2

a a a a

f g 2 f g (by Schwarz inequality)

= 

21 /2 1 /2b b

2 2

a a

f g

1 /2b

2

a

(f g)
1 /2 1 /2b b

2 2

a a

f g

or  f + g 2  f 2 +  g 2.

Example: Prove that  f + g 1   f 1 +  g 1.

Solution: We know that |f + g|  |f| + |g|.

Integrating both the sides.

|f g| |f| |g|

 f + g 1   f 1 +  g 1.
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 The class of all measurable functions f (x) is known as Lp – space over [a, b], if Lebesgue-
integrable over [a, b] for each p exists, 0 < p < , i.e.

b

p

a

|f| dx , (p 0)

 The p-norm of any f  Lp [a, b], denoted by  f p, is defined as

1
b p

p
p

a

f |f| , 0 p

 Let p, q > 1 be such that 1 1 1
p q

, and let u and v be two non-negative numbers, at least

one being non-zero. Then the function f : [0, 1]  R defined by

1
q qf(t) ut v 1 t , t [0, 1],

has a unique maximum point at
1

p q

p p

us
u v

 Let p and q be conjugate indices or exponents and f  Lp [a, b], g Lq [a, b], then it is evident
that

(i) f, g L [a, b]

(ii)  fg    f p   g q  i.e.

1 1
p qp q|fg| |f| |g|

5.3 Keywords

Conjugate Numbers: Let p, q be any two n on-negative extended real numbers s.t. 1 1 1
p q

, then

p, q are called (mutually) conjugate numbers.

Hölder's Inequality: Let a1, a2, …, an, b1, b2, …, bn be non-negative numbers. Let p, q > 1 be real

number with the property 1 1 1
p q

. Then

n

j j
j 1

a b   

1 1
n np q

p q
j j

j 1 j 1

a b

Moreover, one has equality only when the sequences p p
1 na , , a  and q q

nb , , b  are proportional.
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Notes LP-Spaces: The class of all measurable functions f (x) is known as Lp-spaces over [a, b], if Lebesgue
– integrable over [a, b] for each p exists, 0 < p < , i.e.

b

p

a

|f| dx , (p 0)

and is denoted by Lp [a, b].

p-norm: The p-norm of any f  Lp [a, b], denoted by  f p, is defined as

 f p = 

1
b p

p

a

|f| , 0 < p < .

5.4 Review Questions

1. If f and g are non-negative measurable functions, then show that in Hölder’s inequality,
equality occurs iff  some constants s and t (not both zero) such that sfp + tgq = 0.

2. State and prove Hölder’s Inequality.

5.5 Further Readings

Books G.H. Hardy, J.E. Littlewood, G. Polya, Inequalities, Cambridge University Press,
(1934)

L.P. Kuptsov, Hölder inequality, Springer (2001)

Kenneth Kuttler, An Introduction of Linear Algebra, BRIGHAM Young University,
2007

Online links www.m–hiKari.com

www.math.Ksu.edu

www.tandfonline.com
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CONTENTS

Objectives

Introduction

6.1 Minkowski Inequalities

6.1.1 Proof of Minkowski Inequality Theorems

6.1.2 Minkowski Inequality in Integral Form

6.2 Summary

6.3 Keywords

6.4 Review Questions

6.5 Further Readings

Objectives

After studying this unit, you will be able to:

 Define Lp-space, conjugate numbers and norm of an element of Lp-space.

 Understand Minkowski inequality.

 Solve problems on Minkowski inequality.

Introduction

In mathematical analysis, the Minkowski inequality establishes that the L p spaces are normed
vector spaces. Let S be a measure space, let 1  p  and let f and g be elements of Lp (s). Then
f + g is in Lp (s), we have the triangle inequality

 f + g p  f p +  g p

with equality for 1 < p <  if and only if f and g are positively linearly dependent, i.e. f = g for
some  0. In this unit, we shall study Minkowski’s inequality for 1  p <  and for 0 < p < 1. We
shall also study almost Minkowski’s inequality in integral form.

6.1 Minkowski Inequalities

Here, the norm is given by:

 f p = 
1/p

p|f| d

if p < , or in the case p =  by the essential supremum

 f  = ess supx S |f (x)|.

The Minkowski inequality is the triangle inequality in Lp(S). In fact, it is a special case of the
more general fact
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 f p = 

g 1q

sup |fg|d ,   1/p + 1/q = 1

where it is easy to see that the right-hand side satisfies the triangular inequality.

Like Holder's inequality, the Minkowski inequality can be specialized to sequences and vectors
by using the counting measure:

1/p 1/p 1/pn n n
p p p

k k k k
k 1 k 1 k 1

|x y | |x | |y |

for all real (or complex) numbers x1, ..., xn, y1, ..., yn and where n is the cardinality of S (the
number of elements in S).

Thus, we may conclude that

If p > 1, then Minkowski's integral inequality states that

1 /p 1 /p 1 /pb b b
p p p

a a a
|f(x) g(x)| dx |f(x)| dx |g(x)| dx

Similarly, if p >1 and ak, bk > 0, then Minkowski's sum inequality states that

1/p 1/p 1/pn n n
p p p

k k k k
k 1 k 1 k 1

|a b | |a | |b |

Equality holds iff the sequences a1, a2, ... and b1, b2, ... are proportional.

6.1.1 Proof of Minkowski Inequality Theorems

Theorem 1: State and prove Minkowski inequality. If f and g  Lp (1 p < ), then f + g Lp and

 f + g p  f p +  g p.

or

Let 1  p . Prove that for every pair f, g  Lp {0, 1}, the function f + g  Lp {0, 1} and that
 f + g p  f p +  g p. When does equality occur?

Or

Suppose 1  p . Prove that for any two functions f and g in Lp [a, b]

1 1 1
b b bp p p

p p p

a a a

|f g| |f| dx |g| dx

Proof: When p = 1, the desired result is obvious.

If p = , then

|f|   f  a.e.

|g|   g  a.e.
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  f  +  g  a.e.

 f + g   f  +  g 

Hence the result follows in this case also. Thus, we now assume that 1 < p < .

Since Lp is a linear space, f + g  Lp.

Let q be conjugate to p, then 1 1 1
p q

.

Now (f + g)  Lp

(f + g)p/q  Lq

Since 
1 1 1 1 1 p 11 1
p q q p q p

           
qq p 1 p(p 1) p, |f g| |f g|

and therefore |f + g|p–1  Lp  (f + g)p/q  Lp because p – 1 = p
q

.

On applying Hölder’s inequality for f and (f + g)p/q, we get

p
q|f||f g| dx

11 p pp qp q|f| ) dx |f g| dx

or
p

q|f||f g| dx
1 1

p q
p p|f| ) dx |f g| dx … (1)

Since g  Lp, therefore interchanging f and g in (1), we get

p
q|g||f g| dx  

1 1
p q

p p|g| ) dx |f g| dx … (2)

Adding, we get

p p
q q|f||f g| dx |g||f g| dx   

1 1 1
p p q

p p p|f| dx |g| dx |f g| dx … (3)

Now |f + g|p = p 1f g f g

But 1 1 1
p q

 p p1 p p 1
q q

|f + g|p = 
p

qf g f g

 
p

q|f| |g| |f g|
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or |f + g|p  

p p
q q|f||f g| |g||f g|

Integrating, we get

p|f g| dx  
p p

q q|f||f g| |g||f g| dx … (4)

Using (3), relation (4) becomes

p|f g| dx  
1 1

p p 1
p p p q|f| dx |g| dx |f g| dx

Dividing each term by 
1

p q|f g| dx , we get

11 q
p|f g| dx  

1 1
p p

p p|f| dx |g| dx

But 1 1 1
p q

1 11
q p

So
1

p
p|f g| dx

1 1
p p

p p|f| dx |g| dx

or  f + g p   f p +  g p

Hence the proof.

Note  Equality hold in Minkowski’s inequality if and only if one of the functions f and g
is a multiple of the other.

Theorem 2: Minkowski’s inequality for 0 < p < 1. If 0 < p < 1 and f, g are non-negative functions
in Lp, then

 f + g p   f p +  g p.

Proof: For this proceed as in theorem Minkowski’s inequality and applying the Hölder’s
inequality for 0 < p < 1 for the functions f  Lp and (f + g)p/q Lq, we get

p/q|f||f g|  
1 p 1 q

p p/q q|f| |f g| )

p/q|f||f g|  
1 p 1 q

p p|f| |f g| … (i)

Also g  Lp, proceeding as above, we get

p/q|g||f g|  
1 p 1 q

p p|g| dx |f g| … (ii)
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p/q|f g| (|f| |g|)  
1 1 1

p p pp p q|f| |g| |f g| … (iii)

Also 1 1 1
p q

 p1 p
q

|f + g|p = 
p p

q q|f g||f g| |f| |g| |f g| ,  as f  0, g  0

p|f g| = 
1

q1 1
p p pp p|f| |g| |f g|

Dividing by 
1

q
p|f g| , we get

1 (1/q)
p|f g|  

p p
f g

1/q
p|f g|   f p +  g p

 f + g p  f p +  g p

6.1.2 Minkowski Inequality in Integral Form

Statement: Suppose f :  ×    is Lebesgue measurable and 1  p < . Then

1/p

h(x, y) dy dx  
1/p

ph(x, y) dx dy

Proof: By an approximation argument we need only consider h of the form

N

j j
j 1

h(x,y) f (x)1 f (y), (x,y)   ,

where N is a positive integer, f j is Lebesgue measurable, and F j  Ln, j = 1, … Ni and Fi  Fj =  if
1  i < j  N. We use Minkowski’s inequality to estimate

1/p

h(x,y) dy dx = 

1/pp
N N 1/p

p
j j j i

j 1 j 1dx

F f (x) F f (x) dx

But

1/pp

h(x,y) dx dy = 
N N1/p 1/p

p p
j

F Fi jj 1 j 1

|h(x,y)| dx |f (x)| dx
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Example: If <fn> is a sequence of functions belonging to L2(a, b) and also f  L2 (a, b) and

Lim  fn – f 2 = 0, then prove that

b b

2 2
n

a a

f dx Lim f dx

Solution: By Minkowski’s inequality, we get

n 2 2f f   fn – f 2

n 2Lim f f Lim  fn – f 2 = 0

n 2Lim f f  = 0 Lim  fn 2 =  f 2

1/2 1/2b b

2 2
n

a a

Lim (f ) dx f dx  
b b

2 2
n

a a

Lim f dx f dx .

6.2 Summary

 The class of all measurable function f (x) is known as Lp space over [a, b], if Lebesgue
integrable over [a, b] for each p exists, 0 < p < .

 If f and g  Lp (1  p ), then f + g  Lp and  f + g p   f p +  g p.

6.3 Keywords

Lp-space: The class of all measurable functions f (x) is known as Lp-space over [a, b], if Lebesgue-
integrable over [a, b] for each exists, 0 < p < , i.e.,

b

p

a

|f| dx , (p 0)

and is denoted by Lp [a, b].

Minkowski Inequality in Integral Form: Suppose f :  ×    is Lebesgue measurable and 1 
p < . Then

1/p

h(x, y) dy dx  
1/p

ph(x, y) dx dy

Minkowski Inequality: Minkowski inequality establishes that the Lp spaces are normed vector
spaces. Let S be a measure space, let 1  p  and let f and g be elements of Lp (s). Then f + g is in
Lp (s), we have the triangle inequality

 f + g p  f p +  g p

with equality for 1 < p <  if and only if f and g are positively linearly dependent.
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1. If f, g are square integrable in the Lebesgue sense, prove that f + g is also square integrable
and

 f + g 2   f 2 +  g 2.

2. If | < p < , then show that equality can be true, iff there are non-negative constants  and
, such that f = g.

6.5 Further Readings

Books Books: Stein, Elias (1970). Singular Integrals and Differentiability Properties of
Functions. Princeton University Press.

Hardy, G.H.; Littlewood, J.E.; Polya, G. (1952). Inequalities, Cambridge
Mathematical Library (second ed.). Cambridge: Cambridge University Press.

Online links Mathworld.wolfram.com>Calculus and Analysis>Inequalities

Planet math.org/Minkowski In-equality.html
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Objectives

After studying this unit, you will be able to:

 Understand convergence and completeness.

 Understand Riesz-Fischer theorem.

 Solve problems on convergence and completeness.

Introduction

Convergence of a sequence of functions can be defined in various ways, and there are situations
in which each of these definitions is natural and useful. In this unit, we shall start with the
definition of convergence and Cauchy sequence and proceed with the topic completeness of Lp.

7.1 Convergence and Completeness

7.1.1 Convergent Sequence

Definition: A sequence <xn> in a normal linear space X with norm  .  is said to converge to an
element x  X if for arbitrary > 0, however small, n0 N such that xn – x  < ,  n > n0.

Then we write nn
lim x x .

Sachin Kaushal, Lovely Professional University
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Definition: A sequence <xn> in a normal linear space (X,  . ) is said to be a Cauchy sequence if for
arbitrary  > 0, n0 N s.t.

xn – xm  < ,  n, m  n0.

7.1.3 Complete Normed Linear Space

Definition: A normed linear space (X,  . ) is said to be complete if every Cauchy sequence <xn> in
it converges to an element x  X.

7.1.4 Banach Space

Definition: A complete normed linear space is also called Banach space.

7.1.5 Summable Series

Definition: A series n
n 1

u  in N1 is said to be summable to a sum u if u  N1 and nn
lim S u , where

Sn = u1 + u2 + … + un

In this case, we write

n
n 1

u u .

Further, the series n
n 1

u  is said to be absolutely summable if n
n 1

u .

7.1.6 Riesz-Fischer Theorem

Theorem: The normed Lp-spaces are complete for (p  1).

Proof: In order to prove the theorem, we shall show that every Cauchy sequence in Lp [a, b] space
converges to some element f in Lp-space. Let <fn> be one of such sequences in Lp-space. Then for
given  > 0, a natural number n0, such that

m, n n0   fm – fn p < ,

since is arbitrary therefore taking 1
2

, we can find a natural number n1 such that

for all m, n n1   fm – fn p < 
1
2

Similarly, taking k

1 , k N,
2

we can find a natural number nk, such that

for all m, n nk   fm – fn p < k

1
2



74 LOVELY PROFESSIONAL UNIVERSITY

Notes
In particular, m > nk   fm – nk

f  < k

1
2  .

Obviously n1 < n2 < n3 … < nk < …

i.e. <nk> is a monotonic increasing sequence of natural numbers.

Set gk = nk
f , then from above, we have

 g2 – g1 p = n n2 2 p

1f f
2 ,

 g3 – g2 p = n n 23 2 p

1f f
2

,

… … … … …

… … … … …

 gk + 1 – gk p = n n kk 1 k p

1f f
2

.

… … … … …

… … … … …

Adding these inequalities, we get

k 1 k p
k 1

g g < k
k 1

1 1
2

… (i)

Thus kk 1 p
k 1

g g  is convergent. Define g such that

g (x) = 1 kk 1 p
k 1

g (x) g g  if R.H.S. is convergent … (ii)

and g (x) = , if right hand side is divergent.

Now,
b

p

a

|g(x)| dx = 

1
b n p

p

1 kk 1 dxn
k 1a

lim |g (x) g g

or  g p = 
n

1 kk 1p pn
k 1

lim g g g (By Minkowski’s inequality)

=  g1 p + kk 1 p
k 1

g g  <  g1 p + 1, [by (i)]

 g p <  g  Lp [a, b].

Let E = {x [a, b] : g (x) = }.
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f (x) = 0,   x  E

and f (x) = g1 (x) + kk 1
k 1

g g , for x  [a, b] but x  E,

or f (x) = 
m 1

1 kk 1m
k 1

lim g g g , for x  E

= mm
lim g (x)

Thus f (x) = 0, for x  E and

f (x) = mm
lim g (x)  for x  E.

f (x) = mm
lim g (x)  a.e. in [a, b]

or mm
lim g f = 0  a.e. in [a, b] … (iii)

Also, gm (x) = 
m 1

1 kk 1
k 1

g g g

|gm|  |g1| + 
m 1

kk 1
k 1

g g

 |g1| + kk 1
k 1

g g  = g,

|gm|  g,  m  N

mm
lim g (x)  g

(iii)  |f|  g.

Again, |gm – f|  |gm| + |f|  g + g = 2g.

|gm – f|  2 g.

Thus there exists a function g  Lp [a, b] s.t.

|gm – f|  2g,  m

and mm
lim g f = 0 a.e. in [a, b] … (iv)

Applying Lebesgue dominated convergence theorem,

b
p

mm
a

lim g f dx = 
b b

p
mm

a a

lim g f dx 0 dx 0 [Using (iv)]
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b p

p
mm

a

lim g f dx = 0

m pm
lim g f = 0

nm pm
lim f f = 0 as gm = nm

f

nm p
f f < .

Also m nm p
f f < .

 fm – f p = m n nm m p
f f f f

 m n nm mp p
f f f f

< (  + ) = .

Hence m pm
lim f f = 0

or mm
lim f = f  Lp [a, b].

This proves the theorem.

Alternative Statement of this Theorem

A convergent sequence <fn> in Lp-spaces has a limit in Lp-space.

Or

Every Cauchy sequence <fn> in the Lp-space converges to a function in Lp-space.

Theorem: Prove that a normed linear space is complete iff every absolutely summable sequence
is summable.

Proof: Necessary part

Let X be a complete normed linear space with norm  .  and <fn> be an absolutely summable
sequence of elements of X

n
n 1

f = M < ,

For arbitrary  > 0, however small, no  N

s.t. n
n no

f < , … (i)

Now, if Sn = 
n

i
i 1

f , then  n  m  no, we get
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 Sn – Sm p = 

n

i
i m 1

f  
n

i
i m 1

f

i
i no

f

Sequence <Sn> of partial sums is a Cauchy sequence

<Sn> converges.

Sequence <fn> is summable to some element S X.

But X is a complete space. Therefore <Sn> will converge to some element S X.

Sufficient part: Given that every absolutely summable sequence in the space X is summable.

To show that X is complete.

Let <fn> be a Cauchy sequence in X.

For each positive integer k, we can choose a number nk  N such that

 fn – fm < 
k

1
2

,  n, m  nk … (ii)

We can choose these nk’s such that nk+1 > nk.

Then nk 1
f  is a subsequence of <fn>.

Setting g1 = n1
f  and gk = n nk k 1

f f , (k > 1), we get a sequence <gk> s.t. its kth partial.

Sum = Sk = g1 + g2 + … + gk = n n n n n n1 2 1 k k 1 k
f (f f ) (f f ) f .

Now,  gk  = n n k 1k k 1

1f f
2

, [by (ii)], k > 1

k 1 k 1
k 1 k 2

1g g
2

 =  g1  + 1 (a finite quantity)

The sequence <gk> is absolutely summable and hence by the hypothesis, it is a summable
sequence.

The sequence of partial sums of this sequence converges to some S  X.

The sequence <Sk> converges and hence nk
f  converges to some f  X.

Now, we shall show that the limit fn = f.

Again, since <fn> is a Cauchy sequence, we get that for each > 0, however small, n  N s.t.
n, m > n .

 fn – fm  < 
2

.

Also since nk
f f , n N such that k n ,
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nk

f f
2 .

Choosing a number k, as large that k > n  and nk > n , we get

n n n nk k
f f f f f f ,

2 2

 n > n , we obtain  fn – f  < , where  is an arbitrary quantity.

fn  f  X and hence X is a complete space.

Theorem: Let {fn} be a sequence in Lp, 1  p < , such that fn  f a.e. and that f  Lp.

If n pn
lim f =  f p, then

n pn
lim f f = 0.

Proof: Without any loss of generality, we may assume that each fn  0 a.e. so that f is also  0 a.e.
since the result in general case follows by considering f = f+ – f–.

Now, let a and b be any pair of non-negative real numbers, we have

|a – b|p  2p (|a|p + |b|q),

1  p < 

So, we get

2p (|fn|p + (|f|p) – |fn – f|p  0 a.e.

Thus, by Fatou’s Lemma and by the given hypothesis,

We get

p 1 p2 |f| = 
p ppp

n nn
lim 2 f f f f

 p ppp
n nn

lim inf 2 f f f f

= p ppp 1 p
n nn n

2 lim f 2 f lim inf f f

= ppp 1
nn

2 f limsup f f .

Since pf  it follows that

p
nn

lim sup f f  0.

Therefore p p
n nn n

limsup f f liminf f f 0 ,

So that p
nn

lim f f  = 0



LOVELY PROFESSIONAL UNIVERSITY 79

Unit 7: Convergence and Completeness

Notes1
pp

nn
lim f f dt  = 0

n pn
lim f f  = 0.

Theorem: In a normed linear space, every convergent sequence is a Cauchy sequence.

Proof: Let the sequence <xn> in a normed linear space N, converges to a point xo  N1. We shall
show that it is a Cauchy sequence.

Let > 0 be given. Since the sequence converges to xo a positive integer mo s.t.

n  mo   xn – xo  < /2 … (1)

Hence for all m, n  mo, we have

 xm – xn =  xm – xo + xo – xn 

  xm – xo  +  xo – xn 

< 
2 2

 = by (1)

It follows that the convergent sequence <xn> is a Cauchy sequence.

Theorem: Prove that L  [0, 1] is complete.

Proof: Let (fn) be any Cauchy sequence in L , and let

Ak = {x : |fk (x)| >  fk },

Bm, n = {x : |fk (x) – fm (x)| >  fk – fm }.

Then m (Ak) = 0 = m (Bm, n) (k, m, n = 1, 2, 3, …),

So that if E is the union of these sets, we have m (E) = 0.

Now, if x  F = [0, 1] – E, then

|fk (x)  fk 

|fn (x) – fm (x)  fn – fm  0 as n, m .

Hence the sequence (fn) converges uniformly to a bounded function on F.

Define f : [0, 1]  R by

f (x) = 
n

n
lim f (x) if x F

0, if x E

Then f  L  and  fn – f   0 as n .

Thus L is

Hence proved.

7.2 Summary

 A sequence <xn> in a normal linear space X with norm  .  is said to converge to an element
x  X if for arbitrary > 0, however small, no N s.t.  xn – x  < ,  n > no. Then we write

nn
lim x x .
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 The normed Lp-spaces are complete for (p  1).

 A convergent sequence <fn> in Lp-spaces has a limit in Lp-space.

 A normed linear space is complete iff every absolutely summable sequence is summable.

 In a normed linear space, every convergent sequence is a Cauchy sequence.

7.3 Keywords

Banach Space: A complete normed linear space is also called Banach space.

Cauchy Sequence: A sequence <xn> in a normal linear space (X,  . ) is said to be a Cauchy
sequence if for arbitrary  > 0, n0 N s.t.

xn – xm  < ,  n, m  n0.

Complete Normed Linear Space: A normed linear space (X,  . ) is said to be complete if every
Cauchy sequence <xn> in it converges to an element x  X.

Convergence almost Everywhere: Let <fn> be a sequence of measurable functions defined over a
measurable set E. Then <fn> is said to converge almost everywhere in E if there exists a subset Eo

of E s.t.

(i) fn (x)  f (x),  x  E – Eo.

and (ii) m (Eo) = 0.

Convergent Sequence: A sequence <xn> in a normal linear space X with norm  .  is said to
converge to an element x  X if for arbitrary > 0, however small, n0 N such that xn – x  <

,  n > n0.

Then we write nn
lim x x .

Normed Linear Space: A linear space N together with a norm defined on it, i.e., the pair (N,   )
is called a normed linear space.

Summable Series: A series n
n 1

u  in N1 is said to be summable to a sum u if u  N1 and nn
lim S u ,

where

Sn = u1 + u2 + … + un

7.4 Review Questions

1. Prove that n
p  is complete.

2. Prove that the vector space L  equipped with 
L

 is a complete vector space.

3. Suppose f  L  is supported on a set of finite measure.

Then f  Lp for all p < , and

L L
f f as p .
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lim f f  = 0.

7.5 Further Readings

Books H.L. Royden, Real analysis.

Walter Rudin, Real and Complex Analysis, Third, McGraw-Hill Book Co., New
York, 1987.

Online links www.public.iastate.edu

www.scribd.com/doc/49732162/103.Convergence-and-Completeness.
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Objectives

After studying this unit, you will be able to:

 Understand bounded linear functional on Lp-spaces

 Understand related theorems.

 Solve problems on bounded linear functionals.

Introduction

In this unit, we obtain the representation of bounded linear functionals on Lp-space. We shall
also study about linear functional, continuous linear functionals and norm of f  *

p . Further, we
shall prove important theorems on bounded linear functionals.

8.1 Bounded Linear Functionals on Lp-spaces

8.1.1 Linear Functional

Definition: Let N1 be a normed space over a field R (or C). A mapping f : N1  R (or C) is called a
linear functional on N1 if f ( x + y) = f (x) + f (y),  x, y  N1 and ,   R (or C).

8.1.2 Bounded Linear Functional

Definition: A linear functional f on a normed space N1 is said to be bounded if there is a constant
k > 0 such that

|f (x)|  k  x ,  x  N1 … (1)

Richa Nandra, Lovely Professional University



LOVELY PROFESSIONAL UNIVERSITY 83

Unit 8: Bounded Linear Functional on the Lp-spaces
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Thus  f = 1
|f(x)|sup : x 0 and x N

x
 or equivalently

 f = sup {|f (x)| : x  X and  x = 1}.

Also |f (x)|   f  x  x  N1.

Definition: Let p  R, p > 0. We define Lp = Lp [0, 1] to be the set of all real-valued functions on
[0, 1] such that

(i) f is measurable and (ii)  f p = 

1
1 p

p

0

|f|  < .

Note  L1 or simply L denotes the class of measurable function f (x) which are also
L-integrable.

8.1.3 Bounded Linear Functional on Lp-spaces

If x p  and f is bounded linear functional on p , then f has the unique representation of the

form as an infinite series

f (x) = k k
k 1

x f(e )

8.1.4 Norm

The norm of f  *
p  is given by

 f = 

1
q

q
k

k 1

|f(e )|

Likewise in finite dimensional case, the bounded linear functionals are characterised by the
values they assume on the set ek, k = 1, 2, 3, … .

8.1.5 Continuous Linear Functional

A linear functional f is continuous if given  > 0 there exists > 0 so that

|f (x) – f (y)| whenever  x – y   .

8.1.6 Theorems

Theorem 1: Suppose 1  p < , and 1 1 1
p q

, then, with  = Lp we have

* = qL ,
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Notes in the following sense: For every bounded linear functional   on Lp there is a unique g  Lq so
that

 (f) = p

x

f(x)g(x)d (x), for all f L

Moreover,
*




= qL
g .

This theorem justifies the terminology where by q is usually called the dual exponent of p.

The proof of the theorem is based on two ideas. The first, as already seen, is Hölder’s inequality;
to which a converse is also needed. The second is the fact that a linear functional   on Lp, 1  p
< , leads naturally to a (signed) measure . Because of the continuity of   the measure  is
absolutely continuous with respect to the underlying measure , and our desired function g is
then the density function of  in terms of .

We begin with:

Lemma: Suppose 1  p, q , are conjugate exponents.

(i) If g  Lq, then qL
f pL 1

g sup fg .

(ii) Suppose g is integrable on all sets of finite measure and

f pL 1
f simple

sup fg = M < 

Then g  Lq, and qL
g  = M.

For the proof of the lemma, we recall the signum of a real number defined by

sign (x) = 
1 if x 0
1 if x 0
0 if x 0

Proof: We start with (i). If g = 0, there is nothing to prove, so we may assume that g is not 0 a.e.,

and hence qL
g 0 . By Hölder’s inequality, we have that

qL
g  

f pL 1

sup fg .

To prove the reverse inequality we consider several cases.

 First, if q = 1 and p = , we may take f (x) = sign g (x). Then, we have L
f 1  and

clearly 1L
fg g .

 If 1 < p, q < , then we set f (x) = |g (x)|q–1 sign q 1
qL

g(x) g .  We observe that

p p(q 1) p(q 1)
p qL L

f g(x) d g 1  since p (q – 1) = q, and that qL
fg g .
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L
g . (Such a set exists by the definition of 

L
g  and the fact that the measure  is -

finite). Then, if we take f (x) =  E (x) sign g (x)/  (E), where E denotes the characteristic
function of the set E, we see that 1L

f 1 , and also

E

1fg |g| g
(E)

.

This completes the proof of part (i).

To prove (ii) we recall that we can find a sequence {gn} of simple functions so that |gn (x)  |g (x)|

while gn (x)  g (x) for each x. When p > 1 (so q < ), we take fn (x) = |gn (x)|q–1 sign q 1
qn L

g(x) g .

As before, pn L
f 1 . However

q
n

qn q 1 n L
qn L

g (x)
f g g

g
,

and this does not exceed M. By Fatou’s Lemmas if follows that q q|g| M , so g  Lq with

qL
g M . The direction qL

g M  is of course implied by Hölder’s inequality. When p = 1 the
argument is parallel with the above but simpler. Here we take fn (x) = (sign g (x))  En (x), where
En is an increasing sequence of sets of finite measure whose union is X. The details may be left to
the reader.

With the lemma established we turn to the proof of the theorem. It is simpler to consider first the
case when the underlying space has finite measure. In this case, with   the given functional on
Lp, we can then define a set function  by

 (E) =   ( E),

where E is any measurable set. This definition make sense because E is now automatically in Lp

since the space has finite measure. We observe that

|  (E)|  C (  (E))1/p … (1)

where C is the norm of the linear functional, taking into account the fact that 1/p
pE L

(E) .

Now the linearity of   clearly implies that  is finitely-additive. Moreover, if {En} is a countable

collection of disjoint measurable sets, and we put *
n 1 n N n N 1 nE E , E E  , then obviously


N

*E nEN
n 1

E   .

Then 
N

*
N n

n 1
(E) E (E ) . However *

NE 0 , as N  because of (1) and the

assumption p < . This shows that  is countably additive and moreover (1) also shows us that
 is absolutely continuous with respect to .

We can now invoke the key result about absolutely continuous measures, the Lebesgue-Radon

– Nykodin theorem. It guarantees the existence of an integrable function g so that  (E) = 
E

g du
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for every measurable set E. Thus we have ( E) Eg d  . The representation (f) fg d

then extends immediately to simple function f, and by a passage to the limit, to all f  Lp since the

simple functions are dense in Lp, 1  p < . Also by lemma, we see that qL
g  .

To pass from the situation where the measure of X is finite to the general case, we use an

increasing sequence {En} of sets of finite measure that exhaust X, that is, X = n 1 nE . According

to what we have just proved, for each n there is an integrable function gn on En (which we can set

to be zero in c
nE ) so that

(f) = nfg d … (2)

whenever f is supported in En and f  Lp. Moreover by conclusion (ii) of the lemma pn L
g    .

Now it is easy to see because of (2) that gn = gm a.e. on mE , whenever n  m. Thus limn  gn (x)

= g (x) exists for almost every x, and by Fatou’s lemma,  g  Lq   . As a result we have that

(f) f g du  for each f  Lp supported in En, and then by a simple limiting argument, for all f

 Lp supported in En. The fact that     g  Lq is already contained in Hölder’s inequality and
therefore the proof of the theorem is complete.

Theorem 2: Let f be a linear functional defined on a normed linear space N, then f is bounded 
f is continuous.

Proof: Let us first show that continuity of f  boundedness of f.

If possible let f is continuous but not bounded. Therefore, for any natural number n, however
large, there is some point xn such that

|f (xn)|  n  xn … (1)

Consider the vector n
n

n

xy
n x

 so that

 yn = 
1
n

.

 yn   0 as n .

yn  0 in the norm.

Since any continuous functional maps zero vector into zero, and f is continuous f (yn)  f (0) = 0.

But |f (yn)| = n
n

1 f(x )
n x … (2)

It now follows from (1) and (2) that

|f (yn)|> 1, a contradiction to the fact that

f (yn)  0 as n .

Thus if f is bounded then f is continuous.
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|f (xn)|  k  xn  n = 1, 2, … and k  0.

Let xn 0 as n  then

f (xn) 0

f is continuous at the origin and consequently it is continuous everywhere.

This completes the proof of the theorem.

Theorem 3: If L is a linear space of all n-tuples, then

(i)  n n
p q*

(ii)  n n
1 *

(iii)  n n
1*

Proof: Let (e1, e2, …, en) be a standard basis for L so that any x = (x 1, x2, …, xn)  L can be written
as x = x1e1 + x2e2 + … + xnen.

If f is a scalar valued linear function defined on L, then we get

f (x) = x1 f (e1) + x2f (e2) + … + xnf (en) … (1)

f determines and is determined by n scalars y i = f (ei).

Then the mapping

y = (y1, y2, … yn)  f where f (x) = 
n

i i
i 1

x y  is an isomorphism of L onto the linear space L  of all

function f. We shall establish (i) – (iii) by using above given facts.

(i) If we consider the space L = n
p (1  p < ) with the pth norm, then f is continuous and L

represents the set of all continuous linear functionals on n
p  so that L = 

*n
p .

Now for y  f as an isometric isomorphism we try to find the norm of y’s.

For 1 < p < , we show that

n
p * = n

p .

For x  n
p , we have defined,

 x = 

1
n p

p
i

i 1

|x |

Now |f (x)| = 
n n

i i i i
i 1 i 1

x y |x ||y |

By using Holder’s inequality, we get

n

i i
i 1

|x y |  
1 1

n np q
p q

i i
i 1 i 1

|x | |y |  so that
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|f (x)|  

1 1
n nq p

q p
i i

i 1 i 1

|y | |x |

Using the definition of norm for f, we get

 f  

1
n q

q
i

i 1

|y | … (2)

Consider the vector, defined by

xi = 
q

i
i

i

|y | , y 0
y

 and xi = 0 if yi = 0 … (3)

Then,  x = 

11
pn n pqp

p i
i

ii 1 i 1

|y ||x |
|y |

… (4)

Since q = p (q – 1) we have from (4),

 x = 

1
n q

q
i

i 1

|y | … (5)

Now  f (x) = 
n n q

i
i i i

ii 1 i 1

|y |x y y
y … (4)

= 
n

q
i

i 1

|y | (By (3))

So that

n
q

i
i 1

|y | = |f (x)   f    x … (6)

From (5) and (6) we get,

11n p
q

i
i 1

|y |   f 

1
n q

q
i

i 1

|y |   f … (7)

Also from (2) and (7) we have

 f = 

1
n q

q
i

i 1

|y | , so that
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Notesy  f is an isometric isomorphism.

Hence n
p * = n

q .

(ii) Let L = n
1  with the norm defined by

 x = 
n

i
i 1

|x |

Now f defined in (1), above is continuous as in (i) and L  here represents the set of continuous

linear functional on n
1  so that

L = n
1 * .

We now determine the norm of y’s which makes y  f an isometric isomorphism.

Now,  f (x) = 
n

i i
i 1

x y

 
n

i i
i 1

|x ||y |

But
n

i i
i 1

|x ||y |  
n

i i
i 1

max. |y | |x | so that

 f (x)  
n

i i
i 1

max. |y | |x |.

From the definition of the norm for f, we have

 f  = max. {|yi| : i = 1, 2, …, n} … (8)

Now consider the vector defined as follows:

If |yi| = i1 i n
max |y | , let us consider the vector x as

xi = i
i i i1 i n

i

|y |when|y | max |y | and x 0
y

… (9)

otherwise

From the definition, xk = 0 k  i, so that we have

 (x) = iy
y  = 1

Further | f (x)| = 
n

i i
i 1

(x y )  = |yi|.

Hence |yi| = |f (x)|   f    x 
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  f … (10)

From (8) and (10), we obtain

 f = max. {|yi|} so that

y  f is an isometric isomorphism of L  to n
1 * .

Hence  n n
1 * .

(iii) Let L = n  with the norm

 x = max {|xi| : 1, 2, 3, …, n}.

Now f defined in (1) above is continuous as in (1). Let L  represents the set of all continuous

linear functionals on n  so that

L = n * .

Now we determine the norm of y’s which makes y  f as isometric isomorphism.

|f (x)| = 
n n

i i i i
i 1 i 1

x y |x ||y |.

But 
n

i i
i 1

|x ||y |  
n

i i
i 1

max (|x |) |y |

Hence we have

|f (x)|
n n

i i
i 1 i 1

|y | ( x ) so that f |y | … (11)

Consider the vector x defined by

xi = i

i

|y |
y

 when yi  0 and xi = 0 otherwise. … (12)

Hence  x = i

i

|y |max 1
|y |

.

and |f (x)| = 
n n

i i i
i 1 i 1

|x y | |y |

Therefore
n

i
i 1

|y | = |f (x)|   f  x  =  f .

n

i
i 1

|y |   f … (13)
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 f = 
n

i
i 1

|y |  so that y  f is an isometric isomorphism.

Hence,  n n
1* .

This completes the proof of the theorem.

Note  We need the signum function for finding the conjugate spaces of some infinite
dimensional space which we define as follows:

If  is a complex number, then

sgn if 0
| |
0 if 0

(i) |sgn | = 0 if  = 0 and | sgn | = 1 if   0

(ii)  sgn  = 0 if  = 0 and  sgn  = | | =| |, if   0.

Theorem 4: The conjugate space of p  is q , where

1 1
p q

 = 1 and 1 < p < .

or *
p q  .

Proof: Let x = (xn)  p  so that p
n

n 1

|x | … (1)

Let en = (0, 0, 0, …, 1, 0, 0, …) where 1 is in the n th place.

en  p  for n = 1, 2, 3, … .

We shall first determine the form of f and then establish the isometric isomorphism of *
p  onto

q .

By using (en), we can write any sequence

(x1, x2, … xn, 0, 0, 0, …) in the form 
n

k k
k 1

x e  and

n

k k n 1 n 2
k 1

x x e (0, 0, 0, , x , x , ).



92 LOVELY PROFESSIONAL UNIVERSITY

Notes

Now

1
n p

p
k k k

k 1 k n 1

x x e |x | … (2)

The R.H.S. of (2) gives the remainder after n terms of a convergent series (1).

Hence
1
p

p
k

k n 1

|x |  0 as n . … (3)

From (2) and (3) if follows that

x = k k
k 1

x e … (4)

Let f   p*  and Sn = 
n

k k
k 1

x e  then

Sn  x as n (Using (4))

Since f is linear, we have

f (Sn) = 
n

k k
k 1

x f(e ) .

Also f is continuous and Sn  x, we have

f (Sn)  f (x) as n .

f (x) = 
n

k k
k 1

x f (e ) … (5)

which gives the form of the functional on p .

Now we establish the isomeric isomorphism of  p*  onto q , for which proceed as follows:

Let f (ek) = k and show that the mapping

T :  p*   q  given by

T (f) = ( 1, 2, …, k, …) is an isomeric isomorphism of  p*  onto q .

First, we show that T is well defined.

For let x  p , where x = ( 1, 2, …, n, 0, 0, …) where

k = 
g 1

kk 1 k n| | sgn ,
n k0

| k| = | k|q–1 for 1  k  n.

| k|p = 
p(q 1)

k| |  = | k|q. 1 1 q p(q 1) q
p q
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k kk k k k k| | sgn | | sgn

k k = | k|q = | k|p … (7)

(Using property of sgn function)

 x = 

1
n p

p
k

k 1

| |

 x = 

1
n p

p
k

k 1

| |

= 

1
n q

q
k

k 1

| | … (8)

Since we can write

x = 
n

k k
k 1

e , we get

f (x) = 
n n

k k k k
k 1 k 1

f (e )

f (x) = 
n

q
k

k 1

| | (Using (7))  … (9)

We know that for every x p

| f (x) |  f    x ,

which upon using (8) and (9), gives

|f (x)|  
1

n n p
q q

k k
k 1 k 1

| | f | |

which yields after simplification.

1
n p

q
k

k 1

| |  f … (10)

Since the sequence of partial sum on the L.H.S. of (10) is bounded; monotonic increasing, it
converges. Hence

1
n p

q
k

k 1

| |  f … (11)

So the sequence ( k) which is the image of f under T belongs to  q  and hence T is well defined.
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Let ( k)  q , we shall show that is a g *
p  such that T maps g into ( k).

Let x  p  so that

x = 
n

k k
k 1

x e

We shall show that

g (x) = 
n

k k
k 1

x  is the required g.

Since the representation for x is unique, g is well defined and moreover it is linear on p . To

prove it is bounded, consider

|g (x)| = 
n n

k k k k
k 1 k 1

x x

 

1 1
n np q

qp
k k

k 1 k 1

x (Using Hölder’s inequality)

|g (x)|  

1
n q

q
k

k 1

x | |

g is bounded linear functional on p .

Since ek  p  for k = 1, 2, …, we get

g (ek) = k for any k so that

Tg = ( k) and T is on  p*  onto q .

We next show that

 Tf  =  f  so that T is an isometry.

Since Tf q ,  we have from (6) and (10) that

1
q

q
k

k 1

=  Tf    f 

Also, x p  x = k k
k 1

x e . Hence

f (x) = k k k k
k 1 k 1

x (e ) x
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|f (x)|  k k

k 1

|x || |

 

1 1
n q p

pq
k k

k 1 k 1

| | x (Using Hölder’s inequality)

or |f (x)|  

1
n q

q
k p

k 1

| | x x  .

Hence we have

x 0

|f(x)|sup
x

 
1
q

q
k

k 1

| |  =  Tf (Using (6))

which upon using definition of norm yields

 f   Tf … (13)

Thus  f =  Tf (Using (12) and (13))

From the definition of T, it is linear. Also since it is an isometry, it is one-to-one and onto
(already shown). Hence T is an isometric isomorphism of  p*  onto q , i.e.,

 p q* .

This completes the proof of the theorem.

Theorem 5: Let p > 1 with 1 1 1
p q

 and let g  Lp (X). Then the function defined by

F (f) = p

X

fg d for f L (X)

is a bounded linear functional on Lp (X) and

 F =  g q … (1)

Proof: We first note that

F is linear on Lp (X). For if f1, f2  Lp (X), then we get

F (f1 + f2) = 1 2 1 2

X X X

(f f )g d f g d f g d

= F (f1) + F (f2)

So that

F (f1 + f2) = F (f1) + F (f2)

and F (  F) = 
X

fg d F(f) .

Now |F (f)| = 
X X

fg d |fg|d … (2)
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X

|fg|d

1 1
p q

p q

X X

|f| d |g| d

=  f p   g q … (3)

From (2) and (3) it follows that

|F (f)|   f p   g q.

Hence 
q

p

F|f|
sup : f Lp(X) and f 0 g

f

 F   g q (Using definition of the norm) … (4)

Further, let f = |g|q–1 sgn g … (5)

Since sgn g = 1, we get

|f|p = |g|p(q–1) = |g|q ( p (q – 1) = q)

Thus, f  Lp (X) and 

1
p

p

X

|f| d = 

1
q

q

X

|g| d … (6)

But

1
p

q p

X X

|g| d |g| d = q /p

q
g

which implies on using (6) that

 f p = q /p

q
g … (7)

Now F (f) = q 1

X X

fg d |g| g sgng d

= qq
q

X

|g| d g

Hence q

q
g g = F (f)   F    f p.

and this on using (7) yields that

q

q
g = F (f)   F   

q /p

q
g

q q /p

q
g =  g q   F … (8)

( g  0)
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 F =  g q.

This completes the proof of the theorem.

Approximation by Continuous Function

Theorem 6: If f is a bounded measurable function defined on [a, b], then for given  > 0,  a
continuous function g on [a, b], such that

 f – g 2 < 

Proof: Let F (x) = 
x

a

f(t) dt  where x  [a, b].

Then |F (x + h) – F (x)| = 
x h x

a a

f(t) dt f(t) dt

= 
x h x h

x x

f(t) dt f(t) dt

 Mh, where |f (x)|  M, x  [a, b].

Taking h < , and Mh < 1, we get

|x + h – x| <  | F (x + h) – F (x) | < 1

F (x) is continuous on [a, b].

Let Gn (x) = 
x h

x

n f(t) dt : x [a, b] and n N;

then Gn (x) = 1n F x F(x)
n

( F (x) is continuous on [a, b] 

Gn (x) is continuous on [a, b] n)

Again, since F (x) = 
x

a

f (t) dt, x [a, b] .

F (x) = f (x) a.e. in [a, b].

Now, nn
Lim G (x) = 

n

F(x (1/n) F(x)Lim
1/n

= 
h 0

F(x h) F(x) 1Lim , h
h n

= F  (x) = f (x) a.e. in [a, b]

and hence
2

nn
Lim G (x) f(x) = 0.
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Also |Gn (x)| = 
x (1 /n) x (1 /n)

x x

f (t) dt n |f(t)|dt M .

Hence |Gn (x)|  M, n  N and x  [a, b].

[Gn(x) – f (x)]2  (M + M)2 = 4M2, x  [a, b].

On applying Lebesgue bounded convergence theorem, we get

b

2
nn

a

Lim (G f) = 
b

2
n

a

Lim (G f) 0

2
n 2n

Lim G f = 0

n 2n
Lim G f

or nn
Lim f G = 0

 for given  > 0, no N, such that n no

 f – Gn 2 < 

Particularly for n = no.

no 2
f G < 

 f – g 2 < (Taking no
G  = g)

Thus there exists a continuous function no
G (x) g(x)

= 
x (1 /n )o

o

x

n f(t) dt, x [a, b] ,

which satisfies the given condition.

8.2 Summary

 A linear functional f on a normed space N1 is said to be bounded if there is a constant
k > 0 such that

|f (x)|  k  x ,  x  N1

 If x p  and f is bounded linear functional on p , then f has the unique representation of

the form as an infinite series.

f (x) = k k
k 1

x f (e )

 The norm of f  *
p  is given by

 f = 

1
q

q
k

k 1

|f(e )|
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Bounded Linear Functional on Lp-spaces: If x p  and f is bounded linear functional on p , then

f has the unique representation of the form as an infinite series

f (x) = k k
k 1

x f(e )

Bounded Linear Functional: A linear functional f on a normed space N1 is said to be bounded if
there is a constant k > 0 such that

|f (x)|  k  x ,  x  N1

Continuous Linear Functional: A linear functional f is continuous if given  > 0 there exists >
0 so that

|f (x) – f (y)| whenever  x – y   .

Linear Functional: Let N1 be a normed space over a field R (or C). A mapping f : N1  R (or C)
is called a linear functional on N1 if f ( x + y) = f (x) + f (y),  x, y  N1 and ,   R (or C).

Norm: The norm of f  *
p  is given by

 f = 

1
q

q
k

k 1

|f(e )|

8.4 Review Questions

1. Account for bounded linear functionals on Lp-space.

2. State and prove different continuous linear functional theorems.

3. Describe approximation by continuous function.

4. How will you explain norms of bounded linear functional on Lp-space?

5. What is Isometric Isomorphism?

8.5 Further Readings

Books Rudin, Walter (1991), Functional Analysis, Mc-Graw-Hill Science/Engineering/
Math

Kreyszig, Erwin, Introductory Functional Analysis with Applications, WILEY 1989.

T.H. Hilderbrandt, Transactions of the American Mathematical Society . Vol. 36,
No. = 4, 1934.

Online links www.math.psu.edu/yzheng/m597k/m597kLIII4.pdf

www.public.iastate.edu/…/Royden_Real_Analysis_Solutions.pdf
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9.3 Keywords
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9.5 Further Readings

Objectives

After studying this unit, you will be able to:

 Define measure space.

 Define null set in a measure space.

 Understand theorems based on measure spaces.

 Solve problems on measure spaces.

Introduction

A measurable space is a set S, together with a non-empty collection, S, of subsets of S, satisfying
the following two conditions:

1. For any A, B in the collection S, the set1 A – B is also in S.

2. For any A1, A2, …  S,  Ai  S.

The elements of S are called measurable sets. These two conditions are summarised by saying
that the measurable sets are closed under taking finite differences and countable unions.

9.1 Measure Space

Measurable Space: Let  be a -algebra of subsets of set X. The pair (X, ) is called a measurable
space. A subset E of X is said to be -measurable if E  .

(a) If  is a measure on a -algebra  of subsets of a set X, we call the triple (X, , u) a measure
space.

(b) A measure  on a -algebra  of subsets of a set X is called a finite measure if m (X) < . In
this case (X, , ) is called a finite measure space.

Richa Nandra, Lovely Professional University
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Notes(c) A measure  on a -algebra  of subsets of a set X is called a -finite measure if there exists
a sequence (En : n  ) in  such that n   En = X and  (En) <  for every n  . In this case
(X, , ) is called a -finite measure space.

(d) A set D   in an arbitrary measure space (X, , ) is called a -finite set if there exists a
sequence (Dn : n  ) in such that Un   Dn = D and  (Dn) < for every n  .

Lemma 1: (a) Let (X, , ) be a measure space. If D   is a -finite set, then there exists an
increasing sequence (Fn : n  ) in  such that nn

lim F D  and  (Fn) <  for every n   and there

exists a disjoint sequence (Gn : n  ) in such that n  Gn = D and  (Gn) <  for every n  .

(b) If (X, , ) is a -finite measure space then every D   is a -finite set.

Proof 1: Let (X, , ) be a measure space. Suppose D   is a -finite set. Then there exists a
sequence (Dn : n  ) in  such that Un   Dn = D and  (Dn) < for every n  . For each n  ,

let n
n k 1 kF U D . Then (Fn : n  ) is an increasing sequence in  such that n nnn

lim F U F

nnU D D
 and 

n n

n k k
k 1k 1

(F ) D (D )  for every n  .

Let G1 = F1 and Gn = Fn\
n 1
k 1 kU F  for n  2. Then (Gn: n  ) is a disjoint sequence in  such that

n nn nU G U F D   as in the proof of Lemma “let (En : n  ) be an arbitrary sequence in an
algebra of subsets of a set X. Then there exists a disjoint sequence (Fn: n  ) in such that

(1)
N N

n n
n 1 n 1

E F   for every N  ,

and

(2) n n
n n

E F 
 

”.

 (G1) =  (F1) <  and n 1

n n k n
k 1

(G ) F F (F )  for n  2. This proves (a).

2. Let (X, , ) be a -finite measure space. Then there exists a sequence (En : n  ) in  such
that Un   En = X and  (En) < for every n  . Let D  . For each n  , let Dn = D  En.
Then (Dn : n  ) is a sequence in such that Un  Dn = D and m (Dn)  (En) <  for every
n  . Thus D is a -finite set. This proves (b).

9.1.1 Null Set in a Measure Space

Definition: Given a measure  on a -algebra  of subsets of a set X . A subset E of X is called a null
set with respect to the measure  if E   and (E) = 0. In this case we say also that E is a null set
in the measure space (X, , ). (Note that  is a null set in any measure space but a null set in a
measure space need not be .)

Theorem 1: A countable union of null sets in a measure space is a null set of the measure space.

Proof: Let (En : n  ) be a sequence of null sets in a measure space (X, , ). Let E = Un  En. Since
 is closed under countable unions,

we have E  .
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we have (E)  n    (En) = 0.

Thus  (E) = 0.

This shows that E is a null set in (X, , ).

9.1.2 Complete Measure Space

Definition: Given a measure  on a -algebra  of subsets of a set X. We say that the -algebra 
is complete with respect to the measure if an arbitrary subset E0 of a null set E with respect to

 is a member of  (and consequently has  (E0) = 0 by the Monotonicity of ). When  is
complete with respect to , we say that (X, , ) is a complete measure space.

Example: Let X = {a, b, c}. Then = { , {a}, {b, c}, X} is a -algebra of subsets of X. If we
define a set function on by setting ( ) = 0, ({a}) = 1, ({b, c}) = 0, and (X) = 1, then is
a measure on . The set {b, c} is a null set in the measure space (X, , ), but its subset {b} is not
a member of . Therefore, (X, , ) is not a complete measure space.

9.1.3 Measurable Mapping

Let f be a mapping of a subset D of a set X into a set Y. We write D (f) and R (f) for the domain of
definition and the range of f respectively. Thus

D (f) = D  X,

R (f) = {y  Y : y = f (x) for some x  D (f)}  Y.

For the image of D (f) by f, we have f (D (f)) = R (f). For an arbitrary subset E of y we define the
preimage of E under the mapping f by

F–1 (E) : = {x  X : f (x)  E} = {x  D (f) : f (x)  E}.

Notes

1. E is an arbitrary subset of Y and need not be a subset of R (f). Indeed E may be disjoint
from  (f), in which case f–1 (E) = . In general, we have f (f–1 (E)) E.

2. For an arbitrary collection C of subsets of Y, we let f–1 (C) : = {f–1 (E) : E  C}.

Theorem 2: Given sets X and Y. Let f be a mapping with D (f) X and  (f) Y. Let E and E  be
arbitrary subsets of Y. Then

1. f–1 (Y) = D (f),

2. f–1 (EC) = f–1 (Y\E) = f–1 (Y)\f–1 (E) = D (f) \ f–1 (E),

3. f–1 (U  E ) = U  f–1 (E ),

4. f–1 (  E ) = f–1 (E ).

Theorem 3: Given sets X and Y. Let f be a mapping with D (f)  X and R (f) Y. If  is a -algebra
of subsets of Y then f–1 () is a -algebra of subsets of the set D (f). In particular, if D (f) = X then
f–1 () is a -algebra of subsets of the set X.
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NotesProof: Let  be a -algebra of subsets of the set Y. To show that f–1 () is a -algebra of subsets of
the set D (f) we show that D (f) f–1 (); if A f–1 () then D (f)\A f–1 (); and for any sequence
(An : n ) in f–1 () we have Un An  f–1 (B).

1. By (1) of above theorem, we have D (f) = f–1 (Y) f–1 (B) since Y .

2. Let A f–1 (). Then A = f–1 () for some B . Since BC  we have f–1 (BC) f–1 (). On the
other hand by (2) of above theorem, we have f–1 (BC) = D (f)\f–1 (B) = D (f)\A. Thus D (f)\A

f–1 ().

3. Let (An : n ) be a sequence in f–1 (). Then An = f–1 (Bn) for some Bn  for each n .
Then by (3) of above theorem, we have

1 1 1
n n n

n n n

A f (B ) f B f ( )  
  

 ,

since n
n

B ( )


 .

Measurable Mapping

Definition: Given two measurable spaces (X, ) and (Y, ). Let f be a mapping with D (f) X and
 (f)  Y. We say that f is a / measurable mapping if f–1 (B)  for every B  , that is, f–1 ()

 .

Theorem 4: Given two measurable spaces (X, ) and (Y, ). Let f be a /-measurable mapping.

(a) If , is a -algebra of subsets of X such that ,  , then f is 1/-measurable.

(b) If 0 is a -algebra of subsets of Y such that 0  , then f is /0-measurable.

Proof: (a) Follows from f–1 ()    1 and (b) from f–1 (B0)  f–1 ()  .

Composition of two measurable mappings is a measurable mapping provided that the two
measurable mappings from a chain.

Theorem 5: Given two measurable spaces (X, ) and (Y, ), where =  () and  is arbitrary
collection of subsets of Y. Let f be a mapping with D (f)  and  (f)  Y. Then f is a /-
measurable mapping of D (f) into Y if and only if f–1 ()  .

Proof: If f is a /-measurable mapping of D (f) into Y, then f–1 ()   so that f–1 ()  .
Conversely if f–1 ()  , then  (f–1 ()  () = . Now by theorem,

“Let f be a mapping of a set X into a set Y. Then for an arbitrary collection C of subsets of Y, we
have  (f–1 ()) = f–1 (  ().”

 (f–1 () = f–1 (  ()) = f–1 (). Thus f–1 ()   and f is a /- measurable mapping of D (f).

Theorem 6: If X0 is a thick subset of a measure space (X, S, ), if S0 = S  X0, and if, for E in S, 0 (E
 X0) =  (E), then (X0, S0, 0) is a measure space.

Proof: If two sets, E1 and E2, in S are such that E1  X0 = E2 X0, then (E1  E2) Xo = 0, so that 
(E1 E2) = 0 and therefore  (E1) = (E2). In other words 0 is indeed unambiguously defined on
S0.

Suppose next that {Fn} is a disjoint sequence of sets in S0, and let En be a set in S such that

Fn = En X0, n = 1, 2, … .
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If n n iE E {E : 1 i n}, n 1, 2, , then


n n 0E E X = n i nF F : 1 i n F

= Fn  Fn = 0,

So that n nE E  = 0, and therefore

n 1 0 n(F ) = n 1 0 n n 1 0 n n 1 n(E ) (E ) E 

=  n 0 n
n 1 n 1

E F

In other word 0 is indeed a measure, and the proof of the theorem is complete.

9.2 Summary

 Let  be a -algebra of subsets of a set X. The pair (X, ) is called a measurable space. A
subset E of X is said to be -measurable if E  .

 If  is a measure on a -algebra of subsets of a set X, we call the triple (X, , ) a measure
space.

 A subset E of X is called a null set with respect to the measure if E  and (E) = 0.

 Two measurable spaces (X, ) and (Y, ). Let f be a mapping with D (f) X and  (f) Y.
We say that f is a /-measurable mapping if f–1 (B)  for every B  , that is f–1 ()  .

9.3 Keywords

Complete Measure Space: Given a measure  on a -algebra  of subsets of a set X. We say that
the -algebra  is complete with respect to the measure if an arbitrary subset E0 of a null set
E with respect to  is a member of  (and consequently has (E0) = 0 by the Monotonicity of ).
When  is complete with respect to , we say that (X, , ) is a complete measure space.

Measurable Mapping: Given two measurable spaces (X, ) and (Y, ). Let f be a mapping with D
(f) X and  (f)  Y. We say that f is a / measurable mapping if f–1 (B)  for every B  , that
is, f–1 ()  .

Measurable Space: A measurable space is a set S, together with a non-empty collection, S, of
subsets of S.

Null Set in a Measure Space: A subset E of X is called a null set with respect to the measure  if
E   and (E) = 0. In this case we say also that E is a null set in the measure space (X, , ).

Sigma Algebra:  is sigma algebra which establishes following relations:

(i) Ak   for all k implies  k
k 1

A 

(ii) A implies AC  

(iii)  
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1. Let  be a -algebra of subsets of a set X and let Y be an arbitrary subset of X. Let
 = {A  Y : A  }. Show that is a -algebra of subsets of Y.

2. Let (X, , ) be a measure space. Show that for any E1, E2  we have the equality:
 (E1  E2) +  (E1  E2) =  (E1) +  (E2).

9.5 Further Readings

Books Paul Halmos, (1950). Measure Theory. Van Nostrand and Co.

Bogachev, V.I. (2007), Measure Theory, Berlin : Springer

Online links planetmath.org/measurable space.html

mathworld.wolfram.com > Calculus and Analysis > Measure Theory
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Objectives

After studying this unit, you will be able to:

 Understand measurable functions.

 Define equivalent functions and characteristic function.

 Describe Egoroff's theorem and Riesz theorem.

 Define simple function and step function.

Introduction

In this unit, we shall see that a real valued function may be Lebesgue integrable even if the
function is not continuous. In fact, for the existence of a Lebesgue integral, a much less restrictive
condition than continuity is needed to ensure integrability of f on [a, b]. This requirement gives
rise to a new class of functions, known as measurable functions. The class of measurable functions
plays an important role in Lebesgue theory of integration.

Richa Nandra, Lovely Professional University
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10.1.1 Lebesgue Measurable Function/Measurable Function

Definition: Let E be a measurable set and R* be a set of extended real numbers. A function
f : E  R* is said to be a Lebesgue measurable function on E or a measurable function on E iff the
set

E (f > ) = {x  E : f (x) > } = f–1 { , )} is a measurable subset of E    R.

Notes

1. The definition states that f is a measurable function if for every real number , the
inverse image of ( , ) under f is a measurable set.

2. The measure of the set E (f > ) may be finite or infinite.

3. A function whose values are in the set of extended real numbers is called an extended
real valued function.

4. If E = R, then the set E (f > ) becomes an open set.

Example: A constant function with measurable domain is measurable.

Sol: Let f be a constant function defined over a measurable set E so that f (x) =  x  E.

Then for any real number ,

E (f > ) = E, if c
, if c

The sets E and  are measurable and hence E (f > ) is measurable i.e. the function f is measurable.

Theorem 1: Let f and g be measurable real valued functions on E, and c is a constant. Then each of
the following functions is measurable on E.

(a) f  c (b) c f

(c) f + g (d) f – g

(e) |f| (f) f2

(g) fg (h) f/g (g vanishes no where on E)

Proof: Let  be an arbitrary real number.

(a) Since f is measurable and

E (f ± c > ) = E (f >    c),

the function f ± c is measurable.

(b) To prove c f is measurable over E.

If c = 0, then cf is constant and hence measurable because a constant function is measurable.
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E (cf > ) = 
E f if c 0

c

E f if c 0
c

Both the sets on R.H.S. are measurable.

Hence E (cf > ) is measurable and so cf is measurable c  R.

(c) Before proving f + g is measurable, we first prove that if f and g are measurable over E then
the set E (f > g) is also measurable.

Now f > g  a rational number r such that

f (x) > r > g (x)

Thus E (f > g) = 
r Q

[(E (f r) (E(g r))]
= an enumerable union of measurable sets.

= measurable set, since Q is an enumerable set.

Now, we shall prove that f + g is measurable over E. Let a be any real number.

Now E (f + g > a) = E (f > a – g) … (1)

Again, g is measurable

cg is measurable, c is constant.

( We know that if f is a measurable function and c is constant then cf is measurable)

a + cg is measurable  a, c  R

a – g is measurable by taking c  = –1,

since f and a – g are measurable

E (f > a – g) is measurable.

E (f + g > a) is a measurable set.

f + g is a measurable function.

(d) To prove that f – g is measurable. Before proving f – g is measurable, we first prove that if
f and g are measurable over E then the set E (f > g) is also measurable.

Now f > g  a rational number r, such that f (x) > r > g (x).

Thus E (f > g) = 
r Q

[(E (f r) (E(g r))]
= an enumerable union of measurable sets.

= measurable sets, since Q is an enumerable set.

Now we shall prove that f – g is measurable over E.

Let a be any real number.
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since g is measurable.

cg is measurable, c is constant.

a + cg is measurable a, c  R

a + g is measurable by taking c = 1,

since f and a + g are measurable

E (f > a + g) is measurable.

E (f – g > a) is a measurable set.

f – g is a measurable function.

(e) To prove |f| is measurable.

We have

E (|f| > ) = E if 0
[E (f )] [E(f )] if 0

[because we know that |x| > a  x > a or x < –a]

since f is measurable therefore E (f > ) and E (f < – ) are measurable by definition.

Also we know that finite union of two measurable sets is measurable.

E (f > )  E (f < – ) is measurable.

E (|f| > ) is measurable.

|f| is measurable.

(f) To prove f2 is measurable.

We have E (f2 > ) = 
E if 0
E (|f| )] if 0

But E (|f| > ) = [E(f )] [E(f )], if 0       ( |x| > a  x > a or x < – a)

E (f2 > ) = 
E if 0
[E (f )] [E(f )] if 0

But f is measurable over E.

E (f )  and E (f )  are measurable sets.

[E (f )] [E(f )]  is measurable.

( union of two measurable sets is measurable)

E (f2 > ) is measurable because both the sets on RHS are measurable.

f2 is measurable over E.

(g) To prove fg is measurable.

Clearly, f + g and f – g are measurable functions over E.
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(f + g)2 – (f – g)2 is a measurable function over E.

2 21 (f g) (f g)
4

 is a measurable function over E.

fg is a measurable function over E.

(h) To prove f/g is measurable.

Let g vanish nowhere on E, so that

g (x)  0  x E.

1
g

 exists.

Now we shall show that 1
g

 is measurable.

We have

E(g 0) if 0
1 1E [E(g 0)] E g if 0
g

1[E(g 0)] E(g 0) E g

Also finite union and intersection of measurable sets are measurable. Hence 1E
g

 is

measurable in every case.

Since f and 1
g

 are measurable.

1(f)
g

 is measurable over E.

f
g

 is measurable over E.

10.1.2 Almost Everywhere (a.e.)

Definition: A property is said to hold almost everywhere (a.e.) if the set of points where it fails to
hold is a set of measure zero.

Example: Let f be a function defined on R by

f (x) = 0, if x is irrational
1, if x is rational

Then f (x) = 0 a.e.
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Definition: Two functions f and g defined on the same domain E are said to be equivalent on E,
written as f ~ g on E, if f = g a.e. on E, i.e. f (x) = g (x) for all x  E – E1, where E1  E with m (E1)
= 0.

Theorem 2: If f, g : E  R (E M) such that g (E).

Proof: Let  be any real number and let E1 = E (f > ) and E2 = E (g > )

Then E1  E2 = (E1 – E2)  (E2 – E1)

= {x  E : f (x) g (x)}

so that by given hypothesis we have

m (E1  E2) = 0.

This together with the fact that E1 is measurable

E2 is measurable.

Hence g  (E).

10.1.4 Non-negative Functions

Definition: Let f be a function, then its positive part, written f+ and its negative part, written f–1, are
defined to be the non-negative functions given by

f+ = max (f, 0) and f–1 = max (–f, 0) respectively.

Note f = f+ – f–1

and |f| = f+ + f–1

Theorem 3: A function is measurable iff its positive and negative parts are measurable.

Proof: For every extended real valued function f, we may write

f+ = 
1
2

 [f + |f|]

and f–1 = 
1
2

 [|f| – f]

But f is measurable then |f| is measurable and hence positive and negative parts of f i.e. f+ and
f– are measurable.

Conversely, let f+ and f–1 be measurable.

Since f = f+ – f–1

Since we know that if f and g are measurable functions defined on a measurable set E then f – g
is measurable on E.

Here f+ – f–1 is measurable.

and hence f is measurable.
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Proof: Let E = {x : f (x)  g (x)}.

Then m (E) = 0

Let  be a real number.

{x : g (x) > } = {x : f (x) > }  {x E : g (x) > } – {x E : g (x) }

since f is measurable, the first set on the right is measurable i.e. {x : f (x) > } is measurable.

The last two sets on the right are measurable since they are subsets of E and m (E) = 0.

Thus, {x : g (x) > } is measurable.

So, g is measurable.

Example: Give an example of function for which f is not measurable but |f| is measurable.

Sol: Let k be a non-measurable subset  of E = [0, 1).

Define a function f : E  R by

f (x) = 1 if x k
1 if x k

The function f is not measurable, since E (f > 0) (=k) is a non-measurable set. But |f| is measurable
as the set

E (|f| > ) = 
E if 1

if 1  is measurable

10.1.5 Characteristic Function

Definition: Let A be subset of real numbers. We define the characteristic function A of the set A as
follows:

A (x) = 
1 if x A
0 if x A

Note  The characteristic function A of the set A is also called the indicator function of A.

Theorem 5: Show that the characteristic function A is measurable iff A is measurable.

Proof: Let A be measurable.

Since A = {x : A (x) > 0} is measurable.

But A is measurable, therefore the set  {x : A (x) > 0} is measurable.

 A is measurable.

Conversely, let A be measurable and  be any real number.

then E ( A > ) = 
if 1

A if 0 1
E if 0
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Therefore E ( A > ) is measurable.

Hence A is measurable.

Note  The above theorem asserts that the characteristic function of non-measurable sets
are non-measurable even though the domain set is measurable.

10.1.6 Simple Function

A real valued function  is called simple if it is measurable and assumes only a finite number of
values.

If is simple and has the values 1, 2, … n, then

= 
n

i Ai
i 1

where Ai = {x :  (x) = i}

and Ai  Aj is a null set.

Thus we can always express a simple function as a linear combination of characteristic function.

Notes

(i)  is simple  A is are measurable.

(ii) sum, product and difference of simple functions are simple.

(iii) the representation of  as given above is not unique.

But if  is simple and { 1, 2, ……, n} is the set of non-zero values of f, then

= 
n

i Ai
i 1

where Ai = {x :  (x) = i}

This representation of is called the Canonical representation. Here A is are disjoint
and is are distinct and non-zero.

(iv) Simple function is always measurable.

10.1.7 Step Function

A real valued function S defined on an interval [a, b] is said to be a step function if these is a
partition a = xo < x1 … < xn = b such that the function assumes one and only one value in each
interval.
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Notes

(i) Step function also assumes finite number of values like simple functions but the sets
{x : S (x) = Ci} are intervals for each i.

(ii) Every step function is also a simple function but the converse is not true.

e.g. f : R  R such that f (x) = 
1, x is rational
0, x is irrational

is a simple function but not step as the sets of rational and irrational are not intervals.

Theorem 6: If f and g are two simple functions then  f +  g is also a simple function.

Proof: Since f and g are simple functions and we know that every simple function can be
expressed as the linear combination of characteristic function.

f and g can be expressed as the linear combination of characteristic function.

f = 
m

i Ai
i 1

and g = 
m

j Bj
j 1

where A is and B js are disjoint.

Ai = {x : f (x) = i}

Bj = {x : g (x) = j}

The set Ek obtained by taking all intersections Ai  Bj from a finite disjoint collection of measurable
sets and we may write

f = 
n

k Ek
k 1

a

and g = 
n

k Ek
k 1

b

where n = mm .

f + g = 
n n

k E k Ek k
k 1 k 1

a b

= 
n

k b Ek k
k 1

( a )

which is a linear combination of characteristic functions, therefore it is simple.
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Similarly fg = 

n

k k Ek
k 1

a b

which is again a linear combination of characteristic function, therefore fg is simple.

Theorem 7: Let E be a measurable set with m (E) <  and {fn} a sequence of measurable functions
converging a.e. to a real valued function defined on E. Then, given  > 0 and > 0, there is a set
A E with m (A) < and an integer N such that |fn (x) – f (x)| < for all x E – A and all n N.

Proof: Let F be the set of points of E for which fn  f. Then m (F) = 0 and fn (x)  f (x) for all x 
E – F = E1 (say). Then by the previous theorem for the set E1, we get A1  E1 with m (A1) <  and
an integer N such that

|fn (x) – f (x) | <  for all n  N and x  E1 – A1.

We get the required result by taking

A = A1  F since m (F) = 0 and E – A = E1 – A1

Note  Before proving this theorem first prove the previous theorem.

10.1.8 Convergent Sequence of Measurable Function

Definition: A sequence {fn} of measurable functions is said to converge almost uniformly to a
measurable function f defined on a measurable set E if for each > 0 there exists a measurable
set A  E with m (A) <  such that {fn} converges to f uniformly an E – A.

10.1.9 Egoroff's Theorem

Statement: Let E be a measurable set with m (E) <  and {fn} a sequence of measurable functions
which converge to f a.e. on E. Then, given  > 0 there is a set A  E with m (A) <  with that the
sequence {fn} converges to f uniformly on E – A.

Proof: Applying the theorem, “Let E be a measurable set with m (E) <  and {fn} a sequence of
measurable function converging a.e. to real valued function f defined on E. Then given > 0 and

> 0 there is a set A  E with m (A) <  and an integer N such that

|fn (x) – f (x) | <  for all x  E – A and all n  N”

with = 1, = /2, we get a measurable set

A1  E with m (A1) < /2 and a positive integer N1, such that

|fn (x) – f (x)|< 1 for all x  N1

and x  E1, where E1 = E – A1.

Again, taking = 1/2 and = n/22,

we get a measurable set A2  E1 with m (A2) < /22, and a positive integer N2 such that

|fn (x) – f (x)| < 
1
2

n  N2 and x  E2 where E2 = E1 – A2, and so on.
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Notes At the pth stage, we get a measurable set

Ap  Ep–1 with m (Ap) < 
p

n
2

 and a positive integer Np such that

|fn (x) – f (x)| < 1
p
 n Np and x Ep where

Ep = Ep – 1 – Ap.

Let A = p
p 1

A ,

then m (A) p
p 1

m(A )

But m (Ap) < 
n

2p

m (A) < p
p 1

n
2

But p
p 1

1
2

 is a G.P. series so S = 

1 1
a 2 2

1 11 r 1
2 2

 = 1

m (A) < 

Also, E – A = E – p
p

A

= p
p

(E A )

= p 1 p
p

(E A )

= p
p

E
Let x  E – A. Then x  Ep p and so

|fn (x) – f (x)| < 1
p

, n  Np.

Let us choose p such that 1
p

 < , we get

|fn (x) – f (x)| < x  E – A and n  Np = N
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Note  Egoroff’s theorem can be stated as: almost every where convergence implies almost
uniform convergence.

10.1.10 Riesz Theorem

Let {fn} be a sequence of measurable functions which converges in measure to f. Then there is a

subsequence nk
f  which converges in measure to f a.e.

Proof: Let { n} and { n} be two sequences of positive real numbers such that  n   0 as n  and

n
n 1

.

Let us now choose an increasing sequence {nk} of positive integers as follows.

Let n be a positive integer such that

nm x E f (x) f(x)

Since fn  f in measure for a given 1 > 0 and 1 > 0, a positive integer n1 such that

n 1 1 11
m x E, f (x) f(x) , n n

Similarly, let n2 be a positive number such that n 2 2 2 12
m x E, f (x) f(x) , n n  and so

on.

In general let nk be a positive number such that

n k k k k 1k
m x : x E, f (x) f (x) and that n n .

We shall now prove that the subsequence nk
f  converges to f a.e.

Let Ak = n i ki
i k k 1

x : x E, f (x) f (x) ,k N and A A  .

Clearly, {Ak} is a decreasing sequence of measurable sets and m (A1) < .

Therefore, we have

m (A) = kk
limm(A )

But m (Ak)  i
i k

0 as k .

Hence m (A) = 0.

Now it remains to show that {fn} converges to f on E – A. Let xo  E – A.
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Notes Then xo ko
A for some positive integer ko.

or xo {x  E : |fn (x) – f (x)| k}, k  ko

which gives |fn (xo) – f (xo)| < k, k  ko

But  k  0 as k .

Hence n o okk
lim f (x ) f(x ) .

10.2 Summary

 Let E be a measurable set and R* be a set of extended real numbers. A function f : E  R* is
said to be a Lebesgue measurable function on E or a measurable function on E iff the set E
(f > ) = {x  E : f (x) > } = f–1 {( , )} is a measurable subset of E   R.

 A property is said to hold almost everywhere (a.e.) if the set of points where it fails to hold
is a set of measure zero.

 Two functions f and g defined on the same domain E are said to be equivalent on E, written
as f ~ g on E, if f = g a.e. on E, i.e. f (x) = g (x) for all x  E – E1, where E1 E with m (E1) = 0.

 f+ = max (f, 0) and f–1 = max (–f, 0)

|f| = f+ + f–1

 Let A be subset of real numbers. We define the characteristic function A of the set A as
follows:

A (x) = 
1, if x A
0, if x A

 A real valued function  is called simple if it is measurable and assumes only a finite
number of values.

10.3 Keywords

Almost Everywhere (a.e.): A property is said to hold almost everywhere (a.e.) if the set of points
where it fails to hold is a set of measure zero.

Characteristic Function: Let A be subset of real numbers. We define the characteristic function
A of the set A as follows:

A (x) = 
1 if x A
0 if x A

Egoroff’s Theorem: Let E be a measurable set with m (E) <  and {fn} a sequence of measurable
functions which converge to f a.e. on E. Then given n > 0 there is a set A  E with m (A) < n such
that the sequence {fn} converges to f uniformly on E – A.

Equivalent Functions: Two functions f and g defined on the same domain E are said to be
equivalent on E, written as f ~ g on E, if f = g a.e. on E, i.e. f (x) = g (x) for all x  E – E1, where E1

 E with m (E1) = 0.



LOVELY PROFESSIONAL UNIVERSITY 119

Unit 10: Measurable Functions

NotesHaracteristic Function: Let A be subset of real numbers. We define the characteristic function A

of the set A as follows:

A (x) = 
1 if x A
0 if x A

Lebesgue Measurable Function: A function f : E  R* is said to be a Lebesgue measurable function
on E or a measurable function on E iff the set

E (f > ) = {x  E : f (x) > } = f–1 { , )} is a measurable subset of E    R.

Measurable Set: A set E is said to be measurable if for each set T, we have

m* (T) = m* (T E) + m* {T Ec)

Non-negative Functions: Let f be a function, then its positive part, written f+ and its negative
part, written f–1, are defined to be the non-negative functions given by

f+ = max (f, 0) and f–1 = max (–f, 0) respectively.

Riesz Theorem: Let {fn} be a sequence of measurable functions which converges in measure to f.

Then there is a subsequence nk
f  which converges to f a.e.

Simple Function: A real valued function  is called simple if it is measurable and assumes only
a finite number of values.

If is simple and has the values 1, 2, … n, then

= 
n

i Ai
i 1

where Ai = {x :  (x) = i}

and Ai  Aj is a null set.

Step Function: A real valued function S defined on an interval [a, b] is said to be a step function
if these is a partition a = xo < x1 … < xn = b such that the function assumes one and only one value
in each interval.

Subsequence: If (xn) is a given sequence in X and (nk) is an strictly increasing sequence of positive

integers, then nk
x  is called a subsequence of (xn).

10.4 Review Questions

1. If f is a measurable function and c is a real number, then is it true to say that cf is measurable?

2. A non-zero constant function is measurable if and only if X is measurable comment.

3. Let Q be the set of rational number and let f be an extended real-valued function such that
{x : f (x) > } is measurable for each  Q. Then show that f is measurable.

4. Show that if f is measurable then the set {x : f (x) = } is measurable for each extended real
number .

5. If f is a continuous function and g is a measurable function, then prove that the composite
function fog is measurable.
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Notes 6. Show that

(i) A B A B

(ii) A B A B A B

(iii) c AA
1

10.5 Further Readings

Books Dudley, R.M. (2002). Real Analysis and Probability (2 ed.). Cambridge University
Press

Strichartz, Robert (2000). The Way of Analysis. Jones and Bortlett.

Online links mathworld.wolfram.com>calculus and Analysis > Measure theory

planetmath.org/Measurable functions.html

zeta.math.utsa.edu/~ mqr 328/class/real2/mfunct.pdf
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Objectives

After studying this unit, you will be able to:

 Define the Riemann integral and Lebesgue integral of bounded function over a set of
finite measure.

 Understand the Lebesgue integral of a non-negative function.

 Solve problems on integration.

Introduction

We now come to the main use of measure theory: to define a general theory of integration. The
particular case of the integral with respect to the Lebesgue measure is not, in any way, simpler
the general case, which will give us a tool of much wider applicability.

11.1 Integration

11.1.1 The Riemann Integral

Let  f be a bounded real valued function defined on the interval [a, b] and let a = x0 < x1 < … < xn= b
be a sub-division of [a, b].

Then for each sub-division we can define the sums

S = 
n

i i 1 i
i 1

(x x ) M

and s = 
n

i i 1 i
i 1

(x x ) m

Richa Nandra, Lovely Professional University
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Notes where Mi = 
x x xi 1 i

sup f(x) ,

mi = 
x x xi 1 i

inf f (x)

We then define the upper Riemann integral of f by

b

a

R f(x) dx inf S

where the infimum is taken over all possible sub-divisions of [a, b].

Similarly, we define the lower Riemann integral

b

a

R f(x) dx sup S

The upper integral is always at least as large as the lower integral, and if the two are equal, we
say that f is Riemann integrable and we call this common value the Riemann integral of f.

It will be denoted by

b

a

R f(x) dx

Note  By a step function we mean function  s.t.

 (x) = i  x  [xi–1, xi]

for some sub-division of [a, b] and some set of constant i then

b

a

(x) dx = 
x x1 n

x xo n 1

(x) dx (x) dx

= 
x x x1 2 n

1 2 n

x x xo 1 n 1

dx dx dx

= 1 (x1 – x0) + 2 (x2 – x1) + … + n (xn–1 – xn)

= 
n

i i i 1
i 1

(x x ) … (1)

with this in mind, we see that

b

a

R f (x) dx = pinf (f)
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= 

n

i i i 1
i 1

inf M (x x )

= 
b

a

inf (x) dx  for all step functions

 (x)  f (x)

Similarly
b

a

R f (x) dx = sup Lp (f)

= 
n

i i i 1
i 1

sup m (x x )

= 
b

a

sup (x) dx  for all step function

 (x)  f (x).

11.1.2 Lebesgue Integral of a Bounded Function over a Set of Finite
Measure

Characteristic Function

The function E defined by

E (x) = 1 if x E
0 if x E

is called the characteristic function of E.

Simple Function

A linear combination  (x) = 
n

i Ei
i 1

(x)  is called a simple function if the sets Ei are measurable.

This representation of  is not unique.

However, a function is simple if and only if it is measurable and assumes only a finite number
of values.

Canonical Representation

If is simple function and { 1, 2, …, n} the set of non-zero values of , then

= 
n

i Ei
i 1

,

where Ei = {x : (x) = i}.
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Notes This representation of is called the canonical representation. Here Ei’s  are disjoint and i’s are
finite in number, distinct and non-zero.

Elementary Integral

Definition: If vanishes outside a set of finite measure, we define the elementary integral of by
n

i i
i 1

(x) dx mE when has the canonical representation.

= 
n

i Ei
i 1

.

We sometimes abbreviate the expression for this integral . If E is any measurable set, we

define the elementary integral of over E by E

E

.

If E = [a, b], then the integral 
[a , b]

 will be denoted by 
b

a

.

Theorem 1: Let  and  be simple functions which vanish outside a set of finite measure, then

(a b ) = a b and if a.e., then

Proof: Since and are simple functions.

Therefore these can be written in the canonical form

=
m

i Ai

and = 
m

j Bj
j 1

B

where {Ai} and {Bj} are disjoint sequences of measurable sets and

Ai = {x :  (x) = i}

and Bj = {x :  (x) = j}

The set Ek obtained by taking all intersections Ai  Bj form a finite disjoint collection of measurable
sets. We may write

= 
N

k Ek
k 1

a  and

= 
N

k Ek
k 1

b  (where N = mm )
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Now a  + b = 

N N

k E k Ek k
k 1 k 1

a a b b

= 
N

k k Ek
k 1

(aa bb )

which is again a simple function.

Since = i i
i

a m E

(a b ) = 
N

k k k
k 1

(aa bb ) m E  (by definition)

= 
N N

k k k k
k 1 k 1

a a m E b b m E

= a b

Now since  a.e.

 –  0 a.e.

We have proved that

(a b ) = a b

Put a = 1, b = –1 in the first part, we get

( ) = 

Since  –   0 a.e. is a simple function, by the definition of the elementary integral, we have

( )  0

 0

 

Theorem 2: Riemann integrable is Lebesgue integrable.

Proof: Since f is Riemann integrable over [a, b], we have

b b b

1 1f1 f
a a a

inf (x) dx sup (x) dx R f(x) dx

where 1 and 1 vary over all step functions defined on [a, b].
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Notes Since we know that every step function is a simple function,

b

1
f1 a

sup (x) dx  
b

f
a

sup (x) dx

and
b

1f1
a

inf (x) dx  
b

f
a

inf (x) dx

where  and  vary over all the simple functions defined on [a, b]. Thus from the above relation,
we have

b b b b

ff
a a a a

R f(x) dx sup (x) dx inf (x) dx R f(x) dx

b b

ff
a a

sup (x) dx inf (x) dx

b b

a a

f (x) dx R f(x) dx

Note  The converse of this theorem is not true i.e.

A Lebesgue integrable function may not be Riemann integrable

e.g. Let f be a function defined on the interval [0, 1] as follows:

f (x) = 
1, if x is rational
0, if x is irrational

Let us consider a partition p of an interval [0, 1].

U (p, f) = 
N

i i
i 1

M x

= 1 x1 + 1 x2 + …… + 1 xn = 1 – 0

= 1.

1

0

f dx = inf U (p, f) = 1 – 0 = 1.

1

0

f dx = sup L (p, f)

= sup {0 x1 + 0 x2 + …… + 0 xn}

= 0
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Thus f dx  f dx

The function is not Riemann integrable.

Now for Lebesgue Integrability

Let A1 be the set of all irrational numbers and A2 be the set of all rational numbers in [0, 1].

The partition P = {A1, A2} is a measurable partition of [0, 1] and mA1 = 0, mA2 = 1.

L (p, f) = 1 2A A1 2
inf f(x) mA inf f(x) mA

= 1 20 mA 1 mA  = 1.

U (p, f) = 1 2
A A1 2

sup f(x) mA sup f(x) mA

= 1 20 mA 1 mA  = 1.

p
sup L (p, f) = 

p
1 inf U(p, f)

 f is Lebesgue integrable over [0, 1].

Theorem 3: If f and g are bounded measurable functions defined on the set E of finite measure,
then

(1)
E E E

(af bg) a f b g

(2) If f = g a.e., then 
E E

f g

(3) If f  g a.e., then 
E E

f g

Hence f |f|

(4) If A and B are disjoint measurable set of finite measure, then

A B A B

f f f

Proof of 1: Result is true if a = 0

Let a  0.

If  is a simple function then so is a  and conversely.

Hence for a > 0

E

af = 
a af

E

inf a
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= 

f
E

inf a ( a > 0)

= 
f

E

inf a

= 
f

E

a inf

= 
E

a f

Again if a < 0,

E

af = a af
E

inf a

= 
f

E

sup a ( a < 0)

= 
f

E

sup a

= 
f

E

a sup

= 
E

a f

Therefore in each case

E

af = 
E

a f … (i)

Now we prove that

E

(f g) = 
E E

f g

Let 1 and 2 be two simple functions such that 1 > f and 2  g, then 1 + 2 is a simple
function and 1 + 2  f + g.

or f + g = 1 + 2

E

(f g) 1 2

E

( )

But 1 2

E

= 1 2

E E
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E

(f g)  1 2

E E

Since 1f 1
E

inf = 
E

f

and 2g 2
E

inf = 
E

g

E

(f g)  
E E

f g … (2)

On the other hand if 1 and 2 are two simple functions such that 1 < f and 2  g. Then 1 + 2 is
simple function and

1 + 2  f + g,

or f + g  1 + 2

E

(f g) 1 2

E

( )

But 1 2

E

( ) = 1 2

E E

E

(f g) 1 2

E E

Since 1
f 1 E

sup = 
E

f

and 2
f 2 E

sup = 
E

g

E

(f g)
E E

f g … (3)

From (2) and (3), we get

E

(f g) = 
E E

f g

E

(af bg) = 
E E

af bg

= 
E E

a f b g  from (i)

Proof of 2: Since f = g a.e.

f – g = 0 a.e.
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Notes Let F = {x : f (x)  g (x)}

Then by definition of a.e., we have mF = 0 and F E.

E

(f g) = 
F (E F) F E F

(f g) (f g) (f g)

= (f – g) mF + (f – g) m (E – F)

= (f – g) . 0 + 0 . m (E – F) [ mF = 0 and f – g = 0 over E – F]

= 0

E

(f g) = 0

E E

f g = 0  
E E

f g

Note  Converse need not be true

e.g. Let the functions f : [–1, 1]  R and g : [–1, 1]  R be defined by

f (x) = 2 if x 0
0 if x 0

and g (x) = 1  x.

Then
1

1

f(x) dx = 2 = 
1

1

g(x) dx

But f  g a.e.

In other words, they are not equal even for a single point in [–1, 1].

Proof of 3: f  g a.e.

f – g  0 a.e.

Let  be simple function,

= f – g

 0 [ f – g = 0 a.e.]

E

 0

E

(f g)  0

E E

f g  0



LOVELY PROFESSIONAL UNIVERSITY 131

Unit 11: Integration

Notes

E

f  
E

g

Since f  |f|

E

f  
E

|f| … (1)

Again – f  |f|

E

f
E

|f|

or
E

|f|
E

f … (2)

From (1) and (2) we get

E

|f|
E

f
E

|f|

E

f
E

|f|

Proof of 4: It follows from (3) and the fact that 
E

1 mE .

Proof of 5:
A B

f = A Bf

Now A B = A B A B

where A and B are disjoint measurable sets i.e.

A  B = 

A B

f = A B A Bf ( ) f

= A Bf f 0 [ A B =  and m ( ) = 0]

= 
A B

f f

11.1.3 The Lebesgue Integral of a Non-negative Function

Definition: If f is a non-negative measurable function defined on a measurable set E, we define

E

f = 
h f

E

sup h ,
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Notes where h is a bounded measurable function such that

m {x : h (x)  0} < 

Theorem 4: Let f be a non-negative measurable function. Show that f 0  implies f = 0 a.e.

Proof: Let  be any measurable simple function such that

 f.

Since f = 0 a.e. on E

 0 a.e.

E

(x) dx  0

Taking supremum over all those measurable simple functions  f, we get

E

f dx  0 … (1)

Similarly let  be any measurable simple function such that  f

Since f = 0 a.e.

 0 a.e.

E

(x) dx  0

Taking infimum over all those measurable simple functions  f, we get

E

f dx  0 … (2)

From (1) and (2), we get

E

f dx = 0.

Conversely, let
E

f dx = 0

If En = 
1x : f (x)
n , then

E

f dx > En
E

1 (x) dx
n

But En
E

1 (x) dx
n

= n
1 m E
n

(By definition)
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E

f dx > n
1 m E
n

Or n
1 m E
n

< 
E

f dx

But
E

f dx < 0

n
1 m E
n

< 0

m En < 0

But m En  0 is always true

m En = 0

But {x : f (x) > 0} =  n
n 1

E

and m En = 0

 n
n 1

m E = 0

m {x : f (x) > 0} = 0

f = 0 a.e. on E

Theorem 5: Let f and g be two non-negative measurable functions. If f is integrable over E and
g (x) < f (x) on E, then g is also integrable over E, and

E

(f g) = 
E E

f g .

Proof: Since we know that if f and g are non-negative measurable functions defined on a set E,
then

E

(f g) = 
E E

f g

Since f = (f – g) + g,

therefore we have

E

f = 
E E E

(f g g) (f g) g … (1)

Since the functions f – g and g are non-negative and measurable. Further, f being integrable over

E, 
E

f  <  (by definition)
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Notes Therefore, each integral on the right of (1) is finite.

In particular, 
E

g  < ,

which shows that g is an integrable function over E.

Since
E

f = 
E E

(f g) g

E E

f g = 
E

(f g) .

11.1.4 The General Lebesgue Integral

For the positive part f+ of a function f, we define

f+ = max (f, 0)

and negative part f– by f–

f– = max (–f, 0)

and that f is measurable if and only if both f+ and f– are measurable.

Note f = f+ – f–

and |f| = f+ + f–

Definition: A measurable function f is said to be Lebesgue integrable over E if f+ and f– are both

Lebesgue integrable over E. In this case, we define 
E E E

f f f .

Theorem 6: Let f and g be integrable over E, then

(a) The function of f is integrable over E, and 
E E

cf c f .

(b) Sum of two integrable functions is integrable i.e. the function f + g is integral over E, and

E

(f g) = 
E E

f g

(c) If f  g a.e., then 
E E

f g .

(d) If A and B are disjoint measurable sets contained in E, then

A B

f = 
A B

f f .
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NotesProof: (a)  If c  0, then

(cf)+ = cf+

(cf)– = cf

and if c < 0, then

(cf)* = (–c) . f

(cf)– = (–c) . f+

Since f is integrable so f+ and f– are also integrable and conversely. Hence the result
follows.

(b) In order to prove the required result first of all we show that if f1 and f2 are non-negative
integrable functions such that f = f1 – f2, then

E

f = 1 2

E E

f f … (1)

Since f = f+ – f–,

Also f = f1 – f2,

then f+ – f– = f1 – f2

f+ + f2 = f1 + f– … (2)

Also we know that if f and g are non-negative measurable functions defined on a set E,
then

E

(f g) = 
E E

f g

Then from (2), we get

2

E E

f f = 1

E E

f f

E E

f f = 1 2

E E

f f … (3)

But f is integrable so f+ and f– are integrable i.e.

f = f f

Therefore (3) becomes

Hence
E

f = 1 2

E E

f f

which proves (1).

Now, if f and g are integrable functions over E, then

f+ + g+, f– + g– and f + g = (f+ + g+) – (f– + g–)

and also integrable functions over E.
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( A measurable function f is integrable over E if and only if |f| is integrable over E.)

Thus |f| + |g| is integrable over E.

( 
E E E

(f g) f g  and by the definition of integrable)

Since |f + g|  |+|f| + |g|

which shows that f + g is integrable.

Hence sum of two integrable functions is integrable.

Thus
E

(f g) = 
E E

(f g ) (f g )

= 
E E E E

f g f g

= 
E E E E

f f g g

= 
E E

f g

(c) f  g a.e.

f – g  0 a.e.

g – f  0 a.e.

E

(g f)  0

Since g = f + (g – f) and f, g – f are integrable over E.

Then by the given hypothesis (g – f)– = 0 a.e.

then 
E

(g f)  = 0,

(Since we know that if f = 0 a.e. then 
E

f  = 0)

E E E E E E

g f (g f) f (g f) (g f)

becomes

E

g = 
E E E E

f (g f) 0 f (g f) ( (g – f)  0)
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E

f

E

g  
E E E

f f g

(d)
A B

f = A Bf

= A Bf f

= 
A B

f f .

Example: Let f be a non-negative integrable function. Show that the function F defined
by

F (x) = 
x

f (t) dt  is continuous on R.

Solution: Since f is a non-negative integrable function, then given  > 0 there is a  > 0 such that for
every set A R with m (A) < , we have

A

f < 

If xo  R, then  x  R with |x – xo| < , we have

x

xo

f (t) dt < 

x

xo

f (t) dt f (t) dt < 

x

xo

f (t) dt f (t) dt < 

xx o

f (t) dt f (t) dt < 

|F (x) – F (xo)| < 

Hence F is continuous at xo. Since xo  R is arbitrary, F is continuous on R.
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 Let  and  be simple functions which vanish outside a set of finite measure, then

(a b ) a b and if a.e., then

 A Lebesgue integrable function may not be Riemann integrable.

 Let A1 be the set of all irrational numbers and A2 be the set of all rational numbers in [0, 1].

 If f is a non-negative measurable function defined on a measurable set E, we define

h f
E E

f sup h ,

where h is a bounded measurable function such that

m {x : h (x)  0} < 

 Let f and g be two non-negative measurable functions. If f is integrable over E and g (x) <
f (x) on E, then g is also integrable over E, and

E E E

(f g) f g .

11.3 Keywords

Canonical Representation: If is simple function and { 1, 2, …, n} the set of non-zero values of
, then

= 
n

i Ei
i 1

,

where Ei = {x : (x) = i}.

Characteristic Function: The function E defined by

E (x) = 1 if x E
0 if x E

is called the characteristic function of E.

Elementary Integral: If vanishes outside a set of finite measure, we define the elementary

integral of by 
n

i i
i 1

(x) dx mE when has the canonical representation.

= 
n

i Ei
i 1

.

Lebesgue Integrable: A measurable function f is said to be Lebesgue integrable over E if f+ and f–

are both Lebesgue integrable over E. In this case, we define 
E E E

f f f .
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Simple Function: A linear combination (x) = 

n

i Ei
i 1

(x)  is called a simple function if the sets

Ei are measurable.

Simple Function: A linear combination  (x) = 
n

i Ei
i 1

(x)  is called a simple function if the sets Ei

are measurable.

This representation of  is not unique.

However, a function is simple if and only if it is measurable and assumes only a finite number
of values.

The Lebesgue Integral of a Non-negative Function: If f is a non-negative measurable function
defined on a measurable set E, we define

E

f = 
h f

E

sup h ,

where h is a bounded measurable function such that

m {x : h (x)  0} < 

The Riemann Integral: Let  f be a bounded real valued function defined on the interval [a, b] and
let a = x0 < x1 < … < xn= b be a sub-division of [a, b].

Then for each sub-division we can define the sums

S = 
n

i i 1 i
i 1

(x x ) M

and s = 
n

i i 1 i
i 1

(x x ) m

where Mi = 
x x xi 1 i

sup f(x) ,

mi = 
x x xi 1 i

inf f (x)

11.4 Review Questions

1. Prove that 
E E

a f a f  real number a.

2. If f is bounded real valued measurable function defined on a measurable set E of finite

measure such that a  f (x)  b, then show that amE 
E

f bmE.

3. If f and g are non-negative measurable functions defined on E   then prove that

(a)
E E

cf c f, c 0
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(b)

E E E

(f g) f g

(c) f 0 f 0 a.e.

(d) If f  g a.e. then 
E E

f g

4. If f is integrable over E, then show that |f| is integrable over E, and 
E E

f |f|.

5. Show that if f is a non-negative measurable function then f = 0 a.e. on E iff 
E

f = 0.

6. If 
E

f  = 0 and f (x)  0 on E, then f = 0 a.e.

11.5 Further Readings

Books Erwin Kreyszig, Introductory Functional Analysis with Applications, John Wiley &
Sons Inc., New York, 1989

Walter Rudin, Real and Complex Analysis, Third McGraw Hill Book Co., New York,
1987

R.G. Bartle, The Elements of Integration and Lebesgue Measure, Wiley Interscience,
1995

Online links www.maths.manchester.ac.uk

www.uir.ac.za
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12.2 Summary

12.3 Keywords

12.4 Review Questions

12.5 Further Readings

Objectives

After studying this unit, you will be able to:

 Understand bounded convergence theorem.

 State and prove monotone convergence theorem and Lebesgue dominated convergence
theorem.

 Solve related problems on these theorems.

Introduction

Convergence of a sequence of functions can be defined in various ways and there are situations
in which each of these definitions is natural and useful. In this unit, we shall study about
convergence almost everywhere, pointwise and uniform convergence. We shall also prove
bounded convergence theorem and monotone convergence theorem which are so useful in
solving problems on convergence. The dominated convergence theorem is one of the most
important results of Lebesgue’s integration theory. It gives a general sufficient condition for the
validity of proceeding to the limit of a sequence of functions under the integral sign. It is an
invaluable tool to study functions defined by integrals.

12.1 General Convergence Theorems

12.1.1 Convergence almost Everywhere

Let <fn> be a sequence of measurable functions defined over a measurable set E. Then <fn> is said
to converge almost everywhere in E if there exists a subset E0 of E s.t.

Richa Nandra, Lovely Professional University
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Notes (i) fn(x)  f (x),  x  E – E0,

and (ii) m (E0) = 0.

12.1.2 Pointwise Convergence

Let <fn> be a sequence of measurable functions on a measurable set E. Then <fn> is said to
converge “pointwise” in E, if  a measurable function f on E such that

fn(x)  f (x)  x  E or

nn
lt f (x) = f (x)

12.1.3 Uniform Convergence, Almost Everywhere (a.e.)

Let <fn> be a sequence of measurable functions defined over a measurable set E. Then the
sequence <fn> is said to converge uniformly a.e. to f, if  a set E0  E s.t.

(i) m (E0) = 0 and

(ii) <fn> converges uniformly to f on the set E – E0.

12.1.4 Bounded Convergence Theorem

Theorem 1: State and Prove: Bounded Convergence Theorem

Statement: Let {fn} be a sequence of measurable functions defined on a set E of finite measure, and
suppose that there is a real number M such that |fn(x)|  M n and x. If f (x) = nn

lim f (x)  for each

x in E, then

E

f = nn
E

lim f

Proof: Since f (x) = nn
E

lim f (x)  and fn is measurable on E

f is also measurable on E

Let  > 0 be given

Then measurable set A E with mA < 
4M

 and a positive integer N such that

|fn(x) – f (x)| < 
2mE

n  N and x   E – A

n

E E

f f = n

E

(f f)

 n

E

(f f)
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= n n

E A A

(f f) (f f)  as (E – A)  A = 

n

E A A

1 f f
2mE

 
A

m(E A) 2M 1
2mE

 mE 2M mA
2mE

 as m (E – A)  mE

< 2M
2 4M

= 
2 2

= 

Thus n

E E

f f < 

But  was arbitrary

nn
E

lim f = 
E

f

12.1.5 Fatou’s Lemma

If {fn} is a sequence of non-negative measurable functions and fn(x)  f (x) almost everywhere on
a set E, then

E

f  n
n

E

lim f

i.e.
E

f nn
E

lim inf f

Proof: Since integrals over sets of measure zero are zero.

Without loss of generality, we may assume that the convergence is everywhere. Let h be
a bounded measurable function with h  f and h (x) = 0 outside a set E   E of finite
measure.

Define a function hn by

hn(x) = Min. {h(x), fn(x)}

then hn(x)  h(x) and hn(x)  fn(x)

hn is bounded by the boundedness of h and vanishes outside E  as x  E – E  h(x) = 0
 hn(x) = 0 because
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Notes Since hn = h or hn = fn

hn is measurable function on E

If hn = h, then hn  h

If hn = fn < h f

then fn h as fn f

hn  h

Thus hn  h

Since hn (x)  h (x) for each x  E  and {hn} is a sequence of bounded measurable functions
on E

By Bounded Convergence Theorem

nn
E E E E E E

h h h h lim h

as E = (E – E )  E  & (E – E )  E  = 

= n
n

E

lim h

 n n n
n

E

lim f as h f

n
n

E

lim f as E E

n
n

E E

h lim f

Taking supremum over all h  f, we get

n f
E

sup h  n
n

E E

h lim f

E

f  n
n

E E

f lim f

Remarks:

(1) If in Fatou’s Lemma, we take

fn(x) = 
1, n x n 1
0, otherwise

with E = R

then n
n

E E

f lim f

Thus in Fatou’s Lemma, strict inequality is possible.
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However, if we take

fn(x) = 
1 2n, x
n n

0, otherwise

with E = [0, 2]

Then n
n

E E

f lim f .

12.1.6 Monotone Convergence Theorem

Statement: Let {fn} be an increasing sequence of non-negative measurable functions and let

f = nn
lim f . Then

nn
f lim f

Proof: Let h be a bounded measurable function with h  f and h (x) = 0 outside a set E  E of finite
measure

Define a function hn by

hn(x) = Min. {h(x), fn(x)}

then hn(x)  h(x) and hn(x)  fn(x)

hn is bounded by the boundedness of h and vanishes outside E  as

x  E – E   h(x) = 0  hn(x) = 0 because fn(x)  0

Since hn = h or hn = fn

hn is measurable function on E

If hn = h, then hn  h

then fn  h as fn  f

hn  h

Thus hn  h

Since hn(x)  h(x) for each x  E  and {hn} is a sequence of measurable functions on E

By Bounded Convergence Theorem

nn
E E E E E E

h h h h lim h

as E = (E – E )  E  & (E – E )  E  = .

= n
n

E

lim h
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= n

n
E

lim f

n
n

E

lim f as E E

E

h n
n

E

lim f

Taking supremum over all h  f, we get

E

sup h n
n

E

lim f

E

f n
n

E

lim f … (1)

Since {fn} is monotonically increasing sequence and fn  f

fn  f

nf f

nn
lim f f … (2)

From (1) and (2), we have

f n nnn
lim f lim f f

f nn
lim f

Theorem 2: Let {un} be a sequence of non-negative measurable functions, and let f = n
h 1

u .

Then n
h 1

f u

Proof: Let fn = u1 + u2 + … + un = 
n

j
j 1

u

then fn  f

i.e. nn
lim f f

Let h be a bounded measurable function with h  f and h(x) = 0 outside a set E  E of finite
measure.

Define a function hn by

hn(x) = Min. {h (x), fn(x)}
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Notesthen hn (x)  h(x) and hn(x)  fn(x)

hn is bounded by the boundedness of h and vanishes outside E  as

x  E – E   h(x) = 0  hn(x) = 0 because fn(x)  0.

Since hn = h or hn = fn

hn is measurable function on E

If hn = h, then hn  h

If hn = fn < h < f

then fn  h as fn  f

hn  h

Thus hn  h

Since hn(x)  h(x) for each x  E  and {hn} is a sequence of measurable function on E

By Bounded Convergence Theorem

nn
E E E E E E

h h h h lim h

as E = (E – E )  E  & (E – E )  E  = 

= n
n

E

lim h

= n
n

E

lim f

n
n

E

lim f as E E

E

h n
n

E

lim f

Taking supremum over all h  f, we get

h f
E

sup h n
n

E

lim f … (1)

E

f n
n

E

lim f

Since {fn} is monotonically increasing sequence and fn  f

fn  f

nf f

nn
lim f f … (2)
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Notes From (1) and (2), we have

f n nnn
lim f lim f f

f nn
lim f

= nn
lim f

= 
n

jn
j 1

lim u

= 
n

jn
j 1

lim u

= 
n

j
j 1

u

Hence f = n
n 1

u

Theorem 3: Let f be a non-negative function which is integrable over a set E. Then given  > 0
there is a  > 0 such that for every set A E with mA < , we have

A

f < 

Proof: If f is bounded function on E

Then  positive real number M such that

|f (x)|  M  x  E

For given  > 0 = 
M

 such that for every set A  E with mA < , we have

A A

f M M mA M. M
M

i.e.
A

f

Thus the result is true if f is a bounded function. So assume that f is not a bounded function on E.

Define a function fn on E by

n
f(x) if f(x) nf (x) n otherwise
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fn  f at each point

Since {fn} is an increasing sequence of bounded functions such that fn  f on E

By the monotone convergence theorem

nn
E E

lim f f

For given  > 0  a positive integer N such that

n

E E

f f for n N
2

N

E E

f f
2

N

E E

f f
2 2

N

E

(f f )
2

Choose 
2N

If mA < , then we have

A

f = N N

A

(f f ) f

= N N

A A

(f f ) f

 N N

E A

(f f ) N as f N

< NmA
2

< N
2

< N
2 2N

= 2 2

= 
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A

f

12.1.7 Lebesgue Dominated Convergence Theorem

Theorem 4: State and prove Lebesgue dominated convergence theorem

Statement: Let g be an integrable function on E and let {fn} be a sequence of measurable functions
such that |fn|  g on E and nn

lim f  = f a.e. on E. Then

nn
E E

f lim f .

Proof: Since we know that if f is a measurable function over a set E and there is an integrable
function g such that |f|  g, then f is integrable over E. So clearly, each fn is integrable over E.

Also nn
lim f  = f a.e. on E.

and |fn|  g a.e. on E

|f|  g a.e. on E.

Hence f is integrable over E.

Let { n} be a sequence of functions defined by n = fn + g. Clearly, n is a non-negative and integrable
function for each n.

Therefore, by Fatou’s Lemma, we have

E

(f g)  n
n

E

lim (f g)

E

f  n
n

E

lim f … (1)

Similarly, let { n} be a sequence of functions defined by n = g – fn. Clearly n is a non-negative
and integrable function for each n. So, given by Fatou’s Lemma, we have

E

(g f) n
n

E

lim (g f )

E E

g f n
n

E E

g lim f

E

f n
n

E

lim f

E

f n

E

lim f … (2)

Hence from (1) & (2), we get

E

f = n n

E E

lim f lim f
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But n

E

lim f = n n

E E

lim f lim f

Hence
E

f = n

E

lim f .

Corollary: Let {un} be a sequence of integrable functions on E such that n
n 1

u  converges a.e. on

E. Let g be a function which is integrable on E and satisfy 
n

i
i 1

u g  a.e. on E for each n. Then

n
n 1

u  is integrable on E and n n
n 1 n 1E E

u u .

Proof: Let 
n

i n
i 1

u f .

Applying Lebesgue Dominated Convergence Theorem for the sequence {fn}, we get

n n
n 1 n 1E E

u u

Corollary: If f is integrable over E and {Ei} is a sequence of disjoint measurable sets such that

i
i 1

E E , then

i 1E Ei

f f

Proof: Since {Ei} is a sequence of disjoint measurable sets, we may write.

f = Ei
i 1

f

The function f. Ei  is integrable over E since Ei
f |f| and |f| is integrable over E. Moreover

n

Ei
i 1

f |f|, n N

Thus the conditions of above corollary are satisfied and hence

E

f = Ei
i 1E

f
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= Ei

i 1 E

f

= 
i 1 Ei

f

Example: Show that the theorem of bounded convergence applies to fn(x) = 2 2

nx
1 n x

, 0 

x  1.

Sol: fn(x) = 2 2

nx
1 n x

= 
1

1 nx
nx

= 2
1

1 nx 2
nx

1
2

Thus  a number 1
2

 such that |fn(x)|  1
2

.

Hence it satisfies the conditions of bounded convergence theorem.

Now

1

nn
0

lim f (x) dx = 
1

2 2

0

nxlim dx
1 n x

= 2 2

n

1lim log(1 n x ) form
2n



= 
2 2 2

n

[1/(1 n x )] 2nxlim
2

[Using L’Hospital Rule]

= 
2

2 2n

nxlim
1 n x

= 
2

n 2
2

1 x
nlim 01 x

n

and
1

nn
0

lim f (x) dx = 
1

2 2n
0

nxlim dx
1 n x
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= 

1

0

(0) dx 0

1

nn
0

lim f (x) dx =  
1

nn
0

lim f (x) dx

This verifies the result of bounded convergence theorem.

Example: Use Lebesgue dominated convergence theorem to evaluate 
1

nn
0

lim f (x) dx  ,

where

fn(x) = 
3/2

2 2

n x
1 n x

, n = 1, 2, 3, … 0  x  1.

Solution: fn(x) = 
3/2

2 2

n x
1 n x

= 
3/2 2

2 2

1 n x
x 1 n x

1 g(x), (say)
x

fn(x)  g (x)

and g (x)  L (0, 1],

Hence by Lebesgue Dominated Convergence Theorem.

1

nn
0

lim f (x) dx = 
1

nn
0

lim f (x) dx

= 
1 3/2

2 2n
0

n xlim dx
1 n x

= 
1

n 2
0 2

1 xlim dx1n x
n

= 
1

0

0 dx  = 0.

Example: If (fn) is a sequence of non-negative function s.t. fn  f and fn  f for each n, show
that

nf lim f
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Notes Solution: From the given hypothesis it follows that

nlim f  f … (1)

Also by Fatou’s Lemma, we have

f  nlim f … (2)

Then from (1) and (2), we get

f  n nlim f lim f f .

Hence f = n n nlim f lim f lim f .

Example: If  > 0, prove that 
n n

1 x 1

n
o o

xLim 1 x dx e .x dx
n

, where the integrals are

taken in the Lebesgue sense.

Solution: If fn(x) =
n

1x1 .x 0
n

, then fn(x)  g(x), where g(x) = e–x.x –1 
n

x

n

xrecall Lim 1 e
n

Also g(x)  L[0, ], hence by Lebesgue dominated convergence theorem, we get

n

nn
o

Lim f (x) dx = nn
o

Lim f (x) dx

= 
n

1

n
o

xLim 1 .x dx
n

= x 1

o

e .x dx

Example: Show that if  > 1,

1

1

o

xsin x dx 0(n ) as n
1 (nx)

.

Solution: Consider the sequence <fn(x)> s.t.

fn(x) = 
nx sin x
1 (nx)

, n = 1, 2, ………

Obviously since  > 1, and x  [0, 1]
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nx sin x 1
1 (nx)

If (x) = 1, x, then | fn (x) |  (x), x.

Hence by dominated convergence theorem, we get

1 1 1

n n
0 0 0

nx sin x nx sin xLim dx Lim dx (0) dx 0
1 (nx) 1 (nx)

1

n
0

x sin xLim n dx
1 (nx)

= 0

1

0

x sin x dx
1 (nx)

= 0 (n–1).

Example: Show that 
2 22 n x

2n
a

n xeLim dx
1 x

 = 0, if a > 0, but not for a = 0.

Solution: If a > 0, 
putting nx u
and du ndx , we get

2 2 22 n 2 u u

(na, )2 2 2 2 2

a na o

n xe x ue du uedx du
1 x 1 u /n 1 u /n

Also 
2u

2u
(na, )2 2

u.e u.e L [0, ]
1 (u /n )

and 
2u

(ne , ) ( , )2 2n

u.eLim 0 as 0
1 u /n

.

Hence by Lebesgue dominated convergence theorem, we obtain

2 2 22 n x u

(na, )2 2 2n n
a a

n xe u.eLim dx Lim du
1 x 1 u /n

               = 
2u

(na, ) 2 2n
a o

u.eLim du 0 dx 0
1 u /n .

Now when a = 0,

12 2 2 22 n x 2 n x

2 2

o 0

n xe n xedx dx
1 x 1 x
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2 22 n x

0

1 n x.e dx
2

 (putting 1 in place of x2)

= 
12 2n x

0

1 1e
4 4

12.2 Summary

 Bounded Convergence Theorem: Let {fn} be a sequence of measurable functions defined on
a set E of finite measure, and suppose that there is a real number M such that |fn(x)| < M

n and all x. If f (x) = nn
lim f (x)  for each x in E, then

nn
E E

f lim f

 Monotone Convergence Theorem: Let {fn} be an increasing sequence of non-negative
measurable functions and let f = nn

lim f . Then

nn
f lim f

 Lebesgue Dominated Convergence Theorem: Let g be an integrable function on E and let {fn}
be a sequence of measurable functions such that |fn|  g on E and nn

lim f  = f a.e. on E. Then

nn
E E

f lim f

12.3 Keywords

Convergence almost Everywhere: Let <fn> be a sequence of measurable functions defined over a
measurable set E. Then <fn> is said to converge almost everywhere in E if there exists a subset E0

of E s.t.

(i) fn(x)  f (x),  x  E – E0,

and (ii) m (E0) = 0.

Convergence: Refers to the notion that some functions and sequence approach a limit under
certain conditions.

Fatou’s Lemma: If {fn} is a sequence of non-negative measurable functions and fn(x)  f (x) almost
everywhere on a set E, then

nn
E E

f lim inf f

Pointwise Convergence: Let <fn> be a sequence of measurable functions on a measurable set E.
Then <fn> is said to converge “pointwise” in E, if  a measurable function f on E such that

fn(x)  f (x)  x  E or

nn
lt f (x) = f (x)
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NotesUniform Convergence, Almost Everywhere (a.e.): Let <fn> be a sequence of measurable functions
defined over a measurable set E. Then the sequence <fn> is said to converge uniformly a.e. to f,
if  a set E0  E s.t.

(i) m (E0) = 0 and

(ii) <fn> converges uniformly to f on the set E – E0.

12.4 Review Questions

1. Show that we may have strict inequality in Fatou’s Lemma.

2. Let <fn> be an increasing sequence of non-negative measurable functions, and let f = lim fn.

Show that nf lim f .

Deduce that n
n 1

f u , if un is a sequence of non-negative measurable functions and

n
n 1

f u .

3. State the Monotone Convergence theorem. Show that it need not hold for decreasing
sequences of functions.

4. Let {gn} be a sequence of integrable functions which converge a.e. to an integrable function
g. Let {fn} be a sequence of measurable functions such that |fn|  gn and {fn} converges to f
a.e.

If nn
g lim g

then prove that nn
f lim f .

5. State and prove monotone convergence theorem.

12.5 Further Readings

Books G.F. Simmons, Introduction to Topology and Modern Analysis, New York: McGraw
Hill, 1963.

H.L. Royden, Real analysis, Prentice Hall, 1988.

Online links dl.acm.org

math.stanford.edu

www.springerlink.com
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Objectives

After studying this unit, you will be able to:

 Define signed measure.

 Describe positive and negative and null sets.

 Solve problems on signed measure.

Introduction

We have seen that a measure is a non-negative set function. Now we shall assume that it takes
both positive and negative values. Such assumption leads us to a new type of measure known as
signed measure. In this unit, we shall start with definition of signed measure and we shall prove
some important theorems on it.

13.1 Signed Measures

13.1.1 Signed Measure: Definition

Definition: Let the couple (X, ) be a measurable space, where  represents a -algebra of
subsets of X. An extended real valued set function

 :   [– , ]

defined on  is called a signed measure, if it satisfies the following postulates:

(i)  assumes at most one of the values –  or + .

(ii)  ( ) = 0.

Sachin Kaushal, Lovely Professional University
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Notes(iii) If <An> is any sequence of disjoint measurable sets, then

 n n
n 1n 1

A (A ),

i.e.,  is countably additive.

From this definition, it follows that a measure is a special case of a signed measure. Thus, every
measure on  is a signed measure but the converse is not true in general, i.e. every signed
measure is not a measure in general.

If –  <  (A) < , for very A  , then we say that signed measure  is finite.

13.1.2 Positive Set, Negative Set and Null Set

Definition

(a) Positive Set: Let (X, ) be a measurable space and let A be any subset of X. Then A  X is
said to be a positive set relative to a signed measure  defined on (X, ), if

(i) A  , i.e. A is measurable.

(ii)  (E)  0, E  A s.t. E is measurable.

Obviously, it follows from the above definition that:

(i) every measurable subset of a positive set is a positive set,

(ii)  is a positive set w.r.t. every signed measure.

Also for A to be positive. (A)  0 is the necessary condition, but not in general sufficient
for A to be positive.

(b) Negative Set: Let (X, ) be a measurable space. Then a subset A of X is said to be a negative
set relative to a signed measure  defined on measurable space (X, ) if

(i) A   i.e., A is measurable.

(ii)  (E)  0, E  A s.t. E is measurable.

set A is negative w.r.t. , provided it is positive w.r.t. – .

(c) Null Set: A set A  X is said to be a null set relative to a signed measure  defined on
measurable space (X, ) is, A is both positive and negative relative to .

Thus, measure of every null set is zero.

Now, we know that a measurable set is a set of measure zero, iff every measurable subset of it
has  measure zero. Thus, if A  X is a null set relative to  then  (E) = 0,  measurable subsets
E  A. In other words.

A is a null set   (E) = 0,  measurable subsets E  A.

Theorem 1: Countable union of positive sets w.r.t. a signed measure is positive.

Proof: Let (X, ) be a measurable space and let  be a signed measure defined on (X, ). Let <An>

be a sequence of positive subsets of X, let A = 
n

i
i 1

A and let B be any measurable subset of A.

Set n = C C
n n 1 1B A A A , n N.
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Notes where C
nA (n 1,2,3 n 1)  denotes complement of An(n = 1, 2, 3, … n – 1) with respect to X.

Now, we know that complement of a measurable set is also measurable so that each
C
nA (n 1,2,3 n 1)  is measurable relative to . Again, intersection of countable collection of

measurable sets is also measurable. Hence Bn is a measurable subset of the positive set An. Thus

 (Bn)  0 (by the definition of positive set) … (i)

Obviously, the set Bn are disjoint and

if B =  n
n 1

B , we get … (ii)

(B) = n
n 1

(B ) … (iii)

In view of (i).

(B)  0.

Thus, we have

(1) A is measurable for

An is a positive set  An is a measurable set

 countable union  n
n 1

A  is measurable,

A =  n
n 1

A  is measurable

(2)  (B)  0,  B  A s.t. B is a measurable set.

Hence A is a positive set, by definition.

Theorem 2: Let (X, ) be a measurable space and let  be a signed measure defined on (X, A). If B
is a measurable set with finite negative measure i.e., –  <  (B) < 0, then prove that B contains a
negative set A  B with the property (A) < 0.

Proof: If B is itself a negative set, then we may take A = B and theorem is done. Therefore
consider the case when B is not a negative set. Then there must exist a measurable subset E 1  B
and a smallest positive integer n1, s.t.

 (E1) > 
1

1
n

 B = (B – E1)  E1 and (B – E1)  E1 = ,

 (B) = (B – E1) + (E1) … (i)

or  (B – E1) = (B) – (E1) … (ii)

Since (B) is finite, (i) implies that (B – E1) and (E1) are finite. Again (B) < 0, (ii) implies that
(B – E1) < 0.
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NotesNow, the set B – E1 is either negative or contains a subset of positive measure. If the set B – E1 is
a negative set, then we may take A = B – E1 and the theorem is done. So, suppose that B – E1 is not
a negative set. Then there must exist a measurable subset E2 of B – E1 and a smallest positive
number n2 with a property

 (E2) > 
2

1
n .

Since B = (B – E1  E2) (E2 E2),

and (B – E1 E2) (E1 E2) = ,

we have  (B) =  (B – E1 E2) + (E2 E2)

or  (B – E1 E2) =  (B) –  (E2 E2)

=  (B) –  (E1) – (E2).

As before,  (B – E1 E2) > 0 [ (B) < 0, (Er) > 0 for r = 1, 2]

Thus, B – E1 E2 is a set of negative measure, which is either a negative set or contains a subset
of positive measure. If B – E1 E2 is a negative set, then the theorem is done by taking B = A – E1

E2. Otherwise we repeat the above process.

On repeating this process, at some stage we shall get either a negative subset A B s.t.  (A) < 0
or a sequence <Er> of disjoint measurable sets and a sequence <nr : r  N> of positive integers s.t.

Er B – 
r 1

n
n 1

E  and 
r

1
n  <  (Er) < 

In first case, we have nothing to do. In the latter case, let

A = B –  n
n 1

E  or B = A   n
n 1

E … (iii)

Then as before, it follows that

 (B) = (A) + n
n 1

(E ) .

>  (A) + 
kk 1

1
n … (iv)

[ change of suffix is in material]

Since  (B) is finite and assumes at most one of the values –  and , it follows from (iv) that

(A) is finite and the series 
kk 1

1
n

 is convergent.

Then  (A) <  (B) – 
kk 1

1
n

= a finite negative number

(  (B) is a finite negative number)
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Notes or  (A) < 0.

Again, we know that difference of two measurable sets is measurable and enumerable union of
measurable sets is measurable therefore it follows from (iii) that A is a measurable set.

Now we shall prove that A is a negative set. Let E  A be an arbitrary measurable set.

Since A = B –  n
n 1

E ,

E = B – n
n 1

E .

Since nk  , we can choose k so large that

 (E)  
k 1

1
n

Letting nk  , we obtain

 (E)  0.

Thus we have

(1) A is measurable.

(2) (E)  0,  E  A s.t. E is measurable.

Hence A is a negative set.

13.1.3 Hahn Decomposition Theorem

Theorem 3: Let  be a signed measure on a measurable space (X, ). Then there exists a positive
set P and a negative set Q s.t.

P  Q =  and P  Q = X.

Proof: Let (X, ) be a measurable space and let  be a signed measure defined on a measurable
space (X, ). Since, by definition, assumes at most one of the values +  or collection of all
negative subsets of X w.r.t. and let  be a collection of all negative subsets of X w.r.t. and let

k = inf { (E) : E  )

(i)  that there exists a sequence <En> in  such that

nn
Lim (E ) = k.

Let Q =  n
n 1

E .

Since  is a family of negative sets, < En> is a sequence of negative sets. Again, we know by
remark of theorem 1 that countable union of negative sets is negative, it follows that Q is a
negative subset of X so that

 (Q)  K.
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 (Q – En)  0.

Since (Q – En)  En = 

and Q = (Q – En)  En,

we have  (Q) =  (Q – En) +  (En)

 (Q)   (En), n  N and En  B.

Therefore  (Q)  K. … (iii)

(ii) and (iii)   (Q) = K  –  < k. … (iv)

Now we shall show that p = QC, the complement of Q w.r.t.  is a positive subset of X. Suppose
not, i.e. P is negative. Then E  P s.t. E is measurable and (E) < 0. Now we know that if
– < (E) < 0, we get a negative set A E s.t. (A) < 0.

A, Q are distinct negative subsets of X

A  Q is negative set

 (A Q)  K [using (i)]

 (A) + (Q)  K,

 (A) + K  K, [using (iv)]

 (A)  0,

a contradiction, for  (A) < 0

P = QC is a positive subset of X

Q is a negative subset of X.

Thus X = P Q, P Q = .

13.1.4 Hahn Decomposition: Definition

A decomposition of a measurable space X into two subsets s.t. X = P  Q, P  Q = ,

where P and Q are positive and negative sets respectively relative to the signal measure , is
called as Hahn decomposition for the signed measure . P and Q are respectively called positive
and negative components of X.

Notice that Hahn decomposition is not unique.

13.2 Summary

 Let the couple (X, ) be a measurable space, where represents a -algebra of subsets of
X. An extended real-valued set function

:   [– , ]

defined on  is called a signed measure, if it satisfies the following postulates:

(i) assumes at most one of the values –  or + .

(ii) ( ) = 0.

(iii) If <An> is any sequence of disjoint measurable sets, then is countably additive.
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Notes  Let (X, ) be a measurable space and then A  X is said to be a positive set relative to a
signed measure defined on (X, ) if

(i) A is measurable

(ii)  (E)  0,  E  A s.t. E is measurable.

 Let (X, ) be a measurable space. Then A  X is said to be negative set relative to a signed
measure if

(i) A is measurable

(ii)  (E)  0,  E  A s.t. E is measurable.

 A  X is said to be a null set relative to a signed measure  defined on measurable space
(X, ) is: A is both positive and negative relative to .

13.3 Keywords

Hahn Decomposition: Definition: A decomposition of a measurable space X into two subsets s.t.
X = P  Q, P  Q = .

Negative Set: Let (X, ) be a measurable space. Then a subset A of X is said to be a negative set
relative to a signed measure  defined on measurable space (X, ) if

(i) A   i.e., A is measurable.

(ii)  (E)  0, E  A s.t. E is measurable.

Null Set: A set A  X is said to be a null set relative to a signed measure  defined on measurable
space (X, ) is, A is both positive and negative relative to .

Positive Set: Let (X, ) be a measurable space and let A be any subset of X. Then A  X is said to
be a positive set relative to a signed measure  defined on (X, ), if

(i) A  , i.e. A is measurable.

(ii)  (E)  0, E  A s.t. E is measurable.

Signed Measure: Let the couple (X, ) be a measurable space, where  represents a -algebra of
subsets of X. An extended real valued set function

 :   [– , ]

defined on  is called a signed measure, if it satisfies the following postulates:

(i)  assumes at most one of the values –  or + .

(ii)  ( ) = 0.

13.4 Review Questions

1. If  (E) = 
2x

E

xe dx,  then find positive, negative and null sets w.r.t. . Also give a Hahn

decomposition of R w.r.t. .

2. State and prove Hahn decomposition theorem for signed measures.

3. If  is a measure and 1, 2 are the signed measures given by 1 (E) =  (A  E), 2 (E) =  (B
 E), where  (A  B) = 0, show that 1  2.
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Notes4. Show that if 1 and 2 are two finite signed measures, then so is a 1 + b 2 where a, b are real
numbers.

13.5 Further Readings

Books Bartle, Robert G., The Elements of Integration, New York – London – Sydney: John
Wiley and Sons

Cohn, Donald L. (1997) [1980], Measure Theory (reprint ed.), Boston – Based –
Stuttgart: Birkhauser Verlag

Online links www.maths.bris.ac.uk

www.planetmath.org/signedmeasure.html
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Objectives

After studying this unit, you will be able to:

 Define Absolutely continuous measure function

 State Radon-Nikodym theorem

 Understand the proof of Radon-Nikodym theorem

 Solve problems on this theorem

Introduction

In mathematics, the Radon-Nikodym theorem is a result in measure theory that states that given
a measurable space (X, ), if a -finite measure on (X, ) is absolutely continuous with respect to
a -finite measure on (X, ), then there is a measurable function f on X and taking values in [0, ],
such that for any measurable set A.

The theorem is named after Johann Radon, who proved the theorem for the special case where
the underlying space is RN in 1913, and for Otto Nikodym who proved the general case in 1930.
In 1936 Hans Freudenthal further generalised the Radon-Nikodym theorem by proving the
Freudenthal spectral theorem, a result in Riesz space theory, which contains the Radon-Nikodym
theorem as a special case.

If Y is a Banach space and the generalisation of the Radon-Nikodym theorem also holds for
functions with values in Y, then Y is said to have the Radon-Nikodym property. All Hibert
spaces have the Radon-Nikodym property.

14.1 Radon-Nikodym Theorem

14.1.1 Absolutely Continuous Measure Function

Let (X, ) be a measurable space and let  and  be measure functions defined on the space (X, A).
The measure is said to be absolutely continuous w.r.t.  if

 (A) = 0  or  | | (A) = 0,  A   (A) = 0, and is denoted by   .

Sachin Kaushal, Lovely Professional University
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Notes

 If  is -finite, the converse is also true.

 If  and  are signed measures on (X, ), then     if | |   | |.

Radon-Nikodym Theorem

Let (X, , ) be a -finite measure space. If be a measure defined on A s.t. is absolutely
continuous w.r.t. , then there exists a non-negative measurable function f on s.t.

(A) = 
A

f d , A .

The function f is unique in the sense that if g is any measurable function with the property
defined as above, then f = g almost everywhere with respect to .

Proof: To establish the existence of the function f, we shall use the following two Lemmas:

Lemma 1: Let E be a countable set of real numbers. Let for each a  E there is a set Fa   s.t.
Fa  Fb, whenever b < a i.e. <Fn> is a monotonic decreasing sequence of subsets of  corresponding
to the sequence <an> of real numbers in E. Then  a measurable extended real valued function f
on X s.t.

f (x)  a, x  Fa,

and f (x)  a, x  (X – Fa).

Proof: Let f (x) = inf {a : x  Fa} x  X and let, conventionally

inf {empty collection of real numbers} = 

Now, x  Fa  f(x)  a

x  Fa  x  Fa for every b < a

 f (x)  a

Now, f (x) < a  x  Fb for some b < a

or {x : f (x) < a} = b
b a

[F ] .

Also x  Fb  f (x)  b < a for some b < a.

Hence f is measurable.

Again, by definition of f, we observe that

f (x)  a, x  Fa,

and f (x)  a, x  Fa.

Thus f is the required function.

Lemma 2: Let E be a countable set of real numbers. Let corresponding to each a  E, there is a set
Fa   s.t.

 (Fa – Fb) = 0 whenever b > a.

Then there exists a measurable function f with the property

x  Fa  f (x)  a a.e.

and x  (X – Fa)  f (x) > a a.e.
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Proof: Let P = a b

b a

{F F } .

Evidently  (P) = 0.

Let aF  = Fa  P.

This  a bF F  = (Fa – Fb) – P =  for a < b.

In view of Lemma 1, it follows that  a measurable function f s.t.

f (x)  a, x  Fa

and f (x)  a, x  X – Fa

Thus we have

a

a

x F f(x) a a.e., except for x P.x X F f(x) a a.e.,

Proof of the main theorem

At first, suppose that  is finite.

 (  – a ) is a signed measure on  for each rational number a.

Let (Pa, Qa) be a Hahn decomposition for the measure (  – a ).

Let PO = X and QO = .

By the definition of Hahn decomposition theorem,

Pa  Qa = X,

and Pb Qb = X.

Therefore, Qa – Qb = Qa – (X – Pb)

= Qa  Pb.

Thus, (  – a ) (Qa – Qb)  0 … (i)

Similarly, we can prove that

(  – b ) (Qa – Qb)  0 … (ii)

Let a < b, then from (i) and (ii), we have

 (Qa – Qb) = 0.

Therefore, by Lemma (ii)

f (x)  a, a.e. x  Pa

and f (x)  a, a.e. x  Qa,

where f is measurable

Since QO = , it follows that f is non-negative

Again, let A   be arbitrary.

Define Ar = A  r 1 r

o o

Q Q
n n
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A  =  A –  r

o

Q
n

.

Evidently, A = A  r
r o

A ,

where A is disjoint union of measurable sets.

 (A) =  (A ) + r
r o

(A ) .

Obviously Ar  r 1 r

o o

Q Q
n n

r
o o

r r 1f(x) , x A
n n

r r
o oAr

r r 1(A ) fd (A )
n n [by first mean value theorem]

Again r r r
o o

r r 1(A ) (A ) (A )
n n

, we have

r r r r
o oAr

1 1(A ) (A ) fd (A ) (A )
n n               … (iii)

Now, if  (A ) > 0, then g (A ) = 0, [ (  – a ) A  is positive, a]

and  (A ) = 0 if  (A ) = 0 [   )]

In either case,  (A ) = 
Ar

f d .

Adding the inequalities (iii) over r, we get

r
o oA

1 1(A) (A) f d (A) (A ).
n n

Since no is arbitrary and  (A) is assumed to be finite, it follows that

A
(A) f d A .

To show that the theorem is true for -finite measure , decompose X into a countable union of
Xi of finite -measure. Applying the same argument as above for each X i, we get the required
function.

To show the second part, let g be any measurable function satisfying the condition,

 (A) = 
A

f d A .
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A n = 
1x X : f(x) g(x)
n



and Bn = 
1x X : g(x) f(x) .
n



Since f (x) – g (x)  n
1 , x A
n

 , we have by first mean value theorem

n

An

1(f g)d (A )
n

n

A An n

1fd gd (A )
n

(An) – (An)  n n
1 1(A ) or 0 (A )
n n

 (An)  0.

Since (An) is always greater than equal to zero, we have (An) = 0.

Similarly, we can show that

 (Bn)  0.

If C = {x  X : f (x)  g (x)}

= n n
n 1

(A B ),
then  (C) = 0  f = g a.e. on X w.r.t. .

Hence the theorem.

Theorem 1: If 1, 2 are -finite signed measures on (X, A) and 1   , 2 , then

1 2 1 2 1 1d( ) d d d d( )and
d d d d d

Proof: Since 1, 2 are -finite and 1  , 2  , we have that 1 + 2 is also -finite and

1 + 2  .

Now for any A  ,

( 1 + 2) (A) = 1 (A) + 2 (A)

= 1 2 1 2

A A A

d d d dd d d
d d d d

1 2 1 2

A A

d d dd d
d d d
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1 2 1 2d( ) d d
d d d

Prove the other result yourself.

Theorem 2: If  is a -finite signed measures and is a -finite measure s.t.   , show that

d| | d .
d d

Proof: Let  = + – – with Hahn decomposition A, B.

Then on A, 
d d
d d

 and on B, d d
d d

d d d d( ) d| |
d d d d d .

Theorem 3: If  be a -finite signed measure and ,  be -finite measures on (X, A) s.t.   , 
 : then show that

d d d
d d d

Proof: Since we may write  = + – – and

d d( ) d d( ),
d d d d

.

we need to prove the above result for measures only.

If 
d f
d

 and d g
d

, (f, g are non-negative functions as obtained in Radon-Nikodym Theorem),

then we need to prove that

 (F) = 
F

fg d .

Let  be a measurable simple function s.t.

 = 
n

i Ei
i 1

a ,

then 
n

i i
i 1F

d a (E F)

     = 
n

i g
i 1 E F Fi

a gd d .

Let < n> be a sequence of measurable simple function which converges to f, then

 (F) = n

F F

fd lim d .
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= n g n

F F

lim gd f d as g fg

= 
d d dufg
d d d .

14.2 Summary

 Let (X, ) be a measurable space and let r and m be measure functions, defined on the space
(X, A). The measure  is said to be absolutely continuous w.r.t.  if

 (A) = 0  or  | | (A) = 0, A     (A) = 0, and is denoted by    .

 Let (X, , ) be a -finite measure space. If Y be a measure defined on A s.t. is absolutely
continuous w.r.t. , then there exists a non-negative measurable function f s.t.

 (A) = 
A

fd , A 

The function f is unique in the sense that if g is any measurable function with the property
defined as above, then f = g almost everywhere with respect to .

14.3 Keywords

Absolutely Continuous Measure Function: Let (X, ) be a measurable space and let  and  be
measure functions defined on the space (X, A). The measure is said to be absolutely continuous
w.r.t.  if

 (A) = 0  or  | | (A) = 0,  A   (A) = 0, and is denoted by   .

Radon-Nikodym Theorem: Let (X, , ) be a -finite measure space. If be a measure defined on
A s.t. is absolutely continuous w.r.t. , then there exists a non-negative measurable function f
on s.t.

(A) = 
A

f d , A .

The function f is unique in the sense that if g is any measurable function with the property
defined as above, then f = g almost everywhere with respect to .

14.4 Review Questions

1. Show that 
1

d d ,
d d

where  and  are -finite signed measures and    ,    .

2. If  (E) = 
E

fd , , where 
E

fd  exists, then find | | (E).

3. State and prove Radon-Nikodym theorem.
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